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One must learn by doing the thing;
for though you think you know it
You have no certainty, until you try.

—Sophocles, Trachiniae

PREFACE

The principal goal of this book is to provide a unified introduction to the theory, imple-
mentation, and applications of statistical and adaptive signal processing methods. We have
focused on the key topics of spectral estimation, signal modeling, adaptive filtering, and ar-
ray processing, whose selection was based on the grounds of theoretical value and practical
importance. The book has been primarily written with students and instructors in mind. The
principal objectives are to provide an introduction to basic concepts and methodologies that
can provide the foundation for further study, research, and application to new problems.
To achieve these goals, we have focused on topics that we consider fundamental and have
either multiple or important applications.

APPROACH AND PREREQUISITES

The adopted approach is intended to help both students and practicing engineers understand
the fundamental mathematical principles underlying the operation of a method, appreciate
its inherent limitations, and provide sufficient details for its practical implementation. The
academic flavor of this book has been influenced by our teaching whereas its practical
character has been shaped by our research and development activities in both academia and
industry. The mathematical treatment throughout this book has been kept at a level that is
within the grasp of upper-level undergraduate students, graduate students, and practicing
electrical engineers with a background in digital signal processing, probability theory, and
linear algebra.

ORGANIZATION OF THE BOOK

Chapter 1 introduces the basic concepts and applications of statistical and adaptive signal
processing and provides an overview of the book. Chapters 2 and 3 review the fundamentals
of discrete-time signal processing, study random vectors and sequences in the time and
frequency domains, and introduce some basic concepts of estimation theory. Chapter 4
provides a treatment of parametric linear signal models (both deterministic and stochastic)
in the time and frequency domains. Chapter 5 presents the most practical methods for
the estimation of correlation and spectral densities. Chapter 6 provides a detailed study
of the theoretical properties of optimum filters, assuming that the relevant signals can be
modeled as stochastic processes with known statistical properties; and Chapter 7 contains
algorithms and structures for optimum filtering, signal modeling, and prediction. Chapter

Xvii
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Preface

8 introduces the principle of least-squares estimation and its application to the design of
practical filters and predictors. Chapters 9, 10, and 11 use the theoretical work in Chapters
4, 6, and 7 and the practical methods in Chapter 8, to develop, evaluate, and apply practical
techniques for signal modeling, adaptive filtering, and array processing. Finally, Chapter 12
introduces some advanced topics: definition and properties of higher-order moments, blind
deconvolution and equalization, and stochastic fractional and fractal signal models with long
memory. Appendix A contains a review of the matrix inversion lemma, Appendix B reviews
optimization in complex space, Appendix C contains a list of the MATLAB functions used
throughout the book, Appendix D provides a review of useful results from matrix algebra,
and Appendix E includes a proof for the minimum-phase condition for polynomials.

THEORY AND PRACTICE

It is our belief that sound theoretical understanding goes hand-in-hand with practical im-
plementation and application to real-world problems. Therefore, the book includes a large
number of computer experiments that illustrate important concepts and help the reader
to easily implement the various methods. Every chapter includes examples, problems,
and computer experiments that facilitate the comprehension of the material. To help the
reader understand the theoretical basis and limitations of the various methods and apply
them to real-world problems, we provide MATLAB functions for all major algorithms and
examples illustrating their use. The MATLAB files and additional material about the book can
be found at ht t p: / / www. art echhouse. com def aul t. asp?frane=Stati c/
manol aki smat | ab. ht m . A Solutions Manual with detailed solutions to all the prob-
lems is available to the instructors adopting the book for classroom use.

Dimitris G. Manolakis
Vinay K. Ingle
Stephen M. Kogon



CHAPTER 1

Introduction

This book is an introduction to the theory and algorithms used for the analysis and pro-
cessing of random signals and their applications to real-world problems. The fundamental
characteristic of random signals is captured in the following statement: Although random
signals are evolving in time in an unpredictable manner, their average statistical proper-
ties exhibit considerable regularity. This provides the ground for the description of random
signals using statistical averages instead of explicit equations. When we deal with random
signals, the main objectives are the statistical description, modeling, and exploitation of the
dependence between the values of one or more discrete-time signals and their application
to theoretical and practical problems.

Random signals are described mathematically by using the theory of probability, ran-
dom variables, and stochastic processes. However, in practice we deal with random signals
by using statistical techniques. Within this framework we can develop, at least in princi-
ple, theoretically optimum signal processing methods that can inspire the development and
can serve to evaluate the performance of practical statistical signal processing techniques.
The area of adaptive signal processing involves the use of optimum and statistical signal
processing techniques to design signal processing systems that can modify their charac-
teristics, during normal operation (usually in real time), to achieve a clearly predefined
application-dependent objective.

The purpose of this chapter is twofold: to illustrate the nature of random signals with
some typical examples and to introduce the four major application areas treated in this book:
spectral estimation, signal modeling, adaptive filtering, and array processing. Throughout
the book, the emphasis is on the application of techniques to actual problems in which the
theoretical framework provides a foundation to motivate the selection of a specific method.

1.1 RANDOM SIGNALS

A discrete-time signal or time series is a set of observations taken sequentially in time,
space, or some other independent variable. Examples occur in various areas, including
engineering, natural sciences, economics, social sciences, and medicine.

A discrete-time signal x (n) is basically a sequence of real or complex numbers called
samples. Although the integer index n may represent any physical variable (e.g., time,
distance), we shall generally refer to it as time. Furthermore, in this book we consider only
time series with observations occurring at equally spaced intervals of time.

Discrete-time signals can arise in several ways. Very often, a discrete-time signal is
obtained by periodically sampling a continuous-time signal, that is, x(n) = x.(nT), where
T = 1/F; (seconds) is the sampling period and F; (samples per second or hertz) is the
sampling frequency. At other times, the samples of a discrete-time signal are obtained
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Introduction

by accumulating some quantity (which does not have an instantaneous value) over equal
intervals of time, for example, the number of cars per day traveling on a certain road.
Finally, some signals are inherently discrete-time, for example, daily stock market prices.
Throughout the book, except if otherwise stated, the terms signal, time series, or sequence
will be used to refer to a discrete-time signal.

The key characteristics of a time series are that the observations are ordered in time and
that adjacent observations are dependent (related). To see graphically the relation between
the samples of a signal that are / sampling intervals away, we plot the points {x (n), x(n+1)}
for0 <n < N —1—1, where N is the length of the data record. The resulting graph is
known as the [ lag scatter plot. This is illustrated in Figure 1.1, which shows a speech signal
and two scatter plots that demonstrate the correlation between successive samples. We note
that for adjacent samples the data points fall close to a straight line with a positive slope.
This implies high correlation because every sample is followed by a sample with about the
same amplitude. In contrast, samples that are 20 sampling intervals apart are much less
correlated because the points in the scatter plot are randomly spread.

When successive observations of the series are dependent, we may use past observations
to predict future values. If the prediction is exact, the series is said to be deterministic.
However, in most practical situations we cannot predict a time series exactly. Such time
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FIGURE 1.1

(a) The waveform for the speech signal “signal”; (b) two scatter plots for successive samples and samples
separated by 20 sampling intervals.



series are called random or stochastic, and the degree of their predictability is determined
by the dependence between consecutive observations. The ultimate case of randomness
occurs when every sample of arandom signal isindependent of all other samples. Such a
signal, which is completely unpredictable, isknown aswhite noise and isused asabuilding
block to simulate random signals with different types of dependence. To summarize, the
fundamental characteristic of arandom signal istheinability to precisely specify itsvalues.
In other words, arandom signal isnot predictable, it never repeatsitself, and we cannot find
amathematical formula that provides its values as a function of time. As a result, random
signals can only be mathematically described by using the theory of stochastic processes
(see Chapter 3).

This book provides an introduction to the fundamental theory and a broad selection
of algorithms widely used for the processing of discrete-time random signals. Signal pro-
cessing techniques, dependent on their main objective, can be classified as follows (see
Figure 1.2):

« Signal analysis. The primary goal is to extract useful information that can be used to
understand the signal generation process or extract features that can be used for signal
classification purposes. Most of the methods in this area are treated under the disciplines
of spectral estimation and signal modeling. Typical applications include detection and
classification of radar and sonar targets, speech and speaker recognition, detection and
classification of natural and artificial seismic events, event detection and classification in
biological and financia signals, efficient signal representation for data compression, etc.

« Signal filtering. The main objective of signal filteringisto improvethe quality of asignal
according to an acceptable criterion of performance. Signal filtering can be subdivided
into the areas of frequency selective filtering, adaptive filtering, and array processing.
Typical applicationsinclude noiseand interference cancel ation, echo cancel ation, channel
equalization, seismic deconvolution, active noise control, etc.

We conclude this section with some examples of signals occurring in practical applications.
Although the desciption of these signalsis far from complete, we provide sufficient infor-
mation to illustrate their random nature and significance in signal processing applications.

Random signals

A
Theory of stochastic
processes,
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FIGURE 1.2
Classification of methods for the analysis and processing of random signals.



4 Speech signals. Figure 1.3 shows the spectrogram and speech waveform correspond-

CHAPTERL ing to the utterance “signal.” The spectrogram is avisual representation of the distribution

Introduction of the signal energy as afunction of time and frequency. We note that the speech signal has
significant changesin both amplitude level and spectral content acrosstime. The waveform
contains segments of voiced (quasi-periodic) sounds, such as“e,” and unvoiced or fricative
(noiselike) sounds, such as “g.”
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FIGURE 1.3
Spectrogram and acoustic waveform for the utterance “signal.” The horizontal dark bands show the resonances of the
vocal tract, which change as a function of time depending on the sound or phoneme being produced.

Speech production involves three processes. generation of the sound excitation, artic-
ulation by the vocal tract, and radiation from the lips and/or nostrils. If the excitation is
aquasi-periodic train of air pressure pulses, produced by the vibration of the vocal cords,
the result is a voiced sound. Unvoiced sounds are produced by first creating a constriction
in the vocal tract, usually toward the mouth end. Then we generate turbulence by forc-
ing air through the constriction at a sufficiently high velocity. The resulting excitation isa
broadband noiselike waveform.

The spectrum of the excitation is shaped by the vocal tract tube, which has afrequency
response that resembles the resonances of organ pipes or wind instruments. The resonant
frequencies of the vocal tract tube are known as formant frequencies, or smply formants.
Changing the shape of the vocal tract changes its frequency response and results in the
generation of different sounds. Since the shape of the vocal tract changes slowly during
continuous speech, we usually assume that it remains almost constant over intervals on the
order of 10 ms. More details about speech signal generation and processing can be found
in Rabiner and Schafer 1978; O’ Shaughnessy 1987; and Rabiner and Juang 1993.

Electrophysiological signals. Electrophysiology wasestablishedinthelate eighteenth
century when Galvani demonstrated the presenceof electricity inanimal tissues. Today, elec-
trophysiological signalsplay aprominent rolein every branch of physiology, medicine, and



biology. Figure 1.4 showsaset of typical signalsrecorded in asleep laboratory (Rechtschaf-
fen and Kales 1968). The most prominent among them is the el ectroencephal ogram (EEG),
whose spectral content changes to reflect the state of alertness and the mental activity of
the subject. The EEG signal exhibits some distinctive waves, known as rhythms, whose
dominant spectral content occupies certain bands as follows: delta (§), 0.5 to 4 Hz; theta
(9), 4to 8 Hz; alpha («), 8 to 13 Hz; beta (), 13 to 22 Hz; and gamma (y), 22 to 30 Hz.
During sleep, if the subject is dreaming, the EEG signal shows rapid low-amplitude fluctu-
ations similar to those obtained in alert subjects, and thisis known as rapid eye movement
(REM) sleep. Some other interesting features occurring during nondreaming sleep periods
resemble aphalike activity and are known as sleep spindles. More details can be found in
Duffy et al. 1989 and Niedermeyer and Lopes Da Silva 1998.

LEFT EYE - Al

RIGHT EYE - Al

FIGURE 1.4

Typical sleep laboratory recordings. The two top signals show eye movements, the next one
illustrates EMG (electromyogram) or muscle tonus, and the last one illustrates brain waves
(EEG) during the onset of a REM sleep period (from Rechtschaffen and Kales 1968).

Thebeat-to-beat fluctuationsin heart rate and other cardiovascular variables, such asar-
terial blood pressure and stroke volume, are mediated by thejoint activity of the sympathetic
and parasympathetic systems. Figure 1.5 showstime seriesfor the heart rate and systolic ar-
terial blood pressure. We note that both heart rate and blood pressure fluctuate in acomplex
manner that depends on the mental or physiological state of the subject. The individual or
joint analysis of such time series can help to understand the operation of the cardiovascular
system, predict cardiovascular diseases, and help in the development of drugs and devices
for cardiac-related problems (Grossman et a. 1996; Malik and Camm 1995; Saul 1990).

Geophysical signals. Remote sensing systems use avariety of electro-optical sensors
that span theinfrared, visible, and ultraviol et regions of the spectrum and find many civilian
and defense applications. Figure 1.6 shows two segments of infrared scans obtained by a
space-based radiometer looking down at earth (Manolakis et al. 1994). The shape of the
profiles depends on the transmission properties of the atmosphere and the objects in the
radiometer’s field-of-view (terrain or sky background). The statistical characterization and
modeling of infrared backgrounds are critical for the design of systems to detect missiles
against such backgrounds as earth’s limb, auroras, and deep-space star fields (Sabins 1987;
Colwell 1983). Other geophysical signalsof interest arerecordingsof natural and man-made
seismic eventsand seismic signal susedin geophysical prospecting (Bolt 1993; Dobrin 1988;
Sheriff 1994).
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FIGURE 1.5
Simultaneous recordings of the heart rate and systolic blood pressure signals for a
subject at rest.
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FIGURE 1.6
Time series of infrared radiation measurements obtained by a scanning radiometer.



Radar signals. We conveniently define aradar system to consist of both a transmitter
and a receiver. When the transmitter and receiver are colocated, the radar system is said to
be monostatic, whereas if they are spatially separated, the system is bistatic. The radar first
transmits awaveform, which propagates through space as el ectromagnetic energy, and then
measures the energy returned to the radar via reflections. When the returns are due to an
object of interest, thesignal isknown asatarget, while undesired reflectionsfrom the earth’s
surface arereferred to asclutter. |n addition, the radar may encounter energy transmitted by
ahostile opponent attempting to jamthe radar and prevent detection of certain targets. Col-
lectively, clutter and jamming signals are referred to as interference. The challenge facing
the radar system is how to extract the targets of interest in the presence of sometimes severe
interference environments. Target detection is accomplished by using adaptive processing
methods that exploit characteristics of the interference in order to suppress these undesired
signals.

A transmitted radar signal propagates through space as electromagnetic energy at ap-
proximately the speed of light ¢ = 3 x 10® m/s. The signal travels until it encounters an
object that reflects the signal’s energy. A portion of the reflected energy returnsto the radar
receiver along the same path. The round-trip delay of the reflected signal determines the
distance or range of the object from the radar. The radar has a certain receive aperture,
either a continuous aperture or one made up of a series of sensors. The relative delay of a
signal asit propagates across the radar aperture determines its angle of arrival, or bearing.
The extent of the aperture determines the accuracy to which the radar can determine the
direction of atarget. Typically, the radar transmits a series of pulses at arate known asthe
pulse repetition frequency. Any target motion produces a phase shift in the returns from
successive pulses caused by the Doppler effect. This phase shift across the series of pulses
is known as the Doppler frequency of the target, which in turn determines the target radial
velocity. The collection of these various parameters (range, angle, and velocity) allowsthe
radar to locate and track atarget.

An example of a radar signal as a function of range in kilometers (km) is shown in
Figure 1.7. The signal is made up of atarget, clutter, and thermal noise. All the signals have
been normalized with respect to the thermal noise floor. Therefore, the normalized noise
has unit variance (0 dB). The target signa is at a range of 100 km with a signal-to-noise
ratio (SNR) of 15 dB. The clutter, on the other hand, is present at all ranges and is highly
nonstationary. Its power levels vary from approximately 40 dB at near ranges down to the
thermal noise floor (0 dB) at far ranges. Part of the nonstationarity in the clutter is due to
therangefalloff of the clutter asits power is attenuated as afunction of range. However, the
rises and dips present between 100 and 200 km are due to terrain-specific artifacts. Clearly,
the target is not visible, and the clutter interference must be removed or canceled in order
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FIGURE 1.7
Example of aradar return signal, plotted as relative power with
respect to noise versus range.
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to detect the target. The challenge hereis how to cancel such anonstationary signal in order
to extract the target signal and motivate the use of adaptive techniques that can adapt to
the rapidly changing interference environment. More details about radar and radar signal
processing can be found in Skolnik 1980; Skolnik 1990; and Nathanson 1991.

1.2 SPECTRAL ESTIMATION

The central objective of signal analysis is the development of quantitative techniques to
study the properties of a signal and the differences and similarities between two or more
signals from the same or different sources. The major areas of random signal analysis
are (1) statistical analysis of signa amplitude (i.e., the sample values); (2) anaysis and
modeling of the correlation among the samples of an individua signal; and (3) joint signal
analysis(i.e., ssimultaneous analysis of two signalsin order to investigate their interaction or
interrelationships). These techniques are summarized in Figure 1.8. The prominent tool in
signal analysisis spectral estimation, which is a generic term for amultitude of techniques
used to estimate the distribution of energy or power of asignal from a set of observations.
Spectral estimation is a very complicated process that requires a deep understanding of
the underlying theory and agreat deal of practical experience. Spectral analysis finds many
applicationsinareassuch asmedical diagnosis, speech analysis, seismology and geophysics,
radar and sonar, nondestructive fault detection, testing of physical theories, and evauating
the predictability of time series.

RANDOM SIGNAL
ANALYSIS

! ! !

SlngIeTS|gnaI Single-signal Joint signal
amplitude dependence )
) . analysis
analysis analysis
v v v
Averages PAutocorreIet[tlon c Cross—correlahc;n
Probability density o owertspec rl:]mI rosscp;)oxver spectrum
Extreme-value arametric models oherence
analysis Self-similarity Frequency response
Higher-order statistics Higher-order statistics
FIGURE 1.8

Summary of random signal analysis techniques.

Amplitude distribution. The range of valuestaken by the samples of asignal and how
often the signal assumes these values together determine the signal variability. The signal
variability can be seen by plotting the time series and is quantified by the histogram of the
signal samples, which shows the percentage of the signal amplitude values within acertain
range. The numerical description of signal variability, which depends only on the value
of the signal samples and not on their ordering, involves quantities such as mean value,
median, variance, and dynamic range.



Figure 1.9 shows the one-step increments, that is, the first difference x;,(n) = x(n) — 9

x(n—1), or approximatederivative of theinfrared signalsshownin Figure 1.6, whereas Fig-
ure 1.10 shows their histograms. Careful examination of the shape of the histogram curves

SECTION 1.2
Spectral Estimation

indicates that the second signal jumps quite frequently between consecutive samples with
large steps. In other words, the probability of large incrementsis significant, as exemplified
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One-step-increment time series for the infrared data shown in Figure 1.6.
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by the fat tails of the histogram in Figure 1.10(b). The knowledge of the probability of
extreme values is essential in the design of detection systems for digital communications,
military surveillance using infrared and radar sensors, and intensive care monitoring. In
general, the shape of the histogram, or more precisely the probability density, is very im-
portant in applications such as signal coding and event detection. Although many practical
signals follow a Gaussian distribution, many other signals of practical interest have distri-
butions that are non-Gaussian. For example, speech signals have a probability density that
can be reasonably approximated by a gamma distribution (Rabiner and Schafer 1978).

The significance of the Gaussian distribution in signal processing stems from the fol-
lowing facts. First, many physical signals can be described by Gaussian processes. Second,
the central limit theorem (see Chapter 3) states that any process that is the result of the
combination of many elementary processeswill tend, under quite general conditions, to be
Gaussian. Finaly, linear systems preserve the Gaussianity of their input signals. To under-
stand the last two statements, consider N independent random quantities x1, x2, ..., xy
with the same probability density p(x) and pose the following question: When does the
probability distribution py (x) of their sum x = x3 + x2 + - - - + xy have the same shape
(within a scale factor) as the distribution p(x) of the individual quantities? The standard
answer isthat p(x) should be Gaussian, because the sum of N Gaussian random variables
isagain aGaussian, but with variance equal to N timesthat of theindividual signals. How-
ever, if we alow for distributions with infinite variance, additional solutions are possible.
The resulting probability distributions, known as stable or Levy distributions, have infinite
variance and are characterized by a thin main lobe and fat tails, resembling the shape of
the histogram in Figure 1.10(b). Interestingly enough, the Gaussian distribution is a stable
distribution with finite variance (actually the only one). Because Gaussian and stable non-
Gaussian distributions are invariant under linear signal processing operations, they are very
important in signal processing.

Correlation and spectral analysis. Although scatter plots (see Figure 1.1) illustrate
nicely the existence of correlation, to obtain quantitative information about the correlation
structure of a time series x(n) with zero mean value, we use the empirical normalized
autocorrelation sequence

N-1
Z x(m)x*(n —1)

N n=I
p) = 2= (1.2.1)

> lxmP?

n=0
which is an estimate of the theoretical normalized autocorrelation sequence. For lag! = 0,
the sequence is perfectly correlated with itself and we get the maximum value of 1. If
the sequence does not change significantly from sample to sample, the correlation of the
sequencewithitsshifted copies, though diminished, isstill closeto 1. Usually, thecorrelation
decreases asthelag increases because distant samplesbecomeless and lessdependent. Note
that reordering the samples of atime series changesitsautocorrelation but not its histogram.

We say that signal swhose empirical autocorrelation decaysfast, such asan exponential,
have short-memory or short-range dependence. If the empirical autocorrelation decaysvery
slowly, asahyperbolic function does, we say that the signal haslong-memory or long-range
dependence. These concepts will be formulated in a theoretical framework in Chapter 3.
Furthermore, we shall see in the next section that effective modeling of time series with
short or long memory requires different types of models.

The spectral density function shows the distribution of signal power or energy as a
function of frequency (see Figure 1.11). The autocorrelation and the spectral density of a
signal form a Fourier transform pair and hence contain the same information. However,
they present thisinformation in different forms, and one can reveal information that cannot
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FIGURE 1.11
Illustration of the concept of power or energy spectral density function of a random signal.

be easily extracted from the other. It is fair to say that the spectral density is more widely
used than the autocorrelation.

Although the correlation and spectral density functions are the most widely used tools
for signal analysis, there are applications that require the use of correlations among three or
more samples and the corresponding spectral densities. These quantities, which are useful
when we deal with non-Gaussian processes and nonlinear systems, belong to the area of
higher-order statistics and are described in Chapter 12.

Joint signal analysis. In many applications, we are interested in the relationship be-
tween two different random signals. There are two cases of interest. In the first case, the
two signals are of the same or similar nature, and we want to ascertain and describe the
similarity or interaction between them. For example, we may want to investigate if thereis
any similarity in the fluctuation of infrared radiation in the two profiles of Figure 1.6.

In the second case, we may have reason to believe that there is a causal relationship
between the two signals. For example, one signal may be the input to a system and the
other signal the output. The task in this caseisto find an accurate description of the system,
that is, a description that allows accurate estimation of future values of the output from the
input. This process is known as system modeling or identification and has many practical
applications, including understanding the operation of a system in order to improve the
design of new systems or to achieve better control of existing systems.

Inthisbook, wewill study joint signal analysi stechniquesthat can be used to understand
the dynamic behavior between two or more signals. An interesting example involves using
signals, like the onesin Figure 1.5, to seeif there is any coupling between blood pressure
and heart rate. Someinteresting resultsregarding the effect of respiration and blood pressure
on heart rate are discussed in Chapter 5.

1.3 SIGNAL MODELING

In many theoretical and practical applications, we are interested in generating random sig-
nals with certain properties or obtaining an efficient representation of real-world random
signals that captures a desired set of their characteristics (e.g., correlation or spectral fea
tures) inthe best possible way. We use theterm model to refer to amathematical description
that provides an efficient representation of the “essential” properties of asignal.

For example, afinite segment {x(n)} ,’1";01 of any signal can be approximated by alinear
combination of constant (A = 1) or exponentialy fading (0 < A < 1) sinusoids

M
x(n) ~ Z axry cos (wen + ¢y (1.3.2)
=1

where {ay, Ak, wg, ¢k},1<”: , are the model parameters. A good model should provide an
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accurate description of thesignal with4M <« N parameters. Fromapractical viewpoint, we
aremost interested in parametric model s, which assume agiven functional form completely
specified by a finite number of parameters. In contrast, nonparametric models do not put
any restriction on the functional form or the number of model parameters.

If any of the model parametersin (1.3.1) israndom, the result isarandom signal. The
most widely used model is given by

M
x(n) = Z ay CoS (a)kn + ¢k)

k=1

where the amplitudes {a, })’ and the frequencies {«wy }) are constants and the phases {¢;}{’
arerandom. This model isknown as the harmonic process model and has many theoretical
and practical applications (see Chapters 3 and 9).

Suppose next that we are given a sequence w(n) of independent and identically dis-
tributed observations. We can create a time series x(n) with dependent observations, by
linearly combining the values of w(n) as

o0
x(n) = Z h(kywn — k) (1.3.2)
k=—00

which results in the widely used linear random signal model. The model specified by the
convolution summation (1.3.2) is clearly nonparametric because, in general, it depends on
an infinite number of parameters. Furthermore, the model isalinear, time-invariant system
with impulse response (k) that determines the memory of the model and, therefore, the
dependence properties of the output x (n). By properly choosing the weights /(k), we can
generate atime series with almost any type of dependence among its samples.

In practical applications, we areinterested in linear parametric models. Aswewill see,
parametric model s exhibit adependenceimposed by their structure. However, if the number
of parameters approaches the range of the dependence (in number of samples), the model
can mimic any form of dependence. The list of desired features for a good model includes
these: (1) the number of model parameters should be as small as possible ( parsimony),
(2) estimation of the model parameters from the data should be easy, and (3) the model
parameters should have a physically meaningful interpretation.

If we can develop a successful parametric model for the behavior of asignal, then we
can use the model for various applications:

1. To achieve abetter understanding of the physical mechanism generating the signal (e.g.,
earth structure in the case of seismograms).

2. Totrack changesin the source of the signal and help identify their cause (e.g., EEG).

3. To synthesize artificial signals similar to the natural ones (e.g., speech, infrared back-
grounds, natural scenes, data network traffic).

4. To extract parameters for pattern recognition applications (e.g., speech and character
recognition).

5. To get an efficient representation of signals for data compression (e.g., speech, audio,
and video coding).

6. To forecast future signal behavior (e.g., stock market indexes) (Pindyck and Rubinfeld
1998).

In practice, signal modeling involvesthefollowing steps: (1) selection of an appropriate
model, (2) selection of the “right” number of parameters, (3) fitting of the model to the
actual data, and (4) model testing to seeif the model satisfies the user requirements for the
particular application. As we shall see in Chapter 9, this process is very complicated and
depends heavily on the understanding of the theoretical model properties (see Chapter 4),
the amount of familiarity with the particular application, and the experience of the user.



1.3.1 Rational or Pole-Zero Models

Suppose that a given sample x(n), at time n, can be approximated by the previous sample
weighted by acoefficient a, that is, x (n) ~ ax(n — 1), wherea isassumed constant over the
signal segment to be modeled. To make the above relationship exact, we add an excitation
term w(n), resulting in

x(n) = ax(n — 1) + w(n) (2.3.3)
where w(n) is an excitation sequence. Taking the z-transform of both sides (discussed in
Chapter 2), we have

X@) =az ' X@) + W) (1.3.4)

which resultsin the following system function:

X(z) 1
H(z) = = 135
O =wo T 1wt (135
By using the identity
1
Hz) = ———=1+az *+a%z%+--. —1<a<1 (2.3.6)
1—az1

the single-parameter model in (1.3.3) can be expressed in the following nonparametric form
x(n) = whn) +awn — 1) +a’wn —2) + - (2.3.7)
which clearly indicates that the model generates atime series with exponentially decaying

dependence.

A more general model can be obtained by including a linear combination of the P
previous values of the signal and of the Q previous values of the excitation in (1.3.3), that
is,

P 0

xm) =Y (—a)x(n—k)+ Y dew(n — k) (1.3.9)
k=1 k=0
The resulting system function 0
dez_k
X k=0
H@) = > - (1.3.9)
1+ Z arz =k
k=1

isrational, that is, aratio of two polynomialsin the variable z~1, hence the term rational
models. We will show in Chapter 4 that any rational model has a dependence structure or
memory that decaysexponentially withtime. Because theroots of the numerator polynomial
are known as zeros and the roots of the denominator polynomial as poles, these models are
also known as pole-zero models. In the time-series analysis literature, these models are
known as autoregressive moving-average (ARMA) models.

Modeling the vocal tract. An example of the application of the pole-zero model isfor
the characterization of the speech production system. Most generally, speech sounds are
classified as either voiced or unvoiced. For both of these types of speech, the productionis
modeled by exciting a linear system, the vocal tract, with an excitation having a flat, that
is, constant, spectrum. The vocal tract, in turn, is modeled by using a pole-zero system,
with the poles modeling the vocal tract resonances and the zeros serving the purpose of
dampening the spectral response between pole frequencies. In the case of voiced speech,
theinput to the vocal tract model isaquasi-periodic pulse waveform, whereas for unvoiced
speech the source is model ed as random noise. The system model of the speech production
process is shown in Figure 1.12. The parameters of this model are the voiced/unvoiced
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FIGURE 1.12
Speech synthesis system based on pole-zero modeling.

classification, the pitch period for voiced sounds, the gain parameter, and the coefficients
{dy} and {a;} of thevocal tract filter (1.3.9). Thismodel iswidely used for low-bit-rate (less
than 2.4 khits/s) speech coding, synthetic speech generation, and extraction of features
for speech and speaker recognition (Rabiner and Schafer 1978; Rabiner and Juang 1993;
Furui 1989).

1.3.2 Fractional Pole-Zero Models and Fractal Models

Althoughthedependencein (1.3.7) becomesstronger asthepolea — 1, it cannot effectively
model time series whose autocorrelation decays asymptotically as apower law. For a = 1,
that is, for apole ontheunit circle (unit pole), we obtain an everl asting constant dependence,
but the output of the model increases without limit and the model is said to be unstable.
However, we can obtain a stable model with long memory by creating a fractional unit
pole, that is, by raising (1.3.6) by afractional power. Indeed, using the identity

_ 1 _ 1 dd+1D _, 1 1
H(z) = =i 1+dz7"+ T 5 <d < > (1.3.10)
1
we have x(n) =wh) +dwhn —1) + %w(m -2+ (1.3.11)

The weights k4 (n) in (1.3.11) decay according to n?~! asn — oo; that is, the depen-
dence decays asymptotically asapower law or hyperbolically. Evenif themodel (1.3.11) is
specified by one parameter, itsimplementation involves an infinite-order convolution sum-
mation. Therefore, its practical realization requires an approximation by arational model
that can be easily implemented by using a difference egquation. If w(n) is a sequence of
independent Gaussian random variables, the process generated by (1.3.11) is known as
fractionally differenced Gaussian noise. Rational models including one or more fractional
poles are known in time-series analysis as fractional autoregressive integrated moving-
average models and are studied in Chapter 12. The short-term dependence of these models
is exponential, whereas their long-term dependence is hyperbalic.

In continuous time, we can create long dependence by using a fractional pole. Thisis
illustrated by the following Laplace transform pair

L{P 1) siﬂ g>0 (1.3.12)

which corresponds to an integrator for 8 = 1 and afractional integrator for 0 < 8 < 1.
Clearly, the memory of a continuous-time system with impulse response 1 5(t) = A= for



t > 0and hg(t) = 0 forr < O decays hyperbolically. The response of such a system to
white Gaussian noise resultsin a nonstationary process called fractional Brownian motion.
Sampling the fractional Brownian motion process at equal intervalsand computing the one-
step increments result in a stationary discrete-time process known as fractional Gaussian
noise. Both processes exhibit long memory and are of great theoretical and practical interest
and their properties and applications are discussed in Chapter 12.

Exciting arational model with fractional Gaussian noise leads to a very flexible class
of models that exhibit exponential short-range dependence and hyperbolic long-range de-
pendence. The excitation of fractional models (either discrete-time or continuous-time)
with statistically independent inputs whose amplitude changes are distributed according
to a stable probability law leads to random signal models with long dependence and high
amplitude variability. Such models have many practical applications and are a so discussed
in Chapter 12.

If we can reproduce an object by magnifying some portion of it, we say that the object
isscale-invariant or self-similar. Thus, self-similarity isinvariance with respect to scaling.
Self-similar geometric objectsare known asfractals. More specifically, asignal x (¢) isself-
similar if x(ct) = ¢ x(¢) for some ¢ > 0. The constant H is known as the self-similarity
index. It can easily be seen that a signal described by a power law, say, x (r) = at?, is self-
similar. However, such signals are of limited interest. A more interesting and useful type
of signal isone that exhibits aweaker statistical version of self-similarity. A random signal
is called (statistically) self-similar if its statistical properties are scale-invariant, that is, its
statistics do not change under magnification or minification. Self-similar random signalsare
also known asrandom fractals. Figure 1.13 provides avisua illustration of the self-similar
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FIGURE 1.13

Pictorial illustration of self-similarity for the variable bit rate video traffic time series. The
bottom series is obtained from the top series by expanding the segment between the two
vertical lines. Although the two series have lengths of 600 and 60 s, they are remarkably
similar visually and statistically (Courtesy of M. Garrett and M. \etterli).
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behavior of the variable bit rate video traffic time series. The analysis and modeling of such
time series find extensive applications in Internet traffic applications (Michiel and Lagvens
1997; Garrett and Willinger 1994).

A classification of the various signal models described previously is given in Figure
1.14, which aso provides information about the chapters of the book where these signals
are discussed.

Random signal
models

Y v

Continuous
spectra

|
Y ¢ *

Harmonic
process model Short memory Long memory
(Chapters 3, 9)

Line spectra

Y

Y

!

Pole zero Fractional Self-similar
pole zero (fractal)
(Chapters 4. 9) (Chapter 12) (Chapter 12)

FIGURE 1.14
Classification of random signal models.

1.4 ADAPTIVE FILTERING

Conventional frequency-selective digital filterswith fixed coefficients are designed to have
a given frequency response chosen to ater the spectrum of the input signal in a desired
manner. Their key features are as follows:

1. Thefiltersarelinear and time-invariant.

2. The design procedure uses the desired passhand, transition bands, passband ripple, and
stopband attenuation. We do not need to know the sample values of the signals to be
processed.

3. Since the filters are frequency-selective, they work best when the various components
of the input signal occupy nonoverlapping frequency bands. For example, it is easy to
separate a signal and additive noise when their spectra do not overlap.

4. The filter coefficients are chosen during the design phase and are held constant during
the normal operation of the filter.

However, there are many practical application problems that cannot be successfully
solved by using fixed digital filters because either we do not have sufficient information to
design adigital filter with fixed coefficients or the design criteria change during the normal
operation of thefilter. Most of these applications can be successfully solved by using special
“smart” filtersknown collectively asadaptivefilters. The distinguishing feature of adaptive
filters is that they can modify their response to improve performance during operation
without any intervention from the user.



1.4.1 Applications of Adaptive Filters

The best way to introduce the concept of adaptive filtering is by describing some typical
application problems that can be effectively solved by using an adaptive filter. The ap-
plications of adaptive filters can be sorted for convenience into four classes: (1) system
identification, (2) system inversion, (3) signa prediction, and (4) multisensor interference
cancelation (see Figure 1.15 and Table 1.1). We next describe each class of applicationsand
provide atypical example for each case.

TABLE 1.1
Classification of adaptive filtering applications.

Application class Examples

System identification Echo cancelation
Adaptive control
Channel modeling

System inversion Adaptive equalization

Blind deconvolution

Signal prediction Adaptive predictive coding
Change detection
Radio frequency interference cancelation

Multisensor interference cancelation Acoustic noise control
Adaptive beamforming

System Identification

This class of applications, known aso as system modeling, is illustrated in Figure
1.15(a). The system to be modeled can be either real, as in control system applications,
or some hypothetical signa transmission path (e.g., the echo path). The distinguishing
characteristic of the system identification application is that the input of the adaptive filter
isnoise-free and thedesired responseis corrupted by additive noisethat isuncorrelated with
theinput signa. Applicationsin this classinclude echo cancelation, channel modeling, and
identification of systemsfor control applications(Gitlinet al. 1992; Ljung 1987; Astrsm and
Wittenmark 1990). In control applications, the purpose of the adaptive filter isto estimate
the parameters or the state of the system and then to use this information to design a
controller. In signal processing applications, the goal is to obtain a good estimate of the
desired response according to the adopted criterion of performance.

Acoustic echo cancelation. Figurel.16 showsatypical audio teleconferencing system
that hel pstwo groups of people, located at two different places, to communicate effectively.
However, the performance of this system is degraded by the following effects: (1) The
rever berations of the room result from the fact that the microphone picks up not only the
speech coming from the talker but also reflections from the walls and furniture in the room.
(2) Echoesarecreated by the acousti c coupling between the microphoneand thel oudspeaker
located in the same room. Speech from room B not only is heard by the listener in room A
but also is picked up by the microphone in room A, and unless it is prevented, will return
as an echo to the speaker in room B.

Several methodsto deal with acoustic echoes have been developed. However, the most
effectivetechniqueto prevent or control echoesis adaptive echo cancelation. The basicidea
isvery simple: To cancel the echo, we generate a replica or pseudo-echo and then subract
it from the real echo. To synthesize the echo replica, we pass the signa at the loudspeaker
through a device designed to duplicate the reverberation and echo properties of the room
(echo path), asisillustrated in Figure 1.17.
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The four basic classes of adaptive filtering applications. (a) system identification, (b)
system inversion, (c) signal prediction, and (d) multisensor interference cancelation.
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Principle of acoustic echo cancelation using an adaptive echo canceler.

In practice, there are two obstables to this approach. (1) The echo path is usually
unknown before actual transmission begins and is quite complex to model. (2) The echo
path is changing with time, since even the move of atalker alters the acoustic properties
of the room. Therefore, we cannot design and use a fixed echo canceler with satisfactory
performancefor al possible connections. There are two possible ways around this problem:

1. Designacompromise fixed echo cancel er based on some “average” echo path, assuming
that we have sufficient information about the connections to be seen by the canceler.

2. Design an adaptive echo canceler that can “learn” the echo path when it isfirst turned on
and afterward “tracks” its variations without any intervention from the designer. Since
an adaptive cancel er matches the echo patch for any given connection, it performs better
than a fixed compromise canceler.

We stress that the main task of the canceler isto estimate the echo signal with sufficient
accuracy; the estimation of the echo path is simply the means for achieving this goal. The
performance of the canceler is measured by the attenuation of the echo. The adaptive echo
canceler achieves this goal, by modifying its response, using the residual echo signal in
an as-yet-unspecified way. More details about acoustic echo cancelation can be found in
Gilloire et al. (1996).

System inversion

Thisclassof applications, whichisillustratedin Figure 1.15(b), isalso known asinverse
system modeling. The goal of the adaptive filter is to estimate and apply the inverse of the
system. Dependent on the application, the input of the adaptive filter may be corrupted by
additive noise, and the desired response may not be available. The existence of the inverse
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system and its properties (e.g., causality and stability) creates additional complications.
Typical applicationsinclude adaptive equalization (Gitlin et a. 1992), seismic deconvolu-
tion (Robinson 1984), and adaptive inverse control (Widrow and Walach 1994).

Channd equalization. To understand the basic principles of the channel equalization
techniques, we consider a binary data communication system that transmits a band-limited
analog pulse with amplitudes A (symbol 1) or —A (symbol O) every T, s (see Figure 1.18).
Here T}, is known as the symbol interval and R, = 1/T; asthe baud rate. As the signa
propagates through the channel, it is delayed and attenuated in a frequency-dependent
manner. Furthermore, it is corrupted by additive noise and other natural or man-made
interferences. The goal of the receiver is to measure the amplitude of each arriving pulse
and to determine which one of the two possible pulses has been sent. The received signal is
sampled onceper symbol interval after filtering, automatic gain control, and carrier removal .
The sampling timeisadjusted to coincide with the “center” of the received pulse. The shape
of the pulse is chosen to attain the maximum rate at which the receiver can still distinguish
the different pulses. To achieve this goal, we usually choose a band-limited pulse that has
periodic zero crossings every Tj, S.

Noise
Data . . .
—>{ Transmitter —»{ Channel Receiver |—» Equalizer —» Recovered data
Interference
FIGURE 1.18

Simple model of a digital communications system.

If theperiodic zero crossings of the pul se are preserved after transmission and reception,
we can measure its amplitude without interference from overlapping adjacent pul ses. How-
ever, channels that deviate from the ideal response (constant magnitude and linear phase)
destroy the periodic zero-crossing property and the shape of the peak of the pulse. As a
result, the tails of adjacent pulses interfere with the measurement of the current pulse and
can lead to an incorrect decision. This type of degradation, which is known as inter symbol
interference (19), isillustrated in Figure 1.19.

FIGURE 1.19

Pulse trains (a) without
intersymbol interference and (b)
with intersymbol interference.

No intersymbol
interference

Intersymbol
interference

(b) Distorted pulses



We can compensatefor thel Sl distortion by using alinear filter called an equalizer. The
goal of the equalizer is to restore the received pulse, as closely as possible, to its original
shape. The equalizer transforms the channel to a near-ideal one if its response resembles
the inverse of the channel. Since the channel is unknown and possibly time-varying, there
are two ways to approach the problem: (1) Design a fixed compromise equalizer to obtain
satisfactory performance over abroad range of channels, or (2) design an equalizer that can
“learn” the inverse of the particular channel and then “track™ its variation in real time.

The characteristics of the equalizer are adjusted by some algorithm that attempts to
attain the best possible performance. The most appropriate criterion of performance for
datatransmission systemsisthe probability of symbol error. However it cannot be used for
two reasons: (1) The “correct” symbol is unknown to the receiver (otherwise there would
be no reason to communicate), and (2) the number of decisions (observations) needed to
estimate the low probabilities of error is extremely large. Thus, practical equalizers assess
their performance by using some function of the difference between the “correct” symbol
and the output. The operation of practical equalizers involves two modes of operation,
dependent on how we substitute for the unavailable correct symbol sequence. (1) A known
training seguence is transmitted, and the equalizer attempts to improve its performance
by comparing its output to a synchronized replica of the training sequence stored at the
receiver. Usually this mode is used when the equalizer starts atransmission session. (2) At
the end of the training session, when the equalizer starts making reliable decisions, we can
replace the training sequence with the equalizer’s own decisions.

Adaptive equalization isamature technology that has had the greatest impact on digital
communi cationssystems, including voiceband, microwaveand troposcatter radio, and cable
TV modems (Qureshi 1985; L ee and Messerschmitt 1994; Gitlin et al. 1992; Bingham 1988;
Treichler et al. 1996).

Signal prediction

In the next class of applications, the goal is to estimate the value x (ng) of a random
signal by using a set of consecutive signal samples {x(n), n1 < n < ny}. There are three
cases of interest: (1) forward prediction, when ng > n2; (2) backward “prediction,” when
no < n1; and (3) smoothing or interpolation, when ny < ng < na. Clearly, in the last case
thevalue at n = ng is not used in the computation of the estimate. The most widely used
type is forward linear prediction or simply linear prediction* [see Figure 1.15(c)], where
the estimate is formed by using alinear combination of past samples (Makhoul 1975).

Linear predictive coding (LPC). The efficient storage and transmission of analog sig-
nals using digital systems requires the minimization of the number of bits necessary to
represent the signal while maintaining the quality to an acceptable level according to a cer-
tain criterion of performance. The conversion of an analog (continuous-time, continuous-
amplitude) signal to a digital (discrete-time, discrete-amplitude) signal involves two pro-
cesses: sampling and quanti zation. Sampling convertsacontinuous-timesignal to adiscrete-
timesignal by measuringitsamplitudeat equidistant interval sof time. Quantizationinvolves
the representation of the measured continuous amplitude using a finite number of symbols
and always creates some amount of distortion (quantization noise).

For afixed number of bits, decreasing the dynamic range of the signal (and thereforethe
range of the quantizer) decreases the required quantization step and therefore the average
quantization error power. Therefore, we can decrease the quantization noise by reducing
the dynamic range or equivalently the variance of the signal. If the signal samples are

" Another mode of operation, where the equalizer can operate without the benefit of atraining sequence (blind or
sglf-recovering mode), is discussed in Chapter 12.

*As we shall see in Chapters 4 and 6, linear prediction is closely related, but not identical, to all-pole signal
modeling.
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significantly correlated, the variance of the difference between adjacent samplesis smaller
than the variance of the original signal. Thus, we can improve quality by quantizing this
differenceinstead of theoriginal signal. Thisideaisexploited by thelinear prediction system
shown in Figure 1.20. This system uses a linear predictor to form an estimate (prediction)
X (n) of the present sample x (n) asalinear combination of the M past samples, that is,

M
R(n) =Y ax(n —k) (1.4.2)
k=1

The coefficients {ay } ’1” of the linear predictor are determined by exploiting the correlation
between adjacent samples of the input signal with the objective of making the prediction
error

e(n) =x(n) —x(n) (2.4.2)

assmall as possible. If the prediction is good, the dynamic range of e(n) should be smaller
thanthedynamicrangeof x (n), resultinginasmaller quanti zation noisefor the same number
of bits or the same quantization noise with a smaller number of bits. The performance of
the LPC system depends on the accuracy of the predictor. Since the statistical properties
of the signal x(n) are unknown and change with time, we cannot design an optimum
fixed predictor. The established practical solution isto use an adaptive linear predictor that
automatically adjusts its coefficients to compute a “good” prediction at each time instant.
A detailed discussion of adaptive linear prediction and its application to audio, speech, and
video signal coding is provided in Jayant and Noll (1984).

l«— M samples —»| FIGURE 1.20
Illustration of the linear prediction of
2(n) asigna x(n) using a finite number of
T [ [ [ past samples.
1 too
n-M n-1

Multisensor interference cancelation

The key feature of this class of applications is the use of multiple sensors to remove
undesired interference and noise. Typically, a primary signal contains both the signa of
interest and the interference. Other signals, known as reference signals, are available for
the purposes of canceling the undesired interference [see Figure 1.15(d)]. These reference
signalsare collected using other sensorsin which the signal of interest isnot present or is so
weak that it can be ignored. The amount of correlation between the primary and reference
signalsis measured and used to form an estimate of the interference in the primary signad,
which is subsequently removed. Had the signal of interest been present in the reference
signal(s), then this process would have resulted in the removal of the desired signal as
well. Typical applications in which interference cancelation is employed include array
processing for radar and communications, biomedical sensing systems, and active noise
control (Widrow et a. 1975; Kuo and Morgan 1996).

Active noise control (ANC). The basic idea behind an ANC system is the cancelation
of acoustic noise using destructivewave interference. To create destructive interferencethat
cancelsan acoustic noisewave (primary) at apoint P, we can use aloudspeaker that creates,
at the samepoint P, another wave (secondary) with the same frequency, the sameamplitude,
and 180° phase difference. Therefore, with appropriate control of the peaks and troughs



of the secondary wave, we can produce zones of destructive interference (quietness). ANC
systems using digital signal processing technology find applications in air-conditioning
ducts, aircraft, cars, and magnetic resonance imaging (MRI) systems (Elliott and Nelson
1993; Kuo and Morgan 1996).

Figure 1.21 showsthe key components of an adaptive ANC system described in Craw-
ford et al. 1997. Thetask of the loudspeaker isto generate an acoustic wave that isan 180°
phase-inverted version of the signal y(¢) when it arrives at the error microphone. In this
case the error signal e(t) = y(t) + y(t) = 0, and we create a “quiet zone” around the
microphone. If the acoustic paths (1) from the noise source to the reference microphone
(Gx), (2) from the noise source to the error microphone (G ), (3) from the secondary loud-
speaker to the reference microphone (H, ), and (4) from the secondary loudspeaker to the
error microphone (Hj) are linear, time-invariant, and known, we can design alinear filter
H such that e(n) = 0. For example, if the effects of H, and H; are negligible, the filter
H should invert G, to obtain v(¢) and then replicate G, to synthesize y(r) >~ y(¢). The
quality of cancelation depends on the accuracy of these two modeling processes.

v(t)

G,
G
y
0 ki
Zone of quiet
Reference
microphone
Adaptive
ADC » active noice —» DAC
X(N) | controller | ¥(N)
[ Secondary
loudspeaker
e(n) . Error
et)=y®+Y® | microphone
ADC |=
FIGURE 1.21

Block diagram of the basic components of an active noise control system.

In practice, the acoustic environment is unknown and time-varying. Therefore, we
cannot design a fixed ANC filter with satisfactory performance. The only feasible solution
isto use an adaptive filter with the capacity to identify and track the variation of the various
acoustic paths and the spectral characteristics of the noise sourcein real time. The adaptive
ANC filter adjusts its characteristics by trying to minimize the energy of the error signal
e(n).Adaptive ANC using digital signal processing technology isan active areaof research,
and despite several successes many problems remain to be solved before such systems find
their way to more practical applications (Crawford et al. 1997).

1.4.2 Features of Adaptive Filters

Careful inspection of the applications discussed in the previous section indicates that every
adaptive filter consists of the following three modules (see Figure 1.22).
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1. Filtering structure. This module forms the output of the filter using measurements of
the input signal or signals. The filtering structure is linear if the output is obtained as
a linear combination of the input measurements; otherwise, it is said to be nonlinear.
The structure is fixed by the designer, and its parameters are adjusted by the adaptive
algorithm.

2. Criterion of performance (COP). The output of the adaptive filter and the desired
response (when available) are processed by the COP module to assess its quality with
respect to the requirements of the particular application.

3. Adaptive algorithm. The adaptive algorithm uses the value of the criterion of perfor-
mance, or some function of it, and the measurements of the input and desired response
(when available) to decide how to modify the parameters of the filter to improve its
performance.

. FIGURE 1.22
Desired Basic o f a
response a&c_ ements of a gener
. adaptive filter.
Input signal | Filtering -
"] structure
Parameters
| Adaptive Errorsignal
| algorithm
[}
A priori | Crnoefrlon Used only in the
knowledge performance design process

Every adaptive filtering application involves one or more input signals and a desired
response signal that may or may not be accessible to the adaptive filter. We collectively
refer to these relevant signals as the signal operating environment (SOE) of the adaptive
filter. The design of any adaptivefilter requiresagreat deal of a priori information about the
SOE and a deep understanding of the particular application (Claasen and M ecklenbrauker
1985). Thisinformation is needed by the designer to choose the filtering structure and the
criterion of performance and to design the adaptive algorithm. To be more specific, adaptive
filters are designed for a specific type of input signal (speech, binary data, etc.), for specific
types of interferences (additive white noise, sinusoidal signal's, echoes of the input signals,
etc.), and for specific types of signal transmission paths (e.g., linear time-invariant or time-
varying). After the proper design decisions have been made, the only unknowns, when
the adaptive filter starts its operation, are a set of parameters that are to be determined by
the adaptive algorithm using signal measurements. Clearly, unreliable a priori information
and/or incorrect assumptions about the SOE can lead to serious performance degradations
or even unsuccessful adaptive filter applications.

If the characteristics of the relevant signals are constant, the goal of the adaptive filter
is to find the parameters that give the best performance and then to stop the adjustment.
However, when the characteristics of the relevant signals change with time, the adaptive
filter should first find and then continuously readjust its parameters to track these changes.

A very influential factor in the design of adaptive algorithms is the availability of a
desired response signal. We have seen that for certain applications, the desired response
may not be available for use by the adaptive filter. In this book we focus on supervised



adaptive filters that require the use of a desired response signal and we simply call them
adaptive filters (Chapter 10). Unsupervised adaptive filters are discussed in Chapter 12.

Suppose now that the relevant signals can be modeled by stochastic processes with
known statistical properties. If we adopt the minimum mean square error as a criterion
of performance, we can design, at least in principle, an optimum filter that provides the
ultimate solution. From a theoretical point of view, the goal of the adaptive filter is to
replicate the performance of the optimum filter without the benefit of knowing and using
the exact statistical properties of the relevant signals. In this sense, the theory of optimum
filters (see Chapters 6 and 7) is a prerequisite for the understanding, design, performance
evaluation, and successful application of adaptive filters.

1.5 ARRAY PROCESSING

Array processing deals with techniques for the analysis and processing of signals collected
by agroup of sensors. The collection of sensors makes up the array, and the manner inwhich
thesignalsfrom the sensorsare combined and handl ed constitutesthe processing. Thetype of
processing is dictated by the needs of the particular application. Array processing hasfound
widespread application in alarge number of areas, including radar, sonar, communications,
seismology, geophysical prospecting for oil and natural gas, diagnostic ultrasound, and
multichannel audio systems.

1.5.1 Spatial Filtering or Beamforming

Generally, an array receives spatially propagating signals and processes them to emphasize
signals arriving from a certain direction; that is, it acts as a spatially discriminating filter.
This spatial filtering operation is known as beamforming, because essentially it emulates
the function of a mechanically steered antenna. An array processor steers a beam to a
particular direction by computing aproperly weighted sum of the individual sensor signals.
An example of the spatial response of the beamformer, known asthe beampattern, isshown
in Figure 1.23. The beamformer emphasizes signals in the direction to which it is steered
while attenuating signals from other directions.

X,(n)

X (n)

FIGURE 1.23
Example of the spatial response of an array, known as a beampattern, that
emphasizes signals from a direction of interest, known as the look direction.

In the case of an array with sensors equally spaced on a line, known as a uniform
linear array (ULA), there is a direct analogy between beamforming and the frequency-
selective filtering of adiscrete-time signal using afinite impulse response (FIR) filter. This
analogy between a beamformer and an FIR filter isillustrated in Figure 1.24. The array of
sensors spatially samples the impinging waves so that in the case of a ULA, the sampling
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Analogy between beamforming and frequency-selective FIR filtering.
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is performed at equal spatial increments. By contrast, an FIR filter uses a uniformly time-
sampled signal asitsinput. Consider a plane wave impinging on an array asin Figure 1.25.
The spatial signal arrives at each sensor with a delay determined by the angle of arrival
¢. In the case of a narrowband signal, this delay corresponds to an equal phase shift from
sensor to sensor that resultsin a spatia frequency across the ULA of

u = %lsinqb (15.1)

where A is the wavelength of the signal and d is the uniform spacing of the sensors. This
spatial frequency is analogous to the temporal frequency encountered in discrete-time sig-
nals. In the beamforming operation, the sensor signals are combined with weights on each
of the sensor signals just as an FIR filter produces an output that is the weighted sum of
time samples. As afreguency-selective FIR filter extracts signals at afrequency of interest,
a beamformer seeks to emphasize signals with a certain spatial frequency (i.e., signals ar-
riving from aparticular angle). Thus, it is often beneficial to view abeamformer asa spatial
frequency-selective filter.

Many timesan array must contend with undesired signal sarriving from other directions,
which may prevent it from successfully extracting the signal of interest for which it was
designed. Inthiscase, thearray must adjust itsresponseto thedatait receivestoreject signals



from these other directions. The resulting array is an adaptive array as the beamforming
weights are automatically determined by the array during its normal operation without
the intervention of the designer. Drawing on the frequency-selective FIR filter comparison
again, we see that an adaptive array is analogous to an adaptive FIR filter that adjusts its
weightsto pass signals at the desired frequency or signals with certain statistical properties
whilerejecting any signalsthat do not satisfy these requirements. Again, if we can model the
SOE, using stationary processeswith known statistical properties, we can designan optimum
beamformer that minimizes or maximizes a certain criterion of performance. The optimum
beamformer can be used to provide guidelines for the design of adaptive beamformers and
used asayardstick for their performance evaluation. The analysis, design, and performance
evaluation of fixed, optimum, and adaptive beamformers are discussed in Chapter 11.

1.5.2 Adaptive Interference Mitigation in Radar Systems

The goal of an airborne surveillance radar system is to determine the presence of target
signals. These targets can be either airborne or found on the ground below. Typical targets
of interest are other aircraft, ground moving vehicles, or hostile missiles. The desired in-
formation from these targetsistheir relative distance from our airborne platform, known as
the range, their angle with respect to the platform, and their relative speed. The processing
of the radar consists of the following sequence:

« Filter out undesired signals through adaptive processing.
« Determine the presence of targets, a process known as detection.
o Estimate the parameters of all detected targets.

To sense these targets, the radar system transmits energy in the direction it is searching
for targets. The transmitted energy propagates from the airborne radar to the target that
reflects the radar signal. The reflection then propagates from the target back to the radar.
Sincetheradar signal travelsat the speed of light (3 x 108 m/s), the round-trip delay between
transmission and reception of this signal determines the range of the target. The received
signal is known as the return. The angle of the target is determined through the use of
beamforming or spatial filtering using an array of sensor elements. To this end, the radar
formsabank of spatial filtersevenly spacedinangleand determineswhich filter containsthe
target. For example, we might be interested in the angular sector between —1° < ¢ < 1°.
Then we might set up a bank of beamformers in this angular region with a spacing of
0.5°. If these spatial filters perform this operation nonadaptively, it is often referred to as
conventional beamforming.

The detection of target signalsis inhibited by the presence of other undesired signals
known as interference. Two common types of interference are the reflections of the radar
signal fromtheground, known asclutter, and other transmitted energy at the same operating
frequency asthe radar, referred to as jamming. Jamming can be the hostile transmission of
energy to prevent us from detecting certain signals, or it may be incidental, for example,
from another radar. Such an interference scenario for an airborne surveillance radar is
depicted in Figure 1.26. The interference signals are typically much larger than the target
return. Thus, when a nonadaptive beamformer is used, interference leaks in through the
sidel obes of the beamformer and prevents us from detecting the target. However, we can
adjust the beamformer weights such that signals from the directions of the interference are
rejected while other directions are searched for targets. If the weights are adapted to the
received data in this way, then the array is known as an adaptive array and the operation
is called adaptive beamforming. The use of an adaptive beamformer is also illustrated in
Figure 1.26. We show the spatial response or beampattern of the adaptive array. Note that
the pesk gain of the beamformer is in the direction of the target. On the other hand, the
clutter and jamming are rejected by placing nulls in the beampattern.
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FIGURE 1.26

Example of adaptive beamformer used with an airborne
surveillance radar for interference mitigation.

In practice, we do not know the directions of the interferers. Therefore, we need an
adaptive beamformer that can determine its weights by estimating the statistics of the
interference environment. If we can model the SOE using stochastic processes with known
statistical properties, we can design an optimum beamformer that provides the ultimate
performance. The discussion about adaptive filters in Section 1.4.2 applies to adaptive
beamformers as well.

Once we have determined the presence of the target signal, we want to get a better idea
of the exact angleit wasreceived from. Recall that the beamformers have angles associated
with them, so the angle of the beamformer in which the target was detected can serve as a
rough estimate of the angle of the target. The coarseness of our initial estimateis governed
by the spacing in angle of the filter bank of beamformers, for example, 1°. This resolution
in angle of the beamformer is often called abeamwidth. To get a better estimate, we can use
avariety of angle estimation methods. If the angle estimate can refine the accuracy down
to one-tenth of a beamwidth, for example, 0.1°, then the angle estimator is said to achieve
10:1 beamsplitting. Achieving an angle accuracy better than the array beamwidth is often
called superresolution.

1.5.3 Adaptive Sidelobe Canceler

Consider the scenario in Figure 1.26 from the adaptive beamforming example for interfer-
ence mitigation in aradar system. However, instead of an array of sensors, consider afixed
(i.e., nonadaptive) channel that has high gain in the direction of the target. This response
may have been the result of a highly directive dish antenna or a nonadaptive beamformer.
Sometimes it is necessary to perform beamforming nonadaptively to limit the number of
channels. One such case arisesfor very large arraysfor which it isimpractical to form chan-
nels by digitally sampling every element. The array is partitioned into subarrays that all
form nonadaptive beams in the same direction. Then the subarray outputs form the spatial
channelsthat are sampled. Each channel is highly directive, though with alower resolution
than the entire array. In the case of interference, it isthen present in all these subarray chan-



nels and must be removed in some way. To restore its performance to the interference-free . 29

case, the radar system must employ a spatially adaptive method that removestheinterfer-  section 1.6

ence in the main channel. The sidelobe canceler is one such method and isillustrated in ~ Organization of the Book
Figure 1.27.
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FIGURE 1.27
Sidelobe canceler with a highly directive main channel and auxiliary
channels.

Notethat thesignal of interestisreceived from aparticular directioninwhichweassume
the main channel has alarge gain. On the other hand, the jamming signal is received from
another direction, and since it has much higher power than the attenuation of the antenna
sidel obes, the jamming interference obscures the signal s of interest. This high-gain channel
is known as the main channel that contains both the signal of interest and the jamming
interference. The sidelobe canceler uses one or more auxiliary channelsin order to cancel
the main-channel interference. These auxiliary channelstypically have much lower gainin
the direction in which the main channel isdirected so that they contain only theinterference.
The signal of interest is weak enough that it is below the thermal noise floor in these
auxiliary channels. Examples of these auxiliary channels would be omnidirectional sensors
or even directive sensors pointed in the direction of the interference. Note that for very
strong signals, the signal of interest may be present in the auxiliary channel, in which case
signal cancelation can occur. Clearly, this application belongs to the class of multisensor
interference cancelation shown in Figure 1.15.

Thesidel obe canceler usesthe auxiliary channelsto form an estimate of theinterference
in the main channel. The estimate is computed by weighting the auxiliary channel in an
adaptive manner dependent on the cross-correlation between the auxiliary channels and
the main channel. The estimate of the main-channel interference is subtracted from the
main channel. The result is an overall antenna response with a spatial null directed at the
interference sourcewhilemaintaining high gaininthedirection of interest. Clearly, if wehad
sufficient a priori information, the problem could be solved by designing a fixed canceler.
However, the lack of a priori information and the changing properties of the environment
make an adaptive canceler the only viable solution.

1.6 ORGANIZATION OF THE BOOK

In this section we provide an overview of the main topics covered in the book so asto help
the reader navigate through the material and understand the interdependence among the
various chapters (see Figure 1.28).
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Flowchart organization of the book’s chapters.

In Chapter 2, we review the fundamental topicsin discrete-time signal processing that
can be used for both deterministic and random signals. Chapter 3 provides a concise review
of the theory of random variables and random sequences and elaborates on certain topics
that are crucial to devel opments in subsequent chapters. Reading these chaptersis essential
tofamiliarize the reader with notation and propertiesthat are repeatedly used throughout the
rest of thebook. Chapter 5 presentsthe most practical methodsfor nonparametric estimation



of correlation and spectral densities. The use of these techniques for exploratory investi-
gation of the relevant signal characteristics before performing any modeling or adaptive
filtering is invaluable.

Chapters 4 and 6 provide adetailed study of the theoretical properties of signal models
and optimum filters, assuming that the relevant signals can be modeled by stochastic pro-
cesseswith known statistical properties. In Chapter 7, we develop algorithms and structures
for optimum filtering and signal modeling and prediction.

Chapter 8 introduces the general method of least squares and shows how to use it for
the design of filtersand predictorsfrom actual signal observations. The statistical properties
and the numerical computation of |east-squares estimates are also discussed in detail.

Chapters 9, 10, and 11 use the theoretical work in Chapters 4, 6, and 7 and the prac-
tical methods in Chapter 8 to develop, evaluate, and apply practical techniques for signal
modeling, adaptive filtering, and array processing. Finally, Chapter 12 illustrates the use
of higher-order statistics, presents the basic ideas of blind deconvolution and equalization,
and concludes with a concise introduction to fractional and random fractal signal models.
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CHAPTER 2

Fundamentals of Discrete-Time
Signal Processing

In many disciplines, signal processing applications nowadays are almost always imple-
mented using digital hardware operating on digital signals. The basic foundation of this
modern approach is based on discrete-time system theory. This book also deals with statis-
tical analysis and processing of discrete-time signals, and modeling of discrete-time sys-
tems. Therefore, the purpose of this chapter is to focus attention on some important issues
of discrete-time signal processing that are of fundamental importance to signal processing,
in general, and to this book, in particular. The intent of this chapter is not to teach topics in
elementary digital signal processing but to review material that will be used throughout this
book and to establish a consistent notation for it. There are several textbooks on these topics,
and it is assumed that the reader is familiar with the theory of digital signal processing as
found in Oppenheim and Schafer (1989); Proakis and Manolakis (1996).

We begin this chapter with a description and classification of signals in Section 2.1.
Representation of deterministic signals from the frequency-domain viewpoint is presented
in Section 2.2. In Section 2.3, discrete-time systems are defined, but the treatment is focused
on linear, time-invariant (LTI) systems, which are easier to deal with mathematically and
hence are widely used in practice. Section 2.4 on minimum-phase systems and system
invertibility is an important section in this chapter that should be reviewed prior to studying
the rest of the book. The last section, Section 2.5, is devoted to lattice and lattice/ladder
structures for discrete-time systems (or filters). A brief summary of the topics discussed in
this chapter is provided in Section 2.6.

2.1 DISCRETE-TIME SIGNALS

The physical world is replete with signals, that is, physical quantities that change as a
function of time, space, or some other independent variable. Although the physical nature
of signals arising in various applications may be quite different, there are signals that
have some basic features in common. These attributes make it possible to classify signals
into families to facilitate their analysis. On the other hand, the mathematical description
and analysis of signals require mathematical signal models that allow us to choose the
appropriate mathematical approach for analysis. Signal characteristics and the classification
of signals based upon either such characteristics or the associated mathematical models are
the subject of this section.
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2.1.1 Continuous-Time, Discrete-Time, and Digital Signals

If we assume that to every set of assigned values of independent variables there corresponds
a unique value of the physical quantity (dependent variable), then every signal can be
viewed as a function. The dependent variable may be real, in which case we have a real-
valued signal; or it may be complex, and then we talk about a complex-valued signal. The
independent variables are always real.

Any signal whose samples are a single-valued function of one independent variable is
referred to as a scalar one-dimensional signal. We will refer to it simply as a signal. These
signals involve one dependent variable and one independent variable and are the signals
that we mainly deal with in this book. The speech signal shown in Figure 1.1 provides a
typical example of a scalar signal.

Let us now look at both the dependent and independent variables of a signal from a
different perspective. Every signal variable may take on values from either a continuous set
of values (continuous variable) or a discrete set of values (discrete variable). Signals whose
dependent and independent variables are continuous are usually referred to as continuous-
time signals, and we will denote these signals by the subscript c, such as x.(¢). In contrast,
signals where both the dependent and the independent variables are discrete are called
digital signals. If only the independent variables are specified to be discrete, then we have
a discrete signal. We note that a discrete signal is defined only at discrete values of the
independent variables, but it may take on any value. Clearly, digital signals are a subset of
the set of discrete signals.

In this book, we mainly deal with scalar discrete signals in which the independent
variable is time. We refer to them as discrete-time signals. Such signals usually arise in
practice when we sample continuous-time signals, that is, when we select values at discrete-
time instances. In all practical applications, the values of a discrete-time signal can only
be described by binary numbers with a finite number of bits. Hence, only a discrete set of
values is possible; strictly speaking, this means that, in practice, we deal with only digital
signals. Clearly, digital signals are the only signals amenable to direct digital computation.
Any other signal has to be first converted to digital form before numerical processing is
possible.

Because the discrete nature of the dependent variable complicates the analysis, the usual
practice is to deal with discrete-time signals and then to consider the effects of the discrete
amplitude as a separate issue. Obviously, these effects can be reduced to any desirable level
by accordingly increasing the number of bits (or word length) in the involved numerical
processing operations. Hence, in the remainder of the book, we limit our attention to discrete-
time signals.

2.1.2 Mathematical Description of Signals

The mathematical analysis of a signal requires the availability of a mathematical description
for the signal itself. The type of description, usually referred to as a signal model, determines
the most appropriate mathematical approach for the analysis of the signal. We use the term
signal to refer to either the signal itself or its mathematical description, that is, the signal
model. The exact meaning will be apparent from the context. Clearly, this distinction is
necessary if a signal can be described by more than one model. We start with the most
important classification of signal models as either deterministic or random.

Deterministic signals

Any signal that can be described by an explicit mathematical relationship is called
deterministic. In the case of continuous-time signals, this relationship is a given function
of time, for example, x.(t) = A cos 2w Fot +6), —oo < t < 00o. For discrete-time signals



that, mathematically speaking, are sequences of numbers, this relationship may be either a
functional expression, for example, x(n) = a”, —00 < n < 00, or a table of values.

In general, we use the notation x (n) to denote the sequence of numbers that represent
a discrete-time signal. Furthermore, we use the term nth sample to refer to the value of this
sequence for a specific value of n. Strictly speaking, the terminology is correct only if the
discrete-time signal has been obtained by sampling a continuous-time signal x¢(¢). In the
case of periodic sampling with sampling period 7', we have x (n) = x.(nT), —00 < n < 00;
that is, x(n) is the nth sample of x. (). Sometimes, just for convenience, we may plot x.(¢)
even if we deal with the signal x(n). Finally, we note that sometimes it is convenient to
form and manipulate complex-valued signals using a pair of real-valued signals as the real
and imaginary components.

Basic signals. There are some basic discrete-time signals that we will repeatedly use
throughout this book:

o The unit sample or unit impulse sequence §(n), defined as

sy =11 =0 @2.1.1)
0 n#0
o The unit step sequence u(n), defined as
un) = ! nz0 (2.1.2)
0 n<0
o The exponential sequence of the form
x(n) =a" —00<n <00 (2.1.3)

If a is a complex number, that is, a = re/. r > 0, # 0, , then x(n) is complex-
valued, that is,

x(n) = r*e/®" = xg(n) + jxi(n) (2.1.4)
where xR (n) = r" cos won and x1(n) = r" sin won (2.1.5)
are the real and imaginary parts of x(n), respectively. The complex exponential signal
x(n) and the real sinusoidal signals xg (n) and x1(n), which have a decaying (growing)

envelope if ¥ < 1(r > 1), are very useful in the analysis of discrete-time signals and
systems.

Signal classification. Deterministic signals can be classified as energy or power, peri-
odic or aperiodic, of finite or infinite duration, causal or noncausal, and even or odd signals.
Although we next discuss these concepts for discrete-time signals, a similar discussion
applies to continuous-time signals as well.

o The total energy or simply the energy of a signal x (n) is given by

Ex= Y xm*=0 (2.1.6)

n=—oo

The energy is zero if and only if x(n) = O for all n. The average power or simply the
power of a signal x(n) is defined as

Py

N
= i 2>0 2.1.7
Jim ST 2 Pz @17
n=—N
A signal with finite energy, that is, 0 < Ey < 00, is called an energy signal. Signals
with finite power, that is, 0 < P, < 00, are referred to as power signals. Clearly, energy

signals have zero power, and power signals have infinite energy.
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o A discrete-time signal x (n) is called periodic with fundamental period N if x(n + N) =
x(n) for all n. Otherwise it is called aperiodic. It can be seen that the complex exponential
in(2.1.4)is periodicif and only if wg/(27) = k/ N, thatis, if wg/(2m) is arational number.
Clearly, a periodic signal is a power signal with power P given by

1 N-—1
2
P, = ~ HX:(:) lx(n)| (2.1.8)

o We say that a signal x (n) has finite duration if x(n) = 0 forn < Nj and n > Nj, where
Njp and N are finite integer numbers with N1 < N,. If N = —o0 and/or Ny = oo, the
signal x(n) has infinite duration.

o Asignal x(n) is said to be causal if x(n) = 0 forn < 0. Otherwise, it is called noncausal.

o Finally, a real-valued signal x(n) is called even if x(—n) = x(n) and odd if x(—n) =
—x(n).

Other classifications for deterministic signals will be introduced in subsequent sections.

Random signals

In contrast to the deterministic signals discussed so far, there are many other signals
in practice that cannot be described to any reasonable accuracy by explicit mathematical
relationships. The lack of such an explicit relationship implies that the signal evolves in
time in an unpredictable manner from the point of view of the observer. Such signals are
called random. The output of a noise generator, the height of waves in a stormy sea, and the
acoustic pressures generated by air rushing through the human vocal tract are examples of
random signals. At this point one could say that complete knowledge of the physics of the
signal could provide an explicit mathematical relationship, at least within the limits of the
uncertainty principle. However, such relationships are typically too complex to be of any
practical use.

In general, although random signals are evolving in time in an unpredictable manner,
their average properties can often be assumed to be deterministic; that is, they can be
specified by explicit mathematical formulas. This concept is key to the modeling of a
random signal as a stochastic process.

Thus, random signals are mathematically described by stochastic processes and can be
analyzed by using statistical methods instead of explicit equations. The theory of probability,
random variables, and stochastic processes provides the mathematical framework for the
theoretical study of random signals.

2.1.3 Real-World Signals

The classification of various physical data as being either deterministic or random might
be debated in many cases. For example, it might be argued that no physical data in practice
can be truly deterministic since there is always a possibility that some unforeseen event in
the future might influence the phenomenon producing the data in a manner that was not
originally considered. On the other hand, it might be argued that no physical data are truly
random since exact mathematical descriptions might be possible if sufficient knowledge
of the basic mechanisms of the phenomenon producing the data were known. In practical
terms, the decision as to whether physical data are deterministic or random is usually
based upon the ability to reproduce the data by controlled experiments. If an experiment
producing specific data of interest can be repeated many times with identical results (within
the limits of experimental error), then the data can generally be considered deterministic. If
an experiment cannot be designed that will produce identical results when the experiment
is repeated, then the data must usually be considered random in nature.



2.2 TRANSFORM-DOMAIN REPRESENTATION
OF DETERMINISTIC SIGNALS

In the deterministic signal model, signals are assumed to be explicitly known for all time
from —oo to +oo. In this sense, no uncertainty exists regarding their past, present, or
future amplitude values. The simplest description of any signal is an amplitude-versus-time
plot. This “time history” of the signal is very useful for visual analysis because it helps
in the identification of specific patterns, which can subsequently be used to extract useful
information from the signal. However, quite often, information present in a signal becomes
more evident by transformation of the signal into another domain. In this section, we review
some transforms for the representation and analysis of discrete-time signals.

2.2.1 Fourier Transforms and Fourier Series

Frequency analysis is, roughly speaking, the process of decomposing a signal into fre-
quency components, that is, complex exponential signals or sinusoidal signals. Although
the physical meaning of frequency analysis is almost the same for any signal, the appro-
priate mathematical tools depend upon the type of signal under consideration. The two
characteristics that specify the frequency analysis tools for deterministic signals are

e The nature of time: continuous-time or discrete-time signals.
o The existence of harmony: periodic or aperiodic signals.

Thus, we have the following four types of frequency analysis tools.

Fourier series for continuous-time periodic signals

If a continuous-time signal x.(¢) is periodic with fundamental period 7}, it can be

expressed as a linear combination of harmonically related complex exponentials
o0

xe(t) = Z X (k)el ek Fot (2.2.1)
k=—00

where Fy = 1/Tj, is the fundamental frequency, and

v 1 T, .
X (k) = - /0 xe(t)e 17k Fo gy (2.2.2)
p

which are termed the Fourier coefﬁcients,T or the spectrum of x.(t).
It can be shown that the power of the signal x(¢) is given by Parseval’s relation

1 Tp 2 0 . 2
P =— f )P dr = ) ‘Xc(k)’ (2.2.3)
T, Jo
k=—00

Since |)v( ()2 represents the power in the kth frequency component, the sequence |)V( ()3,
—00 < k < 00, is called the power spectrum of x.(t) and shows the distribution of power
within various frequency components. Since the power of x.(¢) is confined to the discrete
frequencies 0, = Fy, =2 Fp, ..., we say that x.(¢) has a line or discrete spectrum.

Fourier transform for continuous-time aperiodic signals

The frequency analysis of a continuous-time, aperiodic signal can be done by using the
Fourier transform

Xo(F) = f - xe()e 1P F gy (2.2.4)

—00

TWe use the notation X (k) instead of X (k) to distinguish it from the Fourier transform X (F) introduced in
(2.2.4).
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which exists if x.(¢) satisfies the Dirichlet conditions, which require that x.(¢): (1) have a
finite number of maxima or minima within any finite interval, (2) have a finite number of
discontinuities within any finite interval, and (3) be absolutely integrable, that is,

/ Ixc ()] df < oo (2.2.5)

—00
The signal x(¢) can be synthesized from its spectrum X (F') by using the following inverse
Fourier transform formula

o
xe(t) = f X (F)el>™F1qF (2.2.6)
—00
The energy of x.(¢) can be computed in either the time or frequency domain using
Parseval’s relation
o o
E,= / Ixc(1)|? dt = / |X(F)|?dF (2.2.7)
—0oQ —0oQ
The function |X.(F)|> > 0 shows the distribution of energy of x.(r) as a function of

frequency. Hence, it is called the energy spectrum of x.(t). We note that continuous-time,
aperiodic signals have continuous spectra.

Fourier series for discrete-time periodic signals

Any discrete-time periodic signal x(n) with fundamental period N can be expressed
by the following Fourier series

N-1
x(n) =) Xpel FT/Mhn (2.2.8)
k=0
= ‘
where X = v Z x(n)e ™/ FH/N)kn (2.2.9)
n=0

are the corresponding Fourier coefficients. The basis sequences s;(n) £ e/ 7/Nkn are
periodic with fundamental period N in both time and frequency, that is, sy (n + N) = sx(n)
and siyn(n) = sg(n).

The sequence X,k = 0, £1,£2, ..., is called the spectrum of the periodic signal
x(n). We note that X4y = Xg; that is, the spectrum of a discrete-time periodic signal is
discrete and periodic with the same period.

The power of the periodic signal x(n) can be determined by Parseval’s relation

1 N—1 N—1
Pe= ZO lx(n)* = kZ;) | Xk (2.2.10)
n=! =

The sequence | X |? is known as the power spectrum of the periodic sequence x (1).

Fourier transform for discrete-time aperiodic signals

Any discrete-time signal that is absolutely summable, that is,

(0.¢]
> x| < oo 2.2.11)
n=—0oo
can be described by the discrete-time Fourier transform (DTFT)
X(e/?) 2 Flx(n)] = Z x(n)e /" (2.2.12)
n=—0oo
where w = 2nf is the frequency variable in radians per sampling interval or simply in
radians per sample and f is the frequency variable in cycles per sampling interval or simply



in cycles per sample. The signal x (n) can be synthesized from its spectrum X (e/“) by the
inverse Fourier transform

1 T . .
x(n) = — / X (e/?)e!" dw (2.2.13)
2 J_»

We will say that x(n) and X (e/®) form a Fourier transform pair denoted by

x(n) <> X (/) (2.2.14)
The f_unction X (ef ‘f)) is periodic with fundamental period 2. If x(n) is real-valued, then
| X (e’®)| = | X (e7/®)]| (even function) and £ X (e™/¥) = — 4L X (e/®) (odd function).
The energy of the signal can be computed in either the time or frequency domain using
Parseval’s relation

o0
1 (" .
Ec= ) kP = [ IX@*) do (2.2.15)
n=-—00 T J-n
TX jwyi2
- f XEDE 4 (2.2.16)
_r 2

The function | X (e/®)|?/(27) > 0 and describes the distribution of the energy of the signal
at various frequencies. Therefore, it is called the energy spectrum of x (n).

Spectral classification of deterministic signals

So far we have discussed frequency analysis methods for periodic power signals and
aperiodic energy signals. However, there are deterministic aperiodic signals with finite
power. One such class of signals is the complex exponential Ae’@0"+00) sequence [or
equivalently, the sinusoidal sequence A cos (won +6¢)], in which wg/(27) is not a rational
number. This sequence is not periodic, as discussed in Section 2.1.2; however it has a line
spectrum at w = wq + 27k, for any integer k, since

x(n) = Aed @0 H00) — ppillwot2mbntbol g — 0 41,42, ...

(or at w = £wq + 27k for the sinusoidal sequence). Hence such sequences are termed as
almost periodic and can be treated in the frequency domain in almost the same fashion.

Another interesting class of aperiodic power signals is those consisting of a linear
combination of complex exponentials with nonharmonically related frequencies {a)l}le 1
for example,

L
x(n) = Z X elom (2.2.17)
=1

Clearly, these signals have discrete (or line) spectra, but the lines are not uniformly dis-
tributed on the frequency axis. Furthermore, the distances between the various lines are not
harmonically related. We will say that these signals have discrete nonharmonic spectra.
Note that periodic signals have discrete harmonic spectra.

There is yet another class of power signals, for example, the unit-step signal u(n)
defined in (2.1.2). The Fourier transform of such signals exists only in the context of the
theory of generalized functions, which allows the use of impulse functions in the frequency
domain (Papoulis 1977); for example, the Fourier transform of the unit step u(n) is given
by

1 o0
Flu(n)] = T oo + Z wé(w — 2mk) (2.2.18)
k=—o00
Such signals have mixed spectra. The use of impulses also implies that the line spectrum
can be represented in the frequency domain as a continuous spectrum by an impulse train.
Figure 2.1 provides a classification of deterministic signals (with finite power or energy) in
the frequency domain.
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FIGURE 2.1
Spectral classification of deterministic (finite power or energy) signals.

2.2.2 Sampling of Continuous-Time Signals

In most practical applications, discrete-time signals are obtained by sampling continuous-
time signals periodically in time. If x.(#) is a continuous-time signal, the discrete-time
signal x(n) obtained by periodic sampling is given by

x(n) = x.(nT) —0<n<o0 (2.2.19)

where T is the sampling period. The quantity Fg = 1/T, the number of samples taken per
unit of time, is called the sampling rate or sampling frequency.

Since (2.2.19) established a relationship between the signals x.(#) and x(n), there
should be a corresponding relation between the spectra

Xo(F) = / - xe(H)e 72T gy (2.2.20)
and Xy = Y x(me " (2.2.21)

of these signals.

To establish a relationship between X (F) and X (e/?), first we need to find a relation
between the frequency variables F and w. To this end, we note that periodic sampling
imposes a relationship between ¢ and n, namely, t = nT = n/F;. Substituting t = n/F;
into (2.2.20) and comparing with the exponentials in (2.2.20) and (2.2.21), we see that

ok 2nf r=t (2.2.22)
T—=w=27 or = — 2.
F F,
Since f appears to be a ratio frequency, it is also called a relative frequency. The term
normalized frequency is also sometimes used for the discrete-time frequency variable f.



It can be shown (Proakis and Manolakis 1996; Oppenheim and Schafer 1989) that the
spectra X (F) of the continuous-time signal and X (e/®) of the discrete-time signal are
related by

o0
X (/27 F/Fsy = F, Z X.(F — kFy) (2.2.23)
k=—0o0

The right-hand side of (2.2.23) consists of a periodic repetition of the scaled continuous-time
spectrum Fg X (F) with period F;. This periodicity is necessary because the spectrum of any
discrete-time signal has to be periodic. To see the implications of (2.2.23), let us assume that
X (F) is band-limited, that is, X;(F) = O for | FF| > B, as shown in Figure 2.2. According
to (2.2.23), the spectrum X (F) is the superposition of an infinite number of replications
of X.(F) at integer multiples of the sampling frequency Fs. Figure 2.2(b) illustrates the
situation when Fg > 2B, whereas Figure 2.2(c) shows what happens if F; < 2B.In the latter
case, high-frequency components take on the identity of lower frequencies, a phenomenon
known as aliasing. Obviously, aliasing can be avoided only if the sampled continuous-

(1) Xc(F)

\_J ° U/ B 0 B F
Sample () Continuous-time Fourier transform: Equation (2.2.20).
A X(ei27FIR)
x(n) AR A T
1
rd N
1
\
! . | R >2B
- ! \ -
\ 1 \ 7
AN 1 1 A » Il 1 1 Il »
-5 *\Ll' 0 ‘ll,*sn K -B 0 B R F
N -, ~ ’

(b) Discrete-time Fourier transform: Fg> 2B.

x(n X(ej27FIF
Q) AR, ( )
F<ZB
- ‘ ¢~
’ _2 _1! |1 N
___A L _ _ -1 ___L__>
O /

RN

\—' ~_7

(c) Discrete-time Fourier transform: Fg < 2B.

FIGURE 2.2
Sampling operation.
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time signal is band-limited and the sampling frequency Fs is equal to at least twice the
bandwidth (Fs > 2B). Thisleadsto the well-known sampling theorem, which can be stated
asfollows:

SAMPLING THEOREM. A band-imited, real-valued, continuous-time signal with bandwidth B
can be uniquely recovered from its samples, provided that the sampling rate Fsis at least equal
to twice the bandwidth, that is, provided that Fs > 2B.

If the conditionsof the sampling theorem arefulfilled, that is, if Xc(F) = Ofor |F| > B
and Fs > 2B, then the signal x¢(¢) can be recovered from its samples x(n) = xc(nT) by
using the following interpolation formula

o

xe(t) = Y xc(nT)

n=—oo

Sin[(zw/T)(t —nT)]

(2.2.24)
(/T)(t —nT)

The minimum sampling rate of Fs = 2B is called the Nyquist rate. In practice, the infi-
nite summation in (2.2.24) has to be substituted by a finite one. Hence, only approximate
reconstruction is possible.

2.2.3 The Discrete Fourier Transform

The N-point discrete Fourier transform (DFT) of an N-point sequence{x(n),n =0, 1, ...,
N — 1} isdefined by’
N-1
X (k) = Z x(n)e /@/Nkn 01, ,N—1 (2.2.25)
n=0
The N-point sequence {x(n),n =0, 1,..., N — 1} can be recovered from its DFT coeffi-
cients{X(k),k =0, 1, ..., N — 1} by thefollowing inverse DFT formula:
1 V-1 ‘
x(n)== " X(ke! /M =01, N=-1 (2.2.26)
N
Wenotethat by itsdefinition, the N-point DFT requiresor providesinformation only for
N samplesof adiscrete-timesignal. Hence, it doesnot provide afrequency decomposition of
the signal because any discrete-time signal must be specified for all discrete-time instances,
—o0 < n < oo. The use of DFT for frequency analysis depends on the signal values
outside theinterval 0 < n < N — 1. Depending on these values, we can obtain various
interpretations of the DFT. The value of the DFT lies exactly in these interpretations.

DFT of finite-duration signals. Let x(n) beafinite-duration signal with nonzero val-
uesover therange0 < n < N — 1 and zero values elsewhere. If we evaluate X (e/®) at N
equidistant frequencies, say, wy = (27 /N)k,0 <k < N — 1, we obtain

N-1
X (&) = X (e/7N) = 3 x(nye 1 FNR = X (k) (22.27)
n=0
which follows by comparing the last equation with (2.2.25). This implies that the N-point
DFT of afinite-duration signal with length N isequal to the Fourier transform of the signal
at frequencies wy = (27 /N)k,0 < k < N — 1. Hence, in this case, the N-point DFT
corresponds to the uniform sampling of the Fourier transform of a discrete-time signal at
N equidistant points, that is, sampling in the frequency domain.

';'I n many traditional textbooks, the DFT isdenoted by X (k). Wewill use the notation X (k) to disti nguish the DFT
from the DTFT X (e/®) function or its samples.



DFT of periodic signals. Suppose how that x(n) is a periodic sequence with funda-
mental period N. This sequence can be decomposed into frequency components by using
the Fourier seriesin (2.2.8) and (2.2.9). Comparison of (2.2.26) with (2.2.8) shows that

X(ky=NXy k=0/1,...,N—1 (2.2.28)

that is, the DFT of one period of a periodic signal is given by the Fourier series coefficients
of the signal scaled by the fundamental period. Obviously, computing the DFT of afraction
of aperiod will lead to DFT coefficientsthat are not related to the Fourier series coefficients
of the periodic signal.

The DFT can be efficiently computed by using afamily of fast algorithms, referred to
asfast Fourier transform (FFT) agorithms, with complexity proportional to N log, N. Due
to the efficiency offered by these algorithms, the DFT is widely used for the computation
of spectra, correlations, and convolutions and for the implementation of digital filters.

2.2.4 The z-Transform

The z-transform of a sequence is a very powerful tool for the analysis of linear and time-
invariant systems. It is defined by the following pair of equations:

X@) 2 Zxml= ) x(mz" (2.2.29)
1 -1
x(n) = —yg X ()" " dz (2.2.30)
2rj Je

Equation (2.2.29) is known as the direct transform, whereas equation (2.2.30) is referred
to as the inverse transform. The set of values of z for which the power seriesin (2.2.29)
converges is called the region of convergence (ROC) of X (z). A sufficient condition for
convergenceis

> iz ™" < o0 (2.2.31)

n=—oo

In general, the ROC isaring in the complex plane; that is, R1 < |z] < Rz. Thevalues
of R1 and R, depend on the nature of the signal x (n). For finite-duration signals, X (z) isa
polynomial inz~1, and the ROC is the entire z-plane with a possible exclusion of the points
z = 0 andlor z = +o0. For causal signas with infinite duration, the ROC is, in general,
R1 < |z] < oo, thatis, the exterior of acircle. For anticausal signals[x(n) = 0, n > 0], the
ROC istheinterior of acircle, thatis, 0 < |z] < R2. For two-sided infinite-duration signals,
the ROC is, in general, aring R1 < |z| < R2. The contour of integration in the inverse
transform in (2.2.30) can be any counterclockwise closed path that encloses the origin and
isinside the ROC.

If we compute the z-transform on the unit circle of the z-plane, that is, if weset 7 = ¢/©
in (2.2.29) and (2.2.30), we obtain

X (@)l = X(@) = Y x(n)e /" (22.32)
1 g jwy ,jon
x(n) = E/ X (e/*)e! " dw (2.2.33)

which are the Fourier transform and inverse Fourier transform relating the signalsx (n) and
X (e/?). Thisrelation holds only if the unit circle isinside the ROC.
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TABLE 2.1
Properties of z-Transform.

The z-transform has many properties that are useful for the study of discrete-time
signals and systems. Some of these properties are given in Table 2.1. Assuming that the
involved Fourier transform exists, setting z = ¢/ in each of the properties of Table 2.1
gives a corresponding table of properties for the Fourier transform.

Animportant family of z-transformsisthosefor which X (z) isarational function, that
is, aratio of two polynomialsin z or z~. The roots of the numerator polynomial, that is,
the values of z for which X (z) = 0, are referred to as the zeros of X (z). The roots of the
denominator polynomial, that is, the values of z for which | X (z)| = oo, are referred to as
the poles of X (z). Although zeros and poles may occur at z = 0 or z = 400, we usually
do not count them. As will be seen throughout this book, the locations of poles and zeros
play an important role in the analysis of signals and systems. To display poles and zerosin
the z-plane, we use the symbols x and o, respectively.

The inverse z-transform—that is, determining the signal x(n) given its z-transform
X (z)—involvesthe computation of the contour integral in (2.2.30). However, most practical
applications involve rational z-transforms that can be easily inverted using partial fraction
expansion techniques. Finally, we note that a working familiarity with the z-transform
techniqueisnecessary for thecompl ete understanding of thematerial in subsequent chapters.

2.2.5 Representations of Narrowband Signals

A signal is known as a narrowband signal if it is band-limited to a band whose width is
small compared to the band center frequency. Such anarrowband signal transform X¢(F) is
shown in Figure 2.3(a), and the corresponding signal waveform x¢(¢) that it may represent
isshownin Figure 2.3(b). The center frequency of x¢(¢) is Fo, and itsbandwidthis B, which
ismuch lessthan Fp. It isinformative to note that the signal x¢(¢) appearsto be asinusoidal
waveform whose amplitude and phase are both varying slowly with respect to the variations
of the cosine wave. Therefore, such asignal can be represented by

xc(t) = a(t) cos[2r Fot + 6(1)] (2.2.34)

where a(r) describes the amplitude variation (or envel ope modulation) and 6 (r) describes
the phase modulation of a carrier wave of frequency Fp Hz. Although (2.2.34) can be
used to describe any arbitrary signal, the concepts of envelope and phase modulation are

Property Time domain z-Domain ROC
Notation x(n) X(2) ROC: R < |z| < Ru
x1(n) X1(2) ROCy : Ry < |zl < Ray
x2(n) X2(2) ROC2 : Ry < |z] < Ryy
Linearity ayx1(n) 4+ axxo(n) a1X1(z) +azX2(z) ROC1 N ROC»
Time shifting x(n —k) kX (2) R; < |z| < Ry, exceptz = 0ifk > 0
Scaling in the z-domain ax(n) X(a_lz) la|R; < |z| < |a|Ry
Time reversal x(—n) X(zil) 7 <|z] < —
1 u
Conjugation x*(n) X*(z*) ROC
dx
Differentiation nx(n) -z d(Z) ROC
z
Convolution x1(n) * x2(n) X1(2)X2(2) ROC; N ROCy
Multiplication x1(n)x2(n) =} X1)X5 (5) v ldv  RyRy <zl < RiuRoy
2rj Je v

Parseval’srelation

oo

n=—0oo

1 1
Z x1(m)x3(n) = E ﬁ X1(0)X3 (ﬁ) v 1y
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FIGURE 2.3
Narrowband signal: (a) Fourier transform and (b) waveform.

meaningless unlessa(¢) and 6(¢) vary slowly in comparison to cos 2z Fot, or equivalently,
unless B <« Fp.

In literature, two approaches are commonly used to describe a narrowband signal. In
thefirst approach, the signal isrepresented by using acomplex envelope, whilein the second
approach the quadrature component representation is used. By using Euler’sidentity, it is
easy to verify that (2.2.34) can be put in the form

xc(t) = Refa(r)e/ 127 For+001] = Re[a(1)e/?® 2T Fot (2.2.35)

Let Feo() £ a()el?® (2.2.36)
Then from (2.2.35) we obtain

xo(t) = Re[Fe(t)ed 2 o] (2.2.37)

The complex-valued signal x(¢) contains both the amplitude and phase variations of x¢(7),
and henceit isreferred to asthe complex envel ope of the narrowband signal x¢(z). Similarly,
again starting with (2.2.34) and thistime using the trigonometric identity, we can write

xc(?) = a(r) cos 2w Fot cosO(t) — a(t) Sin 2w Fot Sin6(t) (2.2.38)
Let xa1 (t) £ a(r) coso (1) (2.2.39)
xcQ(t) £ a(t) Sind(t) (2.2.40)

which are termed the in-phase and the quadrature components of narrowband signal x¢(),
respectively. Then (2.2.38) can be written as

xc(t) = x¢i (1) COS2m Fot — xcq(t) Sin 27 Fot (2.2.41)
Clearly, the above two representations are related. If we expand (2.2.36), then we obtain
Xe(t) = xa (1) + jxcQ(?) (2.2.42)

which implies that the in-phase and quadrature components are, respectively, the real and
imaginary parts of the complex envelope x¢(¢). These representations will be used exten-
sively in Chapter 11.

Bandpass sampling theorem. One application of the complex-envelope representa-
tion liesin the optimum sampling of narrowband signals. Inageneral sense, the narrowband
signal x¢(¢) isalso abandpass signal that is approximately band-limited to (Fo + B/2) Hz.
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According the sampling theorem in Section 2.2.2, the Nyquist sampling rate for xc(z) is
then

B
F5=2(FQ+E)%2F0 for B « Fy

However, since the effective bandwidth of x¢(¢) is B/2 Hz, the optimum rate should be B,
which is much smaller than 2Fp. To obtain this optimum rate, consider (2.2.34), which we
can write as

ej[ZnFoH-@(t)] +e—j[2nFot+0(t)]

2

xc(t) = a(t) cos[2r Fot + 6(t)] = a(t)

14 —jo
_ a(t)e’ (1) ej2nFot N a(t)e (t)e—jZHFot
2

1 . 1 .
— Efc(t)ejanot + Ex‘é(t)e—./ZHFot

(2.2.43)

Using the transform properties from Table 2.1, we see that the Fourier transform of x¢(¢) is
given by

Xc(F) = 3[Xo(F — Fo) + X(=F — Fo)] (2.2.44)

The first term in (2.2.44) isthe Fourier transform of x(¢) shifted by Fp, and hence it must
be the positive band-limited portion of X¢(F). Similarly, the second termin (2.2.44) isthe
Fourier transform of x¢ (¢) shifted by — Fo (or shifted left by Fp). Now the Fourier transform
of x%(¢) is X (—F), and hence the second term must be the negative band-limited portion
of Xc(F).

We thus conclude that x¢(¢) is a baseband complex-valued signal limited to the band
of width B, as shown in Figure 2.4. Furthermore, note that the sampling theorem of Sec-
tion 2.2.2 isapplicableto real- aswell ascomplex-valued signals. Therefore, we can sample
the complex envelope x¢(¢) a the Nyquist rate of B sampling intervals per second; and,
by extension, we can sample the narrowband signal x¢(¢) at the same rate without aliasing.
From (2.2.24), the sampling representation of X.(z) is given by

s S, _ /n\ Sn[zB(t —n/B)]
= Y %(%) P T (2.2.45)

n=—0oo

Substituting (2.2.45) and (2.2.36) in (2.2.37), we obtain

) — Re{ 5w (h) sin [ B( —n/B)]ejzﬂFot}

M B wB(t —n/B)
o0 .
=Rel 3" a(%) o100/ B) g2 i ST B = n/B)] (2.2.46)
B wB(t —n/B)
n=—o0
> n n\1Sn[7B( —n/B)]
= Z a (—) cos[ZnFot +6 (—)]
B B nB(t —n/B)
n=—0oo
A X (F) FIGURE 2.4
2A 1 Fourier transform of a complex envelope
ic(l).
-B/2 0 B/2 E



which isthe amplitude-phase form of the bandpass sampling theorem. Using trigonometric
identity, the quadrature-component form of the theorem is given by

xc(®) = Z [xd (%) cos2r Fot — x¢Q (%) sin ZnFot] Sm;gf;(t_:jéf)] (2.2.47)

Applications of this theorem are considered in Chapter 11.

2.3 DISCRETE-TIME SYSTEMS

In this section, we review the basics of linear, time-invariant systems by emphasizing those
aspects of particular importance to this book. For our purposes, a systemis defined to be
any physical device or algorithm that transforms a signal, called the input or excitation,
into another signal, called the output or response. When the system is simply an algorithm,
it may berealized in either hardware or software. Although a system can be specified from
its parts and their functions, it will often turn out to be more convenient to characterize a
system in terms of its response to specific signals. The mathematical relationships between
the input and output signals of a system will be referred to as a (system) model. In the case
of adiscrete-time system, the model issimply atransformation that uniquely mapsthe input
signal x(n) to an output signal y(n). Thisis denoted by

y(n) = H[x(n)] —00 <n< oo (2.3.1)
and is graphically depicted asin Figure 2.5.

FIGURE 2.5
Block diagram representation of a

H —>
X(n) ———» (1] ye discrete-time system.

2.3.1 Analysis of Linear, Time-Invariant Systems

The systems we shall deal with in this book are linear and time-invariant and are always
assumed to be initially at rest. No initial conditions or other information will affect the
output signal.

Time-domain analysis. The output of a linear, time-invariant system can always be
expressed as the convolution summation between the input sequence x (n) and the impulse
response or unit sample response sequence h(n) = H[8(n)] of the system, that is,

o0
y(n) = x(n) * h(n) & Z x(k)h(n — k) (2.3.2)
k=—00
where * denotes the convolution operation. It can easily be shown that an equivalent ex-
pressionis
o
y(n) = Z h(k)x(n — k) = h(n) x x(n) (2.3.3)
k=—o00

Thus, giventheinput x (n) toalinear, time-invariant system, theoutput y (n) can becomputed
by using the impulse response i(n) of the system and either formula (2.3.2) or (2.3.3).

If x(n) and h(n) are arbitrary sequences of finite duration, then the above convolution
can aso be computed by using a matrix-vector multiplication operation. Let x(n),0 <
n<N-1andh@n),0 <n < M — 1, betwo finite-duration sequences of lengths N
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and M (< N) respectively.” Then from (2.3.3), the sequence y(n) is also a finite-duration
sequenceover 0 < n < L — 1with L £ N + M — 1 samples. If the samples of y(n) and
h(n) are arranged in the column vectorsy and h, respectively, then from (2.3.3) we obtain

y(0) x(0) o -.- 0

: M-1 | M-1 | O0 h(©)

YM=D | fxM =1 - e x(0) B

: =1: e ) (2.3.4)

N-1 x(N=1) -+ . x(N=-M ‘
YN -1 (N -1 KNS
0

| y(L—-1) | |10 o 0 x(N-1) |
or y = Xh (2.3.5)
wherethe L x M matrix X containslinear shiftsinx(n—k)forn =0, ..., N—1,whichare

arranged asrows. The matrix X istermed aninput data matrix. It hasan interesting property
that all the elements along any diagonal are equal. Such amatrix is called a Toeplitz matrix,
and thus X has a Toeplitz structure. Note that the first and the last M — 1 rows of X contain
zero (or boundary) values. Therefore, the first and the last M — 1 samples of y(n) contain
transient boundary effects. In passing, we note that the vector y can also be obtained as

y = Hx (2.3.6)
in which H is a Toeplitz matrix obtained from (2.3.2). However, we will emphasize the
approach given in (2.3.5) in subsequent chapters.

MaTLAB providesabuilt-in function called conv that computes the convolution of two
finite-duration sequencesand isinvoked by y = conv(h, x) . Alternatively, the convolution
can also beimplemented using (2.3.4) in which the Toeplitz data matrix X is obtained using
the function t oepl i t z (see Problem 2.4).

A system is called causal if the present value of the output signal depends only on
the present and/or past values of the input signal. Although causality is necessary for the
real-time implementation of discrete-time systems, it is not really a problem in off-line
applications where the input signal has already been recorded. A necessary and sufficient
conditionfor alinear, time-invariant system to be causal isthat theimpulseresponsez(n) =
Oforn <O.

Stability is another important system property. There are various types of stability
criteria. A system is called bounded-input bounded-output (BIBO) stable or simply stable
if and only if every bounded input, namely, |x(n)| < M, < oo for al n, producesabounded
output, that is, |y(n)| < M, < oo for al n. Clearly, unstable systems generate unbounded
output signals and, hence, are not useful in practical applications because they will resultin
an overflow in the output. It can be shown that an LTI system is BIBO stableif and only if

> )| < oo (2.3.7)

n=—oo

Transform-domain analysis. In addition to the time-domain convolution approach,
the output of a linear, time-invariant system can be determined by using transform tech-
niques. Indeed, by using the convolution property of the z-transform (see Table 2.1), (2.3.2)

yields
Y(z) = H(2)X(2) (2.3.8)

"For the purpose of thisillustration, we assume that the sequencesbegin at n = 0, but they may have any arbitrary
finite duration.



where X (z), Y (z), and H (z) arethe z-transforms of the input, output, and impul se response
sequences, respectively. The z-transform H (z) = Z[h(n)] of theimpulseresponseiscalled
the system function and plays a very important role in the analysis and characterization of
linear, time-invariant systems. If the unit circle is inside the ROC of H (z), the system is
stable and H (/) providesits frequency response.

Evaluating (2.3.8) on the unit circle gives

Y (/) = H(e/?)X (e/?) (2.3.9)

where H (¢/®) isthe frequency response function of the system. Since, in general, H (¢/)
is complex-valued, we have

H(eI?) = [H(e?)]el <1 (23.10)

and | H (¢/)| isthe magnitude response, and £ H (e/) isthe phase response of the system.
For asystem with area impulse response, | H (¢/®)| has even symmetry and £ H (e/“) has
odd symmetry. The group delay response of a system with frequency response H (¢/¢) is
defined as

T(e/?) = —%AH@/@) (2.3.11)

and provides ameasure of the average delay of the system as a function of frequency.

Systems described by linear, constant-coefficient difference equations. A discrete-
time system is called practically realizable if it satisfies the following conditions; (1) It
requires a finite amount of memory, and (2) the amount of arithmetic operations required
for the computation of each output sampleisfinite. Clearly, any system that does not satisfy
either of these conditions cannot be implemented in practice.

If, in addition to being linear and time-invariant, we require a system to be causal and
practically realizable, then the most general input/output description of such asystem takes
the form of a constant-coefficient, linear difference equation

P 0
Y) ==Y ayn—k + Y dix(n—k) (2.3.12)
k=1 k=0

In casethe system parameters{ay, d;.} depend ontime, the systemislinear and time-varying.
If, however, the system parameters depend on either the input or output signals, then the

system becomes nonlinear.
By limiting our attention to constant parameters and eval uating the z-transform of both

sides of (2.3.12), we obtain

i ‘
drz™
Y@ o » D@
H(z) = XG0 : XP: k = A0) (2.3.13)
+ agz~
k=1

Clearly, asystem with arational system function can be described, within again factor, by
the locations of its poles and zeros in the complex z-plane

0
l_[(l —zz b
D(z =
H() = AZ)) =G (23.14)
[Ja-pz™
k=1

The system described by (2.3.12) or equivalently by (2.3.13) or (2.3.14) isstableif itspoles,
that is, the roots of the denominator polynomial A(z), are al inside the unit circle.
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The difference equation in (2.3.12) is implemented in MATLAB using the filter
function. In its simplest form, this function is invoked by y = filter(d, a, x) where
d =[do,d1,...,dQ anda = [1,al,...,aP] are the numerator and denominator co-
efficient arraysin (2.3.13), respectively.

If the coefficients a; in (2.3.12) are zero, we have

Qo
y(n) =) dix(n— k) (2.3.15)
k=0
which compared to (2.3.3) yields
dy 0O<n=<Q
h(n) = 2.3.16
=) {O elsewhere ( )

that is, the system in (2.3.15) has an impulse response with finite duration and is called a
finite impulse response (FIR) system. From (2.3.13), it follows that the system function of
an FIR system is a polynomial in z~1, and thus H (z) has Q trivial polesat z = 0 and Q
zeros. For thisreason, FIR systems are also referred to as all-zero (AZ) systems. Figure 2.6
shows a straightforward block diagram realization of the FIR system (2.3.15) in terms of
unit delays, adders, and multipliers.

x(n) e—

y(n)

FIGURE 2.6
FIR filter realization (direct form).

In MATLAB, FIR filtersarerepresented either by the values of theimpulseresponse ()
or by the difference equation coefficients d,,. Therefore, for computational purposes, we
can use either they = conv(h, x) functionorthey = filter(d,[1],x) function. There
isadifference in the outputs of these two implementations that should be noted. The conv
function produces al values of y(n) in (2.3.4), while the output sequence from the filter
function provides y(0), ..., y(N — 1). This can be seen by referring to matrix X in (2.3.4).
The input data matrix X contains only the first N rows; that is, the output of thefilter
function contains transient effects from the boundary at » = 0. For signa processing
applications, the use of thefi | ter function is strongly encouraged.

When a system has both poles and zeros, H (z) can be expressed using partial fraction
expansion form as follows

P

Ag
H@) =) ——— (2.3.17)
=1 1-pz

if the polesare distinct and Q < P. The corresponding impulse response is then given by

P
h(n) =Y A(pi)"u(n) (2.3.18)
k=1

that is, each pole contributes an exponential mode of infinite duration to the impulse re-
sponse. We conclude that the presence of any nontrivial polein asystemimpliesan infinite-



duration impulse response. We refer to such systems asinfinite impulse response (11R) sys-
tems. If O = 0, the system has only poles, with zeros at z = 0, and is called an all-pole
(AP) system. It should be stressed that although all-pole and pole-zero systems are IR,
not all 1IR systems are pole-zero (PZ) systems. Indeed, there are many useful systems, for
example, an ideal low-pass filter, that cannot be described by rational system functions of
finite order. Figures 2.7 and 2.8 show direct-form realizations of an al-pole and apole-zero
system.

FIGURE 2.7
All-pole system realization (direct form).

x(n) y(n)

y(n)

FIGURE 2.8
Pole-zero system realization (direct form).

2.3.2 Response to Periodic Inputs

Although the convolution summation formula can be used to compute the response of
a stable system to any input signal, (2.3.8) cannot be used with periodic inputs because
periodic signalsdo not possessaz-transform. However, afrequency domain formulasimilar
to (2.3.9) can be devel oped for periodic inputs.

Let x(n) beaperiodic signal with fundamental period N. Thissignal can be expanded
in aFourier series as

N-1
x(n) =Y Xpe/ZMN o p=01,....N-1 (2.3.19)
k=0
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where X, are the Fourier series coefficients. Substituting (2.3.19) into (2.3.3) gives

N-1
y(n) =Y X H(e/2mkIN)i2rkn/N (2.3.20)
k=0

where H (¢/27%/N'y are samples of H (e/®). But (2.3.20) isjust the Fourier series expansion
of y(n), hence

Yo = HeZ*""x,  k=0,1,...,N—1 (2.3.21)

Thus, the response of alinear, time-invariant system to aperiodic input isalso periodic with
the same period. Figure 2.9 illustrates, in the frequency domain, the effect of an LTI system
on the spectrum of aperiodic and periodic input signals.

Aperiodic

Periodic

X(el) H(e™) Y(e')
A
1
0 a 0 P 0 a
input ] LTI output R
: v system - >
signal signal

H(el®) Y

FIGURE 2.9
LTI system operation in the frequency domain.

EXAMPLE 23.1. Consider the system
y(n) =ay(n —1) + x(n) O<a<1
If we restrict the inputs of the system to be only periodic signals with fundamental period N,

determine the impul se response of an equivalent FIR system that will provide an identical output
to the system described above.

Solution. The system output can be described by (2.3.21), where

Y(2) 1 n
H(z) = X@  1—ail_ Z{a"u(n)}
From Figure 2.9, it is clearly seen that every system whose frequency response is identical to
H(el®) at the sampling pointswy; = (27 /N)k, 0 < k < N — 1, providesthe same output when
excited by a periodic signal having fundamental period N. An FIR system having this property
can be obtained by taking the inverse N-point DFT of H(k),0 < k < N — 1. The resulting
impulse response /2(n) is simply the N-point periodic extension of i(n) = a"u(n), that is,

e8] 00 n
hmy= > h+iIN) =Y "N = ﬁ O<n<N-1 (2.3.22)
[=—00 =0

since h(n +IN) for I < 0 does not contributetothesumforO<n < N — 1.



The example above |ooked simple enough. Unfortunately, for somewhat more compli-
cated all-polefilters, it becomes very difficult to evaluate the infinite summationin (2.3.22)
in closed form, even if h(n) isavailable, which is often not the case.

2.3.3 Correlation Analysis and Spectral Density

The investigation of system responses to specific input signals requires either the explicit
computation of the output signal or measurements to relate characteristic properties of the
output signal to corresponding characterisitics of the system and the input signal. A funda-
mental tool needed for such analysisisthe correlation between two signals that provides a
quantitative measure of similarity between two signals. The correlation sequence between
two discrete-time signals x (r) and y(n) is defined by

o0

> xmy*(n—1 : energy signals
ra@=4"" " N (2.3.23)
1\/|me SN 1 Z x(n)y*(n — 1) : power signals

where [ is termed the lag (or shift) variable. The autocorrelation sequence of asignal is
obtained by assuming that y(n) = x(n), that is, if we correlate a signal with itself. Thus

oo

Z x(m)x*(n —1) : energy signal
rah=1""" N (2.3.24)
NILmoo SN 1 n; x(n)x*(n —1) : power signal

In this case, we use the simplified notation r, (/) or even r(l) if there is no possibility of
confusion.

The autocorrelation sequence r, (1) and the energy spectrum of a signal x(n) form a
Fourier transform pair

o) < R.(e/®) (2.3.25)

Since, R, (e/®) = |X (e/?)|2, the Wiener-K hintchine theorem (2.3.25) is usually used to
define the energy spectral density function, R, (e/®). Clearly, r.(I) and R, (e/®) do not
contain any phase information.

In many instances, we need to evaluate the cross-correlation between the input and
output signals and the autocorrelation of the output signals. It can be easily shown that

rox (D) = h(l) % 4 (1) (2.3.26)
ry() = h*(=1) s rye () = rp(l) * rye(l) (2.3.27)
where @)= > hmh*(n—1) = h(l) % k*(~1) (2.3.29)

is the autocorrelation of the impulse response. Taking the z-transform of both sidesin the
above equations, we obtain

Ryx(Z) = H(z2)R«(2) (2329)

*

Ry(z) = H* (Zi) Ryx(2) = Ri(2) R, (2) (2.3.30)

and Ry(z) £ H(z)H* (i*) (2.3.31)
Z
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where R, (z), Ry (z), and Ry, (z) are known as complex spectral density functions. Evaluating
(2.3.30) on theunit circle z = ¢/ gives

Ry(e/®) = Ry(e/®)Ry(e/®) = |H(e/®)|? R, (e/®) (2332

The output correlationsr,, (1) and r, (1) for aperiodic input with fundamental period N are
computed viatheir spectral densities using the Fourier series. For example, it can be easily
shown that

R}({y) _ |H(ej2ﬂk/N)|2R/£X) O<k<N-1 (2.3.33)

where R\, R,E” are the power spectral densities of x(n) and y(n), respectively.

In exploring the properties of the various system models, we shall need to excite them
by some input. Of particular interest are deterministic inputs that have constant power
spectrum values (such as the unit sample sequence) or inputs that have constant power
spectrum envelopes (such as al-pass signals). Since we have aready discussed the unit
sample response, we next focus on al-pass signals.

All-pass signals have a flat-spectrum, that is,

Ry (e!®) = |X (e!®)]? = G? —T<w<m (2.3.34)

and, therefore, r, (1) = G28(1). The simplest exampleisx(n) = §(n — k). A more interest-
ing case is that of all-pass signals with nonlinear phase characteristic (see Section 2.4.2).
The autocorrelation and the spectral density of the output y(n) of LTI systems to all-pass
excitations can be computed by the formulas used for unit impulse excitations, that is,

ry() = Gry() = G* Y h(m)h*(n —1) (2.3.35)
and Ry(z) = G’H(x)H* (é) (2.3.36)
Z

By properly choosing G, we can always assume that #(0) = 1.

2.4 MINIMUM PHASE AND SYSTEM INVERTIBILITY

Inthissection, weintroduce the concept of minimum phase and show how itisrelated to the
invertibility of linear, time-invariant systems. Several properties of all-pass and minimum-
phase systems are also discussed.

2.4.1 System Invertibility and Minimum-Phase Systems

A system H[-] with input x(n), —co < n < oo, and output y(n), —co < n < o0, iS
called invertible if we can uniquely determine its input signal from the output signal. This
is possible if the correspondence between the input and output signals is one-to-one. The
systemthat producesx (n), when excited by y(n), isdenoted by Hj,, andiscalledtheinverse
of system H. Obvioudly, the cascade of H and Hipy is the identity system. Obtaining the
inverse of an arbitrary system is a very difficult problem. However, if a system is linear
and time-invariant, then if its inverse exists, the inverse is also linear and time-invariant.
Hence, if 4 (n) istheimpulse response of alinear, time-invariant system and Ay () that of
itsinverse, we have

[x(n) * h(n)] * hiny(n) = x(n)
or h(n) * hipy(n) = 8(n) (2.4.1)

Thus, given h(n), —oo < n < 0o, We can obtain hj, (n), —0o < n < 0o, by solving the
convolution equation (2.4.1), which is hot an easy task in general. However, (2.4.1) can be



converted to a simpler algebraic equation using the z-transform. Indeed, using the convo-
[ution theorem, we obtain

1
H(z)
where Hiny, (z) isthe system function of the inverse system. If H(z) isa pole-zero system,
that is,

[{inv (Z) = (242)

_ D)
H(z) = 10 (2.4.3)
_ A
then Hinv(2) = e (244

Thus, the zeros of the system become the poles of itsinverse, and vice versa. Furthermore,
theinverse of an all-pole system is al-zero, and vice versa.

EXAMPLE 24.1. Consider a system with impulse response
h(n) = 8(n) — %801 —1
Determine impulse response of the inverse system.

Solution. The system function of itsinverseis

Hip (2) 71
inviz) = 1.1
1-3
which hasapoleat z = ;11. If we choose the ROC as |z| > %1, the inverse system is causal and

stable, and
hiny (1) = (3)"u(n)
However, if we choosethe ROC as |z| < %1, the inverse system is noncausal and unstable

hiny () = —(5)"u(=n — 1)

Thissimple exampleillustrates that the knowledge of the impulse response of alinear,
time-invariant system does not uniquely specify its inverse. Additional information such
as causality and stability would be helpful in many cases. This leads us to the concept of
minimum-phase systems.

A discrete-time, linear, time-invariant system with impulse response % (n) is caled
minimum-phase if both the system and itsinverse system hj,, (n) are causal and stable, that
IS,

h(n) * hiny(n) = 8(n) (2.4.5)

h(n)=0 n<0 and hinv(n) =0 n<0 (2.4.6)

dlhm<oo and ) |hin(m)] < oo (2.4.7)
n=0 n=0

We notethat if asystem isminimum-phase, itsinverseisalso minimum-phase. Thisisvery
important in deconvolution problems, where the inverse system hasto be causal and stable
for implementation purposes.

Sometimes, especially in geophysical applications, the stability requirements (2.4.7)
are replaced by the less restrictive’ finite energy conditions

o o0
dlhmPP <oco  and Y |hin(n)]? < o0 (2.4.8)
n=0 n=0

which areimplied by (2.4.7). However, note that (2.4.8) does not necessarily imply (2.4.7).

"This definition of minimum phase allows singularities (poles or zeros) on the unit circle.
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Clearly, a PZ system is minimum-phase if al its poles and zeros are inside the unit
circle. Indeed, if al roots of A(z) and D(z) are inside the unit circle, the system H(z)
in (2.4.3) anditsinverse Hjny(z) in (2.4.4) are both causal and stable.

In an analogous manner, we can define a maximum-phase system as one in which both
the system and itsinverse are anticausal and stable. A PZ system then is maximum-phaseif
all its poles and zeros are outside the unit circle. Clearly, if H(z) is minimum-phase, then
H (z~1) ismaximum-phase. A system that is neither minimum-phase nor maximum-phase
is called a mixed-phase system.

2.4.2 All-Pass Systems

We shall say that alinear, time-invariant system is all-pass, denoted by Hgp(e/), if

| Hap(e?®)] = 1 —T<w<mw (2.4.9)
The simplest all-pass system is characterized by
Hap(Z) = Zk

which simply time-shifts (delay k < 0, advance k > 0) theinput signal.
A moreinteresting, nontrivial family of all-pass systemsis characterized by the system
function (dispersive al-pass systems)

ah+ah 7747 P AX 1Y)

H. = = 24.10
(2) 1+aiz7 1+ +apz? A(2) ( )
Indeed, it can be easily seen that
. 1

|Hap(e/®)|> = Hap(2) H, (?*) o= 1 (2.4.12)

z=el

In the case of real-valued coefficients, (2.4.10) takes the form

_ -1 ... —P —P»y -1

Hap(2) = ap+ap_1z~+---+z277  z (z™) (2.412)

1+aiz7t 4+ 4apz P AR
The poles and zeros of an al-pass system are conjugate reciprocals of one another; that
is, they are conjugate symmetric with respect to the unit circle. Indeed, if po is a root
of A(z), then 1/p§ isaroot of A*(1/z*). Thus, if po £ re/? isapole of Hap(z), then
1/p§ = (1/r)e’? isazero of the system. This typical pattern isillustrated in Figure 2.10

Im Im

x-Pole x-Pole

0-Zero 1 (e) zplane 0-Zero 1 zplane
A~ @ Re A~ Re
~a 0 1 ~ 0 1

-1 -1
(@ (b)
FIGURE 2.10

Typical pole-zero patterns of a PZ, all-pass system:
(b) real-valued coefficients.

(a) complex-valued coefficients and



for system functionswith both complex and real coefficients. Therefore, the system function
of any pole-zero all-pass system can be expressed as

s 1

Hap(2) = l_[ P

(2.4.13)
—
ket LT PKE

The similar expressions (z 1 — pf)/(1— prz~Y and (1— pez 1) /(271 - p}) [the negative
and inverse of (2.4.13), respectively] are often used in the literature. For systems with real
parameters, singularities should appear in complex conjugate pairs.

Properties of all-pass systems. All-pass systems have someinteresting properties. We
list these propertieswithout proofs. Some of these proofsaretrivial, and othersare explored
in problems.

1. The output energy of a stable all-pass system is equal to the input energy; that is,

° 1 (7 ) .12
Ey = Z ly(n)|? = E/_n ‘Hap(e]“’)X(e]w) dw = E, (2.4.14)

n=—oo

due to (2.4.9). This leads to a very interesting property for the cumulative energy of a
causal all-pass system (see Problem 2.6).

2. A causal, stable, PZ, all-pass system with P poles has a phase response £ Hap(e/®) that
decreases monotonically from £ Hap(e/%) to £ Hap(e/®) — 27 P as  increases from 0
to 2 (see Problem 2.7).

3. All-pass systems have nonnegative group delay, which is defined as the negative of the
first derivative of the phase response, that is,

d o
This property is a direct result of the second property.

4. The all-pass system function Hap(z)

1—azt
<1 if |zl <1
satisfies [Hyp(z)| =1 if |zl=1 (2.4.17)

1 if |z71>1

For proof see Problem 2.10.

2.4.3 Minimum-Phase and All-Pass Decomposition

We next show that any causal, PZ system that has no poles or zeros on the unit circle can
be expressed as

H(z) = Hmin(2) Hp(2) (2.4.18)

where Hpin(z) is minimum-phase and Hgp(z) is all-pass, as shown in Figure 2.11. Indeed,
let H (z) be anon-minimum-phase system with onezero z = 1/a, |a| < 1, outside the unit
circle and all other poles and zeros inside the unit circle. Then H (z) can be factored as

H(z) = Hi(x)(a —z7Y) (2.4.19)
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FIGURE 2.11
Minimum phase and all-pass decomposition.

where Hj(z) is minimum-phase. Equivalently, (2.4.19) can be expressed as

1—a*z71
_ -1
H(z) = Hi(z)(a — z )T*z_l
% -1y 4 — z7!
=[H1(z) A —-a"z )]T*z_l
-1
a—7z
= Hmin(Z)T*Z_l

(2.4.20)

where Hyin(z) isminimum-phase and thefactor (a —z~1)/(1—a*z 1) isall-pass, because
la| < 1. Note that the minimum-phase system was obtained from H(z) by reflecting the
zeroz = 1/a, whichwasoutsidetheunit circle, tothezero z = a* insidetheunit circle. This
approach can clearly be generalized for any PZ system. Thus, given a non-minimum-phase
PZ system, we can create a minimum-phase one with the same magnitude response (or
equivaently the same impulse response autocorrelation) by reflecting al poles and zeros
that are outside the unit circleinside the unit circle. From the previous discussion it follows
that thereare 22 Qth-order AZ systemswith the same magnituderesponse. Thisisillustrated

in the following example.

EXAMPLE 24.2. For Q = 2, determine all four second-order AZ systems with the same mag-

nitude response.

Solution. For asecond-order all-zero system (0 < a < 1,0 < b < 1) we obtain the following

systems
Hpin(2) = L —az"Hd - bz}
Hpix1(2) = (1 —az)(1— bz ™Y

that have the same spectrum

Hmax(z) = (1—az)(1—b2)
Hpix2(2) = (L — az (1 — b2)

R@)=H@HCZ Y =1-az Hd-bzHd—az)1 - b2)
and the same autocorrelation

1+a2p2+@+b2 1=0

—(a+b)(1+ab) 1=1-1
r(l) =

ab =2 -2

0 otherwise

but different impulse and phase responses, as shown in Figure 2.12.

EXAMPLE 24.3. Consider the following all-zero minimum-phase system:

Hpmin(z) = (1 — 0.8¢/0-67;=1)(1 _ 0.8,=/067;—1)
x (1 — 0.86/0.97 ;=1)(1 _ 0.8¢—7097 ;—1y

(2.4.21)

(2.4.22)

(2.4.23)

(2.4.24)

Determine the maximum- and mixed-phase systems with the same magnitude response.
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FIGURE 2.12

Pole-zero, frequency response, and impulse response plots for minimum-phase (row 1),
maximum-phase (row 2), mixed-phase 1 (row 3), and mixed-phase 2 (row 4) systems in
Example 2.4.2. Note that the abscissa in Phase plots are labeled in units of = radians.

Solution. To obtain amaximum-phase system with the same magnitude response, wereflect the
zerosof Hmin(z) frominsidetheunit circleto their conjugatereciprocal locationsthat areoutside
theunit circleby using thetransformation zg — 1/z{. Thisleadsto thefollowing transformation

for each first-order factor:
. 1 .
A—rel?z7y 5 r— el (2.4.25)
r

The scaling factor r in the right-hand side is included to guarantee that the transformation does
not scal e the magnitude response. The resulting maximum-phase system is

Hmax(z) = (0.8)4(1 — 1.25¢/0-67 ;=1)(1 _ 1.25,—/0.67 ;1)

: . (2.4.26)
x (1 — 1.250/097 ;=1 (1 — 1.25¢=/0.97;—1)
If we reflect only the zero at 0.8¢%/0-67  we obtain the mixed-phase system
Hi(z) = (0.8)2(1 — 1.25¢/067 ;=1)(1 — 1.25,=/0.67 ;~1)
(2.4.27)

x (1—0.8¢/097 ;=1 (1 — 0.8.7/097 ;1)
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Similarly, if we reflect only the zero at 0.8¢%/0-97 | we obtain the second mixed-phase system
Hy(z) = (0.8)2(1 — 0.8¢/0-67 ;=1y(1 — 0.8¢ /067 ;1)

‘ , (2.4.28)
x (1 — 1.25¢/0.97 ;=1y(1 — 1.25,=/0.97 ;—1)

Figure 2.13 shows the pole-zero, magnitude response, phase response, and group delay plots
for al four systems. Clearly, the minimum-phase system has the smallest group delay, the
maximum-phase system has the largest group delay, while the mixed-phase systems have in-
between amounts of group delay across al frequencies. Finally, it can be easily shown that the
system Hmax (z)/ Hmin(2) is an al-pass system.
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FIGURE 2.13

Pole-zero and frequency response plots for minimum-phase (row 1), maximum-phase (row 2),
mixed-phase 1 (row 3), and mixed-phase 2 (row 4) systems in Example 2.4.3. Note that the
abscissa in Phase plots are labeled in units of 7 radians while those in Group delay plots are
labeled in sampling intervals.

The minimum- (maximum-) phase AZ system has all its zerosinside (outside) the unit
circle. From (2.4.12), it follows that an all-pass system can be expressed as

Hap(z) = —=2 (2.4.29)



where Hpin(z) and Hpax(z) are the Pth-order minimum-phase and maximum-phase sys-
tems, respectively, with the same magnitude response. Indeed, it can be easily seen that

Hmax(z) = Z_PHr;in (%) (2.4.30)
O hmax(n) = h. (P —n).

Inpractice, itisvery important to find out if agiven system is minimum-phase. Clearly,
the definition cannot be used in practice because either the system i (n) or its inverse is
going to be IIR. Furthermore, most of the above properties using either 4(n) or H(e/®) are
not practical for use in real-world systems. However, if we deal with PZ systems, we can
check if they are minimum-phase by computing the poles and zeros and check if they are
inside the unit circle. Thisis, however, a computationally expensive procedure, especialy
for high-order systems. Fortunately, there are several tests that allow us to find out if the
zeros of apolynomia areinside the unit circle without computing them. See Theorem 2.3.

Properties of minimum-phase systems. Minimum-phase systems have some very in-
teresting properties. Next we list some of these properties without proofs. More details can
be found in Oppenheim and Schafer (1989) and Proakis and Manolakis (1996).

1. For causal, stable systems with the same magnitude response, the minimum-phase sys-
tem has algebraically the smallest group delay response at every frequency, that is,
Tmin(e/®) < t(e/®), for al w. Thus, strictly speaking, minimum-phase systems are
minimum group delay systems. However, the term minimum-phase has been established
in the engineering literature.

2. Of al causal and stable systems with the same magnitude response, the minimum-phase
system minimizes the “energy delay”

o0
D Ik foralk=0,1,...,00 (2.4.31)
n=k
where h(n) isthe system impul se response.

3. Thesystem H(z) isminimum-phaseif log | H (¢/®)| and £ H (e/®) form aHilbert trans-

form pair.

EXAMPLE 2.44. In this example we illustrate the energy delay property of minimum-phase
systems. Consider the all-zero minimum-phase system (2.4.24) given in Example 2.4.3 and
repeated here:

Hpmin(z) = (1 — 0.8¢/067;=1)(1 — 0.8¢—/0.67 ;1)
x (1—0.8¢/097;=1)(1 — 0.8 /097 ;—1)
In the top row of four plotsin Figure 2.14, we depict the impulse responses of the minimum-,
maximum-, and mixed-phase systems. The bottom plot contains the graph of the energy delay
Zik |h(n)|2 fork =0,1,...,4, for each of the systems. As expected, the minimum-phase
system has the least amount of energy delay while the maximum-phase system has the greatest

amount of energy delay at each n. The graphs of the energy delays for mixed-phase systems are
somewhere in between the above two graphs.

Additional properties of minimum-phase systems are explored in the problems.

2.4.4 Spectral Factorization

One interesting and practically useful question is the following: Can we completely de-
termine the system H (z) when |R,(e/*)|?> = o2 given ry(l) or, equivalently, the spec-
tral density Ry(ej‘“)? The answer is not a unique one since al we know either from
ry(l) or from R, (e/®) is the magnitude response | H (¢/¢)|, but not the phase response
£ H (¢/*). To obtain aunique system from (2.3.35) or (2.3.36), we haveto impose additional
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FIGURE 2.14

Impulse response plots of the four systems in the top row and the energy delay plots in the
bottom row in Example 2.4.4.

conditions on H (z). One such condition is that of a minimum-phase system. The process
of obtaining the minimum-phase system that producesthe signal y(n) with autocorrelation
ry(l) or spectral density Ry (z) is called spectral factorization. Equivaently, the spectral
factorization problem can be stated as the determination of a minimum-phase system from
its magnitude response or from the autocorrelation of itsimpul se response.

Solving the spectral factorization problem by finding roots of R, (z) is known as the
root method, and besidesiits practical utility, it illustrates some basic principles.

1. Every rationa power spectral density has, within ascalefactor, aunigue minimum-phase
factorization.

2. Thereare 2P+€ rational systems with the same power spectral density, where Q and P
are numerator and denominator polynomial degrees, respectively.

3. Not al possible rational functions are valid power spectral densities since for a valid
Ry (z) the roots should appear in pairs, z; and 1/z}.

These principles can be generalized to any power spectral density by extending P +
O — o0. The spectral factorization procedure is guaranteed by the following theorem.

THEOREM 2.1. If INRy(z) isanalyticinan openringa < |z| < 1/« inthe z-plane and thering
includes the unit circle, then Ry (z) can be factored as

1
Ry(z) = Gszin(Z)HrT]in (27) (24.32)
where Hpin(z) isaminimum-phase system.

Proof. Usingtheanalyticity of In Ry (z), we can expand In Ry, (z) inaLaurent series (Churchill
and Brown 1984) as

o
INRy(z) =) gDz (2.4.33)
—00



wherethe sequence g (/) isknown asthe cepstrumof the sequencery (/) (Oppenheim and Schafer
1989). Evaluating (2.4.33) on the unit circle, we obtain

o
INRy (/) =Y ghye ! (2.4.34)
—0oQ
1 (7 S
or o) = — / InRy(e/*)e/® do (2.4.35)
2t J_»

Since Ry, (€/?) = |Y (/)2 isared, nonnegative function, the sequence g(/) is a conjugate
symmetric sequence, that is,

g() =g" (=D (2.4.36)
and G2 2 expg(0) = exp [% /ﬂ INRy(e/?) dw:| >0 (2.4.37)
-

From (2.4.33), we can express Ry (z) in afactored form as

'] -1 [e'9)
Ry(z) = exp [Z g(l)z_l} =exp| Y ez +20 + Zg(l)z_l:|
—00 —00 1

00 -1
= expg(0) exp [Z gz | exp [Z g(l)z_l:| (2.4.38)

1 J

00 [ oo
= G%exp [Z g(l)z_l} ep|y g*(l)ﬁ}
1 L1
where we used (2.4.36). After defining

o0
H(z) 2 exp [Z g(l)z_l:| lz] > « (2.4.39)
1

1 & 1
o that H* <—*> = exp |:Z g*(l)zl]i| lz| < — (2.4.40)
Z 1 o
we obtain the spectral factorization (2.3.36). Furthermore, from (2.4.37) we note that the constant
G2 isequal to the geometric mean of Ry (e/?). From (2.4.39), note that H (z) isthe z-transform

of acausal and stable sequence, hence it can be expanded as

H@) =1+hDz P+ h@z7 2+ (2.4.41)

where h(0) = lim;_, o H(z) = 1. Also from (2.4.39) H(z) corresponds to a minimum-phase
system so that from (2.4.40) H*(1/z*) isastable, anticausal, and maximum-phase system.

The analyticity of In R, (z) is guaranteed by the Paley-Wiener theorem given below
without proof (see Papoulis 1991).

THEOREM 2.2 (PALEY-WIENER THEOREM). Thespectral factorizationin (2.4.32) ispossible
if Ry (z) satisfies the Paley-Wiener condition

T .
/ [INRy(e/*)| dw < 0o

—TT
If H(z) isknown to be minimum-phase, the spectral factorization is unique.

In general, the solution of the spectral factorization problem is difficult. However, it
is quite simple in the case of signals with rational spectral densities. Suppose that R, (z) is
arational complex spectral density function. Since r(I) = r;(—1) impliesthat Ry (z) =
RY(1/z"), if z; isaroot, then 1/z* isalso aroot. If z; isinside the unit circle, then 1/z} is
outside. To obtain the minimum-phase system H (z) corresponding to R, (z), we determine
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the poles and zeros of R, (z) and form H (z) by choosing all poles and zeros that are inside
the unit circle, that is,

o
[[a-zz™

k=1
H(z)=G 7

[Ta-pz™
k=1

where|zi| <L k=212,...,0and |px| <1, k=1,2,..., P.
Beforeweillustratethisby an example, it should be emphasized that for real-valued co-
efficients Ry (¢/) isarational function of cosw. Indeed, we havefrom (2.3.36) and (2.3.13)

(2.4.42)

1 D(z)D*(1/z*)
R,(z2) =G’H@)H* | = | =c>=—=— ">~ 2.4.43
y(2) =G H(2) (Z*> G AQ)A (125 ( )
Q P
where D@ =) diz™* ad A@=1+) az* (2.4.44)
k=0 k=1
Clearly, (2.4.43) can be written as
0
. ra(0) +2) " ra(l) coslew
o 2Ra(€?) 5 1=1
RWJLJ}&M%_G - (2.4.45)
ra(0) +2) " ra(l) coslow
=1

where ry(l) = rj(—1) and r,(I) = r;(—1) are the autocorrelations of the coefficient se-
quences {do, d1, ...,dg} and {1, a1, ..., ap}, respectively. Since cos/w can be expressed
as apolynomial
I
coslo = » ;i (CoSw)’
i=0
it followsthat R, (e/*) isarational function of cosw.

EXAMPLE 24.5. Let
1.04 + 0.4cosw
1.25+ cosw

Determine the minimum-phase system corresponding to Ry(ej @).

Ry(el?) =

Solution. Replacing cosw by (e/® + e~/®)/2 or directly by (z + z~1)/2 gives
1.04+02: 40201 (z+5)(+02)

125+ 057 +05:71 7 (z+2)(z+0.5)

The required minimum-phase system H(z) is

2+02 1+0271

T z+05 1+05;71

Ry(z) =

(2.4.46)

2.5 LATTICE FILTER REALIZATIONS

In Section 2.3, we described simple FIR and IIR filter realizations using block diagram
elements. These redlizations are called filter structures for which there are many different
typesavailablefor implementation (Proakisand Manolakis 1996). I n thissection, we discuss
the lattice and lattice-ladder filters. The lattice filter is an implementation of adigital filter
withrational system functions. Thisstructureisused extensively indigital speech processing
and in the implementation of adaptive filters, which are discussed in Chapter 10.



2.5.1 All-Zero Lattice Structures

In Section 2.3, we discussed a direct-form realization of an AZ filter (see Figure 2.6). In
this section, we present lattice structures for the realization of AZ filters. These structures
will be used extensively throughout this book.

The basic AZ lattice is shown in Figure 2.15. Because the AZ lattice is often used to
implement theinverse of an APfilter, we begin our introductionto thelattice by arealization
of the AZ filter

P
AR =1+ az™! (25.1)
=1
The lattice in Figure 2.15(a) is the two-multiplier, or Itakura-Saito, lattice. The lattice has
P parameters {k,,, 1 < m < P} that map to the g¢; direct-form parameters via arecursive
relation that is derived below.
At the mth stage of the lattice, shown in Figure 2.15(a), we have the relations

fm() = fn—1(n) + kngm-1(n — 1) l<m<P (2.5.2)
gm(n) = ky, fn—1(n) + gm-1(n — 1) l<m<PpP (25.3)
and from Figure 2.15(b), we have

fo(n) = go(n) = x(n) (25.4)
y(n) = fp(n) (2.5.5)

Taking the z-transform of f,,(n) and g,,(n), we have
Fn(2) = Fu-1(2) + kmz 1Gp-1(2) (2.5.6)
Gm(2) = ki Fue1(2) + 2 Gmo1(2) (2.5.7)

Dividing both eguations by X (z) and denoting the transfer functions from the input x (n)
to the outputs of the mth stage by A, (z) and B,,(z), where

Fn(2) B (2) A Gn(2)

An(z) 2 (2.5.8)

Fo(z) ~ Go(2)

fin-1(n)

Im-2(N)

fo(n) fo()  fp_y(n) fo()  y()

x(n)

go(M) g(n) (N gp4(N) gp(n)

FIGURE 2.15
All-zero lattice structure.
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we have An(@) = An-1(2) + kmz 1Bpu-1(2) (25.9

Bu(2) = kjyAm—1(2) + 2 ' Bp_1(2) (2.5.10)
with Ao(z) = Boz) =1 (2.5.11)
and Az) = Ap(2) (25.12)

Thus, the desired A(z) is obtained as the transfer function Ap(z) at the Pth stage of the
lattice. Now (2.5.9) and (2.5.10) can be written in matrix form as

Am (Z) 1 kmz_l |:Am—l(z):|
- 25.13
|:Bm (Z)i| |:k;:1 Zil j| By _1(2) ( )
Am—l(z):|
=Unm 2.5.14
Qu(2) [Bm_l o (25.14)
knz L
where Q.(x) & k* 1 (2.5.15)
z
Then, using the recursive relation (2.5.13), we obtain
P
Ap(2) 1
= o 25.16
[Bp(z)} [1e.© m (#519
m=1
If wewrite A,,(z) as
An(@) =Y a™z! (2.5.17)
then we can show that
ag’ =1 fordlm (2.5.18)
S 1
and that Bn(z) = Zb“’” h=mAr <Z—) (25.19)
thatis, form =1,2,..., P
(m)* — —
bl(m) _ am_[ = l, 2, ..., m 1 (2.5.20)
1 l=m

The polynomial B, (z) isknown as the conjugate reverse polynomia of A,,(z) becauseits
coefficients are the conjugates of those of A,,(z) except that they are in reverse order. So
since

Apm(2) = 1+ a(m) + a(m) -2 4. 4+ a’(nm)zfm (2521)
then Bu(z) = al™* 4 a5z o g m D  pm (2.5.22)

If zoisazeroof A, (z),thenzy Lisazeroof B,,(z). Therefore, if A, (z) isminimum-phase,
then B, (z) is maximum-phase.
Equations (2.5.19), (2.5.9), and (2.5.10) can be combined into a single equation

_ 1
An(2) = Ap-1(2) + k™" ;kn,l (Z_*> (2.5.23)
This eguation can be used to derive the following relation between the coefficients at stage
m in terms of the coefficients at stagem — 1:

1 =0
al(m): l(m D4k, ,5:"11)* =12 ....m—1 (25.24)

ki l=m



To solve for the coefficients of the transfer function of the complete P-stage lattice, com-
pute (2.5.24) recursively, starting withm = 1 until m = P. The fina coefficients a; of the
desired filter A(z) arethen given by

a=a" O0<i<P (2.5.25)
By substituting m — [ for [ in (2.5.24), we have
a™, = a"P + kya" " (2.5.26)
Therefore, o™ and a", can be computed simultaneously using o™, ", and k.

The lattice parameters k,, can be recovered from the coefficients ¢; by a backward
recursion. Eliminating z—1B,,_1(z) from (2.5.9) and (2.5.10) and using (2.5.19), we obtain
An(z) —kmz " A} (1/2%)

1— |km|?
The recursion can be started by setting a,(P) =qa;,0<1 < P.Then, withm = P, P —
1, ..., 1, wecompute from (2.5.27)

Ap_1(z) =

(2.5.27)

ke = ap”

1 [=0

ot _ (2.5.29)
= _

o — kel

1- |km |2
Thisisthebackward recursionto computek,, froma;. Thecomputationin (2.5.28) isaways
possible except when some |k,,| = 1. Except for this indeterminate case, the mapping
between the lattice parameters k,,, and the coefficients a; of the corresponding al-zero filter
isunique.

TheMartLasfunction[ k] = df 2l at cf (a) computeslatticecoefficientsk,, from poly-
nomial coefficientsay using (2.5.28). Similarly, thefunction[ a] = | at cf 2df (k) computes
the direct-form coefficients from the lattice form.

Although the AZ lattice filters are highly modular, their software implementation is
more complex than the direct-form structures. To understand this implementation, we will
consider the steps involved in determining one output sample in a P-stage AZ lattice.
Assumethat x(n) isavailableover 1 <n < N.

1<l<m-1

Input stage: The describing equation is
fo(n) = go(n) = x(n) l1<n<N

Thus in the implementation, fo(r) and go(r) can be replaced by the input sample x (n),
which is assumed to be availablein array x.

Stage 1: The describing equations are
Jfi(n) = fo(n) + kigo(n — 1) = x(n) + kix(n — 1)
g1(n) = k7 fo(n) + go(n — 1) = kix(n) + x(n — 1)
Assuming that we have two arraysf and g of length P availableto store f,, (n) and g,, (n)
at each n, respectively, and two arraysk and ck of length P to storek,, and k', respectively,
then the MaTLAB fragment is
f(1) x(n) + k(1)*x(n-1);
g(1) ck(1)*x(n) + x(n-1);
Atn = 1, we need x(0) in the above equations. Thisisan initial condition and is assumed
to be zero. Hence in the implementation, we need to augment the x array by prepending it

with a zero. This should be done in the initiaization part. Similarly, arraysf and g should
beinitialized to zero.
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Stages 2 through P: The describing equations are

Sm@) = fu—1() +kpgm—1(n — 1)

gm(n) = k;:lfm—l(n) + gm—l(n - 1)
Notethatweneedold (i.e., atn — 1) valuesof array g in g,,,_1 (n — 1). Although it ispossible
to avoid an additional array, for programming simplicity, we will assumethat g,,(n — 1) is
availablein an array g_ol d of length P. This array should also be initialized to zero. The
MATLAB fragment is
f(m1) + k(m*g_old(m1);
ck*f(m1) + g_old(m1l);

f(m
g(m

Output stage: The describing equation is

y(n) = fp(n)
Also we need to store the current g,,, (n) valuesintheg_ol d array for usein the calculations
of the next output value. Thus the MaTLAB fragment is
gold = g;
y = f(P);
Now we can go back to stage 1 with new input val ue and recursively compute the remaining

output values.
The complete procedure isimplemented in the functiony = latcfilt(k,x).

2.5.2 All-Pole Lattice Structures

The AZ lattice in Figure 2.15 can be restructured quite simply to yield a corresponding
al-pole (AP) lattice structure. Let an AP system function be given by

1 1
P CA®)
1+ Zazz_l
=1

which clearly istheinverse system of the AZ lattice of Figure 2.15. The difference equation
corresponding to (2.5.29) is

H(z) = (2.5.29)

P

y(n) + Zaly(n -1 =x{) (2.5.30)
1=1

If we interchange x(n) with y(n) in (2.5.30), we will obtain the AZ system of (2.5.1).

Therefore, the lattice structure of the AP system can be obtained from Figure 2.15(b) by

interchanging x (n) with y(n). Thislatticestructurewith P stagesisshowninFigure2.16(b).

To determinethe mth stage of the APlattice, we consider (2.5.4) and (2.5.5) and interchange

x(n) with y(n). Thus the lattice structure shown in Figure 2.16(b) has

Sfp(n) =x(n) (2.5.31)
astheinput and fo(n) = go(n) = y(n) (2.5.32)

astheoutput. Thesignal quantities{ f;, (n)} g:o then must be computed in descending order,
which can be obtained by rearranging (2.5.2) but not (2.5.3). Thus we obtain

fm—1() = fin(n) = kgm-1(n — 1) (2.5.33)
and gm(n) = kjy fru—1(n) + gm—1(n — 1) (2.5.34)

These two equations represent the mth stage of the all-polelattice, shown in Figure 2.16(a),
where f,,(n) and g,,,—1(n) are now the inputsto the mth stageand f,,,—1(n) and g, (n) are



o) fn-a(1)

9N

g,(n) %M g, g,(n 9, y(n)

FIGURE 2.16
All-pole lattice structure.

the outputs. The transfer function from the input to the output isthe ssme asthat from fp (n)
to fo(n). Thistransfer function is the inverse of the transfer function from fo(n) to fp(n).
From (2.5.8), we conclude that the transfer function from x(n) to y(n) in Figure 2.16 is
equal to

Y(z)  Fo(x) 1
X FrR) A

where Ap(z) = A(z) in (2.5.29). To multiply (2.5.35) by the gain G, we ssimply multiply
either x(n) or y(n) by G in Figure 2.16(b).

(2.5.35)

Stability of all-pole systems. A causal LTI system is stable if all its poles are inside
the unit circle. For all-pole systems described by the denominator polynomial A p(z), this
implies that all its p roots are inside the unit circle, or aternatively, stability implies that
Ap(z) is a minimum-phase polynomial. Numerical implementation of polynomial root-
finding operationistime-consuming. However, thefollowing theorem shows how thelattice
coefficients {k,,,}rﬁ:l can be used for stability purposes.

THEOREM 2.3. The polynomial

Ap(2) =1+ aip)z_l +-+ al(pp)z_P (2.5.36)
is minimum-phase, that is, has al its zeros inside the unit circle if and only if
lkml <1 1<m<P (2.5.37)

Proof. SeeAppendix E.

Therefore, if the lattice parameters k,,, in Figure 2.16 are less than unity in magnitude,
thentheall-polefilter H (z) in(2.5.35) isminimum-phaseand stablesince A(z) isguaranteed
to have all its zeros inside the unit circle.

Since the AP | attice coefficients are derived from the same procedure used for the AZ
lattice filter, we can use the k = df 2l at cf (a) function in MATLAB. Care must be taken
to ignore the kg coefficient in thek array. Similarly, thea = | at cf 2df (k) function can be
used to convert the lattice k,,, coefficients to the direct-form coefficients a; provided that
ko = lisused asthe first element of thek array.
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All-pass lattice
Thetransfer function from fp(n) to gp(n) in Figure 2.16(b) can be written as
Gp(z)  Gp(2) Fo2)
Fp(z)  Go(z) Fp(2)
where we used the fact that Fp(z) = Go(z). From (2.5.8) and (2.5.19), we conclude that

(2.5.38)

Gp(x)  Bp(x) zPA*Q/z)  aptap gzt
Fr(z) Apz Al  1+4az i+ --+apz?

which is the transfer function of an all-pass filter, since its magnitude on the unit circleis
unity at all frequencies.

(2.5.39)

2.6 SUMMARY

In this chapter we have reviewed the fundamental concepts of discrete-time signal process-
inginboththetimeand frequency domains. Weintroduced usual definitionsand descriptions
of signals, and we provided the analytical tools for linear system operations. Significant
attention was al so given to those topics that will be used extensively in the rest of the book.
These topics include minimum-phase systems, inverse systems, and spectral factorization.
Finaly, filters, which will be usedinthe chapter on adaptivefilters, were discussed in greater
detail. It isimportant to grasp the material discussed in this chapter sinceit is fundamental
to understanding concepts presented in the remaining chapters. Therefore, thereader should
aso consult any one of the widely used references on this subject (Proakis and Manolakis
1996; Oppenheim and Schafer 1989).

PROBLEMS

2.1 A continuous-time signa xc(¢) is sampled by an A/D converter to obtain the sequence x (n). It
is processed by a digital filter 2(n) = 0.8"u(n) to obtain the sequence y(n), which is further
reconstructed using an ideal D/A converter to obtain the continuous-time output yc(7). The
sampling frequency of A/D and D/A convertersis 100 sampling intervals per second.

(@) If xc(r) = 2cos (40t + 7 /3), what isthe digital frequency wq in x(n)?

(b) If xc(r) isasgiven above, determine the steady-state response yc, ss(f).

(c) Determinetwo different xc(¢) signalsthat would givethe same steady-state response ye, ss(t)
above.

2.2 Letx(n) beasinusoidal sequence of frequency wg and of finite length N, that is,

A coswon O0<n<N-1
x(n) = .
0 otherwise
Thusx (n) can bethought of asan infinite-length sinusoidal sequence multiplied by arectangular
window of length N.

(a) If the DTFT of x(n) isexpressed in terms of the real and imaginary parts as
X(e/?) £ XR(@) + j Xi ()

determine analytical expressionsfor XR(w) and X (w). Express cosw in terms of complex
exponentials and use the modulation property of the DTFT to arrive at the result.

(b) Choose N = 32 and wg = 7 /4, and plot XRr(w) and X|(w) forw € [—7, 7].

(c) Compute the 32-point DFT of x(n), and plot itsreal and imaginary samples. Superimpose
the above DTFT plots on the DFT plots. Comment on the results.

(d) Repeat the above two partsfor N = 32 and wg = 1.1z /4. Why are the plots so markedly
different?



2.3

24

2.5

2.6

2.7

2.8

Let x(n) = cos (wn/4), and assume that we have only 16 samples available for processing.

(@) Compute the 16-point DFT of these 16 samples, and plot their magnitudes. (M ake sure that
thisisast emplot.)

(b) Now compute the 32-point DFT of the sequence formed by appending the above 16 samples
with 16 zero-valued samples. Thisis called zero padding. Now plot the magnitudes of the
DFT samples.

(c) Repeat part (b) for the 64-point sequence by padding 48 zero-valued samples.

(d) Explain the effect and hence the purpose of the zero padding operation on the DTFT spec-
trum.

Letx(n) = {1,2,3,4,3,2, 1} and h(n) = {—1, 0, 1}.

(a) Determine the convolution y(n) = x(n) * h(n) using the matrix-vector multiplication
approach givenin (2.3.5).

(b) Develop a MaTLAB function to implement the convolution using the Toeplitz matrix in
(2.3.4). The form of the function should bey = convt oep(x, h) .

(c) Verify your function, using the sequences given in part (a) above.

Let x(n) = (0.9"u(n).

(a) Determine x(n) * x(n) analytically, and plot its first 101 samples.

(b) Truncate x(n) to the first 51 samples. Compute and plot the convolution x (r) * x (n), using
the conv function.

(c) Assumethat x(n) istheimpulseresponse of an LTI system. Determinethefi | t er function
coefficient vectors a and b. Using the fi | t er function, compute and plot the first 101
samples of the convolution x () * x (n).

(d) Commentonyour plots. WhichMatrLAB approach isbest suited for infinite-length sequences
and why?

Let Hgp(z) beacausal and stable all-pass system excited by a causal input x () producing the
response y(n). Show that for any time ng,

no no
Yoy <) xm)? (P1)
n=0 n=0

This problem examines monotone phase-response property of a causal and stable PZ al-pass
system.

(a) Consider the pole-zero diagram of ared first-order al-pass system

p-t

1-— pz_l
Show that its phase response decreases monotonically fromn (atw = 0)to —n (atw = 27).
(b) Consider the pole-zero diagram of areal second-order all-pass system

r£0) —z71 || rg6)* —z71
H(z) =
1—(r0)*z71 || 1— (r£0)z71
Show that its phase response decreases monotonically as w increases from 0 to .
(c) Generalize the results of parts (a) and (b) to show that the phase response of a causal and

stable PZ all-pass system decreases monotonically from £[H (e/9)] to £[H (e/0)] — 2z P
asw increasesfrom0to .

H(z) =

This problem explores the minimum group delay property of the minimum-phase systems.
(a) Consider the following stable minimum-, maximum-, and mixed-phase systems
Hmin(z) = (1—0.25;71)(1+ 0.5:71)
Hmax(z) = (025 —z71(05+z71
Hmix(z) = (1 —0.2527 105+ 771

which have the same magnitude response. Compute and plot group del ay responses. Observe
that the minimum-phase system has the minimum group delay.
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(b) Using (2.4.18) and Problem 2.7, prove the minimum group delay property of the minimum-
phase systems.

2.9 Giventhefollowing spectral density functions, expressthem in minimum- and maximum-phase
components.

1-25;714772
1-205;~1+7-2
32-10+3;72
322+ 10+ 372

(a) Ry (2) =

() Ry(») =

2.10 Consider the all-pass system function Hgp(z) given by

1-—az 1
Hap(Z) = 2_17—01* |Ot| <1 (PZ)
(a) Determine |Hap(Z)|2 asaratio of polynomialsin z.
(b) Show that
Diy(2) = Afy (@) = (121? = (L — [a]?)
D?y (2)
where H, 2_ "]

(c) Using |a| < 1 and the above result, show that
<1 if |zl <1
|Hap(2)| =1 if Jzl=1
>1 if |z >1

2.11 Consider the system function of a stable system of the form
a+bz 4 cz7?
c+bzl4az2
(a) Show that the magnitude of the frequency response function |H (e/®)| is equal to 1 for all

frequencies, that is, it is an all-pass system.
(b) Let

H(z) =

3-214772

1-2:714372

Determine both the magnitude and the phase of the frequency response H (e/®), and plot
these functions over [0, 7].

H(z) =

2.12 Consider the system function of athird-order FIR system
H(z) =12+ 281 — 2072 — 603

(a) Determine the system functions of all other FIR systems whose magnitude responses are
identical to that of H(z).

(b) Which of these systems is a minimum-phase system and which one is a maximum-phase
system?

(c) Let hi(n) denote the impulse response of the kth FIR system determined in part (a) and
define the energy delay of the kth system by

o0
&) & Y Igm)®  0<n<3
m=n

for al values of k. Show that
Emin(n) < E(n) < Emax(n) O<n<3
and Emin(00) = & (00) = Emax(c0) =0

where Emin(n) and Emax (n) are energy delays of the minimum-phase and maximum-phase
systems, respectively.



2.13 Consider the system function

14+z1-6;72
H(z) = T 1.1 1.5
1+ 227 — §27

(a) Show that the system H (z) is not minimum-phase.

(b) Construct a minimum-phase system Hin(z) such that | Hmin(e/®)| = |H (e/®)|.

(c) Is H(z) amaximum-phase system? If yes, explain why. If not, then construct a maximum-
phase system Hmax (z) such that | Hmax (e/?)| = |H (e/®)].

2.14 Implement the following system as a parallel connection of two all-pass systems:

o< 3t 9149724373
124107714272

2.15 Determine the impulse response of an al-pole system with lattice parameters
k1 =02 ko =0.3 k3 =05 kg = 0.7
Draw the direct- and lattice form structures of the above system.

73

PROBLEMS



CHAPTER 3
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So far we have dealt with deterministic signals, that is, signals whose amplitude is uniquely
specified by a mathematical formula or rule. However, there are many important examples
of signals whose precise description (i.e., as deterministic signals) is extremely difficult,
if not impossible. As mentioned in Section 2.1, such signals are called random signals.
Although random signals are evolving in time in an unpredictable manner, their average
properties can be often assumed to be deterministic; that is, they can be specified by explicit
mathematical formulas. This is the key for the modeling of a random signal as a stochastic
process.

Our aim in the subsequent discussions is to present some basic results from the theory
of random variables, random vectors, and discrete-time stochastic processes that will be
useful in the chapters that follow. We assume that most readers have some basic knowledge
of these topics, and so parts of this chapter may be treated as a review exercise. However,
some specific topics are developed in greater depth with a viewpoint that will serve as a
foundation for the rest of the book. A more complete treatment can be found in Papoulis
(1991), Helstrom (1992), and Stark and Woods (1994).

3.1 RANDOM VARIABLES

The concept of random variables begins with the definition of probability. Consider an
experiment with a finite or infinite number of unpredictable outcomes from a universal set,
denoted by S = {¢, ¢, .. .}. A collection of subsets of S containing S itself and that is
closed under countable set operations is called a o field and denoted by JF. Elements of
JF are called events. The unpredictability of these events is measured by a nonnegative set
function Pr{¢,}, k = 1, 2, ..., called the probability of event . This set function satisfies
three well-known and intuitive axioms (Papoulis 1991) such that the probability of any event
produced by set-theoretic operations on the events of S can be uniquely determined. Thus,
any situation of random nature, abstract or otherwise, can be studied using the axiomatic
definition of probability by defining an appropriate probability space (S, F, Pr).

In practice it is often difficult, if not impossible, to work with this probability space for
two reasons. First, the basic space contains abstract events and outcomes that are difficult to
manipulate. In engineering applications, we want random outcomes that can be measured
and manipulated in a meaningful way by using numerical operations. Second, the probability
function Pr{-} is a set function that again is difficult, if not impossible, to manipulate by using
calculus. These two problems are addressed through the concept of the random variable.
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DEFINITION 3.1 (RANDOM VARIABLE). A random variable x(¢) is a mapping that assigns
a real number x to every outcome ¢ from an abstract probability space. This mapping should
satisty the following two conditions: (1) the interval {x(¢) < x} is an event in the abstract
probability space for every x; (2) Pr{x(¢) = oo} = 0 and Pr{x(¢) = —o0} = 0.

A complex-valued random variable is defined by x(¢) = xr(¢) + jx1(¢) where xR (¢)
and x1(¢) are real-valued random variables. We will discuss complex-valued random vari-
ables in Section 3.2. Strictly speaking, a random variable is neither random nor a variable
but is a function or a mapping. As shown in Figure 3.1, the domain of a random variable
is the universal set S, and its range is the real line R. Since random variables are numbers,
they can be added, subtracted, or manipulated otherwise.

Random variable FIGURE 3.1
X(£) Graphical illustration of random variable
Abstract Real .
ot s — R Y
b
;0 » X(¢))
0He
’_',-“' X X(£3)
‘ ® X(£,)

gk. P x(y)

An important comment on notation. \We will use x(¢), y(¢), ..., to denote random
variables and the corresponding lowercase alphabet without parentheses to denote their
values; for example, x(¢) = x means that the random variable x(¢) takes value equal to
x. We believe that this notation will not cause any confusion because the meaning of the
lowercase variable will be clear from the context.” A specific value of the random variable
realization will be denoted by x(¢g) = xo (corresponding to a particular event ¢ in the
original space).

A random variable is called discrete-valued if x takes a discrete set of values {x;};
otherwise, it is termed a continuous-valued random variable. A mixed random variable
takes both discrete and continuous values.

3.1.1 Distribution and Density Functions

The probability set function Pr{x(¢) < x} isafunction of the set {x(¢) < x}, butitisaso
anumber that varieswith x. Hence it isalso afunction of apoint x ontherea lineR. This
point function is the well-known cumulative distribution function (cdf ) F, (x) of arandom
variable x(¢) and is defined by

Fe(x) £ Pr{x(¢) < x} (3.1.1)
The second important probability function is the probability density function (pdf) f (x),

Traditiona ly, the uppercase alphabet is used to denote random variables. We have reserved the use of uppercase
alphabet for transform-domain quantities.



which is defined as a formal derivative
a OFc(x)

filx) = dx

Note that the pdf f, (x) is not the probability, but must be multiplied by a certain interval
Ax to obtain a probability, that is,

Fr(X)Ax ~ AF (x) £ Fe(x + Ax) — Fy(x) = Pr{x < x(¢) < x + Ax}) (3.1.3)
Integrating both sides of (3.1.2), we obtain

(3.1.2)

F.(x) = /x fx(v)dv (3149

For discrete-valued random variables, we use the probability mass function (pmf) pg,
defined as the probability that random variable x (¢) takes avalue equal to xy, or

pk = Prix(@) = xx} (3.15)
These probability functions satisfy several important properties (Papoulis 1991), such
as

O<F(x)<1 Fy(=00) =0 Fy(o0) =1 (316)
fe(x) =0 /OO fr)dx =1 (317

Using these functions and their properties, we can compute the probabilities of any event
(or interval) on R. For example,

x2
Prixy < x(¢) < x2} = Fr(x2) — Fx(x1) = / S (x) dx (3.1.8)
x1

3.1.2 Statistical Averages

To completely characterize a random variable, we have to know its probability density
function. In practice, it is desirable to summarize some of the key aspects of a density
function by using a few numbers rather than to specify the entire density function. These
numbers, which are called statistical averages or moments, are evaluated by using the
mathematical expectation operation. Although density functions are needed to theoretically
compute moments, in practice, momentsare easily estimated without the explicit knowledge
of density functions.

Mathematical expectation
Thisis one of the most important operations in the theory of random variables. It is

generally used to describe various statistical averages, and it is al'so needed in estimation
theory. The expected or mean value of arandom variable x(¢) isgiven by

Zxkpk x(¢) discrete
Ex@) 2 p, =1 0 (3.19)
/ Xfy(x)dx x(¢) continuous

Although, strictly speaking, to compute E {x (¢ )} weneed thedefinitionsfor both the discrete
and continuous random variables, we will follow the engineering practice of using the
expression for the continuous random variable (which can aso describe a discrete random
variable if we allow impulse functions in its pdf). The expectation operation computes a
statistical average by using the density f (x) asaweighting function. Hence, the mean .,
can be regarded asthe “location” (or the “center of gravity”) of thedensity f (x), asshown
inFigure3.2(a). If fy(x)issymmetricabout x = a,then u, = a and, inparticular, if f, (x)
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(a) Mean (b) Variance
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(c) Skewness (d) Kurtosis

FIGURE 3.2
Illustration of mean, standard deviation, skewness, and kurtosis.

isan even function, then ., = 0. Oneimportant property of expectation isthat it isalinear
operation, that is,

Efax(¢) + B} =apu, + B (3.1.10)
Let y(¢) = g[x(¢)] bearandom variable obtained by transforming x (¢) through a suitable
function.” Then the expectation of y(¢) isgiven by

E((©)} £ E{glr@)]) = / ¢(0) £ () d (3.1.10)

—00

Moments

Using the expectation operations (3.1.9) and (3.1.11), we can define various moments
of the random variable x (¢) that describe certain useful aspects of the density function. Let
glx(©)] = x"(¢). Then

o0

r)gm) 2 E{(x™(¢)) =/ x™ fr(x) dx (31.12)

is caled the mth-order moment of x(¢). In particular, r)(co) = 1, and the first-order moment

r§l) = u,. The second-order moment r§2) = E{x?(¢)} is caled the mean-squared val ue,
and it plays an important role in estimation theory. Note that
E{x*(0)} # E*x(0)} (3.1.13)
Corresponding to these momentswe al so have central moments. Let g[x (¢)] = [x(¢) —
w, ", then
o
P 2 B — ") = [ - i) i (3.1.14)
—0o0

is called the mth-order central moment of x (¢). In particular, yfco) = land y)((l) = 0, which
is obvious. Clearly, a random variable’s moments and central moments are identical if its

"such afunction g() iscalled aBaire function (Papoulis 1991).



mean valueis zero. The second central moment is of considerable importanceandiscalled
the variance of x(¢), denoted by o'2. Thus

varlx(Q)] £ 02 2 y? = E(lx(¢) — 1,19 (3.1.15)
The quantity o, = 4/ y)(cz) is called the standard deviation of x(¢) and is a measure of
the spread (or dispersion) of the observed values of x(¢) around its mean u, [see Figure

3.2(b)]. The relation between a random variable’s moments and central moments is given
by (see Problem 3.3)

5{”’) = Z (r:) (—1)k/14§r)£m7k) (3.1.16)

k=0
In particular, and also from (3.1.15), we have
02 =r® — 1 = E(x*(0)} - EAx(0) (31.17)

The quantity skewness is related to the third-order central moment and characterizes
the degree of asymmetry of a distribution around its mean, as shown in Figure 3.2(c). It is
defined as a normalized third-order central moment, that is,

3
Skew £ ,;3(63) LA F “:M} ] 1 o (3.1.18)

=y
Oy o3’

and isadimensionless quantity. It is a pure number that attempts to describe leaning of the
shape of the distribution. The skewnessiszero if the density function is symmetric about its
mean value, is positive if the shape leans towards theright, or isnegativeif it leanstowards
the left.
The quantity related to the fourth-order central moment iscalled kurtosis, whichisalso
a dimensionless quantity. It measures the relative flatness or peakedness of a distribution
about its mean as shown in Figure 3.2(d). This relative measureis with respect to anormal
distribution, which will be introduced in the next section. The kurtosis is defined as
4
- 1
Kurtosis2 ¢ ¥ 2 g {[”C)—“x} }— 3= —y®_3 (3.1.19)
Ox oy
where the term —3 makes the kurtosis ¥ = 0 for the normal distribution [see (3.1.40) for
explanation].

Chebyshev’s inequality. A useful resultin theinterpretation and use of the mean . and
the variance o2 of arandom variable is given by Chebyshev’s inequality. Given a random
variable x (¢) with its mean p, and variance 0)2“ we have the inequality

Pr{x(8) — ] > koy) < k_lz k>0 (3.1.20)

Theinterpretation of theaboveinequality isthat regardless of the shapeof f, (x), therandom
variable x (¢) deviatesfrom its mean by k timesits standard deviation with probability less
than or equal to 1/ k2.

Characteristic functions

The Fourier and Laplace transforms find many uses in probability theory through the
concepts of characteristic and moment generating functions. The characteristic function of
arandom variable x(¢) is defined by the integral

D, (8) & Efe/50) = / - fr(x)e5 dx (3.1.21)
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which can beinterpreted asthe Fourier transform of £, (x) with signreversal inthe complex
exponential. To avoid confusion with the cdf, we do not use F, (¢) to denote this Fourier
transform. Furthermore, the variable & in @, (&) is not and should not be interpreted as
frequency. When j& in (3.1.21) is replaced by acomplex variable s, we obtain the moment
generating function defined by

D, (s) 2 E{eD) = / - fre(x)e** dx (3.1.22)

—0o0
which again can be interpreted as the Laplace transform of f, (x) with sign reversal. Ex-
panding ¢** in (3.1.22) in aTaylor seriesat s = 0, we obtain

2 m
Lsx(6)] +...+M+...}
2! m!

O,(s) = E{e O} = E {l—i-sx({) +
(3.1.23)

=1+s +£r(2)+~-~+ir(m)+---

TR ml

provided every moment ™ exists. Thus from (3.1.23) weinfer that if all moments of x(¢)

are known (and exist), then we can assemble @, (s) and upon inverse L aplace transforma-
tion, we can determine the density function f, (x). If we differentiate @, (s) with respect to
s, we obtain
my _ A" [P (s)] w94 (8)]
ey = =) —5
ds™ §=0 dé £=0
which provides the mth-order moment of the random variable x(¢).

The functions @, (£) and @, (s) possess al the properties associated with the Fourier
and Laplace transforms, respectively. Thus, since f,(x) is aways a real-valued function,
®, (£) isconjugate symmetric; and if f,(x) isalso an even function, then @, (¢) isareal-
valued even function. In addition, they possess several properties due to the basic nature of
the pdf. Therefore, the characteristic function @, (¢£) always exists' since

/Ifx(x)ldx = /fx(x)dx =1
and @, (&) ismaximum at the origin, that is,
[@, ()] <P (0)=1 (3.1.25)

m=12 ... (3.1.24)

since f,(x) > 0.

Cumulants

These statistical descriptors are similar to the moments, but provide better information
for higher-order moment analysis, which we will consider in detail in Chapter 12. The
cumulants are derived by considering the moment generating function’s natural logarithm.
This logarithm is commonly referred to as the cumulant generating function and is given
by

U, (s) 2 InD,(s) = In E{e**®)} (3.1.26)

When s isreplaced by j& in (3.1.26), the resulting function is known as the second char-
acteristic function and is denoted by W, (¢).
The cumulants K)(C”‘) of arandom variable x(¢) are defined as the derivatives of the

cumulant generating function, that is,
d"[Wx ()]

d‘”[\if ()] .
(m)y o 7 LFxXVJ] — (=) —— 2227 m=12, ... 3.1.27
Ky " - (=) g™ 60 » & ( )

TWe will generally choose the characteristic function over the moment generating function.



Clearly, ;cfco) = 0. It can be shown that (see Problem 3.4) for azero-mean random variable,

the first five cumulants as functions of the central moments are given by

k@ = r((i; =u, =0 (3.1.28)
k@ =y@ =42 (3.1.29)
K§3) - y)(c3) (3.1.30)
K)((4) - V)(c4) _ 30? (3.1.3Y
K)(C5) _ y)(c5) _ :I_(_)y)(f)(y)zC (3.1.32)

which show that the first two cumulants are identical to the first two central moments.
Clearly due to the logarithmic function in (3.1.26), cumulants are useful for dealing with
products of characteristic functions (see Section 3.2.4).

3.1.3 Some Useful Random Variables

Random variable models are needed to describe (or approximate) complex physical phe-
nomenausing simple parameters. For example, the random phase of asinusoidal carrier can
be described by auniformly distributed random variable so that we can study its statistical
properties. This approximation allows us to investigate random signals in a sound mathe-
matical way. We will describe three continuous random variable models although there are
several other known continuous as well as discrete models available in the literature.

Uniformly distributed random variable. Thisisan appropriate model in situationsin
which random outcomes are “equally likely.” Here x (¢) assumes values on R according to
the pdf

! a<x<b
filx)y=1b—a - (3.1.33)

0 elsewhere

wherea < b are specified parameters. This pdf is shown in Figure 3.3. The corresponding

A f(x)

Uniform

FIGURE 3.3
Probability density functions of useful random variables.
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cdf isgiven by
0 x<a
X X —da
Fx(x)zf feydv=1o— a<x=<b (3.1.34)
—00
1 X >a
and the characteristic function is given by
£ e — e (3.1.35)
O (6) = —F—— 1L
j§b —a)
The mean and the variance of this random variable are given by, respectively,
_a+b 2  (b-— a)?
Wy = 5 and ol = B (3.1.36)

Normal random variable. Thisisthe most useful and convenient model in many ap-
plications, aswe shall seelater. It isalso known asaGaussian random variable, and we will
use both terms interchangeably. The pdf of a normally distributed random variable x(¢)
with mean p, and standard deviation o, isgiven by

! L(x=m) 3.1.37
,/Znagexp _§< Ox ) (3137

where —co < u < oo ando > 0(seeFigure 3.3). The characteristic function of the normal
random variableis given by

D, (8) = exp(j & — 30262 (3.1.39)

Clearly, the pdf of a normal random variable is completely described by its mean ., and
standard deviation o, and isdenoted by V(1. 05). We notethat all higher-order moments
of a normal random variable can be determined in terms of the first two moments, that is,

fr(x) =

1-3.5...(m —1)o™ if m even
(m) _ _ my __ X
Yy = E{[x() —n "} = { 0 if m odd (3.1.39)
In particular, we obtain the fourth moment as
y® =307 (3.1.40)

or from (3.1.19), kurtosis = 0, which explainsthe term —3in (3.1.19).

From (3.1.37), we observethat the Gaussian random variableis completely determined
by itsfirst two moments (mean u, and variance a)%), which meansthat the higher moments
do not provide any additional information about the Gaussian density function. In fact, all
higher-order moments can be obtained in terms of the first two moments [see Equation
(3.1.39)]. Thus for a non-Gaussian random variable, we would like to know how different
that random variable is from a Gaussian random variable (thisis al'so known as a departure
fromthe Gaussian-ness). Thismeasurement of thedeviation from being Gaussianisgiven by
thecumulantsthat weredefinedin (3.1.27). Roughly speaking, thecumulantsarelike central
moments (which measure deviations from the mean) of hon-Gaussian random variablesfor
Gaussian departure. Also from (3.1.30) and (3.1.31), we see that al higher-order (that
is, m > 2) cumulants of a Gaussian random variable are zero. This fact is used in the
analysis and estimation of non-Gaussian random variables (and later for non-Gaussian
random processes).

Cauchy random variable. This is an appropriate model in which a random variable
takes large values with significant probability (heavy-tailed distribution). The Cauchy pdf
with parameters .« and g is given by

B 1

frlx) = ;m (3.12.41)



and is shown in Figure 3.3. The corresponding cdf is given by

1 —
Fe(x) = 0.5+ ~ arctan X’T’* (3.1.42)
T

and the characteristic function is given by

O, (&) = exp(jué — BIE]) (3143

The Cauchy random variable has mean , = u. However, its variance does not exist
because E{x?} failsto exist in any sense, and hence the moment generating function does
not exist, in general. It has the property that the sum of M independent Cauchy random
variablesisal so Cauchy (see Example 3.2.3). ThusaCauchy random variableisan example
of an infinite-variance random variable.

Random number generators. Random numbers, by definition, aretruly unpredictable,
and henceitisnot possibleto generatethem by using awell-defined algorithm on acomputer.
However, in many simulation studies, we need to use sequences of humbers that appear to
be random and that possess required properties, for example, Gaussian random numbers
in a Monte Carlo analysis. These numbers are called pseudo random numbers, and many
excellent algorithms are available to generate them on a computer (Park and Miller 1988).
In MATLAB, the function r and generates numbers that are uniformly distributed over (0, 1)
while the function r andn generates A/(0, 1) pseudo random numbers.

3.2 RANDOM VECTORS

In many applications, a group of signal observations can be modeled as a collection of
random variables that can be grouped to form arandom vector. Thisis an extension of the
concept of random variable and generalizes many scalar quantitiesto vectors and matrices.
One example of arandom vector is the case of a complex-valued random variable x(¢) =
xr(¢) + jx1(¢), which can be considered as agroup of xr(¢) and x; (¢). Inthis section, we
provide a review of the basic properties of random vectors and related results from linear
algebra. We first begin with real-valued random vectors and then extend their concepts to
complex-valued random vectors.

3.2.1 Definitions and Second-Order Moments

A real-valued vector containing M random variables

X(¢) = [x1(0), x2(0), - .., xp (1T (32.1)

is called arandom M vector or arandom vector when dimensionality is unimportant. As
usual, superscript T denotes the transpose of the vector. We can think of a real-valued
random vector as a mapping from an abstract probability space to a vector-valued, real
space RM . Thus the range of this mapping is an M-dimensional space.

Distribution and density functions

A random vector is completely characterized by its joint cumulative distribution func-
tion, which is defined by

Fe(xt, ..., xp) 2 Prixa(0) <x1,..., xp(0) < xur} (322

and is often written as

Fx(x) = Pr{x(¢) < x} (32.3)
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for convenience. A random vector can be also characterized by itsjoint probability density
function, which is defined by

. Prixy < x1(¢) < x1+ Axg, ..., xm < xm(8) < xpm+ Axpy)
fx(x) = lim
Ax1—0 Ax1--- Axpy
AXM—>0
N 9
A 7 . F.
0x1 Xy x(®)
(32.4)
The function
fe, () = / : -~/fx(x) drp--- dr;_gdjp1--- dry (3.2.5)
(M-1)

is known as amarginal density function and describes individual random variables. Thus
the probability functions defined for a random variable in the previous section are more
appropriately called marginal functions. Thejoint pdf fx(x) must be multiplied by acertain
M-dimensional region Ax to obtain a probability. From (3.2.4) we obtain

Fx(x) = /H e ’/XM fx)dvy---dvy :f fx(v)dv (3.2.6)

Thesejoint probability functions al so satisfy several important propertiesthat are similar to
(3.1.6) through (3.1.8) for random variables. In particular, note that both fx(x) and Fx(x)
are positive multidimensional functions.

Thejoint [and conditional probability (see Papoulis 1991)] functions can aso be used
to define the concept of independent random variables. Two random variables x1(¢) and
x2(¢) areindependent if theevents {x1(¢) < x1} and {x2(¢) < x2} arejointly independent,
thatis, if

Prix1(¢) < x1,x2(¢) < x2} = Pr{x1(¢) < x1} Pr{x2(¢) < x2}
which implies that
Fxl,xz(xlv x2) = Fxl(xl) sz(XZ) and fxl,xz(xl, x2) = fxl(xl)fxz(XZ) (327)

Complex-valued random variables and vectors

As we shall seein later chapters, in applications such as channel equalization, array
processing, etc., weencounter complex signal and noisemodels. To formul atethesemodels,
we need to describe complex random variables and vectors, and then extend our standard
definitions and results to the complex case. A complex random variable is defined as'
x(¢) = xr(¢) + jxi1(¢), where xg (¢) and x (¢) arereal-valued random variables. Thuswe
can think of x(¢) asamapping from an abstract probability space S to a complex space C.
Alternatively, x (¢) can bethought of as areal-valued random vector [xr(¢), x1(¢)]7 witha
joint cdf Fyg x (xR, x1) Or ajoint pdf fy, r,(x1, x2) that will alow usto define its statistical
averages. The mean of x(¢) is defined as

E{x(0)} = py = E(xr(§) + jx1(§)} = pyg + Jiky, (3.2.8)
and the variance is defined as

of = E{Ix(¢) — e ?} (32.9)
which can be shown to be equal to
0% = E{Ix(0)1%) — |n, | (32.10)

"Wewill not make any distinction in notation between areal-valued and a complex-valued random variable. The
actual type should be evident from the context.



A complex-valued random vector is given by
xRr1(¢) x11(¢)
X(8) =xr(6) + jxi1(¢) = | : +J|: (32.11)
xRy (£) x1m(¢)

and we can think of acomplex-valued random vector as amapping from an abstract proba-
bility spaceto avector-valued, complex space CM . The cdf for the complex-val ued random
vector x(¢) isthen defined as

Fx(x) 2 Pr{x(¢) <x} 2 Pr{xr(¢) <xr,x1({) < x1} (3212
whileitsjoint pdf is defined as
Prixr < xr(¢) < xR + AXR, X| < X((¢) < X| + AX}

= lim
Sxx) Axp1—0 AXR1AX|11 - AXRMAXIM
: 3213
Ax py—0 ( )
A O 0 d 0

= — — . F.(x
0XR1 0X|1 0XRM O0XIM x(®)

From (3.2.13), the cdf is obtained by integrating the pdf over all real and imaginary parts,
that is

XR1 XIM X
Fy(x) = / .- / Sx(W)dvry--- dvjy = f Sfx(v) dv (3219

where the single integral in the last expression is used as a compact notation for multidi-
mensional integrals and should not be confused with a complex-contour integral. These
probability functions for a complex-valued random vector possess properties similar to
those of the real-valued random vectors. In particular,

/mA®M=1 (3.2.15)

Statistical description

Clearly the above probability functions require an enormous amount of information
that is not easy to obtain or is too complex mathematically for practical use. In practical
applications, random vectors are described by less compl ete but more manageabl e statistical
averages.

Mean vector. Aswe have seen before, the most important statistical operation is the
expectation operation. The marginal expectation of arandom vector x(¢) iscalled the mean
vector and is defined by

E{x1(0)) w
= Ex(©)) = | : =: (3.2.16)
ELew©)]  Lum

where the integral is taken over the entire CM space. The components of u are the means
of the individual random variables.

Correlation and covariance matrices. The second-order moments of arandom vector
x(¢) are given as matrices and describe the spread of its distribution. The autocorrelation
matrix is defined by

ri1 e M
Ry £ Ex@x" @)y =] . (32.17)

M1 - MM
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where superscript H denotes the conjugate transpose operation, the diagonal terms
ri 2E(xO%  i=1,....M (3.2.18)

are the second-order moments, denoted earlier as r)ﬁl.z), of random variables x; (¢), and the
off-diagonal terms

rij £ Exi@QxjOY =1 i # ] (3.2.19)

measurethecorrelation, that is, the statistical similarity between therandom variablesx; (¢)
and x;(¢). From (3.2.19) we note that the correlation matrix Ry is conjugate symmetric or
Hermitian, that is, Ry = RZ.

The autocovariance matrix is defined by

Yu 0 Vim
Ty £ E{[x(0) — nyl[x(Q) — pgd™} & | R (3.2.20)
YmM1i 0 YMm
where the diagonal terms
vii=Elli@—wl?)  i=1...M (32.21)

are the (self-)variances of x; (¢) denoted earlier aSO')%’_ while the off-diagonal terms
vij = E{xi(O) —uillx; () — ;1" = E{i (OO —pin; = v5 i #j (3222)

are the values of the covariance between x; (¢) and x;(¢). The covariance matrix Ty is
aso a Hermitian matrix. The covariance y;; can also be expressed in terms of standard
deviations of x; (¢) and x;(¢) asy;; = p;joi0 j, where

is called the correlation coefficient between x; (¢) and x;(¢). Note that
lpijl <1 i #] pii =1 (3.2.29)

The correlation coefficient measuresthe degree of statistical similarity between two random
variables. If |p;;| = 1, then random variables are said to be perfectly correlated; but if
pij = O(thatis,whenthecovarianceyij = 0), thenx; (¢) andx; (¢) aresaidtouncorrel ated.

The autocorrelation and autocovariance matrices are rel ated. Indeed, we can easily see
that

Ty 2 E{[x(0) — uyl[x(0) — uy)"} = Ry — pyml! (3.2.25)

which shows that these two moments have essentially the same amount of information. In
fact, if u, = 0, then I'y = Ry. The autocovariance measures a weaker form of interaction
between random variables called correlatedness that should be contrasted with the stronger
form of independence that we described in (3.2.7). If random variables x; (¢) and x; (¢) are
independent, then they are also uncorrelated since (3.2.7) implies that

E{xi(0)x7(0)} = E{xi(O}E;(©)}  or  y;;=0 (3.2.26)

but uncorrelatedness does not imply independence unless random variables are jointly
Gaussian (see Prablem 3.15). The autocorrelation also measures another weaker form of
interaction called orthogonality. Random variables x; (¢) and x; (¢) are orthogonal if their
correlation

rij = E{xi(O)x7 ()} =0 i#] (3.2.27)

Clearly, from (3.2.26) if one or both random variables have zero means, then uncorrel ated-
ness also implies orthogonality.



We can also define correlation and covariance functions between two random vectors.
Letx(¢) and y(¢) berandom M- and L-vectors, respectively. Thenthe M x L matrix

E{xa@©y1(©)} -+ E{xa(@yr (9}
Ry = Ef{xy’} = | KR (3.2.28)
Elxm@y1(©O} -+ Efxm(©)yr ()}
iscalled across-correlation matrix whose elements r;; are the correlations between random
variables x; (¢) and y;(¢). Similarly the M x L matrix
Ty 2 E{x@)—pylly(©)—py]"} = Ry — ! (3.2.29)

is called a cross-covariance matrix whose elements ¢;; are the covariances between x; ()
and y;(¢). In general the cross-matrices are not square matrices, and even if M = L, they
are not necessarily symmetric. Two random vectors x(¢) and y(¢) are said to be

o Uncorrelated if
Tyy = 0= Ryy = piepty (3.2.30)
e Orthogonal if
Ry =0 (3.2.31)
Again, if uy or uy or both are zero vectors, then (3.2.30) implies (3.2.31).

3.2.2 Linear Transformations of Random Vectors

Many signal processing applications involve linear operations on random vectors. Linear
transformations are relatively simple mappings and are given by the matrix operation

y(©) = g[x($)] = Ax(¢) (32.32

where A isan L x M (not necessarily square) matrix. The random vector y(¢) iscompletely
described by the density function fy(y). If L > M, thenonly M y; (¢) random variablescan
be independently determined from x(¢). The remaining (L — M) y; (¢) random variables
can be obtained from the first y; (¢) random variables. Thus we need to determine fy (y)
for M random variables from which we can determine fy (y) for al L random variables. If
M > L,thenwe canaugmenty into an M-vector by introducing auxiliary random variables

yi+1(¢) = x141(8), ..., ym (&) = xp(8) (3.2.33)

to determine fy(y) for M random variables from which we can determine fy(y) for the
original L random variables. Therefore, for the determination of the pdf fy(y), we will
assumethat L = M and that A is nonsingular.

Furthermore, we will first consider the case in which both x(¢) and y(¢) are real-
valued random vectors, which also impliesthat A isareal-valued matrix. Thisapproachis
necessary because the complex case leads to adlightly different result. Then the pdf fy (y)
isgiven by

-1
fy) = w (3.2.34)
where J is called the Jacobian of the transformation (3.2.32), given by
0x1 0x1
J=det|: I = detA (3.2.35)

axM 8XM
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From (3.2.34) and (3.2.35), the pdf of y(¢) isgiven by

fx(Aily)
| det A|

from which moment computations of any order of y(¢) can be performed. Now we consider
the case of the complex-valued random vectors. Then by applying the above approach to
both real and imaginary parts, the result (3.2.36) becomes

fx(A71Y)
| det A |2

This shows that sometimes we can get different results depending upon whether we assume
real- or complex-valued random vectors in our analysis.

Determining fy (y) is,ingeneral, tedious except in the case of Gaussian random vectors,
aswe shall seelater. In practice, the knowledge of uy, Iy, I'xy, or T'yx issufficient in many
applications. If we take the expectation of both sides of (3.2.32), we find that the mean
vector is given by

@) = real-valued random vector (3.2.36)

@) = complex-valued random vector (3.2.37)

ry = E{y(£)} = E{AX(0)} = AE{X(0)} = Ay (3.2.38)
The autocorrelation matrix of y(¢) isgiven by
Ry = E{yy"} = E{Axx" A"} = AE{xx"}A" = AR A" (3.2.39)
Similarly, the autocovariance matrix of y(¢) is given by
[y = AT,A" (3.2.40)
Consider the cross-correlation matrix
Ry = E{x(©)y" ()} = E(x(©)x" (©)A") (3.2.41)
= E{x(Ox" (c)}A" = R AT (3.2.42)

and hence Ryx = ARy. Similarly, the cross-covariance matrices are

Ty =AY and Ty = ATy (3.243)

3.2.3 Normal Random Vectors

If the components of the random vector x(¢) are jointly normal, then x(¢) is a normal
random M-vector. Again, the pdf expressions for the real- and complex-valued cases are
dlightly different, and hence we consider these cases separately. The real-valued normal
random vector has the pdf

1 1
Hx) = @O T exp [_E(X — ) Tt x — ﬂ'x):| real (3.2.44)

with mean u,, and covariance I'x. It will be denoted by A/ (i, T'x). Theterminthe exponent
(x — ) 'T 1 (x — y) isapositive definite quadratic function of x; and is also given by

M M
= 1) Tt = ) = D0 (T Y (i — ) (xj — ) (3.2.45)
i=1j=1

where (l"x‘l) ij denotesthe (i, j)th element of l“x—l. The characteristic function of thenormal
random vector is given by

Ox(§) = exp(j§" p,—3&" Txb) (3.2.46)

where £7 = [£4, ..., & y].



The complex-valued normal random vector has the pdf

fx(x) = exp[—(x — p) T (x — )] complex (3.2.47)

7TM|rx|

with mean i, and covariance I'y. This pdf will be denoted by CN (i, Tx). If x(¢) isa
scalar complex-valued random variable x (¢) with mean w, and variance a,zc, then (3.2.47)
reduces to

2
fw =~ e~ 0) (3248)
To% fogb

which should be compared with the pdf given in (3.1.37). Note that the pdf in (3.1.37)
is not obtained by setting the imaginary part of x(¢) in (3.2.48) equa to zero. For a
more detailed discussion on this aspect, see Therrien (1992) or Kay (1993). The term
(x — uy) T (x — py) in the exponent of (3.2.47) is also a positive definite quadratic
function and is given by

M M
x = T = ) = D0 Y 0T (i — ) (e — ) (3.2.49)
i=1j=1

The characteristic function for the complex-valued normal random vector is given by

Dy (&) = expljRe(E " puy)— 25T\ £] (3.2.50)

The normal distribution is a useful model of a random vector because of its many
important properties:

1. Thepdf iscompletely specified by the mean vector and the covariance matrix, which are
relatively easy to estimate in practice. All other higher-order moments can be obtained
from these parameters.

2. If the components of x(¢) are mutually uncorrelated, then they are aso independent.
(See Problem 3.15.) Thisis useful in many derivations.

3. A linear transformation of a normal random vector is also normal. This can be easily
seen by using (3.2.38), (3.2.40), and (3.2.44) in (3.2.36); that is, for the real-valued case
we obtain

1 1
fy(y) = W exp |:—§(y — My)Tr)Tl(y — ”’y)] real (3.251)
y

Thisresult can aso be proved by using the moment generating function in (3.2.46) (see
Problem 3.6). Similarly for the complex-valued case, from (3.2.37) and (3.2.47) we
obtain

fyy) = expl—(y — py) " ATHATIAHy — py)]  complex (3.252)

aM|Ty|
4. The fourth-order moment of anormal random vector

X(¢) = [x1(2) x2(¢) x3(¢) xa(2)]”

can be expressed in terms of its second-order moments. For the real case, that is, when
x(¢) ~ N(0, Ty), we have
E{x1(8)x2(5)x3(5)xa(8)} = E{x1(&)x2()}E{x3(5)xa(5)}
+ E{x1(£)x3($)}E{x2(5)xa(8)} (3.253)
+ E{x1(£)xa($)}E{x2(£)x3({)}
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For the complex case, that is, when x(¢) ~ CN (0, Ty), we have
E{x1(0)x2(£)x3(0)x4(8)} = E{xI(0)x2(2)}E{x3($)x4(8)}
+ E{x1(0)x4(O)}E{x2($)x3(¢)}

The proof of (3.2.53) is tedious but straightforward. However, the proof of (3.2.54) is
complicated and is discussed in Kay (1993).

(3.2.54)

3.2.4 Sums of Independent Random Variables

In many applications, arandom variable y(¢) can be expressed as alinear combination of
M statistically independent random variables {xk(c)}fl"’ ,that is,

M
Y(§) = e1x1(0) + ex2(8) + -+ eyxm(§) = ) (@) (3.2.55)
k=1
where {ck}’l” is a set of fixed coefficients. In these situations, we would like to compute
the first two moments and the pdf of y(¢). The moment computation is straightforward,
but the pdf computation requires the use of characteristic functions. When these results are
extended to the sum of an infinite number of statistically independent random variables,
we obtain a powerful theorem called the central limit theorem (CLT). Another interesting
concept devel ops when the sum of 11D random variables preservestheir distribution, which
resultsin stable distributions.

Mean. Using the linearity of the expectation operator and taking the expectation of
both sides of (3.2.55), we obtain

M
oy =Y Ckily, (3.2.56)
k=1

Variance. Again by using independence, the variance of y(¢) isgiven by

2 M
02 =E { } = Z lex P02, (3.2.57)
k=1

where we have used the statistical independence between random variables.

M
D alxk(@) = iyl

k=1

Probability density function. Beforewederivethepdf of y(¢) in(3.2.55), weconsider
two specia cases. First, let

y(€) = x1(8) + x2() (3.2.58)

wherex1(¢) and x2(¢) are statistically independent. Thenitscharacteristic functionisgiven
by

D, (&) = E(e/YO) = Ele/fn©@+x20l) = /i) preltr)) (3.2.59)
where the last equality follows from the independence. Hence
Dy (§) = Dy (5)Pxy(§) (3.2.60)
or from the convolution property of the Fourier transform
5 = fa () * fio () (3.2.61)

From (3.2.60) the second characteristic function of y(¢) isgiven by
Wy (§) = Wy (8) + Wiy (§) (3.2.62)



or the mth-order cumulant of y(¢) isgiven by
x(y’") — K)(th) + K)‘[;) (3.2.63)
These results can be easily generalized to the sum of M independent random variables.

EXAMPLE 3.21. Let {xk(g)}ézl be four 11D random variables uniformly distributed over

[—0.5, 0.5]. Compute and plot the pdfs of y () = Z,’:”zl x; for M = 2, 3, and 4. Compare
these pdfs with that of a zero-mean Gaussian random variable.

Solution. Let f(x) bethe pdf of auniform random variable over [—0.5, 0.5], that is,

Fo) = 1 -05=<x<05 (3.26)
Y=o otherwise -
Then from (3.2.61)
1+y —-1=y=0
HoWM=fm=*=f)=11-y 0<y=<1 (3.2.65)
0 otherwise
Similarly, we have
1 3,2 3 1
500+ 3) —3=Y=-3
3_ .2 1 1
a7 —535y=3
fs = oM f=17 ", 272 (3.2.66)
é(y - 5) 5=y=35
0 otherwise
T0+2°% —2<y=<-1
-3 -»2+5  -1=y=0
and Fra) = frs x f() =15+ 3% -2 0<y=<1 (3.2.67)
—§(-2+»° l<y=2
0 otherwise

The plots of fy,(»), fy;(»), ad fy,(y) are shown in Figure 3.4 along with the zero-mean
Gaussian pdf. The variance of the Gaussian random variable is chosen so that 99.92 percent of
the pdf areais over [—2, 2]. We observe that as M increases, the pdf plots appear to get closer
to the shape of the Gaussian pdf. This observation will be explored in detail in the CLT.

Next, let y(¢) = ax(¢) + b; then the characteristic function of y(¢) is
Dy (5) = E{e.i[aX(C)-i-b]E} — E{e./aEX(Oeij} — CDx(aSj)ejbE (3.2.68)

and by using the properties of the Fourier transform, the pdf of y(¢) is given by

£ = %fx (ya;”) (32.69)
From (3.2.68), the second characteristic function is given by
Wy () = Wy (aé) + jbé (3.2.70)
and the cumulants are given by
m m AWy (E) m,  m d"Vx(aé)
=D df—i" b= O e £=0 (3271)
m,.(m)

=a"«} m>1
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FIGURE 3.4

The pdf plots of (a) sum of two, (b) sum of three, (c) sum of four, and (d) Gaussian random

variables in Example 3.2.1.

Finally, consider y(¢) in (3.2.55). Using the resultsin (3.2.60) and (3.2.68), we have

M
D)) = [ | P (i)
k=1

from which the pdf of y(¢) isgiven by

1 y 1 y 1 y
fy(y) = |c_1|fxl (c_1> * afxz <5> koeek mfo (a)

From (3.2.62) and (3.2.70), the second characteristic function is given by
M
W) =) Wy (ad)
k=1
and hence from (3.2.63) and (3.2.71), the cumulants of y(¢) are
M
K;’") = Z cfx)(c’:)
k=1

where ¢ isthe mth power of c.

(3.2.72)

(3.2.73)

(3.2.74)

(3.2.75)

In the following two examples, we consider two interesting cases in which the sum of
1D random variables retains their origina distribution. The first case concerns Gaussian
random variables that have finite variances while the second case involves Cauchy random

variables that possess infinite variance.



EXAMPLE 322. Let x3(¢) ~ N(ug. 0.k = 1,..., M andlet y(k) = Y M xp(0). The 93
characteristic function of x; (¢) is SECTION 3.2
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Dy, (§) = exp (juks —~ 57"

and hence from (3.2.72), we have

£23 " 52
oyE)=exp| M 2.
JEY e —
k=1
which means that y(¢) is aso a Gaussian random variable with mean Z,’{Wzl iy and variance
Sl o2 thatis, y(§) ~ N (L, e plq o2). Inparticular, if the xy (¢) are 1D with apdf
N (., ?), then

20152 2 2
Dy (§) =exp (jMué— 8 26 )zexp [M (jsu— é;)} (3.2.76)

This behavior of y(¢) isin contrast with that of the sum of the 11D random variables in Exam-
ple 3.2.1 in which the uniform pdf changed its form after M-fold convolutions.

EXAMPLE 3.23. Asasecond case, consider M |1D random variables {xk(g)},i‘”: 4 With Cauchy
distribution

B 1

T (x —a)2 4 g2

andlet y(k) = Zﬁ” x,(£). Then from (3.1.43), we have
D, (§) = exp(jas — Bl&])

ka x) =

and hence
Dy () =exp(jMas — MBI§]) = exp[M (ja& — BI§])] (32.77)

This once again shows that the sum random variable has the same distribution (up to a scale
factor) asthat of the individual random variables, which in this case is the Cauchy distribution.

From these examples, we note that the Gaussian and the Cauchy random variables
areinvariant, or that they have a “self-reproducing” property under linear transformations.
These two examples also rai se someinteresting questions. Are there any other random vari-
ablesthat possessthisinvariance property? If such random variables exist, what istheform
of their pdfs or, alternatively, of their characteristic functions, and what can we say about
their means and variances? From (3.2.76) and (3.2.77), observe that if the characteristic
function has a general form

®, (&) =a’® (3.2.78)
where a is some constant and 6 (¢) is some function of &, then we have
Dy (s) = aM?® (3.2.79)

that is, the characteristic function of the sum has the same functional form except for a
change in scale. Are Gaussian and Cauchy both specia cases of some general situation?
Thesequestionsareanswered by the concept of stable (moreappropriately, linearly invariant
or self-reproducing) distributions.

Stable distributions. These distributions satisfy the “stability” property, whichin sim-
ple terms means that the distributions are preserved (or that they self-reproduce) under
convolution. The only stable distribution that has finite variance is the Gaussian distri-
bution, which has been well understood and is used extensively in the literature and in
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practice. The remaining stable distributions have infinite variances (and in some cases,
infinite means) which means that the corresponding random variables exhibit large fluctua-
tions. These distributions can then be used to model signalswith large variability and hence
are finding increasing use in many diverse applications such as the gravitational fields of
stars, temperature distributionsin anuclear reaction, or stock market fluctuations (L amperti
1996; Samorodnitsky and Tagqu 1994; Feller 1966).

Before weformally define stable distributions, we introduce the following notation for
convenience

Y@ 2 x(@) (3.2.80)

toindicatethat therandom variablesx (¢) and y (¢ ) havethe same distribution. For example,
if y(¢) = ax(¢) + b, we have

Fy(y) = Fx (—y — b) (3.2.81)
- a

and therefore x (¢) g4 ax(¢) +b.

DEFINITION 3.2. Let x1(¢), x2(2), ..., x 1 (¢) bellD random variables with acommon distri-
bution Fy (x) and let 537 (¢) = x1(¢) + - - - + xp(¢) betheir sum. Thedistribution F (x) issaid
to be stableif for each M there exist constantsay, > 0 and b, such that

d
smM(&) =apyx(§) +by (3.2.82)
and that F, (x) is not concentrated at one point.

If (3.2.82) holdsfor by, = 0, wesay that F, (x) isstableinthestrict sense. Thecondition
that F (x) isnot concentrated at one point is necessary because such adistributionisaways
stable. Thus it is a degenerate case that is of no practical interest. A stable distribution is
called symmetric stableif the distribution is symmetric, which also impliesthat it is strictly
stable.

It can beshownthat for any stablerandomvariablex (¢) thereisanumber o, 0 < o < 2,
such that the constant a,, in (3.2.82) isay = MY The number « is known as the index
of stability or characteristic exponent. A stable random variable x (¢) withindex « iscalled
o stable.

Since there is no closed-form expression for the probability density function of stable
random variables, except in special cases, they are specified by their characteristic function
®(&). This characteristic function is given by

T

epljut — lo€[* - [L— jAson@ tan (T2« #1

D) = (3.2.83)

2\ .
exp{jué —o&l* - [1—jB (;) sign@) Infgll}  a=1

wheresign(§) = £/|&| if &€ # 0 and zero otherwise. We shall use the notation S, (o, 8, 1)
to denote the stable random variable defined by (3.2.83). The parametersin (3.2.83) have
the following meaning:

1. The characteristic exponent «, 0 < o < 2, determines the shape of the distribution and
hence the flatness of the tails.

2. The skewness (or alternatively, symmetry) parameter 8, —1 < 8 < 1, determines the
symmetry of the distribution: 8 = 0 specifies a symmetric distribution, 8 < 0 a left-
skewed distribution, and 8 > 0 aright-skewed distribution.

3. The scale parameter 6,0 < o < o0, determines the range or dispersion of the stable
distribution.

4. Thelocation parameter u, —oo < 1 < oo, determines the center of the distribution.
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1. For 0 < a < 2, thetails of astable distribution decay as a power law, that is, Random Vectors

PN il = x> o asx— o0 (32.84)

where C isaconstant that depends on the scale parameter 0. Asaresult of thisbehavior,
«-stable random variables have infinite second-order moments. In particular,

E{|x(0)|P} < 0 forany0O< p <«

(3.2.85)
E(k@)P)=c0  foranyp>a

Alsovar[x(¢)]=ocofor0O<a <2, and E{|x(¢)|} = 0 if 0 <a < 1
2. A stabledistribution is symmetric about w iff 8 = 0. A symmetric a-stable distribution
is denoted as Sa. S, and its characteristic function is given by

O () = exp(jpé — o€[) (3.2.86)

3. If x(¢) isSaS with e = 2 in (3.2.83), we have a Gaussian distribution with variance
equal to 202, that is, N (i, 202), whose tails decay exponentially and not as a power
law. Thus, the Gaussian is the only stable distribution with finite variance.

4. If x(¢) isSaS with o = 1, we have a Cauchy distribution with density

o/m

(x —w?2+o2
A standard (« = 0, o = 1) Cauchy random variable x(¢) can be generated froma[0, 1]
uniform random variable u(¢), by using the transformation x = tan[z (u — %)].

5. Ifx(¢)isSaSwitha = % we have alLevy distribution, which has both infinite variance
and infinite mean. The pdf of this distribution does not have afunctional form and hence
must be computed numerically.

Sx(x) = (3.2.87)

In Figure 3.5, we display characteristic and density functions of Gaussian, Cauchy, and
Levy random variables. The density plots were computed numerically using the MATLAB
function st abl epdf .

Infinitely divisible distributions. A distribution F, (x) isinfinitely divisibleif and only
if for each M there exists adistribution F; (x) such that

fr () = fu(x) * fyr(x) * - % far(x) (3.2.88)
or by using the convolution theorem,
Dy(E) = Py (§) Py (&) -+ Dy(&) = (&) (3.2.89)

that is, for each M the random variable x (¢) can be represented asthesum x (&) = x1(¢) +
<o+ + xpr(¢) of M 11D random variables with a common distribution F,(x). Clearly, al
stabledistributionsareinfinitely divisible. An exampleof aninfinitely divisible pdf isshown
inFigure3.6for M =4, =15 u=0,and g = 0.

Central limit theorem. Consider the random variable y(¢) defined in (3.2.55). We
would like to know about the convergence of its distribution as M — oo. If y(¢) isasum
of 11D random variables with a stable distribution, the distribution of y(¢) also converges
to a stable distribution. What result should we expect if the individual distributions are not
stable and, in particular, are of finite variance? As we observed in Example 3.2.1, the sum
of uniformly distributed independent random variables appears to converge to a Gaussian
distribution. Isthisresult valid for any other distribution? The following version of the CLT
answers these questions.
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FIGURE 3.5

The characteristic and density function plots of Gaussian, Cauchy, and Levy random variables.

THEOREM 3.1 (CENTRAL LIMIT THEOREM). Let {xk(;)},i‘”:l be a collection of random
variablessuchthat x1(¢), x2(¢), ..., x 1 (¢) (a) are mutually independent and (b) have the same
distribution, and (c) the mean and variance of each random variable exist and are finite, that is,
Uy, < 00 and a)%k <oofordlk=1,2,..., M. Then, the distribution of the normalized sum

M
Z xk({) - M)’M

ym () = k=1
Tyym

approaches that of a normal random variable with zero mean and unit standard deviation as
M — oo.

Proof. SeeBorkar (1995).

Comments. The following important comments are in order regarding the CLT.

1. Since we are assuming [1D components in the normalized sum, the above theorem is
known as the equal-component case of the CLT.

2. It should be emphasized that the convergence in the above theorem is in distribution
(cdf) and not necessarily in density (pdf ). Suppose we have M discrete and 11D random
variables. Then their normalized sum will always remain discrete no matter how large
M is, but the distribution of the sum will convergeto thetheintegral of the Gaussian pdf.
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FIGURE 3.6

The characteristic and density function plots of an infinitely divisible distribution.

3. Theword central inthe CLT isareminder that the distribution convergesto the Gaussian
distribution around the center, that is, around the mean. Note that while the limit distri-
butionisfound to be Gaussian, frequently the Gaussian limit gives apoor approximation
for the tails of the actual distribution function of the sum when M isfinite, even though
the actual value under consideration might seem to be quite large.

4. Asafina point, we note that in the above theorem the assumption of finite variance is
critical to obtain a Gaussian limit. Thisimpliesthat all distributionswith finite variance
will converge to the Gaussian when independent copies of their random variables are
added. What happens if the variance is infinite? Then in this case the sum converges
to one of the stable distributions. For example, as shown in Example 3.2.3, the sum of
Cauchy random variables converges to a Cauchy distribution.

3.3 DISCRETE-TIME STOCHASTIC PROCESSES

After studying random variables and vectors, we can now extend these conceptsto discrete-
timesignal's (or sequences). Many natural sequences can be characterized asrandom signals
because we cannot determine their values precisely, that is, they are unpredictable. A nat-
ural mathematical framework for the description of these discrete-time random signals is
provided by discrete-time stochastic processes.

To obtain aformal definition, consider an experiment with a finite or infinite number
of unpredictable outcomes from a sample space S = {¢1, ¢», ...}, €ach occurring with
a probability Pr{¢,;},k = 1,2,.... By some rule we assign to each element ¢, of S a
deterministic sequence x(n, {;), —00 < n < oo. The sample space S, the probabilities
Pr{¢,}, and the sequences x (n, ¢;), —00 < n < oo, constitute a discrete-time stochastic
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process or random sequence. Formally,

x(n, ¢), —o00 < n < 00, isarandom sequence if for a fixed value ng of n, x(no, ¢)
isarandom variable.

The set of all possible sequences {x(n, ¢)} is caled an ensemble, and each individual
sequence x (n, £), corresponding to a specific value of ¢ = ¢, iscaled arealization or a
sample sequence of the ensemble.

There are four possible interpretations of x (n, ¢), depending on the character of » and
¢, asillustrated in Figure 3.7:

x(n, ¢) isarandom variableif n isfixed and ¢ isavariable.
x(n, ¢) isasample sequence if ¢ isfixed and n isavariable.
x(n, ¢) isanumber if both n and ¢ are fixed.

x(n, ) isastochastic processif both n and ¢ are variables.

Abstract space Real space
x(n, &)
1111, tlr

6e sl
x(n, £5) R
n RPN EE T,
2 Py l [ Py l l g
X(n, ¢3) K
S0 > 1o T I I T t * T n i
] IER

Random variable x(ng, ¢)

FIGURE 3.7
Graphical description of random sequences.

A random sequenceisalso called atime seriesin the statisticsliterature. It isasequence
of random variables, or it can be thought of as an infinite-dimensional random vector.
As with any collection of infinite objects, one has to be careful with the asymptotic (or
convergence) properties of arandom sequence. If n is acontinuous variable taking values
in R, then x(n, ¢) is an uncountable collection of random variables or an ensemble of
waveforms. This ensemble is called a continuous-time stochastic process or a random
process. Although these processes can be handled similarly to sequences, they are more
difficult to deal with in arigorous mathematical manner than sequences are. Furthermore,
practical signa processing requires discrete-time signals. Hence in this book we consider
random sequences rather than random waveforms.

Finally, in passing we note that the word stochastic is derived from the Greek word
stochasticos, which means skillful in aiming or guessing. Hence, the terms random process
and stochastic process will be used interchangeably throughout this book.



As mentioned before, a deterministic signal is by definition exactly predictable. This
assumes that there exists a certain functional relationship that completely describes the
signal, even if this relationship is not available. The unpredictability of a random process
is, in general, the combined result of two things. First, the selection of asingleredlizationis
based on the outcome of arandom experiment. Second, no functional descriptionisavailable
for all redlizations of the ensemble. However, in some special cases, such a functional
relationship is available. This means that after the occurrence of a specific realization, its
future values can be predicted exactly from its past ones. If the future samples of any
realization of a stochastic process can be predicted from the past ones, the processiscaled
predictable or deterministic; otherwise, it is said to be a regular process. For example,
the process x(n, ¢) = ¢, where ¢ isarandom variable, is a predictable stochastic process
because every redlization is a discrete-time signal with constant amplitude. In practice, we
most often deal with regular stochastic processes.

The simplest description of any random signal is provided by an amplitude-versus-time
plot. Inspection of thisplot provides qualitative information about some significant features
of the signal that are useful in many applications. These featuresinclude, among others, the
following:

1. Thefrequency of occurrence of various signal amplitudes, described by the probability
distribution of samples.

2. The degree of dependence between two signal samples, described by the correlation
between them.

3. The existence of “cycles” or quasi-periodic patterns, obtained from the signal power
spectrum (which will be described in Section 3.3.6).

4. Indications of variability in the mean, variance, probability density, or spectral content.

Thefirst feature above, theamplitude distribution, isobtained by plotting the histogram,
which is an estimate of the first-order probability density of the underlying stochastic pro-
cess. The probability density indicateswaveform features such as “spikiness” and bounded-
ness. Itsformiscrucial in the design of reliable estimators, quantizers, and event detectors.

The dependence between two signal samples (which are random variables) is given
theoretically by the autocorrelation sequence and is quantified in practice by the empirical
correlation (see Chapter 1), which is an estimate of the autocorrelation sequence of the
underlying process. It affects the rate of amplitude change from sample to sample.

Cycles in the data are related to sharp peaks in the power spectrum or periodicity in
the autocorrelation. Although the power spectrum and the autocorrel ation contain the same
information, they present it in different fashions.

Variability inagiven quantity (e.g., variance) can be studied by evaluating this quantity
for segments that can be assumed locally stationary and then analyzing the segment-to-
segment variation. Such short-term descriptions should be distinguished from long-term
ones, where the whole signal is analyzed as a single segment.

All the above features, to a lesser or greater extent, are interrelated. Therefore, it is
impossibleto point out exactly theeffect of each one uponthevisual appearanceof thesignal.
However, alot of insight can be gained by introducing the concepts of signal variability
and signal memory, which are discussed in Sections 3.3.5 and 3.4.3 respectively.

3.3.1 Description Using Probability Functions

From Figure 3.7, it is clear that at n = ng, x(ng, ¢) is arandom variable that requires a
first-order probability function, say cdf F (x; ng), for its description. Similarly, x(n1, ¢)
and x (n2, ¢) arejoint random variablesat instancesny and ny, respectively, requiring ajoint
cdf Fy(x1, x2; n1, n2). Stochastic processes contain infinitely many such random variables.
Hence they are completely described, in a statistical sense, if their kth-order distribution
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function

Fo(x1,...,xk5n1, ...,n) =Pr{x(ny) < x1,...,x(ng) < xi) (3.3.1)
isknown for every value of k > 1 and for al instancesny, na, ..., ng. Thekth-order pdf is
given by

9% F e XS, e,
FoGns g, & O e L ) g a0
0xR1 - -+ Oxik

Clearly, the probahilistic description requires a lot of information that is difficult to
obtain in practice except for simple stochastic processes. However, many (but not all)
properties of a stochastic process can be described in terms of averages associated with its
first- and second-order densities.

For simplicity, in the rest of the book, we will use acompact notation x () to represent
either a random process x(n, ¢) or a single realization x(n), which is a member of the
ensemble. Thus we will drop the variable ¢ from all notations involving random variables,
vectors, or processes. We believe that this will not cause any confusion and that the exact
meaning will be clear from the context. Also the random process x (n) is assumed to be
complex-valued unless explicitly specified as real-valued.

3.3.2 Second-Order Statistical Description

The second-order statistic of x(n) at time n is specified by its mean value u, (rn) and its
variance o2 (n), defined by

ux(n) = E{x(n)} = E{xr(n) + jxi(n)} (33.3)
and o(n) = E{lx(n) — i, (m?} = E{lx(m)1?} — |, ()] (3:34)
respectively. Note that both 1, (n) and o, (n) are, in general, deterministic sequences.
Thesecond-order statisticsof x (n) at two different timesny andn aregiven by thetwo-
dimensional autocorrelation (or autocovariance) sequences. The autocorrelation sequence
of a discrete-time random process is defined as the joint moment of the random variables
x(n1) and x(n2), that is,
rex(na, n2) = E{x(n1)x*(n2)} (3.3.9)
It provides a measure of the dependence between values of the process at two different
times. In this sense, it also provides information about the time variation of the process.
The autocovariance sequence of x (n) is defined by
Yxx(n1,n2) = E{[x(n1) — p (n)1[x(n2) — p, (n2)]*}
= rax(n1, n2) — (R (n2)

Wewill use notationssuch as y , (n1, n2), ry(n1, n2), y (n1, n2), or r(n1, n2) when thereis
no confusion as to which signal we are referring. Note that, in general, the second-order
statistics are defined on atwo-dimensiona grid of integers.

The statistical relation between two stochastic processes x (n) and y(n) that arejointly
distributed (i.e., they are defined on the same sample space S) can be described by their
cross-correlation and cross-covariance functions, defined by

rry(n1, n2) = E{x(n1)y*(n2)} (33.7)
and Yxy (1, n2) = E{[x(n1) — p, (n)1[y(n2) — p, (n2)1*}
= rxy(n1, n2) — p, (n1)py(n2)
The normalized cross-correlation of two random processes x (n) and y(n) is defined by
Y xy (1, 12)
ox(n1)oy(n2)

(3.3.6)

(3.3.8)

Pxy (n1,n2) = (339)



Some definitions
We now describe some useful types of stochastic processes based on their statistical
properties. A random processis said to be
« Anindependent process if
frlxa, oo xing, oo ng) = filegng) - fibasne)  Yking, i =100,k (3.3.10)

that is, x(n) isasequence of independent random variables. If all random variables have
the same pdf f(x) for al k, then x(n) is caled an IID (independent and identically
distributed) random sequence.

Anuncorrelated processif x(n) isasequence of uncorrelated random variables, that is,

o)zc(n ) n=n
y(n1,n2) = { ' PR 62()8(ny — n2) (33.12)
0 ni # ny
Alternatively, we have
2 2 _
re(ny, ) = 02 t'“x(’”)' m=ne (33.12)
py (1) (n2) ni # nz

An orthogonal processif it is asequence of orthogonal random variables, that is,

o2(n1) + lu,()|>  n1=n2
0 ni # nz
An independent increment processif Vk > 1andVny < np < --- < ng, theincrements

re(n1,n2) = { } = E{lx(n1)|3}8(n1 — n2) (3.3.13)

{(x(nD)}, {x(m2) —x(m)}, ..., {x(mp) — x(nk—1)}

are jointly independent. For such sequences, the kth-order probability function can be
constructed as products of the probability functions of its increments.
o A wide-sense periodic (WSP) process with period N if

my(n) = p,(n+ N) Vn (3.3.19)
and ry(ng,n2) =ry(n1+ N,nz) =ry(n1,n2+ N) =re(n1+ N,n2+ N) (3.3.15)

Note that in the above definition, w, (n) is periodic in one dimension while r, (n1, no) is
periodic in two dimensions.
o A wise-sense cyclostationary process if there exists an integer N such that

ne(n) = p,(n+ N) Vn (3.3.16)
and re(n1,n2) = re(ni1+ N,n2+ N) (3.3.17)

Note that in the above definition, r, (n1, n2) is not periodic in atwo-dimensional sense.
The correlation sequenceisinvariant to shift by N in both of its arguments.

If al kth-order distributions of a stochastic process are jointly Gaussian, theniitiscalled
a Gaussian random sequence.

We can al so extend some of thesedefinitionsto the case of twojoint stochastic processes.
The random processes x (n) and y(n) are said to be

o Satigtically independent if for al values of n1 and no
Jry(x, y3n1,n2) = fo(x;na) fy(y; n2) (33.18)
o Uncorrelated if for every nq and no
Voy(m1,n2) =0 or  rey(ng, n2) = p,(n)py(n2) (3.3.19)
« Orthogonal if for every nq and na
rry(ni,n2) =0 (3.3.20)
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3.3.3 Sationarity

A random process x(n) is caled stationary if statistics determined for x(n) are equal to
those for x(n + k), for every k. More specifically, we have the following definition.

DEFINITION 33 (STATIONARY OF ORDER N). A stochastic processx (n) iscalled stationary

of order N if

Se(x, ... xnysng, ...,nN) = fx(x1, ..., xy;n1+k,...,nNy + k) (3.3.21)
for any value of k. If x(n) is stationary for all orders N = 1, 2, ..., it issaid to be strict-sense
stationary (SSS).

An |ID sequence is SSS. However, SSS is more restrictive than necessary for most
practical applications. A more relaxed form of stationarity, which is sufficient for practical
problems, occurs when a random process is stationary up to order 2, and it is aso known
as wide-sense stationarity.

DEFINITION 34 (WIDE-SENSE STATIONARITY). Arandomsignal x(rn) iscalled wide-sense
stationary (WSS) if

1. Itsmean isaconstant independent of n, that is,
E{x(n)} = u, (3.3.22)
2. Itsvarianceis aso a constant independent of 7, that is,

varfx(n)] = o2 (3.3.23)

X

and
3. Itsautocorrelation depends only on the distance! = n1 — no, called lag, that is,

re(ny,ng) = re(ny —np) = rx(l) = E{x(n + Hx* ()} = E{x(m)x*(n — )}  (3.3.24)
From (3.3.22), (3.3.24), and (3.3.6) it follows that the autocovariance of a WSS signal

aso dependsonly on! = ny — no, that is,
v =) = Il (3325)

EXAMPLE 33.1. Letw(n)beazero-mean, uncorrelated Gaussian random sequencewith variance
2
o) =1

a. Characterize the random sequence w(n).

b. Definex(n) = wn) + wn — 1), —o0 < n < oo. Determine the mean and autocorrel ation
of x(n). Also characterize x (n).

Solution. Note that the variance of w(n) is aconstant.

a. Since uncorrelatedness implies independence for Gaussian random variables, w(n) isanin-
dependent random sequence. Sinceitsmean and variance are constants, it is at | east stationary
in the first order. Furthermore, from (3.3.12) or (3.3.13) we have

rw(n1, np) = 028(ny — ng) = 8(ny — ny)

Hence w(n) isaso aWSS random process.
b. The mean of x(n) iszerofor al n since w(n) isazero-mean process. Consider

rx(ng, n2) = E{x(n1)x(n2)}
= E{{lw(n1) + w(ng — Dl[w(ng) + wnz — DI}
=ruw(ny, n2) + ry(n1,n2 — 1) +ry(ng — 1, no)
+ryny—1np—1)
= (728(n1 —no) + (728(n1 —no+1)
+028(n1 —1-—no)+ 028(n1 —1-no+1
=206(ny —np)+8(my —np+1)+8(ny—np—1)



Clearly, ry (n1, np) isafunction of ny — np. Hence
) =25()+8(0+1) +8(0—-1)
Therefore, x (n) isaWSS sequence. However, it isnot an independent random sequence since
both x (n) and x(n + 1) depend on w(n).
EXAMPLE 332 (WIENER PROCESS). Tossafair coinateachn, —oo < n < oo. Let

) = +S if heads is outcome Pr(H) =0.5
W= g if tailsis outcome Pr(T) =05

where S isastep size. Clearly, w(n) is an independent random process with
E{w(n)} =0

and E(w?(n)} = 02 = 52 (%) 482 (%) — 52

Define a new random process x(n), n > 1, as

x(D) =w(@)
x2)=x1D)+w@ =wl)+ w)

n
x(n)=x(n—14+wh) = Z w(i)
i=1
Note that x(n) is arunning sum of independent steps or increments; thus it is an independent
increment process. Such asequenceis called a discrete Wiener process or randomwalk. We can
easily see that

E{x(n)} = E {Zw(i)} =0

i=1

n

and E{x?(n)} = E iZwa)Zw(k)} =E {ZZw(i)w(k)}
k=1

i=1 i=1k=1

=Y 3 Ewiwh) = Y Ew?(i)) = ns?
i=1k=1 i=1

Therefore, randomwalk isanonstationary (or evol utionary) processwith zero mean and variance
that grows with r, the number of steps taken.

It should be stressed at this point that although any strict-sense stationary signal iswide-
sense stationary, the inverse is not aways true, except if the signal is Gaussian. However
in practice, it is very rare to encounter asignal that is stationary in the wide sense but not
stationary in the strict sense (Papoulis 1991).

Two random signals x (n) and y(n) are called jointly wide-sense stationary if each is
wide-sense stationary and their cross-correlation dependsonly onl = ny — n»

roy(D) = E{x(m)y*(n =D} vy (1) = ray (D) — po iy (3.3.26)
Note that as a consegquence of wide-sense stationarity the two-dimensional correlation and

covariance sequences become one-dimensional sequences. Thisis a very important result
that ultimately allows for a nice spectral description of stationary random processes.

Properties of autocorrelation sequences

The autocorrelation sequence of a stationary process has many important properties
(which also apply to autocovariance sequences, but we will discuss mostly correlation
sequences). Vector versions of these properties are discussed extensively in Section 3.4.4,
and their proofs are explored in the problems.
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PROPERTY 331 Theaverage power of a WSS process x (n) satisfies

re(0) = 0% + 1y 2= 0 (33.27)
and v (0) = [ry (D] foralll (3.3.28)
Proof. SeeProblem 3.21 and Property 3.3.6.

This property implies that the correlation attains its maximum value at zero lag and
thisvalueis nonnegative. The quantity |, | isreferred to asthe average dc power, and the
quantity o2 = y . (0) is referred to as the average ac power of the random sequence. The
quantity r, (0) then isthe total average power of x(n).

PROPERTY 3.3.2. Theautocorrelation sequence r, (1) is a conjugate symmetric function of lag
[, that is,

ry (=) =rx () (3.3.29)
Proof. It follows from Definition 3.4 and from (3.3.24).
PROPERTY 333. The autocorrelation sequence r (1) is nonnegative definite; that is, for any
M > 0and any vector &« € RM

M M

D3 apretk —myag, = 0 (3.3.30)
k=1m=1

Thisisanecessary and sufficient condition for asequencer, (1) to betheautocorrel ation sequence
of arandom sequence.
Proof. See Problem 3.22.

Since in this book we exclusively deal with wide-sense stationary processes, we will
usetheterm stationary to mean wide-sense stationary. The properties of autocorrel ation and
cross-correl ation sequences of jointly stationary processes, x(n) and y(n), are summarized
in Table 3.1.

Although SSS and WSS forms are widely used in practice, there are processes with
different forms of stationarity. Consider the following example.

EXAMPLE 333. Let x(n) be area-valued random process generated by the system
x(n) =ax(n — 1) + wn) n>0 x(=1) =0 (3.3.31)

where w(n) is a stationary random process with mean w,, and ry, (1) = 05,8(1). The process

x(n) generated using (3.3.31) is known as afirst-order autoregressive, or AR(1), process,T and
the process w(n) is known as a white noise process (defined in Section 3.3.6). Determine the
mean 1, (n) of x(n) and comment on its stationarity.

Solution. Tocomputethemeanof x (n), weexpressitasafunctionof {w(n), w(n—1), ..., w(0)}
asfollows

x(0) = ax(—1) + w(0) = w(0)
x(1) =ax(0) + w@) = aw(0) + w(1)

’ n
x(n) = "w©0) + " Tw@d) + - + wn) = Z(ka(n —k)
k=0

"Notethat from (3.3.31), x(n — 1) completely determinesthedistribution for x (n), and x (n) completely determines

the distribution for x(n + 1), and so on. If

fx(n)lx(n—l).“(xn [*p—1..)= fx(n)\x(n—l) (e lxp—1)

then the process is termed a Markov process.
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Clearly, the mean of x(n) depends on r, and hence it is nonstationary. However, if we assume
that |«| < 1 (which impliesthat the system is BIBO stable), then asn — oo, we obtain

1-o"f1 Hy

l-«o n—o0 l-«o
Thus x (n) approaches first-order stationarity for largen. Similar analysisfor the autocorrelation
of x(n) showsthat x(n) approaches wide-sense stationarity for large n (see Problem 3.23).

My (1) = Wy

The above example illustrates a form of stationarity called asymptotic stationarity. A
stochastic process x(n) is asymptotically stationary if the statistics of random variables
x(n) and x(n + k) become stationary as k — oco. When LTI systems are driven by zero-
mean uncorrel ated-component random processes, the output process becomes asymptoti-
cally stationary in the steady state. Another useful form of stationarity isgiven by stationary
increments. If theincrements {x (n) — x(n — k)} of aprocess x (n) form a stationary process
for every k, we say that x(n) is a process with stationary increments. Such processes can
be used to model datain various practical applications (see Chapter 12).

The simplest way, to examinein practiceif area-world signal is stationary, istoinves-
tigate the physical mechanism that producesthe signal. If this mechanism istime-invariant,
then the signal is stationary. In caseit isimpossible to draw aconclusion based on physical
considerations, we should rely on statistical methods (Bendat and Piersol 1986; Priestley
1981). Notethat stationarity in practice meansthat arandom signal has statistical properties
that do not change over thetimeinterval we observethe signal. For evolutionary signalsthe
statistical properties change continuously with time. An example of a highly nonstationary
random signal isthe signal s associated with the vibrationsinduced in space vehicles during
launch and reentry. However, there is a kind of random signal whose statistical properties
change slowly with time. Such signals, which are stationary over short periods, are called
locally stationary signals. Many signals of great practical interest, such as speech, EEG,
and ECG, belong to this family of signals.

Finally, we note that general techniques for the analysis of nonstationary signals do
not exist. Thus only special methods that apply to specific types of nonstationary signals
can be developed. Many such methods remove the nonstationary component of the signal,
leaving behind another component that can be analyzed as stationary (Bendat and Piersol
1986; Priestley 1981).

3.3.4 Ergodicity

A stochastic process consists of the ensemble and a probability law. If thisinformation is
available, thestatistical propertiesof the processcan be determinedinaquitestraightforward
manner. However, in the real world, we have accessto only alimited number (usually one)
of realizations of the process. The question that arises then is, Can we infer the statistical
characteristics of the process from a single realization?

This is possible for the class of random processes that are called ergodic processes.
Roughly speaking, ergodicity implies that al the statistical information can be obtained
from any single representative member of the ensemble.

Time aver ages

All the statistical averagesthat we have defined up to this point are known as ensemble
averages because they are obtained by “freezing” the time variable and averaging over the
ensemble (see Fig. 3.7). Averages of thistype areformally defined by using the expectation
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operator E{ }. Ensemble averaging is not used frequently in practice, becauseit isimprac-
tical to obtain the number of realizations needed for an accurate estimate. Thusthe need for
adifferent kind of average, based on only one realization, naturally arises. Obviously such
an average can be obtained only by time averaging.

The time average of a quantity, related to a discrete-time random signal, is defined as

N

- 1
() = lim — +1n:Z_N(-) (33.32)

Notethat, owingtoitsdependenceon asinglerealization, any timeaverageisitself arandom
variable. The time average is taken over al time because al realizations of a stationary
random process exist for all time; that is, they are power signals.

For every ensembl e average we can define acorresponding timeaverage. Thefollowing
time averages are of special interest:

Mean value = (x(n))
Mean square = (|x(n)|?)
Variance = (|x(n) — (x(n))[?)
Autocorrelation = (x(n)x*(n — 1))
Autocovariance = ([x(n) — (x(@))][x(n — 1) — (x(n))]*)
Cross-correlation = (x(n)y*(n — 1))
Cross-covariance = ([x(n) — (x(n))1[y(n — 1) — (y(n))]¥)

(3.3.33)

Itisnecessary to mention at this point the remarkable similarity between time averages
and the correlation sequences for deterministic power signals. Although thisisjust aformal
similarity, due to the fact that random signals are power signals, both quantities have the
same properties. However, we should always keep in mind that although time averages
are random variables (because they are functions of ¢), the corresponding quantities for
deterministic power signals are fixed numbers or deterministic sequences.

Ergodic random processes

Aswe have aready mentioned, in many practical applications only one realization of
arandom signal is available instead of the entire ensemble. In general, a single member of
the ensemble does not provide information about the statistics of the process. However, if
the process is stationary and ergodic, then al statistical information can be derived from
only onetypical realization of the process.

Arandomsignal x(n) iscalled ergodic"' if itsensemble averages equal appropriatetime
averages. There are several degrees of ergodicity (Papoulis 1991). We will discuss two of
them: ergodicity in the mean and ergodicity in correlation.

DEFINITION 35 (ERGODIC IN THE MEAN). A random process x (n) isergodic in the mean
if
(x(n)) = E{x(n)} (3.3.39)

DEFINITION 36 (ERGODIC IN CORRELATION). A random process x(n) is ergodic in
correlation if

(x(m)x*(n = D) = E{x(n)x™*(n — 1)} (3.3.35)
Note that since (x(n)) is constant and (x(n)x*(n — 1)) is afunction of [, if x(n) is

ergodic in both the mean and correlation, then it isalso WSS. Thus only stationary signals
can be ergodic. On the other hand, WSS does not imply ergodicity of any kind. Fortunately,

+Stric’cly speaking, the form of ergodicity that we will use is called mean-square ergodicity since the underlying
convergence of random variables is in the mean-square sense (Stark and Woods 1994). Therefore, equalities in
the definitions are in the mean-sguare sense.



in practice amost al stationary processes are aso ergodic, which is very useful for the
estimation of their statistical properties. From now on we will use the term ergodic to mean
both ergodicity in the mean and ergodicity in correlation.

DEFINITION 37 (JOINT ERGODICITY). Two random signals are called jointly ergodic if
they areindividually ergodic and in addition

(x()y*(n — D) = E{x(n)y*(n — 1)} (3.3.36)

A physical interpretation of ergodicity isthat onerealization of therandom signa x (n),
as time n tends to infinity, takes on values with the same statistics as the value x(n1),
corresponding to all samples of the ensemble membersat agiventimen = ns.

In practice, it is of course impossible to use the time-average formulas introduced
above, because only finite records of data are available. In this case, it is common practice
to replace the operator (3.3.32) by the operator

1 N
(O = 5577 >0 (3.3.37)
n=—N
to obtain estimates of the true quantities. Our desire in such problemsisto find estimates
that become increasingly accurate (in a sense to be defined in Section 3.6) as the length
2N + 1 of the record of used data becomes larger.

Finally, to summarize, we note that whereas stationarity ensures the time invariance
of the statistics of a random signal, ergodicity implies that any statistics can be calculated
either by averaging over all members of the ensemble at a fixed time or by time-averaging
over any single representative member of the ensemble.

3.3.,5 Random Signal Variability

If we consider astationary random sequence w(n) that is11D with zero mean, itskey charac-
teristicsdepend onitsfirst-order density. Figure 3.8 showsthe probability density functions
and samplerealizationsfor 1D processes with uniform, Gaussian, and Cauchy probability
distributions. Inthe case of the uniform distribution, the amplitude of therandom variableis
limited to arange, with values occurring outside thisinterval with zero probability. On the
other hand, the Gaussian distribution does not have afiniteinterval of support, allowing for
the possibility of any value. The sameistrue of the Cauchy distribution, but its characteris-
ticsaredramatically different from those of the Gaussian distribution. The center lobe of the
density is much narrower while the tails that extend out to infinity are significantly higher.
Asaresult, the realization of the Cauchy random process contains numerous spikes or ex-
treme values while the remainder of the processis more compact about the mean. Although
the Gaussian random process allows for the possibility of large values, the probability of
their occurrenceis so small that they are not found in realizations of the process.

The mgjor difference between the Gaussian and Cauchy distributions lies in the area
found under thetails of the density asit extends out to infinity. This characteristicisrelated
tothevariability of the process. The heavy tails, as found in the Cauchy distribution, result
in an abundance of spikesin the process, a characteristic referred to as high variability. On
the other hand, a distribution such as the Gaussian does not alow for extreme values and
indicateslowvariability. Theextent of thevariability of agivendistributionisdetermined by
the heaviness of the tails. Distributions with heavy tails are called long-tailed distributions
and have been used extensively as models of impulsive random processes.

DEFINITION 38. A distribution is called long-tailed if its tails decay hyperbolicaly or alge-
braicaly as
Pr{jx(n)] > x} ~Cx™% asx — oo (3.3.38)

where C isaconstant and the variable o determines the rate of decay of the distribution.
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Sample sequence (uniform)
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FIGURE 3.8
Probability density functions and sample realizations of an 11D process with
uniform, Gaussian, and Cauchy distributions.

By means of comparison, the Gaussian distribution has an exponential rate of decay.
The implication of the algebraically decaying tail is that the process has infinite variance,
thatis,

of = E{lx(n)|?} = o0

and thereforelacks second-order moments. Thelack of second-order momentsmeansthat, in
additionto the variance, the correlation functions of these processes do not exist. Since most
signal processing algorithms are based on second-order moment theory, infinite variance
has some extreme implications for the way in which such processes are treated.

In this book, we shall model high variability, and hence infinite variance, using the
family of symmetric stabledistributions. Thereasonistwofold: First, alinear combination of
stablerandom variablesisstable. Second, stabledistributionsappear aslimitsin central limit
theorems (see stable distributions in Section 3.2.4). Stable distributions are characterized
by a parameter «, 0 < o < 2. They are Cauchy when o« = 1 and Gaussian when o = 2.
However, they have finite variance only when o = 2.

In practice, thetype of dataunder consideration governsthevariability of the modeling
distribution. Random signals restricted to a certain interval, such as the phase of complex
random signals, arewel| suited for uniform distributions. On the other hand, signalsallowing
for any possible value but generally confined to a region are better suited for Gaussian
models. However, if a process contains spikes and therefore has high variahility, it is best
characterized by along-tailed distribution such asthe Cauchy distribution. Impulsivesignals
havebeen found in avariety of applications, such ascommunication channels, radar signals,
and electroniccircuit noise. Inall cases, thevariability of the processdictatesthe appropriate
model.



3.3.6 Frequency-Domain Description of Stationary Processes

Discrete-time stationary random processes have correlation sequences that are functions of
asingle index. This leads to nice and powerful representations in both the frequency and
the z-transform domains.

Power spectral density

The power spectral density (PSD, or more appropriately autoPSD) of a stationary
stochastic process x(n) is a Fourier transformation of its autocorrelation sequence r (1).
If r. (1) is periodic (which corresponds to a wide-sense periodic stochastic process) in I,
then the DTFS discussed in Section 2.2.1 can be used to obtain the PSD, which has the
form of aline spectrum. If r, (1) is nonperiodic, the DTFT discussed in Section 2.2.1 can
be used provided that r, (1) is absolutely summable. This means that the process x (n) must
be a zero-mean process. In general, a stochastic process can be a mixture of periodic and
nonperiodic components.”

If we allow impulse functions in the DTFT to represent periodic (or amost periodic)
seguences and non-zero-mean processes (see Section 2.2.1), then we can define the PSD as
o

Re(e/®) = Y rehe ! (3.3.39)
[=—00
where w isthe frequency in radians per sample. If the process x (n) is a zero-mean nonpe-
riodic process, then (3.3.39) is enough to determine the PSD. If x (n) isperiodic (including
nonzero mean) or almost periodic, then the PSD is given by

Re(e/”) =) 2 Aid(w — o) (3.3.40)
i
where the A; are amplitudes of r, (/) at frequencies w;. For discussion purposes we will
assume that x(n) is a zero-mean nonperiodic process. The autocorrelation r (/) can be
recovered from the PSD by using theinverse DTFT as

T

1 o
re(l) = ] Ry (e’)e/“! dw (3.3.41)

EXAMPLE 334. Determinethe PSD of azero-mean WSS processx (n) withry (1) = al!l, —1 <
a <1

Solution. From (3.3.39) we have

o
Ry (e/®) = Z allle=Jel —1<a<l1
[=—00
__ 1t 1 (3.3.42)

— + -
1—ae/® 1—ae /@

_ 1—q?
" 1442 —2acosw
which isareal-valued, even, and nonnegative function of w.

—1l<a<l1

Properties of the autoPSD. The power spectral density R, (e/®) has three key prop-
erties that follow from corresponding properties of the autocorrelation sequence and the
DTFT.

"Periodic components are predi ctabl e processes as discussed before. However, some nonperiodic components can
also be predictable. Hence nonperiodic components are not always regular processes.
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PROPERTY 334. TheautoPSD R, (e/?) isareal-valued periodic function of frequency with
period 27 for any (real- or complex-valued) process x (n). If x(n) isrea-valued, then R (e/®)
isalso an even function of w, that is,

Ry (e/®) = Ry (e77®) (3.3.43)
Proof. It follows from autocorrelation and DTFT properties.
PROPERTY 3.35. TheautoPSD isnonnegative definite, that is,
Re(e/®) >0 (3.3.44)

Proof. Thisfollowsfrom the nonnegative definiteness of the autocorrel ation sequence[see aso
discussions leading to (3.4.27)].

PROPERTY 336. Theareaunder R, (e/®) is nonnegative and it equals the average power of
x(n). Indeed, from (3.3.41) it follows with [ = O that

kg )
i/ Ry (e/®)dw = 1 (0) = E{|x(n)|?} > 0 (3.3.45)
2t J_ 5
Proof. It followsfrom Property 3.3.5.

White noise. A random sequence w(n) is called a (second-order) white noise process
with mean 11, and variance o2, denoted by

w!

w(n) ~ WN (i, 02) (3.3.46)

if and only if E{w(n)} = u,, and
ro(l) = E{wmw*(n — )} = 628() (3.3.47)
which implies that Ry(e’®) =02 —T<w<mw (3.3.48)

The term white noise is used to emphasize that all frequencies contribute the same amount
of power, as in the case of white light, which is obtained by mixing all possible colors by
the same amount. If, in addition, the pdf of x(n) is Gaussian, then the processis caled a
(second-order) white Gaussian noise process, and it will be denoted by WGN(u,,,, aﬁ, .

If the random variables w(n) are independently and identically distributed with mean

1, and variance o2, then we shall write

w(n) ~ Dy, 02) (3.3.49)

Thisis sometimes referred to as a strict white noise.

We emphasi ze that the conditions of uncorrelatedness or independence do not put any
restriction on the form of the probability density function of w(n). Thus we can have an
11D process with any type of probability distribution. Clearly, white noise is the simplest
random process because it does not have any structure. However, we will seethat it can be
used as the basic building block for the construction of processes with more complicated
dependence or correlation structures.

Harmonic processes. A harmonic processis defined by

M
x(n) =Y Accosiwgn+¢) @ #0 (3.3.50)
k=1

where M, {A})!, and {w;}}! are constants and {¢, }}! are pairwise independent random
variables uniformly distributed in the interval [0, 2]. It can be shown (see Problem 3.9)
that x (n) is a stationary process with mean

E{x(n)} =0 foral n (3.351)



and autocorrelation

M
() = }Z A,% CcoSwy! -0 <l <o (3352
2 k=1
We note that r, (1) consists of a sum of “in-phase” cosines with the same frequencies asin
x(n).

If wy/(27) arerational numbers, r, (1) isperiodic and can be expanded as aFourier se-
ries. These series coefficients provide the power spectrum R, (k) of x (). However, because
rx (1) is alinear superposition of cosines, it aways has a line spectrum with 2M lines of
strength A,f/4at frequencies +wy intheinterval [, 7 ]. If r, (1) isperiodic, then the lines
are equidistant (i.e., harmonically related), hence the name harmonic process. If w/(27)
isirrational, then r,(I) is aimost periodic and can be treated in the frequency domain in
almost the same fashion. Hence the power spectrum of a harmonic process is given by

M 2 M

. A

R = Y 2r (%‘) Sw—w)= Y %A,fa(w — o), -1 <w <7 (3353
k=—M k=—M

EXAMPLE 335. Consider the following harmonic process
x(n) = cos(0.1rn + ¢1) + 2sin (1.51 + ¢2)

where ¢4 and ¢ are I1ID random variables uniformly distributed in the interval [0, 2]. The
first component of x(n) is periodic with w1 = 0.1z and period equal to 20 while the second
component is almost periodic with wp = 1.5. Thus the sequence x(n) is aimost periodic. A
sample function realization of x () is shown in Figure 3.9(a). The mean of x(n) is

Uy () = E{x(n)} = E{cos (0.1tn + ¢1) + 25in (1.5n 4+ ¢)} =0
and the autocorrelation sequence (using mutual independence between ¢4 and ¢5) is
rx(ny, n2) = E{x(n1)x3(n2)}
= E{cos (0.1rnq + ¢1) cos (0.1wrny + ¢1)}
+ E{2sin (1511 4 ¢9)2sin (1.512 + ¢)}
= 1 ¢0s[0.17 (n1 — np)] + 208 [L5(ng — n)]

or rx(l) = 3€0s0.1rl +2c0sL5 [ =nq—ny

Thus the line spectrum Rffk) isgiven by

1 w1 =-15

1 -
I ]

Z w3 = O.JJT

1 wq4 =15

and the power spectrum Ry (¢/®) is given by
Ry (e/®) = 278(w + 1.5) + %S(w +017) + %5@ — 0.17) + 278(w — 1.5)

The line spectrum of x(n) is shown in Figure 3.9(b) and the corresponding power spectrum in
Figure 3.9(c).

The harmonic process is predictable because any given realization is a sinusoidal se-
guence with fixed amplitude, frequency, and phase. We stress that the independence of the
phasesisrequired to guarantee the stationarity of x (n) in (3.3.50). The uniform distribution
of the phases is necessary to make x(n) a stationary process (see Problem 3.9). The har-
monic process (3.3.50), in generd, is non-Gaussian; however, it becomes Gaussian if the
amplitudes A are random variables with a Rayleigh distribution (Porat 1994).
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The time and frequency-domain description of the harmonic process in Example 3.3.5.

EXAMPLE 336. Consider acomplex-valued process given by
x(n) = Aelwon — |A|ej(won+¢>)
where A is a complex-valued random variable and wq is constant. The mean of x ()
E{x(n)} = E{A}e/®0"

can be constant only if E{A} = 0. If |A| is constant and ¢ is uniformly distributed on [0, 271,
then we have E{A} = |A|E{e¢/?} = 0. In this case the autocorrelation is

re(ng, ng) = E{Aej(woﬂ1+¢)A*e—j (won2+¢)} — |A|26j (n1—n2)wo
Since the mean is constant and the autocorrelation depends on the difference ! £ nq — no, the
process is wide-sense stationary.

The above example can be generalized to harmonic processes of the form

M
x(n) =y Agel@mton (3.3.54)
k=1
where M, {Ag}), and {w;}}! are constants and {¢; }}! are pairwise independent random
variables uniformly distributed in the interval [0, 27]. The autocorrelation sequenceis

M
re(l) =) |Ag|Pel ! (3.3.55)
k=1
and the power spectrum consists of M impulses with amplitudes 27| Ax |2 at frequencies
wg. If the amplitudes {Ak},’(”: 1 are random variables, mutually independent of the random
phases, the quantity |Ax|? isreplaced by E{|Ax|?}.



Cross-power spectral density

The cross-power spectral density of two zero-mean and jointly stationary stochastic
processes provides adescription of their statistical relationsin the frequency domain andis
defined asthe DTFT of their cross-correlation, that is,

o0
Riy(e/®) = Y ryy(e i (3.3.56)
|=—00

The cross-correlation r,., (1) can be recovered by theinverse DTFT

T

1 L
ray(l) = — o= ny(ef‘”)ef‘”l dow (3.3.57)

Thecross-spectrum Ry, (e/®)is,ingeneral, acomplexfunction of w. Fromryy (1) = r}, (—1)
it follows that

Ryy(e!”) = R}, (e/*) (3.358)

Thisimpliesthat R, (e/®) and R, (e/®) have the same magnitude but opposite phase.
The normalized cross-spectrum

xv(ej )
Gry(e!?) & (3.3.59)
\/R (e"")\/R (eJ®)
is called the coherence function. Its squared magnitude
R joy|2
Gy (e = L) (3:3.60)

R (e/®)Ry(e/®)
is known as the magnitude square coherence (MSC) and can be thought of as a sort of
correlation coefficient in the frequency domain. If x(n) = y(n), then gxy(ej“’) = 1 (max-
imum .correlation) whereas if x(n) and y(n) are uncorrelated, then R, (1) = 0 and hence
Gry(e/®) = 0. In other words, 0 < |Gy, (e/?)| < 1.

Complex spectral density functions

If the sequences r, (/) and ry, (/) are absolutely summable within a certain ring of the
complex z plane, we can obtain their z-transforms

R@) = Y rhz” (3.3.61)
[=—00

Ryy@ = > ry(z™! (3.3.62)
|=—00

which are known as the complex spectral density and complex cross-spectral density func-
tions, respectively. If theunit circle, defined by z = ¢/, iswithin theregion of convergence
of the above summations, then

R (/) = Re(D)|,—pio (3.3.63)
Ryy (/) = Ryy (D), _pio (3.3.64)

Thecorrelation and power spectral density properties of random sequences are summarized
inTable 3.1.

EXAMPLE 33.7. Consider therandom sequencegiveninExample3.3.4with autoPSD in (3.3.42)

. 1—a?
R Jo -_ <1
x(e) 1+ a? — 2a cosw lal

Determine the complex autoPSD Ry (z).
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Solution. The complex autoPSD isgiven by Ry (z) = Ry (ej“’)|e_,w:Z. Since

cosw = e _ it <!
2 2 |
we obtain
Ri(2) = Lod” __ fe-ah? jal < Iz < =
(z+z_l> 1-(a+aHz 142 la|
1+a?2—2a
2
Now the inverse z-transform of R, (z) determines the autocorrelation sequence ry (1), that is,
Ry (2) = (a—abHz1 _ (a—a bz
1-(@+a Dz l+z72 (A-azHA-a1z7Y
1 1 1
- 1-az™1 B 1-a-1;71 lal < |2l < ai
or re() = du) + @ Hlu=1 - 1) = al (3.3.65)

This approach can be used to determine autocorrel ation sequences from autoPSD functions.

Table 3.1 provides a summary of correlation and spectral properties of stationary ran-
dom sequences.

TABLE 31
Summary of correlation and spectral properties of stationary
random sequences.

Definitions
Mean value iy = E{x(n)}
Autocorrelation re(l) = E{[x(n)x*(n — 1)}
Autocovariance Yx) = E{lx(m) — pyllx(n — 1) — puy 1%}
Cross-correlation roy() = E{x(m)y*(n — )}
Cross-covariance Yy = E{[x(n) — pJly(n — 1) — puy 1%}
Power spectral density Re(e/?) = X2 rx(he ¢!

Cross-power spectral density — Ryy (e/®) = 02 rey (e /@
Magnitude square coherence |Gy (e/“)|% = |Ryy (e/®)|?/[Rx (e/®) Ry (/)]

Interrelations

Y@ =re@) — luyl?

ny (l) =Txy (l) - [/LX;L;

Properties

Autocorrelation Auto-PSD

rx (1) is nonnegative definite Ry (e/®) > 0and real

re() = r¥(=0 Ry (e/®) = Rye(e™/®) [redl x(n)]

e ()] < rx(0) Ry(2) = R¥(1/2%)

(D] <1 Ry(2) = Ry (z™Y) [red x(n)]
Cross-correlation Cross-PSD

Fay (D) = 1 (=1)

Iy (D] < [rx@ry(O1Y2 < Ryy(2) = Ry (1/2%)
e (0) + 1y (0)] 0= (Gay(e/®) =1

|pxy(l)| <1




3.4 LINEAR SYSTEMSWITH STATIONARY RANDOM INPUTS

This section deals with the processing of stationary random sequences using linear, time-
invariant (LTI) systems. We focus on expressing the second-order statistical properties of
the output in terms of the corresponding properties of the input and the characteristics of
the system.

3.4.1 Time-Domain Analysis

The first question to ask when we apply a random signal to a system is, Just what is the
meaning of such an operation? We ask this because a random process is not just a single
sequence but an ensembl e of sequences (see Section 3.3). However, since each realization
of the stochastic process is a deterministic signal, it is an acceptable input producing an
output that is clearly asingle realization of the output stochastic process. For an LTI system,
each pair of input-output realizations is described by the convolution summation

(0.¢]
Y o)=Y hk)x(n—k.0) (34.1)
k=—o0
If thesumintheright sideof (3.4.1) existsfor all ¢ suchthat Pr{¢} = 1, then we say that we
have almost-everywhere convergence or convergence with probability 1 (Papoulis 1991).
The existence of such convergence isruled by the following theorem (Brockwell and Davis
1991).

THEOREM 3.2 If the process x(n, ¢) is stationary with E{|x(n, ¢)|} < oo and if the system
is BIBO-stable, that is, > |h(k)| < oo, then the output y(n, ¢) of the system in (3.4.1)
converges absolutely with probability 1, or

o
Y. o) = Y hkx(n—k.¢) foral¢e APr{d}=1 (34.2)
k=—o00
and is stationary. Furthermore, if E{|x(n, £)|2} < oo, then E{|y(n, )2} < oo and y(n, ¢)
converges in the mean sguare to the same limit and is stationary.

A less restrictive condition of finite energy on the system impulse response /i (n) aso
guarantees the mean square existence of the output process, as stated in the following
theorem.

THEOREM 33. If the process x(n, ¢) is zero-mean and stationary with Z[’ifoo lre ()] < o0,
and if the system (3.4.1) satisfies the condition
o0 1 T .
Y Ihm)? = —/ |H (e/?) 2 dw < o0 (3.4.3)
27 J

n=—oo

then the output y(n, ¢) converges in the mean square sense and is stationary.

The above two theorems are applicable when input processes have finite variances.
However, I1D sequences with «-stable distributions have infinite variances. If the impulse
response of the systemin (3.4.1) decaysfast enough, then the following theorem (Brockwell
and Davis 1991) guarantees the absolute convergence of y(n, ¢) with probability 1. These
issues are of particular importance for inputs with high variability and are discussed in
Section 3.3.5.

THEOREM 34. Let x(n, ¢) bean 11D sequence of random variables with «-stable distribution,
0 < a < 2. If theimpulse response h(n) satisfies

o0
> h(n)]® <oo  forsomes e (0, )
n=—o0

then the output y(n, ¢) in (3.4.1) converges absolutely with probability 1.
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Clearly, acomplete description of the output stochastic process y(n) requires the com-
putation of an infinite number of convolutions. Thus, a better aternative would be to de-
termine the statistical properties of y(rn) in terms of the statistical properties of the input
and the characteristics of the system. For Gaussian signals, which are used very often in
practice, first- and second-order statistics are sufficient.

Output mean value. |f x(n) is stationary, its first-order statistic is determined by its
mean value 1. To determine the mean value of the output, we take the expected value of
both sides of (3.4.1):

iy = > hMEx(m—k}=pn, Y hk)=puHeO (3.4.4)

k=—00 k=—00

Since 1, and H (/%) are constant, ., is also constant. Note that H (¢/°) isthe dc gain of
the spectrum.

Input-output cross-correlation. 1f we take complex conjugate of (3.4.1), premultiply
it by x(n + 1), and take the expectation of both sides, we have

E(x(n+Dy*(Oy = Y h*K)E{x(n+Dx*(n — k)

k=—o00
or ro@) =Y K Oral+k =Y B (=m)ru(—m)
k=—00 m=—00
Hence, ey () = B*(=1) % 1y (1) (3.4.5)
Similarly, Fyx () = h(l) x ry () (3.4.6)

Output autocorrelation. Postmultiplying both sidesof (3.4.1) by y*(n — 1) and taking
the expectation, we obtain

E{ym)y*mn—D}= Y h(k)E{x(n—k)y*(n—1) (3.4.7)
k=—00
or ) =Y KKy — k) = h(l) * ey () (34.8)
k=—00

From (3.4.5) and (3.4.8) we get

rol) = h(l) % B*(=1) % re (D) (3.4.9)
or ry() = rp@) = re () (3.4.10)
where ) £ h(l) « h*(=]) = Z h(m)h*(n —1) (34.11)

isthe autocorrelation of theimpulse response and is called the system correl ation sequence.

Since u, is constant and ry (/) depends only on the lag /, the response of a stable
system to a stationary input is also a stationary process. A careful examination of (3.4.10)
shows that when a signal x (n) isfiltered by an LTI system with impulse response i (n) its
autocorrelationis “filtered” by a systemwith impul se response equal to the autocorrelation
of itsimpul se response, as shown in Figure 3.10.
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FIGURE 3.10
An equivalent LTI system for autocorrelation filtration.

Output power. The power E{|y(n)|?} of the output process y(n) is equa to ry(0),
which from (3.4.9) and (3.4.10) and the symmetry property of r, (/) is

Py = ry(o) = rp(D) *rx (D=0
= Y mr(=k) = Y [hk) x h*(=k)Ire (k)
k=—00 k=—00
= > h(m)h* (m — k)ry (k) (34.12)
k=—00 m=—00
= Y rrk (34.13)

k=—00

or for FIR filterswith h = [ (0) (1) --- h(M — 1)]7, (3.4.12) can be written as
Py = hfR,h (3.4.14)
Finally, we note that when 1., = 0, wehave 1, = Oand o2 = P,.

Output probability density function. Finding the probability density of the output of
an LTI system is very difficult, except in some special cases. Thus, if x(n) is a Gaussian
process, then the output is a so a Gaussian process with mean and autocorrel ation given by
(3.4.4) and (3.4.10). Also if x(n) is|ID, the probability density of the output is obtained by
noting that y (n) isaweighted sum of independent random variables. Indeed, the probability
density of the sum of independent random variables is the convolution of their probability
densities or the products of their characteristic functions. Thus if the input process is an
I1D stable process then the output process is also stable whose probability density can be
computed by using characteristic functions.

3.4.2 Frequency-Domain Analysis

To obtain the output autoPSD and complex autoPSD, we recall that if H(z) = Z{h(n)},
then, for rea h(n),

Z(h*(—n)) = H* <Zi) (3.4.15)
From (3.4.5), (3.4.6), and (3.4.9) we obtain

Riy(z) = H* (;) R (2) (3.4.16)

Ryx(z) = H(2)Rx(2) (3.4.17)

and Ry(z) = H@)H* (Zi*) R:(2) (3.4.18)
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For a stable system, the unit circle z = /¢ lies within the ROCs of H(z) and H(z1).
Thus,

Ryy(e/?) = H*(e/*) Ry (e/?) (3.4.19)
Ryx(e’®) = H(e!*)Ry(e’?) (3.4.20)
and Ry(e/?”) = H(e/”)H* (e/”) Ry () (3.4.21)
or Ry(e!”) = |H (&) Ry (e/?) (34.22)

Thus, if we know the input and output autocorrelations or autospectral densities, we can
determine the magnitude response of a system, but not its phase response. Only cross-
correlation or cross-spectral densities can provide phase information [see (3.4.19) and
(3.4.20)].

It can easily be shown that the power of the output is

1 T . ,
E{lym)|?} = ry,(0) = > / |H (e/?)|2Ry (/) dov (3.4.23)
= Y rra) (3.4.24)
|=—00

which isequivaent to (3.4.13).
Consider now a narrowband filter with frequency response

Aw Aw
(X)C_TEO)SC()C-F—

‘ 1
H(!?) = 2 (3.4.25)
0 elsewhere
The power of the filter output is

1 wet+Aw/2 . A )
E{|y(n)|2} = —/ R, (e’®) dw ~ —wa (e/?¢) (3.4.26)
2r we—Aw/2 T

assuming that Aw is s_ufﬁciently small and that R, (e/®) is continuous at w = w,. Since
E{ly(n)|?} = 0, R, (e’®) is aso nonnegative for al w. and Aw, hence

R, (e/®) >0 —T<w<mw (3.4.27)
Hence, the PSD R, (e/?) is nonnegative definite for any random sequence x(n) real (or
complex). Furthermore, R, (¢/®) dw/(21), hasthe interpretation of power, or R, (e/®) isa
power density as a function of frequency (in radians per sample). Table 3.2 shows various
input-output relationships in both the time and frequency domains.

TABLE 32
Second-order moments of stationary random sequences processed by linear,
time-invariant systems.

Time domain Frequency domain z Domain
y(n) = h(n) * x(n) Not available Not available
ryx() = h(l) % ry (1) Ryx(e/?) = H(e/?)Ry (e/®) Ryx(z) = H(2)Rx (2)
ray() = h* (=D xrx () Ryy(e/®) = H*(e/“) Ry (e/?) Ryy(2) = H*(1/z")Rx (2)
ry) = h(l) * rxy () Ry(e/?) = H(e!?)Ryy(e!) Ry(z) = H(z)Rxy(2)

ry(0) = h(D) * 1* (=) xre (D) Ry(e/®) = |H(e/®)|2Ry (/) Ry(2) = HH*(1/Z*)Rx (2)

3.4.3 Random Signal Memory

Given the “zero-memory” process w(n) ~ 1ID(0, 02), we can introduce dependence by
passing it though an LTI system. The extent and degree of the imposed dependence are
dictated by the shape of the system’s impulse response. The probability density of w(n) is



not explicitly involved. Suppose now that we are given the resulting linear process x (n),
and we want to quantify its memory. For processes with finite variance we can use the
correlation length

1 o0 o0
L= () = L
rx(o);ro ;po

which equals the area under the normalized autocorrelation sequence curve and shows the
maximum distance at which two samples are significantly correlated.

An |1D process has no memory and is completely described by its first-order density.
A linear process has memory introduced by the impul se response of the generating system.
If w(n) hasfinite variance, the memory of the processis determined by the autocorrelation
of the impulse response because r, () = oﬁ)rh (). Also, the higher-order densities of the
process are nonzero. Thus, the variahility of the output—that is, what amplitudes the sig-
nal takes, how often, and how fast the amplitude changes from sample to sample—is the
combined effect of the input probability density and the system memory.

DEFINITION 39. A stationary process x (n) with finite variance is said to have long memory if
there exist constantsa, 0 < o < 1, and C; > 0 such that

lim %rx(l)l“ =1
[—00 Car
Thisimpliesthat the autocorrelation hasfat or heavy tails, that is, asymptotically decaysas
apower law
o (D) = Crll|™" asl — oo

and slowly enough that

> ph) =00

I=—00

that is, along-memory process has infinite correlation length. If

Z 0, () < o0

[=—00

we say that that the process has short memory. This is the case for autocorrelations that
decay exponentially, for example, p, (1) = al, -1 < a < 1.

An equivalent definition of long memory can be formulated in terms of the power
spectrum (Beran 1994; Samorodnitsky and Tagqu 1994).

DEFINITION 3.10. A stationary process x (n) with finite variance is said to have long memory if
there exist constants 8,0 < 8 < 1, and Cg > 0 such that

lim Ry (/) wlf =1
w—0 Cgro

2
X

This asymptotic definition implies that
2

Ro(e@) ~ SR9% sy 0
lw|#
o0
and R.(0) = Z re(l) = 00
[=—00

Thefirst-order density determinesthe mean value and thevariance of aprocess, whereas
the second-order density determines the autocorrelation and power spectrum. There is a
coupling between the probability density and the autocorrelation or power spectrum of a
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process. However, this coupling is not extremely strong because there are processes that
have different densities and the same autocorrelation. Thus, we can have random signal
models with short or long memory and low or high variability. Random signal models are
discussed in Chapters 4 and 12.

3.4.4 General Correlation Matrices

We first begin with the properties of general correlation matrices. Similar properties apply
to covariance matrices.

PROPERTY 34.1. The correlation matrix of arandom vector x is conjugate symmetric or Her-
mitian, that is,

Ry = RY (3.4.28)
Proof. Thisfollows easily from (3.2.19).

PROPERTY 3.4.2. The correlation matrix of a random vector x is nonnegative definite (n.n.d.);
or for every nonzero complex vector w = [w1 wy --- wps]?, the quadratic form w Ryw is
nonnegative, that is,

wHRyw > 0 (3.4.29)
Proof. To prove (3.4.29), we define the dot product
M
a=wx=x"w* =" wix (3.4.30)
k=1
The mean square value of the random variable « is
E{le?}) = EfwH xx"w) = wH E{xx)w = wH Ryw (34.31)

Since E{|«|?} > 0, if follows that w# Ryw > 0. We also note that a matrix is called positive
definite (p.d.) if W Rxw > 0.

Eigenvalues and eigenvectorsof R

For aHermitian matrix R wewish to find an M x 1 vector q that satisfies the condition

Rg = Aq (3.4.32)

where A is a constant. This condition implies that the linear transformation performed
by matrix R does not change the direction of vector g. Thus Rq is a direction-invariant
mapping. To determine the vector q, we write (3.4.32) as

(R—2xHg=0 (3.4.33)

wherel isthe M x M identity matrix and Oisan M x 1 vector of zeros. Sinceq isarbitrary,
the only way (3.4.33) is satisfied isif the determinant of R — Al equals zero, that is,

det(R — A1) =0 (3.4.34)

This equation is an Mth-order polynomial in A and is called the characteristic equation of
R. It has M roots {ki}f‘il, called eigenvalues, which, in general, aredistinct. If (3.4.34) has
repeated roots, then R is said to have degenerate eigenvalues. For each eigenvalue A; we
can satisfy (3.4.32)

where the g; are called eigenvectors of R. Therefore, the M x M matrix R has M eigen-
vectors. To uniquely determine g;, we use (3.4.35) along with the normality condition that
lg; |l = 1. AMatraB function [ Lanbda, = ei g(R) isavailable to compute eigenvalues
and eigenvectors of R.
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PROPERTY 343. Thematrix R¥(k = 1,2, ...) haseigenvalues X, 2%, ... 2% .
Proof. See Problem 3.16.

PROPERTY 344. Iftheeigenvaluesii, Ao, ..., Ay aredistinct, the corresponding eigenvectors
{q;}}1, arelinearly independent.

Proof. This property can be proved by using Property 3.4.3. If there exists M not-all-zero
scalars {o; }M |, such that

M
> eig; =0 (3.4.36)
i=1

then the eigenvectors {q; };_ ; are said to be linearly dependent. Assume that (3.4.36) is true for
some not-all-zero scalars {ai}if‘il and that the eigenvalues {Ai}i"il are distinct. Now multiply
(3.4.36) repeatedly by R¥ k = 0, ..., M — 1 and use Property 3.4.3 to obtain

M M
Y @iRfqi =) ajafg; =0  k=0.. M-1 (3.4.37)
i=1 i=1
which can be arranged in amatrix format fori =1,..., M as
2 M-1
1 A A o0 M
1 ap A2 ... M1
[w101 @202 @3d3 ... apqu] 2 2 |=0 (34.39)
2 M-1
1 am Ay -0 Ay

Since all the ; are distinct, the matrix containing the A; in (3.4.38) above is nonsingular. This
matrix is called a Vandermonde matrix. Therefore, premultiplying both sides of (3.4.38) by the
inverse of the Vandermonde matrix, we obtain

[e101 0202 @303 ... apGp] =0 (34.39)
Since eigenvectors {q; }f‘i 4 e not zero vectors, the only way (3.4.39) can be satisfied isiif all
{a;) f‘i , arezero. Thisimpliesthat (3.4.36) cannot be satisfied for any set of not-all-zero scalars
{a;}M |, which further impliesthat {q;}*/; are linearly independent.
PROPERTY 345. Theegenvaues {Ai}f‘il arereal and nonnegative.
Proof. From (3.4.35), we have
9”Ra; = 19faq;  i=12...M (3.4.40)
Since R is positive semidefinite, the quadratic form qu Rqg; > 0. Also since quqi is an inner

product, g g; > 0. Hence

H

"RQ:
quiq’zo i=12....M (3.4.41)
q;" Qi

Furthermore, if R ispositive definite, then A; > Oforall 1 <i < M. Thequotientin (3.4.41) is
auseful quantity and is known as the Raleigh quotient of vector q;.

i =

PROPERTY 346. If the eigenvalues {1; },-Ai , aredigtinct, then the corresponding eigenvectors
are orthogonal to one another, that is,

a#Er=0Mq; =0 fori#; (3.4.42)
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Proof. Consider (3.4.35). We have

qu = )\,iqi (3443)
and Ra; = 4;q; (3.4.44)
for somei # j. Premultiplying both sides of (3.4.43) by qf , we obtain

aRa; =a¥ 20 = 297 q; (3.4.45)

Taking the conjugate transpose of (3.4.44), using the Hermitian property (3.4.28) of R, and using
the realness Property 3.4.5 of eigenvalues, we get

afR =2,q¥ (3.4.46)
Now postmultiplying (3.4.46) by ¢; and comparing with (3.4.45), we conclude that
amafai =299 o (i —2jaffa; =0 (34.47)

Since the eigenvalues are assumed to be distinct, the only way (3.4.47) can be satisfied is if
qf g; = Ofori # j, which further proves that the corresponding eigenvectors are orthogonal
to one another.

PROPERTY 34.7. Let {q[}i"i 4 beanorthonormal set of eigenvectors corresponding to thedistinct
eigenvalues {Ai}f‘il of an M x M correlation matrix R. Then R can be diagonalized asfollows:
A =QHRQ (3.4.48)

where the orthonormal matrix Q £ [q - - - q7] isknown asan eigenmatrix and A isan M x M
diagonal eigenvalue matrix, that is,

A 2 diag(rhq, ..., Am) (3.4.49)
Proof. Arranging the vectorsin (3.4.35) in amatrix format, we obtain
[Ra1 Ray -+ Rayl = [A101 2202 -+ Ay Apm]
which, by using the definitions of Q and A, can be further expressed as
RQ = QA (3.4.50)

Sinceq;,i = 1,..., M, isan orthonormal set of vectors, the eigenmatrix Q is unitary, that is,
Q1= Q. Now premultiplying both sides of (3.4.50) by Q¥ , we obtain the desired result.

This diagonalization of the autocorrelation matrix plays an important role in filtering
and estimation theory, aswe shall seelater. From (3.4.48) the correlation matrix R can also
be written as

M
R =QAQ" = aa1af + - + AuAuafy = > Anlm0h (34.51)

m=1

which is known as the spectral theorem, or Mercer 'stheorem. If R is positive definite (and
hence invertible), itsinverse is given by

M
R = (QAQ") = QA0 = 3" ol (3452)

m
m=1

because A isadiagonal matrix.

PROPERTY 348 Thetraceof R isthe summation of al eigenvalues, that is,
M
tr(R) =Y A (3.4.53)
i=1

Proof. SeeProblem 3.17.



PROPERTY 34.9. Thedeterminant of R isequal to the product of all eigenvalues, that is,
M
detR=|R|:l_[Ai=|A| (3.4.54)
i=1

Proof. SeeProblem 3.18.
PROPERTY 34.10. Determinantsof R and T arerelated by

IR| = 1|1+ py Tpy) (3.4.55)
Proof. SeeProblem 3.19.

3.4.5 Correlation Matrices from Random Processes

A stochastic process can also be represented as a random vector, and its second-order
statistics given by the mean vector and the correlation matrix. Obviously, these quantities
arefunctions of theindex n. Let an M x 1 random vector x(n) be derived from the random
process x (n) asfollows:

X(n) £ [x(n)x(n—1) - x(n— M+ 17 (3.4.56)
Then itsmean isgiven by an M x 1 vector
pr () = [, () (= 1) -+ e (n — M+ D] (34.57)
and the correlation by an M x M matrix
re(n, n) e orx(nyn—M+ 1)
Re(n) = |: U (3.4.58)
rem—-M+1n) - rem—-—M+1Ln-—M+1)
Clearly, R, (n) isHermitiansincery(n —i,n — j) =ri(n — j,n —i),0<i,j <M — 1.
This vector representation will be useful when we discuss optimum filters.

Correlation matrices of stationary processes

Thecorrelation matrix R, (n) of ageneral stochastic processx (n) isaHermitian M x M
matrix defined in (3.4.58) with elementsr,(n — i,n — j) = E{x(n — i)x*(n — j)}. For
stationary processes this matrix has an interesting additional structure. First, R, (n) is a
constant matrix R, ; then using (3.3.24), we have

re(m—in—j)=r(j—i)=r(=2j—i) (3.4.59)
Finally, by using conjugate symmetry r, (1) = r}(—I), the matrix R, is given by
r+(0) ry (1) r:(2) e (M =1)
re (D) rx(0) rx(1) k(M =2)
R, = |2 re(D) rx(0) co (M = 3) (3.4.60)
rrM-=1 rf(M-2) riM-=3) --- ry(0)

It can be easily seen that R, is Hermitian and Toeplitz.” Thus, the autocorrelation matrix
of astationary processis Hermitian, nonnegative definite, and Toeplitz. Note that R, isnot
persymmetric because elements along the main antidiagonal are not equal, in general.

" A matrix is called Toeplitz if the elements along each diagonal, parallel to the main diagonal, are equal.
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Eigenvalue spread and spectral dynamic range

The ill conditioning of a matrix R, increases with its condition number X(R,) =
Amax/Amin- When R, isacorrelation matrix of astationary process, then X' (R,) isbounded
from above by the dynamic range of the PSD R, (¢/®) of the process x (n). The larger the
spread in eigenvalues, the wider (or less flat) the variation of the PSD function. Thisisalso
related to the dynamic range or to the dataspread in x (n) and isauseful measurein practice.
This result is given by the following theorem, in which we have dropped the subscript of
R, (e/®) for clarity.

THEOREM 35. Consider a zero-mean stationary random process with autoPSD

o
R(e®)y= " rneI*!
|=—00
then minR(e/?) < 1; <maxR(e/?)  foradli=1,2,....M (3.4.61)
w w
Proof. From (3.4.41) we have
H
HRq;
A= (3.4.62)
q;” i

Consider the quadratic form

M M
af'Ra; =) > " qityrd —kygi (1)
k=11=1

whereq; = [¢;(1) ¢;(2) --- ¢;(M)]T. Using (3.3.41) and the stationarity of the process, we
obtain

1 T . .
af'Ra; = 5- > ) af 0ai () / R(/®)ei® 1R gy
k1 -

(3.4.63)
1 g . M ) M '
=5 / R | D" qf e % || Y qiel | do
7 k=1 =1
jT . .
or q/'Ra; = % / R(e7)|Q(e/®) | 2de (3.4.64)
-
Similarly, we have
1 (7 .
affai = o / 10(e7”) |2 dov (3.4.65)
—TT

Substituting (3.4.64) and (3.4.65) in (3.4.62), we obtain

/” 10e/) 2R (/) do
o= ' (3.4.66)
/ 10(e/®)|2 dw

However, since R(e/®) > 0, we have the following inequality:

. big . T . .
minR) [ 10y do < [ 10 do
-7 -7
. T .
< max R(el?) / 10(e/)Pdey
@ —
from which we easily obtain the desired result. The above result also implies that
Amax < ma?XR(ejw)
Amin — mMin R(e/®)
w

X(R) £ (3.4.67)

which becomes equality as M — oo.



3.5 WHITENING AND INNOVATIONS REPRESENTATION

In many practical and theoretical applications, it is desirable to represent a random vector
(or sequence) with a linearly equivalent vector (or sequence) consisting of uncorrelated
components. If x is a correlated random vector and if A is a nonsingular matrix, then the
linear transformation

w = Ax (351

results in arandom vector w that contains the same “information” as x, and hence random
vectors x and w are said to be linearly equivalent. Furthermore, if w has uncorrelated com-
ponentsand A islower-triangul ar, then each component w; of w can bethought of asadding
“new” information (or innovation) to w that is not present in the remaining components.
Such a representation is called an innovations representation and provides additiona in-
sight into the understanding of random vectors and sequences. Additionally, it can simplify
many theoretical derivations and can result in computationally efficient implementations.

Since Ty, must be a diagonal matrix, we need to diagonalize the Hermitian, positive
definite matrix T’y through the transformation matrix A. There are two approaches to this
diagonalization. One approach isto use the eigenanalysis presented in Section 3.4.4, which
results in the well-known Karhunen-Logve (KL) transform. The other approach is to use
triangularization methods from linear algebra, which leadsto the LDU (UDL) and LU (UL)
decompositions. These vector techniques can be further extended to random sequences that
give us the KL expansion and the spectral factorizations, respectively.

3.5.1 Transformations Using Eigendecomposition

Let x be a random vector with mean vector u, and covariance matrix I'x. The linear
transformation

X0 = X — fy (35.2)

resultsin azero-mean vector Xo with correlation (and covariance) matrix equal to I'y. This
transformation shiftsthe origin of the M-dimensional coordinate system to the mean vector.
We will now consider the zero-mean random vector Xq for further transformations.

Orthonormal transfor mation

Let Qx be the eigenmatrix of T, and let us choose QX as our linear transformation
matrix A in (3.2.32). Consider

w = Qffxo = Qff (x — py) (35.3)

Then tw = Q¥ (E{xo}) =0 (35.4)
and from (3.2.39) and (3.4.48)

I'w =Ry = E{QonXng} = Q;]erx = Ax (3.5.5)

Since Ay isdiagonal, Ty, isalsodiagonal, and hencethistransformation has someinteresting
properties:

1. Therandom vector w has zero mean, and its components are mutually uncorrelated (and
henceorthogonal). Furthermore, if xisA (i, T'x), thenwis A (0, Ax) withindependent
components.

2. The variances of random variables w;,i = 1,..., M, are equal to the eigenvalues of
I'y.

3. Since the transformation matrix A = Q¥ is orthonormal, the transformation is called
an orthonormal transformation and the distance measure

d?(x0) £ xH T o (3.5.6)
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is preserved under the transformation. This distance measure is aso known as the
Mahalanobis distance; and in the case of norma random vectors, it is related to the
log-likelihood function.

4. Sincew = Q¥ (x — py), we have

wi =7 (X — y) = X — pxl cOS[L(X — py,9)]  i=1....M  (357)

which is the projection of x — u, onto the unit vector g;. Thus w represents x in anew
coordinate system that is shifted to u, and spanned by g;,i = 1, ..., M. A geometric
interpretation of thistransformation for atwo-dimensional caseisshownin Figure 3.11,
which shows a contour of d%(xg) = xT'yx = w# A w in the x and w coordinate
systems (w = Q¥ x).

FIGURE 3.11
Orthogonal transformation in two dimensions.

=
v

| sotropic transformation

In the above orthonormal transformation, the autocorrelation matrix Ry is diagonal
but not an identity matrix | . This can be achieved by an additional linear mapping of A;l/z.
Let
1/2

1/2 -1/2

Qxg = Ax QI (x — py) (35.8)

Then Ry = Ax 2QUT, QA % = AxPAx AL Y2 =1 (3.5.9)

This is called an isotropic transformation because all components of y are zero-mean,
uncorrelated random variables with unit variance.” The geometric interpretation of this
transformation for atwo-dimensional caseisshowninFigure3.12. It clearly showsthat there
isnot only ashift and rotation but also ascaling of the coordinate axis so that the distribution
isequal in all directions, that is, it is direction-invariant. Because the transformation A =
Ay Y ZQQ’ is orthogonal but not orthonormal, the distance measure d?(xo) is not preserved
under this mapping. Since the correlation matrix after this transformation is an identity
matrix |, it isinvariant under any orthonormal mapping, that is,

Q71IQ =QQ =1 (3.5.10)

This fact can be used for simultaneous diagonalization of two Hermitian matrices.

y=Ax""W=Ax

EXAMPLE 351 Consider astationary sequence with correlation matrix

R 1 a
T e 1

where —1 < a < 1. The eigenvalues
M=14+a M=1—-a

f In the literature, an isotropic transformation is aso known as a whitening transformation. We believe that this
terminology is not accurate because both vectors Q){’ X and Ay Y ZQ)’Z Xg have uncorrelated coefficients.



X2 4 U FIGURE 3.12
Isotropic transformation in two
dimensions.

Original
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H distribution
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are obtained from the characteristic equation

1—1 a 2 2
det(Ry — Al) = det =1-1)“—-a“=0
a 1-A

To find the eigenvector g, we solve the linear system

D D
1 allq q
[ 1} { 1@} - (Ha{ il)}
. 49> L)
(2 _

which gives qil) = qél). Similarly, we find that ¢,~ = —qéz). If we normalize both vectorsto
unit length, we obtain the eigenvectors

1 1 1 1
Q1—\721 %—\72 _1

From the aboveresultswe seethat det Ry = 1—a? = AqA2 and Q7 Q = |, where Q = [q1 g>].

3.5.2 Transformations Using Triangular Decomposition

The linear transformations discussed above were based on diagonalization of hermitian
matricesthrough e genval ue-eigenvector decomposition. Theseare useful in many detection
and estimation problems. Triangular matrix decomposition leads to transformations that
resultin causal or anticausal linear filtering of associated sequences. Hence these mappings
play an important role in linear filtering. There are two such decompositions: the lower-
diagonal-upper (LDU) oneleadsto causal filtering while the upper-diagonal-lower (UDL)
oneresultsin anticausal filtering.

L ower-diagonal-upper decomposition
Any Hermitian, positive definite matrix R can be factored as (Goulob and Van Loan
1989)
R=LD,L" (3.5.11)
or equivalently LRL=7 =D, (35.12)

where L isaunit lower triangular matrix, Dy isadiagonal matrix with positive elements,
and L7 isaunit upper triangular matrix. The MaTLAB function [ L, D] =I dI t (R), givenin
Section 5.2, computes the LDU decomposition.

Since L isunit lower triangular, we have det R = [/, &/, where ¢!, ..., £} arethe
diagonal elements of D . If we define the linear transformation

w=L"1x £ Bx (35.13)
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we find that
Ry = Efww} = LLE(xx)L=# = L7IRL=7 =D, (3.5.14)

Clearly, the components of w are orthogonal, and theelements ¢!, . . ., glM aretheir second
moments. Therefore, this transformation appears to be similar to the orthogonal one. How-
ever, the vector w is not obtained as asimple rotation of x. To understand this mapping, we
first notethat B = L ~1 isalso aunit lower triangular matrix (Goulob and Van Loan 1989).
Then we can write (3.5.13) as

w1 1 .0 R
wj = bjj_ 1 .- 0 Xi (3.5.15)
Wy | byi - byi - 1] [xm

where b;;, are elements of B. From (3.5.15) we conclude that w; isalinear combination of
xi, k <i,thatis,

i
wi=Y byxy 1<i<M (3.5.16)
k=1

If the signal vector x consists of consecutive samples of a discrete-time stochastic process
x(n), that is,

X=[xm)x(n—1) - x(n— M+ 1)1" (35.17)

then (3.5.16) can be interpreted as a causal linear filtering of the random sequence (see
Chapter 2). This transformation will be used extensively in optimum linear filtering and
prediction problems.

A similar LDU decomposition of autocovariance matrices can be performed by follow-
ing the identical steps above. In this case, the components of the transformed vector w are
uncorrelated, and theelementsgﬁ, 1<i<M,of Dy arevariances.

Upper-diagonal-lower decomposition

This diagonalization is aimost identical to the previous one and involves factorization
of aHermitian, positive definite matrix into an upper-diagonal-lower form. It is given by

R = UDyU” (3.5.18)
or equivaently URU™ = Dy = diag(gl, ..., &%) (3.5.19)
inwhich thematrix U isunit upper triangular, the matrix U isunit lower triangular, and the
matrix Dy isdiagonal with positive elements. Notethat U” = L and Dy # Dy . Following
the same analysis as above, we have detR = detDy = ]_[f‘ilé;’. Since A = U~ isunit

upper triangular in the transformation w = U~1x, the components of w are orthogonal and
are obtained by linear combinations of xi, k > i, that is,

w; = Zl,-kxk l<i<M (3.5.20)

Thisrepresents an anticausal filtering of arandom sequenceif x isasignal vector. Table 3.3
compares and contrasts orthogonal and triangular decompositions. We note that the LDU
decomposition does not have the nice geometric interpretation (rotation of the coordinate
system) of the eigendecomposition transformation.

Generation of real-valued random vectors with given second-order moments. Sup-
pose that we want to generate M samples, say, x1, x2, ..., x), Of areal-valued random
vector X with mean 0 and agiven symmetric and positive definite autocorrel ation matrix Ry.



TABLE 33
Comparison of orthogonal and triangular decompositions
for zero-mean random vectors.

Orthogonal decomposition Triangular decomposition
R = E{xxf1} R = E{xxH}
Rg; = 2;q;
Q=I[g1, 02, ..., aml L = unit lower triangular
A =diag{ry A2, ..., Am} D =diag{¢1 &2, ..., Em}
R=0QAQ" =Yy, q;97 R=LDLH
A =QFRQ D=L"1RL-H
R-1=QA-1QH =y M, Tl,-qiqu R-1_|-Hp-1_ -1
A-1=QHR1Q D-1—|-HR-1 -1
detR = det A = [, % detR = detD = [T, &;

trR:trA:Zf‘ilx,«

Whitening (noncausal) Whitening (causal)
w = Qfx w=L"1x
E{wwH} = A E{wwf} =D

The innovations representation given in this section suggests three approaches to generate
samples of such a random vector. The general approach is to factor Ry, using either the
orthonormal or the triangularization transformation, to obtain the diagona matrix (Ax or
D(LX) or Dg()), generate M samplesof an |1D sequence with the obtained diagonal variances,
and then transform these samples by using the inverse transformation matrix (Qy or Ly or
Uy). We hasten to add that, in general, the original distribution of thelID sampleswill not be
preserved unless the samples are jointly normal. Therefore, in the following discussion, we
assume that a normal pseudorandom number generator is used to generate M independent
samples of w. The three methods are as follows.

Eigendecomposition approach. First factor Ry as Ry = QXAXQ){’ . Then generate
w, using the distribution A'(0, Ax). Finally, compute the desired vector x, using
X = Qyw.

LDU triangularization approach. First factor Ry as Ry = LXD(LX)Lf. Then generate
w, using the distribution A/(0, D). Finally, compute the desired vector x, using
x = Low.

UDL triangularization approach. First factor Ry as Ry = UXDS‘)U{’. Then generate
w, using the distribution N(O, DS()). Finally, compute the desired vector X, using
X = Uyw.

Additional discussionand more completetreatment onthe generation of random vectors
are given in Johnson (1994).

3.5.3 The Discrete Karhunen-L oéve Transform

In many signal processing applications, it isconvenient to represent the samples of arandom
signal in another set of numbers (or coefficients) so that this new representation possesses
some useful properties. For example, for coding purposes we want to transform a signal

") we use the Cholesky decomposition Ry = [xLf, where [y = {D(LX)}l/ZLX, thenw = A/(0, |) will generate
x with the given correlation Ry, using X = Lxw.
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so that its energy is concentrated in only a few coefficients (which are then transmitted);
or for optimal filtering purposes we may want uncorrelated samples so that the filtering
complexity is reduced or the signal-to-noise ratio is enhanced. A general approach is to
expand a signal as alinear combination of orthogonal basis functions so that components
of the signal with respect to basis functions do not interfere with one another. There are
several such basis functions; the most widely known is the set of complex exponentials
used in DTFT (or DFT) that are used in linear filtering, as we discussed in Section 3.4.
Other examples are functions used in discrete cosine transform, discrete sine transform,
Haar transform, etc., which are useful in coding applications (Jain 1989).

As discussed in this section, a set of orthogonal basis functions for which the signal
components are statistically uncorrelated to one another is based on the second-order prop-
erties of the random process and, in particular, on the diagonalization of its covariance
matrix. It isalso an optimal representation of the signal in the sensethat it provides arepre-
sentation with the smallest mean sgquare error among all other orthogonal transforms. This
has applications in the analysis of random signals aswell asin coding. This transform was
first suggested by Karhunen and L oevefor continuous random processes. It was extended to
discreterandom signals by Hotelling and isal so known as the Hotelling transform. In keep-
ing with the current nomenclature, we will cal it the discrete Karhunen-Lo¢ve transform
(DKLT) (Fukunaga 1990).

Development of the DKLT

Let X = [x1 x2 --- xy]7 beazero-mean’ random vector with autocorrelation matrix
Rx. We want to represent x using the linear transformation

w=Afx ATl=AH (3.5.21)
where A isaunitary matrix. Then

M
x=Aw=Y wa aa=0 i#j (35.22)
i=1
Let us represent x using thefirst m, 1 < m < M, components of w, that is,
m
kézwia,» l<m<M (3.5.23)
i=1
Then from (3.5.22) and (3.5.23), the error between x and X is given by
M m M
e,,,éx—§<=2w,-a,~—2w,~a,-= Z w; ay (3.5.24)
i=1 i=1 i=m+1
and hence the mean-squared error (MSE) is
M M
En 2 E{efle, = Y afE{wifPYa = ) E{lwi’}afa (35.25)
i=m+1 i=m+1

Since from (3.5.21) w; = al’x, we have E{|w;|?} = a/’Rya;. Now we want to determine
the matrix A that will minimize the MSE E,, subject to al.”ai =1li=m+1...,Ms0
that from (3.5.25)

M M
En= Y E{wP}= > afRa afa=1 i=m+1....M (35.26)
i=m+1 i=m+1

i If the mean is not zero, then we perform the transformation on the mean-subtracted vector, using the covariance
matrix.



This optimization can be done by using the Lagrange multiplier approach (Appendix B);
that is, we minimize

M M
Z afRya; + Z rl-allay)  i=m+1,....M
i=m+1 i=m+1
Hence after setting the gradient equal to zero,

M M
Va | Y. a'Rxa+ Y n(l—afa) | =R@)* —na)* =0  (3527)
i=m+1 i=m+1
we obtain Rya; = A;q; i=m+1,....M
whichis equivalent to (3.4.35) in the eigenanalysis of Section 3.4.4. Hence A; isthe eigen-

value, and the corresponding a; is the eigenvector of Ry. Clearly, sincel < m < M, the
transformation matrix A should be chosen as the eigenmatrix Q. Hence

ay’
0 — qf — 0
W= X
) "
— qff —
or more concisely w = Qfx (3.5.28)

provides an orthonormal transformation so that the transformed vector w is a zero-mean,
uncorrelated random vector with autocorrelation A. Thistransformationiscalled the DKLT,
and itsinverse relationship (or synthesis) is given by

T Tt et T
X|=101 Q2 - Oum | |W (3.5.29)
\: Vol \:

or X=QW = quw1i+ Qw2 + - - - + quwum (3.5.30)

From Section 3.5.1, the geometric interpretation of this transformation is that {wk}fl"’ are

projections of the vector x with respect to the rotated coordinate system of {qk}y . The
eigenvalues A; also have an interesting interpretation, as we shall see in the following
representation.

Optimal reduced-basis representation

Generally we would expect any transformation to provide only few meaningful com-
ponents so that we can use only those basis vectors resulting in a smaller representation
error. To determine this reduced-basis representation property of the DKLT, let us use first
K < M eigenvectors (instead of all g;). Then from (3.5.26), we have

M
Ex= Y A (3.5.31)
i=K+1
In other words, the MSE in the reduced-basi s representation, when the first K basis vectors
are used, isthe sum of the remaining eigenvalues (which are never negative). Therefore, to
obtain aminimum M SE (that is, an optimum) representation, the procedure isto choose K
eigenvectors corresponding to the K largest eigenvalues.

Application in data compression. The DKLT is a transformation on a random vector
that produces a zero-mean, uncorrelated vector and that can minimize the mean square
representation error. One of its popular applicationsis data compression in communications
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and, in particular, in speech and image coding. Suppose we want to send a sample function
of a speech process x¢(¢). If we sample this waveform and obtain M samples {x (n)}{)”*l,
then we need to send M data values. Instead, if we analyze the correlation of {x(n)}gH
and determine that M values can be approximated by a smaller K numbers of w; and
the corresponding q;, then we can compute these K data values {w,-}f at the transmitter
and send them to the receiver through the communication channel. At the receiver, we
can reconstruct {x(n)}gl ~1 by using (3.5.23), as shown in Figure 3.13. Obviously, both
the transmitter and receiver must have the information about the eigenvectors {q,-}gl LA
considerable amount of compression isachieved if K is much smaller than M.

x(n) w(n) | Reduced-basis | () | |hverse | XM
—» DKLT > selection DKLT
Uncoded scheme Coded Reconstructed
signal signal signal
FIGURE 3.13

Signa coding scheme using the DKLT.

Periodic random sequences

As we noted in the previous section, the correlation matrix of a stationary process is
Toeplitz. If the autocorrel ation sequence of arandom processis periodic with fundamental
period M, itscorrelation matrix becomes circulant. All rows (columns) of acirculant matrix
are obtained by circular rotation of itsfirst row (column). Using (3.4.60) and the periodicity
relationr,(I) = re (Il — M), weobtain

rx(0) ry(D) (2 - (M -1
(M —=1) ry(0) e o (M —2)

R, = reM—=2) res(M—=1) r,(0) -+ r(M-=3) (3532)
rx(D) rx(2) (@) - (0

which isacirculant matrix. We note that a circulant matrix is Toeplitz but not vice versa.
If we define the M-point DFT of the periodic sequence r, (1)

M-1
R (k) = Z re (WK (3.5.33)
1=0
where Wy, £ ¢=7/27/M and the vector
1 _
w2 —J1 Wzlfxz W1%4k W&M Dkyr O<k<M-1 (3.5.39)

VM

we can easily seethat multiplying thefirst row of R, by thevector wy resultsin R, (k) /~/M.
Using WA‘/‘ = W,(WM ~Dk we find that the product of the second row by w; is equal to
R.(kyW!, //M. In general, the ith row by w; gives R, (k)WY /</M. Therefore, we
have

Rewy = R (b)wg O<k<M-—-1 (3.5.35)

which shows that the normalized DFT vectors w;, are the eigenvectors of the circulant
matrix R, with as corresponding eigenvalues the DFT coefficients R, (k). Therefore, the
DFT provides the DKLT of periodic random sequences. We recall that R, (k) are samples
of the DTFT R, (e/27k/M) of the finite-length sequence r, (1), 0 <l < M — 1.



If we definethe M x M matrix
W £ [WoWyp -+ Way—1] (3.5.36)
we can show that
wWHW =ww# =| (35.37)
that is, the matrix W is unitary. The set of equations (3.5.35) can be written as
WHR,W = diag{R,(0), R, (1), ..., Ry (M — 1)} (3.5.38)

which shows that the DFT performs the diagonalization of circulant matrices. Although
there is no fast algorithm for the diagonalization of general Toeplitz matrices, in many
cases we can use the DFT to approximate the DKLT of stationary random sequences. The
approximation is adequate if the correlation becomes negligible for |/| > M, which is
the case for many stationary processes. This explains the fact that the eigenvectors of a
Toeplitz matrix resemble complex exponentials for large values of M. The DKLT also can
be extended to handle the representation of random sequences. These issues are further
explored in Therrien (1992), Gray (1972), and Fukunaga (1990).

3.6 PRINCIPLESOF ESTIMATION THEORY

The key assumption underlying our discussion up to this point was that the probability
distributions associated with the problem under consideration were known. As a result,
all required probabilities, autocorrelation sequences, and PSD functions either could be
derived from a set of assumptions about the involved random processes or were given a
priori. However, in most practical applications, this is the exception rather than the rule.
Therefore, the properties and parameters of random variables and random processes should
be obtained by collecting and analyzing finite sets of measurements. In this section, we
introduce some basic concepts of estimation theory that will be used repeatedly in the rest
of thebook. Completetreatmentsof estimation theory can befoundin Kay (1993), Helstrom
(1995), Van Trees (1968), and Papoulis (1991).

3.6.1 Propertiesof Estimators

Supposethat we collect N observations {x () }(’)V ~1 from astationary stochastic process and
use them to estimate a parameter 6 (which we assume to be real-valued) of the process
using some function O[{x(n) }8’ ~1]. The same resuilts can be used for a set of measurements
{xk (n)}’l\’ obtained from N sensors sampling stochastic processes with the same distribu-
tions. The function é[{x(n)}év ~1] isknown as an estimator whereas the value taken by the
estimator, using a particular set of observations, is called a point estimate or simply an
estimate. The intention of the estimator design isthat the estimate should be as close to the
true value of the parameter as possible. However, if we use another set of observationsor a
different number of observationsfrom the same set, it ishighly unlikely that we will obtain
the same estimate. As an example of an estimator, consider estimating the mean w, of a
stationary process x (n) from its N observations {x(n)}év ~1 Then the natural estimator isa
simple arithmetic average of these observations, given by

N-1

R 1
i = 0llx(m}g =1 3 x() (36.1)
n=0
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Similarly, a natural estimator of the variance o2 of the process x () would be
A2 _ ) N-1 1= A2
6y =0llxmlg 1=+ ch)mn) — 1] (36.2)

If we repeat this procedure alarge number of times, wewill obtain alarge number of es-
timates, which can be used to generate a hi stogram showing the distribution of the estimates.
Before the collection of observations, we would like to describe all sets of datathat can be
obtained by using the random variables {x (n, g)}{)\’ ~1 The obtained set of N observations
{x(n)}d~* can thus be regarded as one realization of the random variables {x(n, )} ~*
defined on an N-dimensional sample space. In this sense, the estimator A[{x (n, £)}) 1]
becomes a random variable whose distribution can be obtained from the joint distribution
of the random variables {x (n, g)}g"l. Thisdistribution is called the sampling distribution
of the estimator and is a fundamental concept in estimation theory because it provides all
the information we need to evaluate the quality of an estimator.

The sampling distribution of a “good” estimator should be concentrated as closely as
possible about the parameter that it estimates. To determine how “good” an estimator is
and how different estimators of the same parameter compare with one another, we need to
determine their sampling distributions. Since it is hot always possible to derive the exact
sampling distributions, we have to resort to properties that use the lower-order moments
(mean, variance, mean square error) of the estimator.

Bias of estimator. The bias of an estimator 6 of a parameter 6 is defined as

B@®) 2 E[0]—0 (3.6.3)
while the normalized biasis defined as
ep = @ 0 #0 (3.6.4)

When B(6) = 0, the estimator issaid to be unbiased and the pdf of the estimator is centered
exactly at the true value 6. Generally, one should select estimators that are unbiased such
as the mean estimator in (3.6.1) or very nearly unbiased such as the variance estimator in
(3.6.2). However, it isnot always wise to select an unbiased estimator, aswewill see below
and in Section 5.2 on the estimation of autocorrelation sequences.

Variance of estimator. The variance of the estimator 6 is defined by
var(0) = ag 2 E{16 — E{6})%) (3.6.5)
which measures the spread of the pdf of 6 around its average value. Therefore, one would
select an estimator with the smallest variance. However, this selection is not always com-
patible with the small bias requirement. Aswe will see below, reducing variance may result
in an increase in bias. Therefore, a balance between these two conflicting requirementsis

required, which is provided by the mean square error property. The normalized standard
deviation (also called the coefficient of variation) is defined by

g 2 %9 6 +£0 (3.6.6)

Mean square error. The mean square error (MSE) of the estimator is given by
MSE(©) = E{|6 — 617} = o5 + | B; | (3.6.7)
Indeed, we have
MSE(0) = E{l0 — E{0} — (0 — E{ODI*)
= E{|0 — E{6}1?} + E(|6 — E{6}%) (3.6.8)
—(O — E{ODE{O — E{0D*) — (0 — E{OD*E{6 — E{6})
=10 — E{0}|?> + E{|0 — E{H})?) (36.9)



which leads to (3.6.7) by using (3.6.3) and (3.6.5). Ideally, we would like to minimize the
MSE, but this minimum is not always zero. Hence minimizing variance can increase the
bias. The normalized MSE is defined as

» MSE®)

. 0 #0 (3.6.10)

&

Cramér-Rao lower bound. |f itispossibleto minimizethe M SE when the biasiszero,
then clearly the variance is a'so minimized. Such estimators are called minimum variance
unbiased estimators, and they attain an important minimum bound on the variance of the
estimator, called the Cramér-Rao lower bound (CRLB), or minimum variance bound. If &
is unbiased, then it follows that E{f — 6} = 0, which may be expressed as

f .../(@ —0) fxo(X;0)dx =0 (3.6.11)

wherex(¢) = [x1(¢), x2(¢), . .., xx (217 and fx.¢ (X; ) isthejoint density of x(¢), which
depends on a fixed but unknown parameter ¢. If we differentiate (3.6.11) with respect to 6,
assumi ng real-valued 6, we obtain

0= / /—[(Q—Q)fxg(x 0)] dx—/ /(9 af”(x 9 ax—1 (36.12)

Using the fact

dIn[ fio(X; 0)] 1 dfx;0(X; 0)
a6  fee(x:0) 00
Afxo (X 0)  dIn[ fyp(X; 0)] ,
or 29 = 29 Fxo(X; 6) (3.6.13)
and substituting (3.6.13) in (3.6.12), we get
/ /{(9 aln[f”(x 9)]}.fx;9(x; 9)dx = 1 (3.6.14)

Clearly, the left side of (3.6.14) is simply the expectation of the expression inside the
brackets, that is,

W} _1 (36.15)

E{(@—O)

a6
Using the Cauchy-Schwarz inequality (Papoulis 1991; Stark and Woods 1994)
|E{x(©)y(0O}? < E{Ix ()2 E{ly(£)[?}, we obtain

. 2 .
E{6 — 02 E {(W) } > E2 {(é _ Q)W} —1 (36.16)

The first term on the left-hand side is the variance of the estimator 6 since it is unbiased.
Hence
1

var(f) > 36.1
@)= E{[01n fx.0(x; 0)/06]%} ( U
which is one form of the CRLB and can a so be expressed as
var() > — ! (3.6.18)

E{82In fy.g(X; 0)/062)
The function In fx.p(x; 6) is called the log likelihood function of 6. The CRLB expresses
the minimum error variance of any estimator 6 of 6 in terms of the joint density Sx:0(X; 0)
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of observations. Hence every unbiased estimator must have avariance greater than acertain
number. An unbiased estimate that satisfies the CRLB (3.6.18) with equality is called an
efficient estimate. If such an estimate exists, then it can be obtained as a unique solution to
the likelihood equation

aIn fx.p(X; 0)
36 B
The solution of (3.6.19) is called the maximum likelihood (ML) estimate. Note that if the
efficient estimate does not exist, then the ML estimate will not achieve the lower bound
and hence it is difficult to ascertain how closely the variance of any estimate will approach
the bound. The CRLB can be generalized to handle the estimation of vector parameters
(Therrien 1992).

0 (3.6.19)

Consistency of estimator. |f the MSE of the estimator can be made to approach zero
as the sample size N becomes large, then from (3.6.7) both the bias and the variance will
tend to zero. Then the sampling distribution will tend to concentrate about 6, and eventually
as N — oo, the sampling distribution will become an impulse at 6. This is an important
and desirable property, and the estimator that possessesit is called a consistent estimator.

Confidence interval. If we know the sampling distribution of an estimator, we can
use the observations to compute an interval that has a specified probability of covering
the unknown true parameter value. This interval is called a confidence interval, and the
coverage probability is called the confidence level. When we interpret the meaning of
confidence intervals, it is important to remember that it is the interval that is the random
variable, and not the parameter. This concept will be explained in the sequel by means of
specific examples.

3.6.2 Estimation of Mean

The natural estimator of the mean u, of a stationary sequence x (n) from the observations
{x(n)}év_l is the sample mean, given by
N-1
o= Z_;) x(n) (3.6.20)
The estimate i, isarandom variable that depends on the number and values of the obser-
vations. Changing N or the set of observationswill lead to another value for .. Sincethe
mean of the estimator is given by

the estimator /i, isunbiased. If x(n) ~ WN(u,, o), we have
. 02
var(fi,) = ~ (3.6.22)

because the samples of the process are uncorrel ated random variables. Thisvariance, which
is ameasure of the estimator’s quality, increasesif x(n) is nonwhite.

Indeed, for a correlated random sequence, the variance of i, is given by (see Prob-
lem 3.30)

N i N
var() =Nt Y (1— '—N') Y@ N2y ) (36.23)

I=—N I=—N

wherey . (/) isthe covariance sequenceof x (n). If y . (I) — 0as!/ — oo, thenvar(i,) — 0
as N — oo and hence /1, is a consistent estimator of 1. If Y72 |y, ()| < oo, then



from (3.6.23)

N 00
. . . 1]
Jim Nvar(i) = lim 37 (1— N) NOES RN (36.24)

= [=—00
The expression for var(jx,) in (3.6.23) can aso be put in the form (see Problem 3.30)
2

Var (i) = ZE[L+ Ax(p,)] (3.6.25)
al ! y ()
where Ao =23 (1 - N) P i) =12 (3.6.26)

When Ay (p,) > 0, the variance of the estimator increases as the amount of correlation
among the samplesof x (n) increases. Thisimpliesthat asthe correlation increases, we need
more samples to retain the quality of the estimate because each additional sample carries
“lessinformation.” For thisreason the estimation of long-memory processes and processes
with infinite variance is extremely difficult.

Sampling distribution. 1f we know the joint pdf of the random variables {x(n)}é)v -1
we can determine, at least in principle, the pdf of /... For example, if it is assumed that the
observations are 11D as AV (i, aﬁ) then from (3.6.21) and (3.6.22), it can be seen that /1,
is normal with mean ., and variance 2 /N, that is,

N 1 1 /lx — My 2
fa () = ——=———exp| - ( ) (36.27)
8 V2m (04 //N) [ 2\ oy /VN
which is the sampling distribution of the mean. If N is large, then from the central limit
theorem, the sampling distribution of the sample mean (3.6.27) isusually very closeto the

normal distribution, even if the individual distributions are not normal.
If we know the standard deviation o, we can compute the probability

O x N Oy
Pr —k— <, < +k—} 3.6.28
{M)C \/N Mx M“X \/N ( )
that the random variable i, iswithin acertain interval specified by two fixed quantities. A
simple rearrangement of the above inequality leadsto

o (o2
Pr{,ax —k\/—"ﬁ <y < ;lx+k\/—xﬁ} (3.6.29)
which givesthe probability that the fixed quantity 1, liesbetween the two random variables
Q. —ko/~/N and i, + ko /~/N. Hence (3.6.29) providesthe probability that aninterval
with fixed length 2ko . /+/N and randomly centered at the estimated mean includes the
true mean. If we choose k so that the probability defined by (3.6.29) is equal to 0.95, the
interval is known as the 95 percent confidence interval. To understand the meaning of this
reasoning, we stress that for each set of measurements we compute a confidence interval
that either contains or does not contain the true mean. However, if we repeat this processfor
alarge number of observation sets, about 95 percent of the obtained confidence intervals
will include the true mean. We stress that by no means does this imply that a confidence
interval includes the true mean with probability 0.95.

If the variance o2 is unknown, then it has to be determined from the observations. This
results in two modifications of (3.6.29). First, o, isreplaced by

B 1 V-1 o
oL = o1 [x(n) — 4] (3.6.30)

n=0
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which implies that the center and the length of the confidence interval are different for
each set of observations. Second, the random variable (&, — 1)/ (6 x/ V'N) isdistributed
according to Sudent’s t distribution with v = N — 1 degrees of freedom (Parzen 1960),
which tends to a Gaussian for large values of N. In these cases, the factor & in (3.6.29)
is replaced by the appropriate value ¢ of Student’s distribution, using N — 1 degrees of
freedom, for the desired level of confidence.

If the observations are normal but not 11D, then from (3.6.25), the mean estimator /&,
is normal with mean u and variance (oi/N)[l + An(p,)]. It is now easy to construct
exact confidence intervals for fi, if p, (/) is known, and approximate confidence intervals
if p, (1) isto be estimated from the observations. For large N, the variance var (i1, ) can be
approximated by

o2
var(it,) = Wx[l + An(py)]

o2 N
v [1 +2 21: Px (l)} (36.31)

N
v
v v:af{l+22px(l)}
1
and hence an approximate 95 percent confidence interval for /i, isgiven by

(;lx —1.96 % i+ 1.96,/v /N) (36.32)

Thismeansthat, on average, the aboveinterval will enclosethetruevalue n, on 95 percent
of occasions. For many practical random processes (especially those modeled as ARMA
processes), theresult in (3.6.32) is a good approximation.

12

[

EXAMPLE 36.1. Consider the AR(1) process
x(n) =ax(n — 1)+ w(n) —1l<a<l1

where w(n) ~ WN(O, 0%). We wish to compute the variance of the mean estimator /&, of the
process x (n). Using straightforward calculations, we obtain

ny =0 of = and px(l):alll
From (3.6.26) we evaluate the term

_ 1 " aN
N(1l—a) NA-a)

2a 2a
An(p) = 1 o~ forN > 1
l-a ]
Whena — 1, that is, when the dependence between the signal samplesincreases, then the factor
Ay (p) takeslarge values and the quality of estimator decreases drastically. Similar conclusions
can be drawn using the approximation (3.6.31)

as ! o2 o2
— w _ w
v= 1+2;a 1_02_7(1_@2

We will next verify these results using two Monte Carlo simulations: one for a = 0.9, which
represents high correlations among samples, and the other for « = 0.1. Using a Gaussian
pseudorandom number generator with mean 0 and variance 05 = 1, we generated N = 100
samples of the AR(1) process x(rn). Using v in (3.6.31) and (3.6.32), we next computed the
confidenceintervals. For a = 0.9, we obtain

v=100 and confidence interval: (i, — 1.96, ii, + 1.96)
and for a = 0.1, we obtain
v=12345 and confidence interval: (i1, — 0.2178, i, + 0.2178)



Clearly, when the dependence between signal samples increases, the quality of the estimator
decreases drastically and hence the confidence interval is wider. To have the same confidence
interval, we should increase the number of samples N.

We next estimate the mean, using (3.6.20), and we repeat the experiment 10,000 times.
Figure 3.14 shows histograms of the computed meansfor « = 0.9 and ¢« = 0.1. The confidence
intervals are also shown as dotted lines around the true mean. The histograms are approximately
Gaussian in shape. The histogram for the high-correlation case is wider than that for the low-
correlation case, which is to be expected. The 95 percent confidence intervals a so indicate that
very few estimates are outside the interval.

High correlation: a=0.9
02 T I_ T

-95% Confidence
-interval

Histogram
o
=
T

o 1 1
-4 -3 -2 -1 0 1 2 3 4
Estimated mean u,
Low correlation: a=0.1
07 T T T T T T T
0.6 : : i
g 051 95% Confidence -
% 04+ : interval i
% 03r -
To2f .
01 -
0 1 L I 1 I I 1
-4 -3 -2 -1 0 1 2 3 4
Estimated mean u,
FIGURE 3.14

Histograms of mean estimates in Example 3.6.1.

3.6.3 Estimation of Variance
Thenatural estimator of thevariance o , of astationary sequence x (n) fromthe observations
{x(n)}év_l isthe sample variance, given by

N-1

a1 .
A5 ;{x(n) — ) (36.33)

By using the mean estimate i, from (3.6.20), the mean of the variance estimator can be
shown to equal (see Problem 3.31)

N
E(6%) =o0? —var(j,) = 0% - % > (1 —~ %) Y () (3.6.34)
[=—N

If the sequence x (n) is uncorrelated, then

2 N-1
E(62) = 02 — % - ( )02 (3.6.35)
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From (3.6.34) or (3.6.35), it isobvious that the estimator in (3.6.33) ishiased. If y . (I) — O
as! — oo, thenvar(ii,) - 0as N — oo and hence &5 is an asymptotically unbiased
estimator of o'2. In practical applications, the variance estimate is nearly unbiased for large
N.Notethat if weusetheactual mean 1, in(3.6.33), then theresulting estimator isunbiased.
The general expression for the variance of the variance estimator is fairly complicated
and requires higher-order moments. It can be shown that for either estimators
4
var(&f) ~ % for large N (3.6.36)
where yff” is the fourth central moment of x(n) (Brockwell and Davis 1991). Thus the
estimator in (3.6.33) is also consistent.

Sampling distribution. |n the case of the mean estimator, the sampling distribution
involved the distribution of sums of random variables. The variance estimator involvesthe
sum of the squares of random variables, for which the sampling distribution computation
is complicated. For example, if there are N independent measurements from an A/(0, 1)
distribution, then the sampling distribution of the random variable

X =x3 X343 (3.6.37)
isgiven by the chi-squared distribution with N degrees of freedom. The general form of XIZ\,
with v degrees of freedom is

/2 lexp (—f) 0<x<oo (3.6.38)

fre(x) = >

1
22T (v/2)
where ' (v/2) = [5° e~'t"/271dt is the gamma function with argument v /2.

For the variance estimator in (3.6.33), it can be shown (Parzen 1960) that N&f is
distributed as chi squared with v = N — 1 degrees of freedom. This meansthat, for any set
of N observations, therewill only be N — 1 independent deviations {x (n) — (1, }, Sincetheir
sum is zero from the definition of the mean. Assuming that the observations are N (i1, 0'2),
the random variables x (n) /o will be N'(u/o, 1) and hence the random variable

Ne2 1
=5 > v — ) (3.6.39)
n=0

will be chi squared distributed with v = N — 1. Therefore, using values of the chi-squared
distribution, confidence intervals for the variance estimator can be computed. In particular,
since N6 /o2 isdistributed as x 2, the 95 percent limits of the form

0.05 0.05
Pr {xv (T) < N&%jo® <y, (1 - T)} =0.95 (3.6.40)

can be obtained from chi-squared tables (Fisher and Yates 1938). By rearranging (3.6.40),
the random variable 62/62 satisfies

N o2 N
Pr{i——<—5<———-—1:=09 3.6.41
{ 10,0975 ~ 52 = xu(0.025)} (36.41)

Usingl1 = N/x,(0.975) and [, = N/x,(0.025), we see that (3.6.41) implies that
Pr{l262 > 0% and 1162 <02} =0.95 (3.6.42)

Thus the 95 percent confidence interval based on the estimate 62 is (1162, 1,6%). Note
that thisinterval is sensitive to the validity of the normal assumption of random variables
leading to (3.6.39). Thisis not the case for the confidence intervals for the mean estimates
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EXAMPLE 362 Consider again the AR(1) process given in Example 3.6.1: Theory
x(n) =ax(n — 1)+ whn) —1<a<l1 w(n) ~ WN(, 1)
2
with =0 o2= % and  p,(1) =al (36.43)
—da
We wish to compute the mean of the variance estimator 6)26 of the process x(n). From (3.6.34),
we obtain
1 1
~2 2 1
E[6f]1=0%|1— ﬁ[;N <1— ﬁ>a|| (3.6.44)

When a — 1, that is, when the dependence between the signal samples increases, the mean
of the estimate deviates significantly from the true value 0)26 and the quality of the estimator
decreases drastically. For small dependence, the mean is very close to a%. These conclusions
can be verified using two Monte Carlo simulations as before: one for « = 0.9, which represents
high correlations among samples, and the other for a = 0.1. Using a Gaussian pseudorandom
number generator with mean 0 and unit variance, we generated N = 100 samples of the AR(1)
process x (n). The computed parameters according to (3.6.43) and (3.6.44) are

a=09  02=52632 E{62} =43579
a=01  ¢2=10101 E{62}=09978

We next estimate the variance by using (3.6.33) and repeat the experiment 10,000 times. Fig-
ure 3.15 shows histograms of computed variances for a = 0.9 and for ¢ = 0.1. The computed

High correlation: a= 0.9

003 T T i T T T T T T T T T T
fMean of variance
£ 0.02r | 95% Confidence interval .
S
1]
)
T 0.01r —
0 e Lo L L

1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Estimated var (o)

Low correlation: a=0.1

03 T T T T T T T T T T T T T T T
! Mean of variance
I 1
% 0.2F | : I95% Confidence interval b
S X
2 |
(2]
TO01f | i
|
0 I | L L L L L L L L L L L L L
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Estimated var (o'2)
FIGURE 3.15

Histograms of variance estimates in Example 3.6.2.
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means of the variance estimates are aso shown as dotted lines. Clearly, the histogram is much
wider for the high-correlation case and much narrower (almost symmetric and Gaussian) for the
low-correlation case.

The 95 percent confidence intervals are given by (11&3, 126)%), wherely = N/x,(0.975)
andlp = N/x,(0.025). The values of /1 and I are obtained from the chi-squared distribution
curves (Jenkins and Watts 1968). For N = 100, /1 = 0.77 and I = 1.35; hence the 95 percent
confidence intervals for o2 are

(0.7762,1.3562)

also shown as dashed lines around the mean value E{&)zc}. The confidence interval for the
high-correlation case, a = 0.9, does not appear to be a good interval, which implies that the
approximation leading to (3.6.42) isnot agood onefor thiscase. Suchisnot the casefora = 0.1.

3.7 SUMMARY

In this chapter we provided an overview of the basic theory of discrete-time stochastic
processes. We began with the notion of a random variable as a mapping from the abstract
probability spaceto the real space, extended it to random vectors as a collection of random
variables, and introduced discrete-time stochastic processes as an indexed family (or time
series) of random variables. A complete probabilistic description of these random objects
reguiresthe knowledge of joint distribution or density functions, whichisdifficult to acquire
except in simple cases. Therefore, the emphasis was placed on description using joint
moments of distributions, and, in particular, the emphasis was placed on the second-order
moments, which are relatively easy to estimate or compute in practice.

We defined the mean and the variance to describe random variables, and we provided
three useful models of random variables. For random vector description, we defined the
mean vector and the autocorrel ation matrix. Linear transformations of random vectorswere
discussed, using densities and correlation matrices. The normal random vector wasthen in-
troduced as a useful model of arandom vector. A particularly simple linear transformation,
namely, the sum of independent random variables, was used to introduce random variables
with stable and infinitely divisible distributions. To describe stochastic processes, we pro-
ceeded to define mean and autocorrel ation sequences. In many applications, the concept of
stationary of random processes is a useful one that reduces the computational complexity.
Assuming time invariance on the first two moments, we defined a wide-sense stationary
(WSS) process in which the mean is a constant and correlation between random variables
at two distinct times is a function of time difference or lag. The rest of the chapter was
devoted to the analysis of WSS processes.

A stochastic process is generally observed in practice as a single sample function (a
speech signal or a radar signal) from which it is necessary to estimate the first- and the
second-order moments. This requiresthe notion of ergodicity, which provides aframework
for the computation of statistical averages using time averages over a single realization.
Although this framework reguires theoretical results using mean square convergence, we
provided asimple approach of using appropriatetime averages. Animportant random signal
characteristic called variability was introduced. The WSS processes were then described
in the frequency domain using the power spectral density function, which is a physical
quantity that can be measured in practice. Some random processes exhibiting flat spectral
envel opeswere analyzedincluding oneof whitenoise. Sincerandom processesaregenerally
processed using linear systems, we described linear system operations with random inputs
in both the time and frequency domains.

The properties of correlation matrices and sequences play an important rolein filtering
and estimation theory and were discussed in detail, including eigenanalysis. Another im-
portant random signal characteristic called memory wasalso introduced. Stationary random



signalswere modeled using autocorrel ation matrices, and the relationship between spectral
flatness and eigenval ue spread was expl ored. These propertieswere used in an alternate rep-
resentation of random vectors as well as processes using uncorrelated components which
were based on diagonalization and triangularization of correlation matrices. This resulted
in the discrete KL transform and KL expansion. These concepts will also be useful in later
chapters on optima filtering and adaptive filtering.

Finally, we concluded this chapter with the introduction of elementary estimation the-
ory. After discussion of properties of estimators, two important estimators of mean and
variance were treated in detail along with their sampling distributions. These topicswill be
useful in many subsequent chapters.

PROBLEMS
3.1 Theexponential density function is given by

fe(o) = %e‘”“u(x) (PD)

where a isaparameter and u(x) isaunit step function.

(a) Plot the density function for a = 1.

(b) Determinethe mean, variance, skewness,and kurtosis of the Rayleigh random variable with
a = 1. Comment on the significance of these momentsin terms of the shape of the density
function.

(c) Determine the characteristic function of the exponential pdf.

3.2 The Rayleigh density function is given by
Fe(0) = ey ) (P2)
g

where o isaparameter and u(x) isaunit step function. Repeat Problem 3.1 for o = 1.

3.3 Using the binomial expansion of {x(¢) — u,}""*, show that the mth central moment is given by

m
m
My =3 ( k)(—l)"uiéf,ﬂf)_k

k=0
" m
Similarly, show that DY <k)M§M,(;lk
k=0

3.4 Consider azero-mean random variable x (¢). Using (3.1.26), show that the first four cumulants
of x(¢) are given by (3.1.28) through (3.1.31).

35 A random vector x(¢) = [x1(¢) x2(¢)]7 has mean vector uy = [12]7 and covariance matrix

4 08
I& =
08 1

Thisvector istransformed to another random vector y(¢) by thefollowing linear transformation:

1) 13
2@ |=]-1 2 [iliﬂ
¥3() 2 3| L2

Determine(a) themeanvector py, (b) theautocovariancematrix I'y, and (c) thecross-correl ation
matrix Rxy.
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3.6

3.7

38

39

3.10

Using themoment generating function, show that thelinear transformation of aGaussian random
vector isaso Gaussian.

Let {xk({)}ézl be four I1D random variables with exponential distribution (P1) witha = 1.
Let

k
W@ =Y x@) 1<k<4
=1

(a) Determine and plot the pdf of y2(¢).
(b) Determine and plot the pdf of y3(¢).
(c) Determine and plot the pdf of y4(¢).
(d) Compare the pdf of y4(¢) with that of the Gaussian density.

For each of thefollowing, determine whether the random processis (1) WSS or (2) m.s. ergodic
in the mean.

(@) X() = A, where A isarandom variable uniformly distributed between 0 and 1.
(b) X,, = A coswgn, where A is aGaussian random variable with mean 0 and variance 1.
(c) A Bernoulli processwithPr(X, = 1] = pandPr[X, = -1]=1— p.

Consider the harmonic process x (n) defined in (3.3.50).

(a) Determinethe mean of x(n).
(b) Show that the autocorrelation sequence is given by

M
1
rx(l)=§kzl|ck|2008a)kl —o0 <l <o

Supposethat the random variables ¢, in the real-valued harmonic process model are distributed
with apdf fy, (¢r) = (1 + cos¢y)/(2m), —m < ¢ < m. Isthe resulting stochastic process
stationary?

3.11 A stationary random sequence x (n) with mean n, = 4 and autocovariance

4—|n| In] <3
ve(n) = 0 otherwise
isapplied as an input to alinear shift-invariant (LSI) system whose impulse response i (n) is
h(n) =u(m) —un —4)

where u(n) isaunit step sequence. The output of this system is another random sequence y(n).
Determine (a) the mean sequence (1), () the cross-covariance y ., (n1, n2) between x(n1)
and y(n2), and (c) the autocovariance y ,,(n1, n2) of the output process y (n).

3.12 A causal LTI system, which is described by the difference equation

Yo = 3y(n— 1)+ x(n) + 3x(n — 1)

is driven by a zero-mean WSS process with autocorrelation ry (/) = 0.5///.

(a) Determinethe PSD and the autocorrelation of the output sequence y (n).
(b) Determine the cross-correlation ryy (/) and cross-PSD R,y (e/“) between the input and
output signals.

3.13 A WSS process with PSD R, (¢/®?) = 1/(1.64 + 1.6cosw) is applied to a causal system

described by the following difference equation
y(n) =0.6y(n — 1) +x(n) +1.25x(n — 1)
Compute (a) the PSD of the output and (b) the cross-PSD Ry, (e/) between input and output.



3.14 Determine whether the following matrices are valid correlation matrices:

N
11 , 24

@ Ri=|, J 0 Ro=|1 1 1
L 1 1 4

L4 2 _

_ 1 1 17
©rRo=|t Y @ Re=|1 2 2
C = =1 1
37114 1 472 2

- 11 1 1]

3.15 Consider anormal random vector x(¢) with components that are mutually uncorrelated, that is,
pij = 0. Show that (a) the covariance matrix T'x is diagonal and (b) the components of x(¢)
are mutually independent.

3.16 Showtheatif areal, symmetric, and nonnegativedefinitematrix R haseigenvaluesi 1, Ao, ..., Ay,
then the matrix R¥ has eigenvalues 2%, 2%, ... 2k

3.17 Provethat the trace of R isgiven by

rR=Y 1%

3.18 Provethat the determinant of R is given by

detR = |R| = [ [ = IA|

3.19 Show that the determinants of R and T are related by

detR =detT(1+ u"Tp)

3.20 Let Ry bethecorrelation matrix of thevector x = [x(0) x(2) x(3)]7, wherex (n) isazero-mean
WSS process.

(a) Check whether the matrix Ry is Hermitian, Toeplitz, and nonnegative definite.
(b) If we know the matrix Ry, can we determine the correlation matrix of the vector X =
[x(0) x(1) x(2 x(]T 2

3.21 Using the nonnegativeness of E{[x(n + [) + x(n)]2}, show that r, (0) > |r ()| for all /.

3.22 Show that ry (1) is nonnegative definite, that is,

M M

Zzal"x(l—k)a,sz VM, Vay,...,ay
1=1k=1

3.23 Let x(n) be arandom process generated by the AP(1) system
x(n) =ax(n — 1) + wn) n>0 x(-=1) =0

where w(n) isan 11D(0, 02)) process.

(a) Determine the autocorrelation r (11, no) function.
(b) Show that r,(nq, n2) asymptotically approaches ry(nq — np), that is, it becomes shift-
invariant.

3.24 Let x be arandom vector with mean u, and autocorrelation Ry.

(@) Show that y = Q7x transforms x to an uncorrelated component vector y if Q is the
eigenmatrix of Ry.
(b) Comment on the geometric interpretation of this transformation.
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3.25 The mean and the covariance of a Gaussian random vector x are given by, respectively,

1 i T 1 %
= an =
Ex=15 X 1

Plot the 1o, 20, and 30 concentration ellipses representing the contours of the density function
in the (x1, x2) plane. Hints: The radius of an ellipse with major axis a (along x1) and minor
axisb < a (along x2) isgiven by
2 (12[72
a?sin?6 + b2 cos?
where0 < 6 < 2r. Computethe 1o ellipse specified by a = /A1 and b = /A5 and then rotate
and translate each point x() = [xil) xé')]T using the transformation w(® = Q,x¥) + .

3.26 Consider the process x (1) = ax(n — 1) + w(n), where w(n) ~ WN(0, 62)).
(a) Show that the M x M correlation matrix of the process is symmetric Toeplitz and is given

by
1 a . am—1
m—2
Ry g% a 1 a
1-a?
am—l am—2 1
(b) Verify that
M1 —a 0 0
—a 1+4+ad? -a 0
1
o5 )
: 1+a?2 -a
| 0 0 —a 1 |
(c) Show that if
1 0 0
—a 1 0
Lx = )
: 0
0 0 —a 1

thenLTR,L, = (1 —d?)l.

(d) For aﬁ)x =1,a =0.95 and M = 8 compute the DKLT and the DFT.

(e) Plotthe eigenvalues of each transform in the same graph of the PSD of the process. Explain
your findings.

(f) Plot the eigenvectors of each transform and compare the results.

(g9) Repeat parts (e) and (f) for M = 16 and M = 32. Explain the obtained results.

(h) Repeat parts () to (g) for a = 0.5 and compare with the results obtained for a« = 0.95.

3.27 Determine three different innovations representations of a zero-mean random vector x with

correlation matrix
1
¢ :[1 4}
X l l
4

3.28 Verify that the eigenvalues and eigenvectors of the M x M correlation matrix of the process
x(n) = w(n) + bw(n — 1), where w(n) ~ WN(0, 02) are given by Ay = Ry (e/?%), ¢F =
Snwgn, wy = wk/(M + 1), wherek = 1,2,..., M, (a) analyticaly and (b) numerically for
azw = land M = 8. Hint: Plot the eigenvalues on the same graph with the PSD.



3.29 Consider the process x (n) = w(n) + bw(n — 1).

(@) Computethe DKLT for M = 3.
(b) Show that the variances of the DKLT coefficientsare 2 (1 + +/2b), 02, and 62 (1 — +/2b).

3.30 Let x(n) be a stationary random process with mean w1, and covariance y (I). Let 4, =
1/N 2’1:/:—01 x(n) be the sample mean from the observations {x (n)}f:lz_ol.

(a) Show that the variance of [, isgiven by

N N
l
var(ii,) =Nt Y (1— %) v <NTE Yy (P3)
I=—N I=—N
(b) Show that the above result (P.3) can be expressed as
o2
var(jiy) = —-[1+ Ay (py)] (P4)
N
l l
where An(py) :22<1_ﬁ> px() px) = yx;)
=1 x

(c) Show that (P:3) reducesto var(ji,) = o2/N for aWN (s, 0°2) process.

3.31 Letx(n) beastationary random process with mean p ., variance 0)26, and covariance y , (). Let
g N-1
622 = N x(m) — 1,12
N n=0

be the sample variance from the observations {x (n)} ,’1\’;01.
(a) Show that the mean of 62 is given by
1 & 1|
E{c%)%} = o§ —var(iiy) = af -5 Z (1— N) 0]
[=—N

b) Show that the above result reducesto E{62} = (N — 1)o2/N for aWN(u,, 0'2) process.
X X X

3.32 The Cauchy distribution with mean . is given by

1 1
=——— — 00 o0
S () 1t G2 <x<

Let {xk(;)}f\’: « be N 11D random variables with the above distribution. Consider the mean
estimator based on {x; ()},

1 N
) = N;xk(n

Determine whether [i(¢) is aconsistent estimator of .
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CHAPTER 4

Linear Signal Models

In this chapter we introduce and analyze the properties of a special class of stationary
random sequences that are obtained by driving a linear, time-invariant system with white
noise. We focus on filters having a system function that is rational, that is, the ratio of two
polynomials. The power spectral density of the resulting process is also rational, and its shape
is completely determined by the filter coefficients. We will use the term pole-zero models
when we want to emphasize the system viewpoint and the term autoregressive moving-
average models to refer to the resulting random sequences. The latter term is not appropriate
when the input is a harmonic process or a deterministic signal with a flat spectral envelope.
We discuss the impulse response, autocorrelation, power spectrum, partial autocorrelation,
and cepstrum of all-pole, all-zero, and pole-zero models. We express all these quantities
in terms of the model coefficients and develop procedures to convert from one parameter
set to another. Low-order models are studied in detail, because they are easy to analyze
analytically and provide insight into the behavior and properties of higher-order models. An
understanding of the correlation and spectral properties of a signal model is very important
for the selection of the appropriate model in practical applications. Finally, we investigate a
special case of pole-zero models with one or more unit poles. Pole-zero models are widely
used for the modeling of stationary signals with short memory whereas models with unit
poles are useful for the modeling of certain nonstationarity processes with trends.

4.1 INTRODUCTION

In Chapter 3 we defined and studied random processes as a mathematical tool to analyze
random signals. In practice, we also need to generate random signals that possess certain
known, second-order characteristics, or we need to describe observed signals in terms of
the parameters of known random processes.

The simplest random signal model is the wide sense stationary white noise sequence
w(n) ~ WN(O, ozw) that has uncorrelated samples and a flat PSD. It is also easy to generate
in practice by using simple algorithms. If we filter white noise with a stable LTI filter,
we can obtain random signals with almost any arbitrary aperiodic correlation structure or
continuous PSD. If we wish to generate a random signal with a line PSD using the previous
approach, we need an LTT filter with “line” frequency response; that is, we need an oscillator.
Unfortunately, such a system is not stable, and its output cannot be stationary. Fortunately,
random signals with line PSDs can be easily generated by using the harmonic process model
(linear combination of sinusoidal sequences with statistically independent random phases)
discussed in Section 3.3.6. Figure 4.1 illustrates the filtering of white noise and “white ”
(flat spectral envelope) harmonic process by an LTI filter. Signal models with mixed PSDs
can be obtained by combining the above two models, a process justified by a powerful result
known as the Wold decomposition.
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FIGURE 4.1
Signal models with continuous and discrete (line) power spectrum
densities.

When the LTI filter is specified by its impulse response, we have a nonparametric
signal model becausethereisno restriction regarding the form of the model and the number
of parametersisinfinite. However, if we specify the filter by a finite-order rational system
function, we haveaparametric signal model described by afinite number of parameters. We
focus on parametric models because they are simpler to deal with in practical applications.
The two major topics we address in this chapter are (1) the derivation of the second-order
moments of AP, AZ, and PZ models, given the coefficients of their system function, and
(2) the design of an AP, AZ, or PZ system that produces a random signal with a given
autocorrel ation sequence or PSD function. The second problemisknown assignal modeling
and theoretically is equivaent to the spectral factorization procedure developed in Section
2.4.4. The modeling of harmonic processes is theoretically straightforward and does not
requirethe use of alinear filter to change theamplitude of the spectral lines. The challenging
problemin this caseistheidentification of the filter by observing its response to aharmonic
processwith aflat PSD. The modeling problem for continuous PSDs has a solution, at |east
in principle, for every regular random sequence.

In practical applications, the second-order moments of the signal to be modeled are
not known a priori and have to be estimated from a set of signal observations. This -
ement introduces a new dimension and additional complications to the signal modeling
problem, which are discussed in Chapter 9. In this chapter we primarily focus on paramet-
ric modelsthat replicate the second-order properties (autocorrelation or PSD) of stationary
random seguences. If the sequence is Gaussian, the model provides a complete statistical
characterization. The characterization of nhon-Gaussian processes, which requires the use
of higher-order moments, is discussed in Chapter 12.

4.1.1 Linear Nonparametric Signal Models

Consider astable LTI system with impulse response i (r) and input w(#). The output x (n)
is given by the convolution summation

x(n)y= > hwn — k) (4.1.1)

k=—o00

which is known as a nonrecursive system representation because the output is computed
by linearly weighting samples of the input signal.



Linear random signal model. 1f the input w(n) is a zero-mean white noise process
withvarianceo 2, autocorrelationr,, (1) = 02 8(1),andPSD Ry, (e/®) = 02, —7 < w < 7,
then from Table 3.2 the autocorrel ation, complex PSD, and PSD of the output x (n) aregiven
by, respectively,

re) =05 Y h(kh*(k —1) = o5ru(l) (4.1.2)
k=—00
2 * 1
Ri(z) = 0% H()H (?) (4.1.3)
R (e/?) = 02 |H(e!®)|? = 02 Ry (e/?) (4.1.4)

We notice that when the input is a white noise process, the shape of the autocorrelation
and the power spectrum (second-order moments) of the output signal are completely char-
acterized by the system. We use the term system-based signal model to refer to the signal
generated by a system with a white noise input. If the system is linear, we use the term
linear random signal model. In the statistical literature, the resulting model is known as
the general linear process model. However, we should mention that in some applications
it is more appropriate to use a deterministic input with flat spectral envelope or a “white”
harmonic process input.

Recursive representation. Suppose how that the inverse system H;(n) = 1/H(z)
is causal and stable. If we assume, without any loss of generadlity, that 2(0) = 1, then
hi(n) = Z7YH;(n)} hash;(0) = 1. Therefore theinput w(n) can be obtained by

o0
w(n) =x(n)+ Y _ hi(k)x(n — k) (4.15)
k=1
Solving for x(n), we obtain the following recursive representation for the output signal

oo
x(n) = — Zh;(k)x(n —k) 4+ w(n) (4.1.6)
k=1

We use the term recursive representation to emphasize that the present value of the output
is obtained by alinear combination of all past output values, plus the present value of the
input. By construction the nonrecursive and recursive representations of system h(n) are
equivalent; that is, they produce the same output when they are excited by the same input
signal.

Innovations representation. |f the system H(z) is minimum-phase, then both /()
and i; (n) are causal and stable. Hence, the output signal can be expressed nonrecursively

by

x(n) =Y hwn—k) = Y hn—kwk) (4.1.7)
k=0 k=—o00
or recursively by (4.1.6).
From (4.1.7) we obtain

xn+D= Y hn+1-Pwk +whr+1
k=—o00

or by using (4.1.5)

x(n+1) = > h(n+1-kxk) + wrn+1 (4.1.8)
———

k=00 new information

past information: linear combination of x(n), x(n—121),...

151

SECTION 4.1

Introduction



152

CHAPTER 4
Linear Signal Models

Careful inspection of (4.1.8) indicatesthat if the system generating x (r) isminimum-phase,
the sample w (n + 1) bringsall the new information (innovation) to be carried by the sample
x(n 4+ 1). All other information can be predicted from the past samples x(n), x(n — 1), ...
of the signal (see Section 6.6). We stress that this interpretation holds only if H(z) is
minimum-phase.

Thesystem H (z) generatesthesignal x (n) by introducing dependencein thewhitenoise
input w(n) and is known as the synthesis or coloring filter. In contrast, the inverse system
Hj(z) canbeused to recover theinput w(n) and isknown asthe analysis or whitening filter.
In this sense the innovations sequence and the output process are completely equivalent.
The synthesis and analysis filters are shown in Figure 4.2.

FIGURE 4.2
Synthesis and analysis filters used in
innovations representation.

w(n) ~11D(0, o,i) x(n) Synthesis or
P H(Z) — - -
coloring filter

x(n) 1) = w(n)  Analysis or
12 H(z) whitening filter

Spectral factorization
Most random processes with a continuous PSD R, (e/®) can be generated by exciting
a minimum-phase system Hpin(z) with white noise. The PSD of the resulting process is
given by
Ry (e]w) = U |Hm|n(e]w)| (4-1-9)
The process of obtai n_i Ng Humin(z) from R, (e/®) or r, (1) isknown as spectral factorization.
If the PSD R, (/) satisfies the Paley-Wiener condition

f [N Ry (e/®)|dw < 00 (4.1.10)

-7
then the process x (n) iscalled regular and its complex PSD can be factored asfollows (see
Section 2.4.4)

1
Ri(z) =0 Hmln(Z)Hmm <Z ) (4.111)

where 02 = exp{%/ In[Rx(ej‘“)]da)} (4.1.12)

-7
is the variance of the white noise input and can be interpreted as the geometric mean of
Ry (e/®). Consider the inverse Fourier transform of InR, (e/¢):

1 [7 . .
c(k) & — / IN[R, (e/®)] /% dw (4.1.13)
27 J
which is a sequence known as the cepstrum of r,(l). Note that ¢(0) = ai. Thus in the
cepstral domain, the multiplicative factors Hmin(z) and Hpy; (1/z*) are now additively
separable due to the natural logarithm of R, (e/®). Define

ci(k) 2 (T) + c(kyuk — 1) (4.1.14)
and c_(k) 2 io) +c(ku(—k — 1) (4.1.15)

as the positive- and negative-axis prOJectlons of c(k), respectively, with ¢(0) distributed
equally between them. Then we obtain

hmin(n) = F~{exp Fles ()1} (4.1.16)



as the impul se response of the minimum-phase system Hpin(z). Similarly,
hmax(n) = F~H{exp Fle_ ()1} (4.1.17)

is the corresponding maximum-phase system. This completes the spectral factorization
procedurefor an arbitrary PSD R, (e/®), which, in general, isacomplicated task. However,
itisstraightforward if R, (z) isarational function, as we discussed in Section 2.4.2.

Spectral flatness measure

The spectral flatness measure (SFM) of a zero-mean process with PSD R, (¢/®) is
defined by (Makhoul 1975)

exp{% /_ﬂ In[RX(ej‘”)]da)}

0_2
SFM, 2 e =2 (4.1.18)
— Ry (e/*) dow x
27 J_,

where the second equality follows from (4.1.12). It describes the shape (or more appro-
priately, flatness) of the PSD by a single number. If x(n) is a white noise process, then
Ry (e/®) = 02 and SFM,, = 1. More specifically, we can show that

0<SFM, <1 (4.1.19)

Observe that the numerator of (4.1.18) is the geometric mean while the denominator isthe
arithmetic mean of a real-valued, nonnegative continuous waveform R, (e/®). Since x (n)
isaregular process satisfying (4.1.10), these means are always positive. Furthermore, their
ratio, by definition, is never greater than unity and is equa to unity if the waveform is
constant. This, then, proves (4.1.19). A detailed proof is given in Jayant and Noll (1984).

When x(n) is obtained by filtering the zero-mean white noise process w(n) through
the filter H(z), then the coloring of R, (e/®) is due to H(z). In this case, R,(e/®) =
o2 |H(e/®)|? from (4.1.9), and we obtain

2 2
1
sFM, = Jv = _Tw - _ (4.1.20)
of L1 [T, |H (/)2 dw 1 |H (/)2 dow
27 J_ .V 27 J_,

Thus SFM,, istheinverse of thefilter power (or power transfer factor) if h(0) isnormalized
to unity.

4.1.2 Parametric Pole-Zero Signal Models

Parametric models describe a system with a finite number of parameters. The major subject
of this chapter isthe treatment of parametric modelsthat have rational system functions. To
thisend, consider asystem described by the following linear constant-coefficient difference
equation

P Y
x(n) +Zakx(n —k)= de w(n —k) (4.1.21)
k=1 k=0
where w(n) and x (n) aretheinput and output signals, respectively. Taking the z-transform
of both sides, we find that the system function is

Y
dez_k
_ X (2) _ k=0 a D(z)
W(z) p A(2)
1+Zak2_k
k=1

H() (4.1.22)
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We can express H (z) in terms of the poles and zeros of the system as follows:

Y
[Ta-zz™
H() = do*S*
[Ta-pz™

k=1

The system has Q zeros {z;} and P poles{px} (zerosand polesat z = 0 are not considered
here). Theterm dp isthe system gain. For therest of thebook, we assumethat the polynomials
D(z) and A(z) do not have any common roots, that is, common polesand zeros have already
been canceled.

(4.1.23)

Types of pole-zero models
There are three cases of interest:

e For P > O0and Q > 0, we have apole-zero model, denoted by PZ(P, Q). If the model
is assumed to be causdl, its output is given by

P 0
x(n) ==Y axx(n —k)+ Y _diw(n — k) (4.1.24)
k=1 k=0
e For P = 0, we have an all-zero model, denoted by AZ(Q). The input-output difference
equation is

0
x(n) =Y duwn—k) (4.1.25)
k=0

e For QO = 0, we have an all-pole model, denoted by AP(P). The input-output difference
eguation is

P
x(n) ==Y ax(n — k) + dow(n) (4.1.26)
k=1
If we excite a parametric model with white noise, we obtain a signal whose second-
order moments are determined by the parameters of the model. Indeed, from Sections 3.4.2
and 3.4.3, werecall that if w(n) ~ 11D{0, o2} with finite variance,” then

re() = o2 (1) = 02 h(l)  h*(=1) (4.1.27)

Ri(2) = 05 Ry(z) = 05 H() H* (é) (4.1.28)
Z

Ri(e/?) = 02 Ry (/) = 02 |H(e!?)|? (4.1.29)

Such signal models are of great practical interest and have special names in the statistical
literature:

e The AZ(Q) isknown as the moving-average model, denoted by MA(Q).

o The AP(P) isknown as the autoregressive model, denoted by AR(P).

e The PZ(P, Q) is known as the autoregressive moving-average model, denoted by
ARMA(P, Q).

We specify aparametric signal model by normalizing do = 1 and setting the variance of
the input to oﬁ). The defining set of model parametersisgivenby {a1, az, ..., ap,ds, ...,
dp, 02} (see Figure 4.3). An aternative isto set 02 = 1 and leave do arbitrary. We stress
that these models assume the resulting processes are stationary, which is ensured if the
corresponding systems are BIBO stable.

"The case of infinite variance is discussed in Chapter 12.



FIGURE 4.3

Input HE) = D(z) Output Block diagram representation of a
w(n) A@) x(n) parametric, rational signal model.
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Short-memory behavior

To find the memory behavior of pole-zero models, we investigate the nature of their
impulse response. To this end, we recall that for Q > P, (4.1.23) can be expanded as

H@) = Z Bjz/ + Z

wherefor simplicity we assumethat the model has P d|$1| nct poles. Thefirsttermin (4.1.30)
disappearsif P > Q. The coefficients B; can be obtained by long division:

Ar= Q= prz HH@) =p, (4.1.31)
If themodel iscausal, taking the inverse z-transform resultsin an impulse responsethat isa

linear combination of impulses, real exponentials, and damped sinusoids (produced by the
combination of complex exponenti als)

—— (4.1.30)

o-P P>
h(n) =Y Bjs(n—j)+ ZAk(pk)"u(n)—}-ZCr cos(win + ¢;)u(n) (4.1.32)
j=0 k=1 i=1

where p; = riet/® and P = Py + 2P,. Recall that u(n) and 8(n) are the unit step and

unit impulse functions, respectively. We note that the memory of any all-pole model decays

exponentially with time and that the rate of decay is controlled by the pole closest to the

unit circle. The contribution of multiple poles at the same location istreated in Problem 4.1.
Careful inspection of (4.1.32) leads to the following conclusions:

1. For AZ(Q) models, theimpulse response hasfinite duration and, therefore, can have any
shape.

2. Theimpulse response of causal AP(P) and PZ(P, Q) models with single poles consists
of alinear combination of damped real exponentials (produced by the real poles) and
exponentially damped sinusoids (produced by complex conjugate poles). The rate of
decay decreases as the poles move closer to the unit circle and is determined by the pole
closest to the unit circle.

3. Themodel isstableif and only if i (n) is absolutely summable, which, due to (4.1.32),
isequivaent to |px| < 1for al k. In other words, a causal pole-zero model is BIBO
stableif and only if al the poles are inside the unit circle.”

We conclude that causal, stable PZ(P, Q) models with P > 0 have an exponentially
fading memory because their impul se response decays exponentially with time. Therefore,
the autocorrelation r, (1) = h(l) = h*(—1) aso decays exponentially (see Example 4.2.2),
and pole-zero models have short memory according to the definition given in Section 3.4.3.

Generation of random signals with rational power spectra

Sample realizations of random sequences with rational power spectra can be easily
generated by using the difference equation (4.1.24) and a random number generator. In
most applications, we use a Gaussian excitation because the generated sequence will aso
be Gaussian. For non-Gaussian inputs, it is difficult to predict the type of distribution
of the output signal. If, on one hand, we specify the frequency response of the model,

TPoI&s on the unit circle are discussed in Section 4.5.

155

SECTION 4.1

Introduction



156

CHAPTER 4
Linear Signal Models

the coefficients of the difference equation can be obtained by using a digital filter design
package. If, on the other hand, the power spectrum or the autocorrelation is given, the
coefficients of the model are determined via spectral factorization. If we wish to avoid
the transient effects that make some of the initial output samples nonstationary, we should
consider the response of the model only after theinitial transients have died out.

4.1.3 Mixed Processes and Wold Decomposition

An arbitrary stationary random process can be constructed to possess a continuous PSD
R, (e/®) and adiscrete power spectrum R, (k). Such processes are called mixed processes
because the continuous PSD isdueto regular processes while the discrete spectrumisdueto
harmonic (or amost periodic) processes. A further interpretation of mixed processesisthat
thefirst partisanunpredictable processwhilethe second partisapredictable process(inthe
sensethat past samples can be used to exactly determinefuture samples). Thisinterpretation
is due to the Wold decomposition theorem.

THEOREM 4.1 (WOLD DECOMPOSITION). A genera stationary random process can be
written asasum

x(n) = xr(n) + xp(n) (4.1.33)
where xr(n) is aregular process possessing a continuous spectrum and xp(n) is a predictable
process possessing a discrete spectrum. Furthermore, xy (n) is orthogonal to xp(n); that is,

Ef{xr(n)xp(np)} =0  fordlng, ny (4.1.34)

Theproof of thistheoremisvery involved, but agood approachtoitisgivenin Therrien
(1992). Using (4.1.34), the correlation sequence of x(r) in (4.1.33) isgiven by

re(l) = rxr(l) + VXp(l)
from which we obtain the continuous and discrete spectra. As discussed above, the regular
process has an innovations representation w(n) that is uncorrelated but not independent.

For example, w(n) can be the output of an all-pass filter driven by an 11D sequence. To
determine if thisis the case, we need to use higher-order moments (see Section 12.1).

4.2 ALL-POLE MODELS

We start our discussion of linear signal models with all-pole models because they are the
easiest to analyze and the most often used in practical applications. We assume an all-pole
model of the form

d d d
HG) = 0 0 0

AR P = 7p
1+ az*  [[a-pz
=1 k=1

where dp is the system gain and P is the order of the model. The all-pole model can be
implemented using either a direct or a lattice structure. The conversion between the two
sets of parameters can be done by using the step-up and step-down recursions described in
Section 2.5.

(4.2.1)

4.2.1 Model Properties

In this section, we derive analytic expressions for various properties of the all-pole model,
namely, the impulse response, the autocorrelation, and the spectrum. We determine the
system-related properties r;, (1) and R, (e/®) because the results can be readily applied to
obtain the signal model properties for inputs with both continuous and discrete spectra.



Impulse response. The impulse response i(n) can be specified by first rewriting
(4.2.1) as

P
H@)+ Y axH(z) :7% =do
k=1

and then taking the inverse z-transform to obtain

P
h(n) + Y axh(n — k) = dod (n) (4.2.2)
k=1
If the system is causal, then
P
h(n) = =Y agh(n — k) + dod (n) (4.2.3)
k=1

If H(z) hasadll its polesinside the unit circle, then i (n) isacausal, stable sequence and the
system is minimum-phase. From (4.2.3) we have

h(0) = do (4.2.9)
P
h(n) = — Zakh(n —k) n>0 (4.2.5)
k=1
and owing to causality we have
h(n) =0 n<0 (4.2.6)

Thus, except for thevalueat n = 0, h(n) can be obtained recursively asalinearly weighted
summation of its previous values h(n — 1), ..., h(n — P). One can say that 4 (n) can be
predicted (with zero error for n # 0) from the past P values. Thus, the coefficients {ay}
are often referred to aspredictor coefficients. Note that thereis a close relationship between
all-pole models and linear prediction that will be discussed in Section 4.2.2.

From (4.2.4) and (4.2.5), we can also write the inverse relation

OB =N )
an_—m—;ak 0 1<n<P (4.2.7)

with ag = 1. From (4.2.7) and (4.2.4), we conclude that if we are given the first P + 1
values of the impulse response 2(n), 0 < n < P, then the parameters of the all-pole filter
are completely specified.

Finally, we note that a causal H(z) can be written as a one-sided, infinite polynomial
H(z) =Y 2 oh(n)z". Thisrepresentation of H (z) impliesthat any finite-order, all-pole
model can be represented equivalently by an infinite number of zeros. In general, asingle
pole can be represented by an infinite number of zeros, and conversely asingle zero can be
represented by an infinite number of poles. If the poles areinside the unit circle, so are the
corresponding zeros, and vice versa.

EXAMPLE 4.2.1. Asinglepoleat z = a can be represented by
1
— — n_—n
H(z) = T 1= Ezoa z lal <1 (4.2.8)

Thequestionis, where aretheinfinite number of zeroslocated? To find the answer, let us consider
the finite polynomial

N
Hy(z) = Z a'z " (4.2.9)
n=0
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where we have truncated H(z) atn = N. Thus Hy (z) is ageometric series that can be written
in closed form as

1 gN+1,—(N+D)

Hy(z) = 4.2.10
N (@) = ( )

And Hy (z) hasasinglepoleat z = a and N + 1 zeros at
zi=ae/ZHWNED 01N (4.2.12)

The N + 1 zeros are equally distributed on the circle |z| = a with one of the zeros (for i = 0)
located at z = a. But the zero at z = a cancelsthe pole at the same location. Therefore, Hy (z)
hastheremaining N zeros:

zi =aed WD 102 N (4.2.12)

The transfer function H (z) of the single-pole model is obtained from Hy (z) by letting N go
to infinity. In the limit, Hoo(z) has an infinite number of zeros equally distributed on the circle
|z| = a; the zeros are everywhere on that circle except at the point z = «. Similarly, the
denominator from (4.2.8), a polynomial with asingle zero at z = a, can be written as

1 1

= H(Z) = )
1+ Za” 7"
n=1

that is, a single zero can aso be represented by an infinite number of poles. In this case, the
poles are equally distributed on a circle that passes through the location of the zero; the poles
are everywhere on the circle except at the actual location of the zero.

Alz)=1—- az71

la] <1 (4.2.13)

Autocorrelation. The impulse response /(n) of an al-pole model has infinite dura
tion so that its autocorrelation involves an infinite summation, which is not practical to
write in closed form except for low-order models. However, the autocorrelation function
obeys arecursive relation that relates the autocorrelation values to the model parameters.
Multiplying (4.2.2) by h*(n — I) and summing over al n, we have

o0

P 0
SO Y akhn—kh*(n—1)=do Y h*(n—1s(n) (4.2.14)
n=—00 k=0 n=—oo
where ag = 1. Interchanging the order of summations in the left-hand side, we obtain

P
> axra(l = k) = doh*(—1) —0 <l <00 (4.2.15)
k=0

where r;, (1) is the autocorrelation of 4 (n). Equation (4.2.15) is true for al /, but because
h(l) =0forl <0, h(—=l) =0for! > 0, and we have

P
Y aral—k)y=0 1>0 (4.2.16)
k=0
From (4.2.4) and (4.2.15), we also have for I = 0,
P
> axr(—k) = |do|? (4.2.17)
k=0
where we used the fact that r; (—1) = r; (/). Equation (4.2.16) can be rewritten as

P
)y ==Y aral—k) 1>0 (4.2.18)
k=1



whichisarecursiverelationfor rj, (/) in terms of past values of the autocorrelation and {ay }.
Relation (4.2.18) for rj, (1) is similar to relation (4.2.5) for i(n), but with one important
difference: (4.2.5) for h(n) istruefor al n # Owhile (4.2.18) for r; (1) istrueonly if [ > O;
forl < 0, ry(l) obeys (4.2.15).

If we define the normalized autocorrelation coefficients as

(D)

)= 4.2.19
pr() 0) ( )
then we can divide (4.2.17) by r;,(0) and deduce the following relation for r;, (0)
2
rn(0) = }|,d°| (4.2.20)
1+ arpy (k)
k=1

which is the energy of the output of the all-pole filter when excited by a single impulse.

Autocorrelation in terms of poles. The complex spectrum of the AP(P) model is

1 P 1
Rix) =H@H (= ) =ldol* [] 4221
1(2) ) (z*) |dol e na—ms ( )

Therefore, the autocorrel ation sequence can be expressed in terms of the poles by taking the
inverse z-transform of Ry, (z), that is, r, (1) = Z~Y{R;,(z)}. The poles py of the minimum-
phase model H (z) contribute causal terms in the partia fraction expansion, whereas the
poles 1/ p; of the nonminimum-phase model H (1/z*) contribute noncausal terms. Thisis
best illustrated with the following example.

EXAMPLE 4.2.2. Consider the following minimum-phase AP(1) model

H(z) = a1 —1l<a<l1 (4.2.22)
Owing to causality, the ROC of H(z) is|z| > |al|. The z-transform
Hz YH = 1 —l<a<1 (4.2.23)
Z = 1+az L.

corresponds to the noncausal sequence h(—n) = (—a) "u(—n), and its ROC is |z| < 1/|a]|.
Hence,

1
(14+azH(L +az2)

which corresponds to a two-sided sequence because its ROC, |a| < |z| < 1/|al, isaringinthe
z-plane. Using partial fraction expansion, we obtain

Ry =H@HE Y = (4.2.24)

—a 1 N 1 1
1-a?21+4az71 1-421+az

Ry(z) = (4.2.25)

The pole p = —a corresponds to the causal sequence [1/(1 — az)](—a)lu(l — 1), and the pole
p = —1/a to the anticausal sequence[1/(1 — az)](—a)_lu(—l). Combining the two terms, we
obtain

1
() = ——(—a)l! —o <l <o (4.2.26)
l1—a

or on) = (—a)l! —00 <l <00 (4.2.27)

Note that complex conjugate poleswill contribute two-sided damped sinusoidal terms
obtained by combining pairs of the form (4.2.27) withu = p anda = p".
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Impulse train excitations. The response of an AP(P) model to a periodic impulse
train with period L is periodic with the same period and is given by

P 00
fl(n)—l—Zakfl(n—k) =dp Z 8(n+ Lm)
k=1 m=-00 (4.2.28)
do n+Lm=0
- {0 n+Lm#0

which shows that the prediction error is zero for samples inside the period and dp at the
beginning of each period. If we multiply both sides of (4.2.28) by #*(n — [) and sum over
aperiod0 <n < L — 1, weobtain

P
Al + Y arfn(l — k) = %ﬁ*(—z) al 1 (4.2.29)
k=1

where 7, (1) is the periodic autocorrelation of /(n). Since, in contrast to h(n) in (4.2.15),
h(n) isnot necessarily zerofor n < 0, the periodic autocorrelation 7, (/) will not in general
obey the linear prediction equation anywhere. Similar results can be obtained for harmonic
process excitations.

Model parameters in terms of autocorrelation. Equations (4.2.15) for!/ =0, 1, ...,
P comprise P + 1 equations that relate the P 4+ 1 parameters of H(z), namely, dp and
{ar, 1 < k < P}, tothefirst P + 1 autocorrelation coefficients r, (0), r, (1), ..., ri(P).
These P + 1 equations can be written in matrix form as

)  ri(d) S TE(P) 1 |do|?

1 oo PP =1 0
fh< ) fh<0> ' @( ) a | _ | (4.2.30)
rm(P) (P —=1) - rp(0) ap 0

If wearegiventhefirst P + 1 autocorrelations, (4.2.30) comprisesasystem of P + 1 linear
equations, with a Hermitian, Toeplitz matrix that can be solved for do and {ay}.

Because of the special structurein (4.2.30), the model parameters are found from the
autocorrelationsby using thelast set of P equationsin (4.2.30), followed by the computation
of dp from the first equation, which is the same as (4.2.17). From (4.2.30), we can writein
matrix notation

Rya=—ry (4.2.31)

where R, is the autocorrelation matrix, a is the vector of the model parameters, and r;,
is the vector of autocorrelations. Since r, (1) = oirh (1), we can also express the model
parameters in terms of the autocorrelation r, (1) of the output process x (n) as follows:

Ria = —ry (4.2.32)

These equations are known as the Yule-Walker equations in the statistics literature. In the
sequel, we drop the subscript from the autocorrelation sequence or matrix whenever the
analysis holds for both the impul se response and the model output.

Because of the Toeplitz structure and the nature of theright-hand side, thelinear systems
(4.2.31) and (4.2.32) can be solved recursively by using the algorithm of Levinson-Durbin
(see Section 7.4). After a is solved for, the system gain dg can be computed from (4.2.17).

Therefore, given r(0), (1), ..., r(P), we can completely specify the parameters of
the all-pole model by solving aset of linear equations. Below, we will seethat the converse
is also true: Given the model parameters, we can find the first P + 1 autocorrelations by



solving aset of linear equations. This elegant solution of the spectral factorization problem
is unique to all-pole models. In the case in which the model contains zeros (Q # 0), the
spectral factorization problem requires the solution of a nonlinear system of equations.

Autocorrelation in terms of model parameters. |f we normalize the autocorrelations
in (4.2.31) by dividing throughout by r(0), we obtain the following system of equations

Pa=—p (4.2.33)
whereP is the normalized autocorrel ation matrix and
p=I[p)p@2) - p(P" (4.2.34)

is the vector of normalized autocorrelations. This set of P equations relates the P model
coefficients with the first P (normalized) autocorrelation values. If the poles of the al-pole
filter arestrictly insidetheunit circle, the mapping between the P-dimensional vectorsa and
p isunique. If, infact, we are given the vector a, then the normalized autocorrel ation vector
p can be computed from a by using the set of equations that can be deduced from (4.2.33)

Ap = -—a (4.2.35)

where (A);; = a;—; + a;4j, assuming a,, = 0form < Oandm > P (see Problem 4.6).
Giventheset of coefficientsina, p can beobtained by solving (4.2.35). Wewill seethat,
under the assumption of astable H (z), asolution always exists. Furthermore, there existsa
simple, recursive solution that is efficient (see Section 7.5). If, in additionto a, we are given
dp, we can evaluate r (0) with (4.2.20) from p computed by (4.2.35). Autocorrel ation values
r(l) forlags! > P arefound by using the recursion in (4.2.18) with »(0), (1), ..., r(P).

EXAMPLE 4.2.3. For the AP(3) model with real coefficients we have

r@@ r( r@||a r(1)
r@ 1@ r@||a|=-|r@ (4.2.36)
r2 r(1 r@©||a3 r(3)
3 = r(0) + agr() + apr(2) + azr(d (4.2.37)

Therefore, given r(0), r(1), r(2), r(3), we can find the parameters of the all-pole model by
solving (4.2.36) and then substituting into (4.2.37).

Suppose now that instead we are given the model parameters dg, az, ap, az. If we divide
both sides of (4.2.36) by r(0) and solvefor the normalized autocorrelations p (1), p(2), and p(3),

we obtain
l1+a, a3z O p(Q) ay
ag+az 1 O p(2 |=—| a2 (4.2.38)
ap ap 1 ) as

The vaue of r(0) is obtained from
2
dgy
1+ a1p(D) + a20(2) + a3p(d)
Ifr(0) =2, r(1) = 1.6, r(2) = 1.2, and r(3) = 1, the Toeplitz matrix in (4.2.36) is positive
definite because it has positive eigenvalues. Solving the linear system gives a; = —0.9063,

as = 0.2500, and az = —0.1563. Substituting these valuesin (4.2.37), we obtain dy = 0.8329.
Using the last two relations, we can recover the autocorrelation from the model parameters.

r(0) = (4.2.39)

Correlation matching. All-pole models have the unique distinction that the model
parameters are completely specified by the first P + 1 autocorrelation coefficients via a set

of linear equations. We can write
[do} o [r(o)} (4.2.40)
a o
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that is, the mapping of the model parameters {do, a1, ap, ..., ap} to the autocorrelation
coefficients specified by the vector {r(0), p(2), ..., p(P)} isreversible and unique. This
statement impliesthat given any set of autocorrelation valuesr(0), r (1), ..., r(P), wecan
always find an all-pole model whosefirst P + 1 autocorrelation coefficients are equal to the
given autocorrelations. This correlation matching of al-pole models is quite remarkable.
This property is not shared by all-zero models and is true for pole-zero models only under
certain conditions, aswe will seein Section 4.4.

Spectrum. The z-transform of the autocorrelation r (/) of H(z) isgiven by

1
R(z) = H(z)H" (Z—*> (4.2.41)
The spectrum is then equal to
; - |do|?
R(/®) = |H(@E*))? = ——— 4.2.42
(e’®) = [H(e’")] (A2 ( )

Theright-hand side of (4.2.42) suggestsamethod for computing the spectrum: First compute
A(e/®) by taking the Fourier transform of the sequence {1, a1, ..., ap}, then take the
squared of the magnitude and divide |do|2 by the result. The fast Fourier transform (FFT)
can be used to this end by appending the sequence {1, as, . .., ap} with as many zeros as
needed to compute the desired number of frequency points.

Partial autocorrelation and lattice structures. \We have seen that an AP(P) model is
completely described by the first P + 1 values of its autocorrel ation. However, we cannot
determine the order of the model by using the autocorrelation sequence because it has
infinite duration. Suppose that we start fitting models of increasing order m, using the
autocorrelation sequence of an AP(P) model and the Yule-Walker equations

1 PO - p*m =1 [af” p*(D)
: (m) *
cee p*(2)
oy 1 @ | (4.2.43)
: : p*(D) : :
o(m—1) - p() 1 alm p*(m)
Sincea™ = Oform > P,wecanusethesequencea'’”, m = 1,2, ..., whichisknown as

the partial autocorrelation sequence (PACS), to determine the order of the al-pole model.
Recall from Section 2.5 that

a™ =k, (4.2.44)

that is, the PACS isidentical to the lattice parameters. A statistical definition and interpre-
tation of the PACS are also given in Section 7.2. The PACS can be defined for any valid
(i.e., positive definite) autocorrelation sequence and can be efficiently computed by using
the algorithms of Levinson-Durbin and Schur (see Chapter 7).

Furthermore, it has been shown (Burg 1975) that

P P

1— Jknl ; 1+ kil
r(0) < R('?) <r(0 4.2.45
ml:[ll+|km| E11_|km| (4.2.45)

which indicates that the spectral dynamic range increases if some lattice parameter moves
closeto 1 or equivalently some pole moves close to the unit circle.

Equivalent model representations. From the previous discussions (see also Chapter
7) we conclude that a minimum-phase AP(P) model can be uniquely described by any one
of the following representations:



1. Direct structure: {do, a1, az, ..., ap}
2. Lattice structure: {do, k1, ko, ..., kp}
3. Autocorrdation: {r(0), r(1), ..., r(P)}

where we assume, without loss of generality, that dg > 0. Note that the minimum-phase
property requires that all poles be inside the unit circle or al |k,,| < 1 or that Rp,1 be
positive definite. The transformation from any of the above representationsto any other can
be done by using the algorithms developed in Section 7.5.

Minimum-phase conditions. Aswe will show in Section 7.5, if the Toeplitz matrix
R;, (or equivalently R,) is positive definite, then |k,,,| < 1foralm =1, 2,..., P. There-
fore, the AP(P) model obtained by solving the Yule-Walker equations is minimum-phase.
Therefore, the Yule-Walker equations provide asimple and el egant solution to the spectral
factorization problem for all-pole models.

EXAMPLE 4.2.4. Thepolesof themodel obtainedin Example4.2.3 are0.8316, 0.0373+0.4319;,
and 0.0373 — 0.4319i . We see that the poles are inside the unit circle and that the autocorrel ation
sequence is positive definite. If we set r,(2) = —1.2, the autocorrelation becomes negative
definite and the obtained model a =[1 — 1.222 1.1575]7, do = 2.2271, is nonminimum-phase.

Pole locations. The poles of H(z) are the zeros { p} of the polynomia A(z). If the
coefficients of A(z) are assumed to be real, the poles are either real or come in complex
conjugate pairs. In order for H(z) to be minimum-phase, all poles must be inside the unit
circle thatis, | px| < 1. Themodel parameters a; can be written as sums of products of the
poles py. In particular, it is easy to see that

P
ar=-Y p (4.2.46)
k=1
P
ap=[]=po (4.2.47)
k=1

Thus, the first coefficient a; isthe negative of the sum of the poles, and the last coefficient
ap isthe product of the negative of the individual poles. Since |px| < 1, we must have
lap| < 1 for a minimum-phase polynomia for which ag = 1. However, note that the
reverse is not necessarily true: |ap| < 1 does not guarantee minimum phase. The roots py
can be computed by using any number of standard root-finding routines.

4.2.2 All-Pole Modeling and Linear Prediction

Consider the AP(P) model

P
x(n) ==Y ax(n —k)+w(n) (4.2.48)
k=1

Now recall from Chapter 1 that the Mth-order linear predictor of x (rn) and the corresponding
prediction error e(n) are

M
Rn) ==Y aix(n—k) (4.2.49)
k=1
M
e(n) =x(n) —£(n) =x(n) + Y _apx(n — k) (4.2.50)

k=1
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M
or x(n) =— Za,?x(n — k) +e(n) (4.2.51)
k=1
Noticethat if theorder of thelinear predictor equal sthe order of theall-polemodel (M = P)
and if a,? = ay, then the prediction error is equal to the excitation of the all-pole model,
thatis, e(n) = w(n). Since al-pole modeling and FIR linear prediction are closely related,
many properties and algorithms developed for one of them can be applied to the other.
Linear prediction is extensively studied in Chapters 6 and 7.

4.2.3 Autoregressive Models

Causal all-pole models excited by white noise play a major role in practical applications
and areknown asautoregressive (AR) models. AnAR(P) model isdefined by the difference
equation

P
x(n) ==Y ax(n — k) + w(n) (4.2.52)
k=1
where {w(n)} ~ WN(O, 05)). An AR(P) model isvalid only if the corresponding AP(P)
system is stable. In this case, the output x(n) is a stationary sequence with a mean value
of zero. Postmultiplying (4.2.52) by x*(n — I) and taking the expectation, we obtain the
following recursive relation for the autocorrel ation:

P
re() ==Y arre(l — k) + E{w(m)x*(n — 1)} (4.2.53)
k=1

Similarly, using (4.1.1), we can show that E {w(n)x*(n — [)} = o2 h*(—I). Thus, we have

P
re) == arre(l —k) +o5h* (1) forall (4.2.54)
k=1
The variance of the output signal is

P
0f =re(0) = =) Jare(k) + 07,
k=1

o2

= P—w (4.2.55)
1+ arp (k)
k=1
If we substitute! = 0,1, ..., P in (4.2.55) and recall that h(n) = Ofor n < 0, we obtain
the following set of Yule-Walker equations:

=N

or o

rx(o) rx(l) <o rx(P) 1 0’5)

*1) (0 e (P—1 0

& ) " © o F-Dija]_ | (4.2.56)
FP) PP =1 - r(0) ap 0

Careful inspection of the above equations reveals their similarity to the correspond-
ing relationships developed previously for the AP(P) model. This should be no surprise
since the power spectrum of the white noise is flat. However, there is one important dif-
ference we should clarify: AP(P) models were specified with again dp and the parameters
{a1, a2, ...,ap}, butfor AR(P) modelswe set the gain dp = 1 and define the model by the



variance of the white excitation azw and the parameters {a1, az, ..., ap}. In other words,
we incorporate the gain of the model into the power of the input signal. Thus, the power
spectrum of the output is R, (e/?) = 05)|H(e«/‘“)|2. Similar arguments apply to all para-
metric models driven by white noise. We just rederived some of the relationshipsto clarify
these issues and to provide additional insight into the subject.

4.2.4 Lower-Order Models

In this section, we derive the properties of lower-order all-pole models, namely, first- and
second-order models, with real coefficients.

First-order all-pole model: AP(1)
AnAP(1) model has atransfer function

do
HZ7) = ——— 4.2.57
@ 1+az1 ( )
with asinglepoleat z = —a ontherea axis. It isclear that H(z) is minimum-phase if
—-l<a<1 (4.2.58)
From (4.2.18) with P = 1and! = 1, we have
r(1)
-~ _—_ 51 4.2.59
a 0 p(1) ( )

Similarly, from (4.2.44) withm = 1,
a’ =a=—-p) =k (4.2.60)
Sincefrom (4.2.4), h(0) = do, and from (4.2.5) h(n) = —ai1h(n—1) forn > 0, theimpulse
response of a single-pole filter is given by
h(n) = do(—a)"u(n) (4.2.61)
The same result can, of course, be obtained by taking the inverse z-transform of H (z).

The autocorrelation is found in a similar fashion. From (4.2.18) and by using the fact
that the autocorrelation is an even function,
rd) =r(Q)(—a)!!!  foralll (4.2.62)
and from (4.2.20)
2 2
r0 =z i"az =7 io 2 (4.2.63)
Therefore, if the energy r(0) in the impulse response is set to unity, then the gain must be

set to
do=\1-k r0=1 (4.2.64)

The z-transform of the autocorrelation is then

= dg = S _ -l
ko) = A+az7H(1+az) =r(0) Z (—a)"z (4.2.65)

I=—00
and the spectrum is
dg 45
|1+ ae—J®|2 ~ 1+ 2a cosw + a2
Figures 4.4 and 4.5 show a typical realization of the output, the impulse response,
autocorrelation, and spectrum of two AP(1) models. The sample process realizations were

obtained by driving the model with white Gaussian noise of zero mean and unit variance.
When the positive pole (p = —a = 0.8) is close to the unit circle, successive samples

R(e/®) = |H (/)| = (4.2.66)
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Sample realization of the output process, impulse response, autocorrelation, and spectrum of
an AP(1) model with a = —0.8.
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Sample redlization of the output process, impulse response, autocorrelation, and spectrum of
an AP(1) model with a = 0.8.

of the output process are similar, as dictated by the slowly decaying autocorrelation and
the corresponding low-pass spectrum. In contrast, a hegative pole close to the unit circle
resultsin arapidly oscillating sequence. Thisis clearly reflected in the alternating sign of
the autocorrel ation sequence and the associated high-pass spectrum.



Note that a positive real pole is a type of low-pass filter, while a negative real pole
has the spectral characteristics of a high-pass filter. (This situation in the digital domain
contrasts with that in the corresponding analog domain where a real-axis pole can only
have low-pass characteristics.) The discrete-time negative real pole can be thought of as
one-half of two conjugate poles at half the sampling frequency. Notice that both spectraare
even and have zero dope at w = 0 and w = 7. These propositions are true of the spectra
of all parametric models (i.e., pole-zero models) with real coefficients (see Problem 4.13).

Consider now the real-valued AR(1) process x (n) generated by

x(n) = —ax(n — 1) + w(n) (4.2.67)

where{w(n)} ~WN (O, 05)). Usingtheformula R, (z) = oiH(z)H*(l/z*) and previous
results, we can see that the autocorrelation and the PSD of x(n) are given by

2
o
w I
(—a)
a2

re(l) = 1_

. 1— a2
and R, (e/?) = o2
x(e) Y1+ a2+ 2a cosw

respectively. Since 02 = r,(0) = 02 /(1 — a?), the SFM of x(n) is[see (Section 4.1.18)]
2
Uw

52
UX

SFM, = —% =1—4? (4.2.68)
Clearly, if a = 0, then from (4.2.67), x(n) is a white noise process and from (4.2.68),
SFM, = 1. If a — 1, then SFM, — 0; and in the limit when a = 1, the process becomes
arandom walk process, which is a nonstationary process with linearly increasing variance
E{x?(n)} = no2. The correlation matrix is Toeplitz, and it is a rare exception in which
eigenvalues and eigenvectors can be described by analytical expressions (Jayant and Noll
1984).

Second-order all-pole model: AP(2)
The system function of an AP(2) model is given by
do do

H(z) = = 4.2.69
@ 1+a1z7 +az7?2  (1— priz7H(A - p2z™H ( )

From (4.2.46) and (4.2.47), we have
a1 = —(p1+ p2) (4.2.70)

az = p1p2
Recall that H (z) is minimum-phase if the two poles p; and p2 are inside the unit circle.
Under these conditions, a1 and az liein atriangular region defined by

—1l<arx<l1
ap—a1; > -1 (4.2.71)
a>+a1 > -1
and shown in Figure 4.6. The first condition follows from (4.2.70) since |p1| < 1 and
|p2| < 1. The last two conditions can be derived by assuming real roots and setting the
larger root to less than 1 and the smaller root to greater than —1. By adding the last two
conditions, we obtain the redundant condition a, > —1.
Complex roots occur in the region

2
%1 <ap<1 complex poles (4.2.72)

with ao = 1 resulting in both roots being on the unit circle. Note that, in order to have
complex poles, ax cannot be negative. If the complex poles are written in polar form

pi=retl?  0<r<1 (4.2.73)
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FIGURE 4.6

Minimum-phase region (triangle) for the AP(2) model in the (ay, ap)
parameter space.

then ay=—2r cost  ap=r> (4.2.74)
do

1— (2rcosf)z1 +r2z=2

Here, r is the radius (magnitude) of the poles, and 6 is the angle or normalized frequency

of the poles.

and H(z) =

complex poles (4.2.75)

Impulse response. The impulse response of an AP(2) model can be written in terms
of itstwo poles by evaluating the inverse z-transform of (4.2.69). Theresultis

d,
h(n) = —=2— (pi* — pitYu(n) (4.2.76)
P1— p2
for p1 # po. Otherwise, for p1 = p2 = p,
h(n) = do(n + 1) p"u(n) (4.2.77)

In the special case of a complex conjugate pair of poles p1 = re/? and p, = re=7?,

Equation (4.2.76) reducesto

sin[(n + 1)6]
sing !

Since0 < r < 1, h(n) isadamped sinusoid of frequency 6.

h(n) =dor (n) complex poles (4.2.78)

Autocorrelation. The autocorrelation can also be written in terms of the two poles as

d2 +1 +1
r(l) 0 (p L2 >0 (4.2.79)

" (p1— p2)(1— pip2) 2

1-— p% 1-— 1%
from which we can deduce the energy
B d3(1+ p1p2)
(L= p1p2)(L - pH(L - p))
For the special case of a complex conjugate pole pair, (4.2.79) can be rewritten as
d3r{sin[(l + 1)0] — r2sin[( — )61}
) = -0 1>0 4.2.81

"= A= ene1d = 2200820 + %) = (4.2.81)
Then from (4.2.80) we can write an expression for the energy in terms of the polar coordi-
nates of the complex conjugate pole pair

r(0) (4.2.80)

d2(1+r?)
(1—r?)(1—2r2 cos20 + r%)

(0) = (4.2.82)



The normalized autocorrelation is given by
rl{sin[(l + 1)81 — r2sin[( — )61}

o) = 1377 s />0 (4.2.83)
which can be rewritten as
o(l) = Colsﬁ rlcos(to —B) 1>0 (4.2.84)
where tang = w (4.2.85)
1+ r?)sing

Therefore, p(1) isadamped cosine wave with its maximum amplitude at the origin.

Spectrum. By setting the two poles equal to

pr=r1e/  pp=rpel? (4.2.86)

the spectrum of an AP(2) model can be written as
45

R(e/?) = 5 5
[1—2r1cos(w — 01) + r{][1 — 2r2cos(w — 62) + 5]

(4.2.87)

There are four cases of interest

Pole locations Peak locations  Type of R(e®)

p1>0,p2>0 w=0 Low-pass
p1<0,pp<0 w=mn High-pass
p1>0,p2<0 w=0w=m Stopband
P12 = reti? O<w<m Bandpass

and they depend on the location of the poles on the complex plane.
We concentrate on the fourth case of complex conjugate poles, which is of greatest
interest. The other three cases are explored in Problem 4.15. The spectrum is given by

2
dO

R(e/®) = 4.2.88
™) [1— 2rcos(w — 0) + r2][1 — 2r cos(w + 0) + r?] ( )

The peak of this spectrum can be shown to be located at a frequency w., given by

1 2
COSw, = *r cos 6 (4.2.89)
r
Since1+ r2 > 2r for r < 1, and we have

COSw, > COSH (4.2.90)

the spectral peak is lower than the pole frequency for 0 < 6 < =z /2 and higher than the
pole frequency for 7 /2 < 6 < .

This behavior is illustrated in Figure 4.7 for an AP(2) model with a; = —0.4944,
a2 = 0.64, and dgp = 1. The model has two complex conjugate poles with r = 0.8 and
0 = +27 /5. The spectrum has asingle peak and displays a passband type of behavior. The
impulse response is adamped sine wave while the autocorrelation is adamped cosine. The
typical realization of the output shows clearly a pseudoperiodic behavior that is explained
by the shape of the autocorrelation and the spectrum of the model. We also notice that if
the poles are complex conjugates, the autocorrel ation has pseudoperiodic behavior.

Equivalent model descriptions. \We now write explicit formulasfor a; andaz interms
of the lattice parameters k1 and k2 and the autocorrelation coefficients. From the step-up
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Sample realization
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FIGURE 4.7

Sample realization of the output process, impulse response, autocorrelation, and spectrum of an

AP(2) model with complex conjugate poles.

and step-down recursionsin Section 2.5, we have
ar = k1(1+kp)

ar» = ko
and the inverse relations
ai
k1 =
171 +as
ko =a»

From the Yule-Walker equations (4.2.18), we can write the two equations
air(0) + aor(1) = —r(1)
air() +azr(0) = —r(2)

which can be solved for a1 and as interms of p(1) and p(2)

_ 1-p(2)
ay = ,0(1)—l — 2
_ PP -p@
C1-p2(Y
or for p(1) and p(2) interms of a1 and a»
_— al
p() = 1T

a%
2) — — 1)—go= —L  _
p(2) aip(l) —az 1+ap az

(4.2.91)

(4.2.92)

(4.2.93)

(4.2.94)

(4.2.95)

From the equations above, we can also write the relation and inverse relation between the



coefficients k1 and k> and the normalized autocorrelations p(1) and p(2) as

ky = —p(1)
L ,02(1) —p(2 (4296)
2= T 21
1-p°(D)
and p(1) = —k1

4.29
p(2) =ki(1+k2) — k2 ( K

The gain dg can aso be written in terms of the other coefficients. From (4.2.20), we have
dg = r(O[1+ a1p(1) + azp(2)] (4.2.98)

which can be shown to be equa to
dg =r(OL - k)1~ k2) (4.2.99)

Minimum-phase conditions. |n (4.2.71), we have aset of conditionson a1 and ap so
that theAP(2) model isminimum-phase, and Figure 4.6 showsthe corresponding admissible
region for minimum-phase models. Similar relations and regions can be derived for the
other types of parameters, as we will show below. In terms of k7 and k2, the AP(2) model
is minimum-phase if

ki <1 kol <1 (4.2.100)

This region is depicted in Figure 4.8(a). Shown also is the region that results in complex
roots, which is specified by

O<ky<1 (4.2.101)

Ak
k2 < —=
T (1t ko)?
Because of the correlation matching property of all-pole models, we can find a minimum-
phase all-pole model for every positive definite sequence of autocorrelation values. There-
fore, the admissible region of autocorrelation values coincides with the positive definite
region. The positive definite condition is equivalent to having all the principal minors of

the autocorrelation matrix in (4.2.30) be positive definite; that is, the corresponding deter-
minants are positive. For P = 2, there are two conditions:

1 e 1 (D) p2

det[ P ]>o det| p) 1 p|=0 (4.2.103)
(1) 1

e p) 1

(4.2.102)

These two conditions reduce to
()] <1 (4.2.104)

2% —1<p@2) <1 (4.2.105)

which determine the admissible region shown in Figure 4.8(b). Conditions (4.2.105) can
also be derived from (4.2.71) and (4.2.95). The first condition in (4.2.105) is equivalent to

ai
1+as
which can be shown to be equivalent to the last two conditionsin (4.2.71).
It isimportant to note that the region in Figure 4.8(b) is the admissible region for any

positive definite autocorrel ation, including the autocorrel ation of mixed-phase signals. This
is reasonable since the autocorrelation does not contain phase information and alows the

<1 (4.2.106)
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FIGURE 4.8

Minimum-phase and positive definiteness regions for the AP(2) model in the (a) (k1,
k2) space and (b) (p(1), p(2)) space.

signal to have minimum- and maximum-phase components. What we are claiming here,
however, is that for every autocorrelation sequence in the positive definite region, we can
find a minimum-phase al-pole model with the same autocorrelation values. Therefore, for
this problem, the positive definite region is identical to the admissible minimum-phase
region.

4.3 ALL-ZERO MODELS

Inthis section, weinvestigate the properties of the all-zero model. The output of the all-zero
model isthe weighted average of delayed versions of the input signal

0
x(n) =Y dyw(n—k) (4.3.1)
k=0

where Q isthe order of the model. The system function is

Y
H) =D(2) =) diz™* (4.3.2)
k=0

The al-zero model can be implemented by using either a direct or alattice structure. The
conversion between the two sets of parameters can be done by using the step-up and step-
down recursions described in Chapter 7 and setting A(z) = D(z). Notice that the same set
of parameters can be used to implement either an all-zero or an all-pole model by using a
different structure.

4.3.1 Model Properties
We next provide a brief discussion of the properties of the all-zero model.

Impulse response. |t can be easily seen that the AZ(Q) model isan FIR system with
an impul se response

dn 0 <n=< Q
h(n) = (4.3.3)
0 elsewhere



Autocorrelation. The autocorrelation of the impulse response is given by

[
rall) = i‘ hmh* (n — 1) = kZ:O Uili  O=l=0 (4.3.4)
e 0 >0
and P =) =)l (4.35)
We usually set dp = 1, which implies that
) =df +didfy + - +dodly  1=0,1,...,0 (4.3.6)

hence, the normalized autocorrelation is

df +didf  + - +dp_id:

LT % y_12..0
pr) = 1+1|d112+ -+ |dg|?

0 >0
We see that the autocorrelation of an AZ(Q) model is zero for lags |/| exceeding the order
Q of themodel. If p;, (), p,,(2), ..., p,(Q) are known, then the Q equations (4.3.7) can
be solved for model parametersdy, do, . . ., d,. However, unlike the Yule-Walker equations
for the AP(P) model, which are linear, Equations (4.3.7) are nonlinear and their solution is
quite complicated (see Section 9.3).

4.3.7)

Spectrum. The spectrum of the AZ(Q) model is given by
Q
Ri(e!”) = D@D N ,—pio = D) P = Y rp(l)e 7 (4.38)
=-0
which is basically atrigonometric polynomial.

Impulse train excitations. The response /(n) of the AZ(Q) model to a periodic im-
pulse train with period L is periodic with the same period, and its spectrum is a sampled
version of (4.3.8) at multiples of 2 /L (see Section 2.3.2). Therefore, to recover the auto-
correlation ry, (1) and the spectrum Ry, (e/®) from the autocorrelation or spectrum of h(n),
we should have L > 20 + 1in order to avoid aiasing in the autocorrelation lag domain.
Also,if L > Q,theimpulseresponsei(n),0 < n < Q, canberecovered from theresponse
h(n) (no time-domain aliasing) (see Problem 4.24).

Partial autocorrelation and lattice-ladder structures. The PACSof anAZ(Q) model
is computed by fitting a series of AP(P) modelsfor P = 1, 2, ..., to the autocorrelation
sequence (4.3.7) of the AZ(Q) model. Since the AZ(Q) model is equivalent to an AP(co)
model, the PACS of an all-zero model hasinfinite extent and behaves as the autocorrel ation
sequence of an al-pole model. Thisisillustrated later for the low-order AZ(1) and AZ(2)
models.

4.3.2 Moving-Average Models

A moving-average model isan AZ(Q) model with do = 1 driven by white noise, that is,

0
x(n) =whn) + dew(n —k) (4.3.9)
k=1

where {w(n)} ~ WN(O, oﬁ)). The output x (n) has zero mean and variance of

Y
of =05 |l (4.3.10)
k=0
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The autqcorrelation and power spectrum are given by r,(I) = aﬁ) rp(D) and Ry (e/®) =
o2 |D(e/®)|, respectively. Clearly, observations that are more than Q samples apart are
uncorrelated because the autocorrelation is zero after lag Q.

4.3.3 Lower-Order Models

To familiarize ourselves with all-zero models, we next investigate in detail the properties
of theAZ(1) and AZ(2) modelswith real coefficients.

The first-order all-zero model: AZ(1). For generality, we consider an AZ(1) model
whose system function is
H(z) =GA+diz b (4.3.11)

The model is stable for any value of d; and minimum-phase for —1 < d1 < 1. The
autocorrelation isthe inverse z-transform of

Ry(z) = HQH(E ™Y = GAdiz + A+ dP) + diz ™Y (4.3.12)

Hence, 74 (0) = G?(1+d?), r;(1) = ry(—1) = G?dy, andr,(l) = Oelsewhere. Therefore,
the normalized autocorrelation is

1 1=0
di
o) = rdlz I=+1 (4.3.13)
0 | > 2

The condition —1 < d1 < limpliesthat |pj, (1)| < % for a minimum-phase model. From
(D) =di/(1+ df), we obtain the quadratic equation

pr(Ddi —di+ pj(1) =0 (4.3.14)
which has the following two roots:
1+./1—4p21)
dp— — vV TR (4.3.15)
205(1)

Sincethe product of therootsis 1, if d1 isaroot, then 1/d; must also be aroot. Hence, only
one of these two roots can satisfy the minimum-phase condition -1 < dy < 1.
The spectrum is obtained by setting z = ¢/“ in (4.3.12), or from (4.3.8)

Ry (/) = G(1 4 d? + 2d; cosw) (4.3.16)

The autocorrelation is positive definite if R, (e/“) > 0, which holds for all values of d.
Note that if d; > O, then p;, (1) > 0 and the spectrum has low-pass behavior (see Figure
4.9), whereas a high-pass spectrum is obtained when d1 < 0 (see Figure 4.10).

The first lattice parameter of the AZ(1) model is k1 = —p(1). The PACS can be
obtained from the Yule-Walker equations by using the autocorrelation sequence (4.3.13).
Indeed, after some algebra we aobtain

_ (—d)"(1—d?)

km = w m = 1, 2, ce., 00 (4317)
1—d?

(see Problem 4.25). Notice the duality between the ACS and PACS of AP(1) and AZ(1)
models.
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Sample realization of the output process, ACS, PACS, and spectrum of an AZ(1) model with dq = 0.95.
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Sample redlization of the output process, ACS, PACS, and spectrum of an AZ(1) model with
di = —0.95.
Consider now the MA(1) real-valued process x (n) generated by
x(n) =whn) +bwrn —1)
where {(w(n)} ~ WN(0, 62). Using R, (z) = 02 H(z) H(z 1), we obtain the PSD function
R (¢/®) = 02 (1 + b? + 2b cosw)
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which has low-pass (high-pass) characteristicsif 0 < b < 1 (-1 < b < 0). Since
02 =r,(0) = 02 (1 + b?), we have (see Section 4.1.18)
O'i 1

SFM, = —%

= — 4.3.18
0)26 1+ b2 ( )

whichismaximum for b = 0 (white noise). The correlation matrix isbanded Toeplitz (only
anumber of diagonals close to the main diagonal are nonzero)

150 ---0
b 1 b -~ 0

R, =02(1+b% |0 b 1 - O (4.3.19)
000 -+ 1

and its eigenvalues and eigenvectors are given by Ay = R, (e/?*), q,(,k) = SiNwgn, w; =
nk/(M + 1), wherek = 1,2, ..., M (see Problem 4.30).

The second-order all-zero model: AZ(2). Now let us consider the second-order all-
zero model. The system function of the AZ(2) model is
H) = G+ diz t +doz™?) (4.3.20)

The systemis stablefor all values of d; and d>, and minimum-phase [see the discussion for
the AP(2) model] if
-1l1<dr<1
do—di > -1 (4.3.22)
dr+di > -1

which isatriangular region identical to that shown in Figure 4.6. The normalized autocor-
relation and the spectrum are

1 1=0
di(1+d
% ] —+1
1+d? + d3
— 2 =2
1+ d? + d3
0 Il >3
and  Rp(e’®) = G*[(1+ d? 4 d?) + 2d1(1 + dp) cOSw + 2d5 COS 2] (4.3.23)

respectively.
The minimum-phase region in the autocorrel ation domain is shown in Figure 4.11 and
is described by the equations
p(2) +p(1) =-05
p(2 —p(l)=-05 (4.3.24)
p*(1) = 4p(2)[1 - 20(2)]

derived in Problem 4.26. The formulafor the PACS is quite involved. The important thing
is the duality between the ACS and the PACS of AZ(2) and AP(2) models (see Problem
4.27).



1.0 T - T FIGURE 4.11
: Minimum-phase region in the autocorrelation domain
for the AZ(2) model.
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p(D)

4.4 POLE-ZERO MODELS

We will focus on causal pole-zero models with a recursive input-output relationship given
by

P Y
x(n) = —Zakx(n —k)+dew(n—k) (4.4.1)
k=1 k=0
where we assume that P > 0 and Q > 1. The models can be implemented using either
direct-form or lattice-ladder structures (Proakis and Manolakis 1996).

4.4.1 Model Properties
In this section, we present some of the basic properties of pole-zero models.

Impulse response. The impulse response of a causal pole-zero model can be written
in recursive form from (4.4.1) as

P
h(n) ==Y ath(n—k)+d,  n>0 (4.4.2)
k=1
where d, =0 n>Q

and i(n) = Ofor n < 0. Clearly, thisformulais useful if the model is stable. From (4.4.2),
it isclear that

P
h(n) = —Zakh(n -k n>0 (4.4.3)
k=1

so that the impulse response obeys the linear prediction equation for n > Q. Thus if we
are given h(n), 0 < n < P 4+ Q, we can compute {a;} from (4.4.3) by using the P
equations specifiedby O +1 < n < Q + P. Then we can compute {d;} from (4.4.2), using
0 < n < Q. Therefore, the first P + Q + 1 values of the impulse response completely
specify the pole-zero model.

If the model is minimum-phase, the impulse response of the inverse model /;(n) =
Z=YA(z)/D(2)}, do = 1 can be computed in asimilar manner.

Autocorrelation. The complex spectrum of H (z) isgiven by
«f1 D(z)D*(1/z*) o Ra(2)
R =HQ@H'|— )= =
n@) = HE (z ) AQA L) Ra()

” (4.4.4)
where R;(z) and R,(z) are both finite two-sided polynomials. In a manner similar to the
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all-pole case, we can write a recursive relation between the autocorrelation, impulse re-
sponse, and parameters of the model. Indeed, from (4.4.4) we obtain

1
AQ)Ri(z) = DR H" (?) (4.45)

Takingtheinversez-transformof (4.4.5) and noting that theinversez-transformof H*(1/z*)
ish*(—n), we have

P Q
S —k) = dh*k—1)  foralll (4.4.6)
k=0 k=0

Since h(n) is causal, we see that the right-hand side of (4.4.6) iszeroforl > Q:

P
Zakrh (l—k) =0 >0 (4.4.7)
k=0

Therefore, the autocorrel ation of apole-zero model obeysthe linear prediction equation for
[ > Q.

Because the impulse response i (n) is a function of a; and dy, the set of equations
in (4.4.6) is nonlinear in terms of parameters a; and di. However, (4.4.7) islinear in a;
therefore, we can compute {ay} from (4.4.7), using the set of equations for [ = Q +

1,..., QO+ P,whichcan bewritten in matrix form as
rh(Q) m(Q —1 o (@ =P+ [ar rm(Q+1)
r(Q+1) rn(Q) o Q=P+ | |a . (0 +2)
mQ+P—-1 m(Q@+P-2 - m(Q) ap m(Q + P)
(4.4.8)
or R,a = —iy, (4.4.9)

Here, R;, is a non-Hermitian Toeplitz matrix, and the linear system (4.4.8) can be solved
by using the algorithm of Trench (Trench 1964; Carayannis et al. 1981).
Even after we solve for a, (4.4.6) continues to be nonlinear in d. To compute dy, we
use (4.4.4) tofind R;(z)
Rq(z) = Ra(2)Rp(2) (4.4.10)
where the coefficients of R, (z) are given by
k=ko

0, I=0 P—-1I, 1>0
ral) =) aalyy — —P<I<P kl:{—l /<0’ kz:{P 1<0
k=k1 ’ )

(4.4.11)

From (4.4.10), r4 (1) is the convolution of r, (1) with r, (1), given by

P
ra) =Y ra(yri( — k) (4.4.12)
k=—P

If (1) was originally the autocorrelation of a PZ(P, Q) model, then (1) in (4.4.12) will
be zero for |I| > Q. Since R;(z) is specified, it can be factored into the product of two
polynomials D(z) and D*(1/z*), where D(z) is minimum-phase, as shown in Section 2.4.

Therefore, wehave seenthat, giventhevauesof theautocorrelationry, (1) of aPZ(P, Q)
model intherange0 <[ < P + Q, we can compute the values of the parameters {a; } and
{d} such that H (z) is minimum-phase. Now, given the parameters of a pole-zero model,
we can compute its autocorrelation as follows. Equation (4.4.4) can be written as

Ri(z) = R; Y2 R4(2) (4.4.13)



where R, 1(z) is the spectrum of the all-pole model 1/A(z), that is, 1/R,(z). The coeffi-
cientsof R L(z) can be computed from {a } by using (4.2.20) and (4.2.18). The coefficients
of R;(z) are computed from (4.3.8). Then R, (z) is the convolution of the two autocorre-
lations thus computed, which is equivalent to multiplying the two polynomiasin (4.4.13)
and equating equal powers of z on both sides of the equation. Since R;(z) is finite, the
summations used to obtain the coefficients of R, (z) are also finite.

EXAMPLE 4.4.1. Consider asignal that has autocorrelation values of r;,(0) = 19, r, (1) = 9,
rp(2) = =5, and r;, (3) = —7. The parameters of the PZ(2, 1) model are found in the following
manner. First form the equation from (4.4.8)

= ][

which yiddsa; = —%, ap = % Then we compute the coefficients from (4.4.11), r,(0) = %

rg(£1) = —%, and rg(£2) = % Computing the convolution in (4.4.12) forl < Q = 1, we
obtain the following polynomial:

-1
Ry(x) =4z +10+ 4771 = 4(1+ Z2> z+2)

Thereflore, D(z) is obtained by taking the causal part, that is, D(z) = 2[1 + z_l/(2)], and
Spectrum. The spectrum of H (z) isgiven by

_ D)2
|A(eI)[?

Therefore, R, (e/®) can be obtained by dividing the spectrum of D(z) by the spectrum of
A(z).Again, the FFT can be used to advantagein computing the numerator and denominator
of (4.4.14). If the spectrum Ry, (¢/“) of aPZ(P, Q) model is given, then the parameters of
the (minimum-phase) model can be recovered by first computing the autocorrelation ry, (1)
as the inverse Fourier transform of R, (e/®) and then using the procedure outlined in the
previous section to compute the sets of coefficients {a;} and {d}.

Ru(e?®) = |H(e!®)|? (4.4.14)

Partial autocorrelation and lattice-ladder structures. Since a PZ(P, Q) mode is
equivalent to an AP(co) model, its PACS hasinfinite extent and behaves, after acertain lag,
asthe PACS of an al-zero model.

4.4.2 Autoregressive Moving-Average Models

The autoregressive moving-average model isaPZ(P, Q) model driven by white noise and
isdenoted by ARMA(P, Q).Again,wesetdy = 1andincorporatethegainintothevariance
(power) of the white noise excitation. Hence, a causal ARMA(P, Q) model is defined by

P Y
x(n) = —Z arx(m — k) +w(n) + dew(n —k) (4.4.15)
k=1 k=1
where {w(n)} ~ WN(O, 02). The ARMA(P, Q) model parameters are {02, aa, ..., ap,
d1, ...,dg}. Theoutput has zero mean and variance of
P 0
of == are(k) + o5[1+ ) dih(k)] (4.4.16)
k=1 k=1

where h(n) is the impulse response of the model. The presence of i (n) in (4.4.16) makes
the dependence of 2 on the model parameters highly nonlinear. The autocorrelation of
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x(n) isgiven by

P 0
Y awr—k) =02 | 1+ dihk —1) foral (4.4.17)
k=0 k=1
and the power spectrum by
jwy |2
joy _ 2 |D(e/®)]
R (e’®) Uw—lA(ef“’)Iz (4.4.18)

The significance of ARMA(P, Q) models is that they can provide more accurate repre-
sentations than AR or MA models with the same number of parameters. The ARMA model
is able to combine the spectral peak matching of the AR model with the ability of the MA
model to place nullsin the spectrum.

4.4.3 The First-Order Pole-Zero Model: PZ(1, 1)

Consider the PZ(1, 1) model with the following system function

1+4diz 7t
Hz))=G ———~ _ 4.4.19
(2) = ( )
where dy and a; arereal coefficients. The model is minimum-phase if
-1<di <1
4.4.20
-l<a <1 ( )

which correspond to the rectangular region shown in Figure 4.12(a).

1.0 : 1.0 ; - .
0.5 : 05 : 8
& 0 | @ o | NG XS
Q
-05 : 05+ ; ]
-1.0 - -1.0 ' - '
-10 -05 0 0.5 1.0 -1.0 -05 0 05 1.0
dy p(1)
(@ (b)
FIGURE 4.12

Minimum-phase and positive definiteness regions for the PZ(1, 1) model in the
(a) (d1, a1) space and (b) (p(1), p(2)) space.

For the minimum-phase case, theimpul seresponses of thedirect and theinversemodels
are
0 n<0
hn)=Z"YH@)}=1{G n=0 (4.4.21)
G(-ap)" Ydr—a1)) n>0



0 n<0
and hi(n) =271 { Hi } =1G n=0 (4.4.22)
D Geayta—ay  n=o0
respectively. We note that as the pole p = —aj gets closer to the unit circle, the impulse
response decays more slowly and the model has “longer memory.” The zero z = —d;

controls the impul se response of the inverse model in asimilar way. The PZ(1, 1) model is
equivalent to the AZ(oo) model

x(n) = Gw(n) + G Z h(kyw(n — k) (4.4.23)
k=1
or the AP(co0) model
x(n) ==Y _hi(k)x(n — k) + Gw(n) (4.4.24)
k=1

If wewish to approximate the PZ(1, 1) model with afinite-order AZ(Q) model, the order Q
reguired to achieve a certain accuracy increases as the pole moves closer to the unit circle.
Likewise, in the case of an AP(P) approximation, better fitsto the PZ(P, Q) modd require
an increased order P asthe zero moves closer to the unit circle.

To determine the autocorrelation, we recall from (4.4.6) that for a causal model

rp(l) = —a1rp(l — 1) + Gh(=1) + Gdih(1 - 1) all (4.4.25)
or rp(0) = —a1rp (1) + G + Gd1(d1 — a1)
rp(1) = —a1rp(0) + Gd1 (4.4.26)

rp(l) = —arp(l — 1) [>2
Solving the first two equations for r;, (0) and 1, (1), we obtain
1+d? — 2a1dq

0=¢G 4.4.27
rn(0) 1= a2 ( )
and () = g W —ad) (4.4.28)
1-— aj
The normalized autocorrelation is given by
(d1 — a1)(1 — aad1)
1= 4.4.29
P = (4.4.29
and pu() = (—a)' o1 =1 1>2 (4.4.30)

Note that given p, (1) and p,(2), we have a nonlinear system of equations that must be
solved to obtain a1 and d1. By using Equations (4.4.20), (4.4.29), and (4.4.30), it can be
shown (see Problem 4.28) that the PZ(1, 1) is minimum-phase if the ACS satisfies the
conditions
02| < [pD]

p(2) > p(D[2p(H+1] p@) <0 (4.4.31)

p(2) > p(D[2p(1) — 1] p(1) >0
which correspond to the admissible region shown in Figure 4.12(b).

4.4.4 Summary and Dualities
Table 4.1 summarizes the key properties of all-zero, all-pole, and pole-zero models. These

propertieshelp toidentify modelsfor empirical discrete-timesignals. Furthermore, thetable
shows the duality between AZ and AP models. More specifically, we see that
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TABLE 4.1

1. AninvertibleAZ(Q) model isequivaent to an AP(co) model. Thus, it has a finite-extent
autocorrelation and an infinite-extent partial autocorrelation.

2. A stable AP(P) model is equivalent to an AZ(oco) model. Thus, it has an infinite-extent
autocorrelation and a finite-extent partial autocorrelation.

3. The autocorrelation of an AZ(Q) model behaves as the partial autocorrelation of an
AP(P) model, and vice versa.

4. The spectra of an AP(P) model and an AZ(Q) model are related through an inverse
relationship.

Summary of all-pole, all-zero, and pole-zero model properties

Model

AP(P) AZ(Q) PZ(P, Q)

Input-output description

System function

Recursive representation
Nonrecursive representation
Stablity conditions
Invertiblity conditions
Autocorrelation sequence

Partial autocorrelation

Spectrum

P 0 P
x(n)+ > apx(n —k) = w(n) x(n) =down) + Y drwn —k) x(n)+ Y agx(n —k)
k=1 k=1 k=1

[9]
=dow(n) + > dyw(n —k)
k=1

1 d Q D(z
HQ) = 45 =——0—— HO=DO=do+ ¥ da™*  H)= ﬁ
1+ > akz_k k=1
k=1

Finite summation Infinite summation Infinite summation

Infinite summation Finite summation Infinite summation

Polesinside unit circle Always Polesinside unit circle

Always Zerosinside unit circle Zerosinside unit circle

Infinite duration (damped Finite duration Infinite duration (damped

exponentials and/or sine waves) exponentials and/or sine
waves after Q — P lags)

Tails off Cuts off Tails off

Finite duration Infinite duration (damped Infinite duration (dominated

exponentials and/or sine waves) by damped exponentials

and/or sine waves
after O — P lags)

Cuts off Tails off Tails off

Good peak matching Good “notch” matching Good peak and valley
matching

These dualities and properties have been shown and illustrated for low-order models
in the previous sections.

4.5 MODELS WITH POLES ON THE UNIT CIRCLE

In this section, we show that by restricting some polesto being on the unit circle, we obtain
models that are useful for modeling certain types of nonstationary behavior.

Pole-zero models with poles on the unit circle are unstable. Hence, if we drive them
with stationary white noise, the generated processis nonstationary. However, aswewill see
in the sequel, placing a small number of real polesat z = 1 or complex conjugate poles at
zx = e*/% provides a class of models useful for modeling certain types of nonstationary
behavior. The system function of apole-zero model withd polesat z = 1, denoted asPZ( P,
d, Q),is

D(z) 1

T AR A- Y oD



and can be viewed as PZ(P, Q) model, D(z)/A(z), followed by a dth-order accumulator.
The accumulator y(n) = y(n — 1) + x(n) hasthe system function 1/(1 — z~1) and can be
thought of as a discrete-time integrator. The presence of the unit poles makesthe PZ(P, d,
Q) model non-minimum-phase. Since the model is unstable, we cannot use the convolution
summation to represent it because, in practice, only finite-order approximationsarepossible.
Thiscanbeeasily seenif werecall that theimpul se response of themodel PZ(0, d, 0) equals
u(n) ford = 1and (n + Du(n) for d = 2. However, if D(z)/A(z) is minimum-phase, the
inverse model H;(z) = 1/H (z) is stable, and we can use the recursive form (see Section
4.1) to represent the model. Indeed, we always use this representation when we apply this
model in practice.
The spectrum of the PZ(0, d, 0) model is

1

[2sin(w/2)]%
and since Rz(0) = Y ;= ra(l) = oo, the autocorrelation does not exist.

In the case of complex conjugate poles, the term (1 — z~1)? in (4.5.1) is replaced by
(1—2cosb; z71 4 z72)4, that is,
D(z) 1
A(z) (1—2cosb 271+ 772)d
The second term is basically a cascade of AP(2) models with complex conjugate poles
on the unit circle. This model exhibits strong periodicity in its impulse response, and its
“resonance-like” spectrum diverges at w = 6.

With regard to the partial autocorrelation, we recall that the presence of poles on the
unit circle resultsin some lattice parameters taking on the values 1.

Ra(e’?) = (4.5.2)

H(z) = (45.3)

EXAMPLE 4.5.1. Consider the following causal PZ(1, 1, 1) model

1+diz7t 1 1+diz7t
Ho ="t~ = e (4.5.9)
l+a1z7+1—¢ 1-1—-apz—+—a1z
with—-1<a; <land-1<d; <1
The difference equation representation of the model uses previous values of the output and
the present and previous values of the input. It is given by

yn)=A—-ap))yn—1) +a1y(n —2) + x(n) +dix(n — 1) (4.5.5)

To express the output in terms of the present and previous values of theinput (nonrecursive
representation), we find the impul se response of the model

h(n) = Z27HH(2)} = Aqu(n) + Ap(—ap)"u(n) (4.5.6)

where A1 = (14+dy)/(1+4a1) and Ao = (a1 — d1)/(1 4+ aq). Note that the model is unstable,
and it cannot be approximated by an FIR system because h(n) — Aqu(n) asn — oo.

Finally, we can express the output as a weighted sum of previous outputs and the present
input, using the impulse response of theinversemodel G(z) = 1/H (z)

hy(n) = Z_l{HI(z)} = B18(n) + B28(n — 1) + B3(—d1) u(n) (45.7)

where By = (a1 —dy +a1d1)/d?, Bp = —a1/dy, and B3 = (—ay +dy —aydy +d?) /d?. Since
—1 < dq < 1, the sequence h(n) decays at arate governed by the value of dq. If hy(n) ~ 0
forn > pg, therecursive formula

Pd
y) ==Y hik)y@n — k) +x(n) (458)
k=1
provides agood representation of the PZ(1, 1, 1) model. For example, if a1 = 0.3and d1 = 0.5,
we find that |7 (n)| < 0.0001 for n > 12, which means that the current value of the model
output can be computed with sufficient accuracy from the 12 most recent values of signa y(n).
Thisis illustrated in Figure 4.13, which also shows a redlization of the output process if the
model is driven by white Gaussian noise.
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Sample realization Inverse model: hy(n)

25 F T T T 3 10F® T T =
o 201 i o 05} -
E E !
2 151 7 2 0 g eveeeeseeee
£ 10} - g
< g 051 R
Sr i -10} .
0 50 100 150 200 0 5 10 15
Sample number Sample number
Direct model: h(n) Spectrum
13 T T T _] 80
% 12 | i % 60 ............................
2 2
_all' ] 340 ......
S S
< 10 _T ] < 200 - e
0.9 0
0 5 10 15 0 01 02 03 04 05
Sample number Frequency (cycles/sampling interval)
FIGURE 4.13

Sample realization of the output process, impulse response, impulse response of the inverse
model, and spectrum of a PZ(1, 1, 1) model with a; = 0.3, d; = 0.5, and d = 1. The value
R(e/9) = oo is not plotted.

Autoregressive integrated moving-average models. 1n Section 3.3.2 we discussed
discrete-time random signals with stationary increments. Clearly, driving a PZ(P, d, Q)
model with white noise generates a random signal whose dth difference is a stationary
ARMA(P, Q) process. Such time series are known in the statistical literature as autore-
gressive integrated moving-average models, denoted ARIMA (P, d, Q). They areuseful in
modeling signal swith certain stochastic trends (e.g., random changesin the level and slope
of thesignal). Indeed, many empirical signals(e.g., infrared background measurements and
stock prices) exhibit thistype of behavior (see Figure 1.6). Notice that the ARIMA(O, 1, 0)
process, that is, x(n) = x(n — 1) +w(n), where {w(n)} ~ WN(0, o2, isthe discrete-time
equivalent of the random walk or Brownian motion process (Papoulis 1991).

When the unit poles are complex conjugate, the model is known as a harmonic PZ
model. Thismodel producesrandom sequencesthat exhibit ‘“‘random periodic behavior” and
areknown as seasonal time seriesin the statistical literature. Such signalsrepeat themselves
cycleby cycle, but thereis some randomnessin both thelength and the pattern of each cycle.
Theidentification and estimation of ARIMA and seasonal modelsand their applications can
be found in Box, Jenkins, and Reinsel (1994); Brockwell and Davis (1991); and Hamilton
(1994).

4.6 CEPSTRUM OF POLE-ZERO MODELS

In this section we determine the cepstrum of pole-zero models and its properties, and
we develop algorithms to convert between direct structure model parameters and cepstral
coefficients. The cepstrum has been proved aval uabletool in speech coding and recognition
applications and has been extensively studied in the corresponding literature (Rabiner and
Schafer 1978; Rabiner and Juang 1993; Furui 1989). For simplicity, we consider models
with real coefficients.



4.6.1 Pole-Zero Models

The cepstrum of the impul se response /(n) of apole-zero model istheinverse z-transform
of

log H(z) = log D(z) — log A(z) (4.6.2)

0 P

=logdo+ ) log(1—ziz™H =) "log (1— piz™H (4.6.2)
i-1 i-1

where {z;} and {p;} are the zeros and poles of H(z), respectively. If we assume that H(z)
is minimum-phase and use the power series expansion

X n
_ o
log(1—az 1)=—E —z " |z] > ||
T n
n=

we find that the cepstrum c¢(n) is given by

0 n<0
log do n=20

1 S
- Zpl" - Zz:’ n>0
i=1 i=1

Since the poles and zeros are assumed to be inside the unit circle, (4.6.3) impliesthat ¢(n)
is bounded by

c(n) = (4.6.3)

P+Q P+Q

=c) =

(4.6.4)

with equality if and only if all the roots are appropriately at z = 1 or z = —1.
If H(z) is minimum-phase, then there exists a unique mapping between the cepstrum
and the impul se response, given by the recursive relations (Oppenheim and Schafer 1989)

¢(0) = logh(0) = logdg

_h) 1 h(n — m) (4.65)
C(”)—m—;mzomc(m)w n>0
and h(0) = ¢<©
= 466
hn) = h©c) + = 3 me(mh(n —m) 1> 0 (466)
n m=0

where we have assumed dp > 0 without loss of generdlity. Therefore, given the cepstrum
c(n)intherange0 < n < P+ Q, wecancompletely recover the parameters of the pole-zero
model as follows. From (4.6.6) we can compute 2(n), 0 < n < P + Q, and from (4.4.2)
and (4.4.3) we can recover {a;} and {d}.

4.6.2 All-Pole Models

The cepstrum of a minimum-phase all-pole model is given by (4.6.2) and (4.6.3) with
Q = 0. Since H (z) isminimum-phase, the cepstrum c(n) of 1/A(z) issimply the negative
of the cepstrum of A(z), which can be written in terms of a; (see also Problem 4.34). Asa
result, the cepstrum can be obtained from the direct-form coefficientsby using thefollowing
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recursion

lnfl
—ap, — — —k —k l1<n<P
an ==Y (1 —K)age(n—k) <n<

c(n) = p =t (4.6.7)
1
——Z(n—k)akc(n—k) n> P
n k=1
Theinverserelationis
1 n—1
a, = —c(n) — — Z(n —k)arcn —k) n>0 (4.6.8)
n k=1

which showsthat thefirst P cepstral coefficientscompletely determinethemodel parameters
(Furui 1981).

From (4.6.7) it is evident that the cepstrum generally decaysas 1/n. Therefore, it may
be desirable sometimes to consider

c(n) = ne(n) (4.6.9)

which is known as the ramp cepstrum since it is obtained by multiplying the cepstrum by
a ramp function. From (4.6.9) and (4.6.4), we note that the ramp cepstrum of an AP(P)
model is bounded by

Ic'(n)| < P n>0 (4.6.10)

with equdlity if and only if all the polesareat z = 1 or z = —1. Also ¢/(n) is equal to
the negative of the inverse z-transform of the derivative of log H(z). From the preceding
equations, we can write

n—1
c(n) = —na, — Zakc’(n —k) l<n<P (4.6.12)
k=1
p
d(n) =— Zakc’(n —k) n>DP (4.6.12)
k=1
1 n—1
and ay = — |:c’(n) + Zakc’(n — k)j| n>0 (4.6.13)
k=1

It is evident that the first P values of ¢’(n), 1 < n < P, completely specify the model
coefficients. However, since ¢’(0) = 0, the information about the gain dp islost in the ramp
cepstrum. Equation (4.6.12) for n > P isreminiscent of similar equations for the impulse
responsein (4.2.5) and the autocorrelation in (4.2.18), with the major differencethat for the
ramp cepstrum the relation isonly true for n > P, while for the impul se response and the
autocorrelation, the relations are truefor n > 0 and k > 0, respectively.

Since R(z) = H(z)H(z™1), we have

logR(z) = log H(z) + log H(z™ Y (4.6.14)
and if ¢, (n) isthereal cepstrum of R(e/®), we conclude that
cr(n) =c(n) + c(—n) (4.6.15)
For minimum-phase H(z), ¢(n) = 0for n < 0. Therefore,
c(—n) n<0
cr(n) = {2c(0) n=20 (4.6.16)

c(n) n>0



0 n<0
(0
and c(n) = < ; ) n=0 (4.6.17)
cr(n) n>0

In other words, the cepstrum c¢(n) can be obtained simply by taking the inverse Fourier
transform of log R(e/®) to obtain ¢, (n) and then applying (4.6.17).

EXAMPLE 4.6.1. From (4.6.7) we find that the cepstrum of the AP(1) model is given by

0 n<0

c(n) = |10940 n=0 (4.6.18)
—(=a)" n>0
n

From (4.2.18) with P = 1 and k = 1, we have ail) = —r(1)/r(0) = kq; and from (4.6.7) we
have a1 = —c(1). These results are summarized bel ow:

aV =a=—p) =ky = —c() (4.6.29)

The fact that p(1) = ¢(1) hereis peculiar to a single-pole spectrum and is not true in general
for arbitrary spectra. And p(1) isthe integral of a cosine-weighted spectrum while c¢(1) is the
integral of a cosine-weighted log spectrum.

EXAMPLE 4.6.2. From (4.6.7), the cepstrum for an AP(2) model is equal to

0 n<0
c(n) = {1090 n=0 (4.6.20)
Sty om0
For acomplex conjugate pole pair, we have
c(n) = 2 r" cosnf n>0 (4.6.22)

n
where p1 o = r exp(£,0). Therefore, the cepstrum of adamped sine wave is a damped cosine
wave. The cepstrum and autocorrelation are similar in that they are both damped cosines, but
the cepstrum has an additional 1/»n weighting. From (4.6.7) and (4.6.8) we can relate the model
parameters and the cepstral coefficients:

a=-—® 4.6.22
ap = —c(2) + %cz(l) (46.22)

and c)) =—-ay
(4.6.23)

c(2) = —arx+ %a%

Using (4.2.71) and the relations for the cepstrum, we can derive the conditions on the cepstrum
for H(z) to be minimum-phase:

2

c(2) > ) -1
2

€@ < # —e+1 (4.6.24)
2

() < % Fe@+1

The corresponding admissible region is shown in Figure 4.14. The region corresponding to
complex rootsis given by
A1)

%cz(l) —l<c@<— (4.6.25)
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FIGURE 4.14

Minimum-phase region of the AP(2) model in the cepstral domain.

In comparing Figures 4.6, 4.8, and 4.14, we note that the admissible regions for the
PACSand ACSare convex whilethat for the cepstral coefficientsisnot. (A regionisconvex
if astraight line drawn between any two pointsin the region lies completely in the region.)
In general, the PACS and the ACS span regions or spaces that are convex. The admissible
region in Figure 4.14 for the model coefficients is also convex. However, for P > 2 the
admissible regions for the model coefficients are not convex, in general.

Cepstral distance. A measure of the difference between two signals, which has many
applications in speech coding and recognition, is the distance between their log spectra
(Rabiner and Juang 1993). It is known as the cepstral distance and is defined as

CD 2 % / ! |log R1(e/?) — log R2(e/®)|? daw (4.6.26)
= Z [e1(n) — ca(m)]? (4.6.27)

where c1(n) and co(n) are the cepstral coefficients of R1(e/“) and Ra(e/®), respectively
(see Problem 4.36). Since for minimum-phase sequences the cepstrum decays fast, the
summation (4.6.27) can be computed with sufficient accuracy using a small number of
terms, usually 20 to 30. For minimum-phase all-pole models, which are mostly used in
speech processing, the cepstral coefficients are efficiently computed using the recursion
(4.6.7).

4.6.3 All-Zero Models

The cepstrum of a minimum-phase all-zero model is given by (4.6.2) and (4.6.3) with
P = 0. The cepstrum corresponding to a minimum-phase AZ(Q) model is related to its
real cepstrum by

0 n<0
c(n) = C”;”) n=0 (4.6.29)
cr(n) n>0

Since we found c(n), the coefficients of a minimum-phase AZ(Q) model D(z) can be



evaluated recursively from

e“do k=0
dk 15 (4.6.29)
c(k)do + —ch(m)dk,m 1<k<Q
km:O

This procedure for finding a minimum-phase polynomia D(z) from the autocorrelation
consists in first computing the cepstrum from the log spectrum, then applying (4.6.28)
and the recursion (4.6.29) to compute the coefficients d;. This approach to the spectral
factorization of AZ(Q) models is preferable because finding the roots of R(z) for large Q
may be cumbersome.

Mixed pole-zero model representations. |nthe previous sectionswe saw that the P +
Q + 1 parameters of the minimum-phase PZ(P, Q) model can be represented equivalently
and uniquely by P + Q + 1 values of the impulse response, the autocorrelation, or the
cepstrum. A question arises as to whether PZ(P, Q) can be represented uniquely by a
mixture of representations, aslong asthetotal number of representativevaluesis P + QO + 1.
For example, could we have a unique representation that consists of, say, Q autocorrelation
values and P + 1 impulse response values, or some other mixture? The answer to this
guestion has not been explored in general; the relevant equations are sufficiently nonlinear
that atotally different approach would appear to be needed to solve the general problem.

4.7 SUMMARY

In this chapter we introduced the class of pole-zero signal models and discussed their
properties. Each model consists of two components: an excitation source and a system.
In our treatment, we emphasized that the properties of a signal model are shaped by the
propertiesof both components; and wetried, whenever possible, to attribute each property to
itsoriginator. Thus, for uncorrelated random inputs, which by definition are the excitations
for ARMA models, the second-order moments of the signal model and its minimum-phase
characteristics are completely determined by the system. For excitations with line spectra,
properties such as minimum phase are meaningful only when they are attributed to the
underlying system. If the goal is to model a signal with aline PSD, the most appropriate
approach is to use a harmonic process.

We provided a detailed description of the autocorrelation, power spectrum density,
partial correlation, and cepstral properties of al AZ, AP, and PZ models for the genera
case and for first- and second-order models. An understanding of these properties is very
important for model selection in practical applications.

PROBLEMS

4.1 Show that asecond-order pole p; contributesthe term np!'u(n) and athird-order pole the terms

nplu(n)+ nzpf u(n) totheimpul seresponse of acausal PZ model. Thegeneral caseisdiscussed
in Oppenheim et al. (1997).

4.2 Consider a zero-mean random sequence x (n) with PSD

54 3cosw

17 4+ 8cosw
(a) Determine the innovations representation of the process x (n).
(b) Find the autocorrelation sequence ry (1).

Ry(e!?) =
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4.3

44

4.5

4.6

4.7

4.8

4.9

4.10

4.11

4.12

Wewant to generate samples of aGaussian processwith autocorrelation ry (1) = (%)'” + (—%)'”
forall.

(a) Find the difference equation that generates the process x(n) when excited by w(n) ~
WGN(O, 1).

(b) Generate N = 1000 samples of the process and estimate the pdf, using the histogram and
the normalized autocorrelation p, (/) using p, (1) [see Equation (1.2.1)].

(c) Check thevalidity of themodel by plotting on the same graph (i) the true and estimated pdf
of x(n) and (ii) the true and estimated autocorrelation.

Compute and compare the autocorrel ations of the following processes:

@ x1(n) = whn) +0.3wrn — 1) — 0.4w(n — 2) and
(b) xo(n) = wn) — 12w — 1) — L.6wn — 2) where w(n) ~ WGN(O, 1).

Explain your findings.

Compute and plot the impulse response and the magnitude response of the systems H(z) and
Hy (z) inExample4.2.1fora = 0.7,0.95and N = 8, 16, 64. Investigate how well the all-zero
systems approximate the single-pole system.

Prove Equation (4.2.35) by writing explicitly Equation (4.2.33) and rearranging terms. Then
show that the coefficient matrix A can be written as the sum of atriangular Toeplitz matrix and
atriangular Hankel matrix (recall that a matrix H is Hankel if the matrix JHJ 7 is Toeplitz).

Use the Yule-Walker equations to determine the autocorrelation and partial autocorrelation
coefficients of the following AR models, assuming that w(n) ~ WN(O, 1).

@ x(n) =05x(n — 1) + wn).
(b) x(n) =15x(n — 1) — 0.6x(n — 2) + w(n).

What is the variance o2 of the resulting process?

Giventhe AR process x(n) = x(n — 1) — 0.5x(n — 2) + w(n), complete the following tasks.

(a) Determine p(1).

(b) Using p,(0) and p, (1), compute {p, (l)}%5 by the corresponding difference equation.

(c) Mot p, (1) and use the resulting graph to estimate its period.

(d) Comparethe period obtained in part (¢) with the value obtained using the PSD of the model.
(Hint: Use the frequency of the PSD peak.)

Given the parameters dg, a1, ap, and a3 of an AP(3) model, compute its ACS analytically and
verify your results, using the valuesin Example 4.2.3. (Hint: Use Cramer’srule.)

Consider thefollowing AP(3) model: x (n) = 0.98x(n — 3) + w(n), where w(n) ~ WGN(0, 1).

(a) Plotthe PSD of x(n) and check if the obtained processis going to exhibit a pseudoperiodic
behavior.

(b) Generate and plot 100 samples of the process. Does the graph support the conclusion of
part (a)? If yes, what isthe period?

(c) Compute and plot the PSD of the process y(n) = %[x n—21+x(n)+x@rn+1)].

(d) Repeat part (b) and explain the difference between the behavior of processesx (n) and y(n).

Consider the following AR(2) models: (i) x(n) = 0.6x(n — 1) + 0.3x(n — 2) + w(n) and (ii)
x(n) =0.8x(n —1) — 0.5x(n — 2) + w(n), wherew(n) ~ WGN(O, 1).

(a) Findthegenera expressionfor the normalized autocorrelation sequence p (1), and determine
2

0%
(b) Plot {p(1)}g° and check if the models exhibit pseudoperiodic behavior.
(c) Justify your answer in part (b) by plotting the PSD of the two models.

(a) Derive the formulas that express the PACS of an AP(3) model in terms of its ACS, using
the Yule-Walker equations and Cramer’srule.



4.13

4.14

4.15

4.16

4.17

4.18

4.19

4.20

4.21

4.22

(b) Usethe obtained formulas to compute the PACS of the AP(3) model in Example 4.2.3.
(c) Check the resultsin part (b) by recomputing the PACS, using the algorithm of Levinson-
Durbin.

Show that the spectrum of any PZ model with real coefficients has zero slope at @ = 0 and
w=T7T.

Derive Equations (4.2.71) describing the minimum-phase region of the AP(2) model, starting
from the conditions

@ Ip1l <1, |p2| < land
() lk1] <1, k2| < L.

(a) Show that the spectrum of an AP(2) model with real poles can be obtained by the cascade
connection of two AP(1) models with real coefficients.

(b) Compute and plot the impulse response, ACS, PACS, and spectrum of the AP models with
p1 = 0.6, pp = —0.9,and p; = pp =0.9.

Prove Equation (4.2.89) and demonstrateitsvalidity by plotting the spectrum (4.2.88) for various
valuesof r and 6.

Provethat if the AP(P) model A(z) is minimum-phase, then

g
1 / log ; do =0
2n |5 7 |A(eI?)|2

(a) Prove Equations (4.2.101) and (4.2.102) and recreate the plot in Figure 4.8(a).
(b) Determine and plot the regions corresponding to complex and real poles in the autocorre-
lation domain by recreating Figure 4.8(b).

Consider an AR(2) process x(n) withdg = 1, a1 = —1.6454 ap = 0.9025, and w(n) ~
WGN(O, 1).

(a) Generate 100 samplesof the processand usethemto estimatetheACS p,, (1), using Equation
(1.2.2).

(b) Plot and compare the estimated and theoretical ACS valuesfor 0 </ < 10.

(c) Usetheestimated valuesof p, (1) and the Yule-Walker equationsto estimate the parameters
of the model. Compare the estimated with the true values, and comment on the accuracy of
the approach.

(d) Use the estimated parameters to compute the PSD of the process. Plot and compare the
estimated and true PSDs of the process.

(e) Compute and compare the estimated with the true PACS.

Find a minimum-phase model with autocorrelation p(0) = 1, p(+1) = 0.25, and p(I) = Ofor
1] = 2.

Consider the MA(2) model x(n) = w(n) — 0.lw(n — 1) + 0.2w(n — 2).

(a) Isthe process x(n) stationary? Why?
(b) Isthe model minimum-phase? Why?
(c) Determine the autocorrelation and partial autocorrelation of the process.

Consider the following ARMA models: (i) x(n) = 0.6x(n — 1) + w(n) — 0.9w(n — 1) and
(i)x(n) =14x(n —1) —0.6x(n — 2) + w(n) — 0.8w(n — 1).

(a) Find ageneral expression for the autocorrelation p(1).

(b) Compute the partia autocorrelation k,,, form =1, 2, 3.

(c) Generate 100 samplesfrom each process, and use them to estimate {p (/ )}30 using Equation
(1.2.2).

(d) Use (1) to estimate {k, }2°.

(e) Plot and compare the estimates with the theoretically obtained values.
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4.23

4.24

4.25

4.26

4.27

4.28

4.29

4.30

4.31

4.32

Determinethe coefficients of aPZ(2, 1) model with autocorrelation valuesry, (0) = 19, r; (1) =
9,rp(2) = —5andr,(3) = —T7.

(@) Show that the impulse response of an AZ(Q) model can be recovered from its response
h(n) to aperiodic train with period L if L > Q. }

(b) Show that theACS of an AZ(Q) model can berecovered from the ACS or spectrum of /(n)
if L >20+1.

Prove Equation (4.3.17) and illustrate its validity by computing the PACS of themodel H (z) =
1-087L

Prove Equations (4.3.24) that describe the minimum-phase region of the AZ(2) model.

Consider an AZ(2) model with dp = 2 and zeros z3 » = 0.95¢%/7/3,

(a) Computeand plot N = 100 output samples by exciting the model with the process w(n) ~
WGN(O, 1).

(b) Compute and plot the ACS, PACS, and spectrum of the model.

(c) Repest parts (¢) and (b) by assuming that we have an AP(2) model with polesat p1 > =
0.95¢+/7/3,

(d) Investigate the duality between the ACS and PACS of the two models.

Prove Equations (4.4.31) and use them to reproduce the plot shown in Figure 4.12(b). Indicate
which equation corresponds to each curve.

Determine the spectral flatness measure of the following processes:

(@ x(n) =ax(n — 1) + apx(n — 2) + w(n) and
(b) x(n) = w(n) + brwn — 1) + bow(n — 2), where w(n) isawhite noise sequence.

Consider a zero-mean wide-sense stationary (WSS) process x (1) with PSD R, (¢/®) and an
M x M correlation matrix with eigenvalues {Ak}/lw . Szego’s theorem (Grenander and Szego
1958) statesthat if g(-) isacontinuous function, then

g +8(G) +---+g(hy) :i/” 2[Ry (e1?)] dow
e

lim
M—oo M 27 J_

Using this theorem, show that

1 (7 ;
H /M _ el jo
MITOO (detRy) = exp{zﬂ / In[Ry (e )]da)}

—7T
Consider two linear random processes with system functions

: 1-081z71 - 04;72 . 1-05;71
(I) H(Z) = (l — Z*l)Z and (II) H(Z) = 1—7271
(a) Find adifference equation that leads to a numerically stable simulation of each process.
(b) Generateand plot 100 samplesfrom each process, and | ook for indications of nonstationarity
in the obtained records.
(c) Computeand plot the second difference of (i) and thefirst difference of (ii). Comment about
the stationarity of the obtained records.

Generate and plot 100 samples for each of the linear processes with system functions

(@) H() = L
BT T (1—%9{1)
1—-0.5z~
(b) H(z) = <

1-z"H(1-09"1
and then estimate and examine the values of the ACS {5 (1)}2° and the PACS {ky, }2°.



4.33 Consider the process y(n) = dg + din + don? + x(n), where x (n) is a stationary process with
known autocorrelation ry (1).
(a) Show that theprocess y(@ (n) obtained by passing y(n) throughthefilter H(z) = (1—z~1)2
is stationary.
(b) Express the autocorrelation rsz) () of y(z) (n) interms of ry (7). Note: This processis used
in practice to remove quadratic trends from data before further analysis.

4.34 Prove Equation (4.6.7), which computes the cepstrum of an AP model from its coefficients.

4.35 Consider aminimum-phase AZ(Q) model D(z) = ZkQ:o dyz~* with complex cepstrum c (k).
We create another AZ model with coefficients dj, = o d;, and complex cepstrum (k).
(@) If 0 < a < 1, find the relation between ¢(k) and c (k).

(b) Choose « so that the new model has no minimum phase.
(c) Choose « so that the new model has a maximum phase.

4.36 Prove Equation (4.6.27), which determines the cepstral distance in the frequency and time
domains.
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CHAPTER 5

Nonparametric Power Spectrum Estimation

The essence of frequency analysis is the representation of a signal as a superposition of
sinusoidal components. In theory, the exact form of this decomposition (spectrum) depends
on the assumed signal model. In Chapters 2 and 3 we discussed the mathematical tools
required to define and compute the spectrum of signals described by deterministic and
stochastic models, respectively. In practical applications, where only a finite segment of a
signal is available, we cannot obtain a complete description of the adopted signal model.
Therefore, we can only compute an approximation (estimate) of the spectrum of the adopted
signal model (“true” or theoretical spectrum). The quality of the estimated spectrum depends
on

o How well the assumed signal model represents the data.
o What values we assign to the unavailable signal samples.
o Which spectrum estimation method we use.

Clearly, meaningful application of spectrum estimation in practical problems requires
sufficient a priori information, understanding of the signal generation process, knowledge
of theoretical concepts, and experience.

In this chapter we discuss the most widely used correlation and spectrum estimation
methods, as well as their properties, implementation, and application to practical problems.
We discuss only nonparametric techniques that do not assume a particular functional form,
but allow the form of the estimator to be determined entirely by the data. These methods are
based on the discrete Fourier transform of either the signal segment or its autocorrelation
sequence. In contrast, parametric methods assume that the available signal segment has
been generated by a specific parametric model (e.g., a pole-zero or harmonic model). Since
the choice of an inappropriate signal model will lead to erroneous results, the successful
application of parametric techniques, without sufficient a priori information, is very difficult
in practice. These methods are discussed in Chapter 9.

We begin this chapter with an introductory discussion on the purpose of, and the DSP
approach to, spectrum estimation. We explore various errors involved in the estimation of
finite-length data records (i.e., based on partial information). We also outline conventional
techniques for deterministic signals, using concepts developed in Chapter 2. Also in Section
3.6, we presented important concepts and results from the estimation theory that are used
extensively in this chapter. Section 5.3 is the main section of this chapter in which we
discuss various nonparametric approaches to the power spectrum estimation of stationary
random signals. This analysis is extended to joint stationary (bivariate) random signals
for the computation of the cross-spectrum in Section 5.4. The computation of auto and
cross-spectra using Thomson’s multiple windows (or multitapers) is discussed in Section
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196 5.5. Finally, in Section 5.6 we summarize important topics and concepts from this chapter.
CHAPTER 5 A classification of the various spectral estimation methods that are discussed in this book
Nonparametric Power is provided in Figure 5.1.

Spectrum Estimation
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Classification of various spectrum estimation methods.

5.1 SPECTRAL ANALYSISOF DETERMINISTIC SIGNALS

If we adopt a deterministic signal model, the mathematical tools for spectral analysis are the
Fourier series and the Fourier transforms summarized in Section 2.2.1. It should be stressed
at this point that applying any of these tools requires that the signal values in the entire
time interval from —oo to 400 be available. If it is known a priori that a signal is periodic,
then only one period is needed. The rationale for defining and studying various spectra for
deterministic signals is threefold. First, we note that every realization (or sample function)
of a stochastic process is a deterministic function. Thus we can use the Fourier series and
transforms to compute a spectrum for stationary processes. Second, deterministic functions



and sequences are used in many aspects of the study of stationary processes, for example,
the autocorrelation sequence, which is a deterministic sequence. Third, the various spectra
that can be defined for deterministic signals can be used to summarize important features
of stationary processes.

Most practical applications of spectrum estimation involve continuous-time signals.
For example, in speech analysis we use spectrum estimation to determine the pitch of
the glottal excitation and the formants of the vocal tract (Rabiner and Schafer 1978). In
electroencephalography, we use spectrum estimation to study sleep disorders and the effect
of medication on the functioning of the brain (Duffy, Iyer, and Surwillo 1989). Another
application is in Doppler radar, where the frequency shift between the transmitted and the
received waveform is used to determine the radial velocity of the target (Levanon 1988).

The numerical computation of the spectrum of a continuous-time signal involves three
steps:

1. Sampling the continuous-time signal to obtain a sequence of samples.

2. Collecting a finite number of contiguous samples (data segment or block) to use for the
computation of the spectrum. This operation, which usually includes weighting of the
signal samples, is known as windowing, or tapering.

3. Computing the values of the spectrum at the desired set of frequencies. This step is
usually implemented using some efficient implementation of the DFT.

The above processing steps, which are necessary for DFT-based spectrum estimation,
are shown in Figure 5.2. The continuous-time signal is first processed through a low-pass
(antialiasing) filter and then sampled to obtain a discrete-time signal. Data samples of frame
length N with frame overlap Ny are selected and then conditioned using a window. Finally,
a suitable-length DFT of the windowed data is taken as an estimate of its spectrum, which
is then analyzed. In this section, we discuss in detail the effects of each of these operations
on the accuracy of the computed spectrum. The understanding of the implications of these
effects is very important in all practical applications of spectrum estimation.

Fy N N
se) | Low-pass fiter | () - A/D x(n) - Frame
H(F) converter blocking
w(n)
X (k) xy(n)
4+—] DFT < Windowing
FIGURE 5.2

DFT-based Fourier analysis system for continuous-time signals.

5.1.1 Effect of Signal Sampling

Thecontinuous-timesignal s¢(r), whose spectrum we seek to estimate, i sfirst passed through
alow-passfilter, alsoknownasanantialiasing filter Hyp(F),inorder tominimizethealiasing
error after sampling. The antialiased signal x¢(r) is then sampled through an anal og-to-
digital converter' (ADC) to produce the discrete-time sequence x (n), that is,

x(n) = xc(t) li=n/Fs (5.1.2)

"We will ignore the quantization of discrete-time signals as discussed in Chapter 2.
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From the sampling theorem in Section 2.2.2, we have

o0
X (e FIFsy = Fs Y Xc(F —IFs) (5.1.2)
[=—00

where X¢(F) = Hip(F)Sc(F). Wenotethat the spectrum of the discrete-timesignal x (n) is
aperiodic replication of X¢(F). Overlapping of thereplicas X(F — [ Fs) resultsin aliasing.
Since any practical antialiasing filter does not have infinite attenuation in the stopband,
some nonzero overlap of frequencies higher than Fs/2 should be expected within the band
of frequencies of interest in x (n). These aliased frequencies give rise to the aliasing error,
which, in any practical signa, is unavoidable. It can be made negligible by a properly
designed antialiasing filter H,(F).

5.1.2 Windowing, Periodic Extension, and Extrapolation

In practice, we compute the spectrum of a signal by using a finite-duration segment. The
reason isthreefold:

1. The spectral composition of the signal changes with time. or
2. We have only afinite set of dataat our disposal. or
3. We wish to keep the computational complexity to an acceptable level.

Therefore, it isnecessary to partition x (n) into blocks (or frames) of dataprior to processing.
Thisoperationiscalled frame blocking, and it ischaracterized by two parameters: the length
of frame N and the overlap between frames Ny (see Figure 5.2). Therefore, the central
problem in practical frequency analysis can be stated as follows:

Determine the spectrum of asignal x(n), —oo < n < oo, fromitsvaluesin afinite
interval 0 < n < N — 1, that is, from a finite-duration segment.

Since x(n) isunknown forn < Oandn > N, we cannot say, without having sufficient
apriori information, whether thesignal isperiodic or aperiodic. If we can reasonably assume
that the signal is periodic with fundamental period N, we can easily determine its spectrum
by computing its Fourier series, using the DFT (see Section 2.2.1).

However, in most practical applications, we cannot make this assumption because the
available block of data could be either part of the period of a periodic signal or a segment
from an aperiodic signal. In such cases, the spectrum of the signal cannot be determined
without assigning valuesto the signal samplesoutsidethe availableinterval. Therearethree
ways to deal with thisissue:

1. Periodic extension. We assume that x(n) is periodic with period N, that is, x(n) =
x(n + N) for dl n, and we compute its Fourier series, using the DFT.

2. Windowing. We assume that the signal is zero outside the interval of observation, that
is,x(n) =0forn < O0andn > N.Thisisequivaent to multiplying the signal with the
rectangular window

(n) 2 1 O<n<N-1 (5.13)
wRrn) = .1
R 0 elsawhere
The resulting sequence is aperiodic, and its spectrum is obtained by the discrete-time
Fourier transform (DTFT).

3. Extrapolation. We useapriori information about the signal to extrapolate(i.e., determine
itsvaluesfor n < 0 and n > N) outside the available interval and then determine its
spectrum by using the DTFT.

Periodic extension and windowing can be considered the simplest forms of extrapola-
tion. It should be obviousthat asuccessful extrapolation resultsin better spectrum estimates



than periodic extension or windowing. Periodic extension is a straightforward application
of the DFT, whereas extrapolation requires some form of a sophisticated signal model. As
we shall see, most of the signal modeling techniques discussed in this book result in some
kind of extrapolation. We first discuss, in the next section, the effect of spectrum sampling
as imposed by the application of DFT (and its side effect—the periodic extension) before
we provide a detailed analysis of the effect of windowing.

5.1.3 Effect of Spectrum Sampling

In many real-time spectrum analyzers, asillustrated in Figure 5.2, the spectrum is com-
puted (after signal conditioning) by using the DFT. From Section 2.2.3, we note that this
computation samples the continuous spectrum at equispaced frequencies. Theoreticaly, if
the number of DFT samplesis greater than or equal to the frame length N, then the exact
continuous spectrum (based on the given frame) can be obtained by using the frequency-
domain reconstruction (Oppenheim and Schafer 1989; Proakis and Manolakis 1996). This
reconstruction, which requiresaperiodic sinc function [defined in (5.1.9)], isnot apractical
functionto implement, especially in real-time applications. Henceasimplelinear interpola-
tionisused for plotting or display purposes. Thislinear interpolation can lead to misleading
results even though the computed DFT sample values are correct. It is possible that there
may not be a DFT sample precisely at a frequency where a peak of the DTFT is located.
In other words, the DFT spectrum misses this peak, and the resulting linearly interpolated
spectrum provides the wrong location and height of the DTFT spectrum peak. This error
can be made smaller by sampling the DTFT spectrum at a finer grid, that is, by increasing
the size of the DFT. The denser spectrum sampling is implemented by an operation called
zero padding and is discussed later in this section.

Another effect of the application of DFT for spectrum calculations is the periodic
extension of the sequence in the time domain. From our discussion in Section 2.2.3, it
follows that the N-point DFT

N-1
X(k)y =) x(nye™/@/Mkn (5.1.4)
n=0

is periodic with period N. This should be expected given the relationship of the DFT to
the Fourier transform or the Fourier series of discrete-time signals, which are periodicin w
with period 2. A careful look at the inverse DFT

N-1
1 - .
x(m) == > X(kyel @r/Nkn (5.1.5)
k=0

revealsthat x (n) isalso periodic with period N. Thisis asomewhat surprising result since
no assumption about the signal x(n) outside the interval 0 < n < N — 1 has been made.
However, thisperiodicity inthetimedomain can beeasily justified by recalling that sampling
in the time domain resultsin a periodicity in the frequency domain, and vice versa.

To understand these effects of spectrum sampling, consider the following example in
which acontinuous-time sinusoidal signal is sampled and then istruncated by arectangular
window before its DFT is performed.

EXAMPLE 5.1.1. A continuous-time signal xc(t) = 2cos2rt is sampled with a sampling fre-
quency of Fs = 1/T = 10 samples per second, to obtain the sequence x (n). It is windowed
by an N-point rectangular window wr (n) to obtain the sequence x (). Determine and plot
|X n (k)|, the magnitude of the DFT of xx (1), for (¢) N = 10and (b)) N = 15. Comment on the
shapes of these plots.
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Solution. The discrete-time signal x(n) isasampled version of xc(¢) and is given by

2
x(n) = xc(t =nT) = 2005% = 2c0s0.2rn T=01s
S

Then, x(n) isaperiodic sequence with fundamental period N = 10.

a. For N = 10, we obtain xy (n) = 2c0s0.47n,0 < n < 9, which contains one period of

x(n). The periodic extension of x (n) and the magnitude plot of its DFT are shown in the
top row of Figure 5.3. For comparison, the DTFT Xy (e/?) of xx (n) is also superimposed
on the DFT samples. We observe that the DFT has only two nonzero samples, which together
constitute the correct frequency of the analog signa xc(7). The DTFT has a mainlobe and
severa sidelobes due to the windowing effect. However, the DFT samples the sidelobes at
their zero values, asillustrated in the DFT plot. Another explanation for this behavior is that
since the samplesin xy (n) for N = 10 constitute one full period of cos0.4xn, the 10-point
periodic extension of x (n), shown in the top left graph of Figure 5.3, resultsin the original
sinusoidal sequences x(n). Thus what the DFT “sees” is the exact sampled signal xc(¢). In
this case, the choice of N isadesirable one.

. For N = 15, we obtain xy(n) = 2c0s0.47n,0 < n < 14, which contains 11 periods

of x(n). The periodic extension of x, (n) and the magnitude plot of its DFT are shown in
the bottom row of Figure 5.3. Once again for comparison, the DTFT Xy (e/®) of xy (n)
is superimposed on the DFT samples. In this case, the DFT plot looks markedly different

8-point periodic extension 8-point DFT
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FIGURE 5.3

Effect of window length L on the DFT spectrum shape.



from that for N = 10 although the DTFT plot appears to be similar. In this case, the DFT
does not sample two peaks at the exact frequencies; hence if the resulting DFT samples are
joined by the linear interpolation, then we will get a misleading result. Since the sequence
xy (n) does not contain full periods of cos0.4n, the periodic extension of x (n) contains
discontinuitiesat n = IN,1 = 0, 1, £2, ..., as shown in the bottom left graph of Figure
5.3. This discontinuity results in higher-order harmonicsin the DFT values. The DTFT plot
also has mainlobes and sidelobes, but the DFT samples these sidelobes at nonzero values.
Therefore, the length of the window is an important consideration in spectrum estimation.
The sidelobes are the source of the problem of |eakage that gives rise to bias in the spectra
values, aswe will seein the following section. The suppression of the sidel obesis controlled
by the window shape, which is another important consideration in spectrum estimation.

A quantitative description of the above interpretations and arguments related to the
capacities and limitations of the DFT is offered by the following result (see Proakis and
Manolakis 1996).

THEOREM 5.1 (DFT SAMPLING THEOREM). Let xc(z), —00 < t < 00, be a continuous-
time signal with Fourier transform Xc(F), —oo < F < oo. Then, the N-point sequences
{Txp(n),0<n <N —1}and {Xp(k), 0 < k < N — 1} form an N-point DFT pair, that is,
s DFT e F.
ot S
xpm) £ > xe(T —mNT) < X £Fs Y Xc (kﬁ - 1F5> (5.1.6)

m=—00 I=—00

where Fs = 1/ T isthe sampling frequency.
Proof. The proof is explored in Problem 5.1.

Thus, given acontinuous-timesignal x¢(¢) anditsspectrum X¢(F), wecancreateaDFT
pair by sampling and aliasing in the time and frequency domains. Obviously, this DFT pair
providesa“faithful” description of xc(¢) and X ¢(F) if boththetime-domain aliasing and the
frequency-domain aliasing are insignificant. The meaning of relation (5.1.6) is graphically
illustrated in Figure 5.4. In this figure, we show the time-domain signalsin the left column
and their Fourier transforms in the right column. The top row contains continuous-time
signals, which are shown as nonperiodic and of infinite extent in both domains, since many
real-world signals exhibit this behavior. The middle row contains the sampled version of
the continuous-time signal and its periodic Fourier transform (the nonperiodic transform
is shown as adashed curve). Clearly, aliasing in the frequency domain is evident. Finally,
the bottom row shows the sampled (periodic) Fourier transform and its correponding time-
domain periodic sequence. Again, aiasing in the time domain should be expected. Thus
we have sampled and periodic signals in both domains with the certainty of aliasing one
domain and the possibility in both domains. This figure should be recalled any time we use
the DFT for the analysis of sampled signals.

Zero padding

The N-point DFT valuesof an N -point sequencex (n) aresamplesof the DTFT X (e/),
as discussed in Chapter 2. These samples can be used to reconstruct the DTFT X (e/“) by
using the periodic sincinterpolating function. Alternatively, one can obtain more(i.e., dense)
samples of the DTFT by computing a larger Neer-point DFT of x(n), where Negr > N.
Since the number of samples of x(n) is fixed, the only way we can treat x (n) as an Nggr-
point sequence is by appending Nger — N zeros to it. This procedure is called the zero
padding operation, and it is used for many purposes including the augmentation of the
sequence length so that a power-of-2 FFT agorithm can be used. In spectrum estimation,
zero padding is primarily used to provide a better-looking plot of the spectrum of a finite-
length sequence. Thisis shown in Figure 5.5 where the magnitude of an Nger-point DFT of
the eight-point sequence x(n) = cos(2rrn/4) isplotted for Nger = 8, 16, 32, and 64.The
DTFT magnitude | X (¢/®)| is also shown for comparison. It can be seen that as more zeros
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are appended (by increasing Nggr), the resulting larger-point DFT provides more closely
spaced samples of the DTFT, thus giving a better-looking plot. Note, however, that the zero
padding does not increase the resolution of the spectrum; that is, there are no new peaks
and valleysinthedisplay, just abetter display of the availableinformation. Thistype of plot
is called ahigh-density spectrum. For a high-resolution spectrum, we have to collect more
information by increasing N. The DTFT plots shown in Figures 5.3 and 5.5 were obtained
by using avery large amount of zero padding.

5.1.4 Effectsof Windowing: L eakage and L oss of Resolution
To see the effect of the window on the spectrum of an arbitrary deterministic signa x (n),

defined over the entire range —co < n < oo, we notice that the available data record can
be expressed as

xy(n) = x(n)wr(n) (5.1.7)
Time domain Frequency domain
1.0 10
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FIGURE 5.4

Graphical illustration of the DFT sampling theorem.
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Effect of zero padding.

where wr(n) is the rectangular window defined in (5.1.3). Thus, a finite segment of the
signal can be thought of as a product of the actual signal x(n) and adata window w(n). In
(5.1.7), w(n) = wr(n), but w(n) can beany arbitrary finite-duration sequence. The Fourier
transform of xy (n) is

. . ‘ 1 (7 . .

Xn(e/®) = X(e/?) @ W(e/?) & > / X)W (/@) dg (5.1.8)

that is, Xy (e/®) equals the periodic convolution of the actual Fourier transform with the

Fourier transform W (e/®) of the data window. For the rectangular window, W (e/®) =
Wr(e/?), where

Wr(e®) = [%} eTION=D/2 £ ()o@ N-D/2 (519

The function A(w) isa periodic function in » with fundamental period equal to 2 and is
called a periodic sinc function. Figure 5.6 shows three periods of A(w) for N = 11. We
note that Wr(e’/®) consists of a mainlobe (ML).

. 2
e e« S
WwL(e!®) = o (5.1.10)
0 — <low|<n
N

and the sidelobes Wy (e/?) = Wr(e/®) — WL (e/?). Thus, (5.1.8) can be written as
Xn(e/®) = X (e/°) @ WuL(e/?) + X (e/?) @ WL (e/?) (5.1.11)
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A(w)

-1 0 1
Normalized frequency

FIGURE 5.6
Plot of A(w) = sin(wN/2)/sin (w/2) for N = 11.

Thefirst convolutionin (5.1.11) smoothesrapid variations and suppresses narrow peaks
in X (e/®), whereas the second convolution introduces ripplesin smooth regions of X (e/®)
and can create “false” peaks. Therefore, the spectrum we observe is the convolution of the
actua spectrum with the Fourier transform of the data window. The only way to improve
the estimate is to increase the window length N or to choose another window shape. For
the rectangular window, increasing N results in a narrower mainlobe, and the distortion
isreduced. As N — oo, Wr(e/®) tends to an impulse train with period 27 and X y (e/®)
tendsto X (e/¢), as expected. Sincein practicethevalue of N isaways finite, the only way
to improve the estimate X y (¢/®) is by properly choosing the shape of the window w(n).
The only restriction on w(n) isthat it be of finite duration.

Itisknown that any time-limited sequence w () hasaFourier transform W (/) that is
nonzero except at afinite number of frequencies. Thus, from (5.1.8) we seethat the estimated
value X y (e/®0) is computed by using all values of X (¢/®) weighted by W (e/@0~=9). The
contribution of the sinusoidal components with frequencies w # wq to the value X y (e/“0)
introduces an error known as leakage. As the name suggests, energy from one frequency
range “leaks” into another, giving the wrong impression of stronger or weaker frequency
components.

To illustrate the effect of the window shape and duration on the estimated spectrum,
consider the signal

x(n) = €0s0.357n + c0s0.4wn + 0.25c0s0.87n (5.1.12)

which has a line spectrum with lines at frequencies w1 = 0.357, w2 = 0.4, and w3 =
0.87. This line spectrum (normalized so that the magnitude is between 0 and 1) is shown
in the top graph of Figure 5.7 over 0 < w < . The spectrum X y (e/®) of xy (n) using the
rectangular window is given by

Xy (el®) = %[W(g.i(w+w1)) + W (e/ @01y 4 W (e @ty 1 W (o) (@—2))

+ 0.25W (e/ (@F@3)) 4 0.25W (e/ (@=©3))]
The second and the third plots in Figure 5.7 show 2048-point DFTs of xy (n) for arect-
angular data window with N = 21 and N = 81. We note that the ability to pick out peaks
(resolvability) depends on the duration N — 1 of the datawindow.” To resolvetwo spectral
lines at w = w1 and w = wy using a rectangular window, we should have the difference

|w1 — w2| greater thanthe mainlobewidth Aw, whichisapproximately equal to 2z /(N —1),
in radians per sampling interval, from the plot of A(w) in Figure 5.6, that is,

(5.1.13)

1
w1 — w2 > Aw ~ ——— or N>—+1
lw1 — wo| N_1 o1 — ]

TSi nce there are N samplesin a data window, the number of intervals or durationsis N — 1.
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FIGURE 5.7
Spectrum of three sinusoids using rectangular and Hamming
windows.

For arectangular window of length N, the exact value of Aw isequal to 1.81x /(N — 1).
If N istoo small, the two peaks at w = 0.357 and w = 0.47 are fused into one, as shown
inthe N = 21 plot. When N = 81, the corresponding plot shows a resolvable separation;
however, the peaks have shifted somewhat from their truelocations. Thisiscalled bias, and
itisadirect result of the leakage from sidelobes. In both cases, the peak at w = 0.87 can
be distinguished easily (but also has a bias).

Another important observation isthat the sidelobes of the data window introduce false
peaks. For arectangular window, the peak sidelobe level is13 dB below zero, which is not
a good attenuation. Thus these false peaks have values that are comparable to that of the
true peak at w = 0.8, as shown in Figure 5.7. These peaks can be minimized by reducing
the amplitudes of the sidelobes. The rectangular window cannot help in this regard because
of Gibb’swell-known phenomenon associated with it. We need a different window shape.
However, any window other than the rectangular window has awider mainlobe; hence this
reduction can be achieved only at the expense of the resolution. To illustrate this, consider
the Hamming (Hm) data window, given by

2
0.54 — 0.46 cos " O<n<N-1
WHm(n) = N-1 (5.1.14)

0 otherwise

with the approximate width of the mainlobe equal to 8z /(N — 1) and the exact mainlobe
width equal to 6.277 /(N — 1). The pesk sidelobe level is 43 dB below zero, which is
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considerably better than that of the rectangular window. The Hamming window is obtained
by using the hanmi ng(N) functionin MaTLAB.

The bottom plot in Figure 5.7 shows the 2048-point DFT of the signal xy (n) for a
Hamming window with N = 81. Now the peak at @ = 0.87 is more prominent than
before, and the sidelobes are almost suppressed. Note also that since the mainlobe width
of the Hamming window is wider, the peaks have a wider base—so much so that the first
two frequencies are barely recognized. We can correct this problem by choosing a larger
window length. Thisinterplay between the shape and the duration of awindow function is
one of the important issues and, as we will see in Section 5.3, produces similar effectsin
the spectral analysis of random signals.

Some useful windows

Thedesign of windowsfor spectral analysisapplicationshasdrawnalot of attentionand
is examined in detail in Harris (1978). We have already discussed two windows, namely,
the rectangular and the Hamming window. Another useful window in spectrum analysis
is due to Hann and is mistakenly known as the Hanning window. There are several such
windowswith varying degrees of tradeoff between resol ution (mainlobewidth) and leakage
(peak sidelobe level). These windows are known as fixed windows since each provides a
fixed amount of leakage that is independent of the length N. Unlike fixed windows, there
are windows that contain a design parameter that can be used to trade between resolution
and leakage. Two such windows are the K ai ser window and the Dol ph-Chebyshev window,
which are widely used in spectrum estimation. Figure 5.8 shows the time-domain window
functions and their corresponding frequency-domain log-magnitude plots in decibels for
these five windows. The important properties such as peak sidelobe level and mainlobe
width of these windows are compared in Table 5.1.

TABLE 5.1
Comparison of properties of commonly used windows. Each window is assumed to be
of length N.

Window Peak sidelobe Approximate Exact
type level (dB) mainlobe width mainlode width
A 1.817
Rectangular -13 N1 N1
. 8 5.017
Hanning -32 N_1 N_1
Hamming a3 81 6.271
N-1 N-1
A-8
Kai —A — —_
as 2285N —1
-1
Sh—l 10A/20
Dol ph-Chebyshev —A — cos~1 |:(cosh 001\171

Hanning window. Thiswindow is given by the function

2
0.5—0.5cos " O<n<N-1
Whn(n) = N-1 (5.1.15)

0 otherwise
which is araised cosine function. The peak sidelobe level is 32 dB below zero, and the

approximate mainlobewidthis 8 /(N — 1) while the exact mainlobe width is5.017 /(N —
1). In MaTLAB thiswindow function is obtained through the function hanni ng(N) .



Kaiser window. Thiswindow function isdueto J. F. Kaiser and is given by

lo{#vVI=11=21/(N - DP
wi (n) = AT Osn=N-1 (5.1.16)

0 otherwise

where Ip(-) is the modified zero-order Bessel function of the first kind and 8 is a win-
dow shape parameter that can be chosen to obtain various peak sidelobe levels and the
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Time-domain window functions and their frequency-domain characteristics for rectangular, Hanning,
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corresponding mainlobe widths. Clearly, 8 = 0 results in the rectangular window while
B > 0 resultsin lower sidelobe leakage at the expense of a wider mainlobe. Kaiser has
developed approximate design equationsfor 3. Given apeak sidelobe level of A dB below
the peak value, the approximate value of g is given by

0 A<21
B~ 10.5842(A — 21)°4 + 0.07886(A — 21) 21 < A < 50 (5.1.17)
0.1102(A — 8.7) A > 50

Furthermore, to achieve the given values of the peak sidelobe level of A and the mainlobe
width Aw, thelength N must satisfy

. A-8
T 2.285(N — 1)
In MaTLAB thiswindow is given by the function kai ser (N, bet a) .

Aw (5.1.18)

Dolph-Chebyshev window. Thiswindow ischaracterized by the property that the peak
sidelobe levelsare constant; that is, it has an “equiripple” behavior. Thewindow wpc(n) is
obtained as the inverse DFT of the Chebyshev polynomial evaluated at N equally spaced
frequencies around the unit circle. The details of this window function computation are
availableinHarris (1978). The parameters of the Dol ph-Chebyshev window arethe constant
sidelobe level A in decibels, the window length N, and the mainlobe width Aw. However,
only two of the three parameters can be independently specified. In spectrum estimation,
parameters N and A are generally specified. Then Aw is given by

-1
—11nA/20
Aw = cost |:<coSh COShN—_l(i) :| (5.1.19)

In MaTLAB thiswindow is obtained through the function chebwi n(N, A) .
To illustrate the usefulness of these windows, consider the same signal containing
three frequencies given in (5.1.12). Figure 5.9 shows the spectrum of xy(n) using the
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FIGURE 5.9

Spectrum of three sinusoids using Hanning, Kaiser, and
Chebyshev windows.



Hanning, Kaiser, and Chebyshev windows for length N = 81. The Kaiser and Chebyshev
window parameters are adjusted so that the peak sidelobe level is40 dB or below. Clearly,
these windows have suppressed sidel obes considerably compared to that of the rectangular
window but the main peaks are wider with negligible bias. The two peaks in the Hanning
window spectrum are barely resolved because the mainlobe width of this window is much
wider than that of the rectangular window. The Chebyshev window spectrum has uniform
sidelobes while the Kaiser window spectrum shows decreasing sidelobes away from the
mainlobes.

5.1.5 Summary

In conclusion, the frequency analysis of deterministic signals requires a careful study of
three important steps. First, the continuous-time signal x¢(¢) is sampled to obtain samples
x(n) that are collected into blocks or frames. The frames are “conditioned” to minimize
certain errorsby multiplying by awindow sequencew (n) of length N . Finally thewindowed
frames x (n) are transformed to the frequency domain using the DFT. The resulting DFT
spectrum X (k) is afaithful replica of the actual spectrum X¢(F) if the following errors
are sufficiently small.

Aliasing error. Thisis an error due to the sampling operation. If the sampling rate is
sufficiently high and if the antialiasing filter is properly designed so that most of the
frequencies of interest are represented in x (n), then this error can be made smaller.
However, a certain amount of aliasing should be expected. The sampling principle
and aliasing are discussed in Section 2.2.2.

Errors due to finite-length window. There are several errors such as resolution loss,
bias, and leakage that are attributed to the windowing operation. Therefore, a care-
ful design of the window function and its length is necessary to minimize these
errors. These topics were discussed in Section 5.1.4. In Table 5.1 we summarize
key properties of five windows discussed in this section that are useful for spectrum
estimation.

Spectrum reconstruction error. The DFT spectrum X y (k) is a number sequence that
must be reconstructed into a continuous function for the purpose of plotting. A
practical choice for this reconstruction is the first-order polynomial interpolation.
This reconstruction error can be made smaller (and in fact comparable to the screen
resolution) by choosing alarge number of frequency samples, which can beachieved
by the zero padding operation in the DFT. It was discussed in Section 5.1.3.

With the understanding of frequency analysis concepts developed in this section, we
are now ready to tackle the problem of spectral analysisof stationary random signals. From
Chapter 3, werecognize that the true spectral values can only be obtained as estimates. This
requires some understanding of key concepts from estimation theory, which is developed
in Section 3.6.

5.2 ESTIMATION OF THE AUTOCORRELATION OF STATIONARY
RANDOM SIGNALS

The second-order moments of a stationary random sequence—that is, the mean value .,
the autocorrelation sequence r (1), and the PSD R, (e/®)—play a crucial role in signal
analysisand signal modeling. Inthissection, wediscussthe estimation of theautocorrel ation
sequence r, (1) using afinite data record {x (n)}é)V ~1 of the process.
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For a stationary process x (n), the most widely used estimator of r, (/) is given by the
sample autocorrelation sequence
N—I-1

1
5 Y x(+Dx*(n) 0<I<N-1
Fell) & n=0 (5.2.1)
FE(=1) —-(N-1)<I<0
0 elsewhere
or, equivalently,
1 N-1
NZx(n)x*(n—l) 0<I<N-1
Fe(l) & n=l (5.2.2)
FE(=1) —-(N-1<Il<0
0 elsewhere

which is a random sequence. Note that without further information beyond the observed
data {x (n)}f)"‘l, it is not possible to provide reasonable estimates of r, (/) for |I| > N.
Even for lag values |/| close to N, the correlation estimates are unreliable since very few
x(n+ |l])x(n) pairs are used. A good rule of thumb provided by Box and Jenkins (1976) is
that N should be at least 50 and that || < N /4. The sample autocorrelation 7, (1) givenin
(5.2.1) has adesirable property that for each / > 1, the sample autocorrel ation matrix

PO R e BN

. |Aa (0 o BEN =2

I L N2 (523)
Fx(N=1) ~(N=2) - /(0

is nonnegative definite (see Section 3.5.1). This property is explored in Problem 5.5. MAT-
LAB providesfunctionsto compute the correlation matrix R, (for example, corr), given the
data {x(n)} ,’Y;Ol; however, the book toolbox function rx = aut oc(x, L); computes 7, (/)
according to (5.2.1) very efficiently.
Theestimate of covariancey . (/) from thedatarecord {x(n)}év -1 isgiven by thesample
autocovariance sequence
N—I-1

1
5 D xtn+D = dlx*m) -yl 0<I<N-1

P = n=0 (5.2.4)
yi(=D —-(N-1)<[<0
0 elsewhere

so that the corresponding autocovariance matrix I, is nonnegative definite. Similarly, the
sample autocorrelation coefficient sequence p, (1) is given by

. 0]

Do) = 75 (5.2.5)

X
In the rest of this section, we assume that x(n) is a zero-mean process and hence 7, (I) =
7. (1), so that we can discuss the autocorrelation estimate in detail.
To determine the statistical quality of this estimator, we now consider its mean and

variance.

Mean of 7, (I). We first note that (5.2.1) can be written as

o]

Fel) = % Y xm+Dhwn+Dx*mwm) 1] =0 (5.2.6)

n=—0oo



1 O<n<N-1
where wn) = wr(n) = (5.2.7)
0 elsewhere

is the rectangular window. The expected value of 7, (1) is

o0

E{iy(D} = %n;oo E{x(n+Dx*(m)}wmn+DHwm) 1=0
and E{iy (=D} = E{F{ (D} -1=<0
Therefore E{f (D} = %rx Dy (1) (5.2.8)
where ro) =wl) xw(=) = Y wmwn+1) (5.2.9)

is the autocorrelation of the window sequence. For the rectangular window

0 =wem 2 |V I =N (52.10)
R I elsewhere -
which isthe unnormalized triangular or Bartlett window. Thus
. 1 l
E{ry(D} = er(l)ws(n) =re(D) (l - |N_|) wRr(n) (5.211)

Therefore, we conclude that therelation (5.2.1) provides abiased estimate of r, (1) because
the expected value of 7,(l) from (5.2.11) is not equa to the true autocorrelation r,(1).
However, 7, (1) isan asymptotically unbiased estimator sinceif N — oo, E{ry (1)} — ry(l).
Clearly, the biasissmall if 7, (/) isevaluated for |I| < L, where L isthe maximum desired
lagand L < N.

Variance of 7y (1). An approximate expression for the covariance of 7, (/) is given by
Jenkins and Watts (1968)

1 X
COV{fx(l]_), fx(ZZ)} x~ N Z [reDryd + 12 —11) +re (L + ) (I —11)] (5212)

[=—00

This indicates that successive values of 7, (1) may be highly correlated and that 7, (/) may
fail to die out even if it is expected to. This makes the interpretation of autocorrelation
graphs quite challenging because we do not know whether the variationisreal or statistical.

Thevariance of 7, (1), which can be obtained by setting /1 = > in(5.2.12), tendsto zero
as N — oo. Thus, 7, (1) providesagood estimate of r, (1) if thelag |/| ismuch smaller than
N. However, as |I| approaches N, fewer and fewer samples of x(n) are used to evaluate
r(1). Asaresult, the estimate 7, (1) becomes worse and its variance increases.

Nonnegative definiteness of 7 (). Analternative estimator for the autocorrel ation se-
guenceis given by

1 N1
v 1 x(n+Dx*(n) O<I<L<N

Fe(l) = n=0 (5.2.13)
(=D —-N<—-L<Il<0
0 elsewhere

Although this estimator is unbiased, it is not used in spectra estimation because of its
negative definiteness. In contrast, the estimator 7, (/) from (5.2.1) is nonnegative definite,
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and any spectral estimates based on it do not have any negative values. Furthermore, the
estimator 7, (1) has smaller variance and mean square error than the estimator 7, (1) (Jenkins
and Watts 1968). Thus, in this book we use the estimator 7, (/) defined in (5.2.1).

5.3 ESTIMATION OF THE POWER SPECTRUM OF STATIONARY
RANDOM SIGNALS

From a practical point of view, most stationary random processes have continuous spectra.
However, harmonic processes (i.e., processes with line spectra) appear in several appli-
cations either alone or in mixed spectra (a mixture of continuous and line spectra). We
first discuss the estimation of continuous spectrain detail. The estimation of line spectrais
considered in Chapter 9.

The power spectral density of a zero-mean stationary stochastic process was defined

in(3.3.39) as
(0.¢]
R, (e/”) 2 3 eI (5.3.1)
[=—00

assuming that the autocorrelation sequence r (/) is absolutely summable. We will deal
with the problem of estimating the power spectrum R, (e/®) of a stationary process x(n)
from afinite record of observations {x(n)}év_l of asinglerealization. The ideal goal isto
devise an estimate that will faithfully characterize the power-versus-frequency distribution
of the stochastic process (i.e., all the sequences of the ensemble) using only a segment of a
single realization. For this to be possible, the estimate should typically involve some kind
of averaging among several realizations or along a single realization.

In some practical applications (e.g., interferometry), it is possible to directly measure
the autocorrelation r(l), |I| < L < N with great accuracy. In this case, the spectrum
estimation problem can be treated as a deterministic one, as described in Section 5.1. We
will focus on the “stochastic” version of the problem, where R, (¢/®) is estimated from the
availabledata{x(n)}g’*l.A natural estimate of R, (e/“), suggested by (5.3.1), isto estimate
r« (1) from the available data and then transform it by using (5.3.1).

5.3.1 Power Spectrum Estimation Using the Periodogram

The periodogram is an estimator of the power spectrum, introduced by Schuster (1898) in
his efforts to search for hidden periodicities in solar sunspot data. The periodogram of the
data segment {x (n)} ~* is defined by

2

D joy & 1 = 1 Jjoy 2
R.(e/®) & = = IV (5.3.2)

N Z v(n)e /"

n=0

where V (e/“) isthe DTFT of the windowed sequence
v(n) = x(Mw(n) O<n<N-1 (5.3.3)

The above definition of the periodogram stems from Parseval’s relation (2.2.10) on the
power of asignal. The window w(n), which has length N, is known as the data window.
Usually, the term periodogramis used when w(n) is arectangular window. In contrast, the
term modified periodogramis used to stressthe use of nonrectangular windows. The values
of the periodogram at the discrete set of frequencies {wy = 2nk/N }6" ~1 can be calculated
by

~
~

~ . 1 -
Ry (k) 2 Ry (e/Z*/Ny = N|V(k)|2 k=0,1,...,N—1 (5.3.4)



where V (k) isthe N-point DFT of the windowed segment v(n). In MaTLAB, the modified
periodogram computation isimplemented by using the function

Rx = psd(x, Nfft, Fs, wi ndow(N), ' none’);

wherewi ndow isthe name of any MATLAB-provided window function (e.g., hanmi ng); Nf f t
isthesize of the DFT, whichischosen to belarger than N to obtain ahigh-density spectrum
(see zero padding in Section 5.1.1); and Fs is the sampling frequency, which is used for
plotting purposes. If the window boxcar isused, then we obtain the periodogram estimate.

The periodogram can be expressed in terms of the autocorrelation estimate 7, (/) of the
windowed sequence v(n) as (see Problem 5.9)

N-1

Yo Rme i

I=—(N=1)

Ry (e/?) = (5.3.5)

which shows that R, (e/®) is a “natural” estimate of the power spectrum. From (5.3.2)
it follows that R, (e/®) is nonnegative for all frequencies w. This results from the fact
that the autocorrelation sequence 7(I), 0 < |I| < N — 1, is nonnegative definite. If we
use the estimate 7, (1) from (5.2.13) in (5.3.5) instead of 7, (), the obtained periodogram
may assume negative values, which impliesthat 7, (1) is not guaranteed to be nonnegative
definite.

Theinverse Fourier transform of R, (/) provides the estimated autocorrelation 7, (1),
that is,

1 (% . . .
fv(l)z_f Rx(ejw)ejwldw

5.3.6
o ). (5.3.6)

because 7, (1) and Ry (e/®) form aDTFT pair. Using (5.3.6) and (5.2.1) for I = 0, we have

R, (e/®) dw

-7

1 V-2 , 1
F(0) = = go vm)? = (5.3.7)

Thus, the periodogram R, (¢/*) shows how the power of the segment {v(n)}y %, which
provides an estimate of the variance of the process x(n), is distributed as a function of
frequency.

Filter bank interpretation. The above assertion that the periodogram describes a dis-
tribution of power asafunction of frequency can beinterpreted in adifferent way, in which
the power estimate over a narrow frequency band is attributed to the output power of a
narrow-bandpass filter. This leads to the well-known filter bank interpretation of the pe-
riodogram. To develop this interpretation, consider the basic (unwindowed) periodogram
estimator R, (¢/) in (5.3.2), evaluated at afrequency wi £ kAw £ 27k/N, which can be
expressed as

2 2

N-1

1 .
v Z x(n)e /9K

n=0

N-1

Z x(n)ejZn'kfja)kn

n=0

Ry(e/™) =

N

N—1 2

Z x(n)ejwk(an)

n=0

sincewy N = 2k (5.3.8)

2|~

N—1 2

Z x(N — m)el O™

m=0

Z| -
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214 Clearly, theterminside the absolute value signin (5.3.8) can beinterpreted asaconvolution

CHAPTER 5 of x(n) and e/®"  evaluated at n = N. Define
Nonparametric Power 1 .
Spectrum Estimation — e/ Wk O<n<N-1
he(n) = { N (5.3.9)
0 otherwise

as the impulse response of alinear system whose frequency responseis given by

. V= .
Hi(e??) = Flhi(n)] = 5 r;) el @kn g—jon

N-1 )
1 . 1 e—iN@-w0) _ 1
= — —jlo—wpn _ € T — 4
N Z%e TN eemen 1 (5.3.10)
n=

_ LSNIN@ = @0)/2] _jv-1w-op)/2
N sin[(w — wy)/2]
which is a linear-phase, narrow-bandpass filter centered at w = wy. The 3-dB bandwidth
of thisfilter isproportional to 27 /N rad per sampling interval (or 1/N cycles per sampling
interval). A plot of the magnitude response | Hy (e/®)|, for wy = /2 and N = 50, isshown
in Figure 5.10, which evidently shows the narrowband nature of the filter.

Filter response: oy, = /2, N=50 FIGURE 5.10
0 T The magnitude of the frequency
response of the narrow-bandpass
filter for wy = /2 and N = 50.

Power (dB)
N
o
T
1

-30 F (\ |
T
- 0 w2 T
w
Continuing, we also define the output of the filter i (n) by yi(n), that is,
1 V-1
R .
ye(n) £ hi(n) x x(n) = 5 Z_:Ox(n — m)el ok (5.3.11)
Then (5.3.8) can be written as
Ry (e!) = N|ye(N)? (5.3.12)
Now consider the average power in yx (n), which can be evaluated using the spectral density
as[see (3.3.45) and (3.4.22)]
1 [~ . )
Eflyeml?} = o / Ry (/)| Hi(e7*)|? doo
T J -7
Aw . 1 .
~ — J@ky — J @k 3.
o Ry (e7%%) N Ry (e7%%) (5.3.13)

since Hy (e/®) isanarrowband filter. If we estimatethe average power E {| y (n)|2} using one
sample y; (N), then from (5.3.13) the estimated spectral density is the periodogram given



by (5.3.12), which says that the kth DFT sample of the periodogram [see (5.3.4)] is given
by the average power of asingle Nth output sample of the wy-centered narrow-bandpass
filter. Now imagine one such filter for each wy, k = 0, ..., N — 1, frequencies. Thus we
have abank of filters, each tuned to the discrete frequency (based on the datarecord length),
providing the periodogram estimates every N samples. This filter bank is inherently built
into the periodogram and hence need not be explicitly implemented. The block diagram of
this filter bank approach to the periodogram computation is shown in Figure 5.11.

x(n)

n=N-1

Yo(m) o yoNV)
ol Hyey e e W e s R0

yi(n) o y(N) 5
> Hie™) IRENGED PNESESEEN PV —— R.(1)

) yn-1m) Sy (N) -
> Hy_i(e’®) L Ao NI-2 —> R(N-1)

FIGURE 5.11
The filter bank approach to the periodogram computation.

In Section 5.1, we observed that the periodogram of a deterministic signal approaches

the true energy spectrum as the number of observations N — oo. To see how the power
spectrum of random signalsisrelated to the number observations, we consider thefollowing
example.

EXAMPLE 531 (PERIODOGRAM OF A SIMULATED WHITE NOISE SEQUENCE). Letx(n)
be a stationary white Gaussian noise with zero-mean and unit variance. Thetheoretical spectrum
of x(n) is

Rx(e-/w):(r)zczl —T<w<mw

To study the periodogram estimate, 50 different N-point records of x (n) were generated using a
pseudorandom number generator. The periodogram Ry (e/®) of each record was computed for
w=w, = 27k/1024,k = 0,1, ..., 512, that is, with Nepr = 1024, from the available data
using (5.3.4) for N = 32, 128, and 256. These results in the form of periodogram overlays (a
Monte Carlo simulation) and their averages are shown in Figure 5.12. We notice that Ry (e/?)
fluctuates so erratically that it isimpossible to conclude from its observation that the signal hasa
flat spectrum. Furthermore, the size of the fluctuations (as seen from the ensemble average) isnot
reduced by increasing the segment length N. In this sense, we should not expect the periodogram
R, (¢/®) to converge to the true spectrum R, (¢/®) in some statistical senseas N — co. Since
Ry (e/?) is constant over frequency, the fluctuations of R, (e/®) can be characterized by their
mean, variance, and mean square error over frequency for each N and are givenin Table 5.2. It
can be seen that although the mean value tends to 1 (true value), the standard deviation is not
reducedas N increases. Infact, itiscloseto 1; that is, it isof the order of the size of the quantity to
be estimated. Thisillustrates that the periodogram is not agood estimate of the power spectrum.

Since for each value of w, R, (¢/®) is arandom variable, the erratic behavior of the

periodogram estimator, whichisillustrated in Figure 5.12, can be explained by considering
its mean, covariance, and variance.
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TABLE 52
Performance of periodogram for white Gaussian
noise signal in Example 5.3.1.

N 32 128 256
E[Ry(e7?K))] 0.7829 0.8954 0.9963
VA Ry (e/€K)] 0.7232 1.0635 1.1762
MSE 0.7689 1.07244 1.1739

Periodogram overlay: N = 32 Periodogram average: N = 32
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FIGURE 5.12
Periodograms of white Gaussian noise in Example 5.3.1.

Mean of R.(e/®). Taki ng the mathematical expectation of (5.3.5) and using (5.2.8),

we obtain
' N-1 ' 1 N-1 '
E(Ry(e/)} = > E{fv(l)}e_-""lzﬁ > nrpe I (53.14)
I=—(N—-1) I=—(N—1)

Since E{R, (e/)} # Ry (e”), the periodogram is a biased estimate of the true power
spectrum Ry (e/).



Equation (5.3.14) can beinterpreted in the frequency domain asa periodic convolution.
Indeed, using the frequency domain convol ution theorem, we have

e

E{R(e/*)} = P

R, (e/%)Ry(e/ @) do (5.3.15)

where Ry (e!®) = |W(e/?)|? (5.3.16)

isthe spectrum of the window. Thus, the expected value of the periodogram is obtained by
convolving the true spectrum R, (¢/®) with the spectrum R, (¢/®) of the window. Thisis
equivalent to windowing the true autocorrelation r, (1) with the correlation or lag window
rw@) = w() * w(=1), where w(n) isthe data window.

To understand the implications of (5.3.15), consider the rectangular data window
(5.2.7). Using (5.2.11), we see that (5.3.14) becomes

o N-1 1] '
E{R.(e'")} = Z (1—N>rx(l)e_/‘"l (5.3.17)

I=—(N—1)

For nonperiodic autocorrelations, the value of r, () becomes negligible for large val ues of
|/]. Hence, as the record length N increases, the term (1 — |/|/N) — 1 for dl [, which
implies that

Jim E{R.(e/®)} = R, (/) (5.3.18)

that is, the periodogramisan asymptotically unbiased estimator of R, (e/“). Inthefrequency
domain, we obtain

Ru(el®) = Flur() < ur(-D) = Wae)f = [ TOVB] (5319
jon _ —joN-128N(@N/2)
where Wr(e/®) = oD (5:320)

is the Fourier transform of the rectangular window. The spectrum R,, (e/), in (5.3.19), of
the corrélation window r,, (/) approaches a periodic impulse train as the window length
increases.” As a result, E{R, (e/®)} approaches the true power spectrum R, (e/®) as N
approaches oo.

Theresult (5.3.18) holds for any window that satisfies the following two conditions:

1. Thewindow isnormalized such that
N-1
> lwmP=N (5.3.21)
n=0

Thisconditionisobtained by noting that, for asymptotic unbiasedness, wewant R, (¢/*) /
N in (5.3.15) to be an approximation of an impulse in the frequency domain. Since the
areaunder theimpulse function is unity, using (5.3.16) and Parseval’s theorem, we have

1 7 - g N1 ,
m/_n|W(ef )| da)zﬁgm(nﬂ =1 (5.3.22)

2. Thewidth of the mainlobe of the spectrum R, (¢/¢) of the correl ation window decreases
as 1/N. This condition guarantees that the area under R, (e/*) is concentrated at the
originas N becomeslarge. For more precise conditions see Brockwell and Davis(1991).

TThi s spectrum is sometimes referred to asthe Fejer kernel.
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as

The bias is introduced by the sidelobes of the correlation window through leakage,
illustrated in Section 5.1. Therefore, we can reduce the bias by using the modified

periodogram and a “better” window. Bias can be avoided if either N = oo, in which case
the spectrum of the window is a periodic train of impulses, or R, (e/®) = a)zc, that is, x(n)
hasaflat power spectrum. Thus, for white noise, R, (e/*)isunbiasedfor al N. Thisfact was
apparent in Example 5.3.1 and is very important for practical applications. In the following
example, we illustrate that the bias becomes worse as the dynamic range of the spectrum
increases.

Amplitude

EXAMPLE 532 (BIASAND LEAKAGE PROPERTIES OF THE PERIODOGRAM). Consider
an AR(2) process with

ay=[1-07505" dp=1 (5.3.23)
and an AR(4) process with
ag = [1 —2.7607 3.8106 — 2.65350.9238]7  dp=1 (5.3.24)

where w(n) ~ WN(O, 1). Both processes have been used extensively in the literature for power
spectrum estimation studies (Percival and Walden 1993). Their power spectrum is given by (see
Chapter 4)

2 2
, d
Ry(ef®y= w0 . %w (5.3.25)
A/ | p 2
Zakejwk
k=0

For simulation purposes, N = 1024 samples of each process were generated. The sample
realizations and the shapes of the two power spectrain (5.3.25) are shown in Figure 5.13. The
dynamic range of the two spectra, that is, max Ry (e/®)/ min Ry (e/®), is about 15 and 65 dB,
respectively.

From the sampl e realizations, periodograms and modified periodograms, based on the Han-
ning window, were computed by using (5.3.4) at Nrer = 1024 frequencies. These are shownin
Figure5.14. The periodogramsfor the AR(2) and AR(4) processes, respectively, are showninthe

Sample realization: AR(2) Sample realization: AR(4)
4 F T T T — T T T

Amplitude

1 1 1 1 1 1
0 50 100 150 200 0 50 100 150 200
Sample number Sample number

Power spectrum: AR(2) Power spectrum: AR(4)

10 50
) )
k<A k<A
= g 0
@] o
o o
-10 V V V V -50 V V V :
0 01 02 03 04 05 0 01 02 03 04 05
Frequency (cycles/sampling interval) Frequency (cycles/sampling interval)
FIGURE 5.13

Sample realizations and power spectra of the AR(2) and AR(4) processes used in Example 5.3.2.
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FIGURE 5.14
Illustration of properties of periodogram as a power spectrum estimator.

top row while the modified periodograms for the same processes are shown in the bottom row.
These plots illustrate that the periodogram is a biased estimator of the power spectrum. In the
case of the AR(2) process, since the spectrum has asmall dynamic range (15 dB), the biasin the
periodogram estimate is not obvious; furthermore, the windowing in the modified periodogram
did not show much improvement. On the other hand, the AR(4) spectrum has a large dynamic
range, and hence the bias is clearly visible at high frequencies. This biasis clearly reduced by
windowing of the datain the modified periodogram. In both cases, the random fluctuations are
not reduced by the data windowing operation.

EXAMPLE 533 (FREQUENCY RESOLUTION PROPERTY OF THE PERIODOGRAM). Con-
sider two unit-amplitude sinusoids observed in unit variance white noise. Let

x(n) = cos(0.357n + ¢1) + cos(0.4wn + ¢2) + v(n)

where ¢1 and ¢, are jointly independent random variables uniformly distributed over [—r, 7]
and v(n) is a unit-variance white noise. Since two frequencies, 0.357 and 0.4, are close, we
will need (see Table 5.1)

1.817
Nels o0 N =37
Z 047 —03x z

To obtain a periodogram ensemble, 50 redizations of x(n) for N = 32 and N = 64 were
generated, and their periodograms were computed. The plots of these periodogram overlays and
the corresponding ensemble average for N = 32 and N = 64 are shown in Figure 5.15. For
N = 32, frequencies in the periodogram cannot be resolved, as expected; but for N = 64 it is
possible to separate the two sinusoids with ease. Note that the modified periodogram (i.e., data
windowing) will not help since windowing increases smoothing and smearing of peaks.

The case of nonzero mean. In the periodogram method of spectrum analysisin this

section, we assumed that the random signal has zero mean. If arandom signal has nonzero
mean, it should be estimated using (3.6.20) and then removed from the signa prior to
computing its periodogram. This is because the power spectrum of a nonzero mean signal
has an impulse at the zero frequency. If this mean is relatively large, then because of the
leakage inherent in the periodogram, this mean will obscure low-amplitude, low-frequency
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Power (dB)

Power (dB)

20

components of the spectrum. Even though the estimate is not an exact value, its removal
often provides better estimates, especialy at low frequencies.

Covariance of R (e/®). Obtaini ng an expressionfor thecovariance of the periodogram
isarather complicated process. However, it has been shown (Jenkins and Watts 1968) that

sin [(w1 + w2)N/2] }2

COV{]%x(ejwl)a Iéx(ejwz)} ~ R, (eAiwl)Rx (ejfUZ) ({ N sin[(w1 + w2)/2]

(5.3.26)

{ sin [(w1 — w2)N/2] }2
N sin [(w1 — w2)/2]

This expression applies to stationary random signals with zero mean and Gaussian prob-
ability density. The approximation becomes exact if the signal has a flat spectrum (white
noise). Although this approximation deteriorates for non-Gaussian probability densities,
the qualitative results that one can draw from this approximation appear to hold for arather
broad range of densities.

From (5.3.26), for w1 = (27 /N)ky and wp = (27 / N)ko with k1, k2 integers, we have

COV{Ry (/) Ry (e/¥2)} ~ 0 forky # ko (5.3.27)

Thus, values of the periodogram spaced in frequency by integer multiples of 27 /N are ap-
proximately uncorrelated. Astherecord length N increases, these uncorrel ated periodogram
samples come closer together, and hence the rate of fluctuations in the periodogram in-
creases. This explains the resultsin Figure 5.12.

Periodogram overlay: N = 32 Periodogram average: N = 32

20

Power (dB)

0 0.357 0.4 T
®

Periodogram average: N = 64

20

Power (dB)

0.357 0.4 T 0 0.357 04w T
® ®

FIGURE 5.15
Illustration of the frequency resolution property of the periodogram in Example 5.3.3.



Variance of R (e/®). Thevariance of the periodogram at a particular frequency w =
w1 = wy can be obtained from (5.3.26)

a . snwN \?
R (e/9)} ~ R?(e/®) | 1 , 5.3.28
var((e) = R2(e )[ +(Nsnw)} (5329
For large values of N, the variance of R, (e/®) can be approximated by
. Rf(ej‘”) O<w<m
var{R, (e!?)} ~ , (5.3.29)
2R%(e/?) w=0,7

This result is crucial, because it shows that the variance of the periodogram (estimate)
remainsat thelevel of Rf(ef @) (quantity to be estimated), independent of the record length
N used. Furthermore, since the variance does not tend to zeroas N — oo, the periodogram
is not a consistent estimator; that is, its distribution does not tend to cluster more closely
around the true spectrum as N increases.”

This behavior was illustrated in Example 5.3.1.The variance of R, (e/®r) fails to de-
crease as N increases because the number of periodogram values Re(e/®), k=0,1,...,
N — 1, isaways equal to thelength N of the data record.

EXAMPLE 534 (COMPARISON OF PERIODOGRAM AND MODIFIED PERIODOGRAM).
Consider the case of three sinusoids discussed in Section 5.1.4. In particular, we assume that
these sinusoids are observed in white noise with

x(n) = €0s(0.3577n + ¢1) + €cos(0.47n + ¢2) + 0.25¢0s(0.87n + ¢p3) + v(n)

where ¢1, ¢, and ¢3 are jointly independent random variables uniformly distributed over
[—m, 7] and v(n) is a unit-variance white noise. An ensemble of 50 realizations of x(n) was
generated using N = 128. The periodograms and the Hamming window-based modified peri-
odograms of these realizations were computed, and the results are shown in Figure 5.16. The
top row of the figure contains periodogram overlays and the corresponding ensemble average
for the unwindowed periodogram, and the bottom row shows the same for the modified peri-
odogram. Spurious peaks (especially near the two close frequencies) in the periodogram have
been suppressed by the data windowing operation in the modified periodogram; hence the peak
corresponding to 0.8x is sufficiently enhanced. This enhancement is clearly at the expense of
the frequency resolution (or smearing of the true peaks), which is to be expected. The overall
variance of the noise floor is still not reduced.

Failure of the periodogram

To conclude, we note that the periodogram in its “basic form™” isavery poor estimator
of the power spectrum function. The failure of the periodogram when applied to random
signalsis uniquely pointed out in Jenkins and Watts (1968, p. 213):

The basic reason why Fourier analysis breaks down when applied to time seriesisthat it is based

on the assumption of fixed amplitudes, frequencies and phases. Time series, on the other hand,

are characterized by random changes of frequencies, amplitudes and phases. Therefore it is not

surprising that Fourier methods need to be adapted to account for the random nature of atime

series.

The attempt at improving the periodogram by windowing the available data, that is, by
using themodified periodogramin Example5.3.4, showed that the presence and thelength of
thewindow had no effect on the variance. Themajor problemswith the periodogramlieinits

variance, whichisontheorder of Rf(ef @), aswell asinitserratic behavior. Thus, toobtaina
better estimator, we should reduceitsvariance; that is, we should “smooth” the periodogram.

';'Thedeﬁnitionof thePSD by Ry (e/) = limy _ Ry (¢/®) isnotvalid becauseevenif limy _ o0 E{Ry(e/?)} =
Ry (e/?), thevariance of R, (¢/“) does not tend to zero as N — oo (Papoulis 1991).
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From the previous discussion, it follows that the sequence Ii’x k),k=0,1,...,N — 1,
of the harmonic periodogram components can be reasonably assumed to be a sequence of
uncorrelated random variables. Furthermore, it is well known that the variance of the sum
of K uncorrelated random variables with the same variance is 1/K times the variance of
one of theseindividual random variables. This suggests two ways of reducing the variance,
which also lead to smoother spectral estimators:

« Average contiguous values of the periodogram.
« Average periodograms obtained from multiple data segments.

It should be apparent that owing to stationarity, the two approaches should provide compa-
rable results under similar circumstances.

5.3.2 Power Spectrum Estimation by Smoothing a Single Periodogram—
The Blackman-Tukey Method

The idea of reducing the variance of the periodogram through smoothing using a moving-
average filter was first proposed by Daniel (1946). The estimator proposed by Daniel isa
zero-phase moving-average filter, given by

M M

STl > R, (ef-i) & > W(“HR(e!7)  (5.3.30)
j=—M j=—M

Iéips)(ejw") A

wherewy = (2n/N)k,k =0,1,..., N — 1, W(e/®i) £ 1/(2M + 1), and the superscript
(PS) denotes periodogram smoothing. Since the samples of the periodogram are approxi-

Periodogram overlay: N = 128

0.357 0.47 0.8 T



mately uncorrelated,

var{RPS (e/@k)) ~ var{Ry (e/“%)} (5.3.31)

2M +1
that is, averaging 2M + 1 consecutive spectral lines reduces the variance by a factor of
2M + 1. The quantity Aw ~ (21 /N)(2M + 1) determines the frequency resolution, since
any peakswithin the Aw range are smoothed over the entireinterval Aw into asingle peak
and cannot be resolved. Thus, increasing M reduces the variance (resulting in a smoother
spectrum estimate), at the expense of spectral resolution. This is the fundamental tradeoff
in practical spectral analysis.

Blackman-Tukey approach

Thediscrete moving averagein (5.3.30) iscomputed in the frequency domain. We now
introduce abetter and simpler way to smooth the periodogram by operating on the estimated
autocorrelation sequence. To this end, we note that the continuous frequency equivaent of
the discrete convolution formula (5.3.30) is the periodic convolution

~ . 1 T, . . ~ ; .
RS (e) = o f Re(e? ™ Wa(e/) db = Re(e7”) ® Wa(e??)  (5.3.32)

-7

where W, (/) is aperiodic function of « with period 27, given by

1 w
. Ao lw| < -
Wa(e!?) = Ao (5.3.33)
0 - <w<mw
By using the convolution theorem, (5.3.32) can be written as
L-1
RPIYE )= Y ADwae (5334)
I=—(L-1)

where w, (1) isthe inverse Fourier transform of W, (e/®) and L < N.Aswe have aready
mentioned, the window w, (I) is known as the correlation or lag wi ndow.” The correlation
window corresponding to (5.3.33) is

sin(lAw/2)

wal) = === —oo<l<oo (5.3.35)

Since w, (1) has infinite duration, itstruncation at |/| = L < N createsripplesin W, (e/®)
(Gibbs effect). To avoid this problem, we use correl