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One must learn by doing the thing;
for though you think you know it
You have no certainty, until you try.

—Sophocles, Trachiniae

PREFACE

The principal goal of this book is to provide a unified introduction to the theory, imple-
mentation, and applications of statistical and adaptive signal processing methods. We have
focused on the key topics of spectral estimation, signal modeling, adaptive filtering, and ar-
ray processing, whose selection was based on the grounds of theoretical value and practical
importance. The book has been primarily written with students and instructors in mind. The
principal objectives are to provide an introduction to basic concepts and methodologies that
can provide the foundation for further study, research, and application to new problems.
To achieve these goals, we have focused on topics that we consider fundamental and have
either multiple or important applications.

APPROACH AND PREREQUISITES

The adopted approach is intended to help both students and practicing engineers understand
the fundamental mathematical principles underlying the operation of a method, appreciate
its inherent limitations, and provide sufficient details for its practical implementation. The
academic flavor of this book has been influenced by our teaching whereas its practical
character has been shaped by our research and development activities in both academia and
industry. The mathematical treatment throughout this book has been kept at a level that is
within the grasp of upper-level undergraduate students, graduate students, and practicing
electrical engineers with a background in digital signal processing, probability theory, and
linear algebra.

ORGANIZATION OF THE BOOK

Chapter 1 introduces the basic concepts and applications of statistical and adaptive signal
processing and provides an overview of the book. Chapters 2 and 3 review the fundamentals
of discrete-time signal processing, study random vectors and sequences in the time and
frequency domains, and introduce some basic concepts of estimation theory. Chapter 4
provides a treatment of parametric linear signal models (both deterministic and stochastic)
in the time and frequency domains. Chapter 5 presents the most practical methods for
the estimation of correlation and spectral densities. Chapter 6 provides a detailed study
of the theoretical properties of optimum filters, assuming that the relevant signals can be
modeled as stochastic processes with known statistical properties; and Chapter 7 contains
algorithms and structures for optimum filtering, signal modeling, and prediction. Chapter
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8 introduces the principle of least-squares estimation and its application to the design of
practical filters and predictors. Chapters 9, 10, and 11 use the theoretical work in Chapters
4, 6, and 7 and the practical methods in Chapter 8, to develop, evaluate, and apply practical
techniques for signal modeling, adaptive filtering, and array processing. Finally, Chapter 12
introduces some advanced topics: definition and properties of higher-order moments, blind
deconvolution and equalization, and stochastic fractional and fractal signal models with long
memory. Appendix A contains a review of the matrix inversion lemma, Appendix B reviews
optimization in complex space, Appendix C contains a list of the Matlab functions used
throughout the book, Appendix D provides a review of useful results from matrix algebra,
and Appendix E includes a proof for the minimum-phase condition for polynomials.

THEORY AND PRACTICE

It is our belief that sound theoretical understanding goes hand-in-hand with practical im-
plementation and application to real-world problems. Therefore, the book includes a large
number of computer experiments that illustrate important concepts and help the reader
to easily implement the various methods. Every chapter includes examples, problems,
and computer experiments that facilitate the comprehension of the material. To help the
reader understand the theoretical basis and limitations of the various methods and apply
them to real-world problems, we provide Matlab functions for all major algorithms and
examples illustrating their use. The Matlab files and additional material about the book can
be found at http://www.artechhouse.com/default.asp?frame=Static/
manolakismatlab.html. A Solutions Manual with detailed solutions to all the prob-
lems is available to the instructors adopting the book for classroom use.

Dimitris G. Manolakis
Vinay K. Ingle
Stephen M. Kogon
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CHAPTER 1

Introduction

This book is an introduction to the theory and algorithms used for the analysis and pro-
cessing of random signals and their applications to real-world problems. The fundamental
characteristic of random signals is captured in the following statement: Although random
signals are evolving in time in an unpredictable manner, their average statistical proper-
ties exhibit considerable regularity. This provides the ground for the description of random
signals using statistical averages instead of explicit equations. When we deal with random
signals, the main objectives are the statistical description, modeling, and exploitation of the
dependence between the values of one or more discrete-time signals and their application
to theoretical and practical problems.

Random signals are described mathematically by using the theory of probability, ran-
dom variables, and stochastic processes. However, in practice we deal with random signals
by using statistical techniques. Within this framework we can develop, at least in princi-
ple, theoretically optimum signal processing methods that can inspire the development and
can serve to evaluate the performance of practical statistical signal processing techniques.
The area of adaptive signal processing involves the use of optimum and statistical signal
processing techniques to design signal processing systems that can modify their charac-
teristics, during normal operation (usually in real time), to achieve a clearly predefined
application-dependent objective.

The purpose of this chapter is twofold: to illustrate the nature of random signals with
some typical examples and to introduce the four major application areas treated in this book:
spectral estimation, signal modeling, adaptive filtering, and array processing. Throughout
the book, the emphasis is on the application of techniques to actual problems in which the
theoretical framework provides a foundation to motivate the selection of a specific method.

1.1 RANDOM SIGNALS

A discrete-time signal or time series is a set of observations taken sequentially in time,
space, or some other independent variable. Examples occur in various areas, including
engineering, natural sciences, economics, social sciences, and medicine.

A discrete-time signal x(n) is basically a sequence of real or complex numbers called
samples. Although the integer index n may represent any physical variable (e.g., time,
distance), we shall generally refer to it as time. Furthermore, in this book we consider only
time series with observations occurring at equally spaced intervals of time.

Discrete-time signals can arise in several ways. Very often, a discrete-time signal is
obtained by periodically sampling a continuous-time signal, that is, x(n) = xc(nT ), where
T = 1/Fs (seconds) is the sampling period and Fs (samples per second or hertz) is the
sampling frequency. At other times, the samples of a discrete-time signal are obtained
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by accumulating some quantity (which does not have an instantaneous value) over equal
intervals of time, for example, the number of cars per day traveling on a certain road.
Finally, some signals are inherently discrete-time, for example, daily stock market prices.
Throughout the book, except if otherwise stated, the terms signal, time series, or sequence
will be used to refer to a discrete-time signal.

The key characteristics of a time series are that the observations are ordered in time and
that adjacent observations are dependent (related). To see graphically the relation between
the samples of a signal that are l sampling intervals away, we plot the points {x(n), x(n+ l)}
for 0 ≤ n ≤ N − 1 − l, where N is the length of the data record. The resulting graph is
known as the l lag scatter plot. This is illustrated in Figure 1.1, which shows a speech signal
and two scatter plots that demonstrate the correlation between successive samples. We note
that for adjacent samples the data points fall close to a straight line with a positive slope.
This implies high correlation because every sample is followed by a sample with about the
same amplitude. In contrast, samples that are 20 sampling intervals apart are much less
correlated because the points in the scatter plot are randomly spread.

When successive observations of the series are dependent, we may use past observations
to predict future values. If the prediction is exact, the series is said to be deterministic.
However, in most practical situations we cannot predict a time series exactly. Such time
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FIGURE 1.1
(a) The waveform for the speech signal “signal”; (b) two scatter plots for successive samples and samples
separated by 20 sampling intervals.
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series are called random or stochastic, and the degree of their predictability is determined
by the dependence between consecutive observations. The ultimate case of randomness
occurs when every sample of a random signal is independent of all other samples. Such a
signal, which is completely unpredictable, is known as white noise and is used as a building
block to simulate random signals with different types of dependence. To summarize, the
fundamental characteristic of a random signal is the inability to precisely specify its values.
In other words, a random signal is not predictable, it never repeats itself, and we cannot find
a mathematical formula that provides its values as a function of time. As a result, random
signals can only be mathematically described by using the theory of stochastic processes
(see Chapter 3).

This book provides an introduction to the fundamental theory and a broad selection
of algorithms widely used for the processing of discrete-time random signals. Signal pro-
cessing techniques, dependent on their main objective, can be classified as follows (see
Figure 1.2):

• Signal analysis. The primary goal is to extract useful information that can be used to
understand the signal generation process or extract features that can be used for signal
classification purposes. Most of the methods in this area are treated under the disciplines
of spectral estimation and signal modeling. Typical applications include detection and
classification of radar and sonar targets, speech and speaker recognition, detection and
classification of natural and artificial seismic events, event detection and classification in
biological and financial signals, efficient signal representation for data compression, etc.

• Signal filtering. The main objective of signal filtering is to improve the quality of a signal
according to an acceptable criterion of performance. Signal filtering can be subdivided
into the areas of frequency selective filtering, adaptive filtering, and array processing.
Typical applications include noise and interference cancelation, echo cancelation, channel
equalization, seismic deconvolution, active noise control, etc.

We conclude this section with some examples of signals occurring in practical applications.
Although the desciption of these signals is far from complete, we provide sufficient infor-
mation to illustrate their random nature and significance in signal processing applications.

Random signals

Analysis

Theory of stochastic
processes,

estimation, and
optimum filtering

Filtering

Spectral
estimation

Signal modeling
(Chapters 4, 8,

Adaptive filtering

12)

Array processing

(Chapters 5, 9) 9, 12)
(Chapters 8, 10,

(Chapter 11)

(Chapters 2, 3, 6, 7)

FIGURE 1.2
Classification of methods for the analysis and processing of random signals.
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Speech signals. Figure 1.3 shows the spectrogram and speech waveform correspond-
ing to the utterance “signal.” The spectrogram is a visual representation of the distribution
of the signal energy as a function of time and frequency. We note that the speech signal has
significant changes in both amplitude level and spectral content across time. The waveform
contains segments of voiced (quasi-periodic) sounds, such as “e,” and unvoiced or fricative
(noiselike) sounds, such as “g.”
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FIGURE 1.3
Spectrogram and acoustic waveform for the utterance “signal.” The horizontal dark bands show the resonances of the
vocal tract, which change as a function of time depending on the sound or phoneme being produced.

Speech production involves three processes: generation of the sound excitation, artic-
ulation by the vocal tract, and radiation from the lips and/or nostrils. If the excitation is
a quasi-periodic train of air pressure pulses, produced by the vibration of the vocal cords,
the result is a voiced sound. Unvoiced sounds are produced by first creating a constriction
in the vocal tract, usually toward the mouth end. Then we generate turbulence by forc-
ing air through the constriction at a sufficiently high velocity. The resulting excitation is a
broadband noiselike waveform.

The spectrum of the excitation is shaped by the vocal tract tube, which has a frequency
response that resembles the resonances of organ pipes or wind instruments. The resonant
frequencies of the vocal tract tube are known as formant frequencies, or simply formants.
Changing the shape of the vocal tract changes its frequency response and results in the
generation of different sounds. Since the shape of the vocal tract changes slowly during
continuous speech, we usually assume that it remains almost constant over intervals on the
order of 10 ms. More details about speech signal generation and processing can be found
in Rabiner and Schafer 1978; O’Shaughnessy 1987; and Rabiner and Juang 1993.

Electrophysiological signals. Electrophysiology was established in the late eighteenth
century when Galvani demonstrated the presence of electricity in animal tissues.Today, elec-
trophysiological signals play a prominent role in every branch of physiology, medicine, and
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biology. Figure 1.4 shows a set of typical signals recorded in a sleep laboratory (Rechtschaf-
fen and Kales 1968). The most prominent among them is the electroencephalogram (EEG),
whose spectral content changes to reflect the state of alertness and the mental activity of
the subject. The EEG signal exhibits some distinctive waves, known as rhythms, whose
dominant spectral content occupies certain bands as follows: delta (δ), 0.5 to 4 Hz; theta
(θ ), 4 to 8 Hz; alpha (α), 8 to 13 Hz; beta (β), 13 to 22 Hz; and gamma (γ ), 22 to 30 Hz.
During sleep, if the subject is dreaming, the EEG signal shows rapid low-amplitude fluctu-
ations similar to those obtained in alert subjects, and this is known as rapid eye movement
(REM) sleep. Some other interesting features occurring during nondreaming sleep periods
resemble alphalike activity and are known as sleep spindles. More details can be found in
Duffy et al. 1989 and Niedermeyer and Lopes Da Silva 1998.

FIGURE 1.4
Typical sleep laboratory recordings. The two top signals show eye movements, the next one
illustrates EMG (electromyogram) or muscle tonus, and the last one illustrates brain waves
(EEG) during the onset of a REM sleep period ( from Rechtschaffen and Kales 1968).

The beat-to-beat fluctuations in heart rate and other cardiovascular variables, such as ar-
terial blood pressure and stroke volume, are mediated by the joint activity of the sympathetic
and parasympathetic systems. Figure 1.5 shows time series for the heart rate and systolic ar-
terial blood pressure. We note that both heart rate and blood pressure fluctuate in a complex
manner that depends on the mental or physiological state of the subject. The individual or
joint analysis of such time series can help to understand the operation of the cardiovascular
system, predict cardiovascular diseases, and help in the development of drugs and devices
for cardiac-related problems (Grossman et al. 1996; Malik and Camm 1995; Saul 1990).

Geophysical signals. Remote sensing systems use a variety of electro-optical sensors
that span the infrared, visible, and ultraviolet regions of the spectrum and find many civilian
and defense applications. Figure 1.6 shows two segments of infrared scans obtained by a
space-based radiometer looking down at earth (Manolakis et al. 1994). The shape of the
profiles depends on the transmission properties of the atmosphere and the objects in the
radiometer’s field-of-view (terrain or sky background). The statistical characterization and
modeling of infrared backgrounds are critical for the design of systems to detect missiles
against such backgrounds as earth’s limb, auroras, and deep-space star fields (Sabins 1987;
Colwell 1983). Other geophysical signals of interest are recordings of natural and man-made
seismic events and seismic signals used in geophysical prospecting (Bolt 1993; Dobrin 1988;
Sheriff 1994).
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FIGURE 1.5
Simultaneous recordings of the heart rate and systolic blood pressure signals for a
subject at rest.
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FIGURE 1.6
Time series of infrared radiation measurements obtained by a scanning radiometer.
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Radar signals. We conveniently define a radar system to consist of both a transmitter
and a receiver. When the transmitter and receiver are colocated, the radar system is said to
be monostatic, whereas if they are spatially separated, the system is bistatic. The radar first
transmits a waveform, which propagates through space as electromagnetic energy, and then
measures the energy returned to the radar via reflections. When the returns are due to an
object of interest, the signal is known as a target, while undesired reflections from the earth’s
surface are referred to as clutter. In addition, the radar may encounter energy transmitted by
a hostile opponent attempting to jam the radar and prevent detection of certain targets. Col-
lectively, clutter and jamming signals are referred to as interference. The challenge facing
the radar system is how to extract the targets of interest in the presence of sometimes severe
interference environments. Target detection is accomplished by using adaptive processing
methods that exploit characteristics of the interference in order to suppress these undesired
signals.

A transmitted radar signal propagates through space as electromagnetic energy at ap-
proximately the speed of light c = 3 × 108 m/s. The signal travels until it encounters an
object that reflects the signal’s energy. A portion of the reflected energy returns to the radar
receiver along the same path. The round-trip delay of the reflected signal determines the
distance or range of the object from the radar. The radar has a certain receive aperture,
either a continuous aperture or one made up of a series of sensors. The relative delay of a
signal as it propagates across the radar aperture determines its angle of arrival, or bearing.
The extent of the aperture determines the accuracy to which the radar can determine the
direction of a target. Typically, the radar transmits a series of pulses at a rate known as the
pulse repetition frequency. Any target motion produces a phase shift in the returns from
successive pulses caused by the Doppler effect. This phase shift across the series of pulses
is known as the Doppler frequency of the target, which in turn determines the target radial
velocity. The collection of these various parameters (range, angle, and velocity) allows the
radar to locate and track a target.

An example of a radar signal as a function of range in kilometers (km) is shown in
Figure 1.7. The signal is made up of a target, clutter, and thermal noise. All the signals have
been normalized with respect to the thermal noise floor. Therefore, the normalized noise
has unit variance (0 dB). The target signal is at a range of 100 km with a signal-to-noise
ratio (SNR) of 15 dB. The clutter, on the other hand, is present at all ranges and is highly
nonstationary. Its power levels vary from approximately 40 dB at near ranges down to the
thermal noise floor (0 dB) at far ranges. Part of the nonstationarity in the clutter is due to
the range falloff of the clutter as its power is attenuated as a function of range. However, the
rises and dips present between 100 and 200 km are due to terrain-specific artifacts. Clearly,
the target is not visible, and the clutter interference must be removed or canceled in order
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FIGURE 1.7
Example of a radar return signal, plotted as relative power with
respect to noise versus range.
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to detect the target. The challenge here is how to cancel such a nonstationary signal in order
to extract the target signal and motivate the use of adaptive techniques that can adapt to
the rapidly changing interference environment. More details about radar and radar signal
processing can be found in Skolnik 1980; Skolnik 1990; and Nathanson 1991.

1.2 SPECTRAL ESTIMATION

The central objective of signal analysis is the development of quantitative techniques to
study the properties of a signal and the differences and similarities between two or more
signals from the same or different sources. The major areas of random signal analysis
are (1) statistical analysis of signal amplitude (i.e., the sample values); (2) analysis and
modeling of the correlation among the samples of an individual signal; and (3) joint signal
analysis (i.e., simultaneous analysis of two signals in order to investigate their interaction or
interrelationships). These techniques are summarized in Figure 1.8. The prominent tool in
signal analysis is spectral estimation, which is a generic term for a multitude of techniques
used to estimate the distribution of energy or power of a signal from a set of observations.
Spectral estimation is a very complicated process that requires a deep understanding of
the underlying theory and a great deal of practical experience. Spectral analysis finds many
applications in areas such as medical diagnosis, speech analysis, seismology and geophysics,
radar and sonar, nondestructive fault detection, testing of physical theories, and evaluating
the predictability of time series.

RANDOM SIGNAL
ANALYSIS

Single-signal
amplitude
analysis

Joint signal
analysis

Averages
Probability density

Extreme-value
analysis

Autocorrelation
Power spectrum

Parametric models
Self-similarity

Higher-order statistics

Cross-correlation
Cross power spectrum

Coherence
Frequency response

Single-signal
dependence

analysis

Higher-order statistics

FIGURE 1.8
Summary of random signal analysis techniques.

Amplitude distribution. The range of values taken by the samples of a signal and how
often the signal assumes these values together determine the signal variability. The signal
variability can be seen by plotting the time series and is quantified by the histogram of the
signal samples, which shows the percentage of the signal amplitude values within a certain
range. The numerical description of signal variability, which depends only on the value
of the signal samples and not on their ordering, involves quantities such as mean value,
median, variance, and dynamic range.
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Figure 1.9 shows the one-step increments, that is, the first difference xd(n) = x(n)−
x(n−1), or approximate derivative of the infrared signals shown in Figure 1.6, whereas Fig-
ure 1.10 shows their histograms. Careful examination of the shape of the histogram curves
indicates that the second signal jumps quite frequently between consecutive samples with
large steps. In other words, the probability of large increments is significant, as exemplified
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FIGURE 1.9
One-step-increment time series for the infrared data shown in Figure 1.6.
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by the fat tails of the histogram in Figure 1.10(b). The knowledge of the probability of
extreme values is essential in the design of detection systems for digital communications,
military surveillance using infrared and radar sensors, and intensive care monitoring. In
general, the shape of the histogram, or more precisely the probability density, is very im-
portant in applications such as signal coding and event detection. Although many practical
signals follow a Gaussian distribution, many other signals of practical interest have distri-
butions that are non-Gaussian. For example, speech signals have a probability density that
can be reasonably approximated by a gamma distribution (Rabiner and Schafer 1978).

The significance of the Gaussian distribution in signal processing stems from the fol-
lowing facts. First, many physical signals can be described by Gaussian processes. Second,
the central limit theorem (see Chapter 3) states that any process that is the result of the
combination of many elementary processes will tend, under quite general conditions, to be
Gaussian. Finally, linear systems preserve the Gaussianity of their input signals. To under-
stand the last two statements, consider N independent random quantities x1, x2, . . . , xN
with the same probability density p(x) and pose the following question: When does the
probability distribution pN(x) of their sum x = x1 + x2 + · · · + xN have the same shape
(within a scale factor) as the distribution p(x) of the individual quantities? The standard
answer is that p(x) should be Gaussian, because the sum of N Gaussian random variables
is again a Gaussian, but with variance equal toN times that of the individual signals. How-
ever, if we allow for distributions with infinite variance, additional solutions are possible.
The resulting probability distributions, known as stable or Levy distributions, have infinite
variance and are characterized by a thin main lobe and fat tails, resembling the shape of
the histogram in Figure 1.10(b). Interestingly enough, the Gaussian distribution is a stable
distribution with finite variance (actually the only one). Because Gaussian and stable non-
Gaussian distributions are invariant under linear signal processing operations, they are very
important in signal processing.

Correlation and spectral analysis. Although scatter plots (see Figure 1.1) illustrate
nicely the existence of correlation, to obtain quantitative information about the correlation
structure of a time series x(n) with zero mean value, we use the empirical normalized
autocorrelation sequence

ρ̂(l) =

N−1∑

n=l
x(n)x∗(n− l)
N−1∑

n=0

|x(n)|2
(1.2.1)

which is an estimate of the theoretical normalized autocorrelation sequence. For lag l = 0,
the sequence is perfectly correlated with itself and we get the maximum value of 1. If
the sequence does not change significantly from sample to sample, the correlation of the
sequence with its shifted copies, though diminished, is still close to 1. Usually, the correlation
decreases as the lag increases because distant samples become less and less dependent. Note
that reordering the samples of a time series changes its autocorrelation but not its histogram.

We say that signals whose empirical autocorrelation decays fast, such as an exponential,
have short-memory or short-range dependence. If the empirical autocorrelation decays very
slowly, as a hyperbolic function does, we say that the signal has long-memory or long-range
dependence. These concepts will be formulated in a theoretical framework in Chapter 3.
Furthermore, we shall see in the next section that effective modeling of time series with
short or long memory requires different types of models.

The spectral density function shows the distribution of signal power or energy as a
function of frequency (see Figure 1.11). The autocorrelation and the spectral density of a
signal form a Fourier transform pair and hence contain the same information. However,
they present this information in different forms, and one can reveal information that cannot
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FIGURE 1.11
Illustration of the concept of power or energy spectral density function of a random signal.

be easily extracted from the other. It is fair to say that the spectral density is more widely
used than the autocorrelation.

Although the correlation and spectral density functions are the most widely used tools
for signal analysis, there are applications that require the use of correlations among three or
more samples and the corresponding spectral densities. These quantities, which are useful
when we deal with non-Gaussian processes and nonlinear systems, belong to the area of
higher-order statistics and are described in Chapter 12.

Joint signal analysis. In many applications, we are interested in the relationship be-
tween two different random signals. There are two cases of interest. In the first case, the
two signals are of the same or similar nature, and we want to ascertain and describe the
similarity or interaction between them. For example, we may want to investigate if there is
any similarity in the fluctuation of infrared radiation in the two profiles of Figure 1.6.

In the second case, we may have reason to believe that there is a causal relationship
between the two signals. For example, one signal may be the input to a system and the
other signal the output. The task in this case is to find an accurate description of the system,
that is, a description that allows accurate estimation of future values of the output from the
input. This process is known as system modeling or identification and has many practical
applications, including understanding the operation of a system in order to improve the
design of new systems or to achieve better control of existing systems.

In this book, we will study joint signal analysis techniques that can be used to understand
the dynamic behavior between two or more signals. An interesting example involves using
signals, like the ones in Figure 1.5, to see if there is any coupling between blood pressure
and heart rate. Some interesting results regarding the effect of respiration and blood pressure
on heart rate are discussed in Chapter 5.

1.3 SIGNAL MODELING

In many theoretical and practical applications, we are interested in generating random sig-
nals with certain properties or obtaining an efficient representation of real-world random
signals that captures a desired set of their characteristics (e.g., correlation or spectral fea-
tures) in the best possible way. We use the term model to refer to a mathematical description
that provides an efficient representation of the “essential” properties of a signal.

For example, a finite segment {x(n)}N−1
n=0 of any signal can be approximated by a linear

combination of constant (λk = 1) or exponentially fading (0 < λk < 1) sinusoids

x(n) 

M∑

k=1

akλ
n
k cos

(
ωkn+ φk

)
(1.3.1)

where {ak, λk, ωk, φk}Mk=1 are the model parameters. A good model should provide an
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accurate description of the signal with 4M � N parameters. From a practical viewpoint, we
are most interested in parametric models, which assume a given functional form completely
specified by a finite number of parameters. In contrast, nonparametric models do not put
any restriction on the functional form or the number of model parameters.

If any of the model parameters in (1.3.1) is random, the result is a random signal. The
most widely used model is given by

x(n) =
M∑

k=1

ak cos
(
ωkn+ φk

)

where the amplitudes {ak}N1 and the frequencies {ωk}N1 are constants and the phases {φk}N1
are random. This model is known as the harmonic process model and has many theoretical
and practical applications (see Chapters 3 and 9).

Suppose next that we are given a sequence w(n) of independent and identically dis-
tributed observations. We can create a time series x(n) with dependent observations, by
linearly combining the values of w(n) as

x(n) =
∞∑

k=−∞
h(k)w(n− k) (1.3.2)

which results in the widely used linear random signal model. The model specified by the
convolution summation (1.3.2) is clearly nonparametric because, in general, it depends on
an infinite number of parameters. Furthermore, the model is a linear, time-invariant system
with impulse response h(k) that determines the memory of the model and, therefore, the
dependence properties of the output x(n). By properly choosing the weights h(k), we can
generate a time series with almost any type of dependence among its samples.

In practical applications, we are interested in linear parametric models. As we will see,
parametric models exhibit a dependence imposed by their structure. However, if the number
of parameters approaches the range of the dependence (in number of samples), the model
can mimic any form of dependence. The list of desired features for a good model includes
these: (1) the number of model parameters should be as small as possible ( parsimony),
(2) estimation of the model parameters from the data should be easy, and (3) the model
parameters should have a physically meaningful interpretation.

If we can develop a successful parametric model for the behavior of a signal, then we
can use the model for various applications:

1. To achieve a better understanding of the physical mechanism generating the signal (e.g.,
earth structure in the case of seismograms).

2. To track changes in the source of the signal and help identify their cause (e.g., EEG).
3. To synthesize artificial signals similar to the natural ones (e.g., speech, infrared back-

grounds, natural scenes, data network traffic).
4. To extract parameters for pattern recognition applications (e.g., speech and character

recognition).
5. To get an efficient representation of signals for data compression (e.g., speech, audio,

and video coding).
6. To forecast future signal behavior (e.g., stock market indexes) (Pindyck and Rubinfeld

1998).

In practice, signal modeling involves the following steps: (1) selection of an appropriate
model, (2) selection of the “right” number of parameters, (3) fitting of the model to the
actual data, and (4) model testing to see if the model satisfies the user requirements for the
particular application. As we shall see in Chapter 9, this process is very complicated and
depends heavily on the understanding of the theoretical model properties (see Chapter 4),
the amount of familiarity with the particular application, and the experience of the user.
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1.3.1 Rational or Pole-Zero Models

Suppose that a given sample x(n), at time n, can be approximated by the previous sample
weighted by a coefficient a, that is, x(n) ≈ ax(n−1), where a is assumed constant over the
signal segment to be modeled. To make the above relationship exact, we add an excitation
term w(n), resulting in

x(n) = ax(n− 1)+ w(n) (1.3.3)

where w(n) is an excitation sequence. Taking the z-transform of both sides (discussed in
Chapter 2), we have

X(z) = az−1X(z)+W(z) (1.3.4)

which results in the following system function:

H(z) = X(z)

W(z)
= 1

1 − az−1
(1.3.5)

By using the identity

H(z) = 1

1 − az−1
= 1 + az−1 + a2z−2 + · · · − 1 < a < 1 (1.3.6)

the single-parameter model in (1.3.3) can be expressed in the following nonparametric form

x(n) = w(n)+ aw(n− 1)+ a2w(n− 2)+ · · · (1.3.7)

which clearly indicates that the model generates a time series with exponentially decaying
dependence.

A more general model can be obtained by including a linear combination of the P
previous values of the signal and of theQ previous values of the excitation in (1.3.3), that
is,

x(n) =
P∑

k=1

(−ak) x(n− k)+
Q∑

k=0

dkw(n− k) (1.3.8)

The resulting system function

H(z) = X(z)

W(z)
=

Q∑

k=0

dkz
−k

1 +
P∑

k=1

akz−k
(1.3.9)

is rational, that is, a ratio of two polynomials in the variable z−1, hence the term rational
models. We will show in Chapter 4 that any rational model has a dependence structure or
memory that decays exponentially with time. Because the roots of the numerator polynomial
are known as zeros and the roots of the denominator polynomial as poles, these models are
also known as pole-zero models. In the time-series analysis literature, these models are
known as autoregressive moving-average (ARMA) models.

Modeling the vocal tract. An example of the application of the pole-zero model is for
the characterization of the speech production system. Most generally, speech sounds are
classified as either voiced or unvoiced. For both of these types of speech, the production is
modeled by exciting a linear system, the vocal tract, with an excitation having a flat, that
is, constant, spectrum. The vocal tract, in turn, is modeled by using a pole-zero system,
with the poles modeling the vocal tract resonances and the zeros serving the purpose of
dampening the spectral response between pole frequencies. In the case of voiced speech,
the input to the vocal tract model is a quasi-periodic pulse waveform, whereas for unvoiced
speech the source is modeled as random noise. The system model of the speech production
process is shown in Figure 1.12. The parameters of this model are the voiced/unvoiced
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FIGURE 1.12
Speech synthesis system based on pole-zero modeling.

classification, the pitch period for voiced sounds, the gain parameter, and the coefficients
{dk} and {ak} of the vocal tract filter (1.3.9). This model is widely used for low-bit-rate (less
than 2.4 kbits/s) speech coding, synthetic speech generation, and extraction of features
for speech and speaker recognition (Rabiner and Schafer 1978; Rabiner and Juang 1993;
Furui 1989).

1.3.2 Fractional Pole-Zero Models and Fractal Models

Although the dependence in (1.3.7) becomes stronger as the polea → 1, it cannot effectively
model time series whose autocorrelation decays asymptotically as a power law. For a = 1,
that is, for a pole on the unit circle (unit pole), we obtain an everlasting constant dependence,
but the output of the model increases without limit and the model is said to be unstable.
However, we can obtain a stable model with long memory by creating a fractional unit
pole, that is, by raising (1.3.6) by a fractional power. Indeed, using the identity

H(z) = 1

(1 − z−1)d
= 1 + dz−1 + d(d + 1)

2! z−2 + · · · − 1

2
< d <

1

2
(1.3.10)

x(n) = w(n)+ dw(n− 1)+ d(d + 1)

2! w(n− 2)+ · · · (1.3.11)we have

The weights hd(n) in (1.3.11) decay according to nd−1 as n → ∞; that is, the depen-
dence decays asymptotically as a power law or hyperbolically. Even if the model (1.3.11) is
specified by one parameter, its implementation involves an infinite-order convolution sum-
mation. Therefore, its practical realization requires an approximation by a rational model
that can be easily implemented by using a difference equation. If w(n) is a sequence of
independent Gaussian random variables, the process generated by (1.3.11) is known as
fractionally differenced Gaussian noise. Rational models including one or more fractional
poles are known in time-series analysis as fractional autoregressive integrated moving-
average models and are studied in Chapter 12. The short-term dependence of these models
is exponential, whereas their long-term dependence is hyperbolic.

In continuous time, we can create long dependence by using a fractional pole. This is
illustrated by the following Laplace transform pair

L{tβ−1} ∝ 1

sβ
β > 0 (1.3.12)

which corresponds to an integrator for β = 1 and a fractional integrator for 0 < β < 1.
Clearly, the memory of a continuous-time system with impulse response hβ(t) = tβ−1 for
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t ≥ 0 and hβ(t) = 0 for t < 0 decays hyperbolically. The response of such a system to
white Gaussian noise results in a nonstationary process called fractional Brownian motion.
Sampling the fractional Brownian motion process at equal intervals and computing the one-
step increments result in a stationary discrete-time process known as fractional Gaussian
noise. Both processes exhibit long memory and are of great theoretical and practical interest
and their properties and applications are discussed in Chapter 12.

Exciting a rational model with fractional Gaussian noise leads to a very flexible class
of models that exhibit exponential short-range dependence and hyperbolic long-range de-
pendence. The excitation of fractional models (either discrete-time or continuous-time)
with statistically independent inputs whose amplitude changes are distributed according
to a stable probability law leads to random signal models with long dependence and high
amplitude variability. Such models have many practical applications and are also discussed
in Chapter 12.

If we can reproduce an object by magnifying some portion of it, we say that the object
is scale-invariant or self-similar. Thus, self-similarity is invariance with respect to scaling.
Self-similar geometric objects are known as fractals. More specifically, a signal x(t) is self-
similar if x(ct) = cHx(t) for some c > 0. The constant H is known as the self-similarity
index. It can easily be seen that a signal described by a power law, say, x(t) = αtβ , is self-
similar. However, such signals are of limited interest. A more interesting and useful type
of signal is one that exhibits a weaker statistical version of self-similarity. A random signal
is called (statistically) self-similar if its statistical properties are scale-invariant, that is, its
statistics do not change under magnification or minification. Self-similar random signals are
also known as random fractals. Figure 1.13 provides a visual illustration of the self-similar
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FIGURE 1.13
Pictorial illustration of self-similarity for the variable bit rate video traffic time series. The
bottom series is obtained from the top series by expanding the segment between the two
vertical lines. Although the two series have lengths of 600 and 60 s, they are remarkably
similar visually and statistically (Courtesy of M. Garrett and M. Vetterli).
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behavior of the variable bit rate video traffic time series. The analysis and modeling of such
time series find extensive applications in Internet traffic applications (Michiel and Laevens
1997; Garrett and Willinger 1994).

A classification of the various signal models described previously is given in Figure
1.14, which also provides information about the chapters of the book where these signals
are discussed.

Random signal
models

Pole zero
(Chapters 4, 9)

Harmonic
process model
(Chapters 3, 9)

Continuous
spectra

Line spectra

Short memory

Fractional
pole zero

(Chapter 12)

Long memory

Self-similar
(fractal)

(Chapter 12)

FIGURE 1.14
Classification of random signal models.

1.4 ADAPTIVE FILTERING

Conventional frequency-selective digital filters with fixed coefficients are designed to have
a given frequency response chosen to alter the spectrum of the input signal in a desired
manner. Their key features are as follows:

1. The filters are linear and time-invariant.
2. The design procedure uses the desired passband, transition bands, passband ripple, and

stopband attenuation. We do not need to know the sample values of the signals to be
processed.

3. Since the filters are frequency-selective, they work best when the various components
of the input signal occupy nonoverlapping frequency bands. For example, it is easy to
separate a signal and additive noise when their spectra do not overlap.

4. The filter coefficients are chosen during the design phase and are held constant during
the normal operation of the filter.

However, there are many practical application problems that cannot be successfully
solved by using fixed digital filters because either we do not have sufficient information to
design a digital filter with fixed coefficients or the design criteria change during the normal
operation of the filter. Most of these applications can be successfully solved by using special
“smart” filters known collectively as adaptive filters. The distinguishing feature of adaptive
filters is that they can modify their response to improve performance during operation
without any intervention from the user.
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1.4.1 Applications of Adaptive Filters

The best way to introduce the concept of adaptive filtering is by describing some typical
application problems that can be effectively solved by using an adaptive filter. The ap-
plications of adaptive filters can be sorted for convenience into four classes: (1) system
identification, (2) system inversion, (3) signal prediction, and (4) multisensor interference
cancelation (see Figure 1.15 and Table 1.1). We next describe each class of applications and
provide a typical example for each case.

TABLE 1.1

Classification of adaptive filtering applications.

Application class Examples

System identification Echo cancelation
Adaptive control
Channel modeling

System inversion Adaptive equalization
Blind deconvolution

Signal prediction Adaptive predictive coding
Change detection
Radio frequency interference cancelation

Multisensor interference cancelation Acoustic noise control
Adaptive beamforming

System Identification

This class of applications, known also as system modeling, is illustrated in Figure
1.15(a). The system to be modeled can be either real, as in control system applications,
or some hypothetical signal transmission path (e.g., the echo path). The distinguishing
characteristic of the system identification application is that the input of the adaptive filter
is noise-free and the desired response is corrupted by additive noise that is uncorrelated with
the input signal. Applications in this class include echo cancelation, channel modeling, and
identification of systems for control applications (Gitlin et al. 1992; Ljung 1987; Åström and
Wittenmark 1990). In control applications, the purpose of the adaptive filter is to estimate
the parameters or the state of the system and then to use this information to design a
controller. In signal processing applications, the goal is to obtain a good estimate of the
desired response according to the adopted criterion of performance.

Acoustic echo cancelation. Figure 1.16 shows a typical audio teleconferencing system
that helps two groups of people, located at two different places, to communicate effectively.
However, the performance of this system is degraded by the following effects: (1) The
reverberations of the room result from the fact that the microphone picks up not only the
speech coming from the talker but also reflections from the walls and furniture in the room.
(2) Echoes are created by the acoustic coupling between the microphone and the loudspeaker
located in the same room. Speech from room B not only is heard by the listener in room A
but also is picked up by the microphone in room A, and unless it is prevented, will return
as an echo to the speaker in room B.

Several methods to deal with acoustic echoes have been developed. However, the most
effective technique to prevent or control echoes is adaptive echo cancelation. The basic idea
is very simple: To cancel the echo, we generate a replica or pseudo-echo and then subract
it from the real echo. To synthesize the echo replica, we pass the signal at the loudspeaker
through a device designed to duplicate the reverberation and echo properties of the room
(echo path), as is illustrated in Figure 1.17.
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FIGURE 1.15
The four basic classes of adaptive filtering applications: (a) system identification, (b)
system inversion, (c) signal prediction, and (d ) multisensor interference cancelation.
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Typical teleconferencing system without echo control.
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FIGURE 1.17
Principle of acoustic echo cancelation using an adaptive echo canceler.

In practice, there are two obstables to this approach. (1) The echo path is usually
unknown before actual transmission begins and is quite complex to model. (2) The echo
path is changing with time, since even the move of a talker alters the acoustic properties
of the room. Therefore, we cannot design and use a fixed echo canceler with satisfactory
performance for all possible connections. There are two possible ways around this problem:

1. Design a compromise fixed echo canceler based on some “average” echo path, assuming
that we have sufficient information about the connections to be seen by the canceler.

2. Design an adaptive echo canceler that can “learn” the echo path when it is first turned on
and afterward “tracks” its variations without any intervention from the designer. Since
an adaptive canceler matches the echo patch for any given connection, it performs better
than a fixed compromise canceler.

We stress that the main task of the canceler is to estimate the echo signal with sufficient
accuracy; the estimation of the echo path is simply the means for achieving this goal. The
performance of the canceler is measured by the attenuation of the echo. The adaptive echo
canceler achieves this goal, by modifying its response, using the residual echo signal in
an as-yet-unspecified way. More details about acoustic echo cancelation can be found in
Gilloire et al. (1996).

System inversion

This class of applications, which is illustrated in Figure 1.15(b), is also known as inverse
system modeling. The goal of the adaptive filter is to estimate and apply the inverse of the
system. Dependent on the application, the input of the adaptive filter may be corrupted by
additive noise, and the desired response may not be available. The existence of the inverse
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system and its properties (e.g., causality and stability) creates additional complications.
Typical applications include adaptive equalization (Gitlin et al. 1992), seismic deconvolu-
tion (Robinson 1984), and adaptive inverse control (Widrow and Walach 1994).

Channel equalization. To understand the basic principles of the channel equalization
techniques, we consider a binary data communication system that transmits a band-limited
analog pulse with amplitudes A (symbol 1) or −A (symbol 0) every Tb s (see Figure 1.18).
Here Tb is known as the symbol interval and Rb = 1/Tb as the baud rate. As the signal
propagates through the channel, it is delayed and attenuated in a frequency-dependent
manner. Furthermore, it is corrupted by additive noise and other natural or man-made
interferences. The goal of the receiver is to measure the amplitude of each arriving pulse
and to determine which one of the two possible pulses has been sent. The received signal is
sampled once per symbol interval after filtering, automatic gain control, and carrier removal.
The sampling time is adjusted to coincide with the “center” of the received pulse. The shape
of the pulse is chosen to attain the maximum rate at which the receiver can still distinguish
the different pulses. To achieve this goal, we usually choose a band-limited pulse that has
periodic zero crossings every Tb s.

Data
Transmitter Channel Receiver Equalizer Recovered data

Interference

Noise

FIGURE 1.18
Simple model of a digital communications system.

If the periodic zero crossings of the pulse are preserved after transmission and reception,
we can measure its amplitude without interference from overlapping adjacent pulses. How-
ever, channels that deviate from the ideal response (constant magnitude and linear phase)
destroy the periodic zero-crossing property and the shape of the peak of the pulse. As a
result, the tails of adjacent pulses interfere with the measurement of the current pulse and
can lead to an incorrect decision. This type of degradation, which is known as intersymbol
interference (ISI), is illustrated in Figure 1.19.

T

T

(a) Transmitted pulses

(b) Distorted pulses

No intersymbol
interference

Intersymbol
interference

FIGURE 1.19
Pulse trains (a) without
intersymbol interference and (b)
with intersymbol interference.
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We can compensate for the ISI distortion by using a linear filter called an equalizer. The
goal of the equalizer is to restore the received pulse, as closely as possible, to its original
shape. The equalizer transforms the channel to a near-ideal one if its response resembles
the inverse of the channel. Since the channel is unknown and possibly time-varying, there
are two ways to approach the problem: (1) Design a fixed compromise equalizer to obtain
satisfactory performance over a broad range of channels, or (2) design an equalizer that can
“learn” the inverse of the particular channel and then “track” its variation in real time.

The characteristics of the equalizer are adjusted by some algorithm that attempts to
attain the best possible performance. The most appropriate criterion of performance for
data transmission systems is the probability of symbol error. However it cannot be used for
two reasons: (1) The “correct” symbol is unknown to the receiver (otherwise there would
be no reason to communicate), and (2) the number of decisions (observations) needed to
estimate the low probabilities of error is extremely large. Thus, practical equalizers assess
their performance by using some function of the difference between the “correct” symbol
and the output. The operation of practical equalizers involves two modes

†
of operation,

dependent on how we substitute for the unavailable correct symbol sequence. (1) A known
training sequence is transmitted, and the equalizer attempts to improve its performance
by comparing its output to a synchronized replica of the training sequence stored at the
receiver. Usually this mode is used when the equalizer starts a transmission session. (2) At
the end of the training session, when the equalizer starts making reliable decisions, we can
replace the training sequence with the equalizer’s own decisions.

Adaptive equalization is a mature technology that has had the greatest impact on digital
communications systems, including voiceband, microwave and troposcatter radio, and cable
TV modems (Qureshi 1985; Lee and Messerschmitt 1994; Gitlin et al. 1992; Bingham 1988;
Treichler et al. 1996).

Signal prediction

In the next class of applications, the goal is to estimate the value x(n0) of a random
signal by using a set of consecutive signal samples {x(n), n1 ≤ n ≤ n2}. There are three
cases of interest: (1) forward prediction, when n0 > n2; (2) backward “prediction,” when
n0 < n1; and (3) smoothing or interpolation, when n1 < n0 < n2. Clearly, in the last case
the value at n = n0 is not used in the computation of the estimate. The most widely used
type is forward linear prediction or simply linear prediction

‡
[see Figure 1.15(c)], where

the estimate is formed by using a linear combination of past samples (Makhoul 1975).

Linear predictive coding (LPC). The efficient storage and transmission of analog sig-
nals using digital systems requires the minimization of the number of bits necessary to
represent the signal while maintaining the quality to an acceptable level according to a cer-
tain criterion of performance. The conversion of an analog (continuous-time, continuous-
amplitude) signal to a digital (discrete-time, discrete-amplitude) signal involves two pro-
cesses: sampling and quantization. Sampling converts a continuous-time signal to a discrete-
time signal by measuring its amplitude at equidistant intervals of time. Quantization involves
the representation of the measured continuous amplitude using a finite number of symbols
and always creates some amount of distortion (quantization noise).

For a fixed number of bits, decreasing the dynamic range of the signal (and therefore the
range of the quantizer) decreases the required quantization step and therefore the average
quantization error power. Therefore, we can decrease the quantization noise by reducing
the dynamic range or equivalently the variance of the signal. If the signal samples are

†
Another mode of operation, where the equalizer can operate without the benefit of a training sequence (blind or

self-recovering mode), is discussed in Chapter 12.
‡
As we shall see in Chapters 4 and 6, linear prediction is closely related, but not identical, to all-pole signal

modeling.
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significantly correlated, the variance of the difference between adjacent samples is smaller
than the variance of the original signal. Thus, we can improve quality by quantizing this
difference instead of the original signal. This idea is exploited by the linear prediction system
shown in Figure 1.20. This system uses a linear predictor to form an estimate (prediction)
x̂(n) of the present sample x(n) as a linear combination of theM past samples, that is,

x̂(n) =
M∑

k=1

akx(n− k) (1.4.1)

The coefficients {ak}M1 of the linear predictor are determined by exploiting the correlation
between adjacent samples of the input signal with the objective of making the prediction
error

e(n) = x(n)− x̂(n) (1.4.2)

as small as possible. If the prediction is good, the dynamic range of e(n) should be smaller
than the dynamic range of x(n), resulting in a smaller quantization noise for the same number
of bits or the same quantization noise with a smaller number of bits. The performance of
the LPC system depends on the accuracy of the predictor. Since the statistical properties
of the signal x(n) are unknown and change with time, we cannot design an optimum
fixed predictor. The established practical solution is to use an adaptive linear predictor that
automatically adjusts its coefficients to compute a “good” prediction at each time instant.
A detailed discussion of adaptive linear prediction and its application to audio, speech, and
video signal coding is provided in Jayant and Noll (1984).

n

M samples

n − M n − 1

x(n)ˆ

FIGURE 1.20
Illustration of the linear prediction of
a signal x(n) using a finite number of
past samples.

Multisensor interference cancelation

The key feature of this class of applications is the use of multiple sensors to remove
undesired interference and noise. Typically, a primary signal contains both the signal of
interest and the interference. Other signals, known as reference signals, are available for
the purposes of canceling the undesired interference [see Figure 1.15(d )]. These reference
signals are collected using other sensors in which the signal of interest is not present or is so
weak that it can be ignored. The amount of correlation between the primary and reference
signals is measured and used to form an estimate of the interference in the primary signal,
which is subsequently removed. Had the signal of interest been present in the reference
signal(s), then this process would have resulted in the removal of the desired signal as
well. Typical applications in which interference cancelation is employed include array
processing for radar and communications, biomedical sensing systems, and active noise
control (Widrow et al. 1975; Kuo and Morgan 1996).

Active noise control (ANC). The basic idea behind an ANC system is the cancelation
of acoustic noise using destructive wave interference. To create destructive interference that
cancels an acoustic noise wave (primary) at a pointP , we can use a loudspeaker that creates,
at the same pointP , another wave (secondary) with the same frequency, the same amplitude,
and 180◦ phase difference. Therefore, with appropriate control of the peaks and troughs
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of the secondary wave, we can produce zones of destructive interference (quietness). ANC
systems using digital signal processing technology find applications in air-conditioning
ducts, aircraft, cars, and magnetic resonance imaging (MRI) systems (Elliott and Nelson
1993; Kuo and Morgan 1996).

Figure 1.21 shows the key components of an adaptive ANC system described in Craw-
ford et al. 1997. The task of the loudspeaker is to generate an acoustic wave that is an 180◦
phase-inverted version of the signal y(t) when it arrives at the error microphone. In this
case the error signal e(t) = y(t) + ŷ(t) = 0, and we create a “quiet zone” around the
microphone. If the acoustic paths (1) from the noise source to the reference microphone
(Gx), (2) from the noise source to the error microphone (Gy), (3) from the secondary loud-
speaker to the reference microphone (Hx), and (4) from the secondary loudspeaker to the
error microphone (Hŷ) are linear, time-invariant, and known, we can design a linear filter
H such that e(n) = 0. For example, if the effects of Hx and Hŷ are negligible, the filter
H should invert Gx to obtain v(t) and then replicate Gy to synthesize ŷ(t) 
 y(t). The
quality of cancelation depends on the accuracy of these two modeling processes.
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FIGURE 1.21
Block diagram of the basic components of an active noise control system.

In practice, the acoustic environment is unknown and time-varying. Therefore, we
cannot design a fixed ANC filter with satisfactory performance. The only feasible solution
is to use an adaptive filter with the capacity to identify and track the variation of the various
acoustic paths and the spectral characteristics of the noise source in real time. The adaptive
ANC filter adjusts its characteristics by trying to minimize the energy of the error signal
e(n). Adaptive ANC using digital signal processing technology is an active area of research,
and despite several successes many problems remain to be solved before such systems find
their way to more practical applications (Crawford et al. 1997).

1.4.2 Features of Adaptive Filters

Careful inspection of the applications discussed in the previous section indicates that every
adaptive filter consists of the following three modules (see Figure 1.22).
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1. Filtering structure. This module forms the output of the filter using measurements of
the input signal or signals. The filtering structure is linear if the output is obtained as
a linear combination of the input measurements; otherwise, it is said to be nonlinear.
The structure is fixed by the designer, and its parameters are adjusted by the adaptive
algorithm.

2. Criterion of performance (COP). The output of the adaptive filter and the desired
response (when available) are processed by the COP module to assess its quality with
respect to the requirements of the particular application.

3. Adaptive algorithm. The adaptive algorithm uses the value of the criterion of perfor-
mance, or some function of it, and the measurements of the input and desired response
(when available) to decide how to modify the parameters of the filter to improve its
performance.

Filtering
structure

Adaptive
algorithm

Criterion
of

performance

A priori
knowledge

Used only in the
design process

Input signal

Desired
response

Error signal

−

Parameters

FIGURE 1.22
Basic elements of a general
adaptive filter.

Every adaptive filtering application involves one or more input signals and a desired
response signal that may or may not be accessible to the adaptive filter. We collectively
refer to these relevant signals as the signal operating environment (SOE ) of the adaptive
filter. The design of any adaptive filter requires a great deal of a priori information about the
SOE and a deep understanding of the particular application (Claasen and Mecklenbrauker
1985). This information is needed by the designer to choose the filtering structure and the
criterion of performance and to design the adaptive algorithm. To be more specific, adaptive
filters are designed for a specific type of input signal (speech, binary data, etc.), for specific
types of interferences (additive white noise, sinusoidal signals, echoes of the input signals,
etc.), and for specific types of signal transmission paths (e.g., linear time-invariant or time-
varying). After the proper design decisions have been made, the only unknowns, when
the adaptive filter starts its operation, are a set of parameters that are to be determined by
the adaptive algorithm using signal measurements. Clearly, unreliable a priori information
and/or incorrect assumptions about the SOE can lead to serious performance degradations
or even unsuccessful adaptive filter applications.

If the characteristics of the relevant signals are constant, the goal of the adaptive filter
is to find the parameters that give the best performance and then to stop the adjustment.
However, when the characteristics of the relevant signals change with time, the adaptive
filter should first find and then continuously readjust its parameters to track these changes.

A very influential factor in the design of adaptive algorithms is the availability of a
desired response signal. We have seen that for certain applications, the desired response
may not be available for use by the adaptive filter. In this book we focus on supervised
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adaptive filters that require the use of a desired response signal and we simply call them
adaptive filters (Chapter 10). Unsupervised adaptive filters are discussed in Chapter 12.

Suppose now that the relevant signals can be modeled by stochastic processes with
known statistical properties. If we adopt the minimum mean square error as a criterion
of performance, we can design, at least in principle, an optimum filter that provides the
ultimate solution. From a theoretical point of view, the goal of the adaptive filter is to
replicate the performance of the optimum filter without the benefit of knowing and using
the exact statistical properties of the relevant signals. In this sense, the theory of optimum
filters (see Chapters 6 and 7) is a prerequisite for the understanding, design, performance
evaluation, and successful application of adaptive filters.

1.5 ARRAY PROCESSING

Array processing deals with techniques for the analysis and processing of signals collected
by a group of sensors. The collection of sensors makes up the array, and the manner in which
the signals from the sensors are combined and handled constitutes the processing.The type of
processing is dictated by the needs of the particular application. Array processing has found
widespread application in a large number of areas, including radar, sonar, communications,
seismology, geophysical prospecting for oil and natural gas, diagnostic ultrasound, and
multichannel audio systems.

1.5.1 Spatial Filtering or Beamforming

Generally, an array receives spatially propagating signals and processes them to emphasize
signals arriving from a certain direction; that is, it acts as a spatially discriminating filter.
This spatial filtering operation is known as beamforming, because essentially it emulates
the function of a mechanically steered antenna. An array processor steers a beam to a
particular direction by computing a properly weighted sum of the individual sensor signals.
An example of the spatial response of the beamformer, known as the beampattern, is shown
in Figure 1.23. The beamformer emphasizes signals in the direction to which it is steered
while attenuating signals from other directions.

…

c1
*

*c2

cM

x1(n)

*xM(n)

x2(n)

FIGURE 1.23
Example of the spatial response of an array, known as a beampattern, that
emphasizes signals from a direction of interest, known as the look direction.

In the case of an array with sensors equally spaced on a line, known as a uniform
linear array (ULA), there is a direct analogy between beamforming and the frequency-
selective filtering of a discrete-time signal using a finite impulse response (FIR) filter. This
analogy between a beamformer and an FIR filter is illustrated in Figure 1.24. The array of
sensors spatially samples the impinging waves so that in the case of a ULA, the sampling
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FIGURE 1.24
Analogy between beamforming and frequency-selective FIR filtering.
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FIGURE 1.25
Wave impinging on a uniform
linear array with element
spacing d.

is performed at equal spatial increments. By contrast, an FIR filter uses a uniformly time-
sampled signal as its input. Consider a plane wave impinging on an array as in Figure 1.25.
The spatial signal arrives at each sensor with a delay determined by the angle of arrival
φ. In the case of a narrowband signal, this delay corresponds to an equal phase shift from
sensor to sensor that results in a spatial frequency across the ULA of

u = d

λ
sin φ (1.5.1)

where λ is the wavelength of the signal and d is the uniform spacing of the sensors. This
spatial frequency is analogous to the temporal frequency encountered in discrete-time sig-
nals. In the beamforming operation, the sensor signals are combined with weights on each
of the sensor signals just as an FIR filter produces an output that is the weighted sum of
time samples. As a frequency-selective FIR filter extracts signals at a frequency of interest,
a beamformer seeks to emphasize signals with a certain spatial frequency (i.e., signals ar-
riving from a particular angle). Thus, it is often beneficial to view a beamformer as a spatial
frequency-selective filter.

Many times an array must contend with undesired signals arriving from other directions,
which may prevent it from successfully extracting the signal of interest for which it was
designed. In this case, the array must adjust its response to the data it receives to reject signals
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from these other directions. The resulting array is an adaptive array as the beamforming
weights are automatically determined by the array during its normal operation without
the intervention of the designer. Drawing on the frequency-selective FIR filter comparison
again, we see that an adaptive array is analogous to an adaptive FIR filter that adjusts its
weights to pass signals at the desired frequency or signals with certain statistical properties
while rejecting any signals that do not satisfy these requirements.Again, if we can model the
SOE, using stationary processes with known statistical properties, we can design an optimum
beamformer that minimizes or maximizes a certain criterion of performance. The optimum
beamformer can be used to provide guidelines for the design of adaptive beamformers and
used as a yardstick for their performance evaluation. The analysis, design, and performance
evaluation of fixed, optimum, and adaptive beamformers are discussed in Chapter 11.

1.5.2 Adaptive Interference Mitigation in Radar Systems

The goal of an airborne surveillance radar system is to determine the presence of target
signals. These targets can be either airborne or found on the ground below. Typical targets
of interest are other aircraft, ground moving vehicles, or hostile missiles. The desired in-
formation from these targets is their relative distance from our airborne platform, known as
the range, their angle with respect to the platform, and their relative speed. The processing
of the radar consists of the following sequence:

• Filter out undesired signals through adaptive processing.
• Determine the presence of targets, a process known as detection.
• Estimate the parameters of all detected targets.

To sense these targets, the radar system transmits energy in the direction it is searching
for targets. The transmitted energy propagates from the airborne radar to the target that
reflects the radar signal. The reflection then propagates from the target back to the radar.
Since the radar signal travels at the speed of light (3×108 m/s), the round-trip delay between
transmission and reception of this signal determines the range of the target. The received
signal is known as the return. The angle of the target is determined through the use of
beamforming or spatial filtering using an array of sensor elements. To this end, the radar
forms a bank of spatial filters evenly spaced in angle and determines which filter contains the
target. For example, we might be interested in the angular sector between −1◦ ≤ φ ≤ 1◦.
Then we might set up a bank of beamformers in this angular region with a spacing of
0.5◦. If these spatial filters perform this operation nonadaptively, it is often referred to as
conventional beamforming.

The detection of target signals is inhibited by the presence of other undesired signals
known as interference. Two common types of interference are the reflections of the radar
signal from the ground, known as clutter, and other transmitted energy at the same operating
frequency as the radar, referred to as jamming. Jamming can be the hostile transmission of
energy to prevent us from detecting certain signals, or it may be incidental, for example,
from another radar. Such an interference scenario for an airborne surveillance radar is
depicted in Figure 1.26. The interference signals are typically much larger than the target
return. Thus, when a nonadaptive beamformer is used, interference leaks in through the
sidelobes of the beamformer and prevents us from detecting the target. However, we can
adjust the beamformer weights such that signals from the directions of the interference are
rejected while other directions are searched for targets. If the weights are adapted to the
received data in this way, then the array is known as an adaptive array and the operation
is called adaptive beamforming. The use of an adaptive beamformer is also illustrated in
Figure 1.26. We show the spatial response or beampattern of the adaptive array. Note that
the peak gain of the beamformer is in the direction of the target. On the other hand, the
clutter and jamming are rejected by placing nulls in the beampattern.
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FIGURE 1.26
Example of adaptive beamformer used with an airborne
surveillance radar for interference mitigation.

In practice, we do not know the directions of the interferers. Therefore, we need an
adaptive beamformer that can determine its weights by estimating the statistics of the
interference environment. If we can model the SOE using stochastic processes with known
statistical properties, we can design an optimum beamformer that provides the ultimate
performance. The discussion about adaptive filters in Section 1.4.2 applies to adaptive
beamformers as well.

Once we have determined the presence of the target signal, we want to get a better idea
of the exact angle it was received from. Recall that the beamformers have angles associated
with them, so the angle of the beamformer in which the target was detected can serve as a
rough estimate of the angle of the target. The coarseness of our initial estimate is governed
by the spacing in angle of the filter bank of beamformers, for example, 1◦. This resolution
in angle of the beamformer is often called a beamwidth. To get a better estimate, we can use
a variety of angle estimation methods. If the angle estimate can refine the accuracy down
to one-tenth of a beamwidth, for example, 0.1◦, then the angle estimator is said to achieve
10 :1 beamsplitting. Achieving an angle accuracy better than the array beamwidth is often
called superresolution.

1.5.3 Adaptive Sidelobe Canceler

Consider the scenario in Figure 1.26 from the adaptive beamforming example for interfer-
ence mitigation in a radar system. However, instead of an array of sensors, consider a fixed
(i.e., nonadaptive) channel that has high gain in the direction of the target. This response
may have been the result of a highly directive dish antenna or a nonadaptive beamformer.
Sometimes it is necessary to perform beamforming nonadaptively to limit the number of
channels. One such case arises for very large arrays for which it is impractical to form chan-
nels by digitally sampling every element. The array is partitioned into subarrays that all
form nonadaptive beams in the same direction. Then the subarray outputs form the spatial
channels that are sampled. Each channel is highly directive, though with a lower resolution
than the entire array. In the case of interference, it is then present in all these subarray chan-
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nels and must be removed in some way. To restore its performance to the interference-free
case, the radar system must employ a spatially adaptive method that removes the interfer-
ence in the main channel. The sidelobe canceler is one such method and is illustrated in
Figure 1.27.

Σ
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FIGURE 1.27
Sidelobe canceler with a highly directive main channel and auxiliary
channels.

Note that the signal of interest is received from a particular direction in which we assume
the main channel has a large gain. On the other hand, the jamming signal is received from
another direction, and since it has much higher power than the attenuation of the antenna
sidelobes, the jamming interference obscures the signals of interest. This high-gain channel
is known as the main channel that contains both the signal of interest and the jamming
interference. The sidelobe canceler uses one or more auxiliary channels in order to cancel
the main-channel interference. These auxiliary channels typically have much lower gain in
the direction in which the main channel is directed so that they contain only the interference.
The signal of interest is weak enough that it is below the thermal noise floor in these
auxiliary channels. Examples of these auxiliary channels would be omnidirectional sensors
or even directive sensors pointed in the direction of the interference. Note that for very
strong signals, the signal of interest may be present in the auxiliary channel, in which case
signal cancelation can occur. Clearly, this application belongs to the class of multisensor
interference cancelation shown in Figure 1.15.

The sidelobe canceler uses the auxiliary channels to form an estimate of the interference
in the main channel. The estimate is computed by weighting the auxiliary channel in an
adaptive manner dependent on the cross-correlation between the auxiliary channels and
the main channel. The estimate of the main-channel interference is subtracted from the
main channel. The result is an overall antenna response with a spatial null directed at the
interference source while maintaining high gain in the direction of interest. Clearly, if we had
sufficient a priori information, the problem could be solved by designing a fixed canceler.
However, the lack of a priori information and the changing properties of the environment
make an adaptive canceler the only viable solution.

1.6 ORGANIZATION OF THE BOOK

In this section we provide an overview of the main topics covered in the book so as to help
the reader navigate through the material and understand the interdependence among the
various chapters (see Figure 1.28).
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FIGURE 1.28
Flowchart organization of the book’s chapters.

In Chapter 2, we review the fundamental topics in discrete-time signal processing that
can be used for both deterministic and random signals. Chapter 3 provides a concise review
of the theory of random variables and random sequences and elaborates on certain topics
that are crucial to developments in subsequent chapters. Reading these chapters is essential
to familiarize the reader with notation and properties that are repeatedly used throughout the
rest of the book. Chapter 5 presents the most practical methods for nonparametric estimation
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of correlation and spectral densities. The use of these techniques for exploratory investi-
gation of the relevant signal characteristics before performing any modeling or adaptive
filtering is invaluable.

Chapters 4 and 6 provide a detailed study of the theoretical properties of signal models
and optimum filters, assuming that the relevant signals can be modeled by stochastic pro-
cesses with known statistical properties. In Chapter 7, we develop algorithms and structures
for optimum filtering and signal modeling and prediction.

Chapter 8 introduces the general method of least squares and shows how to use it for
the design of filters and predictors from actual signal observations. The statistical properties
and the numerical computation of least-squares estimates are also discussed in detail.

Chapters 9, 10, and 11 use the theoretical work in Chapters 4, 6, and 7 and the prac-
tical methods in Chapter 8 to develop, evaluate, and apply practical techniques for signal
modeling, adaptive filtering, and array processing. Finally, Chapter 12 illustrates the use
of higher-order statistics, presents the basic ideas of blind deconvolution and equalization,
and concludes with a concise introduction to fractional and random fractal signal models.
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CHAPTER 2

Fundamentals of Discrete-Time
Signal Processing

In many disciplines, signal processing applications nowadays are almost always imple-
mented using digital hardware operating on digital signals. The basic foundation of this
modern approach is based on discrete-time system theory. This book also deals with statis-
tical analysis and processing of discrete-time signals, and modeling of discrete-time sys-
tems. Therefore, the purpose of this chapter is to focus attention on some important issues
of discrete-time signal processing that are of fundamental importance to signal processing,
in general, and to this book, in particular. The intent of this chapter is not to teach topics in
elementary digital signal processing but to review material that will be used throughout this
book and to establish a consistent notation for it. There are several textbooks on these topics,
and it is assumed that the reader is familiar with the theory of digital signal processing as
found in Oppenheim and Schafer (1989); Proakis and Manolakis (1996).

We begin this chapter with a description and classification of signals in Section 2.1.
Representation of deterministic signals from the frequency-domain viewpoint is presented
in Section 2.2. In Section 2.3, discrete-time systems are defined, but the treatment is focused
on linear, time-invariant (LTI ) systems, which are easier to deal with mathematically and
hence are widely used in practice. Section 2.4 on minimum-phase systems and system
invertibility is an important section in this chapter that should be reviewed prior to studying
the rest of the book. The last section, Section 2.5, is devoted to lattice and lattice/ladder
structures for discrete-time systems (or filters). A brief summary of the topics discussed in
this chapter is provided in Section 2.6.

2.1 DISCRETE-TIME SIGNALS

The physical world is replete with signals, that is, physical quantities that change as a
function of time, space, or some other independent variable. Although the physical nature
of signals arising in various applications may be quite different, there are signals that
have some basic features in common. These attributes make it possible to classify signals
into families to facilitate their analysis. On the other hand, the mathematical description
and analysis of signals require mathematical signal models that allow us to choose the
appropriate mathematical approach for analysis. Signal characteristics and the classification
of signals based upon either such characteristics or the associated mathematical models are
the subject of this section.
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2.1.1 Continuous-Time, Discrete-Time, and Digital Signals

If we assume that to every set of assigned values of independent variables there corresponds
a unique value of the physical quantity (dependent variable), then every signal can be
viewed as a function. The dependent variable may be real, in which case we have a real-
valued signal; or it may be complex, and then we talk about a complex-valued signal. The
independent variables are always real.

Any signal whose samples are a single-valued function of one independent variable is
referred to as a scalar one-dimensional signal. We will refer to it simply as a signal. These
signals involve one dependent variable and one independent variable and are the signals
that we mainly deal with in this book. The speech signal shown in Figure 1.1 provides a
typical example of a scalar signal.

Let us now look at both the dependent and independent variables of a signal from a
different perspective. Every signal variable may take on values from either a continuous set
of values (continuous variable) or a discrete set of values (discrete variable). Signals whose
dependent and independent variables are continuous are usually referred to as continuous-
time signals, and we will denote these signals by the subscript c, such as xc(t). In contrast,
signals where both the dependent and the independent variables are discrete are called
digital signals. If only the independent variables are specified to be discrete, then we have
a discrete signal. We note that a discrete signal is defined only at discrete values of the
independent variables, but it may take on any value. Clearly, digital signals are a subset of
the set of discrete signals.

In this book, we mainly deal with scalar discrete signals in which the independent
variable is time. We refer to them as discrete-time signals. Such signals usually arise in
practice when we sample continuous-time signals, that is, when we select values at discrete-
time instances. In all practical applications, the values of a discrete-time signal can only
be described by binary numbers with a finite number of bits. Hence, only a discrete set of
values is possible; strictly speaking, this means that, in practice, we deal with only digital
signals. Clearly, digital signals are the only signals amenable to direct digital computation.
Any other signal has to be first converted to digital form before numerical processing is
possible.

Because the discrete nature of the dependent variable complicates the analysis, the usual
practice is to deal with discrete-time signals and then to consider the effects of the discrete
amplitude as a separate issue. Obviously, these effects can be reduced to any desirable level
by accordingly increasing the number of bits (or word length) in the involved numerical
processing operations. Hence, in the remainder of the book, we limit our attention to discrete-
time signals.

2.1.2 Mathematical Description of Signals

The mathematical analysis of a signal requires the availability of a mathematical description
for the signal itself. The type of description, usually referred to as a signal model, determines
the most appropriate mathematical approach for the analysis of the signal. We use the term
signal to refer to either the signal itself or its mathematical description, that is, the signal
model. The exact meaning will be apparent from the context. Clearly, this distinction is
necessary if a signal can be described by more than one model. We start with the most
important classification of signal models as either deterministic or random.

Deterministic signals

Any signal that can be described by an explicit mathematical relationship is called
deterministic. In the case of continuous-time signals, this relationship is a given function
of time, for example, xc(t) = A cos (2πF0t + θ),−∞ < t <∞. For discrete-time signals
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that, mathematically speaking, are sequences of numbers, this relationship may be either a
functional expression, for example, x(n) = an,−∞ < n <∞, or a table of values.

In general, we use the notation x(n) to denote the sequence of numbers that represent
a discrete-time signal. Furthermore, we use the term nth sample to refer to the value of this
sequence for a specific value of n. Strictly speaking, the terminology is correct only if the
discrete-time signal has been obtained by sampling a continuous-time signal xc(t). In the
case of periodic sampling with sampling periodT , we have x(n) = xc(nT ),−∞ < n <∞;
that is, x(n) is the nth sample of xc(t). Sometimes, just for convenience, we may plot xc(t)

even if we deal with the signal x(n). Finally, we note that sometimes it is convenient to
form and manipulate complex-valued signals using a pair of real-valued signals as the real
and imaginary components.

Basic signals. There are some basic discrete-time signals that we will repeatedly use
throughout this book:

• The unit sample or unit impulse sequence δ(n), defined as

δ(n) =
{

1 n = 0

0 n �= 0
(2.1.1)

• The unit step sequence u(n), defined as

u(n) =
{

1 n ≥ 0

0 n < 0
(2.1.2)

• The exponential sequence of the form

x(n) = an −∞ < n <∞ (2.1.3)

If a is a complex number, that is, a = rejω0 , r > 0, ω �= 0, π , then x(n) is complex-
valued, that is,

x(n) = rnejω0n = xR(n)+ jxI(n) (2.1.4)

xR(n) = rn cosω0n and xI(n) = rn sinω0n (2.1.5)where

are the real and imaginary parts of x(n), respectively. The complex exponential signal
x(n) and the real sinusoidal signals xR(n) and xI(n), which have a decaying (growing)
envelope if r < 1(r > 1), are very useful in the analysis of discrete-time signals and
systems.

Signal classification. Deterministic signals can be classified as energy or power, peri-
odic or aperiodic, of finite or infinite duration, causal or noncausal, and even or odd signals.
Although we next discuss these concepts for discrete-time signals, a similar discussion
applies to continuous-time signals as well.

• The total energy or simply the energy of a signal x(n) is given by

Ex =
∞∑

n=−∞
|x(n)|2 ≥ 0 (2.1.6)

The energy is zero if and only if x(n) = 0 for all n. The average power or simply the
power of a signal x(n) is defined as

Px = lim
N→∞

1

2N + 1

N∑
n=−N

|x(n)|2 ≥ 0 (2.1.7)

A signal with finite energy, that is, 0 < Ex < ∞, is called an energy signal. Signals
with finite power, that is, 0 < Px <∞, are referred to as power signals. Clearly, energy
signals have zero power, and power signals have infinite energy.
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• A discrete-time signal x(n) is called periodic with fundamental period N if x(n+N) =
x(n) for all n. Otherwise it is called aperiodic. It can be seen that the complex exponential
in (2.1.4) is periodic if and only ifω0/(2π) = k/N , that is, ifω0/(2π) is a rational number.
Clearly, a periodic signal is a power signal with power P given by

Px = 1

N

N−1∑
n=0

|x(n)|2 (2.1.8)

• We say that a signal x(n) has finite duration if x(n) = 0 for n < N1 and n > N2, where
N1 and N2 are finite integer numbers with N1 ≤ N2. If N1 = −∞ and/or N2 = ∞, the
signal x(n) has infinite duration.

• A signal x(n) is said to be causal if x(n) = 0 for n < 0. Otherwise, it is called noncausal.
• Finally, a real-valued signal x(n) is called even if x(−n) = x(n) and odd if x(−n) =
−x(n).

Other classifications for deterministic signals will be introduced in subsequent sections.

Random signals

In contrast to the deterministic signals discussed so far, there are many other signals
in practice that cannot be described to any reasonable accuracy by explicit mathematical
relationships. The lack of such an explicit relationship implies that the signal evolves in
time in an unpredictable manner from the point of view of the observer. Such signals are
called random. The output of a noise generator, the height of waves in a stormy sea, and the
acoustic pressures generated by air rushing through the human vocal tract are examples of
random signals. At this point one could say that complete knowledge of the physics of the
signal could provide an explicit mathematical relationship, at least within the limits of the
uncertainty principle. However, such relationships are typically too complex to be of any
practical use.

In general, although random signals are evolving in time in an unpredictable manner,
their average properties can often be assumed to be deterministic; that is, they can be
specified by explicit mathematical formulas. This concept is key to the modeling of a
random signal as a stochastic process.

Thus, random signals are mathematically described by stochastic processes and can be
analyzed by using statistical methods instead of explicit equations.The theory of probability,
random variables, and stochastic processes provides the mathematical framework for the
theoretical study of random signals.

2.1.3 Real-World Signals

The classification of various physical data as being either deterministic or random might
be debated in many cases. For example, it might be argued that no physical data in practice
can be truly deterministic since there is always a possibility that some unforeseen event in
the future might influence the phenomenon producing the data in a manner that was not
originally considered. On the other hand, it might be argued that no physical data are truly
random since exact mathematical descriptions might be possible if sufficient knowledge
of the basic mechanisms of the phenomenon producing the data were known. In practical
terms, the decision as to whether physical data are deterministic or random is usually
based upon the ability to reproduce the data by controlled experiments. If an experiment
producing specific data of interest can be repeated many times with identical results (within
the limits of experimental error), then the data can generally be considered deterministic. If
an experiment cannot be designed that will produce identical results when the experiment
is repeated, then the data must usually be considered random in nature.
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2.2 TRANSFORM-DOMAIN REPRESENTATION
OF DETERMINISTIC SIGNALS

In the deterministic signal model, signals are assumed to be explicitly known for all time
from −∞ to +∞. In this sense, no uncertainty exists regarding their past, present, or
future amplitude values. The simplest description of any signal is an amplitude-versus-time
plot. This “time history” of the signal is very useful for visual analysis because it helps
in the identification of specific patterns, which can subsequently be used to extract useful
information from the signal. However, quite often, information present in a signal becomes
more evident by transformation of the signal into another domain. In this section, we review
some transforms for the representation and analysis of discrete-time signals.

2.2.1 Fourier Transforms and Fourier Series

Frequency analysis is, roughly speaking, the process of decomposing a signal into fre-
quency components, that is, complex exponential signals or sinusoidal signals. Although
the physical meaning of frequency analysis is almost the same for any signal, the appro-
priate mathematical tools depend upon the type of signal under consideration. The two
characteristics that specify the frequency analysis tools for deterministic signals are

• The nature of time: continuous-time or discrete-time signals.
• The existence of harmony: periodic or aperiodic signals.

Thus, we have the following four types of frequency analysis tools.

Fourier series for continuous-time periodic signals

If a continuous-time signal xc(t) is periodic with fundamental period Tp, it can be
expressed as a linear combination of harmonically related complex exponentials

xc(t) =
∞∑

k=−∞
X̌c(k)e

j2πkF0t (2.2.1)

where F0 = 1/Tp is the fundamental frequency, and

X̌c(k) = 1

Tp

∫ Tp

0
xc(t)e

−j2πkF0t dt (2.2.2)

which are termed the Fourier coefficients,
†

or the spectrum of xc(t).
It can be shown that the power of the signal xc(t) is given by Parseval’s relation

Px = 1

Tp

∫ Tp

0
|xc(t)|2 dt =

∞∑
k=−∞

∣∣∣X̌c(k)

∣∣∣2
(2.2.3)

Since |X̌c(k)|2 represents the power in the kth frequency component, the sequence |X̌c(k)|2,
−∞ < k <∞, is called the power spectrum of xc(t) and shows the distribution of power
within various frequency components. Since the power of xc(t) is confined to the discrete
frequencies 0,±F0,±2F0, . . . , we say that xc(t) has a line or discrete spectrum.

Fourier transform for continuous-time aperiodic signals

The frequency analysis of a continuous-time, aperiodic signal can be done by using the
Fourier transform

Xc(F ) =
∫ ∞
−∞

xc(t)e
−j2πF t dt (2.2.4)

†
We use the notation X̌c(k) instead of Xc(k) to distinguish it from the Fourier transform Xc(F ) introduced in

(2.2.4).
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which exists if xc(t) satisfies the Dirichlet conditions, which require that xc(t): (1) have a
finite number of maxima or minima within any finite interval, (2) have a finite number of
discontinuities within any finite interval, and (3) be absolutely integrable, that is,∫ ∞

−∞
|xc(t)| dt <∞ (2.2.5)

The signal xc(t) can be synthesized from its spectrumXc(F ) by using the following inverse
Fourier transform formula

xc(t) =
∫ ∞
−∞

Xc(F )e
j2πF t dF (2.2.6)

The energy of xc(t) can be computed in either the time or frequency domain using
Parseval’s relation

Ex =
∫ ∞
−∞
|xc(t)|2 dt =

∫ ∞
−∞
|Xc(F )|2 dF (2.2.7)

The function |Xc(F )|2 ≥ 0 shows the distribution of energy of xc(t) as a function of
frequency. Hence, it is called the energy spectrum of xc(t). We note that continuous-time,
aperiodic signals have continuous spectra.

Fourier series for discrete-time periodic signals

Any discrete-time periodic signal x(n) with fundamental period N can be expressed
by the following Fourier series

x(n) =
N−1∑
k=0

Xke
j (2π/N)kn (2.2.8)

Xk = 1

N

N−1∑
n=0

x(n)e−j (2π/N)kn (2.2.9)where

are the corresponding Fourier coefficients. The basis sequences sk(n) � ej (2π/N)kn are
periodic with fundamental periodN in both time and frequency, that is, sk(n+N) = sk(n)
and sk+N(n) = sk(n).

The sequence Xk, k = 0,±1,±2, . . . , is called the spectrum of the periodic signal
x(n). We note that Xk+N = Xk; that is, the spectrum of a discrete-time periodic signal is
discrete and periodic with the same period.

The power of the periodic signal x(n) can be determined by Parseval’s relation

Px = 1

N

N−1∑
n=0

|x(n)|2 =
N−1∑
k=0

|Xk|2 (2.2.10)

The sequence |Xk|2 is known as the power spectrum of the periodic sequence x(n).

Fourier transform for discrete-time aperiodic signals

Any discrete-time signal that is absolutely summable, that is,
∞∑

n=−∞
|x(n)| <∞ (2.2.11)

can be described by the discrete-time Fourier transform (DTFT)

X(ejω) � F[x(n)] =
∞∑

n=−∞
x(n)e−jωn (2.2.12)

where ω = 2πf is the frequency variable in radians per sampling interval or simply in
radians per sample and f is the frequency variable in cycles per sampling interval or simply
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in cycles per sample. The signal x(n) can be synthesized from its spectrum X(ejω) by the
inverse Fourier transform

x(n) = 1

2π

∫ π

−π
X(ejω)ejωn dω (2.2.13)

We will say that x(n) and X(ejω) form a Fourier transform pair denoted by

x(n)
F←→ X(ejω) (2.2.14)

The function X(ejω) is periodic with fundamental period 2π . If x(n) is real-valued, then
|X(ejω)| = |X(e−jω)| (even function) and �X(e−jω) = −�X(ejω) (odd function).

The energy of the signal can be computed in either the time or frequency domain using
Parseval’s relation

Ex =
∞∑

n=−∞
|x(n)|2 = 1

2π

∫ π

−π
|X(ejω)|2 dω (2.2.15)

=
∫ π

−π
|X(ejω)|2

2π
dω (2.2.16)

The function |X(ejω)|2/(2π) ≥ 0 and describes the distribution of the energy of the signal
at various frequencies. Therefore, it is called the energy spectrum of x(n).

Spectral classification of deterministic signals

So far we have discussed frequency analysis methods for periodic power signals and
aperiodic energy signals. However, there are deterministic aperiodic signals with finite
power. One such class of signals is the complex exponential Aej(ω0n+θ0) sequence [or
equivalently, the sinusoidal sequenceA cos (ω0n+ θ0)], in which ω0/(2π) is not a rational
number. This sequence is not periodic, as discussed in Section 2.1.2; however it has a line
spectrum at ω = ω0 + 2πk, for any integer k, since

x(n) = Aej(ω0n+θ0) = Aej [(ω0+2πk)n+θ0] k = 0,±1,±2, . . .

(or at ω = ±ω0 + 2πk for the sinusoidal sequence). Hence such sequences are termed as
almost periodic and can be treated in the frequency domain in almost the same fashion.

Another interesting class of aperiodic power signals is those consisting of a linear
combination of complex exponentials with nonharmonically related frequencies {ωl}Ll=1,
for example,

x(n) =
L∑
l=1

Xle
jωln (2.2.17)

Clearly, these signals have discrete (or line) spectra, but the lines are not uniformly dis-
tributed on the frequency axis. Furthermore, the distances between the various lines are not
harmonically related. We will say that these signals have discrete nonharmonic spectra.
Note that periodic signals have discrete harmonic spectra.

There is yet another class of power signals, for example, the unit-step signal u(n)
defined in (2.1.2). The Fourier transform of such signals exists only in the context of the
theory of generalized functions, which allows the use of impulse functions in the frequency
domain (Papoulis 1977); for example, the Fourier transform of the unit step u(n) is given
by

F[u(n)] = 1

1− e−jω +
∞∑

k=−∞
πδ(ω − 2πk) (2.2.18)

Such signals have mixed spectra. The use of impulses also implies that the line spectrum
can be represented in the frequency domain as a continuous spectrum by an impulse train.
Figure 2.1 provides a classification of deterministic signals (with finite power or energy) in
the frequency domain.
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FIGURE 2.1
Spectral classification of deterministic (finite power or energy) signals.

2.2.2 Sampling of Continuous-Time Signals

In most practical applications, discrete-time signals are obtained by sampling continuous-
time signals periodically in time. If xc(t) is a continuous-time signal, the discrete-time
signal x(n) obtained by periodic sampling is given by

x(n) = xc(nT ) −∞ < n <∞ (2.2.19)

where T is the sampling period. The quantity Fs = 1/T , the number of samples taken per
unit of time, is called the sampling rate or sampling frequency.

Since (2.2.19) established a relationship between the signals xc(t) and x(n), there
should be a corresponding relation between the spectra

Xc(F ) =
∫ ∞
−∞

xc(t)e
−j2πF t dt (2.2.20)

X(ejω) =
∞∑

n=−∞
x(n)e−jωn (2.2.21)and

of these signals.
To establish a relationship between Xc(F ) and X(ejω), first we need to find a relation

between the frequency variables F and ω. To this end, we note that periodic sampling
imposes a relationship between t and n, namely, t = nT = n/Fs. Substituting t = n/Fs
into (2.2.20) and comparing with the exponentials in (2.2.20) and (2.2.21), we see that

2π
F

Fs
= ω = 2πf or f = F

Fs
(2.2.22)

Since f appears to be a ratio frequency, it is also called a relative frequency. The term
normalized frequency is also sometimes used for the discrete-time frequency variable f .
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It can be shown (Proakis and Manolakis 1996; Oppenheim and Schafer 1989) that the
spectra Xc(F ) of the continuous-time signal and X(ejω) of the discrete-time signal are
related by

X(ej2πF/Fs) = Fs

∞∑
k=−∞

Xc(F − kFs) (2.2.23)

The right-hand side of (2.2.23) consists of a periodic repetition of the scaled continuous-time
spectrumFsXc(F )with periodFs. This periodicity is necessary because the spectrum of any
discrete-time signal has to be periodic. To see the implications of (2.2.23), let us assume that
Xc(F ) is band-limited, that is, Xc(F ) = 0 for |F | > B, as shown in Figure 2.2. According
to (2.2.23), the spectrum X(F) is the superposition of an infinite number of replications
of Xc(F ) at integer multiples of the sampling frequency Fs. Figure 2.2(b) illustrates the
situation whenFs ≥ 2B, whereas Figure 2.2(c) shows what happens ifFs < 2B. In the latter
case, high-frequency components take on the identity of lower frequencies, a phenomenon
known as aliasing. Obviously, aliasing can be avoided only if the sampled continuous-

t0

x tc( )
1

X Fc( )

A

B−B F

(a) Continuous-time Fourier transform: Equation (2.2.20).

(b) Discrete-time Fourier transform: Fs > 2B.

(c) Discrete-time Fourier transform: Fs < 2B.

x n(  )

1

0−5 5 n

F Bs > 2

0 Fs−Fs −B B

AFs

X e( )j F F2 /p s

F

0

x n(  )

0

1−1−2 2

n

Fs < 2B

Fs−Fs −B B

AFs
X e ( )j F F2 /p s

F0

Sample

FIGURE 2.2
Sampling operation.
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time signal is band-limited and the sampling frequency Fs is equal to at least twice the
bandwidth (Fs ≥ 2B). This leads to the well-known sampling theorem, which can be stated
as follows:

SAMPLING THEOREM. A band-imited, real-valued, continuous-time signal with bandwidth B
can be uniquely recovered from its samples, provided that the sampling rate Fs is at least equal
to twice the bandwidth, that is, provided that Fs ≥ 2B.

If the conditions of the sampling theorem are fulfilled, that is, ifXc(F ) = 0 for |F | > B

and Fs ≥ 2B, then the signal xc(t) can be recovered from its samples x(n) = xc(nT ) by
using the following interpolation formula

xc(t) =
∞∑

n=−∞
xc(nT )

sin [(π/T )(t − nT )]
(π/T )(t − nT ) (2.2.24)

The minimum sampling rate of Fs = 2B is called the Nyquist rate. In practice, the infi-
nite summation in (2.2.24) has to be substituted by a finite one. Hence, only approximate
reconstruction is possible.

2.2.3 The Discrete Fourier Transform

TheN -point discrete Fourier transform (DFT) of anN -point sequence {x(n), n = 0, 1, . . . ,
N − 1} is defined by

†

X̃(k) =
N−1∑
n=0

x(n)e−j (2π/N)kn k = 0, 1, . . . , N − 1 (2.2.25)

The N -point sequence {x(n), n = 0, 1, . . . , N − 1} can be recovered from its DFT coeffi-
cients {X̃(k), k = 0, 1, . . . , N − 1} by the following inverse DFT formula:

x(n) = 1

N

N−1∑
k=0

X̃(k)ej (2π/N)kn n = 0, 1, . . . , N − 1 (2.2.26)

We note that by its definition, theN -point DFT requires or provides information only for
N samples of a discrete-time signal. Hence, it does not provide a frequency decomposition of
the signal because any discrete-time signal must be specified for all discrete-time instances,
−∞ < n < ∞. The use of DFT for frequency analysis depends on the signal values
outside the interval 0 ≤ n ≤ N − 1. Depending on these values, we can obtain various
interpretations of the DFT. The value of the DFT lies exactly in these interpretations.

DFT of finite-duration signals. Let x(n) be a finite-duration signal with nonzero val-
ues over the range 0 ≤ n ≤ N − 1 and zero values elsewhere. If we evaluate X(ejω) at N
equidistant frequencies, say, ωk = (2π/N)k, 0 ≤ k ≤ N − 1, we obtain

X(ejωk ) = X(ej2πk/N) =
N−1∑
n=0

x(n)e−j (2π/N)kn = X̃(k) (2.2.27)

which follows by comparing the last equation with (2.2.25). This implies that the N -point
DFT of a finite-duration signal with lengthN is equal to the Fourier transform of the signal
at frequencies ωk = (2π/N)k, 0 ≤ k ≤ N − 1. Hence, in this case, the N -point DFT
corresponds to the uniform sampling of the Fourier transform of a discrete-time signal at
N equidistant points, that is, sampling in the frequency domain.

†
In many traditional textbooks, the DFT is denoted byX(k). We will use the notation X̃(k) to distinguish the DFT

from the DTFT X(ejω) function or its samples.
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DFT of periodic signals. Suppose now that x(n) is a periodic sequence with funda-
mental period N . This sequence can be decomposed into frequency components by using
the Fourier series in (2.2.8) and (2.2.9). Comparison of (2.2.26) with (2.2.8) shows that

X̃(k) = NXk k = 0, 1, . . . , N − 1 (2.2.28)

that is, the DFT of one period of a periodic signal is given by the Fourier series coefficients
of the signal scaled by the fundamental period. Obviously, computing the DFT of a fraction
of a period will lead to DFT coefficients that are not related to the Fourier series coefficients
of the periodic signal.

The DFT can be efficiently computed by using a family of fast algorithms, referred to
as fast Fourier transform (FFT) algorithms, with complexity proportional toN log2N . Due
to the efficiency offered by these algorithms, the DFT is widely used for the computation
of spectra, correlations, and convolutions and for the implementation of digital filters.

2.2.4 The z-Transform

The z-transform of a sequence is a very powerful tool for the analysis of linear and time-
invariant systems. It is defined by the following pair of equations:

X(z) � Z[x(n)] =
∞∑

n=−∞
x(n)z−n (2.2.29)

x(n) = 1

2πj

∮
C

X(z)zn−1 dz (2.2.30)

Equation (2.2.29) is known as the direct transform, whereas equation (2.2.30) is referred
to as the inverse transform. The set of values of z for which the power series in (2.2.29)
converges is called the region of convergence (ROC) of X(z). A sufficient condition for
convergence is

∞∑
n=−∞

|x(n)||z−n| <∞ (2.2.31)

In general, the ROC is a ring in the complex plane; that is, R1 < |z| < R2. The values
of R1 and R2 depend on the nature of the signal x(n). For finite-duration signals, X(z) is a
polynomial in z−1, and the ROC is the entire z-plane with a possible exclusion of the points
z = 0 and/or z = ±∞. For causal signals with infinite duration, the ROC is, in general,
R1 < |z| <∞, that is, the exterior of a circle. For anticausal signals [x(n) = 0, n > 0], the
ROC is the interior of a circle, that is, 0 < |z| < R2. For two-sided infinite-duration signals,
the ROC is, in general, a ring R1 < |z| < R2. The contour of integration in the inverse
transform in (2.2.30) can be any counterclockwise closed path that encloses the origin and
is inside the ROC.

If we compute the z-transform on the unit circle of the z-plane, that is, if we set z = ejω
in (2.2.29) and (2.2.30), we obtain

X(z)|z=ejω = X(ejω) =
∞∑

n=−∞
x(n)e−jωn (2.2.32)

x(n) = 1

2π

∫ π

−π
X(ejω)ejωn dω (2.2.33)

which are the Fourier transform and inverse Fourier transform relating the signals x(n) and
X(ejω). This relation holds only if the unit circle is inside the ROC.
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The z-transform has many properties that are useful for the study of discrete-time
signals and systems. Some of these properties are given in Table 2.1. Assuming that the
involved Fourier transform exists, setting z = ejω in each of the properties of Table 2.1
gives a corresponding table of properties for the Fourier transform.

An important family of z-transforms is those for whichX(z) is a rational function, that
is, a ratio of two polynomials in z or z−1. The roots of the numerator polynomial, that is,
the values of z for which X(z) = 0, are referred to as the zeros of X(z). The roots of the
denominator polynomial, that is, the values of z for which |X(z)| = ∞, are referred to as
the poles of X(z). Although zeros and poles may occur at z = 0 or z = ±∞, we usually
do not count them. As will be seen throughout this book, the locations of poles and zeros
play an important role in the analysis of signals and systems. To display poles and zeros in
the z-plane, we use the symbols × and ◦, respectively.

The inverse z-transform—that is, determining the signal x(n) given its z-transform
X(z)—involves the computation of the contour integral in (2.2.30). However, most practical
applications involve rational z-transforms that can be easily inverted using partial fraction
expansion techniques. Finally, we note that a working familiarity with the z-transform
technique is necessary for the complete understanding of the material in subsequent chapters.

2.2.5 Representations of Narrowband Signals

A signal is known as a narrowband signal if it is band-limited to a band whose width is
small compared to the band center frequency. Such a narrowband signal transformXc(F ) is
shown in Figure 2.3(a), and the corresponding signal waveform xc(t) that it may represent
is shown in Figure 2.3(b). The center frequency of xc(t) isF0, and its bandwidth isB, which
is much less than F0. It is informative to note that the signal xc(t) appears to be a sinusoidal
waveform whose amplitude and phase are both varying slowly with respect to the variations
of the cosine wave. Therefore, such a signal can be represented by

xc(t) = a(t) cos [2πF0t + θ(t)] (2.2.34)

where a(t) describes the amplitude variation (or envelope modulation) and θ(t) describes
the phase modulation of a carrier wave of frequency F0 Hz. Although (2.2.34) can be
used to describe any arbitrary signal, the concepts of envelope and phase modulation are

TABLE 2.1

Properties of z-Transform.

Property Time domain z-Domain ROC

Notation x(n)

x1(n)

x2(n)

X(z)

X1(z)

X2(z)

ROC : Rl < |z| < Ru
ROC1 : R1l < |z| < R1u
ROC2 : R2l < |z| < R2u

Linearity a1x1(n)+ a2x2(n) a1X1(z)+ a2X2(z) ROC1 ∩ ROC2
Time shifting x(n− k) z−kX(z) Rl < |z| < Ru, except z = 0 if k > 0
Scaling in the z-domain anx(n) X(a−1z) |a|Rl < |z| < |a|Ru
Time reversal x(−n) X(z−1)

1

Rl
< |z| < 1

Ru
Conjugation x∗(n) X∗(z∗) ROC

Differentiation nx(n) −z dX(z)

dz
ROC

Convolution x1(n) ∗ x2(n) X1(z)X2(z) ROC1 ∩ ROC2

Multiplication x1(n)x2(n)
1

2πj

∮
C
X1(v)X2

( z
v

)
v−1dv R1lR2l < |z| < R1uR2u

Parseval’s relation
∞∑

n=−∞
x1(n)x

∗
2 (n) =

1

2πj

∮
C
X1(v)X

∗
2

(
1

v∗
)
v−1dv



March 8, 2005 10:09 e56-ch2 Sheet number 13 Page number 45 black

45

section 2.2
Transform-Domain
Representation
of Deterministic Signals

t

0

A

F0−F0

B

F

(b)

(a)

Xc(F )

a(t)

xc(t)

FIGURE 2.3
Narrowband signal: (a) Fourier transform and (b) waveform.

meaningless unless a(t) and θ(t) vary slowly in comparison to cos 2πF0t , or equivalently,
unless B � F0.

In literature, two approaches are commonly used to describe a narrowband signal. In
the first approach, the signal is represented by using a complex envelope, while in the second
approach the quadrature component representation is used. By using Euler’s identity, it is
easy to verify that (2.2.34) can be put in the form

xc(t) = Re[a(t)ej [2πF0t+θ(t)]] = Re[a(t)ejθ(t)ej2πF0t ] (2.2.35)

x̃c(t) � a(t)ejθ(t) (2.2.36)Let

Then from (2.2.35) we obtain

xc(t) = Re[x̃c(t)e
j2πF0t ] (2.2.37)

The complex-valued signal x̃c(t) contains both the amplitude and phase variations of xc(t),
and hence it is referred to as the complex envelope of the narrowband signal xc(t). Similarly,
again starting with (2.2.34) and this time using the trigonometric identity, we can write

xc(t) = a(t) cos 2πF0t cos θ(t)− a(t) sin 2πF0t sin θ(t) (2.2.38)

xcI(t) � a(t) cos θ(t) (2.2.39)Let

xcQ(t) � a(t) sin θ(t) (2.2.40)

which are termed the in-phase and the quadrature components of narrowband signal xc(t),
respectively. Then (2.2.38) can be written as

xc(t) = xcI(t) cos 2πF0t − xcQ(t) sin 2πF0t (2.2.41)

Clearly, the above two representations are related. If we expand (2.2.36), then we obtain

x̃c(t) = xcI(t)+ jxcQ(t) (2.2.42)

which implies that the in-phase and quadrature components are, respectively, the real and
imaginary parts of the complex envelope x̃c(t). These representations will be used exten-
sively in Chapter 11.

Bandpass sampling theorem. One application of the complex-envelope representa-
tion lies in the optimum sampling of narrowband signals. In a general sense, the narrowband
signal xc(t) is also a bandpass signal that is approximately band-limited to (F0+B/2) Hz.
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According the sampling theorem in Section 2.2.2, the Nyquist sampling rate for xc(t) is
then

Fs = 2

(
F0 + B

2

)
≈ 2F0 for B � F0

However, since the effective bandwidth of xc(t) is B/2 Hz, the optimum rate should be B,
which is much smaller than 2F0. To obtain this optimum rate, consider (2.2.34), which we
can write as

xc(t) = a(t) cos [2πF0t + θ(t)] = a(t)e
j [2πF0t+θ(t)] + e−j [2πF0t+θ(t)]

2

= a(t)ejθ(t)

2
ej2πF0t + a(t)e

−jθ(t)

2
e−j2πF0t (2.2.43)

= 1

2
x̃c(t)e

j2πF0t + 1

2
x̃∗c (t)e−j2πF0t

Using the transform properties from Table 2.1, we see that the Fourier transform of xc(t) is
given by

Xc(F ) = 1
2 [X̃c(F − F0)+ X̃∗c (−F − F0)] (2.2.44)

The first term in (2.2.44) is the Fourier transform of x̃c(t) shifted by F0, and hence it must
be the positive band-limited portion of Xc(F ). Similarly, the second term in (2.2.44) is the
Fourier transform of x̃∗c (t) shifted by−F0 (or shifted left byF0). Now the Fourier transform
of x̃∗c (t) is X∗c (−F), and hence the second term must be the negative band-limited portion
of Xc(F ).

We thus conclude that x̃c(t) is a baseband complex-valued signal limited to the band
of width B, as shown in Figure 2.4. Furthermore, note that the sampling theorem of Sec-
tion 2.2.2 is applicable to real- as well as complex-valued signals. Therefore, we can sample
the complex envelope x̃c(t) at the Nyquist rate of B sampling intervals per second; and,
by extension, we can sample the narrowband signal xc(t) at the same rate without aliasing.
From (2.2.24), the sampling representation of x̃c(t) is given by

x̃c(t) =
∞∑

n=−∞
x̃c

( n
B

) sin [πB(t − n/B)]
πB(t − n/B) (2.2.45)

Substituting (2.2.45) and (2.2.36) in (2.2.37), we obtain

xc(t) = Re

{ ∞∑
n=−∞

x̃c

( n
B

) sin [πB(t − n/B)]
πB(t − n/B) ej2πF0t

}

= Re

{ ∞∑
n=−∞

a
( n
B

)
ejθ(n/B)ej2πF0t

sin [πB(t − n/B)]
πB(t − n/B)

}
(2.2.46)

=
∞∑

n=−∞
a

( n
B

)
cos

[
2πF0t + θ

( n
B

)] sin [πB(t − n/B)]
πB(t − n/B)

~
X c(F)

0 B /2− B /2 F

2A

FIGURE 2.4
Fourier transform of a complex envelope
x̃c(t).
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which is the amplitude-phase form of the bandpass sampling theorem. Using trigonometric
identity, the quadrature-component form of the theorem is given by

xc(t) =
∞∑

n=−∞

[
xcI

( n
B

)
cos 2πF0t − xcQ

( n
B

)
sin 2πF0t

] sin [πB(t − n/B)]
πB(t − n/B) (2.2.47)

Applications of this theorem are considered in Chapter 11.

2.3 DISCRETE-TIME SYSTEMS

In this section, we review the basics of linear, time-invariant systems by emphasizing those
aspects of particular importance to this book. For our purposes, a system is defined to be
any physical device or algorithm that transforms a signal, called the input or excitation,
into another signal, called the output or response. When the system is simply an algorithm,
it may be realized in either hardware or software. Although a system can be specified from
its parts and their functions, it will often turn out to be more convenient to characterize a
system in terms of its response to specific signals. The mathematical relationships between
the input and output signals of a system will be referred to as a (system) model. In the case
of a discrete-time system, the model is simply a transformation that uniquely maps the input
signal x(n) to an output signal y(n). This is denoted by

y(n) = H [x(n)] −∞ < n <∞ (2.3.1)

and is graphically depicted as in Figure 2.5.

x(n) y(n)H[   ]

FIGURE 2.5
Block diagram representation of a
discrete-time system.

2.3.1 Analysis of Linear, Time-Invariant Systems

The systems we shall deal with in this book are linear and time-invariant and are always
assumed to be initially at rest. No initial conditions or other information will affect the
output signal.

Time-domain analysis. The output of a linear, time-invariant system can always be
expressed as the convolution summation between the input sequence x(n) and the impulse
response or unit sample response sequence h(n) � H [δ(n)] of the system, that is,

y(n) = x(n) ∗ h(n) �
∞∑

k=−∞
x(k)h(n− k) (2.3.2)

where ∗ denotes the convolution operation. It can easily be shown that an equivalent ex-
pression is

y(n) =
∞∑

k=−∞
h(k)x(n− k) = h(n) ∗ x(n) (2.3.3)

Thus, given the inputx(n) to a linear, time-invariant system, the outputy(n) can be computed
by using the impulse response h(n) of the system and either formula (2.3.2) or (2.3.3).

If x(n) and h(n) are arbitrary sequences of finite duration, then the above convolution
can also be computed by using a matrix-vector multiplication operation. Let x(n), 0 ≤
n ≤ N − 1, and h(n), 0 ≤ n ≤ M − 1, be two finite-duration sequences of lengths N
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and M(< N) respectively.
†

Then from (2.3.3), the sequence y(n) is also a finite-duration
sequence over 0 ≤ n ≤ L− 1 with L � N +M − 1 samples. If the samples of y(n) and
h(n) are arranged in the column vectors y and h, respectively, then from (2.3.3) we obtain



y(0)
...

...

y(M − 1)
...

y(N − 1)
...

...

y(L− 1)




=




x(0) 0 · · · 0
...

. . .
. . .

...

...
. . . 0

x(M − 1) · · · · · · x(0)
...

. . .
. . .

...

x(N − 1) · · · · · · x(N −M)
0

. . .
...

...
. . .

. . .
...

0 · · · 0 x(N − 1)






h(0)

h(1)
...

h(M − 1)


 (2.3.4)

y = Xh (2.3.5)or

where theL×M matrix X contains linear shifts in x(n−k) for n = 0, . . . , N−1, which are
arranged as rows. The matrix X is termed an input data matrix. It has an interesting property
that all the elements along any diagonal are equal. Such a matrix is called a Toeplitz matrix,
and thus X has a Toeplitz structure. Note that the first and the lastM − 1 rows of X contain
zero (or boundary) values. Therefore, the first and the last M − 1 samples of y(n) contain
transient boundary effects. In passing, we note that the vector y can also be obtained as

y = Hx (2.3.6)

in which H is a Toeplitz matrix obtained from (2.3.2). However, we will emphasize the
approach given in (2.3.5) in subsequent chapters.

Matlab provides a built-in function called conv that computes the convolution of two
finite-duration sequences and is invoked by y = conv(h,x). Alternatively, the convolution
can also be implemented using (2.3.4) in which the Toeplitz data matrix X is obtained using
the function toeplitz (see Problem 2.4).

A system is called causal if the present value of the output signal depends only on
the present and/or past values of the input signal. Although causality is necessary for the
real-time implementation of discrete-time systems, it is not really a problem in off-line
applications where the input signal has already been recorded. A necessary and sufficient
condition for a linear, time-invariant system to be causal is that the impulse response h(n) =
0 for n < 0.

Stability is another important system property. There are various types of stability
criteria. A system is called bounded-input bounded-output (BIBO) stable or simply stable
if and only if every bounded input, namely, |x(n)| ≤ Mx <∞ for all n, produces a bounded
output, that is, |y(n)| ≤ My <∞ for all n. Clearly, unstable systems generate unbounded
output signals and, hence, are not useful in practical applications because they will result in
an overflow in the output. It can be shown that an LTI system is BIBO stable if and only if

∞∑
n=−∞

|h(n)| <∞ (2.3.7)

Transform-domain analysis. In addition to the time-domain convolution approach,
the output of a linear, time-invariant system can be determined by using transform tech-
niques. Indeed, by using the convolution property of the z-transform (see Table 2.1), (2.3.2)
yields

Y (z) = H(z)X(z) (2.3.8)

†
For the purpose of this illustration, we assume that the sequences begin at n = 0, but they may have any arbitrary

finite duration.



March 8, 2005 10:09 e56-ch2 Sheet number 17 Page number 49 black

49

section 2.3
Discrete-Time Systems

whereX(z), Y (z), andH(z) are the z-transforms of the input, output, and impulse response
sequences, respectively. The z-transformH(z) = Z[h(n)] of the impulse response is called
the system function and plays a very important role in the analysis and characterization of
linear, time-invariant systems. If the unit circle is inside the ROC of H(z), the system is
stable and H(ejω) provides its frequency response.

Evaluating (2.3.8) on the unit circle gives

Y (ejω) = H(ejω)X(ejω) (2.3.9)

where H(ejω) is the frequency response function of the system. Since, in general, H(ejω)
is complex-valued, we have

H(ejω) = |H(ejω)|ej�H(ejω) (2.3.10)

and |H(ejω)| is the magnitude response, and �H(ejω) is the phase response of the system.
For a system with a real impulse response, |H(ejω)| has even symmetry and �H(ejω) has
odd symmetry. The group delay response of a system with frequency response H(ejω) is
defined as

τ(ejω) = − d

dω
�H(ejω) (2.3.11)

and provides a measure of the average delay of the system as a function of frequency.

Systems described by linear, constant-coefficient difference equations. A discrete-
time system is called practically realizable if it satisfies the following conditions: (1) It
requires a finite amount of memory, and (2) the amount of arithmetic operations required
for the computation of each output sample is finite. Clearly, any system that does not satisfy
either of these conditions cannot be implemented in practice.

If, in addition to being linear and time-invariant, we require a system to be causal and
practically realizable, then the most general input/output description of such a system takes
the form of a constant-coefficient, linear difference equation

y(n) = −
P∑
k=1

aky(n− k)+
Q∑
k=0

dkx(n− k) (2.3.12)

In case the system parameters {ak , dk} depend on time, the system is linear and time-varying.
If, however, the system parameters depend on either the input or output signals, then the
system becomes nonlinear.

By limiting our attention to constant parameters and evaluating the z-transform of both
sides of (2.3.12), we obtain

H(z) = Y (z)

X(z)
=

Q∑
k=0

dkz
−k

1+
P∑
k=1

akz−k
� D(z)

A(z)
(2.3.13)

Clearly, a system with a rational system function can be described, within a gain factor, by
the locations of its poles and zeros in the complex z-plane

H(z) = D(z)

A(z)
= G

Q∏
k=1

(1− zkz−1)

P∏
k=1

(1− pkz−1)

(2.3.14)

The system described by (2.3.12) or equivalently by (2.3.13) or (2.3.14) is stable if its poles,
that is, the roots of the denominator polynomial A(z), are all inside the unit circle.
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The difference equation in (2.3.12) is implemented in Matlab using the filter

function. In its simplest form, this function is invoked by y = filter(d,a,x) where
d = [d0,d1,...,dQ] and a = [1,a1,...,aP] are the numerator and denominator co-
efficient arrays in (2.3.13), respectively.

If the coefficients ak in (2.3.12) are zero, we have

y(n) =
Q∑
k=0

dkx(n− k) (2.3.15)

which compared to (2.3.3) yields

h(n) =
{
dn 0 ≤ n ≤ Q
0 elsewhere

(2.3.16)

that is, the system in (2.3.15) has an impulse response with finite duration and is called a
finite impulse response (FIR) system. From (2.3.13), it follows that the system function of
an FIR system is a polynomial in z−1, and thus H(z) has Q trivial poles at z = 0 and Q
zeros. For this reason, FIR systems are also referred to as all-zero (AZ) systems. Figure 2.6
shows a straightforward block diagram realization of the FIR system (2.3.15) in terms of
unit delays, adders, and multipliers.

z−1 z−1 z−1 z−1

d0 d1 d2 d3 d4

x(n)

y(n)

FIGURE 2.6
FIR filter realization (direct form).

In Matlab, FIR filters are represented either by the values of the impulse response h(n)
or by the difference equation coefficients dn. Therefore, for computational purposes, we
can use either the y = conv(h,x) function or the y = filter(d,[1],x) function. There
is a difference in the outputs of these two implementations that should be noted. The conv

function produces all values of y(n) in (2.3.4), while the output sequence from the filter
function provides y(0), . . . , y(N − 1). This can be seen by referring to matrix X in (2.3.4).
The input data matrix X contains only the first N rows; that is, the output of the filter

function contains transient effects from the boundary at n = 0. For signal processing
applications, the use of the filter function is strongly encouraged.

When a system has both poles and zeros, H(z) can be expressed using partial fraction
expansion form as follows

H(z) =
P∑
k=1

Ak

1− pkz−k (2.3.17)

if the poles are distinct and Q < P . The corresponding impulse response is then given by

h(n) =
P∑
k=1

Ak(pk)
nu(n) (2.3.18)

that is, each pole contributes an exponential mode of infinite duration to the impulse re-
sponse. We conclude that the presence of any nontrivial pole in a system implies an infinite-
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duration impulse response. We refer to such systems as infinite impulse response (IIR) sys-
tems. If Q = 0, the system has only poles, with zeros at z = 0, and is called an all-pole
(AP) system. It should be stressed that although all-pole and pole-zero systems are IIR,
not all IIR systems are pole-zero (PZ) systems. Indeed, there are many useful systems, for
example, an ideal low-pass filter, that cannot be described by rational system functions of
finite order. Figures 2.7 and 2.8 show direct-form realizations of an all-pole and a pole-zero
system.

x n(  ) y n(  )

−a1

−a2

−a3

−a4

z−1

z−1

z−1

z−1

FIGURE 2.7
All-pole system realization (direct form).

x n(  ) y n(  )

−a1

d0

d1

d2

d3

d4

z−1

−a2

z−1

−a3
z−1

−a4
z−1

z−1

z−1

z−1

z−1

FIGURE 2.8
Pole-zero system realization (direct form).

2.3.2 Response to Periodic Inputs

Although the convolution summation formula can be used to compute the response of
a stable system to any input signal, (2.3.8) cannot be used with periodic inputs because
periodic signals do not possess a z-transform. However, a frequency domain formula similar
to (2.3.9) can be developed for periodic inputs.

Let x(n) be a periodic signal with fundamental period N . This signal can be expanded
in a Fourier series as

x(n) =
N−1∑
k=0

Xke
j2πkn/N n = 0, 1, . . . , N − 1 (2.3.19)
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where Xk are the Fourier series coefficients. Substituting (2.3.19) into (2.3.3) gives

y(n) =
N−1∑
k=0

XkH(e
j2πk/N)ej2πkn/N (2.3.20)

whereH(ej2πk/N) are samples ofH(ejω). But (2.3.20) is just the Fourier series expansion
of y(n), hence

Yk = H(ej2πk/N)Xk k = 0, 1, . . . , N − 1 (2.3.21)

Thus, the response of a linear, time-invariant system to a periodic input is also periodic with
the same period. Figure 2.9 illustrates, in the frequency domain, the effect of an LTI system
on the spectrum of aperiodic and periodic input signals.

LTI
system

input

signal

output

signal

0 p
v

X(e jv)

0 p
v

Xk Yk

0 p
v

0 p
v

Y(e jv)

0 p
v

H(e jv)

1

A
pe

rio
di

c
P

er
io

di
c

0 p
v

H(e jv)

1

FIGURE 2.9
LTI system operation in the frequency domain.

EXAMPLE 2.3.1. Consider the system

y(n) = ay(n− 1)+ x(n) 0 < a < 1

If we restrict the inputs of the system to be only periodic signals with fundamental period N ,
determine the impulse response of an equivalent FIR system that will provide an identical output
to the system described above.

Solution. The system output can be described by (2.3.21), where

H(z) = Y (z)

X(z)
= 1

1− az−1
= Z{anu(n)}

From Figure 2.9, it is clearly seen that every system whose frequency response is identical to
H(ejω) at the sampling points ωk = (2π/N)k, 0 ≤ k ≤ N − 1, provides the same output when
excited by a periodic signal having fundamental period N . An FIR system having this property
can be obtained by taking the inverse N -point DFT of H̃ (k), 0 ≤ k ≤ N − 1. The resulting
impulse response h̃(n) is simply the N -point periodic extension of h(n) = anu(n), that is,

h̃(n) =
∞∑

l=−∞
h(n+ lN) =

∞∑
l=0

an+lN = an

1− aN 0 ≤ n ≤ N − 1 (2.3.22)

since h(n+ lN) for l < 0 does not contribute to the sum for 0 ≤ n ≤ N − 1.
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The example above looked simple enough. Unfortunately, for somewhat more compli-
cated all-pole filters, it becomes very difficult to evaluate the infinite summation in (2.3.22)
in closed form, even if h(n) is available, which is often not the case.

2.3.3 Correlation Analysis and Spectral Density

The investigation of system responses to specific input signals requires either the explicit
computation of the output signal or measurements to relate characteristic properties of the
output signal to corresponding characterisitics of the system and the input signal. A funda-
mental tool needed for such analysis is the correlation between two signals that provides a
quantitative measure of similarity between two signals. The correlation sequence between
two discrete-time signals x(n) and y(n) is defined by

rxy(l) =




∞∑
n=−∞

x(n)y∗(n− l) : energy signals

lim
N→∞

1

2N + 1

N∑
n=−N

x(n)y∗(n− l) : power signals

(2.3.23)

where l is termed the lag (or shift) variable. The autocorrelation sequence of a signal is
obtained by assuming that y(n) = x(n), that is, if we correlate a signal with itself. Thus

rxx(l) =




∞∑
n=−∞

x(n)x∗(n− l) : energy signal

lim
N→∞

1

2N + 1

N∑
n=−N

x(n)x∗(n− l) : power signal

(2.3.24)

In this case, we use the simplified notation rx(l) or even r(l) if there is no possibility of
confusion.

The autocorrelation sequence rx(l) and the energy spectrum of a signal x(n) form a
Fourier transform pair

rx(l)
F←→ Rx(e

jω) (2.3.25)

Since, Rx(ejω) = |X(ejω)|2, the Wiener-Khintchine theorem (2.3.25) is usually used to
define the energy spectral density function, Rx(ejω). Clearly, rx(l) and Rx(ejω) do not
contain any phase information.

In many instances, we need to evaluate the cross-correlation between the input and
output signals and the autocorrelation of the output signals. It can be easily shown that

ryx(l) = h(l) ∗ rx(l) (2.3.26)

ry(l) = h∗(−l) ∗ ryx(l) = rh(l) ∗ rx(l) (2.3.27)

rh(l) =
∞∑

n=−∞
h(n)h∗(n− l) = h(l) ∗ h∗(−l) (2.3.28)where

is the autocorrelation of the impulse response. Taking the z-transform of both sides in the
above equations, we obtain

Ryx(z) = H(z)Rx(z) (2.3.29)

Ry(z) = H ∗
(

1

z∗

)
Ryx(z) = Rh(z)Rx(z) (2.3.30)

Rh(z) � H(z)H ∗
(

1

z∗

)
(2.3.31)and
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whereRx(z),Ry(z), andRh(z) are known as complex spectral density functions. Evaluating
(2.3.30) on the unit circle z = ejω gives

Ry(e
jω) = Rh(ejω)Rx(ejω) = |H(ejω)|2Rx(ejω) (2.3.32)

The output correlations rxy(l) and ry(l) for a periodic input with fundamental periodN are
computed via their spectral densities using the Fourier series. For example, it can be easily
shown that

R
(y)
k = |H(ej2πk/N)|2R(x)k 0 ≤ k ≤ N − 1 (2.3.33)

where R(x)k , R
(y)
k are the power spectral densities of x(n) and y(n), respectively.

In exploring the properties of the various system models, we shall need to excite them
by some input. Of particular interest are deterministic inputs that have constant power
spectrum values (such as the unit sample sequence) or inputs that have constant power
spectrum envelopes (such as all-pass signals). Since we have already discussed the unit
sample response, we next focus on all-pass signals.

All-pass signals have a flat-spectrum, that is,

Rx(e
jω) = |X(ejω)|2 = G2 − π < ω ≤ π (2.3.34)

and, therefore, rx(l) = G2δ(l). The simplest example is x(n) = δ(n− k). A more interest-
ing case is that of all-pass signals with nonlinear phase characteristic (see Section 2.4.2).
The autocorrelation and the spectral density of the output y(n) of LTI systems to all-pass
excitations can be computed by the formulas used for unit impulse excitations, that is,

ry(l) = G2rh(l) = G2
∞∑

n=−∞
h(n)h∗(n− l) (2.3.35)

Ry(z) = G2H(z)H ∗
(

1

z∗

)
(2.3.36)and

By properly choosing G, we can always assume that h(0) = 1.

2.4 MINIMUM PHASE AND SYSTEM INVERTIBILITY

In this section, we introduce the concept of minimum phase and show how it is related to the
invertibility of linear, time-invariant systems. Several properties of all-pass and minimum-
phase systems are also discussed.

2.4.1 System Invertibility and Minimum-Phase Systems

A system H [·] with input x(n),−∞ < n < ∞, and output y(n),−∞ < n < ∞, is
called invertible if we can uniquely determine its input signal from the output signal. This
is possible if the correspondence between the input and output signals is one-to-one. The
system that produces x(n), when excited by y(n), is denoted byHinv and is called the inverse
of system H . Obviously, the cascade of H and Hinv is the identity system. Obtaining the
inverse of an arbitrary system is a very difficult problem. However, if a system is linear
and time-invariant, then if its inverse exists, the inverse is also linear and time-invariant.
Hence, if h(n) is the impulse response of a linear, time-invariant system and hinv(n) that of
its inverse, we have

[x(n) ∗ h(n)] ∗ hinv(n) = x(n)
h(n) ∗ hinv(n) = δ(n) (2.4.1)or

Thus, given h(n),−∞ < n <∞, we can obtain hinv(n),−∞ < n <∞, by solving the
convolution equation (2.4.1), which is not an easy task in general. However, (2.4.1) can be
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converted to a simpler algebraic equation using the z-transform. Indeed, using the convo-
lution theorem, we obtain

Hinv(z) = 1

H(z)
(2.4.2)

where Hinv(z) is the system function of the inverse system. If H(z) is a pole-zero system,
that is,

H(z) = D(z)

A(z)
(2.4.3)

Hinv(z) = A(z)

D(z)
(2.4.4)then

Thus, the zeros of the system become the poles of its inverse, and vice versa. Furthermore,
the inverse of an all-pole system is all-zero, and vice versa.

EXAMPLE 2.4.1. Consider a system with impulse response

h(n) = δ(n)− 1
4
δ(n− 1)

Determine impulse response of the inverse system.

Solution. The system function of its inverse is

Hinv(z) = 1

1− 1
4
z−1

which has a pole at z = 1
4

. If we choose the ROC as |z| > 1
4

, the inverse system is causal and
stable, and

hinv(n) = ( 1
4
)nu(n)

However, if we choose the ROC as |z| < 1
4

, the inverse system is noncausal and unstable

hinv(n) = −( 1
4
)nu(−n− 1)

This simple example illustrates that the knowledge of the impulse response of a linear,
time-invariant system does not uniquely specify its inverse. Additional information such
as causality and stability would be helpful in many cases. This leads us to the concept of
minimum-phase systems.

A discrete-time, linear, time-invariant system with impulse response h(n) is called
minimum-phase if both the system and its inverse system hinv(n) are causal and stable, that
is,

h(n) ∗ hinv(n) = δ(n) (2.4.5)

h(n) = 0 n < 0 and hinv(n) = 0 n < 0 (2.4.6)

∞∑
n=0

|h(n)| <∞ and
∞∑
n=0

|hinv(n)| <∞ (2.4.7)

We note that if a system is minimum-phase, its inverse is also minimum-phase. This is very
important in deconvolution problems, where the inverse system has to be causal and stable
for implementation purposes.

Sometimes, especially in geophysical applications, the stability requirements (2.4.7)

are replaced by the less restrictive
†

finite energy conditions
∞∑
n=0

|h(n)|2 <∞ and
∞∑
n=0

|hinv(n)|2 <∞ (2.4.8)

which are implied by (2.4.7). However, note that (2.4.8) does not necessarily imply (2.4.7).

†
This definition of minimum phase allows singularities (poles or zeros) on the unit circle.
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Clearly, a PZ system is minimum-phase if all its poles and zeros are inside the unit
circle. Indeed, if all roots of A(z) and D(z) are inside the unit circle, the system H(z)

in (2.4.3) and its inverse Hinv(z) in (2.4.4) are both causal and stable.
In an analogous manner, we can define a maximum-phase system as one in which both

the system and its inverse are anticausal and stable. A PZ system then is maximum-phase if
all its poles and zeros are outside the unit circle. Clearly, if H(z) is minimum-phase, then
H(z−1) is maximum-phase. A system that is neither minimum-phase nor maximum-phase
is called a mixed-phase system.

2.4.2 All-Pass Systems

We shall say that a linear, time-invariant system is all-pass, denoted by Hap(e
jω), if

|Hap(e
jω)| = 1 − π < ω ≤ π (2.4.9)

The simplest all-pass system is characterized by

Hap(z) = zk
which simply time-shifts (delay k < 0, advance k > 0) the input signal.

A more interesting, nontrivial family of all-pass systems is characterized by the system
function (dispersive all-pass systems)

Hap(z) =
a∗P + a∗P−1z

−1 + · · · + z−P
1+ a1z−1 + · · · + aP z−P =

z−PA∗(1/z∗)
A(z)

(2.4.10)

Indeed, it can be easily seen that

|Hap(e
jω)|2 = Hap(z)H

∗
ap

(
1

z∗

)∣∣∣∣
z=ejω

= 1 (2.4.11)

In the case of real-valued coefficients, (2.4.10) takes the form

Hap(z) = aP + aP−1z
−1 + · · · + z−P

1+ a1z−1 + · · · + aP z−P =
z−PA(z−1)

A(z)
(2.4.12)

The poles and zeros of an all-pass system are conjugate reciprocals of one another; that
is, they are conjugate symmetric with respect to the unit circle. Indeed, if p0 is a root
of A(z), then 1/p∗0 is a root of A∗(1/z∗). Thus, if p0 � rejθ is a pole of Hap(z), then
1/p∗0 = (1/r)ejθ is a zero of the system. This typical pattern is illustrated in Figure 2.10

v
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 1

−1  1 0

(a)

Re

Imx-Pole
o-Zero z-plane

v

−1

 1

−1  1 0

(b)

Re

Imx-Pole
o-Zero z-plane 

FIGURE 2.10
Typical pole-zero patterns of a PZ, all-pass system: (a) complex-valued coefficients and
(b) real-valued coefficients.
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for system functions with both complex and real coefficients. Therefore, the system function
of any pole-zero all-pass system can be expressed as

Hap(z) =
P∏
k=1

p∗k − z−1

1− pkz−1
(2.4.13)

The similar expressions (z−1−p∗k )/(1−pkz−1) and (1−pkz−1)/(z−1−p∗k ) [the negative
and inverse of (2.4.13), respectively] are often used in the literature. For systems with real
parameters, singularities should appear in complex conjugate pairs.

Properties of all-pass systems. All-pass systems have some interesting properties. We
list these properties without proofs. Some of these proofs are trivial, and others are explored
in problems.

1. The output energy of a stable all-pass system is equal to the input energy; that is,

Ey =
∞∑

n=−∞
|y(n)|2 = 1

2π

∫ π

−π

∣∣∣Hap(e
jω)X(ejω)

∣∣∣2
dω = Ex (2.4.14)

due to (2.4.9). This leads to a very interesting property for the cumulative energy of a
causal all-pass system (see Problem 2.6).

2. A causal, stable, PZ, all-pass system with P poles has a phase response �Hap(e
jω) that

decreases monotonically from �Hap(e
j0) to �Hap(e

j0) − 2πP as ω increases from 0
to 2π (see Problem 2.7).

3. All-pass systems have nonnegative group delay, which is defined as the negative of the
first derivative of the phase response, that is,

τ ap(ω) � − d

dω
�Hap(e

jω) ≥ 0 (2.4.15)

This property is a direct result of the second property.
4. The all-pass system function Hap(z)

Hap(z) = 1− αz−1

z−1 − α∗ |α| < 1 (2.4.16)

|Hap(z)|



< 1 if |z| < 1

= 1 if |z| = 1

> 1 if |z| > 1

(2.4.17)satisfies

For proof see Problem 2.10.

2.4.3 Minimum-Phase and All-Pass Decomposition

We next show that any causal, PZ system that has no poles or zeros on the unit circle can
be expressed as

H(z) = Hmin(z)Hap(z) (2.4.18)

where Hmin(z) is minimum-phase and Hap(z) is all-pass, as shown in Figure 2.11. Indeed,
letH(z) be a non-minimum-phase system with one zero z = 1/a, |a| < 1, outside the unit
circle and all other poles and zeros inside the unit circle. Then H(z) can be factored as

H(z) = H1(z)(a − z−1) (2.4.19)
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x (n) y (n)

H

H (z)

(z)

min H (z)ap

FIGURE 2.11
Minimum phase and all-pass decomposition.

where H1(z) is minimum-phase. Equivalently, (2.4.19) can be expressed as

H(z) = H1(z)(a − z−1)
1− a∗z−1

1− a∗z−1

= [H1(z)(1− a∗z−1)] a − z
−1

1− a∗z−1

= Hmin(z)
a − z−1

1− a∗z−1

(2.4.20)

whereHmin(z) is minimum-phase and the factor (a−z−1)/(1−a∗z−1) is all-pass, because
|a| < 1. Note that the minimum-phase system was obtained from H(z) by reflecting the
zero z = 1/a, which was outside the unit circle, to the zero z = a∗ inside the unit circle. This
approach can clearly be generalized for any PZ system. Thus, given a non-minimum-phase
PZ system, we can create a minimum-phase one with the same magnitude response (or
equivalently the same impulse response autocorrelation) by reflecting all poles and zeros
that are outside the unit circle inside the unit circle. From the previous discussion it follows
that there are 2QQth-orderAZ systems with the same magnitude response. This is illustrated
in the following example.

EXAMPLE 2.4.2. For Q = 2, determine all four second-order AZ systems with the same mag-
nitude response.

Solution. For a second-order all-zero system (0 < a < 1, 0 < b < 1) we obtain the following
systems

Hmin(z) = (1− az−1)(1− bz−1) Hmax(z) = (1− az)(1− bz)
Hmix1(z) = (1− az)(1− bz−1) Hmix2(z) = (1− az−1)(1− bz)

(2.4.21)

that have the same spectrum

R(z) = H(z)H(z−1) = (1− az−1)(1− bz−1)(1− az)(1− bz) (2.4.22)

and the same autocorrelation

r(l) =




1+ a2b2 + (a + b)2 l = 0

−(a + b)(1+ ab) l = 1,−1

ab l = 2,−2

0 otherwise

(2.4.23)

but different impulse and phase responses, as shown in Figure 2.12.

EXAMPLE 2.4.3. Consider the following all-zero minimum-phase system:

Hmin(z) = (1− 0.8ej0.6πz−1)(1− 0.8e−j0.6πz−1)

× (1− 0.8ej0.9πz−1)(1− 0.8e−j0.9πz−1)
(2.4.24)

Determine the maximum- and mixed-phase systems with the same magnitude response.
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FIGURE 2.12
Pole-zero, frequency response, and impulse response plots for minimum-phase (row 1),
maximum-phase (row 2), mixed-phase 1 (row 3), and mixed-phase 2 (row 4) systems in
Example 2.4.2. Note that the abscissa in Phase plots are labeled in units of π radians.

Solution. To obtain a maximum-phase system with the same magnitude response, we reflect the
zeros ofHmin(z) from inside the unit circle to their conjugate reciprocal locations that are outside
the unit circle by using the transformation z0 → 1/z∗0. This leads to the following transformation
for each first-order factor:

(1− rejθ z−1)→ r(1− 1

r
ejθ z−1) (2.4.25)

The scaling factor r in the right-hand side is included to guarantee that the transformation does
not scale the magnitude response. The resulting maximum-phase system is

Hmax(z) = (0.8)4(1− 1.25ej0.6πz−1)(1− 1.25e−j0.6πz−1)

× (1− 1.25ej0.9πz−1)(1− 1.25e−j0.9πz−1)
(2.4.26)

If we reflect only the zero at 0.8e±j0.6π , we obtain the mixed-phase system

H1(z) = (0.8)2(1− 1.25ej0.6πz−1)(1− 1.25e−j0.6πz−1)

× (1− 0.8ej0.9πz−1)(1− 0.8e−j0.9πz−1)
(2.4.27)
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Similarly, if we reflect only the zero at 0.8e±j0.9π , we obtain the second mixed-phase system

H2(z) = (0.8)2(1− 0.8ej0.6πz−1)(1− 0.8e−j0.6πz−1)

× (1− 1.25ej0.9πz−1)(1− 1.25e−j0.9πz−1)
(2.4.28)

Figure 2.13 shows the pole-zero, magnitude response, phase response, and group delay plots
for all four systems. Clearly, the minimum-phase system has the smallest group delay, the
maximum-phase system has the largest group delay, while the mixed-phase systems have in-
between amounts of group delay across all frequencies. Finally, it can be easily shown that the
system Hmax(z)/Hmin(z) is an all-pass system.
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FIGURE 2.13
Pole-zero and frequency response plots for minimum-phase (row 1), maximum-phase (row 2),
mixed-phase 1 (row 3), and mixed-phase 2 (row 4) systems in Example 2.4.3. Note that the
abscissa in Phase plots are labeled in units of π radians while those in Group delay plots are
labeled in sampling intervals.

The minimum- (maximum-) phase AZ system has all its zeros inside (outside) the unit
circle. From (2.4.12), it follows that an all-pass system can be expressed as

Hap(z) = Hmax(z)

Hmin(z)
(2.4.29)
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where Hmin(z) and Hmax(z) are the P th-order minimum-phase and maximum-phase sys-
tems, respectively, with the same magnitude response. Indeed, it can be easily seen that

Hmax(z) = z−PH ∗min

(
1

z∗

)
(2.4.30)

or hmax(n) = h∗min(P − n).
In practice, it is very important to find out if a given system is minimum-phase. Clearly,

the definition cannot be used in practice because either the system h(n) or its inverse is
going to be IIR. Furthermore, most of the above properties using either h(n) orH(ejω) are
not practical for use in real-world systems. However, if we deal with PZ systems, we can
check if they are minimum-phase by computing the poles and zeros and check if they are
inside the unit circle. This is, however, a computationally expensive procedure, especially
for high-order systems. Fortunately, there are several tests that allow us to find out if the
zeros of a polynomial are inside the unit circle without computing them. See Theorem 2.3.

Properties of minimum-phase systems. Minimum-phase systems have some very in-
teresting properties. Next we list some of these properties without proofs. More details can
be found in Oppenheim and Schafer (1989) and Proakis and Manolakis (1996).

1. For causal, stable systems with the same magnitude response, the minimum-phase sys-
tem has algebraically the smallest group delay response at every frequency, that is,
τmin(e

jω) ≤ τ(ejω), for all ω. Thus, strictly speaking, minimum-phase systems are
minimum group delay systems. However, the term minimum-phase has been established
in the engineering literature.

2. Of all causal and stable systems with the same magnitude response, the minimum-phase
system minimizes the “energy delay”

∞∑
n=k
|h(n)|2 for all k = 0, 1, . . . ,∞ (2.4.31)

where h(n) is the system impulse response.
3. The systemH(z) is minimum-phase if log |H(ejω)| and �H(ejω) form a Hilbert trans-

form pair.

E XAM PLE 2.4.4. In this example we illustrate the energy delay property of minimum-phase
systems. Consider the all-zero minimum-phase system (2.4.24) given in Example 2.4.3 and
repeated here:

Hmin(z) = (1− 0.8ej0.6πz−1)(1− 0.8e−j0.6πz−1)

× (1− 0.8ej0.9πz−1)(1− 0.8e−j0.9πz−1)

In the top row of four plots in Figure 2.14, we depict the impulse responses of the minimum-,
maximum-, and mixed-phase systems. The bottom plot contains the graph of the energy delay∑∞
n=k |h(n)|2 for k = 0, 1, . . . , 4, for each of the systems. As expected, the minimum-phase

system has the least amount of energy delay while the maximum-phase system has the greatest
amount of energy delay at each n. The graphs of the energy delays for mixed-phase systems are
somewhere in between the above two graphs.

Additional properties of minimum-phase systems are explored in the problems.

2.4.4 Spectral Factorization

One interesting and practically useful question is the following: Can we completely de-
termine the system H(z) when |Rx(ejw)|2 = σ 2 given ry(l) or, equivalently, the spec-
tral density Ry(ejω)? The answer is not a unique one since all we know either from
ry(l) or from Ry(e

jω) is the magnitude response |H(ejω)|, but not the phase response
�H(ejω). To obtain a unique system from (2.3.35) or (2.3.36), we have to impose additional
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FIGURE 2.14
Impulse response plots of the four systems in the top row and the energy delay plots in the
bottom row in Example 2.4.4.

conditions on H(z). One such condition is that of a minimum-phase system. The process
of obtaining the minimum-phase system that produces the signal y(n) with autocorrelation
ry(l) or spectral density Ry(z) is called spectral factorization. Equivalently, the spectral
factorization problem can be stated as the determination of a minimum-phase system from
its magnitude response or from the autocorrelation of its impulse response.

Solving the spectral factorization problem by finding roots of Ry(z) is known as the
root method, and besides its practical utility, it illustrates some basic principles.

1. Every rational power spectral density has, within a scale factor, a unique minimum-phase
factorization.

2. There are 2P+Q rational systems with the same power spectral density, where Q and P
are numerator and denominator polynomial degrees, respectively.

3. Not all possible rational functions are valid power spectral densities since for a valid
Ry(z) the roots should appear in pairs, zk and 1/z∗k .

These principles can be generalized to any power spectral density by extending P +
Q→∞. The spectral factorization procedure is guaranteed by the following theorem.

THEOREM 2.1. If lnRy(z) is analytic in an open ring α < |z| < 1/α in the z-plane and the ring
includes the unit circle, then Ry(z) can be factored as

Ry(z) = G2Hmin(z)H
∗
min

(
1

z∗
)

(2.4.32)

where Hmin(z) is a minimum-phase system.

Proof. Using the analyticity of lnRy(z),we can expand lnRy(z) in a Laurent series (Churchill
and Brown 1984) as

lnRy(z) =
∞∑
−∞

g(l)z−l (2.4.33)
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where the sequence g(l) is known as the cepstrum of the sequence ry(l) (Oppenheim and Schafer
1989). Evaluating (2.4.33) on the unit circle, we obtain

lnRy(e
jω) =

∞∑
−∞

g(l)e−jωl (2.4.34)

g(l) = 1

2π

∫ π

−π
lnRy(e

jω)ejωl dω (2.4.35)or

Since Ry(ejω) = |Y (ejω)|2 is a real, nonnegative function, the sequence g(l) is a conjugate
symmetric sequence, that is,

g(l) = g∗(−l) (2.4.36)

G2 � exp g(0) = exp

[
1

2π

∫ π

−π
lnRy(e

jω) dω

]
≥ 0 (2.4.37)and

From (2.4.33), we can express Ry(z) in a factored form as

Ry(z) = exp

[ ∞∑
−∞

g(l)z−l
]
= exp


 −1∑
−∞

g(l)z−l + g(0)+
∞∑
1

g(l)z−l



= exp g(0) exp

[ ∞∑
1

g(l)z−l
]

exp


 −1∑
−∞

g(l)z−l



= G2 exp

[ ∞∑
1

g(l)z−l
]

exp

[ ∞∑
1

g∗(l)zl
]

(2.4.38)

where we used (2.4.36). After defining

H(z) � exp

[ ∞∑
1

g(l)z−l
]

|z| > α (2.4.39)

H∗
(

1

z∗
)
= exp

[ ∞∑
1

g∗(l)zl]
]

|z| < 1

α
(2.4.40)so that

we obtain the spectral factorization (2.3.36). Furthermore, from (2.4.37) we note that the constant
G2 is equal to the geometric mean of Ry(ejω). From (2.4.39), note thatH(z) is the z-transform
of a causal and stable sequence, hence it can be expanded as

H(z) = 1+ h(1)z−1 + h(2)z−2 + · · · (2.4.41)

where h(0) = limz→∞H(z) = 1. Also from (2.4.39) H(z) corresponds to a minimum-phase
system so that from (2.4.40) H∗(1/z∗) is a stable, anticausal, and maximum-phase system.

The analyticity of lnRy(z) is guaranteed by the Paley-Wiener theorem given below
without proof (see Papoulis 1991).

THEOREM 2.2 (PALEY-WIENER THEOREM). The spectral factorization in (2.4.32) is possible
if Ry(z) satisfies the Paley-Wiener condition∫ π

−π
| lnRy(ejω)| dω <∞

If H(z) is known to be minimum-phase, the spectral factorization is unique.

In general, the solution of the spectral factorization problem is difficult. However, it
is quite simple in the case of signals with rational spectral densities. Suppose that Ry(z) is
a rational complex spectral density function. Since ry(l) = r∗y (−l) implies that Ry(z) =
R∗y(1/z∗), if zi is a root, then 1/z∗i is also a root. If zi is inside the unit circle, then 1/z∗i is
outside. To obtain the minimum-phase systemH(z) corresponding to Ry(z), we determine



March 8, 2005 10:09 e56-ch2 Sheet number 32 Page number 64 black

64

chapter 2
Fundamentals of
Discrete-Time Signal
Processing

the poles and zeros of Ry(z) and form H(z) by choosing all poles and zeros that are inside
the unit circle, that is,

H(z) = G

Q∏
k=1

(1− zkz−1)

P∏
k=1

(1− pkz−1)

(2.4.42)

where |zk| < 1, k = 1, 2, . . . ,Q and |pk| < 1, k = 1, 2, . . . , P .
Before we illustrate this by an example, it should be emphasized that for real-valued co-

efficientsRy(ejω) is a rational function of cosω. Indeed, we have from (2.3.36) and (2.3.13)

Ry(z) = G2H(z)H ∗
(

1

z∗

)
= G2D(z)D

∗(1/z∗)
A(z)A∗(1/z∗)

(2.4.43)

D(z) =
Q∑
k=0

dkz
−k and A(z) = 1+

P∑
k=1

akz
−k (2.4.44)where

Clearly, (2.4.43) can be written as

Ry(e
jω) = G2Rd(e

jω)

Ra(ejω)
= G2

rd(0)+ 2
Q∑
l=1

rd(l) cos lω

ra(0)+ 2
P∑
l=1

ra(l) cos lω

(2.4.45)

where rd(l) = r∗d (−l) and ra(l) = r∗a (−l) are the autocorrelations of the coefficient se-
quences {d0, d1, . . . , dQ} and {1, a1, . . . , aP }, respectively. Since cos lω can be expressed
as a polynomial

cos lω =
l∑
i=0

αi(cosω)i

it follows that Ry(ejω) is a rational function of cosω.

EXAMPLE 2.4.5. Let

Ry(e
jω) = 1.04+ 0.4 cosω

1.25+ cosω

Determine the minimum-phase system corresponding to Ry(ejω).

Solution. Replacing cosω by (ejω + e−jω)/2 or directly by (z+ z−1)/2 gives

Ry(z) = 1.04+ 0.2z+ 0.2z−1

1.25+ 0.5z+ 0.5z−1
= 0.4

(z+ 5)(z+ 0.2)

(z+ 2)(z+ 0.5)
The required minimum-phase system H(z) is

H(z) = z+ 0.2

z+ 0.5
= 1+ 0.2z−1

1+ 0.5z−1
(2.4.46)

2.5 LATTICE FILTER REALIZATIONS

In Section 2.3, we described simple FIR and IIR filter realizations using block diagram
elements. These realizations are called filter structures for which there are many different
types available for implementation (Proakis and Manolakis 1996). In this section, we discuss
the lattice and lattice-ladder filters. The lattice filter is an implementation of a digital filter
with rational system functions. This structure is used extensively in digital speech processing
and in the implementation of adaptive filters, which are discussed in Chapter 10.
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2.5.1 All-Zero Lattice Structures

In Section 2.3, we discussed a direct-form realization of an AZ filter (see Figure 2.6). In
this section, we present lattice structures for the realization of AZ filters. These structures
will be used extensively throughout this book.

The basic AZ lattice is shown in Figure 2.15. Because the AZ lattice is often used to
implement the inverse of anAP filter, we begin our introduction to the lattice by a realization
of the AZ filter

A(z) = 1+
P∑
l=1

alz
−l (2.5.1)

The lattice in Figure 2.15(a) is the two-multiplier, or Itakura-Saito, lattice. The lattice has
P parameters {km, 1 ≤ m ≤ P } that map to the al direct-form parameters via a recursive
relation that is derived below.

At the mth stage of the lattice, shown in Figure 2.15(a), we have the relations

fm(n) = fm−1(n)+ kmgm−1(n− 1) 1 ≤ m ≤ P (2.5.2)

gm(n) = k∗mfm−1(n)+ gm−1(n− 1) 1 ≤ m ≤ P (2.5.3)

and from Figure 2.15(b), we have

f0(n) = g0(n) = x(n) (2.5.4)

y(n) = fp(n) (2.5.5)

Taking the z-transform of fm(n) and gm(n), we have

Fm(z) = Fm−1(z)+ kmz−1Gm−1(z) (2.5.6)

Gm(z) = k∗mFm−1(z)+ z−1Gm−1(z) (2.5.7)

Dividing both equations by X(z) and denoting the transfer functions from the input x(n)
to the outputs of the mth stage by Am(z) and Bm(z), where

Am(z) � Fm(z)

F0(z)
Bm(z) � Gm(z)

G0(z)
(2.5.8)

(a)

(b)
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g2(n)

fm (n)

gm−1(n) gm (n)z−1

z−1 z−1 z−1

k1 k2

k1
* k2

*

kP

kP
*

km
*

FIGURE 2.15
All-zero lattice structure.
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Am(z) = Am−1(z)+ kmz−1Bm−1(z) (2.5.9)we have

Bm(z) = k∗mAm−1(z)+ z−1Bm−1(z) (2.5.10)

A0(z) = B0(z) = 1 (2.5.11)with

A(z) = AP (z) (2.5.12)and

Thus, the desired A(z) is obtained as the transfer function AP (z) at the P th stage of the
lattice. Now (2.5.9) and (2.5.10) can be written in matrix form as[

Am(z)

Bm(z)

]
=

[
1 kmz

−1

k∗m z−1

] [
Am−1(z)

Bm−1(z)

]
(2.5.13)

= Qm(z)

[
Am−1(z)

Bm−1(z)

]
(2.5.14)

Qm(z) �
[

1 kmz
−1

k∗m z−1

]
(2.5.15)where

Then, using the recursive relation (2.5.13), we obtain[
AP (z)

BP (z)

]
=

P∏
m=1

Qm(z)

[
1

1

]
(2.5.16)

If we write Am(z) as

Am(z) =
m∑
l=0

a
(m)
l z−l (2.5.17)

then we can show that

a
(m)
0 = 1 for all m (2.5.18)

Bm(z) =
m∑
l=0

b
(m)
l z−l = z−mA∗m

(
1

z∗

)
(2.5.19)and that

that is, for m = 1, 2, . . . , P

b
(m)
l =

{
a
(m)∗
m−l l = 1, 2, . . . , m− 1

1 l = m (2.5.20)

The polynomial Bm(z) is known as the conjugate reverse polynomial of Am(z) because its
coefficients are the conjugates of those of Am(z) except that they are in reverse order. So
since

Am(z) = 1+ a(m)1 z−1 + a(m)2 z−2 + · · · + a(m)m z−m (2.5.21)

Bm(z) = a(m)∗m + a(m)∗m−1z
−1 + · · · + a(m)∗1 z−(m−1) + z−m (2.5.22)then

If z0 is a zero ofAm(z), then z−1
0 is a zero ofBm(z). Therefore, ifAm(z) is minimum-phase,

then Bm(z) is maximum-phase.
Equations (2.5.19), (2.5.9), and (2.5.10) can be combined into a single equation

Am(z) = Am−1(z)+ kmz−mA∗m−1

(
1

z∗

)
(2.5.23)

This equation can be used to derive the following relation between the coefficients at stage
m in terms of the coefficients at stage m− 1:

a
(m)
l =




1 l = 0

a
(m−1)
l + kma(m−1)∗

m−l l = 1, 2, . . . , m− 1

km l = m
(2.5.24)
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To solve for the coefficients of the transfer function of the complete P -stage lattice, com-
pute (2.5.24) recursively, starting with m = 1 until m = P . The final coefficients al of the
desired filter A(z) are then given by

al = a(P )l 0 ≤ l ≤ P (2.5.25)

By substituting m− l for l in (2.5.24), we have

a
(m)
m−l = a(m−1)

m−l + kma(m−1)∗
l (2.5.26)

Therefore, a(m)l and a(m)m−l can be computed simultaneously using a(m−1)
l , a(m−1)

m−l , and km.
The lattice parameters km can be recovered from the coefficients al by a backward

recursion. Eliminating z−1Bm−1(z) from (2.5.9) and (2.5.10) and using (2.5.19), we obtain

Am−1(z) = Am(z)− kmz−mA∗m(1/z∗)
1− |km|2 (2.5.27)

The recursion can be started by setting a(P )l = al, 0 ≤ l ≤ P . Then, with m = P, P −
1, . . . , 1, we compute from (2.5.27)

km = a(m)m

a
(m−1)
l =




1 l = 0

a
(m)
l − kma(m)∗m−l

1− |km|2 1 ≤ l ≤ m− 1

(2.5.28)

This is the backward recursion to compute km from al . The computation in (2.5.28) is always
possible except when some |km| = 1. Except for this indeterminate case, the mapping
between the lattice parameters km and the coefficients al of the corresponding all-zero filter
is unique.

The Matlab function [k] = df2latcf(a) computes lattice coefficients km from poly-
nomial coefficients ak using (2.5.28). Similarly, the function [a] = latcf2df(k) computes
the direct-form coefficients from the lattice form.

Although the AZ lattice filters are highly modular, their software implementation is
more complex than the direct-form structures. To understand this implementation, we will
consider the steps involved in determining one output sample in a P -stage AZ lattice.
Assume that x(n) is available over 1 ≤ n ≤ N .

Input stage: The describing equation is

f0(n) = g0(n) = x(n) 1 ≤ n ≤ N
Thus in the implementation, f0(n) and g0(n) can be replaced by the input sample x(n),
which is assumed to be available in array x.

Stage 1: The describing equations are

f1(n) = f0(n)+ k1g0(n− 1) = x(n)+ k1x(n− 1)

g1(n) = k∗1f0(n)+ g0(n− 1) = k∗1x(n)+ x(n− 1)

Assuming that we have two arrays f and g of length P available to store fm(n) and gm(n)
at each n, respectively, and two arrays k and ck of length P to store km and k∗m, respectively,
then the Matlab fragment is

f(1) = x(n) + k(1)*x(n-1);
g(1) = ck(1)*x(n) + x(n-1);

At n = 1, we need x(0) in the above equations. This is an initial condition and is assumed
to be zero. Hence in the implementation, we need to augment the x array by prepending it
with a zero. This should be done in the initialization part. Similarly, arrays f and g should
be initialized to zero.
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Stages 2 through P : The describing equations are

fm(n) = fm−1(n)+ kmgm−1(n− 1)

gm(n) = k∗mfm−1(n)+ gm−1(n− 1)

Note that we need old (i.e., at n−1) values of array g in gm−1(n−1). Although it is possible
to avoid an additional array, for programming simplicity, we will assume that gm(n− 1) is
available in an array g_old of length P . This array should also be initialized to zero. The
Matlab fragment is

f(m) = f(m-1) + k(m)*g_old(m-1);
g(m) = ck*f(m-1) + g_old(m-1);

Output stage: The describing equation is

y(n) = fP (n)
Also we need to store the current gm(n) values in the g_old array for use in the calculations
of the next output value. Thus the Matlab fragment is

g_old = g;
y = f(P);

Now we can go back to stage 1 with new input value and recursively compute the remaining
output values.

The complete procedure is implemented in the function y = latcfilt(k,x).

2.5.2 All-Pole Lattice Structures

The AZ lattice in Figure 2.15 can be restructured quite simply to yield a corresponding
all-pole (AP) lattice structure. Let an AP system function be given by

H(z) = 1

1+
P∑
l=1

alz
−l
= 1

A(z)
(2.5.29)

which clearly is the inverse system of the AZ lattice of Figure 2.15. The difference equation
corresponding to (2.5.29) is

y(n)+
P∑
l=1

aly(n− l) = x(n) (2.5.30)

If we interchange x(n) with y(n) in (2.5.30), we will obtain the AZ system of (2.5.1).
Therefore, the lattice structure of the AP system can be obtained from Figure 2.15(b) by
interchanging x(n)with y(n). This lattice structure withP stages is shown in Figure 2.16(b).
To determine themth stage of the AP lattice, we consider (2.5.4) and (2.5.5) and interchange
x(n) with y(n). Thus the lattice structure shown in Figure 2.16(b) has

fP (n) = x(n) (2.5.31)

f0(n) = g0(n) = y(n) (2.5.32)as the input and

as the output. The signal quantities {fm(n)}Pm=0 then must be computed in descending order,
which can be obtained by rearranging (2.5.2) but not (2.5.3). Thus we obtain

fm−1(n) = fm(n)− kmgm−1(n− 1) (2.5.33)

gm(n) = k∗mfm−1(n)+ gm−1(n− 1) (2.5.34)and

These two equations represent themth stage of the all-pole lattice, shown in Figure 2.16(a),
where fm(n) and gm−1(n) are now the inputs to the mth stage and fm−1(n) and gm(n) are
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FIGURE 2.16
All-pole lattice structure.

the outputs. The transfer function from the input to the output is the same as that from fP (n)

to f0(n). This transfer function is the inverse of the transfer function from f0(n) to fP (n).
From (2.5.8), we conclude that the transfer function from x(n) to y(n) in Figure 2.16 is
equal to

H(z) = Y (z)

X(z)
= F0(z)

FP (z)
= 1

AP (z)
(2.5.35)

where AP (z) = A(z) in (2.5.29). To multiply (2.5.35) by the gain G, we simply multiply
either x(n) or y(n) by G in Figure 2.16(b).

Stability of all-pole systems. A causal LTI system is stable if all its poles are inside
the unit circle. For all-pole systems described by the denominator polynomial AP (z), this
implies that all its p roots are inside the unit circle, or alternatively, stability implies that
AP (z) is a minimum-phase polynomial. Numerical implementation of polynomial root-
finding operation is time-consuming. However, the following theorem shows how the lattice
coefficients {km}Pm=1 can be used for stability purposes.

THEOREM 2.3. The polynomial

AP (z) = 1+ a(P )1 z−1 + · · · + a(P )
P

z−P (2.5.36)

is minimum-phase, that is, has all its zeros inside the unit circle if and only if

|km| < 1 1 ≤ m ≤ P (2.5.37)

Proof. See Appendix E.

Therefore, if the lattice parameters km in Figure 2.16 are less than unity in magnitude,
then the all-pole filterH(z) in (2.5.35) is minimum-phase and stable sinceA(z) is guaranteed
to have all its zeros inside the unit circle.

Since the AP lattice coefficients are derived from the same procedure used for the AZ
lattice filter, we can use the k = df2latcf(a) function in Matlab. Care must be taken
to ignore the k0 coefficient in the k array. Similarly, the a = latcf2df(k) function can be
used to convert the lattice km coefficients to the direct-form coefficients ak provided that
k0 = 1 is used as the first element of the k array.
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All-pass lattice

The transfer function from fP (n) to gP (n) in Figure 2.16(b) can be written as

GP (z)

FP (z)
= GP (z)

G0(z)

F0(z)

FP (z)
(2.5.38)

where we used the fact that F0(z) = G0(z). From (2.5.8) and (2.5.19), we conclude that

GP (z)

FP (z)
= BP (z)

AP (z)
= z−PA∗(1/z∗)

A(z)
= a∗P + a∗P−1z

−1 + · · · + z−P
1+ a1z−1 + · · · + aP z−P (2.5.39)

which is the transfer function of an all-pass filter, since its magnitude on the unit circle is
unity at all frequencies.

2.6 SUMMARY

In this chapter we have reviewed the fundamental concepts of discrete-time signal process-
ing in both the time and frequency domains. We introduced usual definitions and descriptions
of signals, and we provided the analytical tools for linear system operations. Significant
attention was also given to those topics that will be used extensively in the rest of the book.
These topics include minimum-phase systems, inverse systems, and spectral factorization.
Finally, filters, which will be used in the chapter on adaptive filters, were discussed in greater
detail. It is important to grasp the material discussed in this chapter since it is fundamental
to understanding concepts presented in the remaining chapters. Therefore, the reader should
also consult any one of the widely used references on this subject (Proakis and Manolakis
1996; Oppenheim and Schafer 1989).

PROBLEMS

2.1 A continuous-time signal xc(t) is sampled by an A/D converter to obtain the sequence x(n). It
is processed by a digital filter h(n) = 0.8nu(n) to obtain the sequence y(n), which is further
reconstructed using an ideal D/A converter to obtain the continuous-time output yc(t). The
sampling frequency of A/D and D/A converters is 100 sampling intervals per second.

(a) If xc(t) = 2 cos (40πt + π/3), what is the digital frequency ω0 in x(n)?
(b) If xc(t) is as given above, determine the steady-state response yc,ss(t).

(c) Determine two different xc(t) signals that would give the same steady-state response yc,ss(t)

above.

2.2 Let x(n) be a sinusoidal sequence of frequency ω0 and of finite length N, that is,

x(n) =
{
A cosω0n 0 ≤ n ≤ N − 1

0 otherwise

Thus x(n) can be thought of as an infinite-length sinusoidal sequence multiplied by a rectangular
window of length N .

(a) If the DTFT of x(n) is expressed in terms of the real and imaginary parts as

X(ejω) � XR(ω)+ jXI(ω)

determine analytical expressions for XR(ω) and XI(ω). Express cosω in terms of complex
exponentials and use the modulation property of the DTFT to arrive at the result.

(b) Choose N = 32 and ω0 = π/4, and plot XR(ω) and XI(ω) for ω ∈ [−π, π ].
(c) Compute the 32-point DFT of x(n), and plot its real and imaginary samples. Superimpose

the above DTFT plots on the DFT plots. Comment on the results.
(d ) Repeat the above two parts for N = 32 and ω0 = 1.1π/4. Why are the plots so markedly

different?
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2.3 Let x(n) = cos (πn/4), and assume that we have only 16 samples available for processing.

(a) Compute the 16-point DFT of these 16 samples, and plot their magnitudes. (Make sure that
this is a stem plot.)

(b) Now compute the 32-point DFT of the sequence formed by appending the above 16 samples
with 16 zero-valued samples. This is called zero padding. Now plot the magnitudes of the
DFT samples.

(c) Repeat part (b) for the 64-point sequence by padding 48 zero-valued samples.
(d ) Explain the effect and hence the purpose of the zero padding operation on the DTFT spec-

trum.

2.4 Let x(n) = {1, 2, 3, 4, 3, 2, 1} and h(n) = {−1, 0, 1}.
(a) Determine the convolution y(n) = x(n) ∗ h(n) using the matrix-vector multiplication

approach given in (2.3.5).
(b) Develop a Matlab function to implement the convolution using the Toeplitz matrix in

(2.3.4). The form of the function should be y = convtoep(x,h).
(c) Verify your function, using the sequences given in part (a) above.

2.5 Let x(n) = (0.9)nu(n).
(a) Determine x(n) ∗ x(n) analytically, and plot its first 101 samples.
(b) Truncate x(n) to the first 51 samples. Compute and plot the convolution x(n) ∗ x(n), using

the conv function.
(c) Assume that x(n) is the impulse response of an LTI system. Determine the filter function

coefficient vectors a and b. Using the filter function, compute and plot the first 101
samples of the convolution x(n) ∗ x(n).

(d ) Comment on your plots. Which Matlab approach is best suited for infinite-length sequences
and why?

2.6 Let Hap(z) be a causal and stable all-pass system excited by a causal input x(n) producing the
response y(n). Show that for any time n0,

n0∑
n=0

|y(n)|2 ≤
n0∑
n=0

|x(n)|2 (P.1)

2.7 This problem examines monotone phase-response property of a causal and stable PZ all-pass
system.

(a) Consider the pole-zero diagram of a real first-order all-pass system

H(z) = p − z−1

1− pz−1

Show that its phase response decreases monotonically fromπ (atω = 0) to−π (atω = 2π ).
(b) Consider the pole-zero diagram of a real second-order all-pass system

H(z) =
[
(r�θ)− z−1

1− (r�θ)∗z−1

] [
(r�θ)∗ − z−1

1− (r�θ)z−1

]

Show that its phase response decreases monotonically as ω increases from 0 to π .
(c) Generalize the results of parts (a) and (b) to show that the phase response of a causal and

stable PZ all-pass system decreases monotonically from �[H(ej0)] to �[H(ej0)] − 2πP
as ω increases from 0 to π .

2.8 This problem explores the minimum group delay property of the minimum-phase systems.

(a) Consider the following stable minimum-, maximum-, and mixed-phase systems

Hmin(z) = (1− 0.25z−1)(1+ 0.5z−1)

Hmax(z) = (0.25− z−1)(0.5+ z−1)

Hmix(z) = (1− 0.25z−1)(0.5+ z−1)

which have the same magnitude response. Compute and plot group delay responses. Observe
that the minimum-phase system has the minimum group delay.
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(b) Using (2.4.18) and Problem 2.7, prove the minimum group delay property of the minimum-
phase systems.

2.9 Given the following spectral density functions, express them in minimum- and maximum-phase
components.

(a) Ry(z) = 1− 2.5z−1 + z−2

1− 2.05z−1 + z−2

(b) Ry(z) = 3z2 − 10+ 3z−2

3z2 + 10+ 3z−2

2.10 Consider the all-pass system function Hap(z) given by

Hap(z) = 1− αz−1

z−1 − α∗ |α| < 1 (P.2)

(a) Determine |Hap(z)|2 as a ratio of polynomials in z.
(b) Show that

D2|H |(z)− A2|H |(z) = (|z|2 − 1)(1− |α|2)

|Hap(z)|2 =
D2|H |(z)
A2|H |(z)

where

(c) Using |α| < 1 and the above result, show that

|Hap(z)|



< 1 if |z| < 1

= 1 if |z| = 1

> 1 if |z| > 1

2.11 Consider the system function of a stable system of the form

H(z) = a + bz−1 + cz−2

c + bz−1 + az−2

(a) Show that the magnitude of the frequency response function |H(ejω)| is equal to 1 for all
frequencies, that is, it is an all-pass system.

(b) Let

H(z) = 3− 2z−1 + z−2

1− 2z−1 + 3z−2

Determine both the magnitude and the phase of the frequency response H(ejω), and plot
these functions over [0, π ].

2.12 Consider the system function of a third-order FIR system

H(z) = 12+ 28z−1 − 29z−2 − 60z−3

(a) Determine the system functions of all other FIR systems whose magnitude responses are
identical to that of H(z).

(b) Which of these systems is a minimum-phase system and which one is a maximum-phase
system?

(c) Let hk(n) denote the impulse response of the kth FIR system determined in part (a) and
define the energy delay of the kth system by

Ek(n) �
∞∑
m=n
|hk(m)|2 0 ≤ n ≤ 3

for all values of k. Show that

Emin(n) ≤ Ek(n) ≤ Emax(n) 0 ≤ n ≤ 3

Emin(∞) = Ek(∞) = Emax(∞) = 0and

where Emin(n) and Emax(n) are energy delays of the minimum-phase and maximum-phase
systems, respectively.



March 8, 2005 10:09 e56-ch2 Sheet number 41 Page number 73 black

73

problems

2.13 Consider the system function

H(z) = 1+ z−1 − 6z−2

1+ 1
4
z−1 − 1

8
z−2

(a) Show that the system H(z) is not minimum-phase.
(b) Construct a minimum-phase system Hmin(z) such that |Hmin(e

jω)| = |H(ejω)|.
(c) Is H(z) a maximum-phase system? If yes, explain why. If not, then construct a maximum-

phase system Hmax(z) such that |Hmax(e
jω)| = |H(ejω)|.

2.14 Implement the following system as a parallel connection of two all-pass systems:

H(z) = 3+ 9z−1 + 9z−2 + 3z−3

12+ 10z−1 + 2z−2

2.15 Determine the impulse response of an all-pole system with lattice parameters

k1 = 0.2 k2 = 0.3 k3 = 0.5 k4 = 0.7

Draw the direct- and lattice form structures of the above system.
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CHAPTER 3

Random Variables, Vectors,
and Sequences

So far we have dealt with deterministic signals, that is, signals whose amplitude is uniquely
specified by a mathematical formula or rule. However, there are many important examples
of signals whose precise description (i.e., as deterministic signals) is extremely difficult,
if not impossible. As mentioned in Section 2.1, such signals are called random signals.
Although random signals are evolving in time in an unpredictable manner, their average
properties can be often assumed to be deterministic; that is, they can be specified by explicit
mathematical formulas. This is the key for the modeling of a random signal as a stochastic
process.

Our aim in the subsequent discussions is to present some basic results from the theory
of random variables, random vectors, and discrete-time stochastic processes that will be
useful in the chapters that follow. We assume that most readers have some basic knowledge
of these topics, and so parts of this chapter may be treated as a review exercise. However,
some specific topics are developed in greater depth with a viewpoint that will serve as a
foundation for the rest of the book. A more complete treatment can be found in Papoulis
(1991), Helstrom (1992), and Stark and Woods (1994).

3.1 RANDOM VARIABLES

The concept of random variables begins with the definition of probability. Consider an
experiment with a finite or infinite number of unpredictable outcomes from a universal set,
denoted by S = {ζ 1, ζ 2, . . .}. A collection of subsets of S containing S itself and that is
closed under countable set operations is called a σ field and denoted by F . Elements of
F are called events. The unpredictability of these events is measured by a nonnegative set
function Pr{ζ k}, k = 1, 2, . . . , called the probability of event ζ k . This set function satisfies
three well-known and intuitive axioms (Papoulis 1991) such that the probability of any event
produced by set-theoretic operations on the events of S can be uniquely determined. Thus,
any situation of random nature, abstract or otherwise, can be studied using the axiomatic
definition of probability by defining an appropriate probability space (S,F, Pr).

In practice it is often difficult, if not impossible, to work with this probability space for
two reasons. First, the basic space contains abstract events and outcomes that are difficult to
manipulate. In engineering applications, we want random outcomes that can be measured
and manipulated in a meaningful way by using numerical operations. Second, the probability
function Pr{·} is a set function that again is difficult, if not impossible, to manipulate by using
calculus. These two problems are addressed through the concept of the random variable.
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DEFINITION 3.1 (RANDOM VARIABLE) . A random variable x(ζ ) is a mapping that assigns
a real number x to every outcome ζ from an abstract probability space. This mapping should
satisfy the following two conditions: (1) the interval {x(ζ ) ≤ x} is an event in the abstract
probability space for every x; (2) Pr{x(ζ ) = ∞} = 0 and Pr{x(ζ ) = −∞} = 0.

A complex-valued random variable is defined by x(ζ ) = xR(ζ )+ jxI(ζ ) where xR(ζ )

and xI(ζ ) are real-valued random variables. We will discuss complex-valued random vari-
ables in Section 3.2. Strictly speaking, a random variable is neither random nor a variable
but is a function or a mapping. As shown in Figure 3.1, the domain of a random variable
is the universal set S, and its range is the real line R. Since random variables are numbers,
they can be added, subtracted, or manipulated otherwise.

z1

z2

zk

Random variable
x (z)

Abstract
space

Real
lineS

z3

x( )zk

x( )z2

x( )z3

x( )z1

FIGURE 3.1
Graphical illustration of random variable
mapping.

An important comment on notation. We will use x(ζ ), y(ζ ), . . . , to denote random
variables and the corresponding lowercase alphabet without parentheses to denote their
values; for example, x(ζ ) = x means that the random variable x(ζ ) takes value equal to
x. We believe that this notation will not cause any confusion because the meaning of the
lowercase variable will be clear from the context.

†
A specific value of the random variable

realization will be denoted by x(ζ 0) = x0 (corresponding to a particular event ζ 0 in the
original space).

A random variable is called discrete-valued if x takes a discrete set of values {xk};
otherwise, it is termed a continuous-valued random variable. A mixed random variable
takes both discrete and continuous values.

3.1.1 Distribution and Density Functions

The probability set function Pr{x(ζ ) ≤ x} is a function of the set {x(ζ ) ≤ x}, but it is also
a number that varies with x. Hence it is also a function of a point x on the real line R. This
point function is the well-known cumulative distribution function (cdf ) Fx(x) of a random
variable x(ζ ) and is defined by

Fx(x) � Pr{x(ζ ) ≤ x} (3.1.1)

The second important probability function is the probability density function (pdf ) fx(x),

†
Traditionally, the uppercase alphabet is used to denote random variables. We have reserved the use of uppercase

alphabet for transform-domain quantities.
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which is defined as a formal derivative

fx(x) � dFx(x)

dx
(3.1.2)

Note that the pdf fx(x) is not the probability, but must be multiplied by a certain interval

x to obtain a probability, that is,

fx(x)
x ≈ 
Fx(x) � Fx(x + 
x) − Fx(x) = Pr{x < x(ζ ) ≤ x + 
x} (3.1.3)

Integrating both sides of (3.1.2), we obtain

Fx(x) =
∫ x

−∞
fx(ν) dν (3.1.4)

For discrete-valued random variables, we use the probability mass function (pmf ) pk ,
defined as the probability that random variable x(ζ ) takes a value equal to xk , or

pk � Pr{x(ζ ) = xk} (3.1.5)

These probability functions satisfy several important properties (Papoulis 1991), such
as

0 ≤ Fx(x) ≤ 1 Fx(−∞) = 0 Fx(∞) = 1 (3.1.6)

fx(x) ≥ 0
∫ ∞

−∞
fx(x) dx = 1 (3.1.7)

Using these functions and their properties, we can compute the probabilities of any event
(or interval) on R. For example,

Pr{x1 < x(ζ ) ≤ x2} = Fx(x2) − Fx(x1) =
∫ x2

x1

fx(x) dx (3.1.8)

3.1.2 Statistical Averages

To completely characterize a random variable, we have to know its probability density
function. In practice, it is desirable to summarize some of the key aspects of a density
function by using a few numbers rather than to specify the entire density function. These
numbers, which are called statistical averages or moments, are evaluated by using the
mathematical expectation operation. Although density functions are needed to theoretically
compute moments, in practice, moments are easily estimated without the explicit knowledge
of density functions.

Mathematical expectation

This is one of the most important operations in the theory of random variables. It is
generally used to describe various statistical averages, and it is also needed in estimation
theory. The expected or mean value of a random variable x(ζ ) is given by

E{x(ζ )} � µx =




∑
k

xkpk x(ζ ) discrete

∫ ∞

−∞
xfx(x) dx x(ζ ) continuous

(3.1.9)

Although, strictly speaking, to compute E{x(ζ )}we need the definitions for both the discrete
and continuous random variables, we will follow the engineering practice of using the
expression for the continuous random variable (which can also describe a discrete random
variable if we allow impulse functions in its pdf). The expectation operation computes a
statistical average by using the density fx(x) as a weighting function. Hence, the mean µx

can be regarded as the “location” (or the “center of gravity”) of the density fx(x), as shown
in Figure 3.2(a). If fx(x) is symmetric about x = a, then µx = a and, in particular, if fx(x)
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(a) Mean (b) Variance

(c) Skewness (d ) Kurtosis
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FIGURE 3.2
Illustration of mean, standard deviation, skewness, and kurtosis.

is an even function, then µx = 0. One important property of expectation is that it is a linear
operation, that is,

E{αx(ζ ) + β} = αµx + β (3.1.10)

Let y(ζ ) = g[x(ζ )] be a random variable obtained by transforming x(ζ ) through a suitable
function.

†
Then the expectation of y(ζ ) is given by

E{y(ζ )} � E{g[x(ζ )]} =
∫ ∞

−∞
g(x)fx(x) dx (3.1.11)

Moments

Using the expectation operations (3.1.9) and (3.1.11), we can define various moments
of the random variable x(ζ ) that describe certain useful aspects of the density function. Let
g[x(ζ )] = xm(ζ ). Then

r(m)
x � E{xm(ζ )} =

∫ ∞

−∞
xmfx(x) dx (3.1.12)

is called the mth-order moment of x(ζ ). In particular, r(0)
x = 1, and the first-order moment

r
(1)
x = µx . The second-order moment r

(2)
x = E{x2(ζ )} is called the mean-squared value,

and it plays an important role in estimation theory. Note that

E{x2(ζ )} 
= E2{x(ζ )} (3.1.13)

Corresponding to these moments we also have central moments. Let g[x(ζ )] = [x(ζ )−
µx]m, then

γ (m)
x � E{[x(ζ ) − µx]m} =

∫ ∞

−∞
(x − µx)

mfx(x) dx (3.1.14)

is called the mth-order central moment of x(ζ ). In particular, γ (0)
x = 1 and γ

(1)
x = 0, which

is obvious. Clearly, a random variable’s moments and central moments are identical if its

†
Such a function g(·) is called a Baire function (Papoulis 1991).
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mean value is zero. The second central moment is of considerable importance and is called
the variance of x(ζ ), denoted by σ 2

x . Thus

var[x(ζ )] � σ 2
x � γ (2)

x = E{[x(ζ ) − µx]2} (3.1.15)

The quantity σx =
√

γ
(2)
x is called the standard deviation of x(ζ ) and is a measure of

the spread (or dispersion) of the observed values of x(ζ ) around its mean µx [see Figure
3.2(b)]. The relation between a random variable’s moments and central moments is given
by (see Problem 3.3)

γ (m)
x =

m∑
k=0

(
m

k

)
(−1)kµk

xr
(m−k)
x (3.1.16)

In particular, and also from (3.1.15), we have

σ 2
x = r(2)

x − µ2
x = E{x2(ζ )} − E2{x(ζ )} (3.1.17)

The quantity skewness is related to the third-order central moment and characterizes
the degree of asymmetry of a distribution around its mean, as shown in Figure 3.2(c). It is
defined as a normalized third-order central moment, that is,

Skew � κ̃ (3)
x � E

{[
x(ζ ) − µx

σx

]3
}
= 1

σ 3
x

γ (3)
x (3.1.18)

and is a dimensionless quantity. It is a pure number that attempts to describe leaning of the
shape of the distribution. The skewness is zero if the density function is symmetric about its
mean value, is positive if the shape leans towards the right, or is negative if it leans towards
the left.

The quantity related to the fourth-order central moment is called kurtosis, which is also
a dimensionless quantity. It measures the relative flatness or peakedness of a distribution
about its mean as shown in Figure 3.2(d ). This relative measure is with respect to a normal
distribution, which will be introduced in the next section. The kurtosis is defined as

Kurtosis � κ̃ (4)
x � E

{[
x(ζ ) − µx

σx

]4
}
− 3 = 1

σ 4
x

γ (4)
x − 3 (3.1.19)

where the term −3 makes the kurtosis κ̃ (4)
x = 0 for the normal distribution [see (3.1.40) for

explanation].

Chebyshev’s inequality. A useful result in the interpretation and use of the mean µ and
the variance σ 2 of a random variable is given by Chebyshev’s inequality. Given a random
variable x(ζ ) with its mean µx and variance σ 2

x , we have the inequality

Pr{|x(ζ ) − µx | ≥ kσx} ≤ 1

k2
k > 0 (3.1.20)

The interpretation of the above inequality is that regardless of the shape of fx(x), the random
variable x(ζ ) deviates from its mean by k times its standard deviation with probability less
than or equal to 1/k2.

Characteristic functions

The Fourier and Laplace transforms find many uses in probability theory through the
concepts of characteristic and moment generating functions. The characteristic function of
a random variable x(ζ ) is defined by the integral

�x(ξ) � E{ejξx(ζ )} =
∫ ∞

−∞
fx(x)e

jξx dx (3.1.21)



March 9, 2005 11:42 e56-ch3 Sheet number 6 Page number 80 black

80

chapter 3
Random Variables,
Vectors, and Sequences

which can be interpreted as the Fourier transform of fx(x) with sign reversal in the complex
exponential. To avoid confusion with the cdf, we do not use Fx(ξ) to denote this Fourier
transform. Furthermore, the variable ξ in �x(ξ) is not and should not be interpreted as
frequency. When jξ in (3.1.21) is replaced by a complex variable s, we obtain the moment
generating function defined by

�̄x(s) � E{esx(ζ )} =
∫ ∞

−∞
fx(x)e

sx dx (3.1.22)

which again can be interpreted as the Laplace transform of fx(x) with sign reversal. Ex-
panding esx in (3.1.22) in a Taylor series at s = 0, we obtain

�̄x(s) = E{esx(ζ )} = E

{
1 + sx(ζ ) + [sx(ζ )]2

2! + · · · + [sx(ζ )]m
m! + · · ·

}

= 1 + sµx + s2

2! r
(2)
x + · · · + sm

m! r
(m)
x + · · ·

(3.1.23)

provided every moment r(m)
x exists. Thus from (3.1.23) we infer that if all moments of x(ζ )

are known (and exist), then we can assemble �̄x(s) and upon inverse Laplace transforma-
tion, we can determine the density function fx(x). If we differentiate �̄x(s) with respect to
s, we obtain

r(m)
x = dm[�̄x(s)]

dsm

∣∣∣∣
s=0

= (−j)m
dm[�x(ξ)]

dξm

∣∣∣∣
ξ=0

m = 1, 2, . . . (3.1.24)

which provides the mth-order moment of the random variable x(ζ ).
The functions �x(ξ) and �̄x(s) possess all the properties associated with the Fourier

and Laplace transforms, respectively. Thus, since fx(x) is always a real-valued function,
�x(ξ) is conjugate symmetric; and if fx(x) is also an even function, then �x(ξ) is a real-
valued even function. In addition, they possess several properties due to the basic nature of
the pdf. Therefore, the characteristic function �x(ξ) always exists

†
since∫

|fx(x)| dx =
∫

fx(x) dx = 1

and �x(ξ) is maximum at the origin, that is,

|�x(ξ)| ≤ �x(0) = 1 (3.1.25)

since fx(x) ≥ 0.

Cumulants

These statistical descriptors are similar to the moments, but provide better information
for higher-order moment analysis, which we will consider in detail in Chapter 12. The
cumulants are derived by considering the moment generating function’s natural logarithm.
This logarithm is commonly referred to as the cumulant generating function and is given
by

!̄x(s) � ln �̄x(s) = ln E{esx(ζ )} (3.1.26)

When s is replaced by jξ in (3.1.26), the resulting function is known as the second char-
acteristic function and is denoted by !x(ξ).

The cumulants κ
(m)
x of a random variable x(ζ ) are defined as the derivatives of the

cumulant generating function, that is,

κ(m)
x � dm[!̄x(s)]

dsm

∣∣∣∣
s=0

= (−j)m
dm[!x(ξ)]

dξm

∣∣∣∣
ξ=0

m = 1, 2, . . . (3.1.27)

†
We will generally choose the characteristic function over the moment generating function.
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Clearly, κ(0)
x = 0. It can be shown that (see Problem 3.4) for a zero-mean random variable,

the first five cumulants as functions of the central moments are given by

κ(1)
x = r

(1)
(x) = µx = 0 (3.1.28)

κ(2)
x = γ (2)

x = σ 2
x (3.1.29)

κ(3)
x = γ (3)

x (3.1.30)

κ(4)
x = γ (4)

x − 3σ 4
x (3.1.31)

κ(5)
x = γ (5)

x − 10γ (3)
x σ 2

x (3.1.32)

which show that the first two cumulants are identical to the first two central moments.
Clearly due to the logarithmic function in (3.1.26), cumulants are useful for dealing with
products of characteristic functions (see Section 3.2.4).

3.1.3 Some Useful Random Variables

Random variable models are needed to describe (or approximate) complex physical phe-
nomena using simple parameters. For example, the random phase of a sinusoidal carrier can
be described by a uniformly distributed random variable so that we can study its statistical
properties. This approximation allows us to investigate random signals in a sound mathe-
matical way. We will describe three continuous random variable models although there are
several other known continuous as well as discrete models available in the literature.

Uniformly distributed random variable. This is an appropriate model in situations in
which random outcomes are “equally likely.” Here x(ζ ) assumes values on R according to
the pdf

fx(x) =



1

b − a
a ≤ x ≤ b

0 elsewhere
(3.1.33)

where a < b are specified parameters. This pdf is shown in Figure 3.3. The corresponding

−2 0 1−1 2

0.5

x

Uniform

Normal

Cauchy

fx(x)

FIGURE 3.3
Probability density functions of useful random variables.
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cdf is given by

Fx(x) =
∫ x

−∞
fx(ν) dν =




0 x < a

x − a

b − a
a ≤ x ≤ b

1 x > a

(3.1.34)

and the characteristic function is given by

�x(ξ) = ejξb − ejξa

jξ(b − a)
(3.1.35)

The mean and the variance of this random variable are given by, respectively,

µx = a + b

2
and σ 2

x = (b − a)2

12
(3.1.36)

Normal random variable. This is the most useful and convenient model in many ap-
plications, as we shall see later. It is also known as a Gaussian random variable, and we will
use both terms interchangeably. The pdf of a normally distributed random variable x(ζ )

with mean µx and standard deviation σx is given by

fx(x) = 1√
2πσ 2

x

exp

[
−1

2

(
x − µx

σx

)2
]

(3.1.37)

where −∞ < µ < ∞ and σ ≥ 0 (see Figure 3.3). The characteristic function of the normal
random variable is given by

�x(ξ) = exp(jµxξ − 1
2σ

2
xξ

2) (3.1.38)

Clearly, the pdf of a normal random variable is completely described by its mean µx and
standard deviation σx and is denoted by N (µx, σ

2
x). We note that all higher-order moments

of a normal random variable can be determined in terms of the first two moments, that is,

γ (m)
x = E{[x(ζ ) − µx]m} =

{
1 · 3 · 5 · · · (m − 1)σm

x if m even
0 if m odd

(3.1.39)

In particular, we obtain the fourth moment as

γ (4)
x = 3σ 4

x (3.1.40)

or from (3.1.19), kurtosis = 0, which explains the term −3 in (3.1.19).
From (3.1.37), we observe that the Gaussian random variable is completely determined

by its first two moments (mean µx and variance σ 2
x), which means that the higher moments

do not provide any additional information about the Gaussian density function. In fact, all
higher-order moments can be obtained in terms of the first two moments [see Equation
(3.1.39)]. Thus for a non-Gaussian random variable, we would like to know how different
that random variable is from a Gaussian random variable (this is also known as a departure
from the Gaussian-ness). This measurement of the deviation from being Gaussian is given by
the cumulants that were defined in (3.1.27). Roughly speaking, the cumulants are like central
moments (which measure deviations from the mean) of non-Gaussian random variables for
Gaussian departure. Also from (3.1.30) and (3.1.31), we see that all higher-order (that
is, m > 2) cumulants of a Gaussian random variable are zero. This fact is used in the
analysis and estimation of non-Gaussian random variables (and later for non-Gaussian
random processes).

Cauchy random variable. This is an appropriate model in which a random variable
takes large values with significant probability (heavy-tailed distribution). The Cauchy pdf
with parameters µ and β is given by

fx(x) = β

π

1

(x − µ)2 + β2
(3.1.41)



March 9, 2005 11:42 e56-ch3 Sheet number 9 Page number 83 black

83

section 3.2
Random Vectors

and is shown in Figure 3.3. The corresponding cdf is given by

Fx(x) = 0.5 + 1

π
arctan

x − µ

β
(3.1.42)

and the characteristic function is given by

�x(ξ) = exp(jµξ − β|ξ |) (3.1.43)

The Cauchy random variable has mean µx = µ. However, its variance does not exist
because E{x2} fails to exist in any sense, and hence the moment generating function does
not exist, in general. It has the property that the sum of M independent Cauchy random
variables is also Cauchy (see Example 3.2.3). Thus a Cauchy random variable is an example
of an infinite-variance random variable.

Random number generators. Random numbers, by definition, are truly unpredictable,
and hence it is not possible to generate them by using a well-defined algorithm on a computer.
However, in many simulation studies, we need to use sequences of numbers that appear to
be random and that possess required properties, for example, Gaussian random numbers
in a Monte Carlo analysis. These numbers are called pseudo random numbers, and many
excellent algorithms are available to generate them on a computer (Park and Miller 1988).
In Matlab, the function rand generates numbers that are uniformly distributed over (0, 1)
while the function randn generates N (0, 1) pseudo random numbers.

3.2 RANDOM VECTORS

In many applications, a group of signal observations can be modeled as a collection of
random variables that can be grouped to form a random vector. This is an extension of the
concept of random variable and generalizes many scalar quantities to vectors and matrices.
One example of a random vector is the case of a complex-valued random variable x(ζ ) =
xR(ζ )+ jxI(ζ ), which can be considered as a group of xR(ζ ) and xI(ζ ). In this section, we
provide a review of the basic properties of random vectors and related results from linear
algebra. We first begin with real-valued random vectors and then extend their concepts to
complex-valued random vectors.

3.2.1 Definitions and Second-Order Moments

A real-valued vector containing M random variables

x(ζ ) = [x1(ζ ), x2(ζ ), . . . , xM(ζ )]T (3.2.1)

is called a random M vector or a random vector when dimensionality is unimportant. As
usual, superscript T denotes the transpose of the vector. We can think of a real-valued
random vector as a mapping from an abstract probability space to a vector-valued, real
space R

M . Thus the range of this mapping is an M-dimensional space.

Distribution and density functions

A random vector is completely characterized by its joint cumulative distribution func-
tion, which is defined by

Fx(x1, . . . , xM) � Pr{x1(ζ ) ≤ x1, . . . , xM(ζ ) ≤ xM} (3.2.2)

and is often written as

Fx(x) = Pr{x(ζ ) ≤ x} (3.2.3)
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for convenience. A random vector can be also characterized by its joint probability density
function, which is defined by

fx(x) = lim

x1→0

...


xM→0

Pr{x1 < x1(ζ ) ≤ x1 + 
x1, . . . , xM < xM(ζ ) ≤ xM + 
xM}

x1 · · ·
xM

� ∂

∂x1
· · · ∂

∂xM

Fx(x)

(3.2.4)
The function

fxj
(xj ) =

∫
· · ·
∫

(M−1)

fx(x) dx1 · · · dxj−1 dxj+1 · · · dxM (3.2.5)

is known as a marginal density function and describes individual random variables. Thus
the probability functions defined for a random variable in the previous section are more
appropriately called marginal functions. The joint pdf fx(x) must be multiplied by a certain
M-dimensional region 
x to obtain a probability. From (3.2.4) we obtain

Fx(x) =
∫ x1

−∞
· · ·
∫ xM

−∞
fx(ν) dν1 · · · dνM =

∫ x

−∞
fx(ν) dν (3.2.6)

These joint probability functions also satisfy several important properties that are similar to
(3.1.6) through (3.1.8) for random variables. In particular, note that both fx(x) and Fx(x)
are positive multidimensional functions.

The joint [and conditional probability (see Papoulis 1991)] functions can also be used
to define the concept of independent random variables. Two random variables x1(ζ ) and
x2(ζ ) are independent if the events {x1(ζ ) ≤ x1} and {x2(ζ ) ≤ x2} are jointly independent,
that is, if

Pr{x1(ζ ) ≤ x1, x2(ζ ) ≤ x2} = Pr{x1(ζ ) ≤ x1} Pr{x2(ζ ) ≤ x2}
which implies that

Fx1,x2(x1, x2) = Fx1(x1)Fx2(x2) and fx1,x2(x1, x2) = fx1(x1)fx2(x2) (3.2.7)

Complex-valued random variables and vectors

As we shall see in later chapters, in applications such as channel equalization, array
processing, etc., we encounter complex signal and noise models. To formulate these models,
we need to describe complex random variables and vectors, and then extend our standard
definitions and results to the complex case. A complex random variable is defined as

†

x(ζ ) = xR(ζ )+ jxI(ζ ), where xR(ζ ) and xI(ζ ) are real-valued random variables. Thus we
can think of x(ζ ) as a mapping from an abstract probability space S to a complex space C.
Alternatively, x(ζ ) can be thought of as a real-valued random vector [xR(ζ ), xI(ζ )]T with a
joint cdf FxR,xI(xR, xI) or a joint pdf fx1,x2(x1, x2) that will allow us to define its statistical
averages. The mean of x(ζ ) is defined as

E{x(ζ )} = µx = E{xR(ζ ) + jxI(ζ )} = µxR
+ jµxI

(3.2.8)

and the variance is defined as

σ 2
x = E{|x(ζ ) − µx |2} (3.2.9)

which can be shown to be equal to

σ 2
x = E{|x(ζ )|2} − |µx |2 (3.2.10)

†
We will not make any distinction in notation between a real-valued and a complex-valued random variable. The

actual type should be evident from the context.



March 9, 2005 11:42 e56-ch3 Sheet number 11 Page number 85 black

85

section 3.2
Random Vectors

A complex-valued random vector is given by

x(ζ ) = xR(ζ ) + jxI(ζ ) =


xR1(ζ )
...

xRM(ζ )


+ j



xI1(ζ )
...

xIM(ζ )


 (3.2.11)

and we can think of a complex-valued random vector as a mapping from an abstract proba-
bility space to a vector-valued, complex space C

M . The cdf for the complex-valued random
vector x(ζ ) is then defined as

Fx(x) � Pr{x(ζ ) ≤ x} � Pr{xR(ζ ) ≤ xR, xI(ζ ) ≤ xI} (3.2.12)

while its joint pdf is defined as

fx(x) = lim

xR1→0

...


xIM→0

Pr{xR < xR(ζ ) ≤ xR + 
xR, xI < xI(ζ ) ≤ xI + 
xI}

xR1
xI1 · · ·
xRM
xIM

� ∂

∂xR1

∂

∂xI1
· · · ∂

∂xRM

∂

∂xIM
Fx(x)

(3.2.13)

From (3.2.13), the cdf is obtained by integrating the pdf over all real and imaginary parts,
that is

Fx(x) =
∫ xR1

−∞
· · ·
∫ xIM

−∞
fx(ν) dνR1 · · · dνIM =

∫ x

−∞
fx(ν) dν (3.2.14)

where the single integral in the last expression is used as a compact notation for multidi-
mensional integrals and should not be confused with a complex-contour integral. These
probability functions for a complex-valued random vector possess properties similar to
those of the real-valued random vectors. In particular,∫ ∞

−∞
fx(x) dx = 1 (3.2.15)

Statistical description

Clearly the above probability functions require an enormous amount of information
that is not easy to obtain or is too complex mathematically for practical use. In practical
applications, random vectors are described by less complete but more manageable statistical
averages.

Mean vector. As we have seen before, the most important statistical operation is the
expectation operation. The marginal expectation of a random vector x(ζ ) is called the mean
vector and is defined by

µx = E{x(ζ )} =


E{x1(ζ )}
...

E{xM(ζ )}


 =



µ1
...

µM


 (3.2.16)

where the integral is taken over the entire C
M space. The components of µ are the means

of the individual random variables.

Correlation and covariance matrices. The second-order moments of a random vector
x(ζ ) are given as matrices and describe the spread of its distribution. The autocorrelation
matrix is defined by

Rx � E{x(ζ )xH (ζ )} =


r11 · · · r1M
...

. . .
...

rM1 · · · rMM


 (3.2.17)
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where superscript H denotes the conjugate transpose operation, the diagonal terms

rii � E{|xi(ζ )|2} i = 1, . . . ,M (3.2.18)

are the second-order moments, denoted earlier as r
(2)
xi

, of random variables xi(ζ ), and the
off-diagonal terms

rij � E{xi(ζ )x
∗
j (ζ )} = r∗ji i 
= j (3.2.19)

measure the correlation, that is, the statistical similarity between the random variables xi(ζ )

and xj (ζ ). From (3.2.19) we note that the correlation matrix Rx is conjugate symmetric or
Hermitian, that is, Rx = RH

x .

The autocovariance matrix is defined by

�x � E{[x(ζ ) − µx][x(ζ ) − µx]H } �



γ 11 · · · γ 1M
...

. . .
...

γM1 · · · γMM


 (3.2.20)

where the diagonal terms

γ ii = E{|xi(ζ ) − µi |2} i = 1, . . . ,M (3.2.21)

are the (self-)variances of xi(ζ ) denoted earlier as σ 2
xi

while the off-diagonal terms

γ ij = E{[xi(ζ )−µi][xj (ζ )−µj ]∗} = E{xi(ζ )x
∗
j (ζ )}−µiµ

∗
j = γ ∗

ji i 
= j (3.2.22)

are the values of the covariance between xi(ζ ) and xj (ζ ). The covariance matrix �x is
also a Hermitian matrix. The covariance γ ij can also be expressed in terms of standard
deviations of xi(ζ ) and xj (ζ ) as γ ij = ρijσ iσ j , where

ρij �
γ ij

σ iσ j

= ρji (3.2.23)

is called the correlation coefficient between xi(ζ ) and xj (ζ ). Note that

|ρij | ≤ 1 i 
= j ρii = 1 (3.2.24)

The correlation coefficient measures the degree of statistical similarity between two random
variables. If |ρij | = 1, then random variables are said to be perfectly correlated ; but if
ρij = 0 (that is, when the covariance γ ij = 0), then xi(ζ ) and xj (ζ ) are said to uncorrelated.

The autocorrelation and autocovariance matrices are related. Indeed, we can easily see
that

�x � E{[x(ζ ) − µx][x(ζ ) − µx]H } = Rx − µxµ
H
x (3.2.25)

which shows that these two moments have essentially the same amount of information. In
fact, if µx = 0, then �x = Rx. The autocovariance measures a weaker form of interaction
between random variables called correlatedness that should be contrasted with the stronger
form of independence that we described in (3.2.7). If random variables xi(ζ ) and xj (ζ ) are
independent, then they are also uncorrelated since (3.2.7) implies that

E{xi(ζ )x
∗
j (ζ )} = E{xi(ζ )}E{x∗j (ζ )} or γ ij = 0 (3.2.26)

but uncorrelatedness does not imply independence unless random variables are jointly
Gaussian (see Problem 3.15). The autocorrelation also measures another weaker form of
interaction called orthogonality. Random variables xi(ζ ) and xj (ζ ) are orthogonal if their
correlation

rij = E{xi(ζ )x
∗
j (ζ )} = 0 i 
= j (3.2.27)

Clearly, from (3.2.26) if one or both random variables have zero means, then uncorrelated-
ness also implies orthogonality.
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We can also define correlation and covariance functions between two random vectors.
Let x(ζ ) and y(ζ ) be random M- and L-vectors, respectively. Then the M × L matrix

Rxy � E{xyH } =


E{x1(ζ )y

∗
1 (ζ )} · · · E{x1(ζ )y

∗
L(ζ )}

...
. . .

...

E{xM(ζ )y∗1 (ζ )} · · · E{xM(ζ )y∗L(ζ )}


 (3.2.28)

is called a cross-correlation matrix whose elements rij are the correlations between random
variables xi(ζ ) and yj (ζ ). Similarly the M × L matrix

�xy � E{[x(ζ )−µx][y(ζ )−µy]H } = Rxy − µxµ
H
y (3.2.29)

is called a cross-covariance matrix whose elements cij are the covariances between xi(ζ )

and yj (ζ ). In general the cross-matrices are not square matrices, and even if M = L, they
are not necessarily symmetric. Two random vectors x(ζ ) and y(ζ ) are said to be

• Uncorrelated if

�xy = 0 ⇒ Rxy = µxµ
H
y (3.2.30)

• Orthogonal if

Rxy = 0 (3.2.31)

Again, if µx or µy or both are zero vectors, then (3.2.30) implies (3.2.31).

3.2.2 Linear Transformations of Random Vectors

Many signal processing applications involve linear operations on random vectors. Linear
transformations are relatively simple mappings and are given by the matrix operation

y(ζ ) = g[x(ζ )] = Ax(ζ ) (3.2.32)

where A is an L×M (not necessarily square) matrix. The random vector y(ζ ) is completely
described by the density function fy(y). If L > M , then only M yi(ζ ) random variables can
be independently determined from x(ζ ). The remaining (L − M)yi(ζ ) random variables
can be obtained from the first yi(ζ ) random variables. Thus we need to determine fy(y)
for M random variables from which we can determine fy(y) for all L random variables. If
M > L, then we can augment y into an M-vector by introducing auxiliary random variables

yL+1(ζ ) = xL+1(ζ ), . . . , yM(ζ ) = xM(ζ ) (3.2.33)

to determine fy(y) for M random variables from which we can determine fy(y) for the
original L random variables. Therefore, for the determination of the pdf fy(y), we will
assume that L = M and that A is nonsingular.

Furthermore, we will first consider the case in which both x(ζ ) and y(ζ ) are real-
valued random vectors, which also implies that A is a real-valued matrix. This approach is
necessary because the complex case leads to a slightly different result. Then the pdf fy(y)
is given by

fy(y) = fx(g
−1(y))
|J| (3.2.34)

where J is called the Jacobian of the transformation (3.2.32), given by

J = det




∂y1

∂x1
· · · ∂yM

∂x1
...

. . .
...

∂y1

∂xM

· · · ∂yM

∂xM


 = det A (3.2.35)



March 9, 2005 11:42 e56-ch3 Sheet number 14 Page number 88 black

88

chapter 3
Random Variables,
Vectors, and Sequences

From (3.2.34) and (3.2.35), the pdf of y(ζ ) is given by

fy(y) = fx(A−1y)
| det A| real-valued random vector (3.2.36)

from which moment computations of any order of y(ζ ) can be performed. Now we consider
the case of the complex-valued random vectors. Then by applying the above approach to
both real and imaginary parts, the result (3.2.36) becomes

fy(y) = fx(A−1y)
| det A|2 complex-valued random vector (3.2.37)

This shows that sometimes we can get different results depending upon whether we assume
real- or complex-valued random vectors in our analysis.

Determining fy(y) is, in general, tedious except in the case of Gaussian random vectors,
as we shall see later. In practice, the knowledge of µy, �y, �xy, or �yx is sufficient in many
applications. If we take the expectation of both sides of (3.2.32), we find that the mean
vector is given by

µy = E{y(ζ )} = E{Ax(ζ )} = AE{x(ζ )} = Aµx (3.2.38)

The autocorrelation matrix of y(ζ ) is given by

Ry = E{yyH } = E{AxxH AH } = AE{xxH }AH = ARxAH (3.2.39)

Similarly, the autocovariance matrix of y(ζ ) is given by

�y = A�xAH (3.2.40)

Consider the cross-correlation matrix

Rxy = E{x(ζ )yH (ζ )} = E{x(ζ )xH (ζ )AH } (3.2.41)

= E{x(ζ )xH (ζ )}AH = RxAH (3.2.42)

and hence Ryx = ARx. Similarly, the cross-covariance matrices are

�xy = �xAH and �yx = A�x (3.2.43)

3.2.3 Normal Random Vectors

If the components of the random vector x(ζ ) are jointly normal, then x(ζ ) is a normal
random M-vector. Again, the pdf expressions for the real- and complex-valued cases are
slightly different, and hence we consider these cases separately. The real-valued normal
random vector has the pdf

fx(x) = 1

(2π)M/2|�x|1/2
exp

[
−1

2
(x − µx)

T �−1
x (x − µx)

]
real (3.2.44)

with mean µx and covariance �x. It will be denoted by N (µx,�x). The term in the exponent
(x − µx)

T �−1
x (x − µx) is a positive definite quadratic function of xi and is also given by

(x − µx)
T �−1

x (x − µx) =
M∑
i=1

M∑
j=1

〈�−1
x 〉ij (xi − µi)(xj − µj ) (3.2.45)

where 〈�−1
x 〉ij denotes the (i, j)th element of �−1

x . The characteristic function of the normal
random vector is given by

�x(ξ) = exp(jξT µx− 1
2ξT �xξ) (3.2.46)

where ξT = [ξ1, . . . , ξM ].
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The complex-valued normal random vector has the pdf

fx(x) = 1

πM |�x| exp[−(x − µx)
H�−1

x (x − µx)] complex (3.2.47)

with mean µx and covariance �x. This pdf will be denoted by CN (µx,�x). If x(ζ ) is a
scalar complex-valued random variable x(ζ ) with mean µx and variance σ 2

x , then (3.2.47)
reduces to

fx(x) = 1

πσ 2
x

exp

(
−|x − µ|2

σ 2
x

)
(3.2.48)

which should be compared with the pdf given in (3.1.37). Note that the pdf in (3.1.37)
is not obtained by setting the imaginary part of x(ζ ) in (3.2.48) equal to zero. For a
more detailed discussion on this aspect, see Therrien (1992) or Kay (1993). The term
(x − µx)

H�−1
x (x − µx) in the exponent of (3.2.47) is also a positive definite quadratic

function and is given by

(x − µx)
H�−1

x (x − µx) =
M∑
i=1

M∑
j=1

〈�−1
x 〉ij (xi − µi)

∗(xj − µj ) (3.2.49)

The characteristic function for the complex-valued normal random vector is given by

�x(ξ) = exp[jRe(ξHµx)− 1
4ξH�xξ ] (3.2.50)

The normal distribution is a useful model of a random vector because of its many
important properties:

1. The pdf is completely specified by the mean vector and the covariance matrix, which are
relatively easy to estimate in practice. All other higher-order moments can be obtained
from these parameters.

2. If the components of x(ζ ) are mutually uncorrelated, then they are also independent.
(See Problem 3.15.) This is useful in many derivations.

3. A linear transformation of a normal random vector is also normal. This can be easily
seen by using (3.2.38), (3.2.40), and (3.2.44) in (3.2.36); that is, for the real-valued case
we obtain

fy(y) = 1

(2π)M/2|�y|1/2
exp

[
−1

2
(y − µy)

T �−1
y (y − µy)

]
real (3.2.51)

This result can also be proved by using the moment generating function in (3.2.46) (see
Problem 3.6). Similarly for the complex-valued case, from (3.2.37) and (3.2.47) we
obtain

fy(y) = 1

πM |�y| exp[−(y − µy)
H (A−1)H�−1

x A−1(y − µy)] complex (3.2.52)

4. The fourth-order moment of a normal random vector

x(ζ ) = [x1(ζ ) x2(ζ ) x3(ζ ) x4(ζ )]T

can be expressed in terms of its second-order moments. For the real case, that is, when
x(ζ ) ∼ N (0,�x), we have

E{x1(ζ )x2(ζ )x3(ζ )x4(ζ )} = E{x1(ζ )x2(ζ )}E{x3(ζ )x4(ζ )}
+E{x1(ζ )x3(ζ )}E{x2(ζ )x4(ζ )}
+E{x1(ζ )x4(ζ )}E{x2(ζ )x3(ζ )}

(3.2.53)
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For the complex case, that is, when x(ζ ) ∼ CN (0,�x), we have

E{x∗1 (ζ )x2(ζ )x
∗
3 (ζ )x4(ζ )} = E{x∗1 (ζ )x2(ζ )}E{x∗3 (ζ )x4(ζ )}

+E{x∗1 (ζ )x4(ζ )}E{x2(ζ )x
∗
3 (ζ )}

(3.2.54)

The proof of (3.2.53) is tedious but straightforward. However, the proof of (3.2.54) is
complicated and is discussed in Kay (1993).

3.2.4 Sums of Independent Random Variables

In many applications, a random variable y(ζ ) can be expressed as a linear combination of
M statistically independent random variables {xk(ζ )}M1 , that is,

y(ζ ) = c1x1(ζ ) + c2x2(ζ ) + · · · + cMxM(ζ ) =
M∑

k=1

ckxk(ζ ) (3.2.55)

where {ck}M1 is a set of fixed coefficients. In these situations, we would like to compute
the first two moments and the pdf of y(ζ ). The moment computation is straightforward,
but the pdf computation requires the use of characteristic functions. When these results are
extended to the sum of an infinite number of statistically independent random variables,
we obtain a powerful theorem called the central limit theorem (CLT). Another interesting
concept develops when the sum of IID random variables preserves their distribution, which
results in stable distributions.

Mean. Using the linearity of the expectation operator and taking the expectation of
both sides of (3.2.55), we obtain

µy =
M∑

k=1

ckµxk
(3.2.56)

Variance. Again by using independence, the variance of y(ζ ) is given by

σ 2
y = E



∣∣∣∣∣

M∑
k=1

ck[xk(ζ ) − µxk
]
∣∣∣∣∣
2

 =

M∑
k=1

|ck|2σ 2
xk

(3.2.57)

where we have used the statistical independence between random variables.

Probability density function. Before we derive the pdf of y(ζ ) in (3.2.55), we consider
two special cases. First, let

y(ζ ) = x1(ζ ) + x2(ζ ) (3.2.58)

where x1(ζ ) and x2(ζ ) are statistically independent. Then its characteristic function is given
by

�y(ξ) = E{ejξy(ζ )} = E{ejξ [x1(ζ )+x2(ζ )]} = E{ejξx1(ζ )}E{ejξx2(ζ )} (3.2.59)

where the last equality follows from the independence. Hence

�y(ξ) = �x1(ξ)�x2(ξ) (3.2.60)

or from the convolution property of the Fourier transform

fy(y) = fx1(y) ∗ fx2(y) (3.2.61)

From (3.2.60) the second characteristic function of y(ζ ) is given by

!y(ξ) = !x1(ξ) + !x2(ξ) (3.2.62)
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or the mth-order cumulant of y(ζ ) is given by

κ(m)
y = κ(m)

x1
+ κ(m)

x2
(3.2.63)

These results can be easily generalized to the sum of M independent random variables.

E XAM PLE 3.2.1. Let {xk(ζ )}4k=1 be four IID random variables uniformly distributed over

[−0.5, 0.5]. Compute and plot the pdfs of yM(ζ ) � ∑M
k=1 xk for M = 2, 3, and 4. Compare

these pdfs with that of a zero-mean Gaussian random variable.

Solution. Let f (x) be the pdf of a uniform random variable over [−0.5, 0.5], that is,

f (x) =
{

1 −0.5 ≤ x ≤ 0.5

0 otherwise
(3.2.64)

Then from (3.2.61)

fy2(y) = f (y) ∗ f (y) =




1 + y −1 ≤ y ≤ 0

1 − y 0 ≤ y ≤ 1

0 otherwise

(3.2.65)

Similarly, we have

fy3(y) = fy2(y) ∗ f (y) =




1
2
(y + 3

2
)2 − 3

2
≤ y ≤ − 1

2
3
4
− y2 − 1

2
≤ y ≤ 1

2
1
2
(y − 3

2
)2 1

2
≤ y ≤ 3

2

0 otherwise

(3.2.66)

fy4(y) = fy3(y) ∗ f (y) =




1
6
(y + 2)3 −2 ≤ y ≤ −1

− 1
2
y3 − y2 + 2

3
−1 ≤ y ≤ 0

2
3
+ 1

2
y3 − y2 0 ≤ y ≤ 1

− 1
6
(−2 + y)3 1 ≤ y ≤ 2

0 otherwise

(3.2.67)and

The plots of fy2(y), fy3(y), and fy4(y) are shown in Figure 3.4 along with the zero-mean
Gaussian pdf. The variance of the Gaussian random variable is chosen so that 99.92 percent of
the pdf area is over [−2, 2]. We observe that as M increases, the pdf plots appear to get closer
to the shape of the Gaussian pdf. This observation will be explored in detail in the CLT.

Next, let y(ζ ) = ax(ζ ) + b; then the characteristic function of y(ζ ) is

�y(ξ) = E{ej [ax(ζ )+b]ξ } = E{ejaξx(ζ )ejbξ } = �x(aξ)e
jbξ (3.2.68)

and by using the properties of the Fourier transform, the pdf of y(ζ ) is given by

fy(y) = 1

|a|fx

(
y − b

a

)
(3.2.69)

From (3.2.68), the second characteristic function is given by

!y(ξ) = !x(aξ) + jbξ (3.2.70)

and the cumulants are given by

κ(m)
y = (−j)m

dm!y(ξ)

dξm

∣∣∣∣
ξ=0

= am(−j)m
dm!x(aξ)

dξm

∣∣∣∣
ξ=0

= amκ(m)
x m > 1

(3.2.71)
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−1 0 1
0

1

M = 2

(a)

−1.5 0 1.5
0

0.75

M = 3

(b )

−2 0 2
0

0.67

M = 4

(c )

−2 0 2
0

0.67

N (0, 0.6)

(d )

FIGURE 3.4
The pdf plots of (a) sum of two, (b) sum of three, (c) sum of four, and (d ) Gaussian random
variables in Example 3.2.1.

Finally, consider y(ζ ) in (3.2.55). Using the results in (3.2.60) and (3.2.68), we have

�y(ξ) =
M∏

k=1

�xk
(ckξ) (3.2.72)

from which the pdf of y(ζ ) is given by

fy(y) = 1

|c1|fx1

(
y

c1

)
∗ 1

|c2|fx2

(
y

c2

)
∗ · · · ∗ 1

|cM |fxM

(
y

cM

)
(3.2.73)

From (3.2.62) and (3.2.70), the second characteristic function is given by

!y(ξ) =
M∑

k=1

!xk
(ckξ) (3.2.74)

and hence from (3.2.63) and (3.2.71), the cumulants of y(ζ ) are

κ(m)
y =

M∑
k=1

cmk κ(m)
xk

(3.2.75)

where cmk is the mth power of ck .
In the following two examples, we consider two interesting cases in which the sum of

IID random variables retains their original distribution. The first case concerns Gaussian
random variables that have finite variances while the second case involves Cauchy random
variables that possess infinite variance.
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E XAM PLE 3.2.2. Let xk(ζ ) ∼ N (µk, σ
2
k
), k = 1, . . . ,M and let y(k) = ∑M

1 xk(ζ ). The
characteristic function of xk(ζ ) is

�xk (ξ) = exp

(
jµkξ − ξ2σ 2

k

2

)

and hence from (3.2.72), we have

�y(ξ) = exp




jξ

M∑
k=1

µk −
ξ2

M∑
k=1

σ 2
k

2




which means that y(ζ ) is also a Gaussian random variable with mean
∑M

k=1 µk and variance∑M
k=1 σ 2

k
, that is, y(ζ ) ∼ N (

∑M
k=1 µk,

∑M
k=1 σ 2

k
). In particular, if the xk(ζ ) are IID with a pdf

N (µ, σ 2), then

�y(ξ) = exp

(
jMµξ − ξ2Mσ 2

2

)
= exp

[
M

(
jξµ − ξ2σ 2

2

)]
(3.2.76)

This behavior of y(ζ ) is in contrast with that of the sum of the IID random variables in Exam-
ple 3.2.1 in which the uniform pdf changed its form after M-fold convolutions.

EXAMPLE 3.2.3. As a second case, consider M IID random variables {xk(ζ )}Mk=1 with Cauchy
distribution

fxk (x) =
β

π

1

(x − α)2 + β2

and let y(k) =∑M
1 xk(ζ ). Then from (3.1.43), we have

�x(ξ) = exp(jαξ − β|ξ |)
and hence

�y(ξ) = exp(jMαξ − Mβ|ξ |) = exp[M(jαξ − β|ξ |)] (3.2.77)

This once again shows that the sum random variable has the same distribution (up to a scale
factor) as that of the individual random variables, which in this case is the Cauchy distribution.

From these examples, we note that the Gaussian and the Cauchy random variables
are invariant, or that they have a “self-reproducing” property under linear transformations.
These two examples also raise some interesting questions. Are there any other random vari-
ables that possess this invariance property? If such random variables exist, what is the form
of their pdfs or, alternatively, of their characteristic functions, and what can we say about
their means and variances? From (3.2.76) and (3.2.77), observe that if the characteristic
function has a general form

�xk
(ξ) = aθ(ξ) (3.2.78)

where a is some constant and θ(ξ) is some function of ξ , then we have

�y(s) = aMθ(s) (3.2.79)

that is, the characteristic function of the sum has the same functional form except for a
change in scale. Are Gaussian and Cauchy both special cases of some general situation?
These questions are answered by the concept of stable (more appropriately, linearly invariant
or self-reproducing) distributions.

Stable distributions. These distributions satisfy the “stability” property, which in sim-
ple terms means that the distributions are preserved (or that they self-reproduce) under
convolution. The only stable distribution that has finite variance is the Gaussian distri-
bution, which has been well understood and is used extensively in the literature and in
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practice. The remaining stable distributions have infinite variances (and in some cases,
infinite means) which means that the corresponding random variables exhibit large fluctua-
tions. These distributions can then be used to model signals with large variability and hence
are finding increasing use in many diverse applications such as the gravitational fields of
stars, temperature distributions in a nuclear reaction, or stock market fluctuations (Lamperti
1996; Samorodnitsky and Taqqu 1994; Feller 1966).

Before we formally define stable distributions, we introduce the following notation for
convenience

y(ζ )
d= x(ζ ) (3.2.80)

to indicate that the random variables x(ζ ) and y(ζ ) have the same distribution. For example,
if y(ζ ) = ax(ζ ) + b, we have

Fy(y) = Fx

(
y − b

a

)
(3.2.81)

and therefore x(ζ )
d= ax(ζ ) + b.

DEFINITION 3.2. Let x1(ζ ), x2(ζ ), . . . , xM(ζ ) be IID random variables with a common distri-
bution Fx(x) and let sM(ζ ) = x1(ζ )+ · · ·+ xM(ζ ) be their sum. The distribution Fx(x) is said
to be stable if for each M there exist constants aM > 0 and bM such that

sM(ζ )
d= aMx(ζ ) + bM (3.2.82)

and that Fx(x) is not concentrated at one point.

If (3.2.82) holds for bM = 0, we say thatFx(x) is stable in the strict sense. The condition
that Fx(x) is not concentrated at one point is necessary because such a distribution is always
stable. Thus it is a degenerate case that is of no practical interest. A stable distribution is
called symmetric stable if the distribution is symmetric, which also implies that it is strictly
stable.

It can be shown that for any stable random variable x(ζ ) there is a numberα, 0 < α ≤ 2,
such that the constant aM in (3.2.82) is aM = M1/α . The number α is known as the index
of stability or characteristic exponent. A stable random variable x(ζ ) with index α is called
α stable.

Since there is no closed-form expression for the probability density function of stable
random variables, except in special cases, they are specified by their characteristic function
�(ξ). This characteristic function is given by

�(ξ) =




exp{jµξ − |σξ |α · [1 − jβ sign(ξ) tan
(πα

2

)
]} α 
= 1

exp{jµξ − |σξ |α · [1 − jβ

(
2

π

)
sign(ξ) ln |ξ |]} α = 1

(3.2.83)

where sign(ξ) = ξ/|ξ | if ξ 
= 0 and zero otherwise. We shall use the notation Sα(σ , β, µ)

to denote the stable random variable defined by (3.2.83). The parameters in (3.2.83) have
the following meaning:

1. The characteristic exponent α, 0 < α ≤ 2, determines the shape of the distribution and
hence the flatness of the tails.

2. The skewness (or alternatively, symmetry) parameter β,−1 < β < 1, determines the
symmetry of the distribution: β = 0 specifies a symmetric distribution, β < 0 a left-
skewed distribution, and β > 0 a right-skewed distribution.

3. The scale parameter σ , 0 ≤ σ < ∞, determines the range or dispersion of the stable
distribution.

4. The location parameter µ, −∞ < µ < ∞, determines the center of the distribution.
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We next list some useful properties of stable random variables.

1. For 0 < α < 2, the tails of a stable distribution decay as a power law, that is,

Pr[|x(ζ ) − µ| ≥ x] � C

xα
as x → ∞ (3.2.84)

where C is a constant that depends on the scale parameter σ . As a result of this behavior,
α-stable random variables have infinite second-order moments. In particular,

E{|x(ζ )|p} < ∞ for any 0 < p ≤ α

E{|x(ζ )|p} = ∞ for any p > α
(3.2.85)

Also var[x(ζ )] = ∞ for 0 < α < 2, and E{|x(ζ )|} = ∞ if 0 < α < 1.
2. A stable distribution is symmetric about µ iff β = 0. A symmetric α-stable distribution

is denoted as SαS, and its characteristic function is given by

�(ξ) = exp(jµξ − |σξ |α) (3.2.86)

3. If x(ζ ) is SαS with α = 2 in (3.2.83), we have a Gaussian distribution with variance
equal to 2σ 2, that is, N (µ, 2σ 2), whose tails decay exponentially and not as a power
law. Thus, the Gaussian is the only stable distribution with finite variance.

4. If x(ζ ) is SαS with α = 1, we have a Cauchy distribution with density

fx(x) = σ/π

(x − µ)2 + σ 2
(3.2.87)

A standard (µ = 0, σ = 1) Cauchy random variable x(ζ ) can be generated from a [0, 1]
uniform random variable u(ζ ), by using the transformation x = tan[π(u − 1

2 )].
5. If x(ζ ) is SαS with α = 1

2 , we have a Levy distribution, which has both infinite variance
and infinite mean. The pdf of this distribution does not have a functional form and hence
must be computed numerically.

In Figure 3.5, we display characteristic and density functions of Gaussian, Cauchy, and
Levy random variables. The density plots were computed numerically using the Matlab
function stablepdf.

Infinitely divisible distributions. A distribution Fx(x) is infinitely divisible if and only
if for each M there exists a distribution FM(x) such that

fx(x) = fM(x) ∗ fM(x) ∗ · · · ∗ fM(x) (3.2.88)

or by using the convolution theorem,

�x(ξ) = �M(ξ) �M(ξ) · · · �M(ξ) = �M
M(ξ) (3.2.89)

that is, for each M the random variable x(ζ ) can be represented as the sum x(ζ ) = x1(ζ )+
· · · + xM(ζ ) of M IID random variables with a common distribution FM(x). Clearly, all
stable distributions are infinitely divisible.An example of an infinitely divisible pdf is shown
in Figure 3.6 for M = 4, α = 1.5, µ = 0, and β = 0.

Central limit theorem. Consider the random variable y(ζ ) defined in (3.2.55). We
would like to know about the convergence of its distribution as M → ∞. If y(ζ ) is a sum
of IID random variables with a stable distribution, the distribution of y(ζ ) also converges
to a stable distribution. What result should we expect if the individual distributions are not
stable and, in particular, are of finite variance? As we observed in Example 3.2.1, the sum
of uniformly distributed independent random variables appears to converge to a Gaussian
distribution. Is this result valid for any other distribution? The following version of the CLT
answers these questions.
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FIGURE 3.5
The characteristic and density function plots of Gaussian, Cauchy, and Levy random variables.

TH E O R E M 3.1 ( C E NTRAL LI M IT TH E O R E M ) . Let {xk(ζ )}Mk=1 be a collection of random
variables such that x1(ζ ), x2(ζ ), . . . , xM(ζ ) (a) are mutually independent and (b) have the same
distribution, and (c) the mean and variance of each random variable exist and are finite, that is,
µxk

< ∞ and σ 2
xk

< ∞ for all k = 1, 2, . . . ,M . Then, the distribution of the normalized sum

yM(ζ ) =

M∑
k=1

xk(ζ ) − µyM

σyM

approaches that of a normal random variable with zero mean and unit standard deviation as
M → ∞.

Proof. See Borkar (1995).

Comments. The following important comments are in order regarding the CLT.

1. Since we are assuming IID components in the normalized sum, the above theorem is
known as the equal-component case of the CLT.

2. It should be emphasized that the convergence in the above theorem is in distribution
(cdf ) and not necessarily in density (pdf ). Suppose we have M discrete and IID random
variables. Then their normalized sum will always remain discrete no matter how large
M is, but the distribution of the sum will converge to the the integral of the Gaussian pdf.
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FIGURE 3.6
The characteristic and density function plots of an infinitely divisible distribution.

3. The word central in the CLT is a reminder that the distribution converges to the Gaussian
distribution around the center, that is, around the mean. Note that while the limit distri-
bution is found to be Gaussian, frequently the Gaussian limit gives a poor approximation
for the tails of the actual distribution function of the sum when M is finite, even though
the actual value under consideration might seem to be quite large.

4. As a final point, we note that in the above theorem the assumption of finite variance is
critical to obtain a Gaussian limit. This implies that all distributions with finite variance
will converge to the Gaussian when independent copies of their random variables are
added. What happens if the variance is infinite? Then in this case the sum converges
to one of the stable distributions. For example, as shown in Example 3.2.3, the sum of
Cauchy random variables converges to a Cauchy distribution.

3.3 DISCRETE-TIME STOCHASTIC PROCESSES

After studying random variables and vectors, we can now extend these concepts to discrete-
time signals (or sequences). Many natural sequences can be characterized as random signals
because we cannot determine their values precisely, that is, they are unpredictable. A nat-
ural mathematical framework for the description of these discrete-time random signals is
provided by discrete-time stochastic processes.

To obtain a formal definition, consider an experiment with a finite or infinite number
of unpredictable outcomes from a sample space S = {ζ 1, ζ 2, . . .}, each occurring with
a probability Pr{ζ k}, k = 1, 2, . . . . By some rule we assign to each element ζ k of S a
deterministic sequence x(n, ζ k),−∞ < n < ∞. The sample space S, the probabilities
Pr{ζ k}, and the sequences x(n, ζ k),−∞ < n < ∞, constitute a discrete-time stochastic
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process or random sequence. Formally,

x(n, ζ ),−∞ < n < ∞, is a random sequence if for a fixed value n0 of n, x(n0, ζ )

is a random variable.

The set of all possible sequences {x(n, ζ )} is called an ensemble, and each individual
sequence x(n, ζ k), corresponding to a specific value of ζ = ζ k , is called a realization or a
sample sequence of the ensemble.

There are four possible interpretations of x(n, ζ ), depending on the character of n and
ζ , as illustrated in Figure 3.7:

• x(n, ζ ) is a random variable if n is fixed and ζ is a variable.
• x(n, ζ ) is a sample sequence if ζ is fixed and n is a variable.
• x(n, ζ ) is a number if both n and ζ are fixed.
• x(n, ζ ) is a stochastic process if both n and ζ are variables.
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FIGURE 3.7
Graphical description of random sequences.

A random sequence is also called a time series in the statistics literature. It is a sequence
of random variables, or it can be thought of as an infinite-dimensional random vector.
As with any collection of infinite objects, one has to be careful with the asymptotic (or
convergence) properties of a random sequence. If n is a continuous variable taking values
in R, then x(n, ζ ) is an uncountable collection of random variables or an ensemble of
waveforms. This ensemble is called a continuous-time stochastic process or a random
process. Although these processes can be handled similarly to sequences, they are more
difficult to deal with in a rigorous mathematical manner than sequences are. Furthermore,
practical signal processing requires discrete-time signals. Hence in this book we consider
random sequences rather than random waveforms.

Finally, in passing we note that the word stochastic is derived from the Greek word
stochasticos, which means skillful in aiming or guessing. Hence, the terms random process
and stochastic process will be used interchangeably throughout this book.
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As mentioned before, a deterministic signal is by definition exactly predictable. This
assumes that there exists a certain functional relationship that completely describes the
signal, even if this relationship is not available. The unpredictability of a random process
is, in general, the combined result of two things. First, the selection of a single realization is
based on the outcome of a random experiment. Second, no functional description is available
for all realizations of the ensemble. However, in some special cases, such a functional
relationship is available. This means that after the occurrence of a specific realization, its
future values can be predicted exactly from its past ones. If the future samples of any
realization of a stochastic process can be predicted from the past ones, the process is called
predictable or deterministic; otherwise, it is said to be a regular process. For example,
the process x(n, ζ ) = c, where c is a random variable, is a predictable stochastic process
because every realization is a discrete-time signal with constant amplitude. In practice, we
most often deal with regular stochastic processes.

The simplest description of any random signal is provided by an amplitude-versus-time
plot. Inspection of this plot provides qualitative information about some significant features
of the signal that are useful in many applications. These features include, among others, the
following:

1. The frequency of occurrence of various signal amplitudes, described by the probability
distribution of samples.

2. The degree of dependence between two signal samples, described by the correlation
between them.

3. The existence of “cycles” or quasi-periodic patterns, obtained from the signal power
spectrum (which will be described in Section 3.3.6).

4. Indications of variability in the mean, variance, probability density, or spectral content.

The first feature above, the amplitude distribution, is obtained by plotting the histogram,
which is an estimate of the first-order probability density of the underlying stochastic pro-
cess. The probability density indicates waveform features such as “spikiness” and bounded-
ness. Its form is crucial in the design of reliable estimators, quantizers, and event detectors.

The dependence between two signal samples (which are random variables) is given
theoretically by the autocorrelation sequence and is quantified in practice by the empirical
correlation (see Chapter 1), which is an estimate of the autocorrelation sequence of the
underlying process. It affects the rate of amplitude change from sample to sample.

Cycles in the data are related to sharp peaks in the power spectrum or periodicity in
the autocorrelation. Although the power spectrum and the autocorrelation contain the same
information, they present it in different fashions.

Variability in a given quantity (e.g., variance) can be studied by evaluating this quantity
for segments that can be assumed locally stationary and then analyzing the segment-to-
segment variation. Such short-term descriptions should be distinguished from long-term
ones, where the whole signal is analyzed as a single segment.

All the above features, to a lesser or greater extent, are interrelated. Therefore, it is
impossible to point out exactly the effect of each one upon the visual appearance of the signal.
However, a lot of insight can be gained by introducing the concepts of signal variability
and signal memory, which are discussed in Sections 3.3.5 and 3.4.3 respectively.

3.3.1 Description Using Probability Functions

From Figure 3.7, it is clear that at n = n0, x(n0, ζ ) is a random variable that requires a
first-order probability function, say cdf Fx(x; n0), for its description. Similarly, x(n1, ζ )

and x(n2, ζ ) are joint random variables at instances n1 and n2, respectively, requiring a joint
cdf Fx(x1, x2; n1, n2). Stochastic processes contain infinitely many such random variables.
Hence they are completely described, in a statistical sense, if their kth-order distribution
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function

Fx(x1, . . . , xk; n1, . . . , nk) = Pr{x(n1) ≤ x1, . . . , x(nk) ≤ xk} (3.3.1)

is known for every value of k ≥ 1 and for all instances n1, n2, . . . , nk . The kth-order pdf is
given by

fx(x1, . . . , xk; n1, . . . , nk) � ∂2kFx(x1, . . . , xk; n1, . . . , nk)

∂xR1 · · · ∂xIk
k ≥ 1 (3.3.2)

Clearly, the probabilistic description requires a lot of information that is difficult to
obtain in practice except for simple stochastic processes. However, many (but not all)
properties of a stochastic process can be described in terms of averages associated with its
first- and second-order densities.

For simplicity, in the rest of the book, we will use a compact notation x(n) to represent
either a random process x(n, ζ ) or a single realization x(n), which is a member of the
ensemble. Thus we will drop the variable ζ from all notations involving random variables,
vectors, or processes. We believe that this will not cause any confusion and that the exact
meaning will be clear from the context. Also the random process x(n) is assumed to be
complex-valued unless explicitly specified as real-valued.

3.3.2 Second-Order Statistical Description

The second-order statistic of x(n) at time n is specified by its mean value µx(n) and its
variance σ 2

x(n), defined by

µx(n) = E{x(n)} = E{xR(n) + jxI(n)} (3.3.3)

σ 2
x(n) = E{|x(n) − µx(n)|2} = E{|x(n)|2} − |µx(n)|2 (3.3.4)and

respectively. Note that both µx(n) and σx(n) are, in general, deterministic sequences.
The second-order statistics of x(n) at two different times n1 and n2 are given by the two-

dimensional autocorrelation (or autocovariance) sequences. The autocorrelation sequence
of a discrete-time random process is defined as the joint moment of the random variables
x(n1) and x(n2), that is,

rxx(n1, n2) = E{x(n1)x
∗(n2)} (3.3.5)

It provides a measure of the dependence between values of the process at two different
times. In this sense, it also provides information about the time variation of the process.
The autocovariance sequence of x(n) is defined by

γ xx(n1, n2) = E{[x(n1) − µx(n1)][x(n2) − µx(n2)]∗}
= rxx(n1, n2) − µx(n1)µ

∗
x(n2)

(3.3.6)

We will use notations such as γ x(n1, n2), rx(n1, n2), γ (n1, n2), or r(n1, n2) when there is
no confusion as to which signal we are referring. Note that, in general, the second-order
statistics are defined on a two-dimensional grid of integers.

The statistical relation between two stochastic processes x(n) and y(n) that are jointly
distributed (i.e., they are defined on the same sample space S) can be described by their
cross-correlation and cross-covariance functions, defined by

rxy(n1, n2) = E{x(n1)y
∗(n2)} (3.3.7)

γ xy(n1, n2) = E{[x(n1) − µx(n1)][y(n2) − µy(n2)]∗}
= rxy(n1, n2) − µx(n1)µ

∗
y(n2)

(3.3.8)
and

The normalized cross-correlation of two random processes x(n) and y(n) is defined by

ρxy(n1, n2) =
γ xy(n1, n2)

σ x(n1)σ y(n2)
(3.3.9)
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Some definitions

We now describe some useful types of stochastic processes based on their statistical
properties. A random process is said to be

• An independent process if

fx(x1, . . . , xk; n1, . . . , nk) = f1(x1; n1) · · · fk(xk; nk) ∀k, ni, i = 1, . . . , k (3.3.10)

that is, x(n) is a sequence of independent random variables. If all random variables have
the same pdf f (x) for all k, then x(n) is called an IID (independent and identically
distributed) random sequence.

• An uncorrelated process if x(n) is a sequence of uncorrelated random variables, that is,

γ x(n1, n2) =
{
σ 2

x(n1) n1 = n2

0 n1 
= n2

}
= σ 2

x(n1)δ(n1 − n2) (3.3.11)

Alternatively, we have

rx(n1, n2) =
{
σ 2

x(n1) + |µx(n1)|2 n1 = n2

µx(n1)µ
∗
x(n2) n1 
= n2

(3.3.12)

• An orthogonal process if it is a sequence of orthogonal random variables, that is,

rx(n1, n2) =
{
σ 2

x(n1) + |µx(n1)|2 n1 = n2

0 n1 
= n2

}
= E{|x(n1)|2}δ(n1 − n2) (3.3.13)

• An independent increment process if ∀k > 1 and ∀n1 < n2 < · · · < nk , the increments

{x(n1)}, {x(n2) − x(n1)}, . . . , {x(nk) − x(nk−1)}
are jointly independent. For such sequences, the kth-order probability function can be
constructed as products of the probability functions of its increments.

• A wide-sense periodic (WSP) process with period N if

µx(n) = µx(n + N) ∀n (3.3.14)

rx(n1, n2) = rx(n1 + N, n2) = rx(n1, n2 + N) = rx(n1 + N, n2 + N) (3.3.15)and

Note that in the above definition, µx(n) is periodic in one dimension while rx(n1, n2) is
periodic in two dimensions.

• A wise-sense cyclostationary process if there exists an integer N such that

µx(n) = µx(n + N) ∀n (3.3.16)

rx(n1, n2) = rx(n1 + N, n2 + N) (3.3.17)and

Note that in the above definition, rx(n1, n2) is not periodic in a two-dimensional sense.
The correlation sequence is invariant to shift by N in both of its arguments.

• If all kth-order distributions of a stochastic process are jointly Gaussian, then it is called
a Gaussian random sequence.

We can also extend some of these definitions to the case of two joint stochastic processes.
The random processes x(n) and y(n) are said to be

• Statistically independent if for all values of n1 and n2

fxy(x, y; n1, n2) = fx(x; n1)fy(y; n2) (3.3.18)

• Uncorrelated if for every n1 and n2

γ xy(n1, n2) = 0 or rxy(n1, n2) = µx(n1)µ
∗
y(n2) (3.3.19)

• Orthogonal if for every n1 and n2

rxy(n1, n2) = 0 (3.3.20)
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3.3.3 Stationarity

A random process x(n) is called stationary if statistics determined for x(n) are equal to
those for x(n + k), for every k. More specifically, we have the following definition.

DEFINITION 3.3 (STATIONARY OF ORDER N ) . A stochastic process x(n) is called stationary
of order N if

fx(x1, . . . , xN ; n1, . . . , nN ) = fx(x1, . . . , xN ; n1 + k, . . . , nN + k) (3.3.21)

for any value of k. If x(n) is stationary for all orders N = 1, 2, . . . , it is said to be strict-sense
stationary (SSS).

An IID sequence is SSS. However, SSS is more restrictive than necessary for most
practical applications. A more relaxed form of stationarity, which is sufficient for practical
problems, occurs when a random process is stationary up to order 2, and it is also known
as wide-sense stationarity.

DEFINITION 3.4 (WIDE-SENSE STATIONARITY). A random signal x(n) is called wide-sense
stationary (WSS) if

1. Its mean is a constant independent of n, that is,

E{x(n)} = µx (3.3.22)

2. Its variance is also a constant independent of n, that is,

var[x(n)] = σ 2
x (3.3.23)

and
3. Its autocorrelation depends only on the distance l = n1 − n2, called lag, that is,

rx(n1, n2) = rx(n1 − n2) = rx(l) = E{x(n + l)x∗(n)} = E{x(n)x∗(n − l)} (3.3.24)

From (3.3.22), (3.3.24), and (3.3.6) it follows that the autocovariance of a WSS signal
also depends only on l = n1 − n2, that is,

γ x(l) = rx(l) − |µx |2 (3.3.25)

EXAMPLE 3.3.1. Letw(n)be a zero-mean, uncorrelated Gaussian random sequence with variance
σ 2(n) = 1.

a. Characterize the random sequence w(n).
b. Define x(n) = w(n) + w(n − 1),−∞ < n < ∞. Determine the mean and autocorrelation

of x(n). Also characterize x(n).

Solution. Note that the variance of w(n) is a constant.

a. Since uncorrelatedness implies independence for Gaussian random variables, w(n) is an in-
dependent random sequence. Since its mean and variance are constants, it is at least stationary
in the first order. Furthermore, from (3.3.12) or (3.3.13) we have

rw(n1, n2) = σ 2δ(n1 − n2) = δ(n1 − n2)

Hence w(n) is also a WSS random process.
b. The mean of x(n) is zero for all n since w(n) is a zero-mean process. Consider

rx(n1, n2) = E{x(n1)x(n2)}
= E{[w(n1) + w(n1 − 1)][w(n2) + w(n2 − 1)]}
= rw(n1, n2) + rw(n1, n2 − 1) + rw(n1 − 1, n2)

+ rw(n1 − 1, n2 − 1)

= σ 2δ(n1 − n2) + σ 2δ(n1 − n2 + 1)

+ σ 2δ(n1 − 1 − n2) + σ 2δ(n1 − 1 − n2 + 1)

= 2δ(n1 − n2) + δ(n1 − n2 + 1) + δ(n1 − n2 − 1)
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Clearly, rx(n1, n2) is a function of n1 − n2. Hence

rx(l) = 2δ(l) + δ(l + 1) + δ(l − 1)

Therefore, x(n) is a WSS sequence. However, it is not an independent random sequence since
both x(n) and x(n + 1) depend on w(n).

EXAMPLE 3.3.2 (WIENER PROCESS) . Toss a fair coin at each n,−∞ < n < ∞. Let

w(n) =
{+S if heads is outcome Pr(H) = 0.5

−S if tails is outcome Pr(T) = 0.5

where S is a step size. Clearly, w(n) is an independent random process with

E{w(n)} = 0

E{w2(n)} = σ 2
w = S2

(
1
2

)
+ S2

(
1
2

)
= S2and

Define a new random process x(n), n ≥ 1, as

x(1) = w(1)

x(2) = x(1) + w(2) = w(1) + w(2)
...

x(n) = x(n − 1) + w(n) =
n∑

i=1

w(i)

Note that x(n) is a running sum of independent steps or increments; thus it is an independent
increment process. Such a sequence is called a discrete Wiener process or random walk. We can
easily see that

E{x(n)} = E




n∑
i=1

w(i)


 = 0

E{x2(n)} = E




n∑
i=1

w(i)

n∑
k=1

w(k)


 = E




n∑
i=1

n∑
k=1

w(i)w(k)




=
n∑

i=1

n∑
k=1

E{w(i)w(k)} =
n∑

i=1

E{w2(i)} = nS2

and

Therefore, random walk is a nonstationary (or evolutionary) process with zero mean and variance
that grows with n, the number of steps taken.

It should be stressed at this point that although any strict-sense stationary signal is wide-
sense stationary, the inverse is not always true, except if the signal is Gaussian. However
in practice, it is very rare to encounter a signal that is stationary in the wide sense but not
stationary in the strict sense (Papoulis 1991).

Two random signals x(n) and y(n) are called jointly wide-sense stationary if each is
wide-sense stationary and their cross-correlation depends only on l = n1 − n2

rxy(l) = E{x(n)y∗(n − l)}; γ x,y(l) = rxy(l) − µxµ
∗
y (3.3.26)

Note that as a consequence of wide-sense stationarity the two-dimensional correlation and
covariance sequences become one-dimensional sequences. This is a very important result
that ultimately allows for a nice spectral description of stationary random processes.

Properties of autocorrelation sequences

The autocorrelation sequence of a stationary process has many important properties
(which also apply to autocovariance sequences, but we will discuss mostly correlation
sequences). Vector versions of these properties are discussed extensively in Section 3.4.4,
and their proofs are explored in the problems.
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PROPERTY 3.3.1. The average power of a WSS process x(n) satisfies

rx(0) = σ 2
x + |µx |2 ≥ 0 (3.3.27)

rx(0) ≥ |rx(l)| for all l (3.3.28)and

Proof. See Problem 3.21 and Property 3.3.6.

This property implies that the correlation attains its maximum value at zero lag and
this value is nonnegative. The quantity |µx |2 is referred to as the average dc power, and the
quantity σ 2

x = γ x(0) is referred to as the average ac power of the random sequence. The
quantity rx(0) then is the total average power of x(n).

PROPERTY 3.3.2. The autocorrelation sequence rx(l) is a conjugate symmetric function of lag
l, that is,

r∗x (−l) = rx(l) (3.3.29)

Proof. It follows from Definition 3.4 and from (3.3.24).

PROPERTY 3.3.3. The autocorrelation sequence rx(l) is nonnegative definite; that is, for any
M > 0 and any vector α ∈ R

M

M∑
k=1

M∑
m=1

αkrx(k − m)α∗m ≥ 0 (3.3.30)

This is a necessary and sufficient condition for a sequence rx(l) to be the autocorrelation sequence
of a random sequence.

Proof. See Problem 3.22.

Since in this book we exclusively deal with wide-sense stationary processes, we will
use the term stationary to mean wide-sense stationary. The properties of autocorrelation and
cross-correlation sequences of jointly stationary processes, x(n) and y(n), are summarized
in Table 3.1.

Although SSS and WSS forms are widely used in practice, there are processes with
different forms of stationarity. Consider the following example.

EXAMPLE 3.3.3. Let x(n) be a real-valued random process generated by the system

x(n) = αx(n − 1) + w(n) n ≥ 0 x(−1) = 0 (3.3.31)

where w(n) is a stationary random process with mean µw and rw(l) = σ 2
wδ(l). The process

x(n) generated using (3.3.31) is known as a first-order autoregressive, or AR(1), process,
†

and
the process w(n) is known as a white noise process (defined in Section 3.3.6). Determine the
mean µx(n) of x(n) and comment on its stationarity.

Solution. To compute the mean ofx(n), we express it as a function of {w(n),w(n−1), . . . , w(0)}
as follows

x(0) = αx(−1) + w(0) = w(0)

x(1) = αx(0) + w(1) = αw(0) + w(1)
...

x(n) = αnw(0) + αn−1w(1) + · · · + w(n) =
n∑

k=0

αkw(n − k)

†
Note that from (3.3.31), x(n−1) completely determines the distribution for x(n), and x(n) completely determines

the distribution for x(n + 1), and so on. If

fx(n)|x(n−1)...(xn|xn−1 . . .) = fx(n)|x(n−1)(xn|xn−1)

then the process is termed a Markov process.
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Hence the mean of x(n) is given by

µx(n) = E




n∑
k=0

αkw(n − k)


 = µw


 n∑

k=0

αk


 =




1 − αn+1

1 − α
µw α 
= 1

(n + 1)µw α = 1

Clearly, the mean of x(n) depends on n, and hence it is nonstationary. However, if we assume
that |α| < 1 (which implies that the system is BIBO stable), then as n → ∞, we obtain

µx(n) = µw
1 − αn+1

1 − α
−→
n→∞

µw

1 − α

Thus x(n) approaches first-order stationarity for large n. Similar analysis for the autocorrelation
of x(n) shows that x(n) approaches wide-sense stationarity for large n (see Problem 3.23).

The above example illustrates a form of stationarity called asymptotic stationarity. A
stochastic process x(n) is asymptotically stationary if the statistics of random variables
x(n) and x(n + k) become stationary as k → ∞. When LTI systems are driven by zero-
mean uncorrelated-component random processes, the output process becomes asymptoti-
cally stationary in the steady state. Another useful form of stationarity is given by stationary
increments. If the increments {x(n)−x(n− k)} of a process x(n) form a stationary process
for every k, we say that x(n) is a process with stationary increments. Such processes can
be used to model data in various practical applications (see Chapter 12).

The simplest way, to examine in practice if a real-world signal is stationary, is to inves-
tigate the physical mechanism that produces the signal. If this mechanism is time-invariant,
then the signal is stationary. In case it is impossible to draw a conclusion based on physical
considerations, we should rely on statistical methods (Bendat and Piersol 1986; Priestley
1981). Note that stationarity in practice means that a random signal has statistical properties
that do not change over the time interval we observe the signal. For evolutionary signals the
statistical properties change continuously with time. An example of a highly nonstationary
random signal is the signals associated with the vibrations induced in space vehicles during
launch and reentry. However, there is a kind of random signal whose statistical properties
change slowly with time. Such signals, which are stationary over short periods, are called
locally stationary signals. Many signals of great practical interest, such as speech, EEG,
and ECG, belong to this family of signals.

Finally, we note that general techniques for the analysis of nonstationary signals do
not exist. Thus only special methods that apply to specific types of nonstationary signals
can be developed. Many such methods remove the nonstationary component of the signal,
leaving behind another component that can be analyzed as stationary (Bendat and Piersol
1986; Priestley 1981).

3.3.4 Ergodicity

A stochastic process consists of the ensemble and a probability law. If this information is
available, the statistical properties of the process can be determined in a quite straightforward
manner. However, in the real world, we have access to only a limited number (usually one)
of realizations of the process. The question that arises then is, Can we infer the statistical
characteristics of the process from a single realization?

This is possible for the class of random processes that are called ergodic processes.
Roughly speaking, ergodicity implies that all the statistical information can be obtained
from any single representative member of the ensemble.

Time averages

All the statistical averages that we have defined up to this point are known as ensemble
averages because they are obtained by “freezing” the time variable and averaging over the
ensemble (see Fig. 3.7). Averages of this type are formally defined by using the expectation
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operator E{ }. Ensemble averaging is not used frequently in practice, because it is imprac-
tical to obtain the number of realizations needed for an accurate estimate. Thus the need for
a different kind of average, based on only one realization, naturally arises. Obviously such
an average can be obtained only by time averaging.

The time average of a quantity, related to a discrete-time random signal, is defined as

〈(·)〉 � lim
N→∞

1

2N + 1

N∑
n=−N

(·) (3.3.32)

Note that, owing to its dependence on a single realization, any time average is itself a random
variable. The time average is taken over all time because all realizations of a stationary
random process exist for all time; that is, they are power signals.

For every ensemble average we can define a corresponding time average. The following
time averages are of special interest:

Mean value = 〈x(n)〉
Mean square = 〈|x(n)|2〉

Variance = 〈|x(n) − 〈x(n)〉|2〉
Autocorrelation = 〈x(n)x∗(n − l)〉
Autocovariance = 〈[x(n) − 〈x(n)〉][x(n − l) − 〈x(n)〉]∗〉

Cross-correlation = 〈x(n)y∗(n − l)〉
Cross-covariance = 〈[x(n) − 〈x(n)〉][y(n − l) − 〈y(n)〉]∗〉

(3.3.33)

It is necessary to mention at this point the remarkable similarity between time averages
and the correlation sequences for deterministic power signals. Although this is just a formal
similarity, due to the fact that random signals are power signals, both quantities have the
same properties. However, we should always keep in mind that although time averages
are random variables (because they are functions of ζ ), the corresponding quantities for
deterministic power signals are fixed numbers or deterministic sequences.

Ergodic random processes

As we have already mentioned, in many practical applications only one realization of
a random signal is available instead of the entire ensemble. In general, a single member of
the ensemble does not provide information about the statistics of the process. However, if
the process is stationary and ergodic, then all statistical information can be derived from
only one typical realization of the process.

A random signal x(n) is called ergodic
†

if its ensemble averages equal appropriate time
averages. There are several degrees of ergodicity (Papoulis 1991). We will discuss two of
them: ergodicity in the mean and ergodicity in correlation.

DEFINITION 3.5 (ERGODIC IN THE MEAN). A random process x(n) is ergodic in the mean
if

〈x(n)〉 = E{x(n)} (3.3.34)

D E FI N ITI O N 3.6 ( E R GO D I C I N C O R R E LATI O N ) . A random process x(n) is ergodic in
correlation if

〈x(n)x∗(n − l)〉 = E{x(n)x∗(n − l)} (3.3.35)

Note that since 〈x(n)〉 is constant and 〈x(n)x∗(n − l)〉 is a function of l, if x(n) is
ergodic in both the mean and correlation, then it is also WSS. Thus only stationary signals
can be ergodic. On the other hand, WSS does not imply ergodicity of any kind. Fortunately,

†
Strictly speaking, the form of ergodicity that we will use is called mean-square ergodicity since the underlying

convergence of random variables is in the mean-square sense (Stark and Woods 1994). Therefore, equalities in
the definitions are in the mean-square sense.
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in practice almost all stationary processes are also ergodic, which is very useful for the
estimation of their statistical properties. From now on we will use the term ergodic to mean
both ergodicity in the mean and ergodicity in correlation.

D E FI N ITI O N 3.7 ( J O I NT E R GO D I C ITY) . Two random signals are called jointly ergodic if
they are individually ergodic and in addition

〈x(n)y∗(n − l)〉 = E{x(n)y∗(n − l)} (3.3.36)

A physical interpretation of ergodicity is that one realization of the random signal x(n),
as time n tends to infinity, takes on values with the same statistics as the value x(n1),
corresponding to all samples of the ensemble members at a given time n = n1.

In practice, it is of course impossible to use the time-average formulas introduced
above, because only finite records of data are available. In this case, it is common practice
to replace the operator (3.3.32) by the operator

〈(·)〉N = 1

2N + 1

N∑
n=−N

(·) (3.3.37)

to obtain estimates of the true quantities. Our desire in such problems is to find estimates
that become increasingly accurate (in a sense to be defined in Section 3.6) as the length
2N + 1 of the record of used data becomes larger.

Finally, to summarize, we note that whereas stationarity ensures the time invariance
of the statistics of a random signal, ergodicity implies that any statistics can be calculated
either by averaging over all members of the ensemble at a fixed time or by time-averaging
over any single representative member of the ensemble.

3.3.5 Random Signal Variability

If we consider a stationary random sequence w(n) that is IID with zero mean, its key charac-
teristics depend on its first-order density. Figure 3.8 shows the probability density functions
and sample realizations for IID processes with uniform, Gaussian, and Cauchy probability
distributions. In the case of the uniform distribution, the amplitude of the random variable is
limited to a range, with values occurring outside this interval with zero probability. On the
other hand, the Gaussian distribution does not have a finite interval of support, allowing for
the possibility of any value. The same is true of the Cauchy distribution, but its characteris-
tics are dramatically different from those of the Gaussian distribution. The center lobe of the
density is much narrower while the tails that extend out to infinity are significantly higher.
As a result, the realization of the Cauchy random process contains numerous spikes or ex-
treme values while the remainder of the process is more compact about the mean. Although
the Gaussian random process allows for the possibility of large values, the probability of
their occurrence is so small that they are not found in realizations of the process.

The major difference between the Gaussian and Cauchy distributions lies in the area
found under the tails of the density as it extends out to infinity. This characteristic is related
to the variability of the process. The heavy tails, as found in the Cauchy distribution, result
in an abundance of spikes in the process, a characteristic referred to as high variability. On
the other hand, a distribution such as the Gaussian does not allow for extreme values and
indicates low variability. The extent of the variability of a given distribution is determined by
the heaviness of the tails. Distributions with heavy tails are called long-tailed distributions
and have been used extensively as models of impulsive random processes.

DEFINITION 3.8. A distribution is called long-tailed if its tails decay hyperbolically or alge-
braically as

Pr{|x(n)| ≥ x} ∼ Cx−α as x → ∞ (3.3.38)

where C is a constant and the variable α determines the rate of decay of the distribution.
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FIGURE 3.8
Probability density functions and sample realizations of an IID process with
uniform, Gaussian, and Cauchy distributions.

By means of comparison, the Gaussian distribution has an exponential rate of decay.
The implication of the algebraically decaying tail is that the process has infinite variance,
that is,

σ 2
x = E{|x(n)|2} = ∞

and therefore lacks second-order moments. The lack of second-order moments means that, in
addition to the variance, the correlation functions of these processes do not exist. Since most
signal processing algorithms are based on second-order moment theory, infinite variance
has some extreme implications for the way in which such processes are treated.

In this book, we shall model high variability, and hence infinite variance, using the
family of symmetric stable distributions. The reason is twofold: First, a linear combination of
stable random variables is stable. Second, stable distributions appear as limits in central limit
theorems (see stable distributions in Section 3.2.4). Stable distributions are characterized
by a parameter α, 0 < α ≤ 2. They are Cauchy when α = 1 and Gaussian when α = 2.
However, they have finite variance only when α = 2.

In practice, the type of data under consideration governs the variability of the modeling
distribution. Random signals restricted to a certain interval, such as the phase of complex
random signals, are well suited for uniform distributions. On the other hand, signals allowing
for any possible value but generally confined to a region are better suited for Gaussian
models. However, if a process contains spikes and therefore has high variability, it is best
characterized by a long-tailed distribution such as the Cauchy distribution. Impulsive signals
have been found in a variety of applications, such as communication channels, radar signals,
and electronic circuit noise. In all cases, the variability of the process dictates the appropriate
model.
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3.3.6 Frequency-Domain Description of Stationary Processes

Discrete-time stationary random processes have correlation sequences that are functions of
a single index. This leads to nice and powerful representations in both the frequency and
the z-transform domains.

Power spectral density

The power spectral density (PSD, or more appropriately autoPSD) of a stationary
stochastic process x(n) is a Fourier transformation of its autocorrelation sequence rx(l).
If rx(l) is periodic (which corresponds to a wide-sense periodic stochastic process) in l,
then the DTFS discussed in Section 2.2.1 can be used to obtain the PSD, which has the
form of a line spectrum. If rx(l) is nonperiodic, the DTFT discussed in Section 2.2.1 can
be used provided that rx(l) is absolutely summable. This means that the process x(n) must
be a zero-mean process. In general, a stochastic process can be a mixture of periodic and
nonperiodic components.

†

If we allow impulse functions in the DTFT to represent periodic (or almost periodic)
sequences and non-zero-mean processes (see Section 2.2.1), then we can define the PSD as

Rx(e
jω) =

∞∑
l=−∞

rx(l)e
−jωl (3.3.39)

where ω is the frequency in radians per sample. If the process x(n) is a zero-mean nonpe-
riodic process, then (3.3.39) is enough to determine the PSD. If x(n) is periodic (including
nonzero mean) or almost periodic, then the PSD is given by

Rx(e
jω) =

∑
i

2πAiδ(ω − ωi) (3.3.40)

where the Ai are amplitudes of rx(l) at frequencies ωi . For discussion purposes we will
assume that x(n) is a zero-mean nonperiodic process. The autocorrelation rx(l) can be
recovered from the PSD by using the inverse DTFT as

rx(l) = 1

2π

∫ π

−π

Rx(e
jω)ejωl dω (3.3.41)

EXAMPLE 3.3.4. Determine the PSD of a zero-mean WSS process x(n) with rx(l) = a|l|,−1 <

a < 1.

Solution. From (3.3.39) we have

Rx(e
jω) =

∞∑
l=−∞

a|l|e−jωl − 1 < a < 1

= 1

1 − aejω
+ 1

1 − ae−jω
− 1

= 1 − a2

1 + a2 − 2a cos ω
− 1 < a < 1

(3.3.42)

which is a real-valued, even, and nonnegative function of ω.

Properties of the autoPSD. The power spectral density Rx(e
jω) has three key prop-

erties that follow from corresponding properties of the autocorrelation sequence and the
DTFT.

†
Periodic components are predictable processes as discussed before. However, some nonperiodic components can

also be predictable. Hence nonperiodic components are not always regular processes.
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PROPERTY 3.3.4. The autoPSD Rx(e
jω) is a real-valued periodic function of frequency with

period 2π for any (real- or complex-valued) process x(n). If x(n) is real-valued, then Rx(e
jω)

is also an even function of ω, that is,

Rx(e
jω) = Rx(e

−jω) (3.3.43)

Proof. It follows from autocorrelation and DTFT properties.

PROPERTY 3.3.5. The autoPSD is nonnegative definite, that is,

Rx(e
jω) ≥ 0 (3.3.44)

Proof. This follows from the nonnegative definiteness of the autocorrelation sequence [see also
discussions leading to (3.4.27)].

PROPERTY 3.3.6. The area under Rx(e
jω) is nonnegative and it equals the average power of

x(n). Indeed, from (3.3.41) it follows with l = 0 that

1

2π

∫ π

−π
Rx(e

jω) dω = rx(0) = E{|x(n)|2} ≥ 0 (3.3.45)

Proof. It follows from Property 3.3.5.

White noise. A random sequence w(n) is called a (second-order) white noise process
with mean µw and variance σ 2

w, denoted by

w(n) ∼ WN(µw, σ 2
w) (3.3.46)

if and only if E{w(n)} = µw and

rw(l) = E{w(n)w∗(n − l)} = σ 2
wδ(l) (3.3.47)

Rw(ejω) = σ 2
w − π ≤ ω ≤ π (3.3.48)which implies that

The term white noise is used to emphasize that all frequencies contribute the same amount
of power, as in the case of white light, which is obtained by mixing all possible colors by
the same amount. If, in addition, the pdf of x(n) is Gaussian, then the process is called a
(second-order) white Gaussian noise process, and it will be denoted by WGN(µw, σ 2

w).
If the random variables w(n) are independently and identically distributed with mean

µw and variance σ 2
w, then we shall write

w(n) ∼ IID(µw, σ 2
w) (3.3.49)

This is sometimes referred to as a strict white noise.
We emphasize that the conditions of uncorrelatedness or independence do not put any

restriction on the form of the probability density function of w(n). Thus we can have an
IID process with any type of probability distribution. Clearly, white noise is the simplest
random process because it does not have any structure. However, we will see that it can be
used as the basic building block for the construction of processes with more complicated
dependence or correlation structures.

Harmonic processes. A harmonic process is defined by

x(n) =
M∑

k=1

Ak cos(ωkn + φk) ωk 
= 0 (3.3.50)

where M, {Ak}M1 , and {ωk}M1 are constants and {φk}M1 are pairwise independent random
variables uniformly distributed in the interval [0, 2π ]. It can be shown (see Problem 3.9)
that x(n) is a stationary process with mean

E{x(n)} = 0 for all n (3.3.51)
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and autocorrelation

rx(l) = 1

2

M∑
k=1

A2
k cos ωkl −∞ < l < ∞ (3.3.52)

We note that rx(l) consists of a sum of “in-phase” cosines with the same frequencies as in
x(n).

If ωk/(2π) are rational numbers, rx(l) is periodic and can be expanded as a Fourier se-
ries. These series coefficients provide the power spectrum Rx(k) of x(n). However, because
rx(l) is a linear superposition of cosines, it always has a line spectrum with 2M lines of
strength A2

k/4 at frequencies ±ωk in the interval [−π, π ]. If rx(l) is periodic, then the lines
are equidistant (i.e., harmonically related), hence the name harmonic process. If ω/(2π)

is irrational, then rx(l) is almost periodic and can be treated in the frequency domain in
almost the same fashion. Hence the power spectrum of a harmonic process is given by

Rx(e
jω) =

M∑
k=−M

2π

(
A2

k

4

)
δ(ω − ωk) =

M∑
k=−M

π

2
A2

kδ(ω − ωk),−π < ω ≤ π (3.3.53)

EXAMPLE 3.3.5. Consider the following harmonic process

x(n) = cos (0.1πn + φ1) + 2 sin (1.5n + φ2)

where φ1 and φ2 are IID random variables uniformly distributed in the interval [0, 2π ]. The
first component of x(n) is periodic with ω1 = 0.1π and period equal to 20 while the second
component is almost periodic with ω2 = 1.5. Thus the sequence x(n) is almost periodic. A
sample function realization of x(n) is shown in Figure 3.9(a). The mean of x(n) is

µx(n) = E{x(n)} = E{cos (0.1πn + φ1) + 2 sin (1.5n + φ2)} = 0

and the autocorrelation sequence (using mutual independence between φ1 and φ2) is

rx(n1, n2) = E{x(n1)x
∗
2 (n2)}

= E{cos (0.1πn1 + φ1) cos (0.1πn2 + φ1)}
+E{2 sin (1.5n1 + φ2)2 sin (1.5n2 + φ2)}

= 1
2 cos [0.1π(n1 − n2)] + 2 cos [1.5(n1 − n2)]

rx(l) = 1
2 cos 0.1πl + 2 cos 1.5l l = n1 − n2or

Thus the line spectrum R
(x)
ωk

is given by

R
(x)
ωk

=




1 ω1 = −1.5
1
4

ω2 = −0.1π

1
4

ω3 = 0.1π

1 ω4 = 1.5

and the power spectrum Rx(e
jω) is given by

Rx(e
jω) = 2πδ(ω + 1.5) + π

2
δ(ω + 0.1π) + π

2
δ(ω − 0.1π) + 2πδ(ω − 1.5)

The line spectrum of x(n) is shown in Figure 3.9(b) and the corresponding power spectrum in
Figure 3.9(c).

The harmonic process is predictable because any given realization is a sinusoidal se-
quence with fixed amplitude, frequency, and phase. We stress that the independence of the
phases is required to guarantee the stationarity of x(n) in (3.3.50). The uniform distribution
of the phases is necessary to make x(n) a stationary process (see Problem 3.9). The har-
monic process (3.3.50), in general, is non-Gaussian; however, it becomes Gaussian if the
amplitudes Ak are random variables with a Rayleigh distribution (Porat 1994).
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FIGURE 3.9
The time and frequency-domain description of the harmonic process in Example 3.3.5.

EXAMPLE 3.3.6. Consider a complex-valued process given by

x(n) = Aejω0n = |A|ej (ω0n+φ)

where A is a complex-valued random variable and ω0 is constant. The mean of x(n)

E{x(n)} = E{A}ejω0n

can be constant only if E{A} = 0. If |A| is constant and φ is uniformly distributed on [0, 2π ],
then we have E{A} = |A|E{ejφ} = 0. In this case the autocorrelation is

rx(n1, n2) = E{Aej(ω0n1+φ)A∗e−j (ω0n2+φ)} = |A|2ej (n1−n2)ω0

Since the mean is constant and the autocorrelation depends on the difference l � n1 − n2, the
process is wide-sense stationary.

The above example can be generalized to harmonic processes of the form

x(n) =
M∑

k=1

Ake
j (ωkn+φk) (3.3.54)

where M, {Ak}M1 , and {ωk}M1 are constants and {φk}M1 are pairwise independent random
variables uniformly distributed in the interval [0, 2π ]. The autocorrelation sequence is

rx(l) =
M∑

k=1

|Ak|2ejωkl (3.3.55)

and the power spectrum consists of M impulses with amplitudes 2π |Ak|2 at frequencies
ωk . If the amplitudes {Ak}Mk=1 are random variables, mutually independent of the random
phases, the quantity |Ak|2 is replaced by E{|Ak|2}.
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Cross-power spectral density

The cross-power spectral density of two zero-mean and jointly stationary stochastic
processes provides a description of their statistical relations in the frequency domain and is
defined as the DTFT of their cross-correlation, that is,

Rxy(e
jω) =

∞∑
l=−∞

rxy(l)e
−jωl (3.3.56)

The cross-correlation rxy(l) can be recovered by the inverse DTFT

rxy(l) = 1

2π

∫ π

−π

Rxy(e
jω)ejωl dω (3.3.57)

The cross-spectrumRxy(e
jω) is, in general, a complex function ofω. From rxy(l) = r∗yx(−l)

it follows that

Rxy(e
jω) = R∗

yx(e
jω) (3.3.58)

This implies that Rxy(e
jω) and Ryx(e

jω) have the same magnitude but opposite phase.
The normalized cross-spectrum

Gxy(e
jω) � Rxy(e

jω)√
Rx(e

jω)

√
Ry(ejω)

(3.3.59)

is called the coherence function. Its squared magnitude

|Gxy(e
jω)|2 = |Rxy(e

jω)|2
Rx(ejω)Ry(ejω)

(3.3.60)

is known as the magnitude square coherence (MSC) and can be thought of as a sort of
correlation coefficient in the frequency domain. If x(n) = y(n), then Gxy(e

jω) = 1 (max-
imum correlation) whereas if x(n) and y(n) are uncorrelated, then Rxy(l) = 0 and hence
Gxy(e

jω) = 0. In other words, 0 ≤ |Gxy(e
jω)| ≤ 1.

Complex spectral density functions

If the sequences rx(l) and rxy(l) are absolutely summable within a certain ring of the
complex z plane, we can obtain their z-transforms

Rx(z) =
∞∑

l=−∞
rx(l)z

−l (3.3.61)

Rxy(z) =
∞∑

l=−∞
rxy(l)z

−l (3.3.62)

which are known as the complex spectral density and complex cross-spectral density func-
tions, respectively. If the unit circle, defined by z = ejω, is within the region of convergence
of the above summations, then

Rx(e
jω) = Rx(z)|z=ejω (3.3.63)

Rxy(e
jω) = Rxy(z)|z=ejω (3.3.64)

The correlation and power spectral density properties of random sequences are summarized
in Table 3.1.

EXAMPLE 3.3.7. Consider the random sequence given in Example 3.3.4 with autoPSD in (3.3.42)

Rx(e
jω) = 1 − a2

1 + a2 − 2a cos ω
|a| < 1

Determine the complex autoPSD Rx(z).
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Solution. The complex autoPSD is given by Rx(z) = Rx(e
jω)|ejω=z. Since

cos ω = ejω + e−jω

2
= z + z−1

2

∣∣∣∣∣
z=ejω

we obtain

Rx(z) = 1 − a2

1 + a2 − 2a

(
z + z−1

2

) = (a − a−1)z−1

1 − (a + a−1)z−1 + z−2
|a| < |z| < 1

|a|

Now the inverse z-transform of Rx(z) determines the autocorrelation sequence rx(l), that is,

Rx(z) = (a − a−1)z−1

1 − (a + a−1)z−1 + z−2
= (a − a−1)z−1

(1 − az−1)(1 − a−1z−1)

= 1

(1 − az−1)
− 1

(1 − a−1z−1)
|a| < |z| < |a|−1

rx(l) = alu(l) + (a−1)lu(−l − 1) = a|l| (3.3.65)or

This approach can be used to determine autocorrelation sequences from autoPSD functions.

Table 3.1 provides a summary of correlation and spectral properties of stationary ran-
dom sequences.

TABLE 3.1

Summary of correlation and spectral properties of stationary
random sequences.

Definitions

Mean value µx = E{x(n)}
Autocorrelation rx(l) = E{[x(n)x∗(n − l)}
Autocovariance γ x(l) = E{[x(n) − µx ][x(n − l) − µx ]∗}
Cross-correlation rxy(l) = E{x(n)y∗(n − l)}
Cross-covariance γ xy(l) = E{[x(n) − µx ][y(n − l) − µy ]∗}
Power spectral density Rx(e

jω) =∑∞
l=−∞rx(l)e

−jωl

Cross-power spectral density Rxy(e
jω) =∑∞

l=−∞rxy(l)e
−jωl

Magnitude square coherence |Gxy(e
jω)|2 = |Rxy(e

jω)|2/[Rx(e
jω)Ry(e

jω)]

Interrelations

γ x(l) = rx(l) − |µx |2
γ xy(l) = rxy(l) − µxµ

∗
y

Properties

Autocorrelation Auto-PSD

rx(l) is nonnegative definite Rx(e
jω) ≥ 0 and real

rx(l) = r∗x (−l) Rx(e
jω) = Rx(e

−jω) [real x(n)]

|rx(l)| ≤ rx(0) Rx(z) = R∗
x (1/z

∗)
|ρx(l)| ≤ 1 Rx(z) = Rx(z

−1) [real x(n)]

Cross-correlation Cross-PSD

rxy(l) = r∗yx(−l)

|rxy(l)| ≤ [rx(0)ry(0)]1/2 ≤ Rxy(z) = R∗
yx(1/z

∗)
1
2 [rx(0) + ry(0)] 0 ≤ |Gxy(e

jω)| ≤ 1

|ρxy(l)| ≤ 1
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3.4 LINEAR SYSTEMS WITH STATIONARY RANDOM INPUTS

This section deals with the processing of stationary random sequences using linear, time-
invariant (LTI) systems. We focus on expressing the second-order statistical properties of
the output in terms of the corresponding properties of the input and the characteristics of
the system.

3.4.1 Time-Domain Analysis

The first question to ask when we apply a random signal to a system is, Just what is the
meaning of such an operation? We ask this because a random process is not just a single
sequence but an ensemble of sequences (see Section 3.3). However, since each realization
of the stochastic process is a deterministic signal, it is an acceptable input producing an
output that is clearly a single realization of the output stochastic process. For an LTI system,
each pair of input-output realizations is described by the convolution summation

y(n, ζ ) =
∞∑

k=−∞
h(k)x(n − k, ζ ) (3.4.1)

If the sum in the right side of (3.4.1) exists for all ζ such that Pr{ζ } = 1, then we say that we
have almost-everywhere convergence or convergence with probability 1 (Papoulis 1991).
The existence of such convergence is ruled by the following theorem (Brockwell and Davis
1991).

TH E O R E M 3.2. If the process x(n, ζ ) is stationary with E{|x(n, ζ )|} < ∞ and if the system
is BIBO-stable, that is,

∑∞−∞ |h(k)| < ∞, then the output y(n, ζ ) of the system in (3.4.1)
converges absolutely with probability 1, or

y(n, ζ ) =
∞∑

k=−∞
h(k)x(n − k, ζ ) for all ζ ∈ A, Pr{A} = 1 (3.4.2)

and is stationary. Furthermore, if E{|x(n, ζ )|2} < ∞, then E{|y(n, ζ )|2} < ∞ and y(n, ζ )

converges in the mean square to the same limit and is stationary.

A less restrictive condition of finite energy on the system impulse response h(n) also
guarantees the mean square existence of the output process, as stated in the following
theorem.

THEOREM 3.3. If the process x(n, ζ ) is zero-mean and stationary with
∑∞

l=−∞ |rx(l)| < ∞,
and if the system (3.4.1) satisfies the condition

∞∑
n=−∞

|h(n)|2 = 1

2π

∫ π

−π
|H(ejω)|2 dω < ∞ (3.4.3)

then the output y(n, ζ ) converges in the mean square sense and is stationary.

The above two theorems are applicable when input processes have finite variances.
However, IID sequences with α-stable distributions have infinite variances. If the impulse
response of the system in (3.4.1) decays fast enough, then the following theorem (Brockwell
and Davis 1991) guarantees the absolute convergence of y(n, ζ ) with probability 1. These
issues are of particular importance for inputs with high variability and are discussed in
Section 3.3.5.

THEOREM 3.4. Let x(n, ζ ) be an IID sequence of random variables with α-stable distribution,
0 < α < 2. If the impulse response h(n) satisfies

∞∑
n=−∞

|h(n)|δ < ∞ for some δ ∈ (0, α)

then the output y(n, ζ ) in (3.4.1) converges absolutely with probability 1.
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Clearly, a complete description of the output stochastic process y(n) requires the com-
putation of an infinite number of convolutions. Thus, a better alternative would be to de-
termine the statistical properties of y(n) in terms of the statistical properties of the input
and the characteristics of the system. For Gaussian signals, which are used very often in
practice, first- and second-order statistics are sufficient.

Output mean value. If x(n) is stationary, its first-order statistic is determined by its
mean value µx . To determine the mean value of the output, we take the expected value of
both sides of (3.4.1):

µy =
∞∑

k=−∞
h(k)E{x(n − k)} = µx

∞∑
k=−∞

h(k) = µxH(ej0) (3.4.4)

Since µx and H(ej0) are constant, µy is also constant. Note that H(ej0) is the dc gain of
the spectrum.

Input-output cross-correlation. If we take complex conjugate of (3.4.1), premultiply
it by x(n + l), and take the expectation of both sides, we have

E{x(n + l)y∗(l)} =
∞∑

k=−∞
h∗(k)E{x(n + l)x∗(n − k)}

rxy(l) =
∞∑

k=−∞
h∗(k)rxx(l + k) =

∞∑
m=−∞

h∗(−m)rxx(l − m)or

rxy(l) = h∗(−l) ∗ rxx(l) (3.4.5)Hence,

ryx(l) = h(l) ∗ rxx(l) (3.4.6)Similarly,

Output autocorrelation. Postmultiplying both sides of (3.4.1) by y∗(n− l) and taking
the expectation, we obtain

E{y(n)y∗(n − l)} =
∞∑

k=−∞
h(k)E{x(n − k)y∗(n − l)} (3.4.7)

ryy(l) =
∞∑

k=−∞
h(k)rxy(l − k) = h(l) ∗ rxy(l) (3.4.8)or

From (3.4.5) and (3.4.8) we get

ry(l) = h(l) ∗ h∗(−l) ∗ rx(l) (3.4.9)

ry(l) = rh(l) ∗ rx(l) (3.4.10)or

rh(l) � h(l) ∗ h∗(−l) =
∞∑

n=−∞
h(n)h∗(n − l) (3.4.11)where

is the autocorrelation of the impulse response and is called the system correlation sequence.
Since µy is constant and ry(l) depends only on the lag l, the response of a stable

system to a stationary input is also a stationary process. A careful examination of (3.4.10)
shows that when a signal x(n) is filtered by an LTI system with impulse response h(n) its
autocorrelation is “filtered” by a system with impulse response equal to the autocorrelation
of its impulse response, as shown in Figure 3.10.
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rh (l )

h (l ) h*(−l )rx (l ) ry(l )

FIGURE 3.10
An equivalent LTI system for autocorrelation filtration.

Output power. The power E{|y(n)|2} of the output process y(n) is equal to ry(0),
which from (3.4.9) and (3.4.10) and the symmetry property of rx(l) is

Py = ry(0) = rh(l) ∗ rx(l)|l=0

=
∞∑

k=−∞
rh(k)rx(−k) =

∞∑
k=−∞

[h(k) ∗ h∗(−k)]rx(k)

=
∞∑

k=−∞

∞∑
m=−∞

h(m)h∗(m − k)rx(k) (3.4.12)

=
∞∑

k=−∞
rh(k)rx(k) (3.4.13)

or for FIR filters with h = [h(0) h(1) · · · h(M − 1)]T , (3.4.12) can be written as

Py = hH Rxh (3.4.14)

Finally, we note that when µx = 0, we have µy = 0 and σ 2
y = Py .

Output probability density function. Finding the probability density of the output of
an LTI system is very difficult, except in some special cases. Thus, if x(n) is a Gaussian
process, then the output is also a Gaussian process with mean and autocorrelation given by
(3.4.4) and (3.4.10). Also if x(n) is IID, the probability density of the output is obtained by
noting that y(n) is a weighted sum of independent random variables. Indeed, the probability
density of the sum of independent random variables is the convolution of their probability
densities or the products of their characteristic functions. Thus if the input process is an
IID stable process then the output process is also stable whose probability density can be
computed by using characteristic functions.

3.4.2 Frequency-Domain Analysis

To obtain the output autoPSD and complex autoPSD, we recall that if H(z) = Z{h(n)},
then, for real h(n),

Z{h∗(−n)} = H ∗
(

1

z∗

)
(3.4.15)

From (3.4.5), (3.4.6), and (3.4.9) we obtain

Rxy(z) = H ∗
(

1

z∗

)
Rx(z) (3.4.16)

Ryx(z) = H(z)Rx(z) (3.4.17)

Ry(z) = H(z)H ∗
(

1

z∗

)
Rx(z) (3.4.18)and
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For a stable system, the unit circle z = ejω lies within the ROCs of H(z) and H(z−1).
Thus,

Rxy(e
jω) = H ∗(ejω)Rx(e

jω) (3.4.19)

Ryx(e
jω) = H(ejω)Rx(e

jω) (3.4.20)

Ry(e
jω) = H(ejω)H ∗(ejω)Rx(e

jω) (3.4.21)and

Ry(e
jω) = |H(ejω)|2Rx(e

jω) (3.4.22)or

Thus, if we know the input and output autocorrelations or autospectral densities, we can
determine the magnitude response of a system, but not its phase response. Only cross-
correlation or cross-spectral densities can provide phase information [see (3.4.19) and
(3.4.20)].

It can easily be shown that the power of the output is

E{|y(n)|2} = ryy(0) = 1

2π

∫ π

−π

|H(ejω)|2Rx(e
jω) dω (3.4.23)

=
∞∑

l=−∞
rx(l)rh(l) (3.4.24)

which is equivalent to (3.4.13).
Consider now a narrowband filter with frequency response

H(ejω) =

1 ωc − �ω

2
≤ ω ≤ ωc + �ω

2

0 elsewhere
(3.4.25)

The power of the filter output is

E{|y(n)|2} = 1

2π

∫ ωc+�ω/2

ωc−�ω/2
Rx(e

jω) dω � 
ω

π
Rx(e

jωc ) (3.4.26)

assuming that �ω is sufficiently small and that Rx(e
jω) is continuous at ω = ωc. Since

E{|y(n)|2} ≥ 0, Rx(e
jωc ) is also nonnegative for all ωc and �ω, hence

Rx(e
jω) ≥ 0 − π ≤ ω ≤ π (3.4.27)

Hence, the PSD Rx(e
jω) is nonnegative definite for any random sequence x(n) real (or

complex). Furthermore, Rx(e
jω) dω/(2π), has the interpretation of power, or Rx(e

jω) is a
power density as a function of frequency (in radians per sample). Table 3.2 shows various
input-output relationships in both the time and frequency domains.

TABLE 3.2

Second-order moments of stationary random sequences processed by linear,
time-invariant systems.

Time domain Frequency domain z Domain

y(n) = h(n) ∗ x(n) Not available Not available

ryx(l) = h(l) ∗ rx(l) Ryx(e
jω) = H(ejω)Rx(e

jω) Ryx(z) = H(z)Rx(z)

rxy(l) = h∗(−l) ∗ rx(l) Rxy(e
jω) = H∗(ejω)Rx(e

jω) Rxy(z) = H∗(1/z∗)Rx(z)

ry(l) = h(l) ∗ rxy(l) Ry(e
jω) = H(ejω)Rxy(e

jω) Ry(z) = H(z)Rxy(z)

ry(l) = h(l) ∗ h∗(−l) ∗ rx(l) Ry(e
jω) = |H(ejω)|2Rx(e

jω) Ry(z) = H(z)H∗(1/z∗)Rx(z)

3.4.3 Random Signal Memory

Given the “zero-memory” process w(n) ∼ IID(0, σ 2
w), we can introduce dependence by

passing it though an LTI system. The extent and degree of the imposed dependence are
dictated by the shape of the system’s impulse response. The probability density of w(n) is



March 9, 2005 11:42 e56-ch3 Sheet number 45 Page number 119 black

119

section 3.4
Linear Systems with
Stationary Random Inputs

not explicitly involved. Suppose now that we are given the resulting linear process x(n),
and we want to quantify its memory. For processes with finite variance we can use the
correlation length

Lc = 1

rx(0)

∞∑
l=0

rx(l) =
∞∑
l=0

ρx(l)

which equals the area under the normalized autocorrelation sequence curve and shows the
maximum distance at which two samples are significantly correlated.

An IID process has no memory and is completely described by its first-order density.
A linear process has memory introduced by the impulse response of the generating system.
If w(n) has finite variance, the memory of the process is determined by the autocorrelation
of the impulse response because rx(l) = σ 2

wrh(l). Also, the higher-order densities of the
process are nonzero. Thus, the variability of the output—that is, what amplitudes the sig-
nal takes, how often, and how fast the amplitude changes from sample to sample—is the
combined effect of the input probability density and the system memory.

DEFINITION 3.9. A stationary process x(n) with finite variance is said to have long memory if
there exist constants α, 0 < α < 1, and Cr > 0 such that

lim
l→∞

1

Crσ
2
x

rx(l)l
α = 1

This implies that the autocorrelation has fat or heavy tails, that is, asymptotically decays as
a power law

ρx(l) � Cr |l|−α as l → ∞
and slowly enough that

∞∑
l=−∞

ρx(l) = ∞

that is, a long-memory process has infinite correlation length. If
∞∑

l=−∞
ρx(l) < ∞

we say that that the process has short memory. This is the case for autocorrelations that
decay exponentially, for example, ρx(l) = a|l|,−1 < a < 1.

An equivalent definition of long memory can be formulated in terms of the power
spectrum (Beran 1994; Samorodnitsky and Taqqu 1994).

DEFINITION 3.10. A stationary process x(n) with finite variance is said to have long memory if
there exist constants β, 0 < β < 1, and CR > 0 such that

lim
ω→0

1

CRσ 2
x

Rx(e
jω)|ω|β = 1

This asymptotic definition implies that

Rx(e
jω) � CRσ 2

x

|ω|β as ω → 0

Rx(0) =
∞∑

l=−∞
rx(l) = ∞and

The first-order density determines the mean value and the variance of a process, whereas
the second-order density determines the autocorrelation and power spectrum. There is a
coupling between the probability density and the autocorrelation or power spectrum of a
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process. However, this coupling is not extremely strong because there are processes that
have different densities and the same autocorrelation. Thus, we can have random signal
models with short or long memory and low or high variability. Random signal models are
discussed in Chapters 4 and 12.

3.4.4 General Correlation Matrices

We first begin with the properties of general correlation matrices. Similar properties apply
to covariance matrices.

PROPERTY 3.4.1. The correlation matrix of a random vector x is conjugate symmetric or Her-
mitian, that is,

Rx = RH
x (3.4.28)

Proof. This follows easily from (3.2.19).

PROPERTY 3.4.2. The correlation matrix of a random vector x is nonnegative definite (n.n.d.);
or for every nonzero complex vector w = [w1 w2 · · · wM ]T , the quadratic form wH Rxw is
nonnegative, that is,

wH Rxw ≥ 0 (3.4.29)

Proof. To prove (3.4.29), we define the dot product

α = wH x = xT w∗ =
M∑

k=1

w∗
k xk (3.4.30)

The mean square value of the random variable α is

E{|α|2} = E{wH xxH w} = wHE{xxH }w = wH Rxw (3.4.31)

Since E{|α|2} ≥ 0, if follows that wH Rxw ≥ 0. We also note that a matrix is called positive
definite (p.d.) if wH Rxw > 0.

Eigenvalues and eigenvectors of R

For a Hermitian matrix R we wish to find an M×1 vector q that satisfies the condition

Rq = λq (3.4.32)

where λ is a constant. This condition implies that the linear transformation performed
by matrix R does not change the direction of vector q. Thus Rq is a direction-invariant
mapping. To determine the vector q, we write (3.4.32) as

(R − λI)q = 0 (3.4.33)

where I is the M×M identity matrix and 0 is an M×1 vector of zeros. Since q is arbitrary,
the only way (3.4.33) is satisfied is if the determinant of R − λI equals zero, that is,

det(R − λI) = 0 (3.4.34)

This equation is an Mth-order polynomial in λ and is called the characteristic equation of
R. It has M roots {λi}Mi=1, called eigenvalues, which, in general, are distinct. If (3.4.34) has
repeated roots, then R is said to have degenerate eigenvalues. For each eigenvalue λi we
can satisfy (3.4.32)

Rqi = λiqi i = 1, . . . ,M (3.4.35)

where the qi are called eigenvectors of R. Therefore, the M × M matrix R has M eigen-
vectors. To uniquely determine qi , we use (3.4.35) along with the normality condition that
‖qi‖ = 1. A Matlab function [Lambda,Q] = eig(R) is available to compute eigenvalues
and eigenvectors of R.
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There are further properties of the autocorrelation matrix R based on its eigenanalysis,
which we describe below. Consider a matrix R that is Hermitian and nonnegative definite
(wH Rw ≥ 0) with eigenvalues {λi}Mi=1 and eigenvectors {qi}Mi=1.

PROPERTY 3.4.3. The matrix Rk(k = 1, 2, . . .) has eigenvalues λk
1, λ

k
2, . . . , λ

k
M

.

Proof. See Problem 3.16.

PROPERTY 3.4.4. If the eigenvalues λ1, λ2, . . . , λM are distinct, the corresponding eigenvectors
{qi}Mi=1 are linearly independent.

Proof. This property can be proved by using Property 3.4.3. If there exists M not-all-zero
scalars {αi}Mi=1, such that

M∑
i=1

αiqi = 0 (3.4.36)

then the eigenvectors {qi}Mi=1 are said to be linearly dependent. Assume that (3.4.36) is true for

some not-all-zero scalars {αi}Mi=1 and that the eigenvalues {λi}Mi=1 are distinct. Now multiply

(3.4.36) repeatedly by Rk , k = 0, . . . ,M − 1 and use Property 3.4.3 to obtain

M∑
i=1

αiR
kqi =

M∑
i=1

αiλ
k
i qi = 0 k = 0, . . . ,M − 1 (3.4.37)

which can be arranged in a matrix format for i = 1, . . . ,M as

[
α1q1 α2q2 α3q3 . . . αMqM

]



1 λ1 λ2
1 . . . λM−1

1

1 λ2 λ2
2 . . . λM−1

2
...

...
...

. . .
...

1 λM λ2
M

. . . λM−1
M


 = 0 (3.4.38)

Since all the λi are distinct, the matrix containing the λi in (3.4.38) above is nonsingular. This
matrix is called a Vandermonde matrix. Therefore, premultiplying both sides of (3.4.38) by the
inverse of the Vandermonde matrix, we obtain

[α1q1 α2q2 α3q3 . . . αMqM ] = 0 (3.4.39)

Since eigenvectors {qi}Mi=1 are not zero vectors, the only way (3.4.39) can be satisfied is if all

{αi}Mi=1 are zero. This implies that (3.4.36) cannot be satisfied for any set of not-all-zero scalars

{αi}Mi=1, which further implies that {qi}Mi=1 are linearly independent.

PROPERTY 3.4.5. The eigenvalues {λi}Mi=1 are real and nonnegative.

Proof. From (3.4.35), we have

qH
i Rqi = λiq

H
i qi i = 1, 2, . . . ,M (3.4.40)

Since R is positive semidefinite, the quadratic form qH
i

Rqi ≥ 0. Also since qH
i

qi is an inner

product, qH
i

qi > 0. Hence

λi =
qH
i

Rqi

qH
i

qi

≥ 0 i = 1, 2, . . . ,M (3.4.41)

Furthermore, if R is positive definite, then λi > 0 for all 1 ≤ i ≤ M . The quotient in (3.4.41) is
a useful quantity and is known as the Raleigh quotient of vector qi .

PROPERTY 3.4.6. If the eigenvalues {λi}Mi=1 are distinct, then the corresponding eigenvectors
are orthogonal to one another, that is,

λi 
= λj ⇒ qH
i qj = 0 for i 
= j (3.4.42)
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Proof. Consider (3.4.35). We have

Rqi = λiqi (3.4.43)

Rqj = λj qj (3.4.44)and

for some i 
= j . Premultiplying both sides of (3.4.43) by qH
j

, we obtain

qH
j Rqi = qH

j λiqi = λiq
H
j qi (3.4.45)

Taking the conjugate transpose of (3.4.44), using the Hermitian property (3.4.28) of R, and using
the realness Property 3.4.5 of eigenvalues, we get

qH
j R = λj qH

j (3.4.46)

Now postmultiplying (3.4.46) by qi and comparing with (3.4.45), we conclude that

λiq
H
j qi = λj qH

j qi or (λi − λj )q
H
j qi = 0 (3.4.47)

Since the eigenvalues are assumed to be distinct, the only way (3.4.47) can be satisfied is if
qH
j

qi = 0 for i 
= j , which further proves that the corresponding eigenvectors are orthogonal
to one another.

PROPERTY 3.4.7. Let {qi}Mi=1 be an orthonormal set of eigenvectors corresponding to the distinct

eigenvalues {λi}Mi=1 of an M ×M correlation matrix R. Then R can be diagonalized as follows:

� = QH RQ (3.4.48)

where the orthonormal matrix Q � [q1 · · · qM ] is known as an eigenmatrix and � is an M×M

diagonal eigenvalue matrix, that is,

� ��� diag(λ1, . . . , λM) (3.4.49)

Proof. Arranging the vectors in (3.4.35) in a matrix format, we obtain

[Rq1 Rq2 · · · RqM ] = [λ1q1 λ2q2 · · · λMqM ]
which, by using the definitions of Q and �, can be further expressed as

RQ = Q� (3.4.50)

Since qi , i = 1, . . . ,M , is an orthonormal set of vectors, the eigenmatrix Q is unitary, that is,
Q−1 = QH . Now premultiplying both sides of (3.4.50) by QH , we obtain the desired result.

This diagonalization of the autocorrelation matrix plays an important role in filtering
and estimation theory, as we shall see later. From (3.4.48) the correlation matrix R can also
be written as

R = Q�QH = λ1q1qH
1 + · · · + λMqMqH

M =
M∑

m=1

λmqmqH
m (3.4.51)

which is known as the spectral theorem, or Mercer’s theorem. If R is positive definite (and
hence invertible), its inverse is given by

R−1 = (Q�QH )−1 = Q�−1QH =
M∑

m=1

1

λm

qmqH
m (3.4.52)

because � is a diagonal matrix.

PROPERTY 3.4.8. The trace of R is the summation of all eigenvalues, that is,

tr(R) =
M∑
i=1

λi (3.4.53)

Proof. See Problem 3.17.
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PROPERTY 3.4.9. The determinant of R is equal to the product of all eigenvalues, that is,

det R = |R| =
M∏
i=1

λi = |�| (3.4.54)

Proof. See Problem 3.18.

PROPERTY 3.4.10. Determinants of R and � are related by

|R| = |�|(1 + µH
x �µx) (3.4.55)

Proof. See Problem 3.19.

3.4.5 Correlation Matrices from Random Processes

A stochastic process can also be represented as a random vector, and its second-order
statistics given by the mean vector and the correlation matrix. Obviously, these quantities
are functions of the index n. Let an M × 1 random vector x(n) be derived from the random
process x(n) as follows:

x(n) � [x(n) x(n − 1) · · · x(n − M + 1)]T (3.4.56)

Then its mean is given by an M × 1 vector

µx(n) = [µx(n) µx(n − 1) · · · µx(n − M + 1)]T (3.4.57)

and the correlation by an M × M matrix

Rx(n) =


rx(n, n) · · · rx(n, n − M + 1)
...

. . .
...

rx(n − M + 1, n) · · · rx(n − M + 1, n − M + 1)


 (3.4.58)

Clearly, Rx(n) is Hermitian since rx(n − i, n − j) = r∗x (n − j, n − i), 0 ≤ i, j ≤ M − 1.
This vector representation will be useful when we discuss optimum filters.

Correlation matrices of stationary processes

The correlation matrix Rx(n) of a general stochastic process x(n) is a Hermitian M×M

matrix defined in (3.4.58) with elements rx(n − i, n − j) = E{x(n − i)x∗(n − j)}. For
stationary processes this matrix has an interesting additional structure. First, Rx(n) is a
constant matrix Rx ; then using (3.3.24), we have

rx(n − i, n − j) = rx(j − i) = rx(l � j − i) (3.4.59)

Finally, by using conjugate symmetry rx(l) = r∗x (−l), the matrix Rx is given by

Rx =




rx(0) rx(1) rx(2) · · · rx(M − 1)

r∗x (1) rx(0) rx(1) · · · rx(M − 2)

r∗x (2) r∗x (1) rx(0) · · · rx(M − 3)
...

...
...

. . .
...

r∗x (M − 1) r∗x (M − 2) r∗x (M − 3) · · · rx(0)




(3.4.60)

It can be easily seen that Rx is Hermitian and Toeplitz.
†

Thus, the autocorrelation matrix
of a stationary process is Hermitian, nonnegative definite, and Toeplitz. Note that Rx is not
persymmetric because elements along the main antidiagonal are not equal, in general.

†
A matrix is called Toeplitz if the elements along each diagonal, parallel to the main diagonal, are equal.
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Eigenvalue spread and spectral dynamic range

The ill conditioning of a matrix Rx increases with its condition number X (Rx) =
λmax/λmin. When Rx is a correlation matrix of a stationary process, then X (Rx) is bounded
from above by the dynamic range of the PSD Rx(e

jω) of the process x(n). The larger the
spread in eigenvalues, the wider (or less flat) the variation of the PSD function. This is also
related to the dynamic range or to the data spread in x(n) and is a useful measure in practice.
This result is given by the following theorem, in which we have dropped the subscript of
Rx(e

jω) for clarity.

THEOREM 3.5. Consider a zero-mean stationary random process with autoPSD

R(ejω) =
∞∑

l=−∞
r(l)e−jωl

min
ω

R(ejω) ≤ λi ≤ max
ω

R(ejω) for all i = 1, 2, . . . ,M (3.4.61)then

Proof. From (3.4.41) we have

λi =
qH
i

Rqi

qH
i

qi

(3.4.62)

Consider the quadratic form

qH
i Rqi =

M∑
k=1

M∑
l=1

qi(k)r(l − k)qi(l)

where qi = [qi(1) qi(2) · · · qi(M)]T . Using (3.3.41) and the stationarity of the process, we
obtain

qH
i Rqi =

1

2π

∑
k

∑
l

q∗i (k)qi(l)
∫ π

−π
R(ejω)ejω(l−k) dω

= 1

2π

∫ π

−π
R(ejω)


 M∑

k=1

q∗i (k)e−jωk




 M∑

l=1

qi(l)e
jωl


 dω

(3.4.63)

qH
i Rqi =

1

2π

∫ π

−π
R(ejω)|Q(ejω)|2dω (3.4.64)or

Similarly, we have

qH
i qi = 1

2π

∫ π

−π
|Q(ejω)|2 dω (3.4.65)

Substituting (3.4.64) and (3.4.65) in (3.4.62), we obtain

λi =

∫ π

−π
|Q(ejω)|2R(ejω) dω∫ π

−π
|Q(ejω)|2 dω

(3.4.66)

However, since R(ejω) ≥ 0, we have the following inequality:

min
ω

R(ejω)

∫ π

−π
|Q(ejω)|2dω ≤

∫ π

−π
|Q(ejω)|2R(ejω) dω

≤ max
ω

R(ejω)

∫ π

−π
|Q(ejω)|2dω

from which we easily obtain the desired result. The above result also implies that

X (R) � λmax

λmin
≤

max
ω

R(ejω)

min
ω

R(ejω)
(3.4.67)

which becomes equality as M → ∞.
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3.5 WHITENING AND INNOVATIONS REPRESENTATION

In many practical and theoretical applications, it is desirable to represent a random vector
(or sequence) with a linearly equivalent vector (or sequence) consisting of uncorrelated
components. If x is a correlated random vector and if A is a nonsingular matrix, then the
linear transformation

w = Ax (3.5.1)

results in a random vector w that contains the same “information” as x, and hence random
vectors x and w are said to be linearly equivalent. Furthermore, if w has uncorrelated com-
ponents and A is lower-triangular, then each component wi of w can be thought of as adding
“new” information (or innovation) to w that is not present in the remaining components.
Such a representation is called an innovations representation and provides additional in-
sight into the understanding of random vectors and sequences. Additionally, it can simplify
many theoretical derivations and can result in computationally efficient implementations.

Since �w must be a diagonal matrix, we need to diagonalize the Hermitian, positive
definite matrix �x through the transformation matrix A. There are two approaches to this
diagonalization. One approach is to use the eigenanalysis presented in Section 3.4.4, which
results in the well-known Karhunen-Loève (KL) transform. The other approach is to use
triangularization methods from linear algebra, which leads to the LDU (UDL) and LU (UL)
decompositions. These vector techniques can be further extended to random sequences that
give us the KL expansion and the spectral factorizations, respectively.

3.5.1 Transformations Using Eigendecomposition

Let x be a random vector with mean vector µx and covariance matrix �x. The linear
transformation

x0 = x − µx (3.5.2)

results in a zero-mean vector x0 with correlation (and covariance) matrix equal to �x. This
transformation shifts the origin of the M-dimensional coordinate system to the mean vector.
We will now consider the zero-mean random vector x0 for further transformations.

Orthonormal transformation

Let Qx be the eigenmatrix of �x, and let us choose QH
x as our linear transformation

matrix A in (3.2.32). Consider

w = QH
x x0 = QH

x (x − µx) (3.5.3)

µw = QH
x (E{x0}) = 0 (3.5.4)Then

and from (3.2.39) and (3.4.48)

�w = Rw = E{QH
x x0xH

0 Qx} = QH
x �xQx = �x (3.5.5)

Since �x is diagonal, �w is also diagonal, and hence this transformation has some interesting
properties:

1. The random vector w has zero mean, and its components are mutually uncorrelated (and
hence orthogonal). Furthermore, if x is N (µx,�x), then w is N (0,�x) with independent
components.

2. The variances of random variables wi, i = 1, . . . ,M , are equal to the eigenvalues of
�x.

3. Since the transformation matrix A = QH
x is orthonormal, the transformation is called

an orthonormal transformation and the distance measure

d2(x0) � xH
0 �−1

x x0 (3.5.6)
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is preserved under the transformation. This distance measure is also known as the
Mahalanobis distance; and in the case of normal random vectors, it is related to the
log-likelihood function.

4. Since w = QH
x (x − µx), we have

wi = qH
i (x − µx) = ‖x − µx‖ cos[�(x − µx, qi )] i = 1, . . . ,M (3.5.7)

which is the projection of x − µx onto the unit vector qi . Thus w represents x in a new
coordinate system that is shifted to µx and spanned by qi , i = 1, . . . ,M . A geometric
interpretation of this transformation for a two-dimensional case is shown in Figure 3.11,
which shows a contour of d2(x0) = xH�−1

x x = wH�−1
x w in the x and w coordinate

systems (w = QH
x x).

w 1
w 2

0

mx2

mx1

x2

x1

l2

l1

FIGURE 3.11
Orthogonal transformation in two dimensions.

Isotropic transformation

In the above orthonormal transformation, the autocorrelation matrix Rw is diagonal
but not an identity matrix I. This can be achieved by an additional linear mapping of �

−1/2
x .

Let

y = �
−1/2
x w = �

−1/2
x QH

x x0 = �
−1/2
x QH

x (x − µx) (3.5.8)

Ry = �
−1/2
x QH

x �xQx�
−1/2
x = �

−1/2
x �x�

−1/2
x = I (3.5.9)Then

This is called an isotropic transformation because all components of y are zero-mean,
uncorrelated random variables with unit variance.

†
The geometric interpretation of this

transformation for a two-dimensional case is shown in Figure 3.12. It clearly shows that there
is not only a shift and rotation but also a scaling of the coordinate axis so that the distribution
is equal in all directions, that is, it is direction-invariant. Because the transformation A =
�

−1/2
x QH

x is orthogonal but not orthonormal, the distance measure d2(x0) is not preserved
under this mapping. Since the correlation matrix after this transformation is an identity
matrix I, it is invariant under any orthonormal mapping, that is,

QH IQ = QH Q = I (3.5.10)

This fact can be used for simultaneous diagonalization of two Hermitian matrices.

EXAMPLE 3.5.1. Consider a stationary sequence with correlation matrix

Rx =
[

1 a

a 1

]

where −1 < a < 1. The eigenvalues

λ1 = 1 + a λ2 = 1 − a

†
In the literature, an isotropic transformation is also known as a whitening transformation. We believe that this

terminology is not accurate because both vectors QH
x x0 and �

−1/2
x QH

x x0 have uncorrelated coefficients.
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x2

x1

y 1
y 2

0

Original
distribution

Isotropic
distribution

mx2

mx1

FIGURE 3.12
Isotropic transformation in two
dimensions.

are obtained from the characteristic equation

det(Rx − λI) = det

[
1 − λ a

a 1 − λ

]
= (1 − λ)2 − a2 = 0

To find the eigenvector q1, we solve the linear system[
1 a

a 1

]q
(1)
1

q
(1)
2


 = (1 + a)


q

(1)
1

q
(1)
2




which gives q
(1)
1 = q

(1)
2 . Similarly, we find that q(2)

1 = −q
(2)
2 . If we normalize both vectors to

unit length, we obtain the eigenvectors

q1 = 1√
2

[
1

1

]
q2 = 1√

2

[
1

−1

]

From the above results we see that det Rx = 1−a2 = λ1λ2 and QH Q = I, where Q = [q1 q2].

3.5.2 Transformations Using Triangular Decomposition

The linear transformations discussed above were based on diagonalization of hermitian
matrices through eigenvalue-eigenvector decomposition. These are useful in many detection
and estimation problems. Triangular matrix decomposition leads to transformations that
result in causal or anticausal linear filtering of associated sequences. Hence these mappings
play an important role in linear filtering. There are two such decompositions: the lower-
diagonal-upper (LDU ) one leads to causal filtering while the upper-diagonal-lower (UDL)
one results in anticausal filtering.

Lower-diagonal-upper decomposition

Any Hermitian, positive definite matrix R can be factored as (Goulob and Van Loan
1989)

R = LDLLH (3.5.11)

L−1RL−H = DL (3.5.12)or equivalently

where L is a unit lower triangular matrix, DL is a diagonal matrix with positive elements,
and LH is a unit upper triangular matrix. The Matlab function [L,D]=ldlt(R), given in
Section 5.2, computes the LDU decomposition.

Since L is unit lower triangular, we have det R = ∏M
i=1 ξ l

i , where ξ l
1, . . . , ξ

l
M are the

diagonal elements of DL. If we define the linear transformation

w = L−1x � Bx (3.5.13)
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we find that

Rw = E{wwH } = L−1E{xxH }L−H = L−1RL−H = DL (3.5.14)

Clearly, the components of w are orthogonal, and the elements ξ l
1, . . . , ξ

l
M are their second

moments. Therefore, this transformation appears to be similar to the orthogonal one. How-
ever, the vector w is not obtained as a simple rotation of x. To understand this mapping, we
first note that B = L−1 is also a unit lower triangular matrix (Goulob and Van Loan 1989).
Then we can write (3.5.13) as



w1
...

wi

...

wM




=




1 · · · 0 · · · 0
...

. . .
...

bi1 · · · 1 · · · 0
...

. . .
...

bM1 · · · bMi · · · 1







x1
...

xi

...

xM




(3.5.15)

where bik are elements of B. From (3.5.15) we conclude that wi is a linear combination of
xk, k ≤ i, that is,

wi =
i∑

k=1

bikxk 1 ≤ i ≤ M (3.5.16)

If the signal vector x consists of consecutive samples of a discrete-time stochastic process
x(n), that is,

x = [x(n) x(n − 1) · · · x(n − M + 1)]T (3.5.17)

then (3.5.16) can be interpreted as a causal linear filtering of the random sequence (see
Chapter 2). This transformation will be used extensively in optimum linear filtering and
prediction problems.

A similar LDU decomposition of autocovariance matrices can be performed by follow-
ing the identical steps above. In this case, the components of the transformed vector w are
uncorrelated, and the elements ξ l

i , 1 ≤ i ≤ M , of DL are variances.

Upper-diagonal-lower decomposition

This diagonalization is almost identical to the previous one and involves factorization
of a Hermitian, positive definite matrix into an upper-diagonal-lower form. It is given by

R = UDUUH (3.5.18)

U−1RU−H = DU = diag(ξu
1, . . . , ξ

u
M) (3.5.19)or equivalently

in which the matrix U is unit upper triangular, the matrix UH is unit lower triangular, and the
matrix DU is diagonal with positive elements. Note that UH 
= L and DU 
= DL. Following
the same analysis as above, we have det R = det DU = ∏M

i=1 ξu
i . Since A = U−1 is unit

upper triangular in the transformation w = U−1x, the components of w are orthogonal and
are obtained by linear combinations of xk, k ≥ i, that is,

wi =
M∑
k=i

likxk 1 ≤ i ≤ M (3.5.20)

This represents an anticausal filtering of a random sequence if x is a signal vector. Table 3.3
compares and contrasts orthogonal and triangular decompositions. We note that the LDU
decomposition does not have the nice geometric interpretation (rotation of the coordinate
system) of the eigendecomposition transformation.

Generation of real-valued random vectors with given second-order moments. Sup-
pose that we want to generate M samples, say, x1, x2, . . . , xM, of a real-valued random
vector x with mean 0 and a given symmetric and positive definite autocorrelation matrix Rx.
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TABLE 3.3

Comparison of orthogonal and triangular decompositions
for zero-mean random vectors.

Orthogonal decomposition Triangular decomposition

R = E{xxH } R = E{xxH }
Rqi = λiqi

Q = [q1, q2, . . . , qM ] L = unit lower triangular

� = diag{λ1,λ2, . . . , λM } D = diag{ξ1,ξ2, . . . , ξM }
R = Q�QH =∑M

i=1 λiqiqH
i

R = LDLH

� = QH RQ D = L−1RL−H

R−1 = Q�−1QH =∑M
i=1

1
λi

qiqH
i

R−1 = L−H D−1L−1

�−1 = QH R−1Q D−1 = L−H R−1L−1

det R = det � =∏M
i=1 λi det R = det D =∏M

i=1 ξ i

tr R = tr � =∑M
i=1 λi

Whitening (noncausal) Whitening (causal)

w = QH x w = L−1x
E{wwH } = � E{wwH } = D

The innovations representation given in this section suggests three approaches to generate
samples of such a random vector. The general approach is to factor Rx, using either the
orthonormal or the triangularization transformation, to obtain the diagonal matrix (�x or
D(x)

L or D(x)
U ), generate M samples of an IID sequence with the obtained diagonal variances,

and then transform these samples by using the inverse transformation matrix (Qx or Lx or
Ux). We hasten to add that, in general, the original distribution of the IID samples will not be
preserved unless the samples are jointly normal. Therefore, in the following discussion, we
assume that a normal pseudorandom number generator is used to generate M independent
samples of w. The three methods are as follows.

Eigendecomposition approach. First factor Rx as Rx = Qx�xQH
x . Then generate

w, using the distribution N (0,�x). Finally, compute the desired vector x, using
x = Qxw.

LDU triangularization approach. First factor Rx as Rx = LxD(x)
L LH

x . Then generate

w, using the distribution N (0, D(x)
L ). Finally, compute the desired vector x, using

x = Lxw.
†

UDL triangularization approach. First factor Rx as Rx = UxD(x)
U UH

x . Then generate

w, using the distribution N (0, D(x)
U ). Finally, compute the desired vector x, using

x = Uxw.

Additional discussion and more complete treatment on the generation of random vectors
are given in Johnson (1994).

3.5.3 The Discrete Karhunen-Loève Transform

In many signal processing applications, it is convenient to represent the samples of a random
signal in another set of numbers (or coefficients) so that this new representation possesses
some useful properties. For example, for coding purposes we want to transform a signal

†
If we use the Cholesky decomposition Rx = L̃xL̃H

x , where L̃x = {D(x)
L }1/2Lx, then w = N (0, I) will generate

x with the given correlation Rx , using x = L̃xw.
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so that its energy is concentrated in only a few coefficients (which are then transmitted);
or for optimal filtering purposes we may want uncorrelated samples so that the filtering
complexity is reduced or the signal-to-noise ratio is enhanced. A general approach is to
expand a signal as a linear combination of orthogonal basis functions so that components
of the signal with respect to basis functions do not interfere with one another. There are
several such basis functions; the most widely known is the set of complex exponentials
used in DTFT (or DFT) that are used in linear filtering, as we discussed in Section 3.4.
Other examples are functions used in discrete cosine transform, discrete sine transform,
Haar transform, etc., which are useful in coding applications (Jain 1989).

As discussed in this section, a set of orthogonal basis functions for which the signal
components are statistically uncorrelated to one another is based on the second-order prop-
erties of the random process and, in particular, on the diagonalization of its covariance
matrix. It is also an optimal representation of the signal in the sense that it provides a repre-
sentation with the smallest mean square error among all other orthogonal transforms. This
has applications in the analysis of random signals as well as in coding. This transform was
first suggested by Karhunen and Loève for continuous random processes. It was extended to
discrete random signals by Hotelling and is also known as the Hotelling transform. In keep-
ing with the current nomenclature, we will call it the discrete Karhunen-Loève transform
(DKLT) (Fukunaga 1990).

Development of the DKLT

Let x = [x1 x2 · · · xM ]T be a zero-mean
†

random vector with autocorrelation matrix
Rx. We want to represent x using the linear transformation

w = AH x A−1 = AH (3.5.21)

where A is a unitary matrix. Then

x = Aw =
M∑
i=1

wiai aH
i aj = 0 i 
= j (3.5.22)

Let us represent x using the first m, 1 ≤ m ≤ M , components of w, that is,

x̂ �
m∑

i=1

wiai 1 ≤ m ≤ M (3.5.23)

Then from (3.5.22) and (3.5.23), the error between x and x̂ is given by

em � x − x̂ =
M∑
i=1

wiai −
m∑

i=1

wiai =
M∑

i=m+1

wiai (3.5.24)

and hence the mean-squared error (MSE) is

Em � E{eH
m em} =

M∑
i=m+1

aH
i E{|wi |2}ai =

M∑
i=m+1

E{|wi |2}aH
i ai (3.5.25)

Since from (3.5.21) wi = aH
i x, we have E{|wi |2} = aH

i Rxai . Now we want to determine
the matrix A that will minimize the MSE Em subject to aH

i ai = 1, i = m + 1, . . . ,M so
that from (3.5.25)

Em =
M∑

i=m+1

E{|wi |2} =
M∑

i=m+1

aH
i Rxai aH

i ai = 1 i = m + 1, . . . ,M (3.5.26)

†
If the mean is not zero, then we perform the transformation on the mean-subtracted vector, using the covariance

matrix.
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This optimization can be done by using the Lagrange multiplier approach (Appendix B);
that is, we minimize

M∑
i=m+1

aH
i Rxai +

M∑
i=m+1

λi(1 − aH
i ai ) i = m + 1, . . . ,M

Hence after setting the gradient equal to zero,

∇ai


 M∑

i=m+1

aH
i Rxai +

M∑
i=m+1

λi(1 − aH
i ai )


 = (Rxai )

∗ − (λiai )
∗ = 0 (3.5.27)

Rxai = λiai i = m + 1, . . . ,Mwe obtain

which is equivalent to (3.4.35) in the eigenanalysis of Section 3.4.4. Hence λi is the eigen-
value, and the corresponding ai is the eigenvector of Rx. Clearly, since 1 ≤ m ≤ M , the
transformation matrix A should be chosen as the eigenmatrix Q. Hence



↑
w

↓


 =



←− qH

1 −→
←− qH

2 −→
...

...
...

←− qH
M −→





↑
x

↓




w = QH x (3.5.28)or more concisely

provides an orthonormal transformation so that the transformed vector w is a zero-mean,
uncorrelated random vector with autocorrelation �. This transformation is called the DKLT,
and its inverse relationship (or synthesis) is given by


↑
x

↓


 =



↑ ↑ · · · ↑
q1 q2 · · · qM

↓ ↓ · · · ↓





↑
w

↓


 (3.5.29)

x = Qw = q1w1 + q2w2 + · · · + qMwM (3.5.30)or

From Section 3.5.1, the geometric interpretation of this transformation is that {wk}M1 are

projections of the vector x with respect to the rotated coordinate system of {qk}M1 . The
eigenvalues λi also have an interesting interpretation, as we shall see in the following
representation.

Optimal reduced-basis representation

Generally we would expect any transformation to provide only few meaningful com-
ponents so that we can use only those basis vectors resulting in a smaller representation
error. To determine this reduced-basis representation property of the DKLT, let us use first
K < M eigenvectors (instead of all qi). Then from (3.5.26), we have

EK =
M∑

i=K+1

λi (3.5.31)

In other words, the MSE in the reduced-basis representation, when the first K basis vectors
are used, is the sum of the remaining eigenvalues (which are never negative). Therefore, to
obtain a minimum MSE (that is, an optimum) representation, the procedure is to choose K

eigenvectors corresponding to the K largest eigenvalues.

Application in data compression. The DKLT is a transformation on a random vector
that produces a zero-mean, uncorrelated vector and that can minimize the mean square
representation error. One of its popular applications is data compression in communications
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and, in particular, in speech and image coding. Suppose we want to send a sample function
of a speech process xc(t). If we sample this waveform and obtain M samples {x(n)}M−1

0 ,
then we need to send M data values. Instead, if we analyze the correlation of {x(n)}M−1

0
and determine that M values can be approximated by a smaller K numbers of wi and
the corresponding qi , then we can compute these K data values {wi}K1 at the transmitter
and send them to the receiver through the communication channel. At the receiver, we
can reconstruct {x(n)}M−1

0 by using (3.5.23), as shown in Figure 3.13. Obviously, both
the transmitter and receiver must have the information about the eigenvectors {qi}M1 . A
considerable amount of compression is achieved if K is much smaller than M .

DKLT
Inverse
DKLT

Uncoded
signal

Coded
signal

Reconstructed
signal

x(n) w (n) w (n) x(n)ˆ ˆReduced-basis
selection
scheme

FIGURE 3.13
Signal coding scheme using the DKLT.

Periodic random sequences

As we noted in the previous section, the correlation matrix of a stationary process is
Toeplitz. If the autocorrelation sequence of a random process is periodic with fundamental
period M , its correlation matrix becomes circulant. All rows (columns) of a circulant matrix
are obtained by circular rotation of its first row (column). Using (3.4.60) and the periodicity
relation rx(l) = rx(l − M), we obtain

Rx =




rx(0) rx(1) rx(2) · · · rx(M − 1)

rx(M − 1) rx(0) rx(1) · · · rx(M − 2)

rx(M − 2) rx(M − 1) rx(0) · · · rx(M − 3)
...

...
...

. . .
...

rx(1) rx(2) rx(3) · · · rx(0)




(3.5.32)

which is a circulant matrix. We note that a circulant matrix is Toeplitz but not vice versa.
If we define the M-point DFT of the periodic sequence rx(l)

R̃x(k) =
M−1∑
l=0

rx(l)W
kl
M (3.5.33)

where WM � e−j2π/M , and the vector

wk � 1√
M

[1 Wk
M W 2k

M · · · W
(M−1)k
M ]T 0 ≤ k ≤ M − 1 (3.5.34)

we can easily see that multiplying the first row of Rx by the vector wk results in R̃x(k)/
√

M .
Using W−k

M = W
(M−1)k
M , we find that the product of the second row by wk is equal to

R̃x(k)W
k
M/

√
M . In general, the ith row by wk gives R̃x(k)W

(i−1)k
M /

√
M . Therefore, we

have

Rxwk = R̃x(k)wk 0 ≤ k ≤ M − 1 (3.5.35)

which shows that the normalized DFT vectors wk are the eigenvectors of the circulant
matrix Rx with as corresponding eigenvalues the DFT coefficients R̃x(k). Therefore, the
DFT provides the DKLT of periodic random sequences. We recall that R̃x(k) are samples
of the DTFT Rx(e

j2πk/M) of the finite-length sequence rx(l), 0 ≤ l ≤ M − 1.
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If we define the M × M matrix

W � [w0 w1 · · · wM−1] (3.5.36)

we can show that

WH W = WWH = I (3.5.37)

that is, the matrix W is unitary. The set of equations (3.5.35) can be written as

WH RxW = diag{R̃x(0), R̃x(1), . . . , R̃x(M − 1)} (3.5.38)

which shows that the DFT performs the diagonalization of circulant matrices. Although
there is no fast algorithm for the diagonalization of general Toeplitz matrices, in many
cases we can use the DFT to approximate the DKLT of stationary random sequences. The
approximation is adequate if the correlation becomes negligible for |l| > M , which is
the case for many stationary processes. This explains the fact that the eigenvectors of a
Toeplitz matrix resemble complex exponentials for large values of M . The DKLT also can
be extended to handle the representation of random sequences. These issues are further
explored in Therrien (1992), Gray (1972), and Fukunaga (1990).

3.6 PRINCIPLES OF ESTIMATION THEORY

The key assumption underlying our discussion up to this point was that the probability
distributions associated with the problem under consideration were known. As a result,
all required probabilities, autocorrelation sequences, and PSD functions either could be
derived from a set of assumptions about the involved random processes or were given a
priori. However, in most practical applications, this is the exception rather than the rule.
Therefore, the properties and parameters of random variables and random processes should
be obtained by collecting and analyzing finite sets of measurements. In this section, we
introduce some basic concepts of estimation theory that will be used repeatedly in the rest
of the book. Complete treatments of estimation theory can be found in Kay (1993), Helstrom
(1995), Van Trees (1968), and Papoulis (1991).

3.6.1 Properties of Estimators

Suppose that we collect N observations {x(n)}N−1
0 from a stationary stochastic process and

use them to estimate a parameter θ (which we assume to be real-valued) of the process
using some function θ̂ [{x(n)}N−1

0 ]. The same results can be used for a set of measurements
{xk(n)}N1 obtained from N sensors sampling stochastic processes with the same distribu-
tions. The function θ̂ [{x(n)}N−1

0 ] is known as an estimator whereas the value taken by the
estimator, using a particular set of observations, is called a point estimate or simply an
estimate. The intention of the estimator design is that the estimate should be as close to the
true value of the parameter as possible. However, if we use another set of observations or a
different number of observations from the same set, it is highly unlikely that we will obtain
the same estimate. As an example of an estimator, consider estimating the mean µx of a
stationary process x(n) from its N observations {x(n)}N−1

0 . Then the natural estimator is a
simple arithmetic average of these observations, given by

µ̂x = θ̂ [{x(n)}N−1
0 ] = 1

N

N−1∑
n=0

x(n) (3.6.1)
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Similarly, a natural estimator of the variance σ 2
x of the process x(n) would be

σ̂
2
x = θ̂ [{x(n)}N−1

0 ] = 1

N

N−1∑
n=0

[x(n) − µ̂x]2 (3.6.2)

If we repeat this procedure a large number of times, we will obtain a large number of es-
timates, which can be used to generate a histogram showing the distribution of the estimates.
Before the collection of observations, we would like to describe all sets of data that can be
obtained by using the random variables {x(n, ζ )}N−1

0 . The obtained set of N observations
{x(n)}N−1

0 can thus be regarded as one realization of the random variables {x(n, ζ )}N−1
0

defined on an N -dimensional sample space. In this sense, the estimator θ̂ [{x(n, ζ )}N−1
0 ]

becomes a random variable whose distribution can be obtained from the joint distribution
of the random variables {x(n, ζ )}N−1

0 . This distribution is called the sampling distribution
of the estimator and is a fundamental concept in estimation theory because it provides all
the information we need to evaluate the quality of an estimator.

The sampling distribution of a “good” estimator should be concentrated as closely as
possible about the parameter that it estimates. To determine how “good” an estimator is
and how different estimators of the same parameter compare with one another, we need to
determine their sampling distributions. Since it is not always possible to derive the exact
sampling distributions, we have to resort to properties that use the lower-order moments
(mean, variance, mean square error) of the estimator.

Bias of estimator. The bias of an estimator θ̂ of a parameter θ is defined as

B(θ̂) � E[θ̂ ] − θ (3.6.3)

while the normalized bias is defined as

εb � B(θ̂)

θ
θ 
= 0 (3.6.4)

When B(θ̂) = 0, the estimator is said to be unbiased and the pdf of the estimator is centered
exactly at the true value θ . Generally, one should select estimators that are unbiased such
as the mean estimator in (3.6.1) or very nearly unbiased such as the variance estimator in
(3.6.2). However, it is not always wise to select an unbiased estimator, as we will see below
and in Section 5.2 on the estimation of autocorrelation sequences.

Variance of estimator. The variance of the estimator θ̂ is defined by

var(θ̂) = σ 2
θ̂

� E{|θ̂ − E{θ̂}|2} (3.6.5)

which measures the spread of the pdf of θ̂ around its average value. Therefore, one would
select an estimator with the smallest variance. However, this selection is not always com-
patible with the small bias requirement. As we will see below, reducing variance may result
in an increase in bias. Therefore, a balance between these two conflicting requirements is
required, which is provided by the mean square error property. The normalized standard
deviation (also called the coefficient of variation) is defined by

εr �
σ

θ̂

θ
θ 
= 0 (3.6.6)

Mean square error. The mean square error (MSE) of the estimator is given by

MSE(θ) = E{|θ̂ − θ |2} = σ 2
θ̂
+ |B

θ̂
|2 (3.6.7)

Indeed, we have

MSE(θ) = E{|θ − E{θ̂} − (θ̂ − E{θ̂})|2}
= E{|θ − E{θ̂}|2} + E{|θ̂ − E{θ̂}|2} (3.6.8)

−(θ − E{θ̂})E{(θ̂ − E{θ̂})∗} − (θ − E{θ̂})∗E{θ̂ − E{θ̂}}
= |θ − E{θ̂}|2 + E{|θ̂ − E{θ̂}|2} (3.6.9)
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which leads to (3.6.7) by using (3.6.3) and (3.6.5). Ideally, we would like to minimize the
MSE, but this minimum is not always zero. Hence minimizing variance can increase the
bias. The normalized MSE is defined as

ε � MSE(θ)

θ
θ 
= 0 (3.6.10)

Cramér-Rao lower bound. If it is possible to minimize the MSE when the bias is zero,
then clearly the variance is also minimized. Such estimators are called minimum variance
unbiased estimators, and they attain an important minimum bound on the variance of the
estimator, called the Cramér-Rao lower bound (CRLB), or minimum variance bound. If θ̂

is unbiased, then it follows that E{θ̂ − θ} = 0, which may be expressed as
∞∫
· · ·
∫

−∞
(θ̂ − θ)fx;θ (x; θ) dx = 0 (3.6.11)

where x(ζ ) = [x1(ζ ), x2(ζ ), . . . , xN(ζ )]T and fx;θ (x; θ) is the joint density of x(ζ ), which
depends on a fixed but unknown parameter θ . If we differentiate (3.6.11) with respect to θ ,
assuming real-valued θ̂ , we obtain

0 =
∞∫
· · ·
∫

−∞

∂

∂θ
[(θ̂ − θ)fx;θ (x; θ)] dx =

∞∫
· · ·
∫

−∞
(θ̂ − θ)

∂fx;θ (x; θ)
∂θ

dx − 1 (3.6.12)

Using the fact

∂ ln[fx;θ (x; θ)]
∂θ

= 1

fx;θ (x; θ)
∂fx;θ (x; θ)

∂θ

∂fx;θ (x; θ)
∂θ

= ∂ ln[fx;θ (x; θ)]
∂θ

fx;θ (x; θ) (3.6.13)or

and substituting (3.6.13) in (3.6.12), we get
∞∫
· · ·
∫

−∞

{
(θ̂ − θ)

∂ ln[fx;θ (x; θ)]
∂θ

}
fx;θ (x; θ) dx = 1 (3.6.14)

Clearly, the left side of (3.6.14) is simply the expectation of the expression inside the
brackets, that is,

E

{
(θ̂ − θ)

∂ ln[fx;θ (x; θ)]
∂θ

}
= 1 (3.6.15)

Using the Cauchy-Schwarz inequality (Papoulis 1991; Stark and Woods 1994)
|E{x(ζ )y(ζ )}|2 ≤ E{|x(ζ )|2}E{|y(ζ )|2}, we obtain

E{(θ̂ − θ)2}E
{(

∂ ln[fx;θ (x; θ)]
∂θ

)2
}
≥ E2

{
(θ̂ − θ)

∂ ln[fx;θ (x; θ)]
∂θ

}
= 1 (3.6.16)

The first term on the left-hand side is the variance of the estimator θ̂ since it is unbiased.
Hence

var(θ̂) ≥ 1

E{[∂ ln fx;θ (x; θ)/∂θ ]2} (3.6.17)

which is one form of the CRLB and can also be expressed as

var(θ̂) ≥ − 1

E{∂2 ln fx;θ (x; θ)/∂θ2} (3.6.18)

The function ln fx;θ (x; θ) is called the log likelihood function of θ . The CRLB expresses
the minimum error variance of any estimator θ̂ of θ in terms of the joint density fx;θ (x; θ)
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of observations. Hence every unbiased estimator must have a variance greater than a certain
number. An unbiased estimate that satisfies the CRLB (3.6.18) with equality is called an
efficient estimate. If such an estimate exists, then it can be obtained as a unique solution to
the likelihood equation

∂ ln fx;θ (x; θ)
∂θ

= 0 (3.6.19)

The solution of (3.6.19) is called the maximum likelihood (ML) estimate. Note that if the
efficient estimate does not exist, then the ML estimate will not achieve the lower bound
and hence it is difficult to ascertain how closely the variance of any estimate will approach
the bound. The CRLB can be generalized to handle the estimation of vector parameters
(Therrien 1992).

Consistency of estimator. If the MSE of the estimator can be made to approach zero
as the sample size N becomes large, then from (3.6.7) both the bias and the variance will
tend to zero. Then the sampling distribution will tend to concentrate about θ , and eventually
as N → ∞, the sampling distribution will become an impulse at θ . This is an important
and desirable property, and the estimator that possesses it is called a consistent estimator.

Confidence interval. If we know the sampling distribution of an estimator, we can
use the observations to compute an interval that has a specified probability of covering
the unknown true parameter value. This interval is called a confidence interval, and the
coverage probability is called the confidence level. When we interpret the meaning of
confidence intervals, it is important to remember that it is the interval that is the random
variable, and not the parameter. This concept will be explained in the sequel by means of
specific examples.

3.6.2 Estimation of Mean

The natural estimator of the mean µx of a stationary sequence x(n) from the observations
{x(n)}N−1

0 is the sample mean, given by

µ̂x = 1

N

N−1∑
n=0

x(n) (3.6.20)

The estimate µ̂x is a random variable that depends on the number and values of the obser-
vations. Changing N or the set of observations will lead to another value for µ̂x . Since the
mean of the estimator is given by

E{µ̂x} = µx (3.6.21)

the estimator µ̂x is unbiased. If x(n) ∼ WN(µx, σ
2
x), we have

var(µ̂x) =
σ 2

x

N
(3.6.22)

because the samples of the process are uncorrelated random variables. This variance, which
is a measure of the estimator’s quality, increases if x(n) is nonwhite.

Indeed, for a correlated random sequence, the variance of µ̂x is given by (see Prob-
lem 3.30)

var(µ̂x) = N−1
N∑

l=−N

(
1 − |l|

N

)
γ x(l) ≤ N−1

N∑
l=−N

|γ x(l)| (3.6.23)

where γ x(l) is the covariance sequence of x(n). If γ x(l) → 0 as l → ∞, then var(µ̂x) → 0
as N → ∞ and hence µ̂x is a consistent estimator of µx . If

∑∞
l=−∞ |γ x(l)| < ∞, then
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from (3.6.23)

lim
N→∞N var(µ̂x) = lim

N→∞

N∑
l=−N

(
1 − |l|

N

)
γ x(l) =

∞∑
l=−∞

γ x(l) (3.6.24)

The expression for var(µ̂x) in (3.6.23) can also be put in the form (see Problem 3.30)

var(µ̂x) =
σ 2

x

N
[1 + 
N(ρx)] (3.6.25)


N(ρx) = 2
N∑
l=1

(
1 − l

N

)
ρx(l) ρx(l) =

γ x(l)

σ 2
x

(3.6.26)where

When 
N(ρx) ≥ 0, the variance of the estimator increases as the amount of correlation
among the samples of x(n) increases. This implies that as the correlation increases, we need
more samples to retain the quality of the estimate because each additional sample carries
“less information.” For this reason the estimation of long-memory processes and processes
with infinite variance is extremely difficult.

Sampling distribution. If we know the joint pdf of the random variables {x(n)}N−1
0 ,

we can determine, at least in principle, the pdf of µ̂x . For example, if it is assumed that the
observations are IID as N (µx, σ

2
x) then from (3.6.21) and (3.6.22), it can be seen that µ̂x

is normal with mean µx and variance σ 2
x/N , that is,

fµ̂x
(µ̂x) =

1√
2π(σx/

√
N)

exp

[
−1

2

(
µ̂x − µx

σx/
√

N

)2
]

(3.6.27)

which is the sampling distribution of the mean. If N is large, then from the central limit
theorem, the sampling distribution of the sample mean (3.6.27) is usually very close to the
normal distribution, even if the individual distributions are not normal.

If we know the standard deviation σx , we can compute the probability

Pr

{
µx − k

σx√
N

< µ̂x < µx + k
σx√
N

}
(3.6.28)

that the random variable µ̂x is within a certain interval specified by two fixed quantities. A
simple rearrangement of the above inequality leads to

Pr

{
µ̂x − k

σx√
N

< µx < µ̂x + k
σx√
N

}
(3.6.29)

which gives the probability that the fixed quantity µx lies between the two random variables
µ̂x −kσx/

√
N and µ̂x +kσx/

√
N . Hence (3.6.29) provides the probability that an interval

with fixed length 2kσx/
√

N and randomly centered at the estimated mean includes the
true mean. If we choose k so that the probability defined by (3.6.29) is equal to 0.95, the
interval is known as the 95 percent confidence interval. To understand the meaning of this
reasoning, we stress that for each set of measurements we compute a confidence interval
that either contains or does not contain the true mean. However, if we repeat this process for
a large number of observation sets, about 95 percent of the obtained confidence intervals
will include the true mean. We stress that by no means does this imply that a confidence
interval includes the true mean with probability 0.95.

If the variance σ 2
x is unknown, then it has to be determined from the observations. This

results in two modifications of (3.6.29). First, σx is replaced by

σ̂
2
x = 1

N − 1

N−1∑
n=0

[x(n) − µ̂x]2 (3.6.30)



March 9, 2005 11:42 e56-ch3 Sheet number 64 Page number 138 black

138

chapter 3
Random Variables,
Vectors, and Sequences

which implies that the center and the length of the confidence interval are different for
each set of observations. Second, the random variable (µ̂x − µx)/(σ̂ x/

√
N) is distributed

according to Student’s t distribution with v = N − 1 degrees of freedom (Parzen 1960),
which tends to a Gaussian for large values of N . In these cases, the factor k in (3.6.29)
is replaced by the appropriate value t of Student’s distribution, using N − 1 degrees of
freedom, for the desired level of confidence.

If the observations are normal but not IID, then from (3.6.25), the mean estimator µ̂x

is normal with mean µ and variance (σ 2
x/N)[1 + 
N(ρx)]. It is now easy to construct

exact confidence intervals for µ̂x if ρx(l) is known, and approximate confidence intervals
if ρx(l) is to be estimated from the observations. For large N , the variance var(µ̂x) can be
approximated by

var(µ̂x) =
σ 2

x

N
[1 + 
N(ρx)]

� σ 2
x

N

[
1 + 2

N∑
1

ρx(l)

]

� v

N
v = σ 2

x

{
1 + 2

N∑
1

ρx(l)

}
(3.6.31)

and hence an approximate 95 percent confidence interval for µ̂x is given by(
µ̂x − 1.96

√
v

N
, µ̂x + 1.96

√
v/N

)
(3.6.32)

This means that, on average, the above interval will enclose the true value µx on 95 percent
of occasions. For many practical random processes (especially those modeled as ARMA
processes), the result in (3.6.32) is a good approximation.

EXAMPLE 3.6.1. Consider the AR(1) process

x(n) = ax(n − 1) + w(n) − 1 < a < 1

where w(n) ∼ WN(0, σ 2
w). We wish to compute the variance of the mean estimator µ̂x of the

process x(n). Using straightforward calculations, we obtain

µx = 0 σ 2
x = σ 2

w

1 − a2
and ρx(l) = a|l|

From (3.6.26) we evaluate the term


N(ρ) = 2a

1 − a

[
1 − 1

N(1 − a)
+ aN

N(1 − a)

]
� 2a

1 − a
for N ' 1

When a → 1, that is, when the dependence between the signal samples increases, then the factor

N(ρ) takes large values and the quality of estimator decreases drastically. Similar conclusions
can be drawn using the approximation (3.6.31)

v =
(

1 + 2
∞∑
1

al

)
σ 2

w

1 − a2
= σ 2

w

(1 − a)2

We will next verify these results using two Monte Carlo simulations: one for a = 0.9, which
represents high correlations among samples, and the other for a = 0.1. Using a Gaussian
pseudorandom number generator with mean 0 and variance σ 2

w = 1, we generated N = 100
samples of the AR(1) process x(n). Using v in (3.6.31) and (3.6.32), we next computed the
confidence intervals. For a = 0.9, we obtain

v = 100 and confidence interval: (µ̂x − 1.96, µ̂x + 1.96)

and for a = 0.1, we obtain

v = 1.2345 and confidence interval: (µ̂x − 0.2178, µ̂x + 0.2178)
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Clearly, when the dependence between signal samples increases, the quality of the estimator
decreases drastically and hence the confidence interval is wider. To have the same confidence
interval, we should increase the number of samples N .

We next estimate the mean, using (3.6.20), and we repeat the experiment 10,000 times.
Figure 3.14 shows histograms of the computed means for a = 0.9 and a = 0.1. The confidence
intervals are also shown as dotted lines around the true mean. The histograms are approximately
Gaussian in shape. The histogram for the high-correlation case is wider than that for the low-
correlation case, which is to be expected. The 95 percent confidence intervals also indicate that
very few estimates are outside the interval.
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FIGURE 3.14
Histograms of mean estimates in Example 3.6.1.

3.6.3 Estimation of Variance

The natural estimator of the variance σx of a stationary sequence x(n) from the observations
{x(n)}N−1

0 is the sample variance, given by

σ̂
2
x � 1

N

N−1∑
n=0

{x(n) − µ̂x}2 (3.6.33)

By using the mean estimate µ̂x from (3.6.20), the mean of the variance estimator can be
shown to equal (see Problem 3.31)

E{σ̂ 2
x} = σ 2

x − var(µ̂x) = σ 2
x − 1

N

N∑
l=−N

(
1 − |l|

N

)
γ x(l) (3.6.34)

If the sequence x(n) is uncorrelated, then

E{σ̂ 2
x} = σ 2

x − σ 2
x

N
=
(

N − 1

N

)
σ 2

x (3.6.35)
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From (3.6.34) or (3.6.35), it is obvious that the estimator in (3.6.33) is biased. If γ x(l) → 0
as l → ∞, then var(µ̂x) → 0 as N → ∞ and hence σ̂

2
x is an asymptotically unbiased

estimator of σ 2
x . In practical applications, the variance estimate is nearly unbiased for large

N . Note that if we use the actual meanµx in (3.6.33), then the resulting estimator is unbiased.
The general expression for the variance of the variance estimator is fairly complicated

and requires higher-order moments. It can be shown that for either estimators

var(σ̂ 2
x) ≈

γ
(4)
x

N
for large N (3.6.36)

where γ
(4)
x is the fourth central moment of x(n) (Brockwell and Davis 1991). Thus the

estimator in (3.6.33) is also consistent.

Sampling distribution. In the case of the mean estimator, the sampling distribution
involved the distribution of sums of random variables. The variance estimator involves the
sum of the squares of random variables, for which the sampling distribution computation
is complicated. For example, if there are N independent measurements from an N (0, 1)
distribution, then the sampling distribution of the random variable

χ2
N = x2

1 + x2
2 + · · · + x2

N (3.6.37)

is given by the chi-squared distribution with N degrees of freedom. The general form of χ2
N

with ν degrees of freedom is

fχ2
ν
(x) = 1

2ν/2H(ν/2)
xν/2−1 exp

(
−x

2

)
0 ≤ x ≤ ∞ (3.6.38)

where H(ν/2) = ∫∞
0 e−t tν/2−1 dt is the gamma function with argument ν/2.

For the variance estimator in (3.6.33), it can be shown (Parzen 1960) that Nσ̂
2
x is

distributed as chi squared with ν = N − 1 degrees of freedom. This means that, for any set
of N observations, there will only be N −1 independent deviations {x(n)− µ̂x}, since their
sum is zero from the definition of the mean. Assuming that the observations are N (µ, σ 2),
the random variables x(n)/σ will be N (µ/σ , 1) and hence the random variable

Nσ̂
2
x

σ 2
= 1

σ 2

N−1∑
n=0

[x(n) − µ̂x]2 (3.6.39)

will be chi squared distributed with ν = N − 1. Therefore, using values of the chi-squared
distribution, confidence intervals for the variance estimator can be computed. In particular,
since Nσ̂

2
x/σ

2 is distributed as χ2
ν , the 95 percent limits of the form

Pr

{
χν

(
0.05

2

)
< Nσ̂

2
x/σ

2 ≤ χν

(
1 − 0.05

2

)}
= 0.95 (3.6.40)

can be obtained from chi-squared tables (Fisher and Yates 1938). By rearranging (3.6.40),
the random variable σ 2/σ̂

2
x satisfies

Pr

{
N

χν(0.975)
<

σ 2

σ̂
2
x

≤ N

χν(0.025)

}
= 0.95 (3.6.41)

Using l1 = N/χν(0.975) and l2 = N/χν(0.025), we see that (3.6.41) implies that

Pr{l2σ̂ 2
x ≥ σ 2 and l1σ̂

2
x < σ 2} = 0.95 (3.6.42)

Thus the 95 percent confidence interval based on the estimate σ̂
2
x is (l1σ̂

2
x, l2σ̂

2
x). Note

that this interval is sensitive to the validity of the normal assumption of random variables
leading to (3.6.39). This is not the case for the confidence intervals for the mean estimates
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because, thanks to the central limit theorem, the computation of the interval can be based
on the normal assumption.

EXAMPLE 3.6.2. Consider again the AR(1) process given in Example 3.6.1:

x(n) = ax(n − 1) + w(n) − 1 < a < 1 w(n) ∼ WN(0, 1)

µx = 0 σ 2
x = σ 2

w

1 − a2
and ρx(l) = a|l| (3.6.43)with

We wish to compute the mean of the variance estimator σ̂ 2
x of the process x(n). From (3.6.34),

we obtain

E[σ̂ 2
x ] = σ 2

x


1 − 1

N

N∑
l=−N

(
1 − |l|

N

)
a|l|

 (3.6.44)

When a → 1, that is, when the dependence between the signal samples increases, the mean
of the estimate deviates significantly from the true value σ 2

x and the quality of the estimator
decreases drastically. For small dependence, the mean is very close to σ 2

x . These conclusions
can be verified using two Monte Carlo simulations as before: one for a = 0.9, which represents
high correlations among samples, and the other for a = 0.1. Using a Gaussian pseudorandom
number generator with mean 0 and unit variance, we generated N = 100 samples of the AR(1)
process x(n). The computed parameters according to (3.6.43) and (3.6.44) are

a = 0.9: σ 2
x = 5.2632 E{σ̂ 2

x} = 4.3579

a = 0.1: σ 2
x = 1.0101 E{σ̂ 2

x} = 0.9978

We next estimate the variance by using (3.6.33) and repeat the experiment 10,000 times. Fig-
ure 3.15 shows histograms of computed variances for a = 0.9 and for a = 0.1. The computed
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FIGURE 3.15
Histograms of variance estimates in Example 3.6.2.
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means of the variance estimates are also shown as dotted lines. Clearly, the histogram is much
wider for the high-correlation case and much narrower (almost symmetric and Gaussian) for the
low-correlation case.

The 95 percent confidence intervals are given by (l1σ̂
2
x, l2σ̂

2
x), where l1 = N/χν(0.975)

and l2 = N/χν(0.025). The values of l1 and l2 are obtained from the chi-squared distribution
curves (Jenkins and Watts 1968). For N = 100, l1 = 0.77 and l2 = 1.35; hence the 95 percent
confidence intervals for σ 2

x are

(0.77σ̂ 2
x, 1.35σ̂ 2

x)

also shown as dashed lines around the mean value E{σ̂ 2
x}. The confidence interval for the

high-correlation case, a = 0.9, does not appear to be a good interval, which implies that the
approximation leading to (3.6.42) is not a good one for this case. Such is not the case for a = 0.1.

3.7 SUMMARY

In this chapter we provided an overview of the basic theory of discrete-time stochastic
processes. We began with the notion of a random variable as a mapping from the abstract
probability space to the real space, extended it to random vectors as a collection of random
variables, and introduced discrete-time stochastic processes as an indexed family (or time
series) of random variables. A complete probabilistic description of these random objects
requires the knowledge of joint distribution or density functions, which is difficult to acquire
except in simple cases. Therefore, the emphasis was placed on description using joint
moments of distributions, and, in particular, the emphasis was placed on the second-order
moments, which are relatively easy to estimate or compute in practice.

We defined the mean and the variance to describe random variables, and we provided
three useful models of random variables. For random vector description, we defined the
mean vector and the autocorrelation matrix. Linear transformations of random vectors were
discussed, using densities and correlation matrices. The normal random vector was then in-
troduced as a useful model of a random vector. A particularly simple linear transformation,
namely, the sum of independent random variables, was used to introduce random variables
with stable and infinitely divisible distributions. To describe stochastic processes, we pro-
ceeded to define mean and autocorrelation sequences. In many applications, the concept of
stationary of random processes is a useful one that reduces the computational complexity.
Assuming time invariance on the first two moments, we defined a wide-sense stationary
(WSS) process in which the mean is a constant and correlation between random variables
at two distinct times is a function of time difference or lag. The rest of the chapter was
devoted to the analysis of WSS processes.

A stochastic process is generally observed in practice as a single sample function (a
speech signal or a radar signal) from which it is necessary to estimate the first- and the
second-order moments. This requires the notion of ergodicity, which provides a framework
for the computation of statistical averages using time averages over a single realization.
Although this framework requires theoretical results using mean square convergence, we
provided a simple approach of using appropriate time averages.An important random signal
characteristic called variability was introduced. The WSS processes were then described
in the frequency domain using the power spectral density function, which is a physical
quantity that can be measured in practice. Some random processes exhibiting flat spectral
envelopes were analyzed including one of white noise. Since random processes are generally
processed using linear systems, we described linear system operations with random inputs
in both the time and frequency domains.

The properties of correlation matrices and sequences play an important role in filtering
and estimation theory and were discussed in detail, including eigenanalysis. Another im-
portant random signal characteristic called memory was also introduced. Stationary random
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signals were modeled using autocorrelation matrices, and the relationship between spectral
flatness and eigenvalue spread was explored. These properties were used in an alternate rep-
resentation of random vectors as well as processes using uncorrelated components which
were based on diagonalization and triangularization of correlation matrices. This resulted
in the discrete KL transform and KL expansion. These concepts will also be useful in later
chapters on optimal filtering and adaptive filtering.

Finally, we concluded this chapter with the introduction of elementary estimation the-
ory. After discussion of properties of estimators, two important estimators of mean and
variance were treated in detail along with their sampling distributions. These topics will be
useful in many subsequent chapters.

PROBLEMS

3.1 The exponential density function is given by

fx(x) = 1

a
e−x/au(x) (P.1)

where a is a parameter and u(x) is a unit step function.

(a) Plot the density function for a = 1.
(b) Determine the mean, variance, skewness,and kurtosis of the Rayleigh random variable with

a = 1. Comment on the significance of these moments in terms of the shape of the density
function.

(c) Determine the characteristic function of the exponential pdf.

3.2 The Rayleigh density function is given by

fx(x) = x

σ 2
e−x2/(2σ 2)u(x) (P.2)

where σ is a parameter and u(x) is a unit step function. Repeat Problem 3.1 for σ = 1.

3.3 Using the binomial expansion of {x(ζ )− µx}m, show that the mth central moment is given by

M
(x)
m =

m∑
k=0

(
m

k

)
(−1)kµk

xξ
(x)
m−k

ξ
(x)
m =

m∑
k=0

(
m

k

)
µk

xM
(x)
m−k

Similarly, show that

3.4 Consider a zero-mean random variable x(ζ ). Using (3.1.26), show that the first four cumulants
of x(ζ ) are given by (3.1.28) through (3.1.31).

3.5 A random vector x(ζ ) = [x1(ζ ) x2(ζ )]T has mean vector µx = [1 2]T and covariance matrix

�x =
[

4 0.8

0.8 1

]

This vector is transformed to another random vector y(ζ ) by the following linear transformation:

y1(ζ )

y2(ζ )

y3(ζ )


 =




1 3

−1 2

2 3



[
x1(ζ )

x2(ζ )

]

Determine (a) the mean vector µy, (b) the autocovariance matrix �y, and (c) the cross-correlation
matrix Rxy.
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3.6 Using the moment generating function, show that the linear transformation of a Gaussian random
vector is also Gaussian.

3.7 Let {xk(ζ )}4k=1 be four IID random variables with exponential distribution (P.1) with a = 1.
Let

yk(ζ ) =
k∑

l=1

xl(ζ ) 1 ≤ k ≤ 4

(a) Determine and plot the pdf of y2(ζ ).
(b) Determine and plot the pdf of y3(ζ ).
(c) Determine and plot the pdf of y4(ζ ).
(d ) Compare the pdf of y4(ζ ) with that of the Gaussian density.

3.8 For each of the following, determine whether the random process is (1) WSS or (2) m.s. ergodic
in the mean.

(a) X(t) = A, where A is a random variable uniformly distributed between 0 and 1.
(b) Xn = A cos ω0n, where A is a Gaussian random variable with mean 0 and variance 1.
(c) A Bernoulli process with Pr[Xn = 1] = p and Pr[Xn = −1] = 1 − p.

3.9 Consider the harmonic process x(n) defined in (3.3.50).

(a) Determine the mean of x(n).
(b) Show that the autocorrelation sequence is given by

rx(l) = 1

2

M∑
k=1

|ck |2 cos ωkl −∞ < l < ∞

3.10 Suppose that the random variables φk in the real-valued harmonic process model are distributed
with a pdf fφk

(φk) = (1 + cos φk)/(2π),−π ≤ φk ≤ π . Is the resulting stochastic process
stationary?

3.11 A stationary random sequence x(n) with mean µx = 4 and autocovariance

γ x(n) =
{

4 − |n| |n| ≤ 3

0 otherwise

is applied as an input to a linear shift-invariant (LSI) system whose impulse response h(n) is

h(n) = u(n) − u(n − 4)

where u(n) is a unit step sequence. The output of this system is another random sequence y(n).
Determine (a) the mean sequence µy(n), (b) the cross-covariance γ xy(n1, n2) between x(n1)

and y(n2), and (c) the autocovariance γ y(n1, n2) of the output process y(n).

3.12 A causal LTI system, which is described by the difference equation

y(n) = 1
2
y(n − 1) + x(n) + 1

3
x(n − 1)

is driven by a zero-mean WSS process with autocorrelation rx(l) = 0.5|l|.
(a) Determine the PSD and the autocorrelation of the output sequence y(n).
(b) Determine the cross-correlation rxy(l) and cross-PSD Rxy(e

jω) between the input and
output signals.

3.13 A WSS process with PSD Rx(e
jω) = 1/(1.64 + 1.6 cos ω) is applied to a causal system

described by the following difference equation

y(n) = 0.6y(n − 1) + x(n) + 1.25x(n − 1)

Compute (a) the PSD of the output and (b) the cross-PSD Rxy(e
jω) between input and output.
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3.14 Determine whether the following matrices are valid correlation matrices:

(a) R1 =
[

1 1

1 1

]
(b) R2 =




1 1
2

1
4

1
2

1 1
2

1
4

1
2

1




(c) R3 =
[

1 1 − j

1 + j 1

]
(d) R4 =




1 1
2

1
1
2

2 1
2

1 1 1




3.15 Consider a normal random vector x(ζ ) with components that are mutually uncorrelated, that is,
ρij = 0. Show that (a) the covariance matrix Hx is diagonal and (b) the components of x(ζ )
are mutually independent.

3.16 Show that if a real, symmetric, and nonnegative definite matrix R has eigenvaluesλ1, λ2, . . . , λM ,
then the matrix Rk has eigenvalues λk

1, λ
k
2, . . . , λ

k
M

.

3.17 Prove that the trace of R is given by

tr R =
∑

λi

3.18 Prove that the determinant of R is given by

det R = |R| =
∏

λi = |�|

3.19 Show that the determinants of R and � are related by

det R = det �(1 + µH�µ)

3.20 Let Rx be the correlation matrix of the vector x = [x(0) x(2) x(3)]T , where x(n) is a zero-mean
WSS process.

(a) Check whether the matrix Rx is Hermitian, Toeplitz, and nonnegative definite.
(b) If we know the matrix Rx, can we determine the correlation matrix of the vector x̄ =

[x(0) x(1) x(2) x(3)]T ?

3.21 Using the nonnegativeness of E{[x(n + l) ± x(n)]2}, show that rx(0) ≥ |rx(l)| for all l.

3.22 Show that rx(l) is nonnegative definite, that is,

M∑
l=1

M∑
k=1

alrx(l − k)a∗k ≥ 0 ∀M, ∀a1, . . . , aM

3.23 Let x(n) be a random process generated by the AP(1) system

x(n) = αx(n − 1) + w(n) n ≥ 0 x(−1) = 0

where w(n) is an IID(0, σ 2
w) process.

(a) Determine the autocorrelation rx(n1, n2) function.
(b) Show that rx(n1, n2) asymptotically approaches rx(n1 − n2), that is, it becomes shift-

invariant.

3.24 Let x be a random vector with mean µx and autocorrelation Rx.

(a) Show that y = QT x transforms x to an uncorrelated component vector y if Q is the
eigenmatrix of Rx.

(b) Comment on the geometric interpretation of this transformation.
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3.25 The mean and the covariance of a Gaussian random vector x are given by, respectively,

µx =
[

1

2

]
and �x =

[
1 1

2
1
2

1

]

Plot the 1σ , 2σ , and 3σ concentration ellipses representing the contours of the density function
in the (x1, x2) plane. Hints: The radius of an ellipse with major axis a (along x1) and minor
axis b < a (along x2) is given by

r2 = a2b2

a2 sin2 θ + b2 cos2 θ

where 0 ≤ θ ≤ 2π . Compute the 1σ ellipse specified by a = √
λ1 and b = √

λ2 and then rotate

and translate each point x(i) = [x(i)
1 x

(i)
2 ]T using the transformation w(i) = Qxx(i) + µx .

3.26 Consider the process x(n) = ax(n − 1) + w(n), where w(n) ∼ WN(0, σ 2
w).

(a) Show that the M ×M correlation matrix of the process is symmetric Toeplitz and is given
by

Rx = σ 2
w

1 − a2




1 a · · · am−1

a 1 · · · am−2

...
...

. . .
...

am−1 am−2 · · · 1




(b) Verify that

R−1
x = 1

σ 2
w




1 −a 0 · · · 0

−a 1 + a2 −a · · · 0

0 −a
. . .

...
...

...
...

... 1 + a2 −a

0 0 · · · −a 1




(c) Show that if

Lx =




1 0 · · · 0

−a 1 · · · 0
...

...
. . . 0

0 0 −a 1




then LT
x RxLx = (1 − a2)I.

(d ) For σ 2
w = 1, a = 0.95, and M = 8 compute the DKLT and the DFT.

(e) Plot the eigenvalues of each transform in the same graph of the PSD of the process. Explain
your findings.

(f ) Plot the eigenvectors of each transform and compare the results.
(g) Repeat parts (e) and (f ) for M = 16 and M = 32. Explain the obtained results.
(h) Repeat parts (e) to (g) for a = 0.5 and compare with the results obtained for a = 0.95.

3.27 Determine three different innovations representations of a zero-mean random vector x with
correlation matrix

Rx =
[

1 1
4

1
4

1

]

3.28 Verify that the eigenvalues and eigenvectors of the M × M correlation matrix of the process

x(n) = w(n) + bw(n − 1), where w(n) ∼ WN(0, σ 2
w) are given by λk = Rx(e

jωk ), q
(k)
n =

sin ωkn, ωk = πk/(M + 1), where k = 1, 2, . . . ,M , (a) analytically and (b) numerically for
σ 2

w = 1 and M = 8. Hint: Plot the eigenvalues on the same graph with the PSD.
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3.29 Consider the process x(n) = w(n) + bw(n − 1).

(a) Compute the DKLT for M = 3.
(b) Show that the variances of the DKLT coefficients are σ 2

x(1+
√

2b), σ 2
x , and σ 2

x(1−
√

2b).

3.30 Let x(n) be a stationary random process with mean µx and covariance γ x(l). Let µ̂x =
1/N

∑N−1
n=0 x(n) be the sample mean from the observations {x(n)}N−1

n=0 .

(a) Show that the variance of µ̂x is given by

var(µ̂x) = N−1
N∑

l=−N

(
1 − |l|

N

)
γ x(l) ≤ N−1

N∑
l=−N

|γ x(l)| (P.3)

(b) Show that the above result (P.3) can be expressed as

var(µ̂x) =
σ 2

x

N
[1 + 
N(ρx)] (P.4)


N(ρx) = 2
N∑
l=1

(
1 − l

N

)
ρx(l) ρx(l) =

γ x(l)

σ 2
x

where

(c) Show that (P.3) reduces to var(µ̂x) = σ 2
x/N for a WN(µx, σ

2
x) process.

3.31 Let x(n) be a stationary random process with mean µx, variance σ 2
x , and covariance γ x(l). Let

σ̂ 2
x � 1

N

N−1∑
n=0

[x(n) − µ̂x ]2

be the sample variance from the observations {x(n)}N−1
n=0 .

(a) Show that the mean of σ̂ 2
x is given by

E{σ̂ 2
x} = σ 2

x − var(µ̂x) = σ 2
x − 1

N

N∑
l=−N

(
1 − |l|

N

)
γ x(l)

(b) Show that the above result reduces to E{σ̂ 2} = (N − 1)σ 2
x/N for a WN(µx, σ

2
x) process.

3.32 The Cauchy distribution with mean µ is given by

fx(x) = 1

π

1

1 + (x − µ)2
−∞ < x < ∞

Let {xk(ζ )}Ni=k
be N IID random variables with the above distribution. Consider the mean

estimator based on {xk(ζ )}Ni=k

µ̂(ζ ) = 1

N

N∑
k=1

xk(ζ )

Determine whether µ̂(ζ ) is a consistent estimator of µ.
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CHAPTER 4

Linear Signal Models

In this chapter we introduce and analyze the properties of a special class of stationary
random sequences that are obtained by driving a linear, time-invariant system with white
noise. We focus on filters having a system function that is rational, that is, the ratio of two
polynomials.The power spectral density of the resulting process is also rational, and its shape
is completely determined by the filter coefficients. We will use the term pole-zero models
when we want to emphasize the system viewpoint and the term autoregressive moving-
average models to refer to the resulting random sequences. The latter term is not appropriate
when the input is a harmonic process or a deterministic signal with a flat spectral envelope.
We discuss the impulse response, autocorrelation, power spectrum, partial autocorrelation,
and cepstrum of all-pole, all-zero, and pole-zero models. We express all these quantities
in terms of the model coefficients and develop procedures to convert from one parameter
set to another. Low-order models are studied in detail, because they are easy to analyze
analytically and provide insight into the behavior and properties of higher-order models. An
understanding of the correlation and spectral properties of a signal model is very important
for the selection of the appropriate model in practical applications. Finally, we investigate a
special case of pole-zero models with one or more unit poles. Pole-zero models are widely
used for the modeling of stationary signals with short memory whereas models with unit
poles are useful for the modeling of certain nonstationarity processes with trends.

4.1 INTRODUCTION

In Chapter 3 we defined and studied random processes as a mathematical tool to analyze
random signals. In practice, we also need to generate random signals that possess certain
known, second-order characteristics, or we need to describe observed signals in terms of
the parameters of known random processes.

The simplest random signal model is the wide sense stationary white noise sequence
w(n) ∼ WN(0, σ 2

w) that has uncorrelated samples and a flat PSD. It is also easy to generate
in practice by using simple algorithms. If we filter white noise with a stable LTI filter,
we can obtain random signals with almost any arbitrary aperiodic correlation structure or
continuous PSD. If we wish to generate a random signal with a line PSD using the previous
approach, we need an LTI filter with “line” frequency response; that is, we need an oscillator.
Unfortunately, such a system is not stable, and its output cannot be stationary. Fortunately,
random signals with line PSDs can be easily generated by using the harmonic process model
(linear combination of sinusoidal sequences with statistically independent random phases)
discussed in Section 3.3.6. Figure 4.1 illustrates the filtering of white noise and “white ”
(flat spectral envelope) harmonic process by an LTI filter. Signal models with mixed PSDs
can be obtained by combining the above two models, a process justified by a powerful result
known as the Wold decomposition.
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1D(z)
A(z)

FIGURE 4.1
Signal models with continuous and discrete (line) power spectrum
densities.

When the LTI filter is specified by its impulse response, we have a nonparametric
signal model because there is no restriction regarding the form of the model and the number
of parameters is infinite. However, if we specify the filter by a finite-order rational system
function, we have a parametric signal model described by a finite number of parameters. We
focus on parametric models because they are simpler to deal with in practical applications.
The two major topics we address in this chapter are (1) the derivation of the second-order
moments of AP, AZ, and PZ models, given the coefficients of their system function, and
(2) the design of an AP, AZ, or PZ system that produces a random signal with a given
autocorrelation sequence or PSD function. The second problem is known as signal modeling
and theoretically is equivalent to the spectral factorization procedure developed in Section
2.4.4. The modeling of harmonic processes is theoretically straightforward and does not
require the use of a linear filter to change the amplitude of the spectral lines. The challenging
problem in this case is the identification of the filter by observing its response to a harmonic
process with a flat PSD. The modeling problem for continuous PSDs has a solution, at least
in principle, for every regular random sequence.

In practical applications, the second-order moments of the signal to be modeled are
not known a priori and have to be estimated from a set of signal observations. This el-
ement introduces a new dimension and additional complications to the signal modeling
problem, which are discussed in Chapter 9. In this chapter we primarily focus on paramet-
ric models that replicate the second-order properties (autocorrelation or PSD) of stationary
random sequences. If the sequence is Gaussian, the model provides a complete statistical
characterization. The characterization of non-Gaussian processes, which requires the use
of higher-order moments, is discussed in Chapter 12.

4.1.1 Linear Nonparametric Signal Models

Consider a stable LTI system with impulse response h(n) and input w(n). The output x(n)
is given by the convolution summation

x(n) =
∞∑

k=−∞
h(k)w(n− k) (4.1.1)

which is known as a nonrecursive system representation because the output is computed
by linearly weighting samples of the input signal.
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Linear random signal model. If the input w(n) is a zero-mean white noise process
with variance σ 2

w, autocorrelation rw(l) = σ 2
wδ(l), and PSDRw(ejω) = σ 2

w, −π < ω ≤ π ,
then from Table 3.2 the autocorrelation, complex PSD, and PSD of the output x(n) are given
by, respectively,

rx(l) = σ 2
w

∞∑
k=−∞

h(k)h∗(k − l) = σ 2
wrh(l) (4.1.2)

Rx(z) = σ 2
w H(z)H

∗
(

1

z∗

)
(4.1.3)

Rx(e
jω) = σ 2

w |H(ejω)|2 = σ 2
wRh(e

jω) (4.1.4)

We notice that when the input is a white noise process, the shape of the autocorrelation
and the power spectrum (second-order moments) of the output signal are completely char-
acterized by the system. We use the term system-based signal model to refer to the signal
generated by a system with a white noise input. If the system is linear, we use the term
linear random signal model. In the statistical literature, the resulting model is known as
the general linear process model. However, we should mention that in some applications
it is more appropriate to use a deterministic input with flat spectral envelope or a “white”
harmonic process input.

Recursive representation. Suppose now that the inverse system HI (n) = 1/H(z)
is causal and stable. If we assume, without any loss of generality, that h(0) = 1, then
hI (n) = Z−1{HI (n)} has hI (0) = 1. Therefore the input w(n) can be obtained by

w(n) = x(n)+
∞∑
k=1

hI (k)x(n− k) (4.1.5)

Solving for x(n), we obtain the following recursive representation for the output signal

x(n) = −
∞∑
k=1

hI (k)x(n− k)+ w(n) (4.1.6)

We use the term recursive representation to emphasize that the present value of the output
is obtained by a linear combination of all past output values, plus the present value of the
input. By construction the nonrecursive and recursive representations of system h(n) are
equivalent; that is, they produce the same output when they are excited by the same input
signal.

Innovations representation. If the system H(z) is minimum-phase, then both h(n)
and hI (n) are causal and stable. Hence, the output signal can be expressed nonrecursively
by

x(n) =
∞∑
k=0

h(k)w(n− k) =
n∑

k=−∞
h(n− k)w(k) (4.1.7)

or recursively by (4.1.6).
From (4.1.7) we obtain

x(n+ 1) =
n∑

k=−∞
h(n+ 1 − k)w(k)+ w(n+ 1)

or by using (4.1.5)

x(n+ 1) =
n∑

k=−∞
h(n+ 1 − k)x(k)

︸ ︷︷ ︸
past information: linear combination of x(n), x(n−1),...

+ w(n+ 1)︸ ︷︷ ︸
new information

(4.1.8)
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Careful inspection of (4.1.8) indicates that if the system generating x(n) is minimum-phase,
the samplew(n+1) brings all the new information (innovation) to be carried by the sample
x(n+ 1). All other information can be predicted from the past samples x(n), x(n− 1), . . .
of the signal (see Section 6.6). We stress that this interpretation holds only if H(z) is
minimum-phase.

The systemH(z)generates the signalx(n)by introducing dependence in the white noise
input w(n) and is known as the synthesis or coloring filter. In contrast, the inverse system
HI (z) can be used to recover the inputw(n) and is known as the analysis or whitening filter.
In this sense the innovations sequence and the output process are completely equivalent.
The synthesis and analysis filters are shown in Figure 4.2.

Synthesis or 
coloring filter

Analysis or
whitening filter

H(z)
x(n)w (n) ~ IID(0, sw)

w (n)x(n)
H1(z) = H(z)

1

2 FIGURE 4.2
Synthesis and analysis filters used in
innovations representation.

Spectral factorization

Most random processes with a continuous PSD Rx(ejω) can be generated by exciting
a minimum-phase system Hmin(z) with white noise. The PSD of the resulting process is
given by

Rx(e
jω) = σ 2

w |Hmin(e
jω)|2 (4.1.9)

The process of obtainingHmin(z) from Rx(ejω) or rx(l) is known as spectral factorization.
If the PSD Rx(ejω) satisfies the Paley-Wiener condition∫ π

−π
| lnRx(e

jω)|dω <∞ (4.1.10)

then the process x(n) is called regular and its complex PSD can be factored as follows (see
Section 2.4.4)

Rx(z) = σ 2
wHmin(z)H

∗
min

(
1

z∗

)
(4.1.11)

σ 2
w = exp

{
1

2π

∫ π

−π
ln[Rx(ejω)] dω

}
(4.1.12)where

is the variance of the white noise input and can be interpreted as the geometric mean of
Rx(e

jω). Consider the inverse Fourier transform of lnRx(ejω):

c(k) � 1

2π

∫ π

−π
ln[Rx(ejω)] ejkω dω (4.1.13)

which is a sequence known as the cepstrum of rx(l). Note that c(0) = σ 2
w. Thus in the

cepstral domain, the multiplicative factors Hmin(z) and H ∗
min(1/z

∗) are now additively
separable due to the natural logarithm of Rx(ejω). Define

c+(k) � c(0)

2
+ c(k)u(k − 1) (4.1.14)

c−(k) � c(0)

2
+ c(k)u(−k − 1) (4.1.15)and

as the positive- and negative-axis projections of c(k), respectively, with c(0) distributed
equally between them. Then we obtain

hmin(n) = F−1{exp F[c+(k)]} (4.1.16)
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as the impulse response of the minimum-phase system Hmin(z). Similarly,

hmax(n) = F−1{exp F[c−(k)]} (4.1.17)

is the corresponding maximum-phase system. This completes the spectral factorization
procedure for an arbitrary PSDRx(ejω), which, in general, is a complicated task. However,
it is straightforward if Rx(z) is a rational function, as we discussed in Section 2.4.2.

Spectral flatness measure

The spectral flatness measure (SFM) of a zero-mean process with PSD Rx(e
jω) is

defined by (Makhoul 1975)

SFMx �
exp

{
1

2π

∫ π

−π
ln[Rx(ejω)] dω

}
1

2π

∫ π

−π
Rx(e

jω) dω
= σ 2

w

σ 2
x

(4.1.18)

where the second equality follows from (4.1.12). It describes the shape (or more appro-
priately, flatness) of the PSD by a single number. If x(n) is a white noise process, then
Rx(e

jω) = σ 2
x and SFMx = 1. More specifically, we can show that

0 ≤ SFMx ≤ 1 (4.1.19)

Observe that the numerator of (4.1.18) is the geometric mean while the denominator is the
arithmetic mean of a real-valued, nonnegative continuous waveform Rx(ejω). Since x(n)
is a regular process satisfying (4.1.10), these means are always positive. Furthermore, their
ratio, by definition, is never greater than unity and is equal to unity if the waveform is
constant. This, then, proves (4.1.19). A detailed proof is given in Jayant and Noll (1984).

When x(n) is obtained by filtering the zero-mean white noise process w(n) through
the filter H(z), then the coloring of Rx(ejω) is due to H(z). In this case, Rx(ejω) =
σ 2
w |H(ejω)|2 from (4.1.9), and we obtain

SFMx = σ 2
w

σ 2
x

= σ 2
w

1

2π

∫ π

−π
σ 2
w |H(ejω)|2 dω

= 1
1

2π

∫ π

−π
|H(ejω)|2 dω

(4.1.20)

Thus SFMx is the inverse of the filter power (or power transfer factor) if h(0) is normalized
to unity.

4.1.2 Parametric Pole-Zero Signal Models

Parametric models describe a system with a finite number of parameters. The major subject
of this chapter is the treatment of parametric models that have rational system functions. To
this end, consider a system described by the following linear constant-coefficient difference
equation

x(n)+
P∑
k=1

ak x(n− k) =
Q∑
k=0

dk w(n− k) (4.1.21)

where w(n) and x(n) are the input and output signals, respectively. Taking the z-transform
of both sides, we find that the system function is

H(z) = X(z)

W(z)
=

Q∑
k=0

dkz
−k

1 +
P∑
k=1

akz−k
� D(z)

A(z)
(4.1.22)
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We can express H(z) in terms of the poles and zeros of the system as follows:

H(z) = d0

Q∏
k=1

(1 − zk z−1)

P∏
k=1

(1 − pk z−1)

(4.1.23)

The system hasQ zeros {zk} and P poles {pk} (zeros and poles at z = 0 are not considered
here). The termd0 is the system gain. For the rest of the book, we assume that the polynomials
D(z) andA(z) do not have any common roots, that is, common poles and zeros have already
been canceled.

Types of pole-zero models

There are three cases of interest:

• For P > 0 and Q > 0, we have a pole-zero model, denoted by PZ(P,Q). If the model
is assumed to be causal, its output is given by

x(n) = −
P∑
k=1

akx(n− k)+
Q∑
k=0

dkw(n− k) (4.1.24)

• For P = 0, we have an all-zero model, denoted by AZ(Q). The input-output difference
equation is

x(n) =
Q∑
k=0

dkw(n− k) (4.1.25)

• For Q = 0, we have an all-pole model, denoted by AP(P ). The input-output difference
equation is

x(n) = −
P∑
k=1

akx(n− k)+ d0w(n) (4.1.26)

If we excite a parametric model with white noise, we obtain a signal whose second-
order moments are determined by the parameters of the model. Indeed, from Sections 3.4.2
and 3.4.3, we recall that if w(n) ∼ IID{0, σ 2

w} with finite variance,
†

then

rx(l) = σ 2
wrh(l) = σ 2

wh(l) ∗ h∗(−l) (4.1.27)

Rx(z) = σ 2
wRh(z) = σ 2

wH(z)H
∗
(

1

z∗

)
(4.1.28)

Rx(e
jω) = σ 2

wRh(e
jω) = σ 2

w|H(ejω)|2 (4.1.29)

Such signal models are of great practical interest and have special names in the statistical
literature:

• The AZ(Q) is known as the moving-average model, denoted by MA(Q).
• The AP(P ) is known as the autoregressive model, denoted by AR(P ).
• The PZ(P , Q) is known as the autoregressive moving-average model, denoted by

ARMA(P ,Q).

We specify a parametric signal model by normalizing d0 = 1 and setting the variance of
the input to σ 2

w. The defining set of model parameters is given by {a1, a2, . . . , aP , d1, . . . ,

dQ, σ
2
w} (see Figure 4.3). An alternative is to set σ 2

w = 1 and leave d0 arbitrary. We stress
that these models assume the resulting processes are stationary, which is ensured if the
corresponding systems are BIBO stable.

†
The case of infinite variance is discussed in Chapter 12.
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Input

Model parameters

w (n) x(n)

Output
H(z) = 

D(z)
A(z)

{sw , d1,…, dQ, a1,…, aP}2

FIGURE 4.3
Block diagram representation of a
parametric, rational signal model.

Short-memory behavior

To find the memory behavior of pole-zero models, we investigate the nature of their
impulse response. To this end, we recall that forQ ≥ P , (4.1.23) can be expanded as

H(z) =
Q−P∑
j=0

Bj z
−j +

P∑
k=1

Ak

1 − pk z−1
(4.1.30)

where for simplicity we assume that the model hasP distinct poles. The first term in (4.1.30)
disappears if P > Q. The coefficients Bj can be obtained by long division:

Ak = (1 − pk z−1)H(z)|z=pk (4.1.31)

If the model is causal, taking the inverse z-transform results in an impulse response that is a
linear combination of impulses, real exponentials, and damped sinusoids (produced by the
combination of complex exponentials)

h(n) =
Q−P∑
j=0

Bjδ(n− j)+
P1∑
k=1

Ak(pk)
nu(n)+

P2∑
i=1

Cir
n
i cos(ωin+ φi) u(n) (4.1.32)

where pi = rie
±jωi and P = P1 + 2P2. Recall that u(n) and δ(n) are the unit step and

unit impulse functions, respectively. We note that the memory of any all-pole model decays
exponentially with time and that the rate of decay is controlled by the pole closest to the
unit circle. The contribution of multiple poles at the same location is treated in Problem 4.1.

Careful inspection of (4.1.32) leads to the following conclusions:

1. For AZ(Q) models, the impulse response has finite duration and, therefore, can have any
shape.

2. The impulse response of causal AP(P ) and PZ(P ,Q) models with single poles consists
of a linear combination of damped real exponentials (produced by the real poles) and
exponentially damped sinusoids (produced by complex conjugate poles). The rate of
decay decreases as the poles move closer to the unit circle and is determined by the pole
closest to the unit circle.

3. The model is stable if and only if h(n) is absolutely summable, which, due to (4.1.32),
is equivalent to |pk| < 1 for all k. In other words, a causal pole-zero model is BIBO
stable if and only if all the poles are inside the unit circle.

†

We conclude that causal, stable PZ(P , Q) models with P > 0 have an exponentially
fading memory because their impulse response decays exponentially with time. Therefore,
the autocorrelation rh(l) = h(l) ∗ h∗(−l) also decays exponentially (see Example 4.2.2),
and pole-zero models have short memory according to the definition given in Section 3.4.3.

Generation of random signals with rational power spectra

Sample realizations of random sequences with rational power spectra can be easily
generated by using the difference equation (4.1.24) and a random number generator. In
most applications, we use a Gaussian excitation because the generated sequence will also
be Gaussian. For non-Gaussian inputs, it is difficult to predict the type of distribution
of the output signal. If, on one hand, we specify the frequency response of the model,

†
Poles on the unit circle are discussed in Section 4.5.
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the coefficients of the difference equation can be obtained by using a digital filter design
package. If, on the other hand, the power spectrum or the autocorrelation is given, the
coefficients of the model are determined via spectral factorization. If we wish to avoid
the transient effects that make some of the initial output samples nonstationary, we should
consider the response of the model only after the initial transients have died out.

4.1.3 Mixed Processes and Wold Decomposition

An arbitrary stationary random process can be constructed to possess a continuous PSD
Rx(e

jω) and a discrete power spectrum Rx(k). Such processes are called mixed processes
because the continuous PSD is due to regular processes while the discrete spectrum is due to
harmonic (or almost periodic) processes. A further interpretation of mixed processes is that
the first part is an unpredictable process while the second part is a predictable process (in the
sense that past samples can be used to exactly determine future samples). This interpretation
is due to the Wold decomposition theorem.

TH E O R E M 4.1 (WO LD D E C O M PO S ITI O N ) . A general stationary random process can be
written as a sum

x(n) = xr(n)+ xp(n) (4.1.33)

where xr(n) is a regular process possessing a continuous spectrum and xp(n) is a predictable
process possessing a discrete spectrum. Furthermore, xr(n) is orthogonal to xp(n); that is,

E{xr(n1)x
∗
p (n2)} = 0 for all n1, n2 (4.1.34)

The proof of this theorem is very involved, but a good approach to it is given in Therrien
(1992). Using (4.1.34), the correlation sequence of x(n) in (4.1.33) is given by

rx(l) = rxr (l)+ rxp(l)

from which we obtain the continuous and discrete spectra. As discussed above, the regular
process has an innovations representation w(n) that is uncorrelated but not independent.
For example, w(n) can be the output of an all-pass filter driven by an IID sequence. To
determine if this is the case, we need to use higher-order moments (see Section 12.1).

4.2 ALL-POLE MODELS

We start our discussion of linear signal models with all-pole models because they are the
easiest to analyze and the most often used in practical applications. We assume an all-pole
model of the form

H(z) = d0

A(z)
= d0

1 +
P∑
k=1

akz−k
= d0

P∏
k=1

(1 − pkz−1)

(4.2.1)

where d0 is the system gain and P is the order of the model. The all-pole model can be
implemented using either a direct or a lattice structure. The conversion between the two
sets of parameters can be done by using the step-up and step-down recursions described in
Section 2.5.

4.2.1 Model Properties

In this section, we derive analytic expressions for various properties of the all-pole model,
namely, the impulse response, the autocorrelation, and the spectrum. We determine the
system-related properties rh(l) and Rh(ejω) because the results can be readily applied to
obtain the signal model properties for inputs with both continuous and discrete spectra.
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Impulse response. The impulse response h(n) can be specified by first rewriting
(4.2.1) as

H(z)+
P∑
k=1

akH(z) z
−k = d0

and then taking the inverse z-transform to obtain

h(n)+
P∑
k=1

akh(n− k) = d0δ(n) (4.2.2)

If the system is causal, then

h(n) = −
P∑
k=1

akh(n− k)+ d0δ(n) (4.2.3)

IfH(z) has all its poles inside the unit circle, then h(n) is a causal, stable sequence and the
system is minimum-phase. From (4.2.3) we have

h(0) = d0 (4.2.4)

h(n) = −
P∑
k=1

akh(n− k) n > 0 (4.2.5)

and owing to causality we have

h(n) = 0 n < 0 (4.2.6)

Thus, except for the value at n = 0, h(n) can be obtained recursively as a linearly weighted
summation of its previous values h(n − 1), . . . , h(n − P). One can say that h(n) can be
predicted (with zero error for n �= 0) from the past P values. Thus, the coefficients {ak}
are often referred to as predictor coefficients. Note that there is a close relationship between
all-pole models and linear prediction that will be discussed in Section 4.2.2.

From (4.2.4) and (4.2.5), we can also write the inverse relation

an = −h(n)
h(0)

−
n−1∑
k=1

ak
h(n− k)
h(0)

1 ≤ n ≤ P (4.2.7)

with a0 = 1. From (4.2.7) and (4.2.4), we conclude that if we are given the first P + 1
values of the impulse response h(n), 0 ≤ n ≤ P , then the parameters of the all-pole filter
are completely specified.

Finally, we note that a causal H(z) can be written as a one-sided, infinite polynomial
H(z) =∑∞

n=0 h(n)z
−n. This representation of H(z) implies that any finite-order, all-pole

model can be represented equivalently by an infinite number of zeros. In general, a single
pole can be represented by an infinite number of zeros, and conversely a single zero can be
represented by an infinite number of poles. If the poles are inside the unit circle, so are the
corresponding zeros, and vice versa.

EXAMPLE 4.2.1. A single pole at z = a can be represented by

H(z) = 1

1 − az−1
=

∞∑
n=0

anz−n |a| < 1 (4.2.8)

The question is, where are the infinite number of zeros located? To find the answer, let us consider
the finite polynomial

HN(z) =
N∑
n=0

anz−n (4.2.9)
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where we have truncated H(z) at n = N . Thus HN(z) is a geometric series that can be written
in closed form as

HN(z) = 1 − aN+1z−(N+1)

1 − az−1
(4.2.10)

And HN(z) has a single pole at z = a and N + 1 zeros at

zi = aej2πi/(N+1) i = 0, 1, . . . , N (4.2.11)

The N + 1 zeros are equally distributed on the circle |z| = a with one of the zeros (for i = 0)
located at z = a. But the zero at z = a cancels the pole at the same location. Therefore, HN(z)
has the remaining N zeros:

zi = aej2πi(N+1) i = 1, 2, . . . , N (4.2.12)

The transfer function H(z) of the single-pole model is obtained from HN(z) by letting N go
to infinity. In the limit, H∞(z) has an infinite number of zeros equally distributed on the circle
|z| = a; the zeros are everywhere on that circle except at the point z = a. Similarly, the
denominator from (4.2.8), a polynomial with a single zero at z = a, can be written as

A(z) = 1 − az−1 = 1

H(z)
= 1

1 +
∞∑
n=1

an z−n
|a| < 1 (4.2.13)

that is, a single zero can also be represented by an infinite number of poles. In this case, the
poles are equally distributed on a circle that passes through the location of the zero; the poles
are everywhere on the circle except at the actual location of the zero.

Autocorrelation. The impulse response h(n) of an all-pole model has infinite dura-
tion so that its autocorrelation involves an infinite summation, which is not practical to
write in closed form except for low-order models. However, the autocorrelation function
obeys a recursive relation that relates the autocorrelation values to the model parameters.
Multiplying (4.2.2) by h∗(n− l) and summing over all n, we have

∞∑
n=−∞

P∑
k=0

akh(n− k)h∗(n− l) = d0

∞∑
n=−∞

h∗(n− l)δ(n) (4.2.14)

where a0 = 1. Interchanging the order of summations in the left-hand side, we obtain

P∑
k=0

akrh(l − k) = d0h
∗(−l) − ∞ < l <∞ (4.2.15)

where rh(l) is the autocorrelation of h(n). Equation (4.2.15) is true for all l, but because
h(l) = 0 for l < 0, h(−l) = 0 for l > 0, and we have

P∑
k=0

akrh(l − k) = 0 l > 0 (4.2.16)

From (4.2.4) and (4.2.15), we also have for l = 0,

P∑
k=0

akrh(−k) = |d0|2 (4.2.17)

where we used the fact that r∗h(−l) = rh(l). Equation (4.2.16) can be rewritten as

rh(l) = −
P∑
k=1

akrh(l − k) l > 0 (4.2.18)
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which is a recursive relation for rh(l) in terms of past values of the autocorrelation and {ak}.
Relation (4.2.18) for rh(l) is similar to relation (4.2.5) for h(n), but with one important
difference: (4.2.5) for h(n) is true for all n �= 0 while (4.2.18) for rh(l) is true only if l > 0;
for l < 0, rh(l) obeys (4.2.15).

If we define the normalized autocorrelation coefficients as

ρh(l) = rh(l)

rh(0)
(4.2.19)

then we can divide (4.2.17) by rh(0) and deduce the following relation for rh(0)

rh(0) = |d0|2

1 +
P∑
k=1

akρh(k)

(4.2.20)

which is the energy of the output of the all-pole filter when excited by a single impulse.

Autocorrelation in terms of poles. The complex spectrum of the AP(P ) model is

Rh(z) = H(z)H
(

1

z∗

)
= |d0|2

P∏
k=1

1

(1 − pkz−1)(1 − pkz∗) (4.2.21)

Therefore, the autocorrelation sequence can be expressed in terms of the poles by taking the
inverse z-transform of Rh(z), that is, rh(l) = Z−1{Rh(z)}. The poles pk of the minimum-
phase model H(z) contribute causal terms in the partial fraction expansion, whereas the
poles 1/pk of the nonminimum-phase model H(1/z∗) contribute noncausal terms. This is
best illustrated with the following example.

EXAMPLE 4.2.2. Consider the following minimum-phase AP(1) model

H(z) = 1

1 + az−1
− 1 < a < 1 (4.2.22)

Owing to causality, the ROC of H(z) is |z| > |a|. The z-transform

H(z−1) = 1

1 + az − 1 < a < 1 (4.2.23)

corresponds to the noncausal sequence h(−n) = (−a)−nu(−n), and its ROC is |z| < 1/|a|.
Hence,

Rh(z) = H(z)H(z−1) = 1

(1 + az−1)(1 + az) (4.2.24)

which corresponds to a two-sided sequence because its ROC, |a| < |z| < 1/|a|, is a ring in the
z-plane. Using partial fraction expansion, we obtain

Rh(z) = −a
1 − a2

z−1

1 + az−1
+ 1

1 − a2

1

1 + az (4.2.25)

The pole p = −a corresponds to the causal sequence [1/(1 − a2)](−a)lu(l − 1), and the pole
p = −1/a to the anticausal sequence [1/(1 − a2)](−a)−lu(−l). Combining the two terms, we
obtain

rh(l) = 1

1 − a2
(−a)|l| − ∞ < l <∞ (4.2.26)

ρh(l) = (−a)|l| − ∞ < l <∞ (4.2.27)or

Note that complex conjugate poles will contribute two-sided damped sinusoidal terms
obtained by combining pairs of the form (4.2.27) with u = p and a = pv .
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Impulse train excitations. The response of an AP(P ) model to a periodic impulse
train with period L is periodic with the same period and is given by

h̃(n)+
P∑
k=1

akh̃(n− k) = d0

∞∑
m=−∞

δ(n+ Lm)

=
{
d0 n+ Lm = 0

0 n+ Lm �= 0

(4.2.28)

which shows that the prediction error is zero for samples inside the period and d0 at the
beginning of each period. If we multiply both sides of (4.2.28) by h̃∗(n− l) and sum over
a period 0 ≤ n ≤ L− 1, we obtain

r̃h(l)+
P∑
k=1

akr̃h(l − k) = d0

L
h̃∗(−l) all l (4.2.29)

where r̃h(l) is the periodic autocorrelation of h̃(n). Since, in contrast to h(n) in (4.2.15),
h̃(n) is not necessarily zero for n < 0, the periodic autocorrelation r̃h(l) will not in general
obey the linear prediction equation anywhere. Similar results can be obtained for harmonic
process excitations.

Model parameters in terms of autocorrelation. Equations (4.2.15) for l = 0, 1, . . . ,
P comprise P + 1 equations that relate the P + 1 parameters of H(z), namely, d0 and
{ak, 1 ≤ k ≤ P }, to the first P + 1 autocorrelation coefficients rh(0), rh(1), . . . , rh(P ).
These P + 1 equations can be written in matrix form as


rh(0) r∗h(1) · · · r∗h(P )
rh(1) rh(0) · · · r∗h(P − 1)
...

...
. . .

...

rh(P ) rh(P − 1) · · · rh(0)






1

a1
...

aP


 =




|d0|2
0
...

0


 (4.2.30)

If we are given the first P + 1 autocorrelations, (4.2.30) comprises a system of P + 1 linear
equations, with a Hermitian, Toeplitz matrix that can be solved for d0 and {ak}.

Because of the special structure in (4.2.30), the model parameters are found from the
autocorrelations by using the last set ofP equations in (4.2.30), followed by the computation
of d0 from the first equation, which is the same as (4.2.17). From (4.2.30), we can write in
matrix notation

Rha = −rh (4.2.31)

where Rh is the autocorrelation matrix, a is the vector of the model parameters, and rh
is the vector of autocorrelations. Since rx(l) = σ 2

wrh(l), we can also express the model
parameters in terms of the autocorrelation rx(l) of the output process x(n) as follows:

Rxa = −rx (4.2.32)

These equations are known as the Yule-Walker equations in the statistics literature. In the
sequel, we drop the subscript from the autocorrelation sequence or matrix whenever the
analysis holds for both the impulse response and the model output.

Because of the Toeplitz structure and the nature of the right-hand side, the linear systems
(4.2.31) and (4.2.32) can be solved recursively by using the algorithm of Levinson-Durbin
(see Section 7.4). After a is solved for, the system gain d0 can be computed from (4.2.17).

Therefore, given r(0), r(1), . . . , r(P ), we can completely specify the parameters of
the all-pole model by solving a set of linear equations. Below, we will see that the converse
is also true: Given the model parameters, we can find the first P + 1 autocorrelations by
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solving a set of linear equations. This elegant solution of the spectral factorization problem
is unique to all-pole models. In the case in which the model contains zeros (Q �= 0), the
spectral factorization problem requires the solution of a nonlinear system of equations.

Autocorrelation in terms of model parameters. If we normalize the autocorrelations
in (4.2.31) by dividing throughout by r(0), we obtain the following system of equations

Pa = −ρ (4.2.33)

where P is the normalized autocorrelation matrix and

ρ = [ρ(1) ρ(2) · · · ρ(P )]H (4.2.34)

is the vector of normalized autocorrelations. This set of P equations relates the P model
coefficients with the first P (normalized) autocorrelation values. If the poles of the all-pole
filter are strictly inside the unit circle, the mapping between theP -dimensional vectors a and
ρ is unique. If, in fact, we are given the vector a, then the normalized autocorrelation vector
ρ can be computed from a by using the set of equations that can be deduced from (4.2.33)

Aρ = −a (4.2.35)

where 〈A〉ij = ai−j + ai+j , assuming am = 0 for m < 0 and m > P (see Problem 4.6).
Given the set of coefficients in a, ρ can be obtained by solving (4.2.35). We will see that,

under the assumption of a stableH(z), a solution always exists. Furthermore, there exists a
simple, recursive solution that is efficient (see Section 7.5). If, in addition to a, we are given
d0, we can evaluate r(0)with (4.2.20) from ρ computed by (4.2.35). Autocorrelation values
r(l) for lags l > P are found by using the recursion in (4.2.18) with r(0), r(1), . . . , r(P ).

EXAMPLE 4.2.3. For the AP(3) model with real coefficients we have
r(0) r(1) r(2)

r(1) r(0) r(1)

r(2) r(1) r(0)




a1

a2

a3


 = −


r(1)r(2)

r(3)


 (4.2.36)

d2
0 = r(0)+ a1r(1)+ a2r(2)+ a3r(3) (4.2.37)

Therefore, given r(0), r(1), r(2), r(3), we can find the parameters of the all-pole model by
solving (4.2.36) and then substituting into (4.2.37).

Suppose now that instead we are given the model parameters d0, a1, a2, a3. If we divide
both sides of (4.2.36) by r(0) and solve for the normalized autocorrelations ρ(1), ρ(2), and ρ(3),
we obtain 

1 + a2 a3 0

a1 + a3 1 0

a2 a1 1




 ρ(1)

ρ(2)

ρ(3)


 = −


 a1

a2

a3


 (4.2.38)

The value of r(0) is obtained from

r(0) = d2
0

1 + a1ρ(1)+ a2ρ(2)+ a3ρ(3)
(4.2.39)

If r(0) = 2, r(1) = 1.6, r(2) = 1.2, and r(3) = 1, the Toeplitz matrix in (4.2.36) is positive
definite because it has positive eigenvalues. Solving the linear system gives a1 = −0.9063,
a2 = 0.2500, and a3 = −0.1563. Substituting these values in (4.2.37), we obtain d0 = 0.8329.
Using the last two relations, we can recover the autocorrelation from the model parameters.

Correlation matching. All-pole models have the unique distinction that the model
parameters are completely specified by the first P + 1 autocorrelation coefficients via a set
of linear equations. We can write [

d0

a

]
↔
[
r(0)

ρ

]
(4.2.40)
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that is, the mapping of the model parameters {d0, a1, a2, . . . , aP } to the autocorrelation
coefficients specified by the vector {r(0), ρ(1), . . . , ρ(P )} is reversible and unique. This
statement implies that given any set of autocorrelation values r(0), r(1), . . . , r(P ), we can
always find an all-pole model whose first P +1 autocorrelation coefficients are equal to the
given autocorrelations. This correlation matching of all-pole models is quite remarkable.
This property is not shared by all-zero models and is true for pole-zero models only under
certain conditions, as we will see in Section 4.4.

Spectrum. The z-transform of the autocorrelation r(l) of H(z) is given by

R(z) = H(z)H ∗
(

1

z∗

)
(4.2.41)

The spectrum is then equal to

R(ejω) = |H(ejω)|2 = |d0|2
|A(ejω)|2 (4.2.42)

The right-hand side of (4.2.42) suggests a method for computing the spectrum: First compute
A(ejω) by taking the Fourier transform of the sequence {1, a1, . . . , aP }, then take the
squared of the magnitude and divide |d0|2 by the result. The fast Fourier transform (FFT)
can be used to this end by appending the sequence {1, a1, . . . , aP } with as many zeros as
needed to compute the desired number of frequency points.

Partial autocorrelation and lattice structures. We have seen that an AP(P ) model is
completely described by the first P + 1 values of its autocorrelation. However, we cannot
determine the order of the model by using the autocorrelation sequence because it has
infinite duration. Suppose that we start fitting models of increasing order m, using the
autocorrelation sequence of an AP(P ) model and the Yule-Walker equations


1 ρ∗(1) · · · ρ∗(m− 1)

ρ(1) 1 · · · ...
...

...
. . . ρ∗(1)

ρ(m− 1) · · · ρ(1) 1






a
(m)
1

a
(m)
2
...

a
(m)
m


 = −



ρ∗(1)
ρ∗(2)
...

ρ∗(m)


 (4.2.43)

Since a(m)m = 0 form > P , we can use the sequence a(m)m , m = 1, 2, . . . ,which is known as
the partial autocorrelation sequence (PACS), to determine the order of the all-pole model.
Recall from Section 2.5 that

a(m)m = km (4.2.44)

that is, the PACS is identical to the lattice parameters. A statistical definition and interpre-
tation of the PACS are also given in Section 7.2. The PACS can be defined for any valid
(i.e., positive definite) autocorrelation sequence and can be efficiently computed by using
the algorithms of Levinson-Durbin and Schur (see Chapter 7).

Furthermore, it has been shown (Burg 1975) that

r(0)
P∏
m=1

1 − |km|
1 + |km| ≤ R(ejω) ≤ r(0)

P∏
m=1

1 + |km|
1 − |km| (4.2.45)

which indicates that the spectral dynamic range increases if some lattice parameter moves
close to 1 or equivalently some pole moves close to the unit circle.

Equivalent model representations. From the previous discussions (see also Chapter
7) we conclude that a minimum-phase AP(P ) model can be uniquely described by any one
of the following representations:
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1. Direct structure: {d0, a1, a2, . . . , aP }
2. Lattice structure: {d0, k1, k2, . . . , kP }
3. Autocorrelation: {r(0), r(1), . . . , r(P )}
where we assume, without loss of generality, that d0 > 0. Note that the minimum-phase
property requires that all poles be inside the unit circle or all |km| < 1 or that RP+1 be
positive definite. The transformation from any of the above representations to any other can
be done by using the algorithms developed in Section 7.5.

Minimum-phase conditions. As we will show in Section 7.5, if the Toeplitz matrix
Rh (or equivalently Rx) is positive definite, then |km| < 1 for all m = 1, 2, . . . , P . There-
fore, the AP(P ) model obtained by solving the Yule-Walker equations is minimum-phase.
Therefore, the Yule-Walker equations provide a simple and elegant solution to the spectral
factorization problem for all-pole models.

EXAMPLE 4.2.4. The poles of the model obtained in Example 4.2.3 are 0.8316, 0.0373+0.4319i,
and 0.0373−0.4319i. We see that the poles are inside the unit circle and that the autocorrelation
sequence is positive definite. If we set rh(2) = −1.2, the autocorrelation becomes negative
definite and the obtained model a =[1 − 1.222 1.1575]T , d0 = 2.2271, is nonminimum-phase.

Pole locations. The poles of H(z) are the zeros {pk} of the polynomial A(z). If the
coefficients of A(z) are assumed to be real, the poles are either real or come in complex
conjugate pairs. In order for H(z) to be minimum-phase, all poles must be inside the unit
circle, that is, |pk| < 1. The model parameters ak can be written as sums of products of the
poles pk . In particular, it is easy to see that

a1 = −
P∑
k=1

pk (4.2.46)

aP =
P∏
k=1

(−pk) (4.2.47)

Thus, the first coefficient a1 is the negative of the sum of the poles, and the last coefficient
aP is the product of the negative of the individual poles. Since |pk| < 1, we must have
|aP | < 1 for a minimum-phase polynomial for which a0 = 1. However, note that the
reverse is not necessarily true: |aP | < 1 does not guarantee minimum phase. The roots pk
can be computed by using any number of standard root-finding routines.

4.2.2 All-Pole Modeling and Linear Prediction

Consider the AP(P ) model

x(n) = −
P∑
k=1

akx(n− k)+ w(n) (4.2.48)

Now recall from Chapter 1 that theMth-order linear predictor of x(n) and the corresponding
prediction error e(n) are

x̂(n) = −
M∑
k=1

a0
kx(n− k) (4.2.49)

e(n) = x(n)− x̂(n) = x(n)+
M∑
k=1

a0
kx(n− k) (4.2.50)
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x(n) = −
M∑
k=1

a0
kx(n− k)+ e(n) (4.2.51)or

Notice that if the order of the linear predictor equals the order of the all-pole model (M = P )
and if a0

k = ak , then the prediction error is equal to the excitation of the all-pole model,
that is, e(n) = w(n). Since all-pole modeling and FIR linear prediction are closely related,
many properties and algorithms developed for one of them can be applied to the other.
Linear prediction is extensively studied in Chapters 6 and 7.

4.2.3 Autoregressive Models

Causal all-pole models excited by white noise play a major role in practical applications
and are known as autoregressive (AR) models. An AR(P ) model is defined by the difference
equation

x(n) = −
P∑
k=1

akx(n− k)+ w(n) (4.2.52)

where {w(n)} ∼ WN(0, σ 2
w). An AR(P ) model is valid only if the corresponding AP(P )

system is stable. In this case, the output x(n) is a stationary sequence with a mean value
of zero. Postmultiplying (4.2.52) by x∗(n − l) and taking the expectation, we obtain the
following recursive relation for the autocorrelation:

rx(l) = −
P∑
k=1

akrx(l − k)+ E{w(n)x∗(n− l)} (4.2.53)

Similarly, using (4.1.1), we can show that E{w(n)x∗(n− l)} = σ 2
wh

∗(−l). Thus, we have

rx(l) = −
P∑
k=1

akrx(l − k)+ σ 2
wh

∗(−l) for all l (4.2.54)

The variance of the output signal is

σ 2
x = rx(0) = −

P∑
k=1

akrx(k)+ σ 2
w

σ 2
x = σ 2

w

1 +
P∑
k=1

akρx(k)

(4.2.55)or

If we substitute l = 0, 1, . . . , P in (4.2.55) and recall that h(n) = 0 for n < 0, we obtain
the following set of Yule-Walker equations:


rx(0) rx(1) · · · rx(P )

r∗x (1) rx(0) · · · rx(P − 1)
...

...
. . .

...

r∗x (P ) r∗x (P − 1) · · · rx(0)






1

a1
...

aP


 =



σ 2
w

0
...

0


 (4.2.56)

Careful inspection of the above equations reveals their similarity to the correspond-
ing relationships developed previously for the AP(P ) model. This should be no surprise
since the power spectrum of the white noise is flat. However, there is one important dif-
ference we should clarify: AP(P ) models were specified with a gain d0 and the parameters
{a1, a2, . . . , aP }, but for AR(P ) models we set the gain d0 = 1 and define the model by the
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variance of the white excitation σ 2
w and the parameters {a1, a2, . . . , aP }. In other words,

we incorporate the gain of the model into the power of the input signal. Thus, the power
spectrum of the output is Rx(ejω) = σ 2

w|H(ejω)|2. Similar arguments apply to all para-
metric models driven by white noise. We just rederived some of the relationships to clarify
these issues and to provide additional insight into the subject.

4.2.4 Lower-Order Models

In this section, we derive the properties of lower-order all-pole models, namely, first- and
second-order models, with real coefficients.

First-order all-pole model: AP(1)

An AP(1) model has a transfer function

H(z) = d0

1 + az−1
(4.2.57)

with a single pole at z = −a on the real axis. It is clear that H(z) is minimum-phase if

−1 < a < 1 (4.2.58)

From (4.2.18) with P = 1 and l = 1, we have

a1 = − r(1)
r(0)

= −ρ(1) (4.2.59)

Similarly, from (4.2.44) with m = 1,

a
(1)
1 = a = −ρ(1) = k1 (4.2.60)

Since from (4.2.4), h(0) = d0, and from (4.2.5) h(n) = −a1h(n−1) for n > 0, the impulse
response of a single-pole filter is given by

h(n) = d0(−a)nu(n) (4.2.61)

The same result can, of course, be obtained by taking the inverse z-transform of H(z).
The autocorrelation is found in a similar fashion. From (4.2.18) and by using the fact

that the autocorrelation is an even function,

r(l) = r(0)(−a)|l| for all l (4.2.62)

and from (4.2.20)

r(0) = d2
0

1 − a2
= d2

0

1 − k2
1

(4.2.63)

Therefore, if the energy r(0) in the impulse response is set to unity, then the gain must be
set to

d0 =
√

1 − k2
1 r(0) = 1 (4.2.64)

The z-transform of the autocorrelation is then

R(z) = d2
0

(1 + az−1)(1 + az) = r(0)
∞∑

l=−∞
(−a)|l| z−l (4.2.65)

and the spectrum is

R(ejω) = |H(ejω)|2 = d2
0

|1 + ae−jω|2 = d2
0

1 + 2a cosω + a2
(4.2.66)

Figures 4.4 and 4.5 show a typical realization of the output, the impulse response,
autocorrelation, and spectrum of two AP(1) models. The sample process realizations were
obtained by driving the model with white Gaussian noise of zero mean and unit variance.
When the positive pole (p = −a = 0.8) is close to the unit circle, successive samples
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FIGURE 4.4
Sample realization of the output process, impulse response, autocorrelation, and spectrum of
an AP(1) model with a = −0.8.
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FIGURE 4.5
Sample realization of the output process, impulse response, autocorrelation, and spectrum of
an AP(1) model with a = 0.8.

of the output process are similar, as dictated by the slowly decaying autocorrelation and
the corresponding low-pass spectrum. In contrast, a negative pole close to the unit circle
results in a rapidly oscillating sequence. This is clearly reflected in the alternating sign of
the autocorrelation sequence and the associated high-pass spectrum.
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Note that a positive real pole is a type of low-pass filter, while a negative real pole
has the spectral characteristics of a high-pass filter. (This situation in the digital domain
contrasts with that in the corresponding analog domain where a real-axis pole can only
have low-pass characteristics.) The discrete-time negative real pole can be thought of as
one-half of two conjugate poles at half the sampling frequency. Notice that both spectra are
even and have zero slope at ω = 0 and ω = π . These propositions are true of the spectra
of all parametric models (i.e., pole-zero models) with real coefficients (see Problem 4.13).

Consider now the real-valued AR(1) process x(n) generated by

x(n) = −ax(n− 1)+ w(n) (4.2.67)

where {w(n)} ∼ WN (0, σ 2
w). Using the formulaRx(z) = σ 2

wH(z)H
∗(1/z∗) and previous

results, we can see that the autocorrelation and the PSD of x(n) are given by

rx(l) = σ 2
w

1 − a2
(−a)|l|

Rx(e
jω) = σ 2

w

1 − a2

1 + a2 + 2a cos ω
and

respectively. Since σ 2
x = rx(0) = σ 2

w/(1 − a2), the SFM of x(n) is [see (Section 4.1.18)]

SFMx = σ 2
w

σ 2
x

= 1 − a2 (4.2.68)

Clearly, if a = 0, then from (4.2.67), x(n) is a white noise process and from (4.2.68),
SFMx = 1. If a → 1, then SFMx → 0; and in the limit when a = 1, the process becomes
a random walk process, which is a nonstationary process with linearly increasing variance
E{x2(n)} = nσ 2

w. The correlation matrix is Toeplitz, and it is a rare exception in which
eigenvalues and eigenvectors can be described by analytical expressions (Jayant and Noll
1984).

Second-order all-pole model: AP(2)

The system function of an AP(2) model is given by

H(z) = d0

1 + a1z−1 + a2z−2
= d0

(1 − p1z−1)(1 − p2z−1)
(4.2.69)

From (4.2.46) and (4.2.47), we have

a1 = −(p1 + p2)

a2 = p1p2
(4.2.70)

Recall that H(z) is minimum-phase if the two poles p1 and p2 are inside the unit circle.
Under these conditions, a1 and a2 lie in a triangular region defined by

−1 < a2 < 1

a2 − a1 > −1

a2 + a1 > −1

(4.2.71)

and shown in Figure 4.6. The first condition follows from (4.2.70) since |p1| < 1 and
|p2| < 1. The last two conditions can be derived by assuming real roots and setting the
larger root to less than 1 and the smaller root to greater than −1. By adding the last two
conditions, we obtain the redundant condition a2 > −1.

Complex roots occur in the region

a2
1

4
< a2 ≤ 1 complex poles (4.2.72)

with a2 = 1 resulting in both roots being on the unit circle. Note that, in order to have
complex poles, a2 cannot be negative. If the complex poles are written in polar form

pi = re±jθ 0 ≤ r ≤ 1 (4.2.73)
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FIGURE 4.6
Minimum-phase region (triangle) for the AP(2) model in the (a1, a2)

parameter space.

a1 = −2r cos θ a2 = r2 (4.2.74)then

H(z) = d0

1 − (2r cos θ)z−1 + r2z−2
complex poles (4.2.75)and

Here, r is the radius (magnitude) of the poles, and θ is the angle or normalized frequency
of the poles.

Impulse response. The impulse response of an AP(2) model can be written in terms
of its two poles by evaluating the inverse z-transform of (4.2.69). The result is

h(n) = d0

p1 − p2
(pn+1

1 − pn+1
2 )u(n) (4.2.76)

for p1 �= p2. Otherwise, for p1 = p2 = p,

h(n) = d0(n+ 1)pnu(n) (4.2.77)

In the special case of a complex conjugate pair of poles p1 = rejθ and p2 = re−jθ ,
Equation (4.2.76) reduces to

h(n) = d0 r
n sin[(n+ 1)θ ]

sin θ
u(n) complex poles (4.2.78)

Since 0 < r < 1, h(n) is a damped sinusoid of frequency θ .

Autocorrelation. The autocorrelation can also be written in terms of the two poles as

r(l) = d2
0

(p1 − p2)(1 − p1p2)

(
pl+1

1

1 − p2
1

− pl+1
2

1 − p2
2

)
l ≥ 0 (4.2.79)

from which we can deduce the energy

r(0) = d2
0 (1 + p1p2)

(1 − p1p2)(1 − p2
1)(1 − p2

2)
(4.2.80)

For the special case of a complex conjugate pole pair, (4.2.79) can be rewritten as

r(l) = d2
0 r
l{sin[(l + 1)θ ] − r2 sin[(l − 1)θ ]}

[(1 − r2) sin θ ](1 − 2r2 cos 2θ + r4)
l ≥ 0 (4.2.81)

Then from (4.2.80) we can write an expression for the energy in terms of the polar coordi-
nates of the complex conjugate pole pair

r(0) = d2
0 (1 + r2)

(1 − r2)(1 − 2r2 cos 2θ + r4)
(4.2.82)
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The normalized autocorrelation is given by

ρ(l) = rl{sin[(l + 1)θ ] − r2 sin[(l − 1)θ ]}
(1 + r2) sin θ

l ≥ 0 (4.2.83)

which can be rewritten as

ρ(l) = 1

cosβ
rl cos (lθ − β) l ≥ 0 (4.2.84)

tan β = (1 − r2) cos θ

(1 + r2) sin θ
(4.2.85)where

Therefore, ρ(l) is a damped cosine wave with its maximum amplitude at the origin.

Spectrum. By setting the two poles equal to

p1 = r1ejθ1 p2 = r2ejθ2 (4.2.86)

the spectrum of an AP(2) model can be written as

R(ejω) = d2
0

[1 − 2r1 cos (ω − θ1)+ r2
1 ][1 − 2r2 cos (ω − θ2)+ r2

2 ] (4.2.87)

There are four cases of interest

Pole locations Peak locations Type of R(ejω)

p1 > 0, p2 > 0 ω = 0 Low-pass

p1 < 0, p2 < 0 ω = π High-pass

p1 > 0, p2 < 0 ω = 0, ω = π Stopband

p1,2 = re±jθ 0 < ω < π Bandpass

and they depend on the location of the poles on the complex plane.
We concentrate on the fourth case of complex conjugate poles, which is of greatest

interest. The other three cases are explored in Problem 4.15. The spectrum is given by

R(ejω) = d2
0

[1 − 2r cos (ω − θ)+ r2][1 − 2r cos (ω + θ)+ r2] (4.2.88)

The peak of this spectrum can be shown to be located at a frequency ωc, given by

cosωc = 1 + r2

2r
cos θ (4.2.89)

Since 1 + r2 > 2r for r < 1, and we have

cosωc > cos θ (4.2.90)

the spectral peak is lower than the pole frequency for 0 < θ < π/2 and higher than the
pole frequency for π/2 < θ < π .

This behavior is illustrated in Figure 4.7 for an AP(2) model with a1 = −0.4944,
a2 = 0.64, and d0 = 1. The model has two complex conjugate poles with r = 0.8 and
θ = ±2π/5. The spectrum has a single peak and displays a passband type of behavior. The
impulse response is a damped sine wave while the autocorrelation is a damped cosine. The
typical realization of the output shows clearly a pseudoperiodic behavior that is explained
by the shape of the autocorrelation and the spectrum of the model. We also notice that if
the poles are complex conjugates, the autocorrelation has pseudoperiodic behavior.

Equivalent model descriptions. We now write explicit formulas for a1 and a2 in terms
of the lattice parameters k1 and k2 and the autocorrelation coefficients. From the step-up
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FIGURE 4.7
Sample realization of the output process, impulse response, autocorrelation, and spectrum of an
AP(2) model with complex conjugate poles.

and step-down recursions in Section 2.5, we have

a1 = k1(1 + k2)

a2 = k2
(4.2.91)

and the inverse relations

k1 = a1

1 + a2

k2 = a2

(4.2.92)

From the Yule-Walker equations (4.2.18), we can write the two equations

a1r(0)+ a2r(1) = −r(1)
a1r(1)+ a2r(0) = −r(2) (4.2.93)

which can be solved for a1 and a2 in terms of ρ(1) and ρ(2)

a1 = −ρ(1) 1 − ρ(2)
1 − ρ2(1)

a2 = ρ2(1)− ρ(2)
1 − ρ2(1)

(4.2.94)

or for ρ(1) and ρ(2) in terms of a1 and a2

ρ(1) = − a1

1 + a2

ρ(2) = −a1ρ(1)− a2 = a2
1

1 + a2
− a2

(4.2.95)

From the equations above, we can also write the relation and inverse relation between the
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coefficients k1 and k2 and the normalized autocorrelations ρ(1) and ρ(2) as

k1 = −ρ(1)

k2 = ρ2(1)− ρ(2)
1 − ρ2(1)

(4.2.96)

ρ(1) = −k1

ρ(2) = k1(1 + k2)− k2
(4.2.97)

and

The gain d0 can also be written in terms of the other coefficients. From (4.2.20), we have

d2
0 = r(0)[1 + a1ρ(1)+ a2ρ(2)] (4.2.98)

which can be shown to be equal to

d2
0 = r(0)(1 − k1)(1 − k2) (4.2.99)

Minimum-phase conditions. In (4.2.71), we have a set of conditions on a1 and a2 so
that theAP(2)model is minimum-phase, and Figure 4.6 shows the corresponding admissible
region for minimum-phase models. Similar relations and regions can be derived for the
other types of parameters, as we will show below. In terms of k1 and k2, the AP(2) model
is minimum-phase if

|k1| < 1 |k2| < 1 (4.2.100)

This region is depicted in Figure 4.8(a). Shown also is the region that results in complex
roots, which is specified by

0 < k2 < 1 (4.2.101)

k2
1 <

4k2

(1 + k2)2
(4.2.102)

Because of the correlation matching property of all-pole models, we can find a minimum-
phase all-pole model for every positive definite sequence of autocorrelation values. There-
fore, the admissible region of autocorrelation values coincides with the positive definite
region. The positive definite condition is equivalent to having all the principal minors of
the autocorrelation matrix in (4.2.30) be positive definite; that is, the corresponding deter-
minants are positive. For P = 2, there are two conditions:

det

[
1 ρ(1)

ρ(1) 1

]
> 0 det


1 ρ(1) ρ(2)

ρ(1) 1 ρ(1)

ρ(2) ρ(1) 1


 > 0 (4.2.103)

These two conditions reduce to

|ρ(1)| < 1 (4.2.104)

2ρ2(1)− 1 < ρ(2) < 1 (4.2.105)

which determine the admissible region shown in Figure 4.8(b). Conditions (4.2.105) can
also be derived from (4.2.71) and (4.2.95). The first condition in (4.2.105) is equivalent to∣∣∣∣ a1

1 + a2

∣∣∣∣ < 1 (4.2.106)

which can be shown to be equivalent to the last two conditions in (4.2.71).
It is important to note that the region in Figure 4.8(b) is the admissible region for any

positive definite autocorrelation, including the autocorrelation of mixed-phase signals. This
is reasonable since the autocorrelation does not contain phase information and allows the
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FIGURE 4.8
Minimum-phase and positive definiteness regions for the AP(2) model in the (a) (k1,
k2) space and (b) (ρ(1), ρ(2)) space.

signal to have minimum- and maximum-phase components. What we are claiming here,
however, is that for every autocorrelation sequence in the positive definite region, we can
find a minimum-phase all-pole model with the same autocorrelation values. Therefore, for
this problem, the positive definite region is identical to the admissible minimum-phase
region.

4.3 ALL-ZERO MODELS

In this section, we investigate the properties of the all-zero model. The output of the all-zero
model is the weighted average of delayed versions of the input signal

x(n) =
Q∑
k=0

dkw(n− k) (4.3.1)

whereQ is the order of the model. The system function is

H(z) = D(z) =
Q∑
k=0

dkz
−k (4.3.2)

The all-zero model can be implemented by using either a direct or a lattice structure. The
conversion between the two sets of parameters can be done by using the step-up and step-
down recursions described in Chapter 7 and setting A(z) = D(z). Notice that the same set
of parameters can be used to implement either an all-zero or an all-pole model by using a
different structure.

4.3.1 Model Properties

We next provide a brief discussion of the properties of the all-zero model.

Impulse response. It can be easily seen that the AZ(Q) model is an FIR system with
an impulse response

h(n) =
{
dn 0 ≤ n ≤ Q
0 elsewhere

(4.3.3)
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Autocorrelation. The autocorrelation of the impulse response is given by

rh(l) =
∞∑

n=−∞
h(n)h∗(n− l) =



Q−l∑
k=0

dkd
∗
k+l 0 ≤ l ≤ Q

0 l > Q

(4.3.4)

r∗h(−l) = rh(l) all l (4.3.5)and

We usually set d0 = 1, which implies that

rh(l) = d∗
l + d1d

∗
l+1 + · · · + dQ−ld∗

Q l = 0, 1, . . . ,Q (4.3.6)

hence, the normalized autocorrelation is

ρh(l) =


d∗
l + d1d

∗
l+1 + · · · + dQ−ld∗

Q

1 + |d1|2 + · · · + |dQ|2 l = 1, 2, . . . ,Q

0 l > Q

(4.3.7)

We see that the autocorrelation of an AZ(Q) model is zero for lags |l| exceeding the order
Q of the model. If ρh(1), ρh(2), . . . , ρh(Q) are known, then the Q equations (4.3.7) can
be solved for model parameters d1, d2, . . . , dq . However, unlike the Yule-Walker equations
for the AP(P ) model, which are linear, Equations (4.3.7) are nonlinear and their solution is
quite complicated (see Section 9.3).

Spectrum. The spectrum of the AZ(Q) model is given by

Rh(e
jω) = D(z)D(z−1)|z=ejω = |D(ejω)|2 =

Q∑
l=−Q

rh(l)e
−jωl (4.3.8)

which is basically a trigonometric polynomial.

Impulse train excitations. The response h̃(n) of the AZ(Q) model to a periodic im-
pulse train with period L is periodic with the same period, and its spectrum is a sampled
version of (4.3.8) at multiples of 2π/L (see Section 2.3.2). Therefore, to recover the auto-
correlation rh(l) and the spectrum Rh(ejω) from the autocorrelation or spectrum of h̃(n),
we should have L ≥ 2Q + 1 in order to avoid aliasing in the autocorrelation lag domain.
Also, ifL > Q, the impulse response h(n), 0 ≤ n ≤ Q, can be recovered from the response
h̃(n) (no time-domain aliasing) (see Problem 4.24).

Partial autocorrelation and lattice-ladder structures. The PACS of an AZ(Q) model
is computed by fitting a series of AP(P ) models for P = 1, 2, . . . , to the autocorrelation
sequence (4.3.7) of the AZ(Q) model. Since the AZ(Q) model is equivalent to an AP(∞)
model, the PACS of an all-zero model has infinite extent and behaves as the autocorrelation
sequence of an all-pole model. This is illustrated later for the low-order AZ(1) and AZ(2)
models.

4.3.2 Moving-Average Models

A moving-average model is an AZ(Q) model with d0 = 1 driven by white noise, that is,

x(n) = w(n)+
Q∑
k=1

dkw(n− k) (4.3.9)

where {w(n)} ∼ WN(0, σ 2
w). The output x(n) has zero mean and variance of

σ 2
x = σ 2

w

Q∑
k=0

|dk|2 (4.3.10)
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The autocorrelation and power spectrum are given by rx(l) = σ 2
w rh(l) and Rx(ejω) =

σ 2
w|D(ejω)|2, respectively. Clearly, observations that are more than Q samples apart are

uncorrelated because the autocorrelation is zero after lagQ.

4.3.3 Lower-Order Models

To familiarize ourselves with all-zero models, we next investigate in detail the properties
of the AZ(1) and AZ(2) models with real coefficients.

The first-order all-zero model: AZ(1). For generality, we consider an AZ(1) model
whose system function is

H(z) = G(1 + d1z
−1) (4.3.11)

The model is stable for any value of d1 and minimum-phase for −1 < d1 < 1. The
autocorrelation is the inverse z-transform of

Rh(z) = H(z)H(z−1) = G2[d1z+ (1 + d2
1 )+ d1z

−1] (4.3.12)

Hence, rh(0) = G2(1+d2
1 ), rh(1) = rh(−1) = G2d1, and rh(l) = 0 elsewhere. Therefore,

the normalized autocorrelation is

ρh(l) =




1 l = 0
d1

1 + d2
1

l = ±1

0 |l| ≥ 2

(4.3.13)

The condition −1 < d1 < 1 implies that |ρh(1)| ≤ 1
2 for a minimum-phase model. From

ρh(1) = d1/(1 + d2
1 ), we obtain the quadratic equation

ρh(1)d
2
1 − d1 + ρh(1) = 0 (4.3.14)

which has the following two roots:

d1 =
1 ±

√
1 − 4ρ2

h(1)

2ρh(1)
(4.3.15)

Since the product of the roots is 1, if d1 is a root, then 1/d1 must also be a root. Hence, only
one of these two roots can satisfy the minimum-phase condition −1 < d1 < 1.

The spectrum is obtained by setting z = ejω in (4.3.12), or from (4.3.8)

Rh(e
jω) = G2(1 + d2

1 + 2d1 cosω) (4.3.16)

The autocorrelation is positive definite if Rh(ejω) > 0, which holds for all values of d1.
Note that if d1 > 0, then ρh(1) > 0 and the spectrum has low-pass behavior (see Figure
4.9), whereas a high-pass spectrum is obtained when d1 < 0 (see Figure 4.10).

The first lattice parameter of the AZ(1) model is k1 = −ρ(1). The PACS can be
obtained from the Yule-Walker equations by using the autocorrelation sequence (4.3.13).
Indeed, after some algebra we obtain

km = (−d1)
m(1 − d2

1 )

1 − d2(m+1)
1

m = 1, 2, . . . ,∞ (4.3.17)

(see Problem 4.25). Notice the duality between the ACS and PACS of AP(1) and AZ(1)
models.
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FIGURE 4.9
Sample realization of the output process, ACS, PACS, and spectrum of an AZ(1) model with d1 = 0.95.
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FIGURE 4.10
Sample realization of the output process, ACS, PACS, and spectrum of an AZ(1) model with
d1 = −0.95.

Consider now the MA(1) real-valued process x(n) generated by

x(n) = w(n)+ bw(n− 1)

where {w(n)} ∼ WN(0, σ 2
w). Using Rx(z)= σ 2

wH(z)H(z
−1), we obtain the PSD function

Rx(e
jω) = σ 2

w(1 + b2 + 2b cosω)



February 4, 2005 11:18 e56-ch4 Sheet number 28 Page number 176 black

176

chapter 4
Linear Signal Models

which has low-pass (high-pass) characteristics if 0 < b ≤ 1 (−1 ≤ b < 0). Since
σ 2
x = rx(0) = σ 2

w(1 + b2), we have (see Section 4.1.18)

SFMx = σ 2
w

σ 2
x

= 1

1 + b2
(4.3.18)

which is maximum for b = 0 (white noise). The correlation matrix is banded Toeplitz (only
a number of diagonals close to the main diagonal are nonzero)

Rx = σ 2
w(1 + b2)




1 b 0 · · · 0

b 1 b · · · 0

0 b 1 · · · 0
...
...
...
. . .

...

0 0 0 · · · 1


 (4.3.19)

and its eigenvalues and eigenvectors are given by λk = Rx(e
jωk ), q(k)n = sinωkn, ωk =

πk/(M + 1), where k = 1, 2, . . . ,M (see Problem 4.30).

The second-order all-zero model: AZ(2). Now let us consider the second-order all-
zero model. The system function of the AZ(2) model is

H(z) = G(1 + d1z
−1 + d2z

−2) (4.3.20)

The system is stable for all values of d1 and d2, and minimum-phase [see the discussion for
the AP(2) model] if

−1 < d2 < 1

d2 − d1 > −1

d2 + d1 > −1
(4.3.21)

which is a triangular region identical to that shown in Figure 4.6. The normalized autocor-
relation and the spectrum are

ρh(l) =




1 l = 0
d1(1 + d2)

1 + d2
1 + d2

2

l = ±1

d2

1 + d2
1 + d2

2

l = ±2

0 |l| ≥ 3

(4.3.22)

Rh(e
jω) = G2[(1 + d2

1 + d2
2 )+ 2d1(1 + d2) cosω + 2d2 cos 2ω] (4.3.23)and

respectively.
The minimum-phase region in the autocorrelation domain is shown in Figure 4.11 and

is described by the equations

ρ(2)+ ρ(1) = −0.5

ρ(2)− ρ(1) = −0.5 (4.3.24)

ρ2(1) = 4ρ(2)[1 − 2ρ(2)]
derived in Problem 4.26. The formula for the PACS is quite involved. The important thing
is the duality between the ACS and the PACS of AZ(2) and AP(2) models (see Problem
4.27).
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FIGURE 4.11
Minimum-phase region in the autocorrelation domain
for the AZ(2) model.

4.4 POLE-ZERO MODELS

We will focus on causal pole-zero models with a recursive input-output relationship given
by

x(n) = −
P∑
k=1

akx(n− k)+
Q∑
k=0

dkw(n− k) (4.4.1)

where we assume that P > 0 and Q ≥ 1. The models can be implemented using either
direct-form or lattice-ladder structures (Proakis and Manolakis 1996).

4.4.1 Model Properties

In this section, we present some of the basic properties of pole-zero models.

Impulse response. The impulse response of a causal pole-zero model can be written
in recursive form from (4.4.1) as

h(n) = −
P∑
k=1

akh(n− k)+ dn n ≥ 0 (4.4.2)

dn = 0 n > Qwhere

and h(n) = 0 for n < 0. Clearly, this formula is useful if the model is stable. From (4.4.2),
it is clear that

h(n) = −
P∑
k=1

akh(n− k) n > Q (4.4.3)

so that the impulse response obeys the linear prediction equation for n > Q. Thus if we
are given h(n), 0 ≤ n ≤ P + Q, we can compute {ak} from (4.4.3) by using the P
equations specified byQ+ 1 ≤ n ≤ Q+P . Then we can compute {dk} from (4.4.2), using
0 ≤ n ≤ Q. Therefore, the first P + Q + 1 values of the impulse response completely
specify the pole-zero model.

If the model is minimum-phase, the impulse response of the inverse model hI (n) =
Z−1{A(z)/D(z)}, d0 = 1 can be computed in a similar manner.

Autocorrelation. The complex spectrum of H(z) is given by

Rh(z) = H(z)H ∗
(

1

z∗

)
= D(z)D∗(1/z∗)
A(z)A∗(1/z∗)

� Rd(z)

Ra(z)
(4.4.4)

where Rd(z) and Ra(z) are both finite two-sided polynomials. In a manner similar to the
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all-pole case, we can write a recursive relation between the autocorrelation, impulse re-
sponse, and parameters of the model. Indeed, from (4.4.4) we obtain

A(z)Rh(z) = D(z)H ∗
(

1

z∗

)
(4.4.5)

Taking the inverse z-transform of (4.4.5) and noting that the inverse z-transform ofH ∗(1/z∗)
is h∗(−n), we have

P∑
k=0

akrh(l − k) =
Q∑
k=0

dkh
∗(k − l) for all l (4.4.6)

Since h(n) is causal, we see that the right-hand side of (4.4.6) is zero for l > Q:

P∑
k=0

akrh(l − k) = 0 l > Q (4.4.7)

Therefore, the autocorrelation of a pole-zero model obeys the linear prediction equation for
l > Q.

Because the impulse response h(n) is a function of ak and dk , the set of equations
in (4.4.6) is nonlinear in terms of parameters ak and dk . However, (4.4.7) is linear in ak;
therefore, we can compute {ak} from (4.4.7), using the set of equations for l = Q +
1, . . . ,Q+ P , which can be written in matrix form as

rh(Q) rh(Q− 1) · · · rh(Q− P + 1)

rh(Q+ 1) rh(Q) · · · rh(Q− P + 2)
...

...
. . .

...

rh(Q+ P − 1) rh(Q+ P − 2) · · · rh(Q)





a1

a2
...
aP


 = −



rh(Q+ 1)

rh(Q+ 2)
...

rh(Q+ P)




(4.4.8)

R̄ha = −r̄h (4.4.9)or

Here, R̄h is a non-Hermitian Toeplitz matrix, and the linear system (4.4.8) can be solved
by using the algorithm of Trench (Trench 1964; Carayannis et al. 1981).

Even after we solve for a, (4.4.6) continues to be nonlinear in dk . To compute dk , we
use (4.4.4) to find Rd(z)

Rd(z) = Ra(z)Rh(z) (4.4.10)

where the coefficients of Ra(z) are given by

ra(l) =
k=k2∑
k=k1

aka
∗
k+|l| −P ≤ l ≤ P, k1 =

{
0, l ≥ 0

−l, l < 0
, k2 =

{
P − l, l ≥ 0
P, l < 0

(4.4.11)
From (4.4.10), rd(l) is the convolution of ra(l) with rh(l), given by

rd(l) =
P∑

k=−P
ra(k)rh(l − k) (4.4.12)

If r(l) was originally the autocorrelation of a PZ(P,Q) model, then rd(l) in (4.4.12) will
be zero for |l| > Q. Since Rd(z) is specified, it can be factored into the product of two
polynomialsD(z) andD∗(1/z∗), whereD(z) is minimum-phase, as shown in Section 2.4.

Therefore, we have seen that, given the values of the autocorrelation rh(l) of a PZ(P,Q)
model in the range 0 ≤ l ≤ P +Q, we can compute the values of the parameters {ak} and
{dk} such that H(z) is minimum-phase. Now, given the parameters of a pole-zero model,
we can compute its autocorrelation as follows. Equation (4.4.4) can be written as

Rh(z) = R−1
a (z)Rd(z) (4.4.13)
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where R−1
a (z) is the spectrum of the all-pole model 1/A(z), that is, 1/Ra(z). The coeffi-

cients ofR−1
a (z) can be computed from {ak} by using (4.2.20) and (4.2.18). The coefficients

of Rd(z) are computed from (4.3.8). Then Rh(z) is the convolution of the two autocorre-
lations thus computed, which is equivalent to multiplying the two polynomials in (4.4.13)
and equating equal powers of z on both sides of the equation. Since Rd(z) is finite, the
summations used to obtain the coefficients of Rh(z) are also finite.

E XAM PLE 4.4.1. Consider a signal that has autocorrelation values of rh(0) = 19, rh(1) = 9,
rh(2) = −5, and rh(3) = −7. The parameters of the PZ(2, 1) model are found in the following
manner. First form the equation from (4.4.8)[

9 19

−5 9

][
a1

a2

]
=
[

5

7

]

which yields a1 = − 1
2

, a2 = 1
2

. Then we compute the coefficients from (4.4.11), ra(0) = 3
2

,

ra(±1) = − 3
4

, and ra(±2) = 1
2

. Computing the convolution in (4.4.12) for l ≤ Q = 1, we
obtain the following polynomial:

Rd(z) = 4z+ 10 + 4z−1 = 4

(
1 + z−1

2

)
(z+ 2)

Therefore, D(z) is obtained by taking the causal part, that is, D(z) = 2[1 + z−1/(2)], and
d1 = 1

2
.

Spectrum. The spectrum of H(z) is given by

Rh(e
jω) = |H(ejω)|2 = |D(ejω)|2

|A(ejω)|2 (4.4.14)

Therefore, Rh(ejω) can be obtained by dividing the spectrum of D(z) by the spectrum of
A(z).Again, the FFT can be used to advantage in computing the numerator and denominator
of (4.4.14). If the spectrum Rh(ejω) of a PZ(P ,Q) model is given, then the parameters of
the (minimum-phase) model can be recovered by first computing the autocorrelation rh(l)
as the inverse Fourier transform of Rh(ejω) and then using the procedure outlined in the
previous section to compute the sets of coefficients {ak} and {dk}.

Partial autocorrelation and lattice-ladder structures. Since a PZ(P , Q) model is
equivalent to an AP(∞) model, its PACS has infinite extent and behaves, after a certain lag,
as the PACS of an all-zero model.

4.4.2 Autoregressive Moving-Average Models

The autoregressive moving-average model is a PZ(P,Q) model driven by white noise and
is denoted byARMA(P,Q).Again, we set d0 = 1 and incorporate the gain into the variance
(power) of the white noise excitation. Hence, a causal ARMA(P,Q) model is defined by

x(n) = −
P∑
k=1

akx(n− k)+ w(n)+
Q∑
k=1

dkw(n− k) (4.4.15)

where {w(n)} ∼ WN(0, σ 2
w). The ARMA(P , Q) model parameters are {σ 2

w, a1, . . . , aP ,
d1, . . . , dQ}. The output has zero mean and variance of

σ 2
x = −

P∑
k=1

akrx(k)+ σ 2
w[1 +

Q∑
k=1

dkh(k)] (4.4.16)

where h(n) is the impulse response of the model. The presence of h(n) in (4.4.16) makes
the dependence of σ 2

x on the model parameters highly nonlinear. The autocorrelation of
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x(n) is given by

P∑
k=0

akrx(l − k) = σ 2
w


1 +

Q∑
k=1

dkh(k − l)

 for all l (4.4.17)

and the power spectrum by

Rx(e
jω) = σ 2

w

|D(ejω)|2
|A(ejω)|2 (4.4.18)

The significance of ARMA(P , Q) models is that they can provide more accurate repre-
sentations than AR or MA models with the same number of parameters. The ARMA model
is able to combine the spectral peak matching of the AR model with the ability of the MA
model to place nulls in the spectrum.

4.4.3 The First-Order Pole-Zero Model: PZ(1, 1)

Consider the PZ(1, 1) model with the following system function

H(z) = G 1 + d1z
−1

1 + a1z−1
(4.4.19)

where d1 and a1 are real coefficients. The model is minimum-phase if

−1 < d1 < 1

−1 < a1 < 1
(4.4.20)

which correspond to the rectangular region shown in Figure 4.12(a).
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FIGURE 4.12
Minimum-phase and positive definiteness regions for the PZ(1, 1) model in the
(a) (d1, a1) space and (b) (ρ(1), ρ(2)) space.

For the minimum-phase case, the impulse responses of the direct and the inverse models
are

h(n) = Z−1{H(z)} =




0 n < 0

G n = 0

G(−a1)
n−1(d1 − a1) n > 0

(4.4.21)
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hI (n) = Z−1
{

1

H(z)

}
=




0 n < 0

G n = 0

G(−d1)
n−1(a1 − d1) n > 0

(4.4.22)and

respectively. We note that as the pole p = −a1 gets closer to the unit circle, the impulse
response decays more slowly and the model has “longer memory.” The zero z = −d1
controls the impulse response of the inverse model in a similar way. The PZ(1, 1) model is
equivalent to the AZ(∞) model

x(n) = Gw(n)+G
∞∑
k=1

h(k)w(n− k) (4.4.23)

or the AP(∞) model

x(n) = −
∞∑
k=1

hI (k)x(n− k)+Gw(n) (4.4.24)

If we wish to approximate the PZ(1, 1) model with a finite-order AZ(Q) model, the orderQ
required to achieve a certain accuracy increases as the pole moves closer to the unit circle.
Likewise, in the case of an AP(P ) approximation, better fits to the PZ(P ,Q) model require
an increased order P as the zero moves closer to the unit circle.

To determine the autocorrelation, we recall from (4.4.6) that for a causal model

rh(l) = −a1rh(l − 1)+Gh(−l)+Gd1h(1 − l) all l (4.4.25)

rh(0) = −a1rh(1)+G+Gd1(d1 − a1)

rh(1) = −a1rh(0)+Gd1

rh(l) = −a1rh(l − 1) l ≥ 2

(4.4.26)

or

Solving the first two equations for rh(0) and rh(1), we obtain

rh(0) = G1 + d2
1 − 2a1d1

1 − a2
1

(4.4.27)

rh(1) = G(d1 − a1)(1 − a1d1)

1 − a2
1

(4.4.28)and

The normalized autocorrelation is given by

ρh(1) = (d1 − a1)(1 − a1d1)

1 + d2
1 − 2a1d1

(4.4.29)

ρh(l) = (−a1)
l−1ρh(l − 1) l ≥ 2 (4.4.30)and

Note that given ρh(1) and ρh(2), we have a nonlinear system of equations that must be
solved to obtain a1 and d1. By using Equations (4.4.20), (4.4.29), and (4.4.30), it can be
shown (see Problem 4.28) that the PZ(1, 1) is minimum-phase if the ACS satisfies the
conditions

|ρ(2)| < |ρ(1)|
ρ(2) > ρ(1)[2ρ(1)+ 1] ρ(1) < 0 (4.4.31)

ρ(2) > ρ(1)[2ρ(1)− 1] ρ(1) > 0

which correspond to the admissible region shown in Figure 4.12(b).

4.4.4 Summary and Dualities

Table 4.1 summarizes the key properties of all-zero, all-pole, and pole-zero models. These
properties help to identify models for empirical discrete-time signals. Furthermore, the table
shows the duality between AZ and AP models. More specifically, we see that
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1. An invertible AZ(Q) model is equivalent to an AP(∞) model. Thus, it has a finite-extent
autocorrelation and an infinite-extent partial autocorrelation.

2. A stable AP(P ) model is equivalent to an AZ(∞) model. Thus, it has an infinite-extent
autocorrelation and a finite-extent partial autocorrelation.

3. The autocorrelation of an AZ(Q) model behaves as the partial autocorrelation of an
AP(P ) model, and vice versa.

4. The spectra of an AP(P ) model and an AZ(Q) model are related through an inverse
relationship.

TABLE 4.1

Summary of all-pole, all-zero, and pole-zero model properties

Model AP(P ) AZ(Q) PZ(P , Q)

Input-output description x(n)+
P∑
k=1

akx(n− k) = w(n) x(n) = d0w(n)+
Q∑
k=1

dkw(n− k) x(n)+
P∑
k=1

akx(n− k)

= d0w(n)+
Q∑
k=1

dkw(n− k)

System function H(z) = 1

A(z)
= d0

1 +
P∑
k=1

akz
−k

H(z) = D(z) = d0 +
Q∑
k=1

dkz
−k H(z) = D(z)

A(z)

Recursive representation Finite summation Infinite summation Infinite summation

Nonrecursive representation Infinite summation Finite summation Infinite summation

Stablity conditions Poles inside unit circle Always Poles inside unit circle

Invertiblity conditions Always Zeros inside unit circle Zeros inside unit circle

Autocorrelation sequence Infinite duration (damped Finite duration Infinite duration (damped
exponentials and/or sine waves) exponentials and/or sine

waves afterQ− P lags)

Tails off Cuts off Tails off

Partial autocorrelation Finite duration Infinite duration (damped Infinite duration (dominated
exponentials and/or sine waves) by damped exponentials

and/or sine waves
afterQ− P lags)

Cuts off Tails off Tails off

Spectrum Good peak matching Good “notch” matching Good peak and valley
matching

These dualities and properties have been shown and illustrated for low-order models
in the previous sections.

4.5 MODELS WITH POLES ON THE UNIT CIRCLE

In this section, we show that by restricting some poles to being on the unit circle, we obtain
models that are useful for modeling certain types of nonstationary behavior.

Pole-zero models with poles on the unit circle are unstable. Hence, if we drive them
with stationary white noise, the generated process is nonstationary. However, as we will see
in the sequel, placing a small number of real poles at z = 1 or complex conjugate poles at
zk = e±jθk provides a class of models useful for modeling certain types of nonstationary
behavior. The system function of a pole-zero model with d poles at z = 1, denoted as PZ(P ,
d ,Q), is

H(z) = D(z)

A(z)

1

(1 − z−1)d
(4.5.1)
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and can be viewed as PZ(P , Q) model, D(z)/A(z), followed by a dth-order accumulator.
The accumulator y(n) = y(n− 1)+ x(n) has the system function 1/(1 − z−1) and can be
thought of as a discrete-time integrator. The presence of the unit poles makes the PZ(P , d,
Q) model non-minimum-phase. Since the model is unstable, we cannot use the convolution
summation to represent it because, in practice, only finite-order approximations are possible.
This can be easily seen if we recall that the impulse response of the model PZ(0, d, 0) equals
u(n) for d = 1 and (n+ 1)u(n) for d = 2. However, if D(z)/A(z) is minimum-phase, the
inverse model HI (z) = 1/H(z) is stable, and we can use the recursive form (see Section
4.1) to represent the model. Indeed, we always use this representation when we apply this
model in practice.

The spectrum of the PZ(0, d, 0) model is

Rd(e
jω) = 1

[2 sin(ω/2)]2d
(4.5.2)

and since Rd(0) =∑∞
l=−∞ rd(l) = ∞, the autocorrelation does not exist.

In the case of complex conjugate poles, the term (1 − z−1)d in (4.5.1) is replaced by
(1 − 2 cos θk z−1 + z−2)d , that is,

H(z) = D(z)

A(z)

1

(1 − 2 cos θk z−1 + z−2)d
(4.5.3)

The second term is basically a cascade of AP(2) models with complex conjugate poles
on the unit circle. This model exhibits strong periodicity in its impulse response, and its
“resonance-like” spectrum diverges at ω = θk .

With regard to the partial autocorrelation, we recall that the presence of poles on the
unit circle results in some lattice parameters taking on the values ±1.

EXAMPLE 4.5.1. Consider the following causal PZ(1, 1, 1) model

H(z) = 1 + d1z
−1

1 + a1z
−1

1

1 − z−1
= 1 + d1z

−1

1 − (1 − a1)z
−1 − a1z

−2
(4.5.4)

with −1 < a1 < 1 and −1 < d1 < 1.
The difference equation representation of the model uses previous values of the output and

the present and previous values of the input. It is given by

y(n) = (1 − a1)y(n− 1)+ a1y(n− 2)+ x(n)+ d1x(n− 1) (4.5.5)

To express the output in terms of the present and previous values of the input (nonrecursive
representation), we find the impulse response of the model

h(n) = Z−1{H(z)} = A1u(n)+ A2(−a1)
nu(n) (4.5.6)

where A1 = (1 + d1)/(1 + a1) and A2 = (a1 − d1)/(1 + a1). Note that the model is unstable,
and it cannot be approximated by an FIR system because h(n)→ A1u(n) as n→ ∞.

Finally, we can express the output as a weighted sum of previous outputs and the present
input, using the impulse response of the inverse model G(z) = 1/H(z)

hI (n) = Z−1{HI (z)} = B1δ(n)+ B2δ(n− 1)+ B3(−d1)
nu(n) (4.5.7)

where B1 = (a1 −d1 +a1d1)/d
2
1 , B2 = −a1/d1, and B3 = (−a1 +d1 −a1d1 +d2

1 )/d
2
1 . Since

−1 < d1 < 1, the sequence hI (n) decays at a rate governed by the value of d1. If hI (n) � 0
for n ≥ pd , the recursive formula

y(n) = −
pd∑
k=1

hI (k)y(n− k)+ x(n) (4.5.8)

provides a good representation of the PZ(1, 1, 1) model. For example, if a1 = 0.3 and d1 = 0.5,
we find that |hI (n)| ≤ 0.0001 for n ≥ 12, which means that the current value of the model
output can be computed with sufficient accuracy from the 12 most recent values of signal y(n).
This is illustrated in Figure 4.13, which also shows a realization of the output process if the
model is driven by white Gaussian noise.
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FIGURE 4.13
Sample realization of the output process, impulse response, impulse response of the inverse
model, and spectrum of a PZ(1, 1, 1) model with a1 = 0.3, d1 = 0.5, and d = 1. The value
R(ej0) = ∞ is not plotted.

Autoregressive integrated moving-average models. In Section 3.3.2 we discussed
discrete-time random signals with stationary increments. Clearly, driving a PZ(P , d, Q)
model with white noise generates a random signal whose dth difference is a stationary
ARMA(P,Q) process. Such time series are known in the statistical literature as autore-
gressive integrated moving-average models, denoted ARIMA (P , d,Q). They are useful in
modeling signals with certain stochastic trends (e.g., random changes in the level and slope
of the signal). Indeed, many empirical signals (e.g., infrared background measurements and
stock prices) exhibit this type of behavior (see Figure 1.6). Notice that the ARIMA(0, 1, 0)
process, that is, x(n) = x(n− 1)+w(n), where {w(n)} ∼ WN(0, σ 2

w), is the discrete-time
equivalent of the random walk or Brownian motion process (Papoulis 1991).

When the unit poles are complex conjugate, the model is known as a harmonic PZ
model. This model produces random sequences that exhibit “random periodic behavior” and
are known as seasonal time series in the statistical literature. Such signals repeat themselves
cycle by cycle, but there is some randomness in both the length and the pattern of each cycle.
The identification and estimation of ARIMA and seasonal models and their applications can
be found in Box, Jenkins, and Reinsel (1994); Brockwell and Davis (1991); and Hamilton
(1994).

4.6 CEPSTRUM OF POLE-ZERO MODELS

In this section we determine the cepstrum of pole-zero models and its properties, and
we develop algorithms to convert between direct structure model parameters and cepstral
coefficients. The cepstrum has been proved a valuable tool in speech coding and recognition
applications and has been extensively studied in the corresponding literature (Rabiner and
Schafer 1978; Rabiner and Juang 1993; Furui 1989). For simplicity, we consider models
with real coefficients.
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4.6.1 Pole-Zero Models

The cepstrum of the impulse response h(n) of a pole-zero model is the inverse z-transform
of

logH(z) = logD(z)− logA(z) (4.6.1)

= log d0 +
Q∑
i=1

log (1 − ziz−1)−
P∑
i=1

log (1 − piz−1) (4.6.2)

where {zi} and {pi} are the zeros and poles of H(z), respectively. If we assume that H(z)
is minimum-phase and use the power series expansion

log (1 − αz−1) = −
∞∑
n=1

αn

n
z−n |z| > |α|

we find that the cepstrum c(n) is given by

c(n) =




0 n < 0

log d0 n = 0

1

n


 P∑
i=1

pni −
Q∑
i=1

zni


 n > 0

(4.6.3)

Since the poles and zeros are assumed to be inside the unit circle, (4.6.3) implies that c(n)
is bounded by

−P +Q
n

≤ c(n) ≤ P +Q
n

(4.6.4)

with equality if and only if all the roots are appropriately at z = 1 or z = −1.
If H(z) is minimum-phase, then there exists a unique mapping between the cepstrum

and the impulse response, given by the recursive relations (Oppenheim and Schafer 1989)

c(0) = log h(0) = log d0

c(n) = h(n)

h(0)
− 1

n

n−1∑
m=0

mc(m)
h(n−m)
h(0)

n > 0
(4.6.5)

h(0) = ec(0)

h(n) = h(0)c(n)+ 1

n

n−1∑
m=0

mc(m)h(n−m) n > 0
(4.6.6)

and

where we have assumed d0 > 0 without loss of generality. Therefore, given the cepstrum
c(n) in the range 0 ≤ n ≤ P+Q, we can completely recover the parameters of the pole-zero
model as follows. From (4.6.6) we can compute h(n), 0 ≤ n ≤ P +Q, and from (4.4.2)
and (4.4.3) we can recover {ak} and {dk}.

4.6.2 All-Pole Models

The cepstrum of a minimum-phase all-pole model is given by (4.6.2) and (4.6.3) with
Q = 0. SinceH(z) is minimum-phase, the cepstrum c(n) of 1/A(z) is simply the negative
of the cepstrum of A(z), which can be written in terms of ak (see also Problem 4.34). As a
result, the cepstrum can be obtained from the direct-form coefficients by using the following
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recursion

c(n) =




−an − 1

n

n−1∑
k=1

(n− k) ak c(n− k) 1 ≤ n ≤ P

−1

n

P∑
k=1

(n− k) ak c(n− k) n > P

(4.6.7)

The inverse relation is

an = −c(n)− 1

n

n−1∑
k=1

(n− k) ak c(n− k) n > 0 (4.6.8)

which shows that the firstP cepstral coefficients completely determine the model parameters
(Furui 1981).

From (4.6.7) it is evident that the cepstrum generally decays as 1/n. Therefore, it may
be desirable sometimes to consider

c′(n) = nc(n) (4.6.9)

which is known as the ramp cepstrum since it is obtained by multiplying the cepstrum by
a ramp function. From (4.6.9) and (4.6.4), we note that the ramp cepstrum of an AP(P )
model is bounded by

|c′(n)| ≤ P n > 0 (4.6.10)

with equality if and only if all the poles are at z = 1 or z = −1. Also c′(n) is equal to
the negative of the inverse z-transform of the derivative of log H(z). From the preceding
equations, we can write

c′(n) = −nan −
n−1∑
k=1

akc
′(n− k) 1 ≤ n ≤ P (4.6.11)

c′(n) = −
P∑
k=1

akc
′(n− k) n > P (4.6.12)

an = 1

n

[
c′(n)+

n−1∑
k=1

akc
′(n− k)

]
n > 0 (4.6.13)and

It is evident that the first P values of c′(n), 1 ≤ n ≤ P , completely specify the model
coefficients. However, since c′(0) = 0, the information about the gain d0 is lost in the ramp
cepstrum. Equation (4.6.12) for n > P is reminiscent of similar equations for the impulse
response in (4.2.5) and the autocorrelation in (4.2.18), with the major difference that for the
ramp cepstrum the relation is only true for n > P , while for the impulse response and the
autocorrelation, the relations are true for n > 0 and k > 0, respectively.

Since R(z) = H(z)H(z−1), we have

logR(z) = logH(z)+ logH(z−1) (4.6.14)

and if cr(n) is the real cepstrum of R(ejω), we conclude that

cr(n) = c(n)+ c(−n) (4.6.15)

For minimum-phase H(z), c(n) = 0 for n < 0. Therefore,

cr(n) =



c(−n) n < 0

2c(0) n = 0

c(n) n > 0
(4.6.16)
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Modelsc(n) =




0 n < 0
cr(0)

2
n = 0

cr(n) n > 0

(4.6.17)and

In other words, the cepstrum c(n) can be obtained simply by taking the inverse Fourier
transform of log R(ejω) to obtain cr(n) and then applying (4.6.17).

EXAMPLE 4.6.1. From (4.6.7) we find that the cepstrum of the AP(1) model is given by

c(n) =




0 n < 0

log d0 n = 0

1

n
(−a)n n > 0

(4.6.18)

From (4.2.18) with P = 1 and k = 1, we have a(1)1 = −r(1)/r(0) = k1; and from (4.6.7) we
have a1 = −c(1). These results are summarized below:

a
(1)
1 = a = −ρ(1) = k1 = −c(1) (4.6.19)

The fact that ρ(1) = c(1) here is peculiar to a single-pole spectrum and is not true in general
for arbitrary spectra. And ρ(1) is the integral of a cosine-weighted spectrum while c(1) is the
integral of a cosine-weighted log spectrum.

EXAMPLE 4.6.2. From (4.6.7), the cepstrum for an AP(2) model is equal to

c(n) =




0 n < 0

log d0 n = 0

1

n
(pn1 + pn2 ) n > 0

(4.6.20)

For a complex conjugate pole pair, we have

c(n) = 2

n
rn cos nθ n > 0 (4.6.21)

where p1,2 = r exp(±jθ). Therefore, the cepstrum of a damped sine wave is a damped cosine
wave. The cepstrum and autocorrelation are similar in that they are both damped cosines, but
the cepstrum has an additional 1/n weighting. From (4.6.7) and (4.6.8) we can relate the model
parameters and the cepstral coefficients:

a1 = −c(1)
a2 = −c(2)+ 1

2
c2(1)

(4.6.22)

c(1) = −a1

c(2) = −a2 + 1
2
a2

1

(4.6.23)
and

Using (4.2.71) and the relations for the cepstrum, we can derive the conditions on the cepstrum
for H(z) to be minimum-phase:

c(2) >
c2(1)

2
− 1

c(2) <
c2(1)

2
− c(1)+ 1

c(2) <
c2(1)

2
+ c(1)+ 1

(4.6.24)

The corresponding admissible region is shown in Figure 4.14. The region corresponding to
complex roots is given by

1

2
c2(1)− 1 < c(2) <

c2(1)

4
(4.6.25)
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FIGURE 4.14
Minimum-phase region of the AP(2) model in the cepstral domain.

In comparing Figures 4.6, 4.8, and 4.14, we note that the admissible regions for the
PACS and ACS are convex while that for the cepstral coefficients is not. (A region is convex
if a straight line drawn between any two points in the region lies completely in the region.)
In general, the PACS and the ACS span regions or spaces that are convex. The admissible
region in Figure 4.14 for the model coefficients is also convex. However, for P > 2 the
admissible regions for the model coefficients are not convex, in general.

Cepstral distance. A measure of the difference between two signals, which has many
applications in speech coding and recognition, is the distance between their log spectra
(Rabiner and Juang 1993). It is known as the cepstral distance and is defined as

CD � 1

2π

∫ π

−π
| logR1(e

jω)− logR2(e
jω)|2 dω (4.6.26)

=
∞∑

n=−∞
[c1(n)− c2(n)]2 (4.6.27)

where c1(n) and c2(n) are the cepstral coefficients of R1(e
jω) and R2(e

jω), respectively
(see Problem 4.36). Since for minimum-phase sequences the cepstrum decays fast, the
summation (4.6.27) can be computed with sufficient accuracy using a small number of
terms, usually 20 to 30. For minimum-phase all-pole models, which are mostly used in
speech processing, the cepstral coefficients are efficiently computed using the recursion
(4.6.7).

4.6.3 All-Zero Models

The cepstrum of a minimum-phase all-zero model is given by (4.6.2) and (4.6.3) with
P = 0. The cepstrum corresponding to a minimum-phase AZ(Q) model is related to its
real cepstrum by

c(n) =




0 n < 0
cr(n)

2
n = 0

cr(n) n > 0

(4.6.28)

Since we found c(n), the coefficients of a minimum-phase AZ(Q) model D(z) can be
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evaluated recursively from

dk =



ecd0 k = 0

c(k)d0 + 1

k

k−1∑
m=0

mc(m)dk−m 1 ≤ k ≤ Q (4.6.29)

This procedure for finding a minimum-phase polynomial D(z) from the autocorrelation
consists in first computing the cepstrum from the log spectrum, then applying (4.6.28)
and the recursion (4.6.29) to compute the coefficients dk . This approach to the spectral
factorization of AZ(Q) models is preferable because finding the roots of R(z) for large Q
may be cumbersome.

Mixed pole-zero model representations. In the previous sections we saw that the P +
Q+ 1 parameters of the minimum-phase PZ(P,Q) model can be represented equivalently
and uniquely by P + Q + 1 values of the impulse response, the autocorrelation, or the
cepstrum. A question arises as to whether PZ(P , Q) can be represented uniquely by a
mixture of representations, as long as the total number of representative values isP+Q+1.
For example, could we have a unique representation that consists of, say,Q autocorrelation
values and P + 1 impulse response values, or some other mixture? The answer to this
question has not been explored in general; the relevant equations are sufficiently nonlinear
that a totally different approach would appear to be needed to solve the general problem.

4.7 SUMMARY

In this chapter we introduced the class of pole-zero signal models and discussed their
properties. Each model consists of two components: an excitation source and a system.
In our treatment, we emphasized that the properties of a signal model are shaped by the
properties of both components; and we tried, whenever possible, to attribute each property to
its originator. Thus, for uncorrelated random inputs, which by definition are the excitations
for ARMA models, the second-order moments of the signal model and its minimum-phase
characteristics are completely determined by the system. For excitations with line spectra,
properties such as minimum phase are meaningful only when they are attributed to the
underlying system. If the goal is to model a signal with a line PSD, the most appropriate
approach is to use a harmonic process.

We provided a detailed description of the autocorrelation, power spectrum density,
partial correlation, and cepstral properties of all AZ, AP, and PZ models for the general
case and for first- and second-order models. An understanding of these properties is very
important for model selection in practical applications.

PROBLEMS

4.1 Show that a second-order pole pi contributes the term npn
i
u(n) and a third-order pole the terms

npn
i
u(n)+n2pn

i
u(n) to the impulse response of a causal PZ model. The general case is discussed

in Oppenheim et al. (1997).

4.2 Consider a zero-mean random sequence x(n) with PSD

Rx(e
jω) = 5 + 3 cosω

17 + 8 cosω
(a) Determine the innovations representation of the process x(n).
(b) Find the autocorrelation sequence rx(l).
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4.3 We want to generate samples of a Gaussian process with autocorrelation rx(l) = ( 1
2
)|l|+(− 1

2
)|l|

for all l.

(a) Find the difference equation that generates the process x(n) when excited by w(n) ∼
WGN(0, 1).

(b) Generate N = 1000 samples of the process and estimate the pdf, using the histogram and
the normalized autocorrelation ρx(l) using ρ̂x(l) [see Equation (1.2.1)].

(c) Check the validity of the model by plotting on the same graph (i) the true and estimated pdf
of x(n) and (ii) the true and estimated autocorrelation.

4.4 Compute and compare the autocorrelations of the following processes:

(a) x1(n) = w(n)+ 0.3w(n− 1)− 0.4w(n− 2) and
(b) x2(n) = w(n)− 1.2w(n− 1)− 1.6w(n− 2) where w(n) ∼ WGN(0, 1).

Explain your findings.

4.5 Compute and plot the impulse response and the magnitude response of the systems H(z) and
HN(z) in Example 4.2.1 for a = 0.7, 0.95 andN = 8, 16, 64. Investigate how well the all-zero
systems approximate the single-pole system.

4.6 Prove Equation (4.2.35) by writing explicitly Equation (4.2.33) and rearranging terms. Then
show that the coefficient matrix A can be written as the sum of a triangular Toeplitz matrix and
a triangular Hankel matrix (recall that a matrix H is Hankel if the matrix JHJH is Toeplitz).

4.7 Use the Yule-Walker equations to determine the autocorrelation and partial autocorrelation
coefficients of the following AR models, assuming that w(n) ∼ WN(0, 1).

(a) x(n) = 0.5x(n− 1)+ w(n).
(b) x(n) = 1.5x(n− 1)− 0.6x(n− 2)+ w(n).
What is the variance σ 2

x of the resulting process?

4.8 Given the AR process x(n) = x(n− 1)− 0.5x(n− 2)+ w(n), complete the following tasks.

(a) Determine ρx(1).
(b) Using ρx(0) and ρx(1), compute {ρx(l)}15

2 by the corresponding difference equation.
(c) Plot ρx(l) and use the resulting graph to estimate its period.
(d ) Compare the period obtained in part (c) with the value obtained using the PSD of the model.

(Hint: Use the frequency of the PSD peak.)

4.9 Given the parameters d0, a1, a2, and a3 of an AP(3) model, compute its ACS analytically and
verify your results, using the values in Example 4.2.3. (Hint: Use Cramer’s rule.)

4.10 Consider the following AP(3) model: x(n) = 0.98x(n−3)+w(n), wherew(n) ∼ WGN(0, 1).

(a) Plot the PSD of x(n) and check if the obtained process is going to exhibit a pseudoperiodic
behavior.

(b) Generate and plot 100 samples of the process. Does the graph support the conclusion of
part (a)? If yes, what is the period?

(c) Compute and plot the PSD of the process y(n) = 1
3
[x(n− 1)+ x(n)+ x(n+ 1)].

(d ) Repeat part (b) and explain the difference between the behavior of processes x(n) and y(n).

4.11 Consider the following AR(2) models: (i) x(n) = 0.6x(n − 1) + 0.3x(n − 2) + w(n) and (ii)
x(n) = 0.8x(n− 1)− 0.5x(n− 2)+ w(n), where w(n) ∼ WGN(0, 1).

(a) Find the general expression for the normalized autocorrelation sequence ρ(l), and determine
σ 2
x .

(b) Plot {ρ(l)}15
0 and check if the models exhibit pseudoperiodic behavior.

(c) Justify your answer in part (b) by plotting the PSD of the two models.

4.12 (a) Derive the formulas that express the PACS of an AP(3) model in terms of its ACS, using
the Yule-Walker equations and Cramer’s rule.
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(b) Use the obtained formulas to compute the PACS of the AP(3) model in Example 4.2.3.
(c) Check the results in part (b) by recomputing the PACS, using the algorithm of Levinson-

Durbin.

4.13 Show that the spectrum of any PZ model with real coefficients has zero slope at ω = 0 and
ω = π .

4.14 Derive Equations (4.2.71) describing the minimum-phase region of the AP(2) model, starting
from the conditions

(a) |p1| < 1, |p2| < 1 and
(b) |k1| < 1, |k2| < 1.

4.15 (a) Show that the spectrum of an AP(2) model with real poles can be obtained by the cascade
connection of two AP(1) models with real coefficients.

(b) Compute and plot the impulse response, ACS, PACS, and spectrum of the AP models with
p1 = 0.6, p2 = −0.9, and p1 = p2 = 0.9.

4.16 Prove Equation (4.2.89) and demonstrate its validity by plotting the spectrum (4.2.88) for various
values of r and θ .

4.17 Prove that if the AP(P ) model A(z) is minimum-phase, then

1

2π

∫ π
−π

log
1

|A(ejω)|2 dω = 0

4.18 (a) Prove Equations (4.2.101) and (4.2.102) and recreate the plot in Figure 4.8(a).
(b) Determine and plot the regions corresponding to complex and real poles in the autocorre-

lation domain by recreating Figure 4.8(b).

4.19 Consider an AR(2) process x(n) with d0 = 1, a1 = −1.6454 a2 = 0.9025, and w(n) ∼
WGN(0, 1).

(a) Generate 100 samples of the process and use them to estimate theACS ρ̂x(l), using Equation
(1.2.1).

(b) Plot and compare the estimated and theoretical ACS values for 0 ≤ l ≤ 10.
(c) Use the estimated values of ρ̂x(l) and the Yule-Walker equations to estimate the parameters

of the model. Compare the estimated with the true values, and comment on the accuracy of
the approach.

(d ) Use the estimated parameters to compute the PSD of the process. Plot and compare the
estimated and true PSDs of the process.

(e) Compute and compare the estimated with the true PACS.

4.20 Find a minimum-phase model with autocorrelation ρ(0) = 1, ρ(±1) = 0.25, and ρ(l) = 0 for
|l| ≥ 2.

4.21 Consider the MA(2) model x(n) = w(n)− 0.1w(n− 1)+ 0.2w(n− 2).

(a) Is the process x(n) stationary? Why?
(b) Is the model minimum-phase? Why?
(c) Determine the autocorrelation and partial autocorrelation of the process.

4.22 Consider the following ARMA models: (i) x(n) = 0.6x(n − 1) + w(n) − 0.9w(n − 1) and
(ii) x(n) = 1.4x(n− 1)− 0.6x(n− 2)+ w(n)− 0.8w(n− 1).

(a) Find a general expression for the autocorrelation ρ(l).
(b) Compute the partial autocorrelation km for m = 1, 2, 3.
(c) Generate 100 samples from each process, and use them to estimate {ρ̂(l)}20

0 using Equation
(1.2.1).

(d ) Use ρ̂(l) to estimate {k̂m}20
1 .

(e) Plot and compare the estimates with the theoretically obtained values.
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4.23 Determine the coefficients of a PZ(2, 1)model with autocorrelation values rh(0) = 19, rh(1) =
9, rh(2) = −5, and rh(3) = −7.

4.24 (a) Show that the impulse response of an AZ(Q) model can be recovered from its response
h̃(n) to a periodic train with period L if L > Q.

(b) Show that the ACS of an AZ(Q) model can be recovered from the ACS or spectrum of h̃(n)
if L ≥ 2Q+ 1.

4.25 Prove Equation (4.3.17) and illustrate its validity by computing the PACS of the modelH(z) =
1 − 0.8z−1.

4.26 Prove Equations (4.3.24) that describe the minimum-phase region of the AZ(2) model.

4.27 Consider an AZ(2) model with d0 = 2 and zeros z1,2 = 0.95e±jπ/3.

(a) Compute and plotN = 100 output samples by exciting the model with the processw(n) ∼
WGN(0, 1).

(b) Compute and plot the ACS, PACS, and spectrum of the model.
(c) Repeat parts (a) and (b) by assuming that we have an AP(2) model with poles at p1,2 =

0.95e±jπ/3.
(d ) Investigate the duality between the ACS and PACS of the two models.

4.28 Prove Equations (4.4.31) and use them to reproduce the plot shown in Figure 4.12(b). Indicate
which equation corresponds to each curve.

4.29 Determine the spectral flatness measure of the following processes:

(a) x(n) = a1x(n− 1)+ a2x(n− 2)+ w(n) and
(b) x(n) = w(n)+ b1w(n− 1)+ b2w(n− 2), where w(n) is a white noise sequence.

4.30 Consider a zero-mean wide-sense stationary (WSS) process x(n) with PSD Rx(ejω) and an
M × M correlation matrix with eigenvalues {λk}M1 . Szegö’s theorem (Grenander and Szegö
1958) states that if g(·) is a continuous function, then

lim
M→∞

g(λ1)+ g(λ2)+ · · · + g(λM)
M

= 1

2π

∫ π
−π
g[Rx(ejω)] dω

Using this theorem, show that

lim
M→∞ (det Rx)1/M = exp

{
1

2π

∫ π
−π

ln[Rx(ejω)] dω

}

4.31 Consider two linear random processes with system functions

(i) H(z) = 1 − 0.81z−1 − 0.4z−2

(1 − z−1)2
and (ii) H(z) = 1 − 0.5z−1

1 − z−1

(a) Find a difference equation that leads to a numerically stable simulation of each process.
(b) Generate and plot 100 samples from each process, and look for indications of nonstationarity

in the obtained records.
(c) Compute and plot the second difference of (i) and the first difference of (ii). Comment about

the stationarity of the obtained records.

4.32 Generate and plot 100 samples for each of the linear processes with system functions

(a) H(z) = 1

(1 − z−1) (1 − 0.9z−1)

(b) H(z) = 1 − 0.5z−1

(1 − z−1) (1 − 0.9z−1)

and then estimate and examine the values of the ACS {ρ̂(l)}20
0 and the PACS {k̂m}20

1 .
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problems

4.33 Consider the process y(n) = d0 + d1n+ d2n
2 + x(n), where x(n) is a stationary process with

known autocorrelation rx(l).

(a) Show that the process y(2)(n) obtained by passing y(n) through the filterH(z) = (1−z−1)2

is stationary.

(b) Express the autocorrelation r(2)y (l) of y(2)(n) in terms of rx(l). Note: This process is used
in practice to remove quadratic trends from data before further analysis.

4.34 Prove Equation (4.6.7), which computes the cepstrum of an AP model from its coefficients.

4.35 Consider a minimum-phase AZ(Q) model D(z) =∑Q
k=0 dkz

−k with complex cepstrum c(k).

We create another AZ model with coefficients d̃k = αkdk and complex cepstrum c̃(k).

(a) If 0 < α < 1, find the relation between c̃(k) and c(k).
(b) Choose α so that the new model has no minimum phase.
(c) Choose α so that the new model has a maximum phase.

4.36 Prove Equation (4.6.27), which determines the cepstral distance in the frequency and time
domains.
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CHAPTER 5

Nonparametric Power Spectrum Estimation

The essence of frequency analysis is the representation of a signal as a superposition of
sinusoidal components. In theory, the exact form of this decomposition (spectrum) depends
on the assumed signal model. In Chapters 2 and 3 we discussed the mathematical tools
required to define and compute the spectrum of signals described by deterministic and
stochastic models, respectively. In practical applications, where only a finite segment of a
signal is available, we cannot obtain a complete description of the adopted signal model.
Therefore, we can only compute an approximation (estimate) of the spectrum of the adopted
signal model (“true” or theoretical spectrum). The quality of the estimated spectrum depends
on

• How well the assumed signal model represents the data.
• What values we assign to the unavailable signal samples.
• Which spectrum estimation method we use.

Clearly, meaningful application of spectrum estimation in practical problems requires
sufficient a priori information, understanding of the signal generation process, knowledge
of theoretical concepts, and experience.

In this chapter we discuss the most widely used correlation and spectrum estimation
methods, as well as their properties, implementation, and application to practical problems.
We discuss only nonparametric techniques that do not assume a particular functional form,
but allow the form of the estimator to be determined entirely by the data. These methods are
based on the discrete Fourier transform of either the signal segment or its autocorrelation
sequence. In contrast, parametric methods assume that the available signal segment has
been generated by a specific parametric model (e.g., a pole-zero or harmonic model). Since
the choice of an inappropriate signal model will lead to erroneous results, the successful
application of parametric techniques, without sufficient a priori information, is very difficult
in practice. These methods are discussed in Chapter 9.

We begin this chapter with an introductory discussion on the purpose of, and the DSP
approach to, spectrum estimation. We explore various errors involved in the estimation of
finite-length data records (i.e., based on partial information). We also outline conventional
techniques for deterministic signals, using concepts developed in Chapter 2. Also in Section
3.6, we presented important concepts and results from the estimation theory that are used
extensively in this chapter. Section 5.3 is the main section of this chapter in which we
discuss various nonparametric approaches to the power spectrum estimation of stationary
random signals. This analysis is extended to joint stationary (bivariate) random signals
for the computation of the cross-spectrum in Section 5.4. The computation of auto and
cross-spectra using Thomson’s multiple windows (or multitapers) is discussed in Section
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5.5. Finally, in Section 5.6 we summarize important topics and concepts from this chapter.
A classification of the various spectral estimation methods that are discussed in this book
is provided in Figure 5.1.

Spectral
estimation

Deterministic 
signal model: 

Fourier
analysis

(Section 5.1)

Main 
limitation:
windowing

Mainlobe 
width: 

smoothing, 
loss of

resolution 

Sidelobe 
height: leakage, 

"wrong" 
location of 

peaks

Nonparametric
methods

Fourier
analysis

(Section 5.3)

Capon's 
minimum
variance

(Chapter 9)

 Multitaper
method

(Section 5.5)

ARMA 
(pole-zero)

models
(Chapter 9)

Long-memory
models

(Chapter 12)

Harmonic
process

(Chapter 9)

Parametric
methods

Main 
limitations:

windowing +
randomness

Bias +
randomness

Bias

Stochastic 
signal

models

· Autocorrelation
  windowing
· Periodogram
  averaging

FIGURE 5.1
Classification of various spectrum estimation methods.

5.1 SPECTRAL ANALYSIS OF DETERMINISTIC SIGNALS

If we adopt a deterministic signal model, the mathematical tools for spectral analysis are the
Fourier series and the Fourier transforms summarized in Section 2.2.1. It should be stressed
at this point that applying any of these tools requires that the signal values in the entire
time interval from −∞ to +∞ be available. If it is known a priori that a signal is periodic,
then only one period is needed. The rationale for defining and studying various spectra for
deterministic signals is threefold. First, we note that every realization (or sample function)
of a stochastic process is a deterministic function. Thus we can use the Fourier series and
transforms to compute a spectrum for stationary processes. Second, deterministic functions
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and sequences are used in many aspects of the study of stationary processes, for example,
the autocorrelation sequence, which is a deterministic sequence. Third, the various spectra
that can be defined for deterministic signals can be used to summarize important features
of stationary processes.

Most practical applications of spectrum estimation involve continuous-time signals.
For example, in speech analysis we use spectrum estimation to determine the pitch of
the glottal excitation and the formants of the vocal tract (Rabiner and Schafer 1978). In
electroencephalography, we use spectrum estimation to study sleep disorders and the effect
of medication on the functioning of the brain (Duffy, Iyer, and Surwillo 1989). Another
application is in Doppler radar, where the frequency shift between the transmitted and the
received waveform is used to determine the radial velocity of the target (Levanon 1988).

The numerical computation of the spectrum of a continuous-time signal involves three
steps:

1. Sampling the continuous-time signal to obtain a sequence of samples.
2. Collecting a finite number of contiguous samples (data segment or block) to use for the

computation of the spectrum. This operation, which usually includes weighting of the
signal samples, is known as windowing, or tapering.

3. Computing the values of the spectrum at the desired set of frequencies. This step is
usually implemented using some efficient implementation of the DFT.

The above processing steps, which are necessary for DFT-based spectrum estimation,
are shown in Figure 5.2. The continuous-time signal is first processed through a low-pass
(antialiasing) filter and then sampled to obtain a discrete-time signal. Data samples of frame
length N with frame overlapN0 are selected and then conditioned using a window. Finally,
a suitable-length DFT of the windowed data is taken as an estimate of its spectrum, which
is then analyzed. In this section, we discuss in detail the effects of each of these operations
on the accuracy of the computed spectrum. The understanding of the implications of these
effects is very important in all practical applications of spectrum estimation.

Low-pass filter
Hlp(F )

A/D
converter

DFT Windowing

Frame
blocking

Fs N N0

sc(t) xc(t)

X
~

N(k) xN(n)

w(n)

x(n)

FIGURE 5.2
DFT-based Fourier analysis system for continuous-time signals.

5.1.1 Effect of Signal Sampling

The continuous-time signal sc(t), whose spectrum we seek to estimate, is first passed through
a low-pass filter, also known as an antialiasing filterHlp(F ), in order to minimize the aliasing
error after sampling. The antialiased signal xc(t) is then sampled through an analog-to-
digital converter

†
(ADC) to produce the discrete-time sequence x(n), that is,

x(n) = xc(t)|t=n/Fs (5.1.1)

†
We will ignore the quantization of discrete-time signals as discussed in Chapter 2.
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From the sampling theorem in Section 2.2.2, we have

X(ej2πF/Fs) = Fs

∞∑
l=−∞

Xc(F − lFs) (5.1.2)

whereXc(F ) = Hlp(F )Sc(F ). We note that the spectrum of the discrete-time signal x(n) is
a periodic replication ofXc(F ). Overlapping of the replicasXc(F − lFs) results in aliasing.
Since any practical antialiasing filter does not have infinite attenuation in the stopband,
some nonzero overlap of frequencies higher than Fs/2 should be expected within the band
of frequencies of interest in x(n). These aliased frequencies give rise to the aliasing error,
which, in any practical signal, is unavoidable. It can be made negligible by a properly
designed antialiasing filter Hlp(F ).

5.1.2 Windowing, Periodic Extension, and Extrapolation

In practice, we compute the spectrum of a signal by using a finite-duration segment. The
reason is threefold:

1. The spectral composition of the signal changes with time. or
2. We have only a finite set of data at our disposal. or
3. We wish to keep the computational complexity to an acceptable level.

Therefore, it is necessary to partition x(n) into blocks (or frames) of data prior to processing.
This operation is called frame blocking, and it is characterized by two parameters: the length
of frame N and the overlap between frames N0 (see Figure 5.2). Therefore, the central
problem in practical frequency analysis can be stated as follows:

Determine the spectrum of a signal x(n),−∞ < n <∞, from its values in a finite
interval 0 ≤ n ≤ N − 1, that is, from a finite-duration segment.

Since x(n) is unknown for n < 0 and n ≥ N , we cannot say, without having sufficient
a priori information, whether the signal is periodic or aperiodic. If we can reasonably assume
that the signal is periodic with fundamental periodN , we can easily determine its spectrum
by computing its Fourier series, using the DFT (see Section 2.2.1).

However, in most practical applications, we cannot make this assumption because the
available block of data could be either part of the period of a periodic signal or a segment
from an aperiodic signal. In such cases, the spectrum of the signal cannot be determined
without assigning values to the signal samples outside the available interval. There are three
ways to deal with this issue:

1. Periodic extension. We assume that x(n) is periodic with period N , that is, x(n) =
x(n+N) for all n, and we compute its Fourier series, using the DFT.

2. Windowing. We assume that the signal is zero outside the interval of observation, that
is, x(n) = 0 for n < 0 and n ≥ N . This is equivalent to multiplying the signal with the
rectangular window

wR(n) �
{

1 0 ≤ n ≤ N − 1

0 elsewhere
(5.1.3)

The resulting sequence is aperiodic, and its spectrum is obtained by the discrete-time
Fourier transform (DTFT).

3. Extrapolation. We use a priori information about the signal to extrapolate (i.e., determine
its values for n < 0 and n ≥ N) outside the available interval and then determine its
spectrum by using the DTFT.

Periodic extension and windowing can be considered the simplest forms of extrapola-
tion. It should be obvious that a successful extrapolation results in better spectrum estimates
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than periodic extension or windowing. Periodic extension is a straightforward application
of the DFT, whereas extrapolation requires some form of a sophisticated signal model. As
we shall see, most of the signal modeling techniques discussed in this book result in some
kind of extrapolation. We first discuss, in the next section, the effect of spectrum sampling
as imposed by the application of DFT (and its side effect—the periodic extension) before
we provide a detailed analysis of the effect of windowing.

5.1.3 Effect of Spectrum Sampling

In many real-time spectrum analyzers, as illustrated in Figure 5.2, the spectrum is com-
puted (after signal conditioning) by using the DFT. From Section 2.2.3, we note that this
computation samples the continuous spectrum at equispaced frequencies. Theoretically, if
the number of DFT samples is greater than or equal to the frame length N , then the exact
continuous spectrum (based on the given frame) can be obtained by using the frequency-
domain reconstruction (Oppenheim and Schafer 1989; Proakis and Manolakis 1996). This
reconstruction, which requires a periodic sinc function [defined in (5.1.9)], is not a practical
function to implement, especially in real-time applications. Hence a simple linear interpola-
tion is used for plotting or display purposes. This linear interpolation can lead to misleading
results even though the computed DFT sample values are correct. It is possible that there
may not be a DFT sample precisely at a frequency where a peak of the DTFT is located.
In other words, the DFT spectrum misses this peak, and the resulting linearly interpolated
spectrum provides the wrong location and height of the DTFT spectrum peak. This error
can be made smaller by sampling the DTFT spectrum at a finer grid, that is, by increasing
the size of the DFT. The denser spectrum sampling is implemented by an operation called
zero padding and is discussed later in this section.

Another effect of the application of DFT for spectrum calculations is the periodic
extension of the sequence in the time domain. From our discussion in Section 2.2.3, it
follows that the N -point DFT

X̃(k) =
N−1∑
n=0

x(n)e−j (2π/N)kn (5.1.4)

is periodic with period N . This should be expected given the relationship of the DFT to
the Fourier transform or the Fourier series of discrete-time signals, which are periodic in ω
with period 2π . A careful look at the inverse DFT

x(n) = 1

N

N−1∑
k=0

X̃(k)ej (2π/N)kn (5.1.5)

reveals that x(n) is also periodic with period N . This is a somewhat surprising result since
no assumption about the signal x(n) outside the interval 0 ≤ n ≤ N − 1 has been made.
However, this periodicity in the time domain can be easily justified by recalling that sampling
in the time domain results in a periodicity in the frequency domain, and vice versa.

To understand these effects of spectrum sampling, consider the following example in
which a continuous-time sinusoidal signal is sampled and then is truncated by a rectangular
window before its DFT is performed.

EXAMPLE 5.1.1. A continuous-time signal xc(t) = 2 cos 2πt is sampled with a sampling fre-
quency of Fs = 1/T = 10 samples per second, to obtain the sequence x(n). It is windowed
by an N -point rectangular window wR(n) to obtain the sequence xN(n). Determine and plot
|X̃N (k)|, the magnitude of the DFT of xN(n), for (a)N = 10 and (b)N = 15. Comment on the
shapes of these plots.
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Solution. The discrete-time signal x(n) is a sampled version of xc(t) and is given by

x(n) = xc(t = nT ) = 2 cos
2πn

Fs
= 2 cos 0.2πn T = 0.1 s

Then, x(n) is a periodic sequence with fundamental period N = 10.

a. For N = 10, we obtain xN(n) = 2 cos 0.4πn, 0 ≤ n ≤ 9, which contains one period of
x(n). The periodic extension of xN(n) and the magnitude plot of its DFT are shown in the
top row of Figure 5.3. For comparison, the DTFT XN(e

jω) of xN(n) is also superimposed
on the DFT samples. We observe that the DFT has only two nonzero samples, which together
constitute the correct frequency of the analog signal xc(t). The DTFT has a mainlobe and
several sidelobes due to the windowing effect. However, the DFT samples the sidelobes at
their zero values, as illustrated in the DFT plot. Another explanation for this behavior is that
since the samples in xN(n) for N = 10 constitute one full period of cos 0.4πn, the 10-point
periodic extension of xN(n), shown in the top left graph of Figure 5.3, results in the original
sinusoidal sequences x(n). Thus what the DFT “sees” is the exact sampled signal xc(t). In
this case, the choice of N is a desirable one.

b. For N = 15, we obtain xN(n) = 2 cos 0.4πn, 0 ≤ n ≤ 14, which contains 1 1
2

periods
of x(n). The periodic extension of xN(n) and the magnitude plot of its DFT are shown in
the bottom row of Figure 5.3. Once again for comparison, the DTFT XN(e

jω) of xN(n)
is superimposed on the DFT samples. In this case, the DFT plot looks markedly different
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FIGURE 5.3
Effect of window length L on the DFT spectrum shape.
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from that for N = 10 although the DTFT plot appears to be similar. In this case, the DFT
does not sample two peaks at the exact frequencies; hence if the resulting DFT samples are
joined by the linear interpolation, then we will get a misleading result. Since the sequence
xN(n) does not contain full periods of cos 0.4πn, the periodic extension of xN(n) contains
discontinuities at n = lN , l = 0,±1,±2, . . . , as shown in the bottom left graph of Figure
5.3. This discontinuity results in higher-order harmonics in the DFT values. The DTFT plot
also has mainlobes and sidelobes, but the DFT samples these sidelobes at nonzero values.
Therefore, the length of the window is an important consideration in spectrum estimation.
The sidelobes are the source of the problem of leakage that gives rise to bias in the spectral
values, as we will see in the following section. The suppression of the sidelobes is controlled
by the window shape, which is another important consideration in spectrum estimation.

A quantitative description of the above interpretations and arguments related to the
capacities and limitations of the DFT is offered by the following result (see Proakis and
Manolakis 1996).

TH E O R E M 5.1 ( D FT SAM PLI N G TH E O R E M ) . Let xc(t),−∞ < t < ∞, be a continuous-
time signal with Fourier transform Xc(F ), −∞ < F < ∞. Then, the N -point sequences
{T xp(n), 0 ≤ n ≤ N − 1} and {X̃p(k), 0 ≤ k ≤ N − 1} form an N -point DFT pair, that is,

xp(n) �
∞∑

m=−∞
xc(nT −mNT ) DFT←→

N
X̃p(k) � Fs

∞∑
l=−∞

Xc

(
k
Fs

N
− lFs

)
(5.1.6)

where Fs = 1/T is the sampling frequency.

Proof. The proof is explored in Problem 5.1.

Thus, given a continuous-time signal xc(t) and its spectrumXc(F ), we can create a DFT
pair by sampling and aliasing in the time and frequency domains. Obviously, this DFT pair
provides a “faithful” description of xc(t) andXc(F ) if both the time-domain aliasing and the
frequency-domain aliasing are insignificant. The meaning of relation (5.1.6) is graphically
illustrated in Figure 5.4. In this figure, we show the time-domain signals in the left column
and their Fourier transforms in the right column. The top row contains continuous-time
signals, which are shown as nonperiodic and of infinite extent in both domains, since many
real-world signals exhibit this behavior. The middle row contains the sampled version of
the continuous-time signal and its periodic Fourier transform (the nonperiodic transform
is shown as a dashed curve). Clearly, aliasing in the frequency domain is evident. Finally,
the bottom row shows the sampled (periodic) Fourier transform and its correponding time-
domain periodic sequence. Again, aliasing in the time domain should be expected. Thus
we have sampled and periodic signals in both domains with the certainty of aliasing one
domain and the possibility in both domains. This figure should be recalled any time we use
the DFT for the analysis of sampled signals.

Zero padding

TheN -point DFT values of anN -point sequence x(n) are samples of the DTFTX(ejω),
as discussed in Chapter 2. These samples can be used to reconstruct the DTFT X(ejω) by
using the periodic sinc interpolating function.Alternatively, one can obtain more (i.e., dense)
samples of the DTFT by computing a larger NFFT-point DFT of x(n), where NFFT � N .
Since the number of samples of x(n) is fixed, the only way we can treat x(n) as an NFFT-
point sequence is by appending NFFT − N zeros to it. This procedure is called the zero
padding operation, and it is used for many purposes including the augmentation of the
sequence length so that a power-of-2 FFT algorithm can be used. In spectrum estimation,
zero padding is primarily used to provide a better-looking plot of the spectrum of a finite-
length sequence. This is shown in Figure 5.5 where the magnitude of anNFFT-point DFT of
the eight-point sequence x(n) = cos (2πn/4) is plotted for NFFT = 8, 16, 32, and 64.The
DTFT magnitude |X(ejω)| is also shown for comparison. It can be seen that as more zeros



February 4, 2005 11:20 e56-ch5 Sheet number 8 Page number 202 black

202

chapter 5
Nonparametric Power
Spectrum Estimation

are appended (by increasing NFFT), the resulting larger-point DFT provides more closely
spaced samples of the DTFT, thus giving a better-looking plot. Note, however, that the zero
padding does not increase the resolution of the spectrum; that is, there are no new peaks
and valleys in the display, just a better display of the available information. This type of plot
is called a high-density spectrum. For a high-resolution spectrum, we have to collect more
information by increasing N . The DTFT plots shown in Figures 5.3 and 5.5 were obtained
by using a very large amount of zero padding.

5.1.4 Effects of Windowing: Leakage and Loss of Resolution

To see the effect of the window on the spectrum of an arbitrary deterministic signal x(n),
defined over the entire range −∞ < n < ∞, we notice that the available data record can
be expressed as

xN(n) = x(n)wR(n) (5.1.7)
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FIGURE 5.4
Graphical illustration of the DFT sampling theorem.



February 4, 2005 11:20 e56-ch5 Sheet number 9 Page number 203 black

203

section 5.1
Spectral Analysis of
Deterministic Signals

0 0.25 0.5
0

1 8-point DFT DTFT: – – –

DTFT: – – –

DTFT: – – –

DTFT : – – –

0 0.25 0.5
0

1

|X
(k

)|
|X

(k
)|

|X
(k

)|
|X

(k
)|

16-point DFT

0 0.25 0.5
0

1 32-point DFT

0 0.25 0.5
0

1 64-point DFT

Normalized frequency

~
~

~
~

FIGURE 5.5
Effect of zero padding.

where wR(n) is the rectangular window defined in (5.1.3). Thus, a finite segment of the
signal can be thought of as a product of the actual signal x(n) and a data window w(n). In
(5.1.7),w(n) = wR(n), butw(n) can be any arbitrary finite-duration sequence. The Fourier
transform of xN(n) is

XN(e
jω) = X(ejω)⊗W(ejω) � 1

2π

∫ π

−π
X(ejθ )W(ej (ω−θ)) dθ (5.1.8)

that is, XN(ejω) equals the periodic convolution of the actual Fourier transform with the
Fourier transform W(ejω) of the data window. For the rectangular window, W(ejω) =
WR(e

jω), where

WR(e
jω) =

[
sin (ωN/2)

sin (ω/2)

]
e−jω(N−1)/2 � A(ω)e−jω(N−1)/2 (5.1.9)

The function A(ω) is a periodic function in ω with fundamental period equal to 2π and is
called a periodic sinc function. Figure 5.6 shows three periods of A(ω) for N = 11. We
note thatWR(e

jω) consists of a mainlobe (ML).

WML(e
jω) =


WR(e

jω) | ω |< 2π

N

0
2π

N
<| ω |≤ π

(5.1.10)

and the sidelobesWSL(e
jω) = WR(e

jω)−WML(e
jω). Thus, (5.1.8) can be written as

XN(e
jω) = X(ejω)⊗WML(e

jω)+X(ejω)⊗WSL(e
jω) (5.1.11)
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FIGURE 5.6
Plot of A(ω) = sin (ωN/2)/ sin (ω/2) for N = 11.

The first convolution in (5.1.11) smoothes rapid variations and suppresses narrow peaks
inX(ejω), whereas the second convolution introduces ripples in smooth regions ofX(ejω)
and can create “false” peaks. Therefore, the spectrum we observe is the convolution of the
actual spectrum with the Fourier transform of the data window. The only way to improve
the estimate is to increase the window length N or to choose another window shape. For
the rectangular window, increasing N results in a narrower mainlobe, and the distortion
is reduced. As N → ∞,WR(e

jω) tends to an impulse train with period 2π and XN(ejω)
tends toX(ejω), as expected. Since in practice the value ofN is always finite, the only way
to improve the estimate XN(ejω) is by properly choosing the shape of the window w(n).
The only restriction on w(n) is that it be of finite duration.

It is known that any time-limited sequencew(n) has a Fourier transformW(ejω) that is
nonzero except at a finite number of frequencies. Thus, from (5.1.8) we see that the estimated
value XN(ejω0) is computed by using all values of X(ejω) weighted byW(ej(ω0−θ)). The
contribution of the sinusoidal components with frequencies ω �= ω0 to the valueXN(ejω0)

introduces an error known as leakage. As the name suggests, energy from one frequency
range “leaks” into another, giving the wrong impression of stronger or weaker frequency
components.

To illustrate the effect of the window shape and duration on the estimated spectrum,
consider the signal

x(n) = cos 0.35πn+ cos 0.4πn+ 0.25 cos 0.8πn (5.1.12)

which has a line spectrum with lines at frequencies ω1 = 0.35π,ω2 = 0.4π, and ω3 =
0.8π . This line spectrum (normalized so that the magnitude is between 0 and 1) is shown
in the top graph of Figure 5.7 over 0 ≤ ω ≤ π . The spectrum XN(ejω) of xN(n) using the
rectangular window is given by

XN(e
jω) = 1

2 [W(ej(ω+ω1))+W(ej(ω−ω1))+W(ej(ω+ω2))+W(ej(ω−ω2))

+ 0.25W(ej(ω+ω3))+ 0.25W(ej(ω−ω3))]
(5.1.13)

The second and the third plots in Figure 5.7 show 2048-point DFTs of xN(n) for a rect-
angular data window with N = 21 and N = 81. We note that the ability to pick out peaks
(resolvability) depends on the duration N − 1 of the data window.

†
To resolve two spectral

lines at ω = ω1 and ω = ω2 using a rectangular window, we should have the difference
|ω1 − ω2| greater than the mainlobe width�ω, which is approximately equal to 2π/(N−1),
in radians per sampling interval, from the plot of A(ω) in Figure 5.6, that is,

|ω1 − ω2| > �ω ≈ 2π

N − 1
or N >

2π

|ω1 − ω2| + 1

†
Since there are N samples in a data window, the number of intervals or durations is N − 1.
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FIGURE 5.7
Spectrum of three sinusoids using rectangular and Hamming
windows.

For a rectangular window of length N , the exact value of �ω is equal to 1.81π/(N − 1).
If N is too small, the two peaks at ω = 0.35π and ω = 0.4π are fused into one, as shown
in the N = 21 plot. When N = 81, the corresponding plot shows a resolvable separation;
however, the peaks have shifted somewhat from their true locations. This is called bias, and
it is a direct result of the leakage from sidelobes. In both cases, the peak at ω = 0.8π can
be distinguished easily (but also has a bias).

Another important observation is that the sidelobes of the data window introduce false
peaks. For a rectangular window, the peak sidelobe level is 13 dB below zero, which is not
a good attenuation. Thus these false peaks have values that are comparable to that of the
true peak at ω = 0.8π , as shown in Figure 5.7. These peaks can be minimized by reducing
the amplitudes of the sidelobes. The rectangular window cannot help in this regard because
of Gibb’s well-known phenomenon associated with it. We need a different window shape.
However, any window other than the rectangular window has a wider mainlobe; hence this
reduction can be achieved only at the expense of the resolution. To illustrate this, consider
the Hamming (Hm) data window, given by

wHm(n) =
0.54− 0.46 cos

2πn

N − 1
0 ≤ n ≤ N − 1

0 otherwise
(5.1.14)

with the approximate width of the mainlobe equal to 8π/(N − 1) and the exact mainlobe
width equal to 6.27π/(N − 1). The peak sidelobe level is 43 dB below zero, which is
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considerably better than that of the rectangular window. The Hamming window is obtained
by using the hamming(N) function in Matlab.

The bottom plot in Figure 5.7 shows the 2048-point DFT of the signal xN(n) for a
Hamming window with N = 81. Now the peak at ω = 0.8π is more prominent than
before, and the sidelobes are almost suppressed. Note also that since the mainlobe width
of the Hamming window is wider, the peaks have a wider base—so much so that the first
two frequencies are barely recognized. We can correct this problem by choosing a larger
window length. This interplay between the shape and the duration of a window function is
one of the important issues and, as we will see in Section 5.3, produces similar effects in
the spectral analysis of random signals.

Some useful windows

The design of windows for spectral analysis applications has drawn a lot of attention and
is examined in detail in Harris (1978). We have already discussed two windows, namely,
the rectangular and the Hamming window. Another useful window in spectrum analysis
is due to Hann and is mistakenly known as the Hanning window. There are several such
windows with varying degrees of tradeoff between resolution (mainlobe width) and leakage
(peak sidelobe level). These windows are known as fixed windows since each provides a
fixed amount of leakage that is independent of the length N . Unlike fixed windows, there
are windows that contain a design parameter that can be used to trade between resolution
and leakage. Two such windows are the Kaiser window and the Dolph-Chebyshev window,
which are widely used in spectrum estimation. Figure 5.8 shows the time-domain window
functions and their corresponding frequency-domain log-magnitude plots in decibels for
these five windows. The important properties such as peak sidelobe level and mainlobe
width of these windows are compared in Table 5.1.

TABLE 5.1

Comparison of properties of commonly used windows. Each window is assumed to be
of length N .

Window Peak sidelobe Approximate Exact
type level (dB) mainlobe width mainlode width

Rectangular −13
4π

N − 1

1.81π

N − 1

Hanning −32
8π

N − 1

5.01π

N − 1

Hamming −43
8π

N − 1

6.27π

N − 1

Kaiser −A —
A− 8

2.285N − 1

Dolph-Chebyshev −A — cos−1

(cosh
cosh−1 10A/20

N − 1

)−1


Hanning window. This window is given by the function

wHn(n) =
0.5− 0.5 cos

2πn

N − 1
0 ≤ n ≤ N − 1

0 otherwise
(5.1.15)

which is a raised cosine function. The peak sidelobe level is 32 dB below zero, and the
approximate mainlobe width is 8π/(N−1)while the exact mainlobe width is 5.01π/(N−
1). In Matlab this window function is obtained through the function hanning(N).
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Kaiser window. This window function is due to J. F. Kaiser and is given by

wK(n) =


I0

{
β
√

1− [1− 2n/(N − 1)]2
}

I0(β)
0 ≤ n ≤ N − 1

0 otherwise

(5.1.16)

where I0(·) is the modified zero-order Bessel function of the first kind and β is a win-
dow shape parameter that can be chosen to obtain various peak sidelobe levels and the

0 10 20
0

1

Time domain

−0.5 0 0.5

−13

  0

Frequency domain

D
ec

ib
el

s

0 10 20
0

1

−0.5 0 0.5

−32

  0

D
ec

ib
el

s

0 10 20
0

1

−0.5 0 0.5

−40

  0

D
ec

ib
el

s

0 10 20
0

1

−0.5 0 0.5

−28

  0

D
ec

ib
el

s

0 10 20
0

1

n
−0.5 0 0.5

−40

  0

D
ec

ib
el

s

Normalized frequency

w
R

(n
)

w
H

n(n
)

w
H

m
(n

)
w

K
(n

)
w

D
C

(n
)

FIGURE 5.8
Time-domain window functions and their frequency-domain characteristics for rectangular, Hanning,
Hamming, Kaiser, and Dolph-Chebyshev windows.
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corresponding mainlobe widths. Clearly, β = 0 results in the rectangular window while
β > 0 results in lower sidelobe leakage at the expense of a wider mainlobe. Kaiser has
developed approximate design equations for β. Given a peak sidelobe level of A dB below
the peak value, the approximate value of β is given by

β �


0 A ≤ 21

0.5842(A− 21)0.4 + 0.07886(A− 21) 21 < A ≤ 50

0.1102(A− 8.7) A > 50

(5.1.17)

Furthermore, to achieve the given values of the peak sidelobe level of A and the mainlobe
width �ω, the length N must satisfy

�ω = A− 8

2.285(N − 1)
(5.1.18)

In Matlab this window is given by the function kaiser(N,beta).

Dolph-Chebyshev window. This window is characterized by the property that the peak
sidelobe levels are constant; that is, it has an “equiripple” behavior. The windowwDC(n) is
obtained as the inverse DFT of the Chebyshev polynomial evaluated at N equally spaced
frequencies around the unit circle. The details of this window function computation are
available in Harris (1978). The parameters of the Dolph-Chebyshev window are the constant
sidelobe level A in decibels, the window length N , and the mainlobe width�ω. However,
only two of the three parameters can be independently specified. In spectrum estimation,
parameters N and A are generally specified. Then �ω is given by

�ω = cos−1

(cosh
cosh−1 10A/20

N − 1

)−1
 (5.1.19)

In Matlab this window is obtained through the function chebwin(N,A).
To illustrate the usefulness of these windows, consider the same signal containing

three frequencies given in (5.1.12). Figure 5.9 shows the spectrum of xN(n) using the
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1 Hanning window
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FIGURE 5.9
Spectrum of three sinusoids using Hanning, Kaiser, and
Chebyshev windows.
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Hanning, Kaiser, and Chebyshev windows for length N = 81. The Kaiser and Chebyshev
window parameters are adjusted so that the peak sidelobe level is 40 dB or below. Clearly,
these windows have suppressed sidelobes considerably compared to that of the rectangular
window but the main peaks are wider with negligible bias. The two peaks in the Hanning
window spectrum are barely resolved because the mainlobe width of this window is much
wider than that of the rectangular window. The Chebyshev window spectrum has uniform
sidelobes while the Kaiser window spectrum shows decreasing sidelobes away from the
mainlobes.

5.1.5 Summary

In conclusion, the frequency analysis of deterministic signals requires a careful study of
three important steps. First, the continuous-time signal xc(t) is sampled to obtain samples
x(n) that are collected into blocks or frames. The frames are “conditioned” to minimize
certain errors by multiplying by a window sequencew(n) of lengthN . Finally the windowed
frames xN(n) are transformed to the frequency domain using the DFT. The resulting DFT
spectrum X̃N(k) is a faithful replica of the actual spectrum Xc(F ) if the following errors
are sufficiently small.

Aliasing error. This is an error due to the sampling operation. If the sampling rate is
sufficiently high and if the antialiasing filter is properly designed so that most of the
frequencies of interest are represented in x(n), then this error can be made smaller.
However, a certain amount of aliasing should be expected. The sampling principle
and aliasing are discussed in Section 2.2.2.

Errors due to finite-length window. There are several errors such as resolution loss,
bias, and leakage that are attributed to the windowing operation. Therefore, a care-
ful design of the window function and its length is necessary to minimize these
errors. These topics were discussed in Section 5.1.4. In Table 5.1 we summarize
key properties of five windows discussed in this section that are useful for spectrum
estimation.

Spectrum reconstruction error. The DFT spectrum X̃N(k) is a number sequence that
must be reconstructed into a continuous function for the purpose of plotting. A
practical choice for this reconstruction is the first-order polynomial interpolation.
This reconstruction error can be made smaller (and in fact comparable to the screen
resolution) by choosing a large number of frequency samples, which can be achieved
by the zero padding operation in the DFT. It was discussed in Section 5.1.3.

With the understanding of frequency analysis concepts developed in this section, we
are now ready to tackle the problem of spectral analysis of stationary random signals. From
Chapter 3, we recognize that the true spectral values can only be obtained as estimates. This
requires some understanding of key concepts from estimation theory, which is developed
in Section 3.6.

5.2 ESTIMATION OF THE AUTOCORRELATION OF STATIONARY
RANDOM SIGNALS

The second-order moments of a stationary random sequence—that is, the mean value µx ,
the autocorrelation sequence rx(l), and the PSD Rx(e

jω)—play a crucial role in signal
analysis and signal modeling. In this section, we discuss the estimation of the autocorrelation
sequence rx(l) using a finite data record {x(n)}N−1

0 of the process.
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For a stationary process x(n), the most widely used estimator of rx(l) is given by the
sample autocorrelation sequence

r̂x(l) �


1

N

N−l−1∑
n=0

x(n+ l)x∗(n) 0 ≤ l ≤ N − 1

r̂∗x (−l) −(N − 1) ≤ l < 0

0 elsewhere

(5.2.1)

or, equivalently,

r̂x(l) �


1

N

N−1∑
n=l

x(n)x∗(n− l) 0 ≤ l ≤ N − 1

r̂∗x (−l) −(N − 1) ≤ l < 0

0 elsewhere

(5.2.2)

which is a random sequence. Note that without further information beyond the observed
data {x(n)}N−1

0 , it is not possible to provide reasonable estimates of rx(l) for |l| ≥ N .
Even for lag values |l| close to N , the correlation estimates are unreliable since very few
x(n+ |l|)x(n) pairs are used. A good rule of thumb provided by Box and Jenkins (1976) is
that N should be at least 50 and that |l| ≤ N/4. The sample autocorrelation r̂x(l) given in
(5.2.1) has a desirable property that for each l ≥ 1, the sample autocorrelation matrix

R̂x =


r̂x(0) r̂∗x (1) · · · r̂∗x (N − 1)

r̂x(1) r̂x(0) · · · r̂∗x (N − 2)
...

...
. . .

...

r̂x(N − 1) r̂x(N − 2) · · · r̂x(0)

 (5.2.3)

is nonnegative definite (see Section 3.5.1). This property is explored in Problem 5.5. Mat-
lab provides functions to compute the correlation matrix R̂x (for example, corr), given the
data {x(n)}N−1

n=0 ; however, the book toolbox function rx = autoc(x,L); computes r̂x(l)
according to (5.2.1) very efficiently.

The estimate of covariance γ x(l) from the data record {x(n)}N−1
0 is given by the sample

autocovariance sequence

γ̂ x(l) =


1

N

N−l−1∑
n=0

[x(n+ l)− µ̂x][x∗(n)− µ̂∗x] 0 ≤ l ≤ N − 1

γ̂
∗
x(−l) −(N − 1) ≤ l < 0

0 elsewhere

(5.2.4)

so that the corresponding autocovariance matrix �̂x is nonnegative definite. Similarly, the
sample autocorrelation coefficient sequence ρ̂x(l) is given by

ρ̂x(l) =
γ̂ x(l)

σ̂
2
x

(5.2.5)

In the rest of this section, we assume that x(n) is a zero-mean process and hence r̂x(l) =
γ̂ x(l), so that we can discuss the autocorrelation estimate in detail.

To determine the statistical quality of this estimator, we now consider its mean and
variance.

Mean of r̂x(l). We first note that (5.2.1) can be written as

r̂x(l) = 1

N

∞∑
n=−∞

x(n+ l)w(n+ l)x∗(n)w(n) |l| ≥ 0 (5.2.6)
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w(n) = wR(n) =
{

1 0 ≤ n ≤ N − 1

0 elsewhere
(5.2.7)where

is the rectangular window. The expected value of r̂x(l) is

E{r̂x(l)} = 1

N

∞∑
n=−∞

E{x(n+ l)x∗(n)}w(n+ l)w(n) l ≥ 0

E{r̂x(−l)} = E{r̂∗x (l)} − l ≤ 0and

E{r̂x(l)} = 1

N
rx(l)rw(l) (5.2.8)Therefore

rw(l) = w(l) ∗ w(−l) =
∞∑

n=−∞
w(n)w(n+ l) (5.2.9)where

is the autocorrelation of the window sequence. For the rectangular window

rw(l) = wB(n) �
{
N − |l| |l| ≤ N − 1

0 elsewhere
(5.2.10)

which is the unnormalized triangular or Bartlett window. Thus

E{r̂x(l)} = 1

N
rx(l)wB(n) = rx(l)

(
1− |l|

N

)
wR(n) (5.2.11)

Therefore, we conclude that the relation (5.2.1) provides a biased estimate of rx(l) because
the expected value of r̂x(l) from (5.2.11) is not equal to the true autocorrelation rx(l).
However, r̂x(l) is an asymptotically unbiased estimator since ifN →∞, E{r̂x(l)} → rx(l).
Clearly, the bias is small if r̂x(l) is evaluated for |l| ≤ L, where L is the maximum desired
lag and L� N .

Variance of r̂x(l). An approximate expression for the covariance of r̂x(l) is given by
Jenkins and Watts (1968)

cov{r̂x(l1), r̂x(l2)} � 1

N

∞∑
l=−∞

[rx(l)rx(l + l2 − l1)+ rx(l + l2)rx(l − l1)] (5.2.12)

This indicates that successive values of r̂x(l) may be highly correlated and that r̂x(l) may
fail to die out even if it is expected to. This makes the interpretation of autocorrelation
graphs quite challenging because we do not know whether the variation is real or statistical.

The variance of r̂x(l), which can be obtained by setting l1 = l2 in (5.2.12), tends to zero
asN →∞. Thus, r̂x(l) provides a good estimate of rx(l) if the lag |l| is much smaller than
N . However, as |l| approaches N , fewer and fewer samples of x(n) are used to evaluate
r̂x(l). As a result, the estimate r̂x(l) becomes worse and its variance increases.

Nonnegative definiteness of r̂x(l). An alternative estimator for the autocorrelation se-
quence is given by

řx(l) =


1

N − l
N−l−1∑
n=0

x(n+ l)x∗(n) 0 ≤ l ≤ L < N

ř∗x (−l) −N < −L ≤ l < 0

0 elsewhere

(5.2.13)

Although this estimator is unbiased, it is not used in spectral estimation because of its
negative definiteness. In contrast, the estimator r̂x(l) from (5.2.1) is nonnegative definite,
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and any spectral estimates based on it do not have any negative values. Furthermore, the
estimator r̂x(l) has smaller variance and mean square error than the estimator řx(l) (Jenkins
and Watts 1968). Thus, in this book we use the estimator r̂x(l) defined in (5.2.1).

5.3 ESTIMATION OF THE POWER SPECTRUM OF STATIONARY
RANDOM SIGNALS

From a practical point of view, most stationary random processes have continuous spectra.
However, harmonic processes (i.e., processes with line spectra) appear in several appli-
cations either alone or in mixed spectra (a mixture of continuous and line spectra). We
first discuss the estimation of continuous spectra in detail. The estimation of line spectra is
considered in Chapter 9.

The power spectral density of a zero-mean stationary stochastic process was defined
in (3.3.39) as

Rx(e
jω)

�=
∞∑

l=−∞
rx(l)e

−jωl (5.3.1)

assuming that the autocorrelation sequence rx(l) is absolutely summable. We will deal
with the problem of estimating the power spectrum Rx(e

jω) of a stationary process x(n)
from a finite record of observations {x(n)}N−1

0 of a single realization. The ideal goal is to
devise an estimate that will faithfully characterize the power-versus-frequency distribution
of the stochastic process (i.e., all the sequences of the ensemble) using only a segment of a
single realization. For this to be possible, the estimate should typically involve some kind
of averaging among several realizations or along a single realization.

In some practical applications (e.g., interferometry), it is possible to directly measure
the autocorrelation rx(l), |l| ≤ L < N with great accuracy. In this case, the spectrum
estimation problem can be treated as a deterministic one, as described in Section 5.1. We
will focus on the “stochastic” version of the problem, where Rx(ejω) is estimated from the
available data {x(n)}N−1

0 . A natural estimate ofRx(ejω), suggested by (5.3.1), is to estimate
rx(l) from the available data and then transform it by using (5.3.1).

5.3.1 Power Spectrum Estimation Using the Periodogram

The periodogram is an estimator of the power spectrum, introduced by Schuster (1898) in
his efforts to search for hidden periodicities in solar sunspot data. The periodogram of the
data segment {x(n)}N−1

0 is defined by

R̂x(e
jω) � 1

N

∣∣∣∣∣
N−1∑
n=0

v(n)e−jωn
∣∣∣∣∣
2

= 1

N
|V (ejω)|2 (5.3.2)

where V (ejω) is the DTFT of the windowed sequence

v(n) = x(n)w(n) 0 ≤ n ≤ N − 1 (5.3.3)

The above definition of the periodogram stems from Parseval’s relation (2.2.10) on the
power of a signal. The window w(n), which has length N , is known as the data window.
Usually, the term periodogram is used when w(n) is a rectangular window. In contrast, the
term modified periodogram is used to stress the use of nonrectangular windows. The values
of the periodogram at the discrete set of frequencies {ωk = 2πk/N}N−1

0 can be calculated
by ˜̂

Rx(k) � R̂x(ej2πk/N) = 1

N
|Ṽ (k)|2 k = 0, 1, . . . , N − 1 (5.3.4)
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where Ṽ (k) is the N -point DFT of the windowed segment v(n). In Matlab, the modified
periodogram computation is implemented by using the function

Rx = psd(x,Nfft,Fs,window(N),’none’);

where window is the name of any Matlab-provided window function (e.g., hamming); Nfft
is the size of the DFT, which is chosen to be larger thanN to obtain a high-density spectrum
(see zero padding in Section 5.1.1); and Fs is the sampling frequency, which is used for
plotting purposes. If the window boxcar is used, then we obtain the periodogram estimate.

The periodogram can be expressed in terms of the autocorrelation estimate r̂v(l) of the
windowed sequence v(n) as (see Problem 5.9)

R̂x(e
jω) =

N−1∑
l=−(N−1)

r̂v(l) e
−jωl (5.3.5)

which shows that R̂x(ejω) is a “natural” estimate of the power spectrum. From (5.3.2)
it follows that R̂x(ejω) is nonnegative for all frequencies ω. This results from the fact
that the autocorrelation sequence r̂(l), 0 ≤ |l| ≤ N − 1, is nonnegative definite. If we
use the estimate řx(l) from (5.2.13) in (5.3.5) instead of r̂x(l), the obtained periodogram
may assume negative values, which implies that řx(l) is not guaranteed to be nonnegative
definite.

The inverse Fourier transform of R̂x(ejω) provides the estimated autocorrelation r̂v(l),
that is,

r̂v(l) = 1

2π

∫ π

−π
R̂x(e

jω)ejωl dω (5.3.6)

because r̂v(l) and R̂x(ejω) form a DTFT pair. Using (5.3.6) and (5.2.1) for l = 0, we have

r̂v(0) = 1

N

N−1∑
n=0

|v(n)|2 = 1

2π

∫ π

−π
R̂x(e

jω) dω (5.3.7)

Thus, the periodogram R̂x(e
jω) shows how the power of the segment {v(n)}N−1

0 , which
provides an estimate of the variance of the process x(n), is distributed as a function of
frequency.

Filter bank interpretation. The above assertion that the periodogram describes a dis-
tribution of power as a function of frequency can be interpreted in a different way, in which
the power estimate over a narrow frequency band is attributed to the output power of a
narrow-bandpass filter. This leads to the well-known filter bank interpretation of the pe-
riodogram. To develop this interpretation, consider the basic (unwindowed) periodogram
estimator R̂x(ejω) in (5.3.2), evaluated at a frequency ωk � k�ω � 2πk/N , which can be
expressed as

R̂x(e
jωk ) = 1

N

∣∣∣∣∣
N−1∑
n=0

x(n)e−jωkn
∣∣∣∣∣
2

= 1

N

∣∣∣∣∣
N−1∑
n=0

x(n)ej2πk−jωkn
∣∣∣∣∣
2

= 1

N

∣∣∣∣∣
N−1∑
n=0

x(n)ejωk(N−n)
∣∣∣∣∣
2

since ωkN = 2πk

= 1

N

∣∣∣∣∣
N−1∑
m=0

x(N −m)ejωkm
∣∣∣∣∣
2

(5.3.8)
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Clearly, the term inside the absolute value sign in (5.3.8) can be interpreted as a convolution
of x(n) and ejωkn, evaluated at n = N . Define

hk(n) �


1

N
ejωkn 0 ≤ n ≤ N − 1

0 otherwise
(5.3.9)

as the impulse response of a linear system whose frequency response is given by

Hk(e
jω) = F[hk(n)] = 1

N

N−1∑
n=0

ejωkne−jωn

= 1

N

N−1∑
n=0

e−j (ω−ωk)n = 1

N

e−jN(ω−ωk) − 1

e−j (ω−ωk) − 1
(5.3.10)

= 1

N

sin[N(ω − ωk)/2]
sin[(ω − ωk)/2] e

−j (N−1)(ω−ωk)/2

which is a linear-phase, narrow-bandpass filter centered at ω = ωk . The 3-dB bandwidth
of this filter is proportional to 2π/N rad per sampling interval (or 1/N cycles per sampling
interval). A plot of the magnitude response |Hk(ejω)|, for ωk = π/2 andN = 50, is shown
in Figure 5.10, which evidently shows the narrowband nature of the filter.
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FIGURE 5.10
The magnitude of the frequency
response of the narrow-bandpass
filter for ωk = π/2 and N = 50.

Continuing, we also define the output of the filter hk(n) by yk(n), that is,

yk(n) � hk(n) ∗ x(n) = 1

N

N−1∑
m=0

x(n−m)ejωkm (5.3.11)

Then (5.3.8) can be written as

R̂x(e
jωk ) = N |yk(N)|2 (5.3.12)

Now consider the average power in yk(n), which can be evaluated using the spectral density
as [see (3.3.45) and (3.4.22)]

E{|yk(n)|2} = 1

2π

∫ π

−π
Rx(e

jω)|Hk(ejω)|2 dω

≈ �ω
2π
Rx(e

jωk ) = 1

N
Rx(e

jωk ) (5.3.13)

sinceHk(ejω) is a narrowband filter. If we estimate the average powerE{|yk(n)|2} using one
sample yk(N), then from (5.3.13) the estimated spectral density is the periodogram given
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by (5.3.12), which says that the kth DFT sample of the periodogram [see (5.3.4)] is given
by the average power of a single N th output sample of the ωk-centered narrow-bandpass
filter. Now imagine one such filter for each ωk , k = 0, . . . , N − 1, frequencies. Thus we
have a bank of filters, each tuned to the discrete frequency (based on the data record length),
providing the periodogram estimates every N samples. This filter bank is inherently built
into the periodogram and hence need not be explicitly implemented. The block diagram of
this filter bank approach to the periodogram computation is shown in Figure 5.11.

N| ⋅ |2H0(e jv)
y0(n) y0(N)

y1(n) y1(N)

yN−1(n) yN−1(N)

H1(e jv)

HN−1(e jv)

n = N − 1

x(n)

… … …

R
~

x(0)

R
~

x(1)

R
~

x(N − 1)

N| ⋅ |2

N| ⋅ |2

FIGURE 5.11
The filter bank approach to the periodogram computation.

In Section 5.1, we observed that the periodogram of a deterministic signal approaches
the true energy spectrum as the number of observations N → ∞. To see how the power
spectrum of random signals is related to the number observations, we consider the following
example.

EXAMPLE 5.3.1 (PERIODOGRAM OF A SIMULATED WHITE NOISE SEQUENCE). Let x(n)
be a stationary white Gaussian noise with zero-mean and unit variance. The theoretical spectrum
of x(n) is

Rx(e
jω) = σ 2

x = 1 − π < ω ≤ π
To study the periodogram estimate, 50 differentN -point records of x(n) were generated using a
pseudorandom number generator. The periodogram R̂x(e

jω) of each record was computed for
ω = ωk = 2πk/1024, k = 0, 1, . . . , 512, that is, with NFFT = 1024, from the available data
using (5.3.4) for N = 32, 128, and 256. These results in the form of periodogram overlays (a
Monte Carlo simulation) and their averages are shown in Figure 5.12. We notice that R̂x(ejω)
fluctuates so erratically that it is impossible to conclude from its observation that the signal has a
flat spectrum. Furthermore, the size of the fluctuations (as seen from the ensemble average) is not
reduced by increasing the segment lengthN . In this sense, we should not expect the periodogram
R̂x(e

jω) to converge to the true spectrum Rx(e
jω) in some statistical sense as N →∞. Since

Rx(e
jω) is constant over frequency, the fluctuations of R̂x(ejω) can be characterized by their

mean, variance, and mean square error over frequency for each N and are given in Table 5.2. It
can be seen that although the mean value tends to 1 (true value), the standard deviation is not
reduced asN increases. In fact, it is close to 1; that is, it is of the order of the size of the quantity to
be estimated. This illustrates that the periodogram is not a good estimate of the power spectrum.

Since for each value of ω, R̂x(ejω) is a random variable, the erratic behavior of the
periodogram estimator, which is illustrated in Figure 5.12, can be explained by considering
its mean, covariance, and variance.
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TABLE 5.2

Performance of periodogram for white Gaussian
noise signal in Example 5.3.1.

N 32 128 256

Ê[Rx(ejωk )] 0.7829 0.8954 0.9963
ˆvar[Rx(ejωk )] 0.7232 1.0635 1.1762
ˆMSE 0.7689 1.07244 1.1739
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FIGURE 5.12
Periodograms of white Gaussian noise in Example 5.3.1.

Mean of R̂x(ejω). Taking the mathematical expectation of (5.3.5) and using (5.2.8),
we obtain

E{R̂x(ejω)} =
N−1∑

l=−(N−1)

E{r̂v(l)}e−jωl = 1

N

N−1∑
l=−(N−1)

rx(l)rw(l)e
−jωl (5.3.14)

Since E{R̂x(ejω)} �= Rx(e
jω), the periodogram is a biased estimate of the true power

spectrum Rx(ejω).



February 4, 2005 11:20 e56-ch5 Sheet number 23 Page number 217 black

217

section 5.3
Estimation of the Power
Spectrum of Stationary
Random Signals

Equation (5.3.14) can be interpreted in the frequency domain as a periodic convolution.
Indeed, using the frequency domain convolution theorem, we have

E{R̂x(ejω)} = 1

2πN

∫ π

−π
Rx(e

jθ )Rw(e
j (ω−θ)) dθ (5.3.15)

Rw(e
jω) = |W(ejω)|2 (5.3.16)where

is the spectrum of the window. Thus, the expected value of the periodogram is obtained by
convolving the true spectrum Rx(e

jω) with the spectrum Rw(e
jω) of the window. This is

equivalent to windowing the true autocorrelation rx(l) with the correlation or lag window
rw(l) = w(l) ∗ w(−l), where w(n) is the data window.

To understand the implications of (5.3.15), consider the rectangular data window
(5.2.7). Using (5.2.11), we see that (5.3.14) becomes

E{R̂x(ejω)} =
N−1∑

l=−(N−1)

(
1− |l|

N

)
rx(l)e

−jωl (5.3.17)

For nonperiodic autocorrelations, the value of rx(l) becomes negligible for large values of
|l|. Hence, as the record length N increases, the term (1 − |l|/N) → 1 for all l, which
implies that

lim
N→∞E{R̂x(e

jω)} = Rx(ejω) (5.3.18)

that is, the periodogram is an asymptotically unbiased estimator ofRx(ejω). In the frequency
domain, we obtain

Rw(e
jω) = F{wR(l) ∗ wR(−l)} = |WR(e

jω)|2 =
[

sin (ωN/2)

sin (ω/2)

]2

(5.3.19)

WR(e
jω) = e−jω(N−1)/2 sin (ωN/2)

sin (ω/2)
(5.3.20)where

is the Fourier transform of the rectangular window. The spectrum Rw(ejω), in (5.3.19), of
the correlation window rw(l) approaches a periodic impulse train as the window length

increases.
†

As a result, E{R̂x(ejω)} approaches the true power spectrum Rx(e
jω) as N

approaches∞.
The result (5.3.18) holds for any window that satisfies the following two conditions:

1. The window is normalized such that
N−1∑
n=0

|w(n)|2 = N (5.3.21)

This condition is obtained by noting that, for asymptotic unbiasedness, we wantRw(ejω)/
N in (5.3.15) to be an approximation of an impulse in the frequency domain. Since the
area under the impulse function is unity, using (5.3.16) and Parseval’s theorem, we have

1

2πN

∫ π

−π
|W(ejω)|2 dω = 1

N

N−1∑
n=0

|w(n)|2 = 1 (5.3.22)

2. The width of the mainlobe of the spectrumRw(ejω) of the correlation window decreases
as 1/N . This condition guarantees that the area under Rw(ejω) is concentrated at the
origin asN becomes large. For more precise conditions see Brockwell and Davis (1991).

†
This spectrum is sometimes referred to as the Fejer kernel.
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The bias is introduced by the sidelobes of the correlation window through leakage,
as illustrated in Section 5.1. Therefore, we can reduce the bias by using the modified
periodogram and a “better” window. Bias can be avoided if either N = ∞, in which case
the spectrum of the window is a periodic train of impulses, or Rx(ejω) = σ 2

x , that is, x(n)
has a flat power spectrum. Thus, for white noise, R̂x(ejω) is unbiased for allN . This fact was
apparent in Example 5.3.1 and is very important for practical applications. In the following
example, we illustrate that the bias becomes worse as the dynamic range of the spectrum
increases.

EXAMPLE 5.3.2 (BIAS AND LEAKAGE PROPERTIES OF THE PERIODOGRAM). Consider
an AR(2) process with

a2 = [1 − 0.75 0.5]T d0 = 1 (5.3.23)

and an AR(4) process with

a4 = [1 − 2.7607 3.8106 − 2.6535 0.9238]T d0 = 1 (5.3.24)

where w(n) ∼ WN(0, 1). Both processes have been used extensively in the literature for power
spectrum estimation studies (Percival and Walden 1993). Their power spectrum is given by (see
Chapter 4)

Rx(e
jω) = σ 2

wd0

|A(ejω)|2 =
σ 2
w∣∣∣∣∣∣

p∑
k=0

ake
jωk

∣∣∣∣∣∣
2

(5.3.25)

For simulation purposes, N = 1024 samples of each process were generated. The sample
realizations and the shapes of the two power spectra in (5.3.25) are shown in Figure 5.13. The
dynamic range of the two spectra, that is, max

ω
Rx(e

jω)/ min
ω
Rx(e

jω), is about 15 and 65 dB,

respectively.
From the sample realizations, periodograms and modified periodograms, based on the Han-

ning window, were computed by using (5.3.4) atNFFT = 1024 frequencies. These are shown in
Figure 5.14. The periodograms for the AR(2) and AR(4) processes, respectively, are shown in the
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FIGURE 5.13
Sample realizations and power spectra of the AR(2) and AR(4) processes used in Example 5.3.2.
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FIGURE 5.14
Illustration of properties of periodogram as a power spectrum estimator.

top row while the modified periodograms for the same processes are shown in the bottom row.
These plots illustrate that the periodogram is a biased estimator of the power spectrum. In the
case of the AR(2) process, since the spectrum has a small dynamic range (15 dB), the bias in the
periodogram estimate is not obvious; furthermore, the windowing in the modified periodogram
did not show much improvement. On the other hand, the AR(4) spectrum has a large dynamic
range, and hence the bias is clearly visible at high frequencies. This bias is clearly reduced by
windowing of the data in the modified periodogram. In both cases, the random fluctuations are
not reduced by the data windowing operation.

EXAMPLE 5.3.3 (FREQUENCY RESOLUTION PROPERTY OF THE PERIODOGRAM). Con-
sider two unit-amplitude sinusoids observed in unit variance white noise. Let

x(n) = cos (0.35πn+ φ1)+ cos (0.4πn+ φ2)+ ν(n)
where φ1 and φ2 are jointly independent random variables uniformly distributed over [−π, π ]
and ν(n) is a unit-variance white noise. Since two frequencies, 0.35π and 0.4π , are close, we
will need (see Table 5.1)

N − 1 >
1.81π

0.4π − 0.35π
or N > 37

To obtain a periodogram ensemble, 50 realizations of x(n) for N = 32 and N = 64 were
generated, and their periodograms were computed. The plots of these periodogram overlays and
the corresponding ensemble average for N = 32 and N = 64 are shown in Figure 5.15. For
N = 32, frequencies in the periodogram cannot be resolved, as expected; but for N = 64 it is
possible to separate the two sinusoids with ease. Note that the modified periodogram (i.e., data
windowing) will not help since windowing increases smoothing and smearing of peaks.

The case of nonzero mean. In the periodogram method of spectrum analysis in this
section, we assumed that the random signal has zero mean. If a random signal has nonzero
mean, it should be estimated using (3.6.20) and then removed from the signal prior to
computing its periodogram. This is because the power spectrum of a nonzero mean signal
has an impulse at the zero frequency. If this mean is relatively large, then because of the
leakage inherent in the periodogram, this mean will obscure low-amplitude, low-frequency
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components of the spectrum. Even though the estimate is not an exact value, its removal
often provides better estimates, especially at low frequencies.

Covariance of R̂x(ejω). Obtaining an expression for the covariance of the periodogram
is a rather complicated process. However, it has been shown (Jenkins and Watts 1968) that

cov{R̂x(ejω1), R̂x(e
jω2)} � Rx(ejω1)Rx(e

jω2)

({
sin [(ω1 + ω2)N/2]
N sin [(ω1 + ω2)/2]

}2

+
{

sin [(ω1 − ω2)N/2]
N sin [(ω1 − ω2)/2]

}2
) (5.3.26)

This expression applies to stationary random signals with zero mean and Gaussian prob-
ability density. The approximation becomes exact if the signal has a flat spectrum (white
noise). Although this approximation deteriorates for non-Gaussian probability densities,
the qualitative results that one can draw from this approximation appear to hold for a rather
broad range of densities.

From (5.3.26), for ω1 = (2π/N)k1 and ω2 = (2π/N)k2 with k1, k2 integers, we have

cov{R̂x(ejω1)R̂x(e
jω2)} � 0 for k1 �= k2 (5.3.27)

Thus, values of the periodogram spaced in frequency by integer multiples of 2π/N are ap-
proximately uncorrelated.As the record lengthN increases, these uncorrelated periodogram
samples come closer together, and hence the rate of fluctuations in the periodogram in-
creases. This explains the results in Figure 5.12.
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FIGURE 5.15
Illustration of the frequency resolution property of the periodogram in Example 5.3.3.
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Variance of R̂x(ejω). The variance of the periodogram at a particular frequency ω =
ω1 = ω2 can be obtained from (5.3.26)

var{R̂x(ejω)} � R2
x(e

jω)

[
1+

(
sinωN

N sinω

)2
]

(5.3.28)

For large values of N , the variance of R̂x(ejω) can be approximated by

var{R̂x(ejω)} �
{
R2
x(e

jω) 0 < ω < π

2R2
x(e

jω) ω = 0, π
(5.3.29)

This result is crucial, because it shows that the variance of the periodogram (estimate)
remains at the level of R2

x(e
jω) (quantity to be estimated), independent of the record length

N used. Furthermore, since the variance does not tend to zero asN →∞, the periodogram
is not a consistent estimator; that is, its distribution does not tend to cluster more closely
around the true spectrum as N increases.

†

This behavior was illustrated in Example 5.3.1.The variance of R̂x(ejωk ) fails to de-
crease as N increases because the number of periodogram values R̂x(ejωk ), k = 0, 1, . . . ,
N − 1, is always equal to the length N of the data record.

EXAMPLE 5.3.4 ( COMPARISON OF PERIODOGRAM AND MODIFIED PERIODOGRAM).

Consider the case of three sinusoids discussed in Section 5.1.4. In particular, we assume that
these sinusoids are observed in white noise with

x(n) = cos (0.35πn+ φ1)+ cos (0.4πn+ φ2)+ 0.25 cos (0.8πn+ φ3)+ ν(n)
where φ1, φ2, and φ3 are jointly independent random variables uniformly distributed over
[−π, π ] and ν(n) is a unit-variance white noise. An ensemble of 50 realizations of x(n) was
generated using N = 128. The periodograms and the Hamming window–based modified peri-
odograms of these realizations were computed, and the results are shown in Figure 5.16. The
top row of the figure contains periodogram overlays and the corresponding ensemble average
for the unwindowed periodogram, and the bottom row shows the same for the modified peri-
odogram. Spurious peaks (especially near the two close frequencies) in the periodogram have
been suppressed by the data windowing operation in the modified periodogram; hence the peak
corresponding to 0.8π is sufficiently enhanced. This enhancement is clearly at the expense of
the frequency resolution (or smearing of the true peaks), which is to be expected. The overall
variance of the noise floor is still not reduced.

Failure of the periodogram

To conclude, we note that the periodogram in its “basic form” is a very poor estimator
of the power spectrum function. The failure of the periodogram when applied to random
signals is uniquely pointed out in Jenkins and Watts (1968, p. 213):

The basic reason why Fourier analysis breaks down when applied to time series is that it is based
on the assumption of fixed amplitudes, frequencies and phases. Time series, on the other hand,
are characterized by random changes of frequencies, amplitudes and phases. Therefore it is not
surprising that Fourier methods need to be adapted to account for the random nature of a time
series.

The attempt at improving the periodogram by windowing the available data, that is, by
using the modified periodogram in Example 5.3.4, showed that the presence and the length of
the window had no effect on the variance. The major problems with the periodogram lie in its
variance, which is on the order ofR2

x(e
jω), as well as in its erratic behavior. Thus, to obtain a

better estimator, we should reduce its variance; that is, we should “smooth” the periodogram.

†
The definition of the PSD byRx(ejω) = limN→∞ R̂x(ejω) is not valid because even if limN→∞ E{R̂x(ejω)} =
Rx(e

jω), the variance of R̂x(ejω) does not tend to zero as N →∞ (Papoulis 1991).
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From the previous discussion, it follows that the sequence ˜̂Rx(k), k = 0, 1, . . . , N − 1,
of the harmonic periodogram components can be reasonably assumed to be a sequence of
uncorrelated random variables. Furthermore, it is well known that the variance of the sum
of K uncorrelated random variables with the same variance is 1/K times the variance of
one of these individual random variables. This suggests two ways of reducing the variance,
which also lead to smoother spectral estimators:

• Average contiguous values of the periodogram.
• Average periodograms obtained from multiple data segments.

It should be apparent that owing to stationarity, the two approaches should provide compa-
rable results under similar circumstances.

5.3.2 Power Spectrum Estimation by Smoothing a Single Periodogram—
The Blackman-Tukey Method

The idea of reducing the variance of the periodogram through smoothing using a moving-
average filter was first proposed by Daniel (1946). The estimator proposed by Daniel is a
zero-phase moving-average filter, given by

R̂(PS)
x (ejωk ) � 1

2M + 1

M∑
j=−M

R̂x(e
jωk−j )

�=
M∑

j=−M
W(ejωj )R̂x(e

jωk−j ) (5.3.30)

where ωk = (2π/N)k, k = 0, 1, . . . , N − 1,W(ejωj ) � 1/(2M + 1), and the superscript
(PS) denotes periodogram smoothing. Since the samples of the periodogram are approxi-
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Periodogram overlay: N = 128
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mately uncorrelated,

var{R̂(PS)
x (ejωk )} � 1

2M + 1
var{R̂x(ejωk )} (5.3.31)

that is, averaging 2M + 1 consecutive spectral lines reduces the variance by a factor of
2M + 1. The quantity �ω ≈ (2π/N)(2M + 1) determines the frequency resolution, since
any peaks within the�ω range are smoothed over the entire interval�ω into a single peak
and cannot be resolved. Thus, increasing M reduces the variance (resulting in a smoother
spectrum estimate), at the expense of spectral resolution. This is the fundamental tradeoff
in practical spectral analysis.

Blackman-Tukey approach

The discrete moving average in (5.3.30) is computed in the frequency domain. We now
introduce a better and simpler way to smooth the periodogram by operating on the estimated
autocorrelation sequence. To this end, we note that the continuous frequency equivalent of
the discrete convolution formula (5.3.30) is the periodic convolution

R̂(PS)
x (ejω) = 1

2π

∫ π

−π
R̂x(e

j (ω−θ))Wa(ejθ ) dθ = R̂x(ejω)⊗Wa(ejω) (5.3.32)

whereWa(ejω) is a periodic function of ω with period 2π , given by

Wa(e
jω) =


1

�ω
|ω| < �ω

2

0
�ω
2
≤ ω ≤ π

(5.3.33)

By using the convolution theorem, (5.3.32) can be written as

R̂(PS)
x (ejω) =

L−1∑
l=−(L−1)

r̂x(l)wa(l)e
−jωl (5.3.34)

where wa(l) is the inverse Fourier transform of Wa(ejω) and L < N . As we have already
mentioned, the window wa(l) is known as the correlation or lag window.

†
The correlation

window corresponding to (5.3.33) is

wa(l) = sin (l�ω/2)
πl

−∞ < l <∞ (5.3.35)

Since wa(l) has infinite duration, its truncation at |l| = L ≤ N creates ripples in Wa(ejω)
(Gibbs effect). To avoid this problem, we use correlation windows with finite duration, that
is, wa(l) = 0 for |l| > L ≤ N . For real sequences, where r̂x(l) is real and even, wa(l) [and
hence Wa(ejω)] should be real and even. Given that R̂x(ejω) is nonnegative, a sufficient
(but not necessary) condition that R̂(PS)

x (ejω) be nonnegative is thatWa(ejω) ≥ 0 for all ω.
This condition holds for the Bartlett (triangular) and Parzen (see Problem 5.11) windows,
but it does not hold for the Hamming, Hanning, or Kaiser window.

Thus, we note that smoothing the periodogram R̂x(e
jω) by convolving it with the

spectrum Wa(e
jω) = F{wa(l)} is equivalent to windowing the autocorrelation estimate

r̂x(l) with the correlation window wa(l). This approach to power spectrum estimation,
which was introduced by Blackman and Tukey (1959), involves the following steps:

†
The term spectral window is quite often used forWa(ejω) = F{wa(l)}, the Fourier transform of the correlation

window. However, this term is misleading becauseWa(ejω) is essentially a frequency-domain impulse response.
We use the term correlation window for wa(l) and the term Fourier transform of the correlation window for
Wa(e

jω).
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1. Estimate the autocorrelation sequence from the unwindowed data.
2. Window the obtained autocorrelation samples.
3. Compute the DTFT of the windowed autocorrelation as given in (5.3.34).

A pictorial comparison between the theoretical [i.e., using (5.3.32)] and the above practi-
cal computation of power spectrum using the single-periodogram smoothing is shown in
Figure 5.17.

0 N − 1

DFT using FFT

Signal data record

THEORY

COMPUTE

PRACTICE

Periodogram: Rx(e jv)

Convolution:
Rx(e

jv)         Wa(e jv)
 Windowing:
{r̂x(l )wa(l )}

Autocorrelation: {r̂x(l )} L−1
–(L−1)

–(L−1)

R̂x     (e
jv)

R̂x     (e
jv)|v =

L−1

2k
NFFT

ˆ

(PS)

(PS)

ˆ

FIGURE 5.17
Comparison of the theory and practice of the Blackman-Tukey
method.

The resolution of the Blackman-Tukey power spectrum estimator is determined by the
duration 2L − 1 of the correlation window. For most correlation windows, the resolution
is measured by the 3-dB bandwidth of the mainlobe, which is on the order of 2π/L rad per
sampling interval.

The statistical quality of the Blackman-Tukey estimate R̂(PS)
x (ejω) can be evaluated by

examining its mean, covariance, and variance.

Mean of R̂
(PS)
x (ejω). The expected value of the smoothed periodogram R̂

(PS)
x (ejω)

can be obtained by using (5.3.34) and (5.2.11). Indeed, we have

E{R̂(PS)
x (ejω)} =

L−1∑
l=−(L−1)

E{r̂x(l)}wa(l)e−jωl

=
L−1∑

l=−(L−1)

rx(l)

(
1− |l|

N

)
wa(l)e

−jωl
(5.3.36)

or, using the frequency convolution theorem, we have

E{R̂(PS)
x (ejω)} = Rx(ejω)⊗WB(e

jω)⊗Wa(ejω) (5.3.37)
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WB(e
jω) = F

{(
1− |l|

N

)
wR(n)

}
= 1

N

[
sin (ωN/2)

sin (ω/2)

]2

(5.3.38)where

is the Fourier transform of the Bartlett window. SinceE{R̂(PS)
x (ejω)} �= Rx(ejω), R̂(PS)

x (ejω)

is a biased estimate of Rx(ejω).
For L�N, (1− |l|/N) � 1 and hence we obtain

E{R̂(PS)
x (ejω)} =

L−1∑
l=−(L−1)

rx(l)

(
1− |l|

N

)
wa(l)e

−jωl

� Rx(ejω)⊗Wa(ejω) (5.3.39)

= 1

2π

∫ π

−π
Rx(e

jθ )Wa(e
j (ω−θ)) dθ

If L is sufficiently large, the correlation window wa(l) consists of a narrow mainlobe. If
Rx(e

jω) can be assumed to be constant within the mainlobe, we have

E{R̂(PS)
x (ejω)} � Rx(ejω) 1

2π

∫ π

−π
Wa(e

j (ω−θ)) dθ

which implies that R̂(PS)
x (ejω) is asymptotically unbiased if

1

2π

∫ π

−π
Wa(e

jω) dω = wa(0) = 1 (5.3.40)

that is, if the spectrum of the correlation window has unit area. Under this condition, if both
L and N tend to infinity, then Wa(ejω) and WB(e

jω) become periodic impulse trains and
the convolution (5.3.37) reproduces Rx(ejω).

Covariance of R̂
(PS)
x (ejω). The following approximation

cov{R̂(PS)
x (ejω1), R̂(PS)

x (ejω2)} � 1

2πN

∫ π

−π
R2
x(e

jθ )Wa(e
j (ω1−θ))Wa(ej (ω2−θ)) dθ

(5.3.41)

derived in Jenkins and Watts (1968), holds under the assumptions that (1) N is sufficiently
large that WB(e

jω) behaves as a periodic impulse train and (2) L is sufficiently large that
Wa(e

jω) is sufficiently narrow that the product Wa(ej (ω1+θ))Wa(ej (ω2−θ)) is negligible.
Hence, the covariance increases proportionally to the width ofWa(ejω), and the amount of
overlap between the windows Wa(ej (ω1−θ)) (centered at ω1) and Wa(ej (ω2−θ)) (centered
at ω2) increases.

Variance of R̂
(PS)
x (ejω). When ω = ω1 = ω2, (5.3.41) gives

var{R̂(PS)
x (ejω)} � 1

2πN

∫ π

−π
R2
x(e

jω)W 2
a (e

j (ω−θ)) dθ (5.3.42)

If Rx(ejω) is smooth within the width ofWa(ejω), then

var{R̂(PS)
x (ejω)} � R2

x(e
jω)

1

2πN

∫ π

−π
W 2
a (e

jω) dω (5.3.43)

var{R̂(PS)
x (ejω)} � Ew

N
R2
x(e

jω) 0 < ω < π (5.3.44)or

Ew = 1

2π

∫ π

−π
W 2
a (e

jω) dω =
L−1∑

l=−(L−1)

w2
a(l) (5.3.45)where
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is the energy of the correlation window. From (5.3.29) and (5.3.44) we have

var{R̂(PS)
x (ejω)}

var{R̂x(ejω)}
� Ew
N

0 < ω < π (5.3.46)

which is known as the variance reduction factor or variance ratio and provides the reduction
in variance attained by smoothing the periodogram.

In the beginning of this section, we explained the variance reduction in terms of
frequency-domain averaging. An alternative explanation can be provided by considering
the windowing of the estimated autocorrelation. As discussed in Section 5.2, the variance of
the autocorrelation estimate increases as |l| approachesN because fewer and fewer samples
are used to compute the estimate. Since every value of r̂x(l) affects the value of R̂x(ω) at
all frequencies, the less reliable values affect the quality of the periodogram everywhere.
Thus, we can reduce the variance of the periodogram by minimizing the contribution of
autocorrelation terms with large variance, that is, with lags close toN , by proper windowing.

As we have already stressed, there is a tradeoff between resolution and variance. For
the variance to be small, we must choose a window that contains a small amount of energy
Ew. Since |wa(l)| ≤ 1, we have Ew ≤ 2L. Thus, to reduce the variance, we must have
L�N . The bias of R̂(PS)

x (ejω) is directly related to the resolution, which is determined by
the mainlobe width of the window, which in turn is proportional to 1/L. Hence, to reduce
the bias,Wa(ejω) should have a narrow mainlobe that demands a largeL. The requirements
for high resolution (small bias) and low variance can be simultaneously satisfied only if N
is sufficiently large. The variance reduction for some commonly used windows is examined
in Problem 5.12. Empirical evidence suggests that use of the Parzen window is a reasonable
choice.

Confidence intervals. In the interpretation of spectral estimates, it is important to know
whether the spectral details are real or are due to statistical fluctuations. Such information
is provided by the confidence intervals (Chapter 3). When the spectrum is plotted on a loga-
rithmic scale, the (1− α)× 100 percent confidence interval is constant at every frequency,
and it is given by (Koopmans 1974)(

10 log R̂(PS)
x (ejω)−10 log

χ2
ν(1− α/2)

ν
, 10 log R̂(PS)

x (ejω)+10 log
ν

χ2
v(α/2)

)
(5.3.47)

ν = 2N
L∑

l=−(L−1)

w2
a(l)

(5.3.48)where

is the degrees of freedom of a χ2
ν distribution.

Computation of R̂
(PS)
x (ejω) using the DFT. In practice, the Blackman-Tukey power

spectrum estimator is computed by using an N -point DFT as follows:

1. Estimate the autocorrelation rx(l), using the formula

r̂x(l) = r̂∗x (−l) =
1

N

N+l−1∑
n=0

x(n+ l)x∗(n) l = 0, 1, . . . , L− 1 (5.3.49)

For L > 100, indirect computation of r̂x(l) by using DFT techniques is usually more
efficient (see Problem 5.13).
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2. Form the sequence

f (l) =


r̂x(l)wa(l) 0 ≤ l ≤ L− 1

0 L ≤ l ≤ N − L
r̂∗x (N − l)wa(N − l) N − L+ 1 ≤ l ≤ N − 1

(5.3.50)

3. Compute the power spectrum estimate

R̂(PS)
x (ejω)|ω=(2π/N)k = F(k) = DFT {f (l)} 0 ≤ k ≤ N − 1 (5.3.51)

as the N -point DFT of the sequence f (l).

Matlab does not provide a direct function to implement the Blackman-Tukey method.
However, such a function can be easily constructed by using built-in Matlab functions
and the above approach. The book toolbox function

Rx = bt_psd(x,Nfft,window,L);

implements the above algorithm in which window is any available Matlab window and
Nfft is chosen to be larger than N to obtain a high-density spectrum.

EXAMPLE 5.3.5 (BLACKMAN-TUKEY METHOD). Consider the spectrum estimation of three
sinusoids in white noise given in Example 5.3.4, that is,

x(n) = cos (0.35πn+ φ1)+ cos (0.4πn+ φ2)+ 0.25 cos (0.8πn+ φ3)+ ν(n) (5.3.52)

where φ1, φ2, and φ3 are jointly independent random variables uniformly distributed over
[−π, π ] and ν(n) is a unit-variance white noise. An ensemble of 50 realizations of x(n) was
generated using N = 512. The autocorrelations of these realizations were estimated up to
lag L = 64, 128, and 256. These autocorrelations were windowed using the Bartlett window,
and then their 1024-point DFT was computed as the spectrum estimate. The results are shown in
Figure 5.18. The top row of the figure contains estimate overlays and the corresponding ensemble
average for L = 64, the middle row for L = 128, and the bottom row for L = 256. Several
observations can be made from these plots. First, the variance in the estimate has considerably
reduced over the periodogram estimate. Second, the lower the lag distance L, the lower the
variance and the resolution (i.e., the higher the smoothing of the peaks). This observation is
consistent with our discussion above about the effect of L on the quality of estimates. Finally, all
the frequencies including the one at 0.8π are clearly distinguishable, something that the basic
periodogram could not achieve.

5.3.3 Power Spectrum Estimation by Averaging Multiple Periodograms—
The Welch-Bartlett Method

As mentioned in Section 5.3.1, in general, the variance of the sum ofK IID random variables
is 1/K times the variance of each of the random variables. Thus, to reduce the variance
of the periodogram, we could average the periodograms from K different realizations of a
stationary random signal. However, in most practical applications, only a single realization
is available. In this case, we can subdivide the existing record {x(n), 0 ≤ n ≤ N − 1} into
K (possibly overlapping) smaller segments as follows:

xi(n) = x(iD + n)w(n) 0 ≤ n ≤ L− 1, 0 ≤ i ≤ K − 1 (5.3.53)

where w(n) is a window of duration L andD is an offset distance. IfD < L, the segments
overlap; and forD = L, the segments are contiguous. The periodogram of the ith segment
is

R̂x,i(e
jω) � 1

L
|Xi(ejω)|2 = 1

L

∣∣∣∣∣
L−1∑
n=0

xi(n)e
−jωn

∣∣∣∣∣
2

(5.3.54)
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We remind the reader that the window w(n) in (5.3.53) is called a data window because
it is applied directly to the data, in contrast to a correlation window that is applied to the
autocorrelation sequence [see (5.3.34)]. Notice that there is no need for the data window
to have an even shape or for its Fourier transform to be nonnegative. The purpose of using
the data window is to control spectral leakage.

The spectrum estimate R̂(PA)
x (ejω) is obtained by averagingK periodograms as follows:

R̂(PA)
x (ejω) � 1

K

K−1∑
i=0

R̂x,i(e
jω) = 1

KL

K−1∑
i=0

|Xi(ejω)|2 (5.3.55)

where the superscript (PA) denotes periodogram averaging. To determine the bias and
variance of R̂(PA)

x (ejω), we letD = L so that the segments do not overlap. The so-computed
estimate R̂(PA)

x (ejω) is known as the Bartlett estimate. We also assume that rx(l) is very
small for |l| > L. This implies that the signal segments can be assumed to be approximately
uncorrelated. To show that the simple periodogram averaging in Bartlett’s method reduces
the periodogram variance, we consider the following example.
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FIGURE 5.18
Spectrum estimation of three sinusoids in white noise using the Blackman-Tukey method in
Example 5.3.5.
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E XAM PLE 5.3.6 ( PE R I O D O GRAM AVE RAGI N G) . Let x(n) be a stationary white Gaussian
noise with zero mean and unit variance. The theoretical spectrum of x(n) is

Rx(e
jω) = σ 2

x = 1 − π < ω ≤ π
An ensemble of 50 different 512-point records of x(n) was generated using a pseudorandom
number generator. The Bartlett estimate of each record was computed for K = 1 (i.e., the basic
periodogram),K = 4 (or L = 128), andK = 8 (or L = 64). The results in the form of estimate
overlays and averages are shown in Figure 5.19. The effect of periodogram averaging is clearly
evident.
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FIGURE 5.19
Spectral estimation of white noise using Bartlett’s method in Example 5.3.6.

Mean of R̂
(PA)
x (ejω). The mean value of R̂(PA)

x (ejω) is

E{R̂(PA)
x (ejω)} = 1

K

K−1∑
i=0

E{R̂x,i(ejω)} = E{R̂x(ejω)} (5.3.56)

where we have assumed that E{R̂x,i(ejω)} = E{R̂x(ejω)} because of the stationarity
assumption. From (5.3.56) and (5.3.15), we have

E{R̂(PA)
x (ejω)} = E{R̂x(ejω)} = 1

2πL

∫ π

−π
Rx(e

jθ )Rw(e
j (ω−θ)) dθ (5.3.57)
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where Rw(ejω) is the spectrum of the data window w(n). Hence, R̂(PA)
x (ejω) is a biased

estimate of Rx(ejω). However, if the data window is normalized such that
L−1∑
n=0

w2(n) = L (5.3.58)

the estimate R̂(PA)
x (ejω) becomes asymptotically unbiased [see the discussion following

equation (5.3.15)].

Variance of R̂
(PA)
x (ejω). The variance of R̂(PA)

x (ejω) is

var{R̂(PA)
x (ejω)} = 1

K
var{R̂x(ejω)} (5.3.59)

(assuming segments are independent) or using (5.3.29) gives

var{R̂(PA)
x (ejω)} � 1

K
R2
x(e

jω) (5.3.60)

Clearly, asK increases, the variance tends to zero. Thus, R̂(PA)
x (ejω) provides an asymptot-

ically unbiased and consistent estimate of Rx(ejω). If N is fixed and N = KL, we see that
increasing K to reduce the variance (or equivalently obtain a smoother estimate) results in
a decrease in L, that is, a reduction in resolution (or equivalently an increase in bias).

Whenw(n) in (5.3.53) is the rectangular window of durationL, the square of its Fourier
transform is equal to the Fourier transform of the triangular sequencewT(n) � L−|l|, |l| <
L, which when combined with the 1/L factor in (5.3.57), results in the Bartlett window

wB(l) =
1− |l|

L
|l| < L

0 elsewhere
(5.3.61)

WB(e
jω) = 1

L

[
sin (ωL/2)

sin (ω/2)

]2

(5.3.62)with

This special case of averaging multiple nonoverlapping periodograms was introduced by
Bartlett (1953).

The method has been extended to modified overlapping periodograms by Welch (1970),
who has shown that the shape of the window does not affect the variance formula (5.3.59).
Welch showed that overlapping the segments by 50 percent reduces the variance by about
a factor of 2, owing to doubling the number of segments. More overlap does not result
in additional reduction of variance because the data segments become less and less inde-
pendent. Clearly, the nonoverlapping segments can be uncorrelated only for white noise
signals. However, the data segments can be considered approximately uncorrelated if they
do not have sharp spectral peaks or if their autocorrelations decay fast.

Thus, the variance reduction factor for the spectral estimator R̂(PA)
x (ejω) is

var{R̂(PA)
x (ejω)}

var{R̂x(ejω)}
� 1

K
0 < ω < π (5.3.63)

and is reduced by a factor of 2 for 50 percent overlap.

Confidence intervals. The (1−α)× 100 percent confidence interval on a logarithmic
scale may be shown to be (Jenkins and Watts 1968)(

10 log R̂(PA)
x (ejω)− 10 log

χ2
2K(1− α/2)

2K
, 10 log R̂(PA)

x (ejω)+ 10 log
2K

χ2
2K(α/2)

)
(5.3.64)

where χ2
2K is a chi-squared distribution with 2K degrees of freedom.
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Computation of R̂
(PA)
x (ejω) using the DFT. In practice, to compute R̂(PA)

x (ejω) at L
equally spaced frequencies ωk = 2πk/L, 0 ≤ k ≤ L − 1, the method of periodogram
averaging can be easily and efficiently implemented by using the DFT as follows (we have
assumed that L is even):

1. Segment data {x(n)}N−1
0 into K segments of length L, each offset by D duration using

x̄i (n) = x(iD + n) 0 ≤ i ≤ K − 1, 0 ≤ n ≤ L− 1 (5.3.65)

If D = L, there is no overlap; and if D = L/2, the overlap is 50 percent.
2. Window each segment, using data window w(n)

xi(n) = x̄i (n)w(n) = x(iD + n)w(n) 0 ≤ i ≤ K − 1, 0 ≤ n ≤ L− 1 (5.3.66)

3. Compute the N -point DFTs Xi(k) of the segments xi(n), 0 ≤ i ≤ K − 1,

X̃i(k) =
L−1∑
n=0

xi(n)e
−j (2π/L)kn 0 ≤ k ≤ L− 1, 0 ≤ i ≤ K − 1 (5.3.67)

4. Accumulate the squares |X̃i(k)|2

S̃i (k) �
K−1∑
i=0

|X̃i(k)|2 0 ≤ k ≤ L/2 (5.3.68)

5. Finally, normalize by KL to obtain the estimate R̂(PA)
x (k):

R̂(PA)
x (k) = 1

KL

K−1∑
i=0

S̃i (k) 0 ≤ k ≤ N/2 (5.3.69)

At this point we emphasize that the spectrum estimate R̂(PA)
x (k) is always nonnegative.

A pictorial description of this computational algorithm is shown in Figure 5.20. A more
efficient way to compute R̂(PA)

x (k) is examined in Problem 5.14.

0 N − 1L − 1

Offset

1 NFFT

D

…

…

…

…

Segment 1
Segment 2

Segment K

Periodogram 1

Periodogram 2

Periodogram K

Averaging

Signal data
record

PSD Estimate

FIGURE 5.20
Pictorial description of the Welch-Bartlett method.
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In Matlab the Welch-Bartlett method is implemented by using the function

Rx = psd(x,Nfft,Fs,window(L),Noverlap,’none’);

where window is the name of any Matlab-provided window function (e.g., hamming); Nfft
is the size of the DFT, which is chosen to be larger thanL to obtain a high-density spectrum;
Fs is the sampling frequency, which is used for plotting purposes; and Noverlap specifies
the number of overlapping samples. If the boxcar window is used along with Noverlap=0,
then we obtain Bartlett’s method of periodogram averaging. (Note that Noverlap is different
from the offset parameterD given above.) If Noverlap=L/2 is used, then we obtain Welch’s
averaged periodogram method with 50 percent overlap.

A biased estimate r̂x(l), |l| < L, of the autocorrelation sequence of x(n) can be ob-
tained by taking the inverse N -point DFT of R̂(PA)

x (k) if N ≥ 2L− 1. Since only samples
of the continuous spectrum R̂(PA)

x (ejω) are available, the obtained autocorrelation sequence
r̂
(PA)
x (l) is an aliased version of the true autocorrelation rx(l) of the signal x(n) (see Prob-

lem 5.15).

EXAMPLE 5.3.7 (BARTLETT’S METHOD) . Consider again the spectrum estimation of three
sinusoids in white noise given in Example 5.3.4, that is,

x(n) = cos (0.35πn+ φ1)+ cos (0.4πn+ φ2)+ 0.25 cos (0.8πn+ φ3)+ ν(n) (5.3.70)

where φ1, φ2, and φ3 are jointly independent random variables uniformly distributed over
[−π, π ] and ν(n) is a unit-variance white noise. An ensemble of 50 realizations of x(n) was
generated using N = 512. The Bartlett estimate of each ensemble was computed for K = 1
(i.e., the basic periodogram), K = 4 (or L = 128), and K = 8 (or L = 64). The results in the
form of estimate overlays and averages are shown in Figure 5.21. Observe that the variance in
the estimate has consistently reduced over the periodogram estimate as the number of averaging
segments has increased. However, this reduction has come at the price of broadening of the
spectral peaks. Since no window is used, the sidelobes are very prominent even for the K = 8
segment. Thus confidence in the ω = 0.8π spectral line is not very high for the K = 8 case.

EXAMPLE 5.3.8 (WELCH’S METHOD) . Consider Welch’s method for the random process in
the above example for N = 512, 50 percent overlap, and a Hamming window. Three different
values for L were considered; L = 256 (3 segments), L = 128 (7 segments), and L = 64 (15
segments). The estimate overlays and averages are shown in Figure 5.22. In comparing these
results with those in Figure 5.21, note that the windowing has considerably reduced the spurious
peaks in the spectra but has also further smoothed the peaks. Thus the peak at 0.8π is recognizable
with high confidence, but the separation of two close peaks is not so clear for L = 64. However,
theL = 128 case provides the best balance between separation and detection. On comparing the
Blackman-Tukey (Figure 5.18) and Welch estimates, we observe that the results are comparable
in terms of variance reduction and smoothing aspects.

5.3.4 Some Practical Considerations and Examples

The periodogram and its modified version, which is the basic tool involved in the estimation
of the power spectrum of stationary signals, can be computed either directly from the signal
samples {x(n)}N−1

0 using the DTFT formula

R̂x(e
jω) = 1

N

∣∣∣∣∣
N−1∑
n=0

w(n)x(n)e−jωn
∣∣∣∣∣
2

(5.3.71)

or indirectly using the autocorrelation sequence

R̂x(e
jω) =

N−1∑
l=−(N−1)

r̂x(l)e
−jωl (5.3.72)
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where r̂x(l) is the estimated autocorrelation of the windowed segment {w(n)x(n)}N−1
0 . The

periodogram R̂x(ejω) provides an unacceptable estimate of the power spectrum because

1. it has a bias that depends on the length N and the shape of the data window w(n) and
2. its variance is equal to the true spectrum Rx(ejω).

Given a data segment of fixed duration N , there is no way to reduce the bias, or
equivalently to increase the resolution, because it depends on the length and the shape of the
window. However, we can reduce the variance either by averaging the single periodogram
of the data (method of Blackman-Tukey) or by averaging multiple periodograms obtained
by partitioning the available record into smaller overlapping segments (method of Bartlett-
Welch).

The method of Blackman-Tukey is based on the following modification of the indirect
periodogram formula

R̂(PS)
x (ejω) =

L−1∑
l=−(L−1)

r̂x(l)wa(l)e
−jωl (5.3.73)

which basically involves windowing of the estimated autocorrelation (5.2.1) with a proper
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FIGURE 5.21
Estimation of three sinusoids in white noise using Bartlett’s method in Example 5.3.7.
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correlation window. Using only the firstL� N more-reliable values of the autocorrelation
sequence reduces the variance of the spectrum estimate by a factor of approximately L/N .
However, at the same time, this reduces the resolution from about 1/N to about 1/L. The
recommended range for L is between 0.1N and 0.2N .

The method of Bartlett-Welch is based on partitioning the available data record into
windowed overlapping segments of length L, computing their periodograms by using the
direct formula (5.3.71), and then averaging the resulting periodograms to compute the
estimate

R̂(PA)
x (ejω) = 1

KL

∣∣∣∣∣
L−1∑
n=0

xi(n)e
−jωn

∣∣∣∣∣
2

(5.3.74)

whose resolution is reduced to approximately 1/L and whose variance is reduced by a factor
of about 1/K , where K is the number of segments.

The reduction in resolution and variance of the Blackman-Tukey estimate is achieved
by “averaging” the values of the spectrum at consecutive frequency bins by windowing
the estimated autocorrelation sequence. In the Bartlett-Welch method, the same effect is
achieved by averaging the values of multiple shorter periodograms at the same frequency
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FIGURE 5.22
Estimation of three sinusoids in white noise using Welch’s method in Example 5.3.8.
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bin. The PSD estimation methods and their properties are summarized in Table 5.3. The
multitaper spectrum estimation method given in the last column of Table 5.3 is discussed
in Section 5.5.

TABLE 5.3

Comparison of PSD estimation methods.

Single-periodogram smoothing Multiple-periodogram
Periodogram (Blackman-Tukey): averaging (Bartlett-Welch): Multitaper (Thomson):

R̂x(e
jω) R̂

(PS)
x (ejω) R̂

(PA)
x (ejω) R̂

(MT)
x (ejω)

Description Compute DFT Compute DFT of windowed Split record into K segments Window data record using
of the method of data record autocorrelation estimate and average their modified K orthonormal tapers and

(see Figure 5.17) periodograms (see Figure 5.20) average their periodograms
(see Figure 5.30)

Basic idea Natural estimator of Local smoothing of Overlap data records For properly designed
Rx(e

jω); the error R̂x(e
jω) by weighting r̂x (l) to create more segments; orthogonal tapers,

|rx(l)− r̂x (l)| is with a lag window wa(l) window segments to reduce periodograms are
large for large |l| bias; average periodograms independent at each

to reduce variance frequency. Hence averaging
reduces variance

Bias Severe for small N ; Asymptotically unbiased Asymptotically unbiased Negligible for
negligible for large N properly designed tapers

Resolution ∝ 1

N
∝ 1

L
,L is maximum lag ∝ 1

L
∝ 1

N
L is segment length

Variance Unacceptable: about R2
x(e

jω)× Ew
N

R2
x(e

jω)

K

R2
x(e

jω)

K
R2
x(e

jω) for all N K is number of segments K is number of tapers

EXAMPLE 5.3.9 (COMPARISON OF BLACKMAN-TUKEY AND WELCH-BARTLETT METHODS).

Figure 5.23 illustrates the properties of the power spectrum estimators based on autocorrelation
windowing and periodogram averaging using the AR(4) model (5.3.24). The top plots show the
power spectrum of the process. The left column plots show the power spectrum obtained by
windowing the data with a Hanning window and the autocorrelation with a Parzen window of
lengthL = 64, 128, and 256. We notice that as the length of the window increases, the resolution
decreases and the variance increases. We see a similar behavior with the method of averaged
periodograms as the segment length L increases from 64 to 256. Clearly, both methods give
comparable results if their parameters are chosen properly.

Example of ocean wave data. To apply spectrum estimation techniques discussed in
this chapter to real data, we will use two real-valued time series that are obtained by recording
the height of ocean waves as a function of time, as measured by two wave gages of different
designs. These two series are shown in Figure 5.24. The top graph shows the wire wave gage
data while the bottom graph shows the infrared wave gage data. The frequency responses
of these gages are such that—mainly because of its inertia—frequencies higher than 1 Hz
cannot be reliably measured. The frequency range between 0.2 and 1 Hz is also important
because the rate at which the spectrum decreases has a physical model associated with it.
Both series were collected at a rate of 30 samples per second. There are 4096 samples in
each series.

†
We will also use these data to study joint signal analysis in the next section.

†
These data were collected by A. Jessup, Applied Physics Laboratory, University of Washington. It was obtained

from StatLib, a statistical archive maintained by Carnegie Mellon University.
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FIGURE 5.23
Illustration of the properties of the power spectrum estimators using autocorrelation
windowing (left column) and periodogram averaging (right column) in Example 5.3.9.

E XAM PLE 5.3.10 (ANALYS I S O F TH E O C EAN WAVE DATA) . Figure 5.25 depicts the peri-
odogram averaging and smoothing estimates of the wire wave gage data. The top row of plots
shows the Welch estimate using a Hamming window, L = 256, and 50 percent overlap between
segments. The bottom row shows the Blackman-Tukey estimate using a Bartlett window and a
lag length of L = 256. In both cases, a zoomed view of the plots between 0 and 1 Hz is shown in
the right column to obtain a better view of the spectra. Both spectral estimates provide a similar
spectral behavior, especially over the frequency range of 0 to 1 Hz. Furthermore, both show a
broad, low-frequency peak at 0.13 Hz, corresponding to a period of about 8 s. The dominant
features of the time series thus can be attributed to this peak and other features in the 0- to 0.2-Hz
range. The shape of the spectrum between 0.2 and 1 Hz is a decaying exponential and is consistent
with the physical model. Similar results were obtained for the infrared wave gauge data.
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FIGURE 5.24
Display of ocean wave data.
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FIGURE 5.25
Spectrum estimation of the ocean wave data using the Welch and Blackman-Tukey methods.

5.4 JOINT SIGNAL ANALYSIS

Until now, we discussed estimation techniques for the computation of the power spectrum
of one random process x(n), which is also known as univariate spectral estimation. In
many practical applications, we have two jointly stationary random processes and we wish
to study the correlation between them. The analysis and computation of this correlation
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and the associated spectral quantities are similar to those of univariate estimation and are
called bivariate spectrum estimation. In this section, we provide a brief overview of this
joint signal analysis.

Let x(n) and y(n) be two zero-mean, jointly stationary random processes with power
spectra Rx(ejω) and Ry(ejω), respectively. Then from (3.3.61), the cross-power spectral
density of x(n) and y(n) is given by

Rxy(e
jω) =

∞∑
l=−∞

rxy(l)e
−jωl (5.4.1)

where rxy(l) is the cross-correlation sequence between x(n) and y(n). The cross-spectral
density Rxy(ejω) is, in general, a complex-valued function that is difficult to interpret or
plot in its complex form. Therefore, we need to express it by using real-valued functions
that are easier to deal with. It is customary to express the conjugate of Rxy(ejω) in terms
of its real and imaginary components, that is,

Rxy(e
jω) = Cxy(ω)− jQxy(ω) (5.4.2)

Cxy(ω) � Re [Rxy(ejω)] (5.4.3)where

is called the cospectrum and

Qxy(ω) � Im [R∗xy(ejω)] = − Im[Rxy(ejω)] (5.4.4)

is called the quadrature spectrum. Alternately, the most popular approach is to express
Rxy(e

jω) in terms of its magnitude and angle components, that is,

Rxy(e
jω) = Axy(ω) exp[j;xy(ω)] (5.4.5)

Axy(ω) = |Rxy(ejω)| =
√
C2
xy(ω)+Q2

xy(ω) (5.4.6)where

;xy(ω) = �Rxy(ejω) = tan−1{−Qxy(ω)/Cxy(ω)} (5.4.7)and

The magnitude Axy(ω) is called the cross-amplitude spectrum, and the angle ;xy(ω) is
called the phase spectrum. All these derived functions are real-valued and hence can be ex-
amined graphically. However, the phase spectrum has the 2π ambiguity in its computation,
which makes its interpretation somewhat problematic.

From (3.3.64) the normalized cross-spectrum, called the complex coherence function,
is given by

Gxy(ω) = Rxy(e
jω)√

Rx(ejω)Ry(ejω)

(5.4.8)

which is a complex-valued frequency-domain correlation coefficient that measures the
correlation between the random amplitudes of the complex exponentials with frequency
ω in the spectral representations of x(n) and y(n). Hence to interpret this coefficient, its
magnitude |Gxy(ω)| is computed, which is referred to as the coherency spectrum. Recall
that in Chapter 3, we called |Gxy(ω)|2 the magnitude-squared coherence (MSC). Clearly,
0 ≤ |Gxy(ω)| ≤ 1. Since the coherency spectrum captures the amplitude spectrum but
completely ignores the phase spectrum, in practice, the coherency and the phase spectrum
are useful real-valued summaries of the cross-spectrum.

5.4.1 Estimation of Cross Power Spectrum

Now we apply the techniques developed in Section 5.3 to the problem of estimating the
cross-spectrum and its associated real-valued functions. Let {x(n), y(n)}N−1

0 be the data
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record available for estimation. By using the periodogram (5.3.5) as a guide, the estimator
for Rxy(ejω) is the cross-periodogram given by

R̂xy(e
jω) �

N−1∑
l=−(N−1)

r̂xy(l)e
−jωl (5.4.9)

r̂xy(l) =



1

N

N−l−1∑
n=0

x(n+ l)y∗(n) 0 ≤ l ≤ N − 1

1

N

N+l−1∑
n=0

x(n)y∗(n− l) −(N − 1) ≤ l ≤ −1

0 l ≤ −N or l ≥ N

(5.4.10)where

In analogy to (5.3.2), the cross-periodogram can also be written as

R̂xy(e
jω) = 1

N

[
N−1∑
n=0

x(n)e−jωn
][

N−1∑
n=0

y(n)e−jωn
]∗

(5.4.11)

Once again, it can be shown that the bias and variance properties of the cross-periodogram
are as poor as those of the periodogram. Another disturbing result of these periodograms is
that from (5.4.11) and (5.3.2), we obtain

|R̂xy(ejω)|2 =
(

1

N

)2
∣∣∣∣∣
N−1∑
n=0

x(n)e−jωn
∣∣∣∣∣
2 ∣∣∣∣∣
N−1∑
n=0

y(n)e−jωn
∣∣∣∣∣
2

= R̂x(ejω)R̂y(ejω)

which implies that if we estimate the MSC from the “raw” autoperiodograms as well as
cross-periodograms, then the result is always unity for all frequencies. This seemingly un-
reasonable result is due to the fact that the frequency-domain correlation coefficient at each
frequencyω is estimated by using only one single pair of observations from the two signals.
Therefore, a reasonable amount of smoothing in the periodogram is necessary to reduce the
inherent variability of the cross-spectrum and to improve the accuracy of the estimated co-
herency. This variance reduction can be achieved by straightforward extensions of various
techniques discussed in Section 5.3 for power spectra. These methods include periodogram
smoothing across frequencies and the various modified periodogram averaging techniques.
In practice, Welch’s approach to modified periodogram averaging, based on overlapped seg-
ments, is preferred owing to its superior performance. For illustration purposes, we describe
Welch’s approach in a brief fashion.

In this approach, we subdivide the existing data records {x(n), y(n); 0 ≤ n ≤ N − 1}
into K overlapping smaller segments of length L as follows:

xi(n) = x(iD + n)w(n)
yi(n) = y(iD + n)w(n) 0 ≤ n ≤ L− 1, 0 ≤ i ≤ K − 1 (5.4.12)

where w(n) is a data window of length L and D = L/2 for 50 percent overlap. The
cross-periodogram of the ith segment is given by

R̂i(e
jω) = 1

L
Xi(e

jω)Y ∗i (ejω) =
1

L

[
L−1∑
n=0

xi(n)e
−jωn

][
L−1∑
n=0

yi(n)e
−jωn

]∗
(5.4.13)

Finally, the smoothed cross-spectrum R̂(PA)
xy (ejω) is obtained by averagingK cross-periodo-

grams as follows:

R̂(PA)
xy (ejω) = 1

K

K−1∑
i=0

R̂i(e
jω) = 1

KL

K−1∑
i=0

Xi(e
jω)Y ∗i (ejω) (5.4.14)
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Similar to (5.3.51), the DFT computation of R̂(PA)
xy (ejω) is given by

˜̂
R
(PA)

xy (k) = 1

KL

K−1∑
i=0

[
L−1∑
n=0

xi(n)e
−j2πkn/N

][
L−1∑
n=0

yi(n)e
−j2πkn/N

]∗
(5.4.15)

where 0 ≤ k ≤ N − 1, N > L.

Estimation of cospectra and quadrature spectra. Once the cross-spectrum Rxy(ejω)
has been estimated, we can compute the estimates of all the associated real-valued spectra
by replacing Rxy(ejω) with its estimate R̂(PA)

xy (ejω) in the definitions of these functions. To
estimate the cospectrum, we use

Ĉ(PA)
xy (ω) = Re[R̂(PA)

xy (ejω)] = Re

[
1

KL

K−1∑
i=0

Xi(e
jω)Y ∗i (ejω)

]
(5.4.16)

and to estimate the quadrature spectrum, we use

Q̂(PA)
xy (ω) = − Im[R̂(PA)

xy (ejω)] = − Im

[
1

KL

K−1∑
i=0

Xi(e
jω)Y ∗i (ejω)

]
(5.4.17)

The analyses of bias, variance, and covariance of these estimates are similar in complexity
to those of the autocorrelation spectral estimates, and the details can be found in Goodman
(1957) and Jenkins and Watts (1968).

Estimation of cross-amplitude and phase spectra. Following the definitions in (5.4.6)
and (5.4.7), we may estimate the cross-amplitude spectrumAxy(ω) and the phase spectrum
;xy(ω) between the random processes x(n) and y(n) by

Â(PA)
xy (ω) =

√
[Ĉ(PA)
xy (ω)]2 + [Q̂(PA)

xy (ω)]2 (5.4.18)

;̂(PA)
xy (ω) = tan−1{−Q̂(PA)

xy (ω)/Ĉ(PA)
xy (ω)} (5.4.19)and

where the estimates Ĉ(PA)
xy (ejω) and Q̂(PA)

xy (ejω) are given by (5.4.16) and (5.4.17), respec-
tively. Since the cross-amplitude and phase spectral estimates are nonlinear functions of the
cospectral and quadrature spectral estimates, their analysis in terms of bias, variance, and
covariance is much more complicated. Once again, the details are available in Jenkins and
Watts (1968).

Estimation of coherency spectrum. The coherency spectrum is given by the magni-
tude of the complex coherence Gxy(ω). ReplacingRxy(ejω), Rx(ejω), andRy(ejω) by their
estimates in (5.4.8), we see the estimate for the coherency spectrum is given by

|Ĝ(PA)
xy (ω)| = |R̂(PA)

xy (ejω)|√
R̂
(PA)
x (ejω)R̂

(PA)
y (ejω)

=
{
[Ĉ(PA)
xy (ω)]2 + [Q̂(PA)

xy (ω)]2
R̂
(PA)
x (ejω)R̂

(PA)
y (ejω)

}1/2

(5.4.20)

with bias and variance properties similar to those of the cross-amplitude spectrum.
In Matlab the function

Rxy=csd(x,y,Nfft,Fs,window(L),Noverlap);

is available, which is similar to the psd function described in Section 5.3.3. It estimates
the cross-spectral density of signal vectors x and y by using Welch’s method. The window

parameter specifies a window function, Fs is the sampling frequency for plotting purposes,
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Nfft is the size of the FFT used, and Noverlap specifies the number of overlapping samples.
The function

cohere(x,y,Nfft,Fs,window(L),Noverlap);

estimates the coherency spectrum between two vectors x and y. Its values are between 0
and 1.

5.4.2 Estimation of Frequency Response Functions

When random processes x(n) and y(n) are the input and output of some physical system, the
bivariate spectral estimation techniques discussed in this section can be used to estimate the
system characteristics, namely, its frequency response. Problems of this kind arise in many
applications including communications, industrial control, and biomedical signal process-
ing. In communications applications, we need to characterize a channel over which signals
are transmitted. In this situation, a known training signal is transmitted, and the channel
response is recorded. By using the statistics of these two signals, it is possible to estimate
channel characteristics within a reasonable accuracy. In the industrial applications such as
a gas furnace, the classical methods using step (or sinusoidal) inputs may be inappropriate
because of large disturbances generated within the system. Hence, it is necessary to use
statistical methods that take into account noise generated in the system.

From Chapter 3, we know that if x(n) and y(n) are input and output signals of an LTI
system characterized by the impulse response h(n), then

y(n) = h(n) ∗ x(n) (5.4.21)

The impulse response h(n), in principle, can be computed through the deconvolution opera-
tion. However, deconvolution is not always computationally feasible. If the input and output
processes are jointly stationary, then from Chapter 3 we know that the cross-correlation be-
tween these two processes is given by

ryx(l) = h(l) ∗ rx(l) (5.4.22)

and the cross-spectrum is given by

Ryx(e
jω) = H(ejω)Rx(ejω) (5.4.23)

H(ejω) = Ryx(e
jω)

Rx(ejω)
(5.4.24)or

Hence, if we can estimate the auto power spectrum and cross power spectrum with reason-
able accuracy, then we can determine the frequency response of the system.

Consider next an LTI system with additive output noise,
†

as shown in Figure 5.26. This
model situation applies to many practical problems where the input measurements x(n) are
essentially without noise while the output measurements y(n) can be modeled by the sum
of the ideal response yo(n) due to x(n) and an additive noise v(n), which is statistically
independent of x(n). If we observe the input x(n) and the ideal output yo(n), the frequency
response can be obtained by

H(ejω) = Ryox(e
jω)

Rx(ejω)
(5.4.25)

where all signals are assumed stationary with zero mean (see Section 5.3.1). Since x(n) and
v(n) are independent, we can easily show that

Ryox(e
jω) = Ryx(ejω) (5.4.26)

†
More general situations involving both additive input noise and additive output noise are discussed in Bendat

and Piersol (1980).
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x(n)

v(n)

yo(n) y(n)
h(n)

FIGURE 5.26
Input-output LTI system model with output noise.

Ry(e
jω) = Ryo(ejω)+ Rv(ejω) (5.4.27)and

Ryo(e
jω) = |H(ejω)|2Rx(ejω) (5.4.28)where

is the ideal output PSD produced by the input. From (5.4.25) and (5.4.26), we have

H(ejω) = Ryx(e
jω)

Rx(ejω)
(5.4.29)

which shows that we can determine the frequency response by using the cross power spectral
density between the noisy output and the input signals. Given a finite record of input-
output data {x(n), y(n)}N−1

0 , we estimate R̂(PA)
yx (ejωk ) and R̂(PA)

x (ejωk ) by using one of the
previously discussed methods and then estimate H(ejω) at a set of equidistant frequencies
{ωk = 2πk/K}K−1

0 , that is,

Ĥ (ejωk ) = R̂
(PA)
yx (ejωk )

R̂
(PA)
x (ejωk )

(5.4.30)

The coherence function, which measures the linear correlation between two signals
x(n) and y(n) in the frequency domain, is given by

G2
xy(ω) =

|Rxy(ejω)|2
Rx(ejω)Ry(ejω)

(5.4.31)

and satisfies the inequality 0 ≤ G2
xy(ω) ≤ 1 (see Section 3.3.6). If Rxy(ejω) = 0 for

all ω, then G2
xy(ω) = 0. On the other hand, if y(n) = h(n) ∗ x(n), then G2

xy(ω) = 1

because Ry(ejω) = |H(ejω)|2Rx(ejω) and Rxy(ejω) = H ∗(ejω)Rx(ejω). Furthermore,
we can show that the coherence function is invariant under linear transformations. Indeed, if
x1(n) = h1(n)∗x(n) andy1(n) = h2(n)∗y(n), then G2

xy(ω) = G2
x1y1
(ω) (see Problem 5.16).

To avoid delta function behavior at ω = 0, we should remove the mean value from the data
before we compute G2

xy(ω). Also Rx(ejw)Ry(ejw) > 0 to avoid division by 0.
In practice, the coherence function is usually greater than 0 and less than 1. This may

result from one or more of the following reasons (Bendat and Piersol 1980):

1. Excessive measurement noise.
2. Significant resolution bias in the spectral estimates.
3. The system relating y(n) to x(n) is nonlinear.
4. The output y(n) is not produced exclusively by the input x(n).

Using (5.4.28), (5.4.25), Rxyo(e
jω) = H ∗(ejω)Rx(ejω), and (5.4.31), we obtain

Ryo(e
jω) = G2

xy(ω)Ry(e
jω) (5.4.32)

which is known as the coherent output PSD. Combining the last equation with (5.4.27), we
have

Rv(e
jω) = [1− G2

xy(ω)]Ry(ejω) (5.4.33)

which can be interpreted as the part of the output PSD that cannot be produced from the
input by using linear operations.
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Substitution of (5.4.27) into (5.4.32) results in

G2
xy(ω) = 1− Rv(e

jω)

Ry(ejω)
(5.4.34)

which shows that G2
xy(ω) → 1 as Rv(ejω)/Ry(ejω) → 0 and G2

xy(ω) → 0 as Rv(ejω)/
Ry(e

jω)→ 1. Typically, the coherence function between input and output measurements
reveals the presence of errors and helps to identify their origin and magnitude. Therefore, the
coherence function provides a useful tool for evaluating the accuracy of frequency response
estimates.

In Matlab the function

H = tfe(x,y,Nfft,Fs,window(L),Noverlap)

is available that estimates the transfer function of the system with input signal x and output
y using Welch’s method. The window parameter specifies a window function, Fs is the
sampling frequency for plotting purposes, Nfft is the size of the FFT used, and Noverlap

specifies the number of overlapping samples.
We next provide two examples that illustrate some of the problems that may arise when

we estimate frequency response functions by using input and output measurements.

EXAMPLE 5.4.1. Consider the AP(4) system

H(z) = 1

1− 2.7607z−1 + 3.8106z−2 − 2.6535z−3 + 0.9238z−4

discussed in Example 5.3.2. The input is white Gaussian noise, and the output of this system is
corrupted by additive white Gaussian noise, as shown in Figure 5.27. We wish to estimate the
frequency response of the system from a set of measurements {x(n), y(n)}N−1

0 . Since the input
is white, when the output signal-to-noise ratio (SNR) is very high, we can estimate the magnitude
response of the system by computing the PSD of the output signal. However, to compute the
phase response or a more accurate estimate of the magnitude response, we should use the joint
measurements of the input and output signals, as explained above.

Figure 5.27 shows estimates of the MSC function, magnitude response functions (in linear
and log scales), and phase response functions for two different levels of output SNR: 32 and
0 dB. When SNR = 32 dB, we note that |Gxy(ω)| is near unity at almost all frequencies, as
we theoretically expect for ideal LTI input-output relations. The estimated magnitude and phase
responses are almost identical to the theoretical ones with the exception at the two sharp peaks
of |H(ejω)|. Since the SNR is high, the two notches in |Gxy(ω)| at the same frequencies suggest
a bias error due to the lack of sufficient frequency resolution. When SNR = 0 dB, we see that
|Gxy(ω)| falls very sharply for frequencies above 0.2 cycle per sampling interval. We notice
that the presence of noise increases the random errors in the estimates of magnitude and phase
response in this frequency region, and the bias error in the peaks of the magnitude response.
Finally, we note that the uncertainty fluctuations in |Gxy(ω)| increase as |Gxy(ω)| → 0, as
predicted by the formula

std[|Ĝ(PA)
xy (ω)|]

|Gxy(ω)| = √2
1− |Ĝ(PA)

xy (ω)|2
|G(PA)
xy (ω)|√K

(5.4.35)

where std(·) means standard deviation and K is the number of averaged segments (Bendat and
Piersol 1980).

EXAMPLE 5.4.2. In this example we illustrate the use of frequency response estimation to study
the effect of respiration and blood pressure on heart rate. Figure 5.28 shows the systolic blood
pressure (mmHg), heart rate (beats per minute), and the respiration (mL) signals with their
corresponding PSD functions (Grossman 1998). The sampling frequency is Fs = 5 Hz, and
the PSDs were estimated using the method of averaged periodograms with 50 percent overlap.
Note the corresponding quasiperiodic oscillations of blood pressure and heart rate occurring
approximately every 12 s (0.08 Hz). Close inspection of the heart rate time series will also reveal
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FIGURE 5.27
Estimated coherence, magnitude response, and phase response for the
AP(4) system. The solid lines show the ideal magnitude and phase
responses.

another rhythm corresponding to the respiratory period (about 4.3 s, or 0.23 Hz). These rhythms
reflect nervous system mechanisms that control the activity of the heart and the circulation under
most circumstances.

The left column of Figure 5.29 shows the coherence, magnitude response, and phase re-
sponse between respiration as input and heart rate as output. Heart rate fluctuates clearly at the
respiratory frequency (here at 0.23 Hz); this is indicated by the large amount of heart rate power
and the high degree of coherence at the respiratory frequency. Heart function is largely controlled
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FIGURE 5.28
Continuous systolic blood pressure (SBP), heart rate (HR), and respiration of a young
man during quiet upright tilt and their estimated PSDs.

by two branches of the autonomic nervous system, the parasympathetic and sympathetic. Fre-
quency analysis of cardiovascular signals may improve our understanding of the manner in which
these two branches interact under varied circumstances. Heart rate fluctuations at the respiratory
frequency (termed respiratory sinus arrhythmia) are primarily mediated by the parasympathetic
branch of the autonomic nervous system. Increases in respiratory sinus arrhythmia indicate en-
hanced parasympathetic influence upon the heart. Sympathetic oscillations of heart rate occur
only at slower frequencies (below 0.10 Hz) owing to the more sluggish frequency response
characteristics of the sympathetic branch of the autonomic nervous system.

The right column of Figure 5.29 shows the coherence, magnitude response, and phase
response between systolic blood pressure as input and heart rate as output. Coherent oscillations
among cardiac and blood pressure signals can often be discerned in a frequency band with a
typical center frequency of 0.10 Hz (usual range, 0.07 to 0.12 Hz). This phenomenon has been tied
to the cardiovascular baroreflex system, which involves baroreceptors, that is, bodies of cells in
the carotid arteries and aorta that are sensitive to stretch. When blood pressure is increased, these
baroreceptors fire proportionally to stretch and pressure changes, sending commands via the brain
to the heart and circulatory system. This baroreflex system is the only known physiological system
acting to buffer rapid and extreme surges or falls in blood pressure. Increased baroreceptor stretch,
for example, slows the heart rate by means of increased parasympathetic activity; decreased
baroreceptor stretch will elicit cardiovascular sympathetic activation that will speed the heart
and constrict arterial vessels. Thus pressure drops due to a decrease in flow. The 0.10-Hz blood
pressure oscillations (see PSD in Figure 5.28) are sympathetic in origin and are produced by
periodic sympathetic constriction of arterial blood vessels.
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FIGURE 5.34
Spectrum estimation of the wire gage wave data using the multitaper
method in Example 5.5.2.

and lower limits of the 95 percent confidence interval for a fixed frequency. For comparison
purposes, the “raw” periodogram estimate is also shown as small dots. Clearly, the periodogram
has a large variability that is reduced in the multitaper estimate. At the same time, the multitaper
estimate is not smooth, but its variability is small enough to follow the shape of the overall
structure.

5.5.2 Estimation of Cross Power Spectrum

The multitapering approach can also be extended to the estimation of the cross power spec-
trum. Following (5.4.11), the multitaper estimator of the cross power spectrum is given by

R̂(MT)
xy (ejω)= 1

KLxy

K−1∑
k=0

Lxy−1∑
n=0

wk(n)x(n)e
−jωn

Lxy−1∑
n=0

wk(n)y(n)e
−jωn

∗ (5.5.11)

where wk(n) is the kth-order data taper of length Lxy and a fixed-resolution bandwidth of
2W . As with the auto power spectrum, the use of multitaper averaging reduces the variabil-
ity of the cross-periodogram Rxy(e

jω). Once again, the number of equivalent degrees of
freedom for R̂xy(ejω) is equal to 2K.

The real-valued functions associated with the cross power spectrum can also be es-
timated by using the multitaper approach in a similar fashion. The cospectrum and the
quadrature spectrum are given by

Ĉ(MT)
xy (ω) = Re[R̂(MT)

xy (ejω)] and Q̂(MT)
xy (ω) = − Im[R̂(MT)

xy (ejω)] (5.5.12)

while the cross-amplitude spectrum and the phase spectrum are given by

Â
(MT)
xy (ω) =

√
[Ĉ(MT)
xy (ω)]2 + [Q̂(MT)

xy (ω)]2 and ;̂
(MT)
xy (ω) = tan−1

[
−Q̂

(MT)
xy (ω)

Ĉ
(MT)
xy (ω)

]
(5.5.13)

Finally, the coherency spectrum is given by

|Ĝ(MT)
xy (ω)| =

{
[Ĉ(MT)
xy (ω)]2 + [Q̂(MT)

xy (ω)]2
R̂
(MT)
x (ejω)R̂

(MT)
y (ejω)

}1/2

(5.5.14)
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Matlab does not provide a function for cross power spectrum estimation using the
multitaper approach. However, by using the DPSS function, it is relatively straightforward
to implement the simple averaging method of (5.5.11).

EXAMPLE 5.5.3. Again consider the wire gage and the infrared gage wave data of Figure 5.24. The

multitaper estimate of the cross power spectrum R̂(MT)
xy (ejω) of these two 4096-point sequences

is obtained by using (5.5.11) in which the parameter W is set to 4. Figure 5.35 shows plots
of the estimates of the auto power spectra of the two data sets in solid lines. The cross power
spectrum of the two signals is shown with a dotted line. It is interesting to note that the two auto
power spectra agree almost perfectly over the band up to 0.3 Hz and then reasonably well up to
0.9 Hz, beyond which point the spectrum due to the infrared gage is consistently higher due to
high-frequency noise inherent in the measurements. The cross power spectrum agrees with the
two auto power spectra at low frequencies up to 0.2 Hz. Figure 5.36 contains two graphs; the
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FIGURE 5.35
Cross power spectrum estimation of the wave data using the multitaper
approach.
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upper graph is for the MSC while the lower one is for the phase spectrum. Consistent with our
observation of the cross power spectrum in Figure 5.36, the MSC is almost one over these lower
frequencies. The phase spectrum is almost a linear function over the range over which the two
auto power spectra agree. Thus, the multitaper approach provides estimates that agree with the
conventional techniques.

5.6 SUMMARY

In this chapter, we presented many different nonparametric methods for estimating the
power spectrum of a wide-sense stationary random process. Nonparametric methods do not
depend on any particular model of the process but use estimators that are determined entirely
by the data. Therefore, one has to be very careful about the data and the interpretation of
results based on them.

We began by revisiting the topic of frequency analysis of deterministic signals. Since
the spectrum estimation of random processes is based on the Fourier transformation of
data, the purpose of this discussion was to identify and study errors associated with the
practical implementation. In this regard, three problems—the sampling of the continuous
signal, windowing of the sampled data, and the sampling of the spectrum—were isolated
and discussed in detail. Some useful data windows and their characteristics were also given.
This background was necessary to understand more complex spectrum estimation methods
and their results.

An important topic of autocorrelation estimation was considered next. Although this
discussion was not directly related to spectrum estimation, its inclusion was appropriate
since one important method (i.e., that of Blackman and Tukey) was based on this estimation.
The statistical properties of the estimator and its implementation completed this topic.

The major part of this chapter was devoted to the section on the auto power spectrum
estimation. The classical approach was to develop an estimator from the Fourier transform of
the given values of the process. This was called the periodogram method, and it resulted in a
natural PSD estimator as a Fourier transform of an autocorrelation estimate. Unfortunately,
the statistical analysis of the periodogram showed that it was not an unbiased estimator or
a consistent estimator; that is, its variability did not decrease with increasing data record
length. The modification of the periodogram using the data window lessened the spectral
leakage and improved the unbiasedness but did not decrease the variance. Several examples
were given to verify these aspects.

To improve the statistical performance of the simple periodogram, we then looked at
several possible improvements to the basic technique. Two main directions emerged for re-
ducing the variance: periodogram smoothing and periodogram averaging. These approaches
produced consistent and asymptotically unbiased estimates. The periodogram smoothing
was obtained by applying the lag window to the autocorrelation estimate and then Fourier-
transforming it. This method was due to Blackman and Tukey, and results of its mean and
variance were given. The periodogram averaging was done by segmenting the data to obtain
several records, followed by windowing to reduce spectral leakage, and finally by averaging
their periodograms to reduce variance. This was the well-known Welch-Bartlett method,
and the results of its statistical analysis were also given. Finally, implementations based on
the DFT and Matlab were given for both methods along with several examples to illustrate
the performance of their estimates. These nonparametric methods were further extended to
estimate the cross power spectrum, coherence functions, and transfer function.

Finally, we presented a newer nonparametric technique for auto power spectrum and
cross power spectrum that was based on applying several data windows or tapers to the data
followed by averaging of the resulting modified periodograms. The basic principle behind
this method was that if the tapers are orthonormal and properly designed (to reduce leakage),
then the resulting periodograms can be considered to be independent at each frequency and
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hence their average would reduce the variance. Two orthogonal sets of data taper, namely,
the Slepian and sinusoidal, were provided. The implementation using Matlab was given,
and examples were given to complete the chapter.

PROBLEMS

5.1 Let xc(t),−∞ < t < ∞, be a continuous-time signal with Fourier transform Xc(F ), −∞ <

F < ∞, and let x(n) be obtained by sampling xc(t) every T per sampling interval with its
DTFT X(ejω).

(a) Show that the DTFT X(ejω) is given by

X(ejω) = Fs

∞∑
l=−∞

Xc(f Fs − lFs) ω = 2πf Fs = 1

T

(b) Let X̃p(k) be obtained by sampling X(ejω) every 2π/N rad per sampling interval, that is,

X̃p(k) = X(ej2πk/N ) = Fs

∞∑
l=−∞

Xc

(
kFs

N
− lFs

)
Then show that inverse DFT(X̃p) is given by

xp(n) � IDFT(X̃p) = xp(n) �
∞∑

m=−∞
xc(nT −mNT )

5.2 Matlab provides two functions to generate triangular windows, namely,bartlett andtriang.
These two functions actually generate two slightly different coefficients.

(a) Use bartlett to generate N = 11, 31, and 51 length windows wB(n), and plot their
samples, using the stem function.

(b) Compute the DTFTsWB(e
jω), and plot their magnitudes over [−π, π ]. Determine exper-

imentally the width of the mainlobe as a function of N . Repeat part (a) using the triang
function. How are the lengths and the mainlobe widths different in this case? Which window
function is an appropriate one in terms of nonzero samples?

(c) Determine the length of the bartlett window that has the same mainlobe width as that of
a 51-point rectangular window.

5.3 Sidelobes of the window transform contribute to the spectral leakage due to the frequency-
domain convolution. One measure of this leakage is the maximum sidelobe height, which
generally occurs at the first sidelobe for all windows except the Dolph-Chebyshev window.

(a) For simple windows such as the rectangular, Hanning, or Hamming window, the maximum
sidelobe height is independent of window length N . Choose N = 11, 31, and 51, and
determine the maximum sidelobe height in decibels for the above windows.

(b) For the Kaiser window, the maximum sidelobe height is controlled by the shape parameter
β and is proportional to β/ sinh β. Using several values of β and N , verify the relationship
between β and the maximum sidelobe height.

(c) Determine the value of β that gives the maximum sidelobe height nearly the same as that of
the Hamming window of the same length. Compare the mainlobe widths and the window
coefficients of these two windows.

(d ) For the Dolph-Chebyshev window, all sidelobes have the same height A in decibels. For
A = 40, 50, and 60 dB, determine the 3-dB mainlobe widths for N = 31 length window.

5.4 Let x(n) be given by

y(n) = cosω1n+ cos (ω2n+ φ) and x(n) = y(n)w(n)
wherew(n) is a length-N data window. The |X(ejω)|2 is computed using Matlab and is plotted
over [0, π ].
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(a) Let w(n) be a rectangular window. For ω1 = 0.25π and ω2 = 0.3π , determine the min-
imum length N so that the two frequencies in the |X(ejω)|2 plot are barely separable for
any arbitrary φ ∈ [−π, π ]. (You may want to consider the worst possible value of φ or
experiment, using several values of φ.)

(b) Repeat part (a) for a Hamming window.
(c) Repeat part (a) for a Blackman window.

5.5 In this problem we will prove that the autocorrelation matrix R̂x given in (5.2.3), in which the
sample correlations are defined by (5.2.1), is a nonnegative definite matrix, that is,

xH R̂xx ≥ 0 for every x ≥ 0

(a) Show that R̂x can be decomposed into the product XHX, where X is called a data matrix.
Determine the form of X.

(b) Using the above decomposition, now prove that xH R̂xx ≥ 0, for every x ≥ 0.

5.6 An alternative autocorrelation estimate řx (l) is given in (5.2.13) and is repeated below.

řx (l) =


1

N − l
N−l−1∑
n=0

x(n+ l)x∗(n) 0 ≤ l ≤ L < N

ř∗x (−l) −N < −L ≤ l < 0

0 elsewhere

(a) Show that the mean of řx (l) is equal to rx(l) and an approximate expression for the variance
of řx (l).

(b) Show that the mean of the corresponding periodogram [that is, Řx(ejω) � F [řx (l)]] is
given by

E{Řx(ejω)} = 1

2π

∫ π
−π
Rx(e

jϕ)WR(e
jω−ϕ)dϕ

whereWR(e
jω) is the DTFT of the rectangular window and is sometimes called the Dirichlet

kernel.

5.7 Consider the above unbiased autocorrelation estimator řx (l) of a zero-mean white Gaussian
process with variance σ 2

x .

(a) Determine the variance of řx (l). Compute its limiting value as l→∞.
(b) Repeat part (a) for the biased estimator r̂x (l). Comment on any differences in the results.

5.8 Show that the autocorrelation matrix Řx formed by using řx (l) is not nonnegative definite, that
is,

xH R̂xx < 0 for some x ≥ 0

5.9 In this problem, we will show that the periodogram R̂x(ejω) can also be expressed as a DTFT
of the autocorrelation estimate r̂x (l) given in (5.2.1).

(a) Let v(n) = x(n)wR(n), where wR(n) is a rectangular window of length N. Show that

r̂x (l) = 1

N
v(l) ∗ v∗(−l) (P.1)

(b) Take the DTFT of (P.1) to show that

R̂x(e
jω) =

N−1∑
l=−N+1

r̂x (l)e
−jωl

5.10 Consider the following simple windows over 0 ≤ n ≤ N − 1: rectangular, Bartlett, Hanning,
and Hamming.

(a) Determine analytically the DTFT of each of the above windows.
(b) Sketch the magnitude of these Fourier transforms for N = 31.
(c) Verify your sketches by performing a numerical computation of the DTFT using Matlab.
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5.11 The Parzen window is given by

wP(l) �



1− 6

(
l

L

)2
+ 6

(
l

L

)3
0 ≤ |l| ≤ L

2

2

(
1− l

L

)3 L

2
< |l| < L

0 elsewhere

(P.2)

(a) Show that its DTFT is given by

WP(e
jω) �

[
sin (ωL/4)

sin (ω/4)

]4
≥ 0 (P.3)

Hence using the Parzen window as a correlation window always produces nonnegative
spectrum estimates.

(b) Using Matlab, compute and plot the time-domain windowwP(l) and its frequency-domain
responseWP(e

jω) for L = 5, 10, and 20.
(c) From the frequency-domain plots in part (b) experimentally determine the 3-dB mainlobe

width �ω as a function of L.

5.12 The variance reduction ratio of a correlation window wa(l) is defined as

var{R̂(PS)
x (ejω)}

var{R̂x(ejω)}
� Ew

N
0 < ω < π

Ew = 1

2π

∫ π
−π
W2
a (e

jω) dω =
L−1∑

l=−(L−1)

w2
a(l)where

(a) Using Matlab, compute and plot Ew as a function of L for the following windows: rect-
angular, Bartlett, Hanning, Hamming, and Parzen.

(b) Using your computations above, show that for L� 1, the variance reduction ratio for each
window is given by the formula in the following table.

Window name Variance reduction factor

Rectangular 2L/N
Bartlett 0.667L/N
Hanning 0.75L/N
Hamming 0.7948L/N
Parzen 0.539L/N

5.13 For L > 100, the direct computation of r̂x (l) using (5.3.49) is time-consuming; hence an
indirect computation using the DFT can be more efficient. This computation is implemented by
the following steps:

• Given the sequence {x(n)}N−1
n=0 , pad enough zeros to make it a (2N − 1)-point sequence.

• Compute theNFFT-point FFT of x(n) to obtain X̃(k), whereNFFT is equal to the next power-
of-2 number that is greater than or equal to 2N − 1.

• Compute 1/N |X̃(k)|2 to obtain ˜̂R(k).
• Compute the NFFT-point IFFT of ˜̂R(k) to obtain r̂x (l).

Develop a Matlab function rx = autocfft(x,L) which computes r̂x (l),over −L ≤
l ≤ L. Compare this function with the autoc function discussed in the chapter in terms of the
execution time for L ≥ 100.
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5.14 The Welch-Bartlett estimate R̂(PA)
x (k) is given by

R̂
(PA)
x (k) = 1

KL

K−1∑
i=0

|Xi(k)|2

If x(n) is real-valued, then the sum in the above expression can be evaluated more efficiently.
LetK be an even number. Then we will combine two real-valued sequences into one complex-
valued sequence and compute one FFT, which will reduce the overall computations. Specifically,
let

gr (n) � x2r (n)+ jx2r+1(n) n = 0, 1, . . . , L− 1, r = 0, 1, . . . ,
K

2
− 1

Then the L-point DFT of gr (n) is given by

G̃r (k) = X̃2r (k)+ jX̃2r+1(k) k = 0, 1, . . . , L− 1, r = 0, 1, . . . ,
K

2
− 1

(a) Show that

|G̃r (k)|2 + |G̃r (L− k)|2 = 2[|X̃2r (k)|2 + |X̃2r+1(k)|2] k, r = 0, . . . ,
K

2
− 1

(b) Determine the resulting expression for R̂(PA)
x (k) in terms of G̃(k).

(c) What changes are necessary if K is an odd number? Provide detailed steps for this case.

5.15 Since R̂(PA)
x (ejω) is a PSD estimate, one can determine autocorrelation estimate r̂ (PA)

x (l) from
Welch’s method as

r̂
(PA)
x (l) = 1

2π

∫ π
−π
R̂
(PA)
x (ejω)ejωl dω (P.4)

Let ˜̂R(PA)
x (k) be the samples of R̂(PA)

x (ejω) according to

˜̂
R
(PA)
x (k) � R̂

(PA)
x (ej2πk/NFFT ) 0 ≤ k ≤ NFFT − 1

(a) Show that the IDFT˜̂r(PA)
x (l) of ˜̂R(PA)

x (k) is an aliased version of the autocorrelation estimate

r̂
(PA)
x (l).

(b) If the length of the overlapping data segment in Welch’s method is L, how should NFFT be

chosen to avoid aliasing in ˜̂r(PA)
x (l)?

5.16 Show that the coherence function G2
xy(ω) is invariant under linear transformation, that is, if

x1(n) = h1(n) ∗ x(n) and y1(n) = h2(n) ∗ y(n), then

G2
xy(ω) = G2

x1y2
(ω)

5.17 Bartlett’s method is a special case of Welch’s method in which nonoverlapping sections of length
L are used without windowing in the periodogram averaging operation.

(a) Show that the ith periodogram in this method can be expressed as

R̂x,i (e
jω) =

L∑
l=−L

r̂x,i (l)wB(l)e
−jωl (P.5)

where wB(l) is a (2L− 1)-length Bartlett window.
(b) Let u(ejω) � [1 ejω · · · ej (L−1)ω ]T . Show that R̂x,i (e

jω) in (P.5) can be ex-
pressed as a quadratic product

R̂x,i (e
jω) = 1

L
uH (ejω)R̂x,iu(e

ω) (P.6)

where R̂x,i is the autocorrelation matrix of r̂x,i (l) values.
(c) Finally, show that the Bartlett estimate is given by

R̂
(B)
x (ejω) = 1

KL

K∑
i=1

uH (ejω)R̂x,iu(e
ω) (P.7)



February 4, 2005 11:20 e56-ch5 Sheet number 65 Page number 259 black

259

problems

5.18 In this problem, we will explore a spectral estimation technique that uses combined data and
correlation weighting (Carter and Nuttall 1980). In this technique, the following steps are per-
formed:

• Given {x(n)}N−1
n=0 , compute the Welch-Bartlett estimate R̂(PA)

x (ejω) by choosing the appro-
priate values of L and D.

• Compute the autocorrelation estimate r̂ (PA)
x (l), −L ≤ l ≤ L, using the approach described

in Problem 5.15.
• Window r̂ (PA)

x (l), using a lag window wa(l) to obtain r̂ (CN)
x (l) � r̂

(PA)
x (l)wa(l).

• Finally, compute the DTFT of r̂ (CN)
x (l) to obtain the new spectrum estimate R̂(CN)

x (ejω).

(a) Determine the bias of R̂(CN)
x (ejω).

(b) Comment on the effect of additional windowing on the variance and resolution of the
estimate.

(c) Implement this technique in Matlab, and compute spectral estimates of the process con-
taining three sinusoids in white noise, which was discussed in the chapter. Experiment with
various values of L and with different windows. Compare your results to those given for
the Welch-Bartlett and Blackman-Tukey methods.

5.19 Explain why we use the scaling factor

L−1∑
n=0

w2(n)

which is the energy of the data window in the Welch-Bartlett method.

5.20 Consider the basic periodogram estimator R̂x(ejω) at the zero frequency, that is, at ω = 0.

(a) Show that

R̂x(e
j0) = 1

N

∣∣∣∣∣∣
N−1∑
n=0

x(n)ej0

∣∣∣∣∣∣
2

= 1

N

∣∣∣∣∣∣
N−1∑
n=0

x(n)

∣∣∣∣∣∣
2

(b) If x(n) is a real-valued, zero-mean white Gaussian process with variance σ 2
x, determine the

mean and variance of R̂x(ej0).
(c) Determine if R̂x(ej0) is a consistent estimator by evaluating the variance as N →∞.

5.21 Consider Bartlett’s method for estimating Rx(ej0) using L = 1; that is, we use nonoverlapping
segments of single samples. The periodogram of one sample x(n) is simply |x(n)|2. Thus we
have

R̂
(B)
x (ej0) = 1

N

N−1∑
n=0

R̂x,n(e
j0) = 1

N

N−1∑
n=0

|x(n)|2

Again assume that x(n) is a real-valued white Gaussian process with variance σ 2
x .

(a) Determine the mean and variance of R̂(B)x (ej0).
(b) Compare the above result with those in Problem 5.20. Comment on any differences.

5.22 One desirable property of lag or correlation windows is that their Fourier transforms are non-
negative.

(a) Formulate a procedure to generate a symmetric lag window of length 2L+ 1 with nonneg-
ative Fourier transform.

(b) Using the Hanning window as a prototype in the above procedure, determine and plot a
31-length lag window. Also plot its Fourier transform.

5.23 Consider the following random process

x(n) =
4∑
k=1

Ak sin (ωkn+ φk)+ ν(n)
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A1 = 1 A2 = 0.5 A3 = 0.5 A4 = 0.25
ω1 = 0.1π ω2 = 0.6π ω3 = 0.65π ω4 = 0.8π

where

and the phases {φi}4i=1 are IID random variables uniformly distributed over [−π, π ]. Generate
50 realizations of x(n) for 0 ≤ n ≤ 256. Let v(n) be WN(0, 1).

(a) Compute the Blackman-Tukey estimates for L = 32, 64, and 128, using the Bartlett lag
window. Plot your results, using overlay and averaged estimates. Comment on your plots.

(b) Repeat part (a), using the Parzen window.
(c) Provide a qualitative comparison between the above two sets of plots.

5.24 Consider the random process given in Problem 5.23.

(a) Compute the Bartlett estimate, using L = 16, 32, and 64. Plot your results, using overlay
and averaged estimates. Comment on your plots.

(b) Compute the Welch estimate, using 50 percent overlap, Hamming window, and L = 16,
32, and 64. Plot your results, using overlay and averaged estimates. Comment on your plots.

(c) Provide a qualitative comparison between the above two sets of plots.

5.25 Consider the random process given in Problem 5.23.

(a) Compute the multitaper spectrum estimate, usingK = 3, 5, and 7 Slepian tapers. Plot your
results, using overlay and averaged estimates. Comment on your plots.

(b) Make a qualitative comparison between the above plots and those obtained in Problems
5.23 and 5.24.

5.26 Generate 1000 samples of an AR(1) process using a = −0.9. Determine its theoretical PSD.

(a) Determine and plot the periodogram of the process along with the true spectrum. Comment
on the plots.

(b) Compute the Blackman-Tukey estimates for L = 10, 20, 50, and 100. Plot these estimates
along with the true spectrum. Comment on your results.

(c) Compute the Welch estimates for 50 percent overlap, Hamming window, and L = 10, 20,
50, and 100. Plot these estimates along with the true spectrum. Comment on your results.

5.27 Generate 1000 samples of an AR(1) process using a = 0.9. Determine its theoretical PSD.

(a) Determine and plot the periodogram of the process along with the true spectrum. Comment
on the plots.

(b) Compute the Blackman-Tukey estimates for L = 10, 20, 50, and 100. Plot these estimates
along with the true spectrum. Comment on your results.

(c) Compute the Welch estimates for 50 percent overlap, Hamming window, and L = 10, 20,
50, and 100. Plot these estimates along with the true spectrum. Comment on your results.

5.28 Multitaper estimation technique requires a properly designed orthonormal set of tapers for the
desired performance. One set discussed in the chapter was that of harmonically related sinusoids
given in (5.5.8).

(a) Design a Matlab function [tapers] = sine_tapers(N,K) that generates K < N si-
nusoidal tapers of length N .

(b) Using the above function, compute and plot the Fourier transform magnitudes of the first 5
tapers of length 51.

5.29 Design a Matlab function Pxx = psd_sinetaper(x,K) that determines the multitaper es-
timates using the sine tapers.

(a) Apply the function psd_sinetaper to the AR(1) process given in Problem 5.26, and
compare its performance.

(b) Apply the function psd_sinetaper to the AR(1) process given in Problem 5.27, and
compare its performance.
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CHAPTER 6

Optimum Linear Filters

In this chapter, we present the theory and application of optimum linear filters and predictors.
We concentrate on linear filters that are optimum in the sense of minimizing the mean square
error (MSE). The minimum MSE (MMSE) criterion leads to a theory of linear filtering that
is elegant and simple, involves only second-order statistics, and is useful in many practical
applications. The optimum filter designed for a given set of second-order moments can be
used for any realizations of stochastic processes with the same moments.

We start with the general theory of linear MMSE estimators and their computation,
using the triangular decomposition of Hermitian positive definite matrices. Then we ap-
ply the general theory to the design of optimum FIR filters and linear predictors for both
nonstationary and stationary processes (Wiener filters). We continue with the design of
nonparametric (impulse response) and parametric (pole-zero) optimum IIR filters and pre-
dictors for stationary processes. Then we present the design of optimum filters for inverse
system modeling, blind deconvolution, and their application to equalization of data commu-
nication channels. We conclude with a concise introduction to optimum matched filters and
eigenfilters that maximize the output SNR. These signal processing methods find extensive
applications in digital communication, radar, and sonar systems.

6.1 OPTIMUM SIGNAL ESTIMATION

As we discussed in Chapter 1, the solution of many problems of practical interest depends
on the ability to accurately estimate the value y(n) of a signal (desired response) by using
a set of values (observations or data) from another related signal or signals. Successful
estimation is possible if there is significant statistical dependence or correlation between
the signals involved in the particular application. For example, in the linear prediction
problem we use the M past samples x(n − 1), x(n − 2), . . . , x(n − M) of a signal to
estimate the current sample x(n). The echo canceler in Figure 1.17 uses the transmitted
signal to form a replica of the received echo. The radar signal processor in Figure 1.27 uses
the signals xk(n) for 1 ≤ k ≤ M received by the linear antenna array to estimate the value
of the signal y(n) received from the direction of interest. Although the signals in these and
other similar applications have different physical origins, the mathematical formulations of
the underlying signal processing problems are very similar.

In array signal processing, the data are obtained by using M different sensors. The
situation is simpler for filtering applications, because the data are obtained by delaying
a single discrete-time signal; that is, we have xk(n) = x(n + 1 − k), 1 ≤ k ≤ M (see
Figure 6.1). Further simplifications are possible in linear prediction, where both the desired
response and the data are time samples of the same signal, for example, y(n) = x(n) and
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…

x1(n)

x(n − M )

x(n − M )x(n − M − 1) x(n − M + 1)

x(n − 1)

x(n − 1)

x(n − 1)

x(n − 2)

x(n − 2)

x(n)

x(n)

x(n)

x2(n)

xM (n)

(a)

(b)

…… … …

FIGURE 6.1
Illustration of the data vectors for (a) array processing (multiple
sensors) and (b) FIR filtering or prediction (single sensor) applications.

xk(n) = x(n − k), 1 ≤ k ≤ M . As a result, the design and implementation of optimum
filters and predictors are simpler than those for an optimum array processor.

Since array processing problems are the most general ones, we will formulate and solve
the following estimation problem: Given a set of data xk(n) for 1 ≤ k ≤ M , determine an
estimate ŷ(n), of the desired response y(n), using the rule (estimator)

ŷ(n) � H {xk(n), 1 ≤ k ≤ M} (6.1.1)

which, in general, is a nonlinear function of the data. When xk(n) = x(n + 1 − k), the
estimator takes on the form of a discrete-time filter that can be linear or nonlinear, time-
invariant or time-varying, and with a finite- or infinite-duration impulse response. Linear
filters can be implemented using any direct, parallel, cascade, or lattice-ladder structure (see
Section 2.5 and Proakis and Manolakis 1996).

The difference between the estimated response ŷ(n) and the desired response y(n),
that is,

e(n) � y(n)− ŷ(n) (6.1.2)

is known as the error signal. We want to find an estimator whose output approximates the
desired response as closely as possible according to a certain performance criterion. We use
the term optimum estimator or optimum signal processor to refer to such an estimator. We
stress that optimum is not used as a synonym for best; it simply means the best under the given
set of assumptions and conditions. If either the criterion of performance or the assumptions
about the statistics of the processed signals change, the corresponding optimum filter will
change as well. Therefore, an optimum estimator designed for a certain performance metric
and set of assumptions may perform poorly according to some other criterion or if the actual
statistics of the processed signals differ from the ones used in the design. For this reason, the
sensitivity of the performance to deviations from the assumed statistics is very important
in practical applications of optimum estimators.
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Therefore, the design of an optimum estimator involves the following steps:

1. Selection of a computational structure with well-defined parameters for the implemen-
tation of the estimator.

2. Selection of a criterion of performance or cost function that measures the performance
of the estimator under some assumptions about the statistical properties of the signals to
be processed.

3. Optimization of the performance criterion to determine the parameters of the optimum
estimator.

4. Evaluation of the optimum value of the performance criterion to determine whether the
optimum estimator satisfies the design specifications.

Many practical applications (e.g., speech, audio, and image coding) require subjective
criteria that are difficult to express mathematically. Thus, we focus on criteria of performance
that (1) only depend on the estimation error e(n), (2) provide a sufficient measure of the
user satisfaction, and (3) lead to a mathematically tractable problem. We generally select a
criterion of performance by compromising between these objectives.

Since, in most applications, negative and positive errors are equally harmful, we should
choose a criterion that weights both negative and positive errors equally. Choices that satisfy
this requirement include the absolute value of the error |e(n)|, or the squared error |e(n)|2,
or some other power of |e(n)| (see Figure 6.2). The emphasis put on different values of
the error is a key factor when we choose a criterion of performance. For example, the
squared-error criterion emphasizes the effect of large errors much more than the absolute
error criterion. Thus, the squared-error criterion is more sensitive to outliers (occasional
large values) than the absolute error criterion is.
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FIGURE 6.2
Graphical illustration of various error-weighting functions.

To develop a mathematical theory that will help to design and analyze the performance
of optimum estimators, we assume that the desired response and the data are realizations of
stochastic processes. Furthermore, although in practice the estimator operates on specific
realizations of the input and desired response signals, we wish to design an estimator with
good performance across all members of the ensemble, that is, an estimator that “works
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well on average.” Since, at any fixed time n, the quantities y(n), xk(n) for 1 ≤ k ≤ M , and
e(n) are random variables, we should choose a criterion that involves the ensemble or time
averaging of some function of |e(n)|. Here is a short list of potential criteria of performance:

1. The mean square error criterion

P(n) � E{|e(n)|2} (6.1.3)

which leads, in general, to a nonlinear optimum estimator.
2. The mean αth-order error criterion E{|e(n)|α}, α 	= 2. Using a lower- or higher-order

moment of the absolute error is more appropriate for certain types of non-Gaussian
statistics than the MSE (Stuck 1978).

3. The sum of squared errors (SSE)

E(ni, nf ) �
nf∑

n=ni

|e(n)|2 (6.1.4)

which, if it is divided by nf − ni + 1, provides an estimate of the MSE.

The MSE criterion (6.1.3) and the SSE criterion (6.1.4) are the most widely used because
they (1) are mathematically tractable, (2) lead to the design of useful systems for practical
applications, and (3) can serve as a yardstick for evaluating estimators designed with other
criteria (e.g., signal-to-noise ratio, maximum likelihood). In most practical applications, we
use linear estimators, which further simplifies their design and evaluation.

Mean square estimation is a rather vast field that was originally developed by Gauss in
the nineteenth century. The current theories of estimation and optimum filtering started with
the pioneering work of Wiener and Kolmogorov that was later extended by Kalman, Bucy,
and others. Some interesting historical reviews are given in Kailath (1974) and Sorenson
(1970).

6.2 LINEAR MEAN SQUARE ERROR ESTIMATION

In this section, we develop the theory of linear MSE estimation. We concentrate on linear es-
timators for various reasons, including mathematical simplicity and ease of implementation.
The problem can be stated as follows:

Design an estimator that provides an estimate ŷ(n) of the desired response y(n)

using a linear combination of the data xk(n) for 1 ≤ k ≤ M , such that the MSE
E{|y(n)− ŷ(n)|2} is minimized.

More specifically, the linear estimator is defined by

ŷ(n) �
M∑
k=1

c∗k (n)xk(n) (6.2.1)

and the goal is to determine the coefficients ck(n) for 1 ≤ k ≤ M such that the MSE
(6.1.3) is minimized. In general, a new set of optimum coefficients should be computed for
each time instant n. Since we assume that the desired response and the data are realizations
of stochastic processes, the quantities y(n), x1(n), . . . , xM(n) are random variables at any
fixed time n. For convenience, we formulate and solve the estimation problem at a fixed
time instant n. Thus, we drop the time index n and restate the problem as follows:

Estimate a random variable y (the desired response) from a set of related random
variables x1, x2, . . . , xM (data) using the linear estimator

ŷ �
M∑
k=1

c∗kxk = cH x (6.2.2)
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x = [x1 x2 · · · xM ]T (6.2.3)where

is the input data vector and

c = [c1 c2 · · · cM ]T (6.2.4)

is the parameter or coefficient vector of the estimator.

Unless otherwise stated, all random variables are assumed to have zero-mean values. The
number M of data components used is called the order of the estimator. The linear estimator
(6.2.2) is represented graphically as shown in Figure 6.3 and involves a computational
structure known as the linear combiner. The MSE

P � E{|e|2} (6.2.5)

e � y − ŷ (6.2.6)where

is a function of the parameters ck . Minimization of (6.2.5) with respect to parameters ck
leads to a linear estimator co that is optimum in the MSE sense. The parameter vector co is
known as the linear MMSE (LMMSE) estimator and ŷo as the LMMSE estimate.

Error
e

y

y

Data

Estimate
−

Linear combiner Desired
response

Estimator 
parameters

x1

x2

xM

c1
*

c2
*

cM
*

…

ˆ

FIGURE 6.3
Block diagram representation of the linear estimator.

6.2.1 Error Performance Surface

To determine the linear MMSE estimator, we seek the value of the parameter vector c that
minimizes the function (6.2.5). To this end, we want to express the MSE as a function of
the parameter vector c and to understand the nature of this dependence.

By using (6.2.5), (6.2.6), (6.2.2), and the linearity property of the expectation operator,
the MSE is given by

P(c) = E{|e|2} = E{(y − cH x)(y∗ − xH c)}
= E{|y|2} − cHE{xy∗} − E{yxH }c+ cHE{xxH }c

or more compactly,

P(c) = Py − cH d− dH c+ cH Rc (6.2.7)

Py � E{|y|2} (6.2.8)where

is the power of the desired response,

d � E{xy∗} (6.2.9)
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is the cross-correlation vector between the data vector x and the desired response y, and

R � E{xxH } (6.2.10)

is the correlation matrix of the data vector x. The matrix R is guaranteed to be Hermitian
and nonnegative definite (see Section 3.4.4).

The functionP(c) is known as the error performance surface of the estimator. Equation
(6.2.7) shows that the MSE P(c) (1) depends only on the second-order moments of the
desired response and the data and (2) is a quadratic function of the estimator coefficients
and represents an (M + 1)-dimensional surface with M degrees of freedom. We will see
that if R is positive definite, then the quadratic function P(c) is bowl-shaped and has a
unique minimum that corresponds to the optimum parameters. The next example illustrates
this fact for the second-order case.

EXAMPLE 6.2.1. If M = 2 and the random variables y, x1, and x2 are real-valued, the MSE is

P(c1, c2) = Py − 2d1c1 − 2d2c2 + r11c
2
1 + 2r12c1c2 + r22c

2
2

because r12 = r21.And P(c1, c2) is a second-order function of coefficients c1 and c2, and Figure
6.4 shows two plots of the function P(c1, c2) that are quite different in appearance. The surface
in Figure 6.4(a) looks like a bowl and has a unique extremum that is a minimum. The values for
the error surface parameters are Py = 0.5, r11 = r22 = 4.5, r12 = r21 = −0.1545, d1 = −0.5,
and d2 = −0.1545. On the other hand, in Figure 6.4(b), we have a saddle point that is neither a
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FIGURE 6.4
Representative surface and contour plots for positive definite and negative definite quadratic error performance
surfaces.
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minimum nor a maximum (here only the matrix elements have changed to r11 = r22 = 1, r12 =
r21 = 2). If we cut the surfaces with planes parallel to the (c1, c2) plane, we obtain contours
of constant MSE that are shown in Figure 6.4(c) and (d ). In conclusion, the error performance
surface is bowl-shaped and has a unique minimum only if the matrix R is positive definite (the
determinants of the two matrices are 20.23 and −3, respectively). Only in this case can we
obtain an estimator that minimizes the MSE, and the contours are concentric ellipses whose
center corresponds to the optimum estimator. The bottom of the bowl is determined by setting
the partial derivatives with respect to the unknown parameters to zero, that is,

∂P (c1, c2)

∂c1
= 0 which results in r11c

o
1 + r12c

o
2 = d1

∂P (c1, c2)

∂c2
= 0 which results in r12c

o
1 + r22c

o
2 = d2

This is a linear system of two equations with two unknowns whose solution provides the coeffi-
cients co1 and co2 that minimize the MSE function P(c1, c2).

When the optimum filter is specified by a rational system function, the error perfor-
mance surface may be nonquadratic. This is illustrated in the following example.

EXAMPLE 6.2.2. Suppose that we wish to estimate the real-valued output y(n) of the “unknown”
system (see Figure 6.5)

G(z) = 0.05− 0.4z−1

1− 1.1314z−1 + 0.25z−2

using the pole-zero filter

H(z) = b

1− az−1

by minimizing the MSE E{e2(n)} (Johnson and Larimore 1977). The input signal x(n) is white
noise with zero mean and variance σ 2

x . The MSE is given by

E{e2(n)} = E{[y(n)− ŷ(n)]2} = E{y2(n)} − 2E{y(n)ŷ(n)} + E{ŷ2(n)}
and is a function of parameters b and a. Since the impulse response h(n) = banu(n) of the
optimum filter has infinite duration, we cannot use (6.2.7) to compute E{e2(n)} and to plot the
error surface. The three components of E{e2(n)} can be evaluated as follows, using Parseval’s
theorem: The power of the desired response

E{y2(n)} = σ 2
x

∞∑
n=0

g2(n) = σ 2
x

2πj

∮
G(z)G(z−1)z−1 dz � σ 2

xσ
2
g

is constant and can be computed either numerically by using the first M “nonzero” samples
of g(n) or analytically by evaluating the integral using the residue theorem. The power of the
optimum filter output is

E{ŷ2(n)} = E{x2(n)}
∞∑
n=0

h2(n) = σ 2
x

2πj

∮
H(z)H(z−1)z−1 dz = σ 2

x

b2

1− a2

−

“Unknown”
system

White
noise

G(z)

y(n)

x(n) e(n)y(n)
H(z)

ˆ

FIGURE 6.5
Identification of an “unknown” system using
an optimum filter.



March 8, 2005 10:28 e56-ch6 Sheet number 8 Page number 268 black

268

chapter 6
Optimum Linear Filters

which is a function of parameters b and a. The middle term is

E{y(n)ŷ(n)} = E



∞∑
k=0

g(k)x(n− k)

∞∑
m=0

h(m)x(n−m)




= σ 2
x

∞∑
k=0

g(k)h(k) = σ 2
x

2πj

∮
G(z)H(z−1)z−1 dz = bG(z)|z−1=a

because E{x(n − k)x(n − m)} = σ 2
xδ(m − k). For convenience we compute the normalized

MSE

P(b, a) � E{e2(n)}
σ 2
g

= σ 2
x −

2b

σ 2
g

G(z)

∣∣∣∣∣
z−1=a

+ σ 2
x

σ 2
g

b2

1− a2

whose surface and contour plots are shown in Figure 6.6. We note that the resulting error per-
formance surface is bimodal with a global minimum P = 0.277 at (b, a) = (−0.311, 0.906)
and a local minimum P = 0.976 at (b, a) = (0.114,−0.519). As a result, the determination
of the optimum filter requires the use of nonlinear optimization techniques with all associated
drawbacks.
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FIGURE 6.6
Illustration of the nonquadratic form of the error performance surface
of a pole-zero optimum filter specified by the coefficients of its
difference equation.

6.2.2 Derivation of the Linear MMSE Estimator

The approach in Example 6.2.1 can be generalized to obtain the necessary and sufficient
conditions that determine the linear MMSE estimator.

†
Here, we present a simpler matrix-

based approach that is sufficient for the scope of this chapter.
We first notice that we can put (6.2.7) into the form of a “perfect square” as

P(c) = Py − dH R−1d+ (Rc− d)H R−1(Rc− d) (6.2.11)

where only the third term depends on c. If R is positive definite, the inverse matrix R−1 exists

†
For complex-valued random variables, there are some complications that should be taken into account because
|e|2 is not an analytic function. This topic is discussed in Appendix B.
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and is positive definite; that is, zH R−1z >0 for all z 	= 0. Therefore, if R is positive definite,
the term dH R−1d >0 decreases the cost function by an amount determined exclusively by
the second-order moments. In contrast, the term (Rc− d)H R−1(Rc− d) > 0 increases the
cost function depending on the choice of the estimator parameters. Thus, the best estimator
is obtained by setting Rc− d = 0.

Therefore, the necessary and sufficient conditions that determine the linear MMSE
estimator co are

Rco = d (6.2.12)

R is positive definite (6.2.13)and

In greater detail, (6.2.12) can be written as

r11 r12 · · · r1M

r21 r22 · · · r2M
...

...
. . .

...

rM1 rM2 · · · rMM





c1

c2
...

cM


 =



d1

d2
...

dM


 (6.2.14)

rij � E{xix∗j } = r∗ji (6.2.15)where

di � E{xiy∗} (6.2.16)and

and are known as the set of normal equations. The invertibility of the correlation matrix
R—and hence the existence of the optimum estimator—is guaranteed if R is positive
definite. In theory, R is guaranteed to be nonnegative definite, but in physical applications
it will almost always be positive definite. The normal equations can be solved by using any
general-purpose routine for a set of linear equations.

Using (6.2.11) and (6.2.12), we find that the MMSE Po is

Po = Py − dH R−1d = Py − dH co (6.2.17)

where we can easily show that the term dH co is equal to E{|ŷo|2}, the power of the optimum
estimate. If x and y are uncorrelated (d = 0), we have the worst situation (Po = Py) because
there is no linear estimator that can reduce the MSE. If d 	= 0, there is always going to be
some reduction in the MSE owing to the correlation between the data vector x and the
desired response y, assuming that R is positive definite. The best situation corresponds to
ŷ = y, which gives Po = 0. Thus, for comparison purposes, we use the normalized MSE

E � Po

Py

= 1− Pŷo

Py

(6.2.18)

because it is bounded between 0 and 1, that is,

0 ≤ E ≤ 1 (6.2.19)

If c̃ is the deviation from the optimum vector co, that is, if c = co+ c̃, then substituting into
(6.2.11) and using (6.2.17), we obtain

P(co + c̃) = P(co)+ c̃H Rc̃ (6.2.20)

Equation (6.2.20) shows that if R is positive definite, any deviation c̃ from the optimum
vector co increases the MSE by an amount c̃H Rc̃ > 0, which is known as the excess MSE,
that is,

Excess MSE � P(co + c̃)− P(co) = c̃H Rc̃ (6.2.21)

We emphasize that the excess MSE depends only on the input correlation matrix and not
on the desired response. This fact has important implications because any deviation from
the optimum can be detected by monitoring the MSE.
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For nonzero-mean random variables, we use the estimator ŷ � c0+cH x. The elements
of R and d are replaced by the corresponding covariances and c0 = E{y} − cHE{x} (see
Problem 6.1). In the sequel, unless otherwise explicitly stated, we assume that all random
variables have zero mean or have been reduced to zero mean by replacing y by y − E{y}
and x by x − E{x}.

6.2.3 Principal-Component Analysis of the Optimum Linear Estimator

The properties of optimum linear estimators and their error performance surfaces depend
on the correlation matrix R. We can learn a lot about the nature of the optimum estimator
if we express R in terms of its eigenvalues and eigenvectors. Indeed, from Section 3.4.4,
we have

R = Q�QH =
M∑
i=1

λiqiqH
i and � = QH RQ (6.2.22)

� = diag{λ1, λ2, . . . , λM} (6.2.23)where

are the eigenvalues of R, assumed to be distinct, and

Q = [q1 q2 · · · qM ] (6.2.24)

are the eigenvectors of R. The modal matrix Q is unitary, that is,

QH Q = I (6.2.25)

which implies that Q−1 = QH . The relationship (6.2.22) between R and � is known as a
similarity transformation.

In general, the multiplication of a vector by a matrix changes both the length and the
direction of the vector. We define a coordinate transformation of the optimum parameter
vector by

c′o � QH co or co � Qc′o (6.2.26)

‖co‖ = (Qc′o)H Qc′o = c′Ho QH Qc
′
o = ‖c′o‖ (6.2.27)Since

the transformation (6.2.26) changes the direction of the transformed vector but not its length.
If we substitute (6.2.22) into the normal equations (6.2.12), we obtain

Q�QH co = d or �QH co = QH d

which results in

�c′o = d′ (6.2.28)

d′ � QH d or d � Qd′ (6.2.29)where

is the transformed “decoupled” cross-correlation vector.
Because � is diagonal, the set of M equations (6.2.28) can be written as

λic
′
o,i = d ′i 1 ≤ i ≤ M (6.2.30)

where c′o,i and d ′i are the components of c′o and d′, respectively. This is an uncoupled set of
M first-order equations. If λi 	= 0, then

c′o,i =
d ′i
λi

1 ≤ i ≤ M (6.2.31)

and if λi = 0, the value of c′o,i is indeterminate.
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The MMSE becomes

Po = Py − dH co

= Py − (Qd′)H Qc′o = Py − d′H c′o

= Py −
M∑
i=1

d ′∗i c′o,i = Py −
M∑
i=1

|d ′i |2
λi

(6.2.32)

which shows how the eigenvalues and the decoupled cross-correlations affect the perfor-
mance of the optimum filter. The advantage of (6.2.31) and (6.2.32) is that we can study the
behavior of each parameter of the optimum estimator independently of all the remaining
ones.

To appreciate the significance of the principal-component transformation, we will dis-
cuss the error surface of a second-order estimator. However, all the results can be easily
generalized to estimators of order M , whose error performance surface exists in a space of
M + 1 dimensions. Figure 6.7 shows the contours of constant MSE for a positive definite,
second-order error surface. The contours are concentric ellipses centered at the tip of the op-
timum vector co. We define a new coordinate system with origin at co and axes determined
by the major axis ṽ1 and the minor axis ṽ2 of the ellipses. The two axes are orthogonal, and
the resulting system is known as the principal coordinate system. The transformation from
the “old” system to the “new” system is done in two steps:

Translation: c̃ = c− co

Rotation: ṽ = QH c̃
(6.2.33)

where the rotation changes the axes of the space to match the axes of the ellipsoid. The
excess MSE (6.2.21) becomes

%P(ṽ) = c̃H Rc̃ = c̃H Q�QH c̃ = ṽH�ṽ =
M∑
i=1

λi |ṽi |2 (6.2.34)

which shows that the penalty paid for the deviation of a parameter from its optimum value
is proportional to the corresponding eigenvalue. Clearly, changes in uncoupled parameters
(which correspond to λi = 0) do not affect the excess MSE.

Using (6.2.22), we have

co = R−1d = Q�−1QH d =
M∑
i=1

qH
i d

λi

qi =
M∑
i=1

d ′i
λi

qi (6.2.35)

c2

c1

co

0

v2
~

v~ v1
~

FIGURE 6.7
Contours of constant MSE and
principal-component axes for a
second-order quadratic error
surface.



March 8, 2005 10:28 e56-ch6 Sheet number 12 Page number 272 black

272

chapter 6
Optimum Linear Filters

and the optimum estimate can be written as

ŷo = cHo x =
M∑
i=1

d ′i
λi

(qH
i x) (6.2.36)

which leads to the representation of the optimum estimator shown in Figure 6.8. The eigen-
filters qi decorrelate the data vector x into its principal components, which are weighted
and added to produce the optimum estimate.

Data
x

q1
Hx

q2
Hx

qM
H x

yo

… …

Optimum
estimate

d1
' /l1

d2
' /l2

dM
' /lM

ˆ

FIGURE 6.8
Principal-components representation of the optimum linear
estimator.

6.2.4 Geometric Interpretations and the Principle of Orthogonality

It is convenient and pedagogic to think of random variables with zero mean value and finite
variance as vectors in an abstract vector space with an inner product (i.e., a Hilbert space)
defined by their correlation

〈x, y〉 � E{xy∗} (6.2.37)

and the length of a vector by

‖x‖2 � 〈x, x〉 = E{|x|2} <∞ (6.2.38)

From the definition of the correlation coefficient in Section 3.2.1 and the above definitions,
we obtain

|〈x, y〉|2 ≤ ‖x‖‖y‖ (6.2.39)

which is known as the Cauchy-Schwartz inequality. Two random variables are orthogonal,
denoted by x ⊥ y, if

〈x, y〉 = E{xy∗} = 0 (6.2.40)

which implies they are uncorrelated since they have zero mean.
This geometric viewpoint offers an illuminating and intuitive interpretation for many

aspects of MSE estimation that we will find very useful. Indeed, using (6.2.9), (6.2.10), and
(6.2.12), we have

E{xe∗o} = E{x(y∗ − xH co)} = E{xy∗} − E{xxH }co = d− Rco = 0

E{xe∗o} = 0 (6.2.41)Therefore

E{xme∗o} = 0 for 1 ≤ m ≤ M (6.2.42)or

that is, the estimation error is orthogonal to the data used for the estimation. Equations
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(6.2.41), or equivalently (6.2.42), are known as the orthogonality principle and are widely
used in linear MMSE estimation.

To illustrate the use of the orthogonality principle, we note that any linear combination
c∗1x1 + · · · + c∗MxM lies in the subspace defined by the vectors

†
x1, . . . , xM . Therefore,

the estimate ŷ that minimizes the squared length of the error vector e, that is, the MSE, is
determined by the foot of the perpendicular from the tip of the vector y to the “plane” defined
by vectors x1, . . . , xM . This is illustrated in Figure 6.9 for M = 2. Since eo is perpendicular
to every vector in the plane, we have xm⊥eo, 1 ≤ m ≤ M , which leads to the orthogonality
principle (6.2.42). Conversely, we can start with the orthogonality principle (6.2.41) and
derive the normal equations. This interpretation has led to the name normal equations for
(6.2.12). We will see several times that the concept of orthogonality has many important
theoretical and practical implications. As an illustration, we apply the Pythagorean theorem
to the orthogonal triangle formed by vectors ŷo, eo, and y, in Figure 6.9, to obtain

‖y‖2 = ‖ŷo‖2 + ‖eo‖2

E{|y|2} = E{|ŷo|2} + E{|eo|2} (6.2.43)or

which decomposes the power of the desired response into two components, one that is
correlated to the data and one that is uncorrelated to the data.

y

co, 2 x2
*

x2

x1

yo

co, 1 x1
*

eo = y − yo

ˆ

ˆ

FIGURE 6.9
Pictorial illustration of the orthogonality
principle. For random vectors orthogonality
holds on the “average.”

6.2.5 Summary and Further Properties

We next summarize, for emphasis and future reference, some important properties of opti-
mum, in the MMSE sense, linear estimators.

1. Equations (6.2.12) and (6.2.17) show that the optimum estimator and the MMSE depend
only on the second-order moments of the desired response and the data. The dependence
on the second-order moments is a consequence of both the linearity of the estimator and
the use of the MSE criterion.

2. The error performance surface of the optimum estimator is a quadratic function of its
coefficients. If the data correlation matrix is positive definite, this function has a unique
minimum that determines the optimum set of coefficients. The surface can be visualized
as a bowl, and the optimum estimator corresponds to the bottom of the bowl.

†
We should be careful to avoid confusing vector random variables, that is, vectors whose components are random

variables, and random variables interpreted as vectors in the abstract vector space defined by Equations (6.2.37)
to (6.2.39).
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3. If the data correlation matrix R is positive definite, any deviation from the optimum
increases the MMSE according to (6.2.21). The resulting excess MSE depends on R
only. This property is very useful in the design of adaptive filters.

4. When the estimator operates with the optimum set of coefficients, the error eo is uncor-
related (orthogonal) to both the data x1, x2, . . . , xM and the optimum estimate ŷo. This
property is very useful if we want to monitor the performance of an optimum estimator
in practice and is used also to design adaptive filters.

5. The MMSE, the optimum estimator, and the optimum estimate can be expressed in terms
of the eigenvalues and eigenvectors of the data correlation matrix. See (6.2.32), (6.2.35),
and (6.2.36).

6. The general (unconstrained) estimator

ŷ � h(x) = h(x1, x2, . . . , xM)

that minimizes the MSE

P = E{|y − h(x)|2}
with respect to h(x) is given by the mean of the conditional density, that is,

ŷo � ho(x) = E{y|x} =
∫ ∞
−∞

ypy(y|x) dy
and clearly is a nonlinear function of x1, . . . , xM . If the desired response and the data
are jointly Gaussian, the linear MMSE estimator is the best in the MMSE sense; that
is, we cannot find a nonlinear estimator that produces an estimate with smaller MMSE
(Papoulis 1991).

6.3 SOLUTION OF THE NORMAL EQUATIONS

In this section, we present a numerical method for the solution of the normal equations
and the computation of the minimum error, using a slight modification of the Cholesky
decomposition of Hermitian positive definite matrices known as the lower-diagonal-upper
decomposition, or LDLH decomposition for short.

Hermitian positive definite matrices can be uniquely decomposed into the product of
a lower triangular and a diagonal and an upper triangular matrix as

R = LDLH (6.3.1)

where L is a unit lower-triangular matrix

L �




1 0 · · · 0

l10 1 · · · 0
...

...
. . .

...

lM−1,0 lM−1,1 · · · 1


 (6.3.2)

D = diag{ξ1, ξ2, . . . , ξM} (6.3.3)and

is a diagonal matrix with strictly real, positive elements. When the decomposition (6.3.1)
is known, we can solve the normal equations

Rco = LD(LH co) = d (6.3.4)

by solving the lower triangular system

LDk � d (6.3.5)

for the intermediate vector k and the upper triangular system

LH co = k (6.3.6)
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for the optimum estimator co. The advantage is that the solution of triangular systems of
equations is trivial.

We next provide a constructive proof of the LDLH decomposition by example and il-
lustrate its application to the solution of the normal equations for M = 4. The generalization
to an arbitrary order is straightforward and is given in Section 7.1.4.

EXAMPLE 6.3.1. Writing the decomposition (6.3.1) explicitly for M = 4, we have

r11 r12 r13 r14

r21 r22 r23 r24

r31 r32 r33 r34

r41 r42 r43 r44


 =




1 0 0 0

l10 1 0 0

l20 l21 1 0

l30 l31 l32 1





ξ1 0 0 0

0 ξ2 0 0

0 0 ξ3 0

0 0 0 ξ4






1 l∗10 l∗20 l∗30
0 1 l∗21 l∗31
0 0 1 l∗32
0 0 0 1




(6.3.7)

where rij = r∗
ji

and ξ i > 0, by assumption. If we perform the matrix multiplications on the
right-hand side of (6.3.7) and equate the matrix elements on the left and right sides, we obtain

r11 = ξ1 ⇒ ξ1 = r11

r21 = ξ1l10 ⇒ l10 = r21

ξ1

r22 = ξ1|l10|2 + ξ2 ⇒ ξ2 = r22 − ξ1|l10|2

r31 = ξ1l20 ⇒ l20 = r31

ξ1

r32 = ξ1l20l
∗
10 + ξ2l21 ⇒ l21 =

r32 − ξ1l20l
∗
10

ξ2

r33 = ξ1|l20|2 + ξ2|l21|2 + ξ3 ⇒ ξ3 = r33 − ξ1|l20|2 − ξ2|l21|2

r41 = ξ1l30 ⇒ l30 = r41

ξ1

r42 = ξ1l30l
∗
10 + ξ2l31 ⇒ l31 =

r42 − ξ1l30l
∗
10

ξ2

r43 = ξ1l30l
∗
20 + ξ2l31l

∗
21 + ξ3l32 ⇒ l32 =

r43 − ξ1l30l
∗
20 − ξ2l31l

∗
21

ξ3

r44 = ξ1|l30|2 + ξ2|l31|2 + ξ3|l32|2 + ξ4 ⇒ ξ4 = r44 − ξ1|l30|2 − ξ2|l31|2 − ξ3|l32|2
(6.3.8)

which provides a row-by-row computation of the elements of the LDLH decomposition. We
note that the computation of the next row does not change the already computed rows.

The lower unit triangular system in (6.3.5) becomes


1 0 0 0

l10 1 0 0

l20 l21 1 0

l30 l31 l32 1





ξ1k1

ξ2k2

ξ3k3

ξ4k4


 =



d1

d2

d3

d4


 (6.3.9)

and can be solved by forward substitution, starting with the first equation. Indeed, we obtain

ξ1k1 = d1 ⇒ k1 = d1

ξ1

l10ξ1k1 + ξ2k2 = d2 ⇒ k2 = d2 − l10ξ1k1

ξ2

l20ξ1k1 + l21ξ2k2 + ξ3k3 = d3 ⇒ k3 = d3 − l20ξ1k1 + l21ξ2k2

ξ3

l30ξ1k1 + l31ξ2k2 + l32ξ3k3 + ξ4k4 = d4 ⇒ k4 = d4 − l30ξ1k1 + l31ξ2k2 + l32ξ3k3

ξ4
(6.3.10)
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which compute the coefficients ki in “forward” order. Then, the optimum estimator is obtained
by solving the upper unit triangular system in (6.3.6) by backward substitution, starting from the
last equation. Indeed, we have




1 l∗10 l∗20 l∗30

0 1 l∗21 l∗31

0 0 1 l∗32

0 0 0 1







c
(4)
1

c
(4)
2

c
(4)
3

c
(4)
4



=



k1

k2

k3

k4


⇒

c
(4)
4 = k4

c
(4)
3 = k3 − l∗32c4

c
(4)
2 = k2 − l∗21c3 − l∗31c4

c
(4)
1 = k1 − l∗10c2 − l∗20c3 − l∗30c4

(6.3.11)

that is, the coefficients of the optimum estimator are computed in “backward” order.As a result of
this backward substitution, computing one more coefficient for the optimum estimator changes
all the previously computed coefficients. Indeed, the coefficients of the third-order estimator are


1 l∗10 l∗20

0 1 l∗21

0 0 1





c
(3)
1

c
(3)
2

c
(3)
3


 =



k1

k2

k3


⇒

c
(3)
3 = k3

c
(3)
2 = k2 − l∗21c

(3)
3

c
(3)
1 = k1 − l∗10c

(3)
2 − l∗20c

(3)
3

(6.3.12)

which are different from the first three coefficients of the fourth-order estimator.

Careful inspection of the formulas for r11, r22, r33, and r44 shows that the diagonal
elements of R provide an upper bound for the elements of L and D, which is the reason for
the good numerical properties of the LDLH decomposition algorithm. The general formulas
for the row-by-row computation of the triangular decomposition, forward substitution, and
backward substitution are given in Table 6.1 and can be easily derived by generalizing the
results of the previous example. The triangular decomposition requires M3/6 operations,
and the solution of each triangular system requires M(M + 1)/2 ≈ M2/2 operations.

TABLE 6.1

Solution of normal equations using triangular decomposition.

For i = 1, 2, . . . ,M and for j = 0, 1, . . . , i − 1,

lij = 1

ξ i


ri+1,j+1 −

j−1∑
m=0

ξm+1liml∗jm


 (not executed when i = M)

ξ i = rii −
i−1∑
m=1

ξm|li−1,m−1|2

For i = 1, 2, . . . ,M ,

ki = di

ξ i
−

i−2∑
m=0

li−1,mkm+1

For i = M,M − 1, . . . , 1,

ci = ki −
M∑

m=i+1

l∗m−1,i−1cm

The decomposition (6.3.1) leads to an interesting and practical formula for the com-
putation of the MMSE without using the optimum estimator coefficients. Indeed, using
(6.2.17), (6.3.6), and (6.3.1), we obtain

Po = Py − cHo Rco = Py − kH L−1R(L−1)H k = Py − kH Dk (6.3.13)

or in scalar form

Po = Py −
M∑
i=1

ξ i |ki |2 (6.3.14)
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since D is diagonal. Equation (6.3.14) shows that because ξ i > 0, increasing the order
of the filter can only reduce the minimum error and hence leads to a better estimate.
Another important application of (6.3.14) is in the computation of arbitrary positive definite
quadratic forms. Such problems arise in various statistical applications, such as detection
and hypothesis testing, involving the correlation matrix of Gaussian processes (McDonough
and Whalen 1995).

Since the determinant of a unit lower triangular matrix equals 1, from (6.3.1) we obtain

det R = (det L)(det D)(det LT )

M∏
i=1

ξ i (6.3.15)

which shows that if R is positive definite, ξ i > 0 for all i, and vice versa.
The triangular decomposition of symmetric, positive definite matrices is numerically

stable. The function [L,D]=ldlt(R) implements the first part of the algorithm in Table
6.1, and it fails only if matrix R is not positive definite. Therefore, it can be used as
an efficient test to find out whether a symmetric matrix is positive definite. The function
[co,Po]=lduneqs(L,D,d) computes the MMSE estimator using the last formula in Table
6.1 and the corresponding MMSE using (6.3.14).

To summarize, linear MMSE estimation involves the following computational steps

1. R = E{xxH }, d = E{xy∗} Normal equations Rco = d

2. R = LDLH Triangular decomposition

3. LDk = d Forward substitution → k

4. LH co = k Backward substitution → co
5. Po = Py − kH Dk MMSE computation

6. e = y − cHo x Computation of residuals

(6.3.16)

The vector k can also be obtained using the LDLH decomposition of an augmented corre-
lation matrix. To this end, consider the augmented vector

x̄ =
[

x

y

]
(6.3.17)

and its correlation matrix

R̄ = E{x̄x̄H }=
[
E{xxH } E{xy∗}
E{yxH } E{|y|2}

]
=
[

R d

dH Py

]
(6.3.18)

We can easily show that the LDLH decomposition of R̄ is

R̄ =
[

L 0

kH 1

][
D 0

0H Po

][
LH kH

0H 1

]
(6.3.19)

which provides the MMSE Po and the quantities L and k required to obtain the optimum
estimator co by solving LH co = k.

E XAM PLE 6.3.2. Compute, using the LDLH method, the optimum estimator and the MMSE
specified by the following second-order moments:

R =




1 3 2 4

3 12 18 21

2 18 54 48

4 21 48 55


 d =




1

2

1.5

4


 and Py = 100
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Solution. We first compute the triangular factors

L =




1 0 0 0

3 1 0 0

2 4 1 0

4 3 2 1


 D =




1 0 0 0

0 3 0 0

0 0 2 0

0 0 0 4




using (6.3.8), and the vector k

k = [1 − 1
3

1.75 − 1]T

using (6.3.9). Then we determine the optimum estimator

c = [34.5 − 12 1
3

3.75 − 1]T

by solving the triangular system (6.3.11). The corresponding MMSE

Po = 88.5

can be evaluated by using either (6.2.17) or (6.3.14). The reader can easily verify that the LDLH

decomposition of R̄ provides the elements of L, k, and Po.

Since the diagonal elements ξk are positive, the matrix

L � LD1/2 (6.3.20)

is lower triangular with positive diagonal elements. Then (6.3.1) can be written as

R = LLH (6.3.21)

which is known as the Cholesky decomposition of R (Golub and Van Loan 1996). The
computation of L requires M3/6 multiplications and additions and M square roots and can
be done by using the function L=chol(R)’. The function [L,D]=ldltchol(R) computes
the LDLH decomposition using the function chol.

6.4 OPTIMUM FINITE IMPULSE RESPONSE FILTERS

In the previous section, we presented the theory of general linear MMSE estimators [see
Figure 6.1(a)]. In this section, we apply these results to the design of optimum linear filters,
that is, filters whose performance is the best possible when measured according to the MMSE
criterion [see Figure 6.1(b)]. The general formulation of the optimum filtering problem is
shown in Figure 6.10. The optimum filter forms an estimate ŷ(n) of the desired response
y(n) by using samples from a related input signal x(n). The theory of optimum filters
was developed by Wiener (1942) in continuous time and Kolmogorov (1939) in discrete
time. Levinson (1947) reformulated the theory for FIR filters and stationary processes and
developed an efficient algorithm for the solution of the normal equations that exploits the
Toeplitz structure of the autocorrelation matrix R (see Section 7.4). For this reason, linear
MMSE filters are often referred to as Wiener filters.

Input
signal

Error
signal

Desired
response

Optimum
filterx(n) e(n)

y(n)

y(n)

−

ˆ

FIGURE 6.10
Block diagram representation of the
optimum filtering problem.
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We consider a linear FIR filter specified by its impulse response h(n, k). The output of
the filter is determined by the superposition summation

ŷ(n) =
M−1∑
k=0

h(n, k)x(n− k) (6.4.1)

�
M∑
k=1

c∗k (n)x(n− k + 1) � cH (n)x(n) (6.4.2)

c(n) � [c1(n) c2(n) · · · cM(n)]T (6.4.3)where

x(n) � [x(n) x(n− 1) · · · x(n−M + 1)]T (6.4.4)and

are the filter coefficient vector
†

and the input data vector, respectively. Equation (6.4.1)
becomes a convolution if h(n, k) does not depend on n, that is, when the filter is time-
invariant. The objective is to find the coefficient vector that minimizes the MSE E{|e(n)|2}.

We prefer FIR over IIR filters because (1) any stable IIR filter can be approximated
to any desirable degree by an FIR filter and (2) optimum FIR filters are easily obtained by
solving a linear system of equations.

6.4.1 Design and Properties

To determine the optimum FIR filter co(n), we note that at every time instant n, the optimum
filter is the linear MMSE estimator of the desired response y(n) based on the data x(n).
Since for any fixed n the quantities y(n), x(n), . . . , x(n −M + 1) are random variables,
we can determine the optimum filter either from (6.2.12) by replacing x by x(n), y by y(n),
and co by co(n); or by applying the orthogonality principle (6.2.41). Indeed, using (6.2.41),
(6.1.2), and (6.4.2), we have

E{x(n)[y∗(n)− xH (n)co(n)]} = 0 (6.4.5)

which leads to the following set of normal equations

R(n)co(n) = d(n) (6.4.6)

R(n) � E{x(n)xH (n)} (6.4.7)where

is the correlation matrix of the input data vector and

d(n) � E{x(n)y∗(n)} (6.4.8)

is the cross-correlation vector between the desired response and the input data vector, that
is, the input values stored currently in the filter memory and used by the filter to estimate
the desired response. We see that, at every time n, the coefficients of the optimum filter are
obtained as the solution of a linear system of equations. The filter co(n) is optimum if and
only if the Hermitian matrix R(n) is positive definite.

To find the MMSE, we can use either (6.2.17) or the orthogonality principle (6.2.41).
Using the orthogonality principle, we have

Po(n) = E{eo(n)[y∗(n)− xH (n)co(n)]}
= E{eo(n)y∗(n)} due to orthogonality

= E{[y(n)− xH (n)co(n)]y∗(n)}

†
We define ck+1(n) � h∗(n, k), 0 ≤ k ≤ M − 1 in order to comply with the definition R(n) � E{x(n)xH (n)}

of the correlation matrix.
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which can be written as

Po(n) = Py(n)− dH (n)co(n) (6.4.9)

The first term

Py(n) � E{|y(n)|2} (6.4.10)

is the power of the desired response signal and represents the MSE in the absence of
filtering. The second term dH (n)co(n) is the reduction in the MSE that is obtained by using
the optimum filter.

In many practical applications, we need to know the performance of the optimum filter
in terms of MSE reduction prior to computing the coefficients of the filter. Then we can
decide if it is preferable to (1) use an optimum filter (assuming we can design one), (2) use
a simpler suboptimum filter with adequate performance, or (3) not use a filter at all. Hence,
the performance of the optimum filter can serve as a yardstick for other competing methods.

The optimum filter consists of (1) a linear system solver that determines the optimum set
of coefficients from the normal equations formed, using the known second-order moments,
and (2) a discrete-time filter that computes the estimate ŷ(n) (see Figure 6.11). The solution
of (6.4.6) can be obtained by using standard linear system solution techniques. In Matlab,
we solve (6.4.6) by copt=R\d and compute the MMSE by Popt=Py-dot(conj(d),copt).
The optimum filter is implemented by yest=filter(copt,1,x). We emphasize that the
optimum filter only needs the input signal for its operation, that is, to form the estimate of
y(n); the desired response, if it is available, may be used for other purposes.

…

…
Optimum
estimate

Input signal

x(n)
z−1 z−1 z−1

yo(n)

c1,o(n)*
c2,o(n)*

*cM,o(n)

A priori
information

Linear system
solver

R(n)co(n) = d(n)

R(n) d(n)

ˆ

FIGURE 6.11
Design and implementation of a time-varying optimum FIR filter.

Conventional frequency-selective filters are designed to shape the spectrum of the
input signal within a specific frequency band in which it operates. In this sense, these
filters are effective only if the components of interest in the input signal have their energy
concentrated within nonoverlapping bands. To design the filters, we need to know the limits
of these bands, not the values of the sequences to be filtered. Note that such filters do not
depend on the values of the data (values of the samples) to be filtered; that is, they are not
data-adaptive. In contrast, optimum filters are designed using the second-order moments
of the processed signals and have the same effect on all classes of signals with the same
second-order moments. Optimum filters are effective even if the signals of interest have
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overlapping spectra. Although the actual data values also do not affect optimum filters, that
is, they are also not data-adaptive, these filters are optimized to the statistics of the data and
thus provide superior performance when judged by the statistical criterion.

The dependence of the optimum filter only on the second-order moments is a conse-
quence of the linearity of the filter and the use of the MSE criterion. Phase information about
the input signal or non-second-order moments of the input and desired response processes is
not needed; even if the moments are known, they are not used by the filter. Such information
is useful only if we employ a nonlinear filter or use another criterion of performance.

The error performance surface of the optimum direct-form FIR filter is a quadratic
function of its impulse response. If the input correlation matrix is positive definite, this
function has a unique minimum that determines the optimum set of coefficients. The surface
can be visualized as a bowl, and the optimum filter corresponds to the bottom of the bowl.
The bottom is moving if the processes are nonstationary and fixed if they are stationary. In
general, the shape of the error performance surface depends on the criterion of performance
and the structure of the filter. Note that the use of another criterion of performance or another
filter structure may lead to error performance surfaces with multiple local minima or saddle
points.

6.4.2 Optimum FIR Filters for Stationary Processes

Further simplifications and additional insight into the operation of optimum linear filters
are possible when the input and desired response stochastic processes are jointly wide-sense
stationary. In this case, the correlation matrix of the input data and the cross-correlation
vector do not depend on the time index n. Therefore, the optimum filter and the MMSE are
time-invariant (i.e., they are independent of the time index n) and are determined by

Rco = d (6.4.11)

Po = Py − dH co (6.4.12)and

Owing to stationarity, the autocorrelation matrix is

R �



rx(0) rx(1) · · · rx(M − 1)

r∗x (1) rx(0) · · · rx(M − 2)
...

...
. . .

...

r∗x (M − 1) r∗x (M − 2) · · · rx(0)


 (6.4.13)

determined by the autocorrelation rx(l) = E{x(n)x∗(n− l)} of the input signal. The cross-
correlation vector between the desired response and the input data vector is

d � [d1 d2 · · · dM ]T � [r∗yx(0) r∗yx(1) · · · r∗yx(M − 1)]T (6.4.14)

andPy is the power of the desired response. For stationary processes, the matrix R is Toeplitz
and positive definite unless the components of the data vector are linearly dependent.

Since the optimum filter is time-invariant, it is implemented by using convolution

ŷo(n) =
M−1∑
k=0

ho(k) x(n− k) (6.4.15)

where ho(n) = c∗o,n+1 is the impulse response of the optimum filter.
Using (6.4.13), (6.4.14), ho(n) = c∗o,n+1, and r(l) = r∗(−l), we can write the normal

equations (6.4.11) more explicitly as

M−1∑
k=0

ho(k)r∗(m− k) = ryx(m) 0 ≤ m ≤ M − 1 (6.4.16)
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which is the discrete-time counterpart of the Wiener-Hopf integral equation, and its solution
determines the impulse response of the optimum filter. We notice that the cross-correlation
between the input signal and the desired response (right-hand side) is equal to the convolu-
tion between the autocorrelation of the input signal and the optimum filter (left-hand side).
Thus, to obtain the optimum filter, we need to solve a convolution equation.

The MMSE is given by

Po = Py −
M−1∑
k=0

ho(k)r
∗
yx(k) (6.4.17)

which is obtained by substituting (6.4.14) into (6.4.12). Table 6.2 summarizes the informa-
tion required for the design of an optimum (in the MMSE sense) linear time-invariant filter,
the Wiener-Hopf equations that define the filter, and the resulting MMSE.

TABLE 6.2

Specification of optimum linear filters for stationary signals. The limits 0
and M − 1 on the summations can be replaced by any values M1 and M2.

Filter and Error Definitions e(n) � y(n)−
M−1∑
k=0

h(k)x(n− k)

Criterion of Performance P � E{|e(n)|2} → minimum

Wiener-Hopf Equations
M−1∑
k=0

ho(k)rx(m− k) = ryx(m), 0 ≤ m ≤ M − 1

Minimum MSE Po = Py −
M−1∑
k=0

ho(k)r
∗
yx(k)

Second-Order Statistics rx(l) = E{x(n)x∗(n− l)}, Py = E{|y(n)|2}
ryx(l) = E{y(n)x∗(n− l)}

To summarize, for nonstationary processes R(n) is Hermitian and nonnegative definite,
and the optimum filter ho(n) is time-varying. For stationary processes, R is Hermitian, non-
negative definite, and Toeplitz, and the optimum filter is time-invariant. A Toeplitz autocor-
relation matrix is positive definite if the power spectrum of the input satisfies Rx(e

jω) > 0
for all frequencies ω. In both cases, the filter is used for all realizations of the processes. If
M = ∞, we have a causal IIR optimum filter determined by an infinite-order linear system
of equations that can only be solved in the stationary case by using analytical techniques
(see Section 6.6).

EXAMPLE 6.4.1. Consider a harmonic random process

y(n) = A cos (ω0n+ φ)

with fixed, but unknown, amplitude and frequency, and random phase φ, uniformly distributed
on the interval from 0 to 2π . This process is corrupted by additive white Gaussian noise v(n) ∼
N(0, σ 2

v) that is uncorrelated with y(n). The resulting signal x(n) = y(n)+ v(n) is available to
the user for processing. Design an optimum FIR filter to remove the corrupting noise v(n) from
the observed signal x(n).

Solution. The input of the optimum filter is x(n), and the desired response is y(n). The signal
y(n) is obviously unavailable, but to design the filter, we only need the second-order moments
rx(l) and ryx(l). We first note that since y(n) and v(n) are uncorrelated, the autocorrelation of
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the input signal is

rx(l) = ry(l)+ rv(l) = 1
2
A2 cos ω0l + σ 2

vδ(l)

where ry(l) = 1
2
A2 cosω0l is the autocorrelation of y(n). The cross-correlation between the

desired response y(n) and the input signal x(n) is

ryx(l) = E{y(n)[y(n− l)+ v(n− l)]} = ry(l)

Therefore, the autocorrelation matrix R is symmetric Toeplitz and is determined by the elements
r(0), r(1), . . . , r(M − 1) of its first row. The right-hand side of the Wiener-Hopf equations is
d = [ry(0) ry(1) · · · ry(M − 1)]T . If we know ry(l) and σ 2

v , we can numerically determine
the optimum filter and the MMSE from (6.4.11) and (6.4.12). For example, suppose that A =
0.5, f0 = ω0/(2π) = 0.05, and σ 2

v = 0.5. The input signal-to-noise ratio (SNR) is

SNRI = 10 log
A2/2

σ 2
v

= −6.02 dB

The processing gain (PG), defined as the ratio of signal-to-noise ratios at the output and input
of a signal processing system

PG � SNRO
SNRI

provides another useful measure of performance.
The first problem we encounter is how to choose the order M of the filter. In the absence of

any a priori information, we compute ho and Ph
o for 1 ≤ M ≤ Mmax = 50 and PG and plot both

results in Figure 6.12. We see that an M = 20 order filter provides satisfactory performance.
Figure 6.13 shows a realization of the corrupted and filtered signals. Another useful approach to
evaluate how well the optimum filter enhances a harmonic signal is to compute the spectra of
the input and output signals and the frequency response of the optimum filter. These are shown
in Figure 6.14, where we see that the optimum filter has a sharp bandpass about frequency f0,
as expected (for details see Problem 6.5).
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FIGURE 6.12
Plots of (a) the MMSE and (b) the processing gain as a function of the filter order M .

To illustrate the meaning of the estimator’s optimality, we will use a Monte Carlo simulation.
Thus, we generate K = 100 realizations of the sequence x(ζ i , n), 0 ≤ n ≤ N − 1(N = 1000);
we compute the output sequence ŷ(ζ i , n), using (6.4.15); and then the error sequence e(ζ i , n) =
y(ζ i , n)− ŷ(ζ i , n) and its variance P̂ (ζ i ). Figure 6.15 shows a plot of P̂ (ζ i ), 1 ≤ ζ i ≤ K . We
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FIGURE 6.13
Example of the noise-corrupted and filtered sinusoidal signals.
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FIGURE 6.14
PSD of the input signal, magnitude response of the optimum filter, and PSD of the
output signal.
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FIGURE 6.15
Results of Monte Carlo simulation of the optimum filter. The
solid line corresponds to the MMSE and the dashed line to the
average of P̂ (ζ i ) values.

notice that although the filter performs better or worse than the optimum in particular cases, on
average its performance is close to the theoretically predicted one. This is exactly the meaning
of the MMSE criterion: optimum performance on the average (in the MMSE sense).

For a certain realization, the optimum filter may not perform as well as some other
linear filters; however, on average, it performs better than any other linear filter of the same
order when all possible realizations of x(n) and y(n) are considered.

6.4.3 Frequency-Domain Interpretations

We will now investigate the performance of the optimum filter, for stationary processes,
in the frequency domain. Using (6.2.7), (6.4.13), and (6.4.14), we can easily show that the
MSE of an FIR filter h(n) is given by

P = E{|e(n)|2} = ry(0)−
M−1∑
k=0

h(k)r∗yx(k)−
M−1∑
k=0

h∗(k)ryx(k)+
M−1∑
k=0

M−1∑
l=0

h(k)r(l−k)h∗(l)

(6.4.18)
The frequency response function of the FIR filter is

H(ejω) �
M−1∑
k=0

h(k)e−jωk (6.4.19)

Using Parseval’s theorem,
∞∑

n=−∞
x1(n)x

∗
2 (n) =

1

2π

∫ π

−π
X1(e

jω)X∗2(ejω) dω (6.4.20)

we can show that the MSE (6.4.18) can be expressed in the frequency domain as

P = ry(0)− 1

2π

∫ π

−π
[H(ejω)R∗yx(ejω)+H ∗(ejω)Ryx(e

jω)−H(ejω)H ∗(ejω)Rx(e
jω)] dω
(6.4.21)

where Rx(e
jω) is the PSD of x(n) and Ryx(e

jω) is the cross-PSD of y(n) and x(n) (see
Problem 6.10). This formula holds for both FIR and IIR filters.

If we minimize (6.4.21) with respect to H(ejω), we obtain the system function of the
optimum filter and the MMSE. However, we leave this for Problem 6.11 and instead express
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(6.4.17) in the frequency domain by using (6.4.20). Indeed, we have

Po = ry(0)− 1

2π

∫ π

−π
Ho(e

jω)R∗yx(ejω) dω

= 1

2π

∫ π

−π
[Ry(e

jω)−Ho(e
jω)R∗yx(ejω)] dω

(6.4.22)

where Ho(e
jω) is the frequency response of the optimum filter. The above equation holds

for any filter, FIR or IIR, as long as we use the proper limits to compute the summation in
(6.4.19).

We will now obtain a formula for the MMSE that holds only for IIR filters whose
impulse response extends from −∞ to∞. In this case, (6.4.16) is a convolution equation
that holds for−∞ < m <∞. Using the convolution theorem of the Fourier transform, we
obtain

Ho(e
jω) = Ryx(e

jω)

Rx(ejω)
(6.4.23)

which, we again stress, holds for noncausal IIR filters only. Substituting into (6.4.22), we
obtain

Po = 1

2π

∫ π

−π
[1− |Ryx(e

jω)|2
Ry(ejω)Rx(ejω)

]Ry(e
jω) dω

Po = 1

2π

∫ π

−π
[1− Gyx(e

jω)]Ry(e
jω) dω (6.4.24)or

where Gyx(e
jω) is the coherence function between x(n) and y(n).

This important equation indicates that the performance of the optimum filter depends
on the coherence between the input and desired response processes. As we recall from
Section 5.4, the coherence is a measure of both the noise disturbing the observations and
the relative linearity between x(n) and y(n). The optimum filter can reduce the MMSE
at a certain band only if there is significant coherence, that is, Gyx(e

jω) � 1. Thus, the
optimum filter Ho(z) constitutes the best, in the MMSE sense, linear relationship between
the stochastic processes x(n) and y(n). These interpretations apply to causal IIR and FIR
optimum filters, even if (6.4.23) and (6.4.24) only hold approximately in these cases (see
Section 6.6).

6.5 LINEAR PREDICTION

Linear prediction plays a prominent role in many theoretical, computational, and practical
areas of signal processing and deals with the problem of estimating or predicting the value
x(n) of a signal at the time instant n = n0, by using a set of other samples from the
same signal. Although linear prediction is a subject useful in itself, its importance in signal
processing is also due, as we will see later, to its use in the development of fast algorithms
for optimum filtering and its relation to all-pole signal modeling.

6.5.1 Linear Signal Estimation

Suppose that we are given a set of values x(n), x(n − 1), . . . , x(n −M) of a stochastic
process and we wish to estimate the value of x(n − i), using a linear combination of the
remaining samples. The resulting estimate and the corresponding estimation error are given
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by

x̂(n− i) � −
M∑
k=0
k 	=i

c∗k (n)x(n− k) (6.5.1)

e(i)(n) � x(n− i)− x̂(n− i)

=
M∑
k=0

c∗k (n)x(n− k) with ci(n) � 1
(6.5.2)

and

where ck(n) are the coefficients of the estimator as a function of discrete-time index n. The
process is illustrated in Figure 6.16.

… …1

1

… …

…

… …

…

1

Linear signal estimation

Forward linear prediction

Backward linear prediction
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*
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*
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*ak
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bk
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n − M n − i n Time (nT )

ˆ

ˆ

ˆ

FIGURE 6.16
Illustration showing the samples, estimates, and errors used in
linear signal estimation, forward linear prediction, and
backward linear prediction.

To determine the MMSE signal estimator, we partition (6.5.2) as

e(i)(n) =
i−1∑
k=0

c∗k (n)x(n− k)+ x(n− i)+
M∑

k=i+1

c∗k (n)x(n− k)

� cH1 (n)x1(n)+ x(n− i)+ cH2 (n)x2(n)

� [c̄(i)(n)]H x̄(n)

(6.5.3)

where the partitions of the coefficient and data vectors, around the ith component, are easily
defined from the context. To obtain the normal equations and the MMSE for the optimum
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linear signal estimator, we note that

Desired response = x(n− i) data vector =
[

x1(n)

x2(n)

]

Using (6.4.6) and (6.4.9) or the orthogonality principle, we have[
R11(n) R12(n)

RT
12(n) R22(n)

][
c1(n)

c2(n)

]
= −

[
r1(n)

r2(n)

]
(6.5.4)

or more compactly
†

R(i)(n)c(i)o (n) = −d(i)(n) (6.5.5)

P (i)
o (n) = Px(n− i)+ rH1 (n)c1(n)+ rH2 (n)c2(n) (6.5.6)and

where for j, k = 1, 2

Rjk(n) � E{xj (n)xH
k (n)} (6.5.7)

rj (n) � E{xj (n)x
∗(n− i)} (6.5.8)

Px(n) = E{|x(n)|2} (6.5.9)

For various reasons, to be seen later, we will combine (6.5.4) and (6.5.6) into a single
equation. To this end, we note that the correlation matrix of the extended vector

x̄(n) =



x1(n)

x(n− i)

x2(n)


 (6.5.10)

can be partitioned as

R̄(n) = E{x̄(n)x̄H (n)} =




R11(n) r1(n) R12(n)

rH1 (n) Px(n− i) rH2 (n)

RH
12(n) r2(n) R22(n)


 (6.5.11)

with respect to its ith row and ith column. Using (6.5.4), (6.5.6), and (6.5.11), we obtain

R̄(n)c̄(i)o (n) =



0

P
(i)
o (n)

0


← ith row (6.5.12)

which completely determines the linear signal estimator c(i)(n) and the MMSE P
(i)
o (n).

If M = 2L and i = L, we have a symmetric linear smoother c̄(n) that produces an
estimate of the middle sample by using the L past and the L future samples. The above
formulation suggests an easy procedure for the computation of the linear signal estima-
tor for any value of i, which is outlined in Table 6.3 and implemented by the func-
tion[ci,Pi]=olsigest(R,i). We next discuss two types of linear signal estimation that
are of special interest and have their own dedicated notation.

6.5.2 Forward Linear Prediction

One-step forward linear prediction (FLP) involves the estimation or prediction of the value
x(n) of a stochastic process by using a linear combination of the past samples x(n −
1), . . . , x(n−M) (see Figure 6.16). We should stress that in signal processing applications

†
The minus sign on the right-hand side of the normal equations is the result of arbitrarily setting the coefficient

ci (n) � 1.
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TABLE 6.3

Steps for the computation of optimum signal estimators.

1. Determine the matrix R̄(n) of the extended data vector x̄(n).
2. Create the M ×M submatrix R(i)(n) of R̄(n) by removing its ith row and its ith column.
3. Create the M × 1 vector d(i)(n) by extracting the ith column d̄(i)(n) of R̄(n) and removing its ith element.

4. Solve the linear system R(i)(n)c(i)o (n) = −d(i)(n) to obtain c(i)o (n).

5. Compute the MMSE P
(i)
o (n) = [d̄(i)(n)]H c̄(i)o (n).

of linear prediction, what is important is the ability to obtain a good estimate of a sample,
pretending that it is unknown, instead of forecasting the future. Thus, the term prediction
is used more with signal estimation than forecasting in mind. The forward predictor is a
linear signal estimator with i = 0 and is denoted by

ef (n) � x(n)+
M∑
k=1

a∗k (n)x(n− k)

= x(n)+ aH (n)x(n− 1)

(6.5.13)

a(n) � [a1(n) a2(n) · · · aM(n)]T (6.5.14)where

is known as the forward linear predictor and ak(n) with a0(n) � 1 as the FLP error filter.
To obtain the normal equations and the MMSE for the optimum FLP, we note that for i = 0,
(6.5.11) can be written as

R̄(n) =
[
Px(n) rfH (n)

rf (n) R(n− 1)

]
(6.5.15)

R(n) = E{x(n)xH (n)} (6.5.16)where

rf (n) = E{x(n− 1)x∗(n)} (6.5.17)and

Therefore, (6.5.5) and (6.5.6) give

R(n− 1)ao(n) = −rf (n) (6.5.18)

P f
o (n) = Px(n)+ rfH (n)ao(n) (6.5.19)and

R̄(n)

[
1

ao(n)

]
=
[
P f
o (n)

0

]
(6.5.20)or

which completely specifies the FLP parameters.

6.5.3 Backward Linear Prediction

In this case, we want to estimate the sample x(n − M) in terms of the future samples
x(n), x(n− 1), . . . , x(n−M + 1) (see Figure 6.16). The term backward linear prediction
(BLP) is not accurate but is used since it is an established convention. A more appropriate
name might be postdiction or hindsight. The BLP is basically a linear signal estimator with
i = M and is denoted by

eb(n) �
M−1∑
k=0

b∗k (n)x(n− k)+ x(n−M)

= bH (n)x(n)+ x(n−M)

(6.5.21)

b(n) � [b0(n) b1(n) · · · bM−1(n)]T (6.5.22)where
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is the BLP and bk(n) with bM(n) � 1 is the backward prediction error filter (BPEF). For
i = M , (6.5.11) gives

R̄(n) =
[

R(n) rb(n)

rbH (n) Px(n−M)

]
(6.5.23)

rb(n) � E{x(n)x∗(n−M)} (6.5.24)where

The optimum backward linear predictor is specified by

R(n)bo(n) = −rb(n) (6.5.25)

and the MMSE is

P b
o (n) = Px(n−M)+ rbH (n)bo(n) (6.5.26)

and can be put in a single equation as

R̄(n)

[
bo(n)

1

]
=
[

0

P b
o (n)

]
(6.5.27)

In Table 6.4, we summarize the definitions and design equations for optimum FIR filtering
and prediction. Using the entries in this table, we can easily obtain the normal equations
and the MMSE for the FLP and BLP from those of the optimum filter.

TABLE 6.4

Summary of the design equations for optimum FIR filtering and prediction.

Optimum filter FLP BLP

Input data vector x(n) x(n− 1) x(n)

Desired response y(n) x(n) x(n−M)

Coefficient vector h(n) a(n) b(n)

Estimation error e(n) = y(n)− cH (n)x(n) ef (n) = x(n)+ aH (n)x(n− 1) eb(n) = x(n−M)+ bH (n)x(n)

Normal equations R(n)co(n) = d(n) R(n− 1)ao(n) = −rf (n) R(n)bo(n) = −rb(n)

MMSE Pc
o (n) = Py(n)− cHo (n)d(n) P f

o (n) = Px(n)+ aH (n)rf
o(n) P b

o (n) = Px(n−M)+ bH (n)rbo(n)

Required moments R(n) = E{x(n)xH (n)} rf (n) = E{x(n− 1)x∗(n)} rb(n) = E{x(n)x∗(n−M)}
d(n) = E{x(n)y∗(n)}

Stationary processes Rco = d,R is Toeplitz Rao = −r∗ Rbo = −Jr⇒ bo = Ja∗o

6.5.4 Stationary Processes

If the process x(n) is stationary, then the correlation matrix R̄(n) does not depend on the
time n and it is Toeplitz

R̄ =



r(0) r(1) · · · r(M)

r∗(1) r(0) · · · r(M − 1)
...

...
. . .

...

r∗(M) r∗(M − 1) · · · r(0)


 (6.5.28)

Therefore, all the resulting linear MMSE signal estimators are time-invariant. If we define
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the correlation vector

r � [r(1) r(2) · · · r(M)]T (6.5.29)

where r(l) = E{x(n)x∗(n− l)}, we can easily see that the cross-correlation vectors for the
FLP and the BLP are

rf = E{x(n− 1)x∗(n)} = r∗ (6.5.30)

rb = E{x(n)x∗(n−M)} = Jr (6.5.31)and

J =




0 0 · · · 1
...

...
. . .

...

0 1 · · · 0

1 0 · · · 0


 , JH J = JJH = I (6.5.32)where

is the exchange matrix that simply reverses the order of the vector elements. Therefore,

Rao = −r∗ (6.5.33)

P f
o = r(0)+ rH ao (6.5.34)

Rbo = −Jr (6.5.35)

P b
o = r(0)+ rH Jbo (6.5.36)

where the Toeplitz matrix R is obtained from R̄ by deleting the last column and row. Using
the centrosymmetry property of symmetric Toeplitz matrices

RJ = JR∗ (6.5.37)

and (6.5.33), we have

JR∗a∗o = −Jr or RJa∗o = −Jr (6.5.38)

Comparing the last equation with (6.5.35), we have

bo = Ja∗o (6.5.39)

that is, the BLP coefficient vector is the reverse of the conjugated FLP coefficient vector.
Furthermore, from (6.5.34), (6.5.36), and (6.5.39), we have

Po � P f
o = P b

o (6.5.40)

that is, the forward and backward prediction error powers are equal.
This remarkable symmetry between the MMSE forward and backward linear predictors

holds for stationary processes but disappears for nonstationary processes. Also, we do not
have such a symmetry if a criterion other than the MMSE is used and the process to be
predicted is non-Gaussian (Weiss 1975; Lawrence 1991).

EXAMPLE 6.5.1. To illustrate the basic ideas in FLP, BLP, and linear smoothing, we consider the
second-order estimators for stationary processes.

The augmented equations for the first-order FLP are (r(o) is always real)[
r(0) r(1)

r∗(1) r(0)

]a(1)0

a
(1)
1


 =

[
P f

1

0

]

and they can be solved by using Cramer’s rule. Indeed, we obtain

a
(1)
0 =

det

[
P f

1 r(1)

0 r(0)

]

det R2
= r(0)P f

1
det R2

= 1⇒ P f
1 =

det R2

det R1
= r2(0)− |r(1)|2

r(0)
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a
(1)
1 =

det

[
r(0) P f

1

r∗(1) 0

]

det R2
= −P

f
1 r∗(1)

det R2
= − r∗(1)

r(0)
and

for the MMSE and the FLP. For the second-order case we have



r(0) r(1) r(2)

r∗(1) r(0) r(1)

r∗(2) r∗(1) r(0)





a
(2)
0

a
(2)
1

a
(2)
2


 =



P f

2
0

0




whose solution is

a
(2)
0 = P f

2 det R2

det R3
= 1⇒ P f

2 =
det R3

det R2

a
(2)
1 =

−P f
2 det

[
r∗(1) r(1)

r∗(2) r(0)

]

det R3
=
− det

[
r∗(1) r(1)

r∗(2) r(0)

]

det R2
= r(1)r∗(2)− r(0)r∗(1)

r2(0)− |r(1)|2
and

a
(2)
2 =

P f
2 det

[
r∗(1) r(0)

r∗(2) r∗(1)

]

det R3
=

det

[
r∗(1) r(0)

r∗(2) r∗(1)

]

det R2
= [r

∗(1)]2 − r(0)r∗(2)
r2(0)− |r(1)|2

Similarly, for the BLP

[
r(0) r(1)

r∗(1) r(0)

]
b(1)0

b
(1)
1


 =

[
0

P b
1

]

where b
(1)
1 = 1, we obtain

P b
1 =

det R2

det R1
and b

(1)
0 = − r(1)

r(0)



r(0) r(1) r(2)

r∗(1) r(0) r(1)

r∗(2) r∗(1) r(0)





b
(2)
0

b
(2)
1

b
(2)
2


 =




0

0

P b
2




P b
2 =

det R3

det R2
b
(2)
1 = r∗(1)r(2)− r(0)r(1)

r2(0)− |r(1)|2 b
(2)
0 = r2(1)− r(0)r(2)

r2(0)− |r(1)|2

P f
1 = P b

1 a
(1)
1 = b

(1)∗
0We note that

P f
2 = P b

2 a
(2)
1 = b

(2)∗
1 a

(2)
2 = b

(2)∗
0and

which is a result of the stationarity of x(n) or equivalently of the Toeplitz structure of Rm.
For the linear signal estimator, we have



r(0) r(1) r(2)

r∗(1) r(0) r(1)

r∗(2) r∗(1) r(0)





c
(2)
0

c
(2)
1

c
(2)
2


 =




0

P2

0



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with c
(2)
1 = 1. Using Cramer’s rule, we obtain

P2 = det R3

det R(2)
3

c
(2)
0 =

−P2 det

[
r(1) r(2)

r∗(1) r(0)

]

det R3
= −

det

[
r(1) r(2)

r∗(1) r(0)

]

det R(2)
3

= r∗(1)r(2)− r(0)r(1)

r2(0)− |r(1)|2

c
(2)
2 =

−P2 det

[
r(0) r(1)

r∗(2) r∗(1)

]

det R3
= −

det

[
r(0) r(1)

r∗(2) r∗(1)

]

det R(2)
3

= r(1)r∗(2)− r(0)r∗(1)
r2(0)− |r(1)|2

from which we see that c(2)0 = c
(2)∗
2 ; that is, we have a linear phase estimator.

6.5.5 Properties

Linear signal estimators and predictors have some interesting properties that we discuss
next.

PROPERTY 6.5.1. If the process x(n) is stationary, then the symmetric, linear smoother has linear
phase.

Proof. Using the centrosymmetry property R̄J = JR̄∗ and (6.5.12) for M = 2L, i = L, we
obtain

c̄ = Jc̄∗ (6.5.41)

that is, the symmetric, linear smoother has even symmetry and, therefore, has linear phase (see
Problem 6.12).

PR O PE RTY 6.5.2. If the process x(n) is stationary, the forward prediction error filter (PEF)
1, a1, a2, . . . , aM is minimum-phase and the backward PEF b0, b1, . . . , bM−1, 1 is maximum-
phase.

Proof. The system function of the Mth-order forward PEF can be factored as

A(z) = 1+
M∑
k=1

a∗k z−k = G(z)(1− qz−1)

where q is a zero of A(z) and

G(z) = 1+
M−1∑
k=1

gkz
−k

is an (M − 1)st-order filter. The filter A(z) can be implemented as the cascade connection of the
filters G(z) and 1− qz−1 (see Figure 6.17). The output s(n) of G(z) is

s(n) = x(n)+ g1x(n− 1)+ · · · + gM−1x(n−M + 1)

and it is easy to see that

E{s(n− 1)ef∗(n)} = 0 (6.5.42)

x(n) s(n) ef(n)
G (z) 1 − qz−1

FIGURE 6.17
The prediction error filter with one
zero factored out.
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because E{x(n − k)ef∗(n)} = 0 for 1 ≤ k ≤ M . Since the output of the second filter can be
expressed as

ef (n) = s(n)− qs(n− 1)

we have

E{s(n− 1)ef∗(n)} = E{s(n− 1)s∗(n)} − q∗E{s(n− 1)s∗(n− 1)} = 0

which implies that

q = rs(−1)

rs(0)
⇒ |q| ≤ 1

because q is equal to the normalized autocorrelation of s(n). If the process x(n) is not predictable,
that is, E{|ef (n)|2} 	= 0, we have

E{|ef (n)|2} = E{ef (n)[s∗(n)− q∗s∗(n− 1)]}
= E{ef (n)s∗(n)} due to (6.5.42)

= E{[s(n)− qs(n− 1)]s∗(n)}
= rs(0)(1− |q|2) 	= 0

which implies that

|q| < 1

that is, the zero q of the forward PEF filter is strictly inside the unit circle. Repeating this process,
we can show that all zeros of A(z) are inside the unit circle; that is, A(z) is minimum-phase.
This proof was presented in Vaidyanathan et al. (1996). The property b = Ja∗ is equivalent to

B(z) = z−MA∗
(

1

z∗
)

which implies that B(z) is a maximum-phase filter (see Section 2.4).

PROPERTY 6.5.3. The forward and backward prediction error filters can be expressed in terms
of the eigenvalues λ̄i and the eigenvectors q̄i of the correlation matrix R̄(n) as follows[

1

ao(n)

]
= P f

o (n)

M+1∑
i=1

1

λ̄i
q̄i q̄
∗
i,1 (6.5.43)

[
bo(n)

1

]
= P b

o (n)

M+1∑
i=1

1

λ̄i
q̄i q̄
∗
i,M+1 (6.5.44)and

where q̄i,1 and q̄i,M+1 are the first and last components of q̄i . The first equation of (6.5.43) and
the last equation in (6.5.44) can be solved to provide the MMSEs P f

o (n) and P b
o (n), respectively.

Proof. See Problem 6.13.

PROPERTY 6.5.4. Let R̄−1(n) be the inverse of the correlation matrix R̄(n). Then, the inverse of
the ith element of the ith column of R̄−1(n) is equal to the MMSE P (i)(n), and the ith column
normalized by the ith element is equal to c(i)(n).

Proof. See Problem 6.14.

PROPERTY 6.5.5. The MMSE prediction errors can be expressed as

P f
o (n) =

det R̄(n)

det R(n− 1)
P b
o (n) =

det R̄(n)

det R(n)
(6.5.45)

Proof. Problem 6.17.

The previous concepts are illustrated in the following example.
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E XAM PLE 6.5.2. A random sequence x(n) is generated by passing the white Gaussian noise
process w(n) ∼WN(0, 1) through the filter

x(n) = w(n)+ 1
2
w(n− 1)

Determine the second-order FLP, BLP, and symmetric linear signal smoother.

Solution. The complex power spectrum is

R(z) = H(z)H(z−1) = (1+ 1
2
z−1)(1+ 1

2
z) = 1

2
z+ 5

4
+ 1

2
z−1

Therefore, the autocorrelation sequence is equal to r(0) = 5
4
, r(±1) = 1

2
, r(l) = 0 for |l| ≥ 2.

Since the power spectrum R(ejω) = 5
4
+ cosω > 0 for all ω, the autocorrelation matrix is

positive definite. The same is true of any principal submatrix. To determine the second-order
linear signal estimators, we start with the matrix

R̄ =




5
4

1
2

0

1
2

5
4

1
2

0 1
2

5
4




and follow the procedure outlined in Section 6.5.1 or use the formulas in Table 6.3. The results
are

Forward linear prediction (i = 0): {ak} → {1,−0.476, 0.190} P f
o = 1.0119

Symmetric linear smoothing (i = 1): {ck} → {−0.4, 1,−0.4} P s
o = 0.8500

Backward linear prediction (i = 2): {bk} → {0.190,−0.476, 1} P b
o = 1.0119

The inverse of the correlation matrix R̄ is

R̄−1=



0.9882 −0.4706 0.1882

−0.4706 1.1765 −0.4706

0.1882 −0.4706 0.9882




and we see that dividing the first, second, and third columns by 0.9882, 1.1765, and 0.9882
provides the forward PEF, the symmetric linear smoothing filter, and the backward PEF, respec-
tively. The inverses of the diagonal elements provide the MMSEs P f

o , P s
o , and P b

o . The reader
can easily see, by computing the zeros of the corresponding system functions, that the FLP is
minimum-phase, the BLPis maximum-phase, and the symmetric linear smoother is mixed-phase.
It is interesting to note that the smoother performs better than either of the predictors.

6.6 OPTIMUM INFINITE IMPULSE RESPONSE FILTERS

So far we have dealt with optimum FIR filters and predictors for nonstationary and stationary
processes. In this section, we consider the design of optimum IIR filters for stationary
stochastic processes. For nonstationary processes, the theory becomes very complicated.
The Wiener-Hopf equations for optimum IIR filters are the same for FIR filters; only the
limits in the convolution summation and the range of values for which the normal equations
hold are different. Both are determined by the limits of summation in the filter convolution
equation. We can easily see from (6.4.16) and (6.4.17), or by applying the orthogonality
principle (6.2.41), that the optimum IIR filter

ŷ(n) =
∑
k

ho(k)x(n− k) (6.6.1)

is specified by the Wiener-Hopf equations∑
k

ho(k)rx(m− k) = ryx(m) (6.6.2)
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and the MMSE is given by

Po = ry(0)−
∑
k

ho(k)r
∗
yx(k) (6.6.3)

where rx(l) is the autocorrelation of the input stochastic process x(n) and ryx(l) is the
cross-correlation between the desired response process y(n) and x(n). We assume that the
processes x(n) and y(n) are jointly wide-sense stationary with zero mean values.

The range of summation in the above equations includes all the nonzero coefficients
of the impulse response of the filter. The range of k in (6.6.1) determines the number of
unknowns and the number of equations, that is, the range of m. For IIR filters, we have an
infinite number of equations and unknowns, and thus only analytical solutions for (6.6.2)
are possible. The key to analytical solutions is that the left-hand side of (6.6.2) can be
expressed as the convolution of ho(m) with rx(m), that is,

ho(m) ∗ rx(m) = ryx(m) (6.6.4)

which is a convolutional equation that can be solved by using the z-transform. The com-
plexity of the solution depends on the range of m.

The formula for the MMSE is the same for any filter, either FIR or IIR. Indeed, using
Parseval’s theorem and (6.6.3), we obtain

Po = ry(0)− 1

2πj

∮
C

Ho(z)R
∗
yx

(
1

z∗

)
z−1 dz (6.6.5)

where Ho(z) is the system function of the optimum filter and Ryx(z) = Z{ryx(l)}. The
power Py can be computed by

Py = ry(0) = 1

2πj

∮
C

Ry(z)z
−1 dz (6.6.6)

where Ry(z) = Z{ry(l)}. Combining (6.6.5) with (6.6.6), we obtain

Po = 1

2πj

∮
C

[Ry(z)−Ho(z)R
∗
yx

(
1

z∗

)
]z−1 dz (6.6.7)

which expresses the MMSE in terms of z-transforms. To obtain the MMSE in the frequency
domain, we replace z by ejω. For example, (6.6.5) becomes

Po = ry(0)− 1

2π

∫ π

−π
Ho(e

jω)R∗yx(ejω) dω

where Ho(e
jω) is the frequency response of the optimum filter.

6.6.1 Noncausal IIR Filters

For the noncausal IIR filter

ŷ(n) =
∞∑

k=−∞
hnc(k)x(n− k) (6.6.8)

the range of the Wiener-Hopf equations (6.6.2) is −∞ < m <∞ and can be easily solved
by using the convolution property of the z-transform. This gives

Hnc(z)Rx(z) = Ryx(z)

Hnc(z) = Ryx(z)

Rx(z)
(6.6.9)or

where Hnc(z) is the system function of the optimum filter, Rx(z) is the complex PSD of
x(n), and Ryx(z) is the complex cross-PSD between y(n) and x(n).
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6.6.2 Causal IIR Filters

For the causal IIR filter

ŷ(n) =
∞∑
k=0

hc(k)x(n− k) (6.6.10)

the Wiener-Hopf equations (6.6.2) hold only for m in the range 0 ≤ m < ∞. Since the
sequence ry(m) can be expressed as the convolution of ho(m) and rx(m) only for m ≥ 0,
we cannot solve (6.6.2) using the z-transform. However, a simple solution is possible
using the spectral factorization theorem.

†
This approach was introduced for continuous-

time processes in Bode and Shannon (1950) and Zadeh and Ragazzini (1950). It is based
on the following two observations:

1. The solution of the Wiener-Hopf equations is trivial if the input is white.
2. Any regular process can be transformed to an equivalent white process.

White input processes. We first note that if the process x(n) is white noise, the solution
of the Wiener-Hopf equations is trivial. Indeed, if

rx(l) = σ 2
xδ(l)

Then Equation (6.6.4) gives

hc(m) ∗ δ(m) = ryx(m)

σ 2
x

0 ≤ m <∞

which implies that

hc(m) =



1

σ 2
x

ryx(m) 0 ≤ m <∞
0 m < 0

(6.6.11)

because the filter is causal. The system function of the optimum filter is given by

Hc(z) = 1

σ 2
x

[Ryx(z)]+ (6.6.12)

[Ryx(z)]+ �
∞∑
l=0

ryx(l)z
−l (6.6.13)where

is the one-sided z-transform of the two-sided sequence ryx(l). The MMSE is given by

Pc = ry(0)− 1

σ 2
x

∞∑
k=0

|ryx(k)|2 (6.6.14)

which follows from (6.6.3) and (6.6.11).

Regular input processes. The PSD of a regular process can be factored as

Rx(z) = σ 2
xHx(z)H

∗
x

(
1

z∗

)
(6.6.15)

where Hx(z) is the innovations filter (see Section 4.1). The innovations process

w(n) = x(n)−
∞∑
k=1

hx(k)w(n− k) (6.6.16)

†
An analogous matrix-based approach is extensively used in Chapter 7 for the design and implementation of

optimum FIR filters.
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is white and linearly equivalent to the input process x(n). Therefore, linear estimation of
y(n) based on x(n) is equivalent to linear estimation of y(n) based on w(n). The optimum
filter that estimates y(n) from x(n) is obtained by cascading the whitening filter 1/Hx(z)

with the optimum filter that estimates y(n) from w(n) (see Figure 6.18). Since w(n) is
white, the optimum filter for estimating y(n) from w(n) is

H
′
c(z) =

1

σ 2
x

[Ryw(z)]+ (6.6.17)

where [Ryw(z)]+ is the one-sided z-transform of ryw(l). To express H
′
c(z) in terms of

Ryx(z), we need the relationship between Ryw(z) and Ryx(z). From

x(n) =
∞∑
k=0

hx(k)w(n− k)

if we recall that ryx(l) = ryw(l) ∗ h∗x(−l), we obtain

E{y(n)x∗(n− l)} =
∞∑
k=0

h∗x(k)E{y(n)w∗(n− l − k)}

ryx(l) =
∞∑
k=0

h∗x(k)ryw(l + k) (6.6.18)or

Taking the z-transform of the above equation leads to

Ryw(z) = Ryx(z)

H ∗x (1/z∗)
(6.6.19)

which, combined with (6.6.17), gives

H
′
c(z) =

1

σ 2
x

[
Ryx(z)

H ∗x (1/z∗)

]
+

(6.6.20)

which is the causal optimum filter for the estimation of y(n) from w(n). The optimum filter
for estimating y(n) from x(n) is

Hc(z) = 1

σ 2
xHx(z)

[
Ryx(z)

H ∗x (1/z∗)

]
+

(6.6.21)

which is causal since it is the cascade connection of two causal filters [see Figure 6.19(a)].

x(n) w(n) y(n)1
Hx(z)

1

Whitening
filter

Optimum filter
for white input

Optimum filter

[Ryw(z)]+
s 2

x

ˆ

FIGURE 6.18
Optimum causal IIR filter design by the spectral factorization
method.

The MMSE from (6.6.3) can also be expressed as

Pc = ry(0)− 1

σ 2
x

∞∑
k=0

|ryw(k)|2 (6.6.22)

which shows that the MMSE decreases as we increase the order of the filter. Table 6.5
summarizes the equations required for the design of optimum FIR and IIR filters.
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Hx(z)

Optimum causal IIR filter

Whitening 
filter

Optimum causal filter
for white input

x(n) w(n) Ryx(z)

Hx (1/z*)*

(a)

1
Hx(z)

1

Optimum noncausal IIR filter

Whitening 
filter

Optimum 
noncausal filter
for white input

x(n) w(n)

(b)

y(n)ˆ

y(n)ˆ

+

1
s 2

x

Ryx(z)

Hx (1/z*)*s 2
x

FIGURE 6.19
Comparison of causal and noncausal IIR optimum filters.

TABLE 6.5

Design of FIR and IIR optimum filters for stationary processes.

Filter type Solution Required quantities

FIR e(n) = y(n)− cHo x(n) R =[rx(m− k)], d = [ryx(m)]
co = R−1d 0 ≤ k,m ≤ M − 1,M = finite

Po = ry(0)− dH co

Noncausal IIR Hnc(z) = Ryx(z)

Rx(z)

Rx(z) = Z{rx(l)}
Ryx(z) = Z{r∗xy(l)}

Pnc = ry(0)−
∞∑

k=−∞
hnc(k)r

∗
yx(k)

Causal IIR Hc(z) = 1

σ 2
xHx(z)

[
Ryx(z)

H∗x (1/z∗)

]
+

Rx(z) = σ 2
xHx(z)H

∗
x (1/z∗)

Pc = ry(0)−
∞∑
k=0

hnc(k)r
∗
yx(k) Ryx(z) = Z{rxy(l)}

Finally, since the equation for the noncausal IIR filter can be written as

Hnc(z) = 1

σ 2
xHx(z)

Ryx(z)

H ∗x (1/z∗)
(6.6.23)

we see that the only difference from the causal filter is that the noncausal filter includes
both the causal and noncausal parts of Ryx(z)/Hx(z

−1) [see Figure 6.19(b)]. By using the
innovations process w(n), the MMSE can be expressed as

Pnc = ry(0)− 1

σ 2
x

∞∑
k=−∞

|ryw(k)|2 (6.6.24)

and is known as the irreducible MMSE because it is the best performance that can be
achieved by a linear filter. Indeed, since |ryw(k)| ≥ 0, every coefficient we add to the
optimum filter can help to reduce the MMSE.



March 8, 2005 10:28 e56-ch6 Sheet number 40 Page number 300 black

300

chapter 6
Optimum Linear Filters

6.6.3 Filtering of Additive Noise

To illustrate the optimum filtering theory developed above, we consider the problem of
estimating a “useful” or desired signal y(n) that is corrupted by additive noise v(n). The
goal is to find an optimum filter that extracts the signal y(n) from the noisy observations

x(n) = y(n)+ v(n) (6.6.25)

given that y(n) and v(n) are uncorrelated processes with known autocorrelation sequences
ry(l) and rv(l).

To design the optimum filter, we need the autocorrelation rx(l) of the input signal x(n)
and the cross-correlation ryx(l) between the desired response y(n) and the input signal x(n).
Using (6.6.25), we find

rx(l) = E{x(n)x∗(n− l)} = ry(l)+ rv(l) (6.6.26)

ryx(l) = E{y(n)x∗(n− l)} = ry(l) (6.6.27)and

because y(n) and v(n) are uncorrelated.
The design of optimum IIR filters requires the functions Rx(z) and Ryx(z). Taking the

z-transform of (6.6.26) and (6.6.27), we obtain

Rx(z) = Ry(z)+ Rv(z) (6.6.28)

Ryx(z) = Ry(z) (6.6.29)and

The noncausal optimum filter is given by

Hnc(z) = Ryx(z)

Rx(z)
= Ry(z)

Ry(z)+ Rv(z)
(6.6.30)

which for z = ejω shows that, for those values of ω for which |Ry(e
jω)|  |Rv(e

jω)|, that
is, for high SNR, we have |Hnc(e

jω)| ≈ 1. In contrast, if |Ry(e
jω)| ! |Rv(e

jω)|, that is,
for low SNR, we have |Hnc(e

jω)| ≈ 0. Thus, the optimum filter “passes” its input in bands
with high SNR and attenuates it in bands with low SNR, as we would expect intuitively.

Substituting (6.6.30) into (6.6.7), we obtain for real-valued signals

Pnc = 1

2πj

∮
C

Ry(z)Rv(z)

Ry(z)+ Rv(z)
z−1 dz (6.6.31)

which provides an expression for the MMSE that does not require knowledge of the optimum
filter.

We next illustrate the design of optimum filters for the reduction of additive noise with
a detailed numerical example.

EXAMPLE 6.6.1. In this example we illustrate the design of an optimum IIR filter to extract a
random signal with known autocorrelation sequence

ry(l) = α|l| − 1 < α < 1 (6.6.32)

which is corrupted by additive white noise with autocorrelation

rv(l) = σ 2
vδ(l) (6.6.33)

The processes y(n) and v(n) are uncorrelated.

Required statistical moments. The input to the filter is the signal x(n) = y(n) + v(n) and
the desired response, the signal y(n). The first step in the design is to determine the required
second-order moments, that is, the autocorrelation of the input process and the cross-correlation
between input and desired response. Substituting into (6.6.26) and (6.6.27), we have

rx(l) = α|l| + σ 2
vδ(l) (6.6.34)

ryx(l) = α|l| (6.6.35)and
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To simplify the derivations and deal with “nice, round” numbers, we choose α = 0.8 and σ 2
v = 1.

Then the complex power spectral densities of y(n), v(n), and x(n) are

Ry(z) =
( 3

5
)2

(1− 4
5z
−1)(1− 4

5z)

4

5
< |z| < 5

4
(6.6.36)

Rv(z) = σ 2
v = 1 (6.6.37)

Rx(z) = 8

5

(1− 1
2
z−1)(1− 1

2
z)

(1− 4
5z
−1)(1− 4

5z)
(6.6.38)and

respectively.

Noncausal filter. Using (6.6.9), (6.6.29), (6.6.36), and (6.6.38), we obtain

Hnc(z) = Ryx(z)

Rx(z)
= 9

40

1

(1− 1
2
z−1)(1− 1

2
z)

1

2
< |z| < 2

Evaluating the inverse the z-transform we have

hnc(n) = 3
10

( 1
2
)|n| −∞ < n <∞

which clearly corresponds to a noncausal filter. From (6.6.3), the MMSE is

Pnc = 1− 3
10

∞∑
k=−∞

( 1
2
)
|k|

( 4
5
)
|k| = 3

10
(6.6.39)

and provides the irreducible MMSE.

Causal filter. To find the optimum causal filter, we need to perform the spectral factorization

Rx(z) = σ 2
xHx(z)Hx(z

−1)

which is provided by (6.6.38) with

σ 2
x = 8

5
(6.6.40)

Hx(z) =
1− 1

2
z−1

1− 4
5
z−1

(6.6.41)and

Ryw(z) = Ryx(z)

Hx(z−1)
= 0.36

(1− 4
5
z−1)(1− 1

2
z)
= 0.6

1− 4
5
z−1
+ 0.3z

1− 1
2
z

(6.6.42)Thus,

where the first term (causal) converges for |z| > 4
5

and the second term (noncausal) converges
for |z| < 2. Hence, taking the causal part[

Ryx(z)

Hx(z−1)

]
+
=

3
5

1− 4
5
z−1

and substituting into (6.6.21), we obtain the causal optimum filter

Hc(z) = 5

8

(
1− 4

5
z−1

1− 1
2
z−1

3
5

1− 4
5
z−1

)
= 3

8

(
1

1− 1
2
z−1

)
|z| < 1

2
(6.6.43)

The impulse response is

hc(n) = 3
8
( 1

2
)nu(n)

which corresponds to a causal and stable IIR filter. The MMSE is

Pc = ry(0)−
∞∑
k=0

hc(k)ryx(k) = 1− 3
8

∞∑
k=0

( 1
2
)k( 4

5
)k = 3

8
(6.6.44)

which is, as expected, larger than Pnc.
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From (6.6.43), we see that the optimum causal filter is a first-order recursive filter that can
be implemented by the difference equation

ŷ(n) = 1
2
ŷ(n− 1)+ 3

8
x(n)

In general, this is possible only when Hc(z) is a rational function.

Computation of MMSE using the innovation. We next illustrate how to find the MMSE by
using the cross-correlation sequence ryw(l). From (6.6.42), we obtain

ryw(l) =



3
5
( 4

5
)l l ≥ 0

3
5

2l l < 0
(6.6.45)

which, in conjunction with (6.6.22) and (6.6.24), gives

Pc = ry(0)− 1

σ 2
x

∞∑
k=0

r2
yw(k) = 1− 5

8
( 3

5
)2
∞∑
k=0

( 4
5
)2k = 3

8

Pnc = ry(0)− 1

σ 2
x


 ∞∑

k=0

r2
yw(k)−

−1∑
k=−∞

r2
yw(k)


 = 3

10
and

which agree with (6.6.44) and (6.6.39).

Noncausal smoothing filter. Suppose now that we want to estimate the value y(n+D) of the
desired response from the data x(n), −∞ < n <∞. Since

E{y(n+D)x(n− l)} = ryx(n+D) (6.6.46)

Z{ryx(n+D)} = zDRyx(z) (6.6.47)and

the noncausal Wiener smoothing filter is

HD
nc(z) =

zDRyx(z)

Rx(z)
= zDRy(z)

Rx(z)
= zDHnc(z) (6.6.48)

hDnc(n) = hnc(n+D) (6.6.49)

The MMSE is

PD
nc = ry(0)−

∞∑
k=−∞

hnc(k +D)ryx(k +D) = Pnc (6.6.50)

which is independent of the time shift D.

Causal prediction filter. We estimate the value y(n+D) (D > 0) of the desired response using
the data x(k),−∞ < k ≤ n. The whitening part of the causal prediction filter does not depend
on y(n) and is still given by (6.6.41). The coloring part depends on y(n + D) and is given by
R
′
yw(z) = zDRyw(z) or r

′
yw(l) = ryw(l + D). Taking into consideration that D > 0, we can

show (see Problem 6.31) that the system function and the impulse response of the causal Wiener
predictor are

H
[D]
c (z) = 5

8

(
1− 4

5
z−1

1− 1
2
z−1

)[ 3
5
( 4

5
)D

1− 4
5
z−1

]
=

3
8
( 4

5
)D

1− 1
2
z−1

(6.6.51)

h
[D]
c (n) = 3

8
( 4

5
)D( 1

2
)nu(n) (6.6.52)and

respectively. This shows that as D→∞, the impulse response h
[D]
c (n)→ 0, which is consistent

with our intuition that the prediction is less and less reliable. The MMSE is

P
[D]
c = 1− 3

8
( 4

5
)2D

∞∑
k=0

( 2
5
)k = 1− 5

8
( 4

5
)2D (6.6.53)
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and P
[D]
c → ry(0) = 1 as D→∞, which agrees with our earlier observation. For D = 2, the

MMSE is P
[2]
c = 93/125 = 0.7440 > Pc, as expected.

Causal smoothing filter. To estimate the value y(n+D) (D < 0) of the desired response using
the data x(n), −∞ < k ≤ n, we need a smoothing Wiener filter. The derivation, which is
straightforward but somewhat involved, is left for Problem 6.32. The system function of the
optimum smoothing filter is

H
[D]
c (z) = 3

8




zD

1− 1
2
z−1
+

2D
−D−1∑
l=0

2lz−l

1− 1
2
z−1

− 4

5

2D
−D−1∑
l=0

2lz−l−1

1− 1
2
z−1


 (6.6.54)

where D < 0. To find the impulse response for D = −2, we invert (6.6.54). This gives

h
[−2]
c (k) = 3

32
δ(k)+ 51

320
δ(k − 1)+ 39

128
( 1

2
)k−2u(k − 2) (6.6.55)

and if we express ryx(k − 2) in a similar form, we can compute the MMSE

P
[−2]
c = 1− 3

50
− 51

400
− ( 39

128
) 5

3
= 39

128
= 0.3047 (6.6.56)

which is less than Pc = 0.375. This should be expected since the smoothing Wiener filter uses
more information than the Wiener filter (i.e., when D = 0). In fact it can be shown that

lim
D→−∞P

[D]
c = Pnc and lim

D→−∞h
[D]
c (n) = hnc(n) (6.6.57)

which is illustrated in Figure 6.20 (Problem 6.22). Figure 6.21 shows the impulse responses
of the various optimum IIR filters designed in this example. Interestingly, all are obtained by
shifting and truncating the impulse response of the optimum noncausal IIR filter.

−10 −8 −6 −4 −2 0 2 4 6 8 10

0.300
0.375

1.000

D

M
M

S
E

 (
D

)

FIGURE 6.20
MMSE as a function of the time shift D.

FIR filter. The Mth-order FIR filter is obtained by solving the linear system

Rh = d

R = Toeplitz(1+ σ 2
v, α, . . . , α

M−1)where

d = [1α · · · αM−1]Tand

The MMSE is

Po = ry(0)−
M−1∑
k=0

ho(k)ryx(k)

and is shown in Figure 6.22 as a function of the order M together with Pc and Pnc. We notice that
an optimum FIR filter of order M = 4 provides satisfactory performance. This can be explained
by noting that the impulse response of the causal optimum IIR filter is negligible for n > 4.
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FIGURE 6.21
Impulse response of optimum filters for pure filtering, prediction, and smoothing.
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Noncausal filter MMSE

Causal filter MMSE

FIGURE 6.22
MMSE as a function of the optimum
FIR filter order M .

6.6.4 Linear Prediction Using the Infinite Past—Whitening

The one-step forward IIR linear predictor is a causal IIR optimum filter with desired response
y(n) � x(n+ 1). The prediction error is

ef (n+ 1) = x(n+ 1)−
∞∑
k=0

hlp(k)x(n− k) (6.6.58)

Hlp(z) =
∞∑
k=0

hlp(k)z
−k (6.6.59)where
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is the system function of the optimum predictor. Since y(n) = x(n+ 1), we have ryx(l) =
rx(l + 1) and Ryx(z) = zRx(z). Hence, the optimum predictor is

Hlp(z) = 1

σ 2
xHx(z)

[
zσ 2

xHx(z)Hx(z
−1)

Hx(z−1)

]
+
= [zHx(z)]+

Hx(z)
= zHx(z)− z

Hx(z)

and the prediction error filter (PEF) is

HPEF(z) = Ef (z)

X(z)
= 1− z−1Hlp(z) = 1

Hx(z)
(6.6.60)

that is, the one-step IIR linear predictor of a regular process is identical to the whitening
filter of the process. Therefore, the prediction error process is white, and the prediction
error filter is minimum-phase. We will see that the efficient solution of optimum filtering
problems includes as a prerequisite the solution of a linear prediction problem. Furthermore,
algorithms for linear prediction provide a convenient way to perform spectral factorization
in practice.

The MMSE is

P f
o =

1

2πj

∮
C

{
Rx(z)− z

[
1− 1

Hx(z)

]
z−1R∗x

(
1

z∗

)}
z−1 dz

= 1

2πj

∮
C

Rx(z)
1

Hx(z)
z−1 dz

= σ 2
x

1

2πj

∮
C

H ∗x
(

1

z∗

)
z−1 dz = σ 2

x

(6.6.61)

1

2πj

∮
C

H ∗x
(

1

z∗

)
z−1 dz = hx(0) = 1because

From Section 2.4.4 and (6.6.61) we have

P f
o = σ 2

x = exp

[
1

2π

∫ π

−π
ln Rx(e

jω) dω

]
(6.6.62)

which is known as the Kolmogorov-Szegö formula.
We can easily see that the D-step predictor (D > 0) is given by

HD(z) = [z
DHx(z)]+
Hx(z)

= 1

Hx(z)

∞∑
k=D

hx(k)z
−k+D (6.6.63)

but is not guaranteed to be minimum-phase for D 	= 1.

EXAMPLE 6.6.2. Consider a minimum-phase AR(2) process

x(n) = a1x(n− 1)+ a2x(n− 2)+ w(n)

where w(n) ∼WN(0, σ 2
w). The complex PSD of the process is

Rx(z) = σ 2
x

A(z)A(z−1)
� σ 2

xHx(z)Hx(z
−1)

where A(z) � 1− a1z
−1 − a2z

−2 and σ 2
x = σ 2

w . The one-step forward predictor is given by

Hlp(z) = z− z

Hx(z)
= z− zA(z) = a1 + a2z

−1

x̂(n+ 1) = a1x(n)+ a2x(n− 1)or

as should be expected because the present value of the process depends only on the past two
values. Since the excitation w(n) is white and cannot be predicted from the present or previous
values of the signal x(n), it is equal to the prediction error ef (n). Therefore, σ 2

ef = σ 2
w , as

expected from (6.6.62). This shows that the MMSE of the one-step linear predictor depends
on the SFM of the process x(n). It is maximum for a white noise process, which is clearly
unpredictable.
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Predictable processes. A random process x(n) is said to be (exactly) predictable if
Pe = E{|ef (n)|2} = 0. We next show that a process x(n) is predictable if and only if its
PSD consists of impulses, that is,

Rx(e
jω) =

∑
k

Akδ(ω − ωk) (6.6.64)

or in other words, x(n) is a harmonic process. For this reason harmonic processes are also
known as deterministic processes. From (6.6.60) we have

Pe = E{|ef (n)|2} =
∫ π

−π
|HPEF(e

jω)|2Rx(e
jω) dω (6.6.65)

where HPEF(e
jω) is the frequency response of the prediction error filter. Since Rx(e

jω) ≥ 0,
the integral in (6.6.65) is zero if and only if |HPEF(e

jω)|2Rx(e
jω) = 0. This is possible

only if Rx(e
jω) is a linear combination of impulses, as in (6.6.64), and ejωk are the zeros

of HPEF(z) on the unit circle (Papoulis 1985).
From the Wold decomposition theorem (see Section 4.1.3) we know that every random

process can be decomposed into two components that are mutually orthogonal: (1) a regular
component with continuous PSD that can be modeled as the response of a minimum-phase
system to white noise and (2) a predictable process that can be exactly predicted from
a linear combination of past values. This component has a line PSD and is essentially a
harmonic process. A complete discussion of this subject can be found in Papoulis (1985,
1991) and Therrien (1992).

6.7 INVERSE FILTERING AND DECONVOLUTION

In many practical applications, a signal of interest passes through a distorting system whose
output may be corrupted by additive noise. When the distorting system is linear and time-
invariant, the observed signal is the convolution of the desired input with the impulse
response of the system. Since in most cases we deal with linear and time-invariant systems,
the terms filtering and convolution are often used interchangeably.

Deconvolution is the process of retrieving the unknown input of a known system by
using its observed output. If the system is also unknown, which is more common in practical
applications, we have a problem of blind deconvolution. The term blind deconvolution
was introduced in Stockham et al. (1975) for a method used to restore old records. Other
applications include estimation of the vocal tract in speech processing, equalization of
communication channels, deconvolution of seismic data for the elimination of multiple
reflections, and image restoration.

The basic problem is illustrated in Figure 6.23. The output of the unknown LTI system
G(z), which is assumed BIBO stable, is given by

x(n) =
∞∑

k=−∞
g(k)w(n− k) (6.7.1)

where w(n) ∼ IID(0, σ 2
w) is a white noise sequence. Suppose that we observe the output

x(n) and that we wish to recover the input signal w(n), and possibly the system G(z), using
the output signal and some statistical information about the input.

w(n)
G(z) H(z)

x(n) y(n)

Unknown
input Unknown

system
Deconvolution

filter

FIGURE 6.23
Basic blind deconvolution model.
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If we know the system G(z), the inverse system H(z) is obtained by noticing that
perfect retrieval of the input is possible if

h(n) ∗ g(n) ∗ w(n) = b0w(n− n0) (6.7.2)

where b0 and n0 are constants. From (6.7.2), we have h(n) ∗ g(n) = b0δ(n − n0), or
equivalently

H(z) = b0
z−n0

G(z)
(6.7.3)

which provides the system function of the inverse system. The input can be recovered by
convolving the output with the inverse system H(z). Therefore, the terms inverse filtering
and deconvolution are equivalent for LTI systems.

There are three approaches for blind deconvolution:

• Identify the system G(z), design its inverse system H(z), and then compute the input
w(n).

• Identify directly the inverse H(z) = 1/G(z) of the system, and then determine the input
w(n).

• Estimate directly the input w(n) from the output x(n).

Any of the above approaches requires either directly or indirectly the estimation of
both the magnitude response |G(ejω)| and the phase response �G(ejω) of the unknown
system. In practice, the problem becomes more complicated because the output x(n) is
usually corrupted by additive noise. If this noise is uncorrelated with the input signal and
the required second-order moments are available, we show how to design an optimum
inverse filter that provides an optimum estimate of the input in the presence of noise. In
Section 6.8 we apply these results to the design of optimum equalizers for data transmission
systems. The main blind identification and deconvolution problem, in which only statistical
information about the output is known, is discussed in Chapter 12.

We now discuss the design of optimum inverse filters for linearly distorted signals
observed in the presence of additive output noise. The typical configuration is shown in
Figure 6.24. Ideally, we would like the optimum filter to restore the distorted signal x(n) to
its original value y(n). However, the ability of the optimum filter to attain ideal performance
is limited by three factors. First, there is additive noise v(n) at the output of the system.
Second, if the physical system G(z) is causal, its output s(n) is delayed with respect to the
input, and we may need some delay z−D to improve the performance of the system. When
G(z) is a non-minimum-phase system, the inverse system is either noncausal or unstable
and should be approximated by a causal and stable filter. Third, the inverse system may be
IIR and should be approximated by an FIR filter.

−

y(n)
G(z) H(z)

y(n − D)

y(n)s(n) x(n) e(n)

v(n)

z−D

ˆ

FIGURE 6.24
Typical configuration for optimum inverse system modeling.

The optimum inverse filter is the noncausal Wiener filter

Hnc(z) = z−DRyx(z)

Rx(z)
(6.7.4)

where the term z−D appears because the desired response is yD(n) � y(n−D). Since y(n)
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and v(n) are uncorrelated, we have

Ryx(z) = Rys(z) (6.7.5)

Rx(z) = G(z)G∗
(

1

z∗

)
Ry(z)+ Rv(z) (6.7.6)and

The cross-correlation between y(n) and s(n)

Rys(z) = G∗
(

1

z∗

)
Ry(z) (6.7.7)

is obtained by using Equation (6.6.18). Therefore, the optimum inverse filter is

Hnc(z) = z−DG∗(1/z∗)Ry(z)

G(z)G∗(1/z∗)Ry(z)+ Rv(z)
(6.7.8)

which, in the absence of noise, becomes

Hnc(z) = z−D

G(z)
(6.7.9)

as expected. The behavior of the optimum inverse system is illustrated in the following
example.

EXAMPLE 6.7.1. Let the system G(z) be an all-zero non-minimum-phase system given by

G(z) = 1
5
(−3z+ 7− 2z−1) = − 3

5
(1− 1

3
z−1)(z− 2)

Then the inverse system is given by

H(z) = G−1(z) = 5

−3z+ 7− 2z−1
= 1

1− 1
3
z−1
− 1

1− 2z−1

which is stable if the ROC is − 1
3

< |z| < 2. Therefore, the impulse response of the inverse
system is

h(n) =
{
( 1

3
)n n ≥ 0

2n n < 0

which is noncausal and stable.
Following the discussion given in this section, we want to design an optimum inverse

system given that G(z) is driven by a white noise sequence y(n) and that the additive noise v(n)

is white, that is, Ry(z) = σ 2
y and Rv(z) = σ 2

v . From (6.7.8), the optimum noncausal inverse
filter is given by

Hnc(z) = z−D
G(z)+ [1/G(z−1)](σ 2

v/σ
2
y)

which can be computed by assuming suitable values for variances σ 2
y and σ 2

v . Note that if

σ 2
v ! σ 2

y , that is, for very large SNR, we obtain (6.7.9).
A more interesting case occurs when the optimum inverse filter is FIR, which can be easily

implemented. To design this FIR filter, we will need the autocorrelation rx(l) and the cross-
correlation ryDx(l), where yD(n) = y(n−D) is the delayed system input sequence. Since

Rx(z) = σ 2
yG(z)G(z−1)+ σ 2

v

RyDx(l) = σ 2
yz
−DG(z−1)and

we have (see Section 3.4.1)

rx(l) = g(l) ∗ g(−l) ∗ ry(l)+ rv(l) = σ 2
y [g(l) ∗ g(−l)] + σ 2

vδ(l)

ryDx(l) = g(−l) ∗ ry(l −D) = σ 2
yg(−l +D)and

respectively. Now we can determine the optimum FIR filter hD of length M by constructing an
M ×M Toeplitz matrix R from rx(l) and an M × 1 vector d from ryD (l) and then solving

RhD = d
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for various values of D. We can then plot the MMSE as a function of D to determine the best
value of D (and the corresponding FIR filter) which will give the smallest MMSE. For example,
if σ 2

y = 1, σ 2
v = 0.1, and M = 10, the correlation functions are

rx(l) =

 6

25
,−7

5
,

129

50↑
l=0

,−7

5
,

6

25


 and ryDx(l) =


 −2

5
,

7

5↑
,

l=D

−3

5




The resulting MMSE as a function of D is shown in Figure 6.25, which indicates that the best
value of D is approximately M/2. Finally, plots of impulse responses of the inverse system are
shown in Figure 6.26. The first plot shows the noncausal h(n), the second plot shows the causal

0 1 2 3 4 5 6 7 8 9
0.1

0.15

0.2

0.25

Delay D

M
M

S
E

 (
D

)

FIGURE 6.25
The inverse filtering MMSE as a function
of delay D.

−10 −8 −6 −4 −2 0 2 4 6 8 10
0

0.5
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Ideal IIR filter

−1 0 1 2 3 4 5 6 7 8 9 10
0

0.5

1.0
Causal inverse system for D = 0

0 1 2 3 4 5 6 7 8 9
0

0.5

1.0

n

Causal inverse system for D = 5

h n
c(

n)
h(

n)
h(

n)

FIGURE 6.26
Impulse responses of optimum inverse filters.
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FIR system h0(n) for D = 0, and the third plot shows the causal FIR system hD(n) for D = 5.
It is clear that the optimum delayed FIR inverse filter for D � M/2 closely matches the impulse
response of the inverse filter h(n).

6.8 CHANNEL EQUALIZATION IN DATA TRANSMISSION SYSTEMS

The performance of data transmission systems through channels that can be approximated
by linear systems is limited by factors such as finite bandwidth, intersymbol interference,
and thermal noise (see Section 1.4). Typical examples include telephone lines, microwave
line-of-sight radio links, satellite channels, and underwater acoustic channels. When the
channel frequency response deviates form the ideal of flat magnitude and linear phase, both
(left and right) tails of a transmitted pulse will interfere with neighboring pulses. Hence,
the value of a sample taken at the center of a pulse will contain components from the tails
of the other pulses. The distortion caused by the overlapping tails is known as intersymbol
interference (ISI ), and it can lead to erroneous decisions that increase the probability of
error. For band-limited channels with low background noise (e.g., voice band telephone
channel), ISI is the main performance limitation for high-speed data transmission. In radio
and undersea channels, ISI is the result of multipath propagation (Siller 1984).

Intersymbol interference occurs in all pulse modulation systems, including frequency-
shift keying (FSK), phase-shift keying (PSK), and quadrature amplitude modulation (QAM).
However, to simplify the presentation, we consider a baseband pulse amplitude modulation
(PAM) system. This does not result in any loss of generality because we can obtain an
equivalent baseband model for any linear modulation scheme (Proakis 1996). We consider
the K-ary (K = 2L) PAM communication system shown in Figure 6.27(a). The binary

Detector

a1

a2

a3

a4

a5

a0

(a)

(b)

0

K − 1

K
 =

 2
L
 le

ve
ls

1 0 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 1 1

L-bit symbol

0
t

Transmitting
filter
gt(t)

an Channel
hc(t)

Overall filter hr(t)

Receiving
filter
gr(t)

vc(t)

x~(t) x~(n) an

TB

TB

Tb

TB

2TB 3TB

4TB 5TB

t − nTB

ˆ

FIGURE 6.27
(a) Baseband pulse amplitude modulation data transmission system model and (b) input
symbol sequence an.
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input sequence is subdivided into L-bit blocks, or symbols, and each symbol is mapped
to one of the K amplitude levels, as shown in Figure 6.27(b). The interval TB is called
the symbol or baud interval while the interval Tb is called the bit interval. The quantity
RB = 1/TB is known as the baud rate, and the quantity Rb = LRB is the bit rate.

The resulting symbol sequence {an}modulates the transmitted pulse gt(t). For analysis
purposes, the symbol sequence {an} can be represented by an equivalent continuous-time
signal using an impulse train, that is,

{an}∞−∞ ⇔
∞∑

n=−∞
anδ(t − nTB) (6.8.1)

The modulated pulses are transmitted over the channel represented by the impulse response
hc(t) and the additive noise vc(t). The received signal is filtered by the receiving filter gr(t)

to obtain x̃(t). Using (6.8.1), the signal x̃(t) at the output of the receiving filter is given by

x̃(t) =
∞∑

k=−∞
ak{δ(t − kTB) ∗ gt(t) ∗ hc(t) ∗ gr(t)} + vc(t) ∗ gr(t)

�
∞∑

k=−∞
akh̃r(t − kTB)ṽ(t)

(6.8.2)

h̃r(t) � gt(t) ∗ hc(t) ∗ gr(t) (6.8.3)where

is the impulse response of the combined system of transmitting filter, channel, and receiving
filter, and

ṽ(t) � gr(t) ∗ vc(t) (6.8.4)

is the additive noise at the output of the receiving filter.

6.8.1 Nyquist’s Criterion for Zero ISI

If we sample the received signal x(t) at the time instant t0 + nTB , we obtain

x̃(t0 + nTB) =
∞∑

k=−∞
akh̃r(t0 + nTB − kTB)+ ṽ(t0 + nTB)

= anh̃r(t0)+
∞∑

k=−∞
k 	=n

akh̃r(t0 + nTB − kTB)+ ṽ(t0 + nTB)

(6.8.5)

where t0 accounts for the channel delay and the sampler phase. The first term in (6.8.5) is
the desired signal term while the third term is the noise term. The middle term in (6.8.5)
represents the ISI, and it will be zero if and only if

h̃r(t0 + nTB − kTB) = 0 n 	= k (6.8.6)

As was first shown by Nyquist (Gitlin, Hayes, and Weinstein 1992), a time-domain pulse
h̃r(t) will have zero crossings once every TB s, that is,

h̃r(nTB) =
{

1 n = 0

0 n 	= 0
(6.8.7)

if its Fourier transform satisfies the condition
∞∑

l=−∞
H̃r

(
F + l

TB

)
= TB (6.8.8)

This condition is known as the Nyquist criterion for zero ISI and its basic meaning is
illustrated in Figure 6.28.
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FIGURE 6.28
Frequency-domain Nyquist criterion for zero ISI.

A pulse shape that satisfies (6.8.8) and that is widely used in practice is of the raised
cosine family

h̃rc(t) = sin(πt/TB)

πt/TB

cos(παt/TB)

1− 4α2t2/T 2
B

(6.8.9)

where 0 ≤ α ≤ 1 is known as the rolloff factor. This pulse and its Fourier transform
for α = 0, 0.5, and 1 are shown in Figure 6.29. The choice of α = 0 reduces h̃rc(t)

to the unrealizable sinc pulse and RB = 1/TB , whereas for α = 1 the symbol rate is
RB = 1/(2TB). In practice, we can see the effect of ISI and the noise if we display the
received signal on the vertical axis of an oscilloscope and set the horizontal sweep rate at
1/TB . The resulting display is known as eye pattern because it resembles the human eye.
The closing of the eye increases with the increase in ISI.

6.8.2 Equivalent Discrete-Time Channel Model

Referring to Figure 6.27(a), we note that the input to the data transmission system is a
discrete-time sequence {an} at the symbol rate 1/TB symbols per second, and the input to
the detector is also a discrete-time sequence x̃(nTB) at the symbol rate. Thus the overall
system between the input symbols and the equalizer can be modeled as a discrete-time
channel model for further analysis. From (6.8.2), after sampling at the symbol rate, we
obtain

x̃(nTB) =
∞∑

k=−∞
akh̃r(nTB − kTB)+ ṽ(nTB) (6.8.10)

where h̃r(t) is given in (6.8.3) and ṽ(t) is given in (6.8.4). The first term in (6.8.10) can be
interpreted as a discrete-time IIR filter with impulse response

†
h̃r(n) � hr(nTB) with input

†
Here we have abused the notation to avoid a new symbol.
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F
0

Hrc(F )

h rc(t)

−1/TB −1/2TB 1/TB1/2TB

a = 1

a = 0
a = 0.5

a = 1

a = 0.5

0 TB 2TB 3TB 4TB

t

FIGURE 6.29
Pulses with a raised cosine spectrum.

ak . In a practical data transmission system, it is not unreasonable to assume that h̃r(n) = 0
for |n| ≥ L, where L is some arbitrary positive integer. Then we obtain

x̃(n) =
L∑

k=−L
akh̃r(n− k)+ ṽ(n)

x̃(n) � x̃(nTB) ṽ(n) � ṽ(nTB)

(6.8.11)

which is an FIR filter of length 2L+ 1, shown in Figure 6.30.

an+L an−1 an−Lan+L−1 an
z−1 z−1 z−1 z−1

h
~

r(−L) h
~

r(−L+1) h
~

r(0) h
~

r(1) h
~

r(L)

v~(n)

x~(n)

FIGURE 6.30
Equivalent discrete-time model of data transmission system with ISI.

There is one difficulty with this model. If we assume that the additive channel noise
vc(t) is zero-mean white, then the equivalent noise sequence ṽ(n) is not white. This can be
seen from the definition of ṽ(t) in (6.8.4). Thus the autocorrelation of ṽ(n) is given by

rṽ(l) = σ 2
vrgr (l) (6.8.12)

where σ 2
v is the variance of the samples of vc(t) and rgr (l) is the sampled autocorrelation of
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gr(t). This nonwhiteness of ṽ(t) poses a problem in the subsequent design and performance
evaluation of equalizers. Therefore, in practice, it is necessary to whiten this noise by
designing a whitening filter and placing it after the sampler in Figure 6.27(a). The whitening
filter is designed by using spectral factorization of Z[rgr (l)]. Let

Rgr (z) = Z[rgr (l)] = R+gr
(z)R−gr

(z) (6.8.13)

where R+gr
(z) is the minimum-phase factor and R−gr

(z) is the maximum-phase factor. Choos-
ing

W(z) � 1

R+gr (z)
(6.8.14)

as a causal, stable, and recursive filter and applying the sampled sequence x̃(n) to this filter,
we obtain

x(n) � w(n) ∗ x̃(n) =
∞∑
k=0

akhr(n− k)+ v(n) (6.8.15)

hr(n) � h̃r(n) ∗ w(n) (6.8.16)where

v(n) � w(n) ∗ ṽ(n) (6.8.17)and

The spectral density of v(n), from (6.8.12), (6.8.13), and (6.8.14), is given by

Rv(z) = Rw(z)Rṽ(z) = 1

R+gr (z)R
−
gr (z)

σ 2
vR
+
gr
(z)R−gr

(z) = σ 2
v (6.8.18)

which means that v(n) is a white sequence. Once again, assuming that hr(n) = 0, n > L,
where L is an arbitrary positive integer, we obtain an equivalent discrete-time channel
model with white noise

x(n) =
L∑

k=0

akhr(n− k)+ v(n) (6.8.19)

This equivalent model is shown in Figure 6.31. An example to illustrate the use of this
model in the design and analysis of an equalizer is given in the next section.

an an−1 an−L+1 an−L
z−1 z−1 z−1 z−1

hr(0) hr(1) hr(L−1) hr(L)

x(n)

v(n)

FIGURE 6.31
Equivalent discrete-time model of data transmission system with ISI and WGN.

6.8.3 Linear Equalizers

If we know the characteristics of the channel, that is, the magnitude response |Hc(F )| and
the phase response �Hc(F ), we can design optimum transmitting and receiving filters that
will maximize the SNR and will result in zero ISI at the sampling instant. However, in
practice we have to deal with channels whose characteristics are either unknown (dial-up
telephone channels) or time-varying (ionospheric radio channels). In this case, we usually
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use a receiver that consists of a fixed filter gr(t) and an adjustable linear equalizer, as shown
in Figure 6.32. The response of the fixed filter either is matched to the transmitted pulse
or is designed as a compromise equalizer for an “average” channel typical of the given
application. In principle, to eliminate the ISI, we should design the equalizer so that the
overall pulse shape satisfies Nyquist’s criterion (6.8.6) or (6.8.8).

Equalizer

Equalizer

Detector

Detector
From the
equivalent

model

(a) Continuous-time model

(b) Discrete-time model for synchronous equalizer

From the
receiving

filter

x~(t)

x(n)

x~(nT )

t = nT t = nTB

y(nTB)

y(n) an

{c(n)}M
−M

ˆ ˆ ˆ

anˆˆ

FIGURE 6.32
Equalizer-based receiver model.

The most widely used equalizers are implemented using digital FIR filters. To this
end, as shown in Figure 6.32(a), we sample the received signal x̃(t) periodically at times
t = t0 + nT , where t0 is the sampling phase and T is the sampling period. The sampling
period should be less or equal to the symbol interval TB because the output of the equalizer
should be sampled once every symbol interval (the case T > TB creates aliasing). For
digital implementation T should be chosen as a rational fraction of the symbol interval, that
is, T = L1TB/L2, with L1 ≤ L2 (typical choices are T = TB , T = TB/2, or T = 2TB/3).
If the sampling interval T = TB , we have a synchronous or symbol equalizer (SE)

†
and if

T < TB a fractionally spaced equalizer (FSE).
‡

The output of the equalizer is quantized to
obtain the decision ân.

The goal of the equalizer is to determine the coefficients {ck}M−M so as to minimize
the ISI according to some criterion of performance. The most meaningful criterion for
data transmission is the average probability of error. However, this criterion is a nonlinear
function of the equalizer coefficients, and its minimization is extremely difficult.

We next discuss two criteria that are used in practical applications. For this discussion
we assume a synchronous equalizer, that is, T = TB . The FSE is discussed in Chapter 12.
For the synchronous equalizer, the equivalent discrete-time model given in Figure 6.31 is
applicable in which the input is x(n), given by

x(n) =
L∑

l=0

alhr(n− l)+ v(n) (6.8.20)

The output of the equalizer is given by

ŷ(n) =
M∑

k=−M
c∗(k)x(n− k) � cH x(n) (6.8.21)

where c = [c(−M) · · · c(0) · · · c(M)]T (6.8.22)

x(n) = [x(n+M) · · · x(n) · · · x(n−M)]T (6.8.23)

This equalizer model is shown in Figure 6.32(b).

†
Also known as a baud-spaced equalizer (BSE).
‡
The most significant difference between SE and FSE is that by properly choosing T we can completely avoid

aliasing at the input of the FSE. Thus, the FSE can provide better compensation for timing phase and asymmetries
in the channel response without noise enhancement (Qureshi 1985).
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6.8.4 Zero-Forcing Equalizers

Zero-forcing (zf) equalization (Lucky, Saltz, and Weldon 1968) requires that the response
of the equalizer to the combined pulse h̃r(t) satisfy the Nyquist criterion (6.8.7). For the
FIR equalizer in (6.8.21), in the absence of noise we have

M∑
k=−M

czf (k)hr(n− k) =
{

1 n = 0

0 n = ±1,±2, . . . ,±M (6.8.24)

which is a linear system of equations whose solution provides the required coefficients. The
zero-forcing equalizer does not completely eliminate the ISI because it has finite duration.
If M = ∞, Equation (6.8.24) becomes a convolution equation that can be solved by using
the z-transform. The solution is

Czf (z) = 1

Hr(z)
(6.8.25)

where Hr(z) is the z-transform of hr(n). Thus, the zero-forcing equalizer is an inverse filter
that inverts the frequency-folded (aliased) response of the overall channel. WhenM is finite,
then it is generally impossible to eliminate the ISI at the output of the equalizer because
there are only 2M + 1 adjustable parameters to force zero ISI outside of [−M,M]. Then
the equalizer design problem reverts to minimizing the peak distortion

D �
∑
n	=0

∣∣∣∣∣
M∑

k=−M
czf (k)hr(n− k)

∣∣∣∣∣ (6.8.26)

This distortion function can be shown to be a convex function (Lucky 1965), and its mini-
mization, in general, is difficult to obtain except when the input ISI is less than 100 percent
(i.e., the eye pattern is open). This minimization and the determination of {czf } can be
obtained by using the steepest descent algorithm, which is discussed in Chapter 10.

Zero-forcing equalizers have two drawbacks: (1) They ignore the presence of noise
and therefore amplify the noise appearing near the spectral nulls of Hr(e

jω), and (2) they
minimize the peak distortion or worst-case ISI only when the eye is open. For these reasons
they are not currently used for bad channels or high-speed modems (Qureshi 1985). The
above two drawbacks are eliminated if the equalizers are designed using the MSE criterion.

6.8.5 Minimum MSE Equalizers

It has been shown (Saltzberg 1968) that the error rate Pr{ân 	= an} decreases monotonically
with the MSE defined by

MSE = E{|e(n)|2} (6.8.27)

e(n) = y(n)− ŷ(n) = an − ŷ(n) (6.8.28)where

is the difference between the desired response y(n) � an and the actual response ŷ(n) given
in (6.8.21). Therefore, if we minimize the MSE in (6.8.27), we take into consideration both
the ISI and the noise at the output of the equalizer. For M = ∞, following the arguments
similar to those leading to (6.8.25), the minimum MSE equalizer is specified by

CMSE(z) = H ∗r (1/z∗)
Hr(z)H ∗r (1/z∗)+ σ 2

v

(6.8.29)

where σ 2
v is the variance of the sampled channel noise vc(kTB). Clearly, (6.8.29) reduces to

the zero-forcing equalizer if σ 2
v = 0. Also (6.8.29) is the classical Wiener filter. For finite

M , the minimum MSE equalizer is specified by

Rco = d (6.8.30)
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Po = Pa − cHo d (6.8.31)

where R = E{x(n)xH (n)} and d = E{a∗nx(n)}. The data sequence y(n) = an is assumed
to be white with zero mean and power Pa = E{|an|2}, and uncorrelated with the additive
channel noise. Under these assumptions, the elements of the correlation matrix R and the
cross-correlation vector d are given by

rij � E{x(n− i)x∗(n− j)}
= Pa

∑
m

hr(m− i)h∗r (m− j)+ σ 2
vδij −M ≤ i, j ≤ M

(6.8.32)

di � E{x(n− i)y∗(n)} = Pahr(−i) −M ≤ i, j ≤ M (6.8.33)and

that is, in terms of the overall (equivalent) channel response hr(n) and the noise power σ 2
v .

We hasten to stress that matrix R is Toeplitz if T = TB ; otherwise, for T 	= TB, matrix R
is Hermitian but not Toeplitz.

Since MSE equalizers, in contrast to zero-forcing equalizers, take into account both the
statistical properties of the noise and the ISI, they are more robust to both noise and large
amounts of ISI.

EXAMPLE 6.8.1. Consider the model of the data communication system shown in Figure 6.33.
The input symbol sequence {a(n)} is a Bernoulli sequence {±1}, with Pr{1} = Pr{−1} = 0.5.
The channel (including the receiving and whitening filter) is modeled as

h(n) =

0.5

[
1+ cos

2π(n− 2)

W

]
n = 1, 2, 3

0 otherwise
(6.8.34)

where W controls the amount of amplitude distortion introduced by the channel. The channel
impulse response values are (the arrow denotes the sample at n = 0)

h(n) =
{

0↑
, 0.5

(
1+ cos

2π

W

)
, 1, 0.5

(
1+ cos

2π

W

)
, 0

}
(6.8.35)

which is a symmetric channel, and its frequency response is

H(ejω) = e−j2ω
[

1+
(

1+ cos
2π

W

)
cosω

]

The channel noise v(n) is modeled as white Gaussian noise (WGN) with zero mean and variance
σ 2
v . The equalizer is an 11-tap FIR filter whose optimum tap weights {c(n)} are obtained using

either optimum filter theory (nonadaptive approach) or adaptive algorithms that will be described
in Chapter 10. The input to the equalizer is

x(n) = s(n)+ v(n) = h(n) ∗ a(n)+ v(n) (6.8.36)

where s(n) represents the distorted pulse sequence. The output of the equalizer is ŷ(n), which is
an estimate of a(n). In practical modem implementations, the equalizer is initially designed using
a training sequence that is known to the receiver. It is shown in Figure 6.33 as the sequence y(n).
It is reasonable to introduce a delay D in the training sequence to account for delays introduced
in the channel and in the equalizer; that is, y(n) = a(n−D) during the training phase. The error
sequence e(n) is further used to design the equalizer c(n). The aim of this example is to study
the effect of the delay D and to determine its optimum value for proper operation.

Channel
h(n) −

Equalizer
c(n)

Delay
D

y(n)

x(n) e(n)

v(n)

a(n)
y(n)ˆ

FIGURE 6.33
Data communication model
used in Example 6.8.1.
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To obtain an optimum equalizer c(n), we will need the autocorrelation matrix Rx of the
input sequence x(n) and the cross-correlation vector d between x(n) and y(n). Consider the
autocorrelation rx(l) of x(n). From (6.8.36), assuming real-valued quantities, we obtain

rx(l) = E{[s(n)+ v(n)][s(n− l)+ v(n− l)]} = rs(l)+ σ 2
vδ(l) (6.8.37)

where we have assumed that s(n) and v(n) are uncorrelated. Since s(n) is a convolution between
{an} and h(n), the autocorrelation rs(l) is given by

rs(l) = ra(l) ∗ rh(l) = rh(l) (6.8.38)

where ra(l) = δ(l) since {a(n)} is a Bernoulli sequence, and rh(l) is the autocorrelation of the
channel response h(n) and is given by

rh(l) = h(l) ∗ h(−l)
Using the symmetric channel response values in (6.8.35), we find that the autocorrelation rx(l)

in (6.8.37) is given by

rx(0) = h2(1)+ h2(2)+ h2(3)+ σ 2
ν = 1+ 0.5

(
1+ cos

2π

W

)2
+ σ 2

v

rx(±1) = h(1)h(2)+ h(2)h(3) = 1+ cos
2π

W

rx(±2) = h(1)h(3) = 0.25

(
1+ cos

2π

W

)2

rx(l) = 0 |l| ≥ 3

(6.8.39)

Since the equalizer is an 11-tap FIR filter, the autocorrelation matrix Rx is an 11 × 11 matrix.
However, owing to few nonzero values of rx(l) in (6.8.39), it is also a quintdiagonal matrix
with the main diagonal containing rx(0) and two upper and lower non-zero diagonals. The
cross-correlation between x(n) and y(n) = a(n−D) is given by

d(l) = E{a(n−D)x(n− l)} = E{a(n−D)[s(n− l)+ ν(n− l)]}
= E{a(n−D)s(n− l)} + E{a(n−D)ν(n− l)}
= E{a(n−D)[h(n− l) ∗ a(n− l)]}
= h(D − l) ∗ ra(D − l) = h(D − l)

(6.8.40)

where we have used (6.8.36). The last step follows from the fact that ra(l) = δ(l). Using the
channel impulse response values in (6.8.35), we obtain

D = 0 d(l) = h(−l) = 0 l ≥ 0

D = 1 d(l) = h(1− l)⇒ d(0) = h(1) d(l) = 0 l > 0

D = 2 d(l) = h(2− l)⇒ d(0) = h(2) d(1) = h(1) d(l) = 0 l > 1
...

...

D = 7 d(l) = h(7− l)⇒ d(4) = h(3) d(5) = h(2) d(6) = h(1)

d(l) = 0 elsewhere

(6.8.41)

Remarks. There are some interesting observations that we can make from (6.8.41) in which the
delay D turns the estimation problem into a filtering, prediction, or smoothing problem.

1. When D = 0, we have a filtering case. The cross-correlation vector d = 0, hence the
equalizer taps are all zeros. This means that if we do not provide any delay in the system, the
cross-correlation is zero and equalization is not possible because co = 0.

2. When D = 1, we have a one-step prediction case.
3. When D ≥ 2, we have a smoothing filter, which provides better performance. When D = 7,

we note that the vector d is symmetric [with respect to the middle sample d(5)] and hence
we should expect the best performance because the channel is also symmetric. We can also
show that D = 7 is the optimum delay for this example (see Problem 6.40). However, this
should not be a surprise since h(n) is symmetric about n = 2, and if we make the equalizer
symmetric about n = 5, then the channel input a(n) is delayed by D = 5+ 2 = 7.
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Figure 6.34 shows the channel impulse response h(n) and the equalizer c(n) for D = 7, σ 2
v =

0.001, and W = 2.9 and W = 3.1.
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FIGURE 6.34
Channel impulse response h(n) and the equalizer c(n) for D = 7,
σ 2
ν = 0.001, and W = 2.9 and W = 3.1.

6.9 MATCHED FILTERS AND EIGENFILTERS

In this section we discuss the design of optimum filters that maximize the output signal-to-
noise power ratio. Such filters are used to detect signals in additive noise in many appli-
cations, including digital communications and radar. First we discuss the case of a known
deterministic signal in noise, and then we extend the results to the case of a random signal
in noise.

Suppose that the observations obtained by sampling the output of a single sensor at M
instances, or M sensors at the same instant, are arranged in a vector x(n). Furthermore, we
assume that the available signal x(n) consists of a desired signal s(n) plus an additive noise
plus interference signal v(n), that is,

x(n) = s(n)+ v(n) (6.9.1)

where s(n) can be one of two things. It can be a deterministic signal of the form s(n) = αs0,
where s0 is the completely known shape of s(n) and α is a complex random variable
with power Pα = E{|α|2}. The argument �α provides the unknown initial phase, and the
modulus |α|, the amplitude of the signal, respectively. It can also be a random signal with
known correlation matrix Rs(n). The signals s(n) and v(n) are assumed to be uncorrelated
with zero means.

The output of a linear processor (combiner or FIR filter) with coefficients {c∗k }M1 is

y(n) = cH x(n) = cH s(n)+ cH v(n) (6.9.2)

Py(n) = E{|y(n)|2} = E{cH x(n)xH (n)c} = cH Rx(n)c (6.9.3)and its power

is a quadratic function of the filter coefficients.
The output noise power is

Pv(n) = E{|cH v(n)|2} = E{cH v(n)vH (n)c} = cH Rv(n)c (6.9.4)
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where Rv(n) is the noise correlation matrix. The determination of the output SNR, and
hence the subsequent optimization, depends on the nature of the signal s(n).

6.9.1 Deterministic Signal in Noise

In the deterministic signal case, the power of the signal is

Ps(n) = E{|αcH s0|2} = Pα|cH s0|2 (6.9.5)

and therefore the output SNR can be written as

SNR(c) = Pα

|cH s0|2
cH Rv(n)c

(6.9.6)

White noise case. If the correlation matrix of the additive noise is given by Rv(n) =
PvI, the SNR becomes

SNR(c) = Pα

Pv

|cH s0|2
cH c

(6.9.7)

which simplifies the maximization process. Indeed, from the Cauchy-Schwartz inequality

cH s0≤(cH c)1/2(sH0 s0)
1/2 (6.9.8)

we conclude that the SNR in (6.9.7) attains its maximum value

SNRmax = Pα

Pv

sH0 s0 (6.9.9)

if the optimum filter co is chosen as
co = κs0 (6.9.10)

that is, when the filter is a scaled replica of the known signal shape. This property resulted in
the term matched filter, which is widely used in communications and radar applications.

†
We

note that if a vector co maximizes the SNR (6.9.7), then any constant κ times co maximizes
the SNR as well. Therefore, we can choose this constant in any way we want. In this section,
we choose κo so that cH0 s0 = 1.

Colored noise case. Using the Cholesky decomposition Rv = LvLH
v of the noise

correlation matrix, we can write the SNR in (6.9.6) as

SNR(c) = Pα

|(LH
v c)H (L−1

v s0)|2
(LH

v c)H (LH
v c)

(6.9.11)

which, according to the Cauchy-Schwartz inequality, attains its maximum

SNRmax = Pα‖L−1
v s0‖2 = PαsH0 R−1

v s0 (6.9.12)

when the optimum filter satisfies LH
v co = κL−1

v s0, or equivalently

co = κR−1
v s0 (6.9.13)

which provides the optimum matched filter for color additive noise.Again, the optimum filter
can be scaled in any desirable way. We choose cHo s0 = 1 which implies κ = (sH0 R−1

v s0)
−1.

If we pass the observed signal through the preprocessor L−1
v , we obtain a signal L−1

v s
in additive white noise ṽ = L−1

v v because E{ṽṽH } = E{L−1
v vvH L−Hv } = I. Therefore, the

optimum matched filter in additive color noise is the cascade of a whitening filter followed
by a matched filter for white noise (compare with a similar decomposition for the optimum

†
We note that the matched filter co in (6.9.10) is not a complex conjugate reversed version of the signal s. This

happens when we define the matched filter as a convolution that involves a reversal of the impulse response
(Therrien 1992).
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Wiener filter in Figure 6.19). The application of the optimum matched filter is discussed in
Section 11.3, which provides a more detailed treatment.

EXAMPLE 6.9.1. Consider a finite-duration deterministic signal s(n) = an, 0 ≤ n ≤ M − 1,
corrupted by additive noise v(n) with autocorrelation sequence rv(l) = σ 2

0ρ
|l|/(1 − ρ2). We

determine and plot the impulse response of an Mth-order matched filter for a = 0.6, M =
8, σ 2

0 = 0.25, and (a) ρ = 0.1 and (b) ρ = −0.8. We first note that the signal vector is

s = [1 a a2 · · · a7]T and that the noise correlation matrix Rv is Toeplitz with first row
[rv(0) rv(1) · · · rv(7)]. The optimum matched filters are determined by c = R−1

v s0 and are
shown in Figure 6.35. We notice that for ρ = 0.1 the matched filter looks like the signal because
the correlation between the samples of the interference is very small; that is, the additive noise
is close to white. For ρ = −0.8 the correlation increases, and the shape of the optimum filter
differs more from the shape of the signal. However, as a result of the increased noise correlation,
the optimum SNR increases.

1 2 3 4 5 6 7 8
0
0.2
0.4
0.6
0.8
1

s(
n)

Signal

1 2 3 4 5 6 7 8
0

1

2

3

4

c 0
(n

)

r  = 0.1,  SNR = 5.5213 dB

1 2 3 4 5 6 7 8
0
2
4
6
8

10

Sample index n

c 0
(n

)

r  = −0.8, SNR = 14.8115 dB

FIGURE 6.35
Signal and impulse responses of the optimum matched filter that
maximizes the SNR in the presence of additive color noise.

6.9.2 Random Signal in Noise

In the case of a random signal with known correlation matrix Rs , the SNR is

SNR(c) = cH Rsc
cH Rvc

(6.9.14)

that is, the ratio of two quadratic forms. We again distinguish two cases.

White noise case. If the correlation matrix of the noise is given by Rv = PvI, we have

SNR(c) = 1

Pv

cH Rsc
cH c

(6.9.15)
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which has the form of Rayleigh’s quotient (Strang 1980; Leon 1998). By using the innova-
tions transformation c̃ = QH c, where the unitary matrix Q is obtained from the eigende-
composition Rs = Q�QH , the SNR can be expressed as

SNR(c) = 1

Pv

c̃H�c̃

c̃H c̃
= 1

Pv

λ1|c̃1|2 + · · · + λM |c̃M |2
|c̃1|2 + · · · + |c̃M |2 (6.9.16)

where 0 ≤ λ1 ≤ · · · ≤ λM are the eigenvalues of the signal correlation matrix. The SNR is
maximized if we choose c̃M = 1 and c̃1 = · · · = c̃M−1 = 0 and is minimized if we choose
c̃1 = 1 and c̃2 = · · · = c̃M = 0. Therefore, for any positive definite matrix Rs , we have

λmin ≤ cH Rsc
cH c

≤ λmax (6.9.17)

which is known as Rayleigh’s quotient (Strang 1980). This implies that the optimum filter
c = Qc̃ is the eigenvector corresponding to the maximum eigenvalue of Rs , that is,

c = qmax (6.9.18)

and provides a maximum SNR

SNRmax = λmax

Pv

(6.9.19)

where λmax = λM . The obtained optimum filter is sometimes known as an eigenfilter
(Makhoul 1981). The following example provides a geometric interpretation of these results
for a second-order filter.

EXAMPLE 6.9.2. Suppose that the signal correlation matrix Rs is given by (see Example 3.5.1)

R �
[

1 ρ

ρ 1

]
= 1√

2

[
1 1

−1 1

][
1− ρ 0

0 1+ ρ

]
1√
2

[
1 1

−1 1

]H
= Q�QH

where ρ = 0.81. To obtain a geometric interpretation, we fix cH c = 1 and try to maximize
the numerator cH Rc > 0 (we assume that R is positive definite). The relation c2

1 + c2
2 = 1

represents a circle in the (c1, c2) plane. The plot can be easily obtained by using the parametric
description c1 = cosφ and c2 = sin φ. To obtain the plot of cH Rc = 1, we note that

cH Rc = cH Q�QH c = c̃H�c̃ = λ2
1c̃

2
1 + λ2

2c̃
2
2 = 1

where c̃ � Q
H

c. To plot λ2
1c̃

2
1 + λ2

2c̃
2
2 = 1, we use the parametric description c̃1 = cosφ/

√
λ1

and c̃2 = sin φ/
√
λ2. The result is an ellipse in the (c̃1, c̃2) plane. For c̃2 = 0 we have c̃1 =

1/
√
λ1, and for c̃1 = 0 we have c̃2 = 1/

√
λ2. Since λ1 < λ2, 2/

√
λ1 provides the length of the

major axis determined by the eigenvector q1 = [1 − 1]T /
√

2. Similarly, 2/
√
λ2 provides the

length of the minor axis determined by the eigenvector q2 = [1 1]T /
√

2. The coordinates of the
ellipse in the (c1, c2) plane are obtained by the rotation transformation c = Qc̃. The resulting
circle and ellipse are shown in Figure 6.36. The maximum value of cH Rc = λ1c̃

2
1+λ2

2c̃
2
2 on the

circle c̃2
1 + c̃2

2 = 1 is obtained for c̃1 = 0 and c̃2 = 1, that is, at the endpoint of eigenvector q2,
and is equal to the largest eigenvalue λ2. Similarly, the minimum is λ1 and is obtained at the tip
of eigenvector q1 (see Figure 6.36). Therefore, the optimum filter is c = q2 and the maximum
SNR is λ2/Pv .

Colored noise case. Using the Cholesky decomposition Rv = LvLH
v of the noise

correlation matrix, we process the observed signal with the transformation L−1
v , that is, we

obtain

xv(n) � L−1
v x(n) = L−1

v s(n)+ L−1
v v(n)

= sv(n)+ ṽ(n)
(6.9.20)

where ṽ(n) is white noise with E{ṽ(n)ṽH (n)} = I and E{sv(n)sHv (n)} = L−1
v RsL−Hv .

Therefore, the optimum matched filter is determined by the eigenvector corresponding
to the maximum eigenvalue of matrix L−1

v RsL−Hv , that is, the correlation matrix of the
transformed signal sv(n).
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2

1

2

1−2

−2
1

1

Max

Min

c2

c1

q2

q1

l2

l1

l2 = cHRcl1 = cHRc

cHc = 1 

cHRc = 1 
c~2

c~1

−1

−1 0

FIGURE 6.36
Geometric interpretation of the optimization process for the
derivation of the optimum eigenfilter using isopower contours for
λ1 < λ2.

The problem can also be solved by using the simultaneous diagonalization of the signal
and noise correlation matrices Rs and Rv , respectively. Starting with the decomposition
Rv = Qv�vQH

v , we compute the isotropic transformation

xv(n) � �
−1/2
v QH

v x(n)

= �
−1/2
v QH

v s(n)+�
−1/2
v QH

v v(n) � s̃(n)+ ṽ(n)
(6.9.21)

where E{ṽ(n)ṽH (n)} = I and E{s̃(n)s̃H (n)} = �
−1/2
v QH

v RsQv�
−1/2
v � Rs̃ . Since the

noise vector is white, the optimum matched filter is determined by the eigenvector corre-
sponding to the maximum eigenvalue of matrix Rs̃ .

Finally, if Rs̃ = Qs̃�s̃QH
s̃

, the transformation

xvs(n) � QH
s̃ xv(n) = QH

s̃ s̃(n)+QH
s̃ ṽ(n) � s̄(n)+ v̄(n) (6.9.22)

results in new signal and noise vectors with correlation matrices

E{s̄(n)s̄H (n)} = QH
s̃ Rs̃Qs̃ = �s̃ (6.9.23)

E{v̄(n)v̄H (n)} = QH
s̃ IQs̃ = I (6.9.24)

Therefore, the transformation matrix

Q � QH
s̃ �−1/2

v QH
v (6.9.25)

diagonalizes matrices Rs and Rv simultaneously (Fukunaga 1990).
The maximization of (6.9.14) can also be obtained by whitening the signal, that is, by

using the Cholesky decomposition Rs = LsLH
s of the signal correlation matrix. Indeed,

using the transformation c̃ � L
H

s c, we have

SNR(c) = cH Rsc
cH Rvc

= cH LsLH
s c

cH LsL
−1
s RvL−Hs LH

s c
= c̃H c̃

c̃H L−1
s RvL−Hs c̃

(6.9.26)
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which attains its maximum when c̃ is equal to the eigenvector corresponding to the minimum
eigenvalue of matrix L−1

s RvL−Hs . This approach has been used to obtain optimum moving-
target indicator filters for radar applications (Hsiao 1974).

EXAMPLE 6.9.3. The basic problem in many radar detection systems is the separation of a useful
signal from colored noise or interference background. In several cases the signal is a point target
(i.e., it can be modeled as a unit impulse) or is random with a flat PSD, that is, Rs = PaI.

Suppose that the background is colored with correlation rv(i, j) = ρ(i−j)2
, 1 ≤ i, j ≤ M ,

which leads to a Toeplitz correlation matrix Rv . We determine and compare three filters for
interference rejection. The first is a matched filter that maximizes the SNR

SNR(c) = PacH c

cH Rvc
(6.9.27)

by setting c equal to the eigenvector corresponding to the minimum eigenvalue of Rv . The
second approach is based on the method of linear prediction. Indeed, if we assume that the
interference vk(n) is much stronger than the useful signal sk(n), we can obtain an estimate v̂1(n)

of v1(n) using the observed samples {xk(n)}M2 and then subtract v̂1(n) from x1(n) to cancel the

interference. The Wiener filter with desired response y(n) = v1(n) and input data {xk(n)}M2 is

ŷ(n) = −
M−1∑
k=1

a∗k xk+1(n) � −aH x̃(n)

and is specified by the normal equations

R̃xa = −d̃

and the MMSE

P f = E{|v1|2} + d̃H a

〈R̃x〉ij = E{xi+1(n)x
∗
i+1(n)} � E{vi+1(n)v

∗
i+1(n)}where

d̃i = E{v1x
∗
i+1(n)} � E{v1(n)v

∗
i+1(n)}and

because the interference is assumed much stronger than the signal. Using the last four equations,
we obtain

Rv

[
1

a

]
=
[
Ef

0

]
(6.9.28)

which corresponds to the forward linear prediction error (LPE) filter discussed in Section 6.5.2.
Finally, for the sake of comparison, we consider the binomial filters HM(z) = (1− z−1)M that
are widely used in radar systems for the elimination of stationary (i.e., nonmoving) clutter. Figure
6.37 shows the magnitude response of the three filters for ρ = 0.9 and M = 4. We emphasize that
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responses of matched filter,
prediction error filter, and
binomial interference rejection
filter.
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the FLP method is suboptimum compared to matched filtering. However, because the frequency
response of the FLP filter does not have the deep zero notch, we use it if we do not want to lose
useful signals in that band (Chiuppesi et al. 1980).

6.10 SUMMARY

In this chapter, we discussed the theory and application of optimum linear filters designed by
minimizing the MSE criterion of performance. Our goal was to explain the characteristics of
each criterion, emphasize when its use made sense, and illustrate its meaning in the context
of practical applications.

We started with linear processors that formed an estimate of the desired response by
combining a set of different signals (data) and showed that the parameters of the optimum
processor can be obtained by solving a linear system of equations (normal equations). The
matrix and the right-hand side vector of the normal equations are completely specified
by the second-order moments of the input data and the desired response. Next, we used
the developed theory to design optimum FIR filters, linear signal estimators, and linear
predictors.

We emphasized the case of stationary stochastic processes and showed that the resulting
optimum estimators are time-invariant. Therefore, we need to design only one optimum filter
that can be used to process all realizations of the underlying stochastic processes. Although
another filter may perform better for some realizations, that is, the estimated MSE is smaller
than the MMSE, on average (i.e., when we consider all possible realizations), the optimum
filter is the best.

We showed that the performance of optimum linear filters improves as we increase the
number of filter coefficients. Therefore, the noncausal IIR filter provides the best possible
performance and can be used as a yardstick to assess other filters. Because IIR filters
involve an infinite number of parameters, their design involves linear equations with an
infinite number of unknowns. For stationary processes, these equations take the form of a
convolution equation that can be solved using z-transform techniques. If we use a pole-zero
structure, the normal equations become nonlinear and the design of the optimum filter is
complicated by the presence of multiple local minima.

Then we discussed the design of optimum filters for inverse system modeling and blind
deconvolution, and we provided a detailed discussion of their use in the important practical
application of channel equalization for data transmission systems.

Finally, we provided a concise introduction to the design of optimum matched filters
and eigenfilters that maximize the output SNR and find applications for the detection of
signals in digital communication and radar systems.

PROBLEMS

6.1 Let x be a random vector with mean E{x}. Show that the linear MMSE estimate ŷ of a ran-
dom variable y using the data vector x is given by ŷ = yo + cH x, where yo = E{y} −
cHE{x}, c = R−1d, R = E{xxH }, and d = E{xy∗}.

6.2 Consider an optimum FIR filter specified by the input correlation matrix R = Toeplitz {1, 1
4
}

and cross-correlation vector d = [1 1
2
]T .

(a) Determine the optimum impulse response co and the MMSE Po.
(b) Express co and Po in terms of the eigenvalues and eigenvectors of R.

6.3 Repeat Problem 6.2 for a third-order optimum FIR filter.
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6.4 A process y(n) with the autocorrelation ry(l) = a|l|,−1 < a < 1, is corrupted by additive,
uncorrelated white noise v(n) with variance σ 2

v . To reduce the noise in the observed process
x(n) = y(n)+ v(n), we use a first-order Wiener filter.

(a) Express the coefficients co,1 and co,2 and the MMSE Po in terms of parameters a and σ 2
v .

(b) Compute and plot the PSD of x(n) and the magnitude response |Co(e
jω)| of the filter when

σ 2
v = 2, for both a = 0.8 and a = −0.8, and compare the results.

(c) Compute and plot the processing gain of the filter for a = −0.9,−0.8,−0.7, . . . , 0.9 as a
function of a and comment on the results.

6.5 Consider the harmonic process y(n) and its noise observation x(n) given in Example 6.4.1.

(a) Show that ry(l) = 1
2
A2 cosω0l.

(b) Write a Matlab function h = opt_fir(A,f0,var_v,M) to design an Mth-order op-
timum FIR filter impulse response h(n). Use the toeplitz function from Matlab to
generate correlation matrix R.

(c) Determine the impulse response of a 20th-order optimum FIR filter for A = 0.5, f0 = 0.05,
and σ 2

v = 0.5.
(d ) Using Matlab, determine and plot the magnitude response of the above-designed filter,

and verify your results with those given in Example 6.4.1.

6.6 Consider a “desired” signal s(n) generated by the process s(n) = −0.8w(n−1)+w(n), where
w(n) ∼WN(0, σ 2

w). This signal is passed through the causal system H(z) = 1−0.9z−1 whose
output y(n) is corrupted by additive white noise v(n) ∼ WN(0, σ 2

v). The processes w(n) and
v(n) are uncorrelated with σ 2

w = 0.3 and σ 2
v = 0.1.

(a) Design a second-order optimum FIR filter that estimates s(n) from the signal x(n) =
y(n)+ v(n) and determine co and Po.

(b) Plot the error performance surface, and verify that it is quadratic and that the optimum filter
points to its minimum.

(c) Repeat part (a) for a third-order filter, and see whether there is any improvement.

6.7 Repeat Problem 6.6, assuming that the desired signal is generated by s(n) = −0.8s(n−1)+w(n).

6.8 Repeat Problem 6.6, assuming that H(z) = 1.

6.9 A stationary process x(n) is generated by the difference equation x(n) = ρx(n − 1) + w(n),
where w(n) ∼WN(0, σ 2

w).

(a) Show that the correlation matrix of x(n) is given by

Rx = σ 2
w

1− ρ2
Toeplitz{1, ρ, ρ2, . . . , ρM−1}

(b) Show that the Mth-order FLP is given by a
(M)
1 = −ρ, a(M)

k
= 0 for k > 1 and the MMSE

is P f
M
= σ 2

w .

6.10 Using Parseval’s theorem, show that (6.4.18) can be written as (6.4.21) in the frequency domain.

6.11 By differentiating (6.4.21) with respect to H(ejω), derive the frequency response function
Ho(e

jω) of the optimum filter in terms of Ryx(e
jω) and Rx(e

jω).

6.12 A conjugate symmetric linear smoother is obtained from (6.5.12) when M = 2L and i = L. If
the process x(n) is stationary, then, using R̄J = JR̄∗, show that c̄ = Jc̄∗.

6.13 Let Q̄ and �̄ be the matrices from the eigendecomposition of R̄, that is, R̄ = Q̄�̄Q̄H
.

(a) Substitute R into (6.5.20) and (6.5.27) to prove (6.5.43) and (6.5.44).
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(b) Generalize the above result for a j th-order linear signal estimator c(j)(n); that is, prove that

c(j)(n) = P
(j)
o (n)

M+1∑
i=1

1

λ̄i
q̄i q̄i,j

6.14 Let R̃(n) be the inverse of the correlation matrix R̄(n) given in (6.5.11).

(a) Using (6.5.12), show that the diagonal elements of R̃(n) are given by

〈R̃(n)〉i,i = 1

P (i)(n)
1 ≤ i ≤ M + 1

(b) Furthermore, show that

c(i)(n) = r̃i (n)

〈R̃(n)〉i,i
1 ≤ i ≤ M + 1

where r̃i (n) is the i-th column of R̃(n).

6.15 The first five samples of the autocorrelation sequence of a signal x(n) are r(0) = 1, r(1) =
0.8, r(2) = 0.6, r(3) = 0.4, and r(4) = 0.3. Compute the FLP, the BLP, the optimum symmetric
smoother, and the corresponding MMSE (a) by using the normal equations method and (b) by
using the inverse of the normal equations matrix.

6.16 For the symmetric, Toeplitz autocorrelation matrix R = Toeplitz{r(0), r(1), r(2)} = r(0)×
Toeplitz{1, ρ1, ρ2} with R = LDLH and D = diag{ξ1, ξ2, ξ3}, the following conditions are
equivalent:

• R is positive definite.
• ξ i > 0 for 1 ≤ i ≤ 3.
• |ki | < 1 for 1 ≤ i ≤ 3.

Determine the values of ρ1 and ρ2 for which R is positive definite, and plot the corresponding
area in the (ρ1, ρ2) plane.

6.17 Prove the first equation in (6.5.45) by rearranging the FLP normal equations in terms of the
unknowns P f

o (n), a1(n), . . . , aM(n) and then solve for P f
o (n), using Cramer’s rule. Repeat the

procedure for the second equation.

6.18 Consider the signal x(n) = y(n) + v(n), where y(n) is a useful random signal corrupted by
noise v(n). The processes y(n) and v(n) are uncorrelated with PSDs

Ry(e
jω) =




1 0 ≤ |ω| ≤ π

2

0
π

2
< |ω| ≤ π

Rv(e
jω) =




1
π

4
≤ |ω| ≤ π

2

0 0 ≤ |ω| < π

4
and

π

2
< |ω| ≤ π

and

respectively. (a) Determine the optimum IIR filter and find the MMSE. (b) Determine a third-
order optimum FIR filter and the corresponding MMSE. (c) Determine the noncausal optimum
FIR filter defined by

ŷ(n) = h(−1)x(n+ 1)+ h(0)x(n)+ h(1)x(n− 1)

and the corresponding MMSE.

6.19 Consider the ARMA(1, 1) process x(n) = 0.8x(n− 1)+w(n)+ 0.5w(n− 1), where w(n) ∼
WGN(0, 1). (a) Determine the coefficients and the MMSE of (1) the one-step ahead FLP x̂(n) =
a1x(n− 1)+ a2x(n− 2) and (2) the two-step ahead FLP x̂(n+ 1) = a1x(n− 1)+ a2x(n− 2).
(b) Check if the obtained prediction error filters are minimum-phase, and explain your findings.
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6.20 Consider a random signal x(n) = s(n)+ v(n), where v(n) ∼WGN(0, 1) and s(n) is the AR(1)
process s(n) = 0.9s(n− 1)+ w(n), where w(n) ∼ WGN(0, 0.64). The signals s(n) and v(n)

are uncorrelated. (a) Determine and plot the autocorrelation rs(l) and the PSD Rs(e
jω) of s(n).

(b) Design a second-order optimum FIR filter to estimate s(n) from x(n). What is the MMSE?
(c) Design an optimum IIR filter to estimate s(n) from x(n). What is the MMSE?

6.21 A useful signal s(n) with PSD Rs(z) = [(1 − 0.9z−1)(1 − 0.9z)]−1 is corrupted by additive
uncorrelated noise v(n) ∼ WN(0, σ 2). (a) The resulting signal x(n) = s(n) + v(n) is passed
through a causal filter with system function H(z) = (1 − 0.8z−1)−1. Determine (1) the SNR
at the input, (2) the SNR at the output, and (3) the processing gain, that is, the improvement
in SNR. (b) Determine the causal optimum filter and compare its performance with that of the
filter in (a).

6.22 A useful signal s(n) with PSD Rs(z) = 0.36[(1−0.8z−1)(1−0.8z)]−1 is corrupted by additive
uncorrelated noise v(n) ∼WN(0, 1). Determine the optimum noncausal and causal IIR filters,
and compare their performance by examining the MMSE and their magnitude response. Hint:
Plot the magnitude responses on the same graph with the PSDs of signal and noise.

6.23 Consider a process with PSD Rx(z) = σ 2Hx(z)Hx(z
−1). Determine the D-step ahead linear

predictor, and show that the MMSE is given by P (D) = σ 2∑D−1
n=0 |hx |2(n). Check your results

by using the PSD Rx(z) = (1− a2)[(1− az−1)(1− az)]−1.

6.24 Let x(n) = s(n)+ v(n) with Rv(z) = 1, Rsv(z) = 0, and

Rs(z) = 0.75

(1− 0.5z−1)(1− 0.5z)

Determine the optimum filters for the estimation of s(n) and s(n− 2) from {x(k)}n−∞ and the
corresponding MMSEs.

6.25 For the random signal with PSD

Rx(z) = (1− 0.2z−1)(1− 0.2z)

(1− 0.9z−1)(1− 0.9z)

determine the optimum two-step ahead linear predictor and the corresponding MMSE.

6.26 Repeat Problem 6.25 for

Rx(z) = 1

(1− 0.2z−1)(1− 0.2z)(1− 0.9z−1)(1− 0.9z)

6.27 Let x(n) = s(n) + v(n) with v(n) ∼ WN(0, 1) and s(n) = 0.6s(n − 1) + w(n), where
w(n) ∼ WN(0, 0.82). The processes s(n) and v(n) are uncorrelated. Determine the optimum
filters for the estimation of s(n), s(n+ 2), and s(n− 2) from {x(k)}n−∞ and the corresponding
MMSEs.

6.28 Repeat Problem 6.27 for Rs(z) = [(1− 0.5z−1)(1− 0.5z)]−1, Rv(z) = 5, and Rsv(z) = 0.

6.29 Consider the random sequence x(n) generated in Example 6.5.2

x(n) = w(n)+ 1
2
w(n− 1)

where w(n) is WN(0, 1). Generate K = 100 sample functions {wk(n)}Nn=0, k = 1, . . . , K of

w(n), in order to generate K sample functions {xk(n)}Nn=0, k = 1, . . . , K of x(n).

(a) Use the second-order FLP ak to obtain predictions {x̂f
k
(n)}N

n=2 of xk(n), for k = 1, . . . , K .
Then determine the average error

P̂ f = 1

N − 1

N∑
n=2

|xk(n)− x̂f
k (n)|2 k = 1, . . . , K

and plot it as a function of k. Compare it with P f
o .
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(b) Use the second-order BLP bk to obtain predictions {x̂b
k
(n)}N−2

n=0 , k = 1, . . . , K of xk(n).
Then determine the average error

P̂ b = 1

N − 1

N−2∑
n=0

|xk(n)− x̂b
k (n)|2 k = 1, . . . , K

and plot it as a function of k. Compare it with P b
o .

(c) Use the second-order symmetric linear smoother ck to obtain smooth estimates {x̂c
k
(n)}N−2

n=0
of xk(n) for k = 1, . . . , K . Determine the average error

P̂ s = 1

N − 1

N−1∑
n=1

|xk(n)− x̂ck (n)|2 k = 1, . . . , K

and plot it as a function of k. Compare it with P s
o .

6.30 Let x(n) = y(n) + v(n) be a wide-sense stationary process. The linear, symmetric smoothing
filter estimator of y(n) is given by

ŷ(n) =
L∑

k=−L
cs
kx(n− k)

(a) Determine the normal equations for the optimum MMSE filter.
(b) Show that the smoothing filter cs

o has linear phase.
(c) Use the Lagrange multiplier method to determine the MMSE Mth-order estimator ŷ(n) =

cH x(n), where M = 2L + 1, when the filter vector c is constrained to be conjugate sym-
metric, that is, c = Jc∗. Compare the results with those obtained in part (a).

6.31 Consider the causal prediction filter discussed in Example 6.6.1. To determine H
[D]
c (z), first

compute the causal part of the z-transform [R′yw(z)]+. Next compute H
[D]
c (z) by using (6.6.21).

(a) Determine h
[D]
c (n).

(b) Using the above h
[D]
c (n), show that

P
[D]
c = 1− 5

8
( 4

5
)2D

6.32 Consider the causal smoothing filter discussed in Example 6.6.1.

(a) Using [r ′yw(l)]+ = ryw(l +D)u(l),D < 0, show that [r ′yw(l)]+ can be put in the form

[r ′yw(l)]+ = 3
5
( 4

5
)l+Du(l +D)+ 3

5
(2l+D)[u(l)− u(l +D)] D < 0

(b) Hence, show that [R′yw(z)]+ is given by

[R′yw(z)]+ = 3

5

zD

1− 4
5z
−1
+ 3

5
(2D)

−D−1∑
l=0

2lz−l

(c) Finally using (6.6.21), prove (6.6.54).

6.33 In this problem, we will prove (6.6.57)

(a) Starting with (6.6.42), show that [R′yw(z)]+ can also be put in the form

[R′yw(z)]+ = 3

5

(
zD

1− 4
5
z−1
+ 2D − zD

1− 2z−1

)

(b) Now, using (6.6.21), show that

H
[D]
c (z) = 3

8

[
2D(1− 4

5
z−1)+ 3

5
zD−1

(1− 4
5
z−1)(1− 2z−1)

]
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hence, show that

lim
D→−∞H

[D]
c (z) = 9

40

[
zD

(1− 4
5
z−1)(1− 2z−1)

]
= zDHnc(z)

(c) Finally, show that lim
D→∞P

[D]
c = Pnc.

6.34 Consider the block diagram of a simple communication system shown in Figure 6.38. The
information resides in the signal s(n) produced by exciting the system H1(z) = 1/(1+0.95z−1)

with the processw(n) ∼WGN(0, 0.3). The signal s(n) propagates through the channelH2(z) =
1/(1− 0.85z−1), and is corrupted by the additive noise process v(n) ∼WGN(0, 0.1), which is
uncorrelated withw(n). (a) Determine a second-order optimum FIR filter (M = 2) that estimates
the signal s(n) from the received signal x(n) = z(n)+ v(n). What is the corresponding MMSE
Po? (b) Plot the error performance surface and verify that the optimum filter corresponds to the
bottom of the “bowl.” (c) Use a Monte Carlo simulation (100 realizations with a 1000-sample
length each) to verify the theoretically obtained MMSE in part (a). (d ) Repeat part (a) for M = 3
and check if there is any improvement. Hint: To compute the autocorrelation of z(n), notice that
the output of H1(z)H2(z) is an AR(2) process.

H1(z)
−

y(n)
v(n)

H2(z)
w(n) s(n) z(n) e(n)x(n) y(n)

Optimum
filter

Channel

ˆ

FIGURE 6.38
Block diagram of simple communication system used in Problem 6.34.

6.35 Write a program to reproduce the results shown in Figure 6.35 of Example 6.9.1. (a) Produce
plots for ρ = 0.1,−0.8, 0.8. (b) Repeat part (a) for M = 16. Compare the plots obtained in (a)
and (b) and justify any similarities or differences.

6.36 Write a program to reproduce the plot shown in Figure 6.36 of Example 6.9.2. Repeat for
ρ = −0.81 and explain the similarities and differences between the two plots.

6.37 In this problem we study in greater detail the interference rejection filters discussed in Example
6.9.3. (a) Shows that SNRs for the matched filter and FLP filter are given by

M Matched filter FLP filter

2
1

1− ρ

1+ ρ2

1− ρ2

3
2

2+ ρ4(1−
√

1+ 8ρ−6)

1+ ρ2 + 3ρ4 + ρ6

(ρ2 − 1)(ρ4 − 1)

and check the results numerically. (b) Compute and plot the SNRs and compare the performance
of both filters for M = 2, 3, 4 and ρ = 0.6, 0.8, 0.9, 0.95, 0.99, and 0.995. For what values
of ρ and M do the two methods give similar results? Explain your conclusions. (c) Plot the
magnitude response of the matched, FLP, and binomial filters for M = 3 and ρ = 0.9. Why
does the optimum matched filter always have some nulls in its frequency response?

6.38 Determine the matched filter for the deterministic pulse s(n) = cosω0n for 0 ≤ n ≤ M−1 and
zero elsewhere when the noise is (a) white with variance σ 2

v and (b) colored with autocorrelation
rv(l) = σ 2

vρ
|l|/(1−ρ2),−1 < ρ < 1. Plot the frequency response of the filter and superimpose
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it on the noise PSD, for ω0 = π/6, M = 12, σ 2
v = 1, and ρ = 0.9. Explain the shape of the

obtained response. (c) Study the effect of the SNR in part (a) by varying the value of σ 2
v . (d )

Study the effect of the noise correlation in part (c) by varying the value of ρ.

6.39 Consider the equalization experiment in Example 6.8.1 with M = 11 and D = 7. (a) Compute
and plot the magnitude response |H(ejω)| of the channel and |Co(e

jω)| of the optimum equalizer
for W = 2.9, 3.1, 3.3, and 3.5 and comment upon the results. (b) For the same values of
W , compute the spectral dynamic range |H(ejω)|max/|H(ejω)|min of the channel and the
eigenvalue spread λmax/λmin of the M×M input correlation matrix. Explain how the variation
in one affects the other.

6.40 In this problem we clarify some of the properties of the MSE equalizer discussed in Example
6.8.1. (a) Compute and plot the MMSE Po as a function of M , and recommend how to choose
a “reasonable” value. (b) Compute and plot Po as a function of the delay D for 0 ≤ D ≤ 11.
What is the best value of D? (c) Study the effect of input SNR upon Po for M = 11 and D = 7
by fixing σ 2

y = 1 and varying σ 2
v .

6.41 In this problem we formulate the design of optimum linear signal estimators (LSE) using a
constrained optimization framework. To this end we consider the estimator e(n) = c∗0x(n) +
· · · + c∗

M
x(n−M) � cH x(n) and we wish to minimize the output power E{|e(n)|2} = cH Rc.

To prevent the trivial solution c = 0 we need to impose some constraint on the filter coefficients
and use Lagrange multipliers to determine the minimum. Let ui be an M × 1 vector with
one at the ith position and zeros elsewhere. (a) Show that minimizing cH Rc under the linear
constraint uT

i
c = 1 provides the following estimators: FLP if i = 0, BLP if i = M , and

linear smoother if i 	= 0,M . (b) Determine the appropriate set of constraints for the L-steps
ahead linear predictor, defined by c0 = 1 and {ck = 0}L−1

1 , and solve the corresponding
constrained optimization problem. Verify your answer by obtaining the normal equations using
the orthogonality principle. (c) Determine the optimum linear estimator by minimizing cH Rc
under the quadratic constraints cH c = 1 and cH Wc = 1 (W is a positive definite matrix) which
impose a constraint on the length of the filter vector.
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CHAPTER 7

Algorithms and Structures
for Optimum Linear Filters

The design and application of optimum filters involves (1) the solution of the normal
equations to determine the optimum set of coefficients, (2) the evaluation of the cost function
to determine whether the obtained parameters satisfy the design requirements, and (3) the
implementation of the optimum filter, that is, the computation of its output that provides
the estimate of the desired response.

The normal equations can be solved by using any general-purpose routine for linear
simultaneous equations. However, there are several important reasons to study the normal
equations in greater detail in order to develop efficient, special-purpose algorithms for their
solution. First, the throughput of several real-time applications can only be served with serial
or parallel algorithms that are obtained by exploiting the special structure (e.g., Toeplitz) of
the correlation matrix. Second, sometimes we can develop order-recursive algorithms that
help us to choose the correct filter order or to stop the algorithm before the manifestation
of numerical problems. Third, some algorithms lead to intermediate sets of parameters that
have physical meaning, provide easy tests for important properties (e.g., minimum phase),
or are useful in special applications (e.g., data compression). Finally, sometimes there is a
link between the algorithm for the solution of the normal equations and the structure for
the implementation of the optimum filter.

In this chapter, we present different algorithms for the solution of the normal equations,
the computation of the minimum mean square error (MMSE), and the implementation of
the optimum filter. We start in Section 7.1 with a discussion of some results from matrix
algebra that are useful for the development of order-recursive algorithms and introduce an
algorithm for the order-recursive computation of the LDLH decomposition, the MMSE,
and the optimum estimate in the general case. In Section 7.2, we present some interesting
interpretations for the various introduced algorithmic quantities and procedures that provide
additional insight into the optimum filtering problem.

The only assumption we have made so far is that we know the required second-order
statistics; hence, the results apply to any linear estimation problem: array processing, fil-
tering, and prediction of nonstationary or stationary processes. In the sequel, we impose
additional constraints on the input data vector and show how to exploit them in order to sim-
plify the general algorithms and structures or specify new ones. In Section 7.3, we explore
the shift invariance of the input data vector to develop a time-varying lattice-ladder structure
for the optimum filter. However, to derive an order-recursive algorithm for the computation
of either the direct or lattice-ladder structure parameters of the optimum time-varying filter,
we need an analytical description of the changing second-order statistics of the nonstation-
ary input process. Recall that in the simplest case of stationary processes, the correlation
matrix is constant and Toeplitz. As a result, the optimum FIR filters and predictors are
time-invariant, and their direct or lattice-ladder structure parameters can be computed (only
once) using efficient, order-recursive algorithms due to Levinson and Durbin (Section 7.4)
or Schür (Section 7.6). Section 7.5 provides a derivation of the lattice-ladder structures for
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optimum filtering and prediction, their structural and statistical properties, and algorithms
for transformations between the various sets of parameters. Section 7.7 deals with efficient,
order-recursive algorithms for the triangularization and inversion of Toeplitz matrices.

The chapter concludes with Section 7.8 which provides a concise introduction to the
Kalman filtering algorithm. The Kalman filter provides a recursive solution to the minimum
MSE filtering problem when the input stochastic process is described by a known state space
model. This is possible because the state space model leads to a recursive formula for the
updating of the required second-order moments.

7.1 FUNDAMENTALS OF ORDER-RECURSIVE ALGORITHMS

In Section 6.3, we introduced a method to solve the normal equations and compute the
MMSE using the LDLH decomposition. The optimum estimate is computed as a sum of
products using a linear combiner supplied with the optimum coefficients and the input data.
The key characteristic of this approach is that the order of the estimator should be fixed
initially, and in case we choose a different order, we have to repeat all the computations.
Such computational methods are known as fixed-order algorithms.

When the order of the estimator becomes a design variable, we need to modify our
notation to take this into account. For example, the mth-order estimator cm(n) is obtained
by minimizing E{|em(n)|2}, where

em(n) � y(n)− ŷm(n) (7.1.1)

ŷm(n) � cHm (n)xm(n) (7.1.2)

cm(n) � [c(m)1 (n) c
(m)
2 (n) · · · c(m)m (n)]T (7.1.3)

xm(n) � [x1(n) x2(n) · · · xm(n)]T (7.1.4)

In general, we use the subscriptm to denote the order of a matrix or vector and the superscript
m to emphasize that a scalar is a component of anm×1 vector. We note that these quantities
are functions of time n, but sometimes we do not explicitly show this dependence for the
sake of simplicity.

If themth-order estimator cm(n) has been computed by solving the normal equations, it
seems to be a waste of computational power to start from scratch to compute the (m+ 1)st-
order estimator cm+1(n). Thus, we would like to arrange the computations so that the results
for order m, that is, cm(n) or ŷm(n), can be used to compute the estimates for order m+ 1,
that is, cm+1(n) or ŷm+1(n). The resulting procedures are called order-recursive algorithms
or order-updating relations. Similarly, procedures that compute cm(n + 1) from cm(n) or
ŷm(n + 1) from ŷm(n) are called time-recursive algorithms or time-updating relations.
Combined order and time updates are also possible. All these updates play a central role in
the design and implementation of many optimum and adaptive filters.

In this section, we derive order-recursive algorithms for the computation of the LDLH

decomposition, the MMSE, and the MMSE optimal estimate. We also show that there is no
order-recursive algorithm for the computation of the estimator parameters.

7.1.1 Matrix Partitioning and Optimum Nesting

We start by introducing some notation that is useful for the discussion of order-recursive
algorithms.

†
Notice that if the order of the estimator increases from m to m + 1, then the

input data vector is augmented with one additional observation xm+1. We use the notation

†
All quantities in Sections 7.1 and 7.2 are functions of the time index n. However, for notational simplicity we do

not explicitly show this dependence.
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x�m�m+1 to denote the vector that consists of the first m components and x
m�m+1 for the last m
components of vector xm+1. The same notation can be generalized to matrices. Them×m
matrix R�m�m+1, obtained by the intersection of the first m rows and columns of Rm+1, is
known as the mth-order leading principal submatrix of Rm+1. In other words, if rij are

the elements of Rm+1, then the elements of R�m�m+1 are rij , 1 ≤ i, j ≤ m. Similarly, R
m�m+1
denotes the matrix obtained by the intersection of the last m rows and columns of Rm+1.
For example, if m = 3 we obtain

R4 =

R�3�4

r11 r12 r13 r14
r21 r22 r23 r24
r31 r32 r33 r34
r41 r42 r43 r44




R
3�4

(7.1.5)

which illustrates the upper left corner and lower right corner partitionings of matrix R4.
Since x�m�m+1 = xm, we can easily see that the correlation matrix can be partitioned as

Rm+1 = E
{[

xm

xm+1

] [
xHm x∗m+1

]} =
[

Rm rb
m

rbH
m ρb

m

]
(7.1.6)

rb
m � E{xmx∗m+1} (7.1.7)where

ρb
m � E{|xm+1|2} (7.1.8)and

The result

x�m�m+1 = xm ⇒ Rm = R�m�m+1 (7.1.9)

is known as the optimum nesting property and is instrumental in the development of order-
recursive algorithms. Similarly, we can show that x�m�m+1 = xm implies

dm+1 = E{xm+1y
∗} = E

{[
xm
xm+1

]
y∗
}
=
[

dm
dm+1

]
(7.1.10)

x�m�m+1 = xm ⇒ dm = d�m�m+1 (7.1.11)or

that is, the right-hand side of the normal equations also has the optimum nesting property.
Since (7.1.9) and (7.1.11) hold for all 1 ≤ m ≤ M , the correlation matrix RM and the

cross-correlation vector dM contain the information for the computation of all the optimum
estimators cm for 1 ≤ m ≤ M .

7.1.2 Inversion of Partitioned Hermitian Matrices

Suppose now that we know the inverse R−1
m of the leading principal submatrix R�m�m+1 = Rm

of matrix Rm+1 and we wish to use it to compute R−1
m+1 without having to repeat all the

work. Since the inverse Qm+1 of the Hermitian matrix Rm+1 is also Hermitian, it can be
partitioned as

Qm+1 =
[

Qm qm

qHm qm

]
(7.1.12)

Using (7.1.6), we obtain

Rm+1Qm+1 =
[

Rm rb
m

rbH
m ρb

m

][
Qm qm
qHm qm

]
=
[

Im 0m
0Hm 1

]
(7.1.13)
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After performing the matrix multiplication, we get

RmQm + rb
mqHm = Im (7.1.14)

rbH
m Qm + ρb

mqHm = 0Hm (7.1.15)

Rmqm + rb
mqm = 0m (7.1.16)

rbH
m qm + ρb

mqm = 1 (7.1.17)

where 0m is the m× 1 zero vector. If matrix Rm is invertible, we can solve (7.1.16) for qm

qm = −R−1
m rb

mqm (7.1.18)

and then substitute into (7.1.17) to obtain qm as

qm = 1

ρb
m − rbH

m R−1
m rb

m

(7.1.19)

assuming that the scalar quantity ρb
m− rbH

m R−1
m rb

m �= 0. Substituting (7.1.19) into (7.1.18),
we obtain

qm = −R−1
m rb

m

ρb
m − rbH

m R−1
m rb

m

(7.1.20)

which, in conjunction with (7.1.14), yields

Qm = R−1
m − R−1

m rb
mqHm = R−1

m + R−1
m rb

m(R
−1
m rb

m)
H

ρb
m − rbH

m R−1
m rb

m

(7.1.21)

We note that (7.1.19) through (7.1.21) express the parts of the inverse matrix Qm+1 in terms
of known quantities. For our purposes, we express the above equations in a more convenient
form, using the quantities

bm � [b(m)0 b
(m)
1 · · · b(m)m−1]T � −R−1

m rb
m (7.1.22)

αb
m � ρb

m − rbH
m R−1

m rb
m = ρb

m + rbH
m bm (7.1.23)and

Thus, if matrix Rm is invertible and αb
m �= 0, combining (7.1.13) with (7.1.19) through

(7.1.23), we obtain

R−1
m+1 =

[
Rm rb

m

rbH
m ρb

m

]−1

=
[

R−1
m 0m

0Hm 0

]
+ 1

αb
m

[
bm
1

] [
bHm 1

]
(7.1.24)

which determines R−1
m+1 from R−1

m by using a simple rank-one modification known as the
matrix inversion by partitioning lemma (Noble and Daniel 1988).

Another useful expression for αb
m is

αb
m =

det Rm+1

det Rm
(7.1.25)

which reinforces the importance of the quantity αb
m for the invertibility of matrix Rm+1 (see

Problem 7.1).

EXAMPLE 7.1.1. Given the matrix

R3 =




1 1
2

1
3

1
2

1 1
2

1
3

1
2

1


 =


R2 rb

2

rbH
2 ρb

2




and the inverse matrix

R−1
2 =


1 1

2
1
2

1



−1

= 1

3

[
4 −2

−2 4

]

compute matrix R−1
3 , using the matrix inversion by partitioning lemma.
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Solution. To determine R−1
3 from the order-updating formula (7.1.24), we first compute

b2 = −R−1
2 rb

2 = −
1

3

[
4 −2

−2 4

][ 1
3
1
2

]
= −1

9

[
1

4

]

αb
2 = ρb

2 + rbH
2 b2 = 1− 1

9

[
1

3

1

2

][
1

4

]
= 20

27
and

using (7.1.22) and (7.1.23). Then we compute

R−1
3 = 1

3




4 −2 0

−2 4 0

0 0 0


+ 27

20



− 1

9

− 4
9

1



[
−1

9
−4

9
1

]
= 1

20




27 −12 −3

−12 32 −12

−3 −12 27




using (7.1.24). The reader can easily verify the above calculations using Matlab.

Following a similar approach, we can show (see Problem 7.2) that the inverse of the
lower right corner partitioned matrix Rm+1 can be expressed as

R−1
m+1 �

[
ρf
m rfH

m

rf
m Rf

m

]−1

=
[

0 0Hm

0m (Rf
m)
−1

]
+ 1

αf
m

[
1
am

] [
1 aHm

]
(7.1.26)

am � [a(m)1 a
(m)
2 · · · a(m)m ]T� −(Rf

m)
−1rf

m (7.1.27)where

αf
m � ρf

m − rfH
m (R

f
m)
−1rf

m = ρf
m + rfH

m am = det Rm+1

det Rf
m

(7.1.28)

and the relationship (7.1.26) exists if matrix Rf
m is invertible and αf

m �= 0. A similar set of
formulas can be obtained for arbitrary matrices (see Problem 7.3).

Interpretations. The vector bm, defined by (7.1.22), is the MMSE estimator of obser-
vation xm+1 from data vector xm. Indeed, if

eb
m = xm+1 − x̂m+1 = xm+1 + bHmxm (7.1.29)

we can show, using the orthogonality principleE{xmeb∗
m } = 0, that bm results in the MMSE

given by

P b
m = ρb

m + bHm rb
m = αb

m (7.1.30)

Similarly, we can show that am, defined by (7.1.27), is the optimum estimator of x1 based on
x̃m � [x2 x3 · · · xm+1]T . By using the orthogonality principle, E{xmef∗

m } = 0, the MMSE
is

P f
m = ρf

m + rfH
m am = αf

m (7.1.31)

If xm+1 = [x(n) x(n−1) · · · x(n−m)]T , then bm provides the backward linear predictor
(BLP) and am the forward linear predictor (FLP) of the process x(n) from Section 6.5. For
convenience, we always use this terminology even if, strictly speaking, the linear prediction
interpretation is not applicable.

7.1.3 Levinson Recursion for the Optimum Estimator

We now illustrate how to use (7.1.24) to express the optimum estimator cm+1 in terms of
the estimator cm. Indeed, using (7.1.24), (7.1.10), and the normal equations Rmcm = dm,



February 3, 2005 13:56 e56-ch7 Sheet number 6 Page number 338 black

338

chapter 7
Algorithms and Structures
for Optimum Linear Filters

we have

cm+1 = R−1
m+1dm+1

=
[

R−1
m 0m

0Tm 0

][
dm
dm+1

]
+ 1

αb
m

[
bm
1

] [
bHm 1

] [dm
dm+1

]

=
[

R−1
m dm

0

]
+
[

bm
1

]
bHmdm + dm+1

αb
m

or more concisely

cm+1 =
[

cm
0

]
+
[

bm
1

]
kcm (7.1.32)

where the quantities

kcm � βcm

αb
m

(7.1.33)

βcm � bHmdm + dm+1 (7.1.34)and

contain the “new information” dm+1 (the new component of dm+1). By using (7.1.22) and
Rmcm = dm, alternatively βcm can be written as

βcm = −rbH
m cm + dm+1 (7.1.35)

We will use the term Levinson recursion for the order-updating relation (7.1.32) because a
similar recursion was introduced as part of the celebrated algorithm due to Levinson (see
Section 7.3). However, we stress that even though (7.1.32) is order-recursive, the parameter
vector cm+1 does not have the optimum nesting property, that is, c�m�m+1 �= cm.

Clearly, if we know the vector bm, we can determine cm+1, using (7.1.32); however,
its practical utility depends on how easily we can obtain the vector bm. In general, bm
requires the solution of anm×m linear system of equations, and the computational savings
compared to direct solution of the (m + 1)st-order normal equations is insignificant. For
the Levinson recursion to be useful, we need an order recursion for vector bm. Since matrix
Rm+1 has the optimum nesting property, we need to check whether the same is true for
the right-hand side vector in Rm+1bm+1 = −rb

m+1. From the definition rb
m � E{xmx∗m+1},

we can easily see that rb�m�
m+1 �= rb

m and rb
m�
m+1 �= rb

m. Hence, in general, we cannot find
a Levinson recursion for vector bm. This is possible only in optimum filtering prob-
lems in which the input data vector xm(n) has a shift-invariance structure (see Section
7.3).

E XAM PLE 7.1.2. Use the Levinson recursion to determine the optimum linear estimator c3
specified by the matrix

R3 =




1 1
2

1
3

1
2

1 1
2

1
3

1
2

1




in Example 7.1.1 and the cross-correlation vector

d3 = [1 2 4]T

Solution. For m = 1 we have r11c
(1)
1 = d1, which gives c(1)1 = 1. Also, from (7.1.32) and

(7.1.34) we obtain kc0 = c(1)1 = 1 and βc0 = d1 = 1. Finally, from kc0 = βc0/αb
0, we get ab

0 = 1.
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To obtain c2, we need b(1)1 , kc1, β
c
1, and α1. We have

r11b
(1)
1 = −rb

1 ⇒ b
(1)
1 = −

1
2
1
= −1

2

βc1 = b(1)1 d1 + d2 = − 1
2
(1)+ 2 = 3

2

αb
1 = ρb

1 + rb
1b
(1)
1 = 1+ 1

2
(− 1

2
) = 3

4

kc1 =
βc1

αb
1

= 2

and therefore

c2 =
[

c1

0

]
+
[

b1

1

]
kc1 =

[
1

0

]
+
[
− 1

2
1

]
2 =

[
0

2

]

To determine c3, we need b2, β
c
2, and αb

2. To obtain b2, we solve the linear system

R2b2 = −rb
2 or


1 1

2
1
2

1




b(2)1

b
(2)
2


 = −


 1

3
1
2


⇒ b2 = −1

9

[
1

4

]

and then compute

βc2 = bT2 d2 + d3 = −1

9

[
1 4

] [1

2

]
+ 4 = 3

αb
2 = ρb

2 + rbT
2 b2 = 1+

[
1
3

1
2

] [1

4

](
−1

9

)
= 20

27

kc2 =
βc2

αb
2

= 81

20

The desired solution c3 is obtained by using the Levinson recursion

c3 =
[

c2

0

]
+
[

b2

1

]
kc2 ⇒ c3 =




0

2

0


+



− 1

9

− 4
9

1


 81

20
= 1

20



−9

4

81




which agrees with the solution obtained by solving R3c3 = d3 using the function c3=R3\d3.
We can also solve this linear system by developing an algorithm using the lower partitioning
(7.1.26) as discussed in Problem 7.4.

Matrix inversion and the linear system solution for m = 1 are trivial (scalar division
only). If RM is strictly positive definite, that is, Rm = R�m�M is positive definite for all
1 ≤ m ≤ M , the inverse matrices R−1

m and the solutions of Rmcm = dm, 2 ≤ m ≤ M , can
be determined using (7.1.22) and the Levinson recursion (7.1.32) form = 1, 2, . . . ,M−1.
However, in practice using the LDLH provides a better method for performing these
computations.

7.1.4 Order-Recursive Computation of the LDLH Decomposition

We start by showing that the LDLH decomposition can be computed in an order-recursive
manner. The procedure is developed as part of a formal proof of the LDLH decomposition
using induction.

For M = 1, the matrix R1 is a positive number r11 and can be written uniquely in
the form r11 = 1 · ξ1 · 1 > 0. As we increment the order m, the (m+ 1)st-order principal
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submatrix of Rm can be partitioned as in (7.1.6). By the induction hypothesis, there are
unique matrices Lm and Dm such that

Rm= LmDmLHm (7.1.36)

We next form the matrices

Lm+1 =
[

Lm 0

lHm 1

]
Dm+1 =

[
Dm 0

0H ξm+1

]
(7.1.37)

and try to determine the vector lm and the positive number ξm+1 so that

Rm+1 = Lm+1Dm+1LHm+1 (7.1.38)

Using (7.1.6) and (7.1.36) through (7.1.38), we see that

(LmDm)lm = rb
m (7.1.39)

ρb
m = lHmDmlm + ξm+1, ξm+1 > 0 (7.1.40)

det Rm = det Lm det Dm det LHm = ξ1ξ2 · · · ξm > 0 (7.1.41)Since

then det LmDm �= 0 and (7.1.39) has a unique solution lm. Finally, from (7.1.41) we obtain
ξm+1 = det Rm+1/ det Rm, and therefore ξm+1 > 0 because Rm+1 is positive definite.
Hence, ξm+1 is uniquely computed from (7.1.41), which completes the proof.

Because the triangular matrix Lm is generated row by row using (7.1.39) and because
the diagonal elements of matrix Dm are computed sequentially using (7.1.40), both matrices
have the optimum nesting property, that is, Lm = L�m�, Dm = D�m�. The optimum filter
cm is then computed by solving

LmDmkm � dm (7.1.42)

LHm cm = km (7.1.43)

Using (7.1.42), we can easily see that km has the optimum nesting property, that is, km =
k�m� for 1 ≤ m ≤ M . This is a consequence of the lower triangular form of Lm. The
computation of Lm, Dm, and km can be done in a simple, order-recursive manner, which
is all that is needed to compute cm for 1 ≤ m ≤ M . However, the optimum estimator
does not have the optimum nesting property, that is, c�m�m+1 �= cm, because of the backward
substitution involved in the solution of the upper triangular system (7.1.43) (see Example
6.3.1).

Using (7.1.42) and (7.1.43), we can write the MMSE for themth-order linear estimator
as

Pm = Py − cHmdm = Py − kHmDmkm (7.1.44)

which, owing to the optimum nesting property of Dm and km, leads to

Pm = Pm−1 − ξm|km|2 (7.1.45)

which is initialized with P0 = Py . Equation (7.1.45) provides an order-recursive algorithm
for the computation of the MMSE.

7.1.5 Order-Recursive Computation of the Optimum Estimate

The computation of the optimum linear estimate ŷm = cHm xm, using a linear combiner,
requires m multiplications and m− 1 additions. Therefore, if we want to compute ŷm, for
1 ≤ m ≤ M , we needM linear combiners and henceM(M + 1)/2 operations.

We next provide an alternative, more efficient order-recursive implementation that
exploits the triangular decomposition of Rm+1. We first notice that using (7.1.43), we
obtain

ŷm = cHm xm = (kHmL−1
m )xm = kHm (L

−1
m xm) (7.1.46)
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Next, we define vector wm as

Lmwm� xm (7.1.47)

which can be found by using forward substitution in order to solve the triangular system.
Therefore, we obtain

ŷm = kHmwm =
m∑
i=1

k∗i wi (7.1.48)

which provides the estimate ŷm in terms of km and wm, that is, without using the estimator
vector cm. Hence, if the ultimate goal is the computation of ŷm we do not need to compute
the estimator cm.

For an order-recursive algorithm to be possible, the vector wm must have the optimum
nesting property, that is, wm = w�m�m+1. Indeed, using (7.1.37) and the matrix inversion by
partitioning lemma for nonsymmetric matrices (see Problem 7.3), we obtain

L−1
m+1 =

[
Lm 0

lHm 1

]−1

=
[

L−1
m 0

vHm 1

]

vm = −L−Hm lm = −(LHm )−1D−1
m L−1

m rb
m = −R−1

m rb
m = bmwhere

due to (7.1.22). Therefore,

wm+1 = L−1
m+1xm+1 =

[
L−1
m 0

bHm 1

][
xm
xm+1

]
=
[

wm
wm+1

]
(7.1.49)

wm+1 = bHmxm + xm+1 = eb
m (7.1.50)where

from (7.1.29). In this case, we can derive order-recursive algorithms for the computation
of ŷm and em, for all 1 ≤ m ≤ M . Indeed, using (7.1.48) and (7.1.49), we obtain

ŷm = ŷm−1 + k∗mwm (7.1.51)

with ŷ0 = 0. From (7.1.51) and em = y − ŷm, we have

em = em−1 − k∗mwm (7.1.52)

for m = 1, 2, . . . ,M with e0 = y. The quantity wm can be computed in an order-recursive
manner by solving (7.1.47) using forward substitution. Indeed, from themth row of (7.1.47)
we obtain

wm = xm −
m−1∑
i=1

l
(m−1)
i−1 wi (7.1.53)

which provides a recursive computation of wm for m = 1, 2, . . . ,M . To comply with the
order-oriented notation, we use l(m−1)

i−1 instead of lm−1,i−1. Depending on the application,
we use either (7.1.51) or (7.1.52).

For MMSE estimation, all the quantities are functions of the time indexn, and therefore,
the triangular decomposition of Rm and the recursions (7.1.51) through (7.1.53) should be
repeated for every new set of observations y(n) and x(n).

E XAM PLE 7.1.3. A linear estimator is specified by the correlation matrix R4 and the cross-
correlation vector d4 in Example 6.3.2. Compute the estimates ŷm, 1 ≤ m ≤ 4, if the input data
vector is given by x4 = [1 2 1 − 1]T .

Solution. Using the triangular factor L4 and the vector k4 found in Example 6.3.2 and (7.1.53),
we find

w4 = [1 −1 3 −8]T
ŷ1 = 1 ŷ2 = 4

3
ŷ3 = 6.6 ŷ4 = 14.6and

which the reader can verify by computing cm and ŷm = cTmxm, 1 ≤ m ≤ 4.
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If we compute the matrix

Bm+1� L
−1
m+1 =




1 0 · · · 0

b
(1)
0 1 · · · 0
...

...
. . .

...

b
(m)
0 b

(m)
1 · · · 1


 (7.1.54)

then (7.1.49) can be written as

wm+1 = eb
m+1 = Bm+1xm+1 (7.1.55)

eb
m+1 � [eb

0 e
b
1 · · · eb

m]T (7.1.56)where

is the BLP error vector. From (7.1.22), we can easily see that the rows of Bm+1 are formed
by the optimum estimators bm of xm+1 from xm. Note that the elements of matrix Bm+1 are
denoted by using the order-oriented notation b(m)i introduced in Section 7.1 rather than the
conventional bmi matrix notation. Equation (7.1.55) provides an alternative computation
of wm+1 as a matrix-vector multiplication. Each component of wm+1 can be computed
independently, and hence in parallel, by the formula

wj = xj +
j−1∑
i=1

b
(j−1)∗
i−1 xi 1 ≤ j ≤ m (7.1.57)

which, in contrast to (7.1.53), is nonrecursive. Using (7.1.57) and (7.1.51), we can derive
the order-recursive MMSE estimator implementation shown in Figure 7.1.

*

*

*

*

R = LDLH

B = L−1

k = D−1BD

R d

Input OutputDecorrelator Innovations Linear
combiner

Second-order momentsb

Basic processing element

w1

w2

w3

w4

k4

k3

k2

k1

x1

x2

x3

x4

ain

xin yout = bxin + ain

b0
(1)*

b1
(2)*

b1
(3)*

b2
(3)*

b0
(2)*

b0
(3)*

y1

y2

y3

y4ˆ

ˆ

ˆ

ˆ

FIGURE 7.1
Orthogonal order-recursive structure for linear MMSE estimation.
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Finally, we notice that matrix Bm provides the UDUH decomposition of the inverse
correlation matrix Rm. Indeed, from (7.1.36) we obtain

R−1
m = (LHm )−1D−1

m L−1
m = BHmD−1

m Bm (7.1.58)

because inversion and transposition are interchangeable and the UDUH decomposition is
unique. This formula provides a practical method to compute the inverse of the correlation
matrix by using the LDLH decomposition because computing the inverse of a triangular
matrix is simple (see Problem 7.5).

7.2 INTERPRETATIONS OF ALGORITHMIC QUANTITIES

We next show that various intermediate quantities that appear in the linear MMSE estimation
algorithms have physical and statistical interpretations that, besides their intellectual value,
facilitate better understanding of the operation, performance, and numerical properties of
the algorithms.

7.2.1 Innovations and Backward Prediction

The correlation matrix of wm is

E{wmwHm } = L−1
m E{xmxHm }L−Hm = Dm (7.2.1)

where we have used (7.1.47) and the triangular decomposition (7.1.36). Therefore, the
components of wm are uncorrelated, random variables with variances

ξ i = E{|wi |2} (7.2.2)

since ξ i ≥ 0. Furthermore, the two sets of random variables {w1, w2, . . . , wM} and
{x1, x2, . . . , xM} are linearly equivalent because they can be obtained from each other
through the linear transformation (7.1.47). This transformation removes all the redundant
correlation among the components of x and is known as a decorrelation or whitening oper-
ation (see Section 3.5.2). Because the random variables wi are uncorrelated, each of them
adds “new information” or innovation. In this sense, {w1, w2, . . . , wm} is the innovations
representation of the random variables {x1, x2, . . . , xm}. Because xm = Lmwm, the random
vector wm = eb

m is the innovations representation, and xm and wm are linearly equivalent
as well, (see Section 3.5).

The cross-correlation matrix between xm and wm is

E{xmwHm } = E{LmwmwHm } = LmDm (7.2.3)

which shows that, owing to the lower triangular form of Lm, E{xiw∗j } = 0 for j > i.
We will see in Section 7.6 that these factors are related to the gapped functions and the
algorithm of Schür.

Furthermore, since eb
m = wm+1, from (7.1.50) we have

P b
m = ξm+1 = E{|wm+1|2}

which also can be shown algebraically by using (7.1.41), (7.1.40), and (7.1.30). Indeed, we
have

ξm+1 =
det Rm+1

det Rm
= ρb

m − lHmDmlm = ρb
m − rbH

m R−1
m rb

m = P b
m (7.2.4)

and, therefore,

Dm = diag{P b
0 , P

b
1 , . . . , P

b
m−1} (7.2.5)



February 3, 2005 13:56 e56-ch7 Sheet number 12 Page number 344 black

344

chapter 7
Algorithms and Structures
for Optimum Linear Filters

7.2.2 Partial Correlation

In general, the random variables y, x1, . . . , xm, xm+1 are correlated. The correlation be-
tween y and xm+1, after the influence from the components of the vector xm has been
removed, is known as partial correlation. To remove the correlation due to xm, we extract
from y and xm+1 the components that can be predicted from xm. The remaining correlation
is from the estimation errors em and eb

m, which are both uncorrelated with xm because of
the orthogonality principle. Therefore, the partial correlation of y and xm+1 is

PARCOR(y; xm+1) � E{emeb∗
m } = E{(y − cHm xm)eb∗

m }
= E{yeb∗

m } = E{y(x∗m+1 + xHmbm)}
= E{yx∗m+1} + E{yxHm }bm
= d∗m+1 + dHmbm � βc∗m

(7.2.6)

where we have used the orthogonality principle E{xmeb∗
m } = 0 and (7.1.10), (7.1.50), and

(7.1.34).
The partial correlation PARCOR(y; xm+1) is also related to the parameters km obtained

from the LDLH decomposition. Indeed, from (7.1.42) and (7.1.54), we obtain the relation

km+1 = D−1
m+1Bm+1dm+1 (7.2.7)

whose last row is

km+1 = bHmdm + dm+1

ξm+1
= βcm

P b
m

= kcm (7.2.8)

owing to (7.2.4) and (7.2.6).

EXAMPLE 7.2.1. The LDLH decomposition of matrix R3 in Example 7.1.2 is given by

L =




1 0 0
1
2

1 0

1
3

4
9

1


 D =




1 0 0

0 3
4

0

0 0 20
27




and can be found by using the function [L,D]=ldlt(R). Comparison with the results obtained
in Example 7.1.2 shows that the rows of the matrix

L−1 =




1 0 0

− 1
2

1 0

− 1
9

− 4
9

1




provide the elements of the backward predictors, whereas the diagonal elements of D are equal
to the scalars αm. Using (7.2.7), we obtain k = [1 2 81

20
]T whose elements are the quantities

kc0, k
c
1, and kc2 computed in Example 7.1.2 using the Levinson recursion.

7.2.3 Order Decomposition of the Optimum Estimate

The equation ŷm+1 = ŷm + k∗m+1wm+1, with km+1 = βcm/P b
m = kcm, shows that the im-

provement in the estimate when we include one more observation xm+1, that is, when we
increase the order by 1, is proportional to the innovation wm+1 contained in xm+1. The
innovation is the part of xm+1 that cannot be linearly estimated from the already used data
xm. The termwm+1 is scaled by the ratio of the partial correlation between y and the “new”
observation xm+1 and the power of the innovation P b

m.



February 3, 2005 13:56 e56-ch7 Sheet number 13 Page number 345 black

345

section 7.2
Interpretations of
Algorithmic Quantities

Thus, the computation of the (m+1)st-order estimate of y based on xm+1 = [xTm xm+1]
can be reduced to twomth-order estimation problems: the estimation of y based on xm and
the estimation of the new observation xm+1 based on xm. This decomposition of linear
estimation problems into smaller ones has very important applications to the development
of efficient algorithms and structures for MMSE estimation.

We use the term direct for the implementation of the MMSE linear combiner as a sum
of products, involving the optimum parameters c(m)i , 1 ≤ i ≤ m, to emphasize the direct
use of these coefficients. Because the random variables wi used in the implementation of
Figure 7.1 are orthogonal, that is, 〈wi,wj 〉 = 0 for i �= j , we refer to this implementation
as the orthogonal implementation or the orthogonal structure. These two structures appear
in every type of linear MMSE estimation problem, and their particular form depends on the
specifics of the problem and the associated second-order moments. In this sense, they play
a prominent role in linear MMSE estimation in general, and in this book in particular.

We conclude our discussion with the following important observations:

1. The direct implementation combines correlated, that is, redundant information, and it is
not order-recursive because increasing the order of the estimator destroys the optimality
of the existing coefficients. Again, the reason is that the direct-form optimum filter
coefficients do not possess the optimal nesting property.

2. The orthogonal implementation consists of a decorrelator and a linear combiner. The
estimator combines the innovations of the data (nonredundant information) and is order-
recursive because it does not use the optimum coefficient vector. Hence, increasing the
order of the estimator preserves the optimality of the existing lower-order part. The
resulting structure is modular such that each additional term improves the estimate by
an amount proportional to the included innovation wm.

3. Using the vector interpretation of random variables, the transformation x̃m=Fmxm is just
a change of basis. The choice Fm = L−1

m converts from the oblique set {x1, x2, . . . , xm}
to the orthogonal basis {w1, w2, . . . , wm}. The advantage of working with orthogonal
bases is that adding new components does not affect the optimality of previous ones.

4. The LDLH decomposition for random vectors is the matrix equivalent of the spectral
factorization theorem for discrete-time, stationary, stochastic processes. Both approaches
facilitate the design and implementation of optimum FIR and IIR filters (see Sections
6.4 and 6.6).

7.2.4 Gram-Schmidt Orthogonalization

We next combine the geometric interpretation of the random variables with the Gram-
Schmidt procedure used in linear algebra. The Gram-Schmidt procedure produces the in-
novations {w1, w2, . . . , wm} by orthogonalizing the original set {x1, x2, . . . , xm}.

We start by choosing w1 to be in the direction of x1, that is,

w1 = x1

The next “vector” w2 should be orthogonal to w1. To determine w2, we subtract from x2
its component along w1 [see Figure 7.2(a)], that is,

w2 = x2 − l(1)0 w1

where l(1)0 is obtained from the condition w2 ⊥ w1 as follows:

〈w2, w1〉 = 〈x2, w1〉 − l(1)0 〈w1, w1〉 = 0

l
(1)
0 = 〈x2, w1〉

〈w1, w1〉or
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w2

(b) m = 3(a) m = 2

x2

x3

l 0
(1)w1

l 1
(2 )w2

l 0
(2 )w1

FIGURE 7.2
Illustration of the Gram-Schmidt orthogonalization process.

Similarly, to determine w3, we subtract from x3 its components along w1 and w2, that is,

w3 = x3 − l(2)0 w1 − l(2)1 w2

as illustrated in Figure 7.2(b). Using the conditions w3 ⊥ w1 and w3 ⊥ w2, we can easily
see that

l
(2)
0 = 〈x3, w1〉

〈w1, w1〉 l
(2)
1 = 〈x3, w2〉

〈w2, w2〉
This approach leads to the following classical Gram-Schmidt algorithm:

• Define w1 = x1.
• For 2 ≤ m ≤ M , compute

wm = xm − l(m−1)
0 w1 · · · − l(m−1)

m−2 wm−1 (7.2.9)

l
(m−1)
i = 〈xm−1, wi〉

〈wi,wi〉 (7.2.10)where

assuming that 〈wi,wi〉 �= 0.

From the derivation of the algorithm it should be clear that the sets {x1, . . . , xm} and
{w1, . . . , wm} are linearly equivalent for m = 1, 2, . . . ,M . Using (7.2.11), we obtain

xm= Lmwm (7.2.11)

Lm�




1 0 · · · 0

l
(1)
0 1 · · · 0
...

...
. . .

...

l
(m−1)
0 l

(m−1)
1 · · · 1


 (7.2.12)where

is a unit lower triangular matrix. Since, by construction, the components of wm are uncor-
related, its correlation matrix Dm is diagonal with elements ξ i = E{|wi |2}. Using (7.2.11),
we obtain

Rm = E{xmxHm } = LmE{wmwHm }LHm = LmDmLHm (7.2.13)

which is precisely the unique LDLH decomposition of the correlation matrix Rm. There-
fore, the Gram-Schmidt orthogonalization of the data vector xm provides an alternative
approach to obtain the LDLH decomposition of its correlation matrix Rm = E{xmxHm }.
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7.3 ORDER-RECURSIVE ALGORITHMS FOR OPTIMUM FIR FILTERS

The key difference between a linear combiner and an FIR filter is the nature of the input
data vector. The input data vector for FIR filters consists of consecutive samples from the
same discrete-time stochastic process, that is,

xm(n) = [x(n) x(n− 1) · · · x(n−m+ 1)]T (7.3.1)

instead of samples fromm different processes xi(n). This shift invariance of the input data
vector allows for the development of simpler, order-recursive algorithms and structures
for optimum FIR filtering and prediction compared to those for general linear estimation.
Furthermore, the quest for order-recursive algorithms leads to a natural, elegant, and un-
avoidable interconnection between optimum filtering and the BLP and FLP problems.

We start with the following upper and lower partitioning of the input data vector

xm+1(n) =




x(n)

x(n− 1)
...

x(n−m+ 1)

x(n−m)



=
[

xm(n)

x(n−m)

]
=
[
x(n)

xm(n− 1)

]
(7.3.2)

which shows that x�m�m+1(n) and x
m�m+1(n) are simply shifted versions (by one sample delay)
of the same vector xm(n). The shift invariance of xm+1(n) results in an analogous shift
invariance for the correlation matrix Rm+1(n) = E{xm+1(n)xHm+1(n)}. Indeed, we can
easily show that the upper-lower partitioning of the correlation matrix is

Rm+1(n) =
[

Rm(n) rb
m(n)

rbH
m (n) Px(n−m)

]
(7.3.3)

and the lower-upper partitioning is

Rm+1(n) =
[
Px(n) rfH

m (n)

rf
m(n) Rm(n− 1)

]
(7.3.4)

rb
m(n) = E{xm(n)x∗(n−m)} (7.3.5)where

rf
m(n) = E{xm(n− 1)x∗(n)} (7.3.6)

Px(n) = E{|x(n)|2} (7.3.7)

We note that, in contrast to the general case (7.1.5) where the matrix Rf
m(n) = R
m�m+1(n)

is unrelated to Rm(n), here the matrix R
m�m+1(n) = Rm(n − 1). This is a by-product of
the shift-invariance property of the input data vector and takes the development of order-
recursive algorithms one step further. We begin our pursuit of an order-recursive algorithm
with the development of a Levinson order recursion for the optimum FIR filter coefficients.

7.3.1 Order-Recursive Computation of the Optimum Filter

Suppose that at time n we have already computed the optimum FIR filter cm(n) specified
by

cm(n) = R−1
m (n)dm(n) (7.3.8)

and the MMSE is

P cm(n) = Py(n)− dHm (n)cm(n) (7.3.9)

dm(n) = E{xm(n)y∗(n)} (7.3.10)where
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We wish to compute the optimum filter

cm+1(n) = R−1
m+1(n)cm+1(n)

by modifying cm(n) using an order-recursive algorithm. From (7.3.3), we see that matrix
Rm+1(n) has the optimum nesting property. Using the upper partitioning in (7.3.2), we
obtain

dm+1(n) = E
{[

xm(n)

x(n−m)

]
y∗(n)

}
=
[

dm(n)

dm+1(n)

]
(7.3.11)

which shows that dm+1(n) also has the optimum nesting property. Therefore, we can develop
a Levinson order recursion using the upper left matrix inversion by partitioning lemma

R−1
m+1(n) =

[
R−1
m (n) 0

0T 0

]
+ 1

P b
m(n)

[
bm(n)

1

] [
bHm (n) 1

]
(7.3.12)

bm(n) = −R−1
m (n)r

b
m(n) (7.3.13)where

is the optimum BLP, and

P b
m(n) =

det Rm+1(n)

det Rm(n)
= Px(n−m)+ rbH

m (n)bm(n) (7.3.14)

is the corresponding MMSE. Equations (7.3.12) through (7.3.14) follow easily from (7.1.22),
(7.1.23), and (7.1.24). It is interesting to note that bm(n) is the optimum estimator for the
additional observation x(n−m) used by the optimum filter cm+1(n). Substituting (7.3.11)
and (7.3.12) into (7.3.8), we obtain

cm+1(n) =
[

cm(n)

0

]
+
[

bm(n)

1

]
kcm(n) (7.3.15)

kcm(n) � βcm(n)

P b
m(n)

(7.3.16)where

βcm(n) � bHm (n)dm(n)+ dm+1(n) (7.3.17)and

Thus, if we know the BLPbm(n),we can determine cm+1(n)by using the Levinson recursion
in (7.3.15).

Levinson recursion for the backward predictor. For the order recursion in (7.3.15) to
be useful, we need an order recursion for the BLP bm(n). This is possible if the linear
systems

Rm(n)bm(n) = −rb
m(n)

Rm+1(n)bm+1(n) = −rb
m+1(n)

(7.3.18)

are nested. Since the matrices are nested [see (7.3.3)], we check whether the right-hand
side vectors are nested. We can easily see that no optimum nesting is possible if we use the
upper partitioning in (7.3.2). However, if we use the lower-upper partitioning, we obtain

rb
m+1(n) = E

{[
x(n)

xm(n− 1)

]
x∗(n−m− 1)

}
�
[
rb
m+1(n)

rb
m(n− 1)

]
(7.3.19)

which provides a partitioning that includes the wanted vector rb
m(n) delayed by one sample

as a result of the shift invariance of xm(n). To explore this partitioning, we use the lower-
upper corner matrix inversion by partitioning lemma

R−1
m+1(n) =

[
0 0H

0 R−1
m (n− 1)

]
+ 1

P f (n)

[
1

am(n)

] [
1 aHm (n)

]
(7.3.20)
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am(n) � −R−1
m (n− 1)rf

m(n) (7.3.21)where

is the optimum FLP and

P f
m(n) =

det Rm+1(n)

det Rm(n− 1)
= Px(n)+ rfH

m (n)am(n) (7.3.22)

is the forward linear prediction MMSE. Equations (7.3.20) through (7.3.22) follow easily
from (7.1.26) through (7.1.28). Substituting (7.3.20) and (7.3.19) into

bm+1(n) = −R−1
m+1(n)r

b
m+1(n)

we obtain the recursion

bm+1(n) =
[

0

bm(n− 1)

]
+
[

1

am(n)

]
kb
m(n) (7.3.23)

kb
m(n) � −β

b
m(n)

P f
m(n)

(7.3.24)where

βb
m(n) � rb

m+1(n)+ aHm (n)r
b
m(n− 1) (7.3.25)and

To proceed with the development of the order-recursive algorithm, we clearly need an order
recursion for the optimum FLP am(n).

Levinson recursion for the forward predictor. Following a similar procedure for the
Levinson recursion of the BLP, we can derive the Levinson recursion for the FLP. If we use
the upper-lower partitioning in (7.3.2), we obtain

rf
m+1(n) = E{xm+1(n− 1)x∗(n)} =

[
rf
m(n)

r f
m+1(n)

]
(7.3.26)

which in conjunction with (7.3.12) and (7.3.21) leads to the following order recursion

am+1(n) =
[

am(n)

0

]
+
[

bm(n− 1)

1

]
kf
m(n) (7.3.27)

kf
m(n) � − βf

m(n)

P b
m(n− 1)

(7.3.28)where

βf
m(n) � bHm (n− 1)rf

m(n)+ r f
m+1(n) (7.3.29)and

Is an order-recursive algorithm feasible? For m = 1, we have a scalar equation
r11(n)c

(1)
1 (n) = d1(n) whose solution is c(1)1 (n) = d1(n)/r11(n). Using the Levinson

order recursions for m = 1, 2, . . . ,M − 1, we can find cM(n) if the quantities bm(n − 1)
and P b

m(n − 1), 1 ≤ m < M , required by (7.3.27) and (7.3.28) are known. The lack of
this information prevents the development of a complete order-recursive algorithm for the
solution of the normal equations for optimum FIR filtering or prediction. The need for time
updates arises because each order update requires both the upper left corner and the lower
right corner partitionings

Rm+1(n) =
[

Rm(n) ×
× ×

]
=
[
× ×
× Rm(n− 1)

]

of matrix Rm+1. The presence of Rm(n − 1), which is a result of the nonstationarity of
the input signal, creates the need for a time updating of bm(n). This is possible only for
certain types of nonstationarity that can be described by simple relations between Rm(n) and
Rm(n−1). The simplest case occurs for stationary processes where Rm(n) = Rm(n−1) =
Rm. Another very useful case occurs for nonstationary processes generated by linear state-
space models, which results in the Kalman filtering algorithm (see Section 7.8).
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Partial correlation interpretation. The partial correlation between y(n) and x(n−m),
after the influence of the intermediate samples x(n), x(n− 1), . . . , x(n−m+ 1) has been
removed, is

E{eb
m(n)e

∗
m(n)} = bHm (n)dm(n)+ dm+1(n) = βcm(n) (7.3.30)

which is obtained by working as in the derivation of (7.2.6). It can be shown, following
a procedure similar to that leading to (7.2.8), that the km(n) parameters in the Levinson
recursions can be obtained from

Rm(n) = Lm(n)Dm(n)LHm (n)

Lm(n)Dm(n)kcm(n) = dm(n)

Lm(n)Dm(n)kf
m(n) = rb

m(n)

Lm(n− 1)Dm(n− 1)kb
m(n) = rf

m(n)

(7.3.31)

that is, as a by-product of the LDLH decomposition.
Similarly, if we consider the sequence x(n), x(n − 1), . . . , x(n − m), x(n − m − 1),

we can show that the partial correlation between x(n) and x(n − m − 1) is given by (see
Problem 7.6)

E{eb
m(n− 1)ef∗

m (n)} = r f
m+1(n)+ bHm (n− 1)rf

m(n) = βf
m(n) (7.3.32)

Because r f
m+1(n) = rb∗

m+1(n), we have the following simplification

βf
m(n) = bHm (n− 1)Rm(n− 1)R−1

m (n− 1)rf
m(n)+ r f

m+1(n)

= rbH
m (n− 1)am(n)+ rb∗

m+1(n) = βb∗
m (n)

which is known as Burg’s lemma (Burg 1975). In order to simplify the notation, we define

βm(n) � βf
m(n) = βb∗

m (n) (7.3.33)

Using (7.3.24), (7.3.28), and (7.3.30), we obtain

kb
m(n)k

f
m(n) =

|βm(n)|2
P f
m(n)P

b
m(n− 1)

= |E{eb
m(n− 1)ef∗

m (n)}|2
E{|ef

m(n)|2}E{|eb
m(n− 1)|2} (7.3.34)

which implies that

0 ≤ kf
m(n)k

b
m(n) ≤ 1 (7.3.35)

because the last term in (7.3.34) is the squared magnitude of the correlation coefficient of
the random variables ef

m(n) and eb
m(n− 1).

Order recursions for the MMSEs. Using the Levinson order recursions, we can ob-
tain order-recursive formulas for the computation of P f

m(n), P
b
m(n), and P cm(n). Indeed,

using (7.3.26), (7.3.27), and (7.3.29), we have

P f
m+1(n) = Px(n)+ rfH

m+1(n)am+1(n)

= Px(n)+ [rfH
m (n)r

f∗
m+1(n)]

{[
am(n)

0

]
+
[

bm(n− 1)

1

]
kf
m(n)

}

= Px(n)+ rfH
m (n)am(n)+ [rfH

m (n)bm(n− 1)+ r f∗
m+1(n)]kf

m(n)

P f
m+1(n) = P f

m(n)+ β∗m(n)kf
m(n) = P f

m(n)−
|βm(n)|2
P b
m(n− 1)

(7.3.36)or

If we work in a similar manner, we obtain

P b
m+1(n) = P b

m(n− 1)+ βm(n)kb
m(n) = P b

m(n− 1)− |βm(n)|
2

P f
m(n)

(7.3.37)
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P cm+1(n) = P cm(n)− βc∗m (n)kcm(n) = P cm(n)−
|βcm(n)|2
P b
m(n)

(7.3.38)and

If the subtrahends in the previous recursions are nonzero, increasing the order of the filter
always improves the estimates, that is, P cm+1(n) ≤ P cm(n). Also, the conditions P f

m(n) �= 0
and P b

m(n) �= 0 are critical for the invertibility of Rm(n) and the computation of the
optimum filters. The above relations are special cases of (7.1.45) and can be derived from
the LDLH decomposition (see Problem 7.7). The presence of vectors with mixed optimum
nesting (upper-lower and lower-upper) in the definitions of βm(n) and βcm(n) does not lead
to similar order recursions for these quantities. However, for stationary processes we can
break the dot products in (7.3.17) and (7.3.25) into scalar recursions, using an algorithm
first introduced by Schür (see Section 7.6).

7.3.2 Lattice-Ladder Structure

We saw that the shift invariance of the input data vector made it possible to develop the
Levinson recursions for the BLP and the FLP. We next show that these recursions can
be used to simplify the triangular order-recursive estimation structure of Figure 7.1 by
reducing it to a more efficient (linear instead of triangular), lattice-ladder filter structure
that simultaneously provides the FLP, BLP, and FIR filtering estimates.

The computation of the estimation errors using direct-form structures is based on the
following equations:

ef
m(n) = x(n)+ aHm (n)xm(n− 1)

eb
m(n) = x(n−m)+ bHm (n)xm(n)

em(n) = y(n)− cHm (n)xm(n)

(7.3.39)

Using (7.3.2), (7.3.27), and (7.3.39), we obtain

ef
m+1(n) = x(n)+

{[
am(n)

0

]
+
[

bm(n− 1)

1

]
kf
m(n)

}H [
xm(n− 1)

x(n− 1−m)

]

= x(n)+ aHm (n)xm(n− 1)+ [bHm (n− 1)xm(n− 1)+ x(n− 1−m)]kf∗
m (n)

ef
m+1(n) = ef

m(n)+ kf∗
m (n)e

b
m(n− 1) (7.3.40)or

In a similar manner, we obtain

eb
m+1(n) = eb

m(n− 1)+ kb∗
m (n)e

f
m(n) (7.3.41)

using (7.3.2), (7.3.23), and (7.3.39). Relations (7.3.40) and (7.3.41) are executed for m =
0, 1, . . . ,M − 2, with ef

0(n) = eb
0(n) = x(n), and constitute a lattice filter that implements

the FLP and the BLP.
Using (7.3.2), (7.3.15), and (7.3.39), we can show that the optimum filtering error can

be computed by

em+1(n) = em(n)− kc∗m (n)eb
m(n) (7.3.42)

which is executed form = 0, 1, . . . ,M − 1, with e0(n) = y(n). The last equation provides
the ladder part, which is coupled with the lattice predictor to implement the optimum filter.
The result is the time-varying lattice-ladder structure shown in Figure 7.3. Notice that a new
set of lattice-ladder coefficients has to be computed for every n, using Rm(n) and dm(n). The
parameters of the lattice-ladder structure can be obtained by LDLH decomposition using
(7.3.31). Suppose now that we know P f

0 (n) = P b
0 (n) = Px(n), P b

0 (n−1), P c0 (n) = Py(n),{βm(n)}M−1
0 , and {βcm(n)}M0 . Then we can determine P f

m(n), P
b
m(n), and P cm(n) for all

m, using (7.3.36) through (7.3.38), and all filter coefficients, using (7.3.16), (7.3.24), and
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FIGURE 7.3
Lattice-ladder structure for FIR optimum filtering and prediction.

(7.3.28). However, to obtain a completely time-recursive updating algorithm, we need time
updatings for βm(n) and βcm(n). As we will see later, this is possible if R(n) and d(n) are
fixed or are defined by known time-updating formulas.

We recall that the BLP error vector eb
m+1(n) is the innovations vector of the data

xm+1(n). Notice that as a result of the shift invariance of the input data vector, the triangular
decorrelator of the general linear estimator (see Figure 7.1) is replaced by a simpler, “linear”
lattice structure. For stationary processes, the lattice-ladder filter is time-invariant, and we
need to compute only one set of coefficients that can be used for all signals with the same
R and d (see Section 7.5).

7.3.3 Simplifications for Stationary Stochastic Processes

When x(n) and y(n) are jointly wide-sense stationary (WSS), the optimum estimators are
time-invariant and we have the following simplifications:

• All quantities are independent of n; thus we do not need time recursions for the BLP
parameters.

• bm = Ja∗m (see Section 6.5.4), and thus we do not need the Levinson recursion for the
BLP bm.

Both simplifications are a consequence of the Toeplitz structure of the correlation matrix
Rm. Indeed, comparing the partitionings

Rm+1(n) =
[

Rm Jrm

rHm J r(0)

]
=
[
r(0) rTm

r∗m Rm

]
(7.3.43)

rm � [r(1) r(2) · · · r(m)]T (7.3.44)where

with (7.3.3) and (7.3.4), we have

Rm(n) = Rm(n− 1) = Rm

rf
m(n) = r∗m

rb
m(n) = Jrm

(7.3.45)

which can be used to simplify the order recursions derived for nonstationary processes.
Indeed, we can easily show that

am+1 =
[

am
0

]
+
[

bm
1

]
km (7.3.46)
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bm = Ja∗m (7.3.47)where

km � kf
m = kb∗

m = −βm
Pm

(7.3.48)

βm � βf
m = βb∗

m = bHm r∗m + r∗(m+ 1) (7.3.49)

Pm � P b
m = P f

m = Pm−1 + β∗m−1km−1 = Pm−1 + βm−1k
∗
m−1 (7.3.50)

This recursion provides a complete order-recursive algorithm for the computation of the
FLP am for 1 ≤ m ≤ M from the autocorrelation sequence r(l) for 0 ≤ l ≤ M .

The optimum filters cm for 1 ≤ m ≤ M can be obtained from the quantities am and
Pm for 1 ≤ m ≤ M − 1 and dM , using the following Levinson recursion

cm+1 =
[

cm
0

]
+
[

Jam
1

]
kcm (7.3.51)

kcm � βcm

Pm
(7.3.52)where

βcm = bHmdm + dm+1 (7.3.53)and

The MMSE P cm is then given by

P cm = P cm−1 − βcmkcm (7.3.54)

and although it is not required by the algorithm, P cm is useful for selecting the order of the
optimum filter. Both algorithms are discussed in greater detail in Section 7.4.

7.3.4 Algorithms Based on the UDUH Decomposition

Hermitian positive definite matrices can also be factorized as

R = UD̄U
H

(7.3.55)

where U is a unit upper triangular matrix and D̄ is a diagonal matrix with positive elements
ξ̄ i , using the function [U,D]=udut(R) (see Problem 7.8). Using the decomposition (7.3.55),
we can obtain the solution of the normal equations by solving the triangular systems, first
for k̄

(UD̄)k̄ � d (7.3.56)

UH c = k̄ (7.3.57)and then for c

by backward and forward substitution, respectively. The MMSE estimate can be computed
by

ŷ = cHx = k̄
H

w̄ (7.3.58)

w̄ � U
−1

x (7.3.59)where

is an innovations vector for the data vector x. It can be shown that the rows of A � U
−1

are
the linear MMSE estimator of xm based on [xm+1 xm+2 · · · xM ]T . Furthermore, the UDUH

factorization (7.3.55) can be obtained by the Gram-Schmidt algorithm, starting with xM
and proceeding “backward” to x1 (see Problem 7.9). The various triangular decompositions
of the correlation matrix R are summarized in Table 7.1.

If we define the reversed vectors x̃ � Jx and w̃ � Jw, we obtain

x̃ = Jx = JLJJw = JLJw̃ � Ũw̃ (7.3.60)
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TABLE 7.1

Summary of the triangular decompositions of the correlation matrix.

Decom-
position

Matrix

R

R−1

LDLH

AH DA

UD UH A = U−1  

B = L−1  BHD−1B  

–

–

because J2 = I and Ũ = JLJ is upper triangular. The correlation matrix of x̃ is

R̃ = E{x̃x̃H } = ŨD̃Ũ
H

(7.3.61)

where D̃ �E{w̃w̃H } is the diagonal correlation matrix of w̃. Equation (7.3.61) provides
the UDUH decomposition of R̃.

A natural question arising at this point is whether we can develop order-recursive
algorithms and structures for optimum filtering using the UDUH instead of the LDLH

decomposition of the correlation matrix. The UDUH decomposition is coupled to a parti-
tioning of Rm+1(n) starting at the lower right corner and moving to the upper left corner
that provides the following sequence of submatrices

R1(n−m)→ R2(n−m+ 1)→ · · · → Rm(n) (7.3.62)

which, in turn, are related to the FLPs

a1(n−m)→ a2(n−m+ 1)→ · · · → am(n) (7.3.63)

and the FLP errors

ef
1(n−m+ 1)→ ef

2(n−m+ 2)→ · · · → ef
m(n) (7.3.64)

If we define the FLP error vector

ef
m+1(n) = [ef

m(n) e
f
m−1(n− 1) · · · ef

0(n−m)]T (7.3.65)

ef
m+1(n) = Am+1(n)xm+1(n) (7.3.66)we see that

where

Am+1(n) �




1 a
(m)
1 (n) a

(m)
2 (n) · · · a

(m)
m (n)

0 1 a
(m−1)
1 (n− 1) · · · a

(m−1)
m−1 (n− 1)

...
...

...
. . .

...

0 0 0 1 a
(1)
1 (n−m+ 1)

0 0 0 0 1




(7.3.67)

The elements of the vector ef
m+1(n) are uncorrelated, and the LDLH decomposition of the

inverse correlation matrix (see Problem 7.10) is given by

R−1
m+1(n) = AHm+1(n)D̄

−1
m+1(n)Am+1(n) (7.3.68)

where D̄m+1(n) is the correlation matrix of ef
m+1(n). Using ef

m+1(n) as an orthogonal basis
instead of eb

m+1(n) results in a complicated lattice structure because of the additional delay
elements required for the forward prediction errors. Thus, the LDLH decomposition is the
method of choice in practical applications for linear MMSE estimation.
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7.4 ALGORITHMS OF LEVINSON AND LEVINSON-DURBIN

Since the correlation matrix of a stationary, stochastic process is Toeplitz, we can explore
its special structure to develop efficient, order-recursive algorithms for the linear system
solution, matrix triangularization, and matrix inversion. Although we develop such algo-
rithms in the context of optimum FIR filtering and prediction, the results apply to other
applications involving Toeplitz matrices (Golub and van Loan 1996).

Suppose that we know the optimum filter cm is given by

cm = R−1
m dm (7.4.1)

and we wish to use it to compute the optimum filter cm+1

cm+1 = R−1
m+1dm+1 (7.4.2)

We first notice that the matrix Rm+1 and the vector dm+1 can be partitioned as follows

Rm+1 =



r(0) · · · r(m− 1) r(m)
...

. . .
...

...

r∗(m− 1) · · · r(0) r(1)

r∗(m) · · · r∗(1) r(0)


 =

[
Rm Jrm
rHm J r(0)

]
(7.4.3)

dm+1 =
[

dm
dm+1

]
(7.4.4)

which shows that both quantities have the optimum nesting property, that is, R�m�m+1 = Rm
and d�m�m+1 = dm.

Using the matrix inversion by partitioning lemma (7.1.24), we obtain

R−1
m+1 =

[
R−1
m 0

0H 0

]
+ 1

P b
m

[
bm
1

] [
bHm 1

]
(7.4.5)

bm = −R−1
m Jrm (7.4.6)where

P b
m = r(0)+ rHm Jbm (7.4.7)and

Substitution of (7.4.4) and (7.4.5) into (7.4.2) gives

cm+1 =
[

cm
0

]
+
[

bm
1

]
kcm (7.4.8)

kcm � βcm

P b
m

(7.4.9)where

βcm � bHmdm + dm+1 = −cHm Jrm + dm+1 (7.4.10)and

Equations (7.4.8) through (7.4.10) constitute a Levinson recursion for the optimum filter
and have been obtained without making use of the Toeplitz structure of Rm+1.

The development of a complete order-recursive algorithm is made possible by exploit-
ing the Toeplitz structure. Indeed, when the correlation matrix Rm is Toeplitz, we have

bm = Ja∗m (7.4.11)

Pm � P b
m = P f

m (7.4.12)and

as we recall from Section 6.5. Since we can determine bm from am, we need to perform
only one Levinson recursion, either for bm or for am.
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To avoid the use of the lower right corner partitioning, we develop an order recursion
for the FLP am. Indeed, to compute am+1 from am, recall that

am+1 = −R−1
m+1r∗m+1 (7.4.13)

which, when combined with (7.4.5) and

rm+1 =
[

rm
r(m+ 1)

]
(7.4.14)

leads to the Levinson recursion

am+1 =
[

am
0

]
+
[

bm
1

]
km (7.4.15)

km � −βm
Pm

(7.4.16)where

βm � bHm r∗m + r∗(m+ 1) = aTmJr∗m + r∗(m+ 1) (7.4.17)

Pm = r(0)+ rHm a∗m = r(0)+ aTmrm (7.4.18)and

Also, using (7.1.46) and (7.2.6), we can show that

Pm = det Rm+1

det Rm
and det Rm =

m−1∏
i=0

Pi with P0 = r(0) (7.4.19)

which emphasizes the importance of Pm for the invertibility of the autocorrelation matrix.
The MMSEPm for either the forward or the backward predictor of orderm can be computed
recursively as follows:

Pm+1 = r(0)+ [rHm r∗(m+ 1)]
{[

am
0

]
+
[

bm
1

]
km

}∗

= r(0)+ rHm a∗m + [rHmb∗m + r∗(m+ 1)]k∗m
(7.4.20)

Pm+1 = Pm + βmk∗m = Pm + β∗mkm = Pm(1− |km|2) (7.4.21)or

The following recursive formula for the computation of the MMSE

P cm+1 = P cm − βcmkc∗m = P cm − βc∗m kcm (7.4.22)

can be found by using (7.4.8).
Therefore, the algorithm of Levinson consists of two parts: a set of recursions that

compute the optimum FLP or BLP and a set of recursions that use this information to
compute the optimum filter. The part that computes the linear predictors is known as the
Levinson-Durbin algorithm and was pointed out by Durbin (1960). From a linear system
solution point of view, the algorithm of Levinson solves a Hermitian Toeplitz system with
arbitrary right-hand side vector d; the Levinson-Durbin algorithm deals with the special
case d = r∗ or Jr. Additional interpretations are discussed in Section 7.7.

Algorithm of Levinson-Durbin

The algorithm of Levinson-Durbin, which takes as input the autocorrelation sequence
r(0), r(1), . . . , r(M) and computes the quantities am, Pm, and km−1 for m = 1, 2, . . . ,M ,
is illustrated in the following examples.

EXAMPLE 7.4.1. Determine the FLP a2 = [a(2)1 a
(2)
2 ]T and the MMSE P2 from the autocorre-

lation values r(0), r(1), and r(2).
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Solution. To initialize the algorithm, we determine the first-order predictor by solving the

normal equations r(0)a(1)1 = −r∗(1). Indeed, we have

a
(1)
1 = − r

∗(1)
r(0)

= k0 = −β0
P0

β0 = r∗(1) P0 = r(0)which implies that

To update to order 2, we need k1 and hence β1 and P1, which can be obtained by

β1 = a(1)1 r∗(1)+ r∗(2) = r(0)r∗(2)− [r∗(1)]2
r(0)

P1 = P0 + β0k
∗
0 =

r2(0)− |r(1)|2
r(0)

k1 = [r∗(1)]2 − r(0)r∗(2)
r2(0)− |r(1)|2as

Therefore, using Levinson’s recursion, we obtain

a
(2)
1 = a(1)1 + a(1)∗1 k1 = r(1)r∗(2)− r(0)r∗(1)

r2(0)− |r(1)|2
a
(2)
2 = k1and

which agree with the results obtained in Example 6.5.1. The resulting MMSE can be found by
using P2 = P1 + β1k

∗
1 .

EXAMPLE 7.4.2. Use the Levinson-Durbin algorithm to compute the third-order forward predictor
for a signal x(n) with autocorrelation sequence r(0) = 3, r(1) = 2, r(2) = 1, and r(3) = 1

2
.

Solution. To initialize the algorithm, we notice that the first-order predictor is given by r(0)a(1)1

= −r(1) and that for m = 0, (7.4.15) gives a(1)1 = k0. Hence, we have

a
(1)
1 = − r(1)

r(0)
= −2

3
= k0 = β0

P0

P0 = r(0) = 3 β0 = r(1) = 2which implies

To compute a2 by (7.4.15), we need a(1)1 , b(1)1 = a(1)1 , and k1 = −β1/P1. From (7.4.21), we
have

P1 = P0 + β0k0 = 3+ 2(− 2
3
) = 5

3

and from (7.4.17)

β1 = rT1 Ja1 + r(2) = 2(− 2
3
)+ 1 = − 1

3

k1 = −β1
P1
= −−

1
3

5
3

= 1

5
Hence,

a2 =
[− 2

3

0

]
+ 1

5

[− 2
3

1

]
=

− 4

5
1
5


and

Continuing in the same manner, we obtain

P2 = P1 + β1k1 = 5
3
+ (− 1

3
)( 1

5
) = 8

5

β2 = rT2 Ja2 + r(3) = [2 1]

 1

5

− 4
5


+ 1

2
= 1

10
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k2 = −β2
P2
= −

1
10
8
5

= − 1

16

a3 =
[

a2

0

]
+
[

Ja2

1

]
k3 =



− 4

5
1
5

0


−




1
5

− 4
5

1


 1

16
=



− 13

16
1
4

− 1
16




P3 = P2 + β2k2 = 8
5
+ 1

10

(
− 1

16

)
= 51

32

The algorithm of Levinson-Durbin, summarized in Table 7.2, requires M2 operations and
is implemented by the function [a,k,Po]=durbin(r,M).

TABLE 7.2

Summary of the Levinson-
Durbin algorithm.

1. Input: r(0), r(1), r(2), . . . , r(M)

2. Initialization
(a) P0 = r(0), β0 = r∗(1)
(b) k0 = −r∗(1)/r(0), a(1)1 = k0

3. Form = 1, 2, . . . ,M − 1

(a) Pm = Pm−1 + βm−1k
∗
m−1

(b) rm = [r(1) r(2) · · · r(m)]T
(c) βm = aTmJr∗m + r∗(m+ 1)

(d ) km = −βm
Pm

(e) am+1 =
[

am
0

]
+
[

Ja∗m
1

]
km

4. PM = PM−1 + βMk∗M
5. Output: aM, {km}M−1

0 , {Pm}M1

Algorithm of Levinson

The next example illustrates the algorithm of Levinson that can be used to solve a
system of linear equations with a Hermitian Toeplitz matrix and arbitrary right-hand side
vector.

E XAM PLE 7.4.3. Consider an optimum filter with input x(n) and desired response y(n). The
autocorrelation of the input signal is r(0) = 3, r(1) = 2, and r(2) = 1. The cross-correlation
between the desired response and input is d1 = 1, d2 = 2, and d3 = 5

2
; and the power of y(n)

is Py = 3. Design a third-order optimum FIR filter, using the algorithm of Levinson.

Solution. We start initializing the algorithm by noticing that for m = 0 we have r(0)a(1)1 =
−r(1), which gives

a
(1)
1 = k0 = − r(1)

r(0)
= −2

3

P0 = r(0) = 3 β0 = r(1) = 2

P1 = P0 + β0k0 = 3+ 2(− 2
3
) = 5

3
and
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Next, we compute the Levinson recursion for the first-order optimum filter

Pc0 = 5 βc0 = d1 = 1

kc0 = c(1)1 = d1

r(0)
= 1

3

Pc1 = Pc0 − βc0kc0 = 3− 1( 1
3
) = 8

3

Then we carry the Levinson recursion for m = 1 to obtain

β1 = rT1 Ja1 + r(2) = 2(− 2
3
)+ 1 = − 1

3

k1 = −β1
P1
= −−

1
3

5
3

= 1

5

a2 =
[− 2

3

0

]
+ 1

5

[− 2
3

1

]
=

− 4

5
1
5




P2 = P1 + β1k1 = 5
3
+ (− 1

3
)( 1

5
) = 8

5

for the optimum predictor, and

βc1 = aT1 Jd1 + d2 = − 2
3
(1)+ 2 = 4

3

kc1 =
βc1
P1
=

4
3
5
3

= 4

5

c2 =
[ 1

3

0

]
+ 4

5

[− 2
3

1

]
=

− 1

5
4
5




Pc2 = Pc1 − βc1kc1 = 8
3
− 4

3
( 4

5
) = 8

5

for the optimum filter. The last recursion (m = 2) is carried out only for the optimum filter and
gives

βc2 = aT2 Jd2 + d3 =
[

1

5
− 4

5

][
1

2

]
+ 5

2
= 11

10

kc2 =
βc2
P2
=

11
10
8
5

= 11

16

c3 =
[

c2

0

]
+
[

Ja2

1

]
kc2 =



− 1

5
4
5

0


+ 11

16




1
5

− 4
5

1


 =



− 1

16
1
4

11
16




Pc3 = Pc2 − βc2kc2 = 8
5
− 11

10
( 11

16
) = 27

32

The algorithm of Levinson, summarized in Table 7.3, is implemented by the Mat-
lab function [c,k,kc,Pc]=levins(R,d,Py,M) and requires 2M2 operations because it
involves two dot products and two scalar-vector multiplications. A parallel processing im-
plementation of the algorithm is not possible because the dot products involve additions
that cannot be executed simultaneously. Notice that adding M = 2q numbers using M/2
adders requires q = log2M steps. This bottleneck can be avoided by using the algorithm
of Schür (see Section 7.6).

Minimum phase and autocorrelation extension

Using (7.4.16), we can also express the recursion (7.4.21) as

Pm+1 = Pm(1− |km|2) = Pm − |βm|
2

Pm
(7.4.23)
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TABLE 7.3

Summary of the algorithm of Levinson.

1. Input: {r(l)}M0 , {dm}M1 , Py
2. Initialization

(a) P0 = r(0), β0 = r∗(1), P c0 = Py
(b) k0 = −β0/P0, a

(1)
1 = k0

(c) βc0 = d1

(d ) kc0 = −βc0/P0, c(1)1 = kc0
(e) Pc1 = Pc0 + βc0kc∗0

3. Form = 1, 2, . . . ,M − 1
(a) rm = [r(1) r(2) · · · r(m)]T
(b) βm = aTmJr∗m + r∗(m+ 1)

(c) Pm = Pm−1 + βm−1k
∗
m−1

(d ) km = −βm
Pm

(e) am+1 =
[

am
0

]
+
[

Ja∗m
1

]
km

(f ) βcm = −cHm Jrm + dm+1

(g) kcm =
βcm

Pm

(h) cm+1 =
[

cm
0

]
+
[

Ja∗m
1

]
kcm

(i) Pc
m+1 = Pcm + βcmkc∗m

4. Output: aM, cM, {km, kcm}M−1
0 , {Pm,P cm}M0

which, since Pm ≥ 0, implies that

Pm+1 ≤ Pm (7.4.24)

and since the matrix Rm is positive definite, then Pm > 0 and (7.4.23) implies that

|km| ≤ 1 (7.4.25)

for all 1 ≤ m < M . If

P0 > · · · > PM−1 > PM = 0 (7.4.26)

then the process x(n) is predictable and (7.4.23) implies that

kM = ±1 and |km| < 1 1 ≤ k < M (7.4.27)

(see Section 6.6.4). Also if

PM−1 > PM = · · · = P∞ = P > 0 (7.4.28)

from (7.4.23) we have

km = 0 for m > M (7.4.29)

which implies that the process x(n) is AR(M) and ef
M(n) ∼ WN(0, PM) (see Section

4.2.3). Finally, we note that since the sequence P0, P1, P2, . . . is nonincreasing, its limit
as m → ∞ exists and is nonnegative. A regular process must satisfy |km| < 1 for all m,
because |km| = 1 implies that Pm = 0, which contradicts the regularity assumption.

For m = 0, (7.4.19) gives P0 = r(0). Carrying out (7.4.23) from m = 0 to m = M ,
we obtain

PM = r(0)
M∏
m=1

(1− |km−1|2) (7.4.30)

which converges, asM →∞, if |km| < 1.
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7.5 LATTICE STRUCTURES FOR OPTIMUM FIR FILTERS
AND PREDICTORS

To compute the forward prediction error of an FLP of order m, we use the formula

ef
m(n) = x(n)+ aHm xm(n− 1) = x(n)+

m∑
k=1

a
(m)∗
k x(n− k) (7.5.1)

Similarly, for the BLP we have

eb
m(n) = x(n−m)+ bHmxm(n) = x(n−m)+

m−1∑
k=0

b
(m)∗
k x(n− k) (7.5.2)

Both filters can be implemented using the direct-form filter structure shown in Figure 7.4.
Since am and bm do not have the optimum nesting property, we cannot obtain order-recursive
direct-form structures for the computation of the prediction errors. However, next we show
that we can derive an order-recursive lattice-ladder structure for the implementation of
optimum predictors and filters using the algorithm of Levinson.

…

…

…
1

1 am
m( )*

x(n) z−1z−1 z−1

b0
(m)*

b1
(m)*

a1
(m)*

a2
(m)* a2

(m)*

b2
(m)*

a(m)*
m−1

b(m)*
m−1

em
f 

(n)

em
b

(n)

FIGURE 7.4
Direct-form structure for the computation of the mth-order forward and backward
prediction errors.

7.5.1 Lattice-Ladder Structures

We note that the data vector for the (m + 1)st-order predictor can be partitioned in the
following ways:

xm+1(n) = [x(n) x(n− 1) · · · x(n−m+ 1) x(n−m)]T
= [xTm(n) x(n−m)]T (7.5.3)

= [x(n) xTm(n− 1)]T (7.5.4)

Using (7.5.1), (7.5.3), (7.4.15), and (7.5.2), we obtain

ef
m+1(n) = x(n)+

{[
am
0

]
+
[

bm
1

]
km

}H [
xm(n− 1)

x(n−m− 1)

]

= x(n)+ aHm xm(n− 1)+ k∗m[bHmxm(n− 1)+ x(n− 1−m)]
ef
m+1(n) = ef

m(n)+ k∗meb
m(n− 1) (7.5.5)or

Using (7.4.11) and (7.4.15), we obtain the following Levinson-type recursion for the back-
ward predictor:

bm+1 =
[

0

bm

]
+
[

1

am

]
k∗m
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The backward prediction error is

eb
m+1(n) = x(n−m− 1)+

{[
0

bm

]
+
[

1
am

]
k∗m

}H [
x(n)

xm(n− 1)

]

= x(n−m− 1)+ bHmxm(n− 1)+ km[x(n)+ aHm xm(n− 1)]
eb
m+1(n) = eb

m(n− 1)+ kmef
m(n) (7.5.6)or

Recursions (7.5.5) and (7.5.6) can be computed for m = 0, 1, . . . ,M − 1. The initial
conditions ef

0(n) and eb
0(n) are easily obtained from (7.5.1) and (7.5.2). The recursions also

lead to the following all-zero lattice algorithm

ef
0(n) = eb

0(n) = x(n)
ef
m(n) = ef

m−1(n)+ k∗m−1e
b
m−1(n− 1) m = 1, 2, . . . ,M

eb
m(n) = km−1e

f
m−1(n)+ eb

m−1(n− 1) m = 1, 2, . . . ,M

e(n) = ef
M(n)

(7.5.7)

that is implemented using the structure shown in Figure 7.5. The lattice parameters km are
known as reflection coefficients in the speech processing and geophysics areas.

…

…

k 0

k0
*

Stage MStage 1
e0

f
(n)

x (n)

z−1 z−1

e0
b
(n)

e1
f
(n) eM

 
(n)

kM −1

kM−1

eM
 
(n)e1

b
(n)

*

b

f

FIGURE 7.5
All-zero lattice structure for the implementation of the forward and backward
prediction error filters.

The Levinson recursion for the optimum filter, (7.4.8) through (7.4.10), adds a ladder
part to the lattice structure for the forward and backward predictors. Using (7.4.8), (7.5.7),
and the partitioning in (7.5.3), we can express the filtering error of order m+ 1 in terms of
em(n) and eb

m(n) as follows

em+1(n) = y(n)− cHm+1xm+1(n) = em(n)− kc∗m eb
m(n) (7.5.8)

for m = 0, 1, . . . ,M − 1. The resulting lattice-ladder structure is similar to the one
shown in Figure 7.3. However, owing to stationarity all coefficients are constant, and
kf
m(n) = kb

m(n) = km. We note that the efficient solution of theMth-order optimum filtering
problem is derived from the solution of the (M − 1)st-order forward and backward predic-
tion problems of the input process. In fact, the lattice part serves to decorrelate the samples
x(n), x(n−1), . . . , x(n−M), producing the uncorrelated samples eb

0(n), e
b
1(n), . . . , e

b
M(n)

(innovations), which are then linearly combined (“recorrelated”) to obtain the optimum es-
timate of the desired response.

System functions. We next express the various lattice relations in terms of z-transforms.
Taking the z-transform of (7.5.1) and (7.5.2), we obtain

Ef
m(z) =

(
1+

M∑
k=1

a
(m)∗
k z−k

)
X(z) � Am(z)X(z) (7.5.9)
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Eb
m(z) =

(
z−m +

M∑
k=1

b
(m)∗
k z−k+1

)
X(z) � Bm(z)X(z) (7.5.10)

where Am(z) and Bm(z) are the system functions of the paths from the input to the outputs
of the mth stage of the lattice. Using the symmetry relation am = Jb∗m, 1 ≤ m ≤ M , we
obtain

Bm(z) = z−mA∗m
(

1

z∗

)
(7.5.11)

Note that if z0 is a zero of Am(z), then z−1
0 is a zero of Bm(z). Therefore, if Am(z) is

minimum-phase, then Bm(z) is maximum-phase.
Taking the z-transform of the lattice equations (7.5.7), we have for the mth stage

Ef
m(z) = Ef

m−1(z)+ k∗m−1z
−1Eb

m−1(z) (7.5.12)

Eb
m(z) = km−1E

f
m−1(z)+ z−1Eb

m−1(z) (7.5.13)

Dividing both equations by X(z) and using (7.5.9) and (7.5.10), we have

Am(z) = Am−1(z)+ k∗m−1z
−1Bm−1(z) (7.5.14)

Bm(z) = km−1Am−1(z)+ z−1Bm−1(z) (7.5.15)

which, when initialized with

A0(z) = B0(z) = 1 (7.5.16)

describe the lattice filter in the z domain.
The z-transform of the ladder-part (7.5.8) is given by

Em+1(z) = Em(z)− kc∗m Eb
m(z) (7.5.17)

where Em(z) is the z-transform of the error sequence em(n).

All-pole or “inverse” lattice structure. If we wish to recover the input x(n) from the
prediction error e(n) = ef

M(n), we can use the following all-pole lattice filter algorithm

ef
M(n) = e(n)

ef
m−1(n) = ef

m(n)− k∗m−1e
b
m−1(n− 1) m = M,M − 1, . . . , 1

eb
m(n) = eb

m−1(n− 1)+ km−1e
f
m−1(n) m = M,M − 1, . . . , 1

x(n) = ef
0(n) = eb

0(n)

(7.5.18)

which is derived as explained in Section 2.5 and is implemented by using the structure in
Figure 7.6. Although the system functions of the all-zero lattice in (7.5.7) and the all-pole
lattice in (7.5.18) are HAZ(z) = A(z) and HAP(z) = 1/A(z), the two lattice structures are
described by the same set of lattice coefficients. The difference is the signal flow (see feed-
back loops in the all-pole structure). This structure is used in speech processing applications
(Rabiner and Schafer 1978).

7.5.2 Some Properties and Interpretations

Lattice filters have some important properties and interesting interpretations that make them
a useful tool in optimum filtering and signal modeling.

Optimal nesting. The all-zero lattice filter has an optimal nesting property when it is
used for the implementation of an FLP. Indeed, if we use the lattice parameters obtained
via the algorithm of Levinson-Durbin, the all-zero lattice filter driven by the signal x(n)
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FIGURE 7.6
All-pole lattice structure for recovering the input signal from the forward prediction error.

produces prediction errors ef
m(n) and eb

m(n) at the output of themth stage for all 1 ≤ m ≤ M .
This implies that we can increase the order of the filter by attaching additional stages without
destroying the optimality of the previous stages. In contrast, the direct-form filter structure
implementation requires the computation of the entire predictor for each stage. However,
the nesting property does not hold for the all-pole lattice filter because of the feedback
path.

Orthogonality. The backward prediction errors eb
m(n) for 0 ≤ m ≤ M are uncorrelated

(see Section 7.2), that is,

E{eb
m(n)e

b∗
k (n)} =

{
Pm k = m
0 k �= m (7.5.19)

and constitute the innovations representation of the input samples x(n), x(n − 1), . . . ,
x(n−m). We see that at a given time instant n, the backward prediction errors for orders
m = 0, 1, 2, . . . ,M are uncorrelated and are part of a nonstationary sequence because the
variance E|eb

m(n)|2} = Pm depends on n. This should be expected because, for a given
n, each eb

m(n) is computed using a different set of predictor coefficients. In contrast, for a
given m, the sequence eb

m(n) is stationary for −∞ < n <∞.

Reflection coefficients. The all-pole lattice structure is very useful in the modeling of
layered media, where each stage of the lattice models one layer or section of the medium.
Traveling waves in geophysical layers, in acoustic tubes of varying cross-sections, and
in multisectional transmission lines have been modeled in this fashion. The modeling is
performed such that the wave travel time through each section is the same, but the sections
may have different impedances. The mth section is modeled with the signals ef

m(n) and
eb
m(n) representing the forward and backward traveling waves, respectively.

IfZm andZm−1 are the characteristic impedances at sectionsm andm−1, respectively,
then km represents the reflection coefficients between the two sections, given by

km = Zm − Zm−1

Zm + Zm−1
(7.5.20)

For this reason, the lattice parameters km are often known as reflection coefficients. As
reflection coefficients, it makes good sense that their magnitudes not exceed unity. The
termination of the lattice assumes a perfect reflection, and so the reflected wave eb

0(n) is
equal to the transmitted wave ef

0(n). The result of this specific termination is an overall
all-pole model (Rabiner and Schafer 1978).

Partial correlation coefficients. The partial correlation coefficient (PCC) between
x(n) and x(n − m − 1) (see also Section 7.2.2) is defined as the correlation coefficient
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between ef
m(n) and eb

m(n− 1), that is,

PCC{x(n−m− 1); x(n)} � PARCOR{x(n−m− 1); x(n)}√
E{|eb

m(n− 1)|2}E{|ef
m(n)|2}

(7.5.21)

and, therefore, it takes values in the range [−1, 1] (Kendall and Stuart 1979).
Working as in Section 7.2, we can show that

E{eb
m(n− 1)ef∗

m (n)} = bHm rm + r(m+ 1) = βm (7.5.22)

which in conjunction with

E{|eb
m(n− 1)|2} = E{|ef

m(n)|2} = Pm (7.5.23)

and (7.4.16), results in

km = − βm
Pm

= −PCC{x(n−m− 1); x(n)} (7.5.24)

That is, for stationary processes the lattice parameters are the negative of the partial auto-
correlation sequence and satisfy the relation

|km| ≤ 1 for all 0 ≤ m ≤ M − 1 (7.5.25)

derived also for (7.4.25) using an alternate approach.

Minimum phase. According to Theorem 2.3 (Section 2.5), the roots of the polynomial
A(z) are inside the unit circle if and only if

|km| < 1 for all 0 ≤ m ≤ M − 1 (7.5.26)

which implies that the filters with system functions A(z) and 1/A(z) are minimum-phase.
The strict inequalities (7.5.26) are satisfied if the stationary process x(n) is nonpredictable,
which is the case when the Toeplitz autocorrelation matrix R is positive definite.

Lattice-ladder optimization. As we saw in Section 2.5, the output of an FIR lattice
filter is a nonlinear function of the lattice parameters. Hence, if we try to design an optimum
lattice filter by minimizing the MSE with respect to the lattice parameters, we end up with
a nonlinear optimization problem (see Problem 7.11). In contrast, the Levinson algorithm
leads to a lattice-ladder realization of the optimum filter through the order-recursive solution
of a linear optimization problem. This subject is of interest to signal modeling and adaptive
filtering (see Chapters 9 and 10).

7.5.3 Parameter Conversions

We have shown that the Mth-order forward linear predictor of a stationary process x(n)
is uniquely specified by a set of linear equations in terms of the autocorrelation sequence
and the prediction error filter is minimum-phase. Furthermore, it can be implemented using
either a direct-form structure with coefficients a(M)1 , a

(M)
2 , . . . , a

(M)
M or a lattice structure

with parameters k1, k2, . . . , kM . Next we show how to convert between the following
equivalent representations of a linear predictor:

1. Direct-form filter structure: {PM, a1, a2, . . . , aM}.
2. Lattice filter structure: {PM, k0, k1, . . . , kM−1}.
3. Autocorrelation sequence: {r(0), r(1), . . . , r(M)}.

The transformation between the above representations is performed using the algo-
rithms shown in Figure 7.7.
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FIGURE 7.7
Equivalent representations for
minimum-phase linear prediction
error filters.

Lattice-to-direct (step-up) recursion. Given the lattice parameters k1, k2, . . . , kM and
the MMSE error PM , we can compute the forward predictor aM by using the following
recursions

am =
[

am−1

0

]
+
[

Ja∗m−1

1

]
km−1 (7.5.27)

Pm = Pm−1(1− |km−1|2) (7.5.28)

form = 1, 2, . . . ,M . This conversion is implemented by the function [a,PM]=stepup(k).

Direct-to-lattice (step-down) recursion. Using the partitioning

ām = [a(m)1 a
(m)
2 · · · a(m)m−1]T

km−1 = a(m)m

(7.5.29)

we can write recursion (7.5.27) as

ām = am−1 + Ja∗m−1km−1

or by taking the complex conjugate and multiplying both sides by J

Jā∗m = Ja∗m−1 + am−1k
∗
m−1

Eliminating Ja∗m−1 from the last two equations and solving for am−1, we obtain

am−1 = ām − Jā∗mkm−1

1− |km−1|2 (7.5.30)

From (7.5.28), we have

Pm−1 = Pm

1− |km−1|2 (7.5.31)

Given aM and PM , we can obtain km and Pm for 0 ≤ m ≤ M−1 by computing the last two
recursions for m = M,M − 1, . . . , 2. We should stress that both recursions break down if
|km| = ±1. The step-down algorithm is implemented by the function [k]=stepdown(a).

E XAM PLE 7.5.1. Given the third-order FLP coefficients a(3)1 , a
(3)
2 , a

(3)
3 , compute the lattice

parameters k0, k1, k2.

Solution. With the help of (7.5.29) the vector relation (7.5.30) can be written in scalar form as

km−1 = a(m)m (7.5.32)
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a
(m−1)
i

= a
(m)
i

− a(m)∗
m−i km−1

1− |km−1|2
(7.5.33)and

which can be used to implement the step-down algorithm for m = M,M − 1, . . . , 2 and i =
1, 2, . . . , m− 1. Starting with m = 3 and i = 1, 2, we have

k2 = a(3)3 a
(2)
1 = a

(3)
1 − a(3)∗2 k2

1− |k2|2
a
(2)
2 = a

(3)
2 − a(3)∗1 k2

1− |k2|2
Similarly, for m = 2 and i = 1, we obtain

k1 = a(2)2 a
(1)
1 = a

(2)
1 − a(2)∗1 k1

1− |k1|2
= k0

which completes the solution.

The step-up and step-down recursions also can be expressed in polynomial form as

Am(z) = Am−1(z)+ k∗m−1z
−mA∗m−1

(
1

z∗

)
(7.5.34)

Am−1(z) =
Am(z)− k∗m−1z

−mA∗m(1/z∗)
1− |km−1|2 (7.5.35)and

respectively.

Lattice parameters to autocorrelation. If we know the lattice parameters k1, k2, . . . ,

kM and PM , we can compute the values r(0), r(1), . . . , r(M) of the autocorrelation se-
quence using the formula

r(m+ 1) = −k∗mPm − aHm Jrm (7.5.36)

which follows from (7.4.16) and (7.4.17), in conjunction with (7.5.27) and (7.4.21) for
m = 1, 2, . . . ,M . Equation (7.5.36) is obtained by eliminatingβm from (7.4.9) and (7.4.10).
This algorithm is used by the function r=k2r(k,PM). Another algorithm that computes the
autocorrelation sequence from the lattice coefficients and does not require the intermediate
computation of am is provided in Section 7.6.

EXAMPLE 7.5.2. Given P0, k0, k1, and k2, compute the autocorrelation values r(0), r(1), r(2),
and r(3).

Solution. Using r(0) = P0 and

r(m+ 1) = −k∗mPm − aHm Jrm

for m = 0, we have

r(1) = −k∗0P0

For m = 1

r(2) = −k∗1P1 − a(1)∗1 r(1)

P1 = P0(1− |k0|2)where

Finally, for m = 2 we obtain

r(3) = −k∗2P2 − [a(2)∗1 r(2)+ k∗1r(1)]
P2 = P1(1− |k1|2)where

a
(2)
1 = a(1)1 + a(1)∗1 k1 = k0 + k∗0k1and

from the Levinson recursion.

Direct parameters to autocorrelation. Given aM and PM , we can compute the auto-
correlation sequence r(0), r(1), . . . , r(M) by using (7.5.29) through (7.5.36). This method
is known as the inverse Levinson algorithm and is implemented by the functionr=a2r(a,PM).
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7.6 ALGORITHM OF SCHÜR

The algorithm of Schür is an order-recursive procedure for the computation of the lat-
tice parameters k1, k2, . . . , kM of the optimum forward predictor from the autocorrelation
sequence r(0), r(1), . . . , r(M) without computing the direct-form coefficients am,m =
1, 2, . . . ,M . The reverse process is known as the inverse Schür algorithm. The algorithm
also can be extended to compute the ladder parameters of the optimum filter and the LDLH

decomposition of a Toeplitz matrix. The algorithm has its roots in the original work of
Schür (Schür 1917), who developed a procedure to test whether a polynomial is analytic
and bounded in the unit disk.

7.6.1 Direct Schür Algorithm

We start by defining the cross-correlation sequences between ef
m(n), e

b
m(n), and x(n)

ξ f
m(l) � E{x(n− l)ef∗

m (n)} with ξ f
m(l) = 0, for 1 ≤ l ≤ m (7.6.1)

ξb
m(l) � E{x(n− l)eb∗

m (n)} with ξb
m(l) = 0, for 0 ≤ l < m (7.6.2)

which are also known as gapped functions because of the regions of zeros created by the
orthogonality principle (Robinson and Treitel 1980).

Multiplying the direct-form equations (7.5.1) and (7.5.2) by x∗(n − l) and taking the
mathematical expectation of both sides, we obtain

ξ f
m(l) = r(l)+ aHm r̃m(l − 1) (7.6.3)

ξb
m(l) = r(l −m)+ bHm r̃m(l) (7.6.4)and

r̃m(l) � [r(l) r(l − 1) · · · r(l −m+ 1)]T (7.6.5)where

We notice that ξ f
m(l) and ξb

m(l) can be interpreted as forward and backward autocorrelation
prediction errors, because they occur when we feed the sequence r(0), r(1), . . . , r(m+ 1)
through the optimum predictors am and bm of the process x(n). Using the property bm =
Ja∗m, we can show that (see Problem 7.29)

ξb
m(l) = ξ f∗

m (m− l) (7.6.6)

If we set l = m+ 1 in (7.6.3) and l = m in (7.6.4), and notice that r̃m(m) = Jr∗m, then we
have

ξ f
m(m+ 1) = r(m+ 1)+ aHm Jr∗m = β∗m (7.6.7)

ξb
m(m) = r(0)+ rHm Jbm = Pm (7.6.8)and

respectively. Therefore, we have

km = −βm
Pm

= −ξ
f
m(m+ 1)

ξb
m(m)

(7.6.9)

that is, we can compute km+1 in terms of ξ f
m(l) and ξb

m(l).
Multiplying the lattice recursions (7.5.7) by x∗(n − l) and taking the mathematical

expectation of both sides, we obtain

ξ f
0(l) = ξb

0(l) = r(l)
ξ f
m(l) = ξ f

m−1(l)+ k∗m−1ξ
b
m−1(l − 1) m = 1, 2, . . . ,M

ξb
m(l) = km−1ξ

f
m−1(l)+ ξb

m−1(l − 1) m = 1, 2, . . . ,M

(7.6.10)
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which provides a lattice structure for the computation of the cross-correlations ξ f
m(l) and

ξb
m(l). In contrast, (7.6.7) and (7.6.8) provide a computation using a direct-form structure.

In the next example we illustrate how to use the lattice structure (7.6.10) to compute the
lattice parameters k1, k2, . . . , kM from the autocorrelation sequence r(0), r(1), . . . , r(M)
without the intermediate explicit computation of the predictor coefficients am.

EXAMPLE 7.6.1. Use the algorithm of Schür to compute the lattice parameters {k0, k1, k2} and
the MMSE P3 from the autocorrelation sequence coefficients

r(0) = 3 r(1) = 2 r(2) = 1 r(3) = 1
2

Solution. Starting with (7.6.9) for m = 0, we have

k0 = −
ξ f

0(1)

ξb
0(0)

= − r(1)
r(0)

= −2

3

because ξ f
0(l) = ξb

0(l) = r(l). To compute k1, we need ξ f
1(2) and ξb

1(1), which are obtained
from (7.6.10) by setting l = 2. Indeed, we have

ξ f
1(2) = ξ f

0(2)+ k0ξ
b
0(1) = 1+ (− 2

3
)2 = − 1

3

ξb
1(1) = ξb

0(0)+ k0ξ
f
0(1) = 3+ (− 2

3
)2 = 5

3
= P1

k1 = −
ξ f

1(2)

ξb
1(1)

= −−
1
3

5
3

= 1

5
and

The computation of k2 requires ξ f
2(3) and ξb

2(2), which in turn need ξ f
1(3) and ξb

1(2). These
quantities are computed by

ξ f
1(3) = ξ f

0(3)+ k0ξ
b
0(2) = 1

2
+ (− 2

3
)1 = − 1

6

ξb
1(2) = ξb

0(1)+ k0ξ
f
0(2) = 2+ (− 2

3
)1 = 4

3

ξ f
2(3) = ξ f

1(3)+ k1ξ
b
1(2) = − 1

6
+ 1

5
· 4

3
= 1

10

ξb
2(2) = ξb

1(1)+ k1ξ
f
1(2) = 4

3
+ 1

5
(− 1

6
) = 8

5
= P2

and the lattice coefficient is

k2 = −
ξ f

2(3)

ξb
2(2)

= −
1
10
8
5

= − 1

16

The final MMSE is computed by

P3 = P2(1− |k2|2) = 8
5
(1− 1

256
) = 51

32

although we could use the formula ξb
m(m) = Pm as well. Therefore the lattice coefficients and

the MMSE are found to be

k0 = − 2
3

k1 = 1
5

k2 = − 1
16

P3 = 51
32

It is worthwhile to notice that the km parameters can be obtained by “feeding” the se-
quence r(0), r(1), . . . , r(M) through the lattice filter as a signal and switching on the stages
one by one after computing the required lattice coefficient. The value of km is computed at
time n = m from the inputs to stage m (see Problem 7.30).

The procedure outlined in the above example is known as the algorithm of Schür and
has good numerical properties because the quantities used in the lattice structure (7.6.10)
are bounded. Indeed, from (7.6.1) and (7.6.2) we have

|ξ f
m(l)|2 ≤ |E{|ef

m(n)|2}||E{|x(n− l)|2}| ≤ Pmr(0) ≤ r2(0) (7.6.11)

|ξb
m(l)|2 ≤ |E{|eb

m(n)|2}||E{|x(n− l)|2}| ≤ Pmr(0) ≤ r2(0) (7.6.12)
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because Pm ≤ P0 = r(0). As a result of this fixed dynamic range, the algorithm of Schür
can be easily implemented with fixed-point arithmetic. The numeric stability of the Schür
algorithm provided the motivation for its use in speech processing applications (LeRoux
and Gueguen 1977).

7.6.2 Implementation Considerations

Figure 7.8 clarifies the computational steps in Example 7.4.2, using three decomposition
trees that indicate the quantities needed to compute k0, k1, and k2 when we use the lattice
recursions (7.6.10) for real-valued signals. We can easily see that the computations for k0
are part of those for k1, which in turn are part of the computations for k2. Thus, the tree for
k2 includes also the quantities needed to compute k0 and k1. The computations required to
compute k0, k1, k2, and k3 are

1. k0 = −ξ
f
0(1)

ξb
0(0)

9. ξ f
2(4) = ξ f

1(4)+ k1ξ
b
1(3)

2. ξ f
1(4) = ξ f

0(4)+ k0ξ
b
0(3) 10. ξb

2(3) = ξb
1(2)+ k1ξ

f
1(3)

3. ξb
1(3) = ξb

0(2)+ k0ξ
f
0(3) 11. ξ f

2(3) = ξ f
1(3)+ k1ξ

b
1(2)

4. ξ f
1(3) = ξ f

0(3)+ k0ξ
b
0(2) 12. ξb

2(2) = ξb
1(1)+ k1ξ

f
1(2)

5. ξb
1(2) = ξb

0(1)+ k0ξ
f
0(2) 13. k2 = −ξ

f
2(3)

ξb
2(2)

6. ξ f
1(2) = ξ f

0(2)+ k0ξ
b
0(1) 14. ξ f

3(4) = ξ f
2(4)+ k2ξ

b
2(3)

7. ξb
1(1) = ξb

0(0)+ k0ξ
f
0(1) 15. ξb

3(3) = ξb
2(2)+ k2ξ

f
2(3)

8. k1 = −ξ
f
1(2)

ξb
1(1)

16. k3 = −ξ
f
3(4)

ξb
3(3)

With the help of the corresponding tree decomposition diagram, this can be arranged as
shown in Figure 7.9. The obtained computational structure was named the superlattice
because it consists of a triangular array of latticelike stages (Carayannis et al. 1985). Note
that the superlattice has no redundancy and is characterized by local interconnections; that
is, the quantities needed at any given node are available from the immediate neighbors.

The two-dimensional layout of the superlattice suggests various algorithms to perform
the computations.

1. Parallel algorithm. We first note that all equations involving the coefficient km constitute
one stage of the superlattice and can be computed in parallel after the computation of
km because all inputs to the current stage are available from the previous one. This
algorithm can be implemented by 2(M − 1) processors inM − 1 “parallel” steps (Kung
and Hu 1983). Since each step involves one division to compute km and then 2(M −
m) multiplications and additions for the parallel computations, the number of utilized
processors decreases from 2(M − 1) to 1. The algorithm is not order-recursive because
the orderM must be known before the superlattice structure is set up.

2. Sequential algorithm.Asequential implementation of the parallel algorithm is essentially
equivalent to the version introduced for speech processing applications (LeRoux and
Gueguen 1977). This algorithm, which is implemented by the function k=schurlg(r,M)

and summarized in Table 7.4, starts with Equation (1) and computes sequentially Equa-
tions (2), (3), etc.
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FIGURE 7.8
Tree decomposition for the computations required by the algorithm of Schür.

3. Sequential order-recursive algorithm. The parallel algorithm starts at the left of the su-
perlattice and performs the computations within the vertical strips in parallel. Clearly,
the order M should be fixed before we start, and the algorithm is not order-recursive.
Careful inspection of the superlattice reveals that we can obtain an order-recursive al-
gorithm by organizing the computations in terms of the slanted shadowed strips shown
in Figure 7.9. Indeed, we start with k0 and then perform the computations in the first
slanted strip to determine the quantities ξ f

1(2) and ξb
1(1) needed to compute k1. We

proceed with the next slanted strip, compute k2, and conclude with the computation
of the last strip and k3. The computations within each slanted strip are performed
sequentially.

4. Partitioned-parallel algorithm. Suppose that we haveP processors withP < M . This al-
gorithm partitions the superlattice into groups ofP consecutive slanted strips (partitions)
and performs the computations of each partition, in parallel, using the P processors. It
turns out that by storing some intermediate quantities, we have everything needed by
the superlattice to compute all the partitions, one at a time (Koukoutsis et al. 1991). This
algorithm provides a very convenient scheme for the implementation of the superlattice
using multiprocessing (see Problem 7.31).
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(2) = r(2)

j0
b
(1) = r(1)

j0
b
(0) = r(0)

k3

k1

k0

FIGURE 7.9
Superlattice structure organization of the algorithm of Schür.
The input is the autocorrelation sequence and the output the
lattice parameters.

TABLE 7.4

Summary of the algorithm of Schür.

1. Input: {r(l)}M0
2. Initialization

(a) For l = 0, 1, . . . ,M

ξ f
0(l) = ξb

0(l) = r(l)

(b) k0 = −
ξ f

0(1)

ξb
0(0)

(c) P1 = r(0)(1− |k1|2)
3. Form = 1, 2, . . . ,M − 1

(a) For l = m,m+ 1, . . . ,M

ξ f
m(l) = ξ f

m−1(l)+ k∗m−1ξ
b
m−1(l − 1)

ξb
m(l) = km−1ξ

f
m−1(l)+ ξb

m−1(l − 1)

(b) km = − ξ
f
m(m+ 1)

ξb
m(m)

(c) Pm+1 = Pm(1− |km|2)

4. Output: {km}M−1
0 , {Pm}M1

Extended Schür algorithm. To extend the Schür algorithm for the computation of the
ladder parameters kcm, we define the cross-correlation sequence

ξcm(l) � E{x(n− l)e∗m(l)} with ξcm(l) = 0, for 0 ≤ l < m (7.6.13)

due to the orthogonality principle. Multiplying (7.5.8) by x∗(n− l) and taking the mathe-
matical expectation, we obtain a direct form

ξcm(l) = dl+1 − cTmr̃m(l) (7.6.14)
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and a ladder-form equation

ξcm+1(l) = ξcm(l)− kc∗m ξb
m(l) (7.6.15)

For l = m, we have

ξcm(m) = dl+1 − cHm Jrm = βcm (7.6.16)

kcm =
βcm

Pm
= ξcm(m)

ξb
m(m)

(7.6.17)and

that is, we can compute the sequence kcm using a lattice-ladder structure.
The computations can be arranged in the form of a superladder structure, shown in

Figure 7.10 (Koukoutsis et al. 1991). See also Problem 7.32. In turn, (7.6.17) can be used in
conjunction with the superlattice to determine the lattice-ladder parameters of the optimum
FIR filter. The superladder structure is illustrated in the following example.

j0
b
(3) = r(3)

j0
c
(3) = d4

j1
b
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j1
b
(1)

j1
b
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(3)

j1
c
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c
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c
(3)

j2
c
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b
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b
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b
(3)

j3
c
(3)

j0
b
(2) = r(2)

j0
c
(2) = d3

j0
b
(1) = r(1)

j0
c
(1) = d2

j0
c
(0) = r(0)

j0
c
(0) = d1

k3
c

k2
c

k1
c

k0
c

FIGURE 7.10
Graphical illustration of the
superladder structure.

EXAMPLE 7.6.2. Determine the lattice-ladder parameters of an optimum FIR filter with input
autocorrelation sequence given in Example 7.6.1 and cross-correlation sequence d1 = 1, d2 = 2,
and d3 = 5

2
, using the extended Schür algorithm.

Solution. Since the lattice parameters were obtained in Example 7.6.1, we only need to find the
ladder parameters. Hence, using (7.6.15), (7.6.17), and the values of ξb

m(l) computed in Example
7.6.1, we have

kc0 = −
ξc0(0)

ξb
0(0)

= − d1

r(0)
= −1

3

ξc1(1) = ξc0(1)+ kc0ξb
0(1) = 2− 1

3
(2) = 4

3

ξc1(2) = ξc0(2)+ kc0ξb
0(2) =

5

2
− 1

3
(1) = 13

6

kc1 = −
ξc1(1)

ξb
1(1)

= −
4
3
5
3

= −4

5

ξc2(2) = ξc1(2)+ kc1ξb
1(2) =

13

6
− 4

5
(

4

3
) = 11

10

kc2 = −
ξc2(2)

ξb
2(2)

= −
11
10
8
5

= − 11

16
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which provide the values of the ladder parameters. These values are identical to those obtained
in Example 7.4.3.

7.6.3 Inverse Schür Algorithm

The inverse Schür algorithm computes the autocorrelation sequence coefficients r(0),
r(1), . . . , r(m) from the lattice parameters k0, k1, . . . , kM and the MMSE PM of the linear
predictor. The organization of computations is best illustrated by the following example.

EXAMPLE 7.6.3. Given the lattice filter coefficients

k0 = − 2
3

k1 = 1
5

k2 = − 1
16

and the MMSE P3 = 51/32, compute the autocorrelation samples r(0), r(1), r(2), and r(3),
using the inverse Schür algorithm.

Solution. We base our approach on the part of the superlattice structure shown in Figure 7.9
that is enclosed by the nodes ξb

0(0), ξ
f
0(3), ξ

f
2(3), and ξb

2(2). To start at the lower left corner, we
compute r(0), using (7.4.30):

r(0) = P3
2∏

m=0

(1− k2
m)

=
51
32

(1− 4
9
)(1− 1

25
)(1− 1

256
)
= 3

This also follows from (7.5.31). Then, continuing the computations from the line defined by r(0)
and ξb

2(2) to the node defined by ξ f
0(3) = r(3), we have

r(1) = −k0r(0) = −(− 2
3
)3 = 2

ξb
1(1) = ξb

0(0)+ k0ξ
f
0(1) = 3+ (− 2

3
)2 = 5

3

ξ f
1(2) = −k1ξ

b
1(1) = − 1

5
( 5

3
) = − 1

3

r(2) = ξ f
0(2) = ξ f

1(2)− k0ξ
b
0(1) = − 1

3
− (− 2

3
)2 = 1

ξb
1(2) = ξb

0(1)+ k0ξ
f
0(2) = 2+ (− 2

3
)1 = 4

3

ξb
2(2) = ξb

1(1)+ k1ξ
f
1(2) = 5

3
+ 1

5
(− 1

3
) = 8

5

ξ f
2(3) = −k2ξ

b
2(2) = −(− 1

16
)( 8

5
) = 1

10

ξ f
1(3) = ξ f

2(3)− k1ξ
b
1(2) = 1

10
− 1

5
( 4

3
) = − 1

6

r(3) = ξ f
0(3) = ξ f

1(3)− k0ξ
b
0(2) = − 1

6
− (− 2

3
)1 = 1

2

as can be easily verified by the reader. Thus, the autocorrelation sequence is

r(0) = 3 r(1) = 2 r(2) = 1 r(3) = 1
2

which agree with the autocorrelation sequence coefficients used in Example 7.6.1 with the direct
Schür algorithm.

The inverse Schür algorithm is implemented by the function r=invschur(k,PM), which
follows the same procedure as the previous example.

7.7 TRIANGULARIZATION AND INVERSION OF TOEPLITZ MATRICES

In this section, we develop LDLH decompositions for both Toeplitz matrices and the inverse
of Toeplitz matrices, followed by a recursion for the computation of the inverse of a Toeplitz
matrix.
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7.7.1 LDLH Decomposition of Inverse of a Toeplitz Matrix

Since Rm is a Hermitian Toeplitz matrix that also happens to be persymmetric, that is,
JRmJ = R∗m, taking its inverse, we obtain

JR−1
m J = (R∗m)−1 (7.7.1)

The last equation shows that the inverse of a Toeplitz matrix, although not Toeplitz, is
persymmetric. From (7.1.58), we recall that the BLP coefficients and the MMSEP b

m provide
the quantities for the UDUT decomposition of R−1

m+1, that is,

R−1
m+1 = BHm+1D−1

m+1Bm+1 (7.7.2)

Bm+1 =




1 0 · · · 0 0

b
(1)
0 1 · · · 0 0
...

...
. . .

...
...

b
(m−1)
0 b

(m−1)
1 · · · 1 0

b
(m)
0 b

(m)
1 · · · b

(m)
m−1 1




(7.7.3)where

Dm+1 = diag {P b
0 , P

b
1 , . . . , P

b
m} (7.7.4)and

For a Toeplitz matrix Rm+1, we can obtain the LDLH decomposition of its inverse by using
(7.7.2) and the property J = J−1 of the exchange matrix. Starting with (7.7.1), we obtain

(R∗m+1)
−1 = JR−1

m+1J = (JBHm+1J)(JD−1
m+1J)(JBm+1J) (7.7.5)

If we define

Am+1 � JB∗m+1J (7.7.6)

D̄m+1� JD
−1
m+1J = diag {Pm, Pm−1, . . . , P0} (7.7.7)and

R−1
m+1 = AHm+1D̄−1

m+1Am+1 (7.7.8)then (7.7.2) gives

which provides the unique LDLH decomposition of the matrix R−1
m+1. Indeed, using the

property aj = Jb∗j for 1 ≤ j ≤ m, or equivalently a(j)i = b
(j)∗
j−i , we can write matrix

Am+1 = JB∗m+1J as

Am+1 =




1 a
(m)∗
1 a

(m)∗
2 · · · a

(m)∗
m

0 1 a
(m−1)∗
1 · · · a

(m−1)∗
m−1

...
...

...
. . .

...

0 0 · · · . . . a
(1)∗
1

0 0 0 · · · 1




(7.7.9)

which is an upper unit triangular matrix. We stress that the property JB∗m+1J = Am+1 and
the above derivation of (7.7.8) hold for Toeplitz matrices only. However, the decomposition
in (7.7.2) holds for any Hermitian, positive definite matrix (see Section 7.1.4).

As we saw in Section 6.3, the solution of the normal equations Rc = d can be obtained
in three steps as

R = LDLH ⇒ LDkc= d ⇒ LH c = kc (7.7.10)

where the LDLH decomposition requires aboutM3/6 flops and the solution of each triangu-
lar system M2/2 flops. Since R−1 = BHD−1B, the Levinson-Durbin algorithm performs
the UDUH decomposition of R−1 when R is Toeplitz, at a cost of M2 flops; that is, it
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reduces the computational complexity by an order of magnitude. The Levinson recursion
for the optimum filter is equivalent to the solution of the two triangular systems and requires
M2 operations.

E XAM PLE 7.7.1. Compute the lattice-ladder parameters of an MMSE finite impulse response
filter specified by the normal equations


3 2 1

2 3 2

1 2 3





h(0)

h(1)

h(2)


 =




1

2
5
2




using two different approaches: the LDLH decomposition and the algorithm of Levinson.

Solution. The LDLH decomposition of R is

L =




1 0 0
2
3

1 0
1
3

4
5

1


 D =




3 0 0

0 5
3

0

0 0 8
5


 L−1 =




1 0 0

− 2
3

1 0
1
5

− 4
5

1




and using (7.3.31), we have

kc3 = D−1L−1d =
[

1
3

4
5

11
16

]T
which gives the three ladder parameters. The two lattice parameters are obtained by solving the
system

L�2�D�2�k2 = rb
2 with rb

2 = [1 2]T

which gives k0 = 1
3

and k1 = 4
5

. The results agree with those obtained in Example 7.4.3 using

the algorithm of Levinson. We also note that the rows of L−1 provide the first- and second-order
forward and backward linear predictors. This is the case because the matrix is Toeplitz. For
symmetric matrices the LDLH decomposition provides the backward predictors only.

7.7.2 LDLH Decomposition of a Toeplitz Matrix

The computation of the LDLH decomposition of a symmetric, positive definite matrix
requires on the order ofM3 computations. In Section 7.1, we saw that the cross-correlation
between x(n) and eb

m(n) is related to the LDLH decomposition of the correlation matrix Rm.
We next show that we can extend the Schür algorithm to compute the LDLH decomposition
of a Toeplitz matrix with O(M2) computations using the cross-correlations ξb

m(l).
To illustrate the basic process, we note that evaluating the product on the left with the

help of (7.6.4), we obtain

r(0) r(1) r(2) r(3)

r(1) r(0) r(1) r(2)

r(2) r(1) r(0) r(1)

r(3) r(2) r(1) r(0)







1 b
(1)∗
0 b

(2)∗
0 b

(3)∗
0

0 1 b
(2)∗
1 b

(3)∗
1

0 0 1 b
(3)∗
2

0 0 0 1


 =



ξ

b(0)
0 0 0 0

ξb
0(1) ξb

1(1) 0 0

ξb
0(2) ξb

1(2) ξb
2(2) 0

ξb
0(3) ξb

1(3) ξb
2(3) ξb

3(3)




that is, a lower triangular matrix L̃, which can be written as

L̃ =




1 0 0 0

ξb
0(1)

P0
1 0 0

ξb
0(2)

P0

ξb
1(2)

P1
1 0

ξb
0(3)

P0

ξb
1(3)

P1

ξb
2(3)

P2
1






P0 0 0 0

0 P1 0 0

0 0 P2 0

0 0 0 P3


 = LD
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because Pm = ξb
m(m) ≥ 0. Therefore, RBH = LD and since R is Hermitian, we have

R = LDB−H = B−1DLH , which implies that B−1 = L. This results in the following
LDLH factorization of the (M + 1)× (M + 1) symmetric Toeplitz matrix R

R = LDLH (7.7.11)

L = B−1 =




1 0 · · · 0 0

ξ̄
b
0(1) 1 · · · 0 0

ξ̄
b
0(2) ξ̄

b
1(2) · · · 0 0

...
...

. . .
...

...

ξ̄
b
0(M) ξ̄

b
1(M) · · · ξ̄

b
M−1(M) 1




(7.7.12)where

ξ̄
b
m(l) =

ξb
m(l)

ξb
m(m)

= ξb
m(l)

Pm
(7.7.13)

D = diag {P0, P1, . . . , PM} (7.7.14)and

The basic recursion (7.6.10) in the algorithm of Schür can be extended to compute the ele-
ments of L̃ and hence the LDLH factorization of the Toeplitz matrix R (see Problem 7.33).

Since a Toeplitz matrix is persymmetric, that is, JRJ = R∗, we have

R = JR∗J = (JL∗J)(JDJ)(JLHJ) � UD̄U
H

(7.7.15)

which provides the UDUH decomposition of R. Notice that the relation U = JL∗J also can
be obtained from A = JB∗J [see (7.4.11)], which in turn is a consequence of the symmetry
between forward and backward prediction for stationary processes.

The validity of (7.6.10) also can be shown by computing the product

RAH =



r(0) r(1) r(2) r(3)

r(1) r(0) r(1) r(2)

r(2) r(1) r(0) r(1)

r(3) r(2) r(1) r(0)







1 0 0 0

a
(3)∗
1 1 0 0

a
(3)∗
2 a

(2)∗
1 1 0

a
(3)∗
3 a

(2)∗
2 a

(1)∗
1 1


 (7.7.16)

=



ξ f

3(0) ξ f
2(−1) ξ f

1(−2) ξ f
0(−3)

0 ξ f
2(0) ξ f

1(−1) ξ f
0(−2)

0 0 ξ f
1(0) ξ f

0(−1)

0 0 0 ξ f
0(0)


 (7.7.17)

with the help of (7.6.3) and r(−l) = r∗(l). The formula U = JL∗J relates ξ f
m(l) and ξb

m(l),
as expected by (7.6.10).

7.7.3 Inversion of Real Toeplitz Matrices

From the discussion in Section 7.1, it follows from (7.1.12) that the inverse QM of a
symmetric, positive definite matrix RM is given by

QM �
[

Q q

qT q

]
(7.7.18)

q = b
P

(7.7.19)with

q = 1

P
(7.7.20)
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Q = R−1 + 1

P
bbT (7.7.21)and

as given by (7.1.18), (7.1.19), and (7.1.21). The matrix Q is an (M − 1)× (M − 1)matrix,
and b is the (M−1)st-order BLP. Next we show that for Toeplitz matrices we can compute
QM with O(M2) computations.

First, we note that the last column and the last row of QM can be obtained by solving
the Toeplitz system Rb = −Jr using the Levinson-Durbin algorithm. Then we show that
we can compute the elements of Q by exploiting the persymmetry property of Toeplitz
matrices, moving from the known edges to the interior. Indeed, since R is persymmetric,
that is, R = JRJ, we have R−1 = JR−1J, that is, R−1 is also persymmetric. From (7.7.21),
we have

〈Q〉ij = 〈R−1〉ij + Pqiqj = 〈R−1〉M−j,M−i + Pqiqj (7.7.22)

because R−1 is persymmetric, and

〈R−1〉M−j,M−i = 〈Q〉M−j,M−i − PqM−j qM−i (7.7.23)

Combining (7.7.22) and (7.7.23), we obtain

〈Q〉ij = 〈Q〉M−j,M−i − P(qiqj − qM−j qM−i ) (7.7.24)

which in conjunction with persymmetry makes possible the computation of the elements
of Q from q and q. The process is illustrated forM = 6 in the following diagram

Q6 =




p1 p1 p1 p1 p1 k

p1 p2 p2 p2 u1 k

p1 p2 p3 u2 u1 k

p1 p2 u2 u2 u1 k

p1 u1 u1 u1 u1 k

k k k k k k




where we start with the known elements k and then compute the u elements by using the
updating property (7.7.22) and the elements p by using the persymmetry property (7.7.24)
in the following order: k → p1 → u1 → p2 → u2 → p3. Clearly, because the matrix
QM = R−1

M is both symmetric and persymmetric, we need to compute only the elements
in the following wedge:

p1 p1 p1 p1 p1 k

p2 p2 p2 u1

p3 u2

which can be easily extended to the general case. This algorithm, which was introduced by
Trench (1964), requires O(M2) operations and is implemented by the function

Q=invtoepl(r,M)

The algorithm is generalized for complex Toeplitz matrices in Problem 7.40.

7.8 KALMAN FILTER ALGORITHM

The various optimum linear filter algorithms and structures that we discussed so far in this
chapter provide us with the determination of filter coefficients or optimal estimates using
some form of recursive update. Some algorithms and structures are order-recursive while
others are time-recursive. In effect, they tell us how the past values should be updated to
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determine the present values. Unfortunately, these techniques do not lend themselves very
well to the more complicated nonstationary problems. Readers will note carefully that the
only case in which we obtained efficient order-recursive algorithms and structures was in
the stationary environment, using the approaches of Levinson and Schür.

In 1960, R. E. Kalman provided an alternative approach to formulating the MMSE
linear filtering problem using dynamic models. This “Kalman filter” technique was quickly
hailed as a practical solution to a number of problems that were intractable using the more
established Wiener methods.As we see in this section, the Kalman filter algorithm is actually
a special case of the optimal linear filter algorithms that we have studied. However, it is
used in a number of fields such as aerospace and navigation, where a signal trajectory can
be well defined. Its use in statistical signal processing is somewhat limited (adaptive filters
discussed in Chapter 10 are more appropriate). The two main features of the Kalman filter
formulation and solution are the dynamic (or state-space) modeling of the random processes
under consideration and the time-recursive processing of the input data.

In this section, we discuss only the discrete-time Kalman filter. The continuous-time
version is covered in several texts including Gelb (1977) and Brown and Hwang (1997).
As a motivation to this approach, we begin with the following estimation problem.

7.8.1 Preliminary Development

Suppose that we want to obtain a linear MMSE estimate of a random variable y using the
related random variables (observations) {x1, x2, . . . , xm}, that is,

ŷm � E {y|x1, x2, . . . , xm} (7.8.1)

as described in Section 7.1.5. Furthermore, we want to obtain this estimate in an order-
recursive fashion, that is, determine ŷm in terms of ŷm−1. We considered and solved this
problem in Section 7.1. Our approach, which is somewhat different from that in Section 7.1,
is as follows: Assume that we have computed the corresponding estimate ŷm−1, we have the
observations {x1, x2, . . . , xm}, and we wish to determine the estimate ŷm. Then we carry
out the following steps:

1. We first determine the optimal one-step prediction of xm, that is,

x̂m|m−1 � {xm|x1, x2, . . . , xm−1}
= [R−1

m−1rb
m−1]Hxm−1 = −bHm−1xm−1

= −
m−1∑
k=1

[b(m−1)
k ]∗xk

(7.8.2)

where the vector and matrix quantities are as defined in Section 7.1.
2. When the new data value xm is received, we determine the optimal prediction error

eb
m � xm − x̂m|m−1 = wm (7.8.3)

which is the new information or innovations contained in the new data.
3. Determine a linear MMSE estimate of y, given the new information wm:

E{y|wm} = E{ymw∗m}(E{wmw∗m})−1wm (7.8.4)

4. Finally, form a linear estimate ŷm of the form

ŷm = ŷm−1 + E{y|wm} = ŷm−1 + E{ymw∗m}(E{wmw∗m})−1wm (7.8.5)

The algorithm is initialized with ŷ0 = 0. Note that the quantityE{ymw∗m} (E{wmw∗m})−1

is equal to the coefficient k∗m and that we have rederived (7.1.51). For the implementation
of (7.8.5), see Figure 7.1.
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EXAMPLE 7.8.1. Let the observed random data be obtained from a stationary random process;
that is, the data are of the form

{x(1), x(2), . . . , x(n), . . .} r(n, l) = r(n− l)
Also instead of estimating a single random variable, we want to estimate the sample y(n) of a
random process {y(n)} that is jointly stationary with x(n). Then, following the analysis leading
to (7.8.5), we obtain

ŷ(n) = ŷ(n− 1)+ k∗nw(n) = ŷ(n− 1)+ k∗n[x(n)+
n−1∑
k=0

[b(n−1)
k

]∗x(k)] (7.8.6)

It is interesting to note that, because of stationarity, we have a time-recursive algorithm in (7.8.6).
The coefficients {k∗n} can be obtained recursively by using the algorithms of Levinson or Schür.
However, the data prediction term does require a growing memory. Indeed, if we define the
vector

x(n) = [x(1) x(2) · · · x(n)]T
whose order is equal to time index n, we have

ŷ(n) =
n∑
k=1

[c(n)
k
]∗x(k) � cHn x(n)

The optimum estimator is given by

Rncn = dn

Rn � E{x(n)xH (n)} dn � E{x(n)y∗(n)}where

Since, owing to stationarity, the matrix Rn is Toeplitz, we can derive a lattice-ladder structure
{kn, kcn} that solves this problem recursively (see Section 7.4). When each new observation
{y(n + 1)} is received, we use the moments r(n + 1) and d(n + 1) to compute new lattice-
ladder parameters {kn+1, k

c
n+1} and we add a new stage to the “growing-order” (and, therefore,

growing-memory) filter.

The above example underscores two problems with our estimation technique if we were
to obtain a true time-recursive algorithm with finite memory. The first problem concerns the
time-recursive update for the k∗m term or, in particular, forE{ymw∗m} and (E{wmw∗m})−1. We
alluded to this problem in Section 7.1. In the example, we solved this problem by assuming
a stationary signal environment. The second problem deals with the infinite memory in
(7.8.2). This problem can be solved if we are able to compute the data prediction term also
in a time-recursive fashion. In the stationary case, this problem can be solved by using the
Levinson-Durbin or Schür algorithm. For nonstationary situations, the above two problems
are solved by the Kalman filter by assuming appropriate dynamic models for the process to
be estimated and for the observation data.

Consider the optimal one-step prediction term in (7.8.2), defined as

x̂(n|n− 1) � E{x(n)|x(0), . . . , x(n− 1)} (7.8.7)

which requires growing memory. If we assume the following linear data relation model

x(n) = H(n)y(n)+ v(n) (7.8.8)

E{v(n)y∗(l)} = 0 for all n, l (7.8.9)with

E{v(n)v∗(l)} = rv(n)δn,l for all n, l (7.8.10)

then (7.8.7) becomes

x̂(n|n− 1) = E{[H(n)y(n)+ v(n)]|x(0), . . . , x(n− 1)}
= H(n)ŷ(n|n− 1)

(7.8.11)

where we have used the notation

ŷ(n|n− 1) � E{y(n)|x(0), . . . , x(n− 1)} (7.8.12)
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Thus, we will be successful in obtaining a finite-memory computation for x̂(n|n− 1) if we
can obtain a recursion for ŷ(n|n − 1) in terms of ŷ(n − 1|n − 1). This is possible if we
assume the following linear signal model

y(n) = a(n− 1)y(n− 1)+ η(n) (7.8.13)

with appropriate statistical assumptions on the random process η(n). Thus it is now possible
to complete the development of the Kalman filter. The signal model (7.8.13) provides the
dynamics of the time evolution of the signal to be estimated while (7.8.8) is known as the
observation model, since it relates the signal y(n) with the observation x(n). These models
are formally defined in the next section.

7.8.2 Development of Kalman Filter

Since the Kalman filter is also well suited for vector processes, we begin by assuming that
the random process to be estimated can be modeled in the form

y(n) = A(n− 1)y(n− 1)+ B(n)η(n) (7.8.14)

which is known as the signal (or state vector) model where

y(n) = k × 1 signal state vector at time n

A(n− 1) = k × k matrix that relates y(n− 1) to y(n) in absence of a forcing function

η(n) = k × 1 zero-mean white noise sequence with covariance matrix Rη(n)

B(n) = k × k input matrix
(7.8.15)

The matrix A(n − 1) is known as the state-transition matrix while η(n) is also known as
the modeling error vector.

The observation (or measurement) model is described using the linear relationship

x(n) = H(n)y(n)+ v(n) (7.8.16)

where

x(n) = m× 1 signal state vector at time n

H(n) = m× k matrix that gives ideal linear relationship between y(n) and x(n)

v(n) = k × 1 zero-mean white noise sequence with covariance matrix Rv(n)
(7.8.17)

The matrix H(n) is known as the output matrix, and the sequence v(n) is known as the
observation error.

We further assume the following statistical properties:

E{y(n)vH (l)} = 0 for all n, l (7.8.18)

E{η(n)vH (l)} = 0 for all n, l (7.8.19)

E{η(n)yH (−1)} = 0 for all n (7.8.20)

E{y(−1)} = 0 (7.8.21)

E{y(−1)yH (−1)} = Ry(−1) (7.8.22)

The first three relations, (7.8.18) to (7.8.20), imply orthogonality between respective random
variables while the last two, (7.8.21) and (7.8.22), establish the mean and covariance of the
initial-condition vector y(−1).

From (7.8.14) and (7.8.21) the mean of y(n) = 0 for all n, and the evolution of its
correlation matrix is given by

Ry(n) = A(n− 1)Ry(n− 1)AH (n− 1)+ B(n)Rη(n)BH (n) (7.8.23)
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From (7.8.16), the mean of x(n) = 0 for all n, and from (7.8.23) the evolution of its
correlation matrix is given by

Rx(n) = H(n)[A(n− 1)Ry(n− 1)AH (n− 1)

+ B(n)Rη(n)BH (n)]HH (n)+ Rv(n)
(7.8.24)

Evolution of optimal estimates

We now assume that we have available the MMSE estimate ŷ(n−1|n−1) of y(n−1)
based on the observations up to and including time n− 1. Using (7.8.14) and (7.8.20), the
one-step prediction of y(n) is given by

ŷ(n|n− 1) = A(n− 1)ŷ(n− 1|n− 1) (7.8.25)

with initial condition ŷ(−1| − 1) = y(−1). From (7.8.16), the one-step prediction of x(n)
is given by

x̂(n|n− 1) = H(n)ŷ(n|n− 1) = H(n)A(n− 1)ŷ(n− 1|n− 1) (7.8.26)

Thus we have a recursive formula to compute the predicted observation. The prediction
error (7.8.3) from (7.8.16) is now given by

w(n) = x(n)− x̂(n|n− 1)

= H(n)y(n)+ v(n)−H(n)ŷ(n|n− 1)

= H(n)ỹ(n|n− 1)+ v(n)

(7.8.27)

where we have defined the signal prediction error

ỹ(n|n− 1) � y(n)− ŷ(n|n− 1) (7.8.28)

Now the quantity corresponding to E{wmw∗m} in (7.8.5) is given by

Rw(n) = E{w(n)wH (n)} = H(n)Rỹ (n|n− 1)HH (n)+ Rv(n) (7.8.29)

Rỹ (n|n− 1) � E{ỹ(n|n− 1)ỹH (n|n− 1)} (7.8.30)where

is called the prediction (a priori) error covariance matrix. Similarly, from (7.8.27) the
quantity corresponding to E{ymw∗m} in (7.8.5) is given by

E{y(n)wH (n)} = E{y(n)[ỹH (n|n− 1)HH (n)+ vH (n)]}
= E{[ỹ(n|n− 1)+ ŷ(n|n− 1)]
× [ỹH (n|n− 1)HH (n)+ vH (n)]}

= E{ỹ(n|n− 1)ỹH (n|n− 1)}HH (n)
= Rỹ (n|n− 1)HH (n)

(7.8.31)

since the optimal prediction error ỹ(n|n − 1) is orthogonal to the optimal prediction
ŷ(n|n − 1). Now the updated MMSE estimate (which is also known as the filtered es-
timate) corresponding to (7.8.5) is

ŷ(n|n) = ŷ(n|n− 1)+ Rỹ (n|n− 1)HH (n)R−1
w (n){x(n)− x̂(n|n− 1)}

= ŷ(n|n− 1)+K(n){x(n)−H(n)ŷ(n|n− 1)} (7.8.32)

where we have defined a new quantity

K(n) � Rỹ (n|n− 1)HH (n)R−1
w (n) (7.8.33)

which is known as the Kalman gain matrix and where ŷ(n|n − 1) is given in terms of
ŷ(n− 1|n− 1) using (7.8.25). Thus we have

Prediction: ŷ(n|n− 1) = A(n− 1)ŷ(n− 1|n− 1)

Filter: ŷ(n|n) = ŷ(n|n− 1)+K(n){x(n)−H(n)ŷ(n|n− 1)} (7.8.34)
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and we have succeeded in obtaining a time-updating algorithm for recursively computing
the MMSE estimates. All that remains is a time evolution of the gain matrix K(n). Since
Rw(n) from (7.8.29) also depends on Rỹ (n|n− 1), what we need is an update equation for
the error covariance matrix.

Evolution of error covariance matrices

First we define the filtered error as

ỹ(n|n) � y(n)− ŷ(n|n)
= y(n)− ŷ(n|n− 1)−K(n){x(n)−H(n)ŷ(n|n− 1)}
= ỹ(n|n− 1)−K(n)w(n)

(7.8.35)

where we have used (7.8.27) and (7.8.34). Then the filtered error covariance is given by

Rỹ (n|n) � E{ỹ(n|n)ỹH (n|n)}
= Rỹ (n|n− 1)−K(n)Rw(n)KH (n)

= Rỹ (n|n− 1)−K(n)Rw(n)R−1
w (n)H(n)Rỹ (n|n− 1)

= [I−K(n)H(n)]Rỹ (n|n− 1)

(7.8.36)

where in the second-to-last step we substituted (7.8.33) for KH (n). The error covariance
Rỹ (n|n) is also known as the a posteriori error covariance. Finally, we need to determine
the a priori prediction error covariance at time n from Rỹ (n − 1|n − 1) to complete the
recursive calculations. From the prediction equation in (7.8.34), we obtain the prediction
error at time n as

y(n)− ŷ(n|n− 1) = A(n− 1)y(n− 1)+ B(n)η(n)− A(n− 1)ŷ(n− 1|n− 1)

ỹ(n|n− 1) = A(n− 1)ỹ(n− 1|n− 1)+ B(n)η(n)
(7.8.37)

Rỹ (n|n− 1) = A(n− 1)Rỹ (n− 1|n− 1)AH (n− 1)+ B(n)Rη(n)BH (n) (7.8.38)or

with initial condition Rỹ (−1| − 1) = Ry(−1). Thus we have

A priori error covariance: Rỹ (n|n− 1) = A(n− 1)Rỹ (n− 1|n− 1)AH (n− 1)
+B(n)Rη(n)BH (n)

Kalman gain: K(n) = Rỹ (n|n− 1)HH (n)R−1
w (n)

A posteriori error covariance: Rỹ (n|n) = [I−K(n)H(n)]Rỹ (n|n− 1)
(7.8.39)

The complete Kalman filter algorithm is given in Table 7.5, and the block diagram descrip-
tion is provided in Figure 7.11.

EXAMPLE 7.8.2. Let y(n) be an AR(2) process described by

y(n) = 1.8y(n− 1)− 0.81y(n− 2)+ 0.1η(n) n ≥ 0 (7.8.40)

where η(n) ∼ WGN(0, 1) and y(−1) = y(−2) = 0. We want to determine the linear MMSE
estimate of y(n), n ≥ 0, by observing

x(n) = y(n)+√10v(n) n ≥ 0 (7.8.41)

where v(n) ∼ WGN(0, 10) and orthogonal to η(n).

Solution. From (7.8.40) and (7.8.41), we first formulate the state vector and observation equa-
tions:

y(n) �
[
y(n)

y(n− 1)

]
=
[

1.8 −0.81

1 0

][
y(n− 1)

y(n− 2)

]
+
[

0.1

0

]
η(n) (7.8.42)

x(n) = [1 0]
[
y(n)

y(n− 1)

]
+√10v(n) (7.8.43)and
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TABLE 7.5

Summary of the Kalman filter algorithm.

1. Input:

(a) Signal model parameters: A(n− 1),B(n),Rη(n); n = 0, 1, 2, . . .

(b) Observation model parameters: H(n),Rv(n); n = 0, 1, 2, . . .

(c) Observation data: y(n); n = 0, 1, 2, . . .

2. Initialization: ŷ(0| − 1) = y(−1) = 0; Rỹ (−1| − 1) = Ry(−1)

3. Time recursion: For n = 0, 1, 2, . . .

(a) Signal prediction: ŷ(n|n− 1) = A(n− 1)ŷ(n− 1|n− 1)

(b) Data prediction: x̂(n|n− 1) = H(n)ŷ(n|n− 1)

(c) A priori error covariance:
Rỹ (n|n− 1) = A(n− 1)Rỹ (n− 1|n− 1)AH (n− 1)+ B(n)Rη(n)BH (n)

(d ) Kalman gain:

K(n) = Rỹ (n|n− 1)HH (n)R−1
w (n)

Rw(n) = H(n)Rỹ (n|n− 1)HH (n+ Rv(n)
(e) Signal update: ŷ(n|n) = ŷ(n|n− 1)+K(n)[x(n)− x̂(n|n− 1)]
(f ) A posteriori error covariance:

Rỹ (n|n) = [I−K(n)H(n)]Rỹ (n|n− 1)

4. Output: Filtered estimate ŷ(n|n), n = 0, 1, 2, . . .
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FIGURE 7.11
The block diagram of the Kalman filter model and algorithm.

Hence the relevant matrix quantities are

A(n) =
[

1.8 −0.81

1 0

]
B(n) =

[
0.1

0

]
Rη(n) = 1

H(n) = [1 0] Rv(n) = 10 (7.8.44)and

Now the Kalman filter equation from Table 7.5 can be implemented with zero initial conditions.
Note that since the system matrices are constant, the processes x(n) and y(n) are asymptotically
stationary.

Using (7.8.40) and (7.8.41), we generated 100 samples of y(n) and x(n). The observation
x(n) was processed using the Kalman filter equations to obtain ŷf (n) = ŷ(n|n), and the results
are shown in Figure 7.12. Owing to a large observation noise variance, the x(n) values are very
noisy around the signal y(n) values. However, the Kalman filter was able to track x(n) closely
and reduce the noise v(n) degradation. In Figure 7.13 we show the evolution of Kalman filter gain
values K1(n) and K2(n) along with the estimation error variance. The filter reaches its steady
state in about 20 samples and becomes a stationary filter as expected. In such situations, the
gain and error covariance equations can be implemented off-line (since these equations are data-
independent) to obtain a constant-gain matrix. The data then can be filtered using this constant
gain to reduce on-line computational complexity.
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estimation error covariance in
Example 7.8.2.

In the next example, we consider the case of the estimation of position of an object in
a linear motion subjected to random acceleration.

E XAM PLE 7.8.3. Consider an object traveling in a straight-line motion that is perturbed by
random acceleration. Let yp(n) = yc(nT ) be the true position of the object at the nth sampling
instant, where T is the sampling interval in seconds and yc(t) is the instantaneous position.
This position is measured by a sensor that records noisy observations. Let x(n) be the measured
position at the nth sampling instant. Then we can model the observation as

x(n) = yp(n)+ v(n) n ≥ 0 (7.8.45)

where v(n) ∼ WGN(0, σ 2
v). To derive the state dynamic equation, we assume that the object is

in a steady-state motion (except for the random acceleration). Let yv(n) = ẏc(nT ) be the true
velocity at the nth sampling instant, where ẏc(t) is the instantaneous velocity. Then we have the
following equations of motion

yv(n) = yv(n− 1)+ ya(n− 1)T (7.8.46)

yp(n) = yp(n− 1)+ yv(n− 1)T + 1
2
ya(n− 1)T 2 (7.8.47)

where we have assumed that the acceleration ÿc(t) is constant over the sampling interval and
that ya(n− 1) is the acceleration over (n− 1)T ≤ t < nT . We now define the state vector as

y(n) �
[
yp(n)

yv(n)

]
(7.8.48)
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and the modeling error as η(n) � ya(n − 1), which is assumed to be random with η(n) ∼
WGN(0, σ 2

η) and orthogonal to v(n). Thus (7.8.46) and (7.8.47) can be arranged in vector form
as

y(n) =
[

1 T

0 1

]
y(n− 1)+



T 2

2

T


 η(n) n ≥ 0 (7.8.49)

Thus we have

A =
[

1 T

0 1

]
and B =



T 2

2

T




Similarly, the observation (7.8.45) is given by

x(n) = [1 0]y(n)+ v(n) n ≥ 0 (7.8.50)

and hence H = [1 0]. Let the initial conditions be yp(−1) and yv(−1). Now given the noisy
observations {x(n)} and all the necessary information [T , σ 2

v, σ
2
η, yp(−1), and yv(−1)], we

can recursively estimate the position and velocity of the object at each sampling instance. An
approach similar to this is used in aircraft navigation systems.

Using the following values

T = 0.1 σ 2
v = σ 2

η = 0.25 yp(−1) = 0 yv(−1) = 1

we simulated the trajectory of the object over [0, 10] second interval. From Table 7.5 Kalman
filter equations were obtained, and the true positions as well as velocities were estimated using
the noisy positions. Figure 7.14 shows the estimation results. The top graph shows the true,
noisy, and estimated positions. The bottom graph shows the true and estimated velocities. Due to
random acceleration values (which are moderate), the true velocity has small deviations from the
constant value of 1 while the true position trajectory is approximately linear. The estimates of the
position follow the true values very closely. However, the velocity estimates have more errors
around the true velocities. This is because no direct measurements of velocities are available;
therefore, the velocity of the object can be inferred only from position measurements.
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FIGURE 7.14
Estimation of positions and velocities using Kalman filter in Example 7.8.3.
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In Figure 7.15, we show the trajectories of Kalman gain values and trace of the error
covariance matrices. The top graph contains the gain values corresponding to position (Kp)
and velocity (Kv). The steady state of the filter is reached in about 3 s. The bottom left graph
contains the a priori and a posteriori error covariances, which also reach the steady-state values
in 3 s and which appear to be very close to each other. Therefore, in the bottom right graph we
show an exploded view of the steady-state region over a 1-s interval. It is interesting to note
that the steady-state error covariances before and after processing an observation are not the
same. As a result of making an observation, the a posteriori errors are reduced from the a priori
ones. However, owing to random acceleration, the errors increase during the intervals between
observations. This is shown as dotted lines in Figure 7.15. The steady state is reached when the
decrease in errors achieved by each observation is canceled by the increase between observations.
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FIGURE 7.15
Kalman filter gains and estimation error variances in Example 7.8.3.

It should be clear from the above two examples that the Kalman filter can recursively
estimate signal values because of the assumption of dynamic models (7.8.14) and (7.8.16).
Therefore, in this sense, the Kalman filter approach is a special case of the more general
Wiener filter problem that we considered earlier. In many signal processing applications
(e.g., data communication systems), assumption of such models is difficult to justify, which
limits the use of Kalman filters.

7.9 SUMMARY

The application of optimum FIR filters and linear combiners involves the following two
steps.

• Design. In this step, we determine the optimum values of the estimator parameters by
solving the normal equations formed by using the known second-order moments. For
stationary processes the design step is done only once. For nonstationary processes, we
repeat the design when the statistics change.
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• Implementation. In this step, we use the optimum parameters and the input data to compute
the optimum estimate.

The type and complexity of the algorithms and structures available for the design and
implementation of linear MMSE estimators depend on two factors:

• The shift invariance of the input data vector.
• The stationarity of the signals that determine the second-order moments in the normal

equations.

As we introduce more structure (shift invariance or stationarity), the algorithms and
structures become simpler. From a mathematical point of view, this is reflected in the struc-
ture of the correlation matrix, which starting from general Hermitian at one end becomes
Toeplitz at the other.

Linear combiners

The input vector is not shift-invariant because the optimum estimate is computed by
using samples fromM different signals. The correlation matrix R is Hermitian and usually
positive definite. The normal equations are solved by using the LDLH decomposition,
and the optimum estimate is computed by using the obtained parameters. However, in
many applications where we need the optimum estimate and not the coefficients of the
optimum combiner, we can implement the MMSE linear combiner, using the orthogonal
order-recursive structure shown in Figure 7.1. This structure consists of two parts: (1) a
triangular decorrelator (orthogonalizer) that decorrelates the input data vector and produces
its innovations vector and (2) a linear combiner that combines the uncorrelated innovations
to compute the optimum estimates for all orders 1 ≤ m ≤ M .

FIR filters and predictors

In this case the input data vector is shift-invariant, which leads to simplifications, whose
extent depends on the stationarity of the involved signals.

Nonstationary case. In general, the correlation matrix is Hermitian and positive defi-
nite with no additional structure, and the LDLH decomposition is the recommended method
to solve the normal equations. However, the input shift invariance leads to a remarkable
coupling between FLP, BLP, and FIR filtering, resulting in a simplified orthogonal order-
recursive structure, which now takes the form of a lattice ladder filter (see Figure 7.3). The
backward prediction errors of all orders 1 ≤ m ≤ M provide the innovations of the input
data vector. The parameters of lattice structure (decorrelator) are specified by the compo-
nents of the LDLH decomposition of the input correlation matrix. The coefficients of the
ladder part (correlator) depend on both the input correlation matrix and the cross-correlation
between the desired response and the input data vector.

Stationary case. In this case, the addition of stationarity to the shift invariance makes
the correlation matrix Toeplitz. The presence of the Toeplitz structure has the following
consequences:

1. The development of efficient order-recursive algorithms, with computational complexity
proportional toM2, for the solution of the normal equations and the triangularization of
the correlation matrix.

a. Levinson algorithm solves Rc = d for arbitrary right-hand side vector d (2M2 op-
erations).

b. Levinson-Durbin algorithm solves Ra = −r∗ when the right-hand side has special
structure (M2 operations).

c. Schür algorithm computes directly the lattice-ladder parameters from the autocorre-
lation and cross-correlation sequences.
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2. The MMSE FLP, BLP, and FIR filters are time-invariant; that is, their coefficients (direct-
form or lattice-ladder structures) are constant and should be computed only once.

The algorithms for MMSE filtering and prediction of stationary processes are the sim-
plest ones. However, we can also develop efficient algorithms for nonstationary processes
that have special structure. There are two cases of interest:

• The Kalman filtering algorithm that can be used for processes generated by a state-space
model with known parameters.

• Algorithms for α-stationary processes, that is, processes whose correlation matrix is near
to Toeplitz, as measured by a special distance known as the displacement rank (Morf et
al. 1977).

PROBLEMS

7.1 By first computing the matrix product[
Rm rb

m

rbH
m ρb

m

][
Im −R−1

m rm
0m 1

]

and then the determinants of both sides, prove Equation (7.1.25). Another proof, obtained using
the LDLH decomposition, is given by Equation (7.2.4).

7.2 Prove the matrix inversion lemma for lower right corner partitioned matrices, which is described
by Equations (7.1.26) and (7.1.28).

7.3 This problem generalizes the matrix inversion lemmas to nonsymmetric matrices.

(a) Show that if R−1 exists, the inverse of an upper left corner partitioned matrix is given by[
R r

r̃T σ

]−1

= 1

α

[
αR−1 + wvT w

vT 1

]

Rw � −r

RT v � −r̃

α � σ − r̃TR−1r = σ + vT r = σ + r̃Tw

where

(b) Show that if R−1 exists, the inverse of a lower right corner partitioned matrix is given by[
σ r̃T

r R

]−1

= 1

α

[
1 vT

w αR−1 + wvT

]

Rw � −r

RT v � −r̃

α � σ − r̃TR−1r = σ + vT r = σ + r̃Tw

where

(c) Check the validity of the lemmas in parts (a) and (b), using Matlab.

7.4 Develop an order-recursive algorithm to solve the linear system in Example 7.1.2, using the
lower right corner partitioning lemma (7.1.26).

7.5 In this problem we consider two different approaches for inversion of symmetric and positive
definite matrices by constructing an arbitrary fourth-order positive definite correlation matrix
R and comparing their computational complexities.

(a) Given that the inverse of a lower (upper) triangular matrix is itself lower (upper) triangular,
develop an algorithm for triangular matrix inversion.

(b) Compute the inverse of R, using the algorithm in part (a) and Equation (7.1.58).
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(c) Build up the inverse of R, using the recursion (7.1.24).
(d ) Estimate the number of operations for each method as a function of order M , and check

their validity forM = 4, using Matlab.

7.6 Using the appropriate orthogonality principles and definitions, prove Equation (7.3.32).

7.7 Prove Equations (7.3.36) to (7.3.38), using Equation (7.1.45).

7.8 Working as in Example 6.3.1, develop an algorithm for the upper-lower decomposition of a
symmetric positive definite matrix. Then use it to factorize the matrix in Example 6.3.1, and
verify your results, using the function [U,D]=udut(R).

7.9 In this problem we explore the meaning of the various quantities in the decomposition R = UD̄UH

of the correlation matrix.

(a) Show that the rows of A = U−1 are the MMSE estimator of xm from xm+1, xm+2, . . . , xM .

(b) Show that the decomposition R = UD̄UH can be obtained by the Gram-Schmidt orthog-
onalization process, starting with the random variable xM and ending with x1, that is,
proceeding backward.

7.10 In this problem we clarify the various quantities and the form of the partitionings involved in
the UDUH decomposition, using an m = 4 correlation matrix.

(a) Prove that the components of the forward prediction error vector (7.3.65) are uncorrelated.
(b) Writing explicitly the matrix R, identify and express the quantities in Equations (7.3.62)

through (7.3.67).
(c) Using the matrix R in Example 6.3.2, compute the predictors in (7.3.67) by using the

corresponding normal equations, verify your results, comparing them with the rows of matrix
A computed directly from the LDLH decomposition of R−1 or the UDUH decomposition
of R (see Table 7.1).

7.11 Given an all-zero lattice filter with coefficients k0 and k1, determine the MSE P(k0, k1) as a
function of the required second-order moments, assumed jointly stationary, and plot the error
performance surface. Use the statistics in Example 6.2.1.

7.12 Given the autocorrelation r(0) = 1, r(1) = r(2) = 1
2

, and r(3) = 1
4

, determine all possible
representations for the third-order prediction error filter (see Figure 7.7).

7.13 Repeat Problem 7.12 for k0 = k1 = k2 = 1
3

and P3 = ( 2
3
)3.

7.14 Use Levinson’s algorithm to solve the normal equations Rc = d where R = Toeplitz{3, 2, 1}
and d = [6 6 2]T .

7.15 Consider a random sequence with autocorrelation {r(l)}30 = {1, 0.8, 0.6, 0.4}. (a) Determine

the FLP am and the corresponding error P f
m for m = 1, 2, 3. (b) Determine and draw the flow

diagram of the third-order lattice prediction error filter.

7.16 Using the Levinson-Durbin algorithm, determine the third-order linear predictor a3 and the
MMSE P3 for a signal with autocorrelation r(0) = 1, r(1) = r(2) = 1

2
, and r(3) = 1

4
.

7.17 Given the autocorrelation sequence r(0) = 1, r(1) = r(2) = 1
2

, and r(3) = 1
4

, compute the
lattice and direct-form coefficients of the prediction error filter, using the algorithm of Schür.

7.18 Determine ρ1 and ρ2 so that the matrix R = Toeplitz{1, ρ1, ρ2} is positive definite.

7.19 Suppose that we want to fit an AR(2) model to a sinusoidal signal with random phase in additive
noise. The autocorrelation sequence is given by

r(l) = P0 cosω0l + σ 2
vδ(l)
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(a) Determine the model parameters a(2)1 , a
(2)
2 , andσ 2

w in terms ofP0, ω0, andσ 2
v . (b) Determine

the lattice parameters of the model. (c) What are the limiting values of the direct and lattice
parameters of the model when σ 2

v → 0?

7.20 Given the parameters r(0) = 1, k0 = k1 = 1
2

, and k2 = 1
4

, determine all other equivalent
representations of the prediction error filter (see Figure 7.7).

7.21 Let {r(l)}P0 be samples of the autocorrelation sequence of a stationary random signal x(n).
(a) Is it possible to extend r(l) for |l| > P so that the PSD

R(ejω) =
∞∑

l=−∞
r(l)e−jωl

is valid, that is, R(ejω) ≥ 0? (b) Using the algorithm of Levinson-Durbin, develop a procedure
to check if a given autocorrelation extension is valid. (c) Use the algorithm in part (b) to find
the necessary and sufficient conditions so that r(0) = 1, r(1) = ρ1, and r(2) = ρ2 are a valid
autocorrelation sequence. Is the resulting extension unique?

7.22 Justify the following statements. (a) The whitening filter for a stationary process x(n) is time-
varying. (b) The filter in part (a) can be implemented by using a lattice structure and switching
its stages on one by one with the arrival of each new sample. (c) If x(n) is AR(P ), the whitening
filter becomes time-invariant P + 1 sampling intervals after the first sample is applied. Note:
We assume that the input is applied to the filter at n = 0. If the input is applied at n = −∞, the
whitening filter of a stationary process is always time-invariant.

7.23 Given the parameters r(0) = 1, k0 = 1
2
, k1 = 1

3
, and k2 = 1

4
, compute the determinant of the

matrix R4 = Toeplitz{r(0), r(1), r(2), r(3)}.

7.24 (a) Determine the lattice second-order prediction error filter (PEF) for a sequence x(n) with
autocorrelation r(l) = ( 1

2
)|l|. (b) Repeat part (a) for the sequence y(n) = x(n) + v(n), where

v(n) ∼ WN(0, 0.2) is uncorrelated to x(n). (c) Explain the change in the lattice parameters
using frequency domain reasoning (think of the PEF as a whitening filter).

7.25 Consider a prediction error filter specified by P3 = ( 15
16
)2, k0 = 1

4
, k1 = 1

2
, and k2 = 1

4
.

(a) Determine the direct-form filter coefficients. (b) Determine the autocorrelation values r(1),
r(2), and r(3). (c) Determine the value r(4) so that the MMSE P4 for the corresponding fourth-
order filter is the minimum possible.

7.26 Consider a prediction error filter AM(z) = 1 + a(M)1 z−1 + · · · + a(M)
M

z−M with lattice para-

meters k1, k2, . . . , kM . (a) Show that if we set k̂m = (−1)mkm, then â(M)m = (−1)ma(M)m .
(b) What are the new filter coefficients if we set k̂m = ρmkm, where ρ is a complex number
with |ρ| = 1? What happens if |ρ| < 1?

7.27 Suppose that we are given the values {r(l)}m−1
−m+1 of an autocorrelation sequence such that the

Toeplitz matrix Rm is positive definite. (a) Show that the values of r(m) such that Rm+1 is
positive definite determine a disk in the complex plane. Find the center αm and the radius ζm
of this disk. (b) By induction show that there are infinitely many extensions of {r(l)}m−1

−m+1 that
make {r(l)}∞−∞ a valid autocorrelation sequence.

7.28 Consider the MA(1) sequence x(n) = w(n)+ d1w(n− 1), w(n) ∼ WN(0, σ 2
w). (a) Show that

det Rm = r(0) det Rm−1 − |r(1)|2Rm−2 m ≥ 2

(b) Show that km = −rm(1)/ det Rm and that

1

km
= − r(0)

r(1)

1

km−1
− r

∗(1)
r(1)

1

km−2
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(c) Determine the initial conditions and solve the recursion in (b) to show that

km = (1− |d1|2)(−d1)
m

1− |d1|2m+2

which tends to zero as m→∞.

7.29 Prove Equation (7.6.6) by exploiting the symmetry property bm = Ja∗m.

7.30 In this problem we show that the lattice parameters can be obtained by “feeding” the autocor-
relation sequence through the lattice filter as a signal and switching on the stages one by one
after the required lattice coefficient is computed. The value of km is computed at time n = m
from the inputs to stage m. (a) Using (7.6.10), draw the flow diagram of a third-order lattice
filter that implements this algorithm. (b) Using the autocorrelation sequence in Example 7.6.1,
“feed” the sequence {r(n)}30 = {3, 2, 1, 1

2
} through the filter one sample at a time, and compute

the lattice parameters. Hint: Use Example 7.6.1 for guidance.

7.31 Draw the supperlattice structure for M = 8, and show how it can be partitioned to distribute
the computations to three processors for parallel execution.

7.32 Derive the superladder structure shown in Figure 7.10.

7.33 Extend the algorithm of Schür to compute the LDLH decomposition of a Hermitian Toeplitz
matrix, and write a Matlab function for its implementation.

7.34 Given the matrix R3 = Toeplitz{1, 1
2
, 1

2
}, use the appropriate order-recursive algorithms to

compute the following: (a) The LDLH and UDUH decompositions of R, (b) the LDLH and
UDUH decompositions of R−1, and (c) the inverse matrix R−1.

7.35 Consider the AR(1) process x(n) = ρx(n− 1)+ w(n), where w(n) ∼ WN(0, σ 2
w) and −1 <

ρ < 1. (a) Determine the correlation matrix RM+1 of the process. (b) Determine theMth-order

FLP, using the algorithm of Levinson-Durbin. (c) Determine the inverse matrix R−1
M+1, using

the triangular decomposition discussed in Section 7.7.

7.36 If r(l) = cosω0l, determine the second-order prediction error filter and check whether it is
minimum-phase.

7.37 Show that the MMSE linear predictor of x(n+D) in terms of x(n), x(n−1), . . . , x(n−M+1)
for D ≥ 1 is given by

Ra(D)= −r(D)

where r(D) = [r(D) r(D+1) · · · r(D+M−1)]T . Develop a recursion that computes a(D+1)

from a(D) by exploring the shift invariance of the vector r(D). See Manolakis et al. (1983).

7.38 The normal equations for the optimum symmetric signal smoother (see Section 6.5.1) can be
written as

R2m+1c2m+1 =



0

P2m+1

0




where P2m+1 is the MMSE, c2m+1 = Jc∗2m+1, and c(2m+1)
m = 1. (a) Using a “central”

partitioning of R2m+3 and the persymmetry property of Toeplitz matrices, develop a recursion
to determine c2m+3 from c2m+1. (b) Develop a complete order-recursive algorithm for the
computation of {c2m+1, P2m+1}M0 (see Kok et al. 1993).

7.39 Using the triangular decomposition of a Toeplitz correlation matrix, show that (a) the forward
prediction errors of various orders and at the same time instant, that is,

ef (n) = [ef
0(n) e

f
1(n) · · · ef

m(n)]T
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are correlated and (b) the forward prediction errors

ēf (n) = [ef
M(n) e

f
M−1(n− 1) · · · ef

0(n−M)]T
are uncorrelated.

7.40 Generalize the inversion algorithm described in Section 7.7.3 to handle Hermitian Toeplitz
matrices.

7.41 Consider the estimation of a constant α from its noisy observations. The signal and observation
models are given by

y(n+ 1) = y(n) n > 0 y(0) = α
x(n) = y(n)+ v(n) v(n) ∼ WGN(0, σ 2

v)

(a) Develop scalar Kalman filter equations, assuming the initial condition on the a posteriori
error variance Rỹ(0|0) equal to r0.

(b) Show that the a posteriori error variance Rỹ(n|n) is given by

Rỹ(n|n) =
r0

1+ (r0/σ 2
v)n

(P.1)

(c) Show that the optimal filter for the estimation of the constant α is given by

ŷ(n) = ŷ(n− 1)+ r0/σ
2
v

1+ (r0/σ 2
v)n
[x(n)− ŷ(n− 1)]

7.42 Consider a random process with PSD given by

Rs(e
jω) = 4

2.4661− 1.629 cosω + 0.81 cos 2ω

(a) Using Matlab, plot the PSD Rs(ejω) and determine the resonant frequency ω0.
(b) Using spectral factorization, develop a signal model for the process of the form

y(n) = Ay(n− 1)+ Bη(n)

s(n) = [1 0]y(n)
where y(n) is a 2×1 vector, η(n) ∼ WGN(0, 1), and A and B are matrices with appropriate
dimensions.

(c) Let x(n) be the observed values of s(n) given by

x(n) = s(n)+ v(n) v(n) ∼ WGN(0, 1)

Assuming reasonable initial conditions, develop Kalman filter equations and implement
them, using Matlab. Study the performance of the filter by simulating a few sample func-
tions of the signal process s(n) and its observation x(n).

7.43 Alternative form of the Kalman filter. A number of different identities and expressions can be
obtained for the quantities defining the Kalman filter.

(a) By manipulating the last two equations in (7.8.39) show that

Rỹ (n|n) = Rỹ (n|n− 1)− Rỹ (n|n− 1)HH (n)

×[H(n)Rỹ (n|n− 1)HH (n)+ Rv(n)]−1HRỹ (n|n− 1)
(P.2)

(b) If the inverses of Rỹ (n|n), Rỹ (n|n− 1), and Rv exist, then show that

R−1
ỹ
(n|n) = R−1

ỹ
(n|n− 1)+HH (n)R−1

v (n)H(n) (P.3)

This shows that the update of the error covariance matrix does not require the Kalman gain
matrix (but does require matrix inverses).

(c) Finally show that the gain matrix is given by

K(n) = Rỹ (n|n)HH (n)R−1
v (n) (P.4)

which is computed by using the a posteriori error covariance matrix.
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7.44 In Example 7.8.3 we assumed that only the position measurements were available for esti-
mation. In this problem we will assume that we also have a noisy sensor to measure velocity
measurements. Hence the observation model is

x(n) �
[
xp(n)

xv(n)

]
=
[
yp(n)+ v1(n)

yv(n)+ v2(n)

]
(P.5)

where v1(n) and v2(n) are two independent zero-mean white Gaussian noise sources with
variances σ 2

v1
and σ 2

v2
, respectively.

(a) Using the state vector model given in Example 7.8.3 and the observation model in (P.5),
develop Kalman filter equations to estimate position and velocity of the object at each n.

(b) Using the parameter values

T = 0.1 σ 2
v1
= σ 2

v2
= σ 2

η = 0.25 yp(−1) = 0 yv(−1) = 1

simulate the true and observed positions and velocities of the object. Using your Kalman
filter equations, generate plots similar to the ones given in Figures 7.14 and 7.15.

(c) Discuss the effects of velocity measurements on the estimates.

7.45 In this problem, we will assume that the acceleration ya(n) is an AR(1) process rather than a
white noise process. Let ya(n) be given by

ya(n) = αya(n− 1)+ η(n) η(n) ∼ WGN(0, σ 2
η) ya(−1) = 0 (P.6)

(a) Augment the state vector y(n) in (7.8.48), using variable ya(n), and develop the state vector
as well as the observation model, assuming that only the position is measured.

(b) Using the above model and the parameter values

T = 0.1 α = 0.9 σ 2
v = σ 2

η = 0.25

yp(−1) = 0 yv(−1) = 1 ya(−1) = 0

simulate the linear motion of the object. Using Kalman filter equations, estimate the position,
velocity, and acceleration values of the object at each n. Generate performance plots similar
to the ones given in Figures 7.14 and 7.15.

(c) Now assume that noisy measurements of yv(n) and ya(n) are also available, that is, the
observation model is

x(n) �



xp(n)

xv(n)

xa(n)


 =



yp(n)+ v1(n)

yv(n)+ v2(n)

ya(n)+ v3(n)


 (P.7)

wherev1(n), v2(n), andv3(n) are IID zero-mean white Gaussian noise sources with variance
σ 2
v . Repeat parts (a) and (b) above.
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CHAPTER 8

Least-Squares Filtering and Prediction

In this chapter, we deal with the design and properties of linear combiners, finite impulse
response (FIR) filters, and linear predictors that are optimum in the least-squares error
(LSE) sense. The principle of least squares is widely used in practice because second-order
moments are rarely known. In the first part of this chapter (Sections 8.1 through 8.4), we
concentrate on the design, properties, and applications of least-squares (LS

†
) estimators.

Section 8.1 discusses the principle of LS estimation. The unique aspects of the different
implementation structures, starting with the general linear combiner followed by the FIR
filter and predictor, are treated in Sections 8.2 to 8.4. In the second part (Sections 8.5 to
8.7), we discuss various numerical algorithms for the solution of the LSE normal equations
and the computation of LSE estimates including QR decomposition techniques (House-
holder reflections, Givens rotations, and modified Gram-Schmidt orthogonalization) and
the singular value decomposition (SVD).

8.1 THE PRINCIPLE OF LEAST SQUARES

The principle of least squares was introduced by the German mathematician Carl Friedrich
Gauss, who used it to determine the orbit of the asteroid Ceres in 1821 by formulating the
estimation problem as an optimization problem.

The design of optimum filters in the minimum mean square error (MMSE) sense,
discussed in Chapter 6, requires the a priori knowledge of second-order moments. However,
such statistical information is simply not available in most practical applications, for which
we can only obtain measurements of the input and desired response signals. To avoid this
problem, we can (1) estimate the required second-order moments from the available data
(see Chapter 5), if possible, to obtain an estimate of the optimum MMSE filter, or (2) design
an optimum filter by minimizing a criterion of performance that is a function of the available
data.

In this chapter, we use the minimization of the sum of the squares of the estimation error
as the criterion of performance for the design of optimum filters. This method, known as
least-squares error (LSE ) estimation, requires the measurement of both the input signal and
the desired response signal. A natural question arising at this point is, What is the purpose
of estimating the values of a known, desired response signal? There are several answers:

†
A note about abbreviations used throughout the chapter: The two acronyms LSE and LS will be used almost

interchangably. Although LSE is probably the more accurate term, LS has become a standard reference to LSE
estimators.
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1. In system modeling applications, the goal is to obtain a mathematical model describing
the input-output behavior of an actual system. A quality estimator provides a good model
for the system. The desired result is the estimator or system model, not the actual estimate.

2. In linear predictive coding, the useful result is the prediction error or the respective
predictor coefficients.

3. In many applications, the desired response is not available (e.g., digital communications).
Therefore, we do not always have a complete set of data from which to design the LSE
estimator. However, if the data do not change significantly over a number of sets, then
one special complete set, the training set, is used to design the estimator. The resulting
estimator is then applied to the processing of the remaining incomplete sets.

The use of measured signal values to determine the coefficients of the estimator leads to
some fundamental differences between MMSE and LSE estimation that are discussed where
appropriate.

To summarize, depending on the available information, there are two ways to design
an optimum estimator: (1) If we know the second-order moments, we use the MMSE
criterion and design a filter that is optimum for all possible sets of data with the same
statistics. (2) If we only have a block of data, we use the LSE criterion to design an estimator
that is optimum for the given block of data. Optimum MMSE estimators are obtained by
using ensemble averages, whereas LSE estimators are obtained by using finite-length time
averages. For example, an MMSE estimator, designed using ensemble averages, is optimum
for all realizations. In contrast, an LSE estimator, designed using a block of data from a
particular realization, depends on the numerical values of samples used in the design. If
the processes are ergodic, the LSE estimator approaches the MMSE estimator as the block
length of the data increases toward infinity.

8.2 LINEAR LEAST-SQUARES ERROR ESTIMATION

We start with the derivation of general linear LS filters that are implemented using the linear
combiner structure described in Section 6.2. A set of measurements of the desired response
y(n) and the input signals xk(n) for 1 ≤ k ≤ M has been taken for 0 ≤ n ≤ N − 1. As in
optimum MMSE estimation, the problem is to estimate the desired response y(n) using the
linear combination

ŷ(n) =
M∑

k=1

c∗k (n) xk(n) = cH (n) x(n) (8.2.1)

We define the estimation error as

e(n) = y(n)− ŷ(n) = y(n)− cH (n) x(n) (8.2.2)

and the coefficients of the combiner are determined by minimizing the sum of the squared
errors

E �
N−1∑
n=0

|e(n)|2 (8.2.3)

that is, the energy of the error signal. For this minimization to be possible, the coefficient
vector c(n) should be held constant over the measurement time interval 0 ≤ n ≤ N − 1.
The constant vector cls resulting from this optimization depends on the measurement set
and is known as the linear LSE estimator. In the statistical literature, LSE estimation is
known as linear regression, where (8.2.2) is called a regression function, e(n) are known
as residuals (leftovers), and c(n) is the regression vector (Montgomery and Peck 1982).
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The system of equations in (8.2.2), or equivalently e∗(n) = y∗(n) − xH (n) c, can be
written in matrix form as


e∗(0)
e∗(1)
...

e∗(N − 1)


 =



y∗(0)
y∗(1)
...

y∗(N − 1)




−



x∗1 (0) x∗2 (0) · · · x∗M(0)

x∗1 (1) x∗2 (1) · · · x∗M(1)
...

...
. . .

...

x∗1 (N − 1) x∗2 (N − 1) · · · x∗M(N − 1)






c1

c2
...

cM




(8.2.4)

or more compactly as

e = y − Xc (8.2.5)

where

e � [e(0) e(1) · · · e(N − 1)]H error data vector (N × 1)

y � [y(0) y(1) · · · y(N − 1)]H desired response vector (N × 1)

X � [x(0) x(1) · · · x(N − 1)]H input data matrix (N ×M)

c � [c1 c2 · · · cM ]T combiner parameter vector (M × 1)

(8.2.6)

are defined by comparing (8.2.4) to (8.2.5). The input data matrix X can be partitioned
either columnwise or rowwise as follows:

X � [x̃1, x̃2, . . . , x̃M ] =




xH (0)

xH (1)
...

xH (N − 1)


 (8.2.7)

where the columns x̃k of X

x̃k � [xk(0) xk(1) · · · xk(N − 1)]H

will be called data records and the rows

x(n) � [x1(n) x2(n) · · · xM(n)]T

will be called snapshots. Both of these partitionings of the data matrix, which are illustrated
in Figure 8.1, are useful in the derivation, interpretation, and computation of LSE estimators.

The LSE estimator operates in a block processing mode; that is, it processes a frame of
N snapshots using the steps shown in Figure 8.2. The input signals are blocked into frames
of N snapshots with successive frames overlapping by N0 samples. The values of N and
N0 depend on the application. The required estimate or residual signals are unblocked at
the final stage of the processor.

If we set e = 0, we have a set of N equations with M unknowns. If N = M , then (8.2.4)
usually has a unique solution. For N > M , we have an overdetermined system of linear
equations that typically has no solution. Conversely, ifN < M , we have an underdetermined
system that has an infinite number of solutions. However, even if M > N or N > M , the
system (8.2.4) has a natural, unique, least-squares solution. We next focus our attention on
overdetermined systems since they play a very important role in practical applications. The
underdetermined least-squares problem is examined in Section 8.7.2.
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FIGURE 8.1
The columns of the data matrix are the records of data collected at each
input (sensor), whereas each row contains the samples from all inputs at
the same instant.
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FIGURE 8.2
Block processing implementation of a general linear LSE estimator.

8.2.1 Derivation of the Normal Equations

We provide an algebraic and a geometric solution to the LSE estimation problem; a calculus-
based derivation is given in Problem 8.1.

Algebraic derivation. The energy of the error can be written as

E = eH e = (yH − cH XH )(y − Xc)

= yH y − cH XH y − yH Xc + cH XH Xc

= Ey − cH d̂ − d̂
H

c + cH R̂c

(8.2.8)

Ey � yH y =
N−1∑
n=0

|y(n)|2 (8.2.9)where

R̂ � XH X =
N−1∑
n=0

x(n)xH (n) (8.2.10)

d̂ � XH y =
N−1∑
n=0

x(n)y∗(n) (8.2.11)
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Note that these quantities can be viewed as time-average estimates of the desired response
power, correlation matrix of the input data vector, and the cross-correlation vector between
the desired response and the data vector, when these quantities are divided by the number
of data samples N .

We emphasize that all formulas derived for the MMSE criterion hold for the LSE cri-
terion if we replace the expectation E{(·)} with the time-average operator (1/N)

∑N−1
n=0 (·).

This results from the fact that both criteria are quadratic cost functions. Therefore, working
as in Section 6.2.2, we conclude that if the time-average correlation matrix R̂ is positive
definite, the LSE estimator cls is provided by the solution of the normal equations

R̂cls = d̂ (8.2.12)

and the minimum sum of squared errors is given by

Els = Ey − d̂H R̂−1d̂ = Ey − d̂H cls (8.2.13)

Since R̂ is Hermitian, we only need to compute the elements

r̂ij = x̃H
i x̃j (8.2.14)

in the upper triangular part, which requires M(M + 1)/2 dot products. The right-hand side
requires M dot products

d̂i = x̃H
i y (8.2.15)

Note that each dot product involves N arithmetic operations, each consisting of one multi-
plication and one addition. Thus, to form the normal equations requires a total of

1
2M(M + 1)N +MN = 1

2M
2N + 3

2MN (8.2.16)

arithmetic operations. When R̂ is nonsingular, which is the case when R̂ is positive definite,
we can solve the normal equations using either the LDLH or the Cholesky decomposition
(see Section 6.3). However, it should be stressed at this point that most of the computational
work lies in forming the normal equations rather than their solution. The formulation of the
overdetermined LS equations and the normal equations is illustrated graphically in Figure
8.3. The solution of LS problems has been extensively studied in various application areas
and in numerical analysis. The basic methods for the solution of the LS problem, which are
discussed in this book, are shown in Figure 8.4. We just stress here that for overdetermined
LS problems, well-behaved data, and sufficient numerical precision, all these methods
provide comparable results.

Geometric derivation. We may think of the desired response record y and the data
records x̃k , 1 ≤ k ≤ M , as vectors in an N -dimensional vector space, with the dot product
and length defined by

〈x̃i , x̃j 〉 � x̃H
i x̃j =

N−1∑
n=0

xi(n) x
∗
j (n) (8.2.17)

‖x̃‖2 � 〈x̃, x̃〉 =
N−1∑
n=0

|x(n)|2 = Ex (8.2.18)and

respectively. The estimate of the desired response record can be expressed as

ŷ = Xc =
M∑

k=1

ck x̃k (8.2.19)

that is, as a linear combination of the data records.
The M vectors x̃k form an M-dimensional subspace, called the estimation space, which

is the column space of data matrix X. Clearly, any estimate ŷ must lie in the estimation space.
The desired response record y, in general, lies outside the estimation space. The estimation
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FIGURE 8.3
The LS problem and computation of the normal equations.

space for M = 2 and N = 3 is illustrated in Figure 8.5. The error vector e points from the
tip of ŷ to the tip of y. The squared length of e is minimum when e is perpendicular to the
estimation space, that is, e⊥ x̃k for 1 ≤ k ≤ M .

Therefore, we have the orthogonality principle

〈x̃k, e〉 = x̃H
k e = 0 1 ≤ k ≤ M (8.2.20)

or more compactly

XH e = XH (y − Xcls) = 0

(XH X)cls= XH y (8.2.21)or

which we recognize as the LSE normal equations from (8.2.12).
The LS solution splits the desired response y into two orthogonal components, namely,

ŷls and els. Therefore,

‖y‖2 = ‖ŷls‖2 + ‖els‖2 (8.2.22)

and, using (8.2.18) and (8.2.19), we have

Els = Ey − cH
ls XH Xcls = Ey − cH

ls XH y (8.2.23)
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Vector space interpretation of LSE estimation
for N = 3 (dimension of data space) and
M = 2 (dimension of estimation subspace).

which is identical to (8.2.13). The normalized total squared error is

E � Els

Ey

= 1 − Eŷ

Ey

(8.2.24)

which is in the range 0 ≤ E ≤ 1, with limits of 0 and 1, which correspond to the worst and
best cases, respectively.

Uniqueness. The solution of the LSE normal equations exists and is unique if the
time-average correlation matrix R̂ is invertible. We shall prove the following:

THEOREM 8.1. The time-average correlation matrix R̂ = XH X is invertible if and only if the
columns x̃k of X are linearly independent, or equivalently if and only if R̂ is positive definite.
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Proof. If the columns of X are linearly independent, then for every z �= 0 we have Xz �= 0.
This implies that for every z �= 0

zH (XH X)z = (Xz)H Xz = ‖Xz‖2 > 0 (8.2.25)

that is, R̂ is positive definite and hence nonsingular.
If the columns of X are linearly dependent, then there is a vector z0 �= 0 such that Xz0 = 0.

Therefore, XH Xz0 = 0, which implies that R̂ = XH X is singular.

For a matrix to have linearly independent columns, the number of rows should be
equal to or larger than the number of columns; that is, we must have more equations than
unknowns. To summarize, the overdetermined (N > M) LS problem has a unique solution
provided by the normal equations in (8.2.12) if the time-average correlation matrix R̂ is
positive definite, or equivalently if the data matrix X has linearly independent columns.

In this case, the LS solution can be expressed as

cls = X+y (8.2.26)

X+ � (XH X)−1XH (8.2.27)where

is an M×N matrix known as the pseudo-inverse or the Moore-Penrose generalized inverse
of matrix X (Golub and Van Loan 1996; Strang 1980).

The LS estimate ŷls of y can be expressed as

ŷls = Py (8.2.28)

P � X(XH X)−1XH (8.2.29)where

is known as the projection matrix because it projects the data vector y onto the column
space of X to provide the LS estimate ŷls of y. Similarly, the LS error vector els can be
expressed as

els = (I − P)y (8.2.30)

where I is the N ×N identity matrix. The projection matrix P is Hermitian and idempotent,
that is,

P = PH (8.2.31)

P2 = PH P = P (8.2.32)and

respectively.
When the columns of X are linearly dependent, the LS problem has many solutions.

Since all these solutions satisfy the normal equations and the orthogonal projection of y
onto the column space of X is unique, all these solutions produce an error vector e of equal
length, that is, the same LSE. This subject is discussed in Section 8.6.2 (minimum-norm
solution).

E XAM PLE 8.2.1. Suppose that we wish to estimate the sequence y = [1 2 3 2]T from the
observation vectors x̃1 = [1 2 1 1]T and x̃2 = [2 1 2 3]T . Determine the optimum filter, the
error vector els, and the LSE Els.

Solution. We first compute the quantities

R̂ = X
T

X =




1 2
2 1
1 2
1 3




T 


1 2
2 1
1 2
1 3


 =

[
7 9
9 18

]
d̂ = XT y =




1 2
2 1
1 2
1 3




T 


1
2
3
2


 =

[
10
16

]

and we then solve the normal equations R̂cls = d̂ to obtain the LS estimator

cls = R̂−1d̂ =

 2

5
− 1

5

− 1
5

7
45


[

10
16

]
=


 4

5
22
45



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and the LSE

Els = Ey − d̂T cls = 18 −
[

10
16

]T

 4

5
22
45


 = 98

45

The projection matrix is

P = X(XT X)−1XT =




2
9

1
9

2
9

1
3

1
9

43
45

1
9

− 2
15

2
9

1
9

2
9

1
3

1
3

− 2
15

1
3

3
5




which can be used to determine the error vector

els = y − Py = [−7

9
− 4

45

11

9
− 4

15
]T

whose squared norm is equal to ‖els‖2 = 98
45 = Els, as expected. We can also easily verify the

orthogonality principle eTls x̃1 = eTls x̃2 = 0.

Weighted least-squares estimation. The previous results were derived by using an LS
criterion that treats every error e(n) equally. However, based on a priori information, we
may wish to place greater importance on different errors, using the weighted LS criterion

Ew =
N−1∑
n=0

w(n)|e(n)|2 = eH We (8.2.33)

W � diag{w(0), w(1), . . . , w(N − 1)} (8.2.34)where

is a diagonal weighting matrix with positive elements. Usually, we choose small weights
where the errors are expected to be large, and vice versa. Minimization of Ew with respect
to c yields the weighted LS (WLS) estimator

cwls = (XH WX)−1XH Wy (8.2.35)

assuming that the inverse of the matrix XH WX exists. We can easily see that when W = I,
then cwls = cls. The criterion in (8.2.33) can be generalized by choosing W to be any
Hermitian, positive definite matrix (see Problem 8.2).

8.2.2 Statistical Properties of Least-Squares Estimators

A useful approach for evaluating the quality of an LS estimator is to study its statistical
properties. Toward this end, we assume that the obtained measurements y actually have
been generated by

y = Xco + eo (8.2.36)

where eo is the random measurement error vector. We may think of co as the “true” parameter
vector. Using (8.2.36), we see that (8.2.21) gives

cls = co + (XH X)−1XH eo (8.2.37)

We make the following assumptions about the random measurement error vector eo:

1. The error vector eo has zero mean

E{eo} = 0 (8.2.38)
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2. The error vector eo has uncorrelated components with constant variance σ 2
eo

; that is, the
correlation matrix is given by

Reo = E{eoeH
o } = σ 2

eo
I (8.2.39)

3. There is no information about eo contained in data matrix X; that is,

E{eo|X} = E{eo} = 0 (8.2.40)

4. If X is a deterministic N × M matrix, then it has rank M . This means that X is a
full-column rank and that XH X is invertible. If X is a stochastic N × M matrix, then
E{(XH X)−1} exists.

In the following analysis, we consider two possibilities: X is deterministic and stochas-
tic. Under these conditions, the LS estimator cls has several desirable properties.

Deterministic data matrix

In this case, we assume that the LS estimators are obtained from the deterministic data
values; that is, the matrix X is treated as a matrix of constants. Then the properties of the LS
estimators can be derived from the statistical properties of the random measurement error
vector eo.

PROPERTY 8.2.1. The LS estimator cls is an unbiased estimator of co, that is,

E{cls} = co (8.2.41)

Proof. Taking the expectation of both sides of (8.2.37), we have

E{cls} = E{co} + (XH X)−1XHE{eo} = co

because X is deterministic and E{eo} = 0.

PROPERTY 8.2.2. The covariance matrix of cls corresponding to the error cls − co is

�ls � E{(cls − co)(cls − co)H } = σ 2
eo

(XH X)−1 = σ 2
eo

R̂−1 (8.2.42)

Proof. Using (8.2.37), (8.2.39), and the definition (8.2.42), we easily obtain

�ls = (XH X)−1XHE{eoeHo }X(XH X)−1 = σ 2
eo

(XH X)−1

Note that the diagonal elements of matrix σ 2
e R̂−1 are also equal to the variance of the

LS combiner vector cls.

PROPERTY 8.2.3. An unbiased estimate of the error variance σ 2
eo

is given by

σ̂ 2
eo

= Els

N −M
(8.2.43)

where N is the number of observations, M is the number of parameters, and Els is the LS error.

Proof. Using (8.2.30) and (8.2.36), we obtain

els = (I − P)y = (I − P)eo

which results in

Els = eHls els = eHo (I − P)H (I − P)eo = eHo (I − P)eo

because of (8.2.32). Since Els depends on eo, it is a random variable whose expected value is

E{Els} = E{eHo (I − P)eo} = E{tr[(I − P)eoeHo ]}
= tr[(I − P)E{eoeHo }] = σ 2

e tr(I − P)

since tr(AB) = tr (BA), where tr is the trace function. However,

tr(I − P) = tr[I − X(XH X)−1XH ]
= tr[IN×N − (XH X)−1XH X]
= tr(IN×N)− tr[(XH X)−1XH X]
= tr(IN×N)− tr(IM×M) = N −M
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σ 2
eo

= E{Els}
N −M

(8.2.44)therefore

which proves that σ̂ 2
e is an unbiased estimate of σ 2

eo
.

Similar to (8.2.41), the mean value of cwls is

E{cwls} = E{co} + (XH WX)−1XH WE{eo} = E{co} (8.2.45)

that is, the WLS estimator is an unbiased estimate of co. The covariance matrix of cwls is

�wls = (XH WX)−1XH WReoWX(XH WX)−1 (8.2.46)

where Reo is the correlation matrix of eo. It is easy to see that when Reo = σ 2
eo

I and W = I,
we obtain (8.2.42).

PROPERTY 8.2.4. The trace of �wls attains its minimum when W = R−1
eo . The resulting estimator

cmv = (XH R−1
eo

X)−1XH R−1
eo

y (8.2.47)

is known as the minimum variance or Markov estimator and is the best linear unbiased estimator
(BLUE).

Proof. The proof is somewhat involved. Interested readers can see Goodwin and Payne (1977)
and Scharf (1991).

PROPERTY 8.2.5. If Reo = σ 2
eo

I, the LS estimator cls is also the best linear unbiased estimator.

Proof. It follows from (8.2.47) with the substitution Reo = σ 2
eo

I.

PROPERTY 8.2.6. When the random observation vector eo has a normal distribution with mean
zero and correlation matrix Reo = σ 2

eo
I, that is, when its components are uncorrelated, the LS

estimator cls is also the maximum likelihood estimator.

Proof. Since the components of vector eo are uncorrelated and normally distributed with zero
mean and variance σ 2

e , the likelihood function for real-valued eo is given by

L(c) =
N−1∏
n=0

1√
2πσeo

exp

[
−|eo(n)|2

2σ 2
eo

]
(8.2.48)

and its logarithm by

ln L(c) = − 1

2σ 2
eo

eHo eo − N

2
ln(2πσ 2

eo
) = − 1

2σ 2
eo

(y − Xc)H (y − Xc)+ const (8.2.49)

For complex-valued eo, the terms
√

2πσeo and 2σ 2
eo

in (8.2.48) are replaced by πσ 2
eo

and σ 2
eo

,
respectively. Since the logarithm is a monotonic function, maximization of L(c) is equivalent
to minimization of ln L(c). It is easy to see, by comparison with (8.2.8), that the LS solution
maximizes this likelihood function.

Stochastic data matrix

We now extend the statistical properties of cls from the preceding section to the sit-
uation in which the data values in X are obtained from a random source with a known
probability distribution. This situation is best handled by first obtaining the desired results
conditioned on X, which is equivalent to the deterministic case. We then determine the
unconditional results by (statistical) averaging over the conditional distributions using the
following properties of the conditional averages.

The conditional mean and the conditional covariance of a random vector x(ζ ), given
another random vector y(ζ ), are defined by

µx|y � E{x(ζ )|y(ζ )}
�x|y � E{[x(ζ )− µx|y][x(ζ )− µx|y]H | y(ζ )}and
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respectively. Since both quantities are random objects, it can be shown that

µx = E{x(ζ )} = Ey{E{x(ζ )|y(ζ )}}
which is known as the law of iterated expectations and that

�x = �(y)
µx|y + µ

(y)
�x|y

which is called the decomposition of the covariance rule. This rule states that the covariance
of a random vector x(ζ ) decomposes into the covariance of the conditional mean plus the
mean of the conditional covariance. The covariance of the conditional mean, µx|y , is given
by

�(y)
µx|y � Ey{[µx|y − µx][µx|y − µx]H }

where the notation �
(y)
[·] indicates the covariance over the distribution of y(ζ ). More details

can be found in Greene (1993).

PROPERTY 8.2.7. The LS estimator cls is an unbiased estimator of co.

Proof. Taking the conditional expectation with respect to X of both sides of (8.2.37), we obtain

E{cls|X} = E{co|X} + (XH X)−1XHE{eo|X} (8.2.50)

Now using the law of iterated expectations, we get

E{cls} = EX{E{cls|X}} = co + E{(XH X)−1XHE{eo|X}}
Since E{eo|X} = 0, from assumption 3, we have E{cls} = co. Thus cls is also unconditionally
unbiased.

PROPERTY 8.2.8. The covariance matrix of cls corresponding to the error cls − co is

�ls � E{(cls − co)(cls − co)H } = σ 2
eo

E{(XH X)−1} (8.2.51)

Proof. From (8.2.42), the conditional covariance matrix of cls, conditional on X, is

E{(cls − co)(cls − co)H |X} = σ 2
eo

(XH X)−1 (8.2.52)

For the unconditional covariance, we use the decomposition of covariance rule to obtain

E{(cls − co)(cls − co)H } = EX{E{(cls − co)(cls − co)H |X}}
+EX{(E{cls|X} − co)(E{cls|X} − co)H }

The second term on the right-hand side above is equal to zero since E{cls|X} = co and hence

E{(cls − co)(cls − co)H } = EX{E{(cls − co)(cls − co)H |X}}
= EX{σ 2

eo
(XH X)−1} = σ 2

eo
E{(XH X)−1}

Thus the earlier result in (8.2.42) is modified by the expected value (or averaging) of (XH X)−1.

One important conclusion about the statistical properties of the LS estimator is that the
results obtained for the deterministic data matrix X are also valid for the stochastic case.
This conclusion also applies for the Markov estimators and maximum likelihood estimators
(Greene 1993).

8.3 LEAST-SQUARES FIR FILTERS

We will now apply the theory of linear LS error estimation to the design of FIR filters. The
treatment closely follows the notation and approach in Section 6.4. Recall that the filtering
error is

e(n) = y(n)−
M−1∑
k=0

h(k) x(n− k) � y(n)− cH x(n) (8.3.1)



February 4, 2005 12:47 e56-ch8 Sheet number 13 Page number 407 black

407

section 8.3
Least-Squares FIR Filters

where y(n) is the desired response,

x(n) = [x(n) x(n− 1) · · · x(n−M + 1)]T (8.3.2)

is the input data vector, and

c = [c0 c1 · · · cM−1]T (8.3.3)

is the filter coefficient vector related to impulse response by ck = h∗(k). Suppose that
we take measurements of the desired response y(n) and the input signal x(n) over the
time interval 0 ≤ n ≤ N − 1. We hold the coefficients {ck}M−1

0 of the filter constant
within this period and set any other required data samples equal to zero. For example,
at time n = 0, that is, when we take the first measurement x(0), the filter needs the
samples x(0), x(−1), . . . , x(−M+1) to compute the output sample ŷ(0). Since the samples
x(−1), . . . , x(−M +1) are not available, to operate the filter, we should replace them with
arbitrary values or start the filtering operation at time n = M−1. Indeed, for M−1 ≤ n ≤
N − 1, all the input samples of x(n) required by the filter to compute the output {ŷ(n)}N−1

M−1
are available. If we want to compute the output while the last sample x(N −1) is still in the
filter memory, we must continue the filtering operation until n = N+M−2.Again, we need
to assign arbitrary values to the unavailable samples x(N), . . . , x(N +M−2). Most often,
we set the unavailable samples equal to zero, which can be thought of as windowing the
sequences x(n) and y(n) with a rectangular window. To simplify the illustration, suppose
that N = 7 and M = 3. Writing (8.3.1) for n = 0, 1, . . . , N + M − 1 and arranging in
matrix form, we obtain

0 →

M − 1 →

N − 1 →

N +M − 2 →




e∗(0)
e∗(1)
e∗(2)
e∗(3)
e∗(4)
e∗(5)
e∗(6)
e∗(7)
e∗(8)




=




y∗(0)
y∗(1)
y∗(2)
y∗(3)
y∗(4)
y∗(5)
y∗(6)
0

0




−




x∗(0) 0 0

x∗(1) x∗(0) 0

x∗(2) x∗(1) x∗(0)
x∗(3) x∗(2) x∗(1)
x∗(4) x∗(3) x∗(2)
x∗(5) x∗(4) x∗(3)
x∗(6) x∗(5) x∗(4)
0 x∗(6) x∗(5)
0 0 x∗(6)





c0
c1
c2


 (8.3.4)

or, in general,

e = y − Xc (8.3.5)

where the exact form of e, y, and X depends on the range Ni ≤ n ≤ Nf of measurements
to be used, which in turn determines the range of summation

E =
Nf∑

n=Ni

|e(n)|2 = eH e (8.3.6)

in the LS criterion. The LS FIR filter is found by solving the LS normal equations

(XH X)cls = XH y (8.3.7)

R̂cls = d̂ (8.3.8)or

with an LS error of

Els = Ey − d̂H cls (8.3.9)

where Ey is the energy of the desired response signal. The elements of the time-average
correlation matrix R̂ are given by

r̂ij = x̃H
i x̃j =

Nf∑
n=Ni

x(n+ 1 − i)x∗(n+ 1 − j) 1 ≤ i, j ≤ M (8.3.10)



February 4, 2005 12:47 e56-ch8 Sheet number 14 Page number 408 black

408

chapter 8
Least-Squares Filtering and
Prediction

where x̃i are the columns of data matrix X. A simple manipulation of (8.3.10) leads to

r̂i+1,j+1 = r̂ij + x(Ni − i)x∗(Ni −j)−x(Nf + 1− i)x∗(Nf + 1−j) 1 ≤ i, j < M

(8.3.11)

which relates the elements of matrix R̂ that are located on the same diagonal. This property
holds because the columns of X are obtained by shifting the first column. The recursion in
(8.3.11) suggests the following way of efficiently computing R̂:

1. Compute the first row of R̂ by using (8.3.10). This requires M dot products and a total
of about M(Nf −Ni) operations.

2. Compute the remaining elements in the upper triangular part of R̂, using (8.3.11). This
required number of operations is proportional to M2.

3. Compute the lower triangular part of R̂, using the Hermitian symmetry relation r̂j i = r̂ ∗
ij .

Notice that direct computation of the upper triangular part of R̂ using (8.3.10), that is,
without the recursion, requires approximately M2N/2 operations, which increases signifi-
cantly for moderate or large values of M .

There are four ways to select the summation range Ni ≤ n ≤ Nf that are used in LS
filtering and prediction:

No windowing. If we set Ni = M−1 and Nf = N−1, we only use the available data
and there are no distortions caused by forcing the data at the borders to artificial values.

Prewindowing. This corresponds to Ni = 0 and Nf = N − 1 and is equivalent
to setting the samples x(0), x(−1), . . . , x(−M + 1) equal to zero. As a result, the term
x(M − i)x(M − j) does not appear in (8.3.11). This method is widely used in LS adaptive
filtering.

Postwindowing. This corresponds to Ni = M − 1 and Nf = N + M − 2 and is
equivalent to setting the samples x(N), . . . , x(N + M − 2) equal to zero. As a result, the
term x(M − i)x(M − j) does not appear in (8.3.11). This method is not used very often
for practical applications without prewindowing.

Full windowing. In this method, we impose both prewindowing and postwindowing
(full windowing) to the input data and postwindowing to the desired response. The range
of summation is from Ni = 0 to Nf = N + M − 2, and as a result of full windowing, Eq.
(8.3.11) becomes r̂i+1,j+1 = r̂ij . Therefore, the elements r̂ij , depend on i − j , and matrix
R̂ is Toeplitz. In this case, the normal equations (8.2.12) can be obtained from the Wiener-
Hopf equations (6.4.11) by replacing the theoretical autocorrelations with their estimated
values (see Section 5.2).

Clearly, as N � M the performance difference between the various methods becomes
insignificant. The no-windowing and full-windowing methods are known in the signal
processing literature as the autocorrelation and covariance methods, respectively (Makhoul
1975b). We avoid these terms because they can lead to misleading statistical interpretations.
We notice that in the LS filtering problem, the data matrix X is Toeplitz and the normal
equations matrix R̂ = XH X is the product of two Toeplitz matrices. However, R̂ is Toeplitz
only in the full-windowing case when X is banded Toeplitz. In all other cases R̂ is near to
Toeplitz or R̂ is close to Toeplitz in a sense made precise in Morf, et al. (1977).

The matrix R̂ and vector d̂, for the various windowing methods, are computed by using
the Matlab function [R,d]=lsmatvec(x,M,method,y), which is based on (8.3.10) and
(8.3.11). Then the LS filter is computed by cls=R\d. Figure 8.6 shows an FIR LSE filter
operating in block processing mode.
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ŷ ˆ

FIGURE 8.6
Block processing implementation of an FIR LSE filter.

EXAMPLE 8.3.1. To illustrate the design of least-squares FIR filters, suppose that we have a set
of measurements of x(n) and y(n) for 0 ≤ n ≤ N − 1 with N = 100 that have been generated
by the difference equation

y(n) = 0.5x(n)+ 0.5x(n− 1)+ v(n)

The input x(n) and the additive noise v(n) are uncorrelated processes from a normal (Gaussian)
distribution with mean E{x(n)} = E{v(n)} = 0 and variance σ 2

x = σ 2
v = 1. Fitting the model

ŷ(n) = h(0)x(n)+ h(1)x(n− 1)

to the measurements with the no-windowing LS criterion, we obtain

cls =
[

0.5361

0.5570

]
σ̂ 2

e = 1.0419 σ̂ 2
eR̂−1 =

[
0.0073 −0.0005

−0.0005 0.0071

]

using (8.3.7), (8.3.9), (8.2.44), and (8.2.42). If the mean of the additive noise is nonzero, for
example, if E{v(n)} = 1, we get

cls =
[

0.4889

0.5258

]
σ̂ 2

e = 1.8655 σ̂ 2
eR̂−1 =

[
0.0131 −0.0009

−0.0009 0.0127

]

which shows that the variance of the estimates, that is, the diagonal elements of σ̂ 2
eR̂−1, increases

significantly. Suppose now that the recording device introduces an outlier in the input data at
x(30) = 20. The estimated LS model and its associated statistics are given by

cls =
[

0.1796

0.1814

]
σ̂ 2

e = 1.6270 σ̂ 2
eR̂−1 =

[
0.0030 0.0000

0.0000 0.0030

]

Similarly, when an outlier is present in the output data, for example, at y(30) = 20, then the LS
model and its statistics are

cls =
[

0.6303

0.4653

]
σ̂ 2

e = 5.0979 σ̂ 2
eR̂−1 =

[
0.0357 −0.0025

−0.0025 0.0347

]

In general, LS estimates are very sensitive to colored additive noise and outliers (Ljung 1987).
Note that all the LS solutions in this example were produced with one sample realization x(n)

and that the results will vary for any other realizations.

LS inverse filters. Given a causal filter with impulse response g(n), its inverse filter
h(n) is specified by g(n) ∗ h(n) = δ(n − n0), n0 ≥ 0. We focus on causal inverse filters,
which are often infinite impulse response (IIR), and we wish to approximate them by some
FIR filter cls(n) = h∗(n) that is optimum according to the LS criterion. In this case, the
actual impulse response g(n) ∗ c∗ls(n) of the combined system deviates from the desired
response δ(n− n0), resulting in an error e(n). The convolution equation

e(n) = δ(n− n0)−
M∑

k=0

c∗ls(k) g(n− k) (8.3.12)
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can be formulated in matrix form as follows for M = 2 and N = 6


e∗(0)
e∗(1)
e∗(2)
e∗(3)
e∗(4)
e∗(5)
e∗(6)
e∗(7)
e∗(8)




=




1

0

0

0

0

0

0

0

0




−




g∗(0) 0 0

g∗(1) g∗(0) 0

g∗(2) g∗(1) g∗(0)
g∗(3) g∗(2) g∗(1)
g∗(4) g∗(3) g∗(2)
g∗(5) g∗(4) g∗(3)
g∗(6) g∗(5) g∗(4)
0 g∗(6) g∗(5)
0 0 g∗(6)






cls(0)

cls(1)

cls(2)




assuming that n0 = 0. In general,

e = δi − Gc(i)
ls (8.3.13)

where δi is a vector whose ith element is 1 and whose remaining elements are all zero. The
LS inverse filter and the corresponding error are given by

(GH G)c(i)
ls = GH δi (8.3.14)

E
(i)
ls = 1 − δH

i Gc(i)
ls = 1 − g∗(i)c(i)ls (i) 0 ≤ i ≤ M +N (8.3.15)and

respectively.
Using the projection operators (8.2.29) and (8.2.30), we can express the LS error as

E
(i)
ls = δH

i (P − I)H (P − I)δi (8.3.16)

P = G(GH G)−1GH (8.3.17)where

The total error for all possible delays 0 ≤ i ≤ N +M can be written as

Etotal =
N+M∑
i=0

E
(i)
ls = tr[DH (P − I)H (P − I)D] (8.3.18)

D � [δ0 δ1 δ2 · · · δN+M ] = Iwhere

is the (N + M + 1) × (N + M + 1) identity matrix. Since D = I, P = PH , and P2 = P,
we obtain

Etotal = tr[DH (P − I)H (P − I)D] = tr(I − P) = tr(I)− tr(P)

Etotal = N (8.3.19)or

because tr(I) = N +M + 1 and

tr(P) = tr[G(GH G)−1GH ] = tr[GH G(GH G)−1] = M + 1 (8.3.20)

Hence, Etotal depends on the length N +1 of the filter g(n) and is independent of the length
M+1 of the inverse filter cls(n). If the minimum E

(i)
ls , for a given N , occurs at delay i = i0,

we have

E
(i0)
ls ≤ N

N +M + 1
(8.3.21)

which shows that E(i0)
ls → 0 as M → ∞ (Claerbout and Robinson 1963).

EXAMPLE 8.3.2. Suppose that g(n) = δ(n) − αδ(n − 1), where α is a real constant. The exact
inverse filter is

H(z) = 1

1 − α z−1
⇒ h(n) = αnu(n)
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and is minimum-phase only if −1 < α < 1. The inverse LS filter for M = 1 and N ≥ 2 is
obtained by applying (8.3.14) with

G =

 1 0
−α 1

0 −α


 and δ =


1

0
0




The normal equations are [
1 + α2 −α

−α 1 + α2

][
cls(0)

cls(1)

]
=

[
1

0

]
(8.3.22)

leading to the LS inverse filter

cls(0) = 1 + α2

1 + α2 + α4
cls(1) = α

1 + α2 + α4

with LS error

Els = 1 − cls(0) = α4

1 + α2 + α4

The system function of the LS inverse filter is

Hls(z) = 1 + α2

1 + α2 + α4

(
1 + α

1 + α2
z−1

)

and has a zero at z1 = −α/(1 + α2) = −1/(α + α−1). Since |z1| < 1 for any value of α, the
LS inverse filter is minimum-phase even if g(n) is not. This stems from the fact that the normal
equations (8.3.22) specify a one-step forward linear predictor with a correlation matrix that is
Toeplitz and positive definite for any value of α (see Section 7.4).

8.4 LINEAR LEAST-SQUARES SIGNAL ESTIMATION

We now discuss the application of the LS method to general signal estimation, FLP, BLP, and
combined forward and backward linear prediction. The reader is advised to review Section
6.5, which provides a detailed discussion of the same problems for the MMSE criterion.
The presentation in this section closely follows the viewpoint and notation in Section 6.5.

8.4.1 Signal Estimation and Linear Prediction

Suppose that we wish to compute the linear LS signal estimator c
(i)
k defined by

e(i)(n) =
M∑

k=0

c
(i)∗
k x(n− k) = c(i)H x̄(n) with c

(i)
i � 1 (8.4.1)

from the data x(n), 0 ≤ n ≤ N − 1. Using (8.4.1) and following the process that led to
(8.3.4), we obtain

e(i) = X̄c
(i)

(8.4.2)

X̄ =




x∗(0) 0 · · · 0
x∗(1) x∗(0) · · · 0
...

...
. . .

...

x∗(M) x∗(M − 1) · · · x∗(0)
...

...
...

x∗(N − 1) x∗(N − 2) · · · x∗(N −M − 1)
0 x∗(N − 1) · · · x∗(N −M)
...

...
. . .

...

0 0 · · · x∗(N − 1)




(8.4.3)where
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is the combined data and desired response matrix with all the unavailable samples set equal
to zero (full windowing). Matrix X̄ can be partitioned columnwise as

X̄ = [X1 y X2] (8.4.4)

where y, the desired response, is the ith column of X̄. Using (8.4.4), we can easily show
that the LS signal estimator c(i)

ls and the associated LS error E
(i)
ls are determined by

(X̄H X̄)c(i)
ls =




0

E
(i)
ls

0


 (8.4.5)

where E
(i)
ls is the ith element of the right-hand side vector (see Problem 8.3). If we define

the time-average correlation matrix

R̄ � X̄H X̄ (8.4.6)

and use the augmented normal equations in (8.4.5), we obtain a set of equations that have
the same form as (6.5.12), the equations for the MMSE signal estimator. Therefore, after
we have computed R̄, using the command Rbar=lsmatvec(x,M+1,method), we can use
the steps in Table 6.3 to compute the LS forward linear predictor (FLP), the backward
linear predictor (BLP), the symmetric smoother, or any other signal estimator with delay i.
Again, we use the standard notation E

(0)
ls = Ef and c(0)

ls = a for the FLP and E
(M)
ls = Eb

and c(M)
ls = b for the BLP.

All formulas given in Section 6.5 hold for LS signal estimators if the matrix R(n)

is replaced by R̄. However, we stress that although the optimum MMSE signal estimator
c(i)
o (n) is a deterministic vector, the LS signal estimator c(i)

ls is a random vector that is a
function of the random measurements x(n), 0 ≤ n ≤ N − 1. In the full-windowing case,
matrix R̄ is Toeplitz; if it is also positive definite, then the FLP is minimum-phase. Although
the use of full windowing leads to these nice properties, it also creates some “edge effects”
and bias in the estimates because we try to estimate some signal values using values that
are not part of the signal by forcing the samples leading and lagging the available data
measurements to zero.

EXAMPLE 8.4.1. Suppose that we are given the signal segment x(n) = αn, 0 ≤ n ≤ N , where
α is an arbitrary complex-valued constant. Determine the first-order one-step forward linear
predictor, using the full-windowing and no-windowing methods.

Solution. We start by forming the combined desired response and data matrix

X̄H =
[
x(0) x(1) · · · x(N) 0

0 x(0) · · · x(N − 1) x(N)

]

For the full-windowing method, the matrix

R̄ = X̄H X̄ =
[
r̂x (0) r̂x(1)

r̂∗x (1) r̂x(0)

]

is Toeplitz with elements

r̂x (0) =
N∑

n=0

|x(n)|2 =
N∑

n=0

|α|2n = 1 − |α|2(N+1)

1 − |α|2

r̂x (1) =
N∑

n=1

x(n) x∗(n− 1) =
N∑

n=1

αn(α∗)n−1 = α∗ 1 − |α|2N
1 − |α|2and

Therefore, we have [
r̂x (0) r̂x(1)

r̂∗x (1) r̂x(0)

][
1

a
(1)
1

]
=

[
Ef

1

0

]
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whose solution gives

a
(1)
1 = − r̂∗x (1)

r̂x(0)
= −α

1 − |α|2N
1 − |α|2(N+1)

Ef
1 = r̂x (0)+ r̂x (1)a

(1)
1 = 1 − |α|2(2N+1)

1 − |α|2(N+1)
and

Since for every sequence |r̂x (l)| ≤ |r̂x (0)|, we have |a(1)
1 | ≤ 1; that is, the obtained prediction

error filter always is minimum-phase. Furthermore, if |α| < 1, then limN→∞ a
(1)
1 = −α and

limN→∞ Ef
1 = 1 = x(0). In the no-windowing case, the matrix

R̄ = X̄H X̄ =
[
r̂11 r̂12

r̂∗12 r̂22

]

is Hermitian but not Toeplitz with elements

r̂11 =
N∑

n=1

|x(n)|2 = |α|2 1 − |α|2N
1 − |α|2 r̂22 =

N−1∑
n=0

|x(n)|2 = 1 − |α|2N
1 − |α|2

r̂12 =
N∑

n=1

x(n) x∗(n− 1) = α∗ 1 − |α|2N
1 − |α|2

Solving the linear system [
r̂11 r̂12

r̂∗12 r̂22

][
1

ā
(1)
1

]
=

[
Ēf

1
0

]

ā
(1)
1 = − r̂∗12

r̂22
= −αwe obtain

Ēf
1 = r̂11 + r̂12 ā

(1)
1 = 0and

We see that the no-windowing method provides a perfect linear predictor because there is no
distortion due to windowing. However, the obtained prediction error filter is minimum-phase
only when |α| < 1.

EXAMPLE 8.4.2. To illustrate the statistical properties of least-squares FLP, we generate K = 500
realizations of the MA(1) process x(n) = w(n) + 1

2
w(n − 1), where w(n) ∼ WN(0, 1) (see

Example 6.5.2). Each realization x(ζ i , n) has duration N = 100 samples. We use these data
to design an M = 2 order FLP, using the no-windowing LS method. The estimated mean and
variance of the obtained K FLP vectors are

Mean{a(ζ i )} =
[
−0.4695

0.1889

]
and var{a(ζ i )} =

[
0.0086

0.0092

]

whereas the average of the variances σ̂ 2
e is 0.9848. We notice that both means are close to the

theoretical values obtained in Example 6.5.2. The covariance matrix of a given LS estimate als
was found to be

σ̂ 2
eR̂−1 =

[
0.0099 −0.0043

−0.0043 0.0099

]

whose diagonal elements are close to the components of var{a}, as expected. The bias in the
estimate als results from the fact that the residuals in the LS equations are correlated with each
other (see Problem 8.4).

8.4.2 Combined Forward and Backward Linear Prediction (FBLP)

For stationary stochastic processes, the optimum MMSE forward and backward linear
predictors have even conjugate symmetry, that is,

ao = Jb∗
o (8.4.7)
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because both directions of time have the same second-order statistics. Formally, this property
stems from the Toeplitz structure of the autocorrelation matrix (see Section 6.5). However,
we could possibly improve performance by minimizing the total forward and backward
squared error

Ef b =
Nf∑

n=Ni

{|ef (n)|2 + |eb(n)|2} = (ef )H ef + (eb)H eb (8.4.8)

under the constraint

af b � a = Jb∗ (8.4.9)

The FLP and BLP overdetermined sets of equations are

ef = X̄
[

1

a

]
and eb = X̄

[
b
1

]
(8.4.10)

ef = X̄
[

1

af b

]
and eb∗ = X̄∗

[
b∗

1

]
= X̄∗J

[
1
af b

]
(8.4.11)or

where we have used (8.4.9) and the property JJ = I of the exchange matrix. If we combine
the above two equations as [

ef

eb∗

]
=

[
X̄

X̄∗J

][
1

af b

]
(8.4.12)

then the forward-backward linear predictor that minimizes Ef b is given by (see Problem
8.5) [

X̄

X̄∗J

]H [
X̄

X̄∗J

][
1

af b
ls

]
=

[
Ef b

ls

0

]

(X̄H X̄ + JX̄
T

X̄∗J)

[
1

af b
ls

]
=

[
Ef b

ls

0

]
(8.4.13)or

which can be solved by using the steps described in Table 6.3. The time-average forward-
backward correlation matrix

R̂f b � X̄H X̄ + JX̄
T

X̄∗J (8.4.14)

with elements

r̂ f b
ij = r̂ij + r̂∗M−i,M−j 0 ≤ i, j ≤ M (8.4.15)

is persymmetric; that is, JR̂f bJ = R̂
∗
f b and its elements are conjugate symmetric about both

main diagonals. In Matlab we compute R̂f b by these commands:

Rbar=lsmatvec(x,M+1,method)
Rfb=Rbar+flipud(fliplr(conj(Rbar)))

The FBLP method is used with no windowing and was originally introduced indepen-
dently by Ulrych and Clayton (1976) and Nuttall (1976) as a spectral estimation technique
under the name modified covariance method (see Section 9.2). If we use full windowing,
then af b = (a + Jb∗)/2 (see Problem 8.6).

8.4.3 Narrowband Interference Cancelation

Several practical applications require the removal of narrowband interference (NBI ) from
a wideband desired signal corrupted by additive white noise. For example, ground and



February 4, 2005 12:47 e56-ch8 Sheet number 21 Page number 415 black

415

section 8.4
Linear Least-Squares
Signal Estimation

foliage-penetrating radars operate from 0.01 to 1 GHz and use either an impulse or a chirp
waveform. To achieve high resolution, these waveforms are extremely wideband, occupying
at least 100 MHz within the range of 0.01 to 1 GHz. However, these frequency ranges are
extensively used by TV and FM stations, cellular phones, and other relatively narrowband
(less than 1 MHz) radio-frequency (RF) sources. Clearly, these sources spoil the radar
returns with narrowband RF interference (Miller et al. 1997). Since the additive noise is
often due to the sensor circuitry, it will be referred to as sensor thermal noise. Next we
provide a practical solution to this problem, using an LS linear predictor. Suppose that the
corrupted signal x(n) is given by

x(n) = s(n)+ y(n)+ v(n) (8.4.16)

s(n) = signal of interest

y(n) = narrowband interference

v(n) = thermal (white) noise

(8.4.17)where

are the individual components, assumed to be stationary stochastic processes.
We wish to design an NBI canceler that estimates and rejects the interference signal

y(n) from the signal x(n), while preserving the signal of interest s(n). Since signals y(n)

and x(n) are correlated, we can form an estimate of the NBI using the optimum linear
estimator

ŷ(n) = cH
o x(n−D) (8.4.18)

Rco = d (8.4.19)where

R = E{x(n−D)xH (n−D)} (8.4.20)

d = E{x(n−D) y∗(n)} (8.4.21)

and D is an integer delay whose use will be justified shortly. Note that if D = 1, then
(8.4.18) is the LS forward linear predictor. If ŷ(n) = y(n), the output of the canceler is
x(n) − ŷ(n) = s(n) + v(n); that is, the NBI is completely excised, and the desired signal
is corrupted by white noise only and is said to be thermal noise–limited.

Since, in practice, the required second-order moments are not available, we need to
use an LS estimator instead. However, the quantity XH y in (8.2.21) requires the NBI signal
y(n), which is also not available. To overcome this obstacle, consider the optimum MMSE
D-step forward linear predictor

ef (n) = x(n)+ aH x(n−D) (8.4.22)

Ra = −rf (8.4.23)

where R is given by (8.4.20) and

rf = E{x(n−D)x∗(n)} (8.4.24)

In many NBI cancelation applications, the components of the observed signal have the
following properties:

1. The desired signal s(n), the NBI y(n), and the thermal noise v(n) are mutually uncor-
related.

2. The thermal noise v(n) is white; that is, rv(l) = σ 2
vδ(l).

3. The desired signal s(n) is wideband and therefore has a short correlation length; that is,
rv(l) = 0 for |l| ≥ D.

4. The NBI has a long correlation length; that is, its autocorrelation takes significant values
over the range 0 ≤ |l| ≤ M for M > D.

In practice, the second and third properties mean that the desired signal and the thermal
noise are approximately uncorrelated after a certain small lag. These are precisely the
properties exploited by the canceler to separate the NBI from the desired signal and the
background noise.
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As a result of the first assumption, we have

E{x(n− k)y∗(n)} = E{y(n− k)y∗(n)} = ry(k) for all k (8.4.25)

rx(l) = rs(l)+ ry(l)+ rv(l) (8.4.26)and

Making use of the second and third assumptions, we have

rx(l) = ry(l) for l �= 0, 1, . . . , D − 1 (8.4.27)

The exclusion of the lags for l �= 0, 1, . . . , D−1 in r and d is critical, and we have arranged
for that by forcing the filter and the predictor to form their estimates using the delayed data
vector x(n−D). From (8.4.21), (8.4.24), and (8.4.27), we conclude that d = rf and therefore
co = ao. Thus, the optimum NBI estimator co is equal to the D-step linear predictor ao,
which can be determined exclusively from the input signal x(n). The cleaned signal is

x(n)− ŷ(n) = x(n)+ aH
o x(n−D) = ef (n) (8.4.28)

which is identical to the D-step forward prediction error. This leads to the linear prediction
NBI canceler shown in Figure 8.7.

−

Corrupted
signal

Cleaned
signal

Forward
linear

predictor

ef(n)
x(n)

z−D

FIGURE 8.7
Block diagram of linear prediction
NBI canceler.

To illustrate the performance of the linear prediction NBI canceler, we consider an
impulse radar operating in a location with commercial radio and TV stations. The desired
signal is a short-duration impulse corrupted by additive thermal noise and NBI (see Figure
8.8). The spectrum of the NBI is shown in Figure 8.9. We use a block of data (N = 4096)
to design an FBLP with D = 1 and M = 100 coefficients, using the LS criterion with no
windowing. Then we compute the cleaned signal, using (8.4.28). The cleaned signal, its
spectrum, and the magnitude response of the NBI canceler are shown in Figures 8.8 and
8.9. We see that the canceler acts as a notch filter that optimally puts notches at the peaks
of the NBI. A detailed description of the design of optimum least-squares NBI cancelers is
given in Problem 8.27.

8.5 LS COMPUTATIONS USING THE NORMAL EQUATIONS

The solution of the normal equations for both MMSE and LSE estimation problems is com-
puted by using the same algorithms. The key difference is that in MMSE estimation R and
d are known, whereas in LSE estimation they need to be computed from the observed input
and desired response signal samples. Therefore, it is natural to want to take advantage of the
same algorithms developed for MMSE estimation in Chapter 7, whenever possible. How-
ever, keep in mind that despite algorithmic similarities, there are fundamental differences
between the two classes of estimators that are dictated by the different nature of the the
criteria of performance (see Section 8.1). In this section, we show how the computational
algorithms and structures developed for linear MMSE estimation can be applied to linear
LSE estimation, relying heavily on the material presented in Chapter 7.
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8.5.1 Linear LSE Estimation

The computation of a general linear LSE estimator requires the solution of a linear system

R̂cls = d̂ (8.5.1)

where the time-average correlation matrix R̂ is Hermitian and positive definite [see (8.2.25)].
We can solve (8.5.1) by using the LDLH or the Cholesky decomposition introduced in
Section 6.3. The computation of linear LSE estimators involves the steps summarized in
Table 8.1. We again stress that the major computational effort is involved in the computation
of R̂ and d̂.

Steps 2 and 3 in (6.3.16) can be facilitated by a single extended LDLH decomposition.
To this end, we form the augmented data matrix

X̄ = [X y] (8.5.2)

and compute its time-average correlation matrix

R̄ = X̄H X̄ =
[

XH X XH y

yH X yH y

]
=

[
R̂ d̂

d̂H Ey

]
(8.5.3)
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FIGURE 8.8
NBI cancelation: time-domain results.
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FIGURE 8.9
NBI cancelation: frequency-domain results.

TABLE 8.1

Comparison between the LDLH and Cholesky decomposition methods for the
solution of normal equations.

Step LDLH decomposition Cholesky decomposition Description

1 R̂ = XH X, d̂ = XH y Normal equations R̂cls = d̂

2 R̂ = LDLH R̂ = LLH Triangular decomposition

3 LDk = d̂ Lk̃ = d̂ Forward substitution → k or k̃

4 LH cls = k LH cls = k̃ Backward substitution → cls

5 Els = Ey − kH Dk Els = Ey − k̃
H

k̃ LSE computation

6 els = y − Xcls els = y − Xcls Computation of residuals

We then can show (see Problem 8.9) that the LDLH decomposition of R̄ is given by

R̄ =
[

L 0

kH 1

][
D 0

0H Els

][
LH kH

0H 1

]
(8.5.4)

and thus provides the vector k and the LSEEls. Therefore, we can solve the normal equations
(8.5.1), using the LDLH decomposition of R̄ to compute L and k and then solving LH cls = k
to compute cls.

A careful inpection of the design equations for the general, mth-order, MMSE and
LSE estimators, derived in Chapter 6 and summarized in Table 8.2, shows that the LSE
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TABLE 8.2

Comparison between the MMSE and LSE normal equations for general linear
estimation.

MMSE LSE

Available information Rm(n), dm(n) {xm(n), y(n), ni ≤ n ≤ nf }
Normal equations Rm(n)cm(n) = dm(n) R̂mcm = d̂m

Minimum error Pm(n) = Py(n)− dH
m (n)cm(n) Em = Ey − d̂H

m cm

Correlation matrix Rm(n) � E{xm(n)xH
m (n)} R̂m = XH

m Xm =
N−1∑
n=0

xm(n)xH
m (n)

Cross-correlation vector dm(n) � E{xm(n)y∗(n)} d̂m = XH
m y =

N−1∑
n=0

xm(n)y∗(n)

Power Py(n) = E{|y(n)|2} Ey = yH y =
N−1∑
n=0

|y(n)|2

equations can be obtained from the MMSE equations by replacing the linear operator E{·}
by the linear operator

∑
n(·). As a result, all algorithms developed in Sections 7.1 and 7.2

can be used for linear LSE estimation problems.
For example, we can easily see that R̂M , d̂M , LM , DM , and kM have the optimum

nesting property described in Section 7.1.1, that is, R̂m = R̂�m�
M and so on. As a result, the

factors of the LDLH decomposition have the optimum nesting property, and we can obtain
an order-recursive structure for the computation of the LSE estimate ŷm(n). Indeed, if we
define

wm(n) = L−1
m xm(n) 0 ≤ n ≤ N − 1 (8.5.5)

R̂m =
N−1∑
n=0

xm(n)xH
m (n) = Lm

[
N−1∑
n=0

wm(n)wH
m (n)

]
Lm � LmDmLH

m (8.5.6)then

where the matrix Dm is diagonal because the LDLH decomposition is unique. If we define
the record vectors

w̃j � [wj(0) wj (1) · · · wj(N − 1)]H (8.5.7)

and the data matrix

Wm � [w̃1 w̃2 · · · w̃m] (8.5.8)

Dm = WH
m Wm = diag{ξ1, ξ2, . . . , ξm} (8.5.9)then

ξ i =
N−1∑
n=0

|wi(n)|2 = w̃H
i w̃i (8.5.10)where

From (8.5.9), we have

w̃H
i w̃j = 0 for i �= j (8.5.11)

that is, the columns of Wm are orthogonal and, in this sense, are the innovation vectors of the
columns of data matrix Xm, according to the LS interpretation of orthogonality introduced
in Section 8.2.

Following the approach in Section 7.1.5, we can show that the following order-recursive
algorithm

wm(n) = xm(n)−
m−1∑
i=1

l
(m−1)∗
i−1 wi(n)

ŷm(n) = ŷm−1(n)+ k∗mwm(n)

(8.5.12)
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em(n) = em−1(n)− k∗mwm(n)or

computed for n = 0, 1, . . . , N − 1 and m = 1, 2, . . . ,M , provides the LSE estimates for
orders 1 ≤ m ≤ M .

The statistical interpretations of innovation and partial correlation for wm(n) and km+1
hold now in a deterministic LSE sense. For example, the partial correlation between ỹ and
x̃m+1 is defined by using the residual records ẽm = ỹ − Xmcm and ẽb

m = x̃m+1 + Xmbm,
where bm is the least-squares error BLP. Indeed, if βm+1 � ẽH

m ẽb
m, we can show that

km+1 = βm+1/ξm+1 (see Problem 8.11).

E XAM PLE 8.5.1. Solve the LS problem with the following data matrix and desired response
signal:

X =




1 1 1
2 2 1
3 1 3
1 0 1


 y =




1
2
4
3




Solution. We start by computing the time-average correlation matrix and cross-correlation
vector

R̂ =

15 8 13

8 6 6
13 6 12


 d̂ =


20

9
18




followed by the LDLH decomposition of R̂ using the Matlab function [L,D]=ldlt(X). This
gives

L =



1 0 0

0.5333 1 0

0.8667 −0.5385 1


 D =




15 0 0

0 1.7333 0

0 0 0. 2308




and working through the steps in Table 8.1, we find the LS solution and LSE to be

cls = [3.0 −1.5 −1.0]T Els = 1.5

using the following sequence of Matlab commands

k=L\ dhat;
cls=L’\ k;
Els=sum((y-X’*cls).ˆ2);

These results can be verified by using the command cls=Rhat\dhat.

8.5.2 LSE FIR Filtering and Prediction

As we stressed in Section 7.3, the fundamental difference between general linear estimation
and FIR filtering and prediction, which is the key to the development of efficient order-
recursive algorithms, is the shift invariance of the input data vector

xm+1(n) = [x(n) x(n− 1) · · · x(n−m+ 1) x(n−m)]T (8.5.13)

The input data vector can be partitioned as

xm+1(n) =
[

xm(n)

x(n−m)

]
=

[
x(n)

xm(n− 1)

]
(8.5.14)

which shows that samples from different times are incorporated as the order is increased.
This creates a coupling between order and time updatings that has significant implications
in the development of efficient algorithms. Indeed, we can easily see that the matrix

R̂m+1 =
Nf∑

n=Ni

xm+1(n)xH
m+1(n) (8.5.15)
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can be partitioned as

R̂m+1 =
[

R̂m r̂b
m

r̂bH
m Eb

m

]
=

[
Ef

m r̂fH
m

r̂f
m R̂f

m

]
(8.5.16)

R̂f
m = R̂m + xm(Ni − 1)xH

m (Ni − 1)− xm(Nf )xH
m (Nf ) (8.5.17)where

is the matrix equivalent of (8.2.28). We notice that the relationship between R̂f
m and R̂m,

which allows for the development of a complete set of order-recursive algorithms for FIR
filtering and prediction, depends on the choice of Ni and Nf , that is, the windowing method
selected.

As we discussed in Section 8.3, there are four cases of interest. In the full-windowing
case (Ni = 0, Nf = N +M − 2), we have R̂f

m = R̂m and R̂m is Toeplitz. Therefore, all the
algorithms and structures developed in Chapter 7 for Toeplitz matrices can be utilized.

In the prewindowing case (Ni = 0, Nf = N − 1), Equation (8.5.17) becomes

R̂f
m = R̂m − xm(N − 1)xH

m (N − 1) (8.5.18)

Since xm(n) = 0 for n ≤ 0 (prewindowing), R̂m is a function of N . If we use the definition

R̂m(N) �
N−1∑
n=0

xm(n)xH
m (n) (8.5.19)

then the time-updating (8.5.18) can be written as

R̂f
m = R̂m(N − 1) = R̂m(N)− xm(N − 1)xH

m (N − 1) (8.5.20)

and the order-updating (8.5.16) as

R̂m+1(N) =
[

R̂m(N) r̂b
m(N)

r̂bH
m (N) Eb

m(N)

]
=

[
Ef

m(N) r̂fH
m (N)

r̂f
m(N) R̂m(N − 1)

]
(8.5.21)

which has the same form as (7.3.3). Therefore, all order recursions developed in Section
7.3 can be applied in the prewindowing case. However, to get a complete algorithm, we
need recursions for the time updatings of the BLP bm(N − 1) → bm(N) and Eb

m(N −
1) → Eb

m(N), which can be developed by using the time-recursive algorithms developed
in Chapter 10 for LS adaptive filters. The postwindowing case can be developed in a similar
fashion, but it is of no particular practical interest.

In the no-windowing case (Ni = M − 1, Nf = N − 1), matrices R̂m and R̂f
m depend

on both M and N . Thus, although the development of order recursions can be done as in
the prewindowing case, the time updatings are more complicated due to (8.5.17) (Morf
et al. 1977). Setting the lower limit to Ni = M − 1 means that all filters cm, 1 ≤ m ≤ M ,
are optimized over the interval M − 1 ≤ n ≤ N − 1, which makes the optimum nesting
property possible. If we set Ni = m− 1, each filter cm is optimized over the interval
m− 1 ≤ n ≤ N − 1; that is, it utilizes all the available data. However, in this case, the
optimum nesting property R̂m = R̂�m�

M does not hold, and the resulting order-recursive
algorithms are slightly more complicated (Kalouptsidis et al. 1984).

The development of order-recursive algorithms for FBLP least-squares filters and pre-
dictors with linear phase constraints, for example, cm = ±Jc∗m, is more complicated, in
general. A review of existing algorithms and more references can be found in Theodoridis
and Kalouptsidis (1993).

In conclusion, we notice that order-recursive algorithms are more efficient than the
LDLH decomposition–based solutions only if N is much larger than M . Furthermore, their
numerical properties are inferior to those of the LDLH decomposition methods; therefore,
a bit of extra caution needs to be exercised when order-recursive algorithms are employed.
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8.6 LS COMPUTATIONS USING ORTHOGONALIZATION TECHNIQUES

When we use the LDLH or Cholesky decomposition for the computation of LSE filters, we
first must compute the time-average correlation matrix R̂ = XH X and the time-average
cross-correlation vector d̂ = XH y from the data X and y. Although this approach is widely
used in practice, there are certain applications that require methods with better numerical
properties. When numerical considerations are a major concern, the orthogonalization tech-
niques, discussed in this section, and the singular value decomposition, discussed in Section
8.7, are the methods of choice for the solution of LS problems.

Orthogonal transformations are linear changes of variables that preserve length. In
matrix notation

y = QH x (8.6.1)

where Q is an orthogonal matrix, that is,

Q−1 = QH ⇒ QQH = I (8.6.2)

From this property, we can easily see that

‖y‖2 = yH y = xH QQH x = xH x = ‖x‖2 (8.6.3)

that is, multiplying a vector by an orthogonal matrix does not change the length of the
vector.

†
As a result, algorithms that use orthogonal transformations do not amplify roundoff

errors, resulting in more accurate numerical algorithms. There are two ways to look at the
solution of LS problems using orthogonalization techniques:

• Use orthogonal matrices to transform the data matrix X to a form that simplifies the
solution of the normal equations without affecting the time-average correlation matrix
R̂ = XH X. For any orthogonal matrix Q, we have

R̂ = XH X = XH QQH X = (QH X)H QH X (8.6.4)

Clearly, we can repeat this process as many times as we wish until the matrix XH Q1 Q2 · · ·
is in a form that simplifies the solution of the LS problem.

• Since orthogonal transformations preserve the length of a vector, multiplying the residual
e = y − Xc by an orthogonal matrix does not change the total squared error. Hence,
multiplying the residuals by QH gives

min
c

‖e‖ = min
c

‖y − Xc‖ = min
c

‖QH (y − Xc)‖ (8.6.5)

Thus, the goal is to find a matrix Q that simplifies the solution of the LS problem.

Suppose that we have already found an N ×N orthogonal matrix Q such that

X = Q
[R

O

]
(8.6.6)

where, in practice, Q is constructed to make the M ×M matrix R upper triangular.
‡

Using
(8.6.5), we have

‖e‖ = ‖QH e‖ = ‖QH y − QH Xc‖ (8.6.7)

Using the partitioning

Q � [Q1 Q2] (8.6.8)

where Q1 has M columns, we obtain

X = Q1R (8.6.9)

†
Matrix Q is an arbitrary unitary matrix and should not be confused with the eigenvector matrix of R.
‡
The symbol U would be more appropriate for the upper triangular matrix R which can also be mistaken for the

correlation matrix R. However, we chose R because, otherwise, it would be difficult to use the well-established
term QR factorization.
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which is known as the “thin” QR decomposition. Similarly,

z � QH y =
[

QH
1 y

QH
2 y

]
�

[
z1

z2

]
(8.6.10)

where z1 has M components and z2 has N − M components. Substitution of (8.6.9) and
(8.6.10) into (8.6.7) gives

‖e‖ =
∥∥∥∥∥
[Rc

0

]
−

[
QH

1 y

QH
2 y

]∥∥∥∥∥ =
∥∥∥∥∥Rc − z1

−z2

∥∥∥∥∥ (8.6.11)

Since the term z2 = QH
2 y does not depend on the parameter vector c, the length of ‖e‖

becomes minimum if we set c = cls, that is,

Rcls = z1 (8.6.12)

Els = ‖QH
2 y‖2 = ‖z2‖ (8.6.13)and

where the upper triangular system in (8.6.12) can be solved for cls by back substitution.
The steps for the solution of the LS problem using the QR decomposition are summa-

rized in Table 8.3.

TABLE 8.3

Solution of the LS problem using the QR decomposition
method.

Step Computations Description

1 X = Q
[R

0

]
QR decomposition

2 z = QH y =
[

z1

z2

]
Transformation and partitioning of y

3 Rcls = z1 Backward substitution → cls

4 Els = ‖z2‖2 Computation of LS error

5 els = Q
[

0
z2

]
Back transformation of residuals

Using the QR decomposition (8.6.6), we have

R̂ = XH X = RHR (8.6.14)

which, in conjunction with the unique Cholesky decomposition R̂ = LLH , gives

R = LH (8.6.15)

that is, the QR factorization computes the Cholesky factor R directly from data matrix X.
Also, since LH cls = k̃, we have

k̃ = z1 (8.6.16)

which, owing to the Cholesky decomposition, leads to

Els = Ey − k̃H k̃ = ‖z2‖2 (8.6.17)

because ‖y‖2 = ‖QH y‖2 = ‖z1‖2 + ‖z2‖2.
If we form the augmented matrix

X̄ = [X y] (8.6.18)

the QR decomposition of X̄ provides the triangular factor[
R k̃

0 ξ̃

]
(8.6.19)
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which is identical to the one obtained from the Cholesky decomposition of R̄ = X̄H X̄ with

R = LH and ξ̃
2 = Els (see Problem 8.14).

EXAMPLE 8.6.1. Solve the LS problem in Example 8.5.1

X =




1 1 1
2 2 1
3 1 3
1 0 1


 y =




1
2
4
3




using the QR decomposition approach.

Solution. Using the Matlab function [Q,R]=qr(X), we obtain

Q =



−0.2582 −0.3545 0.8006 0.4082

−0.5164 −0.7089 −0.4804 0.0000

−0.7746 0.4557 0.1601 −0.4082

−0.2582 0.4051 −0.3203 0.8165




R =



−3.8730 −2.0656 −3.5666

0 −1.3166 0.7089

0 0 0.4804

0 0 0




and following the steps in Table 8.3, we find the LS solution and the LSE to be

cls = [3.0 −1.5 −1.0]T Els = 1.5

using the sequence of Matlab commands

z=Q’*y;
cls=R(1:3,1:3)’\z(1:3);
Els=sum(z(4).2);

In applications that require only the error (or residual) vector els, we do not need to solve
the triangular system Rcls = z1. Instead, we can compute directly the error by els = Q[0z2

]
or the Matlab command e=Q*[zeros(1,M) z2’]’. This approach is known as direct error
(or residual) extraction and plays an important role in LS adaptive filtering algorithms and
architectures (see Chapter 10).

It is generally agreed in numerical analysis that orthogonal decomposition methods
applied directly to data matrix X are preferable to the computation and solution of the
normal equations whenever numerical stability is important (Hager 1988; Golub and Van
Loan 1996). The sensitivity of the solution cls to perturbations in the data X and y depends on
the ratio of the largest to the smallest eigenvalues of R̂ and does not depend on the algorithm
used to compute the solution. Furthermore, the numerical accuracy required to compute L
directly from X is one-half of that required to compute L from R̂. The “squaring” R̂ = XH X
of the data to form the time-average correlation matrix results in a loss of information and
should be avoided if the numerical precision is not deemed sufficient. Algorithms that
compute L directly from X are known as square root methods. However, by paraphrasing
Rader (1996), we use the terms amplitude-domain techniques for methods that compute L
directly from X and power-domain techniques for methods that compute L indirectly from
R̂ = XH X. These ideas are illustrated in the following example.

EXAMPLE 8.6.2. Let

X =



1 1

ε 0

0 ε


 R̂ = XT X =

[
1 + ε2 1

1 1 + ε2

]

where XT X is clearly positive definite and nonsingular. Let the desired signal be y = [2 ε ε]T
so that d̂ = [2 + ε2 2 + ε2]T . If ε is such that 1 + ε2 = 1, due to limited numerical precision,



February 4, 2005 12:47 e56-ch8 Sheet number 31 Page number 425 black

425

section 8.6
LS Computations Using
Orthogonalization
Techniques

the matrix XT X becomes singular. If we set ε = 10−8, solving the LS equations for cls using the
Matlab command cls=Rhat\dhat is not possible since R̂ is singular to the working precision
of Matlab. However, if the problem is solved using the QR decomposition as shown in Example
8.6.1, we find cls = [1 1]T . Note that even for slightly larger values of ε the Matlab command
cls=Rhat\dhat is able to find a solution that differs from the true LS solution since R̂ is ill
conditioned.

There are two classes of orthogonal decomposition algorithms:

1. Methods that compute the orthogonal matrix Q: Householder reflections and Givens
rotations

2. Methods that compute Q1: classical and modified Gram-Schmidt orthogonalizations

These decompositions are illustrated in Figure 8.10. The cost of the QR decomposition using
the Givens rotations is twice the cost of using Householder reflections or the Gram-Schmidt
orthogonalization. The standard method for the computation of the QR decomposition and
the solution of LS problems employs the Householder transformation. The Givens rotations
are preferred for the implementation of adaptive LS filters (see Chapter 10).

M

N

M M

M

N

N M

M

R

R
X

X

Q1

Q1 Q2

Q

“Thin” QR
decomposition

Full QR
decomposition

FIGURE 8.10
Pictorial illustration of the differences between thin and full QR decompositions.

8.6.1 Householder Reflections

Consider a vector x and a fixed line l in the plane (see Figure 8.11). If we reflect x about
the line l, we obtain a vector y that is the mirror image of x. Clearly, the vector x and its
reflection y have the same length. We define a unit vector w in the direction of x − y as

w � 1

‖x − y‖ (x − y) (8.6.20)

assuming that x and y are nonzero vectors.
Since the projection of x on w is (wH x)w, simple inspection of Figure 8.11 gives

y = x − 2(wH x)w = x − 2(wwH )x = (I − 2wwH )x � Hx

H � I − 2wwH (8.6.21)where

In general, any matrix H of the form (8.6.21) with ‖w‖ = 1 is known as a Householder
reflection or Householder transformation (Householder 1958) and has the following prop-
erties

HH = H HH H = I H−1 = HH (8.6.22)

that is, the matrix H is unitary.
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x

y

w

Line l

y − x

Projection of x on w

FIGURE 8.11
The Householder reflection vector.

We can build a Householder matrix Hk that leaves intact the first k − 1 components
of a given vector x, changes the kth component, and annihilates (zeros out) the remaining
components, that is,

yi = (Hx)i =



xi i = 1, 2, . . . , k − 1

yk i = k

0 i = k + 1, . . . , N
(8.6.23)

where yk is to be determined. If we set

yk = ±
(

N∑
i=k

|xi |2
)1/2

ejθk (8.6.24)

where θk is the angle part of xk (if complex-valued), then both x and y have the same length.
There are two choices for the sign of yk . Since the computation of w by (8.6.20) involves
subtraction (which can lead to severe numerical problems when two numbers are nearly
equal), we choose the negative sign so that yk and xk have opposite signs. Hence, yk − xk

is never the difference between nearly equal numbers. Therefore, using (8.6.20), we find
that w is given by

w = 1√
2sk(sk + |xk|)




0
...

0
(|xk| + sk)e

jθk

xk+1
...

xN




(8.6.25)

sk �
(

N∑
i=k

|xi |2
)1/2

(8.6.26)where

In general, an N × M matrix X with N > M can be diagonalized with a sequence of
M Householder transformations

HM · · · H2 H1X = R (8.6.27)

X = QR (8.6.28)or

Q � H1H2 · · · HM (8.6.29)where

Note that for M = N we need only M − 1 reflections.
We next illustrate by an example how to compute the QR decomposition of a rectangular

matrix by using a sequence of Householder transformations.
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EXAMPLE 8.6.3. Find the QR decomposition of the data matrix

X =



1 2

2 3

6 7




using Householder reflections.

Solution. Using (8.6.25), we compute the vector w1 = [0.7603 0.2054 0.6162]T and the
Householder reflection matrix H1 for the first column of X. The modified data matrix is

H1X =


−6.4031 −7.8087

0 0.3501

0 −0.9496




Similarly, we compute the vector w2 = [0 0.8203 −0.5719]T and matrix H2 for the second
column of H1X, which results in the desired QR decomposition

H2H1X = R =


−6.4031 −7.8087

0 −1.0121

0 0




Q = H1H2 =


−0.1562 −0.7711 −0.6172

−0.3123 −0.5543 −0.7715

−0.9370 0.3133 −0.1543




This result can be verified by using the Matlab function [Q,R]=qr(X), which implements the
Householder transformation.

8.6.2 The Givens Rotations

The second elementary transformation that does not change the length of a vector is a
rotation about an axis (see Figure 8.12). To describe the method of Givens, we assume for
simplicity that the vectors are real-valued. The components of the rotated vector y in terms
of the components of the original vector x are

y1 = r cos(φ + θ) = x1 cos θ − x2 sin θ

y2 = r sin(φ + θ) = x1 sin θ + x2 cos θ

or in matrix form [
y1

y2

]
=

[
cos θ − sin θ

sin θ cos θ

] [
x1

x2

]
� G(θ)

[
x1

x2

]
(8.6.30)

f

u

x

y

0

y2

y1

x2

x1

FIGURE 8.12
The Givens rotation.
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where θ is the angle of rotation. We can easily show that the rotation matrix G(θ) in (8.6.30)
is orthogonal and has a determinant det G(θ) = 1.

Any matrix of the form

Gij (θ) �




1 · · · 0 · · · 0 · · · 0
...

. . .
...

...
...

0 · · · c · · · −s · · · 0
...

...
. . .

...
...

0 · · · s · · · c · · · 0
...

...
...

. . .
...

0 · · · 0 · · · 0 · · · 1




← i

← j

(8.6.31)

↑
i

↑
j

c2 + s2 = 1 (8.6.32)with

is known as a Givens rotation. When this matrix is applied to a vector x, it rotates the
components xi and xj through an angle θ = arctan (s/c) while leaving all other components
intact (Givens 1958). Because of (8.6.30), we can write c = cos θ and s = sin θ for some
angle θ . It can easily be shown that the matrix Gij (θ) is orthogonal.

The Givens rotations have two attractive features. First, performing the rotation y =
Gij (θ)x as

yi = cxi − sxj

yj = sxi + cxj (8.6.33)

yk = xk k �= i, j

requires only four multiplications and two additions. Second, we can choose c and s to
annihilate the j th component of a vector. Indeed, if we set

c = xi√
x2
i + x2

j

s = − xj√
x2
i + x2

j

(8.6.34)

in (8.6.31), then

yi =
√

x2
i + x2

j and yj = 0 (8.6.35)

Using a sequence of Givens rotations, we can annihilate (zero out) all elements of a matrix
X below the main diagonal to obtain the upper triangular matrix of the QR decomposition.
The product of all the Givens rotation matrices provides matrix Q. We stress that the order
of rotations cannot be arbitrary because later rotations can destroy zeros introduced earlier.
A version of the Givens algorithm without square roots, which is known as the fast Givens
QR, is discussed in Golub and Van Loan (1996).

We illustrate this procedure with the next example.

EXAMPLE 8.6.4. The QR decomposition can be found in order to find the LS solution using the
Givens rotations. Given the same data matrix X as in Example 8.6.3

X =



1 2

2 3

6 7




we first zero the last element of the first column, that is, element (3, 1), using the Givens rotation
matrix G31 with c = −0.1664 and s = 0.9864. Indeed, using (8.6.34), we have

G31X =


−6.0828 −7.2336

2 3

0 0.8220






February 4, 2005 12:47 e56-ch8 Sheet number 35 Page number 429 black

429

section 8.6
LS Computations Using
Orthogonalization
Techniques

Then the element (2, 1) is eliminated by using the Givens rotation matrix G21 with c = 0.9550
and s = 0.3123, resulting in

G21G31X =


−6.4031 −7.8087

0 0.5905

0 0.8220




Finally, the QR factorization is found after applying the Givens rotation matrix G32 with c =
−0.5834 and s = 0.8122:

R = G32G21G31X =


−6.4031 −7.8087

0 −1.0121

0 0




Q = GT
31GT

21GT
32 =



−0.1562 −0.7711 −0.6172

−0.3123 −0.5543 −0.7715

−0.9370 0.3133 −0.1543




which, as expected, agrees with the QR decomposition found in Example 8.6.3.

In the case of complex-valued vectors, the components of rotated vector y in (8.6.30)
are given by [

y1

y2

]
=

[
cos θ −e−jψ sin θ

ejψ sin θ cos θ

][
x1

x2

]
(8.6.36)

where c � cos θ and s � ejψ sin θ . The element−s of the rotation matrix Gij (θ) is replaced
by −s∗, where c2 + |s|2 = 1 instead of (8.6.32).

8.6.3 Gram-Schmidt Orthogonalization

If we are given a set of M linearly independent vectors x1, x2, . . . , xM , we can create
an orthonormal basis q1, q2, . . . , qM that spans the same space by using a systematic
procedure known as the classical Gram-Schmidt (GS) othogonalization method (see also
Section 7.2.4). The GS method starts by choosing

q1 = x1

‖x1‖ (8.6.37)

as the first basis vector. To obtain q2, we express x2 as the sum of two components: its
projection (qH

1 x2)q1 onto q1 and a vector p2 that is perpendicular to q1. Hence,

p2 = x2 − (qH
1 x2)q1 (8.6.38)

and q2 is obtained by normalizing p2, that is,

q2 = p2

‖p2‖ (8.6.39)

The vectors q1 and q2 have unit length, are orthonormal, and span the same space as x1
and x2. In general, the orthogonal basis vector qj is obtained by removing from xj its
projections onto the already computed vectors q1 to qj−1. Therefore, we have

pj = xj −
j−1∑
i=1

(qH
i xj )qi and qj = pj

‖pj‖ (8.6.40)

for all 1 ≤ j ≤ M .
The GS algorithm can be used to obtain the “thin” Q1R factorization. Indeed, if we

define

rij � qH
i xj rjj � ‖pj‖ (8.6.41)
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pj = rjjqj = xj −
j−1∑
i=1

rijqi (8.6.42)we have

or by solving for xj

xj =
j∑

i=1

qi rij j = 1, 2, . . . ,M (8.6.43)

Using matrix notation, we can express this relation as X = Q1R , which is exactly the thin
Q1R factorization in (8.6.9).

Major drawbacks of the GS procedure are that it does not produce accurate results and
that the resulting basis may not be orthogonal when implemented using finite-precision
arithmetic. However, we can achieve better numerical behavior if we reorganize the com-
putations in a form known as the modified Gram-Schmidt (MGS) algorithm (Björck 1967).
We start the first step by defining q1 as before

q1 = x1

‖x1‖ (8.6.44)

However, all the remaining vectors x2, . . . , xM are modified to be orthogonal to q1 by
subtracting from each vector its projection onto q1, that is,

x(1)
i = xi − (qH

1 xi )q1 i = 2, . . . ,M (8.6.45)

At the second step, we define the vector

q2 = x(1)
2

‖x(1)
2 ‖

(8.6.46)

which is already orthogonal to q1. Then we modify the remaining vectors to make them
orthogonal to q2

x(2)
i = x(1)

i − (qH
2 x(1)

i )q2 i = 3, . . . ,M (8.6.47)

Continuing in a similar manner, we compute qm and the updated vectors x(m)
i by

qm = x(m−1)
m

‖x(m−1)
m ‖

(8.6.48)

x(m)
i = x(m−1)

i − (qH
m x(m−1)

i )qm i = m+ 1, . . . ,M (8.6.49)and

The MGS algorithm involves the following steps, outlined in Table 8.4 and is implemented
by the function Q=mgs(X). The superior numerical properties of the modified algorithm stem

TABLE 8.4

Orthogonalization of a set of vectors using the
modified Gram-Schmidt algorithm.

Modified GS Algorithm

For m = 1 to M

rmm = ‖xm‖2

qm = xm/rmm

For i = m+ 1 to M

rmi = qH
m xi

xi ← xi − rmiqm

next i
next m
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from the fact that successive x(m)
i generated by (8.6.49) decrease in size and that the dot

product qH
m x(m−1)

i can be computed more accurately than the dot product qH
m xi .

EXAMPLE 8.6.5. Consider an LS problem (Dahlquist and Björck 1974) with

X =




1 1 1

ε 0 0

0 ε 0

0 0 ε


 y =




1

0

0

0




where ε2 # 1, that is, ε2 can be neglected compared to 1. We first compute XT X and XT y to
determine the normal equations


1 + ε2 1 1

1 1 + ε2 1

1 1 1 + ε2


 cls =




1

1

1




which provide the exact solution cls = [1 1 1]T /(3 + ε2). Numerically, the matrix XT X is
singular on any computer with accuracy such that 1 + ε2 is rounded to 1. Applying the MGS
algorithm to the column vectors of the augmented matrix [X y], and taking into consideration
that 1 + ε2 is rounded to 1, we obtain

Q =




1 0 0

ε −ε − ε

2

0 ε − ε

2
0 0 ε




e = − ε

3




0

1

1

1




R =



1 1 1

0 1 1
2

0 0 1


 z =




1

1
2
1
3




which corresponds to the thin QR decomposition. Solving Rcls = z, we obtain cls = [1 1 1]T/3,
which agrees with the exact solution under the assumption that 1 + ε2 is rounded to 1.

8.7 LS COMPUTATIONS USING THE SINGULAR VALUE DECOMPOSITION

The singular value decomposition (SVD) plays a prominent role in the theoretical analysis
and practical solution of LS problems because (1) it provides a unified framework for the
solution of overdetermined and underdetermined LS problems with full rank or that are
rank-deficient and (2) it is the best numerical method to solve LS problems in practice. In
this section, we discuss the existence and fundamental properties of the SVD, show how
to use it for solving the LS problem, and apply it to determine the numerical rank of a
matrix. More details are given in Golub and Van Loan (1996), Leon (1990), Stewart (1973),
Watkins (1991), and Klema and Laub (1980).

8.7.1 Singular Value Decomposition

The eigenvalue decomposition reduces a Hermitian matrix to a diagonal matrix by premulti-
plying and postmultiplying it by a single unitary matrix. The singular value decomposition,
introduced in the next theorem, reduces a general matrix to a diagonal one by premultiplying
and postmultiplying it by two different unitary matrices.
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THEOREM 8.2. Any real N ×M matrix X with rank r (recall that r is defined as the number of
linearly independent columns of a matrix) can be written as

X = U�VH (8.7.1)

where U is an N ×N unitary matrix, V is an M ×M unitary matrix, and � is an N ×M matrix
with 〈�〉ij = 0, i �= j , and 〈�〉ii = σ i > 0, i = 1, 2, . . . , r . The numbers σ i are known as the
singular values of X and are usually arranged in decreasing order as σ 1 ≥ σ 2 ≥ · · · ≥ σ r > 0.

Proof. We follow the derivation given in Stewart (1973). Since the matrix XH X is positive
semidefinite, it has nonnegative eigenvalues σ 2

1, σ
2
2, . . . , σ

2
M

such that σ 1 ≥ σ 2 ≥ · · · ≥ σ r >

0 = σ r+1 = · · · = σM for 0 ≤ r ≤ M . Let v1, v2, . . . , vM be the eigenvectors corresponding
to the eigenvalues σ 2

1, σ
2
2, . . . , σ

2
M

. Consider the partitioning V = [V1 V2], where V1 consists

of the first r columns of V. If �r = diag{σ 1, σ 2, . . . , σ r }, then we obtain VH
1 XH XV1 = �2

r

and

�−1
r VH

1 XH XV1�−1
r = I (8.7.2)

Since VH
2 XH XV2 = 0, we have

XV2 = 0 (8.7.3)

If we define

U1 � XV1�−1
r (8.7.4)

then (8.7.2) gives UH
1 U1 = I; that is, the columns of U1 are unitary. A unitary matrix U �

[U1 U2] is found by properly choosing the components of U2, that is, UH
2 U1 = 0 and UH

2 U2 = I.
Then

UH XV =
[

UH
1

UH
2

]
X [V1 V2] =

[
UH

1 XV1 UH
1 (XV2)

UH
2 XV1 UH

2 (XV2)

]
=

[
�r 0

0 0

]
(8.7.5)

because of (8.7.2), (8.7.3), and UH
2 XV1 = (UH

2 U1)�r = 0.

The SVD of a matrix, which is illustrated in Figure 8.13, provides a wealth of infor-
mation about the structure of the matrix. Figure 8.14 provides a geometric interpretation of
the SVD of a 2 × 2 matrix X (see Problem 8.23 for details).

V
X

Σ 0

00

=× ×
N

N M M M
r

r

Orthogonal
matrix

Orthogonal
matrix

Data
matrix

Data
matrix

UT

FIGURE 8.13
Pictorial representation of
the singular value
decomposition of a matrix.

Properties and interpretations. We next provide a summary of interpretations and
properties whose proofs are given in the references and the problems.

1. Postmultiplying (8.7.1) by V and equating columns, we obtain

Xvi =
{
σ iui i = 1, 2, . . . , r

0 i = r + 1, . . . ,M
(8.7.6)

that is, vi (columns of V) are the right singular vectors of X.
2. Premultiplying (8.7.1) by UH and equating rows, we obtain

uH
i X =

{
σ ivH

i i = 1, 2, . . . , r

0 i = r + 1, . . . , N
(8.7.7)

that is, ui (columns of U) are the left singular vectors of X.
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Σ = =

1

1

 1     0
 0     2

X = UΣVH

UH =  U−1

Rotation
VH =  V−1

Rotation

Stretching

s1

s2

FIGURE 8.14
The SVD of a 2 × 2 matrix
maps the unit circle into an
ellipse whose semimajor and
semiminor axes are equal to
the singular values of the
matrix.

3. Let λi(·) and σ 2
i (·) denote the ith largest eigenvalue and singular value of a given

matrix, respectively. The vectors v1, . . . , vM are eigenvectors of XH X; u1, . . . , uN are
eigenvectors of XXH , for which the squares of the singular values σ 2

1, . . . , σ
2
r of X are

the first r nonzero eigenvalues of XH X and XXH , that is,

λi(XH X) = λi(XXH ) = σ 2
i (X) (8.7.8)

4. In the product X = U�VH , the last N − r columns of U and M − r columns of V
are superfluous because they interact only with blocks of zeros in �. This leads to the
following thin SVD representation of X

X = Ur�rVH
r (8.7.9)

where Ur and Vr consist of the first r columns of U and V, respectively, and
�r = diag {σ 1, σ 2, . . . , σ r}.

5. The SVD can be expressed as

X =
r∑

i=1

σ iuivH
i (8.7.10)

that is, as a sum of cross products weighted by the singular values.
6. If the matrix X has rank r , then:

a. The first r columns of U form an orthonormal basis for the space spanned by the
columns of X (range space or column space of X).

b. The first r columns of V form an orthonormal basis for the space spanned by the rows
of X (range space of XH or row space of X).

c. The last M − r columns of V form an orthonormal basis for the space of vectors
orthogonal to the rows of X (null space of X).

d. The last N − r columns of U form an orthonormal basis for the null space of XH .

7. The Euclidean norm of X is

‖X‖ = σ 1 (8.7.11)

8. The Frobenius norm of X, that is, the square root of the sum of the squares of its elements,
is

‖X‖F �

√√√√ N∑
i=1

M∑
j=1

|xij |2 =
√

σ 2
1 + σ 2

2 + · · · + σ 2
r (8.7.12)
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9. The difference between the transformations implied by eigenvalue and SVD transfor-
mations can be summarized as follows:

Eigenvalue decomposition SVD

R = Q�QH X = U�VH

X XH

q1
λ1−→ q1 v1

σ 1−→ u1
σ 1−→ v1

q2
λ2−→ q2 v2

σ 2−→ u2
σ 2−→ v2

...
...

...
...

...
...

...
...

qM
λM−→ qM vr

σ r−→ ur
σ r−→ vr

vr+1
...

vM


 → 0

ur+1
...

uM


 → 0

This illustrates the need for left and right singular values and vectors.

We can compute the SVD of a matrix X by forming the matrices XH X and XXH and
computing their eigenvalues and eigenvectors (see Problem 8.21). However, we should
avoid this approach because the “squaring” of X to form these correlation matrices results
in a loss of information (see Example 8.6.2).

In practice, the SVD is computed by using the algorithm of Golub and Reinsch (1970)
or the R-SVD algorithm described in Chan (1982), which for N � M is twice as fast. The
state of the art in SVD research is provided in Golub and Van Loan (1996), whereas reliable
numerical algorithms and code are given in LA-PACK, LINPACK, and Numerical Recipes
in C (Press et al. 1992).

8.7.2 Solution of the LS Problem

So far, we have discussed the solution of the overdetermined (N > M) LS problem with
full-rank (r = M) data matrices using the normal equations and the QR decomposition
techniques. We next show how the SVD can be used to solve the LS problem without
making any assumptions about the dimensions N and M or the rank r of data matrix X.

Suppose that we know the exact SVD of data matrix X = U�VH. Since U is orthog-
onal,

‖y − Xc‖ = ‖y − U�VH c‖ = ‖UH y − �VHc‖ (8.7.13)

y′ � UH y c′ � VHcIf we define

we obtain the LSE

‖y − Xc‖2 = ‖y′ − �c′‖ =
r∑

i=1

|y′i − σ ic
′
i |2 +

N∑
i=r+1

|y′i |2 (8.7.14)

which is minimized if and only if c′i = y′i/σ i for i = 1, 2, . . . , r . We notice that when
r < M , the terms c′r+1, . . . , c

′
M do not appear in (8.7.14). Therefore, they have no effect

on the residual and can be chosen arbitrarily. To illustrate this point, consider the geometric
interpretation in Figure 8.5. There is only one linear combination of the linearly independent
vectors x̃1 and x̃2 that determines the optimum LS estimate. If the data matrix has one more
column x̃3 that lies in the same plane, then there are an infinite number of linear combinations
c1x̃1 + c2x̃2 + c3x̃3 that satisfy the LSE criterion. To obtain a unique LS solution from all
solutions c that minimize ‖y − Xc‖, we choose the one with the minimum length ‖c‖. Since
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the matrix V is orthogonal, we have ‖c′‖ = ‖VH c‖ = ‖c‖, and the norm ‖c‖ is minimized
when the norm ‖c′‖ is minimized. Hence, choosing c′r+1 = · · · = c′M = 0 provides
the minimum-norm solution to the LS problem. In summary, the unique, minimum-norm
solution to the LS problem is

cls =
r∑

i=1

uH
i y

σ i

vi (8.7.15)

c′i =




y′i
σ i

= uH
i y

σ i

i = 1, . . . , r

0 i = r + 1, . . . ,M

(8.7.16)where

Els = ‖y − Xcls‖2 =
N∑

i=r+1

|y′i |2 =
N∑

i=r+1

|uH
i y|2 (8.7.17)and

is the corresponding LS error.
We next express the unique minimum-norm solution to the LS problem in terms of the

pseudoinverse of data matrix X using the SVD. To this end, we note that (8.7.16) can be
written in matrix form

c′ = �+y′ (8.7.18)

�+ �
[
�−1

r 0
0 0

]
(8.7.19)where

is an N × N matrix with �−1
r = diag {1/σ 1, . . . , 1/σ r}. Therefore, using (8.7.15) and

(8.7.19), we obtain

cls = V�+UH y = X+y (8.7.20)

X+ � V�+UH =
r∑

i=1

1

σ i

viuH
i (8.7.21)where

is the pseudoinverse of matrix X. For full-rank matrices, the pseudoinverse is defined as
X+ = (XH X)−1XH (Golub and Van Loan 1996), so that using (8.7.21) leads to the LS
solution in (8.2.21). If N = M = rank(X), then X+ = X−1. Therefore, (8.7.21) holds for
any rectangular or square matrix that is either full rank or rank-deficient. Formally, X+ can
be defined independently of the LS problem as the unique M × N matrix A that satisfies
the four Moore-Penrose conditions

XAX = X (XA)H = XA

AXA = A (AX)H = AX
(8.7.22)

which implies that XX+ and X+X are orthogonal projections onto the range space of X and
XH (see Problem 8.25). However, we stress that the pseudoinverse is, for the most part, a
theoretical tool, and there is seldom any reason for its use in practice.

In summary, the computation of the LS estimator using the SVD involves the steps
shown in Table 8.5. The vector cls is unique and satisfies two requirements: (1) It minimizes
the sum of the errors, and (2) it has the smallest Euclidean norm.

The following example illustrates the use of the SVD for the computation of the LS
estimator.

E XAM PLE 8.7.1. Solve the LS problem with the following data matrix and desired response
signal:

X =




1 1 1

2 2 1

3 1 3

1 0 1


 y =




1

2

4

3



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TABLE 8.5

Solution of the LS problem using
the SVD method.

Step Description

1 Compute the SVD X = U�VH

2 Determine the rank r of X

3 Compute y′
i
= uH

i
y, i = 1, . . . , N

4 Compute cls =
r∑

i=1

y′
i

σ i
vi

5 Compute Els =
N∑

i=r+1

|y′
i
|2

Solution. We start by computing the SVD of X = U�VT by using the Matlab function
[U,S,V]=svd(X). This gives

U =




0.3041 0.2170 0.8329 0.4082

0.4983 0.7771 −0.3844 0.0000

0.7768 −0. 4778 0.0409 −0.4082

0.2363 −0. 3474 −0.3960 0.8165




� =




5.5338 0 0

0 1.5139 0

0 0 0.2924

0 0 0


 V =




0.6989 0.3754 −0.60882

−0.0063 0.8544 −0.5196

−0.7152 0.3593 0.5994




T

which implies that the data matrix has rank r = 3. Next we compute

y′ = UT y =




5.1167

−1.1821

−0.9602

1.2247


 cls =




3.0

−1.5

−1.0


 Els = 1.5

by the Matlab commands

yp=U’*y;
cls=V*(yp(1:r)./diag(S));
Els=sum(yp(r+1:N).ˆ2);

which implement steps 3, 4, and 5 in Table 8.5. The LS solution also can be obtained from
cls=X\y. If we set 〈X〉23 = 2, the first and last columns of X become linearly dependent, the
SVD has only two nonzero singular values, and the svd function warns that X is rank-deficient.

Table 8.6 shows the numerical operations required by the various LS solution methods
(Golub and Van Loan 1996). For full-rank (nonsingular) data matrices, all other methods
are simpler than the SVD. However, these methods are inaccurate when X is rank-deficient
(nearly singular). In such cases, the SVD reveals the near singularity of the data matrix and
is the method of choice because it provides a reliable computation of the numerical rank
(see the next section).

Normal equations versus QR decomposition. The squaring of X to form the time-
average correlation matrix R̂ = XH X results in a loss of information and should be avoided.
Since ‖X−1‖ = 1/σmin, the condition number of X is

κ(X) = ‖X‖‖X−1‖ = σmax

σmin
(8.7.23)
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TABLE 8.6

Computational complexity of LS computation algorithms.

LS Algorithm FLOPS (floating point operations)

Normal equations NM2 +M3/3
Householder orthogonalization 2NM2 − 2M3/3
Givens orthogonalization 3NM2 −M3

Modified Gram-Schmidt 2NM2

Golub-Reinsch SVD 4NM2 + 8M3

R-SVD 2NM2 + 11M3

which is analogous to the eigenvalue ratio for square Hermitian matrices. Hence,

κ(XH X) = λmax

λmin
= σ 2

max

σ 2
min

= κ2(X) (8.7.24)

which shows that squaring a matrix can only worsen its condition.
The study of the sensitivity of the LS problem is complicated. However, the following

conclusions (Golub and Van Loan 1996; Van Loan 1997) can be drawn:

1. The sensitivity of the LS solution is roughly proportional to the quantityκ(X)+√
Elsκ

2(X).
Hence, any method produces inaccurate results when applied to ill-conditioned problems
with large Els.

2. The method of normal equations produces a solution cls whose relative error is approx-
imately eps · κ2(X), where eps is the machine precision.

3. The QR method (Householder, Givens, MGS) produces a solution cls whose relative
error is approximately eps · [κ(X)+√

Elsκ
2(X)].

In general, QR methods are more accurate than and can be used for a wider class of
data matrices than the normal equations approach, even if the latter is about twice as fast.

In many practical applications, we need to update the Cholesky or QR decomposition
after the original data matrix has been modified by the addition or deletion of a row or column
(rank 1 modifications). Techniques for the efficient computation of these decompositions
by updating the existing ones can be found in Golub and Van Loan (1996) and Gill et al.
(1974).

8.7.3 Rank-Deficient LS Problems

In theory, it is relatively easy to determine the rank of a matrix or that a matrix is rank-
deficient. However, both tasks become complicated in practice when the elements of the
matrix are specified with inadequate accuracy or the matrix is near singular. The SVD
provides the means of determining how close a matrix is to being rank-deficient, which
in turn leads to the concept of numerical rank. To this end, suppose that the elements
of matrix X are known with an accuracy of order ε, and its computed singular values
σ 1 ≥ σ 2 ≥ · · · ≥ σM are such that

σ 2
r+1 + σ 2

r+2 + · · · + σ 2
M < ε2 (8.7.25)

Then if we set �r � diag {σ 1, . . . , σ r , 0, . . . , 0} and

Xr � U
[
�r

0

]
VH (8.7.26)

‖X − Xr‖F =
√

σ 2
r+1 + σ 2

r+2 + · · · + σ 2
M < ε (8.7.27)we have

and matrix X is said to be near a matrix of rank r or X has numerical rank r . It can be
shown that Xr is the matrix of rank r that is nearest to X in the Frobenius norm sense (Leon
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1990; Stewart 1973). This result has important applications in signal modeling and data
compression.

Computing the LS solution for rank-deficient data matrices requires extra care. When a
singular value is equal to a very small number, its reciprocal, which is a singular value of the
pseudoinverse X+, is a very large number. As a result, the LS solution deviates substantially
from the “true” solution.

One way to handle this problem is to replace each singular value below a certain
cutoff value (thresholding) with zero. A typical threshold is a fraction of σ 1 determined by
either the machine precision available or the accuracy of the elements in the data matrix
(measurement accuracy). For example, if the data matrix is accurate to six decimal places,
we set the threshold at 10−6σ 1 (Golub and Van Loan 1996).

Another way is to replace the LS criterion (8.7.14) by

E{c, ψ} = ‖y − Xc‖2 + ψ‖c‖2 (8.7.28)

where the constant ψ > 0 reflects the importance of the norm of the solution vector.
The term ‖c‖ acts a stabilizer, that is, prevents the solution cψ from becoming too large
(regularization). Indeed, using the method of Lagrange multipliers, we can show that

cψ =
r∑

i=1

σ i

σ 2
i + ψ

(uH
i y)vi (8.7.29)

which is known as the regularized solution. We note that cψ = cls when ψ = 0. However,
when ψ > 0, as σ i → 0 the term σ i/(σ

2
i + ψ) in (8.7.29) tends to zero while the term

1/σ i → ∞ in (8.7.15) tends to infinity. Furthermore, it can be shown that ‖cls‖ ≤ ‖y‖/σ r

and ‖cψ‖ ≤ ‖y‖/√ψ (Hager 1988).
Since the minimum-norm LS solution requires only the first r columns of U, where r

is the numerical rank of X, we can use the thin SVD. If N � M , the computation of either
Ur or U is expensive. However, in practical SVD algorithms, U is computed as the product
of many reflections and rotations. Hence, we can compute y′ = UH y by updating y at each
step i with each orthogonal transformation, that is, UH

i y → y.

8.8 SUMMARY

In this chapter we discussed the theory, implementation, and application of linear estimators
(combiners, filters, and predictors) that are optimum according to the LSE criterion of
performance. The fundamental differences between linear MMSE and LSE estimators are
as follows:

• MMSE estimators are designed using ensemble average second-order moments R and
d; they can be designed prior to operation, and during their normal operation they need
only the input signals.

• LSE estimators are designed using time-average estimates R̂ and d̂ of the second-order
moments or data matrix X and the desired response vector y. For this reason LSE estima-
tors are sometimes said to be data-adaptive. The design and operation of LSE estimators
are coupled and are usually accomplished by using either of the following approaches:

– Collect a block of training data Xtr and ytr and use them to design an LSE estimator;
use it to process subsequent blocks. Clearly, this approach is meaningful if all
blocks have statistically similar characteristics.

– For each collected block of data X and y, compute the LSE filter cls or the LSE
estimate ŷ (whatever is needed).

There are various numerical algorithms designed to compute LSE estimators and esti-
mates. For well-behaved data and sufficient numerical precision, all these methods produce
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the same results and therefore provide the same LSE performance, that is, the same total
squared error.

However, when ill-conditioned data, finite precision, or computational complexity is a
concern, the choice of the LS computational algorithm is very important.

We saw that there are two major families of numerical algorithms for dealing with LS
problems:

Power-domain techniques solve LS estimation problems using the time-average mo-
ments R̂ = XH X and d̂ = XH y. The most widely used methods are the LDLH and
Cholesky decompositions.

Amplitude-domain techniques operate directly on data matrix X and the desired re-
sponse vector. In general, they require more computations and have better numerical
properties than power-domain methods. This group includes the QR orthogonal-
ization methods (Householder, Givens, and modified Gram-Schmidt) and the SVD
method.

The QR decomposition methods apply a unitary transformation to the data matrix to
reduce it to an upper triangular one, whereas the GS methods apply an upper triangular
matrix transformation to orthogonalize the columns of the data matrix.

In conclusion, we emphasize that there are various ways to compute the coefficients of
an optimum estimator and the value of the optimum estimate. We stress that the performance
of any optimum estimator, as measured by the MMSE or LSE, does not depend on the
particular implementation as long as we have sufficient numerical precision. Therefore, if
we want to investigate how well an optimum estimator performs in a certain application, we
can use any implementation, as long as computational complexity is not a consideration.

PROBLEMS

8.1 By differentiating (8.2.8) with respect to the vector c, show that the LSE estimator cls is given
by the solution of the normal equations (8.2.12).

8.2 Let the weighted LSE be given by Ew = eH We, where W is a Hermitian positive definite
matrix.

(a) By minimizing Ew with respect to the vector c, show that the wieghted LSE estimator is
given by (8.2.35).

(b) Using the LDLH decomposition W = LDLH , show that the weighted LS criterion corre-
sponds to prefiltering the error or the data.

8.3 Using direct substitution of (8.4.4) into (8.4.5), show that the LS estimator c(i)ls and the associated

LS error E
(i)
ls are determined by (8.4.5).

8.4 Consider a linear system described by the difference equation y(n) = 0.9y(n− 1)+ 0.1x
(n − 1) + v(n), where x(n) is the input signal, y(n) is the output signal, and v(n) is an output
disturbance. Suppose that we have collected N = 1000 samples of input-output data and that we
wish to estimate the system coefficients, using the LS criterion with no windowing. Determine
the coefficients of the model y(n) = ay(n − 1) + dx(n − 1) and their estimated covariance
matrix σ̂ 2

eR̂−1 when

(a) x(n) ∼ WGN(0, 1) and v(n) ∼ WGN(0, 1) and
(b) x(n) ∼ WGN(0, 1) and v(n) = 0.8v(n − 1) + w(n) is an AR(1) process with w(n) ∼

WGN(0, 1). Comment upon the quality of the obtained estimates by comparing the matrices
σ̂2

eR̂−1 obtained in each case.

8.5 Use Lagrange multipliers to show that Equation (8.4.13) provides the minimum of (8.4.8) under
the constraint (8.4.9).
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8.6 If full windowing is used in LS, then the autocorrelation matrix is Toeplitz. Using this fact, show
that in the combined FBLP the predictor is given by

af b = 1
2
(a + Jb∗)

8.7 Consider the noncausal “middle” sample linear signal estimator specified by (8.4.1) with M =
2L and i = L.

(a) Show that if we apply full windowing to the data matrix, the resulting signal estimator is
conjugate symmetric, that is, c(L) = Jc(L)∗. This property does not hold for any other
windowing method.

(b) Derive the normal equations for the signal estimator that minimizes the total squared error
E(L) = ‖e(L)‖2 under the constraint c(L) = Jc(L)∗.

(c) Show that if we enforce the normal equation matrix to be centro-Hermitian, that is, we use
the normal equations

(X̄H X̄ + JX̄T X̄∗J)c(L) =



0

E(L)

0




then the resulting signal smoother is conjugate symmetric.
(d ) Illustrate parts (a) to (c), using the data matrix

X =




1 1 1

2 2 1

3 1 3

1 0 1

1 2 1




and check which smoother provides the smallest total squared error. Try to justify the
obtained answer.

8.8 A useful impulse response for some geophysical signal processing applications is the Mexican
hat wavelet

g(t) = 2√
3
π−1/4(1 − t2)e−t2/2

which is the second derivative of a Gaussian pulse.

(a) Plot the wavelet g(t) and the magnitude and phase of its Fourier transform.
(b) By examining the spectrum of the wavelet, determine a reasonable sampling frequency Fs .
(c) Design an optimum LS inverse FIR filter for the discrete-time wavelet g(nT ), where T =

1/Fs . Determine a reasonable value for M by plotting the LSE EM as a function of order
M . Investigate whether we can improve the inverse filter by introducing some delay n0.
Determine the best value of n0 and plot the impulse response of the resulting filter and the
combined impulse response g(n) ∗ h(n− n0), which should resemble an impulse.

(d ) Repeat part (c) by increasing the sampling frequency by a factor of 2 and comparing with
the results obtained in part (c).

8.9 (a) Prove Equation (8.5.4) regarding the LDLH decomposition of the augmented matrix R̄.
(b) Solve the LS estimation problem in Example 8.5.1, using the LDLH decomposition of R̄

and the partitionings in (8.5.4).

8.10 Prove the order-recursive algorithm described by the relations given in (8.5.12). Demonstrate
the validity of this approach, using the data in Example 8.5.1.

8.11 In this problem, we wish to show that the statistical interpretations of innovation and partial
correlation for wm(n) and km+1 in (8.5.12) hold in a deterministic LSE sense. To this end,
suppose that the “partial correlation” between ỹ and x̃m+1 is defined using the residual records
ẽm = ỹ − Xmcm and ẽb

m = x̃m+1 + Xmbm, where bm is the LSE BLP. Show that kk+1 =
βm+1/ξm+1, where βm+1 � ẽHm ẽb

m and ξm+1 = ẽbH
m ẽb

m. Demonstrate the validity of these
formulas using the data in Example 8.5.1.
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8.12 Show that the Cholesky decomposition of a Hermitian positive definite matrix R can be com-
puted by using the following algorithm

for j = 1 to M

lij = (rij −
j−1∑
k=1

|ljk |2)1/2

for i = j + 1 to M

lij = (rij −
j−1∑
k=1

l∗ikljk)/ ljj

end i

end j

and write a Matlab function for its implementation. Test your code using the built-in Matlab
function chol.

8.13 Compute the LDLT and Cholesky decompositions of the following matrices:

X1 =



9 3 −6

3 4 1

−6 1 9


 and X2 =




6 4 −2

4 5 3

−2 3 6




8.14 Solve the LS problem in Example 8.6.1,

(a) using the QR decomposition of the augmented data matrix X̄ = [X y] and
(b) using the Cholesky decomposition of the matrix R̄ = X̄H X̄.

Note: Use Matlab built-in functions for the QR and Cholesky decompositions.

8.15 (a) Show that a unit vector w is an eigenvector of the matrix H = I − 2wwH . What is the
corresponding eigenvalue?

(b) If a vector z is orthogonal to w, show that z is an eigenvector of H. What is the corresponding
eigenvalue?

8.16 Solve the LS problem

X =




1 2

1 3

1 2

1 −1


 y =



−3

10

3

6




using the Householder transformation.

8.17 Solve Problem 8.16 by using the Givens transformation.

8.18 Compute the QR decomposition of the data matrix

X =




4 2 1

2 0 1

2 0 −1

1 2 1




using the GS and MGS methods, and compare the obtained results.

8.19 Solve the following LS problem

X =




1 −2 −1

2 0 1

2 −4 2

4 0 0


 y =



−1

1

1

−2




by computing the QR decomposition using the GS algorithm.
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8.20 Show that the computational organization of the MGS algorithm shown in Table 8.4 can be used
to compute the GS algorithm if we replace the step rim = qH

i
xm by rim = qH

i
qm.

8.21 Compute the SVD of X =
[

1 1
1 1
0 0

]
by computing the eigenvalues and eigenvectors of XH X and

XXH . Check with the results obtained using the svd function.

8.22 Repeat Problem 8.21 for

(a) X =
[

6 2

−7 6

]
and

(b) X =
[

0 1 1

1 1 0

]
.

8.23 Write a Matlab program to produce the plots in Figure 8.14, using the matrix X = [ 6 2
−7 6

]
.

Hint: Use a parametric description of the circle in polar coordinates.

8.24 For the matrix X = [0 1 1
1 1 0

]T
determine X+ and verify that X and X+ satisfy the four

Moore-Penrose conditions (8.7.22).

8.25 Prove the four Moore-Penrose conditions in (8.7.22) and explain why XX+ and X+X are
orthogonal projections onto the range space of X and XH .

8.26 In this problem we examine in greater detail the radio-frequency interference cancelation ex-
periment discussed in Section 8.4.3. We first explain the generation of the various signals and
then proceed with the design and evaluation of the LS interference canceler.

(a) The useful signal is a pointlike target defined by

s(t) = d

dt

(
1

e−αt/tr + eαt/tf

)
� dg(t)

dt

where α = 2.3, tr = 0.4, and tf = 2. Given that Fs = 2 GHz, determine s(n) by
computing the samples g(n) = g(nT ) in the interval −2 ≤ nT ≤ 6 ns and then computing
the first difference s(n) = g(n) − g(n − 1). Plot the signal s(n) and its Fourier transform
(magnitude and phase), and check whether the pointlike and wideband assumptions are
justified.

(b) Generate N = 4096 samples of the narrowband interference using the formula

z(n) =
L∑

i=1

Ai sin (ωin+ φi)

and the following information:

Fs=2; % All frequencies are measured in GHz.
F=0.1*[0.6 1 1.8 2.1 3 4.8 5.2 5.7 6.1 6.4 6.7 7 7.8 9.3]’;
L=length(F);
om=2*pi*F/Fs;
A=[0.5 1 1 0.5 0.1 0.3 0.5 1 1 1 0.5 0.3 1.5 0.5]’;
rand(’seed’,1954);
phi=2*pi*rand(L,1);

(c) Compute and plot the the periodogram of z(n) to check the correctness of your code.
(d ) Generate N samples of white Gaussian noise v(n) ∼ WGN (0, 0.1) and create the ob-

served signal x(n) = 5s(n − n0) + z(n) + v(n), where n0 = 1000. Compute and plot the
periodogram of x(n).

(e) Design a one-step ahead (D = 1) linear predictor with M = 100 coefficients using the
FBLP method with no windowing. Then use the obtained FBLP to clean the corrupted
signal x(n) as shown in Figure 8.7. To evaluate the performance of the canceler, generate
the plots shown in Figures 8.8 and 8.9.
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8.27 Careful inspection of Figure 8.9 indicates that the the D-step prediction error filter, that is, the
system with input x(n) and output ef (n), acts as a whitening filter. In this problem, we try
to solve Problem 8.26 by designing a practical whitening filter using a power spectral density
(PSD) estimate of the corrupted signal x(n).

(a) Estimate the PSD R̂
(PA)
x (ejωk ), ωk = 2πk/NFFT, of the signal x(n), using the method of

averaged periodograms. Use a segment length of L = 256 samples, 50 percent overlap, and
NFFT = 512.

(b) Since the PSD does not provide any phase information, we shall design a whitening FIR
filter with linear phase by

H̃ (k) = 1√
R̂

(PA)
x (ejωk )

e
−j 2π

NFFT

NFFT−1
2 k

where H̃ (k) is the DFT of the impulse response of the filter, that is,

H̃ (k) =
NFFT−1∑

n=0

h(n) e
−j 2π

NFFT
nk

with 0 ≤ k ≤ NFFT − 1.
(c) Use the obtained whitening filter to clean the corrupted signal x(n), and compare its per-

formance with the FBLP canceler by generating plots similar to those shown in Figures 8.8
and 8.9.

(d ) Repeat part (c) with L = 128, NFFT = 512 and L = 512, NFFT = 1024 and check whether
spectral resolution has any effect upon the performance. Note: Information about the design
and implementation of FIR filters using the DFT can be found in Proakis and Manolakis
(1996).

8.28 Repeat Problem 8.27, using the multitaper method of PSD estimation.

8.29 In this problem we develop an RFI canceler using a symmetric linear smoother with guard
samples defined by

e(n) = x(n)− x̂(n) � x(n)+
M∑

k=D

ck[x(n− k)+ x(n+ k)]

where 1 ≤ D < M prevents the use of the D adjacent samples to the estimation of x(n).

(a) Following the approach used in Section 8.4.3, demonstrate whether such a canceler can be
used to mitigate RFI and under what conditions.

(b) If there is theoretical justification for such a canceler, estimate its coefficients, using the
method of LS with no windowing for M = 50 and D = 1 for the situation described in
Problem 8.26.

(c) Use the obtained filter to clean the corrupted signal x(n), and compare its performance with
the FBLP canceler by generating plots similar to those shown in Figures 8.8 and 8.9.

(d ) Repeat part (c) for D = 2.

8.30 In Example 6.7.1 we studied the design and performance of an optimum FIR inverse system. In
this problem, we design and analyze the performance of a similar FIR LS inverse filter, using
training input-output data.

(a) First, we generate N = 100 observations of the input signal y(n) and the noisy output signal
x(n). We assume that y(n) ∼ WGN(0, 1) and v(n) ∼ WGN(0, 0.1). To avoid transient
effects, we generate 200 samples and retain the last 100 samples to generate the required
data records.

(b) Design an LS inverse filter with M = 10 for 0 ≤ D < 10, using no windowing, and choose
the best value of delay D.

(c) Repeat part (b) using full windowing.
(d ) Compare the LS filters obtained in parts (b) and (c) with the optimum filter designed in

Example 6.7.1. What are your conclusions?
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8.31 In this problem we estimate the equalizer discussed in Example 6.8.1, using input-output training
data, and we evaluate its performance using Monte Carlo simulation.

(a) Generate N = 1000 samples of input-desired response data {x(n), a(n)}N−1
0 and use them

to estimate the correlation matrix R̂x and the cross-correlation vector d̂ between x(n) and
y(n − D). Use D = 7, M = 11, and W = 2.9. Solve the normal equations to determine
the LS FIR equalizer and the corresponding LSE.

(b) Repeat part (a) 500 times; by changing the seed of the random number generators, compute
the average (over the realizations) coefficient vector and average LSE, and compare with
the optimum MSE equalizer obtained in Example 6.8.1. What are your conclusions?

(c) Repeat parts (a) and (b) by setting W = 3.1.
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CHAPTER 9

Signal Modeling and Parametric
Spectral Estimation

This chapter is a transition from theory to practice. It focuses on the selection of an ap-
propriate model for a given set of data, the estimation of the model parameters, and how
well the model actually “fits the data.” Although the development of parameter estimation
techniques requires a strong theoretical background, the selection of a good model and its
subsequent evaluation require the user to have sufficient practical experience and a famil-
iarity with the intended application. We provide complete, detailed algorithms for fitting
pole-zero models to data using least-squares techniques. The estimation of all-pole model
parameters involves the solution of a linear system of equations, whereas pole-zero mod-
eling requires nonlinear least-squares optimization. The chapter is roughly organized into
two separate but related parts.

In the first part, we begin in Section 9.1 by explaining the steps that are required
in the model-building process. Then, in Section 9.2, we introduce various least-squares
algorithms for the estimation of parameters of direct and lattice all-pole models, provide
different interpretations, and discuss some order selection criteria. For pole-zero models we
provide, in Section 9.3, a nonlinear optimization algorithm that estimates the parameters of
the model by minimizing the least-squares criterion. We conclude this part with Section 9.4
in which we discuss the applications of pole-zero models to spectral estimation and speech
processing.

In the second part, we begin with the method of minimum-variance spectral estimation
(Capon’s method). Then we describe frequency estimation methods based on the harmonic
model: the Pisarenko harmonic decomposition and the MUSIC, minimum-norm, and ES-
PRIT algorithms. These methods are suitable for applications in which the signals of interest
can be represented by complex exponential or harmonic models. Signals consisting of com-
plex exponentials are found in a variety of applications including as formant frequencies
in speech processing, moving targets in radar, and spatially propagating signals in array
processing.

9.1 THE MODELING PROCESS: THEORY AND PRACTICE

In this section, we discuss the modeling of real-world signals using parametric pole-zero
(PZ) signal models, whose theoretical properties were discussed in Chapter 4. We focus
on PZ (P,Q) models with white input sequences, which are also known as ARMA (P,Q)
random signal models. These models are defined by the linear constant-coefficient difference
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equation

x(n) = −
P∑
k=1

akx(n− k)+ w(n)+
Q∑
k=1

dkw(n− k) (9.1.1)

wherew(n) ∼WN (0, σ 2
w) with σ 2

w <∞. The power spectral density (PSD) of the output
signal is

R(ejω) = σ 2
w

∣∣∣∣∣∣∣∣∣∣∣

1+
Q∑
k=1

dke
−jωk

1+
P∑
k=1

ake−jωk

∣∣∣∣∣∣∣∣∣∣∣

2

= σ 2
w

|D(e−jω)|2
|A(e−jω)|2 (9.1.2)

which is a rational function completely specified by the parameters, {a1, a2, . . . , aP },
{d1, . . . , dQ}, and σ 2

w. We stress that since these models are linear, time-invariant (LTI),
the resulting process x(n) is stationary, which is ensured if the corresponding systems are
BIBO stable.

The essence of signal modeling and of the resulting parametric spectrum estimation
is the following: Given finite-length data {x(n)}N−1

n=0 , which can be regarded as a sample
sequence of the signal under consideration, we want to estimate signal model parame-
ters {âk}P1 , {b̂k}Q1 , and σ̂ 2

w, to satisfy a prescribed criterion. Furthermore, if the parameter
estimates are sufficiently accurate, then the following formula

R̂(ejω) = σ̂ 2
w

∣∣∣∣∣∣∣∣∣∣∣

1+
Q∑
k=1

d̂ke
−jωk

1+
P∑
k=1

âke−jωk

∣∣∣∣∣∣∣∣∣∣∣

2

= σ̂ 2
w

|D̂(e−jω)|2
|Â(e−jω)|2 (9.1.3)

should provide a reasonable estimate of the signal PSD. A similar argument applies to
harmonic signal models and harmonic spectrum estimation in which the model parameters
are the amplitudes and frequencies of complex exponentials (see Section 3.3.6).

The development of such models involves the steps shown in Figure 9.1. In this chapter,
we assume that we have removed trends, seasonal variations, and other nonstationarities
from the data. We further assume that unit poles have been removed from the data by using
the differencing approach discussed in Box et al. (1994).

Model selection

In this step, we basically select the structure of the model (direct or lattice), and we make
a preliminary decision on the ordersP andQ of the model. The most important aid to model
selection is the insight and understanding of the signal and the physical mechanism that
generates it. Hence, in some applications (e.g., speech processing) physical considerations
point to the type and order of the model; when we lack a priori information or we have
insufficient knowledge of the mechanism generating the signal, we resort to data analysis
methods.

In general, to select a candidate model, we estimate the autocorrelation, partial au-
tocorrelation, and power spectrum from the available data, and we compare them to the
corresponding quantities obtained from the theoretical models (see Table 4.1). This prelim-
inary data analysis provides sufficient information to choose a PZ model and some initial
estimate for P and Q to start a model building process. Several order selection criteria
have been developed that penalize both model misfit and a large number of parameters.
Although theoretically interesting and appealing, these criteria are of limited value when
we deal with actual signals.
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The Modeling Process:
Theory and Practice

Stage 1
Model selection

Choose model
structure and

order

Check the
candidate model
for performance

Estimate model
parameters

Use the 
model for

your application

Yes

NoIs model
satisfactory?

Stage 2
Model estimation

Stage 3
Model validation

FIGURE 9.1
Steps in the signal model building process.

The model structure influences (1) the complexity of the algorithm that estimates the
model parameters and (2) the shape of the criterion function (quadratic or nonquadratic).
Therefore, the structure (direct or lattice) is not critical to the performance of the model,
and its choice is not as crucial as the choice of the order of the model.

Model estimation

In this step, also known as model fitting, we use the available data {x(n)}N−1
0 to esti-

mate the parameters of the selected model, using optimization of some criterion. Although
there are several criteria (e.g., maximum likelihood, spectral matching) that can be used
to measure the performance or quality of a PZ model, we concentrate on the least-squares
(LS) error criterion. As we shall see, the estimation of all-pole (AP) models leads to linear
optimization problems whereas the estimation of all-zero (AZ) and PZ models requires
the solution of nonlinear optimization problems. Parameter estimation for PZ models using
other criteria can be found in Kay (1988), Box et al. (1994), Porat (1994), and Ljung (1987).

Model validation

Here we investigate how well the obtained model captures the key features of the
data. We then take corrective actions, if necessary, by modifying the order of the model,
and repeat the process until we get an acceptable model. The goal of the model validation
process is to find out whether the model

• Agrees sufficiently with the observed data
• Describes the “true” signal generation system
• Solves the problem that initiated the design process

Of course, the ultimate test is whether the model satisfies the requirements of the intended
application, that is, the objective and subjective criteria that specify the performance of the
model, computational complexity, cost, etc. In this discussion, we concentrate on how well
the model fits the observed data in an LS error statistical sense.

The existence of any structure in the residual or prediction error signal indicates a misfit
between the model and the data. Hence, a key validation technique is to check whether the
residual process, which is generated by the inverse of the fitted model, is a realization of
white noise. This can be checked by using, among others, the following statistical techniques
(Brockwell and Davis 1991; Bendat and Piersol 1986):
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Autocorrelation test. It can be shown (Kendall and Stuart 1983) that whenN is suffi-
ciently large, the distribution of the estimated autocorrelation coefficients ρ̂(l) = r̂(l)/r̂(0)
is approximately Gaussian with zero mean and variance of 1/N . The approximate 95 per-
cent confidence limits are ±1.96/

√
N . Any estimated values of ρ̂(l) that fall outside these

limits are “significantly” different from zero with 95 percent confidence. Values well beyond
these limits indicate nonwhiteness of the residual signal.

Power spectrum density test. Given a set of data {x(n)}N−1
n=0 , the standardized cumu-

lative periodogram is defined by

Ĩ (k) �




0 k < 1
k∑
i=1

R̂(ej2πi/N )

K∑
i=1

R̂(ej2πi/N )

1 ≤ k ≤ K

1 k > K

(9.1.4)

whereK is the integer part ofN/2. If the process x(n) is white Gaussian noise (WGN), then
the random variables Ĩ (k), k = 1, 2, . . . , K, are independently and uniformly distributed
in the interval (0, 1), and the plot of Ĩ (k) should be approximately linear with respect to k
(Jenkins and Watts 1968). The hypothesis is rejected at level 0.05 if Ĩ (k) exits the boundaries
specified by

Ĩ (b)(k) = k − 1

K − 1
± 1.36(K − 1)−1/2 1 ≤ k ≤ K (9.1.5)

Partial autocorrelation test. This test is similar to the autocorrelation test. Given the
residual process x(n), it can be shown (Kendall and Stuart 1983) that whenN is sufficiently
large, the partial autocorrelation sequence (PACS) values {kl} for lag l [defined in (4.2.44)]
are approximately independent with distribution WN (0, 1/N). This means that roughly
95 percent of the PACS values fall within the bounds ±1.96/

√
N. If we observe values

consistently well beyond this range for N sufficiently large, it may indicate nonwhiteness
of the signal.

EXAMPLE 9.1.1. To apply the above tests and interpret their results, we consider a WGN sequence
x(n). By using the randn function, 100 samples of x(n) with zero mean and unit variance were
generated. These samples are shown in Figure 9.2. From these samples, the autocorrelation
estimates up to lag 40, denoted by {r̂(l)}40

l=0, were computed using the autoc function, from
which the the correlation coefficients ρ̂(l) were obtained. The first 10 coefficients are shown in
Figure 9.2 along with the appropriate confidence limits. As expected, the first coefficient at lag
0 is unity while the remaining coefficients are within the limits.

Next, using the psd function, a periodogram based on 100 samples was computed, from
which the cumulative periodogram Ĩ (k) was obtained and plotted as a function of the normal-
ized frequency, as shown in Figure 9.2. The confidence limits are also shown. The computed
cumulative periodogram is a monotonic increasing function lying within the limits.

Finally, using the durbin function, PACS sequence {kl}40
l=1 was computed from the esti-

mated correlations and plotted in Figure 9.2. Again all the values for lags l ≥ 1 are within the
confidence limits. Thus all three tests suggest that the 100-point data are almost surely from a
white noise sequence.

Although the whiteness of the residuals is a good test for model fitting, it does not
provide a definite answer to the problem. Some additional procedures include checking
whether

• The criterion of performance decreases (fast enough) as we increase the order of the
model.
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FIGURE 9.2
Validation tests on white Gaussian noise in Example 9.1.1.

• The estimate of the variance of the residual decreases as the number N of observations
increases.

• Some estimated parameters that have physical meaning (e.g., reflection coefficients)
assume values that make sense.

• The estimated parameters have sufficient accuracy for the intended application.

Finally, to demonstrate that the model is sufficiently accurate for the purpose for which it
was designed, we can use a method known as cross-validation. Basically, in cross-validation
we use one set of data to fit the model and another, statistically independent set of data to
test it. Cross-validation is of paramount importance when we build models for control, fore-
casting, and pattern recognition (Ljung 1987). However, in signal processing applications,
such as spectral estimation and signal compression, where the goal is to provide a good fit
of the model to the analyzed data, cross-validation is not as useful.

9.2 ESTIMATION OF ALL-POLE MODELS

We next use the principle of least squares to estimate parameters of all-pole signal models
assuming both white and periodic excitations. We also discuss criteria for model order selec-
tion, techniques for estimation of all-pole lattice parameters, and the relationship between
all-pole estimation methods using the methods of least squares and maximum entropy. The
relationship between all-pole model estimation and minimum-variance spectral estimation
is explored in Section 9.5.

9.2.1 Direct Structures

Consider the AR(P0) model where we use a∗k instead of ak to comply with Chapter 8
notation.

x(n) = −
P0∑
k=1

a∗k x(n− k)+ w(n) (9.2.1)
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where w(n) ∼WN(0, σ 2
w). The P th-order linear predictor of x(n) is given by

x̂(n) = −
P∑
k=1

â∗k x(n− k) (9.2.2)

and the corresponding prediction error sequence is

e(n) = x(n)− x̂(n) = x(n)+
P∑
k=1

â∗k x(n− k) (9.2.3)

= âHx(n) (9.2.4)

where â0 = 1 and

â = [1 â1 · · · âP ]T (9.2.5)

x(n) = [x(n) x(n− 1) · · · x(n− P)]T (9.2.6)

Thus the error over the range Ni ≤ n ≤ Nf can be expressed as a vector

e = X̄â (9.2.7)

where X̄ is the data matrix defined in (8.4.3). For the full-windowing case, the data matrix
X̄ is given by

X̄H =



x(0) x(1) · · · x(P ) · · · 0 · · · 0

0 x(0) · · · x(P − 1) · · · x(N − 1) · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · x(0) · · · x(N − P) · · · x(N − 1)


 (9.2.8)

while for the no-windowing case the data matrix X̄ is

X̄H =



x(P ) x(P + 1) · · · x(N − 2) x(N − 1)

x(P − 1) x(P ) · · · x(N − 3) x(N − 2)
...

...
. . .

...
...

x(0) x(1) · · · x(N − P − 2) x(N − P − 1)


 (9.2.9)

Notice that if P = P0 and âk = ak, the prediction error e(n) is identical to the white noise
excitation w(n). Furthermore, if AR(P0) is minimum-phase, then w(n) is the innovation
process of x(n) and x̂(n) is the MMSE prediction of x(n). Thus, we can obtain a good
estimate of the model parameters by minimizing some function of the prediction error.

In theory, we minimize the MSE E{|e(n)|2}. In practice, since this is not possible, we
estimate {ak}P1 for a given P by minimizing the total squared error

EP =
Nf∑
n=Ni

|e(n)|2 =
Nf∑
n=Ni

∣∣∣∣∣x(n)+
P∑
k=1

â∗k x(n− k)
∣∣∣∣∣
2

(9.2.10)

=
Nf∑
n=Ni

|âHx(n)|2 = âH X̄H X̄â (9.2.11)

over the rangeNi ≤ n ≤ Nf .Hence, we can use the methods discussed in Section 8.4 for the
computation of LS linear predictors. In particular, the forward linear predictor coefficient
{âk}Pk=1 and the associated LS error ÊP are obtained by solving the normal equations

(X̄H X̄)â =
[
ÊP
0

]
(9.2.12)

The solution of (9.2.12) is discussed extensively in Chapter 8.
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The least-squares AP(P ) parameter estimates have properties similar to those of linear
prediction. For example, if the process w(n) is Gaussian, the least-squares no-windowing
estimates are also maximum-likelihood estimates (Jenkins and Watts 1968). The variance
of the excitation process can be obtained from the LS error ÊP by

σ̂
2
w =

1

N + P ÊP = 1

N + P
N+P−1∑
n=0

|e(n)|2 full windowing (9.2.13)

or σ̂
2
w =

1

N − P ÊP = 1

N − P
N−1∑
n=P
|e(n)|2 no windowing (9.2.14)

for the full-windowing or no-windowing methods, respectively. Furthermore, in the full-
windowing case, if the Toeplitz correlation matrix is positive definite, the obtained model
is guaranteed to be minimum-phase (see Section 7.4). Matlab functions

[ahat,e,V] = arwin(x,P) and [ahat,e,V] = arls(x,P)

are provided that compute the model parameters, the error sequence, and the modeling error
using the full-windowing and no-windowing methods, respectively.

We present three examples below to illustrate the all-pole model determination and
its use in PSD estimation. The first example uses real data consisting of water-level mea-
surements of Lake Huron from 1875 to 1972. The second example also uses real data
containing sunspot numbers for 1770 through 1869. These sunspot numbers have an ap-
proximate cycle of period around 10 to 12 years. The Lake Huron and sunspot data are
shown in Figure 9.3. The third example generates simulated AR(4) data to estimate model
parameters and through them the PSD values. In each case, the mean was computed and
removed from the data prior to processing.
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FIGURE 9.3
The Lake Huron and sunspot data used in Examples 9.2.1 and 9.2.2.

EXAMPLE 9.2.1. A careful examination of Lake Huron water-level measurement data indicates
that a low-order all-pole model might be a suitable representation of the data. To test this hypoth-
esis, first- and second-order models were considered. Using the full-windowing method, model
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parameters were computed:

First-order â1 = −0.791, σ̂ 2
w = 0.5024

Second-order â1 = −1.002, â2 = 0.2832, σ̂ 2
w = 0.4460

Using these model parameters, the data were filtered and the residuals were computed. Three
tests for checking the whiteness of the residuals as described in Section 9.1 were performed to
ascertain the validity of models. In Figure 9.4, we show the residuals, the autocorrelation test,
the PSD test, and the partial correlation test for the first-order model. The partial correlation test
indicates that the PACS coefficient at lag 1 is outside the confidence limits and thus the first-order
model is a poor fit. In Figure 9.5 we show the same plots for the second-order model. Clearly,
these tests show that the residuals are approximately white. Therefore, the AR(2)model appears
to be a good match to the data.
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FIGURE 9.4
Validation tests on the first-order model fit to the Lake Huron water-level measurement data in
Example 9.2.1.

E XAM PLE 9.2.2. Figure 9.6 shows the PACS coefficients of the sunspot numbers along with
the 95 percent confidence limits. Since all PACS values beyond lag 2 fall well inside the limits,
a second-order model is a possible candidate for the data. Therefore, the second-order model
parameters were estimated from the data to obtain the model

x(n) = 1.318x(n− 1)− 0.634x(n− 2)+ w(n) σ̂ 2
w = 289.2

In Figure 9.7 we show the residuals obtained by filtering the data along with three tests for its
whiteness. The plots show that the estimated model is a reasonable fit to the data. Finally, in
Figure 9.8 we show the PSD estimated from the AR(2) model as well as from the periodogram.
The periodogram is very noisy and is devoid of any structure. The AR(2) spectrum is smoother
and distinctly shows a peak at 0.1 cycle per sampling interval. Since the sampling rate is 1
sampling interval per year, the peak corresponds to 10 years per cycle, which agrees with the
observations. Thus the parametric approach to PSD estimation was appropriate.

EXAMPLE 9.2.3. We illustrate the least-squares algorithms described above, using the AR(4)
process x(n) introduced in Example 5.3.2. The system function of the model is given by

H(z) = 1

1− 2.7607z−1 + 3.8106z−2 − 2.6535z−3 + 0.9238z−4
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and the excitation is a zero-mean Gaussian white noise with unit variance. Suppose that we are
given the N = 250 samples of x(n) shown in Figure 9.9 and we wish to model the underlying
process by using an all-pole model. To identify a candidate model, we compute the autocor-
relation, partial autocorrelation, and periodogram, using the available data. Careful inspection
of Figure 9.9 and the signal model characteristics given in Table 4.1 suggests an AR model.
Since the PACS plot cuts off around P = 5, we choose P = 4 and fit an AR(4) model to the
data, using both the full-windowing and no-windowing methods. Figure 9.10 shows the actual
spectrum of the process, the spectra of the estimated models, and the periodogram. Clearly, the
no-windowing estimate provides a better fit because it does not impose any windowing on the
data. Figure 9.11 shows the residual, autocorrelation, partial autocorrelation, and periodogram
for the no-windowing-based model. We see that the residuals can be assumed uncorrelated
with reasonable confidence, which implies that the model captures the second-order statistics of
the data.
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FIGURE 9.5
Validation tests on the second-order model fit to the Lake Huron water-level measurement data in
Example 9.2.1.
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FIGURE 9.6
The PACS values of the sunspot numbers in Example 9.2.2.
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Modified covariance method. The LS method described above to estimate model
parameters uses the forward linear predictor and prediction error. There is also another
approach that is based on the backward linear predictor. Recall that the backward linear
predictor derived from the known correlations is the complex conjugate of the forward
predictor (and likewise, the corresponding errors are identical). However, the LS estimators
and errors based on the actual data are different because the data read in each direction are
different from a statistical viewpoint. Hence, it is much more reasonable to consider both
forward and backward predictors and to minimize the combined error

E f b
P �

Nf∑
n=Ni

[|ef (n)|2 + |eb(n)|2]

=
Nf∑
n=Ni

[|âHx(n)|2 + |âT x∗(n)|2] (9.2.15)

= âH X̄H X̄â + â
H

X̄T X̄∗â

subject to the constraint that the first component of â is 1. The minimization of E f b
p leads

to the set of normal equations

(X̄H X̄ + X̄
T

X̄∗)â =
[
Ê f b
P

0

]
(9.2.16)

which can be solved efficiently to obtain the model parameters (see Section 8.4.2). This
method of using the forward-backward predictors is called the modified covariance method.
Not only does it have the advantage of minimizing the combined global error, but also since
it uses more data in (9.2.16), it gives better estimates and lower error.Asimilar minimization
approach, but implemented at each local stage, is used in Burg’s method, which is discussed
in Section 9.2.2.
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FIGURE 9.7
Validation tests on the second-order model fit to the sunspot numbers in Example 9.2.2.
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FIGURE 9.8
Comparison of the periodogram and the AR(2) spectrum in
Example 9.2.2.
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FIGURE 9.9
Data segment from an AR(4) process, and the corresponding autocorrelation, partial
autocorrelation, and periodogram.

Frequency-domain interpretation. In the case of full windowing, by using Parseval’s
theorem, the error energy can be written as

E =
∞∑

n=−∞
|e(n)|2 = 1

2π

∫ π

−π
|X(ejω)|2
|Ĥ (ejω)|2 dω (9.2.17)

where |X(ejω)|2 is the spectrum of the modeled windowed signal segment and Ĥ (ejω) is
the frequency response of the estimated all-pole model [or estimated spectrum of x(n)].
This expression is a good approximation for the other windowing methods ifN � P . Since
the integrand in (9.2.17) is positive, minimizing the error E is equivalent to minimizing the
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Periodogram, theoretical AR(4) spectrum, and AR(4) model
spectra using full windowing, Hamming windowing, and no
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FIGURE 9.11
Residual sequence for the AR(4) data, and the corresponding autocorrelation, partial
autocorrelation, and periodogram.

integrated ratio of the energy spectrum of the modeled signal segment to its all-pole-based
spectrum.

The presence of this ratio in (9.2.17) has three additional consequences. (1) The quality
of the spectral matching is uniform over the whole frequency range, irrespective of the
shape of the spectrum. (2) Since regions where |X(ejω)| > |Ĥ (ejω)| contribute more to
the total error than regions where |X(ejω)| < |Ĥ (ejω)| do, the match is better near spectral
peaks than near spectral valleys. (3) The all-pole model provides a good estimate of the
envelope of the signal spectrum |X(ejω)|2. These properties are apparent in Figure 9.12,
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FIGURE 9.12
Illustration of the spectral envelope matching property of
all-pole models.

which shows a comparison between 20 log |X(ejω)| (obtained using the periodogram) and
20 log |Ĥ (ejω)| [obtained by an AP(28) model fitted using full windowing] for a 20-ms,
Hamming windowed, speech signal sampled at 20 kHz. Note that the slope of |Ĥ (ejω)| is
always zero at frequencies ω = 0 and ω = π, as expected. More details on these issues
can be found in Makhoul (1975b).

The error energy (9.2.17) is also related to the Itakura-Saito (IS) distortion measure,
which is given by

dIS(R1, R2) � 1

2π

∫ π

−π
[expV (ejω)− V (ejω)− 1] dω (9.2.18)

where R1(e
jω) and R2(e

jω) are two spectra, and

V (ejω) � logR1(e
jω)− logR2(e

jω) (9.2.19)

Indeed, we can show that

dIS(R1, R2) = 1

2π

∫ π

−π
R1(e

jω)

R2(ejω)
dω − log

σ 2
1

σ 2
2

− 1 (9.2.20)

where σ 2
1 and σ 2

2 are the variances of the innovation sequences corresponding to the factor-
ization of spectra R1(e

jω) and R2(e
jω), respectively. More details can be found in Rabiner

and Juang (1993).

Order selection criteria. The order of an all-pole signal model plays an important role
in the modeling problem. It determines the number of parameters to be estimated and hence
the computational complexity of the algorithm. But more importantly, it affects the quality
of the spectrum estimates. If a much lower order is selected, then the resulting spectrum
will be smooth and will display poor resolution. If a much larger order is used, then the
spectrum may contain spurious peaks at best and a phenomenon called spectrum splitting
at worst, in which a single peak is split into two separate and distinct peaks (Hayes 1996).

Several criteria have been proposed over the years for model order selection; however,
in practice nothing surpasses the graphical approach outlined in Examples 9.2.1 and 9.2.2
combined with the experience of the user. Therefore, we only provide a brief summary of
some well-known criteria and refer the interested reader to Kay (1988), Porat (1994), and
Ljung (1987) for more details. The simplest approach would be to monitor the modeling
error and then select the order at which this error enters a steady state. However, for all-pole
models, the modeling error is monotonically decreasing, which makes this approach all but
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impossible. The general idea behind the suggested criterion is to introduce a penalty function
in the modeling error that increases with the model order P . We present the following four
criteria that are based on the above general idea.

FPE criterion. The final prediction error (FPE) criterion, proposed byAkaike (1970),
is based on the function

FPE(P ) = N + P
N − P σ̂

2
P (9.2.21)

where σ̂ 2
P is the modeling error [or variance of the residual of the estimated AP(P ) model].

We note that the term σ̂
2
P decreases or remains the same with increasing P, whereas the

term (N+P)/(N−P) accounts for the increase in σ̂ 2
P due to inaccuracies in the estimated

parameters and increases with P . Clearly, FPE(P ) is an inflated version of σ̂ 2
P . The FPE

order selection criterion is to choose P that will minimize the function in (9.2.21).

AIC. The Akaike information criterion (AIC), also introduced by Akaike (1974), is
based on the function

AIC(P ) = N log σ̂ 2
P + 2P (9.2.22)

It is a very general criterion that provides an estimate of the Kullback-Leibler distance
(Kullback 1959) between an assumed and the true probability density function of the data.
The performances of the FPE criterion and the AIC are quite similar.

MDL criterion. The minimum description length (MDL) criterion was proposed by
Risannen (1978) and uses the function

MDL(P ) = N log σ̂ 2
P + P logN (9.2.23)

The first term in (9.2.23) decreases with P, but the second penalty term increases. It has
been shown (Risannen 1978) that this criterion provides a consistent order estimate in that
as the probability that the estimated order is equal to the true order approaches 1, the data
length N tends to infinity.

CAT. This criterion is based on Parzen’s criterion autoregressive transfer (CAT) func-
tion (Parzen 1977), which is given by

CAT(P ) = 1

N

P∑
k=1

N − k
Nσ̂

2
k

− N − P
Nσ̂

2
P

(9.2.24)

This criterion is asymptotically equivalent to the AIC and the MDL criteria.
Basically, all order selection criteria add to the variance of the residuals a term that grows

with the order of the model and estimate the order of the model by minimizing the resulting
criterion. However, when P � N, which is the case in many practical applications, the
criterion does not exhibit a clear minimum that makes the order selection process difficult
(see Problem 9.1).

9.2.2 Lattice Structures

We noted in Section 7.5 that a prediction error filter, and hence the AP model, can also be
implemented by using a lattice structure. The P th-order forward prediction error e(n) =
ef
P (n) and the total squared error

EP =
Nf∑
n=Ni

|e(n)|2 (9.2.25)
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are nonlinear functions of the lattice parameters km, 0 ≤ m ≤ P − 1. For example, if
P = 2, we have

ef
2(n) = x(n)+ (k∗0 + k0k

∗
1)x(n− 1)+ k∗1x(n− 2)

which shows that ef
2(n) depends on the product k0k

∗
1 . Thus, fitting an all-pole lattice model

by minimizing EP with respect to km, 0 ≤ m ≤ P − 1, leads to a difficult nonlinear
optimization problem.

We can avoid this problem by replacing the above “global” optimization withP “local”
optimizations fromm = 1 to P, one for each stage of the lattice. From the lattice equations

ef
m(n) = ef

m−1(n)+ k∗m−1e
b
m−1(n− 1) (9.2.26)

eb
m(n) = eb

m−1(n− 1)+ km−1e
f
m−1(n) (9.2.27)

we see that themth-order prediction errors depend on the coefficient km−1 only. Furthermore,
the values of ef

m−1(n) and eb
m−1(n) have been computed by using km−2, which has been

determined from the optimization step at the previous stage.
Hence, to minimize the forward prediction error

E f
m =

Nf∑
n=Ni

|ef
m(n)|2 (9.2.28)

we substitute (9.2.26) into (9.2.28) and differentiate
†

with respect to k∗m−1. This leads to
the following optimum value of km−1

kFP
m−1 = −

βf b
m−1

Eb
m−1

(9.2.29)

βf b
m =

Nf∑
n=Ni

[ef
m(n)]∗eb

m(n− 1) (9.2.30)where

Eb
m =

Nf∑
n=Ni

|eb
m(n− 1)|2 (9.2.31)and

Similarly, minimization of the backward prediction error (9.2.31) gives

kBP
m−1 = −

βf b
m−1

E f
m−1

(9.2.32)

Burg (1967) suggested the estimation of km−1 by minimizing

E f b
m =

Nf∑
n=Ni

{|ef
m(n)|2 + |eb

m(n)|2} (9.2.33)

at each stage of the lattice.
‡

Indeed, substituting (9.2.26) and (9.2.27) in the last equation,
we obtain the relationship

E f b
m = (1+ |km−1|2)E f

m−1 + 4 Re(k∗m−1β
f b
m−1)+ (1+ |km−1|2)Eb

m−1 (9.2.34)

†
See Appendix B for a discussion of how to find an optimum of a real-valued function of a complex variable and

its conjugate.
‡
This approach should not be confused with the maximum entropy method introduced also by Burg and discussed

later.
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If we set ∂E f b
m /∂k

∗
m−1 = 0, we obtain the following estimate of km−1:

kB
m−1 = −

βf b
m−1

1
2 (E f

m−1 + Eb
m−1)

= 2kFP
m−1k

BP
m−1

kFP
m−1 + kBP

m−1

(9.2.35)

We note that kB
m−1 is the harmonic mean of kFP

m−1 and kBP
m−1. We also stress that the obtained

model is different from the one resulting from the forward-backward least-squares (FBLS)
method through global optimization [see (9.2.16)].

Itakura and Saito (1971) proposed an estimate of km−1 based on replacing the theoretical
ensemble averages in (7.5.24) by time averages. Their estimate is given by

kIS
m−1 = −

βf b
m−1√

E f
m−1Eb

m−1

= sign(kFP
m−1or kBP

m−1)

√
kFP
m−1k

BP
m−1 (9.2.36)

and is also known as the geometric mean method. Since it can be shown that

|kB
m−1| ≤ |kIS

m−1| ≤ 1 (9.2.37)

both estimates result in minimum-phase models (see Problem 9.2). From (9.2.36) and
(9.2.37) we conclude that if |kFP

m−1| < 1, then |kBP
m−1| > 1 and vice versa; that is, if the FLP

is minimum-phase, then the BLP is maximum-phase and vice versa. Several other estimates
are discussed in Makhoul (1977) and Viswanathan and Makhoul (1975).

In all previous methods, we use no windowing; that is, we setNi = m andNf = N−1. If
we use data windowing, all the above estimates are identical to the data windowing estimates
obtained using the algorithm of Levinson-Durbin (see Problem 9.3).

The variance of the residuals can be estimated by

σ̂
2
m =

1

2

E f b
m

N −m (9.2.38)

which for large values of N (see Problem 9.12) can be approximated by

σ̂
2
m = σ̂ 2

m−1(1− |km−1|2) (9.2.39)

σ̂
2
0 =

1

N

N−1∑
n=0

|x(n)|2 (9.2.40)where

The computations for the lattice estimation methods are summarized in Table 9.1, and the
algorithms are implemented by the function [k,var] = aplatest(x,P).

9.2.3 Maximum Entropy Method

We next show how LS all-pole modeling is related to Burg’s method of maximum entropy.
To this end, suppose that x(n) is a normal, stationary process with zero mean. The M-
dimensional complex-valued vector x � xM(n) obeys a normal distribution

p(x) = 1

πM det R
exp(−xHR−1x) (9.2.41)

where R is a Toeplitz correlation matrix. By definition, its entropy is given by

H(x) � −E{logp(x)} = M logπ + log(det R)+M (9.2.42)

because E{xHR−1x} = M . If the process x(n) is regular, that is, |km| < 1 for all m, we
have

det R =
M−1∏
m=0

Pm and Pm = r(0)
m∏
j=1

(1− |kj |2) (9.2.43)
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TABLE 9.1

Algorithm for estimation of AP lattice parameters.

1. Input: x(n) for Ni ≤ n ≤ Nf

2. Initialization
a. ef

0(n) = eb
0(n) = x(n).

b. Compute βf b
0 , E f

0 , and Eb
0 from x(n).

c. Compute kFP
0 and kBP

0 .

d. Compute either kIS
0 or kB

0 from kFP
0 and kBP

0 .

e. Apply the first stage of the lattice to x(n) using either kIS
0 or kB

0 to obtain ef
1(n) and eb

1(n).

3. Form = 2, 3, . . . , P
a. Compute βf b

m−1, E f
m−1, and Eb

m−1 from ef
m−1(n) and eb

m−1(n).

b. Compute kFP
m−1 and kBP

m−1.

c. Compute either kIS
m−1 or kB

m−1 from kFP
m−1 and kBP

m−1.

d. Apply the mth stage of the lattice to ef
m−1(n) and eb

m−1(n) using either kIS
m−1 or kB

m−1 to obtain

ef
m(n) and eb

m(n).

4. Output: Either kIS
m or kB

m for m = 1, 2, . . . , P and ef
m(n) and eb

m(n).

where Pm = P f
m = P b

m (see Section 7.4). If we substitute (9.2.43) into (9.2.42), we obtain

H(x) = M logπ +M +M log r(0)+
M−1∑
m=1

(M −m) log(1− |km|2) (9.2.44)

which expresses the entropy in terms of r(0) and the PACS km, 1 ≤ m ≤ M ≤ ∞ [recall that
any parametric model can be specified by r(0) and the PACS]. Suppose now that we are given
the first P + 1 values r(0), r(1), . . . , r(P ) of the autocorrelation sequence and we wish to
find a model, by choosing the remaining values r(l), l > P, so that the entropy is maximized.
From (9.2.44), we see that the entropy is maximized if we choose km = 0 for m > P, that
is, by modeling the process x(n) by an AR(P ) model. In conclusion, among all regular
Gaussian processes with the same first P +1 autocorrelation values, the AR(P ) process has
the maximum entropy.Any other choices for km,m > P, that satisfy the condition |km| < 1
lead to a valid extension of the autocorrelation sequence. The “extended” values r(l), l > P,
can be obtained by using the inverse Levinson-Durbin or the inverse Schür algorithm (see
Chapter 7). The relation between autoregressive modeling and the principle of maximum
entropy, known as the maximum entropy method, was introduced by Burg (1967, 1975). We
note that the above proof, given in Porat (1994), is different from the original proof provided
by Burg (Burg 1975; Therrien 1992).An interesting discussion of various arguments in favor
of and against the maximum entropy method can be found in Makhoul (1986).

9.2.4 Excitations with Line Spectra

When the excitation of a parametric model has a spectrum with lines at L frequencies ωm,
the spectrum of the output signal provides information about the frequency response of the
model at these frequencies only. For simplicity, assume equidistant samples at frequencies
ωm = 2πm/L, 0 ≤ m ≤ L− 1. Given a set of values Rx(ejωm) = |X(ejωm)|2, we wish to
find an AP(P ) model whose spectrum R̂h(e

jω) matches Rx(ωm) at the given frequencies,
by minimizing the criterion

Ẽ = d0

L

L∑
m=1

Rx(e
jωm)

R̂h(ejωm)
(9.2.45)
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which is the discrete version of (9.2.17) and d0 is the gain of the model (see Section 4.2).
The minimization of (9.2.45) with respect to the model parameters {ak} results in the Yule-
Walker equations

P∑
k=0

a∗k r̃(i − k) =
{

Ẽ i = 0

0 1 ≤ i ≤ P (9.2.46)

r̃(l) = 1

L

L∑
m=1

Rx(e
jωm) ejωm (9.2.47)where

For continuous spectra, linear prediction uses the autocorrelation

r(l) = 1

2π

∫ π

−π
Rx(e

jω) ejωdω (9.2.48)

which is related to r̃(l) by

r̃(l) =
∞∑

m=−∞
r(l − Lm) (9.2.49)

that is, r̃(l) is an aliased version of r(l). We have seen that linear prediction equates the
autocorrelation of the AP(P ) model to the autocorrelation of the modeled signal for the
first P + 1 lags. Hence, when we use linear prediction for a signal with line spectra,
the autocorrelation of the all-pole model will be matched to r̃(l) �= r(l) and will always
result in a model different from the original. Clearly, the correlation matching condition
cannot compensate for the autocorrelation aliasing, which becomes more pronounced as L
decreases. This phenomenon, which is severe for voiced sounds with high pitch, is illustrated
in Problem 9.13. A method that provides better estimates, by minimizing a discrete version
of the Itakura-Saito error measure, has been developed for both AP and PZ models by
El-Jaroudi and Makhoul (1991, 1989).

9.3 ESTIMATION OF POLE-ZERO MODELS

The estimation of PZ(P,Q) model parameters for Q �= 0 leads to a nonlinear LS op-
timization problem. As a result, a vast number of suboptimum methods, with reduced
computational complexity, have been developed to avoid this problem. For example, some
techniques estimate theAP(P ) andAZ(Q) parameters separately. However, today the avail-
ability of high-speed computers has made exact least-squares the method of choice. Since
the nonlinear LS optimization with respect to complex vectors and its conjugate is inherently
difficult, and since this optimization does not provide any additional insight into the solu-
tion technique, we assume, in this section, that the quantities are real-valued. Furthermore,
most of the real-world applications of pole-zero models almost always involve real-valued
signals and systems. The extension to the complex-valued case is straightforward.

Consider the PZ(P,Q) model

x(n) = −
P∑
k=1

akx(n− k)+ w(n)+
Q∑
k=1

dkw(n− k) (9.3.1)

where w(n) ∼WN(0, σ 2
w). Using vector notation, we can express (9.3.1) as

x(n) = zT (n− 1)cpz + w(n) (9.3.2)

z(n) � [−x(n) · · · − x(n− P + 1) w(n) · · · w(n−Q+ 1)]T (9.3.3)where

cpz= [aT dT ] = [a1 · · · aP d1 · · · dQ]T (9.3.4)and
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9.3.1 Known Excitation

Assume for a moment that the excitation w(n) is known. Then we can predict x(n) from
past values, using the following linear predictor

x̂(n) = zT (n− 1)c (9.3.5)

c = [â1 · · · âP d̂1 · · · d̂Q]T (9.3.6)where

are the predictor parameters. The prediction error

e(n) = x(n)− x̂(n) = x(n)− zT (n− 1)c (9.3.7)

equals w(n) if c = cpz. Minimization of the total squared error

E(c) �
Nf∑
n=Ni

e2(n) (9.3.8)

leads to the following linear system of equations

R̂zc = r̂z (9.3.9)

R̂z =
Nf∑
n=Ni

z(n− 1)zT (n− 1) (9.3.10)where

r̂z =
Nf∑
n=Ni

z(n− 1)x(n) (9.3.11)and

Usually, we use residual windowing, which implies thatNi = max(P,Q) andNf = N−1.
Since the matrix R̂z is symmetric and positive semidefinite, we can solve (9.3.9) using LDLH

decomposition. Thus, if we know the excitation w(n), the least-squares estimation of the
PZ(P,Q) model parameters reduces to the solution of a linear system of equations. An
estimate of the input variance is given by

σ̂
2
w =

1

N −max(P,Q)

N−1∑
n=max(P,Q)

e2(n) (9.3.12)

This method, which is implemented by the function pzls.m, is known as the equation-error
method and can be used to identify a system from input-output data (Ljung 1987) (see
Problem 9.14).

9.3.2 Unknown Excitation

In most applications, the excitation w(n) is never known. However, we can obtain a good
estimate of x(n) by replacing w(n) by e(n) in (9.3.3). This makes a natural choice if the
model used to obtain e(n) is reasonably accurate. The prediction error is then given by

e(n) = x(n)− x̂(n) = x(n)− ẑT (n− 1)c (9.3.13)

ẑ(n) � [−x(n) · · · − x(n− P + 1) e(n) · · · e(n−Q+ 1)]T (9.3.14)where

If we write (9.3.13) explicitly

e(n) = −
Q∑
k=1

d̂ke(n− k)+ x(n)+
P∑
k=1

âkx(n− k) (9.3.15)

we see that the prediction error is obtained by exciting the inverse model with the signal
x(n). Hence, the inverse model has to be stable. To satisfy this condition, we require the
estimated model to be minimum-phase.
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The recursive computation of e(n) by (9.3.15) makes the prediction error a nonlinear
function of the model parameters. To illustrate this, consider the prediction error for a
first-order model, that is, for P = Q = 1

e(n) = x(n)+ â1x(n− 1)− d̂1e(n− 1)

Assuming e(0) = 0, we have for n = 1, 2, 3

e(1)= x(1)+ â1x(0)

e(2)= x(2)+ â1x(1)− d̂1e(1)

= x(2)+ (â1 − d̂1)x(1)− â1d̂1x(0)

e(3)= x(3)+ â1x(2)− d̂1e(2)

= x(3)+ (â1 − d̂1)x(2)− (â1 − d̂1)d̂1x(1)+ â1d̂
2
1x(0)

which shows that e(n) is a nonlinear function of the model parameters ifQ �= 0. Thus, the
total squared error

E(c) =
Nf∑
n=Ni

e2(n) (9.3.16)

expressed in terms of the signal values x(0), x(1), . . . , x(N−1), is a nonquadratic function
of the model parameters. Sometimes, E(c) has several local minima. The model parame-
ters can be obtained by minimizing the total square error using nonlinear optimization
techniques.

9.3.3 Nonlinear Least-Squares Optimization

We next outline such a technique that is based on the method of Gauss-Newton. More details
can be found in Scales (1985); Luenberger (1984); and Gill, Murray, and Wright (1981).
To this end, we expand the function E(c) as a Taylor series

E(c0 +-c) = E(c0)+ (-c)T∇E(c0)+ 1
2 (-c)T [∇2E(c0)](-c)+ · · · (9.3.17)

∇E(c) �
[
∂E
∂c1

∂E
∂c2
· · · ∂E

∂cp+q

]T
(9.3.18)where

is the vector of the first partial derivatives or gradient vector and ∇2E(c), whose (i, j)th
element is ∂2E/(∂ci∂cj ), is the (symmetric) matrix of second partial derivatives (Hessian
matrix).

The Taylor expansion of a quadratic function has only the first three terms. Indeed, for
the known excitation case we have

∇E(c) = 2
Nf∑
n=Ni

z(n− 1)e(n) = 2(rz − R̂zc) (9.3.19)

∇2E(c) = 2
Nf∑
n=Ni

z(n− 1)zT (n− 1) = 2R̂z (9.3.20)and

Higher-order terms are zero, and if c0 is the minimum, then ∇E(c0) = 0. In this case,
(9.3.17) becomes

E(c0 +-c) = E(c0)+ (-c)T R̂z(-c)
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which shows that if R̂z is positive definite, that is, (-c)T R̂z(-c) ≥ 0, then any deviation
from the minimum results in an increase in the total squared error.

This relationship holds approximately for nonquadratic functions, as long as c0 is close
to a minimum. Thus, if we are at a point ci with total squared error E(ci ), we can move to a
point ci+1 with total squared error E(ci+1) ≤ E(ci ) by moving in the direction of−∇E(ci ).
This suggests the following iterative procedure

ci+1 = ci − µiGi∇E(ci ) (9.3.21)

where the positive scalar µi controls the length of the descent and matrix Gi modifies
the direction of the descent, as is specified by the gradient vector. Various choices for
these quantities lead to various optimization algorithms. For quadratic functions, choosing
c0 = 0, µ0 = 1, and G0 = (2R̂z)−1 (inverse of the Hessian matrix) gives c1 = R̂−1

z r̂z; that
is, we find the unique minimum in one step. This provides the motivation for modifying
the direction of the gradient using the inverse of the Hessian matrix, even for nonquadratic
functions. This choice is justified as long as we are close to a minimum.

Using (9.3.13), we compute the Hessian as follows

∇2E(c) = ∇[∇E(c)]T = 2
Nf∑
n=Ni

ψ(n)ψT (n)+ 2
Nf∑
n=Ni

[∇ψT (n)]e(n) (9.3.22)

ψ(n) � ∇e(n) =
[
∂e(n)

∂â1
· · · ∂e(n)

∂âP

∂e(n)

∂d̂1
· · · ∂e(n)

∂d̂Q

]T
(9.3.23)where

We usually approximate the Hessian with the first summation in (9.3.22), that is,

H = 2
Nf∑
n=Ni

ψ(n)ψT (n) (9.3.24)

Similarly, the gradient is given by

∇E(c) � v = 2
Nf∑
n=Ni

ψ(n) e(n) (9.3.25)

If we set G = H−1, the direction vector g = Gv = H−1v can be obtained by solving the
following linear system of equations:

Hg = v (9.3.26)

Clearly, the factor 2 in the definitions of H and v does not affect the solution g, and can
be dropped. Although the matrix H is guaranteed by (9.3.24) to be positive semidefinite, in
practice it may be singular or close to singular. To avoid such problems in solving (9.3.26),
we regularize the matrix by adding a small positive constant δ to its diagonal; that is, we
approximate the Hessian by H+ δI, where I is the identity matrix. This approach is known
as the Levenberg-Marquard regularization (Dennis and Schnabel 1983; Ljung 1987).

We next compute the gradient ψ(n) = ∇e(n), using (9.3.23) and (9.3.15). Indeed, we
have

∂e(n)

∂âj
= x(n− j)−

Q∑
k=1

d̂k
∂e(n− k)
∂âj

j = 1, 2, . . . , P (9.3.27)

∂e(n)

∂d̂j
= −e(n− j)−

Q∑
k=1

d̂k
∂e(n− k)
∂d̂j

j = 1, 2, . . . ,Q (9.3.28)and
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FIGURE 9.13
Illustration of the capability of a PZ(4, 2) and AP(10) model to
estimate the PSD of an ARMA(4, 2) process from a 300-sample
segment.

Thus, the components of the gradient vector are obtained by driving the all-pole filter

Hψ(z) = 1

D(z)
= 1

1+
Q∑
k=1

d̂kz−k
(9.3.29)

with the signals x(n) and −e(n), respectively. This filter is stable if the estimated model is
minimum-phase.

The above development leads to the following iterative algorithm, implemented in the
Matlab function armals.m, which computes the parameters of a PZ(P,Q) model from
the data x(0), x(1), . . . , x(N − 1) by minimizing the LS error. The LS pole-zero modeling
algorithm consists of the following steps:

1. Fit an AP(P +Q)model to the data, using the no-windowing LS method, and compute
the prediction error e(n) (see Section 9.2).

2. Fit a PZ(P,Q) model to the data {x(n), e(n), 0 ≤ n ≤ N − 1}, using the known
excitation method. Convert the model to minimum-phase, if necessary. Use Equations
(9.3.9) to (9.3.11).

3. Start the iterative minimization procedure, which involves the following steps:

a. Compute the gradient ψ(n), using (9.3.27) and (9.3.28).
b. Compute the Hessian H and the gradient v, using (9.3.24) and (9.3.25).
c. Solve (9.3.26) to compute the search vector g. If necessary, use the Levenberg-

Marquard regularization technique.
d. For µ = 1, 1

2 , . . . ,
1

10 , compute c← c+µg, convert the model to minimum-phase,
if necessary, and compute the corresponding value of E(c). Choose the value of c
that gives the smaller total squared error.

†

e. Stop if E(c) does not change significantly or if a certain number of iterations have
been exceeded.

4. Compute the estimate of the input variance, using (9.3.15) and (9.3.12).

The application of the LS PZ(P,Q) model estimation algorithm is illustrated in Figure 9.13,
which shows the actual PSD of a PZ(4, 2) model and the estimated PSDs, using an LS PZ(4,

†
This approach was suggested in Ljung (1987), problem 10S.1.
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2) and an AP(10) model fitted to a 300-sample segment of the output process. We notice
that, in contrast to the PZ model, the AP model does not provide a good match at the spectral
zero. More details are provided in Problem 9.15.

9.4 APPLICATIONS

Pole-zero modeling has many applications in such fields as spectral estimation, speech
processing, geophysics, biomedical signal processing, and general time series analysis and
forecasting (Marple 1987; Kay 1988; Robinson and Treitel 1980; Box, Jenkins, and Reinsel
1994). In this section, we discuss the application of pole-zero models to spectral estimation
and speech processing.

9.4.1 Spectral Estimation

After we have estimated the parameters of a PZ model, we can compute the PSD of the
analyzed process by

R̂(ejω) = σ̂ 2
w

∣∣∣∣∣∣1+
Q∑
k=1

d̂ke
jωk

∣∣∣∣∣∣
2

∣∣∣∣∣1+
P∑
k=1

âkejωk

∣∣∣∣∣
2

(9.4.1)

In practice, we mainly use AP models because (1) the all-zero PSD estimator is essentially
identical to the Blackman-Tukey one (see Problem 9.16) and (2) the application of pole-
zero PSD estimators is limited by computational and other practical difficulties. Also, any
continuous PSD can be approximated arbitrarily well by the PSD of an AP(P ) model if P
is chosen large enough (Anderson 1971). However, in practice, the value of P is limited
by the amount of available data (usually P < N/3). The statistical properties of all-pole
PSD estimators are difficult to obtain; however, it has been shown that the estimator is
consistent only if the analyzed process is AR(P0) with P0 ≤ P . Furthermore, the quality of
the estimator degrades if the process is contaminated by noise. More details about pole-zero
PSD estimation can be found in Kay (1988), Porat (1994), and Percival and Walden (1993).

The performance of all-pole PSD estimators depends on the method used to estimate
the model parameters, the order of the model, and the presence of noise. The effect of
model mismatch is shown in Figure 9.13 and is further investigated in Problem 9.17. Order
selection in all-pole PSD estimation is absolutely critical: If P is too large, the obtained
PSD exhibits spurious peaks; if P is too small, the structure of the PSD is smoothed over.
The increased resolution of the parametric techniques, compared to the nonparametric PSD
estimation methods, is basically the result of imposing structure on the data (i.e., a model).
The model makes possible the extrapolation of the ACS, which in turns leads to better
resolution. However, if the adopted model is inaccurate, that is, if it does not match the
data, then the “gained” resolution reflects the model and not the data! As a result, despite
their popularity and their “success” with simulated signals, the application of parametric
PSD estimation techniques to actual experimental data is rather limited.

Figure 9.14 shows the results of a Monte Carlo simulation of various all-pole PSD
estimation techniques. We see that, except for the windowing approach that results in a
significant loss of resolution, all other techniques have similar performance. However, we
should mention that the forward/backward LS all-pole modeling method is considered to
provide the best results (Marple 1987).
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FIGURE 9.14
Monte Carlo simulation for the comparison of all-pole PSD estimation techniques, using 50
realizations of a 50-sample segment from an AR(4) process using fourth-order AP models.

In practice, it is our experience that the best way to estimate the PSD of an actual signal
is to combine parametric prewhitening with nonparametric PSD estimation methods. The
process is illustrated in Figure 9.15 and involves the following steps:

1. Fit an AP(P ) model to the data using the forward LS, forward/backward LS, or Burg’s
method with no windowing.

2. Compute the residual (prediction error)

e(n) = x(n)+
P∑
k=1

a∗k x(n− k) P ≤ n ≤ N − 1 (9.4.2)

and then compute and plot its ACS, PACS, and cumulative periodogram (see Figure 9.2)
to see if it is reasonably white. The goal is not to completely whiten the residual but
to reduce its spectral dynamic range, that is, to increase its spectral flatness to avoid
spectral leakage.

3. Compute the PSD R̂e(e
jωk ), using one of the nonparametric techniques discussed in

Chapter 5.
4. Compute the PSD of x(n) by

R̂x(e
jωk ) = R̂e(e

jωk )

|A(ejωk )|2 (9.4.3)

that is, by applying postcoloring to “undo” the prewhitening.
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FIGURE 9.15
Block diagram of nonparametric PSD estimation using linear prediction
prewhitening.

The main goal of AP modeling here is to reduce the spectral dynamic range to avoid
leakage. In other words, we need a good linear predictor regardless of whether the process is
true AR(P ). Therefore, very accurate order selection and model fit are not critical, because
all spectral structure not captured by the model is still in the residuals. Needless to say, if
the periodogram of x(n) has a small dynamic range, we do not need prewhitening. Another
interesting application of prewhitening is for the detection of outliers in practical data
(Martin and Thomson 1982).

E XAM PLE 9.4.1. To illustrate the effectiveness of the above prewhitening and postcoloring
method, consider theAR(4) process x(n) used in Example 9.2.3. This process has a large dynamic
range, and hence the nonparametric methods such as Welch’s periodogram averaging method
will suffer from leakage problems. Using the system function of the model

H(z) = 1

A(z)
= 1

1− 2.7607z−1 + 3.8106z−2 − 2.6535z−3 + 0.9238z−4

and WGN (0, 1) input sequence, we generated 256 samples of x(n). These samples were then
used to obtain the all-pole LS predictor coefficients using the arwin function. The spectrum
|A(ejω)|−2 corresponding to this estimated model is shown in Figure 9.16 as a dashed curve. The
signal samples were prewhitened using the model to obtain the residuals e(n).The nonparametric
PSD estimate R̂e(ejω) of e(n) was computed by using Welch’s method with L = 64 and 50
percent overlap. Finally, R̂e(ejω) was postcolored using the spectrum |A(ejω)|−2 to obtain
R̂x(e

jω), which is shown in Figure 9.16 as a solid line. For comparison purposes, the Welch
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FIGURE 9.16
Spectral estimation of AR(4)
process using prewhitening and
postcoloring method in
Example 9.4.1.
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PSD estimate of x(n) is also shown as a dotted line. As expected, the nonparametric estimate
does not resolve the two peaks in the true spectrum and suffers from leakage at high frequencies.
However, the combined nonparametric and parametric estimate resolves two peaks with ease
and also follows the true spectrum quite well. Therefore, the use of the parametric method as a
preprocessor is highly recommended especially in large-dynamic-range situations.

9.4.2 Speech Modeling

All-pole modeling using LS linear prediction is widely employed in speech processing
applications because (1) it provides a good approximation to the vocal tract for voiced
sounds and adequate approximation for unvoiced and transient sounds, (2) it results in a good
separation between source (fine spectral structure) and vocal tract (spectral envelop), and
(3) it is analytically tractable and leads to efficient software and hardware implementations.

Figure 9.17 shows a typical AP modeling system, also known as the linear predictive
coding (LPC) processor, that is used in speech synthesis, coding, and recognition applica-
tions. The processor operates in a block processing mode; that is, it processes a frame of N
samples and computes a vector of model parameters using the following basic steps:

1. Preemphasis. The digitized speech signal is filtered by the high-pass filter

H1(z) = 1− αz−1 0.9 ≤ α ≤ 1 (9.4.4)

to reduce the dynamic range of the spectrum, that is, to flatten the spectral envelope,
and make subsequent processing less sensitive to numerical problems (Makhoul 1975a).
Usually α = 0.95, which results in about a 32 dB boost in the spectrum at ω = π over
that at ω = 0. The preemphasizer can be made adaptive by setting α = ρ(1), where
ρ(l) is the normalized autocorrelation of the frame, which corresponds to a first-order
optimum prediction error filter.

2. Frame blocking. Here the preemphasized signal is blocked into frames ofN samples with
successive frames overlapping by N0 � N/3 samples. In speech recognition N = 300
with a sampling rate Fs = 6.67 Hz, which corresponds to 45-ms frames overlapping by
15 ms.

3. Windowing. Each frame is multiplied by an N -sample window (usually Hamming) to
smooth the discontinuities at the beginning and the end of the frame.

4. Autocorrelation computation. Here the LPC processor computes the first P + 1 values
of the autocorrelation sequence. Usually, P = 8 in speech recognition and P = 12 in
speech coding applications. The value of r(0) provides the energy of the frame, which
is useful for speech detection.

5. LPC analysis. In this step the processor uses the P + 1 autocorrelations to compute an
LPC parameter set for each speech frame. Depending on the required parameters, we

a

Preemphasis WindowingFrame blocking

N

P

N0

LPC parameter
conversion

Levinson-Durbin
or Schür
algorithm

x(n)

w(n)

r (l ){ak}

{km}
Autocorrelation

computation

FIGURE 9.17
Block diagram of an AP modeling processor for speech coding and recognition.
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can use the algorithm of Levinson-Durbin or the algorithm of Schür. The most widely
used parameters are

am = a(P )m LPC coefficients

km PACS

gm = 1

2
log

1− km
1+ km = tanh−1 km log area ratio coefficients

c(m) cepstral coefficients

ωm line spectrum pairs

where 1 ≤ m ≤ P, except for the cepstrum, which is computed up to about 3P/2.
The line spectrum pair parameters, which are pole angles of the singular filters, were
discussed in Section 2.5.8, and their application to speech processing is considered in
Furui (1989).

The log area ratio and the line spectrum pair coefficients have good quantization prop-
erties and are used for speech coding (Rabiner and Schafer 1978; Furui 1989); the cepstral
coefficients provide an excellent discriminant for speech and speaker recognition applica-
tions (Rabiner and Juang 1993; Mammone et al. 1996). AP models are extensively used
for the modeling of speech sounds. However, the AP model does not provide an accurate
description of the speech spectral envelope when the speech production process resembles a
PZ system (Atal and Schroeder 1978). This can happen when (1) the nasal tract is coupled to
the main vocal tract through the velar opening, for example, during the generation of nasals
and nasalized sounds, (2) the source of excitation is not at the glottis but is in the interior
of the vocal tract (Flanagan 1972), and (3) the transmission or recording channel has zeros
in its response. Although a zero can be approximated with arbitrary precision by a number
of poles, this approximation is usually inefficient and leads to spectral distortion and other
problems. These problems can be avoided by using pole-zero modeling, as illustrated in
the following example. More details about pole-zero speech modeling can be found in Atal
and Schroeder (1978).

Figure 9.18(a) shows a Hamming window segment from an artificial nasal speech
signal sampled at Fs = 10 kHz. According to acoustic theory, such sounds require both
poles and zeros in the vocal tract system function. Before the fitting of the model, the data are
passed though a preemphasis filter with α = 0.95. Figure 9.18(b) shows the periodogram
of the speech segment, the spectrum of an AP(16) model using data windowing, and the
spectrum of a PZ(12, 6) model using the least-squares algorithm described in Section 9.3.3
(see Problem 9.18 for details). We see that the pole-zero model matches zeros (“valleys”)
in the periodogram of the data better than other models do.

9.5 MINIMUM-VARIANCE SPECTRUM ESTIMATION

Spectral estimation methods were discussed in Chapter 5 that are based on the discrete
Fourier transform (DFT) and are data-independent; that is, the processing does not depend
on the actual values of the samples to be analyzed. Window functions can be employed to
cut down on sidelobe leakage, at the expense of resolution. These methods have, as a rule of
thumb, an approximate resolution of-f ≈ 1/N cycles per sampling interval. Thus, for all
these methods, resolution performance is limited by the number of available data samples
N . This problem is only accentuated when the data must be subdivided into segments to
reduce the variance of the spectrum estimate by averaging periodograms. The effective
resolution is then on the order of 1/M, where M is the window length of the segments.
For many applications the amount of data available for spectrum estimation may be limited
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FIGURE 9.18
(a) Speech segment and
(b) periodogram, spectrum of a
data windowing-based AP(16)
model, and spectrum of a
residual windowing-based
PZ(12, 6) model.

either because the signal may only be considered stationary over limited intervals of time
or may only be collected over a short finite interval.

Many times, it may be necessary to resolve spectral peaks that are spaced closer than
the 1/M limit imposed by the amount of data available. All the DFT-based methods use a
predetermined, fixed processing that is independent of the values of the data. However, there
are methods, termed data-adaptive spectrum estimation (Lacoss 1971), that can exploit ac-
tual characteristics of the data to offer significant improvements over the data-independent,
DFT-based methods, particularly in the case of limited data samples. Minimum-variance
spectral estimation is one such technique (Capon 1969). Like the methods from Chapter 5,
the minimum-variance spectral estimator is nonparametric; that is, it does not assume an
underlying model for the data. However, the spectral estimator adapts itself to the character-
istics of the data in order to reject as much out-of-band energy, that is, leakage, as possible.
In addition, minimum-variance spectral estimation provides improved resolution—better
than the -f ≈ 1/N associated with the DFT-based methods. As a result, the minimum-
variance method is commonly referred to as a high-resolution spectral estimator. Note
that model-based data-adaptive methods, such as the LS all-pole method, also have high
resolving capabilities when the model adequately represents the data.

Theory

We derive the minimum-variance spectral estimator by using a filter bank structure in
which each of the filters adapts its response to the data. Recall that the goal of a power
spectrum estimator is to determine the power content of a signal at a certain frequency. To
this end, we would like to measure R(ej2πf ) at the frequency of interest only and not have
our estimate influenced by energy present at other frequencies. Thus, we might interpret
spectral estimation as a methodology in determining the ideal, frequency-selective filter
for each frequency. Recall the filter bank interpretation of a power spectral estimator from
Chapter 5. This ideal filter for fk should pass energy within its bandwidth-f but reject all
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other energy, that is,

|Hk(ej2πf )|2 =



1

-f
|f − fk| ≤ -f

2
0 otherwise

(9.5.1)

where the factor -f ∼ 1/M accounts for the filter bandwidth.
†

Therefore, the filter does
not impart a gain across the bandwidth of the filter, and the output of the filter is a measure
of power in the frequency band around fk . However, since such an ideal filter does not exist
in practice, we need to design one that passes energy at the center frequency while rejecting
as much out-of-band energy as possible.

A filter bank–based spectral estimator should have filters at all frequencies of interest.
The filters have equal spacing in frequency, spanning the fundamental frequency range
− 1

2 ≤ f < 1
2 . Let us denote the total number of frequencies byK and the center frequency

of the kth filter as

fk = k − 1

K
− 1

2
(9.5.2)

for k = 1, 2, . . . , K . The output of the kth filter is the convolution of the signal x(n) with
the impulse response of the filter hk(n), which can also be expressed in vector form as

yk(n) = hk(n) ∗ x(n) =
M−1∑
m=0

hk(m)x(n−m) = cHk x(n) (9.5.3)

ck = [h∗k(0) h∗k(1) · · · h∗k(M − 1)]T (9.5.4)where

is the impulse response of the kth filter, and

x(n) = [x(n) x(n− 1) · · · x(n−M + 1)]T (9.5.5)

is the input data vector. In addition, we define the frequency vector v(f ) as a vector of
complex exponentials at frequency f within the time-window vector from (9.5.5)

v(f ) = [1 e−j2πf · · · e−j2πf (M−1)]T (9.5.6)

When the frequency vector v(f ) is chosen as the filter weight vector in (9.5.4), then the
filter will pass signals at frequency f . Note that if we have ck = v(fk), then the resulting
filter bank performs a DFT since v(f ) is a column vector in the DFT matrix. Thus, all the
DFT-based methods, when interpreted using a filter bank structure, use a form of v(f ),
possibly with a window, as filter weights. See Chapter 5 for the filter bank interpretation of
the DFT.

The output yk(n) of the kth filter should ideally give an estimate of the power spectrum
at fk . The output power of the kth filter is

E{|yk(n)|2} = cHk Rxck (9.5.7)

where Rx = E{x(n)xH (n)} is the correlation matrix of the input data vector from (9.5.5).
Since the ideal filter response from (9.5.1) cannot be realized, we instead constrain our filter
ck to have a response at the center frequency fk of

Hk(fk) = |cHk v(fk)|2 = M (9.5.8)

This constraint ensures that the center frequency of our bandpass filter is at the frequency
fk . To eliminate as much out-of-band energy as possible, the filter is formulated as the filter
that minimizes its output power subject to the center frequency constraint in (9.5.8), that is,

min cHk Rxck subject to cHk v(fk) =
√
M (9.5.9)

†
Asimilar normalization was performed for all the DFT-based methods. Note that the same is not true of a sinusoidal
signal that has zero bandwidth. See Example 9.5.2.
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This constraint requires the filter to have a response of
√
M to a frequency vector from (9.5.6)

at the frequency of interest while rejecting (minimizing) energy from all other frequencies.
The solution to this constrained optimization problem can be found via Lagrange multipliers
(see Appendix B and Problem 9.22) to be

ck =
√
MR−1

x v(fk)

vH (fk)R
−1
x v(fk)

(9.5.10)

By substituting (9.5.10) into (9.5.3), we obtain the output of the kth filter. The power of this
signal, from (9.5.7), is the minimum-variance spectral estimate

R̂
(mv)
M (ej2πfk ) = E{|yk(n)|2} = M

vH (fk)R
−1
x v(fk)

(9.5.11)

where the subscript M denotes the length of the data vector used to compute the spectral
estimate. Note that in order to compute the minimum-variance spectral estimate, we need
to find the inverse of the correlation matrix, which is a Toeplitz matrix since x(n) is sta-
tionary. Efficient techniques for computing the inverse of a Toeplitz matrix were discussed
in Chapter 7.

Implementation

A spectral estimator attempts to determine the power of a random process as a function
of frequency based on a finite set of observations. Since the minimum-variance estimate of
the spectrum involves the correlation matrix of the input data vector, which is unknown in
practice, the correlation matrix must be estimated from the data. An estimate of theM×M
correlation matrix, known as the sample correlation matrix, is given by

†

R̂x = 1

N −M + 1
XHX (9.5.12)

XH = [x(M) x(M + 1) · · · x(N)]

=



x(M) x(M + 1) · · · x(N)

x(M − 1) x(M) · · · x(N − 1)
...

...
. . .

...

x(1) x(2) · · · x(N −M + 1)




(9.5.13)

where

is the data matrix formed from x(n) for 0 ≤ n ≤ N − 1. Any of the other methods of
forming a data matrix discussed in Chapter 8 can also be employed. Note that the data
matrix in (9.5.13) does not produce a Toeplitz matrix R̂x in (9.5.12), though other methods
from Chapter 8 will produce a Toeplitz sample correlation matrix.

An estimate of the spectrum based on the sample correlation matrix is found by sub-
stituting R̂x for the true correlation matrix Rx in (9.5.11). Note that, in practice, the sample
correlation matrix is not actually computed. The form of the sample correlation matrix re-
sembles the product of the data matrices in the least-squares (LS) problem that is addressed
in Chapter 8. Therefore, we might compute the upper triangular factor of the data matrixX
by using one of the techniques discussed in Chapter 8, such as a QR factorization. Indeed,
if we compute the QR factorization made up of the orthonormal matrix Qx and the upper
triangular factor Rx

X = QxRx (9.5.14)

then the minimum-variance spectrum estimator based on the sample correlation matrix is

R̂
(scmv)
M (ej2πfk ) = 1

N −M + 1

M

|vH (fk)R−Hx |2
(9.5.15)

†
We have normalized byN −M+1, the number of realizations of the time-window vector x(n) in the data matrix

X. This normalization is necessary so that the output of the filter bank corresponds to an estimate of power.
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Note that the conjugation of the upper triangular matrix comes about through the formulation
of the data matrix in (9.5.13).

We have not addressed the issue of choosing the filter lengthM . Ideally,M is chosen to
be as large as possible in order to maximize the rejection of out-of-band energy. However,
from a practical point of view, we must place a limit on the filter length. As the filter length
increases, the size of the data matrix grows, which increases the amount of computation
necessary. In addition, since we are inherently estimating the correlation matrix, reducing
the variance of this estimator requires averaging over a set of realizations of the input data
vector x(n). Thus, for a fixed data record size of N, we must balance the length of the time
windowM against the number of realizations of the input data vector N −M + 1.

As we will demonstrate in the following example, the minimum-variance spectrum es-
timator provides a means of achieving high resolution, certainly better than the-f ∼ 1/M
limit of the DFT-based methods. High resolving capability essentially means that the
minimum-variance spectrum estimator can better distinguish complex exponential signals
closely spaced in frequency. This topic is explored further in Section 9.6. However, high
resolution does not come without a cost. In practice, the spectrum cannot be estimated over
a continuous frequency interval and must be computed at a finite set of discrete frequency
points. Since the minimum-variance estimator is based on R−1

x , it is very sensitive to the ex-
act frequency points at which the spectrum is estimated. Therefore, the minimum-variance
spectrum needs to be computed at a very fine frequency spacing in order to accurately mea-
sure the power of such a complex exponential. In some applications where computational
cost is a concern, the DFT-based methods are probably preferred, as long as they provide
the necessary resolution and sidelobe leakage is properly controlled.

EXAMPLE 9.5.1. In this example, we explore the resolving capability of the minimum-variance
spectrum estimator and compare its performance to that of a DFT-based method (Bartlett) and
the all-pole method. Two closely spaced complex exponentials, both with an amplitude of

√
10,

at discrete-time frequencies of f = 0.1 and f = 0.12 are contained in noise with unit power
σ 2
w = 1.We apply the spectrum estimators with time-window lengths (or order)M = 16, 32, 64,

and 128 to signals consisting of 500 time samples. The estimated spectra were then averaged over
100 realizations. The resulting average spectrum estimates are shown in Figure 9.19. Note that
the frequency spacing of the two complex exponentials is-f = 0.02, suggesting a time-window
length of at least M = 50 to resolve them with a DFT-based method. The minimum-variance
spectrum estimator, however, is able to resolve them at the M = 32 window length, for which
they are clearly not distinguishable using the DFT-based method. On the other hand, the all-pole
spectrum estimate is able to resolve the two complex exponentials even for as low an order as
M = 16, for which the minimum-variance spectrum was not successful. In general, the superior
resolving capability of the all-pole model over the minimum-variance spectrum estimator is
due to an averaging effect that comes about through the nonparametric nature of the minimum-
variance method. This subject is explored following the next example. Note that the estimated
noise level is most accurately measured by the minimum-variance method in all cases. Recall
that the signal amplitude was

√
10, yet the estimated power at the frequencies of the complex

exponentials increases as the window length M increases. In the filter bank interpretation of
the minimum-variance spectrum estimator, the normalization assumed a constant signal power
level across the bandwidth of the frequency-selective filter. However, the complex exponential
is actually an impulse in frequency and has zero bandwidth. Therefore, the estimated power
will grow with the length of the time window used for the spectrum estimator as a result of
this bandwidth normalization. The gain imparted on a complex exponential signal is explored in
Example 9.5.2.

EXAMPLE 9.5.2. Consider the complex exponential signal with frequency f1 contained in noise

x(n) = α1e
j2πf1n + w(n)

where α1 = |α1|ejψ1 is a complex number with constant amplitude |α1| and random phase ψ1
with uniform distribution over [0, 2π ]. The correlation matrix of x(n) is

Rx = |α1|2v(f1)v
H (f1)+ σ 2

wI
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FIGURE 9.19
Comparison of the minimum-variance (solid line), all-pole (large dashed line), and Fourier-based
(small dashed line) spectrum estimators for different time window lengths M .

Using the matrix inversion lemma from Appendix B, we can write the inverse of the correlation
matrix as

R−1
x =

1

σ 2
w

I− |α1|2v(f1)vH (f1)

σ 2
w[σ 2

w + |α1|2v(f1)vH (f1)]
= 1

σ 2
w

[
I− |α1|2

σ 2
w +M |α1|2

v(f1)v
H (f1)

]

Substituting this expression for the inverse of the correlation matrix into (9.5.11) for the minimum-
variance spectrum estimate, we have

R̂
(mv)
M

(ej2πf1) = M

vH (f1) R−1
x v(f1)

= σ 2
w

1− |α1|2/M
σ 2
w +M|α1|2

|vH (f1) v(f1)|2

Recall that the norm of the frequency vector v(f ) from (9.5.6) is vH (f1) v(f1) = M.Therefore,
the minimum-variance power spectrum estimate at f = f1 is

R̂
(mv)
M

(ej2πf1) = σ 2
w +M|α1|2

that is, the sum of the noise power and the signal power times the time-window length. This gain
of M on the signal power comes about through the normalization we imposed on our filter in
(9.5.8). This normalization assumed the signal had equal amplitude across the passband of the
filter. A complex exponential, on the other hand, has no bandwidth and thus this normalization
imparts a gain of M on the signal. Therefore, if an estimate of the amplitude of a complex
exponential is desired, this gain must be accounted for. Last, let us examine the behavior of the
minimum variance spectrum estimator at the other frequencies that contain only noise. In the
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case ofM � 1, then vH (f ) v(f1) ≈ 0 and

R̂
(mv)
M

(ej2πf ) ≈ σ 2
w

Relationship between the minimum-variance and all-pole spectrum estimation
methods

The minimum-variance spectrum estimator has an interesting relation to the all-pole
spectrum estimator discussed in Section 9.4. Recall from (9.5.11) that the minimum-variance
spectrum estimate is a function of R−1

x . The inverse of a Toeplitz correlation matrix was
studied in Chapter 7 and from (7.7.8) can be written as an LDLH decomposition

R−1
x = AH D̄−1A (9.5.16)

where the upper triangular matrix A from (7.7.9) is given by

A =




1 a
(M)∗
1 a

(M)∗
2 · · · a

(M)∗
M−1

0 1 a
(M−1)∗
1 · · · a

(M−1)∗
M−2

...
...

...
. . .

...

0 0 0 · · · a
(2)∗
1

0 0 0 · · · 1




(9.5.17)

and the diagonal matrix D̄ is

D̄ = diag {PM,PM−1, . . . , P1} (9.5.18)

Recall from Chapter 7 that the columns of the lower triangular factor L = AH are the
coefficients of the forward linear predictors of ordersm = 1, 2, . . . ,M−1 for the signalx(n)
with correlation matrix Rx. Pm is the residual output power resulting from the application of
thismth-order forward linear predictor to the signalx(n). In turn, the forward linear predictor
coefficients form the mth-order all-pole model. The model orders are found in descending
order as the column index increases. Let us denote the column vector of coefficients for the
mth-order all-pole model as

am = [1 a(m)1 a
(m)
2 · · · a(m)m ]T (9.5.19)

We can write the estimate of the spectrum derived from an mth-order all-pole model in
vector notation as

R̂
(ap)
m (ej2πf ) = Pm

|vHm (f )am|2
(9.5.20)

where vm(f ) is the frequency vector from (9.5.6) of orderM = m. Then we can substitute
(9.5.16) into the minimum-variance spectrum estimator from (9.5.11) to obtain

R̂
(mv)
M (ej2πf ) = M

vHM(f )R
−1
x vM(f )

= M

vHM(f )A
H D̄−1AvM(f )

(9.5.21)

Therefore, we can write the following relationship between the reciprocals of the minimum-
variance and all-pole model spectrum estimators

1

R̂
(mv)
M (ej2πf )

=
M∑
m=1

|vHm (f )am|2
MPm

= 1

M

M∑
m=1

1

R̂
(ap)
m (ej2πf )

(9.5.22)

where the subscripts denote the order of the respective spectrum estimators. Thus, the
minimum-variance spectrum estimator for a filter of length M is formed by averaging
spectrum estimates from all-pole models of orders 1 through M . Note that the resolving
capabilities of the all-pole model improve with increasing model order. As a result, the
resolution of the minimum-variance spectrum estimator must be worse than that of the
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Mth-order all-pole model as we observed in Example 9.5.1. However, on the other hand, this
averaging of all-pole model spectra indicates a lower variance for the minimum-variance
spectrum estimator.

9.6 HARMONIC MODELS AND FREQUENCY ESTIMATION TECHNIQUES

The pole-zero models we have discussed so far assume a linear time-invariant system that is
excited by white noise. However, in many applications, the signals of interest are complex
exponentials contained in white noise for which a sinusoidal or harmonic model is more
appropriate. Signals consisting of complex exponentials are found as formant frequencies
in speech processing, moving targets in radar, and spatially propagating signals in array
processing.

†
For real signals, complex exponentials make up a complex conjugate pair

(sinusoids), whereas for complex signals, they may occur at a single frequency.
For complex exponentials found in noise, the parameters of interest are the frequencies

of the signals. Therefore, our goal is to estimate these frequencies from the data. One might
consider estimating the power spectrum by using the nonparametric methods discussed
in Chapter 5 or the minimum-variance spectral estimate from Section 9.5. The frequency
estimates of the complex exponentials are then the frequencies at which peaks occur in the
spectrum. Certainly, the use of these nonparametric methods seems appropriate for com-
plex exponential signals since they make no assumptions about the underlying process. We
might also consider making use of an all-pole model for the purposes of spectrum estima-
tion as discussed in Section 9.4.1, also known as the maximum entropy method (MEM)
spectral estimation technique. Even though some of these methods can achieve very fine
resolution, none of these methods accounts for the underlying model of complex exponen-
tials in noise. As in all modeling problems, the use of the appropriate model is desirable
from an intuitive point of view and advantageous in terms of performance. We begin by
describing the harmonic signal model, deriving the model in a vector notation, and looking
at the eigendecomposition of the correlation matrix of complex exponentials in noise. Then
we describe frequency estimation methods based on the harmonic model: the Pisarenko
harmonic decomposition, and the MUSIC, minimum-norm, and ESPRIT algorithms.

These methods have the ability to resolve complex exponentials closely spaced in fre-
quency and has led to the name superresolution commonly being associated with them.
However, a word of caution on the use of these harmonic models. The high level of per-
formance in terms of resolution is achieved by assuming an underlying model of the data.
As with all other parametric methods, the performance of these techniques depends upon
how closely this mathematical model matches the actual physical process that produced
the signals. Deviations from this assumption result in model mismatch and will produce
frequency estimates for a signal that may not have been produced by complex exponentials.
In this case, the frequency estimates have little meaning.

9.6.1 Harmonic Model

Consider the signal model that consists of P complex exponentials in noise

x(n) =
P∑
p=1

αpe
j2πnfp + w(n) (9.6.1)

†
In array processing, a spatially propagating wave produces a complex exponential signal as measured across

uniformly spaced sensors in an array. The frequency of the complex exponential is determined by the angle of
arrival of the impinging, spatially propagating signal. Thus, in array processing the frequency estimation problem is
known as angle-of-arrival (AOA) or direction-of-arrival (DOA) estimation. This topic is discussed in Section 11.7.
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The normalized, discrete-time frequency of the pth component is

fp = ωp
2π
= Fp
Fs

(9.6.2)

where ωp is the discrete-time frequency in radians, Fp is the actual frequency of the pth
complex exponential, and Fs is the sampling frequency. The complex exponentials may
occur either individually or in complex conjugate pairs, as in the case of real signals. In
general, we want to estimate the frequencies and possibly also the amplitudes of these
signals. Note that the phase of each complex exponential is contained in the amplitude, that
is,

αp = |αp|ejψp (9.6.3)

where the phasesψp are uncorrelated random variables uniformly distributed over [0, 2π ].
The magnitude |αp| and the frequency fp are deterministic quantities. If we consider the
spectrum of a harmonic process, we note that it consists of a set of impulses with a constant
background level at the power of the white noise σ 2

w = E{|w(n)|2}. As a result, the power
spectrum of complex exponentials is commonly referred to as a line spectrum, as illustrated
in Figure 9.20.

Noise
level

Frequency

R (e j2p f) FIGURE 9.20
The spectrum of complex exponentials in
noise.

Since we will make use of matrix methods based on a certain time window of length
M, it is useful to characterize the signal model in the form of a vector over this time window
consisting of the sample delays of the signal. Consider the signal x(n) from (9.6.1) at its
current and futureM − 1 values. This time window can be written as

x(n) = [x(n) x(n+ 1) · · · x(n+M − 1)]T (9.6.4)

We can then write the signal model consisting of complex exponentials in noise from (9.6.1)
for a length-M time-window vector as

x(n) =
P∑
p=1

αpv(fp)ej2πnfp + w(n) = s(n)+ w(n) (9.6.5)

where w(n) = [w(n) w(n + 1) · · · w(n +M − 1)]T is the time-window vector of white
noise and

v(f ) = [1 ej2πf · · · ej2π(M−1)f ]T (9.6.6)

is the time-window frequency vector. Note that v(f ) is simply a length-M DFT vector
at frequency f . We differentiate here between the signal s(n), consisting of the sum of
complex exponentials, and the noise component w(n), respectively.

Consider the time-window vector model consisting of a sum of complex exponentials
in noise from (9.6.5). The autocorrelation matrix of this model can be written as the sum of
signal and noise autocorrelation matrices

Rx = E{x(n)xH (n)} = Rs + Rw

=
P∑
p=1

|αp|2v(fp)vH (fp)+ σ 2
wI = VAVH + σ 2

wI
(9.6.7)
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V = [v(f1) v(f2) · · · v(fP )] (9.6.8)where

is anM ×P matrix whose columns are the time-window frequency vectors from (9.6.6) at
frequencies fp of the complex exponentials and

A =




|α1|2 0 · · · 0

0 |α2|2 . . .
...

...
. . .

. . . 0

0 · · · 0 |αP |2


 (9.6.9)

is a diagonal matrix of the powers of each of the respective complex exponentials. The
autocorrelation matrix of the white noise is

Rw = σ 2
wI (9.6.10)

which is full rank, as opposed to Rs which is rank-deficient for P < M . In general, we will
always choose the length of our time windowM to be greater than the number of complex
exponentials P .

The autocorrelation matrix can also be written in terms of its eigendecomposition

Rx =
M∑
m=1

λmqmqHm = Q�QH (9.6.11)

where λm are the eigenvalues in descending order, that is, λ1 ≥ λ2 ≥ · · · ≥ λM, and qm are
their corresponding eigenvectors. Here � is a diagonal matrix made up of the eigenvalues
found in descending order on the diagonal, while the columns of Q are the corresponding
eigenvectors. The eigenvalues due to the signals can be written as the sum of the signal
power in the time window and the noise:

λm = M|αm|2 + σ 2
w for m ≤ P (9.6.12)

The remaining eigenvalues are due to the noise only, that is,

λm = σ 2
w for m > P (9.6.13)

Therefore, the P largest eigenvalues correspond to the signal made up of complex expo-
nentials and the remaining eigenvalues have equal value and correspond to the noise. Thus,
we can partition the correlation matrix into portions due to the signal and noise eigen-
vectors

Rx =
P∑
m=1

(M|αm|2 + σ 2
w)qmqHm +

M∑
m=P+1

σ 2
wqmqHm

= Qs�sQHs + σ 2
wQwQHw

(9.6.14)

Qs = [q1 q2 · · · qP ] Qw = [qP+1 · · · qM ] (9.6.15)where

are matrices whose columns consist of the signal and noise eigenvectors, respectively. The
matrix�s is aP ×P diagonal matrix containing the signal eigenvalues from (9.6.12). Thus,
theM-dimensional subspace that contains the observations of the time-window signal vector
from (9.6.5) can be split into two subspaces spanned by the signal and noise eigenvectors,
respectively. These two subspaces, known as the signal subspace and the noise subspace,
are orthogonal to each other since the correlation matrix is Hermitian symmetric.

†
All the

subspace methods discussed later in this section rely on the partitioning of the vector space
into signal and noise subspaces. Recall from Chapter 8 in (8.2.29) that the projection matrix

†
The eigenvectors of a Hermitian symmetric matrix are orthogonal.
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from anM-dimensional space onto an L-dimensional subspace (L < M) spanned by a set
of vectors Z = [z1 z2 · · · zL] is

P = Z(ZHZ)−1ZH (9.6.16)

Therefore, we can write the matrices that project an arbitrary vector onto the signal and
noise subspaces as

Ps = QsQHs Pw = QwQHw (9.6.17)

since the eigenvectors of the correlation matrix are orthonormal (QHs Qs = I and QHwQw =
I). Since the two subspaces are orthogonal

PwQs = 0 PsQw = 0 (9.6.18)

then all the time-window frequency vectors from (9.6.5) must lie completely in the signal
subspace, that is,

Psv(fp) = v(fp) Pwv(fp) = 0 (9.6.19)

These concepts are central to the subspace-based frequency estimation methods discussed
in Sections 9.6.2 through 9.6.5.

Note that in our analysis, we are considering the theoretical or true correlation matrix
Rx . In practice, the correlation matrix is not known and must be estimated from the measured
data samples. If we have a time-window signal vector from (9.6.4), then we can form the
data matrix by stacking the rows with measurements of the time-window data vector at a
time n

X =




xT (0)

xT (1)
...

xT (n)
...

xT (N − 2)

xT (N − 1)




=




x(0) x(1) · · · x(M − 1)

x(1) x(2) · · · x(M)

...
...

...
...

x(n) x(n+ 1) · · · x(n+M − 1)
...

...
...

...

x(N − 2) x(N − 1) · · · x(N +M − 3)

x(N − 1) x(N) · · · x(N +M − 2)




(9.6.20)

which has dimensions of N ×M, where N is the number of data records or snapshots and
M is the time-window length. From this matrix, we can form an estimate of the correlation
matrix, referred to as the sample correlation matrix

R̂x = 1

N
XHX (9.6.21)

In the case of an estimated sample correlation matrix, the noise eigenvalues are no longer
equal because of the finite number of samples used to compute R̂. Therefore, the nice, clean
threshold between signal and noise eigenvalues, as described in (9.6.12) and (9.6.13), no
longer exists. The model order estimation techniques discussed in Section 9.2 can be em-
ployed to attempt to determine the number of complex exponentials P present. In practice,
these methods are best used as rough estimates, as their performance is not very accurate,
especially for short data records.

For several of the frequency estimation techniques described in this section, the analysis
considers the use of eigenvalues and eigenvectors of the correlation matrix for the purposes
of defining signal and noise subspaces.

†
In practice, we estimate the signal and noise sub-

spaces by using the eigenvectors and eigenvalues of the sample correlation matrix. Note that
for notational expedience we will not differentiate between eigenvectors and eigenvalues of

†
The ESPRIT method uses a singular value decomposition of data matrix X.
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the true and sample correlation matrices. However, the reader should always keep in mind
that the sample correlation matrix eigendecomposition is what must be used for implemen-
tation. We note that use of an estimate rather than the true correlation matrix will result in
a degradation in performance, the analysis of which is beyond the scope of this book.

9.6.2 Pisarenko Harmonic Decomposition

The Pisarenko harmonic decomposition (PHD) was the first frequency estimation method
proposed that was based on the eigendecomposition of the correlation matrix and its parti-
tioning into signal and noise subspaces (Pisarenko 1973). This method uses the eigenvector
associated with the smallest eigenvalue to estimate the frequencies of the complex expo-
nentials. Although this method has limited practical use owing to its sensitivity to noise,
it is of great theoretical interest because it was the first method based on signal and noise
subspace principles and it helped to fuel the development of many well-known subspace
methods, such as MUSIC and ESPRIT.

Consider the model of complex exponentials contained in noise in (9.6.5) and the
eigendecomposition of its correlation matrix in (9.6.14). The eigenvector corresponding to
the minimum eigenvalue must be orthogonal to all the eigenvectors in the signal subspace.
Thus, we choose the time window to be of length

M = P + 1 (9.6.22)

that is, 1 greater than the number of complex exponentials. Therefore, the noise subspace
consists of a single eigenvector

Qw = qM (9.6.23)

corresponding to the minimum eigenvalue λM . By virtue of the orthogonality between the
signal and noise subspaces, each of the P complex exponentials in the time-window signal
vector model in (9.6.5) is orthogonal to this eigenvector

vH (fp)qM =
M∑
k=1

qM(k)e
−j2πfp(k−1) = 0 for m ≤ P (9.6.24)

Making use of this property, we can compute

R̄phd(e
j2πf ) = 1

|vH (f )qM |2 =
1

|QM(ej2πf )|2 (9.6.25)

which is commonly referred to as a pseudospectrum. The frequencies are then estimated
by observing the P peaks in R̄phd(e

j2πf ). Note that since (9.6.25) requires a search of all
frequencies −0.5 ≤ f ≤ 0.5, in practice a dense sampling of the frequencies is generally
necessary. The quantity

QM(e
j2πf ) = vH (f )qM =

M∑
k=1

qM(k)e
−j2πf (k−1) (9.6.26)

is simply the Fourier transform of theMth eigenvector corresponding to the minimum eigen-
value. Thus, the pseudospectrum for the Pisarenko harmonic decomposition R̄phd(e

j2πf )

can be efficiently implemented by computing the FFT of qM with sufficient zero padding
to provide the necessary frequency resolution. Then R̄phd(e

j2πf ) is simply the reciprocal
of the spectrum of the noise eigenvector, that is, the squared magnitude of its Fourier trans-
form. Note that R̄phd(e

j2πf ) is not an estimate of the true power spectrum since it contains
no information about the powers of the complex exponentials |αp|2 or the background
noise level σ 2

w. However, these amplitudes can be found by using the estimated frequen-
cies and the corresponding time-window frequency vectors along with the relationship of
eigenvalues and eigenvectors. See Problem 9.24 for details.
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Alternately, the frequencies of the complex exponentials can be found by computing
the zeros of the Fourier transform of the Mth eigenvector in (9.6.23). The z-transform of
this eigenvector is

QM(z) =
M∑
k=1

qM(k)z
−k =

M−1∏
k=1

(1− ej2πfk z−1) (9.6.27)

where the phases of the P = M − 1 roots of this polynomial are the frequencies fk of the
P = M − 1 complex exponentials.

As we stated up front, the significance of the Pisarenko harmonic decomposition is seen
mostly from a theoretical perspective. The limitations of its practical use stem from the fact
that it uses a single noise eigenvector and, as a result, lacks the necessary robustness needed
for most applications. Since the correlation matrix is not known and must be estimated from
data, the resulting noise eigenvector of the estimated correlation matrix is only an estimate
of the actual noise eigenvector. Because we only use one noise eigenvector, this method is
very sensitive to any errors in the estimation of the noise eigenvector.

EXAMPLE 9.6.1. We demonstrate the use of the Pisarenko harmonic decomposition with a sinu-
soid in noise. The amplitude and frequency of the sinusoid are α = 1 and f = 0.2, respectively.
The additive noise has unit power (σ 2

w = 1). Using Matlab, this signal is generated:

x = sin(2*pi*f*[0:(N-1)]’) + (randn(N,1)+j*randn(N,1))/sqrt(2);

Since the number of complex exponentials is equal to P = 2 (a complex conjugate pair
for a sinusoid), the time-window length is chosen to be M = 3. After forming the N ×M data
matrix X and computing the sample correlation matrix R̂x,we can compute the pseudospectrum
as follows:

[Q0,D] = eig(R); % eigendecomposition
[lambda,index] = sort(abs(diag(D))); % order by eigenvalue magnitude
lambda = lambda(M:-1:1); Q=Q0(:,index(M:-1:1));
Rbar = 1./abs(fftshift(fft(Q(:,M),Nfft))).ˆ2;

Figure 9.21 shows the pseudospectrum of the Pisarenko harmonic decomposition for a
single realization with an FFT size of 1024. Note the two peaks near f = ±0.2. Recall that
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FIGURE 9.21
Pseudospectrum for the Pisarenko harmonic decomposition of a
sinusoid in noise with frequency f = 0.2.
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this is a pseudospectrum, so that the actual values do not correspond to an estimate of power.
A Matlab routine for estimating frequencies using the Pisarenko harmonic decomposition is
provided in phd.m.

9.6.3 MUSIC Algorithm

The multiple signal classification (MUSIC) frequency estimation method was proposed
as an improvement on the Pisarenko harmonic decomposition (Bienvenu and Kopp 1983;
Schmidt 1986). Like the Pisarenko harmonic decomposition, the M-dimensional space is
split into signal and noise components using the eigenvectors of the correlation matrix from
(9.6.15). However, rather than limit the length of the time window to M = P + 1, that
is, 1 greater than the number of complex exponentials, allow the size of the time window
to be M > P + 1. Therefore, the noise subspace has a dimension greater than 1. Using
this larger dimension allows for averaging over the noise subspace, providing an improved,
more robust frequency estimation method than Pisarenko harmonic decomposition.

Because of the orthogonality between the noise and signal subspaces, all the time-
window frequency vectors of the complex exponentials are orthogonal to the noise subspace
from (9.6.19). Thus, for each eigenvector (P < m ≤ M)

vH (fp)qm =
M∑
k=1

qm(k)e
−j2πfp(k−1) = 0 (9.6.28)

for all the P frequencies fp of the complex exponentials. Therefore, if we compute a
pseudospectrum for each noise eigenvector as

R̄m(e
j2πf ) = 1

|vH (f )qm|2 =
1

|Qm(ej2πf )|2 (9.6.29)

the polynomialQm(ej2πf ) hasM−1 roots,P of which correspond to the frequencies of the
complex exponentials. These roots produce P peaks in the pseudospectrum from (9.6.29).
Note that the pseudospectra of allM − P noise eigenvectors share these roots that are due
to the signal subspace. The remaining roots of the noise eigenvectors, however, occur at
different frequencies. There are no constraints on the location of these roots, so that some
may be close to the unit circle and produce extra peaks in the pseudospectrum. A means of
reducing the levels of these spurious peaks in the pseudospectrum is to average theM −P
pseudospectra of the individual noise eigenvectors

R̄music(e
j2πf ) = 1

M∑
m=P+1

|vH (f )qm|2
= 1

M∑
m=P+1

|Qm(ej2πf )|2
(9.6.30)

which is known as the MUSIC pseudospectrum. The frequency estimates of the P complex
exponentials are then taken as the P peaks in this pseudospectrum. Again, the term pseu-
dospectrum is used because the quantity in (9.6.30) does not contain information about the
powers of the complex exponentials or the background noise level. Note that forM = P+1,
the MUSIC method is equivalent to Pisarenko harmonic decomposition.

The implicit assumption in the MUSIC pseudospectrum is that the noise eigenvalues
all have equal power λm = σ 2

w, that is, the noise is white. However, in practice, when an
estimate is used in place of the actual correlation matrix, the noise eigenvalues will not be
equal. The differences become more pronounced when the correlation matrix is estimated
from a small number of data samples. Thus, a slight variation on the MUSIC algorithm,
known as the eigenvector (ev) method, was proposed to account for the potentially different
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noise eigenvalues (Johnson and DeGraaf 1982). For this method, the pseudospectrum is

R̄ev(e
jω) = 1

M∑
m=P+1

1

λm
|vH (f )qm|2

= 1
M∑

k=P+1

1

λm
|Qm(ej2πf )|2

(9.6.31)

where λm is the eigenvalue corresponding to the eigenvector qm. The pseudospectrum of
each eigenvector is normalized by its corresponding eigenvalue. In the case of equal noise
eigenvalues (λm = σ 2

w) for P + 1 ≤ m ≤ M, the eigenvector and MUSIC methods are
identical.

The peaks in the MUSIC pseudospectrum correspond to the frequencies at which the
denominator in (9.6.30)

∑M
m=P+1 |Qm(ej2πf )|2 approaches zero. Therefore, we might

want to consider the z-transform of this denominator

P̄music(z) =
M∑

m=P+1

Qm(z)Q
∗
m

(
1

z∗

)
(9.6.32)

which is the sum of the z-transforms of the pseudospectrum due to each noise eigenvector.
This (2M − 1)th-order polynomial has M − 1 pairs of roots with one inside and one
outside the unit circle. Since we assume that the complex exponentials are not damped,
their corresponding roots must lie on the unit circle. Thus, if we have found the M − 1
roots of (9.6.32), the P closest roots to the unit circle will correspond to the complex
exponentials. The phases of these roots are then the frequency estimates. This method of
rooting the polynomial corresponding to the MUSIC pseudospectrum is known as root-
MUSIC (Barabell 1983). Note that in many cases, a rooting method is more efficient than
computing a pseudospectrum at a very fine frequency resolution that may require a very
large FFT. Statistical performance analyses of the MUSIC algorithm can be found in Kaveh
and Barabell (1986) and Stoica and Nehorai (1989). For the performance of the root-MUSIC
method see Rao and Hari (1989).Aroutine for the MUSIC algorithm is provided in music.m

and a routine for the root-MUSIC algorithm is provided in rootmusic.m.

EXAMPLE 9.6.2. In this example, we demonstrate the use of the MUSIC algorithm and examine
its performance in terms of resolution with respect to that of the minimum-variance spectral
estimator. Consider the following scenario: Two complex exponentials in unit power noise (σ 2

w =
1) with normalized frequencies f = 0.1, 0.2 both with amplitudes of α = 1. We generate
N = 128 samples of the signal and use a frequency vector of length M = 8. Proceeding as we
did in Example 9.6.1, we compute the eigendecomposition and partition it into signal and noise
subspaces. The MUSIC pseudospectrum is computed as

Qbar = zeros(Nfft,1);
for n = 1:(M-P)

Qbar = Qbar + abs(fftshift(fft(Q(:,M-(n-1)),Nfft))).ˆ2;
end
Rbar = 1./Qbar;

The minimum-variance spectral estimate and the MUSIC pseudospectrum are computed and
averaged over 1000 realizations using an FFT size of 1024. The result is shown in Figure 9.22.
The two exponentials have been clearly resolved using the MUSIC algorithm, whereas they
are not very clear using the minimum-variance spectral estimate. Since the minimum-variance
spectral estimator is nonparametric and makes no assumptions about the underlying model, it
cannot achieve the resolution of the MUSIC algorithm.

9.6.4 Minimum-Norm Method

The minimum-norm method (Kumaresan and Tufts 1983), like the MUSIC algorithm, uses
a time-window vector of lengthM > P + 1 for the purposes of frequency estimation. For
MUSIC, a larger time window is used than for Pisarenko harmonic decomposition, resulting
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FIGURE 9.22
Comparison of the minimum-variance spectral estimate (dashed line)
and the MUSIC pseudospectrum (solid line) for two complex
exponentials in noise.

in a larger noise subspace. The use of a larger subspace provides the necessary robustness
for frequency estimation when an estimated correlation matrix is used. The same principle is
applied in the minimum-norm frequency estimation method. However, rather than average
the pseudospectra of all the noise subspace eigenvectors to reduce spurious peaks, as in the
case of the MUSIC algorithm, a different approach is taken.

Consider a single vector u contained in the noise subspace. The pseudospectrum of this
vector is given by

R̄(ej2πf ) = 1

|vH (f )u|2 (9.6.33)

Since the vector u lies in the noise subspace, its pseudospectrum in (9.6.33) has P peaks
corresponding to the complex exponentials in the signal subspace. However, u is lengthM so
that its pseudospectrum may exhibit an additionalM −P − 1 peaks that do not correspond
to the frequencies of the complex exponentials. These spurious peaks lead to frequency
estimation errors. In the case of Pisarenko harmonic decomposition, spurious peaks were
not a concern since M = P + 1 and therefore its pseudospectrum in (9.6.25) only had
P peaks. On the other hand, the MUSIC algorithm diluted the strength of these spurious
peaks since its pseudospectrum in (9.6.30) is produced by averaging the pseudospectra of
theM − P noise eigenvectors.

Recall the projection onto the noise subspace from (9.6.17) is

Pw = QwQHw (9.6.34)

where Qw is the matrix of noise eigenvectors. Therefore, for any vector u that lies in the
noise subspace

Pwu = u Psu = 0 (9.6.35)

where Ps is the signal subspace projection matrix and 0 is the length-P zero vector. Now
let us consider the z-transform of the coefficients of u = [u(1) u(2) · · · u(M)]T

U(z) =
M−1∑
k=0

u(k + 1)z−k =
P∏
k=1

(1− ej2πfk z−1)

M−1∏
k=P+1

(1− zkz−1) (9.6.36)



March 8, 2005 10:15 e56-ch9 Sheet number 43 Page number 487 black

487

section 9.6
Harmonic Models and
Frequency Estimation
Techniques

This polynomial is the product of the P roots corresponding to complex exponentials that
lie on the unit circle and theM − P − 1 roots that in general do not lie directly on the unit
circle but can potentially produce spurious peaks in the pseudospectrum of u. Therefore,
we want to choose u so that it minimizes the spurious peaks due to these other roots of its
associated polynomial U(z).

The minimum-norm method, as its name implies, seeks to minimize the norm of u in
order to avoid spurious peaks in its pseudospectrum. Using (9.6.35), the norm of a vector
u contained in the noise subspace is

‖u‖2 = uHu = uHPwu (9.6.37)

However, an unconstrained minimization of this norm will produce the zero vector. There-
fore, we place the constraint that the first element of u must equal 1.

†
This constraint can

be expressed as

δH1 u = 1 (9.6.38)

where δ1 = [1 0 · · · 0]T . Then the determination of the minimum-norm vector comes
down to solving the following constrained minimization problem:

min ‖u‖2 = uHPwu subject to δH1 u = 1 (9.6.39)

The solution can be found by using Lagrange multipliers (see Appendix B) and is given by

umn = Pwδ1

δH1 Pwδ1
(9.6.40)

The frequency estimates are then obtained from the peaks in the pseudospectrum of the
minimum-norm (mn) vector, umn

R̄mn(e
j2πf ) = 1

|vH (f )umn|2 (9.6.41)

The performance of the minimum-norm frequency estimation method is similar to that
of MUSIC. For a performance comparison see Kaveh and Barabell (1986). Note that it is
also possible to implement the minimum-norm method by rooting a polynomial rather than
computing a psuedospectrum (see Problem 9.25).

EXAMPLE 9.6.3. In this example, we illustrate the use of the minimum-norm method and compare
its performance to that of the other three frequency estimation methods discussed in this chapter:
Pisarenko harmonic decomposition, the MUSIC algorithm, and the eigenvector method. The
pseudospectrum of the minimum-norm method is found by first computing the minimum-norm
vector umn and then finding its pseudospectrum, that is,

delta1 = zeros(M,1); delta1(1) = 1;
Pn=Q(:,(P+1):M)*Q(:,(P+1):M)’; % noise subspace projection matrix
u = (Pn*e1)/(e1’*Pn*e1); % minimum-norm vector
Rbar = 1./abs(fftshift(fft(u,Nfft))).ˆ2; % pseudospectrum

Consider the case of P = 4 complex exponentials in noise with frequencies f = 0.1, 0.25,
0.4, and −0.1, all with an amplitude of α = 1. The power of the noise is set to α2

w = 1 with
100 realizations. The time-window length used wasM = 8 for all the methods except Pisarenko
harmonic decomposition, which is constrained to use M = P + 1 = 5. The pseudospectra
are shown in Figure 9.23 with an FFT size of 1024, where we have not averaged in order
to demonstrate the variance of the various methods. Here we see the large variance in the
frequency estimates that is produced by Pisarenko harmonic decomposition compared to the other
methods, which is a direct result of using a one-dimensional noise subspace. The other methods all
perform comparably in terms of estimating the frequencies of the complex exponentials. Note the
fluctuations in the pseudospectrum of the eigenvector method that result from the normalization

†
The choice of a value of 1 is somewhat arbitrary, since any nonzero constant will result in a similar solution.
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FIGURE 9.23
Comparison of the eigendecomposition-based frequency estimation methods: (a) Pisarenko
harmonic decomposition, (b) MUSIC, (c) eigenvector method, and (d) minimum-norm method.

by the eigenvalues. Since these eigenvalues vary over realizations, the pseudospectra will also
reflect a similar variation. Routines for the eigenvector method and the minimum-norm method
are provided in ev method.m and minnorm.m, respectively.

9.6.5 ESPRIT Algorithm

A frequency estimation technique that is built upon the same principles as other subspace
methods but further exploits a deterministic relationship between subspaces is the estimation
of signal parameters via rotational invariance techniques (ESPRIT) algorithm. This method
differs from the other subspace methods discussed so far in this chapter in that the signal
subspace is estimated from the data matrix X rather than the estimated correlation matrix
R̂x . The essence of ESPRIT lies in the rotational property between staggered subspaces
that is invoked to produce the frequency estimates. In the case of a discrete-time signal or
time series, this property relies on observations of the signal over two identical intervals
staggered in time. This condition arises naturally for discrete-time signals, provided that the
sampling is performed uniformly in time.

†
Extensions of the ESPRIT method to a spatial

†
This condition is violated in the case of a nonuniformly sampled time series.
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array of sensors, the application for which it was originally proposed, will be discussed
in Chapter 11 in Section 11.7. We first describe the original, least-squares version of the
algorithm (Roy et al. 1986) and then extend the derivation to total least-squares ESPRIT
(Roy and Kailath 1989), which is the preferred method for use. Since the derivation of the
algorithm requires an extensive amount of formulation and matrix manipulations, we have
included a block diagram in Figure 9.24 to be used as a guide through this process.

XN

M

Compute
Ψ

(LS or TLS)

Ψ

SVD
      =      LΣ

V

Time-window
signal vector model

Signal model

Data matrix

Unknown

Matching
signal

subspace

fp are
eigenvalues

of Ψ

fp f̂p =

l ≤ p ≤ P

P
U2 = U1

U1

U2

V1

V2 = V1Φ

Ψ  =  TΦT−1

V2

Us

Us
H

Un
H

UH

Separate
signal & noise

subspaces
Partition into

staggered subspaces

s(n) =  Σ  ape j2p fpn
P

p=1

2p

fp

FIGURE 9.24
Block diagram demonstrating the flow of the ESPRIT algorithm starting from the data matrix
through the frequency estimates.

Consider a single complex exponential s0(n) = ej2πf n with complex amplitude α and
frequency f . This signal has the following property

s0(n+ 1) = αej2πf (n+1) = s0(n)ej2πf (9.6.42)

that is, the next sample value is a phase-shifted version of the current value. This phase shift
can be represented as a rotation on the unit circle ej2πf . Recall the time-window vector
model from (9.6.4) consisting of a signal s(n), made up of complex exponentials, and the
noise component w(n)

x(n) =
P∑
p=1

αpv(fp)ej2πnfp + w(n) = V�nα + w(n) = s(n)+ w(n) (9.6.43)

where the P columns of matrix V are length-M time-window frequency vectors of the
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complex exponentials

V = [v(f1) v(f2) · · · v(fP )] (9.6.44)

The vector α consists of the amplitudes of the complex exponentials αp. On the other hand,
matrix � is the diagonal matrix of phase shifts between neighboring time samples of the
individual, complex exponential components of s(n)

� = diag {φ1, φ2, . . . , φP } =



ej2πf1 0 · · · 0
0 ej2πf2 · · · 0
...

...
. . .

...

0 · · · 0 ej2πfP


 (9.6.45)

where φp = ej2πfp forp = 1, 2, . . . , P . Since the frequencies of the complex exponentials
fp completely describe this rotation matrix, frequency estimates can be obtained by finding
�. Let us consider two overlapping subwindows of length M − 1 within the length M
time-window vector. This subwindowing operation is illustrated in Figure 9.25. Consider
the signal consisting of the sum of complex exponentials

s(n) =
[

sM−1(n)

s(n+M − 1)

]
=
[
s(n)

sM−1(n+ 1)

]
(9.6.46)

where sM−1(n) is the length-(M − 1) subwindow of s(n), that is,

sM−1(n) = VM−1�
nα (9.6.47)

n
n + 1

xM−1(n + 1)

n + M − 1

x(n)

n + M

xM−1(n)

FIGURE 9.25
Time-staggered, overlapping windows used by the ESPRIT algorithm.

Matrix VM−1 is constructed in the same manner as V except its time-window frequency
vectors are of lengthM − 1, denoted as vM−1(f ),

VM−1 = [vM−1(f1) vM−1(f2) · · · vM−1(fP )] (9.6.48)

Recall that s(n) is the scalar signal made up of the sum of complex exponentials at time n.
Using the relation in (9.6.47), we can define the matrices

V1 = VM−1�
n and V2 = VM−1�

n+1 (9.6.49)

where V1 and V2 correspond to the unstaggered and staggered windows, that is,

V� =
[

V1

∗ ∗ · · · ∗

]
=
[
∗ ∗ · · · ∗
V2

]
(9.6.50)
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Clearly, by examining (9.6.49), these two matrices of time-window frequency vectors are
related as

V2 = V1� (9.6.51)

Note that each of these two matrices spans a different, though related, (M−1)-dimensional
subspace.

Now suppose that we have a data matrix X from (9.6.20) with N data records of the
length-M time-window vector signal x(n). Using the singular value decomposition (SVD)
discussed in Chapter 8, we can write the data matrix as

†

X = L�UH (9.6.52)

where L is an N × N matrix of left singular vectors and U is an M ×M matrix of right
singular vectors. Both of these matrices are unitary; that is, LHL = I and UHU = I. The
matrix� has dimensionsN×M consisting of singular values on the main diagonal ordered
in descending magnitude. The squared magnitudes of the singular values are equal to the
eigenvalues of R̂ scaled by a factor of N from (9.6.21), and the columns of U are their
corresponding eigenvectors. Thus, U forms an orthonormal basis for the underlying M-
dimensional vector space. This subspace can be partitioned into signal and noise subspaces
as

U = [Us |Un] (9.6.53)

where Us is the matrix of right-hand singular vectors corresponding to the singular values
with the P largest magnitudes. Note that since the signal portion consists of the sum of
complex exponentials modeled as time-window frequency vectors v(f ), all these frequency
vectors, forf = f1, f2, . . . , fP ,must also lie in the signal subspace.As a result, the matrices
V and Us span the same subspace. Therefore, there exists an invertible transformation T
that maps Us into V, that is,

V = UsT (9.6.54)

The transformation T is never solved for in this derivation, but instead is only formulated
as a mapping between these two matrices within the signal subspace.

Proceeding as we did with the matrix V in (9.6.50), we can partition the signal subspace
into two smaller (M − 1)-dimensional subspaces as

Us =
[

U1

∗ ∗ · · · ∗

]
=
[
∗ ∗ · · · ∗
U2

]
(9.6.55)

where U1 and U2 correspond to the unstaggered and staggered subspaces, respectively.
Since V1 and V2 correspond to the same subspaces, the relation from (9.6.54) must also
hold for these subspaces

V1 = U1T V2 = U2T (9.6.56)

The staggered and unstaggered components of the matrix V in (9.6.50) are related through
the subspace rotation� in (9.6.51). Since the matrices U1 and U2 also span these respective,
related subspaces, a similar, though different, rotation must exist that relates (rotates) U1 to
U2

U2 = U1� (9.6.57)

where � is this rotation matrix.
Recall that frequency estimation comes down to solving for the subspace rotation

matrix �. We can estimate � by making use of the relations in (9.6.56) together with the

†
Our notation differs slightly from that introduced in Chapter 8 in order to avoid confusion with the matrix of

time-window frequency vectors V.
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rotations between the staggered signal subspaces in (9.6.51) and (9.6.57). In this process,
the matrices U1 and U2 are known from the SVD on data matrix X. First, we solve for �
from the relation in (9.6.57), using the method of least-squares (LS) from Chapter 8

� = (UH1 U1)
−1UH1 U2 (9.6.58)

Substituting (9.6.57) into (9.6.56), we have

V2 = U2T = U1�T (9.6.59)

Similarly, we can also solve for V2, using the relation in (9.6.51) and substituting (9.6.56)
for V1

V2 = V1� = U1T� (9.6.60)

Thus, equating the two right-hand sides of (9.6.59) and (9.6.60), we have the following
relation between the two subspace rotations

�T = T� (9.6.61)

� = T�T−1 (9.6.62)or equivalently

Equations (9.6.61) and (9.6.62) should be recognized as the relationship between eigenvec-
tors and eigenvalues of the matrix � (Golub and Van Loan 1996). Therefore, the diagonal
elements of �, φp for p = 1, 2, . . . , P , are simply the eigenvalues of �. As a result, the
estimates of the frequencies are

f̂p =
�φp
2π

(9.6.63)

where �φp is the phase ofφp.Although the principle behind the ESPRIT algorithm, namely,
the use of subspace rotations, is quite simple, one can easily get lost in the details of the
derivation of the algorithm. Note that we have only used simple matrix relationships. An
illustrative example of the implementation of ESPRIT in Matlab is given in Example
9.6.4 to help clarify the details of the algorithm. However, first we give a total least-squares
version of the algorithm, which is the preferred method for use.

Note that the subspaces U1 and U2 are both only estimates of the true subspaces that
correspond to V1 and V2, respectively, obtained from the data matrix X. The estimate of
the subspace rotation was obtained by solving (9.6.57) using the LS criterion

�ls = (UH1 U1)
−1UH1 U2 (9.6.64)

This LS solution is obtained by minimizing the errors in an LS sense from the following
formulation

U2 + E2 = U1� (9.6.65)

where E2 is a matrix consisting of errors between U2 and the true subspace corresponding
to V2. Note that this LS formulation assumes errors only on the estimation of U2 and no
errors between U1 and the true subspace that it is attempting to estimate corresponding to
V1. Therefore, since U1 is also an estimated subspace, a more appropriate formulation is

U2 + E2 = (U1 + E1)� (9.6.66)

where E1 is the matrix representing the errors between U1 and the true subspace corre-
sponding to V1. A solution to this problem, known as total least squares (TLS), is obtained
by minimizing the Frobenius norm of the two error matrices

‖E1 E2‖F (9.6.67)

Since the principles of TLS are beyond the scope of this book, we simply give the procedure
to obtain the TLS solution of� and refer the interested reader to Golub and Van Loan (1996).
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First, form a matrix made up of the staggered signal subspace matrices U1 and U2

placed side by side,
†

and perform an SVD

[U1 U2] = L̃�̃ŨH (9.6.68)

We then operate on the 2P×2P matrix Ũ of right singular vectors. This matrix is partitioned
into P × P quadrants

Ũ =
[

Ũ11 Ũ12

Ũ21 Ũ22

]
(9.6.69)

The TLS solution for the subspace rotation matrix � is then

�tls = −Ũ12Ũ−1
22 (9.6.70)

The frequency estimates are then obtained from (9.6.62) and (9.6.63) by using �tls from
(9.6.70). Although the TLS version of ESPRIT involves slightly more computations, it
is generally preferred over the LS version based on formulation in (9.6.66). A statistical
analysis of the performance of the ESPRIT algorithms is given in Ottersten et al. (1991).

EXAMPLE 9.6.4. In this illustrative example, we demonstrate the use of both the LS and TLS
versions of the ESPRIT algorithm on a set of complex exponentials in white noise using Matlab.
First, generate a signal s(n) of length N = 128 consisting of complex exponential signals at
normalized frequencies f = 0.1, 0.15, 0.4, and −0.15, all with amplitude α = 1. Each of the
complex exponentials is generated by exp(j*2*pi*f*[0:(N-1)]’);. The overall signal in
white noise with unit power (σ 2

w = 1) is then

x = s + (randn(N,1)+j*randn(N,1))/sqrt(2);

We form the data matrix corresponding to (9.6.20) for a time window of length M = 8.
The least-squares ESPRIT algorithm is then performed as follows:

[L,S,U] = svd(X);
Us = U(:,1:P); % signal subspace
U1 = Us(1:(M-1),:); U2 = Us(2:M,:); % signal subspaces
Psi = U1\U2; % LS solution for Psi

If we are using the TLS version of ESPRIT, then solve for

[LL,SS,UU] = svd([U1 U2]); UU12 = UU(1:P,(P+1):(2*P));
UU22 = UU((P+1):(2*P),(P+1):(2*P));
Psi = -UU12*inv(UU22); % TLS solution for Psi

The frequencies are found by computing the phases of the eigenvalues of �, that is,

phi = eig(Psi); % eigenvalues of Psi

fhat = angle(diag(phi))/(2*pi); % frequency estimates

In both cases, we average over 1000 realizations and obtain average estimated frequencies
very close to the true values f = 0.1, 0.15, 0.4, and−0.15 used to generate the signals. Routines
for both the LS and TLS versions of ESPRIT are provided in esprit ls.m and esprit tls.m.

9.7 SUMMARY

In this chapter, we have examined the modeling process for both pole-zero and harmonic
signal models. As for all signal modeling problems, the procedure begins with the selection
of the appropriate model for the signal under consideration. Then the signal model is applied
by estimating the model parameters from a collection of data samples. However, as we

†
Note that this matrix [U1 U2] �= Us = [UT1 UT2 ]T from (9.6.55).
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have stressed throughout this chapter, nothing is more valuable in the modeling process
than specific knowledge of the signal and its underlying process in order to assess the
validity of the model for a particular signal. For this reason, we began the chapter with a
discussion of a model building procedure, starting with the choice of the appropriate model
and the estimation of its parameters, and concluding with the validation of the model.
Clearly, if the model is not well-suited for the signal, the application of the model becomes
meaningless.

In the first part of the chapter, we considered the application of the parametric signal
models that were discussed in Chapter 4. The estimation of all-pole models was presented
for both direct and lattice structures. Within this context, we used various model order
selection criteria to determine the order of the all-pole model. However, these criteria are
not necessarily limited to all-pole models. In addition, the relationship was given between
the all-pole model and Burg’s method of maximum entropy. Next, we considered the pole-
zero modeling. Using a nonlinear least-squares technique, a method was presented for
estimating the parameters of the pole-zero model. The use of pole-zero models for the
purposes of spectral estimation along with their application to speech modeling was also
considered.

The latter part of the chapter focused on harmonic signal models, that is, modeling
signals using the sum of complex exponentials. The harmonic modeling problem becomes
one of estimating the frequency of the complex exponentials. As a bridge between these
pole-zero and harmonic models, we discussed the topic of minimum-variance spectral
estimation. As will be explored in the problems that follow, there are several interesting
relations between the minimum-variance spectrum and the harmonic models. In addition,
a relationship between the minimum-variance spectral estimator and the all-pole model
was established. Then, we discuss some of the more popular harmonic modeling methods.
Starting with the Pisarenko harmonic decomposition, the first such model, we discuss the
MUSIC, eigenvector, root-MUSIC, and minimum-norm methods for frequency estimation.
All of these methods are based on computing a pseudospectrum or a rooting polynomial
from an estimated correlation matrix. Finally, we give a brief derivation of the ESPRIT
algorithm, both in its original LS form and the more commonly used TLS form.

PROBLEMS

9.1 Consider the random process x(n) described in Example 9.2.3 that is simulated by exciting the
system function

H(z) = 1

1− 2.7607z−1 + 3.8108z−2 − 2.6535z−3 + 0.9238z−4

using a WGN(0, 1) process. Generate N = 250 samples of the process x(n).

(a) Write a Matlab function that implements the modified covariance method to obtain AR(P )
model coefficients and the modeling error variance σ̂ 2

P as a function of P, usingN samples
of x(n).

(b) Compute and plot the variance σ̂ 2
P , FPE(P ), AIC(P ), MDL(P ), and CAT(P ) for P =

1, 2, . . . , 15.
(c) Comment on your results and the usefulness of model selection criteria for the process x(n).

9.2 Consider the Burg approach of minimizing forward-backward LS error E f b
m in (9.2.33).

(a) Show that by using (9.2.26) and (9.2.27), E f b
m can be put in the form of (9.2.34).

(b) By minimizing E f b
m with respect to km−1, show that the expression for the optimum kB

m−1
is given by (9.2.35).

(c) Show that |kB
m−1| < 1.

(d ) Show that |kB
m−1| < |kIS

m−1| ≤ 1 where kIS
m−1 is defined in (9.2.36).
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9.3 Generate an AR(2) process using the system function

H(z) = 1

1− 0.9z−1 + 0.81z−2

excited by a WGN(0, 1)process. Illustrate numerically that if we use the full-windowing method,
that is, the matrix X̄ in (9.2.8), then the PACS estimates {kFP

m }1m=0, {kBP
m }1m=0, and {kB

m}1m=0 of
Section 9.2 are identical and hence can be obtained by using the Levinson-Durbin algorithm.

9.4 Generate sample sequences of an AR(2) process

x(n) = w(n)− 1.5857x(n− 1)− 0.9604x(n− 2)

where w(n) ∼WGN(0, 1). Choose N = 256 samples for each realization.

(a) Design a first-order optimum linear predictor, and compute the prediction error e1(n). Test
the whiteness of the error sequence e1(n) using the autocorrelation, PSD, and partial cor-
relation methods, discussed in Section 9.1. Show your results as an overlay plot using 20
realizations.

(b) Repeat the above part, using second- and third-order linear predictors.
(c) Comment on your plots.

9.5 Generate sample functions of the process

x(n) = 0.5w(n)+ 0.5w(n− 1)

where w(n) ∼WGN(0, 1). Choose N = 256 samples for each realization.

(a) Test the whiteness ofx(n) and show your results, using overlay plots based on 10 realizations.
(b) Process x(n) through the AR(1) filter

H(z) = 1

1+ 0.95z−1

to obtain y(n). Test the whiteness of y(n) and show your results, using overlay plots based
on 10 realizations.

9.6 The process x(n) contains a complex exponential in white noise, that is,

x(n) = Aej(ω0n+θ) + w(n)
whereA is a real positive constant, θ is a random variable uniformly distributed over [0, 2π ], ω0
is a constant between 0 and π, and w(n) ∼ WGN(0, σ 2

w). The purpose of this problem is to
analytically obtain a maximum entropy method (MEM) estimate by fitting an AR(P ) model
and then evaluating {ak}P0 model coefficients.

(a) Show that the (P + 1)× (P + 1) autocorrelation matrix of x(n) is given by

Rx = A2eeH + σ 2
wI

where e = [1 e−jω0 · · · e−jPω0 ]T .
(b) By solving autocorrelation normal equations, show that

aP � [1 a1 · · · aP ]T

=
(

1+ A2

σ 2
w + A2P

)[
e− A2

σ 2
w + (P + 1)A2

[1 0 · · · 0]T
]

(c) Show that the MEM estimate based on the above coefficients is given by

R̂x(e
jω) =

σ 2
w

[
1− A2

σ 2
w + (P + 1)A2

]
∣∣∣∣∣1− A2

σ 2
w + (P + 1)A2

WR(e
j (ω−ω0))

∣∣∣∣∣
2

whereWR(e
jω) is the DTFT of the (P + 1) length rectangular window.
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9.7 An AR(2) process y(n) is observed in noise v(n) to obtain x(n), that is,

x(n) = y(n)+ v(n) v(n) ∼WGN(0, σ 2
v)

where v(n) is uncorrelated with y(n) and

y(n) = 1.27y(n− 1)− 0.81y(n− 2)+ w(n) w(n) ∼WGN(0, 1)

(a) Determine and plot the true power spectrum Rx(ejω).
(b) Generate 10 realizations of x(n), each withN = 256 samples. Using the LS approach with

forward-backward linear predictor, estimate the power spectrum for P = 2 and σ 2
v = 1.

Obtain an overlay plot of this estimate, and compare it with the true spectrum.
(c) Repeat part (b), using σ 2

v = 10. Comment on the effect of increasing noise variance on
spectrum estimates.

(d ) Since the noise variance σ 2
v affects only rx(0), investigate the effect of subtracting a small

amount from rx(0) on the spectrum estimates in part (c).

9.8 Let x(n) be a random process whose correlation is estimated. The values for the first five lags
are rx(0) = 1, rx(1) = 0.7, rx(2) = 0.5, rx(3) = 0.3, and rx(4) = 0.

(a) Determine and plot the Blackman-Tukey power spectrum estimate.
(b) Assume that x(n) is modeled by an AP(2) model. Determine and plot its spectrum estimate.
(c) Now repeat (b) assuming that AP(4) is an appropriate model for x(n). Determine and plot

the spectrum estimate.

9.9 The narrowband process x(n) is generated using the AP(4) model

H(z) = 1

1+ 0.98z−1 + 1.92z−2 + 0.94z−3 + 0.92z−4

driven by WGN(0, 0.001).Generate 10 realizations, each withN = 256 samples, of this process.

(a) Determine and plot the true power spectrum Rx(ejω).
(b) Using the LS approach with forward linear predictor, estimate the power spectrum for

P = 4. Obtain an overlay plot of this estimate, and compare it with the true spectrum.
(c) Repeat part (b) with P = 8 and 12. Provide a qualitative description of your results with

respect to model order size.
(d ) Using the LS approach with forward-backward linear predictor, estimate the power spectrum

for P = 4. Obtain an overlay plot of this estimate. Compare it with the plot in part (b).

9.10 Consider the following PZ(4, 2) model

H(z) = 1− z−2

1+ 0.41z−4

driven by WGN(0, 1) to obtain a broadband ARMA process x(n). Generate 10 realizations,
each with N = 256 samples, of this process.

(a) Determine and plot the true power spectrum Rx(ejω).
(b) Using the LS approach with forward-backward linear predictor, estimate the power spectrum

for P = 12. Obtain an overlay plot of this estimate, and compare it with the true spectrum.
(c) Using the nonlinear LS pole-zero modeling algorithm of Section 9.3.3, estimate the power

spectrum for P = 4 and Q = 2. Obtain an overlay plot of this estimate, and compare it
with the plot in part (b).

9.11 A random process x(n) is given by

x(n) = cos
(πn

3
+ θ1

)
+ w(n)− w(n− 2)+ cos

(2πn

3
+ θ2

)
where w(n) ∼ WGN(0, 1) and θ1 and θ2 are IID random variables uniformly distributed
between 0 and 2π . Generate a sample sequence with N = 256 samples.

(a) Determine and plot the true spectrum Rx(ejω).
(b) Using the LS approach with forward-backward linear predictor, estimate the power spectrum

for P = 10, 20, and 40 from the generated sample sequence. Compare it with the true
spectrum.
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(c) Using the nonlinear LS pole-zero modeling algorithm of Section 9.3.3, estimate the power
spectrum for P = 4 and Q = 2. Compare it with the true spectrum and with the plot in
part (b).

9.12 Show that, for large values ofN, the modeling error variance estimate given by Equation (9.2.38)
can be approximated by the estimate given by Equation (9.2.39).

9.13 This problem investigates the effect of correlation aliasing observed in LS estimation of model
parameters when the AP model is excited by discrete spectra. Consider an AP(1) model with
pole at z = α excited by a periodic sequence of period N . Let x(n) be the output sequence.

(a) Show that the correlation at lag 1 satisfies

rx(1) = α
N−1 + α
1+ αN rx(0) (P.1)

(b) Using the LS approach, determine the estimate α̂ as a function of α and N. Compute α̂ for
α = 0.9 and N = 10.

(c) Generate x(n), using α = 0.95 and the periodic impulse train with N = 10. Compute and
plot the correlation sequence rx(l), 0 ≤ l ≤ N − 1, of x(n). Compare your plot with the
AP(1) model correlation for α = 0.95. Comment on your observations and discuss why
they explain the discrepancy between α and α̂.

(d ) Repeat part (c) for N = 100 and 1000. Show analytically and numerically that α̂ → α as
N →∞.

9.14 In this problem, we investigate the equation error method of Section 9.3.1. Consider the PZ(2,
2) model

x(n) = 0.3x(n− 1)+ 0.4x(n− 2)+ w(n)+ 0.25w(n− 2)

Generate N = 200 samples of x(n), using w(n) ∼WGN(0,
√

10). Record values of both x(n)
and w(n).

(a) Using the residual windowing method, that is,Ni = max(P,Q) andNf = N−1, compute
the estimates of the above model parameters.

(b) Compute the input variance estimate σ̂ 2
w from your estimated values in part (a). Compare

it with the actual value σ 2
w and with (9.3.12).

9.15 Consider the following PZ(4, 2) model

x(n) = 1.8766x(n− 1)− 2.6192x(n− 2)+ 1.6936x(n− 3)− 0.8145x(n− 4)

+ w(n)+ 0.05w(n− 1)− 0.855w(n− 2)

excited by w(n) ∼WGN(0,
√

10). Generate 300 samples of x(n).

(a) Using the nonlinear LS pole-zero modeling algorithm of Section 9.3.3, estimate the param-
eters of the above model from the x(n) data segment.

(b) Assuming the AP(10) model for the data segment, estimate its parameters by using the LS
approach described in Section 9.2.

(c) Generate a plot similar to Figure 9.13 by computing spectra corresponding to the true PZ(4,
2), estimated PZ(4, 2), and estimatedAP(10) models. Compare and comment on your results.

9.16 Using matrix notation, show that AZ power spectrum estimation is equivalent to the Blackman-
Tukey method discussed in Chapter 5.

9.17 Consider the PZ(4, 2) model given in Problem 9.15. Generate 300 samples of x(n).

(a) Fit an AP(5) model to the data and plot the resulting spectrum.
(b) Fit an AP(10) model to the data and plot the resulting spectrum.
(c) Fit an AP(50) model to the data and plot the resulting spectrum.
(d ) Compare your plots with the true spectrum, and discuss the effect of model mismatch on

the quality of the spectrum.
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9.18 Use the supplied (about 50-ms) segment of a speech signal sampled at 8192 samples per second.

(a) Compute a periodogram of the speech signal (see Chapter 5).
(b) Using data windowing, fit an AP(16) model to the speech data and compute the spectrum.
(c) Using the residual windowing, fit a PZ(12, 6) model to the speech data and compute the

spectrum.
(d ) Plot the above three spectra on one graph, and comment on the performance of each method.

9.19 One practical approach to spectrum estimation discussed in Section 9.4 is the prewhitening and
postcoloring method.

(a) Develop a Matlab function to implement this method. Use the forward/backward LS
method to determine AP(P ) parameters and the Welch method for nonparametric spectrum
estimation.

(b) Verify your function on the short segment of the speech segment from Problem 9.18.
(c) Compare your results with those obtained in Problem 9.18.

9.20 Consider a white noise process with variance σ 2
w . Find its minimum-variance power spectral

estimate.

9.21 Find the minimum-variance spectrum of a first-order all pole model, that is,

x(n) = −a1x(n− 1)+ w(n)

9.22 The filter coefficient vector for the minimum-variance spectrum estimator is given in (9.5.10).
Using Lagrange multipliers, discussed in Appendix B, solve this constrained optimization to
find this weight vector.

9.23 Using the relationship between the minimum-variance and the all-pole model spectrum estima-
tors in (9.5.22), generate a recursive relationship for the minimum-variance spectrum estimators

of increasing window length. In other words, write R̂(mv)
M+1(e

j2πf ) in terms of R̂(mv)
M

(ej2πf )

and the all-pole model spectrum estimator R̂(ap)
M
(ej2πf ) in (9.5.20).

9.24 In Pisarenko harmonic decomposition, discussed in Section 9.6.2, we determine the frequencies
of the complex exponentials in white noise through the use of the pseudospectrum. The word
pseudospectrum was used because its value does not correspond to an estimated power. Find a
set of linear equations that can be solved to find the powers of the complex exponentials. Hint:
Use the relationship of eigenvalues and eigenvectors Rxqm = λmqm for m = 1, 2, . . . ,M.

9.25 For the MUSIC algorithm, we showed a means of using the MUSIC pseudospectrum to derive a
polynomial that could be rooted to obtain frequency estimates, which is known as root-MUSIC.
Find a similar rooting method for the minimum-norm frequency estimation procedure.

9.26 The Pisarenko harmonic decomposition, MUSIC, and minimum-norm algorithms yield fre-
quency estimates by computing a pseudospectrum using the Fourier transforms of the eigen-
vectors. However, these pseudospectra do not actually estimate a power. Derive the minimum-
variance spectral estimator in terms of the Fourier transforms of the eigenvectors and the asso-
ciated eigenvalues. Relate this result to the MUSIC and eigenvector method pseudospectra.

9.27 Show that the pseudospectrum for the MUSIC algorithm is equivalent to the minimum-variance
spectrum in the case of an infinite signal-to-noise ratio.

9.28 Find a relationship between the minimum-norm pseudospectrum and the all-pole model spec-
trum in the case of an infinite signal-to-noise ratio.

9.29 In (9.5.22), we derived a relationship between the minimum-variance spectral estimator and
spectrum estimators derived from all-pole models of orders 1 toM . Find a similar relationship
between the pseudospectra of the MUSIC and minimum-norm algorithms that shows that the
MUSIC pseudospectrum is a weighted average of minimum-norm pseudospectra.
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CHAPTER 10

Adaptive Filters

In Chapter 1, we discussed different practical applications that demonstrated the need for
adaptive filters, pointed out the key aspects of the underlying signal operating environment
(SOE), and illustrated the key features and types of adaptive filters. The defining charac-
teristic of an adaptive filter is its ability to operate satisfactorily, according to a criterion of
performance acceptable to the user, in an unknown and possibly time-varying environment
without the intervention of the designer. In Chapter 6, we developed the theory of optimum
filters under the assumption that the filter designer has complete knowledge of the statistical
properties (usually second-order moments) of the SOE. However, in real-world applications
such information is seldom available, and the most practical solution is to use an adaptive
filter. Adaptive filters can improve their performance, during normal operation, by learning
the statistical characteristics through processing current signal observations.

In this chapter, we develop a mathematical framework for the design and performance
evaluation of adaptive filters, both theoretically and by simulation. The goal of an adaptive
filter is to “find and track” the optimum filter corresponding to the same signal operating
environment with complete knowledge of the required statistics. In this context, optimum
filters provide both guidance for the development of adaptive algorithms and a yardstick
for evaluating the theoretical performance of adaptive filters. We start in Section 10.1 with
discussion of a few typical application problems that can be effectively solved by using
an adaptive filter. The performance of adaptive filters is evaluated using the concepts of
stability, speed of adaptation, quality of adaptation, and tracking capabilities. These issues
and the key features of an adaptive filter are discussed in Section 10.2. Since most adaptive
algorithms originate from deterministic optimization methods, in Section 10.3 we introduce
the family of steepest-descent algorithms and study their properties. Sections 10.4 and 10.5
provide a detailed discussion of the derivation, properties, and applications of the two most
important adaptive filtering algorithms: the least mean square (LMS) and the recursive
least-squares (RLS) algorithms. The conventional RLS algorithm, introduced in Section
10.5, can be used for either array processing (multiple-sensor or general input data vector)
applications or FIR filtering (single-sensor or shift-invariant input data vector) applications.
Section 10.6 deals with different implementations of the RLS algorithm for array processing
applications, whereas Section 10.7 provides fast implementations of the RLS algorithm for
the FIR filtering case. The development of the later algorithms is a result of the shift
invariance of the data stored in the memory of the FIR filter. Finally, in Section 10.8 we
provide a concise introduction to the tracking properties of the LMS and the RLS algorithms.
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10.1 TYPICAL APPLICATIONS OF ADAPTIVE FILTERS

As we have already seen in Chapter 1, many practical applications cannot be successfully
solved by using fixed digital filters because either we do not have sufficient information to
design a digital filter with fixed coefficients or the design criteria change during the normal
operation of the filter. Most of these applications can be successfully solved by using a
special type of “smart” filters known collectively as adaptive filters. The distinguishing
feature of adaptive filters is that they can modify their response to improve their performance
during operation without any intervention from the user.

The best way to introduce adaptive filters is with some applications for which they are
well suited. These and other applications are discussed in greater detail in the sequel as we
develop the necessary background and tools.

10.1.1 Echo Cancelation in Communications

An echo is the delayed and distorted version of an original signal that returns to its source.
In some applications (radar, sonar, or ultrasound), the echo is the wanted signal; however, in
communication applications, the echo is an unwanted signal that must be eliminated. There
are two types of echoes in communication systems: (1) electrical or line echoes, which
are generated electrically due to impedance mismatches at points along the transmission
medium, and (2) acoustic echoes, which result from the reflection of sound waves and
acoustic coupling between a microphone and a loudspeaker.

Here we focus on electrical echoes in voice communications; electrical echoes in data
communications are discussed in Section 10.4.4, and acoustic echoes in teleconferencing
and hands-free telephony were discussed in Section 1.4.1.

Electrical echoes are observed on long-distance telephone circuits. A simplified form
of such a circuit, which is sufficient for the present discussion, is shown in Figure 10.1.
The local links from the customer to the telephone office consist of bidirectional two-wire
connections, whereas the connection between the telephone offices is a four-wire carrier
facility that may include a satellite link. The conversion between two-wire and four-wire
links is done by special devices known as hybrids. An ideal hybrid should pass (1) the
incoming signal to the two-wire output without any leakage into its output port and (2) the
signal from the two-wire circuit to its output port without reflecting any energy back to the
two-wire line (Sondhi and Berkley 1980). In practice, due to impedance mismatches, the
hybrids do not operate perfectly. As a result, some energy on the incoming branch of the
four-wire circuit leaks into the outgoing branch and returns to the source as an echo (see
Figure 10.1). This echo, which is usually 11 dB down from the original signal, makes it
difficult to carry on a conversation if the round-trip delay is larger than 40 ms. Satellite
links, as a consequence of high altitude, involve round-trip delays of 500 to 600 ms.

Talker
A

Talker
B

Speech
from A

Speech
from B

Echo of A's
speech

Four-wire connection

Two-wire
connection

Hybrid
A

Hybrid
B

FIGURE 10.1
Echo generation in a long-distance telephone network.
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The first devices used by telephone companies to control voice echoes were echo
suppressors. Basically, an echo suppressor is a voice-activated switch that attempts to
impose an open circuit on the return path from listener to talker when the listener is silent
(see Figure 10.2). The main problems with these devices are speech clipping during double-
talking and the inability to effectively deal with round-trip delays longer than 100 ms
(Weinstein 1977).

Talker
BLoss

Hybrid
B

Speech
from B

Echo
suppressor

Control

FIGURE 10.2
Principle of echo suppression.

The problems associated with echo suppressors could be largely avoided if we could
estimate the transmission path from point C to point D (see Figure 10.3), which is known
as the echo path. If we knew the echo path, we could design a filter that produced a copy
or replica of the echo signal when driven by the signal at point C. Subtraction of the echo
replica from the signal at point D will eliminate the echo without distorting the speech of
the second talker that may be present at point D. The resulting device, shown in Figure
10.3, is known as an echo canceler.
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FIGURE 10.3
Principle of echo cancelation.

In practice, the channel characteristics are generally not known. For dial-up telephone
lines, the channel differs from call to call, and the characteristics of radio and microwave
channels (phase perturbations, fading, etc.) change significantly with time. Therefore, we
cannot design and use a fixed echo canceler with satisfactory performance for all possible
connections. There are two possible ways around this problem:
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1. Design a compromise fixed echo canceler based on some “average” echo path, assuming
that we have sufficient information about the connections to be seen by the canceler.

2. Design an adaptive echo canceler that can “learn” the echo path when it is first turned on
and afterward “tracks” its variations without any intervention from the designer. Since
an adaptive canceler matches the echo path for any given connection, it performs better
than a compromise fixed canceler.

We stress that the main task of the canceler is to estimate the echo signal with sufficient
accuracy; the estimation of the echo path is simply the means of achieving this goal. The
performance of the canceler is measured by the attenuation, in decibels, of the echo, which
is known as echo return loss enhancement. The adaptive echo canceler achieves this goal
by modifying its response, using the residual echo signal in an as yet unspecified way.

Adaptive echo cancelers are widely used in voice telecommunications, and the inter-
national standards organization CCITT has issued a set of recommendations (CCITT G.
165) that outlines the basic requirements for echo cancelers. More details can be found in
Weinstein (1977) and Murano et al. (1990).

10.1.2 Equalization of Data Communication Channels

Channel equalization, which is probably the most widely employed technique in practical
data transmission systems, was first introduced in Section 1.4.1. In Section 6.8 we discussed
the design of symbol rate zero-forcing and optimum MSE equalizers. As we recall, every
pulse propagating through the channel suffers a certain amount of time dispersion because
the frequency response of the channel deviates from the ideal one of constant magnitude
and linear phase. Some typical sources of dispersion for practical communication channels
are summarized in Table 10.1. As a result, the tails of adjacent pulses interfere with the
measurement of the current pulse (intersymbol interference) and can lead to an incorrect
decision.

TABLE 10.1

Summary of causes of dispersion in various communications systems.

Transmission system Causes of dispersion

Cable TV Transmitter filtering; coaxial-cable dispersion; cable amplifiers; reflections from
impedance mismatches; bandpass filters

Microwave radio Transmitter filtering; reflections from impedance mismatches; multipath propaga-
tion; scattering; input bandpass filtering

Voiceband modems Digital-to-analog image suppression; channel filtering; twisted-pair transmission
line; multiplexing and demultiplexing filters; hybrids; antialias lowpass filters

Troposcatter radio Transmitter filtering; atmospheric dispersion; scattering at interface between tropo-
sphere and stratosphere; receiver bandpass filtering; input amplifiers

Source: From Treichler et al. 1996.

Since the channel can be modeled as a linear system, assuming that the receiver and the
transmitter do not include any nonlinear operations, we can compensate for its distortion by
using a linear equalizer. The goal of the equalizer is to restore the received pulse, as closely
as possible, to its original shape. The equalizer transforms the channel to a near-ideal one if
its response resembles the inverse of the channel. Since the channel is unknown and possibly
time-varying, there are two ways to approach the problem: (1) Design a compromise fixed
equalizer to obtain satisfactory performance over a broad range of channels, or (2) design
an equalizer that can learn the inverse of the particular channel and then track its variation
in real time.
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The characteristics of the equalizer are adjusted by some algorithm that attempts to
attain the best possible performance. The most appropriate criterion of performance for
data transmission systems is the probability of error. However, it cannot be used for two
reasons: (1) the “correct” symbol is unknown to the receiver (otherwise there would be
no reason to communicate), and (2) the number of decisions needed to estimate the low
probabilities of error is extremely large. Thus, practical equalizers assess their performance
by using some function of the difference between the correct symbol and their output. The
operation of practical equalizers involves three modes of operation, dependent on how we
substitute for the unavailable correct symbol sequence.

Training mode: A known training sequence is transmitted, and the equalizer attempts
to improve its performance by comparing its output to a synchronized replica of the
training sequence stored at the receiver. Usually this mode is used when the equalizer
starts a transmission session.

Decision-directed mode: At the end of the training session, when the equalizer starts
making reliable decisions, we can replace the training sequence with the equalizer’s
own decisions.

“Blind” or self-recovering mode: There are several applications in which the use of a
training sequence is not desired or feasible. This may occur in multipoint networks
for computer communications or in wideband digital systems over coaxial facilities
during rerouting (Godard 1980; Sato 1975). Also when the decision-directed mode
of a microwave channel equalizer fails, after deep fades, we do not have a reverse
channel to call for retraining (Foschini 1985). In such cases, where the equalizer
should be able to learn or recover the characteristics of the channel without the
benefit of a training sequence, we say that the equalizer operates in blind or self-
recovering mode.

Adaptive equalization is a mature technology that has had the greatest impact on digital
communications systems, including voiceband, microwave and troposcatter radio, and cable
TV modems (Qureshi 1985; Lee and Messerschmitt 1994; Gitlin et al. 1992; Bingham 1988;
Treichler et al. 1996, 1998).

10.1.3 Linear Predictive Coding

The efficient storage and transmission of analog signals using digital systems requires the
minimization of the number of bits necessary to represent the signal while maintaining the
quality to an acceptable level according to a certain criterion of performance. The conversion
of an analog (continuous-time, continuous-amplitude) signal to a digital (discrete-time,
discrete-amplitude) signal involves two processes: sampling and quantization. Sampling
converts a continuous-time signal to a discrete-time signal by measuring its amplitude
at equidistant intervals of time. Quantization involves the representation of the measured
continuous amplitude by using a finite number of symbols. Therefore, a small range of
amplitudes will use the same symbol (see Figure 10.4). A code word is assigned to each
symbol by the coder. When the digital representation is used for digital signal processing, the
quantization levels and the corresponding code words are uniformly distributed. However,
for coding applications, levels may be nonuniformly distributed to match the distribution
of the signal amplitudes.

For all practical purposes, the range of a quantizer is equal to RQ = � · 2B , where
� is the quantization step size and B is the number of bits, and should cover the dynamic
range of the signal. The difference between the unquantized sample x(n) and the quantized
sample x̂(n), that is,

e(n) � x̂(n)− x(n) (10.1.1)
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FIGURE 10.4
Partitioning of the range of a 3-bit (eight-level) uniform quantizer.

is known as the quantization error and is always in the range −�/2 ≤ e(n) ≤ �/2. If we
define the signal-to-noise ratio by

SNR � E{x2(n)}
E{e2(n)} (10.1.2)

it can be shown (Rabiner and Schafer 1978; Jayant and Noll 1984) that

SNR(dB) � 6B (10.1.3)

which states that each added binary digit increases the SNR by 6 dB.
For a fixed number of bits, decreasing the dynamic range of the signal (and therefore the

range of the quantizer) decreases the required quantization step and therefore the average
quantization error power. Therefore, we can increase the SNR by reducing the dynamic
range, or equivalently the variance of the signal. If the signal samples are significantly
correlated, the variance of the difference between adjacent samples is smaller than the
variance of the original signal. Thus, we can improve the SNR by quantizing this difference
instead of the original signal.

The differential quantization concept is exploited by the linear predictive coding (LPC)
system illustrated in Figure 10.5. The quantized signal is the difference

d(n) = x(n)− x̃(n) (10.1.4)

where x̃(n) is an estimate or prediction of the signal x(n) obtained by the predictor using
a quantized version

x̂(n) = x̃(n)+ d̂(n) (10.1.5)

of the original signal (see Figure 10.5). If the quantization error of the difference signal is

ed(n) = d̂(n)− d(n) (10.1.6)

x̂(n) = x(n)+ ed(n) (10.1.7)we obtain

using (10.1.4) and (10.1.5). The significance of (10.1.7) is that the quantization error of the
original signal is equal to the quantization error of the difference signal, independently of
the properties of the predictor. Note that if c′(n) = c(n), that is, there are no transmission
or storage errors, then the signal reconstructed by the decoder is x̂′(n) = x̂(n). If the
prediction is good, the dynamic range of d(n) should be smaller than the dynamic range
of x(n), resulting in a smaller quantization noise for the same number of bits or the same
quantization noise with a smaller number of bits. The performance of the LPC system
depends on the accuracy of the predictor. In most practical applications, we use a linear
predictor that forms an estimate (prediction) x̃(n) of the present sample x(n) as a linear
combination of the M past samples, that is,

x̃(n) =
M∑
k=1

akx̂(n− k) (10.1.8)
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FIGURE 10.5
Block diagram of a linear predictive coding system: (a) coder
and (b) decoder.

The coefficients {ak}M1 of the linear predictor are determined by exploiting the correlation
between adjacent samples of the input signal with the objective to make the prediction error
as small as possible. Since the statistical properties of the signal x(n) are unknown and
change with time, we cannot design an optimum fixed predictor. The established practi-
cal solution uses an adaptive linear predictor that automatically adjusts its coefficients to
compute a “good” prediction at each time instant. A detailed discussion of adaptive linear
prediction and its application to audio, speech, and video signal coding is provided in Jayant
and Noll (1984).

10.1.4 Noise Cancelation

In Section 1.4.1 we discussed the concept of active noise control using adaptive filters.
We now provide a theoretical explanation for the general problem of noise canceling using
multiple sensors. The principle of general noise cancelation is illustrated in Figure 10.6. The
signal of interest s(n) is corrupted by uncorrelated additive noise v1(n), and the combined
signal s(n) + v1(n) provides what is known as primary input. A second sensor, located
at a different point, acquires a noise v2(n) (reference input) that is uncorrelated with the
signal s(n) but correlated with the noise v1(n). If we can design a filter that provides a good
estimate ŷ(n) of the noise v1(n), by exploiting the correlation between v1(n) and v2(n),
then we could recover the desired signal by subtracting ŷ(n) ≈ v1(n) from the primary
input.

Let us assume that the signals s(n), v1(n), and v2(n) are jointly wide-sense stationary
with zero mean values. The “clean” signal is given by the error

e(n) = s(n)+ [v1(n)− ŷ(n)]
where ŷ(n) depends on the filter structure and parameters. The MSE is given by

E{|e(n)|2} = E{|s(n)|2} + E{|v1(n)− ŷ(n)|2}
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FIGURE 10.6
Principle of adaptive noise cancelation using a reference input.

because the signals s(n) and v1(n) − ŷ(n) are uncorrelated. Since the signal power is not
influenced by the filter, if we design a filter that minimizes the total output power E{|e(n)|2},
then that filter will minimize the output noise power E{|v1(n) − ŷ(n)|2}. Therefore, ŷ(n)
will be the MMSE estimate of the noise v1(n), and the canceler maximizes the output
signal-to-noise ratio. If we know the second-order moments of the primary and reference
inputs, we can design an optimum linear canceler using the techniques discussed in Chapter
6. However, in practice, the design of an optimum canceler is not feasible because the
required statistical moments are either unknown or time-varying. Once again, a successful
solution can be obtained by using an adaptive filter that automatically adjusts its parameters
to obtain the best possible estimate of the interfering noise (Widrow et al. 1975).

10.2 PRINCIPLES OF ADAPTIVE FILTERS

In this section, we discuss a mathematical framework for the analysis and performance eval-
uation of adaptive algorithms. The goal is to develop design guidelines for the application of
adaptive algorithms to practical problems. The need for adaptive filters and representative
applications that can benefit from their use have been discussed in Sections 1.4.1 and 10.1.

10.2.1 Features of Adaptive Filters

The applications we have discussed are only a sample from a multitude of practical problems
that can be successfully solved by using adaptive filters, that is, filters that automatically
change their characteristics to attain the right response at the right time. Every adaptive
filtering application involves one or more input signals and a desired response signal that
may or may not be accessible to the adaptive filter. We collectively refer to these signals as
the signal operating environment (SOE) of the adaptive filter. Every adaptive filter consists
of three modules (see Figure 10.7):

Filtering structure. This module forms the output of the filter using measurements of
the input signal or signals. The filtering structure is linear if the output is obtained
as a linear combination of the input measurements; otherwise it is said to be nonlin-
ear. For example, the filtering module can be an adjustable finite impulse response
(FIR) digital filter implemented with a direct or lattice structure or a recursive filter
implemented using a cascade structure. The structure is fixed by the designer, and
its parameters are adjusted by the adaptive algorithm.

Criterion of performance (COP). The output of the adaptive filter and the desired
response (when available) are processed by the COP module to assess its quality
with respect to the requirements of the particular application. The choice of the
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Basic elements of a general adaptive filter.

criterion is a balanced compromise between what is acceptable to the user of the
application and what is mathematically tractable; that is, it can be manipulated to
derive an adaptive algorithm. Most adaptive filters use some average form of the
square error because it is mathematically tractable and leads to the design of useful
practical systems.

Adaptation algorithm. The adaptive algorithm uses the value of the criterion of per-
formance, or some function of it, and the measurements of the input and desired
response (when available) to decide how to modify the parameters of the filter to
improve its performance. The complexity and the characteristics of the adaptive
algorithm are functions of the filtering structure and the criterion of performance.

The design of any adaptive filter requires some generic a priori information about the
SOE and a deep understanding of the particular application. This information is needed
by the designer to choose the criterion of performance and the filtering structure. Clearly,
unreliable a priori information and/or incorrect assumptions about the SOE can lead to
serious performance degradations or even unsuccessful adaptive filter applications. The
conversion of the performance assessment to a successful parameter adjustment strategy,
that is, the design of an adaptive algorithm, is the most difficult step in the design and
application of adaptive filters.

If the characteristics of the SOE are constant, the goal of the adaptive filter is to find
the parameters that give the best performance and then stop the adjustment. The initial
period, from the time the filter starts its operation until the time it gets reasonably close to
its best performance, is known as the acquisition or convergence mode. However, when the
characteristics of the SOE change with time, the adaptive filter should first find and then
continuously readjust its parameters to track these changes. In this case, the filter starts with
an acquisition phase that is followed by a tracking mode.

A very influential factor in the design of adaptive algorithms is the availability of a
desired response signal. We have seen that for certain applications, the desired response may
not be available for use by the adaptive filter. Therefore, the adaptation must be performed
in one of two ways:

Supervised adaptation. At each time instant, the adaptive filter knows in advance the
desired response, computes the error (i.e., the difference between the desired and
actual response), evaluates the criterion of performance, and uses it to adjust its co-
efficients. In this case, the structure in Figure 10.7 is simplified to that of Figure 10.8.

Unsupervised adaptation. When the desired response is unavailable, the adaptive filter
cannot explicitly form and use the error to improve its behavior. In some applications,
the input signal has some measurable property (i.e., constant envelope) that is lost
by the time it reaches the adaptive filter. The adaptive filter adjusts its parameters in
such a way as to restore the lost property of the input signal. The property restoral
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Basic elements of a supervised adaptive filter.

approach to adaptive filtering was introduced in Treichler et al. (1987). In some
other applications (e.g., digital communications) the basic task of the adaptive filter
is to classify each received pulse to one of a finite set of symbols. In this case we
basically have a problem of unsupervised classification (Fukunaga 1990).

In this chapter we focus our discussion on supervised adaptive filters, that is, filters
that have access to a desired response signal; unsupervised adaptive filters, which operate
without the benefit of a desired response, are discussed in Section 12.3, in the context of
blind equalization.

10.2.2 Optimum versus Adaptive Filters

We have mentioned several times that the theory of stochastic processes provides the math-
ematical framework for the design and analysis of optimum filters. In Chapter 6, we in-
troduced filters that are optimum according to the MSE criterion of performance; and in
Chapter 7, we developed algorithms and structures for their efficient design and imple-
mentation. However, optimum filters are a theoretical tool and cannot be used in practical
applications because we do not know the statistical quantities (e.g., second-order moments)
that are required for their design. Adaptive filters can be thought as the practical counterpart
of optimum filters: They try to reach the performance of optimum filters by processing
measurements of the SOE in real time, which makes up for the lack of a priori statistics.

For this analysis, we consider the general case of a linear combiner that includes filtering
and prediction as special cases. However, for convenience we use the terms filters and
filtering. We remind the reader that, from a mathematical point of view, the key difference
between a linear combiner and an FIR filter or predictor is the shift invariance (temporal
ordering) of the input data vector. This difference, which is illustrated in Figure 10.9, also
has important implications in the implementation of adaptive filters. To this end, suppose
that the SOE is comprised of M input signals xk(n, ζ ) and a desired response signal y(n, ζ ),
which are sample realizations of random sequences.

†

Then the estimate of y(n, ζ ) is computed by using the linear combiner

ŷ(n, ζ ) =
M∑
k=1

c∗k (n)xk(n, ζ ) � cH (n)x(n, ζ ) (10.2.1)

c(n) = [c1(n) c2(n) · · · cM(n)]T (10.2.2)where

†
For clarity, in this section only, we include the dependence on ζ to denote random variables.
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FIGURE 10.9
Illustration of the difference of the input signal between (a) a multiple-input linear
combiner and (b) a single-input FIR filter.

is the coefficient vector and

x(n, ζ ) = [x1(n, ζ ) x2(n, ζ ) · · · xM(n, ζ )]T (10.2.3)

is the input data vector. For single-sensor applications, the input data vector is shift-invariant

x(n) = [x(n, ζ ) x(n− 1, ζ ) · · · x(n−M + 1, ζ )]T (10.2.4)

and the linear combiner takes the form of the FIR filter

ŷ(n, ζ ) =
M−1∑
k=0

h(n, k)x(n− k, ζ ) � cH (n)x(n, ζ ) (10.2.5)

where ck(n) = h∗(n, k) are the samples of the impulse response at time n.

Optimum filters. If we know the second-order moments of the SOE, we can design an
optimum filter co(n) by solving the normal equations

R(n)co(n) = d(n) (10.2.6)

R(n) = E{x(n, ζ )xH (n, ζ )} (10.2.7)where
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d(n) = E{x(n, ζ )y∗(n, ζ )} (10.2.8)and

are the correlation matrix of the input data vector and the cross-correlation between the
input data vector and the desired response, respectively. During its normal operation, the
optimum filter works with specific realizations of the SOE, that is,

ŷo(n, ζ ) = cHo (n)x(n, ζ ) (10.2.9)

εo(n, ζ ) = y(n, ζ )− ŷo(n, ζ ) (10.2.10)

where ŷo(n, ζ ) is the optimum estimate and εo(n, ζ ) is the optimum instantaneous error [see
Figure 10.10(a)]. However, the filter is optimized with respect to its average performance
across all possible realizations of the SOE, and the MMSE

Po(n) = E{|εo(n, ζ )|2} = Py(n)− dH (n)co(n) (10.2.11)

shows how well the filter performs on average. Also, we emphasize that the optimum
coefficient vector is a nonrandom quantity and that the desired response is not essential for
the operation of the optimum filter [see Equation (10.2.9)].

−
co(n)

Input
signal

Input
signal

Desired
response

Error

(a) (b)

x(n,z)

y(n,z)

e(n,z)
c(n − 1,z)

x(n,z)ŷ(n,z) ŷ(n,z)

Solve
R(n)co(n) = d(n) Adaptive

algorithm

FIGURE 10.10
Illustration of the difference in operation between (a) optimum filters and
(b) adaptive filters.

If the SOE is stationary, the optimum filter is computed once and is used with all
realizations {x(n, ζ ), y(n, ζ )}. For nonstationary environments, the optimum filter design
is repeated at every time instant n because the optimum filter is time-varying.

Adaptive filters. In most practical applications, where the second-order moments R(n)

and d(n) are unknown, the use of an adaptive filter is the best solution. If the SOE is ergodic,
we have

R = lim
N→∞

1

2N + 1

N∑
n=−N

x(n, ζ )xH (n, ζ ) (10.2.12)

d = lim
N→∞

1

2N + 1

N∑
n=−N

x(n, ζ )y∗(n, ζ ) (10.2.13)

because ensemble averages are equal to time averages (see Section 3.3). If we collect a
sufficient amount of data {x(n, ζ ), y(n, ζ )}N−1

0 , we can obtain an acceptable estimate of
the optimum filter by computing the estimates

R̂N(ζ ) = 1

N

N−1∑
n=0

x(n, ζ )xH (n, ζ ) (10.2.14)
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d̂N(ζ ) = 1

N

N−1∑
n=0

x(n, ζ )y∗(n, ζ ) (10.2.15)

by time-averaging and then solving the linear system

R̂N(ζ )cN(ζ ) = d̂N(ζ ) (10.2.16)

The obtained coefficients can be used to filter the data in the interval 0 ≤ n ≤ N − 1
or to start filtering the data for n ≥ N , on a sample-by-sample basis, in real time. This
procedure, which we called block adaptive filtering in Chapter 8, should be repeated each
time the properties of the SOE change significantly. Clearly, block adaptive filters cannot
track statistical variations within the operating block and cannot be used in all applications.

Indeed, there are applications, for example, adaptive equalization, in which each input
sample should be processed immediately after its observation and before the arrival of the
next sample. In such cases, we should use a sample-by-sample adaptive filter that starts
filtering immediately after the observation of the pair {x(0), y(0)} using a “guess” c(−1)
for the adaptive filter coefficients. Usually, the initial guess c(−1) is a very poor estimate of
the optimum filter co. However, this estimate is improved with time as the filter processes
additional pairs of observations.

As we discussed in Section 10.2.1, an adaptive filter consists of three key modules: an
adjustable filtering structure that uses input samples to compute the output, the criterion
of performance that monitors the performance of the filter, and the adaptive algorithm that
updates the filter coefficients. The key component of any adaptive filter is the adaptive
algorithm, which is a rule to determine the filter coefficients from the available data x(n, ζ )
and y(n, ζ ) [see Figure 10.10(b)]. The dependence of c(n, ζ ) on the input signal makes the
adaptive filter a nonlinear and time-varying stochastic system.

The data available to the adaptive filter at time n are the input data vector x(n, ζ ), the
desired response y(n, ζ ), and the most recent update c(n − 1, ζ ) of the coefficient vector.
The adaptive filter, at each time n, performs the following computations:

1. Filtering:

ŷ(n, ζ ) = cH (n− 1, ζ )x(n, ζ ) (10.2.17)

2. Error formation:

e(n, ζ ) = y(n, ζ )− ŷ(n, ζ ) (10.2.18)

3. Adaptive algorithm:

c(n, ζ ) = c(n− 1, ζ )+�c{x(n, ζ ), e(n, ζ )} (10.2.19)

where the increment or correction term �c(n, ζ ) is chosen to bring c(n, ζ ) close to co,
with the passage of time. If we can successively determine the corrections�c(n, ζ ) so that
c(n, ζ ) � co, that is, ‖c(n, ζ )−co‖ < δ, for some n > Nδ , we obtain a good approximation
for co by avoiding the explicit averagings (10.2.14), (10.2.15), and the solution of the normal
equations (10.2.16). A key requirement is that �c(n, ζ ) must vanish if the error e(n, ζ )

vanishes. Hence, e(n, ζ ) plays a major role in determining the increment �c(n, ζ ).
We notice that the estimate ŷ(n, ζ ) of the desired response y(n, ζ ) is evaluated using the

current input vector x(n, ζ ) and the past filter coefficients c(n−1, ζ ). The estimate ŷ(n, ζ )

and the corresponding error e(n, ζ ) can be considered as predicted estimates compared to
the actual estimates that would be evaluated using the current coefficient vector c(n, ζ ).
Coefficient updating methods that use the predicted error e(n, ζ ) are known as a priori type
adaptive algorithms.

If we use the actual estimates, obtained using the current estimate c(n, ζ )of the adaptive
filter coefficients, we have

1. Filtering:

ŷa(n, ζ ) = cH (n, ζ )x(n, ζ ) (10.2.20)
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2. Error formation:

ε(n, ζ ) = y(n, ζ )− ŷa(n, ζ ) (10.2.21)

3. Adaptive algorithm:

c(n, ζ ) = c(n− 1, ζ )+�c{x(n, ζ ), ε(n, ζ )} (10.2.22)

which are known as a posteriori type adaptive algorithms.The terms a priori and a posteriori
were introduced in Carayannis et al. (1983) to emphasize the use of estimates evaluated
before or after the updating of the filter coefficients. The difference between a priori and
a posteriori errors and their meanings will be further clarified when we discuss adaptive
least-squares filters in Section 10.5. The timing diagram for the above two algorithms is
shown in Figure 10.11.

Time

c(n − 1) c(n) (n)ε
x(n)
y(n)

x(n + 1)
y(n + 1)

(n + 1)T

e(n)

nT

FIGURE 10.11
Timing diagrams for a priori and a posteriori adaptive
algorithms.

In conclusion, the objective of an adaptive filter is to use the available data at time n,
namely, {x(n, ζ ), y(n, ζ ), c(n − 1, ζ )}, to update the “old” coefficient vector c(n − 1, ζ )
to a “new” estimate c(n, ζ ) so that c(n, ζ ) is closer to the optimum filter vector co(n) and
the output ŷ(n) is a better estimate of the desired response y(n). Most adaptive algorithms
have the following form:

 New
coefficient

vector


 =


 old

coefficient
vector


+


adaptation

gain
vector


 · ( error

signal

)
(10.2.23)

where the error signal is the difference between the desired response and the predicted
or actual outputs of the adaptive filter. One of the fundamental differences among the
various algorithms is the optimality of the used adaptation gain vector and the amount of
computation required for its evaluation.

10.2.3 Stability and Steady-State Performance of Adaptive Filters

We now address the issues of stability and performance of adaptive filters. Since the goal
of an adaptive filter c(n, ζ ) is first to find and then track the optimum filter co(n) as quickly
and accurately as possible, we can evaluate its performance by measuring some function
of its deviation

c̃(n, ζ ) � c(n, ζ )− co(n) (10.2.24)

from the corresponding optimum filter. Clearly, an acceptable adaptive filter should be stable
in the bounded-input bounded-output (BIBO) sense, and its performance should be close to
that of the associated optimum filter. The analysis of BIBO stability is extremely difficult
because adaptive filters are nonlinear, time-varying systems working in a random SOE. The
performance of adaptive filters is primarily measured by investigating the value of the MSE
as a function of time. To discuss these problems, first we consider an adaptive filter working
in a stationary SOE, and then we extend our discussion to a nonstationary SOE.
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Stability

The adaptive filter starts its operation at time, say, n = 0, and by processing the obser-
vations {x(n, ζ ), y(n, ζ )}∞0 generates a sequence of vectors {c(n, ζ )}∞0 using the adaptive
algorithm. Since the FIR filtering structure is always stable, the output or the error of the
adaptive filter will be bounded if its coefficients are always kept close to the coefficients of
the associated optimum filter. However, the presence of the feedback loop in every adaptive
filter (see Figure 10.10) raises the issue of stability. In a stationary SOE, where the opti-
mum filter co is constant, convergence of c(n, ζ ) to co as n→∞ will guarantee the BIBO
stability of the adaptive filter. For a specific realization ζ , the kth component ck(n, ζ ) or
the norm ‖c(n, ζ )‖ of the vector c(n, ζ ) is a sequence of numbers that might or might not
converge.

†
Since the coefficients ck(n, ζ ) are random, we must use the concept of stochastic

convergence (Papoulis 1991).
We say that a random sequence converges everywhere if the sequence ck(n, ζ ) con-

verges for every ζ , that is,

lim
n→∞ ck(n, ζ ) = co,k(ζ ) (10.2.25)

where the limit co,k(ζ ) depends, in general, on ζ . Requiring the adaptive filter to converge
to co for every possible realization of the SOE is both hard to guarantee and not necessary,
because some realizations may have very small or zero probability of occurrence.

If we wish to ensure that the adaptive filter converges for the realizations of the SOE
that may actually occur, we can use the concept of convergence almost everywhere. We say
that the random sequence ck(n, ζ ) converges almost everywhere or with probability 1 if

P { lim
n→∞ |ck(n, ζ )− co,k(ζ )| = 0} = 1 (10.2.26)

which implies that there can be some sample sequences that do not converge, which must
occur with probability zero.

Another type of stochastic convergence that is used in adaptive filtering is defined by

lim
n→∞ E{|ck(n, ζ )− co,k|2} = lim

n→∞ E{|c̃k(n, ζ )|2} = 0 (10.2.27)

and is known as convergence in the MS sense. The primary reason for the use of mean
square (MS) convergence is that unlike the almost-everywhere convergence, it uses only one
sequence of numbers that takes into account the averaging effect of all sample sequences.
Furthermore, it uses second-order moments for verification and has an interpretation in
terms of power. Convergence in MS does not imply—nor is implied by—convergence with
probability 1. Since

E{|c̃k(n, ζ )|2}
δ

= |E{c̃k(n, ζ )}|
2

δ
+ var{c̃k(n, ζ )}

δ2
(10.2.28)

if we can show that E{c̃k(n)} → 0 as n → ∞ and var{c̃k(n, ζ )} is bounded for all n, we
can ensure convergence in MS. In this case, we can say that an adaptive filter that operates
in a stationary SOE is an asymptotically stable filter.

Performance measures

In theoretical investigations, any quantity that measures the deviation of an adaptive
filter from the corresponding optimum filter can be used to evaluate its performance.

The mean square deviation (MSD)

D(n) � E{‖c(n, ζ )− co(n)‖2} = E{‖c̃(n, ζ )‖2} (10.2.29)

†
We recall that a sequence of real nonrandom numbers a0, a1, a2, . . . converges to a number a if and only if for

every positive number δ there exists a positive integer Nδ such that for all n > Nδ , we have |an − a| < δ. This is
abbreviated by limn→∞ an = a.
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measures the average distance between the coefficient vectors of the adaptive and optimum
filters. Although the MSD is not measurable in practice, it is useful in analytical studies.
Adaptive algorithms that minimize D(n) for each value of n are known as algorithms with
optimum learning.

In Section 6.2.2 we showed that if the input correlation matrix is positive definite, any
deviation, say, c̃(n), of the optimum filter coefficients from their optimum setting increases
the mean square error (MSE) by an amount equal to c̃H (n)Rc̃(n), known as excess MSE
(EMSE). In adaptive filters, the random deviation c̃(n, ζ ) from the optimum results in an
EMSE, which is measured by the ensemble average of c̃H (n, ζ )Rc̃(n, ζ ). For a posteriori
adaptive filters, the MSE can be decomposed as

P ′(n) � E{|ε(n, ζ )|2} � P ′o(n)+ P ′ex(n) (10.2.30)

where P ′ex(n) is the EMSE and P ′o(n) is the MMSE given by

P ′o(n) � E{|εo(n, ζ )|2} (10.2.31)

εo(n, ζ ) � y(n, ζ )− cHo (n)x(n, ζ ) (10.2.32)with

as the a posteriori optimum filtering error. Clearly, the a posteriori EMSE P ′ex(n) is given
by

P
′
ex(n) � P

′
(n)− P

′
o(n) (10.2.33)

For a priori adaptive algorithms, where we use the “old” coefficient vector c(n−1, ζ ),
it is more appropriate to use the a priori EMSE given by

Pex(n) � P(n)− Po(n) (10.2.34)

P(n) � E{|e(n, ζ )|2} (10.2.35)where

Po(n) � E{|eo(n, ζ )|2} (10.2.36)and

eo(n, ζ ) � y(n, ζ )− cHo (n− 1)x(n, ζ ) (10.2.37)with

as the a priori optimum filtering error. If the SOE is stationary, we have εo(n, ζ ) = eo(n, ζ );
that is, the optimum a priori and a posteriori errors are identical.

The dimensionless ratio

M(n) � Pex(n)

Po(n)
or M′(n) � P ′ex(n)

P ′o(n)
(10.2.38)

known as misadjustment, is a useful measure of the quality of adaptation. Since the EMSE
is always positive, there is no adaptive filter that can perform (on the average) better than
the corresponding optimum filter. In this sense, we can say that the excess MSE or the
misadjustment measures the cost of adaptation.

Acquisition and tracking

Plots of the MSD, MSE, or M(n) as a function of n, which are known as learning
curves, characterize the performance of an adaptive filter and are widely used in theoretical
and experimental studies. When the adaptive filter starts its operation, its coefficients provide
a poor estimate of the optimum filter and the MSD or the MSE is very large. As the number
of observations processed by the adaptive filter increases with time, we expect the quality
of the estimate c(n, ζ ) to improve, and therefore the MSD and the MSE to decrease. The
property of an adaptive filter to bring the coefficient vector c(n, ζ ) close to the optimum
filter co, independently of the initial condition c(−1) and the statistical properties of the
SOE, is called acquisition. During the acquisition phase, we say that the adaptive filter is
in a transient mode of operation.

A natural requirement for any adaptive algorithm is that adaptation stops after the
algorithm has found the optimum filter co. However, owing to the randomness of the SOE
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and the finite amount of data used by the adaptive filter, its coefficients continuously fluctuate
about their optimum settings, that is, about the coefficients of the optimum filter, in a random
manner. As a result, the adaptive filter reaches a steady-state mode of operation, after a
certain time, and its performance stops improving.

The transient and steady-state modes of operation in a stationary SOE are illustrated in
Figure 10.12(a). The duration of the acquisition phase characterizes the speed of adaptation
or rate of convergence of the adaptive filter, whereas the steady-state EMSE or misadjust-
ment characterizes the quality of adaptation. These properties depend on the SOE, the
filtering structure, and the adaptive algorithm.
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FIGURE 10.12
Modes of operation in a stationary and nonstationary SOE.

At each time n, any adaptive filter computes an estimate of the optimum filter using
a finite amount of data. The error resulting from the finite amount of data is known as
estimation error. An additional error, known as the lag error, results when the adaptive
filter attempts to track a time-varying optimum filter co(n) in a nonstationary SOE. The
modes of operation of an adaptive filter in a nonstationary SOE are illustrated in Figure
10.12(b). The SOE of the adaptive filter becomes nonstationary if x(n, ζ ) or y(n, ζ ) or
both are nonstationary. The nonstationarity of the input is more severe than that of the
desired response because it may affect the invertibility of R(n). Since the adaptive filter
has to first acquire and then track the optimum filter, tracking is a steady-state property.
Therefore, in general, the speed of adaptation (a transient-phase property) and the tracking
capability (a steady-state property) are two different characteristics of the adaptive filter.
Clearly, tracking is feasible only if the statistics of the SOE change “slowly” compared to
the speed of tracking of the adaptive filter. These concepts will become more precise in
Section 10.8, where we discuss the tracking properties of adaptive filters.

10.2.4 Some Practical Considerations

The complexity of the hardware or software implementation of an adaptive filter is basi-
cally determined by the following factors: (1) the number of instructions per time update
or computing time required to complete one time updating; (2) the number of memory
locations required to store the data and the program instructions; (3) the structure of infor-
mation flow in the algorithm, which is very important for implementations using parallel
processing, systolic arrays, or VLSI chips; and (4) the investment in hardware design tools
and software development. We focus on implementations for general-purpose computers
or special-purpose digital signal processors that basically involve programming in a high
level or assembly language. More details about DSP software development can be found in
Embree and Kimble (1991) and in Lapsley et al. (1997).
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The digital implementation of adaptive filters implies the use of finite-word-length
arithmetic. As a result, the performance of the practical (finite-precision) adaptive filters
deviates from the performance of ideal (infinite-precision) adaptive filters. Finite-precision
implementation affects the performance of adaptive filters in several complicated ways. The
major factors are (1) the quantization of the input signal(s) and the desired response, (2)
the quantization of filter coefficients, and (3) the roundoff error in the arithmetic operations
used to implement the adaptive filter. The nonlinear nature of adaptive filters coupled with
the nonlinearities introduced by the finite-word-length arithmetic makes the performance
evaluation of practical adaptive filters extremely difficult. Although theoretical analysis
provides insight and helps to clarify the behavior of adaptive filters, the most effective way
is to simulate the filter and measure its performance.

Finite precision affects two important properties of adaptive filters, which, although
related, are not equivalent. Let us denote by cip(n) and cfp(n) the coefficient vectors of the
filter implemented using infinite- and finite-precision arithmetic, respectively. An adaptive
filter is said to be numerically stable if the difference vector cip(n)− cfp(n) remains always
bounded, that is, the roundoff error propagation system is stable. Numerical stability is
an inherent property of the adaptive algorithm and cannot be altered by increasing the
numerical precision. Indeed, increasing the word length or reorganizing the computations
will simply delay the divergence of an adaptive filter; only actual change of the algorithm
can stabilize an adaptive filter by improving the properties of the roundoff error propagation
system (Ljung and Ljung 1985; Cioffi 1987).

The numerical accuracy of an adaptive filter measures the deviation, at steady state, of
any obtained estimates from theoretically expected values, due to roundoff errors. Numerical
accuracy results in an increase of the output error without catastrophic problems and can
be reduced by increasing the word length. In contrast, lack of numerical stability leads
to catastrophic overflow (divergence or blowup of the algorithm) as a result of roundoff
error accumulation. Numerically unstable algorithms converging before “explosion” may
provide good numerical accuracy. Therefore, although the two properties are related, one
does not imply the other.

Two other important issues are the sensitivity of an algorithm to bad or abnormal input
data (e.g., poorly exciting input) and its sensitivity to initialization. All these issues are very
important for the application of adaptive algorithms to real-world problems and are further
discussed in the context of specific algorithms.

10.3 METHOD OF STEEPEST DESCENT

Most adaptive filtering algorithms are obtained by simple modifications of iterative methods
for solving deterministic optimization problems. Studying these techniques helps one to
understand several aspects of the operation of adaptive filters. In this section we discuss
gradient-based optimization methods because they provide the ground for the development
of the most widely used adaptive filtering algorithms.

As we discussed in Section 6.2.1, the error performance surface of an optimum filter,
in a stationary SOE, is given by

P(c) = Py − cH d− dH c+ cH Rc (10.3.1)

where Py = E{|y(n)|2}. Equation (10.3.1) is a quadratic function of the coefficients and
represents a bowl-shaped surface (when R is positive definite) and has a unique minimum
at co (optimum filter). There are two distinct ways to find the minimum of (10.3.1):

1. Solve the normal equations Rc = d, using a direct linear system solution method.
2. Find the minimum of P(c), using an iterative minimization algorithm.
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Although direct methods provide the solution in a finite number of steps, sometimes we
prefer iterative methods because they require less numerical precision, are computationally
less expensive, work when R is not invertible, and are the only choice for nonquadratic
performance functions.

In all iterative methods, we start with an approximate solution (a guess), which we
keep changing until we reach the minimum. Thus, to find the optimum co, we start at some
arbitrary point c0, usually the null vector c0 = 0, and then start a search for the “bottom
of the bowl.” The key is to choose the steps in a systematic way so that each step takes us
to a lower point until finally we reach the bottom. What differentiates various optimization
algorithms is how we choose the direction and the size of each step.

Steepest-descent algorithm (SDA)

If the function P(c) has continuous derivatives, it is possible to approximate its value
at an arbitrary neighboring point c+�c by using the Taylor expansion

P(c+�c) = P(c)+
M∑
i=1

∂P (c)
∂ci

�ci + 1

2

M∑
i=1

M∑
j=1

�ci
∂2P(c)
∂ci∂cj

�cj + · · · (10.3.2)

or more compactly

P(c+�c) = P(c)+ (�c)T∇P(c)+ 1
2 (�c)T [∇2P(c)](�c)+ · · · (10.3.3)

where ∇P(c) is the gradient vector, with elements ∂P (c)/∂ci , and ∇2P(c) is the Hessian
matrix, with elements ∂2P(c)/(∂ci∂cj ). For simplicity we consider filters with real coef-
ficients, but the conclusions apply when the coefficients are complex. For the quadratic
function (10.3.1), we have

∇P(c) = 2(Rc− d) (10.3.4)

∇2P(c) = 2R (10.3.5)

and the higher-order terms are zero. For nonquadratic functions, higher-order terms are
nonzero, but if ‖�c‖ is small, we can use a quadratic approximation. We note that if
∇P(co) = 0 and R is positive definite, then co is the minimum because (�c)T [∇2P(co)]·
(�c) > 0 for any nonzero �c. Hence, if we choose the step �c so that (�c)T∇P(c) < 0,
we will have P(c+�c) < P (c), that is, we make a step to a point closer to the minimum.
Since (�c)T∇P(c) = ‖�c‖‖∇P(c)‖ cos θ , the reduction in MSE is maximum when�c =
−∇P(c). For this reason, the direction of the negative gradient is known as the direction
of steepest descent. This leads to the following iterative minimization algorithm

ck = ck−1 + µ[−∇P(ck−1)] k ≥ 0 (10.3.6)

which is known as the method of steepest descent (Scales 1985). The positive constant µ,
known as the step-size parameter, controls the size of the descent in the direction of the
negative gradient. The algorithm is usually initialized with c0 = 0. The steepest-descent
algorithm (SDA) is illustrated in Figure 10.13 for a single-parameter case.

For the cost function in (10.3.1), the SDA becomes

ck = ck−1 + 2µ(d− Rck−1) = (I− 2µR)ck−1 + 2µd (10.3.7)

which is a recursive difference equation. Note that k denotes an iteration in the SDA and
has nothing to do with time. However, this iterative optimization can be combined with
filtering to obtain a type of “asymptotically” optimum filter defined by

e(n, ζ ) = y(n, ζ )− cHn−1x(n, ζ ) (10.3.8)

cn = cn−1 + 2µ(d− Rcn−1) (10.3.9)

and is further discussed in Problem 10.2.
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P(c)

Pk−1

ck−1

Pk+1

ck+1

Pk

ck
c

Po

0 co

dP
dc c=ck

FIGURE 10.13
Illustration of gradient search of the
MSE surface for the minimum
error point.

There are two key performance factors in the design of iterative optimization algo-
rithms: stability and rate of convergence.

Stability

An algorithm is said to be stable if it converges to the minimum regardless of the starting
point. To investigate the stability of SDA, we rewrite (10.3.7) in terms of the coefficient
error vector

c̃k � ck − co k ≥ 0 (10.3.10)

c̃k = (I− 2µR)c̃k−1 k ≥ 0 (10.3.11)as

which is a homogeneous difference equation. Using the principal-components transforma-
tion R = Q�QH (see Section 3.5), we can write (10.3.11) as

c̃′k = (I− 2µ�)c̃′k−1 k ≥ 0 (10.3.12)

c̃′k = QH c̃k k ≥ 0 (10.3.13)where

is the transformed coefficient error vector. Since � is diagonal, (10.3.12) consists of a set
of M decoupled first-order difference equations

c̃′k,i = (1− 2µλi)c̃
′
k−1,i i = 1, 2, . . . ,M, k ≥ 0 (10.3.14)

with each describing a natural mode of the SDA. The solutions of (10.3.12) are given by

c̃′k,i = (1− 2µλi)
kc̃′0,i k ≥ 0 (10.3.15)

If for all 1 ≤ i ≤ M

−1 < 1− 2µλi < 1 (10.3.16)

0 < µ <
1

λi

(10.3.17)or equivalently

then c̃′k,i , 1 ≤ i ≤ M, tends to zero as k→∞. This implies that ck converges exponentially

to co as k →∞ because ‖c̃′k‖ = ‖QT c̃k‖ = ‖c̃k‖. If R is positive definite, its eigenvalues
are positive and

0 < µ <
1

λmax
(10.3.18)

provides a necessary and sufficient condition for the convergence of SDA.
To investigate the transient behavior of the SDA as a function of k, we note that using

(10.3.10), (10.3.11), and (10.3.14), we have

ck,i = co,i +
M∑
i=1

qikc̃
′
0,i (1− 2µλi)

k (10.3.19)



February 7, 2005 13:23 e56-ch10 Sheet number 21 Page number 519 black

519

section 10.3
Method of Steepest Descent

where co,i are the optimum coefficients and qik the elements of the eigenvector matrix Q.
The MSE at step k is

Pk = Po +
M∑
i=1

λi(1− 2µλi)
2k|c̃′0,i |2 (10.3.20)

and can be obtained by substituting (10.3.19) in (10.3.1). If µ satisfies (10.3.18), we have
limk→∞ Pk = Po and the MSE converges exponentially to the optimum value. The curve
obtained by plotting the MSE Pk as a function of the number of iterations k is known as the
learning curve.

Rate of convergence

The rate (or speed) of convergence depends upon the algorithm and the nature of the
performance surface. The most influential effect is inflicted by the condition number of the
Hessian matrix that determines the shape of the contours of P(c). When P(c) is quadratic,
it can be shown (Luenberger 1984) that

P(ck) ≤
[X (R)− 1

X (R)+ 1

]2

P(ck−1) (10.3.21)

where X (R) = λmax/λmin is the condition number of R. If we recall that the eigenvectors
corresponding toλmin andλmax point to the directions of minimum and maximum curvature,
respectively, we see that the convergence slows down as the contours become more eccentric
(flattened). For circular contours, that is, when X (R) = 1, the algorithm converges in one
step. We stress that even if the M − 1 eigenvalues of R are equal and the remaining one is
far away, still the convergence of the SDA is very slow.

The rate of convergence can be characterized by using the time constant τ i defined by

1− 2µλi = exp

(
− 1

τ i

)
� 1− 1

τ i

(10.3.22)

which provides the time (or number of iterations) it takes for the ith mode ck,i of (10.3.19)
to decay to 1/e of its initial value c0,i . When µ� 1, we obtain

τ i � 1

2µλi

(10.3.23)

In a similar fashion, the time constant τ i,mse for the MSE Pk can be shown to be

τ i,mse � 1

4µλi

(10.3.24)

by using (10.3.20) and (10.3.22).
Thus, for all practical purposes, the time constant (for coefficient ck or for MSE Pk)

of the SDA is τ � 1/(µλmin), which in conjunction with µ < 1/λmax results in τ >

λmax/λmin. Hence, the larger the eigenvalue spread of the input correlation matrix R, the
longer it takes for the SDA to converge.

In the following example, we illustrate above-discussed properties of the SDA by using
it to compute the parameters of a second-order forward linear predictor.

EXAMPLE 10.3.1. Consider a signal generated by the second-order autoregressive AR(2) process

x(n)+ a1x(n− 1)+ a2x(n− 2) = w(n) (10.3.25)

where w(n) ∼ WGN(0, σ 2
w). Parameters a1 and a2 are chosen so that the system (10.3.25) is

minimum-phase. We want to design an adaptive filter that uses the samples x(n−1) and x(n−2)
to predict the value x(n) (desired response).

If we multiply (10.3.25) by x(n−k), for k = 0, 1, 2, and take the mathematical expectation
of both sides, we obtain a set of linear equations

r(0)+ a1r(1)+ a2r(2) = σ 2
w (10.3.26)
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r(1)+ a1r(0)+ a2r(1) = 0 (10.3.27)

r(2)+ a1r(1)+ a2r(0) = 0 (10.3.28)

which can be used to express the autocorrelation of x(n) in terms of model parameters a1, a2,

and σ 2
w . Indeed, solving (10.3.26) through (10.3.28), we obtain

r(0) = σ 2
x =

1+ a2

1− a2

σ 2
w

(1+ a2)
2 − a2

1

r(1) = −a1

1+ a2
r(0)

r(2) =
(
−a2 +

a2
1

1+ a2

)
r(0)

(10.3.29)

We choose σ 2
x = 1, so that

σ 2
w =

(1− a2)[(1+ a2)
2 − a2

1 ]
1+ a2

σ 2
x (10.3.30)

The coefficients of the optimum predictor

ŷ(n) = x̂(n) = co,1x(n− 1)+ co,2x(n− 2) (10.3.31)

are given by (see Section 6.5)

r(0)co,1 + r(1)co,2 = r(1) (10.3.32)

r(1)co,1 + r(0)co,2 = r(2) (10.3.33)

P
f
o = r(0)+ r(1)co,1 + r(0)co,2 (10.3.34)with

whose comparison with (10.3.26) through (10.3.28) shows that co,1 = −a1, co,2 = −a2, and

P
f
o = σ 2

w , as expected.
The eigenvalues of the input correlation matrix

R =
[
r(0) r(1)

r(1) r(0)

]
(10.3.35)

λ1,2 =
(

1∓ a1

1+ a2

)
σ 2
x (10.3.36)are

from which the eigenvalue spread is

X (R) = λ1

λ2
= 1− a1 + a2

1+ a1 + a2
(10.3.37)

which, if a2 > 0 and a1 < 0, is larger than 1.
Now we perform Matlab experiments with varying eigenvalue spread X (R) and step-size

parameter µ. In these experiments, we choose σ 2
w so that σ 2

x = 1. The SDA is given by

ck � [ck,1 ck,2]T = ck−1 + 2µ(d− Rck−1)

d = [r(1) r(2)]T and c0 = [0 0]Twhere

We choose two different sets of values for a1 and a2, one for a small and the other for a
large eigenvalue spread. These values are shown in Table 10.2 along with the corresponding
eigenvalue spread X (R) and the MMSE σ 2

w .

TABLE 10.2

Parameter values used in the SDA for the second-order forward
prediction problem.

Eigenvalue spread a1 a2 λ1 λ2 X (R) σ 2
w

Small −0.1950 0.95 1.1 0.9 1.22 0.0965
Large −1.5955 0.95 1.818 0.182 9.99 0.0322
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Using each set of parameter values, the SDAis implemented starting with the null coefficient
vector c0 with two values of step-size parameters. To describe the transient behavior of the
algorithm, it is informative to plot the trajectory of ck,1 versus ck,2 as a function of the iteration
index k along with the contours of the error surface P(ck). The trajectory of ck begins at the
origin c0 = 0 and ends at the optimum value co = −[a1 a2]T . This illustration of the transient
behavior can also be obtained in the domain of the transformed error coefficients c̃′

k
. Using

(10.3.15), we see these coefficients are given by

c̃
′
k =

[
c̃′
k,1

c̃′
k,2

]
=

(1− 2µλ1)

kc̃′0,1
(1− 2µλ2)

kc̃′0,2


 (10.3.38)

where c̃′0 from (10.3.10) and (10.3.13) is given by

c̃′0 =
[
c̃′0,1
c̃′0,1

]
= QT c̃0 = QT (c0 − co) = −QT co = QT

[
a1

a2

]
(10.3.39)

Thus the trajectory of c̃′
k

begins at c̃′0 and ends at the origin c̃′
k
= 0. The contours of the MSE

function in the transformed domain are given by Pk − Po. From (10.3.20), these contours are
given by

Pk − P
f
o =

2∑
i=1

λi(c̃
′
k)

2 = λ1(c̃
′
k,1)

2 + λ2(c̃
′
k,2)

2 (10.3.40)

Small eigenvalue spread and overdamped response. For this experiment, the parameter val-
ues were selected to obtain the eigenvalue spread approximately equal to 1 [X (R) = 1.22]. The
step size selected was µ = 0.15, which is less than 1/λmax = 1/1.1 = 0.9 for convergence. For
this value of µ, the transient response is overdamped. Figure 10.14 shows four graphs indicating
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FIGURE 10.14
Performance curves for the steepest-descent algorithm used in the linear prediction problem
with step-size parameter µ = 0.15 and eigenvalue spread X (R) = 1.22.
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the behavior of the algorithm. In the graph (a), the trajectory of c̃′
k

is shown for 0 ≤ k ≤ 15
along with the corresponding loci c̃′

k
for a fixed value of Pk − Po. The first two loci for k = 0

and 1 are numbered to show the direction of the trajectory. Graph (b) shows the corresponding
trajectory and the contours for ck . Graph (c) shows plots of ck,1 and ck,2 as a function of iteration
step k, while graph (d ) shows a similar learning curve for the MSE Pk . Several observations
can be made about these plots. The contours of constant c̃′

k
are almost circular since the spread

is approximately 1, while those of ck are somewhat elliptical, which is to be expected. The
trajectories of c̃′

k
and ck as a function of k are normal to the contours. The coefficients converge

to their optimum values in a monotonic fashion, which confirms the overdamped nature of the
response. Also this convergence is rapid, in about 15 steps, which is to be expected for a small
eigenvalue spread.

Large eigenvalue spread and overdamped response. For this experiment, the parameter val-
ues were selected so that the eigenvalue spread was approximately equal to 10 [X (R) = 9.99].
The step size was again selected as µ = 0.15. Figure 10.15 shows the performance plots for
this experiment, which are similar to those of Figure 10.14. The observations are also similar
except for those due to the larger spread. First, the contours, even in the transformed domain,
are elliptical; second, the convergence is slow, requiring about 60 steps in the algorithm. The
transient response is once again overdamped.
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FIGURE 10.15
Performance curves for the steepest-descent algorithm used in the linear prediction problem
with step-size parameter µ = 0.15 and eigenvalue spread X (R) = 10.

Large eigenvalue spread and underdamped response. Finally, in the third experiment, we con-
sider the model parameters of the above case and increase the step size to µ = 0.5 (< 1/λmax =
0.55) so that the transient response is underdamped. Figure 10.16 shows the corresponding plots.
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FIGURE 10.16
Performance curves for the steepest-descent algorithm used in the linear prediction problem
with eigenvalue spread X (R) = 10 and varying step-size parameters µ = 0.15 and µ = 0.5.

Note that the coefficients converge in an oscillatory fashion; however, the convergence is fairly
rapid compared to that of the overdamped case. Thus the selection of the step size is an important
design issue.

Newton’s type of algorithms

Another family of algorithms with a faster rate of convergence includes Newton’s
method and its modifications. The basic idea of Newton’s method is to achieve convergence
in one step when P(c) is quadratic. Thus, if ck is to be the minimum of P(c), the gradient
∇P(ck) of P(c) evaluated at ck (10.2.19) should be zero. From (10.2.19), we can write

∇P(ck) = ∇P(ck−1)+ ∇2P(ck−1)�ck = 0 (10.3.41)

Thus ∇P(ck) = 0 leads to the step increment

�ck = −[∇2P(ck−1)]−1∇P(ck−1) (10.3.42)

and hence the adaptive algorithm is given by

ck = ck−1 − µ[∇2P(ck−1)]−1∇P(ck−1) (10.3.43)

where µ > 0 is the step size. For quadratic error surfaces, from (10.3.4) and (10.3.5), we
obtain with µ = 1

ck = ck−1 − [∇2P(ck−1)]−1∇P(ck−1) = ck−1 − (ck−1 − R−1d) = co (10.3.44)

which shows that indeed the algorithm converges in one step.
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For the quadratic case, since∇2P(ck−1) = 2R from (10.3.1), we can express Newton’s
algorithm as

ck = ck−1 − µR−1∇P(ck−1) (10.3.45)

where µ is the step size that regulates the convergence rate. Other modified Newton meth-
ods replace the Hessian matrix ∇2P(ck−1) with another matrix, which is guaranteed to be
positive definite and, in some way, close to the Hessian. These Newton-type algorithms
generally provide faster convergence. However, in practice, the inversion of R is numeri-
cally intensive and can lead to a numerically unstable solution if special care is not taken.
Therefore, the SDA is more popular in adaptive filtering applications.

When the function P(c) is nonquadratic, it is approximated locally by a quadratic
function that is minimized exactly. However, the step obtained in (10.3.42) does not lead to
the minimum of P(c), and the iteration should be repeated several times. A more detailed
treatment of linear and nonlinear optimization techniques can be found in Scales (1985)
and in Luenberger (1984).

10.4 LEAST-MEAN-SQUARE ADAPTIVE FILTERS

In this section, we derive, analyze the performance, and present some practical applications
of the least-mean-square (LMS) adaptive algorithm. The LMS algorithm, introduced by
Widrow and Hoff (1960), is widely used in practice due to its simplicity, computational
efficiency, and good performance under a variety of operating conditions.

10.4.1 Derivation

We first present two approaches to the derivation of the LMS algorithm that will help the
reader to understand its operation. The first approach uses approximation to the gradient
function while the second approach uses geometric arguments.

Optimization approach. The SDA uses the second-order moments R and d to itera-
tively compute the optimum filter co = R−1d, starting with an initial guess, usually c0 = 0,
and then obtaining better approximations by taking steps in the direction of the negative
gradient, that is,

ck = ck−1 + µ[−∇P(ck−1)] (10.4.1)

∇P(ck−1) = 2(Rck−1 − d) (10.4.2)where

is the gradient of the performance function (10.3.1). In practice, where only the input {x(j)}n0
and the desired response {y(j)}n0 are known, we can only compute an estimate of the “true”
or exact gradient (10.4.2) using the available data. To develop an adaptive algorithm from
(10.4.1), we take the following steps: (1) replace the iteration subscript k by the time index
n; and (2) replace R and d by their instantaneous estimates x(n)xH (n) and x(n)y∗(n),
respectively. The instantaneous estimate of the gradient (10.4.2) becomes

∇P(ck−1) = 2Rck−1−2d � 2x(n)xH (n)c(n−1)−2x(n)y∗(n) = −2x(n)e∗(n) (10.4.3)

e(n) = y(n)− cH (n− 1)x(n) (10.4.4)where

is the a priori filtering error. The estimate (10.4.3) also can be obtained by starting with the
approximation P(c) �|e(n)|2 and taking its gradient. The coefficient adaptation algorithm
is

c(n) = c(n− 1)+ 2µx(n)e∗(n) (10.4.5)
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which is obtained by substituting (10.4.3) and (10.4.4) in (10.4.1). The step-size parameter
2µ is also known as the adaptation gain.

The LMS algorithm, specified by (10.4.5) and (10.4.4), has both important similari-
ties to and important differences from the SDA (10.3.7). The SDA contains deterministic
quantities while the LMS operates on random quantities. The SDA is not an adaptive algo-
rithm because it only depends on the second-order moments R and d and not on the SOE
{x(n, ζ ), y(n, ζ )}. Also, the iteration index k has nothing to do with time. Simply stated,
the SDA provides an iterative solution to the linear system Rc = d.

Geometric approach. Suppose that an adaptive filter operates in a stationary signal
environment seeking the optimum filter co. At time n the filter has access to input vector
x(n), the desired response y(n), and the previous or old coefficient estimate c(n − 1). Its
goal is to use this information to determine a new estimate c(n) that is closer to the optimum
vector co or equivalently to choose c(n) so that ‖c̃(n)‖ < ‖c̃(n−1)‖, where c̃(n) = c(n)−co
is the coefficient error vector given by (10.2.24). Eventually, we want ‖c̃(n)‖ to become
negligible as n→∞.

The vector c̃(n− 1) can be decomposed into two orthogonal components

c̃(n− 1) = c̃x(n− 1)+ c̃⊥x (n− 1) (10.4.6)

one parallel and one orthogonal to the input vector x(n), as shown in Figure 10.17(a). The
response of the error filter c̃(n− 1) to the input x(n) is

ỹ(n) = c̃H (n− 1)x(n) = c̃Hx (n− 1)x(n) (10.4.7)

c̃x(n− 1) = ỹ∗(n)
‖x(n)‖2

x(n) (10.4.8)which implies that

which can be verified by direct substitution in (10.4.7). Note that x(n)/‖x(n)‖ is a unit
vector along the direction of x(n).

x(n)

c~x(n − 1)

−2mcx(n − 1)

c~(n)
c~(n − 1)

c~(n − 1)

c~ x (n − 1)⊥

(a) (b)

c~x(n − 1)

⊥c~ x (n − 1)

~

FIGURE 10.17
The geometric approach for the derivation of the LMS algorithm.

If we only know x(n) and ỹ(n), the best strategy to decrease c̃(n) is to choose c̃(n) =
c̃⊥x (n − 1), or equivalently subtract c̃x(n − 1) from c̃(n − 1). From Figure 10.17(a) note
that as long as c̃x(n − 1) �= 0, ‖c̃(n)‖ = ‖c̃⊥x (n − 1)‖ < ‖c̃x(n − 1)‖. This suggests the
following adaptation algorithm

c̃(n) = c̃(n− 1)− µ̃
ỹ∗(n)
‖x(n)‖2

x(n) (10.4.9)
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which guarantees that ‖c̃(n)‖ < ‖c̃(n− 1)‖ as long as 0 < µ̃ < 2 and ỹ(n) �= 0, as shown
in Figure 10.17(b). The best choice clearly is µ̃ = 1.

Unfortunately, the signal ỹ(n) is not available, and we have to replace it with some
reasonable approximation. From (10.2.18) and (10.2.10) we obtain

ẽ(n) � e(n)− eo(n) = y(n)− ŷ(n)− y(n)+ ŷo(n) = ŷo(n)− ŷ(n)

= [cHo − cH (n− 1)]x(n) = −c̃H (n− 1)x(n) = −ỹ(n)
(10.4.10)

where we have used (10.4.7). Using the approximation

ẽ(n) = e(n)− eo(n) � e(n)

we combine it with (10.4.10) to get

c(n) = c(n− 1)+ µ̃
e∗(n)
‖x(n)‖2

x(n) (10.4.11)

which is known as the normalized LMS algorithm. Note that the effective step size µ̃/‖x(n)‖2

is time-varying. The LMS algorithm in (10.4.5) follows if we set ‖x(n)‖ = 1 and choose
µ̃ = 2µ.

LMS algorithm. The LMS algorithm can be summarized as

ŷ(n) = cH (n− 1)x(n) filtering

e(n) = y(n)− ŷ(n) error formation

c(n) = c(n− 1)+ 2µx(n)e∗(n) coefficient updating

(10.4.12)

where µ is adaptation step size. The algorithm requires 2M + 1 complex multiplications
and 2M complex additions. Figure 10.18 shows an implementation of an FIR adaptive
filter using the LMS algorithm, which is implemented in Matlab using the function
[yhat,c]=firlms(x,y,M,mu). The a posteriori form of the LMS algorithm is developed
in Problem 10.9.

2m

−

x(n) x(n) x(n − 1) x(n − M + 2) x(n − M + 1)
z−1

z−1

z−1

z−1

cM−1
∗c0

∗

ŷ(n)

y(n)

e(n)

…

…

…
…

FIGURE 10.18
An FIR adaptive filter realization using the LMS algorithm.

10.4.2 Adaptation in a Stationary SOE

In the sequel, we study the stability and steady-state performance of the LMS algorithm in
a stationary SOE; that is, we assume that the input and the desired response processes are
jointly stationary. In theory, the goal of the LMS adaptive filter is to identify the optimum
filter co = R−1d from observations of the input x(n) and the desired response

y(n) = cHo x(n)+ eo(n) (10.4.13)

The optimum error eo(n) is orthogonal to the vector x(n); that is, E{x(n)e∗(n)} = 0 and
acts as measurement or output noise, as shown in Figure 10.19.
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x(n) y(n)

y~(n)

eo(n)

c(n − 1)

co

e(n)

ŷo(n)

ŷ(n)

−

−

FIGURE 10.19
LMS algorithm in a stationary SOE.

The first step in the statistical analysis of the LMS algorithm is to determine a difference
equation for the coefficient error vector c̃(n). To this end, we subtract co from both sides of
(10.4.5), to obtain

c̃(n) = c̃(n− 1)+ 2µx(n)e∗(n) (10.4.14)

which expresses the LMS algorithm in terms of the coefficient error vector. We next use
(10.4.12) and (10.4.13) in (10.4.14) to eliminate e(n) by expressing it in terms of c̃(n− 1)
and eo(n). The result is

c̃(n) = [I− 2µx(n)xH (n)]c̃(n− 1)+ 2µx(n)e∗o(n) (10.4.15)

which is a time-varying forced or nonhomogeneous stochastic difference equation. The irre-
ducible error eo(n) accounts for measurement noise, modeling errors, unmodeled dynamics,
quantization effects, and other disturbances. The presence of eo(n) prevents convergence
because it forces c̃(n) to fluctuate around zero. Therefore, the important issue is the BIBO
stability of the system (10.4.15). From (10.2.28), we see that ‖c̃(n)‖ is bounded in mean
square if we can show that E{c̃(n)} → 0 as n→∞ and var{c̃k(n)} is bounded for all n. To
this end, we develop difference equations for the mean value E{c̃(n)} and the correlation
matrix

�(n) � E{c̃(n)c̃H (n)} (10.4.16)

of the coefficient error vector c̃(n).As we shall see, the MSD and the EMSE can be expressed
in terms of matrices�(n) and R. The time evolution of these quantities provides sufficient
information to evaluate the stability and steady-state performance of the LMS algorithm.

Convergence of the mean coefficient vector

If we take the expectation of (10.4.15), we have

E{c̃(n)} = E{c̃(n− 1)} − 2µE{x(n)xH (n)c̃(n− 1)} (10.4.17)

because E{x(n)e∗o(n)} = 0 owing to the orthogonality principle. The computation of the
second term in (10.4.17) requires the correlation between the input signal and the coefficient
error vector.

If we assume that x(n) and c̃(n− 1) are statistically independent, (10.4.17) simplifies
to

E{c̃(n)} = (I− 2µR)E{c̃(n− 1)} (10.4.18)

which has the same form as (10.3.11) for the SDA. Therefore, c̃(n) converges in the MS
sense, that is, limn→∞ E{c̃(n)} = 0, if the eigenvalues of the system matrix (I − 2µR)

are less than 1. Hence, if R is positive definite and λmax is its maximum eigenvalue, the
condition

0 < 2µ <
1

λmax
(10.4.19)

ensures that the LMS algorithm converges in the MS sense [see the discussion following
(10.2.27)].
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Independence assumption. The independence assumption between x(n) and c̃(n−1)
was critical to the derivation of (10.4.18). To simplify the analysis, we make the following
independence assumptions (Gardner 1984):

A1 The sequence of input data vectors x(n) is independently and identically distributed
with zero mean and correlation matrix R.

A2 The sequences x(n) and eo(n) are independent for all n.

From (10.4.15), we see that c̃(n−1) depends on c̃(0), {x(k)}n−1
0 , and {eo(k)}n−1

0 . Since
the sequence x(n) is IID and the quantities x(n) and eo(n) are independent, we conclude
that x(n), e0(n), and c̃(n − 1) are mutually independent. This result will be used several
times to simplify the analysis of the LMS algorithm.

The independence assumption A1, first introduced in Widrow et al. (1976) and in Mazo
(1979), ignores the statistical dependence among successive input data vectors; however,
it preserves sufficient statistical information about the adaptation process to lead to useful
design guidelines. Clearly, for FIR filtering applications, the independence assumption is
violated because two successive input data vectors x(n) and x(n+ 1) have M − 1 common
elements (shift-invariance property).

Evolution of the coefficient error correlation matrix

The MSD can be expressed in terms of the trace of the correlation matrix
†
�(n), that

is,

D(n) = tr[�(n)] (10.4.20)

which can be easily seen by using (10.2.29) and the definition of trace. If we postmultiply
both sides of (10.4.15) by their respective Hermitian transposes and take the mathematical
expectation, we obtain

�(n) = E{c̃(n)c̃H (n)}
= E{[I− 2µx(n)xH (n)]c̃(n− 1)c̃H (n− 1)[I− 2µx(n)xH (n)]H }
+ 2µE{[I− 2µx(n)xH (n)]c̃(n− 1)eo(n)xH (n)}
+ 2µE{x(n)e∗o(n)c̃H (n− 1)[I− 2µx(n)xH (n)]H }
+ 4µ2E{x(n)e∗o(n)eo(n)xH (n)}

(10.4.21)

From the independence assumptions, eo(n) is independent with c̃(n−1) and x(n). Therefore,
the second and third terms in (10.4.21) vanish, and the fourth term is equal to 4µ2PoR. If
we expand the first term, we obtain

�(n) = �(n− 1)− 2µ[R�(n− 1)+�(n− 1)R] + 4µ2A + 4µ2PoR (10.4.22)

A � E{x(n)xH (n)c̃(n− 1)c̃H (n− 1)x(n)xT (n)} (10.4.23)where

and the terms R�(n − 1) and �(n − 1)R have been computed by using the mutual inde-
pendence of x(n), c̃(n− 1), and eo(n).

The computation of matrix A can be simplified if we make additional assumptions about
the statistical properties of x(n). As shown in Gardner (1984), development of a recursive
relation for the elements of �(n) using only the independence assumptions requires the
products with and the inversion of a M2 ×M2 matrix, where M is the size of x(n).

The evaluation of this term when x(n) ∼ IID, an assumption that is more appropriate
for data transmission applications, is discussed in Gardner (1984). The computation for
x(n) being a spherically invariant random process (SIRP) is discussed in Rupp (1993).
SIRP models, which include the Gaussian distribution as a special case, provide a good

†
Note that when (10.4.19) holds, limn→∞ E{c̃(n)} = 0, and therefore�(n) provides asymptotically the covariance
of c̃(n).
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characterization of speech signals. However, independently of the assumption used, the
basic conclusions remain the same.

Assuming that x(n) is normally distributed, that is, x(n) ∼ N (0,R), a significant
amount of simplification can be obtained. Indeed, in this case we can use the moment
factorization property for normal random variables to express fourth-order moments in
terms of second-order moments (Papoulis 1991). As we showed in Section 3.2.3, if z1, z2,
z3, and z4 are complex-valued, zero-mean, and jointly distributed normal random variables,
then

E{z1z
∗
2z3z

∗
4} = E{z1z

∗
2}E{z3z

∗
4} + E{z1z

∗
4}E{z∗2z3} (10.4.24)

or if they are real-valued, then

E{z1z2z3z4} = E{z1z2}E{z3z4} + E{z1z3}E{z2z4} + E{z1z4}E{z2z3} (10.4.25)

Using direct substitution of (10.4.24) or (10.4.25) in (10.4.23), we can show that

A =
{

R�(n− 1)R + R tr[R�(n− 1)] complex case

2R�(n− 1)R + R tr[R�(n− 1)] real case
(10.4.26)

Finally, substituting (10.4.26) in (10.4.22), we obtain a difference equation for �(n). This
is summarized in the following property:

PROPERTY 10.4.1. Using the independence assumptions A1 and A2, and the normal distribu-
tion assumption of x(n), the correlation matrix of the coefficient error vector c̃(n) satisfies the
difference equation

�(n) = �(n− 1)− 2µ[R�(n− 1)+�(n− 1)R]
+ 4µ2R�(n− 1)R + 4µ2R tr[R�(n− 1)] + 4µ2PoR

(10.4.27)

in the complex case and

�(n) = �(n− 1)− 2µ[R�(n− 1)+�(n− 1)R]
+ 8µ2R�(n− 1)R + 4µ2R tr[R�(n− 1)] + 4µ2PoR

(10.4.28)

in the real case. Both relations are matrix difference equations driven by the constant term
4µ2PoR.

The presence of the term 4µ2PoR in (10.4.27) or (10.4.28) implies that�(n) will never
become zero, and as a result the coefficients of the LMS adaptive filter will always fluctuate
about their optimum settings, which prevents convergence. It has been shown (Bucklew
et al. 1993) that asymptotically c̃(n) follows a zero-mean normal distribution. The amount
of fluctuation is measured by matrix �(n). In contrast, the absence of a driving term in
(10.4.18) allows the convergence of E{c(n)} to the optimum vector co.

Since there are two distinct forms for the difference equation of�(n), we will consider
the real case (10.4.28) for further discussion. Similar analysis can be done for the complex
case (10.4.27), which is undertaken in Problem 10.11. To further simplify the analysis, we
transform �(n) to the principal coordinate space of R using the spectral decomposition

QT RQ = �
�(n) � QT�(n)Q (10.4.29)by defining the matrix

which is symmetric and positive definite [when �(n) is positive definite].
If we pre- and postmultiply (10.4.28) by QT and Q and use QT Q = QQT = I, we

obtain

�(n) = �(n− 1)− 2µ[��(n− 1)+�(n− 1)�]
+ 8µ2��(n− 1)�+ 4µ2� tr[��(n− 1)] + 4µ2Po�

(10.4.30)

which is easier to work with because of the diagonal nature of �. For any symmetric and
positive definite matrix �, we have |θij (n)|2 ≤ θiiθjj . Hence, the convergence of the
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diagonal elements ensures the convergence of the off-diagonal elements. This observation
and (10.4.30) suggest that to analyze the LMS algorithm, we should extract from (10.4.30)
the equations for the diagonal elements

θ(n) � [θ1(n) θ2(n) · · · θM(n)]T (10.4.31)

of�(n) and form a difference equation for the vector θ(n). Indeed, we can easily show that

θ(n) = Bθ(n− 1)+ 4µ2Poλ (10.4.32)

B � �(ρ)+ 4µ2λλT (10.4.33)where

λ � [λ1 λ2 · · · λM ]T (10.4.34)

�(ρ) � diag{ρ1, ρ2, . . . , ρM} (10.4.35)

ρk = 1− 4µλk + 8µ2λ2
k = (1− 2µλk)

2 + 4µ2λ2
k > 0 1 ≤ k ≤ M (10.4.36)

and λk are the eigenvalues of R. The solution of the vector difference equation (10.4.32) is

θ(n) = Bnθ(0)+ 4µ2Po

n−1∑
j=0

Bjλ (10.4.37)

and can be easily found by recursion.
The stability of the linear system (10.4.32) is determined by the eigenvalues of the

symmetric matrix B. Using (10.4.33) and (10.4.35), for an arbitrary vector z, we obtain

zT Bz = zT�(ρ)z + 4µ2(λT z)2 =
M∑
k=1

ρkz
2
k + 4µ2(λT z)2 (10.4.38)

where we have used (10.4.36). Hence (10.4.38), for z �= 0, implies that zT Bz > 0, that
is, the matrix B is positive definite. Since matrix B is symmetric and positive definite, its
eigenvalues λk(B) are real and positive. The system (10.4.37) will be BIBO stable if and
only if

0 < λk(B) < 1 1 ≤ k ≤ M (10.4.39)

To find the range of µ that ensures (10.4.39), we use the Gerschgorin circles theorem (Noble
and Daniel 1988), which states that each eigenvalue of an M ×M matrix B lies in at least
one of the disks with center at the diagonal element bkk and radius equal to the sum of
absolute values |bkj |, j �= k, of the remaining elements of the row. Since the elements of B
are positive, we can easily see that

λk(B)− bkk <

M∑
j=1
j �=k

bki or λk(B) < ρk + 4µ2λk

M∑
j=1

λi

using (10.4.33). Hence using (10.4.36), we see the eigenvalues of B satisfy (10.4.39) if

1− 4µλk + 8µ2λ2
k + 4µ2λk trR <1

−µλk + 2µ2λ2
k + µ2λk trR < 0or

which implies that µ > 0 and

2µ <
1

λk + trR
<

1

trR

because λk > 0 for all k. In conclusion, if the adaptation step µ satisfies the condition

0 < 2µ <
1

trR
(10.4.40)

then the system (10.4.37) is stable and therefore the sequence θ(n) converges.
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PR O PE RTY 10.4.2. When the stability condition (10.4.40) holds, the solution (10.4.37) of the
difference equation (10.4.32) can be written as

θ(n) = Bn[θ(0)− θ(∞)] + θ(∞) (10.4.41)

where θ(0) is the initial value and θ(∞) is the steady-state value of θ(n).

Proof. Using the identity

n−1∑
j=0

Bj = (I− Bn)(I− B)−1 = (I− B)−1 − Bn(I− B)−1

the solution (10.4.37) can be written as

θ(n) = Bn[θ(0)− 4µ2Po(I− B)−1λ] + 4µ2Po(I− B)−1λ (10.4.42)

When the eigenvalues of B are inside the unit circle, we have

lim
n→∞ θ(n) � θ(∞) = 4µ2Po(I− B)−1λ (10.4.43)

because the first term converges to zero. Substituting (10.4.43) in (10.4.42), we obtain (10.4.41).

Evolution of the mean square error

We next express the MSE as a function of λ and θ . Using (10.2.10) and (10.2.18), we
have

e(n) = y(n)− cH (n− 1)x(n) = eo(n)− c̃H (n− 1)x(n) (10.4.44)

where eo(n) is the optimum filtering error and c̃(n) is the coefficient error vector. The (a
priori) MSE of the adaptive filter at time n is

P(n) � E{|e(n)|2}
= E{|eo(n)|2} − E{c̃H (n− 1)x(n)e∗o(n)} − E{eo(n)xH (n)c̃(n− 1)}
+E{c̃H (n− 1)x(n)xH (n)c̃(n− 1)}

(10.4.45)

Since c̃(n) is a random vector, the evaluation of the MSE (10.4.45) requires the correlation
between x(n) and c̃(n − 1). Using the independence assumptions A1 and A2, we see that
the second and third terms in (10.4.45) become zero, as explained before, and the excess
MSE is given by the last term

Pex(n) = E{c̃H (n− 1)x(n)xH (n)c̃(n− 1)} (10.4.46)

If we define the quantities

A � c̃
H
(n− 1) and B � x(n)xH (n)c̃(n− 1) (10.4.47)

and notice that AB = tr(AB) (because AB is a scalar) and tr(AB) = tr(BA), we obtain

Pex(n) = E{tr(AB)} = E{tr(BA)} = tr(E{BA})
= tr(E{x(n)xH (n)}E{c̃(n− 1)c̃H (n− 1)})

because expectation is a linear operation and x(n) and c̃(n− 1) have been assumed statis-
tically independent. Therefore, the excess MSE can be expressed as

Pex(n) = tr[R�(n− 1)] (10.4.48)

where �(n) = E{c̃(n)c̃H (n)} is the correlation matrix of the coefficient error vector. This
expression simplifies to

Pex(n) = Mσ 2
xσ

2
c (10.4.49)

if R = σ 2
xI and �(n) = σ 2

cI.
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If R and �(n) are both positive definite, relation (10.4.48) shows that Pex(n) > 0,
that is, the MSE attained by the adaptive filter is larger than the optimum MSE Po of the
optimum filter (cost of adaptation).

Next we develop a difference equation for Pex(n), using, for convenience, the principal
coordinate system of the input correlation matrix R. Since the trace of a matrix remains
invariant under an orthogonal transformation, we have

Pex(n) = tr[R�(n)] = tr[��(n)] = λT θ(n) (10.4.50)

where the elements of λ are the eigenvalues of R and the elements of θ(n) are the diagonal
elements of �(n).

Since the most often observable and important quantity for the operation of an adaptive
filter is the MSE, we use our previous results to determine the value of MSE as a function of
n, that is, the learning curve of the LMS adaptive filter. To this end, we use the orthogonal
decomposition B = Q(B)�(B)QH (B) to express Bn as

Bn = Q(B)�n(B)QH (B) =
M∑
k=1

λn
k(B)qk(B)qH

k (B) (10.4.51)

where λk(B) are the eigenvalues and qk(B) are the eigenvectors of matrix B. Substituting
(10.4.41) and (10.4.51) into (10.4.50) and recalling that P(n) = Po + Pex(n), we obtain

P(n) = Po + Ptr(n)+ Pex(∞) (10.4.52)

where Pex(∞) is termed the steady-state excess MSE and

Ptr(n) �
M∑
k=1

γ k (R,B) λn
k (B) (10.4.53)

is termed the transient MSE because it dies out exponentially when 0 < λk(B) < 1, 1 ≤
k ≤ M . The constants

γ k(R,B) � λT (R)qk(B)qH
k (B)[θ(0)− θ(∞)] (10.4.54)

are determined by the eigenvalues λk(R) of matrix R and the eigenvectors qk(B) of matrix
B. Since the minimum MSE Po is available, we need to determine the steady-state excess
MSE Pex(∞).

PROPERTY 10.4.3. When the LMS adaptive algorithm converges, the steady-state excess MSE
is given by

Pex(∞) = Po
C(µ)

1− C(µ)
(10.4.55)

C(µ) �
M∑
k=1

µλk

1− 2µλk
(10.4.56)where

and λk are the eigenvalues of the input correlation matrix.

Proof. Using (10.4.32) and (10.4.35), we obtain the difference equation

θk(n) = ρkθk(n− 1)+ 4µ2λkPex(n− 1)+ 4µ2Poλk (10.4.57)

When (10.4.40) holds, (10.4.57) attains the following steady-state form

θk(∞) = ρkθk(∞)+ 4µ2λkPex(∞)+ 4µ2Poλk

whose solution, in conjunction with (10.4.36), gives

θk(∞) = µ
Po + Pex(∞)

1− 2µλk
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Pex(∞) =
M∑
k=1

λkθk(∞) = [Po + Pex(∞)]
M∑
k=1

µλk

1− 2µλk
and

Solving the last equation for Pex(∞), we obtain (10.4.55) and (10.4.56).

Solving (10.4.55) for C(µ) gives

C(µ) = Pex(∞)

Po + Pex(∞)
(10.4.58)

0 < C(µ) < 1 (10.4.59)which implies that

because Po and Pex(∞) are positive quantities. It has been shown that (10.4.59) leads to
the tighter bound 0 < 2µ < 2/(3 trR) for the adaptation step µ (Horowitz and Senne
1981; Feuer and Weinstein 1985). Therefore, convergence in the MSE imposes a stronger
constraint on the step size µ than does (10.4.40), which ensures convergence in the mean.

10.4.3 Summary and Design Guidelines

There are many theoretical and simulation analyses of the LMS adaptive algorithm under a
variety of assumptions. In this book, we have focused on results that help us to understand
its operation and performance and to develop design guidelines for its practical application.
The operation and performance of the LMS adaptive filter are determined by its stability
and the properties of its learning curve, which shows the evolution of the MSE as a function
of time. The MSE produced by the LMS adaptive algorithm consists of three components
[see (10.4.52)]

P(n) = Po + Ptr(n)+ Pex(∞)

where Po is the optimum MSE, Ptr(n) is the transient MSE, and Pex(∞) is the steady-
state excess MSE. This equation provides the basis for understanding and evaluating the
operation of the LMS adaptive algorithm in a stationary SOE. For convenience, the LMS
adaptive filtering algorithm is summarized in Table 10.3.

TABLE 10.3

Summary of the LMS algorithm.

Design parameters

x(n) = input data vector at time n

y(n) = desired response at time n

c(n) = filter coefficient vector at time n

M = number of coefficients

µ = step-size parameter

0 < µ� 1
M∑
k=1

E{|xk(n)|2}

Initialization

c(−1) = x(−1) = 0

Computation

For n = 0, 1, 2, . . . , compute

ŷ(n) = cH (n− 1) x(n)

e(n) = y(n)− ŷ(n)

c(n) = c(n− 1)+ 2µx(n)e∗(n)
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Stability. The LMS adaptive filter converges in the mean-square sense, that is, the
transient MSE dies out, if the adaptation step µ satisfies the condition

0 < 2µ <
K

trR
(10.4.60)

where trR is the trace of the input correlation matrix andK is a constant that depends weakly
on the statistics of the input data vector. For example, when x(n) ∼ N (0,R), we proved
that K = 1 or 2

3 . In addition, this condition ensures that on average the LMS adaptive
filter converges to the optimum filter. We stress that in most practical applications, where
the independence assumption does not hold, the step size µ should be much smaller than
K/ trR. Therefore, the exact value of K is not important in practice.

Rate of convergence. The transient MSE dies out exponentially without exhibiting any
oscillations. This follows from (10.4.53) because whenµ satisfies (10.4.40), the eigenvalues
of matrix B are positive and less than 1. The settling time, that is, the time taken for the
transients to die out, is proportional to the average time constant

τ lms,av = 1

µλav
(10.4.61)

where λav = (
∑M

k=1 λk)/M is the average eigenvalue of R (Widrow et al. 1976). The
quantity P total

tr = ∑∞
n=0 Ptr(n), which provides the total transient MSE, can be used as a

measure for the speed of adaptation. When µλk � 1 (see Problem 10.12), we have

P total
tr �

∞∑
n=0

Ptr(n) � 1

4µ

M∑
k=1

�θk(0) (10.4.62)

where �θk(0) is the initial distance of a coefficient from its optimum setting measured in
principal coordinates. As is intuitively expected, the smaller the step size and the farther
the initial coefficients are from their optimum settings, the more iterations it takes for the
LMS algorithm to converge. Furthermore, from the discussion in Section 10.3, it follows
that the LMS algorithm will converge faster if the contours of the error surface are circles,
that is, when the input correlation matrix is R = σ 2

xI.

Steady-state excess MSE. The excess MSE after the adaptation has been completed
(i.e., the steady-state value) is given by (10.4.55). When µλk � 1, we may approximate
(10.4.55) as follows

Pex(∞) � Po

µ trR
1− µ trR

which allows a much easier interpretation. Solving for µ trR, we obtain µ trR � Pex(∞)/

[Pex(∞) + Po] which implies that 0 < µ trR < 1. Since µ trR � 1, we often use the
approximation

Pex(∞) � µPo trR (10.4.63)

which implies that Pex(∞)� Po, that is, for small values of the step size the excess MSE is
much smaller than the optimum MSE. Note that the presence of the irreducible error eo(n)
prevents perfect adaptation as n→∞ because Po > 0.

Speed versus quality of adaptation. From the previous discussion we see that there
is a tradeoff between rate of convergence (speed of adaptation) and steady-state excess
MSE (quality of adaptation, or accuracy of the adaptive filter). The first requirement for an
adaptive filter is stability, which is ensured by choosing µ to satisfy (10.4.60). Within this
range, decreasing µ to reduce the desired level of misadjustment, according to (10.4.63),
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decreases the speed of convergence; see (10.4.62). Conversely, if µ is increased to increase
the speed of convergence; this results in an increase in misadjustment. This tradeoff between
speed of convergence and misadjustment is a fundamental feature of the LMS algorithm.

FIR filters. In this case, the input is a stationary process x(n)with a Toeplitz correlation
matrix R. Therefore, we have

trR = Mr(0) = ME{|x(n)|2} = MPx (10.4.64)

where MPx is called the tap input power. Substituting (10.4.40) into (10.4.64), we obtain

0 < 2µ <
1

MPx

= 1

tap input power
(10.4.65)

which shows that the selection of the step size depends on the input power. Using (10.4.63)
and (10.4.64), we see that misadjustment M is given by

M = Pex(∞)

Po

� µMPx (10.4.66)

which shows that for given M and Px the value of misadjustment is proportional to µ. We
emphasize that the misadjustment provides a measure of how close an LMS adaptive filter
is to the corresponding optimum filter.

The statistical properties of the SOE, that is, the correlation of the input signal and
the cross-correlation between input and desired response signals, play a key role in the
performance of the LMS adaptive filter.

• First, we should make sure that the relation between x(n) and y(n) can be accurately
modeled by a linear FIR filter with M coefficients. Inadequacy of the FIR structure,
output observation noise, or lack of correlation between x(n) and y(n) increases the
magnitude of the irreducible error. If M is very large, we may want to use a pole-zero
IIR filter (Shynk 1989; Treichler et al. 1987). If the relationship between x(n) and y(n)

is nonlinear, we certainly need a nonlinear filtering structure (Mathews 1991).
• The LMS algorithm uses a “noisy” instantaneous estimate of the gradient vector. How-

ever, when the correlation between input and desired response is weak, the algorithm
should make more cautious steps (“wait and average”). Such algorithms update their co-
efficients every L samples, using all samples between successive updatings to determine
the gradient (gradient averaging).

• The eigenvalue structure of R as measured by its eigenvalue spread (λmax/λmin) or
equivalently by the spectral flatness measure (SFM ) (see Section 4.1) has a strong effect
on the rate of convergence of the LMS algorithm. In general, the rate of convergence
decreases as the eigenvalue spread increases, that is, as the contours of the cost function
become more elliptical, or equivalently the input spectrum becomes more nonwhite.

Normalized LMS algorithm. According to (10.4.60), the selection of µ in practical
applications is complicated because the power of the input signal either is unknown or
varies with time. This problem can be addressed by using the normalized LMS (NLMS)
algorithm [see (10.4.11)]

c(n) = c(n− 1)+ µ̃

EM(n)
x(n)e∗(n) (10.4.67)

where EM(n) = ‖x(n)‖2 and 0 < µ̃ < 1. It can be shown that the NLMS algorithm
converges in the mean square if 0 < µ̃ < 1 (Rupp 1993; Slock 1993), which makes the
selection of the step size µ̃ much easier than the selection of µ in the LMS algorithm.

For FIR filters, the quantity EM(n) provides an estimate of ME{|x(n)|2} and can be
computed recursively by using the sliding-window formula

EM(n) = EM(n− 1)+ |x(n)|2 − |x(n−M)|2 (10.4.68)
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where EM(−1) = 0 or a first-order recursive filter estimator. In practice, to avoid division
by zero, if x(n) = 0, we set EM(n) = δ + ‖x(n)‖2, where δ is a small positive constant.

Other approaches and analyses. The analysis of the LMS algorithm presented in this
section is simple, clarifies its performance, and provides useful design guidelines. However,
there are many other approaches, which are beyond the scope of this book, that differ in
terms of complexity, accuracy, and objectives. Major efforts to remove the independence
assumption and replace it with the more realistic statistically dependent input assumption
are documented in Macchi (1995), Solo (1997), and Butterweck (1995) and the references
therein. Convergence analysis of the LMS algorithm using the stochastic approximation
approach and a deterministic approach using the method of ordinary differential equations
are discussed in Solo and Kong (1995), Sethares (1993), and Benveniste et al. (1987). Other
types of analyses deal with the determination of the probability densities and the probability
of large excursions of the adaptive filter coefficients for various types of input signals (Rupp
1995). The analysis of the convergence properties of the LMS algorithm and its variations
is still an active area of research, and new results appear continuously.

10.4.4 Applications of the LMS Algorithm

We now discuss three practical applications in which the LMS algorithm has made a sig-
nificant impact. In the first case, we consider the previously discussed linear prediction
problem and compare the performance of the LMS algorithm with that of the SDA. Table
10.4 provides a summary of the key differences between the SDA and the LMS algorithms.
In the second case, we study echo cancelation in full-duplex data transmission, which em-
ploys the LMS algorithm in its implementation. In the third case, we discuss the application
of adaptive equalization, which is used to minimize intersymbol interference (ISI) in a
dispersive channel environment.

TABLE 10.4

Comparison between the SDA and LMS algorithms.

SDA LMS

Deterministic algorithm: Stochastic algorithm:

lim
n→∞ c(n) = co lim

n→∞E{c(n)} = co

If converges, it terminates to co If converges, it fluctuates about co
The size of fluctuations is proportional to µ

Noiseless gradient estimate Noisy gradient estimate

Deterministic steps Random steps

We can only compare the ensemble average behavior of LMS with the SDA.

Linear prediction

In Example 10.3.1, the AR(2) model given in (10.3.25) was considered, and the SDA
was used to determine the corresponding linear predictor coefficients. We also analyzed the
performance of the SDA. In the following example, we perform a similar acquisition of
predictor coefficients using the LMS algorithm, and we study the effects of the eigenvalue
spread of the input correlation matrix on the convergence of the LMS adaptive algorithm
when it is used to update the coefficients.

EXAMPLE 10.4.1. The second-order system in (10.3.25) is repeated here, which generates the
signal x(n):

x(n)+ a1x(n− 1)+ a2x(n− 2) = w(n)
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where w(n) ∼ WGN(0, σ 2
w) and where the coefficients are selected from Table 10.2 for two

different eigenvalue spreads. A Gaussian pseudorandom number generator was used to obtain
1000 realizations of x(n) using each set of parameter values given in Table 10.2. These sample
realizations were used for statistical analysis.

The second-order LMS adaptive predictor with coefficients c(n) = [c1(n) c2(n)]T is given
by [see (10.4.12)]

e(n) = x(n)− c1(n− 1)x(n− 1)− c2(n− 2)x(n− 2) n ≥ 0

c1(n) = c1(n− 1)+ 2µe(n)x(n− 1)

c2(n) = c2(n− 1)+ 2µe(n)x(n− 2)

where µ is the step-size parameter. The adaptive predictor was initialized by setting x(−1) =
x(−2) = 0 and c1(−1) = c2(−1) = 0. The above adaptive predictor was implemented with
µ = 0.04, and the predictor coefficients as well as the MSE were recorded for each realization.
These quantities were averaged to study the behavior of the LMS algorithm. These calculations
were repeated for µ = 0.01.

In Figure 10.20 we show several plots obtained for X (R) = 1.22. In plot (a) we show the
ensemble averaged trajectory {c(n)}150

n=0 superimposed on the MSE contours. A trajectory of a
simple realization is also shown to illustrate its randomness. In plot (b) the c(n) learning curve
for the averaged value as well as for one single realization is shown. In plot (c) the corresponding
learning curves for the MSE are depicted. Finally, in plot (d ) we show the effect of step size µ

on the MSE learning curve. Similar plots are shown in Figure 10.21 for X (R) = 10.
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FIGURE 10.20
Performance curves for the LMS used in the linear prediction problem with step-size
parameter µ = 0.04 and eigenvalue spread X (R) = 1.22.
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FIGURE 10.21
Performance curves for the LMS used in the linear prediction problem with step-size
parameter µ = 0.04 and eigenvalue spread X (R) = 10.

Several observations can be made from these plots:

• The trajectories and the learning curves for a simple realization are clearly random or “noisy,”
while the averaging over the ensemble clearly has a smoothing effect.

• The averaged quantities (coefficients and the MSE) converge to the true values, and this
convergence rate is in accordance with theory.

• The rate of convergence of the LMS algorithm depends on the step size µ. The smaller the
step size, the slower the rate.

• The rate of convergence also depends on the eigenvalue spread X (R). The larger the spread,
the slower the rate. For X (R) = 1.22, the algorithm converges in about 150 steps while for
X (R) = 10 it requires about 500 steps.

Clearly these observations compare well with the theory.

Echo cancelation in full-duplex data transmission

Figure 10.22 illustrates a system that achieves simultaneous data transmission in both
directions (full-duplex) over two-wire circuits using the special two-wire to four-wire inter-
faces (called hybrid couplers) that exist in any telephone set. Although the hybrid couplers
are designed to provide perfect isolation between transmitters and receivers, this is not the
case in practical systems. As a result, (1) one part of the transmitted signal leaks through
the near-end hybrid to its own receiver (near-end echo), and (2) another part is reflected
by the far-end hybrid and ends up at its own receiver (far-end echo). The combined echo
signal, which can be 30 dB stronger than the signal received from the other end, increases
the number of errors. We note that in contrast with acoustic echo cancelation, the delay of
echoes in data transmission is immaterial.
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FIGURE 10.22
Model of a full-duplex data transmission system that uses an echo canceler
in the modems.

The best way to address this problem is to form a replica of the echo and then subtract it
from the incoming signal. We can model the echoes as the result of an “echo” path between
the transmitter and the receiver. For baseband data transmission this echo path is basically
linear and varies very slowly with time. Therefore, we can obtain a replica of the echo signal
using an FIR LMS adaptive filter (echo canceler), as shown in Figure 10.22. The inclusion
of the transmitter in the echo path, as long as it involves linear operations, simplifies the
implementation and improves the speed of adaptation because the input is an IID binary
data sequence of values +1 and −1 with equal probability (Verhoeckx et al. 1979).

Referring to Figure 10.23, if we assume that the echo path has an FIR impulse response,
the echo signal is given by

y(n) = cTo x(n) (10.4.69)

co = [co(0) co(1) · · · co(M − 1)]Twhere

If g(n) is the impulse response of the transmission path from the far-end transmitter to the
near-end receiver, the received signal is given by

sr (n) = y(n)+ z(n)+ v(n) � y(n)+ u(n) (10.4.70)

z(n) =
∞∑
k=0

g(k)s(n− k)

Data
generator
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Adaptive
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path
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Data
generator

B

FIR
echo path

co

x(n) y(n)

e(n) sr(n) u(n)

v(n)

z(n) s(n)
ŷ(n)−

FIGURE 10.23
Block diagram of a system for investigating the performance of adaptive echo canceler.
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where s(n) is the transmitted data signal and v(n) ∼ WGN(0, σ 2
v) is additive noise. The sig-

nal u(n) = z(n)+ v(n) represents the “uncancelable” signal because it cannot be removed
by the canceler.

The LMS adaptive echo canceler is given by

ŷ(n) = cT (n− 1)x(n) (10.4.71)

e(n) = y(n)− ŷ(n) (10.4.72)

c(n) = c(n− 1)+ 2µe(n)x(n) (10.4.73)

where µ is the adaptation step size. The adaptive filter takes advantage of the fact that x(n)
is correlated with y(n) but uncorrelated with s(n) and v(n).

The residual (uncanceled) echo is

er(n) � y(n)− ŷ(n) = [co − c(n− 1)]T x(n) � −c̃T (n− 1)x(n) (10.4.74)

and if we assume that c̃(n− 1) and x(n) are independent, then

Pr(n) = E{e2
r (n)} = E{c̃T (n− 1)c̃(n− 1)}

because R = E{x(n)xT (n)} = I. Using (10.4.69), (10.4.71), and (10.4.72), we can easily
show that

c̃(n) = c̃(n− 1)− 2µx(n)xT (n)c̃(n− 1)+ 2µx(n)u(n) (10.4.75)

If we premultiply (10.4.75) by its transpose and take the mathematical expectation, we
obtain

Pr(n+ 1) = (1− 4µ+ 4µ2M)Pr(n)+ 4µMσ 2
u (10.4.76)

using the independence assumption and the relation xT (n)x(n) = M . The solution of
(10.4.76), in terms of the residual echo ratio Pr(n)/σ

2
u, is

Pr(n)

σ 2
u

= (1− 4µ+ 4µ2M)n
[
Pr(0)

σ 2
u

− µM

1− µM

]
+ µM

1− µM
(10.4.77)

and describes completely the operation of the LMS adaptive echo canceler. Indeed, we draw
the following conclusions:

1. The algorithm converges if

|1− 4µ+ 4µ2M| < 1 or 0 < µ <
1

M
(10.4.78)

which agrees with (10.4.40) because trR = M .
2. After convergence we have

Pr(∞) = µM

1− µM
σ 2

u � µMσ 2
u (10.4.79)

which again is in agreement with (10.4.63).
3. If Pr(n)/σ

2
u � µM/(1− µM), we have

Pr(n)

Pr(0)
� (1− 4µ+ 4µ2M)n (10.4.80)

which can be used to find out how many iterations are required for a given echo reduction.
For example, we can easily show that to achieve a 20-dB echo reduction requires n20 �
1.15/µ iterations.

From the previous discussion, it should be clear that the step size µ plays a crucial
role in the performance of the adaptive echo canceler because it determines both the rate of
convergence and the minimum residual echo cancelation that can be attained. Furthermore,
we clearly see the tradeoff between fast adaptation and residual echo power.
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EXAMPLE 10.4.2. Consider the system shown in Figure 10.23 for investigating the performance
of the LMS algorithm in adaptive echo cancelation and to verify the above conclusions. The
data generators A (in modem A) and B (in modem B) output symbols +1 or −1 with equal
probability (i.e., Bernoulli sequence). The FIR filter following data generator A models the echo
path, which is assumed to be

co(n) = − 5
3 (

1
2 )

n + 8
3 (

4
5 )

n 0 ≤ n ≤ M − 1

where M = 20 is the total length of the echo path. The filter following data generator B models
the transmission path between the far-end transmitter and the near-end receiver, which we will
assume to be

g(n) = 4
5 (

3
5 )

n n ≥ 0

The noise generator is a white Gaussian source with σ 2
v = 1 and models the transmission noise.

Using the equations σ 2
y =

∑N−1
k=0 c2

o(k) and σ 2
u =

∑∞
k=0 g2(k) + σ 2

v , we scale u(n) so that

10 log(σ 2
y/σ

2
u) = 30 dB. The adaptive echo canceler employs the LMS algorithm with c (0) = 0.

We perform Monte Carlo simulations on this system. Figure 10.24 shows the residual echo ratio
Pr(n)/σ

2
u evaluated by ensemble averaging over 200 independent trials of the experiment,

for two different step sizes in the LMS algorithm [which satisfy (10.4.78)], superimposed on
the corresponding theoretical curves computed by using (10.4.79) and (10.4.80). Clearly, the
simulations support the theoretical results quite accurately. More detailed discussions of adaptive
echo cancelation techniques for both baseband and passband data transmission systems can be
found in Gitlin et al. (1992) and in Ling (1993a).
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FIGURE 10.24
Performance analysis of the LMS algorithm in the adaptive echo
cancelation that clearly shows the tradeoff between rate of
convergence and residual echo power.

Adaptive equalization

In Section 6.8, we discussed the theory and implementation of channel equalization in
data transmission systems. When data are transmitted below 2400 bits/s, the ISI is relatively
small and does not pose a problem in the operation of a modem. However, for high-speed
communication over 2400 bits/s, an equalizer is needed in the modem to compensate for the
channel distortion. Since channel characteristics are generally unknown and time-varying,
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an adaptive algorithm is required that leads to adaptive equalization. Figure 10.25 describes
an application of adaptive filtering to adaptive channel equalization. Initially, coefficients of
the equalizer are adjusted, by means of the LMS algorithm, by transmitting a known training
sequence of short duration. After this short training period, the actual data sequence {y(n)}
is transmitted. The slow variation in channel characteristics is then continuously tracked by
adjusting coefficients of the equalizer, using the decisions in place of the known training
sequence. This approach works well when decision errors are infrequent.

Data
sequence

Received
data

Transmitter Receiver
Equalizer

with
detector

Channel

Noise

Adaptive
equalizer

Adaptive
algorithm

Decision
device

Training
data

+

+

+−

Error
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y(n) x(n)

x(n)
â(n)

ŷ(n)

h(n)

a(n)

(a)

â(n)

ĉ(n)

FIGURE 10.25
Model of an adaptive equalizer in a data transmission system.

EXAMPLE 10.4.3. Figure 10.26 shows the block diagram of the system used in the experimental
investigation of the performance of the LMS algorithm used in the adaptive equalizer. The data
source generates Bernoulli sequence {y(n)}with symbols+1 and−1 having zero mean and unit
variance. The channel following the source is modeled by the raised cosine impulse response

h(n) =




0.5

{
1+ cos

[
2π

W
(n− 2)

]}
n = 1, 2, 3

0 otherwise

(10.4.81)

where parameter W is used to control the amount of channel distortion. The amount of channel
distortion increases with W. The random noise generator outputs white Gaussian sequence v(n)

which models the noise in the channel. The equalizer input is

x(n) =
3∑

k=1

h(k)y(n− k)+ v(n) (10.4.82)

Since y(n) is an independent sequence and since v(n) is uncorrelated with y(n), the maximum
lag that produces nonzero correlation is 2. Thus the correlation of x(n) is given by

rx(0) = h2(1)+ h2(2)+ h2(3)+ σ 2
v

rx(1) = h(1)h(2)+ h(2)h(3)

rx(2) = h(1)h(3)
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FIGURE 10.26
Block diagram of a system for investigating the performance of an adaptive
equalizer.

from which an M×M autocorrelation matrix R can be constructed for an equalizer of length M .
Clearly, parameter W also controls the eigenvalues of R and hence the ratio X (R). The design
of an MSE equalizer has been discussed in Example 6.8.1. Here we study the performance of
the corresponding LMS adaptive equalizer.

The training signal y(n) is delayed by an amount equal to the combined delay introduced
by the channel and the equalizer for the desired signal. The impulse response h(n) in (10.4.81)
is symmetric with respect to n = 2, and assuming that the equalizer is a linear-phase FIR filter,
the total delay is equal to � = (M − 1)/2 + 2. The error signal e(n) = y(n − �) − ŷ(n) is
used along with x(n) to implement the LMS algorithm in the adaptive equalizer with c(0) = 0.
We performed Monte Carlo simulations using 100 realizations of random sequences with M =
11;� = 7; σ 2

v = 0.001; W = 2.9 and W = 3.5; and µ = 0.01, 0.04, and 0.08. The results are
shown in Figures 10.27 and 10.28.

Effect of eigenvalue spread. Performance plots of the LMS algorithm for W = 2.9 and
W = 3.5 are shown in Figure 10.27. In plot (a) we depict MSE learning curves from which
we observe that the convergence rate of the MSE decreases with W [or equivalently with in-
crease in X (R)], which is to be expected. The steady-state error, on the other hand, increases
with W . In plots (b) and (c) we show the ensemble averaged equalizer coefficients. Clearly, the
responses are symmetric with respect to n = 5 as assumed. Also equalizer coefficients converge
to different inverses due to changes in the channel characteristics.

Effect of step size µ. In Figure 10.28 we show the MSE learning curves obtained forW = 2.9
and with three different step-size parameter values of 0.01, 0.04, and 0.08. It indicates that µ
affects the rate of convergence as well as the steady-state value. For µ = 0.08, the algorithm
converges in about 100 iterations but has higher steady-state value than the case for µ = 0.04,
which requires about 275 iterations for convergence. For µ = 0.01 more than 500 iterations
are needed. Finally, Figure 10.29 shows sample realizations of the transmitted, received, and
equalized sequences using the discussed LMS equalizer.

10.4.5 Some Practical Considerations

The LMS is the most widely known and used adaptive algorithm because of its simplicity
and robustness to disturbances and model errors. We next discuss some issues related to its
robustness, finite-word-length effects, and implementation.

Robustness

If we assume the model in Figure 10.19, an adaptive filter is said to be robust if the
effect of the disturbances {c(−1), eo(n)} on the resulting estimation errors {c̃(n), e(n)} (or
{c̃(n), ε(n)}), as measured by their energy, is small (Sayed and Rupp 1998). Basically a
robust adaptive filter should be insensitive to the initial conditions c(−1) and the optimum
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Performance analysis curves of the LMS algorithm in the adaptive equalizer:
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FIGURE 10.29
Sample realizations of the transmitted, received, and equalized sequences using an
FIR LMS equalizer.

residual error eo(n), which acts as measurement noise. These inputs are collectively called
disturbances. In practice, eo(n) accounts not only for measurement noise but also for model
mismatching, quantization errors, and other inaccuracies.

If we define the energies of the disturbances and the estimation errors by

Edist(n) = 1

2µ
‖c̃(−1)‖2 +

n∑
j=0

|eo(n)|2 (10.4.83)

Eerror(n) = 1

2µ
‖c̃(n)‖2 +

n∑
j=0

|ỹ(n)|2 (10.4.84)and

it can be shown that the coefficient vectors determined by the LMS algorithm satisfy the
condition

Eerror(n) ≤ Edist(n) (10.4.85)

assuming that 0 < 2µ ≤ 1/‖x(n)‖2 (Sayed and Kailath 1994; Sayed and Rupp 1996).
Equation (10.4.85) shows that the energy of the residuals is always upper-bounded by the
energy of the disturbances, which explains the robust behavior of the LMS algorithm.

Furthermore, it can be shown that the LMS algorithm minimizes the maximum possible
difference between these two energies, over all disturbances with finite energy, and is
optimum according to the H∞ (or minimax) criterion (Sayed and Rupp 1998; Hassibi et
al. 1996).
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Finite-precision effects

When we design an LMS adaptive filter for a stationary SOE, we choose the step size
µ to provide the desired balance between speed of convergence and misadjustment. If we
are not concerned about fast convergence, we can reduce µ so much as to obtain practically
insignificant misadjustment. However, in a digital implementation, the adaptation of the
LMS algorithm stops (stalls) when the correction term becomes smaller in magnitude than
one-half of the least significant bit (LSB), that is,

|2µe∗(n)x(n− k)| ≤ LSB

2
(10.4.86)

Therefore, a decrease in µ may result in a performance degradation, unless we increase the
number of bits (i.e., the precision) of the filter coefficients. If Xrms is the root mean square
(rms) amplitude of the input signal, to a good approximation we have

|e(n)| ≤ LSB

4µXrms
� DRE (10.4.87)

where DRE is known as the digital residual error (Gitlin et al. 1973). We note that for a
given number of bits the DRE increases as we decrease the step size µ.

The roundoff numerical errors contribute to the steady-state EMSE a term that is in-
versely proportional to µ, whereas the quantization of the input data and the filter output
contributes a second term that is independent of the step size (Caraiscos and Liu 1984).
Hence, in practice the step size of the LMS algorithm cannot be decreased below the level
where the degradation effects of quantization and finite-precision arithmetic become sig-
nificant. Also, the finite-precision effects become more pronounced as the ill conditioning
of the input increases (Alexander 1987).

When one or more eigenvalues of the input correlation matrix are zero, the correspond-
ing adaptation modes either do not converge or may result in overflow due to nonlinear
quantization effects (Gitlin et al. 1982). These effects can be prevented by using a tech-
nique known as leakage. The leaky LMS algorithm is given by

c(n) = (1− γµ)c(n− 1)+ µe∗(n)x(n) (10.4.88)

where γ is the leakage coefficient. Since µ and γ are very small positive constants, 1− γµ

is slightly less than 1. The updating (10.4.88) is obtained by minimizing the cost function

P(n) = |e(n)|2 + γ ‖c(n)‖2 (10.4.89)

which includes a penalty term proportional to the size of the coefficient vector. The price of
leakage is an increase in computational complexity and some bias in the obtained estimates
(see Problem 10.17). More details and practical applications of the leaky LMS algorithm
to adaptive equalization are discussed in Gitlin et al. (1992, 1982).

We can simplify the hardware implementation of LMS adaptive filters by using non-
linearities to avoid the multiplications involved in the updating of the filter coefficients.
These simplified LMS algorithms update the filter coefficients by using quantized correc-
tion terms such as µ sign{e(n)}x(n−k), µe(n)sign{x(n−k)}, or µ sign{e(n)x(n−k)}; and
their performance is degraded by the lower precision. Various signum-based LMS adaptive
algorithms are discussed in Claasen and Mecklenbrauker (1981), Duttweiler (1982), and
Treichler et al. (1987).

Transform-domain and block LMS algorithms

The LMS algorithm attains its best rate of convergence when the input correlation
matrix is diagonal with equal eigenvalues. In the case of FIR filters, this implies that the
input signal is white noise. When the components of the input data vector are correlated, we
can improve the convergence by using an isotropic decorrelating transformation, as shown in
Figure 10.30. The transformation matrix can be obtained by using either the triangular or the
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FIGURE 10.30
Transform domain LMS adaptive filter structure.

orthogonal decomposition of the input correlation matrix as explained in Section 3.5. Since
the innovations vector used by the LMS algorithm has uncorrelated components with unit
variance, the error performance surface is a hypersphere, and the transform-domain LMS
algorithm attains its best rate of convergence. In practice, when the input correlation matrix
is unknown and possibly time-varying, we can only use suboptimum transforms such as the
DFT, the discrete cosine transform (DCT), the discrete wavelet transform (DWT), or some
other orthogonal transform. The performance of the obtained adaptive filter depends on the
decorrelation properties of the transform, which in turn depends on the properties of the
input correlation matrix. Another approach to overcome the problem of slow convergence
for highly correlated inputs is found in the family of affine projection algorithms discussed in
Ozeki and Umeda (1984), Rupp (1995), and Morgan and Kratzer (1996) and the references
therein.

In applications that require adaptive filters with a very large number of coefficients,
real-time implementation of the LMS algorithm becomes quite involved. For example,
acoustic echo cancelers with 8000 coefficients (500 ms sampled at 16 kHz) are typical for
teleconference applications (Gilloire et al. 1996). The complexity of such applications can
be reduced by using block adaptive filters (see Figure 10.31) that process one block of
data at a time in either the time or the frequency domain. The adaptive filter coefficients
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LL
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blocking
Block

FIR filter
Frame

unblocking

x(n)

… …
…

Block
coefficient
updating

Frame
blocking

FIGURE 10.31
Block adaptive filter structure.
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are updated once per block and are kept fixed within the block. Such filters have good
numerical accuracy, and can be easily pipelined and parallelized, and their complexity can
be reduced by computing the involved convolutions and correlations using FFT algorithms.
In some applications, such as acoustic echo cancelation, the block-length delay introduced
by these filters may create problems. A detailed treatment of block and frequency-domain
LMS algorithms is given in Shynk (1992), Gilloire et al. (1996), Haykin (1996), Jenkins
and Marshall (1998), and Treichler et al. (1987).

Another approach to reduce complexity and improve convergence is subband adaptive
filtering, which splits the input signal and the desired response into smaller frequency
bands (subbands), subsamples the resulting signals, processes each subband with different
LMS filters, and finally interpolates and recombines the subbands to obtain the filter output
(Shynk 1992; Gilloire and Vetterli 1992). The improved convergence results because the
spectral dynamic range of each subband is smaller than that of the full band. However,
the performance of subband adaptive filters is degraded by the cross-talk between adjacent
subbands.

10.5 RECURSIVE LEAST-SQUARES ADAPTIVE FILTERS

In this section we use the method of LS to develop adaptive filters, we determine their
rate of convergence and misadjustment, and we introduce the conventional recursive least-
squares (CRLS) algorithm for their implementation. The CRLS algorithm does not impose
any restrictions on the input data vector; therefore, it can be used for both array processing
and FIR filtering applications.

10.5.1 LS Adaptive Filters

LS adaptive filters are designed so that the updating of their coefficients always attains the
minimization of the total squared error from the time the filter initiated operation up to the
current time. Therefore, the filter coefficients at time index n are chosen to minimize the
cost function

E(n) =
n∑

j=0

λn−j |e(j)|2 =
n∑

j=0

λn−j |y(j)− cH x(j)|2 (10.5.1)

where e(j) is the instantaneous error and the constant λ, 0 < λ ≤ 1, is the forgetting
factor. Note that since the filter coefficients are held constant during the observation interval
0 ≤ j ≤ n, the a priori and a posteriori errors are identical. The coefficient vector obtained
by minimizing (10.5.1) is denoted by c(n) and provides the optimum LSE filter at time n.
When λ = 1, we say that the algorithm has growing memory because the values of the
filter coefficients are a function of all the past input values. The forgetting factor (see Figure
10.32) is used to ensure that data in the distant past are paid less attention (“forgotten”) in
order to provide the filter with tracking capability when it operates in a varying SOE (see
Section 10.8).

The filter coefficients that minimize the total squared error (10.5.1) are specified by the
normal equations

R̂(n)c(n) = d̂(n) (10.5.2)

R̂(n) �
n∑

j=0

λn−jx(j)xH (j) (10.5.3)where

d̂(n) �
n∑

j=0

λn−jx(j)y∗(j) (10.5.4)and
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FIGURE 10.32
Exponential weighting of observations at times n and n+ 1. Older data are more
heavily discounted by the algorithm.

provide exponentially weighted estimates of the input correlation matrix and the cross-
correlation vector between input and desired response due to the presence of λn−j in the
cost function (10.5.1). The minimum total squared error is

Emin(n) = Ey(n)− d̂H (n)c(n) (10.5.5)

Ey(n) �
n∑

j=0

λn−j |y(j)|2 (10.5.6)where

is the energy of the weighted desired response signal. These formulas have been derived in
Section 8.2.1.

Suppose now that we wait for some n > M , where R̂(n) is usually nonsingular, we
compute R̂(n) and d̂(n), and then we solve the normal equations (10.5.2) to determine the
filter coefficients c(n). This approach, which is time-consuming, should be repeated with
the arrival of new pairs of observations {x(n), y(n)}, that is, at times n+ 1, n+ 2, etc.

A first reduction in computational complexity can be obtained by noticing that (10.5.3)
can be expressed as

R̂(n) = λR̂(n− 1)+ x(n)xH (n) (10.5.7)

which shows that the “new” correlation matrix R̂(n) can be updated by weighting the “old”
correlation matrix R̂(n − 1) with the forgetting factor λ and then incorporating the “new
information” x(n)xH (n). Since the outer product x(n)xH (n) is a matrix of rank 1, (10.5.7)
provides a rank 1 modification of the correlation matrix. Similarly, using (10.5.4), we can
show that

d̂(n) = λd̂(n− 1)+ x(n)y∗(n) (10.5.8)

which provides a time update of the cross-correlation vector.
We next show that using these two updatings, we can determine the new coefficient

vector c(n) from the old coefficient vector c(n−1) and the new observation pair {x(n), y(n)}
without solving the normal equations (10.5.2) from scratch.

A priori adaptive LS algorithm. If we solve (10.5.7) for R̂(n − 1) and (10.5.8) for
d̂(n− 1) and use the normal equations (10.5.2), we have

[R̂(n)− x(n)xH (n)]c(n− 1) = d̂(n)− x(n)y∗(n)
or after some simple manipulations

R̂(n)c(n− 1)+ x(n)e∗(n) = d̂(n) (10.5.9)

e(n) = y(n)− cH (n− 1)x(n) (10.5.10)where

is the a priori estimation error. If the matrix R̂(n) is invertible, by multiplying both sides of
(10.5.9) by R̂−1(n) and using (10.5.2), we obtain

c(n− 1)+ R̂−1(n)x(n)e∗(n) = R̂−1(n)d̂(n) = c(n) (10.5.11)
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If we define the adaptation gain vector g(n) by

R̂(n)g(n) � x(n) (10.5.12)

Equation (10.5.11) can be written as

c(n) = c(n− 1)+ g(n)e∗(n) (10.5.13)

which shows how to update the old coefficient vector c(n− 1) to obtain the current vector
c(n).

E XAM PLE 10.5.1. It is instructive at this point to derive the LS adaptive filter with a single
coefficient. Indeed, since for M = 1 the correlation matrix R̂(n) becomes the scalar Ex(n), we
obtain

Ex(n) = λEx(n− 1)+ |x(n)|2
e(n) = y(n)− c∗(n− 1)x(n)

c(n) = c(n− 1)+ 1

Ex(n)
x(n)e∗(n)

which is like an LMS algorithm with time-varying gain µ(n) = 1/Ex(n). However, the present
algorithm is optimum in the LS sense.

A posteriori adaptive LS algorithm. If we substitute (10.5.7) and (10.5.8) into the nor-
mal equations (10.5.2), after some simple manipulations, we obtain

λR̂(n− 1)c(n)− x(n)ε∗(n) = λd̂(n− 1) (10.5.14)

ε(n) = y(n)− cH (n)x(n) (10.5.15)where

is the a posteriori estimation error. If the matrix R̂(n− 1) is invertible, (10.5.14) gives

c(n)− λ−1R̂−1(n− 1)x(n)ε∗(n) = R̂−1(n− 1)d̂(n− 1) = c(n− 1)

c(n) = c(n− 1)+ ḡ(n)ε∗(n) (10.5.16)or

λR̂(n− 1)ḡ(n) � x(n) (10.5.17)where

determines the alternative adaptation gain vector ḡ(n).
Since recursions (10.5.15) and (10.5.16) are coupled, the a posteriori algorithm is not

applicable. However, if we substitute (10.5.16) into (10.5.15), we obtain

ε(n) = y(n)− [cH (n− 1)+ ε(n)ḡH (n)]x(n)
= e(n)− ε(n)ḡH (n)x(n)

ε(n) = e(n)

ᾱ(n)
(10.5.18)or

ᾱ(n) � 1+ ḡH (n)x(n) = 1+ λ−1xH (n)R̂−1(n− 1)x(n) (10.5.19)where

is known as the conversion factor. Hence, we can use (10.5.19) and (10.5.18) to compute
the a posteriori error ε(n) before we update the filter coefficient vector. This trick makes
possible the realization and use of the a posteriori LS adaptive filter algorithm. If R̂(n− 1)
is positive definite, we have ᾱ(n) > 1 and |ε(n)| < |e(n)| for all n. Therefore,∑

n

|ε(n)|2 <
∑
n

|e(n)|2 (10.5.20)

which should be expected
†

because the adaptive filter is designed by minimizing, at each
time n, the total squared a posteriori error ε(n).

†
The computation of the quantity

∑n
j=0 λn−j |y(j)− cH x(j)|2 for c = c(n), c(j), or c(j − 1) gives the block, a

posteriori, or a priori total squared error. Clearly, only the block filter performs optimum LS filtering for all data
in the interval 0 ≤ j ≤ n (see Problem 10.22).
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Also, from (10.5.13), (10.5.16), and (10.5.18) we obtain

g(n) = ḡ(n)
ᾱ(n)

(10.5.21)

which shows that the two adaptation gains have the same direction but different lengths.
However, from (10.5.13) and (10.5.16) we see that the corrections g(n)e∗(n) and ḡ(n)ε∗(n)
are equal.

Another conversion factor, defined in terms of the gain vector g(n), is

α(n) � 1− xH (n)R̂−1(n)x(n) = 1− xH (n)g(n) (10.5.22)

and has some interesting interpretations. Using (10.5.21), we have

α(n) = 1− xH (n)ḡ(n)
ᾱ(n)

α(n)ᾱ(n) = ᾱ(n)+ 1− [1+ xH (n)ḡ(n)] = 1

α(n) = 1

ᾱ(n)
(10.5.23)or

which shows that the two conversion factors are inverses of each other. Since the input
correlation matrix is nonnegative definite, that is, xH (n)R̂−1(n)x(n) ≥ 0, (10.5.22) implies

0 < α(n) ≤ 1 (10.5.24)

that is, the conversion factorα(n) is bounded by 0 and 1. This bound allows the interpretation
of α(n) as an angle variable (Lee et al. 1981), and its monitoring can provide information
about the proper operation of RLS algorithms. Also the quantity 1−α(n) can be interpreted
as a likelihood variable (Lee et al. 1981). It can be shown (see Problem 10.23) that

α(n) = λM det R̂(n− 1)

det R̂(n)
(10.5.25)

which shows the importance ofα(n) or ᾱ(n) for the invertibility for the estimated correlation
matrix.

The computational organization of the a priori and a posteriori LS adaptive algorithms
is summarized in Table 10.5.

TABLE 10.5

Summary of a priori and a posteriori LS adaptive filter approaches.

A priori LS adaptive filter A posteriori LS adaptive filter

Correlation matrix R̂(n) = λR̂(n− 1)+ x(n)xH (n) R̂(n) = λR̂(n− 1)+ x(n)xH (n)

Adaptation gain R̂(n)g(n) = x(n) λR̂(n− 1)ḡ(n) = x(n)

A priori error e(n) = y(n)− cH (n− 1)x(n) e(n) = y(n)− cH (n− 1)x(n)

Conversion factor α(n) = 1− gH (n)x(n) ᾱ(n) = 1+ ḡH (n)x(n)

A posteriori error ε(n) = α(n)e(n) ε(n) = e(n)

ᾱ(n)

Coefficient updating c(n) = c(n− 1)+ g(n)e∗(n) c(n) = c(n− 1)+ ḡ(n)ε∗(n)

Figure 10.33 shows a block diagram representation of the a priori LS adaptive filter.
There are two important points to be made:

• The adaptation gain is strictly a function of the input signal. The desired response only
affects the magnitude and sign of the coefficient correction term through the error.



February 7, 2005 13:23 e56-ch10 Sheet number 54 Page number 552 black

552

chapter 10
Adaptive Filters

x(n)

Error

Input Filtering
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FIGURE 10.33
Basic elements of the a priori LS adaptive filter. Note that the filtering process has no
effect on the computation of the gain vector.

• The most demanding computational task in RLS filtering is the computation of the adap-
tation gain. This involves the solution of a linear system of equations, which requires
O(M3) operations per time update.

10.5.2 Conventional Recursive Least-Squares Algorithm

The major computational load in LS adaptive filters, that is, the computation of the gain
vectors

g(n) = R̂−1(n)x(n) (10.5.26)

ḡ(n) = λ−1R̂−1(n− 1)x(n) (10.5.27)or

can be reduced if we can find a recursive formula to update the inverse

P(n) � R̂−1(n) (10.5.28)

of the correlation matrix. We can develop such an updating by using the rank 1 updating
(10.5.7) and the matrix inversion lemma

(λR + xxH )−1 = λ−1R−1 − (λ−1R−1x)(λ−1R−1x)H

1+ λ−1xH R−1x
(10.5.29)

discussed in Appendix A.
Indeed, using (10.5.29), (10.5.7), (10.5.26), and (10.5.19), we can easily show that

P(n) = λ−1P(n− 1)− g(n)ḡH (n) (10.5.30)
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which provides the desired updating formula. Indeed, given the old matrix P(n − 1) and
the new observations {x(n), y(n)} we compute the new matrix P(n), using the following
procedure

ḡ(n) = λ−1P(n− 1)x(n)

α(n) = 1+ ḡH (n)x(n)

g(n) = ḡ(n)
ᾱ(n)

P(n) = λ−1P(n− 1)− g(n)ḡH (n)

(10.5.31)

which is known as the conventional recursive LS (CRLS) algorithm. We again stress that
the CRLS algorithm is valid for both linear combiners and FIR filters because it does
not make any assumptions about the nature of the input data vector. However, for FIR
filters we usually assume prewindowing, that is, x(−1) = 0, or equivalently x(n) = 0 for
−M ≤ n ≤ −1.

Updating of the minimum total squared error. We next derive an update recursion for
the minimum total squared error (10.5.5). Using (10.5.6), we can easily see that

Ey(n) = λEy(n− 1)+ y(n)y∗(n) (10.5.32)

which provides a recursive updating for the energy of the desired response. Substituting
(10.5.32) and (10.5.13) into (10.5.5), we obtain

Emin(n) = λEy(n− 1)+ y(n)y∗(n)− d̂H (n)c(n− 1)− d̂H (n)g(n)e∗(n)
or by using (10.5.8)

Emin(n) = λEy(n− 1)+ y(n)y∗(n)− d̂H (n)g(n)e∗(n)
− y(n)xH (n)c(n− 1)− λd̂H (n− 1)c(n− 1)

Rearranging the terms of the last equation and using (10.5.5), we have

Emin(n) = λ[Ey(n− 1)− d̂H (n− 1)c(n− 1)] + [y(n)− d̂H (n)g(n)]e∗(n)
= λEmin(n− 1)+ {y(n)− [d̂H (n)R̂−1(n)][R̂(n)g(n)]}e∗(n)
= λEmin(n− 1)+ [y(n)− cH (n)x(n)]e∗(n)

where the last equation is obtained because the matrix R̂(n) and its inverse are Hermitian.
The last equation leads to

Emin(n) = λEmin(n− 1)+ ε(n)e∗(n) (10.5.33)

= λEmin(n− 1)+ ᾱ(n)|ε(n)|2 (10.5.34)

= λEmin(n− 1)+ |e(n)|
2

α(n)
(10.5.35)

which provide the desired updating formulas. Since the product ε(n)e∗(n) is by necessity
real, we have ε(n)e∗(n) = ε∗(n)e(n). The value of Emin(n) increases with time and reaches
a finite limit value only if λ < 1.

10.5.3 Some Practical Considerations

In the practical implementation of CRLS adaptive filters, we have to deal with the issues
of computational complexity, initialization, and finite-word-length effects.

Computational complexity. The complete CRLS algorithm is summarized in Table
10.6. A measure of the computational complexity of the CRLS algorithm is provided by



February 7, 2005 13:23 e56-ch10 Sheet number 56 Page number 554 black

554

chapter 10
Adaptive Filters

TABLE 10.6

Practical implementation of the
RLS algorithm. To update P(n),
we only compute its upper (low)
triangular part and determine
the other part using Hermitian
symmetry.

Initialization

c(−1) = 0 P(−1) = δ−1I
δ = small positive constant

For each n = 0, 1, 2, . . . compute:

Adaptation gain computation

ḡλ(n) = P(n− 1)x(n)

αλ(n) = λ+ ḡHλ (n)x(n)

g(n) = ḡλ(n)
αλ(n)

P(n) = λ−1[P(n− 1)− g(n)ḡHλ (n)]
Filtering

e(n) = y(n)− cH (n− 1)x(n)

Coefficient updating

c(n) = c(n− 1)+ g(n)e∗(n)

the number of operations (one operation consists of one multiplication and one addition)
required to perform one updating. Since P(n) is Hermitian, it is possible to implement the
algorithm so that it will require 2M2+ 4M operations per time updating. The computation
of ḡλ(n) and the updating of P(n) require O(M2) operations. In contrast, all remaining
formulas, which involve dot products and vector-by-scalar multiplications, require O(M)

operations. The inversion of the correlation matrix R̂(n) is essentially replaced by the scalar
division used to compute g(n).

Initialization. There are two ways to obtain the values P(−1) and c(−1) required to
initialize the CRLS algorithm. The most obvious way is to collect an initial block of data
{x(n), y(n)}−1−n0

, n0 > M , and then compute the exact inverse matrix P(−1) and the exact
LS solution c(−1).

The approach used in practice is to set P(−1) = δ−1I, where δ is a very small positive
number (on the order of 0.01σ 2

x) and c(−1) = 0. For FIR filters this corresponds to setting
x(−M + 1) = √δ and x(n) = 0 for −M + 2 ≤ n ≤ −1. For any n > M , the normal
equations matrix is δλnI+ R̂(n) and results in a biased estimate of c(n). However, for large
n the choice of δ is unimportant because the algorithm has exponentially forgetting memory
for λ < 1.

It can be shown (see Problem 10.24) that this approach provides a set of coefficients
that minimizes the modified cost function

E(n) = δλn‖c‖2 +
n∑

j=0

λn−j |y(j)− cH x(j)|2 (10.5.36)

instead of (10.5.1). This approach amounts to regularization of the LS solution (see Section
8.7.3) and is further discussed in Hubing and Alexander (1991). Note that if we turn off the
input, that is, we set x(n) = 0, then (10.5.30) becomes P(n) = λ−1P(n − 1), which is an
unstable recursion when λ < 1.



February 7, 2005 13:23 e56-ch10 Sheet number 57 Page number 555 black

555

section 10.5
Recursive Least-Squares
Adaptive Filters

Finite-word-length effects. There are different RLS algorithms that are algebraically
equivalent; that is, they solve the same set of normal equations. Therefore, they have the
same rate of convergence and the same insensitivity to variations in the eigenvalue spread of
the input correlation matrix with the CRLS algorithm. All RLS algorithms are obtained by
exploiting exact mathematical relations between various algorithmic quantities to obtain
better computational or numerical properties. Many of these algorithmic quantities have
certain physical meanings or theoretical properties. For example, in the CRLS algorithm,
the matrix P(n) is Hermitian and positive definite, the angle variable satisfies 0 < α(n) ≤ 1,
and energy E(n) should be always positive. However, when we use finite precision, some
of these exact relations, properties, or acceptable ranges for certain algorithmic variables
may be violated.

The numerical instability of RLS algorithms can be traced to such forms of numerical
inconsistencies (Verhaegen 1989; Yang and Böhme 1992; Haykin 1996). The crucial part
of the CRLS algorithm is the updating of the inverse correlation matrix P(n) via (10.5.30).
The CRLS algorithm becomes numerically unstable when the matrix P(n) = R̂−1(n) loses
its Hermitian symmetry or its positive definiteness (Verhaegen 1989). In practice, we can
preserve the Hermitian symmetry of P(n) by computing only its lower (or upper) triangular
part, using (10.5.30), and then filling the other part, using the relation pij (n) = p∗ji(n).
Another approach is to replace P(n) by [P(n)+ PH (n)]/2 after updating from P(n− 1) to
P(n).

It has been shown that the CRLS algorithm is numerically stable for λ < 1 and diverges
for λ = 1 (Ljung and Ljung 1985).

10.5.4 Convergence and Performance Analysis

The purpose of any LS adaptive filter, in a stationary SOE, is to identify the optimum filter
co = R−1d from observations of the input vector x(n) and the desired response

y(n) = cHo x(n)+ eo(n) (10.5.37)

To simplify the analysis we adopt the independence assumptions discussed in Section 10.4.2.
The results of the subsequent analysis hold for any LS adaptive filter implemented using the
CRLS method or any other algebraically equivalent algorithm. We derive separate results
for the growing memory and the fading memory (exponential forgetting) algorithms.

Growing memory (λ = 1)

In this case all the values of the error signal, from the time the filter starts its operation
to the present, have the same influence on the cost function. As a result, the filter loses its
tracking ability, which is not important if the filter is used in a stationary SOE.

Convergence in the mean. For n > M the coefficient vector c(n) is identical to the
block LS solution discussed in Section 8.2.2. Therefore

E{c(n)} = co for n > M (10.5.38)

that is, the RLS algorithm converges in the mean for n > M , where M is the number of
coefficients.

Mean square deviation. For n > M we have

�(n) = σ 2
oE{R̂−1(n)} (10.5.39)

because c(n) is an exact LS estimate (see Section 8.2.2). The correlation matrix R̂(n) is
described by a complex Wishart distribution, and the expectation of its inverse is

E{R̂−1(n)} = 1

n−M
R−1 n > M (10.5.40)
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as shown in Muirhead (1982) and Haykin (1996). Hence

�(n) = σ 2
o

n−M
R−1 n > M (10.5.41)

and the MSD is

D(n) = tr[�(n)] = σ 2
o

n−M

M∑
i=1

1

λi

n > M (10.5.42)

where λi , the eigenvalues of R, should not be confused with the forgetting factor λ. From
(10.5.42) we conclude that (1) the MSD is magnified by the smallest eigenvalue of R and
(2) the MSD decays almost linearly with time.

A priori excess MSE. We now focus on the a priori LS algorithm because it is widely
used in practice and to facilitate a fairer comparison with the (a priori) LMS algorithm. To
this end, we note that the a priori excess MSE formula (10.4.48)

Pex(n) = tr[R�(n− 1)] (10.5.43)

derived in Section 10.4.2, under the independence assumption, holds for any a priori adaptive
algorithm. Hence, substituting (10.5.41) into (10.5.43), we obtain

Pex(n) = M

n−M − 1
σ 2

o n > M (10.5.44)

which shows that Pex(n) tends to zero as n→∞.

Exponentially decaying memory (0 < λ < 1)

In this case the most recent values of the observations have greater influence on the
formation of the LS estimate of the filter coefficients. The memory of the filter, that is,
the effective number of samples used to form the various estimates, is about 1/(1− λ) for
0.95 < λ < 1 (see Section 10.8).

Convergence in the mean. We start by multipying both sides of (10.5.11) by R̂(n),
and then we use (10.5.7) and (10.5.10) to obtain

R̂(n)c(n) = λR̂(n− 1)c(n− 1)+ x(n)y∗(n) (10.5.45)

If we multiply (10.5.7) by co and subtract the resulting equation from (10.5.45), we get

R̂(n)c̃(n) = λR̂(n− 1)c̃(n− 1)+ x(n)e∗o(n) (10.5.46)

where c̃(n) = c(n)− co is the coefficient error vector. Solving (10.5.46) by recursion, we
obtain

c̃(n) = λnR̂−1(n)R̂(0)c̃(0)+ R̂−1(n)

n∑
j=0

λn−jx(j)e∗o(j) (10.5.47)

which depends on the initial conditions and the optimum error eo(n). If we assume that
R̂(n), x(j), and eo(j) are independent and we take the expectation of (10.5.47), we obtain

E{c̃(n)} = δλnE{R̂−1(n)}c̃(0) (10.5.48)

where, as usual, we have set R̂(0) = δI, δ > 0. If the matrix R̂(n) is positive definite and
0 < λ < 1, then the mean vector E{c̃(n)} → 0 as n→∞. Hence, the RLS algorithm with
exponential forgetting converges asymptotically in the mean to the optimum filter.

Mean square deviation. Using (10.5.46), we obtain the following difference equation
for the coefficient error vector

c̃(n) = λR̂−1(n)R̂(n− 1)c̃(n− 1)+ R̂−1(n)x(n)e∗o(n)
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c̃(n) � λc̃(n− 1)+ R̂−1(n)x(n)e∗o(n)or

because R̂−1(n)R̂(n − 1) � I for large n. If we neglect the dependence among c̃(n − 1),
R̂(n), x(n), and eo(n), we have

�(n) � λ2�(n− 1)+ σ 2
oE{R̂−1(n)x(n)xH (n)R̂−1(n)} (10.5.49)

where σ 2
o = E{|eo(n)|2}.

To make the analysis mathematically tractable, we need an approximation for the
inverse matrix R̂−1(n). To this end, using (10.5.3), we have

E{R̂(n)} =
n∑

j=0

λn−jE{x(n)xH (n)} = 1− λn+1

1− λ
R � 1

1− λ
R (10.5.50)

where the last approximation holds for n � 1. If we use the approximation E{R̂(n)} �
R̂(n), we obtain

R̂−1(n) � (1− λ)R−1 (10.5.51)

which is more rigorously justified in Eleftheriou and Falconer (1986). Using the last ap-
proximation, (10.5.50) becomes

�(n) � λ2�(n− 1)+ (1− λ)2σ 2
oR−1 (10.5.52)

which converges because λ2 < 1. At steady state we have

(1− λ2)�(∞) � (1− λ)2σ 2
oR−1

because �(n) � �(n− 1) for n� 1. Hence

�(∞) � 1− λ

1+ λ
σ 2

oR−1 (10.5.53)

Dλ(∞) = tr[�(∞)] = 1− λ

1+ λ
σ 2

o

M∑
i=1

1

λi

(10.5.54)and therefore

which in contrast to (10.5.42) does not converge to zero as n → ∞. This is explained by
noticing that when λ < 1, the RLS algorithm has finite memory and does not use effectively
all the data to form its estimate.

Steady-state a priori excess MSE. From (10.5.43) and (10.5.53) we obtain

Pex(∞) = tr[R�(∞)] � 1− λ

1+ λ
Mσ 2

o (10.5.55)

which shows that as a result of finite memory, there is a steady-state excess MSE that
decreases as λ approaches 1, that is, as the effective memory of the algorithm increases.

Summary

The results of the above analysis are summarized in Table 10.7 for easy reference.
We stress at this point that all RLS algorithms, independent of their implementation, have
the same performance, assuming that we use sufficient numerical precision (e.g., double-
precision floating-point arithmetic). Sometimes, RLS algorithms are said to have optimum
learning because at every time instant they minimize the weighted error energy from the start
of the operation (Tsypkin 1973). These properties are illustrated in the following example.

EXAMPLE 10.5.2. Consider the adaptive equalizer of Example 10.4.3 shown in block diagram
form in Figure 10.26. In this example, we replace the LMS block in Figure 10.26 by the RLS
block, and we study the performance of the RLS algorithm and compare it with that of the LMS
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TABLE 10.7

Summary of RLS and LMS performance in a stationary SOE.

Growing memory Exponential memory
Property RLS algorithm RLS algorithm LMS algorithm

Convergence in the mean For all n > M Asymptotically for Asymptotically for
n→∞ n→∞

Convergence in MS Independent of the Independent of the Depends on the
eigenvalue spread eigenvalue spread eigenvalue spread

Excess MSE Pex(n) = Mσ 2
o

n−M − 1
→ 0 Pex(∞) = 1− λ

1+ λ
Mσ 2

o Pex(∞) � µσ 2
o tr R

algorithm. The input data source is a Bernoulli sequence {y(n)}with symbols+1 and−1 having
zero mean and unit variance. The channel impulse response is a raised cosine

h(n) =




0.5

{
1+ cos

[
2π

W
(n− 2)

]}
n = 1, 2, 3

0 otherwise

(10.5.56)

where the parameter W controls the amount of channel distortion [or the eigenvalue spread X (R)

produced by the channel]. The channel noise sequence v(n) is white Gaussian with σ 2
v = 0.001.

The adaptive equalizer has M = 11 coefficients, and the input signal y(n) is delayed by � = 7
samples. The error signal e(n) = y(n − �) − ŷ(n) is used along with x(n) to implement the
RLS algorithm given in Table 10.6 with c(0) = 0 and δ = 0.001. We performed Monte Carlo
simulations on 100 realizations of random sequences with W = 2.9 and W = 3.5, and λ = 1
and 0.8. The results are shown in Figures 10.34 and 10.35.

Effect of eigenvalue spread. Performance plots of the RLS algorithm for W = 2.9 and W =
3.5 are shown in Figure 10.34. In plot (a) we depict MSE learning curves along with the steady-
state (or minimum) error. We observe that the MSE convergence rate of the RLS, unlike that for
the LMS, does not change with W [or equivalently with change in X (R)]. The steady-state error,
on the other hand, increases with W . The important difference between the two algorithms is that
the convergence rate is faster for the RLS (compare Figures 10.34 and 10.27). Clearly, this faster
convergence of the RLS algorithm is achieved by an increase in computational complexity. In
plots (b) and (c) we show the ensemble averaged equalizer coefficients. Clearly, the responses are
symmetric with respect to n = 5, as assumed. Also equalizer coefficients converge to different
inverses due to changes in the channel characteristics.

Effect of forgetting factor λ. In Figure 10.35 we show the MSE learning curves obtained
for W = 2.9 and with two different factors of 1 and 0.8. For λ = 1, as explained before, the
algorithm has infinite memory and hence the steady-state excess MSE is zero. This fact can be
verified in the plot for λ = 1 in which the MSE converges to the minimum error. For λ = 0.8,
the effective memory is 1/(1− λ) = 5, which clearly is inadequate for the accurate estimation
of the required statistics, resulting in increased excess MSE. Therefore, the algorithm should
produce a nonzero excess MSE. This fact can be observed from the plot for λ = 0.8.

There are two practical issues regarding the RLS algorithm that need an explanation. The
first issue relates to the practical value of λ. Although λ can take any value in the interval
0 ≤ λ ≤ 1, since it influences the effective memory size, the value of λ should be closer to 1.
This value is determined by the number of parameters to be estimated and the desired size of
the effective memory. Typical values used are between 0.99 and 1 (not 0.8, as we used in this
example for demonstration). The second issue deals with the actual computation of matrix P(n).
This matrix must be conjugate symmetric and positive definite. However, an implementation
of the CRLS algorithm of Table 10.6 on a finite-precision processor will eventually disturb this
symmetry and positive definiteness and would result in an unstable performance. Therefore, it
is necessary to force this symmetry either by computing only its lower (or upper) triangular
values or by using P(n)← [P(n)+ PH (n)]/2. Failure to do so generally affects the algorithm
performance for λ < 1.
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10.6 RLS ALGORITHMS FOR ARRAY PROCESSING

In this section we show how to develop algorithms for RLS array processing using the QR
decomposition. The obtained algorithms (1) are algebraically equivalent to the CRLS algo-
rithm, (2) have very good numerical properties, and (3) are modular and can be implemented
using parallel processing. Since there are no restrictions on the input data vector, the algo-
rithms require O(M2) operations per time update and can be used for both array processing
and FIR filtering applications. The method of choice for applications that only require the
a priori error e(n) or the a posteriori error ε(n) is the QR-RLS algorithm using the Givens
rotations. For applications that require the coefficient vector c(n), the Givens rotations–
based inverse QR-RLS algorithm is preferred. In Section 10.7 we develop fast algorithms
for FIR filters, with a complexity of O(M) operations per time update, by exploiting the
shift invariance of the input data vector.

10.6.1 LS Computations Using the Cholesky and QR Decompositions

We start by reformulating the exponentially weighted LS filtering problem in terms of data
matrices, as discussed in Section 8.2. If c(n) is the LS filter coefficient vector at time instant
n, we have

ε(j) = y(j)− cH (n)x(j) 0 ≤ j ≤ n (10.6.1)

x(j) = [x1(j) x2(j) · · · xM(j)]T (10.6.2)where

for array processing and

x(j) = [x(j) x(j − 1) · · · x(j −M + 1)]T (10.6.3)

for FIR filtering. We stress that c(n) should be held constant during the optimization interval
0 ≤ j ≤ n. Using the (n+ 1)×M data matrix

XH (n) � [x(0) x(1) · · · x(n)]

=



x1(0) x1(1) · · · x1(n)

x2(0) x2(1) · · · x2(n)
...

...
. . .

...

xM(0) xM(1) · · · xM(n)


 (10.6.4)

the (n+ 1)× 1 desired response vector

y(n) � [y(0) y(1) · · · y(n)]H (10.6.5)

and the (n+ 1)× 1 a posteriori error vector

ε(n) � [ε(0) ε(1) · · · ε(n)]H (10.6.6)

we can combine the n+ 1 equations (10.6.1) in a single equation as

ε(n) = y(n)− X(n)c(n) (10.6.7)

If we define the (n+ 1)× (n+ 1) exponential weighting matrix

�2(n) � diag {λn, λn−1, . . . , 1} (10.6.8)

we can express the total squared error (10.5.1) and the normal equations (10.5.2) in the
form required to apply orthogonal decomposition techniques (see Section 8.6). Indeed, we
can easily see that the total squared error can be written as

E(n) =
n∑

j=0

λn−j |ε(j)|2 = ‖�(n)ε(n)‖2 (10.6.9)



February 7, 2005 13:23 e56-ch10 Sheet number 63 Page number 561 black

561

section 10.6
RLS Algorithms for Array
Processing

and the LS filter coefficients are determined by the normal equations

R̂(n)c(n) = d̂(n) (10.6.10)

R̂(n) =
n∑

j=0

λn−jx(j)xH (j) = [�(n)X(n)]H [�(n)X(n)] (10.6.11)where

d̂(n) =
n∑

j=0

λn−jx(j)y∗(j) = [�(n)X(n)]H [�(n)y(n)] (10.6.12)and

are expressed as a function of the weighted data matrix [�(n)X(n)] and the weighted desired
response vector [�(n)y(n)].

In Chapter 6 we discussed how to solve the normal equations (10.6.10) by using either
the Cholesky decomposition

R̂(n) = L̃(n)L̃H (n) (10.6.13)

or the LDU decomposition

R̂(n) = L(n)D(n)LH (n) (10.6.14)

where L̃(n) = D1/2(n)L(n).
The Cholesky factor L̃(n) can be computed either from matrix R̂(n) using the Cholesky

decomposition algorithm (see Section 6.3) or from data matrix [�(n)X(n)] using one of
the QR decomposition methods (Givens, Householder, or MGS) discussed in Chapter 8.

Suppose now that the QR decomposition
†

is

Q(n)[�(n)X(n)] =
[

R̃(n)

0

]
(10.6.15)

where R̃(n) is a unique upper triangular matrix with positive diagonal elements and Q(n)

is a unitary matrix. From (10.6.11) and (10.6.15) we have

R̂(n) = R̃H (n)R̃(n) (10.6.16)

which implies, owing to the uniqueness of the Cholesky decomposition, that L̃(n) = R̃H (n).
Although the two approaches are algebraically equivalent, the QR decomposition (QRD)
methods have superior numerical properties because they avoid the squaring operation
(10.6.11) (see Section 8.6).

Given the Cholesky factor R̃(n), we first solve the lower triangular system

R̃H (n)k̃(n) � d̂(n) (10.6.17)

to obtain the partial correlation vector k̃(n), using forward elimination. In the case of QRD
the vector k̃(n) is obtained by transforming�(n)y(n) and retaining its first M components,
that is,

Q(n)[�(n)y(n)] = z(n) �
[

k̃(n)

z2(n)

]
(10.6.18)

where k̃(n) = z"M#(n) (see Section 8.6). The minimum LSE is given by

E(n) = Ey(n)− d̂H (n)c(n) = ‖y(n)‖2 − ‖k̃(n)‖2 (10.6.19)

which was also proved in Section 8.6.
To compute the filter parameters, we can solve the upper triangular system

R̃(n)c(n) = k̃(n) (10.6.20)

by backward elimination. As we discussed in Section 6.3, the solution of (10.6.20) is not
order-recursive.

†
To comply with adaptive filtering literature, we express the QR decomposition as QX = R̃ instead of QH X =R,

which we used in Chapter 8 and is widely used in numerical analysis.
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In applications that only require the a posteriori or a priori errors, we can avoid the
solution of (10.6.20). Indeed, if we define the LS innovations vector w̃(n) by

R̃H (n)w̃(n) � x(n) (10.6.21)

ε(n) = y(n)− cH (n)x(n) = y(n)− k̃H (n)w̃(n) (10.6.22)we obtain

e(n) = y(n)− cH (n− 1)x(n) = y(n)− k̃H (n− 1)w̃(n) (10.6.23)and

which can be used to compute the errors without knowledge of the parameter vector c(n).
Furthermore, since the lower triangular systems (10.6.17) and (10.6.21) satisfy the optimum
nesting property, we can compute both errors in an order-recursive manner.

If we know the factors L(n) and D(n) of R̂(n) at each time instant n, we can use the
orthogonal triangular structure shown in Figure 7.1 (see Sections 7.1.5 and 8.5) to compute
all em(n) and εm(n) for all 1 ≤ m ≤ M . A similar structure can be obtained by using the
Cholesky factor L̃(n) (see Problem 10.26).

From the discussion in Section 10.5.1 we saw that the key part of the CRLS algorithm
is the computation of the gain vector

R̂(n)g(n) = x(n) (10.6.24)

or the alternative gain vector λR̂(n − 1)ḡ(n) = x(n). Using (10.6.16), (10.6.21), and
(10.6.24), we obtain

R̃(n)g(n) = w̃(n) (10.6.25)

which expresses the gain vector in terms of the Cholesky factor R̃(n) and the innovations
vector w̃(n). Similarly with (10.6.20), (10.6.25) lacks the optimum nesting property that is
required to obtain an order-recursive algorithm.

To summarize, if we can update the Cholesky factors of either R̂(n) or R̂−1(n), we
can develop exact RLS algorithms that provide both the filtering errors and the coefficient
vector or the filtering error only. The relevant relations are shown in Table 10.8. We stress
that the Cholesky decomposition method determines the factors R̃(n) and k̃(n) by factoring
the matrix

[X(n) y(n)]H�2(n)[X(n) y(n)]
whereas the QRD methods factor the data matrix �(n)[X(n) y(n)]. Since all these algo-
rithms propagate the square roots R̃(n) or R̃−1(n), the matrices determined by R̂(n) =
R̃H (n)R̃(n) and R̂−1(n) = R̃−1(n)R̃−H (n) are guaranteed to be Hermitian and are more
likely to preserve their positive definiteness. Hence, such algorithms have better numerical
properties than the CRLS method.

TABLE 10.8

Triangular decomposition RLS algorithms using coefficient
updating and direct error extraction.

Error and coefficients updating Error-only updating

R̃H (n)w̃(n) = x(n) R̃H (n)k̃(n) � d̂(n)
R̃(n)g(n) = w̃(n) R̃H (n)w̃(n) = x(n)
e(n) = y(n)− cH (n− 1)x(n) e(n) = y(n)− k̃H (n− 1)w̃(n)

c(n) = c(n− 1)+ g(n)e∗(n)

10.6.2 Two Useful Lemmas

We next prove two lemmas that are very useful in the development of RLS algorithms using
QRD methods. We start with the first lemma, which stems from the algebraic equivalence
between the Cholesky and QR decompositions.
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LEMMA 10.1. Computing the QRD of the (n+ 1)×M data matrix �(n)X(n) is equivalent to
evaluating the QRD of the (M + 1)×M matrix[√

λR̃(n− 1)

xH (n)

]

Proof. Indeed, if we express �(n)X(n) as

�(n)X(n) =
[√

λ�(n− 1)X(n− 1)

xH (n)

]
(10.6.26)

and define a matrix

Q̄(n− 1) �
[

Q(n− 1) 0

0H 1

]
(10.6.27)

we obtain

Q̄(n− 1)�(n)X(n) =


√
λR̃(n− 1)

0

xH (n)


 (10.6.28)

by using (10.6.15). If we can construct a matrix Q̂(n) that performs the QRD of the right-
hand side of (10.6.28), then the unitary matrix Q(n) � Q̂(n)Q̄(n − 1) performs the QRD of
�(n)X(n). Since the block of zeros in (10.6.28) has no effect on the construction of matrix Q̂(n),
the construction of Q̂(n) is equivalent to finding a unitary matrix that performs the QRD of[√

λR̃(n− 1)

xH (n)

]

The second lemma, known as the matrix factorization lemma (Golub and Van Loan
1996; Sayed and Kailath 1994), provides an elegant tool for the derivation of QRD-based
RLS algorithms.

LEMMA 10.2. If A and B are any two N ×M(N ≤ M) matrices, then

AH A = BH B (10.6.29)

if and only if there exists an N ×N unitary matrix Q (QH Q = I) such that

QA = B (10.6.30)

Proof. From (10.6.30) we have BH B = AH QH QA = AH A, which proves (10.6.29). To
prove the converse, we use the singular value decomposition (SVD) of matrices A and B

A = UA�AVH
A (10.6.31)

B = UB�BVH
B (10.6.32)

where UA and UB are N × N unitary matrices, VA and VB are M ×M unitary matrices, and
�A and�B are N×M matrices consisting of the nonnegative singular values of A and B. Using
(10.6.29) in conjunction with (10.6.31) and (10.6.32), we obtain

VA = VB (10.6.33)

�A = �B (10.6.34)and

If we now define the matrix

Q � UBUH
A

and use (10.6.33) and (10.6.34), we have

QA = UBUH
A UA�AVH

A = UB�BVH
B = B

which proves the converse of the lemma.
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10.6.3 The QR-RLS Algorithm

We next show how to update the factors R̃(n) and k̃(n) of the extended data matrix
�(n)[X(n) y(n)] and then compute the a priori error e(n) or the a posteriori error ε(n).
The findings hold independently of the method we use to construct the orthogonalizing
matrix Q(n).

Suppose now that at time n we know the old Cholesky factors R̃(n− 1) and k̃(n− 1),
we receive the new data {x(n), y(n)}, and we wish to determine the new factors R̃(n) and
k̃(n) without repeating all the work. To this end, we show that if there exists a unitary matrix
Q(n) that annihilates the vector xH (n) from the last row of the left-hand side matrix in the
relation

Q(n)

[√
λR̃(n− 1)

√
λk̃(n− 1) 0

xH (n) y∗(n) 1

]
=
[

R̃(n) k̃(n) w̃(n)

0H ẽ∗(n) α̃(n)

]
(10.6.35)

then the right-hand side matrix provides the required updates and errors. The scalar α̃(n) is
real-valued because it is equal to the last diagonal element of Q(n). The meaning and use
of α̃(n) and w̃(n), which comprise the last column of Q(n), will be explained in the sequel.

If we apply Lemma 10.2 with

A =
[√

λR̃(n− 1)
√
λk̃(n− 1) 0

xH (n) y∗(n) 1

]
and B =

[
R̃(n) k̃(n) w̃(n)

0H ẽ∗(n) α̃(n)

]

we obtain
†

〈BH B〉11 = R̃H (n)k̃(n) = λR̃H (n− 1)λR̃(n− 1)+ x(n)xH (n) = 〈AH A〉11 (10.6.36)

〈BH B〉12 = R̃H (n)k̃(n) = λR̃H (n− 1)k̃(n− 1)+ x(n)y∗(n) = 〈AH A〉12 (10.6.37)

〈BH B〉13 = R̃H (n)w̃(n) = x(n) = 〈AH A〉13 (10.6.38)

〈BH B〉23 = k̃H (n)w̃(n)+ ẽ(n)α̃(n) = y(n) = 〈AH A〉23 (10.6.39)

〈BH B〉33 = w̃H (n)w̃(n)+ α̃2(n) = 1 = 〈AH A〉33 (10.6.40)

We first note that (10.6.36) is identical to the time updating (10.5.7) of the correlation
matrix. Hence, R̃(n) is the Cholesky factor of R̂(n). Also (10.6.37) is identical, due to
(10.6.17), to the time updating (10.5.8) of the cross-correlation vector d̂(n), and (10.6.38)
is the definition (10.6.21) of the innovations vector. To uncover the physical meaning of
ẽ(n) and α̃(n), we note that comparing (10.6.39) to (10.6.22) gives

ε(n) = ẽ(n)α̃(n) (10.6.41)

which shows that ẽ(n) is a scaled version of the a posteriori error. Starting with (10.6.40)
and using (10.6.20), (10.6.16), and (10.5.22), we obtain

α̃2(n) = 1− w̃H (n)w̃(n) = 1− xH (n)R−1(n)x(n) = α(n) (10.6.42)

α̃(n) = √α(n) (10.6.43)or

which shows that α̃(n) is a normalized conversion factor. Since

ε(n) = α(n)e(n) = α̃2(n)e(n) (10.6.44)

using (10.6.41), we obtain

ẽ(n) = √e(n)ε(n) (10.6.45)

†〈 〉ij denotes the ij th element of a block matrix.
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that is, ẽ(n) is the geometric mean of the a priori and a posteriori LS errors. Furthermore,
(10.6.41) and (10.6.44) give

e(n) = ẽ(n)

α̃(n)
(10.6.46)

which also can be proved from (10.6.35) directly (see Problem 10.45).
In summary, to determine the updates of R̃(n) and k̃(n) of the Cholesky factors and the

a priori error e(n) we simply need to determine a unitary matrix Q(n) that annihilates the
vector xH (n) in (10.6.35). The construction of the matrix Q(n) is discussed later in Section
10.6.6.

10.6.4 Extended QR-RLS Algorithm

In applications that require the coefficient vector, we need to solve the upper triangular
system R̃(n)c(n) = k̃(n) by back substitution. This method is not order-recursive and
cannot be implemented in parallel. An alternative approach can be chosen by appending
one more column to the matrices of the QR algorithm (10.6.35). To simplify the derivation,
we combine the first column of (10.6.35) and the new column to construct the formula

Q(n)

[√
λR̃(n− 1) R̃−H (n− 1)/

√
λ

xH (n) 0H

]
=
[

R̃(n) D(n)

0H g̃H (n)

]
(10.6.47)

where D(n) and g̃(n) are yet to be determined. Using Lemma 10.2, we obtain

〈BH B〉12 = R̃H (n)D(n) = I = 〈AH A〉12 (10.6.48)

which implies that D(n) = R̃−H (n) is the Cholesky factor of R−1(n) and can be updated
by using the same orthogonal transformation Q(n). Furthermore, we have

〈BH B〉22 = R̃−1(n)R̃−H (n)+ g̃(n)g̃H (n) = 1

λ
R̃(n− 1)R̃−H (n− 1) = 〈AH A〉22

which, using (10.6.16), gives

R̂−1(n) = P(n) = 1

λ
P(n− 1)− g̃(n)g̃H (n)

Comparing the last equation to (10.5.30) gives

g̃(n) = g(n)√
α(n)

= g(n)
α̃(n)

(10.6.49)

that is, g̃(n) is a scaled version of the RLS gain vector. Using (10.5.13) gives

c(n) = c(n− 1)+ g̃(n)ẽ∗(n) (10.6.50)

which provides a time-updating formula for the filter coefficient vector. This method of
updating the coefficient vector c(n) is known as the extended QR-RLS algorithm (Yang
and Böhme 1992; Sayed and Kailath 1994). This algorithm is not widely used because
the propagation of both R̃(n) and R̃−H (n) may lead to numerical problems, especially
in finite-precision implementations. This problem may be avoided by using the inverse
QR-RLS algorithm, discussed next. Other methods of extracting the coefficient vector are
discussed in Shepherd and McWhirter (1993).
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10.6.5 Inverse QR-RLS Algorithm

From the CRLS algorithm we obtain

1+ 1

λ
xH (n)P(n− 1)x(n) = 1

α(n)
(10.6.51)

1

λ
P(n− 1)x(n) = g(n)

α(n)
(10.6.52)

1

λ
P(n− 1) = P(n)+ g(n)√

α(n)

gH (n)√
α(n)

(10.6.53)

which combined with the Cholesky decomposition

P(n) = R̂−1(n) = R̃−1(n)R̃−H (n) (10.6.54)

leads to the following identity


1√
λ

xH (n)R̃−1(n− 1) 1

1√
λ

R̃−1(n− 1) 0






1√
λ

R̃−H (n− 1)x(n)
1√
λ

R̃−H (n− 1)

1 0H




=




0H 1√
α(n)

R̃−1(n)
g(n)√
α(n)






0 R̃−H (n)

1√
α(n)

gH (n)√
α(n)




(10.6.55)
where R̃−1(n) is an upper triangular matrix. From (10.6.55) and Lemma 10.2 there is a
unitary matrix Q(n) such that

Q(n)




1√
λ

R̃−H (n− 1)x(n)
1√
λ

R̃−H (n− 1)

1 0H


 =




0 R̃−H (n)

1√
α(n)

gH (n)√
α(n)


 (10.6.56)

This shows that annihilating the vector R̃−H (n − 1)x(n)/
√
λ = w̃(n)/

√
λ updates the

Cholesky factor R̃−H (n), the normalized gain vector g̃(n), and the conversion factor α̃(n).
Again, the only requirement of matrix Q(n) is to annihilate the row vector w̃H (n)/

√
λ. This

algorithm, like the CRLS method, is initialized by setting P̃H (−1) = R̃−H (−1) = δ−1I,
where δ is a very small positive number.

10.6.6 Implementation of QR-RLS Algorithm Using the Givens Rotations

To develop a complete QRD-based RLS algorithm, we need to construct the matrix Q(n)

that annihilates the vector xH (n) on the left-hand side of (10.6.35). Since we do not need
the vector w̃(n) and we can compute α̃(n) from matrix Q(n), as we shall see later, we work
with the following part

Q(n)

[√
λR̃(n− 1)

√
λk̃(n− 1)

xH (n) y∗(n)

]
︸ ︷︷ ︸

R̄(n)

=
[

R̃(n) k̃(n)

0H ẽ∗(n)

]
(10.6.57)

and show how to annihilate the elements of xH (n), one by one, using a sequence of M

Givens rotations. We remind the reader that the matrix R̃(n − 1) is upper triangular. We
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start by constructing a Givens rotation matrix G(1)(n) that operates on the first and last rows
of R̄(n) to annihilate the first element of xH (n). More specifically, we wish to find a Givens
rotation such that
c1 0H s∗1

0 I 0

−s1 0H c1





√
λr̃11(n− 1)

√
λr̃12(n− 1) · · · √λr̃1M(n− 1)

√
λk̃1(n− 1)

0
...

. . .
...

...

x∗1 (n) x∗2 (n) · · · x∗M(n) y∗(n)




=



r̃11(n) r̃12(n) · · · r̃1M(n) k̃1(n)

0
...

. . .
...

...

0 x
(2)
2 (n) · · · x

(2)
M (n) y(2)(n)




To this end, we use the first element of the first row and the first element of the last row to
determine the rotation parameters c1 and s1, and then we apply the rotation to the remaining
M pairs of the two rows. Note that for consistency of notation we define x

(1)
k (n) � xk(n)

and y(1)(n) � y(n). Then using
√
λr̃22(n) and x

(2)
2 (n), we determine G(2)(n) and annihilate

the second element of the last row by operating on the M − 1 pairs of the second row and
the last row of the matrix G(2)(n)R̄(n).

In general, we use the elements
√
λr̃ii(n) and x

(i)
i (n) to determine the Givens rota-

tion matrix G(i)(n) that operates on the ith row and the last row of the rotated matrix
G(i−1)(n) · · ·G(1)(n)R̄(n) to annihilate the element x(i)

i (n). Therefore,[
ci s∗i
−si ci

][
0 · · · 0

√
λr̃ii(n− 1) · · · √

λr̃iM(n− 1)
√
λk̃i(n− 1)

0 · · · 0 x
(i)
i (n) · · · x∗M(n) y(i)(n)

]

=
[

0 · · · 0 r̃ii (n) r̃i,i+1(n) · · · r̃iM(n) k̃i(n)

0 · · · 0 0 x
(i+1)
i+1 (n) · · · x

(i+1)
M (n) y(i+1)(n)

]
(10.6.58)

ci =
√
λr̃ii(n− 1)

r̃ii (n)
si = x

(i)
i (n)

r̃ii (n)
(10.6.59)where

r̃ii (n) = [λr̃2
ii (n− 1)+ |x(i)

i (n)|2]1/2 (10.6.60)and

Thus, if we perform (10.6.58) for i = 1, 2, . . . ,M , we annihilate the first M elements in
the last row of R̄(n) and convert R̄(n) to the triangular matrix shown in (10.6.57). This
process requires a total of M(M + 1)/2 Givens rotations. The orthogonalization matrix is

Q(n) = G(M)(n) · · ·G(2)(n)G(1)(n) (10.6.61)

G(i)(n) =




1
. . .

1

ci(n) · · · s∗i (n)
1

...
. . .

...

1

−si(n) · · · ci(n)




(10.6.62)where

are (M + 1)× (M + 1) rotation matrices. Note that all off-diagonal elements, except those
in the (i,M + 1) and (M + 1, i) locations, are zero.

From (10.6.35) we can easily see that α̃(n) equals the last diagonal element of Q(n).
Furthermore, taking into consideration the special structure of G(i)(n) and (10.6.61), we
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obtain

α̃(n) =
M∏
i=1

ci(n) (10.6.63)

that is, α̃(n) is the product of the cosine terms in the M Givens rotations. This justifies the
interpretation of α̃(n) and α(n) = α̃2(n) as angle variables.

Although the LS solution is not defined if n < M , the RLS Givens algorithm may be
initialized by setting R̃(0) = 0 and k̃(n) = 0. The Givens rotation–based RLS algorithm is
summarized in Table 10.9. The algorithm requires about 2M2 multiplications, 2M divisions,
and M square roots per time update.

TABLE 10.9

The Givens rotation–based RLS
algorithm.

Initialization

Set all elements r̃ij (−1) = 0, k̃i (−1) = 0

Time Recursion: n = 0, 1, . . .

ẽ(n) = y(n) α̃(n) = 1

For i = 1 to M do

r̃ii (n) = {λr̃2
ii
(n− 1)+ |xi (n)|2}1/2

c =
√
λr̃ii (n− 1)

r̃ii (n)
s = xi (n)

r̃ii (n)

[If r̃ii (n) = 0, set c = 1 and s = 0]
For j = i + 1 to M do

x̄ = cxj (n)− sr̃ij (n− 1)

r̃ij (n) = cr̃ij (n− 1)+ s∗xj (n)
xj (n) = x̄

End

ē = cẽ(n)− sk̃i (n− 1)

k̃i (n) = ck̃i (n− 1)+ s∗ẽ(n)
ẽ(n) = ē

α̃(n) = cα̃(n)

End

ε(n) = ẽ(n)α̃(n) or e(n) = ẽ(n)

α̃(n)

The algorithm in Table 10.9 may be implemented in parallel using a triangular array of
processors, as illustrated in Figure 10.36 for M = 3. At time n−1, the elements of R̃(n−1)
and k̃(n−1) are stored in the array elements. The arriving new input data [xH (n) y∗(n)] are
fed from the top and propagate downward. The Givens rotation parameters are calculated
in the boundary cells and propagate from left to right. The internal cells receive the rotation
parameters from the left, perform the rotation on the data from the top, and pass results to the
cells at right and below. The angle variable α̃(n) is computed along the boundary cells and
the a priori or a posteriori error at the last cell. This updating procedure is repeated at each
time step upon the arrival of the new data. This structure was derived in McWhirter (1983) by
eliminating the linear part used to determine the coefficient vector, by back substitution, from
the systolic array introduced in Gentleman and Kung (1981) for the solution of general LS
problems. Clearly, the array in Figure 10.36 performs two distinct functions: It propagates
the matrix R̃(n) and the vector k̃(n) that define the LS array processor, and it performs,
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FIGURE 10.36
Systolic array implementation of the QR-RLS algorithm and
functional description of its processing elements.

although in a not-so-obvious way, the filtering operation by providing at the output the error
ε(n) or e(n). Figure 10.36 provides a functional description of the processing elements
only. In practice, there are different hardware and software implementations using systolic
arrays, wavefront arrays, and CORDIC processors. More detailed descriptions can be found
in McWhirter and Proudler (1993), Shepherd and McWhirter (1993), and Haykin (1996).

10.6.7 Implementation of Inverse QR-RLS Algorithm Using the Givens Rotations

If we define the vector

w̄(n) � 1√
λ

R̃−H (n− 1)x(n) (10.6.64)

α̂
2
(n) � 1

α(n)
= 1+ w̄H (n)w̄(n) (10.6.65)and the scalar

we can express (10.6.56) as

Q(n)


w̄(n)

1√
λ

R̃−H (n− 1)

1 0H


 =

[
0 R̃−H (n)

α̂(n) g̃H (n)

]
(10.6.66)

where g̃(n) is the normalized gain vector (10.6.49). The matrix Q(n) will be chosen as a
sequence of Givens rotation matrices G(i)(n) defined in (10.6.62).

We first show that we can determine the angle parameters ci(n) and si(n) of G(i)(n)

using only the elements of w̄(n). To this end, we choose the angle parameters of the rotation
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matrix G(1)(n) in

G(1)(n)




w̄1(n)

w̄2(n)
...

w̄M(n)

1


 =




0

w̄2(n)
...

w̄M(n)

α̂1(n)


 (10.6.67)

to annihilate the first element w̄1(n). Note that owing to the structure of G(1)(n) the re-
maining elements of w̄(n) are left unaffected. Since unitary transformations preserve the
Euclidean norm of a vector, we can easily see that

α̂
2
1(n) = 1+ |w̄1(n)|2

which expresses α̂1(n) in terms of w̄(n). From the first and last equations in (10.6.67), we
have the system

c1(n)w̄1(n)+ s∗1 (n) = 0

−s1(n)w̄1(n)+ c1(n) = α̂1(n)

c1(n) = 1

α̂1(n)
s1(n) = − w̄∗1(n)

α̂1(n)
whose solution

provides the required parameters. Similarly, we can determine the rotation G(2)(n) to an-
nihilate the element w̄2(n) of the vector on the right-hand side of (10.6.67). The required
rotation parameters are

c2(n) = α̂1(n)

α̂2(n)
s2(n) = − w̄∗2(n)

α̂2(n)

α̂
2
2(n) = 1+ |w̄1(n)|2 + |w̄2(n)|2 = α̂

2
1(n)+ |w̄2(n)|2where

provides a recursive formula for the computation of α̂i (n). The remaining elements of w̄(n)

can be annihilated by continuing in a similar way. In general, for i = 1, 2, . . . ,M , we have

α̂i (n) = [α̂2
i−1(n)+ |w̄i(n)|2]1/2 α̂0(n) = 1 (10.6.68)

ci(n) = α̂i−1(n)

α̂i(n)
si(n) = − w̄∗i (n)

α̂i(n)
(10.6.69)

and α̂(n) = α̂M(n).
Let us denote by p̃ij (n) the elements of matrix R̃−H (n) and by g

(i)
j (n) the elements of

vector g̃H (n) after the ith rotation. The first rotation updates the first element of the matrix
R̃−H (n− 1)/

√
λ and modifies the first element of g̃H (n). Indeed, from

G(1)(n)




1√
λ

R̃−H (n− 1)

0H


 =



p̃11(n) 0 · · · 0

...
...

. . .
...

g
(1)
1 (n) 0 · · · 0


 (10.6.70)

p̃11(n) = 1√
λ
c1(n)p̃11(n− 1)

g
(1)
1 (n) = − 1√

λ
s1(n)p̃11(n− 1)

we obtain

Multiplication of (10.6.70) by G(2)(n) updates the second row of R̃−H (n − 1)/
√
λ and

modifies the first two elements of g̃H (n). In general, the ith rotation updates the ith row of
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R̃−H (n− 1)/
√
λ and modifies the i first elements of g̃H (n) using the formulas

p̃ij (n) = 1√
λ
ci(n)p̃ij (n− 1)+ s∗i (n)g

(i−1)
j (n) (10.6.71)

g
(i)
j (n) = ci(n)g

(i−1)
j (n)− 1√

λ
si(n)p̃ij (n− 1) (10.6.72)

for 1 ≤ i ≤ M and 1 ≤ j ≤ i.These recursions are initialized withg
(i)
j (n) = 0, 1 ≤ j ≤ M ,

i ≤ j , and provide the required quantities after M rotations. The complete inverse QR-
RLS algorithm is summarized in Table 10.10, whereas a systolic array implementation is
discussed in Alexander and Ghirnikar (1993).

TABLE 10.10

Summary of the inverse QR-RLS Givens
algorithm.†

Initialization

c(−1) = x(−1) = 0 p̃ij (−1) = δ � 1

Time Recursion: n = 0, 1, . . .

e(n) = y(n)− cH (n− 1)x(n)

g
(i)
j

(n) = 0 1 ≤ j ≤ M , i ≤ j

α̂0(n) = 1

For i = 1 to M do

w̄i (n) = 1√
λ

i∑
j=1

p̃ij (n− 1)xi (n)

α̂i (n) = [α̂2
i−1(n)+ |w̄i (n)|2]1/2

ci (n) = α̂i−1(n)

α̂i (n)
si (n) = −

w̄∗
i
(n)

α̂i (n)

For j = 1 to i do

p̃ij (n) = 1√
λ
ci (n)p̃ij (n− 1)+ s∗i (n)g

(i−1)
j

(n)

g
(i)
j

(n) = ci (n)g
(i−1)
j

(n)− 1√
λ
si (n)p̃ij (n− 1)

End

End

ẽ(n) = e(n)

α̂M(n)

For m = 1 to M do

cm(n) = cm(n− 1)+ g
(i)∗
j

(n)ẽ∗(n)
End

†The computations can be done “in-place” using temporary
variables as shown in Table 10.9.

10.6.8 Classification of RLS Algorithms for Array Processing

Whereas the CRLS algorithm provides the basis for the introduction and performance
evaluation of exact LS adaptive filters for array processing, the Givens rotation–based QR-
RLS algorithms provide the most desirable implementation in terms of numerical behavior
and ease of hardware implementation. However, there are many more algorithms that have
interesting theoretical interpretations or may better serve the needs of particular applications.
In general, we have the following types of RLS algorithms.
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1. The CRLS algorithm, which is a fixed-order algorithm, updates the inverse P(n) =
R̂−1(n) of the correlation matrix and then computes the gain vector through a matrix-
by-vector multiplication (see Section 10.5).

2. Power-domain square root algorithms propagate either R̃(n) or its inverse P̃(n) �
R̃−1(n), using formulas derived from the Cholesky decomposition of R̂(n) or P(n) =
R̂−1(n), respectively. They include two types:

a. Algorithms that propagate {R̃(n), k̃(n)} (information filter approach) or {R̃−1(n),

k̃(n)} (covariance filter approach
†
) and provide the a priori or a posteriori errors

only.
b. Algorithms that propagate R̃(n) and compute g(n) by solving (10.6.25) or propagate

R̃−1(n) and compute g(n) in a matrix-by-vector multiplication. Both algorithms
compute the parameter vector c(n) and the error e(n) or ε(n).

3. Amplitude-domain square root algorithms that propagate either R̃(n) (QRD-based RLS)
or its inverse P̃(n) � R̃−1(n) (inverse QRD–based RLS) working directly with the data
matrix �(n)[X(n) y(n)]. In both cases, we can develop algorithms providing only the
error e(n) or ε(n) or both the errors and the parameter vector c(n).

Algorithms that propagate the Cholesky factor R̃(n) avoid the loss-of-symmetry prob-
lem and have better numerical properties because the condition number of R̃(n) equals the
square root of the condition number of R̂(n). Because QRD-based algorithms have superior
numerical properties to their Cholesky counterparts, we have focused on RLS algorithms
based on the QRD of the data set �(n)[X(n) y(n)]. More specifically we discussed QRD-
based RLS algorithms using the Givens rotations. Other QRD-based RLS algorithms using
the MGS (Ling et al. 1986) and Householder transformations (Liu et al. 1992; Steinhardt
1988; Rader and Steinhardt 1986) also have been developed but are not as widely used.

It is generally accepted that QR decomposition leads to the best methods for solving
the LS problem (Golub and Van Loan 1996). It has been shown by simulation that the
Givens rotation–based QR-RLS algorithm is numerically stable for λ < 1 and diverges
for λ = 1 (Yang and Böhme 1992; Haykin 1996). This is the algorithm of choice for
applications that require only the a priori or a posteriori errors. Since the extended QR-RLS
algorithm propagates both R̃(n) and R̃−H (n) independently from each other, in finite-
precision implementations, the computed values of R̃(n) and R̃−H (n) deviate from each
other’s Hermitian inverse.As a result of this numerical inconsistency, the algorithm becomes
numerically unstable (Haykin 1996). To avoid this problem, we can use either the QR-RLS
algorithm with back substitution “on the fly” or the inverse QR-RLS algorithm (Alexander
and Ghirnikar 1993; Pan and Plemmons 1989). The updating of c(n) with this last algorithm
can be implemented in systolic array form without interrupting the adaptation process.

If we factor out the diagonal elements of matrix R̃(n), obtained by QRD, we can express
R̃(n) as

R̃(n) = D1/2(n)R̃1(n) (10.6.73)

where R̃1(n) is an upper triangular matrix with unit diagonal elements, and

D(n) � diag{r̃2
11(n), r̃

2
22(n), . . . , r̃

2
MM(n)} (10.6.74)

is a diagonal matrix with positive elements. We can easily see that R̃H
1 (n) and D(n) provide

the factors of the LDU decomposition (10.6.14). It turns out that (10.6.73) provides the basis
for various QRD-based RLS algorithms that do not require square root operations. In similar
manner, the LDU decomposition makes possible the square root–free triangularization of
R̂(n) (see Section 6.3).All algorithms that use the Cholesky factor R̃(n)or its inverse R̃−1(n)

require square root operations, which we can avoid if we use the LDU decomposition factors
R̃1(n) and D(n). Because such algorithms have inferior numerical properties to their square

†
The terms information and covariance filtering-type algorithms are used in the context of Kalman filter theory

(Bierman 1977; Kailath 1981).
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root counterparts and are more prone to overflow and underflow problems, and because
square root operations are within the reach of current digital hardware, we concentrate on
RLS algorithms that propagate the Cholesky factor or its inverse (Stewart and Chapman
1990). However, square root–free algorithms are very useful for VLSI implementations.
The interested reader can find information about such algorithms in Bierman and Thornton
(1977), Ljung and Soderstrom (1983), Bierman andThornton (1977), and Hsieh et al. (1993).

A unified derivation of the various RLS algorithms using a state-space formulation and
their correspondence with related Kalman filtering algorithms is given in Sayed and Kailath
(1994, 1998) and in Haykin (1996).

All algorithms mentioned above hold for arbitrary input data vectors and require
O(M2) arithmetic operations per time update. However, if the input data vector has a
shift-invariant structure, all algorithms lead to simplified versions that require O(M) arith-
metic operations per time update. These algorithms, which can be used for LS FIR filtering
and prediction applications, are discussed in the following section.

10.7 FAST RLS ALGORITHMS FOR FIR FILTERING

In Section 7.3 we exploited the shift invariance of the input data vector

xm+1(n) =
[

xm(n)

x(n−m)

]
=
[
x(n)

xm(n− 1)

]
(10.7.1)

to develop a lattice-ladder structure for optimum FIR filters and predictors. The determi-
nation of the optimum parameters (see Figure 7.3) required the LDLH decomposition of
the correlation matrix R(n) and the solution of three triangular systems at each time n.
However, for stationary signals the optimum filter is time-invariant, and the coefficients
of its direct or lattice-ladder implementation structure are evaluated only once, using the
algorithm of Levinson.

The key for the development of order-recursive algorithms was the following order
partitioning of the correlation matrix

Rm+1(n) =
[

Rm(n) rb
m(n)

rbH
m (n) Px(n−m)

]
=
[
Px(n) rfH

m (n)

rf
m(n) Rm(n− 1)

]
(10.7.2)

which is a result of the shift-invariance property (10.7.1). The same partitioning can be
obtained for the LS correlation matrix R̂m(n)

R̂m+1(n) =
n∑

j=0

λn−jxm+1(j)xH
m+1(j)

=
[

R̂m(n) r̂b
m(n)

r̂bH
m (n) Ex(n−m)

]
=
[
Ex(n) r̂fH

m (n)

r̂f
m(n) R̂m(n− 1)

] (10.7.3)

if we assume that xm(−1) = 0, a condition known as prewindowing (see Section 8.3). This
condition is neccesary to ensure the presence of the term R̂m(n−1) in the lower right corner
partitioning of R̂m+1(n).

The identical forms of (10.7.2) and (10.7.3) imply that the order-recursive relations and
the lattice-ladder structure developed in Section 7.3 for optimum FIR filters can be used for
prewindowed LS FIR filters. Simply, the expectation operator E{(·)} should be replaced by
the time-averaging operator

∑n
j=0 λn−j (·), and the term power should be replaced by the

term energy, when we go from the optimum MSE to the LSE formulation.
In this section we exploit the shift invariance (10.7.1) and the time updating

R̂m(n) = λR̂m(n− 1)+ xm(n)xH
m (n) (10.7.4)
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to develop the following types of fast algorithms with O(M) complexity:

1. Fast fixed-order algorithms for RLS direct-form FIR filters by explicitly updating the
gain vectors g(n) and ḡ(n).

2. Fast order-recursive algorithms for RLS FIR lattice-ladder filters by indirect or direct
updating of their coefficients.

3. QR decomposition–based RLS lattice-ladder algorithms using the Givens rotation.

All relationships in Section 7.3 are valid for the prewindowed LS problem, but we replace P

by E to emphasize the energy interpretation of the cost function. The quantities appearing
in the partitionings given by (10.7.3) specify a prewindowed LS forward linear predictor
−am and an LS backward linear predictor −bm. Table 10.11 shows the correspondences
between general FIR filtering, FLP, and BLP. Using these correspondences and the normal
equations for LS filtering, we can easily obtain the normal equations and the total LSE for
the FLP and the BLP, which are also summarized in Table 10.11 (see Problem 10.28). We
stress that the predictor parameters am(n) and bm(n) are held fixed over the optimization
interval 0 ≤ j ≤ n.

TABLE 10.11

Summary and correspondences between LS FIR filtering, forward linear prediction, and backward linear prediction.

FIR filter FLP BLP

Input data vector xm(n) xm(n− 1) xm(n)

Desired response y(n) x(n) x(n−m)

Coefficient vector cm(n) −am(n) −bm(n)

Error εm(n) = y(n)− cHm (n)xm(n) εf
m(n) = x(n)+ aHm (n)xm(n− 1) εb

m(n) = x(n−m)+ bH
m (n)xm(n)

Cost function Em(n) =
n∑

j=0

λn−j |εm(j)|2 Ef
m(n) =

n∑
j=0

λn−j |εf
m(j)|2 Eb

m(n) =
n∑

j=0

λn−j |εb
m(j)|2

Normal equations R̂m(n)cm(n) = d̂m(n) R̂m(n− 1)am(n) = −r̂f
m(n) R̂m(n)bm(n) = −r̂b

m(n)

LSE Em(n) = Ey(n)− cHm (n)d̂m(n) Ef
m(n) = Ex(n)+ aHm (n)r̂f

m(n) Eb
m(n) = Ex(n−m)+ bH

m (n)r̂b
m(n)

Correlation matrix R̂m(n) =
n∑

j=0

λn−j xm(j)xHm (j) R̂m(n− 1) R̂m(n)

Cross-correlation vectors d̂m(n) =
n∑

j=0

λn−j xm(j)y∗(j) r̂f
m(n) =

n∑
j=0

λn−j xm(j − 1)x∗(j) r̂b
m(n) =

n∑
j=0

λn−j xm(j)x∗(j −m)

Table 10.12 summarizes the a priori and a posteriori time updates for the LS FIR filter
derived in Section 10.5. If we use the correspondences between general FIR filtering and
linear prediction, we can easily deduce similar time-updating recursions for the FLP and
the BLP. These updates, which are also discussed in Problem 10.29, are summarized in
Table 10.12.

10.7.1 Fast Fixed-Order RLS FIR Filters

The major computational task in RLS filters is the computation of the gain vector g(n)
or ḡ(n). The CRLS algorithm updates the inverse matrix R̂−1(n) and then determines the
gain vector via a matrix-by-vector multiplication that results in O(M2) complexity. The
only way to reduce the complexity from O(M2) to O(M) is by directly updating the gain
vectors. We next show how to develop such algorithms by exploiting the shift-invariant
structure of the input data vector shown in (10.7.1).
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TABLE 10.12

Summary of LS time-updating relations using a priori and a posteriori errors.

Equation A priori time updating A posteriori time updating

Gain (a) R̂m(n)gm(n) = xm(n) λR̂m(n− 1)ḡm(n) = xm(n)

Filter (b) em(n) = y(n)− cHm (n− 1)xm(n) εm(n) = y(n)− cHm (n)xm(n)

(c) cm(n) = cm(n− 1)+ gm(n)e∗m(n) cm(n) = cm(n− 1)+ ḡm(n)ε∗m(n)

(d) Em(n) = λEm(n− 1)+ αm(n)|em(n)|2 Em(n) = λEm(n− 1)+ |εm(n)|2
αm(n)

FLP (e) ef
m(n) = x(n)+ aHm (n− 1)xm(n− 1) εf

m(n) = x(n)+ aHm (n)xm(n− 1)

(f ) am(n) = am(n− 1)− gm(n− 1)ef∗
m (n) am(n) = am(n− 1)− ḡm(n− 1)εf∗

m (n)

(g) Ef
m(n) = λEf

m(n− 1)+ αm(n− 1)|ef
m(n)|2 Ef

m(n) = λEf
m(n− 1)+ |εf

m(n)|2
αm(n− 1)

BLP (h) eb
m(n) = x(n−m)+ bH

m (n− 1)xm(n) εb
m(n) = x(n−m)+ bH

m (n)xm(n)

(i) bm(n) = bm(n− 1)− gm(n)eb∗
m (n) bm(n) = bm(n− 1)− ḡm(n)εb∗

m (n)

(j) Eb
m(n) = λEb

m(n− 1)+ αm(n)|eb
m(n)|2 Eb

m(n) = λEb
m(n− 1)+ |ε

b
m(n)|2
αm(n)

Fast Kalman algorithm: Updating the gain g(n)

Suppose that we know the gain

gm(n− 1) = R̂−1
m (n− 1)xm(n− 1) (10.7.5)

and we wish to compute the gain

gm(n) = R̂−1
m (n)xm(n) (10.7.6)

at the next time instant by “adjusting” gm(n− 1), using the new data {xm(n), y(n)}.
If we use the matrix inversion by partitioning formulas (7.1.24) and (7.1.26) for matrix

R̂m+1(n), we have

R̂m+1(n) =
[

R̂−1
m (n) 0m

0H
m 0

]
+ 1

Eb
m(n)

[
bm(n)

1

] [
bH
m (n) 1

]
(10.7.7)

R̂m+1(n) =
[

0 0H
m

0m R̂−1
m (n)

]
+ 1

Ef
m(n)

[
1

am(n)

] [
1 aH

m (n)
]

(10.7.8)and

as was shown in Section 7.1.
Using (10.7.7), the first partitioning in (10.7.1), and the definition of εb

m(n) from Table
10.12, we obtain

gm+1(n) =
[

gm(n)

0

]
+ εb

m(n)

Eb
m(n)

[
bm(n)

1

]
(10.7.9)

which provides a pure order update of the gain vector gm(n). Similarly, using (10.7.8), the
second partitioning in (10.7.1), and the definition of εf

m(n) from Table 10.12, we have

gm+1(n) =
[

0

gm(n− 1)

]
+ εf

m(n)

Ef
m(n)

[
1

am(n)

]
(10.7.10)

which provides a combined order and time update of the gain vector gm(n). This is the key
to the development of fast algorithms for updating the gain vector.

Given the gain gm(n−1), first we compute gm+1(n), using (10.7.10). Then we compute
gm(n) from the first m equations of (10.7.9) as

gm(n) = g"m#m+1(n)− g
(m+1)
m+1 (n)bm(n) (10.7.11)
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g
(m+1)
m+1 (n) = εb

m(n)

Eb
m(n)

(10.7.12)because

from the last equation in (10.7.9). The updatings (10.7.9) and (10.7.10) require time updat-
ings for the predictors am(n) and bm(n) and the minimum error energies Ef

m(n) and Eb
m(n),

which are given in Table 10.12. The only remaining problem is the coupling between gm(n)

in (10.7.11) and bm(n) in

bm(n) = bm(n− 1)− gm(n)eb∗
m (n) (10.7.13)

which can be avoided by eliminating bm(n). Carrying out the elimination, we obtain

gm(n) = g"m#m+1(n)− g
(m+1)
m+1 (n)bm(n− 1)

1− g
(m+1)
m+1 (n)eb∗

m (n)
(10.7.14)

which provides the last step required to complete the updating. This approach, which is
known as the fast Kalman algorithm, was developed in Falconer and Ljung (1978) using
the ideas introduced by Morf (1974). To emphasize the fixed-order nature of the algorithm,
we set m = M and drop the order subscript for all quantities of order M . The computa-
tional organization of the algorithm, which requires 9M operations per time updating, is
summarized in Table 10.13.

TABLE 10.13

Fast Kalman algorithm for time updating of LS FIR filters.

Equation Computation

Old estimates: a(n− 1), b(n− 1), g(n− 1), c(n− 1), Ef (n− 1)
New data: {x(n), y(n)}

Gain and predictor update

(a) ef (n) = x(n)+ aH (n− 1)x(n− 1)

(b) a(n) = a(n− 1)− g(n− 1)ef∗(n)
(c) εf (n) = x(n)+ aH (n)x(n− 1)

(d) Ef (n) = λEf (n− 1)+ εf (n)ef∗(n)

(e) gM+1(n) =
[

0
g(n− 1)

]
+ εf (n)

Ef (n)

[
1
a(n)

]

(f ) eb(n) = x(n−M)+ bH (n− 1)x(n)

(g) g(n) = g"M#
M+1(n)− g

(M+1)
M+1 (n)b(n− 1)

1− g
(M+1)
M+1 (n)eb∗(n)

(h) b(n) = b(n− 1)− g(n)eb∗(n)

Filter update

(i) e(n) = y(n)− cH (n− 1)x(n)

(j) c(n) = c(n− 1)+ g(n)e∗(n)

The FAEST algorithm: Updating the gain ḡ(n)

In a similar way we can update the gain vector

ḡm(n) = 1

λ
R̂−1

m (n− 1)xm(n) (10.7.15)

by using (10.7.9) and (10.7.10). Indeed, using (10.7.10) with the lower partitioning (10.7.1)
and (10.7.9) with the upper partitioning (10.7.1), we obtain

ḡm+1(n) =
[

0

ḡm(n− 1)

]
+ ef

m(n)

λEf
m(n− 1)

[
1

am(n− 1)

]
(10.7.16)
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ḡm+1(n) =
[

ḡm(n)

0

]
+ eb

m(n)

λEb
m(n− 1)

[
bm(n− 1)

1

]
(10.7.17)and

which provide a link between ḡm(n− 1) and ḡm(n). From (10.7.17) we obtain

ḡm(n) = ḡ"m#m+1(n)− ḡ
(m+1)
m+1 (n)bm(n− 1) (10.7.18)

ḡ
(m+1)
m+1 (n) = eb

m(n)

λEb
m(n− 1)

(10.7.19)because

from the last row of (10.7.17). The fundamental difference between (10.7.9) and (10.7.17)
is that the presence of bm(n− 1) in the latter breaks the coupling between gain vector and
backward predictor. Furthermore, (10.7.19) can be used to compute eb

m(n) by

eb
m(n) = λEb

m(n− 1)ḡ(m+1)
m+1 (n) (10.7.20)

with only two multiplications.
The time updatings of the predictors using the gain ḡm(n), which are given in Table

10.12, require the a posteriori errors that can be computed from the a priori errors by using
the conversion factor

ᾱm(n) = 1+ ḡH
m (n)xm(n) (10.7.21)

which should be updated in time as well. This can be achieved by a two-step procedure as
follows. First, using (10.7.16) and the lower partitioning (10.7.1), we obtain

ᾱm+1(n) = ᾱm(n− 1)+ |ef
m(n)|2

λEf
m(n− 1)

(10.7.22)

which is a combined time and order updating. Then we use (10.7.17) and the upper parti-
tioning (10.7.1) to obtain

ᾱm(n) = ᾱm+1(n)− ḡ
(m+1)
m+1 (n)eb∗

m (n) (10.7.23)

ᾱm(n) = ᾱm+1(n)− |eb
m(n)|2

λEb
m(n− 1)

(10.7.24)or

which in conjunction with (10.7.22) provides the required time update ᾱm(n − 1) →
ᾱm+1(n)→ ᾱm(n).

This leads to the fast a posteriori error sequential technique (FAEST) algorithm pre-
sented in Table 10.14, which was introduced in Carayannis et al. (1983). The FAEST
algorithm requires only 7M operations per time update and is the most efficient known
algorithm for prewindowed RLS FIR filters.

Fast transversal filter (FTF) algorithm. This is an a posteriori type of algorithm ob-
tained from the FAEST by using the conversion factor

αm(n) = 1− gH
m (n)xm(n) (10.7.25)

instead of the conversion factor ᾱm(n) = 1/αm(n). Using the Levinson recursions (10.7.9)
and (10.7.10) in conjunction with the upper and lower partitionings in (10.7.1), we obtain

αm+1(n) = αm(n)− |ε
b
m(n)|2
Eb

m(n)
(10.7.26)

αm+1(n) = αm(n− 1)− |ε
f
m(n)|2
Ef

m(n)
(10.7.27)and

respectively. To obtain the FTF algorithm, we replace ᾱm(n) in Table 10.14 by 1/αm(n) and
Equation (h) by (10.7.27). To obtain αm(n) from αm+1(n), we cannot use (10.7.26) because
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TABLE 10.14

FAEST algorithm for time updating of LS FIR filters.

Equation Computation

Old estimates: a(n− 1), b(n− 1), c(n− 1), ḡ(n− 1), Ef (n− 1), Eb(n− 1), ᾱ(n− 1)

New data: {x(n), y(n)}
Gain and predictor update

(a) ef (n) = x(n)+ aH (n− 1)x(n− 1)

(b) εf (n) = ef (n)

ā(n− 1)

(c) a(n) = a(n− 1)− ḡ(n− 1)εf∗(n)
(d) Ef (n) = λEf (n− 1)+ εf (n)ef∗(n)

(e) ḡM+1(n) =
[

0
ḡ(n− 1)

]
+ ef (n)

λEf (n− 1)

[
1
a(n− 1)

]

(f ) eb(n) = λEb(n− 1)ḡ(M+1)
M+1 (n)

(g) ḡ(n) = ḡ"M#
M+1(n)− ḡ

(M+1)
M+1 (n)b(n− 1)

(h) ᾱM+1(n) = ᾱ(n− 1)+ |ef (n)|2
λEf (n− 1)

(i) ᾱ(n) = ᾱM+1(n)− ḡ
(M+1)∗
M+1 (n)eb(n)

(j) b(n) = b(n− 1)− ḡ(n)εb∗(n)

(k) εb(n) = eb(n)

ᾱ(n)

(l) Eb(n) = λEb(n− 1)+ εb(n)eb∗(n)

Filter update

(m) e(n) = y(n)− cH (n− 1)x(n)

(n) ε(n) = e(n)

ᾱ(n)
(o) c(n) = c(n− 1)+ ḡ(n)ε∗(n)

it requires quantities dependent on αm(n). To avoid this problem, we replace Equation (i)
by the following relation

αm(n) = αm+1(n)

1− αm+1(n)ḡ
(m+1)
m+1 (n)eb∗

m (n)
(10.7.28)

obtained by combining (10.7.24), (10.7.19), and ᾱm(n) = 1/αm(n). This algorithm, which
has the same complexity as FAEST, was introduced in Cioffi and Kailath (1984) using a
geometric derivation, and is known as the fast transversal filter (FTF) algorithm.

An alternative updating to (10.7.27) can be obtained by noticing that

αm+1(n) = αm(n− 1)− α2
m(n− 1)

|ef
m(n)|2
Ef

m(n)

= αm(n− 1)

Ef
m(n)

[Ef
m(n)− αm(n− 1)|ef

m(n)|2]

αm+1(n) = αm(n− 1)
λEf

m(n− 1)

Ef
m(n)

(10.7.29)or equivalently

which can be used instead of (10.7.27) in the FTF algorithm. In a similar way, we can show
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that

αm+1(n) = αm(n)
λEb

m(n− 1)

Eb
m(n)

(10.7.30)

which will be used later.

Some practical considerations

Figure 10.37 shows the realization of an adaptive RLS filter using the direct-form
structure. The coefficient updating can be done using any of the introduced fast RLS algo-
rithms. Some issues related to the implementation of these filters using multiprocessing are
discussed in Problem 10.48.

…

…

…

x(n)
x(n − 1) x(n − M + 1)

z−1 z−1

y(n)

c1(n − 1)∗ c2(n − 1)∗ cM(n − 1)∗

e(n)

Coefficient
updating

FIGURE 10.37
Implementation of an adaptive FIR filter using a direct-form structure.

In practice, the fast direct-form RLS algorithms are initialized at n = 0 by setting

Ef (−1) = Eb(−1) = δ > 0

α(−1) = 1 or ᾱ(−1) = 1
(10.7.31)

and all other quantities equal to zero. The constant δ is chosen as a small positive number
on the order of 0.01σ 2

x (Hubing and Alexander 1991). For λ < 1, the effects of the initial
conditions are quickly “forgotten.” An exact initialization method is discussed in Problem
10.31.

Although the fast direct-form RLS algorithms have the lowest computational complex-
ity, they suffer from numerical instability when λ < 1 (Ljung and Ljung 1985). When these
algorithms are implemented with finite precision, the exact algebraic relations used for their
derivation breakdown and lead to numerical problems.

There are two ways to deal with stabilization of the fast direct-form RLS algorithms.
In the first approach, we try to identify precursors of ill behavior (warnings) and then use
appropriate rescue operations to restore the normal operation of the algorithm (Lin 1984;
Cioffi and Kailath 1984). One widely used rescue variable is

ηm(n) � αm+1(n)

αm(n)
= λEb

m(n− 1)

Eb
m(n)

(10.7.32)

which satisfies 0 ≤ ηm(n) ≤ 1 for infinite-precision arithmetic (see Problem 10.33 for
more details).

In the second approach, we exploit the fact that certain algorithmic quantities can be
computed in two different ways. Therefore, we could use their difference, which provides
a measure of the numerical errors, to change the dynamics of the error propagation system
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and stabilize the algorithm. For example, both eb
m(n) and αm(n) can be computed either

using their definition or simpler order-recursions. This approach has been used to obtain
stabilized algorithms with complexities 9M and 8M; however, their performance is highly
dependent on proper initialization (Slock and Kailath 1991, 1993).

10.7.2 RLS Lattice-Ladder Filters

The lattice-ladder structure
†

derived in Section 7.3 using the MSE criterion, due to the
similarity of (10.7.2) and (10.7.3), holds for the prewindowed LSE criterion as well. This
structure, which is depicted in Figure 10.38 for the a posteriori error case, is described by
the following equations

εf
0(n) = εb

0(n) = x(n)

εf
m+1(n) = εf

m(n)+ kf∗
m (n)εb

m(n− 1) 0 ≤ m < M − 1 (10.7.33)

εb
m+1(n) = εb

m(n− 1)+ kb∗
m (n)εf

m(n) 0 ≤ m < M − 1 (10.7.34)

for the lattice part and

ε0(n) = y(n)

εm+1(n) = εm(n)− kc∗m (n)εb
m(n) 0 ≤ m ≤ M − 1

(10.7.35)

for the ladder part. The lattice parameters are given by

kf
m(n) = − βm(n)

Eb
m(n− 1)

(10.7.36)

kb
m(n) = −β∗m(n)

Ef
m(n)

(10.7.37)and

and the ladder parameters by

kcm(n) = βc
m(n)

Eb
m(n)

(10.7.38)

βm(n) = bH
m (n− 1)rf

m(n)+ r f
m+1(n) (10.7.39)where

βc
m(n) = bH

m (n)dm(n)+ dm+1(n) (10.7.40)and

are the partial correlation parameters.
However, as we recall, the time updating of the minimum LSE energies and the partial

correlations is possible only if there is a time update for the correlation matrix Rm(n) and
the cross-correlation vector dm(n).

The minimum LSE energies can be updated in time using

Ef
m(n) = λEf

m(n− 1)+ ef
m(n)εf∗

m (n) (10.7.41)

Eb
m(n) = λEb

m(n− 1)+ eb
m(n)εb∗

m (n) (10.7.42)

or their variations, given in Table 10.12.
To update the partial correlation βm(n), we start with the definition (10.7.39) and then

use the time-updating formulas for all involved quantities, rearranging and recombining

†
In Chapter 7 we used the symbol e(n) because we had no need to distinguish between a priori and a posteriori

errors. However, since the error e(n) in Section 7.3 is an a posteriori error, we now use the symbol ε(n).
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z−1

y(n) e1(n) eM(n)

x(n)

e0(n)
Lattice stage 1 Lattice stage M − 1

z−1

f

e0(n)
b

e1(n)b eM−1(n)
b

k0(n) kM−2(n)b*b*

−k0(n)
c*

−kM−2(n)
c*

−kM−1(n)
c*

k0 (n)
f*

kM−2(n)
f*

e1(n)
f

eM−1(n)
f

…

…

…
FIGURE 10.38
A posteriori error RLS lattice-ladder filter.

terms as follows:

βm(n+ 1) = bH
m (n)rf

m(n+ 1)+ r f
m+1(n+ 1)

= bH
m (n)[λrf

m(n)+ xm(n)x∗(n+ 1)]
+ [λr f

m+1(n)+ x(n−m)x∗(n+ 1)]
= λbH

m (n)rf
m(n)+ εb

m(n)x∗(n+ 1)+ λr f
m+1(n)

= λ[bH
m (n− 1)− εb

m(n)ḡm(n)]rf
m(n)

+ λr f
m+1(n)+ εb

m(n)x∗(n+ 1)

= λβm(n)+ εb
m(n)[x∗(n+ 1)− λḡm(n)rf

m(n)]
= λβm(n)+ εb

m(n)[x∗(n+ 1)− xH
m (n)R−1

m (n− 1)rf
m(n)]

= λβm(n)+ εb
m(n)[x∗(n+ 1)+ xH

m (n)a(n)]
= λβm(n)+ εb

m(n)ef∗
m (n+ 1)

which provides the desired update formula. The updating

βm(n) = λβm(n− 1)+ εb
m(n− 1)ef∗

m (n) (10.7.43)

= λβm(n− 1)+ 1

αm(n− 1)
εb
m(n− 1)εf∗

m (n) (10.7.44)

is feasible because the right-hand side involves already-known quantities.
In a similar way (see Problem 10.36), we can show that

βc
m(n) = λβc

m(n− 1)+ εb
m(n)e∗m(n) (10.7.45)

= λβc
m(n− 1)+ 1

αm(n)
εb
m(n)ε∗m(n) (10.7.46)

which facilitates the updating of the ladder parameters.
To obtain an a posteriori algorithm, we need the conversion factor αm(n), which can

be obtained using the order-recursive formula (10.7.26). A detailed organization of the
a posteriori LS lattice-ladder algorithm, which requires about 20M operations per time
update, is given in Table 10.15. The initialization of the algorithm is easily obtained from
the definitions of the corresponding quantities. The condition α0(n− 1) = 1 follows from
(10.7.25), and the positive constant δ is chosen to ensure the inveribility of the LS correlation
matrix R(n) (see Section 10.5).The time-updating recursions (c) and (d) can be replaced
by order recursions, as explained in Problem 10.37.
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TABLE 10.15

Computational organization of a posteriori
LS lattice-ladder algorithm.

Equation Computation

Time initialization (n = 0)

Ef
m(−1) = Eb

m(−1) = δ > 0 0 ≤ m < M − 1

βm(−1) = 0, εb
m(−1) = 0 0 ≤ m < M − 1

βc
m(−1) = 0 0 ≤ m ≤ M − 1

Order initialization

(a) εf
0(n) = εb

0(n) = x(n) ε0(n) = y(n) α0(n− 1) = 1

Lattice part: m = 0, 1, . . . ,M − 1

(b) βm(n) = λβm(n− 1)+ εb
m(n− 1)εf∗

m (n)

αm(n− 1)

(c) Ef
m(n) = λEf

m(n− 1)+ |εf
m(n)|2

αm(n− 1)

(d) Eb
m(n) = λEb

m(n− 1)+ |ε
b
m(n)|2
αm(n)

(e) kf
m(n) = −βm(n)

Eb
m(n− 1)

(f ) kb
m(n) = −β∗m(n)

Ef
m(n)

(g) εf
m+1(n) = εf

m(n)+ kf∗
m (n)εb

m(n− 1)

(h) εb
m+1(n) = εb

m(n− 1)+ kb∗
m (n)εf

m(n)

(i) αm+1(n) = αm(n)− |ε
b
m(n)|2
Eb
m(n)

Ladder part: m = 1, 2, . . . ,M

(j) βc
m(n) = λβc

m(n− 1)+ εb
m(n)ε∗m(n)/αm(n)

(k) kcm(n) = βc
m(n)

Eb
m(n)

(l) εm+1(n) = εm(n)− kc∗m (n)εb
m(n)

If instead of the a posteriori errors we use the a priori ones, we obtain the following
recursions

ef
0(n) = eb

0(n) = x(n)

ef
m+1(n) = ef

m(n)+ kf∗
m (n− 1)eb

m(n− 1) 0 ≤ m < M − 1 (10.7.47)

eb
m+1(n) = eb

m(n− 1)+ kb∗
m (n− 1)ef

m(n) 0 ≤ m < M − 1 (10.7.48)

for the lattice part and

e0(n) = y(n)

em+1(n) = em(n)− kc∗m (n− 1)eb
m(n) 1 ≤ m ≤ M

(10.7.49)

for the ladder part (see Problem 10.38). As expected, the a priori structure uses the old LS
estimates of the lattice-ladder parameters. Based on these recursions, we can develop the a
priori error RLS lattice-ladder algorithm shown in Table 10.16, which requires about 20M
operations per time update.
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TABLE 10.16

Computational organization of a priori LS lattice-ladder
algorithm.

Equation Computation

Time initialization

Ef
m(−1) = Eb

m(−1) = δ > 0

βm(−1) = 0 eb
m(−1) = 0 0 ≤ m < M − 1

βc
m(−1) = 0 0 ≤ m ≤ M − 1

Order initialization

(a) ef
0(n) = eb

0(n) = x(n) e0(n) = y(n) α0(n− 1) = 1

Lattice Part: m = 0, 1, . . . ,M − 2

(b) ef
m+1(n) = ef

m(n)+ kf∗
m (n− 1)eb

m(n− 1)

(c) eb
m+1(n) = eb

m(n− 1)+ kb∗
m (n− 1)ef

m(n)

(d) βm(n) = λβm(n− 1)+ αm(n− 1) eb
m(n− 1) ef∗

m (n)

(e) Ef
m(n) = λEf

m(n− 1)+ αm(n− 1)|ef
m(n)|2

(f ) Eb
m(n) = λEb

m(n− 1)+ αm(n)|eb
m(n)|2

(g) kf
m(n) = −βm(n)

Eb
m(n− 1)

(h) kb
m(n) = −β∗m(n)

Ef
m(n)

(i) αm(n) = αm−1(n)−
|eb
m−1(n)|2
Eb
m−1(n)

Ladder part: m = 1, 2, . . . ,M

(j) βc
m(n) = λβc

m(n− 1)+ αm(n)eb
m(n)e∗m(n)

(k) kcm(n) = βc
m(n)

Eb
m(n)

(l) em+1(n) = em(n)− kc∗m (n− 1)eb
m(n)

10.7.3 RLS Lattice-Ladder Filters Using Error Feedback Updatings

The LS lattice-ladder algorithms introduced in the previous section update the partial cor-
relations βm(n) and βc

m(n) and the minimum error energies Ef
m(n) and Eb

m(n), and then
compute the coefficients of the LS lattice-ladder filter by division. We next develop two
algebraically equivalent algorithms, that is, algorithms that solve the same LS problem,
which update the lattice-ladder coefficients directly. These algorithms, introduced in Ling
et al. (1986), have good numerical properties when implemented with finite-word-length
arithmetic.

Starting with (10.7.38) and (10.7.45) we have

kcm(n) = βc
m(n)

Eb
m(n)

= λ
βc
m(n− 1)

Eb
m(n− 1)

Eb
m(n− 1)

Eb
m(n)

+ αm(n)eb
m(n)e∗m(n)

Eb
m(n)

= 1

Eb
m(n)

[kcm(n− 1)λEb
m(n− 1)+ αm(n)eb

m(n)e∗m(n)]
(10.7.50)

λEb
m(n− 1) = Eb

m(n)− αm(n)eb
m(n)eb∗

m (n)or using
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we obtain

kcm(n) = kcm(n− 1)+ αm(n)eb
m(n)

Eb
m(n)

[e∗m(n)− kcm(n− 1)eb∗
m (n)]

kcm(n) = kcm(n− 1)+ αm(n)eb
m(n)e∗m+1(n)

Eb
m(n)

(10.7.51)or

using (10.7.49). Equation (10.7.51) provides a direct updating of the ladder parameters.
Similar direct updating formulas can be obtained for the lattice coefficients (see Problem
10.39). Using these updatings, we obtain the a priori RLS lattice-ladder algorithm with
error feedback shown in Table 10.17.

TABLE 10.17

Computational organization of a priori RLS lattice-ladder
algorithm with direct updating of its coefficients using
error feedback formula.

Equation Computation

Time initialization

Ef
m(−1) = Eb

m(−1) = δ > 0

kf
m(−1) = kb

m(−1) = 0

eb
m(−1) = 0 kcm(−1) = 0

Order initialization

(a) ef
0(n) = eb

0(n) = x(n) e0(n) = y(n) α0(n) = 1

Lattice part: m = 0, 1, . . . ,M − 2

(b) ef
m+1(n) = ef

m(n)+ kf∗
m (n− 1)eb

m(n− 1)

(c) eb
m+1(n) = eb

m(n− 1)+ kb∗
m (n− 1)ef

m(n)

(d) Ef
m(n) = λEf

m(n− 1)+ αm(n− 1)|ef
m(n)|2

(e) Eb
m(n) = λEb

m(n− 1)+ αm(n)|eb
m(n)|2

(f ) kf
m(n) = kf

m(n− 1)− αm(n− 1)eb
m(n− 1)ef∗

m+1(n)

Eb
m(n− 1)

(g) kb
m(n) = kb

m(n− 1)− αm(n− 1)ef
m(n)eb∗

m+1(n)

Ef
m(n)

(h) αm+1(n) = αm(n)− |αm(n)eb
m(n)|2

Eb
m(n)

Ladder part: m = 0, 1, . . . ,M − 1

(i) em+1(n) = em(n)− kc∗m (n− 1)eb
m(n)

(j) kcm(n) = kcm(n− 1)+ αm(n)eb
m(n)e∗

m+1(n)

Eb
m(n)

We note that we first use the coefficient kcm(n − 1) to compute the higher-order error
em+1(n) by (10.7.49) and then use that error to update the coefficient using (10.7.51). This
updating has a feedback-like structure that is sometimes referred to as error feedback form.
An a posteriori form of the RLS lattice-ladder algorithm with error feedback can be easily
obtained as shown in Problem 10.40. Simulation studies (Ling et al. 1986) have shown that
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when we use finite-precision arithmetic, the algorithms with direct updating of the lattice
coefficients have better numerical properties than the algorithms with indirect updating.

10.7.4 Givens Rotation–Based LS Lattice-Ladder Algorithms

We next show how to implement the LS lattice-ladder computations by using the Givens
rotation (see Section 8.6) with and without square roots. The resulting algorithms explore
the shift invariance of the input data to reduce the computational complexity from O(M2)

to O(M) operations (Ling 1991; Proudler et al. 1989).
We start by introducing the angle normalized errors

ẽm(n) �
√
em(n)εm(n) = em(n)

√
αm(n) (10.7.52)

ẽf
m(n) �

√
ef
m(n)εf

m(n) = ef
m(n)

√
αm(n− 1) (10.7.53)

ẽb
m(n) �

√
eb
m(n)εb

m(n) = eb
m(n)

√
αm(n) (10.7.54)

which are basically the geometric mean of the corresponding a priori and a posteriori errors
[see the discussion following (10.5.24) for the interpretation of αm(n) as an angle variable].
If we formulate the LS problem in terms of these errors, we do not need to distinguish
between a priori and a posteriori error algorithms.

Using the a priori lattice equation (10.7.47) for the forward predictor and the definitions
of the angle normalized errors, we obtain

ẽf
m+1(n) =

√
αm+1(n− 1)

αm(n− 1)
ẽf
m(n)− β∗m(n− 1)√

Eb
m(n− 2)

√
αm+1(n− 1)

αm(n− 1)

ẽb
m(n− 1)√
Eb

m(n− 2)

or by using (10.7.30)

ẽf
m+1(n) =

√
λEb

m(n− 2)

Eb
m(n− 1)

ẽf
m(n)− β∗m(n− 1)√

Eb
m(n− 2)

√
λ

ẽb
m(n− 1)√
Eb

m(n− 1)
(10.7.55)

If we define the quantities

c̃b
m(n) �

√
λEb

m(n− 1)

Eb
m(n)

(10.7.56)

s̃b
m(n) � ẽb

m(n)√
Eb

m(n)

(10.7.57)

k̃f
m(n) � − β∗m(n)√

Eb
m(n− 1)

= kf
m(n)

√
Eb

m(n− 1) (10.7.58)and

we obtain

ẽf
m+1(n) = c̃b

m(n− 1)ẽf
m(n)+√λs̃b

m(n− 1)k̃f
m(n− 1) (10.7.59)

which provides the order updating of the angle normalized forward prediction error.
To obtain the update equation for the normalized coefficient k̃f

m(n), we start with

βm(n) = λβm(n− 1)+ αm(n− 1)eb
m(n− 1)ef∗

m (n) (10.7.60)

and using (10.7.58), (10.7.53), and (10.7.54), we obtain

k̃f
m(n) = √λk̃f

m(n− 1)

√
λEb

m(n− 2)

Eb
m(n− 1)

− ẽb∗
m (n− 1)√
Eb

m(n− 1)
ẽf
m(n)
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or finally

k̃f
m(n) = √λc̃b

m(n− 1)k̃f
m(n− 1)− s̃b∗

m (n− 1)ẽf
m(n) (10.7.61)

with the help of (10.7.56) and (10.7.57).
Using the a priori lattice equation (10.7.48) for the backward predictor and the defini-

tions of the angle normalized errors, we obtain

ẽb
m+1(n) =

√
αm+1(n)

αm(n− 1)
ẽb
m(n− 1)− βm(n− 1)√

Ef
m(n− 1)

√
αm+1(n)

αm(n− 1)

ẽf
m(n)√

Ef
m(n− 1)

ẽb
m+1(n) =

√
λEf

m(n− 1)

Ef
m(n)

ẽb
m(n− 1)− βm(n− 1)√

Ef
m(n− 1)

√
λ

ẽf
m(n)√
Ef

m(n)

(10.7.62)or

by using (10.7.29). If we define the quantities

cf
m(n) � λEf

m(n− 1)

Ef
m(n)

(10.7.63)

s̃f
m(n) � ẽf

m(n)√
Ef

m(n)

(10.7.64)

k̃b
m(n) � − βb

m(n)√
Eb

m(n)

= kb
m(n)

√
Ef

m(n) (10.7.65)and

we obtain

ẽb
m+1(n) = c̃f

m(n)ẽb
m(n− 1)+√λs̃f

m(n)k̃b∗
m (n− 1) (10.7.66)

which provides the update equation for the angle normalized backward prediction error.
The updating of k̃b

m(n) is given by

k̃b∗
m (n) = √λc̃f

m(n)k̃b∗
m (n− 1)− s̃f∗

m (n)ẽb
m(n− 1) (10.7.67)

and can be easily obtained, like (10.7.61), by combining (10.7.60) with (10.7.63) through
(10.7.65).

Similar updatings can be easily derived for the ladder part of the filter. Indeed, using
(10.7.49), the definitions of the angle normalized errors, and (10.7.30), we have

ẽm+1(n) =
√

λEb
m(n− 1)

Eb
m(n)

ẽm(n)− βc∗
m (n− 1)√

Eb
m−1(n− 1)

√
λ

ẽb
m(n)√
Eb

m(n)

ẽm+1(n) = c̃b
m(n)ẽm(n)−√λs̃b

m(n)k̃c∗m (n− 1) (10.7.68)or

k̃cm(n) � βc
m(n)√
Eb

m(n)

= kcm(n)

√
Eb

m(n) (10.7.69)where

is a normalized ladder coefficient. This coefficient can be updated by using the recursion

k̃cm(n) = √λc̃b
m(n)k̃cm(n− 1)+ s̃b

m(n)ẽ∗m(n) (10.7.70)

which can be obtained, like (10.7.61) and (10.7.67), by using (10.7.45) and related defini-
tions.

If we define the normalized energies

Ẽf
m(n) �

√
Ef

m(n) (10.7.71)

Ẽb
m(n) �

√
Eb

m(n) (10.7.72)and
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we can easily show, using (10.7.41) and (10.7.42), that

Ẽf
m(n) = √λc̃f

m(n)Ẽf
m(n− 1)+ s̃f

m(n)ẽf∗
m (n) (10.7.73)

Ẽb
m(n) = √λc̃b

m(n)Ẽb
m(n− 1)+ s̃b

m(n)ẽb∗
m (n) (10.7.74)and

which provide time updates for the normalized minimum energies. However, the following
recursions

Ẽf
m(n) = {λ[Ẽf

m(n− 1)]2 + |ẽf
m(n)|2}1/2 (10.7.75)

Ẽb
m(n) = {λ[Ẽb

m(n− 1)]2 + |ẽb
m(n)|2}1/2 (10.7.76)

obtained from (10.7.41) and (10.7.42), provide more convenient updatings.
We now have a complete formulation of the LS lattice-ladder recursions using angle

normalized errors. To see the meaning and significance of these recursions, we express them
in matrix form as[

ẽf
m+1(n)

k̃f
m(n)

]
=
[
c̃b
m(n− 1) s̃b

m(n− 1)

−s̃b∗
m (n− 1) c̃b

m(n− 1)

][
ẽf
m(n)√
λk̃f

m(n− 1)

]
(10.7.77)

[
ẽb
m+1(n)

k̃b∗
m (n)

]
=
[
c̃f
m(n) s̃f

m(n)

−s̃f∗
m (n) c̃f

m(n)

][
ẽb
m(n− 1)√
λk̃b∗

m (n− 1)

]
(10.7.78)

[
ẽm+1(n)

k̃c∗m (n)

]
=
[
c̃b
m(n) −s̃b

m(n)

s̃b∗
m (n) c̃b

m(n)

][
ẽm(n)√
λk̃c∗m (n− 1)

]
(10.7.79)

where we see that the updating of the forward predictor parameters and the ladder param-
eters involves the same matrix delayed by one sample. The different position of the minus
sign, due to the different sign used in the definitions of k̃f

m(n) and k̃cm(n), is immaterial.
Furthermore, it is straightforward to show that

|c̃f
m(n)|2 + |s̃f

m(n)|2 = 1 (10.7.80)

|c̃b
m(n)|2 + |s̃b

m(n)|2 = 1 (10.7.81)and

which imply that the matrices in (10.7.77) through (10.7.79) are the Givens rotation matrices.
Therefore, we have obtained a formulation of the LS lattice-ladder algorithm that updates
the angle normalized errors and a set of normalized lattice-ladder coefficients using the
Givens rotations. Using (10.7.76) and definitions of c̃b

m(n) and s̃b
m(n), we can show that[

Ẽb
m(n)

0

]
=
[
c̃b
m(n) s̃b∗

m (n)

−s̃b
m(n) c̃b

m(n)

][√
λẼb

m(n− 1)

ẽb
m(n)

]
(10.7.82)

which shows that we can use the BLP Givens rotation to update the normalized energy
Ẽb

m(n). A similar transformation can be obtained for Ẽf
m(n). However, the energy updatings

are usually performed using (10.7.75) and (10.7.76).
The square root–free version of the Givens LS lattice-ladder filter is basically a simple

modification of the error feedback form of the a priori LS lattice-ladder algorithm. Indeed,
using (10.7.50), we have

kcm(n) = λEb
m(n− 1)

Eb
m(n)

kcm(n− 1)+ αm(n)eb
m(n)

Eb
m(n)

e∗m(n)

or if we define the quantities

cb
m(n) � λEb

m(n− 1)

Eb
m(n)

=
∣∣∣c̃b

m(n)

∣∣∣2 (10.7.83)

sb
m(n) � αm(n)eb

m(n)

Eb
m(n)

(10.7.84)and



February 7, 2005 13:23 e56-ch10 Sheet number 90 Page number 588 black

588

chapter 10
Adaptive Filters

kcm(n) = cb
m(n)kcm(n− 1)+ sb

m(n)e∗m(n) (10.7.85)we obtain

which provides the required updating for the ladder parameters.
Similarly, using the error feedback a priori updatings for the lattice parameters, we

obtain the recursions

kf
m(n) = cb

m(n− 1)kf
m(n− 1)− sb

m(n− 1)ef∗
m (n) (10.7.86)

kb
m(n) = cf

m(n)kb
m(n− 1)− sf

m(n)eb∗
m (n− 1) (10.7.87)and

cf
m(n) � λEf

m(n− 1)

Ef
m(n)

= |c̃f
m(n)|2 (10.7.88)where

sf
m(n) � αm(n− 1)ef

m(n)

Ef
m(n)

(10.7.89)and

are the forward rotation parameters. These recursions constitute the basis for the square
root–free Givens LS lattice-ladder algorithm.

Table 10.18 provides the complete computational organizations of the Givens LS
lattice-ladder algorithms with and without square roots. The square root algorithm is ini-

TABLE 10.18

Summary of the Givens LS lattice-ladder adaptive filter algorithms.

Equation Square root form Square root–free form

Forward rotation parameters

(a) Ẽf
m(n) = {λ[Ẽf

m(n− 1)]2 + |ẽf
m(n)|2}1/2 Ef

m(n) = λEf
m(n− 1)+ αm(n− 1)|ef

m(n)|2

(b) c̃f
m(n) =

√
λẼf

m(n− 1)

Ẽf
m(n)

cf
m(n) = λEf

m(n− 1)

Ef
m(n)

(c) s̃f
m(n) = ẽf

m(n)

Ẽf
m(n)

sf
m(n) = αm(n− 1)ef

m(n)

Ef
m(n)

Backward Rotation Parameters

(d) Ẽb
m(n) = {λ[Ẽb

m(n− 1)]2 + |ẽb
m(n)|2}1/2 Eb

m(n) = λEb
m(n− 1)+ αm(n)|eb

m(n)|2

(e) c̃b
m(n) =

√
λẼb

m(n− 1)

Ẽb
m(n)

cb
m(n) = λEb

m(n− 1)

Eb
m(n)

(f ) s̃b
m(n) = ẽb

m(n)

Ẽb
m(n)

sb
m(n) = αm(n)eb

m(n)

Eb
m(n)

Forward predictor rotator

(g) ẽf
m+1(n) = c̃b

m(n− 1)ẽf
m(n)+√λs̃b

m(n− 1)k̃f
m(n− 1) ef

m+1(n) = ef
m(n)+ kf∗

m (n− 1)eb
m(n− 1)

(h) k̃f
m(n) = √λc̃b

m(n− 1)k̃f
m(n− 1)− s̃b∗

m (n− 1)ẽf
m(n) kf

m(n) = cb
m(n− 1)kf

m(n− 1)− sb
m(n− 1)ef∗

m (n)

Backward predictor rotator

(i) ẽb
m+1(n) = c̃f

m(n)ẽb
m(n− 1)+√λs̃f

m(n)k̃b∗
m (n− 1) eb

m+1(n) = eb
m(n− 1)+ kb∗

m (n− 1)ef
m(n)

(j) k̃b∗
m (n) = √λc̃f

m(n)k̃b∗
m (n− 1)− s̃f∗

m (n)ẽb
m(n− 1) kb

m(n) = cf
m(n)kb

m(n− 1)− sf
m(n)eb∗

m (n− 1)

Filter rotator

(k) ẽm+1(n) = c̃b
m(n)ẽm(n)−√λs̃b

m(n)k̃c∗m (n− 1) em+1(n) = em(n)− kc∗m (n− 1)eb
m(n)

(l) k̃cm(n) = √λc̃b
m(n)k̃cm(n− 1)+ s̃b

m(n)ẽ∗m(n) kcm(n) = cb
m(n)kcm(n− 1)+ sb

m(n)e∗m(n)
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tialized as usual with Ef
m(−1) = Eb

m(−1) = δ > 0, ẽf
0(n) = ẽb

0(n) = x(n), ẽ0(n) = y(n),
α0(n) = 1, and all other variables set to zero. The square root–free algorithm is initialized
as the a priori algorithm with error feedback. Figure 10.39 shows a single stage of the LS
lattice-ladder filter based on Givens rotations with square roots.

F

C

B

B z−1

z−1

F

e~m(n)f

e~m(n)b
e~m +1(n)b

e~m +1(n)e~m(n)

c~m(n)
f

s~m(n)
f

c~m(n)
b

s~m(n)b

c~m(n − 1)
b

s~m(n − 1)
b

e~m +1(n)
f

FIGURE 10.39
Block diagram representation of the Givens RLS lattice-ladder stage. Circles denote
computing elements that calculate the rotation parameters and squares denote
computing elements that perform the rotations.

10.7.5 Classification of RLS Algorithms for FIR Filtering

Every exact RLS algorithm discussed in this section consists of two parts: a part that
computes the LS forward and backward predictors of the input signal and a part that uses
information from the linear prediction part to compute the LS filter. In all cases, information
flows from the prediction part to the filtering part, but not vice versa. Therefore, all critical
numerical operations take place in the linear prediction section.

For direct-form structures, the prediction problems facilitate the fast computation of
the RLS gain vectors.

In the case of lattice-ladder structures, the lattice part (which again solves the linear
prediction problem) decorrelates (or orthogonalizes in the LS sense) the input signal vector
and creates an orthogonal base consisting of the backward prediction errors {eb

m(n)}M−1
0 .

This orthogonal basis is used by the ladder part to form the LS filtering error. Essentially,
the LS lattice part facilitates the triangular UDL decomposition of the inverse correlation
matrix R̂−1(n) or the Gram-Schmidt orthogonalization of the columns of data matrix X(n).
This property makes the RLS lattice-ladder algorithm order-recursive, like its minimum
MSE counterpart (see Section 7.3).

The QRD-RLS lattice-ladder algorithms also consist of a lattice part that solves the
linear prediction problem and a ladder part that uses information from the lattice to form the
LS filtering estimate. The LS lattice produces the triangularization of the inverse correlation
matrix R̂−1(n) whereas the QRD LS lattice produces the upper triangular Cholesky factor
of R̂(n) by applying an orthogonal transformation to data matrix X(n).

The correspondence of these algorithms to their counterparts for RLS array processing,
discussed in Section 10.6, is summarized in Figure 10.40.
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Input data
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Operations
per time update

O(M2)

O(M )

General

Shift-invariant

RLS
algorithms

Conventional
RLS

Fast direct
form:

FK, FAEST, FTF

Square root
RLS

Fast
LS lattice

QR 
decomposition

RLS

Fast QR
LS lattice

FIGURE 10.40
Classification of RLS algorithms for array processing and FIR filtering.

It is interesting to note that the RLS lattice-ladder algorithms with error feedback are
identical in form to the square root–free Givens rotation–based QRD-RLS lattice-ladder
algorithms. This similarity explains the excellent numerical properties of both structures.

The RLS lattice-ladder algorithms (both UDLH -decomposition based and QR-
decomposition based) share the following highly desirable characteristics:

• Good numerical properties that originate from the square root decomposition (Cholesky
or QR) part of the algorithms.

• Good convergence properties, which are inherited from the exact LS minimization per-
formed by all algorithms.

• Modularity and regularity that make possible their VLSI and multiprocessing implemen-
tation.

It has been shown (Ljung and Ljung 1985) that all RLS lattice-ladder algorithms are nu-
merically stable for λ < 1. However, they differ in terms of numerical accuracy. It turns
out that the lattice-ladder algorithms with error feedback (which are basically equivalent to
the square root–free QRD lattice ladder) and the QRD lattice-ladder algorithms have the
best numerical accuracy.

10.8 TRACKING PERFORMANCE OF ADAPTIVE ALGORITHMS

Tracking of a time-varying system is an important problem in many areas of application.
Consider, for example, a digital communications system in which the channel characteristics
may change with time for various reasons. If we want to incorporate an echo canceler in
such a system, then clearly the echo canceler must monitor the changing impulse response
of the echo path so that it can generate an accurate replica of the echo. This will require the
adaptive algorithm of an echo canceler to possess an acceptable tracking capability. Similar
situations arise in adaptive equalization, adaptive prediction, adaptive noise canceling, and
so on. In all these applications, adaptive filters are forced to operate in a nonstationary SOE.
In this section, we examine the ability and performance of the LMS and RLS algorithms to
track the ever-changing minimum point of the error surface.

As discussed earlier, the tracking mode is a steady-state operation of the adaptive
algorithm, and it follows the acquisition mode, which is a transient phenomenon. Therefore,
the algorithm must acquire the system parameters before tracking can commence. This has
two implications. First, the rate of convergence is generally not related to the tracking
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behavior, and as such, we analyze the tracking behavior when the number of iterations
(or steps) is relatively large. Second, the time variation of the parameter change should be
small enough compared to the rate of convergence that the algorithm can perform adequate
tracking; otherwise, it is constantly acquiring the parameters.

10.8.1 Approaches for Nonstationary SOE

To effectively track a nonstationary SOE, adaptive algorithms should use only local statis-
tics. There are three practical ways in which this can be achieved.

Exponentially growing window

In this approach, the current data are artificially emphasized by exponentially weighting
past data values, as shown in Figure 10.41(a). The error function that is minimized is given
by

E(n) =
n∑

j=0

λn−j |y(j)− cH x(j)|2 = λE(n− 1)+ |y(n)− cH x(n)|2 (10.8.1)

where 0 < λ < 1. Clearly, this is the cost function we used in the development of the RLS
algorithm, given in Table 10.6, in which λ is termed the forgetting factor. The effective
window length is given by

Leff �

∞∑
n=0

λn

λ0
= 1

1− λ
(10.8.2)

Hence for good tracking performance λ should be in the range 0.9 ≤ λ < 1. Note that
λ = 1 results in a rectangularly growing window that uses global statistics and hence will
not be able to track parameter changes. Thus the RLS algorithm with exponential forgetting
is capable of using the local information needed to adapt in a nonstationary SOE.

j

j

j

n

n + 1 n + 1

n + 2 n + 2

0

0

0

(a) Exponentially growing window

j

j

j

n0

0

0

(b) Fixed-length sliding window

L

L

L

l

l

l

n− j

n+1− j

n+2− j

FIGURE 10.41
Illustration of exponentially growing and fixed-length sliding windows.
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Fixed-length sliding window

The basic feature of this approach is that the parameter estimates are based only on a
finite number of past data values, as shown in Figure 10.41(b). Let us consider a rectangular
window of fixed length L > M . Then the cost function that is minimized is given by

E(n,L) �
n∑

j=n−L+1

|y(j)− cH x(j)|2 (10.8.3)

When a new data value atn+1 is added to the sum in (10.8.3), the old data value is discarded,
that is, all old data values beyond n−L+ 1 are discarded. Thus the active number of data
values is always a constant equal to L, which makes this as a constant-memory adaptive
algorithm. By following the steps given for the RLS adaptive filter in Section 10.5, it is
possible to derive a recursive algorithm to determine the filter c(n) that minimizes the error
function in (10.8.3).

Let c{n−L}(n − 1) denote the estimate of c(n − 1) based on L data values between
n − L and n − 1. After the new data value at n is observed, the RLS algorithm in Table
10.6 is applicable with λ = 1 and with obvious extension of notation. Hence we obtain the
algorithm

c{n−L}(n) = c{n−L}(n− 1)+ g{n−L}(n)e∗(n) (10.8.4)

e(n) = y(n)− cH{n−L}(n− 1)x(n) (10.8.5)

g{n−L}(n) = ḡ{n−L}(n)
α{n−L}(n)

(10.8.6)

ḡ{n−L}(n) = P{n−L}(n− 1)x(n) (10.8.7)

α{n−L}(n) = 1+ ḡH{n−L}(n)x(n) (10.8.8)

P{n−L}(n) = P{n−L}(n− 1)− g{n−L}(n)ḡH{n−L}(n) (10.8.9)

The above algorithm is based on L+ 1 data values. To maintain the data window at fixed
length L, we have to discard the observation at n−L. By using the matrix inversion lemma
given in Appendix A, it can be shown that (see Problem 10.51)

c{n−L+1}(n) = c{n−L}(n)− g{n−L+1}(n)e∗(n− L) (10.8.10)

e(n− L) = y(n− L)− cH{n−L}(n)x(n− L) (10.8.11)

g{n−L+1}(n) = ḡ{n−L+1}(n)
α{n−L+1}(n)

(10.8.12)

ḡ{n−L+1}(n) = P{n−L}(n)x(n− L) (10.8.13)

α{n−L+1}(n) = 1− ḡH{n−L+1}(n)x(n− L) (10.8.14)

P{n−L+1}(n) = P{n−L}(n)+ g{n−L+1}(n)ḡH{n−L+1}(n) (10.8.15)

The overall algorithm for the fixed-memory rectangular window adaptive algorithm is given
by (10.8.4) through (10.8.15), which recursively update c{n−L}(n−1) to c{n−L+1}(n). Thus,
this algorithm can adapt to the nonstationary SOE using the local information. The fixed-
length sliding-window RLS algorithm can be implemented by using a combination of two
prewindowed RLS algorithms (Manolakis et al. 1987).

Evolutionary model—Kalman filter

In the first two approaches, adaptation in the nonstationarity SOE was obtained through
the local information, either by discarding old data or by deemphasizing it. In the third
approach, we assume that we have a statistical model that describes the nonstationarity
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of the SOE. This model is in the form of a stochastic difference equation together with
appropriate statistical properties. This leads to the well-known Kalman filter formulation
in which we assume that the parameter variations are modeled by

c(n) = �(n)c(n− 1)+ υ(n) (10.8.16)

where υ(n) is a random vector with zero mean and correlation matrix �(n), and �(n) is
the state-transition matrix known for all n. The desired signal y(n) is modeled as

y(n) = cH (n)x(n)+ ε(n) (10.8.17)

where ε(n) is the a posteriori estimation error assumed to be zero-mean with variance σ 2
ε .

Thus in this formulation, the parameter vector c(n) acts as the state of a system while the
input data vector x(n) acts as the time-varying output vector. Now the best linear unbiased
estimate ĉ(n) of c(n) based on past observations {y(i)}ni=0 can be obtained by using the
Kalman filter equations (Section 7.8). These recursive equations are given by

ĉ(n) = �(n)ĉ(n− 1)+ g(n)[y(n)− ĉH (n− 1)�H (n)x(n)] (10.8.18)

g(n) = �(n)P(n− 1)x(n)
σ 2

ε + xH (n)P(n− 1)x(n)
(10.8.19)

P(n) = �(n)P(n− 1)�H (n)+�(n)

−�(n)P(n− 1)
x(n)xH (n)

σ 2
ε + xH (n)P(n− 1)x(n)

P(n− 1)�H (n)

(10.8.20)

where g(n) is the Kalman gain matrix and P(n) is the error covariance matrix. This approach
implies that if the time-varying parameters are modeled as state equations, then the Kalman
filter rather than the adaptive filter is a proper solution.

Furthermore, it can be shown that the Kalman filter has a close similarity to the RLS
adpative filters if we make the following appropriate substitutions:

Exponential memory: If we substitute

�(n) = I σ 2
ε = λ �(n) = 1− λ

λ
[I− g(n)xH (n)]P(n− 1) (10.8.21)

then we obtain the exponential memory RLS algorithm given in Table 10.6.
Rectangularly growing memory: If we substitute

�(n) = I σ 2
ε = 1 �(n) = 0 (10.8.22)

then we obtain the rectangularly growing memory RLS algorithm.

10.8.2 Preliminaries in Performance Analysis

In Sections 10.4 and 10.5.4, we developed and analyzed the LMS and RLS algorithms
in stationary environments, respectively. However, these algorithms are generally used
in applications (e.g., modems) that are intended to operate continuously in SOE whose
characteristics change with time. Therefore, we need to discuss the performance of these two
widely used algorithms in such situations. Although we provided various adaptive filtering
approaches for time-varying environments above, we now discuss, in the remainder of this
section, the ability of these two algorithms to track time-varying parameters. We provide
both analytical results, assuming a model of parameter variation, and experimental results,
using simulations.

A popular approach for this analytical assessment is to assume a first-order AR model
with finite variance [that is we set �(n) = ρI in (10.8.16)]. Although higher-order models
are also possible, only a few results on the tracking performance using these models are
currently available. It is ironic that most analytical results on the tracking performance have
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been obtained for the random-walk model (a special case of the first-order AR model),
which is unrealistic because of the infinite variance. A tutorial review of the latest results
for the general case and additional references are available in Macchi (1996).

In our analysis of tracking characteristics of the LMS and RLS algorithms, we use
the first-order AR model and discuss its effect on the tracking performance. The closed-
form results will be given using the random-walk model and confirmed using simulated
experiments.

Analysis setup

In the tracking analysis, it is desirable to use the a priori adaptive filter. Hence we
assume that the desired response is generated by the following filter model

†

y(n) = cHo (n− 1)x(n)+ v(n) (10.8.23)

where v(n) is assumed to be WGN(0, σ 2
v) with σ 2

v <∞. The random processes x(n) and
v(n) are assumed to be independent and stationary. The variation of co(n) is modeled by
the first-order AR (or Markov) process

co(n) = ρco(n− 1)+ ψ(n) (10.8.24)

with 0 < ρ < 1 and creates the nonstationarity of the SOE. The quantity ψ(n) is the
uncertainty in the model and assumed to be independent of x(n) and v(n), with mean
E{ψ(n)} = 0 and correlation E{ψ(n)ψH (n)} = Rψ . Tracking is generally achievable if
ρ is close to 1. The random-walk model is obtained by using ρ = 1 in (10.8.24).

Conjugate transposing and premultiplying both sides of (10.8.23) by x(n), taking the
expectation, and using independence between x(n) and v(n), we obtain

Rco(n− 1) = d(n) (10.8.25)

Hence, co(n− 1) is the optimum a priori filter and

eo(n) = y(n)− cHo (n− 1)x(n) = v(n) (10.8.26)

is the optimum a priori error. If Rψ = 0 and ρ = 1, we have co(n) = co for all n, and
therefore y(n) is wide-sense stationary (WSS). In this case, we have a stationary environ-
ment, and the goal of the adaptive filter is to find the optimum filter co. For Rψ �= 0, the
adaptive filter should find and track the optimum a priori filter co(n). This setup, which is
widely used to analyze the properties of adaptive algorithms, is illustrated in Figure 10.42.

Assumptions

To analyze the tracking performance of adaptive algorithms, we use the assumptions
discussed elsewhere and repeated below for convenience.

A1 The sequence of input data vectors x(n) is WGN(0,R).
A2 The desired response y(n) can be modeled as

y(n) = cHo (n− 1)x(n)+ eo(n) (10.8.27)

where eo(n) is WGN(0, σ 2
o).

A3 The time variation of co(n) is described by

co(n) = ρco(n− 1)+ ψ(n) (10.8.28)

where 0 ≤ ρ ≤ 1 and ψ(n) is WGN(0,RC).
A4 The random sequences x(n), eo(n), and ψ(n) are mutually independent.

Through these assumptions, we want to stress that the nonstationarity of the SOE is created
solely by co(n) and not by x(n), which is WSS.

†
We use this model to make a fair comparison between the adaptive and the optimum filter.
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c(n − 1)r

_

z−1

co(n − 1)

co(n − 1)

c(n − 1)

x(n) e(n)

y(n)

v(n) = eo(n)

FIGURE 10.42
Block diagram of the setup and
model used for the analysis of
adaptive algorithms.

Although we provide analysis for (10.8.27), many results are given for the random walk
model (ρ = 1). The case 0 < ρ < 1, which is straightforward but complicated, is discussed
in Solo and Kong (1995). Before we delve into this analysis, we discuss criteria that are
used for evaluating the tracking performance.

Degree of nonstationarity

To determine whether an adaptive algorithm can adequately track the changing SOE,
one needs to define the speed of variation of the statistics of the adaptive filter environment.
This speed is quantified in terms of the degree of nonstationarity (DNS), introduced in
Macchi (1995, 1996), and is defined by

η(n) �

√
E{|yo,incr(n)|2}

Po(n)
(10.8.29)

yo,incr(n) = [co(n)− co(n− 1)]H x(n) (10.8.30)where

is the output of the incremental filter. The numerator is the power introduced by the variation
of the optimum filter, and the denominator is the MMSE, which in the context of (10.8.26)
is equal to the power of the output noise. Assuming ρ = 1 in (10.8.28), we see that (10.8.30)
is given by

yo,incr(n) = �H x(n)

and hence the numerator in (10.8.29) is given by

E{|yo,incr(n)|2} = E{�H x(n)xH (n)�} = tr[E{�H x(n)xH (n)�}]
= tr[E{��H x(n)xH t}] = tr[E{��H }E{x(n)xH }]
= tr[RCR] = tr[RRC ]

(10.8.31)

where we have used the independence assumption A4. Substituting (10.8.31) in (10.8.29),
we obtain

η(n) �
√

tr[RRC ]
Po(n)

(10.8.32)

Smaller values of η (� 1) imply that the adaptive algorithm can track time variations of
the nonstationary SOE. On the contrary, if η > 1, then the statistical variations of the
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SOE are too fast for the adaptive algorithm to keep up with the SOE and lead to massive
misadjustment errors. In such situations, an adaptive filter should not be used.

Mean square deviation (MSD)

We defined the MSD D(n) in (10.2.29) as a performance measure for adaptive filters
in the steady-state environment. It is also used for measuring the tracking performance.
Consider the coefficient error vector c̃(n), which can be written as

c̃(n) = c(n)− co(n)

= [c(n)− E{c(n)}] + [E{c(n)} − co(n)] (10.8.33)

� c̃1(n)+ c̃2(n) (10.8.34)

where c̃1(n) is the fluctuation of the adaptive filter parameter vector about its mean (estima-
tion error) and c̃2(n) is the bias of c(n) with respect to the true vector co(n) (systematic or
lag error). Using the independence assumption of the previous section that x(n) and c(n−1)
are statistically independent, we can show that (Macchi 1996)

E{c̃H1 (n)c̃2(n)} = 0 (10.8.35)

which by using (10.2.29) and (10.8.34) leads to

D(n) = D1(n)+D2(n) (10.8.36)

The first MSD term is due to the parameter estimation error and is called the estimation
variance. The second MSD term is due to the parameter lag error and is termed lag variance,
and its presence indicates the nonstationary environment.

Misadjustment and lowest excess MSE

The second performance measure, defined in (10.2.38), is the (a priori) misadjustment
M(n), which is the ratio of the excess MSE Pex(n) to the MMSE Po(n). The a priori excess
MSE is given by

Pex(n) = E{|c̃H (n− 1)x(n)|2} = E{|c̃H1 (n− 1)x(n)+ c̃H2 (n− 1)x(n)|2} (10.8.37)

which under the independence assumption and (10.8.35) can be written as

Pex(n) = Pex,1(n)+ Pex,2(n) (10.8.38)

where the first term, Pex,1(n), is excess MSE due to estimation error and is termed the
estimation noise while the second term, Pex,2(n), is the excess MSE due to lag error and is
called the lag noise. Therefore, we can also write the misadjustment M(n) as

M(n) =M1(n)+M2(n) (10.8.39)

where M1(n) is the estimation misadjustment and M2(n) is the lag misadjustment.
In the context of the first-order Markov model, the best performance obtained by any

a priori adaptive filter occurs if c(n) = ρco(n − 1). This observation makes possible the
computation of a lower bound for the excess MSE of any a priori adaptive algorithm. From
(10.8.34) and (10.8.24), we have

c̃(n) = c(n)− co(n) = [c(n)− ρco(n− 1)] − ψ(n)

� ĉ(n)− ψ(n)
(10.8.40)

and hence

Pex(n) = E{|c̃H (n− 1)x(n)|2}
= E{|ĉH (n− 1)x(n)− ψH (n− 1)x(n)|2} (10.8.41)

= E{|ĉH (n− 1)x(n)|2} + E{|ψH (n− 1)x(n)|2}
+ 2E{ĉH (n− 1)x(n)xH (n)ψ(n− 1)} (10.8.42)



February 7, 2005 13:23 e56-ch10 Sheet number 99 Page number 597 black

597

section 10.8
Tracking Performance of
Adaptive Algorithms

Since the term ĉ(n) does not depend on ψ(n) and since the random sequences x(n) and
ψ(n− 1) are assumed independent, the last term in (10.8.42) is zero. Hence,

Pex(n) ≥ E{|ψH (n− 1)x(n)|2} (10.8.43)

which provides a lower bound for the excess MSE of any a priori adaptation algorithm.
Because ψ(n) and x(n) are assumed independent, we obtain

E{|ψH (n− 1)x(n)|2} = tr(RRψ) (10.8.44)

Similarly, neglecting the dependence between x(n) and c̃(n− 1), we have

E{|c̃H (n− 1)x(n)|2} = tr[R�(n− 1)] (10.8.45)

which provides the a priori excess MSE. Furthermore, it can be shown that the DNS places
a lower limit on the misadjustment, that is,

M(n) = Pex(n)

Po(n)
≥ E{|ψH (n− 1)x(n)|2}

Po(n)
= tr(RRψ)

σ 2
v

= η2(n) (10.8.46)

10.8.3 LMS Algorithm

Using the LMS algorithm (10.4.12), the error vector in (10.8.34), and the Markov model in
(10.8.28) with ρ = 1, we can easily obtain

c̃(n) = [I− 2µx(n)xH (n)]c̃(n− 1)+ 2µx(n)e∗o(n)− ψ(n) (10.8.47)

which, compared to (10.4.15), has one extra input. Since x(n), eo(n), andψ(n) are mutually
independent, ψ(n) adds only an extra term σ 2

ψ I to the correlation of c̃(n).

Misadjustment. To determine the misadjustment, we perform orthogonal transforma-
tion of the correlation matrix of c̃(n). When we transform (10.4.28) to (10.4.30), using the
orthogonal transformation (10.4.29), the presence of the diagonal matrix σ 2

ψ I changes only

the diagonal components with the addition of the term σ 2
ψ . Indeed, we can easily show that

θk(n) = ρkθk(n− 1)+ 4µ2λkPex(n− 1)+ 4µ2Poλk + σ 2
ψ (10.8.48)

wherePo(n) = Po = σ 2
ν for large n. Clearly, (10.8.48) converges under the same conditions

as (10.4.40). At steady state we have

θk(∞) = ρkθk(∞)+ 4µ2λkPex(∞)+ 4µ2Poλk + σ 2
ψ (10.8.49)

or using (10.4.36), we have

θk(∞) = µ
Po + Pex(∞)

1− 2µλk

+ 1

4µλk

σ 2
ψ

1− 2µλk

(10.8.50)

which in conjunction with (10.4.55) and (10.4.56) gives

Pex(∞) = C(µ)

1− C(µ)
σ 2

ν +
1

4µ

D(µ)

1− C(µ)
σ 2

ψ (10.8.51)

D(µ) �
M∑
k=1

1

1− 2µλk

(10.8.52)where

If µλk � 1, we have C(µ) � µ tr(R) and D(µ) � M , which lead to

Pex(∞) � µσ 2
ν tr(R)+ 1

4µ
Mσ 2

ψ (10.8.53)

M (∞) � µ tr(R)+ 1

4µ
M

σ 2
ψ

σ 2
ν

(10.8.54)or
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Hence in the steady state, the misadjustment can be approximated by two terms. The first
term is estimation misadjustment, which increases with µ, while the second term is the
lag misadjustment, which decreases with µ. Therefore, an optimum value of µ exists that
minimizes M(∞), given by

µopt �
σψ

2σν

√
M

tr(R)
(10.8.55)

Mmin(∞) � σψ

σν

√
M tr(R) (10.8.56)or

MSD. To determine the MSD, consider (10.8.47). For small step size µ, the system
matrix [I − 2µx(n)xH (n)] is very close to the identity matrix. Hence using the direct
averaging method due to Kushner (1984), we can obtain a close solution of c̃(n) by solving
(10.8.47) in which the system matrix is replaced by its average [I− 2µR], that is,

c̃(n) = [I− 2µR]c̃(n− 1)+ 2µx(n)e∗o(n)− ψ(n) (10.8.57)

where we have kept the same notation. Taking the covariance of both sides of (10.8.57), we
obtain

�(n) = [I− 2µR]�(n− 1)[I− 2µR] + 4µ2σ 2
νR + Rψ (10.8.58)

The approximate steady-state solution of (10.8.58) is given by

R�+�R � 2µσ 2
νR + Rψ

2µ
(10.8.59)

where the second-order term 4µ2R�R is ignored for small values ofµ.After premultiplying
(10.8.59) by R−1, we obtain

�+ R−1�R � 2µσ 2
ν +

R−1Rψ

2µ
(10.8.60)

Taking the trace of (10.8.60) and using tr(R−1�R) = tr(�), we obtain

tr(�) � µMσ 2
ν +

tr(R−1Rψ)

4µ
(10.8.61)

By following the development in (10.8.28), it can be shown that (Problem 10.52) D(∞) =
tr(�). Hence

D(∞) � µMσ 2
ν +

tr(R−1Rψ)

4µ
(10.8.62)

As expected, the MSD has two terms: The estimation deviation is linearly proportional to
µ while the lag deviation is inversely proportional to µ. The optimum value of the step size
µ is obtained when both deviations are equal and is given by

µopt �
1

2

√
tr(R−1Rψ)

Mσ 2
ν

(10.8.63)

Dmin(∞) =
√
Mσ 2

ν tr(R−1Rψ) (10.8.64)or

EXAMPLE 10.8.1. To study the tracking performance of the LMS algorithm, we will simulate
a slowly time-varying SOE whose parameters follow an almost random-walk behavior. The
simulation setup is shown in Figure 10.42 and given by (10.8.27) and (10.8.28). The simulation
parameters are as follows:

co(n) model parameters: co(0) =
[
−0.8

0.95

]
M = 2 ρ = 0.999

ψ(n) ∼ WGN(0,Rψ) Rψ = (0.01)2I
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Signal x(n) parameters: x(n) ∼ WGN(0,R) R = I

Noise v(n) parameters: v(n) ∼ WGN(0, σ 2
v) σv = 0.1

For these values, the degree of nonstationarity from (10.8.32) is given by

η(n) =
√

tr[RRψ ]
σv

= 0.1414 < 1

which means that the LMS can track the time variations of the SOE.
Three different adaptations (slow, matched, and fast) of the LMS algorithm were designed.

Their adaptation results are shown in Figures 10.43 through 10.48. From (10.8.55) and (10.8.63),
the optimum performance is obtained when

µopt = 0.05

for which Mmin(∞) = 0.2 and Dmin(∞) = 0.002. Hence, the following values for µ were
selected for simulation:

Slow: µ = 0.01

Matched: µ = 0.1

Fast: µ = 0.3

Figure 10.43 shows the matched adaptation of parameter coefficients while Figure 10.44 shows
the resulting D(n) and M(n). Clearly, the LMS tracks the varying coefficients nicely with
expected small misregistration and deviation errors. Figure 10.45 shows the slow adaptation of
parameter coefficients while Figure 10.46 shows the resulting D(n) and M(n). In this case,
although the LMS algorithm tracks with bounded error variance, the tracking is not very good
and the resulting misregistration errors are large. Finally, Figure 10.47 shows the fast adaptation
of parameter coefficients while Figure 10.48 shows the resulting D(n) and M(n). In this case,
although the algorithm is able to keep track of the slowly varying coefficients, the resulting
variance is large and hence the estimation errors are large. Once again, the total errors are large
compared to those for the matched case.

10.8.4 RLS Algorithm with Exponential Forgetting

Consider again the model given in Figure 10.42 and described in the analysis setup.

Misadjustment. To determine the misadjustment in tracking, we first evaluate the ex-
cess MSE caused by lag, that is, by the deviation between E{c(n)} and the optimum a priori
filter co(n). Combining

c(n) = c(n− 1)+ R̂−1(n)x(n)e∗(n) (10.8.65)

e∗(n) = e∗o(n)− xH (n)[c(n− 1)− co(n− 1)] (10.8.66)with

and taking the expectation result in

E{c(n)} = E{c(n− 1)} + E{R̂−1(n)x(n)xH (n)}[E{c(n− 1)} − co(n− 1)] (10.8.67)

because the expectation of R̂−1(n)x(n)e∗o(n) vanishes. Using the approximationE{R̂−1(n)·
x(n)xH (n)} � (1− λ)I, we have

c̃lag(n) � λc̃lag(n)+ co(n− 1)− co(n) (10.8.68)

c̃lag(n) � λc̃lag(n− 1)− ψ(n) (10.8.69)or

for the random-walk (ρ = 1) model. The covariance matrix is

�lag(n) � λ2�lag(n− 1)+ Rψ (10.8.70)
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FIGURE 10.43
Matched adaptation of slowly time-varying parameters: LMS algorithm with
µ = 0.1.
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Learning curves of LMS algorithm with matched adaptation.
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FIGURE 10.45
Slow adaptation of slowly time-varying parameters: LMS algorithm with
µ = 0.01.
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Learning curves of LMS algorithm for slow adaptation.
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FIGURE 10.47
Fast adaptation of slowly time-varying parameters: LMS algorithm with
µ = 0.3.
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Learning curves of LMS algorithm for fast adaptation.
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and in steady state (assuming 0 < λ < 1)

�lag(∞) � 1

(1− λ)2
Rψ (10.8.71)

The lag excess MSE is

Plag(∞) = tr[R�(∞)] � 1

(1− λ)2
tr[RRψ ] � 1

2(1− λ)
tr[RRψ ] (10.8.72)

because (1− λ)2 = (1+ λ)(1− λ) � 2(1− λ) for λ � 1.
The excess MSE due to estimation is [(1− λ)/2]Mσ 2

ν, hence the total excess MSE is

Pex(∞) � 1− λ

2
Mσ 2

ν +
1

2(1− λ)
σ 2

ψ tr(R) (10.8.73)

if Rψ = σ 2
ψ I. Finally, the misadjustment is given by

M(∞) � 1− λ

2
M + σ 2

ψ tr(R)

2(1− λ)σ 2
ν

(10.8.74)

The first term in (10.8.74) is the estimation misadjustment, which is linearly proportional
to 1 − λ, while the second term is the lag misadjustment, which is inversely proportional
to 1− λ. The optimum value of λ is given by

λopt � 1− σψ

σν

√
1

M
tr(R) (10.8.75)

and the minimum misadjustment is given by

Mmin(∞) � σψ

σν

√
M tr(R) (10.8.76)

MSD. An analysis similar to the MSD development of the LMS algorithm can be done
to obtain

D(∞) � 1− λ

2
σ 2

ν tr(R−1)+ σ 2
ψ

2(1− λ)
(10.8.77)

λopt � 1− σψ

σν

√
1

tr(R−1)
(10.8.78)with

Dmin(∞) � σψσν

2

√
tr(R−1) (10.8.79)and

which again highlights the dependence of tracking abilities on λ.

EXAMPLE 10.8.2. To study the tracking performance of the RLS algorithm, we again simulate
the slowly time-varying SOE given in Example 10.8.1 whose parameters are repeated here:

co(n) model parameters: co(0) =
[
−0.8

0.95

]
M = 2 ρ = 0.999

ψ(n) ∼ WGN(0,Rψ) Rψ = (0.01)2I

Signal x(n) parameters: x(n) ∼ WGN(0,R) R = I

Noise v(n) parameters: v(n) ∼ WGN(0, σ 2
v) σv = 0.1

For these values, the degree of nonstationarity is η(n) = 0.1414, which means that the RLS
can track the time variations of the SOE.

Three different adaptations (slow, matched, and fast) of the RLS algorithm were designed.
Their adaptation results are shown in Figures 10.49 through 10.54. From (10.8.75) and (10.8.77),
the optimum misadjustment performance is obtained when

λopt = 0.9 with Mmin(∞) = 0.2
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while from (10.8.78) and (10.8.79), the optimum deviation performance is obtained when

λopt = 0.93 with Dmin(∞) = 0.007

Hence, the following values for λ were selected for simulation:

Slow: λ = 0.99

Matched: λ = 0.9

Fast: λ = 0.5

Figure 10.49 shows the matched adaptation of parameter coefficients while Figure 10.50 shows
the resulting D(n) and M(n). Clearly, the RLS tracks the varying coefficients nicely with
expected small misregistration and deviation errors. Figure 10.51 shows the slow adaptation of
parameter coefficients while Figure 10.52 shows the resulting D(n) and M(n). In this case,
although the RLS algorithm tracks with bounded error variance, the tracking is not very good
and the resulting misregistration errors are large. Finally, Figure 10.53 shows the fast adaptation
of parameter coefficients while Figure 10.54 shows the resulting D(n) and M(n). In this case,
although the algorithm is able to keep track of the slowly varying coefficients, the resulting
variance is large and hence the estimation errors are large. Once again, the total errors are large
compared to those for the matched case.

0 100 200 300 400 500
1.0

−0.5

0

Tracking of co,1(n)

Tracking of co,2(n)

0 100 200 300 400 500
0

0.5

1.0

n

n

c 1
(n

)
c 2

(n
)

co,1(n)
c1(n)

co,2(n)
c2(n)

FIGURE 10.49
Matched adaptation of slowly time-varying parameters: RLS algorithm with
λ = 0.9.

10.8.5 Comparison of Tracking Performance

When the optimum filter drifts like a random walk with small increment variance σ 2
ψ , the

tracking performance for the LMS algorithm is given by (10.8.54) and (10.8.62) while that
for the RLS algorithm is given by (10.8.74) and (10.8.77). Whether the LMS or the RLS
algorithm is better depends on matrices R and Rψ . A general comparison is difficult to
make, but some guidelines have been developed for particular cases. It has been shown that
(Haykin 1996)
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FIGURE 10.50
Learning curves of RLS algorithm for matched adaptation.
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FIGURE 10.51
Slow adaptation of slowly time-varying parameters: RLS algorithm with
λ = 0.99.
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FIGURE 10.52
Learning curves of RLS algorithm for slow adaptation.
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FIGURE 10.53
Fast adaptation of slowly time-varying parameters: RLS algorithm with
λ = 0.5.
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FIGURE 10.54
Learning curves of RLS algorithm for fast adaptation.

• When Rψ = σ 2
ψ I, then both the LMS and RLS algorithms produce essentially the same

minimum levels of MSD and misadjustment. However, this analysis is true only asymp-
totically and for slowly varying parameters (small σ 2

ψ ).
• When Rψ = αR where α is a constant, then the LMS algorithm produces smaller values

of the minimum levels of MSD and misadjustment than the RLS algorithm does.
• When Rψ = βR−1 where β is a constant, then the RLS algorithm is better than the

LMS algorithm in producing the smaller values of the minimum levels of MSD and
misadjustment.

In summary, we should state that in practice the comparison of the acquisition and track-
ing performance of LMS and RLS adaptive filters is a very complicated subject. Although
the previous analysis provides some insight only extensive simulations in the context of a
specific application can help to choose the appropriate algorithm.

10.9 SUMMARY

In this chapter we discussed the theory of operation, design, performance evaluation, imple-
mentation, and applications of adaptive filters. The most significant attribute of an adaptive
filter is its ability to incrementally adjust its coefficients so as to improve a predefined
criterion of performance over time.

We basically developed and analyzed two families of adaptive filtering algorithms:

• The family of LMS FIR adaptive filters, which are based on a stochastic version of the
steepest-descent optimization algorithm.

• The family of RLS FIR adaptive filters, which are based on a stochastic version of the
Newton-type optimization algorithms.
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Both types of approaches can be used to develop adaptive algorithms for direct-form and
lattice-ladder FIR filter structures.

For LMS adaptive filters we focused on direct-form structures because those are the
most widely used and studied. However, we briefly discussed transform-domain and sub-
band implementations because they offer a viable solution for applications that require
adaptive filters with very long impulse responses.

All RLS FIR adaptive filters discussed in this chapter exhibit identical performance if
they are implemented using infinite-precision arithmetic. However, they differ in terms of
computational complexity and performance under finite-word-length implementations. The
various types of RLS algorithms are summarized in Figure 10.40. We stress that algorithms
for array processing can be used for FIR filtering (shift-invariant input data vector), but
not vice versa. However, such a practice is not recommended because the computational
complexity is much higher. The LMS algorithm (Section 10.4), the CRLS algorithm (Section
10.5), and the QR decomposition–based algorithms (Section 10.6) are general and can be
used for both array processing and FIR filtering applications. In contrast, the fast RLS
algorithms in Section 10.7 can be used only for FIR filtering and prediction applications.
The steady-state performance of LMS and RLS algorithms in a stationary environment is
discussed in Sections 10.4 and 10.5, whereas their tracking performance in a nonstationary
environment is analyzed in Section 10.8.

The treatment of adaptive filters in this chapter has been quite extensive, in both number
of topics and depth. However, the following important topics have been omitted:

• IIR adaptive filters (Treichler et al. 1987; Johnson 1984; Shynk 1989; Regalia 1995; Netto
et al. 1995; Williamson 1998). Although adaptive IIR filters have the potential to offer the
same performance as FIR filters with less computational complexity, they are not widely
used in practical applications. The main reasons are related to the nonquadratic nature
of their performance error surface (see Section 6.2) and the additional stability problems
caused by the presence of poles in their system function.

• Adaptive filters using nonlinear filtering structures and neural networks (Grant and Mul-
grew 1995; Haykin 1996; Mathews 1991). The need for such filters arises in applications
involving nonlinear input-output relationships, nonlinear detectors (e.g., data equaliza-
tion), and non-Gaussian or impulsive noise. The optimization required in some of these
cases can be performed using genetic optimization algorithms (Tang et al. 1996).

• FIR direct-form and lattice-ladder LS adaptive filters for multichannel signals (Slock
1993; Ling 1993b; Carayannis et al. 1986).

PROBLEMS

10.1 Consider the process x(n) generated using the AR(3) model

x(n) = −0.729x(n− 3)+ w(n)

where w(n) ∼ WGN(0, 1). We want to design a linear predictor of x(n) using the SDA
algorithm. Let

ŷ(n) = x̂(n) = co,1x(n− 1)+ co,2x(n− 2)+ co,3x(n− 3)

(a) Determine the 3×3 autocorrelation matrix R of x(n), and compute its eigenvalues {λi}3i=1.

(b) Determine the 3× 1 cross-correlation vector d.
(c) Choose the step size µ so that the resulting response is overdamped. Now implement the

SDA

ck = [ck,1 ck,2 ck,3]T = ck−1 + 2µ(d− Rck−1)

and plot the trajectories of {ck.i}3i=1 as a function of k.
(d ) Repeat part (c) by choosing µ so that the response is underdamped.
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10.2 In the SDA algorithm, the index k is an iteration index and not a time index. However, we
can treat it as a time index and use the instantaneous filter coefficient vector ck to filter data at
n = k. This will result in an asymptotically optimum filter whose coefficents will converge to
the optimum one. Consider the process x(n) given in Problem 10.1.

(a) Generate 500 samples of x(n) and implement the asymptotically optimum filter. Plot the
signal ŷ(n).

(b) Implement the optimum filter co on the same sequence, and plot the resulting ŷ(n).
(c) Comment on the above two plots.

10.3 Consider the AR(2) process x(n) given in Example 10.3.1. We want to implement the Newton-
type algorithm for faster convergence using

ck = ck−1 − µR−1∇P(ck−1)

(a) Using a1 = −1.5955 and a2 = 0.95, implement the above method for µ = 0.1 and
c0 = 0. Plot the locus of ck,1 versus ck,2.

(b) Repeat part (a), using a1 = −0.195 and a2 = 0.95.
(c) Repeat parts (a) and (b), using the optimum step size for µ that results in the fastest

convergence.

10.4 Consider the adaptive linear prediction of an AR(2) process x(n) using the LMS algorithm in
which

x(n) = 0.95x(n− 1)− 0.9x(n− 2)+ w(n)

where w(n) ∼ WGN(0, σ 2
w). The adaptive predictor is a second-order one given by a(n) =

[a1(n) a2(n)]T .

(a) Implement the LMS algorithm given in Table 10.3 as a Matlab function

[c,e] = lplms(x,y,mu,M,c0).

which computes filter coefficients in c and the corresponding error in e, given signal x,
desired signal y, step size mu, filter order M, and the initial coefficient vector c0.

(b) Generate 500 samples of x(n), and obtain linear predictor coefficients using the above
function. Use step size µ so that the algorithm converges in the mean. Plot predictor
coefficients as a function of time along with the true coefficients.

(c) Repeat the above simulation 1000 times to obtain the learning curve, which is obtained
by averaging the squared error |e(n)|2. Plot this curve and compare its steady-state value
with the theoretical MSE.

10.5 Consider the adaptive echo canceler given in Figure 10.23. The FIR filter co(n) is given by

co(n) = (0.9)n 0 ≤ n ≤ 2

In this simulation, ignore the far-end signal u(n). The data signal x(n) is a zero-mean, unit-
variance white Gaussian process, and y(n) is its echo.

(a) Generate 1000 samples of x(n) and determine y(n). Use these signals to obtain a fourth-
order LMS echo canceler in which the step size µ is chosen to satisfy (10.4.40) and
c(0) = 0. Obtain the final echo canceler coefficients and compare them with the true ones.

(b) Repeat the above simulation 500 times, and obtain the learning curve. Plot this curve along
with the actual MSE and comment on the plot.

(c) Repeat parts (a) and (b), using a third-order echo canceler.
(d ) Repeat parts (a) and (b), using one-half the value of µ used in the first part.

10.6 The normalized LMS (NLMS) algorithm is given in (10.4.67), in which the effective step size
is time-varying and is given by µ̃/‖x(n)‖2, where 0 < µ̃ < 1.

(a) Modify the function firlms to implement the NLMS algorithm and obtain the function

[c,e] = nfirlms(x,y,mu,M,c0).
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(b) Choose µ̃ = 0.1 and repeat Problem 10.4. Compare your results in terms of convergence
speed.

(c) Choose µ̃ = 0.1 and repeat Problem 10.5(a) and (b). Compare your results in terms of
convergence speed.

10.7 Another variation of the LMS algorithm is called the sign-error LMS algorithm, in which the
coefficient update equation is given by

c(n) = c(n− 1)+ 2µ sgn[e(n)]x(n)

sgn [e(n)] =




1 Re[e(n)] > 0

0 Re[e(n)] = 0

−1 Re[e(n)] < 0

where

The advantage of this algorithm is that the multiplication is replaced by a sign change, and if µ
is chosen as a negative power of 2, then the multiplication is replaced by a shifting operation
that is easy and fast to implement. Furthermore, since sgn(x) = x/|x|, the effective step size
µ̃ is inversely proportional to the magnitude of the error.

(a) Modify the function firlms to implement the sign-error LMS algorithm and obtain the
function

[c,e] = sefirlms(x,y,mu,M,c0).

(b) Repeat Problem 10.4 and compare your results in terms of convergence speed.
(c) Repeat Problem 10.5(a) and (b) and compare your results in terms of convergence speed.

10.8 Consider an AR(1) process x(n) = ax(n− 1)+w(n), where w(n) ∼ WGN(0, σ 2
w). We wish

to design a one-step first-order linear predictor using the LMS algorithm

x̂(n) = â(n− 1) x(n− 1)

e(n) = x(n)− x̂(n)

â(n) = â(n− 1)+ 2µe(n) x(n− 1)

where µ is the adaptation step size.

(a) Determine the autocorrelation rx(l), the optimum first-order linear predictor, and the cor-
responding MMSE.

(b) Using the independence assumption, first determine and then solve the difference equation
for E{â(n)}.

(c) For a = ±0.95, µ = 0.025, σ 2
x = 1, and 0 ≤ n < N = 500, determine the ensemble

average of E{â(n)} using 200 independent runs and compare with the theoretical curve
obtained in part (b).

(d ) Using the independence assumption, first determine and then solve the difference equation
for P(n) = E{e2(n)}.

(e) Repeat part (c) for P(n) and comment upon the results.

10.9 Using the a posteriori error ε(n) = y(n)−cH (n)x(n), derive the coefficient updating formulas
for the a posteriori error LMS algorithm. Note: Refer to Equations (10.2.20) to (10.2.22).

10.10 Solve the interference cancelation problem described in Example 6.4.1, using the LMS algo-
rithm, and compare its performance to that of the optimum canceler.

10.11 Repeat the convergence analysis of the LMS algorithm for the complex case, using formula
(10.4.27) instead of (10.4.28).

10.12 Consider the total transient excess MSE, defined by

P
(total)
tr =

∞∑
n=0

Ptr(n)

in Section 10.4.3.
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(a) Show that P (total)
tr can be written as P

(total)
tr = λT (I− B)−1�θ(0), where �θ(0) is the

initial (i.e., at n = 0) deviation of the filter coefficients from their optimum setting.
(b) Starting with the formula in step (a), show that

P
(total)
tr = 1

4µ

M∑
i=1

�θi(0)

1− 2µλi

1−
M∑
i=1

µλi

1− 2µλi

(c) Show that if µλk � 1, then

P
(total)
tr � 1

4µ

M∑
i=1

�θi(0)

1− µ tr(R)
� 1

4µ

M∑
i=1

�θi(0)

which is formula (10.4.62), discussed in Section 10.4.3.

10.13 The frequency sampling structure for the implementation of an FIR filter H(z) =∑M−1
n=0 h(n)·

z−n is specified by the following relation

H(z) = 1− z−M

M

M−1∑
k=0

H(ej2πk/M)

1− ej2πk/Mz−1
� H1(z)H2(z)

where H1(z) is a comb filter with M zeros equally spaced on the unit circle and H2(z) is a
filter bank of resonators. Note that H̃ (k) � H(ej2πk/M), the DFT of {h(n)}M−1

0 , provides
coefficients of the filter. Derive an LMS-type algorithm to update these coefficients, and sketch
the resulting adaptive filter structure.

10.14 There are applications in which the use of a non-MSE criterion may be more appropriate. To
this end, suppose that we wish to design and study the behavior of an “LMS-like” algorithm
that minimizes the cost function P (k) = E{e2k(n)}, k = 1, 2, 3, . . . , using the model defined
in Figure 10.19.

(a) Use the instantaneous gradient vector to derive the coefficient updating formula for this
LMS-like algorithm.

(b) Using the assumptions introduced in Section 10.4.2 show that

E{c̃(n)} = [I− 2µk(2k − 1)E{e2(k−1)
o (n)}R]E{c̃(n− 1)}

where R is the input correlation matrix.
(c) Show that the derived algorithm converges in the mean if

0 < 2µ <
1

k(2k − 1)E{e2(k−1)
o (n)}λmax

where λmax is the largest eigenvalue of R.
(d ) Show that for k = 1 the results in parts (a) to (c) reduce to those for the standard LMS

algorithm.

10.15 Consider the noise cancelation system shown in Figure 10.6. The useful signal is a sinusoid
s(n) = cos(ω0n + φ), where ω0 = π/16 and the phase φ is a random variable uniformly
distributed from 0 to 2π . The noise signals are given by v1(n) = 0.9 v1(n − 1) + w(n) and
v2(n) = −0.75 v2(n− 1)+ w(n), where the sequences w(n) are WGN(0, 1).

(a) Design an optimum filter of length M and choose a reasonable value for Mo by plotting
the MMSE as a function of M .

(b) Design an LMS filter with Mo coefficients and choose the step size µ to achieve a 10
percent misadjustment.

(c) Plot the signals s(n), s(n)+ v1(n), v2(n), the clean signal eo(n) using the optimum filter,
and the clean signal elms(n) using the LMS filter, and comment upon the obtained results.
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10.16 A modification of the LMS algorithm, known as the momentum LMS (MLMS), is defined by

c(n) = c(n− 1)+ 2µe∗(n)x(n)+ α[c(n− 1)− c(n− 2)]
where |α| < 1 (Roy and Shynk 1990).

(a) Rewrite the previous equation to show that the algorithm has the structure of a low-pass
(0 < α < 1) or a high-pass (−1 < α < 0) filter.

(b) Explain intuitively the effect of the momentum term α[c(n− 1)− c(n− 2)] on the filter’s
convergence behavior.

(c) Repeat the computer equalization experiment in Section 10.4.4, using both the LMS and
the MLMS algorithms for the following cases, and compare their performance:

i. W = 3.1, µlms = µmlms = 0.01, α = 0.5.
ii. W = 3.1, µlms = 0.04, µmlms = 0.01, α = 0.5.

iii. W = 3.1, µlms = µmlms = 0.04, α = 0.2.
iv. W = 4, µlms = µmlms = 0.03, α = 0.3.

10.17 In Section 10.4.5 we presented the leaky LMS algorithm [see (10.4.88)]

c(n) = (1− αµ)c(n− 1)+ µe∗(n)x(n)

where 0 < α � 1 is the leakage coefficient.

(a) Show that the coefficient updating equation can be obtained by minimizing

P(n) = |e(n)|2 + α‖c(n)‖2

(b) Using the independence assumptions, show that

E{c(n)} = [I− µ(R + αI)]E{c(n− 1)} + µd

where R = E{x(n)xH (n)} and d = E{x(n)y∗(n)}.
(c) Show that if 0 < µ < 2/(α + λmax), where λmax is the maximum eigenvalue of R, then

lim
n→∞ E{c(n)} = (R + αI)−1d

that is, in the steady state E{c(∞)} �= co = R−1d.

10.18 There are various communications and speech signal processing applications that require the
use of filters with linear phase (Manolakis et al. 1984). For simplicity, assume that m is even.

(a) Derive the normal equations for an optimum FIR filter that satisfies the constraints

i. c(lp)m = Jc(lp)m (linear phase)

ii. c(cgd)
m = −Jc(cgd)

m (constant group delay).

(b) Show that the obtained optimum filters can be expressed as c(lp)m = 1
2 (cm + Jcm) and

c(cgd)
m = 1

2 (cm − Jcm), where cm is the unconstrained optimum filter.
(c) Using the results in part (b) and the algorithm of Levinson, derive lattice-ladder structure

for the constrained optimum filters.
(d ) Repeat parts (a), (b), and (c) for the linear predictor with linear phase, which is specified

by a(lp)m = Ja(lp)m .

(e) Develop an LMS algorithm for the linear-phase filter c(lp)m = Jc(lp)m and sketch the resulting
structure. Can you draw any conclusions regarding the step size and the misadjustment of
this filter compared to those of the unconstrained LMS algorithm?

10.19 In this problem, we develop and analyze by simulation an LMS-type adaptive lattice predictor
introduced in Griffiths (1977). We consider the all-zero lattice filter defined in (7.5.7), which
is completely specified by the lattice parameters {km}M−1

0 . The input signal is assumed wide-
sense stationary.

(a) Consider the cost function

P f b
m = E{|ef

m(n)|2 + |eb
m(n)|2}
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which provides the total prediction error power at the output of the mth stage, and show
that

∂P f b
m

∂k∗
m−1

= 2E{ef∗
m (n)eb

m−1(n− 1)+ ef∗
m−1(n)e

b
m(n)}

(b) Derive the updating formula using the LMS-type approach

km(n) = km(n− 1)− 2µ(n)[ef∗
m (n)eb

m−1(n− 1)+ ef∗
m−1(n)e

b
m(n)]

where the normalized step size µ(n) = µ̄/Eb
m−1(n) is computed in practice by using the

formula

Em−1(n) = αEm−1(n− 1)+ (1− α)[|ef
m−1(n)|2 + |eb

m−1(n− 1)|2]
where 0 < α < 1. Explain the role and proper choice of α, and determine the proper
initialization of the algorithm.

(c) Write a Matlab function to implement the derived algorithm, and compare its performance
with that of the LMS algorithm in the linear prediction problem discussed in Example
10.4.1.

10.20 Consider a signal x(n) consisting of a harmonic process plus white noise, that is,

x(n) = A cos(ω1n+ φ)+ w(n)

where φ is uniformly distributed from 0 to 2π and w(n) ∼ WGN(0, σ 2
w).

(a) Determine the output power σ 2
y = E{y2(n)} of the causal and stable filter

y(n) =
∞∑
k=0

h(k)x(n− k)

and show that we can cancel the harmonic process using the ideal notch filter

H(ejω) =
{

1 ω = ω1

0 otherwise

Is the obtained ideal notch filter practically realizable? That is, is the system function
rational? Why?

(b) Consider the second-order notch filter

H(z) = D(z)

A(z)
= 1+ a z−1 + z−2

1+ aρ z−1 + ρ2z−2
= D(z)

D(z/ρ)

where−1 < ρ < 1 determines the steepness of the notch and a = −2 cosω0 its frequency.
We fix ρ, and we wish to design an adaptive filter by adjusting a.
i. Show that for ρ � 1, σ 2

y = A2|H(ejω1)|2 + σ 2
w , and plot σ 2

y as a function of the
frequency ω0 for ω1 = π/6.

ii. Evaluate dσ 2
y(a)/da and show that the minimum of σ 2

y(a) occurs for a = −2 cosω1.
(c) Using a direct-form II structure for the implementation of H(z) and the property dY (z)/

da = [dH(z)/da]X(z), show that the following relations

s2(n) = −a(n− 1)ρs2(n− 1)− ρ2s2(n− 2)+ (1− gr)s1(n− 1)

g(n) = s2(n)− ρs2(n− 2)

s1(n) = −a(n− 1)ρs1(n− 1)− ρ2s1(n− 2)+ x(n)

y(n) = s1(n)+ a(n− 1)s1(n− 1)+ s1(n− 2)

a(n) = a(n− 1)− 2µy(n)g(n)

constitute an adaptive LMS notch filter. Draw its block diagram realization.
(d ) Simulate the operation of the obtained adaptive filter for ρ = 0.9, ω1 = π/6, and SNR 5

and 15 dB. Plot ω0(n) = arccos[−a(n)/2] as a function of n, and investigate the tradeoff
between convergence rate and misadjustment by experimenting with various values of µ.
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10.21 Consider the AR(2) process given in Problem 10.4. We will design the adaptive linear predictor
using the RLS algorithm. The adaptive predictor is a second-order one given by c(n) =
[c1(n) c2(n)]T .

(a) Develop a Matlab function to implement the RLS algorithm given in Table 10.6

[c,e] = rls(x,y,lambda,delta,M,c0);

which computes filter coefficients in c and the corresponding error in e given signal x,
desired signal y, forgetting factor lambda, initialization parameter delta, filter order M,
and the initial coefficient vector c0. To update P(n), compute only the upper or lower
triangular part and determine the other part by using Hermitian symmetry.

(b) Generate 500 samples of x(n) and obtain linear predictor coefficients using the above
function. Use a very small value for δ (for example, 0.001) and various values of λ = 0.99,
0.95, 0.9, and 0.8. Plot predictor coefficients as a function of time along with the true
coefficients for each λ, and discuss your observations. Also compare your results with
those in Problem 10.4.

(c) Repeat each simulation above 1000 times to get corresponding learning curves, which are
obtained by averaging respective squared errors |e(n)|2. Plot these curves and compare
their steady-state value with the theoretical MSE.

10.22 Consider a system identification problem where we observe the input x(n) and the noisy output
y(n) = yo(n) + v(n), for 0 ≤ n ≤ N − 1. The unknown system is specified by the system
function

Ho(z) = 0.0675+ 0.1349z−1 + 0.0675z−2

1− 1.1430z−1 + 0.4128z−2

and x(n) ∼ WGN(0, 1), v(n) ∼ WGN(0, 0.01), and N = 300.

(a) Model the unknown system using an LS FIR filter, with M = 15 coefficients, using the
no-windowing method. Compute the total LSE Els in the interval n0 ≤ n ≤ N − 1 for
n0 = 20.

(b) Repeat part (a) for 0 ≤ n ≤ n0 − 1 (do not compute Els). Use the vector c(n0) and
the matrix P(n0) = R̂−1(n0) to initialize the CRLS algorithm. Compute the total errors

Eapr =∑N−1
n=n0

e2(n) and Eapost =∑N−1
n=n0

ε2(n) by running the CRLS for n0 ≤ n ≤
N − 1.

(c) Order the quantities Els, Eapr, Eapost by size and justify the resulting ordering.

10.23 Prove Equation (10.5.25) using the identity det(I1 + AB) = det(I2 + BA), where identity
matrices I1 and I2 and matrices A and B have compatible dimensions. Hint: Put (10.5.7) in
the form I1 + AB.

10.24 Derive the normal equations that correspond to the minimization of the cost function (10.5.36),
and show that for δ = 0 they are reduced to the standard set (10.5.2) of normal equations. For
the situation described in Problem 10.22, run the CRLS algorithm for various values of δ and
determine the range of values that provides acceptable performance.

10.25 Modify the CRLS algorithm in Table 10.6 so that its coefficients satisfy the linear-phase
constraint c = Jc∗. For simplicity, assume that M = 2L; that is, the filter has an even number
of coefficients.

10.26 Following the approach used in Section 7.1.5 to develop the structure shown in Figure 7.1,
derive a similar structure based on the Cholesky (not the LDLH ) decomposition.

10.27 Show that the partitioning (10.7.3) of R̂m+1(n) to obtain the same partitioning structure as
(10.7.2) is possible only if we apply the prewindowing condition xm(−1) = 0. What is the
form of the partitioning if we abandon the prewindowing assumption?

10.28 Derive the normal equations and the LSE formulas given in Table 10.11 for the FLP and the
BLP methods.
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10.29 Derive the FLP and BLP a priori and a posteriori updating formulas given in Table 10.12.

10.30 Modify Table 10.14 for the FAEST algorithm, to obtain a table for the FTF algorithm, and write
a Matlab function for its implementation. Test the obtained function, using the equalization
experiment in Example 10.5.2.

10.31 If we wish to initialize the fast RLS algorithms (fast Kalman, FAEST, and FTF) using an exact
method, we need to collect a set of data {x(n), y(n)}n0

0 for any n0 > M .

(a) Identify the quantities needed to start the FAEST algorithm at n = n0. Form the normal
equations and use the LDLH decomposition method to determine these quantities.

(b) Write a Matlab function faestexact.m that implements the FAEST algorithm using
the exact initialization procedure described in part (a).

(c) Use the functions faest.m and faestexact.m to compare the two different initialization
approaches for the FAEST algorithm in the context of the equalization experiment in
Example 10.5.2. Use n0 = 1.5M and n0 = 3M . Which value of δ gives results closest to
the exact initialization method?

10.32 Using the order-recursive approach introduced in Section 7.3.1, develop an order-recursive
algorithm for the solution of the normal equations (10.5.2). Note: In Section 7.3.1 we could
not develop a closed-form algorithm because some recursions required the quantities bm(n−1)
and Eb

m(n− 1). Here we can avoid this problem by using time recursions.

10.33 In this problem we discuss several quantities that can serve to warn of ill behavior in fast RLS
algorithms for FIR filters.

(a) Show that the variable

ηm(n) � αm+1(n)

αm(n)
= λEb

m(n− 1)

Eb
m(n)

= 1− g
(m+1)
m+1 (n)eb∗

m (n)

satisfies the condition 0 ≤ ηm(n) ≤ 1.
(b) Prove the relations

αm(n) = λm
det R̂m(n− 1)

det R̂m(n)
Ef
m(n) = det R̂m+1(n)

det R̂m(n− 1)
Eb
m(n) = det R̂m+1(n)

det R̂m(n)

(c) Show that

αm(n) = λm
Eb
m(n)

Ef
m(n)

and use it to explain why the quantity ηαm(n) = Ef
m(n) − λmEb

m(n) can be used as a
warning variable.

(d ) Explain how the quantities

ηḡ(n) � ḡ
(M+1)
M+1 (n)− eb(n)

λEb(n− 1)

ηb(n) � eb(n)− λEb(n− 1) ḡ(M+1)
M+1 (n)and

can be used as warning variables.

10.34 When the desired response is y(j) = δ(j − k), that is, a spike at j = k, 0 ≤ k ≤ n, the LS

filter c(k)m is known as a spiking filter or as an LS inverse filter (see Section 8.3).

(a) Determine the normal equations and the LSE E
(k)
m (n) for the LS filter c(k)m .

(b) Show that c(n)m = gm(n) and E
(n)
m (n) = αm(n) and explain their meanings.

(c) Use the interpretation αm(n) = E
(n)
m (n) to show that 0 ≤ αm(n) ≤ 1.

(d ) Show that am(n) =∑n
k=0 c(k)m (n− 1)x(k) and explain its meaning.
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10.35 Derive Equations (10.7.33) through (10.7.35) for the a posteriori LS lattice-ladder structure,
shown in Figure 10.38, starting with the partitionings (10.7.1) and the matrix by inversion by
partitioning relations (10.7.7) and (10.7.8).

Prove relations (10.7.45) and (10.7.46) for the updating of the ladder partial correlation
coefficient βc

m(n).

10.37 In Section 7.3.1 we derived order-recursive relations for the FLP, BLP, and FIR filtering
MMSEs.

(a) Following the derivation of (7.3.36) and (7.3.37), derive similar order-recursive relations
for Ef

m(n) and Eb
m(n).

(b) Show that we can obtain a complete LS lattice-ladder algorithm by replacing, in Table
10.15, the time-recursive updatings of Ef

m(n) and Eb
m(n) with the obtained order-recursive

relations.
(c) Write a Matlab function for this algorithm, and verify it by using the equalization exper-

iment in Example 10.5.2.

10.38 Derive the equations for the a priori RLS lattice-ladder algorithm given in Table 10.16, and
write a Matlab function for its implementation. Test the function by using the equalization
experiment in Example 10.5.2.

10.39 Derive the equations for the a priori RLS lattice-ladder algorithm with error feedback (see
Table 10.7), and write a Matlab function for its implementation. Test the function by using
the equalization experiment in Example 10.5.2.

10.40 Derive the equations for the a posteriori RLS lattice-ladder algorithm with error feedback (Ling
et al. 1986) and write a Matlab function for its implementation. Test the function by using
the equalization experiment in Example 10.5.2.

10.41 The a posteriori and the a priori RLS lattice-ladder algorithms need the conversion factor
αm(n) because the updating of the quantities Ef

m(n), Eb
m(n), βm(n), and βc

m(n) requires both
the a priori and a posteriori errors. Derive a double (a priori and a posteriori) lattice-ladder
RLS filter that avoids the use of the conversion factor by updating both the a priori and the a
posteriori prediction and filtering errors.

10.42 Program the RLS Givens lattice-ladder filter with square roots (see Table 10.18), and study its
use in the adaptive equalization experiment of Example 10.5.2.

10.43 Derive the formulas and program the RLS Givens lattice-ladder filter without square roots (see
Table 10.18), and study its use in the adaptive equalization experiment of Example 10.5.2.

10.44 In this problem we discuss the derivation of the normalized lattice-ladder RLS algorithm,
which uses a smaller number of time and order updating recursions and has better numerical
behavior due to the normalization of its variables. Note: You may find useful the discussion in
Carayannis et al. (1986).

(a) Define the energy and angle normalized variables

ēf
m(n) = εf

m(n)

√
αm(n)

√
Ef
m(n)

ēb
m(n) = εb

m(n)

√
αm(n)

√
Eb
m(n)

ēm(n) = εm(n)√
αm(n)

√
Em(n)

k̄m(n) = βm(n)√
Ef
m(n)

√
Eb
m(n− 1)

k̄cm(n) = βc
m(n)

√
Em(n)

√
Eb
m(n)

and show that the normalized errors and the partial correlation coefficients k̄m(n) and
k̄cm(n) have magnitude less than 1.
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(b) Derive the following normalized lattice-ladder RLS algorithm:

Ef
0(−1) = E0(−1) = δ > 0

For n = 0, 1, 2, . . .

Ef
0(n) = λEf

0(n− 1)+ |x(n)|2, E0(n) = λE0(n− 1)+ |y(n)|2

ēf
0(n) = ēb

0(n) =
x(n)√
Ef

0(n)

, ē0(n) = y(n)√
E0(n)

For m = 0 to M − 1

k̄m(n) =
√

1− |ēf
m(n)|2

√
1− |ēb

m(n− 1)|2k̄m(n− 1)+ ēf∗
m (n)ēb

m(n− 1)

ēf
m+1(n) =

(√
1− |eb

m(n− 1)|2
√

1− |k̄m(n)|2
)−1

[ēf
m(n)− k̄m(n) ēb

m(n− 1)]

ēb
m+1(n) =

(√
1− |ēf

m(n)|2
√

1− |k̄m(n)|2
)−1

[ēb
m(n− 1)− k̄m(n) ēf

m(n)]

k̄cm(n) =
√

1− |ēm(n)|2
√

1− |ēb
m(n)|2k̄cm(n− 1)+ ē∗m(n)ēb

m(n)

ēm+1(n) =
(√

1− |ēb
m(n)|2

√
1− |k̄cm(n)|2

)−1
[ēm(n)− k̄cm(n)ēb

m(n)]

(c) Write a Matlab function to implement the derived algorithm, and test its validity by using
the equalization experiment in Example 10.5.2.

10.45 Prove (10.6.46) by direct manipulation of (10.6.35).

10.46 Derive the formulas for the QR-RLS lattice predictor (see Table 10.18), using the approach
introduced in Section 10.6.3 (Yang and Böhme 1992).

10.47 Demonstrate how the systolic array in Figure 10.55, which is an extension of the systolic
array structure shown in Figure 10.36, can be used to determine the LS error e(n) and the LS

1

r~11 r~12

r~22

z−1

z−1

z−1

r~13

r~23

r~33

k
~

1

k
~

2

k
~

3

e(n)

c1 c2 c3

x1(3)
x1(2)
x1(1)
x1(0)

x2(2)
x2(1)
x2(0)

0

x3(1)
x3(0)

0
0

y(0)
0
0
0

FIGURE 10.55
Systolic array implementation of the extended QR-RLS algorithm.
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coefficient vector c(n). Determine the functions to be assigned to the dotted-line computing
elements and the inputs with which they should be supplied.

10.48 The implementation of adaptive filters using multiprocessing involves the following steps: (1)
partitioning of the overall computational job into individual tasks, (2) allocation of compu-
tational and communications tasks to the processors, and (3) synchronization and control of
the processors. Figure 10.56 shows a cascade multiprocessing architecture used for adaptive
filtering. To avoid latency (i.e., a delay between the filter’s input and output that is larger than
the sampling interval), each processor should complete its task in time less than the sampling
period and use results computed by the preceding processor and the scalar computational unit
at the previous sampling interval. This is accomplished by the unit delays inserted between the
processors.

(a) Explain why the fast Kalman algorithm, given in Table 10.13, does not satisfy the multi-
processing requirements.

(b) Prove the formulas

b(n) = b(n− 1)− g"M#
M+1(n)e

b∗(n)
1− g

(M+1)
M+1 (n) eb∗(n)

(k)

g(n) = g"M#
M+1(n)− g

(M+1)
M+1 (n) b(n) (l)

and show that they can be used to replace formulas (g) and (h) in Table 10.13.
(c) Rearrange the formulas in Table 10.13 as follows: (e), (k), (l), (a), (b), (c), (d ), (f ).

Replace n by n − 1 in (e), (l), and (k). Show that the resulting algorithm complies with
the multiprocessing architecture shown in Figure 10.56.

(d ) Draw a block diagram of a single multiprocessing section that can be used in the mul-
tiprocessing architecture shown in Figure 10.56. Each processor in Figure 10.56 can be
assigned to execute one or more of the designed sections. Note: You may find useful the
discussions in Lawrence and Tewksbury (1983) and in Manolakis and Patel (1992).

(e) Figure 10.57 shows an alternative implementation of a multiprocessing section that can
be used in the architecture of Figure 10.56. Identify the input-output quantities and the
various multiplier factors.

Input

…

…Processor

1

Processor

2

Processor

P

Scalar

computations

Desired

response

z−1 z−1 z−1

FIGURE 10.56
Cascade multiprocessing architecture for the implementation of FIR adaptive filters.

10.49 Show that the LMS algorithm in Table 10.13 satisfies the multiprocessing architecture in
Figure 10.56.

10.50 Show that the a priori RLS linear prediction lattice (i.e., without the ladder part) algorithm
with error feedback complies with the multiprocessing architecture of Figure 10.56. Explain



February 7, 2005 13:23 e56-ch10 Sheet number 121 Page number 619 black

619

problems

z−1 z−1

z−1

z−1

z−1

z−1

FIGURE 10.57
Section for the multiprocessing implementation of the fast Kalman algorithm.

why the addition of the ladder part violates the multiprocessing architecture. Can we rectify
these violations? (See Lawrence and Tewksbury 1983.)

10.51 The fixed-length sliding window RLS algorithm is given in (10.8.4) through (10.8.10).

(a) Derive the above equations of this algorithm (see Manolakis et al. 1987).
(b) Develop a Matlab function to implement the algorithm

[c,e] = slwrls(x,y,L,delta,M,c0);

where L is the fixed length of the window.
(c) Generate 500 samples of the following nonstationary process

x(n) =


w(n)+ 0.95x(n− 1)− 0.9x(n− 2) 0 ≤ n < 200
w(n)− 0.95x(n− 1)− 0.9x(n− 2) 200 ≤ n < 300
w(n)+ 0.95x(n− 1)− 0.9x(n− 2) n ≥ 300

where w(n) is a zero-mean, unit-variance white noise process. We want to obtain a second-
order linear predictor using adaptive algorithms. Use the sliding window RLS algorithm
on the data and choose L = 50 and 100. Obtain plots of the filter coefficients and mean
square error.

(d ) Now use the growing memory RLS algorithm by choosing λ = 1. Compare your results
with the sliding-window RLS algorithm.

(e) Finally, use the exponentially growing memory RLS by choosing λ = (L − 1)/(L + 1)
that produces the same MSE. Compare your results.

10.52 Consider the definition of the MSD D(n) in (10.2.29) and that of the trace of a matrix (A.2.16).

(a) Show that D(n) = tr{�(n)}, where �(n) is the correlation matrix of c̃(n).
(b) For the evolution of the correlation matrix in (10.8.58), show that

D(∞) � µMσ 2
ν +

tr(R−1Rψ)

4µ

10.53 Consider the analysis model given in Figure 10.42. Let the parameters of this model be as
follows:

co(n) model parameters: co(0) =
[

0.9
−0.8

]
M = 2 ρ = 0.95

ψ(n) ∼ WGN(0,Rψ) Rψ = (0.01)2I

Signal x(n) parameters: x(n) ∼ WGN(0,R) R = I

Noise v(n) parameters: v(n) ∼ WGN(0, σ 2
v) σv = 0.1
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Simulate the system, using three values ofµ that show slow, matched, and optimum adaptations
of the LMS algorithm.

(a) Obtain the tracking plots similar to Figure 10.43 for each of the above three adaptations.
(b) Obtain the learning curve plots similar to Figure 10.44 for each of the above three adap-

tations.

10.54 Consider the analysis model given in Figure 10.42. Let the parameters of this model be as
follows

co(n) model parameters: co(0) =
[

0.9
−0.8

]
M = 2 ρ = 0.95

ψ(n) ∼ WGN(0,Rψ) Rψ = (0.01)2I

Signal x(n) parameters: x(n) ∼ WGN(0,R) R = I

Noise v(n) parameters: v(n) ∼ WGN(0, σ 2
v) σv = 0.1

Simulate the system, using three values ofµ that show slow, matched, and optimum adaptations
of the RLS algorithm.

(a) Obtain the tracking plots similar to Figure 10.49 for each of the above three adaptations.
(b) Obtain the learning curve plots similar to Figure 10.50 for each of the above three adap-

tations.
(c) Compare your results with those obtained in Problem 10.53.

10.55 Consider the time-varying adaptive equalizer shown in Figure 10.58 in which the time variation
of the channel impulse response is given by

h(n) = ρh(n− 1)+√1− ρ η(n)

ρ = 0.95 η(n) ∼ WGN(0,
√

10) h(0) = 0.5with

Let the equalizer be a single-tap equalizer and v(n) ∼ WGN(0, 0.1).

(a) Simulate the system for three different adaptations; that is, choose µ for slow, matched,
and fast adaptations of the LMS algorithm.

(b) Repeat part (a), using the RLS algorithm.

Channel
h(n)

Data
generator

LMS

Adaptive
equalizer

c(n)

e(n)

−y(n)

ŷ(n)x(n)

v(n)

FIGURE 10.58
Adaptive channel equalizer system with time-varying channel in Problem 10.55.



February 7, 2005 13:24 e56-ch11 Sheet number 1 Page number 621 black

621

CHAPTER 11

Array Processing

The subject of array processing is concerned with the extraction of information from signals
collected using an array of sensors. These signals propagate spatially through a medium,
for example, air or water, and the resulting wavefront is sampled by the sensor array.
The information of interest in the signal may be either the content of the signal itself
(communications) or the location of the source or reflection that produces the signal (radar
and sonar). In either case, the sensor array data must be processed to extract this useful
information. The methods utilized in most cases are extensions of the statistical and adaptive
signal processing techniques discussed in previous chapters, such as spectral estimation and
optimum and adaptive filtering, extended to sensor array applications.

Sensor arrays are found in a wide range of applications, including radar, sonar, seis-
mology, biomedicine, communications, astronomy, and imaging. Each of these individual
fields contains a wealth of research into the various methods for the processing of array
signals. Generally, the type of processing is dictated by the particular application. However,
an underlying set of principles and techniques is common to a diverse set of applications. In
this chapter, we focus on the fundamentals of array processing with emphasis on optimum
and adaptive techniques. To simplify the discussion, we concentrate on linear arrays, where
the sensors are located along a line. The extension of this material to other array config-
urations is fairly straightforward in most cases. The intent of this chapter is to first give
the uninitiated reader some exposure to the basic principles of array processing and then
apply adaptive processing techniques to the array processing problem. For a more detailed
treatment of array processing methods, see Monzingo and Miller (1980), Hudson (1981),
Compton (1988), and Johnson and Dudgeon (1993).

The chapter begins in Section 11.1 with a brief background in some array fundamen-
tals, including spatially propagating signals, modulation and demodulation, and the array
signal model. In Section 11.2, we introduce the concept of beamforming, that is, the spatial
discrimination or filtering of signals collected with a sensor array. We look at conventional,
that is, nonadaptive, beamforming and touch upon many of the common considerations for
an array that affect its performance, for example, element spacing, resolution, and sidelobe
levels. In Section 11.3, we look at the optimum beamformer, which is based on a priori
knowledge of the data statistics. Within this framework, we discuss some of the specific as-
pects of adaptive processing that affect performance in Section 11.4. Then, in Section 11.5,
we discuss adaptive array processing methods that estimate the statistics from actual data,
first block-adaptive and then sample-by-sample adaptive methods. Section 11.6 discusses
other adaptive array processing techniques that were born out of practical considerations
for various applications. The determination of the angle of arrival of a spatial signal is the
topic of Section 11.7. In Section 11.8, we give a brief description of space-time adaptive
processing.
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11.1 ARRAY FUNDAMENTALS

The information contained in a spatially propagating signal may be either the location of its
source or the content of the signal itself. If we are interested in obtaining this information,
we generally must deal with the presence of other, undesired signals. Much as a frequency-
selective filter emphasizes signals at a certain frequency, we can choose to focus on signals
from a particular direction. Clearly, this task can be accomplished by using a single sensor,
provided that it has the ability to spatially discriminate; that is, it passes signals from certain
directions while rejecting those from other directions. Such a single-sensor system, shown
in Figure 11.1(a), is commonly found in communications and radar applications in which
the signals are collected over a continuous spatial extent or aperture using a parabolic dish.
The signals are reflected to the antenna in such a way that signals from the direction in which
the dish is pointed are emphasized. The ability of a sensor to spatially discriminate, known as
directivity, is governed by the shape and physical characteristics of its geometric structure.
However, such a single-sensor system has several drawbacks. Since the sensor relies on
mechanical pointing for directivity, it can extract and track signals from only one direction
at a time; it cannot look in several directions simultaneously. Also, such a sensor cannot
adapt its response, which would require physically changing the aperture, in order to reject
potentially strong sources that may interfere with the extraction of the signals of interest.

(a) Parabolic dish antenna
(continuous aperture)

(b) Sensor array antenna
(discrete spatial aperture)

c1 c2 cM…* * *

FIGURE 11.1
Comparison of a single, directive antenna with multiple sensors that make up an antenna
array. In both cases, the response is designed to emphasize signals from a certain direction
through spatial filtering, either continuous or discrete.

An array of sensors has the ability to overcome these shortcomings of a single sensor.
Figure 11.1 (b) illustrates the use of a sensor array. The sensor array signals are combined
in such a way that a particular direction is emphasized. However, the direction in which the



February 7, 2005 13:24 e56-ch11 Sheet number 3 Page number 623 black

623

section 11.1
Array Fundamentals

array is focused or pointed is almost independent of the orientation of the array. Therefore,
the sensors can be combined in distinct, separate ways so as to emphasize different direc-
tions, all of which may contain signals of interest. Since the various weighted summations
of the sensors simply amount to processing the same data in different ways, these multiple
sources can be extracted simultaneously. Also arrays have the ability to adjust the overall
rejection level in certain directions to overcome strong interference sources. In this section,
we discuss some fundamentals of sensor arrays. First, we give a brief description of spatially
propagating signals and the modulation and demodulation operations. Then we develop a
signal model, first for an arbitrary array and then by simplifying to the case of a uniform
linear array. In addition, we point out the interpretation of a sensor array as a mechanism
for the spatial sampling of a spatially propagating signal.

11.1.1 Spatial Signals

In their most general form, spatial signals are signals that propagate through space. These
signals originate from a source, travel through a propagation medium, say, air or water, and
arrive at an array of sensors that spatially samples the waveform. A processor can then take
the data collected by the sensor array and attempt to extract information about the source,
based on certain characteristics of the propagating wave. Since space is three-dimensional,
a spatial signal at a point specified by the vector r can be represented either in Cartesian
coordinates (x, y, z) or in spherical coordinates (R, φaz, θel) as shown in Figure 11.2. Here,
R = ‖r‖ represents range or the distance from the origin, and φaz and θel are the azimuth
and elevation angles, respectively.

z

rx = ||r || sinfaz cosuel
ry = ||r || sinuel
rz = ||r || cosfaz cosuel

x

y

r

uel

faz

ry

rz

rx

FIGURE 11.2
Three-dimensional space describing azimuth, elevation, and
range.

The propagation of a spatial signal is governed by the solution to the wave equation. For
electromagnetic propagating signals, the wave equation can be deduced from Maxwell’s
equations (Ishimaru 1990), while for sound waves the solution is governed by the basic laws
of acoustics (Kino 1987; Jensen et al. 1994). However, in either case, for a propagating wave
emanating from a source located at r0, one solution is a single-frequency wave given by

s(t, r) = A

‖r − r0‖2 e
j2πFc

(
t−‖r−r0‖

c

)
(11.1.1)
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where A is the complex amplitude, Fc is the carrier frequency of the wave, and c is the
speed of propagation of the wave. The speed of propagation is determined by the type
of wave (electromagnetic or acoustic) and the propagation medium. For the purposes of
this discussion, we ignore the singularity at the source (origin); that is, s(t, r0) = ∞. This
equation suppresses the dependencies onφaz and θel since the wave propagates radially from
the source.At any point in space, the wave has the temporal frequencyFc. In (11.1.1) and for
the remainder of this chapter, we will assume a lossless, nondispersive propagation medium,
that is, a medium that does not attenuate the propagating signal further than predicted by
the wave equation, and the propagation speed is uniform so that the wave travels according
to (11.1.1). A dispersive medium adds a frequency dependence to the wave propagation
(Jensen et al. 1994). Clearly, the signal travels in time where the spatial propagation is
determined by the direct coupling between space and time in order to satisfy (11.1.1). We
can then define the wavelength of the propagating wave as

λ = c

Fc
(11.1.2)

which is the distance traversed by the wave during one temporal period.
Two other simplifying assumptions will be made for the remainder of this chapter.

First, the propagating signals are assumed to be produced by a point source; that is, the size
of the source is small with respect to the distance between the source and the sensors that
measure the signal. Second, the source is assumed to be in the “far field,” i.e., at a large
distance from the sensor array, so that the spherically propagating wave can be reasonably
approximated with a plane wave. This approximation again requires the source to be far
removed from the array so that the curvature of the wave across the array is negligible. This
concept is illustrated in Figure 11.3. Multiple sources are treated through superposition of
the various spatial signals at the sensor array. Although each individual wave radiates from
its source, generally the origin (r = 0) is reserved for the position of the sensor array since
this is the point in space at which the collection of waves is measured. For more details on
spatially propagating signals, see Johnson and Dudgeon (1993).

Source

Near field Far field

…

FIGURE 11.3
Plane wave approximation in the far
field of the source.

Let us now consider placing a linear array in three-dimensional space in order to sense
the propagating waves. The array consists of a series of elements located on a line with
uniform spacing. Such an array is known as a uniform linear array (ULA). For convenience,
we choose the coordinate system for our three-dimensional space as in Figure 11.2 such that
the ULA lies on the x axis. In addition, we have a wave originating from a point r in this
three-dimensional space that is located in the far field of the array such that the propagating
signal can be approximated by a plane wave at the ULA. The plane wave impinges on the
ULA as illustrated in Figure 11.4. As we will see, the differences in distance between the
sensors determine the relative delays in arrival of the plane wave. The point from which
the wave originates can be described by its distance from the origin ‖r‖ and its azimuth
and elevation angles φaz and θel, respectively. If the distance between elements of the ULA
is d , then the difference in propagation distance between neighboring elements for a plane
wave arriving from an azimuth φaz and elevation θel is

dx = ‖r‖ sin φaz cos θel (11.1.3)
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FIGURE 11.4
Cone angle ambiguity surface for a uniform linear array.

These differences in the propagation distance that the plane wave must travel to each of
the sensors are a function of a general angle of arrival with respect to the ULA φ. If we
consider the entire three-dimensional space, we note that equivalent delays are produced
by any signal arriving from a cone about the ULA. Therefore, any signal arriving at the
ULA on this surface has the same set of relative delays between the elements. This conical
ambiguity surface is illustrated in Figure 11.4. For this reason, the angle of incidence to a
linear array is commonly referred to as the cone angle, φcone. We see that the cone angle is
related to the physical angles, azimuth and elevation defined in Figure 11.4, by

sin φ = sin φaz cos θel (11.1.4)

where φ = 90◦ − φcone. In this manner, we can take a given azimuth and elevation pair
and determine their corresponding cone angle. For the remainder of this chapter, we use the
terms angle of arrival and simply angle interchangeably.

11.1.2 Modulation-Demodulation

The spatial propagation of signals was described by (11.1.1) using a propagation speed c
and a center frequency Fc. For a general class of signals, the signal of interest s0(t) has a
bandwidth that is a small fraction of the center frequency and is modulated up to the center
frequency. Since the propagating wave then “carries” certain information to the receiving
point in the form of a temporal signal, Fc is commonly referred to as the carrier frequency.
The process of generating the signal s̃0(t) from s0(t) in order to transmit this information
is accomplished by mixing the signal s0(t) with the carrier waveform cos 2πFct in an
operation known as modulation. The propagating signal is then produced by a high-gain
transmitter. The signal travels through space until it arrives at a sensor that measures the
signal. Let us denote the received propagating signal as

s̃0(t) = s0(t) cos 2πFct = 1
2 s0(t)(e

j2πFct + e−j2πFct ) (11.1.5)

where we say that the signal s0(t) is carried by the propagating waveform cos 2πFct . The
spectrum of s̃0(t) is made up of two components: the spectrum of the signal s0(t) shifted
to Fc and shifted to−Fc and reflected about−Fc. This spectrum S̃0(F ) is shown in Figure
11.5. Here we indicate the signal s0(t) has a bandwidth B. The baseband signal s0(t),
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−Fc Fc

B

Frequency

S0(−F − Fc) S0(F − Fc)

~
S0(F )

0

FIGURE 11.5
Spectrum of a bandpass signal.

although originating as a real signal prior to modulation, has a nonsymmetric spectrum due
to the asymmetric

†
spectral response of the propagation medium about frequency Fc. The

received signal s̃0(t), though, is real-valued; that is, its spectrum exhibits even symmetry
about F = 0. This fact is consistent with actual, physical signals that are real-valued as
they are received and measured by a sensor.

The reception of spatially propagating signals with a sensor is only the beginning of
the process of forming digital samples for both the in-phase and quadrature components of
the sensor signal. Upon reception of the signal s̃0(t), the signal is mixed back to baseband
in an operation known as demodulation. Included in the mth sensor signal is thermal noise
due to the electronics of the sensor wm(t)

x̃m(t) = s̃0(t) ∗ hm(t, φs)+ w̃m(t) (11.1.6)

where hm(t, φs) is the combined temporal and spatial impulse response of the mth sensor.
The angleφs is the direction from which s̃0(t)was received. In the case of an omnidirectional
sensor with an equal response in all directions, the impulse response no longer is dependent
on the angle of the signal. The demodulation process involves multiplying the received
signal by cos 2πFct and − sin 2πFct to form both the in-phase and quadrature channels,
respectively. Note the quadrature component is 90◦ out of phase of the in-phase component.
The entire process is illustrated in Figure 11.6 for the mth sensor. This structure is referred
to as the receiver of the mth channel.

Following demodulation, the signals in each channel are passed through a low-pass
filter to remove any high-frequency components. The cutoff frequency of this low-pass filter
determines the bandwidth of the receiver. Throughout this chapter, we assume a perfect or
ideal low-pass filter, that is, a response of 1 in the passband and 0 in the stopband. In practice,
the characteristics of the actual, nonideal low-pass filter can impact the performance of the
resulting processor. Following the low-pass filtering operation, the signals in both the in-
phase and quadrature channels are critically (Nyquist) sampled at the receiver bandwidthB.
Oversampling at greater than the receiver bandwidth is also possible but is not considered
here. More details on the signals at the various stages of the receiver, including the sensor
impulse response, are covered in the next section on the array signal model. The output of
the receiver is a complex-valued, discrete-time signal for the mth sensor with the in-phase
and quadrature channels generating the real and imaginary portions of the signal

xm(n) = x(I)m (n)+ jx(Q)m (n) (11.1.7)

For more details on the complex representation of bandpass signals, sampling, and the
modulation and demodulation process, see Section 2.1. We should also mention that the
sampling process in many systems is implemented using a technique commonly referred

†
The asymmetry can arise from dispersive effects in the transmission medium.
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x~m(t) = s0(t − tm) * hm(t, fs) + wm(t)~~

FIGURE 11.6
Block diagram of propagating signal arriving at a sensor with a receiver.

to as digital in-phase/quadrature or simply digital IQ (Rader 1984), rather than the more
classical method outlined in this section. The method is more efficient as it only requires
a single analog-to-digital (A/D) converter, though at a higher sampling rate.

†
See Rader

(1984) for more details.

11.1.3 Array Signal Model

We begin by developing a model for a single spatial signal in noise received by a ULA.
Consider a signal received by the ULA from an angle φs as in Figure 11.6. Each sensor
receives the spatially propagating signal and converts its measured energy to voltage. This
voltage signal is then part of the receiver channel from Figure 11.6. In addition, the receiver
contains noise due to internal electronics known as thermal noise.

‡
Recall from (11.1.6) that

x̃m(t) is the continuous-time signal in the mth sensor containing both the received carrier-
modulated signals and thermal noise. The signal xm(t) is then obtained by demodulating
x̃m(t) to baseband and low-pass filtering to the receiver bandwidth, while xm(n) is its
discrete-time counterpart. Since the model is assumed to be linear, the extension to multiple
signals, including interference sources, is straightforward.

The discrete-time signals from a ULA may be written as a vector containing the indi-
vidual sensor signals

x(n) = [x1(n) x2(n) · · · xM(n)]T (11.1.8)

whereM is the total number of sensors. A single observation or measurement of this signal
vector is known as an array snapshot. We begin by examining a single, carrier-modulated
signal s̃0(t) = s0(t) cos 2πFct arriving from angle φs that is received by themth sensor. We
assume that the signal s0(t) has a deterministic amplitude and random, uniformly distributed
phase. The ˜ symbol is used to indicate that the signal is a passband or carrier-modulated
signal. Here s0(t) is the baseband signal, and Fc is the carrier frequency. This signal is
received by the mth sensor with a delay τm

x̃m(t) = hm(t, φs) ∗ s̃0(t − τm)+ w̃m(t) (11.1.9)

†
This digital IQ technique is very important for adaptive processing as I/Q channel mismatch can limit performance.
One A/D converter avoids this source of mismatch.
‡
Another source of noise may be external background noise. Many times this is assumed to be isotropic so that

the overall noise signal is uncorrelated from sensor to sensor.
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wherehm(t, φ) is the impulse response of themth sensor as a function of both time and angle
φ, and w̃m(t) is the sensor noise. Note that the relative delay at the mth sensor τm is also a
function of φs . We have temporarily suppressed this dependence to simplify the notation.
Usually, we set τ 1 = 0, in which case the delays to the remaining sensors (m = 2, 3, . . . ,M)
are simply the differences in propagation time of s̃0(t) to these sensors with respect to the
first sensor. The sensor signal can also be expressed in the frequency domain as

X̃m(F ) = Hm(F, φs)S̃0(F )e
−j2πFτm + W̃m(F )

= Hm(F, φs)[S0(F − Fc)+ S∗0 (−F − Fc)]e−j2πFτm + W̃m(F )
(11.1.10)

by using (11.1.5) and taking the Fourier transform of (11.1.9). Following demodulation
and ideal low-pass filtering of the signal from the mth sensor, as shown in Figure 11.6, the
spectrum of the signal is

Xm(F) = Hm(F + Fc, φs)S0(F )e
−j2π(F+Fc)τm +Wm(F) (11.1.11)

where Xm(F) = X(I)m (F )+ jX(Q)m (F ). The second term S∗0 (−F − 2Fc) has been removed
through the ideal low-pass filtering operation. This ideal low-pass filter has a value of unity
across its passband so thatWm(F) = W̃m(F + Fc) for |F | < B/2.

We now make a critical, simplifying assumption: The bandwidth of s0(t) is small
compared to the carrier frequency; this is known as the narrowband assumption. This
assumption allows us to approximate the propagation delays of a particular signal between
sensor elements with a phase shift. There are numerous variations on this assumption, but in
general it holds for cases in which the signal bandwidth is less than some small percentage of
the carrier frequency, say, less than 1 percent. The ratio of the signal bandwidth to the carrier
frequency is referred to as the fractional bandwidth. However, the fractional bandwidth for
which the narrowband assumption holds is strongly dependent on the length of the array and
the strength of the received signals. Thus, we might want to consider the time-bandwidth
product (TBWP), which is the maximum amount of time for a spatial signal to propagate
across the entire array (φs = ±90◦). If TBWP� 1, then the narrowband assumption is
valid. The effects of bandwidth on performance are treated in Section 11.4.2.

In addition to the narrowband assumption, we assume that the response of the sensor
is constant across the bandwidth of the receiver, that is,Hm(F +Fc, φs) = Hm(Fc, φs) for
|F | < B/2. Thus, the spectrum in (11.1.11) simplifies to

Xm(F) = Hm(Fc, φs)S0(F )e
−j2πFcτm +Wm(F) (11.1.12)

and the discrete-time signal model is obtained by sampling the inverse Fourier transform
of (11.1.12)

xm(n) = Hm(Fc, φs)s0(n)e
−j2πFcτm + wm(n) (11.1.13)

The term wm(n) corresponds to Wm(F), the sensor thermal noise across the bandwidth of
the receiver of themth sensor. Furthermore, we assume that the power spectral density of this
noise is flat across this bandwidth; that is, the discrete-time noise samples are uncorrelated.
Also, the thermal noise in all the sensors is mutually uncorrelated.

†
If we further assume

that each of the sensors in the array has an equal, omnidirectional response at frequency Fc,
that is, Hm(Fc, φs) = H(Fc, φs) = constant, for 1 ≤ m ≤ M , then the constant sensor
responses can be absorbed into the signal term

‡

s(n) = H(Fc)s0(n) (11.1.14)

†
In actual systems, thermal noise samples are temporally correlated through the use of antialiasing filters prior to

digital sampling. In addition, the thermal noise between sensors may be correlated due to mutual coupling of the
sensors.
‡
In many systems, we can compensate for differences in responses by processing signals from the sensors in an

attempt to make their responses as similar as possible. When the data from the sensors are used to perform this
compensation, the process is known as adaptive channel matching.
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For the remainder of the chapter, we use the signal s(n) as defined in (11.1.14). Using
(11.1.8) and (11.1.13), we can then write the full-array discrete-time signal model as

x(n) = √M v(φs)s(n)+ w(n) (11.1.15)

v(φ) = 1√
M
[1 e−j2πFcτ 2(φ) · · · e−j2πFcτM(φ)]T (11.1.16)where

is the array response vector. We have chosen to measure all delays relative to the first
sensor [τ 1(φ) = 0] and are now indicating the dependence of these delays on φ. We use the
normalization of 1/

√
M for mathematical convenience so that the array response vector has

unit norm, that is, ‖v(φ)‖2 = vH (φ)v(φ) = 1. The factor is compensated for with the
√
M

term in (11.1.15). The assumption of equal, omnidirectional sensor responses is necessary
to simplify the analysis but should always be kept in mind when considering experimentally
collected data for which this assumption certainly will not hold exactly. The other critical
assumption made is that we have perfect knowledge of the array sensor locations, which
also must be called into question for actual sensors and the data collected with them.

Up to this point, we have not made any assumptions about the form of the array, so that
the array signal model we have developed holds for arbitrary arrays. Now we wish to focus
our attention on the ULA, which is an array that has all its elements on a line with equal spac-
ing between the elements. The ULA is shown in Figure 11.7, and the interelement spacing
is denoted by d . Consider the single propagating signal that impinges on the ULA from an
angle φ. Since all the elements are equally spaced, the spatial signal has a difference in prop-
agation paths between any two successive sensors of d sin φ that results in a time delay of

τ(φ) = d sin φ

c
(11.1.17)

where c is the rate of propagation of the signal. As a result, the delay to the mth element
with respect to the first element in the array is

τm(φ) = (m− 1)
d sin φ

c
(11.1.18)

and substituting into (11.1.16), we see the array response vector for a ULA is

v(φ) = 1√
M
[1 e−j2π [(d sin φ)/λ] · · · e−j2π [(d sin φ)/λ](M−1)]T (11.1.19)

since Fc = c/λ.

f
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d

FIGURE 11.7
Plane wave impinging on a uniform linear array.
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11.1.4 The Sensor Array: Spatial Sampling

In general, we can think of a sensor array as a mechanism for spatially sampling wavefronts
propagating at a certain operating (carrier) frequency. Since in most instances the user
either controls or has knowledge of the operating frequency, the sensor array provides a
reliable means of interrogating the incoming wavefront for information. Similar to temporal
sampling, the sensor array provides discrete (spatially sampled) data that can be used without
loss of information, provided certain conditions are met. Namely, the sampling frequency
must be high enough so as not to create spatial ambiguities or, in other words, to avoid
spatial aliasing. The advantages of discrete-time processing and digital filtering have been
well documented (Oppenheim and Schafer 1989; Proakis and Manolakis 1996). In the case
of the spatial processing of signals, spatial sampling using an array provides the capability
to change the characteristics of a discrete spatial filter, which is not possible for a continuous
spatial aperture.

An arbitrary array performs its sampling in multiple dimensions and along a nonuniform
grid so that it is difficult to compare to discrete-time sampling. However, a ULA has a direct
correspondence to uniform, regular temporal sampling, since it samples uniformly in space
on a linear axis. Thus, for a ULA we can talk about a spatial sampling frequency Us defined
by

Us = 1

d
(11.1.20)

where the spatial sampling period is determined by the interelement spacing d and is
measured in cycles per unit of length (meters). Recall from (11.1.19) that the measurements
made with a ULA on a narrowband signal correspond to a phase progression across the
sensors determined by the angle of the incoming signal. As with temporal signals, the phase
progression for uniform sampling is a consequence of the frequency; that is, consecutive
samples of the same signal differ only by a phase shift of ej2πF , where F is the frequency.
In the case of a spatially propagating signal, this frequency is given by

U = sin φ

λ
(11.1.21)

which can be thought of as the spatial frequency. The normalized spatial frequency is then
defined by

u � U

Us
= d sin φ

λ
(11.1.22)

Therefore, we can rewrite the array response vector from (11.1.19) in terms of the normalized
spatial frequency as

v(φ) = v(u) = 1√
M
[1 e−j2πu · · · e−j2πu(M−1)]T (11.1.23)

which we note is simply a Vandermonde vector (Strang 1998), that is, a vector whose
elements are successive integer powers of the same number, in this case e−j2πu.

The interelement spacing d is simply the spatial sampling interval, which is the inverse
of the sampling frequency. Therefore, similar to Shannon’s theorem for discrete-time sam-
pling, there are certain requirements on the spatial sampling frequency to avoid aliasing.
Since normalized frequencies are unambiguous for − 1

2 ≤ u < 1
2 and the full range of

possible unambiguous angles is −90◦ ≤ φ ≤ 90◦, the sensor spacing must be

d ≤ λ
2

(11.1.24)

to prevent spatial ambiguities. Since lowering the array spacing below this upper limit
only provides redundant information and directly conflicts with the desire to have as much
aperture as possible for a fixed number of sensors, we generally set d = λ/2. This tradeoff
is further explored using beampatterns in the next section.
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11.2 CONVENTIONAL SPATIAL FILTERING: BEAMFORMING

In many applications, the desired information to be extracted from an array of sensors is
the content of a spatially propagating signal from a certain direction. The content may be
a message contained in the signal, such as in communications applications, or merely the
existence of the signal, as in radar and sonar. To this end, we want to linearly combine the
signals from all the sensors in a manner, that is, with a certain weighting, so as to examine
signals arriving from a specific angle. This operation, shown in Figure 11.8, is known as
beamforming because the weighting process emphasizes signals from a particular direction
while attenuating those from other directions and can be thought of as casting or forming a
beam. In this sense, a beamformer is a spatial filter; and in the case of a ULA, it has a direct
analogy to an FIR frequency-selective filter for temporal signals, as discussed in Section
1.5.1. Beamforming is commonly referred to as “electronic” steering since the weights are
applied using electronic circuitry following the reception of the signal for the purpose of
steering the array in a particular direction.

†
This can be contrasted with mechanical steering,

in which the antenna is physically pointed in the direction of interest. For a complete tutorial
on beamforming see Van Veen and Buckley (1988, 1998).

y(n)

x1(n)

x2(n)

xM(n)

cM

c2

c1
*

*

*

FIGURE 11.8
Beamforming operation.

In its most general form, a beamformer produces its output by forming a weighted
combination of signals from theM elements of the sensor array, that is,

y(n) =
M∑
m=1

c∗mxm(n) = cHx(n) (11.2.1)

c = [c1 c2 · · · cM ]T (11.2.2)where

is the column vector of beamforming weights. The beamforming operation for anM element
array is illustrated in Figure 11.8.

†
In general, performance does degrade as the angle to which the array is steered approaches φ = −90◦ or

φ = 90◦. Although the array is optimized at broadside (φ = 0◦), it certainly can steer over a wide range of angles
about broadside for which performance degradation is minimal.
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Beam response

A standard tool for analyzing the performance of a beamformer is the response for a
given weight vector c as a function of angle φ, known as the beam response. This angular
response is computed by applying the beamformer c to a set of array response vectors from
all possible angles, that is, −90◦ ≤ φ < 90◦,

C(φ) = cHv(φ) (11.2.3)

Typically, in evaluating a beamformer, we look at the quantity |C(φ)|2, which is known as the
beampattern. Alternatively, the beampattern can be computed as a function of normalized
spatial frequency u from (11.1.22). For a ULA with λ/2 element spacing, the beampattern
as a function of u can be efficiently computed using the FFT for − 1

2 ≤ u < 1
2 at points

separated by 1/Nfft where Nfft ≥ M is the FFT size. Thus, a beampattern can be computed
in Matlab with the command C=fftshift(fft(c,N_fft))/sqrt(M), where the FFT size
is selected to display the desired level of detail. To compute the corresponding angles of
the beampattern, we can simply convert spatial frequency to angle as

φ = arcsin
λ

d
u (11.2.4)

A sample beampattern for a 16-element uniform array with uniform weighting (cm =
1/
√
M) is shown in Figure 11.9, which is plotted on a logarithmic scale in decibels. The

large mainlobe is centered at φ = 0◦, the direction in which the array is steered. Also
notice the unusual sidelobe structure created by the nonlinear relationship between angle
and spatial frequency in (11.2.4) at angles away from broadside (φ = 0◦).
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FIGURE 11.9
A sample beampattern of a spatial matched filter for an M = 16
element ULA steered to φ = 0◦.

Important note. The beampattern is the spatial frequency response of a given beam-
former. It should not be confused with the steered response, which is the response of the
array to a certain set of spatial signals impinging on the array as we steer the array to all
possible angles. Since this operation corresponds to measuring the power as a function of
spatial frequency or angle, the steered response might be better defined as the spatial power
spectrum

R(φ) = E{|cH (φ)x(n)|2} (11.2.5)
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where the choice of the beamformer c(φ) determines the type of spatial spectrum, say,
conventional or minimum-variance. Various spectrum estimation techniques were discussed
in Chapters 5 and 9, several of which can be extended for the estimation of the spatial
spectrum from measurements in practical applications. One interpretation of the estimation
of the spectrum was made as a bank of frequency-selective filters at the frequencies at
which the spectrum is computed. Similarly, the computation of the spatial spectrum can be
thought of as the output of a bank of beamformers steered to the angles at which the spatial
spectrum is computed.

Output signal-to-noise ratio

We now look at the signal-to-noise ratio (SNR) of the beamformer output and determine
the improvement in SNR with respect to each element, known as the beamforming gain. Let
us consider the signal model for a ULA from (11.1.15), which consists of a signal of interest
arriving from an angle φs and thermal sensor noise w(n). The beamformer or spatial filter
c is applied to the array signal x(n) as

y(n) = cHx(n) = √McHv(φs)s(n)+ w̄(n) (11.2.6)

where w̄(n) = cHw(n) is the noise at the beamformer output and is also temporally uncor-
related. The beamformer output power is

Py = E{|y(n)|2} = cHRxc (11.2.7)

Rx = E{x(n)xH (n)} (11.2.8)where

is the correlation matrix of the array signal x(n). Recall from (11.1.15) and (11.1.23) that
the signal for the mth element is given by

xm(n) = e−j2π(m−1)us s(n)+ wm(n) (11.2.9)

where us is the normalized spatial frequency of the array signal produced by s(n). The
signal s(n) is the signal of interest within a single sensor including the sensor response
Hm(Fc) from (11.1.14). Therefore, the signal-to-noise ratio in each element is given by

SNRelem � σ 2
s

σ 2
w

= |e
−j2π(m−1)us s(n)|2

E{|wm(n)|2} (11.2.10)

where σ 2
s = E{|s(n)|2} and σ 2

w =E{|wm(n)|2} are the element level signal and noise
powers, respectively. Recall that the signal s(n) has a deterministic amplitude and random
phase. We assume that all the elements have equal noise power σ 2

w so that the SNR does
not vary from element to element. This SNRelem is commonly referred to as the element
level SNR or the SNR per element.

Now if we consider the signals at the output of the beamformer, the signal and noise
powers are given by

Ps = E{|√M[cHv(φs)]s(n)|2} = Mσ 2
s |cHv(φs)|2 (11.2.11)

Pn = E{|cHw(n)|2} = cHRnc = ‖c‖2σ 2
w (11.2.12)

because Rn = σ 2
wI. Therefore, the resulting SNR at the beamformer output, known as the

array SNR, is

SNRarray = Ps

Pn
= M|c

Hv(φs)|2
‖c‖2

σ 2
s

σ 2
w

= |c
Hv(φs)|2
‖c‖2 M SNRelem (11.2.13)

which is simply the product of the beamforming gain and the element level SNR. Thus, the
beamforming gain is given by

Gbf � SNRarray

SNRelem
= |c

Hv(φs)|2
|c|2 M (11.2.14)

The beamforming gain is strictly a function of the angle of arrival φs of the desired signal,
the beamforming weight vector c, and the number of sensorsM .
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11.2.1 Spatial Matched Filter

Recall the array signal model of a single signal, arriving from a direction φs , with sensor
thermal noise

x(n) = √Mv(φs)s(n)+ w(n)

= [s(n) e−j2πus s(n) · · · e−j2π(M−1)us s(n)]T + w(n)
(11.2.15)

where the components of the noise vector w(n) are uncorrelated and have power σ 2
w, that is,

E{w(n)wH (n)} = σ 2
wI. The individual elements of the array contain the same signal s(n)

with different phase shifts corresponding to the differences in propagation times between
elements. Ideally, the signals from theM array sensors are added coherently, which requires
that each of the relative phases be zero at the point of summation; that is, we add s(n) with
a perfect replica of itself. Thus, we need a set of complex weights that results in a perfect
phase alignment of all the sensor signals. The beamforming weight vector that phase-aligns
a signal from direction φs at the different array elements is the steering vector, which is
simply the array response vector in that direction, that is,

cmf (φs) = v(φs) (11.2.16)

The steering vector beamformer is also known as the spatial matched filter
†
since the steering

vector is matched to the array response of signals impinging on the array from an angle
φs . As a result, φs is known as the look direction. The use of the spatial matched filter is
commonly referred to as conventional beamforming.

The output of the spatial matched filter is

y(n) = cHmf (φs)x(n) = vH (φs)x(n)

= 1√
M
[1 ej2πus · · · ej2π(M−1)us ]

×






s(n)

e−j2πus s(n)
...

e−j2π(M−1)us s(n)


+ w(n)




= 1√
M
[s(n)+ s(n)+ · · · + s(n)] + w̄(n)

= √M s(n)+ w̄(n)

(11.2.17)

where again w̄(n) = cHmf (φs)w(n) is the beamformer output noise. Examining the array
SNR of the spatial matched filter output, we obtain

SNRarray = Ps

Pn
= Mσ 2

s

E{|vH (φs)w(n)|2}
(11.2.18)

= Mσ 2
s

vH (φs)Rnv(φs)
= M σ

2
s

σ 2
w

= M · SNRelem

since Ps = Mσ 2
s and Rn = σ 2

wI. Therefore, the beamforming gain is

Gbf = M (11.2.19)

that is, equal to the number of sensors. In the case of spatially white noise, the spatial matched
filter is optimum in the sense of maximizing the SNR at the output of the beamformer. Thus,

†
The spatial matched filter should not be confused with the optimum matched filters discussed in Section 6.9 that

depend on the correlation of the data. However, it is optimum in the case of spatially uncorrelated noise.
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the beamforming gain of the spatial matched filter is known as the array gain because it is
the maximum possible gain of a signal with respect to sensor thermal noise for a given array.
Clearly from this perspective, the more elements in the array, the greater the beamforming
gain. However, physical reality places limitations on the number of elements that can be
used. The spatial matched filter maximizes the SNR because the individual sensor signals
are coherently aligned prior to their combination. However, as we will see, other sources of
interference that have spatial correlation require other types of adaptive beamformers that
maximize the signal-to-interference-plus-noise ratio (SINR).

The beampattern of the spatial matched filter can serve to illustrate several key per-
formance metrics of an array. A sample beampattern of a spatial matched filter was shown
in Figure 11.9 for φs = 0◦. The first and most obvious attribute is the large lobe cen-
tered on φs , known as the mainlobe or mainbeam, and the remaining, smaller peaks are
known as sidelobes. The value of the beampattern at the desired angle φ = φs is equal to
1 (0 dB) due to the normalization used in the computation of the beampattern. A response
of less than 1 in the look direction corresponds to a direct loss in desired signal power at
the beamformer output. The sidelobe levels determine the rejection of the beamformer to
signals not arriving from the look direction. The second attribute is the beamwidth, which
is the angular span of the mainbeam. The resolution of the beamformer is determined by
this mainlobe width, with smaller beamwidths resulting in better angular resolution. The
beamwidth is commonly measured from the half-power (−3-dB) points +φ3 dB or from
null to null of the mainlobe +φnn. Using the beampattern, we next set out to examine the
effects of the number of elements and their spacing on the array performance in the context
of the spatial matched filter. However, in the following example, we first illustrate the use
of a spatial matched filter to extract a signal from noise.

EXAMPLE 11.2.1. A signal received by a ULA withM = 20 elements and λ/2 spacing contains
both a signal of interest at φs = 20◦ with an array SNR of 20 dB and thermal sensor noise with
unit power (σ 2

w = 1). The signal of interest is an impulse present only in the 100th sample and
is produced by the sequence of Matlab commands

u_s=(d/lambda)* sin(phi_s*pi/180); s=zeros(M,N);
s(:,100)=(10ˆ(SNR/20))*exp(-j*2*pi*u_s*[(0:(M-1))]/M)/sqrt(M);

The uncorrelated noise samples with a Gaussian distribution are generated by

w=(randn(M,N)+j*randn(M,N))/sqrt(2);

The two signals are added to produce the overall array signal x = s + w. Examining the signal
at a single sensor in Figure 11.10 (a), we see that the signal is not visible at n = 100 since the
element level SNR is only 7 dB (full-array SNR minusM in decibels). The output power of this
sample for a given realization can be more or less than the expected SNR due to the addition of
the noise. However, when we apply a spatial matched filter using

c_mf=exp(-j*2*pi*u_s*[(0:(M-1))]/M)/sqrt(M);
y=c_mf’*x;

we can clearly see the signal of interest since the array SNR is 20 dB. As a rule of thumb, we
require the array SNR to be at least 10 to 12 dB to clearly observe the signal.

Element spacing

In Section 11.1.4, we determined that the element spacing must be d ≤ λ/2 to prevent
spatial aliasing. Here, we relax this restriction and look at various element spacings and the
resulting array characteristics, namely, their beampatterns. In Figure 11.11, we show the
beampatterns of spatial matched filters withφs = 0◦ for ULAs with element spacings ofλ/4,
λ/2, λ, and 2λ (equal-sized apertures of 10λ with 40, 20, 10, and 5 elements, respectively).
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FIGURE 11.10
The spatial signals from ( a) an individual sensor and ( b) the output of a spatial matched filter
beamformer.

We note that the beampatterns for λ/4 and λ/2 spacing are identical with equal-sized
mainlobes and the first sidelobe having a height of−13 dB. The oversampling for the array
with an element spacing of λ/4 provides no additional information and therefore does not
improve the beamformer response in terms of resolution. In the case of the undersampled
arrays (d = λ and 2λ), we see the same structure (beamwidth) around the look direction
but also note the additional peaks in the beampattern (0 dB) at ±90◦ for d = λ and in even
closer for d = 2λ. These additional lobes in the beampattern are known as grating lobes.
Grating lobes create spatial ambiguities; that is, signals incident on the array from the angle
associated with a grating lobe will look just like signals from the direction of interest. The
beamformer has no means of distinguishing signals from these various directions. In certain
applications, grating lobes may be acceptable if it is determined that it is either impossible
or very improbable to receive returns from these angles; for example, a communications
satellite is unlikely to receive signals at angles other than those corresponding to the ground
below. The benefit of the larger element spacing is that the resulting array has a larger
aperture and thus better resolution, which is our next topic of discussion. The topic of larger
apertures with element spacing greater than λ/2 is commonly referred to as a thinned array
and is addressed in Problem 11.5.

Array aperture and beamforming resolution

The aperture is the finite area over which a sensor collects spatial energy. In the case
of a ULA, the aperture is the distance between the first and last elements. In general, the
designer of an array yearns for as much aperture as possible. The greater the aperture, the
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FIGURE 11.11
Beampatterns of a spatial matched filter for different element spacings with an equal-sized
aperture L = 10λ.

finer the resolution of the array, which is its ability to distinguish between closely spaced
sources.As we will see in Section 11.7, improved resolution results in better angle estimation
capabilities. The angular resolution of a sensor array is measured in beamwidth+φ, which
is commonly defined as the angular extent between the nulls of the mainbeam +φnn or the
half-power points of the mainbeam (−3 dB)+φ3 dB. As a general rule of thumb, the−3-dB
beamwidth for an array with an aperture length of L is quoted in radians as

+φ3 dB ≈

λ

L
(11.2.20)

although the actual −3-dB points of a spatial matched filter yield a resolution of+φ3 dB =
0.89 λ/L (the resolution of the conventional matched filter near broadside, φ = 0◦). The
approximation in (11.2.20) is intended for the full range of prospective beamformers, not
just spatial matched filters.

†
Since the resolution is dependent on the operating frequency

Fc or equivalently on the wavelength, the aperture is often measured in wavelengths rather
than in absolute length in meters. At large operating frequencies, say, Fc = 10 GHz or
λ = 3 cm (X band in radar terminology), it is possible to populate a physical aperture of
fixed length with a large number of elements, as opposed to lower operating frequencies,
say, Fc = 300 MHz or λ = 1 m.

†
Tapered beamformers, as discussed in Section 11.2.2, may considerably exceed this approximation, particularly

for large tapers.
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We illustrate the effect of aperture on resolution, using a few representative beampat-
terns. Figure 11.12 shows beampatterns forM = 4, 8, 16, and 32 with interelement spacing
fixed at d = λ/2 (nonaliasing condition). Therefore, the corresponding apertures in wave-
lengths are D = 2λ, 4λ, 8λ, and 16λ. Clearly, increasing the aperture yields better resolu-
tion, with a factor-of-2 improvement for each of the successive twofold increases in aperture
length. The level of the first sidelobe is always about −13 dB below the mainlobe peak.
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FIGURE 11.12
Beampatterns of a spatial matched filter for different aperture sizes with a common element of
spacing of d = λ/2.

11.2.2 Tapered Beamforming

The spatial matched filter would be perfectly sufficient if the only signal present, aside from
the sensor thermal noise, were the signal of interest. However, in many instances we must
contend with other, undesired signals that hinder our ability to extract the signal of interest.
These signals may also be spatially propagating at the same frequency as the operating
frequency of the array. We refer to such signals as interference. These signals may be
present due to hostile adversaries that are attempting to prevent us from receiving the signal
of interest, for example, jammers in radar or communications; or they might be incidental
signals that are present in our current operating environment, such as transmissions by
other users in a communications system or radar clutter. In Sections 11.3, 11.5, and 11.6,
we outline ways in which we can overcome these interferers by using adaptive methods.
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However, there are also nonadaptive alternatives that can be employed in certain cases,
namely, the use of a taper with the spatial matched filter.

Consider the ULA signal model from (11.2.15), but now including an interference
signal i(n) made up of P interference sources

x(n) = s(n)+ i(n)+ w(n) = √Mv(φs)s(n)+
√
M

P∑
p=1

v(φp)ip(n)+ w(n) (11.2.21)

where v(φp) and ip(n) are the array response vector and actual signal due to the pth
interferer, respectively. If we have a ULA with λ/2 element spacing, the beampattern of the
spatial matched filter, as shown in Figure 11.13, may have sidelobes that are high enough to
pass these interferers through the beamformer with a high enough gain to prevent us from
observing the desired signal. For this array, if an interfering source were present at φ = 20◦
with a power of 40 dB, the power of the interference at the output of the spatial matched
filter would be 20 dB because the sidelobe level at φ = 20◦ is only −20 dB. Therefore, if
we were trying to receive a weaker signal from φs = 0◦, we would be unable to extract it
because of sidelobe leakage from this interferer.

The spatial matched filter has weights all with a magnitude equal to 1/
√
M . The look

direction is determined by a linear phase shift across the weights of the spatial matched
filter. However, the sidelobe levels can be further reduced by tapering the magnitudes of
the spatial matched filter. To this end, we employ a tapering vector t that is applied to the
spatial matched filter to realize a low sidelobe level beamformer

ctbf (φs) = t � cmf (φs) (11.2.22)

where� represents the Hadamard product, which is the element-by-element multiplication
of the two vectors (Strang 1998). We refer to this beamformer as the tapered beamformer.

The determination of a taper can be thought of as the design of the desired beamformer
where cmf simply determines the desired angle. The weight vector of the spatial matched
filter from (11.2.16) has unit norm; that is, cHmf cmf = 1. Similarly, the tapered beamformer
ctbf is normalized so that

cHtbf (φs)ctbf (φs) = 1 (11.2.23)

The choices for tapers, or windows, were outlined in Section 5.1 in the context of spectral
estimation. Here, we use Dolph-Chebyshev tapers simply for illustration purposes. This
taper produces a constant sidelobe level (equiripples in the stopband in spectral estimation),
which is often a desirable attribute of a beamformer. The best taper choice is driven by
the actual application. The beampatterns of the ULA are used again, but this time the
beampatterns of tapered beamformers are also shown in Figure 11.13. The sidelobe levels
of the tapers were chosen to be −50 and −70 dB.

†
The same 40-dB interferer would have

been reduced to −10 and −30 dB at the beamformer output, respectively.
However, the use of tapers does not come without a cost. The peak of the beampattern

is no longer at 0 dB. This loss in gain in the current look direction is commonly referred to
as a tapering loss and is simply the beampattern evaluated at φs :

Ltaper � |Ctbf (φs)|2 = |cHtbf (φs)v(φs)|2 (11.2.24)

Since the tapering vector was normalized as in (11.2.23), the tapering loss is in the range
0 ≤ Ltaper ≤ 1 with Ltaper = 1 corresponding to no loss (untapered spatial matched filter).
The tapering loss is the loss in SNR of the desired signal at the beamformer output that
cannot be recovered. More significantly, notice that the mainlobes of the beampatterns in
Figure 11.13 are much broader for the tapered beamformers. The consequence is a loss

†
In practice the tapering sidelobe levels are limited by array element location errors due to uncertainty. This limit

is often at −30 dB but may be even higher. For illustration purposes we will ignore these limits in this chapter.
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FIGURE 11.13
Beampatterns of beamformers with M = 20 with no taper (solid
line), −50-dB taper (dashed line), and −70-dB taper (dash-dot line).

in resolution that becomes more pronounced as the tapering is increased to achieve lower
sidelobe levels. This phenomenon was also treated within the context of spectral estimation
in Section 5.1. However, its interpretation for an array can better be understood by examining
plots of the magnitude of the taper vector t, shown in Figure 11.14 for the −50- and −70-
dB Dolph-Chebyshev tapers. Note that the elements on the ends of the array are given less
weighting as the tapering level is increased. The tapered array in effect deemphasizes these
end elements while emphasizing the center elements. Therefore, the loss in resolution for
a tapered beamformer might be interpreted as a loss in the effective aperture of the array
imparted by the tapering vector.

2 4 6 8 10 12 14 16 18 20
0

0.5

1.0

W
ei

gh
t M

ag
ni

tu
de

Element Number

FIGURE 11.14
The magnitude levels of the tapered beamforming weights as a
function of element number for M = 20 with no taper (solid line),
−50-dB taper (dashed line), and −70-dB taper (dash-dot line).
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EXAMPLE 11.2.2. We illustrate the use of tapers with the spatial matched filter for the extraction
of a radar signal in the presence of a jamming interference source using a ULA with M = 20
elements with λ/2 spacing. The desired radar signal is known as a target and is present for only
one sample in time. Here the target signal is at time sample (range gate) n = 100 and is at φ = 0◦
with an array SNR of 20 dB. The jammer transmits a high-power, uncorrelated waveform (white
noise). The angle of the jammer is φi = 20◦, and its strength is 40 dB. The additive, sensor
thermal noise has unit power (0 dB). We generate the jammer signal for N = 200 samples with
the Matlab commands

v_i = exp(-j*pi*[0:M-1]’*sin(phi_i*pi/180))/sqrt(M);
i_x=(10ˆ(40/20))*v_i*(randn(1,N)+j*randn(1,N))/sqrt(2)

Similarly, the unit power thermal noise signal is produced by

w=(randn(M,N)+j*randn(M,N))/sqrt(2)

Two beamformers (steered to φ = 0◦) are applied to the resulting array returns: a spatial matched
filter and a tapered beamformer with a−50-dB sidelobe level. The resulting beamformer output
signals are shown in Figure 11.15. The spatial matched filter is unable to reduce the jammer
sufficiently to observe the target signal at n = 100. However, the tapered beamformer is able
to attenuate the jammer signal below the thermal noise level and the target is easily extracted.
The target signal is approximately 18.5 dB with the −1.5 dB loss due to the tapering loss in
(11.2.24).
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FIGURE 11.15
The output signals of a spatial matched filter and a tapered
beamformer (−50-dB).

11.3 OPTIMUM ARRAY PROCESSING

So far, we have only considered beamformers whose weights are determined independently
of the data to be processed. If instead we base the actual beamforming weights on the array
data themselves, then the result is an adaptive array and the operation is known as adaptive
beamforming. Ideally, the beamforming weights are adapted in such a way as to optimize
the spatial response of the resulting beamformer based on a certain criterion. To this end, the



February 7, 2005 13:24 e56-ch11 Sheet number 22 Page number 642 black

642

chapter 11
Array Processing

criterion is chosen to enhance the desired signal while rejecting other, unwanted signals. This
weight vector is similar to the optimum matched filter from Chapter 6. However, the manner
in which it is implemented, namely, the methodology of how this equation is successfully
applied to the array processing problem, is the topic of this and the next three sections.

This section focuses on optimum array processing methods that make use of the a priori
known statistics of the data to derive the beamforming weights. Implicit in the optimization
is the a priori knowledge of the true statistics of the array data. In Section 11.5, we discuss
techniques for implementing these methods that estimate the unknown statistics from the
data. We will use the general term adaptive to refer to beamformers that use an estimated
correlation matrix computed from array snapshots, while reserving the term optimum for
beamformers that optimize a certain criterion based on knowledge of the array data statistics.
We begin by discussing the array signal model that contains interference in addition to the
desired signal and noise. We then proceed to derive the optimum beamformer, where the
optimality criterion is the maximization of the theoretical signal-to-interference-plus-noise
ratio. In addition, we give an alternate implementation of the optimum beamformer: the
generalized sidelobe canceler. This structure also gives an intuitive understanding of the
optimum beamformer. Various issues associated with the optimum beamformer, namely, the
effect of signal mismatch and bandwidth on the performance of an optimum beamformer,
are discussed in Section 11.4.

The signal of interest is seldom the only array signal aside from thermal noise present.
The array must often contend with other, undesired signals that interfere with our ability
to extract this signal of interest, as described in Section 11.2.2. Often the interference is
so powerful that even a tapered beamformer is unable to sufficiently suppress it to extract
the signals of interest. The determination of the presence of signals of interest is known as
detection, while the inference of their parameters, for example, the angle of arrival φs , is
referred to as estimation. The topic of detection is not explicitly treated here. Rather, we
seek to maximize the visibility of the desired signal at the array output, that is, the ratio of
the signal power to that of the interference plus noise, to facilitate the detection process.
There are several textbooks devoted to the subject of detection theory (Scharf 1991; Poor
1994; Kay 1998) to which the interested reader is referred. Parameter estimation methods
to determine the angle of the desired signal are the topic of Section 11.7.

Consider an array signal that consists of the desired signal s(n), an interference signal
i(n), along with sensor thermal noise w(n), that is,

x(n) = s(n)+ i(n)+ w(n) = √Mv(φs)s(n)+ i(n)+ w(n) (11.3.1)

where s(n) is a signal with deterministic amplitude σ s and uniformly distributed random
phase. The interference-plus-noise component of the array signal is

xi+n(n) = i(n)+ w(n) (11.3.2)

which are both modeled as zero-mean stochastic processes. The interference has spatial
correlation according to the angles of the contributing interferers, while the thermal noise
is spatially uncorrelated. The interference component of the signal may consist of several
sources, as modeled in (11.2.21). The sensor thermal noise is assumed to be uncorrelated
with power σ 2

w. The assumption is made that all of these three components are mutually
uncorrelated. As a result, the array correlation matrix is

Rx = E{x(n)xH (n)} = Mσ 2
sv(φs) vH (φs)+ Ri + Rn (11.3.3)

where σ 2
s is the power of the signal of interest and Ri and Rn are the interference and noise

correlation matrices, respectively. The interference-plus-noise correlation matrix is the sum
of these latter two matrices

Ri+n = Ri + σ 2
wI (11.3.4)

where Rn = σ 2
wI since the sensor thermal noise is spatially uncorrelated.
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11.3.1 Optimum Beamforming

The ultimate goal of the prospective adaptive beamformer is to combine the sensor signals
in such a way that the interference signal is reduced to the level of the thermal noise while
the desired signal is preserved. Stated another way, we would like to maximize the ratio of
the signal power to that of the interference plus noise, known as the signal-to-interference-
plus-noise ratio (SINR). Maximizing the SINR is the optimal criterion for most detection
and estimation problems. Simply stated, maximizing the SINR seeks to improve the visibility
of the desired signal as much as possible in a background of interference. This criterion
should not be confused with maximizing the SNR (spatial matched filter) in the absence of
interference.

At the input of the array, that is, in each individual sensor, the SINR is given by

SINRelem = σ 2
s

σ 2
i + σ 2

w

(11.3.5)

where σ 2
s , σ

2
i , and σ 2

w are the signal, interference, and thermal noise powers in each in-
dividual element. The SINR at the beamformer output, following the application of the
beamforming weight vector c, is

SINRout = |cH s(n)|2
E{|cHxi+n(n)|2} =

Mσ 2
s |cHv(φs)|2
cHRi+nc

(11.3.6)

We wish to maximize this array output SINR. First, note that the interference-plus-noise
correlation matrix can be factored as

Ri+n = Li+nLHi+n (11.3.7)

where Li+n is the Cholesky factor of the correlation matrix.
†

See Section 6.3 for details.
Thus, defining

c̃ = LHi+nc ṽ(φs) = L−1
i+nv(φs) (11.3.8)

we can rewrite (11.3.6) as

SINRout = Mσ
2
s |c̃H ṽ(φs)|2

c̃H c̃
(11.3.9)

Using the Schwartz inequality

c̃H ṽ(φs) ≤ ‖c̃‖‖ṽ(φs)‖ (11.3.10)

and substituting (11.3.10) into (11.3.9), we find that

SINRout ≤ Mσ 2
s

‖c̃‖2‖ṽ(φs)‖2
‖c̃‖2 = Mσ 2

s‖ṽ(φs)‖2 (11.3.11)

Thus, the maximum SINR is found by satisfying the upper bound for (11.3.11), which yields

SINRmax
out = Mσ 2

s ṽ
H (φs)ṽ(φs) = Mσ 2

s [vH (φs)R−1
i+nv(φs)] (11.3.12)

We also see that the same maximum SINR is obtained if we set c̃ = αṽ(φs) where α
is an arbitrary constant. In other words, the SINR is maximized when these two vectors
are parallel to each other and α can be chosen to satisfy other requirements. Therefore,
using (11.3.8), we can solve for the optimum weight vector (Bryn 1962; Capon et al. 1967;
Brennan and Reed 1973)

co = αL−Hi+n ṽ(φs) = αR−1
i+nv(φs) (11.3.13)

where α is an arbitrary constant. Thus, the optimum beamforming weights are proportional
to R−1

i+nv(φs). The proportionality constant α in (11.3.13) can be set in a variety of ways.

†
Note that any square root factorization Ri+n = R1/2

i+nRH/2i+n of the correlation matrix can be chosen.
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Table 11.1 gives various normalizations for the optimum beamformer. The normalization
we adopt throughout this chapter is to constrain the optimum beamformer to have unity
gain in the look direction, that is, cHo v(φs) = 1. Therefore,

cHo v(φs) = α[R−1
i+nv(φs)]Hv(φs) = 1 (11.3.14)

and the resulting optimum beamformer is given by

co =
R−1

i+nv(φs)

vH (φs)R
−1
i+nv(φs)

(11.3.15)

In general, the normalization of the optimum beamformer is arbitrary and is dictated by the
use of the output, for example, measure residual interference power or detection. In any
case, the SINR is maximized independently of the normalization. The most commonly used
normalizations are listed in Table 11.1.

TABLE 11.1

Optimum weight normalizations for unit gain in look direction, unit
gain on noise, and unit gain on interference-plus-noise constraints.

Mathematical Optimum beamformer
Constraint formulation normalization

MVDR (unit gain cHo v(φs) = 1 α = [vH (φs)R−1
i+nv(φs)]−1

in look direction)

Unit noise gain cHo co = 1 α = [vH (φs)R−2
i+nv(φs)]−1/2

Unit gain on cHo Ri+nco = 1 α = [vH (φs)R−1
i+nv(φs)]−1/2

interference-plus-noise∗
∗This normalization is commonly referred to as the adaptive matched filter normalization
(Robey et al. 1992). Its use is primarily for detection purposes. Since the output level of the
interference-plus-noise has a set power of unity, a constant detection threshold can be used
for all angles.

Alternately, the optimum beamformer can be derived by solving the following con-
strained optimization problem: Minimize the interference-plus-noise power at the beam-
former output

Pi+n = E{|cHxi+n(n)|2} = cHRi+nc (11.3.16)

subject to a look-direction distortionless response constraint, that is,

min Pi+n subject to cHv(φs) = 1 (11.3.17)

The solution of this constrained optimization problem is found by using Lagrange multipliers
(see Appendix B and Problem 11.7) and results in the same weight vector as (11.3.15). This
formulation has led to the commonly used term minimum-variance distortionless response
(MVDR) beamformer. For a discussion of minimum-variance beamforming, see Van Veen
(1992). The optimum beamformer passes signals impinging on the array from angleφs while
rejecting significant energy (interference) from all other angles. This beamformer can be
thought of as an optimum spatial matched filter since it provides maximum interference
rejection, while matching the response of signals impinging on the array from a direction
φs . The optimal weights balance the rejection of interference with the thermal noise gain
so that the output thermal noise does not cause a reduction in the output SINR.

The optimum beamformer maximizes the SINR given by (11.3.12), which is indepen-
dent of the normalization. Another useful metric is a measure of the performance relative
to the interference-free case, that is, x(n) = s(n) + w(n). To gauge the performance of
the beamformer independently of the desired signal power, we simply normalize the SINR
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by the hypothetical array output SNR had there been no interference present, which from
(11.2.18) is SNR0 = Mσ 2

s /σ
2
w. The resulting measure is known as the SINR loss, which

for the optimum beamformer, by substituting into (11.3.12), is

Lsinr(φs) � SINRout(φs)

SNR0
= σ 2

wvH (φs)R
−1
i+nv(φs) (11.3.18)

The SINR loss is always between 0 and 1, taking on the maximum value when the perfor-
mance is equal to the interference-free case. Typically, the SINR loss is computed across
all angles for a given interference scenario. In this sense, the SINR loss of the optimum
beamformer provides a measure of the residual interference remaining following optimum
processing and informs us of our loss in performance due to the presence of interference.
We also notice that (11.3.18) is the reciprocal of the minimum-variance power spectrum of
the interference plus noise. Minimum-variance power spectrum estimation was discussed
in Section 9.5.

EXAMPLE 11.3.1. To demonstrate the optimum beamformer, we consider a scenario in which there
are three interference sources and compare it to a conventional beamformer (spatial matched
filter). The array is a 20-element ULA with λ/2 element spacing. These interferers are at the
following angles with the corresponding interference-to-noise ratios (INRs) in decibels: φ = 20◦
and INR= 35 dB, φ = −30◦ and INR= 70 dB, and φ = 50◦ and INR= 50 dB. The optimum
beamformer is first computed using (11.3.15) for a look direction of φs = 0◦. The beampattern
of this optimum beamformer is computed by using (11.2.3) and is plotted in Figure 11.16(a).
Notice the nulls at the angles of the interference (φ = −30◦, 20◦, 50◦). These nulls are deep
enough that the interference at the beamformer output is below the sensor thermal noise level. The
conventional beamformer, however, cannot place nulls on the interferers since it is independent
of the data. We also perform optimum beamforming across all angles −90◦ < φ < 90◦ and
compute the corresponding SINR loss due to the interference using (11.3.18). The SINR loss
is plotted in Figure 11.16(b). The notches at the interference angles are simply the negative of
the INR of the interferers corresponding to significant losses in performance. However, these
performance losses are limited to these angles. The SINR loss at all other angles is almost at
its maximum value of 1 (0 dB). The SINR loss of the conventional beamformer is significantly
worse at all angles because of the strong interference that makes its way to the beamformer
output through its sidelobes.

−90 −60 −30 0 30 60 90
−100

−90

−80

−70

−60

−50

−40

−30

−20

−10

0

Angle (deg)

R
es

po
ns

e 
(d

B
)

−90 −60 −30 0 30 60 90

−70

−60

−50

−40

−30

−20

−10

0

Angle (deg)

(a) Beampattern for fs = 0° (b) SINR loss for −90° ≤ fs < 90°

S
IN

R
 lo

ss
 (

dB
)

FIGURE 11.16
Beampattern (steered to φ = 0◦) and SINR loss plots versus angle. Solid line is the optimum
beamformer, and dashed line is the conventional beamformer.

E XAM PLE 11.3.2. We revisit the problem from Example 11.2.2 with a jammer at φi = 20◦
except the jammer power is now 70 dB. Clearly, the −50-dB tapered beamformer is no longer
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capable of sufficiently suppressing this jammer. Rather, we compute the optimum beamformer
using (11.3.15), where Ri+n = 107v(φi)v

H (φi)+ I. First, we examine the beampattern of the
optimum beamformer steered to φ = 0◦ in Figure 11.17(a). Notice the null on the jammer at
φ = 20◦ with a depth of greater than −150 dB. We also plot the SINR loss in Figure 11.17(b)
as we scan the look direction from −90◦ to 90◦. Almost no SINR loss is experienced at angles
away from the jammer, while at the jammer angle φ = 20◦, the SINR loss corresponds to the
jammer power (70 dB). As a similar exercise to that in Example 11.2.2, we can produce a target
signal at φ = 0◦ and attempt to extract it, using both a spatial matched filter and an optimum
beamformer. The output signals are shown in Figure 11.17(c) and (d ), respectively. The optimum
beamformer is able to successfully extract the signal whereas the ouput of the spatial matched
filter is dominated by interference. Notice that we do not suffer the taper loss on the target as we
did for the tapered beamformer due to the cHo v(φs) = 1 constraint in the optimum beamformer.
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FIGURE 11.17
(a) Beampattern and (b) SINR loss of optimum beamformer (solid line) versus spatial matched filter
(dashed line), along with (c) the output signals of a spatial matched filter and (d ) the optimum
beamformer.

11.3.2 Eigenanalysis of the Optimum Beamformer

In many cases, significant insight can be gained by considering the optimum beamformer in
terms of the eigenvalues and eigenvectors of the interference-plus-noise correlation matrix

Ri+n =
M∑
m=1

λmqmqHm (11.3.19)
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where the eigenvalues have been ordered from largest to smallest, that is, λ1 ≥ λ2 ≥ · · · ≥
λM . If the rank of the interference is P , then λm = σ 2

w for m > P ; that is, the remainder
of the eigenvalues is equal to the thermal noise power. The eigenvectors are orthonormal
(qHmqk = 0 for k �= m, qHmqm = 1) and form a basis for the interference-plus-noise subspace
that can be split into interference and noise subspaces given by

Interference subspace: {qm 1 ≤ m ≤ P } Noise subspace: {qm P < m ≤ M}
(11.3.20)

The inverse of Ri+n can also be written in terms of the eigenvalues and eigenvectors, λm
and qm, of the correlation matrix Ri+n, that is,

R−1
i+n =

M∑
m=1

1

λm
qmqHm (11.3.21)

We further assume that the rank of the interference is less than the total number of sensors,
that is, P < M . In this case, the smallest eigenvalues of Ri+n are noise eigenvalues and
are equal to the thermal noise power λm = σ 2

w for m > P . Substituting (11.3.21) into the
optimum beamformer weights in (11.3.15) , we have

co = αR−1
i+nv(φs) = α

M∑
m=1

1

λm
qmqHm v(φs)

= α
[

1

σ 2
w

v(φs)−
1

σ 2
w

v(φs)+
M∑
m=1

qHm v(φs)
λm

qm

]

= α

σ 2
w

{
v(φs)−

M∑
m=1

λm − σ 2
w

λm
[qHm v(φs)]qm

}
(11.3.22)

where α = [v(φs)HR−1
i+nv(φs)]−1. The resulting beam response is

Co(φ) = α

σ 2
w

{
Cq(φ)−

M∑
m=1

λm − σ 2
w

λm
[qHm v(φs)]Qm(φ)

}
(11.3.23)

Cq(φ) = vH (φs)v(φ) = cHmf v(φ) = Cmf (φ) (11.3.24)where

is the response of the spatial matched filter cmf (φs) = v(φs) [see (11.2.16)] and is known
as the quiescent response of the optimum beamformer. However,

Qm(φ) = qHm v(φ) (11.3.25)

is the beam response of themth eigenvector, known as an eigenbeam. Thus, the response of
the optimum beamformer consists of weighted eigenbeams subtracted from the quiescent
response. The weights for the eigenbeams are determined by the corresponding eigenvalue,
the noise power, and the cross-product of the look-direction steering vector and the re-
spective eigenvector. Examining the term (λm − σ 2

w)/λm, we see clearly that for strong
interferers λm � σ 2

w and (λm − σ 2
w)/λm ≈ 1, and the eigenbeam is subtracted from the

quiescent response weighted by qHm v(φ). This subtraction of properly weighted interference
eigenvectors places nulls in the directions of the interference sources. The term qHm v(φs) in
(11.3.23) scales the interference eigenbeam to the quiescent response of the spatial matched
filter in the direction of the corresponding interferer. Thus, the null depth for an interferer of
the beampattern |Co(φ)|2 is determined by the response of the eigenbeam to the quiescent
response and the strength of the interferer relative to the noise level. However, for the noise
eigenvalues λm = σ 2

w and (λm − σ 2
w)/λm = 0. Therefore, the noise eigenvectors have no

effect on the optimum beamformer. Interestingly, for the case of noise only and thus all
noise eigenvalues, that is, no interference present, the optimum beamformer reverts to the
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spatial matched filter co(φs) = cmf (φs) = v(φs), which is the beamformer that maximizes
the SNR.

11.3.3 Interference Cancelation Performance

The interference cancelation performance of the optimum beamformer can be determined
by examining the beam response at the angles of the interferers. The beam response at these
angles indicates the depth of the null that the optimum beamformer places on the interferer.
Using the MVDR optimum beamformer from (11.3.15), we see that the response in the
direction of an interferer φp of an optimum beamformer that is steered in direction φs is

Co(φp) = cHo v(φp) = αvH (φs)R
−1
i+nv(φp) (11.3.26)

where φp is the angle of the pth interferer and α = [vH (φs)R−1
i+nv(φs)]−1. Now we note

that Ri+n can be split into a component due to the pth interferer and the correlation matrix
of the remaining interference-plus-noise Qi+n

Ri+n = Qi+n +Mσ 2
pv(φp)v

H (φp) (11.3.27)

where σ 2
p is the power of the pth interferer in a single element. Using the matrix inversion

lemma (Appendix A), we obtain

R−1
i+n = Q−1

i+n −Mσ 2
p

Q−1
i+nv(φp)v

H (φp)Q
−1
i+n

1+Mσ 2
pvH (φp)Q

−1
i+n v(φp)

(11.3.28)

Substituting (11.3.28) into (11.3.26), we find the optimum beamformer response to be
(Richmond 1999)

Co(φp) = αvH (φs)R
−1
i+nv(φp)

= αvH (φs)Q
−1
i+nv(φp)

− αvH (φs)Q
−1
i+nv(φp)v

H (φp)Q
−1
i+nv(φp)

×
[

Mσ 2
p

1+Mσ 2
pvH (φp)Q

−1
i+n v(φp)

]

= vH (φs)Q
−1
i+nv(φp)

vH (φs)R
−1
i+nv(φs)︸ ︷︷ ︸

term 1

1

1+Mσ 2
pvH (φp)Q

−1
i+n v(φp)︸ ︷︷ ︸

term 2

(11.3.29)

We notice that the optimum beamformer response is made up of the product of two terms.
The first term is the response at angle φp of an optimum beamformer steered in direction φs
formed in the absence of this interferer (σ 2

p = 0), that is, the sidelobe level of the optimum
beamformer had this interference not been present. However, the power of the interferer
is many times significantly greater than this sidelobe level, and the optimum beamformer
cancels the interferer by placing a null at the angle of the interferer. The second term
produces the null at the angle φp. By examining this term, it is apparent that the depth of
the null is determined by the power of the interfererMσ 2

p. Clearly, the larger the power of
the interferer, the smaller this term becomes and the deeper the null depth of the optimum
beamformer is at φp. The factor vH (φp)Q

−1
i+nv(φp) is the amount of energy received from

φp not including the interferer and has as a lower bound equal to the thermal noise power
(spatially white). Since the power response of the beamformer is |Co(φp)|2, the null depth
is actually proportional to M2σ 4

p, or twice the power of the interferer at the array output,
in decibels (Compton 1988).
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11.3.4 Tapered Optimum Beamforming

In the derivation of the optimum beamformer, we used the vector v(φs) that was matched to
the array response of a desired signal arriving from an angle φs . The resulting beamformer
weight vector co has unity gain in this direction; that is, cHo v(φs) = 1, owing to the
normalization of the weights. However, the sidelobes of the beamformer are still at the same
levels as the spatial matched filter (nonadaptive beamformer) from (11.2.16), although with
a different structure, as can be seen from a sample beampattern of the optimum beamformer
shown in Figure 11.18(a).

−30 −20 −10 0 10 20 30
−80

−70

−60

−50

−40

−30

−20

−10

0

Angle (deg)

R
es

po
ns

e 
(d

B
)

−30 −20 −10 0 10 20 30
−80

−70

−60

−50

−40

−30

−20

−10

0

Angle (deg)

(a) Optimum beamformer (no taper) (b) Tapered optimum beamformer (−50-dB taper)

R
es

po
ns

e 
(d

B
)

FIGURE 11.18
Beampatterns of an optimum beamformer (a) without and (b) with tapering (−50-dB
Dolph-Chebyshev taper) steered to φ = 0◦.

The optimum beamformer uses the interference-plus-noise correlation matrix Ri+n.
Now, although the beamformer weights must be estimated from intervals of the data that
contain only interference (no desired signal present), they are presumably applied to seg-
ments that contain both interference and a desired signal. What happens when we are
searching an angular region for potential desired signals? A desired signal at an angle φ1
may be easily found by using an adaptive beamformer directed to this angle (φs = φ1), as-
suming the signal strength after beamforming is significantly larger than the sensor thermal
noise. However, we will also be searching other angles for potential desired signals. If we
are looking at one of these other angles, say, φ2 �= φ1, we want to avoid concluding a signal
is present when it may actually be due to sidelobe leakage of the signal at φ1. This problem
is best illustrated by using the beampattern of an optimum beamformer with an interferer at
φ = 20◦ in Figure 11.18(a). The optimum beamformer is steered to an angle φs = 0◦. Let
us assume another signal is present at φ1 = −20◦ that was not part of the interference (not
accounted for in the interference correlation matrix). The gain of the optimum beamformer
at φ = −20◦ is approximately −20 dB. If the strength of this signal is significantly greater
than 20 dB, the optimum beamformer steered to φs = 0◦ will pass this sidelobe signal with
sufficient strength that we may erroneously conclude a signal is present at φs = 0◦. This
problem is commonly referred to as a sidelobe target or desired signal problem.

The sidelobe signal problem described above can be cured, at least partially, by reduc-
ing the sidelobe levels of the beamformer to levels that sufficiently reject these sidelobe
signals. As we described in Section 11.2.2, the application of a taper to a spatial matched
filter resulted in a low sidelobe beampattern. The same principle applies to the optimum
beamformer. We define a tapered array response vector at an angle φs as

vt(φs) = ctbf (φs) = t � cmf (φs) (11.3.30)
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where t is the tapering vector and � is the Hadamard or element-by-element product. The
tapering vector is normalized such that vHt (φs)vt(φs) = 1 as in (11.2.23). The resulting
low sidelobe adaptive beamformer is given by substituting vt(φs) for v(φs) in (11.3.15)

cto =
R−1

i+nvt(φs)

vHt (φs)R
−1
i+nvt(φs)

(11.3.31)

We again use the Dolph-Chebyshev taper for illustration purposes because this choice of ta-
per provides a uniform sidelobe level. Other choices include the window functions discussed
in Chapter 5 in the context of spectrum estimation. Consider the optimum beamformer with
an interferer at φ = 20◦ from Figure 11.18(a) with a potential signal leaking through the
sidelobe at φ = −20◦. If instead we use a tapered optimum beamformer from (11.3.31)
with a −50-dB sidelobe taper, a potential signal at φ = −20◦ receives a −50-dB level of
attenuation. Figure 11.18(b) shows the beampattern of this tapered optimum beamformer.
The sidelobe levels are significantly reduced while the null on the interferer at φ = 20◦ has
been maintained.

The adaptive beamformer given by (11.3.31) is no longer optimal in any sense [unless it
were somehow possible for our desired signal to be spatially matched to vt(φs)]. However,
the resulting adaptive beamformer still provides rejection of unwanted interferers via spatial
nulling through the use of R−1

i+n in (11.3.31). In addition, the low sidelobe levels of the
beampattern reject signals not contained in the interference that are present at angles other
than the angle of look φs . The penalty to be paid for the robustness provided by these low
sidelobes is a small tapering loss in the direction of the look φs given by

Ltaper = |cHto v(φs)|2 =
∣∣∣∣∣ vHt (φs)R

−1
i+nv(φs)

vHt (φs)R
−1
i+nvt(φs)

∣∣∣∣∣
2

= |v
H (φs)R

−1
i+nvt(φs)|2

vHt (φs)R
−2
i+nvt(φs)

(11.3.32)

and a widening of the mainlobe beamwidth, as can be seen in the beampattern in Figure
11.18. This tapering loss indicates a mismatch between the true signal and the constraint in
the optimum beamformer.

11.3.5 The Generalized Sidelobe Canceler

We have shown that the optimum MVDR beamformer maximizes the output SINR and can
be formulated as a constrained optimization given by

min cHRi+nc subject to cHv(φs) = 1 (11.3.33)

which results in the MVDR beamformer weight vector

co =
R−1

i+nv(φs)

vH (φs)R
−1
i+nv(φs)

(11.3.34)

This problem formulation can be broken up into constrained and unconstrained components
that give rise to both an alternate implementation and a more intuitive interpretation of the
optimum beamformer. The resulting structure, known as the generalized sidelobe canceler
(GSC) (Griffiths and Jim 1982), uses a preprocessing stage to transform the optimization
from constrained to unconstrained (Applebaum and Chapman 1976; Griffiths and Jim 1982).
The GSC structure is illustrated in Figure 11.19.

Consider the array signal x(n) from (11.3.1) consisting of a signal component s(n) and
an interference-plus-noise component xi+n(n). We are interested in forming the optimum
beamformer steered to the angle φs . Let us start by forming a nonadaptive spatial matched
filter in this direction cmf = v(φs). The resulting output is the main channel signal given
by

y0(n) = cHmf (φs)x(n) = vH (φs)x(n) = s0(n)+ i0(n)+ w0(n) (11.3.35)
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v(fs)

B cB

y(n)
y0(n) = s0(n) + i0(n) + w0(n)

xB(n) M − 1

Mx(n) +

−

= M-dimensional
M

î 0(n)

FIGURE 11.19
Generalized sidelobe canceler.

This nonadaptive beamformer makes up the upper branch of the GSC. In addition, let us
form a lower branch consisting ofM−1 channels in which the unconstrained optimization is
performed. To prevent signal cancelation according to the unity-gain constraint in (11.3.33),
we must ensure that theseM− 1 channels do not contain any signals

†
from φs . To this end,

we form an (M − 1)×M signal blocking matrix B that is orthogonal to the look-direction
constraint v(φs)

BHv(φs) = 0 (11.3.36)

The resulting output of the blocking matrix is the (M − 1)× 1 vector signal

xB(n) = BHx(n) (11.3.37)

Thus, several choices for the blocking matrix exist that can perform this projection onto
the (M − 1)-dimensional subspace orthogonal to v(φs). One choice uses a set of M − 1
beams that are each chosen to satisfy this constraint. The spatial frequency of the ULA for
an angle φs is

us = d
λ

sin φs (11.3.38)

For v(φs), spatial matched filters at the frequencies

um = us + m
M

(11.3.39)

for m = 1, 2, . . . ,M − 1 are mutually orthogonal as well as orthogonal to v(φs), that is,

vH (φm)v(φs) = 0 (11.3.40)

where φm is the angle corresponding to the spatial frequency um given by (11.3.39). Thus,
we can construct a beamspace signal blocking matrix from theseM − 1 steering vectors

B = [v(u1) v(u2) · · · v(uM−1)] (11.3.41)

An alternative signal blocking matrix can be implemented, assuming the array is presteered
to the angle φs (Griffiths and Jim 1982). Presteering is accomplished by phase-shifting each
element of the array by the corresponding steering vector element to this angle without
actually forming a summation. Then any blocking matrix for which the elements of each
column sum to zero will satisfy (11.3.36).

Once the nonadaptive preprocessing has been performed for the upper and lower
branches of the GSC, an unconstrained optimization can be performed in the lower branch.

†
Although the optimum beamformer was formulated for a signal-free interference-plus-noise correlation matrix

Ri+n, it is possible that the presence of the desired signal in the data is unavoidable.
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Using theM − 1 channels in the lower branch, we want to estimate the undesired portion
of the upper branch signal y0(n) due to interference. This interference is presumed to arrive
at the array from a different angle than φs so that it must be contained in the lower branch
signal as well. Thus, we need to compute an adaptive weight vector for the lower branch
channels that forms an estimate of the interference in the upper branch. The estimated inter-
ference is subtracted from the upper branch. This problem is the classical MMSE filtering
problem (see Chapter 6), whose solution is given by the Wiener-Hopf equation

cB = R−1
B rB (11.3.42)

where RB = E{xB(n)xHB (n)} is the lower branch correlation matrix and rB = E{xBy
∗
0 (n)}

is the cross-correlation vector between the upper and lower branch signals. The resulting
estimate of the upper branch interference signal is

î0(n) = cHB xB(n) (11.3.43)

and the output of the GSC is

y(n) = y0(n)− î0(n) = y0(n)− cHB xB(n) (11.3.44)

As we stated earlier, the GSC is equivalent to the optimum beamformer; that is, it maximizes
the SINR at its output for signals arriving at angleφs . The power of the GSC formulation lies
in its interpretation. Whereas for the optimum beamformer, the interference was canceled
by forming spatial nulls in the directions of interferers, the GSC can be visualized as
estimating the interference component in the upper branch from the lower-branch signals.
Of course, the GSC also forms spatial nulls in the directions of the interferers. In terms of
an alternate implementation, one must consider that if we are to steer the array to a number
of different angles, each direction will require the formation of a new blocking matrix and
the computation of a different correlation matrix and cross-correlation vector for the GSC.
On the other hand, the optimum beamformer formulation has the same correlation matrix
independent of the direction to which it is steered and, therefore, is often preferred for imple-
mentation purposes.

11.4 PERFORMANCE CONSIDERATIONS FOR OPTIMUM BEAMFORMERS

In this section we look at some considerations that influence the performance of an optimum
beamformer. These considerations are also applicable to the adaptive methods in Section
11.5 that are derived from the optimum beamformer. Since the optimum beamformer serves
as an upper bound on the performance of any adaptive method, these considerations can
serve as adjustments to this performance bound for the adaptive counterparts to the optimum
beamformer.

Two major factors that affect the performance of an optimum beamformer are:

• Mismatch of the actual signal to the assumed signal model used by the optimum beam-
former

• Bandwidth of the signal that violates the narrowband assumption.

In the first section, we look at the effects of differences in the actual signal from that assumed
for the optimum beamformer, known as signal mismatch. In virtually all array processing
implementations, some level of mismatch will exist, due to either uncertainty in the exact
angle of arrival of the signal of interest or the fact that the locations and characteristics of
the individual sensors differ from our assumptions. As we will see, these errors that produce
a signal mismatch can have profound implications on performance, particularly when the
signal of interest is present in the correlation matrix. Next, we look at the effects of wider
bandwidths on the performance of the optimum beamformer. In many applications, certain
requirements necessitate the use of larger bandwidths. Their impact and possible means of
correction are discussed in this section.
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11.4.1 Effect of Signal Mismatch

In our formulation of the optimum beamformer, we assumed that a signal arriving at the
array from an angle φs would produce a response equal to the ideal steering vector for a
ULA[see (11.1.19)]. Thus, the optimum beamformer constrained its response to be spatially
“matched" to the array response of the signal vs = v(φs) = v0 where φ0 = φs

cHo v0 = cHo vs = 1 (11.4.1)

that is, to pass it with unity gain. The vector v0 is the assumed array response. However,
in reality, the signal may exhibit a different response across the array or may arrive from
another angle φs �= φ0. The differences in response arise due to distortion of the waveform
during propagation, amplitude and phase mismatches between the individual sensors, or
errors in the assumed locations of the sensors.

†
These mismatches manifest themselves in a

deviation of the array response from that assumed for a ULA in (11.1.19). However, if the
angle of arrival of the signal differs from the assumed angle, the result is an array response
as in (11.1.19), but for the angle φs as opposed to the steering angle φ0. In either case, the
beamformer is mismatched with the signal of interest and is no longer optimum. In this
section, we examine the effect of these mismatches on the performance of the optimum
beamformer, for the case of the signal of interest contained in the correlation matrix and
absent from it. As we will see, the inclusion of this signal of interest in the correlation matrix
has profound implications on the performance of a mismatched optimum beamformer. The
analysis that follows was originally reported by Cox (1973).

Consider the case of an array signal consisting of a signal of interest s(n), interference
i(n), and thermal noise w(n)

x(n) = s(n)+ i(n)+ w(n) (11.4.2)

where the noise is assumed to be uncorrelated, that is, Rn = σ 2
wI. Now let us assume that

the signal of interest is given by

s(n) = √Ms(n)us (11.4.3)

where us , with unit norm (uHs us = 1), is the true array response to the signal of interest.
For generality, us may be either an ideal or a nonideal array response for a ULA of a signal
arriving from angle φs , but in either case it is mismatched with the assumed response

us �= v0 (11.4.4)

The correlation matrix of the signal x(n) is made up of components due to the signal and
the interference-plus-noise

Rx = E{x(n)xH (n)} = Mσ 2
susu

H
s + Ri+n (11.4.5)

where the signal power is σ 2
s = |s(n)|2. The optimum beamformer with an MVDR con-

straint for the signal s(n) in (11.3.15) is

co =
R−1

i+nus

uHs R−1
i+nus

(11.4.6)

However, the true array response us is unknown. This optimum beamformer in (11.4.6)
yields the maximum output SINR given by

SINRo = Mσ 2
su
H
s R−1

i+nus = SNR0 · Lsinr (11.4.7)

where SNR0 = Mσ 2
s /σ

2
w is the matched filter SNR in the absence of interference from

(11.2.18) (best performance possible) and Lsinr = σ 2
wuHs R−1

i+nus is the SINR loss from

†
Similar losses also result from using a tapered steering vector. This loss was shown for the tapered optimum

beamformer for the case of the signal of interest not present in the correlation matrix. As we will show in this
section, the inclusion of the signal of interest in the correlation matrix can cause substantial losses in such a tapered
beamformer.
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(11.3.18) due to the presence of the interference. Thus, we can evaluate the losses due to
signal mismatch and the inclusion of the signal of interest in the correlation matrix with
respect to the maximum SINR in (11.4.7).

Loss due to signal mismatch

First, let us consider a mismatched signal v0 �= us without the signal of interest present
in the correlation matrix. The mismatch arises due to our lack of knowledge of the true array
response to the signal of interest us . The computation of the beamformer weights, assuming
the array response to the signal to be v0 with an MVDR normalization, is given by

c1 =
R−1

i+nv0

vH0 R−1
i+nv0

(11.4.8)

The SINR at the beamformer output for this weight vector is given by

SINR1 = |c
H
1 s(n)|2

cH1 Ri+nc1
= Mσ 2

s

|vH0 R−1
i+nus |2

vH0 R−1
i+nv0

= Mσ 2
su
H
s R−1

i+nus
|vH0 R−1

i+nus |2
(vH0 R−1

i+nv0)(uHs R−1
i+nus)

= SINRo · cos2(v0, us;R−1
i+n)

(11.4.9)

where the term cos(·) measures the cosine of a generalized angle between two vectors a
and b weighted by matrix Z (Cox 1973)

cos2(a, b;Z) �= |aHZb|2
(aHZa)(bHZb)

(11.4.10)

This term can be shown to have limits of 0 ≤ cos2(a, b;Z) ≤ 1 through the Schwartz
inequality. The SINR from (11.4.9) can be rewritten as

SINR1 = SNR0 · Lsinr · Lsm (11.4.11)

where we define the signal mismatch (sm) loss to be

Lsm
�= cos2(v0, us;R−1

i+n) (11.4.12)

Therefore, the SINR in (11.4.9) is a result of reducing the maximum SNR for a matched filter
by the SINR loss due to the interference Lsinr as well as the loss due to the mismatch Lsm.

To gain some insight into the loss due to mismatch, consider the eigendecomposition
of R−1

i+n given by

R−1
i+n =

M∑
m=1

1

λm
qmqHm (11.4.13)

where λm and qm are the eigenvalue and eigenvector pairs, respectively. The largest eigen-
values and their corresponding eigenvectors are due to interference, while the small eigen-
values and eigenvectors are due to noise only. Since the eigenvectors form a basis for the
M-dimensional vector space, any vector, say, v0 or us , can be written as a linear combination
of these eigenvectors. The product of the matrix R−1

i+n with any vector closely aligned with
an interference eigenvector will suffer significant degradation. Therefore, the mismatch loss
in (11.4.12) should be relatively small for the case of us not closely aligned with interferers.
Otherwise, if the signal lies near any of the interfererence eigenvectors, the beamformer
will be more sensitive to signal mismatch.

Intuitively, performance degradation due to a mismatch in the optimum beamformer is
relatively insensitive for small mismatches. The beamformer in (11.4.8) attempts to remove
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any energy that is not contained in its unity-gain constraint for v0. Since the signal with
an array response us is not contained in the correlation matrix, the only losses incurred are
due to the degree of mismatch between us and v0 and the similarity of us to interference
components that are nulled through the use of R−1

i+n. However, most importantly, the loss
due to mismatch is independent of the signal strength σ 2

s .

Loss due to signal in the correlation matrix

To implement the optimum beamformer in (11.4.6) in practice, we must assume that we
can estimate Ri+n without the presence of the signal s(n). However, in many applications
the signal is present all the time so that an estimate of a signal-free correlation matrix is not
possible. In this case, the optimum beamformer must be constructed with the correlation
matrix from (11.4.5) and is given by

c2 = R−1
x v0

vH0 R−1
x v0

(11.4.14)

Although this beamformer differs from the beamformer c1 in (11.4.8) that does not include
the signal of interest in the correlation matrix, it produces an identical beamforming weight
vector in the case when it is perfectly matched to the signal of interest, that is, v0 = us
(see Problem 11.10). Thus, the beamformer in (11.4.14) also maximizes the SINR in the
case of a perfectly matched signal. However, we want to examine the sensitivity of this
beamformer to signal mismatches. The SINR of the beamformer from (11.4.14) with the
signal present (sp) in the correlation matrix can be shown to be (Cox 1973)

SINR2 = |c
H
2 s(n)|2

cH2 Ri+nc2
= Mσ 2

s

|vH0 R−1
x us |2

vH0 R−1
x Ri+nR−1

x v0

= SINR1

1+ (2SINRo + SINR2
o) · sin2(v0, us;R−1

i+n)

= SNR0 · Lsinr · Lsm · Lsp

(11.4.15)

where SINR1 is the SINR of the mismatched beamformer in (11.4.9). The sin(·) term
measures the sine of the generalized angle between v0 and us and is related to the cos(·)
term from (11.4.10) by

sin2(v0, us;R−1
i+n) = 1− cos2(v0, us;R−1

i+n) (11.4.16)

Thus, the SINR of a beamformer constructed with the signal of interest present in the
correlation matrix suffers an additional loss Lsp, beyond the losses associated with the
interference Lsinr and the mismatch Lsm between us and v0, which is given by

Lsp = 1

1+ (2SINRo + SINR2
o) sin2(v0, us;R−1

i+n)
(11.4.17)

Unlike the mismatch loss from (11.4.12), the loss due to the signal presence in the correlation
matrix with signal mismatch is related to the signal strength σ 2

s . In fact, (11.4.17) shows a
strong dependence on the signal strength through the terms SINRo and SINR2

o in the denom-
inator. This dependence on signal strength is weighted by the sine term in (11.4.16) that mea-
sures the amount of mismatch. Thus for large signals, the losses can be significant. In fact, it
can be shown that the losses resulting from strong signals present in the correlation matrix
can cause the output SINR to be lower than if the signal had been relatively weak. This phe-
nomenon along with possible means of alleviating the losses is explored in Problem 11.11.

We have shown a high sensitivity to mismatch of strong signals of interest when they are
present in the correlation matrix used to compute the beamforming weights in (11.4.14).
Since, in practice, a certain level of mismatch is always present, it may sometimes be
advisable to use conventional, nonadaptive beamformers when the signal is present at
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all times and does not allow the estimation of a signal-free correlation matrix Ri+n. If
the performance of such nonadaptive beamformers is deemed unacceptable, then special
measures such as diagonal loading, which is described in Section 11.5.2, must be taken to
design a robust beamformer that is less sensitive to mismatch (Cox et al. 1987).

11.4.2 Effect of Bandwidth

So far, we have relied on the narrowband assumption, meaning that the bandwidth B of
the received signals is small with respect to the carrier frequency Fc. Previously, we gave
a rule of thumb for this assumption, namely, that the fractional bandwidth, defined as

B̄ = B
Fc

(11.4.18)

is small, say, B̄ � 1 percent. Another measure is the space-time-bandwidth product, which
for an array of length L is

TBWP = LB
c

(11.4.19)

where the time L/c is the maximum amount of time for a plane wave to propagate across
the entire array, that is, the maximum propagation delay between the first and last elements
(φ = ±90◦, sin φ = 1).

However, many real-world applications require increased bandwidths, which cause
this assumption to be violated (Buckley 1987; Zatman 1998). The question then is, What
is the effect of bandwidth on the performance of an array? Let us begin by examining the
narrowband steering vector for a ULA from (11.1.19)

v(φ) = 1√
M
[1 e−j2π [(d sin φ)/λ] · · · e−j2π [(d sin φ)/λ](M−1)]T (11.4.20)

which assumes that λ is constant, that is, the array receives signals only from a frequency
Fc. Relaxing this assumption and substituting λ = c/F from (11.1.2) gives us a steering
vector that makes no assumptions about the bandwidth of the incoming signal

v(φ, F ) = 1√
M
[1 e−j2π [(d sin φ)/c]F · · · e−j2π [(d sin φ)/c](M−1)F ]T (11.4.21)

When we demodulate the received signals by the carrier frequency Fc, we are making an
implicit narrowband assumption that allows us to model the time delay between sensor
elements as a phase shift. Therefore, a wideband signal arriving from an angle φ appears to
the narrowband receiver as if it were arriving from an angular region centered atφ (provided
the spectrum of the incoming signal is centered about Fc), since the approximation of the
delay between elements as a single phase shift no longer holds. This phenomenon is known
as dispersion since the incoming wideband signal appears to disperse in angle across the
array.

Let us examine the impact of a wideband interference signal on the performance of
an adaptive array. The correlation matrix of a single interference source impinging on the
array from an angle φ is found by integrating over the bandwidth of the received signal

Ri =
σ 2
p

B

Fc+B/2∫
Fc−B/2

v(φ, F )vH (φ, F ) dF (11.4.22)

where the assumption is made that the spectral response of the signal is flat over the band-
width, that is, |R(F)|2 = 1 forFc−B/2 ≤ F ≤ Fc+B/2. Now, focusing on the individual
elements of the correlation matrix, namely the (m, n)th element
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〈Ri〉m,n =
σ 2
p

B

Fc+B/2∫
Fc−B/2

ej2πm[(d sin φ)/c]F e−j2πn[(d sin φ)/c]F dF

= σ
2
p

B

Fc+B/2∫
Fc−B/2

ej2π(m−n)[(d sin φ)/c]F dF

= σ 2
pe
j2π(m−n)[(d sin φ)/c]Fc

2 sin

[
2π(m− n)d sin φ

c

B

2

]
2π(m− n)d sin φ

c
B

= σ 2
pe
j2π(m−n)[(d sin φ)/λ]sinc

[
(m− n)d sin φ

c
B

]

(11.4.23)

where sinc(x) = sin(πx)/(πx). We notice that each element is made up of two terms. The
first term is simply the cross-correlation between themth and nth sensor array elements for
a narrowband signal arriving from φ

〈R(nb)
i 〉m,n = σ 2

pe
j2π(m−n)[(d sin φ)/λ] (11.4.24)

where the superscript indicates that this is the narrowband correlation matrix. The second
term represents the dispersion across the array caused by the bandwidth of the interferer
and is given by

〈Rd〉m,n = sinc

[
(m− n)d sin φ

c
B

]
(11.4.25)

Using (11.4.25), we can construct a matrix that models this dispersion across the entire array,
which we refer to as the dispersion matrix. Dispersion creates decorrelation of the signal
across the array, and this term represents the temporal autocorrelation of the impinging
signal. Therefore, we can write the wideband correlation matrix as the Hadamard product
of the narrowband correlation and the dispersion matrices

R(wb)
i = R(nb)

i � Rd (11.4.26)

where the Hadamard product is a point-by-point multiplication (Strang 1998).
The dispersion produced by a wideband signal can be compensated or corrected for at its

specific angle by using a technique known as time-delay steering. Notice that the dispersion
term in (11.4.25) is 〈Rd〉m,n = 1 for φ = 0◦ since the argument of the sinc function is
zero. Therefore, for signals arriving from φ = 0◦ no dispersion can occur. In other words,
for signals arriving from broadside to the array (φ = 0◦), the delay between elements is
zero, independent of the frequency of the signal or its bandwidth. The dispersion becomes
worse as the value of the angle is increased. This suggests a simple remedy to correct
for dispersion: refocus the array to angle φ. Steering the array in this direction involves
time-delaying each element to compensate for its delay between elements explicitly. This
time-delay steering can be implemented in analog or digitally and is illustrated in Figure
11.20. The time-delay steered array signal is

xtd(t) = [x1(t) x2(t − τ 2) · · · xM(t − τM)]T (11.4.27)

where τm = (d/λ)(m − 1) sin φ with λ being the wavelength of the center frequency Fc.
Thus, a signal arriving from this angle will have no delay between elements following the
time-delay steering. A convenient means of modeling time-delay steering in the discrete-
time signal is through application of the matrix

V = diag{v(φ)} (11.4.28)
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FIGURE 11.20
Time-delay steering prior to beamforming (referenced to the first element,
τ1 = 0).

to the array signal x(n) as

xtd(n) = VHx(n) (11.4.29)

The resulting interference correlation matrix is

R(td)i = VHR(wb)
i V (11.4.30)

Time-delay steering will focus signals from angle φ but may in fact increase the amount
of dispersion from other angles. However, if we are not looking at these other angles, this
effect may not be noticed. The underlying phenomenon that is occurring is that an optimum
beamformer is forced to use additional adaptive degrees of freedom to cancel the dispersed,
wideband interference signals. As long as the optimum beamformer has sufficient degrees
of freedom, the effect of dispersion at other angles may not be evident.

E XAM PLE 11.4.1. Consider the radar interference scenario with a single jammer at an angle
φ = 30◦ with a jammer-to-noise ratio JNR = 50 dB. Again, we have anM = 10 element array
with λ/2 spacing. The center frequency of the array isFc = 1 GHz, and the bandwidth isB = 10
MHz for a fractional bandwidth of B̄ = 1 percent. The SINR loss of an optimum beamformer
is found by substituting the wideband correlation matrix from (11.4.26) into the SINR loss in
(11.3.18)

Lsinr(φs) = vH (φs)[R(wb)
i+n ]−1v(φs) (11.4.31)

where the wideband interference-plus-noise correlation matrix is R(wb)
i+n = R(wb)

i +σ 2
wI since the

thermal noise is uncorrelated. Scanning across all angles, we can compute the SINR loss, which
is shown in Figure 11.21 along with the SINR loss had the signal been narrowband. Notice the
increased width of the SINR loss notch centered about φ = 30◦, which corresponds to a dropoff
in performance in the vicinity of the jammer with respect to the narrowband case. However,
at angles farther from the jammer there is no impact on performance; that is, Lsinr(φs) ≈ 0
dB. Next we look at the performance of an optimum beamformer that incorporates time-delay

steering prior to adaptation. In this case, using R(td)i + σ 2
wI from (11.4.30) in place of R(wb)

i+n in
the SINR loss equation, we can compute the SINR loss of the optimum beamformer using time-
delay steering, which is also plotted in Figure 11.21. The notch around the jammer at φ = 30◦
has been restored to the narrowband case for angles immediately surrounding φ = 30◦. At the
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FIGURE 11.21
SINR loss for wideband jammer with JNR = 50 dB at an angle of
φ = 30◦. The carrier frequency is Fc = 1 GHz, and the bandwidth
is B = 10 MHz. Solid line is the narrowband signal, dashed line is
the wideband signal, and dash-dot line is the wideband signal with
time-delay steering.

angles a little farther away, the performance is still worse than that for the narrowband case but
still significantly better than that without time-delay steering.

11.5 ADAPTIVE BEAMFORMING

So far, we have only considered the optimum beamformer but have not concerned our-
selves with how such a beamformer would be implemented in practice. Optimality was
only achieved because we assumed perfect knowledge of the second-order statistics of the
interference at the array, that is, the interference-plus-noise correlation matrix Ri+n. In this
section, we describe the use of adaptive methods that are based on collected data from
which the correlation matrix is estimated. We look at two types of methods: block adaptive
and sample-by-sample adaptive. A block adaptive implementation of the optimum beam-
former uses a “block” of data to estimate the adaptive beamforming weight vector and is
known as sample matrix inversion (SMI). The SMI adaptive beamformer is examined in
Section 11.5.1 along with the sidelobe levels and training issues associated with the SMI
adaptive beamformer. Next we introduce the use of diagonal loading within the context
of the block adaptive SMI beamformer in Section 11.5.2. In Section 11.5.3, we discuss
sample-by-sample adaptive methods. These methods, as the block adaptive methods, base
their estimates of the statistics on the data, but update these statistics with each new sample
and are extensions of the adaptive filtering techniques from Chapter 10 to array processing.

11.5.1 Sample Matrix Inversion

In practice, the correlations are unknown and must be estimated from the data. Thus, we turn
to the maximum-likelihood (ML) estimate of the correlation matrix given by the average
of outer products of the array snapshots (Goodman 1963)

R̂i+n = 1

K

K∑
k=1

xi+n(nk)xHi+n(nk) (11.5.1)
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where the indices nk define the K samples of xi+n(n) for 1 ≤ n ≤ N that make up the
training set. Many applications may dictate that the collected snapshots be split into training
data and data to be processed. The ML estimate of the correlation matrix implies that as
K → ∞, then R̂i+n → Ri+n; and it is known as the sample correlation matrix. The
total number of snapshots K used to compute the sample correlation matrix is referred to
as the sample support. The larger the sample support, the better the estimate R̂i+n of the
correlation matrix for stationary data. Proceeding by substituting the sample correlation
matrix from (11.5.1) into the optimum beamformer weight computation in (11.3.15) results
in the adaptive beamformer (Reed et al. 1974)

csmi =
R̂−1

i+nv(φs)

vH (φs)R̂
−1
i+nv(φs)

(11.5.2)

known as the sample matrix inversion adaptive beamformer.
†

As for the optimum beam-
former, an SMI adaptive beamformer can be implemented with low sidelobe control through
the use of tapers. Simply substitute a tapered steering vector from (11.3.20) for v(φs) in
(11.5.2)

ctsmi =
R̂−1

i+nvt(φs)

vHt (φs)R̂
−1
i+nvt(φs)

(11.5.3)

Similarly, all the adaptive processing methods that will be discussed in Section 11.6, that
is, the linearly constrained beamformer, all the partially adaptive beamformers, and the
sidelobe canceler, can be implemented in a similar fashion by substituting the appropriate
sample correlation matrix for its theoretical counterpart.

Of course, we cannot expect to substitute an estimate R̂i+n of the true correlation
matrix Ri+n into the adaptive weight equation without experiencing a loss in performance.
We begin by computing the output SINR of the SMI adaptive beamformer

SINRsmi = Mσ
2
s |cHsmiv(φs)|2

E{|cHsmixi+n(n)|2}
= Mσ

2
s |cHsmiv(φs)|2

cHsmiRi+ncsmi

= Mσ 2
s

[vH (φs)R̂−1
i+nv(φs)]2

vH (φs)R̂
−1
i+nRi+nR̂−1

i+nv(φs)

(11.5.4)

Comparing this to the SINR obtained with the optimum beamformer from (11.3.12), we
obtain the loss associated with the SMI adaptive beamformer relative to the optimum beam-
former

Lsmi = SINRsmi

SINRo
= [vH (φs)R̂−1

i+nv(φs)]2
[vH (φs)R̂−1

i+nRi+nR̂−1
i+nv(φs)][vH (φs)R−1

i+nv(φs)]
(11.5.5)

This SMI loss is dependent on the array data used to compute R̂i+n, which implies that
Lsmi, like the data, is a random variable. In fact, it can be shown that Lsmi follows a beta
distribution given by (Reed et al. 1974)

pβ(Lsmi) = K!
(M − 2)!(K + 1−M)! (1− Lsmi)

M−2(Lsmi)
K+1−M (11.5.6)

assuming a complex Gaussian distribution for the sensor thermal noise and the interference
signals. Here M is the number of sensors in the array, and K is the number of snapshots

†
An adaptive beamformer that is very similar to the SMI adaptive beamformer is known as the adaptive matched

filter (AMF) (Robey et al. 1992). The difference between the two is actually in the normalization. The AMF
requires cH R̂i+nc = 1 rather than cH v(φs) = 1 so that the interference-plus-noise has unit power at the
beamformer output. As a result, it is straightforward to choose a detection threshold for the output of an AMF
beamformer. For this reason, this method is discussed primarily within the context of adaptive detection. It is
straightforward to show that the relation between the AMF and SMI adaptive weights, as they are defined in
(11.5.2), is camf = [vH (φs)R̂−1

i+nv(φs)]1/2csmi.
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used to estimate Ri+n. Taking the expectation of this loss yields

E{Lsmi} = K + 2−M
K + 1

(11.5.7)

which can be used to determine the sample support required to limit the losses due to
correlation matrix estimation to a level considered acceptable. From (11.5.7), we can deduce
the SMI loss will be approximately −3 dB for K = 2M and approximately −1 dB for
K = 5M .

EXAMPLE 11.5.1. In this example, we study the SMI adaptive beamformer and the loss associ-
ated with the number of snapshots used for training. SMI adaptive beamformers are produced
with sample supports ofK = 1.5M, 2M , and 5M . Consider a ULA withM = 20 elements with
an interference source at φi = 20◦ and a power of 50 dB. The thermal noise has unit variance
σ 2
w = 1. We can generate the interference-plus-noise signal xi+n as

v_i = exp(-j*pi*[0:M-1]’*sin(phi_i*pi/180))/sqrt(M);
x_ipn=(10ˆ(40/20))*v_i*(randn(1,N)+j*randn(1,N))/sqrt(2) + ...
(randn(1,N)+j*randn(1,N))/sqrt(2);

The sample correlation matrix is then found from (11.5.2). We compute the SINR at an angle of
φ by first computing the SMI adaptive weight vector from (11.5.3), and the SINR from (11.5.4)
using the actual correlation matrix Ri+n, computed by

R_ipn = (10ˆ(40/10))*v_i*v_i’ + eye(M);

and a signal of interest with Mσ 2
s = 1. We repeat this across all angles −90◦ ≤ φ < 90◦

and average over 100 realizations of xi+n. The resulting average SINR for the various sample
supports is shown in Figure 11.22 along with the SINR for the optimum beamformer computed
from (11.3.12). Note that for a signal of interest with Mσ 2

s = 1 and unit-variance noise, the
SINR of the optimum beamformer is equal to its SINR loss. The jammer null is at φ = 20◦,
as expected for all the beamformers. However, we notice that the SINR of the SMI adaptive
beamformers is less than the optimum beamformer SINR by approximately 4, 3, and 1 dB for
the sample supports of K = 1.5M , 2M , and 5M , respectively. These losses are consistent with
the SMI loss predicted by (11.5.7).

Sidelobe levels of the SMI adaptive beamformer

In addition to affecting the SINR of the beamformer output, the use of array snapshots to
estimate Ri+n has implications for the sidelobe levels of the resulting adaptive beamformer.
The following analysis follows directly from Kelly (1989). Consider a signal received from
a direction other than the direction of look φs . The response to such a signal determines the
sidelobe level of adaptive beamformer at this angle. For the MVDR optimum beamformer
from (11.3.15), the sidelobe level (SLL) at an angle φu is given by

SLLo = |Co(φu)|2 =
|vH (φs)R−1

i+nv(φu)|2
|vH (φs)R−1

i+nv(φs)|2
(11.5.8)

where φs is the beamformer steering angle or look direction. Likewise, we can also define
the SINR of a signal s(n) = σuv(φu) received from an angle φu in the sidelobes of the
optimum beamformer steered to φs

SINRo(φs ,φu) =
|cHo (φs)s(n)|2

E{|cHo (φs)xi+n(n)|2} =
σ 2
u|vH (φs)R−1

i+nv(φu)|2
vH (φs)R

−1
i+nv(φs)

= SINRo(φu,φu)|vH (φs)R−1
i+nv(φu)|2

[vH (φs)R−1
i+nv(φs)][vH (φu)R−1

i+nv(φu)]
= SINRo(φu, φu) cos2(v(φs), v(φu);R−1

i+n)

(11.5.9)
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FIGURE 11.22
SINR loss for SMI adaptive beamformer with different numbers of
training snapshots. Thin solid line has 30 snapshots (K = 1.5M),
dashed line has 40 snapshots (K = 2M), and dash-dot line has 100
snapshots (K = 5M). Thick, solid line is SINR loss for the
optimum beamformer.

since SINRo(φu,φu) = σ 2
uv
H (φu)R

−1
i+nv(φu), which is the maximum output SINR possible

for a signal at angle φu, that is, the SINR if the optimum beamformer had been properly
steered in this direction. The term

cos(v(φs), v(φu);R−1
i+n) =

vH (φs)R
−1
i+nv(φu)

[vH (φs)R−1
i+nv(φs)]1/2[vH (φu)R−1

i+nv(φu)]1/2

= ṽH (φs)ṽ(φu)
[ṽH (φs)ṽ(φs)]1/2[ṽH (φu)ṽ(φu)]1/2

(11.5.10)

ṽ(φ) = L−1
i+nv(φ) (11.5.11)where

measures the cosine of a generalized angle between vectors v(φs) and v(φu) (Cox 1973).
This last quantity is the cosine of the angle between the whitened vectors ṽ(φs) and ṽ(φu)
at the respective angles of φs and φu. The matrix Li+n is simply the Cholesky factor of the
correlation matrix, that is, Ri+n = Li+nLH

i+n. The sidelobe level of the optimum beamformer
from (11.5.8) can also be written in terms of the SINR from (11.5.9)

SLLo = |Co(φu)|2 =
SINRo(φs , φu)

SINRo(φs , φs)
(11.5.12)

cos2(v(φs), v(φu);R−1
i+n) =

SINRo(φs , φu)

SINRo(φu, φu)
(11.5.13)From (11.5.9),

which is not the same as the sidelobe level in (11.5.12). However, this cosine term is
a measure of the attenuation provided by an optimum beamformer steered in the di-
rection φs as opposed to the maximum SINR provided by steering to angle φu. Thus,
cos2(v(φs), v(φu);R−1

i+n) can be thought of as the sidelobe level at an angle φu of an opti-
mum beamformer steered to φs in the absence of interference at φu. As a result, this term
serves as an upper bound on the sidelobe level.
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Turning our attention to the SMI adaptive beamformer, we begin by computing the
SINR at the beamformer output of a signal received from φu for a steering angle of φs

SINRsmi(φs ,φu) =
|cHsmi(φs)s(n)|2

E{|cHsmi(φs)xi+n(n)|2}

= σ 2
u|vH (φs)R̂−1

i+nv(φu)|2
vH (φs)R̂

−1
i+nRi+nR̂−1

i+nv(φs)

= SINRo(φu, φu)

× |vH (φs)R̂−1
i+nv(φu)|2

[vH (φs)R̂−1
i+nRi+nR̂−1

i+nv(φs)][vH (φu)R−1
i+nv(φu)]

= SINRo(φu, φu)L(φs , φu)

(11.5.14)

where

L(φs , φu) =
SINRsmi(φs , φu)

SINRo(φu, φu)

= |vH (φs)R̂−1
i+nv(φu)|2

[vH (φs)R̂−1
i+nRi+nR̂−1

i+nv(φs)][vH (φu)R−1
i+nv(φu)]

(11.5.15)

This term is bounded by 0 < L(φs ,φu) < 1 and can be interpreted as the loss of a signal
received from the sidelobe angle φu processed with an SMI adaptive beamformer steered to
φs relative to the maximum SINR possible for this signal. The term in the denominator of
(11.5.15) is the SINR of the optimum, not the SMI adaptive beamformer. It is evident that as
the number of array snapshots K →∞, R̂i+n → Ri+n, L(φs ,φu)→ cos2(v(φs), v(φu);
R−1

i+n) from (11.5.15). The sidelobe level, however, of the SMI adaptive beamformer is

SLLsmi = |Csmi(φu)|2 =
|vH (φs)R̂−1

i+nv(φu)|2
|vH (φs)R̂−1

i+nv(φs)|2
(11.5.16)

However, unlike the sidelobe level of the optimum beamformer in (11.5.12) which could
be related to the SINR of signals in the sidelobes, such a relation does not hold for the SMI
adaptive beamformer because

vH (φs)R̂
−1
i+nRi+nR̂−1

i+nv(φs) �= vH (φs)R̂
−1
i+nv(φs) (11.5.17)

Asymptotically, this relation holds, but for finite sample support it does not. Nonetheless, we
can draw some conclusions about the anticipated sidelobe levels using L(φs, φu). The loss
in SINR of the sidelobe signalL(φs ,φu) is a random variable with a probability distribution
(Boroson 1980)

p(L,7) =
J∑
j=0

(
J

j

)
cos2(v(φs), v(φu);R−1

i+n)
J−j

× sin2(v(φs), v(φu);Ri+n)
jpβ(L, J + 1,M − 1)

(11.5.18)
where sin2(v(φs), v(φu);Ri+n) = 1 − cos2(v(φs), v(φu);R−1

i+n). Recall that cos2(v(φs),

v(φu);R−1
i+n) depends on the true correlation matrix. The term J is given by

J = K + 1−M (11.5.19)

and pβ(x, l,m) is the beta probability distribution given by

pβ(x, l,m) = (l +m− 1)!
(l − 1)!(m− 1)!x

l−1(1− x)m−1 (11.5.20)
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From this probability distribution, we can compute the expected value of the loss of a signal
received in the sidelobes of the SMI adaptive beamformer

E{L(φs ,φu)} =
1

K + 1
[1+ (K + 1−M) cos2(v(φs), v(φu);R−1

i+n) (11.5.21)

For the case of perfect alignment (φu = φs), equation (11.5.21) measures the loss in SINR
in the look direction since cos2(·) = 1 and E{L(φs ,φs)} = Lsmi = (K + 2−M)/(K + 1)
from (11.5.21), which is the standard SMI SINR loss. In the opposite extreme, if φu is the
angle of a null in the corresponding optimum beamformer, then cos2(·) = 0 and

E{L(φs ,φu)} =
1

K + 1
(11.5.22)

The expected value of this loss can be interpreted as a bound on the sidelobe level provided
that no interference sources were present at angle φu. The implication of this equation
is a lower bound on the sidelobe level that can be achieved by using an SMI adaptive
beamformer. Note that all this analysis also applies for tapered SMI adaptive beamformers
when we substitute vt(φs)→ v(φs) as we did for the weights in (11.5.3).As a rule of thumb,
we can use (11.5.22) to determine the sample support required for the desired sidelobe level.
For example, if we were to design an adaptive beamformer with −40-dB sidelobe levels,
we would require on the order of K = 10,000 snapshots.

EXAMPLE 11.5.2. We want to explore the effect of the number of training samples on the side-
lobe levels of the SMI adaptive beamformer. To this end, we generate an interference signal at
φi = 10◦ with a power of 70 dB and noise with unit variance (σ 2

w = 1) for a ULA withM = 40
elements. The interference-plus-noise signal xi+n is generated by

v_i = exp(-j*pi*[0:M-1]’*sin(phi_i*pi/180))/sqrt(M);
x_ipn=(10ˆ(70/20))*v_i*(randn(1,N)+j*randn(1,N))/sqrt(2) + ...
(randn(1,N)+j*randn(1,N))/sqrt(2);

The sample correlation matrix is computed using (11.5.1). Then the SMI adaptive beamformer
weights are computed from (11.5.2) with a look direction of φs = 0◦. We can compute the
beampattern of the SMI adaptive beamformer using (11.2.3). The resulting beampatterns av-
eraged over 100 realizations for SMI adaptive beamformers with sample support of K = 100
and K = 1000 are shown in Figure 11.23 for −10◦ < φ < 90◦ along with the beampattern of
an optimum beamformer computed using the weight vector in (11.3.15) and a true correlation
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FIGURE 11.23
Beampatterns of an SMI adaptive beamformer for (a) K = 100 snapshots and (b) K = 1000
snapshots. The dashed line is the quiescent response (optimum beamformer), and the solid line
is the SMI adaptive beamformer.
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matrix Ri+n

R_ipn = (10ˆ(70/10))*v_i*v_i’ + eye(M);

Clearly, the sidelobe levels of the SMI adaptive beamformer are limited by the sample support
available for training. For the case of K = 100, the sidelobe level is approximately −18 dB,
whereas for K = 1000, the sidelobe level is approximately −30 dB.

Training issues

To implement the SMI adaptive beamformer, we need an estimate of the interference-
plus-noise correlation matrix, which of course requires that no desired signal s(n) be present.
The use of Ri+n provided an attractive theoretical basis for the derivation of the optimum
beamformer and its subsequent adaptive implementation with the SMI technique. Although
it can be shown that the use of a correlation matrix containing the desired signal produces
equivalent adaptive weights in the case of perfect steering, this can almost never be accom-
plished in practice. Usually, we do not have perfect knowledge of the exact array sensor
locations and responses. Coupled with the fact that often the angle of the desired signal is not
known exactly for cases when we are searching for its actual direction, the presence of the de-
sired signal in the training set results in the cancelation and subsequent loss in performance.

How do we get a signal-free estimate of the correlation matrix from array data in
practice? In many applications, such as in certain radar and communications systems, we
control when the desired signal is present since it is produced by a transmission that we
initiate. In the case of jamming, common to both these applications, we can choose not to
transmit for a period of time in order to collect data with which we can estimate Ri+n. This
type of training is often termed listen-only. For other types of interference that are only
present at the same time as the desired signal, such as clutter in radar and reverberations in
active sonar, the training can be accomplished using a technique known as split window. If
we use a training set consisting of data samples around the sample of interest (before and
after), we can exclude the sample of interest, and possibly some of its neighboring samples,
to avoid the inclusion of the desired signal in the training set. This method has significant
computational implications because it requires a different correlation matrix and therefore
a separate computation of the adaptive beamforming weights for each sample under con-
sideration. This problem can be alleviated somewhat by using matrix update methods, as
discussed in Chapter 10; nonetheless, the increase in cost cannot be considered insignificant.

Certain methods have been proposed for the purposes of reducing the computations
associated with estimating the correlation matrix. One such method is to assume the corre-
lation matrix is Toeplitz for a ULA. Of course, this assumption is valid if the array consists
of elements with equal responsesHk(F, φ) as a function of both frequency and angle from
(11.1.14). However, in practice, this assumption almost never holds. The fact that the spatial
signals are measured using different sensors, all with different responses, coupled with the
limits on mechanical precision of the sensor placement in the array inevitably will cause
these assumptions to be violated. As a result, constraining the correlation matrix to be
Toeplitz, which is akin to averaging the correlations down the diagonals of the correlation
matrix, will cause performance degradation that can be significant. These methods are well
suited for temporal signals that are measured with a common sensor and are sampled at a
rate that is very accurately controlled via a single analog-to-digital converter. Unfortunately
with arrays, the spatial sampling process is not nearly as precise, and the use of multiple
sensors for measurements can produce vastly different signal characteristics.

11.5.2 Diagonal Loading with the SMI Beamformer

Clearly, the ability of an SMI adaptive beamformer to achieve a desired sidelobe level relies
on the availability of sufficient sample supportK . However, for many practical applications,
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owing to either the nonstationarity of the interference or operational considerations, a limited
number of samples are available to train the SMI adaptive beamformer. How, then, can
we achieve this desired low sidelobe behavior? First, recall that the beam response of an
optimum beamformer can be written in terms of its eigenvalues and eigenvectors as in
(11.3.23). Likewise, for the SMI adaptive beamformer

Csmi(φ) = α

λ̂min

{
Cq(φ)−

M∑
m=1

λ̂m − λ̂min

λ̂m
[q̂Hm v(φs)]Q̂m(φ)

}
(11.5.23)

where λ̂m and q̂m are the eigenvalues and eigenvectors of R̂i+n, respectively, and Cq(φ)

and Q̂m(φ) are the beampatterns of the quiescent weight vector and the mth eigenvector,
known as an eigenbeam, respectively. Therefore, Csmi(φ) is simply Cq(φ)minus weighted
eigenbeams that place nulls in the directions of interferers. The weights on the eigenbeams
are determined by the ratio (λ̂m − λ̂min)/λ̂m. The noise eigenvectors are chosen to fill the
remainder of the interference-plus-noise space that is not occupied by the interference. Ide-
ally, these eigenvectors should have no effect on the beam response because the eigenvalues
of the true correlation matrix λm = λmin = σ 2

w for m > P . However, this relation does
not hold for the sample correlation matrix for which the eigenvalues vary about the noise
power σ 2

w and asymptotically approach this expected value for increasing sample support.
Therefore, the eigenbeams affect the beam response in a manner determined by their devi-
ation from the noise floor σ 2

w. Since, as in the case of the sample correlation matrix, these
eigenvalues are random variables that vary according to the sample support K , the beam
response suffers from the addition of randomly weighted eigenbeams. The result is a higher
sidelobe level in the adaptive beampattern.

A means of reducing the variation of the eigenvalues is to add a weighted identity
matrix to the sample correlation matrix (Hudson 1981, Carlson 1988)

R̂l = R̂i+n + σ 2
l I (11.5.24)

a technique that is known as diagonal loading. The result of diagonal loading of the cor-
relation matrix is to add the loading level to all the eigenvalues. This, in turn, produces a
bias in these eigenvalues in order to reduce their variation. To obtain the diagonally loaded
SMI adaptive beamformer, simply substitute R̂l into (11.5.2)

clsmi = R̂−1
l v(φs)

vH (φs)R̂
−1
l v(φs)

(11.5.25)

The bias in the eigenvalues produces a slight bias in the adaptive weights that reduces the
output SINR. However, this reduction is very modest when compared to the substantial
gains in the quality of the adaptive beampattern.

Recommended loading levels are σ 2
w ≤ σ 2

l < 10σ 2
w. The maximum loading level is

dependent on the application, but the minimum should be at least equal to the noise power
in order to achieve substantial improvements. The loading causes a reduction in the nulling
of weak interferers, that is, interferers with powers that are relatively close to the noise
power. The effect on strong interferers is minimal since their eigenvalues only experience
a minor increase. One added benefit of diagonal loading is that it provides a robustness to
signal mismatch, as described in Section 11.4.1.

E XAM PLE 11.5.3. In this example, we explore the use of diagonal loading of the sample cor-
relation matrix to control the sidelobe levels of the SMI adaptive beamformer using the same
set of parameters as in Example 11.5.2. The beampatterns for the SMI adaptive beamformer
and the diagonally loaded SMI adaptive beamformer are shown in Figure 11.24 along with
the beampattern for the optimum beamformer for −10◦ < φ < 90◦. The diagonal loading
level was set to 5 dB above the thermal noise power, that is, σ 2

l = 100.5, and the sample sup-
port was K = 100. The sidelobe levels of the diagonally loaded SMI adaptive beamformer
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FIGURE 11.24
Beampatterns of an SMI adaptive beamformer for K = 100 snapshots
without diagonal loading (dashed line), and with σ 2

l = 5 dB
diagonal loading (solid line). The beampattern of the optimum
beamformer is also shown with the dash-dot line.

are very close to those of the optimum beamformer that used a known correlation matrix,
while for the SMI adaptive beamformer the sidelobes are at approximately −18 dB. To gain
some insight into the higher sidelobe levels of the SMI adaptive beamformer, we compute the
eigenvalues of the SMI adaptive beamformer without diagonal loading using the Matlab com-
mand lambda = eig(Rhat); where Rhat is the sample correlation matrix from (11.5.1). The
eigenvalues of the sample and true correlation matrix are shown in Figure 11.25. The largest
eigenvalue, corresponding to the 70-dB jammer, is approximately 70 dB but cannot be observed
on this plot. We notice that for K = 100 training samples, the noise eigenvalues of R̂i+n are
significantly different from those of Ri+n, with larger than a 10-dB difference in some cases.
As we stated earlier, the effect on the beampattern of the SMI adaptive beamformer is to add
a random pattern weighted by this difference in eigenvalues. In the case of diagonal loading,
the eigenvalues have as a lower bound the loading level σ 2

l which, in turn, reduces these errors
that are added to the beampatterns. The cost of the diagonal loading is to limit our ability to
cancel weak interference with power less than the loading level. However, in the case of strong
interference, almost no loss in terms of interference cancelation is experienced by introducing
diagonal loading.
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FIGURE 11.25
Noise eigenvalues of the SMI adaptive
beamformer without diagonal loading σ 2

w = 1
(dashed line) and the optimum beamformer
(solid line).
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11.5.3 Implementation of the SMI Beamformer

Although the SMI adaptive beamformer is formulated in terms of an estimated correlation
matrix, the actual implementation, as with the least-squares methods discussed in Chapter
8, is usually in terms of the data samples directly. In other words, the actual estimate of
the correlation matrix is never formed explicitly. Methods that are implemented on the data
directly are commonly referred to as amplitude domain techniques, whereas if the sample
correlation matrix had been formed, the implementation would be said to be performed in the
power domain. The explicit computation of the sample correlation matrix is undesirable, first
and foremost because the squaring of the data requires a large increase in the dynamic range
of any processor. Numerical errors in the data are squared as well, and for a large number of
training samples this computation may be prohibitively expensive. In this section, we give
a brief discussion of the implementation considerations for the SMI adaptive beamformer,
where the implementation is strictly in the amplitude domain. The incorporation of diagonal
loading in this setting is also discussed since its formulation was given in the power domain.

The SMI beamformer is based on the estimated correlation matrix from (11.5.1). This
sample correlation matrix may be written equivalently as

R̂i+n = 1

K

K∑
k=1

x(nk)xH (nk) = 1

K
XHX (11.5.26)

where X is the data matrix formed with the array snapshots that make up the training set
for the SMI adaptive weights, presumably containing only interference and noise, that is,
no desired signals. This data matrix is

XH = [x(n1) x(n2) · · · x(nK)] (11.5.27)

=



x1(n1) x1(n2) · · · x1(nK)

x2(n1) x2(n2) · · · x2(nK)
...

...
. . .

...

xM(n1) xM(n2) · · · xM(nK)


 (11.5.28)

where nk , for k = 1, 2, . . . , K , are the array snapshot indices of the training set. As was
shown in Chapter 8, we can perform a QR decomposition on the data matrix to obtain the
upper triangular factor

X = QRx (11.5.29)

where Q is a K ×M orthonormal matrix and Rx is theM ×M upper triangular factor. If
we define the lower triangular factor as

Lx � 1√
K

RH
x (11.5.30)

the sample correlation matrix can then be written as

R̂i+n = 1

K
XHX = 1

K
RH
x Rx = LxLHx (11.5.31)

since QHQ = I. The SMI adaptive weights from (11.5.2) are then found to be

csmi =
R̂−1

i+nv(φs)

vH (φs)R̂
−1
i+nv(φs)

= L−Hx L−1
x v(φs)

|L−1
x v(φs)|2

(11.5.32)

The implementation of diagonal loading with the SMI adaptive beamformer is also
possible in the amplitude domain. Recall that the diagonally loaded correlation matrix from
(11.5.24) is given by

R̂l = R̂i+n + σ 2
l I = 1

K
XHX + σ 2

l I � 1

K
XHl Xl (11.5.33)
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where Xl is the “diagonally loaded" data matrix. Of course, data matrix X is not a square
matrix, and thus it is not actually diagonally loaded. Instead, we append the data matrix
with the square root of the loading matrix as

XHl = [XH
√
Kσ lI] (11.5.34)

The resulting diagonally loaded SMI adaptive weights are found by substituting Xl for X in
the amplitude-domain implementation of the SMI adaptive beamformer given above. The
practical implementation of the SMI adaptive beamformer is performed in the following
steps:

1. Compute the QR factorization of data matrix X = QRx .
2. Find the Cholesky factor by normalizing the upper triagular factor Lx = (1/

√
K )RH

x .
3. Solve for z1 from Lxz1 = v(φs).
4. Solve for z2 from LHx z2 = z1.
5. The SMI adaptive weight vector is given by csmi = z2/‖z1‖2.

11.5.4 Sample-by-Sample Adaptive Methods

The SMI adaptive beamformer is a least-squares (LS) block adaptive technique similar
to the LS methods discussed in Chapter 8. However, the optimum beamformer can also
be implemented by using methods that compute the beamforming weights on a sample-
by-sample basis; that is, the weights are updated for each new sample. Such methods
are referred to as sample-by-sample adaptive and are simply extensions of the adaptive
filtering methods from Chapter 10. The manner in which sample adaptive beamformers
differ from adaptive filters is that rather than solve an unconstrained LS problem, adaptive
beamformers solve a constrained LS problem. The implication of this constraint is that
rather than have an estimated cross-correlation in the normal equations R̂(n)c = d̂(n),
we have the deterministic steering vector v(φs). Unlike the cross-correlation vector, the
steering vector is known a priori and is not estimated from the data. We briefly discuss both
techniques based on recursive least-squares (RLS) and steepest-descent methods. Since the
derivation of the methods follows that for the adaptive filters in Chapter 10 quite closely,
we only give a brief sketch of the algorithms along with some discussion.

An important consideration for sample adaptive methods is whether or not these tech-
niques are appropriate for array processing applications. The problem with these methods
is the amount of time required for the adaptive weights to converge. In many applications,
the delay associated with the convergence of the adaptive beamformer is not acceptable.
For example, a radar system might be attempting to find targets at close ranges. Range cor-
responds to the time delay associated with the propagation of the radar signal. Therefore,
close ranges are the first samples received by the array during a collection period. A sample
adaptive method that uses the close ranges to train (converge) could not find the targets at
these ranges (samples). In fact, the time needed for convergence may not be insignificant,
thus creating a large blind interval that is often unacceptable. However, the sample-by-
sample adaptive techniques are appropriate for array processing applications in which the
operating environment is nonstationary. Since the sample-by-sample adaptive beamformer
alters its weights with each new sample, it can dynamically update its response for such a
changing scenario.

Another important distinction between sample and block adaptive methods is the in-
clusion of the signal of interest in each sample and thus in the correlation matrix. Therefore,
for sample adaptive methods, we cannot use a signal-free version of the correlation matrix,
that is, the interference-plus-noise correlation matrix Ri+n, but rather must use the whole
correlation matrix Rx . The inclusion of the signal in the correlation matrix has profound
effects on the robustness of the adaptive beamformer in the case of signal mismatch. This
effect was discussed in the context of the optimum beamformer in Section 11.4.1.
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Recursive least-squares methods

We will not spend a lot of time discussing recursive least-squares (RLS) methods
for adaptive beamforming since this topic is treated in Chapter 10. For further details on
RLS methods used in array processing, the interested reader is referred to Schreiber (1986),
McWhirter and Shepherd (1989),Yang and Böhme (1992).An important difference between
the methods discussed here and those in Section 10.6 is in the normal equations that solve
a constrained rather than an unconstrained optimization. The output signal of the adaptive
beamformer is

y(n) = cHx(n) (11.5.35)

However, y(n) is not the desired response. In Section 10.6, we developed techniques based
on the normal equations R̂c = d̂, where d̂ is the estimated cross-correlation. However,
for the adaptive beamformer we use the steering vector v(φs), which is deterministic, in
place of d̂. Algorithms based on RLS methods can be implemented such that the output
y(n) is computed directly (direct output extraction) or the adaptive beamformer weights are
computed and then applied to determine the output (see Section 10.6). The simplifications
for the beamformer case are discussed in Yang and Böhme (1992) and Haykin (1996).

The RLS methods are based on the update equation of the estimate of the correlation
matrix

R̂x(n+ 1) = λR̂x(n)+ x(n+ 1)xH (n+ 1) (11.5.36)

where 0 < λ ≤ 1 is a scalar sometimes referred to as the forgetting factor. From the
updated sample correlation matrix, an update for its inverse can be found by using the matrix
inversion lemma from Appendix A. The adaptive beamformer weight vector is then found
by modifying the solution to the MVDR adaptive weights with the updated inverse sample
correlation matrix. In practice, these updatings are implemented by slightly modifying any
of the algorithms described in Section 10.6.

Steepest-descent methods

The LMS algorithm from Section 10.4 is based on the method of steepest descent.
However, the desired response used to form the LMS adaptive weights is not clear for the
adaptive beamforming application. Instead, there is the steering vector v(φs) that specifies
the direction to which the adaptive beamformer is steered, namely, the angle φs . The re-
sulting constrained optimization produced the optimum MVDR beamformer from Section
11.3. The sample adaptive implementation of this constrained optimization problem based
on steepest descent was first proposed by Frost. The resulting algorithm uses a projection
operation to separate the constrained optimization into a data-independent component and
an adaptive portion that performs an unconstrained optimization (Frost 1972). The original
algorithm was formulated using multiple linear constraints, as will be discussed in Section
11.6.1. However, in this section we focus on its implementation with the single unity-gain
look-direction constraint for the MVDR beamformer. Note that the separation of the con-
strained and unconstrained components proposed by Frost provided the motivation for the
generalized sidelobe canceler (GSC) structure (Griffiths and Jim 1982) discussed in Sec-
tion 11.3.5. Below, we simply give the procedure for implementing the Frost algorithm.
The interested reader is referred to Frost (1972) for further details.

Formally, the MVDR adaptive beamformer is attempting to solve the following con-
strained optimization

min cHRxc subject to cHv(φs) = 1 (11.5.37)

where the entire correlation matrix Rx including the desired signal is used in place of the
interference-plus-noise correlation matrix Ri+n since we assume the signal of interest is
always present. The correlation matrix is unknown and must be estimated from the data.
To start the algorithm, we can form an M × M projection matrix P that projects onto a
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subspace orthogonal to the data-independent steering vector v(φs). This projection matrix
is given by (see Chapter 8)

P = I− v(φs)v
H (φs) (11.5.38)

We can then define the nonadaptive beamformer weight vector as

cna = v(φs) (11.5.39)

which is simply the spatial matched filter from Section 11.2. The update equation for the
sample adaptive beamformer based on Frost’s steepest-descent (sd) algorithm is then written
as

csd(n+ 1) = cna + P[csd(n)− µy∗(n)x(n)] (11.5.40)

where µ is the step-size parameter and

y(n) = cHsdx(n) (11.5.41)

is the output of the steepest-descent sample adaptive beamformer.
Since the projection matrix P maintains orthogonality between the cna and the adapted

portion of (11.5.40), the nonadaptive beamformer weights from (11.5.39) maintain the unity-
gain constraint from (11.5.37). In fact, since the adaptation is performed on the component
orthogonal to cna in an unconstrained manner, the Frost algorithm is essentially using
an LMS adaptive filter in the GSC architecture from Section 11.3.5. The convergence of
the Frost adaptive beamformer, as for the LMS adaptive filter, is controlled by the step-
size parameter µ. In order for the adaptive beamformer weights to converge, the step-size
parameter must be chosen to be

0 < µ <
1

λ̃max
(11.5.42)

where λ̃max is the maximum eigenvalue of the matrix

R̃ = PRxP (11.5.43)

More details about the algorithm can be found in Frost (1972).
The sample adaptive beamformer based on the Frost algorithm maintains a look direc-

tion of φs through the constraint cHsdv(φs) = 1. This constraint is easily seen by interpreting
the adaptive weight update equation in (11.5.40) as the steering vector cna = v(φs) updated
by a component orthogonal to v(φs). In the case of a signal received from a direction φs , the
adaptive beamformer will immediately track this signal, since it is constrained to observe
signals at φs and is not part of the adaptation. The convergence of this sample adaptive
beamformer in terms of interference rejection is very similar to the LMS algorithm. See
Chapter 10 for details on the LMS algorithm.

11.6 OTHER ADAPTIVE ARRAY PROCESSING METHODS

In this section, we consider various other adaptive array processing methods. First, we look
at the use of multiple constraints in an adaptive array beyond the single constraint of dis-
tortionless response for the MVDR optimum beamformer. Second, we consider partially
adaptive arrays that are methods that perform deterministic preprocessing prior to adap-
tation, in order to reduce the adaptive degrees of freedom. These methods are commonly
used in practice for both computational reasons as well as limited sample support. Third, we
describe the sidelobe canceler that was the first proposed adaptive array processing method.
In addition to its historical significance, the sidelobe canceler is still a viable technique for
certain array processing applications. Throughout this section, we use the word adaptive to
indicate that the various methods are based on training data. However, the derivations are all
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in terms of known statistics. Although none of these methods can really be called optimum,
each one satisfies an optimization criterion in the case of known statistics. The implementa-
tion of the methods using actual data samples in place of assuming known statistics follows
directly from the techniques described in Section 11.5.

11.6.1 Linearly Constrained Minimum-Variance Beamformers

In Section 11.3, we discussed the optimum beamformer that maximizes the signal-to-
interference-plus-noise ratio (SINR). This optimum beamformer was also formulated as
the solution to a constrained optimization problem, namely,

min cHRi+nc subject to cHv(φs) = 1 (11.6.1)

where v(φs) is the array response vector for a signal arriving from an angle φs . Due to this
alternate formulation, the optimum beamformer is commonly referred to as the minimum-
variance distortionless response (MVDR) beamformer.

However, some applications may require additional conditions on the beamformer.
As with the optimum beamformer, we want to minimize the output power cHRi+nc, but
with additional constraints on the response of the beamformer. The imposition of further
constraints on the minimum-variance beamformer results in suboptimum performance in
terms of SINR. However, if designed properly, the constraints should have little effect on
SINR while yielding some desirable attributes. One common use of constraints is for the
case when the angle of an interference source φi is known a priori. In this case, we want to
reject all energy received from this angle, that is,

cHv(φi) = 0 (11.6.2)

The result of the null constraint is an adaptive beamformer that rejects all energy from the
angle φi . Another type of constraint is to require the beamformer to pass signals not only
from the angle φs , but also from another angle φ1. As for the MVDR beamformer, this
constraint is formulated as

cHv(φ1) = 1 (11.6.3)

In this manner, multiple angles can be specified to pass signals of interest with unity gain.
Such amplitude constraints can also be used to preserve the response of the beamformer in an
angular region about φs (Steele 1983, Takao et al. 1976). These additional constraints help
to make the resulting adaptive beamformer more robust to signal mismatches, as discussed
in Section 11.4.1, that result from the actual angle of the desired signal φ0 slightly differing
from its presumed angle φs . Therefore, if we choose a pair of angles slightly offset from φs

φ1 = φs −+φ φ2 = φs ++φ (11.6.4)

the response of the beamformer steered to φs broadens. The effect in terms of mainlobe
width is similar to tapering the MVDR beamformer when the angle offset +φ is small. An
alternative approach to robust adaptive beamforming is the use of derivative constraints.
See Applebaum and Chapman (1976), Er and Cantoni (1983), and Steele (1983) for details.

Once we have determined a set of constraints, for example, the desired responses at a set
of angles, we can solve for the constrained adaptive beamformer. The result is known as the
linearly constrained minimum-variance (LCMV) beamformer (Applebaum and Chapman
1976; Buckley 1987). As we stated earlier, we want to minimize the output energy of the
beamformer subject to a set of constraints. This problem is formulated as

min cHRi+nc subject to CH c = δ (11.6.5)

where C is known as the constraint matrix and δ is the constraint response vector. For
example, if we want to pass signals from an angle φs as well as preserve its response with
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a pair of amplitude constraints at the angles φs ±+φ, the constraint matrix and constraint
response vectors are given by

C = [v(φs) v(φs −+φ) v(φs ++φ)] δ = [1 1 1]T (11.6.6)

As for the MVDR beamformer, the solution for the LCMV beamformer is found by using
Lagrange multipliers (see Appendix B). The LCMV beamformer weight vector is given by

clcmv = R−1
i+nC(CHR−1

i+nC)−1δ (11.6.7)

As for the MVDR beamformer, the LCMV beamformer can also be formulated using a
generalized sidelobe canceler architecture (Griffiths and Jim 1982), discussed in Section
11.3.5. In fact, the MVDR beamformer is simply a special case of the LCMV beamformer
with C = v(φs) and δ = 1.

In this section, we have described the use of linear constraints in a minimum-variance
beamformer. However, the use of quadratic constraints within the context of a minimum-
variance beamformer is also possible. The primary motivation for using these quadratic
constraints is for robustness purposes against signal mismatch, as discussed in Section
11.4.1. One such quadratic constraint adds a constraint on the norm of the weight vector
of the adaptive beamformer in addition to the MVDR constraint (Cox et al. 1987; Maksym
1979)

min cHRi+nc subject to cHv(φs) = 1 and ‖c‖2 ≤ κ2 (11.6.8)

whose solution is given by

c = η(Ri+n + σ 2
κI)−1v(φs) (11.6.9)

where η is a constant and σ 2
κ is a scaling term on the identity matrix. Thus, mimimizing the

norm of the adaptive beamforming weight vector is equivalent to adding a weighted iden-
tity matrix to the interference-plus-noise correlation matrix. The solution to this quadratic
constraint bears a striking resemblence to diagonal loading as discussed in the context of
the SMI adaptive beamformer, in Section 11.5.2. In fact, the use of some level of diagonal
loading is generally a recommended practice for implementing an adaptive beamformer to
reduce its sensitivity to mismatch, and for the purposes of low sidelobe levels.

11.6.2 Partially Adaptive Arrays

The optimum beamformer maximizes output SINR by placing a null in the direction of any
interference sources while maintaining gain in the direction of interest. Recall the optimum
beamforming weights from (11.3.13)

co = αR−1
i+nv(φs) (11.6.10)

where we choose the MVDR normalization α = [vH (φs)R−1
i+nv(φs)]−1. The correlation

matrix Ri+n is an M × M matrix where M is the number of elements in the ULA. The
optimum weights adapt to the statistics of the data in anM-dimensional space whereM is
referred to as the adaptive degrees of freedom. However, in many applications, the number
of elements in the array exceeds the adaptive degrees of freedom that can be practically
implemented. The implementation of such a beamformer requires the estimation of the
correlation matrix from collected data. As shown in Section 11.5, the estimation of Ri+n
requires a certain number of data samples to maintain a desired level of performance. Many
times, the number of data samples is limited, due to either finite regions over which the data
are stationary or restrictions on the length of the collection interval. Likewise, the number
of adaptive degrees of freedom that can be implemented may be limited for computational
reasons. These restrictions motivate the use of methods that reduce the degrees of freedom
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prior to adaptation. An array implemented using a reduced number of degrees of freedom
is referred to as a partially adaptive array.

Consider an array signal vector x(n) consisting of a desired signal, interference, and
noise components

x(n) = s(n)+ i(n)+ w(n) = √Mv(φs)s(n)+
√
M

P∑
p=1

v(φp)ip(n)+ w(n) (11.6.11)

where φp and ip(n) are the angle and signal, respectively, of the pth interferer with a total
of P interferers. Usually, the number of interferers is limited; yet the number of elements
in the array M may be quite large, that is, M � P . In general, one adaptive degree
of freedom is required for each interferer.

†
Therefore, we only require some number of

adaptive degrees of freedom Q > P , not the full dimensionality provided by the number
of elements M . We want to use a large number of elements in order to have an aperture
that achieves the desired angular resolution. Therefore, we do not want to limit the number
of elements in order to reduce the degrees of freedom; rather, we want to project the array
data into a lower-dimensional subspace in which we can perform our optimization (Morgan
1978). The projection is accomplished using a nonadaptive preprocessor and is modeled as
a rank-reducing transformation matrix T with dimensionsM×Q applied to the array signal

x̃(n) = THx(n) (11.6.12)

where x̃(n) is a signal vector of dimensionQ. Likewise, the interference-plus-noise signal
in the lower-dimensional space is

x̃i+n(n) = THxi+n(n) (11.6.13)

and has a correlation matrix

R̃i+n = E{x̃i+n(n)x̃Hi+n(n)} = THRi+nT (11.6.14)

The partially adaptive beamforming weights are then given by

c̃ = αR̃−1
i+nṽ(φs) (11.6.15)

ṽ(φs) = THv(φs) (11.6.16)where

is the projection of theM-dimensional steering vector v(φs) onto the sameQ-dimensional
subspace. The output of the partially adaptive beamformer is then obtained by applying the
beamforming weights in (11.6.15) to the reduced-dimension array signal from (11.6.12)

y(n) = c̃H x̃(n) (11.6.17)

The resulting partially adaptive beamformer, shown in Figure 11.26, is no longer opti-
mal in the sense of the fullM-dimensional beamformer, but is optimal given the nonadaptive
preprocessing transformation onto the Q-dimensional subspace. Thus, the overall perfor-
mance of the partially adaptive beamformer is governed by how much information was
preserved by the nonadaptive preprocessor T. The performance of the partially adaptive
beamformer can be assessed relative to the full-dimensional processor by reconstructing
the effective M × 1 beamforming weight vector with the transformation matrix and the
partially adaptive (pa) weights

cpa = Tc̃ (11.6.18)

In addition, we must consider the effect of this preprocessing transformation on the noise
correlation matrix. For the array signal, we have assumed that the noise has a power of σ 2

w

and is uncorrelated, that is, Rn = σ 2
wI. Therefore, the noise following the application of

the preprocessing transformation has a correlation matrix given by

R̃n = THRnT = σ 2
wTHT (11.6.19)

†
The assumption is that the interferers are narrowband and are well separated in angle.



February 7, 2005 13:24 e56-ch11 Sheet number 55 Page number 675 black

675

section 11.6
Other Adaptive Array
Processing Methods

Partially
adaptive

beamformer
T y(n)

x(n)

M

x~(n)

Q

FIGURE 11.26
Partially adaptive array using data transformation.

In the case of an SMI adaptive beamformer, this different structure of the noise correlation
matrix has implications for diagonal loading. The diagonal loading of the sample correla-
tion matrix of the full array was performed by adding a weighted diagonal matrix to the
sample correlation matrix in (11.5.24). For a partially adaptive array that already has had
a preprocessing transform performed, the diagonal loading of a sample correlation matrix
becomes

ˆ̃Rl = ˆ̃Ri+n + σ 2
l THT (11.6.20)

where σ 2
l is the loading level. Since the thermal noise is not necessarily uncorrelated after

the preprocessing transformation, diagonal loading must account for the transformed noise
correlation. Otherwise, performance degradation can occur.

So far, we have only stated that the adaptation for a partially adaptive array must take
place in a lower-dimensional space using a nonadaptive preprocessor, but we have not
given any explicit means of performing this task. Below we discuss two commonly used
preprocessing methods used for partially adaptive arrays.

Subarray partially adaptive arrays

Many times, the number of elements in an array can be very large. Thus, one means
of reducing the adaptive degrees of freedom is to split the array into a number of smaller
arrays, process the smaller arrays in a nonadaptive manner, and perform adaptation on the
outputs of these smaller arrays. Let us consider the case in which we are looking for signals
from a direction φs , and the full-dimensional steering vector is vM(φs), where we use the
subscript M to denote the length of the steering vector. The full array may be divided into
Q equal-sized intervals

†
of nonoverlapping subarrays of length

M̃ = M
Q

(11.6.21)

where we have assumed that M is an integer multiple of Q. The rank-reducing transfor-
mation for the subarrays then can be written as a sparsely populated matrix made up of
length-M̃ steering vectors v

M̃
(φs)

T =




v
M̃
(φs) 0 · · · 0

0 v
M̃
(φs) · · · 0

...
...

. . .
...

0 0 · · · v
M̃
(φs)


 (11.6.22)

Each subarray consists of an M̃-dimensional conventional beamformer steered to φs and
can be viewed as a highly directional element as opposed to the omnidirectional elements
assumed for the individual sensors of the array.

Beamspace partially adaptive arrays

Another approach to constructing a partially adaptive beamformer is to produce a set
of beams using the full array. The ensuing adaptation is performed in a reduced-dimension

†
Subarrays need not necessarily have equal length or be nonoverlapping. This restriction is placed on the

formulation only to simplify the discussion.
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beamspace, that is, a space spanned by the nonadaptive beams. If we use B beams, the
rank-reducing transformation matrix is

T = [v(φ1) v(φ2) · · · v(φB)] (11.6.23)

where φ1, φ2, . . . , φB are the angles of these beams. These beamformers are typically
steered in directions around the angle of interest, φs . For example, if the angle of interest is
φs = 0◦, beams might be steered to angles φ = −5◦,−4◦, . . . , 0◦, . . . , 4◦, 5◦. The spacing
of the beams depends on the full aperture of the array and the angular extent of interest.
One can also steer beams in other directions away from the angle of interest, which may
contain interference sources that we will want to cancel in the partially adaptive processor.

We have modeled the rank-reducing transformation as a matrix. Usually, the rank of the
reduced-dimension space is dictated by the number of digital channels that can be formed
due to hardware limitations. Therefore, the rank reduction process is performed prior to
sampling using analog beamformers, either across a reduced or full array aperture for the
subarray or beamspace partially adaptive array processors, respectively.

11.6.3 Sidelobe Cancelers

The sidelobe canceler is actually one of the first implementations of an adaptive array
(Howells 1959), and it was originally proposed by Howells and Applebaum. The method
uses a main channel along with a single auxiliary, or an array of auxiliary channels, as shown
in Figure 11.27. The main channel generally has a high gain in the direction of the desired
signal and is produced by either a highly directional sensor, for example, a parabolic dish,
or the output of a nonadaptive beamformer, such as a spatial matched filter. The auxiliary
channels, however, are low-gain elements often with omnidirectional responses that are
used to augment the main channel. The auxiliary channels can be in a ULA configuration.
The idea behind the sidelobe canceler is that interference is assumed to be present in both
main and auxiliary channels, but the desired signal, though present in the main channel
due to its high gain in the direction of the signal, is below the sensor thermal noise in the
auxiliary channels. The auxiliary channels are used to form an estimate of the main channel
interference that can be used for cancelation purposes. The philosophy behind the sidelobe
canceler is shown in Figure 11.28, using representative beampatterns weighted by their
directional gains.

Consider a main channel (mc) signal

xmc(n) = gss(n)+ imc(n)+ wmc(n) (11.6.24)

consisting of the desired signal s(n) with a gain of gs , an interference signal imc(n) that
may be due to several interferers arriving from various angles, and noise wmc(n) that is

ca = Ra
−1rma

xa(n)

y(n)
xmc(n) = s0(n) + imc(n) + wmc(n) +

−

M

îmc(n)

FIGURE 11.27
Sidelobe canceler.
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Main channel response

Auxiliary channel net response

Sidelobe canceler output response

f0 fi

f0 fi

f0 fi

FIGURE 11.28
Illustration of the sidelobe canceler
channel and auxiliary channel
beampatterns.

temporally uncorrelated. All three of these signals are assumed to be mutually uncorrelated.
The interference in this main channel is often so strong that it dominates the desired signal
even though it has a large gain in the direction of this desired signal. However, the auxiliary
channel signals may be written as a signal vector

xa(n) = s(n)v(φs)+
P∑
p=1

ip(n)v(φp)+ w(n) (11.6.25)

where v(φ) is the array response vector at an angle φ that was given by (11.1.19) for the
case of a ULA. The desired signal impinges on the auxiliary array from the angle φs ,
and the sensor thermal noise w(n) is temporally and spatially uncorrelated. Recall that
s(n) is usually considered weak enough that it is well below the sensor noise power. The
interference can be made up of several sources. Here we have chosen a model consisting
of P interferers with signals ip(n) and angles of arrival of φp. Note that the main channel
interference imc(n) is made up of contributions from the same P interferers weighted by
the spatial response of the main channel in the directions of the interference sources. These
angles of arrival of the interferers, as well as the exact response of the main channel in these
directions, are generally unknown and lead to an adaptive solution for the auxiliary channel
weight vector.
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The sidelobe canceler estimates the interference in the main channel by using the
auxiliary channels. As illustrated in Figure 11.27, the auxiliary channels are combined by
using a set of adaptive weights to form an estimate of the interference in the main channel.

îmc(n) = cHa xa(n) (11.6.26)

where the adaptive weight vector ca is chosen so as to minimize the output power. Of course,
the implicit assumption has been made that the signal of interest is below the thermal noise
level in xa(n). Otherwise, if s(n) is strong enough in the auxiliary channels, then the sidelobe
canceler will cancel this signal of interest in addition to the interference. The output signal
is then obtained by subtracting the estimate of the interference from the main channel

y(n) = xmc(n)− îmc(n) (11.6.27)

The output power is given by

Pout = σ 2
m − E{|cHa xa(n)|2} = σ 2

m − cHa Raca (11.6.28)

Ra = E{xa(n)xHa (n)} (11.6.29)where

is the auxiliary array correlation matrix. The solution for these weights is simply the linear
MMSE estimator from Section 6.2, given by

ca = R−1
a rma (11.6.30)

rma = E{xa(n)x
∗
mc(n)} (11.6.31)where

is the cross-correlation vector between the auxiliary array and the main channel. The output
signal of the sidelobe canceler is

y(n) = xmc(n)− cHa xa(n) (11.6.32)

Hence, the minimum output power is obtained by substituting (11.6.30) into (11.6.28)

P
(min)
out = σ 2

m − rHmaR−1
a rma (11.6.33)

Of course, all this analysis has considered the case in which the signal of interest is below
the thermal noise level in the auxiliary array. Larger signal amplitudes will result in the
cancelation of the signal of interest using a sidelobe canceler structure. This topic is treated
in Problem 11.15.

11.7 ANGLE ESTIMATION

In this section, we consider the topic of angle estimation, that is, given a spatially propagating
signal s(n), the determination of its angle of arrival at the array. In the formulation of
the beamformers in Sections 11.2 through 11.6, the assumption was always made that
the beamformer was steered to the angle of the desired signal. However, in practice, the
actual angle from which the signal arrives is not precisely known. Instead, an amount of
uncertainty exists with respect to the exact angle, even when the signal of interest is within
the beam. The beamformer is steered to angle φ0 while the actual signal arrives from φs .
The purpose of an angle estimation algorithm is to attempt to determine this angle φs . We
begin with a discussion of the maximum-likelihood (ML) angle estimator. Next we give a
brief sketch of the Cramér-Rao lower bound on angle accuracy, which provides a measure
against which the performance of any algorithm can be compared. Then we consider angle
estimation algorithms, commonly referred to as beamsplitting. In the case of a ULA, a
spatially propagating signal is equivalent to a complex exponential in the temporal domain.
Hence, we briefly discuss the use of the frequency estimation techniques from Section 9.6
that were based on the model of a complex exponential contained in noise.
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11.7.1 Maximum-Likelihood Angle Estimation

In this section, we give a brief discussion of the maximum-likelihood estimator of the angle
of a signal arriving at a ULA. Consider a spatially propagating signal of interest

s = √Mσsv(φs) (11.7.1)

whereM is the number of sensors in the ULA, σ s is the complex amplitude of the signal, and
φs is the angle of the signal. The complex signal amplitude has a deterministic magnitude
and uniformly distributed random phase. The signal is received by the ULA along with
interference i and spatially uncorrelated thermal noise w, that is,

x = √Mσsv(φs)+ i + w = √Mσsv(φs)+ xi+n (11.7.2)

We have dropped the discrete-time index n since we are assuming the signal is present
†

and
we are interested in a single snapshot only. The interference-plus-noise correlation matrix
of the snapshot x is given by

Ri+n = E{xi+nxHi+n} = Ri + σ 2
wI (11.7.3)

Furthermore, we assume that the interference-plus-noise signal xi+n has a complex Gaussian
density function with zero mean. Thus, the probability density function of the snapshot x
is a complex Gaussian function with a mean determined by the signal of interest

p(x; σ s, φs) =
1

πMdet(Ri+n)
exp {−[x −√Mσsv(φs)]HR−1

i+n[x −
√
Mσsv(φs)]}

(11.7.4)

The peak in this probability density function corresponds to the mean given by the signal of
interest

√
Mσsv(φs), which is the “most likely” event. The ML angle estimate is the angle

φ̂s for which this probability density function of the snapshot takes on its maximum value,
that is,

φ̂s = arg max
φ
p(x; σ s, φs) (11.7.5)

The resulting ML estimator of φs is then given by (Kay 1993)

φ̂s = arg max
φ

|vH (φ)R−1
i+nx|2

vH (φ)R−1
i+nv(φ)

(11.7.6)

Interestingly, this ML estimate can be interpreted as

φ̂s = arg max
φ
= |cHamf (φ)x|2 (11.7.7)

where camf (φ) is the optimum beamformer given by (11.3.13) with adaptive matched filter
(AMF) normalization from Table 11.1

camf (φ) =
R−1

i+nv(φ)√
vH (φ)R−1

i+nv(φ)
(11.7.8)

as shown in Robey et al. (1992). This normalization is in contrast to MVDR normalized
optimum beamformer in (11.3.15) that we have considered for the remainder of this chap-
ter. Therefore, the ML angle estimator is the angle to which an AMF normalized optimum
beamformer is steered that maximizes the output power for a given snapshot x. In terms
of the angle accuracy that might be achieved, the ML estimator can be approximated by
forming a dense grid of optimum beamformers in angle with angular spacing at the desired

†
In many applications, this assumption may be based on an up-front processing stage that determines the presence

of the signal, known as detection.
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minimum acceptable accuracy (Baranoski and Ward 1997). In many applications, we might
want to achieve a much finer resolution than the beamwidth of the ULA, say, one-tenth
of a beamwidth accuracy, known as 10:1 beamsplitting. Thus, this level of angle accuracy
would require the computation of roughly 10M AMF optimum beamformers, whereM is
the number of sensors in the ULA. Generally, this requirement is computationally exces-
sive, and we desire an alternative angle estimation algorithm that can achieve performance
comparable to the ML estimator. This topic is addressed in Section 11.7.3. However, let us
first consider the performance of the ML angle estimator that can be used as a bound for
other angle estimation algorithms, which is the topic of the next section.

11.7.2 Cramér-Rao Lower Bound on Angle Accuracy

The Cramér-Rao bound (CRB) places a lower bound on the performance of an unbiased
estimator (Kay 1993). We provide a sketch of the derivation of the CRB for angle accuracy
(Ward 1996). This derivation is a simplification of the derivation by Ward (1996) that was
done for two-dimensional angle and frequency estimation. Note that the CRB provides the
minimum variance of an unbiased estimator. If an estimator can achieve the CRB, then it is
the maximum-likelihood estimator. The CRB is found by solving for the diagonal elements
of the inverse of the Fisher information matrix. For more details see Kay (1993) and Ward
(1996).

Let us start by redefining the beamformer for a ULA from the spatial matched filter in
(11.1.19) that has its phase center moved from the first element to the center of the array

v>(φ) = e−j2π M−1
2

d
λ

sin φv(φ)

= 1√
M

[
e−j2π M−1

2
d
λ

sin φ e−j2π M−3
2

d
λ

sin φ · · · ej2π M−1
2

d
λ

sin φ
]T (11.7.9)

which we will refer to as the sum beamformer.
†

This choice of a phase center provides the
tightest bound on accuracy (Rife and Boorstyn 1974). We can define a second beamformer
based on the derivative of v>(φ) given by

v+(φ) = jδ � v>(φ) (11.7.10)

δ =
[
−M − 1

2
− M − 3

2
· · · M − 1

2

]T
(11.7.11)where

which can be thought of as a difference taper. The steering vector v+(φ), however, provides
a difference pattern beamformer steered to the angle φ, as is commonly used in monopulse
radar (Levanon 1988) for angle estimation purposes. For this reason, we refer to it as the
difference beamformer. In relation to the sum beamformer, we can easily verify that

vH+ (φ)v>(φ) = 0 (11.7.12)

that is, the two beamformers are orthogonal to each other. The fact that the two beamformers
are orthogonal to each other means that, in terms of the signal s, the two beamformers can
make two independent measurements of the signal. These independent measurements allow
for the discrimination of the angle.

Using these two steering vectors v+(φ) and v>(φ), we can form an adaptive sum
beamformer

c>(φ) = R−1
i+nv>(φ) (11.7.13)

†
We use the term beamformer for interpretation of the Cramér-Rao bound only. No actual beams are formed since

the CRB is only a performance bound and not a processing technique.
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and an adaptive difference beamformer

c+(φ) = R−1
i+nv+(φ) (11.7.14)

which both have not been normalized to satisfy any particular criteria. Proceeding, we can
compute the power of the interference-plus-noise output of these two beamformers

P> = cH>Ri+nc> P+ = cH+Ri+nc+ (11.7.15)

Similarly, we can measure the normalized cross-correlation ρ>+ of the interference-plus-
noise outputs of these adaptive sum and difference beamformers Ri+n

ρ2
>+ =

|cH>Ri+nc+|2
P>P+

(11.7.16)

Using (11.7.15) and (11.7.16), the CRB on angle estimation for a ULA is given by
†

σ 2
φ ≥

1

2π2 · SNR0 · P+(1− ρ2
>+) cos2 φ

(11.7.17)

where SNR0 is the SNR for a spatial matched filter from (11.2.16) in the absence of inter-
ference, that is, noise only, which is given by

SNR0 = M σ
2
s

σ 2
w

(11.7.18)

The CRB on angle accuracy has several interesting interpretations. First and foremost, as
the signal power increases in value, SNR0 increases; as a result, angle accuracy improves.
Intuitively, this result makes sense as the stronger the signal of interest, the better the angle
estimate should be. Likewise, the term cos2 φ simply represents the increase in beamwidth
of the ULA as we steer away from broadside (φ = 0◦). The interpretation of the other
terms P+ and 1 − ρ2

>+ may be less obvious, but also provides insight. Here P+ provides
a measure of the received power aligned with the adaptive difference beamformer. On the
other hand, ρ>+ is the cross-correlated energy between the adaptive sum and difference
beamformers. Ideally, ρ>+ is zero, since c> and c+ beamformers are derived from v>
and v+, respectively, which are orthogonal to each other. In the case of the two adaptive
beamformers, the adaptation will remove this orthogonality, but the beamformers should
be different enough that ρ>+ � 1. Otherwise, angle accuracy will suffer.

11.7.3 Beamsplitting Algorithms

Let us consider the scenario with a single beamformer steered to an angle φ0 with our
signal of interest at angle φs . The beamformer passes all signals within its beamwidth with
only slight attenuation of signals that are not directly at the center of the beam steered to
φ0. Clearly, this single beamformer cannot discriminate between signals received within
its beamwidth. However, we desire a more accurate estimate of the angle of the signal of
interest than simply the beamwidth of our beamformer. Thus, any angle estimator must
achieve finer accuracy than the beamwidth, and as a result angle estimation algorithms are
commonly referred to as beamsplitting algorithms.

To construct an angle estimation algorithm, it is necessary to obtain different measure-
ments of the signal of interest in order to determine its angle. These measurements allow
an angle estimation algorithm to discriminate between returns that arrive at the array from
different angles. To this end, we use a set of beamformers steered in the general direction of

†
This formulation assumes unit-variance thermal noise power. Therefore, if signals have different thermal noise

power, the correlation matrix must be normalized by the thermal noise power prior to computing P+ and ρ>+.
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the signal of interest but with different spatial responses, that is, beampatterns. One means
of obtaining different measurements of the signal of interest is to slightly offset the steering
direction of two beamformers. For example, we might form two beams at angles

φ1 = φ0 −+φ φ2 = φ0 ++φ (11.7.19)

where +φ is a fraction of a beamwidth, for example, half a beamwidth. Let the weight
vectors for these two beamformers be c1 and c2, respectively. These two beamformers can
be either nonadaptive, as in the case of the conventional beamformers discussed in Section
11.2, or one of the various adaptive beamformers from Section 11.3, 11.5, or 11.6. Ideally, a
pair of adaptive beamformers is used for applications in which interference is encountered.
Since the two beamformers are slightly offset from angle φ0, they may be thought of as
“left” and “right” beamformers. Using the beamformer weight vectors, we can then form
the ratio

γ x =
cH1 x

cH2 x
(11.7.20)

where recall that x is the snapshot under consideration that contains the signal of interest
s = √Mσsv(φs). Similarly, we can also hypothesize this ratio for any angle φ to form a
discrimination function

γ (φ) = cH1 v(φ)

cH2 v(φ)
(11.7.21)

Comparing the value of the measured ratio in (11.7.20) for the snapshot x to this angular
discrimination function in (11.7.21), we obtain an estimate of the angle of the signal of
interest φs . The key requirement for the discrimination function is that it be monotonic
over the angular region in which it is used; that is, there is a one-to-one correspondence
of the function in (11.7.21) and every angle in this region. The angular region typically
encompasses the beamwidths of the two beamformers. This requirement on the discrimi-
nation function γ (φ)means that the two beamformers c1 and c2 must have different spatial
responses.

We have simply given an example of how an angle estimation algorithm might be
constructed. The topic of angle estimation is a very large area, and the choice of algorithm
should be determined by the particular application. In the example given, we constructed
a beamsplitting algorithm with left and right beams. Similarly, we could have chosen sum
and difference beams, as is commonly done in radar in a technique known as monopulse
(Sherman 1984). In fact, sum and difference beams can be formed from left and right beams
by taking their sum and difference, respectively. In this case, a simple linear transformation
exists that provides a mapping between the two beam stategies, and as a result one would
anticipate equivalent performance. For further material on angle estimation algorithms, the
interested reader is referred to Davis et al. (1974), McGarty (1974), Zoltowski (1992), and
Nickel (1993).

11.7.4 Model-Based Methods

In Section 9.6, we discussed frequency estimation techniques based on a model of a complex
exponential contained in noise. Certainly all these techniques could also be applied to
the angle estimation problem, particularly for a ULA that has a direct correspondence
to a discrete-time uniformly sampled signal. In this case, the angle is determined by the
spatial frequency of the ULA. These methods are commonly referred to as superresolution
techniques because they are able to achieve better resolution than traditional, nonadaptive
methods. In fact, many of these techniques were originally proposed for array processing
applications. However, certain considerations must be taken into account when one is trying
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to apply these methods for use with a sensor array. First, a certain amount of uncertainty
exists with respect to the exact spatial location of all the sensors. All these methods exploit
the structure imposed by regular sampling where knowledge of the sampling instance is
very precise. In the case of a temporally sampled signal, this assumption is very reasonable;
but in the case of an array with these uncertainties, the validity of this assumption must be
called into question. In addition, for a sensor array, all the signals are measured by different
sensors with slightly different characteristics, as opposed to a temporally sampled signal
for which all the samples are measured by the same sensor (analog-to-digital converter).
Although these channel mismatches can be corrected for in theory, a perfect correction is
never possible. For this reason, caution is in order when using these model-based methods
for the purposes of angle estimation with an array.

11.8 SPACE-TIME ADAPTIVE PROCESSING

Space-time adaptive processing (STAP) is concerned with the two-dimensional processing
of signals in both the spatial and temporal domains. The topic of STAP has received a
lot of attention recently as it is a natural extension of array processing (Ward 1994, 1995;
Klemm 1999). Although discussions of STAP date back to the early 1970s (Brennan and
Reed 1973), the realization of STAP in an actual system was not possible until just recently,
due to advances that were necessary in computing technology. We give a brief overview of
the principles of STAP and cite some of the considerations for its practical implementation.
Although STAP has also been proposed for use in communications systems (Paulraj and
Papadias 1997), we primarily discuss it in the context of the airborne radar application for
the purposes of clutter cancelation (Brennan and Reed 1973; Ward 1995; Klemm 1999).

A general STAP architecture is shown in Figure 11.29. Consider a ULA of sensors as
we have discussed throughout this chapter. We choose a ULA for the sake of simplicity, but
note that STAP techniques can be extended for arbitrary array configurations. In addition,
the signal from each sensor consists of a set of time samples or delays that make up a
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FIGURE 11.29
Space-time adaptive processing.
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time window. In radar applications, the time samples represent the returns from a set of
transmitted pulses. For an airborne radar that moves with a certain velocity, the reflected
signals from moving and nonmoving objects have a single frequency across the pulses.
The pulse frequency results in a complex exponential across the pulses. The frequency is
produced by the relative velocity of the objects with respect to the array and is known as
the Doppler frequency. Thus, we wish to construct a space-time model for a signal received
from a certain angle φs at a frequency fs . We model the spatial component of the signal
using the spatial (sp) steering vector for a ULA withM sensors from (11.1.23)

vsp(φs) =
1√
M
[1 e−j2π [(d/λ) sin φ] · · · e−j2π [(d/λ) sin φ](M−1)]T (11.8.1)

Likewise, the temporal component of a signal that is a complex exponential can be modeled
using a data window frequency vector, which technically is a temporal frequency steering
vector. This temporal steering vector is given by

vtime(f ) = 1√
L
[1 e−j2πf · · · e−j2πf (L−1)]T (11.8.2)

where L is the number of time samples or pulses. Both vsp and vtime have unit norm, that is,
vHspvsp = 1 and vHtimevtime = 1. Using these two one-dimensional steering vectors, we can
form the two-dimensional LM × 1 steering vector known as a space-time steering vector

vst(φ, f ) = vtime(f )⊗ vsp(φ) (11.8.3)

where ⊗ is the Kronecker product (Golub and Van Loan 1996). This vector, like the two
one-dimensional steering vectors, has unit norm. Using this space-time steering vector, we
can then model a spatially propagating signal arriving at the ULA from an angle φs with a
frequency fs as

s(n) = √LMvst(φs, fs)s(n) (11.8.4)

Of course, this signal of interest s(n) is not the only signal since the ULA at the very least
will have thermal noise from the sensors. However, let us consider the case where in addition
to the signal of interest, the ULA receives other spatially propagating signals that constitute
interference i(n). Thus, the overall space-time signal in the ULA is

x(n) = s(n)+ i(n)+ w(n) (11.8.5)

where w(n) is the sensor thermal noise space-time signal that is both temporally and spatially
uncorrelated, that is, E{w(n)wH (n)} = σ 2

wI. The interference component is made up of
spatially propagating signals that may be temporally uncorrelated or consist of complex
exponentials in the time domain, just as the signal of interest. In the case of an airborne
radar, jamming interference is temporally uncorrelated while spatially correlated; that is, the
jamming signal consists of uncorrelated noise that arrives from a certain angle φ. However,
clutter returns are produced by reflections of the radar signal from the ground and have
both spatial and temporal correlation. Due to the nature of the airborne radar problem,
these clutter returns exhibit a certain structure that can be exploited for the purposes of
implementing a STAP algorithm (Ward 1995; Klemm 1999).

As we did for the optimum beamformer, we want to find the optimum STAP weight
vector. The optimality condition is again the maximization of the output SINR. The space-
time interference-plus-noise correlation matrix is

Ri+n = E{xi+n(n)xHi+n(n)} (11.8.6)

xi+n(n) = i(n)+ w(n) (11.8.7)where

is the interference-plus-noise component of the signal. The availability of data that do not
contain the signal of interest is a training issue for the implementation of the STAP algorithm
that we do not consider here. See Borsari and Steinhardt (1995) and Rabideau and Steinhardt
(1999).
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The optimum STAP weight vector is found in a similar fashion to the optimum beam-
former in Section 11.3. Using a unit gain on target constraint, the optimum STAP weight
vector is

cstap =
R−1

i+nv(φs, fs)

vH (φs, fs)R
−1
i+nv(φs, fs)

(11.8.8)

where the space-time steering vector v(φs, fs) specifies the angle and frequency of the
presumed signal of interest s(n). The implementation of STAP requires the estimation of
Ri+n from data samples in order to compute the sample correlation matrix R̂i+n. This
block adaptive implementation is also known as sample matrix inversion (SMI). SMI was
discussed in the context of adaptive beamforming in Section 11.5.

The adaptive degrees of freedom of full STAP as specified in (11.8.8) areLM . For most
applications, computational considerations as well as a limited amount of data to train the
adaptive weights make the implementation of fully dimensional STAP impractical. Thus,
we must consider reduced-dimension versions of STAP (Ward 1994, 1995). To this end,
a preprocessing stage precedes the adaptation that reduces the degrees of freedom to an
acceptable level. The most commonly considered approaches use a partially adaptive array
implementation, as discussed in Section 11.6.2, either beamspace or subarrays, to reduce
the spatial degrees of freedom. Temporal degrees of freedom can be reduced by using a
frequency-selective temporal or Doppler filter (Ward and Steinhardt 1994). Alternatively,
a subset of the total number of pulses can be used where the subsets of pulses are then
combined following adaptive processing (Baranoski 1995).

A brief mention should be given to the application of STAP to the communications
problem (Paulraj and Papadias 1997). Unlike in the radar application, it is generally not
possible to separate the signal of interest from the interference-plus-noise in communica-
tions applications. In addition, although as in radar the signals are spatially propagating and
thus arriving at the sensor array at a specific angle, for communications the temporal signals
are not necessarily complex exponential signals. Instead, many times the signals consist
of coded sequences. In this case, STAP must incorporate the codes rather than complex
exponentials into its processing for the proper extraction of these signals.

11.9 SUMMARY

In this chapter, we have given a brief overview of array processing, starting with array
fundamentals and covering optimum and adaptive beamforming. Throughout the chapter,
we focused on the ULA, but it is possible to extend these concepts to other array config-
urations. The background material included spatially propagating signals, the concepts of
modulation and demodulation, and the model for a spatial signal received by a ULA. We
drew the analogy between the ULA, in terms of spatial sampling, and the discrete-time
sampling of temporal signals. Next, we introduced the topic of conventional beamforming
for which we discussed the spatial matched filter, which maximizes the SNR in the absence
of interference, and tapered low sidelobe beamformers. Within this context, we looked at
the characteristics of an array in terms of resolution and ambiguities known as grating lobes.

The remainder of the chapter dealt with optimum and adaptive beamforming techniques
related to the processing introduced earlier in the book for use with discrete-time signals.
These methods are concerned with adapting to the characteristics of the data, either assuming
knowledge of these characteristics (optimum) or estimating them from the data (adaptive).
One might say that the fundamental equation in adaptive beamforming is c = R−1v(φs),
where v(φs) determines the direction φs in which we are steering and R−1, the inverse of
the array correlation matrix, performs the adaptation to the array data. Within this context,
we looked at various issues, such as sidelobe levels and interference cancelation, and the
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effects of signal mismatch and bandwidth. The more advanced topics of angle estimation
and STAP were also discussed.

Throughout this chapter, we have tried to remain general in our treatment of the array
processing principles. Ultimately, specific issues and concerns related to the application will
dictate the type of processing that is needed. Areas in which arrays are commonly employed
include radar, sonar, and communications. In parts of the chapter, we have used examples
based on radar applications since they tend to be the easiest to simplify and describe. Other
important issues not discussed that arise in radar include the nonstationarity of the signals as
well as training strategies. The sonar application is rich with issues that make the implemen-
tation of adaptive arrays a very challenging task. Propagation effects, including signal mul-
tipath, lead to complicated models that must be used to estimate the steering vectors. In addi-
tion, signals of interest tend to be present at all times, so that the adaptive beamformer must
be trained with the signal of interest present.As we described in Section 11.4.1, this situation
leads to a heightened sensitivity to signal mismatch. For more details see Baggeroer et al.
(1993). Arrays for communications applications have also become a very popular field ow-
ing to the rapid growth of the wireless communications industry. The fundamental issue for
wireless communications is the number of users that can be simultaneously accommodated.
The limitations arise from the interference produced by other users. Arrays can help to in-
crease the capacity in terms of the number of users. For more details, see Litva and Lo (1996).

We have presented some material on the more advanced topics of angle estimation and
STAP. Another extension of adaptive beamforming is the subject of adaptive detection. This
topic is concerned with the determination of the presence of signals of interest in which the
detector is determined adaptively from the data. References on this subject include Kelly
(1986), Steinhardt (1992), Robey et al. (1992), Bose and Steinhardt (1995), Scharf and
McWhorter (1997), Kreithen and Steinhardt (1996), Conte et al. (1996), and Richmond
(1997).

PROBLEMS

11.1 Consider a narrowband spatially propagating signal with a speed of propagation c. The signal
impinges on an M = 2 element ULA from an angle φ = 0◦ with a spacing d between the
elements. For illustration purposes, let the temporal content of the signal be a pulse.

(a) Let the time of arrival of the pulse at the first sensor be t = 0. At what time does the signal
arrive at the second sensor?

(b) Do any other angles φ produce the same delay between the two sensors? Why?
(c) Suppose now that we only have a single sensor. Can we determine the angle from which

a signal impinges on this sensor?

11.2 We want to investigate the use of a mechanically steered versus an electronically steered array.
Consider a spatial matched filter with M = 20 λ/2-spaced elements. Now consider that the
array is steered to φ = 45◦. In the case of mechanical steering, the pointing direction is
always broadside to the array. To compute the beampattern of the mechanically steered array,
simply take the beampattern computed at φ = 0◦ and shift it by the mechanical steering
angle, that is, φ′ = φ + φmech. However, the beampattern of an electronically steered array is
simply the beampattern of the spatial matched filter steered to the desired angle. Compare the
beampattern of the mechanically steered array to that of the electronically steered array. What
do you observe? Repeat this for φ = 60◦ steering, both electronic and mechanical.

11.3 In this problem, we want to explore the use of beampatterns and steered or spatial responses of
a ULA. Consider a signal x(n) consisting of two spatially propagating signals from φ1 = −10◦
and φ2 = 30◦, both made of random, complex Gaussian noise. The respective powers of the
two signals are 20 and 25 dB. The number of sensors in the ULA is 50, and its thermal noise
level is 0 dB. The ULA has interelement spacing of d = λ/2.

(a) Compute one realization of x(n) for N = 1000 samples, that is, 1 ≤ n ≤ N . Using a
spatial matched filter, compute a steered response for this signal from the beamformer
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outputs, and plot it in decibels versus angle. What do you observe? Compare the result to
the expected steered response using the true correlation matrix.

(b) Compute and plot the beampattern for the spatial matched filter steered to φ = 30◦. How
can you relate the power levels you observed in part (a) at the angles of the two signals to
the beampattern?

(c) Change the power level of the signal at φ = −10◦ to 60 dB, and compute the steered
response. What do you observe? What do you recommend in order to distinguish these two
signals? Implement your idea and plot the estimated steered response from the beamformer
outputs.

11.4 Suppose that we have anM = 30 element ULA with a thermal noise level of 0 dB.

(a) Generate a realization of the ULAsignal x(n) consisting of two random, complex Gaussian
signals at φ = 0◦ and φ = 3◦ both with power 20 dB, along with the sensor thermal
noise. The interelement spacing is d = λ/2. Let the number of samples you generate be
N = 1000. Compute and plot the steered response of x(n) using a spatial matched filter.
What do you observe?

(b) Repeat part (a) for anM = 60 element ULA. What do you observe?
(c) Now using theM = 30 element ULAagain, but with interelement spacing d = λ, compute

the steered response and comment on the result.
(d ) Compute the beampatterns for the spatial matched filter steered to φ = 0◦ for the three

array configurations in parts (a), (b), and (c).

11.5 In this problem, we want to investigate the use of randomly thinned arrays. Note that theM = 30
element ULA with d = λ spacing from Problem 11.4 is simply the M = 60 element ULA
with every other element deleted. Such an array is often referred to as a thinned array. Using
an M = 60 element array, randomly thin the array. (Hint: Use a random number generator.)
First thin to 75 percent (45 elements) and then to 50 percent (30 elements). Compute and plot
the steered response, using a spatial matched filter for the signal in Problem 11.4. Note that
the spatial matched filter must take into account the positions of the elements; that is, it is
no longer a Vandermonde steering vector. Compute the beampatterns of these two randomly
thinned arrays. Repeat this process 3 times. What do you observe?

11.6 The spatial matched filter from (11.2.16) is the beamformer that maximizes the SNR in the
absence of interference. For this spatial matched filter, the beamforming or array gain was
shown to be Gbf = M . Suppose now that we have an M = 20 element ULA in which the
elements have unequal gain. In other words, the spatial matched filter no longer has the same
amplitude in each element. Find the spatial matched filter for the case when all even-numbered
elements have a unity gain, while all the odd-numbered elements have a gain of 3

4
. What is the

beamforming gain for this array? The noise has equal power in all elements.

11.7 The optimum beamformer weights with MVDR normalization are found by solving the fol-
lowing optimization

min Pi+n subject to cH v(φs) = 1

Using Lagrange multipliers discussed in Appendix B, show that the MVDR optimum beam-
former weight vector is

co =
R−1

i+nv(φs)

vH (φs)R
−1
i+nv(φs)

11.8 In this problem, we want to investigate the different normalizations of the optimum beamformer
from Table 11.1.We refer to the three normalizations as MVDR (α = [vH (φs)R−1

i+nv(φs)]−1),

adaptive matched filter or AMF (α = [vH (φs)R−1
i+nv(φs)]−1/2), and unit gain on noise (α =

[vH (φs)R−2
i+nv(φs)]−1/2). Let the interference-plus-noise signal consist of two interference

sources at φ = 45◦ and φ = 20◦ with powers of 30 and 15 dB, respectively. The noise power
is σ 2

w = 1. Now compute the steered response of the optimum beamformers with the three
different normalizations between −90◦ < φ < 90◦ (using 1◦ increments), using the true
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correlation matrix. What is the difference in the outputs of the optimum beamformers with the
different normalizations? For what purposes are the different normalizations useful?

11.9 The generalized sidelobe canceler (GSC) was derived as an alternative implementation of the
MVDR optimum beamformer. Show that the overall end-to-end weights associated with the
GSC are equivalent to the MVDR optimum beamformer weight vector in (11.3.15).

11.10 In the formulation of the optimum beamformer, we used the interference-plus-noise correla-
tion matrix Ri+n. However, in many applications it is not possible to have interference-plus-
noise-only data, and the signal of interest is always present. Thus, the beamformer must be
implemented using the correlation matrix

Rx = Ri+n + σ 2
sv(φs)v

H (φs)

Show that the use of this correlation matrix will have no effect on the optimum beamformer
weight vector for the case of no signal mismatch. Hint: Use the matrix inversion lemma (see
Appendix A).

11.11 In this problem, we want to look at the effect of signal mismatch on the performance of
the optimum beamformer. Of course, the resulting beamformer is no longer really optimum,
but instead is optimized to our presumptions about the signal. Consider the case with three
interference sources at φ = 5◦, 20◦, and−30◦ with powers of 25, 35, and 50 dB, respectively.
Compute the optimum beamformer steered to φ = 0◦. Now consider the case where the signal
of interest is not at φ = 0◦ but rather at φ = −1◦. The array consists of anM = 50 element
ULA with a noise power of σ 2

w = 1.

(a) Find the signal mismatch loss when the signal of interest is not in the correlation matrix.
Vary the strength of the signal from 0 to 30 dB.

(b) Find the signal mismatch loss when the signal is in the correlation matrix. Vary the strength
of the signal from 0 to 30 dB.

11.12 Let us again consider a set of three interference sources at φ = 5◦, 20◦, and−30◦ with powers
of 25, 35, and 50 dB, respectively. Now consider the case where the signal of interest is not
at φ = 0◦ but rather at φ = −1◦ and has a power of Mσ 2

s = 20 dB. The array consists of
anM = 50 element ULA with a noise power of σ 2

w = 1. However, instead of computing the
optimum beamformer with the correlation matrix Ri+n, use the diagonally loaded interference-
plus-noise matrix

Rl = Ri+n + σ 2
l I

where σ 2
l is the loading level.

(a) Find the signal mismatch loss when the signal of interest is not in the correlation matrix.
Compute and plot the mismatch loss varying the diagonal loading level from 0 to 20 dB.

(b) Find the signal mismatch loss when the signal is in the correlation matrix. Compute and
plot the mismatch loss varying the diagonal loading level from 0 to 20 dB.

11.13 The Frost sample-by-sample adaptive beamformer was derived for the MVDR beamformer.
Extend the Frost sample-by-sample adaptive beamformer for the case of multiple constraints
in an LCMV adaptive beamformer.

11.14 The LCMV beamformer weight vector is given in (11.6.7) and was found by using Lagrange
multipliers, which are discussed in Appendix B. Verify this result; that is, using Lagrange
multipliers, show that the LCMV beamformer weight vector is given by

clcmv = R−1
i+nC(CHR−1

i+nC)−1δ

where C and δ are defined as in Section 11.6.1.

11.15 Let us consider the sidelobe canceler, as discussed in Section 11.6.3. We restrict the problem
to a single interferer that has an angle φi with respect to a ULA that makes up the auxiliary
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channels. The main channel consists of the signal

xmc(n) = gss(n)+ imc(n)+ wmc(n)

where imc(n) = gi i(n) is the temporally uncorrelated signal i(n) with unit variance that has a
main channel gain of gi . The main channel thermal noise wmc(n) is temporally uncorrelated
with a power of σ 2

0. The auxiliary channels make up an M-element ULA with thermal noise

σ 2
w . The auxiliary channel signal vector is given by

x(n) = s(n)v(φs)+ σ i i(n)v(φi)+ w(n)

where φs and φi are the angles of the signal of interest and the interferer with respect to the
ULA, respectively.

(a) Form the expressions for the auxiliary channel correlation matrix Ra and cross-correlation
vector rma that include the signal of interest in the auxiliary channels.

(b) Compute the output power of the interference-plus-noise.
(c) Compute the output power of the signal. What conclusions can you draw from your answer?

11.16 The MVDR optimum beamformer is simply a special case of the LCMV beamformer. In this
case, the constraint matrix is C = v(φs) and the constraint response vector is δ = 1.

(a) Using the LCMV weight vector given in (11.6.7), substitute this constraint and constraint
response and verify that the resulting beamformer weight vector is equal to the MVDR
optimum beamformer.

(b) Find an expression for the interference-plus-noise output power of the LCMV beamformer.

11.17 The optimum beamformer could also be formulated as the constrained optimization problem
that resulted in the MVDR beamformer. This beamformer can be implemented as a generalized
sidelobe canceler (GSC), as shown in Section 11.3.5. Similarly, the LCMV beamformer can
be implemented in a GSC architecture. Derive the formulation of a GSC with multiple linear
constraints.

11.18 Consider the case of anM = 20 element array with d = λ/2 interelement spacing and thermal
noise power σ 2

w = 1. An interference source is present at φ = 30◦ with a power of 50 dB.
Generate one realization of 1000 samples of this interferer. In addition, a signal of interest is
present at φs = 0◦ with a power of σ s = 100 (20 dB) in the n = 100th sample only.

(a) Using an SMI adaptive beamformer for the full array, compute the output signal. Is the
signal of interest visible?

(b) Using a partially adaptive beamformer withQ = 4 nonoverlapping subarrays with M̃ = 5
elements, compute the output of an SMI adaptive beamformer. What can you say about
the signal of interest now?

(c) Repeat part (b) withQ = 2 and M̃ = 10. What are your observations now?

11.19 Consider the case of anM = 40 element array with d = λ/2 interelement spacing and thermal
noise power σ 2

w = 1. An interference source is present at φ = 20◦ with a power of 50 dB.
Generate one realization of 1000 samples of this interferer. In addition, a signal of interest is
present at φs = 0◦ with a power of σ s = 100 (20 dB) in the n = 100th sample only.

(a) Using an SMI adaptive beamformer for the full array, compute the output signal. Is the
signal of interest visible?

(b) Using a beamspace partially adaptive beamformer consisting of 11 beams at the angles
−5◦ ≤ φ ≤ 5◦ at 1◦ increments, compute the output of a partially adaptive SMI beam-
former. What can you say about the signal of interest now?

(c) Repeat part (b) with beams only at φ = −1◦, 0◦, and 1◦. What are your observations now?

11.20 Compute the SINR loss for a partially adaptive beamformer with a general preprocessing
transformation T. You need to start with the general definition of SINR loss

Lsinr � SINRout(φs)

SNR0
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where SINRout(φs) is the output SINR of the partially adaptive beamformer at angle φs and
SNR0 is the SNR of the spatial matched filter in the absence of interference.

11.21 Consider the case of an interference source at φ = 30◦ with a power of 40 dB. The ULA is
a 20-element array with d = λ/2 interelement spacing and has unit-variance thermal noise
(σ 2
w = 1).

(a) Compute the SINR loss for the optimum beamformer for −90◦ ≤ φ ≤ 90◦.
(b) Let us consider the case of the GSC formulation of the optimum beamformer. If we choose

to use a beamspace blocking matrix B in (11.3.41), what are the spatial frequencies of
the spatial matched filters in this blocking matrix for an optimum beamformer steered to
φ = 0◦?

(c) To implement a reduced-rank or partially adaptive beamformer, use only the two spatial
matched filters in the beamspace blocking matrix with spatial frequencies closest to the
interference source (spatial frequency u = 1

2
sin φi = 0.25). Compute the SINR loss

of this partially adaptive beamformer, and compare it to the SINR loss of the optimum
beamformer found in part (a).
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CHAPTER 12

Further Topics

The distinguishing feature of this book, up to this point, is the reliance on random process
models having finite variance and short memory and specified by their second-order mo-
ments. This chapter deviates from this path by focusing on further topics where there is an
explicit or implicit need for higher-order moments, long memory, or high variability.

In the first part (Section 12.1), we introduce the area of higher-order statistics (HOS)
with emphasis on the concepts of cumulants and polyspectra. We define cumulants and
polyspectra; we analyze the effect of linear, time-invariant systems upon the HOS of the
input process; and we derive the HOS of linear processes. Higher-order moments, unlike
second-order moments, are shown to contain phase information and can be used to solve
problems in which phase is important.

In the second part (Sections 12.2 through 12.4), we illustrate the importance of HOS for
the blind deconvolution of non-minimum-phase systems, and we show how the underlying
theory can be used to design unsupervised adaptive filters for symbol-spaced and fractionally
spaced equalization of data communication channels.

In the third part (Sections 12.5 and 12.6), we introduce two types of random signal mod-
els characterized by long memory: fractional and self-similar, or random, fractal models.
We conclude with rational and fractional models with symmetric α-stable (SαS) excitations
and self-similar processes with SαS increments. These models have long memory and find
many applications in the analysis and modeling of signals with long-range dependence and
impulsive or spiky behavior.

12.1 HIGHER-ORDER STATISTICS IN SIGNAL PROCESSING

The statistics of a Gaussian process are completely specified by its second-order moments,
that is, correlations and power spectral densities (see Section 3.3). Since non-Gaussian
processes do not have this property, their higher-order statistics contain additional informa-
tion that can be used to measure their deviation from normality. In this section we provide
some background definitions and properties of higher-order moments, and we discuss their
transformation by linear, time-invariant systems. More detailed treatments can be found in
Mendel (1991), Nikias and Raghuveer (1987), Nikias and Mendel (1993), and Rosenblatt
(1985).

12.1.1 Moments, Cumulants, and Polyspectra

The first four moments of a complex-valued stationary stochastic process are defined by

r(1)x � E{x(n)} = µx (12.1.1)

r(2)x (l1) � E{x∗(n)x(n+ l1)} = rx(l1) (12.1.2)
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r(3)x (l1, l2) � E{x∗(n)x(n+ l1)x(n+ l2)} (12.1.3)

r(4)x (l1, l2, l3) � E{x∗(n)x∗(n+ l1)x(n+ l2)x(n+ l3)} (12.1.4)

although other definitions are possible by conjugating different terms. We note that the first
two moments are the mean and the autocorrelation sequence, respectively.

In Section 3.2.4 we showed that the cumulant of a linear combination of IID random
variables can be determined by a linear combination of their cumulants. In addition, in
Section 3.1.2, we noted that the kurtosis of a random variable measures its deviation from
Gaussian behavior. For these reasons, we usually prefer to work with cumulants instead of
moments. Since higher-order cumulants are invariant to a shift of the mean value, we define
them under a zero-mean assumption.

The first four cumulants of a zero-mean stationary process are defined by

κ(1)x = E{x(n)} = µx = 0 (12.1.5)

κ(2)x (l1) = E{x∗(n)x(n+ l1)} = rx(l1) (12.1.6)

κ(3)x (l1, l2) = E{x∗(n)x(n+ l1)x(n+ l2)} (12.1.7)

κ(4)x (l1, l2, l3) = E{x∗(n)x∗(n+ l1)x(n+ l2)x(n+ l3)}
− κ(2)x (l2)κ

(2)
x (l3 − l1)− κ(2)x (l3)κ

(2)
x (l2 − l1) (12.1.8)

(complex-valued case)

κ(4)x (l1, l2, l3) = E {x(n)x(n+ l1)x(n+ l2)x(n+ l3)} − κ(2)x (l1)κ
(2)
x (l3 − l2)

− κ(2)x (l2)κ
(2)
x (l3 − l1)− κ(2)x (l3)κ

(2)
x (l2 − l1) (12.1.9)

(real-valued case)

and can be obtained by using the cumulant-generating function discussed in Section 3.1.2
(Mendel 1991). It can be shown that

κ(k)x (l1, l2, . . . , lk−1) = µ(k)
x (l1, l2, . . . , lk−1)− µ(k)

g (l1, l2, . . . , lk−1) k = 3, 4
(12.1.10)

wherex(n) is a non-Gaussian process andg(n) is a Gaussian process with the same mean and
autocorrelation sequence. The negative terms in (12.1.8) and (12.1.9) express the fourth-
order cumulant of the Gaussian process in terms of second-order ones. In this sense, in
addition to higher-order correlations, cumulants measure the distance of a process from
Gaussianity. Note that if x(n) is Gaussian, κ(k)x (l1, l2, . . . , lk−1) = 0 for all k ≥ 3 even if
Equation (12.1.10) holds only for k = 3, 4.

If we assume that µx = 0 and set l1 = l2 = l3 = 0 in (12.1.6) through (12.1.8), we
obtain

κ(2)x (0) = E{|x(n)|2} = σ 2
x (12.1.11)

κ(3)x (0, 0) = γ (3)
x (12.1.12)

κ(4)x (0, 0, 0) = E{|x(n)|4} − 2σ 4
x complex (12.1.13)

= E{x4(n)} − 3σ 4
x real (12.1.14)

which provide the variance, unnormalized skewness, and unnormalized kurtosis of the
process (see Section 3.1.2).

If the probability distribution of a process is symmetric (e.g., uniform, Gaussian,
Laplace), its third-order cumulants are zero. In such cases, we need to consider fourth-
order cumulants. Higher-order cumulants (k > 4) are seldom used in practice.

If the cumulants are absolutely summable, we can define the kth-order cumulant spec-
tra, higher-order spectra, or polyspectra as the (k − 1)-dimensional Fourier transform of
the kth-order cumulant. More specifically, the power spectral density (PSD), bispectrum,
and trispectrum of a zero-mean stationary process are defined by
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R(2)
x (ejω) �

∞∑
l1=−∞

κ(2)x (l1)e
−jωl1 = Rx(e

jω) (12.1.15)

R(3)
x (ejω1 , ejω2) �

∞∑
l1=−∞

∞∑
l2=−∞

κ(3)x (l1, l2)e
−j (ω1l1+ω2l2) (bispectrum)

(12.1.16)

R(4)
x (ejω1 , ejω2 , ejω3) �

∞∑
l1=−∞

∞∑
l2=−∞

∞∑
l3=−∞

κ(4)x (l1, l2, l3)e
−j (ω1l1+ω2l2)and

(trispectrum) (12.1.17)

where ω1, ω2, and ω3 are the frequency variables. In contrast to the PSD, which is real-
valued and nonnegative, both the bispectrum and the trispectrum are complex-valued. Since
the higher-order cumulants of a Gaussian process are zero, its bispectrum and trispectrum
are zero as well.

Many symmetries exist in the arguments of cumulants and polyspectra of both real and
complex stochastic processes (Rosenblatt 1985; Nikias and Mendel 1993). For example,
from the obvious symmetry

r(3)x (l1, l2) = r(3)x (l2, l1) (12.1.18)

R(3)
x (ejω1 , ejω2) = R(3)

x (ejω2 , ejω1) (12.1.19)we obtain

which is a basic property of the bispectrum.
For real-valued processes, we have the additional symmetries

r(3)x (l1, l2) = r(3)x (−l2, l1 − l2) = r(3)x (−l1, l2 − l1)

= r(3)x (l2 − l1,−l1) = r(3)x (l1 − l2,−l2)
(12.1.20)

r
(4)
x (l1, l2, l3) = r

(4)
x (l2, l1, l3) = r

(4)
x (l1, l3, l2)

= r
(4)
x (−l1, l2 − l1, l3 − l1)

(12.1.21)

which can be used to simplify the computation of cumulants. It can be shown that the nonre-
dundant region for r(3)x (l1, l2) is the wedge {(l1, l2) : 0 ≤ l2 ≤ l1 ≤ ∞} and for r(4)x (l1, l2, l3)

is the cone {(l1, l2, l3) : 0 ≤ l3 ≤ l2 ≤ l1 ≤ ∞}.The symmetries of cumulants impose sym-
metry properties upon the polyspectra. Indeed, by using (12.1.20) it can be shown that

R(3)
x (ejω1 , ejω2) = R(3)

x (ejω2 , ejω1) = R(3)
x (ejω1 , e−jω1−jω2)

= R(3)
x (e−jω1−jω2 , ejω2) = R(3)∗

x (e−jω1 , e−jω2)
(12.1.22)

which implies that the nonredundant region for the bispectrum is the triangle with vertices at
(0, 0), (2π/3, 2π/3), and (π, 0).The trispectrum of a real-valued process has 96 symmetry
regions (Pflug et al. 1992).

Finally, we note that if in (12.1.7) we replace x(n+ l1) by y(n+ l1) and x(n+ l2) by
z(n+ l2), we can define the cross-cumulant and then take its Fourier transform to find the
cross-bispectrum. These quantities are useful for joint signal analysis (Nikias and Mendel
1993).

12.1.2 Higher-Order Moments and LTI Systems

Consider a BIBO stable linear, time-invariant (LTI) system with impulse response h(n) and
input-output relation given by

y(n) =
∞∑

k=−∞
h(k)x(n− k) (12.1.23)



March 10, 2005 14:43 e56-ch12 Sheet number 4 Page number 694 black

694

chapter 12
Further Topics

If the input x(n) is stationary with zero mean, the output autocorrelation is

ry(l) =
∑
k0

∑
k1

h(k1)h
∗(k0)rx(l − k1 − k0) (12.1.24)

where the range of summations, which is from−∞ to∞, is dropped for convenience (see
Section 3.4). Also we have

Ry(e
jω) = |H(ejω)|2Rx(e

jω) (12.1.25)

which shows that the output PSD is insensitive to the phase response of the system.
Using (12.1.23) and (12.1.7), we can show that the input and output third-order cumu-

lants are related by

κ(3)y (l1, l2) =
∑
k0

∑
k1

∑
k2

h∗(k0)h(k1)h(k2)κ
(3)
x (l1 − k1 + k0, l2 − k2 + k0) (12.1.26)

To obtain the fourth-order cumulant of the output, we first determine its fourth-order moment

r(4)y (l1, l2, l3) =
∑
k0

∑
k1

∑
k2

∑
k3

h∗(k0)h
∗(k1)h(k2)h(k3)

× r(4)x (l1 − k1 + k0, l2 − k2 + k0, l3 − k3 + k0)

(12.1.27)

using (12.1.23) and (12.1.4) (see Problem 12.1). Then using (12.1.8), (12.1.9), and (12.1.24),
we have

κ(4)y (l1, l2, l3) =
∑
k0

∑
k1

∑
k2

∑
k3

h∗(k0)h
∗(k1)h(k2)h(k3)

× κ(4)x (l1 − k1 + k0, l2 − k2 + k0, l3 − k3 + k0)

(12.1.28)

which holds for both real- and complex-valued processes. An interesting interpretation of
this relationship in terms of convolutions is given in Mendel (1991) and in Therrien (1992).

We now compute the bispectrum of the output signal y(n) in terms of the bispectrum
of the input x(n) and the frequency response H(ejω) of the system. Indeed, taking the two-
dimensional Fourier transform of (12.1.26) and interchanging the order of summations, we
have

R(3)
y (ejω1 , ejω2) =

∑
l1

∑
l2

κ(3)y (l1, l2)e
−j (ω1l1+ω2l2)

=
∑
l1

∑
l2

∑
k0

∑
k1

∑
k2

h∗(k0)h(k1)h(k2)

× κ(3)x (l1 − k1 + k0, l2 − k2 + k0)e
−j (ω1l1+ω2l2)

=
∑
k0

h∗(k0)e
j (ω1+ω2)k0

∑
k1

h(k1)e
−jω1k1

∑
k2

h(k2)e
−jω2k2

×
∑
l1

∑
l2

κ(3)x (l1− k1+ k0, l2− k2+ k0)e
−jω1(l1−k1+k0)e−jω2(l2−k2+k0)

Rearranging terms and using (12.1.16), we obtain

R(3)
y (ejω1 , ejω2) = H ∗(ejω1+jω2)H(ejω1)H(ejω2)R(3)

x (ejω1 , ejω2) (12.1.29)

which shows that the bispectrum, in contrast to the PSD in (12.1.25), is sensitive to the
phase of the system.

In a similar, but more complicated way, we can show that the output trispectrum is
given by

R(4)
y (ejω1 , ejω2 , ejω3) = H ∗(ejω1+jω2+jω3)H ∗(e−jω1)H(ejω2)

× H(ejω3)R(4)
x (ejω1 , ejω2 , ejω3)

(12.1.30)

which again shows that the trispectrum is sensitive to the phase of the system.
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12.1.3 Higher-Order Moments of Linear Signal Models

In Section 4.1 we discussed linear signal models and the innovations representation of
stationary processes with given second-order moments. This representation is given by

x(n) =
∞∑
k=0

h(k)w(n− k) (12.1.31)

rx(l) = σ 2
w

∞∑
k=0

h(k)h∗(k − l) (12.1.32)

Rx(e
jω) = σ 2

w|H(ejω)| (12.1.33)

where w(n) is a white noise process and H(z) is a minimum phase. If w(n) is Gaussian,
x(n) is Gaussian and this representation provides a complete description of the process.

If the excitation w(n) is IID and non-Gaussian with cumulants

κ(k)w (l1, l2, . . . , lk−1) =
{
γ (k)
w l1 = l2 = · · · = lk−1 = 0

0 otherwise
(12.1.34)

the output of the linear model is also non-Gaussian. The cumulants and the polyspectra of
process x(n) are

κ(k)x (l1, l2, . . . , lk−1) = γ (k)
w

∞∑
n=0

h(n)h(n+ l1) · · ·h(n+ lk−1) (12.1.35)

and

R(k)
x (ejω1 , ejω2 , . . . , ejωk−1) = γ (k)

w H(ejω1)H(ejω2) · · ·H(ejωk−1)H ∗(ej
∑k−1

i=1 ωi )

(12.1.36)

respectively. The cases for k = 3, 4 follow easily from Equations (12.1.26), (12.1.28) to
(12.1.30), and (12.1.34). A general derivation is discussed in Problem 12.2.

Setting k = 3 into (12.1.36), we obtain

�R(3)
x (ejω1 , ejω2) = �γ (3)

w − �H(ejω1+jω2)+ �H(ejω1)+ �H(ejω2) (12.1.37)

which shows that we can use the bispectrum of the output to determine the phase response
of the system if the input is a non-Gaussian IID process. From (12.1.33) we see that this is
not possible using the PSD.

EXAMPLE 12.1.1. For 0 < a < 1 and 0 < b < 1, consider the MA(2) systems

Hmin(z) = (1− az−1)(1− bz−1)

Hmax(z) = (1− az)(1− bz)

Hmix(z) = (1− az)(1− bz−1)

which obviously are minimum-phase, maximum-phase, and mixed-phase, respectively.All these
systems have the same output complex PSD

Rx(z) = σ 2
wHmin(z)Hmin(z

−1) = σ 2
wHmax(z)Hmax(z

−1) = σ 2
wHmix(z)Hmix(z

−1)

and hence the same autocorrelation. As a result, we cannot correctly identify the phase response
of an MA(2) model using the PSD (or equivalently the autocorrelation) of the output signal.
However, we can correctly identify the phase by using the bispectrum. The output third-order

cumulant κ(3)x (l1, l2) for the above MA(2) models can be computed by using either the complex
bispectrum (the z transform of the third-order cumulant)

R
(3)
x (z1, z2) = γ

(3)
w H(z1)H(z2)H(−z−1

1 z−1
2 )



March 10, 2005 14:43 e56-ch12 Sheet number 6 Page number 696 black

696

chapter 12
Further Topics

κ
(3)
x (l1, l2) = γ

(3)
w

2∑
n=0

h(n)h(n+ l1)h(n+ l2) (12.1.38)or the formula

for all values of l1, l2 that lead to overlapping terms in the summation. The results are summarized
in Table 12.1. The values shown are for the principal region (see Figure 12.1); the remaining
ones are computed using the symmetry relations (12.1.20). Using the formula

R
(3)
x (ejω1 , ejω2) = γ

(3)
w H(ejω1)H(ejω2)H∗(ej (ω1+ω2)) (12.1.39)

we can numerically compute the bispectrum, using the DFT (see Problem 12.4). The results
are plotted in Figure 12.2. We see that the cumulants and bispectra of the three systems are
different. Hence, the third-order moments can be used to identify both the magnitude and the
phase response of the MA(2) model.

TABLE 12.1

Minimum-, maximum-, and mixed-phase MA(2) systems with the same autocorrelation
(or PSD) but with different third-order moments (0 < a < 1, 0 < b < 1) (Nikias and
Raghuveer 1987).

Cumulants Minimum-phase MA(2) Maximum-phase MA(2) Mixed-phase MA(2)

κ
(3)
x (0, 0) 1− (a + b)3 + a3b3 1− (a + b)3 + a3b3 (1+ ab)3 − a3 − b3

κ
(3)
x (1, 1) (a + b)2 − (a + b)a2b2 −(a + b)+ ab(a + b)2 −a(1+ ab)2 + (1+ ab)b2

κ
(3)
x (2, 2) a2b2 ab −ab2

κ
(3)
x (1, 0) −(a + b)+ ab(a + b)2 (a + b)2 − (a + b)a2b2 a2(1+ ab)− (1+ ab)2b

κ
(3)
x (2, 0) ab a2b2 −a2b

κ
(3)
x (2, 1) −(a + b)ab −(a + b)ab ab(1+ ab)

rx(0) 1+ a2b2 + (a + b)2 1+ a2b2 + (a + b)2 1+ a2b2 + (a + b)2

rx(1) −(a + b)(1+ ab) −(a + b)(1+ ab) −(a + b)(1+ ab)

rx(2) ab ab ab

l1

l2

0 2

2

−2

−2

l1 = l2

FIGURE 12.1
Region of support for the
third-order cumulant of the MA(2)
model. The solid circles indicate
the primary samples, which can be
utilized to determine the remaining
samples using symmetry relations.

From the previous example and the general discussion of higher-order moments and
their transformation by linear systems, we conclude that HOS can be useful when we
deal with non-Gaussian signals or Gaussian signals that have passed through nonlinear
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FIGURE 12.2
Bispectrum magnitude and phase for minimum-, maximum-, and mixed-phase
MA(2) models with a = 0.5 and b = 0.9.

systems. More specifically, the use of HOS is beneficial in the following cases: suppression
of additive Gaussian colored noise, identification of the phase response of a system using
output data only, and characterization of non-Gaussian processes or nonlinear systems.
More details and applications are discussed in Nikias and Mendel (1993). However, note
that the application of HOS-based methods to real-world problems is very difficult because
(1) the computation of reliable estimates of higher-order moments requires a large amount
of data and (2) the assessment and interpretation of the results require a solid statistical
backgound and extensive practical experience.

12.2 BLIND DECONVOLUTION

In Section 6.7, we discussed optimum inverse filtering and deconvolution using the mini-
mum mean square error (MMSE) criterion under the assumption that all required statistical
moments are known. In the case of blind deconvolution (see Figure 6.23), the goal is to
retrieve the input of a system G(z) by using only the output signal and possibly some
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statistical information about the input. The most critical requirement is that the input signal
w(n) be IID, which is a reasonable assumption for many applications of practical interest.
In this case, we have

Rx(e
jω) = σ 2

w|G(ejω)|2 (12.2.1)

which can be used to determine, at least in principle, the magnitude response |G(ejω)|
from the output PSD Rx(e

jω). In general, it is impossible to obtain the phase response of
the system from Rx(e

jω) without additional information. For example, if we know that
G(z) = 1/A(z) is a minimum-phase AP(P ) system, we can uniquely identify it from
rx(l) or Rx(e

jω), using the method of linear prediction. However, if the system is not
minimum-phase, the method of linear prediction will identify it as minimum-phase, leading
to erroneous results.

The importance of the input probability density function in deconvolution applications
is illustrated in the following figures. Figure 12.3 shows a random sequence generated by
filtering white Gaussian noise with a minimum-phase system H(z) and the sequences ob-
tained by deconvolution of this sequence with the minimum-phase, maximum-phase, and
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FIGURE 12.3
A minimum-phase Gaussian random sequence and its deconvolution by the corresponding minimum-,
maximum-, and mixed-phase inverse systems.
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mixed-phase inverse systems corresponding to H(z). The three deconvolved sequences,
which look visually similar, are all uncorrelated and statistically indistinguishable, because
in the Gaussian case uncorrelatedness implies statistical independence. Figure 12.4 shows
the results of the same experiment repeated with the same systems and a white noise
sequence with an exponential probability density function. It is now clear that only the
minimum-phase inverse system provides the corect answer, although all three deconvolved
sequences have the same second-order statistics (Donoho 1981). More details about the gen-
eration of these figures and further discussion of their meaning are given in Problem 12.5.
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FIGURE 12.4
A minimum-phase non-Gaussian random sequence and its deconvolution by the corresponding minimum-,
maximum-, and mixed-phase inverse systems.

We conclude that complete identification of G(z), and therefore correct retrieval of the
input signal w(n), requires the identification of the phase response �G(ejω) of the system;
failure to do so may lead to erroneous results.

If the inputw(n) is IID and non-Gaussian, the bispectrum of the output is [see (12.1.36)]

R(3)
x (ejω1 , ejω2) = κ(3)w G(ejω1)G(ejω2)G∗(ejω1+jω2) (12.2.2)

and it can be used to determine both the magnitude and phase response of G(ejω) from the
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magnitude and argument of the bispectrum. If the bispectrum is identically zero, we can
use some nonzero higher-order spectrum. Therefore, HOS can be used in many ways to
obtain unbiased estimates of �G(ejω) provided that the polyspectra are not all identically
zero, or equivalently the input probability density function (pdf) is non-Gaussian (Matsuoka
and Ulrych 1984; Mendel 1991; Nikias and Mendel 1993). We emphasize that, in practice,
polyspectra estimators have high variance, and therefore reliable phase estimation requires
very long data records. In conclusion, blind deconvolution is always possible provided a
stable inverse 1/G(z) exists and w(n) is non-Gaussian. If w(n) is Gaussian, we cannot
correctly identify the phase response of the inverse system using only the second-order
moments of the output signal.

As we have already mentioned, MMSE linear prediction solves the blind deconvolution
problem for minimum-phase systems with Gaussian inputs using the autocorrelation of the
output signal. In essense, the inverse system retrieves the input by restoring its flat PSD,
which has been colored by the system G(z). This suggests the following question: Is it
possible to uniquely determine the inverse system h(n) by restoring some property of the
input signal (besides spectral flatness) that has been distorted by the system G(z)? To
address this question, let us consider the effects of an LTI system upon the probability
density function of the input signal. We recall that

• If the input pdf is Gaussian, then the output pdf is Gaussian. In general, if the input pdf
is stable, then the output pdf is also stable. This follows from the fact that only stable
random variables are invariant under linear transformations (see Section 3.2.4). However,
we limit our discussion to Gaussian signals because they have finite variance.

• If the input pdf is non-Gaussian, then the output pdf tends to Gaussian as a result of
the central limit theorem (see Section 3.3.7). The “Gaussianization” capability of the
system depends on the length and amplitude of its impulse response.

†
This is illustrated

in Example 3.2.4, which shows that the sum of uniform random variables becomes “more
Gaussian” as their number increases.

We see that filtering of a non-Gaussian IID sequence increases its Gaussianity. The only
system that does not alter a non-Gaussian input pdf has impulse response with one nonzero
sample, that is, b0δ(n− n0). In any other case, the input and output distributions are dif-
ferent, except if the input is Gaussian. A strict proof is provided by the following theorem
(Kagan et al. 1973).

THEOREM 12.1. Consider a random variable x defined by the linear combination of IID random
variables wk

x =
∑
k

ckwk (12.2.3)

with coefficients such that
∑

k |ck |2 <∞.The random variable x is Gaussian if and only if (a) x

has finite variance, (b) x
d= wk for all k, (c) at least two coefficients ck are not zero.

If we define the overall system (see Figure 12.5)

c(n) = g(n) ∗ h(n) (12.2.4)

the signals y(n) and w(n) can have the same non-Gaussian distribution if and only if c(n)
has only one nonzero coefficient. Hence, if we know the input pdf, we can determine the
inverse systemh(n) by restoring the pdf of y(n) to match the pdf of the inputw(n).However,
it turns out that instead of restoring the pdf, that is, all moments (Benveniste et al. 1980),
we only need to restore the moments up to order 4 (Shalvi and Weinstein 1990). This is
shown in the following theorem.

†
In many practical applications (e.g., seismology), the underlying data are non-Gaussian; however, unavoidable

filtering operations (e.g., recording instruments) tend to “Gaussianize” their distribution. As a result, many times
the non-Gaussianity of the data becomes apparent after proper deconvolution (Donoho 1981).
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Deconvolution
filter

H(z)

FIGURE 12.5
Basic blind deconvolution model.

THEOREM 12.2. Consider a stable LTI system

y(n) =
∑
k

c(k)w(n− k) (12.2.5)

with an IID input w(n) that has finite moments up to order 4. Then we have

E{|y(n)|2} = E{|w(n)|2}
∑
k

|c(k)|2 (12.2.6)

E{y2(n)} = E{w2(n)}
∑
k

c2(k) (12.2.7)

κ
(4)
y = κ

(4)
w

∑
k

|c(k)|4 (12.2.8)and

κ
(4)
y = E{|y(n)|4} − 2E2{|y(n)|2} − |E{y2(n)}|2 (12.2.9)where

is the fourth-order cumulant of y(n) and κ
(4)
w is the fourth-order cumulant of w(n).

Proof. Relations (12.2.6) and (12.2.7) can be easily shown by using (12.2.5) and the indepen-
dence assumption. To prove (12.2.8), we start with (12.2.5); then by interchanging the order
between expectation and summations, we have

E{|y(n)|4} = E



∣∣∣∣∣∣
∑
k

c(k)w(n− k)

∣∣∣∣∣∣
2



=
∑
k1

∑
k2

∑
k3

∑
k4

c(k1)c
∗(k2)c(k3)c

∗(k4) (12.2.10)

× E{w(n− k1)w
∗(n− k2)w(n− k3)w

∗(n− k4)}︸ ︷︷ ︸
W

W =




E{|w(n)|4} k1 = k2 = k3 = k4

E2{|w(n)|2} k1 = k2 �= k3 = k4, k1 = k4 �= k2 = k3

|E{w2(n)}|2 k1 = k3 �= k2 = k4

0 otherwise

(12.2.11)where

by invoking the independence assumption. If we substitute (12.2.11) into (12.2.10), we obtain

E{|y(n)|4} = E{|w(n)|4}
∑
k

|c(k)|2

+ 2E2{|w(n)|2}

[∑

k

|c(k)|2
]2

−
∑
k

|c(k)|4

 (12.2.12)

+ |E{w2(n)}|2


∣∣∣∣∣∣
∑
k

c2(k)

∣∣∣∣∣∣
2

−
∑
k

|c(k)|4



Finally, substituting (12.2.6) and (12.2.7) into (12.2.12) and rearranging the various terms, we
obtain (12.2.8).
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We now use the previous theorem to derive necessary and sufficient conditions for
blind deconvolution (Shalvi and Weinstein 1990).

THEOREM 12.3. Consider the blind deconvolution model shown in Figure 12.5 where c(n) =
g(n) ∗ h(n). If E{|y(n)|2} = E{|w(n)|2}, then

1. |κ(4)y | ≤ |κ(4)w |, that is, the kurtosis of the output is less than or equal to the kurtosis of the
input.

2. |κ(4)y | = |κ(4)w | if and only if c(n) = ejθ δ(n − n0). Hence, if the kurtosis of the output is

equal to the kurtosis of the input, the inverse system is given by H(z) = ejθ z−n0/G(z).

Proof. The proof can be easily obtained by using the inequality

∑
k

|c(k)|4 ≤

∑

k

|c(k)|2

2

(12.2.13)

where equality holds if and only if c(k) has at most one nonzero component. The condition
E{|y(n)|2} = E{|w(n)|2} in conjunction with (12.2.6) implies that

∑
k |c(k)|2 = 1. Therefore,∑

k |c(k)|4 ≤ 1 and |κ(4)y | ≤ |κ(4)w | due to (12.2.8). Clearly, if
∑

k |c(k)|2 = 1, we can have∑
k |c(k)|4 = 1 if and only if c(n) = ejθ δ(n− n0).

This theorem shows that a necessary and sufficient condition for the correct recovery
of the inverse system h(n), that is, for successful blind deconvolution, is that E{|y(n)|2} =
E{|w(n)|2} and |κ(4)y | = |κ(4)w |. Therefore, we can determine h(n) by solving the following
constrained optimization problem:

max
h(n)
|κ(4)y | subject to E{|y(n)|2} = E{|w(n)|2} (12.2.14)

It has been shown that for FIR inverse filters of sufficient length, κ(4)y has no spurious local
maxima over E{|y(n)|2} = E{|w(n)|2}, and therefore gradient search algorithms converge
to the correct solution regardless of initialization (Shalvi and Weinstein 1990). We should
stress that the IID property of the input w(n) is a key requirement for blind deconvolution
methods to work.

By using the normalized cumulants κ̃ (4)y = κ
(4)
y /σ 4

y it has been shown for real signals
(Donoho 1981) that

κ̃ (4)y = κ̃ (4)w

∑
k

|c(k)|4

[∑
k

|c(k)|2
]2

(12.2.15)

which implies that |κ(4)y | ≤ |κ(4)w |, a result attributed to Granger (1976). Furthermore,
Donoho (1981) showed that if κ̃ (4)w �= 0, then maximization of |κ(4)y | provides a solution
to the blind deconvolution problem (Tugnait 1992). An elaborate discussion of cumulant
maximization criteria and algorithms for blind deconvolution is given in Cadzow (1996).
A review of various approaches for blind system identification and deconvolution is given
in Abed-Meraim et al. (1997). In the next section, we apply these results to the design of
adaptive filters for blind equalization.

12.3 UNSUPERVISED ADAPTIVE FILTERS—BLIND EQUALIZERS

All the adaptive filters we have discussed so far require the availability of a desired response
signal that is used to “supervise” their operation. What we mean by that is that, at each
time instant, the adaptive filter compares its output with the desired response and uses this
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information to improve its performance. In this sense, the desired response serves as a
training signal that provides the feedback needed by the filter to improve its performance.
However, as we discussed in Sections 1.4.1 and 10.1, there are applications such as blind
equalization and blind deconvolution in which the availability of a desired response signal
is either impossible or inpractical. In this section we discuss adaptive filters that circumvent
this problem; that is, they can operate without a desired response signal. These filters are
called unsupervised adaptive filters to signify the fact that they operate without “super-
vision,” that is, without a desired response signal. Clearly, unsupervised adaptive filters
need additional information to make up for the lack of a desired response signal. This in-
formation depends on the particular application and has a big influence on the design and
performance of the adaptive algorithm. The most widely used unsupervised adaptive filters
are application-specific and operate by exploiting (1) the higher-order statistics, (2) the
cyclostationary statistics, or (3) some invariant property of the input signal. Most unsuper-
vised adaptive filtering algorithms have been developed in the context of blind equalization,
which provides the most important practical application of these filters.

an

Channel
input

LTI
channel

h(n)

v(n)

x(n) y(n)ˆ an−n0
ˆEqualizer

filter
Decision
device

Adaptive
algorithm

−

an−n0

Decision-
directed
mode

Training
mode

Training
sequence

FIGURE 12.6
Conventional channel equalizer with training and decision-directed modes of operation.

12.3.1 Blind Equalization

Figure 12.6 shows the traditional approach to adaptive equalization.
†

When the adaptive
equalizer starts its operation, the transmitter sends a known training sequence over the
unknown channel. Since the training sequence can be used as a desired response signal, we
can adjust the equalizer’s coefficients by using the standard LMS or RLS algorithms. The
LMS equalization algorithm with a training sequence is

c(n) = c(n− 1)+ 2µx(n)e∗(n) (12.3.1)

e(n) = an−n0 − ŷ(n) = an−n0 − cH (n− 1)x(n) (12.3.2)where

is the a priori error. If, at the end of the training period, the MSE E{|e(n)|2} is so small that
ŷ(n) � an−n0 , then we can replace an−n0 by the decision ân−n0 � Q[ŷ(n)] and switch the
equalizer to decision-directed mode. The resulting algorithm is

c(n) = c(n− 1)+ 2µx(n){Q[ŷ(n)] − ŷ(n)}∗ (12.3.3)

and its performance depends on how close c(n) is to the optimum setting co according to the

†
This approach has been discussed in Sections 6.8 and 10.4.4.



March 10, 2005 14:43 e56-ch12 Sheet number 14 Page number 704 black

704

chapter 12
Further Topics

MSE or the zero-forcing criterion. If c(0) is close to co, the intersymbol interference (ISI)
is significantly reduced (i.e., the eye is open), the decision device makes correct decisions
with low probability of error, and the algorithm is likely to converge to co. However, if c(0)
is not close to co, that is, when the eye is closed (which is when we need an equalizer), then
the error surface can be multimodal and the decision-directed equalizer fails to converge or
converges to a local minimum (Mazo 1980).

The training session should be repeated each time the channel response changes or after
system breakdowns, which results in a reduction of the data throughput. However, there
are digital communications applications in which the start-up and retraining of the adaptive
equalizer have to be accomplished without a training sequence. Adaptive equalizers that op-
erate without the aid of a training signal are known as blind equalizers, although the term un-
supervised would be more appropriate.The need for blind equalization is enormous in digital
point-to-multipoint and broadcast networks, such as high-definition and cable television.
In all these applications, the transmitter should be able to send its content unaffected by the
joining or withdrawal of client receivers or their need for training data (Treichler et al. 1998).

Clearly, blind equalization is a special case of blind deconvolution with input from a
finite alphabet. When we deal with blind equalization, we should recall the following facts:

1. The second-order statistics of the output provide information about the magnitude re-
sponse of an LTI channel. Therefore, mixed-phase channels cannot be identified using
second-order statistics only.

2. Mixed-phase LTI channels with IID Gaussian inputs cannot be identified from their
output because all statistical information is contained in the second-order moments.

3. The inverse of a mixed-phase LTI channel is IIR and unstable. Hence, only an FIR causal
approximation can be used for its equalization.

4. Channels with zeros on the unit circle cannot be equalized by using zero-forcing equal-
izers (Section 6.8).

5. Since |H(ejω)|2 = |H(ejω)ejθ |2 and for perfect equalizationH(z)C(z) = b0z
−n0 , b0 �=

0, the channel can be identified up to a rotational factor and a constant time shift.
6. The structure of the finite symbol alphabet improves the detection process, which can

be thought as an unsupervised pattern classification problem (Fukunaga 1990).

All equalizers (blind or not blind) use the second-order statistics (autocorrelation or power
spectrum) of the channel output, to obtain information about the channel’s magnitude re-
sponse. However, blind equalizers need additional information to determine the phase re-
sponse of the channel and to compensate for the absense of the desired response sequence.
Phase information can be obtained from the HOS or the second-order and higher-order
cyclostationary moments of the channel output. The cyclostationarity property results from
the modulation of the transmitted signal (Gardner 1991).

The above types of information can be exploited, either individually or in combination,
to obtain various blind equalization algorithms. The available blind equalization methods
can be categorized into two groups:

1. HOS-based methods. These can be further divided into two groups:

a. Implicit HOS algorithms implicitly explore HOS by iteratively minimizing a non-
MSE criterion, which does not require the desired response but reflects the amount
of residual ISI in the received signal.

b. Explicit HOS algorithms compute explicitly the block estimates of the power spec-
trum to determine the magnitude response and block estimates of the trispectrum,
to determine the phase response of the channel.

2. Cyclostationary statistics–based methods, which exploit the second-order cyclostation-
ary statistics of the received signal.
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Since the number of samples required to estimate the mth-order moment, for a given level
of bias and variance, increases almost exponentially with order m (Brillinger 1980), both
implicit and explicit HOS-based methods have a slow rate of convergence. Indeed, since
channel identification requires at least fourth-order moments, HOS-based algorithms require
a large number, typically several thousand, of data samples (Ding 1994).

Explicit HOS methods originated in geophysics to solve blind deconvolution problems
with non-Gaussian inputs (Wiggins 1978; Donoho 1981; Godfrey and Rocca 1981). A
complete discussion of the application of HOS techniques to blind equalization is given
in Hatzinakos and Nikias (1991). Because HOS algorithms require a large number of data
samples and have high computational complexity, they are not used in practice for blind
equalization applications. In contrast to symbol rate blind equalizers that require the use of
HOS, the input of fractionally spaced equalizers (which is sampled higher than the symbol
rate) contains additional cyclostationarity-based second-order statistics (SOS) that can be
exploited to identify the channel. Since SOS requires fewer data samples for estimation,
we can exploit cyclostationarity to obtain algorithms that converge faster than HOS-based
algorithms. Furthermore, channel identification using cyclic SOS does not preclude inputs
with Gaussian or nearly Gaussian statistics. More information about these methods can be
found in Gardner (1991), Ding (1994), Tong et al. (1994a, b), and Moulines et al. (1995).
We focus on implicit HOS methods because they are easy to implement and are widely used
in practice.

12.3.2 Symbol Rate Blind Equalizers

The basic structure of a blind equalization system is shown in Figure 12.7. The key element
is a scalar zero-memory nonlinear function ψ̃ , which serves to generate a desired response
signal ψ̃[ŷ(n)] for the adaptive algorithm.

an x(n)

e(n)

LTI
channel

h(n)

v(n)

y(n)ˆ an−n0
ˆEqualizer

filter
Decision
device

Adaptive
algorithm

−

c (⋅)
~

Channel
input

FIGURE 12.7
Basic elements of an adaptive blind equalization system.

We wish to find the function ψ̃ that provides a good estimate of the desired response
an. To this end, suppose that we have a good initial guess c(n) of the equalizer coefficients.
Then we assume that the convolution of the channel and equalizer impulse responses can
be decomposed as

h(n) ∗ c(n) = δ(n)+ hISI(n) (12.3.4)
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where hISI(n) is the component creating the ISI. The output of the equalizer is

ŷ(n) = c(n) ∗ x(n) = c(n) ∗ [h(n) ∗ an + v(n)]

= an + hISI(n) ∗ an + c(n) ∗ v(n) � an + ṽ(n)
(12.3.5)

where hISI(n) ∗ an is the residual ISI and c(n) ∗ v(n) is additive noise. By invoking the
central limit theorem, we can show that the convolutional noise ṽ(n) can be modeled as
white Gaussian noise (Godfrey and Rocca 1981; Haykin 1996). Since an is IID and since
an and ṽ(n) are statistically independent, the minimum MSE estimate z(n) of an based on
ŷ(n) is

z(n) = E{an|ŷ(n)} � ψ̃[ŷ(n)] (12.3.6)

which is a nonlinear function of ŷ(n) because an has a non-Gaussian distribution. Then the
a priori error is

e(n) = ψ̃[ŷ(n)] − ŷ(n) (12.3.7)

ŷ(n) =
L∑

k=−L
c∗k (n− 1)x(n− k) � cH (n− 1)x(n) (12.3.8)where

is the output of the equalizer. This leads to the following a priori stochastic gradient algorithm
for blind equalization

c(n) = c(n− 1)+ µx(n)e∗(n) (12.3.9)

where µ is the adaptation step size.
Another approach used to derive (12.3.9) is to start with the cost function

P(n) � E{0[ŷ(n)]} (12.3.10)

ψ(y) � ψ̃(y)− y (12.3.11)where

ψ(y) � 0
′
(y) = ∂0(y)

∂y
(12.3.12)is the derivative

of a nonlinear function0.The nonlinearity of0 creates the dependence of the cost function
on the HOS of ŷ(n) and an.The cost function (12.3.10) should not require the input sequence
an; it should reflect the amount of current ISI, and its minimum should correspond to the
minimum ISI or minimum MSE condition. In contrast to the MSE criterion, which depends
on the SOS and is a quadratic (convex) function of the equalizer parameters, the cost
function (12.3.10) is nonconvex and may have local minima. If we compute the gradient of
P(n) with respect to c and drop the expectation operation, we obtain the stochastic gradient
algorithm (12.3.9).

Equations (12.3.8), (12.3.7), and (12.3.9) provide the general form of LMS-type blind
equalization algorithms. Different choices for the nonlinear function ψ̃ result in various
algorithms for blind equalization. Because the output ŷ(n) is approximately a Bussgang
process, these algorithms are sometimes called Bussgang algorithms for blind equalization
(Haykin 1996). A process is called Bussgang (Bussgang 1952; Bellini 1986) if it satisfies
the property

E{ŷ(n)ŷ∗(n− l)} = E{ŷ(n)ψ̃[ŷ∗(n− l)]} (12.3.13)

that is, its autocorrelation is equal to the cross-correlation between the process and a non-
linear transformation of the process.

Sato algorithm. The first blind equalizer was introduced by Sato (1975) for one-
dimensional multilevel pulse amplitude modulation (PAM) signals. It uses the error function

ψ1(n) = R1 sgn[ŷ(n)] − ŷ(n) = e(n) (12.3.14)
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R1 � E{|an|2}
E{|an|} (12.3.15)where

and sgn(x) is the signum function. Integration of ψ1(n) gives

01[ŷ(n)] = 1
2 [R1 − ŷ(n)]2 (12.3.16)

whose expectation provides the cost function for the Sato algorithm. The complex version
of the algorithm, used for quadrature amplitude modulation (QAM) constellations, uses the
error

e(n) = R1 csgn[ŷ(n)] − ŷ(n) (12.3.17)

csgn(x) = csgn(xr + jxi) = sgn(xr)+ j sgn(xi) (12.3.18)where

is the complex signum function.

Godard algorithms. The most widely used algorithms, in practical blind equalization
applications, were developed by Godard (1980) for QAM signal constellations. Godard
replaced the function 01 with the more general function

0p[ŷ(n)] = 1

2p
[Rp − |ŷ(n)|p]p (12.3.19)

where p is a positive integer and Rp is the positive real constant

Rp � E{|an|2p}
E{|an|p} (12.3.20)

which is known as the dispersion of order p. The family of Godard stochastic gradient
algorithms is described by

c(n) = c(n− 1)+ µx(n)e∗(n) (12.3.21)

e(n) = ŷ(n)|ŷ(n)|p−2[Rp − |ŷ(n)|p] (12.3.22)where

is the error signal. This is an LMS-type algorithm obtained by computing the gradient of
(12.3.19) and dropping the expectation operator.

Other algorithms for blind equalization include (Ding 1998) the extensions of the Sato
algorithm in Benveniste et al. (1980), the stop-and-go algorithms (Picchi and Prati 1987),
and the Shalvi and Weinstein algorithms (Shalvi and Weinstein 1990).

12.3.3 Constant-Modulus Algorithm

The Godard algorithm for p = 2 was independently introduced by Treichler and Agee
(1983) with the name constant-modulus algorithm (CMA) and used the property restoral
approach. The resulting cost function

P(n) = E{[R2 − |ŷ(n)|2]2} (12.3.23)

depends on the amount of ISI plus noise at the output of the equalizer. Godard (1980)
has shown that the coefficient values that minimize (12.3.23) are close to the values that
minimize

†
the MSE E{[|an|2−|ŷ(n)|2]2}. The criterion is independent of the carrier phase

because if we replace ŷ(n) by ŷ(n)ejφ in (12.3.23), then P(n) remains unchanged. As a
result, the adaptation of the CMA can take place independently of and simultaneously with

†
More precisely, we wish to minimize E{[|an−n0 |2 − |ŷ(n)|2]2} for a particular choice of the delay n0. As we

have seen in Section 6.8, the value of n0 has a critical effect on the performance of the equalizer.
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operation of the carrier recovery system. The CMA is summarized in Table 12.2. Note that
for 128-QAM, R2 = 110. If we choose R2 �= 110, the CMA converges to a linearly scaled
128-QAM constellation that satisfies (12.3.23). However, choosing an unreasonable value
for R2 may cause problems when we switch to decision-directed mode (Gitlin et al. 1992).

TABLE 12.2

Summary of Godard or constant-modulus
algorithm.

Operation Equation

Equalizer ŷ(n) =
L∑

k=−L
c∗
k
(n− 1)x(n− k)

Error e(n) = ŷ(n)[R2 − |ŷ(n)|2]
Updating c(n) = c(n− 1)+ µx(n)e∗(n)

Godard constant R2 � E{|a(n)|4}
E{|a(n)|2}

Because of its practical success and its computational simplicity, the CMA is widely
used in blind equalization and blind array signal processing systems.

The CMA in Table 12.2 performs a stochastic gradient minimization of the constant-
modulus performance surface (12.3.1). In contrast to the unimodal MSE performance sur-
face of trained equalizers, the constant-modulus performance surface of blind equalizers is
multimodal. The multimodality of the error surface and the lack of a desired response signal
have profound effects on the convergence properties of the CMA (Johnson et al. 1998). A
detailed analysis of the local convergence of the CMA algorithm is provided in Ding et
al. (1991).

1. Initialization. Since the CMA error surface is nonconvex, the algorithm may converge
to undesirable minima, which indicates the importance of the initialization procedure.
In practice, almost all blind equalizers are initialized using the tap-centering approach:
All coefficients are set to zero except for the center (reference) coefficient, which is set
larger than a certain constant.

2. Convergence rate. The trained LMS algorithm has a bounded convergence rate (1 −
2µλmax)

−1 < τ < (1 − 2µλmin)
−1, because the Hessian matrix (which determines

the curvature) of the quadratic error surface is constant. Since the error surface of the
constant-modulus criterion is multimodal and includes saddle points, the convergence
rate of the CMA is slow at the neighborhood of saddle points and comparable to that of
the trained LMS in the neighborhood of a local minimum.

3. Excess MSE. In the trained LMS algorithm, the excess MSE is determined by the step
size, attainable MMSE, number of filter coefficients, and power of the input signal.
In addition, the excess MSE of the CMA depends on the kurtosis of the source signal
(Fijalkow et al. 1998).

E XAM PLE 12.3.1. To illustrate the key characteristics of the adaptive blind symbol or baud-
spaced equalizer (BSE) using the CMA algorithm, we used BERGULATOR, a public-domain
interactive Matlab-5 program that allows experimentation with the constant-modulus criterion
and various implementations of the CMA (Schniter 1998). The system function of the channel
is H(z) = 1 + 0.5z−1; the input is an IID sequence with four equispaced levels (PAM); the
SNR = 50 dB; the equalizer has two coefficients c0 and c1; and the step size of the CMA is
µ = 0.005. Figure 12.8 shows contours of the constant-modulus criterion surface in the equalizer
coefficient space, where the location of the MMSE is indicated by the asterisk∗ and the local
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MSE locations by×. Since the constant-modulus surface is multimodal, the equalizer converges
at a different minimum depending on the initial starting point. This is illustrated by the two
different coefficient trajectories shown in Figure 12.8, which demonstrates the importance of
initialization in adaptive algorithms with nonquadratic cost functions. Figure 12.9 shows the
learning curves for smoothed versions of the error and the square of the error for the trajectories
in Figure 12.8.
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FIGURE 12.8
Contours of the constant-modulus cost function and coefficient trajectories for a blind BSE
using the CMA.

12.4 FRACTIONALLY SPACED EQUALIZERS

The input to a fractionally spaced equalizer (FSE) (see Figure 12.10) is obtained by sam-
pling the channel output at a rate faster than the symbol or baud rate RB = 1/TB, where
TB is the symbol duration. For simplicity and because they are extensively used in practice,
we focus on TB/2 spaced FSE. However, all results can be extended to any rational fraction
of TB. One of the most attractive features of an FSE is that under ideal conditions, a finite
impulse response (FIR) FSE can perfectly equalize an FIR channel (Johnson et al. 1998).
Referring

†
to Figure 6.26 (a), we see that the continuous-time output of the channel is

x̃(t) =
∞∑

k=−∞
akh̃r(t − kTB − t0)+ ṽ(t) (12.4.1)

where h̃r(t) is the continuous-time impulse response and where we have incorporated the
channel delay t0 in h̃r(t). The discrete-time model of Figure 6.30 is no longer valid since

†
The material in this section requires familiarity with the notation and concepts developed in Section 6.8.
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FIGURE 12.9
Learning curves for a blind BSE using the CMA for the two coefficient trajectories in
Figure 12.8.
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FIGURE 12.10
Block diagram of data communications receiver with a fractionally spaced equalizer.

T = TB/2. However, if we extend the development leading to Figure 6.30 for t = nTB/2,
we obtain the discrete-time signal

x(n) =
∞∑
k=0

akhr(n− 2k)+ v(n) (12.4.2)

where hr(n) is the equivalent discrete-time impulse response and v(n) is the equivalent
white Gaussian noise (WGN). The output of an FIR TB/2 spaced FSE is

yf (n) =
2M−1∑
k=0

ckx(n− k) (12.4.3)

where we have chosen the even-order 2M for simplicity. If we decimate the output of the
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equalizer by retaining the odd -indexed samples 2n+ 1, we have

ŷ(n) � yf (2n+ 1) =
2M−1∑
k=0

ckx(2n+ 1− k)

=
M−1∑
k=0

c2kx(2n+ 1− 2k)+
M−1∑
k=0

c2k+1x(2n− 2k)

ŷ(n) =
M−1∑
k=0

ce
kx

o(n− k)+
M−1∑
k=0

co
kx

e(n− k) (12.4.4)or

ce
k = c2k co

k = c2k+1 xe(n) = x(2n) xo(n) = x(2n+ 1) (12.4.5)where

are known as the even (e) and odd (o) parts of the equalizer impulse responses and the
received sequences, respectively. Equation (12.4.4) expresses the decimated symbol rate
output of the equalizer as the sum of two symbol rate convolutions involving the even and
odd two-channel subequalizers.

If we define the even and odd symbol rate subchannels

he(n) = hr(2n) and ho(n) = hr(2n+ 1) (12.4.6)

we can show that the combined impulse response h̃(n) from the transmitted symbols an to
the symbol rate output ŷ(n) of the FSE is given by

h̃(n) = ce
n ∗ ho(n)+ co

n ∗ he(n) (12.4.7)

in the time domain or

H̃ (z) = Ce(z)H o(z)+ Co(z)H e(z) (12.4.8)

in the z domain. The resulting two-channel system model is illustrated in Figure 12.11.

an

z−n0

Channel

he(n)

ho(n)

Equalizer

ce(n)

co(n)

ve(n)

vo(n)

−

y(n)ˆ e(n)

an−n0

FIGURE 12.11
Two-channel representation of a Tb/2 spaced equalizer.
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12.4.1 Zero-Forcing Fractionally Spaced Equalizers

If we define the (M +L− 1)×M even subchannel matrix (we assume a 2L FIR channel)

He �




he(0) 0 · · · 0

he(1) he(0) · · · ...
... he(1)

. . . 0

he(L− 1)
...

. . . he(0)

0 he(L− 1)
. . . he(1)

...
...

. . .
...

0 · · · 0 he(L− 1)




(12.4.9)

the even subequalizer vector

ce � [ce
0 ce

1 · · · ce
M−1]T (12.4.10)

and their counterparts Ho and co,we can express the convolution equation (12.4.7) in matrix
form as

h̃ = Hc (12.4.11)

H � [He Ho] c �
[

ce

co

]
(12.4.12)where

and h̃ � [h̃(0) h̃(1) · · · h̃(M +L− 1)]T is the symbol-spaced overall system response. In
the absence of noise, the system is free of ISI if h̃ is equal to

δn0 � [0 · · · 0 1 0 · · · 0]T (12.4.13)

where n0, 0 ≤ n0 ≤ M +L− 1, indicates the location of the nonzero coefficient. Equiva-
lently, the z domain zero-ISI condition from (12.4.8) is given by

z−n0 = H̃ (z) = Ce(z)H o(z)+ Co(z)H e(z) (12.4.14)

The zero-forcing FIR equalizer is specified by the system of linear equations Hc = δn0 ,

which has a solution if H is full row rank. This condition is also known as strong perfect
equalization, and it holds if the number of columns is equal to or larger than the number of
rows, that is, if 2M ≥ M + L− 1 or M ≥ L− 1. Furthermore, the TB/2 spaced full-rank
condition implies that the system functions He(z) and Ho(z) have no common roots. These
topics are discussed in detail in Johnson et al. (1998).

The main advantage of the zero-forcing FSE over the corresponding synchronous equal-
izer is that, in the absence of noise, a zero-ISI elimination is possible using a finite-order
FSE. In the case of the synchronous equalizer, a similar zero-ISI elimination is possible
only when the equalizer is of infinite length.

12.4.2 MMSE Fractionally Spaced Equalizers

When the channel noise v(n) is present, then perfect equalization, even for an FSE, is not
possible. Hence, the emphasis shifts to the best possible compromise between ISI and noise
amplification (which is present in a zero-forcing equalizer) in a minimum MSE sense. This
is obtained by minimizing the mean square value of the data symbol error

e(n) � ŷ(n)− an−n0 (12.4.15)

for a particular choice of delay n0. To obtain an expression for ŷ(n) using the vector h̃ in
(12.4.11), we first define

an � [an an−1 . . . an−(M+L−1)]T (12.4.16)
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and

v(n) = [v(n− 1) v(n− 3) · · · v(n− 2L+ 1) v(n) v(n− 2) · · · v(n− 2L+ 2)]T
(12.4.17)

where the samples of the noise sequence are arranged as odd samples followed by the even
samples so as to be consistent with the definitions of H and c. We then substitute (12.4.2)
into (12.4.4) and obtain

ŷ(n) = aTn Hc+ vT (n)c (12.4.18)

Using δn0 in (12.4.13), we see the desired symbol an−n0 is equal to aTn δn0 . Hence from
(12.4.15) and (12.4.18), the symbol error is

e(n) = aTn (Hc− δn0)+ vT (n)c (12.4.19)

Assuming that the symbol sequence {an} is IID with variance σ 2
a and is uncorrelated

with the noise sequence v(n) ∼ WN(0, σ 2
v), the mean square value of the error e(n) is

given by

MSE(c, n0) = E{|e(n)|2} = σ 2
a(Hc− δn0)

H (Hc− δn0)+ σ 2
vcH c (12.4.20)

which is a function of two minimizing parameters c and n0. Following our development
in Section 6.2 on linear MSE estimation, the equalizer coefficient vector that minimizes
(12.4.20) is given by

ĉ =
(

HHH+ σ 2
v

σ 2
a

I
)−1

HH δn0 (12.4.21)

which is the classical Wiener filter. Also compare (12.4.21) with the frequency-domain
Wiener filter given in (6.8.29). The corresponding minimum MSE with respect to ĉ is given
by

min
ĉ

MSE (c, n0) = MSE(n0) = δTn0

[
I−H

(
HHH+ σ 2

v

σ 2
a

I
)−1

HH

]
δn0 (12.4.22)

Finally, the optimum value of n0 is obtained by determining the index of the minimum
diagonal element of the matrix in square brackets in (12.4.22), that is,

n̂0 = arg min
n0

{[
I−H

(
HHH+ σ 2

v

σ 2
a

I
)−1

HH

]
n0,n0

}
(12.4.23)

Once again, similar to the synchronous equalizer, the MMSE fractionally spaced equal-
izer is more robust to both the channel noise and the large amount of ISI. Additionally, it
provides insensitivity to sampling phase and an ability to function as a matched filter in
the presence of severe noise. Therefore, in practice, FSEs are preferred to synchronous
equalizers.

12.4.3 Blind Fractionally Spaced Equalizers

Fractionally spaced equalizers have just about dominated practical equalization applications
because they are insensitive to sampling phase, they can function as matched filters, they can
compensate severe band-edge delay distortion, they provide reduced noise enhancement,
and they can perfectly equalize an FIR channel under ideal conditions (Gitlin et al. 1992;
Johnson et al. 1998).

The CMA for an FSE is given by

ŷ(n) =
M−1∑
k=0

ce
k(n− 1)xo(n− k)+

M−1∑
k=0

co
k(n− 1)xe(n− k) � cT (n− 1)x(n) (12.4.24)



March 10, 2005 14:43 e56-ch12 Sheet number 24 Page number 714 black

714

chapter 12
Further Topics

e(n) = ŷ(n)[R2 − |ŷ(n)|2] (12.4.25)

c(n) = c(n− 1)+ µx(n)e∗(n) (12.4.26)

where c(n − 1) and x(n) are concatenated even and odd sample vectors. The blind FSE
adaptive structure is shown in Figure 12.12. The value of R2 depends on the input symbol
constellation. This algorithm and its convergence are discussed in Johnson et al. (1998).

−
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signal
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2

x(t) ŷ(n) ân−n0

e(n)

x(nTb + Tb /2)

x(nTb)

ck (n − 1)e

ck (n − 1)o

Adaptive
algorithm

Decision
device

c (⋅)
~

FIGURE 12.12
Basic elements of an FS adaptive blind equalization system.

E XAM PLE 12.4.1. To illustrate the superiority of the blind FSE over the blind BSE, we have
used the BERGULATOR to simulate a 16-QAM data transmission system. The channel system
function is H(z) = 0.2 + 0.5z−1 + z−2 − 0.1z−3, the SNR = 20dB, and the equalizer has
M = 8 coefficients. Figure 12.13 shows the constellation of the received signal at the input of
the equalizer, where it is clear that the combined effect of ISI and noise makes detection extremely

−1.0 −0.5 0 0.5 1.0

−1.0

−0.5

0

0.5

1.0

Im
ag

in
ar

y

Real

Constellation diagram: received data

FIGURE 12.13
Constellation of the received signal symbols at the input of the
equalizer.
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difficult, if not impossible. Figures 12.14 and 12.15 show the symbol constellations at the output
of a BSE and an FSE, respectively. We can easily see that the FSE is able to significantly remove
ISI. Figure 12.16 shows the learning curves for the blind adaptive FSE using the CMA.
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FIGURE 12.14
Constellation of the equalized signal symbols at the output of the
BSE equalizer.
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FIGURE 12.15
Constellation of the equalized signal symbols at the output of the FSE.
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FIGURE 12.16
Learning curves for the blind FSE adaptive equalizer using the CMA.

12.5 FRACTIONAL POLE-ZERO SIGNAL MODELS

In this section we show how to obtain models with hyperbolically decaying autocorrelation,
and hence long memory, by introducing fractional poles at zero frequency (fractional pole
models) or nonzero frequency (harmonic fractional pole models). Cascading fractional with
rational models results in mixed-memory models, known as fractional pole-zero models. We
explore the properties of both types of models and introduce techniques for their practical
implementation. Special emphasis is placed on the generation of discrete fractional pole
noise, which is the random process generated by exciting a fractional pole model with
white Gaussian noise. We conclude with a brief introduction to pole-zero and fractional
pole models with SαS IID inputs, which result in processes with high variability and short
or long memory, respectively. Fractional models are widely used in areas such as hydrology,
data network traffic analysis, heart rate analysis, and economics.

12.5.1 Fractional Unit-Pole Model

The impulse response and the autocorrelation sequence of a pole-zero model decay expo-
nentially with time, that is, they are geometrically bounded as

|h(n)| ≤ Ch ζ−n |ρ(l)| ≤ Cρ ζ−l (12.5.1)

where Ch,Cρ > 0 and 0 < ζ < 1 (see Chapter 4). To get a long impulse response or a
long autocorrelation, at least one of the poles should move very close to the unit circle.
However, in many applications we need models whose autocorrelation decays more slowly
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than ζ−l as l →∞, that is, models with long memory (see Section 3.2.4). In this section,
we introduce a class of models, known as fractional pole models, whose autocorrelation
asymptotically exhibits a geometric decay.

We have seen in Chapter 4 that by restricting some “integral” poles to being on the unit
circle, we obtain models that are useful in modeling some types of nonstationary behavior.
The fractional pole model FP(d)was introduced in Granger and Joyeux (1980) and Hosking
(1981), and is defined by

Hd(z) =
∞∑
k=0

hd(k)z
−k � 1

(1− z−1)d
(12.5.2)

where d is a nonintegral, that is, a fractional parameter. See Figure 12.17.

White noise

w(n) x(n)
Hd(z) = 

(1 − z−1)d 
1

Discrete-time
fractional noise

FIGURE 12.17
Block diagram representation of the discrete-time fractional
noise model.

The characteristics of the model depend on the value of parameter d. Since d is not
an integer, Hd(z) is not a rational function. It is the nonrationality that gives this model its
long-memory properties. Although we can approximate a fractional model by a PZ(P,Q)
model, the ordersP andQ that are needed to obtain a good approximation can be very large.
This makes the estimation of pole-zero model parameters very difficult, and in practice it
is better to use an FP(d) model.

Impulse response. To obtain the impulse response of the fractional pole model, we
expand the system function Hd(z) = (1 − z−1)−d in a power series using the binomial
series expansion. This gives

Hd(z) = 1

(1− z−1)d
= 1+ dz−1 + d(d + 1)

2! z−2 + · · · (12.5.3)

The impulse response is given by

hd(n) = d(d − 1) · · · (d + n− 1)

n! = (d + n− 1)!
n!(d − 1)! =

<(n+ d)

<(n+ 1)<(d)
(12.5.4)

for n ≥ 0 and hd(n) = 0 for n < 0. <(·) is the gamma function defined as

<(α) �




∫ ∞
0

tα−1e−t dt α > 0

∞ α = 0

α−1 <(1+ α) α < 0

(12.5.5)

with <(α+ 1) = α<(α) for any α and <(n+ 1) = n! for n an integer. Note that hd(n) can
be easily computed by using the recursion

hd(n) = d + n− 1

n
hd(n− 1) n = 1, 2, . . . (12.5.6)

with hd(0) = 1.
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The system function of the inverse model is

HI (z) �
∞∑
n=0

hI (n)z
−n = 1

Hd(z)
= (1− z−1)d (12.5.7)

hI (n) = (−d + n− 1)!
n!(−d − 1)! =

<(n− d)

<(n+ 1)<(−d) = h−d(n) (12.5.8)Hence

As expected, hI (n) is obtained from h(n) by simply replacing d by −d.

Minimum-phase. To understand the behavior of the model, we look at the impulse
response as n→∞. Using Sterling’s approximation (Abramowitz and Stegun 1970)

(n+ d − 1)!
n! ∼ nd−1 as n→∞ (12.5.9)

h(n) ∼ 1

(d − 1)!n
d−1 as n→∞ (12.5.10)we have

As a result of this geometric decay, the sum
∑∞

n=0 |h(n)| does not exist for d > 0.Therefore,
the system is not BIBO stable. However, if d < 1

2 , the sum
∑∞

n=0 h
2(n) < ∞, and the

input w(n) has finite variance, then the output of the system

x(n) =
∞∑
k=0

hd(k)w(n− k) (12.5.11)

exists in the mean square sense. In a similar way, the output of the inverse system exists in
mean square if d > − 1

2 . In view of this mean square convergence, we say that the fractional

pole model is minimum-phase if− 1
2 < d < 1

2 , even if hd(n) does not converge absolutely.

Spectrum. The complex power spectrum of the model is Rx(z) = σ 2
wRh(z), where

Rh(z) = H(z)H(z−1) = 1

(1− z−1)d(1− z)d
(12.5.12)

For z = ejω we obtain the power spectrum

Rh(e
jω) = 1

[2 sin (ω/2)]2d
−π < ω ≤ π (12.5.13)

We see that Rh(0) =∑∞
l=−∞ r(l) is finite only if d ≤ 0.Also as the frequency ω→ 0, the

power spectrum becomes

Rh(e
jω) ∼ 1

ω2d
as ω→ 0 (12.5.14)

because sin θ � θ as θ → 0.

Autocorrelation. The autocorrelation rx(l) = σ 2
wrh(l) of the model can be found by

using the inverse Fourier transform of Rh(e
jω), that is,

rh(l) = 1

2π

∫ π

−π
Rh(e

jω) e−jωl dω = 1

2π

∫ π

0
(cosωl)

(
2 sin

ω

2

)−2d
dω (12.5.15)

Using the identity (Gradshteyn and Ryzhik 1994)∫ π

0
cos ax sinν−1 x dx = π cos (aπ/2)<(ν + 1)21−ν

ν<[(ν + a + 1)/2)]<[(ν − a + 1)/2)]

rh(l) = (−1)l <(1− 2d)

<(1+ l − d) <(1− l − d)
l = 0, 1, 2, . . . (12.5.16)we obtain
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for the autocorrelation and

ρh(l) =
rh(l)

rh(0)
= <(1− d)<(l + d)

<(d)<(l + 1− d)
= (d + l − 1)!

(d − 1)! (l − d)! (12.5.17)

for the normalized autocorrelation. Using Sterling’s formula, we obtain the following
asymptotic approximation

ρh(l) ∼ Cdl
2d−1 as l→∞ (12.5.18)

which again verifies the long memory of the model. From (12.5.16) and the definition of
power spectrum, we have

rh(0) =
∞∑
n=0

h2(n) = 1

2π

∫ π

−π
|H(ejω)|2 dω = <(1− 2d)

<2(1− d)
(12.5.19)

Thus, for d < 1
2 we have

∫ π

−π |H(ejω)|2d ω < ∞. Hence, the inverse transform h(n)

converges in mean square.

Partial autocorrelation. To determine the partial autocorrelation sequence, we can
show, using (12.5.17) and the algorithm of Levinson-Durbin, that the AP(m) model param-
eters are given by

a
(m)
k =

(
m

k

)
(k − d − 1)!(m− d − k)!

(−d − 1)!(m− d)! (12.5.20)

Therefore, since km = −a(m)
m , we have

km = d

m− d
m = 1, 2, 3, . . . (12.5.21)

The details of the derivation are the subject of Problem 12.6.

Model memory. From Equations (12.5.10), (12.5.18), and (12.5.14) and from the long-
memory definitions in Section 3.4, we conclude that the minimum-phase fractional pole
model has long memory. More specifically, we arrive at the following conclusions:

• Long memory. For 0 < d < 1
2 the autocorrelation and partial correlation sequences

decay monotonically and hyperbolically to zero. Although
∑∞

l=−∞ |ρ(l)| = ∞ and
R(ejω) → ∞ as ω → 0, the integral (12.5.19) of R(ejω) is finite. The spectrum is
dominated by low-frequency components (low-pass), and the divergence atω = 0 causes
the long-memory behavior. The system acts as a fractional integrator.

• Short memory. For − 1
2 < d < 0 the autocorrelation and partial autocorrelation se-

quences decay monotonically and hyperbolically to zero. In this case
∑∞

l=−∞ |ρ(l)| <∞,

R(ej0) =∑∞
l=−∞ ρ(l) = 0, and the spectrum is dominated by high-frequency compo-

nents (high-pass). Sometimes we say that this model exhibits short-memory behavior.
The system acts as a fractional differentiator.

Figures 12.18 and 12.19 show the impulse response, autocorrelation, partial autocorrelation,
and power spectrum of the FP(d) model for various values of d. The short-memory and
long-memory behavior of the model, as a function of parameter d, is clearly evident.

Discrete-time fractional pole noise. If we drive an FP(d) model with white Gaussian
noise (see Figure 12.20), the resulting process is known as discrete-time fractional Gaus-
sian noise (DTFGN). Since the impulse response of an FP(d) system decays hyperbolically,
its system function cannot be accurately approximated by a rational function. Hence, its
practical implementation is not straightforward. Short sequences can be generated using the
LDLH or Cholesky decompositions of the process correlation using the (12.5.16) matrix,
as explained in Section 3.5. This approach guarantees that the correlation of the generated
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FIGURE 12.18
Impulse response, autocorrelation, partial autocorrelation, and power spectrum of the FP(d)
model for d = 0.1, 0.2, 0.3, 0.4, 0.49.

sequence matches the theoretical autocorrelation. Since the correlation matrix is Toeplitz,
its triangular factors can be computed efficiently by using the Schür algorithm (see Sec-
tion 7.7). Careful inspection of Figure 12.19 shows that the impulse response of the inverse
system decays extremely rapidly. Therefore, we can obtain a very accurate recursive im-
plementation of the FP(d) system by following the approach discussed in Example 4.5.1.

A practical algorithm for the generation of DTFGN is derived in Hosking (1984) using
the following result: For any stationary process with zero mean value, the conditional mean
and variance of x(n) given {x(j)}n−1

0 are given by

µx(n) = E{x(n)|x(n− 1), . . . , x(0)} = −
n∑

j=1

a
(n)∗
j x(n− j) � −aHn xn (12.5.22)

vx(n) = Var {x(n)|x(n− 1), . . . , x(0)} = σ 2
x

n∏
j=1

(1− |kj |2) (12.5.23)and

where an is the forward linear predictor (FLP) with lattice parameters kj and σ 2
x =

E{|x(n)|2} (Ramsey 1974). This result implies that we can use the Levinson-Durbin al-
gorithm to recursively determine µx(n) and vx(n), starting at n = 0 and generating
x(n) ∼WGN[µx(n), vx(n)] at each step. For the FP(d) model this algorithm is simplified
because km = d/(m− d) is known. The algorithm is initialized with x(0) ∼WGN(0, σ 2

x)

and continues with repeating the following recursions

kn = d

n− d
(12.5.24)
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FIGURE 12.19
Impulse response, autocorrelation, partial autocorrelation, and power spectrum of the FP(d)
model for d = −0.1,−0.2,−0.3,−0.4,−0.49.

an+1 =
[

an

0

]
+

[
Ja∗n
1

]
kn (12.5.25)

µx(n+ 1) = aHn+1xn+1 (12.5.26)

vx(n+ 1) = vx(n)(1− |kn|2) (12.5.27)

x(n+ 1) ∼WGN[µx(n+ 1), vx(n+ 1)] (12.5.28)

for n = 1, 2, . . . , N. The algorithm is implemented by the function x = dtfgn(d,N).
Figure 12.20 shows sample realizations of discrete fractional noise, for various values of
d, generated by using the above algorithm. A simplified, numerically robust algorithm,
using the lattice structure, is introduced in Problem 12.9. The estimation of long memory
is discussed in Section 12.6.

12.5.2 Fractional Pole-Zero Models: FPZ(P, d , Q)

Since the behavior of the FP(d) model is controlled by the single parameter d, it is not flex-
ible enough to model the wide variety of short-term (small-lag) autocorrelation structures
encountered in practical applications. A more powerful model capable of modeling both
short-term and long-term correlation structures can be obtained by cascading a PZ(P,Q)
model (to handle short memory) with an FP(d) (to handle long memory). This can be viewed
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FIGURE 12.20
Sample realizations of discrete-time fractional Gaussian noise for two different values of d.

as filtering discrete-time fractional noise with a pole-zero filter.The resulting model is known
as the fractional pole-zero model and is denoted by FPZ(P, d,Q). The system function is

Hfpz(z) = 1

(1− z−1)d

D(z)

A(z)
(12.5.29)

The FPZ(P, d,Q) is minimum-phase if − 1
2 < d < 1

2 and PZ(P,Q) is minimum-phase.
With regard to the long-range behavior of the model, we can show that as l→∞,

ρ(l) ∼ Cρl
2d−1 (12.5.30)

where Cρ �= 0, and as ω→ 0

R(ejω) = 1

|1− e−jω|2d
|D(ejω)|2
|A(ejω)|2 ∼

|D(0)|2
|A(0)|2

1

ω2d
(12.5.31)

Parameter d controls the impulse response and the autocorrelation of the model at large
lags and the spectrum at low frequencies. Parameters ak and dk control the impulse response
and the autocorrelation of the model at small lags, and the spectrum at high frequencies.

Autoregressive fractionally integrated moving-average models. Fractional pole-zero
models driven by white noise [autoregressive fractionally integrated moving-average mod-
els (ARFIMA) models] generate random signals whose samples are significantly dependent
even if they are too far apart. In practice (e.g., geophysics, hydrology, economics) there
are many time series in which the dependence between samples that are too far away,
though small, is still too significant to be ignored. Such signals with long-term persistence
can be effectively modeled using ARFIMA models, because of their flexibility in dealing
with both short-term and long-term correlation structures. An alternative family of random
fractal models for modeling long memory behavior is discussed in the next section.
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Harmonic fractional pole-zero models. The FP(d) models with 0 < d < 1
2 exhibit

long memory, but their spectrum peaks at zero frequency and their autocorrelation does
not have any periodicity. We next discuss a class of harmonic models with long memory,
periodic autocorrelations, and power spectra that resonate at any frequency in the interval
0 ≤ ω ≤ π. Such models are more appropriate for the modeling of data with strong
periodicities because they exhibit long memory and pseudoperiodic behavior.

Let e±jθ be a pair of complex conjugate poles on the unit circle and at angles±θ from
the real axis. Then we have (1 − ejθ z−1)(1 − e−jθ z−1) = 1 − (2 cos θ)z−1 + z−2. The
harmonic fractional pole model, denoted by HFP(d, θ ), is a causal system defined by

Hθ,d(z) = 1

(1− 2z−1 cos θ + z−2)d
=
∞∑
n=0

hθ,d(n)z
−n (12.5.32)

where d is a fractional parameter and θ is an angle controlling the location of the peak of the
spectrum. For θ = 0,Equation (12.5.32) reduces to a standard FP(2d) model. The properties
of this model are discussed in Problem 12.10. The minimum-phase HFP(d, θ ) model can
be cascaded with a minimum-phase PZ(P,Q) model to obtain an HFPZ(P, d,Q, θ) model
that offers greater flexibility in controlling both the short-term and long-term correlation
structure.

12.5.3 Symmetric α-Stable Fractional Pole-Zero Processes

Up to this point we have studied linear signal models driven by a sequence of IID Gaussian
or non-Gaussian random variables with finite variance. However, many practical time series
including isolated sharp spikes or bursts of spikes can be better described by random signal
models with infinite variance. To ensure that some signal samples take large values with
high probability, we need a probability density function with fat or heavy tails. We focus
on the family of SαS random variables because of their heavy tails and the fact that they
are invariant under linear transformations.

As we have seen in Chapters 4 and 5, the linear process

x(n) =
∞∑
k=0

h(k) w(n− k) (12.5.33)

is strictly stationary if (1) w(n) ∼ IID(0, σ 2
w) with σ 2

w < ∞ (finite variance) and (2)∑∞
k=−∞ |h(k)| < ∞, that is, the system is BIBO stable. However, to ensure stationarity

when the input is SαS with σw = ∞ (power law tails), the sequence |h(k)| should decay
exponentially. Since the impulse response of a stable pole-zero system decays exponentially,
its response to an SαS IID sequence is strictly stationary and SαS stable.

So far, we have discussed the properties of fractional pole-zero models and their re-
sponse to white noise with finite variance. The following proposition specifies under what
conditions the output of a PZ(0, d, 0) model with stable excitation is defined.

THEOREM 12.4. Consider the following fractional pole model FP(d)

x(n) =
∞∑
k=0

h(k)w(n− k) with h(k) = (d + k − 1)!
k!(d − 1)! (12.5.34)

where w(n) is IID and SαS. A necessary condition for the series (12.5.34) to converge is

−∞ < d < 1− 1

α
(12.5.35)

When (12.5.35) holds, the series converges in the following sense:

1. 0 < α ≤ 1: absolutely almost surely
2. 1 < α ≤ 2: absolutely almost surely if d ≤ 0 and absolutely surely if d > 0 and µ = 0
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Proof. See Samorodnitsky and Taqqu (1994).

We note that because both h(n) and the tails of the input distribution decay as a power
law, the stability of the model depends on α. Recall that no dependence on the input signal
exists if the input signal has finite variance, because for E{w2(n)} < ∞ the stability
requirement is

∑∞
k=−∞ |h(k)|2 <∞.

The output of the inverse modelg(n) = h(n)|d←−d is defined for−∞ < −d < 1−1/α
or −(1− 1/α) < d <∞; hence, the model is minimum-phase if

−
(

1− 1

α

)
< d < 1− 1

α
(12.5.36)

The stability and minimum-phase regions for the FP(d) model with SαS IID excitations are
shown in Figure 12.21. Theorem 12.4 applies for the model FPZ(P, d,Q) assuming it is
stable, because it behaves asymptotically as the PZ(0, d, 0) model.
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FIGURE 12.21
Stability (left) and minimum-phase (right) regions for a fractional pole model driven by an
SαS IID sequence.

Although a linear stable process is strictly stationary, it is not second-order stationary
becauseE{|x(n)|2} = ∞.Therefore, the autocorrelation and the PSD of the process x(n) do
not exist. However, we can use the normalized autocorrelation of the signal model (12.5.33)

ρ(l) =

∞∑
n=−∞

h(n)h(n− l)

∞∑
n=−∞

h2(n)

(12.5.37)

and its Fourier transform to characterize the linear stable process x(n). Clearly, this is a
legitimate characterization for processes with finite variance and provides a reasonable
characterization for stable linear processes because of the IID nature of the excitation w(n).

We can estimate ρ(l) from a set of data {x(n)}N−1
0 using the consistent estimator (Brockwell
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and Davis 1991)

ρ̂(l) =

N−1+ |l|∑
n=0

x(n)x(n− l)

N−1∑
n=0

x2(n)

(12.5.38)

12.6 SELF-SIMILAR RANDOM SIGNAL MODELS

In this section, we introduce the family of statistically self-similar or random fractal models,
which are based on self-similar stochastic processes. Any segment of a self-similar process
looks similar, in a statistical sense, to a scaled version of a larger segment of the process.
Because of their practical importance, we focus on self-similar processes with stationary
increments. We show that the stationary-increments requirement leads to processes whose
autocorrelation sequences decay hyperbolically, that is, to models with long memory. We
mainly focus on the fractional Brownian motion (nonstationary) and the fractional Gaussian
noise (stationary) models, as well as their properties, simulation, and applications. However,
we provide a brief introduction to self-similar processes with SαS increments, which result
in random signal models with long memory and high variability.

12.6.1 Self-Similar Stochastic Processes

Each time a geologist takes a photograph of a geological object, say, a fossil, she or he
includes in the picture an object with known scale (e.g., a coin or a ruler), because without
the scale, it is impossible to determine whether the photograph covers 10 cm or 10 m. For
this reason we say that geological phenomena are scale-invariant, or that they do not have
a characteristic scale.

If we can reproduce an object by magnifying some portion of it, we say that the object
is scale-invariant, or self-similar. Thus, self-similarity is invariance with respect to scaling.
Such self-similar geometric objects are known as fractals (Mandelbrot 1982).

A signal x(t) is self-similar if
†
x(ct) = cHx(t). It can be easily seen that a signal

described by a power law x(t) = αtβ is self-similar. However, such signals are of limited
interest. A more interesting and useful type of signal is that exhibiting a weaker, that is,
statistical, version of self-similarity. A random signal is called (statistically) self-similar if
its statistical properties are scale-invariant, meaning that its statistics do not change under
magnification or reduction. Self-similar random signals are also known as random fractals.

Statistical self-similarity means that small fluctuations at small scales become larger
fluctuations at larger scales. Therefore, as we analyze more and more data, these ever-
larger fluctuations increase the value of the measured variance, which in the limit becomes
infinite. This increase of variance with the length of the data has been observed in the analysis
of various practical time series that exhibit self-similar behavior. Figure 12.22 provides a
visual illustration of the self-similar behavior of the variable-rate video traffic time series
(Garrett and Willinger 1994).

These ideas can be formalized within the context of the theory of stochastic processes
by using the following definition.

†
The superscript H is an index and not a conjugate transposition operator. For lack of better notation, we will

continue to use the accepted notation.
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FIGURE 12.22
Pictorial illustration of self-similarity for the variable-bit-rate video traffic time series. The
bottom series is obtained from the top series by expanding the segment between the two
vertical lines. Although the two series have lengths of 600 and 60s, they are remarkably
similar visually and statistically. (Courtesy of M. Garrett and M. Vetterli.)

D E FI N ITI O N 12.1. A continuous-time stochastic process x(t) is said to be (statistically) self-
similar with (self-similarity) index

†
H (H -ss) if and only if, for any scaling parameter c > 0,

the processes x(ct) and cH x(t) are statistically equivalent, that is, they have the same finite-
dimensional distributions. Symbolically

x(ct)
d= cH x(t) (12.6.1)

where the symbol
d= denotes equality in distribution and, more specifically, equality of finite-

dimensional joint probability distributions.

It should be emphasized that individual realizations of the process are not necessarily
deterministically scale-invariant. The above definition of self-similarity has several impli-
cations, which can be summarized as follows:

• A change in the time scale is statistically equivalent to a change in the amplitude scale.
Hence, the statistic of x(t) is invariant under the transformation

x(t)→ c−Hx(ct) (12.6.2)

• To obtain statistically equivalent processes, the time axis must be scaled differently from
the amplitude axis. In the language of fractals, we say that the graphs {t, x(t)} and
{t, c−Hx(ct)}, 0 ≤ t < ∞, are statistically self-affine because the scaling factor is

†
Also known as the Hurst exponent.
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different for the time and amplitude axes. An example of such a self-similar process for
H = 1

2 is shown in Figure 12.23. This process, whose distribution at each t is Gaussian,
is known as (ordinary) Brownian motion. (A detailed discussion of Brownian motion is
given in the next section.) The time trace shown in the top plot in Figure 12.23 is gener-
ated as a discrete equivalent of x(t), using 16,384 samples over unit time interval. When
it is plotted as a continuous curve, we lose sight of its discrete nature and view it as a
fractal curve that is indistinguishable from a continuous Brownian—a true fractal curve
possessing self-similarity at all levels of magnification. Statistical self-affinity of x(t) is
evident as we zoom into it. The zooming area in the top plot is shown as a box, and the
scaled curve is shown in the middle plot. Note that we scaled the middle one-fourth of
the time axis while the amplitude axis was magnified by 2 since 4H = 41/2 = 2. This
retained the statistical similarity of the middle curve to the original one. Further scaling
of time axis by 4 and the amplitude axis by 2 is shown in the bottom plot of Figure 12.23.
Once again the resulting plot is statistically similar to the original one. This Brownian
motion displayed at different levels of resolution demonstrates the concept of statistical
self-affinity.

 0 1/4 1/2 3/4  1 
−120

−80
−40

0
40
80

120
Sample function of a Brownian motion

x(
t)

−40
−20

0
20
40
60

x(
t)

15/32       1/2      17/32
0

10
20
30
40
50

Time t

x(
t)

3/8    1/2    5/8

FIGURE 12.23
Statistical self-affine property of the Brownian motion trace.

• If we set ct = 1 in (12.6.2), we have

x(t)
d= tH x(1) t > 0 (12.6.3)

Therefore, self-similar processes cannot be stationary, except for H = 0. This nonsta-
tionarity of the Brownian motion trace x(t) of Figure 12.23 is shown in Figure 12.24,
which illustrates the spreading of signal values about the mean value of zero as time
increases. For display purposes, 10 sample functions of x(t) are shown, all of which
begin at x(0) = 0. This spreading is in a statistical sense, in that some traces return to
zero and some cases return even more than once. To determine this statistical spreading,
100 sample functions were used, and the sample standard deviation σx(t) at each t was
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FIGURE 12.24
The diffusion property of the Brownian motion trace.

computed. This ±σx(t), shown as dashed lines in Figure 12.24, clearly indicates the
diffusion (or nonstationarity) property of Brownian motion. Note that since the standard
deviation is proportional to E{|x(t +B)− x(t)|}, we have

σx (t) ∝ tH = t1/2 (12.6.4)

for the Brownian motion, and the dashed line in Figure 12.24 confirms it.
• For strict-sense self-similar processes, all finite-dimensional distributions are equal. How-

ever, for wide-sense self-similar processes, only second-order moments are equal. From
(12.6.2) these moments are given as

µx(t) � E {x(t)} = c−Hµx(ct) (12.6.5)

rx(t1, t2) � E {x(t1)x(t2)} = c−2H rx(ct1, ct2) (12.6.6)

Clearly, for Gaussian processes the two types of self-similarity are equivalent.

Because of their practical importance, we focus on self-similar stochastic processes
that have stationary increments.

DEFINITION 12.2. A real-valued process x(t) has stationary increments if

x(t + τ)− x(τ)
d= x(t)− x(0) for all τ (12.6.7)

In practical applications, the nature of processes with stationary increments is analyzed
using a quantity known as the semivariogram, defined by

vx(τ ) � 1
2E{[x(t + τ)− x(t)]2} (12.6.8)

which, for stationary processes, reduces to

vx(τ ) = 2 [rx(0)− rx(τ )] (12.6.9)

We next turn our attention to self-similar processes with stationary increments

D E FI N ITI O N 12.3. A continuous-time stochastic process is self-similar with stationary incre-
ments (H -sssi) if and only if

• It is self-similar with index H.
• It has stationary increments.
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As shown in the following theorem, the requirements for self-similarity and stationary
increments completely specify the second-order moments of the underlying process x(t).

THEOREM 12.5. The mean value, variance, and autocorrelation of an H -sssi process are given
by, respectively

µx (t) = 0 (12.6.10)

σ 2
x (t) = t2Hσ 2

H (12.6.11)

rx(t1, t2) = 1
2
σ 2
H
(|t1|2H − |t1 − t2|2H + |t2|2H ) (12.6.12)

where σ 2
H
= E{x2(1)}.

Proof. From (12.6.2) we have, for t = 0,

x (0)
d= c−Hx (c0) = c−Hx (0)⇒ x (0) = 0 (12.6.13)

Also from (12.6.2) and (12.6.3), we conclude that

µx(t) = E{x(t)} = E{c−Hx(ct)} = c−HE{x(ct)} = tHE{x(1)} (12.6.14)

Using the stationary increment property (12.6.7), (12.6.13), and (12.6.14), we obtain

E {x (t + τ)− x (τ)} = E {x (t)− x (0)} = E {x (t)} = tHE {x (1)} (12.6.15)

Using the self-similarity definition, however, we have

E{x(t + τ)− x(τ)} = [(t + τ)H − τH ]E{x(1)} (12.6.16)

Comparing (12.6.15) and (12.6.16), we conclude that E{x(1)} = 0; hence from (12.6.14)

µx (t) = 0

which proves (12.6.10). Similarly, since x(t)
d= tH x(1), for t > 0, we have

σ 2
x (t) = E{x2(t)} = t2HE{x2(1)} = t2Hσ 2

H

which proves (12.6.11). Finally, again using stationarity of the increments and (12.6.11), we
obtain

E{[x(t1)− x(t2)]2} = E{[x(t1 − t2)− x(0)]2} = σ 2
H (t1 − t2)

2H (12.6.17)

or E{[x(t1)− x(t2)]2} = E{x2(t1)} + E{x2(t2)} − 2E{x(t1)x(t2)}

= σ 2
H t2H1 + σ 2

H t2H2 − 2rx(t1, t2)
(12.6.18)

where rx(t1, t2) is the autocorrelation function of x(t). Combining the last two equations, we
obtain

rx(t1, t2) = 1
2
σ 2
H
[t2H1 − (t1 − t2)

2H + t2H2 ] (12.6.19)

which completes the proof of the theorem.

Self-similar processes with stationary increments are well-defined ifH > 0 and x(0) =
0 with probability 1 (Vervaat 1987). For H = 1, x(t) = |t |x(1); that is, the realizations are
lines through the origin, and the process is of no interest. For H = 0, we have x(t) = 0,
which is a trivial process. For H < 0 the process is not mean square continuous, and
for H > 1 the increments are nonstationary. The permissible range of H is determined
by the existence of moments: If x(t) is H -sssi with finite variance, then 0 < H ≤ 1
(Samorodnitsky and Taqqu 1994).

The autocorrelation (12.6.12) shows that H -sssi processes are nonstationary. Despite
this nonstationarity, we can define a time-averaged spectrum. Since small scales correspond
to large frequencies and large scales to small frequencies, the amplitude of the fluctuations
is small at high frequencies and large at low frequencies. In light of the previous discussion,
it should not come as a surprise that the power spectrum of self-similar processes follows
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a power law, that is, is proportional to 1/|F |β. Indeed, it has been shown (Flandrin 1989)
that the time-averaged power spectrum of an H -sssi process is given by

Rx(F ) = σ 2
H

|F |2H+1
(12.6.20)

where F is the frequency in cycles per unit of time. As we can easily see, Rx(cF ) =
c−(2H+1)Rx(F ), which shows that the process is wide-sense self-similar.

12.6.2 Fractional Brownian Motion

If we restrict the probability distribution of anH -sssi process to being Gaussian, we obtain a
unique process known as the fractional Brownian motion, abbreviated as FBM (Mandelbrot
and Van Ness 1968). These FBMs have Hurst exponents in the range 0 < H < 1. The
(ordinary) Brownian motion of Figure 12.23 is a special case of FBM when H = 1

2 .

DEFINITION 12.4. AGaussianH -sssi process, 0 < H ≤ 1, is called fractional Brownian motion
(FBM ) and is denoted by BH (t).

There are several equivalent definitions of FBM process, which are summarized by the
following theorem (Samorodnitsky and Taqqu 1994; Beran 1994).

THEOREM 12.6. If 0 < H ≤ 1 and σ 2
H
= E{x2(1)}, the following statements are equivalent

1. BH (t) is Gaussian and H -sssi.
2. BH (t) is fractional Brownian motion with self-similarity index H.

3. BH (t) is Gaussian and has mean zero for H < 1 and autocorrelation function

rBH
(t1, t2) = 1

2
σ 2
H
(|t1|2H − |t1 − t2|2H + |t2|2H ) (12.6.21)

E XAM PLE 12.6.1. In Figure 12.25 we show time traces of FBMs for H = 0.2, 0.5, and 0.8.
Clearly, in these traces there is a qualitative difference between each trace that is very noticeable.
For a low value of H = 0.2, the trace shows more fractured or crinkled behavior. This behavior
occurs for 0 < H < 0.5, and the corresponding traces have tendencies to turn back upon
themselves (negative correlation). The corresponding property is known as antipersistence. A
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FIGURE 12.25
Time traces of fractional Brownian motion for H = 0.2, H = 0.5, and H = 0.8.
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stock market fluctuation is a good example of this process. As H increases, the amount of crinkle
reduces. For H = 0.5 we have the (ordinary) Brownian motion for which the correlation is zero,
and the trace shows no preferred tendency to turn back or persist in the same direction (neutral
in persistence). For a high value of H = 0.8, the trace is smoother, and in fact for 0.5 < H < 1,
the FBM traces show persistence in the direction in which they are moving (positive correlation).
This property is known as persistence. Typical coastlines (boundaries between land and water)
are good examples of such traces.

From the above example, we note that the fractal behavior of traces diminishes as
H increases from 0 to 1. Hence there must be an inverse relationship between H and the
fractal dimensionD (also known as the Haussdorff dimension). The concept of dimension is
closely related to the property of self-similarity or scaling. For the purpose of discussion, let
us consider our natural Euclidean dimensions. In one dimension, a line segment possesses
a scaling property. If it is subdivided into N identical line segments, then each segment is
scaled down by the ratio r = 1/N from the whole, orNr = 1.Asquare is a two-dimensional
plane that possesses the scaling property. If it is subdivided into N equal squares, then each
square side is scaled down by a factor of r = 1/

√
N, or Nr2 = 1. Carrying this analysis

to the cube in three dimensions, we observe that if a cube is subdivided into N identical
cubes, then each subcube edge is scaled down by the factor r = 1/ 3

√
N, or Nr3 = 1. Now

we can generalize this analysis to an arbitrary noninteger dimension D. If a D-dimensional
object is subdivided into N identical copies of itself, then the side of each copy is scaled
down by the ratio r = 1/ D

√
N, or NrD = 1. Thus we obtain

D = logN

log (1/r)
(12.6.22)

The above approach can also be used to determine the fractal dimension D of the FBM
traces and to relate it to the Hurst exponentH.One interesting technique for determining the
fractal dimension is known as box counting. The basic idea is to compute the total number
N of enclosing boxes (or rectangles) needed to cover all identical subtraces that have been
scaled down by the ratio r from the whole trace and then use formula (12.6.22) to estimate
the fractal dimension. Refer to the top plot of Figure 12.23. The enclosing box shows that
if the whole trace is divided into 4 identical subtraces, then the box height is scaled down
by ( 1

4 )
1/2 = 1

2 . Thus the area of each rectangular box is(
1

4

)(
1

2

)
= 1

43/2
= 1

41+1/2
(12.6.23)

However, we have to relate the scaling of smaller (identical) square boxes to the original
box since the original is a square box of unit side length (this implicitly assumes that
the amplitude axis in Figure 12.23 is unity, which is not unreasonable since we are using
fractions). The smaller square boxes of side length r = 1

4 have area equal to 1/42. Thus the
number of square boxes required to cover each subinterval is (note the box counting)

1/43/2

1/42
= 1

41/2−1
(12.6.24)

Since there are 4 subintervals in Figure 12.23, the total number of square boxes required to
cover the whole trace is

N = 4

(
1

41/2−1

)
= 1

41/2−2
(12.6.25)

Hence substituting (12.6.25) into (12.6.22), and using r = 1
4 , we obtain

D = log
(
1/41/2−2

)
log

(
1/ 1

4

) = log 42−1/2

log 4
= 2− 1

2
= 1.5 (12.6.26)
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which is the fractal dimension of (ordinary) Brownian motion. Generalizing to 0 < H < 1,
we can show that (see Problem 12.12)

D = 2−H (12.6.27)

Thus the sample paths of fractional Brownian motion are fractal curves with Haussdorff
dimension D = 2 − H (Falconer 1990). Referring to Figure 12.25, we see the fractal
dimensions of the fractional Brownian motions are D = 1.8 for H = 0.2 (antipersistent),
D = 1.5 for H = 0.5 (Brownian motion), and D = 0.8 for H = 1.2 (persistent). Thus the
more wiggly the trace, the higher the dimension.

Continuous-time fractional pole systems. In Section 12.5 we used a discrete-time
fractional pole to obtain a system with long memory. When this system is driven by a
WGN process, the result is a long-memory process called discrete-time FGN. This leads
to the following question: Can we use a continuous-time fractional pole to obtain a long-
memory system that could be used to generate a long-memory process in general and frac-
tional Brownian motion in particular? The answer is yes, so now we provide an intuitive
engineering explanation.

For any d > 0, we have the following Laplace transform pair (Abramowitz and Stegun
1970)

hd(t) = 1

<(d)
td−1u(t)

L⇐⇒ Hd(s) = 1

sd
(12.6.28)

where <(·) is the gamma function. Note that for d = 1, h1(t) corresponds to an ideal
integrator. However, for fractional d, the function hd(t) has a hyperbolic decay. The result
is a system with long memory called the fractional integrator. These topics are the subject
of a discipline known as fractional calculus (Oldham and Spanier 1974).

The output of the fractional integrator is provided by the convolution integral

x(t) = 1

<(d)

∫
(t − τ)d−1u(t − τ)w(τ) dτ (12.6.29)

which satisfies the scaling property

y(t) = 1

<(d)

∫
(t − τ)d−1w(cτ) dτ = c−d

<(d)

∫
(ct − λ)d−1w(λ) dλ = c−dx(ct)

(12.6.30)
where λ = cτ . Linear systems that satisfy (12.6.30) are said to be linear, scale-invariant
systems (Wornell 1996). We emphasize that while linear, shift-invariant systems with ratio-
nal system functions have memory that decays exponentially, linear, scale-invariant systems
exhibit self-similarity and long (hyperbolically decaying) memory.

Intuition suggests that the output of scale-invariant systems, driven by white noise,
should exhibit statistical self-similarity. Indeed, it can be shown that linear, scale-invariant
systems can be used to generate fractional Brownian motion processes (Samorodnitsky and
Taqqu 1994). More specifically, the fractional Brownian motion process can be generated
by passing white noise through a linear, scale-invariant system

BH(t) =
∫ ∞
−∞

ht (τ )w(τ) dτ (12.6.31)

with the following causal impulse response

ht (τ ) = 1

C(H)
{[(t − τ)+]H−1/2 − [(−τ)+]H−1/2} (12.6.32)

C(H) =
{∫ ∞

0
[(1+ τ)H−1/2 − τH−1/2]2 dτ + 1

2H

}1/2

(12.6.33)where

u+ =
{
u if u ≥ 0

0 if u < 0
(12.6.34)and
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We note that the change from the impulse response (12.6.28) to (12.6.32) was introduced by
Mandelbrot (1982) to ensure that BH(t) has the required properties (Wornell 1993; Kasdin
1995). An equivalent harmonizable representation of fractional Brownian motion in the
frequency domain is also derived in Samorodnitsky and Taqqu (1994).

12.6.3 Fractional Gaussian Noise

The discrete fractional Gaussian noise is a stationary sequence obtained by periodically
sampling the fractional Brownian motion process BH(t) and then computing the first dif-
ference. The resulting random sequence is x(nT ) � BH(nT )− BH(nT − T ), where T is
the sampling interval. Since the fractional Brownian motion process is statistically scale-
invariant, we set T = 1.Therefore, the discrete fractional Gaussian noise process is defined
by

x(n) � BH(n)− BH(n− 1) (12.6.35)

and it is simply referred to as FGN.
We next determine the second-order moments, that is, the autocorrelation and PSD of

the FGN process.

THEOREM 12.7. The autocorrelation sequence of the discrete fractional Gaussian noise is

rx(l) = 1
2
σ 2
H
(|l − 1|2H − 2|l|2H + |l + 1|2H ) (12.6.36)

Since the correlation depends only on the distance l between the samples, the process is wide-
sense stationary.

Proof. Using (12.6.21) and (12.6.35), we can easily show that

E {x(n)x(n− l)} = E {[BH (n)− BH (n− 1)] [BH (n− l)− BH (n− l − 1)]}
= 1

2
σ 2
H
[(l − 1)2H − 2l2H + (l + 1)2H ]

which leads to (12.6.36).

Figure 12.26 shows the autocorrelation sequence for various values of the self-similarity
index H. Note that for H = 1

2 we have rx(l) = δ(l), which shows that the FGN process is
white noise.

THEOREM 12.8. The power spectrum of the FGN process x(n) is given by

Rx(e
jω) =

∞∑
l=−∞

rx(l)e
−jωl = σ 2

HCH |1− e−jω|2
∞∑

k=−∞

1

|ω + 2πk|2H+1
(12.6.37)

CH = 2H<(2H) sin(πH) (12.6.38)where

is a constant dependent on the self-similarity index.

Proof. A rigorous proof can be found in Samorodnitsky and Taqqu (1994). Here we provide a
more heuristic proof. The sequence x(n) is obtained by sampling the FBM process BH (t) every
T = 1 time unit, that is, evaluating s(n) = BH (nT ), and then computing the first difference
x(n) = s(n)− s(n− 1). From the sampling theorem (see Chapter 2) we have

Rs(e
jω) = 1

T

∞∑
k=−∞

RB

(
ω

T
+ 2πk

T

)

where ω = FT. The frequency response of the first-difference filter is H(ejω) = 1− e−jω, or

|H(ejω)|2 = 2 (1− cosω) = 4 sin2
(ω

2

)
Since, from (12.6.20),

RB(F) = CH

σ 2
H

|F |2H+1
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FIGURE 12.26
Autocorrelation sequence of FGN for H = 0.1 to H = 0.9 at 0.1 increments.

the power spectrum of x(n) is

Rx(e
jω) = |H(ejω)|2Rs(e

jω) = 2σ 2
HCH (1− cosω)

1

T

∞∑
k=−∞

1

|ω + 2πk|2H+1

which results in (12.6.37) for T = 1.

Figure 12.27 shows the PSD of FGN for various values of the self-similarity index H.

Note that for H = 1
2 we have have a flat PSD, which shows that the FGN process is white

noise.

Self-similarity. The discrete FGN process is asymptotically (i.e., at large scales) self-
similar. Indeed, the autocorrelation

r(l) ∼ σ 2
HH(2H − 1)|l|2H−2 as |l| → ∞, H �= 1

2

decays hyperbolically for large lags, and the PSD

R(ejω) ∼ CH

σ 2
H

|ω|2H−1
as |ω| → 0, H �= 1

2

follows a power law as the frequency becomes very small, that is, as the period becomes
very large.

Process memory. The FGN process has long memory for 1
2 < H < 1 because the

summation
∑∞

l=−∞ r(l) = ∞, or equivalently R(ejω) → ∞ as |ω| → 0. In this case
the autocorrelation decays very slowly, the frequency response resembles a low-pass filter,
and the resulting realizations look smooth. In contrast, the process exhibits short memory
for 0 < H < 1

2 , because
∑∞

l=−∞ |r(l)| < ∞ and
∑∞

l=−∞ r(l) = 0, or equivalently

R(ejω)→ 0 as |ω| → 0. In addition, for 0 < H < 1
2 , the correlation is negative, that is,
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FIGURE 12.27
PSD function of FGN for H = 0.1 to H = 0.9 at 0.1 increments.

r(l) < 0 for l �= 0; and the process exhibits negative dependence, or antipersistence. In this
case the autocorrelation decays very rapidly, the frequency response resembles a high-pass
filter, and the resulting realizations look rough.

Comparison between FGN and FPN. The discrete-time FGN and FPN processes have
been independently introduced and have been developed using different approaches. How-
ever, close inspection of their second-order statistics reveals some interesting similarities
and differences, which are summarized in Table 12.3. The most interesting feature is that
both processes become asymptotically self-similar at large scales.

12.6.4 Simulation of Fractional Brownian Motions and Fractional Gaussian Noises

Although statistical self-similar processes are relatively easy to describe notationally [see
(12.6.1)], they are not easy to generate since there is no explicit (or compact) mathemati-
cal formula to do so. The FBMs and FGNs are special cases of these processes that have
independent increments with underlying distribution that is Gaussian. Although an explicit
formula exists for FBM [see (12.6.31)], the additional complication is that we cannot gen-
erate a continuous trace (this would require infinitely long memory). We can only hope to
generate an approximate, sampled version of the process on a computer. Thus, as explained
before, these simulations are not self-similar at all scales. Nevertheless, we provided plots
of these processes in Figure 12.25 for various values of the self-similarity index H. This
can be done via techniques that either use properties of the processes or employ indirect
approaches. In this section, we provide a brief summary of some of these techniques. For
more detailed discussion see Samorodnitsky and Taqqu (1994) and Barnsley et al. (1988).
We begin with the simulation of ordinary Brownian motion, which is easy to generate.

Cumulative-sum method. This technique is a direct method that is suitable for gener-
ating FBM for H = 0.5. We note that the increments of this process not only are stationary
but also are uncorrelated with one another. These increments then form the WGN process,
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which can be simulated on a computer. Thus by integrating WGN we can obtain the ordi-
nary Brownian motion. For discrete FBM, this requires taking the cumulative sum of the
generated WGN sequence. Therefore, the steps in generating the ordinary Brownian motion
are as follows:

1. Subdivide the time axis into a sufficiently fine grid. Let the number of grid points be N.

2. Generate N independent Gaussian random numbers with mean 0 and variance σ 2. In
Matlab this can be done using the randn(N,1) function.

3. Obtain a cumulative sum of the random numbers obtained in step 2 above. In Matlab
use the cumsum function. The resulting sequence is a discrete approximation of ordinary
Brownian motion.

TABLE 12.3

Similarities and differences between discrete fractional Gaussian noise and discrete fractional pole noise.

Discrete fractional Gaussian noise Discrete fractional pole noise

Definition x(n) � BH (n)− BH (n− 1)
x(n) �

∞∑
k=0

<(k + d)

<(k + 1)<(d)
w(n− k)

w(n) ∼WN(0, σ 2) − 1
2
< d < 1

2

Autocorrelation r(l) = 1
2
σ 2
H
(|l − 1|2H − 2|l|2H + |l + 1|2H ) r(l) = σ 2(−1)l<(1− 2d)

<(1+ l − d)<(1− l − d)

Power spectrum R(ejω) =
∞∑

k=−∞

CHσ 2
H

(1− cosω)

|ω + 2πk|2H+1
R(ejω) = σ 2

[2 sin(ω/2)]2d

Self-similarity (as |l| → ∞) r(l) ∼ σ 2
HH (2H − 1)|l|2H−2 H �= 1

2
r(l) ∼ Cd |l|2d−1 ⇒ d = H − 1

2

Self-similarity (as |ω| → 0) R(ejω) ∼ CH

σ 2
H

|ω|2H−1
H �= 1

2
R(ejω) ∼ σ 2

|ω|2d ⇒ d = H − 1
2

Long-memory
∞∑

l=−∞
r(l) = R(0) = ∞ 1

2
< H < 1 0 < d < 1

2

Short-memory
∞∑

l=−∞
r(l) = R(0) = 0

0 < H < 1
2∞∑

l=−∞
|r(l)| <∞ r(l) < 0, for l �= 0

− 1
2
< d < 0

Partial correlation km = d

m− d
m = 1, 2, 3, . . .

A Matlab function to implement the above steps is explored in Problem 12.13. Since
it is difficult to generate properly correlated random numbers, the cumulative-sum method
is not suitable for H other than 0.5.

Spectral synthesis method. This method can be used to generate FBM with an index
0 < H < 1. The basic principle behind the spectral synthesis approach is that if we can
construct its spectral density function Rx(F ), then we can obtain the corresponding FBM
through inverse transformation. From (12.6.20), we have

Rx(F ) ∝ 1

|F |β β = 2H + 1 (12.6.39)
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Also, similar to the spectral density function relation (5.3.2) for discrete-time stochastic
processes, we have

Rx(F ) = lim
T→∞

[
1

T
|Xc(F )|2

]
(12.6.40)

Thus from (12.6.39) and (12.6.40) it is possible to obtain a frequency-domain method for
approximating samples of an FBM with 0 < H < 1. Let {x(n)} be the sample functions of
an FBM with Hurst parameter H. Then its DTFT magnitude |X(ejω)| has the form

|X(ejω)| ∝ 1

|ω|β/2
− π < ω ≤ π (12.6.41)

Since this is a continuous function, we use the DFT approach to obtain samples in the time
domain. If we sample X(ejω) at N equispaced frequencies ωk = 2πk/N, 0 ≤ k ≤ N − 1,
then the DFT magnitude has the form

|X̃(k)| ∝




1

kβ/2
0 ≤ k ≤ N

2

|X̃(N − k)| N

2
< k ≤ N − 1

(12.6.42)

The phase of X̃(k) can be chosen to be random, uniformly distributed over [−π, π ] subject
to the constraint of odd symmetry. Finally, taking the IDFT of X̃(k) results in a sequence
that approximates samples of the FBM with H = (β − 1)/2. The steps of this spectral
synthesis method can be summarized as follows:

1. Given H, determine β = 2H + 1.
2. Choose sufficiently large N, and use a suitable proportionality constant to generate
|X̃(k)| according to (12.6.42).

3. Randomize phase θ(k); that is, generate phase values according to

θ(k) =




uniform random number over [−π, π ] 0 ≤ k ≤ N

2

−θ(N − k)
N

2
< k ≤ N − 1

(12.6.43)

4. Assemble X̃(k) = |X̃(k)| exp jθ(k), 0 ≤ k ≤ N−1, and determine the IDFT to obtain
x(n).

One major problem with this technique is that the resulting sequence is periodic with
period N due to the DFT operation (or sampling in the frequency domain). Therefore, to
avoid these boundary problems, a middle third of the sequence is used as a representative
FBM trace. The FBM traces shown in Figure 12.25 were generated using the above steps.
A Matlab function to implement the above steps is explored in Problem 12.14.

Note that the corresponding FGN sequence is obtained by taking a first-order difference
of the generated FBM sequence, that is,

w(n) = x(n)− x(n− 1) 1 ≤ n ≤ N − 1 (12.6.44)

Random midpoint replacement method. This is another direct method to produce
FBM and is based on the scaling property of the increments [from (12.6.11)] that

var [BBH(t)] = |Bt |2Hσ 2
H (12.6.45)

The approach is to begin generating random sequence values at the endpoints of the interval
and then successively decimate the interval and generate a random value at the midpoint
of the smaller interval according to (12.6.45). Therefore, this method can be implemented
recursively. To generate an FBM over the interval [0, 1] with parameter H, the following
steps can be used:
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1. Choose BH(0) = 0 and select BH(1) equal to a Gaussian random number with mean 0
and variance σ 2

H since

σ 2
H = E{B2

H (1)}
Clearly, var[BH(1)− BH(0)] = 12Hσ 2

H = σ 2
H .

2. For the first stage, set BH( 1
2 ) to be the average of BH(0) and BH(1) plus some indepen-

dent Gaussian number offset δ1 with mean zero and variance σ 2
1, that is,

BH( 1
2 ) = 1

2 [BH(1)− BH(0)] + δ1 (12.6.46)

Thus BH( 1
2 )− BH(0) and BH(1)− BH( 1

2 ) have mean 0 and variance

var

[
BH

(
1

2

)
− BH(0)

]
= 1

4
var [BH(1)− BH(0)]+ var (δ1)

(
1

2

)2H

σ 2
H =

1

4
σ 2
H + var (δ1)

(12.6.47)

var (δ1) =
[(

1

2

)2H

− 1

4

(
1

20

)2H
]
σ 2
H (12.6.48)or

3. At the second stage, we generateBH( 1
4 ) andBH( 3

4 ), using the above method specialized

to Bt = 1
4 , that is,

BH

(
1

4

)
= 1

2

[
BH

(
1

2

)
− BH (0)

]
+ δ21

BH

(
3

4

)
= 1

2

[
BH (1)− BH

(
1

2

)]
+ δ22

var (δ21) = var (δ22) =
[(

1

22

)2H

− 1

4

(
1

21

)2H
]
σ 2
H (12.6.49)with

4. Continuing in this fashion, at stage r we generate 2r−1 midpoints as the average of their
respective endpoints plus a Gaussian random number offset δr,k, k = 1, 2, . . . , 2r−1,

with variance

var
(
δr,k

) =
[(

1

2r

)2H

− 1

4

(
1

2r−1

)2H
]
σ 2
H =

(
1

2r

)2H

(1− 22H−2)σ 2
H (12.6.50)

= 1

22H
var(δr−1,k) (12.6.51)

Thus, as expected for an FBM, at time scale 1/2r we add randomness with mean 0 and
variance proportional to (1/2r )2H according to (12.6.50). Also from (12.6.51) we can
recursively generate the variance at each stage.

5. Stop the procedure when a sufficient number of trace points are generated.

This method also suffers from a few shortcomings. The most troublesome problem is
that once a given midpoint is generated, its value remains unchanged in all later stages. Thus
points generated at different stages have different statistical properties in their neighborhood.
This produces a visible trace that does not seem to go away even if more stages are added,
and the artifact is more pronounced asH → 1.AMatlab function implementing the above
steps in a recursive fashion is explored in Problem 12.15. Once again, the corresponding
FGN sequence is obtained by taking a first-order difference of the generated FBM sequence.

The generation of one- and higher-dimensional FBM is a very popular subject in engi-
neering, sciences, and computer graphics. More information and additional references can
be found in Mandelbrot (1982), Maeder (1995), Peitgen et al. (1988), and Samorodnitsky
and Taqqu (1994) and in the vast literature on fractals.
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12.6.5 Estimation of Long Memory

The estimation of the self-similarity index H or the long-memory parameter d = H − 1
2 is

a very difficult task. A summary of the most widely used methods, including an empirical
evaluation, is provided in Taqqu et al. (1995). Additional information can be found in Beran
(1994), Beran et al. (1995), and Brockwell and Davis (1991). We next present two simple
methods that exploit the definition of self-similarity in the time and frequency domains
(Pentland 1984; Beran 1994).

For any self-similar process x(n) and any integer B > 0, the increments Bx(n) �
x(n+B)− x(n) have zero mean and satisfy the relation

E{[Bx(n)]2} = CB2H (12.6.52)

where C is a constant. Taking the natural logarithm of both sides, we have

ln E{[Bx(n)]2} = ln C + 2H ln B (12.6.53)

which can be used to estimate H using linear regression on a log-log plot. The expectation
on the left side of (12.6.53) can be estimated by using the mean value of [Bx(n)]2.

In practice, to avoid the influence of outliers, we use the quantity E{|Bx(n)|}, which
leads to

ln E{|Bx(n)|} = ln C +H ln B (12.6.54)

where C is a constant. The expectation in (12.6.52) is estimated by the mean absolute value,
andH is determined by linear regression. This approach is illustrated in Figure 12.28, which
shows the estimation of the self-similarity index H for two realizations of an FBM process
(for details see Problem 12.16). We note that in practice the range of scales extends from 1
to 0.1N, where N is the length of the used data record.

We have seen that for |f | → 0, the PSD of FBM, FGN, and FPN follows a power
law 1/f β, where β = 2H + 1 (FBM), β = 2H − 1 (FGN), and β = 2d = 2H − 1 (FPN).
Therefore, another method for estimating the long-memory parameter H, is to compute
an estimate of the PSD (see Chapter 5), and then determine H by linear regression of the
logarithm of the PSD on the logarithm of the frequency. In practice, we only use the lowest 10
percent of the PSD frequencies for the linear regression because the power law relationship
holds as |f | → 0 (Taqqu et al. 1995). The PSD estimation of power law processes using
the multitaper PSD estimation method is discussed in McCoy et al. (1998), which shows
that using this method provides better estimates of long memory than the traditionally used
periodogram estimator.

In practice, data are scale-limited : The sampling interval determines the lowest scale,
and the data record length determines the highest scale. Furthermore, the scaling behavior
for a certain statistical moment may change from one range of scales to another. When
we try to make predictions from an adoption of a scale-invariant model, there are certain
discrepancies between theory and practice. In theory, the power increases with wavelength
without limit, and the variance increases with profile length without limit. In practice,
the power for long wavelengths is not as large as predicted by extrapolating the power law
trend observed at short wavelengths (frequency domain), and the variance does not increase
without bounds as the profile length increases (spatial domain).

12.6.6 Fractional Lévy Stable Motion

If we assume that the probability density function of the stationary increments is SαS, the
resulting self-similar process is known as fractional Lévy stable motion (FLSM). However,
unlike the FBM process, the second-order moments of the FLSM process do not exist
because SαS distributions have infinite variance. The realizations of FLSM resemble more
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FIGURE 12.28
Sample realizations of an FBM process and log-log plots for estimation of H using linear
regression.

spiky versions of FBM realizations because of the heavy tails of the stable distribution.
Hence, FLSM processes provide an excellent model for signals with long memory and high
variability.

Formally, an FLSM process LH,α(t) is best formulated in terms of its increment pro-
cess xH,α(n), known as fractional Lévy stable noise (FLSN). The FLSN is defined by the
stochastic integral (Samorodnitsky and Taqqu 1994)

xH,α(n) = LH,α(n+ 1)−LH,α(n) = C

∫ n

−∞
[(n+ 1− s)H−1/α − (n− s)H−1/α]wα(s) ds

(12.6.55)

where C is a constant, α is the characteristic exponent of the SαS distribution, and wα(s) is
white noise from an SαS distribution. Notice that for α = 2, Equation (12.6.55) provides
an integral description of FGN. From Figure 12.29, which shows several realizations of
FLSM for H = 0.7 and various values of α, it is evident that the lower the value of α, the
more impulsive the process becomes. The techniques described above for generating FBM
can be modified to simulate FLSM, by replacing the Gaussian random generator with the
SαS one described in Chambers et al. (1976) and Samorodnitsky and Taqqu (1994).

The long-memory parameter H can be estimated by using (12.6.54) and linear regres-
sion. The PSD method cannot be used because the second-order moments of the FLSM
process do not exist. The estimation of the characteristic exponent α of the SαS increments
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FIGURE 12.29
Sample realizations of the FLSM process for H = 0.7 and various values of α. The spikes
increase as we go from a Gaussian (α = 2) to a Cauchy (α = 1) distribution.

is a very difficult task because (1) SαS distributions have infinite variance and (2) the in-
crements are not IID owing to the long-range dependence structure. Further discussion of
these topics, which are beyond the scope of this book, is provided in Adler et al. (1998),
McCulloch (1986), and Koutrouvelis (1980).

Some interesting applications of FLSM to the modeling and interpolation of natural
signals and images are discussed in Kogon and Manolakis (1994, 1996), Peng et al. (1993),
Painter (1996), and Stuck and Kleiner (1974).

12.7 SUMMARY

In this chapter we introduced the basic concepts of three very important areas of statistical
and adaptive signal processing that are the subject of extensive research. The goal was to help
appreciate the limits of second-order statistical techniques, open a window to the exciting
world of modern signal processing, and help the navigation through the ever-increasing
literature.

In Section 12.1 we introduced the basics of higher-order statistics and pointed out the
situations in which their use may be beneficial. In general, the advantages of HOS become
more evident as the non-Gaussianity and nonlinearity of the underlying models increase.
Also HOS is of paramount importance when we deal with non-minimum-phase systems.
Concise reviews of several aspects of HOS are given in Swami (1998) and Tugnait (1998),
and a comprehensive bibliography is given in Swami et al. (1997).

Section 12.2 provided a brief introduction to the principles of blind deconvolution and
demonstrated that the blind deconvolution of non-minimum-phase systems requires the use
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of HOS. In Sections 12.3 and 12.4 we introduced the concept of unsupervised adaptive
filters, which operate without using a desired response signal; and we illustrated their ap-
plication to both symbol-spaced and fractionally spaced blind equalization systems. A brief
overview of current research in channel estimation and equalization is provided in Gian-
nakis (1998). There are three types of unsupervised adaptive filtering algorithms: algorithms
that use HOS either implicitly or explicitly, algorithms that use cyclostationary statistics,
and algorithms that use information-theoretic concepts (Bell and Sejnowski 1995; Pham
and Garrat 1997). We have focused on the widely used family of Bussgang-type algorithms
that make implicit use of HOS.

In the last part of this chapter, we provided an introduction to random signal models
with long memory and low or high variability. More specifically, we discussed fractional
pole models with Gaussian or SαS IID excitations and self-similar process models with
Gaussian (FBM, FGN) or SαS (FLSM, FLSN) stationary increments. The recent discovery
that Ethernet traffic data are self-similar and SαS (Willinger et al. 1994) established long-
memory models as a very useful tool in communication systems engineering. Finally, we
note that the wavelet transform, which decomposes a signal into a superposition of scaled
and shifted versions of a single basis function known as the mother wavelet, provides a
natural tool for the analysis of linear self-similar systems and self-similar random signals.
The discrete wavelet transform facilitates, to a useful degree, the whitening of self-similar
processes and can be used to synthesize various types of practical self-similar random
signals (Mallat 1998; Wornell 1996).

PROBLEMS

12.1 Prove (12.1.27), which relates the output and input fourth-order cumulants of a linear, time-
invariant system.

12.2 (a) Derive (12.1.35) and (12.1.36).
(b) Using the formulas for the cumulant of the sum of IID random variables, developed in

Section 3.2.4, determine κ
(4)
y and compare with the result obtained in (a).

12.3 If x(n) is a stationary Gaussian process, show that E{x2(n)x2(n − l)} = ρ2
x(l) and explain

how it can be used to investigate the presence of nonlinearities.

12.4 In this problem we use an MA(2) model to explore some properties of cumulants and bispectra.

(a) Write a MATLAB function k=cuma(b) that computes the cumulant κ(3)x (l1, l2) of the
MA(2) model H(z) = b0 + b1z

−1 + b2z
−2 for −L ≤ l1, l2 ≤ L.

(b) Use the functions k=cuma(b), X=fft(x), and X=shiftfft(X) to compute the bispectra
of the three MA(2) models in Table 12.1. Plot your results and compare with those in
Figure 12.2.

(c) Compute the bispectra of the models using the formula

R
(3)
x (ejω1 , ejω2) = κ

(3)
w H(ejω1)H(ejω2)H∗(ej (ω1+ω2))

forω1 = ω2 = 2πk/N, 0 ≤ k ≤ N−1.Compare with the results in part b and Figure 12.2.
(d ) Show that the bispectrum can be computed in MATLAB using the following segment of

code:
H=freqz(h,1,N,’whole’);
Hc=conj(H);
R3x=(H*H’).*hankel(Hc,Hc([N,1:N-1]));
R3x=shiftfft(R3x);

12.5 Using the minimum-, maximum-, and mixed-phase systems discussed in Example 12.1.1, write
a MATLAB program to reproduce the results shown in Figures 12.3 and 12.4. Use a = 0.4, b =
0.8, and N = 300 samples.
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12.6 Use the Levinson-Durbin algorithm, developed in Chapter 7, to derive expressions (12.5.20),
direct-form coefficients, and (12.5.21) for the lattice parameters of the fractional pole model.

12.7 Consider the FPZ(1, d, 0) model

Hfpz(z) = 1

(1− z−1)d

1

(1+ az−1)

where− 1
2
< d < 1

2
and−1 < a < 1.Compute and plot the impulse response, autocorrelation,

and spectrum for a = ±0.9 and d = ±0.2,±0.4. Identify which models have long memory
and which have short memory.

12.8 Compute and plot the PSD of the FGN process, using the following approaches, and compare
the results.

(a) The definition Rx(e
jω) = ∑∞

l=−∞ rx(l)e
−jωl and formula (12.6.36) for the autocorre-

lation.
(b) The theoretical formula (12.6.37).

12.9 Use the algorithm of Schür to develop a more efficient implementation of the fractional pole
noise generation method described by Equations (12.5.24) to (12.5.28).

12.10 In this problem we study the properties of the harmonic fractional unit-pole model specified
by the system function given by (12.5.32). The impulse response is given by (Gray et al. 1989)

hθ,d (n) =
�n/2�∑
k=0

(−1)k<(d + n− k)(2 cos θ)n−2k

k!(n− 2k)!<(d)
where <(·) is the gamma function.

(a) Compute and plot hθ,d (n) for various values of θ and d.

(b) Demonstrate the validity of the above formula by evaluating hθ,d (n) from Hθ,d(z) for the
same values of θ and d.

(c) Illustrate that the model is minimum-phase if | cos θ | < 1 and− 1
2
< d < 1

2
or cos θ = ±1

and − 1
4
< d < 1

4
.

(d ) Illustrate that the harmonic minimum-phase model, like the FPZ(0, d, 0) one, exhibits
long-memory behavior only for positive values of d.

(e) Show that for 0 < d < 1
4

and cos θ = 1, the autocorrelation equals that of the FPZ(0, 2d,

0) model [multiplied by (−1)l if cos θ = −1]. When | cos θ | < 1 and 0 < d < 1
2
, illustrate

numerically that the autocorrelation can be approximated by ρ(l) ∼ −l2d−1 sin(θl−πd)

as l→∞.

(f ) Compute and plot the spectrum of the model for θ = π/3 and various values of d.
(g) Generate and plot realizations of Gaussian HFPZ noise for θ = π/6 and d = −0.3, 0.1,

and 0.4.

12.11 Determine the variogram of the process x(n) obtained by exciting the system

H(z) = 1

(1− z−1)(1− az−1)
|a| < 1

with white noise w(n) ∼WGN(0, σ 2
w).

12.12 Following the steps leading to (12.6.26), show that the fractal (Haussdorff) dimension D is
related to the Hurst exponent H by

D = 2−H

12.13 Develop a Matlab function to generate the ordinary Brownian motion trace according to the
steps given for the cumulative sum method in Section 12.6.3. The format of the function should
be x = obm_cumsum(N).

(a) Generate 16,384 samples of the Brownian motion x(t) over 0 ≤ t ≤ 1.
(b) Investigate the self-affine property of x(t) by reproducing a figure similar to Figure 12.23.
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12.14 Develop a Matlab function to generate the fractional Brownian motion trace according to
the steps given for the spectral synthesis method in Section 12.6.3. The format of the function
should be x = fbm_spectral(H,N).

(a) Generate 1024 samples of the FBM BH (t) over 0 ≤ t ≤ 1 for H = 0.3. Investigate the
self-affine property of B0.3(t).

(b) Generate 1024 samples of the FBM BH (t) over 0 ≤ t ≤ 1 for H = 0.7. Investigate the
self-affine property of B0.7(t).

12.15 Develop a Matlab function to generate the fractional Brownian motion trace according to the
steps given for the random midpoint replacement method in Section 12.6.3. The format of the
function should be x = fbm_replace(N).

(a) Generate 1024 samples of the FBM BH (t) over 0 ≤ t ≤ 1 for H = 0.5. Compare
visually B0.5(t) with that obtained by using the cumulative-sum method. Comment on
your observations.

(b) Generate 1024 samples of the FBM BH (t) over 0 ≤ t ≤ 1 for H = 0.99. Investigate the
artifact discussed in the chapter for H → 1.

12.16 Based on Equation (12.6.54), develop a Matlab function [H,sigmaH] = est_H_mad(x)
that computes an estimate of the self-similarity index H and the variance σ 2

H
of an FBM

process.

(a) Use function x = fbm_replace(N) to generate N = 1024 samples of an FBM process
with H = 0.3, and use the function [H,sigmaH] = est_H_mad(x) to estimate H and
σH .

(b) Repeat the previous task for H = 0.7.
(c) Perform a Monte Carlo simulation using 100 trials and compute the mean and standard

deviation of the estimates for H and σH in (a) and (b).

12.17 Repeat Problem 12.16 by developing a function that estimates the self-similarity index H by
determining the slope of the first 10 percent values of the periodogram in a log-log plot.
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Matrix Inversion Lemma

The matrix inversion lemma is a useful formula that is employed extensively in signal
processing. The purpose of this formula is to express the inverse of a matrix in terms of the
inverse of one of its additive components, so as to facilitate an efficient computation of the
inverse. To motivate this lemma, consider the inverse of the following scalar quantity

(a + xy)−1 = 1

a + xy
a + xy �= 0, a �= 0

in terms of the inverse of a. Since a + xy �= 0 and a �= 0, we also have

|xya−1| �= 1 and |ya−1x| �= 1 (A.1)

Using the convergence of the geometric series formula

1 − xya−1 + (xya−1)2 − · · · = 1

1 + xya−1 |xya−1| �= 1 (A.2)

we obtain

1

a + xy
= a−1

1 + xya−1

= a−1[1 − xya−1 + (xya−1)2 − · · ·]
= a−1 − a−1xya−1 + a−1x(ya−1x)ya−1 − a−1x(ya−1x)2ya−1 + · · ·
= a−1 − a−1xya−1[1 − ya−1x + (ya−1x)2 − · · ·]

= a−1 − a−1xya−1

1 + ya−1x
|ya−1x| �= 1

(A.3)

which is the desired result. We begin with a special case of the lemma in which a is a matrix
and x and y are vectors. This result then can be generalized to the case in which x and y

are also matrices.

LEMMA A.1 (SHERMAN-MORRISON’S FORMULA) . Let A be an N × N invertible matrix
and let x and y be two N × 1 vectors such that (A + xyH ) is invertible. Then we have

(A + xyH )−1 = A−1 − A−1xyH A−1

1 + yH A−1x
(A.4)

Proof. Consider

A + xyH = A(I + A−1xyH )

(A + xyH )−1 = (I + A−1xyH )−1A−1 (A.5)Hence
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Using the result that if the matrix (I +A) is invertible, then (I +A)−1 = I −A+A2 −A3 +· · ·,
we obtain

(I + A−1xyH )−1 = I − A−1xyH + (A−1xyH )2 − (A−1xyH )3 + · · ·
= I − A−1xyH + A−1xyH A−1xyH − · · · (A.6)

since from (A.5) (I + A−1xyH ) is invertible. Substituting (A.6) into (A.5), we obtain

(A + xyH )−1 = A−1 − A−1xyH A−1 + A−1x (yH A−1x)︸ ︷︷ ︸
scalar

yH A−1 − · · ·

= A−1 − A−1xyH A−1[1 − yH A−1x+(yH A−1x)2 − · · ·]

= A−1 − A−1xyH A−1

1 + yH A−1x

since the scalar yH A−1x �= 1 due to the invertibility of (I + A−1xyH ) [see also (A.1)]. This
completes the proof.

The generalization of (A.4), known as Woodbury’s formula, is given by

(A + BCD)−1 = A−1 − A−1B(C−1 + DA−1B)−1DA−1 (A.7)

If matrix A is partitioned as

A =
[

A11 A12

A21 A22

]
(A.8)

then (A.7) can be used in determining inverses of submatrices contained in

A−1 =
[

(A11 − A12A−1
22 A21)

−1 −(A11 − A12A−1
22 A21)

−1A12A−1
22

−(A22 − A21A−1
11 A12)

−1A21A−1
11 (A22 − A21A−1

11 A12)
−1

]
(A.9)

where inverses A−1
11 and A−1

22 are assumed to exist.
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In the development of many signal processing algorithms, it is necessary to compute the
gradient of a real or complex function with respect to a complex vector w. The concepts
involved in this gradient operation and the application of the gradient in optimization are
described in this section. For more details see Gill et al. (1981), Kay (1993), and Luenberger
(1984).

B.1 GRADIENT

We begin with a simplest case. Let g(x) be a real scalar function of real parameter vector
x. Then we define the gradient of g(x) with respect to vector x as a column vector

∇x(g) � ∂g(x)

∂x
=
[
∂g(x)

∂x1

∂g(x)

∂x2
· · · ∂g(x)

∂xN

]T

(B.1)

This definition extends to a vector function g(x) of parameter vector x as

∇x(g) � ∂g(x)

∂x
=




∂g1(x)

∂x
∂g2(x)

∂x
...

∂gM(x)

∂x




T

=




∂g1(x)

∂x1

∂g2(x)

∂x1
· · · ∂gM(x)

∂x1

∂g1(x)

∂x2

∂g2(x)

∂x2
· · · ∂gM(x)

∂x2
...

...
. . .

...

∂g1(x)

∂xN

∂g2(x)

∂xN

· · · ∂gM(x)

∂xN




(B.2)

Thus ∇x(g) is an N × M matrix. Finally, consider a scalar function g(A) of an M × N

matrix A. We define the gradient of g(A) with respect to A as a matrix

∇A(g) � ∂g(A)

∂A
=




∂g(A)

∂a11

∂g(A)

∂a12
· · · ∂g(A)

∂a1N

∂g(A)

∂a21

∂g(A)

∂a22
· · · ∂g(A)

∂a2N
...

...
. . .

...

∂g(A)

∂aM1

∂g(A)

∂aM2
· · · ∂g(A)

∂aMN




(B.3)

Using these definitions, we see it is easy to prove the following results:

∇x(yT Ax) = AT y (B.4)

∇x(xT Ay) = Ay (B.5)



February 3, 2005 10:26 e56-appb Sheet number 2 Page number 748 black

748

appendix B
Gradients and
Optimization in Complex
Space

∇x(xT Ax) = (A + AT )x (B.6)

∇A(xT Ay) = xyT (B.7)

∇A(xT Ax) = xxT (B.8)

Now we consider the case of a complex-valued scalar function g(z, z∗) of a complex
variable z and its complex conjugate z∗. We assume that the function is analytic with respect
to z and z∗ independently

†
(in the sense of partial differentiation). An example of such a

function is

g(z, z∗) = a|z|2 + bz∗ + c = azz∗ + bz∗ + c (B.9)

Let f (x, y) be the complex function of the real and imaginary parts x and y of the variable
z = x + jy, such that g(z, z∗) = f (x, y). Again consider the function in (B.9), then

f (x, y) = a(x2 + y2) + b(x − jy) + c (B.10)

= a|z2| + bz∗ + c = g(z, z∗) (B.11)

The partial derivative of g(z, z∗) with respect to z (keeping z∗ as a constant) is given by

∂

∂z
g(z, z∗) = 1

2

[
∂

∂x
f (x, y) − j

∂

∂y
f (x, y)

]
(B.12)

Similarly, the partial derivative of g(z, z∗) with respect to z∗ (keeping z as a constant) is
given by

∂

∂z∗ g(z, z∗) = 1

2

[
∂

∂x
f (x, y) + j

∂

∂y
f (x, y)

]
(B.13)

These results can be easily verified for g(z, z∗) in (B.9):

∂

∂z
a|z2| + bz∗ + c = ∂

∂z
[azz∗ + bz∗ + c] = az∗ = a(x − jy)

1

2

[
∂

∂x
f (x, y) − j

∂

∂y
f (x, y)

]
= 1

2

{
∂

∂x
[a(x2 + y2) + b(x − jy) + c]

−j
∂

∂y
[a(x2 + y2) + b(x − jy) + c]

}

= ax + b

2
− jy − b

2
= a(x − jy) = az∗

and

Let f (x) be a real-valued scalar function of the complex vector x expressed as

f (x) = g(x, x∗) (B.14)

where g(·) is a real-valued function of x and x∗, analytic with respect to x and x∗ inde-
pendently (in the sense of partial differentiation). The necessary and sufficient condition to
obtain an equilibrium (optimum) point of f (x) is that

∇x(g) = ∇x∗(g) = 0 (B.15)

The necessary gradient ∇x(g) can be computed by using (B.13). In particular, for any
complex vector y, x, and matrix A, we have

∇x∗(xH y) = y (B.16)

∇x∗(yH x) = 0 (B.17)

∇x∗(xH Ay) = Ay (B.18)

∇x∗(xH Ax) = Ax (B.19)

†
In this approach, the quantities z and z∗ are considered to be independent of each other. Clearly they are not,

since z is uniquely determined by its conjugate. Nevertheless, this technique works.
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∇x(xH Ax) = xH A (B.20)

∇A(xH Ay) = x∗yT (B.21)

∇A(xH Ax) = x∗xT (B.22)

B.2 LAGRANGE MULTIPLIERS

The procedure of using Lagrange multipliers is an elegant technique of obtaining optimum
values of a function of several variables subject to one or more constraints. Suppose we
want to determine the minimum of a function f (x) of N variables x = [x1, . . . , xN ], subject
to a constraint relating x1 through xN given in the form

g(x) = 0 (B.23)

One straightforward approach would be to solve (B.23) for one of the variables, say xi , in
terms of the remaining ones and then eliminate xi from f (x). The minimization of f (x) can
then be carried out in a usual way to determine the minimum point in the N -dimensional
space. In practice, this approach is all but impossible to carry out, especially if f (x) is
highly nonlinear.

A simpler yet elegant approach is to introduce an additional parameter λ, called a
Lagrange multiplier.

†
To motivate this technique through a geometric viewpoint, consider

a two-dimensional function

f (x1, x2) = x2
1 + x2

2 (B.24)

which is a bowl-shaped surface whose minimum is at the origin x1 = x2 = 0. Thus
minimizing f (x) is the same as minimizing the length of vector x. If there is no constraint,
the zero vector is the best x. Now let the constraint be a line

x2 = − 1
2x1 + 5

2 (B.25)

in the (x1, x2) plane. Thus

g(x) = x1 + 2x2 − 5 = 0 (B.26)

This constraint and the bowl-shaped surface are shown in Figure B.1. The constraint plane
cuts through the bowl, creating a parabolic edge, as shown in the figure. Since the point x is
restricted to the constraint line (B.26), the minimization function f (x) is constrained to the
parabolic edge. Thus the minimization of (B.24) becomes a problem of finding the point
on the parabolic curve that is nearest to the origin. This is also the point on the constraint
line that is nearest to the origin and is obtained by drawing a perpendicular ray, as shown
in Figure B.1. This point is x1 = 1 and x2 = 2. At this point the parabolic edge achieves its
minimum.

How is all this related to the Lagrange multiplier? Referring to Figure B.1, we see at
any point P on the constraint surface, the gradient of f (x) is given by vector ∇f . To find
the minimum point of f (x) within the constraint surface, we have to find the component
∇‖f of ∇f that lies in the surface and to set it equal to zero, that is,

∇‖f = 0 (B.27)

Consider the constraint function g(x) and perturb x to x+δx within the surface. Then using
the Taylor expansion, we can write

g(x + δx) = g(x) + δxT ∇g(x) = g(x) (B.28)

since x + δx is chosen to lie within the surface g(x) = 0. This implies that ∇g(x) = 0,
which means that the gradient ∇g(x) is normal to the constraint surface. As shown in

†
Although we have reserved λ for eigenvalues, we will follow the tradition and use λ also as a Lagrange multiplier.
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f (x1, x2)

f (x1, x2)

Contours of  f (x1, x2)

g(x1, x2) = 0

g(x1, x2) = 0

Constraint
plane

Parabolic edge

Optimum point

x2

x2

x1

x1

∇ f

∇f

∇g

P

FIGURE B.1
Geometric interpretation of Lagrange multiplier.

Figure B.1, we can now obtain the component ∇‖f by adding a suitable scaled vector
∇g(x) to the gradient in the form

∇‖f = ∇f + λ∇g(x) (B.29)

where λ is a Lagrange multiplier. Using linearity of the gradient operator, we introduce the
Lagrangian function

L(x, λ) � f (x) + λg(x) (B.30)

so that the gradient ∇L is given by (B.29).
Therefore, to find the minimum of f (x) subject to g(x) = 0, we first define the

Lagrangian (B.30) and then find the minimum point of L(x, λ) by differentiating it with
respect to both x and λ. This results in N + 1 equations that can be solved to determine the
optimum xo and λo from which the minimum f (xo) can be found. Note that ∂L/∂λ = 0
leads to the constraint g(x) = 0. Thus Lagrange multiplier technique leads to the equations
for a constrained minimum, and it does not require us to solve for g(x) = 0.

This technique can be extended to more than one, say K , constraints simply by using
one Lagrange multiplier λk for each of the constraints gk(x) = 0, k = 1, . . . , K , and
constructing a Lagrangian function of the form

L(x, λ1, . . . , λK) = f (x) +
K∑

k=1

λkgk(x) (B.31)

This Lagrangian is then minimized with respect to x and {λk}K1 .
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EXAMPLE B.1. Consider the problem of fitting the largest (areawise) rectangle inside an ellipse
given by

x2
1

a2
+ x2

2

b2
= 1 (B.32)

The ellipse and an inscribed rectangle are shown in Figure B.2. Thus the objective function that
we want to maximize is

f (x1, x2) = (2x1)(2x2) = 4x1x2 (B.33)

subject to the constraint

g(x1, x2) = x2
1

a2
+ x2

2

b2
− 1 (B.34)

x2

b

a
x1

0

Inscribed
rectangle

FIGURE B.2
Ellipse and the inscribed
rectangle in Example B.1.

Method 1. Solving (B.34) for x2, we obtain

x2 = ±b

a

√
a2 − x2

1 (B.35)

Since the area is positive, choosing the plus sign and substituting in (B.33), we have

f (x1, x2) = 4
b

a
x1

√
a2 − x2

1 (B.36)

which is a function of x1 alone. Now to obtain the maximum value of f (x1, x2), we set

df

dx1
= 0 = 4

b

a


√a2 − x2

1 − x2
1√

a2 − x2
1


 (B.37)

Thus from (B.37) we get the optimum value of x1 and subsequently from (B.35) the optimum
value for x2

x1,o = a√
2

and x2,o = b√
2

(B.38)

Method 2. Let us form the Lagrangian

L(x1, x2, λ) = f (x1, x2) + λg(x1, x2) = 4x1x2 + λ

(
x2

1

a2
+ x2

2

b2
− 1

)
(B.39)

Now to find the optimum point, we set
∂L
∂x1

= 0 = 4x2 + λ
2x1

a2
(B.40)

∂L
∂x2

= 0 = 4x1 + λ
2x2

b2
(B.41)

∂L
∂λ

= x2
1

a2
+ x2

2

b2
− 1 (B.42)
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Solving (B.40) through (B.42), we obtain the optimum values

x1,o = a√
2

x2,o = b√
2

λo = −2ab (B.43)

Clearly, the second method is more convenient.

EXAMPLE B.2. Let a real-valued random vector y be given by

y = αx + v (B.44)

where x is a deterministic vector, α is a constant, and v is a zero-mean random vector with
covariance matrix Rv. We want to determine a best linear unbiased estimator (BLUE) of α,
given y. Let

α̂ = hT y (B.45)

Since the estimator must be unbiased, we have

α = E{α̂} = E{hT y} = E{hT (αx + v)} = αE{hT x} = αhT x (B.46)

which implies that hT x = 1. Hence the constraint g(h) is

g(h) = hT x − 1 (B.47)

Next we want to minimize the variance in the estimation

var(α̂) = var(hT y) = var(hT v) = hT Rvh (B.48)

Now to obtain the BLUE of α, consider the Lagrangian

L(h, λ) = hT Rvh + λ(hT x − 1) (B.49)

Using (B.5) and (B.6), we obtain

∇h(L) = 2hT
o Rv + λxT = 0T (B.50)

ho = −λ

2
R−1

v x (B.51)or

Substituting (B.51) into (B.47) and solving for λ, we obtain

λ = − 2

xT Rvx
Finally, the optimum estimator becomes

ho = R−1
v x

xT Rvx
(B.52)

which can be recognized as a whitening filter and a matched filter.

EXAMPLE B.3. Consider a complex-valued case of the above example. We want to minimize

f (h) = hH Rvh (B.53)

where Rv is a real-valued symmetric matrix so that f (h) is real, subject to

Re{hH x} = b (B.54)

Consider f (h) and the constraint function g(h) as

f (h, hH ) = hH Rvh

g(h, hH ) = hH x + xH h − 2b
(B.55)

Thus the Lagrangian is

L(h, hH , λ) = hH Rvh − λ(hH x + xH h − 2b) (B.56)

Now using (B.20), we get

∇h(L) = hH
o Rv − λxH = 0T ⇒ ho = λR−1

v x (B.57)

From the constraint (B.55)

λ(xH R−1
v x) = b

ho = bR−1
v x

xH R−1
v x

(B.58)which gives
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APPENDIX C

Matlab Functions

In this appendix, we provide a brief one-line description of Matlab functions that were
referred to in this book. The source of each function is given in parentheses where detailed
information can be found. Page numbers for functions explicitly discussed in the text are
also given.

TABLE C.1

MATLAB functions.

Function Description Page

a2r Direct parameters to autocorrelation conversion 367
aplatest Estimation of all-pole lattice parameters (Book toolbox) 460
arls AR model estimation using the LA criterion without windowing (Book toolbox) 451
armals ARMA model estimation using the LA criterion without windowing (Book toolbox) 466
arwin AR model estimation using the LA criterion without windowing (Book toolbox) 451
autoc Computation of autocovariance sequence (Book toolbox) 210
autocfft Computation of autocovariance sequence using the FFT (Book toolbox) 210
bartlett Computation of Bartlett window coefficients (Matlab) 230
boxcar Computation of rectangular window coefficients (Matlab) 206
bt_psd Blackman-Tukey power spectral density computation (Book toolbox) 227
chebwin Computation of Chebyshev window coefficients (Matlab) 206
chol Computation of Cholesky decomposition (Matlab) 278
cohere Coherence function estimation (Matlab SP toolbox) 241
conv Convolution sum computation (Matlab) 48
corr Computation of cross-correlation sequence (Matlab)
csd Cross-spectral density computation (Matlab SP toolbox) 240
cumsum Cumulative-sum computation (Matlab)
df2latcf Direct-form to lattice-form conversion (Book toolbox) 67
df2ldrf Direct-form to lattice/ladder-form conversion (Book toolbox)
dpss Discrete prolate spheroidal sequence window coefficient computation (Matlab SP toolbox) 248
dtfgn Generation of discrete fractional Gaussian noise (Book toolbox) 721
durbin Implementation of Durbin algorithm (Book toolbox) 358
eig Computes eigenvalues and eigenvectors of a matrix (Matlab)
esprit_ls Least-squares ESPRIT for frequency estimation (Book toolbox) 493
esprit_tls Total least-squares ESPRIT for frequency estimation (Book toolbox) 493
ev_method Eigenvector method for frequency estimation (Book toolbox) 488
faest FAEST RLS algorithm (Book toolbox) 576
filter Direct-form-II filter implementation (Matlab) 50
filtic Computation of direct-form-II filter initial conditions (Matlab SP toolbox) 50
firlms FIR LMS adaptive filtering algorithm (Book toolbox) 526
hamming Computation of Hamming window coefficients (Matlab) 206
hanning Computation of Hann window coefficients (Matlab) 206
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TABLE C.1

MATLAB functions. (Con’t)

Function Description Page

invschur Implementation of inverse Schür algorithm (Book toolbox) 375
invtoepl Computation of R−1 when R is Toeplitz (Book toolbox) 378
k2r Lattice parameters to autocorrelation sequence conversion (Book toolbox) 367
kaiser Computation of Kaiser window coefficients (Matlab) 208
ladrfilt Lattice/ladder filter implementation (Book toolbox)
latcf2df Lattice to direct-form conversion (Book toolbox) 67
latcfilt Lattice filter implementation (Book toolbox) 68
ldlt Computes the LDU decomposition (Book toolbox) 277
ldltchol Computes LDLT using chol 278
ldrf2df Lattice/ladder to direct-form conversion (Book toolbox)
lduneqs Solution of normal equations using LDU decomposition (Book toolbox) 277
levins Implementation of Levinson’s algorithm (Book toolbox) 359
lsigest Computation of LS signal estimators (Book toolbox) 288
lsmatvec Computation of R and d for FIR LS filtering (Book toolbox) 408
lu LU decomposition (Matlab)
mgs Implementation of modified GL algorithm (Book toolbox) 430
minnorm Minimum-norm method for frequency estimation (Book toolbox) 488
music MUSIC frequency estimation (Book toolbox) 485
phd Pisarenko harmonic decomposition (Book toolbox) 484
pmtm Power spectrum estimation via Thomson multitaper method (Matlab SP toolbox) 248
psd Power spectrum estimation via Welch’s method (Matlab SP toolbox) 213, 232
pzls Pole-zero coefficient estimation using the LS criterion (Book toolbox) 463
qr Computation of QR decomposition (Matlab) 424
rand Generates pseudorandom numbers that are uniformly distributed over (0, 1) (Matlab) 83
randn Generates N (0, 1) pseudorandom numbers (Matlab) 83
rls Implementation of conventional RLS algorithm (Book toolbox)
rootmusic Root-MUSIC frequency estimation (Book toolbox) 485
schurlg Schür algorithm (Book toolbox) 370
stablepdf Computes pdf plots of stable distributions numerically (Book toolbox) 95
stepdown Lattice-form to direct-form conversion in Levinson algorithm (Book toolbox) 366
stepup Direct-form to lattice-form conversion in Levinson algorithm (Book toolbox) 366
svd Computation of SVD (Matlab) 436
tfe Transfer function estimation (Matlab SP toolbox) 243
toeplitz Toeplitz matrix from first row and column (Matlab) 48
triang Computation of triangular window coefficients (Matlab)
udut Computation of UDUH decomposition (Book toolbox)
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APPENDIX D

Useful Results from Matrix Algebra

In this appendix, we review the fundamental concepts of linear algebra in complex-valued
space. The aim is to present as many possible concepts as are necessary to understand the
book. For a complete treatment, refer to many excellent references in literature including
Leon (1998), Strang (1980), and Gill et al. (1981).

D.1 COMPLEX-VALUED VECTOR SPACE

The unitary complex space C
N is defined as the space of all the N -dimensional complex-

valued vectors, which are denoted by a boldface letter, or by the N -tuple of its component,
for example,

x = [x1 x2 · · · xN ]T = [x∗
1 x∗

2 · · · x∗
N ]H (D.1.1)

where we use the following notation for the superscripts: T means transpose, ∗ means
conjugate, and H means conjugate (of the) transpose, or adjoint. In the case of real-valued
vectors, the real space is denoted by R

N and is also known as the Euclidean space.

Some Definitions

1. The inner product between two vectors x and y is defined by

〈x, y〉 = xH y =
N∑

i=1

x∗
i yi (D.1.2)

2. Two vectors x and y are orthogonal if their inner product is zero, that is,

xH y = 0 (D.1.3)

The zero vector 0 is orthogonal to any vector in the same space.
3. The norm of a vector provides a measure of the “size” of a vector. It is a nonnegative

number ‖x‖ that satisfies the following properties:

a. ‖x‖ > 0 for x 	= 0 and ‖0‖ = 0.
b. ‖αx‖ = |α|‖x‖ for any complex number α.
c. ‖x + y‖ ≤ ‖x‖ + ‖y‖ (triangle inequality).

The p norm of x is defined as

‖x‖p =
(

N∑
i=1

|xi |p
)1/p

(D.1.4)
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which satisfies all three properties given above. For p = 2, we obtain the Euclidean
norm ‖x‖2 which, for simplicity, is denoted by ‖x‖. It is defined as

‖x‖ =
√

xH x =
√√√√ N∑

i=1

|xi |2 (D.1.5)

4. An orthonormalized set is a set of L vectors xl , l = 1, 2, . . . , L, such that

xH
l xk =

{
1 l = k

0 l 	= k
(D.1.6)

5. Cauchy–Schwartz inequality: Two vectors x and y belonging to the same space satisfy

|xH y| ≤ ‖x‖ · ‖y‖ (D.1.7)

where the equality applies when x = ay, with a being a (real- or complex-valued) scalar.
6. The angle θ between two vectors is defined as

cos θ = xH y
‖x‖ · ‖y‖ (D.1.8)

D.2 MATRICES

A rectangular array of N × M complex numbers ordered in N rows and M columns is
called a matrix and is denoted by capital boldface letters, for example,

A = [ai,k] 1 ≤ i ≤ N, 1 ≤ k ≤ M (D.2.1)

Any linear transformation from space C
N into space C

M can be represented by a suitable
N ×M matrix, if two bases in C

N and C
M are already defined. Linear transformations from

space C
N into space C

N are given by square N × N non-singular matrices, in which case
the transformation can be considered as a change of basis. We consider square matrices for
the following development.

D.2.1 Some Definitions

1. A system of linearly independent vectors e1, e2, . . . , eN in a complex space C
N is called

a basis for C
N if it is possible to express any vector x ∈ C

N by means of N coefficients
a1, a2, . . . , aN as

x = a1e1 + a2e2 + · · · + aNeN =
N∑

i=1

aixi (D.2.2)

If a vector has the components x1, x2, . . . , xN in a given basis, then the linearly trans-
formed vector y has components

y1 = a11x1 + · · · + a1NxN

...

yN = aN1x1 + · · · + aNNxN

(D.2.3)

in the basis defined by the transformation

A =



a11 · · · a1N

a21 · · · a2N
...

. . .
...

aN1 · · · aNN


 (D.2.4)
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This transformation can be expressed, using the well-known row-by-column product
between matrices and vectors, as

y = Ax (D.2.5)

2. The transformation from y to x is called an inverse transformation, which is again linear.
It is written as

x = A−1y (D.2.6)

where A−1 (if it exists) is a matrix and is known as an inverse of A, defined in (D.3.5).
3. The transformation that leaves unchanged the vector basis is said to be the identity

transformation, and the related matrix is indicated generally by I, which is given by

I =




1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1


 (D.2.7)

4. Two linear transformations of CN into itself can be applied to a vector, obtaining a third
transformation, called the product transformation

y = Ax z = By = B(Ax) = (BA)x ⇒ z = Cx (D.2.8)

where the matrix C is the product of B and A. In general, the matrix product is not
commutative, that is, AB 	= BA.

5. The operation of transposition of a matrix inverts the orders of rows and columns; that
is, element aij takes the place of aji in the new matrix. Similarly, the conjugate transpose
of a matrix A is a matrix in which element a∗

ij takes the place of aji . The operations of
conjugation and transposition are commutative, that is,

AH = (A∗)T = (AT )∗ (D.2.9)

6. A matrix norm ‖A‖ satisfies the following properties:

a. ‖A‖ > 0 for A 	= 0 and ‖0‖ = 0.
b. ‖αA‖ = |α|‖A‖ for any complex number α.
c. ‖A + B‖ ≤ ‖A‖ + ‖B‖ (triangle inequality).
d. ‖A B‖ ≤ ‖A‖ ‖B‖, which is needed because the matrix multiplication operation

creates new matrices.

An important matrix norm is the Frobenius norm, defined as

‖A‖F �

√√√√ N∑
i=1

N∑
k=1

|aik|2 (D.2.10)

which treats the matrix as a “long vector.” Using any vector p norm, we can obtain the
matrix norm

‖A‖p � max
x 	=0

‖Ax‖p

‖x‖p

(D.2.11)

which measures the amplification power of matrix A. The matrix norm for p = 2 is
known as the spectral norm and is of great theoretical significance, and it is simply
denoted by ‖A‖. When a matrix acts upon a vector x of length ‖x‖p, it transforms x into
vector Ax of length ‖Ax‖p. The ratio ‖Ax‖p/‖x‖p provides the magnification factor of
the linear transformation Ax. The number ‖A‖p is the maximum magnification caused
by A. Similarly, the minimum magnification due to A is given by

min |A|p � min
x 	=0

‖Ax‖p

‖x‖p

(D.2.12)
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and the ratio ‖A‖p/ min |A|p characterizes the dynamic range of the linear transforma-
tion performed by matrix A. This interpretation provides a nice geometric picture for the
concept of condition number (see Section D.3.2).

7. A matrix A is called Hermitian if

AH = A (D.2.13)

and a Hermitian form H(x, x) is the second-order real homogeneous polynomial

H(x, x) =
N∑

i=1

N∑
k=1

hikx
∗
i xk hik = h∗

ki (D.2.14)

8. A real-valued matrix A is called symmetric if AT = A and a quadratic form Q(x, x) is
the second-order real homogeneous polynomial

Q(x, x) =
N∑

i=1

N∑
k=1

hikxixk hik = hki (D.2.15)

9. Matrix L is called a lower triangular matrix if all elements above the principal diagonal
are zero. Similarly, matrix U is called an upper diagonal matrix if all elements below
the principal diagonal are zero.

10. The trace of a matrix is the sum of the elements of its principal diagonal, that is,

tr(A) =
N∑

i=1

aii (D.2.16)

tr(AB) = tr(BA) = tr(AH BH ) (D.2.17)with the property

for any square matrices A and B.
11. A diagonal matrix is a square N ×N matrix with aij = 0 for i 	= j ; that is, all elements

off the principal diagonal are zero. It appears as

A =



a11 0 · · · 0

0 a22 · · · 0
...

...
. . .

...

0 0 · · · aNN


 (D.2.18)

12. A Toeplitz matrix is defined as

A = [ai,k] = [ai−k] 1 ≤ i ≤ N, 1 ≤ k ≤ M (D.2.19)

A square Toeplitz matrix appears as

A =




a0 a−1 a−2 · · · a1−N

a1 a0 a−1 · · · a2−N

a1 a1 a0 · · · a3−N
...

...
...

. . .
...

aN−1 aN−2 aN−3 · · · a0


 (D.2.20)

13. A matrix is called persymmetric if it is symmetric about the cross-diagonal, that is,
aij = aN−j+1,N−i+1, 1 ≤ i ≤ N, 1 ≤ j ≤ N .

14. The exchange matrix J is defined by

J �




0 . . . 0 0 1

0 . . . 0 1 0

0 . . . 1 0 0
...

...
...

...

1 . . . 0 0 0



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and has the following properties

J2 = J
JT = J
JA = flipud(A)

AJ = fliplr(A)

where the Matlab functions flipud(A) and fliplr(A) reverse the order of rows and
columns of a matrix A, respectively.

15. A matrix is called centrosymmetric if it is both symmetric and persymmetric. It can be
easily seen that a centrosymmetric matrix has the property JT AJ = A when A is real or
JT AJ = A∗ when A complex.

16. A matrix is called Hankel if the elements along the secondary diagonals, that is, the
diagonals that are perpendicular to the main diagonal, are equal. If A is Hankel, then JA
is Toeplitz.

17. The inverse of a triangular, symmetric, Hermitian, persymmetric and centrosymmetric
matrix has the same structure. The inverse of a Toeplitz matrix is persymmetric and the
inverse of a Hankel matrix is symmetric.

18. A partition of anN×M matrix A is a notational rearrangement in terms of its submatrices.
For example, a 2 × 2 partitioning of A is

A =
[

A11 A12

A21 A22

]
(D.2.21)

where each “element” Aik is a submatrix of A.

D.2.2 Properties of Square Matrices

1. The operations of transposition T , conjugation ∗, or both H are distributive, that is,

(A + B)T = AT + BT

(A + B)∗ = A∗ + B∗

(A + B)H = AH + BH

(D.2.22)

2. For the operators T , H , or −1 (inversion), we have

(AB)T = BT AT

(AB)H = BH AH

(AB)−1 = B−1A−1

(D.2.23)

3. The operators ∗, T , H , and −1 are commutative, for example,

(AH )−1 = (A−1)H (D.2.24)

Thus we can use the compact notation A−T , or A−∗, etc.
4. Given any matrix A, matrix B = AH A is Hermitian [see (D.2.13)] and if A is invertible,

then for such a B, we have

A−H BA−1 = A−H AH AA−1 = I (D.2.25)

5. If H is the matrix of the coefficients hik , the Hermitian form (D.2.14) can be written as

H(x, x) = xH Hx = 〈x, Hx〉 (D.2.26)

Similarly, If H is the real-valued matrix of the coefficientshik , the quadratic form (D.2.15)
can be written as

H(x, x) = xT Hx = 〈x, Hx〉 (D.2.27)
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6. A Hermitian matrix A is called
Positive definite if xH Ax > 0

Positive semidefinite if xH Ax ≥ 0 (also nonnegative definite)

Negative definite if xH Ax < 0

Negative semidefinite if xH Ax ≤ 0 (also nonpositive definite)

(D.2.28)

for all x 	= 0.
7. The operation of the trace of a matrix satisfies

tr(A ± B) = tr(A) ± tr(B) (D.2.29)

tr(kA) = k tr(A) (D.2.30)

tr(AB) = tr(BA) (D.2.31)

tr(B−1AB) = tr(A) (D.2.32)

tr(AAH ) =
N∑

i=1

N∑
j=1

|aij |2 (D.2.33)

D.3 DETERMINANT OF A SQUARE MATRIX

The determinant of a square matrix A is denoted by

det(A) �

∣∣∣∣∣∣∣∣∣

a11 a12 · · · a1N

a21 a22 · · · a2N
...

...
. . .

...

aN1 aN2 · · · aNN

∣∣∣∣∣∣∣∣∣
(D.3.1)

and is equal to the sum of the products of the elements of any row or column and their
respective cofactors, that is,

det(A) = ai1Ci1 + ai2Ci2 + · · · + aiNCiN (D.3.2)

det(A) = a1kC1k + a2kC2k + · · · + aNkCNk (D.3.3)or

where the Cik are called cofactors, given by

Cik = (−1)i+k det(Aik) (D.3.4)

where Aik is an (N − 1)st-order square matrix obtained by deleting the ith row and kth
column. Thus the determinant needs to be computed recursively; that is, the N th-order
determinant is computed from the (N − 1)st-order determinant, which in turn is computed
from the (N − 2)nd-order, and so on. If det(A) 	= 0, then the inverse A−1 of A exists and
is unique. The A−1 matrix is given by

A−1 = 1

det(A)

∣∣∣∣∣∣∣∣∣

C11 C21 · · · CN1

C12 C22 · · · CN2
...

...
. . .

...

C1N C2N · · · CNN

∣∣∣∣∣∣∣∣∣
(D.3.5)

D.3.1 Properties of the Determinant

Below we provide some useful properties of the determinant.

1. If a row (or column) of a matrix is a linear combination of other rows (or columns), then
det(A) = 0. In particular, if (a) a row (or column) is proportional or equal to another
row (or column) or (b) a row (or column) is identically zero, then det(A) = 0.
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2. If two rows (or columns) are exchanged with each other, then the determinant changes
its sign.

3. For a triangular matrix (upper or lower) A, the determinant is obtained by multiplying
all the elements of its principal diagonal, that is,

det(A) =
N∏

n=1

ann (D.3.6)

4. The det(A) is unchanged if A is replaced by its transpose AT ; that is,

det(A) = det(AT ) (D.3.7)

5. Using the above property, we also claim that the determinant of a Hermitian matrix is
real, since

det(A) = det(AH ) = det(AT ) ⇒ det(A) = det(A∗) = det(A)∗ (D.3.8)

6. The determinant of a product of matrices is the product of their determinants; that is,

det(AB) = det(A) det(B) (D.3.9)

7. If matrix A is nonsingular, that is, its inverse A−1 exists, then

det(A−1) = [det(A)]−1 = 1

det(A)
(D.3.10)

8. Given an arbitrary constant c (possibly complex-valued), we have

det(cA) = cN det(A) (D.3.11)

D.3.2 Condition Number

One of the important equations in signal processing is the linear equation Rc = d,
where R is a matrix of known values, d is a vector of known quantities, and c is a vector
of unknown coefficients. The investigation of how the solution of Rc = d is affected by
small changes (perturbations) in the elements of R and d leads to an important characteristic
number of matrix R, called the condition number.

If vector d is perturbed to d + δd, the exact solution c is perturbed to c + δc. Therefore,

R(c + δc) = d + δd

δc = R−1δd since Rc = d (D.3.12)which implies that

or using property 4 of matrix norm

‖δc‖ ≤ ‖R−1‖ ‖δd‖ (D.3.13)

From the same norm property and d = Rc, we obtain

‖d‖ ≤ ‖R‖ ‖c‖ (D.3.14)

Multiplying (D.3.13) by (D.3.14) and solving, we obtain

‖δc‖
‖c‖ ≤ ‖R‖ ‖R−1‖ ‖δd‖

‖d‖ (D.3.15)

Similarly, keeping d constant and perturbing R to R + δR, we have

(R + δR)(c + δc) = d

from which, after ignoring the second-order product term δR δc, we obtain

‖δc‖
‖c‖ ≤ ‖R‖ ‖R−1‖ ‖δR‖

‖R‖ (D.3.16)
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A careful inspection of (D.3.15) and (D.3.16) shows that the relative error in the exact
solution is bounded by the number

cond (R) � ‖R‖ ‖R−1‖ (D.3.17)

which is known as the condition number of matrix R, multiplied by the relative perturbation
in the data (R or d). When relatively small perturbations in R cause relatively small (large)
perturbations in the solution of Rc = d, matrix R is said to be well (ill) conditioned.
Clearly, ill-conditioned matrices have large condition numbers, and therefore their large
magnification power amplifies small perturbations to the extent that makes the obtained
solution totally inaccurate.

Since the norm of the identity matrix ‖I‖ = 1, we have

‖I‖ = ‖R R−1‖ ≤ ‖R‖ ‖R−1‖ = cond (R)

cond (R) ≥ 1 (D.3.18)that is,

The best possible condition number is 1.

D.4 UNITARY MATRICES

A matrix A is called a unitary matrix if its inverse is equal to its conjugate transpose, that
is,

A−1 = AH ⇒ AH A = I (D.4.1)

For a real-valued matrix, A is called an orthogonal matrix if its inverse is equal to its
transpose, that is,

A−1 = AT ⇒ AT A = I (D.4.2)

If we write the unitary matrix A as a set of N column vectors, that is,

A = [a1 a2 · · · aN ] (D.4.3)

then we can show that

aH
i ak =

{
1 i = k

0 i 	= k
� δik (D.4.4)

that is, the column vectors of a unitary matrix are orthonormal.
A transformation is called a unitary transformation if the transformation matrix is

unitary. Vector inner products, vector norms, and angles between two vectors are invariant
(i.e., they are preserved) under unitary transformation. Thus given two vectors x and y and
a unitary matrix A, we have

〈x, y〉 = 〈Ax, Ay〉 (D.4.5)

‖x‖2 = ‖Ax‖2 (D.4.6)and

This implies that the absolute value of the determinant of a unitary matrix is unity, or

|det(A)| = 1 A unitary (D.4.7)

since from (D.4.1), (D.3.9), and (D.3.8), we have

det(I) = det(AH A) = det(AH ) det(A) = det(A)∗ det(A) = |det(A)|2 = 1 (D.4.8)

D.4.1 Hermitian Forms after Unitary Transformations

Let H(y, y) = 〈y, Ry〉 = yH Ry be an arbitrary Hermitian form for any matrix R. Define
a transformation y = Ax for any unitary matrix A. Then we can write H(y, y) as

H(y, y) = xH AH RAx = xH Px (D.4.9)
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P = AH RA = A−1RA (D.4.10)where

Matrix R can be reduced to a diagonal form by unitary transformation

UH RU = � = diag(λ1, λ2, . . . , λN) (D.4.11)

Hence the Hermitian form H(y, y) can be written as

H(y, y) = yH Ry = yH U�UHy = xH�x = 〈x,�x〉 (D.4.12)

where x � Ay � UH y. Therefore, we can write

H(y, y) =
N∑

i=1

N∑
k=1

riky
∗
i yk =

N∑
i=1

λi |xi |2 (D.4.13)

D.4.2 Significant Integral of Quadratic and Hermitian Forms

Consider a quadratic form Q(x, x) = 〈x, Ax〉. The indefinite integral of the exponential of
Q(x, x) is given by

IN �
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp(−xT Ax) dx (D.4.14)

where dx = dx1 dx2 · · · dxN , and it has many applications. Using (D.4.12) and (D.4.13)
(specialized to the real case), we obtain

〈x, Ax〉 = 〈y,�y〉 =
N∑

i=1

λiy
2
i (D.4.15)

where λi, i = 1, 2, . . . , N , are eigenvalues of A. Thus (D.4.14) becomes

IN =
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp

(
−

N∑
i=1

λiy
2
i

)
dy =

N∏
i=1

∫ ∞

−∞
exp(−λiy

2
i ) dyi (D.4.16)

Now by using the result ∫ ∞

−∞
exp(−αx2) dx =

√
π

α
(D.4.17)

Equation (D.4.14) becomes

IN =
N∏

i=1

∫ ∞

−∞

√
π

λi

=
√

πN

λ1λ2 · · · λN

(D.4.18)

Finally, using the fact that det(A) = ∏N
i=1 λi , we obtain

IN =
√

πN

det(A)
(D.4.19)

The result in (D.4.19) can be extended to the complex case. LetH(z, z) be the Hermitian
form of a complex-valued vector z = x+ jy. Then the indefinite integral of the exponential
of H(z, z) is given by

JN �
∫ ∞

−∞
· · ·
∫ ∞

−∞
exp(−zT Az) dz (D.4.20)

= πN

det(A)
(D.4.21)

where dz = dx1 dx2 · · · dxN dy1 dy2 · · · dyN . Thus sometimes we get slightly different
results for the complex case.
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TABLE D.1

Summary of properties of vectors and matrices in real and complex spaces.

Real versus Complex

R
N : N -dimensional Euclidean space ↔ C

N : N -dimensional complex space

Norm: ‖x‖2 = x2
1 + · · · + x2

N
↔ Norm: ‖x‖2 = |x1|2 + · · · + |xN |2

Transpose: AT = [aji ] ↔ Hermitian: AH = [a∗
ji

]
(AB)T = BT AT ↔ (AB)H = BH AH

Inner product: 〈x, y〉 = xT y ↔ Inner product: 〈x, y〉 = xH y

Orthogonality: xT y = 0 ↔ Orthogonality: xH y = 0

Symmetric matrices: A = AT ↔ Symmetric matrices: A = AH

Orthogonal matrices: QT = Q−1 ↔ Unitary matrices: UT = U−1

A = Q�Q−1 = Q�Q−T (real �) ↔ A = U�U−1 = U�U−H (real �)

Norm invariance: ‖Qx‖ = ‖x‖ ↔ Norm invariance: ‖Ux‖ = ‖x‖
(Qx)T (Qy) = xT y ↔ (Ux)H (Uy) = xH y

Table D.1 summarizes various properties described above as they relate to both complex-
valued and real-valued matrices.

D.5 POSITIVE DEFINITE MATRICES

Positive definite matrices play an important role in signal processing in general and least-
squares (LS) estimation in particular, and they deserve some attention. A conjugate sym-
metric M × M matrix R is called positive definite if and only if the Hermitian form

xH Rx =
M∑
i,j

rij x
∗
i xj > 0 (D.5.1)

for every x 	= 0. For example, the symmetric matrix

R =



2 −1 0

−1 2 −1

0 −1 2


 (D.5.2)

is positive definite because the quadratic form

xT Rx = x2
1 + (x1 − x2)

2 + (x2 − x3)
2 + x2

3 > 0 (D.5.3)

can be expressed as a sum of squares that is positive unless x1 = x2 = x3 = 0.
From this simple example it is obvious that using the definition to find out whether

a given matrix is positive definite is very tedious. Fortunately, use of this approach is not
necessary because other criteria can be used to make a faster decision (Strang 1980; Horn
and Johnson 1985; Nobel and Daniel 1988). We next summarize some positive definiteness
tests that are useful in LS estimation.

Positive definiteness criterion

An M×M matrix R is positive definite if and only if it satisfies any one of the following
criteria:

1. xH Rx > 0 for all nonzero vectors x.
2. All eigenvalues of R are positive.
3. All principal submatrices Rm, 1 ≤ m ≤ M , have positive determinants. The principal
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section D.5
Positive Definite Matrices

submatrices of R are determined as follows:

R1 = [r11] R2 =
[
r11 r12

r21 r22

]
R3 =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 · · · RM = R

(D.5.4)
It is important to stress that this criterion applies also to the lower right submatrices or
any chain of submatrices that starts with a diagonal element rii as the first submatrix and
then expands it by adding a new row and column at each step.

4. There exists an L × M,M > L, matrix S with linearly independent columns such that
R = SH S. This requirement for the columns of S to be linearly independent implies that
S has rank M .

5. There exists a nonsingular M × M matrix W such that R = WH W. The choices for
the matrix W are a triangular matrix obtained by Cholesky’s decomposition (see Section
6.3) or an orthonormal matrix obtained from the eigenvectors of R (see Section 3.5).

6. There exists a nonsingular M × M matrix P such that the matrix PH RP is positive
definite.

Properties of positive definite matrices. A positive definite matrix R has the following
properties:

1. The diagonal elements of R are positive.
2. riirjj > |rij |2 (i 	= j)

3. The element of R with the largest absolute value lies on the diagonal.
4. The det R > 0. Hence R is nonsingular.
5. The inverse matrix R−1 is positive definite.
6. The matrix obtained by deleting a row and the corresponding column from R is positive

definite.
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APPENDIX E

Minimum Phase Test for Polynomials

In this appendix we prove a theorem that provides a test for checking if the zeros of a
polynomial are inside the unit circle (minimum phase condition) using the lattice parameters.
The required lattice parameters can be obtained from the coefficients of the polynomial using
the algorithm (2.5.28) in Section 2.5.

THEOREM E.1. The polynomial

AP (z) = 1 + a
(P )
1 z−1 + · · · + a

(P )
P

z−P (E.1)

is minimum-phase, that is, has all its zeros inside the unit circle if and only if

|km| < 1 1 ≤ m ≤ P (E.2)

Proof. We will prove the sufficiency part first, followed by the necessary part. Also we will
make use of property (2.4.16)–(2.4.17) of the all-pass systems.

Sufficiency. We will prove by induction that if |km| < 1, 1 ≤ m ≤ P , then AP (z) is
minimum-phase. For P = 1 we have

A1(z) = 1 + a
(1)
1 z−1 = 1 + k1z−1

Clearly if |k1| < 1, then A1(z) is minimum-phase. Assume now that Am−1(z) is minimum-
phase. It can be then expressed as

Am−1(z) =
m−1∏
i=1

(1 − z
(m−1)
i

z−1) (E.3)

|z(m−1)
i

| < 1 1 ≤ i ≤ m − 1 (E.4)where

However, from the recursion (2.5.9),

Am(z) = Am−1(z) + kmz−1Bm−1(z) (E.5)

Hence

Am(z
(m)
i

) = Am−1(z
(m)
i

) + km

(
1

z
(m)
i

)
Bm−1(z

(m)
i

) = 0 1 ≤ i ≤ m

km = Am−1(z
(m)
i

)

(1/z
(m)
i

)Bm−1(z
(m)
i

)
1 ≤ i ≤ m (E.6)or

But

Bm−1(z) = z−(m−1)Am−1(z−1) = z−(m−1)
m−1∏
i=1

(1 − z
(m−1)
i

z)

=
m−1∏
i=1

(z−1 − z
(m−1)
i

)

(E.7)
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Since A(m−1)(z) has real coefficients, either its zeros are real or they appear in complex conjugate
pairs. Thus, a zero and its complex conjugate can always be grouped in the numerator and
denominator of (E.6) as

|km|2 =
m−1∏
i=1

∣∣∣∣∣ 1 − z
(m−1)
i

/z
(m)
i

1/z
(m)
i

− (z
(m−1)
i

)∗

∣∣∣∣∣
2

|z(m)
i

|2 1 ≤ i ≤ m (E.8)

Applying property (2.4.17) to every factor of (E.8), with a = z
(m−1)
i

, gives

|km|




< 1 |z(m)
i

| < 1

= 1 |z(m)
i

| = 1

> 1 |z(m)
i

| > 1

(E.9)

Thus, if |z(m)
i

| < 1, 1 ≤ i ≤ m, then |kM | < 1.

Necessity. We will prove that if AP (z) is minimum-phase, then |km| < 1, 1 ≤ m ≤ P .
To this end we will show that if Am(z) is minimum-phase, then |km| < 1 and Am−1(z) is
minimum-phase. From

Am(z) =
m∏

i=1

(1 − z
(m)
i

z−1)

we see by inspection that the coefficient of the highest power z−m is

km = α
(m)
m =

m∏
i=1

(−z
(m)
i

) (E.10)

|km| ≤
m∏

i=1

|z(m)
i

| < 1 (E.11)Thus,

To show that A(m−1)(z) is minimum-phase, we recall that

Am−1(z) = Am(z) − kmBm(z)

1 − |km|2 (E.12)

If z
(m−1)
i

is a zero of A(m−1)(z), we have

Am−1(z
(m−1)
i

) = Am(z
(m−1)
i

) − kmBm(z
(m−1)
i

)

1 − |km|2 = 0 (E.13)

If |km| �= 1, then (E.13) implies that

km = Am(z
(m−1)
i

)

Bm(z
(m−1)
i

)
1 ≤ i ≤ m − 1 (E.14)

Applying again the property (2.4.17) to |km|2 in (E.14) shows that since |km| < 1, then

|z(m−1)
i

| < 1 for 1 ≤ i ≤ m − 1. Hence, A(m−1)(z) is minimum-phase.
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a posteriori RLS algorithms, 550
a posteriori type adaptive algorithms, 512
a priori adaptive filter, 594
a priori RLS algorithms, 549
a priori type adaptive algorithms, 511
acoustic echo cancelation, 17
acquisition, 514
acquisition mode, 507
active noise control (ANC), 22
actual estimates, 511
adaptation algorithm, 24
adaptation gain vector, 550
adaptive algorithm, 511
adaptive algorithm tracking, 590
adaptive array, 27, 641
adaptive beamforming, 27, 641, 659

weight vector norm constraint, 673
adaptive channel matching, 628
adaptive degrees of freedom, 673
adaptive detection, 660, 686
adaptive equalization, 541
adaptive equalizers

blind or self-recovery mode, 503
decision-directed mode, 503
training mode, 503

adaptive filter, 16, 510
adaptation algorithm, 508
criterion of performance, 507
features, 507
filtering structure, 507
goal, 499
IIR, 608
key feature, 499, 500
performance, 499
unsupervised, 703

adaptive filtering, 16
adaptive matched filter (AMF), 660
adaptive matched filter (AMF) normalization, 644,

679
adaptive signal processing, 1
affine projection algorithms, 547
Akaike information criterion (AIC), 458
algorithm of Schür, 368

algorithms
order-recursive, 334
order-updating, 334
time-recursive, 334
time-updating, 334
fixed-order, 334

aliasing, 41
all-pass systems, 56

decomposition, 57
properties, 57

all-pole (AP) model estimation, 449–462
Burg’s lattice method, 459–460
direct structures, 449–458
frequency domain interpretation, 455
Itakura-Saito lattice method, 460
lattice structures, 458–460
least squares, 451
maximum entropy method, 460–461
modified covariance method, 454

all-pole (AP) signal models, 154
all-pole models

autocorrelation, 158
cepstrum, 185
correlation matching, 161
equivalent representations, 162
first-order, 165
impulse response, 157
linear prediction interpretation, 163
minimum-phase conditions, 163
PACS, 162
partial autocorrelation, 162
pole locations, 163
second-order, 167
spectrum, 162

all-zero (AZ) signal models, 154
autocorrelation, 173
cepstrum, 188
first-order, 174
impulse response, 172
impulse train excitations, 173
partial autocorrelation, 173
second-order, 176
spectrum, 173
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alternative adaptation gain vector, 550
amplitude distribution, 8
amplitude-domain LS solutions, 439
analysis filter, 152
angle estimation, 678–683

maximum likelihood, 679–680
angle normalized errors, 585
angle of arrival, 625
antialiasing filter, 197
aperture, 622
ARMA (P,Q) models, 445
array element spacing, 635
array gain, 635
array output signal-to-noise ratio, 633
array pre-steering, 651
array processing, 25
array response vector, 629, 630

for ULA, 629
array signal model, 627
array signal-to-noise ratio, 633
array snapshot, 627
autocorrelation, estimation, 209
autocorrelation matrix, 85
autocorrelation method, 408
autocorrelation sequence, 53, 100
autocovariance matrix, 86
autocovariance sequence, 100
autoregressive (AR) signal models, 154
autoregressive fractionally integrated

moving-average (ARFIMA) models, 722
autoregressive integrated moving-average

(ARIMA) models, 184
autoregressive models, 164
autoregressive moving-average models, 179
autoregressive moving-average (ARMA) signal

models, 154
azimuth angle, 624

backward linear prediction, 289
backward prediction, Levinson recursion, 348
bandpass signal, 626
baud interval, 311
baud rate, 311
beam response, 632
beamforming, 25, 631
beamforming gain, 633

of spatial matched filter, 635
beamforming resolution, 636
beampattern, 25, 27, 632
beamspace, 651
beamsplitting, 678, 681
beamwidth, 28, 635
best linear unbiased estimator (BLUE), 405, 752
bispectrum, 693
blind deconvolution, 306, 697
blind equalization

cyclostationary methods, 704
HOS-based methods, 704

blind equalizers, 702
Bussgang algorithms, 706
constant-modulus algorithm, 707
fractionally spaced (FSE), 713

Godard algorithms, 707
Sato algorithms, 706
symbol rate, 705

blind interval, 669
block adaptive filtering, 511
block adaptive methods, 659
block LMS, 546
Brownian motion, 727
Bussgang processes, 706

Capon’s method, 472
carrier frequency, 624
Cauchy-Schwarz inequality, 135
central limit theorem (CLT), 90, 95
centrosymmetric matrix, 759
cepstral distance, 188
cepstrum, 63, 152

all-pole models, 185
all-zero models188
pole-zero models, 184

channel equalization, 20
characteristic exponent, 94
characteristic function, 79
Chebyshev’s inequality, 79
chi-squared distribution, 140
Cholesky decomposition, 278, 560
close to Toeplitz, 408
clutter, 7, 27
clutter cancelation, 683
coefficient vector, 265, 279
coherence, 113
coherent output PSD, 242
coloring filter, 152
complex coherence function, 238
complex cross-spectral density, 113
complex envelope, 45
complex spectral density, 54, 113
condition number, 762
conditional covariance, 405
conditional density, 274
conditional mean, 405
cone angle, 625
confidence interval, 136
confidence level, 136
constrained optimization, 644, 650
conventional beamforming, 27, 634
conventional RLS, 548
conventional RLS algorithm, 552

initialization, 554
convergence everywhere, 513
convergence in MS sense, 513
convergence mode, 507
convergence with probability, 1, 513
conversion factor, 550
correlation, 86
correlation, properties, 114
correlation coefficient, 86
correlation matrix

stationary processes, 123
random processes, 123

correlation matrix properties, 120
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correlation sequence, 53
cospectrum, 238

estimation, 240
covariance filtering-type algorithms, 572
covariance method, 408
Cramer-Rao bound (CRB) on angle accuracy, 680
Cramer-Rao lower bound, 135
criterion autoregressive transfer (CAT) function,

458
criterion of performance (COP), 24
cross-amplitude spectrum, 238

estimation, 240
cross-correlation matrix, 87
cross-correlation sequence, 100
cross-covariance matrix, 87
cross-covariance sequence, 100
cross-periodogram, 239
cross-power spectral density, 113
cross-validation, 449
cumulant generating functions, 80
cumulant spectra, 692
cumulants, 80, 692
cumulative distribution function (cdf), 76
cumulative-sum method, 735

data, 261
data matrix

full-windowing, 450
no-windowing, 450

data window, 203
data-adaptive spectrum estimation, 472
decomposition of the covariance rule, 406
deconvolution, 306
degree of nonstationarity, 595
desired response, 261
deterministic signals, 2
DFT sampling theorem, 201
DFT; see Discrete Fourier transform
diagonally loaded sample correlation matrix, 666,

668
difference beamformer, 680
difference equations, 49
digital in-phase/quadrature (DIQ), 627
direct error extraction, 424
directivity, 622
Dirichlet conditions, 38
discrete cosine transform, 547
discrete Fourier transform, 42
discrete fractional Gaussian noise (DFGN), 733

generation, 735
memory, 734
self-similarity, 734

discrete Karhunen-Loeve transform (DKLT), 130
discrete prolate spheroidal sequences (DPSSs), 247
discrete spectrum, 37
discrete wavelet transform, 547
discrete-time fractional Gaussian noise, 719
discrete-time fractional pole noise, 719
discrete-time signal, 1
discrete-time stochastic processes, 97
discrete-time systems, 47
dispersion, 656, 707

dispersion matrix, 657
dispertion, 502
displacement rank, 389
Dolph-Chebyshev taper, 639, 649, 650
doppler effect, 7
Durbin algorithm; see Levinson-Durbin algorithm

echo, 500
echo cancelation, 538
echo canceler, 501, 539

adaptive, 502
fixed, 501

echo cancelation, communications, 500
echo path, 17, 501, 539
echo return loss enhancement, 502
echo suppressor, 501
echoes, 17

acoustic, 500
electrical, 500
line, 500

eigenbeam, 647
eigenfilters, 319
eigenmatrix, 122
eigenvalue spread, 124
eigenvalues, 120
eigenvector method, 484–485
eigenvectors, 120
electrophysiological signals, 4
elevation angle, 624
empirical autocorrelation, 10
energy spectrum, 38, 39
equalization, 310

data communications, 502
equalizers

fractionally spaced (FSE), 709
MMSE FSE, 713

equation-error method, 463
error performance surface, 266
error signal, 262
ESPRIT algorithm, 488–493

least squares method, 491–492
total least squares method, 492–493

estimation error, 515
estimation misadjustment, 596
estimation noise, 596
estimator, 133

bias, 134
consistency, 136
MSE, 134
variance, 134

Euclidean norm, 756
Euclidean space, 755
evolutionary model, 592
exchange matrix, 758
excess MSE, 269, 596
expected value, 77
exponential convergence, 518
exponential memory, 593
exponential sequence, 35
exponentially growing window, 591
extended QR-RLS algorithm, 565
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extended Schür algorithm, 372
extrapolation, 198
eye pattern, 312

FAEST algorithm, 576, 578
far field assumption, 624
far-end echo, 538
fast fixed-order RLS, 574
fast Fourier transform (FFT), 43
fast Kalman algorithm, 575, 576
fast order-recursive RLS, 574
fast RLS algorithms, 573
features of adaptive filters, 23
FFT; see fast Fourier transform
filtering structure, 24
final prediction error (FPE) criterion, 458
finite impulse response (FIR) filter, 50
FIR; see finite impulse response
fixed-length sliding window, 591
forgetting factor, 548
formant frequencies, 4
forward linear prediction, 288
forward prediction, Levinson recursion, 349
forward-backward linear prediction, 413
forward/backward LS all-pole modeling, 467
forward-backward predictors, 454
Fourier series, 37
Fourier transform, 37, 38
fractal models, 14
fractals, 15
fractional autorregressive integrated

moving-average models, 14
fractional bandwidth, 628, 656
fractional Brownian motion, 15, 730
fractional differentiator, 719
fractional Gaussian noise, 15
fractional integrator, 14, 719, 732
fractional pole processes

Gaussian, 723
SαS, 723

fractional pole systems, continuous-time, 732
fractional pole-zero models, 14, 721
fractional unit-pole models

autocorrelation, 718
definition, 716
impulse response, 717
memory, 719
minimum-phase, 718
partial autocorrelation, 719
spectrum, 718

fractionally differenced Gaussian noise, 14
fractionally spaced equalizer (FSE), 315
frequency analysis, 198
frequency estimation, 478–493

eigenvector method, 484–485
ESPRIT algorithm, 488–493
MUSIC algorithm, 484–485
Pisarenko harmonic decomposition, 482–484
root-MUSIC algorithm, 485

frequency response, estimation, 241
frequency response function, 49
Frobenius norm, 433, 757

Frost’s algorithm, 671
FTF algorithm, 577
full-duplex data transmission, 538
fundamental frequency, 37

Gaussian moment factorization property, 529
general linear process model, 151
generalized sidelobe canceler (GSC), 650, 670
genetic optimization algorithms, 608
geophysical signals, 5
Gerschgorin circles theorem, 530
Givens inverse QR-RLS algorithm, 569, 571
Givens QR-RLS algorithm, 566, 568
Givens rotation, 427
gradient, 747
Gram-Schmidt, classical algorithm, 346
Gram-Schmidt orthogonalization, 345

classical, 429
modified, 430

grating lobes, 636
growing memory, 548

Hankel matrix, 759
harmonic fractional pole models, 723
harmonic fractional pole-zero models, 723
harmonic model(s), 184, 478–482
harmonic processes, 110
harmonic spectra, 39
harmonizable representation, 733
Haussdorff dimension, 732
Hermitian matrix

negative definite, 760
negative semidefinite, 760
positive definite, 760
positive semidefinite, 760

Hessian matrix, 524
high resolution spectral estimator, 472
higher-order moments

definitions, 691
linear signal models, 695
linear system response, 693

higher-order statistics, 691
Householder reflections, 425
hybrid couplers, 538
hybrids, 500

idempotent matrix, 402
IIR; see infinite impulse response
IIR adaptive filters, 608
implementation complexity, 515
impulse response, 47
incremental filter, 595
independence assumption, 528
index of stability; see characteristic exponent
infinite impulse response (IIR) filter, 51
infinitely divisible distributions, 95
information filtering-type algorithms, 572
initialization, CRLS algorithm, 554
inner product, 755
innovations, 125
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innovations representation, 151
eigendecomposion approach, 129
LDU triangularization approach, 129
UDL traingularization approach, 129

in-phase component, 45
input data vector, 265, 279
interference, 7, 638
interference mitigation, 27
interference signal, 642
interference subspace, 647
interference-plus-noise correlation matrix, 642,

647
intersymbol interference (ISI), 20, 310
inverse filtering, 306
inverse QR-RLS algorithm, 566
inverse Schür algorithm, 374
inverse system, 54
invertibility, 54
isotropic transformation, 126
Itakura-Saito (IS) distortion measure, 457
Itakura-Saito distance measure, 462

Jacobian, 87
jammer, 641, 645
jamming, 27
joint cumulative distribution function, 83
joint ergodicity, 107
joint signal analysis, 11

Kalman filter, 378, 592
algorithm, 384
gain matrix, 382
measurement model, 381
observation error, 381
observation model, 381
signal model, 381
state transition matrix, 381
state vector, 381

Kalman gain matrix, 382
Karhunen-Loeve transform, 129
Kolmogorov-Szego formula, 305
Kullback-Leibler distance, 458
kurtosis, 79

lag error, 515
lag misadjustment, 596
lag noise, 596
Lagrange multipliers, 749
Lagrangian function, 750
lattice filters, 64

all-pass, 70
all-pole, 68
all-zero, 65

lattice parameter conversion
direct-to-autocorrelation, 367
direct-to-lattice, 366
lattice-to-autocorrelation, 367
lattice-to-direct, 366

lattice parameter estimation
Burg’s method, 459–460
Itakura-Saito method, 460

lattice-ladder optimization, 365
lattice-ladder structure, 351
law of iterated expectations, 406
LDLH decomposition, 274
leading principal submatrix, 335
leakage, 204
leaky LMS, 546
learning curve, 514, 519
least-squares

amplitude-domain techniques, 424
comparison with MSE estimation, 419
data adaptive estimators, 438
FIR filters, 420
linear prediction, 411, 420
minimum-norm solution, 435
normal equations solution, 416
orthogonalization techniques, 422
power-domain techniques, 424
rank-deficient, 437
regularization, 438
regularized solution, 438
signal estimation, 411
square root methods, 424
SVD solution, 434

least-mean-square (LMS) algorithm, 524
least-squares error (LSE) estimation, 395
least-squares FIR filters, 406
least-squares inverse filters, 409
least-squares principle, 395
left singular vectors, 432
Levenberg-Marquard regularization, 465
Levinson, 278
Levinson algorithm, 353, 358
Levinson recursion, 338
Levinson-Durbin algorithm, 356
Levy distribution, 10, 95
Levy stable motion, 739
likelihood variable, 551
line spectrum, 37, 461, 479
linear equalizers, 314
linear LSE estimation, 396

data records, 397
estimation space, 399
normal equations, 399
snapshots, 397
statistical properties, 403
uniqueness, 401
weighted, 403

linear mean square error estimation, 264
linear MMSE estimator, 265

derivation, 268
linear prediction, 21, 286

backward, 289
forward, 288

linear prediction coding (LPC), 21, 470, 503
linear random signal model, 12, 151
linear signal estimation, 286
linear systems

frequency-domain analysis, 117
input-output cross-correlation, 116
output correlation
output mean value, 116
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output power, 117, 118
random inputs, 115
scale-invariant, 732
time-domain analysis, 115

linearly constrained minimum variance
beamformer, 672

LMS
adaptation in stationary SOE, 526
digital residual error, 546
disturbances, 545
finite precision effects, 546
leakage, 546
method of ordinary differential equations, 536
misadjustment, 597
MSD, 598
rate of convergence, 534
robustness, 543
speed versus quality of adaptation, 534
stability, 534
steady-state excess MSE, 532, 534
stochastic approximation approach, 536
tap input power, 535
transient MSE, 532

LMS algorithm, 526, 533
log likelihood function, 135
long memory, estimation, 739
long memory processes, 119
long-tailed distributions, 107
long-term persistence, 722
look direction, 634

magnitude square coherence, 113
magnitude-squared coherence, 238

estimation, 240
Mahalanobis distance, 126
mainbeam, 635
marginal density function, 84
Markov estimator, 405
matched filters, 319
mathematical expectation, 77
matrix, 756

amplification power, 757
centrosymmetric matrix, 759
column space of, 433
condition number, 436, 762
dynamic range, 758
exchange matrix, 758
Hankel matrix, 759
Hermitian matrix, 760
Hermitian, 758
lower triangular, 758
null space of, 433
numerical rank of, 437
orthogonal matrix, 762
partition of a matrix, 759
persymmetric matrix, 758
positive definite matrix, 764–765
range space of, 433
relative error, 762
row space of, 433
square matrix, 760
symmetric, 758
Toeplitz, 758
unitary transformation, 762

unitary matrix, 762
upper triangular, 758
well (ill) conditioned matrix, 762

matrix factorization lemma, 563
matrix inversion by partitioning lemma, 336
matrix inversion lemma, 745
matrix norm, 757
maximum entropy method, 460–461
maximum likelihood estimate (MLE), 136
maximum-phase, 293
maximum-phase system, 56
mean square deviation (MSD), 513, 596
mean square error (MSE) criterion, 264
mean value, 77
mean vector, 85
Mercer’s theorem, 122
minimax criterion, 545
minimum description length (MDL) criterion, 458
minimum mean-square error (MMSE), 678
minimum MSE equalizer, 316
minimum-variance estimator, 405
minimum-norm method, 485–488
minimum-phase, 293

test, 69
minimum-phase system(s), 55

properties, 61
minimum-variance spectrum estimation, 471–478

implementation, 474–477
relationship to all-pole spectrum estimation

477–478
theory, 472–474

minimum-variance distortionless response
(MVDR), 644

misadjustment, 514, 596
mixed processes, 156
mixed spectra, 39
mixed-phase system, 56
MMSE filtering, 652
model, 11
model fitting, 447
model order selection criteria, 457–458

Akaike information criterion, 458
criterion autoregressive transfer function, 458
final prediction order criterion, 458
minimum description length criterion, 458

modified covariance method, 414
modulation, 625
moment generating function, 80
moments, 78

central, 78
monopulse radar, 680
Moore-Penrose conditions, 435
Moore-Penrose generalized inverse, 402
moving-average models, 173
moving-average (MA) signal models, 154
multichannel adaptive filters, 608
multiple linear constraints, 672
MUSIC algorithm, 484–485
MVDR beamformer, 644, 650

narrowband assumption, 628, 656
narrowband interference cancelation, 414
narrowband steering vector, 656
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natural mode, 518
near to Toeplitz, 408
near-end echo, 538
Newton’s type algorithms, 523
noise cancelation, 505
noise subspace, 480–481, 647
nonharmonic spectra, 39
nonlinear adaptive filters, 608
nonparametric models, 12
nonrecursive system representation, 150
normal equations, 269

solution, 274
normalized cross-correlation, 100
normalized frequency, 40
normalized LMS, 535
normalized LMS algorithm, 526
normalized MSE, 269
nulls, 27
numerical accuracy, 516
numerical inconsistencies, 555
numerical stability, 516
Nyquist rate, 42
Nyquist’s criterion, 311

observations, 261
optimal reduced-basis representation, 131
optimum a priori error, 594
optimum array processing, 641
optimum beamformer, 642, 643, 644

effect of bandwidth, 656
eigenanalysis, 646
interference cancelation performance, 648
low sidelobe, 650
signal mismatch loss (desired signal not in

correlation matrix), 654
signal mismatch loss from desired signal in

correlation matrix, 655
spatial null depth, 648
tapering, 649

optimum beamforming weight vector, 643
optimum estimate

order decomposition, 344
order-recursive computation, 340
order-recursive structure, 342
orthogonal structure, 345

optimum estimator, 262
optimum filters, 509

design, 387
frequency-domain interpretation, 285
implementation, 388

optimum FIR filters, 281, 295
ladder structure, 362
lattice structures, 361
order-recursive algorithms, 347

optimum IIR filters
causal, 297
factorization, 298
irreducible MMSE, 299
noise filtering, 300
noncausal, 296
regular input processes, 297
white input processes, 297

optimum learning, 514
optimum nesting, 335
optimum signal processing, 1
optimum signal processor, 262
optimum space-time weight vector, 685
orthogonal matrix, 762
orthogonal transformation, 125
orthogonal vectors, 755
orthogonality principle, 273
overdetermined LS problem, 402

p norm, 755
Paley-Wiener theorem, 63
parameter vector, 265
parametric models, 12
parametric signal model, 150
parametric spectrum estimation, 467–470
Parseval’s relation, 39
partial correlation, 344
partial correlation coefficients, 364
partially adaptive arrays, 673–676

beamspace, 675
subarrays, 675

partition of a matrix, 759
peak distortion, 316
periodic extension, 198
periodic random sequences, 132
periodogram

definition, 212
filter bank interpretation, 213
modified, 212

persymmetric matrix, 758
persistence, 731
phase spectrum, 238

estimation, 240
Pisarenko harmonic decomposition, 482–484
plane wave, 624
point estimate, 133
poles, 44
pole-zero (PZ) model estimation, 447, 462–467

equation error method, 463
known excitation, 463
nonlinear least squares, 464
unknown excitation, 463

pole-zero (PZ) model selection, 446
pole-zero (PZ) model validation, 447

autocorrelation test, 448
power spectrum test, 448

pole-zero (PZ) modeling
applications, 467–471
speech modeling, 470–471

pole-zero models
autocorrelation, 177
cepstrum, 184
first-order, 180
impulse response, 177
mixed representations, 189
partial autocorrelation, 179
poles on unit circle, 182
spectrum, 179
summary and dualities, 181

pole-zero (PZ) signal modeling, 445
pole-zero (PZ) signal models, 153, 154, 445
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pole-zero (PZ) spectrum estimation, 467–470
positive definite matrix, 764

properties of, 765
power cross-spectrum estimation, 252
power spectral density (PSD), 110

properties, 109, 114
power spectrum, 37, 38
power spectrum estimation, 195

Blackman-Tukey method, 223
multitaper method, 246
nonparametric techniques, 195
parametric techniques, 195
practical considerations, 232
Welch-Bartlett method, 227

power transfer factor, 153
power-domain LS solutions, 439
predictable processes, 306
predicted estimates, 511
prewhitening, 468
prewindowed RLS FIr filters, 573
prewindowing, 408
primary input, 505
primary signal, 22
principal component analysis, 270
principal coordinate system, 271
principle of orthogonality, 273
probability density function(pdf), 76
probability mass function (pmf), 77
projection matrix, 402, 480–481
propagating wave, 623
property restoral approach, 507
PSD; see power spectral density
pseudo random numbers, 83
pseudo-inverse, 402
pseudospectrum

eigenvector method, 485
minimum-norm method, 487
MUSIC, 484
Pisarenko harmonic decomposition, 482

pulse repetition frequency, 7

QR decomposition, 423, 474, 560, 667
thin, 423

QR-decomposition RLS, 574
QR-RLS algorithm, 564
quadratic constraints, 673
quadrature component, 45
quadrature spectrum, 238

estimation, 240
quality of adaptation, 515
quantization, 503
quantization error, 504
quiescent response, 647

radar signals, 7
raised cosine filters, 312
random fractals, 15, 725
random midpoint replacement method, 737
random process(es)

ensemble, 98
ergodic, 105
ergodic in correlation, 106

ergodic in the mean, 106
Gaussian, 101
independent, 101
independent increment, 101
innovations representation, 151
jointly wide-sense stationary, 103
locally stationary, 105
Markov, 104
orthogonal, 101
predictable, 99
realization, 98
stationary, 102
uncorrelated, 101
wide sense cyclostationary, 101
wide-sense periodic, 101
wide-sense stationary, 102

random sequences, 98
random signal memory, 118

correlation length, 119
random signal variability, 107
random signals, 1, 3, 75

generation, 155
random variable(s), 75

Cauchy, 82
complex, 84
continuous, 76
discrete, 76
independent, 84
normal or Gaussian, 82
orthogonal, 86
sums, 90
uniformly distributed, 81

random vectors, 83
complex, 84
decorrelation, 343
innovations representation, 125
linear transformations, 87
linearly equivalent, 343
normal, 88

range, 7
rate of convergence, 515, 519
rational models, 13
Rayleigh’s quotient, 121, 322
receiver, 626
rectangularly growing memory, 593
recursive least-squares (RLS), 548

methods for beamforming, 670
recursive representation, 151
reference input, 505
reference signal, 22
region of convergence (ROC), 43
reflection coefficients, 362, 364
regression function, 396
regression vector, 396
relationship between minimum-variance and

all-pole spectrum estimation, 477–478
relative error, 762
reverberations, 17
right singular vectors, 432
RLS algorithm classification, 589
RLS lattice-ladder

a posteriori, 582
a priori, 583
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a priori with error feedback, 584
Givens rotation-based, 585
square-root free Givens, 588
square-root Givens, 588

RLS lattice-ladder algorithms, 580
RLS misadjustment, 599
root method, 62
root-MUSIC, 485
rotational invariance, 489–490

sample autocorrelation sequence, 210
sample correlation matrix, 474, 481, 660
sample matrix inversion (SMI) adaptive

beamformer, 660
beam response, 666
desired signal present, 665
diagonal loading, 665, 666
implementation, 667
sidelobe levels, 661–665
training issues, 665

sample matrix inversion (SMI) loss, 660, 661
sample mean, 136
sample support, 660
sample variance, 139
sample-by-sample adaptive methods, 669
sampling, 503
sampling distribution, 134, 137
sampling frequency, 40
sampling period, 40
sampling rate, 40
sampling theorem, 42

bandpass, 45
DFT, 201

scale-invariance, 725
scale-invariant, 15
scatter plot, 1
seasonal time series, 184
second characteristic function, 80
self-similar, 15, 725

with stationary increments
strict-sense, 728
wide-sense, 728

self-similarity index, 726
semivariogram, 728
sensor thermal noise, 627
Shannon number, 248
Sherman-Morrison’s formula, 745
shift-invariance, 347
short memory processes, 119
short-memory behavior, 155
sidelobe canceler, 28, 676–678
sidelobe target, 649
sidelobes, 635
signal analysis, 3
signal filtering, 3
signal mismatch, 652
signal model, 34
signal modeling, 11, 150
signal operating environment (SOE), 24, 507
signal prediction, 21
signal subspace, 480–481
signal(s), 33

causal, 36
classification, 35

complex-valued, 34
continuous-time, 34
deterministic, 34
digital, 34
discrete-time, 34
duration, 36
energy, 35
narrowband, 44
one-dimensional, 34
periodic, 36
power, 35
random, 36
real-valued, 34

signal-to-interference-plus-noise ratio (SINR), 643
signal-to-noise ratio

array, 633
element, 633

similarity transformation, 270
singular value decomposition (SVD), 431, 491
singular values, 432
SINR maximization, 643
sinusoidal model, 478–482
skewness, 79
Slepian tapers, 247
space time-bandwidth product, 656
space-time adaptive processing (STAP), 683–685
space-time filtering, 683
spatial ambiguities, 630, 635
spatial filter, 631
spatial filtering, 25
spatial frequency, 630
spatial matched filter, 634
spatial power spectrum, 632
spatial sampling frequency, 630
spatial sampling period, 630
spectral dynamic range, 124
spectral estimation, 8
spectral factorization, 61, 152
spectral flatness measure, 153
spectral norm, 757
spectral synthesis method, 736
spectral theorem, 122
spectrum estimation

Capon’s method, 472
data-adaptive, 472
deterministic signals, 196
maximum entropy method, 460–461
minimum variance, 471–478
parametric, 467–470
pole-zero models, 467–470
relationship between minimum-variance and

all-pole methods, 477–478
spectrum sampling, 199
spectrum splitting, 457
speech modeling, 470–471
speech signals, 4
speed of adaptation, 515
spherically invariant random processes (SIRP), 528
square matrix

cofactors, 760
determinant, 760

stability, 518
bounded-input bounded-output (BIBO), 48
test, 69
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stable distribution(s), 10, 93
standard deviation, 79
standardized cumulative periodogram, 448
statistical signal processing, 1
statistically self-affine, 726
statistically self-similar, 15, 725
steepest descent algorithm (SDA), 517
steepest descent methods for beamforming, 670
steered response, 632
steering vector, 634
step-size parameter, 517
stochastic convergence, 513
stochastic process, 98
stochastic processes, self-similar, 725
stochastic signals, 3
strict white noise, 110
Student’s t distribution, 138
subarrays, 675
subband adaptive filtering, 548
subspace techniques, 478–493
sum beamformer, 680
sum of squared errors (SSE) criterion, 264
superladder, 373
superlattice, 370
superresolution, 478, 682
superrsolution, 28
supervised adaptation, 507
symbol equalizer (SE), 315
symbol interval, 20, 311
symmetric α-stable, 94
symmetric linear smoother, 288
synchronous equalizer, 315
synthesis filter, 152
system function, 49
system identification, 11, 17
system inversion, 19
system modeling, 11
system-based signal model, 151

tapered conventional beamforming, 638
tapering, 197
tapering loss, 639, 650
target signal, 7
thinned arrays, 636
time average, 106
time dispersion, 502
time series, 1, 98
time-bandwidth product, 628
time-delay steering, 657
Toeplitz matrix, 48, 123

inversion, 377
triangularization, 374

tracking mode, 507
training sequence, 21

training set, 396
transform-domain LMS, 547
trispectrum, 693

uniform linear array (ULA), 25, 624
unit gain on noise normalization, 644
unit impulse, 35
unit sample response, 35, 47
unit step sequence, 35
unitary complex space, 755
unitary matrix, 762
unitary transformation, 762
unsupervised adaptation, 507
unsupervised adaptive filters, 703

Vandermode matrix, 121
variance, 79, 100
vectors

angle between, 756
linearly independent, 756
orthonormalized, 756

vocal tract, 13

wavelength, 624
well (ill) conditioned matrix, 762
white noise, 110
whitening, 304
whitening filter, 152
whitening transformation, 126
wideband interference, 656
wideband steering vector, 656
Wiener filters, 278
Wiener-Hopf equations, 282
windowing, 197, 198, 408
windows

Dolph-Chebyshev, 208
Hamming, 206
Kaiser, 207
rectangular, 206

Wishart distribution, 555
Wold decomposition, 156
Woodbury’s formula, 746

Yule-Walker equations, 160, 164

zero padding, 199, 201
zero-forcing equalizer, 316
zeros, 44
z-transform, 43
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