Algorithms for programmers
ideas and source code

This document is work in progress: read the "important remarks” near the beginning

Jorg Arndt
arndt@jjj.de

This document® was BTEX’d at September 26, 2002

'This document is online at ~ http://wuw.jjj.de/fxt/. It will stay available online for free.

Contents

Some important remarks about this document 6

List of important symbols 7

1 The Fourier transform 8
1.1 The discrete Fourier transform|

1.2 Symmetries of the Fourier transform/ 0. 9

1.3 Radix 2 FFT algorithms 10

1.3.1 A little bit of notation! 10

1.3.2 Decimation in time (DIT) FEFT| 10

1.3.3 Decimation in frequency (DIF) FFT 13

1.4 Saving trigonometric computations Lo 15

1.4.1 Using lookup tables 16

1.4.2 Recursive generation of the sin/cos-values/. 16

1.4.3 Using higher radix algorithms o 0L 17

1.5 Higher radix DIT and DIF algorithms| 17

1.5.1 More notationlo 17

1.5.2 Decimation in timel Lo 17

1.5.3 Decimation in frequency 18

1.5.4 Implementation of radix » = p* DIF/DIT FFTs[. 19

1.6 Split radix Fourier transforms (SRET)| o oL 22

1.7 Inverse FFT for freel 23

1.8 Real valued Fourier transforms| 24

1.8.1 Real valued FT via wrapper routines 25

1.8.2 Real valued split radix Fourier transforms| 27

1.9 Multidimensional F'T's| o 0L 31

1.9.1 Definition 31

1.9.2 The row column algorithm 31

1.10 The matrix Fourier algorithm (MFA) 32

1.11 Automatic generation of FFT codes 33

CONTENTS

2 Convolutions

2.1
2.2
2.3
2.4
2.5

2.6
2.7
2.8

3 The
3.1
3.2

3.3
3.4
3.5
3.6
3.7
3.8
3.9

Definition and computation via FFT|

Mass storage convolution using the MFA!.

Weighted Fourier transforms . . .

Half cyclic convolution for half the price 7

Convolution using the MFA|
2.5.1 Thecase R=2
2.5.2 Thecase R=3/.......

Convolution of real valued data using the MFA|

Convolution without transposition using the MFA|

The z-transform (ZT)
2.8.1 _ Definition of the ZT

2.8.2 Computation of the ZT via convolution

2.8.3 Arbitrary length FFT by ZT

2.8.4 Fractional Fourier transform by Z'T}. o o000
Hartley transform (HT)

Definition of the H'T| oo
radix 2 FHT algorithms 0. o
3.2.1 Decimation in time (DIT) FHT|.
3.2.2 Decimation in frequency (DIF) FHT
Complex FT by HT| e
Complex FT by complex HT and vice versa,
Real FT by HT and vice versal i
Discrete cosine transform (DCT) by HT o
Discrete sine transform (DST) by DCT, o
Convolution via FHTI.o o o
Negacyclic convolution via FHT|. o o oo

4 Numbertheoretic transforms (NTTs)

4.1
4.2
4.3

4.4
4.5
4.6
4.7

Prime modulus: Z/pZ =TF,
Composite modulus: Z/mZ
Pseudocode for NTTs
4.3.1 Radix 2 DIT NTT|
4.3.2 Radix 2 DIF NTT!
Convolution with NTT's

The Chinese Remainder Theorem (CRT)|.

A modular multiplication technique

Numbertheoretic Hartley transform

5 Walsh transforms

36
36
40
42
44
44
45
45
46
46
47
47
48
48
48

49
49
49
49
52
55
56
o7
58
59
60
62

63
63
64
67
67
68
69
69
71
72

73

CONTENTS 3

5.1 Basis functions of the Walsh transforms 7
5.2 Dyadic convolution L e 78
5.3 The slant transform| 80
6 The Haar transform 82
6.1 Inplace Haar transform| 83
6.2 Integer to integer Haar transform/ L o 86
7 Some bit wizardry 88
T Trivia .« . . o e e 88
7.2 Operations on low bits/blocks inaword| L o0 oL 89
7.3 Operations on high bits/blocks in a word 91
7.4 Functions related to the base-2 logarithm 94
7.5 Counting the bitsinaword L 95
7.6 Swapping bits/blocks of a word 96
7.7 Reversing the bitsof a word e 98
7.8 Generating bit combinations|. oL Lo 99
7.9 Generating bit subsets L 101
7.10 Bit set lookupo e 101
7.11 The Gray code of a word e 102
7.12 Generating minimal-change bit combinations, 104
7.13 Bitwise rotation of a word! 106
7.14 Bitwise zip o e e e 108
7.15 Bit sequency| e e e e 109
716 MISC . . . o o e e 110
7.17 The bitarray class| e 112
7.18 Manipulation of colors| Lo 113
8 Permutations 115
8.1 The revbin permutation| 115
8.1.1 A mnaiveversionl e e 115
8.1.2 A fast versionl. 116
8.1.3 How many swaps?| e e 116
8.1.4 A still faster version! e e e 117
8.1.5 Thereal world version L 119

8.2 The radix permutation| e 120
8.3 Inplace matrix transposition Lo Lo 121
8.4 Revbin permutation vs. transposition/o 122
8.4.1 Rotate and reverse L L e 122
8.4.2 Zipand Unzip|.o e e e e 123

8.5 The Gray code permutation 124

CONTENTS

8.6 General permutations
8.6.1 Basic definitions| L L
8.6.2 Compositions of permutations|.
8.6.3 Applying permutations todatal

8.7 Generating all Permutations|.o o
8.7.1 Lexicographic order| e
8.7.2 Minimal-change order|o
8.7.3 Derangement ordero L
8.7.4 Star-transposition order,
8.7.5 Yet another order

9 Sorting and searching

0.1 Sorting. e

9.2 Searching| e

9.3 Index sorting e e

9.4 Pointer sorting L

9.5 Sorting by a supplied comparison function oo

9.6 Unique e e e

0.7 MISCl . . . o o e

10 Selected combinatorical algorithms

10.1_Offline functions: funcemul

10.2 Combinations in lexicographic order, L Lo

10.3 Combinations in co-lexicographic order|

10.4 Combinations in minimal-change order| oo,

10.5 Combinations in alternative minimal-change order,

10.6 Subsets in lexicographic order| L Lo

10.7 Subsets in minimal-change order oL oL oL

10.8 Subsets ordered by number of elements|. oo oL

10.9 Subsets ordered with shift register sequences L Lo

10.10Partitions oL e e e e e

11 Arithmetical algorithms

11.1 Asymptotics of algorithms|

11.2 Multiplication of large numbers
11.2.1 The Karatsuba algorithm,
11.2.2 Fast multiplication via FFT o o
11.2.3 Radix/precision considerations with FFT multiplication|

11.3 Division, square root and cube root|. oL Lo
11.3.1 Division! o e e e e e

11.3.2 Square root extraction

127
127
128
131
132
132
134
136
137
138

140
140
142
143
144
145
146
148

152
152
155
157
158
160
161
163
165
166
167

CONTENTS

E

11.3.3 Cube root extraction
11.4 Square root extraction for rationals|. oL L oo
11.5 A general procedure for the inverse n-th root,
11.6 Re-orthogonalization of matrices
11.7 n-th root by Goldschmidt’s algorithm
11.8 Tterations for the inversion of a function 0.
11.8.1 Householder’s formulal e
11.8.2 Schroder’s formulalo
11.8.3 Dealing with multiple roots oo
11.8.4 A general scheme|. L
11.8.5 Improvements by the delta squared process|
11.9 Trancendental functions & the AGM oo
11.9.1 The AGMI e
11.9.2 log . . . o o e
11.9.3 exXpl. . . o o e
11.9.4 sin, cos, tan L e e e e
11.9.5 Elliptic K| o e e
11.9.6 Elliptic El o e e
11.10Computation of w/log(q)|« .
11.11Iterations for high precison computationsof @
11.12The binary splitting algorithm for rational series
11.13The magic sumalt algorithm/.

11.14Continued fractions e e e e e e
Summary of definitions of FT's

The pseudo language Sprache

Optimisation considerations for fast transforms

Properties of the ZT

Eigenvectors of the Fourier transform

Bibliography

Index

204

206

208

211

212

214

214

218

Some important remarks

...about this document.

This draft is intended to turn into a book about selected algorithms. The audience in mind are pro-
grammers who are interested in the treated algorithms and actually want to have/create working and
reasonably optimized code.

The printable full version will always stay online for free download. It is planned to also make parts of
the TEXsources (plus the scripts used for automation) available. Right now a few files of the TEX sources
and all extracted pseudo-code snippets! are online. The C++-sources are online as part of FXT or hfloat
(arithmetical algorithms).

The quality and speed of development does depend on the feedback that I receive from you. Your
criticism concerning language, style, correctness, omissions, technicalities and even the goals set here is
very welcome. Thanks to those? who helped to improve this document so far! Thanks also to the people
who share their ideas (or source code) on the net. I try to give due references to original sources/authors
wherever I can. However, I am in no way an expert for history of algorithms and I pretty sure will never
be one. So if you feel that a reference is missing somewhere, let me know.

New chapters/sections appear as soon as they contain anything useful, sometimes just listings or remarks
outlining what is to appear there.

A ”TBD: something to be done” is a reminder to myself to fill in something that is missing or would be
nice to have.

The style varies from chapter to chapter which I do not consider bad per se: while some topics (e.g. FFTs)
need a clear and explicit introduction others (e.g. the bitwizardry chapter) seem to be best presented
by basically showing the code with just a few comments. Still other parts (e.g. sorting) are presented
elsewhere extremely well so I will introduce the basic ideas only very shortly and supply some (hopefully)
useful code.

Sprache will partly go away: using/including the actual code from FXT will be beneficial to both this
document and FXT itself. The goal is to automatically include the functions referenced. Clearly, this will
drastically reduce the chance of errors in the shown code (and at the same time drastically reduce the
workload for me). Initially I planned to write an interpreter for Sprache, it just never happened. At the
same time FXT will be better documented which it really needs. As a consequence Sprache will only be
used when there is a clear advantage to do so, mainly when the corresponding C++ does not appear to be
self explanatory. Larger pieces of code will be presented in C++. A tiny starter about C++ (some good
reasons in favor of C++ and some of the very basics of classes/overloading/templates) will be included.
C programmers do not need to be shocked by the ‘++’: only an rather minimal set of the C++ features
is used.

The theorem-like environment for the codes shall completely go away. It leads to duplication of state-
ments, especially with non-pseudo code (running text, description in the environment and comments at
the begin of the actual code).

Enjoy reading !

Imarked with [source file: filename] at the end of the corresponding listings.
2in particular André Piotrowski.

List of important Symbols

@ i%m)
a(even)7 a(odd)
Qi/m)

a(left) , a(right)

real part of x

imaginary part of x

complex conjugate of x

a sequence, e.g. {ag, a1, ...,an—1}, the index always starts with zero.
transformed (e.g. Fourier transformed) sequence

emphasize that the sequences to the left and right are all of length m

(discrete) Fourier transform (FT) of a, ¢, = ﬁ S ag 27K where z = 27/

inverse (discrete) Fourier transform (IFT) of a, 7! [a], = ﬁ S a2k

a sequence ¢ with elements ¢ := a, et * 2mixz/n

discrete Hartley transform (HT) of a

sequence reversed around element with index n/2

the symmetric part of a sequence: ag :=a+a

the antisymmetric part of a sequence: ag :==a —a

discrete z-transform (ZT) of a

discrete weighted transform of a, weight (sequence) v

inverse discrete weighted transform of a, weight v

cyclic (or circular) convolution of sequence a with sequence b

acyclic (or linear) convolution of sequence a with sequence b

negacyclic (or skew circular) convolution of sequence a with sequence b
weighted convolution of sequence a with sequence b, weight v

dyadic convolution of sequence a with sequence b

n divides N

ged(n,m) =1

sequence consisting of the elements of ¢ with indices k: k=7 mod m e.g.

al0%2) q(1%2)

sequence consisting of the elements of a with indices k: j-n/m <k < (j+1)-n/m

a0/2), g(1/2)

e.g.

Chapter 1

The Fourier transform

1.1 The discrete Fourier transform
The discrete Fourier transform (DFT or simply FT) of a complex sequence a of length n is defined as
¢ = Fla (1.1)
1 .
- +xk h _ +27mi/n 1.2
~ z_: ag z where z=e¢e (1.2)

z is an n-th root of unity: 2" = 1.

Backtransform (or inverse discrete Fourier transform IDFT or simply IFT) is then

a = F (1.3)

1
ay = —chz_“ﬂk (1.4)

-1 a = — Y — 3)z —vk .
F [Fla]], sz::f; (1.5)
- S ; (1.6)

As Y, (2*7¥)k = n for * = y and zero else (because z is an n-th root of unity). Therefore the whole
expression is equal to

1
— 20z = 1.7
St = @ (1.7)

where

_ [l @@=y
= {0 G7n a9

Here we will call the FT with the plus in the exponent the forward transform. The choice is actually
arbitraryt.

IElectrical engineers prefer the minus for the forward transform, mathematicians the plus.

CHAPTER 1. THE FOURIER TRANSFORM 9

The FT is a linear transform, i.e. for a, 8 € C

Flaa+ b = aF][a]+ BFID] (1.9)

For the FT Parseval’s equation holds, let ¢ = F [a], then
n—1 n—1
doal = > (1.10)
=0 k=0

The normalization factor ﬁ in front of the FT sums is sometimes replaced by a single % in front of the
inverse F'T sum which is often convenient in computation. Then, of course, Parseval’s equation has to be
modified accordingly.

A straight forward implementation of the discrete Fourier transform, i.e. the computation of n sums each
of length n requires ~ n? operations:

void slow_ft(Complex #f, long n, int is)

{
Complex h[n];
const double phO = is*2.0%M_PI/n;
for (long w=0; w<n; ++w)
Complex t = 0.0;
for (long k=0; k<n; ++k)
t += f[k] * SinCos(phO*k*w) ;
}
hiw] = t;
}
copy(h, £, n);
}

[FXT: slow_ft in slow/slowft.cc] is must be +1 (forward transform) or —1 (backward transform),
SinCos(x) returns a Complex(cos(x), sin(x)).

A fast Fourier transform (FFT) algorithm is an algorithm that improves the operation count to propor-
tional n Y.;" | (pr, — 1), where n = p1ps---pp, is a factorization of n. In case of a power n = p™ the
value computes to n (p— 1) log,(n). In the special case p = 2 even n/2 log,(n) (complex) multiplications
suffice. There are several different FFT algorithms with many variants.

1.2 Symmetries of the Fourier transform

A bit of notation turns out to be useful:
Let @ be the sequence a (length n) reversed around element with index n/2:

ag = ag (1.11)
Tpj2 = Qp)2 if n even (1.12)
A = Ap_j (1.13)
Let ag, a4 be the symmetric, antisymmetric part of the sequence a, respectively:
as = a-+a (1.14)
aqg = a—a (1.15)

(The elements with indices 0 and n/2 of a4 are zero). Now let a € R (meaning that each element of a is
€ R), then

kﬁ

=
2 2R
Il Il
| |
Ry
S L,
=,
e

=

o

\]
— S N

CHAPTER 1. THE FOURIER TRANSFORM 10

i.e. the FT of a real symmetric sequence is real and symmetric and the FT of a real antisymmetric
sequence is purely imaginary and antisymmetric. Thereby the FT of a general real sequence is the
complex conjugate of its reversed:

Fla] = Fla for a€eR (1.20)

Similarly, for a purely imaginary sequence b € iR:

Flbs] € iR (1.21)
Flbs] = F|bs] (1.22)
Flbal] € R (1.23)
Flba] = —F[ba] (1.24)

The FT of a complex symmetric/antisymmetric sequence is symmetric/antisymmetric, respectively.

1.3 Radix 2 FFT algorithms

1.3.1 A little bit of notation

Always assume a is a length-n sequence (n a power of two) in what follows:

Let alev™) | q(°4d) denote the (length-n/2) subsequences of those elements of a that have even or odd
indices, respectively.

Let a/Y) denote the subsequence of those elements of a that have indices 0...7/2 — 1.

(right

Similarly, a) for indices n/2...n — 1.

Let S¥a denote the sequence with elements a, e**271%/" where n is the length of the sequence a and
the sign is that of the transform. The symbol S shall suggest a shift operator. In the next two sections

only S'/2 will appear. S is the identity operator.

1.3.2 Decimation in time (DIT) FFT

The following observation is the key to the decimation in time (DIT) FFT? algorithm:
For n even the k-th element of the Fourier transform is

n—1 n/2—1 n/2—1
Zaxzzk = Z sy 22F + Z a2 z+1 PICEamL (1.25)
=0 =0 x=0
n/2—1 n/2—1
= Z a9y 22%F 4 2P Z agxﬂz“k (1.26)
=0 =0

where z = e**27/" and k € {0,1,...,n — 1}.

The last identity tells us how to compute the k-th element of the length-n Fourier transform from the
length-n/2 Fourier transforms of the even and odd indexed subsequences.

To actually rewrite the length-n FT in terms of length-n/2 FTs one has to distinguish the cases 0 <
k < n/2 and n/2 < k < n, therefore we rewrite k € {0,1,2,...,n — 1} as k = j + d § where j €

2also called Cooley-Tukey FFT.

CHAPTER 1. THE FOURIER TRANSFORM 11

{0,1,...,n/2 -1}, &e{0,1}.

n— n/2—1 n/2—1
Z:l a, 22068 — /Z aleven) 22 (G+93) 4 i+ % /Z: aled® 2w i+os) (1.27)
=0 =0 e=0
n/2—1 n/2—1
Z asﬂeven) ZQmj + Zj Z a(x()dd) 22$j for 6=0
= T .
Z aggeven) J2ei _ L Z aé‘)dd) 2275 for =1
=0 z=0

Noting that 22 is just the root of unity that appears in a length-n/2 FT one can rewrite the last two
equations as the

Idea 1.1 (FFT radix 2 DIT step) Radiz 2 decimation in time step for the FFT:

le

F [a](left) F [a(e'uen):| L SY2E [a(odd)] (1.29)

Flgrian L2 f[aosven)}_ S\2F [awdd)} (1.30)

(Here it is silently assumed that '+’ or ’

subtraction.)

—’ between two sequences denotes elementwise addition or

The length-n transform has been replaced by two transforms of length n/2. If n is a power of 2 this
scheme can be applied recursively until length-one transforms (identity operation) are reached. Thereby
the operation count is improved to proportional n - log,(n): There are logy(n) splitting steps, the work
in each step is proportional to n.

Code 1.1 (recursive radix 2 DIT FFT) Pseudo code for a recursive procedure of the (radixz 2) DIT
FFT algorithm, is must be +1 (forward transform) or -1 (backward transform):

procedure rec_fft_dit2(all, n, x[], is)
// complex a[0..n-1] input
// complex x[0..n-1] result

{
complex b[0..n/2-1], c[0..n/2-1] // workspace
complex s[0..n/2-1], t[0..n/2-1] // workspace
if n == 1 then // end of recursion
{
x[0] := a[0]
return
nh := n/2
for k:=0 to nh-1 // copy to workspace
s[k] := a[2*k] // even indexed elements
t[k] := a[2%k+1] // odd indexed elements
// recursion: call two half-length FFTs:
rec_fft_dit2(s[],nh,b[],is)
rec_fft_dit2(t[],nh,c[],is)
fourier_shift(c[],nh,is*1/2)
for k:=0 to nh-1 // copy back from workspace
x [k] := blk] + cl[k];
x[k+nh] := blk] - c[k];
}

[source file: recfftdit2.spr]

CHAPTER 1. THE FOURIER TRANSFORM 12

The data length n must be a power of 2. The result is in x[]. Note that normalization (i.e. multiplication
of each element of x[] by 1/4/n) is not included here.

[FXT: recursive_dit2_fft in slow/recfft2.cc] The procedure uses the subroutine

Code 1.2 (Fourier shift) For each element in c[0..n-1] replace c[k] by cfk] times eV 2™ k/". Used with
v = =£1/2 for the Fourier transform.

procedure fourier_shift(c[], n, v)
for k:=0 to n-1
clk] := c[k] * exp(v*2.0%PIxIxk/n)
}

cf. [FXT: fourier_shift in fft/fouriershift.cc]

The recursive FFT-procedure involves n log,(n) function calls, which can be avoided by rewriting it in
a non-recursive way. One can even do all operations in place, no temporary workspace is needed at
all. The price is the necessity of an additional data reordering: The procedure revbin_permute(al[],n)
rearranges the array al[] in a way that each element a, is swapped with az, where Z is obtained from x
by reversing its binary digits. This is discussed in section 8.1l

Code 1.3 (radix 2 DIT FFT, localized) Pseudo code for a non-recursive procedure of the (radiz 2)
DIT algorithm, is must be -1 or +1:

procedure fft_dit2_localized(al], 1ldn, is)
// complex al[0..2%*1dn-1] input, result

{
n := 2%xldn // length of a[] is a power of 2
revbin_permute(a[],n)
for 1dm:=1 to 1ldn // log_2(n) iterations
{
m = 2%*x1dm
mh := m/2
for r:=0 to n-m step m // n/m iterations
{
for j:=0 to mh-1 // m/2 iterations
e := exp(is*24PI*I*j/m) // log_2(n)*n/m*m/2 = log_2(n)*n/2 computations
u := alr+j]
v := alr+j+mh] * e
alr+j] =u+v
alr+j+mh] :=u - v
}
}
}
}

[source file: fftdit2localized.spr]

[FXT: dit2_fft_localized in fft/fftdit2.cc]

This version of a non-recursive FFT procedure already avoids the calling overhead and it works in place.
It works as given, but is a bit wasteful. The (expensive!) computation e := exp(is*2*PI*I*j/m) is
done n/2 -log,(n) times. To reduce the number of trigonometric computations, one can simply swap the
two inner loops, leading to the first ‘real world” FFT procedure presented here:

Code 1.4 (radix 2 DIT FFT) Pseudo code for a non-recursive procedure of the (radiz 2) DIT algo-
rithm, is must be -1 or +1:

procedure fft_dit2(all, 1ldn, is)
// complex al[0..2%*1dn-1] input, result

CHAPTER 1. THE FOURIER TRANSFORM 13

n := 2%*1ldn
revbin_permute(al[],n)

for ldm:=1 to 1ldn // log_2(n) iteratiomns
{

m = 2%*ldm
mh := m/2
for j:=0 to mh-1 // m/2 iterations
{
e := exp(is*2*#PIxI*j/m) // 1 + 2+ ... + n/8 + n/4 + n/2 = n-1 computations
for r:=0 to n-m step m
{
u := alr+j]
v := alr+j+mh] * e
alr+j] =u+v
alr+j+mh] :=u - v
}
}

}
[source file: fftdit2.spr]

[FXT: dit2_fft in fft/fftdit2.cc]

Swapping the two inner loops reduces the number of trigonometric (exp()) computations to n but leads
to a feature that many FFT implementations share: Memory access is highly nonlocal. For each recursion
stage (value of 1dm) the array is traversed mh times with n/m accesses in strides of mh. As mh is a power
of 2 this can (on computers that use memory cache) have a very negative performance impact for large
values of n. On a computer where the CPU clock (366MHz, AMD K6/2) is 5.5 times faster than the
memory clock (66MHz, EDO-RAM) I found that indeed for small n the localized FFT is slower by a
factor of about 0.66, but for large n the same ratio is in favour of the ‘naive’ procedure!

It is a good idea to extract the 1dm==1 stage of the outermost loop, this avoids complex multiplications
with the trivial factors 1+ 0i: Replace

for 1ldm:=1 to ldn

by
for r:=0 to n-1 step 2

{alr], alr+11} := {alrl+alr+1], alr]l-alr+1]}

%or 1ldm:=2 to ldn

1.3.3 Decimation in frequency (DIF) FFT

The simple splitting of the Fourier sum into a left and right half (for n even) leads to the decimation in
frequency (DIF) FFT?:

n—1 ’I’L/271 n
z:ag,czf”C = Z ay 2°F + Z ag 2°F (1.31)
=0 x=0 m:n/Q
n/2—1 n/2—1
= Z az 2°F + Z Aytn/2 Zztn/2) k (1.32)
=0 =0
n/2—1
_ Z (aéleft) + Zlc n/2 a:(;ight)) Z:Jvlc (133)
=0

3also called Sande-Tukey FFT, cf. [12].

CHAPTER 1. THE FOURIER TRANSFORM

(where z = e 27/" and k € {0,1,...,n —1})

Here one has to distinguish the cases k even or odd, therefore we rewrite k& € {0,1,2,...

k=2j+8 where j € {0,2,...,2 1}, de{0,1}.

n—1 n/2-1
Z ap 2° (25+6) _ Z (ageft) + Z(2j+6) n/2 agr‘ight)) e (2+96)
=0 =0
n/2—1
Z (aéleft) + agﬂight)) Z23:j for 6§=0
— =0
n/2—1
Z Zx(a(zleft) _ aa(vright)) Zij for §=1
=0

2(25H+0)n/2 — oE7id 5 equal to plus/minus 1 for § = 0/1 (k even/odd), respectively.

The last two equations are, more compactly written, the
Idea 1.2 (radix 2 DIF step) Radiz 2 decimation in frequency step for the FFT:
memm n/2 fﬁﬂqn+ammﬂ

f[a](odd) "2 [81/2 (a(left) _ a(right)):|

14

(1.35)

(1.36)

(1.37)

Code 1.5 (recursive radix 2 DIF FFT) Pseudo code for a recursive procedure of the (radiz 2) deci-
mation in frequency FET algorithm, is must be +1 (forward transform) or -1 (backward transform):

procedure rec_fft_dif2(all, n, x[1, is)
// complex a[0..n-1] input
// complex x[0..n-1] result

{
complex b[0..n/2-1], c[0..n/2-1] // workspace
complex s[0..n/2-1], t[0..n/2-1] // workspace
%f n == 1 then
x[0] := al0]
return
}
nh := n/2
for k:=0 to nh-1
s[k] := al[k] // ’left’ elements
t[k] := alk+nh] // ’right’ elements
}
for k:=0 to nh-1
) {slx], tlkl1} := {(s[k]l+t[k]), (slk]-t[k1)}
fourier_shift(t[],nh,is*0.5)
rec_fft_dif2(s[],nh,b[],is)
rec_fft_dif2(t[],nh,c[],is)
j =0
for k:=0 to nh-1
x[j1 := blk]
x[j+1] := c[k]
j 1= j+2
}
}

[source file: recfftdif2.spr]

The data length n must be a power of 2. The result is in x[].

CHAPTER 1. THE FOURIER TRANSFORM 15

[FXT: recursive dif2 fft in slow/recfft2.cc]

The non-recursive procedure looks like this:

Code 1.6 (radix 2 DIF FFT) Pseudo code for a non-recursive procedure of the (radiz 2) DIF algo-
rithm, is must be -1 or +1:

procedure fft_dif2(a[l,1ldn,is)
// complex al[0..2%*1dn-1] input, result

n := 2%x1ldn
for ldm:=1dn to 1 step -1
{

m = 2x%xx1ldm

mh := m/2

for j:=0 to mh-1

{

e := exp(is*2*PIxIx*j/m)
for r:=0 to n-1 step m

{
u := alr+j]
v := a[r+j+mh]
alr+j] = (u + v)
alr+j+mh] := (u - v) * e

}
}

revbin_permute(al[],n)

}
[source file: fftdif2.spr]

cf. [FXT: dif2 fft in £ft/£ftdif2.cc]

In DIF FFTs the revbin_permute ()-procedure is called after the main loop, in the DIT code it was
called before the main loop. As in the procedure 1.4/ the inner loops where swapped to save trigonometric
computations.

Extracting the 1dm==1 stage of the outermost loop is again a good idea:
Replace the line

for 1ldm:=ldn to 1 step -1
by
for 1dm:=1ldn to 2 step -1

and insert
for r:=0 to n-1 step 2

{alr], alr+1]1} := {alr]+alr+1], alr]-al[r+1]}

before the call of revbin_permute(al], n).
TBD: extraction of the j=0 case
1.4 Saving trigonometric computations

The trigonometric (sin()- and cos()-) computations are an expensive part of any FFT. There are two
apparent ways for saving the involved CPU cycles, the use of lookup-tables and recursive methods.

CHAPTER 1. THE FOURIER TRANSFORM 16

1.4.1 Using lookup tables

The idea is to save all necessary sin/cos-values in an array and later looking up the values needed. This is
a good idea if one wants to compute many FFTs of the same (small) length. For FFTs of large sequences
one gets large lookup tables that can introduce a high cache-miss rate. Thereby one is likely experiencing
little or no speed gain, even a notable slowdown is possible. However, for a length-n FFT one does not
need to store all the (n complex or 2n real) sin/cos-values exp(27ik/n), k=0,1,2,3,...,n—1. Already
a table cos(2mik/n), k=0,1,2,3,...,n/4 —1 (of n/4 reals) contains all different trig-values that occur
in the computation. The size of the trig-table is thereby cut by a factor of 8. For the lookups one can
use the symmetry relations

cos(m+1x) = —cos(x) (1.38)
sin(m +z) = —sin(z) (1.39)

(reducing the interval from 0...27 to 0...7),

cos(m/2+x) = —sin(x) (1.40)
sin(r/2+2x) = 4 cos(x) (1.41)

(reducing the interval to 0...7/2) and
sin(z) = cos(m/2 —x) (1.42)

(only cos()-table needed).

1.4.2 Recursive generation of the sin/cos-values

In the computation of FFTs one typically needs the values
{exp(iw0) =1, exp(iwd), exp(iw2d), exp(iw3d), ...}

in sequence. The naive idea for a recursive computation of these values is to precompute d = exp(iw 9)
and then compute the next following value using the identity exp(iwkd)) = d - exp(iw (k — 1)). This
method, however, is of no practical value because the numerical error grows (exponentially) in the process.

Here is a stable version of a trigonometric recursion for the computation of the sequence: Precompute

¢ = cosw, (1.43)
s = sinuw, (1.44)
a = 1—cosé cancellation! (1.45)
= 2(sin 2)2 ok. (1.46)
8 = sind (1.47)
Then compute the next power from the previous as:
Cnest = c— (ac+fBs); (1.48)
Snext — S — (a s — ﬁc)v (149)
(The underlying idea is to use (with e(z) := exp(27ix)) the ansatz e(w+J) = e(w) — e(w) - z which leads

toz=1—cosd —isind=2(sin3)? —isind.)

Do not expect to get all the precision you would get with the repeated call of the sin and cos functions,
but even for very long FFTs less than 3 bits of precision are lost. When (in C) working with doubles
it might be a good idea to use the type long double with the trig recursion: the sin and cos will then
always be accurate within the double-precision.

A real-world example from [FXT: dif_fht_core in fht/fhtdif.cc], the recursion is used if TRIG_REC is
#defined:

CHAPTER 1. THE FOURIER TRANSFORM 17

[...]
double tt = M_PI_4/kh;
#if defined TRIG_REC
double s1 = 0.0, c1 = 1.0;
double al = sin(0.5%tt);
al *= (2.0%al);
double be = sin(tt);
#endif // TRIG_REC

for (ulong i=1; i<kh; i++)

{
#if defined TRIG_REC
cl -= (al*(tt=cl)+bexsl);
s1 -= (al*sl-bextt);

double s1, ci;
SinCos(tt*i, &sl, &cl);
#endif // TR]EG_R]EC

#else

1.4.3 Using higher radix algorithms

It may be less apparent, that the use of higher radix FFT algorithms also saves trig-computations. The
radix-4 FFT algorithms presented in the next sections replace all multiplications with complex factors
(0, £7) by the obvious simpler operations. Radix-8 algorithms also simplify the special cases where sin(¢)
or cos(¢) are £4/1/2. Apart from the trig-savings higher radix also brings a performance gain by their
more unrolled structure. (Less bookkeeping overhead, less loads/stores.)

1.5 Higher radix DIT and DIF algorithms

1.5.1 More notation

Again some useful notation, again let a be a length-n sequence.
Let a("%™) denote the subsequence of those elements of a that have subscripts z = r (mod m); e.g. a(0%2)

is aleve) | aB%Y) = Las a7, a11,a15, ... }. The length of a"%™) is¥ n/m.

Let a("/™ denote the subsequence of those elements of a that have indices 2 ... % —1; eg. a1/?
is a("9"t) q(2/3) is the last third of a. The length of a("™/™) is also n/m.

1.5.2 Decimation in time

First reformulate the radix 2 DIT step (formulas [1.29 and [1.30) in the new notation:

Fla©? "B SU2F [o0)] 4 sU2F [o0%2)] (1.50)

n/2 n/2

Fla]/? "2 SURF [o0)] s [a%2)] (1.51)

n/2 n/2

(Note that S° is the identity operator).

The radix 4 step, whose derivation is analogous to the radix 2 step, it just involves more writing and
does not give additional insights, is

4Throughout this book will m divide n, so the statement is correct.

CHAPTER 1. THE FOURIER TRANSFORM 18

Idea 1.3 (radix 4 DIT step) Radixz 4 decimation in time step for the FFT:
}-[a](o/zx) n/4 LSV E a(o%4)} L SUAr a(1%4)} L SYAF [a(z%ﬂ L SYAE a(3%4)}

| |
a(0%4)} T ioSYAT {a(l%zl)} _S¥AE [a(2%4)} _i0S3/AF [a(:s%)
| |

+80/4F }
a(3%4)}

[

]:[a](l/4) [
f[a](2/4) n/4 1+ 8V/AF {a(0%4)} SVAF a(l%‘ﬂ L SYAF [a(2%4)} _ SYAE

g

Fa® A S0/ [, %4)} —ieSYAE {a(1%4)} _S2AF [a(2%4)} +ioSYAF [a(3%4)} (1.55)

(1.52)
(1.53)
(1.54)

where o = +1 is the sign in the exponent. In contrast to the radix 2 step, that happens to be identical
for forward and backward transform (with both decimation frequency/time) the sign of the transform
appears here.

Or, more compactly:
Fla)¥/ n4 | o2im0i/4 GU/A L [a(o%zx)} 4 eo2imli/4 g4 [a(1%4)} (1.56)
Jeo2im2i/4 52/4}-[2%4} 4 eo2im3i/4 53/4}—[344}

where j = 0,1,2,3 and n is a multiple of 4.

Still more compactly:

3
]_—M(J‘M) n/4 ZBUQiﬂkj/4 . Sok/AE {a(k%4)} j=0,1,2,3 (1.57)
k=0

where the summation symbol denotes elementwise summation of the sequences. (The dot indicates
multiplication of every element of the rhs. sequence by the lhs. exponential.)

The general radix r DIT step, applicable when n is a multiple of r, is:

Idea 1.4 (FFT general DIT step) General decimation in time step for the FFT:

r—1
Fla)i/m "N er2inkiln . ok E {a(k%")} j=01,2,...,r—1 (1.58)
k=0

1.5.3 Decimation in frequency

The radix 2 DIF step (formulas [1.36/ and 1.37) was

F [a] 0% n/2 [50/2((0/2) | (1/2))] (1.59)
.7:[@]7(11%2) "2 [81/2 (a(O/Q) —a(l/Q))] (1.60)

The radix 4 DIF step, applicable for n divisible by 4, is

Idea 1.5 (radix 4 DIF step) Radiz 4 decimation in frequency step for the FFT:
Fla® " r [30/4 (a(0/4> NI Sy S ¢ 7 a<3/4>)}
]_—[a](l%@ [(a 0/4) 4 j g q/D) _ 4(2/4) _ 5 o(3/4))}

j_.[a](z%zx) A p {82/4 (a 0/4) — (/%) 4 4(2/4) _ (3/4)” (1.63)
7)

Fls3/4(g0/ _ 5 q/h <2/4>+wa3/4)

(1.61)

(1.62)

F (o] Y (1.64)

CHAPTER 1. THE FOURIER TRANSFORM

Or, more compactly:

nl4

F [a)97 F

3
ST e 2imhi/A. a(k/4)] j=0,1,2,3
k=0

the sign of the exponent and in the shift operator is the same as in the transform.

The general radix r DIF step is

Idea 1.6 (FFT general DIF step) General decimation in frequency step for the FFT:

r—1
Saj/rzeOQiﬂ'kj/r_a(k/T)‘| 7=0,1,2,...,r—1
k=0

nlr

F [a)V%" F

1.5.4 Implementation of radix r = p* DIF/DIT FFTs

19

(1.65)

(1.66)

If r = p # 2 (p prime) then the revbin_permute() function has to be replaced by its radix-p version:
radix_permute (). The reordering now swaps elements x with & where z is obtained from x by reversing

its radix-p expansion (see section 8.2)).

Code 1.7 (radix p* DIT FFT) Pseudo code for a radiz r:=p® decimation in time FFT:

procedure fftdit_r(all, n, is)

// complex al[0..n-1] input, result

// p (hardcoded)

// r == power of p (hardcoded)

// n == power of p (not necessarily a power of r)

{

radix_permute(all, n, p)

1x log(xr) / log(p) // r == p ** 1x
In log(n) / log(p)
ldm := (log(n)/log(p)) % 1x

if (1dm !'= 0) // n is not a power of p

{
XX = px*x1x
for z:=0 to n-1 step xx
{
fft_dit_xx(alz..z+xx-1], is) // inlined length-xx dit fft
}
}
for ldm:=ldm+lx to 1n step 1x
{
m := p¥xldm
mr := m/r
for j := 0 to mr-1
{

e := exp(is*x2*PI*I*j/m)

for k:=0 to n-1 step m

{
// all code in this block should be
// inlined, unrolled and fused:

// temporary ul[0..r-1]
for z:=0 to r-1

ulz] := alk+j+mrxz]

}

radix_permute(u[l, r, p)

for z:=1 to r-1 // e*x0 =1

ulz] := ulz] * exxz

CHAPTER 1. THE FOURIER TRANSFORM 20

r_point_fft(ull, is)

for z:=0 to r-1

alk+j+mr*z] := ulz]

}
}

[source file: fftditpx.spr]

Of course the loops that use the variable z have to be unrolled, the (length-p*) scratch space ul] has to
be replaced by explicit variables (e.g. u0, ul, ...) and the r_point_fft(u[],is) shall be an inlined
p*-point FFT.

With r = p® there is a pitfall: if one uses the radix_permute() procedure instead of a radix-p®
revbin_permute procedure (e.g. radix-2 revbin_permute for a radix-4 FFT), some additional reordering is
necessary in the innermost loop: in the above pseudo code this is indicated by the radix_permute (u[],p)
just before the p_point_fft(ul],is) line. One would not really use a call to a procedure, but change
indices in the loops where the a[z] are read/written for the DIT/DIF respectively. In the code below
the respective lines have the comment // (!).

It is wise to extract the stage of the main loop where the exp()-function always has the value 1, which is
the case when 1dm==1 in the outermost loop®. In order not to restrict the possible array sizes to powers
of p® but only to powers of p one will supply adapted versions of the 1dm==1 -loop: e.g. for a radix-4 DIF
FFT append a radix 2 step after the main loop if the array size is not a power of 4.

Code 1.8 (radix 4 DIT FFT) C++ code for a radiz / DIF FFT on the array £[1, the data length n

must be a power of 2, is must be +1 or -1:

4; // =T
2; // == log(x)/log(p) == log_2(r)

static const ulong RX
static const ulong LX

void

dit4l_fft(Complex *f, ulong ldn, int is)
// decimation in time radix 4 fft

// 1ldn == log_2(n)

{
double s2pi = (is>0 7 2.0%xM_PI : -2.0*M_PI);

const ulong n = (1<<1dn);

revbin_permute(f, n);

ulong ldm = (1dn&1); // == (log(n)/log(p)) % LX

if (1dm!=0) // n is not a power of 4, need a radix 2 step

for (ulong r=0; r<m; r+=2)

Complex a0 = f[r];
Complex al = f[r+1];
f[r] = a0 + al;
flr+1] = a0 - al;
}
}
1ldm += LX;

for (; ldm<=ldn ; ldm+=LX)
{

ulong m = (1<<1ldm);
ulong m4 = (m>>LX);
double phO = s2pi/m;

for (ulong j=0; j<m4; j++)
double phi = j*phO;

5¢f. section 4.3l

CHAPTER 1. THE FOURIER TRANSFORM 21

double c, s, c2, s2, c3, s3;
sincos(phi, &s, &c);
sincos(2.0*phi, &s2, &c2);
sincos(3.0*phi, &s3, &c3);

Complex e = Complex(c,s);
Complex e2 = Complex(c2,s2);
Complex e3 = Complex(c3,s3);

for (ulong r=0, iO=j+r; r<n; r+=m, iO+=m)

ulong il = i0 + m4;

ulong i2 = il + m4;

ulong i3 = i2 + m4;

Complex a0 = f£[i0];

Complex al = f[i2]; // (1)

Complex a2 = f[i1l; // (1)

Complex a3 = f£[i3];

al *= e;

a2 *= e2;

a3 *= e3;

Complex t0 = (a0+a2) + (al+a3);

Complex t2 = (a0+a2) - (al+a3);

Complex t1 = (a0-a2) + Complex(0,is) * (al-a3);
Complex t3 = (a0-a2) - Complex(0,is) * (al-a3);
£[i0] = tO0;

flil] = t1;

f[i2] = t2;

£[i3] = t3;

}
}

[source file: fftdit4.spr]

Code 1.9 (radix 4 DIF FFT) Pseudo code for a radiz 4 DIF FFT on the array all, the data length
n must be a power of 2, is must be +1 or -1:

procedure fftdif4(a[l,ldn,is)
// complex al[0..2%x1dn-1] input, result

n := 2%x1ldn
for 1ldm := 1ldn to 2 step -2
{
m = 2%x*x1dm
mr := m/4
for j := 0 to mr-1
{
e := exp(is*2*PI*I*j/m)
e2 = e * e
e3 = e2 *x e
for r := 0 to n-1 step m
{
u0 := alr+j]
ul := alr+j+mr]
u2 := al[r+j+mrx2]
u3 := al[r+j+mrx3]
x = uQ + u2
y :=ul + u3
t0 :=x +y // == (u0+u2) + (ul+u3d)
tl :=x -y // == (u0+u2) - (uil+u3)
X :=u0 - u2
y := (ul - uld)*Ixis
t2 :=x +y // == (u0-u2) + (ul-ul)*Ix*is
t3 :=x -y // == (u0-u2) - (ul-ud)*Ixis
tl

tl * e
t2 * e2

ct
N
(1]

CHAPTER 1. THE FOURIER TRANSFORM 22

t3 = t3 * e3

alr+j] = t0
al[r+j+mr] =t2 // (V)
alr+j+mr*2] := t1 // (1)
alr+j+mr*3] := t3

}
}

if is_odd(1ldn) then // n not a power of 4

for r:=0 to n-1 step 2
{alr], alr+1]} := {alr]+alr+1], alr]l-alr+1]1}
}

revbin_permute(a[],n)

}
[source file: fftdif4.spr]

Note the ‘swapped’ order in which t1, t2 are copied back in the innermost loop, this is what
radix_permute(ul[], r, p) was supposed to do.

The multiplication by the imaginary unit (in the statement y := (ul - u3)#*I*is) should of course be
implemented without any multiplication statement: one could unroll it as

(dr,di) := ul - u2 // dr,di = real,imag part of difference
if is>0 then y := (-di,dr) // use (a,b)*(0,+1) == (-b,a)
else y := (di,-dr) // use (a,b)*(0,-1) == (b,-a)

In section [1.7/ it is shown how the if-statement can be eliminated.

If n is not a power of 4, then 1dm is odd during the procedure and at the last pass of the main loop one
has 1dm=1.

To improve the performance one will instead of the (extracted) radix 2 loop supply extracted radix 8 and
radix 4 loops. Then, depending on whether n is a power of 4 or not one will use the radix 4 or the radix
8 loop, respectively. The start of the main loop then has to be

for 1dm := 1ldn to 3 step X

and at the last pass of the main loop one has 1dm=3 or 1dm=2.

[FXT: dit4l_fft in fft/fftdit4l.cc] [FXT: dif4l_fft in fft/fftdif4l.cc] [FXT: dit4_fft in
fft/fftdit4.cc] [FXT: dif4 £t in fft/fftdif4.cc]

The radix_permute () procedure is given in section 8.2/ on page [120.

1.6 Split radix Fourier transforms (SRFT)

Code 1.10 (split radix DIF FFT) Pseudo code for the split radiz DIF algorithm, is must be -1 or

+1:
procedure fft_splitradix_dif(x[],y[],1dn,is)
{
n := 2%*xldn
if n<=1 return
n2 := 2*n
%or k:=1 to ldn
n2 :=n2 / 2
nd :=n2 / 4

e := 2 % PI / n2

for j:=0 to n4-1
{

CHAPTER 1. THE FOURIER TRANSFORM 23

a:=j*e

ccl := cos(a)

ssl := sin(a)

cc3 := cos(3*a) // == 4*cclx(ccl*ccl1-0.75)
ss3 := sin(3*a) // == 4*ss1*(0.75-ssl*ss1)
ix :=

id := 2%*n2

while ix<n-1

il := i0 + n4

i2 = il + nd

i3 := i2 + n4d

{x[i0], r1} := {x[i0] + x[i2], x[i0] - x[i2]}
{x[i1], r2} := {x[i1] + x[i3], x[i1] - x[i3]}
{y[i0], s1} := {y[i0] + y[i2], y[i0] - y[i2]}
{y[i1], s2} := {y[i1] + y[i3], y[i1]l - y[i31}
{r1, 83} := {ri1+s2, ri1-s2}

{r2, s2} :; {r2+s1, r2-si}
// complex mult: (x[i2],y[i2]) :

-(s2,r1) * (ssl,ccl)

x[i2] := ril*ccl - s2#*ssl
y[i2] := -s2%ccl - ril*ssl
// complex mult: (y[i3],x[i3]) := (r2,s3) * (cc3,ss3)
x[i3] := s3%cc3 + r2#*ss3
y[i3] := r2%cc3 - s3*ss3
i0 := i0 + id
}
ix := 2 % id - n2 + j
id := 4 % id
}
}
}
ix =1
id := 4

%hile ix<n
for i0:=ix-1 to n-id step id

il :=i0 + 1
{x[i0], x[i1]} :
{yliol, y[i1l} :

{x[i0]+x[i1], x[i0]-x[i1]}
{y[i0l+y[i1], y[i0l-y[i1l}

ix =2 *x id - 1
id := 4 % id

}

revbin_permute(x[],n)
revbin_permute(y[],n)

%f is>0
for j:=1 to n/2-1
{
swap(x[j],x[n-j1)
swap(y[jl,y[n-3j1)

}
}

[source file: splitradixfft.spr]

[FXT: split_radix_fft in fft/fftsplitradix.cc]
[FXT: split_radix _fft in fft/cfftsplitradix.cc]

1.7 Inverse FFT for free

Suppose you programmed some FFT algorithm just for one value of is, the sign in the exponent. There
is a nice trick that gives the inverse transform for free, if your implementation uses seperate arrays for

CHAPTER 1. THE FOURIER TRANSFORM 24

real and imaginary part of the complex sequences to be transformed. If your procedure is something like

procedure my_fft(ar[], ai[l, 1dn) // only for is==+1 !
// real ar[0..2%x1ldn-1] input, result, real part
// real ai[0..2%*1ldn-1] input, result, imaginary part

{
// incredibly complicated code

// that you can’t see how to modify
// for is==-1

Then you don’t need to modify this procedure at all in order to get the inverse transform. If you want
the inverse transform somewhere then just, instead of

my_fft(ar[], aill, ldn) // forward fft

type

my_fft(aill, ar[], ldn) // backward fft

Note the swapped real- and imaginary parts ! The same trick works if your procedure coded for fixed
is= —1.
To see, why this works, we first note that
Fla+ib] = Flagl+ioF[aa]+iF [bs]+ o F[ba] (1.67)
= Flag|+iF[bs)+io (Flaa] —iF[ba]) (1.68)

and the computation with swapped real- and imaginary parts gives
}'[b+ia] = f[bs] + if[as] +io (f[bA] — i}'[aA]) (1.69)
. but these are implicitely swapped at the end of the computation, giving

Flas] +iFbs] —io (Flaal —iF[ba]) = F lla+ib] (1.70)

When the type Complex is used then the best way to achieve the inverse transform may be to reverse
the sequence according to the symmetry of the FT ([FXT: reverse nh in aux/copy.h], reordering by
k+— k! mod n). While not really ‘free’ the additional work shouldn’t matter in most cases.

With real-to-complex FTs (R2CFT) the trick is to reverse the imaginary part after the transform. Obvi-
ously for the complex-to-real FTs (R2CFT) one has to reverse the imaginary part before the transform.
Note that in the latter two cases the modification does not yield the inverse transform but the one with
the ‘other’ sign in the exponent. Sometimes it may be advantageous to reverse the input of the R2CFT
before transform, especially if the operation can be fused with other computations (e.g. with copying in
or with the revbin-permutation).

1.8 Real valued Fourier transforms

The Fourier transform of a purely real sequence ¢ = F [a] where a € R has® a symmetric real part
(R¢ = Re) and an antisymmetric imaginary part (3¢ = —S¢). Simply using a complex FFT for real
input is basically a waste of a factor 2 of memory and CPU cycles. There are several ways out:

e sincos wrappers for complex FFTs

e usage of the fast Hartley transform

6¢f. relation [1.20

CHAPTER 1. THE FOURIER TRANSFORM 25

e a variant of the matrix Fourier algorithm

e special real (split radix algorithm) FFTs

All techniques have in common that they store only half of the complex result to avoid the redundancy
due to the symmetries of a complex FT of purely real input. The result of a real to (half-) complex
FT (abbreviated R2CFT) must contain the purely real components ¢y (the DC-part of the input signal)
and, in case n is even, ¢, /o (the nyquist frequency part). The inverse procedure, the (half-) complex to
real transform (abbreviated C2RFT) must be compatible to the ordering of the R2CFT. All procedures
presented here use the following scheme for the real part of the transformed sequence ¢ in the output
array al[]:

alo] = Reo (1.71)
all] = Rg
al2] = Re

aln/2 = Rews

For the imaginary part of the result there are two schemes:
Scheme 1 (‘parallel ordering’) is

an/2+1] =S¢ (1.72)
an/2+2] = Se
aln/24+3] = Ses
a[n — 1] = SCn/2,1
Scheme 2 (‘antiparallel ordering’) is
an/2+1] = S (1.73)
an/2+2] = Scu-0
a[n/2 + 3] = Scn/2,3
am—1] = Squ

Note the absence of the elements Sy and ¢, /o which are zero.

1.8.1 Real valued FT via wrapper routines

A simple way to use a complex length-n/2 FFT for a real length-n FFT (n even) is to use some post-
and preprocessing routines. For a real sequence a one feeds the (half length) complex sequence f =
aleven) 4 q(°dd) into a complex FFT. Some postprocessing is necessary. This is not the most elegant
real FFT available, but it is directly usable to turn complex FFTs of any (even) length into a real-valued
FFT.

TBD: give formulas
Here is the C++ code for a real to complex FFT (R2CFT):

void
wrap_real_complex_fft(double *f, ulong ldn, int is/*=+1%/)

// ordering of output:
// £[0] = re[0] (DC part, purely real)

CHAPTER 1. THE FOURIER TRANSFORM

// £[1] = re[n/2] (nyquist freq, purely real)
// £[2] = re[1]

// £[3] = im[1]

// £[4] = re[2]

55 f[5] = im[2]

// £[2%i] = re[i]

;; fl2xi+1] = im[i]

// £[n-2]1 = re[n/2-1]

;? f[n-1] = im[n/2-1]

// equivalent:

// { fht_real_complex_fft(f, 1ldn, is); zip(f, n); }
//

{

if (1dn==0) return;
fht_fft((Complex *)f, 1ldn-1, +1);
const ulong n = 1<<1dn;

const ulong nh = n/2, n4 = n/4;
const double phiO = M_PI / nh;
for(ulong i=1; i<n4; i++)

{
ulong il = 2 * i; // re low [2, 4, ..., n/2-2]
ulong i2 = i1 + 1; // im low [3, 5, ..., n/2-1]
ulong i3 = n - il; // re hi [n-2, n-4, ..., n/2+2]
ulong i4 = i3 + 1; // im hi [n-1, n-3, ..., n/2+3]

double filr, £2i;
sumdiff05(£[i3], f[i1]l, fir, £2i);

double f2r, f1i;

sumdiff05(£f[i2], f[i4], f2r, f1i);
double c, s;

double phi = i*phiO;

SinCos(phi, &s, &c);

double tr, ti;

cmult(c, s, f2r, f2i, tr, ti);

// £li1] fir + tr; // re low
// f£i3] fir - tr; // re hi

// ="=
sumdiff (fir, tr, f[i1], £[i3]);

// £[i4] = is * (ti + f1i); // im hi

;; £[i2] = is * (ti - £1i); // im low

if (is>0) sumdiff(ti, f£1i, £[i4], £[i2]);
else sumdiff(-ti, f1i, f[i2], f[i4]);

}
sumdiff (£[0], £[11);
if (nh>=2) f[nh+1] *= is;

TBD: eliminate if-statement in loop
C++ code for a complex to real FFT (C2RFT):

void
wrap_complex_real_fft(double *f, ulong ldn, int is/*=+1%/)
//

// inverse of wrap_real_complex_fft()
//
// ordering of input:
// like the output of wrap_real_complex_fft()
{
if (1dn==0) return;
const ulong n = 1<<ldn;
const ulong nh = n/2, n4d = n/4;
const double phiO = -M_PI / nh;
for(ulong i=1; i<n4; i++)

ulong il = 2 * i; // re low [2, 4, ..., n/2-2]

26

CHAPTER 1. THE FOURIER TRANSFORM

ulong i2 = i1 + 1; // im low [3, 5, ..., n/2-1]
ulong i3 = n - il; // re hi [n-2, n-4, ..., n/2+2]
ulong i4 = i3 + 1; // im hi [n-1, n-3, ..., n/2+3]

double filr, £2i;
// double fir = £[i1] + £[i3]; // re symm
// double f2i fli1] - £[i3]; // re asymm

/] ="=
sumdiff (£[i1], f£[i3], fir, f2i);

double f2r, f1i;

// double f2r = -f[i2] - £[i4]; // im symm
// double f1li £[i2] - £[i4]; // im asymm

/] ="=

sumdiff (-f[i4], f[i2], f1i, f2r);
double c, s;

double phi = i*phiO;

SinCos(phi, &s, &c);

double tr, ti;

cmult(c, s, f2r, f2i, tr, ti);

// £li1] fir + tr; // re low
// fEiB] fir - tr; // re hi

// ="=
sumdiff (fir, tr, f[i1], £[i3]);

// £[i2] = ti - f1i; // im low
% fEi4] =ti+ f1i; // im hi

sumdiff (ti, f1i, f[i4], £f[i2]);
}
sumdiff (£[0], £[1]1);
if (nh>=2) { f[nh] #*= 2.0; f[nh+1] *= 2.0; }
fht_fft((Complex *)f, 1ldn-1, -1);

if (is<0) reverse_nh(f, n);
}
[FXT: wrap_real_complex_fft in realfft/realfftwrap.cc]
[FXT: wrap_complex real fft in realfft/realfftwrap.cc]

1.8.2 Real valued split radix Fourier transforms

Real to complex SRFT

Code 1.11 (split radix R2CFT) Pseudo code for the split radix R2CFT algorithm

procedure r2cft_sp1itradix_dit(x[],ldn)
{

n := 2%*1ldn
ix :
id :
do
{

il := i0 + 1
{x[i0], x[i11} := {x[i0]+x[i1], x[i0]-x[i1l}
i0 := i0 + id

n2 := 2
nn := n/4
¥hile nn!=0

27

CHAPTER 1. THE FOURIER TRANSFORM

n2 :

nd :

n8 :

do

while ix<n

e :
a

{

= 2*n2
= 2¥n2
= n2/4
= n2/8
// ix loop
i0 := ix
ghlle i0<n
il := 10
i2 := il + néd
i3 := 12 + n4d
i4 := i3 + n4d
{t1, x[i4]} := {x[i4]+x[i3], x[i4]-x[i3]}
{x[i1], x[i3]} := {x[i1l+t1, x[i1]-t1}
if n4!=1
{
il := il + n8
i2 := i2 + n8
i3 := i3 + n8
i4 := i4 + n8
tl := (x[i3]+x[i4]) * sqrt(1/2)
t2 := (x[13]-x[i4]) * sqrt(1/2)
{x[i4], x[i3]} := {x[i2]-t1, -x[i2]-t1}
{x[i1], x[i2]} := {x[i1]+t2, =x[i1]-t2}
}
i0 := i0 + id
ix := 2*id - n2
id := 2xid
2.0%PI/n2
e
for j:=2 to n8
ccl := cos(a)
ssl := sin(a)
cc3 := cos(3*a) // == 4*cclx(ccl*ccl-0.75)
ss3 := sin(3*a) // == 4*ss1*(0.75-ssl*ss1)
a := jxe
ix =0
id := 2*n2
do // ix-loop
{
i0 := ix
while 1i0<n
i1 := 40+ j - 1
i2 := il + n4d
i3 = i2 + nd
i4 := i3 + n4d
i5 := i0 + nd - j + 1
i6 := i5 + n4
i7 := i6 + n4
i8 := i7 + n4d

// complex mult: (t2,t1) := (x[i7],x[i3]) * (ccl,ssl)
t1 := x[i3]*ccl + x[i7]*ssl
t2 := x[i7]*ccl - x[i3]*ssl

// complex mult: (t4,t3) := (x[i8],x[i4]) * (cc3,ss3)

t3 := x[i4]*cc3 + x[i8]*ss3

t4 := x[i8]*cc3 - x[i4]*ss3

t5 = tl + t3

t6 = t2 + t4

t3 = tl - t3

td = t2 - t4

{t2, x[i3]1} := {t6+x[i6], t6-x[i6]}
x[i8] := t2

{t2,x[i7]1} := {x[i2]-t3, -x[i2]-t3}
x[i4] := t2

{t1, x[i6]} := {x[i1]+t5, x[i1]-t5}

28

CHAPTER 1. THE FOURIER TRANSFORM

x[i1] := t1
{t1, x[i5]} := {x[i5]+t4, x[i5]-t4}
x[i2] := t1

i0 := 10 + id

ix :
id :

2%id - n2
2%id

while ix<n

nn := nn/2
}
}

[source file: r2csplitradixfft.spr]

[FXT: split_radix_real _complex_fft in realfft/realfftsplitradix.cc]

Complex to real SRFT

Code 1.12 (split radix C2RFT) Pseudo code for the split radix C2RFT algorithm

procedure c2rft_splitradix_dif(x[],1ldn)
{

n := 2%*xldn

n2 := n/2
nn := n/4
while nn!=0

0
n2

n2/2
n2/4
n2/8

do // ix loop

5 -
N
o nwwn

i0 := ix

while iO<n

{ .

i0

il + n4
i2 + n4
i3 + nd

{x[i1], t1} := {x[i1]+x[i3], x[i1]-x[i3]}
x[i2] := 2xx[i2]

x[i4] := 2*x[i4]
{x[i3], x[i4]} := {t1+x[i4], t1-x[i4]}

%f n4'!=1

il := il + n8

i2 := i2 + n8

i3 := i3 + n8

i4 := i4 + n8

{x[i1], t1} := {x[i2]+x[i1], x[i2]-x[i1]}
{t2, x[i2]} := {x[i4]+x[i3], x[i4]-x[i3]}
x[i3] := -sqrt(2)*(t2+t1)

x[i4] := sqrt(2)*(t1-t2)

ix := 2*id - n2
id := 2x*id
while ix<n
e := 2.0%PI/n2
a :=e

for j:=2 to n8
{

29

CHAPTER 1. THE FOURIER TRANSFORM

ccl :
ssl :
cc3 :
ss3

a

do
{

= j
ix :
id :

*
0

C
S
C
S

e

os(a)
in(a)
os(3*a) //
in(3*%a) //

4xccl*(ccl*cc1-0.75)
4*ss1%(0.75-ss1*ss1)

2*n2

// ix-loop

i0 := ix
while 10<n

i1 =10+ j - 1

i2 := il + n4

i3 = i2 + n4d

i4 := i3 + n4d

ib :=i0 +nd4 - j + 1
i6 := i5 + n4

i7 := i6 + n4

i8 := i7 + n4d

{x[i1]l, t1} :
{x[i5], t2} :

{x[i1]+x[i6], x[i1]1-x[i6]%}
{x[ib]+x[i2], x[ib]-x[i2]}
{t3, x[i6]1} := {x[i81+x[i3], x[i8]-x[i3]1}
{t4, x[i2]1} := {x[i4]1+x[i7], x[i4]-x[i7]1}
{t1, t5} := {t1+t4, t1-t4}
{t2, t4} := {t2+t3, t2-t3}

// complex mult: (x[i7],x[i3])
x[i3] := tb*ccl + t4dx*ssl
x[i7] := —td*ccl + tb#*ssl

// complex mult: (x[i4],x[i8])
x[i4] := tl*cc3 - t2#*ss3
x[i8] := t2%cc3 + ti1*ss3

i0 := 10 + id

(t5,t4) =* (ssi,ccl)

(t1,t2) * (cc3,ss3)

ix := 2%id - n2
id := 2x*id
while ix<n
}
nn := nn/2
¥
ix = 1;
id := 4;
do
{
i0 := ix-1
¥hile iO<n
il :=i0 + 1
{x[i0], x[i1]1} := {x[i0]+x[i1], x[i0]-x[i11}
i0 := i0 + id
ix := 2%id-1
id := 4 % id

while ix<n

}

[source file: c2rsplitradixfft.spr]

[FXT: split_radix_complex real fft in realfft/realfftsplitradix.cc]

30

CHAPTER 1. THE FOURIER TRANSFORM 31

1.9 Multidimensional FT's

1.9.1 Definition

Let ay, (x = 0,1,2,...,C —1 and y = 0,1,2,..., R — 1) be a 2-dimensional array of data’. Its 2-
dimensional Fourier transform cy, 5, is defined by:

¢c = Fld (1.74)
| C-1R-1
Chp = ——= ag, Z2RHYh where z=eT27Y" p=RC (1.75)
\/ﬁ =0 =0
Its inverse is
a = F (1.76)
| C-1R-1
a = =D e THY (1.77)
k=0 h=0
For a m-dimensional array az (¥ = (z1,22,23,...,Tm), ¥; € 0,1,2,...,5;) the m-dimensional Fourier

transform cj, (E = (k1,ka, ks, ... km), ki €0,1,2,...,5;) is defined as

Z Z Z a;gz“?"’s where 2z =e*2™/" n=8,8,...5, (1.78)

1
Cy = —=
\/ﬁ x1=0 x2=0 Ty =
1 S Pt
= — Zafz”'k where S = (S —1,8 —1,...,8, —1)7 (1.79)
n 4~
=0

The inverse transform is again the one with the minus in the exponent of z.

1.9.2 The row column algorithm

The equation of the definition of the two dimensional FT (1.74)) can be recast as

Cc—1

R—1
1 k h
Chp = —— E 2 E g,y 2Y (1.80)
\/ﬁ =0 =0

which shows that the 2-dimensional FT can be accomplished by using 1-dimensional FTs to transform
first the rows and then the columns®. This leads us directly to the row column algorithm:

Code 1.13 (row column FFT) Compute the two dimensional FT of all[l using the row column
method

procedure rowcol_ft(a[l[]l, R, C)

{
complex a[R][C] // R (length-C) rows, C (length-R) columns

for r:=0 to R-1 // FFT rows
fft(alr]l (1, C, is)

complex t[R] // scratch array for columns
f:or c:=0 to C-1 // FFT columns

"Imagine a R x C matrix of R rows (of length C) and C columns (of length R).
8or the rows first, then the columns, the result is the same

CHAPTER 1. THE FOURIER TRANSFORM 32

copy al0,1,...,R-1]1[c] to t[l // get column
fft(t[]l, R, is)
copy t[] to al[0,1,...,R-1]1[c] // write back column

}

[source file: rowcolft.spr]

Here it is assumed that the rows lie in contiguous memory (as in the C language). [FXT: twodim_fft in
ndimfft/twodimfft.cc]

Transposing the array before the column pass in order to avoid the copying of the columns to extra
scratch space will do good for the performance in most cases. The transposing back at the end of the
routine can be avoided if a backtransform will follow”, the backtransform must then be called with R and
C swapped.

The generalization to higher dimensions is straight forward. [FXT: ndim_fft in ndimfft/ndimfft.cc]

1.10 The matrix Fourier algorithm (MFA)

The matrix Fourier algorithm®” (MFA) works for (composite) data lengths n = RC. Consider the input
array as a R X C-matrix (R rows, C' columuns).

Idea 1.7 (matrix Fourier algorithm) The matriz Fourier algorithm (MFA) for the FFT:

1. Apply a (length R) FFT on each column.
2. Multiply each matriz element (index r,c) by exp(£2mirc/n) (sign is that of the transform,).
3. Apply a (length C) FET on each row.

4. Transpose the matriz.

Note the elegance!
It is trivial to rewrite the MFA as the

Idea 1.8 (transposed matrix Fourier algorithm) The transposed matriz Fourier algorithm
(TMFA) for the FFT:

1. Transpose the matriz.
2. Apply a (length C') FFT on each column (transposed row).
3. Multiply each matriz element (index r,c) by exp(£2mirc/n).

4. Apply a (length R) FFT on each row (transposed column).

TBD: MFA = radiz-sqrt(n) DIF/DIT FFT

FFT algorithms are usually very memory nonlocal, i.e. the data is accessed in strides with large skips (as
opposed to e.g. in unit strides). In radix 2 (or 2") algorithms one even has skips of powers of 2, which is
particularly bad on computer systems that use direct mapped cache memory: One piece of cache memory
is responsible for caching addresses that lie apart by some power of 2. TBD: mowve cache discussion to
appendiz With an ‘usual’ FFT algorithm one gets 100% cache misses and therefore a memory performance
that corresponds to the access time of the main memory, which is very long compared to the clock of

9as typical for convolution etc.
10A variant of the MFA is called “four step FFT’ in [34].

CHAPTER 1. THE FOURIER TRANSFORM 33

modern CPUs. The matrix Fourier algorithm has a much better memory locality (cf. [34]), because the
work is done in the short FFTs over the rows and columns.

For the reason given above the computation of the column FFTs should not be done in place. One can
insert additional transpositions in the algorithm to have the columns lie in contiguous memory when they
are worked upon. The easy way is to use an additional scratch space for the column FFTs, then only the
copying from and to the scratch space will be slow. If one interleaves the copying back with the exp()-
multiplications (to let the CPU do some work during the wait for the memory access) the performance
should be ok. Moreover, one can insert small offsets (a few unused memory words) at the end of each row
in order to avoid the cache miss problem almost completely. Then one should also program a procedure
that does a ‘mass production’ variant of the column FFTs, i.e. for doing computation for all rows at once.

It is usually a good idea to use factors of the data length n that are close to \/n. Of course one can
apply the same algorithm for the row (or column) FFTs again: It can be a good idea to split n into 3
factors (as close to n'/3 as possible) if a length-n'/3 FFT fits completely into the second level cache (or
even the first level cache) of the computer used. Especially for systems where CPU clock is much higher
than memory clock the performance may increase drastically, a performance factor of two (even when
compared to else very good optimized FFTs) can be observed.

1.11 Automatic generation of FFT codes

FFT generators are programs that output FFT routines, usually for fixed (short) lengths. In fact the
thoughts here a not at all restricted to FFT codes, but FFTs and several unrollable routines like matrix
multiplications and convolutions are prime candidates for automated generation. Writing such a program
is easy: Take an existing FFT and change all computations into print statements that emit the necesary
code. The process, however, is less than delightful and errorprone.

It would be much better to have another program that takes the existing FFT code as input and emit the
code for the generator. Let us call this a metagenerator. Implementing such a metagenerator of course
is highly nontrivial. It actually is equivalent to writing an interpreter for the language used plus the
necessary data flow analysis'!.

A practical compromise is to write a program that, while theoretically not even close to a metagenerator,
creates output that, after a little hand editing, is a usable generator code. The implemented perl script
[FXT: file scripts/metagen.pl] is capable of converting a (highly pedantically formatted) piece of C++
code!? into something that is reasonable close to a generator.

Further one may want to print the current values of the loop variables inside comments at the beginning
of a block. Thereby it is possible to locate the corresponding part (both wrt. file and temporal location)
of a piece of generated code in the original file. In addition one may keep the comments of the original
code.

With FFTs it is necessary to identify (‘reverse engineer’) the trigonometric values that occur in the process
in terms of the corresponding argument (rational multiples of 7). The actual values should be inlined
to some greater precision than actually needed, thereby one avoids the generation of multiple copies of
the (logically) same value with differences only due to numeric inaccuracies. Printing the arguments,
both as they appear and ged-reduced, inside comments helps to understand (or further optimize) the
generated code:

double c1=.980785280403230449126182236134; // == cos(Pi*1/16) == cos(Pix*1/16)
double s1=.195090322016128267848284868476; // == sin(Pi*1/16) == sin(Pix1/16)
double c2=.923879532511286756128183189397; // == cos(Pi*2/16) == cos(Pix*1/8)
double s2=.382683432365089771728459984029; // == sin(Pi*2/16) == sin(Pix*1/8)

Automatic verification of the generated codes against the original is a mandatory part of the process.

HTf you know how to utilize gce for that, please let me know.
12 Actually only a small subset of C++.

CHAPTER 1. THE FOURIER TRANSFORM 34

A level of abstraction for the array indices is of great use: When the print statements in the generator
emit some function of the index instead of its plain value it is easy to generate modified versions of the
code for permuted input. That is, instead of

cout<<"sumdiff (£f0, £2, g["<<k0<<"], g["<<k2<<"]);" <<endl;
cout<<"sumdiff (f1, £3, g["<<k1<<"], g["<<k3<<"]);" <<endl;

use

cout<<"sumdiff (£f0, f2, "<<idxf(g,k0)<<", "<<idxf(g,k2)<<");" <<endl;
cout<<"sumdiff (f1, £3, "<<idxf(g,k1)<<", "<<idxf(g,k3)<<");" <<endl;

where idxf (g, k) can be defined to print a modified (e.g. the revbin-permuted) index k.
Here is the length-8 DIF FHT core as an example of some generated code:

template <typename Type>
inline void fht_dit_core_8(Type *f)
// unrolled version for length 8

{ // start initial loop

{// fi=0 gi=1
Type g0, f0, f1, gi;
sumdiff (£[0], £[1], £O, g0);
sumdiff (£[2], £[3], f1, gl);
sumdiff (£f0, f1);
sumdiff (g0, gi1);
Type s1, cl1, s2, c2;
sumdiff (£[4], £[5], s1, cl);
sumdiff (£[6], £[7], s2, c2);
sumdiff (s1, s2);
sumdiff (f0, s1, f[0], f[4]);
sumdiff (f1, s2, £f[2], f[6]1);
cl *= M_SQRT2;
c2 *= M_SQRT2;
sumdiff (g0, c1, £[1], £[51);
sumdiff(gl, c2, £[31, £[71);

}
} // end initial loop

}
/] —== --
// opcount by generator: #mult=2=0.25/pt #add=22=2.75/pt

The generated codes can be of great use when one wants to spot parts of the original code that need further
optimization. Especially repeated trigonometric values and unused symmetries tend to be apparent in
the unrolled code.

It is a good idea to let the generator count the number of operations (e.g. multiplications, additions,
load/stores) of the code it emits. Even better if those numbers are compared to the corresponding values
found in the compiled assembler code.

It is possible to have gee produce the assembler code with the original source interlaced (which is a
great tool with code optimization, cf. the target asm in the FXT makefile). The necessary commands are
(include- and warning flags omitted)

create assembler code:
-S -fverbose-asm -g -02 test.cc -o test.s

create asm interlaced with source lines:
as —alhnd test.s > test.lst

As an example the (generated)

template <typename Type>
inline void fht_dit_core_4(Type *f)
// unrolled version for length 4

{ // start initial loop

{// fi=0
Type £0, f1, £2, £3;

CHAPTER 1. THE FOURIER TRANSFORM

sumdiff (£[0], £[1], fO, f1);
sumdiff (£[2], £[3], £f2, £3);
sumdiff (f0, f2, £[0], f[2]);
sumdiff (f1, £3, f£[1], £[31);

}
} // end initial loop

}
/] -== -=
// opcount by generator: #mult=0=0/pt #add=8=2/pt

defined in shortfhtditcore.h results, using

// file test.cc:
int main()

double f[4];
fht_dit_core_4(f);
return O;

}

in (some lines deleted plus some editing for readability)

11:test.cc @ fht_dit_core_4(f);
23:shortfhtditcore.h @ fht_dit_core_4(Type *f)

24 :shortfhtditcore.h @ // unrolled version for length 4
25:shortfhtditcore.h @ {

27:shortfhtditcore.h @ { // start initial loop
28:shortfhtditcore.h @ { // fi =0
29:shortfhtditcore.h @ Type £0, f1, £2, £3;
30:shortfhtditcore.h @ sumdiff (£[0], f£[1], fO, f1);

45:sumdiff.h @ template <typename Type>

46:sumdiff.h @ static inline void

47:sumdiff.h @ sumdiff (Type a, Type b, Type &s, Type &d)
48:sumdiff.h @ // {s, d} <--| {a+b, a-b}

49:sumdiff.h @ { s=a+b; d=a-b; }

305 0006 DD442408 £1dl 8(%esp)

306

31:

319

000a DD442410 f1dl
shortfhtditcore.h @
000e DD442418 £f1dl

16 (Yesp)
sumdiff (£[2], £[3], f2, £3);
24 (%esp)

320 0012 DD442420 £1dl 32(%esp)
32:shortfhtditcore.h @ sumdiff (£0, £2, £[0], £[2]);

333 0016 D9C3 f1d %st(3)

334 0018 D8C3 fadd %st(3),%st
335 001a D9C2 £1d %st(2)

336 001c D8C2 fadd %st(2),%st
339 001e D9C1 £1d %st(1)

340 0020 D8C1 fadd %st(1),%st
341 0022 DD5C2408 fstpl 8(%esp)
342 0026 DEE9 fsubrp %st,%st(1)
343 0028 DD5C2418 fstpl 24(%esp)
344 002c D9CB fxch %st(3)

349 002e DEE2 fsubp %st,%st(2)
350 0030 DEE2 fsubp %st,%st(2)
353 0032 D9CO £1d %st(0)

354 0034 D8C2 fadd %st(2),%st
355 0036 DD5C2410 fstpl 16(%esp)
356 003a DEE1 fsubp %st,%st(1)

357 003c DD5C2420 fstpl 32(%esp)
33:shortfhtditcore.h @ sumdiff (f1, £3, f[1], £f[3]);

35

Note that the assembler code is not always in sync with the corresponding source lines which is especially

true with higher levels of optimization.

Chapter 2

Convolutions

2.1 Definition and computation via FFT

The cyclic convolution of two sequences a and b is defined as the sequence h with elements k. as follows:
h = a®b (2.1)

h, = > anb,

z+y=7(mod n)

The last equation may be rewritten as

n—1
h, = Zaw br_y (2.2)

z=0

where negative indices 7 — & must be understood as n 4+ 7 — x, it’s a cyclic convolution.

Code 2.1 (cyclic convolution by definition) Compute the cyclic convolution of al[] with b[] using
the definition, result is returned in c[]

procedure convolution(all,b[],c[],n)

{
for tau:=0 to n-1
s :=0
for x:=0 to n-1
tx = tau - x
if tx<0 then tx :=tx + n
s := s + a[x] * b[tx]
c[tau] := s
}

This procedure uses (for length-n sequences a, b) proportional n? operations, therefore it is slow for large
values of n. The Fourier transform provides us with a more efficient way to compute convolutions that
only uses proportional n log(n) operations. First we have to establish the convolution property of the
Fourier transform:

Fla®b] = Fla]F[b (2.3)

i.e. convolution in original space is ordinary (elementwise) multiplication in Fourier space.

36

CHAPTER 2. CONVOLUTIONS 37

Here is the proof:
Flal, Fbl, = ZaxzkIZbyzky (2.4)
z Yy

with y:=7—-z

_ Zaﬂﬂ zkx Z by Zk (1—x)
_ Z Z Uy Zk S Zk: (t—x)

r T—X

= Z%%pwfaﬁf

T

- [r[ze)

= (Fla®@b]),
Rewriting formula 2.3 as
a®b = F '[Fla]Fb] (2.5)

tells us how to proceed:

Code 2.2 (cyclic convolution via FFT) Pseudo code for the cyclic convolution of two complex valued
sequences x[1 and y[J, result is returned in y[1:

procedure fft_cyclic_convolution(x[], y[], n)

{
complex x[0..n-1], y[0..n-1]

// transform data:
fft(x[], n, +1)
fft(y[1, n, +1)

// convolution in transformed domain:
for i:=0 to n-1

y[il := y[i] =* x[i]
// transform back:

fft(y[1, n, -1)

// normalise:
for i:=0 to n-1

ylil :=y[il / n
}

[source file: fftenvl.spr]

It is assumed that the procedure £t () does no normalization. In the normalization loop you precompute
1.0/n and multiply as divisions are much slower than multiplications. [FXT: fht_fft_convolution and
split_radix_fft_convolution in fft/fftcnvl. cc]

Auto (or self) convolution is defined as

h = a®a (2.6)
h, = Z Gz Gy
z+y=7(n)

The corresponding procedure should be obvious. [FXT: fht_convolution and fht_convolutionO in
fht/fhtcnvl.cc|

CHAPTER 2. CONVOLUTIONS 38

In the definition of the cyclic convolution (2.1)) one can distinguish between those summands where the
x+y ‘wrapped around’ (i.e. x +y = n+ 7) and those where simply 4+ y = 7 holds. These are (following
the notation in [18]) denoted by A(!) and h(®) respectively. Then

h o= hO4p® (2.7)

where

O = Y ab,,

z<T

A = Z o

x>T

There is a simple way to seperate h(?) and h(1) as the left and right half of a length-2n sequence. This
is just what the acyclic (or linear) convolution does: Acyclic convolution of two (length-n) sequences a
and b can be defined as that length-2n sequence h which is the cyclic convolution of the zero padded
sequences A and B:

A = {G/OaalaaQa"'70/1’7,71’0707'-',0} (28)

Same for B. Then

2n—1

h, = ZAxBT_x 7=0,1,2,...,2n—1 (2.9)
=0

Z agb, = Z ag by + Z az by (2.10)

z+y=7(2n) 0<z<n n<lr<2n
x,y<2n

where the right sum is zero because a, = 0 for n < x < 2n. Now

Z az b, = Z Gy br_p + Z Gz bontr—n = R +S; (2.11)
0<z<n z<T T>T
where the rhs. sums are silently understood as restricted to 0 < x < n.

For 0 < 7 < n the sum S, is always zero because bay, 4z is zero (n < 2n+7—12 < 2n for 0 < 7—x < n);
the sum R, is already equal to h(TO). For n < 7 < 2n the sum S; is again zero, this time because it
extends over nothing (simultaneous conditions < n and * > 7 > n); R, can be identified with hil,)
(0 <7/ < n) by setting 7 =n+ 7.

As an illustration consider the convolution of the sequence {1,1, 1,1} with itself: its linear self convolution
is {1,2,3,4,3,2,1,0}, its cyclic self convolution is {4,4,4,4}, i.e. the right half of the linear convolution
elementwise added to the left half.

By the way, relation [2.3]is also true for the more general z-transform, but there is no (simple) backtrans-
form, so we cannot turn

a®b = Z7'[Z[a] Zb] (2.12)
(the equivalent of [2.5) into a practical algorithm.

A convenient way to illustrate the cyclic convolution of to sequences is the following semi-symbolical
table:

CHAPTER 2. CONVOLUTIONS

+
|
o

© 00N O WN - O —
© 00N O WN - O

e e el
O WN = O
e e el
ad WN = O

The entries denote where in the convolution the products of the input elements can be found:

+-= 0
I
0: 0
1: 1
2:

Acyclic convolution (where there are 32 buckets 0..31) looks like:

+
|
|

0

© 00N O WNF- O —
© 0N O WNH+- O

e el e
g W N~ O
e el el
add W= O

© 00 NO O WN -

[S S = Y
S Ok WN - O

1

© 0 NO O WN -

[R S S S ST S
o gD W NN = O

© 00 ~NO O WN

= e
N - O

13

2

2

3 <-—-= h[sj contains a[1]*b[2]

2

©O© 00N Ok WN

L S e e)
~NOo Ok W NN e O

© 00 N O O d W

10

12
13
14
15

N~ O

3

3

3

© 00 ~NO O W

10
11
12
13
14
15
16
17
18

© 00 N O O

10
11
12
13
14
15

W N = O

4

© 00 N O O b»

10
11
12
13
14
15
16
17
18
19

© 00 N O O,

10

12
13
14
15

> W N - O

5

© 00 N O O;

10
11
12
13
14
15
16
17
18
19
20

© 00 N O

10

12
13
14
15

g W N O

6

© 0 N O®

10
11
12
13
14
15
16
17
18
19
20
21

© 00 N

10

12
13
14
15

DO W N~ O

7

© 0 N

10
11
12
13
14
15
16
17
18
19
20
21
22

e S e
adh WD, O O

~NOo Ol W~ O

8

8

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

10
11
12
13

=
(G2 S

0 ~NO O WN +~ O

9

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

e
o

e e el
O W N~ O

© 00 N O d WN+~ O

10

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

[N
[N

e e e
gD WN -

© 00 ~NO Ok WN - O

-
o

11

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

= =
w N N

= e
o

© 00 NOoO O WN - O

e
o

11

12

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

the elements in the lower right triangle do not ‘wrap around’

Note that bucket 31 does not appear, it is always zero.

The equivalent table for a (cyclic) correlation is

+--= 0
I

1

2

3

4

5

6

7

8

9

10

11

12

[
w

I
g b w

© 00 ~NO O WN H+~- O

s
N - O

13

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

14

14
15

© 00 NO O WN - O

e
W N = O

14

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

-
[é)]

—
© 00 N O d WNNHF~- OO

=
= O

12
13
14

15

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

39

anymore, they go to extra buckets.

13

14

15

CHAPTER 2. CONVOLUTIONS 40

0: 0 15 14 13 12 11 10 9 8 7 6 65 4 3 2 1
1: 1 0 15 14 13 12 11 10 9 8 7 6 &5 4 3 2
2: 2 1 0 15 14 13 12 11 10 9 8 7 6 &5 4 3
3: 3 2 1 0 15 14 13 12 11 10 9 8 7 6 &5 4
4: 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6 b
5: 5 4 3 2 1 0 15 14 13 12 11 10 9 8 7 6
6: 6 5 4 3 2 i o0 15 14 13 12 11 10 9 8 7
7: 7T 6 5 4 3 2 1 0 15 14 13 12 11 10 9 8
8: 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10 9
9: 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11 10
10: i0o 9 8 7 6 5 4 3 2 1 0 15 14 13 12 11
11 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13 12
12 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14 13
13 13 12 11 10 9 8 7 6 5 4 3 2 1 0 15 14
14 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 15
15 i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

while the acyclic counterpart is:

+
|
|

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

I
0: 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17
1: 1 0 31 30 29 28 27 26 25 24 23 22 21 20 19 18
2: 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20 19
3: 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21 20
4: 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22 21
5: 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23 22
6: 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24 23
7: 7T 6 5 4 3 2 1 0 31 30 29 28 27 26 25 24
8: 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26 25
9: 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27 26
10: i0o 9 8 7 6 5 4 3 2 1 0 31 30 29 28 27
11 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29 28
12 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30 29
13 13 12 11 10 9 8 7 6 5 4 3 2 1 0 31 30
14 14 13 12 11 10 9 8 7 6 &5 4 3 2 1 31
15 i5 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Note that bucket 16 does not appear, it is always zero.

2.2 Mass storage convolution using the MFA

The matrix Fourier algorithm is also an ideal candidate for mass storage FFTs, i.e. FFTs for data sets
that do not fit into physical RAMY.

In convolution computations it is straight forward to save the transpositions by using the MFA followed
by the TMFA. (The data is assumed to be in memory as rowg, rowsy, ..., rowg_1, i.e. the way array data
is stored in memory in the C language, as opposed to the Fortran language.) For the sake of simplicity
auto convolution is considered here:

Idea 2.1 (matrixfft convolution algorithm) The matriz FFT convolution algorithm:

IThe naive idea to simply try such an FFT with the virtual memory mechanism will of course, due to the non-locality
of FFTs, end in eternal harddisk activity

CHAPTER 2. CONVOLUTIONS 41

1. Apply a (length R) FFT on each column.
(memory access with C-skips)

2. Multiply each matriz element (index r,c) by exp(£27irc/n).

3. Apply a (length C) FET on each row.
(memory access without skips)

4. Complex square row (elementwise).

5. Apply a (length C) FET on each row (of the transposed matrix).
(memory access is without skips)

6. Multiply each matriz element (index r,c) by exp(F2wirc/n).

7. Apply a (length R) FFT on each column (of the transposed matriz).
(memory access with C-skips)

Note that steps 3, 4 and 5 constitute a length-C' convolution.

[FXT: matrix_fft_convolution in matrixfft/matrixfftcnvl.cc|

[FXT: matrix_fft_convolutionO in matrixfft/matrixfftcnvl.cc]

[FXT: matrix_fft_auto_convolution in matrixfft/matrixfftcnvla.cc]
[FXT: matrix_fft_auto_convolutionO in matrixfft/matrixfftcnvla.cc]

A simple consideration lets one use the above algorithm for mass storage convolutions, i.e. convolutions
of data sets that do not fit into the RAM workspace. An important consideration is the

Minimization of the number of disk seeks

The number of disk seeks has to be kept minimal because these are slow operations which, if occur too
often, degrade performance unacceptably.

The crucial modification of the use of the MFA is not to choose R and C as close as possible to \/n as
usually done. Instead one chooses R minimal, i.e. the row length C corresponds to the biggest data set
that fits into the RAM memory?. We now analyse how the number of seeks depends on the choice of R
and C: in what follows it is assumed that the data lies in memory as rowg, rowy, ..., rowg_1, i.e. the
way array data is stored in the C language, as opposed to the Fortran language convention. Further let
« > 2 be the number of times the data set exceeds the RAM size.

In step 1 and 3 of algorithm 2.5 one reads from disk (row by row, involving R seeks) the number of colums
that just fit into RAM, does the (many, short) column-FFTs?, writes back (again R seeks) and proceeds
to the next block; this happens for a of these blocks, giving a total of 4 a R seeks for steps 1 and 3.

In step 2 one has to read (« times) blocks of one or more rows, which lie in contiguous portions of the
disk, perform the FFT on the rows and write back to disk, leading to a total of 2 o seeks.

Thereby one has a number of 2+ 4 « R seeks during the whole computation, which is minimized by the
choice of maximal C'. This means that one chooses a shape of the matrix so that the rows are as big as
possible subject to the constraint that they have to fit into main memory, which in turn means there are
R = o rows, leading to an optimal seek count of K = 2« + 4 2.

If one seek takes 10 milliseconds then one has for o = 16 (probably quite a big FFT) a total of K - 10 =
1056 - 10 milliseconds or approximately 10 seconds. With a RAM workspace of 64 Megabytes? the CPU

2

more precisely: the amount of RAM where no swapping will occur, some programs plus the operating system have to
be there, too.

3real-complex FFTs in step 1 and complex-real FFTs in step 3.

4allowing for 8 million 8 byte floats, so the total FFT size is S = 16 - 64 = 1024 MB or 32 million floats

CHAPTER 2. CONVOLUTIONS 42

time alone might be in the order of several minutes. The overhead for the (linear) read and write would
be (throughput of 10MB/sec assumed) 6 - 1024M B/(10M B/sec) = 600sec or approximately 10 minutes.

With a multithreading OS one may want to produce a ‘double buffer’ variant: choose the row length so
that it fits twice into the RAM workspace; then let always one (CPU-intensive) thread do the FFTs in
one of the scratch spaces and another (hard disk intensive) thread write back the data from the other
scratch-space and read the next data to be processed. With not too small main memory (and not too
slow hard disk) and some fine tuning this should allow to keep the CPU busy during much of the hard
disk operations.

Using a mass storage convolution as described the calculation of the number 99 & 0.4281247-10369:693,100
could be done on a 32 bit machine in 1999. The computation used two files of size 2GigaBytes each and
took less than eight hours on a system with a AMD K6/2 CPU at 366MHz with 66MHz memory.

Cf. [hfloat: examples/runl-pow999.txt]

2.3 Weighted Fourier transforms

Let us define a new kind of transform by slightly modifying the definition of the FT (cf. formula [1.1)):
c = Wyld] (2.13)

n—1

cp = g Vg @y 27 F vy 0 Vz
=0

where z := e* 27" The sequence ¢ shall be called weighted (discrete) transform of the sequence a with
the weight (sequence) v. Note the v, that entered: the weighted transform with v, = ﬁ Vz is just the
usual Fourier transform. The inverse transform is

a = Wl (2.14)

This can be easily seen:

Il
S|
I~
8
—_
<
8
>
8
&
3

= ay
(cf. section [1.1). That W, [W;* [a]] is also identity is apparent from the definitions.

()

Given an implemented FFT it is trivial to set up a weighted Fourier transform:
Code 2.3 (weighted transform) Pseudo code for the discrete weighted Fourier transform

procedure weighted_ft(all, v[], n, is)
{

for x:=0 to n-1
{

alx] := alx] * v[x]

fft(all,n,is)

CHAPTER 2. CONVOLUTIONS 43

Inverse weighted transform is also easy:

Code 2.4 (inverse weighted transform) Pseudo code for the inverse discrete weighted Fourier trans-
form

procedure inverse_weighted_ft(all, v[], n, is)

fft(all,n,is)
for x:=0 to n-1
{

alx] := alx] / vIx]
}

is must be negative wrt. the forward transform.
[FXT: weighted fft in weighted/weightedfft.cc|
[FXT: weighted_inverse_fft in weighted/weightedfft.cc]

Introducing a weighted (cyclic) convolution h, by
hy = a®, b (2.15)
= W, Dy [a] W [B]
(cf. formula [2.5])
Then for the special case v, = V* one has
hy = hO4vrp® (2.16)

(R and V) were defined by formula 2.7). Tt is not hard to see why: Up to the final division by the
weight sequence, the weighted convolution is just the cyclic convolution of the two weighted sequences,
which is for the element with index 7 equal to

Yo (@VT) by VY) = > b VY by VT (2.17)

z+y=7(mod n) o<1 T>T

Final division of this element (by V7) gives h(®) + V" h(}) as stated.

The cases when V™ is some root of unity are particularly interesting: For V™ = +i = ++/—1 one gets
the so called right-angle convolution:

hy, = h®Fip® (2.18)

This gives a nice possibility to directly use complex FFTs for the computation of a linear (acycclic)
convolution of two real sequences: for length-n sequences the elements of the linear convolution with

indices 0,1, ...,n—1 are then found in the real part of the result, the elements n,n+1,...,2n—1 are the
imaginary part. Choosing V™ = —1 leads to the negacyclic convolution (or skew circular convolution):
h, = hO _p® (2.19)

Cyclic, negacyclic and right-angle convolution can be understood as a polynomial product modulo z" —1,
2™ + 1 and 2™ % i, respectively (cf. [2]).

[FXT: weighted _complex_auto_convolution in weighted/weightedconv.cc]
[FXT: negacyclic_complex_auto_convolution in weighted/weightedconv.cc|
[FXT: right_angle complex_auto_convolution in weighted/weightedconv.cc]

The semi-symbolic table (cf. table 2.1) for the negacyclic convolution is

CHAPTER 2. CONVOLUTIONS 44

+-—- 0 1 2 3 4 5 6 T 8 9 10 11 12 13 14 15
I
0: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1: 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 O-
2: 2 3 4 5 6 T 8 9 10 11 12 13 14 15 0- 1-
3: 3 4 5 6 7 8 9 10 11 12 13 14 15 O- 1- 2-
4: 4 5 6 7 8 9 10 11 12 13 14 15 O- 1- 2- 3-
5: 5 6 7 8 9 10 11 12 13 14 15 O0- 1- 2- 3- 4-
6: 6 7 8 9 10 11 12 13 14 15 O- 1- 2- 3- 4- 5-
7: 7T 8 9 10 11 12 13 14 15 O0- 1- 2- 3- 4- 5- 6-
8: g 9 10 11 12 13 14 15 O- 1- 2- 3- 4- 5- 6- T-
9 10 11 12 13 14 156 O- 1- 2- 3- 4- 5- 6- T7- 8-

—-
o
-
o
-
-
[
N
[
w

14 15 O0- 1- 2- 3- 4- 5- 6- 7- 8- 9-
15 0- 1- 2- 3- 4- 5- 6- T7- 8- 9- 10-
5 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11-
15 0- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12-
15 0o- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13-
0o- 1- 2- 3- 4- 5- 6- 7- 8- 9- 10- 11- 12- 13- 14-

e e el
O WwN
e e el
g W N
== e
Sow N

= =
oW

—

D

Here the products that enter with negative sign are indicated with a postfix minus at the corresponding
entry.

With right-angle convolution the minuses have to be replaced by i = v/—1 which means the wrap-around

(i.e. h(D) elements go to the imaginary part. With real input one thereby effectively separates h(?) and
RV,

Note that once one has routines for both cyclic and negacyclic convolution the parts A(®) and h(") can be
computed as sum and difference, respectively. Thereby all expressions of the form a h(®) + A1) can be
trivially computed.

2.4 Half cyclic convolution for half the price ?

The computation of h(®) from formula 2.7/ (without computing h(l)) is called half cyclic convolution.
Apparently, one asks for less information than one gets from the acyclic convolution. One might hope to
find an algorithm that computes ~(?) and uses only half the memory compared to the linear convolution
or that needs half the work, possibly both. It may be a surprise that no such algorithm seems to be
known currently®.

Here is a clumsy attempt to find A(®) alone: Use the weighted transform with the weight sequence
vy = V¥ where V" is very small. Then h(!) will in the result be multiplied with a small number and
we hope to make it almost disappear. Indeed, using V"™ = 1000 for the cyclic self convolution of the
sequence {1,1,1,1} (where for the linear self convolution h(®) = {1,2,3,4} and V) = {3,2,1,0}) one
gets {1.003,2.002,3.001,4.000}. At least for integer sequences one could choose V" (more than two times)
bigger than biggest possible value in 2(!) and use rounding to nearest integer to isolate h(?). Alas, even
for modest sized arrays numerical overflow and underflow gives spurious results. Careful analysis shows
that this idea leads to an algorithm far worse than simply using linear convolution.

2.5 Convolution using the MFA

With the weighted convolutions in mind we reformulate the matrix (self-) convolution algorithm (ideal2.1)):

51f you know one, tell me about it!

CHAPTER 2. CONVOLUTIONS 45

1. Apply a FFT on each column.

2. On each row apply the weighted convolution with V¢ = e27#"/f = 17/% where R is the total
number of rows, 7 = 0..R — 1 the index of the row, C the length of each row (or, equivalently the
total number columns)

3. Apply a FFT on each column (of the transposed matrix).

First consider

2.5.1 The case R =2

The cyclic auto convolution of the sequence x can be obtained by two half length convolutions (one cyclic,
one negacyclic) of the sequences® s := z(9/2) 4 2(1/2) and d := 2(°/?) — £(1/2) ysing the formula

1
r®xr = §{s®s+d®,d, s®s—d®_ d} (2.20)
The equivalent formula for the cyclic convolution of two sequences x and y is
1

where

s, = x0/2) 4 50172

d, = 202 _,1/2)

sy = y(0/2) 4 4 (1/2)

dy, = y(0/2) — (1/2)

For the acyclic (or linear) convolution of sequences one can use the cyclic convolution of the zero padded
sequences z := {Zg,Z1,...,Mp-1,0,0,...,0} (i.e. x with n zeros appended). Using formula 2.20/ one gets
for the two sequences = and y (with s, =d, =z, s, =d, = y):

1
T®acy = ®z = S{r@y+r®-y ®y-z@-y} (2.22)

And for the acyclic auto convolution:

1
T®eex = 2z®z = §{x®x+x®_:c, TR —x®_ T} (2.23)

2.5.2 The case R =3

Let w = 1 (14 V/3) and define

A = 20/3) 4 (/3) | (2/3)
B 2073 o (/3 4)2 £(2/3)
O = 203 4,2 0/3) 5 0(2/3)
Then, if h := z @, =, there is
23 = A®A+B®, B+C @2 C (2.24)
23 = A®A+w (B®g,y B) +w(C @z O)
2®¥ = A®A+w(B@py B)+w? (C @ C)

For real valued data C is the complex conjugate (cc.) of B and (with w? = cc.w) B ®{,} B is the cc. of
C ®y.,2y C and therefore every B®y, B-term is the cc. of the C'®y) C-term in the same line. Is there a nice
and general scheme for real valued convolutions based on the MFA? Read on for the positive answer.

65, d lower half plus/minus higher half of =

CHAPTER 2. CONVOLUTIONS 46

2.6 Convolution of real valued data using the MFA

For row 0 (which is real after the column FFTs) one needs to compute the (usual) cyclic convolution; for
row R/2 (also real after the column FFTs) a negacyclic convolution is needed”, the code for that task is
given on page 62,

All other weighted convolutions involve complex computations, but it is easy to see how to reduce the
work by 50 percent: As the result must be real the data in row number R — r must, because of the
symmetries of the real and imaginary part of the (inverse) Fourier transform of real data, be the complex
conjugate of the data in row r. Therefore one can use real FFTs (R2CFTs) for all column-transforms for
step 1 and half-complex to real FFTs (C2RFTs) for step 3.

Let the computational cost of a cyclic (real) convolution be ¢, then

For R even one must perform 1 cyclic (row 0), 1 negacyclic (row R/2) and R/2 — 2 complex (weighted)
convolutions (rows 1,2,...,R/2 —1)

For R odd one must perform 1 cyclic (row 0) and (R — 1)/2 complex (weighted) convolutions (rows
1,2,...,(R—1)/2)

Now assume, slightly simplifying, that the cyclic and the negacyclic real convolution involve the same
number of computations and that the cost of a weighted complex convolution is twice as high. Then in
both cases above the total work is exactly half of that for the complex case, which is about what one
would expect from a real world real valued convolution algorithm.

For acyclic convolution one may want to use the right angle convolution (and complex FFTs in the column
passes).

2.7 Convolution without transposition using the MFA

Section [8.4] explained the connection between revbin-permutation and transposition. Equipped with that
knowledge an algorithm for convolution using the MFA that uses revbin_permute instead of transpose
is almost straight forward:

rows=8 columns=4
input data (symbolic format: ROOC) :
0: 0 1 2 3
1000 1001 1002 1003
2000 2001 2002 2003
3000 3001 3002 3003
4000 4001 4002 4003
5000 5001 5002 5003
6000 6001 6002 6003
7000 7001 7002 7003

~NOo O W

FULL REVBIN_PERMUTE for transposition:

0: 0 4000 2000 6000 1000 5000 3000 7000
1: 2 4002 2002 6002 1002 5002 3002 7002
2: 1 4001 2001 6001 1001 5001 3001 7001
3 3 4003 2003 6003 1003 5003 3003 7003

DIT FFTs on revbin_permuted rows (in revbin_permuted sequence), i.e. unrevbin_permute rows:
(apply weight after each FFT)

0: 0 1000 2000 3000 4000 5000 6000 7000
1: 2 1002 2002 3002 4002 5002 6002 7002
2: 1 1001 2001 3001 4001 5001 6001 7001

"For R odd there is no such row and no negacyclic convolution is needed.

CHAPTER 2. CONVOLUTIONS 47

3: 3 1003 2003 3003 4003 5003 6003 7003

FULL REVBIN_PERMUTE for transposition:
0: 0 1 2 3
4000 4001 4002 4003
2000 2001 2002 2003
6000 6001 6002 6003
1000 1001 1002 1003
5000 5001 5002 5003
3000 3001 3002 3003
7000 7001 7002 7003

~N o O WwN -

CONVOLUTIONS on rows (do not care revbin_permuted sequence), no reordering.

FULL REVBIN_PERMUTE for transposition:

0: 0 1000 2000 3000 4000 5000 6000 7000
1: 2 1002 2002 3002 4002 5002 6002 7002
2: 1 1001 2001 3001 4001 5001 6001 7001
3 3 1003 2003 3003 4003 5003 6003 7003

(apply inverse weight before each FFT)
DIF FFTs on rows (in revbin_permuted sequence), i.e. revbin_permute rows:

0: 0 4000 2000 6000 1000 5000 3000 7000
1: 2 4002 2002 6002 1002 5002 3002 7002
2: 1 4001 2001 6001 1001 5001 3001 7001
3 3 4003 2003 6003 1003 5003 3003 7003

FULL REVBIN_PERMUTE for transposition:
0: 0 1 2 3
1000 1001 1002 1003
2000 2001 2002 2003
3000 3001 3002 3003
4000 4001 4002 4003
5000 5001 5002 5003
6000 6001 6002 6003
7000 7001 7002 7003

~N O O W

As shown works for sizes that are a power of two, generalizes for sizes a power of some prime. TBD: add
text

2.8 The z-transform (ZT)

In this section we will learn a technique to compute the FT by a (linear) convolution. In fact, the
transform computed is the z-transform, a more general transform that in a special case is identical to the
FT.

2.8.1 Definition of the ZT

The z-transform (ZT) Z [a] = G of a (length n) sequence a with elements a, is defined as
n—1
ar = Zam ke (2.25)
=0

The z-transform is a linear transformation, its most important property is the convolution property

CHAPTER 2. CONVOLUTIONS 48

(formula 2.3): Convolution in original space corresponds to ordinary (elementwise) multiplication in
z-space. (See [10] and [11].)

+27i/n

Note that the special case z = e is the discrete Fourier transform.

2.8.2 Computation of the ZT via convolution

In the definition of the (discrete) z-transform we rewrite® the product z k as

zk = % (2® + k> — (k — 2)?) (2.26)

n—1 n—1
fk _ Z foath = k22 Z (fz Zﬁ/z) L~ (k—2)?/2 (2.27)
=0 =0
This leads to the following

Idea 2.2 (chirp z-transform) Algorithm for the chirp z-transform:

1. Multiply f elementwise with 22,

2. Convolve (acyclically) the resulting sequence with the sequence z_wz/z, zero padding of the sequences

s required here.
3. Multiply elementwise with the sequence k72,

The above algorithm constitutes a ‘fast’ (~ n log(n)) algorithm for the ZT because fast convolution is
possible via FFT.

2.8.3 Arbitrary length FFT by ZT

We first note that the length n of the input sequence a for the fast z-transform is not limited to highly
composite values (especially n prime is allowed): For values of n where a FFT is not feasible pad the
sequence with zeros up to a length L with L >= 2n and a length L FFT becomes feasible (e.g. L is a
power of 2).

Second remember that the FT is the special case z = e¥27#/" of the ZT: With the chirp ZT algorithm
one also has an (arbitrary length) FFT algorithm

The transform takes a few times more than an optimal transform (by direct FFT) would take. The worst
case (if only FFTs for n a power of 2 are available) is n = 2P 4+ 1: One must perform 3 FFTs of length
242 ~ 4n for the computation of the convolution. So the total work amounts to about 12 times the
work a FE'T of length n = 2P would cost. It is of course possible to lower this ‘worst case factor’ to 6 by
using highly composite L slightly greater than 2n.

[FXT: £ft_arblen in chirp/fftarblen.cc]
TBD: show shortcuts for n even/odd

2.8.4 Fractional Fourier transform by ZT

The z-transform with z = e*27%/™ and «a # 1 is called the fractional Fourier transform (FRFT). Uses of
the FRFT are e.g. the computation of the DFT for data sets that have only few nonzero elements and the
detection of frequencies that are not integer multiples of the lowest frequency of the DFT. A thorough
discussion can be found in [35].

[FXT: £fft_fract in chirp/fftfract.cc]

8cf. [2]

Chapter 3

The Hartley transform (HT)

3.1 Definition of the HT

The Hartley transform (HT) is defined like the Fourier transform with ‘cos + sin’ instead of ‘cos +i - sin’.
The (discrete) Hartley transform of a is defined as

c = Hld (3.1)
n—1
cp = \}ﬁ;am <cos27rnkx —|—sin27rnk$) (3.2)

It has the obvious property that real input produces real output,

Hla] € R for a€eR (3.3)

It also is its own inverse:

The symmetries of the HT are simply:

Hlas] = Hlas] =H[as] (3.5)
Hlaa] = Mlaa] = —Haz]

i.e. symmetry is, like for the FT, conserved.

3.2 radix 2 FHT algorithms

3.2.1 Decimation in time (DIT) FHT

For a sequence a of length n let X'/2a denote the sequence with elements a, cosTx/n + a, sinwTx/n
(this is the ‘shift operator’ for the Hartley transform).

Idea 3.1 (FHT radix 2 DIT step) Radiz 2 decimation in time step for the FHT:

ni2

M L g [teren)] 4 /o [qloa0] 1)

H[a]("'ight) n/2 by [a(‘m”)] _ XYy |:a(odd):| (3.8)

n

49

CHAPTER 3. THE HARTLEY TRANSFORM (HT) 50

Code 3.1 (recursive radix 2 DIT FHT) Pseudo code for a recursive procedure of the (radiz 2) DIT
FHT algorithm:

procedure rec_fht_dit2(all, n, x[1)
// real a[0..n-1] input
{/ real x[0..n-1] result

real b[0..n/2-1], c[0..n/2-1] // workspace
real s[0..n/2-1], t[0..n/2-1]1 // workspace

if n == 1 then
{

x[0] := al0]
return
nh := n/2;
for k:=0 to nh-1
s[k] := a[2*k] // even indexed elements
t[k] := a[2*%k+1] // odd indexed elements

}

rec_fht_dit2(s[], nh, b[])
rec_fht_dit2(t[], nh, c[])

hartley_shift(c[]l, nh, 1/2)
%or k:=0 to nh-1

x [k] blk] + cl[k];
x [k+nh] blk] - clk];

}
[source file: recfhtdit2.spr]

[FXT: recursive_dit2_fht in slow/recfht2.cc]

The procedure hartley_shift replaces element ¢, of the input sequence ¢ by ¢k cos(mk/n) +
Cn—r1 sin(mk/n). Here is the pseudo code:

Code 3.2 (Hartley shift) procedure hartley_shift_05(c[], n)

// real c[0..n-1] input, result
{

nh := n/2

j :=n-1

for k:=1 to nh-1

cos(PI*k/n)

:= sin(PIxk/n)

{clx], c[j1} := {clkl*c+c[jl*s, clkl*s-c[jl*c}

j o= §-1

c
s

}
fsource file: hartleyshift.spr]

[FXT: hartley_shift_05 in fht/hartleyshift.cc]

Code 3.3 (radix 2 DIT FHT, localized) Pseudo code for a non-recursive procedure of the (radix 2)
DIT FHT algorithm:

procedure fht_dit2(a[l, 1ldn)
// real a[0..n-1] input,result

{
n := 2%xldn // length of a[] is a power of 2

revbin_permute(all, n)
%or ldm:=1 to ldn

m = 2x*1dm
mh := m/2
md := m/4

CHAPTER 3. THE HARTLEY TRANSFORM (HT)

for r:=0 to n-m step m

{
for j:=1 to m4-1 // hartley_shift(a+r+mh,mh,1/2)
{
k :=mh - j
u := a[r+mh+j]
v := a[r+mh+k]
¢ := cos(j*PI/mh)
s := sin(j*PI/mh)
{u, v} := {uxct+vxs, uxs-vxc}
alr+mh+j] := u
alr+mh+k] := v
}
for j:=0 to mh-1
{
u := alr+jl
v := a[r+j+mh]
alr+j] =u+v
alr+j+mh] :=u - v
}
}

}
}

[source file: fhtdit2.spr]

The derivation of the ‘usual’ DIT2 FHT algorithm starts by fusing the shift with the sum/diff step:

void dit2_fht_localized(double *f, ulong ldn)

{
const ulong n = 1<<ldn;

revbin_permute(f, n);

for (ulong ldm=1; ldm<=ldn; ++1dm)
{
const ulong m = (1<<1dm);
const ulong mh = (m>>1);
const ulong m4 = (mh>>1);
const double phiO = M_PI/mh;

for (ulong r=0; r<n; r+=m)

{ //j==
ulong tl1 = r;
ulong t2 = t1 + mh;
sumdiff (£[t1], £[t2]);

if (m4)
{

ulong t1 = r + m4;
ulong t2 = t1 + mh;
sumdiff (£[t1], £[t2]);

for (ulong j=1, k=mh-1; j<k; ++j,--k)

double s, c;

SinCos (phiO*j, &s, &c);
ulong tj = r + mh + j;
ulong tk = r + mh + k;
double fj = f[tjl;
double fk = f[tk];

fltjl = £j * ¢ + fk * s;
ftk] = £fj * s - fk * c;
ulong tl =1 + j;

ulong t2 = tj; // == t1 + mh;
sumdiff (£[t1], £[t2]);
tl = r + k;

t2 = tk; // == t1 + mh;
sumdiff (£[t1], £[t2]);

CHAPTER 3. THE HARTLEY TRANSFORM (HT) 52

}

[FXT:dit2_fht_localized in fht/fhtdit2.cc] Swapping the innermost loops then yields (considerations
as for DIT FFT, page 13}, hold)

void dit2_fht(double *f, ulong ldn)
// decimation in time radix 2 fht

const ulong n = 1<<1dn;
revbin_permute(f, n);
for (ulong ldm=1; 1ldm<=1ldn; ++1dm)
{
const ulong m = (1<<1dm);
const ulong mh = (m>>1);

const ulong m4 = (mh>>1);
const double phiO = M_PI/mh;

for (ulong r=0; r<n; r+=m)

{ //3==
ulong tl1 = r;
ulong t2 = tl1 + mh;

sumdiff (£[t1], £[t2]);

if (md)

{
ulong tl = r + m4;
ulong t2 = t1 + mh;

sumdiff (£ [t1], f[t2]);

}
for (ulong j=1, k=mh-1; j<k; ++j,--k)
{

double s, c;
SinCos(phiO*j, &s, &c);

for (ulong r=0; r<n; r+=m)
{
ulong tj = r + mh
ulong tk = r + mh
double fj
double fk
fltj] fj * ¢ + fk * s;
f[tk] fj x s - fk * c;
ulong t1l =1 + j;
ulong t2 = tj; // == t1 + mh;
sumdiff (£[t1], £[t2]);
tl =1 + k;
t2 = tk; // == t1 + mh;
sumdiff (£[t1], £[t2]1);

+ j;
+ k;
£[tjl;
f[tk];

}

[FXT: dit2_fht in fht/fhtdit2.cc]

3.2.2 Decimation in frequency (DIF) FHT
Idea 3.2 (FHT radix 2 DIF step) Radiz 2 decimation in frequency step for the FHT:
H [a](even) né? H [a(left) + a(ri_qht):| (39)

H [a] 4D 2 [Xuz (a(left) _ a(m’ght))] (3.10)

CHAPTER 3. THE HARTLEY TRANSFORM (HT) 93

Code 3.4 (recursive radix 2 DIF FHT) Pseudo code for a recursive procedure of the (radix 2) DIF
FHT algorithm:

procedure rec_fht_dif2(all, n, x[1)
// real a[0..n-1] input
{/ real x[0..n-1] result

real b[0..n/2-1], c[0..n/2-1] // workspace
real s[0..n/2-1], t[0..n/2-1] // workspace

if n == 1 then
{

x[0] := al0]
return
}
nh := n/2;
for k:=0 to nh-1
s[k] := alk] // ’left’ elements
t[k] := alk+nh] // ’right’ elements
}

for k:=0 to nh-1
{s[kl, tlkl} := {slkl+t[k], s[kl-t[k]}

hartley_shift(t[], nh, 1/2)

rec_fht_dif2(s[], nh, b[])
rec_fht_dif2(t[], nh, c[1)
j =0

for k:=0 to nh-1

b[k]

c k]

x[j] :
x[j+1]
j 1= j+2

}
}

[source file: recfhtdif2.spr]
[FXT: recursive dif2 fht in slow/recfht?2.cc|

Code 3.5 (radix 2 DIF FHT, localized) Pseudo code for a non-recursive procedure of the (radiz 2)
DIF FHT algorithm:

procedure fht_dif2(a[], 1ldn)
// real a[0..n-1] input,result

{
n := 2%xldn // length of a[] is a power of 2

for ldm:=1dn to 1 step -1

{
m = 2%*x1dm
mh := m/2
méd := m/4
for r:=0 to n-m step m
{
for j:=0 to mh-1
{
u := alr+j]
v := a[r+j+mh]
alr+j] =u+v
alr+j+mh] (= u - v
}
for j:=1 to m4-1
{
k :=mh - j
u := al[r+mh+j]
v := al[r+mh+k]

(¢}
]

cos (j*PI/mh)

CHAPTER 3. THE HARTLEY TRANSFORM (HT)

s := sin(j*PI/mh)

{u, v} := {u*c+vxs, uxs-v*c}
alr+mh+j] := u
a[r+mh+k] := v

}
}

revbin_permute(al[]l, n)

}
[source file: fhtdif2.spr]

[FXT: dif2 _fht localized in fht/fhtdif2.cc
The ‘usual’ DIF2 FHT algorithm then is

void dif2_fht(double *f, ulong 1ldn)
// decimation in frequency radix 2 fht

{

const ulong n = (1<<1dn);
for (ulong ldm=1dn; ldm>=1; --1dm)

{
const ulong m = (1<<1ldm);
const ulong mh = (m>>1);
const ulong m4 = (mh>>1);
const double phiO = M_PI/mh;
for (ulong r=0; r<m; r+=m)
{ // j==
ulong tl1 = r;
ulong t2 = t1 + mh;
sumdiff (£[t1], £[t2]);
}
if (md)
{
ulong tl = r + m4;
ulong t2 = t1 + mh;
sumdiff (£[t1], £[t2]);
}
for (ulong j=1, k=mh-1; j<k; ++j,--k)
{
double s, c;
SinCos(phiO*j, &s, &c);
for (ulong r=0; r<n; r+=m)
ulong tj = r + mh + j;
ulong tk = r + mh + k;
ulong t1l =1 + j;
ulong t2 = tj; // == t1 + mh;
sumdiff (£[t1], £[t2]);
tl =1 + k;
t2 = tk; // == t1 + mh;
sumdiff (£[t1], £[t2]);
double fj = f[tjl;
double fk = f[tk];
fltj] = £fj * c + fk * s;
ftk] = £fj * s - fk * c;
}
}
}

revbin_permute(f, n);

[FXT: dif2_fht in fht/fhtdif2.cc]
TBD: higher radiz FHT

o4

CHAPTER 3. THE HARTLEY TRANSFORM (HT)

3.3 Complex FT by HT

95

The relations between the HT and the FT can be read off directly from their definitions and their
symmetry relations. Let o be the sign of the exponent in the FT, then the HT of a complex sequence

d e Cis:

Fla = %(H[d]+H[d]+m~(H[d]—md]))

Written out for the real and imaginary part d = a + b (a,b € R):

RF[a+1ib] =

(H[b] YHB 4o (H[a} —T[a]))

N~ N —

SFla+ib] =

Alternatively, one can recast the relations (using the symmetry relations 3.5 and 3.6) as

1

§R.7:[a+ib] = 57‘[[@5—0’@4]
1

SFla+ib] = §H[bs+aa,4]

Both formulations lead to the very same

Code 3.6 (complex FT by HT conversion)

fht_fft_conversion(a[l,b[],n,is)
// preprocessing to use two length-n FHTs
// to compute a length-n complex FFT

// or
// postprocessing to use two length-n FHTs

// to compute a length-n complex FFT

//
{/ self-inverse
for k:=1 to n/2-1
t = n-k
as := alk] + a[t]
aa := alk] - alt]
bs := b[k] + b[t]
ba := b[k] - b[t]
aa := is * aa
ba := is * ba
alk] := 1/2 * (as - ba)
alt] := 1/2 * (as + ba)
b[k] := 1/2 * (bs + aa)
} blt] := 1/2 * (bs - aa)
}

[source file: fhtfftconversion.spr]

[FXT: fht _fft_conversion in fht/fhtfft.cc| [FXT: fht_fft_conversion in fht/fhtcfft.cc]

Now we have two options to compute a complex FT by two HTs:

(3.11)

(3.12)

(3.13)

(3.14)

(3.15)

Code 3.7 (complex FT by HT, version 1) Pseudo code for the complex Fourier transform that uses

the Hartley transform, is must be -1 or +1:

fft_by_fhti(all,bl]l,n,is)

CHAPTER 3. THE HARTLEY TRANSFORM (HT) o6

// real a[0..n-1] input,result (real part)
// real b[0..n-1] input,result (imaginary part)

fht(all, n)
fht(b[]l, n)
) fht_fft_conversion(al[l, b[l, n, is)

and

Code 3.8 (complex FT by HT, version 2) Pseudo code for the complex Fourier transform that uses
the Hartley transform, is must be -1 or +1:

fft_by_fht2(all,b[],n,is)
// real a[0..n-1] input,result (real part)
// real b[0..n-1] input,result (imaginary part)

fht_fft_conversion(all, b[l, n, is)

fht(al[l, n)
fht(b[], n)

Note that the real and imaginary parts of the FT are computed independently by this procedure.

For convolutions it would be sensible to use procedure 3.7 for the forward and 3.8 for the backward
transform. The complex squarings are then combined with the pre- and postprocessing steps, thereby
interleaving the most nonlocal memory accesses with several arithmetic operations.

[FXT: fht_fft in fht/fhtcfft.cc]

3.4 Complex FT by complex HT and vice versa

A complex valued HT is simply two HTs (one of the real, one of the imag part). So we can use both of

3.7 or 3.8/ and there is nothing new. Really? If one writes a type complex version of both the conversion
and the FHT the routine 3.7 will look like

fft_by_fhti(c[], n, is)
// complex c[0..n-1] input,result

fht(c[], n)
) fht_fft_conversion(c[]l, n, is)
(the 3.8 equivalent is hopefully obvious)

This may not make you scream but here is the message: it makes sense to do so. It is pretty easy to
derive a complex FHT from the real (i.e. usual) version and with a well optimized FHT you get an even
better optimized FFT. Note that this trivial rewrite virtually gets you a length-n FHT with the book

keeping and trig-computation overhead of a length-n/2 FHT.
FXT: dit_fht_core in fht/cfhtdit.cc]

FXT: dif _fht_core in fht/cfhtdif.cc]

FXT: fht_fft_conversion in fht/fhtcfft.cc]

FXT: fht_fft in fht/fhtcfft.cc]

[
[
[
[

Vice versa: Let T be the operator corresponding to the fht_fft_conversion, T is its own inverse:
T =T71, or, equivalently T - T = 1. We have seen that

F=H-T and F=T-H (3.16)

lin fact this is done automatically in FXT

CHAPTER 3. THE HARTLEY TRANSFORM (HT) o7

Therefore trivially
H=T-F and H=F T (3.17)

Hence we have either

fht_by_fft(c[], n, is)
// complex c[0..n-1] input,result

fft(c[l, n)
fht_fft_conversion(c[], n, is)

}

or the same thing with swapped lines. Of course the same ideas also work for separate real- and imaginary-
parts.

3.5 Real FT by HT and vice versa

To express the real and imaginary part of a Fourier transform of a purely real sequence a € R by its
Hartley transform use relations [3.12] and [3.13| and set b = 0:

RF[a] = 3 (H [a] + H [a]) (3.18)
SFla] = 5 (o)~ H[a)) (3.19)

The pseudo code is straight forward:
Code 3.9 (real to complex FFT via FHT)

procedure real_complex_fft_by_fht(al]l, n)
// real a[0..n-1] input,result

fht(all, n)
for i:=1 to n/2-1

t :=n - 1i

u := ali]

v := alt]

ali] := 1/2 * (u+v)
alt] := 1/2 * (u-v)

}
}

At the end of this procedure the ordering of the output data ¢ € C is

alo] = Reo (3.20)
all] = Rqg
al2] = Re
am/2 = Rews
aln/2+1] = Scpp
a[n/2 + 2] = %Cn/272
an/2+3] = Scpa-3
am—1] = Sa

[FXT: fht_real complex fft in realfft/realfftbyfht.cc]

The inverse procedure is:

CHAPTER 3. THE HARTLEY TRANSFORM (HT) o8

Code 3.10 (complex to real FFT via FHT)

procedure complex_real fft_by_fht(all, n)
// real a[0..n-1] input,result

f:or i:=1 to n/2-1

fht(all, n)

[FXT: fht_complex_real fft in realfft/realfftbyfht.cc]

Vice versa: same line of thought as for complex versions. Let T,.. be the operator correspond-
ing to the postprocessing in real_complex_fft_by_fht, and 7., correspond to the preprocessing in
complex_real_fft_by_fht. That is

Feor=H -Ter and Fre=Tre - H (3.21)
It should be no surprise that T;.. - T, = 1, or, equivalently T,.. = ch,l and T, = chl. Therefore
H=T. - Fre and H=Fe - Tre (3.22)

The corresponding code should be obvious. Watchout for real/complex FFTs that use a different ordering
than [3.20.

3.6 Discrete cosine transform (DCT) by HT

The discrete cosine transform wrt. the basis

ak) = v(k)-cos TEEEL2) (3.23)

n

(where v(k) = 1 for k = 0, v(k) = +/2 else) can be computed from the FHT using an auxiliary routine
named cos_rot. TBD: give cosrot’s action mathematically

procedure cos_rot(x[], y[l, n)
// real x[0..n-1] input
// real y[0..n-1] result

{
nh := n/2
x[0] := y[0O]
x[nh] := y[nh]
phi := PI/2/n
for (ulong k:=1; k<nh; k++)

cos (phix*k)
sin(phix*k)

c
s
cps := (c+s)*sqrt(1/2)
cms := (c-s)*sqrt(1/2)

x [k] cms*y[k] + cps*y[n-k]
x[n-k] cps*y[k] - cms*y[n-k]

}
}

[source file: cosrot.spr] which is its own inverse. Then

Code 3.11 (DCT via FHT) Pseudo code for the computation of the DCT via FHT:

CHAPTER 3. THE HARTLEY TRANSFORM (HT) 99

procedure dcth(x[], 1ldn)
// real x[0..n-1] input,result

¢ n := 2%%*n
real y[0..n-1] // workspace
unzip_rev(x, y, n)
fht(y[1,1dn)
cos_rot(y[], x[1, n)

}

(cf. [FXT: cos_rot in dctdst/cosrot.cc]) where

procedure unzip_rev(al[l, b[], n)
// real a[0..n-1] input
{/ real b[0..n-1] result

nh := n/2
{or k:=0 to nh-1

k2 := 2xk
[k] := alk2]
a[n-1-k2]

bk
b [nh+k]
}
}

(cf. [FXT: unzip_rev in perm/ziprev.h])

The inverse routine is

Code 3.12 (IDCT via FHT) Pseudo code for the computation of the IDCT via FHT:

procedure idcth(x[], 1dn)
// real x[0..n-1] input,result

{ n := 2%xn
real y[0..n-1] // workspace
cos_rot(x[], y[1, n);
fht(y[],1dn)

) zip_rev(y[l, x[], n)

where

procedure zip_rev(a[l, b[], n)
// real a[0..n-1] input
{/ real b[0..n-1] result

nh := n/2
for k:=0 to nh-1
k2 := 2%k
b [k] 1= al[k2]
y b[nh+k] := a[n-1-k2]
}

(cf. [FXT: zip_rev in perm/ziprev.h])

The implementation of both the forward and the backward transform (cf. [FXT: dcth and idcth in
dctdst/dcth. cc]) avoids the temporary array y[] if no scratch space is supplied.

Cf. [16], [17].
TBD: add second dct/fht version

3.7 Discrete sine transform (DST) by DCT

TBD: definition dst, idst

CHAPTER 3. THE HARTLEY TRANSFORM (HT) 60

Code 3.13 (DST via DCT) Pseudo code for the computation of the DST via DCT:

procedure dst(x[],1ldn)
// real x[0..n-1] input,result
{

n := 2%xn
nh := n/2

for k:=1 to n-1 step 2

x[k] := -x[k]

dct (x,1dn)
for k:=0 to nh-1

swap (x[k] ,x[n-1-k])
}
}

[FXT: dsth in dctdst/dsth.cc]

Code 3.14 (IDST via IDCT) Pseudo code for the computation of the inverse sine transform (IDST)
using the inverse cosine transform (IDCT):

procedure idst(x[],1ldn)
// real x[0..n-1] input,result
{

n = 2%*n
nh := n/2

for k:=0 to nh-1
swap(x[k],x[n-1-k])

idct (x,1dn)
for k:=1 to n-1 step 2

x[k] := -x[k]

[FXT: idsth in dctdst/dsth.cc]

3.8 Convolution via FHT

The convolution property of the HT is

Hlawb = = (H la] H [b] — H[a] H [b] + H [a] H [B] + H [a] H [b}) (3.24)
or, written elementwise:

Hla®b], = (dek*adikJerdikJr@dk)

N = N =

(e (d +di) + T (dx — di)) where c=Hla], d="H][(3.25)

Code 3.15 (cyclic convolution via FHT) Pseudo code for the cyclic convolution of two real valued
sequences x[1 and y[1, n must be even, result is found in y[]:

procedure fht_cyclic_convolution(x[], y[], n)
// real x[0..n-1] input, modified

CHAPTER 3. THE HARTLEY TRANSFORM (HT) 61

// real y[0..n-1] result
{

// transform data:
fht(x[], n)
fht(y[l, n)

// convolution in transformed domain:

j :=n-1
%or i:=1 to n/2-1
xi := x[i]
xj = x[j]
yp := ylil + y[3j1 // = yl[j] + y[il
ym := y[i] - y[j] // = -(y[j] - y[iD
y[i]l := (xi*yp + xj*ym)/2
y[31 := (xj*yp - xi*xym)/2
j o= j-1

}
y[0] := y[0I*y[0]
if n>1 then y[n/2] := y[n/2]*y[n/2]

// transform back:
fht(y[l, n)

// normalise:
for i:=0 to n-1

ylil :=ylil / n
}

[source file: fhtenvl.spr]

It is assumed that the procedure fht() does no normalization. Cf. [FXT: fht_convolution in
fht/fhtcnvl.cc|

Equation 3.25] (slightly optimized) for the auto convolution is

1
Hla®a], = 5 (er(en+ar)+eler —ak))
= c¢pcp+ % (c; —er®) where c¢=H]ld] (3.26)

Code 3.16 (cyclic auto convolution via FHT) Pseudo code for an auto convolution that uses a fast
Hartley transform, n must be even:

procedure cyclic_self_convolution(x[], n)
// real x[0..n-1] input, result
{

// transform data:
fht(x[], n)

// convolution in transformed domain:

j :=n-1
for i:=1 to n/2-1
ci := x[i]
¢j i=x[3]
tl := cix*cj // = cj*ci
t2 := 1/2%(ci*ci-cj*cj) // = -1/2x(cj*cj-cixci)
x[i] := t1 + t2
x[j] := t1 - t2
j =31
x[0] := x[0]*x[0]

if n>1 then x[n/2] := x[n/2]*x[n/2]

// transform back:
fht(x[], n)

CHAPTER 3. THE HARTLEY TRANSFORM (HT) 62

// normalise:
for i:=0 to n-1

x[1] := x[i] / n
}

[source file: fhtenvla.spr]
For odd n replace the line
for i:=1 to n/2-1

by
for i:=1 to (n-1)/2
and omit the line

if n>1 then x[n/2] := x[n/2]*x[n/2]

in both procedures above. Cf. [FXT: fht_auto_convolution in fht/fhtcnvla.cc]

3.9 Negacyclic convolution via FHT

Code 3.17 (negacyclic auto convolution via FHT) Code for the computation of the negacyclic
(auto-) convolution:

procedure negacyclic_self_convolution(x[], n)
// real x[0..n-1] input, result

{
// preprocessing:
hartley_shift(x, n, 1/2)
// transform data:
fht(x, n)
// convglution in transformed domain:
j = n-
for i:=0 to n/2-1 // here i starts from zero
a := x[i]
b := x[j]
x[i] := a*b+(axa-b*b)/2
x[j]1 := a*b-(a*xa-b*b)/2
=gt
}
// transform back:
fht(x, n)
// postprocessing:
hartley_shift(x, n, 1/2)
}

[source file: fhtnegacycliccnvla.spr]

(The code for hartley_shift () was given on page 50.)

Cf. [FXT: fht_negacyclic_auto_convolution in fht/fhtnegacnvla.cc|
Code for the negacyclic convolution (without the ’self’):

[FXT: fht_negacyclic_convolution in fht/fhtnegacnvl.cc|

The underlying idea can be derived by closely looking at the convolution of real sequences by the radix-2
FHT.

The FHT-based negacyclic convolution turns out to be extremely useful for the computation of weighted
transforms, e.g. in the MFA-based convolution for real input.

Chapter 4

Numbertheoretic transforms (NTTSs)

How to make a numbertheoretic transform out of your FFT:
‘Replace exp(£2mi/n) by a primitive n-th root of unity, done.’

We want to do FFTs in Z/mZ (the ring of integers modulo some integer m) instead of C, the (field of
the) complex numbers. These FFTs are called numbertheoretic transforms (NTTs), mod m FFTs or (if
m is a prime) prime modulus transforms.

There is a restriction for the choice of m: For a length n FFT we need a primitive n-th root of unity. A
number 7 is called an n-th root of unity if »” = 1. It is called a primitive n-th root if r* #1Vk < n.

In C matters are simple: eX27%/" is a primitive n-th root of unity for arbitrary n. e2™%/2! is a 21-th root
of unity. 7 = €27 /3 is also 21-th root of unity but not a primitive root, because 7> = 1. A primitive n-th
root of 1 in Z/mZ is also called an element of order n. The ‘cyclic’ property of the elements r of order

n lies in the heart of all FFT algorithms: 7"% = rF.

In Z/mZ things are not that simple since primitive roots of unity do not exist for arbitrary n, they exist
for some maximal order R only. Roots of unity of an order different from R are available only for the
divisors d; of R: v/ is a d;-th root of unity because (rf#/d)di = =1,

Therefore n must divide R, the first condition for NTTs:

n\R <— 3V1 (4.1)

The operations needed in FFTs are addition, subtraction and multiplication. Division is not needed,
except for division by n for the final normalization after transform and backtransform. Division by n is
multiplication by the inverse of n. Hence n must be invertible in Z/mZ: n must be coprime! to m, the
second condition for NTTs:

nlm <= 3IntinZ/mz (4.2)

Cf. [1], 3], [14] or [2] and books on number theory.

4.1 Prime modulus: Z/pZ = F,

If the modulus is a prime p then Z/pZ is the field F,: All elements except 0 have inverses and ‘division is
possible’ in Z/pZ. Thereby the second condition is trivially fulfilled for all FFT lengthes n < p: a prime
p is coprime to all integers n < p.

In coprime to m <= ged(n,m) = 1

63

CHAPTER 4. NUMBERTHEORETIC TRANSFORMS (NTTS) 64

Roots of unity are available for the maximal order R = p—1 and its divisors: Therefore the first condition
on n for a length-n mod p FFT being possible is that n divides p — 1. This restricts the choice for p to
primes of the form p = vn + 1: For length-n = 2 FFTs one will use primes like p = 3-5-227 41 (31
bits), p = 13- 228 + 1 (32 bits), p = 3 - 29 - 256 + 1 (63 bits) or p = 27 - 259 + 1 (64 bits)*. The elements
of maximal order in Z/pZ are called primitive elements, generators or primitive roots modulo p. If r is a
generator, then every element in F,, different from 0 is equal to some power 7¢ (1 < e < p) of r and its
order is R/e. To test whether r is a primitive n-th root of unity in F,, one does not need to check rk£1
for all £ < n. It suffices to do the check for exponents k that are prime factors of n. This is because the
order of any element divides the maximal order. To find a primitive root in IF, proceed as indicated by
the following pseudo code:

Code 4.1 (Primitive root modulo p) Return a primitive root in F),

function primroot(p)

{
if p==2 then return 1
f[] := distinct_prime_factors(p-1)
for r:=2 to p-1
x := TRUE
foreach q in f[]
if r*x((p-1)/q)==1 then x:=FALSE
}
3 if x==TRUE then return r
error("no primitive root found") // p cannot be prime !
}

An element of order n is returned by this function:
Code 4.2 (Find element of order n) Return an element of order n in F,:

function element_of_order(n,p)

{
R := p-1 // maxorder

if (R/n)*n != R then error("order n must divide maxorder p-1")
r := primroot(p)

x := r**x(R/n)
return x

4.2 Composite modulus: Z/mZ

In what follows we will need the function ¢(), the so-called ‘totient’ function. ¢(m) counts the number
of integers prime to and less than m. For m = p prime ¢(p) = p — 1. For m composite p(m) is always
less than m — 1. For m = p* a prime power

e(p*) = pF—p? (4.3)

e.g. p(2F) = 271, (1) = 1. For coprime pi, pz (p1, p2 not necessarily primes) ¢(p1 p2) = ¢(p1) ¢(p2),
() is a so-called multiplicative function.

For the computation of ¢(m) for m a prime power one can use this simple piece of code

Code 4.3 (Compute phi(m) for m a prime power) Return ¢(p®)

2Primes of that form are not ‘exceptional’, cf. Lipson [3]

CHAPTER 4. NUMBERTHEORETIC TRANSFORMS (NTTS) 65

function phi_pp(p,x)

if x==1 then returnp - 1
else return px*x - p**x(x-1)

b
Pseudo code to compute ¢(m) for general m:

Code 4.4 (Compute phi(m)) Return ¢(m)

function phi(m)

{
{n, pl], x[1} := factorization(m) // m==product(i=0..n-1,p[il**x[i])
ph =1
for i:=0 to n-1
) ph := ph * phi_pp(p[il,x[i])
}

Further we need the notion of Z/mZ*, the ring of units in Z/mZ. Z/mZ* contains all invertible elements
(‘units’) of Z/mZ, i.e. those which are coprime to m. Evidently the total number of units is given by

p(m):
Z/mZ*| = ¢(m) (4.4)

k1

If m factorizes as m = 2ko . pjt . .. 'pzq then

Z/mZ*| = @(2)- o) ... o(pk) (4.5)

It turns out that the maximal order R of an element can be equal to or less than |Z/mZ*|, the ring
Z/mZ* is then called cyclic or noncyclic, respectively. For m a power of an odd prime p the maximal
order R in Z/mZ* (and also in Z/mZ) is

R(p") = (") (4.6)
while for m a power of two a tiny irregularity enters:
1 fork=1
R(2%) = 2 for k =2 (4.7)

2k=2 fork >3

i.e. for powers of two greater than 4 the maximal order deviates from ((2%) = 2¥=1 by a factor of 2. For
the general modulus m = 2k . p]fl S p];q the maximal order is

R(m) = lem(R(2%), R(p"),..., R(pk)) (4.8)

where lem() denotes the least common multiple.

Pseudo code to compute R(m):

Code 4.5 (Maximal order modulo m) Return R(m), the mazimal order in Z/mZ

function maxorder (m)
{n, pll, k[1} := factorization(m) // m==product(i=0..n-1,p[il*xk[i])
R :=1
for i:=0 to n-1

t := phi_pp(pl[il,k[i])
if p[il==2 AND k[i]>=3 then t :=t / 2
N R := 1lcm(R,t)

return R

CHAPTER 4. NUMBERTHEORETIC TRANSFORMS (NTTS) 66

Now we can see for which m the ring Z/mZ* will be cyclic:

Z/mZ* cyclic for m =2, 4, p*, 2. pF (4.9)
where p is an odd prime. If m contains two different odd primes pg,pp, then R(m) =
lem(...,©(pa), ©(ps),-..) is at least by a factor of two smaller than o(m) = ... - ©(pa) - ©Ps) - ...

because both ¢(p,) and ¢(pp) are even, so Z/mZ* can’t be cyclic in that case. The same argument holds
for m = 2k . pk if kg > 1. For m = 2% Z/mZ* is cyclic only for k = 1 and k = 2 because of the above
mentioned irregularity of R(2%).

Pseudo code (following [14]) for a function that returns the order of some element z in Z/mZ:

Code 4.6 (Order of an element in Z/mZ) Return the order of an element in Z/mZ

function order(x,m)

if gcd(x,m)!=1 then return O // x not a unit
h := phi(m) // number of elements of ring of units

:=h
%n, pll, k[1} := factorization(h) // h==product(i=0..n-1,p[il**k[i])
%or i:=0 to n-1

f := p[il**k[i]
e :=e / f
gl := x**e mod m
while gi!=1
{
gl := gl*xp[i] mod m
e := e * p[i]
plil := pl[i] - 1
}
}
return e

}
Pseudo code for a function that returns some element z in Z/mZ of maximal order:

Code 4.7 (Element of maximal order in Z/mZ) Return an element that has mazimal order in
Z/mZ
function maxorder_element (m)

R := maxorder(m)
for x:=1 to m-1

if order(x,m)==R then return x

// never reached

For prime m the function returns a primitive root. It is a good idea to have a table of small primes stored
(which will also be useful in the factorization routine) and restrict the search to small primes and only if
the modulus is greater than the largest prime of the table proceed with a loop as above:

Code 4.8 (Element of maximal order in Z/mZ) Return an element that has mazimal order in
Z/mZ, use a precomputed table of primes

function maxorder_element (m,pt[],np)
// ptl0..np-11 = 2,3,5,7,11,13,17, ...
{

if m==2 then return 1

R := maxorder(m)
for i:=0 to np-1

if order(pt[i],m)==R then return x

CHAPTER 4. NUMBERTHEORETIC TRANSFORMS (NTTS) 67

}

// hardly ever reached

for x:=pt[np-1] to m-1 step 2
{

if order(x,m)==R then return x

// never reached

}

[FXT: maxorder_element mod in mod/maxorder. cc|

There is no problem if the prime table contains primes > m: The first loop will finish before order() is
called with an element > m, because before that can happen, the element of maximal order is found.

4.3 Pseudocode for NTTs

+27i/n

To implement mod m FFTs one basically must supply a mod m class® and replace e by an n-th

root of unity in Z/mZ in the code. [FXT: class mod in mod/mod.h]

For the backtransform one uses the (mod m) inverse 7 of r (an element of order n) that was used for
the forward transform. To check whether 7 exists one tests whether ged(r,m) = 1. To compute the
inverse modulo 7 one can use the relation 7 = r#®) =1 (mod m). Alternatively one may use the extended
Euclidean algorithm, which for two integers a and b finds d = ged(a,b) and u, v so that au + bv = d.
Feeding a = r, b = m into the algorithm gives u as the inverse: ru +mv =ru =1 (mod m).

While the notion of the Fourier transform as a ‘decomposition into frequencies’ seems to be meaningless
for NTTs the algorithms are denoted with ‘decimation in time/frequency’ in analogy to those in the
complex domain.

The nice feature of NTTs is that there is no loss of precision in the transform (as there is always with the
complex FFTs). Using the analogue of trigonometric recursion (in its most naive form) is mandatory, as
the computation of roots of unity is expensive.

4.3.1 Radix 2 DIT NTT

Code 4.9 (radix 2 DIT NTT) Pseudo code for the radiz 2 decimation in time mod fft (to be called
with 1dn=log2(n)):

procedure mod_fft_dit2(£[], ldn, is)
// mod_type f[0..2%*x1dn-1]
{

n := 2%*1ldn
rn := element_of_order(n) // (mod_type)
if is<0 then 1rn := rn**(-1)

revbin_permute(£[], n)
%or ldm:=1 to ldn

m = 2xx1dm
mh := m/2
dw := rn**(2x*(ldn-1ldm)) // (mod_type)
w =1 // (mod_type)
for j:=0 to mh-1
{
for r:=0 to n-1 step m
{
tl := r+j
t2 := tl+mh
v := f[t2]*w // (mod_type)
u := f[t1] // (mod_type)

3A class in the C4+ meaning: objects that represent numbers in Z/mZ together with the operations on them

CHAPTER 4. NUMBERTHEORETIC TRANSFORMS (NTTS)

flt1] := u+v
f[t2] := u-v
}
W = wkdw

}
[source file: nttdit2.spr]

Like in [1.3.2/it is a good idea to extract the 1dm==1 stage of the outermost loop:
Replace

for ldm:=1 to 1ldn

by
for r:=0 to n-1 step 2

{flr], flr+11} := {f[r]+f[r+1], flr]-flr+1]}

for 1dm:=2 to ldn

4.3.2 Radix 2 DIF NTT
Code 4.10 (radix 2 DIF NTT) Pseudo code for the radiz 2 decimation in frequency mod fft:

procedure mod_fft_dif2(f[], ldn, is)
// mod_type f[0..2%*1ldn-1]
{

n := 2%%*1ldn
dw := element_of_order(n) // (mod_type)
if is<0 then dw := rn*x(-1)

for 1dm:=1ldn to 1 step -1
{

1= 2xx1dm
h := m/2

=1 // (mod_type)

or j:=0 to mh-1

A+ o5 88

for r:=0 to n-1 step m
{ .

r+j

t1+mh

f[t2] // (mod_type)
f[t1] // (mod_type)

u+v
(u-v)*w

}

revbin_permute(£[], n)

}
[source file: nttdif2.spr]

As in section [1.3.3] extract the 1dm==1 stage of the outermost loop:
Replace the line

for 1ldm:=1dn to 1 step -1

by

CHAPTER 4. NUMBERTHEORETIC TRANSFORMS (NTTS) 69

for 1dm:=1dn to 2 step -1

and insert

for r:=0 to n-1 step 2

{flr], flr+11} := {f[r]1+f[r+1], flr]-flr+1l}

before the call of revbin_permute (£ [],n).

4.4 Convolution with NTT's

The NTTs are natural candidates for (exact) integer convolutions, as used e.g. in (high precision) multi-
plications. One must keep in mind that ‘everything is mod p’, the largest value that can be represented
is p — 1. As an example consider the multiplication of n-digit radix R numbers*. The largest possible
value in the convolution is the ‘central’ one, it can be as large as M = n (R — 1)? (which will occur if
both numbers consist of ‘nines’ only”).

One has to choose p > M to get rid of this problem. If p does not fit into a single machine word
this may slow down the computation unacceptably. The way out is to choose p as the product of several
distinct primes that are all just below machine word size and use the Chinese Remainder Theorem (CRT)
afterwards.

If using length-n FFTs for convolution there must be an inverse element for n. This imposes the condition
ged(n, modulus) = 1, i.e. the modulus must be prime to n. Usually® modulus must be an odd number.

Integer convolution: Split input mod m1, m2, do 2 FFT convolutions, combine with CRT.

4.5 The Chinese Remainder Theorem (CRT)

The Chinese remainder theorem (CRT):

Let my,ma, ..., my be pairwise relatively” prime (i.e. ged(m;,m;) =1, Vi # j)
If 2 = 2; (mod m;) i=1,2,..., f then z is unique modulo the product my - mg - ... - my.

For only two moduli m1, my compute x as follows®:

Code 4.11 (CRT for two moduli) pseudo code to find unique x (mod my msg) with x = x1 (mod m1)
x = x9 (mod ma):

function crt2(x1,ml,x2,m2)

¢ := mi**(-1) mod m2 // inverse of ml modulo m2
s := ((x2-x1)*c) mod m2

return x1 + s*ml

For repeated CRT calculations with the same moduli one will use precomputed c.

For more more than two moduli use the above algorithm repeatedly.

Code 4.12 (CRT) Code to perform the CRT for several moduli:

4Multiplication is a convolution of the digits followed by the ‘carry’ operations.
5A radix R ‘nine’ is R — 1, nine in radix 10 is 9.

6for length-2F FFTs

"note that it is not assumed that any of the m; is prime

8cf. [3]

CHAPTER 4. NUMBERTHEORETIC TRANSFORMS (NTTS) 70

function crt(x[],m[],f)

x1 := x[0]
ml := m[0]
i:=1
do
{
x2 := x[i]
m2 := m[i]
x1 := crt2(x1,m1,x2,m2)
ml := ml *x m2
i=1i+1
}
while i<f
return x1

}

To see why these functions really work we have to formulate a more general CRT procedure that specialises
to the functions above.

Define
k=i
and
ni = T;' modm; (4.11)
then for
one has
_ x; for j=i
Xi mod m; = { 0 else (413)
and so
Y Xi = w; modm; (4.14)
k
For the special case of two moduli mq, ms one has
T1 = M2 (415)
T2 = ma (416)
m = my' modmy (4.17)
2 = mi' mod my (4.18)
which are related by*
mme+mnm = 1 (4.19)
ZXk = xymTr+xzanT (4.20)
2
= ZTimm2+T2mm (4.21)
= I (1 — 72 ml) + To2 M2 My (4.22)
= 21+ (2 — 1) (m7" mod my)my (4.23)

as given in the code. The operation count of the CRT implementation as given above is significantly
better than that of a straight forward implementation.

9cf. extended euclidean algorithm

CHAPTER 4. NUMBERTHEORETIC TRANSFORMS (NTTS) 71

4.6 A modular multiplication technique

When implementing a mod class on a 32 bit machine the following trick can be useful: It allows easy
multiplication of two integers a, b modulo m even if the product a - b does not fit into a machine integer
(that is assumed to have some maximal value z — 1,z = 2%).

Let (x), denote x modulo y, || denote the integer part of z. For 0 < a,b < m:

a-b = Vm'bJ-mﬂa.wm (4.24)

rearranging and taking both sides modulo z > m:

<a-b— {”J ~m>z = ((a-D)m)s (4.25)

m

where the rhs. equals (a - b),,, because m < z.

e = (o))

the expression on the rhs. can be translated into a few lines fo C-code. The code given here assumes that
one has 64 bit integer types int64 (signed) and uint64 (unsigned) and a floating point type with 64 bit
mantissa, float64 (typically long double).

uint64 mul_mod(uint64 a, uint64 b, uint64 m)

{

uint64 y = (uint64) ((float64)a*(float64)b/m+(floaté4)1/2); // floor(axb/m)

y=y *m // mxfloor (a*b/m) mod z
uint64 x = a * b; // a*b mod z
uint64 r = x - y; // axb mod z - m*floor(a*b/m) mod z
if ((int64)r < 0) // normalization needed ?
r=1r + m
y=y-1; // (a*b)/m quotient, omit line if not needed
}
return r; // (a*b)%m remnant

}

It uses the fact that integer multiplication computes the least significant bits of the result (a-b), whereas
float multiplication computes the most significant bits of the result. The above routine works if 0 <=
4

a,b <m < 2% = 2. The normalization isn’t necessary if m < 202 = .

When working with a fixed modulus the division by p may be replaced by a multiplication with the
inverse modulus, that only needs to be computed once:

Precompute: float64 i = (float64)1/m;
and replace the line uint64 y = (uint64) ((float64)a*(float64)b/m+(float64)1/2);
by uint64 y = (uint64) ((float64)ax(floatb4)b*i+(float64)1/2);

so any division inside the routine avoided. But beware, the routine then cannot be used for m >= 262:
it very rarely fails for moduli of more than 62 bits. This is due to the additional error when inverting
and multiplying as compared to dividing alone.

This trick is ascribed to Peter Montgomery.
TBD: montgomery mult.

CHAPTER 4. NUMBERTHEORETIC TRANSFORMS (NTTS) 72

4.7 Numbertheoretic Hartley transform

Let 7 be an element of order n, i.e. r™ = 1 (but there is no k < n so that 7* = 1) we like to identify r
with exp(2i7/n).

Then one can set

2m r?+1

— 4.27

cos 5y (4.27)
2m r?—1

~ _ 4.28

i sin T (4.28)

For This choice of sin and cos the relations exp() = cos() + 4 sin() and sin()? + cos()? = 1 should hold.

. s 1. 2241 2_
The first check is trivial: m2w + Izz

2 2 2
that is the square root of —1: (gil)2+ (””;;il 2= H);;gz —U” — 1. Ok, but what is i in the modular
2 _

—1 and i* = 1 as we are used to. This is only true in cyclic rings.

L — 2. The second is also easy if we allow to write i for some element

ring? Simply r™/4, then we have i
TBD: give a nice mod fht

Chapter 5

Walsh transforms

How to make a Walsh transform out of your FFT:
‘Replace exp(something) by 1, done.’

Very simple, so we are ready for

Code 5.1 (radix 2 DIT Walsh transform, first trial) Pseudo code for a radiz 2 decimation in time
Walsh transform: (has a flaw)

procedure walsh_wak_dit2(a[], 1dn)

{
n := 2%*xldn
%or 1ldm := 1 to 1ldn
m = 2%*1dm
mh := m/2
for j := 0 to mh-1
{
for r := 0 to n-1 step m
{ .
tl :=r + j
t2 := tl + mh
u := a[ti1]
v := al[t2]
altl] :(=u+ v
alt2] :=u-v
}
}
}
}

[source file: walshwakdit2.spr]

The transform involves proportional n log,(n) additions (and subtractions) and no multiplication at all.
Note the absence of any permute(al],n) function call. The transform is its own inverse, so there is
nothing like the is in the FFT procedures here. Let’s make a slight improvement: Here we just took
the code [1.4/ and threw away all trig computations.But the swapping of the inner loops, that caused the
nonlocality of the memory access is now of no advantage, so we try this piece of

Code 5.2 (radix 2 DIT Walsh transform) Pseudo code for a radiz 2 decimation in time Walsh
transform:
procedure walsh_wak_dit2(a[],1ldn)

n := 2%*xldn
%or ldm := 1 to 1ldn

m = 2%kldm

73

CHAPTER 5. WALSH TRANSFORMS 74

mh := m/2
for r := 0 to n-1 stepm
{
tl =1
t2 = r + nh
for j := 0 to mh-1
{
u := a[t1]
v := a[t2]
al[tl] :=u+ v
alt2] :=u -v
tl :=tl + 1
t2 = t2 + 1

}
}

[source file: walshwakdit2localized.spr]

Which performance impact can this innocent change in the code have? For large n it gave a speedup by
a factor of more than three when run on a computer with a main memory clock of 66 Megahertz and a
5.5 times higher CPU clock of 366 Megahertz.

The equivalent code for the decimation in frequency algorithm looks like this:

Code 5.3 (radix 2 DIF Walsh transform) Pseudo code for a radiz 2 decimation in frequency Walsh
transform:

procedure walsh_wak_dif2(al[], 1dn)

{
n := 2¥x1ldn
for 1ldm := 1ldn to 1 step -1
{
m = 2x*x1ldm
mh := m/2
for r := 0 to n-1 stepm
{
tl =1
t2 = r + nh
for j := 0 to mh-1
{
u := a[ti]
v := a[t2]
altl] :=u +v
alt2] :=u-v
tl = t1 + 1
t2 = t2 + 1
}
}
}
}

[source file: walshwakdif2localized.spr]

The basis functions look like this (for n = 16):
TBD: definition and formulas for walsh basis

A term analogue to the frequency of the Fourier basis functions is the so called ‘sequency’ of the Walsh
functions, the number of the changes of sign of the individual functions. If one wants the basis functions
ordered with respect to sequency one can use a procedure like this:

Code 5.4 (sequency ordered Walsh transform (wal))

procedure walsh_wal_dif2(a[],n)

{
gray_permute (a[],n)
permute(a[],n)
walsh_wak_dif2(al[],n)

CHAPTER 5. WALSH TRANSFORMS 75

permute(all,n) is what it used to be (cf. section [8.1). The procedure gray_permute(a[],n) that
reorders data element with index m by the element with index gray_code (m) is shown in section [8.5.

The Walsh transform of integer input is integral, cf. section 6.2.

All operations necessary for the walsh transform are cheap: loads, stores, additions and subtractions.
The memory access pattern is a major concern with direct mapped cache, as we have verified comparing
the first two implementations in this chapter. Even the one found to be superior due to its more localized
access is guaranteed to have a performance problem as soon as the array is long enough: all accesses are
separated by a power-of-two distance and cache misses will occur beyond a certain limit. Rather bizarre
attempts like inserting ‘pad data’ have been reported in order to mitigate the problem. The Gray code
permutation described in section 8.5 allows a very nice and elegant solution where the subarrays are
always accessed in mutually reversed order.

template <typename Type>
void walsh_gray(Type *f, ulong 1ldn)
// decimation in frequency (DIF) algorithm

{
const ulong n = (1<<1dn);
for (ulong ldm=1dn; 1dm>0; --1dm) // dif
{
const ulong m = (1<<1dm);
for (ulong r=0; r<nm; r+=m)
{
ulong tl = r;
ulong t2 =r +m - 1;
for (; ti1<t2; ++t1,--t2)
{
Type u = f[t1];
Type v = £[t2];
flt1l] = u + v;
£f[t2] = u - v;
}
}
}
}

The transform is not self-inverse, however its inverse can be implemented trivially:

template <typename Type>
void inverse_walsh_gray(Type *f, ulong ldn)
// decimation in time (DIT) algorithm

{
const ulong n = (1<<1dn);
for (ulong ldm=1; ldm<=ldn; ++ldm) // dit
{
const ulong m = (1<<1dm);
for (ulong r=0; r<m; r+=m)
{
ulong t1 = r;
ulong t2 = r + m - 1;
for (; ti1<t2; ++t1,--t2)
{
Type u = f[t1];
Type v = £[t2];
flt1] = u + v;
f[t2] = u - v;
}
}
}
}

(cf. [FXT: file walsh/walshgray.h])
The relation between walsh wak() and walsh_gray() is that
inverse_gray_permute(f, n);

walsh_gray(f, ldn);
for (ulong k=0; k<n; ++k) if (grs_negative_q(k)) £f[k] = -f[k];

CHAPTER 5. WALSH TRANSFORMS 76

is equivalent to the call walsh wak(f, 1dn). The third line is a necessary fixup for certain elements that
have the wrong sign if uncorrected. grs negative_q() is described in section [7.11.

Btw. walsh wal(f, 1dn) is equivalent to

walsh_gray(f, ldn);
for (ulong k=0; k<n; ++k) if (grs_negative_q(k)) £f[k] = -f[k];
revbin_permute(f, n);

The same idea can be used with the Fast Fourier Transform. However, the advantage of the improved
access pattern is usually more than compensated by the increased number of sin/cos-computations (the
twiddle factors appear reordered so n - logn instead of n computations are necessary) cf. [FXT: file

CHAPTER 5. WALSH TRANSFORMS

fft/gfft.ccl.

5.1 Basis functions of the Walsh transforms

e e el
gD WD O

e e el
gd W N O

0w ~NOoO Ok WN = O 0 N O WNN = O

W ~NO O W N~ O

[* % % % % %

[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*

WAK (Walsh-Kronecker basis)

[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*
[*

*

* X K X X ¥ X ¥

*

* ¥ ¥ X
* ¥ ¥ X

* X ¥ *

*
*

* X

*

* ¥ X ¥

* ¥ ¥ *

* ¥ X *

*

*

* X ¥ *

*

* ¥ ¥ %

* %

* k ok ok k k ok k k]

*

* X X X X ¥

*

*

* X

*
*

* X

* X X ¥

*

WAL (Walsh-Kaczmarz basis)

[* *x
[* *

[
[*
[
[
[

[* *

[
[
[*
[

[
[
[
[

*

* *

* X ¥ *

* X ¥ ¥ *

* ¥ ¥ *

* *

* ¥ ¥ %

* ¥ X *

* *

* ¥ X * * %

*

*

]
]
*]
]
*]

* %]

* ¥ X *

* *

]
]
*]
%]
]
*]
]
]
*]

%]

*]

*]

%]

*]

*]

%]

*]

[y T ey Y TR T WY |

*]
*]
%]

*]

0
(15)
«n
(8)
(3)
(12)
(4
(11)
1
(14)
(6)
9
(2
(13)
(5)
(10)

0)
1)
2)
3)
4)
5)
6)
7)
8)

N A AN A~NA~AA~AANA A

(10)
(11)
(12)
(13)
(14)
(15)

0)
1)
2)
3)
4)
5)
6)
7)
8)

N A A~~~ A

(10)
(11)
(12)
(13)
(14)
(15)

[* % % % % % % % % % % x
[* * % % % % * %

[* % * * * k k %
[* % % x

[* * * %
[* * * k
[* * * ok ok ok
[* * * % *
[* * * * *

[* * * * * *
[* * * X *
[* * * *
[* * * ok

[* * * * k
[* * * * *
[* * * ok * %

PAL (Walsh-Paley basis)

[* * * ok Kk k k Kk K ok
[* *

[* * * ok ok ok
[* * * *
[* * k * ok

[* * * ok * %
[* * * x

[* * * * *
[* * * * *
[* * * *
[* * *x k *

[* * ok * * %
[* * * *

[* * * %

[* % % * ok

[* * % % % % * x

Walsh-Hartley basis

[* % % % % % * % % * * %
[* % % * % x
[* % % *

L * k
[* *

[* *

[* *k
[* * * % *
[*
[* * k *
[* * * ok
[* %
[

[

[* *
[= * * * *

* X ¥ * *
* * X ¥ X *
*
* X ¥ * * %
*

* X X %

* X ¥ * * *

* %

* ¥ X *

* X X %

* X X ¥

*]
*]
*]
*]
*]
*]
*]
*]

—_ o

*]

* k]
* k]

*]

*]

*]
*]

*]
*]
*]

0)
1)
3)
2)
7)
6)
4)

AN~~~ "~~~

(15)
(14)
(12)
(13)
(8
(9
(11)
(10)

o
(2
(4
(6)
(8
(10)
(12)
(14)
(15)
(13)
(11)

7)
5)
3)
1)

~N AN~~~

0)
1)
2)
3)
4)
5)
6)
7)
8)

NN A~ ~A "~~~ "~

(10)
(11)
(12)
(13)
(14)
(15)

7

CHAPTER 5. WALSH TRANSFORMS 78

5.2 Dyadic convolution

Walsh’s convolution has xor where the usual one has plus

Using

template <typename Type>
void dyadic_convolution(Type * restrict f, Type * restrict g, ulong ldn)

{
walsh_wak(f, 1dn);
walsh_wak(g, 1ldn);
for (ulong k=0; k<n; ++k) glk] *= f[k];
walsh_wak(g, 1ldn);
}

one gets the so called dyadic convolution defined by

h = a®gh (5.1)
he = Y azby
TDYy=1

The table equivalent to 2.1 is

+-- 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
I

0: 01 2 3 4 5 6 7 8 91011 12 13 14 15
1: 1 0 3 2 5 4 7 6 9 811 10 13 12 15 14
2: 2 3 01 6 7 4 51011 8 9 14 15 12 13
3: 3 21 0 7 6 5 41110 9 8 15 14 13 12
4: 4 5 6 7 0 1 2 312131415 8 9 10 11
5: 5 4 7 6 1 0 3 213121514 9 8 11 10
6: 6 7 4 5 2 3 0 1141512131011 8 9
7: 7 6 5 4 3 2 1 015 14 13 12 11 10 9 8
8: 8 9101112131415 0 1 2 3 4 5 6 7
9: 9 8111013121514 1 0 3 2 5 4 7 6
10: 1011 8 914151213 2 3 0 1 6 7 4 5
11 1110 9 815141312 3 2 1 0 7 6 5 4
12 12 131415 8 91011 4 5 6 7 0 1 2 3
13 13121514 9 81110 5 4 7 6 1 0 3 2
14 14 1512131011 8 9 6 7 4 5 2 3 0 1
15 151413121110 9 8 7 6 5 4 3 2 1 0

Dyadic correlation is the same as dyadic convolution: plus is minus is exor in modulo-two world.
The walsh_gray()-variant and its inverse can be utilized for a faster implementation of the dyadic
convolution:

template <typename Type>
void dyadic_convolution(Type * restrict f, Type * restrict g, ulong ldn)

{
walsh_gray(f, ldn);
walsh_gray(g, ldn);
for (ulong k=0; k<n; ++k) glk] *= f[k];
for (ulong k=0; k<n; ++k) if (grs_negative_q(k)) glk] = -glkl;
inverse_walsh_gray(g, ldn);
}

The observed speedup for large arrays is about 3/4:

1dn=20 n=1048576 repetitions: m=5 memsize=16384 kiloByte

CHAPTER 5. WALSH TRANSFORMS 79

reverse(f,n2); dt=0.0418339 rel= 1
dif2_walsh_wak(f,1ldn); dt=0.505863 rel= 12.0922
walsh_gray(f,1dn); dt=0.378223 rel= 9.04108
dyadic_convolution(f, g, 1ldn); dt= 1.54834 rel= 37.0117 << wak
dyadic_convolution(f, g, 1ldn); dt= 1.19474 rel= 28.5436 << gray
1dn=21 n=2097152 repetitions: m=5 memsize=32768 kiloByte
reverse(f,n2); dt=0.0838011 rel= 1
dif2_walsh_wak(f,1ldn); dt=1.07741 rel= 12.8567
walsh_gray(f,1ldn) ; dt=0.796644 rel= 9.50636
dyadic_convolution(f, g, 1ldn); dt=3.28062 rel= 39.1477 << wak
dyadic_convolution(f, g, 1ldn); dt=2.49583 rel= 29.7401 << gray

The nearest equivalent to the acyclic convolution can be computed using a sequence that has both
prepended and appended runs of n/2 zeros:

+- 0 1 2 3 4 5 6 7 8 910 11 12 13 14 15
I
0: 01 2 3 4 5 6 7 8 91011 12 13 14 15
1: 1 0 3 2 65 4 7 6 9 811 10 13 12 15 14
2: 2 3 01 6 7 4 51011 8 9 14 15 12 13
3: 3 21 0 7 6 5 41110 9 8 15 14 13 12
4: 4 5 6 7 0 1 2 312131415 8 9 10 11
5: 5 4 7 6 1 0 3 213121514 9 8 11 10
6: 6 7 4 5 2 3 0 1141512131011 8 9
7: 7 6 5 4 3 2 1 01514 13 12 11 10 9 8
8: 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
9: 17 16 19 18 21 20 23 22 25 24 27 26 29 28 31 30
10: 18 19 16 17 22 23 20 21 26 27 24 25 30 31 28 29
11: 19 18 17 16 23 22 21 20 27 26 25 24 31 30 29 28
12: 20 21 22 23 16 17 18 19 28 29 30 31 24 25 26 27
13: 21 20 23 22 17 16 19 18 29 28 31 30 25 24 27 26
14: 22 23 20 21 18 19 16 17 30 31 28 29 26 27 24 25
15: 23 22 21 20 19 18 17 16 31 30 29 28 27 26 25 24

It may be interesting to note that the table for matrix multiplication (4x4 matrices) looks like

0: 0 4 8 . . .12

1: 1 5 9 . . .13

2: 2 6 i0 . . . 14

3: 3 T . i1t . . .15 .

4: 0 4 8 .12

5: 1 5 9 . . .13

6: 2 6 10 . . . 14

7: 3 . 7 i1 . . .15 .

8: 0 4 8 .12

9: 1 5 9 . . .13
10: 2 6 i0 . . . 14
11: 3 . T . 11t . . .15 .
12: 0 4 8 . . .12
13: 1 5 9 . . .13
14: 2 6 0o . . .14
15: 3 7 11 . . .15

But when the problem is made symmetric, i.e. the second matrix is indexed in transposed order, we get:

+-= 01 2 3 4 5 6 7 8 91011 12 13 14 15

CHAPTER 5. WALSH TRANSFORMS 80

I

0: 0 4 8 . 12

1: 0 4 8 . 12

2: 0 4 8 . 12

3: 0 4 8 12
4: 1 5 9 . 13

5: 1 5 9 . 13

6: 1 5 9 . 13

7: 1 5 . 9 13
8: 2 6 10 . 14

9: 2 6 . 10 14
10: 2 6 10 . 14
11: 2 . 6 . 10 14
12: 3 . 7 11 15 .
13: 3 . 7 11 15 .
14: 3 . . .7 . . .11 . . .15 .
15: 3 . . .7 . . .11 . . .15

Thereby dyadic convolution can be used to compute matrix products. The ‘unpolished’ algorithm is
~n?-logn as with the FT (-based correlation).

5.3 The slant transform

The slant transform (SLT) can be implemented using a Walsh Transform and just a little pre/post-
processing:

void slant(double *f, ulong ldn)
// slant transform
walsh_wak(f, 1dn);

ulong n = 1<<1ldn;
for (ulong 1dm=0; ldm<ldn-1; ++1dm)

{
ulong m = 1<<1dm; // m=1, 2, 4, 8, ..., n/4
double N = m*2, N2 = Nx*N;
double a = sqrt(3.0%N2/(4.0%N2-1.0));
double b = sqrt(1.0-a*a); // == sqrt((N2-1)/(4*N2-1));
for (ulong j=m; j<n-1; j+=4*m)
{
ulong t1 = j;
ulong t2 = j + m;
double f1 = f[t1], £2 = f[t2];
flt1] = a * f1 - b * £2;
f[t2] = b *x f1 + a * £f2;
}
}

The ldm-loop executes 1dn—1 times, the inner loop is executed is n/2 — 1 times. That is, apart from
the Walsh transform only an amount of work linear with the array size has to be done. [FXT: slant in
walsh/slant.cc|

The inverse transform is:
void inverse_slant(double *f, ulong ldn)
// inverse of slant()
ulong n = 1<<1ldn;
ulong ldm=1dn-2;
do
{
ulong m = 1<<1ldm; // m = n/4, n/2, ..., 4, 2, 1

CHAPTER 5. WALSH TRANSFORMS

double N = m*2, N2 = Nx*N;

double a = sqrt(3.0%N2/(4.0%N2-1.0));

double b = sqrt(1.0-a*a); // == sqrt((N2-1)/(4*N2-1));
for (ulong j=m; j<n-1; j+=4xm)

= f[t2];

}
while (ldm-—-);

walsh_wak(f, 1dn);
A sequency-ordered version of the transform can be implemented as follows:

void slant_seq(double *f, ulong ldn)
// sequency ordered slant transform

{
slant(f, 1dn);
ulong n = 1<<1ldn;
inverse_gray_permute(f, n);
unzip_rev(f, n);
revbin_permute(f, n);

}

This implementation could be optimised by fusing the involved permutations, cf. [19].

The inverse is trivially derived by calling the inverse operations in reversed order:

void inverse_slant_seq(double *f, ulong 1ldn)
// inverse of slant_seq()

{
ulong n = 1<<1dn;
revbin_permute(f, n);
zip_rev(f, n);
gray_permute(f, n);
inverse_slant(f, 1dn);
}

TBD: slant basis funcs

81

Chapter 6

The Haar transform

0: [+++++++++++++++++++++++++++++++ +]
1: [++++++++++++++++ - - - - - - - - - - - - - - -]
2: [+ +++++ 4+ 4+ - - - - - - - -]
3: [L i i]
4: [++++ - - - - 1
5: [+ - - - -]
6: [4+ - - - - 1
7: [- -]
8: [+ + - -]
9: [++ - -]
10: [++ - -]
11: [- -]
12: [4 -]
13: [++ - -]
14: [++ - -]
15: [++ - -]
16: [+ -]
17: [+ -]
18: [+ -]
19: [+ -]
20: [+ - 1
21: [+ -]
22: [+ -]
23: [+ -]
24: [+ -]
25: [+ -]
26: [+ -]
27: [+ - 1
28: [+ -]
29: [+ -]
30: [+ -]
31: [+ -]

Figure 6.1: Basis functions for the Haar transform. Only the sign of the basis functions is shown. At the
blank entries the functions are zero.

Code for the Haar transform:

void haar(double *f, ulong 1ldn, double *ws/*=0%/)

{
ulong n (1UL<<1dn) ;

double s2 = sqrt(0.5);
double v = 1.0;

double *g = ws;
if (!ws) g = NEWOP(double, n);

for (ulong m=n; m>1; m>>=1)

82

CHAPTER 6. THE HAAR TRANSFORM 83

vV *= s82;
ulong mh = (m>>1);
for (ulong j=0, k=0; j<m; j+=2, k++)

{
double x = f[j];
double y = f[j+1];
glk] = X +y;
glmh+k] = (x - y) * v;

¥
copy(g, f, m);

¥
£[0] *= v; // v == 1.0/sqrt(n);
if (lws) delete [] g;

The above routine uses a temporary workspace that can be supplied by the caller. The computational
cost is only ~ n. [FXT: haar in haar/haar.cc]

Code for the inverse Haar transform:

void inverse_haar(double *f, ulong ldn, double *ws/*=0%/)
{

ulong n = (1UL<<1ldn);

double s2 = sqrt(2.0);

double v = 1.0/sqrt(n);

double *g = ws;

if (!ws) g = NEWOP(double, n);

£[0] *= v;
for (ulong m=2; m<=n; m<<=1)

ulong mh = (m>>1);
for (ulong j=0, k=0; j<m; j+=2, k++)
{

double x = f[k];

double y f [mh+k] * v;

gljl = X +7y;

gli+1l = x-y;

}
copy(g, £, m);
Vv *= s2;

}
if ('ws) delete [] g;

[FXT: inverse_haar in haar/haar.cc]

That the given routines use a temporary storage may be seen as a disadvantage. A rather simple
reordering of the basis functions, however, allows for to an in place algorithm. This leads to the

Versions of the Haar transform without normalization are given in [FXT: file haar/haarnn.h)].

6.1 Inplace Haar transform

Code for the in place version of the Haar transform:

void inplace_haar(double *f, ulong 1ldn)

{

ulong n = 1<<1ldn;
double s2 = sqrt(0.5);
double v = 1.0;

for (ulong js=2; js<=n; js<<=1)
vV k= s2;

for (ulong j=0, t=js>>1; j<m; j+=js, t+=js)

CHAPTER 6. THE HAAR TRANSFORM

}

©

e e
W 00 ~NO U WN -

NNNNNNDNN
0 ~NOoO O WN -

w w
= O

W ~NO O WN - O

e
o

N
o

N
©

[+++++++++++++++++++++++++++++++ +]

[+ -]
[+ +--]
[+ -]
[+ +++ - - - -]
[+]
(+ 4= - 1
[+ -]
[++++++++- - - - - - - -]
[+]
[++ - -]
[+]
[+ + + - - - -]
[+]
[+4- -]
[+ -]
[+ +++++++++++++++ - - - - === - - - - - - - - =]
[+ -]
[+ - -]
[]
[+ + + - - - -]
[+ -]
(+ 4= - 1
[+ -]
[+H++ - - - - - - - -]
[+ -]
l + + - -]
[+ -]
L + 4+ ++ - - - -]
[+ -]
[+4+ -]
[+ -]
Figure 6.2: Haar basis functions, inplace order.
{

double x = f[j];

double y = f[t];

3] = x +y;

fltl] = (x - y) * v;

}

}
£[0] *= v; // v==1.0/sqrt(n);

[FXT: inplace_haar in haar/haarinplace.cc]

. and its inverse:

void inverse_inplace_haar(double *f, ulong ldn)

{

ulong n = 1<<ldn;

double s2 = sqrt(2.0);
double v = 1.0/sqrt(n);

f[0] *= v;
for (ulong js=n; js>=2; js>>=1)
{
for (ulong j=0, t=js>>1; j<m; j+=js, t+=js)
double x = f[j];
double y = f[t] * v;
3] = x +y;
flt] = x - y;
}
V o*x= §2;

84

CHAPTER 6. THE HAAR TRANSFORM 85

,ﬂ
T
+
+
+
+
+
+
+
+
+
+
+
+
+
+
+
|
I
|
|
I
|
|
|
}
|
]
I
|
|
I
|L|

IR LR
—_
T
+
+
+
|
|
|
|

e e e e
0 ~NO O WNE= OO

WNNNNNDNDNNDNDDNDE

O ©W WO NOOd WNR~O©
L B B B W e W e T e T e B e T e T e Y e e e W e W e W T e B e B e B e B e W e W e W}

+

|

w
-

Figure 6.3: Haar basis functions, in place order, after revbin permute. Note that the ordering is such
that basis functions that are identical up to a shift appear consecutively.

[FXT: inverse_inplace_haar in haar/haarinplace.cc]
The in place Haar transform H; is related to the ‘usual’ Haar transform H by a permutation Py via the
relations
H = Py-H; (6.1)
H' = H' Pyt

7

Py can be programmed as

template <typename Type>
void haar_permute(Type *f, ulong ldn)

{
revbin_permute(f, 1UL<<1dn);
for (ulong ldm=1; ldm<=1ldn-1; ++1ldm)
{
ulong m = (1<<ldm); // m=2, 4, 8, ..., n/2
revbin_permute (f+m, m) ;
}
}

while its inverse is

template <typename Type>
void inverse_haar_permute(Type *f, ulong ldn)

{

CHAPTER 6. THE HAAR TRANSFORM

for (ulong ldm=1; ldm<=1ldn-1; ++ldm)
{

ulong m = (1<<ldm); // m=2, 4, 8, ...

revbin_permute (f+m, m) ;

}
revbin_permute(f, 1UL<<1dn);

(cf. [FXT: file perm/haarpermute.h|)

Then, as given above, haar is equivalent to

inplace_haar();
haar_permute() ;

and inverse_haar is equivalent to

inverse_haar_permute();
inverse_inplace_haar();

Versions of the in place Haar transform without normalization are given

haar/haarnninplace.h].

6.2 Integer to integer Haar transform

, n/2

Code 6.1 (integer to integer Haar transform)

procedure int_haar(f[], ldn)
// real £[0..2%*1dn-1] // input, result

n := 2%*n
real g[0..n-1] // workspace
for m:=n to 2 div_step 2

{
mh = m/2
k =0
for j=0 to m-1 step 2
{
x = £[j]
y i= £03+1)
d:=x-y
s 1=y + floor(d/2) // == floor((x+y)/2)
gk] = s
glmh+k] := d
k =k +1
}
copy gl0..m-1] to £[0..m-1]
m := m/2

}

[source file: inthaar.spr]

Omit floor() with integer types.

Code 6.2 (inverse integer to integer Haar transform)

procedure inverse_int_haar(f[], 1ldn)
// real £[0..2%*1dn-1] // input, result
{

n := 2%%*n

86

[FXT: file

CHAPTER 6. THE HAAR TRANSFORM

real g[0..n-1] // workspace

for m:=2 to n mul_step 2

{
mh := m/2
k :=0
for j=0 to m-1 step 2
s := f[k]
d := f[mh+k]
y := s - floor(d/2)
x :=d +y // == s+floor((d+1)/2)
gljl =x
glj+1l =y
k:=k+1
}
copy gl0..m-1] to £[0..m-1]
m:=mx* 2
}

}

[source file: inverseinthaar.spr]

87

Chapter 7

Some bit wizardry

In this chapter low-level functions are presented that operate on the bits of a given input word. It is often
not obvious what these are good for and I do not attempt much to motivate why particular functions
are here. However, if you happen to have a use for a given routine you will love that it is there: The
program using it may run significantly faster.

Throughout this chapter it is assumed that BITS_PER_LONG (and BYTES_PER_LONG) reflect the size of the
type unsigned long which usually is 32 (and 4) on 32 bit architectures, 64 (and 8) on 64 bit machines.
[FXT: file auxbit/bitsperlong.h]

Further the type unsigned long is abbreviated as ulong. [FXT: file include/fxttypes.h]

The examples of assembler code are generally for the x86-architecture. They should be simple enough to
be understood also by readers that only know the assembler-mnomics of other CPUs. The listings were
generated from C-code using gec’s feature described on page [34L

7.1 Trivia

With twos complement arithmetic (that is: on likely every computer you'll ever touch) division and
multiplication by powers of two is right and left shift, respectively. This is true for unsigned types and
for multiplication (left shift) with signed types. Division with signed types rounds toward zero, as one
would expect, but right shift is a division (by a power of two) that rounds to minus infinity:

int a = -1;
int s=a>»>1; // c==-1
intd=a/ 2; // d== 0

The compiler still uses a shift instruction for the division, but a ‘fix’ for negative values:

9:test.cc @ int foo(int a)

10:test.cc @ {
285 0003 8B442410 movl 16(%esp),%eax
11:test.cc (¢l int s = a >> 1;
289 0007 89C1 movl %eax,%ecx
290 0009 D1F9 sarl $1,%ecx
12:test.cc ¢] int d = a / 2;
293 000b 89C2 movl %eax,%edx
294 0004 C1EA1F shrl $31,%edx // fix: ‘%hedx=(%edx<071:0)
295 0010 01DO addl %edx,%eax // fix: add one if a<O0
296 0012 D1F8 sarl $1,%eax

For unsigned types the shift would suffice. One more reason to use unsigned types whenever possible.

There are two types of right shifts: a so called logical and an arithmetical shift. The logical version (shrl
in the above fragment) always fills the higher bits with zeros, corresponding to division® of unsigned

1So you can think of it as ‘unsigned arithmetical’ shift.

88

CHAPTER 7. SOME BIT WIZARDRY 89

types. The arithmetical shift (sarl in the above fragment) fills in ones or zeros, according to the most
significant bit of the original word. C uses the arithmetical or logical shift according to the operand
types: This is used in

static inline long minO(long x)
// return min(0, x), i.e. return zero for positive input
// no restriction on input range

{
return x & (x >> (BITS_PER_LONG-1));

The trick is that the expression to the right of the “&” is 0 or 111...11 for positive or negative x,
respectively (i.e. arithmetical shift is used). With unsigned type the same expression would be 0 or 1
according to whether the leftmost bit of x is set.

Computing residues modulo a power of two with unsigned types is equivalent to a bit-and using a mask:

ulong a = b % 32; // ==Db & (32-1)

All of the above is done by the compiler’s optimization wherever possible.

Division by constants can be replaced by multiplications and shift. The magic machinery inside the
compiler does it for you:

5:test.cc @ ulong foo(ulong a)
6:test.cc @ {
T:test.cc @ ulong b = a / 10;
290 0000 8B442404 movl 4(%esp),%eax
291 0004 F7250000 mull .LC33 // == Oxcccccced
292 000a 89D0O movl %edx,’%eax
293 000c C1E803 shrl $3,%eax

Sometimes a good reason to have separate code branches with explicit special values. Similar for modulo
computations with a constant modulus:

8:test.cc @ ulong foo(ulong a)

9:test.cc @ {
53 0000 8B4C2404 movl 4(%esp),%ecx

10:test.cc @ ulong b = a % 10000;

57 0004 89C8 movl %ecx,%eax

58 0006 F7250000 mull .LCO // == 0xd1b71759
59 000c 89D0 movl %edx,’%eax

60 000e C1E80D shrl $13,%eax
61 0011 69C01027 imull $10000,%eax,%eax
62 0017 29C1 subl %eax,%ecx
63 0019 89C8 movl %ecx,’%eax

In order to toggle an integer x between two values a and b do:

precalculate: t a ~ b;
toggle: x "=t; // a<--—>b

the equivalent trick for floats is

precalculate: t
toggle: X

nwn
[V
+
g

7.2 Operations on low bits/blocks in a word

The following functions are taken from [FXT: file auxbit/bitlow.h].

The underlying idea is that addition/subtraction of 1 always changes a burst of bits at the lower end of
the word.
Isolation of the lowest set bit is achieved via

CHAPTER 7. SOME BIT WIZARDRY 90

static inline ulong lowest_bit(ulong x)
// return word where only the lowest set bit in x is set
// return O if no bit is set

return x & -x; // use: -x == "x + 1

The lowest zero (or unset bit) of some word x is then trivially isolated using lowest_bit(“x). [FXT:
lowest_zero in auxbit/bitlow.h]

Unsetting the lowest set bit in a word can be achieved via

static inline ulong delete_lowest_bit(ulong x)

// return word were the lowest bit set in x is unset
// returns O for input ==

{
}

return x & (x-1);

while setting the lowest unset bit is done by

static inline ulong set_lowest_zero(ulong x)

// return word were the lowest unset bit in x is set
// returns “0 for input == ~

{

return x | (x+1);

Isolate the burst of low bits/zeros as follows:

static inline ulong low_bits(ulong x)

// return word where all the (low end) ones
// are set

// e.g. 01011011 --> 00000011

// returns O if lowest bit is zero:

// 10110110 --> 0

~

if (“OUL==x) return ~OUL;
return (((x+1)°x) > 1);

}

and

static inline ulong low_zeros(ulong x)

// return word where all the (low end) zeros
// are set
// e.g. 01011000 --> 00000111

// returns 0 if all bits are set

if (0==x) return ~OUL;
return (((x-1)"x) > 1);

Isolation of the lowest block of ones (which may have zeros to the right of it) can be achieved via:

static inline ulong lowest_block(ulong x)

//
// x = *x*x%x011100
// 1 = 00000000100
// y = *x*¥x%x100000
// x"y = 00000111100
// ret = 00000011100
1/
{
ulong 1 = x & -x; // lowest bit
ulong y = x + 1;
X "=y;

return x & (x>>1);

CHAPTER 7. SOME BIT WIZARDRY 91

Extracting the index of the lowest bit is easy when the corresponding assembler instruction is used:

static inline ulong asm_bsf(ulong x)
{/ Bit Scan Forward

asm ("bsfl %0, %0" : "=r" (x) : "0" (x));
return x;

The given example uses gcc’s wonderful feature of Assembler Instructions with C' Expression Operands,
see the corresponding info page.

Without the assembler instruction an algorithm that uses proportional log,(BITS_PER_LONG) can be used,
so the resulting function may look like?

static inline ulong lowest_bit_idx(ulong x)
// return index of lowest bit set
// return O if no bit is set

{

#if defined BITS_USE_ASM
return asm_bsf(x);

#else // BITS_USE_ASM

ulong r = 0;
X &= -X;
#if BITS_PER_LONG >= 64
if (x & (COUL>>32)) r += 32;

#endif
if (x & Oxffff0000) r += 16;
if (x & Oxff00ff00) r += 8;
if (x & OxfOfOf0f0) r += 4;
if (x & Oxccccccece) 1T += 2;
if (x & Oxaaaaaaaa) r += 1;

r;
#endif // BITS_USE_ASM
}

Occasionally one wants to set a rising or falling edge at the position of the lowest bit:

static inline ulong lowest_bit_Oledge(ulong x)

// return word where a all bits from (including) the
// lowest set bit to bit 0 are set

// return 0 if no bit is set

if (0==x) return O;
return x~(x-1);

}

static inline ulong lowest_bit_10edge(ulong x)

// return word where a all bits from (including) the
// lowest set bit to most significant bit are set
// return O if no bit is set

if (0==x) return O;

x "= (x-1);

// here x == lowest_bit_Oledge(x);
return ~(x>>1);

7.3 Operations on high bits/blocks in a word

The following functions are taken from [FXT: file auxbit/bithigh.h].

For the functions operating on the highest bit there is not a way as trivial as with the equivalent task
with the lower end of the word. With a bit-reverse CPU-instruction available life would be significantly
easier. However, almost no CPU seems to have it.

Isolation of the highest set bit is achieved via the bitscan instruction when it is available

2thanks go to Nathan Bullock for emailing this improved (wrt. non-assembler highest bit_idx()) version.

CHAPTER 7. SOME BIT WIZARDRY

static inline ulong asm_bsr(ulong x)
// Bit Scan Reverse

asm ("bsrl %0, %0" : "=r" (x) : "0" (x));
return x;

}
else one may use

static inline ulong highest_bit_Oledge(ulong x)

// return word where a all bits from (including) the
// highest set bit to bit 0 are set

// returns O if no bit is set

x |= x>>1;
x |= x>>2;
x |= x>>4;
x |= x>>8;
x |= x>>16;
#if BITS_PER_LONG >= 64
x |= x>>32;
#endif
return Xx;

}
so the resulting code may look like

static inline ulong highest_bit(ulong x)
// return word where only the highest bit in x is set
// return 0 if no bit is set

{
#if defined BITS_USE_ASM
if (0==x) return O;
x = asm_bsr(x);
return 1UL<<x;
#else
x = highest_bit_Oledge(x);
return x = (x>>1);
?endif // BITS_USE_ASM

trivially

static inline ulong highest_zero(ulong x)
// return word where only the highest unset bit in x is set
{/ return O if all bits are set

return highest_bit(“x);
}

and

static inline ulong set_highest_zero(ulong x)
// return word were the highest unset bit in x is set
// returns ~0 for input == "0

{
}

return x | highest_bit(“x);

Finding the index of the highest set bit uses the equivalent algorithm as with the lowest set bit:

static inline ulong highest_bit_idx(ulong x)
// return index of highest bit set
// return O if no bit is set

#if defined BITS_USE_ASM
return asm_bsr(x);
#else // BITS_USE_ASM
if (0==x) return O;

ulong r = 0;
#if BITS_PER_LONG >= 64

92

CHAPTER 7. SOME BIT WIZARDRY

if (x & ("OUL<<32)) { x >>=32; r += 32; }
#endif

if (x & Oxffff0000) { x >>= 16; r += 16; }

if (x & 0x0000ff00) { x >= 8; r += 8; }

if (x & 0x000000f0) { x >>= 4; r += 4; }

if (x & 0x0000000c) { x >>= 2; r += 2; }

if (x & 0x00000002) A r+= 1; }

return r;
#endif // BITS_USE_ASM
}

Isolation of the high zeros goes like

static inline ulong high_zeros(ulong x)

// return word where all the (high end) zeros are set
// e.g. 11001000 --> 00000111

// returns 0 if all bits are set

x>>1;
x>>2;
x>>4;
x>>8;
x>>16;
S_PER_LONG >= 64
x>>32;

MMM XM

= nnnn

return 7x;

The high bits could be isolated using arithmetical right shift

static inline ulong high_bits(ulong x)

// return word where all the (high end) ones are set
// e.g. 11001011 --> 11000000

// returns O if highest bit is zero:

{/ 01110110 --> 0

long y = (long)x;

y &= y>>1;

y &= y>>2;

y &= y>>4;

y &= y>>8;

y &= y>>16;
#if BITS_PER_LONG >= 64

y &= y>>32;
#endif

return (ulong)y;
}

However, arithmetical shifts may not be cheap, so we better use

static inline ulong high_bits(ulong x)

{
}

return high_zeros("x);

Demonstration of selected functions with two different input words:

0xf0f7 == word
highest_bit
highest_bit_Oledge
highest_bit_10edge
highest_bit_idx
low_zeros

low_bits
lowest_bit
lowest_bit_Oledge
lowest_bit_10edge
lowest_bit_idx
lowest_block
delete_lowest_bit
............................ lowest_zero

11111111111111111111111111111111

0
............................. 111

CHAPTER 7. SOME BIT WIZARDRY 94

set_lowest_zero
high_bits

e
-
-
N
-
-
-
-
N
-
[N
-
-
N
-
-
L [[I

high_zeros
L e e e highest_zero
1o, 1111....1111.111 set_highest_zero

= Oxffff0£f08 == word
............................... = highest_bit

= highest_bit_Oledge
= highest_bit_10edge
= highest_bit_idx

= low_zeros

= low_bits

= lowest_bit

= lowest_bit_Oledge
= lowest_bit_10edge
= lowest_bit_idx

= lowest_block

= delete_lowest_bit
= lowest_zero

= set_lowest_zero

= high_bits

= high_zeros

= highest_zero

= set_highest_zero

1111111444114444. .. .1111....1. .1
e e e e e

7.4 Functions related to the base-2 logarithm

The following functions are taken from [FXT: file auxbit/bit2pow.h].
The function 1d that shall return |logy(x)] can be implemented using the obvious algorithm:
static inline ulong 1ld(ulong x)

// returns k so that 2"k <= x < 27 (k+1)
é/ if x==0 then O is returned (!)

ulong k = 0;
while (x>>=1) { ++k; }
return k;

}
And then 1d is the same as highest_bit_idx, so

static inline ulong ld(ulong x)

{
}

return highest_bit_idx(x);

Closely related are the functions

static inline int is_pow_of_2(ulong x)
// return 1 if x == 0(!) or x == 2%xk

return ((x & -x) == x);

and

static inline int one_bit_q(ulong x)
// return 1 iff x \in {1,2,4,8,16,...}
{

ulong m = x-1;
return (((x"m)>>1) == m);

Occasionally useful in FFT based computations (where the length of the available FFT's is often restricted
to powers of two) are

CHAPTER 7. SOME BIT WIZARDRY

static inline ulong next_pow_of_2(ulong x)
// return x if x=2%¥k
// else return 2**ceil(log_2(x))

{
ulong n = 1UL<<1d(x); // n<=x
if (n==x) return x;
else return n<<1;

}

and

static inline ulong next_exp_of_2(ulong x)
// return k if x=2%*k
// else return k+1

ulong ldx = 1d(x);

ulong n = 1UL<<1ldx;
if (n==x) return
else return

// n<=x
1dx;
1dx+1;

7.5 Counting the bits in a word

95

The following functions are from [FXT: file auxbit/bitcount.h].

If your CPU does not have a bit count instruction (sometimes called ‘population count’) then you might

use an algorithm of the following type

static inline ulong bit_count(ulong x)
// return number of bits set

#if BITS_PER_LONG == 32

B M MMM

cnnnonn

e

}

(0x55555555 & x)
(0x33333333 & x)
(0x0f0f0f0f & x)
(0x00f£f00ff & x)
(0x0000ffff & x)

(0x55555555 & (x>>
(0x33333333 & (x>>
(0x0f0f0f0f & (x>>
(0x00ff00ff & (x>>
(0x0000ffff & (x>>1

+ 4+ o+ + o+

1));
2));
4));
8));
6));

urn x;

which can be improved to either

I]

+

X

+=

((x>>1) & 0x55555555) + (x & 0x55555555) ;
((x>>2) & 0x33333333) + (x & 0x33333333);
((x>>4) + x) & 0x0f0f0fOf;

x>> 8;

x>>16;

return x & Oxff;

or

X
X
X
X
r

e

(x>>1) & 0x55555555;

((x>>2) & 0x33333333) + (x & 0x33333333);
((x>>4) + x) & 0xOf0f0fOf;
0x01010101;

*
turn x>>24;

//
//

//

in 8 bits
6 in 16 bits
1 in 32 bits

(From [38].) Which one is better mainly depends on the speed of integer multiplication.

For 64 bit CPUs the masks have to be adapted and one more step must be added (example corresponding
second variant above):

to the

HX MM MMM

4=
+=
+=

((x>>1) & 0x5555555555555555) + (x & 0x5555555555555555); //
((x>>2) & 0x3333333333333333) + (x & 0x3333333333333333); //

((x>>4) + x) & 0x0f0f0f0f0f0f0f0f;
x>> 8;
x>>16;
x>>32;

eturn x & Oxff;

0-2 in 2 bits
0-4 in 4 bits
// 0-8 in 4 bits
// 0-16 in 8 bits
// 0-32 in 8 bits
// 0-64 in 8 bits

CHAPTER 7. SOME BIT WIZARDRY 96

When the word is known to have only a few bits set the following sparse count variant may be advantegous

static inline ulong bit_count_sparse(ulong x)

// return number of bits set
// the loop will execute once for each bit of x set

if (0==x) return O;

ulong n = O;

do { ++n; } while (x &= (x-1));
return n;

More esoteric counting algorithms are

static inline ulong bit_block_count(ulong x)
// return number of bit blocks

/ e.g.:

// ..1..11111. 0111, > 3

// ...1..11111...111 -> 3
/o 1..... 1.1.. >3
{/ 111.1111 -> 2

return bit_count((x"(x>>1))) / 2 + (x & 1);

static inline ulong bit_block_ge2_count(ulong x)
;; return number of bit blocks with at least 2 bits
e.g.:

// ..1..11111. 001110 -> 2
// ... 1.0 111110111 > 2
/] 1..... 1.1.. >0
{/ 111.1111 -> 2

return bit_block_count(x & ((x<<1) & (x>>1)));

The slightly weird algorithm

static inline ulong bit_count_01(ulong x)
// return number of bits in a word
// for words of the special form 00...0001...11

ulong ct = 0;
ulong a;

#if BITS_PER_LONG == 64
a = (x & (1<<32)) >> (32-5); // test bit 32
X >>= a; ct += a;

#endif
a = (x & (1<<16)) >> (16-4); // test bit 16
X >>= a; ct += a;

a=(x& (1<<8)) >> (8-3); // test bit 8

x >>= a; += a;
a = (x & (1<<4)) >> (4-2); // test bit 4
X >>— a; ct += a;

a = (x & (1<<2)) >> (2-1); // test bit 2
X >>= a; ct += a;

a = (x & (1<<1)) >> (1-0); // test bit 1
X >>= a; ct += a;

ct += x & 1; // test bit O
return ct;

}

avoids all branches and may prove to be useful on a planet with pink air.

7.6 Swapping bits/blocks of a word

Functions in this section are from [FXT: file auxbit/bitswap.h]

Pairs of adjacent bits may be swapped via

CHAPTER 7. SOME BIT WIZARDRY

static inline ulong bit_swap_1(ulong x)
// return x with neighbour bits swapped

{
#if BITS_PER_LONG == 32
ulong m = 0x55555555;

#else
#if BITS_PER_LONG == 64
ulong m = 0x5555555555555555;

#endif
#endif

return ((x & m) << 1) | ((x & (Cm)) > 1);

(the 64 bit branch is omitted in the following examples).

Groups of 2 bits are swapped by
static inline ulong bit_swap_2(ulong x)
// return x with groups of 2 bits swapped

ulong m = 0x33333333;
return ((x & m) << 2) | ((x & ("m)) >> 2);
}

Equivalently,

static inline ulong bit_swap_4(ulong x)
// return x with groups of 4 bits swapped

ulong m = 0x0f0f0£f0f;
return ((x & m) << 4) | ((x & ("m)) >> 4);

and

static inline ulong bit_swap_8(ulong x)
// return x with groups of 8 bits swapped

ulong m = 0x00ff00ff;
return ((x & m) << 8) | ((x & ("m)) >> 8);

When swapping half-words (here for32bit architectures)
static inline ulong bit_swap_16(ulong x)
// return x with groups of 16 bits swapped

ulong m = 0x0000ffff;
return ((x & m) << 16) | ((x & (m<<16)) >> 16);

97

gcee is clever enough to recognize that the whole thing is equivalent to a (left or right) word rotation and

indeed emits just a single rotate instruction.

The masks used in the above examples (and in many similar algorithms) can be replaced by arithmetic

expressions that render the preprocessor statements unnecessary.

gain readability by doing so.
Swapping two selected bits of a word goes like

static inline void bit_swap(ulong &x, ulong k1, ulong k2)

// swap bits k1 and k2
{/ ok even if k1 == k2

x & (1UL<<k1);
ulong b2 = x & (1UL<<k2);
x "= (bl b2);

x "= (b1>>k1)<<k2;

x "= (b2>>k2)<<kl;

ulong bl

»n

However, the code does not necessarily

CHAPTER 7. SOME BIT WIZARDRY 98

7.7 Reversing the bits of a word

... when there is no corresponding CPU instruction can be achieved via the functions just described, cf.
[FXT: file auxbit/revbin.h)]

Shown is a 32 bit version of revbin:

static inline ulong revbin(ulong x)
// return x with bitsequence reversed

{
x = bit_swap_1(x);
x = bit_swap_2(x);
x = bit_swap_4(x);

#if defined BITS_USE_ASM
x = asm_bswap(x);

#else
x = bit_swap_8(x);
x = bit_swap_16(x);
#endif
return x;
}

Here, the last two steps that correspond to a byte-reverse are replaced by the CPU instruction if available.
For 64 bit machines a x = bit_swap_32(x); would have to be inserted at the end (and possibly a bswap-
branch entered that can replace the last three bit_swaps).

Note that the above function is pretty expensive and it is not even clear whether it beats the obvious
algorithm,

static inline ulong revbin(ulong x)

{
ulong r = 0, 1ldn = BITS_PER_LONG;
ghile (1dn—- '=0)
r <<= 1;
r += (x&1);
x >>=1;
return r;
}

especially on 32 bit machines.
Therefore the function

static inline ulong revbin(ulong x, ulong 1ldn)
// return word with the last 1ldn bits
(i.e. bit_0 ... bit_{1dn-1})
// of x reversed
{/ the other bits are set to 0

return revbin(x) >> (BITS_PER_LONG-1dn);

should only be used when 1dn is not too small, else replaced by the trivial algorithm.

For practical computations the bit-reversed words usually have to be generated in the (reversed) counting
order and there is a significantly cheaper way to do the update:

static inline ulong revbin_update(ulong r, ulong ldn)
// let r = revbin(x, 1d(n)) at entry
// then return revbin(x+1, 1d(n))

1dn >>= 1;
while (!'((r"=1dn)&1ldn)) 1dn >>= 1;
return r;

CHAPTER 7. SOME BIT WIZARDRY

7.8 Generating bit combinations

The following functions are taken from [FXT: file auxbit/bitcombination.h].

The ideas above can be used for the generation of bit combinations in colex order:

static inline ulong next_colex_comb(ulong x)
// return smallest integer greater than x with the same number of bits set.

//

colex order: (5,3);

0 1 2 111
0 1 3 .1.11
0 2 3 .11.1
1 2 3 .111.
01 4 1..11
0 2 4 1.1.1
1 2 4 1.11.
0 3 4 11..1
1 3 4 11.1.
2 3 4 111..
Examples:

000001 -> 000010 -> 000100 -> 001000 -> 010000 -> 100000

Special cases:
0->0
all bits on the high side (i.e. last combination) -> 0

AN NN N N N N N AN NN NI NI NI NI NN
N e D

ulong r = x & -x; // lowest set bit
X += 1, // replace lowest block by a one left to it

if (0==1) return O; // input was last comb

ulong 1 = x & -x; // first zero beyond low block
1l -=r; // low block

while (0==(1&1)) {1 >>=1; } // move block to low end of word
return x | (1>>1); // need one bit less of low block

One might consider replacing the while-loop by a bitscan and shift combination.
Moving backwards goes like

static inline ulong prev_colex_comb(ulong x)
// inverse of next_colex_comb()

x = next_colex_comb(“x);

if (0l=x) x = "x;

return Xx;

}
The relation to lex order enumeration is

static inline ulong next_lex_comb(ulong x)

// let the zeros move to the lower end in the same manner

// as the ones go to the higher end in next_colex_comb()
//

// lex order: (5, 3):

// 0 1 2 ..111

// 0 1 3 .1.11

// 0 1 4 1..11

// 0 2 3 .11.1

// 0 2 4 1.1.1

// 0 3 4 11..1

// 1 2 3 L1111,

// 1 2 4 1.11.

// 1 3 4 11.1.

// 2 3 4 111..

//

// start and end combo are the same as for next_colex_comb()

000011 -> 000101 -> 000110 -> 001001 -> 001010 -> 001100 -> 010001 -> ...
000111 -> 001011 -> 001101 -> 001110 -> 010011 -> 010101 -> 010110 -> ...

99

CHAPTER 7. SOME BIT WIZARDRY 100

//
{
x = revbin("x);
x = next_colex_comb(x);
if (0!=x) x = revbin("x);
return Xx;
}

(the bit-reversal routine revbin is shown in section [7.7)) and

static inline ulong prev_lex_comb(ulong x)
// inverse of next_lex_comb()

revbin(x);

X = next_colex_comb(x);

if (0!=x) x = revbin(x);
return Xx;

X

}

Note that the ones in lex-order(k, n) behave like the zeros in reversed colex-order(n-k, n):

Lex(n =5, k=3) Colex(n =5, k=2)
forward order: reverse order:
0o 1 2 ..111 # O 3 4] 11... # 9
o1 3] .1.11 # 1 2 4] 1.1.. # 8
0 1 4] 1..11 # 2 1 4] 1..1. # 7
0 2 3] .11.1 # 3 0 4] 1...1 # 6
0 2 4] 1.1.1 # 4 2 3] .11.. # 5
0 3 4] 11..1 # 5 1 3] .1.1. # 4
1 2 3] .111. # 6 0 3] .1..1 # 3
1 2 4] 1.11. # 7 1 2] ..11. # 2
1 3 4] 11.1. # 8 0 2] ..1.1 # 1
[2 3 4] 111.. # 9 [0 1] ...11 # O
reverse order: forward order:
2 3 4] 111.. # 9 o 1] ...11 # O
1 3 4] 11.1. # 8 0o 2] ..1.1 # 1
1 2 4] 1.11. # 7 1 2] ..11. # 2
1 2 3] .111. # 6 0 3] .1..1 # 3
0 3 4] 11..1 # b5 1 3] .1.1. # 4
0 2 4] 1.1.1 # 4 2 3] .11.. # 5
0 2 3] .11.1 # 3 0 4] 1...1 # 6
0 1 4] 1..11 # 2 1 4] 1..1. # 7
0 1 3] .1.11 # 1 2 4] 1.1.. # 8
0o 1 271 ..111 # O 3 41 11... # 9

The first and last combination for both colex- and lex order are

static inline ulong first_comb(ulong k)
// return the first combination of (i.e. smallest word with) k bits,
// i.e. 00..001111..1 (k low bits set)
{/ must have: 0 <= k <= BITS_PER_LONG

ulong x = “OUL;
if (BITS_PER_LONG != k) x = ~(x<<k);
return Xx;

}

and

static inline ulong last_comb(ulong k, ulong n=BITS_PER_LONG)

// return the last combination of (biggest n-bit word with) k bits
// i.e. 1111..100..00 (k high bits set)

// must have: O <= k <= n <= BITS_PER_LONG

if (BITS_PER_LONG == k) return ~OUL;
else return ((1UL<<k)-1) << (n - k);

A variant of the presented (colex-) algorithm appears in hakmem [37]. The variant used here avoids the
division of the hakmem-version and is given at http://www.caam.rice.edu/~dougm/ by Doug Moore and
Glenn Rhoads http://remus.rutgers.edu/ rhoads/ (cited in the code is ” Constructive Combinatorics”
by Stanton and White).

CHAPTER 7. SOME BIT WIZARDRY 101

7.9 Generating bit subsets

The sparse counting idea shown on page [96! is used in

class bit_subset
// generate all all subsets of bits of a given word

//

// e.g. for the word (’.’ printed for unset bits)
// R I I

// these words are produced by subsequent next()-calls:
VA 1

// 1L

// .11

// S

// 1.1

// A1

// 11.1

/.

1/

{

public:

ulong u_, v_;

public:
bit_subset(ulong vv) : u_(0), v_(vv) { ; }
“bit_subset() { ; }
ulong current() const { return u_; }
ulong next() {u = (u -
ulong previous() { u_ = (u_ -

; return u; }
; return u; }

V_S & v
1) &v
};

which can be found in [FXT: file auxbit/bitsubset.h]

TBD: sparse count in Gray-code order

7.10 Bit set lookup

There is a nice trick to determine whether some input is contained in a tiny set, e.g. lets determine
whether x is a tiny prime

ulong m = (1<<2) | (1<<3) | (1<<5) | ... | (1<<31); // precomputed
static inline ulong is_tiny_prime(ulong x)
{

return m | (1<<x);

A function using this idea is

static inline bool is_tiny_factor(ulong x, ulong d)

// for x,d < BITS_PER_LONG (!)

// return whether d divides x (1 and x included as divisors)
// no need to check whether d==0

{
}

return (0 != ((tiny_factors_tab[x]>>d) & 1));

from [FXT: file auxbit/tinyfactors.h| that uses the precomputed

extern const ulong tiny_factors_tabl[]

{
0x0, // x=0: (bits:)
0x2, // x=1: 1 (bits: 1.)
0x6, // x=2: 12 (bits: 11.)
Oxa, // x=3: 13 (bits: .1.1.)
0x16, // x=4: 124 (bits: 1.11.)
0x22, // x=5: 15 (bits: 1...1.)
Ox4e, // x=6: 1236 (bits: .1..111.)

CHAPTER 7. SOME BIT WIZARDRY

0x82, // x=7: 17 (bits: 1..... 1.)
ox116, // x=8: 12438
0x20a, // x=9: 139
0x20000002, // x =29: 1 29
0x4000846e, // x =30: 12356 10 15 30
0x80000002, // x = 31: 1 31
#if (BITS_PER_LONG > 32)
0x100010116, // x =32: 1 2 4 8 16 32
0x20000080a, // x = 33: 1 3 11 33
0x2000000000000002, // x = 61: 1 61
0x4000000080000006, // x = 62: 1 2 31 62
0x800000000020028a // x = 63: 1 37 9 21 63
#endif // (BITS_PER_LONG > 32)

>

7.11 The Gray code of a word

Can easily be computed by

static inline ulong gray_code(ulong x)
// Return the gray-code of x
// (°bitwise derivative modulo 2’)

return x = (x>>1);

The inverse is slightly more expensive. The straight forward idea is to use

static inline ulong inverse_gray_code(ulong x)
// inverse of gray_code()

{
// VERSION 1 (integration modulo 2):
ulong h=1, r=0;

}
while (x!=0);
return r;

}
which can be improved to

// VERSION 2 (apply graycode BITS_PER_LONG-1 times):
ulong r = BITS_PER_LONG;

while (--r) x "= x>>1;

return x;

while the best way to do it is

// VERSION 3 (use: gray *x BITSPERLONG == id):
x "= x>>1; // gray ** 1

x "= x>>2; // gray ** 2

x "= x>>4; // gray ** 4

x "= x>>8; // gray ** 8

x "= x>>16; // gray ** 16

// here: x = gray**31(input)

// note: the statements can be reordered at will
#if BITS_PER_LONG >= 64
x "= x>>32; // for 64bit words

#endif
return Xx;

Related to the inverse Gray code is the parity of a word (that is: bitcount modulo two).

102

The inverse

Gray code of a word contains at each bit position the parity of all bits of the input left from it (incl.

itself).

CHAPTER 7. SOME BIT WIZARDRY 103

static inline ulong parity(ulong x)
// return 1 if the number of set bits is even, else O

return inverse_gray_code(x) & 1;

}

Be warned that the parity bit of many CPUs is the complement of the above. With the x86-architecture
the parity bit also takes in account only the lowest byte, therefore:

static inline ulong asm_parity(ulong x)

{
x "= (x>>16);
x "= (x>>8);
asm ("addl $0, %0 \n"
"setnp %%al \n"
"movzx %hal, %0"
 NM=ypn (X) . ||ol| (X) . "eax");
return x;
}

Cf. [FXT: file auxbit/bitasm.h]

The function

static inline ulong grs_negative_q(ulong x)

// Return whether the Golay-Rudin-Shapiro sequence

// (A020985) is negative for index x

// returns 1 for x =

// 3,6,11,12,13,15,19,22,24,25,26,30,35,38,43,44,45,47,48,49,

// 50,62,53,55,59,60,61,63,67,70,75,76,77,79,83,86,88,89,90,94,
// 96,97,98,100,101,103,104,105,106,110,115,118,120,121,122,

// 126,131,134,139,140,

//
// algorithm: count bit pairs modulo 2
1/
{
return parity(x & (x>>1));
}

proves to be useful in specialized versions of the fast Fourier- and Walsh transform.
A bytewise Gray code can be computed using
static inline ulong byte_gray_code(ulong x)

// Return the gray-code of bytes in parallel

{
return x ~ ((x & Oxfefefefe)>>1);

Its inverse is

static inline ulong byte_inverse_gray_code(ulong x)
// Return the inverse gray-code of bytes in parallel

{
x "= ((x & Oxfefefefe)>>1);
x "= ((x & Oxfcfcfcfc)>>2);
x "= ((x & 0xfOf0f0£f0)>>4);
return Xx;

}

Thereby

static inline ulong byte_parity(ulong x)
// Return the parities of bytes in parallel
{

}

return byte_inverse_gray_code(x) & 0x01010101;

The Gray-code related functions can be found in [FXT: file auxbit/graycode.h].

Similar to the Gray code and its inverse is the

CHAPTER 7. SOME BIT WIZARDRY

static inline ulong green_code(ulong x)

// Return the green-code of x

// (°bitwise derivative modulo 2 towards high bits’)
//

// green_code(x) == revbin(gray_code(revbin(x)))

{

return x = (x<<1);

and

static inline ulong inverse_green_code(ulong x)
// inverse of green_code()
// note: the returned value contains at each bit position

// the parity of all bits of the input right from it (incl.

{
// use: green ** BITSPERLONG ==

= x<<1; // green *x 1
"= x<<2; // green *x 2
- x<<4; // green *x 4
x<<8; // green ** 8
“= x<<16 // green *x 16
// here = green**31(input)
// note: the statements can be reordered at will
#if BITS _PER_LONG >= 64
x "= x<<32; // for 64bit words

#endif
return x;
}

MoM MMM

itself)

104

Both can be found in [FXT: file auxbit/greencode.h] The green-code preserves the lowest set bit while

the Gray-code preserves the highest.

Demonstration of Gray/green-code and their inverses with different input words:

111.1111. 1111 = 0xef0£0000 == word
1..11. .1 0.1 ray_code

g
11001, 1 green_code
1.11.1.11111.1.11111111411111141 inverse_gray_code
1 1..1.1..... e inverse_green_code

1....1111,...1111111111111111 = 0x10f0ffff == word

B 5 D I IR B = gray_code

Al A A 1 = green_code

11111.1.11141.1.1.1.1.1.1.1.1 = in verse_gray_code
1111.. ... 1.1..... 1.1.1.1.1.1.1.1 = inverse_green_code
...... 1.0 i oo .. = 0x2000000 == word
...... S gray_code
..... 1 green_code

inverse_gray_code

-
-
-
-
-
N
-
-
-
N
N
-
-
N
-
N
-
.
N
-
N
-
-
N
-
N
Lnnonn

5 inverse_green_code
111111,1111111111111111111111111 = Oxfdffffff == word
1..... 1. gray_code

..... A | green_code

inverse_gray_code
inverse_green_code

7.12 Generating minimal-change bit combinations

The wonderful

static inline ulong igc_next_minchange_comb(ulong x)
// Returns the inverse graycode of the next

// combination in minchange order.

// Input must be the inverse graycode of the

// current combination.

CHAPTER 7. SOME BIT WIZARDRY

}

ulong g = green_code(x);

ulong i = 2;

ulong cb; // ==candidateBits;

do
{

ulong y
ulong j
ulong h
cb = ((j
i=j;

(x & ~“(i-1)) + i;
lowest_bit(y) << 1;
1Ny & j);

-h) T g) & (§-i);

while (O==cb);

return x + lowest_bit(cb);

together with

static inline ulong igc_last_comb(ulong k, ulong n)
// return the (inverse graycode of the) last combination

// as in igc_next_minchange_comb()

}

if (0==k)

else return

return O;

((1UL<<n) - 1) ~ (((1UL<<k) - 1) / 3);

could be used as demonstrated in

static inline ulong next_minchange_comb(ulong x, ulong last)

// not efficient, just to explain the usage
// of igc_next_minchange_comb()
// Must have: last==igc_last_comb(k, n)

//
/7
//
//
//

/

/
//

AN
NN

Example with k==3, n==5:

X
o111
L1101
111,
L1011
11..1
11.1.
111..
1.1.1
1.11.
1..11

inverse_

.11
1.1
.1.11
L1101
1...1
1..11
1.111
11..1
11.11
111.1

gray_code(x)
== first_sequency (k)

== igc_last_comb(k, n)

x = inverse_gray_code(x) ;

if (x==last)

return O;

x = igc_next_minchange_comb(x);
return gray_code(x);

105

Each combination is different from the preceding one in exactly two positions. The same run of bitcom-
binations could be obtained by going through the Gray codes and omitting all words where the bitcount

is # k. The algorithm shown here, however, is much more efficient.

For reasons of efficiency one may prefer code as

which avoids the repeated computation of the inverse Gray code.

ulong last =

do
{

c = nc;

igc_last_comb(k, n);
ulong c, nc = first_sequency(k);

nc = igc_next_minchange_comb(c);
ulong g = gray_code(c);
// Here g contains the bitcombination

}
while (c!=last);

CHAPTER 7. SOME BIT WIZARDRY 106

As Doug Moore explains [priv.comm.], the algorithm in igc_next minchange_comb uses the fact that the
difference of two (inverse gray codes of) successive combinations is always a power of two. Using this
observation one can derive a different version that checks the pattern of the change:

static inline ulong igc_next_minchange_comb(ulong x)
// Alternative version.
{/ Amortized time = 0(1).

ulong gx = gray_code(x);
ulong y, i = 2;

do

{ .
y =x + i
ulong gy = gray_code(y);
ulong r = gx " gy;
// Check that change consists of exactly one bit
// of the new and one bit of the old pattern:
if (is_pow_of_2(r & gy) && is_pow_of_2(r & gx)) break;
// is_pow_of_2(x):=((x & -x) == x) returns 1 also for x==0.
// But this cannot happen for both tests at the same time
i<=1;

}

while (1);

return vy;

}
Still another version which needs k, the number of set bits, as a second parameter:

static inline ulong igc_next_minchange_comb(ulong x, ulong k)
// Alternative version, uses the fact that the difference

// of two successive x is the smallest possible power of 2.
// Should be fast if the CPU has a bitcount instruction.

{/ Amortized time = 0(1).

ulong y, i = 2;

do

{ .
y = 1
i<

™

+
1;

}
while (bit_count(gray_code(y)) != k);
return y;

}
The necessary modification for the generation of the previous combination is minimal:

static inline ulong igc_prev_minchange_comb(ulong x, ulong k)

// Returns the inverse graycode of the previous combination in minchange order.
// Input must be the inverse graycode of the current combination.

// Amortized time = 0(1).

// With input==first the output is the last for n=BITS_PER_LONG

{
ulong y, i = 2;
do
{ .
y =x - 1i;
i<=1;
}
while (bit_count(gray_code(y)) != k);
return y;
}

7.13 Bitwise rotation of a word

Neither C nor C++ have a statement for bitwise rotation®. The operations can be ‘emulated’ like this

static inline ulong bit_rotate_left(ulong x, ulong r)

Swhich I consider a missing feature.

CHAPTER 7. SOME BIT WIZARDRY 107

// return word rotated r bits
// to the left (i.e. toward the most significant bit)

{
return (x<<r) | (x>>(BITS_PER_LONG-T));

As already mentioned, gcc emits exactly the one CPU instruction that is meant here, even with non-
constant r. Well done, gcc folks!

Of course the explicit use of the corresponding assembler instruction cannot do any harm:

static inline ulong bit_rotate_right(ulong x, ulong r)
// return word rotated r bits
// to the right (i.e. toward the least significant bit)

// gcc 2.95.2 optimizes the function to asm ’rorl %cl,%ebx’

{
#if defined BITS_USE_ASM // use x86 asm code
return asm_ror(x, r);
#else
return (x>>r) | (x<<(BITS_PER_LONG-Ir));
fendif

where (see [FXT: file auxbit/bitasm.h]):

static inline ulong asm_ror(ulong x, ulong r)

{
asm ("rorl %kcl, %0" : "=r" (x) : "O" (x), "c" (r));
return x;

}
Rotations using only a part of the word length are achieved by

static inline ulong bit_rotate_left(ulong x, ulong r, ulong ldn)
// return ldn-bit word rotated r bits

// to the left (i.e. toward the most significant bit)

{/ r must be <= ldn

x = (x<<r) | (x>>(1dn-1));
if (0!=(1dn % BITS_PER_LONG)) x &= ((1UL<<(1dn))-1);
return Xx;

}
and

static inline ulong bit_rotate_right(ulong x, ulong r, ulong ldn)
// return ldn-bit word rotated r bits
// to the right (i.e. toward the least significant bit)

{/ r must be <= ldn

x = (x>>r) | (x<<(1dn-r));
if (0!'=(1ldn % BITS_PER_LONG)) x &= ((1UL<<(1dn))-1);
return Xx;

Some related functions like

static inline ulong cyclic_match(ulong x, ulong y)

// return r if x==rotate_right(y, r)

// else return ~OUL

// in other words: returns, how often

// the right arg must be rotated right (to match the left)
// or, equivalently: how often

// the left arg must be rotated left (to match the right)
{

ulong r = 0;
do

if (x==y) return r;
y = bit_rotate_right(y, 1);

CHAPTER 7. SOME BIT WIZARDRY 108

while (++r < BITS_PER_LONG);

return “OUL;
}

or

static inline ulong cyclic_min(ulong x)
// return minimum of all rotatiomns of x

ulong r = 1;
ulong m = x;
do
{

x = bit_rotate_right(x, 1);
if ((x<m) m = x;

}
while (++r < BITS_PER_LONG);
return m;

}

can be found in [FXT: file auxbit/bitcyclic.h]

7.14 Bitwise zip

The bitwise zip operation, when straight forward implemented, is

ulong bit_zip(ulong a, ulong b)
// put lower half bits to even indexes, higher half to odd

{
ulong x = 0;
ulong m =1, s = 0;
for (ulong k=0; k<(BITS_PER_LONG/2); ++k)
{
x |= (a & m) << s;
++s;
x |= (b & m) << s;
m <<= 1;
return Xx;
}

Its inverse is

void bit_unzip(ulong x, ulong &a, ulong &b)
// put even indexed bits to lower hald, odd indexed to higher half

{
a=0; b=0;
ulong m =1, s = 0;
for (ulong k=0; k<(BITS_PER_LONG/2); ++k)
a |l= (x & m) > s;
++s;
m <<= 1;
b |I= (x &m) > s;
m <<= 1;
}
}

The optimized versions (cf. [FXT: file auxbit/bitzip.h]), using ideas similar to those in revbin and
bit_count, are

static inline ulong bit_zip(ulong x)

{
#if BITS_PER_LONG == 64
x = butterfly_16(x);

#endif
x = butterfly_8(x);
x = butterfly_4(x);
x = butterfly_2(x);
x = butterfly_1(x);

return Xx;

CHAPTER 7. SOME BIT WIZARDRY 109

and

static inline ulong bit_unzip(ulong x)
{
butterfly_1(x);
butterfly_2(x);
butterfly_4(x);
butterfly_8(x);
#if BITS_PER_LONG == 64

x = butterfly_16(x);

#endif
return Xx;
}

MM oMM

Both use the butterfly_*()-functions which look like

static inline ulong butterfly_4(ulong x)

{
ulong t, ml, mr, s;
#if BITS_PER_LONG == 64
ml = 0x0f000£000£000£00;
#else
ml = 0x0£000£00;
#endif
s = 4;
mr = ml >> s;
t=((x&ml) > s) | ((x &mr) << s);
x=(x& “(ml | mr)) | t;
return Xx;

}
The version given by Torsten Sillke (cf. http://www.mathematik.uni-bielefeld.de/“sillke/)

static inline ulong Butterfly4(ulong x)

ulong m = 0x00£000£0;
return ((x & m) << 4) | ((x > 4) & m) | (x & ~“(0x11*m));

looks much nicer, but seems to use one more register (4 instead of 3) when compiled.

7.15 Bit sequency

Some doubtful functions of questionable usefulness can be found in [FXT: file auxbit/bitsequency.h]:

static inline ulong bit_sequency(ulong x)
// return the number of zero-one (or one-zero)
// transitions (sequency) of x.

{
}

return bit_count(gray_code(x));

static inline ulong first_sequency(ulong k)

// return the first (i.e. smallest) word with sequency k,
// e.g. 00..00010101010 (seq 8)

// e.g. 00..00101010101 (seq 9)

{/ must be: 1 <= k <= BITS_PER_LONG

return inverse_gray_code(first_comb(k));

}

static inline ulong last_sequency(ulong k)
// return the lasst (i.e. biggest) word with sequency k,
{

}

return inverse_gray_code(last_comb(k));

CHAPTER 7. SOME BIT WIZARDRY

static inline ulong next_sequency(ulong x)

110

// return smallest integer with highest bit at greater or equal

// position than the highest bit of x that has the same number

// of zero-one transitions (sequency) as x.
// The value of the lowest bit is conserved.

// Zero is returned when there is no further sequence.

// ...
1

N
N
B N
e L R e

O AN
I e T S SR ENEN
I
\4

AN
SN
[[
- -
e

x = gray_code(x);

X = next_colex_comb(x);
x = inverse_gray_code(x);
return x;

7.16 Misc

...there is always some stuff that does not fit into any conceivabl

auxbit/bitmisc.h], e.g. the occasionally useful

static inline ulong bit_block(ulong p, ulong n)

// Return word with length-n bit block starting at bit p set.
// Both p and n are effectively taken modulo BITS_PER_LONG.

{

ulong x = (1<<n) - 1;
return x << p;

}
and

static inline ulong cyclic_bit_block(ulong p, ulong n)
// Return word with length-n bit block starting at bit p set.
// The result is possibly wrapped around the word boundary.
// Both p and n are effectively taken modulo BITS_PER_LONG.
{

ulong x = (1<<n) - 1;

return (x<<p) | (x>>(BITS_PER_LONG-p));
}

Rather weird functions like

static inline ulong single_bits(ulong x)
// Return word were only the single bits from x are set

{
return x & ~((x<<1) | (x>>1));

or

static inline ulong single_values(ulong x)
// Return word were only the single bits and the
// single zeros from x are set

{
return (x =~ (x<<1)) & (x =~ (x>>1));

e category. That goes to [FXT: file

CHAPTER 7. SOME BIT WIZARDRY 111

or

static inline ulong border_values(ulong x)
// Return word were those bits/zeros from x are set
// that lie next to a zero/bit

{
ulong g = x ~ (x>>1);
g I= (g<k1);
return g | (x & 1);
}
or

static inline ulong block_bits(ulong x)
// Return word were only those bits from x are set
// that are part of a block of at least 2 bits

{
return x & ((x<<1) | (x>>1));

or

static inline ulong interior_bits(ulong x)
// Return word were only those bits from x are set
// that do not have a zero to their left or right

{
return x & ((x<<1) & (x>>1));

might not be the most often needed functions on this planet, but if you can use them you will love them.

[FXT: file auxbit/branchless.h| contains functions that avoid branches. With modern CPUs and their
conditional move instructions these are not necessarily optimal:

static inline long max0O(long x)
// Return max(0, x), i.e. return zero for negative input
// No restriction on input range

{
return x & ~(x >> (BITS_PER_LONG-1));

or

static inline ulong upos_abs_diff(ulong a, ulong b)
// Return abs(a-b)
// Both a and b must not have the most significant bit set

long d1 = b - a;
long d2 = (d1 & (d1>>(BITS_PER_LONG-1)))<<1;
return dil - d2; // == (b - d) - (a + d);

}

The ideas used are sometimes interesting on their own:

static inline ulong average(ulong x, ulong y)

// Return (x+y)/2

// Result is correct even if (x+y) wouldn’t fit into a ulong
// Use the fact that x+y == ((x&y)<<1) + (x7y)

// that is: sum == carries + sum_without_carries

return (x & y) + ((x ~ y) > 1);
}

or

static inline void upos_sort2(ulong &a, ulong &b)
// Set {a, b} := {minimum(a, b), maximum(a,b)}

CHAPTER 7. SOME BIT WIZARDRY 112

// Both a and b must not have the most significant bit set

{ long d = b - a;
d &= (d>>(BITS_PER_LONG-1));
a += d;
b -= d;

}

Note that the upos_*() functions only work for a limited range (highest bit must not be set) in order to
have the highest bit emulate the carry flag.

static inline ulong contains_zero_byte(ulong x)

// Determine if any sub-byte of x is zero.

// Returns zero when x contains no zero byte and nonzero when it does.

// The idea is to subtract 1 from each of the bytes and then look for bytes
// where the borrow propagated all the way to the most significant bit.
// To scan for other values than zero (e.g. 0xab) use:

// contains_zero_byte(x ~ Oxabababa5UL)

{

#if BITS_PER_LONG == 32
return ((x-0x01010101UL) "x) & ("x) & 0x80808080UL;
// return ((x-0x01010101UL) ~ x) & 0x80808080UL;

// ... gives false alarms when a byte of x is 0x80:
// hex: 80-01 = 7f, 7£°80 = ff, ff & 80 = 80
#endif

#if BITS_PER_LONG == 64
return ((x-0x0101010101010101UL) ~ x) & ("x) & 0x8080808080808080UL;
fendif

from [FXT: file auxbit/zerobyte.h| may only be a gain for >128 bit words (cf. [FXT: long_strlen and
long memchr in aux/bytescan.cc]), however, the underlying idea is nice enough to be documented here.

7.17 The bitarray class

The bitarray class ([FXT: file auxbit/bitarray.h]) can be used as an array of tag values which is useful
in many algorithms such as operations on permutations(cf. [8.6). The public methods are

// operations on bit n:
ulong test(ulong n) const
void set(ulong n)
void clear(ulong n)
void change(ulong n)
ulong test_set(ulong n)
ulong test_clear(ulong n)
ulong test_change(ulong n)

// operations on all bits:
void clear_all()
void set_all()
int all_set_q() const; // return whether all bits are set
int all_clear_q() const; // return whether all bits are clear

// scanning the array:
ulong next_set_idx(ulong n) const // return next set or one beyond end
ulong next_clear_idx(ulong n) const // return next clear or one beyond end

On the x86 architecture the corresponding CPU instructions as
static inline ulong asm_bts(ulong *f, ulong i)

é/ Bit Test and Set

ulong ret;
asm ("btsl %2, %1 \n"
"sbbl %0, %0"

CHAPTER 7. SOME BIT WIZARDRY 113

"=I‘" (ret)
umu (*f), nru (1))’
return ret;

(cf. [FXT: file auxbit/bitasm.h]) are used. If no specialized CPU instructions are available macros as

#define DIVMOD_TEST(n, d, bm) \

ulong d = n / BITS_PER_LONG; \

ulong bm = 1UL << (n % BITS_PER_LONG); \
ulong t = bm & f£_[d];

are used, performance is still good with these (the compiler of course replaces the ‘%’ by the corresponding
bit-and with BITS_PER_LONG-1 and the ‘/’ by a right shift by logs (BITS_PER_LONG) bits).

7.18 Manipulation of colors

In the following it is assumed that the type uint (unsigned integer) contains at least 32 bit. In this
section This data type is exclusively used as a container for three color channels that are assumed to be
8 bit each and lie at the lower end of the word. The functions do not depend on how the channels are
ordered (e.g. RGB or BGR).

The following functions are obviously candidates for your CPUs SIMD-extensions (if it has any). However,
having the functionality in a platform independant manner that is sufficiently fast for most practical

purposes? is reason enough to include this section.

Scaling a color by an integer value:

static inline uint colorO1(uint c, ulong v)
// return color with each channel scaled by v

// 0 <= v <= (1<<16) corresponding to 0.0 ... 1.0
{
uint t;
t = c & 0xff00ff00; // must include alpha channel bits ...
¢ "=t; // ... because they must be removed here
t *= v,
t >>= 24; t <<= 8;
v >>= 8;
C *= v,
c >>= 8;
c &= 0xff00ff;
return c | t;

}
... used in the computation of the weighted average of colors:

static inline uint color_mix(uint cl, uint c2, ulong v)
// return channelwise average of colors
// (1.0-v)*cl and v*c2

//
// 0 <= v <= (1<<16) corresponding to 0.0 ... 1.0
{/ cl e c2

ulong w = ((ulong)1<<16)-v;

cl = color01(cl, w);

c2 = color01(c2, v);

return cl + c2; // no overflow in color channels

}
Channelwise average of two colors:

static inline uint color_mix_50(uint c1, uint c2)
// return channelwise average of colors cl and c2

4The software rendering program that uses these functions operates at a not too small fraction of memory bandwidth
when all of environment mapping, texture mapping and translucent objects are shown with (very) simple scenes.

CHAPTER 7. SOME BIT WIZARDRY 114

// shortcut for the special case (50% tranparency)
// of color_mix(cl, c2, "0.5")
//

// least significant bits are ignored

{
return ((cl & Oxfefefe) + (c2 & Oxfefefe)) >> 1; // 50% ci

...and with higher weight of the first color:

static inline uint color_mix_75(uint c1, uint c2)
// least significant bits are ignored

{
return color_mix_50(cl, color_mix_50(cl, c2)); // 75% cil
Saturated addition of color channels:

static inline uint color_sum(uint cl, uint c2)
// least significant bits are ignored

{
uint s = color_mix_50(cl, c2);
return color_sum_adjust(s);

}

which uses:

static inline uint color_sum_adjust(uint s)
// set color channel to max (Oxff) iff an overflow occured
// (that is, leftmost bit in channel is set)

{
uint m = s & 0x808080; // 1000 0000 // overflow bits
s "= m;
m >>=7; // 0000 0001
m *= Oxff; // 1111 1111 // optimized to (m<<8)-m by gcc
return (s << 1) | m;
}

Channelwise product of two colors:

static inline uint color_mult(uint c1, uint c2)
// corresponding to an object of color cl
// illuminated by a light of color c2
{
uint t = ((c1 & Oxff) * (c2 & O0xff)) >> 8;
cl >>=8; c2 >>= 8;
t |= ((cl & 0xff) * (c2 & Oxff)) & 0xff00;
cl &= 0xff00; c2 >>= 8;
t |= ((cl * c2) & 0xf£f0000);
return t;

}

When one does not want to discard the lowest channel bits (e.g. because numerous such operations appear
in a row) a more ‘perfect’ version is required:

static inline uint perfect_color_mix_50(uint cl, uint c2)
// return channelwise average of colors cl and c2

{
uint t = (cl & c2) & 0x010101; // lowest channels bits in both args

return color_mix_50(cl, c2) + t;

... which is used in:

static inline uint perfect_color_sum(uint cl, uint c2)

{
uint s = perfect_color_mix_50(cl, c2);
return color_sum_adjust(s);

}

Note that the last two functions are overkill for most practical purposes.

Chapter 8

Permutations

8.1 The revbin permutation

The procedure revbin_permute(al[], n) used in the DIF and DIT FFT algorithms rearranges the array
a[] in a way that each element a, is swapped with az, where is obtained from = by reversing its binary
digits. For example if n = 256 and x = 4319 = 001010115 then £ = 11010100, = 212;9. Note that x
depends on both z and on n.

8.1.1 A naive version

A first implementation might look like
procedure revbin_permute(al], n)
// al0..n-1] input,result

for x:=0 to n-1

{

r := revbin(x, n)
if r>x then swap(alx], alrl)

}

The condition r>x before the swap() statement makes sure that the swapping isn’t undone later when
the loop variable x has the value of the present r. The function revbin(x, n) shall return the reversed
bits of x:

function revbin(x, n)
j =0

ldn := log2(n) // is an integer
ghile 1dn>0

ji=jt
ji=j+ &1
x :=x>>1
Idn := 1dn - 1
}
return j

}

This version of the revbin_permute-routine is pretty inefficient (even if revbin() is inlined and 1dn is
only computed once). Each execution of revbin() costs proportional 1dn operations, giving a total of
proportional % log,(n) operations (neglecting the swaps for the moment). One can do better by solving
a slightly different problem.

115

CHAPTER 8. PERMUTATIONS 116

8.1.2 A fast version

The key idea is to update the value Z from the value z — 1. As z is one added to x — 1, x is one ‘reversed’
added to x — 1. If one finds a routine for that ‘reversed add’ update much of the computation can be
saved.

A routine to update r, that must be the same as the the result of revbin(x-1, n) to what would be the
result of revbin(x, n)

function revbin_update(r, n)

{
do
{
n:=n>>1
r :=r’n // bitwise exor
} while ((r&n) == 0)
' return r

In C this can be cryptified to an efficient piece of code:

inline unsigned revbin_update(unsigned r, unsigned n)

{
for (unsigned m=n>>1; (!((r"=m)&m)); m>>=1);
return r;

[FXT: revbin_update in auxbit/revbin.}h]

Now we are ready for a fast revbin-permute routine:

procedure revbin_permute(a[], n)
// al0..n-1] input,result

if n<=2 return
r := 0 // the reversed 0
for x:=1 to n-1

r := revbin_update(r, n) // inline me
if r>x then swap(alx],alr])

This routine is several times faster than the naive version. revbin_update() needs for half of the calls
just one iteration because in half of the updates just the leftmost bit changes!, in half of the remaining
updates it needs two iterations, in half of the still remaining updates it needs three and so on. The total

number of ope?ations done by revbin_update () is therefore proportional to n (%—i—%—l—%—l—%—i—- . -—&-%)
=n Z;-O:gf(n) 3. For n large this sum is close to 2n. Thereby the asymptotics of revbin_permute() is
improved from proportional n log(n) to proportional n.

8.1.3 How many swaps?

How many swap ()-statements will be executed in total for different n? About n — y/n, as there are only
few numbers with symmetric bit patterns: for even logs(n) =: 20 the left half of the bit pattern must be
the reversed of the right half. There are 20 = v/220 such numbers. For odd loga(n) =: 2b + 1 there are
twice as much symmetric patterns: the bit in the middle does not matter and can be 0 or 1.

Lcorresponding to the change in only the rightmost bit if one is added to an even number

CHAPTER 8. PERMUTATIONS

n | 2 # swaps # symm. pairs
2 0 2
4 2 2
8 4 4
16 12 4
32 24 8
64 56 8
210 992 32
2201 0.999 - 220 210
©| n-yn vn

Summarizing: almost all ‘revbin-pairs’ will be swapped by revbin_permute ().

8.1.4 A still faster version

117

The following table lists indices versus their revbin-counterpart. The subscript 2 indicates printing in
base 2, A := 7 —x — 1 and an ‘y’ in the last column marks index pairs where revbin_permute () will

swap elements.

T T2 To T A | zT>x?
0 00000 | 00000 0] -31
1 00001 | 10000 16 16 y
2 00010 | 01000 8 -8 vy
3 00011 | 11000 24 16 y
4 00100 | 00100 4| -20
5 00101 | 10100 20 16 y
6 00110 | 01100 12 -8 y
7 00111 | 11100 28 16 y
8 01000 | 00010 2 | -26
9 01001 | 10010 18 16 y

10 01010 | 01010 10 -8

11 01011 | 11010 26 16 y

12 01100 | 00110 6 | -20

13 01101 | 10110 22 16 y

14 01110 | 01110 14 -8

15 01111 | 11110 30 16 y

16 10000 | 00001 1| -29

17 10001 | 10001 17 16

18 10010 | 01001 9 -8

19 10011 | 11001 25 16 y

20 10100 | 00101 51 -20

21 10101 | 10101 21 16

22 10110 | 01101 13 -8

23 10111 | 11101 29 16 y

24 11000 | 00011 3| -26

25 11001 | 10011 19 16

26 11010 | 01011 11 -8

27 11011 | 11011 27 16

28 11100 | 00111 71 -20

29 11101 | 10111 23 16

30 11110 | 01111 15 -8

31 11111 | 11111 31 16

Observation one: A = 3 for all odd z.

Observation two: if for even x < % there is a swap (for the pair 2, &) then there is also a swap for the
pairn—1-2,n—-1-7. Aszr<gandZ< gFonehasn—-1-x>3

andn—1-2> 3,

i.e. the swaps

CHAPTER 8. PERMUTATIONS 118

are independent.
There should be no difficulties to cast these observations into a routine to put data into revbin order:

procedure revbin_permute(al], n)

{
if n<=2 return
nh :=n
r := 0 // the reversed 0
éhiie x<nh
// x odd:
r :=r + nh
swap(alx], alrl)
x :=x + 1
// x even:
r := revbin_update(r,n) // inline me
if r>x then
swap(al[x], alr])
swap(a[n-1-x], aln-1-r])
}
x :=x +1
}
}

[source file: revbinpermute.spr]

The revbin_update() would be in C, inlined and the first stage of the loop extracted
r~=nh; for (unsigned m=(nh>>1); !'((r"=m)&m); m>>=1) {}
The code above is an ideal candidate to derive an optimized version for zero padded data:

procedure revbin_permuteO(al], n)

{
if n<=2 return
nh := n/2
r := ? // the reversed 0O
while x<nh
// x odd:
r :=r + nh
alr] := al[x]
alx] := 0
x :=x + 1
// x even:
r := revbin_update(r, n) // inline me
if r>x then swap(alx], alrl)
// both a[n-1-x] and aln-1-r] are zero
X 1= x +
}
}

[source file: revbinpermute0.spr]

One could carry the scheme that lead to the ‘faster’ revbin_permute procedures further, e.g. using 3
hardcoded constants Aj, Ag, Az depending on whether x mod 4 = 1,2, 3 only calling revbin_update ()
for £ mod 4 = 0. However, the code quickly gets quite complicated and there seems to be no measurable
gain in speed, even for very large sequences.

If, for complex data, one works with seperate arrays for real and imaginary part? one might be tempted to
do away with half of the bookkeeping as follows: write a special procedure revbin_permute(al[],b[],n)
that shall replace the two successive calls revbin_permute(al[],n) and revbin_permute(b[],n) and
after each statement swap(al[x],alr]) has inserted a swap(b[x],b[r]). If you do so, be prepared for
disaster! Very likely the real and imaginary element for the same index lie apart in memory by a power
of two, leading to one hundred percent cache miss for the typical computer. Even in the most favourable
case the cache miss rate will be increased. Do expect to hardly ever win anything noticable but in most
cases to lose big. Think about it, whisper “direct mapped cache” and forget it.

2as opposed to: using a data type ‘complex’ with real and imaginary part of each number in consecutive places

CHAPTER 8. PERMUTATIONS 119

8.1.5 The real world version

Finally we remark that the revbin_update can be optimized by usage of a small (length BITS_PER_LONG)
table containing the reflected bursts of ones that change on the lower end with incrementing. A routine
that utilizes this idea, optionally uses the CPU-bitscan instruction(cf. section [7.2) and further allows to
select the amount of symmetry optimizations looks like

#include "inline.h" // swap()

#include "fxttypes.h"

#include "bitsperlong.h" // BITS_PER_LONG

#include "revbin.h" // revbin(), revbin_update()

#include "bitasm.h"

#if defined BITS_USE_ASM

#include "bitlow.h" // lowest_bit_idx()

#define RBP_USE_ASM // use bitscan if available, comment out to disable
#endif // defined BITS_USE_ASM

#define RBP_SYMM 4 // 1, 2, 4 (default is 4)

#define idx_swap(f, k, r) { ulong kx=(k), rx=(r); swap(flkx], flrx]); }
template <typename Type>

void revbin_permute(Type *f, ulong n)

{
if (n<=8)

if (n==8)

swap(f[1], £[4]);
swap(£f[3], £[6]);

}
else if (n==4) swap(£[1], £[2]);
return;

const ulong nh = (n>>1);
ulong x[BITS_PER_LONG];
x[0] = nh;
{ // initialize xor-table:
ulong i, m = nh;
for (i=1; m!=0; ++i)

{

m >>= 1;
x[i] = x[i-1] ~ m;

}

#if (RBP_SYMM >= 2)

const ulong n1 =n - 1; //
#if (RBP_SYMM >= 4)

const ulong nxl = nh - 2; //

const ulong nx2 = nl - nxl1; //
#endif // (RBP_SYMM >= 4)
#endif // (RBP_SYMM >= 2)

ulong k=0, r=0;

zhile (k<n/RBP_SYMM) // n>=16, n/2>=8, n/4>=4

/] === k%4 == 0:
if (>k)

11111111

01111110
10111101

swap(f[k], £[r]); // <nh, <nh 11
#if (RBP_SYMM >= 2)
idx_swap(f, ni1"k, ni1°r); // >nh, >nh 00
#if (RBP_SYMM >= 4)
idx_swap(f, nx1"k, nxl1°r); // <nh, <nh 11
idx_swap(f, nx2"k, nx2°r); // >nh, >nh 00
#endif // (RBP_SYMM >= 4)
#endif /§ (RBP_SYMM >= 2)

r "= nh;

++k;

/] === K4 ==
if (>k)

swap(f[k], f£[r]); // <nh, >nh 10
#if (RBP_SYMM >= 4)

CHAPTER 8. PERMUTATIONS 120

idx_swap(f, n1°k, ni"r); // >nh, <nh 01
#endif /é (RBP_SYMM >= 4)

{ // scan for lowest unset bit of k:
#ifdef RBP_USE_ASM
ulong i = lowest_bit_idx("k);

ulong m 2, 1i=1;

while (m & k) {m<<=1; ++i; }
#endif // RBP_USE_ASM

#else

r ~= x[i];
}
++k;
/] =mmmm K4 == 2:
if (>k)

swap(f[k], £[r]); // <nh, <nh 11
#if (RBP_SYMM >= 2)

idx_swap(f, n1"k, ni1"r); // >nh, >nh 00
#endif /{ (RBP_SYMM >= 2)

r "= nh;
++k;
// -———- k%4 == 3:
if (>k)
swap(f[k], f[r]); // <nh, >nh 10

#if (RBP_SYMM >= 4)
idx_swap(f, nx1"k, nxl1°r); // <nh, >nh 10
#endif // (RBP_SYMM >= 4)
}

{ // scan for lowest unset bit of k:
#ifdef RBP_USE_ASM
ulong i = lowest_bit_idx("k);

ulong m = 4, i = 2;

while (m & k) {m<<=1; ++i; }
#endif // RBP_USE_ASM

r "= x[i];

#else

++k;

3

...not the most readable piece of code but a nice example for a real-world optimized routine.

This is [FXT: revbin permute in perm/revbinpermute.h], see [FXT: revbin permute0 in
perm/revbinpermute0.h] for the respective version for zero padded data.

8.2 The radix permutation

The radix-permutation is the generalization of the revbin-permutation (corresponding to radix 2) to
arbitrary radices.

C++ code for the radix-r permutation of the array £ []:

extern ulong nt[l; // ntl[]
extern ulong kt[]; // ktl]

template <typename Type>
void radix_permute(Type *f, ulong n, ulong r)

9, 90, 900 for r=10, x=3
1, 10, 100 for r=10, x=3

// swap elements with index pairs i, j were the
// radix-r representation of i and j are mutually
// digit-reversed (e.g. 436 <--> 634)

// This is a radix-r generalization of revbin_permute()
// revbin_permute(f, n) ="= radix_permute(f, n, 2)

CHAPTER 8. PERMUTATIONS

// must have:
// n == pkxx for some x>=1
// T >= 2
1/
{
ulong x = 0;
nt[0] = r-1;
kt[0] = 1;
ghile 1)
ulong z = kt[x] * r;
if (z>n) break;
++Xx;
kt[x] = z;
nt[x] = ntlx-1] * r;
// here: n == p*xx

for (ulong i=0, j=0; i < n-1; i++)

if (i<j) swap(£[il, £[j1);
ulong t = x - 1;
ulong k = nt[t]l; // ="= k= (r-1) * n / r;

while (k<=j)

j+=ktltl; // == j += (&/(z-1));
}

FXT: radix_permute in perm/radixpermute.h
p p p

TBD: mized-radix permute

8.3 Inplace matrix transposition

To transpose a n, X n.- matrix first identify the position ¢ of then entry in row r and column c:
i = r-ne.tc

After the transposition the element will be at position i’ in the transposed n. x n’- matrix

i = ronl 4+

Obviously, v’ = ¢, ¢/ =r, n’. =n, and n’. = n,, so:
)) y g c)

i = cnp+r

Multiply the last equation by n.

-/
1 Ne = C Ny Ne+T°Ne

With n :=n, -n. and r - n, =i — ¢ we get

i'"n. = c-n+i—c

i"net+c-(n—1)

i
Take the equation modulo n — 1 to get®

i = i -n. mod (n—1)

3As the last element of the matrix is a fixed point the transposition moves around only the n — 1 elements 0. ..

121

(8.1)

n—2

CHAPTER 8. PERMUTATIONS

That is, the transposition moves the element ¢

1Ny
1Ny
1Ny

That is, element 7 will be moved to ¢/ = ¢ - n,

[FXT: transpose in aux2d/transpose.h]
[FXT: transpose_ba in aux2d/transpose_ba.

122

=14’ - m, to position ¢'. Multiply by n, to get the inverse:

-/

i ne o ny (8.9)
= i (n—1+1) (8.10)
= (8.11)
mod (n —1).

b]

Note that one should take care of possible overflows in the calculation i - n..

For the case that n is a power of two (and so are both n, and n.) the multiplications modulo n — 1 are
cyclic shifts. Thus any overflow can be avoided and the computation is also significantly cheaper.

[FXT: transpose2_ ba in aux2d/transpose2_ba.h]

TBD: constant modulus by mult.

8.4 Revbin permutation vs. transposition

8.4.1 Rotate and reverse

How would you rotate an (length-n) array by s positions (left or right), without using any® scratch space.
If you do not know the solution then try to find it before reading on.

The nice little trick is to use reverse three times as in the following:

template <typename Type>

void rotate_left(Type *f, ulong n, ulong s)
// rotate towards element #O

{/ shift is taken modulo n

if (s==0) return;
if (s>=n)
if (n<2) return;
s %= n;
}
reverse (£, s);
reverse(f+s, n-s);
reverse (f, n);

}

Likewise for the other direction:

template <typename Type>

void rotate_right(Type *f, ulong n, ulong s)

// rotate away from element #0
{/ shift is taken modulo n

if (s==0)
if (s>=n)

return;

if (n<2) return;
s %= n;
}
reverse(f, n-s);
reverse (f+n-s, s);
reverse (£, n);

}

[FXT: rotate_left and rotate_right in perm/rotate.h]

4CPU registers do not count as scratch space.

CHAPTER 8. PERMUTATIONS 123

What this has to do with our subject? When transposing an n, X n. matrix whose size is a power of two
(thereby both n, and n. are also powers of two) the above mentioned rotation is done with the indices
(written in base two) of the elements. We know how to do a permutation that reverses the complete
indices and reversing a few bits at the least significant end is not any harder:

template <typename Type>

void revbin_permute_rows(Type *f, ulong ldn, ulong ldnc)

// revbin_permute the length 2%*ldnc rows of f[0..2%*1dn-1]
{/ (f[] considered as an 2**(ldn-ldnc) x 2**ldnc matrix)

ulong n = 1<<1ldn;
ulong nc = 1<<ldnc;
for (ulong k=0; k<n; k+=nc) revbin_permute(f+k, nc);

}
And there we go:

template <typename Type>
void transpose_by_rbp(Type *f, ulong ldn, ulong ldnc)
// transpose f[] considered as an 2**(ldn-ldnc) x 2#%*ldnc matrix

{

revbin_permute_rows(f, ldn, ldnc);

ulong n = 1<<1ldn;

revbin_permute(f, n);

revbin_permute_rows(f, ldn, ldn-ldnc); // ... that is, columns
}

8.4.2 Zip and unzip
An important special case of the above is

template <typename Type>
void zip(Type *f, ulong n)

// lower half --> even indices
// higher half --> odd indices

same as transposing the array as 2 x n/2 - matrix

//
//
//
// useful to combine real/imag part into a Complex array
//
// n must be a power of two

{

ulong nh = n/2;
revbin_permute(f, nh); revbin_permute(f+nh, nh);
revbin_permute(f, n);

}
[FXT: zip in perm/zip.h] which can® for the type double be optimized as

void zip(double *f, long n)
{

revbin_permute(f, n);
revbin_permute ((Complex *)f, n/2);

[FXT: zip in perm/zip.cc]

The inverse of zip is unzip:

template <typename Type>
void unzip(Type *f, ulong n)
//

// inverse of zip():

5 Assuming that type Complex consists of two doubles lying contiguous in memory.

CHAPTER 8. PERMUTATIONS 124

// put part of data with even indices
// sorted into the lower half,
// odd part into the higher half

//

// same as transposing the array as n/2 x 2 - matrix

//

// useful to separate a Complex array into real/imag part
//

// n must be a power of two

{

ulong nh = n/2;
revbin_permute(f, n);
revbin_permute(f, nh); revbin_permute(f+nh, nh);

}
[FXT: unzip in perm/zip.h] which can for the type double again be optimized as

void unzip(double *f, long n)

{
revbin_permute ((Complex *)f, n/2);
revbin_permute(f, n);

[FXT: unzip in perm/zip.cc| TBD: zip for length not a power of two

While the above mentioned technique is usually not a gain for doing a transposition it may be used
to speed up the revbin_permute itself. Let us operatorize the idea to see how. Let R be the
revbin-permutation revbin_permute, T'(n,,n.) the transposition of the n, x n. matrix and R(n.) the
revbin_permute_rows. Then

T(n.,n.) = R(n,.) R-R(n.) (8.12)

The R-operators are their own inverses while T is in general not self inverse®.

R = R(n.) -T(nqn.) - R(n:) (8.13)
There is a degree of freedom in this formula: for fixed n = n,. X n. one can choose one of n, and n. (only

their product is given).

TBD: revbin-permute by transposition

8.5 The Gray code permutation

The Gray code permutation reorders (length-2") arrays according to the Gray code

static inline ulong gray_code(ulong x)

{

return x = (x>>1);

which is most easily demonstrated with the according routine that does not work inplace ([FXT: file
perm/graypermute . hl):

template <typename Type>

inline void gray_permute(const Type *f, Type * restrict g, ulong n)
// after this routine

// glgray_code(k)] == f[k]

for (ulong k=0; k<n; ++k) glgray_code(k)] = f[k];

6For n, = n. it of course is.

CHAPTER 8. PERMUTATIONS 125

Its inverse is

template <typename Type>

inline void inverse_gray_permute(const Type *f, Type * restrict g, ulong n)
// after this routine

// glkl == flgray_code(k)]

// (same as: glinverse_gray_code(k)] == f[k])

{

}

for (ulong k=0; k<n; ++k) glk] = f[gray_code(k)];

It also wuses calls to gray_code() because they are cheaper than the computation of
inverse_gray_code(), cf. [7.11.

It is actually possible” to write an inplace version of the above routines that offers extremely good
performance. The underlying observation is that the cycle leaders (cf. [8.6) have an easy pattern and can
be efficiently generated using the ideas from [7.4] (detection of perfect powers of two) and [7.9 (enumeration
of bit subsets).

template <typename Type>
void gray_permute(Type *f, ulong n)
// inplace version

ulong z = 1; // mask for cycle maxima
ulong v = 0; // "z

ulong cl = 1; // cycle length

for (ulong ldm=1, m=2; m<n; ++ldm, m<<=1)

z <<= 1;
v <<= 1;
if (is_pow_of_2(1dm))

++z;

cl <<= 1;
}

else ++v;

bit_subset b(v);

do

{
// --- do cycle: ---
ulong i = z | b.next(); // start of cycle
Type t = £[i]; // save start value

ulong g = gray_code(i); // next in cycle
for (ulong k=cl-1; k!=0; --k)

{
Type tt = flgl;
flgl = t;
t = tt;
g = gray_code(g);
}
flgl = t;
// —-—- end (do cycle) ---

}
while (b.current());
}

The inverse looks similar, the only actual difference is the do cycle block:

template <typename Type>
void inverse_gray_permute(Type *f, ulong n)
// inplace version

{
ulong z 1;
ulong v = O;
ulong cl = 1;
for (ulong ldm=1, m=2; m<n; ++ldm, m<<=1)
{

"To both my delight and shock I noticed that the underlying ideas of this routine appeared in Knuths online pre-fascicle
(2A) of Vol.4 where this is exercise 30 (sigh!). Yes, I wrote him a letter as requested in the preface.

CHAPTER 8. PERMUTATIONS 126

z <<= 1;
v <<= 1;
if (is_pow_of_2(1dm))

++z;
cl <<= 1;

else ++v;

bit_subset b(v);

do

{
// --- do cycle: ---
ulong i = z | b.next(); // start of cycle
Type t = £[i]; // save start value

ulong g = gray_code(i); // next in cycle
for (ulong k=cl-1; k!=0; --k)

{
f[i]l = flgl;
i=g;
g = gray_code(i);
}
£[i] = t;
// -—- end (do cycle) ---

while (b.current());
}
How fast is it? We use the convention that the speed of the trivial (and completely cachefriendly, therefore

running at memory bandwidth) reverse is 1.0, our hereby declared time unit for comparison. A little
benchmark looks like:

CLOCK defined as 1000 MHz // AMD Athlon 1000MHz with 100MHz DDR RAM
memsize=32768 kiloByte // permuting that much memory (in chunks of doubles)

reverse(fr,n2); dt= 0.0997416 rel= 1 // set to onme
revbin_permute(fr,n2) ; dt= 0.594105 rel= 5.95644
reverse(fr,n2); dt= 0.0997483 rel= 1.00007
gray_permute(fr,n2); dt= 0.119014 rel= 1.19323
reverse(fr,n2); dt= 0.0997618 rel= 1.0002
inverse_gray_permute (fr,n2); dt= 0.11028 rel= 1.10566
reverse(fr,n2); dt= 0.0997424 rel= 1.00001

We repeatedly timed reverse to get an impression how much we can trust the observed numbers. The
bandwidth of the reverse is about 320MByte/sec which should be compared to the output of a special
memory testing program, revealing that it actually runs at about 83% of the bandwidth one can get
without using streaming instructions:

avg: 33554432 [0] "memcpy" 305.869 MB/s
avg: 33554432 [1]"char *" 154.713 MB/s
avg: 33554432 [2]"short *" 187.943 MB/s
avg: 33554432 [3]"int *" 300.720 MB/s
avg: 33554432 [4]"long *" 300.584 MB/s
avg: 33554432 [5]1"long * (4x unrolled)" 306.135 MB/s
avg: 33554432 [6]"int64 *" 305.372 MB/s
avg: 33554432 [7]"double *" 388.695 MB/s // <--=
avg: 33554432 [8]"double * (4x unrolled)" 374.271 MB/s
avg: 33554432 [9]"streaming K7" 902.171 MB/s
avg: 33554432 [10]"streaming K7 prefetch" 1082.868 MB/s
avg: 33554432 [11]"streaming K7 clear" 1318.875 MB/s
avg: 33554432 [12]"long * clear" 341.456 MB/s

While the revbin_permute takes about 6 units (due to its memory access pattern that is very problematic
wrt. cache usage) the gray_permute only uses 1.20 units, the inverse_gray_permute even® only 1.10!
This is pretty amazing for such a nontrivial permutation.

The described permutation can be used to significantly speed up fast transforms of lengths a power of
two, notably the Walsh transform, see chapter 5.

8The observed difference between the forward- and backward version is in fact systematic.

CHAPTER 8. PERMUTATIONS 127

8.6 General permutations

So far we treated special permutations that occured as part of other algorithms. It is instructive to study
permutations in general with the operations (as composition and inverse) on them.

8.6.1 Basic definitions

A straight forward way to describe a permutation is to consider the array of indices that for the original
(unpermuted) data would be the length-n canonical sequence 0, 1, 2, ..., n — 1. The mentioned trivial
sequence describes the ‘do-nothing’ permutation or identity (wrt. composition of permutations). The
concept is best described by the routine that applies a given permutation x on an array of data f: after
the routine has finished the array ¢ will contain the elements of f reordered according to x

template <typename Type>

void apply(const ulong *x, const Type *f, Type * restrict g, ulong n)
// apply x[] on £[]

// i.e. glkl <-- £f[x[k]] \forall k

for (ulong k=0; k<n; ++k) glk] = f[x[k]];

[FXT: apply in perm/permapply.h| An example using strings (arrays of characters): The permutation
described by « = {7,6,3,2,5,1,0,4} and the input data

f ="ABadCafe" would produce

g ="efdaaBAC"

All routines in this and the following section are declared in [FXT: file perm/permutation.h]
Trivially

int is_identity(const ulong *f, ulong n)
// check whether f[] is the identical permutation,
// i.e. whether f[k]==k for all k= 0...n-1

for (ulong k=0; k<n; ++k) if (f[k] '= k) return O;
return 1;

}
A fixed point of a permutation is an index where the element isn’t moved:

ulong count_fixed_points(const ulong *f, ulong n)
// return number of fixed points in f[]

ulong ct = 0;
for (ulong k=0; k<n; ++k) if (f[k] == k) ++ct;
return ct;

}

A derangement is a permutation that has no fixed points (i.e. that moved every element to another
position so count_fixed_points() returns zero). To check whether a permutation is the derangement
of another permutation one can use:

int is_derangement(const ulong *f, const ulong *g, ulong n)
// check whether f[] is a derangement of g[],
// i.e. whether f[k]!=gl[k] for all k

for (ulong k=0; k<n; ++k) if (f[k] == g[k]) return O;
return 1;

}

To check whether a given array really describes a valid permutation one has to verify that each index
appears exactly once. The bitarray class described in(7.17 allows us to do the job without modification
of the input (like e.g. sorting):

CHAPTER 8. PERMUTATIONS 128

int is_valid_permutation(const ulong *f, ulong n, bitarray *bp/*=0%/)
// check whether all values 0...n-1 appear exactly once

{
// check whether any element is out of range:
for (ulong k=0; k<n; ++k) if (f[k]>=n) return O;
// check whether values are unique:
bitarray *tp = bp;
if (0==bp) tp = new bitarray(n); // tags
tp->clear_all();
ulong k;
for (k=0; k<n; ++k)
{
if (tp—>test_set(f[k])) break;
if (O==bp) delete tp;
return (k==n);
}

8.6.2 Compositions of permutations

One can apply arbitrary many permutations to an array, one by one. The resulting permutation is called
the composition of the applied permutations. As an example, the check whether some permutation g is
equal to f applied twice, or f - f, or f squared use:

int is_square(const ulong *f, const ulong *g, ulong n)
// whether f x £ == g as a permutation

for (ulong k=0; k<n; ++k) if (glk] !'= £[f[k]]) return O;
return 1;

A permutation f is said to be the inverse of another permutation g if it undoes its effect, that is f-g = id
(likewise g - f = id):

int is_inverse(const ulong *f, const ulong *g, ulong n)
// check whether f[] is inverse of gl[]

{
for (ulong k=0; k<n; ++k) if (flg[k]l] != k) return O;
return 1;

A permutation that is its own inverse (like the revbin-permutation) is called an involution. Checking
that is easy:

int is_involution(const ulong *f, ulong n)
// check whether max cycle length is <= 2

for (ulong k=0; k<n; ++k) if (f[f[k]] != k) return O;
return 1;

Finding the inverse of a given permutation is trivial:

void make_inverse(const ulong *f, ulong * restrict g, ulong n)
// set g[] to the inverse of f[]

for (ulong k=0; k<n; ++k) gl[f[k]] = k;
}

However, if one wants to do the operation inplace a little bit of thought is required. The idea underlying
all subsequent routines working inplace is that every permutation entirely consists of disjoint cycles. A
cycle (of a permutation) is a subset of the indices that is rotated (by one) by the permutation. The term
disjoint means that the cycles do not ‘cross’ each other. While this observation is pretty trivial it allows
us to do many operations by following the cycles of the permutation, one by one, and doing the necessary
operation on each of them. As an example consider the following permutation of an array originally
consisting of the (canonical) sequence 0, 1, ..., 15 (extra spaces inserted for readability):

CHAPTER 8. PERMUTATIONS 129

0, 1, 3, 2, 7, 6, 4, 5, 15, 14, 12, 13, 8, 9, 11, 10
There are two fixed points (0 and 1) and these cycles:

(2<- 3)

(4<-—- 7<-- 5<—- 6)
(8 <-- 15 <—- 10 <—- 12)
(9 <—- 14 <—- 11 <—- 13)

The cycles do ‘wrap around’, e.g. the initial 4 of the second cycle goes to position 6, the last element of
the second cycle.

Note that the inverse permutation could formally be described by reversing every arrow in each cycle:

(2--> 3)

(4 --> 7--> 5--> 6)
(8 -->15 -—> 10 --> 12)
(9 --> 14 —--> 11 --> 13)

Equivalently, one can reverse the order of the elements in each cycle:

(3<—- 2)

(6 <= 5<-- 7<= 4)
(12 <-- 10 <-- 15 <—- 8)
(13 <—- 11 <-- 14 <—- 9)

If we begin each cycle with its smallest element the inverse permutation looks like:

(2<-- 3)

(4<—- 6<—- 5<= 7)
(8 <—- 12 <—- 10 <—- 15)
(9 <—- 13 <—- 11 <—- 14)

The last three sets of cycles all describe the same permutation:

o0, 1, 3, 2, 6, 7, 5, 4, 12, 13, 15, 14, 10, 11, 9, 8

The maximal cycle-length of an involution is 2, that means it completely consists of fixed points and
2-cycles (swapped pairs of indices).

As a warm-up look at the code used to print the cycles of the above example (which by the way is the
Gray-permutation of the canonical length-16 array):

ulong print_cycles(const ulong *f, ulong n, bitarray *bp=0)
// print the cycles of the permutation
// return number of fixed points
{ bitarray *tp = bp;
if (O==bp) tp = new bitarray(n); // tags
tp->clear_all();

ulong ct = 0; // # of fixed points
for (ulong k=0; k<n; ++k)

if (tp—>test_clear(k)) continue; // already processed
tp->set (k) ;

// follow a cycle:

ulong i = k;

ulong g = f[i]l; // next index
if (g==i) // fixed point ?

++ct;
continue;

cout << "(" << setw(3) << i;
while (0==(tp->test_set(g)))
{

cout << " <-- " << setw(3) << g;

CHAPTER 8. PERMUTATIONS 130

g = flgl;

cout << ")" << endl;

if (O==bp) delete tp;
return ct;

The bitarray is used to keep track of the elements already processed.
For the computation of the inverse we have to reverse each cycle:

void make_inverse(ulong *f, ulong n, bitarray *bp/*=0%/)
// set f[] to its own inverse

bitarray *tp = bp;
if (0==bp) tp = new bitarray(n); // tags
tp->clear_all();

for (ulong k=0; k<n; ++k)

if (tp—>test_clear(k)) continue; // already processed
tp->set(k);

// invert a cycle:

ulong i = k;

ulong g = f[i]l; // next index
while (O==(tp->test_set(g)))

{
ulong t = flgl;
flgl = 1i;
i=g;
g =1

}

flgl = i;

}
if (O==bp) delete tp;
}

Similarly for the straighforward

void make_square(const ulong *f, ulong * restrict g, ulong n)

// set gll = £[1 = £[]

for (ulong k=0; k<n; ++k) glk] = f[£f[k]];
}

whose inplace version is

void make_square(ulong *f, ulong n, bitarray xbp/*=0%/)
{/ set £[] to £[1 * £[]
bitarray *tp = bp;
if (O==bp) tp = new bitarray(n); // tags
tp->clear_all();
for (ulong k=0; k<n; ++k)
{

if (tp—>test_clear(k)) continue; // already processed
tp->set(k);

// square a cycle:

ulong i k;
ulong t = f[i]; // save

ulong g = £[i]; // next index
while (O==(tp->test_set(g)))
{

£[i] = £lgl;

i=g;

g = flgl;

CHAPTER 8. PERMUTATIONS 131

}
if (0==bp) delete tp;
}

Random permutations are sometimes useful:

void random_permute(ulong *f, ulong n)
// randomly permute the elements of f[]

for (ulong k=1; k<n; ++k)

ulong r = (ulong)rand();

r "= r>16; // avoid using low bits of rand alone
ulong i = r % (k+1);

swap (f[k], f£[i]);

}

and

void random_permutation(ulong *f, ulong n)
// create a random permutation of the canonical sequence

for (ulong k=0; k<n; ++k) f[k] = k;
random_permute(f, n);

8.6.3 Applying permutations to data

The following routines are from [FXT: file perm/permapply.h].
The inplace analogue of the routine apply shown near the beginning of section 8.6 is:

template <typename Type>

void apply(const ulong *x, Type *f, ulong n, bitarray *bp=0)
// apply x[] on f[] (inplace operation)

{/ i.e. f[k] <—- f[x[k]] \forall k

bitarray *tp = bp;
if (O==bp) tp = new bitarray(n); // tags
tp->clear_all();

for (ulong k=0; k<n; ++k)
{

if (tp—>test_clear(k)) continue; // already processed
tp->set (k) ;

// --- do cycle: ---

ulong i = k; // start of cycle

Type t = £[il;

ulong g = x[i];

while (O==(tp->test_set(g))) // cf. inverse_gray_permute()

{
£[i] = £lgl;
i=g;
g = x[il;
}
£[i] = t;
// --- end (do cycle) ---

}
if (O==bp) delete tp;
}

Often one wants to apply the inverse of a permutation without actually inverting the permutation itself.
This leads to

template <typename Type>
void apply_inverse(const ulong *x, const Type *f, Type * restrict g, ulong n)
// apply inverse of x[] on f[]

CHAPTER 8. PERMUTATIONS 132

// i.e. glx[k]] <-- f[k] \forall k

for (ulong k=0; k<n; ++k) glx[k]] = f[k];
}

whereas the inplace version is

template <typename Type>

void apply_inverse(const ulong *x, Type * restrict f, ulong n,
bitarray *bp=0)

// apply inverse of x[] on f[] (inplace operation)

é/ i.e. f[x[k]] <—- f[k] \forall k

bitarray *tp = bp;
if (O==bp) tp = new bitarray(n); // tags
tp->clear_all();

for (ulong k=0; k<n; ++k)
{

if (tp—>test_clear(k)) continue; // already processed
tp->set(k);

// --- do cycle: ---

ulong i = k; // start of cycle

Type t = f[il;

ulong g = x[i];

while (O==(tp->test_set(g))) // cf. gray_permute()

{
Type tt = flgl;
flgl = t;
t = tt;
g = x[gl;
3
flgl = t;
// --- end (do cycle) ---

}
if (O==bp) delete tp;

Finally let us remark that an analogue of the binary powering algorithm exists wrt. composition of
permutations. [FXT: power in perm/permutation.cc]

8.7 Generating all Permutations

In this section a few algorithms for the generation of all permutations are presented. These are typically
useful in situations where an exhausive search over all permutations is needed. At the time of writing
the pre-fascicles of Knuths The Art of Computer Programming Volume 4 are available. Therefore (1) the
title of this section is not anymore ‘Enumerating all permutations’ and (2) I won’t even try to elaborate
on the underlying algorithms. Consider the reference to the said place be given between any two lines in
the following (sub-)sections.

TBD: perm-visit cf. [FXT: file perm/permvisit.h]

8.7.1 Lexicographic order

When generated in lexicographic order the permutations appear as if (read as numbers and) sorted
numerically:

permutation sign

0 0123 +
1 0132 -
2 0213 -
3 0231 +
4 0312 +
5 0321 -
6 1023 -

CHAPTER 8. PERMUTATIONS 133

NINININI S S
NI OO00~YUTTHSWNIFOWO0~
QIGILILIGICININININININIF = =
NN OOWWHFOOWWNINO
HONONFHFOWOWHNIOWOW
OFRONFNOHOWHFWONOWN
FUl++ I ++ T+

The sign given is plus or minus if the (minimal) number of transpositions is even or odd, respectively.

The minimalistic class perm_lex implementing the algorithm is

class perm_lex

{
protected:
ulong n; // number of elements to permute
ulong *p; // pln] contains a permutation of {0, 1, ..., n-1}

ulong idx; // incremented with each call to next()
ulong sgn; // sign of the permutation

public:

};

perm_lex(ulong nn)

{
n=(m>07mnn : 1);
p = NEWOP(ulong, n);
first();

“perm_lex() { delete [] p; 2}
zoid first()

for (ulong i=0; i<n; i++) pl[i] = i;
sgn = 0;
idx = 0;
}
ulong next();
ulong current() const { return idx; }
ulong sign() const { return sgn; } // O for sign +1, 1 for sign -1
const ulong *data() const { return p; }

[FXT: class perm_lex in perm/permlex.h] The only nontrivial part is the next ()-method that computes
the next permutation with each call:

ulong perm_lex::next()

const ulong nl = n - 1;
ulong i = nl;

do

{

__i;
if ((long)i<0) return O0; // last sequence is falling seq.

}
while (p[i]l > p[i+1]);
ulong j = ni;
while (pl[il > p[j]1) --3;
swap(plil, p[jl); sgn "= 1;
ulong r = ni;
ulong s = i + 1;
while (r > s)
swap(plr]l, pls]); sgn "= 1;
——r:

++s;
}

++idx;

CHAPTER 8. PERMUTATIONS 134

return idx;

The routine is based on code by Glenn Rhoads who in turn ascribes the algorithm to Dijkstra. [FXT:
perm_lex::next in perm/permlex.cc]

Using the above is no black magic:

perm_lex perm(n);

const ulong *x = perm.data();

do

{
// do something, e.g. just print the permutation:
for (ulong i=0; i<m; ++i) cout << x[i] << " ";
cout << endl;

}
while (perm.next());

cf. [FXT: file demo/permlex—demo.cc]

8.7.2 Minimal-change order

When generated in minimal-change order the permutations in a way that between each consecutive two
exactly two elements are swapped:

permutation swap inverse p.
0: 0123 (0, 0) 0123
1: 0132 (3, 2) 0132
2: 0312 (2, 1) 0231
3: 3012 (1, 0) 1230
4: 3021 (3, 2) 1320
5: 0321 (0, 1) 0321
6: 0231 (1, 2) 0312
7 0213 (2, 3) 0213
8: 2013 (1, 0 1203
9: 2031 (3, 2) 1302
#10: 2301 (2, 1) 2301
#11: 3201 (1, 0 2310
#12: 3210 (3, 2) 3210
#13: 2310 (0, 1) 3201
#14: 2130 (1, 2) 3102
#15: 2103 (2, 3) 2103
16: 1203 (0, 1) 2013
17: 1230 (3, 2) 3012
18: 1320 (2, 1) 3021
#19: 3120 (1, 0) 3120
#20: 3102 (2, 3) 2130
21: 1302 (0, 1 2031
22: 1032 (1, 2) 1032
23: 1023 (2, 3) 1023

Note that the swapped pairs are always neighbouring elements. Often one will only use the indices of
the swapped elements to update the visited configurations. A property of the algorithm used is that the
inverse permutations are available. The corresponding class perm_minchange is

class perm_minchange

protected:
ulong n; // number of elements to permute
ulong *p; // pln] contains a permutation of {0, 1, ..., n-1}

ulong *ip; // ip[n] contains the inverse permutation of p[]
ulong *d; // aux

ulong *ii; // aux

ulong swl, sw2; // index of elements swapped most recently
ulong idx; // incremented with each call to next()

public:

9There is more than one minimal change order, e.g. reversing the order yields another one.

CHAPTER 8. PERMUTATIONS 135

perm_minchange (ulong nn) ;
“perm_minchange() ;
void first();

ulong next() { return make_next(n-1); }
ulong current() const { return idx; }
ulong sign() const { return idx & 1; } // O for sign +1, 1 for sign -1
const ulong *data() const { return p; }
const ulong *invdata() const { return ip; }
void get_swap(ulong &sl, ulong &s2) const { sl=swl; s2=sw2; }
protected:
ulong make_next(ulong m);

[FXT: class permminchange in perm/permminchange.h]

The algorithm itself can be found in [FXT: perm minchange: :make next in perm/permminchange.cc|

ulong perm_minchange: :make_next(ulong m)

ulong i = iil[m];
ulong ret = 1;

if (i==m)
d[m] = -d[m];
if (0!'=m) ret = make_next(m-1);
else ret = 0;
i = -1UL;

if ((long)i>=0)
{

ulong j
ulong k
ulong z
pljl = z;
plk] = m;
ip[z]
ip[m]

ip[m];
j + dlml;
plkl;

.

5
5
swl

sw2

= j; // note that swl == sw2 +-1 (adjacent positions)
++idx;

Q.

}

++i;

ii[m] = i;
return ret;

}

The central block (if ((long)i>=0) {...}) is based on code by Frank Ruskey / Glenn Rhoads. The
data is initialized by

void perm_minchange::first()

{
for (ulong i=0; i<n; i++)
{
plil = ip[i] = i;
d[i] = -1UL;
ii[i] = 0;
}
swl = sw2 = 0;
idx = 0;
}

Usage of the class is straighforward:

perm_minchange perm(n);

const ulong *x = perm.data();
const ulong *ix = perm.invdata();
ulong swl, sw2;

do

CHAPTER 8. PERMUTATIONS 136

// do something, e.g. just print the permutation:
for (ulong i=0; i<m; ++i) cout << x[i] << " ";

// sometimes one only uses the indices swapped ...
perm.get_swap(swl, sw2);

cout << " swap: (" << swl << ", " << sw2 << ") My
// ... inverse permutation courtesy of the algorithm
for (ulong i=0; i<n; ++i) cout << ix[i] << " ";

}
while (perm.next());

Cf. also [FXT: file demo/permminchange-demo. cc]

An alternative implementation using the algorithm of Trotter (based on code by Helmut Herold) can be
found in [FXT: perm_trotter: :make next in perm/permtrotter.cc]

void perm_trotter::make_next()

{
++idx_;
ulong k = 0;
ulong m = O;
yy_ = p_[m] + d_[m];
p-[ml = yy_;
while ((yy_==n_-m) || (yy_==0))
if (yy_==0)
d_[m] = 1;
k++;
}
else d_[m] = -1UL;
if (m==n_-2)
{
swl_=mn_ - 1;
sWw2_ = n_ - 2;
swap(x_[swi_], x_[sw2_1);
yy- =1
idx_ = 0;
return;
else
m++;
yy_ = p_[m] + d_[m];
p_[m] = yy_;
}
}
swi_ = yy_ + k; // note that swl == sw2 + 1 (adjacent positions)
sw2_ = swl_ - 1;
swap(x_[swi_], x_[sw2_]);
}

The corresponding class perm_trotter, however, does not produce the inverse permutations.

8.7.3 Derangement order

The following enumeration of permutations is characterized by the fact that two successive permutations
have no element at the same position:

NOOO~OYUTWNRO
NONWHNOWHNFHWO
HUWOFNWNHOWNOH
OFWNIOFWONIOWHN)
WNFOWOFNWHONW

s

CHAPTER 8. PERMUTATIONS 137

13: 3210
14: 1032
15: 0321
16: 2013
17: 3201
18: 0132
19: 1320
20: 0213
21: 3021
22: 2130
23: 1302

There is no such sequence for n = 3.

The utility class, that implements the underlying algorithm is [FXT: class perm_derange
in perm/permderange.h]. The central piece of code is [FXT: perm_derange::make next in
perm/permderange. ccl:

void perm_derange: :make_next()

++idx_;
++idxm_;
if (idxm_>=n_) // every n steps: need next perm_trotter
{
idxm_ = O;
if (O==pt->next())
.
idx_ = 0;
return;
}
// copy in:

const ulong *xx = pt->data();
for (ulong k=0; k<n_-1; ++k) =x_[k] = xx[k];
x_[n_-11 = n_-1; // last element

ilse // rotate
if (idxm_==n_-1)
rotlli(x_, n_);
ilse // last two swapped
rotri(x_, n_);

if (idxm_==n_-2) rotri(x_, n_);

}
The above listing can be generated via

ulong n = 4;

perm_derange perm(n);

const ulong *x = perm.data();

do

{
cout << " #"; cout.width(3); cout << perm.current() << ": "
for (ulong i=0; i<n; ++i) cout << x[i] << " ";
cout << endl;

while (perm.next());

[FXT: file demo/permderange-demo. cc|

8.7.4 Star-transposition order

Knuth [fasc2B p.19] gives an algorithm that generates the permutations ordered in a way that each two
successive entries in the list differ by a swap of element zero with some other element (star transposition):

0: 0123 swap: (0, 3)
1: 1023 swap: (0, 1)

CHAPTER 8. PERMUTATIONS 138

2: 2013 swap: (0, 2)
3: 0213 swap: (0, 1)
4: 1203 swap: (0, 2)
5: 2103 swap: (0, 1)
6: 3102 swap: (0, 3)
7: 0132 swap: (0, 2)
8: 1032 swap: (0, 1)
9: 3012 swap: (0, 2)
10: 0312 swap: (0, 1)
11: 1302 swap: (0, 2)
12: 2301 swap: (0, 3)
#13: 3201 swap: (0, 1)
#14: 0231 swap: (0, 2)
#15: 2031 swap: (0, 1)
16: 3021 swap: (0, 2)
#17: 0321 swap: (0, 1)
18: 1320 swap: (0, 3)
#19: 2310 swap: (0, 2)
#20: 3210 swap: (0, 1)
21: 1230 swap: (0, 2)
#22: 2130 swap: (0, 1)
#23: 3120 swap: (0, 2)

The implementation of the algorithm, ascribed to Gideon Ehrlich, can be found in [FXT: class perm_star
in perm/permstar.h]

The above listing can be obtained with

ulong n = 4;

perm_star perm(n);

const ulong *x = perm.data();

ulong ct = 0;

do

{
cout << " #"; cout.width(3); cout << ct << ": ",
for (ulong i=0; i<n; ++i) cout << x[i] << " ";

cout << " swap: (" << 0 << ", " << perm.get_swap() << ") ";
cout << endl;
++ct;

while (perm.next());

[FXT: file demo/permstar-demo. cc]

8.7.5 Yet another order

. to enumerate all permutations of n elements was given in [32]:

WNIFROO00~NUIHLWNIFOOO~OYUHSWNFO
QN LN LN LN LN WNIFHHOOOOO0O
NWFFLWNIN W UWN OO OOOOLWINIWIINIF
FERNUWNWOOOOOONI W LININWHHUWN)
OOOOOOFH NN W N LINI W N LWINW

ININININI b b e e

The underlying idea is to find all possible pathes that visit all nodes of a totally connected graph: start
from each node and repeat the process on the remaining subgraph. The same array is used to mark nodes

CHAPTER 8. PERMUTATIONS 139

as not yet visited (—1) or to contain at which point in the path (0 for starting point ...n — 1 for end
point) it was visited. A recursive implementation looks like

int n;
int v[nl;

int main()

for (ulong k=0; k<n; ++k) v[k] = -1; // mark as not visited
visit (0, 0);
return O;
}
void visit(int k, int j)
{
int i;
vik] = j - 1;
if (j==n)
for (i=0; i<n; i++) printf ("%24", v[il);
printf ("\n");
else
for (i=0; i<n; i++)
if (-1 == v[i]) visit(i, j+1);
}
}
vik] = -1;
}

The utility class [FXT: class perm_visit in perm/permvisit.h] is an iterative version of the algorithm
that uses the funcemu mechanism (cf. section [10.1)).

The above list can be created via

ulong n = 4;

perm_visit perm(n);

const ulong *x = perm.data();
do

{

cout << " #"; cout.width(3); cout << perm.current() << ": :
for (ulong i=0; i<n; ++i) cout << x[i] << " "

cout << endl;

while (perm.next());

Chapter 9

Sorting and searching

TBD: chapter outline

TBD: counting sort, radix sort, merge sort

9.1 Sorting

There are a few straight forward algorithms for sorting that scale with ~ n? (where n is the size of the
array to be sorted).

Here we use selection sort whose idea is to find the minimum of the array, swap it with the first element
and repeat for all elements but the first:

template <typename Type>
void selection_sort(Type *f, ulong n)

{
for (ulong i=0; i<m; ++i)
Type v = f[il;
ulong m = i; // position of minimum
ulong j = n;
while (--j > i) // search (index of) minimum
if (£[jl<v)
{ .
m=j;
v = f[m];
}
swap (f[i], £[m]);
}
}

A verification routine is always handy:

template <typename Type>
int is_sorted(const Type *f, ulong n)

{
if (O0==n) return 1;
while (=-=n) // n-1 ... 2
if (f[n] < f[n-1]) break;
return !n;
}

While the quicksort-algorithm presented below scales ~ nlog(n) (in the average case) it does not just
obsolete the more simple schemes because (1) for arrays small enough the ‘simple’ algorithm is usually

140

CHAPTER 9. SORTING AND SEARCHING 141

the fastest method because of its minimal bookkeeping overhead and (2) therefore it is used inside the
quicksort for lengths below some threshold.

The main ingredient of quicksort is to partition the array: The corresponding routine reorders some ele-
ments where needed and returns some partition index k so that maz(fo,. .., fi—1) < min(fi,- .-, fa—1):

template <typename Type>

ulong partition(Type *f, ulong n)

// rearrange array, so that for some index p

// max(£[0] ... £f[pl) <= min(f[p+1] ... f[n-11)

{
swap(£[0], £[n/2]); // avoid worst case with already sorted input
const Type v = £[0];

ulong i = OUL - 1;

ulong j - n;

zhile (1)
do { ++i; } while (f[il<v);
do { --j; } while (£[jl>v);

if (i<j) swap(f[il, £[j1);
else return j;

}
which we want to be able to verify:

template <typename Type>
Type inline min(const Type *f, ulong n)
// returns minimum of array

{
Type v = £[0];
while (n—-) if (flnl<v) v = f[n];
return v;

}

template <typename Type>
inline Type max(const Type *f, ulong n)
// returns maximum of array

{
Type v = £[0];
while (n--) if (f[nl>v) v = f[n];
return v;

}

template <typename Type>
int is_partitioned(const Type *f, ulong n, ulong k)

{
++k;
Type lmax = max(f, k);
Type rmin = min(f+k, n-k);
return (lmax<=rmin);

}

Quicksort calls partition on the whole array, then on the parts left and right from the partition index
and repeat. When the size of the subproblems is smaller than a certain threshold selection sort is used.

template <typename Type>
void quick_sort(Type *f, ulong n)

start:
if (n<8) // parameter: threshold for nonrecursive algorithm
{

selection_sort(f, n);

return;

ulong p = partition(f, n);
ulong 1In = p + 1;
ulong rn = n - 1n;

if (ln>rn) // recursion for shorter subarray

{
quick_sort(f+ln, rn); // £[1ln] ... f[n-1] right

CHAPTER 9. SORTING AND SEARCHING 142

n = 1ln;
else

quick_sort(f, 1n); // £[0] ... f[ln-1] left

f += 1n;

}
goto start;
}

[FXT: file sort/sort.h]

TBD: worst case and how to avoid it

9.2 Searching

The reason why some data was sorted may be that a fast search has to be performed repeatedly. The
following bsearch is ~ log(n) and works by the obvious subdivision of the data:

template <typename Type>

ulong bsearch(const Type *f, ulong n, Type v)

// return index of first element in f[] that is == v
// return ~0 if there is no such element

// £[] must be sorted in ascending order

{
ulong nlo=0, nhi=n-1;
while (nlo != nhi)
{
ulong t = (nhi+nlo)/2;
if (f[t] < v) nlo =t + 1;
else nhi = t;
}
if (f[nhil==v) return nhi;
else return “OUL;
}

A simple modification of bsearch makes it search the first element greater than v: Replace the operator
== in the above code by >= and you have it [FXT: bsearch_ge in sort/search.h].

Approximate matches are found by

template <typename Type>

ulong bsearch_approx(const Type *f, ulong n, Type v, Type da)

// return index of first element x in f[] for which [(x-v)| <= a
// return “0 if there is no such element

// £[] must be sorted in ascending order

// da must be positive
// makes sense only with inexact types (float or double)

{
ulong i = bsearch_ge(f, n, v);
if ("OUL==i) return i;
else
Type d;
d=(f[i] > v ? f[i]l-v : v-f[il);
if (d <= da) return ij;
if (1>0)
{ .
i
d=(f[i] > v ? flil-v : v-f[il);
if (d <= da) return i;

}

return “OUL;
}

When the values to be searched will semselves appear in monotone order you can reduce the total time
used for searching with:

CHAPTER 9. SORTING AND SEARCHING 143

template <typename Type>

inline long search_down(const Type *f, Type v, ulong &i)
// search v in f[], starting at i (so i must be < length)
// £[i] must be greater or equal v

// £[] must be sorted in ascending order

// returns index k if f[k]==v or "0 if no such k is found
// i is updated so that it can be used for a following

// search for an element u where u < v

while ((f[il>v) && (i>0)) --i;

if (f[i]l==v) return i;
else return “OUL;

}

[FXT: file sort/search.h]

9.3 Index sorting

While the ‘plain’ sorting reorders an array f so that, after it has finished, fi < fi41 the following routines
sort an array of indices without modifying the actual data:

template <typename Type>
void idx_selection_sort(const Type *f, ulong n, ulong *x)

for (ulong i=0; i<m; ++i)
{
Type v = f[x[ill;
ulong m = i; // position-ptr of minimum
ulong j n;
while (--j > i) // search (index of) minimum

if (£[x[j11<v)
{

m
v

Js

flx[mll;
}

}

swap(x[i], x[m]);

Apart from the ‘read only’-feature the index-sort routines have the nice property to perfectly work on
non-contiguous data.

The verification code looks like:

template <typename Type>
int is_idx_sorted(const Type *f, ulong n, const ulong *x)

{
if (0==n) return 1;
while (-=-=n) // n-1 ... 1
if (flx[n]] < flx[n-11]1) break;
return In;
}

The index-sort routines reorder the indices in x such that x applied to £ as a permutation (in the sense
of section [8.6.3) will render f a sorted array.

While the transformation of partition is straight forward:

template <typename Type>

ulong idx_partition(const Type *f, ulong n, ulong *x)

// rearrange index array, so that for some index p

// max(£[x[0]] ... £lx[pl]) <= min(f([x[p+1]1] ... flx[n-111)

CHAPTER 9. SORTING AND SEARCHING 144

{
swap(x[0], x[n/21);
const Type v = £[x[0]1];
ulong i = OUL - 1;
ulong j = n;
}vhile (1)
do ++i;
while (flx[ill<v);
do --j;
while (£[x[j11>v);
if (i<j) swap(x[il, x[j1);
else return j;
}
}

The index-quicksort itself deserves a minute of contemplation comparing it to the plain version:

template <typename Type>
void idx_quick_sort(const Type *f, ulong n, ulong *x)

start:
if (n<8) // parameter: threshold for nonrecursive algorithm

idx_selection_sort(f, n, x);

return;
}
ulong p = idx_partition(f, n, x);
ulong 1ln = p + 1;

ulong rn = n - 1ln;

if (1n>rn) // recursion for shorter subarray

{
idx_quick_sort(f, rn, x+ln); // f[x[1n]] ... flx[n-1]1] right
n = 1ln;
}
else
%dg_ggick_sort(f, In, x); // f[x[0]] ... flx[1n-1]] 1left
X += lﬁ;
}
goto start;

}

[FXT: file sort/sortidx.h]

The index-analogues of bsearch etc. are again straight forward, they can be found in [FXT: file
sort/searchidx.h].

9.4 Pointer sorting

Pointer sorting is an idea similar to index sorting which is even less restricted than index sort: The data
may be unaligned in memory. And overlapping. Or no data at all but port addresses controlling some
highly dangerous machinery.

Thereby pointer sort is the perfect way to highly cryptic and powerful programs that segfault when you
least expect it. Admittedly, all the ‘dangerous’ features of pointer sort except the unaligned one are also
there in index sort. However, with index sort you will not so often use them by accident.

Just to make the idea clear, the array of indices is replaced by an array of pointers:

template <typename Type>
void ptr_selection_sort(const Type *f, ulong n, Type **x)

for (ulong i=0; i<n; ++i)

Type v = *x[i];

CHAPTER 9. SORTING AND SEARCHING 145

ulong m = i; // position-ptr of minimum
ulong j = n;
while (--j > i) // search (index of) minimum

swap(x[i], x[m]);

Find the pointer sorting code in [FXT: file sort/sortptr.h] and the pointer search routines in [FXT: file
sort/searchptr.h].

9.5 Sorting by a supplied comparison function

The routines in [FXT: file sort/sortfunc.h] are similar to the C-quicksort gsort that is part of the
standard library. A comparison function cmp has to be supplied by the called so that compound data
types can be sorted with respect to some key contained. Citing the manual page for gsort:

The comparison function must return an integer less than, equal to, or greater than
zero if the first argument is considered to be respectively less than, equal to, or
greater than the second. If two members compare as equal, their order in the
sorted array is undefined.

Note that the numerous calls to cmp do have a negative impact on the performance. And then with C++
you can provide a comparision ‘function’ for compound data by overloading the operators <, <, <= and >=
and use the plain version. Back in performance land. Isn’t C++ nice? TBD: add a compile-time inlined
version?

As a prototypical example here the version of selection sort:

template <typename Type>
void selection_sort(Type *f, ulong n, int (*cmp) (const Type &, const Type &))

for (ulong i=0; i<n; ++i)
Type v = £[il;
ulong m = i; // position of minimum

ulong j = n;
while (--j > i) // search (index of) minimum

if (cmp(£[jl,v) < 0)
{

m
v

Js

flml;
}

}

swap (£ [i], £[m]);
}

The rest of the supplied routines a rather straight forward translation of the (plain-) sort analogues, the
function one will most likely use being

template <typename Type>
void quick_sort(Type *f, ulong n, int (*cmp) (const Type &, const Type &))

CHAPTER 9. SORTING AND SEARCHING 146

Sorting complex numbers

You want to sort complex numbers? Fine for me, but don’t tell your local mathematician. To see the
mathematical problem we ask whether 4 is smaller or greater than zero. Assume ¢ > 0: follows i -4 > 0
(we multiplied with a positive value) which is —1 > 0 and that is false. So, is ¢ < 0?7 Then i-7 > 0
(multiplication with a negative value, as assumed). So —1 > 0, oops! The lesson is that there is no way
to impose an arrangement on the complex numbers that would justify the usage of the symbols < and >
in the mathematical sense.

Nevertheless we can invent a relation that allows us to sort: arranging (sorting) the complex numbers
according to their absolute value (modulus) leaves infinitely many numbers in one ‘bucket’, namely all
those that have the same distance to zero. However, one could use the modulus as the major ordering
parameter, the angle as the minor. Or the real part as the major and the imaginary part as the minor.

The latter is realized in

static inline int
cmp_complex(const Complex &f, const Complex &g)

int ret =0
double fr
double gr
if (fr==gr

f.real();
g.real();
)

double fi = f.imag();
double gi = g.imag();
if (fil=gi) ret = (fi>gi 7 +1 : -1);

}

else ret = (fr>gr 7 +1 : -1);
return ret;

}
which, when used as comparison with the above function-sort as in

void complex_sort(Complex *f, ulong n)
// major order wrt. real part
// minor order wrt. imag part

{

quick_sort(f, n, cmp_complex);

can indeed be the practical tool you had in mind.

9.6 Unique

This section presents a few utility functions that revolve around whether values in a (sorted) array are
repeated or unique.

Testing whether all values are unique:

template <typename Type>

int test_unique(const Type *f, ulong n)

// for a sorted array test whether all values are unique
// (i.e. whether no value is repeated)

// returns 0 if all values are unique
// else returns index of the second element in the first pair found

// this function is not called "is_unique()" because it
// returns O (=="false") for a positive answer

for (ulong k=1; k<n; ++k)

if (flk] == f[k-11) return k; // k !=0

CHAPTER 9. SORTING AND SEARCHING 147

return O;

3

The same thing, but for inexact types (floats): the maximal (absolute) difference within which two
contiguous elements will still be considered equal can be provided as additional parameter. One subtle
point is that the values can slowly ‘drift away’ unnoticed by this implementation: Consider a long array
where each difference computed has the same sign and is just smaller than da, say it is d = 0.6-da. The
difference of the first and last value then is 0.6 - (n — 1) - d which is greater than da for n > 3.

template <typename Type>

int test_unique_approx(const Type *f, ulong n, Type da)

// for a sorted array test whether all values are

// unique within some tolerance

// (i.e. whether no value is repeated)

//

// returns O if all values are unique

// else returns index of the second element in the first pair found

//
// makes mostly sense with inexact types (float or double)

{
if (da<=0) da = -da; // want positive tolerance
for (ulong k=1; k<n; ++k)
{
Type d = (f[k] - f[k-11);
if (d<=0) 4 = -4;
if (d<da) returnk; // k !=0
}
return O;
}

An alternative way to deal with inexact types is to apply

template <typename Type>
void quantise(Type *f, ulong n, double q)

//
// in f[] set each element x to g*floor(1/g*(x+q/2))
// e.g.: @=1 ==> round to nearest integer

// q=1/1000 ==> round to nearest multiple of 1/1000
// For inexact types (float or double)
{

Type gh = q * 0.5;

Type q1 = 1.0 / q;

while (n--)

f[n] = q * floor(q1 * (f[nl+gh));

[FXT: quantise in aux/quantise.h] before using test_unique_approx. One should use a quantization
parameter q that is greater than the value used for da.

Minimalistic demo:

Q
Q
Q
Q
Q
0
Flrst REPEATED

Unique’d array:
0: 0.2900000000

e at index 4 (and 3)

CHAPTER 9. SORTING AND SEARCHING

OWN—

quantise() turns out to be also useful in another context, cf. [FXT:

symbolify by order in aux/symbolify.h].

Counting the elements that appear just once:

template <typename Type>

int unique_count(const Type *f, ulong n)

// for a sorted array return the number of unique values
// the number of (not necessarily distinct) repeated

// values is n - unique_count(f, n);

{
if (1>=n) return n;
ulong ct = 1;
for (ulong k=1; k<n; ++k)
if (£[x] != f[k-1]) ++ct;
return ct;
}

Removing repeated elements:

template <typename Type>

ulong unique(Type *f, ulong n)

// for a sorted array squeeze all repeated values

// and return the number of unique values

// eg.: [1, 3,3, 4,5,8,8 -->1[1, 3, 4, 5, 8]

// the routine also works for unsorted arrays as long

// as identical elements only appear in contiguous blocks
// e.g. [4,4,3,7, 7] --> 1[4, 3, 7]

// the order is preserved

{
ulong u = unique_count(f, n);
if (uw==n) return n; // nothing to do
Type v = £[0];
for (ulong j=1, k=1; j<u; ++j)
while (f[k] == v) ++k; // search next different element
v = £[j] = £[k];
return u;
}

9.7 Misc

148

symbolify_by_size and

A sequence is called monotone if it is either purely ascending or purely descending. This includes the case
where subsequent elements are equal. Whether a constant sequence is considered ascending or descending

in this context is a matter of convention.

template <typename Type>
int is_monotone(const Type *f, ulong n)

// return

// +1 for ascending order
// -1 for descending order
é/ else 0

if (1>=n) return +1;

ulong k;
for (k=1; k<n; ++k) // skip constant start

if (£f[k] != f[k-1]) break;

CHAPTER 9. SORTING AND SEARCHING 149

}

if (k==n) return +1; // constant is considered ascending here
int s = (£[k] > f[k-1] ? +1 : -1);
if (s>0) // was: ascending

// scan for descending pair:
for (; k<n; ++k) if (f[k] < f[k-1]) return O;

else // was: descending

{

// scan for ascending pair:
for (; k<n; ++k) if (f[k] > f[k-1]) return O;

return s;

}

A strictly monotone sequence is a monotone sequence that has no identical pairs of elements. The test
turns out to be slightly easier:

template <typename Type>
int is_strictly_monotone(const Type *f, ulong n)

// return
// +1 for strictly ascending order

// -1 for strictly descending order
{/ else 0

if (1>=n) return +1;

ulong k = 1;

if (f[k] == f[k-1]) return O;

int s = (£f[k] > f[k-1] 7 +1 : -1);

if (s>0) // was: ascending

// scan for descending pair:
for (; k<n; ++k) if (f[k] <= f[k-1]) return O;

else // was: descending

{

// scan for ascending pair:
for (; k<n; ++k) if (f[k] >= f[k-1]) return O;

return s;

[FXT: file sort/monotone.h]

A sequence is called convez if it starts with an ascending part and ends with a descending part. A concave
sequence starts with a descending and ends with an ascending part. Whether a monotone sequence is
considered convex or concave again is a matter of convention (i.e. you have the choice to consider the first
or the last element as extremum). Lacking a term that contains both convex and concave the following
routine is called is_convex:

template <typename Type>
long is_convex(Type *f, ulong n)

//

// return

// +val for convex sequence (first rising then falling)
// -val for concave sequence (first falling then rising)
// else O

//

// val is the (second) index of the first pair at the point
// where the ordering changes; val>=n iff seq. is monotone.

//
// note: a constant sequence is considered any of rising/falling
1/
{
if (1>=n) return +1;
ulong k = 1;

for (k=1; k<n; ++k) // skip constant start

CHAPTER 9. SORTING AND SEARCHING

}

if (£[k] '= f[k-1]) break;

if (k==n) return +n; // constant is considered convex here

int s = (£f[k] > £f[k-1] 7 +1 : -1);
if (s>0) // was: ascending
// scan for strictly descending pair:

for (; k<n; ++k) if (f[k] < f[k-1]) Dbreak;
s = +k;

else // was: descending

// scan for strictly ascending pair:
for (; k<n; ++k) if (f[k] > f[k-1]) break;
s = -k;

}
if (k==n) return s; // sequence is monotone

// check that the ordering does not change again:
if (s>0) // was: ascending --> descending

// scan for strictly ascending pair:
for (; k<n; ++k) if (f[k] > f[k-1]) return

else // was: descending

// scan for strictly descending pair:
for (; k<n; ++k) if (f[k] < f[k-1]) return

return s;

The test for strictly convex (or concave) sequences is:

template <typename Type>
long is_strictly_convex(Type *f, ulong n)

//
//
/!
//
//
/7
//
//
/!
//
1/
{

where the ordering changes;

if (1>=n) return +1;
ulong k = 1;
if (f[k] == f[k-1]) return O;
int s = (f[k] > £[k-1] 7 +1 : -1);
if (s>0) // was: ascending
// scan for descending pair:

for (; k<n; ++k) if (f[k] <= f[k-1]) break;
s = +k;

else // was: descending

// scan for ascending pair:
for (; k<n; ++k) if (f[k] >= f[k-1]) break;
s = -k;

}

if (k==n) return s; // sequence is monotone
else if (f[k] == f[k-1]) return O;

// check that the ordering does not change again:
if (s>0) // was: ascending --> descending

return
+val for strictly convex sequence
(i.e. first strictly rising then strictly falling)
-val for strictly concave sequence
(i.e. first strictly falling then strictly rising)
else O
val is the (second) index of the first pair at the point

val>=n iff seq. is strictly monotone.

150

CHAPTER 9. SORTING AND SEARCHING

{

// scan for ascending pair:

for (; k<n; ++k) if (f[k] >= f[k-1]) return O;
else // was: descending

// scan for descending pair:
for (; k<n; ++k) if (f[k] <= f[k-1]) return O;

return s;

}

[FXT: file sort/convex.h]

The tests given are mostly useful as assertions used inside more complex algorithms.

151

Chapter 10

Selected combinatorical algorithms

This chapter presents selected combinatorical algorithms. The generation of combinations, subsets, par-
titions, and pairings of parentheses (as example for the use of ‘funcemu’) are treated here. Permutations
are treated in a seperate chapter because of the not so combinatorical viewpoint taken with most of the
material (especially the specific examples like the revbin-permutation) there.

TBD: debruijn sequences via primitive polys possibly using bitengine

10.1 Offine functions: funcemu

Sometimes it is possible to find recursive algorithm for solving some problem that is not easily solved
iteratively. However the recursive implementations might produce the results in midst of its calling graph.
When a utility class providing a the results one by one with some next call is required there is an apparent
problem: There is only one stack available for function calls. We do not have offfine functions.

As an example consider the following recursive code?

int n = 4;
int v[n];

int main()

paren(0, 0);
return O;
}
void paren(long i, long s)
long k, t;
if (i<m)
{

for (k=0; k<=i-s; ++k)
{

ali-1] = k;

t =s + ali-1];

qlt +i] = C;

paren(i + 1, t); // recursion

qlt + i1 = ’);
}
}
else
al[i-1] = n - s;
Visit(); // next set of parens available
}

ITrue for the majority of the programming languages.
2given by Glenn Rhoads

152

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 153

}

that generates following output:

CCCOIN
(cooN
COYM
(coNO
(QON
SOL0X0D
(MO
(M
(MMOO
QCCON
QOO
QO
QO
0000

A reasonable way to create offline functions® is to rewrite the function as a state engine and utilize a
class [FXT: class funcemu in aux/funcemu.h] that provides two stacks, one for local variables and one
for the state of the function:

template <typename Type>
%1ass funcemu

public:
ulong tp_; // sTate stack Pointer
ulong dp_; // Data stack Pointer
ulong *t_; // sTate stack
Type *d_; // Data stack

public:
funcemu(ulong maxdepth, ulong ndata)

{

t_ = new ulong[maxdepth];
d_ = new Typel[ndata]l;
init();

~“funcemu()

delete [] d_;
delete [] t_;

void init() { dp_=0; tp_=0; }

void stpush(ulong x) { t_[tp_++] = x; }
ulong stpeek() const { return t_[tp_-1]; }
void stpeek(ulong &x) { x = t_[tp_-11; }
void stpoke(ulong x) { t_[tp_-1] = x; }
void stpop() { --tp_; }

void stpop(ulong ct) { tp_-=ct; }

void stnext() { ++t_[tp_-1]; }
void stnext(ulong x) { t_[tp_-1] = x; }
bool more() const { return (O!=dp_); }

void push(Type x) { d_[dp_++] = x; }

void push(Type x, Type y) { push(x); push(y); }

void push(Type x, Type y, Type z) { push(x); push(y); push(z); }
void push(Type x, Type y, Type z, Type u)

{ push(x); push(y); push(z); push(uw); }

void peek(Type &x) { x = d_[dp_-11; }

void peek(Type &x, Type &y)

{y=d.[dp_-1]; x = d_[dp_-2]; }

void peek(Type &x, Type &y, Type &z)

{z=d.[dp_-1]; y = d_[dp_-2]; x = d_[dp_-3]; }

void peek(Type &x, Type &y, Type &z, Type &u)

{u=d_[dp_-1]; z = d_[dp_-2]; y = d_[dp_-3]; x = d_[dp_-4]; }

void poke(Type x) { d_[dp_-1]1 = x; }

3A similar mechanism is called coroutines in languages that offer it.

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 154

void poke(Type x, Type y)

{ d_[dp_-1] = y; d_[dp_-2] = x; }

void poke(Type x, Type y, Type z)

{ d_[dp_-1] = z; d_[dp_-2] = y; d_[dp_-3]
void poke(Type x, Type y, Type z, Type u)
{ d_[dp_-1] = u; d_[dp_-2] = z; d_[dp_-3]

void pop(ulong ct=1) { dp_-=ct; }

x; }

y; d_[dp_-4]1 = x; }
};

Rewriting the function in question (as part of a utility class, [FXT: file comb/paren.h] and [FXT: file
comb/paren.cc|) only requires the understanding of the language, not of the algorithm. The process is
straight forward but needs a bit of concentration, #defines are actually useful to slightly beautify the
code:

#define PAREN 0 // initial state
#define RETURN 20
// args=(i, s)(k, t)=locals

#define EMU_CALL(func, i, s, k, t) fe_->stpush(func); fe_->push(i, s, k, t);
paren: :next_recursion()

{
int i, s; // args
int k, t; // locals

redo:
fe_—->peek(i, s, k, t);

loop:
switch (fe_->stpeek())

case O:
if (i>=n)

x[i-1] = n - s;
fe_->stnext(RETURN); return 1;

fe_->stnext();

case 1:
if (k>i-s) // loop end ?

break; // shortcut: nothing to do at end

fe_->stnext();
case 2: // start of loop body

x[i-1] = k;
t =s + x[i-1];
strt+i] = > (’; // OPEN_CHAR;

fe_->poke(i, s, k, t); fe_->stnext();
EMU_CALL(PAREN, i+1, t, 0, 0);
goto redo;

case 3:

str[t+i] = ’)’; // CLOSE_CHAR;
++k;

if (k>i-s) // loop end ?
break; // shortcut: nothing to do at end
}
fe_->stpoke(2); goto loop; // shortcut: back to loop body
default: ;
}

fe_—>pop(4); fe_->stpop(); // emu_return to caller
if (fe_->more()) goto redo;

return 0; // return from top level emu_call

}

The constructor initialises the funcemu and pushes the needed variables and parameters on the data stack
and the initial state on the state stack:

paren: :paren(int nn)

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 155

n=(n> ?nn : 1);

x = new int[n];

str = new char[2*n+1];

for (int i=0; i<2*n; ++i) str[i] = ?)’;
str[2*n] = 0;

fe_ = new funcemu<int>(n+1, 4*(n+1));

// i, s, k, t

EMU_CALL(PAREN, 0, 0, 0, 0);

idx = 0;

q = next_recursion();

The EMU_CALL actually only initializes the data for the state engine, the following call to next_recursion
then lets the thing run.

The method next of the paren class lets the offline function advance until the next result is available:

int paren::next()

if (0==q) return O;
else

q = next_recursion();
return (q 7 ++idx : 0);

3

Performance wise the funcemu-rewritten functions are close to the original (state engines are fast and the
operations within funcemu are cheap).

The shown method can also applied when the recursive algorithm consists of more than one function by
merging the functions into one state engine.

The presented mechanism is also useful for unmaintainable code insanely cluttered with goto statements.

Further, investigating the contents of the data stack can be of help in the search of a iterative solution.

10.2 Combinations in lexicographic order

The combinations of three elements out of six in lexicographic order are

[01 21 ...111 # 0
[0o 1 3] 111 #1
[0 1 4] A1 # 2
0 1 5] 1...11 # 3
0 2 3] L1101 # 4
0 2 4] .1.1.1 # 5
0 2 5] 1..1.1 # 6
0 3 4] A1 # 07
0 3 5] 1.1..1 # 8
0 4 5] 11...1 # 9
1 2 3] L 111, # 10
1 2 4] .11, # 11
1 2 5] 1..11. # 12
1 3 4] 1.1, # 13
1 3 5] 1.1.1. # 14
1 4 5] 11..1. # 15
2 3 4] J111.. # 16
2 3 5] 1.11.. # 17
2 4 5] 11.1.. # 18
3 4 5] 111... # 19

A bit of contemplation (staring at the ”.1”-strings might help) leads to the code implementing a simple
utility class that supplies the methods first(), last(), next () and prev():

class comb_lex

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS

public:
ulong n_;
ulong k_;
ulong *x_;
public:
comb_lex(ulong n, ulong k)
{
n_=(@?n :1); // not zero
k. =(k ?k :1); // not zero
x_ = NEWOP(ulong, k_ + 1);
first();

};

“comb_lex() { delete [] x_; }

ulong first()

for (ulong k=0; k<k_; ++k) =x_[k] = k;
x_[k_] = k_; // sentinel
return 1;
}
ulong last()
for (ulong i=0; i<k_; ++i) x_[i] = n_ - k_ + i;

return 1;

ulong next() // return zero if previous comb was the last

if (x_[0] ==n_ - k_) { first(); return O; }
ulong j = k_ - 1;

// trivial if highest element != highest possible value:
if (x_[j] < (m_-1)) { ++x_[j]; return 1; }
// find highest falling edge:

while (1 == (x_[j] - x_[j-11D) > { --j; }

// move lowest element of highest block up:
ulong z = ++x_[j-1];

// ... and attach rest of block:

while (j < k_) { x_[j] = ++z; ++j; }

return 1;

}

ulong prev() // return zero if current comb is the first

if (x_[k_-1] == k_-1) { last(); return O; }

// find highest falling edge:
ulong j = k_ - 1;

while (1 == (x_[j] - =_[j-11) > { --j; }
--x_[j1l; // move down edge element

// ... and move rest of block to high end:
while (++j < k_) x_[j] =n_ - k_ + j;
return 1;

}

const ulong * data() { return x_; }

friend ostream & operator << (ostream &os, const comb_lex &x);

[FXT: class comb_lex in comb/comblex.h]

The listing at the beginning of this section can then be produced by a simple fragment like

ulong ct = 0, n =6, k = 3;
comb_lex comb(n, k);
%o

cout << endl;

cout << " [" << comb << "] ";
print_set_as_bitset("", comb.data(), k, n);
cout << " #" << setw(3) << ct;

156

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 157

++ct;

}
while (comb.next());

Cf. [FXT: file demo/comblex-demo. cc|.

10.3 Combinations in co-lexicographic order

The combinations of three elements out of six in co-lexicographic order are

01 2] ... 111 # 0
0 1 3] L1l # 1
0 2 3] A1 # 2
1 2 3] S A11. # 3
0 1 4] A1 # 4
0 2 4] 1.1.1 # 5
1 2 4] .11, # 6
0 3 4] Al..1 # 07
1 3 4] 1.1, # 8
2 3 4] A11.. # 9
0 1 5] 1...11 # 10
0 2 5] 1..1.1 # 11
1 2 5] 1..11. # 12
0 3 5] 1.1..1 # 13
1 3 5] 1.1.1. # 14
2 3 5] 1.11.. # 15
0 4 5] 11...1 # 16
1 4 5] 11..1. # 17
2 4 5] 11.1.. # 18
3 4 5] #

Again, the algorithm is pretty straight forward:

class comb_colex

{ .
public:
ulong n_;
ulong k_;
ulong *x_;
public:
comb_colex(ulong n, ulong k)
{
n_=(@?n : 1); // not zero
k. =(k ?k :1); // not zero
x_ = NEWOP(ulong, k_ + 1);
first();

“comb_colex() { delete [] x_; }

ulong first()

; ++i) x[i]
x_[k_] = 999; // sentinel
return 1;

1]
s

for (ulong i=0; i<k_;

}
ulong last()

for (ulong i=0; i<k_; ++i) =x_[i]
return 1;

n_ - k_ + i;

ulong next() // return zero if previous comb was the last

if (x_[0] == n_ - k_) { first(); return 0; }

ulong j = 0;

// until lowest rising edge ...
while (1 == (x_[j+1] - x_[3]))
{

x_[j] = j; // attach block at low end

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 158

++3;
3

++x_[j]; // move edge element up
return 1;

ulong prev() // return zero if current comb is the first

if (x_[k_-1] == k_-1) { last(); return 0; }
// find lowest falling edge:
ulong j = O;

while (j == x_[j]) ++j;
--x_[j1l; // move edge element down

// attach rest of low block:
while (0!'=j--) =x_[3j] = x_[j+1] - 1;

return 1;

}
const ulong * data() { return x_; }

friend ostream & operator << (ostream &os, const comb_colex &x);

};

[FXT: class comb_colex in comb/combcolex.h
For the connection between lex-order and colex-order see section [7.8

Usage is completely analogue to that of the class comb_lex, cf. [FXT: file demo/combcolex-demo.ccl.

10.4 Combinations in minimal-change order

The combinations of three elements out of six in minimal-change order are

...111 [01 2] swap: (0, 0) # O
G111 [0o 2 3] swap: (3, 1) # 1
L1117, [1 2 3] swap: (1, 0) # 2
..1.11 [o 1 3] swap: (2, 0) # 3
L1101 [0 3 4] swap: (4, 1) # 4
J11.1. [1 3 41 swap: (1, 0) # 5
111, [2 3 4] swap: (2, 1) # 6
.1.1.1 [0 2 41 swap: (3, 00 # 7
L1011, [1 2 4] swap: (1, 0) # 8
.1..11 [01 4] swap: (2, 0) # 9
11...1 [0 4 5] swap: (5, 1) # 10
11..1 [1 4 5] swap: (1, 0) # 11
11.1 [2 4 5] swap: (2, 1) # 12
111.. [3 4 5] swap: (3, 2) # 13
1.1..1 [0 3 5] swap: (4, 0) # 14
1.1.1. [1 3 51 swap: (1, 0) # 15
1.11. [2 3 5] swap: (2, 1) # 16
1..1.1 [0 2 5] swap: (3, 0) # 17
1..11. [1 2 5] swap: (1, 0) # 18
1...11 [0o 1 5] swap: (0, 2) # 19

The algorithm used in the utility class [FXT: class comb_minchange in comb/combminchange.h] is based
on inlined versions of the routines that were explained in the corresponding bitmagic section (7.12).

class comb_minchange

{

public:
ulong n_; // number of elements to choose from
ulong k_; // number of elements of subsets
ulong igc_bits_;
ulong bits_;
ulong igc_last_;
ulong igc_first_;

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS

ulong swl_, sw2_;

ulong *x_;
public:

comb_minchange (ulong n, ulong k)

{
n_=(@?n : 1); // not zero
k. =(k ?k :1); // not zero
x_ = NEWOP(ulong, k_);
igc_last_ = igc_last_comb(k_, n_);
igc_first_ = first_sequency(k_);
first(Q;

}

“comb_minchange ()

-~

delete [] x_;

const ulong * data() const { return x_; }

ulong first()

{

}

igc_bits_ = igc_first_;

bits_ = gray_code(igc_last_); // to get swl_,

sync_x();
return Dbits_;

ulong last()

}

igc_bits_ = igc_last_;

bits_ = gray_code(igc_first_); // to get swl_, sw2_ right

sync_xQ);
return bits_;

ulong next() // return zero if current comb is the

}

if (igc_bits_ == igc_last_) return O;
ulong gy, y, 1 = 2;
do

y = igc_bits_ + 1i;
gy = gray_code(y);
i<k=1;

>

}
while (bit_count(gy) !'= k_);
igc_bits_ = y;

sync_x();
return bits_;

ulong prev() // return zero if current comb is the

}

if (igc_bits_ == igc_first_) return O;
ulong gy, y, i = 2;

do

{

y = igc_bits_ - 1i;
gy = gray_code(y);
<

i <k=1;

}

while (bit_count(gy) != k_);
igc_bits_ = y;

sync_x();
return bits_;

void sync_x() // aux
// Sync bits into array and
// set swl_ and sw2_

ulong tbits = gray_code(igc_bits_);
ulong sw = bits_ ~ tbits;

sw2_ right

last

first

159

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS

bits_ = tbits;

ulong xi = 0, bi = 0;
while (bi < n_)

if (tbits & 1) x_[xi++] = bi;
++bi;
tbits >>= 1;

}

swl_ = O;

while (O==(sw&1)) { sw >>=1; ++swi_; }
sw2_ = swl_;

do { sw >>=1; ++sw2_; } while (O==(sw&l));
}

friend ostream & operator << (ostream &os, const comb_minchange &x);

};

The listing at the beginning of this section can be generated via code like:

ulong ct = 0, n =6, k = 3;
comb_minchange comb(n, k);
comb.first();

do
for (long k=n-1; k>=0; --k) cout << ((bits>>k)&1 7 1’
cout << " [" << comb << "] ";
cout << " swap: (" << comb.swl_ << ", " << comb.sw2_ << ") ";
cout << " #" << setw(3) << ct;
++ct;

cout << endl;

while (comb.next());

cf. [FXT: file demo/combminchange-demo. cc|.

10.5 Combinations in alternative minimal-change order

160

There is more than one minimal-change order. Consider the sequence of bitsets generated in section [7.12:
alternative orderings that have the minimal-change property are e.g. described by 1) the sequence with
each word reversed or, more general 2) every permutation of the bits 3) the sequence with its bits negated

4) cyclical rotations of (1) ... (3)

Here we use the negated and bit-reversed sequence for (";k> in order to generate the combinations

corresponding to (k):

n

n=6 k=3:

L1111 [o1 2] swap: (3, 0) # O
1..11 [0 1 4] swap: (4, 2) # 1
1...11 [0 1 5] swap: (5, 4) # 2
1011 [o 1 3] swap: (5, 3) # 3
11..14 [0 3 41 swap: (4, 1) # 4
1.1..1 [0 3 5] swap: (6, 4) # b
11...1 [0 4 5] swap: (4, 3) # 6
1.1 [0 2 4] swap: (6, 2) # 7
1..1.1 [0 2 5] swap: (5, 4) # 8
..11.1 [0 2 3] swap: (6, 3) # 9
111 [2 3 4] swap: (4, 0) # 10
1.11. [2 3 5] swap: (5, 4) # 11
11.1 [2 4 5] swap: (4, 3) # 12
111.. [3 4 5] swap: (3, 2) # 13
111 [1 3 4] swap: (5, 1) # 14
1.1.1. [1 3 5] swap: (5, 4) # 15
11..1. [1 4 5] swap: (4, 3) # 16
1.11. [1 2 4] swap: (5, 2) # 17
1..11. [1 2 51 swap: (5, 4) # 18

111, [1 2 3] swap: (5, 3) # 19

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 161

The interesting feature is that the last combination is identical to the first shifted left by one. This makes
it easy to generate the subsets of a set with n elements in monotonic minchange order by concatenating
the sequences for k =1,2,...,n.

The usage of the utility class [FXT: class comb_alt minchange in comb/combaltminchange.h] is iden-
tical to that of the "standard” minchage-order.
The above listing can be produced via

ulong n = 6, k =3, ct =0;

comb_alt_minchange comb(n, k);
comb.first();

do
ulong bits = revbin(“comb.bits_, n); // reversed and negated
cout << " ",
for (long k=n-1; k>=0; --k) cout << ((bits>>k)&1 7 ’1’ : ’.’);
cout << " [" << comb << "] ";
cout << " swap: (" << comb.swl_ << ", " << comb.sw2_ << ") ";
cout << " #" << setw(3) << ct;
++ct;

cout << endl;

}
while (comb.next());

10.6 Subsets in lexicographic order

The (nonempty) subsets of a set of five elements enumerated in lezicographic order are:

0 #=1:1 {0}

1 #= 2: ...11 {o, 1}

2 #= 3: ..111 {o, 1, 2}

3 #= 4: .1111 {0, 1, 2, 3}
4 #=5: 11111 {0, 1, 2, 3, 4}
5 #= 4: 1.111 {0, 1, 2, 4}
6 #= 3: .1.11 {0, 1, 3%}

7 #= 4: 11.11 {o, 1, 3, 4}
8 #= 3: 1..11 {0, 1, 4}

9 #= 2: ..1.1 {o, 2}

10 #= 3: .11.1 {0, 2, 3}

11 #= 4: 111.1 {0, 2, 3, 4}
12 #= 3: 1.1.1 {0, 2, 4}

13 #= 2: .1..1 {o, 3}

14 #= 3: 11..1 {0, 3, 4}

15 #= 2: 1...1 {0, 4}

16 #= 1: o100 {1}

17 #= 2: 11 {1, 2}

18 #= 3: 111, {1, 2, 3}

19 #= 4: 1111. {1, 2, 3, 4}
20 #= 3: 1.11. {1, 2, 4}
21 #= 2: 1.1 {1, 3}
22 #= 3: 11.1. {1, 3, 4}
23 #= 2: 1..1. {1, 4}
24 #= 1: 1.0 {2}
25 #= 2: J11.. {2, 3}
26 #= 3: 111.. {2, 3, 4}
27 #= 2: 1.1.. {2, 4}
28 #= 1: .1... {3}
29 #= 2: 11... {3, 4}
30 #= 1: 1.... {4}

Clearly there are 2" subsets (including the empty set) of an n-element set.

The corresponding utility class is not too complicated

class subset_lex

protected:
ulong *x; // subset data
ulong n; // number of elements in set

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS

ulong k; // index of last element in subset
// number of elements in subset == k+1
public:
subset_lex(ulong nn)
{
n=(n ?nn : 1); // not zero
x = NEWOP(ulong, n+1);
first();

“subset_lex() { delete [] x; }

ulong first()

k = 0;
x[0] = 0;
return k + 1;

ulong last()

k = 0;
x[0] =n - 1;
return k + 1;

}

ulong next()

// Generate next subset

// Return number of elements in subset
// Return zero if current == last

if (x[k] == n-1) // last element is max ?

if (0==k) { return O; } // note: user has to call first() again

--k; // remove last element
x[k]++; // increase last element

else // add next element from set:
++k;
x[k] = x[k-1] + 1;
return k + 1;
}

ulong prev()
// Generate previous subset

// Return number of elements in subset
// Return zero if current == first

if (k==0) // only one lement 7

if (x[0]==0) { return O; } // note: user has to call last() again

x[0]--; // decr first element
x[++k] = n - 1; // add element

else // remove last element:

if (x[k] == x[k-11+1) --k;
else

x[k]--; // decr last element
x[++k] = n - 1; // add element

}

return k + 1;

}

const ulong * data() { return x; }

};

[FXT: class subset_lex in comb/subsetlex.h

One can generate the list at the beginning of this sections by a code fragment like:

162

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 163

ulong n = 5;

subset_lex sl(n);

ulong idx = 0;

ulong num = sl.first();

do

{
cout << setw(2) << idx;
++idx;
cout << " #=" << setw(2) << num << ": ";
print_set_as_bitset(" ", sl.data(), num, n);
print_set(" ", sl.data(), num);

cout << endl;

while ((num = sl.next()));

cf. [FXT: file demo/subsetlex-demo.cc]

10.7 Subsets in minimal-change order

The subsets of a set with 5 elements in minimal-change order:

1: 1.... <chg @0 num=1 set={0}

2: 11... chg @ 1 num=2 set={0, 1}

3: .1... «chg @0 num=1 set={1}

4: .11.. chg @ 2 num=2 set={1, 2}

5: 111.. chg @ 0 num=3 set={0, 1, 2}

6: 1.1.. chg @1 num=2 set={0, 2}

7. .1, chg @ 0 num=1 set={2}

8: ..11. chg © 3 num=2 set={2, 3}

9: 1.11. chg @ 0 num=3 set={0, 2, 3}
10: 1111. chg @ 1 num=4 set={0, 1, 2, 3}
11: 111, chg @ 0 num=3 set={1, 2, 3}
12 .1.1. chg @ 2 num=2 set={1, 3}

13: 11.1. chg @ O num=3 set={0, 1, 3}
14: 1..1. chg @1 num=2 set={0, 3}

15: ...1. chg @ 0 num=1 set={3}

16: ...11 chg @ 4 num=2 set={3, 4}

17: 1..11 chg @ 0 num=3 set={0, 3, 4}
18: 11.11 chg @ 1 num=4 set={0, 1, 3, 4}
19: .1.11 chg @ 0 num=3 set={1, 3, 4}
20: .1111 chg @ 2 num=4 set={1, 2, 3, 4}
21: 11111 chg @ 0 num=5 set={0, 1, 2, 3, 4}
22: 1.111 chg @ 1 num=4 set={0, 2, 3, 4}
23: ..111 chg @ O num=3 set={2, 3, 4}
24: ..1.1 chg @ 3 num=2 set={2, 4}

256: 1.1.1 chg @ 0 num=3 set={0, 2, 4}
26: 111.1 chg @ 1 num=4 set={0, 1, 2, 4}
27: .11.1 chg @ 0 num=3 set={1, 2, 4}
28: .1..1 chg @ 2 num=2 set={1, 4}

29: 11..1 chg @ 0 num=3 set={0, 1, 4}
30: 1...1 chg @1 num=2 set={0, 4}

31:1 <chg @0 num=1 set={4}

32: ..., chg @ 4 num=0 set={}

Generation is easy, for a set with n elements go through the binary gray codes of the numbers from 1 to
27~! and sync the bits into the array to be used:

class subset_minchange

{

protected:
ulong *x; // current subset as delta-set
ulong n; // number of elements in set

ulong num; // number of elements in current subset

ulong chg; // element that was chnged with latest call to next()
ulong idx;

ulong maxidx;

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS

public:

subset_minchange (ulong nn)

{
n=(m ?nn : 1); // not zero
x = NEWOP(ulong, n);
maxidx = (1<<nn) - 1;
first();

}

“subset_minchange() { delete [1 x; }

ulong first() // start with empty set

{
idx = 0;
num = 0;
chg = n - 1;
for (ulong k=0; k<n; ++k) x[k] = 0;
return num;
}

ulong next() // return number of elements in subset

make_next () ;
return num;

}

const ulong * data() const { return x; }
ulong get_change() const { return chg; }
const ulong current() const { return idx; }

protected:
void make_next ()

++idx;

if (idx > maxidx)
chg = n - 1;
first(Q;

}
else // x[] essentially runs through the binary graycodes
{

chg = lowest_bit_idx(idx);
x[chg]l = 1 - x[chgl;
num += (x[chg]l 7 1 : -1);

}
};

[FXT: class subset minchange in comb/subsetminchange.h] The above list was created via

ulong n = 5;

subset_minchange sm(n);

const ulong *x = sm.data();

ulong num, idx = O;

do

{
num = sm.next(); // omit empty set
++idx;
cout << setw(2) << idx << ": ";

// print as bit set:
for (ulong k=0; k<n; ++k) cout << (x[k]7’1°:’.°);

cout << " chg @ " << sm.get_change();
cout << " num=" << num;
print_delta_set_as_set (" set=", x, n);

cout << endl;

while (num);

Cf. [FXT: file demo/subsetminchange-demo. cc]

164

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 165

10.8 Subsets ordered by number of elements

Sometimes it is useful to generate all subsets ordered with respect to the number of elements, that is
starting with the 1l-element subsets, continuing with 2-element subsets and so on until the full set is
reached. For that purpose one needs to generate the combinations of 1 form n, 2 from n and so on.
There are of course many orderings of that type, practical choices are limited by the various generators
for combinations one wants to use. Here we use the colex-order for the combinations:

1: 1.... #=1 set={0}

2: .1... #=1 set={1}

3: ..1.. #=1 set={2}

4. ...1. #=1 set={3}

5:1 #=1 set={4}

6: 11... #=2 set={0, 1}

7: 1.1.. #=2 set={0, 2}

8: .11.. #=2 set={1, 2}

9: 1..1. #=2 set={0, 3}

10: .1.1. #=2 set={1, 3}

11: .11, #=2 set={2, 3}

12: 1...1 #=2 set={0, 4}

13: .1..1 #=2 set={1, 4}

14: 1.1 #=2 set={2, 4}

15: W11 #=2 set={3, 4}

16: 111.. #=3 set={0, 1, 2}
17: 11.1. #=3 set={0, 1, 3}
18: 1.11. #=3 set={0, 2, 3}
19: .111. #=3 set={1, 2, 3}
20: 11..1 #=3 set={0, 1, 4}
21: 1.1.1 #=3 set={0, 2, 4}
22: .11.1 #=3 set={1, 2, 4}
23: 1..11 #=3 set={0, 3, 4}
24: .1.11 #=3 set={1, 3, 4}
25: ..111 #=3 set={2, 3, 4}
26: 1111. #=4 set={0, 1, 2, 3}
27: 111.1 #=4 set={0, 1, 2, 4}
28: 11.11 #=4 set={0, 1, 3, 4}
29: 1.111 #=4 set={0, 2, 3, 4}
30: 1111 #=4 set={1, 2, 3, 4}
31: 11111 #=5 set={0, 1, 2, 3, 4}
32: #=0 set={}

The class implementing the obvious algorithm is [FXT: class subset monotone in
comb/subsetmonotone.h]. The above list can be generated via

ulong n = 5;
subset_monotone so(n);
const ulong *x = so.data();
ulong num, idx 0;

do

{

num = so.next();
++idx;
cout << setw(2) << idx << ": ";

// print as bit set:
for (ulong k=0; k<n; ++k) cout << (x[k]7’1°:°.°);
cout << " #=" << num;

// print as set:
print_delta_set_as_set (" set=", x, n);
cout << endl;

while (num);

cf. [FXT: file demo/subsetmonotone-demo. cc|

Replacing the colex-comb engine by alt-minchange-comb engine(s) (as described in section [10.5) gives
the additional feature of minimal changes between the subsets.

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 166

10.9 Subsets ordered with shift register sequences

A curious sequence of all subsets of a given set can be generated using a binary de Bruijn (or shift
register) sequence, that is a cyclical sequence of zeros and ones that contains each n-bit word once. In
the following example (where n = 5) the empty places of the subsets are included to make the nice
property apparent:

{0, > B 5 } #=1 0
{,1, , , #1 1
{, ,2, , } #1 2
{, , ,3 } #1 3
{0, , , ,4} #=2 4
{0, ¢, , , } #=2 b
{,1,2, , }%} #=2 6
s 5 2,3, } #=2 7
{Oy > s 35 4} #=3 8
{.,1, , ,4 #=2 9
{0, , 2, , } #=2 10
{.,1, ,38, } #2 11
{, ,2, ,4r #=2 12
{, , ,3, } #=2 13
{0, 1, , , 4} #=3 14
{0, 1,2, , } #=3 15
{,1,2,3, } #=3 16
{0, , 2, 3, 4} #=4 17
{,1, , 3,4 #=3 18
{0, , 2, , 4%} #=3 19
{0, 1, ,3, } #=3 20
{,1,2, ,4r #3 21
{0, , 2,3, }%} #=3 22
{0, 1, , 3, 4} #=4 23
{0, 1, 2, , 4 #=4 24
{0, 1, 2,3, } #=4 25
{0, 1, 2, 3, 4%} #=5 26
{,1, 2, 3, 4} #=4 27
{, ,2, 3,4 #=3 28
{, , , 3,4 #=2 29
{, , , ,4r #=1 30
{, ., , , } #=0 31

The underlying shift register sequence (SRS) is
00000100011001010011101011011111

(rotated left in the example have the empty sets at the end). Each subset is made from its predecessor
by shifting it to the right and inserting the current element from the SRS.

The utility class [FXT: class subset_debruijnin comb/subsetdebruijn.h]uses [FXT: class debruijn
in comb/debruijn.h] (which in turn uses [FXT: class prime_string in comb/primestring.h]).
The list above was created via

ulong n = 5;

subset_debruijn sdb(n);

for (ulong j=0; j<=n; ++j) sdb.next(); // cosmetics: end with empty set
ulong ct = 0;

do
{
ulong num = print_delta_set_as_set("", sdb.data(), n, 1);;
cout << " =" << num;
cout << " " << ct;
cout << endl;
sdb.next();

}
while (++ct < (1UL<<n));

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS 167

10.10 Partitions

An integer x is the sum of the positive integers less or equal to itself in various ways (x = 4 in this
example):

4%« 1 + 0x 2 + 0x 3 + 0Ox 4 == 4
2% 1 + 1x 2 + 0x 3 + 0x 4 == 4
Ox 1 + 2x 2 + 0% 3 + 0x 4 == 4
1* 1 + 0x 2 + 1x3 + 0x4 == 4
Ox1 + O0x2 + 03 + 1x4 == 4

The left hand side expressions are called the partitions of the number . We want to attack a slightly
more general problem and find all partitions of a number = with respect to a set V = {vg, v1,...,vp-1},
that is all decompositions of the form x = ZZ;& Ck - Vk.

The utility class is

class partition

{
public:
ulong ct_; // # of partitions found so far
ulong n_; // # of values
ulong i_; // level in iterative search
long *pv_; // values into which to partition

ulong *pc_; // multipliers for values
ulong pci_; // temporary for pc_[i_]

long *r_; // rest
long ri_; // temporary for r_[i_]
long x_; // value to partition
public:
partition(const ulong *pv, ulong n)
: n_(n==071:n)

pv_ = NEWOP(long, n_+1);
for (ulong j=0; j<n_; ++j) pv_[jl = pv[jl;

pc_ = NEWOP(ulong, n_+1);
r_ = NEWOP(long, n_+1);
}
“partition()

delete [] pv_;
delete [] pc_;
delete [] r_;

void init(ulong x); // reset state

ulong next(); // generate next partition
ulong next_func(ulong i); // aux

ulong count(ulong x); // count number of partitions
ulong count_func(ulong i); // aux

void dump() const;
int check(ulong i=0) const;

};

[FXT: class partition in comb/partition.h]

The algorithm to count the partitions is to assign to the first bucket a multiple ¢g - pg < x of the first
set element pg. If ¢y - po = x we already found a partition, else if ¢y - pg < z solve the problem for
' i=x—co-poand V' := {v1,va,...,0n_1}.

ulong
partition: :count(ulong x)
// count number of partitions

{
init(x);
count_func(n_-1);
return ct_;

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS

ulong
partition::count_func(ulong i)

%f (or=i)
¥hi1e (r_[i]>0)
pc_[i-1] = 0;
r_[i-1] = r_[i];
count_func(i-1); // recursion
r_[i] -= pv_[il;
++pc_[i];

}

else // recursion end

if (O'=r_[i])
{

long d = r_[i] / pv_[il;
r_[i] -= d * pv_[i];
pc_[i]l = d;
}
if (0==r_[i]) // valid partition found
// if (whatever) ++ct_; // restricted count
++ct_;
return 1;

else return O;

}

The algorithm, when rewritten iteratively, can supply the partitions one by one:

ulong
partition: :next()
// generate next partition

{
if (i_>=n_) return n_;
r_[i_] = ri_;
pe_l[i_]l = pci_;
i_ = next_func(i_);
for (ulong j=0; j<i_; ++j) pc_[j]l = r_[j]
++i_;
ri_ =r_[i_] - pv_[i_];
pci_ = pc_[i_]l + 1;
return i_ - 1; // >=0

}

ulong

partition: :next_func(ulong i)

start:
if (0!=i)
{
¥hi1e (r_[i]>0)
pc_[i-1] = 0;
r_[i-1] = r_[il;
--i; goto start; // iteration

}

else // iteration end

if (O'=r_[i])
{

long d = r_[i] / pv_[il;
r_[i] -=d * pv_[il;
pc_[i]l = d;

}
}

0;

168

CHAPTER 10. SELECTED COMBINATORICAL ALGORITHMS

if (O==r_[i]) // valid partition found

++ct_;
return i;
++1i;
if (i>=n_) return n_; // search finished

r_[i] -= pv_[il;
++pc_[i];

goto start; // iteration

}

[FXT: file comb/partition.cc]

169

The routines can easily adapted to the generation of partitions satisfying certain restrictions, e.g. parti-

tions into unequal parts (i.e. ¢; < 1).

Cf. [FXT: file demo/partition-demo.cc]

Chapter 11

Arithmetical algorithms

11.1 Asymptotics of algorithms

An important feature of an algorithm is the number of operations that must be performed for the
completion of a task of a certain size N. The quantity N should be some reasonable quantity that grows
strictly with the size of the task. For high precision computations one will take the length of the numbers
counted in decimal digits or bits. For computations with square matrices one may take for N the number
of rows. An operation is typically a (machine word) multiplication plus an addition, one could also simply
count machine instructions.

An algorithm is said to have some asymptotics f(N) if it needs proportional f(N) operations for a task
of size N.

Examples:

e Addition of an N-digit number needs proportional N operations (here: machine word addition plus
some carry operation).

o Ordinary multiplication needs ~ N? operations.

e The Fast Fourier Transform (FFT) needs ~ N log(N) operations (a straight forward implementa-
tion of the Fourier Transform, i.e. computing N sums each of length N would be ~ N?).

e Matrix multiplication (by the obvious algorithm) is ~ N3 (N? sums each of N products).

The algorithm with the ‘best’ asymptotics wins for some, possibly huge, N. For smaller N another
algorithm will be superior. For the exact break-even point the constants omitted elsewhere are of course
important.

Example: Let the algorithm mult1 take 1.0- N2 operations, mult2 take 8.0- N log,(IN) operations. Then,
for N < 64 multl is faster and for N > 64 mult2 is faster. Completely different algorithms may be
optimal for the same task at different problem sizes.

11.2 Multiplication of large numbers

Ordinary multiplication is ~ N2. Computing the product of two million-digit numbers would require
~ 10'2 operations, taking about 1 day on a machine that does 10 million operations per second. But
there are better ways ...

170

CHAPTER 11. ARITHMETICAL ALGORITHMS 171

11.2.1 The Karatsuba algorithm
Split the numbers U and V' (assumed to have approximately the same length/precision) in two pieces

U = Uy+UB (11.1)
V = V,+ViB

Where B is a power of the radix! (or base) close to the half length of U and V.

Instead of the straight forward multiplication that needs 4 multiplications with half precision for one
multiplication with full precision

UV = UVo+ B(UVi + VoUy) + B*U, W, (11.2)
use the relation
UV = (14 B)UoVo+ B(Uy —Uo)(Vo — Vi) + (B + B)Ui Vi (11.3)

which needs 3 multiplications with half precision for one multiplication with full precision.

Apply the scheme recursively until the numbers to multiply are of machine size. The asymptotics of the
algorithm is ~ N082(3) ~ 1585

For squaring use
U? = (1+B)UZ - B(U, —Uy)? + (B+ B*)U? (11.4)
or

U? = (1-B)U2+B(U,+Uy)?+ (-B+ B*)U? (11.5)

One can extend the above idea by splitting U and V into more than two pieces each, the resulting
algorithm is called Toom Cook algorithm.

Computing the product of two million-digit numbers would require ~ (10°)-58% ~ 3200 - 10° operations,
taking about 5 minutes on the 10 Mips machine.

See [8], chapter 4.3.3 (‘How fast can we multiply?’).

11.2.2 Fast multiplication via FFT

Multiplication of two numbers is essentially a convolution of the sequences of their digits. The (linear)
convolution of the two sequences ay,bi,k =0... N — 1 is defined as the sequence ¢ where

N—-1
Ccp = aib; k=0...2N -2 (11.6)
1,j=0; i+j=k
A number written in radix r as
ap ap_1q as a; ap . aG-1 Q_9 G_py1 A—p (11.7)
denotes a quantity of
P
Zaiwl = ap-rP4ap P o a, TP (11.8)

i=—p

1For decimal numbers the radix is 10.

CHAPTER 11. ARITHMETICAL ALGORITHMS 172

That means, the digits can be considered as coefficients of a polynom in r. For example, with decimal

numbers one has r = 10 and 123.4 =1-10% +2-10* +3-10° + 4 - 10~. The product of two numbers is
almost the polynomial product

2N-2 N-1 N-1
Z et = Z a;r" - Z b;r? (11.9)
k=0 i=0 j=0

The ¢, are found by comparing coefficients. One easily checks that the ¢, must satisfy the convolution
equation [11.6.

As the ¢ can be greater than ‘nine’ (that is, r — 1), the result has to be ‘fixed’ using carry operations:
Go from right to left, replace ¢i by cx%r and add (¢x — ¢, %r)/r to its left neighbour.

An example: usually one would multiply the numbers 82 and 34 as follows:

82 x 34
3 %2 8

2 24 6

-2 7 8 38

We just said that the carries can be delayed to the end of the computation:

82 x 34
32 8

24 6

24 38 8

=2 27 38 8

... which is really polynomial multiplication (which in turn is a convolution of the coefficients):

8z +2) x (3z+4)
32x 8
24 g2 6x
= 242 +38x +8

Convolution can be done efficiently using the Fast Fourier Transform (FFT): Convolution is a simple

(elementwise array) multiplication in Fourier space. The FFT itself takes N -log N operations. Instead
of the direct convolution (~ N?) one proceeds like this:

e compute the FFTs of multiplicand and multiplicator
e multiply the transformed sequences elementwise

e compute inverse transform of the product

To understand why this actually works note that (1) the multiplication of two polynoms can be achieved
by the (more complicated) scheme:

e cvaluate both polynoms at sufficiently many? points
e pointwise multiply the found values

e find the polynom corresponding to those (product-)values

2At least one more point than the degree of the product polynom c: degc = dega + degb

CHAPTER 11. ARITHMETICAL ALGORITHMS 173

and (2) that the FFT is an algorithm for the parallel evaluation of a given polynom at many points,
namely the roots of unity. (3) the inverse FFT is an algorithm to find (the coefficients of) a polynom
whose values are given at the roots of unity.

You might be surprised if you always thought of the FFT as an algorithm for the ‘decomposition into
frequencies’. There is no problem with either of these notions.

Relaunching our example we use the fourth roots of unity +1 and +::

a=8zx+2) x b=Bzx+4) c=ab
+1 +10 +7 +70
+i +8t + 2 +3i+4 +38: — 16
-1 —6 +1 —6
—1 —8i+ 2 —3i+4 —381 — 16

c= (242 +38x +8)

This table has to be read like this: first the given polynoms a and b are evaluated at the points given in
the left column, thereby the columns below a and b are filled. Then the values are multiplied to fill the
column below ¢, giving the values of ¢ at the points. Finally, the actual polynom c is found from those
values, resulting in the lower right entry. You may find it instructive to verify that a 4-point FFT really
evaluates a, b by transforming the sequences 0, 0, 8, 2 and 0, 0, 3, 4 by hand. The backward transform
of 70, 38i — 16, —6, —38i — 16 should produce the final result given for c.

The operation count is dominated by that of the FFTs (the elementwise multiplication is of course ~ N),
so the whole fast convolution algorithm takes ~ N -log N operations. The following carry operation is
also ~ N and can therefore be neglected when counting operations.

Multiplying our million-digit numbers will now take only 10¢log,(10°) ~ 10° - 20 operations, taking
approximately 2 seconds on a 10 Mips machine.

Strictly speaking IV - log NV is not really the truth: it has to be N -log N - loglog N. This is because
the sums in the convolutions have to be represented as exact integers. The biggest term C' that can
possibly occur is approximately N R? for a number with N digits (see next section). Therefore, working
with some fixed radix R one has to do FFTs with log N bits precision, leading to an operation count of
N -log N -log N. The slightly better N -log N -loglog N is obtained by recursive use of FFT multiplies.
For realistic applications (where the sums in the convolution all fit into the machine type floating point
numbers) it is safe to think of FF'T multiplication being proportional N -log N.

See [28].

11.2.3 Radix/precision considerations with FFT multiplication

This section describes the dependencies between the radix of the number and the achievable precision
when using FFT multiplication. In what follows it is assumed that the ‘superdigits’, called LIMBs occupy
a 16 bit word in memory. Thereby the radix of the numbers can be in the range 2...65536(= 2'6).
Further restrictions are due to the fact that the components of the convolution must be representable as
integer numbers with the data type used for the FFTs (here: doubles): The cumulative sums ¢ have to
be represented precisely enough to distinguish every (integer) quantity from the next bigger (or smaller)
value. The highest possible value for a ¢ will appear in the middle of the product and when multiplicand
and multiplicator consist of ‘nines’ (that is R — 1) only. It must not jump to ¢, & 1 due to numerical
errors. For radix R and a precision of N LIMBs Let the maximal possible value be C, then

C = N(R-1)? (11.10)

The number of bits to represent C' exactly is the integer greater or equal to

logo(N (R—1)?) = logy N + 2 logy(R — 1) (11.11)

CHAPTER 11. ARITHMETICAL ALGORITHMS 174

Due to numerical errors there must be a few more bits for safety. If computations are made using doubles
one typically has a mantissa of 53 bits? then we need to have

M > logyN+2logy(R—1)+ S (11.12)
where M :=mantissabits and S :=safetybits. Using log,(R — 1) < log,(R):
Npnaz(R) gM—5-2 log,(R) (11.13)

Suppose we have M = 53 mantissabits and require S = 3 safetybits. With base 2 numbers one could
use radix R = 26 for precisions up to a length of Ny, = 223737216 = 256k LIMBs. Corresponding are
4096 kilo bits and = 1024 kilo hex digits. For greater lengths smaller radices have to be used according

to the following table (extra horizontal line at the 16 bit limit for LIMBs):

Radix R max # LIMBs | max # hex digits | max # bits
210 = 1024 1048,576 k 2621,440 k 10240 M
211 = 2048 262,144 k 720, 896 k 2816 M
212 — 4096 65,536 k 196, 608 k 768 M
218 = 8192 16384 k 53,248 k 208 M
21 = 16384 4096 k 14,336 k 56 M
215 = 32768 1024 k 3840 k 15 M
216 — 65536 256 k 1024 k aM
21" =128k 64k 272k 1062 k
218 = 256 k 16k 2k 281k
219 =512k 4k 19k T4k
220 =1 M 1k 5k 19k
22t =2 M 256 1300 5120
For decimal numbers:
Radix R | max # LIMBs | max # digits | max # bits

102 110G 220G 730G

103 1100 M 3300 M 11G

10% 11M 44 M 146 M

10° 110 % 550 k 1826 k

106 1k 6,597 22 k

107 11 77 255

Summarizing:

e For decimal digits and precisions up to 11 million LIMBs use radix 10,000. (corresponding to more
about 44 million decimal digits), for even greater precisions choose radix 1,000.

e For hexadecimal digits and precisions up to 256,000 LIMBs use radix 65,536 (corresponding to more
than 1 million hexadecimal digits), for even greater precisions choose radix 4,096.

11.3 Division, square root and cube root

11.3.1 Division

The ordinary division algorithm is useless for numbers of extreme precision. Instead one replaces the

division ¢ by the multiplication of a with the inverse of b. The inverse of b = L is computed by findin
b Y p b p Y g

a starting approximation zg ~ % and then iterating
(11.14)

Tpy1 = kara:k(l—b:ck)

30f which only the 52 least significant bits are physically present, the most significant bit is implied to be always set.

CHAPTER 11. ARITHMETICAL ALGORITHMS 175

until the desired precision is reached. The convergence is quadratical (2nd order), which means that the
number of correct digits is doubled with each step: if 2, = 3 (1 + €) then

e = 3O+ (41— br(140) (11.15)
= %(1—62) (11.16)

Moreover, each step needs only computations with twice the number of digits that were correct at its
beginning. Still better: the multiplication x(. ..) needs only to be done with half precision as it computes
the ‘correcting’ digits (which alter only the less significant half of the digits). Thus, at each step we have
1.5 multiplications of the ‘current’ precision. The total work? amounts to

N o
1.5.227
n=0

which is less than 3 full precision multiplications. Together with the final multiplication a division costs
as much as 4 multiplications. Another nice feature of the algorithm is that it is self-correcting. The
following numerical example shows the first two steps of the computation® of an inverse starting from a
two-digit initial approximation:

b = 3.1415926 (11.17)

o = 031 initial 2 digit approximation for 1/b (11.18)
b-xzg = 3.141-0.3100 = 0.9737 (11.19)
Yo := 1.000—b-z9 = 0.02629 (11.20)
xzo-yo = 0.3100-0.02629 = 0.0081(49) (11.21)
r1 = xo~+ xo-yo = 0.3100 4+ 0.0081 = 0.3181 (11.22)
b-z1 = 3.1415926 - 0.31810000 = 0.9993406 (11.23)
y1 = 1.0000000 — b - zo = 0.0006594 (11.24)
z1-y1 = 0.31810000 - 0.0006594 = 0.0002097(5500) (11.25)
z2 = x1+x1 -y = 0.31810000 + 0.0002097 = 0.31830975 (11.26)

11.3.2 Square root extraction

Computing square roots is quite similar to division: first compute ﬁ then a final multiply with d gives

V/d. Find a starting approximation zy ~ % then iterate

(1—da?)

5 (11.27)

Th41 = Tk + Tk
until the desired precision is reached. Convergence is again 2nd order. Similar considerations as above

(with squaring considered as expensive as multiplication®) give an operation count of 4 multiplications

for % or 5 for V/d.

Note that this algorithm is considerably better than the one where @11 = 1 (z)+ %) is used as iteration,
because no long divisions are involved.

4 The asymptotics of the multiplication is set to ~ N (instead of Nlog(N)) for the estimates made here, this gives a
realistic picture for large N.

Susing a second order iteration

6Indeed it costs about % of a multiplication.

CHAPTER 11. ARITHMETICAL ALGORITHMS

An improved version

176

Actually, the ‘simple’ version of the square root iteration can be used for practical purposes when rewritten

as a coupled iteration for both v/d and its inverse. Using for v/d the iteration

(z —d)
2£Ek

Tp+1
(27 — d)

5 where v =& 1/x

= Tk — Vk+1

and for the auxiliary v ~ 1/4/d the iteration
Vg1 = U + v (1 — xp vg)

where one starts with approximations

330%\/&

1/.%'()

Q

Vo

(11.28)

(11.29)

(11.30)

(11.31)
(11.32)

and the v-iteration step precedes that for x. When carefully implemented this method turns out to be

significantly more efficient than the preceding version. [hfloat: src/hf/itsqrt.cc|

TBD: details € analysis TBD: last step versions for sqrt and inv

11.3.3 Cube root extraction

Use d'/3 = d (d?)~'/3, i.e. compute the inverse third root of d? using the iteration

(1—d?z})

Th41 = T+ Tk 3

finally multiply with d.

11.4 Square root extraction for rationals

For rational z = % the well known iteration for the square root is

CC2+d 2+d 2
By(z) = 5 :p2 q
€ pq

A general formula for an k-th order (k > 2) iteration toward v/d is

k

o,(@) \/ﬁ(m+ﬁ>k+<x—\/&)k \/a(p+qx/;i)k+(p—qx/ﬁ)
klx) = k kT k k
(a:+\/3) - (x—ﬁ) (p+qﬁ) - (p—qx/ﬁ)

Obviously, we have:
P (Pn(z)) = Pmn(2)
All Vd vanish when expanded, e.g. the third and fifth order versions are

x:z:2+3d 7Ep2+3dq2
322 +d q 3p2+dg?
z* + 10dz? + 5d>

¥ 52t 1 10da2? + d2

O3(z) =

O5(z) =

(11.33)

(11.34)

(11.35)

(11.36)

(11.37)

(11.38)

CHAPTER 11. ARITHMETICAL ALGORITHMS

There is a nice expression for the error behavior of the k-th order iteration:

1+e 1+ eF
P . = .
K(Vd 1_6) Vd ——

An equivalent form of [11.35 comes from the theory of continued fractions:

®p(x) = Vd cot (karccot\%)

177

(11.39)

(11.40)

The iterations can also be obtained using Padé-approximants. Let Pj; jj(z) be the Padé-expansion of \/z

around z = 1 of order [i,j]. An iteration of order i + j + 1 is given by xP[m](l%). For ¢ = j one gets
the iterations of odd orders, for ¢ = j + 1 the even orders are obtained. Different combinations of 7 and

7 result in alternative iterations:

i, 4]~ %‘P[m](%)
244
L,0] = x;;g
2
[0,1] ~— 3.%271‘—d
24 3d
1,1 x;};—ﬂi
324 + 6dz? — 3d2
20— o
0.9 — 8

1524 — 10dx? + 3d?

Still other forms are obtained by using %P[m-](%):

.. d x2
li,j] +— o P[i,j](g)
22 +d
1
Lo - 2F
242
1 e
0.1 = 3dx — 23
1 — d(d+3z%)
’ z (3d + z2)
—z* 4+ 6dz? + 3d?
2
3
0,2 8d

3z4 — 10dz? + 15d?

(11.41)
(11.42)
(11.43)
(11.44)
(11.45)

(11.46)

(11.47)
(11.48)
(11.49)

(11.50)

(11.51)

(11.52)

CHAPTER 11. ARITHMETICAL ALGORITHMS 178

Using the expansion of 1/y/x and x Py; j(2*d) we get:

[i,5] — xPj(?d) (11.53)
[1,0] M (11.54)
[0,1] % (11.55)
1,1] — x% (11.56)
2,0 x(3d2x4—810dx+15) (1157)
0,2] — i (11.58)

—d?z* + 6dx2 + 3
Extraction of higher roots for rationals

The Padé idea can be adapted for higher roots: use the expansion of ¢/z around z = 1 then z P[i,j](;%)
produces an order i + j + 1 iteration for ¢/z. A second order iteration is given by

Bolr) — $+d—xa:(a—1)xa+d:(11<(a_1)x+ d) (11.59)

axafl axafl xafl

A third order iteration for v/d is

az*+0d p ap®+Bq%d
P. = B N e s S 11.60
3(7) T Sritad ¢ Bptagd (11.60)
where a =a—1,8=a+1 for a even, « = (a —1)/2,8 = (a+ 1) /2 for a odd.

With 1/{/z and z P ;(zd) division-free iterations for the inverse a-th root of d are obtained, see
section [11.5. If you suspect a general principle behind the Padé idea, yes there is one: read on until
section [11.8.4

11.5 A general procedure for the inverse n-th root

There is a nice general formula that allows to build iterations with arbitrary order of convergence for
d~'/a that involve no long division.

One uses the identity

a7 = 2 (1-(1-a%d)” e (11.61)
= z(1—y)"Y* where y:=(1—2%d) (11.62)
Taylor expansion gives
a7V = 2> (1/a)fyt (11.63)
k=0

where zF := 2(z + 1)(2 +2) ... (z + k — 1). Written out:

(I+a)y* (A+a)(1+2a)y°
2 a? 6a3

n—1
L) +20)0+30)yt T (1+ka)yn+m>

Ve = g <1 +24 (11.64)

24 a* nlan

CHAPTER 11. ARITHMETICAL ALGORITHMS 179

A n-th order iteration for d~'/¢ is obtained by truncating the above series after the (n — 1)-th term,
n—1 B
O, (a,x) = =z Z (1/a)* o* (11.65)
k=0
Trr1 = Pula,xk) (11.66)
e.g. second order:
1 —dz®
Dy(a,z) = a:Jr:v(aix) (11.67)
Convergence is n-th order:
B, (d V(1 +€)) =d V(14 " 4+ O("Hh)) (11.68)

Example 1: a =1 (computation of the inverse of d):

1

-, b (11.69)
a - Y1z Yy ’
®(l,z) = z(1+y+y*+v* +y* +...) (11.70)
®y(1,z) = z (1 + y) was described in the last section.
Convergence:
1 1 .
@k(l,g(l—ke)) = (1—¢€") (11.71)
Composition:
Dpwe = (D) (11.72)
There are simple closed forms for this iteration
1-— yk 1-— y’C
d, = = 11.
e (11.73)
P, = z(1+y) A+ A +yH) 1 +y%) ... (11.74)
Example 2: a =2 (computation of the inverse square root of d):
1 1
— = r— 11.75
Vd vi—y)
2k &
y 3y 5y 3594 (k)y
= 14+ =4+ —= - e N 11.
v 1+5+ 5+ 95+ Tox ot (11.76)

Dy(2,z) = x (1 + y/2) was described in the last section.

In hfloat, the second order iterations of this type are used. = When the achieved precision is below a
certain limit a third order correction is used to assure maximum precision at the last step.

Composition is not as trivial as for the inverse, e.g.:
Dy — Dy(Py) = ——a(y)* (11.77)

In general, one has

D — 0 (Pr)) = zPy)y™™ (11.78)

CHAPTER 11. ARITHMETICAL ALGORITHMS 180

where P is a polynom in y = 1 — dz?. Also, in general ®,(®,,) # ®,,(®,,) for n # m, e.g.:
15 15

_ 2y, 6 _)8
P3(P2) — P2(Ps) 021" (z"d)y 021" (1-y)y (11.79)
Product forms for compositions of the second-order iteration for 1/v/d:
1

Oy(x) = =z (1+2y> where y=1-—da? (11.80)

1 1,
Dy (Pa(z)) = = 1+§y 1+§y B+y) (11.81)

1
= Oy(x) <1+8y2 (3+y)> (11.82)
1

Ba(@a@ae))) = a(alo) (14 o0t B+ (12407 G+0)) (11.83)

11.6 Re-orthogonalization of matrices
A task from graphics applications: a rotation matrix A that deviates from being orthogonal” shall be
tranformed to the closest orthogonal matrix E. It is well known that

E = A(ATA) = (11.84)
With the division-free iteration for the inverse square root

2

(z) = =z (1+;(1dx2)+2(1dm2) +156(1d:c2)3+...) (11.85)

at hand the given task is pretty easy: As AT A is close to unity (the identity matrix) we can use the
(second order) iteration with d = ATA and x =1

1-ATA
(ATA) 7 =~ (1 + 2) (11.86)
and multiply by A to get a ‘closer-to-orthogonal’ matrix A, :
1-ATA
A, = A (1+2) ~FE (11.87)

The step can be repeated with A (or higher orders can be used) if necessary. Note the identical equation
would be obtained when trying to compute the inverse square root of 1:

1— 2
zy = :c<1+ ;) —1 (11.88)

It is instructive to write things down in the SVD®-representation
A = UvQvT (11.89)

where U and V are orthogonal and (2 is a diagonal matrix with non-negative entries. The SVD is the
unique decomposition of the action of the matrix as: rotation — elementwise stretching — rotation. Note
that

ATA = (vauT) (uavT') =vaorvT (11.90)

Ttypically due to cumulative errors from multiplications with many incremental rotations
8singular value decomposition

CHAPTER 11. ARITHMETICAL ALGORITHMS 181

and (powers nicely go to the 2, even with negative exponents)
ATA): = v yT (11.91)
Now we have
AATA): = (UavT) (va v =UuvV (11.92)

that is, the ‘stretching part’ was removed.

While we are at it: Define a matrix A* as
At = (AAT) AT = (vaivT) (vauT) =vatuT (11.93)
This looks suspiciously like the inverse of A. In fact, this is the pseudoinverse of A:
AtA = (v 'Uu") (UQvT)=1 but wait (11.94)

A* has the nice property to exist even if A~! does not. If A~! exists, it is identical to AT. If not,
AT A # 1 but AT will give the best possible (in a least-square sense) solution z+ = A™b of the equation
Ax =b (see [15], p.770ff). To find (AAT)~! use the iteration for the inverse:

d(z)=2 (1+ (1 —dx)+ (1 —da)’*+...) (11.95)

with d = A AT and the start value zo = 2 — n (A A7)/ ||A AT||* where n is the dimension of A.

11.7 n-th root by Goldschmidt’s algorithm

TBD: show derivation (as root of 1) TBD: give numerical example TBD: parallel feature
The so-called Goldschmidt algorithm to approximate the a-th root of d can be stated as follows:

set
xo:=d Ey:=d*! (11.96)
then iterate:
S, _aE"' —1 (11.97)
Tkl = Tp-Tg (11.98)
Epi1 = Ep-rt =1 (11.99)
until z close enough to
Too = d. (11.100)

The invariant quantity is ((g’; :)a) Clearly

T (ager)® L%

(11.101)

Ek+1 (Ek . T‘a) o Ey

With %i = df—: =d and E =1, therefore 2% = d. Convergence is quadratic.
A variant for inverse roots is as follows:

set

o = 1 Ey:=d (11.102)

CHAPTER 11. ARITHMETICAL ALGORITHMS 182

then iterate as in formulas 11.97..11.99

For a =1 we get:

1 (o]
5 = [[@-E (11.103)
k=0
(11.104)
where Ek+1 = Ek (2 — Ek)

For a = 2 we get a iteration for the inverse square root:

1 = 3— B

A 11.105

Nz k];[o 5 ()
(11.106)

where Ej11 := Ej (3£5)2. Ct. [39].

Higher order iterations are obtained by appending higher terms to the expression (1 + %) in the
definitions of 7,11 as suggested by equation [11.64/ (and the identification y =1 — E):

1- B,
<1+ - Eoy (11.107)

(1+a) (1 - Ex)?

[third order:]

2 a?
1 2 1— E)?
[fourth order:] (1+a)2+a)()
6a3
.+
1 14+2w)...(1 1— Ep)"
[(n + 1)-th order:] (1+a){d+2w) ' (n +na)(k))
nla
For those fond of products:
- 1 d+1
Vi =] <1 + qk> where g = %, Q1 =2¢7 — 1 (11.108)
k=0
and d > 0,d # 1 (convergence is quadratic) and
Ol 2 d+3
Vi =] (1 + h) where hg = 7d+ e 2)? (b +1)+1 (11.109)
X —

k=0

(convergence is cubic). These are given in [40], the first is ascribed to Friedrich Engel. The paper gives
hir1 = 2L 1o h? —3.

11.8 TIterations for the inversion of a function

9

In this section we will look at general forms of iterations for zeros” x = r of a function f(z). Iterations

are themselves functions ®(x) that, when ‘used’ as
Thi1 = O(xp) (11.110)

will make x converge towards z., = r if ¢ was chosen not too far away from r.

90or roots of the function: r so thatf(r) =0

CHAPTER 11. ARITHMETICAL ALGORITHMS 183

The functions ®(z) must be constructed so that they have an attracting fixed point where f(z) has a
zero: ®(r) = r (fixed point) and |®'(r)| < 1 (attracting).

The order of convergence (or simply order) of a given iteration can be defined as follows: let x = r-(1+e¢)
with |e| < 1 and ®(z) = 7-(1+ae™+O(e™ 1), then the iteration ® is called linear (or first order) if n = 1
(and |a| < 1) and super-linear if n > 1. Tterations of second order (n = 2) are often called quadratically-,
those of third order cubically convergent. A linear iteration improves the result by (roughly) adding a
constant amount of correct digits with every step, a super-linear iteration if order n will multiply the
number of correct digits by n.

For n > 2 the function ® has a super-attracting fixed point at r: ®'(r) = 0. Moreover, an iteration of
order n > 2 has

'(r)=0, ®"(r)=0, ..., " VE)=0 (11.111)
There seems to be no standard term for this in terms of fixed points, attracting of order n might be
appropriate.

To any iteration of order n for a function f one can add a term f(x)"*! - o(x) (where ¢ is an arbitrary
function that is analytic in a neighborhood of the root) without changing the order of convergence. It is
assumed to be zero in what follows.

Any two iterations of (the same) order n differ in a term (z —)" v(x) where v(z) is a function that is
finite at = (cf. [7], p. 174, ex.3).

Two general expressions, Householder’s formula and Schréder’s formula, can be found in the literature.
Both allow the construction of iterations for a given function f(x) that converge at arbitrary order. A
simple construction that contains both of them as special cases is given.

TBD: p-adic iterations

11.8.1 Householder’s formula

Let n > 2, then

| (stzs) "

)(,H) + [)" o(2) (11.112)

D, (zr) = zp+(n—1 -
g(zk)

f(zr)

gives a n—th order iteration for a (simple) root r of f. g(x) must be a function that is analytic near the
root and is set to 1 in what follows (cf. [7] p.169).

For n = 2 we get Newtons formula:

Dy(x) = x—i/ (11.113)
f
For n = 3 we get Halleys formula:
n =4 and n = 5 result in:
31(1F" — 21"
Oy(z) = z— 6ff’f(”—6f’3—;f’” (11.115)
4f (Gf/?) _ 6ff/f// + f2f///)
O5(zx) = z+ (11.116)

(f3f//// _ 24f/4 + 36ff/2f// _ 8f2f/f/// _ 6f2f//2)

CHAPTER 11. ARITHMETICAL ALGORITHMS 184

Second order T1.112 with f(z) := gﬂ% — d gives formula [11.67, but for higher orders one gets iterations
that require long divisions.

Kalantari and Gerlach [41] give the iteration

D, _o(x
Bu(z) =z~ f(2) 3 _f& (11.117)
where m > 2 and
" (m=1) m) (g
e L L e e
. . (m=1)
f@) f@ e L
D, (x) = det 0 flz) (11.118)
(@)
2!
0 0o o flx f'(x)

(and Dy = 1). The iteration turns out to be identical to the one of Householder. A recursive definition
for D,,(x) is given by

Dyn(a) = Em: (—1)" f(2)? /@) Dyni() (11.119)

i=1

Similar, the well-known derivation of Halley’s formula by applying Newton’s formula to f/1/f’ can be
generalized to produce m-order iterations as follows: Let Fj(x) = f(z) and for m > 2 let

Fn(2) m (11.120)
Gn(z) = x—m (11.121)

Then G,,(z) = Dy, () as shown in [41].

11.8.2 Schroder’s formula

Let n > 2, and ¢ be an arbitrary (analytic near the root) function that is set to zero in what follows,
then the expression

() = i (=)’ flaw) < L 8>t1 S Fla)" o) (11.122)
S 0 \Fan’) Flay T ‘
gives a n—th order iteration for a (simple) root r of f (cf. [6] p.13). This is, explicitly,
2 3
q)n — T _ 1!ff/ _ 2!f/3 . f// _ 3!:ff/5 . (3f//2 _ f/f///) (11.123)
4
_4!:ff/7 . (15f//3 _ 10f/f//f/// + f/2f////>
5
_ 5'ff/9 . (1O5f//4 _ 105f/f//2f/// T lof/Qf///Q 4 15f/2f//f//// _ f/3f/////) _

The second order iteration is the same as the corresponding iteration from [11.112/ while all higher order
iterations are different. The third order iteration obtained upon truncation after the third term on the
right hand side, written as

Dy = x-— % (1 - g;) (11.124)

CHAPTER 11. ARITHMETICAL ALGORITHMS 185

is sometimes referred to as ‘Householder’s method’.

Cite from [6], (p.16, translation has a typo in the first formula):

If we denote the general term by

" Xa
= al e (11.125)
the numbers y, can be easily computed by the recurrence
Xat1 = (2a—1)f"xa— f'Oxa (11.126)

Formula 11.122 with f(z) := 1/2® — d gives the ‘divisionfree’ iteration [11.65/ for arbitrary order.
For f(z) :=log(x) — d one gets the iteration [11.9.3.
For f(x) := 2% — d one gets

2 —d (332—(1)2 (m2—d)3 5($2—d)4
B(z) = z-— 11.127
() v < 2% | 8 16 | 187 ()
S I THNL S SR here = L (11.128)
B YoV (2z)2 Y (22)3 g h L '
2
— 22 (Y4+Y?4+2Y? 45V +14Y5 +42Y% +...) where Y::”EQ w (11120)
X

The connection between Householder’s and Schroder’s iterations is that the Taylor series of the k-th order
Householder iteration around f = 0 up to order k — 1 gives the k-th order Schréder iteration.

11.8.3 Dealing with multiple roots

The iterations given so far will not converge at the stated order if f has a multiple root at . As an example
consider the (for simple roots second order) iteration ®(x) = x — f/f’ for f(z) = (2 — d)?,p € N,p > 2:

Do(x) =2 — :v;2—md. Its convergence is only linear: ®(v/d(1 4+ €)) = Vd(1 + pp%le + 0(e?))

Householder ([7] p.161 ex.6) gives

bt
fl

as a second order iteration for functions f known a priori to have roots of multiplicity p.

Dy(x) =2 — (11.130)

A general approach is to use the general'’ expressions with F' := f/f’ instead of f. Both F and f have
the same set of roots, but the multiple roots of f are simple roots of F. To illustrate this let f have a
root of multiplicity p at : f(x) = (z — r)” h(z) with h(r) # 0. Then

fl@) = p@—r)P""hiz)+ (@—r)"h () (11.131)
= (z—r)yP! (p h(z)+ (z —r) h’(m)) (11.132)
and
h(x)

(11.133)

10This word intentionally used twice.

CHAPTER 11. ARITHMETICAL ALGORITHMS 186

The fraction on the right hand side does not vanish at the root r.
With Householder’s formula (11.112) we get (iterations for F' denoted by ®7°):

Dy(z) = x—% (11.134)
Y (x) = x}mf_f}ﬂ (11.135)
Dy(z) = x—ijff}f,, (11.136)
dP(x) = x+ 250" 2" (11.137)

2f/3 _ 3ff/f// + f2f///
3 2 ¢ _6 12
Py(z) = x+ T fGJ;f,f,,ijfzf,,, (11.138)
N 6ff/3+3f3f/l/_9f2f/f//
fo//// _ 6f/4 + 12ff/2f// _ 4f2f/f/// _ 3f2f//2
24ff/3 + 4f3f//l _ 24f2f/fl/
T+ fo//// _ 24f/4 + 36ff/2f// _ 8f2f/f/// _ 6f2f//2

The terms in the numerators and denominators of @Z‘) and @, are identical up to the integral constants.

dP(x) = =z (11.139)

By(z) = (11.140)

Schroder’s formula (11.122), when inserting f/f/, becomes:
ff/ f2f/ (ff/f/// _ 2ff//2 + f/2f//)

d%(z) = z+ G =77 27—) — (11.141)
CPRITRE =B P B = 36)
6 (ff" - f2)° 24 (ff" — f72)
FRr)

R

Checking convergence with the above example:
— the iteration is: ®%(z) = z + z(d — 22)/(d +),
— convergence is second order (independent of p): 2 (Vd(1 + €)) = Vd(1 — €2/2 + O(e®)). Ok.

Using the Schréder’s 3rd order formula for f/f’ with f as above we get a nice 4th order iteration for Vd:

o d—z? d— z?)?
‘b?{é(l‘) = $+.’Ed+x2+$dw (11142)
11.8.4 A general scheme
Starting point is the Taylor series of a function f around zg:
1
f) = 3 5O) (- w0 (11.143)
k=0
1 1
= f(xo) + f'(z0) (x — o) + if”(xo) (x —x0)* + éf’”(xo) (x—mo)®+... (11.144)
Now let f(zo) = yo and 7 be the zero (f(0) = 7). We then happily expand the inverse g = f~! around yq
=1
9(0) = Z ﬁg(k) (40) (0 — yo)k (11.145)
k=0
1 1
= 9(yo) +9'(%0) (0= y0) + 59" (0) (0 = y0)* + Z9" (0) (0 = y0)* +... (11.146)

2 6

CHAPTER 11. ARITHMETICAL ALGORITHMS 187

Using z¢ = g(yo) and r = g(0) we get

ro= a0— o) o) + 3" () F(0)® — 50" (o) Flzo)* + ... (11.147)

Remains to express the derivatives of the inverse ¢ in terms of (derivatives of) f. Not a difficult task,
note that

fog=id that is: f(g(x)) == (11.148)

and derive (chain rule) to get g'(f(2)) f'(z) = 1,50 ¢'(y) = & (z) Derive f(g(x)) — x multiple times and
set the expressions to zero (arguments y of g and z of f are omitted for readability):

1 = fd (11.149)
0 = g f"+f7" (11.150)
0 = gf"+3f"g" + 9" (11.151)
0 = g f" +4f'g"f" +3f7g" +6f7f"g" + 9" (11.152)

This system of linear equations in the derivatives of g is trivially solved because it is already triangular.
We obtain:

1

J = 7 (11.153)
g = j:,/; (11.154)
g’ = (3 g fw) (11.155)
- i? (10f/ 77" = 1547 — 2 p) (11.156)
g = flg (10577 = 72 =105 17 f 4 1507 1 10572 1) (11.157)
Thereby equation [11.147 can be written as (omitting arguments x of f everywhere)
= emni; (Jffg) s (f,5 (372 - f’f”’)) Pt (11.158)
I S R B - (11.159)

mfr 20 31 f15
which is Schréder’s iteration (equation [11.123)).

Taking the [¢,i]-th or [i + 1,4]-th Padé approximant (in f) gives the Householder iteration for even or
odd orders, respectively.

More iterations can be found using other [4, j] palrs Already for the second order (where the well known
general formula, corresponding to [1,0] is 2 — 7) there is one alternative, namely [0, 1] which is

zf of _ o [(f)1
Oy(z) = z— =T — =z =z (1+ 11.160
2() f"’xf/ (ﬂj‘f)l f+xf/ l'f/ ()
For the third order there is also one ‘non-standard’ iteration: [0, 2]
223 £13
Dy(z) = vf (11.161)

2f2f’+2f$f'2+f2xf”+2$2f'3

For order n there are n possible Padé approximants, two of which are the Householder and Schroéder
iteration (for n = 2 they coincide). Thereby n — 2 additional iteration schemes are found by the method

CHAPTER 11. ARITHMETICAL ALGORITHMS 188

described. The iterations of order n are fractions with numerator and denominator consisting only of
terms that are products of integral constants and z, f, f/, f”, ..., f(*~Y. There are obviously other forms
of iterations, e.g. the third order iteration

1 / / "y — ' "
Dy(z) = ;Uf,/<f j:\/f22ff>xj:”<lj: 12ff{;> (11.162)

that stems from directly solving the truncated Taylor expansion of f(r) =0 =: ® around =

J0) = J@) @) -0+ 5 @) (-) (11163

(For f(z) = ax?+bx +c it gives the two solutions of the quadratic equation f(z) = 0; for other functions
one gets an iterated square root expression for the roots.)

Alternative rational forms can also be obtained in a way that generalizes the the method used for multiple
roots: if we emphasize the so far notationally omitted dedendency from the function f as ®{f}. The
iteration ® {f} has fixed points where f has a root r, so x —® { f} (x) again has a root at r. Hence we can
build more iterations that will converge to those roots as ® {x — ® {f}} (x). For dealing with multiple

roots we used ® {z — ® {f},}, = ®{f/f'}. An iteration {x - {f}j}k can only be expected to have

a kth order convergence.

Similarly, one can derive alternative iterations of given order by using functions that have roots where f
has them™. For example

1

g(z) = 1- T=af(0) where ae€C,a#0 (11.164)
leads to the second order iteration
o{g}, = z— W (11.165)

Using g := xf(x) leads to the alternative second order iteration.

Moreover, one could use a function g and its inverse g := g~* and the corresponding iteration for f(g(x))

and finally apply g to get the root: (Let 7’ be the zero of f(g(x)): f(g(r")) =0 1if g(r') = r. 7’ is what
we get from @ {f o g}.) A simple example is g(z) = g(x) = 1/z, with f = 2% — d and Schréder’s formula
one gets the divisionless iterations for the (inverse) a-th root of d. g subject to reasonable conditions: it
must be invertible near the root r of f.

11.8.5 Improvements by the delta squared process

Given a sequence of partial sums x; the so called delta squared process computes a new sequence xj, of
extrapolated sums:

2
(Tha2 — Thy1)
Thio — 2Tp41 + g

Ty = Tgyo — (11.166)

The method is due to Aitken. The name delta squared is due to the fact that the formula can be written
symbolically as

(11.167)

where A is the difference operator.

1Tt does not do any harm if g has additional roots.

CHAPTER 11. ARITHMETICAL ALGORITHMS 189

Note that the mathematically equivalent form

2
T X — X
gf = R Tl (11.168)
Thyo — 2Tpq1 + Tp

sometimes given should be avoided with numerical computations due to possible cancellation.

Ifzp = Zf:o a; and the ratio of consecutive summands a; is approximately constant (that is, a is close to
a geometric series) then z* converges significantly faster to 2, than . Let us partly rewrite the formula
using rp — Tp—1 = ax:

* (ak+2)2
TE = Zpp— 2kt (11.169)

Ak+2 — k41

Then for a geometric series with ag41/ar = ¢

2
. (ar+2)’ (a0 4"*?)
_ _ - — 11.170
Ty Lh+2 Grio — Qb1 Lh+2 ao (¢F+2 — ghtl) ()
1— gt k+2 g2 ao k+3 k+3
I +aoq CgEHL _ gkt? :17(](1_‘1 +q"7) (11.171)
ag
= 11.172
— (11.172)
which is the exact sum.

Why do we meet the delta squared here? Consider the sequence

Zo, T = @(Io), To = (p(l’l) = (p((p(l‘o)), ce (11173)

of better and better approximations to some root r of a function f. Think of the zj; as partial sums of a
series whose sum is the root r. Apply the idea to define an improved iteration ®* from a given ®:

2
(2(2(z)) — @(2))
(®(x)) —20(x) +

(@) = @) -3 (11.174)

The good news is that ®x will give quadratic convergence even if ® only gives linear convergence. As
an example let us take f(z) = (22 — d)?, forget that its root v/d is a double root, happily define ®(z) =
x— f(x)/f (z) =2 — (22 — d)/(4z). Convergence is only linear:

d(Vd-(14e) = Vd- <1 +E4 < + O(e?’)) (11.175)

2 4
Then try
2
() — m (11.176)
and find that it offers quadratic convergence
e? el
d(Vd-(1+e) = Vd- (1 T +16+O(e4)> (11.177)

In general, if ® has convergence of order n then ®* will be of order 2n — 1. (See [7]).

11.9 Trancendental functions & the AGM

11.9.1 The AGM

The AGM (arithmetic geometric mean) plays a central role in the high precision computation of logarithms
and 7.

CHAPTER 11. ARITHMETICAL ALGORITHMS 190

The AGM (a,b) is defined as the limit of the iteration AGM iteration, cf/I1.178:

ay + by

ag+1 = T (11178)
bk+1 = N\ ar bk (11179)

starting with ag = a and by = b. Both of the values converge quadratically to a common limit. The
related quantity ¢; (used in many AGM based computations) is defined as

g = a;—b; (11.180)
= (ah-1—ap)” (11.181)
One further defines (cf. [5] p.221)
B(k) < -
R(k) = —5=|1-) 27! 11.182

where ¢2 := a2 — b2 corresponding to AGM (1, k).

n

An alternative way for the computation for the AGM iteration is

—b

Cop1 = C”“T’“ (11.183)
b

apsr = % (11.184)

brer = \/Gh —Ch (11.185)

Schénhage gives the most economic variant of the AGM, which, apart from the square root, only needs
one squaring per step:

2

Ay = a2 (11.186)
By = b} (11.187)
to = 1— (49— Bo) (11.188)
Ay +B
Sy = % (11.189)
b = /B square root computation (11.190)
b
Qg1 = a’“;r k (11.191)
A1 = ajy squaring (11.192)
2
(VA +VBe\" A+ Br | VAL B
- - + (11.193)
2 4 2
Bry1 = 2(Aps1— Sk) =biy (11.194)
Ghy1 = Akp1— Bep (11.195)
ter = te =2, (11.196)

Starting with ag = Ag = 1, Bo = 1/2 one has 7 ~ (2a2) /t,.

CHAPTER 11. ARITHMETICAL ALGORITHMS 191

Combining two steps of the AGM iteration leads to the 4th order AGM iteration:

a = ao (11.197)

Bo = Vb (11.198)

apyr = O"“;Lﬁ’“ (11.199)
2 2\ 1/4

B = (W) (11.200)

N = ar—Bi =cp (11.201)

(Note that ay = \/azi and B = v/bag.) and

[e%s} 2 -1
R'(k) = [1 =) a4 <ai - (W) >] (11.202)
n=0

corresponding to AGMA4(1,Vk) (cf. [5] p.17).

An alternative formulation of the 4th order AGM iteration is:

ok —f3
Tyt = o (11.203)
g1 = a’“;rﬁ’“ (11.204)
1/4
Brar = (a1 = Vi) (11.205)
2
Chppt 260 = ap1—(ak =) (11.206)

11.9.2 log

The (natural) logarithm can be computed using the following relation (cf. [5] p.221)
< n

- 102(n—1)

log(z) ~ R/(10™)— R'(10™"z) (11.208)

[log(z) — R'(10™") + R'(10™" z)| (11.207)

that holds for n > 3 and z €], 1[. Note that the first term on the rhs. is constant and might be stored
for subsequent log-computations. See also section [11.10L

[hfloat: src/tz/log.cc]

If one has some efficient algorithm for exp() one can compute log() from exp() using

y = l—de’® (11.209)
log(d) = z+log(l—y) (11.210)
= z+log(l—(1—de ™)) =xz+log(e *d) =z + (—z + log(d)) (11.211)
Then
2 .3
log(d) = x+1og(1—y)=x—<y+y2+%+...> (11.212)

Truncation of the series after the n-th power of y gives an iteration of order n + 1:

y2 y3 yn—l
— D, (xp) = — LA S 11.213
Th+1 (l‘k) X (y+ B + 3 + + n— 1) ()

CHAPTER 11. ARITHMETICAL ALGORITHMS 192

Padé series Pj; j1(2) of log (1 — 2) at z = 0 produce (order i + j + 2) iterations. For i = j we get

li,j] — @+ Pijz=1-de™) (11.214)

[0,0] — T —z (11.215)
6—z

1,1 -z 11.216

L1 = -z ()
30 — 21z + 22

2,2 -2 11.217

T Yooy ()
3780 — 65102 + 336022 — 50523 + 624

[4,4] — 2+ 3500z Zroe (11.218)

~ 773780 — 84002 + 630022 — 180023 4 1502*

Compared to the power series based iteration one needs one additional long division but saves half of the
exponentiations. This can be a substancial saving for high order iterations.

11.9.3 exp

The exponential function can be computed using the iteration that is obtained as follows:

exp(d) = x exp(d—log(x)) (11.219)
= =z exp(y) where y:=d—log(x) (11.220)

vy
= x<1+y+2+3'+...> (11.221)

The corresponding n-th oder iteration is

y2 y3 yn—l
Tpt1 = Pulap) = x4 (1+y+2+3!+...(n1)!> (11.222)

As the computation of logarithms is expensive one should use a higher (e.g. 8th) order iteration.
[hfloat: src/tz/itexp.cc]
Padé series Py; j1(2) of exp (2) at z = 0 produce (order i + j + 1) iterations. For i = j we get

[i,j] — xP;;(z=d—logx) (11.223)
1,1 — oz Z+§ (11.224)
P
12462 + 22
1 4 18022 + 2023 4
4 . 680 + 840z + 1802° + 202° + 2 (11.226)

1680 — 840z + 18022 — 2023 + z*

The [i, j]-th Padé approximant of exp(z) is

P(F) Lk I () (—)k
Pig(z) = {Z (fiﬂ) k!}/{k0 ((g) (k!) } (11.227)

k=0 \ k

The numerator for ¢ = j (multiplied by (24)!/i! in order to avoid rational coefficients) is

_ @i () = (11.228)

Z
il P (2];) k!

CHAPTER 11. ARITHMETICAL ALGORITHMS

11.9.4 sin, cos, tan

193

For arcsin, arccos and arctan use the complex analogue of the AGM. For sin, cos and tan use the exp

iteration above think complex.

11.9.5 Elliptic K

The function K can be defined as

/ ! dt
V1 Vi—zsmie Jo V(L —12) (1 - k2t2)
One has
T 11 9
K(k) = 22F<221k>
o & 21\,
- QZO(20 4)k
™
K0) = =
o = 3

and the computational interesting form

s m

K(k) =

One defines k' =1 — k? and K’ as

™

K'(k) = K#)=K(1-k)=

[hfloat: src/tz/elliptick.cc|

2AGM(1,k) ~ 2AGM(1,1— k?)

2AGM (1, k)

Product forms for K and K’ that are also candidates for fast computations are

, _ T 2 _7rOC ,
Kko) = 51l =511+ m
n=0 n=0
2\/kn
where knﬂ::l—i—k’ 0<ky<1
T 2 T '
Koy = 5y =g 1+
n=0 n n=0
1fk;71—\/1—k%

where kpq1:=

With an efficient algorithm for K the logarithm can be computed using

L4k, 14/1—k2

0<ky<1

4
’K’(k)—log(k)‘ < 4k* (8 +|logk|) where 0< k<1

11.9.6 Elliptic £

The function E can be defined as

/2 L1~ k22
Ek) = / 1—k251n2®d®:/ VIZFE
0 0

V1 —t2

(11.229)

(11.230)

(11.231)

(11.232)

(11.233)

(11.234)

(11.235)

(11.236)

(11.237)

(11.238)

CHAPTER 11. ARITHMETICAL ALGORITHMS 194

One has
™ 11
E = —oF (-, =Lk 11.2
(k) 22 1(25277k> (39)
T > (2:—1)N k2
= = 11.24
2< Z(2t 4!) 2i—1> (0)
E(0) = g E(1) = (11.241)
The key to fast computations is
E(k) = R(k)K(k) = T 11.242
(k) (k) K (k) 2AGM (1,1 —k?)- (1 =307 27 1c2) ()
Similar as for K’ one defines
E'(k) = E()=EQ1-k? (11.243)
Legendre’s relation between K and F is (arguments k omitted for readability):
EK +E'K-KK' = g (11.244)
For k = % =: s we have k = k/, thereby K = K’ and E = E’, so
K(s) <2E(5) - K(S)> _ 1 (11.245)
s s s 27

As formulas [11.233] and [11.242] provide a fast AGM based computation of % and % the above formula
can be used to compute 7 (cf. [5]).

11.10 Computation of 7/log(q)

For the computation of the natural logarithm one can use the relation
log(mr®) = log(m)+ x log(r) (11.246)

where m is the mantissa and r the radix of the floating point numbers.

There is a nice way to compute the value of log(r) if the value of 7 has been precomputed. We use (cf.
5] p.225)

™ ™
— = = AGM(05(¢)%,6(q)? 11.247
log(1/q) log(q) (Bs(2)",€2(a)") (:
Where
O30) = Y. q (11.248)
balg) = 0423 gt/ (11.249)
n=0

Computing 05(q) is easy when ¢ = 1/7:

O3(q) = 1+2 Zq"2 :2(1+Zq"2)—1 (11.250)
n=1 n=1

CHAPTER 11. ARITHMETICAL ALGORITHMS 195

However, the computation of 6 (g) suggests to choose ¢ = 1/r* =: b*:

O2(q) = 0+2 Z q("H/Q)2 =2 Z b’ 4t where q=70 (11.251)
n=0 n=0

= 20> ¢ =201+) ¢") (11.252)
n=0 n=1

[hfloat: src/tz/pilogq.cc]

11.11 Iterations for high precison computations of 7

In this section various iterations for computing © with at least second order convergence are given.

The number of full precision multiplications (FPM) are an indication of the efficiency of the algorithm.
The approximate number of FPMs that were counted with a computation of m to 4 million decimal
digits'? is indicated like this: #FPM=123.4.

AGM as in [hfloat: src/pi/piagnm.cc|, #FPM=98.4 (#FPM=149.3 for the quartic variant):

ap = 1 (11.253)
1
by = — 11.254
v = 5 (11.254)
2a2+1
y = ——ntl 11.255
ST e S (1:255)

_on+1
7.(_2 2n+4e w2

_— 11.256
AGMQ((IO, bo) ()

T™—Pn
A fourth order version uses [11.197, cf. also [hfloat: src/pi/piagnm.cc].

AGM variant as in [hfloat: src/pi/piagm3.cc], #FPM=99.5 (#FPM=155.3 for the quartic variant):

aw = 1 (11.257)
3

by = \/é%f (11.258)
2 2

Pn = Il g (11.259)

V3(1=350 25) — 1
\/§7T2 2n+4 67\/§7T ontl
AGMZ(ao,bo)

(11.260)

T™— Pn

AGM variant as in [hfloat: src/pi/piagm3.cc|, #FPM=108.2 (#FPM=169.5 for the quartic variant):

a = 1 (11.261)
— V2
by = 7\f4f (11.262)
6as iy
S 2 o 11.263
P VB -S_2h)+ 1 ()
A 29n+4 ,m s T2
T—p, < 3 (11.264)

AGM(CL(), b0)2

12ysing radix 10,000 and 1 million LIMBs.

CHAPTER 11. ARITHMETICAL ALGORITHMS

196

Borwein’s quartic (fourth order) iteration, variant » = 4 as in [hfloat: src/pi/pidth.cc|, #FPM=170.5:

Yo

ao

Yk+1

k41

0

V2-1
6—4v2

1— (1 -y
L+ (1—yh)/s

(1—yp)~'/

— 0+

-1

=yl

ar, (1+ yps1)

+1

2 (U Yy + y13+1)

—_— —

ar (1 + yre1)?)? = 223 yir (L4 yes1)® — Yogr)
ap —m P <16-4"2e 42T

Identities 11.268| and 11.270/ show how to save operations.

™

(11.265)
(11.266)

(11.267)

(11.268)

(11.269)

(11.270)
(11.271)

Borwein’s quartic (fourth order) iteration, variant » = 16 as in [hfloat: src/pi/pi4th.cc], #FPM=164.4:

Yo

ao

Yk+1

k41

0

1— 2—1/4
14 2-1/4
8/v/2 -2
(2-1/44+1)4
(L—yp) "

=yl

ar, (1+ yps1)

-1
0
1 0

2y (T4 g + 97 40)

ap — 7L < 16-4"4e 4" 47

—

™

(11.272)
(11.273)
(11.274)

(11.275)
(11.276)

Same operation count as before, but this variant gives approximately twice as much precision after the

same number of steps.

The general form of the quartic iterations (11.265 and 11.272) is

Yo
Qg

Y41

Gk41

Ct. [5], p.170f.

A (r)
a(r)

(1 -yt -1
=yl 1

ar (14 yes1)* = 222 /ry (1 + ygr + yigs)

ak—w_l §

— 0+

16- 4™ /re 2"V

— —

(11.277)
(11.278)

(11.279)

(11.280)
(11.281)

CHAPTER 11. ARITHMETICAL ALGORITHMS 197

Derived AGM iteration (second order) as in [hfloat: src/pi/pideriv.cc], #FPM=276.2:

g = V2 (11.282)
po = 2+V2 (11.283)
gy = 2/ (11.284)
1 1
= - — k> 1 11.2
Thal) (\/xk + :ck) (k>0) —1+ (11.285)
Yk /T + %
Ypp = ——Yo (k>1) —1+ (11.286)
yr +1
T+ 1
= k>1 11.287
Pr1 Pk (k=21) —m+ ()
pe—m = 10727 (11.288)
Cubic AGM from [25], as in [hfloat: src/pi/picubagn.cc|, #FPM=182.7:
ag = 1 (11.289)
3—-1
by = ‘[2 (11.290)
Gnp1 = % (11.291)
by, (a2 nbn + b2
bnp1 = i/ (@ +6; +bn) (11.292)
3a?
Pn = — (11.293)
=373k (af — aj)
Second order iteration, as in [hfloat: src/pi/pi2nd.cc|, #FPM=255.7:
- L (11.294)
Yo = /2 .
1
w = 5 (11.295)
1-(1—yp)'?
= 0 11.296
e R (11:290)
1—2)-1/2 _q
_ -w) (11.297)
(=) 741
1
apr1 = ap (T4yre)’ = 2"y — - (11.298)
ap—m !t < 16- 2k e 2T (11.299)

11.297 shows how to save 1 multiplication per step (cf. section 11.3)).

CHAPTER 11.

ARITHMETICAL ALGORITHMS

198

Quintic (5th order) iteration from the article [22], as in [hfloat: src/pi/pibth.cc], #FPM=353.2:

S0

ao

Sn+41
where z
and y
and z

Ap+1

1
ap — —
™

= 5(v5-2)

1

2

25 1

= —

Sn(z4+ax/z4+1)2

Sn
= (x—-1)*+7 —16

= (L yrvr) o

2
)
= s2a, —5" (8” + Vs (52 — 25,

2

< 16-5"e ™"

+5)) .

s

Cubic (third order) iteration from [23], as in [hfloat: src/pi/pi3rd.cc|, #FPM=200.3:

Nonic (9th order) iteration from [23],

1
apg = g
sg = v3-1
o - 2
3
Thel = —
1+2(1—s3)l/3
T —1
Syl = ’“*17
agy1 = Tiyiap—3 (e - 1) —
as in [hfloat: src/pi/pi9th.cc],
1
ang = 5
V3 -1
ro =
2
so = (1—r)¥/3
t = 142r;
u = (97“;€ (l—i—rk—i—r%))l/s
v o= P4 tu+u’
27(1 2
e (1 + sk +53)
v
p+1 = mak+32k_1(1—m) —
(1 —Tk)3
S =
h (t+2u)v
1 = (1= s

Summary of operation count vs. algorithms:

1
m

#FPM=273.7:

3|

(11.300)
(11.301)

(11.302)

(11.303)
(11.304)
(11.305)

(11.306)

(11.307)

(11.308)

(11.309)

(11.310)

(11.311)

(11.312)

(11.313)

11.314
11.315
11.316

11.317
11.318

AAA/_\,_\,_\
~— O~ ~— — — ~—

11.319
(11.320)

(11.321)

(11.322)

CHAPTER 11. ARITHMETICAL ALGORITHMS

78.

98.

99.
108.
149.
155.
164.
169.
170.
182.
200.
255.
273.
276.
353.

TBD:
TBD:
TBD:

#FPM

424
424
510
241
324
265
359
544
519
710
261
699
763
221
202

notes:

- algorithm name in hfloat

- pi_agm_sch()

- pi_agmQ

- pi_agm3(fast variant)

- pi_agm3(slow variant)

- pi_agm(quartic)

- pi_agm3(quartic, fast variant)
- pi_4th_order(r=16 variant)

- pi_agm3(quartic, slow variant)
- pi_4th_order(r=4 variant)

- pi_cubic_agm()

- pi_3rd_order()

- pi_2nd_order()

- pi_9th_order()

- pi_derived_agm()

- pi_5th_order()

discontin.

slow quartic, slow quart. AGM

other quant: num of variables

More iterations for m

These are not (yet) implemented in hfloat.

A third order algorithm from [24]:

Vo 271/8

v, = 2778 <(1 -~ 31/2) 9-1/2 4 31/4>

wy = 1

oy =

Bo = 0

1/311/2
Vpy1 = { o+ [4vr (1= 0))] / } + Up_1
Wpy1 = 2U o1 (Um0)wn
— Up (3 vy V2)

w2, 0
n+ n
Bn + 6wn+lvn - 2vn+1wn))

n

QApt1 = (LA 1) o'
Bny1 = (Ly 1)
8- 21/8

199

CHAPTER 11. ARITHMETICAL ALGORITHMS 200

A second order algorithm from [26]:

my = 2 (11.334)
4
o 11.335
i 1+ /(A —my) 2+ mn) ()
2" 1
Qi1 = My oy + ?O —my,) — - (11.336)

Another second order algorithm from [26]:

ag = 1/3 (11.337)
s1 = 1/3 (11.338)
(sn)?+(s5)? = 1 (11.339)
(14+3sp41)(1+3s),) = 4 (11.340)

1
Opt1 = (1 + 38n+1>0én - 2" Sn+1 — — (11341)

m

A fourth order algorithm from [26]:
ag = 1/3 (11.342)
s1 = V2-1 (11.343)
(sn)'+(sp)" = 1 (11.344)
(1+438,51)(1+3s%) = 2 (11.345)
gt s 1

A1 = (1+sp01)%an + 3 1—14s,41)) — - (11.346)

11.12 The binary splitting algorithm for rational series

The straight forward computation of a series for which each term adds a constant amount of precision'?
to a precision of N digits involves the summation of proportional N terms. To get N bits of precision one
has to add proportional N terms of the sum, each term involves one (length-N) short division (and one
addition). Therefore the total work is proportional N2, which makes it impossible to compute billions of
digits from linearly convergent series even if they are as ‘good’ as Chudnovsky’s famous series for :

1 6541681608 <= [13591409 6k)! —1)*
- = T (+k> (,(3) ; ()%) (11.347)
m 6403200 =, \ 545140134 (k)3 (3k)! 640320

12 i (1) (6k)! 13591409 + k 545140134
640320° (= (k1)3 (3k)! (640320)3*

(11.348)

Here is an alternative way to evaluate a sum ZkN:_Ol ay of rational summands: One looks at the ratios ry
of consecutive terms:
a
rp = —b (11.349)
ag—1

(set a1 :=1 to avoid a special case for k = 0)

That is
N—
dar = 1o (L4 (Tt (Lrs (L+...(1+7n5-1)...)))) (11.350)
k=0

=

13¢.g. arccot series with arguments > 1

CHAPTER 11. ARITHMETICAL ALGORITHMS 201

Now define
i = Tm (1 4+7ms1 (..(14+7r,)...)) where m<n (11.351)
Tmm ‘= T'm (11352)
then
= ! z": (11.353)
T"mmn = P P ag .

and especially

rom = Y ai (11.354)

k=0
With
Tma = Tm+Tm Tmtl+Tm Tmtl Tmi2+ ... (11.355)
"'+Tm”"'rz+’rm”"'rz'[rx+l+"'+rz+1""'Tn]
xT
= Tmat [[75 Terin (11.356)
k=m
The product telescopes, one gets
a
Tm,n — Tm,:r + 73} . rIJan (11.357)
Gmp—1

(where m < x < n).

Now we can formulate the binary splitting algorithm by giving a binsplit function r:

function r(function a, int m, int n)

rational ret;
%f m==n then

ret := a(m)/a(m-1)

}
else

x := floor((m+n)/2)

ret := r(a,m,x) + a(x) / a(m-1) * r(a,x+1,n)
print("r:", m, n, "=", ret)

return ret

}

Here a(k) must be a function that returns the k-th term of the series we wish to compute, in addition
one must have a(-1)=1. A trivial example: to compute arctan(1/10) one would use

function a(int k)

if k<O then return 1
else return (-1) "k/((2xk+1)*10~ (2*k+1))

Calling r(a,0,N) returns EkN:o ag.

In case the programming language used does not provide rational numbers one needs to rewrite formula

11.357 in separate parts for denominator and numerator. With a; = %, p_1=¢q-1 =1and ry, =: ‘[i
one gets ’

Unn = Pm—14x Um,x Vr+1,n + Pz Gm—1 Uac+1,n Vm,m (11358)

)

Vinn = Pm-1¢s Vm,w Vw-l—l,n (11359)

)

CHAPTER 11. ARITHMETICAL ALGORITHMS 202

The reason why binary splitting is better than the straight forward way is that the involved work is only
O((log N)? M(N)), where M(N) is the complexity of one N-bit multiplication (see [21]). This means
that sums of linear but sufficient convergence are again candidates for high precision computations.

In addition, the ratio ro y—1 (i.e. the sum of the first N terms) can be reused if one wants to evaluate
the sum to a higher precision than before. To get twice the precision use

To2N-1 = To,N-1taN_1 TN2N-1 (11.360)
(this is formula 11.357 with m = 0,2 = N — 1,n = 2N — 1). With explicit rational arithmetic:

Upan-1 = qn-1Uon-1VNaNn-1+DPN-1UNn2on-1VoN-1 (11.361)
Voon-1 = qv-1Von-1VNan—1 (11.362)

Thereby with the appearence of some new computer that can multiply two length 2- N numbers'4 one only
needs to combine the two ratios 7o, y—1 and rn2ny—1 that had been precomputed by the last generation
of computers. This costs only a few fullsize multiplications on your new and expensive supercomputer
(instead of several hundreds for the iterative schemes), which means that one can improve on prior
computations at low cost.

If one wants to stare at zillions of decimal digits of the floating point expansion then one division is also
needed which costs not more than 4 multiplications (cf. section [11.3]).

Note that this algorithm can trivially be extended (or rather simplified) to infinite products, e.g. matrix
products as Bellard’s

o 2(k—3) (k+2)
[#z&nes V) = [0 m+6] (11.363)
Pt 0 1 0 1

Cf. [21] and [27].

11.13 The magic sumalt algorithm

The following algorithm is due to Cohen, Villegas and Zagier, see [29].

Pseudo code to compute an estimate of Z,;“;O xk using the first n summands. The z; summands are
expected in x[0,1, ...,n-1].

function sumalt(x[], n)

d := (3+sqrt(8))°n
d := (d+1/d)/2
b :=1
c :=d
s =0
f:or k:=0 to n-1
c:=c-b
s := s + ¢ * x[k]
b := b * (2x(nt+k)*(n-k)) / ((2*k+1)*(k+1))

}

return s/d

}

With alternating sums the accuracy of the estimate will be (3 ++/8) ™" ~ 5.827".

As an example let us explicitely write down the estimate for the 4 - arctan(1) using the first 8 terms

T =~

1 1.1 1 1 1 1 1
4-(1—3+5—7+9—11+13—15>_3.017... (11.364)

Massuming one could multiply length-N numbers before

CHAPTER 11. ARITHMETICAL ALGORITHMS 203

The sumalt-massaged estimate is

665856 665728 663040 641536
~ 4- — — 11.365
™ (1 3 + 5 7 + ()
557056 376832 163840 32768
9 11 + 3 15) /665857

= 4-3365266048/4284789795 = 3.141592665. . .

it already gives 7 correct digits of . Note that all the values ¢, and by occuring in the computation are
integers. In fact, the b in the computation with n terms are the coefficients of the 2n-th Chebychev
polynom with alternating signs.

An alternative calculation avoids the computation of (3 + v/8)™:

function sumalt(x[], n)
b .
c :

s =0

for k:=n-1 to 0 step -1

{

2%* (2*xn-1)
b

x [k]

s + c *
b : * é(2*k+1)*(k+1)) / (2% (n+k)*(n-k))
[+

o
acoocn

}

return s/c

Even slowly converging series like

[e’¢) _1k
T = 4-;:0%“ = 4 - arctan(1) (11.366)
e o] _1k
c = = 0.9159655941772190 . .. 11.367
e (1307
o] _1k
log(2) = Y 7 = 0.0931471805509453 ... (11.368)
k=0

can be used to compute estimates that are correct up to thousands of digits. The algorithm scales like N2
if the series terms in x[] are small rational values and like N? -log(NN) if they are full precision (rational
or float) values.

To compute an estimate of Z;O:o 2 using the first n partial sums use the following pseudo code (the
partial sums py = Z?:o x; are expected in p[0,1,...,n-1]):

function sumalt_partial(p[]l, n)

d := (3+sqrt(8))°n
d := (d+1/d)/2

b :=1

c :=d

s =0

for k:=0 to n-1

s + b * plk]
b * (2x(n+k)*(n-k)) / ((2%k+1)*(k+1))

return s/d

The alternative scheme is:

function sumalt_partial(p[], n)

CHAPTER 11. ARITHMETICAL ALGORITHMS 204

{
b := 2%x(2*n-1)
c =D
s =0
for k:=n-1 to O step -1
{
s :=s + b x p[k]
N b :=b *x ((2xk+1)*(k+1)) / (2*(n+k)*(n-k))

return s/c

[hfloat: src/hf/sumalt.cc]

11.14 Continued fractions

Set
= bo+ M (11.369)
by + o3
ba +) a1
3t by + ...

For k > 0 let 7;’—: be the value of the above fraction if ar41 is set to zero (set Z: = % and 5—;’ = bTO)
Then

Pk = brpr—1+akpr—2 (11.370)

%k = brqr—1+ akqr—2 (11.371)
(Simple continued fractions are those with a; = 1 Vk).
Pseudo code for a procedure that computes the py,qrx k= —1...n of a continued fraction :

procedure ratios_from_contfrac(a[0..n], b[0..n], n, p[-1..n], gq[-1..n])

{

pl-1]1 := 1

ql[-1] := 0

plo]l := b[0]

qlo] :=1

for k:=1 ton

plk]l := b[k] * plk-1] + al[k] * pl[k-2]

3 qlk] := b[k] * qlk-1] + al[k] * q[k-2]

}

Pseudo code for a procedure that fills the first n terms of the simple continued fraction of (the floating
point number) x into the array cf[]:

procedure continued_fraction(x, n, cf[0..n-1])

for k:=0 to n-1

xi := floor(x)
cflk] := xi
x =1/ (x-x1)

}

Pseudo code for a function that computes the numerical value of a number x from (the leading n terms
of) its simple continued fraction representation:

CHAPTER 11. ARITHMETICAL ALGORITHMS

function number_from_contfrac(cf[0..n-1], n)
x := cf[n-1]

for k:=n-2 to 0 step -1

{
x := 1/x + cf[k]

return x

(ct. [30], [31], [10], [11]).

205

Appendix A

Summary of definitions of FT's

The continuous Fourier transform

The (continuous) Fourier transform (FT) of a function f: C" — C", I~ f(Z) is defined by
1 L
F©) = —=% f@ e " ¥d x (A1)
vz Jen

where ¢ = +£1. The FT is is a unitary transform.

Its inverse (‘backtransform’) is

— _ 1 I e—ofnﬁ n
1@ = o [F@)ea (A2)

i.e. the complex conjugate transform.

For the 1-dimensional case one has

F@) = —— /_:Of(x)e”“dm (A.3)

10 = = [Fwerea (A4)
The ‘frequency’~form is

o) = /jf()”““dw (A5)

f@) = /jﬂu)e””“du (A.6)

The semi-continuous Fourier transform

For periodic functions defined on a interval L € R, f : L — R, x — f(z) one has the semi-continuous
Fourier transform:

1 / 2mika/L
cp = flx)e? <™ o2 Edy AT
VI 1T (A7)
Then
k=400 . .
1 —o2mikae/l f(z) if f continuous at z
VL k;mcke v= L@A04H/@=0) g (A.8)

206

APPENDIX A. SUMMARY OF DEFINITIONS OF FTS 207

Another (equivalent) form is given by

1 2mkx
ap = — x) oS dx, k=0,1,2,... A9
o= [e e (19)
1 2wk
by = —/f(a:) sin = xda:, k=1,2,... (A.10)
L JL L
1 > 2 2mk
flz) = i % +; (ak cos WL : + by, sin WL I) (A.11)
with
% (=0
cx = %(ak —ibg) (k>0) (A.12)
§(ak + ibk) (k < O)
The discrete Fourier transform
The discrete Fourier transform (DFT) of a sequence f of length n with elements f, is defined by
1 n—1
= —— fo eJZﬂ'imk/n (A13)
\/ﬁ z=0
Backtransform is
n—1
— ck6027ri:ck/n (A.14)

P
|
Sl-
i

c=0

Appendix B

The pseudo language Sprache

Many algorithms in this book are given in a pseudo language called Sprache. Sprache is meant to be
immediately understandable for everyone who ever had contact with programming languages like C,
FORTRAN, pascal or algol. Sprache is hopefully self explanatory. The intention of using Sprache instead
of e.g. mathematical formulas (cf. [4]) or description by words (cf. [8] or [14]) was to minimize the work it
takes to translate the given algorithm to one’s favorite programming language, it should be mere syntax
adaptation.

By the way ‘Sprache’ is the german word for language,

// a comment:
// comments are useful.

// assignment:
t =271

// parallel assignment:
{s, t, u} := {5, 6, 7}
// same as:

s :=

t =6

u =
{s, t} := {s+t, s-t}

// same as (avoid temporary):

temp := s + t
t :1=s - t;
s := temp

// if conditional:
if a==b then a:=3

// with block
if a>=3 then

// do something ...
}

// a function returns a value:
function plus_three(x)

{

return x + 3;

// a procedure works on data:
procedure increment_copy(f[],gl[],n)
// real £[0..n-1] input

// real g[0..n-1] result

for k:=0 to n-1
glkl := f[k] + 1

208

APPENDIX B. THE PSEUDO LANGUAGE SPRACHE 209

// for loop with stepsize:
for i:=0 to n step 2 // i:=0,2,4,6,...

// do something
}

// for loop with multiplication:
for i:=1 to 32 mul_step 2

print i, ", "

will print 1, 2, 4, 8, 16, 32,
// for loop with division:
for i:=32 to 8 div_step 2

print i, ", "

will print 32, 16, 8,

// while loop:

i:=5 |

¥h11e i>0
// do something 5 times...
i:=1-1

}

The usage of foreach emphasizes that no particular order is needed in the array acces (so parallelization
is possible):

procedure has_element (£f[],x)

{
foreach t in f[]

if t==x then return TRUE
return FALSE

Emphasize type and range of arrays:

real af0..n-1], // has n elements (floating point reals)
complex b[0..2%*n-1] // has 2**n elements (floating point complex)
mod_type m[729..1728] // has 1000 elements (modular integers)
integer i[] // has 7 elements (integers)

Arithmetical operators: +, —, *, /, % and ** for powering. Arithmetical functions: min(), max(),
gcd(), lem(),

Mathematical functions: sqr(), sqrt(), pow(), exp(), log(), sin(), cos(), tan(), asin(),
acos(), atan(),

Bitwise operators: ~, &, |, ~ for negation, and, or, exor, respectively. Bit shift operators: a<<3 shifts
(the integer) a 3 bits to the left a>>1 shifts a 1 bits to the right.

Comparison operators: ==, =, <, > <=, >=

There is no operator ‘=" in Sprache, only ‘==" (for testing equality) and ‘:=’ (assignment operator).

A well known constant: PI = 3.14159265 ...

The complex square root of minus one in the upper half plane: I = /—1

Boolean values TRUE and FALSE

Logical operators: NOT, AND, OR, EXOR

APPENDIX B. THE PSEUDO LANGUAGE SPRACHE 210

// copying arrays of same length:
copy all to b[]

// more copying arrays:
copy aln..n+m] to b[0..m]

// skip copy array:
copy al0,2,4,...,n-1] to b[0,1,2,...,n/2-1]

Modular arithmetic: x := a * b mod m shall do what it says, i := a**(-1) mod m shall set i to the
modular inverse of a.

Appendix C

Optimisation considerations for fast
transforms

e Reduce operations: use higher radix, at least radix 4 (with high radix algorithms note that the intel

x86-architecture is severely register impaired)

e Mass storage FFTs: use MFA as described

e Trig recursion: loss of precision (not with mod FFTSs), use stable versions, use table for initial values

of recursion.

e Trig table: only for small lengths, else cache problem.

e Fused routines: combine first/last (few) step(s) in transforms with squar-

ing/normalization/revbin/transposition etc. e.g. revbin-squaring in convol,

e Use explicit last/first step with radix as high a possible

e Write special versions for zero padded data (e.g. for convolutions), also write a special version of

revbin_permute for zero padded data

e Integer stuff (e.g. exact convolutions): consider NTTs but be prepared for work & disappointments

e Image processing & effects: also check Walsh transform etc.

e Direct mapped cache: Avoid stride-2"™ access (e.g. use gray-ffts, gray-walsh); try to achieve unit
stride data access. Use the general prime factor algorithm. Improve memory locality (e.g. use the

matrix Fourier algorithm (MFA))

e Vectorization: SIMD versions often boost performance

e For correlations/convolutions save two revbin_permute (or transpose) operations by combining DIF

and DIT algorithms.

e Real-valued transforms & convolution: use hartley transform (also for computation of spectrum).

Even use complex FHT for forward step in real convolution.

e Reducing multiplications: Winograd FFT, mainly of theoretical interest (today the speed of multi-

plication is almost that of addition, often mults go parallel to adds)

e Only general rule for big sizes: better algorithms win.

e Do NOT blindly believe that some code is fast without profiling. Statements that some code is

”the fastest” are always bogus.

211

Appendix D

Properties of the ZT

Notation not in sync with the rest therefore moved to appendiz. The point of view taken here is that of
recurrences and their generating functions.

In the following let F(z) := Z{f,} and G(z) := Z{g,} be the z-transforms of the recurrences f, and g,
respectively.

e linearity

Z{afo+Bant = aZ{fa} +BZ{gn} (D.1)
e convolution
Z{Z Tk gn—k} = Z{f’rb} Z{gn} (D-Q)
k=0
e summation
n 7 .
2y f} = 71{;)6 Z} (D.3)
k=0
o difference
k—1
Z{AFf} = (L=2)fZ{fa} - 2> (1—2)"""TATf (D.4)
i=0
where
Aofn = fn7 Akfn = Ak_l fnJrl_Ak_1 fn
eg. A'fy = far1—fa
e.g. first difference:
Z{Afn} = (1—2)Z{fa}—2fo (D.5)
second difference:
Z{AQ.fn}:(172)2Z{fn}7zf1+22f0 (D6)

212

APPENDIX D. PROPERTIES OF THE ZT

index shifting

Z{fnfk}

2 Z{fn}

Z{fosn} = 27F (Z{fn}—Zfz‘ Zi) =

similarity

200y -7}

multiplication

division

index transformation

for i fixed let

AEC,A£0

d

Z{nfu} = = 7 F(2)

d

zidsy = [T

Z{f

oy [P

gm(]§m<oo = fn (m = TLZ),

then

Z{gn} = F(2")

0

Z* (F(Z)_fo—f12—f222—f3z3_..._fkilzk—1)

(else)

213

(D.10)

(D.11)

(D.12)

(D.13)

Appendix E

Eigenvectors of the Fourier
transform

For ag := a + @, the symmetric part of a sequence a:

FlFlasl]] = as (E.1)

Now let uy :=ag + Flas] and u_ := ag — F [ag| then
Fluy] = Flas|+as=as+ Flas] =41 uy (E.2)
Flu-] = Flas]—as=—(as—Flag]) = -1 u_ (E.3)

us and u_ are symmetric.

For a4 := a — @, the antisymmetric part of a we have

FlFlaa]]l = —aa (E.4)

Therefore with vy :=aa + i F [aa] and v_ :=as — i F [a4]:
Floy] = Flaa)l—iaa=—i(laa+iFlaa]) =—i-vs (E.5)
Flv] = Flaal+iaa=+i(aa —iFaa]) =+i-v_ (E.6)

vy and v_ are antisymmetric.

Uy, u—, vy and v_ are eigenvectors of the FT, with eigenvalues +1, —1, —i and +i respectively. The
eigenvectors are pairwise perpendicular.

Using

1
a = §(u++u,+v++v,) (E.7)

we can, for a given sequence, find a transform that is the ‘square root’ of the FT: Simply compute u,
u_, vy, v_. Then for A € R one can define a transform F* [a] as

Pl = 5 () ur+ (D u + (i) o+ (i) o) (E5)

FO1a] is the identity, F'[a] is the (usual) FT, F'/2[a] (which is not unique) is a transform so that
FY2[FY2a]] = Fa], that is, a ‘quare root’ of the FT.

The eigenvectors of the Hartley Transform are uy := a + H [a] (with eigenvalue +1) and uy := a — H [a]
(with eigenvalue —1).

214

Bibliography

[1]

[10]
[11]

H.S.Wilf: Algorithms and Complexity, internet edition, 1994,
online at ftp://ftp.cis.upenn.edu/pub/wilf/AlgComp.ps.Z

H.J.Nussbaumer: Fast Fourier Transform and Convolution Algorithms, 2.ed, Springer 1982
J.D.Lipson: Elements of algebra and algebraic computing, Addison-Wesley 1981

R.Tolimieri, M.An, C.Lu: Algorithms for Discrete Fourier Transform and Convolution, Springer
1997 (second edition)

J.M.Borwein, P.B.Borwein: Pi and the AGM, Wiley 1987

E.Schroder: On Infinitely Many Algorithms for Solving Equations (translation by G.W.Stewart of:
‘Ueber unendlich viele Algorithmen zur Auflésung der Gleichungen’, which appeared 1870 in the
‘Mathematische Annalen’)

online at ftp://thales.cs.umd.edu/pub/reports/

Householder: The Numerical Treatment of a Single Nonlinear Equation, McGraw-Hill 1970

D.E.Knuth: The Art of Computer Programming, 2.edition, Volume 2: Seminumerical Algorithms,
Addison-Wesley 1981,
online errata list at http://www-cs-staff.stanford.edu/ knuth/

W.H.Press, S.A.Teukolsky, W.T.Vetterling, B.P.Flannery: Numerical Recipes in C, Cambridge
University Press, 1988, 2nd Edition 1992
online at http://nr.harvard.edu/nr/

R.L.Graham, D.E.Knuth, O.Patashnik: Concrete Mathematics, Addison-Wesley, New York 1988

I.N.Bronstein, K.A.Semendjajew, G.Grosche, V.Ziegler, D.Ziegler, ed: E.Zeidler: Teubner-
Taschenbuch der Mathematik, vol. 142, B.G.Teubner Stuttgart, Leipzig 1996, the new edition
of Bronstein’s Handbook of Mathematics, (english edition in preparation)

J.Stoer, R.Bulirsch: Introduction to Numerical Analysis, Springer-Verlag, New York, Heidelberg,
Berlin 1980

M.Waldschmidt, P.Moussa, J.-M. Luck, C.Itzykson (Eds.): From Number Theory to Physics,
Springer Verlag 1992

H.Cohen: A Course in Computational Algebraic Number Theory, Springer Verlag, Berlin Heidel-
berg, 1993

Thomas H.Corman, Charles E.Leiserson, Ronald L.Rivest: Introduction to Algorithms, MIT Press,
1990 (twenty-first printing, 1998)

H.Malvar: Fast computation of the discrete cosine transform through fast Hartley transform, Elec-
tronics Letters 22 pp.352-353, 1986

215

BIBLIOGRAPHY 216

[17]

(18]

[19]

[20]
[21]

[22]
[23]

[24]

[25]

[26]

[27]

[28]

[29]
[30]
[31]

[32]
[33]

[34]

[35]

[36]

37]

[38]

H.Malvar: Fast Computation of the discrete cosine transform and the discrete Hartley transform,
IEEE Trans. on Acoustics, Speech and Signal Processing, ASSP-35 pp.1484-1485, 1987

R.Crandall, B.Fagin: Discrete Weighted Transforms and Large Integer Arithmetic, Math. Comp.
(62) 1994 pp.305-324

Zhong-De Wang: New algorithm for the slant transform, IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-4, No.5, pp.551-555, September 1982

R.P.Brent: Fast multiple-precision evaluation of elementary functions, J. ACM (23) 1976 pp.242-251

B.Haible, T.Papanikolaou: Fast multiprecision evaluation of series of rational numbers
online at http://777/

J.M.Borwein, P.B.Borwein: Scientific American, March 1988

D.H.Bailey, J.M.Borwein, P.B.Borwein and S.Plouffe: The Quest for Pi, 1996,
online at http://www.cecn.sfu.ca/ pborwein/

J.M.Borwein, P.B.Borwein: Cubic and higher order algorithms for 7 Canad.Math.Bull. Vol.27 (4),
1984, pp.436-443

J.M.Borwein, P.B.Borwein, F.G.Garvan: Some cubic modular identities of Ramanujan, Trans.
A.M.S. 343, 1994, pp.35-47

J.M.Borwein, F.G.Garvan: Approximations to 7 via the Dedekind eta function, ???, March 27,
1996

D.V.Chudnovsky, G.V.Chudnovsky: Classical constants and functions: computations and contin-
ued fraction expansions, in Number Theory: New York seminar 1989-1990, Springer Verlag 1991

A.Schénhage, V.Strassen: Schnelle Multiplikation grosser Zahlen, Computing (7) 1971 pp.281-292
(in german)

H.Cohen, F.R.Villegas, D.Zagier: Convergence acceleration of alternating series, 1997 preprint
C.D.Olds: Continued Fractions, The Mathematical Association of America, 1963

L.Lorentzen and H.-Waadeland: Continued Fractions and Applications, North-Holland 1992 pp.561-
562

Robert Sedgewick: Algorithms in C, Addison-Wesley, 1990

Mladen Victor Wickerhauser: Adapted Wavelet Analysis from Theory to Software, AK Peters,
Ltd., Wellesley, Mass., 1994

D.H.Bailey: FFTs in External or Hierarchical Memory, 1989
online at http://citeseer.nj.nec.com/

D.H.Bailey: The Fractional Fourier Transform and Applications, 1995
online at http://citeseer.nj.nec.com/

Mikko Tommila: apfloat, A High Performance Arbitrary Precision Arithmetic Package, 1996,
online at http://www.jjj.de/mtommila/

M.Beeler, R.W.Gosper, R.Schroeppel: HAKMEM. MIT AI Memo 239, Feb. 29, 1972, Retyped and
converted to html by Henry Baker, April 1995,
online at ftp://ftp.netcom. com/pub/hb/hbaker/hakmem/hakmem.html/#contents

Advanced Micro Devices (AMD) Inc.: AMD Athlon Processor, x86 code optimization guide
online at http://www.amd.com/

BIBLIOGRAPHY 217

[39] P.Soderquist, M.Leeser: An Area/Performance Comparison of Subtractive and Multiplicative Di-
vide/Square Root Implementations, Cornell School of Electrical Engineering
online at http://orac.ee.cornell.edu:80/unitl/pgs/#papers

[40] F.L.Bauer: An Infinite Product for Square-Rooting with Cubic Convergence, The Mathematical
Intelligencer, 1998

ahman Kalantari, Jurgen Gerlach: Newton’s Method an eneration of a Determinantal Family
41] Bah Kal i, Ju Gerlach: N ’'s Method and G i faD i 1 Famil
of Iteration Functions. 777, 1998

Index

acyclic convolution, [34 division, 170

AGM using multiplication only, [170
4-th order variant, 187 DST via DCT, 55

AGM (arithmetic geometric mean), [185

algorithm exp
Karatsuba, [167 iteration for, (188

Toom Cook, 167

. . . FFT
h AGM), 1
arithmetic geometric mean (AGM), 1183 is polynomial evaluation, 169
C2RFT, via FHT, 53 FFT, radix 2 DIF, [11
C2RFT, with wrap routines, 22 FFT, radix 2 DIT, 8
cache, direct mapped, 28 FFT, radix 2 DIT, localized, |8
carry ’ FFT, radix 4 DIF, [17
in multiplication, 168 FFT, radix 4 DIT, [16
complex to real FFT, via FHT, 53 FFT, split radix DI.F, 18
convolution FHT, and convolution, 56
acyclic, 34 FHT, DIF step, 48
and multiplication, 167 FHT, DIF, recursive, 49
cyclic, 132 FHT, DIT step, 45

half cyclic, 40 FHT, DIT, recursive, |46
FHT, radix 2 DIF, [49
FHT, radix 2 DIT, 46
FHT, shift, 46

Fourier shift, 8

Fourier transform

linear, |34

mass storage, |37
negacyclic, [39
right-angle, 139
skew circular, [39

weighted, [39 definition, 14
convolution, and FHT, [56 , Fp, prime modulus, 59
convolution, negacyclic, 58 FT

cos_rot, [54 definition, 4

cosine transform (DCT), [54
cosine transform, inverse (IDCT), [55
CRT for two moduli

Haar transform, int to int, 82
Haar transform, inverse, int to int, [82
half cyclic convolution, 40

code, 65 Thi]
cube root extraction, [172 Hartley shift, 46
cyclic auto convolution, via FHT, 57 IDCT via FHT, 55
cyclic convolution, 32 IDST via IDCT, [56
cyclic convolution, via FFT, 33 inverse cosine transform (IDCT), 55
cyclic convolution, via FHT, |56 inverse cube root

iteration for, 172
inverse Haar transform, int to int, [82
inverse root

iteration for, [175
inverse root extraction, [174
inverse sine transform (IDST), 56
inverse square root

DCT via FHT, 54
DFT
definition, |4
direct mapped cache, 28
discrete Fourier transform
definition, |4

218

INDEX

iteration for, 171
inversion
iteration for, 170

Karatsuba algorithm, [167
Karatsuba multiplication, [167

linear convolution, |34
log
iteration using exp, 187

mass storage convolution, 37
mean

arithmetic geometric, 185
multiplication

FFT, 167

is convolution, 167

Karatsuba, [167

Toom Cook, 167

negacyclic convolution, 39, (58

R2CFT, via FHT, [53

R2CFT, with wrap routines, 21
real to complex FFT, via FHT, [53
revbin_permute, naive, [111
right-angle convolution, [39

root extraction, 174

sequency, [7()

shift, for FHT, 46

shift, Fourier, |8

sine transform (DST), 55

sine transform, inverse (IDST), [56
skew circular convolution, |39
square root extraction, 171

Toom Cook algorithm, [167

Toom Cook multiplication, 167

transcendental functions
iterations for, [187

unzip-rev, 55

Walsh transform, radix 2 DIF, [70
Walsh transform, radix 2 DIT , 169

Walsh transform, sequency ordered (wal), [70

weighted convolution, |39

zip_rev, 55
,Z/mZ, composite modulus, 60
,Z/pZ, prime modulus, 59

219

	Algorithms for Programmers
	Contents
	Some Important Remarks
	List of Important Symbols
	Ch1 Fourier Transform
	1.1 Discrete Fourier Transform
	1.2 Symmetries of Fourier transform
	1.3 Radix 2 FFT Algorithms
	1.3.1 A little bit of notation
	1.3.2 Decimation in time (DIT) FFT
	1.3.3 Decimation in frequency (DIF) FFT

	1.4 Saving Trigonometric Computations
	1.4.1 Using lookup tables
	1.4.2 Recursive generation of the sin=cos-values
	1.4.3 Using higher radix algorithms

	1.5 Higher Radix DIT & DIF Algorithms
	1.5.1 More notation
	1.5.2 Decimation in time
	1.5.3 Decimation in frequency
	1.5.4 Implementation of radix r = px DIF/DIT FFTs

	1.6 Split Radix Fourier Transforms (SRFT)
	1.7 Inverse FFT for Free
	1.8 Real Valued Fourier Transforms
	1.8.1 Real valued FT via wrapper routines
	1.8.2 Real valued split radix Fourier transforms

	1.9 Multidimensional FTs
	1.9.1 Definition
	1.9.2 The row column algorithm

	1.10 Matrix Fourier Algorithm (MFA)
	1.11 Automatic Generation of FFT Codes

	Ch2 Convolutions
	2.1 Definition & Computation via FFT
	2.2 Mass Storage Convolution using MFA
	2.3 Weighted Fourier Transforms
	2.4 Half Cyclic Convolution for Half the Price ?
	2.5 Convolution using MFA
	2.5.1 The case R = 2
	2.5.2 The case R = 3

	2.6 Convolution of Real Valued Data using MFA
	2.7 Convolution without Transposition using MFA
	2.8 z-Transform (ZT)
	2.8.1 Definition of the ZT
	2.8.2 Computation of the ZT via convolution
	2.8.3 Arbitrary length FFT by ZT
	2.8.4 Fractional Fourier transform by ZT

	Ch3 Hartley Transform (HT)
	3.1 Definition of HT
	3.2 Radix 2 FHT Algorithms
	3.2.1 Decimation in time (DIT) FHT
	3.2.2 Decimation in frequency (DIF) FHT

	3.3 Complex FT by HT
	3.4 Complex FT by Complex HT & Vice Versa
	3.5 Real FT by HT & Vice Versa
	3.6 Discrete Cosine Transform (DCT) by HT
	3.7 Discrete Sine Transform (DST) by DCT
	3.8 Convolution via FHT
	3.9 Negacyclic Convolution via FHT

	Ch4 Number-Theoretic Transforms (NTTs)
	4.1 Prime Modulus: Z/pZ = Fp
	4.2 Composite Modulus: Z/mZ
	4.3 Pseudocode for NTTs
	4.3.1 Radix 2 DIT NTT
	4.3.2 Radix 2 DIF NTT

	4.4 Convolution with NTTs
	4.5 Chinese Remainder Theorem (CRT)
	4.6 A Modular Multiplication Technique
	4.7 Number-Theoretic Hartley Transform

	Ch5 Walsh Transforms
	5.1 Basis Functions of Walsh Transforms
	5.2 Dyadic Convolution
	5.3 Slant transform

	Ch6 Haar transform
	6.1 In-Place Haar Transform
	6.2 Integer to Integer Haar Transform

	Ch7 Some Bit Wizardry
	7.1 Trivia
	7.2 Operations on Low Bits/Blocks in a Word
	7.3 Operations on High Bits/Blocks in a Word
	7.4 Functions Related to Base-2 Logarithm
	7.5 Counting Bits in a Word
	7.6 Swapping Bits/Blocks of a Word
	7.7 Reversing Bits of a Word
	7.8 Generating Bit Combinations
	7.9 Generating Bit Subsets
	7.10 Bit Set Lookup
	7.11 Gray Code of a Word
	7.12 Generating Minimal-Change Bit Combinations
	7.13 Bitwise Rotation of a Word
	7.14 Bitwise Zip
	7.15 Bit Sequency
	7.16 Misc
	7.17 Bitarray Class
	7.18 Manipulation of Colors

	Ch8 Permutations
	8.1 Revbin Permutation
	8.1.1 A naive version
	8.1.2 A fast version
	8.1.3 How many swaps?
	8.1.4 A still faster version
	8.1.5 The real world version

	8.2 Radix Permutation
	8.3 In-Place Matrix Transposition
	8.4 Revbin Permutation vs. Transposition
	8.4.1 Rotate and reverse
	8.4.2 Zip and unzip

	8.5 Gray Code Permutation
	8.6 General Permutations
	8.6.1 Basic definitions
	8.6.2 Compositions of permutations
	8.6.3 Applying permutations to data

	8.7 Generating All Permutations
	8.7.1 Lexicographic order
	8.7.2 Minimal-change order
	8.7.3 Derangement order
	8.7.4 Star-transposition order
	8.7.5 Yet another order

	Ch9 Sorting & Searching
	9.1 Sorting
	9.2 Searching
	9.3 Index Sorting
	9.4 Pointer Sorting
	9.5 Sorting by Supplied Comparison Function
	9.6 Unique
	9.7 Misc

	Ch10 Selected Combinatorical Algorithms
	10.1 Offline Functions: funcemu
	10.2 Combinations in Lexicographic Order
	10.3 Combinations in Co-Lexicographic Order
	10.4 Combinations in Minimal-Change Order
	10.5 Combinations in Alternative Minimal-Change Order
	10.6 Subsets in Lexicographic Order
	10.7 Subsets in Minimal-Change Order
	10.8 Subsets Ordered by Number of Elements
	10.9 Subsets Ordered with Shift Register Sequences
	10.10 Partitions

	Ch11 Arithmetical Algorithms
	11.1 Asymptotics of Algorithms
	11.2 Multiplication of Large Numbers
	11.2.1 Karatsuba algorithm
	11.2.2 Fast Multiplication via FFT
	11.2.3 Radix/Precision Considerations with FFT Multiplication

	11.3 Division, Square Root & Cube Root
	11.3.1 Division
	11.3.2 Square root extraction
	11.3.3 Cube root extraction

	11.4 Square Root Extraction for Rationals
	11.5 General Procedure for Inverse n-th Root
	11.6 Re-Orthogonalization of Matrices
	11.7 n-th Root by Goldschmidt's Algorithm
	11.8 Iterations for Inversion of Function
	11.8.1 Householder's formula
	11.8.2 Schroeder's formula
	11.8.3 Dealing with multiple roots
	11.8.4 A general scheme
	11.8.5 Improvements by the delta squared process

	11.9 Trancendental Functions & AGM
	11.9.1 AGM
	11.9.2 log
	11.9.3 exp
	11.9.4 sin, cos, tan
	11.9.5 Elliptic K
	11.9.6 Elliptic E

	11.10 Computation of pi/log(q)
	11.11 Iterations for High Precison Computations of pi
	11.12 Binary Splitting Algorithm for Rational Series
	11.13 Magic Sumalt Algorithm
	11.14 Continued Fractions

	App A Summary of Definitions of FTs
	AppB Pseudo Language Sprache
	AppC Optimization Considerations for Fast Transforms
	AppD Properties of ZT
	AppE Eigenvectors of Fourier Transform
	Bibliography
	Index

