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This chapter is based on the part of my research program in general relativity on 
electromagnetism. Most of it has been published, since the late 1950s, and is referred to in the 
bibliography.  The analysis of the theory of electromagnetism based on its underlying symmetry 
in relativity theory is re-assembled here with added discussion.  
 

1. Introduction 
An important lesson from Einstein’s theory of relativity is that the underlying 
symmetry of any scientific theory reveals many far-reaching physical implications 
that are not obvious at first glance. In regard to the subject of electrodynamics and 
its unification with optics, the initially discovered relations in the 19th century, 
between electrical charges and their motions and the resulting electric and magnetic 
fields of force, led to a set of partial differential equations for the laws of 
electrodynamics. The formalism was not completed until Maxwell saw the need, 
based on symmetry, for an extra term in the equation that relates current density to a 
resulting magnetic field. His addition of the extra term, called “displacement 
current”, then yielded the full expression of “Maxwell’s equations”. The latter were 
recognized as the laws of electrodynamics, which were then seen to incorporate the 
laws of optics. 
   Indeed, it was Maxwell’s generalization of the laws of electrodynamics that 
revealed that the radiation solutions of these equations, which would not have 
appeared in the earlier version (without the displacement current term) predicted all 
of the known optical phenomena. After Maxwell’s investigation of these optical 
implications of electrodynamics, other portions of the spectrum of radiation 
solutions were predicted and discovered empirically: radio waves, X-rays, infrared 
radiation, gamma rays. Thus, it was Maxwell’s intuitive feeling for the need of 
symmetry in his laws of electrodynamics that led to the full unification of 
electrodynamics and optics in the expression of Maxwell’s equations. 
   James Clerk Maxwell died in 1879, the same year that Albert Einstein was born. 
Sixteen years later Einstein recognized that Maxwell’s equations are covariant with 
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respect to the Lorentz transformations between relatively moving inertial frames of 
reference i.e. reference frames that are in constant relative motion in a straight line. 
That is to say, Einstein recognized in 1895 that the laws of electrodynamics, 
expressed with Maxwell’s field equations, must be in one-to-one correspondence in 
all possible inertial frames of reference, from the view of any one of them.1  
   The set of transformations of the spacetime coordinates that project the laws of 
electrodynamics from any observer’s reference frame to any other (continuously 
connected) inertial frame such that the laws remain unchanged is the symmetry group 
of the theory of special relativity. It was discovered that this is the Poincare group.2 
Einstein then asserted, ten years later in 1905, that not only the laws of 
electrodynamics and optics, but all of the laws of nature must be covariant under 
the transformations of the symmetry group of relativity theory. This is the assertion 
of “the theory of special relativity.” It is a statement of the objectivity of the laws of 
nature regarding all possible inertial frames of reference.3  
   In the next stage, Einstein generalized this symmetry rule to assert that all of the 
laws of nature must remain objective (covariant) with respect to transformations 
between frames of reference that are in arbitrary types of relative motion. This is 
the “theory of general relativity”.  As a first step, the theory of general relativity led 
to a new explanation for the phenomenon of gravitation, agreeing with the 
successful predictions of Newton’s theory of universal gravitation, but predicting 
more effects not predicted by the classical theory. General Relativity thereby 
superceded Newton’s law of universal gravitation.4  
   A significant feature of general relativity is the role of geometry in the 
mathematical representation of all of the laws of nature. For Einstein found that 
the Euclidean (flat) spacetime was not an adequate logic to represent the laws of 
interacting matter and radiation. Instead, he had to generalize to Riemannian 
(curved) spacetime geometry. The implication was that all of the laws of nature, 
including the laws of electrodynamics and optics, must be field laws that are 
mapped in such a curved spacetime.     Later on, in his quest for a unified field 
theory, Einstein did insist that one should not only exploit the geometrical logic of 
the spacetime language, but one should also exploit its algebra. Here he referred to 
the underlying group of general relativity – which I have called “the Einstein 
group”. In a 1945 article, 5 Einstein said: “Every attempt to establish a unified field 
theory must start, in my opinion, from the group of transformations which is no 
less general than that of the continuous transformations of the four coordinates”.  
   At the outset, then, it is important to recognize in our study of a generalization of 
the laws of electrodynamics based on the full symmetry of relativity theory that its 
covariance is in terms of a continuous group6 (whether we refer to special relativity or 
to general relativity). Such a group does not admit the discrete reflections in space 
or time. Further, because of the requirement of incorporating laws of conservation 
of energy, momentum and angular momentum, in the flat spacetime limit of the 
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theory, Noether’s theorem prescribes that the transformations that define the 
covariance in relativity theory must be analytic.7 That is to say, the relativistically 
covariant solutions of the laws of nature must be regular (i.e. nonsingular) 
everywhere.8 Such groups of continuous, analytic transformations (the Poincare group 
for special relativity2 and the Einstein group for general relativity) are Lie groups.9 
They prescribe the algebraic logic of the theory of relativity. 
 
In Section 2 there will be an outline of the generalization of the vector potential of 
electromagnetic theory so as to include a gauge invariant pseudovector part. This is 
allowed because of the lack of reflection symmetry in the relativity groups. In 
Section 3 the full form of the equations of electrodynamics in terms of the 
irreducible representations of the Lie groups of relativity theory will be shown.  It is 
a two-component spinor formalism that follows from a factorization of the 
standard vector representation of the Maxwell formalism. In Section 4 the theory 
will be extended to its full form in general relativity. It will be shown that the 16-
component quaternion metrical field equation emerges as a factorization of 
Einstein’s (10-component) symmetric tensor field equations in general relativity, 
once the reflection symmetry elements are removed from the underlying covariance 
group.  It is then demonstrated that these 16 independent field equations may be 
re-written as a sum of 10 second -rank symmetric tensor equations, corresponding 
exactly with the Einstein field equations, plus 6 second-rank antisymmteric tensor 
equations. It is shown that the latter may be put into a form that corresponds 
exactly with the formal structure of Maxwell’s equations. Thus, it is because of 
removing the reflection symmetry elements from the underlying group of general 
relativity, that one arrives at the factorized field equations that fully unify the 
gravitational features of matter, in terms of Einstein’s field equations, with the 
electromagnetic features of matter in terms of the Maxwell field equations. The 
route toward achieving a unified field theory from general relativity is then to follow 
the rules of the underlying Lie group by removing the reflection symmetry 
elements from the symmetry group of Einstein’s tensor field equations, thereby 
yielding a natural structure of the formalism in terms of spinor and quaternion 
variables. It will be seen in this analysis that, in accordance with a generalized Mach 
principle,10 the electromagnetic field of a charged body vanishes in a vacuum. 
   In Section 5 it will be shown that the quaternion structure of the fields that 
correspond with the electromagnetic field tensor and its current density source, 
implies a very important consequence for electromagnetism. It is that the local limit 
of the time component of the 4-current density yields a derived normalization. The 
latter is the condition that was imposed (originally by Max Born) to interpret 
Quantum Mechanics as a probability calculus. Here, it is a derived result that is an 
asymptotic feature (in the flat spacetime limit) of a field theory that may not generally 
be interpreted in terms of probabilities. Thus, the derivation of the electromagnetic field 
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equations in general relativity reveals, as a bonus, a natural normalization condition 
that is conventionally imposed in quantum mechanics.   
 

2. A Generalization of the Electromagnetic Potential 
After the momentous discovery by C.S. Wu and her collaborators in 1957 that the 
weak interaction violates parity (spatial reflection),11 I addressed the question on 
whether there may be any empirical evidence for the violation of parity in the 
electromagnetic interaction.12 It was thought that only the weak 
interaction violates space-reflection symmetry. But if, in the final analysis, there is a 
unified field theory in which the weak and the electromagnetic forces, as well as all 
of the other forces of nature, are manifestations of a single force field, then there is 
an implication in the experimental result of Wu et al that the electromagnetic and 
the nuclear forces also violate space-reflection symmetry, as well as time reversal 
symmetry. Indeed, the continuous group that underlies relativity theory implies that all 
discrete symmetries must be excluded from the laws of nature. 
   At that time, in the 1950s, there was a problem whereby the calculations from 
quantum electrodynamics for the Lamb shift, 2S1/2 – 2P1/2 in the states of 
hydrogen, were not in exact agreement with the measurements. Thus it occurred to 
me that a small violation of parity symmetry in the electromagnetic interaction 
might be responsible for this discrepancy.  
   My investigation proceeded along the following line:12 The conventional coupling 
of an external electromagnetic potential field Aµ to an electrical four-current density 
of matter jµ is in terms of the scalar interaction Lagrangian, 

Lint
(s) = jµ Aµ  = eψ(e)+γ0γµψ(e)Aµ         (2.1) 

  ψ(e) is the (four-component) bispinor electron field that solves the Dirac  
   equation 

[γµ(∂µ  +  ieAµ)  +  m]ψ(e)  =  0                   (2.2) 
It is assumed here that the electromagnetic vector potential Aµ is a (polar) four-
vector field. Thus the Lagrangian Lint

(s) is a scalar function in space and time. 
   If parity should be violated, Aµ may be generalized by adding an (axial) 
pseudovector part, Bµ to Aµ. The Lagrangian then generalizes to a sum of a scalar 
part and a pseudoscalar part, Lint  =  Lint

(s) + Lint
(ps), where the latter part , 

eψ+γ0γµψBµ,  is clearly a pseudoscalar function. 
   Then what is the source of Bµ in electromagnetic theory? Are there restrictions 
on Aµ that should also apply to Bµ? The answer is yes – it is the restriction of gauge 
invariance in order to yield a unique representation for the electric and magnetic 
field variables. Additionally, gauge invariance is the necessary and sufficient 
condition for the existence of conservation laws in the formalism – in this case the 
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requirement of the conservation of electrical charge.13 The latter follows from the 
continuity equation, 

                                        ∂µjµ  =  0.                                       (2.3) 
   The gauge covariance is in two parts: l) gauge invariance of the first kind, that is, 
invariance of the formalism under the phase change ψ → ψexp(iη), where, at this 
stage,  η(x) is an arbitrary scalar field, and 2) gauge invariance of the second kind -  
applied to the vector potential, this is the change: Aµ → Aµ   +  ie∂µη. The latter is 
the addition of a four-gradient of the scalar field η to the original potential Aµ. 
Applying these two types of gauge transformations to the Dirac Equation (2.2) 
then leaves it covariant, i.e. its form is left unchanged.  
 
The Unique Form of Bµ 
The form of the pseudovector potential Bµ that is gauge invariant would be a field 
that effectively interchanges the roles of the electric and magnetic field variables in 
the interaction Hamiltonian that couples a charge q to external electric and 
magnetic fields. For such a form leaves the electromagnetic interaction with 
charged matter still dependent only on the electric and magnetic field variables, 
directly. 
   The idea is the following: The electromagnetic field intensity solution of 
Maxwell’s equations, expressed in terms of the four-dimensional curl of the vector 
potential is:  

Fµν    = ∂µAν   -  ∂νAµ                 (2.4) 
where  the antisymmetric second-rank tensor Fµν is the combination of the electric 
and magnetic field variables, E and H,   as follows: F0k = -Fk0 = Ek,  Fjk = -Fkj = Hn 
and Fµµ = 0., where j ≠ k ≠ n = 1, 2, 3 and the ‘0’ subscript is the time component.  
Fµν are the solutions of Maxwell’s equations: 

∂νFµν  = 4πjµ ,       ∂[ρ,Fµν]  =  0                   (2.5) 
The ‘bracket’ in the second equation in (2.5) denotes a cyclic sum and we use units 
(henceforth in this article) with c = 1. Combining the definition of Fµν as the four-
dimensional curl of a four vector, as in eq. (2.4), Maxwell’s equations in terms of 
the vector potential are: 

�Aµ   =  4πjµ                           (2.6) 
where � is the D’Alembertian operator ∂2/∂t2  -  ∇2, and the vector potential is 
subject to the Lorentz gauge, ∂µAµ  =  0, 
which in turn corresponds to selecting the phase η(x) to be a solution of the wave 
equation, �η  = 0. 
   Since jµ is a four-vector field and � is a scalar operator, it follows that Aµ is a 
(polar)vector field. Let us now choose the (axial) pseudovector field Bµ that 
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accompanies Aµ so that 1) it satisfies the same Lorentz gauge as Aµ, i.e. ∂µBµ = 0, 
and it solves the field equation (that accompanies (2.6) for Aµ): 

�Bν  =  -iξ(4π/2)εµνλρ∫∂ρjλdxµ              (2.7) 
where εµνλρ is the totally antisymmetric Levi-Civita symbol, with ε0123 = +1.  ξ is an 
undertermined parameter at this stage of the analysis. It is, physically,  a measure of 
the ratio of reflection-nonsymmetric terms to the reflection- symmetric terms in 
the generalized four-potential expression  of electrodynamics, as discussed above.    
   A solution of eq. (2.7) that is compatible with the continuity equation, ∂µjµ  = 0,  
which in turn leads to the conservation of charge, is:  

Bν  =  -(iξ/2)∫εµνλρ∂ρAλ dxµ            (2.8) 
The integration above is defined to be an indefinite line integral . [It is, by definition, a 
function of the spacetime coordinates x, not dependent on limits in the line 
integral. For example, the line integral ∫x dx is defined here to be x2/2.] The 
integrand in eq. (2.8) is the dual of the electromagnetic field tensor, Fµν  = εµνλρFλρ. 
That is, it replaces the electric and magnetic field variables, E  ←→ H. In terms of 
these variables, the pseudovector potential may be expressed as follows: Bν  =   {B, 
B0}, where 

B = (ξ/2)∫(Hdt  +  E x  dr),    B0  =  (iξ/2)∫H• dr               (2.9) 
 

The Case of Constant Fields 

If E and H are constant fields (i.e. independent of the space and time coordinates), 
then they would come out of the integral signs in eq. (2.9). With the reflection non-
symmetric Lagrangian density Lint  = jµ(Aµ  + Bµ), Lagrange’s equation of motion 
then reduces to the following equation of motion of a test body with charge q: 

dp/dt  =  Fv  +  Fpv 
where p is the particle’s momentum,  

                       Fv  = q[E  +  v x H]                            (2.10) 
is the usual vector (polar) Lorentz force in electrodynamics and  

                       Fpv  =  -q ξ[H  -  v x E]                      (2.11) 
is a pseudovector (axial) contribution, which I have called the “anti-Lorentz force”. 
The latter predicts that a charge q would move along the lines of the magnetic field 
H.  Even if the value of the parameter ξ should be extremely small, a very large 
magnitude of the magnetic field intensity H, say in the interior or near a rotating 
galaxy, may make this prediction observable in astrophysical measurements. The 
second term in Fpv predicts a motion of a charge q in an external electric field E 
such that it would rotate perpendicularly to the plane of its velocity vector v and 
the imposed constant electric field E. 
 
The Generalized Dirac Hamiltonian 
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The behavior of an electron in an electromagnetic field, in the context of the 
quantum theory, is determined from the solutions of the Dirac equation. Here the 
free particle momentum operator is replaced with the generalized four-momentum 
operator, pν + e(Aν   +  Bν ). The Dirac equation then takes the form: 

{γν(pν   +  e(Aν   +  Bν )  -  im}ψ    =  0             (2.12) 
where pν = -i∂ν (units are used with h/2π = 1) and the  ‘Dirac matrices’ are: 

γν  =  {γ, β},    γ  =  -iβα,  γ4  =  β 
and α, β are the 4 x 4 matrices defined in terms of the Pauli matrices: α12  =  α21  =  
σ, α11   =  α22  =  0,      β11  =  −β22  =  I, β12  =  β21  =  0, I is the unit 2-matrix and  

γµ γν  +  γνγµ  =  2δµν               (µ, ν  =  1, 2, 3, 4) 
   The generalized Dirac equation was applied to the case of the hydrogen atom.14 It 
was to investigate whether the added potential Bµ in the Dirac Hamiltonian in eq. 
(2.12) would predict a contribution to the Lamb shift, exclusive of quantum 
electrodynamics. The exact solutions of (2.12) were determined for the hydrogen 
atom. The very interesting (and unexpected!) result was found that the added 
potential did not lift the accidental degeneracy in the states of hydrogen. That is, 
there was no prediction of any contribution to the Lamb shift from Bµ that might 
have accounted for the small difference between the experimental observations and 
the predictions of quantum electrodynamics (in the late 1950s).  
   The pseudovector four-potential Bµ may still contribute to other effects in the 
microscopic domain. For example, it would predict that a particle, such as a 
neutron, would have an electric dipole moment, whose value is proportional to the 
term in the Dirac Hamiltonian ξσ•Ε.12 However, after much experimental 
investigation into the possibility of the neutron electric dipole moment, it has not 
been found15, that is in the context of this theory  the parameter ξ, if it were non-
zero, must  be too small (the order of 10-13) for this effect to be observed.   
    A later analysis was based on a spinor formulation of the electromagnetic field 
theory, to be discussed in the next section. It was found that this generalization, 
based on full conformance to the reflection non-symmetric field theory that is in 
accordance with the symmetry group of relativity theory, the Lamb shift is indeed 
fully predicted, exclusive of quantum electrodynamics. The predictions were in 
agreement with the empirical facts, within the experimental error, for the hydrogen 
states with principal quantum numbers n = 2, 3, 4.16   

 
3. Factorization of Maxwell’s Equations to a Spinor Form 

In the context of Einstein’s theory of relativity, it must be asked: Is Maxwell’s 
expression of the electromagnetic theory the most general representation consistent 
with the symmetry requirements of relativity? The answer is negative because the 
symmetry of Maxwell’s equations based on reducible representations of the group of 
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relativity theory. Then there must be additional physical predictions that remain 
hidden that would not be revealed until the most general  (irreducible) expression of 
the electromagnetic field theory is used.  
   Two equivalent forms of Maxwell’s field equations in terms of the standard 
vector formalism are eq. (2.5), or (2.6) with the Lorentz gauge ∂µAµ = 0.   The 
former is in terms of the antisymmetric second rank tensor solution Fµν, that is a 
combination of the electric and magnetic field variables. The latter is in terms of 
the vector potential, Aµ, shown in eq. 2.6  (as well as eq. (2.7) in terms of the 
pseudovector potential Bµ, assuming that the parameter ξ is nonzero). 
[Experimental results to this point in time indicate that indeed this parameter is 
zero to within experimental accuracy15 – even though the symmetry of relativity 
theory has no reason to exclude it. Henceforth, we will assume that this parameter 
is zero.] 
   The symmetry requirements of the theory of relativity have geometrical and 
algebraic modes of expression. From the geometrical view in special relativity, the 
continuous spacetime transformations that leave the laws of nature covariant (i.e. 
unchanged in form) in all possible inertial frames of reference, from the view of any one 
of them, are the same set of transformations that leave invariant the squared 
differential metric 

ds2  =  (dx0)2  -  dr2                          (3.1) 
In general relativity, where the relative motion between frames is not inertial, the 
geometrical invariant of the resulting ‘curved’ spacetime is  

ds2  =  gµν(x)dxµ dxν                 (3.2) 
where µ and ν are summed from 0 to 3 and gµν = gνµ is the ten-component metric 
tensor with the flat spacetime limit that takes eq. (3.2) into (3.1). That is, in the local 
limit of a flat spacetime, 

gµν(x) →  (g00 = 1, gkk = -1 (k = 1, 2, 3) and gµ≠ν = 0) 
   The idea of covariance is then that the same set of spacetime transformations 
that leave the differential metric (3.1) in special relativity, or (3.2) in general 
relativity, unchanged (invariant) also leave all of the laws of nature covariant 
(unchanged in form) under these transformations between reference frames. The 
metric (3.l) in special relativity, or (3.2) in general relativity, then guides one to the 
forms of the covariant laws of nature, in accordance with the theory of (special or 
general) relativity. This is the role of the differential metrics – they are not to be 
considered as ‘observables’ on their own!  
   A significant point here is that it is not the squared invariant ds2 that is to underlie 
the covariance of the laws of nature. It is rather the linear invariant ds that plays this 
role. Then how do we proceed from the squared metric to the linear metric? That is 
to say, how does one take the ‘square root’ of ds2? The answer can be seen in 
Dirac’s procedure, when he factorized the Klein-Gordon equation to yield the 
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spinor form of the electron equation in wave mechanics – i.e. the ‘Dirac equation’. 
Indeed, Dirac’s result indicated that by properly taking the ‘square root’ of ds2 in 
relativity theory, extra (spin) degrees of freedom are revealed that were previously 
masked.  
   The symmetry group of relativity theory tells the story. For the irreducible 
representations of the Poincare group (of special relativity) or the Einstein group (of 
general relativity) obey the algebra of quaternions. The basis functions of the 
quaternions, in turn, are two-component spinor variables.17 

   We start out then with a factorized metric in special relativity, which has the 
quaternion form: 

ds  =   σµdxµ  ≡  σ0dx0  -  σ•dr            (3.3) 
where σ0 is the unit two-dimensional matrix and σk (k = 1, 2, 3) are the three Pauli 
matrices. The set {σµ} form the four basis elements of a quaternion  (analogous to 
the two basis elements {1, i} of a complex number). 
   In the global extension to general relativity, the geometric generalization from the 
flat spacetime description to a curved spacetime, the basis elements σµ → qµ(x), so 
that the factorized invariant differential element becomes  

ds  =  qµ(x)dxµ                            (3.4) 
This quaternion differential is a generalization of the Riemannian metric. The four-
vector quaternion fields qµ(x) then replace the second-rank, symmetric tensor fields 
gµν (x) as the fundamental metric of the spacetime.  The metric field qµ(x) is a four-
vector, whose four components are each quaternion- valued. This is then a 16-
component field, rather than the 10-component metric tensor field gµν of the 
standard Riemannian form.  
   The 16-component quaternion metric field is then a generalization of the 10-
component metric tensor field to represent gravitation. The increase in the number 
of components satisfies the group requirement of general relativity theory – that 
the Einstein group is a 16-parameter Lie group, indicating that there must be 16 
essential parameters to characterize the irreducible representations of the group. 
This implies that there must be 16 independent field equations to underlie the 
spacetime metric. These are the 16 essential parameters of the Einstein group. They 
are the derivatives of four coordinates xµ’(x) of one reference frame with respect to 
those of another:  ∂xµ’/∂xν (µ,ν = 0, 1, 2, 3).  The basic reason for the increase in 
the number of components of the metric field qµ, compared with gµν, is   
that the reflection symmetry elements of the spacetime have been removed from 
the underlying symmetry group of the latter.  [It is the same reason that the 
removal of the reflection symmetry elements from the covariance of the Klein-
Gordon operator yields the extra (spinor) degrees of freedom in the factorized 
Dirac operator in quantum mechanics]. Thus, the factorized metric (3.4) has no 
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reflection symmetry while the  ‘squared’ metric in special relativity (3.2) does have 
reflection symmetry in space and time.  
   The ‘key’ to the generalization achieved is then the removal of the reflection 
symmetry elements in the space and time coordinates in the laws of nature. This 
then leads to the Poincare group (of special relativity) or the Einstein group (of 
general relativity), since these are Lie groups – groups of only continuous, analytic 
transformations of the spacetime coordinate systems that leave the laws of nature 
covariant.  
   Let us now focus on the irreducible expressions of the electromagnetic field 
equations in special relativity, using the quaternion calculus. We will then come to 
their form in general relativity. 
   Following from the quaternion differential metric (3.3), we have the first order 
quaternion differential operator:  

σµ∂µ  =  σ0∂0  - σ•∇ 
The basis functions of this operator are the two-component spinor variables. 
Guided by the two-dimensional Hermitian structure of the representations of the 
Poincare group, we may make the following identification between the spinor basis 
functions φα  (α = 1,2) of this operator and the components (Ek, Hk) (k = 1, 2, 3) 
of the electric and magnetic fields, in any particular Lorentz frame:  

(φ1)1  =  G3 ,  (φ1)2  =  G1  +  iG2  ,  (φ2)1  =  G1  -  iG2 ,  (φ2)2  =  -G3  
(ϒ1)1  =  -4πi( ρ  +  j3)   (ϒ1)2   =   -4πi (j1  +  ij2)   (ϒ2)1  =  -4πi(j1  -  ij2) 
(ϒ2)2  =  -4πi(ρ   -  j3)                                                 (3.5) 
where Gk  =  Hk  +  iEk. It is then readily verified that the two uncoupled, two-
component spinor equations: 

σµ∂µφα  = ϒα   (α  =  1, 2)             (3.5’) 
precisely duplicate the standard form (2.5) of Maxwell’s equations.18  
   It is important to note at this stage of the analysis that the generalization achieved 
in going from the vector representation (2.5) to the spinor representation (3.5’) of 
the electromagnetic field equations is not merely a re-writing of the Maxwell 
equations. This is because the spinor formalism has more degrees of freedom than 
the vector formalism; thus it makes more predictions, in addition to duplicating the 
predictions of the (less general) vector form of the theory. This will be 
demonstrated in the following paragraphs.  
   Under the Poincare group of transformations of special relativity, when  
xµ →  xµ’  =  αµ

ν x
ν, where {αµ

ν} are the vector transformations, covariance of the 
spinor field equations (3.5) is preserved if and only if 17 

φα(x)  →  φα’(x’)  =  Sφα(x) ,   ϒα(x)  →  ϒα’(x’)  =  S+ -1ϒα(x)      (3.6) 
where the spinor transformations S relate to the vector transformations αµ

ν 
according to the equation: 
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S+σµS  = αµ
νσν                         (3.7) 

Equation (3.7) then yields the double-valued spinor transformation: 
S(θµν)  =  exp(σµσνθµν/2)           (µ,ν  =  0, 1, 2, 3)              (3.8) 

Note that this equation is not summed over (µ,ν). θµν are the constant (i.e. x-
independent) parameters the define the ten transformations  in the xµ-xν plane  of 
the 10-parameter Poincare group: three Eulerian angles of rotation in space, three 
components of the relative speed between inertial frames, and the four translations 
in space and time.  
   The solutions Fµν of the standard (reducible) vector form of electromagnetic field 
theory transform as a second-rank (covariant) tensor 

x  →  x’  ⇒  Fµν(x)  →  Fµν’(x’)  =  αλ
µαρ

νFλρ(x)            (3.9) 
Thus the identification (3.5) φα(Fµν) is not to be understood as form-invariant 
regarding the dependence (3.5) of the spinor variables φα on the tensor variables 
Fµν in any other Lorentz frame. That is to say, the Lorentz transformation of 
φα(Fµν) does not transform form-invariantly into φα’(Fµν’) under the Lorentz 
transformations of the Poincare group, x  →  x’. Of course, this is because φα 
transforms as a spin one-half basis function of the irreducible representations of 
the group of relativity while Fµν transforms as the basis functions of the spin-one 
(reducible) representations of the group. 
   The terms of the respective (reducible) tensor and the (irreducible) spinor 
expressions of the electromagnetic laws that must correspond in all Lorentz frames 
are those that identify with physical observations. These are the conservation laws 
of electromagnetism. They derive, in turn, from the invariants of the theory. 
   In accordance with the transformation properties (3.6), it follows that the  
Hermitian products, 

Iαβ  =  φα+ϒβ       (α,β  =  1 or 2)                (3.10) 
are four complex number invariants, thus corresponding to eight real number 
invariants. Particular linear combinations of these invariants may then be set up to 
correspond with the standard invariants of the vector form of electromagnetic 
theory. Since there are more independent invariants here than in the standard 
theory, there must be more invariants and physical predictions that have no 
counterpart in the standard form of the theory.  
   According to the spinor calculus,19 further invariants, in addition to (3.10), that 
correspond with the standard invariants of electromagnetic field theory, are: 

I1  = φ1trεφ2  ⇔  (E2  -  H2)  +  2iE•H       (3.11a) 
I2  =  ϒ1

trεϒ2  ⇔  j02  -  j2          (3.11b) 
where ‘tr’ stands for the transpose of the spinor variable and 
ε is the two-dimensional Levi-Civita symbol, with ε01 =  -ε10  =  1, and ε00  =  ε11  
=  0. 
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   We see here that the real and imaginary parts of the  complex invariant I1 
corresponds with the two invariants  of the standard form of electromagnetic 
theory, the scalar and the pseudoscalar terms. They appear together here in a single 
complex function because of the reflection-nonsymmetric feature of this theory. 
The invariant I2 corresponds with the real-valued modulus of the 4-current density 
of the standard theory. 
 
The Conservation Equations 
It follows from the spinor field equation (3.5’) that these equations may be re-
written in the form of four complex conservation equations: 

∂µ(φα+σµϕβ)  = φα+ϒβ  + ϒα
+φβ                (3.12) 

If we set α = β = 1 in (3.12) and add this to the equation with α = β = 2, it follows 
from the identification (3.5) that their sum corresponds with the standard form of 
the conservation equation: 

(1/2)∂0(E2  +  H2)  +  div(E x H)  =  -4π E•j        (3.13a) 
∂0(E x H)  = ρE  + j x H            (3.13b) 

Thus we see that four of the conservation equations in (3.12) correspond with all of 
the four conservation equations of the standard theory: One is the conservation of 
energy (3.13a) (Poynting’s equation), and the other three are the conservation of 
the three components of momentum (3.13b) of the standard form of 
electromagnetic field theory. But since (3.12) are eight real-number valued 
equations rather than four, the spinor formalism predicts more facts than the 
standard vector Maxwell formalism – it is a true generalization.  
 
Faraday’s Interpretation 
With Faraday’s interpretation of the electromagnetic field as a ‘potentiality’ of force 
exerted by charged matter, then to be actualized by a test body at the spacetime 
point x where it is located, there must be a separate field of force for each charged 
source. Thus, Maxwell’s equations (2.5) must be labeled for each source field: 

∂νF(n)
µν  =  4πj(n)

µ        ∂[ρF(n)
µν]  =  0              (3.14) 

for the nth source field. Similarly, the spinor expression of the electromagnetic 
equations are: 

σµ∂µφα(n)  = ϒα
(n)                  (3.15) 

It is important to note that while there are fields for each of the sources of the 
system, they are all mapped in the same spacetime x, rather than separate 
spacetimes for each source. This is the nonlocal feature of this field theory since 
there are no individual trajectories for charged discrete particles. This interpretation 
eliminates the problem of the self-energy of the electron, as a singular, charged 
particle of matter.20 
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   The conserved energy in the vector representation with Faraday’s interpretation is 
then: 

∑n∑m ≠ n(1/16π)(E(m)•E(n)  +  H(m)•H(n))           (3.16) 
rather than the standard form 

(1/8π)(E2  +  H2)                (3.17) 
   The form (3.17) is derived from integrating the conservation law (3.13a) over all 
of space and using Gauss’ law. It includes the self-energy terms (m = n) as well as 
the free field (radiation) terms that are independent of any sources. The latter terms 
are automatically absent from the expression (3.16) – which is finite from the 
outset and entails no ‘free radiation’. 
  In the spinor formalism (3.15), the four complex conservation equations, with 
Faraday’s interpretation are: 

∂µ∑n∑m ≠nφα(n)+σµφβ(m)  =  ∑n∑m ≠n(φα(n)+ϒβ
(m)  +  ϒα

(n)+φβ(m))      (3.18) 
The right-hand side of this scalar equation, which are four complex relations, then 
entails eight real number scalar equations. As in the vector formalism, there are no 
self-energy terms present.  
   It is to be noted that some of the eight equations may be expressed in one-to-one 
correspondence with all of the four conservation equations of the standard 
Maxwell formalism. But there are other conservation equations here that have no 
counterpart in the standard formalism of electromagnetism. It further implies that 
indeed this is a true generalization of the Maxwell form of electromagnetism.  
   It is interesting to note here a difference between the standard theory and the 
Faraday interpretation that relies on the Mach principle. Consider the complex 
conservation equation (3.18) with α = β  = 1. The imaginary part of this complex 
equation is: 
∂µ∑n∑m≠n(φ1(m)+σµφ1

(n)  -  φ1(n)+σµφ1(m))  =  ∑n∑m≠n(φ1(m)+ϒ1
(n)  -  ϒ1

(n)+ϕ1
(m)) 

+  (ϒ1
(m)+φ1(n)  -  φ1(n)+ϒ1

(m))   
If m = n, as included in the standard Maxwell theory, the extra four conservation 
equations above reduce to 0 = 0 – an ambiguity. However, with the restriction 
from Faraday’s interpretation that requires that m ≠ n, 
the ambiguity is removed and the extra conservation equations remain.  
   Let us now sum up the generalization of electromagnetic field theory thus far. 
The starting point is that the symmetry group that underlies Einstein’s theory of 
relativity is a Lie group – a group of continuous, analytic transformations that 
preserve the covariance of all of the laws of nature. This is the rule that all of the 
laws of nature remain in one-to-one correspondence in all continuously connected 
reference frames, from the view of any one of them. This group does not entail any 
discrete transformations in space or time.  
   In the first section of this paper it was shown that the only gauge invariant way to 
express this extension in the context of the vector potential expression of the 
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electromagnetic field theory is to add to the standard (polar) vector potential Aµ an 
(axial) pseudovector contribution Bµ.  This has the effect of interchanging the roles 
of the electric and the magnetic field variables in the coupling of a charged body to 
this field. While this addition is theoretically permitted, it was found to not imply 
any significant empirical contributions, for the magnitudes of fields studied thus far 
in the experimental domain. Future experimental studies of very high magnetic 
fields, such as the interiors of galaxies, may reveal possible observable 
consequences in astrophysical studies. 
   In the second section of this paper, the group requirement that removes the 
reflection transformations was met head-on, without the need to add any new 
potential terms. It was seen that the most general expression of electromagnetic 
field theory – that excludes reflections in spacetime in the underlying symmetry 
group, follows from a factorization of the vector representation of the Maxwell 
theory to a first-rank spinor form.  
This is a natural generalization, following from the irreducible representations of the 
covariance group of relativity theory that leads to extra physical predictions, 
because of the extra degrees of freedom in the spinor variables.  
   In the next section, the final generalization of full symmetrization will be carried 
out, whereby the spinor-quaternion expression of the laws of electromagnetism will 
be extended from special relativity to general relativity. This extension automatically 
fuses the laws of electromagnetism with those of gravity. It will be shown that the 
generalized formalism for electromagnetism is obtained from a factorization of 
Einstein’s field equations. The new formalism is in terms of a replacement of 
Einstein’s tensor metric field with a vector field in which each of its four 
components is quaternion-valued. Thus, the new metric variable qµ(x) has 16 
independent components, rather than the 10 (of the symmetric tensor gµν of the 
Einstein formalism) or the 6 (of the antisymmetric tensor Fµν of the Maxwell 
formalism).  From the factorized metrical field equations in qµ it will be seen how 
the Einstein formalism and the Maxwell formalism are recovered, though now 
identifying each with the single quaternion field and its related spinor calculus in a 
curved spacetime.  
 
 4. Extension of Electromagnetic Field Theory to General Relativity 
The Group 
In accordance with the principle of general covariance – the underlying axiom of 
the theory of general relativity – the expressions of all of the laws of nature in all 
possible continuously connected frames of reference, from the view of any one of 
them, must be in one-to-one correspondence. The different reference frames, in turn, 
relate to each other in terms of continuous, differentiable transformations, that we 
call “motion”. [The differentiability of these transformations to all orders, requiring 
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that they be analytic, is dictated by the requirement of the inclusion of the laws of 
conservation of energy, momentum and angular momentum in the special relativity 
limit of the theory; this is in accordance with Noether’s theorem7] When the 
relative motion is inertial, characterized by 3 constant parameters of relative 
velocity, 3 (Eulerian) angles of rotation and 4 translations, the underlying set of 
transformations forms the 10-parameter Lie group of special relativity. It is the 
Poincare group P.2 This a special limit of the coordinate-dependent (non-inertial) 
transformations group of general relativity - the Einstein group E. It is a 16-
parameter Lie group whose representations are a global extension of the 
representations of the Lie group P.21 

   It is important to recognize that, in physics, P is an asymptotic limit of E, but P is 
not a subgroup of E. This is for the physical reason that P is only exact in the case 
of a vacuum – wherein the entire universe would be empty! For in the field theory 
of general relativity, if there should be matter, anywhere in the universe, the continuous, 
analytic fields associated with this matter must be nonzero everywhere. In this case, 
the parameters that relate a reference frame to any other must be spacetime-
dependent. Thus, special relativity can only be viewed as an asymptotic limit of 
general relativity. Its representations may be approached asymptotically from those 
of general relativity, as closely as we please, but not reached in an exact sense!  The 
Einstein Group E is a form of a topological group T. 
 
A Mathematical diversion on the Nature of  E – Pontjagin’s Theorem 

          Firstly, because E prescribes the invariance associated with continuous changes 
from any point of the function space of field solutions, to any other that is 
arbitrarily close, E must be locally compact. 

             Secondly, because of the rejection of the discontinuous reflections in the 
spacetime, the topological space of this group must be connected – i.e. it cannot be 
decomposed into two or more disjoint sets. 

              Thirdly, since the elements of this topological space are a countable number of 
fields {ψ(1)(x), … ψ(n)(x)}– corresponding to the countable modes of the closed 
system – and since the continuous changes of these field variables in their own 
neighborhoods {δψ(1), … δψ(n)} are induced by the transformations of the group, it 
follows that the complete set of neighborhoods of the topological space is countable. 
The topological group T is then said to satisfy the second axiom of countability. 

              Pontrjagin’s theorem is the following:22 Let T be a locally compact, connected 
topological field satisfying the second axiom of countability. Then T is isomorphic 
with one of the three topological fields: a) the field of real numbers, b) the field of 
complex numbers, c) the field of quaternions.  

               Since the Einstein group E corresponds with the topological group T, the most 
general mathematical system to express the laws of physics in general relativity is 
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then the set of quaternions.23 Reducing the quaternion-valued field from four 
dimensions to two leads to the complex number-valued field and further reduction 
to one dimension leads to the real number-valued field. [The word “field” here 
refers to an “algebraic field”22]. The latter two sets may be seen as subsets of the 
first, reductions where one loses not only dimensionality but also the important 
feature of noncommutability of the quaternion number system. The quaternion 
field then expresses the laws of nature to be compatible with the covariance 
requirement of the group of general relativity E. 

            
          The Electromagnetic Field Equations in General Relativity 
           The vector representation (2.5) of Maxwell’s equations extends to general relativity 

by globalizing the ordinary derivatives to covariant derivatives that entail the affine 
connection Γλ

µν of the curved spacetime.24 Thus, (2.5) takes the following form in 
the curved spacetime: 

            
Fµν

;ν  = 4πjµ             (4.1a) 
F[µν

;λ]  =  0            (4.1b)  
          Where the square brackets denote the cyclic sum and  

Fαβ
;γ  ≡  ∂γFαβ +  Γα

ργFρβ  +  Γβ
ργFαρ                   (4.2) 

           The affine connection coefficients in terms of the metric tensor are:24 
Γρ

µα  =  (1/2)gρλ(∂µ gλα    +  ∂α gµλ    -  ∂λ gαµ  ) 
          The two-component spinor form of electromagnetic field theory (3.5’) is 

generalized in the curved spacetime by 1) globally extending the Pauli matrices to 
the quaternion elements, σµ → qµ(x), and b) generalizing the ordinary derivatives to 
covariant derivatives of the spinor variables. This entails the ‘spin-affine connection 
fields’ Ωµ as follows: 

qµ(x)φα;µ  ≡  qµ(x)(∂µ  +  Ωµ)φα  =  ϒα               (4.3) 
           where 

Ωµ  =  (1/4)(∂µqρ  +  Γρ
τµqτ)qρ∗                   (4.4) 

           and qρ∗ is the quaternion conjugate to qρ, corresponding to time-reversal (or space 
reflection) of qρ. [ Henceforth, the asterisk over the quaternion variables denotes 
the ‘quaternion conjugate’, not the ‘complex conjugate’. The former is obtained by 
reversing the sign of the time component of the quaternion variable]. 

           
           The Global Spinor Lagrangian for Electromagnetism 
            The Lagrangian density that gives, upon variation, the topologically covariant field 

equations (4.3) is an explicit function of the spinor variables, φ1, φ1+, φ2, φ2
+ and 

their respective covariant derivatives. [The superscript ‘dagger’ denotes the 
Hermitian conjugate of the function]. It has the form: 
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LM  =  {igM∑α(-1)α[φα+(qµφα;µ  -  2ϒα)  +  h.c.}(-g)1/2    (4.5) 
         where ‘h.c.’ stands for the Hermitian conjugate of the term preceding it and 

(-g)1/2  =  iεµνλρqµqν∗qλqρ∗ 
          is the ‘metric density’. The multiplicative constant gM in (4.5) has the dimension of a 

length – it is the one extra fundamental constant in this theory. Its appearance 
results from the generalization that is effected when the Lagrangian is expressed in 
terms of the spinor variables rather than the usual vector variables. Since the spinor 
variables φα have the dimension of an electric field intensity, the terms summed 
have a dimension of energy density per length; thus gM has the dimension of a 
length so that the Lagrangian  has the proper dimension of energy density.  

              The magnitude of gM was determined from the prediction that this spinor 
formalism yields the Lamb shift in hydrogenic atoms. It follows from the new 
terms in the spinor formulation of electromagnetism that appear in the Dirac  
Hamiltonian, that are not present in the standard Dirac equation for hydrogen.16 
These extra terms then predict a lifting of the accidental degeneracy in the states of 
hydrogen, thus the Lamb shift. The new fundamental constant gM was found to 
have a magnitude that is the order of 2 x 10-14 cm. This gives results that are in 
agreement with the experimental facts on the Lamb shifts nS1/2 – nP1/2 for the 
principal quantum numbers for hydrogen, n = 2, 3 and 4.  

 
           Derivation of the Maxwell Field Formalism from General Relativity  
          The covariance groups underlying the tensor forms of the respective Einstein and 

the Maxwell field equations are reducible. This is because they entail reflection 
symmetry, not required by relativity theory, as well as the required continuous 
symmetry of the Einstein group E. When the Einstein field equations are 
factorized, they yield the irreducible form, that are then in terms of the quaternion 
and spinor variables, rather than the tensor variables. Such a generalization must 
then extend the physical predictions of the usual tensor forms of general relativity 
of gravitation and the standard vector representation of the Maxwell theory (both 
in terms of second-rank tensor fields, one symmetric and the other antisymmetric) 
because the new factorized variables have more degrees of freedom than the earlier 
version.  

              The starting point then to achieve the factorization of the Einstein equations is 
the factorized differential line element in the quaternion form, ds  = qµ(x)dxµ, 
where qµ are a set of four quaternion-valued components of a four vector. Thus ds 
is, geometrically, a scalar invariant, but it is algebraically a quaternion. As such, it 
behaves like a second rank spinor of the type ψ⊗ψ∗, where ψ is a two-component 
spinor variable.17  

              We see then that the basic variable that represents the generalized spacetime that 
is appropriate to general relativity is a 16-component variable. One may then 
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speculate at the outset that these 16 independent components of the metrical field 
relate to the 10 components of the gravitational field plus 6 components of the 
Maxwell field, in terms of a single unified field that incorporates both gravitation 
and electromagnetism. We will now see that this is indeed the case. 

              Since there is no reflection symmetry in the quaternion formulation, the ‘reflected’ 
quaternion qµ∗ must be distinguishable from qµ. The conjugate differential line element to 
ds is ds*  =  qµ∗dxµ. The product of the quaternion and conjugate quaternion line elements 
is then the real number-valued element that corresponds to the squared differential element 
of the Riemannian geometry: 

ds ds*  =  -(1/2)(qµ qν∗  +  qνqµ∗)dxµ dxν  ⇔  σ0gµνdxµ dxν 
          Thus the symmetric second rank metric tensor gµν of Einstein’s formulation of 

general relativity corresponds to the symmetric sum from the quaternion theory, (-
1/2)(qµqν∗  + qνqµ∗). [The factor (-1/2) is chosen in anticipation of the 
normalization of the quaternion variables.] Thus we see that ds is a factorization of 
the standard Riemannian squared differential metric ds2 = gµνdxµdxν. 

                    The following is an outline that leads to a derivation of the factorization of the 
Einstein formalism that gives back to the gravitational and the electromagnetic 
equations from a unified quaternion-spinor formalism.  

 
           The Variables of a Riemannian Spacetime in Quaternion Form25  
            Let us now exploit the feature of the quaternion metrical field that it has 

configuration degrees of freedom, as a four-vector, as well as spinor degrees of 
freedom, as a second rank spinor of the type: ψ⊗ψ*. 

              Since the quaternion qµ is a four-vector, the product qµqµ∗ must be invariant 
under the continuous spacetime transformations and the reflections in spacetime. It 
then follows that the covariant derivatives and the second covariant derivatives of 
the quaternion fields must vanish. Since 

          qµ ∼ (ψ⊗ψ∗)µ, it follows that (with α,β  =  1,2) 
0 =  (qµ;ρ;λ  -  qµ;λ;ρ)αβ  =  [(ψα;ρ;λ  -  ψα;λ;ρ)ψβ

∗  +  ψα(ψβ;ρ;λ  -  ψβ;λ;ρ)] 
      +  ([qµ;ρ;λ]  -  [qµ;λ;ρ])                                                    (4.6) 
The squared bracket above denotes the behavior of the quaternion field with 
respect to its vector degrees of freedom alone. The covariant derivatives of the 
two-component spinor variables are as follows: ψ;ρ  =  (∂ρ  +  Ωρ)ψ and the “spin 
affine connection” has two alternative (equivalent) forms:17 

Ωρ  =  (1/4)(∂ρqµ  + Γµ
τρqτ)qµ∗  =  -(1/4)qµ(∂ρqµ∗  +  Γµ

τρqτ∗)      (4.7) 
Ωρ is the term that must be added to the ordinary derivative of a spinor field in a 
curved spacetime in order to define its derivative covariantly; that is to say, in 
order that the spinor variable is integrable in the curved spacetime.  
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   The first two terms on the right hand side of eq. (4.6) denote the changes with 
respect to the spinor indices, the third term denotes the changes in configuration 
space. Their explicit forms are: 

ψ;ρ;λ  -  ψ;λ;ρ  =  (∂λΩρ  +  ΩλΩρ  -  ∂ρΩλ  -  ΩρΩλ)ψ  ≡  Kλρψ      (4.8) 
where Kρλ  =  -Kλρ  is the “spin curvature tensor”. It is clearly a second-rank, 
antisymmetric tensor in configuration space. Since the left-hand side of this 
equation is a first-rank spinor in spinor space, the spin curvature tensor on the 
right, Kρλ, must be a second rank spinor that contracts with the first rank spinor ψ 
on the right to yield a first-rank spinor function.  The spin affine connection field 
Ωρ, on the other hand, is a four-vector in configuration space, but it is not 
covariant in spinor space. This is clear since it is the term that must be added to 
the ordinary (non-covariant) derivative of the spinor variable in order to make its 
derivative in a curved spacetime covariant. 
   In the third term in eq. (4.6), where the square bracket stands for the changes in 
qµ as a four vector, we have: 

[qµ;ρ;λ]  -  [qµ;λ;ρ]  =  Rκµρλqκ                  (4.9) 
This defines the “Riemann curvature tensor”, Rκµρλ, wherein qµ could be any 
covariant four-vector.  
   Substituting (4.8) and (4.9) into (4.6), the relation between the spin curvature 
tensor and the Riemann curvature tensor follows:  

Kρλqµ  + qµKρλ
+  =  -Rκµρλqκ              (4.10) 

where the ‘dagger’ denotes the Hermitian adjoint of the function.  
   In a similar fashion, application of the preceding analysis to the conjugated 
quaternion fields yields the accompanying equation to (4.10): 

Kρλ
+qµ∗  + qµ∗Kρλ  = Rκµρλqκ∗          (4.11) 

Multiplying (4.10) on the right with the conjugated quaternion qγ∗ and (4.11) on the 
left with the quaternion qγ, then adding the resulting equations and using the 
identity: 

qγqκ∗  +  qκqγ∗  =  2σ0δγκ 
where  σ0 is the unit two-dimensional matrix, the following correspondence is 
derived between the Riemann curvature tensor and the spin curvature tensor: 

σ0Rκµρλ  =  (1/2)(Kρλqµqκ∗  -  qκqµ∗Kρλ  +  qµKρλ
+qκ∗  -  qκKρλ

+qµ∗)   (4.12) 
   Next, contracting Rκµρλ with the contravariant metric tensor gµλ yields the 
correspondence with the Ricci tensor Rκρ: 
σ0gµλRµκρλ  ≡  σ0Rκρ  =  (1/2)(Kρλqλqκ∗  -  qκqλ∗Kρλ  +  qλKρλ

+qκ∗  -  qκKρλ
+qλ∗)                         

(4.13) 
   Finally, the scalar curvature field R follows from the further contraction of the 
Ricci tensor (4.13) with the metric tensor, giving: 
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σ0R  =  (1/2)(Kρλqλqρ∗  - qρqλ∗Kρλ  + qλKρλ
+qρ∗  - qρKρλ

+qλ∗)    (4.14) 
 
The Quaternion Field Equations 
The Lagrangian density whose vanishing variation leads to the field equations in qλ 
is chosen to be the trace of the scalar curvature: 

LE  =  (TrR)(-g)1/2  =  (1/2)Tr(qρ∗Kρλqλ  +  h.c.)(-g)1/2       (4.15) 
If we signify by LM the part of the Lagrangian density that yields the matter 
variables upon variation with respect to the quaternion variables, then the total 
Lagrangian density is L  =  LE  +  LM. Its variation with respect to the conjugated 
quaternion variables then yields the field equations:25 

(1/4)(Kρλqλ  +  qλKρλ
+)  +  (1/8)Rqρ  =  kTρ                (4.16a) 

Variation with respect to the quaternion variables yields the conjugated quaternion 
field equation: 

-(1/4)(Kρλ
+qλ∗  + qλ∗Kρλ)  +  (1/8)Rqρ∗  =  kTρ

∗     (4.16b) 
[Note that the source term Tρ is a quaternion and Tρ

∗ is a conjugated quaternion]. 
   The quaternion field equations (4.16ab) are then the factorization of Einstein’s 
tensor field equations: 

Rµν  -  (1/2)gµνR  =  kTµν               (4.17) 
The solutions of the latter equations are the ten components of the symmetric 
second-rank metric tensor gµν. The solutions of the factorized equations 4.16a (or 
4.16b) are the sixteen components of the quaternion metrical field qρ (or qρ∗). We 
will now see that this sixteen-component metrical quaternion field indeed 
incorporates the gravitational and the electromagnetic fields in terms of their 
earlier tensor representations.   Gravitation entails ten of the components in the 
symmetric second-rank tensor gµν.  Electromagnetism entails six of the 
components (the three components of the electric field and the three components 
of the magnetic field), as incorporated in the second-rank antisymmetric tensor 
Fµν.  
   To demonstrate the natural unification of the gravitational and electromagnetic 
aspects of the quaternion field equation (4.16a) and its conjugate equation (4.16b), 
we follow this procedure: Multiply (4.16a) on the right with the conjugated 
quaternion solution qγ∗, and the conjugated equation (4.16b) on the left with qγ. 
Then adding (with the constant k on the right) and subtracting (with the constant 
k’ on the right) we obtain the following pair of equations: 
 
(1/2)(Kρλqλqγ∗  -(±)  qγqλ∗Kρλ  +  qλKρλ

+qγ∗ -(±) qγKρλ
+qλ∗) 

+  (1/4)(qρqγ∗  ±  qγqρ∗)R  =  2(k’
 k)  (Tρqγ∗  ±  qγTρ

∗)      (4.18±) 
   Examination of eqs. (4.12), (4.13) and (4.14) shows that eq. (4.18+) is in one-to-
one correspondence with Einstein’s second-rank symmetric tensor equation (4.17).  
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The Electromagnetic Field Equations 
The antisymmetric second-rank tensor equations (4.18-), corresponding with six 
independent relations, may be re-expressed in terms of the Maxwell field theory 
(2.5) by taking the covariant divergence of  (4.18-), with 

Fργ  = Q[(1/4)(Kρλqλqγ∗  +  qγqλ∗Kρλ  +  qλKρλ
+qγ∗  +  qγKρλ

+qλ∗) 
                          +  (1/8)(qρqγ∗  - qγqρ∗)R]                 (4.19)  
In this expression for the electromagnetic field intensity tensor, Q is a constant of 
proportionality with the dimension of charge, inserted on both sides of eq. (4.18-). 
The four-current density is: 

jγ  =  (Qk’/4π)(Tρ
;ρqγ∗  -  qγTρ

;ρ∗)                     (4.20) 
   The role of the Mach principle is revealed at this stage of the analysis. Since Fρλ 
depends on the spin curvature tensor Kρλ, which automatically vanishes in a 
vacuum (i.e. a flat spacetime), the electromagnetic field, and therefore the 
previously considered electric charge of any quantity of matter in a vacuum must 
vanish. Thus, not only the inertial mass but also the electric charge of a ‘particle’ of 
matter does not exist when there is no coupling to other matter. I have generalized 
this idea in the field theory based on General Relativity, to the case where all 
previously considered intrinsic properties of discrete matter, in addition to inertial 
mass and electric charge, vanish identically in a vacuum. This view exorcises all of 
the remaining features of the discrete, separable ‘elementary particle’ of matter. It 
is replaced with a view of matter in terms of a closed, continuous field theory, 
according to the theory of general relativity. I have called this view of matter, 
whereby all of its previously considered intrinsic properties are explained in terms 
of coupling within the closed system, ‘the generalized Mach principle’.10   
 
The Conservation of Charge 
Since Fργ is an antisymmetric tensor in spacetime and since the components of the 
ordinary affine connection Γαβ

γ are symmetric in the indices (αβ), it follows that 
the four-divergence of the current density jγ automatically vanishes. That is, as in 
the standard formulation, the equation of continuity follows from taking the 
covariant divergence of Maxwell’s equation (4.1a): 

jγ;γ  =  (1/4π)Fργ
;ρ;γ  =  0                  (4.21) 

It then follows from the integral form of (4.21) (in the local domain) that the 
integral of the time component j0 over all of 3-space is time-conserved.  This 
assumes that there is no current flow in or out of the surface containing the charge 
Q  =  ∫j0d3x, that gives rise to the electromagnetic field of force Fργ. 
 
The Absence of Magnetic Monopoles26 
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The form (4.18-) for the electromagnetic field intensity was seen to yield four out 
of the eight of Maxwell’s equations associated with the current source, as shown in 
eq (4.1a).  It also follows that the four of Maxwell’s equations without source 
terms, 

F[µν
;λ]  ≡  Fµν

;λ  +  Fλµ
;ν  +  Fνλ

;µ  =  0     (4.22) 
are  predicted by the quaternion structure of Fργ as given in (4.19). This implies the 
absence of magnetic monopoles since, if they did exist, the right-hand side of 
(4.22) would be non-zero.  
   This result is a consequence of the dependence of the definition of Fργ on the 
spin curvature tensor, Kρλ, according to eq. (4.19) as well as the vanishing of the 
covariant derivatives of all metrical quaternion fields, qρ;λ.  The former follows 
because the spin curvature tensor Kρλ is the four-dimensional curl of a four-vector 
in configuration space: 

Kρλ  = ∂λΩρ  - ∂ρΩλ  + ΩλΩρ  - ΩρΩλ  = Ωρ;λ  - Ωλ;ρ  =  -Kλρ   (4.23) 
which, in turn, follows from the transformation of the spin affine connection Ωρ in 
configuration space as a four-vector. It then follows that the cyclic sum K[ρλ;γ]  =  0. 
  This result, according to eq. (4.19), in turn, implies that eq. (4.22), F[ρλ;γ]  =  0, 
must be true, indicating that there are no magnetic monopoles in this formulation 
of the electromagnetic field equations – for if there were, there would be a non-
zero source term in eq. (4.22). 
   Thus we have seen that the factorized quaternion field equations (4.16a) (or their 
conjugated equations (4.16b)) –the irreducible form of electromagnetism according 
to the underlying group of general relativity – indicates a lack of magnetic 
monopoles, in agreement with the standard formulation of the Maxwell field 
theory. The factorized field formulation of general relativity, in terms of the 16-
component quaternion metrical field, qµ, then automatically fuses the laws 
according to Einstein’s formulation, and the laws of electromagnetism, according 
to the Maxwell formulation, in a unified field theory of the gravitational and 
electromagnetic manifestations of matter. 
 

   It is important to recognize at this stage of the analysis that the unified field equations 
(4.16) entail more physical predictions than do the respective earlier versions of gravitation – 
Einstein’s field equations– and electromagnetism – Maxwell’s field equations. We have 
already seen extra predictions from the spinor form of the electromagnetic field equations. 
Though this theoretical analysis does not focus on the expression of electromagnetism in terms 
of potential fields, extra predictions may indeed also follow in the quaternion-spinor 
formulation from the structuring of the electromagnetic B(3) potential field, as derived in the 
theory of M. Evans and his collaborators.27  
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5.Electromagnetism and Wave Mechanics28 

   Derivation of Born’s Probability Calculus 
The conventional conceptual content of Quantum Mechanics was initiated by 
the Copenhagen School when it was recognized that one could express the linear 
Schrodinger wave mechanics in terms of a probability calculus, whose solutions 
are represented with a Hilbert function space. Max Born then interpreted the 
wave nature of matter in terms of a spatially distributed probability amplitude  - a 
wave represented by a complex function – to accompany the material particle as 
it moves from one place to another. The Copenhagen view was then to define the 
basic nature of matter in terms of the measurement process, with an underlying 
probability calculus - wherein the probability densities (for locating the particles 
of matter/volume) are the real number-valued modulii of the matter wave 
amplitudes.  
   But this was not Schrodinger’s intention in his formulation of wave 
mechanics!29 Rather, it was to complete the Maxwell field formulation of 
electromagnetic theory by incorporating the empirically verified wave nature of 
matter in the source terms on the right hand sides of Maxwell’s equations.  
   The ‘matter field’ was originally postulated by Louis de Broglie, and discovered 
in the electron diffraction studies of Davisson and Germer30 and of G.P. 
Thomson31. From Schrodinger’s understanding of the matter field of, say, an 
electron, it must be represented in the source terms (charge and current density) 
of Maxwell’s equations, as the modulii of these waves.  
   Integration of the local limit of eq. (4.20) for the four-current density source of 
Maxwell’s equations, together with the boundary condition that the 3-current 
part of this density, jk, vanishes on the bounding surface of a volume that 
contains the total charge Q, then gives the law of conservation of electric charge: 

σ0Q  = ∫j0d3x  = constant in time       (5.1) 
[The insertion of the unit matrix σ0 on the left takes account of the matrix 
structure (3.15) of the current density in the quaternion formulation.]  
   The local limit of j0 in eq. (4.20) is: 

j0  =  -(Qk’/4π)∂ρ(Tρ
(1)  +  Tρ

(1)∗)               (5.2) 
where Tρ

(1) is the local limit of the matter source of the quaternion metric field 
equation. In terms of the Lagrangian density for the matter variables, its form is -
δLM/δqρ∗. 
   Taking determinants of both sides of eq. (5.2) then yields the value of the 
constant k’ as follows: 

k’  =  -(4π)/∫∂ρ(Tρ
(1)  +  Tρ

(1)∗)d3x 
where the ‘vertical bars’ denote the determinant. 
Thus, the four-current density jγ of this expression of the Maxwell theory has the 
following general form in a curved spacetime: 
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jγ  =  Q(Tρ
;ρqγ  -  qγTρ

;ρ∗)/∫∂ρ(Tρ
(1)  +  Tρ

(1)∗)d3x             (5.3) 
The ‘matter density’, interpreted in conventional Quantum Mechanics as a 
‘probability density’, is then: 

σ0ρ  =  j0/Q  =  (q0Tρ
;ρ∗  -  Tρ

;ρq0∗)/∫∂ρ(Tρ
(1)  +  Tρ

(1)∗)d3x    (5.4) 
   In the local limit, q0  →  σ0, q0∗  →  σ0

∗  =  -σ0, Tρ
;ρ  →  ∂ρTρ

(1) 
Thus, we have: 

loc lim ∫ρd3x  =  1             (5.5) 
Equation 5.5 is the normalization condition that was postulated by Max Born, in 
his interpretation of Schrodinger’s non-relativistic wave mechanics as a 
probability calculus. As we see here, the derived normalization is not a general 
relation in the full, generally covariant expression of the field theory.  
   We also see from the general form (5.3) that the three-current density part of jγ 
is:  

jk/Q  =   (qkTρ
;ρ∗  -  Tρ

;ρqk
∗)/∫∂ρ(Tρ

(1)  +  Tρ
(1)∗)d3x 

This expression predicts a coupling of the ‘gravitational field’ (in terms of qk) 
with the matter field components Tρ to define a gravitational current 
contribution. The latter is not foreseen in the conventional theories that neglect 
the gravitational coupling to matter fields.  
 
Summary 
We have seen in this section that the factorization of Einstein’s symmetric, 
second-rank tensor field equations (10 relations) to a quaternion form (16 
relations) yields not only the gravitational and electromagnetic manifestations of 
matter in a unified field theory, but   also reveals a feature of Quantum 
Mechanics. In particular, it was found that in the flat space approximation to the 
curved space representation in general relativity, the time component of the 
electromagnetic four-current density corresponds in a one-to-one way with the 
probability density of Quantum Mechanics. Its integration over all of space in 
this limit is found to be unity.  
   This is a result that was postulated (not derived from first principles) when 
Born attempted to identify Quantum Mechanics with a probability calculus. The 
result of this analysis, in which the normalization follows as a derivation from 
General Relativity, together with a rigorous derivation of the quantum 
mechanical equations from general relativity32 then enforces the view of a 
paradigm change in physics. It is from that of Quantum Theory, which has 
dominated the last two thirds of the twentieth century, to that of General 
Relativity, as a theory of electromagnetism, gravity and matter, in all domains. 
This is a shift to a paradigm for the laws of matter based fully on the views of 
continuity, determinism and holism, in terms of the nonsingular field concept.33  
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