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PREFACE

The goal of this book isto give you the skills and knowledge necessary to succeed
in calculus. Much of the difficulty calculus studentsfaceiswith algebra. They have
to solve equations, find equations of lines, study graphs, solve word problems, and
rewrite expressions—all of these require a solid background in algebra. You will
get experience with al thisand morein thisbook. Not only will you learn about the
basic functions in this book, you also will strengthen your algebra skills because
all of the examples and most of the solutions are given with alot of detail. Enough
steps are given in the problems to make the reasoning easy to follow.

Thebasicfunctionscoveredinthisbook arelinear, polynomial, and rational func-
tions, as well as exponential, logarithmic, and trigonometric functions. Because
understanding the slope of alineiscrucia to making sense of calculus, theinterpre-
tation of aline’'s slope is given extra attention. Other calculus topics introduced in
thisbook are Newton’s Quotient, the average rate of change, increasing/decreasing
intervals of afunction, and optimizing functions. Your experience with these ideas
will help you when you learn calculus.

Conceptsarepresentedin clear, simplelanguage, followed by detailed examples.
To make sure you understand the material, each section ends with a set of practice
problems. Each chapter ends with a multiple-choice test, and there isafinal exam
at the end of the book. You will get the most from this book if you work steadily
from the beginning to the end. Because much of the material is sequential, you
should review theideasin the previous section. Study for each end-of-chapter test
asif it really were atest, and take it without looking at examples and without using
notes. Thiswill let you know what you have learned and where, if anywhere, you
need to spend more time.

Good luck.

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use. .



CHAPTER

The Slope and
Equation of a Line

The slope of aline and the meaning of the slope are important in calculus. In fact,
the dlopeformulaisthe basisfor differential calculus. The slope of aline measures
its tilt. The sign of the slope tells us if the line tilts up (if the slope is positive)
or tilts down (if the slope is negative). The larger the number, the steeper the
slope.

We can put any two pointson theline, (x1, y1) and (x2, y2), inthe slope formula
to find the slope of the line.

y2—y1
m =
X2 — X1

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



CHAPTER 1 The Slope and Equation

This slope is
negative. This slope is
positive.

Fig. 1.1.

This slope is 4.

This slope is é
[
2 3 4 5

ig. 1.2.

For example, (0, 3), (—2,2), (6,6), and (—1, g) are all points on the same line.
We can pick any pair of points to compute the slope.

2-3 -1 1 5-2 3 1
"= 0T 272 1-(—2 1 2
3-6 -3 1
"= 06~ 62

A sope of % means that if we increase the x-value by 2, then we need to increase
the y-value by 1 to get another point on the line. For example, knowing that (0, 3)
ison the line meansthat weknow (0+ 2,3+ 1) = (2, 4) isalso on theline.
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As we can see from Figure 1.4, (—4, —2) and (1, —2) are two points on a
horizonta line. We will put these points in the slope formula.

—2-(-2) 0

T 1-(-4 5

The slope of every horizontal lineis 0. The y-values on a horizontal line do not
change but the x-values do.
What happens to the slope formulafor a vertical line?
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Fig. 1.5.

Thepoints (3, 2) and (3, —1) areonthevertica linein Figure 1.5. Let'sseewhat
happens when we put them in the slope formula.

-1-2 -3
3-3 0
Thisisnot anumber so the slope of avertical line does not exist (we also say that
it isundefined). The x-values on avertical line do not change but the y-values do.
Any line is the graph of a linear equation. The eguation of a horizontal line

isy = a (where a is the y-value of every point on the line). Some examples of
horizontal linesarey =4,y =1,and y = —5.

m —

5
y=4
3_
2_
y=1
:

L 1 1 1 1 1 1 ! 1 J
5 -4 -3 -2 -1 1 2 3 4 5
1+
21
3+
4+

y=-5
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The equation of avertical lineisx = a (where a isthe x-value of every point
ontheline). Someexamplesarex = —3,x = 2,and x = 4.

5~
4
3
r=-3 2 z=2|z=4
1k
L L I I J
5 -4 B -2 -1 1 3 4 5
1k
.
3k
4k
5L
Fig. 1.7.

Other equationsusually comeinoneof twoforms: Ax+By = Candy = mx—+b.
We will usually use the form y = mx + b in this book. An equation in this form
gives us two important pieces of information. Thefirst ism, the slope. The second
is b, the y-intercept (where the line crosses the y-axis). For this reason, this form
is called the ope-intercept form. Intheline y = %x + 4, the dope of theline is%
and the y-intercept is (0, 4), or simply, 4.

We can find an equation of aline by knowing its slope and any point on theline.
There are two common methods for finding this equation. Oneisto put m, x, and y
(x and y are the coordinates of the point we know) in y = mx + b and use algebra
tofind b. The other isto put these same numbersin the point-slope form of theline,
y — y1 = m(x — x1). We will use both methods in the next example.

EXAMPLES

e Find an equation of the line with slope —% containing the point (8, —2).
Wewill letm = —3,x = 8,and y = —2iny = mx + b tofind b.

3
—2=—=@8)+b
4()+

4=1>

. 3
Thelineisy = 7 + 4.
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_ 3 .
Now we will let m = —Z,x1:8and y1=-2iny —y; = m(x — x1).
3
Y- (2=~ —8
3
y+2= —Zx+6

3
y=—2x+4

Find an equation of the line with slope 4, containing the point (0, 3).

We know the slope is 4 and we know the y-intercept is 3 (because (0, 3) is
on the ling), so we can write the equation without having to do any work:
y =4x + 3.

Find an equation of the horizontal line that contains the point (5, —6).
Because the y-values are the same on a horizontal line, we know that this
equationisy = —6. Wecan still find the equation algebraically using thefact
thatm =0,x =5and y = —6. Then y = mx + b becomes —6 = 0(5) + b.
From here we can seethat » = —6,s0 y = Ox — 6, or Simply, y = —6.
Find an equation of the vertical line containing the point (10, —1).

Because the x-vaues are the same on a vertical line, we know that the
equation isx = 10. We cannot find this equation algebraically because m
does not exist.

We can find an equation of aline if we know any two points on the line. First
we need to use the slope formulato find m. Then we will pick one of the points to
put into y = mx + b.

EXAMPLES

Find an equation of the line containing the given points.

(—2,3) and (10, 15)
_15-3
10— (-2
Wewillusex = —2andy = 3iny = mx + b tofind b.
3=1-2+»b
5=5b
Theequationisy = 1x + 5, orsimply y = x + 5.
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e (3,-Dand(4,3)

2 2
Usingx =4andy = 3iny = mx + b, we have
8
3:?(4)+b
g,
7

The equationisy = 8x — 1.
e (0,1)and (12,1)

The y-values are the same, making this a horizontal line. The equation is

y=1

If agraph is clear enough, we can find two points on the line or even its slope.
If fact, if the slope and y-intercept are easy enough to see on the graph, we know
right away what the equationis.

EXAMPLES

-2

-3

A4

-5
Fig. 1.8.

Thelinein Figure 1.8 crosses the y-axis at 1, so b = 1. From this point, we

can go right 2 and up 3 to reach the point (2, 4) on theline. “Right 2" means

that the denominator of the slopeis 2. “Up 3" means that the numerator of
the siopeis 3. The slopeiis 3, so the equation of thelineisy = 3x + 1.
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The y-intercept is not easy to determine, but we do have two points. We

can either find the dope by using the slope formula, or visualy (as we

did above). We can find the slope visually by asking how we can go from

(—4,3) to (2, —1): Down 4 (making the numerator of the slope —4) and

right 6 (making the denominator 6). If we use the slope formula, we have
-1-3 —4 2

"E a6 T 3
Usingx =2andy = —1iny = mx + b, wehave —1 = —3(2) + b. From

this, we have » = 3. The equationisy = —%x + 3.
.
n
s
ol
L
[ 1 1 1 | 1 1 1 J
54 3 B I 1 2 3 4 5
L
oL
3+
ni
5L
Fig. 1.10.

The line in Figure 1.10 is vertical, so it has the form x = a. All of the
x-values are —2, so the equationisx = —2.
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When an equation for a line is in the form Ax + By = C, we can find
the dlope by solving the equation for y. This will put the equation in the form
y =mx + b.

EXAMPLE
e Findthe slope of theline 6x — 2y = 3.
6x —2y =3
—2y = —6x+3
3
y=3x— 2

2
The slopeis 3 (or 3).

Two lines are paralld if their slopes are equal (or if both lines are vertical).

5
4
3
2

Fig. 1.11.

Two lines are perpendicular if their slopes are negative reciprocals of each
other (or if one line is horizontal and the other is vertical). Two numbers are
negative reciprocals of each other if one is positive and the other is negative and
inverting one gets the other (if we ignore the sign).

EXAMPLES
° g and — g are negative reciprocals

3 4 . .
* —2 and 3 are negative reciprocals
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@’_

5_
4 y="8z+2
3_
2
N 1 1 ! ! I 1 J
-5 -4 -3 = 1 2 3 4 5
2
3+
4+
5L
Fig. 1.12.

1 . .
e —2and > are negative reciprocals
e land — 1arenegative reciprocals

We can decide whether two lines are parallel or perpendicular or neither by
putting them in the form y = mx + b and comparing their slopes.

EXAMPLES

Determine whether the lines are parallel or perpendicular or neither.
o 4x—3y=-15and4x —3y =6

4x — 3y = —-15 4 —3y =06
—3y=—-4x—-15 —3y=—-4x+6

4 4
y=§x+5 y=§x—2

The lines have the same slope, so they are parallel.
e 3x—5y=20and5x — 3y =-15

3x —5y=20 5 — 3y =-15
—5y=-3x+20 —3y=-5x—-15
3 5
y:gx—4 y=§x+5

The slopes arereciprocals of each other but not negative reciprocals, so they
are not perpendicular. They are not parall€l, either.
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e x—y=2andx+y=-8
x—y=2 x+y=-8
y=x-—-2 y=—-x—-28

The slope of thefirst lineis 1 and the second is —1. Because 1 and —1 are
negative reciprocals, these lines are perpendicular.

e y=10andx =3
The line y = 10 is horizontal, and the line x = 3 is vertical. They are
perpendicular.

Sometimes we need to find an equation of aline when we know only apoint on
the line and an equation of another linethat is either parallel or perpendicular to it.
We need to find the slope of the line whose equation we have and use this to find
the equation of the line we are looking for.

EXAMPLES

e Find an equation of the line containing the point (—4, 5) that is parallel to
theliney = 2x + 1.
The dlopeof y = 2x + 1is 2. Thisis the same as the line we want, so we
willletx = -4, y=5andm =2iny =mx + b.Weget 5= 2(—4) + b,
so b = 13. The equation of thelinewewantisy = 2x + 13.

e Find an equation of the line with x-intercept 4 that is perpendicular to
x — 3y =12.
The x-intercept is 4 means that the point (4, 0) is on the line. The slope
of the line we want will be the negative reciprocal of the slope of the line
x — 3y = 12. We will find the dlope of x — 3y = 12 by solving for y.

x—3y=12
1
y:§X—4

The slopewe want is —3, which isthe negative reciprocal of % When welet
x=4, y=0,andm = —-3iny = mx + b, wehave0 = —3(4) + b, which
givesusb = 12. Thelineisy = —3x + 12.

e Find an equation of the line containing the point (3, —8), perpendicular to
theliney = 9.
Theline y = 9ishorizontal, so thelinewewant isvertical. Thevertical line
passing through (3, —8) isx = 3.
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PRACTICE

When asked to find an equation for aline, put your answer intheformy = mx +b
unlessthelineis horizontal (y = a) or vertical (x = a).
1. Find the slope of the line containing the points (4, 12) and (—6, 1).
2. Find the dlope of the line with x-intercept 5 and y-intercept —3.
3. Find an equation of the line containing the point (—10, 4) with slope
2
-2,
4. Find an equation of the line with y-intercept —5 and slope 2.
5. Find an equation of thelinein Figure 1.13.

5
4k
3
9l
1+
L1 L [
-5 -4 -3 -2 -1 1 3 4 5
1k
ol
3k
Ak
5L
Fig. 1.13.

6. Find an equation of the line containing the points (%, 1)and (-2, -1).

7. Determine whether thelines3x — 7y = 28 and 7x + 3y = 3 are parallel
or perpendicular or neither.

8. Find an equation of theline containing (2, 3) and perpendicular to theline
xX—y=2>5.

9. Find an equation of the line parallel to the line x = 6 containing the point
(-3,2).

10. Determine whether thelines2x — 3y = 1 and —4x + 6y = 5 are parallel
or perpendicular or neither.
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SOLUTIONS
1-12 -1 1

T —6-4 -10 10

2. The x-intercept is 5 and the y-intercept is —3 mean that the points (5, 0)
and (0, —3) areontheline.

1. m

-3-0 -3
0-5 -5

3
5

m =
3. Putx = -10, y:4,andm:—%iny:mx + btofind b.

2
4=——(-10)+b

z(-10+
0=>»b

The equationisy = —2x + 0, or simply y = —2x.
4, m=2, b= -5 s0thelineisy =2x — 5.

5. From the graph, we can see that the y-intercept is 3. We can use the
indicated points (0, 3) and (2, 0) to find the slope in two ways. One way
isto put these numbersin the slope formula.

0-3 3

"T2-07 2

The other way is to move from (0, 3) to (2, 0) by going down 3 (so the
numerator of the slopeis —3) and right 2 (so the denominator is 2). Either
way, we have the slope —%. Because the y-intercept is 3, the equation

isy=—3x+3.
-1-1 =2 1 4 8
" _2_§ o 4 1 1
4 4
Wewillusex = —2andy = —1liny = mx + b.
8
—1=—(-2)+b
T
> )
1

The equationisy = Sx + .
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m’_

7. Wewill solvefor y in each equation so that we can compare their slopes.

3x —7y=28 7x+3y=3
3 7
y:?x—4 y=—§x+1
The slopes are negative reciprocals of each other, so these lines are
perpendicular.

8. Once we have found the slope for the linex — y = 5, we will use its
negative reciprocal as the slope of the line we want.

x—y=5
y=x-5

The dope of thislineis 1. The negative reciprocal of 1is —1. Wewill use
x=2, y=3,andm =-1iny =mx + b.

3=-12) +b
5=1b

Theequationisy = —1x + 5, orsimply y = —x + 5.

9. Thelinex = 6isvertica, sothelinewewant isaso vertical. Thevertica
line that goes through (-3, 2), isx = —3.

10. Wewill solvefor y in each equation and compare their slopes.

2x —3y=1 —4x+6y=5
2 1 _2. .5
Y=3' T3 V=3 T

The slopes are the same, so these lines are parall€l.

Applications of Lines and Slopes

We can use the slope of aline to decide whether points in the plane form certain
shapes. Here, we will use the slope to decide whether or not three points form a
right triangle and whether or not four points form a parallelogram. After we plot
the points, we can decide which pointsto put into the slope formula.
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EXAMPLES

e Showthat (-1, 2), (4, —3), and (5, 0) arethe vertices of aright triangle.

.
9k
3+
Al
5L
Fig. 1.14.

Fromthegraphin Figure 1.14, we can seethat theline segment between (5, 0)
and (—1, 2) should be perpendicular to the line segment between (5, 0) and
(4, —3). Once we have found the slopes of these line segments, we will see
that they are negative reciprocals.

2-0 1 -3-0

"= 15773 m=g-g5 =3
e Show that (—-3,1), (3,-5), (4,-1), and (—2,5) are the vertices of a
parallelogram.

Fig. 1.15.
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From the graph in Figure 1.15, we see that we need to show that line
segmentsa and ¢ are parallel and that line segments b and d are parallel.

5-1

The slope for segmenta ism =  —— =4,
and the slope for segment ¢ ism = # = 4.
The slope for segment b ism = ——— + —
p Seg m = 3-(-3
and the slope for segment d ism = —~— > —
pe for seg m= G =

There are many applications of linear equations to business and science.
Suppose the property tax rate for a school district is $1.50 per $100 valuation.
Thisis alinear relationship between the value of the property and the amount of
tax on the property. The dope of thelinein thisrelationshipis

Tax change ~ $1.50
Valuechange  $100°

Asthe value of property increases by $100, the tax increases by $1.50. Two vari-
ablesarelinearly related if afixed increase of one variable causes a fixed increase
or decrease in the other variable. These changes are proportional. For example, if
aproperty increases in value by $50, then its tax would increase by $0.75.

We can find an equation (also caled a model) that describes the relationship
between two variablesif we are given two points or one point and the slope. Asin
most word problems, we will need to find the information in the statement of the
problem, it is seldom spelled out for us. One of the first things we need to do isto
decide which quantity will be represented by x and which by y. Sometimesit does
not matter. In the problems that follow, it will matter. If we areinstructed to “give
variable 1 intermsof variable 2,” then variable 1 will be y and variable 2 will be x.
Thisisbecauseintheequation y = mx + b, y isgivenin terms of x. For example,
if we are asked to give the property tax in terms of property value, then y would
represent the property tax and x would represent the property value.

EXAMPLES

e Afamily paid $52.50 for water in January when they used 15,000 gallonsand
$77.50 in May when they used 25,000 gallons. Find an equation that gives
the amount of the water bill in terms of the number of gallons of water used.
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Because we need to find the cost in terms of water used, we will let y
represent the cost and x, the amount of water used. Our ordered pairs will

be (water, cost): (15,000, 52.50) and (25,000, 77.50). Now we can compute
the slope.

77505250
" = 25.000 — 15,000

We will use x = 15,000, y = 52.50, and m = 0.0025iny = mx + b to
find b.

= 0.0025

52.50 = 0.0025(15,000) + b
15=5»

The equation is y = 0.0025x + 15. With this equation, the family can
predict itswater bill by putting the amount of water used in the equation. For
example, 32,000 gallons would cost 0.0025(32,000) + 15 = $95.

e A bakery sells a special bread. It costs $6000 to produce 10,000 loaves of

bread per day and $5900 to produce 9500 |oaves. Find an equation that gives
the daily costsin terms of the number of loaves of bread produced.
Because we want the cost in terms of the number of loaves produced, we
will let y represent the daily cost and x, the number of loaves produced. Our
pointswill be of the form (number of loaves, daily cost): (10,000, 6000) and
(9500, 5900).

 5900-6000 1
"= 9500 10,000 _ 5

We will use x = 10,000, y = 6000, andm = £ iny = mx + b.

1
6000 = 5(10’ 000) + b
4000 = b

The equationis y = £x + 4000.

The slope, and sometimes the y-intercept, have important meanings in applied
problems. In the first example, the household water bill was computed using
y = 0.0025x + 15. The slope meansthat each gallon costs $0.0025 (or 0.25 cents).
As the number of gallons increases by 1, the cost increases by $0.0025. The
y-intercept is the cost when 0 gallons are used. This additional monthly charge
is$15. The dlope in the bakery problem means that five loaves of bread costs $1 to
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produce (or each loaf costs $0.20). The y-intercept tells us the bakery’s daily fixed
costs are $4000. Fixed costs are costs that the bakery must pay regardiess of the
number of loaves produced. Fixed costs might include rent, equipment payments,
insurance, taxes, etc.

In the following examples, information about the slope will be given and a point
will be given or implied.

The dosage of medication given to an adult cow is 500 mg plus 9 mg per
pound. Find an equation that gives the amount of medication (in mg) per
pound of weight.

We will use 500 mg as the y-intercept. The dlopeis

increase in medication _ 9
increaseinweight 1’

Theequationisy = 9x + 500, where x isin pounds and y isin milligrams.
At the surface of the ocean, a certain object has 1500 pounds of pressure
on it. For every foot below the surface, the pressure on the object increases
about 43 pounds. Find an equation that givesthe pressure (in pounds) on the
object in terms of its depth (in feet) in the ocean.

At O feet, the pressure on the object is 1500 Ibs, so the y-intercept is 1500.
Thedopeis

increasein pressure 43
increaseindepth 1

This makes the equation y = 43x + 1500, where x is the depth in feet and
y isthe pressure in pounds.

A pancake mix regui res% cup of water for each cup of mix. Find an equation
that givesthe amount of water needed in terms of the amount of pancake mix.
Although no point is directly given, we can assume that (0, 0) is a point on
the line because when there is no mix, no water is needed. The slopeis

increaseinwater  3/4 3

increaseinmix 1 4’

The equationisy = 3x + 0, or smply y = 3x.

PRACTICE

1. Show that the points (-5, 1), (2,0), and (—2, —3) are the vertices of a

right triangle.
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2. Show that the points (-2, —3), (3, 6), (-5, 2), and (6, 1) are the vertices
of aparallelogram.

3. A sales representative earns a monthly base salary plus a commission on
sales. Her pay this month will be $2000 on sales of $10,000. Last month,
her pay was $2720 on sales of $16,000. Find an equation that gives her
monthly pay in terms of her sales level.

4. The temperature scales Fahrenheit and Celsius are linearly related. Water
freezes at 0°C and 32°F. Water boils at 212°F and 100°C. Find an equation
that gives degrees Celsiusin terms of degrees Fahrenheit.

5. A sales manager believes that each $100 spent on television advertising
results in an increase of 45 units sold. If sales were 8250 units sold when
$3600 was spent on television advertising, find an equation that gives the
sales level in terms of the amount spent on advertising.

SOLUTIONS
1

5L
Fig. 1.16.

We will show that the slope of the line segment between (-5, 1) and
(—2, —3) isthenegativereciprocal of the slope of theline segment between
(=2, —3) and (2, 0). This will show that the angle at (—2, —3) is aright
angle.

-3-1 4 0-(-3 3
nm—= ———— —_— = — =

—2-(-5 3 "T2o (24
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6
(8
<
L | | I J
-6 -4\\-2/
-4

6

8L
Fig. 1.17.

We will show that the slope of the line segment between (-5, 2) and

(—2, —3) isequal to the dope of the line segment between (3, 6) and (6, 1).
-3-2 5 _1-6_ 5

—2_(-5 3 m=8-37 "3

Now we will show that the slope of the line segment between (-5, 2) and

(3, 6) isequal to the slope of the line segment between (—2, —3) and (6, 1).

6—2 1 1-(=3 1
m=_———= = m=—— " ==
3-(-5 2 6-(-2 2
. Because we want pay in terms of saes, y will represent pay, and x will
represent monthly sales. The pointsare (10,000, 2000) and (16,000, 2720).
_2720—2000 3
™ = 16,000 — 10,000 _ 25
(This means that for every $25 in sales, the representative earns $3.) We
will usex = 10,000, y = 2000, andm = 5 iny = mx + b.

m =

3
2000 = —(10,000) + »
o5 ( ) +

800 =1b

The equation isy = %x + 800. (The y-intercept is 800 means that her
monthly base pay is $800.)
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4. The points are (degrees Fahrenheit, degrees Celcius): (32,0) and
(212, 100).

100-0 5

M=% 32" 09

(This means that a 9°F increase in temperature corresponds to an increase
of 5°C)Wewilluse F =32, C =0,andm = 3inC = mF +b.

5
0=5(32) +b

160

The equation is C = 3F — 1. (The y-intercept is —25° means that the

temperature 0°F corresponds to —28°C.)

5. The points are (amount spent on advertising, number of units sold). The
dopeis

increase in sales 45 9

increase in advertising spending ~ 100 20

and our point is (3600, 8250).

9
8250 = —(3600) + b
55 (3000) +

6630 = b

The equationisy = %x + 6630. (The slope means that every $20 spent
on television advertising resultsin an extra 9 units sold. The y-intercept is
6630 means that if nothing is spent on television advertising, 6630 units
would be sold.)

CHAPTER 1 REVIEW

1. Findthe slope of the line containing the points (3, 1) and (4, —2).
@ 3 (b) -3 © —3 (d 3
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2. Arethelines2x + y = 4 and 2x — 4y = 5 parallel, perpendicular, or

neither?
(@) Pardle (b) Perpendicular
(c) Neither (d) Cannot be determined
3. Arethelinesx =4and y = —4 pardld, perpendicular, or neither?
() Pardle (b) Perpendicular
(c) Neither (d) Cannot be determined
4. What isthe equation of the line containing the points (0, —1) and (5, 1)?
@ y=-1 (b) y=3x-1
) y=—-4x—1 d y=2x-1

5. Find an equation of the line containing the point (—1, —5) and parall€el
totheliney = 2x — 4.
@ y=2-3 (b) y=2x -5
c)y=2x-1 d y=2x+4

6. Find an equation of the line containing the point (3, 3) and perpendicular
totheliney = 2x + 5.

@ y=-3x+3 () y=3x+3

© y=3x+3 d) y=—3x+3
7. Find an equation of thelinein Figure 1.18.

@ y=-3x+4 (b) y=3x+4

©) y=—-2x+4 (d y=2x+4

' ] | '
[ B
T

Fig. 1.18.



CHAPTER 1 The Slope and Equation _‘@
8. Find an equation of the horizontal line that goes through the point (4, 9).

@ x=4 (b) y=9
(c) Cannot be determined

9. Are the points (-5, —1), (1,4), and (6, —2) the vertices of a right
triangle?
(@ Yes (b) No
(c) Cannot be determined

10. A government agency leases a photocopier for a fixed monthly charge
plus a charge for each photocopy. In one month, the bill was $350 for
4000 copies. In the following month, the bill was $375 for 5000 copies.
Find the monthly bill in terms of the number of copies used.

(@ y=1267x — 4718 (o) y = 40x — 10,000
() y =0.789x — 3570 (d) y =0.025x + 250
SOLUTIONS
1.B 2.B 3.B 4.D 5.A
6.A 7.B 8.B 9.A 10.D



Introduction to
Functions

CHAPTER

A relation between two sets A and B is a collection of ordered pairs, where the
first coordinate comes from A and the second comesfrom B. For example, if A =
{1, 2, 3,4} and B = {a, b, ¢}, onerelation isthe three pairs {(1, ¢), (1, a), (3, a)}.
A function on sets A and B isaspecial kind of relation where every element of A is
paired with exactly one element from B. The relation above fails to be a function
in two ways. Not every element of A is paired with an element from B, 1 and 3
are used but not 2 and 4. Also, the element 1 is used twice, not once. There are no
such restrictions on B; that is, elements from B can be paired with elements from
A many timesor not at all. For example, {(1, a), (2, a), (3, b), (4, b)} isafunction
from A to B.

Functionsexist all around us. If aworker ispaid by the hour, hisweekly pay isa
function of how many hours he worked. For any number of hours worked, thereis
exactly one pay amount that correspondsto that time. If A isthe set of al triangles
and B isthe set of real numbers, then we have a function that pairs each triangle
with exactly one real number that isits area. We will be concerned with functions

®- C
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from real numbersto real numbers. A will either be all of the real numbers or will
be some part of the real numbers, and B will be the real numbers.

A linear function is one of the most basic kinds of functions. These functions
havetheform f(x) = mx + b. The only difference between f(x) = mx + b and
y =mx + bisthat y isreplaced by f(x). Very often f(x) and y will be the same.
Theletter f isthe name of the function. Other common names of functions are g
and i. The notation f(x) ispronounced “ f of x” or “ f at x.”

Evaluating a function at a quantity means to substitute the quantity for x (or

whatever the variable is). For example, evaluating the function f(x) = 2x — 5 at
6 means to substitute 6 for x.

f(6) =2(6)—5=7

We might also say f(6) = 7. The quantity inside the parentheses is x and the
quantity on the right of the equal sign is y. One advantage to this notation is that
we have both the x- and y-values without having to say anything about x and y.
Functionsthat have no variablesin them are called constant functions. All y-values
for these functions are the same.

EXAMPLES

e Find f(—2), f(0),and f(6) for f(x) = +/x + 3.
We need to substitute —2, 0, and 6 for x in the function.

f(=2=+V-2+3=+V1=1
f(0)=+/0+3=+/3

f(6)=v6+3=+/9=3

e Find f(—8), f(w),and f(10) for f(x) = 16.
f(x) = 16isaconstant function, sothe y-valueis 16 no matter what quantity
isin the parentheses.

f(—=8) =16 f(r) =16 £(10) = 16

A piecewise function is a function with two or more formulas for computing
y. The formulato use depends on where x is. There will be an interval for x
written next to each formulafor y.

x—1 ifx<-=2
fx)={2 if —2<x<?2
x?2 ifx>2
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In this example, there are three formulasfor y: y = x — 1, y = 2x, and
y = x2, and threeintervalsfor x: x < —2, —2 < x < 2, and x > 2. When
evaluating thisfunction, we need to decide to which interval x belongs. Then
we will use the corresponding formulafor y.

EXAMPLES

Find f(5), f(—3), and f(0) for the function above.
For f(5), doesx = 5belongtox < -2, -2 < x < 2, or x > 2? Because
5> 2, wewill use y = x2, the formulawritten next to x > 2.

f(5) =5°=25

For f(—3), doesx = —3bdongtox < -2, -2 < x < 2,0rx > 2?
Because —3 < —2, we will use y = x — 1, the formula written next to
x < =2

f(=3=-3-1=-4

For f(0), doesx = Obelongtox < —2, -2 < x < 2, 0r x > 2? Because
—2 <0< 2,wewill usey = 2x, the formulawritten nextto -2 < x < 2.

f(0) =20 =0
Find £(3), f(1),and f(—4) for

—x ifx<1
FO=15 ifro1
f@R =5 because 3 > 1
fAH=-1 becausel < 1
f(-4 =—(—-4) =4 because —4 <1

Piecewisefunctionscomeupindaily life. For example, suppose acompany pays
the regular hourly wage for someone who works up to eight hours but time and a
half for someone who works more than eight hours but no more than ten hours and
double time for more than ten hours. Then a worker whose regular hourly pay is
$10 has the daily pay function below.

104 ifO<h<8
p(h) = {15(h — 8) + 80 if8<h <10
20(h —10)+ 110 if10<h <24
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Below isan exampleof apiecewisefunction takenfroman Internal Revenue Service
(IRS) publication. The y-value is the amount of personal income tax for asingle
person. The x-valueis the amount of taxable income.

4316 if 30,000 < x < 30,050
4329 if 30,050 < x < 30,100
4341 if 30,100 < x < 30,150
4354 if 30,150 < x < 30,200

fx) =

A single person whose taxable income was $30,120 would pay $4341. (Source:
2003, 1040 Forms and Instructions)

PRACTICE
1. Find f(—1) and f£(0) for f(x) = 3x2+ 2x — 1.
2. Evaluate f(x) = 2;ax=-3 x=1adx=3.
3. Evauateg(x) = v/x —6atx =6, x =8, and x = 10.
4. Find f(5), f(3), f(2), f(0),and f(-1).
x’+x ifx<-1

fx)=110 if —1l<x<2
—6x ifx >2

5. The function below gives the personal income tax for a single person for
the 2003 year. If asingle person had a taxable income of $63,575, what is

her tax?
12,666 if 63,400 < x < 63,450
£y = 12,679 if 63,450 < x < 63,500
~ 112,691 if 63,500 < x < 63,550
12,704 if 63,550 < x < 63,600
SOLUTIONS
1. f(-1) =3(-1)%+2(-1)—-1=3-2-1=0

f(0) =3(0>+20)—1=-1
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2. 1 1 1
J =3 =5 3
= =2
1+1 2
1 1

3. g(G):\/GTGIN/BIO
98 =v/8—6=1+/2

¢(10) = /10— 6=+4=2

4 f(5) = —6(5 = —30 f(3) = —6(3) = 18
f2 =10 £(0) =10
f(=) =(-1)?+(-1) =0

5. Thetax is $12,704 because 63,550 < 63,575 < 63,600.

Functions can be evaluated at quantities that are not numbers, but theideaisthe
same—substitute the quantity in the parentheses for x and simplify.

EXAMPLES

e Evauate f(a+3), f(a?), fu—v),and f(a+h)for f(x) = 8x +5.
Wewill letx =a + 3, x =a?, x =u — v, and x = a + h in thefunction.

f@a+3)=8ua+3)+5=8z+24+5=8a+29
f(a® =8(a? +5=84>+5

fu—v)=8u—v)+5=8u—8v+5

fa+h)=8a+h)+5=8a+8h+5



CHAPTER 2 Introduction to Functions _‘@
e Evaluate f(10a), f(—a), f(a+h),and f(x +1)for f(x) = x>+ 3x — 4.
£(10a) = (10a)? 4+ 3(10a) — 4 = 10°a® + 30a — 4 = 100a® + 30a — 4
f(—a)=(—a)’+3(—a)—4=a’-3a—4
Remember, (—a)? = (—a)(—a) = a®, not —a®.
fla+h)y=@+h?+3a+h —4=@+h)a+h) +3a+h) —4
=a’+2ah 4+ h?>+3a+3h—4
S+ =Gx+D* 436+ -4=x+Dxr+1D+3(x+1) -4
=x24+2x4+1+3c+3-4=x245x

e Find f(a—12), f(a®+1), f(a+h),and f(x + 3) for f(x) = —4.
This is a constant function, so the y-value is —4 no matter what is in the
parentheses.

fla—12) = —4 f@®+1)=-4
fla+h)=—4 f(x+3 =—4

o Find f(2u +v), f(3),and f(2x) for

x+1
f(X)—x+2-
2u+v+1
2 =
fentv) = 2
f(}>:%+1=§+;—’.1
u) liy2 lyu.p
1 u 14-u
_wtu _
%+2u_u 1—;2u
_l—i—u ) 1+2u_1+u u . 1+u
Couw T uu 1+2u  1+2u
2x +1
f(2x) =

2x +

N
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Very early in an introductory calculus course, students use function evaluation
to evaluate an important formula called Newton’s Quotient.

fla+h) — fla)
h

When evaluating Newton's Quotient, we will be given afunction such as f(x) =
x2 4+ 3. Weneed to find f(a + ) and f(a). Once we have these two quantities,
wewill put them into the quotient and simplify. Simplifying the quotient is usually
the messiest part. For f(x) = x2+ 3, wehave f(a +h) = (a + h)?2+ 3 =
(a+h)(a+h)+3=da?+2ah+h?+ 3, and f(a) = a® + 3. We will substitute
a® + 2ah + h? + 3for f(a + h) and a® + 3for f(a).

fla+h) f(@

——

fla+h)— fla) a®+2ah+h®+3—(a®+3)
h - h

Now we need to simplify this fraction.

a?+2ah+h?>+3— (a?+3)  a?+2ah+h?+3—a? -3

h h
2ah + h?
= cah +n” & Factor h.
h
h
h
EXAMPLES
Evaluate Newton’s Quotient for the given functions.
e f(x)= 3x2
fla+h) =3(a+h?=3a+h)(a+h) =3a?+ 2ah + h?)
= 3a? + 6ah + 3h?
fa)=3d°

fla+h)— f(a)  3a®+6ah+3h?—3a®>  6ah+ 3h?
h - h - h

_ h(6a + 3h)

=—

= 6a + 3h
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o f(x)=x2—2x+5
fla+h)=@+h?—2a+h)+5=(a+h)a+h)—2a+h)+5
= a4 2ah +h? —2a —2h +5

f(a)=a2—2a+5

fla+h)— f@ a®+2ah+h*—2a —2h+5— (a® — 2a +5)

h h
_a®42ah+h*—2a—2h+5—a®*+2a -5
- h
_2ah+h*—2h _ h(Ra+h—2)
N h N h
=2a+h—-2
1
L f(x)=;
1 1
fla+h) s f(a) -
1 1
fla+h)—f@ 7 4
h ok
1 a_ 1 ath
=a+h a a a+h
h
a _ _a+h
_ a(a+h) a(a+h)
h
a—(a+h) a—a—h
_ a(a+h) _ a(a+h)
h h
—h
=a(a+h): —h s
h a(a+h) -
—h 1 -1

a@+h) h_ ala+h

Do not worry—you will not spend alot of time evaluating Newton's Quotient in
calculus, there are formulas that do most of the work. What is Newton's Quotient,
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anyway?Itisnothingmorethantheslopeformulawherex; = a, y1 = f(a), x2 =
a+h,and y» = f(a+ h).

L _vmn_fa+h) - f@ _ fat+h-f@

X2 —x1 a+h—a h

PRACTICE
1. Evauate f(u +1), fw®), f(a+h),and f(2x — 1) for f(x) = 7x — 4.
2. Find f(—a), f(2a), f(a+h),and f(x +5) for f(x) = 2x? — x + 3.
3. Find f(u+v), f@?, f(2),and f(x2+ 3) for

4. Evaluate Newton’'s Quotient for f(x) = 3x2 + 2x — 1.
5. Evaluate Newton's Quotient for f(x) = 522

SOLUTIONS
L fUu+D)=Tu+D)—4=Tu+7—-4=Tu+3
f@® =7w’ —4=7u%—-4
fla+hy=Ta+h)—4=Ta+7h—4
f@x—1)=72r—1)—4=14r —7—4=14x — 11

2. flea)=2(-a)® — (—a)+3=2d%+a+3
f(2a) =2(2a)> —2a +3=2(4a®) —2a+3 =84’ —2a + 3
fla+hy=2a+h?—(@a+h+3=2a+h@+h) —@+h) +3
=2a®+2ah+h®>) —a—h+3=2d°>+4ah+2h°>—a—h+3
fx+5=2(x+52—(x+5+3=2x+5x+5 — (x+5+3
= 2(x?>+10x +25) —x — 5+ 3 = 2x? 4+ 19x + 48
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10w +v)+1 10u+10v+1

3. - -
flutv) 3u+v)+2 3u+3v+2
10u? + 1
2y _
T =322
1y 10(3)+1
-5
“ 3(;>+2
10 10 10
_wtl oy +l-p w
- 3 - 3 u ~ 3, 2u
T2 pt2y Ut Y
Ot 104+u 3+ 2
T3 -,
_10+u u  10+u

u  3+2u  3+2u
10(x2+3) +1
3(x2+3)+2
_ 10x2+31
T o324+ 11
4 fa+h =3a+h?+2a+h) —1=3a+h)(a+h) +2a+h) —1

f(x?+3) =

=3@®+2ah+h?® +2a+2h—1
—=3a%+6ah+3h2+2a+2h—1

fa)=3a°+2a—1

fl@a+h)— f(a) 3a®+6ah+3h?+2a+2h —1— (3a®+2a — 1)

h h
_ Ba®+6ah+3h*+2a+2h—1—-3a®—2a+1
B h
_ 6ah+3h”+2h
B h
h(6a + 3h + 2
_hGat+3ht+2) o e

h
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5 @t 15 15 ond £@) 15
a = = a) = ———
2@4+h)—3 2a+2h—-3 2a — 3
15 15
fla+h) = f@) _ 2a32n—3 ~ 23
h h
15 2a-3 _ 15  2a+2h—3
_ 2a+2h=3 2a-3 _ 2a-3  2a+2h-3
h
15(2a—3)—15(2a+2h—3)  30a—45—30a—30h+45
_ _ Qat2i-3@a=3  _ _ (a+2h-32a-3)
h h
—30h
_ @rBh—3@a=3 _ —30h .
h (2a+2h —3)(2a —3)
—30h 1 -30

T 2a+21—-32a—-3) h  (2a+2h—3)(2a—3)

Domain and Range

Thedomain of afunctionfrom set A toset B isall of set A. Therangeiseither al or
part of set B. In our exampleat thebeginning of thechapter, wehad A = {1, 2, 3, 4},
B = {a, b, ¢} and our function was {(1, a), (2, a), (3, b), (4, b)}. The domain of
this function is {1, 2, 3, 4}, and the range is al of the elements from B that were
paired with elements from A. These were {a, b}.

For the functions in this book, the domain will consist of all the real numbers
we are allowed to use for x. The range will be all of the y-values. In this chapter,
we will find the domain algebraically. In Chapter 3, we will find both the domain
and range from graphs of functions.

Very often, we find the domain of a function by thinking about what we cannot
do. For now the thingswe cannot do are limited to division by zero and taking even
roots of negative numbers. If afunction hasx in adenominator, set the denominator
equal to zero and solve for x. The domain will not include the solution(s) to this
eguation (assuming the equation has a solution). If afunction has x under an even
root sign, set the quantity under the sign greater than or equal to zero to find
the domain. Later when we learn about logarithm functions and functions from
trigonometry, we will have other things we cannot do. The domain and range are
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usualy given in interval notation. There is a review of interval notation in the
Appendix.

EXAMPLES
x?—4
x+3

We cannot let x + 3 to be zero, so we cannot let x = —3. The domain is
x # —3,0r (—o0, —3) U (=3, 00).

e flx)=

e flx)=

x4+ 22— x -2

We will use factoring by grouping to factor the denominator. (There is a
review of factoring by grouping in the Appendix.)

Bl —x-2=0
Px+2)—1x+2 =0
(x+2x*-1) =0
x+2x—-—1Hx+1) =0

x+2=0 x—1=0 x+1=0

x=-2 x=1 x=-1

Thedomainisall real numbersexcept 1, —1, and —2. Thedomain is shaded
on the number linein Figure 2.1.

1 | | & & | & L | L J

-5 -4 -3 -2 -1 O 1 2 3 4 5
Fig. 2.1.

Thedomainis (—oo, —2) U (=2, —1) U (-1, 1) U (1, 00).
x+5
© sW=m

Because x2 + 1 = 0 has no real number solution, we can let x equal any real
number. The domain isal real numbers, or (—oo, 00).
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e f(x)=+x-—8

Because we can only take the square root of nonnegative numbers, x —8 must
be nonnegative. We represent “x — 8 must be nonnegative” as“x — 8 > 0.”
Solvingx — 8 > 0, weget x > 8. Thedomainisx > 8, or [8, c0).

o f(X)="x2—x-2

(The Appendix has a review on solving nonlinear inequalities.) We need to
solvex? — x — 2 > 0. Factoring x2 — x — 2, we have (x — 2)(x + 1).

x—2=0 x+1=0

x=2 x=-1

[ | | | ’S 1 1 & 1 I ]
-5 -4 -3 -2 -1 0 1 2 3 4 5
Fig. 2.2.

We will use x = —2 for the number to the left of —1, x = 0 for the number
between —1and 2, andx = 3for thenumber totheright of 2inx2—x—2 > 0
to see which of these numbers makes it true.

Is(—=2)2 — (=2) —2>0? Yes. Put“True’ totheleft of —1.
Is0?—0—2>0? No. Put“False’ between —1and 2.
Is32-3—-2>0? Yes Put“True’ totheright of 2.

True False True

L 1 ] 1 é 1 L

-5 -4 -3 -2 -1 0 1
Fig. 2.3.

e

Theinequality istruefor x < —1and x > 2, sothedomainis (—oo, —1] U
[2, 00).

o f(x)=+vx2+5

Because x? + 5 is aways positive, we can let x be any real number. The
domainis (—oo, 00).

o g(x)=Ix+7
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We can take the cube root of any number, so the domainisall real numbers,
or (—oo, 00).

o f(x)=x*—x%+1

There is no x in a denominator and no x under an even root sign, so the
domainisall rea numbers, or (—oo, 00).

There are some functions that have x in a denominator and under an even
root. At times, it will be useful to shade a number line to keep track of the
domain.

x24+x—3
Va4 —x

We cannot let /4 — x be zero, and we cannot let 4 — x be negative. These
restrictions mean that we must have 4 — x > 0 (instead of 4 — x > 0). The
domainis4 > x (or x < 4), whichistheinterval (—oo, 4).

15— x
—_— 10
x2+3x—4+ x

For «/x +10weneed x + 10 > 0, or x > —10.

o fx)=

o h(x)=

-12 -10 -8 -6 -4 -2 0 2 4 6 8 10 12
Fig. 2.4.

We also need for x2 + 3x — 4 not to be zero.
x24+3x—4=0
x+dHx—-1 =0

x+4=0 x—1=0
x=-4 x=1
We cannot let x = —4 and x = 1, so we will remove these numbers from

x > —10. Thedomainis[—10, —4) U (=4, 1) U (1, 00).

L )| & H L L L 1 A L L L L A L L L L L L i ] L 1! ]

-12 =10 -8 -6 —4 -2 0 2 4 6 8 10 12
Fig. 2.5.
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PRACTICE

For Problems 2—11, give the domain in interval notation.

1. A function consists of the ordered pairs {(k, 5), (z, 3), (i, 12)}. List the
elements in the domain.

2x +3
2. fry="7
x—8
-1
3 f) =5
x—3
40 = 50
5 gx)= I6—x
6. h(x) =+/x+3
7. f(x) =+/4—x2
8. f(x)=+32+5
1
9. =
10. f(x)=4x3—2x+5
_ A/x+5
I = s
SOLUTIONS
1. The domain consists of the first coordinate of the ordered pairs—h, z,
andi.

2. Wecannot let x — 8 = 0, sowe cannot let x = 8. Thedomainisx # 8, or
(—00, 8) U (8, 00).

3. Wecannot let x2 — 2x = x(x — 2) = 0, sowecannot let x = 0or x = 2.
Thedomainisall real numbersexcept 0and 2, or (—oo, 0)U(0, 2)U(2, 00).

4. Because x2 + 10 = 0 has no rea number solution, the domain is all real
numbers, or (—oo, 00).

5. Wecantakethe cuberoot of any number, sothedomainisall real numbers,
or (—oo, 00).

6. Wemust havex + 3> 0, or x > —3. Thedomainis[—3, c0).
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7. Weneedtosolve4 — x2 = (2—x)(2+x) > 0.

False Truc False

L 1 i 4 ! 1 N | ! j
-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig. 2.6.

Thedomainis[—2, 2].

——&

8. Because3x?+5 > Oistruefor al real numbers, thedomainis (—oo, 00).

9. Weneedx —9 > 0. Thedomainisx > 9, or (9, co).
10. Thedomainisall real numbers, or (—oo, 00).

11. Fromx 4+ 5> 0, wehavex > —5.

L re | i | | | L | bl J

-6 -5 -4 -3 -2 -1 0 1 2 3 4
Fig. 2.7.

Now weneedto solvex2 +2x — 8= (x + 4)(x — 2) =

x+4=0 x—2=0

x=-4 x:2

0.

Now weneedtoremove —4and 2fromx > —5. Thedomainis[—5, —4)U

(=4, 2) U (2, 00).

L & A | | L 1 L o L 13

-6 -5 -4 -3 -2 -1 0 1 2 3 4
Fig. 2.8.

At times the domain of a function will matter when we are solving an applied
problem. For example, suppose thereisa 10” x 18" piece of cardboard that will
be made into an open-topped box. After cutting a square x by x inches from each

corner, the sides will be folded up to form the box.
18 -2z z

] -

10 — 2z

Fig. 2.9.
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Thevolume of thebox isafunction of x, V(x) = x(18 — 2x)(10— 2x). What is
the domain of this function? We obviously cannot cut a negative number of inches
from each corner. If we cut O inches from each corner, we do not have a box, so x
must be positive. Finaly, the box is only 10 inches wide, so we can cut up to five
inches from each corner. These facts makethedomain 0 < x < 5. Maximizing the
volume of thisbox isatypical problemin afirst semester of calculus. The solutions
to the mathematical problem are %ﬁ (approximately 2.0635, and 7.27008).

Only one of these numbersisin the domain of the applied function, so only one of
these numbersis the solution.

CHAPTER 2 REVIEW

1.

Evaluate f(x) =4 — 2x2atx = 3.
(@ —14 (b) —12 (c) —10 (d) —8

Evauate f(—1) for

5 ifx <O

f) = x+3 ifx>0
@ —1 (b) 5 (c) 2 (d) 2,5
Evaluate f (u? + v) for f(x) = 4x + 6.
@ (u?+v)(4x + 6) (0) 4u?+v+6
(©) 4v°x +6 (d) 4u?+4v+6
What isthe domain for f(x) = v/x2+1?
(©) (=00, -1 U (1, 00) (d) [-1,1]
Evaluate =1 for f(x) = x2 4 3,
(@ 2a + h? (b) 2a +h%2+3
©) 2a+h (d) 2a+h+3

What isthe domain for f(x) = +/x — 5?
(©) (=00,5] (d) (=00, =5) U (5, 00)
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7. What isthedomain for f(x) =
(@ (—00,9) U (9, 00)

)
x2-9°
(b) (—00,3)U (3, 00)

(© [3,00) (d) (—o0, —=3)U (—3,3) U (3, 00)
8. What isthe domain for the function {(a, 6), (b, 6), (d, 9)}?
@ {a,b,d)} (b) {6,9}
(©) {a,b,d, 6,9} (d) {a,b,d,9}
9. What isthe domain for
foy = 2220
CJx—4
() [4, 00) (d) (4, c0)
10. Wheat isthe domain for
foy =Y
x—5
(@ [4,5) U (5, 00) (b) (=00,4) U (4, 00)
(©) [4,00) (d) (4, 00)
SOLUTIONS
1.A 2.B 3.D 4. A 5C
6.B 7.D 8 A 9.D 10. A



CHAPTER

I
Functions and ‘
Their Graphs i

The graph of a function can give us a great deal of information about the
function. In this chapter we will use the graph of a function to evaluate the func-
tion, find the x- and y-intercepts (if any), the domain and range, and determine
where the function isincreasing or decreasing (an important ideain calculus).

To say that f(—3) = 1 means that the point (—3, 1) is on the graph of f(x).
If (5, 4) isapoint onthe graph of f(x), then f(5) = 4.

EXAMPLE
e Thegraph in Figure 3.1 is the graph of f(x) = x3 — x2 — 4x + 4. Find
The point (—1, 6) is on the graph meansthat f(—1) = 6.
The point (0, 4) is on the graph meansthat f(0) = 4.

@,—

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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10~

6

8+

-10%-
Fig. 3.1.

The point (3, 10) is on the graph means that f(3) = 10.
The point (—2, 0) is on the graph meansthat f(—2) = 0.

The graph also showsthe intercepts of the graph. Remember that an x-intercept
is a point where the graph touches the x-axis, and the y-intercept is a point
where the graph touchesthe y-axis. We can tell that the y-intercept for the graphin
Figure 3.1is4 (or (0, 4)) and the x-interceptsare —2, 1, and 2 (or (—2, 0), (1, 0)
and (2, 0)).

An eguation “gives y as a function of x” means that for every x-value,
there is a unique y-value. From this fact we can look at a graph of an equa-
tion to decide if the equation gives y as a function of x. If an x-value has
more than one y-value in the equation, then there will be more than one point
on the graph that has the same x-coordinate. A line through points that have
the same x-coordinate is vertical. This is the idea behind the Vertical Line
Test. The graph of an equation passes the Vertical Line Test if every vertica
line touches the graph at one point or not at all. If so, then the equation is
afunction.

The graph of y? = x isshown in Figure 3.2. The vertical line x = 4 touchesthe
grzaph in two places, (4, 2) and (4, —2), so y is not afunction of x in the equation
y< =Xx.

Thedomain of afunction consistsof al possiblex-values. Wecanfindthedomain
of afunction by looking at its graph. The graph’s extension horizontally showsthe
function’s domain. The range of a function consists of all possible y-values. The
graph’s vertical extention shows the function’s range.
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EXAMPLES
Give the domain and range in interval notation.
[ ] 5
4 —
3h ? 3
2 —
1 —
L | i 1 1 1 1 " !
5 4 3 -2 -1 1 2 4 5 Range
a1k
2+
3
4+ o 4
5L
-5 Domain
Fig. 3.3.
The graph extends horizontally from x = —5to x = 4. Because there are

closed dots on these endpoints (instead of open dots), x = —5andx = 4 are
part of the domain, too. Thedomainis[—5, 4]. The graph extends vertically
fromy = —4toy = 3. Therangeis[—4, 3].
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=N W o Ot
T

Range

4 e

3 Domain 2

Fig. 3.4.

The graph extends horizontally from x = —3to x = 2. Because open dots
areused on (—3, 5) and (2, 0), these points are not on the graph, so x = —3
and x = 2 are not part of the domain. The domain is (—3, 2). The graph
extends vertically fromy = —4 and y = 5. Therangeis [—4, 5). We need
to use a bracket around —4 because (0, —4) is a point on the graph, and a
parenthesis around 5 because the point (—3, 5) is not a point on the graph.

5_

4
3k
2
1

Fig. 3.5.

The graph extends horizontally from x = —2 on the left and vertically from
below y = 0. Thedomainis[—2, c0), and the range is (—oo, 0].

A function isincreasing on an interval if moving toward the right in the inter-
val means the graph is going up. A function is decreasing on an interval if moving
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toward theright in theinterval meansthe graph is going down. The function whose
graphisin Figure 3.6 isincreasing fromx = —3tox = 0 aswell asto theright of
x = 2. Itisdecreasing to theleft of x = —3 and between x = 0O and x = 2. Using
interval notation, we say the function is increasing on the intervals (—3, 0) and
(2, o0) and decreasing on the intervals (—oo, —3) and (0, 2). For reasons covered
in calculus, parentheses are used for the interval notation.

Fig. 3.6.

A function is constant on an interva if the y-values do not change. This part of
the graph will be part of a horizontal line.

EXAMPLES

Determine the intervals on which the functions are increasing, decreasing or
constant.

Fig. 3.7.
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Thisfunctionisincreasingon (—5, —2) and (4, 5). Itisdecreasingon (—2, 2)
and constant on (2, 4).

Fig. 3.8.

The function isincreasing on al of its domain, (0, co).

PRACTICE
1. Isthegraph in Figure 3.9 the graph of afunction?
5_
4
3_
2
1 —
543 20 | 1 23 43
ny=
2k
Sk
4+
5L
Fig. 3.9.

2. Refer tothegraph of f(x) in Figure 3.10.
(& Whatis f(—3)?
(b) Whatis f(5)7?
(c) What isthe domain?
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(d) What isthe range?

(e) What are the x-intercepts?

(f) What isthe y-intercept?

() What is/are the increasing interval (s)?
(h) What ig/are the decreasing interval(s)?

3. Refer tothegraph of f(x) in Figure 3.11.

10
8L

6_

4+

6+

-8+

_10 L
Fig. 3.11.

(@ Whatis f(2)? f(1)?
(b) What are the x-intercepts? What is the y-intercept?
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(c) What isthe domain? Range?
(d) What isthe increasing interval? What are the decreasing intervals?

SOLUTIONS
1. No. The graph failsthe Vertical Line Test.

2. (@ f(—3) =1because (—3,1)isapoint onthe graph.
(b) f(5) = —5 because (5, —5) isapoint on the graph.
(c) Thedomainis[—5, 5].
(d) Therangeis[-5, 4].
(e) Thex-interceptsare —4, —1, and 3.
(f) The y-interceptis —3.
(g) Theincreasing intervalsare (—4, —3) and (2, 3).
(h) Thedecreasing intervalsare (-5, —4), (—3,2) and (3, 5).

3. (@ f(2 = 4 because (2, 4) isapoint on the graph. f(1) = 2 because
(1, 2) isapoint on the graph.
(b) Thex-intercepts are 0 and 3. The y-intercept is 0.
(¢) Thedomain and range are each al real numbers, (—oo, 00).

(d) The increasing interval is (0, 2), and the decreasing intervals are
(—o00, 0) and (2, o0).

Graphs are useful tools to present alot of information in a small space. Being
able to read a graph and draw conclusions from it are important in many subjects
in addition to mathematics. In the example below, we will practice drawing con-
clusions based on information given in the graph in Figure 3.12. This graph shows
the daily balance of a checking account for about two weeks. No more than one
transaction (a deposit or a check written) is made in one day. For example, the
balance at the end of the second day is $350 and $300 at the end of the third day,
so a $50 check was written on the third day.

1. Onwhat day was a check for $200 written?
On the 12th day when the balance dropped from $150 to —$50.

2. What isthelargest deposit?
The largest increase was $200, on the 8th day when the balance increased
from $200 to $400.

3. What isthelargest check written?
The largest check was written on the tenth day when the balance dropped
from $400 to $150.
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SOOF
400 -

300 -

200+

Balance

100

-100 -

4. When was the account overdrawn?
The balance was negative on the 12th day.

Average Rate of Change

Calculus deals with the rate of change. A familiar example of a rate of change is
speed (or more accurately, velocity). Velocity is the rate of change of distance per
unit of time. A car traveling in city traffic will generally have alower rate of change
of distance per hour than a car traveling on an interstate freeway. A glass of water
placed in arefrigerator will have alower rate of temperature change than a glass of
water placed in afreezer. In calculus, you will study instantaneous rates of change
of functions at different values of x. We will study the average rate of change in
this book. As you will see in the following examples, the average rate of change
can hide alot of variation.

EXAMPLES

e Suppose $1000 wasinvested in company stock of some manufacturing com-
pany. The value of the investment at the beginning of each year isgivenin
Table 3.1.

1. How muchdidthestock increaseper year on averagefromthebegin-
ning of Year 3 to the beginning of Year 6?
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Table3.1

Year Value (in dollars) Change from the previous year

1 1000 New investment of $1000
2 1205 Gain of $205
3 1162 Loss of $43
4 1025 Loss of $137
5 1190 Gain of $165
6 1252 Gain of $62
7 1434 Gain of $182
8 1621 Gain of $187
9 2015 Gain of $394
10 2845 Gain of $830

For this three-year period the investment increased in value from
$1162 to $1252. The average rate of changeis
1252 — 1162 90

6_3 _§=30peryear.

2. What was the average annual loss from the beginning of Year 2 to
the beginning of Year 5?
The average rate of change during this three-year period is
1190 — 1205 15
5-2 3
The negative symbol means that this change is aloss, not again.
3. What was the average annual increase over the full period?
The average increase in the investment over the full nine yearsis
2845 —1000 1845
10-1 9

= —5 per year.

= 205 per year.

Find the average rate of change between (—3,9) and (—1,3) and
between (1, 1.5) and (3, 1.125) for the function whose graph is given in
Figure 3.13.

The average rate of change of a function between two points on the graph
is the slope of the line containing the two points. For the points (—3, 9) and
(-1,3),x1=-3, yp1=9andx2 = —1and y» = 3.

yo—y1  3-9 -6 -3
x2—x1 -1—-(=3) 2 1

Average rate of change =
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Between x = —3 and x = —1, the y-values of this function decrease by 3
asx increases by 1, on average.

For the points (1, 1.5) and (3,1.125) x1 = 1, y1 = 15and x2 = 3, yo =
1.125.

vo—y1_1125-15 0375
x2—x1  3-1 2

Average rate of change = = —0.1875

Between x = 1 and x = 3, the y-values of this function decrease on
average by 0.1875 as x increases by 1.

e Find the average rate of change of f(x) = —3x2 + 10 between x = —1
andx = 2.
Once we have found the y-values by putting these x-valuesinto the function,
we will find the slope of the line containing these two points.

yi=f(x1) = f(=1) =-3(-1)?4+10=7

yo= f(x2) = f(2) = —3(2%>+10= —2

vy —2-7 -9 -3
x2—x1 2—(=1) 3 1

Average rate of change =

Between x = —1 and x = 2, this function decreases on average by 3 as x
increases by 1.
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PRACTICE

1. Asdesrepresentative’spay isbased on hissales. Table 3.2 shows hissalary

during one year.

Table 3.2

Month Pay

January (1) 2100
February (2) 2000
March (3) 2400
April (4) 2700
May (5) 2500
June (6) 3000
Jduly (7) 3500
August (8) 3600
September (9) 2500
October (10) 2000
November (11) 2000
December (12) 2100

—®

How much did his monthly pay change on average between January and
July? Between July and December? Between October and December?

2. Findthe averagerate of change between the indicated points of thefunction

whose graph is given in Figure 3.14.

10

(=]
T

N
T

(2,8)

/
\

i
— N
wi

g
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3. Find the average rate of change for f(x) = 2 — x3 between x = —2 and
x =1

4. Find the average rate of change for f(x) = 6x — 3 between x = —5 and
x = 3and between x = 0and x = 8.

SOLUTIONS

1. Theaverage monthly increase between January and July is the slope of the
line containing the points (1,2100) and (7,3500).
3500 — 2100
7—1
The average monthly decrease between July and December is the slope of
the line containing the points (7,3500) and (12,2100).
2100 — 3500
o T 2
12-7 80

The average monthly increase from October to December isthe slope of the
line containing the points (10,2000) and (12,2100).

~ 233

2100 — 2000
—— =50
12 - 10
2. x1=0, yy=—-1landxp =2, y=28
8—(-1 9
Averagerate of change = —— = =
verag ®=""0 T2

= f)=f(=2)=2-(-2>=10

yo=flx)=fH)=2—()*=1

Average rate of change = 11__—:(;) = -
4, Forxy=—-5andxy; = 3—

y1=f(x1) = f(-5 =6(-5 —-3=-33

y2=f(x2) = f(3)=63)—3=15
15— (-33)

A ate of ch = =6
verage rate of change )
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Forx1 =0and x = 8—
y1i= f(x1) = f(0)=6(0)—-3=-3
y2 = f(x2) = f(8) =6(8) —3=45
Average rate of change = 458%(;3) =6
The average rate of change between any two points on alinear function is
the slope.

Newton's Quotient gives the average rate of change of f(x) between x1=a
and x2 =a + h.

y1=f(x1) = f(a) y2=fx2) = fla+h)
yz—y1=f(a+h)—f(a):f(a+h)—f(a)

Average rate of change =
X2 — X1 a+h—a a

Even and 0dd Functions

A graph is symmetric if one half looks like the other half. We might aso say that
one half of the graph is areflection of the other.

When a graph has symmetry, we usually say that it is symmetric with respect to
aline or apoint. The graph in Figure 3.15 is symmetric with respect to the x-axis
because the half of the graph above the x-axis is areflection of the half below the
x-axis. The graph in Figure 3.16 is symmetric with respect to the y-axis.

5r v
7/
41+ e
/
3 ,
Ve
9k . +  This half is
4 a reflection
1 -
Ve
[ T S P S S N B
5 -4 -3 -2 -1 1 2 3 4 5
1k
2+ of this half.
3+
A+
5L

Fig. 3.15.
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This half is - — 41

fecti P of this half.
a reflection 3

1

2
3

4

o
A
[I~]
[\]
—
=
N
o
N iy
ot

5L
Fig. 3.17.

The graph in Figure 3.17 is symmetric with respect to the vertical line x = 2.

One type of symmetry that is alittle harder to seeis origin symmetry. A graph
has origin symmetry if folding the graph along the x-axis then again along the
y-axis would have one part of the graph coincide with the other part. The graphs
in Figures 3.18 and 3.19 have origin symmetry.

Knowing in advance whether or not the graph of a function is symmetric can
make sketching the graph less work. We can use algebra to decide if the graph
of a function has y-axis symmetry or origin symmetry. Except for the function
f(x) = 0, the graph of afunction will not have x-axis symmetry because x-axis
symmetry would cause a graph to fail the Vertical Line Test.

For the graph of a function to be symmetric with respect to the y-axis, a point
on the left side of the y-axis will have a mirror image on the right side of the
graph.

The graph of a function with y-axis symmetry has the property that (x, y) is
on the graph means that (—x, y) is aso on the graph. The functional notation for
thisideais f(x) = f(—x). " f(x) = f(—x)” saysthat the y value for x (f(x))
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Fig. 3.18.

Fig. 3.19.

4_

The mirror image ) ] )
of this point ﬁ \ is this point.
1 L L 1 1 1 1 1 I i

2k

-10-
Fig. 3.20.



®’_ CHAPTER 3 Functions and Their Graphs
is the same as the y-value for —x (f(—x)). If evaluating a function at —x does
not change the equation, then its graph will have y-axis symmetry. Such functions
are called even functions.

For a function whose graph is symmetric with respect to the origin, the mirror
image of (x, y) is(—x, —y).

3_
(_8v2)

\\2\_

108 6 4 2 2 4 6 8 10
1k
2+

(87_2)
3
4L
Fig. 3.21.
The functional notation for this idea is f(—x) = —f(x). “f(—x) =

— f(x)" says that the y-value for —x (f(—x)) is the opposite of the y-value for
x (= f(x)). If evaluating a function at —x changes the equation to its negative,
then the graph of the function will be symmetric with respect to the origin. These
functions are called odd functions.

In order to work the following problems, we will need the following facts.
)even power _

evenpower 54 )odd power _ _ xodd power

a(—x ax a(—x

EXAMPLES

Determine if the given function is even (its graph is symmetric with respect to
the y-axis), odd (its graph is symmetric with respect to the origin), or neither.
o fx)=x2-2
Does evaluating f(x) a —x change the function? If so, is f(—x) =
~(? =2 =~ f(x)?

f(=x)=(-x)?-2=x%-2

Evaluating f(x) a —x does not change the function, so the function
iseven.
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f(x) = x3 4 5x

Does evaluating f(x) a —x change the function? If so, is f(—x) =
—(x345x) = —f(x)?

f(=x) = (=) +5(—x) = —x> = Bx = —(x3 +5x) = — f(x)

Evaluating f(x) a —x givesus — f (x), so the function is odd.

x
f(x):x—l-l

Doesevauating f (x) a —x changethefunction?If so,is f(—x) = — 314 =
—f(x)?

—x+1

f(=x) =

Because f(—x) is not the same as f(x) nor the same as — f(x), the
function is neither even nor odd.

PRACTICE

For 1-4, determine whether or not the graph has symmetry. If it does, determine
the kind of symmetry it has. For 5-8, determine if the functions are even, odd, or
neither.

1.

5_

e
<
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(o2 ¢y

o

fx)=x3+6
fx)=3x2-2

SOLUTIONS

o > w0 N

This graph has y-axis symmetry.
This graph has x-axis symmetry.
This graph does not have symmetry.
This graph has origin symmetry.
f(=x)=(-x)3+6=—-x3+6

f(=x) # f(x) and f(—x) # —f(x), making f(x) neither even
nor odd.
f(=x) =3(-x)2—2=3x?-2

f(=x) = f(x), making f(x) even.

(—x)2 -3 . x2-3 . x2-3
(—x)3+2(—x) —x3-2x —(x3+42x)
_ x2-3 _

ST W
f(=x) = —f(x), making f(x) odd.
g=x)=J—x=—-Jx=—g)
g(—x) = —g(x) making g(x) odd.

f=x) =

CHAPTER 3 REVIEW
Problems 1-2 refer to the graph in Figure 3.26.

1. Find ().
@ —1 (b) —2 © 1 (d) 2
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_10 L
Fig. 3.26.

2. Whereisthe function decreasing?
(@ (=00,00U(1,00)  (b) (0,-2) © 0.1 (d) (1,00
Problems 36 refer to the graph of f(x) in Figure 3.27.

vive

-1-
Fig. 3.27.

3. What isthedomain?
@ 10,2] (b) [2,0] (© [-2 2] (d) [-2,0]

4. What isthe range?
(@ [0, 2] (b) [2,0] © [-22] (d [-2,0]
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5. What is the average rate of change of the function between x = — 2
andx = 1?
@ -3 (b -3 (© -3 (d) -1

6. Isthegraphin Figure 3.27 symmetric?
() Yes, with respect to the x-axis. (C) Yes, with respect to the origin.
(b) Yes, with respect to the y-axis. (d) No.

7. Find the average rate of change for f(x) = 24 between x = 0 and
x=2.
(@ -3 (b) -3 (© 3 @ 3

8. Isthefunction f(x) = 3x2 + 5 even, odd, or neither?
(& Even
(b) Odd
(c) Neither
(d) Cannot be determined without the graph

9. Isthefunction f(x) = 3x3 + 5 even, odd, or neither?
(@ Even
(b) Odd
(c) Neither
(d) Cannot be determined without the graph

10. Isthefunction f(x) = 4x?/x3 + x even, odd, or neither?
(@ Even
(b) Odd
(©) Neither
(d) Cannot be determined without the graph

SOLUTIONS

1B 2.C 3.C 4.A
6.B 7.B 8.A 9.C 1

o u
o @



CHAPTER

Combinations of
Functions

and Inverse
Functions

Most of the functions studied in calculus are some combination of only a few
families of functions, most of the combinations are arithmetic. We can add two
functions, f + g(x), subtract them, f — g(x), multiply them, fg(x), and divide
them f(x). The domain of £ + g(x), f — g(x), and fg(x), is the intersection of
the domain of f(x) and g(x). In other words, their domain is where the domain
of f(x) overlapsthe domain of g(x). The domain of %(x) is the same, except we
need to remove any x that makes g(x) = 0.

@’_

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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EXAMPLES
Find f + g(x), f — g(x), fg(x), and £ (x) and their domain.

e f(x)=x*>—2x+5andg(x) =6x — 10

fHegx)=f(x)+gx)=x*>—2x+5+ (6x —10) =x>+4x -5
f—8(®) = f(x)—g(x) = (x? — 2x +5) — (6x — 10) = x? — 8x + 15
fg(x) = f(x)g(x) = (x2 — 2x 4 5)(6x — 10) = 6x° — 10x? — 12x?
+ 20x + 30x — 50
= 6x° — 22x? 4 50x — 50

fo. f) x*—2x+5
g(x)_ g(x)  6x—10

Thedomainof f + g(x), f — g(x), and fg(x) is(—oo, o0). The domain of
%(x) isx # 3 (from 6x — 10 = 0), or (—o0, 3) U (3, 00).

o f(x)=x-—-3andgkx)=+x+2

f+egx)=x—3+/x+2 f—gx)=x—-3—+/x+2
f x—3
—(x—3)V/x+2 Lx) =
fe(x) = (x — 3V PR Y

Thedomainfor f+g(x), f —g(x),and fg(x)is[—2, co) (fromx +2 > 0).
The domain for g(x) is (—2, 00) because we need v/x + 2 # 0.

An important combination of two functions is function composition. This
involves evaluating one function at the other. The notation for composing f with
gis f o g(x). By definition, f o g(x) = f(g(x)), this means that we substitute
gx) forxin f(x).

EXAMPLES
Find f o g(x) and g o f(x).
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o f(x)=x®+1landg(x)=3x+2

foglx)= f(gx))
=fGBx+2 Replace g(x) with 3x + 2.

=@x+22%+1  Substitute 3x + 2for x in £(x).

=Bx+2@x+2)+1=%%+12x+5

go fx)=g(f(x))
=g(x2+1) Replace f(x) with x2 + 1.
=3(x2+1)+2  Substitutex? + 1for x in g(x).
=32 4+3+2=3x245
o f(x)=+5x—2andg(x) =x?
foglx)= f(gx))
= f(x? Replace g(x) with x2,

=+/5x2—2  Substitute x?for x in f(x).
go fx)=g(f(x))

=g(v/5x — 2) Replace f(x) with +/5x — 2.
= (vBx —2)>  Substitute v/5x — 2 for x in g(x).

=5x -2
flx) = ! ande =22
* x_x-i-l gx—x+3
Foaln) = flg) = f 22
(o] X) = =
& e x+3
B 1 B 1
B R
1 1
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;3x+2_1. x+3

x+3 3x+2
x+3
:3x—|—2

1
go fx)=g(f(x) :g<x_—i—1)

1 2 x+1
_2(x+l)_1_ x+1_1'x+1
- 1 -1 x+1
13 3T
2—-(x+1) —x+1

_ x+1 _ x+1

T 430 +1) T 3 +4
x+1 x+1

—-x+1 3Ix+4 —x+1 x+1
x+1  x+1  x+1 3x+4
—x+1
3x+4

At times, we only need to find f o g(x) for a particular value of x. The
y-valuefor g(x) becomesthe x-valuefor f(x).

EXAMPLE
e Find fog(—1), fog(0),andgo f(1) for f(x) = 4x+3andg(x) = 2—x2.
fog(=1) = f(g(=1) Compute g(—1).
=f@ g-)=2-(-1*=1

=41 +3=7 Evaluate f(x) at x = 1.

fog0) = f(g(0) Compute g (0).
= f(2 g0 =2-0°=2
=42)+3=11 Evaluate f(x) at x = 2.
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go f(1)=g(f(D) Compute f(1).
= f =40 +3=7
=2-7°=-47 Evaduaeg(x)atx =7.
We can compose two functions at a single x-value by looking at the graphs
of the individual functions. To find f o g(a), we will look at the graph of
g(x) to find the point whose x-coordinate is a. The y-coordinate of this

point will be g(a). Then we will look at the graph of f(x) to find the
point whose x-coordinate is g(a). The y-coordinate of this point will be

f(gla)) = fogla).

EXAMPLE

Refer to Figure 4.1. The solid graph is the graph of f(x), and the dashed graph is
the graph of g(x).

o Find fog(=1), fog@), fog(d),andgo f(0).
fog(=1) = f(g(-1) Look for x = —10on g(x).
= f(-2) (—1, —2) isonthe graph of g(x), s0 g(—1) = —2.
=0 (—2,0) isonthegraphof f(x),s0 f(—2) =0.

-
=N W e Ot
T
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fog®® = f(g(3) Look for x = 3 0on g(x).
= f(-2) (3, —2) isonthegraph of g(x),s0g(3) = —
=0 (—=2,0) isonthegraph of f(x),s0 f(—2) =0.

fog®B = f(g(5) Look for x = 50n g(x).
= (0 (5, 0) ison the graph of g(x), so g(5) = 0.
=-1 (0, —1) isonthegraph of f(x),so f(0) = —

o f(0) = g(f(0) Look forx = 0on f(x).
=g(-1 (0, —1) isonthegraph of f(x),s0 f(0) = —
=-2 (=1, —2) isonthegraph of g(x),s0g(—1) = —

Unfortunately, finding the domain for the composition of two functions is not
straightforward. The definition for the domain of f o g(x) is the set of al real
numbers x such that g(x) is in the domain of f(x). When finding the domain
for f o g(x), begin with the domain with g(x). Then remove any x-value whose
y-valueisnotinthedomainfor f(x). For exampleif f(x) = ;1 g(x) =x+3,the
y-valuesfor g(x) arex + 3. We need for x + 3 to be nonzero for f o g(x) = 5

EXAMPLES
Find the domain for f o g(x).

o fx)=SHandg(x)=+v2x—6
The domain for g(x) isx > 3 (from 2x — 6 > 0). Are there any x-values
in [3, co) we cannot put into W—GZ ? We cannot alow (+/2x — 6)2 to be

zero, so we cannot allow x = 3. Thedomain for f o g(x) is (3, o0).
o fy=1andgx) =2}

Thedomain for g(x) isx # —1. Arethere any x-values we need to remove
fromx £ —1?Weneedto find any real numbersthat are notinthedomainfor

x—1 1
f0ﬂﬂ=f@@D=f< )=,C_l

x+1 i

The denominator of this fraction is x—& SO we cannot aIIow to be

zero. A fraction equals zero only when the numerator is zero, so we cannot
alow x — 1 to be zero. We must remove x = 1 from the domain of g(x).
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The domain of f o g(x)isx # —1,1, or (—oo, —1) U (—1, 1) U (1, 00).
This function simplifiesto f o g(x) = % which hides the fact that we
cannot let x = —1.

Any number of functions can be composed together. Functions can even be
composed with themselves. When composing three or more functions together,
we will work from the right to the left, performing one composition at atime.

EXAMPLES
Find f o f(x)and f o g o h(x).
o f(x)=x3gkx) =2x—5andh(x)=x%+1
fof)=ff()=f&>=@x>=x°

For f o g o h(x), we will begin with g o h(x) = g(h(x)) = g(x2+ 1) =
2(x%2 4 1) — 5= 2x2 — 3. Now we need to evaluate f(x) at 2x2 — 3.

fogohx)= f(g(hx))
= f(x* -3 = (2*-3)°
o f(x)=3x+7gx)=|x—2,andh(x) =x*—5
fofX)=f(f(x)=fBx+7) =3@x+7)+7=9 +28
fogoh(x)=fog(h(x)
gh(x)) =g(x* =5 = |(x* =5 — 2/ = |x* - 7|
fogh) = f(gh(x))) = f(x* =7
=3x* -7 +7

In order for calculus students to use some formulas, they need to recognize
complicated functions as a combination of simpler functions. Sums, differences,

products, and quotients are easy to see, but some compositions of functions are
less obvious.

EXAMPLES
Find functions f(x) and g(x) sothat 2(x) = f o g(x).
o h(x)=+/x+16
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Although there are many possibilitiesfor f(x) and g(x), thereisusually one
pair of functionsthat isobvious. Usually wewant g (x) to bethe computation
that is done first and f(x), the computation to be done last. Here, when
computing the y-value for i (x), we would calculate x + 16. This will be
g(x). Thelast calculation will be to take the square root. Thiswill be f(x).
If welet f(x) = /x and g(x) = x + 16, wehave f o g(x) = f(g(x)) =
f(x +16) = /x + 16 = h(x).

o hix)=F5
When computing a y-value for A (x), we would first find x2 + 1. This will
be g(x). This number will be the denominator of a fraction whose numer-
ator is 2. This will be f(x), a fraction whose numerator is 2 and whose

denominator isx. If £(x) = 2 and g(x) = x? + 1,

fogx)=flglx)=f(x?+1) = = h(x).

x2+4+1

PRACTICE

1 f(x)=3%+xandgx)=x—4
(@ Find f +g(x), f —g(x), fe(x), and L(x).
(b) What isthe domain for §<x)?
(¢) Find fog(x)andgo f(x).
(d) What isthedomainfor f o g(x)?
(e) Find fog(l)andgo f(0).
() Find f o £(x).

2. Find f o g(x), g o f(x), andthedomain for f o g(x).

2x —3 x
f(x)zm and g(x)zm

3. Refer to the graphs in Figure 4.2. The solid graph is the graph of f(x),
and the dashed graph is the graph of g(x). Find f o g(1), f o g(4), and
go f(=2).

4. Find f o goh(x) for f(x) = 115, g(x) = 4x +9,and h(x) = 5x2 — 1.

5. Find functions f(x) and g(x) sothat A(x) = f o g(x), where h(x) =
(x —53+2



CHAPTER 4 Combinations of Functions

@’_

5_
1+ «
[N
3/
/ N
LN 2+ AN
%z ~ / \
~o 1p \

, ~ N
PV LN\L PO PO
5 -4 -3 -2 2/3 4 5

1_
-2
3k
4L
5L

Fig. 4.2.

SOLUTIONS
1 (@
fHgx)=@2+x)+(x—4)=3%%+2x—4
f—gx)=G@x°+x)—(x—4 =3x%+4
felx) = (3x2 +x)x —4) = 3x3 — 11x2 — 4x

f A2+ x
—(x):
g x—4

(b) Thedomainisx # 4, (fromx — 4 = 0), or (—o0, 4) U (4, 00).
(©
fogl)=fg) =flx =4 =3x—4H*+ (x — 4
=3x —4H(x —4H+x—4=3x% 23+ 44
go f(x) =g(f(x) =g@*+x)=3"+x—4
(d) Thedomainfor g(x)isal real numbers. Wecanlet x beany real number

for f(x), so we do not need to remove anything from the domain of
g(x). Thedomain of f o g(x) isall real numbers, or (—o0, 00).
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e
fog) = f(gD)

= f(-3 g)=1-4=-3
=24 f(=3)=3(-3)°+ (-3) =24
go f(0)=g(f(0)
= g(0) f(0)=30°+0=0
= —4 g(0)=0—-4=-4

(f)
fof(x)=f(f(x)=fBx%+x)=303x%+x)2+Bx’+x)

= 33?2+ x)Bx2 +x) +3x% +x = 27x* + 18x° + 6x% + x

2.
X
fogx)=fgkx)=/f (—)
x—1
()-8 2y-a
e
2x —3(x—1) —x+3
_ x—1 _ x-1
T x44kx-1) 5x—4
x—1 X —

x—1  x—1 x—1 5x—4
—x+3
5x — 4

-x+3 5—-4 —x+3 x-1

2x — 3
gOf(X)=g(f(X))=g< )

x+
2x—3 2x—3
_ x+4 _ x+4
- 2x—3_1_ 2x—3_1.x+4
x+4 x+4 x+4
2x—3 2x—3
_ x+4 x+4
T 2 -3-(x+4H T x—7

=
+
IN
=
+
IN
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 2%-3 x-7 2-3 x+4

T x+4  x+4  x+4 x—7
2x—3

- x—7

The domain of g(x) isx # 1. Now we need to see if there is anything
we need to remove from x # 1. Before simplifying f o g(x), we have

2(+) -3

1+
The denominator of this fraction cannot be zero, so we must have
4440,
4=0
x—1 +
X
(x =1 <—+4) =(x—-10
x—1
x+4x—-1) =0
5 —-4=0
4
X ==
5
Thedomainisx # 1, g, or (—oo, 2) U (3, 1) U (1, 00).
While it seems that x = —4 might not be allowed in the domain of

f og(x),x = —4isinthedomain.

fog(=4 = f(g(-4)

B 4 4 — -4 4
_f<§> V=415
7 4\ 24/5-3 7
= f(g)—m——zi

fogD = f(gD) Look for x = 1on g(x).
= f(4) (1, 4) isonthe graph of g(x), s0 g(1) = 4.
=1 (4, 1) isonthegraph of f(x),s0 f(4) = 1.
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fog@® = f(gD) Look for x = 4 0on g(x).
= f(0) (4,0) isonthegraph of g(x), s0 g(4) = 0.
=2 (0, —2) isonthegraph of f(x),so f(0) = —2.

go f(=2) =g(f(-2) Look for x = —2 onthe graph of f(x).
=g (=2, 1) isonthegraphof f(x),s0 f(—2) = 1.
=4 (1, 4) isonthegraph of g(x), s0 g(1) = 4.

fogoh(x)= fogh(kx)) = f(gh(x)))
g(h(x) = g(5x? — 1) = 4(5x%> — 1) + 9= 20x% + 5

1 1
(20x24+5)4+3 20x2+8

5. Onepossibility isg(x) = x —5and f(x) = x3+ 2.
fogx)=f(gx) = f(x—5 =(x—53+2=h(x)

f(g(h(x)) = f(20x* +5) =

Inverse Functions

In the same way operations on real numbers (like addition and multiplication)
have identities and inverses, operations on functions can have identities and
inverses. We can apply many operations on functions that we can apply to rea
numbers—adding, multiplying, raising to powers, etc. These operations can have
identities and functions have inverses in the same way they do with real numbers.
The additive identity for function addition isi(x) = 0. Each function has an addi-
tiveinverse, — f (x) istheadditiveinversefor f(x). The multiplicativeidentity for
function multiplicationisi(x) = 1, and the multiplicative inversefor f(x) isﬁ.

If we look at function composition as an operation on functions, then we can
ask whether or not there is an identity for this operation and whether or not func-
tions have inverses for this operation. There is an identity for this operation,
i(x) = x. For any function f(x), f oi(x) = f(i(x)) = f(x). Some functions
have inverses. Later we will see which functions have inverses and how to find
inverses. The notation for the inverse function of f(x) is f~1(x). Thisisdifferent
from (f(x))~1, which is the multiplicative inverse for f(x). For now, we will be
given two functionsthat are said to beinverses of each other. We will use function
composition to verify that they are.
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EXAMPLES
Verify that f(x) and g(x) areinverses.

o f(x)=2c+5andg(x)=3x—3
We will show that f o g(x) =xand g o f(x) = x.

fbgw>=f@@»=f(éx_g)
1 5
go () =g(f(x) =g@2x+5) = (2x+5) — 7
5 5
R I
hd f(x)=5X3—Gandg(x)=3x;6
3
fog(x)=f(g(x))=f<3x+6>=5<3x+6) _6
S 5
:5<x;6>—6=x+6—6:x
3_
go f(x) =g(f(x) = gBx®—6) = 3@
3/ 5x3 3
= ?z x° =x
2x—1 4x +1
) f(X):x—-l-"rand () = 2—x

4x 41
f o) = F(g(x) f<4x+1> 2(%2) 1
cgx) = g(x)) = —
2- btlig
2(4x +1 2
(2x—x)_l'2_§

T 4 +1 2—x
2—x +4- 2—x
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go f(x)=

8x+2—(2—x) Ox
2—x _ 2—x
Ax+1+42-x) — _9
2—x —X
Ox 9 9% 2—x
- = . = X
2—x 2—x 2—x 9
2x—1
) (&-1) 4Qﬁ7>+1
gL =8 - 21
42x — 1) +4 8x —4+x+4
x—+4+1'§+4 _ - x+5.c
o x4 _ -1 ~ 26+4-(x—1)
x+4 x+4 x+4
9
x—l)—c4_ 9x N 9
5 = :
47 x+4 x+44
9% x+4
. =X
x+4 9

If we think of a function as a collection of points on a graph, or ordered
pairs, then the only thing that makes f(x) different from f~1(x) is that their
x-coordinates and y-coordinates are reversed. For example, if (3, —1) isapoint on

the graph of f(x), then (-1,

EXAMPLE

3) isapoint on the graph of f~1(x).

The graph of afunction f(x) is given in Figure 4.3. Use the graph of f(x) to

sketch the graph of f~1(x).

Fig. 4.3.
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Wewill makeatableof valuesfor f(x) and switchthex and y columnsfor f~1(x).

Table4.1
X y=fx)
-5 -3
-3 0
0 1
1 3
5 5

To get thetable for £~1(x), we will switch the x- and y-values.

Table 4.2
X y=f"1
-3 -5
0 -3
1 0
3 1
5 5

The solid graph isthe graph of f(x), and the dashed graph isthe graph of f—1(x).
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If £(x)isafunction that has an inverse, then the graph of f~1(x) isareflection
of the graph of f(x) acrosstheliney = x.

4+

5L
Fig. 4.6.

A function has an inverse if its graph passes the Horizontal Line Test—if any
horizontal line touches the graph in more than one place, then the function will
not have an inverse. Functions whose graphs pass the Horizontal Line Test are
called one-to-one functions. For a one-to-one function, every x will be paired with
exactly one y and every y will be paired with exactly one x.



®’_ CHAPTER 4 Combinations of Functions
EXAMPLE
e Thegraphof f(x)isgiveninFigure4.7.Is f(x) oneto one?

Fig. 4.7.

This graph fails the Horizontal Line Test, so f(x) isnot one to one.

Fig. 4.8.

For functions that are not one to one, we can restrict the domain to force the
function to beoneto one. ThefunctionwhosegraphisinFigure4.9, f(x) = x2—3,
is not one to one. If we restrict the domain to x > 0, then the new function is one

to one.
Finding the inverse function is not hard, but it can be alittle tedious. The steps

below show the process of algebraically switching x and y.

1. Replace f(x) with x, and replace x with y.
2. Solvethisequation for y.
3. Replace y with f~1(x).
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1/2
4+
5L
Fig. 4.9.
5_
4_
3_
2_
1._
N R
1k
2k
-3
4+
5L
Fig. 4.10.
EXAMPLES
Find f~1(x).
e f(x)=6x+14
x=6y+14 Sepl
x — 14 = 6y Step 2
x—14 .
6 y
—14
f =1 Step 3



@’_

CHAPTER 4 Combinations of Functions

o f(x)=9(x—4°
x=9y—-4° Sepil
5=0-9°  Sep2
5g:y_4
5g+4=
i) = \f/g + 4 Step 3
¢ S =33
X = ;:—i Step 1
x2-—y)=1—y Step 2
2x—xy=1-y
2x—1l=xy—y y terms on one side, non-y terms on other side
2x—1=y(x—-1 Factor y
2x—1
x—1 7
i = __11 Step3
PRACTICE
1. Showthat f(x) = 3x + 7 and g(x) = 2x — 14 areinverses.
2. Showthat f(x) = Jx — 8and g(x) = x% + 8 areinverses,
3. Showthat f(x) = 22 and g(x) = 3+Z areinverses.
4. Usethegraphof f(x) in Figure 4.11 to sketch the graph of £ —1(x).
5. Find f~1(x) for f(x) = 5x + 12.
6. Find g~1(x) for g(x) = 3/_ 1.
7. Find f~1(x) for f(x) = &3



CHAPTER 4 Combinations of Functions _\®

=N W R Ot
T

SOLUTIONS
1

1
fog()=[(g())=f@x -1 = 2~ 14 +7=x-T+T=x

gof(x)zg(f(x))=g<:—2Lx+7) =2<%x+7)—14=x+14—14:x

2.
fog)=f(gx) =f(3+8=J(x3+8 —8=vad3=x
gof(x)zg(f(x))zg(«/x—S)z(«/x—8)3+8=x—8+8=x
3.
3r+2 3x+2+2
fog(X)=f(g(X))=f<x_1)—3x+12 3
B 3;?5_—{—12+2§:% B 3x+2x+_2](-x71)
- 3x+2_3‘x—1 T 3 +2-3x-1
x—1 x—1 x—1
= A
o xil x—1 x-1
5x x—1
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x+2\ 3 if\%) +2
x_3) - x+§_1

X —

go f(x)=g(f(x)) =g<

3x+2) x—3 x+6+2(x—-3)
x—3 +2- X —

_ 3 _ x—3
Tox4+2 q.x=3 7 x+2-(x-3
x—3 x—3 x—3
_ x5_x3_ S5 5
=5 — T
== X 3 x-3

5 x-3
T x-3 5

4. The solid graph in Figure 4.12 isthe graph of f(x), and the dashed graph
isthe graph of f~1(x).

Fig. 4.12.
5.
x =5y +12
x —12=>5y
x —12 1 x —12
= SO, =
5 y S0, f(x) 5
6.
x=2y—1

x+1=2y
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x+13=2y
(x+13 4, +D8
5 =Yg () =—7
2y — 3
X =
6y +1
x6y+1)=2y—-3
6xy +x =2y —3
x+3=2y—6bxy
x+3=y(2-6x)
x+3 _1 x+3
26 XS W =5,

CHAPTER 4 REVIEW
Problems 1-5 refer to f(x) = —15 and g(x) = 2x + 4.

1

Find thedomain for f + g(x).

(@ (3,00) (b) (—00,3)U (3, 0)

(©) (—00,3]U[3, 00) (d) [3,00)

Find f o g(x).

@ »ig () x—3 © 25+4 (d) &3
Find g o f(x).

@ g (b) x—3 © 25+4 (d) 22
Find f o g(4)

(@ 12 (b) 3 (©) 6 (d) 48
Find f~1(x).

@x-3 O % (0 & (@) 35

Thegraph of f(x) isgivenin Figure 4.13. Does f (x) have an inverse?
() Yes (b) No (c) Cannot be determined
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01_
=
(P&
[\
N
o
w
'
o

2+

3k

4L
Fig. 4.13.

7. Are f(x) = 3x +3and g(x) = 2x — 3inverses?

(@) Yes (b) No (c) Cannot be determined
8. What isthedomainfor f o g(x) where
1 x—2
f(x) P and  g(x) e
(@ (=00, =2)U(=2,0)U(0,2) U (2, o0)
4_
3_
21 o
54 s 2 o) 12 3 ks
//’/ 1+
//// -2r
3k
4L
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(€) (—00,0)U(0,2) U (2, 00)
(d) (—o0,—2)U (—2,0) U (0, 00)

9. The solid graph in Figure 4.14 is the graph of f(x). The dashed graph is
the graph of g(x). Find f o g(4).

@ —2 (b) —3 © 2 (d) 3
SOLUTIONS
1B 2.A 3.C 4.B 5.C
6. A 7.B 8.B 9.B



CHAPTER

I
Translations and ‘
_

Special Functions

Calculus students work with only a few families of functions—absolute value,
nth root, cubic, quadratic, polynomial, rational, exponentia, logarithmic, and
trigonometric functions. Two or more of these functions might be combined arith-
metically or by using function composition. In this chapter, we will look at the
absolute value function (whose graph is in Figure 5.1), the square root func-
tion (whose graph is in Figure 5.2), and the cubic function (whose graph is in
Figure 5.3).

We will also look at how these functions are affected by some simple changes.
Knowing the effects certain changes have on a function will make sketching its
graph by hand much easier. This understanding will also help you to use agraphing
calculator. One of thesimplest changesto afunctionisto add anumber. Thischange
will cause the graph to shift vertically or horizontally.

’_

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Fig. 5.1.

10

[l - SC R S

——@

Y T
T W N

Fig. 5.2.

Fig.5.3.

What effect does adding 1 to afunction have on its graph? It depends on where
we put “+1.” Adding 1 to x will shift the graph left one unit. Adding 1 to y will

shift the graph up one unit.

e y = |x+1], lisaddedtox, shiftingthegraphtotheleft 1 unit. See Figure5.4.
e y=|x|+1, lisaddedto y (whichis|x|) shifting the graph up 1 unit. See

Figure 5.5.
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For the graphs in this chapter, the solid graph will be the graph of the orig-
inal function, and the dashed graph will be the graph of the transformed

function.
N 5r ’ N 5r ’
N Ve AN 7
\\ 4— // \\ 4_ //
S s N ’
N 3r s N 3+ s
N 7 N s
\\ 2"// \\2"//
N / N 7
N 14+ 1+
N
L L 1 1 L.\ 1 1 ] ] 1 t t 1 1 1 1 1 L | | )
6 -5 4 -3 -2 -1 1 2 3 4 5 6 5 4 -3 -2 -1 1 2 3 4 5
1+ -1
2 2+
3t 3l
4 4L
5L 5L
Fig. 5.4. Fig. 5.5.

e y = +/x+2, 2isadded to x, shifting the graph to the left 2 units.
See Figure 5.6.

e y=./x+2, 2isadded to y (whichis \/x) shifting the graph up 2 units.
See Figure 5.7.

B O e Ot
T
\
\
\
=N W R Ot O
T
A
\
A

] i ] ' '
T ok W N
T
[

T

Fig. 5.6. Fig. 5.7.
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Subtracting a number from x will shift the graph to the right while subtracting
anumber from y will shift the graph down.

e y = (x —1)3, 1issubtracted from x, shifting the graph to the right 1 unit.
See Figure 5.8.

e y=x3—1,1issubtracted from y (which is x3), shifting the graph down 1
unit. See Figure 5.9.

10 |

Multiplying the x-values or y-values by a number changes the graph, usually by
stretching or compressing it. Multiplying the x-values or y-values by —1 will
reverse the graph. If a isanumber larger than 1 (¢ > 1), then multiplying x by a
will horizontally compress the graph, but multiplying y by a will vertically stretch
the graph. If a ispositive but lessthan 1 (0 < a < 1), then multiplying x by a will
horizontally stretch the graph, but multiplying y by a will vertically compress the

graph.
e y = +/2x, the graph is horizontally compressed. See Figure 5.10.
o y=2./x,thegraphisvertically stretched. See Figure 5.11.

3
o y= (%x) , the graphishorizontally stretched. See Figure 5.12.
o y= %x3, the graph is vertically compressed. See Figure 5.13.
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Fig. 5.10.

Fig. 5.12.

Translation Functions

7_
6 -
5 -7
4" //
v
3t P
7/
2_ /
/
1H
L t 1 L 1 ]
2 2 4 6 8 10
-1+
2
3L
Fig. 5.11.

For many functions, but not all, vertical compression is the same as horizontal
stretching, and vertical stretching is the same as horizontal compression.

Multiplying the x-values by —1 will reverse the graph horizontally. This is
called reflecting the graph across the y-axis. Multiplying the y-values by —1
will reverse the graph vertically. This is called reflecting the graph across the

x-axis.
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When afunction is even, reflecting the graph across the y-axis does not change the
graph. When afunction is odd, reflecting the graph across the y-axisisthe same as
reflecting it across the x-axis.

We can use function notation to summarize these transformations.

y=af(x+h)+k

If h is positive, the graph is shifted to the left 7 units.
If h is negative, the graph is shifted to the right 4 units.
If k ispositive, the graph is shifted up & units.

If k isnegative, the graph is shifted down k units.
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e Ifa > 1, thegraph is vertically stretched. The larger a is, the greater the
stretch.

e If0 < a < 1,thegraphisvertically compressed. The closer to O a is, the
grester the compression.

The graph of — f (x) isreflected across the x-axis.
The graph of f(—x) isreflected across the y-axis.

The graphs below are various transformations of the graph of y = |x|.

5 5
4 4
3 3k
2 2l
1+ 1k
L | | £ 1 | | | | J L | 1 1 | i L 1 | |
5 4 -3 -2 -1 1 2 3 4 5 5 4 -3 -2 2 3 4 5
1+ kb
2+ 2F  y=-}l
3t 3f
4t 4t
5L -5
Fig. 5.16. Fig. 5.17.
5 5
4t 4
3t 3t
D) y=—lz+1/+3 y=4z-2-3 2
1.\ 1_

L 1 1 1 | i 1 ) L 1 1 L ! 1 I 1 | J
54 -3 -2 -1 I N3 4 5 5 4 -3 -2 -1 1\ 2/3 4 5
1+ -1f
2t 2l
3t -3+
4t wy s
5L 5L
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EXAMPLES

——&

The graph of y = f(x) isgiven in Figure 5.20. Sketch the transformations. We
will sketch the graph by moving the points (—4, 5), (-1, —1), (1, 3), and (4, 0).

5
4
3
2
1

IS
-3+
4k
-5+
Fig. 5.20.
o y=f(x+1)-3
Table5.1
Original Left 1 Down 3 Plot this
point x—1 y—3 point
(—4,5) —4-1=-5 5-3=2 (=5, 2)
(-1,-1 -1-1=-2 -1-3=-4 (-2, -9
1,3 1-1=0 3—-3=0 (0,0
4,0 4-1=3 0-3=-3 3,-3
51
4.._
3_
. 2/\A
\
\ 1
! \l 1 4 1 [ | J
5 -4 -3 -2 JAN1 2 3 4 5
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e y=—f()
Table5.2
Original x doesnot change  Opposite of y Plot this
point X —y point
(=4, —4 =5 (=4, -9
(-1,-1) -1 —-(-)=1 (-1,1)
1,3 1 -3 1, =3)
(4,0 4 -0=0 4,0)
5 —_
4 —
3 -
2 —
e 1
1 1 1 /l\./ 1 1
5 -4 -3 -2\l 2 3 74
A
/ \ I
// -2\ K
/ 3k
/
/ 4
/
4 5L
Fig. 5.22.
o y=2f(x—-3)
Table5.3
Origina Right 3 Stretched Plot this
point x+3 2y point
(4,5 —443=-1 25 =10 (—1,10
(-1, -1 -1+3=2 2(-)=-2 (2, -2
1,3) 1+3=14 2(3)=6 (4,6)
(4,0 44+3=7 20 =0 (7,0
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40
\
\
6\- /\
\ 1Y
4 / \\
\ ’l \
\
2\ / \\
\ A\
L I vt | N I J
4 -2 /
\Y4 ‘\2/ 4 6 8 10
2L ¢
4
6%
Fig. 5.23.
1
e y= Ef(_x) +2
Table5.4
Original Opposite of x Compressed and up 2 Plot this
point —Xx %y +2 point
(—4,5) —(~4 =4 15 +2=3 @3
-1-)  —(-D=1 l-p+2=3 @3
1.3 -1 13 +2=1 -1. %)
(4,0) -4 30 +2=2 (—4,2)
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PRACTICE

For 1-4, match the graph with its function. Some functions will be left over.

5
1. nn
aL
oL
1k
L I 1 I I 1 ]
4& 2 4 6 8 10
-1+
2F
'3—\
4+
-5+
Fig. 5.25.
5
2. ne
3l
ok
FERE T E A A
3+
A
-
Fig. 5.26
3.
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fx)=-2x =1 +5 fx)=—+vx+3 fx)=v3—x

f(x)=—%x3+1 fx)=|x+2-3 f(x):%xs—i—l

For Problems5-8, usethe statementsbel ow to describethetransformations
on f(x). Some of the statements will be used more than once, and others
will not be used.

(A) shiftsthe graph to the left.
(B) shiftsthe graph to theright.
(C) shiftsthe graph up.
(D) shiftsthe graph down.
(E) reflectsthe graph across the y-axis.
(F) reflects the graph across the x-axis.
(G) vertically compresses the graph.
(H) vertically stretches the graph.
(I) reflects the graph across the x-axis and vertically compresses the
graph.
(J) reflectsthe graph acrossthe y-axis and vertically stretches the graph.
5. For thefunction f(—x) + 3,

(@ What does“+3” do?
(b) What doesthe negative sign on x do?

6. Forthefunction3f(x — 1) — 4,
(@ What does“3” do?
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(b) What does“—1" do?
(c) What does“—4" do?

7. Forthefunction —3 f(x + 3) + 1,
(8 What does*—3" do?

(b) What does*+3" do?
(c) What does“+1" do?

8. Forthefunction 1 f(—x) — 1,
(8 What does”3” do?
(b) What does the negative sign on x do?
(c) What does“—1" do?

Refer to the graph of f(x) in Figure 5.29 for Problems 9-10.

5_

Skl o
T

Fig. 5.29.

9. Sketch the graph of f(—x) — 1.
10. Sketchthegraphof —3 f(x +3) + L.

SOLUTIONS
1 fx)=—vx+3
2. fx)=I|x+2-3
3. fx)=3x3+1
4, f(x)=-2Ix—-1+5
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_\@b

5 CE
6. H,B,D
7. LA, C
8. GE,D
0.
Fig. 5.30.
Table5.5
Original Opposite of x Down 1 Plot this
point —Xx y—1 point
(=5,-3) —(-5) =5 —3-1=-4 (5, -4
(=2, 0) —(-=2)=2 0-1=-1 2,-1)
0,9 —-0=0 4-1=3 ©,3
(5,-2) -5 —-2-1=-3 (=5, -3
10 5r
LN
N Te
L 1 1 \\l | A 1 |
-8 6 -5 -&.-3/2 -1

Fig. 5.31.




CHAPTER 5 Translation Functions

@’_

Table 5.6
Original Left3 Opposite of y, compressed, up 1 Plot this
point x—3 —%y—f—l point
(-5, -3) -5-3=-8 -1-3+1=3 -8.3)
(—2,0) —2-3=-5 -fo+1=1 (-5.1)
0, 4) 0-3=-3 -5@H+1=-1 (-3,-1)
() 5-3=2 ~3(-2)+1=2 2,2)

CHAPTER 5 REVIEW
Match the graphs in Figures 5.32-5.34 with the functions in Problems 1-3.

1k 1k
- 2+
3+ 3k
4 4k
5L -5k
Fig. 5.32. Fig. 5.33.
5
4
3+
9l
1k
L { 1 | | 1 i 1 | |
-5 -4 -3 1 1 2 3 4 5
1k
-2\
3
s
5L
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L f)=+vx+2

2. fx)=—Vx+2

3. fx)=+—x+2

4. Thegraphof f(x) = (x + 1) + 2isthegraph of f(x)

(a) shifted to theleft one unit and down two units.
(b) shifted to the left one unit and up two units.

(c) shifted to the right one unit and down two units.
(d) shifted to the right one unit and up two units.

5
4
3
2
1

Fig. 5.35.

5. Thesolid graphin Figure 5.35 isthe graph of f(x), and the dashed graph
isthe graph of atransformation. What is the transformation?

@ 3/ —1) (B) 3f(x+1)
© fa-D+3 (d f&r+D+3
SOLUTIONS

1. Figure 5.32 2. Figure 5.34 3. Figure 5.33 4.B 5.A



Quadratic
Functions

CHAPTER

The graph of every quadratic function, f(x) = ax? + bx + ¢, isatransformation
of the graph of y = x2. (See Figure 6.1.)

When the functioniswrittenintheform f(x) = a(x — h)2+k, we have apretty
good idea of what its graph looks like: i will cause the graph to shift horizontally,
and k will cause it to shift vertically. The point (0,0) on y = x2 has shifted to
(h, k). This point is the vertex. On a parabola that opens up (when a is positive),
the vertex is the lowest point on the graph. The vertex is the highest point on a
parabolathat opens down (when a is negative).

We need to know the vertex when sketching aparabola. Oncewe havethevertex,
wewill find two pointstoitsleft and two pointsto itsright. We should choose points
in such away that shows the curvature around the vertex and how fast the ends are
going up or down. It does not matter which points we choose, but a good rule of
thumbistofind i — 2a, h —a, h +a, and h + 2a. Because aparabolais symmetric

®- C

opyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Fig. 6.1.

about the line x = & (the vertical line that goes through the vertex), the y-values
for h — a and h + a will be the same and the y-valuesfor 1 — 2a and i + 2a will
be the same, too. We will also find the intercepts.

EXAMPLES

Sketch the graph for thefollowing quadratic functions. Find the y-intercept and the
x-intercepts, if any.

e f(X)=(x-12-4

a=1h =1k = —4The parabola opens up and the vertex is (1, —4).
For the y-intercept, let x = Ointhefunction. The y-interceptis(0—1)2—4 =
—3. For the x-intercepts, let y = 0 and solve for x.

(x—1%-4=0
(x —1?=4  Takethe square root of each side.
x—1=42
x=1+£2=1+2,1-2=3,-1

The x-intercepts are 3 and —1.
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Table6.1
X y Plot this point
h—2a 1-2)=-1 (-1-1)2-4=0 (-1,0)
h—a 1-1=0 0-—12—-4=-3 0, =3)
h 1 -4 1, -4
h+a 1+41=2 2-12-4=-3 2, -3
h4+2a 1+21)=3 (B-12-4=0 (3,0

5L
Fig. 6.2.
o g(x)=—-2(x+1)2+18
a = —2, h = —1, k = 18 The parabola opens down, and the vertex is
(-1, 18).
y=—-2(0+1)°+18 —2x+1)?+18=0
y =16 —2(x +1)2 = —18
(x+1°=9
x+1=43

X = —l:|:3= —1—3,
—143=-4,2
The y-intercept is 16 and the x-intercepts are —4 and 2.
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——&

Table 6.2
X y Plot this point
h—2a —-1-2(-2=3 —2(3+1)2+18=-14 (3, —14)
h—a “1-(-2)=1 —2(14+1)2+18=10 (1, 10)
h -1 18 (-1, 18)
h+a —14+(-2)=-3 —2(-3+1)2+18=10 (-3, 10)
h+2a —-1+2(-2)=-5 —2(-5+1)2+18=—14 (=5, —14)

_16 L
Fig. 6.3.

o f)=30x+1D%+2
a = % h = —1, k = 2 The parabola opens up, and the vertex is (—1, 2).
Becausethe parabolaopensup (¢ = % ispositive) and the vertex isabovethe
x-axis (k = 2 is positive), there will be no x-intercept. If we were to solve
the equation 3 (x + 1) + 2 = 0, we would not get a real number solution.

The y-interceptisy = 2(0+ 1) + 2= 23.

Table 6.3
X y Plot this point
h—2a ~1-2(3)=-2 2(—2+12+2=25 (-2.23)
h—a ~1-$=-13 11+ 1242=2} (-13.2}
h ~1 2 (-1,2)
1 1 1 1 2 1 1 51
h+2a -142(3 =0 30+ 1% +2=23 ©0.23)
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Fig. 6.4.

By knowing the vertex and one other point on the graph, we can find an
equation for the quadratic function. Once we know the vertex, we have A
and k iny = a(x — h)? + k. By using another point (x, y), we can find a.

EXAMPLE

e The vertex for a quadratic function is (—3, 4), and the y-intercept is —10.
Find an equation for this function.
Leth = -3, k=4iny =a(x —h)?>+ ktogety = a(x + 3)% + 4. Saying
that the y-intercept is —10 is another way of saying (0, —10) is a point on
the graph. Wecanletx = 0and y = —10iny = a(x + 3)2 + 4tofind a.

~10=a(0+3)°+4

—14 =9
14

——=a
9

One equation for thisfunctionis y = —%‘(x +3)2 + 4.

Quadratic equations are not normally written in the convenient form f(x) =
a(x —h)? + k. We can completethe squareon f (x) = ax?+ bx + c tofind (4, k).
Begin by completing the square on the x2 and x terms.
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EXAMPLES
Find the vertex.

o y=x?—6x—2

y:x2—6x—2

6 2
y=|:x2—6x+<§> :|—2+r)

We need to balance putting +(6/2)2 = 9 in the parentheses by adding
—9to -2

y:(x2—6x—|—9)—2—9

y=(x— 3211 Thevertex is (3, —11).

o f(x)=4x%+8x+1

We will begin by factoring a = 4 from 4x? + 8x. Then we will complete the
square on the x2 and x terms.

f(x):4x2+8x+l
fx)=4x%+2x)+1

fx) =42+ 2+ 1) + 142

By putting +1 in the parentheses, we are adding 4(1) = 4. We need to
balance this by adding —4 to 1.

fx)=4x°+2x+ 1) +1+ (-4

f(x) =4(x +1)°—-3  Thevertexis(—1, —3).

When factoring an unusual quantity from two or more terms, it is not obvi-
ous what terms go in the parentheses. We can find the terms that go in the
parentheses by writing the terms to be factored as numerators of fractions
and the number to be factored as the denominator. The terms that go in the
parentheses are the simplified fractions.
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o f(x)=-3?+0x+1
We need to factor « = —3 from —3x2 + 9x.
—3x2  9x 2

+ — =x“—3x

-3 -3

1
fx)=—3x’+09x + 2

f(x) = —3(x%—3x) + 1

4
9 1 3
— ) 5) =2
fx) = (x 3x+4)+4+. (2)
. 9. , 9
By putting +Z in the parentheses, we are adding —3 )= Weneed

27 1

to balance this by adding i to 2
9 1 27 2 9 28
fx) = (x —3X+4>+Z+Z——3<x _3X+Z)+Z

3\? (3
fx) = (x — 5) +7 Thevertex is <§, 7)

° g(x):%xz—l-x—Z

Factoringa = 5 2 from 2 3x + x, we have

@3x2  x L, 2 3 ,.3
2/3 +2/3—x +x73—x +x-2—x +2x.

2 3
g(x)=§(x2+§x>—2

2/, 3 9 1 3\ 9

== x4 — | —2+2 ~2) ==

3(x+2x+16) * <2 2) 16

9 9 3
By adding 16 in the parentheses, we are adding § =8 We need to
balance this by adding —3/8to —2.
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2 3 9 3
g(X)Z—(x2+—x+—>—2—§

3 2 16
(x) 2 +3 S 19 Thevertex is 319
X)==z|x+=) — = — =
§ 3 4 8 48

One advantage to the form f(x) = ax? + bx + c isthat it is usually easier to use
to find the intercepts. We can use factoring and the quadratic formulawheniitisin
thisform. Also, ¢ isthe y-intercept. Because a is the same number in both forms,
we can tell whether the parabola opens up or down when the equation isin either
form. It can be tedious to complete the square on f(x) = ax? + bx + c to find
the vertex. Fortunately, there is a shortcut.

—b —b

This shortcut comes from completing the square to rewrite f(x) = ax? + bx + ¢
as f(x) = a(x — h)? +k.

f(x):ax2+bx+c

()
=a(x"+—-x)+c
a
2, b (P 2 N b \?
=al|x“+—x — c—a-|=—
a 2a 2a

= + b 2+ b The vertex is —b b
A\ o) T 4 20" 4q

Itiseasier tofind k by evaluating thefunctionat x = E—f than by using thisformula.

EXAMPLE

Use the shortcut to find the vertex.
o f(x)=-3x24+9x+4

b -9 3 3 3\? 3 43

Thevertex is (3, ).
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An important topic in calculus is optimizing functions; that is, finding a maxi-
mum and/or minimum value for the function. Precal culus students can use algebra
to optimize quadratic functions. A quadratic function has a minimum value (if its
graph opens up) or a maximum value (if its graph opens down). If a is positive,
then & is the minimum functional value. If a is negative, then & is the maximum
functional value. These values occur at x = h.

EXAMPLES

Find the minimum or maximum functiona value and where it occurs.

f(x)=—(x—32+25

The parabola opens down because @ = —1 is negative. This means that
k = 25isthe maximum functional value. It occursat x = 3.

y = 0.01x2 — 6x + 2000

)
" 24 2(0.01)

— 300 and k = 0.01(300)2 — 6(300) + 2000 = 1100

a = 0.01 is positive, so k = 1100 is the minimum functional value. The
minimum occurs at x = 300.

PRACTICE

For Problems 1-3, sketch the graph and identify the vertex and intercepts.

A 0w NP

y=—(x-1%+4
f) =3(x+12+2
yz—%xz—x—i-lZ

Rewrite f (x) = —2x2 — 6x — 1lintheform f(x) = a(x — h)?+ k, using
completing the sguare.

Find the maximum or minimum functional value for g(x) = —0.002x2 +
5x + 150.
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6. Findaneguation for the quadratic function whosevertex is (2, 5) and whose
graph contains the point (—8, 15).

SOLUTIONS
1. Thevertex is (1, 4). The y-interceptis —(0 — 1)2 + 4 = 3.
—(x—1*+4=0
—(x—1)%=-4
x—1%=4
(x—1) =+2

x=14£2=1+21-2=3,-1

The x-intercepts are 3 and —1.

2. Thevertex is (-1, 2). The y-interceptis 3(0+ 1) + 2 = §. There are two
ways we can tell that there are no x-intercepts. The parabola opens up and
the vertex is above the x-axis, so the parabolais always above the x-axis.
Also, the equation %(x + 1)2 + 2 = 0 has no real number solution.
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3. Thevertexis(—1, 2).

b —(-1 1., 25
= = landk=->(-1)2— () +12=2="
2= 3. = tadk= (D - (hi12=3

h =

The y-intercept is —3(0) — 0+ 12 = 12.

1
O=—§x2—x+12

—2(0) = -2 (—%xz —x+ 12)

0=x242x—24
O0=(x+6)(x—4

x+6=0 x—4=0
x=—6 x=4

The x-intercepts are —6 and 4.
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15

3
4 fx)= —gxz— 6x — 11

—6x .
-3/5

3 3 5
f(x):-E(x2_|_1Ox)—1l —6x+—§=_6x._§ — 10x
3 2
f(X)=—§(x +10x +25) — 11+ 15

f) = —gu +5)7+4

5. This function has a maximum value because ¢ = —0.002 is negative.
The answer isk.
—b -5

h=—=——">__ — 1250 and
2a  2(—0.002)

k = g(1250) = —0.002(1250)2 + 5(1250) + 150 = 3275

The maximum functional valueis 3275.

6. h =2 k=5whichmakesy = a(x — h)2+ k becomey = a(x — 2)2 +5.
We can find a by lettingx = —8 and y = 15.

y:a(x—2)2+5
15=a(-8—-2°+5

10 = a(—10)?
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10 = 100a
0l1l=a

The equationis y = 0.1(x — 2)2 + 5.

Thesetechniquesto maximize/minimize quadratic functions can be applied to prob-
lems outside of mathematics. We can maximize the enclosed area, minimize the
surface area of abox, maximize revenue, and optimize many other problems. Inthe
first group of problems, the functions to be optimized will be given. In the second,
we will have to find the functions based on the information given in the problem.
The answersto every problem below will be one or both coordinates of the vertex.

EXAMPLES

e The weekly profit function for a product is given by P(x) = —0.0001x2 +
3x — 12,500, where x isthe number of units produced per week, and P (x) is
the profit (in dollars). What is the maximum weekly profit? How many units
should be produced for this profit?

The profit function is a quadratic function which has a maximum value.
What information does the vertex give us? & is the number of units needed
to maximize the weekly profit, and & is the maximum weekly profit.

b -3
T 24 2(—0.0001)

k = —0.0001(15,000) + 3(15,000) — 12,500 = 10,000

= 15,000 and

Maximize the weekly profit by producing 15,000 units. The maximum
weekly profit is $10,000.

e Thenumber of units of aproduct sold depends on the amount of money spent
on advertising. If y = —26x2 + 2600x + 10,000 gives the number of units
sold after x thousands of dollars is spent on advertising, find the amount
spent on advertising that results in the most sales.

h will give usthe amount to spend on advertising in order to maximize sales,
and k will tell us the maximum sales level. We only need to find 4.

b= —b  —2600
22 2(-26)
$50 thousand should be spent on advertising to maximize sales.

50

The height of an object propelled upward (neglecting air resistance) is given by
the quadratic function s (1) = —16t2 + vor + so , where s isthe height in feet, and
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t isthe number of seconds after the initial thrust. The initial velocity (in feet per
second) of the object is vg, and sg is the initial height (in feet) of the object. For
example, if an object is tossed up at the rate of 10 feet per second, then vp = 10.

If an object is propelled upward from a height of 50 feet, then so = 50. If an
object isdropped, itsinitial velocity is0, so vg = O.

EXAMPLES

e Anobjectistossed upward with aninitial velocity of 15 feet per second from
aheight of four feet. What is the object’s maximum height? How long does
it take the object to reach its maximum height?

Because the initial velocity is 15 feet per second, vg = 15, and the initial
height isfour feet, so sg = 4. The function that givesthe height of the object
(in feet) after r secondsiss(r) = —16:2 + 15¢ + 4.

L —b 15
22 2(—16)

= 0.46875 and

k = —16(0.46875)? + 15(0.46875) + 4 = 7.515625

The object reaches its maximum height of 7.515625 feet after
0.46875 seconds.

e A projectileisfired from the ground with aninitial velocity of 120 miles per

hour. What is the projectile’'s maximum height? How long does it take to
reach its maximum height?
Because the projectile is being fired from the ground, its initial height is O,
so so = 0. Theinitial velocity is given as 120 miles per hour—we need to
convert thisto feet per second. There are 5280 feet per mile, so 120 milesis
120(5280) = 633,600 feet. There are 60(60) = 3600 seconds per hour.

120 miles 633,600 feet

Thour 3600 seconds

Now we have the function: s(¢) = —16¢2 + 176 + 0 = —16¢2 + 176¢.
—b —176

~ 22 2(-16)

The projectile reaches its maximum height of 484 feet after 5.5 seconds.

= 176 feet per second

=55andk = —16(5.5)%2 + 176(5.5) = 484

Another problem involving the maximum vertical height is one where we know
thehorizontal distancetravel edinstead of thetimeit hastraveled. The x-coordinates
describe the object’s horizontal distance, and the y-coordinates describe its height.
Herewe will find the maximum height and how far it traveled horizontally to reach
the maximum height.
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EXAMPLE

e A bal isthrown across a field. Its path can be described by the equation
y = —0.002x2 + 0.2x + 5, where x is the horizontal distance (in feet) and
y isthe height (in feet). See Figure 6.8. What isthe ball’s maximum height?
How far had it traveled horizontally to reach its maximum height?

Ball’s Path

Height ’ \

Horizontal Distance

Fig. 6.8.

k will answer the first question, and 2 will answer the second.

—b 0.2
=—=———__ =50andk = —0.002(50)? + 0.2(50) + 5 = 10
2¢ _ 2(—0002) " (07 +0.230) +
The ball reached a maximum height of 10 feet when it traveled 50 feet
horizontally.

The revenue of a product or service can depend on its price in two ways. An
increase in the price means that more revenue per unit is earned but fewer unitsare
sold. A decrease in the price means that less revenue is earned per unit but more
units are sold. Quadratic functions model some of these relationships. In the next
problems, a current price and sales level are given. We will be told how a price
increase or decrease affects the sales level. We will let x represent the number of
price increases/decreases. Suppose every $10 decrease in the price results in an
increase of five customers. Then therevenuefunctionis(old price — 10x)(old sales
level + 5x). If every $50 increasein the price resultsin aloss of one customer, then
therevenuefunctionis(old price + 50x)(old saleslevel — 1x). Thesefunctionsare
quadratic functionswhich have amaximum value. The vertex tellsusthe maximum
revenue and how many times to decrease/increase the price to get the maximum
revenue.

EXAMPLES

e A management firm has determined that 60 apartments in a complex can
be rented if the monthly rent is $900, and that for each $50 increase
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in the rent, three tenants are lost with little chance of being replaced.

What rent should be charged to maximize revenue? What is the maximum

revenue?

Let x represent the number of $50 increases in the rent. This meansif the
rentisraised $50, x = 1, if therent isincreased $100, x = 2, and if the rent
isincreased $150, x = 3. The rent function is 900 + 50x. The number of
tenants depends on the number of $50 increases in the rent. So, if the rent
is raised $50, there will be 60 — 3(1) tenants; if the rent is raised $100, the
there will be 60 — 3(2) tenants; and if the rent is raised $150, there will be
60 — 3(3) tenants. If the rent is raised $50x, there will be 60 — 3x tenants.
The revenue function is

R = (900 + 50x)(60 — 3x) = —150x2 + 300x + 54,000.

—b —300 5

= 5% = 2C1850) = land k = —150(1)“ + 300(1) + 54,000 = 54,150
The maximum revenue is $54,150. Maximize revenue by charging 900 +
50(1) = $950 per month for rent.

e A cinema multiplex averages 2500 tickets sold on a Saturday when ticket

prices are $8. Concession revenue averages $1.50 per ticket sold. A research
firm has determined that for each $0.50 increasein theticket price, 100 fewer
tickets will be sold. What is the maximum revenue (including concession
revenue) and what ticket price maximizes the revenue?
Let x represent the number of $0.50 increasesin the price. Theticket priceis
8 + 0.50x. The average number of tickets sold is 2500 — 100x. The average
ticket revenue is (8.00 + 0.50x)(2500 — 100x). The average concession
revenueis 1.50(2500 — 100x). The total revenueis

R = (8.00 + 0.50x)(2500 — 100x) + 1.50(2500 — 100x)

= —50x2 + 300x + 23,750.

—b —300 5

h = 20 = 2(50) 3and k = —50(3)“ + 300(3) + 23,750 = 24,200
To maximize revenue, the ticket price should be 8.00 + 0.50(3) = $9.50,
and the maximum revenue is $24,200.

e The manager of a performing arts company offers a group discount price of
$45 per person for groups of 20 or more and will drop the price by $1.50 per
person for each additional person. What isthe maximum revenue? What size
group will maximize the revenue?
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Because the price does not change until more than 20 peoplearein the group,
we will let x represent the additional people in the group. What is the price
per person if the group size is more than 20? If one extra person isin the
group, the price is 45 — 1(1.50). If there are two extra people, the priceis

45 — 2(1.50); and if there are three extra people, the price is 45 — 3(1.50).
So, if there are x additional people, the priceis45 — 1.50x. Therevenueis

R = (20 + x)(45 — 1.50x) = —1.50x2 + 15x + 900.

—b -15

h=—=-——"_ —5andk = —1.50(5) + 15(5) + 900 = 937.50
2a  2(—1.50) 7+ 156 +

The group size that maximizes revenue is 20 + 5 = 25. The maximum
revenue is $937.50.

Optimizing geometric figures are common calculus and precal culus problems.
In many of these problems, there are more than two variables. We will be given
enough information in the problem to eliminate one of the variables. For example,
if wewant theareaof arectangle, theformulaisA = LW. If weknow the perimeter
is 20, then we can use the equation 2L + 2W = 20 to solve for either L or W and
substitute this quantity in the area function, reducing the equation from three to
two variables. The new areafunction will be quadratic.

EXAMPLES

e A parks department has 1200 meters of fencing available to enclose two
adjacent playing fields. (See Figure 6.9.) What dimensions will maximize
the enclosed area? What is the maximum enclosed area?

T
1
i
{
i
|
1
|
|

Fig. 6.9.

Thetota enclosed areais A = LW. Becausethereis 1200 meters of fencing
available, wemust have L + W + W + W + L = 1200 (see Figure 6.10).
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We can solve for L or W in this equation and substitute it in A = LW,
reducing the equation to two variables. We will solvefor L in 2L + 3W =
1200.

2L 4+ 3W = 1200
1200 — 3W
L=
2
Now A = LW becomes A = 223W .y — — 324 600W. Thisfunction
has a maximum value.

L —b  —600
22 2(-3/2

3
— 200 and k = —5(200)2 1 600(200) = 60,000

The width that maximizes the enclosed area is 200 meters, the length is

1200320 — 300 meters. The maximum enclosed area is 60,000 square
meters.

Another common fencing problem isone where only three sides of arectangular
areaneedsto befenced. Thefourth sideis some other boundary like astream or the
side of abuilding. Wewill call two sides W and thethirdside L. Then“2W + L =
amount of fencing” allows usto solvefor L and substitute“ L = amount of fencing
—2W” in A = LW to reduce the areaformulato two variables.

EXAMPLE

e A farmer has 1000 feet of fencing materials available to fence a rectangular
pasture next to ariver. If the side along the river does not need to be fenced,
what dimensions will maximize the enclosed area? What is the maximum
enclosed area?
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River

Fig. 6.11.

Using the fact that 2W + L = 1000, we can solve for L and substitute this
quantity intheareaformula A = LW.

2W + L = 1000
L = 1000 — 2w
A=LW

A = (1000 — 2W)W = —2W2 + 1000W
This quadratic function has a maximum value.

_ —b _ —1000
20 2(-2)

= 250 and k = —2(250)2 + 1000(250) = 125,000

Maximize the enclosed area by letting W = 250 feet and L = 1000 —
2(250) = 500 feet. The maximum enclosed areais 125,000 square feet.

In the last problems, we will maximize the area of afigure but will have to work
alittle harder to find the area function to maximize.

EXAMPLES

e A window is to be constructed in the shape of arectangle surmounted by a
semicircle (see Figure 6.12). The perimeter of the window needs to be 18
feet. What dimensions will admit the greatest amount of light?

The dimensions that will admit the greatest amount of light are the same
that will maximize the area of the window. The area of the window is the
rectangular area plus the area of the semicircle. The area of the rectangular
regionis L W. Because the width of the window isthe diameter (or twicethe
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2r
Fig. 6.12.

radius) of the semicircle, we can rewritetheareaas L(2r) = 2r L. The area
of the semicircle is half of the area of a circle with radius r, or %nrz. The
total area of the window is

1
A=2rL + énrz.

Now we will use the fact that the perimeter is 18 feet to help us replace L
with an expression using r. The perimeter is made up of the two sides (2L)
and the bottom of the rectangle (2r) and the length around the semicircle.
The length around the outside of the semicircle is half of the circumference
of acircle with radius r, %(an) = nr. The total perimeter is P = 2L +
2r +mr. Thisisequal to 18. We will solvethe equation 2L + 2r + 7r = 18
for L.

2L +2r +r =18
2L =18 —-2r —nr

Now we will substitute 9 — r — 37 for L in the areaformula
1
A=2rL + Enrz

1 1
A=2r(9—r — Enr) + Enrz
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A=18 — 22 —7s2 + %T[I"Z =18 — 2% — %nrz = 18r — (2—|— %rr)rz

1
A=—<2+§n>r2+18r

This quadratic function has a maximum value.

—b —18 18
~ 2.52

T T )] A

M aximize the amount of light admitted in the window by letting the radius of
the semicircle be about 2.52 feet, and the length about 9 — 2.52 — % (2.52) ~
2.52 feet.

A track isto be constructed so that it is shaped like Figure 6.13, arectangle
with a semicircle at each end. If the inside perimeter of the track isto be %
mile, what is the maximum area of the rectangle?

mr

Fig. 6.13.

The length of the rectangleis L. Its width is the diameter of the semicircles
(or twice their radius). The area formula for the rectangleis A = LW =
L(2r) = 2rL. The perimeter of the figure is the two sides of the rectangle
(2L) plus the length around each semicircle (7). The total perimeter is
2L + 2mr. Although we could work with the dimensionsin miles, it will be
easier to convert 1/4 mile to feet. There are 5280/4 = 1320 feet in 1/4 mile.
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We will solve 2L + 2xr = 1320 for L. Solving for » works, too.

2L + 27r = 1320
2L = 1320 — 27r

1320 — 2nr
L:T

A=2rL

= 660 — 7r

A = 2r(660 — 7r) = —27r2 + 1320r

The area function has a maximum vaue.
_—b —-1320 330

20 2(-27) 7w

2
k=—-2m (ﬁ)> + 1320 (@)

s T

217,800
- 4

~ 69,328

The maximum area of the rectangular region is about 69,328 square feet.
e Arectangleisto be constructed so that it is bounded below by the x-axis, on
theleft by the y-axis, and aboveby theliney = —2x 4+ 12. (SeeFigure 6.14).

What is the maximum area of the rectangle?

Fig. 6.14.
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The coordinates of the cornerswill help usto see how we can find the length
and width of the rectangle.

0,9)¢=

(z,y)

©0,0] (2,0) \

Fig. 6.15.

The height of the rectangle is y and the width is x. This makes the area
A = xy. We need to eliminate x or y. Because y = —2x + 12, we can
substitute —2x + 12 for y in A = xy to make it the quadratic function
A =xy=x(—2x +12) = —2x? + 12x.

—b -12
22 3andk 3+ 12(3) 8

The maximum areais 18 square units.

PRACTICE

1. Theaverage cost of a product can be approximated by the function C(x) =
0.00025x2 — 0.25x + 70.5, where x is the number of units produced and
C(x) isthe average cost in dollars. What level of production will minimize
the average cost?

2. A frog jumps from a rock to the shore of a pond. Its path is given
by the equation y = —=x2 + 3x, where x is the horizontal distance
in inches, and y is the height in inches. What is the frog's maximum
height? How far had it traveled horizontally when it reached its maximum
height?
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3. Aprojectileisfired upward from aten-foot platform. The projectile’sinitial

velocity is 108 miles per hour. What is the projectile’s maximum height?
When will it reach its maximum height?

4, Attendance at home gamesfor acollege basketball team averages 1000 and
the ticket price is $12. Concession sales average $2 per person. A student
survey revealsthat for every $0.25 decreasein theticket price, 25 more stu-
dentswill attend the home games. What ticket price will maximizerevenue?
What is the maximum revenue?

5. A school has 1600 feet of fencing available to enclose three playing fields
(see Figure 6.16). What dimensions will maximize the enclosed area?

L
Fig. 6.16.

6. Themanager of alargewarehousewantsto enclose an areabehind the build-
ing. He has 900 feet of fencing available. What dimensions will maximize
the enclosed area? What is the maximum area?

Building

L
Fig. 6.17.

7. A swimming pool isto be constructed in the shape of a rectangle with a
semicircle at one end (see Figure 6.12). If the perimeter is to be 120 feet,
what dimensions will maximize the area? What is the maximum area?
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8. A rectangle is to be constructed so that it is bounded by the x-axis, the

y-axis, and theline y = —3x + 4 (see Figure 6.18). What is the maximum
area of the rectangle?

(zy)

Fig. 6.18.

SOLUTIONS
1. Weonly need to find 4.
-b  —(-0.25)

=—=———— =500
2a  2(0.00025)

Minimize the average cost by producing 500 units.

2. k answersthefirst question, 4 answers the second.

b 53 53 5 5 5 36_12

2 2(-5/72) 5/36 3 36 3 5
5 5

= ——(12%+>(12) =1

k 72( )+3() 0

Thefrog reached amaximum height of 10 inchesand had traveled 12 inches
horizontally when it reached its maximum height.

3. Theformulas(r) = —1612 4 vot + sg isin feet and seconds, so we need to
convert 108 miles per hour to feet per second. There are 5280 feet in amile
and 60(60) = 3600 seconds in an hour.

108 miles B 108(5280) feet
lhour 3600 seconds

= 158.4 feet per second
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Replacing vo with 158.4 and sp with 10, we have the function giving the
height of the projectile after ¢ seconds, s(r) = —1612 + 158.4¢ + 10.

—b 1584
2a  2(—16)
k = —16(4.95)% + 158.4(4.95) + 10 = 402.04
The projectile reaches amaximum height of 402.04 feet after 4.95 seconds.

= 4.95 and

4. We will let x represent the number of $0.25 decreases in the ticket price.
Theticket priceis 12 — 0.25x and the average number attending the games
is1000 + 25x. Ticket revenueis (12 — 0.25x) (1000 + 25x). Revenue from
concession salesis 2(1000 + 25x). Total revenueis

R = (12 — 0.25x)(1000 + 25x) + 2(1000 + 25x)
= —6.25x2 4 100x + 14,000
b -100
2a  2(—6.25)
k = —6.25(8) 4 100(8) + 14,000 = 14,400

The ticket price that will maximize revenueis 12 — 0.25(8) = $10 and the
maximum revenue is $14,400.

5. Thetotal areais A = LW. Because thereis 1600 feet of fencing available,
2L + 4W = 1600. Solving this equation for L, we have L = 800 — 2W.
Substitute 800 — 2W for Lin A = LW.

A=LW

8 and

= (800 — 2W)W = —2W?2 + 800W
_—b _ -800 _
20 2(-2)

Maximize the enclosed area by letting the width be 200 feet and the length
be 800 — 2(200) = 400 feet.

6. The enclosed areais A = LW. Because 900 feet of fencing is available,
2W + L = 900. Solving this for L, we have L = 900 — 2W. We will
substitute 900 — 2W for Lin A = LW.

A=LW

200

= (900 — 2W)W = —2W?2 + 900W
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—b  —900

= — = _—— =225andk = —2(225)? + 900(225) = 101,250
2 = 2(-2) (225)° + 900(225) ;

Maximize the enclosed area by letting the width be 225 feet and the
length 900 — 2(225) = 450 feet. The maximum enclosed areais 101,250
square feet.

7. Theareaof therectangleis 2r L (the width is twice the radius of the semi-
circle). The area of the semicircle is half the area of a circle with radius
r, 37r2. The total area of the pool is A = 2rL + $r?. After finding an
equation for the perimeter, we will solve the equation for L and substitute
thisfor Lin A = 2rL + %nrz. The perimeter of the rectangular part is
L+ 2r 4+ L = 2r + 2L. Thelength around the semicircleis half the circum-
ference of acirclewithradiusr, %(an) = nrr. Thetotal length around the
pool is2L + 2r + wr which equals 120 feet.

2L+ 2r +7r=120
2L =120—2r —7r

120—2r —mr
="

> =60—r—§7'rr

1
A=2rL+—nr2
2
1 1 5 . 1
=2r(60—r—§71r)+§71r Substltute60—r—§nr for L.
2 2 1 2
=120r —2rc—mr +§71r
2 1 5
=—2r —Errr +120r
1
= (—2— §n> r?4120r

b -120 _ -120  -120
"2 2—2-im) —4-m  —(4+m)

120
=——~16.8
447
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7200

= —— ~1008.2
447

Maximize the area by letting the radius of the semicircle be about 16.8 feet
and the length of the rectangle about 60 — 16.8 — 37(16.8) ~ 16.8 fet.
The maximum areais about 1008.2 square feet.

8. Theareais A = LW. The length of the rectangle is y (the distance from
(0, 0) and (0, y)). The width is x (the distance from (0, 0) and (x, 0)). The
areaisnow A = xy. Because y = —3x + 4, we can substitute —3x + 4 for
yinA =xy.

A =xy

A=x(—3x+4) =—3x>+4x

-4 2 2\? 2\ 4
h=— —Zandk=-3(%2) +4(%)=2
23 3% (3) * (3) 3

The maximum areais ‘g‘ square units.

CHAPTER 6 REVIEW

1. Whatisthevertex for f(x) = —2(x — 1)2 +4?
@ (1,9 (b) (=1,4 © (-2,4 (d) 2,9
2. Complete the square on y = x? — 6x + 10 to write it in the form
y=a(x —h)?+k.
@ y=(x—-32%+9 (b) y=(x—372+19
© y=x-3°-9 (@ y=@&-3?+1
3. Complete the square on y = 3x2 — x + 1 to write it in the form
y=a(x —h)?+k.
@ y=3x-3?+8 () y=3x—9*+ 3
© y=3x-32+2 d) y=3x—2)?*+ 3%
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4. What arethe x- and y-interceptsfor f(x) = 2x2 +x — 6?

(@) The y-intercept is —6, and the x-intercepts are —% and 2.

(b) The y-intercept is —6, and the x-intercepts are % and 2.

(c) The y-intercept is —6, and the x-intercepts are % and —2.

(d) The y-intercept is —6, and the x-intercepts are —% and —2.

5. What isthe vertex for f(x) = —0.02x2 + 3x — 10?
(@ (75, —122.5) (b) (—75, —347.5)
(©) (75,102.5) (d) (75, 5615)

6. Find themaximum or minimum functional valuefor f (x) = 6(x —25)2+
100.
(@) The maximum functional valueis 25.

(b) The maximum functional valueis 100.
(c) The minimum functiona valueis 25.
(d) The minimum functional valueis 100.

7. Findthequadratic functionwith vertex (4, —2) and withthepoint (5, — %)

on itsgraph.
@ fx)=3x-42-2 b) f(x)=5x+dH2-2
© fx)=x—-4?+2 d) f)=—g&x+H2+2
5_
4._
3_
2_
1
S e S R R B R W R R
3_
A
_5—
Fig. 6.19.

8. What isthe function whose graph isin Figure 6.19?
@ f)=-2x+D*+2 (b)) f(x) =2 —1?+2
© f)=2(x+1?+2 (d f&) =2(x—1?+2
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9. A hot dog vendor at alocal fair averages 140 hot dogs per day when the

priceis $3. If for every $0.25 increase in the price, 10 fewer hot dogs are

sold on average, what price maximizes the revenue?

(a) $3.00 (b) $3.25 (c) $3.50 (d) $3.75

10. A warehouse manager wants to fence a rectangular area behind his
warehouse. He has 120 meters of fencing available. If the side against
the building does not need to be fenced, what is the maximum enclosed

area?
(a) 1500 sguare meters (b) 1700 square meters
(c) 1600 sguare meters (d) 1800 square meters
SOLUTIONS
1A 2.D 3.B 4.C 5C
6.D 7.A 8.B 9.B 10.D
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CHAPTER

A polynomial function isafunctionintheform f(x) = a,x" + ap_1x" T+ 4
aix + ag, where each g; isarea number and the powers on x are whole numbers.
Thereisno x under aroot sign and no x in adenominator. The number a; iscalled a
coefficient. For example, in the polynomial function f (x) = —2x3+5x2 —4x + 8,
the coefficientsare —2, 5, —4, and 8. The constant term (the term with no variable)
is8. Thepowersonx are3, 2, and 1. The degree of the polynomia (and polynomial
function) is the highest power on x. In this example, the degree is 3. Quadratic
functions are degree 2. Linear functions of theform f(x) = mx + b (if m # Q) are
degree 1. Constant functions of the form f(x) = b are degree O (this is because
x% =1, making f(x) = bx9).

Theleading termof apolynomial (and polynomial function) istheterm having x
to the highest power. Usually, but not always, the leading term is written first. The
leading coefficient isthe coefficient on theleading term. In our example, theleading
termis—2x3, and theleading coefficientis —2. By looking at theleading term only,
we can tell roughly what the graph looks like. The graph of any polynomial will

®- C
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either go up on both ends, go down on both ends, or go up on one end and down on
the other. Thisis called the end behavior of the graph. The figures below illustrate
the end behavior of polynomial functions. The shape of the dashed part of the graph
depends on the individual function.

/

Fig. 7.1.
This graph goes up on both ends.

\
\

Fig. 7.2.
This graph goes down on both ends.

Fig. 7.3.
This graph goes down on the left and up on the right.
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Fig. 7.4.

This graph goes up on the left and down on the right.

If the degree of the polynomial is an even number, the graph will look like the
graphin Figure 7.1 or in Figure 7.2. If the leading coefficient is a positive number,
the graph will look like the graph in Figure 7.1. If the leading coefficient is a
negative number, the graph will look like the graph in Figure 7.2. If the degree of
the polynomial isan odd number, the graph will ook liketheonein Figure 7.3 orin
Figure 7.4. If the leading coefficient is a positive number, the graph will look like
the graph in Figure 7.3. If the leading coefficient is a negative number, the graph
will look like the graph in Figure 7.4.

How can one term in a polynomial function give us this information? For poly-
nomial functions, the leading term dominates all of the other terms. For x-values
large enough (both large positive numbers and large negative numbers), the other
terms don’t contribute much to the size of the y-vaues.

EXAMPLES

Match the graph of the given function with one of the graphs in Figures
7.1-7.4.

o f(x)=4x°+6x3—2x24+8x+11

We only need to look at the leading term, 4x°. The degree, 5, isodd, and the
leading coefficient, 4, is positive. The graph of this function looks like the
onein Figure 7.3.

o P(x)=5+2x —6x2

The leading term is —6x2. The degree, 2, is even, and the leading coef-
ficient, —6, is negative. The graph of this function looks like the one in
Figure 7.2.
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o h(x)=—-234+42—-7x+9

Theleading term is —2x3. The degree, 3, is odd, and the leading coefficient,
—2, isnegative. The graph of this function looks like the onein Figure 7.4.

o g(x)=x*4+4x3—8x2+3x—5

Theleading term isx%. The degree, 4, iseven, and theleading coefficient, 1,
is positive. The graph of this function looks like the onein Figure 7.1.

Finding the x-intercepts (if any) for the graph of a polynomial function is very
important. The x-intercept of any graph iswherethe graph touchesthe x-axis. This
happens when the y-coordinate of the point is 0. We found the x-intercepts for
some quadratic functions by factoring and setting each factor equal to zero. This
ishow wewill find the x-intercepts for polynomial functions. It is not always easy
to do. In fact, some polynomials are so hard to factor that the best we can do is
approximate the x-intercepts (using graphing calculators or calculus). Thiswill not
be the case for the polynomials in this book, however. Every polynomia here will
be factorable using techniques covered later.

Because an x-intercept for f(x) = apx” + ap_1x"" 1+ -+ awx + ag isa
solution to the equation 0 = a,x" + a,_1x" "1 + - -- 4+ a1x + ag, x-intercepts are
also called zeros of the polynomial. All of the following statements have the same
meaning for a polynomial. Let ¢ be areal number, and let P(x) be a polynomia
function.

1. cisan x-intercept of the graph of P (x).
2. cisazeofor P(x).
3. x —cisafactor of P(x).

EXAMPLES

x — lisafactor meansthat 1isan x-intercept and a zero.

x + 5isafactor meansthat —5 isan x-intercept and a zero.

x isafactor meansthat O is an x-intercept and a zero.
3isazero meansthat x — 3isafactor and 3 isan x-intercept.

We can find the zeros of afunction (or at least the approximate zeros) by looking
at its graph.

The x-intercepts of the graph in Figure 7.5 are 2 and —2. Now we know that
x —2and x + 2 (whichisx — (—2)) are factors of the polynomial.

The graph of the polynomial function in Figure 7.6 has x-intercepts of —1, 1,
and 2. Thismeansthat x — 1, x — 2, and x + 1 (as x — (—1)) are factors of the
polynomial.
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el

Fig. 7.5. Fig. 7.6.

Fig. 7.7.

The x-intercepts for the graph in Figure 7.7 are —3, 0, and 2, making x + 3,
x (asx — 0), and x — 2 factors of the polynomial.

Now that we know about the end behavior of the graphs of polynomial functions
and the rel ationship between x-intercepts and factors, we can look at a polynomial
and have a pretty good idea of what itsgraph lookslike. In the next set of examples,
wewill match the graphsfrom the previous section with their polynomial functions.

EXAMPLES

Match the functions with the graphs in Figures 7.5-7.7.

1 1 1 3
o flx)= Exz(x +3)x —2) = EX4+ Exi% _ §x2
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Because f(x) is a polynomia whose degree is even and whose leading
coefficient is positive, wewill ook for agraph that goes up on theleft and up
on the right. Because the factors are x2, x + 3, and x — 2, we will also look

for agraph with x-intercepts 0, —3, and 2. The graph in Figure 7.7 satisfies
these conditions.

1 1 1
o gX)=—Z(x-Dx -+ =—x3+x>+2x-1
2 2 2
Because g(x) isapolynomia whose degree is odd and whose leading coef-
ficient is negative, we will ook for agraph that goes up on the left and down
on theright. Thefactorsarex — 1, x — 2, and x + 1, we will also look for
agraph with 1, 2, and —1 as x-intercepts. The graph in Figure 7.6 satisfies
these conditions.
1 1 1 2 4
° (x) 1O(x ) (x +2) 10x 5x 5x + 5
Because P (x) isapolynomia whose degreeis odd and whose leading term
is positive, we will look for a graph that goes down on the left and up on
the right. The x-intercepts are 2 and —2. The graph in Figure 7.5 satisfies
these conditions.

Sketching Graphs of Polynomials

To sketch the graph of most polynomial functions accurately, we need to use
calculus (don't let that scare you—the calculus part is easier than the algebra
part!) We can till get a pretty good graph using algebra alone. The generad
method is to plot x-intercepts (if there are any), a point to the left of the small-
est x-intercept, a point between any two x-intercepts, and a point to the right of the
largest x-intercept. Because y-intercepts are easy to find, it wouldn’t hurt to plot
these, too.

EXAMPLES
e fM)=—-Zx-Dx+2(x -3

The x-intercepts are —2, 3, and % (from 2x — 1 = 0). In addition to the
x-intercepts, we will plot the points for x = —2.5 (to the left of x = —2),
x = —1(betweenx = —2andx = 3), x = 2 (betweenx = 3 and x = 3),
and x = 3.5 (to theright of x = 3).
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Table7.1

X f(x)

-25 16.5
-2 0
-12
—6
0
12
0

5 -16.5

|
WwWNNRO P

Thereasonweused x = —2.5instead of x = —3and x = 3.5instead of x = 4
isthat their y-values were too large for our graph.

20

15+

20+
Fig. 7.8.

PRACTICE

Match the graph of the given function with one of the graphsin Figures 7.1-7.4.

1 f(x)=—8x3+4x2—9x+3
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2. f(x) =4x® 4+ 10x% — 3x3 4 x2
3 P(x)=-x>+x-6
4. g(x) =1+ x+x2+x3

Identify the x-intercepts and factors for the polynomial function whose
graphs are given.

=

Fig. 7.9.

Fig. 7.10.
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11

12.
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FANIWAY

-5 -3 -2 -1 1 3 5

Fig. 7.11.

Match the polynomial function with one of the graphs in Figures 7.9
through 7.11.

fx) = —%(x +Hx+2)(x —2(x —4) = —%x“ + gxz -8

_ 1o PR SR S
P(x) = 2x x+2x -1 = 2x 2x +x
1 1, 3,
Rx)==x+3)(x—-2)(x —4) = =x°— —x*—bx + 12
2 2 2
Sketch the graph of f(x) = %x(x —2(x +2).

Sketch the graph of A(x) = —%(x +dHx+1D(x —2)(x —3).

SOLUTIONS

1

a b w DN

Figure7.4
Figure 7.3
Figure 7.2
Figure 7.3

The x-interceptsare —2,0,and 1, so x + 2, x, and x — 1 arefactors of the
polynomial.

The x-interceptsare —3, 2, and 4, so x + 3, x — 2, and x — 4 are factors
of the polynomial.



CHAPTER 7 Polynomial Functions _‘@)
7. Thex-interceptsare —4, —2,2and4,s0x +4,x +2,x —2andx —4 are
factors of the polynomial.
8. Figure7.11
9. Figure7.9
10. Figure7.10
1.

10 |

12.
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Polynomial Division

Polynomials can be divided in much the same way as whole numbers. When we

take the quotient of two whole numbers (where the divisor is not zero), we get

a quotient and a remainder. The same happens when we take the quotient of two

polynomials. Polynomial division is useful when factoring polynomials.
Polynomial division problems usually comein one of two forms.

dividend polynomial
divisor polynomial

or dividend polynomial = divisor polynomial

Accordingto thedivision algorithm for polynomials, for any polynomials f (x) and
g(x) (with g(x) not the zero function)

f ")
PETRAPT)

where g (x) is the quotient (which might be 0) and r(x) is the remainder, which
has degree strictly less than the degree of g(x). Multiplying by g(x) to clear the
fraction, we also get f(x) = g(x)g(x) + r(x). First we will perform polynomial
division using long division.

q(x)
g [ f(x)

r(x)

EXAMPLES

Find the quotient and remainder using long division.
4x2+3x -5
x+2

x+2| 424+3x-5

We will begin by dividing the leading term of the dividend by the leading
term of the divisor. For the first step in this example, we will divide 4x?
by x. You might see right away that 4x2 < x is 4x. If not, write 4x? = x as

afraction then reduce: 4%2 = 4x. Thiswill be thefirst term of the quotient.

Ax
x + 2| 4x%243x-5



CHAPTER 7 Polynomial Functions

Multiply 4x by the divisor: 4x(x + 2) = 4x2 + 8x. Subtract this from the
first two terms of the dividend. Be careful to subtract all of 4x2 + 8x, not

just 4x2.
4x
x+ 2’ 4x°+ 3x-5
—(4x%+ 8x)

—bx

Bring down the next term.

Ax
x+ 2’ 4x°+ 3x-5
—(4x%+ 8x)
—5x—5
Start the process again with —5x — x = —5. The next term in the quotient
is —5. Multiply x + 2 by —5: —5(x + 2) = —5x — 10. Subtract this from
—5x — 5.
4 —5
x+ 2’ 4x°+ 3x— 5
—(4x%+  8x)
—5x— 5
—(—5x—10)

5

We are done because 5 + x = g cannot be a term in a polynomial. The

remainder is5 and the quotient is 4x — 5.

o x>42x-3 ’ 3x445x3—4x247x—1

Divide 3x* by x2 to get the first term of the quotient: ix—; = 3x2. Multiply
x2 + 2x — 3 by 3x% 3x%(x2 4+ 2x — 3) = 3x% + 6x3 — 9x2. Subtract this
from the first three termsin the dividend.

3x2

24 2c -3 3wt 53— 4l 7x—1
—Bx*+ 6x3—?)

—x3 + 5x?2

Divide —x2 by x? to get the second term in the quotient: ;—);3 = —x. Multiply
x2 4+ 2x —3by —x: —x(x2 + 2x — 3) = —x3 — 2x? + 3x. Subtract this
from —x3 4 5x2 4 7x.
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Because =7 cannot be aterm in a polynomial, we are done. The quotient is

32 —x

CHAPTER 7 Polynomial Functions

24 20 —3] 3t 53— £ 7x -1
—(3x?* + 6x3— 9x?)

—x34 B5x2 4+ 7x
—(—=x3— 2x2 4+ 3x)

7x24 4Ax

Divide 7x2 by x2 to get the third term in the quotient: %2 = 7. Multiply
x2 4 2x —3by 7: 7(x2 + 2x — 3) = 7x2 + 14x — 21. Subtract this from

7x2 + 4x — 1.
32— x +7

2420 —3] A 4532 +7x -1
—(3x* 4 6x3— 9%x?)

—x345x% + 7x
—(—x%— 2x2 4 3x)

X2+ 4x— 1
—(7x2 4 14x — 21)
— 10x + 20

—10x

3x2 — x + 7, and the remainder is —10x + 20.

Itisimportant that every power of x, from the highest power to the constant term,
be represented in the polynomial. Although it is possible to perform long division
without all powers represented, it is very easy to make an error. Also, it is not
possible to perform synthetic division (later in this chapter) without a coefficient
for every term. If a power of x is not written, we need to rewrite the polynomial
(either thedividend, divisor, or both) using a coefficient of 0 on the missing powers.
For example, we would write x2 — 1 asx3 4+ 0x2 + Ox — 1.

EXAMPLE

3-8+ (x+1
Rewriteas (x3 + Ox2+0x — 8) =~ (x + 1)

x2— x +1
x+l’ x34+0x% +0x — 8
—(x3+ x2)
—x2 4+ 0x
—(—xz— X)
x—8
—-(x+1

-9

The quotient is x? — x + 1, and the remainder is —9.
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Polynomial divisionisalittle trickier when the leading coefficient of the divisor
isnot 1. Theterms of the quotient are harder to find and are likely to be fractions.

EXAMPLES

Find the quotient and remainder using long division.
x2—x+2
2x—1
Find the first term in the quotient by dividing the first term of the dividend
by the first term in the divisor:

x2 X 1
2 2 2"
3x
2 — 1| x*>— x 42
—(xz—%x)
—%x—i—Z
The second term in the quotient is
—3x -3 1, ,_1t1_1
2 2 2 " 22 &
Multiply 2x — 1by —%: —32x — 1) = —Jx + .
1.1
2*X — 4
2x —1 x2— x 42
—(x%— %x)
- %x +2
—(—%x + 711)
7
2

The quotient is 3x — 1, and the remainder is 7.
2
o (4x%2+5x—6)= éx—l

Find thefirst term in the quotient by dividing the leading term in the quotient
by thefirst term in the divisor.

42 Ax 2 3

— = —=4x+ - =4x .- - =6x
2 2 ’

34 3 3 2

2
6x (éx — 1) = 4x%2 — 6x
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6x
Zy—1| 42+4+5:—6
—(4x2 — 6x)
11x—6

[EEN

Ixr 11

= =11
2 2 :
34 3

N1 w
IR

IR
R
wl
=
|
=
N——
I
H
vy
|
NIRA

6x+3—23

Zy—1|  4%+5¢—6
—(4x2 — 6x)

The quotient is 6x + %3 and the remainder is &.

2
Synthetic division of polynomials is much easier than long division. It

only works when the divisor is of a certain form, though. Here, we will
use synthetic division when the divisor is of the form “x — number” or
“x + number.”

For aproblem of the form

anx" + ap_1x" 1+ +arx + ag i

X —C

(apx™ + ay_1x" 1

+ - +ax +ag) + (x — o),
write

c]an an_1 . ai aop

Every power of x must be represented.

In synthetic division, the tedious work in long division is reduced to afew
steps.

EXAMPLES

Find the quotient and remainder using synthetic division.
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4x3 —5x2 4+ x —8

x—2
214 -5 1 -8

Bring down the first coefficient.
2[4 -5 1 -8

4

Multiply this coefficient by 2 (the ¢) and put the product under —5, the next
coefficient.

2[4 5 1 —8
8

4
Add —5 and 8. Put the sum under 8.

2|14 -5 1 -8
_ 8
4 3
Multiply 3 by 2 and put the product under 1, the next coefficient.
2|14 -5 1 -8
8 6
4 3
Add 1 and 6. Put the sum under 6.
2|14 -5 1 -8
8 6
4 37
Multiply 7 by 2. Put the product under —8, the last coefficient.

2|4 -5
86 14
4 37

Add —8 and 14. Put the sum under 14. Thisisthe last step.
2|4 -5
8 6 14
4 37 6

The numbers on the last row are the coefficients of the quaotient and the
remainder. The remainder is a constant (which is a term of degree 0), and
the degree of the quotient is exactly one less degree than the degree of



C@’_ CHAPTER 7 Polynomial Functions
the dividend. In this example, the degree of the dividend is 3, so the degree
of the quotient is 2. The last number on the bottom row isthe remainder. The
numbers beforeit are the coefficients of the quotient, in order from the high-
est degree to the lowest. The remainder in this exampleis 6. The coefficients
of the quotient are 4, 3, and 7. The quotient is 4x2 + 3x + 7.

o (I*—x?+2x+9 = (x+5)

Becausex + 5=x — (—5),¢c = —5.

—-5[30 -1 29

Bring down 3, the first coefficient. Multiply it by —5. Put 3(—5) = —15
under O.

—-5/3 0 -1209
-15

3
Add 0 + (—15) = —15. Multiply —15 by —5 and put (—15)(-5) = 75
under —1.
-5/3 0 -129
-15 75
3 -15
Add —1 and 75. Multiply —1 + 75 = 74 by —5 and put (74)(—5) = —370
under 2.
—5/3 0 —1 2 9
-15 75 -370
3 -—-15 74
Add 2to —370. Multiply 2+ (—370) = —368 by —5 and put (—368) (—5) =
1840 under 9.
—5/3

0 -1 2 9
—15 75 —370 1840
3 —15 74 —368
Add 9 to 1840. Put 9 + 1840 = 1849 under 1840.
—5/3 0 —1 2 9
—15 75 —370 1840
3 —15 74 —368 1849

The dividend has degree 4, so the quotient has degree 3. The quotient is
3x3 — 15x2 + 74x — 368 and the remainder is 1849.

When dividing a polynomia f(x) by x — ¢, the remainder tells us two
things. If we get a remainder of O, then both the divisor, (x — ¢), and
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guotient are factors of f(x). Another fact we get from the remainder is that
f(c) = remainder.

f(x) = (x — ¢)q(x) + remainder
f(c) = (c — ¢)g(c) + remainder Evaluate f(x) at x = c.
f(c) = 0g(c) + remainder

f(¢) = remainder

The fact that f(c) is the remainder is called the Remainder Theorem. It is
useful when trying to evaluate complicated polynomials. We can also usethis
fact to check our work with synthetic division and long division (providing
thedivisorisx — c¢).

o (x3—6x244x—-5=(x—-23)
By the Remainder Theorem, we should get the remainder to be 3% — 6(3?) +
4(3) — 5= —-20.

3)1 -6 4 -5
3 -9 —-15

1 -3 -5 -20

EXAMPLE

Use synthetic division and the Remainder Theorem to evaluate f(c).

o f(x)=14x%—16x2+10x +8;c = 1.
We will first perform synthetic divisonwithx —c¢ = x — 1.

1/14 -16 10 8
14 -2 8

14 -2 8 16
The remainder is 16, so (1) = 16.

Now we will use synthetic division and the Remainder Theorem to factor poly-
nomials. Suppose x = c isazero for apolynomia f(x). Let us see what happens
when wedivide f(x) by x — c.

f@x) =& —0o)gx)+rx)

Because x = c isazero, the remainder is0, so f(x) = (x — ¢)g(x) + 0, which
means f (x) = (x —c)g(x). Thenext step in completely factoring f (x) isfactoring
g (x), if necessary.
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EXAMPLES
Completely factor the polynomials.

o f(x)=x3—4x2—7x+10,¢c=1isazemo.
We will use the fact that ¢ = 1 isazero to get started. We will use synthetic
divison to divide f(x) by x — 1.

11 -4 -7 10
1 -3 -10

1 -3 -10 0
The quotient is x? — 3x — 10. We now have f (x) partially factored.

f(x)=x3—4x2—7x+10
= (x — )(x% = 3x — 10)

Because the quotient is quadratic, we can factor it directly or by using the
quadratic formula.

x> —3x—10=(x —5(x +2)
Now we have the complete factorization of f(x):
fx) =x3—4x?—7x + 10
=(x—-1Dx-5x+2).

e R(x)=x3—2x+1 ¢=1isazero.

11 0 —2 1
1 1 -1
1 1 -1 o0

RX)=x>—2x+1=@x-Dx%+x-1

We will use the quadratic formulato find the two zeros of x2 + x — 1.

1412 - 41)(-1)
2(1)

-1£V5_ -14+V56 -1-5
2 B 2 2

X =




CHAPTER 7 Polynomial Functions _‘@)

The factors for these zeros are x — ‘1%@ andx — —‘1;@’_

R(x)=(x—1)(x_—1%@> (x__l%ﬁj

PRACTICE

For Problems 14 use long division to find the quotient and remainder. For
Problems 5 and 6, use synthetic division
1. 6x3—2x245x —1) - (x?+3x + 2
2. 3 —x24+2x+5+=@Bx—4
A3 —x2 44 42

_%x2+1
x3-1
x—1
B+ 2x24+x-8
x+3
6. 3+8=-(x+2
7. Use synthetic division and the Remainder Theorem to evaluate f (c).
fx)=6x*—8x3+x2+2x —5c=-2

8. Completely factor the polynomial. f(x) = x3+2x2 —x — 2, ¢ = 1is
a zero.

9. Completely factor the polynomia. P(x) = x3 — 5x2 4+ 5x + 3; ¢ = 3is
a zero.

SOLUTIONS

1 6x — 20

24342 63— 2%F 5x — 1
—(6x3 4 18x2+ 12x)

—20x%2— 7x — 1
—(—20X2— 60x — 40)
53x + 39

The quotient is 6x — 20, and the remainder is 53x + 39.
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2.
%x2+ %x
3x—4’ x3—  x%4+ 2245
_(x3_ %XZ)
(%x2 5%
245
Zx 2 21 2
3x 3 9 3 27
22 22 88
B4y =22
o7 A =gr 5
7+ 8
3x—4] 13— x4 24+ 5
_(x3_ %XZ)
%xz—l- 2x
—(3x%— 3%
2. 5
~(2:-8)
223
o7
The quotient is $x2 + $x + 22, and the remainder is 25
W 3
3 S =T —ar+ =3 (-2=-6x
L2 1
—6x(— 12400 +1) =33+ 0x2—6x

—6x

—%x2—|—0x+1 33— x4 4x+2
—(3x3— 0x2— 6x)

—x24+ 10x + 2
2
—X 1 1
=-—=1--=1.2=2
1 1 :
_zxZ 3 2

1
2<—§x2—|—0x+1) — —x%24+0x+2
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—6x + 2
— %xZ—I-Ox—f—l’ 33— x2 4 4x 42
—(3x3— x2 — 6x)
—x%4+10x + 2
—(—=x%4+ x+2)
10x + 0O
The quotient is —6x + 2, and the remainder is 10x.
4.

x2+ x +1
x—l’ X34+ %4 x—1

—(XS— x2)
x2 4+ Ox
—(xz— X)
x—1
—(x-1)
0

The quotient isx? + x + 1, and the remainder is 0.

—-3J1 21 -8
-3 3 -12
1 —-14 -20

The quotient is x? — x + 4, and the remainder is —20.

~2[1 00 8
-2 4 -8
1 24 0

The quotient isx? — 2x + 4, and the remainder is 0.

—2[6 —8 1 2 -5
—12 40 —82 160

6 —20 41 -80 155
The remainder is 155, so f(—2) = 155.

fx)=(x— l)(x2—|-3x +2)
=x-1Dx+DHx+2
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Q.
31 -5 5 3
3 -6 -3
1 -2 -1 0

P(x)=(x—3)(x2—2x —1)
In order to factor x2 — 2x — 1, we must first find its zeros.

Lo T2 V(24D

2(1)
_2+/8  24+2)2
2 2

LDy

=14++2,1-+2

Becausex = 1+ +/2isazero, x — (14 +/2) = x — 1 — /2 isafactor.
Becausex = 1 — v/2isazero, x — (1 — +/2) = x — 1+ /2 isafactor.

PxX)=(x—-3)(x—1—vV2)(x —1+2)

In the above examples and practice problems, a zero was given to help us get
started with factoring. Usually, we have to find a starting point ourselves. The
Rational Zero Theorem gives us a place to start. The Rational Zero Theorem says
that if apolynomial function f (x), with integer coefficients, has arational number
p/q as azero, then p is adivisor of the constant term and ¢ is a divisor of the
leading coefficient. Not all polynomials have rational zeros, but most of those in
precal culus courses do.

The Rational Zero Theorem isused to create alist of candidates for zeros. These
candidatesarerational numberswhose numeratorsdividethe polynomial’sconstant
term and whose denominators divide its eading coefficient. Once we havethislist,
we will try each number in the list to see which, if any, are zeros. Once we have
found a zero, we can begin to factor the polynomial.

EXAMPLES

List the possible rational zeros.
o f(x)=43+6x2—2x+9
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The numerators in our list will be the divisors of 9: 1, 3, and 9 as well as

their negatives, —1, —3, and —9. The denominators will be the divisors of
4:1, 2, and 4. Thelist of possible rational zerosis—

1 39 1 3 9 1 3 9

is 17 17 _17 _is _ia és 57 57
13 9139 1 3 g ?
27 2 224 4 4 4 4 4

Thislist could be written with alittle lesseffort as +1, +3, +9, +3, +3,
+£3, 3, £3 2.

We only need to list the numerators with negative humbers and not the
denominators. The reason is that no new numbers are added to the list, only
duplicates of numbers already there. For example, ‘71 and _iz are the same
number.

o g(x)=6x*—5x34+2x—8
The possible numerators are the divisors of 8: +1, +2, +4, and £8. The
possible denominators are the divisors of 6: 1, 2, 3, and 6. The list of
possible rational zerosis—

1 2 4 8 1 2 4 8 1 2
+1, +2, 44, 4£8 £ -, +-, £, +=, £, +-, -, £, =, £,
2 2 2 2 3 3 3 3 6 6

:I:4 +
6 6

There are several duplicates on this list. There will be duplicates when the
constant term and leading coefficient have common factors. The duplicates
don't really hurt anything, but they could waste time when checking the list
for zeros.

Now that we have a starting place, we can factor many polynomials. Here is
the strategy. First we will see if the polynomial can be factored directly. If not,
we need to list the possible rational zeros. Then we will try the numbers in this
list, one at atime, until we find a zero. Once we have found a zero, we will use
polynomial division (long division or synthetic division) to find the quotient. Next,
we will factor the quotient. If the quotient is a quadratic factor, we will either
factor it directly or use the quadratic formulato find its zeros. If the quotient is a
polynomial of degree 3 or higher, we will need to start over to factor the quotient.
Eventually, the quotient will be a quadratic factor.



C@’_ CHAPTER 7 Polynomial Functions
EXAMPLES
Completely factor each polynomial.

o f(x)=3x*—2x3—7x2 -2
First we will factor x from each term: f(x) = x(3x3 — 2x2 — 7x — 2). The
possible rational zerosfor 3x3 — 2x2 — 7x — 2 are +1, +2, i%, i%.

313—21)2-71)—2#0
3(-1)%—2(-1)%2-7(-1)—2=0

We will use synthetic division to find the quotient for (3x3 — 2x2 —
x —2) =~ (x+1).

-1/3 -2 -7 -2
-3 5 2

3 -5 -2 0
The quotient is 3x2 — 5x — 2 which factorsinto (3x + 1)(x — 2).

Fx) =34 — 23— 7x% — 2
=x(Bx®—2%%—7x -2
= x(x + 1)(3x?> — 5x — 2)
=x(x+DGx+1D(x -2

o h(x)=3x3+4x2—-18x+5
The possible rational zerosare +1, +5, +£3, and +3.

h(l) = 3(1% +4(1%) —18(1) +5#0
h(=1) =3(-1)3+4(-1)> - 18(-1) +5#0
h(5) = 3(5°) + 4(5%) —18(5) + 5# 0

Continuing in this way, we seethat h(—5) # 0, h(3) # 0, h(—3) # Oand
h(3) =0.

2/3 4 -18 5
5 15 -5
3 9 -3 0
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h(x) = (x — 2) (3x2+9x — 3)

— (x—g) R)(x%+3x—1) = |:3(x—2>i|(x2+3x—1)

=@x —5x?+3x—1)
We will find the zeros of x2 + 3x — 1 using the quadratic formula

_ 3+/F 4 (-

X

2(1)
_ —3+V13 -3+413 -3-V13
2 - 2 ’ 5
o= e (- 24/ (1 2 YE)

For apolynomial such as f (x) = 5x3 + 20x? — 9x — 36, thelist of possible
rational zeros is quite long—36! There are ways of getting around having
to test every one of them. The fastest way is to use a graphing calculator
to sketch the graph of y = 5x3 4+ 20x? — 9x — 36. There appears to be an
x-intercept at x = —4 (remember that x-intercepts are zeros.)

—4/5 20 -9 -36
-20 0 36

5 0 -9 0
f(x) = (x +4)(5x2 — 9) We will solve 5x2 — 9 = 0'to find the other zeros.

5x2-9=0
5x2=9
9
2_ "
Y75

+ 9 i3

X = _ = _—

S V5
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3

Sl &

=+
+

7
3/5 35 3.5
'5  5°' 5

f(x)=(x+4)<x—¥) <x+%5>

There are also a couple of algebra facts that can help eliminate some of the
possible rational zeros. The first we will learn is Descartes' Rule of Sgns. The
second is the Upper and Lower Bounds Theorem. Descartes' Rule of Signs counts
the number of positive zeros and negative zeros. For instance, according to the
rule f(x) = x° + x2 + 4x + 6 has no positive zeros at all. This shrinks the list
of possible rational zeros from +1, +2, 43, and +6to —1, —2, —3, and —6.
Another advantage of the sign test is that if we know that there are two positive
zeros and we have found one of them, then we know that there is exactly one more.

The Upper and Lower Bounds Theorem gives us an idea of how large (in
both the positive and negative directions) the zeros can be. For example, we
can use the Upper and Lower Bounds Theorem to show that al of the zeros for
f(x) = 5x2 + 20x2 — 9x — 36 are between —5 and 5. This shrinks the list of
possible rational zeros from £1, +2, +3, +4, +£6, +9, +12, 418, +36,
i%, i% j:%, j:%, j:%, iglzi 2, jlzs%* and £¥ to £1, +2, £3, +4, £,
+£, £2, 2, £2, +2, £¥, and =L

Descartes’ Rule of Signs counts the number of positive zeros and the number
of negative zeros by counting sign changes. The maximum number of positive
zeros for a polynomial function is the number of sign changesin f(x) = a,x" +
ap—1x""1 4. .4+ a1x 4 ag. The possible number of positive zerosis the number of
sign changes minus an even whole number. For example, if thereare5 sign changes,
thereare 5 or 3 or 1 positive zeros. If there are 6 sign changes, thereare 6 or 4 or 2
or 0 positive zeros. The polynomial function f(x) = 3x* — 2x3 4+ 7x2 + 5x — 8
has 3 sign changes: from 3to —2, from —2to 7, and from 5to —8. There are either
3 or 1 positive zeros. The maximum number of negative zeros is the number of
sign changes in the polynomia f(—x). The possible number of negative zerosis
the number of sign changesin f(—x) minus an even whole number.

EXAMPLES

Use Descartes' Rule of Signs to count the possible number of positive zeros and
negative zeros for the polynomial functions.
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o f(x)=53-6x2—-10x+4
There are 2 sign changes: from 5 to —6 and from —10 to 4. This means that
there are either 2 or O positive zeros. Before we count the possible number

of negative zeros, remember from earlier in the book that for a number «a,
a(_x)e\/en power _ ,,.even power 4nq a(—x)Odd power _ —aded power

f(=x) = 5(—x)% — 6(—x)? — 10(—x) + 4
= 5x3 _6x2 4+ 10x + 4

Thereis 1 sign change, from —6 to 10, so there is exactly 1 negative zero.
o PX)=x’+x3+x+4
There are no sign changes, so there are no positive zeros.

P(—x) = (—=x)° 4+ (=x)3 4 (=x) + 4

=—x°—x3—x+4

Thereis 1 sign change, so there is exactly 1 negative zero.

The Upper and Lower Bounds Theorem hel ps usto find arange of x-valuesthat
will contain all real zeros. It does not tell us what these bounds are. We make a
guess as to what these bounds are then check them. For a negative number x = a,
the statement “a isalower bound for the real zeros” means that there is no number
to the left of x = a on the x-axis that is a zero. For a positive number x = b, the
statement “b is an upper bound for the real zeros’ meansthat thereis no number to
theright of x = b onthe x-axisthat isazero. In other words, al of the x-intercepts
are between a and b.

To determine whether a negative number x = a isalower bound for a polyno-
mial, we need to use synthetic division. If the numbersin the bottom row alternate
between nonpositive and nonnegative numbers, then x = «a is a lower bound for
the negative zeros. A “nonpositive” number is O or negative, and a“nonnegative’
number is 0 or positive.

To determinewhether apositive number x = b isan upper bound for the positive
zeros, again we need to use synthetic division. If the numbers on the bottom row
are al nonnegative, then x = b isan upper bound on the positive zeros.

EXAMPLES

Show that the given values for a and b are lower, and upper bounds, respectively,
for the following polynomials.
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o f(x)=x*+x3—-16x2—4x+48,a=-5andb=5

~5[1 1 —16 -4 48
-5 20 —-20 120

1 -4 4 -24 168

The bottom row alternates between positive and negative numbers, so a =
—5isalower bound for the negative zeros of f(x).

511 1 —-16 —4 48
5 30 70 330

1 6 14 66 378

Theentries on the bottom row are al positive, so b = 5isan upper bound for
the positive zeros of f(x).All of thereal zerosfor f(x) arebetweenx = —5
and x = 5.

If O appears on the bottom row when testing for an upper bound, we can
consider O to be positive. If O appears in the bottom row when testing for a
lower bound, we can consider 0to be negativeif the previousentry ispositive
and positive if the previous entry is negative. In other words, consider 0 to
be the opposite sign as the previous entry.

o P(x) =4x%+ 20x3 4+ 7x% 4 3x — 6witha = -5

~5[4 207 3 -6
~20 0 —35 160

4 07 -32 14

Because O follows a positive number, we will consider O to be negative. This
makes the bottom row alternate between positive and negative entries, so
a = —5isalower bound for the negative zeros of P(x).

The Upper and Lower Bounds Theorem has some limitations. For instance, it
does not tell us how to find upper and lower bounds for the zeros of a polynomial.
For any polynomial, thereareinfinitely many upper and lower bounds. For instance,
if x = 5 is an upper bound, then any number larger than 5 is also an upper
bound. For many polynomials, a starting place is the quotient of the constant
term and the leading coefficient and its negative: i%. First show
that these are bounds for the zeros, then work your way inward. For example, if
fx)=2x3 - 7x2+x +50,leta = —L = —25and b = ¥ = 25. Then, let a
and b get closer together, say a = —10and b = 10.

PRACTICE

1. List the candidates for rational zeros. Do not try to find the zeros. f(x) =
3?4+ 8x°% — 1%+ 3x + 4
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2. List the candidates for rational zeros. Do not try to find the zeros. P(x) =
6x4 — 24

3. Completely factor h(x) = 2x3 + 5x2 — 23x + 10.
4. Completely factor P(x) = 7x3 + 26x2 — 15x + 2.

5. UseDescartes’ Rule of Signsto count the possible number of positive zeros
and the possible number of negativezerosof f (x) = 2x4—6x3—x2+4x—8.

6. UseDescartes’ Rule of Signsto count the possible number of positive zeros
and the possible number of negative zeros of f(x) = —x3 —x2+x + 1.

7. Show that the given values for ¢ and b are lower and upper, respectively,
bounds for the zeros of f(x) = x3 —6x2+x+5a=-3, b=1.

8. Show that the given values for ¢ and b are lower and upper, respectively,
bounds for the zerosof f(x) = x*—x2—2,a= -2, b= 2.

9. Sketch the graph for g(x) = x3 — x%2 — 17x — 15.

SOLUTIONS

1. Possible numerators: +1, +2, +4
Possible denominators: 1 and 3
Possible rational zeros: +1, £2, +4,+3, +2 +3

2. Possible numerators: +1, +2, +3, +4, £6, £8, +12, +24
Possible denominators; 1, 2, 3, 6
Possible rational zeros (with duplicates omitted): +£1, +2, +3, +4, 46,
+8, +12, £24, +1 43 £3 +2 43 48 42

3. Thepossiblerational zerosare£1, £2, +5, +10, +3, and +3. Because
h(2) =0, x = 2isazeroof h(x).

22 5 —23 10
42 18 -10

2 9 -5 0

h(x) = (x —2)(2x° + 9x — 5)
h(x) = (x —2)(2x — D(x +5)

4. The possiblerational zerosare £1, £2, +1, and +£2. Because P (%) = 0,
x = 2isazerofor P(x).
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2l7 26 -15 2
2 8 -2
7 28 -7 0

Px) = (x — ;) (7)c2 +28x —7)

= (x—%)(?)(x2+4x—1)= |:7<x—§)i| (x2+4x—1)

= (Tx —2)(x2+4x — 1)
We will use the quadratic formulato find the zeros for x2 + 4x — 1.

AL 24 (-1)  —4+V20
N 2(1) N 2

—44+2/5  2(-2+4/5)
2 2

=-2+/5=-24++5 -2-45

2 tdr—1=(x - (—2+V5)(x — (-2—5))
= (x+2-V5(x +2++/5

P(x)=(Tx —2(x +2—VB)(x + 2+ /5)
. Thereare 3 sign changesin f(x), so thereare 3 or 1 positive zeros.
f(=x0) =2(=0)* = 6(=x)° = (=x)* + 4(—x) — 8
=24+ 6x3—x2—4x -8
Thereis1sign changein f(—x), so thereis exactly 1 negative zero.
. Thereis1signchangein f(x), sothereisexactly 1 positive zero.
f=0) = =(=2)° = (=% + (=) +1
=x3—x2—x+1

There are 2 sign changesin f(—x), so there are 2 or 0 negative zeros.
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7.
-3/[1 -6 1 5
-3 27 -84
1 -9 28 -79
The entries on the bottom row alternate between positive and negative (or
nonnegative and nonpositive), so a = —3 is alower bound for the zeros
of f(x).
711 -6 1 5
7 7 56
1 1861
The entries on the bottom are positive (nonnegative), so b = 7 is an upper
bound for the positive zeros of f(x).
8.

-2[1 0 -1 0 -2
-2 4 -6 12

1 -2 3 -6 10

The entries on the bottom row alternate between positive and negative, so
a = —2isalower bound for the negative zeros of f(x).

211 0 -1 0 -2
2 46 12

1 2 36 10

The entries on the bottom row are all positive, so b = 2 is an upper bound
for the positive zeros of f(x).

9. Thex-interceptsare—3, —1, and 5. Wewill plot pointsforx = —3.5, x =
—2, x=0, x=3,andx = 5.5.

-20
-30

-40

-50
Fig. 7.14.
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Complex Numbers

Until now, zeros of polynomials have been real numbers. The next topic involves
complex zeros. These zeros come from even roots of negative numbers like /—1.
Before working with complex zeros of polynomials, we will first learn some
complex number arithmetic. Complex numbers are normally written in the form
a + bi, wherea and b arereal numbersand i = +/—1. A number such as4 + +/—9
would be written as 4 + 3i because ~/—9 = +/9v/—1 = 3i. Rea numbers are
complex numberswhere b = 0.

EXAMPLES

Write the complex numbersin the form a + bi, where a and b are real numbers.
o J/—64=.64,/-1=8i
o V=21=V21y=1=27i =9 -3i =9/3i
=33i Becareful, v/3i # +/3i.
o 6+/—8=6++8i=6++4-2i=6+4/2i =6+2/2i

Adding complex numbersisamatter of adding liketerms. Add thereal parts, a and
¢, and theimaginary parts, » and d.

(@+bi)+ (c+di)=(@+c)+ (b +d)i

Subtract two complex numbers by distributing the minus sign in the parentheses
then adding the like terms.

a+bi—(c+di)=a+bi—c—di=(@—c)+ b —4d)i

EXAMPLES

Perform the arithmetic. Write the sum or difference in the form a + bi, where a
and b are real numbers.
e B3-5)+4+8)=C@B+4H+(-5+8i=7+3i
e 20—6+9 =-6+11
o 7—/-18+3+5/-2=7-+18i+3+5V2i
=7—-+9-2i+34+5V2i =7-3V2i+34+5V2i
=10+ 2v2i
e 11-3—(7+6)=11-3 —7—6i=4-—-9
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o 7+/—8-—(1—-/—18)=7++8i —1++/18i
=7+4+2v2i —1+3V2i =6+ 52i
Multiplying complex numbersisnot asstraightforward asadding and subtracting
them. First we will take the product of two purely imaginary numbers (numbers
whose real parts are 0). Remember that i = /—1, which makesi? = —1. In most
complex number multiplication problems, we will have a term with i2. Replace

i% with —1. Multiply two complex numbers in the form a + bi using the FOIL
method, substituting —1 for i2 and combining like terms.

EXAMPLES

Write the product in the form a + bi, wherea and b are real numbers.

e (5i)(6i) = 30i° =30(—1) = —30

o (2)(—9%)=-18i2=-18(—-1) = 18

o (VB9 = (v6i)(v9i) = (V6)(3)i? =3V6(-1) = —3V6

o (4+2i)(5+3i) =20+ 12 +10i + 6i° = 20+ 22i + 6(—1) = 14+ 22i

e (8—2i)(8+2i)=64+16i — 16i — 4i2 = 64 — 4(—1) = 68

The complex numbers a + bi and a — bi are caled complex conjugates. The
only difference between a complex number and its conjugate is the sign between

the real part and the imaginary part. The product of any complex number and its
conjugate is area number.

(a + bi)(a — bi) = a® — abi + abi — b%i?
=a®—b%(-1)

= a? + b?

EXAMPLES

The complex conjugate of 3+ 2i is3 — 2i.

The complex conjugateof —7 —iis—7 +1i.

The complex conjugate of 10; is —10i.

(7 —2i)(7+ 2i). Here,a = 7and b = 2, s0 a? = 49 and b2 = 4, making
(7T—2i)(7+2i) =49+ 4 =53

e 1—i@A+i).Herea =1andb = 1, s0a? = 1 and b?2 = 1, making
QA-DA+i)=1+1=2
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Dividing two complex numbers can be alittle complicated. These problems are

normally written in fraction form. If the denominator is purely imaginary, we can
simply multiply the fraction by ; and simplify.

EXAMPLES

Perform the division. Write the quotient in theform a + bi, wherea and b are red
numbers.
243 243 i (2+30)i

; = . T= T

. .
l l 1 l

20437 2i+3(-1)

i2 1
342
e A ST
1
—3-2

445/ 4+5 i 4i+5i?

2i 2 i 22
_ 4i+5(-1)
T 2(-)
45 —(4i-5 —(-5+4i)
-2 T 2 2
5-4i 5
- L2y
2 2

When the divisor (denominator) isin the form a + bi, multiplying the fraction
by + will not work.

2i —5i2 542

3 +6i2 —6+3i

2—5i
3+ 6i

i
i

What does work is to multiply the fraction by the denominator’s conjugate over
itself. This works because the product of any complex number and its conjugate is
area number. We will use the FOIL method in the numerator (if necessary) and
the fact that (a + bi)(a — bi) = a? + b? in the denominator.
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EXAMPLES

Write the quotient in the form a + bi, where a and b are real numbers.
247 247 6—i 12—2i+42i —7i?

6+i 64+i 6-—i 62 + 12
124400 - 7(—1)  12+40i +7
h 37 - 37
_19+40i_19+40_
-3 373

4—-9 4-9i 5+2 2048 —45i — 18i?

5-2 5-2 5+2 52 4 22
_ 20-37i - 18(-1) 20— 37i +18
- 25+ 4 - 29
38-37i 38 37,
T~ 29 T 20 29

There are reasons to write complex numbers in the form a + bi. One is that
complex humbers are plotted in the plane (real numbers are plotted on the number
line), wherethe x-axisbecomesthereal axisand the y-axisbecomestheimaginary
axis. The number 3 — 4i isplotted in Figure 7.15.

=N W R Ot
T

-4+ *3— 45
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PRACTICE

For Problems 1-3, write the complex number in the form a + bi, where a and b
arereal numbers.

1. V=25
2. /24
3. 14-.-36

For Problems 4-15, perform the arithmetic. Write answers in the form a + bi,
where a and b are real numbers.

4. 18—-4i+ (15 + 2

5. 5+i+5—i

6. 7T+i+12+4i

7. =54+ /-124+7+4/-12
8. V/—48— (—1— /=75

9. (2i)(10i)

10. (44/—25)(2/—25)

11. V/—6-/-15

12. (154 3i)(—2+1i)
13. (3+2i)(3—2i)
14. (8—10i)(8+ 10i)
15 (1-9)(1+9)
For Problems 16-18, identify the complex conjugate.
16. 15+7i
17. -3+
18. -9

For Problems 19-21, write the quotient in theform a + bi, wherea and b arerea
numbers.

4-9i
19, &8
442i
20. 175

6-+4i
2l &%
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SOLUTIONS

1. V/=25=+/25i =5i

2. /=24 =/24i =4.6i =2.6i

3. 14— /=36=14—/36i = 14—6i

4, 18— 4i + (-15)+2i =3—2i

5. 5+i+5—i=10+0i =10

6. 7T+i+12+i=19+2i

7. 54+ /124 7+4/-12=-5+V12i + 7+ 4/12i

10.
11

12.
13.
14.

15.
16.
17.
18.

19.

= 54+ V4-3i +7+4/4-3i
=-5+4+2/3i+7+4-2/3i
= -5+2J3i +7+8V3i
=2+ 10V3i
V=48 — (=1 — /=T75) = V/48i + 1+ V/75i
=/16-3i 4+ 1+ +/25-3i
= 4v3i +1+5V3i = 1+ 9V3i
(2i)(10i) = 20i? = 20(—1) = —20
(4v/=25)(2/=25) = 4(5)[2(5i)] = 200i? = 200(—1) = —200

V=6 -+/=15 = +/6i - V/15i = +/6-15i%2 = +/90i%? = 3J/10(-1)
= —3/10

(154-3i)(—2+i) = —30+15/ —6i +3i2 = —304+-9i +3(—1) = —33+9i
(3+2i)(3—2i) =9—6i +6i —4i° = 9—4(—1) = 13 (or 32+ 22 = 13)

(8 — 10i)(8 + 10i) = 64 + 80i — 80i — 100i2 = 64 — 100(—1) = 164
(or 8% 4 10 = 164)

(1-9)(149) = 149 —9 —81i%> = 1-81(—1) = 82 (or 1°+9? = 82)
The complex conjugate of 15+ 7i is15 — 7i.

The complex conjugate of —3+ i is—3 —i.

The complex conjugate of —9; is 9i.

4—9 4-9 i 4i—9°

—3i -3 i =32
_4i—9(-1)  9+4i
- —=3(-1 3

4.
=1

=3+
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442 A+2 1+3i 4+12i+2i+6i°

0 T3 T 13 133 12 + 32
4+ 14i +6(—=1) —2+14i 1 7.
- 10 ~ 10 " 57%
o1 6+4i=6—|—4i'6—|—4i=36+24i+24i—|—16i2
" 6—4i 6-—4i 6+4i 62 + 42
36+48 +16(—1) 20+48 5 12
= %+16 5 113

Complex Solutions to Quadratic Equations

Every quadratic equation has a solution, real or complex. The real solutions for a
quadratic equation are the x-intercepts, for the graph of the quadratic function.
The graph for f(x) = x? + 1 has no x-intercepts.

Fig. 7.16.

The equation x? + 1 = 0 does have two complex solutions.

¥2+1=0
x?=-1
x =x+-1
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EXAMPLE

Solve the equation and write the solutions in the form a + bi, where a and b are
real numbers.

e 3x24+8+14=0

_ —8+./82—43)(14) -8+ /104

* 2(3) - 6
| —8+2V26i  2(-4++/26i)
6 6
:—41\/2_61' :_fi@i
3 37 3
4 V26, 4 V26,
~37 3" "37 73"

In this problem, the complex solutions to the quadratic equation came in
conjugate pairs. This always happens when the solutions are complex numbers.
A quadratic expression that has complex zerosis called irreducible (over the reals)
because it cannot be factored using real numbers. For example, the polynomial
function f(x) = x* — 1 can befactored using real numbersas (x%2 — 1)(x2 + 1) =
(x — 1) (x + 1)(x2 + 1). Thefactor x2 + 1isirreducible because it is factored as
(x —i)(x +10).

We can tell which quadratic factors are irreducible without having to use
the quadratic formula. We only need part of the quadratic formula, 5% — 4ac.
When this number is negative, the quadratic factor has two complex zeros,

bt ”egg'ven”mber. When this number is positive, there are two real number

. —b+./ ositive number . . .
solutions, P . When this number is zero, there is one real zero,

‘bif = 52. For thlsreason b? — 4ac iscalled the discriminant.

The graphs of some polynomials having irreducible quadratic factors need extra
points plotted to get a more accurate graph. The graph in Figure 7.17 shows the
graph of f(x) = x* — 3x? — 4 using our usual method—plotting the x-intercepts,
apoint to the left of the smallest x-intercept, a point between each consecutive pair
of x-intercepts, and a point to the right of the largest x-intercept.

See what happens to the graph when we plot the pointsfor x = 1and x = —1.

The graph of f(x) = (x — 2)(x2 + 6x + 10) is sketched in Figure 7.19. The
graphs we have sketched have severa vertices between x-intercepts. When this
happens, we need calculusto find them.
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Fig. 7.17. Fig. 7.18.
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The Fundamental Theorem of Algebra

By the Fundamental Theorem of Algebra, every polynomial of degreen hasexactly
n zeros (some might be counted more than once). Because x = ¢ is a zero
implies x — ¢ is a factor, every polynomia can be completely factored in the
forma(x —¢;))(x — ¢p—1) ... (x — c1), wherea isareal number and ¢; isreal or
complex. Factorsin theform x — ¢ arecalled linear factors. Factorssuch as2x + 1
can be written in the form x — ¢ by factoring 2: 2(x + 3) or 2(x — (—3)).

To completely factor a polynomial, we usually need to first find its zeros.
At times, we will use the Rational Zero Theorem, polynomial division, and the
guadratic formula.

EXAMPLES

Find all zeros, real and complex.
o h(x)=x%*-16
X —16= (% D244 =(x - +2(x2+ 49

The real zeros are 2 and —2. We will find the complex zeros by solving

x2+4=0.
x24+4=0
x2=—-4
x =+v—4=+2i

The complex zeros are +2i.
o x*4+6x3+W%2—6x—10
The possiblerational zerosare +1, +2, +5, and £10. P(1) = 0.

11 6 9 —6 —10
1 7 16 10

1 7 16 10 0

P(x) = (x — D(x3+ 7x2 4 16x + 10)
Because x2 + 7x2 + 16x + 10 has no sign changes, there are no positive
zeros, x = —1isazerofor x3 + 7x2 + 16x + 10.
—-1/1 7 16 10
-1 -6 -10
1 6 10 0

P(x) = (x — )(x + 1)(x% + 6x + 10)




Solve x2 + 6x + 10 = 0 to find the complex zeros.

_ -6+ y62—41)(10) —6++—4

CHAPTER 7 Polynomial Functions

* 2(1)

_ —6+2  2(-3+i)
a 2 o 2
The zerosare +1, —3 + ;.

2

=-3%i

If we know a complex number is a zero for a polynomial, we automatically
know another zero—the complex conjugateisalso azero. Thisgivesusaquadratic
factor for the polynomial. Once we have this computed, we can use long division
to find the quotient, which will be another factor of the polynomial. Each time we
factor a polynomial, we are closer to finding its zeros.

EXAMPLES

Find all zeros, real and complex.

f(x) =3x% 4+ x3 4+ 17x% 4+ 4x + 20 and x = 2i isazero.
Because x = 2i isazero, its conjugate, —2i, is another zero. Thistells us

that two factorsarex — 2i and x + 2i.

(x — 20)(x + 2i) = x% + 2ix — 2ix —4i? =x2—4(-1) =x°+4

We will divide f(x) by x2 4+ 4 = x2 + 0x + 4.

W%+ x + 5
X240 +4] 34+ x84+ 17x% 4 4x + 20
—(3x%+ 0x3+ 12x?)

x34+ Bx? 4 4x

—(x3+ 0x2 + 4x)
5x2 + 0x + 20
—(5x2 4+ 0x + 20)
0

() = (@2 +8Bx*+x +5)
Solving 3x2 + x 4+ 5 = 0, we get the solutions

_ —1+/12-43)(5) -1++4/-59 —1++/59i

* 23) 6

The zeros are +2i, 4%@.

6



CHAPTER 7 Polynomial Functions

o h(x)=2x3— 7x2+4 170x — 246, x = 1+ 9i isazero.

Because x = 1+ 9i isazero, we know that x = 1 — 9 isalso azero. We
asoknowthatx — (1+9%)=x—-1—-9%andx - (1—-9%)=x—-1+9
are factors. We will multiply these two factors.

(x—1-9)(x—14+9)=x°—x+9x—x+1—9 —9x+9 — 81?2

=x?2—2x +1-81(—-1) = x°—2x + 82
2x— 3
x2_2¢4+82| 28— 7x?+ 170x— 246
—(2x3—  4x2+164x)

—3x24+  6x— 246
—(=3x%24+ 6x—246)
0

h(x) = (2x — 3)(x? — 2x + 82)
The zerosare 1+ 9i and 3 (from 2x — 3 = 0).

A conseguence of the Fundamental Theorem of Algebraisthat a polynomial of
degree n will have n zeros, though not necessarily n different zeros. For example,
the polynomia f(x) = (x —2)% = (x — 2)(x — 2)(x — 2) hasx = 2 asazero
three times. The number of times an x-value is a zero is called its multiplicity.
In the above example, x = 2 isazero with multiplicity 3.

EXAMPLE

o f)=x*0x+3%x -6
x = 0isazero with multiplicity 4 (We can think of x* as (x — 0)*.)
x = —3isazero with multiplicity 2
x = 6isazerowith multiplicity 1

Now, instead of finding the zeros for a given polynomial, we will find a poly-
nomial with the given zeros. Because we will know the zeros, we will know
the factors. Once we know the factors of a polynomial, we pretty much know
the polynomial.

EXAMPLES

Find a polynomial with integer coefficients having the given degree and zeros.

e Degree 3 with zeros1, 2,and5
Because x = lisazero, x — lisafactor. Becausex = 2isazero, x — 21is
afactor. And because x = 5isazero, x — 5isafactor. Such a polynomial



®’_ CHAPTER 7 Polynomial Functions
will beof theforma(x — 1) (x — 2)(x —5), wherea issome nonzero number.
We will want to choose a so that the coefficients are integers.

ax —Dx —2)(x =35 =alx — D(x — 2)(x — )]
=a(x — 1)()62 — 7x + 10)
= a(x3 — 7x% 4+ 10x — x2 + 7x — 10)

= a(x®— 8x% + 17x — 10)

Because the coefficients are already integers, we can let ¢ = 1. One poly-
nomial of degree three having integer coefficientsand 1, 2, and 5 as zeros
isx3 — 8x2 4 17x — 10.

e Degree 4 with zeros —3, 2 — 5i, with —3 azero of multiplicity 2
Because —3 is a zero of multiplicity 2, (x 4+ 3)% = x? + 6x + 9isafactor.
Because 2 — 5i is a zero, 2 + 5i is another zero. Another factor of the
polynomial is

x—2-5)x—-—24+5)=x—-2+5)x—-2-5)
= x%—2x —5ix — 2x + 4+ 10i + 5ix
— 10i — 25i2

=x2 —4x +4—25(-1) = x% — 4x + 29.

The polynomial hastheform a(x2 + 6x + 9)(x2 — 4x + 29), wherea isany
real number that makes all coefficients integers.

a(x® +6x + 9 (x? — 4dx +29) = a(x* — 4x3 + 29x2 + 6x3 — 2442
+ 174x + 9x? — 36x + 261)

= a(x* + 2x3 + 14x? + 138x + 261)

Because the coefficients are already integers, we can let ¢ = 1. One
polynomial that satisfiesthegiven conditionsisx®+2x3+14x2+138x +261.

In the previous prablems, there were infinitely many answers because a
could be any integer. In the following problem, there will be exactly one
polynomial that satisfies the given conditions. This means that a will likely
be a number other than 1.
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e Degree 3with zeros —1, —2, and 4, where the coefficient for x is —20

ax +D(x +2)(x —4) =a(x + D[(x +2)(x — 4)]
=a(x + D% —2x - 8)
=a(x®—2x>—8x+x2—2x—8)
=a(x®—x?—10x — 8

— ax® — ax? — 10ax — 8a

Because we need the coefficient of x to be —20, we need —10ax = —20x,
soweneed a = 2 (from —10a = —20). The polynomial that satisfies the
conditionsis 2x3 — 2x2 — 20x — 16.

PRACTICE

For Problems 1-6 solve the equations and write complex solutions in the form
a + bi, wherea and b are real numbers.

9I2+4=0
6x2+8x+9=0
x4-81=0

x3+13x —34=0

x4 —x3+8x2—9x —9=0; x = —3i isasolution.

o M v DR

6. x3—5x2+7x+13=0;x = 3— 2i isasolution.

For Problems 7-10 find a polynomial with integer coefficients having the given
conditions.

7. Degree 3with zeros0, —4, and 6
8. Degree 4 with zeros —1 and 6 — 7i, where x = —1 has multiplicity 2.
9. Degree 3, zeros 4, and +1, with leading coefficient 3
10. Degree 4 with zerosi and 4i, with constant term —16
11. State each zero and its multiplicity for £(x) = x2(x +4)(x + 9)8(x — 5)3
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SOLUTIONS
1. ™?+4=0
Ox2=-4
, 4

X =—=

9

—:I:/ 4_:&2._2. 2.
X = 9= 31_31, 31

, . BE /82— 4(6)(9)

2(6)
-8+ /-152 —8+2/38i
B 12 B 12
_ 2(—4£+/38i) —4+./38i
N 12 N 6
4
_ 4, V38 _ 2, VB
6 6 37 6
2 /38, 2 /38

3 x4 -8l=(?-9(x?+9 = —-3x+3H2+9)
x°+9=0
x2=_-9
x=+£V/-9=23i
The solutions are +£3, +3i.

4. x = 2isasolution, so x — 2 is a factor of x + 13x — 34. Using
synthetic division, we can find the quotient, which will be another factor.

2[1 0 13 —34
2 4 34

1 2 17 0

The quotient isx? + 2x + 17. We will find the other solutions by solving
x2+2x +17=0.

—24+/22-40)(17)  -2+/-64 248
2(1) o 2 2

X =
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2(—1+ 4
_AEN gy
2
The solutionsare 2 and —1 + 4i.
5. x = =3i isasolution, so x = 3i is a solution, also. One factor of
X —x3 482 —9x —9is(x = 3)(x +3i) =x2+9=x%24+0x + 0.
x2— x— 1
x240x + 9’ x4 X3+ 8x%2—9x—9
—(x*+ 3+ 9%d
—x3— x2 —9x
—(—=x3+  Ox?— %)
—x%40x— 9
—(—x°+ 0x—9)
0

Solvex2 —x —1=0.

_ D VED2-4D(-D) 145
B 2(1) 2

The solutions are 4-3i, “Ef

6. x =3 — 2i isasolution, so x = 3+ 2i isaso asolution. One factor of
x3 —5x2 4+ 7x + 13is

x—B=2)(x—B+2))=(x—34+2i)(x—3-2i)
=x%—3x—2ix—3x+9+6i +2ix —6i —
=x°—6x+9—4(—1)=x°—6x+13.

x+ 1

x2—6x + 13’ x3— Bx24 7x+ 13
—(x3— 6x2+13x)

x2— 6x + 13
—(x2— 6x+13)
0

The solutionsare 3 + 2i and —1.

7. One polynomial with integer coefficients, with degree 3 and zeros 0, —4
and6is

x(x +4)(x — 6) = x(x2 — 2x — 24) = x3 — 2x2 — 24x.
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8.

9.

10.

11.
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One polynomial with integer coefficients, with degree 4 and zeros —1,
6 — 7i, wherex = —1 hasmultiplicity 2 is

(x+1)2(x — (6—7i)) (x — (647i)) = (x +1)2(x —6+7i) (x —6—Ti)
=[(x+1) (x+1)][x%—6x — 7ix —6x +36+42i +7ix —42i —49i?]
= (220 +1)(x2—12x +85)
=x*—12x3485x2+2x3— 24x2+ 170x + x?>—12x + 85

—x*—10x3+62x2+158x +85.

Thefactorsarex — 4, x — 1, and x + 1.
ax —Hx -Dxr+D =ax—Hx - D+ D] =akx —H@x>—1)
=al(x —HEZ-—D]=a@x> -2 —x +4)
= ax® — 4ax® — ax + 4a

We want the leading coefficient to be 3, so a = 3. The polynomial that
satisfies the conditions is 3x3 — 12x2 — 3x + 12.

Thefactorsarex +i,x —i,x —4i,and x + 4i.
ax+i)(x—)(x—4i)(x+4di)=al(x+i)(x—i)][(x —4i)(x+4i)]
—a(x®+1)(x?+16) =a(x*+17x2+16)
=ax*+17ax’+16a

We want 16a = —16, so a = —1. The polynomia that satisfies the
conditionsis —x* — 17x2 — 16.

x = Oisazero with multiplicity 2.
x = —4isazerowith multiplicity 1.
x = —9isazerowith multiplicity 6.
x = 5isazero with multiplicity 3.

CHAPTER 7 REVIEW

1. What are the x-intercepts of f(x) = x%(x + 3)(x — 2)?

@ —3and2 (b) 3and—2 (¢) 0,—3,and2 (d) 0,3, and —2
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2. ThegraphinFigure 7.20 isthe graph of which function?
@ f(x) = 2x2(x — D(x +2) = 2x* + 2x3 — 4x2

(b) F(x) = —2x2(x — D)(x +2) = —2x* — 2x3 4 442
(© f(x)=2x(x —1)(x +2) = 2x3 + 2x2 — 4x
(d) f(x)=—-2x(x —D(x+2) = —2x3 — 2x2 + 4x

3. What isthe quotient and remainder for

x3+1
xX24x4+2

(@ Thequotientisx — 1, and theremainder is —3x — 3.
(b) Thequotientisx — 1, and the remainder is —x + 3.
(c) Thequotientisx + 1, and the remainder is x + 3.
(d) Thequotientisx + 1, and the remainder is 3x + 3.
4. Usesynthetic division to find the quotient and remainder for (2x3 — x2 +

2x+4) +(x—3).
(@ Thequotientis2x? + x + 5, and the remainder is 19.

(b) The quotient is 2x2 + 5x + 7, and the remainder is 29.
(c) Thequotientis2x2 + 5x + 17, and the remainder is 55.
(d) The quotient is2x2 + x + 3, and the remainder is 7.
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5. What isthe quotient for (x* + x2 — 3x +5) = (—2x2 + x — 6)?
1 1
(8 The quotient |s—§x2 — 4x 3
(b Thequotlentls— 1x2 4 4x +
(c) Thequotient i |s—§x — f{x — %5.
(d) The quotient |s—§x — Zx + 2 5
6. Completely factor P(x) = 4x3 + 4x2 — x — 1.
@ (x — D4 +1) (b) (x+D@x - (2c + 1)
(© (x+1%@4x -1 (d) x—D@2x —D(2x +1)
7. Finddl solutionsfor x2 + 2x +4 = 0.
(@ —1++/3i (b 1i¢§i () 1++/5 (d -1++5
8. What isthe quotient for 2 wcrild
@ 7 0 s+ ©p-@m (@ -5
9. According to the Rational Zero Theorem, which is NOT a possible
rational zero for f(x) = 4x® — 6x3 + 2x2 — 6x — 9?
(@ —4 (b 3 (© 3 (d) -9
10. According to Descartes’ Rule of Signs, how many positive zeros does
f(x) = 4x°® — 6x3 4+ 2x2 — 9 have?
@ 3 (b) 20r0 (c) 2 (d) 3orl
11. Findal zerosfor f(x) = x3 — 6x2 + 13x — 10.
@ —2,2+i (b) 2, 2+ (© 2 1+2i (d -2, 1+2
SOLUTIONS
1.C 2.A 3.B 4.C 5D
6.B 7.A 8.D 9.A 10.D 11.B
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Rational Functions

A rational function is afunction that can be written as one polynomial divided by
another.

_P(X)  apx"+ap_1x" '+ +aix +ao
Q) bpx™ + by_1x™ 1+ bix + bo

f(x)

Polynomial functions are a special kind of rational function whose denominator
function is Q(x) = 1. While the graph of every polynomial function has exactly
one y-intercept, the graph of arational function might not have a y-intercept. If it
hasa y-intercept, it can befound by setting x equal to zero.If it hasany x-intercepts,
they can be found by setting the numerator equal to zero.

The graphs of rational functions often come in pieces. For every x-value that
causesazero inthe denominator, therewill beabreak inthegraph. If thefunctionis
reduced to lowest terms (the numerator and denominator have no common factors),
thentherewill beavertical asymptote at these breaks. Thegraphrises(or falls) very
fast near these asymptotes. The graph in Figure 8.1 is the graph of f(x) = x%l
It has a vertical asymptote at the line x = 1 because x = 1 causes a zero in the
denominator.

185

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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A vertical asymptote shows that the y-values get large when the x-values get
close to a zero in the denominator. To see this, we will evaluate f(x) = x—fl a
x = 0.99and x = 1.01, two x-values close to a zero in the denominator.

f(0.99) = 100

5551 = 100 and £(1.01) =

101—1

The graph flattens out horizontally near a horizontal asymptote. The graph in
Figure 8.1 hasthe x-axisasitshorizontal asymptote. A horizontal asymptote shows
that as x getsvery large, the y-values get very close to afixed number. In the func-
tion f(x) = x—il thereisahorizontal asymptoteat y = 0 (the x-axis). Thismeans
that as x getslarge, the y-values get close to O.

1 ~ 0.010101 and

S0 = 750—7 = 99

f(=100) = ~ —0.009901

—100—1 101

Vertical asymptotesare easy to find—set the denominator equal to zero and solve
for x. Whether or not a graph has a horizontal asymptote depends on the degree of
the numerator and of the denominator.

e |If the degree of the numerator is larger than the degree of the denominator,
thereis no horizontal asymptote.

e If the degree of the denominator is larger than the degree of the numerator,
thereisa horizontal asymptote at y = 0, which isthe x-axis.
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o |If the degree of the numerator equals the degree of the denominator, thereis
ahorizontal asymptote at y = 7, where a,, is the leading coefficient of the
numerator and b,, isthe leadi ng coefﬂ cient of the denominator.

EXAMPLES
Find the intercepts, vertical asymptotes, and horizontal asymptotes.
x?—16
* JW=5
Solving 3x + 1 = O we get x = —3. The vertical linex = —3 is the

vertical asymptote for this graph. There is no horizontal asymptote because
the degree of the numerator, 2, ismore than the degree of the denominator, 1.
The x-intercepts are +4 (from x2 — 16 = 0) and the y-intercept is
0>—16
30 +1

15

x2—4x -5

Whenwesolve x2 — 4x —5 = 0, we get thesolutionsx = 5, —1. Thisgraph
hastwo vertical asymptotes, thevertical linesx = 5andx = —1. The x-axis
is the horizontal asymptote because the degree of the numerator, 0, is less
than the degree of the denominator, 2. (A reminder, the degree of a constant
termis0, 15 = 15x0.) Thereis no x-intercept because the numerator of this
fraction isaways 15, it is never 0. The y-intercept is

15
— 4(0) —

o g(x)=

= —-3.
2
X242

Becausex?+2 = Ohasnoreal solutions, thlsgraph hasno vertical asymptote.
There is a horizontal asymptote at y = 1 = 3 because the degree of the

numerator and denominator isthe same. The x-intercept is0 (from 3x? = 0).
The y-intercept is

e fx)=

302 0

02+2 2

The reason we can find the horizontal asymptotes so easily is that for
large values of x, only the leading terms in the numerator and denominator
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really matter. The examples below will show an algebraic reason for therules
above. For any fixed number ¢ any positive power on x,

c
xPower

isalmost O for large values of x. For example, in ;—%0, if welet x beany large

number, the fraction will be close to 0.
—-10

The larger x is, the closer to 0 = is.

EXAMPLES

W3+ 5x%+x—6
f) ="
x4+ 8xc—-1
From above, we know that the x-axis, or the horizontal line y = 0, isa
horizontal asymptote. Here is why. Because the highest power on x is4, we

. . . 2> )
will multiply the fraction by ig 2, Which reducesto 1, soweare not changing
the fraction.
1 33 | 5x? 6 3, 5 1 6
3x3+5x2+x—6'z_ ;6_4"';_4"_,%_? _ Tta2ta—
4 2 _ 1 4 2 1 8 1
R - - 2+ 35—

For large values of x, 3/x, 5/x%, 1/x3, 6/x% 8/x2, and 1/x* are very
closeto zero, so for large values of x,

3,5 ,1_ 6
x zx_z : x® I Xt iscloseto
T

4x3 +8x2 —5x +3
Ox3 —x24+8x -2

The degree of the numerator equals the degree of the denominator, so the
graph of this function has a horizontal asymptote at the line y = 4/9. Here
iswhy. Because the largest power on x is 3, we will multiply the fraction by

0+0+0—0_0_0
24+40-0 2

gx) =

1/x3
1/x3"

1 4x3 | 82 x |, 3 8 5 3
A’+8?-5x+3 3 It e stn 4ty uts
O3 —x2—-8—2 L o3 _ 2 _ & _2 g_1_38_ 2

x3 X3 ¥ X3 3 x  x2 X3
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iscloseto4+o_0+0— 4
o_1_8_2 9-0-0-0 9

For large values of x,

These stepsare not necessary to find the horizontal asymptotes, only thethree
rules earlier in the chapter.

PRACTICE
Find the intercepts, vertical asymptotes, and horizontal asymptotes.
L= 2);4;23
2 8= g
3. h(x)= ;i—;i
4.mm—2§;;
5. fw =5t
6. 100 =5
SOLUTIONS
1. The vertica is asymptote x = —3, from 2x + 3 = 0. The horizontal

asymptoteisy = % because the numerator and denominator have the same
degree. The x-intercept is —2, from x + 2 = 0. The y-intercept is

0+2 2

20 +3 3

2. The vertical asymptotesarex = —5and x = 4, fromx% + x — 20 = 0.
The horizontal asymptoteis y = 0 because the denominator has the higher
degree. The x-intercept is 0, from —3x = 0. The y-intercept is

—3(0) 0

2+0-—20 20~ °
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3. There is no vertical asymptote because x° + 1 = 0 has no real solu-
tion. The horizontal asymptote isy = 1/1 = 1 because the numerator

and denominator have the same degree. The x-intercepts are +£1, from
x? — 1= 0. The y-intercept is

-1 -1
02+1 1
4. Thevertical asymptoteisx = —%, from 8x + 3 = 0. Thereisno horizontal

asymptote because the numerator has the higher degree. The x-intercepts
are 3, from 9x? — 1 = 0. The y-intercept is

= -1

9(0)2—1_—_1
80 +3 3

5. Thereisnovertical asymptotebecausex?+4 = Ohasnoreal solution. There
isno horizontal asymptote becausethe numerator hasthe higher degree. The
x-intercept is —1, from x + 1 = 0. The y-intercept is

0®+1 1
0244 4

6. The vertical asymptote is x = 0, from x2 = 0. The horizontal asymp-

tote y = 0 because the denominator has the higher degree. There is no

x-intercept because the numerator is 2, never 0. There is no y-intercept
because 2/02 is not defined.

When sketching the graph of arational function, we use dashed linesfor the asymp-
totes . We will sketch the graphs of rational functions in much the same way we
sketched the graphs of polynomial functions. In addition to the points we plot for
polynomial functions, we need to plot points to illustrate the asymptotic behavior
of the graph. To show how a graph behaves near a vertical asymptote, we need to
plot apoint toitsleft and toitsright. To show how agraph behaves near ahorizontal
asymptote, we need to plot points with large enough x-values, both positive and
negative, to show how the graph flattens out. When agraph has both horizontal and
vertical asymptotes, we will also plot a couple of mid-sized x-values.

EXAMPLES

Sketch the graph of the rational function.
2x+1
x—4

o fx)=
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—&

Thex-interceptis—3, the y-interceptis — 3. Thevertical asymptoteisx = 4,
and the horizontal asymptote is y = 2. We will use dashed lines for the
asymptotes and plot the pointsfor x = 3, x =5, x = —10, and x = 10to
show how the graph behaves near the asymptotes.

15

10

-5

-10

-15

Fig. 8.2.

It is not obvious what the graph looks like so we will plot apoint for x = 7.
Then we will draw a smooth curve between the points.

15

10

-10

-15

Fig. 8.3.
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g(x) = 21

There is no vertical asymptote because x2 + 1 = 0 has no real solution.
The x-axis is the horizontal asymptote. This graph has no x-intercept. The
y-intercept is 1. We will use x = 5, —5 to show the graph’s horizontal
asymptotic behavior. The function is even, so the left half is a reflection of
theright half. Wewill plot pointsfor x = 1, 2. The y-valuesfor x = —1, —2
will be the same.

-1 1 2 3 4 5
-0.25

-0.50 -
-0.75
-1.00%-
Fig. 8.4.

o
W

!
w
Lok

x241
x2—-1
The vertical asymptotes arex = —1 and x = 1. The horizontal asymptote
isy = 1. Thereis no x-intercept, and the y-intercept is —1. We will use
x =5, —5for the horizontal asymptote and x = —0.9, 0.9, —1.1, 1.1 for
the vertical asymptotes. To get a better idea of what the graph looks like, we
will need to plot other points. Wewill usex = 2and x = —2.

R(x) =
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If the degree of the numerator is exactly one more than the degree of the denom-
inator, then the graph has a dant asymptote. We can find the equation of a dant

asymptote (a line whose slope is a nonzero number) by performing polynomial
division. The equation for the slant asymptote is y = quotient.

EXAMPLES
Find an equation for the slant asymptote.
2 _
o Fy= X EHS

x+2

When we divide 4x2 + 3x — 5 by x + 2, we get a quotient of 4x — 5. The
dant asymptoteistheline y = 4x — 5.

4 — 5

x4+ 2’ 4324+ 3x — 5
—(4x2+ 8x)

—bx — 5
—(=5x — 10

x +1
Pax+2] Sradro-1
—(x34+ X%+ 2x)
x2—2x—1
—(x%4+ x+2)
—3x—-3

The dant asymptoteisy = x + 1.

When sketching the graph of arational function that has a dant asymptote, we
can show the behavior of the graph near the slant asymptote by plotting points for
larger x-values. We can tell if an x-value is large enough by checking its y-values
in both the line and rational function. If they are fairly close, then the x-value is
large enough.

EXAMPLES
Sketch the graph of rational function.
x>+ x—6

¢ S =—1
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Thex-interceptsare —3 and 2. The y-intercept is —3. The vertical asymptote

isx = —2.
-2/1 1 -6
-2 2
1 -1 -4

The quotient is x — 1, so the dant asymptoteisy = x — 1. We will use
x = 10and x = —10to show the graph’s behavior near the dant asymptote.
Wewill alsoplot pointsfor x = —1andx = —2.5for thevertical asymptote.

° h(x):xz_l

The x-intercept is 0, the y-intercept is 0, too. The vertical asymptotes are
x=—-1landx =1

X
x240x — l’ x34+ 0x2+0x+0
—(x340x2 —x)

X

The quotient is x, so the dant asymptote is y = x. We will plot points for
x = —5and x = 5 to show the graph’s behavior near the dant asymptote, x =

—1.1, 1.1, —0.9, 0.9 for the vertical asymptotes, and x = —2, 2 for in-between
points.
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PRACTICE
Find the asymptotes and intercepts and sketch the graph.

1 fx)=

x+2
X

2. gx) = 2

N O

2y —
x+2

4. Hint: Rewrite as one fraction.

3 hx) =

1

_1,
SO =_+-—

x2+x—12

5. f(x) =
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SOLUTIONS

1. Theasymptotesarex = —2and y = 0 (thex-axis). Thereisno x-intercept.
The y-intercept is 3.

10

4+
6

8-

—

e

|

oo

.}

¢

i
—_—————— T e o o e e

[\

'

[=>}

Qo

[

o

10k
Fig. 8.8.

2. The asymptotesare x = —1, x = 1, and y = 0. The x-intercept and
y-intercept is 0.
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3. The asymptotesare x = —2 and y = 2. The x-intercept is 2, and the
y-intercept is —2.

4, f(x):}+izl.x_2+ 1 x_x—2+x
X x—2 x x—2 x—2 x x(x —2)
2x — 2 2x — 2
:x(x—2)=x2—2x

The asymptotesarex = 0, x = 2, and y = 0. The x-intercept is 1, and
thereis no y-intercept.

-

10

——ee T o -
Sy
=
o]
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5. The vertical asymptote is x = 2. The x-intercepts are —4 and 3. The
y-intercept is 6. We can use synthetic division to perform polynomial

division.

2/11 1 -12
2 6

1 3 -6

The quotient is x + 3, so the slant asymptoteisy = x + 3.

CHAPTER 8 REVIEW

1. What isthe horizontal asymptote for the graph of

24 +6x —7
=7
JO =53 gy2
@ y=0 b)y = % (c) There is no horizontal asymptote.

(d) Cannot be determined without the graph.
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2. What isthe horizontal asymptote for the graph of

23+ 6x -7
T =53 at2
@ y=0 b)yy= % (c) There is no horizontal asymptote.

(d) Cannot be determined without the graph.
3. What isthe horizontal asymptote for the graph of

22+ 6x—7
=07
JO =53 g y2
@ y=0 (b)y = % (c) Thereisno horizontal asymptote.

(d) Cannot be determined without the graph.

4. What igare the vertical asymptote(s) for the graph of
x—3 x—3

= = ?
S = ey 2T 642G -1
@ x=3 (b)x =—2andx =1
(©) x=3,x=—-2,andx =1 (d) Thereareno vertical asymptotes.

5. What are the intercepts for the graph of

2
X +1?
x—4

fx) =

(8 There are no x-intercepts, and the y-intercept is —;11
(b) The x-intercepts are =1, and the y-intercept is —3
(c) The x-interceptsare +1, and thereis no y-intercept.
(d) Thereare no intercepts.

6. What isthe slant asymptote for the graph of

2 _
2x°+ x 1?

fx) = 12

@ y=2x+5 (b)y=2x—3 (©y=5
(d) Thereisno slant asymptote.
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7. Thegraphin Figure 8.13 is the graph of which rational function?

@ re =22
® g =""2
© fw=""2
@ g =21
SOLUTIONS
1.C 2.B 3.A 4.B 5A

6.B 7.C



CHAPTER

Compound Growth

A quantity (such as a population, amount of money, or radiation level) changes
exponentially if the growth or loss is a fixed percentage over a period of time. To
see how thisworks, we will see how the value of an account grows over four years
if $100 is deposited and earns 5% interest, compounded annually. Compounded
annually means that the interest earned in the previous year earns interest.

After one year, $100 has grown to 100 + 0.05(100) = 100 + 5 = $105. In
the second year, the origina $100 earns 5% plus the $5 earns 5% interest: 105 +
(105)(0.05) = $110.25. Now thisamount earnsinterest in thethird year: 110.25+
(110.25)(0.05) = $115.76. Finaly, this amount earns interest in the fourth year:
115.76 + (115.76)(0.05) = $121.55. If interest is not compounded, that is, the

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.

Exponents and
Logarithms

202
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interest does not earn interest, the account would only be worth $120. The extra
$1.55 isinterest earned on interest.

Compound growth isnot dramatic over the short runbut itisover time. If $100is
left in an account earning 5% interest, compounded annually, for 20 years instead
of four years, the difference between the compound growth and noncompound
growthisalittlemoreinteresting. After 20 years, the compound amount is $265.33
compared to $200 for simpleinterest (noncompound growth). A graph of thegrowth
of each type over 40 yearsisgiven in Figure 9.1. Thelineisthe growth for simple
(noncompounded) interest, and the curve is the growth with compound interest.

700
600
500

400

Dollars

300
200

100

! ! |
20 30 40
Number of Years

1

Fig. 9.1.

We can use aformula to compute the value of an account earning compounded
interest. If P dollarsisinvested for ¢ years, earning r interest rate, then it will grow
to A dollars, where A = P(1+r)'.

EXAMPLES

Find the compound amount.

e $5000, after three years, earning 6% interest, compounded annually
We will usethe formulaA = P(1+r)'. P = 5000, r = 0.06, and ¢t = 3.
We want to know A, the compound amount.

A = 5000(1 + 0.06)2 = 5000(1.06)° = 5000(1.191016)
— 5055.08

The compound amount is $5955.08.



CHAPTER 9 Exponents and Logarithms _\@)

e $10,000 after eight years, 7%% interest, compounded annually
A = 10,000(1 + 0.0725)8 = 10,000(1.0725)2 ~ 10,000(1.7505656)
~ 17,505.66
The compound amount is $17,505.66

Many investments pay more often than once ayear, some paying interest daily.
Instead of using the annual interest rate, we need to use the interest rate per period,
and instead of using the number of years, we need to use the number of periods. If
there are n compounding periods per year, then theinterest rate per period is ;- and
the total number of periodsisnt. The compound amount formula becomes

A=P<1+£)m.

EXAMPLES

Find the compound amount.

e 35000, after three years, earning 6% annual interest
(8 compounded semiannually
(b) compounded monthly

For (@), interest compounded semiannually means that it is compounded
twice each year, son = 2.

0.06\2%®
A = 5000 (1 + T) — 5000(1.03)% ~ 5000(1.194052) ~ 5970.26

The compound amount is $5970.26.
For (b), interest compounded monthly meansthat it is compounded 12 times
each year, son = 12.

0.06\ 2@
A = 5000 (1 + E) — 5000(1.005)3¢ ~ 5000(1.19668) ~ 5983.40

The compound amount is $5983.40.
e $10,000, after eight years, earning 7%% annual interest, compounded weekly
Interest that is paid weekly is paid 52 times each year, son = 52.

0.0725

52(8)
A = 10,000 (1 + ) ~ 10,000(1.001394231)*16

~ 10,000(1.785317) ~ 17,853.17
The compound amount is $17,853.17.
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The more often interest is compounded per year, the more interest is earned.
$1000 earning 8% annual interest, compounded annually, is worth $1080 after one
year. If interest is compounded quarterly, it is worth $1082.43 after one year. And
if interest iscompounded daily, it isworth $1083.28 after one year. What if interest
is compounded each hour? Each second? It turns out that the most this investment
could be worth (at 8% interest) is $1083.29, when interest is compounded each
and every instant of time. Each instant of time, atiny amount of interest is earned.
Thisiscalled continuous compounding. The formulafor the compound amount for
interest compounded continuously isA = Pe'’, where A, P, r,andr arethesame
guantities as before. The letter e stands for a constant called Euler’s number. It is
approximately 2.718281828. You probably have an e or ¢* key on your calculator.
Although e isirrational, it can be approximated by numbers of the form

1 m
(1+ _) )
m

where m is alarge rational number. The larger m is, the better the approximation
for e. If we make the substitution m = - and use some algebra, we can see how
(14 5)" isvery closetoe’’, for large values of n. If interest is compounded every
minute, n» would be 525,600, a rather large number!

EXAMPLE

e Find the compound amount of $5000 after eight years, earning 12% annual
interest, compounded continuously.

A = 5000¢%12® — 5000¢%% ~ 5000(2.611696) ~ 13,058.48

The compound amount is $13,058.48.

The compound growth formula for continuously compounded interest is used
for other growth and decay problems. The general exponential growth model is
n(t) = noe"’, where n(r) replaces A and ng replaces P. Their meanings are the
same—n(¢) is still the compound growth, and ng is till the beginning amount.
The variable ¢ represents time in this formula; although, time will not always be
measured in years. The growth rate and ¢ need to have the same unit of measure.
If the growth rate is in days, then ¢ needs to be in days. If the growth rate isin
hours, then ¢ needsto be in hours, and so on. If the “population” is getting smaller,
then the formulaisn(t) = nge™"".
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EXAMPLES

e The population of acity is estimated to be growing at the rate of 10% per

year. In 2000, its population was 160,000. Estimate its population in the year
2005.
The year 2000 correspondsto + = 0, so the year 2005 correspondsto ¢t = 5;
no, the population in year + = 0, is 160,000. The population is growing at
the rate of 10% per year, so r = 0.10. The formulan(r) = nge”’ becomes
n(r) = 160,000e%1%  We want to find n(¢) for ¢ = 5.

n(5) = 160,000>1°® ~ 263795

The city’s population is expected to be 264,000 in the year 2005 (estimates
and projections are normally rounded off).

e A county islosing population at the rate of 0.7% per year. If the population
in 2001 is 1,000,000, what is it expected to be in the year 2008?
no = 1,000,000, r = 0 isthe year 2001, + = 7 is the year 2008, and
r = 0.007. Because the county is losing population, we will use the decay
model: n(t) = noe"". The model for this county’s population is n(z) =
1,000,000¢ %97, We want to find n(¢) for t = 7.

n(7) = 1,000,000e %77 ~ 952,181

The population is expected to be 952,000 in the year 2008.
e Inan experiment, a culture of bacteria grew at the rate of 35% per hour. If
1000 bacteria were present at 10:00, how many were present at 10:45?

ng = 1000, r = 0.35, ¢ isthe number of hours after 10:00

The growth model becomes n (1) = 100093 . We want to find n(r) for 45
minutes, or t = 0.75 hours.

1n(0.75) = 1000307 — 1000¢%%6%° ~ 1300

At 10:45, there were approximately 1300 bacteria present in the culture.

Present Value

Suppose acouplewantsto givetheir newborn grandson agift of $50,000 on his20th
birthday. They can earn 7%% interest, compounded annually. How much should
they deposit now so that it grows to $50,000 in 20 years? To answer this question,
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we will usetheformulaA = P(1+ r)!, where we know that A = 50,000 but are
looking for P.

50,000 = P (1 + 0.075)%°
= P(1.075%

50,000
(1.075)20

The couple should deposit $11,770.66 now so that the investment grows to
$50,000 in 20 years.

We say that $11,770.66 is the present value of $50,000 due in 20 years, earning
7%% interest, compounded annually. The present valueformulais P = A(1+r)~,
for interest compounded annually, and P = A(1+ %)™, for interest compounded
n times per year.

EXAMPLE

e Find the present value of $20,000 due in 8% years, earning 6% annual
interest, compounded monthly.

0.06 —12(8.5)
P = 20,000 <1 + ?) — 20,000(1.005) 19 ~ 12,025.18

The present value is $12,025.18.

PRACTICE

For Problems 1-7 find the compound amount.

1. $800, after ten years, 6%% interest, compounded annually

2. $1200 after six years, 9%% interest, compounded annually

3. A 20-year-old college student opens a retirement account with $2000. If
her account pays 8%1% interest, compounded annually, how much will be
in the account when she reaches age 657?
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4. $800, after ten years, earning 6;11% annual interest
(8 compounded quarterly
(b) compounded weekly

5. $9000, after five years, earning 6;3’1% annual interest, compounded daily
(assume 365 days per year).

6. $800, after 10 years, earning 6%% annua interest, compounded
continuously.

7. $9000, after 5 years, earning 6%% annua interest, compounded
continuously.

8. The population of acity in the year 2002 is 2,000,000 and is expected to
grow 1.5% per year. Estimate the city’s population for the year 2012.

9. A construction company estimates that a piece of equipment is worth
$150,000 when new. If it loses value continuously at the annual rate of
10%, what would its value bein 10 years?

10. Under certain conditions a culture of bacteria grow at the rate of about
200% per hour. If 8000 bacteria are present in a dish, how many will be
in the dish after 30 minutes?

11. Find the present value of $9000 due in five years, earning 7% annual
interest, compounded annually.

12. Find the present value of $50,000 due in 10 years, earning 4% annual
interest, compounded quarterly.

13. Find the present value of $125,000 due in 43 years, earning 63% annual
interest, compounded weekly.

SOLUTIONS
1. A =800(1+ 0.065)'° = 800(1.065)° ~ 800(1.877137) ~ 1501.71
The compound amount is $1501.71.
2. A =1200(1 + 0.095)% = 1200(1.095) ~ 1200(1.72379) ~ 2068.55
The compound amount is $2068.55.

3. A = 2000(1 + 0.0825)% = 2000(1.0825)*° ~ 2000(35.420585) ~
70,841.17

The account will be worth $70,841.17.
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4. (@ n=4

0.0625 410
A = 800 (1 + T) — 800(1.015625)*° ~ 800(1.85924)

~ 1487.39

The compound amount is $1487.39.
(b) n=52

0.0625) °2(19
A = 800 (1 + 7) = 800(1.00120192)°%°

~ 800(1.86754) ~ 1494.04
The compound amount is $1494.04.
5 n =365

0.0675
365

~ 9000(1.4013959) ~ 12,612.56

365(5)
A = 9000 (1 + ) ~ 9000(1.000184932)8%>

The compound amount is $12,612.56.

6. A = 800000510 — 800,05 ~ 800(1.915540829) ~ 1532.43
The compound amount is $1532.43.

7. A = 9000296754 = 9000.%-337> ~ 9000(1.401439608) ~ 12,612.96
The compound amount is $12,612.96.

8. no=2,000,000,  =0.015 Thegrowthformulaisn () = 2,000,000¢%-015
and we want to find n(z) whenr = 10.

n(10) = 2,000,000¢%91510 ~ 2 323 668

The population in the year 2012 is expected to be about 2.3 million.

9. no = 150,000, r = 0.10 We will use the decay formula because value
isbeing lost. The formulaisn(r) = 150,000 ~%1% . We want to find n(r)
whenr = 10.

n(10) = 150,000¢ %1010 ~; 55 181.92
The equipment will be worth about $55,000 after 10 years.
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10. ng = 8000, r = 2 The growth formulaisn(r) = 8000e¢%. We want to
find n(z) whenr = 0.5.

n(0.5) = 80002 ~ 21,746
About 21,700 bacteriawill be present after 30 minutes.
11. P = 9000(1.07)~° ~ 6416.88

The present value is $6416.88.

) —4(10)

12. P = 50,000 (1 + 0o — 50,000(1.01) % ~ 33,582.66

The present value is $33,582.66.

52(4

— .5)
13. P = 125,000 (1 + %35) — 125,000(1.00125)~234 ~ 93,316.45

The present value is $93,316.45.

Graphs of Exponential Functions

A basic exponential function is of the form f(x) = a*, where a is any positive
number except 1. Thegraph of f(x) = a* comesin two shapes depending whether
0 < a < 1 (aispositive but smaller than 1) or @ > 1. Figure 9.2 is the graph of
f(x) = (3)* and Figure 9.3 isthe graph of f(x) = 2*.

16 -

14+

12+

L i I I i e j | ] e |
504 -3 -2 -1 1 2 3 4 5 5 -4 -3 -2 - 5
gL oL

Fig. 9.2. Fig. 9.3.

Sketchthegraph of f(x) = a* by plotting pointsforx = —3,x = —2,x = —1,
x=0,x=1x=2andx = 3. If aistoo large or too small, pointsfor x = —3
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and x = 3 might be too awkward to graph because their y-values are too large or
too close to 0. Before we begin sketching graphs, we will review the following
exponent properties.

EXAMPLES
Sketch the graphs.

o f(x)=25"
We will beginwithx = —3, —2, —1, 0, 1, 2, and 3 in atable of values.

Table9.1

x fx)

-3 0.064 (2573 = 513)

3
-2 0.16 (2572 = ;1)

N
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o g(x)=(*

Table 9.2

PRACTICE
Sketch the graphs.

L f@ =3
2. g =@3)"
3. h(x) = ¢* (Usethee or ¢* key on your calculator.)
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SOLUTIONS

1
Table9.3
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NDOW W Ot
T

- 2 3 4 5
1L
Fig. 9.7.
3.
Table 9.5
x fx)
-3 0.05
-2 0.14
-1 0.37
0 1
1 2.72
2 7.39
3 20.09
20 /
15+
10+
5_
L ] ] i [
5 4 -3 -2 -1 2 3 4 5

-5
Fig. 9.8.

Transformations of the graphs of exponential functions behave in the same way

as transformations of other functions.
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EXAMPLES

e Thegraphof f(x) = —2* isthe graph of y = 2* reflected about the x-axis
(flipped upside down).

e Thegraph of g(x) = 27" isthe graph of y = 2* reflected about the y-axis
(flipped sideways).
The graph of i (x) = 21 isthe graph of y = 2* shifted to the left 1 unit.
Thegraph of f(x) = —3 + 2% isthe graph of y = 2* shifted down 3 units.

Logarithms

A common question for investorsis, “How long will it take for my investment to
double?’ If $1000 is invested so that it earns 8% interest, compounded annually,
how long will it take to grow to $2000? To answer the question using the com-
pound growth formula, we need to solve for 7 in the equation 2000 = 1000(1.08)".
We will divide both sides of the equation by 1000 to get 2 = (1.08)'. Now
what? It does not make sense to “take the ' root” of both sides. We need to
use logarithms. In mathematical terms, the logarithm and exponent functions are
inverses. Logarithms (or logs) are very useful in solving many science and business
problems.

The logarithmic equation log, x = y is another way of writing the exponential
equation a” = x. Verbally, we say, “log base a of x is (or equals) y.” For “log, x,
we say,” (the) log basea of x.

EXAMPLES

Rewrite the logarithmic equation as an exponential equation.
e logz9=2

The base of the logarithm is the base of the exponent, so 3 will be raised to
a power. The number that is equal to the log is the power, so the power on
3is2.

logs 9 = 2 rewritten as an exponent is 32 = 9
o log,3=-3

The baseis 2 and the power is —3.

2_3:1-
8
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o logy3=13

The baseis 9 and the power is %
1
92 =3

Now we will work in the other direction, rewriting exponential equations
as logarithmic equations. The equation 43 = 64 written as a logarithmic
equationislog, 64 = 3.

EXAMPLES
e 3*=81

The base of the logarithm is 3, and we are taking the log of 81. The equation
rewritten as alogarithmic equationislog; 81 = 4

o a3=4

The base is a, and we are taking the log of 4. The equation rewritten as a
logarithmic equation islog, 4 = 3.

o 823=1

The base is 8, and we are taking the log of 4. The equation rewritten as a
logarithmic equation islogg 4 = 3.

PRACTICE

For Problems 1-5, rewrite the logarithmic equations as exponential equations. For
Problems 6-12 rewrite the exponential equations as logarithmic equations.

1. log,16=2

2. 10910010 = 3
3. log, 2 =0.6931
4. 10g,11)9=2
5. log; 45 = —2
6. 52 =25

7. 82=1

8. 771=1
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9. 12513 =5

10. 10~% = 0.0001

11. %2 =1.6487

12. 8 =5

SOLUTIONS

1. log, 16 = 2 rewritten as an exponential equation is4? = 16
1 . . L
2. 10919010 = > rewritten as an exponential equation is 1002 = 10

3. log, 2 = 0.6931 rewritten as an exponential equation is %6%! = 2
4. log, 1) 9 = 2 rewritten as an exponential equation is (x + 1)2=09

1 1
5. log; — = —2 rewritten as an exponential equationis 772 = —
49 49
6. 5% = 25 rewritten as alogarithmic equation is logs 25 = 2
7. 49 = 1 rewritten as alogarithmic equation is log, 1 = 0
1 . . . L
8 771= - rewritten as alogarithmic equation is Iog7% =-1

1
9. 1253 = 5 rewritten as alogarithmic equation is 1095 5 = 3

10. 10~4=0.0001 rewritten as alogarithmic equation is l0og;n0.0001= — 4

. . . . 1
11. %2 = 1.6487 rewritten as alogarithmic equation is log, 1.6487 = >

12. 8" = 5rewritten asalogarithmic equationis logg5 = x

The first two logarithm properties we will learn are the cancelation properties.
They come directly from rewriting one form of an equation in the other form.

log, a* = x and 4?8 = x

When the bases of the exponent and logarithm are the same, they cancel. Let us
see why these properties are true. What would the expression log, a* be? We
will rewrite the equation “log, a* =?" as an exponential equation: a’ = a*. Now
we can see that “?” isx. Thisiswhy log, a* = x. What would a'%% * be? We will
r?write “q1%* =7 as alogarithmic equation: log,? = log, x, so “?" isx, and
a'%%* = x,
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EXAMPLES
e 50952
The bases of the logarithm and exponent are both 5, so 5'%% 2 simplifiesto 2.

10'99108 — 8 4l094x — £99.6 — g
2999901 =1 log, m" =r log; 7% = ab
Sometimes we need to use exponent properties before using the property
log, a* = x.
n m 1 —
Jam =an and—mza "

a

EXAMPLES
e 10gg3 = logg +/9 = logg 9%/2 =

NI =

1 1
o log; 4—9 = log; 2= log; 772 = -2

1
[ ] |Og10 \/ Ioglo 101/4

[ ] |Og10 v 10 Ioglo ’\/ 10 = |Og10 102/5

Two types of logarithms occur frequently enough to have their own notation. They
arelog, and log,q. The notation for log, is“In” (pronounced “ell-in") and is called
the natural log. The notation for log,q is“log” (no baseiswritten) andis called the
common log. The cancel properties for these special logarithms are

Ine* = x et =x and log10* = x 10'99% = x.

EXAMPLES

e* = x — 1rewritten asalog equation is In(x — 1) =

e 10* = 6rewritten asalog equationis log6 = x

e In2x = 25 rewritten as an exponent equation is ¢?> = 2x

e log(2x — 9) = 4 rewritten as an exponent equation is 10* = 2x — 9
e Ine®=15 e 1095=5
o NM_ 14 o log10Y2 =1

o Ine?4=-4 ° |oglO*4:_4
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PRACTICE

A WD

10.
11.
12.

13.

14.
15.
16.

17.
18.
19.
20.
21
22.
23.

© o N o o

Rewrite as alogarithm: ¢ = 4
Rewrite as alogarithm: 10 —! = 15
Rewrite as an exponent: IN6 = x + 1
Rewrite as an exponent: log5x = 3
Use logarithm properties to simplify the expression.
glogg 3

10'0910 14

5Iog5x

log,5 157

log;p 108

log, e*

logz +/7

logs £

logs %

log, 7

logys &

logg 3

logso +/1000

Ine®

log 10v*

10Iog9

eln6

log 101
In ex—i—l

SOLUTIONS

1
2.

In4 = 3x
logl5=x—1
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10.

11

12.

13.

14.

15.

16.

17.
18.
19.
20.
21
22.
23.

© o N o g M~ w

etl=6

10% = 5x

9I0g93 =3
10/%91014 — 14
5Iog5x =x

logys 157 = 2
log;p 1078 = -8

log, ¢* = x

NI

|Og7«/7 = IOg7 71/2 =
1
logs = = logs 571=—-1

1 1 1
_ _ 12 _ _ =
logs N logs 2= log; 3 =3
1 1
— — -2 _
Iogzlﬂ3 = Iog4z =logy4=°=-2

1 1 1 1
log,: = = 10gor —— = l0gos — = log,s 2512 = — =
925 5 925 @ 925 25% 925 2

2=18
1 1 1 1
logs = = l0gs — = loge — = loge 8 /3 = —Z
982 98% 988% 98 3

1000 = 108, s0 l0g; 5 +/1000 = log,q v'103 = log, 10%/2 = 3/2
Ine®=5

log10v* = /x

10199 = 9

(b —s6

log10¥ -1 =3y — 1

Ine*tl = x +1
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Exponent and Logarithm Equations (Part I)

Equations with exponents and logarithms come in many forms. Sometimes more
than one strategy will work to solve them. We will first solve equations of the
form “log = number” and “log = log.” We will solve an equation of the form
“log = number” by rewriting the equation as an exponential equation.

EXAMPLES
Solve the equation for x.
o logz(x+1)=4
Rewrite the equation as an exponential equation.

logz(x +1) =4
F=x+1
8l=x+1
80 =ux
e l0g,(3x —4) =5
P =3r—4
2=3—4
12 =x

The logarithms cancel for equationsin the form “log = log” aslong as the bases
arethe same. For example, the solution to the equation logg x = logg 10isx = 10.
The cancelation law a'%% * = x makes thiswork.

logg x = logg 10
8Iogsx — 8|098 10

x =10 (By thecancelation law)
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EXAMPLES

Solvefor x.

° IOQG(x +1) = IOgGZX

logg(x + 1) = logg 2x

x+1=2x The logs cancel.

1=x
e logd=log(x — 1)

log4 = log(x — 1)
4=x—-—1  Thelogscancel.

5=x

PRACTICE
Solvefor x.

1. log;(2x +1) =2

2. logy(x +6) =2

3. logbx =1

4. log,(8x —1) =4

5. logz(4x — 1) =logz 2

6. l0gy(3—x) =log, 17

7. In15x =In(x + 4)

8. log*; =log 3
SOLUTIONS

1. log;(2x+1) =2

?=2+1

24 = x
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@’_

2. logy(x +6) =2
#=x+6
10=1x

3. logbx =1

10! = 5x
2=x

4. log,(8x —1) =4

2 =8xr—1
17
sz
5. logz(4x — 1) = logz 2
4 —1=2
3
YT
6. log,(3—x) =log, 17
3—x=17
x=-14

7. In15x =In(x +4)

1 .
=5 Cross-multiply.
2x=x—-1

x=-1

We need to use calculators to find approximate solutions for exponential equa-
tions whose base is e or 10. We will rewrite the exponential equation as a



CHAPTER 9 Exponents and Logarithms _\@)

logarithmic equation, solve for x, and then use a calculator to get an approximate
solution.

EXAMPLES
Solve for x. Give solutions accurate to four decimal places.
o ¥ =3
¢® =3  Rewrite asalogarithmic equation.
2x =1In3
ML
2
L L0986 o
o 100t1=9
100t =9 Rewrite as a logarithmic equation.
x+1=1og9
x=-1+1og9

x ~ —140.9542 ~ —0.0458

e 2500 = 10004
2500 = 1000¢* 4 Divide both sides by 1000 before rewriting the equation.
&F 4 =25 Rewrite as alogarithmic equation.
x—4=1In25
x=44+1In25~ 44 09163 ~ 4.9163

PRACTICE

Solve for x. Give your solutions accurate to four decimal places.

1. 10* =7

2. e&t5 - 15
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3. 5000 = 2500¢%"

4. 32=8.10%4

5. 200 = 400¢ 006«

SOLUTIONS
1. 10% =
3x =log7
_log7 _ 0.8451

X _—~

3
2. &t _15
2x +5=1n15

2x =-5+1In15
_ —5+In15 5427081

_ ~ —1.1460
o 2 2

3. 5000 = 2500¢%*
5000
2500

~ 0.2817

e4x

L In2 06931
4

4, 32=8.10%"%  Divideboth sideshy 8.

4 — 106x—4
6x —4=1log4
6x =4+ 1log4
LA log4 _ 4+0.6021
6 6

5. 200 = 400¢—0-06x
1

—=¢

2

~ 0.1733

~ 0.767

—0.06x
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—0.06x = In (%)

_In(3) 069315
YT 2006  —006

The logarithm function f(x) = log, x istheinverse of g(x) = a*. The graph
of f(x) isthe graph of g(x) with the x- and y-values reversed. To sketch the
graph by hand, we will rewrite the logarithm function as an exponent equation
and graph the exponent equation.

~ 11.5525

EXAMPLES

Sketch the graph of the logarithmic functions.

e y=1log,x
Rewrite the equation in exponential form, x = 27, and let the exponent, y,
be the numbers —3, —2, —1, 0, 1, 2, and 3.

Table 9.6
x y
1
g _3
1
1 -2
1
? _1
1 0
2 1
4 2
8 3

5_

4_

3_

2._

1_

| | | ] 1 J
2 2 4 6 8 10

-1

-2

-3

4

5L

Fig. 9.9.
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e y=Inx
Rewritten as an exponent equation, thisisx = e¢”. Lety = -3, -2, -1, 0,
1,2,and 3.
Table9.7
x y
0.05 -3
0.14 -2
0.37 -1
1 0
2.72 1
7.39 2
20.09 3
5 —
4 e
3t -
2 -
1 —
L | ! | 1 | | | | | )
-2 2 4 6 8 10 12 14 16 18 20
-1
-2
Sk
Ak
5L
Fig. 9.10.

Asyou can see by these graphs, the domain of the function f(x) = log, x isall
positive real numbers, (0, o).

PRACTICE
Sketch the graph of the logarithmic function.

1. y = |Ogl_5x
2. y=Ilogzx
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SOLUTIONS
1.

5

4L

5L

ok

1l

2 2 4 6 8§ 10

1

-2+

3

-4

-5

Fig. 9.11.

2.

=N W Ot
T

1 1 1 I
-2 {2 4 6 8 10 12 14 15 18 20

Fig. 9.12.

] 1 !
Tt W N
T

Aslong asa islarger than 1, all graphsfor f(x) = log, x look pretty much the
same. The larger a is, the flatter the graph isto the right of x = 1. Knowing this
and knowing how to graph transformations, we have a good idea of the graphs of
many logarithmic functions.

e Thegraphof f(x) = log,(x — 2) isthe graph of y = log, x shifted to the
right 2 units.

e Thegraphof f(x) = —5+logz x isthegraph of y = log; x shifted down 5
units,
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e f(x)= %Iogx isthe graph of y = logx flattened vertically by afactor of

one-third.

Thedomainof f(x) = log, x isall positive numbers. Thismeansthat we cannot
take the log of O or the log of a negative number. The reason isthat « is apositive
number. Raising apositive number to any power isalwaysanother positive number.

EXAMPLES

Find the domain. Give your answersin interval notation.

f(x) =1logs(2 — x)
Because we are taking the log of 2 — x, 2 — x needs to be positive.
2—x>0
—x > =2
x <2
Thedomainis (—oo, 2).
f(x) =log(x? —x —2)
x> —x—-2>0
x—2x+1)>0

Put x = 2 and x = —1 on the number line and test to see where (x — 2)
(x +1) > Oistrue.

True False True

Fig. 9.13.
We want the “ True” intervals, so the domainis (—oo, —1) U (2, 00).
g(x) =In(x2+ 1)
Because x2 + 1 isaways positive, thedomainisall real numbers, (—oo, 00).

PRACTICE

Find the domain. Give your answersin interval notation.

1. f(x) = In(10 — 2x)
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2. h(x) =log(x2 — 4)
3. f(x) =log(x2+ 4

SOLUTIONS

1. Solvel0— 2x > 0. Thedomainisx < 5, (—o0, 5).
2. Solvex?2—4>0

True False True

B
™)
o
U
<
—
e
w
S

Fig. 9.14.

Thedomainis (—oo, —2) U (2, 00).

3. Because x? 4+ 4 > 0 is always positive, the domain is all real numbers,
(—o00, 00).

Exponent and Logarithmic Equations (Part II)

For some logarithmic equations, a solution might be extraneous solution. That
is, such a solution is a solution to the rewritten equations but not to the origina
equations. Some solutions to the rewritten equations will cause logarithms of O
or of negative numbers. We can check them in the original equation to see which
solutions are true solutions.

EXAMPLES

Solvefor x.
e logy(x?+3x —10) =3
We will rewrite this as an exponent equation: 22 = x2 4+ 3x — 10 and solve
for x.
x>4+3x—10=38
x> 4+3r—18=0
x+6)(x—-3)=0
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The solutions are x = —6 and x = 3. We will check them in the original
equation.
log,((—6)% + 3(—6) — 10) = 3? log,(3% + 3(3) — 10) = 3?
log, 8 = 3 True log, 8 = 3 True

The solutions to the original equationarex = —6and x = 3.
o logg(x? 4 5x — 4) = logg(x + 1)

Thelogs cancel leaving x2 +5x —4 = x + 1.
x°+Br—4=x+1
x24+4x-5=0

x+95x-1)=0

Thesolutionsarex = —5and x = 1. We cannot allow x = —5 asasolution
because l0gs(—5 + 1) is not defined. We need to check x = 1.

logg(12 4+ 5(1) — 4) =logg(1+ 1) istrue
The solutionisx = 1.

PRACTICE

Solvefor x.

1. In(x24x —20) = In(3x + 4)
2. logy(2x? — 3x +59) = 3

SOLUTIONS
1. In(x?+x —20) = In(3x + 4)
x>+ x—-20=3x+4
x2—2x—-24=0
(x—6)(x+4=0

Thesolutionsarex = 6 and x = —4. Because In[3(—4) + 4] isnot defined,
we only need to check x = 6.

In(6% + 6 — 20) = In[3(6) + 4] istrue.

Theonly solutionisx = 6.
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2. log,(2x% — 3x +59) = 3
2% -3x+59=4% (42=69
%2 -3 —-5=0
(2x—-5x+1) =0
We need to check the solutions x = 3 and x = —1.

2
log, [2 (g) -3 (g) + 59} =37 Iog4[2(—1)2 —3(-1) +59] =3?

log, 64 = 3istrue log, 64 = 3istrue

The solutionsarex = 3 andx = —1.

Three More Important Logarithm Properties
The following three logarithm properties come directly from the exponent proper-

. m -
tiesa™ - a" = g™, & =a" " anda™ = (a™)".

1. log, mn = log, m + log, n
2. Iog,,ﬂ = log, m — log, n
n

3. log, m' =tlog, m

We will see why Property 1 works. Let x = log, m and y = log, n. Rewriting
these equations as exponential equations, we get b* = m and b” = n. Multiplying
m and n, we have mn = b* - b¥ = b**Y. Rewriting the equation mn = b**>
as a logarithmic equation, we get log, mn = x + y. Because x = log, m and
y = log, n, log, mn = x 4+ y becomeslog, mn = log, m + 1og, n.

EXAMPLES

Use Property 1 to rewrite the logarithms.
e log,7x =log, 7+ log,x
e In15 =In15+In¢
o logg 192 = logg 19 + logg 2
e 10g100y* = log10? + log y* = 2 + log y*
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e 10093+ logg 27 =l0gg 3(27) = logg 8l = 2
e Inx+In/y=Inx/y

Use Property 2 to rewrite the logarithms.

e log (i—i) = logx —log4

5
° In(—) =In5—-Inx
X

3
log;5 3 — 10g;52 = log;5 (5)

16
Ian—Int:InT

4
log, (:—3) =logy4—1logy3=1-1og3

The exponent property </a™ = a™/" alows us to apply the third logarithm
property to roots as well as to powers. The third logarithm property is especialy
useful in science and business applications.

EXAMPLES

Use Property 3 to rewrite the logarithms.
e log,3* =xlog,3 e logx?=2logx

. }Intzlnzl/?’ e —3log8=1log83
3

o loggv/2x = logg(2x)Y/? = %IogGZx

3
o INV3=Ins34= Zlnt

PRACTICE

Use Property 1 to rewrite the logarithmsin Problems 1-6.

1. In59%
2. log0.10y
3. loggy 148x2
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4. logg 3+ logg 12
5. logs 9 + logg 10
6. log5+1og20
Use Property 2 to rewrite the logarithmsin Problems 7-12.
7. log, 32
8. log, &
9. Inj
10. logi®
11. log;2 —log; 4
12. loggx —logg 3
Use Property 3 to rewrite the logarithms in Problems 13-20.
13. In5*
14. log;, /3
15. log+/16x
16. logs6~*
17. 2logg3
18. (x +6)log,3
19. logyg10%
20. —2log,5

SOLUTIONS

1. In59 =1In59+ In¢
log0.10y = log0.10+ logy = log10~1 + logy = —1+ log y
logsg 148x2 = l0gs 148 4 loggy x2
logg 3+ logg 12 = logg(3 - 12) = logg 36 = logg 62 = 2
logs 9 + 10gs 10 = logs(9 - 10) = logs 90
log5 + log 20 = log(5 - 20) = log 100 = log 10 = 2

o o b~ W D

10
7. Iog4§ = log, 10 — log, 9x
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7
: Iogzé =log,7 —log,8 = log, 7 — log, 23 = (log, 7) — 3

InL —int —In4
4
100
log— = l0og 100 — log x? = l0og 10 — log x? = 2 — log x?
X

log;2 —log; 4 = Iog7g = I0g7}

4 2
loggx —logg3 = Iogsg
IN5* =xIn5
log;, v3 = log;, 32 = 3 log;, 3
log+/16x = log(16x)Y/? = 3 log 16x
logs 6" = —1logs 6
2logg 3 = logg 3% = logg 9
(x 4+ 6)log, 3 = log, 3*+6
logyg 10%° = 2x log,5 10

—2log, 5 =log, 572 = log, 5_12 = log, 2_15

Sometimes we will need to use several logarithm properties to rewrite more
complicated logarithms. The hardest part of this is to use the properties in the
correct order. For example, which property should be used first on log %’? Do we
first use the third property or the second property? We will use the second property
first. For the expression Iog(§)3, we would use the third property first.

Going inthe other direction, we need to use all three propertiesin the expression

log, 9 —

log, x + 3log, y. We need to use the second property to combine the first

two terms.

9
log,9 — log, x + 3log, y = log, — + 3109, y
X

We cannot use the first property on log, % + 3log, y until we have used the third
property to move the 3.

9y3

9 9 9
log, — + 3log, y = log, — + log, y* = log, y3— = log, —
X X X X
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EXAMPLES

Rewrite as a single logarithm.
e log,3x —4log, y

We need use the third property to move the 4, then we can use the second
property.

3
log, 3x — 4log, y = log, 3x — log, y* = log, —Z
y
e 3logdx +2log3—2logy
3log4x + 2log3 — 2log y = log(4x)2 + log 3% — log y? Property 3
= log43x3 . 3% — log y? Property 1

576x3

y2

= log576x2 — log y2 = log Property 2

e tIn4+1In5
tInd+In5=1In4 +In5=In5-4)  (notIn20)
Expand each logarithm.
3V/x
2

y

e In

3J/x

1
In="= =In3(x"%) —Iny? =In3+Inx'/2 —Iny* = N3+ >lnx —2Iny
y

log; ——
97 10xy?
4
log, o2 = log; 4 — log; 10xy? = log, 4 — (log; 10 + log; x + log, y?)
=log; 4 — (log; 10 + log; x + 2log; y) or

log; 4 — log; 10 — log; x — 210g; y

PRACTICE

For Problems 1-5, rewrite each as a single logarithm.

1. 2logx +3logy
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logg 2x — 2logg 3

3Int —In4+2In5

tIn6+2In5

5. 2logx — 2log2y + 3logz

> 0D

For Problems 6-10, expand each logarithm.

A
y

6
7. In\—fy

8. log, %

Vax
9. In 52

10. Iog@

SOLUTIONS

1. 2logx + 3logy = logx? + log y3 = log x%y3

6. log

2. logg2x — 2logg 3 = logg 2x — logg 32

2x
= logg 2x — 10gg 9 = logg 9

3. 3Inr—In4+2In5=1In3 —In4+ In5?

3

t
=In— +1In25
4—|-
3 253
:In25t— :In—t
4 4

4. tIn6+42In5=1In6" +In52 = In[25(6")]

1
5. 5 logx —2log2y +3logz = logx/2 — log(2y)? + log z3

= logx¥2 — log22y2 + log 3

= logx¥/2 — log 4y? + log z3
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N 172 | N 3x1/2
9,7 5+ 0gz3 =logz 4y2
3 1/2 3
= log or IogZ VX
2 4y?

4
6. Iog—x =log4x —logy =log4 +logx —logy
y

6 1
7. In—=In6-In/y=In6—InyY2=1n6—ZIny
N vz 2

10x
8. log, — 7 = log, 10x — log, ¥z = log, 10x — log, z/3
1
= log, 10 + log, x — 3 log, z
VAx

0. In5— Inv/4x — In5y? = In(4x)1/2 — In5y2
y
1 , 1
= Eln4x—(ln5+lny ) = E(In4+lnx)—(ln5+2lny)

1 1
or =In44+ =Inx —In5—2In
> +2 X y

23 2y3\ 2 1 2y8
10. log L:Iog( y) — ZlogZ
X

= %('092y3 —logx) = %(|092+ log y3 — log x)

1 1 3 1
== —1 —log2+ =1 — =1
2(IogZ+3Iogy ogx) or > 0g2+ 2 ogy > 0g x

More Logarithm Equations

With these logarithm properties we can solve more logarithm equations. We
will use these properties to rewrite equations either in the form “log = log” or
“log = number.” When the equation is in the form “log = log,” the logs cancel.
When the equation isin the form “log = number,” we will rewrite the equation as
an exponential equation. Instead of checking solutionsin the original equation, we
only need to make sure that the original logarithms are defined for the solutions.
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~ A
EXAMPLES
e logy(x —5)+10g,(x +2) =3
We will use Property 1 to rewrite the equation in the form “log = number.”

logy(x —5) +logy(x +2) =3

logy(x —5)(x +2) = 3

x—-5x+2=2°

x*—3x—-10=8

x*—3x—-18=0

(x—6)(x+3)=0

The solutionsarex = 6 and x = —3. Becauselog,(x + 2) isnot defined for
x = —3, theonly solutionisx = 6.

e 2logs(x +1) —logs(x — 3) = logs 25

We will use Property 3 followed by Property 2 to rewrite the equation in the
form “log = log.”

2logs(x + 1) — logs(x — 3) = logs 25

logg(x + 1) — logs(x — 3) = logs 25

12
logs G+ D = logs 25
x_
(x + 1?
=25
x—3

(x + 1)? = 25(x — 3)

x+Dx+1)=25x—-75

x4+ 2x+1=265x—75
x2—23x +76=0
(x —4)(x —19) =0

Both logs(x + 1) and logs(x — 3) are defined for x = 4 and x = 19. The
solutionsarex = 4and x = 19.
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PRACTICE

1.

logz(2x + 1) + logz(x +4) =2

2. InBx—4dH+Inx+2=In2x+1) +Inx +2)
3. 1ogy(5x +1) —logy(x — 1) =3
4. 2log;(x +1) =2
SOLUTIONS
1. logz(2x + 1) + logs(x +4) =2 Use Property 1.
logz(2x + 1)(x +4) =2 Rewrite as an exponent equation.
2+ 1(x+4) =3
2324+ 9 +4=09
22+9% —-5=0
(2x—1(x+5 =0
Both log;(2x + 1) and logz(x + 5) are undefined for x = —5, so the only
solutionisx = 3.
2. InBx—-dH+Inx+2)=In2x +1) +Inx +2) Use Property 1.
INBx —-4Hx+2)=In2x +1)(x +2) Thelogs cancel.
Bx —dHx+2) =2+ Dx +2)
3%+ 2x —8=2x245x +2
x2-3x-10=0
x—-5x+2=0
All of In(3x — 4), In(x + 2), and In(x + 2) are not defined for x = —2, so
the only solutionisx = 5.
3. 10gy(5x +1) —logy(x —1) =3 Use Property 2.
log, 5x_+11 =3 Rewrite as an exponent.

5x—|—1_
x—1
5x+1=8x—-1)

23 =8 Cross-multiply.
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5 +1=8x -8
x=3
4. 2log;(x+1) =2 Use Property 3.
log;(x + )2 =2  Rewrite as an exponent.
(x+12=72
x+D(x+1) =49
¥24+2x+1=49
x24+2x—48=0
(x+8(x—-6)=0
The only solution isx = 6 because log;(x + 1) is not defined at x = —8.

We could have solved this problem in fewer steps if we had divided both
sides by 2 in thefirst step, getting log;(x + 1) = 1.

Thedomainsfor f(x) =log(x —1)(x +2) and g(x) = log(x — 1) + log(x + 2)
are not the same, which seems to contradict the first logarithm property. Neither
log(x — 1) nor log(x + 2) isdefined for x = —3 because -3 — 1and —3 + 2 are
negative. But log(x — 1)(x + 2) isdefined for x = —3 because (-3 — 1)(—3+ 2)
is positive. The domain of f(x) will include x-values for which both (x — 1) and
(x + 2) are negative.

The Change of Base Formula

There are countless bases for logarithms but calculators usually have only two
logarithms—Ilog and In. How can we use our calculators to approximate log, 57
We can use the change of base formula but first, let us use logarithm properties to
find this number. Let x = log, 5. Then 2* = 5. Take the common log of each side.

log2* =log5 Now use the third log property.
xlog2 =log5 Divide both sides by the number log 2.

log5 _ 0.698970004

- ~ ~ 2.321928095
* T log2  0.301029996

This means that 2232192809 s yery closeto 5.
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We just proved that log, 5 = :ggigg Replace 2 with b, 5 with x, and 10 with a

and we have the change of base formula.
log, x

lo =
9 ¥ log,, b

Thisformula converts alogarithm with old base b to new base a. Usually, the new
baseiseither e or 10.

EXAMPLE

e Evauatelog, 15. Give your solution accurate to four decimal places.
log15  1.176091259
log7 ~ 0.84509804

_ In15 _ 2708050201
T In7 ~ 1.945910149

log; 15 = ~ 1.3917

~ 1.3917

The change of base formula can be used to solve equations like 42 +1 = 8
by rewriting the equation in logarithmic form and using the change of base
formula. The equation becomeslog, 8 = 2x + 1. Becauselog, 8 = 118, the

— |ng
equation can be written as 2x + 1 = |18

In4-"
In8
2x+1=—
+ In4
In8
2x=-14+ —
+ In4

_1( ., &) _1
=3 Ina) = 2

EXAMPLE

= 1
o 8 =1

Rewriting this as a logarithm equation, we get x = logg % Now we can use
the change of base formula.

In
In

Wl

1
x = logg 3= ~ —0.5283

0o
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PRACTICE

Evaluate the logarithms. Give your solution accurate to four decimal places.

1. logg 25
2. 109505
Solvefor x. Give your solutions accurate to four decimal places.
3. 3F*t2=12
4. 15%-2=10
5. 24%+5 -9
SOLUTIONS

In25 _ 3.218875825
N6 1.791759469

1. logg25 = ~ 1.7965
_log25  1.397940009

- ~ ~ 1.7965
log6 ~ 0.7781525

In5 1609437912

in20 ~ 2.095732074 02372

2. |ngo 5 -

log5 _ 0.698970004

= A ~ 0.5372
log20  1.301029996

3. Rewrite 3*t2 = 12 as alogarithm equation: x + 2 = log; 12
x+2=10g;12 Use the change of base formula.

B In12
~ In3
In12

_ 24 N2 02619
x T n3
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4. Rewrite 15%*~2 = 10 as alogarithm equation: 3x — 2 = log;5 10

3X — 2 = |Og]_5 10

In10
_n¥ Use the change of base formula.
In15
In10
I =2+ —
* +In15
1 In10
=—-(2+——)~0.9501
! 3( +In15)

5. Rewrite 24%+5 = 9 asalogarithm equation: 3x + 5 = logy, 9.

3x +5=100,49 Use the change of base formula.

B In9
" In24

5.4 In9
In24

1 In9
=—(- — | ~ —1.4362
X 3( 5—|—|n24) 36.

When both sides of an exponential equation have an exponent, we will use
another method to solve for x. We will take either the natural log or the common
log of each side and will use the third logarithm property to move the exponents
in front of the logarithm. Once we have used the third logarithm property, we will
perform the following stepsto find x.

3x =

1. Disgtribute the logarithms.

2. Collect the x terms on one side of the equation and the non-x terms on the
other side.

3. Factor x.
4. Divide both sides of the equation by x’s coefficient (found in Step 3).
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EXAMPLES

32x — 2x+1

We will begin by taking the natural log of each side.

In3% = |n2x+t Use the third log property.
2xIn3=((x+21In2
2xIn3=xIn2+1n2 Distribute In2 over (x + 1).

Now we want both terms with an x in them on one side of the equation and
thetermwithout x init on the other side. Thismeansthat wewill move x In2
to the left side of the equation.

2xIn3—xIn2=1In2 Factor x on the left side.
x(2In3—-1n2) =1n2 Divideeach sideby 2In3 —In2.
In2 _
X = m We are finished here.
In2
x = I_9 Thisis easier to calculate.
n_
2

x ~ 0.4608

10x+4 — 63x—1

Because one of the basesis 10, we will use common logarithms. This will
simplify some of the steps. We will begin by taking the common log of both
sides.

log 10°+4 = log 631 The left side simplifiesto x + 4.
x+4=loge¥> ! Use the third log property.
x+4=Gx—1)logb6 Distribute log6in (3x — 1).
x+4=23xlog6 — log6 Collect x terms on one side.

x —3xlog6=—-4—1og6 Factor x on the left.

x(1—3log6) = —4 —log6 Divide both sidesby 1 — 3log 6.

—4—1log6 —4—1log6

_ _ ~ 3.5806
YT 1 3log6  1—log216
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PRACTICE

Solvefor x. Give your solutions accurate to four decimal places.

1 4 =5"1
2. 67 =g8¥"1

3. 102 % = 5°+3

SOLUTIONS

1. Takethe natural log of each side of 4* = 5*—1,

In4* = In5°1 Use the third log property.
xlnd=(x -1 In5

xIn4d=xIn5—1In5 Thisis Step 1.
xIn4d—xIn5=—1In5 Thisis Step 2.
x(In4—1In5) = —1In5 Thisis Step 3.

—In5
= Thisi 4,
* In4—1In5 Isis Step
~ 7.2126

2. Takethe natural log of each side of 62 = 83~1,

In6> = Ing¥~1 Use the third log property.
2xIn6=(3x —1)In8
2xIn6=3xIn8—1In8 Thisis Step 1.
2xIn6—3xIn8=—1In8 Thisis Step 2.
x(2In6—3In8) = —-1n8 Thisis Step 3.
—In8

___ —In8 Thisi 4.
X = 3In6—3Ins ISis Step

~ 0.7833
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3. Take the common log of each side of 10°~* = 53, This lets us use the
fact that log 10°~* = 2 — x.
log 10>~ = log5*+3
2—x=(x+3)log5

2—x =xlog5+ 3log5 ThisisStep 1.

—x —xlogb = -2+ 3log5 Thisis Step 2.

x(=1—-1log5) = -2+ 3log5 Thisis Step 3.

_ —2+3log5
~ —1-log5

~ —0.0570

Thisis Step 4.

Applications of Logarithm and
Exponential Equations

Now that we can solve exponential and logarithmic equations, we can solve many
applied problems. We will need the compound growth formula for an investment
earning interest rate r, compounded n times per year for ¢ years, A(r) = P(14 )"
and the exponential growth formula for a population growing at the rate of r per
year for ¢ years, n(t) = nge’’. In the problems below, we will be looking for the
time required for an investment to grow to a specified amount.

EXAMPLES

e How long will it take for $1000 to grow to $1500 if it earns 8% annual
interest, compounded monthly?
In the formula A(r) = P(1+4 £)™ we know A(r) = 1500, P = 1000,
r = 0.08, and n = 12. We do not know ¢.

1500 = 1000 (1 + 1—28)

We will solve this equation for ¢ and will round up to the nearest month.

1500 = 1000 (l + E) Divide both sides by 1000.
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0.08\ #
15= (1 + —)

12
1.5 = 1.00667*% Take the natural log of both sides.
In1.5 = In1.006671% Use the third log property.

IN1.5 = 12¢In1.00667 Divide both sides by 121n1.00667.

In1.5 _,
121n1.00667

t ~ 5.085

In five years and one month, the investment will grow to about $1500.
e How longwill it take an investment to doubleif it earns 6%% annual interest,
compounded daily?
An investment of $P doubles when it grows to $2P, so let A(r) = 2P inthe
compound growth formula.

0.065' %
2Pp="P <1 + %) Divide both sideshy P.
0.065) 3
2=[(14+ ——
( * 365 >
2 = 1.000178%%* Take the natural log of both sides.
In2 = In 1.000178%¢> Use the third log property.

In2 = 365¢In1.000178 Divide both sides by 3651n 1.000178.

In2 _,
365In1.000178

t ~ 10.66

In about 10 years, 8 months, the investment will double.

PRACTICE

Give your answers rounded up to the nearest compounding period.

1. How long will it take $2000 to grow to $40,000 if it earns 9% annual
interest, compounded annually?
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2. How long will it take for $5000 to grow to $7500 if it earns 62% annual
interest, compounded weekly?

3. How longwill ittakeaninvestment to doubleif it earnsG%l% annual interest,
compounded quarterly?

SOLUTIONS
1. 40,000 = 2000(1 + 0.09)"
20 = 1.09
In20 = In1.09

IN20 =+¢1In1.09
In20 ,
In1.09
3476~ t
The $2000 investment will grow to $40,000 in 35 years.

0.065Y %%
2. 7500 = 5000 (1 + —)

52
1.5 = 1.00125°%
In1.5 = In 1.00125°%

In1.5 = 52¢1n 1.00125

In1.5 _,
52In1.00125
t~6.24

In 6 years, 13 weeks (0.24 x 52 = 12.48 rounds up to 13), the $5000
investment will grow to $7500.

0.0625\ ¥
3. 2P = P (1 + T)

2 = 1.015625%
In2 = In1.015625%
In2 = 4¢1n 1.015625
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In2 _,
4In1.015625
t ~ 11.18

In 11 years and 3 months (0.18 rounded up to the nearest quarter is 0.25,
one quarter is 3 months), the investment will double.

This method works with population models where the population (either of
people, animals, insects, bacteria, etc.) grows or decays at a certain percent
every period. We will use the growth formula n(r) = nge”’. If the population is
decreasing, we will use the decay formula, n(r) = nge™"’. Because we will be
working with the base e, instead of taking the log of both sides, we will be rewrit-

ing the equations as log equations (this is equivalent to taking the natural log of
both sides).

EXAMPLES

e A school district estimatesthat its student popul ation will grow about 5% per
year for the next 15 years. How long will it take the student population to
grow from the current 8000 students to 12,0007
We will solvefor ¢ in the equation 12,000 = 8000¢%%°

12,000 = 8000¢%%  Divide both sides by 8000.

1.5 = (00 Rewrite as alog.
0.05t =Inl1l5
In1.5
t = ~ 8.1
0.05

The population is expected to reach 12,000 in about 8 years.

e The population of a certain city in the year 2004 is about 650,000. If it is
losing 2% of its population each year, when will the population decline to
500,000?

Because the population is declining, we will use the formulan(r) = nge™"".
Solve for ¢ in the equation 500,000 = 650,000e 092,

500,000 = 650,000e %02

10 ooz ,
— = : Rewrite asalog.
13-°¢ g
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10
—0.02t = In—
13
In 19
13
t=——=>~131
—0.02

The population is expected to drop to 500,000 around the year 2017.

e At 2:00 a culture contained 3000 bacteria. They are growing at the rate of
150% per hour. When will there be 5400 bacteriain the culture?
A growth rate of 150% per hour means that » = 1.5 and that ¢ is measured
in hours.

5400 = 30001

1.8 = 1™
15 =1Inl18
t: In1.8 ~ 0.39
15
At about 2:24 (0.39 x 60 = 23.4 minutes) there will be 5400 bacteriain the
culture.
PRACTICE

1. In2003arural areahad 1800 birds of acertain species. If thebird population
isincreasing at the rate of 15% per year, when will it reach 30007?

2. In2002, thepopulation of acertain city was2million. If thecity’ spopulation
isdeclining at the rate of 1.8% per year, when will it fall to 1.5 million?

3. At 9:00 a petrie dish contained 5000 bacteria. The bacteria population is
growing at the rate of 160% per hour. When will the dish contain 20,000
bacteria?

SOLUTIONS
1. 3000 = 1800¢0-15

5
:_g — eO. 15¢
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0.15¢t = In

wl o

5
In§

= ~ 3.4
0.15

t

The bird population should reach 3000 in the year 2006.
2. 1.5 = 270018
0.75 = 6—0.0181?
—0.018 =In0.75

_Ino7s
~ 0018

In the year 2018, the population will declineto 1.5 million.
3. 20,000 = 5000
4 = el.6t
16r=1In4

In
1.

i

t = ~ 0.87

[e2]

At about 9:52 (0.87 x 60 = 52.2 minutes), there will be 20,000 bacteriain
the dish.

Finding the Growth Rate

We can find the growth rate of a population if we have reason to believe that
it is growing exponentialy and if we know the population level at two different
times. We will use the first population level as ng. Because we will know another
population level, we have avalue for n(¢) and for ¢. This means that the equation
n(t) = noe’" will haveonly oneunknown, . We can find » using natural logarithms
in the same way we found ¢ in the problems above.

EXAMPLES

e The population of a country is growing exponentially. In the year 2000, it
was 10 million and in 2005, it was 12 million. What is the growth rate?
In the year + = 0 (2000), the population was 10 million, so ng = 10.
The growth formula becomes n(r) = 10e"'. When ¢ = 5 (the year 2005),
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the population is 12 million, so n(r) = 12. We will solve the equation
12 = 10¢™ for r.

12 = 10e™

12=¢"

5 =1In1.2
In1.2

r= ~ 0.036

The country’s population is growing at the rate of 3.6% per year.

Suppose a bacteria culture contains 2500 bacteria at 1:00 and at 1:30 there
are 6000. What is the hourly growth rate?

Because we are asked to find the hourly growth rate, + must be measured
in hours and not minutes. Initialy, at + = 0, the population is 2500, so
no = 2500. Half an hour later, the population is 6000, so + = 0.5 and
n(t) = 6000. We will solvefor r in the equation 6000 = 25000

6000 = 2500e%>"

24— eO.5r
0.5r=1In24
In2.4
= ~ 1.75
"T 05

The bacteria are increasing at the rate of 175% per hour.

A certain species of fish is introduced in a large lake. Wildlife biologists
expect the fish's population to double every four months for the first few
years. What is the annual growth rate?

If no represents the fish's populatlon when first put in the lake, then it will
doubleto 2 after r = 4months = = 15 Years = 3 1 years. Thegrowth formula
becomes 2ng = nge 3 This equation has two unknowns, ng and », not one.
But after we divide both sides of the equation by ng, » becomes the only
unknown.

lr
2ng = nge3

1
2=e3"
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1
—r=1In2
3

r=31In2~ 208
The fish population is expected to grow at the rate of 208% per year.

PRACTICE

1. The population of school children in acity grew from 125,000 to 200,000
infive years. Assuming exponentia growth, find the annual growth rate for
the number of school children.

2. A corporation that owns achain of retail stores operated 500 storesin 2000
and 700 stores in 2003. Assuming that the number of stores is growing
exponentially, what isits annual growth rate?

3. At 10:30, 1500 bacteriaare present in a culture. At 11:00, 3500 are present.
What is the hourly growth rate?

SOLUTIONS
1. 200,000 = 125,000¢°"
1.6 =¢"
5 =Inl1.6

r= w ~ 0.094
5

The population of school children grew at the rate of 9.4% per year.
2. 700 = 500¢%"

14=¢%
3r=Inl4
In1.4
r= ~ 0.112

The number of storesis growing at the rate of 11.2% per year.
3. 3500 = 1500¢%>"
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.
0.5r =In=
r=13
InZ
3

= —21.69
" 05

The bacteria are increasing at the rate of 169% per hour.

Radioactive Decay

Some radioactive substances decay at therate of nearly 100% per year and othersat
nearly 0% per year. For thisreason, we usethe half-life of aradioactive substanceto
describe how fast itsradioactivity decays. For example, bismuth-210 hasahalf-life
of 5 days. After 5 days, 16 grams of bismuth-210 decays to 8 grams of bismuth-
210 (and 8 grams of another substance); after 10 days, 4 grams remain, and after
15 days, only 2 grams remains. We can use logarithms and the half-life to find
the rate of decay. We will use the decay formulan(r) = nge™"" in the following
problems.

EXAMPLES

e Find the daily decay rate of bismuth-210.
Because its half-life is 5 days, a r = 5, one-haf of ng remans, so

n(t) = %no.

1 . .

Sno= noe ™" Divide both sides by no.
1
5= e Rewrite asalog.

—5r =1In=
=2

In3

— 2 101386
"= 5

Bismuth-210 decays at the rate of 13.86% per day.
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e The haf-life of radium-226 is 1600 years. What isits annual decay rate?

1 . .
510= nge 16007 Divide both sides by no.
1
5= ¢ 16008 Rewrite asalog.
1
—1600r = In=
"=

1

N ~ 0.000433
"= 1600

The decay rate for radium-226 is about 0.0433% per year.

In the same way we found the decay rate from the half-life, we can find the
half-life from the decay rate. In theformula %no = nge~ ", weknow r and want to
find z.

EXAMPLE
e Suppose aradioactive substance decays at the rate of 2.5% per hour. What is
its half-life?
1
Sno = nge 202 Divide both sides by ng.
1 .
5= e 0025 Rewrite as alog.
1
—0.025¢t = In=
2
Ini
t=—2_=217
—0.025

The haf-lifeis 27.7 hours.

PRACTICE

1. Suppose a substance has a half-life of 45 days. Find its daily decay
rate.
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2. Thehaf-life of lead-210 is 22.3 years. Find its annual decay rate.

3. Suppose the half-life for a substance is 1.5 seconds. What is its decay rate
per second?

4. Suppose a radioactive substance decays at the rate of 0.1% per day. What
isits half-life?

5. A radioactive substance decays at the rate of 0.02% per year. What is its
half-life?

SOLUTIONS

1
1. Eno = nge %"

1‘ — 6745r

2
1
—45r =In—
"=
1
2

In
r = —= =~ 0.0154
45

The decay rate is 1.5% per day.
1

2. Eno = noe_22‘3’
1
5= o—223r
1

—223r =In=

r=15
n % ~ 0.0311

"T Tpoa Y

The decay rateis 3.1% per year.

1
3. Eno = nge~

1.5r

1‘ — e—l.5r

2
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1.5 In1
—15r=In—=
2
In% ~ 0.462
r_—l. ~ 0.

The substance decays at the rate of 46.2% per second.

1
4. Eno — nge—0-00
1
5= ¢ —0.0011
1
—0.001f =In=
2
1
2
t = ~ 693.1
—0.001
The half-lifeis 693 days.
1
5. “no = nge—0-000
2
1
> = o—0.0002:
1
—0.0002t = In=
2
t In% ~ 3466
~ -0.0002

The half-life is about 3466 years.

All living things have carbon-14 in them. Once they die, the carbon-14 is not
replaced and begins to decay. The half-life of carbon-14 is approximately 5700
years. This information is used to find the age of many archeological finds. We
will first find the annual decay rate for carbon-14 then will answer some typical
carbon-14 dating questions.

1 _
“no = nge 5700r

1
- e—5700r
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1
—5700r = In =
=15
nl
= 2_ ~ 0.000121605
"= 5700

Carbon-14 decays at the rate of 0.012% per year.

EXAMPLES

e How long will it take for 80% of the carbon-14 to decay in an animal after it
has died?

If 80% of theinitial amount has decayed, then 20% remains, or 0.20n.
0201’10 — noe—0.000th
020 — e—0.000lZ[
—0.00012r =1n0.20

In0.20

_ N9 13 412
"= o000z "~ 3

After about 13,400 years, 80% of the carbon-14 will have decayed.

e Suppose abone is discovered and has 60% of its carbon-14. How old is the
bone? 60% of its carbon-14 is 0.60n.

0.60ng = noe—0.000lZz
0.60 = e*0.000lZI
—0.00012¢ = In0.60

In0.60
_ 959 o7
"= Z0.00012

The bone is about 4260 years old.

e Suppose an animal diestoday. How much of its carbon-14 will remain after
250 years?

n(250) = nge000012250) ~, 0. 97p,

About 97% of its carbon-14 will remain after 250 years.
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PRACTICE

1. Suppose a piece of wood from an archeological dig is being carbon-14
dated, and found to have 70% of its carbon-14 remaining. Estimate the age
of the piece of wood.

2. How long would it take for an object to lose 25% of its carbon-147?

3. Suppose atree fell 400 years ago. How much of its carbon-14 remains?

SOLUTIONS

1
0‘70,10 — noe—0.000th

0.70 = 6—0.000121,‘
—0.00012r =In0.70

Ino.
f— IN070 a0
—0.00012

The wood is about 2970 years old.
2. Anobject haslost 25% of its carbon-14 when 75% of it remains.

0.75n0 = nge” 000012

O. 75 —e —0.00012¢

—0.00012¢ = In0.75

In0.75
_ MO o397
"= —0.00012

After about 2400 years, an object will lose 25% of its carbon-14.
n(400) = nge~000012(400) ~ 0 953y

About 95% of its carbon-14 remains after 400 years.

CHAPTER 9 REVIEW

1. 1f $10,000isinvested earning 6% annual interest, compounded quarterly,
what will it be worth after eight years?

(8) $15,93848 (b) $16,103.24 () $11,264.93 (d) $10,613.64
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2. What isthe present value of $50,000 duein 10 years, earning 8% annual
interest, compounded annually?

(8) $107,946.25 (b) $19,277.16
(©) $23,159.67 (d) $27,013.44

3. Rewritelog, x = w asan exponential equation.
@ a¥ =x (b) a* =w © x*=w (d) w?=x

4. Rewrite 7" = n asalogarithmic equation.
(@ log,7=m (b) log;m =n (c) log,,7=n (d) log;n =m

5. "=
@ In7 (b) 7 (©) e’ (d) (In7)e

6. Rewriteasasingle logarithm.

Inx —2Ilny +1Inz

Xz 2 Xz Inxz
a In— Xz c) In—
@ In7 (b) In(—) ©In3 @ 3y
y
7. Expand the logarithm.
logs ,] ab’
Os5 -
(@ Jlogsa + logs b2 — logs
1
(b) 3 logsa + 2logs b — logs ¢
(©) Hogsa + Jlogsb? — Jlogs ¢
1
(d) é[log5a + 2logs b — logs c]
8. Solvefor x:logg(x —1) = 2.
@ x=3 (b) x =37 (c) x =13 (d) x =65

9. Solvefor x:log,(x + 1) + logs(x — 1) = log, 8.
@ x=4 (b) x =43 (©) x=3 (d) No solution
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10. What isthe domainfor f(x) = log(x + 4)?

(@ (=00, —=4) U (-4, 00) (b) (o0, —4)
(©) (=4, 00) (d) [—4, 00)
11. Solvefor x: 3*t1 = 15,
In3 In15
(a)x=—1+m (b)x=—1+m
(c) x=4 (d) Nosolution

12. How long will it take for an investment to double if it earns 10% annual
interest, compounded quarterly?

(@) About 4 years (b) About 5 years
(c) About 6 years (d) About 7 years

13. The half-life of a substance is about 40 years. What is its annual decay
rate?
(@ About 1%  (b) About 1.5% (c) About 1.7% (d) About 2.1%

SOLUTIONS
1B 2.C 3.A 4.D 5.B 6.A
7.D 8.B 9.C 10.B 11.B 12.D 13.C
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CHAPTER

I
Systems of ‘
Equations and A
Inequalities

A system of equationsis acollection of two or more equations whose graphs might
or might not intersect (share acommon point or points). If the graphs do intersect,
then we say that the solution to the system is the point or points where the graphs
intersect. For example, the solution to the system

x+y=4
3x—y=0

is (1, 3) because the point (1, 3) is on both graphs. See Figure 10.1.

@’_

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Fig. 10.1.

We say that (1, 3) satisfiesthe system becauseif welet x = 1and y = 3ineach
eguation, they will both be true.

1+3=4 Thisis atrue statement.
31)—3=0 Thisis atrue statement.

There are several methods for solving systems of equations. One of them is by
sketching the graphs and seeing where, if anywhere, the graphs intersect. Even
with a graphing calculator, though, these solutions might only be approximations.
When the equations are lines, matrices can be used. Graphing calculatorsare useful
for these, too. We will use two algebraic methods in this chapter and two matrix
methods in the next. One of the algebraic methods is substitution and the other is
elimination by addition. Both methods will work with many kinds of systems of
equations, but we will start out with systems of linear equations.

Substitution works by solving for one variable in one equation and making a
substitution in the other equation. Usually, it does not matter which variable we
use or which equation we begin with, but some choices are easier than others.

EXAMPLES
Solve the systems of equations. Put your solutions in the form of apoint, (x, y).
x+y=5
—2x+y=-1

We have four places to start.

1. Solvefor x inthefirst equation: x =5—y
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2. Solvefor y inthefirst equation: y =5—x

3. Solvefor x in the second equation: x = 3 + 3y
4. Solvefor y inthe second equation; y = 2x — 1

The third option looks like it would be the most trouble, so we will use one
of the others. We will use the first option. Because x = 5 — y came from the
first equation, we will substitute 5 — y for x in the second equation. Then
—2x + y = —1becomes —2(5 — y) + y = —1. Now we have one equation
with one variable.

—205-y)+y=-1
~10+2y+y=-1
3y=9
y=3

Now that we know y = 3, we could use any of the equations above to find
x. Weknow that x = 5 — y, so wewill usethis.

x=5-3=2
Thesolutionisx = 2and y = 3 or the point (2, 3). Itisagood ideato check
the solution.
2+3=5 Thisistrue.
—2(2) +3= -1 Thisistrue.
4y —y=12 A
[ ]
3x+y=2 B

Wewill solvefor y inequation B: y = 2— 3x. Next wewill substitute 2 — 3x
for y in equation A and solve for x.

4 —y =12

4 — (2—-3x) =12
4x —2+4+3x =12
7x =14

x=2

Now thatweknow x = 2, wewill putx = 2inoneof theaboveequations. We
willusey =2—3x:y =2—3(2) = —4. Thesolutionisx =2,y = —4, or
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5

B \4f A
2
1X
L 1 1 L L I 1 1 §
5 -4 -3 -2 -1 1 2 4 5
-1F
-2+
3+
A (2, -4)
5L
Fig. 10.2.

(2, —4). Thegraphsin Figure 10.2 verify that the solution (2, —4) ison both

lines.

y=4x4+1 A
[ ]

y=3x+2 B

Both equations are already solved for y, so all we need to do is to set them
equal to each other.

A=B
x+1=3x+2
x=1

Use either equation A or equation B to find y when x = 1. We will use A:
y=4x+1=4(1)+1=05. Thesolutionisx = l1andy = 5, or (1, 5).
We can see from the graphs in Figure 10.3 that (1, 5) is the solution to the
system.

Solving a system of equations by substitution can be messy when none of the
coefficients is 1. Fortunately, there is another way. We can aways add the two
eguationsto eliminate one of the variables. Sometimes, though, we need to multiply
one or both equations by a number to make it work.
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EXAMPLE

Solve the systems of equations. Put your solutionsin the form of a point, (x, y).
2x—-3y=16 A
bx+3y=-2 B

Add the equations by adding like terms. Because we will be adding —3y to
3y, the y-term will cancel, leaving one equation with only one variable.

2x —3y =16
S5x +3y=-2
7x+0y =14

x=2

We can put x = 2 into either A or B to find y. Wewill put x = 2into A.

2x —3y =16
2(2) -3y =16
-3y=12
y=—-4

The solutionis (2, —4).
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Sometimes we need to multiply one or both equations by some number or num-

bers so that one of the variables cancels. Multiplying both sides of any equation by
anonzero number never changes the solution.

EXAMPLES

3x+6y=-12 A
2x+6y=-14 B

Because the coefficients on y are the same, we only need to make one of
them negative. Multiply either A or B by —1, then add.

—3x—6y=12 -A
2x+6y=-14 +B

—x=-=-2
x=2

3(2)+6y =-12 Putx =2in A
y=-3

The solutionis (2, —3).
2x+7y=1 A
4c —2y =18 B

Several options will work. We could multiply A by —2 so that we could add

—4x (in —2A) to 4x in B. We could multiply A by 2 and multiply B by 7 so

that we could add 14y (in 2A) to —14y (in 7B). We could also divide B by

—2 so that we could add 2x (inA) to —2x (in —3B). We will add —2A + B.
—4x — 14y = -2 -2A

4 —2y=18 +B

—16y = 16
y=-1

2x+7-1)=1 Puty =—-1inA
x=4

The solutionis (4, —1).

Both equations in each of the following systems will need to be changed to
eliminate one of the variables.
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EXAMPLES

8 -5y =-2 A
3x+2y=7 B

There are many options. Some are 3A — 8B, —3A + 8B, and 2A + 5B. We
will compute 2A + 5B.

16x — 10y = -4 2A
15x + 10y =35 +5B

3lx =31
x=1
8(1) -5y =-2 Putx=1inA

y=2

The solutionis (1, 2).
L [F-b=% A
brby=-4

First, we will eliminate the fractions. The LCD for A is 72, and the LCD for
Bis30.

48x — 18y =25 T72A
15x + 12y = -1 30B
Now we will multiply the first equation by 2 and the second by 3.

96x — 36y =50
45x + 36y = -3
141x = 47
a7 1
YT1173
1
% (—) — 36y = 50
3
1
Y=73

The solution is (3, —3).
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Applications of Systems of Equations

Systems of two linear equations can be used to solve many kinds of word problems.
In these problems, two facts will be given about two variables. Each pair of facts
can be represented by a linear equation. This gives us a system of two equations
with two variables.

EXAMPLES

e A movie theater charges $4 for each children’s ticket and $6.50 for each
adult’sticket. One night 200 tickets were sold, amounting to $1100 in ticket
sales. How many of each type of ticket was sold?

Let x represent the number of children’stickets sold and y, the number of
adult tickets sold. One equation comes from the fact that atotal of 200 adult
and children’s tickets were sold, giving us x + y = 200. The other equation
comes from the fact that the ticket revenue was $1100. The ticket revenue
from children’s tickets is 4x, and the ticket revenue from adult tickets is
6.50y. Their sumis 1100 giving us 4x + 6.50y = 1100.

4x + 6.50y = 1100 A
x+y=200 B

We could use either substitution or addition to solve this system. Substitution
isalittle faster. We will solve for x in B.

x=200—y
4(200 — y) + 6.50y = 1100 Put 200 — y into A
800 — 4y 4 6.50y = 1100
y =120
x=200—y=200—-120= 80

Eighty children’s tickets were sold, and 120 adult tickets were sold.

e A farmer had a soil test performed. He was told that his field needed 1080
poundsof Mineral A and 920 poundsof Mineral B. Two mixturesof fertilizers
provide these minerals. Each bag of Brand | provides 25 pounds of Mineral
A and 15 pounds of Mineral B. Brand Il provides 20 pounds of Mineral A
and 20 pounds of Mineral B. How many bags of each brand should he buy?

Let x represent the number of bags of Brand | and y represent the number
of bags of Brand I1. Then the number of pounds of Mineral A hewill get from
Brand | is 25x and the number of pounds of Mineral B is 15x. The number
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of pounds of Mineral A he will get from Brand Il is 20y and the number
of pounds of Mineral B is 20y. He needs 1080 pounds of Minera A, 25x
poundswill comefrom Brand | and 20y will come from Brand I1. Thisgives
us the equation 25x + 20y = 1080. He needs 920 pounds of Mineral B, 15x
will come from Brand | and 20y will come from Brand I1. This gives us the
equation 15x + 20y = 920.

25x + 20y = 1080 A
15x + 20y =920 B

We will compute A — B.

25x + 20y = 1080 A
—15x — 20y = -920 -B

10x = 160
x =16
25(16) + 20y = 1080
y=34

He needs 16 bags of Brand | and 34 bags of Brand |1.

e A furniture manufacturer has some discontinued fabric and trim in stock. He

can usethem on sofasand chairs. Thereare 160 yards of fabric and 110 yards
of trim. Each sofa takes 6 yards of fabric and 4.5 yards of trim. Each chair
takes4 yardsof fabric and 2 yardsof trim. How many sofasand chairs should
be produced in order to use al the fabric and trim?
Let x represent the number of sofas to be produced and y, the number of
chairs. The manufacturer needs to use 160 yards of fabric, 6x will be used
on sofas and 4y yards on chairs. This gives us the equation 6x + 4y = 160.
There are 110 yards of trim, 4.5x yards will be used on the sofas and 2y on
the chairs. This gives us the equation 4.5x + 2y = 110.

6x +4y =160 F
45x +2y=110 T
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We will compute F — 2T.
6x +4y =160 F
—9x —4y=-220 2T

—3x = —60
x=20

6(20) + 4y = 160
y =10

The manufacturer needs to produce 20 sofas and 10 chairs.

PRACTICE

For Problems 1-9, solve the systems of equations. Put your solutions in the form
of apaint, (x, y).

1
2x+3y=1 A
x—2y=-3 B
2.
x+y=3 A
x+4y=0 B
3.
—2x+7y=19 A
2x—4y=-10 B
4.
15« —y=9 A
2x+y=8 B
5.

-3 +2y=12 A
dx +2y=-2 B
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6x —5y=1 A
3x—2y=1 B

5 -9y =-26 A
3x+2y=14 B

Tx+2y=1 A
2x+3y=-7 B

A grocery store sells two different brands of milk. The price for the name
brand is $3.50 per galon, and the price for the store's brand is $2.25
per gallon. On one Saturday, 4500 gallons of milk were sold for sales of
$12,875. How many of each brand were sold?

A gardener wantsto add 39 pounds of Nutrient A and 16 pounds of Nutrient
B to her garden. Each bag of Brand X provides 3 pounds of Nutrient A
and 2 pounds of Nutrient B. Each bag of Brand Y provides 4 pounds of
Nutrient A and 1 pound of Nutrient B. How many bags of each brand
should she buy?

A clothing manufacturer has 70 yards of acertain fabric and 156 buttonsin
stock. It manufacturers jackets and slacks that use this fabric and button.
Each jacket requires 1% yards of fabric and 4 buttons. Each pair of dacks
required 1% yards of fabric and 3 buttons. How many jackets and pairs of
slacks should the manufacturer produce to use all the available fabric and
buttons?
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SOLUTIONS
1. Solvefor x inB: x = —3 4 2y and substitute thisfor x in A.
2x+3y=1
2(-34+2y)+3y=1
—-6+4y+3y=1
Ty =17

y=1 Puty=1inx =—-3+2y
x=-34+2(1)=-1

The solutionis (—1, 1).

2. Solvefor x inB: x = —4y and substitute thisfor x in A.

x+y=3
—4y+y=3
—3y=3

y=-1 Puty =—-1inx = —4y
x=—4-1)=4

The solution is (4, —1).

3. Wewill addA + B.
—2x+7y=19 A
2x —4y=-10 +B

3y=9
y=3

—2x+73) =19 Puty =3in A
x=1

The solutionis (1, 3).
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15x—y=9 A
2x+y=8 +B
17x = 17
x=1
15(1) —y=9 Putx =1in A
y=26

The solutionis (1, 6).

5. Wewill add —A + B.

I —2y=-12 -A

dc+2y= -2 +B
x =-14
x=-=2

—3(-2)+2y=12 Putx=-2inA
y=3
The solution is (-2, 3).
6. Wewill compute A — 2B.
6x —5y=1 A
—6x +4y=-2 —2B

—y=-1
y=1

6x —5(1) =1 Puty=1inA
x=1

The solutionis (1, 1).
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7. Wewill compute 3A — 5B.

15x — 27y = -78 3A
—15x —10y=-70 -5B

—37y = —148
y=4
5vr —9(4) =—-26 Puty=4inA
x=2

The solutionis (2, 4).

8. Wewill compute 3A — 2B.
21x+6y=3 3A

17x =17

x=1
7D+2y=1 Putx=1inA

y=-3

The solutionis (1, —3).
9. First clear the fractions.
45x + 12y =23 60A
6x —9y = —4 36B
Add 3 timesthe first to 4 times the second.
135x + 36y = 69
24x — 36y = —16

159x = 53

53

53 1
YT 1597 3
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1
45 <§> 412y = 23

2
Y= 3

The solution is (3, 3).

Let x represent the number of gallons of the name brand sold and y rep-
resent the number of gallons of the store brand sold. The total number of
gallons sold is 4500, giving us x + y = 4500. Revenue from the name
brand is 3.50x and is 2.25y for the store brand. Total revenueis $12,875,
giving us the equation 3.50x + 2.25y = 12,875.

x 4+ y=4,500
3.50x 4+ 2.25y = 12,875

We will use substitution.

x =4500 —y
3.50(4500 — y) 4+ 2.25y = 12,875
y = 2300

x = 4500 — y = 4500 — 2300 = 2200

The store sold 2200 gallons of the name brand and 2300 gallons of the
store brand.

Let x represent the number of bags of Brand X and y, the number of bags
of Brand Y. Shewill get 3x pounds of Nutrient A from x bags of Brand X
and 4y pounds from y bags of Brand Y, so we need 3x + 4y = 39. She
will get 2x pounds of Nutrient B from x bags of Brand X and 1y pounds
of Nutrient B from y bags of Brand Y, so we need 2x + y = 16. We will
use substitution.

y=16—2x
3x +4(16 — 2x) = 39
x=5

y=16-2x=16—-2(5 =6

The gardener needsto buy 5 bags of Brand X and 6 bags of Brand Y.



CHAPTER 10 Systems of Equations _‘@

12. Let x represent the number of jackets to be produced and y the number
of pairs of slacks. To use 70 yards of fabric, we need 1%x + 1% y = 70.
To use 156 buttons, we need 4x + 3y = 156.

1 3
1- 1-y =70
3x + 4y

et ly=70 F
37T T

4y +3y =156 B
16x + 21y = 840 12F
—16x — 12y = —624 —4B

9y = 216
y=24

4x + 3(24) = 156
x=21

The manufacturer should produce 21 jackets and 24 pairs of slacks.

Two linesin the plane either intersect in one point, are parallel, or are redly the
sameline. Until now, our lineshaveintersectedin onepoint. When solving asystem
of two linear equations that are parallel or are on the same line, both variables will
cancel and we are left with a true statement such as“3 = 3” or afase statement
suchas“5 = 1.” We will get atrue statement when the two lines are the same and
afalse statement when they are parallel.

EXAMPLES
2r—3y=6 A
—4x+6y=8 B

4y — 6y =12 2A
—4x+6y=8 +B
0=20
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5L
Fig. 10.4.

This is a false statement, so the lines are parallel. They are sketched in

Figure 10.4
= %x -1
2x—3y=3

We will use substitution.

2
2x — 3<§x - 1) =3
2x—2x+3=3
0=0
Because 0 = 0 is atrue statement, these lines are the same.

When the system of equationsis not a pair of lines, there could be no solutions,
one solution, or more than one solution. The same methods used for pairs of lines
will work with other kinds of systems.

EXAMPLES
y=x2-2x-3 A
* Ix—y=7 B

Elimination by addition would not work to eliminate x2 because B has no
x2 termto cancel x2 inA. Solving for x in B and substituting it in for x in A
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Fig. 10.5.

would work to eliminate x. Both addition and substitution will work to
eliminate y. We will use addition to eliminate y.

y=x2-2x—3 A
x—y=7 +B

3x =x>—2x+4
0=x?—5x+4
0= (x — D(x — 4)

The solutions occur when x = 1 or x = 4. We need to find two y-values. We
willletx =1landx =4in A.

y=1°-2(1)—3=-4 (1, —4) isonesolution.
y=4_2(4)-3=5 (4, 5) is the other solution.
We can see from the graphs in Figure 10.5 that these solutions are correct.
x24+y2=25 A
y = —%xz +7 B
We could solve for x2 in A and substitute this in B. We cannot add the

equations to eliminate y or y2 because A does not have a y term to cancel y
in B and B does not have a y2 term to cancel y2 in A. We will move —3x2
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to the left side of B and multiply B by —3. Then we can add thisto A to
eliminate x2.
1

§x2+y=7 B

x2+y2=25 A

—x?2—-3y=-21 -3B

y2—3y=4
y2—3y—4=0

-HHy+1H=0

The solutions occur when y = 4, —1. Put y = 4, —1 in A to find their
x-values.

X244 =25
x2=9
x =23 (-3,4) and (3, 4) are solutions.
x24+(-1)?=25
x2 =24

x =424 =426 (26, —1) and (—2v/6, —1) are solutions.

Addition will not work on thissystem but substitution will. Wewill substitute
y=2foryinA.

2\ 2
x2+<—> =4
X

4
12

x?2 (x2 + xiz) = x2(4)

x4+ 4=4x2

4+ - =4 TheLCD isx?
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Xt — 42 4+4=0
x2—2)x*-=2)=0
x2=2

x =42

Wewill putx = v2andx = —v2iny = 2,

2 2v2 _2V2 =2, (V/2,+/2) isasolution.

RN
2 22 2V2 = /2, (=2, —/2) isasolution.

YTV Va2 2

PRACTICE
Solve the systems of equations. Put your solutionsin the form of a point, (x, y).
1.
y = x2—4 A
x+y=8 B
2.
x>+ y?4+6x—2y=-5 A
y=-2x-5 B
3.
¥2—y?2=16 A
x>+y°=16 B
4.
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SOLUTIONS
1
y=x-4 A
—x—y=-8 -B
—x=x?-12

O=x24+x—-12=(x+4(x —23)

There are solutionsfor x = —4 and x = 3. Put thesein A.
y=(—4%—-4=12 (—4, 12) isasolution.
y=3_4=05 (3, 5) isasolution.

2. Substitute —2x — 5for y in A.
x% 4+ (—2x —5)2 4 6x —2(—2x —5) = -5
x% 4+ 4x% 4+ 20x + 25+ 6x +4x +10= -5
5x°+30x +40=0 Divideby5
x24+6x+8=0
x+Hx+2=0

Thereare solutionsfor x = —4 and x = —2. Wewill put thesein B instead
of A because there isless computation to do in B.

y=-2(-4)-5=3; (—4, 3) isasolution.
y=-2(-2)—-5=-1, (=2, —1) isasolution.

x2—y2=16 A
x> +y>=16 +B
%2 =32
x% =16
x =44
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Putx =4andx = —4in A.
(-2 -—y2=16 4 —2=16
16—y°=16 16—y°=16

y=0 y=0
The solutions are (—4, 0) and (4, 0).

4. Substitute £ for y in A.

2
4x? + <3> =5
X
1
x? (4x2 + —2) = x2(5)
X
454 +1= 5x?2
4% —5x>+1=0
4x> - 1)(x°-1) =0
2x-D2x+Dx-DH(x+1) =0

The solutionsarex = £3 (from2x —1=0and2x + 1= 0) and x = 1.
Put thesein B.

1 1
y=7=2 (=, 2) isasolution.
1 2
2
1 . .
y = =-2; (—5, —2) isasolution.

1
y=1= 1; (1, 1) isasolution.

y = =-1 (=1, —1) isasolution.
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Systems of Inequalities

The solution (if any) for a system of inequalities is usualy aregion in the plane.
The solution to a polynomial inequality (the only kind in this book) is the region
above or below the curve. We will begin with linear inequalities.

When sketching the graph for an inequality, we will use a solid graph for “ <”
and “>" inegqualities, and a dashed graph for “<” and “>" inequalities. We can
decide which side of the graph to shade by choosing any point not on the graph
itself. We will put this point into the inequality. If it makes the inequality true,
we will shade the side that has that point. If it makes the inequality false, we
will shade the other side. Every point in the shaded region is a solution to the
inequality.

EXAMPLES
e 2x+3y<6

Wewill sketch theline 2x + 3y = 6, using asolid line because the inequality
is“<.

| ] 1 '
W N
T

Fig. 10.6.

We will always use the origin, (0, 0) in our inequalities unless the graph
goes through the origin. Doesx = 0 and y = 0 make 2x + 3y < 6 true?
2(0) + 3(0) < 6isatrue statement, so we will shade the side that has the
origin.
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Fig. 10.7.

e x—2y>4

Wewill sketchtheline x — 2y = 4 using adashed line becausetheinequality
is“>."

=N W ot
T

Now we need to decide which side of the line to shade. When we put (0, 0)
inx — 2y > 4, we get the false statement 0 — 2(0) > 4. We need to shade
the side of the line that does not have the origin.
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Fig. 10.9.

o y<3x

We useadashed lineto sketchtheline y = 3x. Becausetheline goesthrough
(0, 0), we cannot use it to determine which side of the line to shade. This
is because any point on the line makes the equality true. We want to know
wheretheinequality istrue. The point (1, 0) isnot on theline, so we can use
it. 0 < 3(1) istrue so we will shade the side of the line that has the point
(1, 0), which istheright side.

Fig. 10.10.

e x>-3

Thelinex = —3isavertical linethrough x = —3. Becausewewantx > —3
we will shade to the right of the line.
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Fig. 10.11.

e y<2

Theliney = 2isahorizontal lineat y = 2. Because we want y < 2, we
will shade below theline.

Bl
Fig. 10.12.

Graphing the solution region for nonlinear inequalities is done the same
way—qgraph the inequality, using a solid graph for “<” and “>" inequalities and
a dashed graph for “ <” and “>" inequalities, then checking a point to see which
side of the graph to shade.
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EXAMPLES

o y<x?—x-2

Theequality isy = x2—x —2 = (x —2)(x +1). Thegraph for thisequation
isa parabola.

Fig. 10.13.

Because (0, 0) is not on the graph, we can use it to decide which side to
shade; 0 < 0?2 — 0 — 2 isfalse, so we shade below the graph, the side that
does not contain (0, 0).

Fig. 10.14.
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e Vy>xXx+2Dx—-2)(x -4

When we check (0, 0) in the inequality, we get the false statement 0 >
0+ 2)(0—2)(0 — 4). We will shade above the graph, the region that does
not contain (0, 0).

Fig. 10.15.

Thesolution (if thereisone) to asystem of two or moreinequalitiesistheregion
that is part of each solution for the individual inequalities. For example, if we
have a system of two inequalities and shade the solution to one inequality in blue
and the other in yellow, then the solution to the system would be the region in
green.

EXAMPLES

x—y<3
x+2y>1
Sketch the solution for each inequality. The solutionto x — y < 3 isthe

region shaded vertically. The solutionto x + 2y > 1 is the region shaded
horizontally.
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The solution to y < 4 — x2 is the region shaded vertically. The solution to
x — 7y < 4isthe region shaded horizontally. The region that is in both
solutionsis above the line and inside the parabola.

Fig. 10.20.

Because asolid graph indicates that points on the graph are al so solutions, to
be absolutely accurate, the correct solution uses dashed graphs for the part
of the graphs that are not on the border of the shaded region.

Fig. 10.21.

We will not quibble with this technicality here.
2x+y <5
° x>0

y=>0
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Theinegualitiesx > 0and y > 0 mean that we only need thetop right corner
of the graph. These inequalities are common in word problems.

Fig. 10.22.

The solution to the system is the region in the top right corner of the graph
below theline2x + y = 5.

Fig. 10.23.

Some systems of inequalities have no solution. In the following example, the
regions do not overlap, so there are no ordered pairs (points) that make both
inequalities true.

y > x2+4
x—y>1
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——&

Fig. 10.24.

Itiseasy tolosetrack of the solution for a system of three or more inequalities.
There are a couple of things you can do to make it easier. First, make sure the
graphislarge enough, using graph paper if possible. Second, shade the solution for
each inequality in a different way, with different colors or shaded with horizontal,
vertical, and danted lines. Thesolution (if thereisone) would be shaded all different
ways. You could also shade one region at atime, erasing the part of the previous
region that is not part of the inequality.

EXAMPLES
x+y<4

° x>1

y=x

First we will shade the solution for x + y < 4.

Fig. 10.25.



CHAPTER 10 Systems of Equations

Theregionfor x > listheright of thelinex = 1, sowewill erasetheregion
to theleft of x = 1.

NI

t 1 U Ll
_w N =
T

-9 S
Fig. 10.26.

The solutionto y < x isthe region below the line y = x, so we will erase
the shading abovetheline y = x.
The shaded region in Figure 10.27 is the solution for the system.

N

-1
2
-3
-4
-5
Fig. 10.27.
y>x2—-16
x <2
[ ]
y<-5

—x+y<-8
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We will beginwith y > x? — 16.

_20 L
Fig. 10.28.

Thesolutiontox < 2istheregiontotheleft of thelinex = 2. Wewill erase
the shading to the right of x = 2.

2oL
Fig. 10.29.

The solutionto y < —5istheregion below theline y = —5. We will erase
the shading above theline y = —5.
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Fig. 10.30. Fig. 10.31.

The solutionto —x + y < —8 isthe region below theline —x + y = -8,
so we will erase the shading above the line. The solution to the systemisin
Figure 10.31.

PRACTICE

Graph the solution.

2x —4y <4

x>1

y<-1

y§x2—4

y > x3

y < Ix
y=@x=3(x+DhHx+3)
2x—y <6

x>3

N o ok~ w DN PR

y>x242x -3

9.
x+y<5
2x+3y>6
10. {x>0

y=>0
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2x+y=1
11. {—x+2y<4
bx =3y <15
SOLUTIONS
1. 2. 5c 4
ab
sf ¢
;
2k o
I
1r =«
L | L | | I
-5 -4 -3 -2 -1 ;
2
3
:
4+ ¥
I
5L 5L
Fig. 10.32. Fig. 10.33.
3. 4,

=N W e Ot
1

Fig. 10.34. Fig. 10.35.
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-6

-8k

-10-

Fig. 10.36.

204

Fig. 10.38.

Fig. 10.37.

N W e Lt
T

L
5 -4 -3 -2 -1 1 2 4 5
1k

2k
3L
A4F
5L
Fig. 10.39.
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0. 10.

Fig. 10.41.

Fig. 10.42.

CHAPTER 10 REVIEW

In some of the following problems, you will be asked to find quantities such as
x + 2y for a system of equations. Solve the system and put the solution in the
formula. For example, if the solutionisx = 3and y = 5, then x + 2y becomes
3+2(5) =13
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1. Findx + 2y for the system.

5x —3y =29
2x+3y=-1
(& -2 (b) -1 ©1 (d) 2
2. Find x + 2y for the system.
y=2x+7
y=—-4x+1
@ 8 (b) 9 (c) 10 (d 11
3. Find x + y for the system.
3x+2y=16
2x + 5y =18
(@ 4 (b) 5 (c) 6 (d) 7
4. Find x + y for the system.
y =x2—-3x—4
x—y=-8

(@ 2and 14 (b) 3and 12 (c) 4and 20 (d) 5and 15

5. Thegraph in Figure 10.43 is the graph of which inequality?
@y>2x+2 b)) y=2x+2 () y<2x+2 (d) y<2x+2

6. Thegraph in Figure 10.44 is the graph of which inequality?
@ y>x2—2x+1 b) y>x2—2x+1
(€ y<x?2—2x+1 (d y<x2—2x+1

7. Thegraphin Figure 10.45 is the graph for which system?

@ y < —x?+4x (b) y < —x?4+4x
y=x y>x

© [yz—x2+4x ) {yz—x2+4x
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Fig. 10.43. Fig. 10.44.

&
1
~
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5L
Fig. 10.45.
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10 -

Fig. 10.46.

8. Thegraphin Figure 10.46 is the graph of which system?

y<—x*+9 y<-—x2+9
@ {y=—x (© {y<-—x
x=>2 x>2
2
(b) yi 9 y<—x?+9
=" d {y=<-—x
x <2
x <2
SOLUTIONS

LA 2.B 3.C 4.C 5D 6.B 7.B 8D



CHAPTER

A matrix isan array of numbersor symbols made up of rowsand columns. Matrices
are used in science and business to represent severa variables and rel ationships at
once. For example, supposetherearethreebrandsof fertilizersthat providedifferent
levels of three minerals that a gardener might need. The following matrix shows
how much of each minera is provided by each brand.

Mineral A Mineral B Minera C

Brand X 6 2 1
Brand Y 2 1 2
Brand Z 1 3 6

We will learn some matrix arithmetic as well as two matrix methods used to solve
systemsof linear equations. Most of the cal culationsaretedious. Fortunately graph-
ing calculators and computer programs (including spreadsheets) can do most of
them.

i)

Matrices

—r

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Matrix Arithmetic

The numbersin amatrix are called cells or entries. A matrix’s sizeis given by the
number of rows and columns it has. For example, a matrix that has two rows and

three columnsiscalled a2 x 3 (pronounced “2 by 3") matrix. A matrix that hasthe
same number of rows as columnsis called a square matrix.

Two matrices need to be the same size before we can add them or find their
difference. The sum of two or more matrices is the sum of their corresponding

entries.
2—1+59_2+5—1+9_78
3 4 4 1| |3+4 4+1| |7 5
Subtract one matrix from another by subtracting their corresponding entries.
2 =11 (5 9|_|2-5 -1-9|_ (-3 -10
3 4 4 1| |3—4 4-1| [-1 3

The scalar product of a matrix is a matrix whose entries are multiplied by afixed

number.
6 — 3.6 3-(—9% 18 -—-12
3|12 1{=13-2 3-1 =| 6 3
5 0 3.5 3.0 15 0

It might seem that matrix multiplication is carried out the same way addition
and subtraction are—multiply their corresponding entries. This operation is not
very useful. The matrix multiplication operation that is useful requires more work.
Two matrices do not need to be the same size, but the number of columns of the
first matrix must be the same as the number of rows of the second matrix. Thisis
because we get the entries of the product matrix by multiplying the rows of the first
matrix by the columns of the second matrix. Here, we will multiply a3 x 3 matrix
by a3 x 2 matrix.

A B C K L Row 1 x Column1l Row 1 x Column 2
D E F|-|M N|=|[Row2x Columnl Row 2 x Column 2
G H 1 O P Row 3 x Column1l Row 3 x Column 2

Row 1 of thefirst matrix is A B C and Column 1 of the second matrix is % . The
first entry on the product matrix is Row 1 x Column 1, which is this sum.

Row 1 Column 1
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|:ROW 1 x Column1l Row 1 x Column 2i| |:AK +BM+CO AL+ BN + CPi|

Row 2 x Column1l Row 2 x Column 2 DK+ EM+FO DL+ EN-+FP
Row 3 x Column1l Row 3 x Column 2 GK+HM+10 GL+HN+IP

EXAMPLES

1 -8 2 4 -7
e (5 0 -1|-[-2 1
2 1 1 3 0

1-44+(-8)(-2+2-3 L-7+(-81+2-0 26 —15
=154+0-=2+(-D3 5-=79+0-1+(-1D0| =17 =35
2-44+1(-2+1-3  2(-7)+1-1+1-0 9 -13

—6 2 410
¢ 7 1| |-3 5 2

_[-6-442(-3 —6-1+2.5 —6-0+2-2] [-30 4 4
| 7.44+41-3 7-1+1.5 7.-0+1.2|7| 25 12 2

Anidentity matrix is asguare matrix with 1s on the main diagona (from the
upper left corner to the bottom right corner) and Os everywhere else. The
following arethe 2 x 2 and 3 x 3 identity matrices.

100
[é ‘1)] and |0 1 0
001
If we multiply any matrix by its corresponding identity matrix, we will get
the original matrix back.

10 (36 -2 |1-3+0-2 1.64+0-1 1(-2+0-5
0 1 |2 1 5| |0-3+1-2 0-6+1-1 0(-2)+1-5

(3 6 -2
121 5
Matrix multiplication is not commutative. Reversing the order of the mul-

tiplication usualy gets a different matrix, if the multiplication is even
possible.

The matrix

1 3] [0 1] [1-0+(=3)2 1-14+(-3(-D]_[-6 4
2 4|2 -1|T|2.0+4.2 2.1+4-1 |~| 8 -2
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is not the same as

AT ] A Orati PR e el B R
PRACTICE

Compute the following.

L [40-2]_[-38 -22
11 5 6 —4 3

3 -6
2 s3]
(2 —51 [1 4 -1
3. 3 8]'[0 -1 2}
1 0 3 4 21
4. |2 1 0][1 -3 1}
3 1 -2 3 6 2
SOLUTIONS

1 [4—(-3) 0—(-2 —-2-2] [ 7 2 —4
" |1-6 1-(-4 5-3| |-55 2

5 [5-3 5.(-6)] [15 -30
" |5-2 5-4 ~ (10 20
3 2.1+ (=50 2.4+ (=5(-1) 2(-1)+(-52] [2 13 -12]
" |3-1+8:0 3-4+8(-1 3-1H+8-2 | |3 4 13|
[1.44+0-14+3-3 1.24+0(-3)+3-6 1-1+0-1+3.2 |

4, |2-44+41-140.3 2.2+1(-3)+0.6 2.14+1.140-2
13:441-14+ (=23 3-241(-3) +(-26 3-1+1-1+(-2)2]

13 20 7
=9 1 3
7 —-90




CHAPTER 11 Matrices _‘em

Row Operations and Inverses

Wewill userow operationsto solve systems of equations and to find the multiplica-
tiveinverse of amatrix. These operations are similar to the elimination by addition
method studied in Chapter 10. We will add two rows at a time (or some multiple
of the rows) to make a particular entry 0. For example in the matrix [ 3 ~3 2] we
might want to change the entry with a4 in it to 0. To do so, we can multiply the

first row (Row 1) by —4 and add it to the second row (Row 2).
—4Rowl=-41 -3 2)=-4 12 -8
—4Rowl -4 12 -8
+Row 2 4 1 6
NewRow2 0 13 -2

1 -3 2]

The matrix changes to [O 13 _o

EXAMPLE

Using Row 2 and Row 3, change the entry with a3 in it on the second row to O.

1 85
-2 1 3
10 4

When adding the rows together, we need the last entry in each column to be oppo-
sites. If we multiply Row 2 by —4 and Row 3 by 3, we will be adding —4(3) to
3(4) to get 0. Multiplying Row 2 by 4 and Row 3 by —3 also works.
—4Row?2 = —-4(-2) -4 —4(3) = 8 -4 -12
+3Row3 = 31 3(0) 3(4) = 3 0 12

New Row 2 11 -4 0

1 8 5
Thenew matrixis |11 -4 O].
1 0 4

Our first use for row operationsis to find the inverse of amatrix (if it has one).
If we multiply a matrix by its inverse, we get the corresponding identity matrix.

For example,
[ 1 —2] [2 1]_[1 0]
1 1| = .
-1 4 5 5 0 1
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To find the inverse of [é g], we first need to write the augmented matrix. An
augmented matrix for thismethod hasthe original matrix ontheleft and theidentity

matrix on the right.
A B | 10
C D | 01

Wewill userow operationsto change theleft half of the matrix to the 2 x 2 identity
matrix. The inverse matrix will be the right half of the augmented matrix in Step 6.

Step 1  Userow operations to make the C entry a0 for the new Row 2.

Step 2 Userow operations to make the B entry a0 for the new Row 1.

Step 3 Write the next matrix.

Step 4 Divide Row 1 by the A entry.

Step 5 Divide Row 2 by the D entry.

Step 6  Write the new matrix. The inverse matrix will be the right half of this

matrix.
EXAMPLE
. [ 1 —2}
-1 4
Theaugmentedmatrixis[_i _i : (1) ﬂ

Step 1 Wewant to change —1, the C entry, to 0.

Row 1 1 210
+Row2 -1 4 0 1
NewRow2 0 2 1 1
Step 2 Wewant to change —2, the B entry, to O.
2 Row 1 2 -4 20
+Row2 -1 4 0 1

New Row 1 1 0 21

1021
Ste'03’[02|11}

Step 4  Thisstepisnot necessary because dividing Row 1 by 1, the A entry,
will not change any of its entries.

Step5 DivideRow2by 2, theDentry. 30 2 1 1)=0 1 1 1
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101 2 1
Step 6
ep[01|%%}

The inverse matrix is [% ﬂ
2 2
Finding the inverse of a 3 x 3 matrix takes a few more steps. Again, we will
begin by writing the augmented matrix.

Q9
T o™
~ QO
QU >
sulico v
~ 0O
OO
O O
= OO

We will use row operations to turn the left half of the augmented matrix into the
3 x Jidentity matrix. There are many methods for getting from the first matrix to
the last. The method outlined below will always work, assuming the matrix has an
inverse.

Step 1 UseRow 1 and Row 2 to make the D entry to O for new Row 2.

Step 2 Use Row 1 and Row 3 to make the G entry to O for new Row 3.

, . [ OldRow 1 T
Step 3 Write the next matrix. | New Row 2
. New Row 3

Step 4 Use Row 1 and Row 2 to make the B entry a0 for new Row 1.
Step 5 Use Row 2 and Row 3 to make the H entry a0 for new Row 3.

. . [ NewRow 117
Step 6 Write the next matrix. OdRow 2 |.
L New Row 3

Step 7 Use Row 1 and Row 3 to make the C entry a0 for new Row 1.

Step 8 Use Row 2 and Row 3 to make the F entry a0 for new Row 2.

. . [ NewRow 17
Step 9 Write the next matrix. New Row 2
| Old Row 3

Step 10 DivideRow 1 by A, Row 2by E, and Row 3 by I. Theinverseistheright
half of the augmented matrix.

EXAMPLES

e Find the inverse matrix
0 -1

-2 1
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The augmented matrix is

1 0 -1 1

2 2 310

|:4 -2 110

e

Step 1 Use Row 1 and Row 2 to make the
—2Row 1+ Row 2.

—2Rowl -2 0 2 -2 0 O
+ Row 2 223 010

NewRow2 0 2 5 -2 1 O

Step 2 Use Row 1 and Row 3 to make the G entry a O by computing
—4 Row 1+ Row 3.

—4Rowl -4 0 4 —4
+Row3 4 -2 1 0

New Row 3 0 -2 5 -4

1 0-1] 1 00
0 2 5| -2 10
0 -2 5| -4 01

Step 4 This step is not hecessary because the B entry is aready 0. New
Row 1lisold Row 1.

Step 5 Use Row 2 and Row 3 to makethe H entry a0 by computing Row
2+ Row 3.

Row 2 0O 2 5 -210
+Row3 0 -2 5 -4 01

NewRow3 0 O0 10 -6 1 1

10 -1 100
02 5| 210
00 10 | -6 11

Step 7 Use Row 1 and Row 3 to make the C entry a O by computing
10 Row 1 + Row 3.
10Rowl 10 0 -10 10 0 O
+ Row 3 00 10 -6 11

NewRowl 10 O 0 411

entry a 0 by computing

00
01
01

Step 3

Step 6




Step 8 Use Row 2 and Row 3 to make the F entry a O by computing

—2 Row 2 + Row 3.

—2Row2 0 -4 -10 4 -2 O
+Row3 O 0 10 -6 11

NewRow2 0 -4 0 -2 -1 1

10 0 0| 4 11
0 4 0] -2 -1 1
0O 010 | -6 1 1

Step 10 Divide the Row 1 by 10, the Row 2 by —4, and Row 3 by 10 to
get the next matrix.

Step 9

2 1 1
1001 5§ %
1 1 1
0101 3 3 -3
3 1 1
0011 -5 %5 10
Theinverse matrix is
2 1 1
5 10 10
11 _1
2 4 3
_3 1 1
5 10 10

e Find the inverse matrix.

———1
or o
|
=)
P ON
L —

The augmented matrix is

6 02 1] 100
1 -1 0] 01 0f.
0O 11 1] 001
Step 1 UseRow 1 and Row 2 to makethe 1 entry a0.
Row 1 6 021 00

+(—-6)Row2 -6 6 0 0 -6 O
New Row 2 06 21 -620

Step 2 Thisstep is not necessary because O isalready inthe G entry. New
Row 3isold Row 3.
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Step 3

6021 00
062|160

{011 0 01}

Step 4 This step is not necessary because the B entry is already 0. New
Row 1isold Row 1.
Step 5 UseRow 2 and Row 3 to makethe 1 entry a0.

Row 2 0O 6 21 -6 O
+(—-6)Row3 0 -6 -6 0 0 -6

New Row3 O 0 41 -6 -6

60 2]1 0 0
06 2] 1 -6 0

00 4| 1 -6 —

Step 6

Step 7 Use Row 1 and Row 3 to make 2, the C entry, a0.

2Rowl 12 0 4 2 0 O
+ Row 3 00 41 -6 -6

NewRowl 12 O 0 3 -6 -6

Step 8 Use Row 2 and Row 3 to make 2, the F entry, a0.

2Row2 0 12 4 2 -12 O
+Row3 0 O -4 1 -6 -6

New Row2 0 12 0 3 -18 -6

2 0 0| 3 -6 -6
012 0| 3 —-18 -6

0 0 -4|1 -6 -6

Step 9

Step 10 Divide Row 1 and Row 2 by 12 and Row 3 by —4.

1001 -} -3
0101 } -f -
0011 -} §
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Theinverse matrix is

1 _1 _1
2 2 2
1 _3 _1
] 2 2
_1 3 3
. 2 2
PRACTICE
Find the inverse matrix.
1 -1
L [2 3}
-3 5 1
2. 1 1 -2
2 -1 6
SOLUTIONS
L [r-1110
12 3] 01
Step 1 _2Rowl -2 2 -2 0
+ Row 2 23 01
New Row 2 05 -2 1
Step 2 3Rowl 3 -3 3 0
+Row 2 2 3 01
New Row1l 5 0 31
Step 3 50| 31
05| -21
Step 4 Divide Row 1 by 5.
Step 5 Divide Row 2 by 5.
Step 6 3 1
P Lol 53
011 -5 3

Theinverse matrix is

gl gl
|
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3 5 1100
2l 1 1 -2]010
2 -1 6] 001
Step 1 Rowl -35 1100
+3ROW2 3 3 -6 0 3 0
NewRow2 0 8 -5 1 3 0
Step 2 JRowl -6 10 2 2 0 O
+3RoW3 6 -3 18 0 0 3
NewRow3 O 7 20 2 0 3
Step 3
P 35 1100
08 -5 | 130
07 2 | 20 3
Step 4 SRowl -24 40 8 8 00
+(—5Row2 0 —40 25 -5 —15 O
NewRow1l —-24 0 33 3 =15 0
Step 5 _7Row2 0 -56 35 —7 —21 0O
+8Row3 O 56 160 16 O 24
NewRow3 0 0 195 O —21 24
Step 6

24 0 33| 3 -15 0
08 -5|1 3 0
00 195 | 9 -21 24

To make the numbers smaller, replace Row 1 with % Row 1 and Row 3 by

1

zRow 3.
-8 0 11 | 1 -50
08 -5 ] 1 30
00 65 | 3

7 GsRowl 520 0 715 65 -325 0

+(—11)Row 3 0 0 —715 -33 77 —88
NewRowl —-520 O 0 32 -—-248 -88
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Step 8 1I3Row2 0 104 —-65 13 39 O
+Row3 O O 65 3 -7 8
NewRow2 0 104 0 16 32 8
Step 9

0O 104 0 | 16 32 8

—520 0O 0 | 32 -248 -88
0 0 65 | 3 -7 8

Step 10 Divide Row 1 by —520, Row 2 by 104, and Row 3 by 65.

4 31 1
2 4 1
3 7 8
0 0 1 | & & @
Theinverse matrix is
_4 31 U
65 65 65
2 4 1
13 13 13
3 _17 8
65 65 &5

Matrices and Systems of Equations

There arethree wayswe can use matricesto solve asystem of linear equations. Two
of them will be discussed in thisbook. Solving systems using these methodswill be
very much like finding inverses. We will begin with 2 x 2 systems (two equations

and two variables) and an augmented matrix of the form [é > } f;] A, B, C,and

D are the coefficients of x and y in the equations and E and F' are the constant
terms. We will use the same steps above to change this matrix to one of the form

[(1) 9 } ﬂﬂmgg ] The numbers in the last column will be the solution.

EXAMPLE
2x —3y =17
* —x+y=-7

The coefficients 2, —3, —1, and 1 arethe entriesin theleft side of the matrix.

The constant terms 17 and —7 are the entries on the right side of the matrix.

The augmented matrix is [ 23 } _177].
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Step 1 Wewant —1, the C entry, to be 0.

Row 1 2 -3 17
+2Row2 -2 2 -14
NewRow2 0 -1 3
Step 2 Wewant —3, the B entry, to be 0.
Row 1 2 -3 17
+3Row2 -3 3 -21
NewRowl -1 0 -4
Step 3
-1 0 | — This row represents the equation —1x + Oy = —4
0O -1 | 3 This row represents the equation Ox + (—1)y = 3

Step 4 Divide Row 1 by —1.
Step 5 Divide Row 2 by —1.

Step 6
10| 4
01| -3

Thesolutionisx =4andy = —3.

Begin solving a3 x 3 system (three equations and three variables) by writing
ABC|J

Thisrow represents the equation 1x + Oy = 4.
Thisrow represents the equation Ox + 1y = —3.

D E

the augmented matrix [
G H

F|K

i L]. Using the same steps we used to find

the inverse of a matrix, we want to change this matrix to one of the form

10 0 | number
010 | number
001 | number

|

EXAMPLE
X +3z=3
o —x+y—z =5
2x +y = -2

The augmented matrix is |:

} . The numbersin the fourth column will be the solution.

1
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Step1  UseRow 1 and Row 2 to change the D entry to O.
Row 1 10 33
+Row2 -1 1 -1 5
NewRow2 0 1 2 8
Step 2 Use Row 1 and Row 3 to change the G entry to 0.
—2Rowl -2 0 -6 -6
+ Row 3 21 0 =2
NewRow3 0 1 -6 -8
Step 3 10 3| 3
01 2 8
01 -6 -
Step 4 Because the B entry is dready O, this step is not necessary. New
Row 1lisold Row 1.
Step 5 Use Row 2 and Row 3 to change the H entry to O.
—-Row2 0 -1 -2 -8
+Row3 0O 1 -6 -8
NewRow3 0 0 -8 -16
Step 6 10 3| 3
o1 2| 8
0 0 -8 | —16
Step 7 UseRow 1 and Row 3 to make the C entry a0.
8Rowl 8 0 24 24
+3Row3 0 0 —-24 -48
NewRowl 8 O 0 -24
Step 8 Use Row 2 and Row 3 to make the F entry a 0.
4Row2 0 4 8 32
+Row3 0 0 -8 -16
NewRow2 0 4 0 16
Step 9 80 0| -24
04 0| 16
0 0 -8 | —-16
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Step 10 Divide Row 1 by 8, Row 2 by 4, and Row 3 by —8.

1 00| -3
01 0 | 4 | Thesolutionisx = -3,y =4, and z=2.
0 0 1 | 2

The second method wewill useto solve systemsof equationsinvolvesfinding
the inverse of a matrix and multiplying two matrices. We begin by creating
the coefficient matrix and the constant matrix for the system.

Ax+ By =E
Cx+Dy=F

The coefficient matrix is [ £ 5 ] and the constant matrix is [ £ ]. Wewill find
the inverse of the coefficient matrix and multiply the inverse by the constant
matrix. The product matrix will consist of one column of two numbers. These
two numbers will be the solution to the system.

EXAMPLE

22 +y=-7
x—3y=1

The coefficient matrix and constant matrix are
-2 1 -7
IR

2 1110
1 -3 ] 01

Row 1 -2 110 3Rowl -6 3 3 0
+2 Row 2 2 —6 0 2 gd + Row 2 1 -3 01
New Row 2 0 -51 2 New Row1l -5 0 31

The next matrix is _g _g : i ;] We need to divide Row 1 and
Row 2 by —5.

10 -2 -1 _ o[-
1 5 Theinverse matrix is
011 -5 —5

ol olw
[
agin Gl
| I
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Multiply the inverse matrix by the coefficient matrix.

The solutionisx =4andy = 1.
The strategy isthe same for a3 x 3 system of equations.

Ax+By+Cz =J
Dx+Ey+Fz=K
Gx+Hy+1z =L

The coefficient matrix and the constant matrix are

A B C J
D E F|lad|K|.
G H I L

We will find the inverse matrix of the coefficient matrix and multiply it by
the constant matrix.

EXAMPLE
—3x+2y+z=3
° 2x+y—z =5

—y+2z=-3
The coefficient matrix and constant matrix are

-3 2 1 3
2 1 -1| and 5].
| 0 -1 2 -3

2Row 1 -6 4 2200
+3 Row 2 6 3 -3 030
NewRow2 0 7 -1 2 3 O
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-3 2 1] 100
New Row 3isold Row 3. Thenextmatrixis| 0 7 -1 | 2 3 0.
0 -1 2] 001
7 Row 1 =21 14 7 7 00
+(—2) Row 2 0 -14 2 -4 -6 0
NewRowl -21 0 9 3 60
Row 2 0O 7 -1230
+7Row3 0 -7 14 0 0 7
NewRow3 0 0 13 2 3
-22 0 9| 3 -60
The next matrix is 07 -1 1] 2 3 0f.
00 13 | 2 37

1I3Rowl -273 0 117 39 —78 0
+(—9) Row 3 0 0 -117 -18 —-27 -63

NewRowl —-273 O 0 21 -105 -63

1I3Row2 0 91 —-13 26 39 O
+Row3 0 O 13 2 3 7

NewRow2 0 91 0 28 42 7
=273 0 0 | 21 -105 63:|

Thenextmatrixis[ 0 99 0| 28 42 71.

0O 0 13 | 2 3 7
Divide Row 1 by —273, Row 2 by 91, and Row 3 by 13.
1 5 3
4 6 1
2 3 7
0011]| {5 13 1

Multiply the inverse matrix by the constant matrix.

28 3 a [3(B)ETEF]
T [ g}— 3(55) +5(8) + -3 (&) —H
5 & &1 U 3(3) +5(3) + (-3 ()

The solutionisx =1,y =3andz = 0.
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PRACTICE
1. Usethefirst method to solve the system.
—5x +2y+3z =-8

x+y— z =-5
2x+y+3z = 23

2. Usethefirst method to solve the system.

6x +2z=-12

xX—y = -3
y+z =1

3. Usethe second method to solve the system.

X +z =6

3x—y+27 =17

6x+y—z =5

SOLUTIONS
-5 2 3| -
1. Theaugmented matrixis|: 11 -1 | - :|
21 3| 23

Row 1 -5 2 3 -8 2Rowl -10 4 6 -16
+5Row 2 55 -5 -25 +5Row 3 10 5 15 115

NewRow2 0 7 -2 -33 New Row 3 0 9 21 99

-5 2 3| -8
Thenext matrixis| 0 7 -2 | —-33].
09 22 | 99
7 Row 1 -35 14 21 -56 9 Row 2 0O 63 -18 -—-297
+(—2) Row 2 0 -14 4 66 +(-=7)Row3 0 —-63 —147 —693
NewRowl —-35 0 25 10 NewRow3 0 0 —165 —990

-35 0 25 | 10
The next matrix is o 7 -2 | -=33].
0 0 —-165 | —990
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We can make the numbersin Row 1 and Row 3 smaller by dividing Row 1
by 5 and Row 3 by —165.

Row 1 -7 0 5 2 Row 2 0 7 -2 -33
+(-5Row3 0 0 -5 -30 +2Row3 0 0 2 12

NewRowl -7 0 0 -28 NewRow2 0 7 0 -21

The next matrix is

-7 0 0| —-28
07 0| —-21].
0 0 1 | 6
Divide Row 1 by —7 and Row 2 by 7.
100 ]| 4
010 ] -3
001 ] 6
The solutionisx =4,y =—-3,andz = 6.
6 02 | -12
2. Theaugmented matrixis{1 -1 0 | =3].
0O 1 1 | 1
Row 1 6 0 2 —-12
+(—6)Row2 -6 6 0 18
NewRow2 0 6 2 6
6 0 2 | 12
New Row 3isold Row 3. The next matrixis |0 6 2 | 6.
01 1 | 1

Row 2 0 6 2 6
+(—-6)Row3 0 -6 -6 -6

New Row3 O 0 -4 0
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6 0 2 | -12
New Row lisold Row 1. The next matrixis |0 6 2 | 6 |.
0 0 -4 | 0

Rowl 6 0 2 —12 NewRow2 0 6 2 6
+iRow3 00 -2 0 +1Row3 00 -2 0

NewRowl1l 6 O 0 —-12 NewRow?2 0 6 0 6

6 0 0 | -—-12

Thenext matrixis |0 6 0 | 6 |.Divide Row 1 and Row 2 by 6
0 0 —4 | 0

and Row 3 by —4.

100 | -2
0 1 0| 1| Thesolutionisx=-2,y=1, and z=0.
001 ] O

3. The augmented matrix is

1 0 11100

3 -1 2] 01 0].

6 1 -1 ] 001
—3Rowl -3 0 -3 -3 00 —-6Rowl -6 0 -6 -6 00
+ Row 2 3 -1 2 010 + Row 3 6 1 -1 001
New Row 2 0O -1 -1 -3 10 New Row 3 0 1 -7 -6 0 1

The next matrix is
1 0 1 | 1 00
0O -1 -1 | -3 1 0f.
0O 1 -7 ] -6 01

Row 2 0 -1 -1 -310
+Row3 0 1 -7 -6 01

New Row3 O 0 -8 -91 1

New Row 1isold Row 1. The next matrix is

1 0 1] 100
0 -1 -1 ] -3 1 of.

0O 0 -8 | -911
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8Rowl 8 0 8 8
+Rw3 0 0 -8 -9

NewRowl 8 0 0O -1

—-8Row2 0 8 8 24 -8 0
+Row3 0 0O -8 -9 11

NewRow2 0 8 0 15 -7 1

80 0] -1 11
Thenext matrixis|0 8 0 | 15 -7 1].
00 -8 ] -9 11

Divide Row 1 and Row 2 by 8 and Row 3 by —8.

1 1 1
1001 -3 § 3§
15 7 1
0101 ¥ -5 &
9 1 1
0011 § -8 8
Theinverse matrix is
_1 1 1
8 8 8
15 _ 7 1
8 8 8
9 _1 _1
8 8 8

11 o 6(—%>+17<%)+5(%) ,
H H 5(8) +17(-5)+5(3) H
b Y e e () +s()

Thesolutionisx =2,y = -3andz =4

The last computation we will learn is finding a matrix’s determinant. Although
wewill not usethe determinant here, it isused in vector mathematics courses, some
theoretical algebra courses, and in algebra courses that cover Cramer’s Rule (used
to solve systems of linear equations). An interesting fact about determinantsis that
asguare matrix has an inverse only when its determinant is a nonzero number.

The usual notation for a determinant is to enclose the matrix using two vertical
bars instead of two brackets. The determinant for the matrix [ 8] is |4 5.
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Finding the determinant for a2 x 2 matrix is not hard.

A B
8 ap e
EXAMPLE
4 -3
. ‘5 2‘:4(2)—(—3)(5):23

Wefind the determinant of larger matrices by breaking down thelarger matrix
into several 2 x 2 sub-matrices. For larger matrices, there are numerous for-
mulasfor computing their determinants. Some of them come from expanding
the matrix along each row and along each column. This means that we will
multiply the entries in a row or a column by the determinant of a smaller
matrix. This smaller matrix comes from deleting the row and column an
entry isin. When working with a 3 x 3 matrix, these sub-matrices will be
2 x 2 matrices.

Suppose we want to expand the following matrix along the first row.

A B C
D E F
G H I

We will multiply the A entry by the submatrix obtained by removing the
first rov ABc and the first column é. This leaves us with the matrix

— E F |.Ourfirst caculation will be
- H I
E F
A‘H I‘:A(EI—FH).

Similarly, when we use entry B, we will need to remove the first row
A B ¢ and the second column g. This leaves us with g I; . Thereis
a complication—the signs on the entries must alternate when we perform
these expansions. For our matrix, the signs will alternate beginning with A
not changing, but B and D changing.

A -—-B C
-D E —-F
G —-H J
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For our 3 x 3 matrix, the expansion along the first row looks like this.

E F D F D E

AHI G I G H

=A(El — FH)— B(DI — FG)

-2

rc|

+ C(DH — EG)
The expansion along the second column looks like this.

D F A C AC‘

—B + E =—-B(DI - FG)+ E(AI — CG)

G 1 G I D F

-#|
— H(AF —CD)

EXAMPLE

4 1 -3
e Find the determinant for 2 0 4].
-2 2 1

We will use two calculations, along Row 2 and along Column 3. By Row 2
we have
1 -3 4 -3

4 1
2 oLz 42

-2 2
=—2(1-1-(=3)2)+0(4-1—(=3)(—=2) — 4(4-2—-1(-2) = —54.
By Column 3 we have

20
-2 2

4 1

-3 -2 2

2 0

EE A

=-32-2-0(-2)—-44-2-1(-2)+14-0-1-2)=-54

The method is the same for larger matrices except that there are more levels
of work.

sl alic e

Expanding this matrix along Row 1 gives us

F G H E G H E F H E F G
AlJ K L|-B|I K L|+C|I J L|-D|I J K|.
N O P M O P M N P M N O
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Each of thesefour determinants must be computed using the previous method
for a3 x 3 matrix.

PRACTICE
-8 1 3
1. 2 50
k5t
SOLUTION
1. Expanding this matrix along Row 2, we have
13 -8 3 -8 1
2| _4 2‘+5‘ 6 2‘_0‘ 6 —4‘

=—-2(1-2—3(—4)) +5(-8-2—3-6) — 0((—8)(—4) — 1-6) = —198

CHAPTER 11 REVIEW

SEEEERE

NES o2
CHI @[5
2 B ﬂ[g —ﬂ:
@[3 7Y o % 2]

o5 ) @[5 )
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s |02z a4 3)-

7 2
@ [; g :ﬂ O | 4 2
-2 -2
7 =5 13 .
(©) [4 5 6] (d) The product does not exist.
. . -8 1
4, What isthe determinant for[ 4 5}?
() —36 (b) —37 () —44 (d) —27
5. What istheinverse for [_i _ﬂ?
B -
(a -1 -3
-1 1 O3 2
B [—1 1
5 ~5 —
off ] el
6 0 2]
6. What isthedeterminantfor |1 —1 0O|?
0 11
(@ —4 (b) -5 (c) —6 (d) -7

=

N

0O 3
7. What istheinverse for |:1 1 1}?
1

r—1 _3 37 -1 3 19

8 8 8 4 4 4

1 3 1 3 1 1

@\ 2 2 3 ® 1 5 5 ~8
3 11 13 3

- 8 8 8- - 8 8 8-
-3 1 1+ -1 3 _i-

I - § & 8
1.3 3 3 13

© -8 -8 8 @ |- -5 3
103 1 3 11

L 2 71 7 L 2 i 3

For Problems 8-10, use different matrix methods to solve the
systems.



CHAPTER 11 Matrices _\@

8. What isx + y for the system?

5x — 8y =29
2x+2y=-4
(& -2 (b) -3 (c) -4 (d -5

9. Whatisx + y + z for the system?

x+y+z =1
2x—y+z =3
—x4+y—3z=-7

@0 (b) 1 (© 2 (d) 3
10. Whatisx + y + z for the system?
6x+ —z =-22
x+y—z =-6
y+z =5
@ -1 (b) —2 ©1 (d 2
SOLUTIONS
1.D 2.B 3.C 4.C 5B
6.A 7.A 8.A 9.B 10.D
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CHAPTER

A conic sectionisashape obtained when aconeissliced. The study of conic sections
began over two thousand years ago and we use their propertiestoday. Planetsin.our
solar system move around the sun in elliptical orbits. The cross-section of many
reflecting surfaces is in the shape of a parabola. In fact, al of the conic sections
haveuseful reflecting properties. Therearethree conic sections—parabol as, ellipses
(including circles), and hyperbolas.

Parabolas

In Chapter 6, we learned how to graph parabolas when their equations were in the
formy = a(x — h)?> + k or y = ax? + bx + ¢. Now we will learn the formal
definition for a parabola and another form for its equation.

DEFINITION: A parabolaisthe set of al points whose distance to afixed point
and afixed line are the same.

The fixed point is the focus. The fixed lineis the directrix. For example, the focus
for the parabolay = —%xz — 3x + 2is(—3, 6), and the directrix is the horizontal
liney = 7. Thepoint (0, 2) ison the parabola. Itsdistancefromtheliney = 7is5.

®- C

opyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Its distance from the focus (—3, 6) isalso 5.

V(=3—-02+(6-22=+/25=5

The new form for a parabola that opens up or down is (x — k)2 = 4p(y — k).
The vertex is ill at (k, k), but p helps us to find the focus and the equation for
the directrix. The focus is the point (k, k + p), and the directrix is the horizontal
liney = k — p. Theform for the equation for a parabola that opens to the side is
(y — k)2 = 4p(x — h). The focus for a parabola that opens to the right or to the
left isthe point (& + p, k), and the directrix is the vertical linex = h — p. This
information is summarized in Table 12.1 and in Figures 12.1 and 12.2.

Table12.1
(x =2 =4p(y — k) (v —kZ=4p(x —h)
Thevertex is (h, k). Thevertex is (h, k).
The parabola opens up if p is positive The parabola opensto theright if p is positive

and down if p isnegative. and totheleftif p is negative.
Thefocusis (i, k + p). Thefocusis (h + p, k).
Thedirectrixisy = k — p. Thedirectrixisx = h — p.
The axis of symmetry isx = h. The axis of symmetry isy = k.
(z = h)? = 4p(y — k)
(h,k+p)
o
(h, k)
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(y—k)* = 4p(z - h)

(h B\ (A +p,k)

r=h-p

Fig. 12.2.

In the following examples, we will be asked to match the equation to its graph.
The vertex for each parabola will be at (0, 0). We can decide which graph goes
to which equation either by finding the focus or the directrix in the equation and
finding which graph has this focus or directrix.

EXAMPLES
Match the graphsin Figures 12.3 through 12.6 with their equations.

= N W ks »

] [l ] g |
Tt s W N e

Fig. 12.3.
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5r 5r
4 4F
3r 3k
2F 2}
1| I S
[ S I R | ' T S
4 -3 -2 -1 1 2 3 4 5 2 3 4 5
A1k L
________ Y L
-3 L
4 L
-5+ 5%
Fig. 12.5. Fig. 12.6.

x2 =6y

The equation is in the form (x — )2 = 4p(y — k), so the parabola will
open up or down. We have p = % (from 6 = 4p). Now we know three
things—that the parabola opens up (because p is positive), that the focus
is (h,k+ p) = (0,0+ 3) = (0, 3), and the directrix isy = —3 (from
k—p=0-— %). The graph that behaves thisway isin Figure 12.5.

y2 = 6x

The equation isin the form (y — k)2 = 4p(x — h), so the parabola opens to
theleft or to theright. Wehave p = 3 (from 6 = 4p). Now weknow that the
parabolaopensto theright, that thefocusis (h + p, k) = (O+%, 0) = (%, 0),
and that the directrix isx = —3 (from# — p = 0 — 3). The graph for this
eguationisin Figure 12.3.

y2 = —6x

The equation is in the form (y — k)2 = 4p(x — h), so the parabola opens
to the left or to the right. We have p = —% (from —6 = 4p). The parabola
opensto the left, the focusis (h + p, k) = (0 + —%’, 0 = (—%, 0), and the
directrix isx = 3 (fromh — p = 0 — (—3)). The graph for this equation is
in Figure 12.4.

x2 = —6y

The equation isin theform (x — h)? = 4p(y — k), so the parabola opens up
or down. We have p = —3 (from —6 = 4p). The parabola opens down, the
focusis (h, k+ p) = (0, 0+ (—3)) = (0, —3). Thedirectrix isy = 3 (from
k—p=0-— —%)). The graph for thisequation isin Figure 12.6.
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Using theinformation in Table 12.1, we can find the vertex, focus, directrix, and

whether the parabola opens up, down, to the left, or to the right by looking at its
equation.

EXAMPLES

Find the vertex, focus, and directrix. Determine if the parabola opens up, down, to
the left, or to theright.

o (x—32=4(y-2

Thisequationisintheform (x — )% = 4p(y — k). Thevertex is (3, 2). Once
we have found p, we can find the focus and directrix and how the parabola
opens. p = 1 (from 4 = 4p). The parabola opens up because p is positive;
thefocusis(h, k+ p) = (3,2+1) = (3, 3); andthedirectrixisy = 1 (from
y=k—p=2-1=1).

e (y+1)2=8x-23)

Theequationisintheform (y—k)2 =4p(x—h). Thevertexis(3, —1), p = 2
(from 8 = 4p); the parabola opens to the right; the focusis (& + p, k) =
(3+2, —1) = (5, —1); andthedirectrixisx =1 (fromx =h—p =3-2=1).

If we know any two of the vertex, focus, and directrix, we can find an equation
of the parabola. From the information given, we first need to decide which form
to use. Knowing the directrix is the fastest way to decide this. If the directrix isa
horizontal line (y = number), then the equation is (x — )2 = 4p(y — k). If the
directrix isavertical line (x = number), thentheequationis (y —k)2 = 4p(x —h).
If we do not have the directrix, we need to look at the coordinates of the vertex and
focus. Either both the x-coordinateswill be the same or both y-coordinateswill be.
If both x-coordinates are the same, the parabola opens up or down. We need to use
theform (x — h)2 = 4p(y — k). If both y-coordinates are the same, the parabola
opens to the side. We need to use the form (y — k)2 = 4p(x — h). Once we have
decided which form to use, we might need to use algebrato find &, k, and p. For
example, if we know thefocusis (2, —1) and the directrix isx = 6, then we know
h—p=6andh+p=2andk = —1. Theequationsh — p=6andh + p =2
form a system of equations.

h—p=6
h+p=2
2h =8
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h=4
4—p=6 Leth=4inh—p=6

p=-2

Now that we have all three numbers and the form, we are ready to write the
equation: (y + 1)2 = —8(x — 4).

EXAMPLES

Find an equation for the parabola.

Thedirectrix isy = 2, and the vertex is (3, 1).

Because the directrix is a horizontal line, the equation we want is
(x —h)2 = 4p(y —k). Thevertexis (3, 1), givingush = 3andk = 1. From
y=k—pandy =2, wehavel— p = 2, making p = —1. Theequation is
(x —3)2=—4(y - D).

Thefocusis (4, —2), and the vertex is (0, —2).

The y-coordinates are the same, so this parabola opens to the side, and the
equation we need is (y — k)2 = 4p(x — h). Thevertex is (h, k) = (0, —2),
givingush = 0and k = —2. Thefocusis (4 + p, k) = (4, —2). From this
wehaveh+ p = 0+ p = 4, making p = 4. Theequationis (y +2)? = 16x.

v 8

] 7

I

1 6

1 5k

]

v 4F

I3

]

po2r °©

I 1+

1 L L ) i ] 1 ] 1 |
5 4 -3 -2 - 1 3 4 5

[

i 25

i

1 -3

14l

Fig. 12.7.

The directrix is the vertical line x = —1, and the focus is (3, 2). Because

the parabola opens to the right, the form we need is (y — k)2 = 4p(x — h).
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From the focuswe have (h + p,k) = (3,2),s0h + p =3andk = 2. The
directrixisx = —landx =h —psoh— p = -1

h—p=-1
h+p=3
2h =2
h=1
1+p=3
p=2

Leth=1inh+p=3

The equation is (y — 2)2 = 8(x — 1).

PRACTICE

1. Identify the vertex, focus, and directrix for (y — 5)2 = 10(x — 1).

2. ldentify the vertex, focus, and directrix for (x + 6)2 = —%(y —4).

3. Find an equation for the parabola that has directrix y = —2 and focus

(4, 10).

For Problems 4-6, match the equation with itsgraph in Figures 12.8-12.10.

5 5
4 4l
o 3F 3
o oL
________ b ____. gl ____.
L 1 i i 1 1 1 ! 1 i { 1 1 1 1 1 1 1 1 ]
5 -4 -3 -2 -1 1 2 3 4 5 5 4 -3 -2 -1 1 2 3 4 5
-1+
2+ 2k
-3k 3¢
at -4f
5L 5L
Fig. 12.8. Fig. 12.9.
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Fig. 12.10.

4. x2=-8(y+1)
5 x+1?=4(y-2
6. (y—22=—-6(x+3)

SOLUTIONS

1. h=1 k=5adp= %’ (from 4p = 10). The vertex is (1, 5); the focus
is(h+ p,k) = (L+ 3,5 = (4,5) and the directrix isx = —3 (from
h—p=1-— g)

2. h=—6,k=4and p = —3 (from 4p = —3). The vertex is (-6, 4);
thefocusis (h, k + p) = (6,4 + (—3)) = (—6, 3); and the directrix is
y =2 (fromk — p=4—(-3).

3. Wewant to usethe equation (x — h)2 = 4p(y — k). Thefocusis (i, k + p),
s0h =4andk + p = 10. Thedirectrixisy =k — p,s0k — p = —2.

k+p=10
k—p=-2
2k =8

k=4



(zm’_ CHAPTER 12 Conic Sections

44 p=10 Letk=4ink+p=10

p==©6
Theequationis (x — 4)2 = 24(y — 4).
4. Figure12.9
5. Figure12.8

6. Figure12.10

Ellipses

Most ellipses ook like flattened circles. Usually one diameter is longer than the
other. In Figure 12.11, the horizontal diameter islonger than the vertical diameter.
In Figure 12.12 the vertical diameter is longer than the horizontal diameter. The
longer diameter is the major axis, and the shorter diameter is the minor axis. An
ellipse has seven important points—the center, two endpoints of the major axis
(the vertices), two endpoints of the minor axis, and two points along the major
axiscalled thefoci (plural for focus). When the equation of an ellipseisintheform

AV 2 2 2
e P el el
a b b2 a?

we can find these points without much trouble.

17

a>b
(h,k+b)

c=+a? - b?

Vertex Vertex

(h—a,k) (h+a,k)

(h, K — b)
Fig. 12.11.
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Vertex

(h,k+a)

a>b

c=+va?-b?

(h ~ b, k) {(h+b,k)

(h,k —a)

Vertex

Fig. 12.12.

If all we want to do is to sketch the graph, all we really need to do is to plot the
endpointsof the diametersand draw arounded curve connecting them. For example,
if we want to sketch the graph of &+D° 4 % =1a=3b=2h=-1,
and k = 1. According to Figure 12.12, the diameters have coordinates (—1 —
2,)=(-31,(-1+21H)=(1,1,(-1,1+3)=(-1,4,and(-1,1-3) =
(-1, —2). (See Figure 12.13.)
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Fig. 12.13.

DEFINITION: An €lipse is the set of al points whose distances to two fixed
points (the foci) is constant.

For example, the foci for 5—; + y—gz = 1 are (—4,0) and (4, 0). If we take
any point on this ellipse and calculate its distance to (—4, 0) and to (4, 0) and
add these numbers, the sum will be 10. Two points on this ellipse are (0, 3) and

(3.V8).

Distance from (0, 3) to (—4, 0) + Distance from (0, 3) to (4, 0)

=V(-4-02+(0-32+/(4- 02+ (03?2

=16+ 9+ V16 +9=+25++/25=10

Distance from (5/3, +/8) to (—4, 0) + Distance from (5/3, v/8) to (4, 0)

=\/(—4—g>2+(0—~/§)2+\/<4—g)2+(0—~/§)2

289 49 \/361 121
= _ — = —_— —:1
5 +8+ 9 +8 5 + 9 0

In the next set of problems, we will be given an equation for an elipse. From
the equation, we can find &, k, a, and b. With these numbers and the information
in Figures 12.11 or 12.12 we can find the center, foci, and vertices.
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EXAMPLES

Find the center, foci, and vertices for the ellipse.

u—39+xy+52_

16 25
From the equation, we see that i = 3, k = —5, a? and b2 are 42 and 52, but
which isa and which is b? a needs to be the larger number, so ¢ = 5 and
b = 4. Thismakes ¢ = va? — b2 = /25— 16 = 3. We need to use the
information in Figure 12.12 becausethelarger denominator isunder (y —k)2.

Center: (h, k) = (3, =5)

Foci: (h,k—¢)=(3,-5—-3) =@, -8 and (h,k+¢) =3, -5+ 3) =
(37 _2)

Vertices. (h, k—a) = (3, =5-5) = (3, —10) and (i, k+a) = (3, —5+5) =
(3,0

2

X
- -22=1
J 16+(y )

Tomakeit easier tofind i, k, a, and b, we will rewrite the equation.

1

x—0?2 (y—2?%
16 + 1 =1

Now wecanseethaa h = 0, k = 2, a =4, b =1, ¢c = Va2 —b? =
/16 — 1 = +/15. Because thelarger denominator isunder (x — 0)2, weneed
to usethe information in Figure 12.11.

Center: (h, k) = (0, 2)

Foci: (h—c, k) = (0—+/15, 2) = (—+/15, 2) and (h+c, k) = (0++/15, 2) =
(v/15, 2)

Vertices: (h —a, k) =0—-4,2) = (—4,2)and (h +a,k) = (0+4,2) =
4,2

Now that we can find thisimportant information from an equation of an ellipse,
we are ready to match graphs of ellipses to their equations.

EXAMPLES
Match the equations with the graphsin Figures 12.14-12.16.
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4~ 4~
3k
9l
1 1+
L ] 1 I ! ] I ! 1 ] J
-3 -2 - 2 3 4 -4 -3 1 3 4
1
3k
4L 4L
Fig. 12.14. Fig. 12.15.
A
3 -
1 —
L 1 ! J
-4 1 2 4
3F
4L
Fig. 12.16.
2 2
X y
o —+—=1
4 9

The larger denominator is under y2, so we need to use the information in
Figure 12.12. Because a = 3, we need to look for a graph with vertices
(0, 3) and (0, —3). Thisgraph isin Figure 12.15.
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2 2
X<y
I a—
* 97732
The larger denominator is under x2, so we need to use the information in
Figure 12.11. Becausea = 3, theverticesare (—3, 0) and (3, 0). Thisgraph
isin Figure 12.16.
2
2 Y
=1
o X+ 2
The larger denominator is under y2, so we need to use the information in
Figure 12.12. Because a = 2, theverticesare (0, 2) and (0, —2). Thisgraph

isin Figure 12.14.

With as little as three points, we can find an equation of an ellipse. Using
the formulas in Figures 12.11 and 12.12 and some algebra, we can find £, k, a,
and b.

EXAMPLES

Find an equation of the ellipse.

e Theverticesare (—4, 2) and (6, 2), and (1, 5) isapoint on the graph.
The y-coordinates are the same, so the major axis (the larger diameter) is
horizontal, which meanswe need to use theinformation in Figure 12.11. The
verticesare (h — a, k) and (h + a, k). Thismeansthat h — a = —4 and
h+a=6andk = 2.

h—a=-4
h4+a =6
2h =2
h=1

l-a=-4 Leth=1inh—a=-4

So far we know that

x—-D2 (y-27?
25 + b2
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Because (1, 5) is on the graph, 4525 1) + 52 = 1. Solving this equation
for b, wefind that b = 3. The equatlon is

2 2
(x =1 + (y—2)
25 9
e Thefoci are (—4, —10) and (—4, 14) and (—4, 15) isavertex.
The x-values of foci are the same, so the mgjor axisis vertical. Thistellsus
that we need to use the information in Figure 12.12.
(h,k—c)=(—-4,-10and (h,k+c¢) = (—4,14),s0h = -4, k—c = —10

=1

andk +c = 14.
k—c=-10
k+c=14

2k =4
k =

2—c=-10 Letk =2ink —c=-10
c=12

Because (—4, 15) isavertex, k +a = 15,02 +a = 15and a = 13. All
we need to finishisto find b. Leta = 13and ¢ = 12 inc = Va2 — b?:
12 = /13?2 — b2. Solving thisfor b, we have b = 5. The equation is

(x +4)? L 0= 2)?
25 169

Theeccentricity of an ellipseisanumber that measureshow flatitis. Theformula
ise = ¢. This number ranges between 0 and 1. The closer to 1 the eccentricity of
an ellipseis, theflatter itis. If e = = 0, then the ellipseis acircle. In acircle,
the center and foci are al the same point, and ¢ and b are the same number. For

example, # + % — 1isacircle with center (5,4) and radius v9 = 3.
Usually we see equations of circlesin the form (x — k)% + (y — k)% = r2.

=1

EXAMPLES

Find the ellipse’s eccentricity.

2 2
x_+y_—1
9 25

a=5b=3c=+v25-9=4ande=<=1¢
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x+82 (+6)2
44 189

a=13b=12c=/169— 144 =5 ¢ = £ =  Thisdlipseis more
rounded than thefirst because e is closer to 0.

1

PRACTICE
1. ldentify the center, foci, vertices, and eccentricity for
2 _ 102
x 0=
169 25

2. ldentify the center, foci, vertices, and eccentricity for

2 2
x+9 +(y+2) _

1
202 292
3. ldentify the center and radius for the circle
6)? —1)2
(c+67 0-D2_
49 49
For Problems 4-7, match the equation with the graph in Figures
12.17-12.20.
10
8_
8r
6
4_
5
2t 4
L 1 1 1 1 1 1 J 3
6 -4 \2\2 2 4,/6 8 10 2
> 1
4t SN ;

6L 2L
Fig. 12.17. Fig. 12.18.
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15+

-15 5 10 15
2 =
Y S 24/ 6
21
4L -15%-
Fig. 12.19. Fig. 12.20.
Y _ 92
g G-V 0-27
16 25
2 2
B. X_ + y_ -
144 ° 169
2 2
g D2 -3
16 16
(x—12 (y-2?2
7. 5 + T 1
SOLUTIONS
1. h=0,k=10,a =13,b =5, ¢ = Va? — b?2 = /169 — 25 = 12
Center: (0, 10)
Foci: (h—c, k) = (0—12,10) = (—12,10) and (h+c, k) = (0+12, 10) =
(12, 10)

Verticess (h — a, k) = (0 — 13,10) = (—13,10) and (h + a, k) =
(0+ 13, 10) = (13, 10)
12

C
Eccentricity: — = —
y a 13
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2. h=-9k=-2a=29,bh=20,c=+292-202=21
Center: (-9, —2)
Foci: (h,k—c) = (=9, —2—-21) = (-9, —=23) and (h, k+¢) = (-9, —2+
21) = (-9, 19)
Vertices. (h,k —a) = (=9, —2 — 29) = (=9, —31) and (h, k + a) =
(=9, —2+429) = (-9, 27)
Eccentricity: - 2—1

a 29

3. Thecenteris(—6, 1), and theradiusis?7.

4. Figure12.19

5. Figure12.20

6. Figure12.18

7. Figure12.17

Hyperbolas

Thelast conic sectionisthe hyperbola. Hyperbolas are formed when asliceismade
through both parts of a double cone. The graph of ahyperbola comesin two pieces
called branches. Like ellipses, hyperbolas have acenter, two foci, and two vertices.
Hyperbolas a so have two slant asymptotes. The definition of a hyperbolainvolves
the distance between points on the graph and two fixed points.

DEFINITION: A hyperbolaisthe set of all points such that the difference of the
distance between a point and two fixed points (the foci) is constant.

For example, the foci for x—gz — {—2 = lare(—5,0) and (5, 0). For any point on
the hyperbola, the distance between this point and one focus minus the distance
between the same point and the other focus is 6. Two points on the hyperbola are
(6, +/48) and (12, v/240).

Distance from (6, +/48) to (=5, 0) — Distance from (6, v/48) to (5, 0)

=\/(—5—6)2+(O—\/4_8)2—\/(5—6)2+(O—«/4_8)2
=121+48—-V1+48=13-7=6
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And

Distance from (12, v/ 240) to (-5, 0) — Distance from (12, +/240) to (5, 0)

— /(-5— 122 + (0. ~V240 — /(5 — 122 + (0 — V240)?
=+/280+240 — /49 +240=23-17=6

Equations of hyperbolas come in one of two forms.

x-m? G-k?_, 0 =k? =hn?

a? b2 a? b? 1

If the x2 term is positive, one branch opens to the left and the other to the right. If
the y2 term is positive, one branch opens up and the other down. The formulas for
these two forms are in Figures 12.21 and 12.22.

(z—h)2 _ !y-—k!z -1
a? b2 -

(h—a)k) »  (h+ak)

AN

N\
//(h7k) \\

y=k+2(z—h) y=k-t@-n °
Fig. 12.21.
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(y—k)® (z—h)® __ 1
P ™

o
(h’k+c) c=+a?+ b?

Fig. 12.22.

We can sketch ahyperbolaby plotting the vertices and sketching the asymptotes,
using dashed lines. We should also plot two points to the left and two points to the
right of the vertices.

EXAMPLE
e Sketch the graph for yfz —x2=1.

Because y? is positive, we will use the information in Figure 12.22. The
centeris(0,0),a = 2,andb = 1. Theverticesare (h, k+a) = (0,04 2) =
(0,2 and (h, k —a) = (0,0 — 2) = (0, —2). The asymptote formulas are
y=k—%(x—h)andy = k+7 (x—h). Using our numbersfor i, k, a, and b,
wehavey = —2x and y = 2x. Wewill usex = 4and x = —4 for our extra
points. If welet x = 4 or x = —4, we get two y-values, ++/68. These give
us four more points—(4, v/68), (4, —/68), (—4, +/68), and (—4, —/68).
(see Figure 12.23.)
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Fig. 12.23.

In the next problem, we will find the center, vertices, foci, and asymptotes
for given hyperbolas. Once we have determined whether x2 is positive or y?
is positive, we can decide on which formulas to use, those in Figure 12.21 or

Figure 12.22.

EXAMPLES

Find the center, vertices, foci, and asymptotes for the hyperbola.

@+7% (+4*
36 64

Because x? is positive, we will use the information in Figure 12.21.

h=-7k=—-4,a=6,b=8,c=+36+64=10

Center: (=7, —4)

Vertices. (h —a, k) = (=7—6,—-4) = (-13, -4 and (h +a, k) = (—7+

6. —4) = (—1,—4)

Foci: (h — ¢, k) = (=7 —10, —4) = (=17, -4 and (h + ¢, k) = (-7 +

10, —4) = (3, -4

Asymptotes: y = k — 2(x —h) = -4-8(x +7) = —4x — R and

y=k+bx-n)=-4+8x+7 =1+ ¥

1
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y_z G n? -1
144 25

Because y2 is positive, we need to use the information in Figure 12.22.
h=1k=0,a=12,b=5,¢c =+/144+ 25 =13

Center: (1, 0)

Vertices: (h,k—a) = (1,0-12) = (1, —12) and (h, k+a) = (1,0+12) =
(1,12

Foci: (h,k—¢)=(1,0—-13) = (1, -13)and (h,k +¢) = (1,0+ 13) =
(1,13

Asymptotes: y = k — 4(x —h) = 0— 2(x -1 = —¥x + £ and

In the next problem, we will match equations of hyperbolas with their graphs.
Being able to identify the vertices will not be enough. We will also need to use the
equations of the asymptotesto find b (we will know a from the vertices). Because

the center of each hyperbolawill beat (0, 0), the asymptoteswill either be y = £ x

andy:—%xoryzgxandy:—gx.

EXAMPLES
Match the eguation with its graph in Figures 12.24-12.27.

5L
Fig. 12.24. Fig. 12.25.
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5
4k
3_
AN 2k
\\\\ 1_
L1 N
-5 4 -3 2/-1/ ~L
Phe -1
/// -2
y=%x -3
4
S5t
Fig. 12.26. Fig. 12.27.
2 2
X
-
4 4

The vertices are (—2, 0) and (2, 0). The slopes of the asymptotes are —1
and 1. The graphisin Figure 12.25.

x2

2o _v2_—1

° 7 y
The vertices are (—2,0) and (2, 0). The sopes of the asymptotes are —%
and 3. The graph isin Figure 12.26.

y2 x2

o L _

4 4

The vertices are (0, —2) and (0, 2). The slopes of the asymptotes are —1
and 1. The graphisin Figure 12.27.

2
° yz—x2:1

The vertices are (0, —2) and (0, 2). The slopes of the asymptotes are —2
and 2. Thegraphisin Figure 12.24.

We can find the equation for a hyperbola when we know some points or a point
and the asymptotes. If we have the vertices and foci, then finding an equation for
a hyperbola will be similar to finding an equation for an ellipse. If we are given
the vertices and asymptotes or foci and asymptotes, we will need to use the slope
of one of the asymptotes to find either a or b (we will know one but not the other
from the vertices or foci). The first thing we need to decide is which formulas
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to use—those in Figures 12.21 or Figure 12.22. If the vertices or foci are on the
same horizontal line (the y-coordinates are the same), we will use Figure 12.21.
If they are on the same vertical line (the x-coordinates are the same), we will use
Figure 12.22.

EXAMPLES

Find an equation for the hyperbola.

e Theverticesare (3, —1) and (3,7) and y = %x — 1isan asymptote.
Theverticesareonthesamevertical line, soweneed to usetheinformationin
Figure 12.22. Theverticesare (h, k —a) = (3, =) and (h, k +a) = (3, 7).
Thisgivesush =3,k —a=—-1andk +a =T7.

k+a=17
k—a=-1
2k =16
k=3

3+a=7 Letk=3ink+a=7
a=14

The center is (3, 3) and a = 4. Once we have b, we will be done. The slope
of one of the asymptotes in Figure 12.22is ¢, sowe have ¢ = # = %, 0

b = 3. Theequationis

(y—3? (x—23)7?
16 9 N
e Theverticesare (—8, 5) and (4, 5), and thefoci are (—12, 5) and (8, 5).
The vertices and foci are on the same horizontal line, so we need to use
the information in Figure 12.21. The verticesare (h — a, k) = (—8, 5) and
(h+a, k) = (4,5). Nowweknow k = 5andwehavethesystemh —a = —8
andh +a =4

1

h—a=-8
h+a=4
2h = -4
=-2
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—2—a=-8 Leth=-2inh—a= -8

Afocusis(h — ¢, k) = (=2 —¢,5) = (—12,5), which givesus —2 — ¢ =
—12. Now that weseethat ¢ = 10, wecanputthisanda = 6inc = v/a? + b2

tofind b.
10 = /36 4 b2
100 = 36 + b2
8=0»
Theequationis
x+2? 0-5°_,
36 64
PRACTICE
1. Find the center, vertices, foci, and asymptotes for
¥ _«-9?_
16 9 T

2. Find the center, vertices, foci, and asymptotes for

x+8* (+6?
49 576

3. Find an equation for the hyperbola having vertices (—4, 2) and (12, 2) and
foci (—6, 2) and (14, 2).

4. Find an equation for the hyperbola having vertices (—8, 0) and (—4, 0) and
with an asymptote y = 3x + 3.

In Problems 5-7, match the graphs in Figures 12.28-12.30 with their
equations.

5. (y—12—-(x—-12=1
6. x—12—(y—-12%2=1
(x — 1)

4

1

—(y-D?=1
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Fig. 12.30.
SOLUTIONS
1. h=5k=0,a=4,b=3,andc=+16+9=5
Center: (5,0

Vertices. (h,k —a) = (B5,0—-4) = (5, -4 and (h,k + a) =
5,04+4) = (5,9

Foci: (h,k—c) = (5,0-5) = (5, -5 and (h,k+c) = (5,0+5) = (5,5)
Asymptotes: y = k — 4(x —h) = 0— 3(x =5 = —4x + 2 and

y=k+4(x—h) =0+3x—-5=4x-2
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2. h=-8k=-6,a=7,b=24,andc = +/49+ 576 =25
Center: (—8, —6)

Vertices: (h — a,k) = (-8 —7,—6) = (=15, —6) and (h + a,k) =
(—8+7,-6) = (-1, —6)

Foci: (h — ¢, k) = (-8 — 25, —6) = (=33, —6) and (h + ¢, k) = (-8 +
25, —6) = (17, —6)

Asymptotes: y = k — 2(x —h) = -6 — Z(x +8) = —Zx — B4 and
y=k+52x—n)=-6+%x+8=%x+ 10

3. Theverticesare (—4, 2) and (12, 2), which givesusk = 2and (h —a, k) =
(—4,2) and (h + a, k) = (12, 2).

h—a=-4
h+a =12
2h =8
h=4

4—qg=-4 Leth=4inh—a=-4

A focus is (—6, 2), which givesus (h — ¢, k) = (—6,2) and h — ¢ =
4—c=—6.%0lving4 — ¢ = —6 givesusc = 10. We can find b by letting
a=8andc =10inc = va? + b2.
c =+a?+b?
10 = /64 + b2
100 = 64 + b?
6=>

The equation is

x—4* (-27
64 36

1
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4, (h—a, k) =(-8,00and (h + a, k) = (—4,0), so k = 0 and we have the
following system.

h—a= -8
h+a=-4
2h = —12
h=—-6

—6—a=-8 Leth=—-6inh—a=-8
a=2.
The slope of an asymptoteis 3,50 2 = 5 =  and b = 1. The equation is

(x +6)?
1 —y2=l.

5. Figure 12.30
6. Figure 12.28
7. Figure12.29

In order to use a graphing calculator to graph a conic section, the equation
probably needs to be entered as two separate functions. For example, the graph of
y2 = x could be entered as y = \/x and y = —,/x. To use a graphing calculator
to graph a conic section that is not a function, solve for y. When taking the square
root of both sides, weusea*“+" symbol on one of thesides. It isthissign that gives
us two separate equations.

EXAMPLES
Solvefor y.
2
e -2+ EFY
9
2
(y — 1%+ x+3° =1
9
b-ppo1o EEI

9
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(x +3)2
1=+ [1-
Y 9
S 1_(x—|-3)2
9
(x +3)2 (x +3)2
14 J1- Co1-)1-
y==i+ 9 9
2 (y+2)?
o L_VTY 4
9 4
¥ 0+2?
9 4
_0+2?
4 9
22 2
O+27 X
4 9
2
(y+2)2:4(—1+%>

x2
y+2=:|: (-1—1—3)

x2

9

.Xz X2
=2+ [4(-1+ =2 |4[-1+
y + ( + 9>, y ( + 9)

Equations of conic sectionsdo not always comein the convenient formswe have
been using. Sometimes they come in the general form Ax? + Bxy + Cy? + Dx +
Ey+ F = 0. When A and C are equal (and B = 0), the graph is acircle. If A
and C are positive and not equal (and B = 0), the graphisan ellipse. If A and C
have different signs (and B = 0), the graph is a hyperbola. If only one of A or C
is nonzero (and B = 0), the graph is a parabola. There are some conic sections
whose entire graph isone point. These are called degenerate conics. We can rewrite

y=-2+ 4(—1+

N——
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an equation in the general form in the standard form (the form we have been using)
by completing the square.

EXAMPLES

Rewrite the equation in standard form.
o xX2—2x—4y=11

Because there is no y2 term, the graph of this equation is a parabola that
opens up or down. The standard equationis (x — h)% = 4p(y — k). We need
to have the x terms on one side of the equation and the other terms on the
other side.

x2—2x —4y=11

X2—2x=4y+11

2\2 2\?
2
—2x+(2) =4y +114 (2
X +(2) y + +(2)
X2 —2x4+1=4y+12
(= D?=4(y+3)

o —9x2+416y% — 18x — 160y + 247 =0

Because the signs on x2 and y? are different, the graph of this equation isa

hyperbola. The standard form for this equation is 0;—2")2 — (";—2}’)2 =1

—9x?2 + 16y% — 18x — 160y + 247 =0
16y? — 160y — 9x? — 18x = —247

16(y% — 10y) — 9(x2 + 2x) = —247
10\2 2\2
16(y2—10y+ (=) | -9(x?+2x+ (=
2 2
102 2\2
= -247+16(—=) —9(=
#15(3) -9(3)

16(y — 5% — 9(x + 1)% = 144
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16(y —5° 9 +1* 144
144 144 144
-5 @+D?_,
9 16
PRACTICE
1. Solvefory
2 2
o =3
4 g 1!
2. Solvefory
(x+10)2  (y+3)2
% T B !
3. Rewritetheequationin standard form: 36x2+9y2 —216x — 72y +144 = 0.

SOLUTIONS
2 2
o =3
Lo 5 =1
_ +<x—3>2
_< (x—3)2>
3 \/ (x—3)2
2 2
, (x+10) +(y—|—3) 9
25 25
(y+3)2_1_(x+10)2
25 25
2 _(x+10)2>
(y+3) _25<1 o
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B (x +10)

B (x + 10)
y——3j:\/25<1— o )

3. 36x2+9y2—216x — 72y +144=0

36x2 — 216x + 9y? — 72y = —144
36(x2 — 6x) + 9(y% — 8y) = —144
36(x2 — 6x + 9) + 9(y2 — 8y + 16) = —144 + 36(9) + 9(16)
36(x — 3)2+9(y — 4)2 = 324

36(x — 3)2 N 9y —4)2 324

324 324 324
2 N2

(=87 G- _,
9 36

CHAPTER 12 REVIEW
1. What isthe directrix for the parabola (y + 1)%2 = —6(x — 3)?
@ x=3 (b) x=3 ©y=-3 (dy=3
2. What isthe focus for the parabola (y + 1)2 = —6(x — 3)?
@G- OG- © Gy (d 3 -3
3. What are the vertices for the ellipse

x—D? (y—2°%
s ' » -

(@ (22 and (4,2) (b) (—4,2) and (6,2)
(©) (1,—3)and (1,7) (d) (1,—1)and(1,5)

1?
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4. What arethefoci for the ellipse
u—bz+@—a2_

1?
9 25
(@ (=3,2)and (5,2) (b) (1—+/34,2)and (1+ v/34,2)
(©) (1,—2)and (1,6) (d) (1,2 —+/34) and (1,2 + +/34)
5. Which lineis an asymptote for the hyperbola
2
wo52_ YTV,
4
@y=2x-1 (b) y=—-2x-9
1 7 1 3
(C)y=§x—§ (d)y=—§x+§
6. Solvefor y.
o =87
(x—4) 5 =1

@ y=6+£5/-14+x—-42 (b) y=6+£5/1—(x —4)?2
(€ y=-6+5/1+x—-42 (d y=-6+5/1—(x—4)7?

7. What isthe center and radius for thecircle (x + 3)2 + (y — 4)2 = 9?
(@) Thecenteris(—3,4), and theradiusis 81.

(b) Thecenteris(—3,4), and theradiusis 3.
(c) Thecenteris(3,—4), and theradiusis 81.

(d) Thecenteris(3, —4), and theradiusis 3.

8. Thegraphin Figure 12.31 isthe graph of which equation?
@ y*=4 (b)) y’=—4 (o) x*=—4y (d) x*=4y

9. Findanequation of theellipsewith vertices (8, —6) and (8, 4) with afocus

at (8,2).
x—-8?% (y+1? (x—82 (y+1?
@ 6 T 3B ! () % T 18 1
_ g2 2 a2 2
© &= _O0FD_ ) 682 O+ D®

16 25 25 16
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5r 51

4 4+

3 3k

2 2r
19 \P ="
1 I L L 1 ) L J 1 I 1 l\\x‘\ /’1/7 1 1 J
5 4 -3 -2 -1 1 2 3 4 5 -5 -4 -3 -2 -1 - \2\ 3 4 5
________ T e T
2 = 2t =

3+ 3k

4 -4+

5L 5L

Fig. 12.31. Fig. 12.32.

10. Which equation isthe equation of ahyperbolawith center (1, 0) and with
asymptotey = 2x — 27?

— 12 2
@ yz—(x A b L +@x-12=1
4 4
— 12 2
GRS @ (c-D?-2 =1
11. Thegraphin Figure 12.32 is the graph of which equation?
2 2
2 y_ =1 )C_ 42 =1
@ x5 () 5~
2 2
y_ —x2=1 2 _ x_ =1
© 5 —x @ 5
SOLUTIONS
1B 2.A 3.C 4.C 5A 6.A

7.B 8.D 9.A 10.D 11.D



Trigonometry

CHAPTER

Trigonometry has been used for over two thousand years to solve many real-
world problems, among them surveying, navigating, and problems in engineering.
Another important useis analytic—the trigonometric functions and their graphsare
important in several mathematics courses. The unit circle is the basis of analytic
trigonometry. The unit circle is the circle centered at the origin that has radius 1.
See Figure 13.1.

Angles have two sides, theinitial side and the terminal side. On the unit circle,
the initial side is the positive part of the x-axis. The termina side is the side that
rotates. See Figure 13.2

A positive angle rotates counterclockwise, . A negative angle rotates
clockwise, ~. Angles on the unit circle are often measured in radians. Radian
measure is based on the circumference of the unit circle, C = 2xr. Theradiusis
1, so 2nr = 2. An angle that rotates al the way around the circleis 2 radians,
half-way around is radians, one-third theway is §(27) = & radians, and so on.
The relationship 2 radians = 360° gives us two equations.

T radians = 1° and @ = 1radian
180 T

@- C

opyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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——&

2 92~
Terminal
Side
A~
7 ~
/
\
// \
\
L J 1 { 1 j
2 2 -2 -1 ! Initial 2
\ , Side
\
N /
~ il
- S
2L 2l
Fig. 13.1. Fig. 13.2.

These equations help us to convert radian measure to degrees and degree measure
to radians. We can convert radians to degrees by multiplying the angle by 180/ .
We can convert degrees to radians by multiplying the angle by 7 /180.

EXAMPLES

e Convert 47 /5 radians to degree measure.
Because we are going from radians to degrees, we will multiply the angle by

180/7.

47 180

RidE Y YV
5 =&

e Convert 57 /6 radians to degree measure.

5

7 gO = 150°
6 =

e Convert 48° to radian measure.
Because we are going from degrees to radians, we will multiply the angle by

7 /180.
T 4 .
4 . —_— = —
8 180 — 15 radians
e Convert —72° to radian measure.
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Two angles are coterminal if their terminal sides are the same. For example, the
terminal sides of the angles 300° and —60° are the same. See Figure 13.3.

2~

300

N

—60°

2L
Fig. 13.3.

Two angles are coterminal if their differenceisamultiple of 360° or 27 radians.
In the example above, the difference of 300° and —60° is 300° — (—60°) = 360°.

EXAMPLES

Determine whether or not the angles are coterminal .

18° and 738°

Isthedifference between 18° and 738° amultiple of 360? 738° —18° = 720°,
720° = 2 - 360°, so the angles are coterminal.

—170° and 350°

350° — (—170°) = 350° + 170° = 520° and 520° is not a multiple of 360°,
so the angles are not coterminal.

/8 radians and — 7 /8 radians
Isthe difference of /8 and — 7 /8 amultiple of 27?

7 8
%— (——ﬂ> = %T = 7 radians

Because & radians is not a multiple of 2 radians, the angles are not
coterminal.
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Every angle, 0 (the Greek |etter theta), has a reference angle, 6, associated with
it. The reference angle is the smallest angle between the terminal side of the angle

and the x-axis. A reference angle will be between 0 and rz /2 radians, or 0° and 90°.
The reference angle for all of the angles shown in Figures 13.4 through 13.7 is .

§=14z g=23r
w/6
/6
Fig. 13.4. Fig. 13.5.
6=71¢ 6=1=
/6
/6
Fig. 13.6. Fig. 13.7.

The xy plane is divided into four quadrants. The trigonometric functions of
angles in the different quadrants will have different signs. It is important to be
familiar with the signs of the trigonometric functions in the different quadrants.
Onereason is that formulas have + signsin them, and the sign of + or — depends
on the quadrant in which the angle lies. Before we find reference angles, we will
become familiar with the quadrantsin the xy plane. (see Figure 13.8.)

EXAMPLES
Determine the quadrant in which the point lies.
e (5 -3
x = 5ispositive, and y = —3 isnegative, the point isin Quadrant 1V.
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@’_

Quadrant IT Quadrant I
Angles between Angles between
m/2 and 7 0 and 7/2
z is negative and x is positive and
y is positive y is positive
Quadrant III Quadrant IV
Angles between Angles between
m and 37/2 3w/2 and 27
z is negative and z is positive and
y is negative y is negative
Fig. 13.8.
e (47
Both x = 4 and y = 7 are positive, the point isin Quadrant I.
e (-1 -6
Both x = —1 and y = —6 are negative, the point isin Quadrant I11.
e (2 10)

x = —2isnegative, y = 10 is positive, the point isin Quadrant |1.
Below is an outline for finding the reference angle.

1. If theangleisnot between O radiansand 27 radians, find an angle between
thesetwo anglesby adding or subtractingamultipleof 25r. Call thisanglef.

2. If g isQuadrant I, 6 isits own reference angle.
3. If 6 isinQuadrant Il, the reference angleisz — 6.
4. If 6 isin Quadrant I1l, the reference angleis® — .
5. If 6 isin Quadrant 1V, the reference angleis 2r — 6.
EXAMPLES
Find the reference angle.
9 9
[ ] = —
8

This angle is in Quadrant Il (bigger than 7 but smaller than 37 /2),
00 =97 /8— 7w =m/8.
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This angle is not between 0 and 27, so we need to add or subtract some
multipleof 2 so that we do have an angle between 0 and 2rr. The coterminal
angleweneedis7n/3—2n = Tn/3—6n/3 = n/3, t/3isitsown reference
angle because it isin Quadrant I, s0 6 = 7/3.

o 0

_571
7

This angle is in Quadrant I (between /2 and ), 00 = 7 — 57/7 =
/7 — 57 )7 = 27/7.
9 — 2

* VT3
This angle is not between 0 and 2r. It is coterminal with 27 + (=27/3) =
6r/3—2n/3 =4r/3. Theanglesarein Quadrant 111,506 = 47 /3 — 7 =
47/3 — 3 /3 =n/3.

Therearesix trigonometric functions, but four of them arewrittenintermsof two
of the main functions—sine and cosine. Although trigonometry was developed to
solve problems involving triangles, thereis avery close relationship between sine
and cosine and the unit circle. Suppose an angle 8 isgiven. The x-coordinate of the
point on the unit circlefor 6 is cosine of the angle (written cos#). The y-coordinate
of the point is sine of the angle (written sin6). For example, suppose the point
determined by the angle 6 is (3/5, 4/5). Then cosé = 3/5and sind = 4/5. See
Figure 13.9.

e 0

cosf =z
sing =y

(z,y)

Fig. 13.9.



(zm’_ CHAPTER 13 Trigonometry
EXAMPLES
Find sin6 and cosé.

—_
|
-
S
—

<

Fig. 13.10.

sin® = +/3/2 and cosf = —1/2

T
»ﬁ-lw
|
5

Fig. 13.11.

sing = —+/7/4and cosd = —3/4

The equation for the unit circleis x2 + y2 = 1. For an angle 8, we can replace
x with cosé and y with sing. This changes the equation to cos?6 + sin®6 = 1
(cos? & means (cos®)? and sin?6 means (sin6)2). Thisis an important equation.
It allows us to find cosé if we know sing and siné if we know cos6. Solving
this equation for cosé gives us cosd = ++v/1 — sin?6. Solving it for siné gives
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ussing = ++/1— cos?d. For example, if we know sing = 1/2, we can find

CoSs6.
1 2
cosh = +y/1—s§n?0 =+ /1~ (E) :i,/g :i?

Iscos® = +/3/2 or —+/3/2? We cannot answer this without knowing where 6 is.
If we know that 6 isin Quadrants | or IV, then cosd = +/3/2 because cosine is
positive in Quadrants | and 1V. If we know that 0 isin Quadrants Il or 11, then
cosf = —+/3/2 because cosine is negative in Quadrants |1 and I11.

EXAMPLES

Find sin® and cos6.
e Thetermina point for 6 is (—12/13, y), and 6 isin Quadrant II.
cosd = —12/13

Issind = /1—

Because the y-valuesin Quadrant |1 are positive, siné is positive.

snd— 1 12\*> [25 5
B 13) ~ V169 13

e Thetermina point for 6 is (x, —1/9), and 0 isin Quadrant I11.

Both sineand cosine are negative in Quadrant 11, so wewill usethe negative
sguareroot. Usingsing = —1/9, we have

CcosO = 1 ! 2— ,/80— 45
o 9/ 81 9

The values for sine and cosine of the following angles should be memorized:
0,7/6, /4, w/3, and /2. See Figure 13.12.
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All of these angles are aso reference angles in the other three quadrants. You
should either memorize or be able to quickly compute them. The information isin

the table below.
Table13.1

0 cosf  siné 0 cos®  sind

0 1 0 b4 -1 0
Quadrant | 3 ? % Quadrant 111 T+ %= %’ —§ —%
Quadrant | ey 4 @ Quadrant 111 T+ %= o —‘/72 —“/TE
Quadrant | z % § Quadrant 111 T+%= %” —% —@

z 0 1 s 0 -1
Quadrant!l 7 -%=2% -3 ¥ Quadantiv 22r-%=% 1 -
Quadrantll 7 — 7 = 3r —g @ Quadrant IV 27 — 7 = 77” @ —g
Quadrant!l 7 —% =% —§ 3 Quadrantlv 27 - % =4 § -1

Theother trigonometric functions aretangent (tan), cotangent (cot), secant (sec),
and cosecant (csc). All of them can be written as aratio with sine, cosine, or both.

cosfd

cotf = — =

siné

X
y
11
y
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Sine and cosine can be evaluated at any angle. This is not true for the other
trigonometric functions. For example tan/2 = sinm/2/cosn/2 and secr/2 =
1/cosm /2 are not defined because cossr /2 = 0. We can find all six trigonometric
functions for an angle 6 if we either know both coordinates of its terminal point or
if we know one coordinate and the quadrant where 6 lies.

Before we begin the next set of problems, we will review a shortcut that will
save some computation for tand. A compound fraction of the form (a/b)/(c/b)
simplifiestoa/c.

aflb_a ¢ a b a
c/b b b b ¢ ¢
EXAMPLES
1/8 1 -2/3 2 5
e — = s = 7 -
58 5 1/3 1
4/7 4 1/9 1
e — = — = - =
2/7 2 -5/9 5
Find all six trigonometric functionsfor 6.
e Thetermina point for 6 is (24/25, 7/25)
cosf = 24 sing = /
= > =
sech = 25 csch =
=2 =
tanf = /2 _ ! coto =
©24/25 24 N
o 0=m/3
. 3
cosh = — sng = £
2
2 2
secHd =2 CXCh = — = f
V3 3
3/2 3 1 3
tm@:f—/zizﬁ COtG:—:£
1/2 1 J3 3
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e 0=51/6
V3 . 1
o= 2> 6 ==
cos 5 sin >
2 2
sec@:——:—£ csch =2
V3 3
1/2 1
tanf = / :——:—E cotd = —+/3
—/3/2 V3 3

e The x-coordinate of 6 is 2/5, and 6 isin Quadrant 1V.

2 2\ 2 V21
9 = = 9 = — 1 — — = -
COS 5 SN (5) z
€cd — 2 cp 5 _ 5V
2 N
—/21/5 V21 2 221
2/5 2 J21 21

The graph of atrigonometric function is arecord of each cycle around the unit
circle. For thefunction f(x) = sinx, x istheangleand f (x) isthe y-coordinate of
the terminal point determined by the angle x. Inthefunction g(x) = cosx, g(x) is
the x-coordinate of the terminal point determined by the angle x. For example, the
point determined by the angle /6 is (v/3/2, 1/2), s0 f(/6) = sinn/6 = 1/2
and g(7/6) = cosn/6 = +/3/2. We will sketch the graph of f(x) = sinx, using
the pointsin Table 13.2.

Table 13.2
x sinx Plot this point
-2 sin(—27) =0 (=27, 0)
—37/2 sin(-3r/2) =1 (=37/2,1)
- sin(—7) =0 (—=m, 0)
—/2 sin(—n/2) = -1 (—m/2,-1)
0 sn0=0 0,0
/2 snr/2=1 (r/2,1)
T snt =0 (, 0)
3r/2 sin3r/2=-1 3r/2,-1)

27 sin2r =0 (2m, 0)
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[NENS
S E

Fig. 13.13.

The graph in Figure 13.13 is two periods from the entire graph. This pattern
repeats itself in both directions. Each period begins and ends at every multiple of
2 ..., [—27,0], [0,27], [27, 47], .... Thegraphbetween0and 2z represents
sineon thefirst positive cycle around the unit circle, between 27 and 4 represents
the second positive cycle, and between 0 and —27 represents the first negative
cycle.

Thegraphfor g(x) = cosx behavesinthesameway. Infact, thegraph of g(x) is
thegraph of f(x) shifted horizontally 7z /2 units. (Wewill seewhy thisistruewhen
wework withright triangles.) Thegraph for g(x) = cosx isshownin Figure 13.14.

2

St
= _;;\72

-1

-2

AN

Fig. 13.14.

From their graphs, we can tell that f(x)

—sinx), and g(x) = cosx is even (cos(—

= sinx isan odd function (sin(—x) =
x) = cosx). We can aso see that their

domainisall x and their rangeisall y values between —1 and 1.
The graphs of f(x) = sinx and g(x) = cosx can be shifted up or down, left

or right, and stretched or compressed in the

same way as other graphs. The graphs
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of y=c+snxandy = ¢ + cosx are shifted up or down ¢ units. The graphs of

y =asinx and y = a cosx areverticaly stretched or compressed, and the graphs
of y =sin(x — b) and y = cos(x — b) are shifted horizontally by b units.

EXAMPLES

The dashed graph in Figures 13.15 through 13.18 is one period of the graph of
f(x) = sinx, and the solid graphs are transformations. Match the equations below
with their graphs.

wlgL

Fig. 13.15. Fig. 13.16.

N
s
!

@l

—
= o
/
~
-
-~
e

051
1k -
-150- -4-
Fig. 13.17. Fig. 13.18.

|
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of§
~
Y
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e y=23sin(x + /3

The graph of this function is vertically stretched by afactor of 3, so we will
look for a graph whose y values lie between —3 and 3. The graph will also
be shifted to the left by /3 units. The graph for this function is shown in
Figure 13.16.

e y=23sin(x —n/6)

The graph of thisfunctionisalso vertically stretched by afactor of three, but
it is shifted to the right by 7 /6 units. The graph for this function is shown in
Figure 13.18.

o y=3sin(x+17/2)

The graph of thisfunction isvertically compressed by afactor of 1/2, so we
will look for a graph whose y values are between —1/2 and 1/2. The graph
will aso be shifted to the left by /2 units. The graph for this function is
shown in Figure 13.17.

e y=2sin(x — /4

The graph of this function is vertically stretched by afactor of 2, so we will
look for agraph whose y values are between —2 and 2. It will also be shifted
to the right 7z /4 units. The graph for this function is shown in Figure 13.15.

Transformations of the graphs of sine and cosine have names. The amplitudeis
the degree of vertical stretching or compressing. The horizontal shift is called the
phase shift. Horizontal stretching or compressing changes the length of the period.
For functions of the form y = asink(x — b) and y = a cosk(x — b), |a| isthe
graph’s amplitude, b isits phase shift, and 2/ k isits period.

EXAMPLES

Find the amplitude, period, and phase shift.
e y=-4sn2(x —x/3)

The amplitudeis|a| = | — 4| = 4, theperiodis27/k = 27 /2 = r, and the
phase shiftisb = /3.

e y=—CoS(x +7/2)

The amplitudeis|a| = | — 1] = 1, theperiod is 27 /k = 27 /1 = 27, and
the phase shiftisb = —x /2.
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o y=3C08(2x + 27/3)

The amplitudeis |1/2] = 1/2. In order for usto find k and b for the period
and phase shift, we need to writethefunctionintheform y = a cosk(x — b).
We need to factor 2 from 2x + 27/3.

2x+%=2-x+2-%:2(x+%>

The function can bewrittenasy = % cos2(x +m/3). Theperiodis2r/k =
2 /2 = 7, and the phase shiftisk = —m /3.

Sketching the Graphs of Sine and Cosine

We can sketch one period of the graphs of sine and cosine or any of their transfor-
mations by plotting five key points. These pointsfor y = sinx and y = cosx are
x =0, n/2, 7, 3n/2 and 2. These points are the x-intercepts and the vertices
(wherey = 1or —1). For thefunctionsy = a sink(x —b) and y = a cosk(x — b),
these points are shifted to b, b+ &, b+ %, b+ 3%, and b + 2.

EXAMPLES

Sketch one period of the graph for the given function.

o y=—3c0oS}x

Table 13.3
X —3cos %x Plot this point
b=0 ~3c0s3(0) = —3c0s0 = —3 ©0.-3)
b+%=0+%%)=0+n—n —3cos%(n)=—3cos:r/2=0 (rr, 0)
b+F =047 =0+2r =21 —3c0s5(27) = —3cosw =3 (2r.3)
b+ 3 =0+ 2 =0+3r=3n ~3c0s(37) = —3cos37/2 =0 (37,0
2
b+ 3 =0+, =0+4r =4n ~3cosi(4m) = —3cos2r = -3 (47, —3)
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-7 2w 3

2k

-34

4L
Fig. 13.19.

e y=5sn3Bx+7/2)

We need to write the function in theform y = a sink(x — b) so that we can

find k and b.
T 3 7 b4 b4
A+ =3+ L =3.x+3 x+—)
* 3 32 6
Table13.4

x 5sin3(x + 7/6) Plot this point
b=—-n/6 5sin3(—m/6+ 7/6) = 5sn0=0 (—7/6,0)
b+ % =—%+75=0 5sin3(0+ 7/6) = 5sin/2="5 (0,5)
b+%=-%+%5=n/6 5sin3(n/6+/6) =5sn7T =0 (/6,0)
b+ ¥ =—%+ 35 =n/3 5sin3(r/3+ 7/6) = 5sin3r/2 = —5 (7/3, —5)
b+ =2+ =n/2 5sin3(r/2+ 7/6) = 5sin27r =0 (/2,0

The pointsin Table 13.4 are used to construct the graph in Figure 13.20.

PRACTICE

For Problems 1-3, match thefunction with itsgraph shown in Figures 13.21-13.23.
The dashed graph is the graph of one period of y = cosx. The solid graph is the

graph of one period of atransformation.
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Fig. 13.22. Fig. 13.23.
1. y=2cos(x —m/3)
2. y=3cos(x +m/2)
3. y=3cos(x —7)
4. Find the amplitude, period, and phase shift for y = —3 cos%(x —1/4).
5. Find the amplitude, period, and phase shift for y = 6sin(2x — /2).
6. Sketch one period for the graph of y = 3cos 3 (x + /4).
7. Sketch one period for thegraph of y = —1+ 2sin(x — n/3)
SOLUTIONS

1. Figure13.22
2. Figure13.21
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3. Figure13.23
4. The amplitudeis| — 3| = 3, the period is 2% = 27 - 3/2 = 37, and the
o 2/3
phase shiftisb = 7 /4.

5. In order to find £ and b, we need to write the function in the form y =
asink(x —b).

The function can be written as y = 6sin 2(x — r/4). Now we can see that
theamplitudeis|6| = 6, theperiodis2r /2 = 7, and the phase shiftis /4.

6. Plot pointsfor x = —m /4, 3n/4, 7n/4, 11lx/4, and 157 /4.
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Fig. 13.24.

7. Plot pointsfor x = n/3, 57/6, 47 /3, 117 /6, and 7 /3.

Fig. 13.25.
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Graphs for Other Trigonometric Functions

Because cscx = 1/sinx, the graph of y = cscx has a vertical asymptote every-
where y = sinx has an x-intercept (where sinx = 0). Because secx = 1/ cosx,
the graph of y = secx has a vertical asymptote everywhere y = cosx has an
x-intercept. Theperiodfor y = cscx and y = secx is2x. Thegraphfor y = cscx
is shown in Figure 13.26, and the graph for y = secx isshown in Figure 13.27.
The domain for y = cscx is al rea numbers except for the zeros of
sinx, x#..., —2n, —m, 0, m, 2m,.... Therange is (—oo, —1] U [1, o0). The
domain for y = secx is al rea numbers except for the zeros of cosx, x #
eov, —3m/2, —m/2, /2, 3/2,.... Therangeis (—oo, —1] U [1, o0). Because

e
________ﬂ.___._.___.._,_.

[

ol -
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i

Fig. 13.26.
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y = sinx isan odd function, y = cscx isalso an odd function. Because y = cosx
isan even function, y = secx isalso an even function.

We can sketch the graphs of y = cscx and y = secx using the graphs of
y = sinx and y = cosx. We will sketch the vertical asymptotes as well as the
graphsof y = sinx or y = cosx using dashed graphs.

The graph of y = sinx is given in Figure 13.28. Vertica asymptotes are
sketched for every x-intercept.

. . 5~ . .
| ) I }
1 | 4 [ i
| | | 1
| | 3+ ! i
! | t l
1 [ 2r [ |
! i ] |

LT~ 1 =~
| N i |
|,/ 1 Ny 1 - 1 \\1 1 J

—er - w3 7 2 EN ¥
! | - -1F = ]
| 1 ! I
1 1 2 i |
] i ] |
' i -3 ' I
i | i 1
I ) Ar | '
| I 5L I !

Fig. 13.28.

The vertex for each piece on the graph of y = cscx isalso avertex for y = sinx.

. 5—. .
| ! | |
1 1 4 [ !
| | 1 i
| I 3 1 )
1 i i |
i ] 2r I I
| | B | I
I//’.\\ ) 1 //’\\l {
L ! N ] / 1 N i j
—or =3 g I 7 LA S
i z UL o~
| I l I
| ! 2 1 |
i i ! i
i ) S [ t
| | B I [
| I -4 l I
I l 5L 1 l
Fig. 13.29.

Thenwecanplot apointtotheleft andright of each vertex (stayinginsidethevertical
asymptotes) to show how fast the graph gets close to the vertical asymptotes.
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Fig. 13.30.

Now we can draw |_J or () through the points.

Fig. 13.31.

These steps also work for the graph of y = secx.
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The period for the functions y = tanx and y = cotx isx instead of 2 asitis
with the other trigonometric functions. These graphs also have vertical asymptotes.
The graph of y = tanx (= sinx/cosx) has a vertical asymptote at each zero of
y = cosx. Thegraph of y = cot x (= cosx/ sin x) hasavertical asymptote at each
zero of y = sinx. The graph of y = tanx is shown in Figure 13.32, and the graph
of y = cot x isshown in Figure 13.33.

The domain of y = tanx is all real numbers except the zeros of y = cosx,
x # ..., =31/2, —n/2, w/2, 3n/2,.... The domain for y = cotx isall rea
numbers except for the zerosof y = sinx,x # ..., —2n, —x, 0, m, 27, ....The
rangefor both y = tanx and y = cot x isall real numbers. Both are odd functions.

. 5 —
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Fig. 13.32.
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Fig. 13.33.
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The transformations of these are similar to those of the other trigonometric
functions. For functionsof theformy = a csck(x —b) and y = a seck(x — b), the
periodis 2/ k, and the phase shiftisa. For functionsof theformy = a tank(x —b)

and y = acotk(x — b), the period is 7/ k, and the phase shift is . The term
amplitude only applies to the sine and cosine functions.

Right Triangle Trigonometry

Using trigonometry to solve triangles is one of the oldest forms of mathematics.
One of its most powerful uses is to measure distances—the height of a tree or
building, the distance between earth and the moon, or the dimensions of a plot of
land. The trigonometric ratios below are the same as before with the unit circle,
only the labels are different. We will begin with right triangles.

In aright triangle, one angle measures 90° and the sum of the other anglesis
also 90°. The side opposite the 90° angle isthe hypotenuse. The other sides are the
legs. If we let 6 represent one of the acute angles, then one of the legsis the side
opposite 0, and the other side is adjacent to 6. See Figure 13.34.

Hypotenuse
Opposite
[
Adjacent
Fig. 13.34.
o . Ad :

Sng — pposite s — djacent tang — Opposte
Hypotenuse Hypotenuse Adjacent
__ Hypotenuse erd — Hypotenuse cotd — Adjacent
~ Opposite ~ Adjacent ~ Opposite

We can get theidentity sin?# + cos? 6 = 1 from the Pythagorean Theorem.
Opposite? + Adjacent? = Hypotenuse?
Divide both sides by Hypotenuse?.

Opposite )2 < Adjacent \? (Hypotenuse 2
- +{—F = —
Hypotenuse Hypotenuse Hypotenuse

Sin%6 + cos?h =1
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From this equation, we get two others, one from dividing both sides of the equation
by sin?@, and the other by dividing both sides by cos? 6.

sing 2+ cosé 2_ 1 \?
sing sng )  \sino
1+ cot?0 = csc?d
sing 2+ cosé 2_ 1 \?
cosd cosd /] ~ \cos#
tan?6 + 1 = sec?6

EXAMPLES

e Findall six trigonometric ratios for 6.

L] N
4
Fig. 13.35.
. Opposite 3 Adjacent 4
sSnf = —— = — coSf = —————— = —
Hypotenuse 5 Hypotenuse 5
0 .

tang — pposte _ 3

Adjacent 4
90— Hypoter?use _ § €l — Hypgtenuse _ §
Opposite 3 Adjacent 4

cotd — Adjacent 4

~ Opposite 3

e FindsnA, cosB, secA, csc B, tan A, and cot B.

B

13

12
Fig. 13.36.
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The hypotenuse is 13, the side opposite /A is5, so sinA = 5/13. The

side adjacent to /B is 5, so cosB = 5/13. The other ratios are seCA =
13/12, csc B = 13/12, tan A = 5/12, and cot B = 5/12.

The side opposite ZA is the side adjacent to £ B, and the side adjacent to ZA
isopposite ZB. Thisiswhy sine and cosine, secant and cosecant, and tangent and
cotangent are co-functions. Because ZA + /B = 90°, we have /B = 90° — ZA.
These facts give us the following important relationships.

Sin A = cosB = cos(90° — A) COSA =SinB =sin(90° — A)
tan A = cot B = cot(90° — A)
CSCA = seC B = sec(90° — A) SeCA = csc B = ¢sc(90° — A)

cot A =tan B =tan(90° — A)

To “solve atriangle” meansto find al three angles and the lengths of all three
sides. For now, we will solveright triangles. Later, after covering inverse trigono-
metric functions, we can solve other triangles. When solving right triangles, we
will use the Pythagorean Theorem as well as the fact that the sum of the two acute
anglesis 90°. Except for the angles 30°, 45°, and 60°, we need a calculator. The
calculator should be in degree mode. Also, there are probably no keys for secant,
cosecant, and cotangent. You will need to usethereciprocal key, marked either % or

x~1. The keys marked sin~%, cos2, and tan~! are used to evaluate the functions
covered in the next section.

EXAMPLES

e Solvethetriangle.

30°

a

Fig. 13.37.
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The side opposite the angle 30° is 3, so sin30° = %’ We know that

sin30° = 1/2. This gives us an eguation to solve.

1_3
2 ¢
c=6

We could use trigonometry to find the third side, but it is usualy easier to
use the Pythagorean Theorem.

a2+32=62
a’>=36-9=27

a=+27=3V3
A =90° — B =90° — 30° = 60°.

In some applications of right triangles, we are given the angle of elevation or
depression to an object. The angle of elevation is the measure of upward rotation.
Theangle of depression isthe measure of the downward rotation. See Figure 13.38.

Elevation

Depression

Fig. 13.38.

A person is standing 300 feet from the base of a five-story building. He

estimates that the angle of elevation to the top of the building is 63°.
Approximately how tall isthe building?
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We need to find b in the following triangle.

63°
300
Fig. 13.39.

We could use either of the ratios that use the opposite and adjacent sides,
tangent (opposite/adjacent) and cotangent (adjacent/opposite). We will use
tangent.

Opposite b
tan 63° = = —
Adjacent 300

This gives us the equation tan63° = b5/300. When we solve for b, we
have » = 300tan63° ~ (300)1.9626 ~ 588.78. The building is about
589 feet tall.

A guy wireis 60 feet from the base of atower. The angle of elevation from
the top of the tower along the wire is 73°. How long is the wire?

We need to find ¢ in the following triangle.

73°
60’
Fig. 13.40.
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Wecould useeither cosine (adjacent/hypotenuse) or secant (hypotenuse/adjacent).

Using cosine, we have cos73° = 60/c. Solving this equation for ¢ gives us
¢ = 60/ cos73° ~ 60/0.2924 ~ 205. The wireis about 205 feet long.

PRACTICE

1. Findall six trigonometric ratios for 6.

V3
Fig. 13.41.

2. Solvethetriangle.

60°
a

Fig. 13.42.

3. A planeisflying at an altitude of 5000 feet. The angle of elevation to the
plane from a car traveling on a highway is about 38.7°. How far apart are
the plane and car?

SOLUTIONS
1. sno = % Ccosf =
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2. Wecould useany of theratiosinvolving the hypotenuse. Wewill use cosine:

cos60° = a/4. Since cos60° = 1/2, we have 1/2 = a/4. Solving for a
givesusa = 2.

24 p? =4
b=a2-22=112=23
/A =90° — 60° = 30°
3. Weneed tofind ¢ in the following triangle.

5000

ml 38.7°
Fig. 13.43.
. 5000
sin38.7° =
C
5000 N 5000

~ 7997

“TSn387 06252
The plane and car are about 8000 feet apart.

Inverse Trigonometric Functions

Only one-to-one functions can have inverses, and the trigonometric functions are
certainly not one to one. But we can limit their domains and force them to be one

to one. Limiting the sine function to the interval from x = —7/2tox = n/2
makes f(x) = sinx one to one. The graph in Figure 13.44 passes the Horizontal
Line Test.

Thedomain of thisfunctionis[—n/2, /2], and therangeis[—1, 1]. If welimit
thecosinefunctiontotheinterval fromx = Otox = =, wehaveanother one-to-one
function. Its graph is shown in Figure 13.45. The domain of thisfunction is[O0, ]
and therangeis[—1, 1].

By limiting the tangent function fromx = —7/2tox = /2, f(x) =tanx is
onetoone. Itsdomainis (—m/2, m/2), and itsrangeis al real numbers.



CHAPTER 13 Trigonometry

[
B
|
SIE]
T
Wi -
3
|
3
|
15
T
/
3

-1 -1

2L 2L
Fig. 13.44. Fig. 13.45.

. 5 — .

! |

i 4+ t

i 1

! 3 i

| i

1 2 i

| )

o Ar )

L 1 1 ]
- -3 3 w
Ay 1
| i
1| 2F |
| i
1 -3 1
| )
ifo4r I
! 5L |

Fig. 13.46.

There are two notations for inverse trigonometric functions. One uses “—1,"
and the other uses the letters arc. For example, the inverse sine function is noted
assin~! or arcsin. Remember that for any function f(x) and itsinverse f~1(x),
F(f1(x)) = x and f~1(f(x)) = x. In other words, a function evaluated at its
inverse “cancels’ itself.

cos Y(cosw/3) = 7/3 sin(sin"t1/4) = 1/4
tan(tan™11) =1 tan"L(tano) = 0

The x and y values are reversed for inverse functions. For example, if (4,9) isa
point on the graph of f(x), then (9, 4) is a point on the graph of f~1(x). This
means that the y-valuesfor the inverse trigonometric functions are angles. Though
we will need to use a calculator to evaluate most of these functions, we can find a
few of them without a calculator. For cos™1 % ask yourself what angle (between O
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and i) has a cosine of 1/2? Because cosw/3 = 1/2, cos™* % = %. When evaluat-
ing inverse trigonometric functions, we need to keep in mind what their range is.
Thedomainof f(x) = sin(x) is[—x/2, /2] (Quadrants| and IV), so the range of
y =sin"txis[—n/2, 7/2]. Thedomainof f(x) = cosx is[0, ], so therange of
y = cos 1x is [0, 7] (Quadrants | and I). And the domain of f(x) = tanx
is (—m/2,7,2), o the range of y = tanlx is (—/2, 7/2) (Quadrants |
and V).

EXAMPLES
e sin1.2/2
Becausesinz/4 = +/2/2,sin"1/2/2 = n/A.
o tan~1.3
Becausetan/3 = /3, tan"1 /3 = /3.
o cos (-1
cos 1(—1) = = becausecosz = —1.
e tan~1(1/3)

None of the important angles between —n/2 and 7 /2 has a tangent of
1/3, so we need to use a calculator to get an approximation: tan—1(1/3) ~
0.32175.

e sin~Y(cosw/6)
cos/6 = /3/2, so we need to replace cosx/6 with +/3/2. This gives us
sin~1/3/2. Because sin/3 = v/3/2, sin"1/3/2 = /3.

e cos(tan—1(—1))

What anglein theinterval (—m /2, 7 /2) hasatangent of —1? That would be
—n/4, sotan~1(—1) = —n /4.

1)) cos (T = Y2
cos(tan™*(~1)) = cos 4) =
In the next set of problems, we will use right triangles to find the exact value
of expressions like cos(sin~12/3). We will begin by letting sin~12/3 = 6. We
can think of sin"12/3 = # assind = 2/3. This alows us to use (Opposite/

Hypotenuse) to represent 2/3. We will create a right triangle with acute angle 6,
where the side opposite 6 is 2, and the hypotenuse is 3.



CHAPTER 13 Trigonometry

——&

T

Fig. 13.47.

We want cos6. We have the hypotenuse. We will use the Pythagorean Theorem
to find x: x2 4+ 22 = 32. Thisgivesusx = +/5 and cosé = +/5/3. Now we have
cos(sin~t2/3) = cosé = +/5/3.

EXAMPLE

e sin(tan—14/5)
Lettan—14/5 = 0, sotan6 = 4/5. We want aright triangle where the side
opposite 0 is 4 and the side adjacent to 0 is 5.

5
Fig. 13.48.

Solving 42 + 52 = x? givesus x = /16 + 25 = +/41.
4  4/4 .4 _ 441
tan g =9Sn6 =

Sh = —— = —— s0, Sin —_—
41

N

We will useinverse trigonometric functions to solve right triangles when we are
given one acute angle and the length of one side. We can also use them to solve
right triangles when we only have the lengths of two sides.

EXAMPLES

e Solvethetriangle.
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30°

5
Fig. 13.49.

We need to find the side opposite 6 or the hypotenuse. If we want to find
the side opposite 6, we can use tan30° = 1/+/3. If we want to find the
hypotenuse, we can use cos30° = +/3/2.

c0530<’=E
h
V3 5
2 h
2 1
h_g. 2 _10v3
V3 3
y
tan30° = =
5
1
J3 5
5 53

Thethird angleis 90° — 30° = 60°.
e Solvethetriangle. When rounding is necessary, give your solutions accurate
to one decimal place.

M 40°
T

Fig. 13.50.
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——&

. y X
sin40° = — cos40° = —
10 10

y =10sin40° ~ 6.4 x = 10c0s40° ~ 7.7

The third angleis 90° — 40° = 50°.
e Solvethetriangle. When rounding is necessary, give your solutions accurate
to one decimal place.

7
Fig. 13.51.

5% + 72 = h?
h =+/25+49 = /74

5
tand = -
2

5
6 =tan1 o~ 35.5°

o ~ 90° — 35.5° ~ 54.5°

e A 30-foot ladder is leaning against a wall. The top of the ladder is 24 feet
above the ground. What angle does the ladder make with the ground?

o4’ 30

Fig. 13.52.
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sno = 24
T30
24
0 =sn 1= ax531°
30

e Find x, the height of the triangle.

Fig. 13.53.

By viewing the triangle as two separate right triangles, the height of the
triangle is the length of one of the legs of the separate triangles. We only
need to use one of them.

V2
x
\45° ]
Fig. 13.54.
. X
sin45° = —
NG
1
x=ﬁ9n45°=ﬁ<—) =1
NG

We can solve other triangles using inverse trigonometric functions and the Law
of Sinesand/or the Law of Cosines. Although all triangles can be solved, sometimes
wearegiveninformation that istrue about morethan onetriangle or about atriangle
that cannot exist. In the following problems, we will usethe labelsin the following
triangles.
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4

Fig. 13.55.

Fig. 13.56.

The angles are A, B, and C. The sides opposite these angles are a, b, and c,
respectively.

We cannot solve a triangle if all we know are all three angles. Two triangles
can be different sizes but have the same angles. Also, we might be given an angle
with the side opposite the angle and another side that makes two trianglestrue. For
example, suppose we are told to find a triangle where ZA = 21°, a = 3, and
b = 8. There are two triangles that satisfy these conditions.

Triangle 1 Triangle 2
/A =21° /A =21°
/B~ 72.9° /B =~ 107.1°
ZC ~ 86.1° ZC ~ 52°

a=3 a=3
b=28 b=28
c~ 84 c~ 6.6

There are two triangles when bsihA < a < b. If we have another number in
additionto A, a, and b, then there will only be one triangle.

Asan exampleof atrianglethat cannot exist, let /A = 20°, b = 10,anda = 2.
Asyou can see in Figure 13.57, a is too short to close the triangle. This happens
whena < bsinA.
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Fig. 13.57.

We can use the Law of Sinesto solve atriangle if we know two sides and one
of the angles opposite these sides or two angles and one side (if we know two
angles, then we know all three because their sum is 180°). If do not have this
information, the Law of Cosines works. We can use the Law of Cosines when we
have two sides and any angle or when we have all three sides.

Hereisthe Law of Sines.

sinA_sinB_sinC
a b ¢

Thisisrealy three separate equations.

sinA_sinB sinB_sinC sinA_sinC

a b b ¢ a c
Hereisthe Law of Cosines.
a® = b? + ¢? — 2bc cos A
b? = a® + ¢® — 2ac cosB

c? = a? + b? — 2abcosC

EXAMPLES

Solvethetriangle. When rounding is necessary, give your solutions accurate to one
decimal place.
e /A=30°, /B=T70,anda =5

We will use the Law of Sines because we know an angle, A, and the side
oppositeit, a.
snA sSnB sin30° sSn70°
= —— becomes =
a b 5 b
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sin 30° B sin 70°

5 b
1/2  0.9397 _ .
% N (sin30° = 1/2, sin70° ~ 0.9397)

b ~ 10(0.9397) ~ 9.4
Now wewill use (sihA)/a = (sinC)/ctofindc. (£C = 180° — 30° — 70°

= 80°)
sin30° sin80°
5 - c
1/2 0.9848
5 ¢

¢ ~ 10(0.9848) ~ 9.8

e a=5 b=8 andc =12
Thereis not enough information to get one equation with one variable using
the Law of Sines, so we will use the Law of Cosines.

a? = b? + c2 — 2bccosA
52 = 8% 4 122 — 2(8)(12) cos A
—183 = —192cos A

61 _ Cos A
64
A =cos ! 61
64
A~ 17.6°

We can use either the Law of Sines or the Law of Cosinesto find ZB. The
Law of Sinesisalittle easier.

sinA_sinB

a b

sin17.6°_sinB

5 8
in17.6°

B~ sin~10.484 ~ 28.9°
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ZC ~ 180° — 17.6° — 28.9° ~ 133.5°

)

Fig. 13.58.

We will call the 120° angle A, then b = 10 and ¢ = 6. (It does not matter
which sideis b and which sideis ¢, aslong as we do not label either one of

them a.) Thereis not enough information to use the Law of Sines, so wewill
use the Law of Cosines.

a’ = bp? + c? — 2bccosA
a® = 10% + 6% — 2(10)(6) cos 120°
a® = 136 — 120(—0.5)

We can use either the Law of Sinesor the Law of Cosinesto find /B or ZC.
We will usethe Law of Sinesto find ZB.

sin 120° B sinB

14 10
V3 10 _ V3
— . —=29na8 nl120° = —
2 14~ Y Sn120" =
. 1043 .
B =snt (2—‘8/_> ~ sin"10.6186 ~ 38.2°

ZC =~ 180° — 120° — 38.2° ~ 21.8°
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PRACTICE

When rounding is necessary, please give your solutions accurate to one decimal
place. The anglesfor Problems 1-6 are in radians.

cos 1(cosn/8)

tan(tan—! —1)

cost1/2

sin~11/2

tan~10

sin"10.9

Solvethetriangle.

N o g > wDd P

12 20

T

Fig. 13.59.

8. A 20-foot ladder is leaning against awall. The base of the ladder is four
feet from the wall. What angle is formed by the ground and the ladder?

9. Solvethetriangle: /A =42°, a =11,andb = 6.
10. Find all three anglesfor the triangle whose sides are 6, 8, and 10.

11. A planeisflying over a highway at an altitude of 6000 feet. A blue car
is traveling on a highway in front of the plane and a white car is on the
highway behind the plane. The angle of elevation from the blue car to the
planeis45°. If the cars are two miles apart, how far isthe plane from each
car? (Hint: Consider the triangle formed by the cars and plane astwo right
triangles that share aleg.)

SOLUTIONS
1. m/8radians
2. —1radians



BYy——
/3 radians
/6 radians
O radians

Approximately 1.1 radians

Sha =

12 3
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x2 4122 = 202

a=sin_1§%36.9° x2 = 400 — 144

B ~ 90° — 36.9° ~ 53.1° X =+/256=16

4
Cosf = — =

6 = cos

20

—1

gl gl

20

g
4[
Fig. 13.60.

~ 78.5°

9. Wewill usethe Law of Sines twice.

sin42° . snB

6

snB = Esin42° ~ 0.365
11

B~ sin~10.365 ~ 21.4°



C ~ 180° — 21.4° — 42° ~ 116.6°
sin42°  sin116.6°
n c
_11sin116.6° _
T &§n4 -

10. Leta =6, b = 8, and ¢ = 10. We will first use the Law of Cosines to
find ZA. Then we will use the Law of Sinesto find ZB.

14.7

a® = b% + ¢ — 2bccosA
6% = 8% + 10 — 2(8)(10) cos A
—128 = —160cos A

4
— = COSA
5

4
A =cos ! £~ 36.9°

sn369° snB

6 8
8sn36.9° .
——————=138nB3B
6
=1 o 8 : o
B =39n 0.8~ 531 ésm36.9 ~ 0.8

C ~180° — 36.9° — 53.1° ~ 90°
11.

B 45 o -
Blue 2 miles White
Fig. 13.61.
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Let b represent the side of the original triangle that is opposite the angle

45°. Let w represent the side opposite /W, which isalso the distancefrom
the plane to the blue car. Two milesis 2(5280) = 10,560 feet.

6000
sin4s° = ——
w
6000 6000
W= — - = +/2(6000) ~ 8485.3
sin45  1//2

b? = 8485.3% + 10,5607 — 2(8485.3)(10,560) cos45°
b? ~ 56,793,637.9

b =~ /56,793,637.9 ~ 7536.2

The plane is about 8485 feet from the blue car and about 7536 feet from
the white car.

Miscellaneous Formulas

Theformulasin this section are used to find the exact value for more trigonometric
ratios than the main angles—0, /6, /4, = /3, =/2. Wewill find anglesthat are
half, double, or the sum or difference of these angles. These formulas are also used
to rewrite functions in aform that fits a calculus formula.

1. Addition and Subtraction Formulas
(@ sin(s +1t) = sinscost + coSs Sint
(b) sin(s —t) = sinscost — coss Sint
(c) cos(s + t) = coss cost — Sins sint
(d) cos(s —t) = coss cost + Sinssint

tans 4+ tant

e tan )= —— —

© tants+0 =T

tans — tant

f) tan(s —t) = ———

® (s ) 1+tanstant
2. Power Reduction Formulas
. 1 — cos2s
(@ sn’s=—""="

2
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1+ cos2s
b) cofs=——
(b) cos’s = =

1 — cos2s
0 tan?s=——
© s 1+ cos2s

3. Haf-Angle and Double Angle Formulas

@

(b)

(©)

(d)
(€)

(f)

Sin(s) _ 4 1— coss
o 2

1+ cos
cos(3) =,/ 11

2 2

s 1 — coss sins
tan <—) == =

2 sins 1+ coss

The sign of + or — depends on where the angle s /2 lies.

SiN2s = 2sSins COSs

C0S2s = COS2s — Sin®s = 1 — 2sin?s = 2cos?s — 1

2tans

tan2s = ————
1—tan?s

4. Product-to-Sum and Sum-to-Product Formulas

(@

(b)

(©)

(d)

()

(f)

. 1 . .
Sins cost = E[sm(s + 1)+ 9n(s —1)]
. 1 . .
coss Sint = E[sm(s + 1) —Sin(s —t)]
1
COSs COSt = é[cos(s + 1) 4+ cos(s — 1)]

1
sinssintzE[cos(s—t)—cos(s+t)]
sns +sinr = 2sn (25" cos (22

s = E——
2 2
sins —sns = 2cos [~ ) sin (=1
s — = —_—
2 2
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(g) coss + cost = 2cos (%) cos(s ; t)

. (s —t1
(h) COSS—COSI:—ZSIH(%) sin (s 5 )

EXAMPLES
o SN75

We can think of 75° as 45° 4 30°. This lets us use formula 1(a).

sin(s +¢) = Sins cost + CoSs Sint

sin75° = sin(45° 4 30°) = sin30° cos45° + cos30° sin 45°

e (Co0s15°

We will use formula 3(b) because 15° = 3.

coss— /1+ coss

2 2
cos15° = cos 30 :,/m

2 2
_ 1+¢§/2_\/%+%§_\/2+—2ﬁ
o 2 a 2 2
_24V3 _ V2+V3  V2+43
o 4 N2 o 2
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_‘(@)
o tan7r/12

Because Z = Z + Z we can use formula 1(e).
2 =413

tan(s + 1) tans 4+ tant
Ky =
1-—-tanstant
Ve T tanm/4 + tanw/3 1++/3
tan—:tan(— —): =
12 4 3 1—tanw/4tan/3  1—1(/3)

14+ +/3 _a+ V31 +/3)
1-v3 (1-V3)1+3

_1+2J3+ (V3)?

 1-(3)2

C1+42/3+3 4423 22+9
- 1-3 2 2
=—-2++3

e Ifcosd = 3/5and 6 isin Quadrant I, find sin 26.

By formula 3(d), sin26 = 2siné cos6. We need to find sin so that we can
use the formula

sin?6 4+ cos?h = 1
3\ 2
.2
N0 — =1
*’(5)

3\? 4
ing=[1—(=2) =2
s (5) :

. . 4 3 24
Sin20 = 2sin6 cosf = 2 <§> <§> =5
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o CO0?7/12 —sin®w/12
The expression looks like formula 3(e), where s = 7/12.

2

cos’ s — Sin’s = COS2s
v ) v T
=z i 2.
cos’ 75 — SN’ 15 cos( 12)
—cosT = V3
N 6 2
e Supposecos2d = 1/4. Find sin?é.
We will use formula 2(a).
g 170082 _1-3 3-3_3_ 3 _3
N 2 2 2 2 4.2 8
e Write cos* x without squaring any trigonometric functions.
We will use formula 2(b) twice.
cos® x = (cos? x)(cos? x)
_ (1+cos2x 1+ cos2x
B 2 2
1 1
= §(1+ C0S2x) - §(1+ C0S2x)
1
= Z(l + cos2x)(1 + cos2x)
1
= 7 (1+2cos2x + cos? 2x) Usethe formulafor s = 2x.
1 1+cos2-2x
=1 [1+ 2c0s2x + (%)}

1 1
=1 [1 + 2c0s2x + > 1+ cos4x)}
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e Rewrite cos2x cosbx asasum or difference.
Formula 4(c) tells us how to write the product of two cosines as a sum.

1
C0S2x cosbx = > [cos(2x + 5x) + cos(2x — 5x)]
1
=5 [cos(7x) + cos(—3x)]

1 .
= — (Ccos7x + cos3x) (Because cosine is even,
2
cos3x = cos(—3x).)

e Rewritesin3x — sin2x asa product.

Thisfits formula 4(f).
) : 3x+2x . 3x—2x 5 . x
sin3x — Sn2x = 2co0s > sin > _2cos7sm§
PRACTICE

1. Findtan 15° using the half-angle formula.
If sind = 2/3and 6 isin Quadrant |1, find sin 26.

Write sin* x using only the first powers of trigonometric functions.

A wDN

Write cos4x sin 6x as asum.

SOLUTIONS

1. Useformula3(c).

300) _ 1-c0s30° 1-@/2_( Jé) 1

tan 15° = tan = _ YT -
( 2 sin 30° 1/2

2] 72

:(1—*/;’)-2:2—@

2. Because@ isin Quadrant I, cosine will be negative.

sin?0 + cos?0 =1

(%)2 + 08?0 =1
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sin20 = 2sinf cosd Formula 3(d)
_o(?)(=¥B)__45
R 3/ 9

3. sin*x = (sin®x)(sinx)
1—-cos2x 1-cos2x
2 2

@’_

(SN x)(sinx) =

Formula 2(a)
1 1

= Z(1— (1 —
2( C0S2x) 2( C0S2x)
1

= 4_1(1 — €0s2x)(1 — cos2x)

1
= Z(l — 2¢0S2x + COS? 2x)

1+ cos2-2x

1
=-|1-—2cos2x
Al (5

)] Formula 2(b)

1 1
=—-11-—2cos2x + —(1+ cos4dx)
4 2
4. We will use formula 4(b).

cos4x sinbx = %[sin(4x + 6x) — sin(4x — 6x)]
1 . .
= E[sm(lox) —sin(—2x)]

1
= E[sin 10x + sin2x] Because sineis odd,
sin(—2x) = —sin 2x.

CHAPTER 13 REVIEW

1. Findsing if cosd = —% and 6 isin Quadrant I1.

@=L 92 @2



CHAPTER 13 Trigonometry

_\cﬁ)

2. What isthe phase shift for f(x) = 2cos(3x + /2)?

T T T T
(@ ) (b) 5 (©) 5 (d) 5
3. What isthe period for f(x) = 2cos(3x + 7 /2)?
2 2 b4
(@ 3 (b) 67 (©) 3 (d) 3

4. From the top of a 200-foot lighthouse, the angle of depression to a ship
on the ocean is 20°. How far isthe ship from the base of the lighthouse?

(& About 400 feet (b) About 490 feet
(c) About 550 feet (d) About 690 feet
5. c0s15° cos10° 4+ sin15°sin10° =
(@) cosb5° (b) cos25° (c) sin5° (d) sin25°
6. Find 2t?e reference angle ;or T /9. 16 .
T 7T T
@ 9 (b) 9 (©) 9 (d) 9
7. Theterminal point for 6 is(—3/5, 4/5). What istan6?
@ — ® - © — @ >
3 4 3 4
8. tan(ccijzl 3/4) = - " -
37 7 47 7
€Y - (b) 3 (c) - (d) 7
9. Thegraphin Figure 13.62 is the graph of one period of which function?
(@ y =2cos(x + /3) (b) y =2cos(x —/3)
(¢) y =cos2(x + /3) (d) y=cos2(x —n/3)

wld

Fig. 13.62.
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B
N
5
&
3
N
3
[
3
(]
3
<
3
'S
&
3

Fig. 13.63.

10. Thegraphin Figure 13.63 in the graph of one period of which function?

@ y=sni(x —n/4) (b) y = 3sin(x + 7/4)
(©) y=sin3(x+mr/4) d) y=1sntx+m/9
15
6
A
Fig. 13.64.
11. Find ZA.

(@) About 68.2° (b) About 21.8°

(c) About 66.4° (d) About 23.6°
SOLUTIONS
1.A 2.C 3.A 4.B 5.A 6.A

7.A 8.B 9.C 10.A 11.D
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CHAPTER

l
I ]
Sequences and Series

A sequence isan ordered list of numbers. Although they list the same numbers, the
sequence 1, 2, 3, 4, 5, 6, ... is different from the sequence 2, 1, 4, 3, 6, 5, .. ..
Usually asequenceisinfinite. This meansthat thereisno last termin the sequence.
A seriesisthesum (if it exists) of asequence. Although asequence can beany list of
numbers, we will work with sequencesthat can be found from aformula. Formulas
describe how to compute the nth term, a,,. For example, the formulaa, = 2n + 1
gives usthis sequence.

3, 5, 7, 9,
2)+1 2+1 2Q3)+1 2(H+1

EXAMPLES

Find the first four terms and the 50th term of the sequence.

o a,=n%-10

415

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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Thefirsttermisa; = 12— 10 = —9; thesecond termisay = 22— 10 = —6;
the third term isas = 32 — 10 = —1; the fourth term isay = 42 — 10 = 6;
and the 50th term is asg = 50% — 10 = 2490.

° an:Z—j
_1-1 2-1 1 S 3-1 1
N=1777 2=57173 B®BT3E172
4-1 3 50—1 49
agQ = — —= — a - —_— = —
7451 5 T 5i17m1
o a, = (D"

a=CD=-1  a=-D*=1 a=(-13=-1
as=(-1%=1 aso = (-0 =1

Finding the terms of a sequence is the same function evaluation we did
earlier. Sequences are special kinds of functions whose domain isthe natural
numbers (instead of intervals of real numbers).

We can write the formulas for many sequences using the previous term. For
example, the next term of the sequence 3, 5, 7, 9, ... can be found by adding 2 to
the previousterm. In other words, we could usetheformulaa,, = a,_1 + 2. Thisis
arecursive formula. Thisformulais not of much use unless we know how to start.
For thisreason, the value of a1 isusually given with recursively defined sequences.
A complete recursive definition for this sequenceisa, = a,_1 + 2, a1 = 3. Now
we can compute the terms of the sequence.

3 5 7. 9,
3+2 5+2 742

EXAMPLES
Find the first four terms of the sequence.
o ap=3ap-1+5a1=—-4
Think of 3a,_1 + 5 as*“3 times the previous term plus 5.”
air=—4 ap =3(-4)+5=-7
az3=3(-7)+5=-16 as = 3(—16) + 5= —43
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an—1
an—2’

a, = a1=2, ap=4

The terms of this sequence are found by taking the quotient of the previous
two terms.
az-1 _az _ 4 asz 2 1

=2 :4 = — = _—:2 = — = - = —
“ “ “ az—2 ai 2 4 a 4 2

A famous recursively defined sequenceis the Fibonacci Sequence. Entire books
are written about it! The nth term of the Fibonacci Sequenceisa, = a,—1 + a,—2
anda; = 1landaz = 1. Fromthethird term on, each termisthe sum of the previous
two terms. Thefirst few termsare 1, 1, 2, 3,5, §, 13, . . ..

Instead of using a formula to describe a sequence, we might be given the first
few terms. From these terms we should be able to see enough of a pattern to write
aformulafor the nth term.

EXAMPLES

Find the next term in the sequence.

2,6,18,54, ...

The next term is 3(54) = 162.

111
1,§5§727-"

The next term s £
1, -2, 4, -8, 16, ...
The next termis —2(16) = —32.

Find a formula for the nth term for the next four examples. Do not use a
recursive definition.

3,927,81,...

3=3,9=3% 27=3% 81=3"

Thenthtermisa, = 3".

-2, —4, —6, —8, —10, ...

—2=-21), —4=-2(2), -6=—-2(3), —-8=—-2(4), —10 = —2(5)
Thenthtermisa, = —2n.

-1, 4, —9,16, —25, ...

—1=-1%2,4=2% —9=-3% 16=4% -25=-5°
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If we want the signs to aternate, we can use the factor (—21)" (if we want

the odd-numbered terms to be negative) or (—1)"*+1 (if we want the even-
numbered terms to be negative). The nth term of this sequence is a, =

(—=1)"n2.
1 2 3 4
[ ] ?’ 3, 4_1’ B’
11 2 2 3 3 4 4
2 1+1 3 241 4 341 5 4+41

Thenthtermisa, = nL+1

There are times when we want to add the first n terms of a sequence. The sum
apt+az+az+---+ap
is called the nth partial sum of the sequence. Its notation is S,,.
S1=a1 S2=a1+az
S3=ai1+ax+az Sa=a1+ax+az+as

Another common notation for thenth partial sum usesthe capital Greek |etter sigma,
“X." This notation also makes use of g, or aformulafor a,. “ 23:1 a,” means
“add the a, s beginning with a1 and ending with as.

5
Zan=al+a2+a3+a4+a5
n=1

The subscript » is called the index of summation. Other common indices are i, j,
and k.

EXAMPLES
Write the sum.
12

>
° _
n=1 4
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5
e YL@
n=1

-1 — 2 + 5 — 8 + 11
-n*@E1-49 -»#E2-4  (-1*E3-49 DHE4-4  (-15E5-9)

Write the sum using summation notation.
o 1+3+3+7++x
This is the sum of the first 20 terms in a sequence, so we will begin by

writing“ 32, " Thenth term of the sequenceisa, = 2, and the summation
notation for thissum s

20
1
2

n=1

o 2+4+6+8+10+12

This is the sum of the first six terms of the sequence whose nth term is
a, = 2n. The summation notation is Y"°_, 2n.
11,1 1,1 1

®* 27aitg T Tis
This is the sum of the first nine terms of the sequence whose nth term is
a, = (=1)"*11 The summation notation is

9 L 1
n+
2D

n=1

There are formulas for finding the nth partial sum for special sequences.
Using these formulas, we can add many terms of a sequence with little
work. We will learn the formulas for the sums of two important sequences,
arithmetic sequences and geometric sequences, later.

PRACTICE

1. Findthefirst four termsand the 100th term of the sequence whose nth term

isa, = an—1

n+1"
2. Find thefirst four terms and the 100th term of the sequence whose nth term
isa, = (1"
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3. Find the first four terms of the sequence whose nth termisa, = /a,_1
and a1 = 256.

4. Without using arecursive definition, find the nth term for the sequence

555 5

2°4 8 16

5. Without using arecursive definition, find the nth term for the sequence

012 3 4

P45 e T

10, 5,

6. Write the sum for Y°0_; 2.
7. Write the sum using summation notation.

1 1 1 1 1

3 0"27 8l 243

SOLUTIONS
. 2)—-1 1 22) — 1 23 -1 5
.oap = = = az = = az = = -
W71 T2 2T 211 377371 "4
2H-1 7 201000 —1 199
“=T441 T MOT 90011 T 101
1 22
2. ar= ()5 =3 az = (D)= = -2
3?2 9 2
as = (_1)34-1E — é as = (_1)44-1 —_8
2
alo = (—1)100+1¥ 5000
3. a1 = 256 ap = /256 = 16

a3=\/E=4 a4=«/21=2
4. a, =20(3)" or a, = 10(3)" 1

-1
5. an=Z+2
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s 5,.5,5,5 5 5
stitets T o

5 1\" 5 1

_ 1 = _ 1yl -

7. ’;( 1) ( 3) or ’;( S
Arithmetic Sequences

A term in an arithmetic sequence is computed by adding a fixed number to the
previousterm. For example, 3, 7, 11, 15, 19, .. . isan arithmetic sequence because
we can add 4 to any term to find the following term. We can define the nth term
recursively asa, = a,—1 + d or, in more genera terms, a,, = a1 + (n — 1)d. In
the sequence above, a1 = 3and d = 4.

EXAMPLES

Find the first four terms and the 100th term.
e a,=28+(n—115
a; =28 ap=28+(2-115=295
a3=28+@B—-115=31 ags =28+ (4—-115=325
a100 = 28 + (100 — 1)1.5 = 176.5
e a,=—-2+(1n—-1(-6)
a = —2 ar=-2+2-1)(-6)=-8
a3 = -2+ B —-1)(—6) = —14 ag=—-2+(4-1(-6) =-20
ajoo = —2+ (100 — 1)(—6) = —596

When asked whether or not a sequence is arithmetic, we will find the difference
between consecutive terms. If the differenceisthe same, the sequenceisarithmetic.

EXAMPLES
Determineif the sequenceis arithmetic. If it is, find the common difference.
e —8 -1 6, 13, 20,...
20-13=7,183-6=7,6—-(-1) =7, -1—- (-8 =7
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The sequence is arithmetic. The common differenceis 7.
29, 17, 5, =7, —-19,...
-19—-(-7=-12, -7-5=-12,5-17=-12, 17—-29=-12

The sequence is arithmetic, and the common differenceis —12.
55 5 5
306 120 240

5 5 5 5 5 5

24 12 2412 6 12
Because the differences are not the same, the sequence is not arithmetic.

We can find any term in an arithmetic sequence if we know either one term and
the common difference or two terms. Weneed to usetheformulaa,, = a1+ (n—1)d
and, if necessary, alittlealgebra. For example, if we aretold the common difference
is 6 and the tenth term is 141, thenwe can put a, = 141, n = 10, andd = 6inthe
formulato find a;.

141 =a; + (10-1)6
87 =a1

Thenthtermisa, = 87+ (n — 1)6.

EXAMPLES

Find the nth term for the arithmetic sequence.

The common difference is 2/3 and the seventh term is —10.

Usingd = 4, n = 7, and a, = —10, the formulaa, = a1 + (n — 1)d

becomes —10 = a1 + (7 — 2.
2
~10=a1+(7- D3
—10=a1+4
—-14=mn

Thenthtermisa, = —14+ (n — 1)3.

The twelfth term is 8, and the twentieth term is 32.
The information gives us a system of two equations with two variables.
In this example and the rest of the problems in this section, we will add —1
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timesthefirst equation to the second. Substitution and matrices would work,
too. The equationsare 8 = a1 + (12 — 1)d and 32 = a1 + (20 — 1)d.

—a1 —11d = -8

ay +19d = 32
8d =24
d=3

ar+11(3) =8 Letd =3ina1+11d =8
a1 = —25

Thenthtermisa, = —25+ (n — 1)3.

e Theeighth termis4, and the twentieth term is —38.
The information in these two terms gives us the system of equations 4 =
a1+ (B8 —-1dand -38=a; + (20— 1)d.

—ay—7d = —4
a1 +19d = —38
12d = —42
Je 7
2
7 7.

a+7(-5)=4 led=-Jina+7d=4
57
(11:?

Thenthtermisay = ¥ + (n — 1)(—3).

We can add thefirst n terms of an arithmetic sequence using one of thefollowing
two formulas.

Sy = g(al tap) or S, = g[2a1+ (n — 1)d]

We will use thefirst formulaif we know all of a1, a,, and n, and the second if we
do not know a,,.
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EXAMPLES
e Find the sum.
13 N 16 N 19 N 22
5 5 5 5
a1 = 2, ag = 5, and n = 6 (because there are six terms)
13 16 19 22 6
S T W =—(2 =21
ctgtgtgt5=5@2+9
e Find the sum of thefirst 20 terms of the sequence -5, —1, 3, 7, 11,....
a1 =-5, d=4,andn = 20.

2+ +5

2+

So0 = %)[2(—5) + (20 — 1)4] = 660

e 6+ (—2)+(-10)+(—18)+---+ (=58
We know a3 = 6, d = —8 and a, = —58 but not n. We can find n by

solving —58 = 6 + (n — 1)(—8).
—58="6+ (n — 1)(—8)
—64=-8(n—1)
8=n-1

9=n

6+ (=2 + (10 + (=18 +--- + (-58) = 2[6 +(=58)] = -234

e Find the sum of the first thirty terms of the arithmetic sequence whose fifth
termis 19 and whose tenth term is 31.5.
In order to use the second sum formula, weneed to find a1 and d. If wewere
to use the first formula, we would have to find azg, which is a little more
work. Because as = 19 and a0 = 31.5, we have the system of equations
19=a;+ 5-1)dand31.5=a;+ (10 — 1)d.

—ay; —4d = -19

a1 +9d = 315

5d =12.5
d=25

a1+4(25) =19 Letd =25ina; +4d = 19
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a1 =9
30
S30 = 5[2(9) + (30— 1)(2.5]= 13575

PRACTICE

1. Findthefirst four termsand the 40th term of the arithmetic sequence whose
nthtermisa, = 14+ (n — 1)4.

2. Determineif the sequence 0.03, 0.33, 0.63, 0.93, ... isarithmetic.
3. Determineif the sequence 0.4, 0.04, 0.004, 0.0004, ... isarithmetic.

4. Find the nth term of the arithmetic sequence whose first term is 16 and
whose ninth term is 54.

5. Find the nth term of the arithmetic sequence whose sixth term is 12 and
whose tenth term is 36.

6. Compute the sum.

()0 (D)o () e ()

7. Computethesum. 10+ 17 + 24 + 31+ - - - + 108

8. Find the sum of the first twelve terms of the arithmetic sequence whose
fourth term is 8 and whose tenth term is 56.

SOLUTIONS

1. a1 =14, ap =14+ 2—-14 =18, a3 = 14+ 3— D4 =22, as =
14 + (4 — 1)4 = 26 and agp = 14 + (40 — 1)4 = 170.

2. 0.93-0.63=0.3, 0.63—0.33=0.3, 0.33—-0.03=0.3
The differences are the same, so the sequence is arithmetic.

3. 0.0004 — 0.004 = —0.0036, 0.004 — 0.04 = —0.036
The differences are not the same, so the sequence is not arithmetic.

4, Becausea; = 16, we havea, = 16 + (n — 1)d. Using ag = 54 in this
formula, we have 54 = 16 + (9 — 1)d. Solving this equation for d givesus
d = L. Thenthtermisa, = 16 + (n — 2.
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5. Fromtheinformationinthe problem, wehavethesystem 12 = a1+ (6—1)d
and 36 = a1 + (10 — 1)d.

—a1—5d =-12
a1+ 9d = 36
4d = 24
d=26

a1+ 5(6) =12 Letd =6ina; +5d =12

a1 = —18
Thenthtermisa, = —18 + (n — 1)6.
6. a1 = —8, ag = -4, andn = 6. S, = (a1 + a,) becomes S5 =
S8+ (=% =-%L

7. a1 =10, d = 7, and a,, = 108. We can find n by solving 108 = 10 +
(n — 1)7. Thisgivesusn = 15. S15 = 110 + 108) = 885.

8. Wewill finda; and d sothat wecanusetheformula s, = 5[2a1+ (n—1)d].
The information in the problem gives the system 8 = a1 + (4 — 1)d and
56 = a1 + (10 — 1)d.

—a1—3d = -8
a1 +9d = 56
6d = 48
d=28
a1+ 3(8) =8 Letd =8ina1+3d =8
a1 = —16

S12 = 2[2(—16) + (12 — 1)8] = 336

Geometric Sequences

In an arithmetic sequence, the difference of any two consecutive terms is the
same, and in a geometric sequence, the quotient of any two consecutive terms
is the same. A term in a geometric sequence can be found by multiplying the
previous term by a fixed number. For example, the next term in the sequence
1,2,4,8,16,...is2(16)=32, and theterm after that is 2(32)=64. Thisfixed number
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is called the common ratio. We can define the nth term of a geometric sequence
recursively by a,, = ra,_1. The general formulaisa, = ayr" L.

EXAMPLES

e Determineif the sequence 5, 15, 45, 135, 405, . . . is geometric.

We need to seeif theratio of each consecutive pair of numbersis the same.
405 135 45 15
wm-> /o T ad 5=3
The ratio is the same number, so the sequence is geometric.
e Determineif the sequence —8, 4, —2, 1, —%, ... isgeometric.
-1/2 1 1_1—2_1and4_1
1 2 -2 2 4 2 -8 2
Theratio is the same humber, so the sequence is geometric.
e Determineif the sequence 2430, 729, 240.57, 80.10981, . . . is geometric.
80.10981 240.57
——— =0.333 d —— =0.33
240,57 e P

The ratios are different, so thisis not a geometric sequence.

e Findthefirst four termsand the tenth term of the sequencea,, = 1—(1)0(—5)"_1.

1 _ L gpa_ L
1= 700 “2= 700 )
1 1 1 5
_ T g1_1 _ T pa1_ >
3= 150 4 4= 1507 4
1 78125
a0 = 1 (-5 = T2

100 4

We can find the nth term of a geometric sequence by either knowing one term
and the common ratio or by knowing two terms. Thisis similar to what we did to
find the nth term of an arithmetic sequence.

EXAMPLES

Find the nth term of the geometric sequence.

e Thecommon ratio is 3 and the fourth term is 54.
as = 54and r = 3, 0 a, = a1r" ! becomes 54 = a13* 1. This gives us
a1 = 2. Thenthtermisa, = 2(3)" L.
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The third term is 320, and the fifth term is 204.8.

az = 320 and a5 = 204.8 give us the system of equations 320 = a13~1 and
204.8 = a1r°~L. Elimination by addition will not work for the systems in
this section, so we will use substitution. Solving for a1 in ayr? = 320 gives
usai = 320/r2. Substituting thisin a1r* = 204.8 gives us the following.

apr® =204.8
320
= r4 =204.8
-
320r2 = 204.8
r2 = 0.64
r =40.8

There are two geometric sequences whaose third term is 320 and whose fifth
term is 204.8, one has acommon ratio of 0.8 and the other, —0.8. a4 for both
the sequences is the same.

320 320
=" =500 and a1=—5 =
0.8 (—0.8)2

The nth term for one sequence is a, = 500(0.8)"~1, and the other isa, =
500(—0.8)" 1.

Thethird termis 20, and the sixth term is 81.92.

From a3 = 20 and ag = 81.92 we have the system of equations
20 = a1r3 1 and 81.92 = 4181, We will solve for a1 in 20 = a1r?
Now we will substitute a; = 20/r2 for ay in 81.92 = ayr°.

500

ai

81.92 = ayr°
81.92 = 52) o
r
81.92 = 20r3
4.096 = 13
J4.096 = r
16=r
20

Thenthtermisa, = 7.8125(1.6)" 1.
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We can add the first n terms of a geometric sequence using the following

formula (except for r = 1).

1-—r"
1-r

Sp=a1

EXAMPLES

e Findthesum of thefirst fiveterms of the geometric sequence whosenth term
isa, =3(2" 1 a; =3andr =2

1-2° -31
—=3.—— =093

S5 =3. _
5 1-2 1

o Computel6+8+4+2+1+3+ 3+ 2+«

1
a1 = 16, r:i and n=09.

1— (L) 512 1
So = 16 (21) — 16512 - 512
—32 2
511
o5 511 1 511 511
=16222 —16|—— - 2| =16|—=.2| = "=
3 [512 2] [512 } 16

e Find the sum of the first five terms of the geometric sequence whose fourth
term is 1.3824 and whose seventh term is 2.3887872.
We need to find a1 and . Theterms a4 = 1.3824 and a7 = 2.3887872
give us the system of equations 1.3824 = a1r3 and 2.3887872 = a1r%. We
will solve for aj in thefirst equation and substitute this for a1 in the second
equation.

1.3824
ay = 3
,

2.3887872 = ayr®

1.3824
r6

2.3887872 = —
’

2.3887872 = 1.3824r3
1.728 = 3
Y1728 = r
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12=r
13824

== 08
=18

We have enough information to compute Ss.

1-1.2°

= = 5.9532
S5 = 081 > 5.95328

6 .
e Y 6.4(15) 1
i=1

We are adding the first six terms of the geometric sequence whose nth term
is a, = 6.4(1.5)" 1.

1-—15°
1-15

=133

EZGMlall Sg = 6.4
i=1

7
o Y 23kt

k=0
This problem is tricky because the sum begins with k=0 instead of
k=1. These terms are the first eight terms of the geometric sequence
%, 2, 6, 18, 54, 162, 486, 1458, .... Now wecanseethatn = 8, a1 =

%andr=3.

7
2
2 2 T =ss=7 =—

2 2
o 54+18+6+2+5+ -+ g

Wehavea; = 54andr = 3. Weneed n fora, = &.
2 l n—1

54
81 (3)

1 n—1
2187 (é)
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Because 3’ = 2187,n —1=7,50n = 8.

2 2 1- )8 $-%
544+18+6+2+ =+ + — =54 — 54

3 81
31

i 6560 2

54| -2 | =54 == =2

( Z ) (6561 3)

6560 3\ 6560
_ 54( ) _

- 6561 2) 81

When the common ratio is small enough (—1 < r < 1and r # 0), the sum of
all termsin a geometric sequence is a number. In the finite sum S, = a1 11‘_’” , "
is very small when theratio is afraction, so 1 — r" isvery close to 1. Using this
fact and calculus techniques (usually learned in alater calculus course), it can be

shown that the sum of all terms of this kind of geometric sequenceis

S =

“ 1—r
The only difference between the infinite sum formula and the partial sum formula
isthat 1 — r" isreplaced by 1. If n islarge enough, there is very little difference
between the partial sum and the entire sum. We will compare the sum of the first
20 terms of the sequence whose nth term is a,, = (%)”*1 with the sum of all
terms.

20 1 n—1 1— (
Szo=21.<§) =1-T%%1.999998093 and S=1- 5
n=1

EXAMPLES

i—-1
) =S5=6- ! :6-%:6[1+}]:6|:1-§i|:18
3
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o) k—1
° k§015<%>

We need to be careful with this sum becausethe sumbeginswithk = Oinstead
of k = 1. Thismeansthat a4 is not 15 but

3 0-1 3 -1 4
—15(2) =15(2) =15(2)=20
a“ 5(4) 5(4) 5(3) 0

3

The common ratio is i

00 k—1
3 1 1

E 15(—) =85§=20-——=20--=20-4=80
4 1-3 1

k=0 2 i

PRACTICE

; 2 2
1. What term comes after 18 in the sequence 5 5 2,6,18,...?

2. Find the first four terms and the tenth term of the geometric sequence
whose nth termisa, = —2(4)" 1.

3. Determineif the sequence 900, 90, 9, 0.9, 0.09, ... is geometric.

4. Determineif the sequence 9, 99, 999, 9999, . .. is geometric.

5. Find the nth term of the geometric sequence(s) whose first term is 9 and

whose fifth term is 72

6. Find the nth term of the geometric sequence whose common ratio is —3
and whose sixth term is —1701.

7. Find the nth term of the geometric sequence whose third term is 1 and
whose sixth term is 2.

8. Compute the sum.

S
478" 16 256

10. i —4 (g)n_l
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SOLUTIONS

1. 3(18) = 54

2. a1 = -2, ap = -8, az = —32, ag = —128 and a1g = —524, 288

3. The sequence is geometric because the following ratios are the same.

0.09 0.9 9 90

—=01 — =01, —-—=01, — =01
0.90909009000

4. The sequenceis not geometric because the ratios are not the same.

9999 1111 and 999 11
999 111 9 1

5. Because thefifth term of the sequenceis Z2, we have the equation 222 =

6 =
9r°~1. Once we have solved this equation for r, we will be done.

729
7 _ g4
6

179

9 16
81,
1—6—1"

j:3 _ 481 3
2= Vi~ 2
There are two sequences. The nth term for one of themisa, = 9(%)”—1

and the other isa,, = 9(—3)" 1.

6. Thesixthtermis—1701landr = —3, whichgivesustheequation —1701 =
al(—3)6_1.

—1701 = a1(—3)°
—1701 = —243a;
T=a1

Thenthtermis a, = 7(—3)" L.

7. Thethird termis 1 and the sixth term is 2—87, which gives us the system of
equations 1 = a3t and & = 41751, Solving 1 = ayr? for az, we get
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a1 = 1/r%. We
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will substitute thisin 2 = a1r®.

3 3/1\"*
256 4\2
4 3 1\
3 256 \2

i-0)

Because 26 = 64, n — 1 = 6, son = 7. Now we can find the sum.
-3 107 38 45 3127 1
4 71-1 a1 Ta\1s2
_3(127 2\ _ 381
4\128 1 256
9. a1 =3 andr = 3. Thisisall we need for the infinite sum formula
3 1 31 3 1 3 3
41_%4%4( 2)4()2
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——&

10. aj isnot —4 because the sum beginsat n = Oinstead of n = 1.

e ) )3

Now we can add all of the terms of the geometric sequence whose nth
termis a, = -2 (3" L.

20 1 20 1 20 2 20 5 50
. = (= (1=-=-)=— (1 =)= ——
3 1-3 32 3 5 3\ 2 3

When regular payments are made to a savings account or to a lottery winner,
the monthly balances act like terms in a geometric sequence. The common ratio is
either 1+ i (for savings payments) or (1 + i)~ (for lottery payments), where i is
the interest rate per payment period. We learned in Chapter 9 that if we leave P
dollars in an account, earning annual interest », compounded » times per year, for
t years, then this will grow to A dollarswhere A = P(1 + r/n)™. (Thisis why
i replacesr/n.)

We will see what happens to the balance of an account if $2000 is deposited
on January 1 every year for 5 years, earning 10% per year, compounded annually.
The first $2000 will earn interest for the entire 5 years, so it will grow to 2000
(1 + 0.10/1)> = 2000(1.10)°. The second $2000 will earn interest for 4 years,
so it will grow to 2000(1.10)*. The third $2000 will earn interest for 3 years,
so it will grow to 2000(1.10)3. The fourth $2000 will earn interest for 2 years, so
it will grow to 2000(1.10). And the fifth $2000 will earn interest for 1 year, so it
will grow to 2000(1.10)*. The balance after five yearsis

2000(1.10)° 4 2000(1.10)* + 2000(1.10)* + 2000(1.10)2 + 2000(1.10)".

Thisisthe sum of thefirst five terms of the geometric sequence whose nth termis
a, = 2000(1.10)". If we want to use the partial sum formula, we need to rewrite
the nth term in the form a,, = a1r"~1. We will use exponent properties to change
2000(1.10)" to a1(1.10)* 1, We will also usethefactthatn = 1+ n — 1.

2000(1.10)" = 2000(1.10)**"~1 = 2000(1.10)*(1.10" !
— [2000(1.10)](1.10)*~1 = 2200(1.10)" 1
Now we can use the partial sum formula.

1-1.10°
—=2200.- — " —13,431.22
S5 1—1.10 ’

The balance in the account will be $13,431.22.
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When alottery winner wins a $1,000,000 jackpot, the money islikely to be paid
out in $50,000 annual payments for 20 years. Some states allow the winner to take
the cash value as alump sum payment instead. The cash valueisthe present value
of $1,000,000 to be paid in annual payments over 20 years. The formula for the
present value of A dollars, duein ¢ years, earning annual interest », compounded
n times per year is A(1 + r/n)™. Assume that the money is expected to earn
5% per year. Then the cash value of the jackpot will need to be enough money so
that at the beginning of the year (for a payment at the end of the year), they have
50,000(1.05) L. For apayment at the end of two years, they need 50,000(1.05) ~2;
at the end of three years, they need 50, 000(1.05)—3, and so on until they reach the
last payment after 20 years, 50,000(1.05)~2°. In other words, the cash value of a
$1,000,000 jackpot with a 20-year payout (assuming 5% interest) is

50,000(1.05) 1 + 50,000(1.05) 2 + 50,000(1.05) 3 + - - . + 50,000(1.05) 2.

Thisis the sum of the first 20 terms of the geometric sequence whose nth term is
a, = 50,000(1.05)7". We need to use exponent properties to rewrite the nth term
in the form a, = a1r"1. We will use the fact that —n = —n — 1 + 1 and the
exponent facts that x ™ = x™x" and x™"* = (x™)".

105" =105"t1"1_-1051. 105"t =105 1.1.05 1D
—1051. (1.057 Y1

Now the nth term can be written as a, = [50,000(1.05)~11(1.05-1)*~1, where
a1 = 50,000(1.05~1). Now we can use the partial sum formula.

1- (105120

— -1y1.
S20 = [50,000(1.057 )] 11051

~ 623,110.51

The cash value is $623,110.51.

CHAPTER 14 REVIEW

1. What term comes next in the sequence?

GIEN
olw
~ A
ol O
©lo

@ 15 0 o © & o &
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2. What is the fourth term of the sequence whose nth term is a, =
(=G
8

16 16 8
@ a1 (b) 8l (© 3 (d) 3

3. Thetermsin the sequence 6, 2, —4, —6, —2, 4, ... can be found using
which formula?
@ an=an—2—ay—1,a1 =6andaz =2
(b) a, =6+ ®m—14
©) ay=a,-1—a,—2,a1 =6andar =2
(d) Thereisno formulathat works.

4. |sthe sequencein Problem 3 arithmetic, geometric, or neither?
(& Arithmetic
(b) Geometric
(c) Neither
(d) There are not enough termsto tell.
5. Isthesequence 3, 7, 4, &, ... arithmetic, geometric, or neither?
(& Arithmetic
(b) Geometric
(c) Neither
(d) There are not enough termsto tell.

6. What isthe third term of the arithmetic sequence whose 17th termsis 9
and whose 21st term is 12?

5 2
@ - ® ¢ © 3 @ 2

7. What isthe eighth term of the geometric sequence whose third termis %
and whose sixth term is 10?
(&) 36 (b) 40 (c) 45 (d) 49

8. Find the sum.

2 N 5 n 7 n 23 4og 59

3 6 3 6 6

116 110 58

@ = (b) 3 (© 3

(d) Too many terms are missing to find the sum.
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9. Findthesum.

S .
9 9 9 18 144
127 127 127
@ 36 (b) 8l (© 14

(d) Too many terms are missing to find the sum.

10. Find the sum.

@2 & © >

(d) There are too many numbers to add.

SOLUTIONS
LA 2.B 3C 4C 5B
6.A 7.B 8.B 9.C  10.A



Appendix

Solving Equations and Inequalities

Using algebra to solve equations and inequalities is important in precalculus and
calculus. Usually the solution to an equation is a number or numbers. Sometimes,
the solution to an equation is simply the equation written another way. To solve for

x meansto have x, and x only, on one side of the equation. The equation x = ;2;:’1
y—5

is solved for x but x = P is not solved for x because x is on both sides of
the equation. Solving for x when the equation contains more than one variable is
very much like solving for x when the equation has only one variable. We move
guantities from one side of the equation by adding, subtracting, multiplying, and
dividing.

e Solvefor x intheequationa(x + 4) — 2a(x — 1) = 5(a + x).

a(x +4) —2a(x —1) =5(a +x) Simplify both sides of the equation.
ax +4a — 2ax + 2a = 5a + 5x

ax — 2ax + 6a = 5a + 5x Move x termsto one side of the equation.

439

Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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ax — 2ax — 5x +6a = 5a Move terms without x to the other side.
ax — 2ax —5x = —6a + 5a Simplify both sides.
—ax —5x = —a Factor x.
x(—a —5)=—a Divide both sideshy —a — 5
—da a
x = r
—a—-5 a+5

Quadratic Equations

Equations of the form ax? + bx + ¢ = 0 (wherea # 0) are quadratic equations.
There are several techniques we can use to solve them, factoring, completing the
square, and the quadratic formula. The simplest quadratic equationsarein theform
x? = number. This equation has solutions x = +/number and x = —+/number, or
simply, x = ++/number. For example, the solutions for x2 = 36 are x = 6 and
x = —6, 0r x = +6.

Many quadratic equations can be solved by factoring. When there is a zero on
one side of the equation, we factor the other side, set each factor equal to zero and
solve both eguations. This method comes from the fact that ab = O impliesa =0
orb=0.

e °4+x—-6=0

x2 4 x — 6 factorsas (x + 3)(x — 2). Set each of x + 3 and x — 2 equal to 0
and solvefor x.

x+3=0 x—2=0
x=-3 x=2
o 3x24+24=-18x

We need a zero on one side of the equation, so we will move 18x to the
other side.

32+ 18x+24=0
3x%2+6x+8 =0
3Ax+2)(x+4)=0
x+2:O X—|—4:O
x=-2 x=-4
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Some quadratic equations are difficult to factor. The quadratic formula can
solve every quadratic equation. If a # 0 and ax? + bx + ¢ = 0, then

—b + Vb? — 4ac
x = .
2a

e W?—x—4=0
a=3,b=-1,andc= -4

(=D EV(-D2-43) (-4 1+V49 1+7
rE 23) ~ 7 6 6

’

6 4
— =, -1
6 3

(o] M ee]

e x2—-1=0
a=1b=0andc= -1

—0+/0?-4)(-) +v4 42

2(1) 2 2

+1

X =

o Ax°+x=1

We need 0 on one side of the equation. Once we move 1 to the other side, we
have 4x2 + x — 1 = 0.

-1 /124 (-1) -1+ V17

2(4) 8

X

A quadratic equation can have square roots of numbers as solutions that need to
be simplified. The square root of a number is simplified when it does not have any
perfect squares asfactors. For example, +/24 isnot simplified because 24 = 22 x 6.
We can usethe exponent propertiesv/ab = /a-+/b and ¥/a" = a tosimplify +/24.

V24=4.6=4.V6=2/6

Square roots of fractions and square roots in denominators are also not considered
simplified. These numbers often come up in trigonometry. Sometimes we can
multiply the fraction by the denominator over itself.

Vi_1_ 1 . 3_ 3 _A\3

1_v1_ 1 _ 1 -
* \[ﬁ—ﬁ—ﬁ—ﬁ V3T a2 T 3
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BT AT T 8 =5

This trick will not work for expressions such as f%ﬂ To simplify these
fractions, we will use thefact that (@ — b)(a + b) = a® — b2. Thisalows us
to square each term in the denominator individually. The denominator isin

theforma + b (wherea = +/3and b = 1). We will multiply the fraction by
a — b over itsdlf.

2 2 J3-1

V3+1 3+l V3-1
_2¥3-1) _2/3-1
W3-z 3-1

_2V3-Y) _ =
2

=8
2-5

The denominator isin the forma — b (witha = 2 and b = /5). We will
multiply the fraction by a + b over itself.

-8 -8 2+.5
2-V5 2-5 2445
—8(2++5)  —8(2++/5)
2-(/52  4-5
~8(2+ +/5)

:_—1:8(2+\/§):16+8\/§

Factoring by Grouping

Some expressions of theform ax®+ bx? + cx +d can be factored using atechnique
called factoring by grouping. This technique takes two steps. The first step is to
factor the first two terms and the second two terms so that each pair of terms has
a common factor. The second step is to factor this common factor. For example,
if we factor x2 from the first two terms of x3 + 2x2 + 3x + 6, we are left with
xz(x + 2) + 3x + 6. Now we look at the second two terms, 3x + 6, and factor
it so that x + 2 isafactor. If we factor 3 from 3x + 6, we are left with x + 2 as



afactor: 3x 4+ 6 = 3(x + 2). Thisleaves uswith x2(x + 2) 4+ 3(x + 2). Inthelast
step, we factor x + 2 from each term, leaving x2 and 3.
B2 434+ 6=x2(x+2) +3(x +2
= (x+2)(x*+3)

We can use this technique to solve equations.

o 4x3_-5x2_36x4+45=0
Once we have factored 4x2 — 5x2 — 36x + 45, we will set each factor equal
to 0 and solve for x. If we factor x2 from the first two terms, we have

4x3 — 5x2 = x2(4x — 5). If we factor —9 from the second two terms, we
have —36x + 45 = —9(4x — 5).

4x% —5x%2 —36x +45=0

x%(4x —5) —9(4x —5) =0

(4x —5(x2 -9 =0

4y —5=0 x>-9=0
4x =5 x2=9

5
X = - x =43

4

Solvingax" =band a¥/x = b

Solve equations of the form ax” = b by first dividing both sides of the equation
by a, then by taking the nth root of both sides. If n iseven, use a+ symbol on one
side of the equation to get both solutions.

o 4x2=09
2=
4
9 3
X==4,/-==+=
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o 8x3=-1
1
3__ =
Y778
cog 11
8 2

Solve equations of the form a/x = b by first dividing both sides of the
equation by a, then by raising both sides to the nth power.

o 4/x=5
4/x =5
5
Ji=2
5\2
2 ] —
(WA)2 = (4)
25
YT 16
o 4/x—-3=0
This equation needs to be in the form a/x = b before we square both sides
of the equation.
4/x —-3=0
4/x =3
3
Ji=3
3\ 2
2_ (2
(IR = (4)
_ 9
T 16
Inequalities

Solving linear inequalitiesis much like solving linear equations except when mul-
tiplying or dividing both sides of the inequality by a negative number, when we
must reverse the inequality symbol. Solutions to inequalities are usually given
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in interval notation. The last page of the appendix has a review of interva
notation.

e 5x—8>3x+10
5 —8>3x+10

2x > 18
x>9
The solution is (9, co).
o 3x+7<5x-9
Ix+7<5x-9
—2x < -16
—-2x -16 . .
— > — Reverse the sign at this step.
x>8

The solutionis[8, co).

A doubleinequality is notation for two separate inequalities. They are solved the
same way as single inequalities.
o 3<% <5

Thisinequality means —3 < %37 and 2 < 5,

dx +7
< <

—-3< 5 = 5 Clear the fraction by multiplying all three
quantities by 2.
—-6<4x+7<10 Subtract 7 from al three quantities.
—-13<4x <3 Divide al three quantities by 4.
-13 3
—_—<x < -
4 —  — 4

Thesolutionis[—13/4, 3/4].

Nonlinear inequalities are solved in a different way. Below is alist of stepswe
will take to solve polynomial inequalities.

1. Rewrite the expression with 0 on one side.
2. Factor the nonzero side.

3. Set each factor equal to 0 and solvefor x.
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Put these solutions from Step 3 on anumber line.

Pick a number to the left of the smallest solution (from Step 3), a number
between consecutive solutions, and a humber to the right of the largest
solution.

Put these numbersin for x in the original inequality.

If anumber makes the inequality true, mark “True” over the interval. If a
number makes the inequality false, mark “False” over the interval.

Write the interval notation for the “ True” intervals.

22 —x>3
2%2—-x—-3>0 Step 1
(2x—3)(x+1) >0 Step 2
2x—3=0 x+1=0 Step 3
3
x=§ x=-1
Step 4  Put —1 and 3/2 on anumber line.

Step 5

Step 6

Step 7

Step 8

L I 1 1 Py 1 !
5 -4 -3 -2 -1 0 1

Fig.A.1.

! 1 1 ]
2 3 4 5

Wewill usex = —2 for the number to the left of —1, x = Ofor the
number between —1 and 3/2, and x = 2 for the number to the right
of 3/2.

We will test these numbersin 2x2 — x > 3.

Letx = -2 2(—2)% — (=2) > 3? True
Letx =0 2002 —-0> 3? Fase
Letx =2 22%2-2>3? True

We will mark the interval to the left of —1 “True,” the interva
between —1 and 3/2 “Fase,” and the interval to the right of 3/2,
“False.”

True False True

L L i 1 $ !

1
5 4 3 =2 a1 0 1
Fig. A.2.

Theintervalsthat maketheinequality truearex < —landx > 3/2.
Theinterval notation is (—oo, —1] U [3/2, 00).
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If thereis an x in adenominator, the steps change slightly.

Get 0 on one side of the inequality.

Write the nonzero side as one fraction.

Factor the numerator and the denominator.

Set each factor equal to 0 and solve for x.

Put these solutions from Step 4 on anumber line.

Pick a number to the left of the smallest solution (from Step 4), a number
between consecutive solutions, and a number to the right of the largest
solution.

Put these numbersin for x in the original inequality.

If a number makes the inequality true, mark “True” over the interval. If a
number makes the inequality false, mark “False” over the interval.

9. Write the interval notation for the “True” intervals—make sure that the
solution does not include any x-value that makes a denominator 0.

ok wdNE

© ~N

x—=4
[ ] m>2

x—4
x+5
x—4
x+5

x—4 x+5
-2 0 Step 2
x+5 < >> P

> 2

—2>0 Step 1

x+5
x—4—2(x+5)
x+5
—x—14
x+5

>0

>0

Step 5 .

t ! Fy | I} |
-18 -16 -14 -12 -10 -B -6
Fig. A.3.

1
4 2 0 2

Step 6 Wewill use x = —15 for the number to the left of —14, x = —10
for the number between —14 and —5, and x = O for the number to
the right of —5.
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Step 7
“15-4 5 False
—-15+5
—10—4
2? True
-10+5
0-4 5 False
0+5
We will write “False” over the interva to the left of —14, “True”
over theinterval between —14 and —5, and “ False” over theinterva
to the right of —5.
Step 8 False True False

1 I _o—t ! ! J

L 1 é 1 1
-18 -16 -14 -12 -10 -8 -6 -4 -2 O 2
Fig. A.4.

The solution isthe interval (—14, —5).

2
x<—=3x
x+1 = -1

x2 — 3x
x+1

2_3
X x—i—lfO
x+1

x2 — 3x x+1
+1- <
x+1 x+1

x2—3x+x+1
x+1
x2—2x+1
- T T <
x+1 -
x—-—Dx-1 -0
x+1 -

<0

0

x—1=0 x+1=0

x=1 x=-1
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(—2%2—3(-2)
_— < 17 True
—-2+1 -
0% —3(0
—() < -1? False
O+1
22_3(2
£-3@ <-1? False
2+1
True False False
1 1 1 i & 1 Py 1 1 1 ]
5 4 -3 -2 -1 0 1 2 3 4 5
Fig.A.5.

Thesolutionis (—oo, —1). Thesolutionisnot (—oo, —1] because abracket next
to —1 indicates that —1 is part of the solution. We cannot allow x = —1 because
we would have a zero in a denominator.

Table. A1
Inequality Number Line Interval
x<a a (=00, a)
Fig.A.6
x<a a (—o0, a]
Fig. A7
X >a a (a, o)
Fig.A.8
X >a a [a, o0)
Fig.A.9
a<x<b a b (a, b)
Fig.A.10
a<x<b a b [a, b]
Fig.A.11
x<aorx>b a b (=00, a) U (b, 00)
Fig.A.12
x<aorx>b a b (=00, a] U[b, o0)
Fig.A.13

All x All real numbers (—00, 00)
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Final Exam

1. What is the maximum or minimum functiona value for f(x) =
—(x —5)2 +12?
(8 The maximum functional valueis 12.
(b) The maximum functional valueis5.
(¢) The minimum functional valueis 12.
(d) The maximum functional valueis5.

2. Find an equation of the line containing the points (1, 9/2) and (—2, 6).

@ y=3x+8 (0) y={ex+3
(© y=-3x+5 d) y={x+6
3. What is (are) the vertical asymptote(s) for the graph of
x+5
= ?
fx) T_3
@ x=3
(b) x =-5

(c) x=3andx = -5
(d) Thereareno vertical asymptotes.

. - Copyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.
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4. Find the product.
1 -1 -5 1 3
0 2| | 221

o224 e[l
5 1 _
(©) [ 0 4] (d) The product does not exist.
5. cos7r/6=
(@ 12 (b) —1/2 (© v3/2 (d) —/3/2

6. What arethefoci for the hyperbola
-1* +D?

16 9 12
@ (-1, -4 and (-1, 6) (b) (—6,1) and (4, 1)
(© (—4,-1) and (6, —1) (d) (1,—6)and (1,4
7. Find x + y for the system.
x—2y =1
2x+y =7
(@ 4 (b) 5 (c) 6 (d) 7

8. Find the fourth term of the arithmetic sequence whose 30th term is —180
and whose 45th term is —300.

(@ 20 (b) 28 (©) 35 (d) 46

9. If $2000 is deposited into an account earning 9% annual interest,
compounded monthly, what isit worth after 10 years?

(@) $4902.71  (b) $4734.73  (c) $2155.17  (d) $4870.38
10. For f(x) =1—x?and g(x) = 2x + 5, what is f o g(x)?

(@ —2x2+3 DR ==

(c) —4x2—20x — 24 (d) —2x3—5x24+2x+5
11. Evauate f(2) for f(x) = 7.

@@ 2 (b) 7 (c) 14 d 2,7

12. Find cosf if sin6 = —4/5and 6 isin Quadrant IV.
(@ 3/5 (b) —3/5 (c) 925 (d) —9/25
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13. What isthe directrix for the parabola y2 = 12(x — 3)?

(@ y=-3 (b) y=3 () x=0 (d) x=3
14. Arethelines2x — y = 5 and 4x — 8y = 9 parald, perpendicular, or
neither?
(@) Pardld (b) Perpendicular
(c) Neither (d) Cannot be determined
15. Find the second term of the arithmetic sequence whose fifth term is 122
and whose tenth term is 222,
@ 2 (b) ¥ © R (d 2
16. What isthe domain for f(x) = /x + 1?
(@ (=00, =) U (-1, 00) (0) (=1, 00)
(©) [-1,00) (d) (—o00, c0)
17. Find f o g(—2) for f(x) = x2+ x and g(x) = 3x + 9.
(@ 12 (b) 15 (© 3 (d) 2
18. What isthe vertex for y = 4x2 — 6x 4 5?
@ (3.5 ® G P © G-4 (@ 314
19. What istheinverse of _12 %]’?

_2 1
@ [ 2 225} (b) [
5
_ 2
© [ 215} (d) {
- -5

20. What isthe fifth term of the sequence where a,, = n??

(@ 10 (b) 15 (c) 20 (d) 25
21. What isan asymptote for the hyperbola

|
SRS TN
| I |

[
N
gk N
(|

ain N ok
airn Rl ain -

+1* (-1?

—1?
9 16

@ y=3x+ (b) y=3x+3

4 4 3 3

(© y=3x+3 d y=3x-1

22. What isthe phase shift for y = 3sin(2x — 7 /3)?
@ —n/3 (b) 7/3 (c) —m/6 (d) 7/6
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23. What isthe period for y = 3sin(2x — 7 /3)?
@ =« (b) /4 (c) 4n (d) =/2
24. Find 2x + y for the system.

y =x2-x-8
y =2x+10

(@ 3and 16 (b) 5and 21 (c) 1and 28 (d) 3and9

25. logg 5% =
@ ¢ (b) 2¢ (c) 2 (d) 10¢
26. What is the horizontal asymptote for the graph of
3?4+ 20 +1
JO) = 6o ya’
@ y=0 (b) ¥ :% (c) Thereisno horizontal asymptote.
27. Is_thesequence—%, -8 -3 L -% ... aithmetic, geometric, or
neither?
(& Arithmetic (b) Geometric
(c) Neither (d) Cannot be determined
1 1 1
28. What isthe inverse of 2 -1 1|7
-1 1 -3
r5 1 19 r—5 1 _ 19
8 4 8 8 4 8
@2 2 3 ® | 73 3
i1 _3 11 3
Ls —4 8- L™8 4 8-
ri 1 19 i1 19
a 2 4 2 2 2
© |} -4 CREE
5 _1 1 i _1 _3
Ls —4 B L —4 ~ 8-
29. Writethe product asasum: sin4x sinx.
(8 3(cos5x + cos3x) (b) %(cos3x — cos5x)
(© 3(sin5x +sin3x) (d) (sin5x —sin3x)

Problems 30-35 refer to the graph in Figure A.14.



@’_ Final Exam

30.

31.

32.

33.

34.

35.

36.

37.

= N W s Tt
T

e_ i _J 1 1 1 III/I
-5-7-3-2-1 1 2 3/4 5

Fig. A.14.

Sobh b o &
T

Isthe graph in Figure A.14 symmetric?
() Yes, with respect to the x-axis (b) Yes, with respect to the y-axis
(c) Yes, with respect to the origin  (d) No

What is f(—4)?

(@ -2 (b) O (c) 2 (d) 4
What is the y-intercept?

@ -2 (b) O (© 2 (d) 4
Does the function have an inverse?

(@ Yes (b) No

(c) Cannot be determined

What is the range?

@ [-4,4] (b) [-2, 2] © [-2, -4 (d) [24]
What is the increasing interval(s)?

@ (-4,-2U 2,9 (b) (-4.4

(© 2,2 (d (-2,2

Isthe function f (x) = x2 — x + 2 even, odd, or neither?

(@ Even (b) Odd (c) Neither

(d) Cannot be determined without the graph

Are the points (—4,2), (1,3), (—1,0), and (—2,5) the vertices of
aparalelogram?

(@) Yes (b) No

(c) Cannot be determined
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38.

39.

40.

41.

42.

1
2
3

A
4 .
-5
Fig.A.15.
The solid graph in Figure A.15 isthe graph of f(x), and the dashed graph

isthe graph of atransformation. What is the transformation?
@ fx+D+3 () fG6-D+3 () 2f(x+1 (d 2f(x—-1

Find the sum.

—6+(—2) +2+6+10+---+50

(a) 660 (b) 260 (c) 330
(d) Too many terms are missing to find the sum.

What isx + y for the system? Use a matrix method.

—x+4 =11
2x+3y =22
@ 7 (b) 8 (© 9 (d) 10
Arethe angles 65° and —295° coterminal ?
(& Yes (b) No (c) Cannot be determined
Find f~1(x) for f(x) = 3.
x+4 1
@ x—3 (b) x+4
—4x — 3 4x + 3
© ——1 @ ——
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43.

45,

46.

47.

=N W Wb
T

o
sk
Lok
:
sk
—

] ) 1 ’
G W =
T

-
[ 30
ol
Ny
bl

Fig. A.16.

The graph in Figure A.16 is the graph of what function?

@ fx)y=x2—2x-1 (b) f(x)=x?+2x—1

(© f(x)=x?>—-3x—-1 (d fx)=x?+3x—1

A biscuit recipe calls for 2/3 of a cup of milk for each cup of mix.

Find an equation that gives the amount of milk in terms of the amount
of mix.

(8 y=3x (b) y=3x

© y=3x (d) Cannot be determined
Rewrite m” = n as alogarithmic equation.

@ log,r =m (b) log,, r =n

(c) log,m =r (d) log,n=r

A museum offers group discounts for groups of 25 or more. For a group
of 25, the ticket price is $13.50. For each additiona person attend-
ing, the price drops $0.50. What group size maximizes the museum’s
revenue?

(@ 26 (b) 27 (c) 28 (d) 29

The graph in Figure A.17 is the graph of which function?

@ Px)=@x+3I@x —D2x+1) =x*+2x3 - 42 —-2x +3

b) Px) = —(x+3)(x —D2x+1) = —x*—2x34+4x2+2x -3
© PX)=x+3)x—-Dx+1)=x3+3x?—-x-3

(d Pr)=—(x+3)@x—-Dx+1)=—x3—3x2+x+3
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48.

49,

50.

51.

52.

1 10
What isthe determinantfor |1 0 1|7
3 21
@ 3 (b) 4 © 5 (d) 6
Find the domain for f(x) = 2.
Are f(x) = 4x3 + 1and g(x) = J 27 inverses?
(@) Yes (b) No
(c) Cannot be determined
Solvefor x: logs(2x — 7) = 1.
@ x=4 (b) x=5 (c) x=6 (d) x=7
The graph in Figure A.18 is the graph of which function?
@ fe) =2 (b) f(0) =2
X 2

© f(x) =1 d fx) =77
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. 5_.
I
| 4+
i
v 3
i
2
_______:__1 __________
L I H 1 1 1 1 i 1 J
5 -4 -3 -2 - 1 2.3 4 5
I f1
!
12
!
-3
4r
I_5L
Fig. A.18.

53. According to the Rational Zero Theorem, which of the following is NOT
apossible rational zerofor f(x) = 6x% — x3 — 3x2 + x — 10?

@ -3 (b) —10 (© 3 (d) 2

Fig. A.19.

54. Thegraph in Figure A.19 isthe graph of which inequality?
@x+y>2 ) x+y>2 @©x+y<2 () x+y<?2
55. Find the quadratic function with vertex (—1, 3) with the point (2, —15) on
its graph.
(@ f(x)=—-18(x —1)°+3 (b) f(x)=18(x —1)°+3
(© fx)=-2x+1)7%+3 (d () =2(x+1)°+3
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56. Rewriteasasinglelogarithm: Inx —3Iny —Inz.

@ In 3Lyz (b Inﬁ
© In% @ sz

L
-10 >

57. Thegraphin Figure A.20 isthe graph of which system?

y =x y =x

@ 1y =-3x+5 () 1y =-3x+5
y <—3x-3 y <—3x-3
y zx y =x

(© 3y 5—%x+5 (d {y 2—%’x+5
y <-3x—3 > _1x-3

58. Thegraphin Figure A.21 isthe graph of which equation?
(@ 22— = (b) % —»2=1

© x2+ % =1 d % +y2=1
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\
B

-3
Fig. A.21.

59. Whatisx + y + z for the system? Use amatrix method.

x+y =11
X +z =-1
Ix—2y+z =-11
(@ 6 (b) 7 (c) 8 (d 9
4_
3._.
/ I
N
-1+
2
3
4L
Fig. A.22.

60. Thegraphin Figure A.22 isthe graph of one period of which function?
(@ y=3snkx —m/4) (b) y =3sin(x + w/4)
(¢) y=sin3(x — /%) (d) y=sin3(x + /%)

61. Evaluate L@=S@ for f£(x) = 2x2 — 1,
(@ 4a+2n2—2 (b) 4a+2h2—1 (C) da+2h (d) 4a + 2h?



62. According to Descartes’ Rule of Signs, how many possible positive zeros
aretherefor f(x) = 6x* — x3 — 3x2 + x — 10?
(@ 3or1 (b) 3 (© 20r0 (d) 2

2_

>

|
3

Fig. A.23.

63. Thegraph in Figure A.23 isthe graph of one period of which function?
@ y=2sn(x—mn/3) (b) y=2sin(x +m/3)
(©) y=¢sin2(x —m/3) (d) y =sin2(x +/3)
64. Thegraphof 3f(x — 4) isthe graph of f(x)
(a) shifted to the right four units and vertically stretched.
(b) shifted to the left four units and vertically stretched.
(c) shifted to theright four units and vertically compressed.
(d) shifted to the left four units and vertically compressed.

Fig. A.24.

65. Find the height of the triangle in Figure A.24.
(@ About11.5 (b) About0.04 (c) About9.6 (d) About 0.05

66. Findall zerosfor f(x) = 3x3 — 7x2+ 8x — 2.

@ -3 1+i (0 % 1+i (© -5 —14i (d) -5 —1+i
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67.

68.

69.

70.

71.

72.

73.

74.

What are the interceptsfor f(x) = —x2 + x + 2?

(8 The x-interceptsare 1 and 2, and the y-intercept is 2.

(b) The x-interceptsare —1 and 2, and the y-intercept is 2.

(c) Thex-interceptsare 1 and —2, and the y-intercept is —2.
(d) The x-interceptsare —1 and 2, and the y-intercept is —2.
cos(tan~11/5) =

(8 %2 (b) ¥2& (© % (d) V26

What is the slant asymptote for the graph of

x2 -9
x+2

?

J&x) =

@ y=x—-11 (b)) y=x+2 (@) y=x-7 () y=x-2

The population of atown grew from 2000 in the year 1980 to 10,000 in
the year 2000. Assuming exponential growth, what is the town’s annual
growth rate?

(8 About6%  (b) About 7%  (c) About8%  (d) About 9%

What isthe quotient for %2

@ L+2 (b) 3+ % © B-8& d B+8&
What isthe quotient for (2x3 — x2 + 2) = (x + 3)?

(@ 2x2—7x —21 (b) 2x? +5x + 15

() 2x2—7x+23 (d) 2x2 —7x 421

What are the vertices for the dlipse

xZ y2
(@ (—4,0) and (4,0) (b) (0, —4) and (0, 4)
(©) (—5,0)and (5,0) (d) (0,5) and (0, —5)

A triangle has sides of length 8, 15, and 20. Which of the following isan
approximate angle in this triangle?

(a) 48.3° (b) 41.7° (C) 50.6° (d) 23.6°
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75.

Which one of the following statementsis NOT true about the polynomial
function f(x) = x3(x — 4)%(x + 1)?

(8 x = 0isazeroof multiplicity 3.

(b) x = 4isazero of multiplicity 2.

() x = lisazeroof multiplicity 1.

(d) x = —1isazero of multiplicity 1.

SOLUTIONS

LA 2.C 3.A 4.B 5D 6. A 7.A 8.B

9.A 10.C 11.B 12.A 13.C 14.C 15.D 16.D
17.A 18.B 19.A 20.D 21.C 22.D 23.A 24.C
25.B 26.B 27.A 28.D 29.B 30.C 31L.A 32.B
33.B 34.B 35.A 36.C 37.A 38.C 39.C 40.C
41. A 42.C 43. A 44.B 45.D 46. A 47.B 48.B
49.B 50. A 51.C 52.A 53.C 54. A 55.C 56. B
57.D 58.D 59.B 60. B 61.C 62. A 63.C 64. A
65.C 66. B 67.B 68. A 69. D 70.C 71.B 72.D
73.C 74.B 75.C



Absolute value function
graph of, 89, 90, 93, 94
Angles (see also Solving triangles)
coterminal, 366
degrees, 364, 365
initial side of, 364, 365
radians, 364, 365
reference, 367, 368-369
terminal side of, 364, 365
Arithmetic sequences, 421-425
partial sums of, 423-425
Asymptotes
and hyperbolas, 347, 348, 349
horizontal, 186189
slant, 193-195
and trigonometric functions, 382, 383, 385
vertical, 185, 186-187, 190-192
Average rate of change, 50-52

Base
of exponents, 214
of logarithms, 214

Change of base formula, 240-241
Circle, 344
Coefficient
leading, 134
matrix, 315, 318
of polynomial terms, 134
Combinations of functions
arithmetic, 64-65
composition, 65-71
Common logarithm, 217

@- C

Completing the square, 109-111, 359-360
Complex numbers
arithmetic, 166—169
as solutions to quadratic equations, 172-173
as zeros of a polynomial, 165, 175-177, 178
Compound growth/decay, 205, 246-247, 249-250,
251-253, 254-255, 257-258
Compound interest, 201-204
Conics (see Ellipse, Hyperbola, Parabola)
Constant
function, 25
term, 134
Cosecant, 372-374
graph of, 382-384
Cosine
graph of, 375, 377-379
inverse of, 392-394
and right triangles, 386-388, 395-397
and the unit circle, 369-374
Cotangent, 372-374
graph of, 385
Cubic function
graph of, 89, 91, 92

Descartes Rule of Signs, 160161
Determinant, 324-327
Difference quotient (see Newton’s Quotient)
Directrix

of aparabola, 330, 331, 332
Discriminant, 173
Division of polynomials

long, 144-148

synthetic, 148-150

opyright © 2005 by The McGraw-Hill Companies, Inc. Click here for terms of use.



Domain
of afunction, 34-37, 3940
in function composition, 69-70
from agraph, 4345
of logarithm functions, 228
of trigonometric functions, 375, 382, 385, 392,
393, 394

Elimination by addition, 265-268, 279-280
Ellipse, 338-345
End behavior of polynomials, 135-137
Equations

of conic sections, 331, 332, 338, 339, 343-344,

348, 349, 352-354, 357-360,

exponential, 223, 241, 243-244

of lines, 4-11

of logarithms, 220221, 229-230, 237-238

of polynomials, 134

of quadratic functions, 104-111

of rational functions, 185

solving, 439444

systems of, 262-281, 315-320

of trigonometric functions, 374-375, 382—383
Even functions, 58-59
Exponent

functions, 209

properties, 210, 231, 232

Factoring by grouping, 442443
Focus

inan ellipse, 338, 339

in ahyperbola, 347, 348, 349

in aparabola, 330, 331, 332
Functions

composition of, 6571

definition of, 24

domain, 34-37, 39-40, 4345

evaluating, 25-27, 28-29

even and odd, 55-59

exponential, 209

increasing and decreasing intervals, 4547

logarithmic, 225, 228

quadratic, 104-133

range, 34, 4345

rational, 185-200

trigonometric, 374-375, 382-383
Fundamental Theorem of Algebra, 175

Geometric sequences, 426432
partial sums of, 429-431
sums of, 431-432

Graphs
and domain and range, 43-45
of ellipses, 338-340, 342-343
of exponential functions, 209-211, 214
of functions, 42-61
and function composition, 68-69
of hyperbolas, 348-352
of inequalities, 284-289
intercepts of, 43, 105-108, 185, 187
of inverse functions, 77—79
of lines, 2-5, 7-10
of logarithmic functions, 225-226
of one-to-one functions, 79-80
of parabolas, 104-108, 330—-333
of polynomial functions, 134-140
of quadratic functions, 104-108
of rational functions, 190-195
symmetry of, 55-58
of systems of equations, 263, 265, 266, 278, 279
of systems of inequalities, 289296
transformations of, 89-97
of trigonometric functions, 374-379,

382385, 393

Half-life (see Radioactive decay)
Horizontal

asymptotes, 186-189

lines, 4

line test, 79-80

transformations, 89-97
Hyperbola 347-354

Imaginary numbers (see Complex numbers)
Identity function, 75
Inequalities
graphs of, 284-289
nonlinear, 445-449
solving, 444-449
systems of, 289-296
Intercepts, 43, 105-108, 185, 187
as zeros of apolynomial, 137-139



Interval
increasing/decreasing, 4547
notation of, 449
Inverse
functions, 75-82
of amatrix, 307-313, 318-320

of trigonometric functions, 392-397, 401,
402

Law of Cosines, 398, 400402
Law of Sines, 398, 400-402
Lines
equations of, 4-11
graphs of, 2-5, 7-10
horizontal, 4
pardle, 9, 10-11
perpendicular, 9-11
dopeof, 1-4
vertical, 4-5
Logarithms, 214-258
applications of, 246-247, 249-250,
251-253
base of, 214
equations, 220221, 229-230, 237-238
functions, 225, 228
properties, 231-232, 234-235

Matrix

arithmetic, 304-306

determinant of, 324-327

identity, 305

inverse of, 307-313, 318-320

row operations, 307-313, 316-320

and solving systems of equations, 315-320
Multiplicity of zeros, 177, 178

Natural logarithm, 217

Newton's Quotient, 30-32

Nonlinear inequalities
graphs of, 288-289, 290291, 294-296
solving, 445-449

Odd functions, 58-59
One-to-one functions, 79-80

Parabola, 104-108, 330-336
Partial sums, 418419, 423-425, 429-431
Polynomials, 134-184

degree, 134

dividing, 144-150

factoring, 151-153, 157-160

graphs of, 134-140

zeros of, 137, 152-153, 157-159, 172-179
Present value, 205-206, 436

Quadrant, 367-369, 372
Quadratic equation
complex solutionsto, 172-173
solving, 440442
Quadratic formula, 441
Quadratic functions, 104-133

Radioactive decay, 254255, 257-258
Range, 34, 44-45
Rational functions,
asymptotes of, 185-195
graphs of, 190-195
Rational Zero Theorem, 156157
Remainder Theorem, 151
Right triangles, 14-15
and trigonometric ratios, 386—391, 394-398

Secant, 372-374
graph of, 382
Sequence
arithmetic, 421-425
geometric, 426432
partial sum of, 418-419, 423425, 429431
recursively defined, 416
terms of, 415416, 421, 427
Series, 415, 431432
Sine
graph of, 374-377, 379
inverse of, 392-394
and right triangles, 386-388, 395-398
and the unit circle, 369-374
Slant asymptotes
and hyperbolas, 347, 348, 349
and rational functions, 193-195



Slope
and the average rate of change, 51, 52
formula, 14
of horizonta lines, 3
interpreting, 1-3, 17-18
and Newton's Quotient, 32
of parallel and perpendicular lines, 9-11
of vertical lines, 4
Square root function, graph of, 89, 90, 92, 93
Substitution method, 263265, 280-281
Symmetry
axis of, 331
of graphs, 55-58
Synthetic division, 148-150
Systems of equations, 262-281, 315-320
Systems of inequalities, 289-296

Tangent, 372-374
graph of, 385
inverse of, 392-394
and right triangles, 386388, 395-397
Transformations and transl ations, 89—97
Triangles, 386-391, 394-398, 399-402
and the Law of Cosines, 398, 400, 402
and the Law of Sines, 398, 400-402

——&

Trigonometric functions (see also Cosine, Sine,
and Tangent)
co-functions of, 387-388
even, odd properties, 375, 383

Unit circle, 364-374
angles on, 364-369
terminal points on, 369, 371-374
trigonometric functions and, 369-374

Upper and lower Bounds Theorem, 160, 161-162

Vertical asymptotes
and rational functions, 185, 186187, 190-192
and trigonometric functions, 382, 383, 385
Vertica line test, 43-44
Vertical lines, 4, 5
Vertica transformations, 89-97
Vertices
of ellipses, 338, 339
of hyperbolas, 347, 348, 349
of parabolas, 104, 108-112, 331, 332

Zeros of apolynomial, 137, 152—153, 157-159,
172-179
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