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Preface

This book introduces the reader to a broad collection of integration theo-
ries, focusing on the Riemann, Lebesgue, Henstock-Kurzweil and McShane
integrals. By studying classical problems in integration theory (such as
convergence theorems and integration of derivatives), we will follow a his-
torical development to show how new theories of integration were developed
to solve problems that earlier integration theories could not handle. Sev-
eral of the integrals receive detailed developments; others are given a less
complete discussion in the book, while problems and references directing
the reader to future study are included.

The chapters of this book are written so that they may be read indepen-
dently, except for the sections which compare the various integrals. This
means that individual chapters of the book could be used to cover topics in
integration theory in introductory real analysis courses. There should be
sufficient exercises in each chapter to serve as a text.

We begin the book with the problem of defining and computing the area
of a region in the plane including the computation of the area of the region
interior to a circle. This leads to a discussion of the approximating sums
that will be used throughout the book.

The real content of the book begins with a chapter on the Riemann in-
tegral. We give the definition of the Riemann integral and develop its basic
properties, including linearity, positivity and the Cauchy criterion. After
presenting Darboux’s definition of the integral and proving necessary and
sufficient conditions for Darboux integrability, we show the equivalence of
the Riemann and Darboux definitions. We then discuss lattice properties
and the Fundamental Theorem of Calculus. We present necessary and suf-
ficient conditions for Riemann integrability in terms of sets with Lebesgue
measure 0. We conclude the chapter with a discussion of improper integrals.

vil



viii Theories of Integration

We motivate the development of the Lebesgue and Henstock-Kurzweil
integrals in the next two chapters by pointing out deficiencies in the Rie-
mann integral, which these integrals address. Convergence theorems are
used to motivate the Lebesgue integral and the Fundamental Theorem of
Calculus to motivate the Henstock-Kurzweil integral.

We begin the discussion of the Lebesgue integral by establishing the
standard convergence theorem for the Riemann integral concerning uni-
formly convergent sequences. We then give an example that points out the
failure of the Bounded Convergence Theorem for the Riemann integral, and
use this to motivate Lebesgue’s descriptive definition of the Lebesgue inte-
gral. We show how Lebesgue’s descriptive definition leads in a natural way
to the definitions of Lebesgue measure and the Lebesgue integral. Following
a discussion of Lebesgue measurable functions and the Lebesgue integral,
we develop the basic properties of the Lebesgue integral, including conver-
gence theorems (Bounded, Monotone, and Dominated). Next, we compare
the Riemann and Lebesgue integrals. We extend the Lebesgue integral to
n-dimensional Euclidean space, give a characterization of the Lebesgue in-
tegral due to Mikusinski, and use the characterization to prove Fubini’s
Theorem on the equality of multiple and iterated integrals. A discussion of
the space of integrable functions concludes with the Riesz-Fischer Theorem.

In the following chapter, we discuss versions of the Fundamental The-
orem of Calculus for both the Riemann and Lebesgue integrals and give
examples showing that the most general form of the Fundamental Theorem
of Calculus does not hold for either integral. We then use the Fundamental
Theorem to motivate the definition of the Henstock-Kurzweil integral, also
know as the gauge integral and the generalized Riemann integral. We de-
velop basic properties of the Henstock-Kurzweil integral, the Fundamental
Theorem of Calculus in full generality, and the Monotone and Dominated
Convergence Theorems. We show that there are no improper integrals
in the Henstock-Kurzweil theory. After comparing the Henstock-Kurzweil
integral with the Lebesgue integral, we conclude the chapter with a discus-
sion of the space of Henstock-Kurzweil integrable functions and Henstock-
Kurzweil integrals in R™.

Finally, we discuss the “gauge-type” integral of McShane, obtained by
slightly varying the definition of the Henstock-Kurzweil integral. We es-
tablish the basic properties of the McShane integral and discuss absolute
integrability. We then show that the McShane integral is equivalent to the
Lebesgue integral and that a function is McShane integrable if and only if
it is absolutely Henstock-Kurzweil integrable. Consequently, the McShane
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integral could be used to give a presentation of the Lebesgue integral which
does not require the development of measure theory.
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Chapter 1

Introduction

1.1 Areas

Modern integration theory is the culmination of centuries of refinements
and extensions of ideas dating back to the Greeks. It evolved from the
ancient problem of calculating the area of a plane figure. We begin with
three axioms for areas:

(1) the area of a rectangular region is the product of its length and width;
(2) area is an additive function of disjoint regions;
(3) congruent regions have equal areas.

Two regions are congruent if one can be converted into the other by a
translation and a rotation. From the first and third axioms, it follows that
the area of a right triangle is one half of the base times the height. Now,
suppose that A is a triangle with vertices A, B, and C. Assume that AB is
the longest of the three sides, and let P be the point on AB such that the
line CP from C to P is perpendicular to AB. Then, ACP and BCP are
two right triangles and, using the second axiom, the sum of their areas is
the area of A. In this way, one can determine the area of irregularly shaped
areas, by decomposing them into non-overlapping triangles.

G B

Figure 1.1



2 Theories of Integration

It is easy to see how this procedure would work for certain regularly
shaped regions, such as a pentagon or a star-shaped region. For the penta-
gon, one merely joins each of the five vertices to the center (actually, any
interior point will do), producing five triangles with disjoint interiors., This
same idea works for a star-shaped region, though in this case, one connects
both the points of the arms of the star and the points where two arms meet
to the center of the region.

For more general regions in the plane, such as the interior of a circle, a
more sophisticated method of computation is required. The basic idea is to
approximate a general region with simpler geometric regions whose areas
are easy to calculate and then use a limiting process to find the area of the
original region. For example, the ancient Greeks calculated the area of a
circle by approximating the circle by inscribed and circumscribed regular
n-gons whose areas were easily computed and then found the area of the
circle by using the method of exhaustion. Specifically, Archimedes claimed
that the area of a circle of radius r is equal to the area of the right triangle
with one leg equal to the radius of the circle and the other leg equal to
the circumference of the circle. We will illustrate the method using modern
notation.

Let C be a circle with radius r and area A. Let n be a positive integer,
and let I,, and O, be regular n-gons, with I, inscribed inside of C' and
O,, circumscribed outside of C. Let a represent the area function and let
E; = A—a(I4) be the error in approximating A by the area of an inscribed
4-gon. The key estimate is

1
A-—a(I22+n) < 2_nEI’ (1.1)

which follows, by induction, from the estimate

A-a (I22+n+1) < % (A —a (122+n)) .
To see this, fix n > 0 and let [24- be inscribed in C. We let Iyz21n+1 be the
2247+l gon with vertices comprised of the vertices of Ip2+n and the 2217
midpoints of arcs between adjacent vertices of Iy2+-. See the figure below.
Consider the area inside of C and outside of I2+~. This area is comprised of
22+ congruent caps. Let cap” be one such cap and let R? be the smallest
rectangle that contains cap?. Note that R} shares a base with cap? (that
is, the base inside the circle) and the opposite side touches the circle at one
point, which is the midpoint of that side and a vertex of Iy2+n+1. Let T* be
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the triangle with the same base and opposite vertex at the midpoint. See
the picture below.

Figure 1.2

Suppose that cap}""l and cap?jll are the two caps inside of C' and outside of

Ip2+n+1 that are contained in cap?. Then, since cap;.H'1 Ucap}‘i’ll C RP\TP,

a(TP) = a(RP\TP) > a (cap} ™ Ucanlf}),

which implies
a(capy) = a(T") + a (cap] ™' U cap}iy)

> 2a (cap;”rl Ucaplfy) =21a (capi*!) +a (cap?;"ll)] .

Adding the areas in all the caps, we get

22+n+1 1 22+11 1
1 n
A= a(lpnn) = g o ear ™) <5 3 alear?) = 5 (A~ a(fzo)

as we wished to show.
We can carry out a similar, but more complicated, analysis with the
circumscribed rectangles to prove

1

a(Ogien) = A < =

Eo, (1.2)
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where Ep = a(O4) — A is the error from approximating A by the area of a
circumscribed 4-gon. Again, this estimate follows from the inequality

1
a (022+n+1) - A < '2- (a (O22+n) — A) .
For simplicity, consider the case n = 0, so that Oy = Oy is a square.

By rotational invariance, we may assume that O, sits on one of its sides.
Consider the lower right hand corner in the picture below.

—

e

s

5 H D
Figure 1.3

Let D be the lower right hand vertex of O4 and let E and F' be the points
to the left of and above D, respectively, where O4 and C meet. Let G be
midpoint of the arc on C from E to F, and let H and J be the points where
the tangent to C' at G meets the segments DE and DF, respectively. Note
that the segment H.J is one side of Oz2+1. As in the argument above, it is
enough to show that the area of the region bounded by the arc from E to
F and the segments DE and DF is greater than twice the area of the two
regions bounded by the arc from E to F and the segments FH, HJ and
FJ. More simply, let S’ be the region bounded by the arc from E to G and
the segments EH and GH and S be the region bounded by the arc from E
to G and the segments DG and DE. We wish to show that a (S’) < 3a(S).
To see this, note that the triangle DHG is a right triangle with hypotenuse
DH, so that the length of DH, which we denote |[DH|, is greater than the
length of GH which is equal to the length of EH, since both are half the
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length of a side of Oyz+1. Let h be the distance from G to DE. Then,
o(8) < a (EGH) = % \EH|h < -;- \DH|h = a (DHG)
so that
a(S)=a(DHG)+a(8") > 2a(5"),

and the proof of (1.2) follows as above.

With estimates (1.1) and (1.2), we can prove Archimedes claim that A
is equal to the area of the right triangle with one leg equal to the radius of
the circle and the other leg equal to the circumference of the circle. Call
this area T. Suppose first that A > T. Then, A — T > 0, so that by (1.1)
we can choose an n so large that A — a (Iy2+n) < A= T, or T < a (Iz2+n).
Let T; be one of the 227" congruent triangles comprising Iyz+~ formed by
joining the center of C to two adjacent vertices of Iy2+~. Let s be the length
of the side joining the vertices and let h be the distance from this side to
the center. Then,

a(Ip2en) = 2217 (T}) = 22+"—;-sh = % (2%*7s) .

Since A < r and 22T™s is less than the circumference of C, we see that
a (I32+n) < T, which is a contradiction. Thus, 4 < T.

Similarly, if A < T, then T— A > 0, so that by (1.2) we can choose an n
so that a (Ogz+n) — A < T — A, or a(Ogz+-) < T. Let T/ be one of the 22"
congruent triangles comprising Ogz2+- formed by joining the center of C to
two adjacent vertices of Ogz+~. Let s’ be the length of the side joining the
vertices and let A = r be the distance from this side to the center. Then,

0 (Ogain) = 22476 (T!) = 22"'"—;-5'7“ . % (22*7s') r.

Since 2275’ is greater than the circumference of C, we see that a (Ogz+n) >
T, which is a contradiction. Thus, A > T. Consequently, A =T.

In the computation above, we made the tacit assumption that the circle
had a notion of area associated with it. We have made no attempt to define
the area of a circle or, indeed, any other arbitrary region in the plane. We
will discuss the problem of defining and computing the area of regions in
the plane in Chapter 3.

The basic idea employed by the ancient Greeks leads in a very natural
way to the modern theories of integration, using rectangles instead of trian-
gles to compute the approximating areas. For example, let f be a positive
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function defined on an interval [a,b]. Consider the problem of computing
the area of the region under the graph of the function f, that is, the area
of the region R = {(z,y):a <z <b0<y < f(z)}.

L 4

Figure 1.4

Analogous to the calculation of the area of the circle, we consider approxi-
mating the area of the region R by the sums of the areas of rectangles. We
divide the interval [a, b] into subintervals and use these subintervals for the
bases of the rectangles. A partition of an interval [a,b] is a finite, ordered
set of points P = {zg,21,...,Zn}, With 2o = a and z, = b. The French
mathematician Augustin-Louis Cauchy (1789-1857) studied the area of the
region R for continuous functions. He approximated the area of the region
R by the Cauchy sum

C(f,P) = f(mi-1) (®wi — zi1)
i=1

= f(zo) (®1 —z0) + - + f (@n=1) (Tn — 1)

Cauchy used the value of the function at the left hand endpoint of each
subinterval [z;_1,z;] to generate rectangles with area f (x;_1) (z; — z:—1).
The sum of the areas of the rectangles approximate the area of the region

R.
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Figure 1.5

He then used the intermediate value property of continuous functions to
argue that the Cauchy sums C (f, P) satisfy a “Cauchy condition” as the
mesh of the partition, 1 (P) = maxi<i<n (%; — zi~1), approaches 0. He
concluded that the sums C (f, P) have a limit, which he defined to be the
integral of f over [a,b] and denoted by f: f (z) dz. Cauchy’s assumptions,
however, were too restrictive, since actually he assumed that the function
was uniformly continuous on the interval [a, b], a concept not understood at
that time. (See Cauchy [C, (2) 4, pages 122-127], Pesin [Pe] and Grattan-
Guinness [Gr] for descriptions of Cauchy’s argument).

The German mathematician Georg Friedrich Bernhard Riemann (1826-
1866) was the first to consider the case of a general function f and region
R. Riemann generated approximating rectangles by choosing an arbitrary
point t;, called a sampling point, in each subinterval [z;_1, z;] and forming
the Riemann sum

n

S(f,P,{t:i} ) = Zf (t:) (i — zie1)

i=1

to approximate the area of the region R.
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&
y = f=z) .
7 \\
| 4 |t ot o fg |
a Ty T 3 Ty T b

Figure 1.6

Riemann defined the function f to be integrable if the sums S (f, P, {t:};_;)
have a limit as u (P) = maxj<i<n (*; — z;—1) approaches 0. We will give a
detailed exposition of the Riemann integral in Chapter 2.

The construction of the approximating sums in both the Cauchy and
Riemann theories is exactly the same, but Cauchy associated a single set of
sampling points to each partition while Riemann associated an uncountable
collection of sets of sampling points. It is this seemingly small change
that makes the Riemann integral so much more powerful than the Cauchy
integral. It will be seen in subsequent chapters that using approximating
sums, such as the Riemann sums, but imposing different conditions on the
subintervals or sampling points, leads to other, more general integration
theories.

In the Lebesgue theory of integration, the range of the function f is
partitioned instead of the domain. A representative value, ¥, is chosen for
each subinterval. The idea is then to multiply this value by the length of the
set of points for which f is approximately equal to y. The problem is that
this set of points need not be an interval, or even a union of intervals. This
means that we must consider “partitioning” the domain [a, b] into subsets
other than intervals and we must develop a notion that generalizes the
concept of length to these sets. These considerations led to the notion of

Lebesgue measure and the Lebesgue integral, which we discuss in Chapter
3.
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The Henstock-Kurzweil integral studied in Chapter 4 is obtained by
using the Riemann sums as described above, but uses a different condition
to control the size of the partition than that employed by Riemann. It will
be seen that this leads to a very powerful theory more general than the
Riemann (or Lebesgue) theory.

The McShane integral, discussed in Chapter 5, likewise uses Riemann-
type sums. The construction of the McShane integral is exactly the same
as the Henstock-Kurzweil integral, except that the sampling points t; are
not required to belong to the interval [z;_;,x;]. Since more general sums
are used in approximating the integral, the McShane integral is not as
general as the Henstock-Kurzweil integral; however, the McShane integral
has some very interesting properties and it is actually equivalent to the
Lebesgue integral.

1.2 Exercises

Exercise 1.1 Let T be an isosceles triangle with base of length b and two
equal sides of length s. Find the area of T'.

Exercise 1.2 Let C be a circle with center P and radius r and let I,, and
O,, be n-gons inscribed and circumscribed about C. By joining the vertices
to P, we can decompose either I,, or O, into n congruent, non-overlapping

isosceles triangles. Each of these 2n triangles will make an angle of 2 at
P no .

Use this information to find the area of I ,,; this gives a lower bound on
the area inside of C'. Then, find the area of O, to get an upper bound on
the area of C. Take the limits of both these expressions to compute the
area inside of C.

Exercise 1.3 Let 0 < a < b. Define f : [a,b] —» R by f(z) = 2? and
let P be a partition of [a,b]. Explain why the Cauchy sum C (f,P) is the
smallest Riemann sum associated to P for this function f.
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Chapter 2

Riemann integral

2.1 Riemann’s definition

The Riemann integral, defined in 1854 (see [Ril),[Ri2]), was the first of the
modern theories of integration and enjoys many of the desirable proper-
ties of an integration theory. While the most popular integral discussed in
introductory analysis texts, the Riemann integral does have serious short-
comings which motivated mathematicians to seek more general integration
theories to overcome them, as we will see in subsequent chapters.

The groundwork for the Riemann integral of a function f over the in-
terval [a, b] begins with dividing the interval into smaller subintervals.

Definition 2.1 Let [a,b] C R. A partition of [a,b] is a finite set of
numbers P = {zg,Z1,...,T,} such that 2o = @, 7, = b and z;,_7 < =;
for ¢ = 1,...,n. For each subinterval [z;_y,z;], define its length to be
£([z;—1,71]) = z; — x;—1. The mesh of the partition is then the length of
the largest subinterval, [z;_1, z;]:

p(P)=max{z; ~zi_1:1=1,...,n}.

Thus, the points {zg,z1,...,2,} form an increasing sequence of numbers
in [a, b] that divides the interval [a, b] into contiguous subintervals.

Let f:[a,b] = R, P = {z¢,21,...,2,} be a partition of [a,b], and ¢; €
[#i—1, ;] for each i. As noted in Chapter 1, Riemann began by considering
the approximating (Riemann) sums

n

S(£,PAtdimy) = > f () (@i — @im1),

i=1

defined with respect to the partition 7 and the set of sampling points

11



12 Theories of Integration

{t:;}.—,. Riemann considered the integral of f over [a,}] to be a “limit” of
the sums S (f,P,{t;};—;) in the following sense.

Definition 2.2 A function f : [a,b] — R is Riemann integrable over |[a, b]
if there is an A € R such that for all € > 0 there is a § > 0 so that if P is
any partition of [a,b] with p (P) < & and ¢; € [z;_;, z;] for all ¢, then

[S(f,P,{t:i}i_) — Al <e
We write A = f:f: f:f(t)dt or, if we set I = [a,b], [; f.

This definition defines the integral as a limit of sums as the mesh of the
partition approaches 0.

The following proposition justifies our definition of and notation for the
integral.

Proposition 2.3 If f is Riemann integrable over [a,b], then the value of
the integral is unique.

Proof. Suppose that f is Riemann integrable over [a, b] and both A and
B satisfy Definition 2.2. Fix ¢ > 0 and choose 6 4 and 6 corresponding to
A and B, respectively, in the definition with ¢’ = 5. Let § = min(4,dp)
and suppose that P is a partition with u(P) < 4, and hence with mesh
less than both 4 and 6p. Let {t;};_; be any set of sampling points for P.
Then,

|A=B| <|A=S(f,P{t:hi) +IS (£, P {titin) — Bl <€+ =e

Since € was arbitrary, it follows that A = B. Thus, the value of the integral
is unique. 0

Remark 2.4 The value of § is a measure of how small the subintervals
must be so that the Riemann sums closely approzimate the integral. When
we wish to satisfy two such conditions, we use {any positive number smaller
than or equal to) the smaller of the two &’s. This works for a finite num-
ber of conditions by choosing the minimum of all the &’s, but may fail for
infinitely many conditions since, in this case, the infimum may be 0.

‘We consider now several examples.

Example 2.5 Let a,b,c,d e Rwitha <c<d<b Set I =|c,d] and let
X be the characteristic function of I, defined by

(2) = lifeel
XV =\ 0ifz gl
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Then, f: xr=d—c.

Let P = {zg,21,...,2,} be a partition of [a,b]. Let [z;_1,z;] be a
subinterval determined by the partition. The contribution to the Riemann
sum from [z;_1,x;] is either z; — z;_; or 0 depending on whether or not
the sampling point is in I.

Now, fix € > 0, let § = ¢/2 and let P be a partition of [a,b] with mesh
less than 4. Let j be the smallest index such that ¢ € [z;_1,z;] and let &
be the largest index such that d € [zg—1,2x]. (If c € P\ {a,b}, then cis in
two subintervals determined by P.) Then, if ¢; € [z;_1, ;] for each i,

S(fP{t:}m) =f(¢ ) (T3 — Tj-1)

k—1

-+ Z (zs — zi—1) + f(te) (T — 2p—1)
i=j+1
<4 (d—c)+8.

On the other hand,

k—1
S(f,P’ {ti}?=1) > Z (xz - zi—l)
i=j+1
= Z —zi—1) — {(z; — zj—1) + (T — z6-1)}
>(d—c)—26

so that
IS(f, P, {ti}iey) —(d—¢)| <20 =€

Thus, x; is Riemann integrable and f: xr=d—c

Example 2.6 Define f : [0,1] — R by f(z) = z. Let P =
{20, 1, ...,z,} be a partition of [0, 1] and choose t; so that z;_; < t; < x;.
Write % as a telescoping sum

(:1:2_-2‘(2)) %{(1‘%—18)-}—(1‘%—2:?)_}_+(x%_xi_l)}

I\DH—*
Mlp—a
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Then,
1 = 1 <&
S(fip’{ti}?zl)—§’= Zti(m'_mz 1) -Z-Z x? -zl 1
i=1 i=1
- x1+xz
Z ( 1) (221, — Ti— 1)
Since t;, L € [ri, ), kti - B < gy — 2] < 4 (P). So,

given € > 0, set § = ¢. Then, if p (P) < 4,

SUP ) - 3| <3

since Y i, (@; — z;—1) = 1. Thus, f is Riemann integrable on [0,1] and
has integral -é— .

The Riemann integral is well suited for continuous functions, and can
handle functions whose points of discontinuity form, in some sense, a small
set. See Corollary 2.42. However, if the function has many discontinuities,
this integral may fail to exist.

Example 2.7 Define the Dirichlet function f:[0,1] — R by

lifre@Q
f@):{0ﬁx¢Q'

Let P = {z0,21,...,%,} be a partition of [0,1]. In every subinterval
[xi—1,z;] there is a rational number r; and an irrational number ¢;. Thus,

S(f,P, {Tt Zf(ﬂ T — Ti—1) 2020
i=1

while

n n

S(PAG ) =D @) (@mi—mio) = (m—zim1) = 1.
=1 i=1
So, no matter how fine the partition, we can always find a set of sampling
points so that the corresponding Riemann sum equals 0 and another set
so that the corresponding Riemann sum equals 1. Now, suppose f were
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Riemann integrable with integral A. Fix € < % and choose a corresponding
6. If P is any partition with mesh less than §, then

1= |S(fap,{qz}:t=1) - S(f)P7 {Ti}?=1)|
SIS(AHPAa ) —Al+HIA=S(f,P {ri}ic)l <e+e<

This contradiction shows that f is not Riemann integrable.

2.2 Basic properties

In the calculus, we study functions which associate one number (the input)
to another number (the output). We can think of the Riemann integral
in much the same way, except now the input is a function and the output
is either a number (in the case of definite integration) or a function (for
indefinite integration). We call a function whose inputs are themselves
functions an operator, so that the Riemann integral is an operator acting
on Riemann integrable functions. Two fundamental properties satisfied by
the Riemann integral or any reasonable integral are known as linearity and
positivity. Linearity means that scalars factor outside the operation and
the operation distributes over sums; positivity means that a nonnegative
input produces a nonnegative output.

Proposition 2.8 (Linearity) Let f,g: [a,b] - R and let o, € R. If f
and g are Riemann integrable, then af + Bg is Riemann integrable and

Lb(af+ﬁg)=a/:f+ﬁ/abg-

Proof. Fix € > 0 and choose 6; > 0 so that if P is a partition of [a, b]
with p (P) < 4y, then

b €
S(f,P,{ti}?zl)—/a N <3@¥1a)

for any set of sampling points {t;}]_;. Similarly, choose §, > 0 so that if
P is a partition of [a,b] with u (P) < d4, then

b

S(g.P, {t),) - / 0

a

<—t
2(1+180)
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Now, let 6 = min {d¢,8,} and suppose that P is a partition of [a, b] with
wu(P) < 6 and t; € [i—1, ;] for i =1,...,n. Then,

S(af + B0, P, {t)y) - (a/:f+5/:9>

b b
(a8 (f, P, {t:}iy) + BS (9, P, {t:i}iy)) - (a/ f+ﬂ/ Q)
b

b
o (S(f,P, {ti}Ll)-/ f) +5 (5(51,73, {ti}?zl)—/ 9)

b

b

S (0P {t:Y) — / g

a

< lef fl+18l

S (Pt ) — /

¢lof 18]
<3+l T 2A 18D

< €.

Since € was arbitrary, it follows that af + Sg is Riemann integrable and

Lb(af+5g):a/olbf+ﬂ/6lbg.

Proposition 2.9 (Positivity) Let f : [a,b] — R. Suppose that f is non-
negative and Riemann integrable. Then, f: f>0.

O

Proof. Let € > 0 and choose a § > 0 according to Definition 2.2. Then,
if P is a partition of [a,b] with x4 (P) < § and t; € [z;-1, i,

b
<e

f

a

‘S(f,P,{ti}:;o - /

Consequently, since S (f,P, {ti};_;) 20,
b
[ >80Py —e>

for any positive ¢. It follows that f: f=>0. O

Applying this result to the difference g — f we have the following com-
parison result.
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Corollary 2.10 Suppose f and g are Riemann integrable on [a,b] and
f(z) < g(x) for all x € [a,b]. Then,

/:fs/abg-

Suppose that f : [a,b] — R and f is unbounded on [a,b]. Let P
be a partition of [a,b4]. Then, there is a subinterval [z;_1,z;] on which
f is unbounded. For, if f were bounded on each subinterval {z;_1,z;],
with a bound of M;, then f would be bounded on [a,b] with a bound of
max {My, Ma, ..., My,}. Thus, there is a sequence {yx}ro; C [zj_1,z;] such
that |f (yx)| = k. Can such a function be Riemann integrable? Consider
the following heuristic argument.

Fix a set of sampling points t; € [z;_1, z;] for i # 7, so that the sum

Z [ () (zi — wi1)
1<i<n
i#j

is a fixed constant. Set t; = yy. Then,

SUHPAtYZ) = Y F(t) (@ —mim1) + f (we) (25 — m5-1).
1<in
i
Note that as we vary &, the Riemann sums diverge and f is not Riemann
integrable. Thus, a Riemann integrable function must be bounded. We
formalized this result with the following proposition.

Proposition 2.11  Suppose that f : [a,b] — R is ¢ Riemann integrable
function. Then, f is bounded.

Proof. Choose § > 0 so that

]
S - [ 1] <3

if p(P) < 4. Fix such a partition P and sampling points
[}y, and let M = max{If (t)],If ()], o, |f (G} and A =
min {z; — zp, 23 — Z1,...,Tn — Tn-1} > 0. Let = € [a,b] and let j be
the smallest index such that « € [z;_,z;]. Let T be the set of sampling
points {¢1,...,%;_1,2,t;41,...,tn}. Note that

If (&) (@5 = 25-1) = £ (&) (&5 — 25-0)| =[S (£,P,T) = S(f, P, {t:};Ly)]
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since the two Riemann sums contain the same addends except for the terms
corresponding to the subinterval [z;_q,z;]. Further,

IS(f’P’T) —S(fap’{ti}?zlﬂ = ls(fﬁpaT) _/ f

b
+/ f_S(fvpa{ti}:i;l)

b
< S(f,P,T)—/ f
b
+ / f— S0Pty
< 1.

It follows that
If (@) (z; — zj—1) <|f ()] (x5 —2j-1) +1 S M (x5 —25-1) +1

or

1 1

If(m)‘<M+m§M+-A—

Since z was arbitrary, we see that f is bounded. O

2.3 Cauchy criterion

Let {x,},_, be a convergent sequence. Then, {z,} >, satisfies a Cauchy
condition; that is, given € > 0 there is a natural number N such that
|Zn — Tm| < € whenever n,n > N. The proof of the boundedness of
Riemann integrable functions demonstrates that the Riemann sums of an
integrable function satisfy an analogous estimate. Suppose that f is Rie-
mann integrable on [a,b]. Fix € > 0 and choose ¢ corresponding to ¢/2 in

Definition 2.2. Let P; = {x'gj),xgj),...,x,(f;)}, J = 1,2, be two partitions



Riemann integral 19

with mesh less than § and let ¢; @) ¢ [ G ) (j )]. Then

(Y -5 ()
“Jstem ) [ o [ rstem (017
S(f’,Pl’{tgl)}:l) A I+ /;bf&s(f’P%{t’(Z)}:l)

Analogous to the situation for real-valued sequences, the condition that

|5 (rP e} ) = s (1P {7} )] <

for all partitions P; and P, with mesh less that 4, which is known as the
Cauchy criterion, actually characterizes the integrability of f.

< €.

Theorem 2.12 Let f : [a,b] — R. Then, f is Riemann integrable over
[a,b] if, and only if, for each € > 0 there is a § > 0 so that if P;, j = 1,2,

are partitions of [a,b] with 11 (P;) < & and {t(J)}' are sets of sampling

points relative to P;, then

s (rP{e}) =5 (1P {8} ) <

Proof. We have already proved that the integrability of f implies the
Cauchy criterion. So, assume the Cauchy criterion holds. We will prove
that f is Riemann integrable.

For each k € N, choose a d; > 0 so that for any two partitions P; and
Pq, with mesh less than d, and corresponding sampling points, we have

s (rPu {0} ) = s (52 )7 )l <
Replacing 8, by min {41, 82,...,0;}, we may assume that §; > 6gt1.

Next, for each k, fix a partition P, with ©(Pg) < 0x and a set of
sampling points {tl(.k)}‘ “ . Note that for J>k, n(P;) <d; < 6. Thus,

1=

]S (f’Pk’{ (k)}z_l) (f’ » {tm}z_l)l < m_in—{lj,_k}’

(o o]

which implies that the sequence {S’ ( £ P, {t(k)} 1)} is a Cauchy
k=1

sequence in R, and hence converges. Let A be the hmlt of this sequence. It
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follows from the previous inequality that
s (2P {0} ) - 4] < &

It remains to show that A satisfies Definition 2.2.

Fix € > 0 and choose K > 2/e. Let P be a partition with p (P) < éx
and let {t;};; be a set of sampling points for . Then,
IS (£, P {ti}iz)) — Al
= | P ) = 5 (1P {85} 7 )+ 5 (5,2, {19)7) - 4]
R ) s NP i

<1+1<e
K K '

It now follows that f is Riemann integrable on [a, b]. O

In practice, the Cauchy criterion may be easier to verify than Definition
2.2 if the value of the integral is not known.

2.4 Darboux’s definition

In 1875, twenty-one years after Riemann introduced his integral, Gaston
Darboux (1842-1917) developed a generalization of Riemann sums and used
them to characterize Riemann integrability. (See [D]; see also [Sm].) Let
f :[a,b] = R be a bounded function and let m = inf {f (z): a < z < b}
and M =sup{f(z):a <z <b}, sothat m < f(x) < M for all z € [a,b].
Let P = {zo,z1,...,2n} be a partition of [a,d], and for each subinterval
[zi—1,%;], 2=1,...,n, define M; and m; by

M; =sup{f(z) : z;—y <z <z}
and
=inf {f(z): 21 <z <2y}

We define the upper and lower Darbouz sums associated to f and P by

n

ZMw — Ti— 1

=1
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and
L(f,P) = Zmi (.’Bi - mi—l) .
i=1

Note that we always have L (f,P) < U (f,P). In fact, since m < f(z) <
M, we have

m(b-a)<L(f,P)<U(f,P)<M(b-a).

When f > 0, each upper Darboux sum provides an upper bound for the
area under the graph of f and each lower Darboux sum gives a lower bound
for this area.

et 7 ;/: S
TR

Figure 2.1

Example 2.13 Consider the function f (z) = sin 7z on the interval [0, 3].

3 4

L =40,-, 2
et P ) 4’ 3)
the three subintervals, we see that

v =1 (3-0)+ 2 (5-2) 41 (s-3) =B+ L

3}. Using calculus to find the extreme values of f on

and

L(f,P)zO-(%—O)—\/T§~<-§~§)—1-(3—§)=—§—2—74 3
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Next, we define the upper and lower integrals of f by

-—b

/ f=inf{U (f,P): P is a partition of [a,b]}
a
and

b

/ f=sup{L(f,P):P is a partition of [a,b]},

——C
both of which exist since the upper sums are bounded below and the lower
sums are bounded above. It follows from the comment above that when
f > 0, the upper integral gives an upper bound for the area under the
graph of f, since it is an infimum of upper bounds for this area. Similarly,
the lower integral yields a lower bound.

Definition 2.14 Let f : [a,b] — R be bounded. We say that f is Darbouz

—b
integrable if [ f = [ I; f and define the Darboux integral of f to be equal
to this common value.

Our main goal in this section is to show that a bounded function is Darboux
integrable if, and only if, it is Riemann integrable, and that the integrals
are equal. Thus, we do not introduce any special notation for the Darboux
integral. Before pursuing that result, we give an example of a function that
is not Darboux integrable.

Example 2.15 The Dirichlet function (see Example 2.7) is not Darboux
integrable on [0, 1]. Infact, L (f,P) = 0and U (f,P) = 1 for every partition

1 —1
’P,Sotha‘ciof:()andfofr-l.

Let P be a partition. We say that a partition P’ is a refinement of P if
z € P implies z € P’; that is, every partition point of P is also a partition
point of P’. The next result shows that passing to a refinement decreases
the upper sum and increases the lower sum.

Proposition 2.16 Let f : [a,b] — R be bounded and let P and P’ be
partitions of [a,b]. If P’ is a refinement of P, then L (f,P) < L(f,P’) and
U(f,P)<U(f,P).

Proof. Llet P = {z9,21,...,Z,} be a partition of [a,b] and
suppose P’ is the partition obtained by adding a single point,
say ¢, to P. Suppose z;—1 < ¢ < m;. Let M; and

m; be defined as above. Set M; = sup{f(z):z;—1 <z<c}
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Mj = sup{f(z):c<z <z}, mj = inf{f(z):2;_1<z<c}, and
mf =inf{f (z) : ¢ < x < z;}. Since mf, m} > m;, it follows that
m; (¢ — zi—1)+my (25 — ¢) = my (¢ — zj-1)+my (25 — ¢) = my (5 — z5-1).
Since all the other terms in the lower sums are unchanged, we see that
L(f,P") > L(f,P). Similarly, it follows from M}, M] < M; that

M{ (C— Clij._l) + MJ/’ (.’L‘j - C) S Mj (C— il?j_l) + Mj (flfj — C)

J
= M;(xj —zj-1),

so that U (f,P') < U (f,P).

Finally, suppose that P’ contains & more terms than P. Repeating the
above argument £ times, adding one point to the refinement at each stage,
completes the proof of the proposition. 0

An easy consequence of this result is that every lower sum is less than
or equal to every upper sum.

Corollary 2.17 Let f : [a,b] — R be bounded and let P1 and Py be
partitions of [a,b]. Then, L(f,P1) <U(f,P2).

Proof. Let P and P; be two partitions of [a,b]. Then, P =P, UPs is a
partition of [a, b] which is a refinement of both P; and P,. By the previous
proposition,

We can now prove that the lower integral is less than or equal to the
upper integral.

Proposition 2.18 Let f:[a,b] > R be bounded. Then,

b —b
Ji<]s
Y .a a
Proof. Let P and P’ be two partitions of [a,b]. By the previous corol-

lary, L(f,P) < U(f,P’), so that U (f,P’) is an upper bound for the set
{L(f,P): P is a partition of [a,b]}, which implies that

/Usvum%

—a
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Since this inequality holds for all partitions P’, we see that | ®f is a lower
bound for the set {U (f,P) : P is a partition of [a,b]}, and, consequently,

b —b
[i<]+

as we wished to show. O

2.4.1 Necessary and sufficient conditions for Darbouzx in-
tegrability

Suppose that f : [a,b] — R is bounded and Darboux integrable and let
€ > 0 be fixed. There is a partition Py, such that

b
/f_L(faPL)<

and a partition Py such that

—b

CNﬂEﬂ—/j<

Let P = Pr UPy. Then,

—b

b
[ 15 <LUPOSLUPISUGPISUGPOS [ f+5,

—

Since fbf = Tif, we see that U (f,P) — L(f,P) < e. As the next result
shows,_tuhis condition actually characterized Darboux integrability.

Theorem 2.19 Let f : {a,b] — R be bounded. Then, f is Darbouz
integrable on [a, b] if, and only if, for each € > 0 there is a partition P such
that

U(f,PY=L(f,P)<e

Proof. We have already proved that Darboux integrability implies the
existence of such partitions. So, assume that for any € > O there is a
partition P such that U (f,P) — L(f,P) < . We claim that f is Darboux
integrable.
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Let € > 0 and choose P according to the hypothesis. Then,

—b

b
L(f,P)s/ fs/ f<UFP)<L(fP) +e

Y _a

b b . . —b
It follows that l S/ o — f f ‘ < ¢, and since € was arbitrary, we have f J=
_f_z f. Thus, f is Darboux integrable. a

2.4.2 Equivalence of the Riemann and Darboux definitions

In this section, we will prove the equivalence of the Riemann and Dar-
boux definitions. To begin, we use Theorem 2.19 to prove a Cauchy-type
characterization of Darboux integrability.

Theorem 2.20 Let f i ]a,b] — R be a bounded function. Then, f is
Darboux integrable if, and only if, given € > 0, there is a § > 0 so that
U(f,P)—L(f,P) < e for any partition P with p(P) < 6.

Proof. Let M be a bound for |f| on [a,b]. Suppose that f is Darboux
integrable and fix € > 0. By Theorem 2.19, there is a partition P’ =
(0,1, ., Ym? such that U (f,P') — L (f,P") < g Set § = em and let
P = {zo,x1,...,2,} be a partition of [a,b] with u(P) < 4. Set

M; =sup {f(z):zi1 <z < a)
and
mg = inf{f (:L') 1L < :Ez‘}.

Separate P into two classes. Let I be the set of indices of all subintervals
[#i—1, ;] which contain a point of 7/ and J = {0,1,...,n} \ /. Then,

Z (M; —my) (zg — 2i-1) < 2MZ (i — zi-1)
i€l il
< 4AMmup (P) < 4Mmé < %,
where the second inequality follows from the fact that a point of P/ may

be contained in two subintervals [z;_1,z;}. If ¢ € J, then there is a k such
that [z;_1,2;] is contained in [yg—3,yx]. It follows that

Z(Mz —mg) (2 — 2i—1) SU(f,P) = L(f,P') <

ieJ

N
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Combining these estimate shows U (f,P) — L (f, P} < e. Another applica-
tion of Theorem 2.19 shows the other implication and completes the proof
of the theorem. 0

Theorem 2.21 Let f : [a,b] — R. Then, f is Riemann integrable if, and
only if, f is bounded and Darboux integrable.

Proof. Suppose that f is bounded and Darboux integrable and let
A= fl;f = TZf Fix € > 0 and choose § by Theorem 2.20. Let P be
a parﬁtion with mesh less than § and let {t;}_, be a set of sampling
points for P. Then, by definition, L (f,P) < A< U(f,P) and L(f,P) <
S(f,P,{t:}iey) <U(f,P), while by construction, U (f,P) — L (f,P) <e.
Thus, x (P) < & implies |S (f, P, {t:};_,) — A| < € for any set of sampling
points {¢;}.—_,. Hence, f is Riemann integrable with Riemann integral equal
to A.

Suppose f is Riemann integrable and ¢ > 0. By Proposition 2.11, f is
bounded. By Theorem 2.19, to show that f is Darboux integrable, it is
enough to find a partition P such that U (f,P) — L(f,P) < e. Since f is
Riemann integrable, there is a § so that if P is a partition with mesh less
than 4, then

€
< -

SUP AN - [ 1<

for any set of sampling points {t;};_;,. Fix such a partition P =
{zo,Z1,...,2Zn}. By the definition of M; and m,;, there are points T;,¢; €
[i—1, ;) such that M; < f(T;) +¢/4(b—a) and f(¢;) — €/4(b—a) < m;,
for i = 1,...,n. Consequently,

U(f,P) =) Mi(zi—ziq) < Z {f(Ti) + m} (zi — ®i-1)

i=1

=S8(f,P, {Ti}?=1)+ 4(b6—a) Z(ivz - Zi_1)
i=1
b
</ f+2+2

b
€
= [ f+-.
i+
Similarly, using {¢;};_;, we see that L(f,P) > fab f—%. Thus, U (f,P) —
L{f,P) < € and f is Darboux integrable. O
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Consequently, we will refer to Darboux integrable functions as being Rie-
mann integrable.

2.4.3 Lattice properties

Fix an interval [a,b]. We call a function ¢ : [a,b] — R a step function if
there is a partition P = {xg,21,...,Zn} of {a,b] and scalars {ay,...,an}
such that ¢ (z) = a; for ;-1 <z < z;,¢=1,...,n. We are not concerned
with the definition of ¢ at z;; it could be a;, a;41 or any other value.
Changing the value of ¢ at a finite number of points has no effect on the
integral. See Exercise 2.2. Step functions are clearly bounded; they assume
a finite number of values. By Exercise 2.1 and linearity, we see that step
functions are Riemann integrable with integral ff o= (z; — zi1).
Let f:[a,b] — R and let P = {zo,%1,...,2n}, and define ¢ and ¥ by
n-—1
P (@) =D MiXfor_y,00) () F MnX(o_y 2] (2)
i=1

and
1/} (:E) Z M; X[z 1,11) ) + M‘nX[rzn_l,mn] (w) .

Clearly, ¢ and v are step functions, ¢ < f < 4, and fab<p = L(f,P) and
f:w = U (f,P). As a consequence of Theorem 2.19, we have the first half
of the following result.

Theorem 2.22 Let f : [a,b] = R. Then, f is Riemann integrable if, and
only if, for each € > 0 there are step functions ¢ and ¥ such that o < f <

and
]
[ w-v<e

Proof. We need only show that the existence of such step functions for
each ¢ > 0 implies that f is Riemann integrable. Fix ¢ > 0 and choose ¢
and 1 such that fab (WY —p)< % First, we partition [a, b] as follows. Let P,
and Py, be partitions defining ¢ and 1, respectively, and set P = P, U Py.
Next, we view ¢ and ¢ as step functions defined by the partition P, so that
we can assume that ¢ and % are defined by the same partition.

Suppose that our fixed partition P equals {xp,z1,...,Zn}. Since ¢ <
f < % and ¢ and ¢ are bounded, there is a B > 0 such that |f (z)| < B
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for all z € [a,b]. Choose yj € (o, 1) such that |yj — zo| < §§— and,

for i = 1,...,n — 1, inductively choose y; € (y]_;,;) and ¥} € (i, Tit1)

such that |yi —y| < Finally, choose yn € (yh_y,%n) such that

_&
8Bn’

|Zn — ¥n| < =—=—. The partition

€

8Bn
Pl = {an ylo’yl7xlvy;7y2) . ’y;—27yn—lymn—1ay;—1vynvxn}

is a refinement of P, and we are done if we can show that U (f,P’) —

L(f,P') < e. We consider two types of intervals: those of the form [y;_l, yi]

and the ones with an z; for an endpoint. Suppose I is a subinterval deter-

mined by P’ with an z; for an endpoint. Then,

(sup{f (z):z € I} —inf {f(z): z € I}) (I) < 2BL(I )<2Bé~B—— ﬁ.

Since there are 2n such intervals, the sum of these terms contribute less

than % to the difference U (f,P’) — L{f,P’).

Next, consider an interval of the form J; = [yg_l,yi]. On such an
interval, ¢ and 1 are constant, equal to a; and b;, say. Thus, since p < f <
1 on the interval,

(sup{f(z):ze i} —inf{f(x):axe J})0(J;) < (b —a;)l(J;).

Summing over all such intervals, we get a contribution to U (f,P’) —
L(f,P’) that is less than

n

Sti-ets [ G0 <

i=1

Combining these two estimates shows that U (f,P’) — L(f,P’) < € and
completes the proof. O

It is easy to see that the sum and product of step functions are step
functions. Given functions f and g, we define the mazrimum of f and g,
denoted fVg, by fVg(z)=max{f(z),g(z)} and the minimum of f and
g, fAg, by fAg(z) =min{f(z),g(z)}. It follows that the maximum and
the minimum of two step functions is also a step function. See Exercise
2.10.

Given a function f, we define the positive and negative parts of f,
denoted by fT and f~ respectively, by fT = max{f,0} and f~ =
max {—f,0}. From these definitions, we see that f = f* — f~, |f] =
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f++f_,f+=if'+fandf_:'fiz_f

to show that these operations preserve integrability.

. We will now use step functions

Theorem 2.23 If fi, fa : [a,b] — R are Riemann integrable, then f1V fo
and f1 A fo are Riemann integrable.

Proof. Fix e > 0. By Theorem 2.22, for i = 1,2, there are step functions
€
@, and %; such that ¢; < f; < %, and f: (¥; — ;) < R Then ¢, V ¢, £

f1V fa <9y Viby. Since ¢y V by — 1 V oy < ¥y + 1Py — ¢y — ipy, Which
follows by checking various cases, we see that

b b
/(’/11V¢2—901V<P2)§/ (1 — 1) + (P2 — @2)] <.

Applying the corollary one more time, we have that fi V f2 is Riemann
integrable. Since fi A fo = fi + fo — f1 V fo, it follows that fi A fo is
Riemann integrable. d

A set of real-valued functions with a common domain is called a vector
space if it contains all finite linear combinations of its elements. For exam-
ple, by linearity, the set of Riemann integrable functions on [a, 8] is a vector
space. A vector space S of real-valued functions is called a vector lattice if
fyg € S implies that f Vg, f Ag € S. Thus, the set of Riemann integrable
functions on [a, b] is a vector lattice.

An immediate consequence of the previous theorem is the following
corollary.

Corollary 2.24 Suppose f is Riemann integrable on [a,b]. Then, f¥,
f~and | f| are Riemann integrable on [a,b] and

/abf s/ablfl~

We leave the proof as an exercise. Note that |f| may be Riemann integrable
while f is not. See Exercises 2.11 and 2.12.

Another application of the use of step functions allows us to see that
the product of Riemann integrable functions is Riemann integrable.

Corollary 2.25 If f1, f2 : [a,b] — R are Riemann integrable, then fif2
is Riemann integrable.

Proof. By the previous corollary, we may assume that each f; > 0.

Choose M > 0 so that f;(z) < M for i = 1,2 and z € [a,b]. There are
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step functions ¢, and ¥, such that ¢, < f; <, and f: (; — ;) < ﬁ

Moreover, we may assume that 0 < ¢, and ¢, < M. In fact, it is enough to

set ¢} = max {p;,0} and ¢ = min {¢;, M} and observe that ¢} < f; < 9;
b

and j ( (Pz) = fa (1/); - Qov.) Hence7 192 _<. f1f2 S ,(/)17702 and

b b
/ (V12 — 1) = / (Y19 — P10s + Y109 — ©102)

b
SL[M(¢2*S@2)+M(¢1 (’01)]<2M2M €.

By Theorem 2.22, f;f; is Riemann integrable. d

2.4.4 Integrable functions

The Darboux condition or, more correctly, the condition of Theorem 2.19
makes it easy to show that certain collections of functions are Riemann in-
tegrable. We now prove that monotone functions and continuous functions
are Riemann integrable.

Theorem 2.26 Suppose that f is a monotone function on |a,b]. Then,
f is Riemann integrable on [a,b].

Proof. Without loss of generality, we may assume that f is increasing.
Clearly, f is bounded by max {|f (a)|,|f (b)|}. Fix € > 0. Let P be a
partition with mesh less than ¢/ (f (b) — f(a)). (If f(b) = f(a), then f
is constant and the result is a consequence of Example 2.5 and linearity.)
Since f is increasing, M; = f (x;) and m; = f (z;—1). It follows that

U(f,P) - L(f,P)= Z{M m:} (i — wi-1)
= Z {f (z:) = f@iz1)} (25 — 2i—1)

<Z{f %) = 1 @} 77

= (f(b) - fa)) TO-7@

where the next to last equality uses the fact that Y i, {f (z;) — f (zi=1)} is
a telescoping sum. By Theorems 2.19 and 2.21, f is Riemann integrable. [

:E’
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Suppose that f is a continuous function on [a,b]. Then, f is uniformly
continuous. If P is a partition with sufficiently small mesh (depending on
uniform continuity) and {t;};, and {t/}}_, are sampling points for P, then
S(f,P,{t:i}i1) — S (f, P, {ti};_;) can be made as small as desired. Thus,
it seems likely that the Riemann sums for f will satisfy a Cauchy condition
and f will be Riemann integrable. Unfortunately, the Cauchy condition
must hold for Riemann sums defined by different partitions, which makes
a proof along these lines complicated. Such problems can be avoided by
using Theorem 2.19, and we have

Theorem 2.27 Suppose that f : [a,b] — R s continuous on [a,b]. Then,
f is Riemann integrable on [a,b).

Proof. Since f is continuous on [a,b], it is uniformly continuous there.
Let € > 0 and choose a § so that if z,y € [a,b] and |z —y| < §, then

If(z) - fly)l < 5 : = Let P be a partition of {a,b] with mesh less than

d. Since f is continuous on the compact interval [z;_1, z;], there are points
Ti,t; € [mi_l,:ci] such that M; = f(T¢) and m; = f(ti), fori=1,...,n.
Since |T; — t;) < u(P) < 4,

My —m; = |f (T) = f (#)] < 5.

-~ Q

Thus,

n n

U(f,P)=L(f,P) =3 {Mi—m}(mi—zi1) <)

i=1 i=1

and the proof is completed as in the previous theorem. O

2.4.5 Additivity of the integral over intervals

We have observed that the integral is an operator, a function acting on
functions. We can also view the integral as a function acting on sets. To
do this, fix a function f : [a,b] — R, and let E C [a,b]. We say that f is
Riemann integrable over E if the function fxy is Riemann integrable over
[a, b} and we define the Riemann integral of f over E to be

F(E)=/}3f=LbeE-

Unfortunately, ' may not be defined for many subsets of E. One of the
recurring themes in developing an integration theory is to enlarge as much
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as possible the collection of sets that are allowable as inputs. For the
Riemann integral, a natural collection of sets is the collection of finite unions
of subintervals of [a,b]. As we will see below, if f is Riemann integrable on
(@,b], then f is Riemann integrable on every subinterval of [a, b}.

Proposition 2.28 Suppose that f : [a,b] — R is Riemann integrable and
¢ € (a,b). Then, f is Riemann integrable on [a,c] and [c,b], and

/:f+/cbf:/:f.

Proof. We first claim that f is Riemann integrable on [a,c] and [c, b}.
Given € > 0, it is enough to show that there is a partition Py, ¢ of [a,c]
such that

U (f: P[a,c]) -L (f7 P[a,c]) <€,
and a similar result for [c,b]. By Theorem 2.20, there is a § > 0 so that if
P is a partition of [a,b] with p (P) < 4, then U (f,P) — L(f,P) < €. Let

Pla,c) be any partition of [a, ¢] with u (’P[a,c]) < d, let Py be any partition
of [, b) with s (Pie,p)) < 6, and set P = Pjg U Py). Then, u(P) < 6 and

{U (£, Pad) = L Plaet) } +{U (£, Plewy) = L (£, Prew) }
—U(f,P) - L(f,P) <e.

Since for any bounded function g and partition P, L(g,P) < U (g,P), it
follows that

U (f7 P[a,c]) -L (f’ P[a,c]) <€

and

U (fa p[c,b]) -L (fa P[c,b]) <E€

so that f is Riemann integrable on [a, | and [c, b].
To see that [ f + fcb f= f: [, we fix € > 0 and choose partitions P, ¢

and Py such that U (f,Pug) — [0 f < % and U (f,Pep)) — fcbf < %
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Set P = 'P[a,c] U P[c,b]- Then,

UMP%<LV+£%N=KUQQMM:KQ
+ (U(f,’P[c,bl)"/cbf)l

< €.

Since we can do this for any € > 0 and f: f is the infimum of the U (f, P),
we see that f:f—i—fcbf:fabf. O

We leave it as an exercise for the reader to show that if f is Riemann
integrable on [a,c] and [c,b] then f is Riemann integrable on [a,b] (see
Exercise 2.15).

Suppose f is Riemann integrable on [a, b] and [¢,d] C [a,b]. By applying
the previous proposition twice, if necessary, we have

Corollary 2.29  Suppose that f : [a,b] —» R is Riemann integrable and
[e,d) € la,b]. Then, f is Riemann integrable on [c,d].

Let I be an interval. We define the interior of I, denoted I°, to be
the set of z € I such that there is a § > 0 so that the §-neighborhood of
z is contained in I, (x — §,2+ ) C I. Suppose that f : [a,b] — R and
I,J C [a,b] are intervals with disjoint interiors, I° N J° = @. Then, if f is
Riemann integrable on [a, b], we have

Awf=£f+Lﬁ

which is called an additivity condition. When I and J are contiguous in-
tervals, then I U J is an interval and this equality is an application of the
previous proposition. When I and J are at a positive distance, then TU J
is no longer an interval. See Exercise 2.16.

2.5 Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus consists of two parts which relate
the processes of differentiation and integration and show that in some sense
these two operations are inverses of one another. We begin by considering
the integration of derivatives. Suppose that f : [a,b] — R is differentiable
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on [a,b] with derivative f’. The first part of the Fundamental Theorem of
Calculus involves the familiar formula from calculus,

b
/ f=10)-1(). 21)

Theorem 2.30 (Fundamental Theorem of Calculus: Part I) Suppose that
f:a,b] —» R and f’ is Riemann integrable on [a,b]. Then, (2.1) holds.

Proof. Since f’ is Riemann integrable, we are done if we can find a se-

N
quence of partitions {Px},- , and corresponding sampling points {tl(k)}
i=1

such that 4 (Py) — 0 as k — oo and § (1, Pe, {7} ) = £(b) - £ (a)
for all &, In fact, let P = {zg,z1,...,2n} be any partitzign of {a,b]. Since f
is differentiable on (a, b} and continuous on [a, b], we may apply the Mean
Value Theorem to any subinterval of [a,b]. Hence, for ¢ = 1,...,n, there is
ayi € [wi—1, 2] such that f(z;) — f (zi-1) = f' (%:) (T — @i-1). Thus,

Nk

n

o F @) (@ —mic) = Y If (@) = f (@i-1)]
i=1

i=1

which is a telescoping sum equal to f (z,) — f (@o) = f (b) — f (a). Thus,
for any partition P, there is a collection of sampling points {y;};_, such
that

S (£, P {yibizy) = f(0) = f(a).

Taking any sequence of partitions with mesh approaching 0 and associating
sampling points as above, we see that f(f fr=r(0) - f(a). |

The key hypothesis in Theorem 2.30 is that f’ is Riemann integrable.
The following example shows that (2.1) does not hold in general for the
Riemann integral.

Example 2.31 Define f:[0,1] — R by

.
f (@) = :z?cosp1f0<x§1.
0 if =0

Then, f is differentiable on [0,1] with derivative

T 2w T
o2 sin— <
fl($)= 2xcosx2+ . smxz 1f0<:1:_1.
0 if z=0
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Since f' is not bounded on [0, 1], f’ is not Riemann integrable on [0, 1].

There are also examples of bounded derivatives which are not Riemann
integrable, but these are more difficult to construct. (See, for example, [Be,
Section 1.3, page 20], [LV, Section 1.4.5] or [Swi, Section 3.3, page 98].)

We will see later in Chapter 4 that the derivative f’ in Example 2.31
is also not Lebesgue integrable so a general version of the Fundamental
Theorem of Calculus for the Lebesgue integral also requires an integrability
assumption on the derivative. In Chapter 4 we will construct an integral,
called the gauge or Henstock-Kurzweil integral, for which the Fundamental
Theorem of Calculus holds in full generality; that is, the Henstock-Kurzweil
integral integrates all derivatives and (2.1) holds.

The second part of the Fundamental Theorem of Calculus concerns the
differentiation of indefinite integrals. Suppose that f : [a,b] — R is Rie-
mann integrable on [a, b]. We define the indefinite integral of f at = € [a, ]
by

F(w)=/xf(t)dt,

where F (a) = [ f =0. Ifa§x<y§b,wedeﬁnef;f=—fzyf.

Let f be Riemann integrable on [a,b]. Choose M > 0 so that |f (z)| <
M for all z € [a,b]. Let z,y € [a,b] and consider the difference F' (z)—F (y).
Using the additivity of the Riemann integral, we have

[rod- [ row

Yy max(z,y)
/ f(t)dtIS/ ()]t < MLy - al.

min(z,y)

|F () - Fy)l =

A function g satisfying an inequality of the form

lg(z)—g W) < Clz -yl

is said to satisfy a Lipschitz condition on [a,b] with Lipschitz constant C.
Thus, any indefinite integral satisfies a Lipschitz condition and any such
function is uniformly continuous.

The second half of the Fundamental Theorem of Calculus concerns the
differentiation of indefinite integrals.

Theorem 2.32 (Fundamental Theorem of Calculus: Part II) Suppose
that f : [a,b] — R s Riemann integrable. Set F (z) = [’ f(t)di. Then, F
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is continuous on [a,b]. If f is continuous at & € [a,b], then F is differen-
tiable at £ and F' (€) = f (£).

Proof. To see that F is continuous, we need only set § = ¢/M in the
Lipschitz estimate on F above. So, we only need show that the continuity
of f implies the differentiability of F.

Suppose f is continuous at & and let € > 0. There is a § > 0 such
that |f (z) — f(¢)| < g whenever z € [a,b] and |z —¢| < 6. Thus, if
0<|z—€| <4, then

w_ﬂ@l: xig/zf(t)dt—f(f)!

“ gl Vo
< l_——fl/s F(8) - F(©)lat
1 €
< =g 2 lz - ¢l =5
That is, F is differentiable at £ and F’ (€) = f (§). O

The theorem tells us that ' must be differentiable at points where f
is continuous. If f is not continuous at a point, F' may or may not be
differentiable.

Example 2.33 Define the signum functz’on sgn.R — R by

1fw#0
sgnz = lel
0 ifz=0

The function sgn is continuous for z # 0 and is not continuous at 0. The
indefinite integral of sgn is F' (z) = |x|, which is continuous everywhere and
differentiable except at 0. Here, the indefinite integral is not differentiable
at the point where the function is not continuous.
. Oifz+#0

Next, consider g (z) = {1 fro0’
except 0. In this case, F (z) = 0 for all z is differentiable at 0, even though
f is not continuous there.

which is continuous at every x

This theorem only guarantees that F is differentiable at points at which
f is continuous, In fact, F is differentiable at “most” points. We will
discuss this in Chapter 4.
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2.5.1 Integration by parts and substitution

Two of the most familiar results from the calculus, integration by parts and
by substitution, are consequences of the Fundamental Theorem of Calculus.
Integration by parts, which follows from the product rule for differentiation,
is a kind of product rule for integration.

Theorem 2.34 (Integration by parts) Suppose that f,g : [a,b] — R and
f' and g’ are Riemann integrable on [a,b]. Then, fg’' and f'g are Riemann
integrable on [a,b] and

b
/ H@d@ﬁm=f®M®) f(@)gla ‘/f' z) () d

Proof. Note that f and g are continuous and hence Riemann integrable
by Theorem 2.27. By Corollary 2.25, f¢’ and f’g are Riemann integrable.
Thus, (fg)' = fg’ + f’g is Riemann integrable and, by Theorem 2.30,

ffmdmm+fmeMM=fuwmm
= f(b)g(b) - f(a)g(a).
The result now follows. a
We now consider integration by substitution, or change of variables.

Theorem 2.35 (Change of variables) Let ¢ : [a,b] — R be continuously
differentiable. Assume ¢ ([a,b]) = [c,d] with ¢{a) = c and ¢ (b) = d. If
f :lc,d] = R is continuous, then f(¢)¢' is Riemann integrable on [a,b)

and
AU@@»M@M=Z3.

Pmof Deﬁne F and H by F(z) = ['f(t)dt and H(y) =
L f vf ' (t)d¢. By hypothesis, both these integrands are continuous
S0 that by Theorem 2.32, F and H are differentiable. Consequently, F o ¢
is differentiable on {a,b] and by the Chain Rule,

(Fog) W) =F ()¢ )= (#) e (v)=H'(v),

so that (Fo¢)(y) = H(y) + C. Since F(c) =0, H(a) =0 and F{(c) =
F(¢(a))=H(a)+C, C =0. We now have

d b
/f=ﬂ@=HMW=H@=/fw®MWMt
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as we wished to show, O

2.6 Characterizations of integrability

We now characterize Riemann integrability in terms of the local behavior
of the function. Let f : [a,b] — R be bounded and let S be a nonempty
subset of [a,b]. The oscillation of f over S is defined to be

w(f,S)=sup{f@t):teS}—inf{f(t):teS}.

1t follows immediately that if § C T then w (f,8) < w (f,T). Let x € [a, b]
and, for § > 0, set Us (z) = {t € [a,b] : |t — x| < §}. The oscillation of f
at z is defined to be

w(f,x):agr(r)l+w(f,U5).

Note that the limit exists since w (f,U;) is a decreasing function of §. It
is easy to see that f is continuous at z if, and only if, w (f,z) = 0. (See
Exercise 2.30.)

Let S be a subset of R. The closure of S, denoted S, is the set of all
z € R for which there is a sequence {s,},.; C S that converges to z. Note,
in particular, that § C S. If S is a bounded interval, then S is the union
of § with the set of its endpoints. Our first characterization of Riemann
integrability is in terms of the oscillation of the function f. We begin with
a lemma.

Lemma 2.36 Suppose that w(f,z) < € for every z € [a,b]. Then, there
is a partition P = {xo,21,...,Zn} of [a,b] such that w (f,[zi—1,z:]) < € for
i=1...,n.

Proof. For each t € [a,b], there is an open interval I, centered at ¢ such
that w (f,7; N [a,b]) < €. Since {I;:t € [a,b]} is an open cover of [a,b],
there is a finite subcover {I},,I1,,..., s, }. The set of endpoints of these
intervals that lie in (a,b) along with the points a and b yield a partition
{zo,71,...,Zn} of [a,b] such that for each 7 = 1,...,n, there is a k so that
[zi-1,:) C T, . Hence, w (f,[zi—1,zi]) <w (f,m Nla, b)) <e. O

For our first characterization, we require the notion of the outer Jordan
content of a subset S of |a,b]. Let P = {x¢,z1,...,2,} be a partition
of [a,b] and let J (S, P) be the sum of the lengths of the closed intervals
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[2i—1, z;] which contain points of the closure of S. The outer Jordan con-
tent of S, denoted ¢(S), is defined to be the infimum of J(S,P) as P
runs through all partitions of [a,b]. Note that J(S,P) = U (xg,P) and,

consequently, ¢(S) = T;X 5. (For a discussion of Jordan content, see [Bar].)

A finite subset of [a,b] obviously has outer Jordan content 0, but an
infinite set can also have outer Jordan content 0. (See Exercise 2.26.) The
set function ¢ is monotone in the sense that if S C T then ¢(S) < ¢(7T)
and is also subadditive in the sense that if S,T C [a,b], then £(SUT) <
C(S)+¢(T). (See Exercise 2.27.)

For € > 0, set D (f) = {z € [a,8] : w(f,z) > €¢}. We characterize Rie-
mann integrability in terms of the outer Jordan content of the sets D, (f).

Theorem 2.37 Let f : [a,b] — R. Then, f is Riemann integrable over
la,b] if, and only if, f is bounded and for every ¢ > 0, the set D, (f) has
outer Jordan content 0.

Proof. Suppose first that f is bounded and for every € > 0, the set
D¢ (f) has outer Jordan content 0. Choose M > 0 such that |f(¢)| < M
for a <t < band let € > 0. Let P be the partition of [a,b] such that
the sum of the lengths of the subintervals determined by P that contain
points of D ja3_q) is less than ﬁ Let these subintervals be labeled

{I1,I5,...,It} and label the remaining subintervals determined by P by
{J1,J2,...,Ji}. Applying the previous lemma to each J;, we may assume
that w(f,J;) < ﬁ for j =1,...,l. We then have

U(f,P)—L(f,P)SZw(f,I I)+§:wf, )£(J;)

i=1 j=1

< 2M 2 (b ) (b—a)=c¢

so that f is Riemann integrable by Theorem 2.19.

For the converse, assume that there is an € > 0 such that (D, (f)) =
c > 0. We will use Theorem 2.19 to show that f is not Riemann integrable.
Let P = {zo,%1,...,Zn} be a partition of [a,b] and let I be the set of all
indices ¢ such that the intersection of [z;_;, z;] and D, (f) is nonempty. Let
I' C I be the set of indices ¢ such that (x;_y, z;) N D, (f) # 0. By Exercise
231, forie I', w(f,[xi—1,2:]) > €. Let n > 0. Suppose ¢ € I\ I'. Then,

at least one of the endpoints of [x;_1,z;] is in D, (f). Refine P by adding
Yi,¥; € (Ti—1,x;) such that y; < yi, Jy; — 21| < % and |y; — z;| < %
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For i € I'\ I, label the intervals [z;_1,y;] and [y, ;| by Ji,...,Jr where
m < 2n. Note that [y;, yi] N De (f) = 0 so that

C<Z(CE1—-.’C1 1 +Z€ Jk

iel’
<Z T;— Tj—q +2n%=2(m,~—xi_1)+n.
el i€ern

Since n > 0 is arbitrary, it follows that
c< Z - xz—l)
iel’

Hence,
U(f,P)=L(f,P) = 3w (folwion,i]) (2 = 7i)
2 Zw(f, [wi1, mi]) (T3 — zi1) 2 ec.

iel’
Since this is true for any partition P, it follows that f is not Riemann
integrable. O

Remark 2.38 If S is a subset of [a,b] with outer Jordan content 0,
then for & > 0, there is a finite number of non-overlapping, closed in-
tervals {Iy,...,I,} such that § C UF . L; and > . €(I;) < 6. Set

== 0) > 0. If L = [ag,by, set Ji = (a¢~4l b + )
Then, Scur,; cUL,J; and

;Z(Ji)=§{€(1 %’—} Zf )+ 3 1<

If two intervals in the set {J;};.; have a nonempty intersection, we can
replace them by their union. This will not change the union of the intervals
and will decrease the sum of their lengths. Thus, we can cover S by non-
overlapping, open intervals, the sum of whose lengths is less than §.

While this theorem gives a characterization of Riemann integrability, the
test involves an infinite number of conditions and, consequently, is not prac-
tical to employ. However, if € < € then D, (f) C D.(f), so that D(f) =
Ues0De (f) is a kind of limit of D, (f) as € decreases to 0. As a consequence
of Exercise 2.30, we see that D (f) = {t € [a,b] : f is discontinuous at t}.
Our second characterization, due to Lebesgue, gives a characterization of
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Riemann integrability in terms of the single set D (f). We will use the
following lemma.

Lemma 2.39  For each € > 0, the set D, (f) is closed in [a,b].

Proof. Let = € [a,b] \ Dc(f) and set n = w(f,z). Since n < ¢, there
is a neighborhood Uj (z) of z such that w(f,Us (z)) < %S < g, so if

x1, T2 € Us (2), then |f(z1) — f (z2)] < _7)~2|—_e Thus, Us (z) N D (f) = 0,
so that the complement of D, (f) is open in [a, b]. It follows that D, (f) is
closed in [a, b]. a

Theorem 2.40 Let f : [a,b] — R. Then, f is Riemann integrable if,
and only if, f is bounded and, for every § > 0, D(f) can be covered by a
countable number of open intervals, the sum of whose lengths is less than

J.

Proof. Suppose f is Riemann integrable. By our first characterization
and the previous remark, for each n, Dy/, (f) can be covered by a finite
number of open intervals, the sum of whose lengths is less than 627", By
Exercise 2.32, D (f) = U{D1,, (f) : n € N}, so that D (f) can be covered
by a countable number of intervals, the sum of whose lengths is less than
Yo 827 =4,

Next, let €, > 0 and assume that there exist open intervals {I;};2,
covering D (f) such that }°, ¢(J;) < 6. By the previous lemma, D, (f)
is closed in [a,b] and, since D, (f) C D(f), there exist a finite number
of open intervals {I1,Is,...,I,} which cover D, (f). The endpoints of
{I1,12,...,I,} in [a,d] along with a and b comprise a partition of [, b
such that the sum of the lengths of the intervals, determined by the par-
tition, which intersect D¢ {f) is less than §. Since this is true for every §,
D, (f) has outer Jordan content 0. Since € is arbitrary, by the previous
theorem, f is Riemann integrable. 0

2.6.1 Lebesgue measure zero

‘We can use one of the basic ideas of Lebesgue measure to give a restatement
of Theorem 2.40 in other terms. A subset £ C R is said to have Lebesgue
measure 0 or is called a null set if, for every § > 0, E can be covered by a
countable number of open intervals the sum of whose length is less than 4.
The following example shows that a countable set has measure zero.
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Example 2.41 Let C C R be a countable set. Then, we can write
C={c}i2;. Fix §d > 0and let I; = (¢; — 62772, ¢; 4+ 627%72). Then, I; is
an open interval containing ¢; and having length ¢ (I;) = §27*~1. It follows
that C C U2, L; and 3 oo, €(L;) = Y oo, 62771 = §/2 < 4. Thus, C is a
null set.

Thus, every countable set is null. In Chapter 3, we will give an example
of an uncountable set that is null.

A statement about the points of a set F is said to hold almost everywhere
(a.e.) in E if the points in E for which the statement fails to hold has
Lebesgue measure 0. For example, a function g : [a,b] — R is equal to 0
a.e. in [a, b] means that the set {t € [a,b] : g (t) # 0} has Lebesgue measure
0. The following corollary, due to Lebesgue, restates the previous theorem
in terms of null sets.

Corollary 2.42 A bounded function f : [a,b] — R is Riemann integrable
if, and only if, f is continuous a.e. in [a,b].

2.7 Improper integrals

Since the Riemann integral is restricted to bounded functions defined on
bounded intervals, it is necessary to make special definitions in order to al-
low unbounded functions or unbounded intervals. These extensions, some-
times called improper integrals, were first carried out by Cauchy and we will
refer to the extensions as Cauchy-Riemann integrals. (See [C, (2) 4, pages
140-150].) First, we consider the case of an unbounded function defined on
a bounded interval.

Let f : [a,] — R and assume that f is Riemann integrable on every
subinterval [¢,b], a < ¢ < b. Note that this guarantees that f is bounded
on [¢,b] for ¢ € (a,b) but not necessarily on all of [a, b].

Definition 2.43 Let f : [a,0)] — R be as above. We say that f is
Cauchy-Riemann integrable over [a,b] if lim,_ 4+ [ cb f exists, and we define
the Cauchy-Riemann integral of f over |a,b] to be

f— hm f

When the limit exists, we say that the Cauchy-Riemann integral of f con-
verges; if the limit fails to exist, we say the integral diverges.
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By Exercise 2.35 we see that if f is Riemann integrable over [a, 8], then this
definition agrees with the original definition of the Riemann integral and,
thus, gives an extension of the Riemann integral.

Example 2.44 Let p € R and define f : [0,1] — R by f(¢) = t?, for
+1

1_cP
0<t<landf(0)=0. Forp#—1, [ trdt = :1 so lim,_q+ [ tPdt

. 1 . 1 1
exists and equals —— if, and only if, p > -1, and then |, t?dt = ——.
quals ——— only if, p Jo )

1
Ifp=-1, fcl Edt = —Inc which does not have a finite limit as ¢ — 07.
Thus, tP is integrable if, and only if, p > —1.

Similarly, if f is Riemann integrable over every subinterval [a,c],
a < c < b, then f is said to be Cauchy-Riemann integrable over [a,b] if
f f =lim,- [ f exists. This definition follows by applying the previ-
ous definition to the function g (z) = f(a + b — z).

If a function f : [a,b] — R has a singularity or becomes unbounded at an
interior point ¢ of [a, b], then f is defined to be Cauchy-Riemann integrable
over [a,b] if f is Cauchy-Riemann integrable over both [a, ¢] and [c, b] and
the integral over [a, 8] is defined to be

L%:/{jf+/ff.

Note that if f is Cauchy-Riemann integrable over [a, b}, then

lim, (/ f+/+e ) (2.2)

exists and equals f: f. However, the limit in (2.2) may exist and f may
fail to be Cauchy-Riemann integrable over [a, ], as the following example
shows.

Example 2.45 Let f(t) =¢3for0 < |t| <1 and f(0) = 0. Then, since

f is an odd function (see Exercise 2.6),

s ([ s+ f)

exists (and equals 0), but f is not Cauchy-Riemann integrable over [—1,1]
since f is not Cauchy-Riemann integrable over [0, 1] by Example 2.44.
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If f is Riemann integrable over [a,c — €] and [c + ¢€,b] for every small
€ > 0, the limit in (2.2) is called the Cauchy principal value of f over [a,b]
and is often denoted by pv f: f.

Suppose now that f is defined on an unbounded interval such as [a, o).
We next define the Cauchy-Riemann integral for such functions.

Definition 2.46 Let f:[a,00) — R. We say that f is Cauchy-Riemann
integrable over [a,00) if f is Riemann integrable over [a, b] for every b > a
and limy_, o fab f exists. We define the Cauchy-Riemann integral of f over

la, 00) to be
/ f= hm f

If the limit exists, we say that the Cauchy—Rlemann integral of f converges;
if the limit fails to exist, we say the integral diverges.

A similar definition is made for functions defined on intervals of the form
(~00,b].
Example 2.47 Let p € R and let f(t) = ¢?, for t > 1. For p # —1,

b bt —
tPdt =
h +1

if, p< -1 Ifp=-1, flb %dt = Inb which does not have a finite limit as

-1
so limp_,o flb tPdt exists and equals 7 if, and only

b — o00. Thus, t? is Cauchy-Riemann integrable over [1, o0) if, and only if,

-1
< —1 and, th tPdt = ——
P an en, [ T

If f: (—oo,00) — R, then f is Cauchy-Riemann integrable over
(—o00,00) if, and only if, f ® f and f < f both exist for some a and the
Cauchy-Riemann integral of f over (—oo, 00) is defined to be

[i=[ s+ [ s

Exercise 2.38 shows that the value of the integral is independent of the
choice of a.

As in the case of integrals over bounded intervals, if f : (—o0,00) = R
is Cauchy-Riemann integrable over (—oc, 00), then the limit

a

im [ f (2.3)

—
a—oo f_ o

exists. However, the limit in (2.3) may exist and f may fail to be Cauchy-
Riemann integrable over (—oo, 00). See Exercise 2.39. The limit in (2.3),
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if it exists, is called the Cauchy principal velue of f over (—oo,00) and is
often denoted pv [~ f.

We saw in Corollary 2.24 that if a function f : [a,b] — R is Riemann
integrable over [a, b], then |f| is Riemann integrable over [a, b]. We show in
the next example that this property does not hold for the Cauchy-Riemann
integral. First, we establish a preliminary result called a comparison test.

Proposition 2.48 (Comparison Test) Let f, g : [a,00) — R and suppose
that |f (t)] < g(t) for t > a. Assume that f is Riemann integrable over
la,b] for every b > a and that g is Cauchy-Riemann integrable over [a, cc).
Then, f (and |f]) is Cauchy-Riemann integrable over [a, 00).

Proof. To show that limp_, fab f exists, it suffices to show that the
Cauchy condition is satisfied for this limit. However, if ¢ > b > a, then

/:f—/:f= s/:ms/bcgw

as b,c — o0, since, by assumption, limy_, f; g exists and so its terms
satisfy a Cauchy condition. |

Example 2.49 The function M Cauchy—Riemann integrable over

[, 00) but

sinz
is not. First, we show that f ——dm exists. Integration
x

bsinz sinb b cosz
dl':—‘—Q—— ) dx.
x b x T

0 and [
1

— a:2‘
sinx

by parts gives

b
Now, limp_ 0 s_1br_1_

Example 2.47 since ~c

Proposition 2.48 and

0S T
2

Next, we consider [° dz. To see that this integral does not exist,

1 G+
>/

=1
-1 G+ 9
(_]+].)7T/ lsmxld:v—z( gy

which diverges to oo as k — oo.

note that

/kﬂ'
™

sinx sinz

H

Y
?rb

j=1
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A function f defined on an interval [ is said to be absolutely integrable
over I if both f and |f| are integrable over I. If f is integrable over I
but |f| is not integrable over I, f is said to be conditionally integrable over
I. The previous example shows that the Cauchy-Riemann integral admits
conditionally integrable functions whereas Corollary 2.24 shows that there
are no such functions for the Riemann integral. Note that the comparison
test in Proposition 2.48 is a test for absolute integrability.

We will see later that the Henstock-Kurzweil integral admits condition-
ally integrable functions whereas the Lebesgue integral does not.

Let S be the set of Cauchy-Riemann integrable functions. It follows from
standard limit theorems that S is a vector space of functions. However, the
last example shows that, in contrast with the space of Riemann integrable

functions, § is not a vector lattice of functions. From the fact that f (z) =
sinz

is conditionally integrable over [r,00), it follows that neither f* =

T

fVO0nor f- = f AD is Cauchy-Riemann integrable over [7,c0). For a
more thorough discussion of the Cauchy-Riemann integral, see [Br], {CS],
[Fi] and [F1].

2.8 Exercises

Riemann’s definition

Exercise 2.1 In Example 2.5, we assume that I is a closed interval. Sup-
pose that I is any interval with endpoints ¢ and d; that is, suppose I has
one of the forms (c,d), (¢, d], or [c,d). Prove that f: xy=d-c

Exercise 2.2 Suppose f : [a,b] — R is Riemann integrable. Show that
if f is altered at a finite number of points, then the altered function is
Riemann integrable and that the value of the integral is unchanged. Can
this statement be changed to a countable number of points?

Exercise 2.3 Suppose that f,h : [a,b] — R are Riemann integrable with
i) : f= f: k. Suppose that f < g < h. Prove that g is Riemann integrable.

Exercise 24 If f : {a,b] — R is continuous, nonnegative and f: f =0,
prove that f = 0. Is continuity important? Is positivity? In each case,
either prove the result or give a counterexample.
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Basic properties

Exercise 2.5 Suppose that f is continuous and nonnegative on [a,b]. If
there is a ¢ € [a, b] such that f (c) > 0, prove that fab f>0.

Exercise 2.6 Let f : [—a,a] — R be Riemann integrable. We say that f
is an odd function if f (—z) = —f (z) for all = € [—a, a] and we say that f
is an even function if f (—z) = f () for all z € [—a,a].

(1) If f is an odd function, prove that [* f=0.
(2) If f is an even function, prove that ffa f=2 foa f.

Darboux’s definition

Exercise 2.7 Let f : [a,b] — R. Suppose there are partitions P and P’
such that L (f,P) = U (f,P’). Prove that f is Darboux integrable.

Exercise 2.8 Suppose that f,g:[a,b)] = R,a<c<b,and o > 0.

(1) Prove the following results for upper and lower integrals:

@ TG +9)<Tof+To0 and [*f+ [*g < [° (f +9)

(b) TZaf = aTZf and iiaf = aiif;

© Tof =Jof +Tofand [°5 = [°7+ [°F.
(2) Give examples to show that strict inequalities can occur in part (1.a).
Exercise 2.9 Let f : [a,b] — R be bounded. Define the upper and lower
indefinite integrals of f by F (z) = Tzf (t)dt and F (z) = iif (t) dt. Prove
that F' and F satisfy Lipschitz conditions. Suppose that f is continuous at

z. Show that the upper and lower indefinite integrals are differentiable at
z with derivatives equal to f (z).

Exercise 2.10 Let ¢ and ¢ be step functions and o € R. Prove that ayp,
@+, i, @ V1, and @ Ay are step functions.

Exercise 2.11  Prove Corollary 2.24.

Exercise 2.12 Give an example of a function f : [0,1] — R such that | f|
is Riemann integrable but f is not Riemann integrable.

Exercise 2.13 Suppose that f:[0,1] — R is continuous. Show that

1
lim/of(x")dxzf(O).

n—oo
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Exercise 2.14  Suppose that f : [a,b] — R is continuous and nonnegative
and set M =sup{f(t):a <t <b}. Show

b 1/n
lim ( / f") =M.
n—o0 a
Exercise 2.15 Let f : [a,b] — R and suppose that f is Riemann integrable

on [a,c] and [c,b]. Prove that f is Riemann integrable on [a, b].

Exercise 2.16 Suppose f : [a,b] = R and I, J C [a,b] are intervals with
disjoint interiors. Prove that

Jus? =17

Fundamental Theorem of Calculus

Exercise 2.17 Suppose that f : [a,b] — R is Riemann integrable and
m < f(z) < M for all & € [a,b]. Prove that

_b_a/ fM

Exercise 2.18 Prove the Mean Value Theorem If f:{a,b] — R is contin-
uous, prove there is a ¢ € [a,b] such that f f=Fflc)(b-a).
If f is also nonnegative, give a geometric interpretation of this result.

Exercise 2.19 Prove the following version of the Mean Value Theorem. If
f:]a,b] — R is continuous and g : [a,b] — R is nonnegative and Riemann
integrable on [a, b], then there is a ¢ € [a, b] such that

b b
[ 1@s@ia=i0 [ 9@

Exercise 2.20 Suppose that f is continuous and strictly increasing on
[0,a], differentiable on {0,a), and f (0} = 0. Define g by

z f(=x)
T) = -1 —zflx
o@)= [ 1@ar [ 0d -1 @
for z € [0, al.

(1) Prove that g =0 on [0, al.
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(2) Use this result to prove Young’s inequality: for 0 < b < f (a),

a b
ab < / f(:c)dx—i—/ f1(z)dz.
0 ‘ 0
(3) Deduce Hélder’s inequality: If a,b > 0, then
a? b

ab£_+_,
p ¥

1 1
wherep>1and -+ =1
p p

Exercise 2.21 Evaluate fo7T cos 26 sin 36d# and f02 z2e*dz,

1/2

Exercise 2.22 Evaluate [ @2 (223 4+ 16) /" dz.

Characterizations of integrability

Exercise 2.23 Let f : [a,b] — R be Riemann integrable. Let p,c > 0.
Prove the following two statements.
(1) I f > 0, then f? is Riemann integrable.

1
(2) If | fl 2 ¢> 0, then 7 is Riemann integrable.

Exercise 2.24 Let f : [a,b] — R be Riemann integrable and suppose
m < f(z) < M for all z € [a,b]. Suppose ¢ : [m, M} — R is continuous.
Prove that ¢ o f is Riemann integrable.

Exercise 2.25 Show that the composition of Riemann integrable functions
is not necessarily Riemann integrable. [HINT: define f and ¢ on [0,1] by

0 if x is irrational 0if z=0
fz)= %if:c:%e(@and (m,n) =1 a“d""(”“)‘{1ifo<acg1'

Note that f is continuous a.e. and ¢ is Riemann integrable.]
Exercise 2.26 Show that a finite set has outer Jordan content 0. Show

that S = {% : k € N} C [0,1] has outer Jordan content 0. Give an example

of a countable subset of [0, 1] with positive outer Jordan content.

Exercise 2.27 If S C T C [a,b], show ¢(S) < &é(T). I $,T C [a,b], show
that £(SUT) < &(9)+¢&(T). If T C [a,b] has outer Jordan content 0 and
S C [a,b], show ¢(SUT) = &(S).
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Exercise 2.28 Let f : [a,b] — R be a bounded function. Suppose that
f = 0 except on a set of outer Jordan content 0. Prove that f is Riemann
integrable and [ : f=0.

Exercise 2.29 Suppose that f, g : [a,b] — R are bounded and f is Riemann
integrable. If f = g except on a set of outer Jordan content 0, prove that
g is Riemann integrable and f: g= f; f

Exercise 2.30 Let f : [a,b] — R be bounded. Prove that f is continuous
at = € [a,b] if, and only if, w(f,z) =0

Exercise 2.31 Let f: [a,b] — R, D(f) = {z € [a,b] : w(f,z) > €} and
let (c,d) C la,b] be an interval. Suppose that D, (f) N (c,d) # 0. Prove
that w (f,(c,d)) > e. Show by example that we cannot replace the open
interval (c,d) by the closed interval [c, d}.

Exercise 2.32 Let f:[a,b] — R and let
D (f)={t € [a,b] : [ is discontinuous at t}.
Prove that D (f) = U{D¢(f) : € > 0} = U{Dyn (f) :n € N},

Exercise 2.33 Prove that every subset of a null set is a null set. Prove
that a countable union of null sets is a null set.

Improper integrals

Exercise 2.34 Determine whether the following improper integrals con-
verge or diverge:

4 z z2 +1
(1) fl Jr-1 fo \/T_——a_c

) Jy Inade @) [T tan wdz
Ry 0 5
(7) [ e mda (8) fzoo(x_—df)-:”ﬁ
9) [, 1f_mm2 (10) J2 oold—mwz

(1) [ (12) [ j_d:c

a:ln T
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Exercise 2.35 Suppose that f : [a,b] — R is Riemann integrable over
(@, b]. Prove that

b b
L f - CEIZI‘* f

c

Exercise 2.36 Formulate and prove an analogue of the Comparison Test,
Proposition 2.48, for improper integrals over [a, b].

Exercise 2.37 Define the gamma function for z > 0 by

T
[ (z) =/ e~tt" 14t
0
Prove the following results for I':

(1) The improper integral defining I' converges.
(2) T (0 +1) = aT (a)
(3) Forne N, I'(n) = (n— 1)L

Exercise 2.38 Suppose that f is Cauchy-Riemann integrable over
(—00,00). Prove that for any a,b € R,

[l o= [+

Hence, the Cauchy-Riemann integral of f is independent of the cutoff point
a.

Exercise 2.39  Give an example of a function f defined on (—o0, 00) which
is not Cauchy-Riemann integrable but such that the Cauchy principal value
integral of f over (—o0,00) exists.
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Chapter 3

Convergence theorems and the
Lebesgue integral

While the Riemann integral enjoys many desirable properties, it also has
several shortcomings. As was pointed out in Chapter 2, one of these short-
comings concerns the fact that a general form of the Fundamental Theorem
of Calculus does not hold for Riemann integrable functions. Another seri-
ous drawback which we will address in this chapter is the lack of “good”
convergence theorems for the Riemann integral. A convergence theorem
for an integral concerns a sequence of integrable functions {fx};.; which
converge in some sense, such a pointwise, to a limit function f and involves
sufficient conditions for interchanging the limit and the integral, that is to
guarantee limg [ fi = [limg fi.

In modern integration theories, the standard convergence theorems
are the Monotone Convergence Theorem, in which the functions converge
monotonically, and the Bounded Convergence Theorem, in which the func-
tions are uniformly bounded. We begin the chapter by establishing a con-
vergence theorem for the Riemann integral and then presenting an exam-
ple that points out the deficiencies of the Riemann integral with respect
to desirable convergence theorems. This example is used to motivate the
presentation of Lebesgue’s descriptive definition of the integral that bears
his name. This leads to a discussion of outer measure, measure and measur-
able functions. The definition and derivation of the important properties of
the Lebesgue integral on the real line, including the Monotone and Domi-
nated Convergence Theorems, are then carried out. The Lebesgue integral
on n-dimensional Euclidean space is discussed and versions of the Fubini
and Tonelli Theorems on the equality of multiple and iterated integrals are
established.

For the Riemann integral, we have the following basic convergence re-
sult.

53
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Theorem 3.1 Let f, fi : [a,b] — R for k € N. Suppose that each fy is
Riemann integrable and that the sequence { fk}i‘_;l converges to [ uniformly
on [a,b]. Then, f is Riemann integrable over [a,b] and

liin/abfk:/abf:/abli’lcnfk. (38.1)

Proof. To prove that f is Riemann integrable, it is enough to show that
the partial sums for f satisfy the Cauchy criterion. Fix ¢ > 0 and choose

an N € N such that |f (z) — fi (z)] < §zb—6:7) for k > N and all z € [a, b].

Fix a K > N. Since fx is Riemann integrable, the partial sums for fg
satisfy the Cauchy criterion, so that there is a § > 0 so that if P;, j = 1,2,

. ny
are partitions of [a,b] with p(P;) < § and {tgj )}'] are sets of sampling
1=

points relative to P;, then

s (P {d?) ) =8 (5P {2} ) < 5

Let P; and P be partitions of |a, b] with mesh less than § and let {tgj )}

nj
A
be corresponding sets of sampling points. Set S; (g) = S (g, Pi, {t?)} ’ )

i=1
Then,

|5 (£Pu (£} ) =5 (£P0 {2} )| = 1510 - S ()

i=1

= |51(f) = S1(Ffx) + 81 (fr) — S2 (fr) + 52 (fx) — S (f)]
<181 (f) = 81 (Fr)l + 181 (Fx) — S2 (Fx)| + |S2 (fx) — S2 (f)].

For the first and third terms, by the uniform convergence, we have

15,005 ()l < 3|7 (49) = s ()] (9 = o2,)
i==1

< 3(b6—— a) 12:; (1-53) — .”I),E]_)1) = ‘;‘a

while the middle term is less that Zi; by the choice of K. Thus,

s (rP 7)) -5 (nm ) )] <

so that f is Riemann integrable.
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To see that f: f = limg f: fx, fix € > 0 and, by uniform convergence,
choose N € N such that |f (z) ~ fx (z)] < b—e—a for k > N and z € [q,b)].
Then,

/:fk‘-é</abf</abfk+6

for all k > N. Thus, [} f = limy, [ f. O

The uniform convergence assumption in Theorem 3.1 is quite strong, and
it would be desirable to replace this assumption with a weaker hypothesis.
However, it should be noted that, in general, pointwise convergence will
not suffice for (3.1) to hold.

Example 3.2 Define fi : [0,1] — R by fi(2) = kx(g,1/5) (¥). Then,
{fr}se, converges pointwise to 0 but fol fr =1 for every k, so (3.1) fails to
hold.

In addition to the assumption of pointwise convergence, there are two
natural assumptions which can be imposed on a sequence of integrable
functions as in Theorem 3.1. The first is a uniform boundedness condition
in which it is assumed that there exists an M > 0 such that |fi (z)] < M
for all k£ and z; a theorem with this hypothesis is referred to as a Bounded
Convergence Theorem. The second assumption is to require that for each
x, the sequence {f ()},=; converges monotonically to f (z); a theorem
with this hypothesis is referred to as a Monotone Convergence Theorem.
Note that the sequence in the previous example does not satisfy either of
these hypotheses. The following example shows that neither the Bounded
nor Monotone Convergence Theorem holds for the Riemann integral.

Example 3.3 Let {r,}.., be an enumeration of the rational numbers
in [0,1]. For each k € N, define f; : [0,1] > Rby fi(r,)=1for1<n<k
and fi (x) = 0 otherwise. By Corollary 2.42, each f is Riemann integrable.
For each z € [0,1], the sequence {f; ()}, is increasing and bounded by
1. The sequence {fi}s.; converges to the Dirichlet function defined in
Example 2.7 which is not Riemann integrable.

We will see later in this chapter that both the Monotone and Bounded
Convergence Theorems are valid for the Lebesgue integral. We will show
in Chapter 4 that both theorems are also valid for the Henstock-Kurzweil
integral.
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It should be pointed out that there are versions of the Monotone and
Bounded Convergence Theorems for the Riemann integral, but both of
them require one assume the Riemann integrability of the limit function.
It is desirable that the integrability of the limit function be part of the
conclusion of these results. See [Lewl].

In the remainder of this chapter, we will construct and describe the
fundamental properties of the Lebesgue integral. We begin by considering
Lebesgue’s descriptive definition of the Lebesgue integral.

3.1 Lebesgue’s descriptive definition of the integral

H. Lebesgue (1875-1941) defined le probléme d’intégration (the problem of
integration) as follows. (See [Leb, Vol. II, page 114].) He wished to assign to
each bounded function f defined on a finite interval [a, b] a number, denoted
by f f (z) dz, that satisfied six conditions. Suppose that a,b,c,h € R.
Then:

1) [ f(@)de= I f(z— h)da.
(2) fb m)dx+fbf(m)d9:+f f(z)dz=0
® [PIf @ +e@lde= [ dx+faso<x )da
@) Iff> Oandb> a then f:f(x)dx > 0.
(5) fy ldz = 1.
(6) If { fi} oy increases pointwise to f then fab fi (z)dz — f: fz)dz

In other words, he described the properties he wanted this “integral” to
possess and then attempted to deduce a definition for this integral from
these properties. He called this definition descriptive, to contrast with the
constructive definitions, like Riemann’s, in which an object is defined and
then its properties are deduced from the definition.

Assuming these six conditions, we wish to determine other properties
of this integral. To begm, notice that setting ¢ = —f in (3) shows that
(=) (@)dz =~ [ f(z)dz. If f > g, then (3) and (4) imply that

/abf(x)dm—/:g(x)dw=‘/ab[f(:z:)—g(m)]dmzo

so that f: f(z)ydz > f: g (z) dz. Hence, this integral satisfies a monotonic-
ity condition.
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We next show that f;’ ldz = b—a for all a,b € R. From (1), we see
that b—a = d — ¢ implies f: lde = | cd 1dz. Thus, from (5), for any interval

[a,b] of length 1,
b
/ ldz = 1.

From (2), by setting ¢ = b = a, we see that [ f (z) dx = 0; then, setting
c=b, weget [ f(z)de=— [? F () dz, so that

b c ¢
/ ldx +/ ldzx =/ 1dzx.
a b a

Iterating this result shows

a1 az QAp Qn
/ 1d,x+/ 1dx+~~+/ 1d:v:/ 1dz.
[ 1) ay an_1 o

Setting a; = i yields [ ldz = n, while setting a; = % shows that

fol/" 1dz = 1/n. Again, by iteration, we see that

q
/ ldx =g¢q
0

for any rational number ¢. Finally, if r € R, let p and ¢ be rational numbers
such that p < r < ¢. Then, since X[o,p] < Xpo,r] < X[o,q]4 by monotonicity,

q T q P
05/ ldx—/ ldo;g/ ldx—/ ldz = q — p,
0 0 0 0
which implies
OSQ—/ ldz < g —p.
0
Letting p and ¢ approach r, we conclude that for all real numbers r,

/ ldx =,
0

so that fab lde =b—a for all a,b € R.
Setting ¢ = f in (3), by iteration, we see that

/abnf(a:)dxzn/abf(m)daz
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for every natural number n. Setting f = ¢ = 0 shows that f: Odz = 0,
which in turn implies that this equality holds for any integer n. Since

Lbf(m)dx=/;b (n%)f(w)dxzn/ab%f(x)d:n,

it follows that

| quf(x)dx=q[1bf(x)dw

for any rational number g.
To see that this equality holds for any real number, note that since both

f and —f are bounded by |f|, monotonicity implies that ‘ f: f(z) d:c‘ <
f: |f (z)| dz. Now, fix a real number r. Let M = sup {|f (2)|: z € [a, b]}.

Let ¢ € Q and choose a real number p = p; € (0,1) such that
|r —q| (M + p) € Q. Then,

b b b
/rf(:c)dz—q/ f(z)dz s/ Ir—qllf (z)|dz

<|r—ql (M +p) /b-ldx-

Letting ¢ approach r, we see that fab rf{z)de=r f: f (z) dz. Hence, from
properties (3) and (4), we see that this integral must be linear.

By using properties (1) through (5), we have shown that fab ldz =b-a
and the integral is linear. We have not made use of the crucial property
(6).

Suppose we have an integral satisfying properties (1) through (5) and let
f be Riemann integrable on [a,b]. Let P = {z¢,21,...,z,} be a partition
of {a, b]. Recalling the definitions

my =inf{f (z): 21 <z <z}
and
M;=sup{f(z):zi_1 <z <z},

we see
n n z; b n
Y mil (w1, m]) < Z/ f =/ F<Y Mt ([ziy, i),
i=1 i=1 YT a i=1

i—1
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which implies that

b b —pb
/fs/féfﬁ
a a
Thus, if f is Riemann integrable on [a, b], then f f= f f and the middle
integral must equal the Riemann 1ntegral Thus any integral that satis-
fies properties (1) through (5) must agree with the Riemann integral for
Riemann integrable functions.

We now investigate property (6). Suppose that f : [a,b] — R is
bounded. Fix [ and L such that | < f < L. Given a partition
P = {lo,l1,...,1,} of the interval [|, L] with lp =, I, = L and {; < l;4;
fori=1,...,n,let E;={xz €[a,b]: i1 < f(z)<l}fori=1,...,n, and
consider the simple function ¢ defined by

e(z) = Z liixg, (%) -

It then follows that ¢ < f on [a,b] and, by the linearity of the integral,
Lo de= Y0 b [0 X, (@) da.

Now, fix a partition Py and define a sequence of partitions {P}5; such
that:

(1) Py is a refinement of Pr_; for k=1,2,..;
(2) n(Pe) < %u (Pg—1) for k=1,2,....

Let ¢, be the function associated to Py as above. Then, {¢;}re; is a
sequence of simple functions that increase monotonically to f. In fact,
by construction, 0 < f — ¢, < u(Py) and u(Px) — 0, so that {¢;}oo;
converges to f uniformly on [a,b]. Consequently, by (6)

/ab‘Pk—’/abf»

Thus, to evaluate the integral of f, it is enough to be able to integrate the
functions ¢, which in turn depends on integrals of the form f: Xg (z) dz.
As Lebesgue said, “To know how to calculate the integral of any function,
it suffices to know how to calculate the integrals of functions ¥ which take
only the values 0 and 17 [Leb, Vol. II, page 118]. If E = [c,d] is an
interval in [a, b], then f: Xg (z)dz = fcd 1dz, which is the length on the
interval [c,d]. Thus, Lebesgue reduced the problem of integration to that
of extending the definition of length from intervals in R to arbitrary subsets
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of R, that is, to le probléme de la mesure des ensembles (the problem of
the measure of sets). His goal was to assign to each bounded set E C R a
nonnegative number m (E) satisfying the following conditions:

(1) congruent sets (that is, translations of a single set) have equal measure;

(2) the measure of a finite or countably infinite union of pairwise disjoint
sets is equal to the sum of the measures of the individual sets (countable
additivity); and,

(3) the measure of the set [0,1] is 1.

As we shall see below in Remark 3.10, this problem has no solution.

3.2 Measure

Our goal is to extend the concept of length to sets other than intervals,
with a function that preserves properties (1) through (3) of the problem of
measure.

3.2.1 Owuter measure

We first extend the length function by defining outer measure.

Definition 3.4 Let E C R. We define the (Lebesgue) outer measure of
E, m* (E), by

m* (E) =inf{ > 0(I;) ¢,

i€a

where the infimum is taken over all countable collections of open intervals
{I;};c, such that E C UjesI;.

Notation 3.5 Here and below, we use ¢ to represent a countable set,
which may be finite or countably infinite.

It follows immediately from the definition that m* (#) = 0. Since £(I) >
0 for every open interval I, we see m* (E) > 0. Since @ C (0,¢) for every
€>0,0<m*(P) <eforall e >0. It follows that m* () = 0.

We show that m* extends the length function and establish the basic
properties of outer measure. Given a set E C R and h € R, we define the
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translation of E by h to be the set
E+h={zeR:z=y+hforsomeyc E}.

We say a set function F is translation invariant if F(E) = F(E+h)
whenever either side is defined.

Theorem 3.6 The outer measure m* satisfies the following properties:

(1) m* is monotone; that is, if F C E C R then m* (F) < m* (E);

(2) m* is translation invariant;

(3) if I is an interval then m* (I) = ¢(I);

(4) m* is countably subadditive; that is, if o is a countable set and E; C R
for alli € o, then m* (Uieo B;) £ ) e, m™ (E4)-

Proof. If F C E, then every cover of E by a countable collection of open
intervals is a cover of F', which implies {1). We leave (2) as an exercise. See
Exercise 3.1.

To prove (3), let 7 C R be an interval with endpoints ¢ and b. For
any € > 0, (a — ¢,b+€) is an open interval containing I so that m* (I) <
b— a+ 2¢. Hence, m* (I) £ b—a.

Now, suppose that [ is a bounded, closed interval. Let {I; : j € 0} bea
countable cover of I by open intervals. We claim that > .., ¢(I;) 2b—a
which will establish that m* (I) = b—a. Since I is compact, a finite number
of intervals from {I; : j € o} cover I; call this set {J; :4=1,...,m}. (See
[BS, pages 319-322].) It suffices to show that 3 .-, £(J;) > b — a. Since
I C U, J;, there is an ¢; such that J;, = (a1,b;) with ay < a < b;.
If by > b, then [a,b] C J;, and since .-, £(J;) > £(J;,) > b—a, we
are done. If b; < b, there is an iz such that Ji, = (ag,b2) and az <
by < by. Continuing this construction produces a finite number of intervals
{Ji, = (ak,bx) : k=1,...,n} from {J;:i=1,...,m} such that a; < a,
a; < bj_; < b; and b, > 0. Thus,

m n n

DL 2Y (r—ar) =bu+ ) (b1 -ax) —a1>ba~a >b-a,

i=1 k=1 k=2

as we wished to show. Thus, m* (I) = £ ({).

If 7 is a bounded interval, then for any ¢ > 0 there is a closed interval
J C I with £(I) < £(J)+ ¢ Then, m*(I) > m*(J) =£(J) > {(I) —e
Thus, m* (I} > £(I), and by the remark above, the two are equal.
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Finally, if I is an unbounded interval, then for every r > 0, there is a
closed J C I with m* (J) = £(J) = r. Hence, m* (I) > r for every r > 0
which implies m* (I) = 0.

It remains to prove (4). Assume first that m* (E;) < oo for all i € o
and let € > 0. For each ¢, choose a countable collection of open interval
{Iin}peo, such that 3°  £(L;,) < m* (E;)+2 " Then, Ui, {Lin} neo,
is a countable collection of open intervals whose union contains U;e, E;.
Thus, by Exercise 3.2,

m* (U E;) < Zf(fi,n) = Z Z €(Zin)

i€0 nEo;
<Y (B +27i) =Y mt (B +e.
i€o i€o
Since € was arbitrary, it follows that m* (Uieo E;) < 3, m ). Finally,
if m*(E;) = oo for some 4, then 3, m* (El) = oo and the 1nequahty
follows. O

Since € (r — €,z + €) for every € > 0, we see that m* ({z}) = 0 for all
z € R. By the subadditivity of outer measure, we get

Corollary 3.7 IfE C R is a countable set, then m* (E) = 0.

We shall show in Section 3.2.3 that the converse of Corollary 3.7 is false.
As a consequence of this corollary, we obtain

Corollary 3.8 If I is a non-degenerate interval, then I is uncountable.

The outer measure we have defined above is defined for every (bounded)
set £ C R and satisfies conditions (1) and (3) listed under the problem of
measure. Unfortunately, outer measure is countably subadditive, but not
countably additive, as the following example shows.

Example 3.9 We begin by defining an equivalence relation on [0, 1]. Let
z,y € [0,1]. We say that z ~ y if z — y € Q. By the Axiom of Choice,
we choose a set P C [0,1] which contains exactly one point from each
equivalence class determined by ~. We need to make two observations
about P:

(1) ifgreQand g#7 then (P+q)N{(P+r)=0;
(2) [0,1] € U(P+r), where the union is taken over all r € Qy =
Qn{-1,1].
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To see (1), suppose that £ € (P+¢q) N (P+7). Then, there exist
s,t € P such that = ¢ + s = r 4+ t. This implies that s —t =r — ¢ # 0,
and since r — q € Q, s ~ t. Since s,t € P, this violates the definition of
P, proving (1). For (2), let = € [0,1]. Then, z is in one of the equivalence
classes determined by ~, so there is an s € P such that £ ~ s. Thus,
z—s=r¢€Qandsince z,s € [0,1],r€[-1,1]] and z € P+ .

Note that Ureg, (P +7) C [~1,2], so by monotonicity, translation in-
variance and countable subadditivity,

1=m"([0,1]) <m" (Urego (P +7)) <m* ([-1,2]) =3

and 0 < m* (Upege (P +7)) < o0. On the other hand, by translation
invariance, m* (P + r) = m* (P) for any r € R, which implies

Z m*(P+r)= Z m*P

r€Qo reQo
so that the sum is either 0, if m* (P) = 0, or infinity, if m* (P) > 0. In
either case,

m* (Urego (P+7)) # Y m" (P +1)
T€Qo

so that outer measure is not countably additive.
We will return to this example below.

Remark 3.10 This example shows that there is no solution to Lebesgue’s
problem of measure. In the previous construction we have used the following
facts to show that outer measure is not countably additive:

(1) m* (P +7) = m* (P);
(2) 0 < m* (Ureg, (P+7)) < 0.

The first follows from translation invariance.  The second uses
m*([0,1]}) = 1, monotonicity, and finite subadditivity (to show
m* ([-1,2]) < 3). Since monotonicity is a consequence of finite subad-
ditivity, the only properties we used were translation invariance, finite sub-
additivity, and m* ([0,1]) = 1. Thus, this example applies to any function
satisfying these three properties. So, there is no function defined on all sub-
sets of R that is translation invariant, countably additive and equals 1 on
[0,1].
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3.2.2 Lebesgue Measure

Example 3.9 shows that m* is not countably additive on the power set of
R. In order to obtain a countably additive set function which extends the
length function, we restrict the domain of m* to a suitable subset of the
power set of R. The members of this subset were called measurable subsets
by Lebesgue. Lebesgue worked on a closed, bounded interval I = [, b], and
for £ C I, he defined the inner measure of E to be m, (E) = (b—a) —
m* (I'\ F); that is, the inner measure of E is the length of I minus the
outer measure of the complement of E in I. Lebesgue defined a subset
E C I to be measurable if m* (E) = m, (E). Using the definition of inner
measure and the fact that the outer measure of an interval is its length,
Lebesgue’s condition is equivalent to

m*(I)=m"(E)+m*(I\ E).

Unfortunately, this procedure is not meaningful if we want to consider ar-
bitrary subsets of R since the length of R is infinite. However, there is
a characterization of Lebesgue measurable subsets of an interval I due to
Constantin Carathéodory (1873-1950) that generalizes very nicely to arbi-
trary subsets of R,

In the above equality, we assume that £ C I, so that £ = EN I,
Carathéodory’s idea was to test E with every subset of R, instead of just
an interval containing £. Thus, he was led to consider the condition

m* (A) = m* (AN E) + m* (A\ E)

for every subset A C R; A need not even be a measurable set! We now
show that the two conditions are equivalent.

Theorem 3.11 Let I C R be a bounded intervel. If E C I, the following
are equivalent:

(1) m*(I)=m*(E)+m* (I\ E),
(2) m*(A)=m*(ANE)+m*(A\E), forall ACI.

The proof will be based on several preliminary results. Given intervals
I,J C R, we define the distance from I to J by

dI,J)=inf{lz—yl:zelye J}.

We begin by proving that outer measure is additive over intervals that are
at a positive distance.
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Lemma 3.12 Let I,J C R be bounded intervals such that the distance
from I to J is positive. Then,

m* (TUJ)=m*(I)+m*(J).

Proof. By subadditivity, m* (IUJ) < m*(I) + m*(J). To show the
opposite inequality, fix € > Q and choose a countable collection of open
intervals {I;},c, such that TUJ C UieoI; and 3, € (L) S m* (T U J) +e.
Assume, without loss of generality, that I lies to the left of J and let
__supt +infJ
- 2
be the point midway between the two intervals.
Suppose a € I; = (ai,b;) for some i € 0. Let I, = (a;, @) and Ii+ =
(e, b;). Then, since a ¢ TUJ, JUJ)NL =T UJ)N(I7 VL), so that
I u I;f covers the same part of I U J as I; does, and, since

LL)=bi—ai=(b—a)+(a—a)=L(I])+£(I]),

replacing I; by I and Ii+ does not change the sum of the lengths of the
intervals. Assume that every interval I; that contains o is replaced by the
two intervals I;” and I;".

Let o(I) = {ieo:iNJ=0} and o(J) = {ico: ;NI=0}
follows that I C UiEU(I)I‘i and J C Uieo(J)Ii- Thus,

m (D +m" ()< Y LI)+ Y ALY L) SmT(TUT) +e
i€o(I) i€a(J) €0
Since this inequality is true for any € > 0, the proof is complete. a

Remark 3.13 This result is true for intervals whose interiors are dis-
joint. If the intervals are open, this proof works whether the intervals touch
or not. If any of the intervals are closed, we can replace them by their
interiors, which does not change the measure of I, J or I U J, since the
edge of an interval is a set of outer measure Q.

The next result shows that condition (2) of Theorem 3.11 holds when
E is an interval.

Lemma 3.14 If] C R is a bounded interval and J C I is an interval,
then

m* (A) =m* (ANJ)+m* (A\ J)
forallAcC .
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Proof. Note first the conclusion holds if A is an interval in I. In this
case, A and AN J are both intervals, so their outer measures equal their
lengths. Further, A \ J is either an interval or a union of two disjoint
intervals which are at a positive distance 4. In the first case, the equality is
merely the fact that the length function is additive over disjoint intervals.
In the second case, we write A\ J = A; U Ay, with A; and A, intervals at
positive distance and use the previous lemma.

Let A C I and € > 0. Choose a countable collection of open intervals
{Ii};c, such that A C UieoI; and 37, €(1;) < m*(A) + e As before,
m* (I;) =m*(I; N J)+m* (I; \ J) for all i € 5. Therefore,

m* (AN J) +m”™ (A\J) < m" ((Uieo i) N J) + m” ((Uieo i) \ J)

<> [ (InJ)+m (L J)]
i€o

=Y (1)
i€0
<m*(A)+e

Since this is true for all ¢ > 0, the result follows by countable
subadditivity. O

In the following lemma, we show that condition (1) of Theorem 3.11
implies condition (2) when A is an interval.

Lemma 3.15 If E C I satisfies condition (1) of Theorem 3.11, then
m*(J)=m*(JNE)+m*(J\E)
for all intervals J C I.
Proof. By the previous lemma, for any interval J C I,
m* (E)y=m*(ENJ)+m™(E\J)
and
m* (I\E)=m" (I\E)nJ)+m" (I\ E)\ J).
By condition (1) and subadditivity, we see
m* (1) = m* (E) +m* (I \ E)
=m"(ENJ)+m" (E\J) +m™ ((I\ E)yNnJ) + m* (I \ E)\ J)
={m"(EnJ)+m* (I\E)NJ)}
+{m* (E\J) +m* (I\ E)\ J)}
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Since I\ E)YNJ =J\E,E\J=(I\J)NE,and I\ E)\J={I\J)\E
it follows from subadditivity that
m*(I)={m*"(JNE)+m* (J\ E)}
+{m* (I\J)NE) +m* ((I\J)\ E)}
>m*(J)+m*(I\J)
>m*(I).
Thus,

m* (J) +m* (I\J) = m* (ENJ) +m* (E\ J)
m* (I\NE)YNJ) +m* (I\ E)\ J).

By subadditivity, m* (I \ J) < m* (E\ J)+m* ((I \ E) \ J), which implies
m*(J)>m*(EnJ)+m* (I\E)NJ)=m"(ENJ)+m*(J\ E),
and the proof now follows by subadditivity. a

We can now prove Theorem 3.11.

Proof. Setting A = I, we see that (2) implies (1). So, assume that (1)
holds. Let A C I and note that by subadditivity, it is enough to prove that

m* (AN E) +m* (A\ E) < m* (A).

Fix € > 0 and choose a countable collection of open intervals {I;},., such
that A C Ujeol; and ), £(I;) < m*(A) +e. Then, by the previous
lemma,

m* (ANE)+m* (A\ E)

< m* ((Uigo i) N E) +m* (Vigo li) \ E)
<) [m*

m
Z (LNE)+m* (I; \ E)]
:Zm

1€0
<m*(A) +e

Thus, m* (AN E) +m* (A\ E) < m*(A4) and the proof is complete. [

Thus, for subsets of bounded intervals, measurability according
to Lebesgue's definition is equivalent to measurability according to
Caratheodory’s definition. In order to include unbounded sets, we adapt
Caratheodory’s condition for our definition of measurable sets.
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Definition 3.16 A subset £ C R is Lebesgue measurable if for every set
ACR,

m* (A) =m* (AN E) +m* (A\ E). (3.2)

The set A is referred to as a test set for measurability. By subadditivity,
we need only show that

m* (AN E) +m* (A\ E) < m* (A)

in order to prove that E is measurable. We observe that we need only
consider test sets with finite measure in (3.2) since if m* (4) = oo, then
(3.2) follows from subadditivity. Set £ = R\ E. Note that condition (3.2)
is the same as

m*(A)=m"(ANE)+m* (ANE").

Definition 3.17 Let M be the collection of all Lebesgue measurable sets.
The restriction of m* to M is referred to as Lebesgue measure and denoted
by m = m*|,,.

Thus, if E € M, then m (E) = m* (E).
We next study properties of m and M. An immediate consequence of
the definition is the following proposition.

Proposition 3.18 The sets ) and R are measurable.
Further, sets of outer measure 0 are measurable.
Proposition 3.19 If m* (E) =0 then E is measurable.

Proof. Let A C R. By monotonicity, 0 < m* (ANE) < m*(E) = 0.
Thus,

m* (A <m*(ANE)+m* (A\E)=m"(A\ E) <m* (A4)
and E is measurable. 0

We say that a set E is a null set if m (E) = 0. Note that singleton sets
are null, subsets of null sets are null, and countable unions of null sets are
null. See Exercise 3.4.

Lemma 3.20 Let Bq,..., E, be pairwise disjoint and measurable sets. If
A CR, then

m* (ANU_ Ey) = ) m* (AN Ey).
j=1
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Proof. Let A C R. Proceeding by induction, we note that this statement
is true for n = 1. Assume it is true for n—1 sets. Since the E;’s are pairwise
disjoint,

AN (Ui Bi) N Ey = AN E, and AN (U E) \ Ep = AN (UJZ{E;).

Since E, is measurable, by the induction hypothesis,

m* (AN (Uje, Bi)) =m* (AN E,) +m* (AN (U;‘;llEi))
=m*(ANE,) +nz_:m* (ANE))

i=]

= zn:m* (Aﬂ E,) .
=1 O

Let X be a nonempty set and A C p (X) a collection of subsets of X.
We call 4 an algebra if A,B € A implies that AUB,A° = X\ 4 € A
Note that p(X) is an algebra and so is the set {0, X}. In fact, every
algebra contains @ and X since A € A implies that X = AU A° € A and
@ = X° e A. As a consequence of the definition and De Morgan’s Laws,
A is closed under finite unions and intersections. An algebra .A is called a
o-algebra if it is closed under countable unions.

Example 3.21 Let
A={F c(0,1): For (0,1) \ F is a finite or empty set}.

Then, A is an algebra (see Exercise 3.5) which is not a o-algebra. To see that
A is not a o-algebra, note that QN (0, 1) is a countable union of singleton
sets, each of which is in A, but neither QN (0, 1) nor its complement (0, 1)\@
is finite.

We want to show that M is a og-algebra. We first prove that M is an
algebra.

Theorem 3.22 The set M of Lebesgue measurable seis is an algebra.

Proof. We need to prove two things: M is closed under complementa-
tion; and, M is closed under finite unions. Since ANE°= AN (R\ E) =
A\E and A\ E° = A\ (R\ E) = AN E, we see that the Carathéodory
condition is symmetric in E and E¢, so if E is measurable then so is E°.
Suppose that E and F' are measurable. For A C R, write AN(EUF) =
(ANEYU (AN E°NF). Then, first using the measurability of F' then the
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measurability of E,

m* (AN(EUF)+m*(AN(EUF)") =m*(AN(EUF))
m* (AN E¢N F°)
m* (ANE)+m* (ANE°NF)
m* (AN E°N F°)
<m*(ANE)+m* (AN E°)
=m*(4).

Therefore, £ U F is measurable and M is an algebra. O

Since M is an algebra, it satisfies the following proposition.

Proposition 3.23 Let A be an algebra of sets and {A;};=; C A. Then,
there is a collection {B;};o, C A of pairwise disjoint sets so that U2, A; =
U2, B;.

Proof. Set B; = Ay and for j > 1 set B; = Ay \UJ 1A Since A
is an algebra, B; € A. Clearly, B, C A; for all 4, so for any index set
0 C N, UieoB; C UiggAi. Let # € U2, A;. Choose the smallest j so
that z € A;. Then, z ¢ A; for ¢ = 1,2,...,5 — 1, which implies that
z € B; CUR,B;. Thus U2, A; C U2, B; so that the two unions are equal.
Finally, fix md1ces i and j and suppose that j < 4. If z € B;, then x € A;,
so that ¢ B; C A; \ A;. Thus, B;N B; = 0. a

Note that the proof actually produces a collection of sets {B;};-; sat-
isfying U ; A; = UYB; for every N. We can now prove that M is a
o-algebra.

Theorem 3.24 The set M of Lebesgue measurable sets is a o-algebra.

Proof. We need to show that M is closed under countable unions. Let
{E;}2, € M and set E = UX,E;. We want to show that E € M.
By the previous proposition, there is a sequence {B;};~, C M such that
E = U2,B; and the B;’s are pairwise disjoint. Set F,, = U, B;. Then,
F, € M and F¢ D E°.

Let A C R. By Lemma 3.20,

m* (AN (U, B;)) = zn:m* (AN By).

i=1



Lebesgue integral 71

Thus, for any n € N,

m* (4) = m* (AN Fy) +m* (AN FS)
> m* (AN Fy) +m* (AN E°)
=3 m* (AN By) +m* (ANEF).
i=1

Since this is true for any n, by subadditivity we see that

m*(A)zim*(AnBiHm*(AmEc) >m*(ANE)+m*(ANE°).

i=1
Thus, E is measurable. Therefore, M is a o-algebra. O

A consequence of the translation invariance of m* is that M is transla-
tion invariant; that is, if £ € M and h € R, then E+ h € M. To see this,
let E € M and A C R. Then,

m* (A =m*(A—h)y=m*((A-RhR)NE)+m* ((A-h)\ E)
=m*(((A-R)NE)+h)+m* ((A-Rh)\ E)+h)
=m*(AN(E+h))+m"(A\ (E +h))

which shows that E 4+ h € M.

We saw above the m* (I) = £(I) for every interval I C R. We now show
that every interval is measurable.

Proposition 3.25 Fuvery interval I C R is a measurable set.

Proof. Assume first that I = (a,b). Fix a set A C R and set A; =
AnN(—o0,a], A =ANT and A3 = AN [b,00). Since

m* (A) <m* (ANI)+m* (A\I) <m* (A1) + m* (A2) + m* (A3)
it is enough to show
m* (Ay) + m* (Az) + m™ (A3) < m™(4).

Without loss of generality, we may assume that m* (A) < co.

Fix € > 0 and let {I;};2, be a collection of intervals such that A C
U2 Z; and 3572, £(L;) < m* (A) +e Set I} = [;N(~00,a], I} = ;N1
and I? = I; N[b,00). Each I7 is either an interval or is empty, and £ (I;) =
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e(I}) +e(12) +€(13) = m* (1}) +m* (I2) +m* (I3). For each n, we have
Ap C U2, I7, which implies that m* (4,) <372, m* (I7'). Thus, we get

m* (A1) +m* (A2) +m* (43) <

]38

1 {m™ (1) +m* (1) + m* (13)}

<.
I

o

» L

(Z;)

(A) +e

i
<m

Since € is arbitrary,
m* (A1) + m* (A2) + m* (43) < m* (A)

so that I is a measurable set.

Since M is a o-algebra, (a,00) = U (a,a+n) and (—o0,b) =
U2, (b —n,b) are measurable, and so are their complements (—o0, a] and
[b,00). Since every interval is either the intersection or union of two such
infinite intervals, all intervals are measurable. O

Thus, we see that Lebesgue measure extends the length function to the
class of Lebesgue measurable sets.

We next study the open sets in R and the smallest o-algebra that con-
tains these sets. Set Exercise 3.6.

Definition 3.26 Let X C R. The collection of Borel sets in X is the
smallest o-algebra that contains all open subsets of X and is denoted B (X).

Since B (X) is a o-algebra that contains the open subsets of X, by taking
complements, B (X) contains all the closed subsets of X.

Let O be an open subset of R. The next result shows that we can realize
O as a countable union of open intervals,

Theorem 3.27 FEvery open set in R is equal to the union of a countable
collection of disjoint open intervals.

Proof. Let O C R be an open set. For each x € O, let I; be the largest
open interval contained in O that contains z. Clearly, O C Uzeol,. Since
I, C O for every z € O, Uzeol, C O, so that O = Ugeol,. U z,y € O,
then either I, = I, or I; NI, = 0. To see this, note that if I, NI, # @, then
I, U I, is an open interval contained in O and containing both I and I,.
By the definition of the intervals I, we see that I, = I, U I, = I,. Thus,
O is a union of disjoint open intervals. Since each of the intervals contains
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a distinct rational number, there are countably many distinct maximal
intervals. ]

Thus, we can view B (R) as the smallest o-algebra that contains the
open intervals in R. Since M is also a o-algebra that contains the open
intervals, we get

Corollary 3.28 FEuvery Borel set is measurable; that is, B(R) C M.

Remark 3.29 The two sets B(R) and M are not equal; there are
Lebesgue measurable sets that are not Borel sets. See, for example [Ha,
Ezercise 6, page 67/, [Mu, pages 148-149], (Ru, page 53/, and [Swi, page
54]. Also, note that M is a proper subset of p (R) as we show in Ezample
3.31 below.

Let F, be the collection of all countable unions of closed sets. Then,
F,CB(R). Clearly, F, contains all the closed sets. It also contains all the
open sets, since, for example, (a,b) = UL, [a + %,b - %] Similarly, the
collection of all countable intersections of open sets, Gs, is contained in the
Borel sets and contains all the open and closed sets.

So far, we have defined a nonnegative function m* that is defined on all
subsets of R and satisfies properties (1} and (3) of the problem of measure.
This function does not satisfy property (2), as we saw in Example 3.9.
Next, we defined a collection of sets, M, and called m the restriction of m*
to M. Consequently, m is translation invariant, and satisfies properties (1)
and (3). We now show that m satisfies property (2), that is, m is countably
additive.

Proposition 3.30 Let {E;};2, C M. Then, m (U2, E;) < 302, m(Ey).
If the sets E; are pairwise disjoint, then m (U2, E;) = S o0, m (E;).
Proof. Since M is a o-algebra, U2 E; € M and the inequality follows

since it is true for outer measure. Assume the sets are pairwise disjoint.
We need to show that

m (U2, E;) > Zm(Ei).

=1

By Lemma 3.20, m* (AN (U1 E:)) = S m* (ANE;). Let A=R.
Then, for all n,

n
m (U2, Ei) 2 m (UL, Ei) = Zm (Eq).
i=1
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Thus, m (U2, E;) = ) ooy m (E;) as we wished to prove. O

Thus, m solves le probléme de la mesure des ensembles for the collection
of measurable sets. But, not all sets are measurable, as the next example
shows.

Example 3.31 The set P defined in Example 3.9 is not measurable.
Suppose P were measurable. Then P +r would be measurable for allT ¢ R
and m (P +r) = m (P). Thus,

m(Urego (P+7)) = Y m(P+r)= ) m(P).
T€Qo T€Qo
We saw in Example 3.9 that 1 < m (Ureg, (P+ 7)) < 3. If m(P) = 0,
then the right hand side equals 0; if m (P) > 0, then the right hand side is
infinite. In either case, the equality fails. Thus, P is not measurable.

Definition 3.32 Let B be a o-algebra of sets. A nonnegative set function
(¢ defined for all A € B is called a measure if:

(1) u(0) =
(2) pis countably additive; that is,

p(UR B =) p(E)

for all sequences of pairwise disjoint sets {E;};o; C B .

Note that both 3 ;o u(E;) = oo and u (E;) = oo for some % are allowed.
Examples of measures include m defined on M and, also, m defined on

B(R).

Example 3.33 Define the counting measure, #, by setting # (A) equal
to the number of elements of A if A is a finite set and equal to oo if A4 is
an infinite set. Then, # is a measure on the o-algebra p (X) of X, for any
set X.

Suppose p is a measure on B and A,B € B with A C B. Then, by
countable additivity, 4 (B) = p(A) + p (B \ A), which also shows that u is
monotone. We use this identity in the following proof.

Proposition 3.34 Let i1 be a measure on a o-algebra of sets B. Suppose
that {E;}oo, C B.
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(1) If E; C Eiy, then,
p (U2 Bi) = lim p (Ey).

(2) If E; D Eit1, and there is a K so that u(Ex) < oo, then,
p(0321 ) = Jim u(B).

Proof. Suppose first that E; C E;y1. If p(E;) = oo for some %, then the
equality in (1) follows since both sides are infinite. So, assume p (E;) < oo
for all i. Set E = U2 F,. Let E; = . Since the sets are increasing,
E = (E1\Ey) U(E2\ E1)U(E35\ E3) U---, which is a union of pairwise
disjoint sets. Thus,

p(E) = nli{goz}t (Bi \ Ei—1)

i=1
n

= lim 3 (u(E:) = p(Bic1)) = lim p(Ey).
i=1
Now, assume that E; D E;4; and there is a X so that u(Ex) < oco. Set
E = N2 F;. Since the sets are decreasing, Fx \ F = (Ex \ Fx41) U
(Ex+1 \ Ex42) U - -, where the sets on the right hand side are pairwise
disjoint. It follows that

p(Ex) = p(E) = lim 3 [u(E:) = p(Eip)] = u(Bx) — lim p(En).
i=K

Thus, p (E) = limp—,e p (Ey), proving the proposition. |

Notice that we cannot drop the assumption in (2) that one of the sets
E has finite measure.

Example 3.35 Let E;, = [{,00). Then, m(E;) = oo for all ¢ while
E = N2, E; = 0 has measure zero.

There are many ways to define Lebesgue measurability. The one we
have chosen is useful for generalizing measurability to abstract settings.
A common definition of measurability in Euclidean spaces is in terms of
open sets. The following theorem gives four alternate characterizations
of measurability. The second characterization is the classical definition in
terms of open sets.
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Theorem 3.36 Let E C R. The following are equivalent:

(1) Ee M;

(2) for all € > 0, there is an open set G D E such that m* (G\ E) < ¢;
(8) for all e > 0, there is a closed set F' C E such that m* (E\ F) < ¢;
(4) there is a G5 set G D E such that m* (G\ E) = 0;

(5) there is an F, set F C E such that m* (E\ F) = 0.

Proof. We first show that (1) implies (2). Assume that F is a measurable
set of finite measure. Fix € > 0 and choose a countable collection of open
intervals {I;},, such that E C Uieol; and }_,c, £(L;) < m(E) +¢€. Set
G = Uicol;- Then, G is an open set containing E such that

m(G) <Y (L) <m(E) +e

i€o
Therefore,
m*(G\E)=m(G\E)=m(G) —m(E) <e

If m(E) = oo, set Ex, = EN(—k, k) and choose open sets Gx D Ej so that
m* (G \ Ex) < €27%. Then, the open set G = U2 ;G D E and since

G\E=UZ, (Ge\ E) C UL, (Gi \ Ex)

we have that

*(G\E) gi (G \ Ex) <Ze2—

k=1

as we wished to show.

To show that (2) implies (4), observe that for each k, there is an open
set Gy D E such that m* (Gx \ E) < % Then, G = N2 ;G is the desired
set.

Finally, we show that (1) is a consequence of (4). Let G € G; be such
that E C G and m* (G \ E) = 0. Then, G,G\ E € M which implies that
(G\ E)° € M. This implies that E = G\ (G\ E) =GN(G\ E)° € M, as
we wished to show.

It remains to show that (1), (3) and (5) are equivalent. To show that
(1) implies (3), note that E € M implies E° € M. Thus, there is an open
set G D E° with m* (G \ E°) < e. The set F' = G° is the desired set, since
E\F =FE\G°= G\ E°. The other implications are similar. O
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Suppose that F is a measurable set. For each € > 0, there is an open
set G D E such that m (G \ E)}) = m* (G \ F) < ¢, which implies

m(G)=m(E)+m(G\E)<m(E)+e.
It follows that
Corollary 3.37 Let E C R be a measurable set. Then,

m (E) = inf {m (G) : E C G,G open}.

If we wish to generalize the concept of length to general sets, we need
a function that is defined on all of the Borel sets (and, in fact, many more
sets). We call a measure p defined on B(R) that is finite valued for all
bounded intervals a Borel measure. We will show that every translation
invariant Borel measure is a multiple of Lebesgue measure.

Definition 3.38 A measure p defined for all elements of B (R) is called
outer regular if

w(E)=inf {§(G): E C G,G open}
for all E € B(R).

By the corollary, Lebesgue measure restricted to the Borel sets is an outer
regular measure. In fact, every Borel measure on R is outer regular. (See
[Sw1, Remark 7, page 64].) We show next that a translation invariant Borel
measure is a constant muitiple of Lebesgue measure.

Theorem 3.39 If u is a translation-invariant outer-regular Borel mea-
sure, then = cm for some constant c.

In fact, we have already seen the proof of much of this theorem. It is
a repetition of the argument proving fab ldz = b - a for all a,b € R from
Lebesgue’s descriptive properties of the integral. The only properties used
to show that equality were translation invariance (1), finite additivity (2),

and fol ldz =1 (3), and our measures are translation invariant and finitely
additive.

Proof. Set c = 11((0,1)). We claim that u(E) = em(E) for all E €
B(R). Since u is finite on bounded intervals, by translation invariance and
countable additivity, u ({z}) = 0 for all z € R. Thus, u ([a,b]) = u((a,b)) =
t([a, b)) = 1 ((a,b]). By this observation and translation invariance, if I is
an interval with £(I) = 1, then

u(D) = ((0,2)) = c=em ().
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Since p is finitely additive, if ag < a1 < -+ - < a,, then
t((a0,a1)) + g ((a1,02)) + -+ + p((@n- 1,an))
= 1 (a0, an)) Zn({al 1 ((a0,axr)).

Setting a; = : shows that p ( <0, l)) = cl, which in turn implies
n n n

1 ((0,q)) = cq for any rational number ¢. Finally, if » € R, let p and q be
rational numbers such that p < r < ¢. Then, since (0,p) C (0,7) C (0,q),

0<1((0,g)) = p((0,7) = cg — p((0,7)) < cqg—p((0,p)) =c(g—p).

Letting p and q approach r, we conclude that for all real numbers 7,

H ((0’ 7')) = Cr,

so that u((a,b)) = cm ((a,b)) for all a,b € R and p(I) = em (I) for all
open intervals I C R.

Next, if G is an open set in R, by Theorem 3.27, G = U;e, I;, a countable
union of disjoint open intervals. By countable additivity,

:Zp([i)Izcm(Ii)zcm(G)'

ico ico
Finally, since y is outer regular, if £ € B(R),

u(B)=inf{u(G): E C G,G open}
= inf {em (G) : E C G,G open} = em (E),

since Lebesgue measure is regular. Thus, u = cm. O

3.2.3 The Cantor set

The Cantor set is an important example for understanding some of the
concepts related to Lebesgue measure. In particular, the Cantor set is an
uncountable set with measure zero.

To create the Cantor set, we begin with the closed unit interval [0, 1].
Remove the open middle third of the interval, (3 , 3) and call the remainder
of the set Cy = [ , é] [g, 1]. Notice that C; consists of two intervals and
has measure % Next, remove the open middle third interval of each piece
of Cy. Call the remainder C, = [O, é] U [%, g] U [g, %] ] [g, 1]. Note that
Cs consists of 4 = 22 intervals and has measure 4 (%) = (%)2 Continuing
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this process, after the k" division, we are left with a closed set C) which
is the union of 2% closed and disjoint subintervals, each of length 37%.
Thus, m* (Cy) = (%)Ic By construction, Cy O Cyyq for all k. The set
C = N2, Ck is known as the Cantor set.

We now make some observations about C. It is a closed set since it is
an intersection of closed sets. If z is an endpoint of an interval in Cf, then
it is also an endpoint of an interval in Cyy; for all j € N. Thus, z € C and

C # (. Finally, since

2\ ¥
m(©) < (00 = (3)
for all &, it follows that m* (C') = 0. Hence, C is measurable and m (C) = 0.

We next show that the Cantor set is uncountable. For z € [0,1], let
0.ayjaqas . .. be its ternary expansion. Thus, a; € {0,1,2} for all ¢. Further,
we write our expansions so that they do not end with ‘1000..." or ‘1222...".
To do this, we write ‘0222... for ‘1000...” and ‘2’ for ‘1222...". Then,
z € C if, and only if, a; # 1 for all 7. For example, if a; = 1, then
z € (3, %), the first interval removed. Thus, we can think of the ternary
decimal expansion of an element of C' as a sequence of 0’s and 2’s. Dividing
each term of this sequence by 2 defines a one-to-one, onto mapping from
C to the set of all sequences of 0’s and 1’s. As proved in [DS, Prop. 8,
page 12], this set of sequences is uncountable, so that the Cantor set is
uncountable.

The Cantor set is an uncountable set of measure 0. One can also prove
that its complement is dense in [0,1]. See Exercise 3.9. We define gener-
alized Cantor sets as follows. Fix an a € (0,1). At the k** step, remove
2%=1 open intervals of length 3%, instead of 37%. The rest of the con-
struction is the same. The resulting set is a closed set of measure 1 —
whose complement is dense in [0, 1].

3.3 Lebesgue measure in R™

In the previous section, we showed how the natural length function in the
real line could be extended to a translation invariant measure on the mea-
surable subsets of R. In this section, we extend the result to Euclidean
n-space. In particular, these results extend the natural area function in the
plane and the natural volume function in Euclidean 3-space. Our procedure
is very analogous to that employed in the one-dimensional case. We begin
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by defining Lebesgue outer measure for arbitrary subsets of R™, showing
that Lebesgue outer measure extends the volume (area, when n = 2) func-
tion, and then restricting the outer measure to a class of subsets of R"
called the (Lebesgue) measurable sets to obtain Lebesgue measure on R™.
Many of the statements and proofs of results for R™ are identical to those
in R and will not be repeated.

The space R™ is the set of all real-valued n-tuples = = (zy,...,x,),
where z; € R, If z,y € R™ and t € R, we define z + y and tx to be

g+y=(21+Y1,-..,Tn +yn) and tz = (t1,...,tzn).

1/2
We define the norm, |||, of z by ||z|| = (Z?=1 |wz|2) . The distance, d,
between points z,y € R™ is then the norm of their difference, d(z,y) =

1/2
lx—y| = (ZLI |z, — y¢|2) ! . Let B(xzg,r) = {z e R : d(z,29) <7}
be the ball centered at zg with radius r. A set G C R" is called open if
for each z € G, there is an r > 0 so that B (z,7) C G. Let {zx}r; C
R™ be a sequence in R™. We say that {zx},., converges to zg € R™ if
limg o0 d(zk, 29) = 0. A set FF C R™ is called closed if every convergent
sequence in F' converges to a point in F; that is, if {z; }Z°=1 C F and zf —
Ty, then g € F. Finally, a set H is called bounded if there is an M > 0 such
that ||z|]| £ M for all z € H. We define the symmetric difference of sets
Ey, E; C R™, denoted E;AE2, to be theset E1AF, = (E1 \ E2)U(E2 \ El).

An important collection of subsets of R™ consists of the compact sets.
By the Heine-Borel Theorem, a set K C R™ is compact if, and only if, K
is closed and bounded. Below, we will use the following characterization
of compact sets. A set K C R™ is compact if, and only if, given any
collection of open sets {Gi},., such that K C UieaGi, there is a finite
subset {G1,Ga,...,Gm} C {Gi};ep such that K C UL, G;. That is, every
open cover of K contains a finite subcover. See [DS, pages 76-79).

An interval in R™ is a set of the form I = Iy x --- x I, where each I;,
i=1,...,n, is an interval in R. We say T is open (closed) if each I is open
(closed). If each I; is a half-closed interval of the form [a,b), we call I a
brick. If I C R™ is an interval, we define the volume of I to be

v(l) = }jlw,-),

with the convention that 0 - oo = 0, so that if some interval I; has infinite
length and another interval I, ¢ # ¢/, is degenerate and has length 0, then
v{I) = 0. In particular, the edge of an interval is a degenerate interval and,
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hence, has volume 0. Finally, note that if B is a brick which is a union of
pairwise disjoint bricks {B; : 1 <i < k}, then

v(B) =Y v(Bi).
i=1

In the figure below, the brick B is the union of bricks b, ..., b;.

F 3
By
by
by
bg
b
: bs | by big
by |ba  |bg biy
Figure 3.1

Analogous to the case of outer measure in the line, we define the outer

measure of a subset of R™ by using covers of the subset by open intervals
in R™.

Definition 3.40 Let F C R. We define the (Lebesgue) outer measure of
E, m} (E), by

my, (E) =inf{ Y v (Jj) ¢,
j€o
where the infimum is taken over all countable collections of open intervals
{Ji};, such that E C UjeqJ;.

It is straightforward to extend results (1), (2) and (4) of Theorem 3.6
to m},. We show that the analogue of property (3) of Theorem 3.6 also
holds. For this result, we need the observations that the intersection of two
bricks is a brick and the difference of two bricks is a finite union of pairwise
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disjoint bricks. In the following figure, the difference of bricks B; and Bg
is the union of bricks by, ..., b4.

&

By

by b? b4

h 4

Figure 3.2

We begin with a lemma.

Lemma 3.41 IfBy,...,Bn, CR" are bricks, then there is a finite family
F = {F,...,Fy} of pairwise disjoint bricks such that each B; is a union
of members of F.

Proof. Assume that m = 2. Then, B; N By, By \ (B1N By) and By \
(B1 N By) are pairwise disjoint and since By NBs is a brick and the difference
of bricks is a union of pairwise disjoint bricks, the existence of the family
F follows.

Note that this result implies that the union of two bricks is a finite union
of pairwise disjoint bricks. Since

BiUB; = (B1NB2)U(B1\ (B1NB2))U(Bz\ (B1NBy)),

we can decompose B; U By into three pairwise disjoint sets, each of which
is a finite union of pairwise disjoint bricks.

Proceeding by induction, assume we have proved the result for sets of
m bricks. Suppose we have m + 1 bricks By,...,Bp41. By the induc-
tion hypothesis, there exist pairwise disjoint bricks C4,...,C, such that
By, ..., By, are unions of members of {C;:1<4i<[}. Note that B =
Bm+1\UB; = N (Bm+1 \ B:) is an intersection of finite unions of dis-
joint bricks. Consequently, B is a finite union of disjoint bricks, B = U;.;lC’;
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where {C1,...,C}} is a collection of pairwise disjoint bricks. Therefore, we
may replace the set {By,...,Bmn41} by {C1,...,C,CY,...,C}}, and the
members of this collection can be replaced by the pairwise disjoint sets
CiNCj, Ci\ (C:nCj) and Cj\ (CinCj),i=1,...,Land j = 1,...,k,
each of which is a union of pairwise disjoint bricks. The result follows by
induction. a

We now prove that the outer measure of an interval equals its volume.

Theorem 3.42 If I C R” is an interval, then
my (I)=v(I).

Proof. Suppose first that I = I} x --- x I, is a closed and bounded
interval. To see that mJ (I) < v([), let I} be an open interval with the
same center as I; such that £ (I}) = (1+¢)€(L;). Then, I* = I} x --- X I}
is an open set containing I and v(I*) = (1+¢)"v(I). It follows that
ms (1) < (D).

To complete the proof, we need to know that if {J; : ¢ € g} is a countable
cover of I by open intervals, then v (I) <} .., v (J;). Since I is compact,
I is covered by a finite number of the intervals {Ji,..., Jx}, say. Let K;
be the smallest brick containing J; and K the largest brick contained in
I. These bricks exist because I is a closed interval and each J; is an open
interval. It follows that v (J;) = v (K;), v(I) = v(K) and K C Uf_, K;. By
the lemma, there is a family F = {F},..., F;} of pairwise disjoint bricks
such that K and each K; is a union of members of . Suppose K = U;’:le,
F; € 7. Then,

l k
U(I)=U(K):ZU(FJ‘) SZU(FJ')=ZV(KJ')=Z"(JJ)

Jj=1 j=1

as desired. The case of a general interval can be treated as in the proof of
Theorem 3.6. d

We note that since the edge of an interval is a degenerate interval, the outer
measure of the surface of an interval is 0.

We define (Lebesgue) measurability for subsets of R™ as in Definition
3.16.

Definition 3.43 A subset £ C R" is Lebesgue measurable if for every
set A C R?,

mi (A) =m? (AN E) +m’, (A\ E).



84 Theories of Integration

We denote the collection of measurable subsets of R* by M,, and define
Lebesgue measure my, on R™ to be m}; restricted to M,,. As in Theorem
3.24, Proposition 3.25 and Proposition 3.30, M,, is a g-algebra containing
all n-dimensional intervals and m, is countably additive. The collection
of Borel sets of R", B (R"™), comprises the smallest o-algebra generated by
the open subsets of R®. As in the one-dimensional case (Corollary 3.28},
we see by using Lemma 3.44 below that, B(R") C M,,, and the regularity
conditions of Theorem 3.36 and its corollary hold.

Since the Lebesgue measure of an interval in R™ is equal to its n-
dimensional volume, we use Lebesgue measure to define area of planar
regions in two dimensions and volume of solid regions in three dimensions,
extending these concepts from intervals to more general sets. We will dis-
cuss computing these quantities using Fubini’s Theorem below.

Before leaving this section, we show that every open set G C R™ can be
decomposed into an countable collection of disjoint bricks.

Lemma 3.44 [fG C R™ is an open set, then G is the union of a countable
collection of pairwise disjoint bricks.

Proof. Let By be the family of all bricks with edge length 27* whose
vertices are integral multiples of 27%. Note that By is a countable set. We
need the following observations, which follow from the definitions of the
sets By:

(1) if z € R™, then there is a unique B € By, such that x € B;
(2) if B € B; and B’ € By, with j < k, then either B’ C Bor BNB' =0.

Since G is open, if x € G then z is contained in an open sphere contained
in G. Thus, for large enough k, there is a brick B € By, such that B C G
and z € B. Set Bk (G) = {B € By : B C G}. Thus, it follows that G =
Ug2, UeBy(c) B. Choose all the bricks in B; (G). Next, choose all the
bricks in By (G) that are not contained in any brick in By (G). Continuing,
we keep all the bricks in B, (G) that are not contained in any of the bricks
chosen in the previous steps. This construction produces a countable family
of pairwise disjoint bricks whose union is G. O

Using Lemma 3.44, we can prove an extension of Theorem 3.39.

Theorem 3.45 If ;1 is a translation invariant measure on B (R™) which
18 finite on compact sets, then p = cm,, for some constant c.

Proof. LetI=][0,1)x---x][0,1) be the unit brick in R™ and set ¢ = u (I).
For any k € N, I is the union of 2°* pairwise disjoint bricks of side length
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27%  so by translation invariance, each of these bricks has the same pu-
measure. If B is any brick with side length 27%, we have

n(B) = 2%;,,(1) - %cmn (I) = cma (B).

Hence, p{B) = cm,, (B) for any such B. By Lemma 3.44, p (G) = cm, (G)
for any open set G C R™. Since p is outer regular ([Swl, Remark 7, page
64]), we have that u = cm,, by the analog of Corollary 3.37. O

3.4 Measurable functions

Lebesgue’s descriptive definition of the integral led us, in a very natural
way, to consider the measure of sets, which in turn forced us to consider a
proper subset of the set of all subsets of R. We already know that if E is
an interval, then

/xEd:vzé(E)zm(E).

In fact, in order for xy to have an integral, £ must be a measurable set.
But, then, by linearity, if E1,..., FE, C R are pairwise disjoint, measurable
sets, then ¢ (z) = Y7, a;xp, () is also integrable. For property (6) of
Lebesgue’s definition to hold, monotonic limits of such simple functions
must also be integrable. We now investigate such functions.

To begin, we extend the real numbers by adjoining two distinguished
elements, —oo and co. We call the set R* = RU {—00, 00} the eztended real
numbers. The extended real numbers satisfy the following properties for
allz e R:

(1) —oo < T < o0

(2) co+z=2x+ o0;

(8) —oo+z =1z +(~o0);

(4) ifa>0thenoco-a=a-00=o00and (—o0) -a=a-(—00) = —oc0;
(5) fa<Othenoo-a=a-00=—-o0and (—o0) a=a-(—0c0) = co.

While 0o+00 = oo and —oco+(—00) = —00, both co+4(—o00) and (—oo)+00
are undefined. Also, (4) and (5) remain valid if @ equals 0o or ~oco. Recall
that we follow the convention 0c0-0 =000 =0.

Our study of measurable functions will involve simple functions. We
recall their definition.
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Definition 3.46 A simple function is a function which assumes a finite
number of finite values.

Let ¢ be a simple function which takes on the distinct values aq,...,an,
on the sets F; = {z: ¢ (z) =a;}, i = 1,...,m. Then, the canonical form
of pis

p(z)= ZaiXEi (z).
i=1

Let £ C R™. We call f an extended real-valued function if f : E — R*.
Suppose that {¢;}r; is a monotonically increasing sequence of simple
functions defined on some set E. Then, for each © € E, limy_,o @, ()
exists in R*; the limit exists, but may not be finite. Thus, a monotonic
limit of simple functions is an extended real-valued function.

Definition 3.47 Let E be a measurable subset of R®. We say that
an extended real-valued function f : E — R* is (Lebesgue) measurable if
{z€eFE:f(z)>a}eM,forallaeR.

We first observe that a simple function ¢ is measurable if, and only if,
each set E; is measurable.

Example 3.48 Let ¢ (z) = Y} i, a;xg, (%) be a simple function in canon-
ical form, with Eq,..., E,, pairwise disjoint. Then

{r€ E:p(z) > a} = Ug»a B

and it follows that ¢ is measurable if, and only if, each E; is measurable.
To see this, suppose that a1 < a2 < - < ap. If a1 < a < ay,
then {z € E: ¢ (z) > a} = E,,, so the measurability of ¢ requires that
EneMu fap o< a<an,then {z € E: ¢ (z) >a}=FEn_1UEpn,.
Thus, if ¢ is measurable, then F,,_1 U E,, is measurable, and since E,, €
My, By = Epp 1 UE, \ E, € M,. Continuing in this manner, we
see that each E; € M,. On the other hand, if each E; ¢ M, then,
{ze E:p(z) >a} € M, for each @ € R since it is a (finite) union of
measurable sets, and consequently ¢ is a measurable function.

Below, we will always assume that a simple function is measurable, unless
explicitly stated otherwise.

Example 3.49 Let f: R — R be continuous. Since
{zeR: f(z) >a} = f1{(a,00))
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is an open set, it is measurable. Thus, every continuous function defined
on R is measurable.

The measurability of a function, like the measurability of a set, has
several characterizations.

Proposition 3.50 Let E € M,, and f : E — R*. The following are
equivalent:

(1) f is measurable; that is, {z € E : f (z) > o} € M,, for all a € R;
(2) {xeE:f(z)>a} e M, foralla € R;
(3) {xe E: f(z)<a}eM, foralla e R;
(4) {x € E: f(z) < a} € M, foralla € R.

Proof. Since {zt€ E:f(z)<a} = E\{z€E: f(z)>a} and M,
is a o-algebra, (1) and (4) are equivalent; similarly, (2) and (3) are
equivalent. Since {z € E: f(z) > a} =U2, {z € E: f(z) > a+ 1} and
{zeE:f(z)2a}=n2,{z€E: f(z) >a—1}, (1) and (2) are equiv-
alent, completing the proof. a

Remark 3.51 We can replace the condition “for all o € R” by “for
every o in a dense subset of R” in Definition 3.47 and Proposition 3.50.
See Ezercise 3.20.

Since

{zeE: f(z)=al={zcE:f(x)<a}n{z€E: f(z)>a}
{zeE:f(z)=o00} =2 {z € E: f(z)>n}

and
{zeE: f(z)=-oc0} =2 {z€E: f(z) < —-n},
we see that

Corollary 3.52 Let E € M, and f : E — R* be measurable. Then,
{reFE: f(z)=a} € M, for all a € R*.

It is a bit surprising that the converse to this corollary is false.

Example 3.53 Let P C (0,1) be a nonmeasurable set. Define f :

{0,1) = R by
t iftepP
f(m)z{—tiftgép'
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Then, f is one-to-one which implies that {z € (0,1) : f (z) = a} is Lebesgue
measurable for all & € R*, but since {z € (0,1): f(z) >0} = P, f is not
measurable.

The next result contains some of the algebraic properties of measurable
functions.

Proposition 3.54 Let E € M,, and f,g: E — R* be measurable and
assume that f + g is defined for oll x € E. Let c € R. Then:

(1) {z€ E: f(z) > g(x)} is a measurable set;
(2) f+c,cf, f+g, fg, f Vg and f Ag are measurable functions.

Proof. To prove (1), notice that

{zeE: f(z)>g(x)} =Ureg{z € E: f(z)>r>g(z)}
=Ureg{z € E:flx)>rin{zecE:r>g(z)}.

Since each of these sets is measurable, {z € E : f (z) > g (z)} is a measur-
able set.
Consider (2). Fix o € R. Since

{z€E:f(@)+c>al={zcE: f(z)>a-c},
the function f + ¢ is measurable. If ¢ # 0, then
zeE:f(z)>2%}ifc>0
{reE:cf{zx)>a}l= { ¢l .
{zreE:f(x)<2}ifc<O
If ¢ =0, then

Eifa<0

{meE:cf(m)>a}={®ifa20.

Thus, cf is measurable function.
Note that

{zeE:f(zx)+g(x)>al={zcE: f(z)>a-g(z)}.

Since ¢ is measurable, o — g is a measurable function by (2) and so, by (1),
f + g is measurable.
To see that fg is measurable, note that for o < 0,

{xcE:f*(z)>a}=E,
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while for a > 0,
{zeE:f(z)>0}={z€E:f(z)>Va}u{zecE: f(z) < —Va}.
Since all of these sets are measurable, f2 is measurable. Writing
(f+9)*—(f-9)
1 ;

we see that fg is a measurable function.
Finally, since

fg=

{zeE:(fvg)(x)>a}={zeE: f(z)>alU{z€E:(9)(z)>a}
and
{zeE:(fAag)(m)>a}={ze€E:f(z)>a}n{zecE:(9)(z)>a},
it follows that f V g and f A g are measurable. O

Consequently, we get the following result.

Corollary 3.55 LetE € M, and f: E — R*. Then, f is measurable if,
and only if, fT and f~ are measurable functions. If f is measurable, then
|f| is measurable.

The converse to the last statement is false. See Exercise 3.21.

As in the case n = 1, a statement about the points of a measurable set
E is said to hold almost everywhere in E if the set of points in E for which
the statement fails to hold has Lebesgue measure 0. Additionally, we use
phrases like “almost every z” or “almost all 2” to mean that a property
holds almost everywhere in the set being considered.

Proposition 3.56 Let E € M,, and f,g: E — R*. Suppose that f is
measurable and f = g a.e.. Then, g is measurable.

Proof. Let Z = {z € E: f(z)#g(z)}. Then, Z is measurable and
mp (Z) =0. Fix a € R. Then,

{zeE:gx)>al={z€cE\Z:g(x)>alU{reZ:9(z) > a}
={z€c E\Z: f(z)>a}lU{zeZ :g(z)>a}.
Since Z has measure 0, all of its subsets are measurable. Thus,
the measurability of f and the equality {x€ E\Z: f(z)>a} =

{zeE: f(x)>a}\{ze€Z: f(z)>a}implythat {z € E:g(z)>a}e
M. O
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We next investigate limits of measurable functions. To do this, we first
define some special limits. Given a sequence {x;};-; C R, we define the
limit superior and the limit inferior of {x;};o, by:

lim sup z; = inf {sup xk} = lim {sup a:k}
i i ki i—=00 | ks

and

. . . — 0 . .
hmimf T; sx:p {llcrg; mk} 1_141& {}crg azk}
We always have that —oo < liminf; z; < limsup, z; € +oo. When they
are finite, liminf; z; is the smallest accumulation point of {z;};, and
limsup; z; is the largest accumulation point. Further, by Exercise 3.22,
lim; oo x; exists if, and only if, limsup, z; and liminf; z; are equal, in
which case lim; .o, ; equals their common value.

.y OO .

Example 3.57 The sequence {(—I)t} satisfies lim sup; (~1)* = 1 and

. i=1
liminf; (—1)" = —1. Thus, the sequence does not have a limit.

We now consider limits of sequences of measurable functions.

Theorem 3.58 Let E € M,, and suppose fr : E — R* is ¢ measurable
Junction for oll k € N. Then supy, fi, infy fi, limsup, fr and liminfy fj
are measurable functions. If lim fi exists a.e., then it is measurable.

Proof. Fix a € R. Note that

{meE:supfk(a:)>a}=U§‘f__1{x€E:fk(x)>a},
k

which implies that sup, fr is measurable. Next, the equality infy fr =
—sup (—fx) proves that infy fi is measurable. By definition, limsup, fi =
infy, sup;> f; and liminfy fi = sup, inf;>x f;, which shows that lim sup, fx
and lim infy, f are measurable. Finally, if limy fi exists a.e., then it equals
the limsup fi a.e. and, consequently, is measurable. |

The following result, which is due to D. F. Egoroff (1869-1931), shows
that when a sequence of measurable functions converges, it almost converges
uniformly; that is, the sequence converges uniformly except on a set of small
measure.

Theorem 3.59 (Egoroff’s Theorem) Let m, (E) < oo. Suppose that
fo + E — R* is a measurable function for each k, limg— oo fi (z) = f (x)
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a.e. on E and f is finite valued a.e. on E. Then, given any € > 0, there is
a measurable set F C E such that my, (E\ F) < € and {fi}po, converges
uniformly to f on F.

Proof. The function f is measurable since it is the pointwise limit a.e.
of a sequence of measurable functions. For all m,: € N, set

B =i {a e B2l @) - £ @) < )
and
Hz{meE:klln;.ofk(x)=f(:c)}.

Then, E,,; and H are measurable sets and, for all m, H C U2, E,,;. Fix
m. Since Ep; C Em(i41), by Proposition 3.34

Hm my, (Emi) = My (U2 Fmi) 2 my (H) = my (E),

and, since F has finite measure, lim;—,oo Mp (E \ Epi) = 0.
Therefore, given ¢ > 0, for each m there is an %, such that
My (E\ B, ) < €27, Set FF = NP_,F,;.,., so that F is measurable

and
Mo (E\F) <Y mp(E\Eni,)< > 2™ =¢
m=1 m=1

Finally, given n > 0, choose m so that —Tl;; <n Ifk>ipandz € F C Epy,,,
then by the definition of .., |fx (z) — f ()] < 1. Therefore, {fx}re,
converges uniformly to f on F. a

The next two examples show that we cannot relax the conditions that
E have finite measure or f be finite valued.

Example 3.60 Let E = R"™ and let fi be the characteristic function of
the ball centered at the origin and having radius k. Then, fi{(z) — 1 for
all z but the convergence is not uniform on sets whose complements have
finite measure. Thus, we need E to have finite measure.

Example 3.61 Let £ = [0,1] and fi(z) = k. Then, fi converges to
the function which is identically co on [0, 1], so the convergence cannot be
uniform. We need f to be finite valued a.e..



92 Theories of Integration

The British mathematician J. E. Littlewood (1885-1977) summed up
how nice Lebesgue measurable functions and sets are with his “three prin-
ciples”:

(1) Every measurable set is nearly a finite union of intervals.

(2) Every measurable function is nearly continuous.

(3) Every convergent sequence of measurable functions is nearly uniformly
convergent.

The third principle is Egoroff’s Theorem. The first principle follows from
condition (2) of Theorem 3.36. Given E € M, and € > 0, there is an
open set G containing E such that m, (G\ E) < e. By Lemma 3.44,
G = U;gqB;, a countable union of disjoint bricks. If o is finite, we can
approximate E by the union of all the bricks. If & is infinite, since m,, (G) =
limg 00 My, (UE; B;), we can approximate E by a finite set of the B;’s (at
least when the measure of F is finite). Finally, since the surface of a brick
has measure 0, replacing B; by the largest open interval contained inside of
B;, which has the same measure as B;, we can approximate E by a finite
union of open intervals. We now turn our attention the second condition.

Let f be a nonnegative and measurable function on E C R™. We can
define a sequence of simple functions that converges pointwise to f. To see
this, for k& € N, define measurable sets A¥ and A$® by

i—
2k

Af={x€E: 1§f(a:)<2ik} and A* = {z € E: k< f(x)}.

Then, the function

K2k

i) = 3 o xar () + b, (@)

i=1

is nonnegative and simple and {fx},~ | increases monotonically to f for all
z € E. Further, if f is bounded then, once k is greater than the bound on

IFL 1 fe(z) = f(z)] < 51; for all x € E. Thus, we have proved

Theorem 3.62 Let B € M,, and suppose f : E — R* is nonnegative and
measurable. There is a sequence of nonnegative, simple functions {fi}re,
which increases to f pointwise on E. If f is bounded, then the convergence
is uniform on E.
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If f is a measurable function on E, then f = f* — f~ and both f+
and f~ are nonnegative and measurable. Applying the theorem to each
function separately, we get the following corollary.

Corollary 3.63 Let E € M, and suppose f : E — R* is measurable.
There is a sequence of simple functions { fi} e, which converges to f point-
wise on E. If f is bounded, then the convergence is uniform on E.

Littlewood’s second principle is contained in the following theorem of
N. N. Lusin {1883-1950).

Theorem 3.64 (Egoroff’s Theorem) Let E € M, and suppose f : E —
R* is measurable and finite valued almost everywhere. Given € > 0, there
is a closed set F C E such that m, (E\ F) < € and f|p, the restriction of
f to F, is continuous.

Proof. Assume that f is a simple function with canonical form f (z) =
Sieq aiXg, (z), where the a;’s are distinct, the E;’s are measurable and
pairwise disjoint, and £ = U2, E;. (If f(z) = O for some z, then a; = 0
for some j.) Fix € > 0. By Theorem 3.36, there are closed sets F; C E;
such that m, (E; \ F}) < % Set F' = UL, F;. Then, F is a closed set, and

i=1
since the sets F; are pairwise disjoint and f is constant on each of these
sets, f| 5 is continuous. Since E = U7, F;, we have E\F C U™, (E; \ F) C

U, (E; \ F;) which implies that
Mu (E\ F) <mp (UL, (B \ F)) =Y mn (B \ F) <e.
i=1

Next, suppose that f is measurable and m, (E) < oco. Choose a se-
quence of simple functions {fx},o, that converges pointwise to f. Choose
closed sets Fx C E such that m, (E\ Fx) < €2=%+1 and fi| . is con-
tinuous. By Egoroff’s Theorem and Theorem 3.36, there is a closed set
Fy C E such that m, (E\ Fo) < €27! and {fi}4, converges uniformly
to f on Fy. Set F = N2 Fy. Then fi|y is continuous and {fi}e; con-
verges uniformly to f on F. Since a uniform limit of continuous functions
is continuous, f| is continuous. Further,

o
mp (E\F) < ZGQ‘('“‘H) =e
k=0

Finally, suppose mp (E) = co. Let Aj = {z e R":j-1< ||lz|| < j}
and write E = U2, E N A;. Since m, (A;) < oo, there is a closed set
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Fj C ENA;j such that f| is continuous and my, (E'N 4; \ Fy) < €277. Set
F = U32, F;. Note that by construction F; and F; are at a positive distance
for j # l. Thus, F is closed, m,, (E\ F) < € and f| is continuous. O

Remark 3.65 The conclusion is not that f is continuous on F' but that
the restriction of f to F is continuous. See the next example.

Example 3.66 Let f be the Dirichlet function defined on all of R. Let
G be an open set containing Q with m(G) < e. Set F = G°. Then,
m (R\F) = m(G) < € and since f|p =0, f|p is continuous. However,
when considered as a function on R, f is not continuous on F.

In the one-dimensional case, a step function is a finite-valued function
which is constant on a finite number of open intervals of finite length.
We can define a step function on the entire real line by setting it equal
to 0 on the complement of the union of these open intervals. We extend
this idea to higher dimensions by calling ¢ a step function if there are
finite sets of pairwise disjoint bricks, {B;}}~,, and scalars {ai};~; such that
@ (z) = a; for x € B; and ¢ (z) = 0 for z ¢ U~ B;. We now show that a
measurable function defined on a set of finite measure can be approximated
by a sequence of step functions.

Theorem 3.67 Let E € M, and suppose f : E — R* is measurable.
Then, there is a sequence of step functions {@,}r., that converges to f
a.e. in E. Moreover, if |f(z)] < M for all x € E, then |p (z)] < M for
allz € E and k € N.

Proof. Suppose, first, that m (EF) < oo and f is bounded. Let M be the
bound on f and suppose k > M. Let fx be the simple function

21
felzy =Y S5 Xat (2)
i=1
where A¥ = {z€E:%2 <f(z)<s}. By construction, we have

|fe(z) — f(z)] < 27% for all z. Since each A¥ is a measurable set,
there is an open set HF D AF such that m, (HF\ AF) < Zx27%. By

Lemma 3.44, Hf = Ujco, iBJ’.C”, where {BJ'»”} is a countable union
' J€EOK,;

of disjoint bricks. If oy ; is finite, we set Gt = U;-';’ilB;-c’i, where [y ;
equals the number of bricks in ok,. If ok is infinite, since m, (HF) <

My (AF) + 2527F <my (B) + 5527F < o0, we can choose li; such that
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mn (U4, +1B5") < ghr27F. Set GF = Ut B Then,

_2_240.

My, (GfAAf) <my (Hlk \Af) +mn (U‘?ilk,i‘l'lB;?’i) < k2k

Set

21 -1
= Z 2k XGk Z Z 2’0 XBk i
- =1 j=1
so that ¢, is a step function and ¢, (z) = fx (z) for all z ¢ U¥2] (GFAAF).
Further,

k2% K2k
k2* k k k k — —k+1
m, (U2 (GFa4E)) < ;mn (GEAAY) 27;2%2 = gk+1,

We now show that ¢, — f ae. Let Fi = {x: |p, (2) — f (z)| > 27%}.
Then, Fy, C U2, (GFAAF) so that m, (Fy) <2751 If o ¢ UL Fy, then
lop (z) — f (x)l < 27 for all k > m so that ¢, (z) — f (z). Consequently,
if x ¢ N Fy, then ¢, (z) — f(z). Finally, since

k—m

M (Miee1 Unm Fi) < min (UR2 1 Fie)

< i mn (Fi) < i g—k+1 _ g-m+2

k=m k=m

for all m, mp (NP U, Fx) = 0 and {¢, }ro, converges to f a.e.. By
construction, [¢, ()] < M for all z € E and k € N.

Now, suppose that f is a measurable function defined on a measurable
set E. Let Iy be the interval in R™ that is the n-fold product of the interval
[-N,N]. Set Exy = EN Iy and define fx by

N if reEyand f(z) >N

f(x)ifzre Exyand |f(z)] < N

Iw (=) = ~N ifz€Eyand f(z) < -N
0 if z ¢ En

)

Note that £ = U§_;En, EN C Eny1, m(EN) < 00, fy is bounded on
En and {fy}%., converges to f for all z € E. By the previous part
of the proof, there is a step function ¢y, supported in Ey, and a set
Fn C En such that oy (z) — fv (z)] < 27V for all z € Ey \ Fy and
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mp (Fy) < 27+, We claim that for each fixed K, {py}%_, converges
to f on Ex except for a set of measure 0. For, if that were true, then

mn({z € E: oy (z) = f(2)}) < Zmn ({z € Ex 1oy (z) » f(2)}) =
K=1
and {¢y} o, converges to f a.e. in E.
So, fix K and argue as in the previous part. Set Zx = NSy_; UF-pr Fn.
Since

oo [ o]
Mn (Zk) < mn (URop ) € Y ma(Fr) < Y 27V =272
N=M N=M

mn (Zg) = 0. It remains to show that ¢y (z) — f(z) for all z ¢ Zgk.

If M > K and ¢ ¢ UX_,,Fy, then |py (z) — fnv (z)] < 27V for all
N > M sothat ¢y (z)—fn (z) — 0. Consequently, if z ¢ NS U _p Fv,
then ¢y (z) — fn(z) — 0. If [f(2)] < oo, then fy(z) = f(x) for all
sufficiently large N and ¢y (z) — f(z); if |f (z)] = oo, then {py ()} Ne;
tends to oo (or —o0) so that ¢ (z) — f(x). This completes the proof of
the proposition. ]

3.5 Lebesgue integral

Lebesgue’s descriptive definition of the integral led, in a very natural way,
to the development of the Lebesgue measure of sets in R™ and, via limits of
simple functions, to a study of measurable functions. If f is a step function
(onR), f(z) = Zi;l aix;, (x) where the I;’s are pairwise disjoint intervals,
then by using properties (1), (2), (3) and (5) of Lebesgue’s descriptive
definition, we see

k k
/Rf (@yde =Y al (I) =3 am (L),
i=1 =1

as long as £(I;) < oo for all 4. This equality will guide our definition of the
Lebesgue integral.

Recall that a simple function ¢ takes on a finite number of distinct
nonzero values ai,as,...,ax. If A; = {x:¢(z)=aq;}, then ¢ has the
canonical form

k
= ZaiXAi (z).
i=1
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Definition 3.68 Let ¢ : R® — R be a nonnegative, simple function with
canonical form ZLI aiX 4, (z). We define the Lebesgue integral of ¢ to be

/ / d:zc—/]R () dz—Za,mn

i=1
If E e M,, set

/Eso=fEso<x>dz=/xE(x)so(m>dx

Since XgXa, = XEna:» We see that [, = S aimn (AiNE).

Remark 3.69  For the remainder of this chapter, we will use [ to denote
the Lebesgue integral.

The definition of the Lebesgue integral of a simple function is indepen-
dent of its representation.

Proposition 3.70  Let ¢ (z) = Y 12 bjXF, (z) where the sets F; are pair-
wise disjoint measurable sets. Then,

/w:;bjmnwj).

Proof. Let Zf_ aixa, (z) be the canonical form of ¢. Then, A; =

Ub;=a; Fy, and 35, _ . min (F) = mn (Ai). Thus,
m
/ Zazmn Zaz > ma(Fy) = bima (Fy)
bi=a. j=1
as we wished to show. O

The next result collects some of the basic properties of the Lebesgue
integral of nonnegative, simple functions.

Proposition 3.71 Let ¢ and ¢ be nonnegative, simple functions and
a > 0. Then,

(1) [foap=afe;

(2) Je=0;

(3) [(o+d)= [+ [4

(4) The mapping ® : Myn — [0,00] defined by ® (E) = [ ¢ is countably
additive.
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Proof. Let ¢(z) = Zle aix, (z) and ¥ (z) = 372, bjxp, (z) be the
canonical forms of ¢ and . To prove (1), since ap (z) = 22;1 a;X 4, (),

k k
/ago = Z aa;m, (A;) = aZaimn (A;) = a/-go.
i=1 i=1

To prove (2), we need only note that since ¢ is nonnegative, a; > 0 for
all i, so that

&
/go = Zaimn (A;) = 0.
i=1
For (3), weset By = A;NBjforl <i<kandl <j<m Let
§={(7):1<i<k1<j<m} Then, ¢(2) =3 )esXp,, (x) and
¥ (2) = (i jyes biXE,, (). By the proposition above,

[@tn= 3 @+b)m ()

(i.5)es
= > ama(Eg)+ Y bmy, (Eij)=/30+/1/)-
(2,5)€S (i,5)€S

Finally, to prove (4), let {E;}
pairwise disjoint sets. Thus,

jeo C M., be a countable collection of

k
¢ (UjGGEj) = / Y= Zaimn (Az N UjED'Ej)

UjeaE; i=1
k
= ZaiZmn (AiﬂEj)
i=1 j€a
k
= ZZaimn (A;NE;)
J€o i=1
= Z/ =) 2(E;).
j€o ¥ Ei j€o O

Applying part (2) to the function 1 — ¢, we get the following corollary.

Corollary 3.72 Let ¢ and ¢ be nonnegative, simple functions. If p < 2,
then [ < [.
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In fact, it is only necessary that ¢ < 1 except on a null set, as we will
discuss below.
Suppose ¢ is a nonnegative, simple function on R™. Then

k
@(@) = Zaimn (A, Nng)=0.

Since @ is countably additive, we see

Corollary 3.78 If ¢ is a nonnegative, simple function on R", then ® :
M, — [0,0] defined by ® (E) = fEcp 18 a measure on M,,.

Using simple functions, we extend the definition of the Lebesgue integral
to nonnegative, measurable functions.

Definition 3.74 Let £ € M, and f : E — R be nonnegative and
measurable. Define the Lebesgue integral of f over E by

/f=/f(m)dx=sup{/go:OScpSfandgoissimple}. (3.3)
E E E

If A is a measurable subset of E, we define

[i= ] 1@d= [ xa@ e

Remark 3.75 Equation (3.3) is analogous to a “lower integral”. Since
we are considering functions which may be unbounded, there may be no
simple functions that dominate f, so it would then be impossible to define an
“upper integral”. However, even for bounded functions, it is not necessary
to compare upper and lower integrals. This is pointed out in Proposition
3.102 after we have developed some of the basic properties of the Lebesgue
integral.

The next result shows that the Lebesgue integral is a positive operator
on nonnegative measurable functions.

Proposition 3.76 Let E € M,, and f,h : E — R be nonnegative and
measurable and a > 0. Then,

(1) IFh < f, then [ h < [o fi
(2) IfO< f, then 0 < [, f;
(3) fEafzafEf-
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Proof. To prove (1), note that if ¢ < h then ¢ < f, so the Lebesgue
integral of f is the supremum over a bigger set. Setting A = 0 in (1) proves
(2). For (3), note first that if a = 0, then af = 0 and by our convention

that 0- 00 =0,
/afz/Od.’L'=0=a/ /-
E E E

If & > 0, we see that if ¢ is a simple function and 0 < ¢ < f, then ap is a
simple function and 0 < ap < af. Further, if ¢ is a simple function and
0 <9 < of, then L4 simple function and 0 < L4 < f. Thus

/af=sup{/1/):0§1/}§afand¢issimple}
E E
1 1 ..
:sup{/a(-—w):og—dzgfand ——z/zlssunple}
E o ! o
:sup{/ a<p:0_<_<p§fandgoissimple}
E

-—-asup{/go:OﬁcpSfandgaissimple}:a/f‘
E E O

Note that (2) is the statement that the Lebesgue integral is a positive
operator on nonnegative measurable functions

We now come to our first convergence theorem for the Lebesgue integral,
the Monotone Convergence Theorem.

Theorem 3.77 (Monotone Convergence Theorem) Let E € M, and
{fr}ie, be an increasing sequence of nonnegative, measurable functions
defined on E. Set f(z) = llimg_,o0 fi (x). Then,

szkliriéfk'

Proof. Note first that f is nonnegative and measurable since it is a limit
of measurable functions. Since 0 < fi, < frx11 < f, by the previous propo-
sition, { [ fk}:; is a monotonic sequence and limy, [, fx < 5 f.

To prove the reverse inequality, fix 0 < & < 1 and let ¢ be a simple
function with 0 < ¢ < f. Set E; = {z € E: f,(x) 2 ap(x)}. Since
fr (z) increases to f (z) pointwise, it follows that Fy C Ey4q for all & and

E = U, Ey. Thus,
/ fr = fe > a/ @.
E Ex Ey
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By part (4) of Proposition 3.71, ® (E) = [, ¢ defines a measure, so by
Proposition 3.34,

a/(p=alim ¢ < lim Sk
E k— o0 Ek k—oo E

If we let @ — 1, we see that limy [ fx > [ ». Since this is true for all
simple functions p < f, we get

Jm [ 52 g

which completes the proof. O

Suppose that f and g are nonnegative and measurable. By Theorem
3.62, there are sequences of nonnegative, simple functions {¢;};-, and
{¥,};2, which increase to f and g, respectively. Thus, 0 < ¢, + ¥, and
{p; + ¥;}ie, increases to f + g. By Proposition 3.71,

/E(‘Pi+¢¢)=/E‘Pi+/E¢¢,

so by the Monotone Convergence Theorem,

[u+a=[1+]s

Thus, we see that the Lebesgue integral is linear when restricted to non-
negative, measurable functions.

Using this result, we can easily show that the Lebesgue integral is count-
ably additive.

Corollary 3.78 Let E € My, and {fi}r., be a sequence of nonnegative,
measurable functions defined on E. Then,

Lgfk=g/;fk-

Proof. The proof is almost done. We use linearity and induction to show
that

Aih=géh

k=1

for all N € N. Since all the functions are nonnegative, we can apply the
Monotone Convergence Theorem to complete the proof. O
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In fact, this corollary is equivalent to the Monotone Convergence Theorem.
See Exercise 3.36.

We saw above that the Lebesgue integral of a nonnegative, simple func-
tion defines a measure. The same is true for all nonnegative, measurable
functions. This will follow from the next two results.

Proposition 3.79 Let f be a nonnegative, measurable function on R™.
Then, the mapping ® : M,, — R* defined by ®(E) = [, f is countadly
additive.

Proof. Pick a sequence of nonnegative simple functions {¢}e., that
increases to f. By the Monotone Convergence Theorem, [,y — [5f.
Suppose {Ej},c, is a countable collection of pairwise disjoint measurable
sets and E = UjeoE;. By part (4) of Proposition 3.71 and Exercise 3.3,

f=1lim | ¢, = lim /(p: lim/<p: /f,
/l:: k—oo g k k:—vooz E; k jezakv—)oo E; k Z E; 0

j€o j€o

Proposition 3.80 Let E € M, and f be a nonnegative, measurable
function on R™. Then, [, f =0 if, and only if, f =0 a.e. in E.

Proof. Suppose f(z) = Ele a;x 4, () is simple function. If f =0 a.e.
in E and a; > 0, then m, (A;NE) = 0. Thus, [ f = 0. For general,
nonnegative functions f, the result follows by approximating f by simple
functions. Thus, if f =0 a.e. in E, then [, f=0.

Now, suppose that [, f = 0. Set A, = {z € E: f(z) > }}, so that
A={z€eE: f(z) >0} =UX, A If my(A) > 0, then m, (4;) > 0 for
some k which implies

/fz fz%mn(Akpo.
FE A

This contradiction shows that m, (4) =0 and f =0 a.e. in E. O

Consequently, ® (§) = f, f = 0 and the Lebesgue integral of a nonneg-
ative, measurable function defines a measure.

Remark 3.81 The previous proof uses a very important inequality in
analysis, know as Tchebyshev’s inequality after P. L. Tchebyshev (1821-
1894). Suppose that [ is a nonnegative, measurable function on a measur-
able set E. Let A > 0. Then, AX(zep:fx)>a} (%) < f(z) for allz € E.
Thus,

dmn ({z € E: f(x) > A}) = /E)\X(zeE:f(m)>A} (z)dz < /Ef,
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from which we get Tchebysheuv’s inequality,

mn({er:f(x>>A}>s§Lf.

Example 3.82 Let A € M,, and set f (z) = x4 (). Then, the measure
@ defined by ® (E) = [pxa = ma (AN E) is the restriction of Lebesgue
measure m, to A.

For a general measurable function, we can use the Lebesgue integrals
of f* and f~ to define the Lebesgue integral of f, whenever we can make
sense of their difference.

Definition 3.83 Let F € M,, and f be a measurable function on BE. We
say that f has a Lebesgue integral over E if at least one of [, f* and [, f~
is finite and in this case we define the Lebesgue integral of f over £ to be

Jor= oo

We say that f is Lebesgue integrable over E if the Lebesgue integral of f
over F exists and is finite.

Remark 3.84 If f has a Lebesgue integral over E, then [ g [ may equal
+oo. In order for f to be Lebesgue integrable, the integral must exist and
be finite.

Note that if ¢ is a simple function, then ¢ has a Lebesgue integral
over E if, and only if, (at least) one of the sets {t € E: ¢(t) > 0} and
{t € E: ¢(t) < 0} has finite measure. When this is the case and ¢ (z) =

k
Ei:l aiXAi (z)i

k
/ p= Zaimn(EﬂAi).
B i=1

Further, ¢ is Lebesgue integrable over E if, and only if, m, (EN A4;) < 00
foralli=1,...,k.

An important consequence of Tchebyshev’s inequality is that a Lebesgue
integrable function is finite almost everywhere.

Proposition 3.85 Let E € M, and f be a Lebesgue integrable function
on E. Then,

(1) for all a > 0, the set E, = {t € E : |f (t)} > a} has finite measure;
(2) f is finite valued a.e. in E.
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Proof. By hypothesis, both f* and f~ are Lebesgue integrable. Fix
a > (0. We see that

Eo={tecE:ff(t)>a}u{teE: f (t)>a},

so it is enough to prove (1) for nonnegative functions f. Then, by Tcheby-
shev’s inequality,

m,({z€E: f(z)>a}) < /f<oo

To show the second part, it is, again, enough to show that f* and f~
are finite valued a.e. in E, so we assume that f is nonnegative. Since

{teE:f(t)=00} C{teE: f(t)>a}

for all a > 0,

(€ E: f(t)=o00)) Smn({t€E: f(t) > a}) < /f,

so letting o tend to co shows that mp{({t € E: f(t) =o00}) =0 and f is
finite a.e. in E. O

For Lebesgue integrable functions, we can get an improvement of the
Monotone Convergence Theorem. See Exercise 3.37.

Corollary 3.86 Let E € M, and { fk}:’:l be an increasing sequence
of nonnegative, Lebesgue integrable functions defined on E. Set f(z) =
limg—co fi (x). Then, f is Lebesque integrable if, and only if, sup, [ fx <
co. In this case, f is finite a.e..

Example 3.87 In Example 3.3, we defined a sequence of simple functions
that increase pointwise to the Dirichlet function on [0,1]. Since each fi is
Lebesgue integrable, the Monotone Convergence Theorem implies that the
Dirichlet function is Lebesgue integrable with integral 0. Note that each fi
is also Riemann integrable while the limit function is not, which shows that
the Riemann integral does not satisfy the Monotone Convergence Theorem.

Using the relationships between f, |f|, fT and f~, we get the follow-
ing result which shows that Lebesgue integrable functions are absolutely
integrable.

Proposition 3.88 Let F € M, and f : E — R* be measurable. Then, f
is Lebesgue integrable over E if, and only if | f| is Lebesgue integrable over
E. In this case, | [ f| < [z 1.
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Proof. 1If f is Lebesgue integrable, then both [, f* and i f~ are finite,
sothat [ |f| = [ f*+ [ f~ < oo and |f| is Lebesgue integrable. On the
other hand, if |f| is Lebesgue integrable, by the positivity of the integral
and the pointwise inequalities f* < |f| and f~ < |f|, the integrals [ f*
and [ f~ are finite, and so is [ f. Finally,

fl=| [ - f‘ L [r=[uvm= [

and the proof is complete.

The null sets, that is, sets of measure 0, play an important role in
integration theory. The next few results examine some of the properties of
null sets.

Proposition 3.89 Suppose that E € M, and f : E — R* is measurable.
If my (E) =0, then f is Lebesque integrable over E and fE f=0.

Proof, Since 0= f = f* = f~ ae. in E, [, ft = [, f~ =0 and the
result follows. O

On the other hand, for general measurable functions, it is not enough
to assume that fE f =0 to derive m,, (E) =0, or that f =0 a.e. in F.

Example 3.90 Let f:[-1,1] — R be defined by f(z) = Ty for z # 0.
Then, f[_l yf =0while f#0ae in [-1,1] and m ([-1,1]) # 0.

However, if the Lebesgue integral of f is 0 over enough subsets of E,
then it follows that f =0 a.e. in E.

Proposition 3.91 Suppose that f has o Lebesgque integral over E. If
fA f =0 for all measurable sets A C E, then f =0 a.e. in E.

Proof.  Since [, f* = [, cni@mysop f 24 [4 f™ = [untzem s@)<oy I

we see that [, f* = 0 and [, f~ = 0 for all measurable subsets A C
E. Thus, we may assume that f is nonnegative. As above, set Ax =
{1: eE: f(z } Then, by Tchebyshev’s inequality,

Ynan < [ r=o,
k Ax

so that my,, (Ax) = 0. Thus, m, ({z € E: f(z) > 0}) < 3 po ,mn(Ax) =0
which implies f =0 a.e. in E. O
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If f is measurable, then [ iz f = 0 for every set E of measure 0. When
f is Lebesgue integrable, this this happens in a continuous way.

Theorem 3.92 Let E € M, and f : E — R* be Lebesgue integrable.
Then,

lim / =0,
m.(A)—0 J 4 f

where the limit is taken over measurable sets A C E.

Proof. Since | f el | < | f| for Lebesgue integrable functions f, it is
enough to prove the result for f > 0. Set fi (z) = min{f(z),k} so that
fr > 0 and {fx}re; increases to f. By the Monotone Convergence Theo-

rem,
lim / fi = / f.
k—o0 E E

Fix € > 0 and choose k such that [, (f - fi) < 5. Fix4,0< 6 < 5. If
my (A) < 4, then

/f</(f f) /fk< bhS =

as we wished to show. 0O

Remark 3.93 If f > 0 is Lebesgue integrable, then ® (E) = [, f defines
a measure. This theorem says that given any € > 0, there is a 6 > 0 so that
if my (E) < 8 then ® (E) < €. When this condition is satisfied, we say that
the measure ® is absolutely continuous with respect to mny,.

If f and g areequal a.e. in E, then f—g=0ae. in Eso [, (f —g) =0.
When one of the functions is Lebesgue integrable, so is the other and their
integrals are equal.

Proposition 3.94 Suppose that E € M,, and f,g: E — R* are measur-
able.

(1) If If| < g a.e. in E and g is Lebesgue integrable over E, then f is
Lebesgue integrable over E.

(2) If f is Lebesgue integrable over E and f = g a.e. in E, then g is
Lebesgue integrable over E and [ f = [pg.
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Proof. To prove (1), set Z = {z € E: f(z) > g(z)} and note that
my (Z) = 0 so that [,|f| = [, ¢ = 0. Since |f| and g are nonnegative
and measurable functions,

/E|f|=/E\Z1f|+/Z|f|=/E\Z|f|s/E\Zg=/E\Zg+/Zg=/Eg.

Thus, |f| is Lebesgue integrable over E and, consequently, f is Lebesgue
integrable over E.

For the second part, note that by hypothesis, ft = gt a.e. in E and
f~ =g ae. in E and both f* and f~ are Lebesgue integrable. By part
(1), since g* < f* and g~ < f~ ae. in E, gt and g~ are Lebesgue
integrable over E. Thus, g is Lebesgue integrable over E. Moreover,
Jg9t < Jgftand [;97 < [, f~. Reversing the roles of f and g, we
conclude that [ g% = [; f* and [ 9~ = [, f~. It follows that

I e L 2T A

Suppose that h < f < g a.e. in E. Then, |f| < |g| + |h|. If g and h are
Lebesgue integrable over E, then so is |g|+|h|. Thus, we have the following
corollary.

Corollary 3.95 Suppose that E € M, and f,g,h: E — R* are measur-
able. If h < f < g a.e. in E and g and h are Lebesgue integrable over E,
then f is integrable over E.

The sum of measurable functions is measurable if the sum is defined but,
since that is not always the case, in general we cannot integrate the sum of
measurable functions. However, if a function is Lebesgue integrable, then
we have seen that it is finite almost everywhere. Thus, the sum of Lebesgue
integrable functions is defined almost everywhere and, since sets of measure
0 do not effect the value of the Lebesgue integral, we may assume that the
Lebesgue integral of the sum is well defined. The next result shows that
the Lebesgue integral is linear for Lebesgue integrable functions.

Theorem 3.96 (Linearity) Suppose f and g are Lebesque integrable over
a measurable set E. Then, for all o, 8 € R, af + Bg is Lebesgque integrable

and
A(af+ﬁg)=a/Ef+6/Eg-
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Proof. We have already proved this result when f and g are nonnegative
and ,8 > 0. If @ < 0, then (ozf)+ = —af” and (af)” = —afT, so that

[or=[ @ = [ @n
Sl el )l

Thus, we only need consider the sum of Lebesgue integrable functions.
If f and g are nonnegative and h = f — g, then ht = f and A~ = g so

that
[E(f—g>=Lh=[Eh+—/Eh*=/Ef—ng,

since h is defined and finite almost everywhere. Consequently, for Lebesgue
integrable functions f and g,

/E(f+g)=/E(f+~f“+g+—g“)
~ [t - = [ (e - [ ()

ST K R Ry KA

since all the integrals are finite. O

Suppose f and g are Lebesgue integrable functions over a measurable
set F. It follows that f — g and, hence, |f — g| are Lebesgue integrable.
Consequently, fVg=3(f+g+|f—gl)and fAg=5(f+9—|f—g
are Lebesgue integrable over E. Thus, analogous to the set of Riemann
integrable functions on an interval [a,b], the set of Lebesgue integrable
functions on a measurable set F is a vector lattice. See Theorem 2.23 and
the following paragraph.

As we have seen, the Monotone Convergence Theorem is a very useful
tool in analysis. However, in many situations, the monotonicity condi-
tion is not satisfied by a convergent sequence and other conditions which
guarantee the exchange of the limit and the integral are desirable. We next
consider Lebesgue’s Dominated Convergence Theorem. This result replaces
the monotonicity condition of the Monotone Convergence Theorem by the
requirement that the convergent sequence of functions be bounded by a
Lebesgue integrable function. As a corollary of the Dominated Conver-
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gence Theorem, we will get the Bounded Convergence Theorem. We begin
with a result due to P. Fatou (1878-1929), known a Fatou’s Lemma.

Lemma 3.97 (Fatou’s Lemma) Suppose that E € M, and fi, : E — R*
s nonnegative and measurable for all k. Then,

/ liminf f, < liminf | fx.
E k—oo k- Jg

Proof. Set hy (x) = inf;>, f; (), so that hy is nonnegative and measur-
able, and {hy},-, increases to 1'1krn inf f. By the Monotone Convergence

Theorem,

/liminff,c = lim hi.
g k—oo k—w /g

Since hy < fr forallz € E,

lim hk < hmlnf/ fes

k—o00
and the proof is complete. a

Suppose that g is a Lebesgue integrable function and each f; is a mea-
surable function such that fy > gfora.e. x € Fand all k ¢ N. Then fr—g
is a nonnegative function and we can apply Fatou’s Lemma to get that

/Iiminffk—/g=/liminf(flc—9)
E k—oo E E k—oo

< liminf (fk—g)=liminf/ fk_/g
E k—oo Jg E

k—oo
Since ¢ is Lebesgue integrable, we have

Corollary 3.98 Suppose that E € M,, and fx,g: E — R* are measur-
able and g < fi, for all k. If g is Lebesgue integrable over E, then,

/ liminffk < llmll’lf/ fk.
E k—oo k—oo Jp

There is also a result dual to Corollary 3.98. See Exercise 3.38.
Corollary 3.99 Suppose that E € M,, and fr,g9 : E — R* are measur-
able and fi, < g for all k. If g is Lebesgue integrable over E, then,

/ limsup fx > limsup/ fk-
E E

k—ro0 k—o0
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We can now prove Lebesgue’s Dominated Convergence Theorem.

Theorem 3.100 (Dominated Convergence Theorem) Let {fi}e, be a
sequence of measurable functions defined on a measurable set E. Suppose
that {fi}ee; converges to f pointwise almost everywhere and there is a
Lebesgue integrable function g such that |fi (z)| < g(z) for allk and almost
every x € E. Then, f is Lebesgue integrable and

/Eleim/Efk.

lim/Eff—fk|=0-

Proof. By hypothesis, —g < fr < g a.e., so Corollaries 3.98 and 3.99
. oo . .
apply. Since {fx}r.; converges to f pointwise almost everywhere,

limsup/ fr < | limsup fx =/ f=/ lim inf fj, sliminf/ fr.
k—oo JE E k—oo E E k—oo k—oo Jg

Thus, [ f =lm [, fi.

To complete the proof, note that |f — fi| converges to 0 pointwise a.e.
and |f (z) — fx (z)| < 2g(z) for all k and almost every z. Thus, by the first
part of the theorem, lim = |f — fe| =0 and the proof is complete. O

Moreover,

For a more traditional proof of the Dominated Convergence Theorem,
see [Ro, Pages 91-92].

If the measure of F is finite, then constant functions are Lebesgue in-
tegrable over F. From the Dominated Convergence Theorem we get the
Bounded Convergence Theorem.

Corollary 3.101  (Bounded Convergence Theorem) Let { fr}r., be a se-
quence of measurable functions on a set E of finite measure. Suppose there
is a number M so that |fi (2)] < M for all k and for almost all x € E. If
f(z) =limyoo fr () almost everywhere, then

[t

We defined the Lebesgue integral by approximating nonnegative, mea-
surable functions from below by simple functions. At the time, we men-
tioned that for bounded functions we could also consider approximation
from above by simple functions. We now show that the two constructions
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lead to the same value for the integral. Thus, we do not need to show
that an upper integral equals a lower integral to conclude that a function
is Lebesgue integrable.

Proposition 3.102 Let E be a measurable set with finite measure and
f: E— R* be bounded. Then, f is measurable on E if, and only if,

sup{/cp:gasf,goissimple}=inf{/¢:f§z/),'¢issimple}.
E E (3.4)

Proof. Suppose that f is measurable. Choose | and L such that [ <
f(z)<Lforallz € E. Let € > 0 and P = {yo0,¥1,-.-,¥m} be a partition
of [{,L] with mesh p(P) < e. Set E; = {z€ E:y;—1 < f(x) <l;}, for
i=1,...,m, and define simple functions ¢ and ¥ by

p(z) = Zli—lei (z) and ¢ (z) = EliXEi (z).
=1 i=1

Then, ¢ < f < and

=1

/E W =)= 3 (i~ i) e (B3) < emy (E),

which implies (3.4).
On the other hand, suppose (3.4) holds. Then, there exist simple func-
tions ¢, and ¥, such that ¢, < f <1, on E and [ (¥, — ¢;) < 1. Define

¢ and 9 by ¢ (z) = supy, ¢, (z) and ¢ (z) = infg ¢, (x). Then, ¢ and ¢ are
measurable and ¢ < f < ¢ on E. Further,

Jw-o< [ w-e)<g

for all k, so that [ (¢ —¢) = 0. Thus, ¥ — ¢ = 0 a.e. in E. Therefore,
Y= f = ae in E and it follows that f is measurable. ]

3.6 Riemann and Lebesgue integrals

The Dirichlet function, which is 0 on the irrationals, provides an example
of a function that is Lebesgue integrable but is not Riemann integrable
on any interval. Thus, Lebesgue integrability does not imply Riemann
integrability. The next result shows that the Lebesgue integral is a proper
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extension of the Riemann integral. In the proof below, we use R [ for the
Riemann integral.

Theorem 3.103 Let f : [a,b] — R be Riemann integrable. Then, f is
Lebesgue integrable and the two integrals are equal.

Proof. Let {Qx},-, be a sequence of partitions of [a,b] such that:

(2) hmk—»oo f7 Qk f f;

(3) limg—oo U (f, Q) f f

If we then set P, = U}“:le, then {Pi}re; is a sequence of nested
partitions, Py C Py41, that satisfy conditions (1), (2), and (3).

Fix k and suppose Pr = {zo,%1,...,%;}. Set m; =
inf {f (t): zi_y <t <z} and M; = sup {f (t) : zi_) <t < 2;}, and define
simple functions {; and u by

i=1
lk (IL‘) = Zmixffvi—lyzi) (x) + ij[x]-_l,mj] (.’L‘)

i=1

and
:E) - Z MiX[zivlazi) (.’E) + ij[mj_l,wj] (1’) )

so that f[ B lp = L(f,Px) and fa b Uk = U (f,Px). Since the partitions
are nested, it follows that [, < f < uy and the sequence {lx},., increases
and {ug}y., decreases. Define | and u by I(z) = limg lx (z) and u(z) =
limy, ug (z). By the Monotone Convergence Theorem,

/ l= lim Iy = lim L(f,Py)= / f
[a,b] k—o0 (a,8] k—oo

—b

/ u = lim ug = lim U (f,Px) = / f
[a!b] a

k—o0 [a,b] k—oco

and

—b
Since f is Riemann integrable, [ Z f=[,f, so that

/ | = / U
[a,b] [a,8]
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Thus, because | < f < u,! = f = v a.e. in [a,b]. Hence, f is Lebesgue

integrable over [a, b] and
b
[ s==[1
[a,b] a

There is no direct comparison of the Lebesgue and Cauchy-Riemann
integrals. Again, the Dirichlet function is an example of a Lebesgue in-
tegrable function that is not Cauchy-Riemann integrable. The function
f(x)= ﬂm‘—’— of Example 2.49 is Cauchy-Riemann integrable but, as shown
in that example, is not absolutely integrable. Thus, it is not Lebesgue
integrable.

O

3.7 Mikusinski’s characterization of the Lebesgue integral

We next give a characterization of the Lebesgue integral due to J. Mikusin-
ski (see [Mil]; see also [MacN)). The characterization is of interest because
it involves no mention of Lebesgue measure or the measurability of func-
tions. The characterization will be utilized in the next section where we
discuss Fubini’s Theorem on the equality of integrals on R™ for n > 2 and
iterated integrals.

We saw in Theorem 3.67 that a measurable function can be approxi-
mated a.e. by step functions on a set of finite measure. When the function
is Lebesgue integrable, we can say more, that the Lebesgue integrals of the
step functions converge in a very strong sense. In the following proof, we
refer to the notation used in the proof of Theorem 3.67.

Theorem 3.104 Let f: R™ — R* be Lebesgue integrable. Then, there is
a sequence of step functions {¢, Yo, that converges to f a.e. such that

dm [1o,- 110

Proof. By considering ft and f~ separately, we may assume that f > 0.
Also, f is finite valued a.e. since f is Lebesgue integrable. Without loss of
generality, we may assume that f is finite valued on all of R™. Let

By={zeR": f(z) < kand z; € [-k,k),i=1,...,n}.

Then, the sets By are measurable with finite measure and increase to R™.
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Using the notation of Theorem 3.67, we define the function f; and the
sets A¥, HF and G} relative to the function fx . Then, the support of
fr is contained in By and {fx};, increases to f a.e. in R™. Define step
functions ¢, by

K2k

0e (@) = Y 2 xor (9)

and set Fy = {z€By:lp.(z)—flz)]>27%} Since F, C
Ufik (GEAAF), we see that m,, (Fi) < 27%+!. Since

k2"

fi (@) = e @ = 3 o (s (0~ xex (2)).

i=1

it follows that

21 21
/Ifk—wkl SZ 5 /|XA§—XG§ < /xGyAAf

= i=1

kzk i

_Z Qk » (GEAAR) < Z 57 k2k2~’c

2 k
29k -k _
SEP T =
so that limg—eo [ |fx — @il = 0.
Set Z = Ngy_q UgY,, Fi. Since Z C UR,,, F, for all m, we see that

mn(Z Zmn(Fk: ZQL—

so that m, (Z) = 0. We claim that {¢, (z)};, converges to f (z) for
almost every z ¢ Z. For, suppose that z ¢ Z and f (x) is finite. Then,
there is an m such that ¢ ¢ Ug—mFr and a j such that z € B;. Set
N =max {m,j}. Then, for k > N, x ¢ F; and z € By, which implies that
o, () — f ()] < 3. Thus, {, ()} 4, converges to f (z) for almost every
z ¢ Z. By the Monotone Convergence Theorem, limy_, oo J1fe = f1=0,s0
that

Jm [ o= f1< Jim [l =+ tim [15 - 1=

as we wished to show. O
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To prove the Mikusinski characterization, we will use the following two
lemmas.

Lemma 3.105 Let E be a null set and € > 0. Then, there is a sequence
of bricks {Bi}pe, such that 3.7 mn (Bi) < 0o and Y oo, xp, (t) = o0
forallt € E.

Thus, the sum of the measures of the bricks is finite but each t € E belongs
to infinitely many of the bricks.

Proof. Since m,, (E) = 0, for each ¢ € N, there is a countable collection
of open intervals {I;; : 7 € 0;} covering E such that Ejea,- my (L) < /2%
Let K;; be the smallest brick containing [I;;, so that E C Ujgs, K;i; and
Yo Mn (Kij) < €/2¢ for each i. Arrange the doubly-indexed sequence
{Kij}iEN,jeai into a sequence {By}y. . Since t € E C Ujeq, Kij for all 4, ¢
belongs to infinitely many bricks By so that ) . x5, (t) = co. Finally,

oo o0 oo p
;mn(Bk)=szn(I¢j) <;§=€-

i=1 j€o;

O

Suppose that a series of functions Z,‘f:l %, converges to a function f
pointwise (almost everywhere). If the series converges absolutely, that is, if
S 1Yy (z)] is finite for almost every z, we say that the series is absolutely
convergent to f a.e..

Lemma 3.106 Suppose f : R® — R* is Lebesgue integrable. Then, there
exists a sequence of step functions {1 }ro, such that the series Y oo, ¥y
converges to f absolutely a.e. and

S el < oo

Proof. By Theorem 3.104, there is a sequence of step functions {¢} }re;
which converges to f a.e. and [ |, — f| — 0. Thus, there is a subsequence

{Sokj }j=1 of {(pk}zc;l such that f ’S%H — Pk, < 2_11" Set ¢j = Spk:j A Z Ty

for j > 1, where we define ¢, = 0. Then, 25{__1 $; = P — f a6, or
S opoq ¥ = f ae.. Since

o0 oo 1
> [l < [lon]+ 3 5 <
j=1 =2
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by Corollary 3.78, E;‘;l |1/)j| is Lebesgue integrable and hence
Z;-";l |¢j (a:)l converges in R for almost all x € R™ Thus, the series
E;;’l ¥, is absolutely convergent to f a.e. 0

Mikusinski characterized Lebesgue integrable functions as absolutely
convergent series of step functions.

Theorem 3.107 Let f : R* — R*. Then, f is Lebesgue integrable if,
and only if, there is a sequence {p; }ro, of step functions satisfying:

(1) 51 S lpw) < 005
(2) if 3hi, lox (z)| < 0o then f(z) = 02, ¢y (2).

In either case,
/ f= Z / Pr-
k=1

Proof. Suppose first that such a sequence of functions exists. By Corol-
lary 3.78, 3222, ;| is Lebesgue integrable and the series 372, |¢; ()|
converges in R for almost all z € R™. By (2), f(z) = Y re; & (z) at such
points and f, the almost everywhere limit of a sequence of measurable func-
tions, is measurable. Since |f| < E;f’__l Ig0j| a.e., the Dominated Conver-
gence Theorem implies that f is Lebesgue integrable and [ f = Y7o, [ .

Now, suppose that f is Lebesgue integrable. Choose {t } 5., by Lemma
3.106 and let E be the null set of points at which >y |¥ (z)| diverges.
Let {Bk}r., be the bricks corresponding to E in Lemma 3.105. Define a
sequence of step functions {¢, }re; by

¥, ifk=30—2
Yp=19{ xp, ifk=3[-1.
—xg, if k=31
If £ € E, then the series ) .o, ¢k (z)] = oo by construction. If

S re i ler (x)| < oo, then « ¢ E and > ;7 X, is finite and, hence, equal
to 0, so that Y o) ¢k (2) = 3 pe; ¥y (z) = f (z) a.e.. Moreover,

;/Iwkls;4ﬂ|wk|+z§AHXBk
=Z/ |¢k|+22mn(3k)<oo
k=1"R" k=1
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by Lemmas 3.105 and 3.106. O

Remark 3.108 Note that if (1) and (2) hold, then f = 3 07 ¢, a.e.
and f is measurable. Note also that the conditions (1) and (2) contain no
statements involving Lebesgue measure. These conditions can be utilized to
give a development of the Lebesgue integral in R™ which depends only on

properties of step functions and not on a development of Lebesque measure.
For such an ezposition, see [DM], [Mi2], or [MM].

3.8 Fubini’s Theorem

The most efficient way to evaluate integrals in R™ for n > 2 is to calculate
iterated integrals. Theorems which assert the equality of integrals in R
with iterated integrals are often referred to as “Fubini Theorems” after G.
Fubini (1879-1943). In this section, we will use Mikusinski’s characteri-
zation of the Lebesgue integral in R™ to establish a very general form of
Fubini’s Theorem.

For convenience, we will treat the case n = 2; the results remain valid
in R*™ = R" x R™, Suppose f : R? =R x R — R*. We are interested in
equalities of the form

/sz:/R(/mf(w,y)d@ dz,

in which the integral on the left is a Lebesgue integral in R? and the ex-
pression on the right is an iterated integral. If f = x; is the characteristic
function of an interval in R?, then I = I; x I, where I; is an interval in R,
i=1,2. Since

[ =m0 =mymim = (o) ([ )
//x;l ) X1, (¥) dydx—//x; (z,y) dydz,

Fubini’s Theorem holds for characteristic functions of intervals and, by
linearity, it holds for Lebesgue integrable step functions.

If f is a function on R?, we can view f as a function of two real variables,
f(z,y), where z,y € R. For each z € R, define a function f, : R —» R”
by fz(y) = f{z,y). Similarly, for each y € R, we define f¥ : R — R* by
f¥(z) = f(z,y). For the remainder of this section, we make the agreement
that if a function g is defined almost everywhere, then g is defined to be
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equal to 0 on the null set where g fails to be defined. Thus, if {gi}pe; is
a sequence of measurable functions which converges a.e., we may assume
that there exists a measurable function g : R® — R* such that {gx}so,
converges to g a.e. in R™. This situation is encountered several times in
the proof of Fubini’s Theorem, which we now prove.

Theorem 3.109  (Fubini’s Theorem) Let f : R x R — R* be Lebesque
integrable. Then:

(1) fz is Lebesgue integrable in R for almost every z € R;
(2) the function x — [ fo = [3 f (2,y) dy is Lebesgue integrable over R;
(8) the following equality holds:

/Rxmf:/IR(/sz>da"=‘/m/mf(w,y)dydx.

Proof. By Mikusinski’s Theorem, there is a sequence of step functions
{¢k}rey on R X R such that:

L 3 her fIRxR ] < o005
i if 3502 leg (2, 9)] < oo then f (z,9) = 202, @k (%, );
1ii. fIRle f = EZ‘;I fle]R P

By Corollary 3.78, the fact that Fubini’s Theorem holds for step func-
tions, and (i),

/Rg/kl%c (z,y)ldydz:gAA|¢k (2,1)| dydz

-3 /R el <o, (3.5)

which implies that there is a null set E <C R such that
Y re1 Jr lox (2, 9)ldy < oo for all z ¢ E. Now, for z ¢ E, Corollary
3.78 implies

/R;M(fﬂayﬂdy:’;/lek(r,y)ldy<oo

so that Y72, |¢x (2, )| < oo for almost all y € R, where the null set may
depend on z ¢ E. For such a pair (z,y), f(z,y) = Y peq @ (%, 4) by (i)
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<

and, in particular, for z ¢ F, f; = > p; (¢4), a.e.. Since ’ZkN=1 (Pr)s

Yore1 [(#k), |, the Dominated Convergence Theorem implies that f, is

Lebesgue integrable over R, proving (1), and [p fo = Y pey [z ¥ (z,) dy.
If x ¢ F, then

N 00
> [eca| <Y [ ol
k=17R k=17R

and the function on the right hand side of the inequality is Lebesgue in-
tegrable over R by (3.5). By the Dominated Convergence Theorem, (2)
holds, and by (iii), we have

/mxnf B g/mkak - ;:AAW (z,y) dydz
=/R/Ri‘f’k(“?vy)dyW:/R/Rf(x,y)dydm,
k=1

so that (3) holds. |

Fubini’s Theorem could also be stated in terms of f¥. Thus, if f is
Lebesgue integrable on R?, then f¥ is Lebesgue integrable on R for almost
every y € R, the function y — fm f{z,y)dz in Lebesgue integrable over

R, and
o=, (/Rfy> ay= [ [ 1) deay

The main difficulty in applying Fubini’'s Theorem is establishing the
integrability of the function f on R?. However, when f is nonnegative, we
get the equality of the double integral with the iterated integral. Thus,
in this case, f is Lebesgue integrable if either the integral of f or the
iterated integral is finite. Tonelli’s Theorem, named after L. Tonelli (1885-
1946), guarantees the equality of multiple integrals and iterated integrals
for nonnegative functions.

Theorem 3.110 (Tonelli’s Theorem) Let f : RxR — R* be nonnegative
and measurable. Then:

(1) fx is measurable on R for almost every =z ¢ R;

(2) the function z —— fm fo= fm f (z,y) dy is measurable on R;
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(8) the following equality holds:

/mxmf:/]g(/kf’”) dw:/m/kf(x,y)dydx.

Proof. Let I, = [—k, k] x [—k, k] so that U2 I, = R2. For each k, set
fr(zyy) = (max {f (x,y),k}) x;, (z,¥), so that fi is Lebesgue integrable
over R2. By Fubini’s Theorem, ( fx), is Lebesgue integrable for almost all
x and since {(fx),},e, increases to f; on R, f, is measurable for almost
every z. By the Monotone Convergence Theorem

[ (0. - /R feenayt [ 1= [ f@a (36)

By Theorem 3.58, the function z — [; fo = [ f(,y) dy is measurable
and the Monotone Convergence Theorem applied to (3.6) yields

k@g/ﬂﬁh (m,y)dydz=/m/mf(w,y)dydw- (3.7)

By Fubini’s Theorem, [, fx = [ Jg fx (z,9) dydz and since {fi}pe; in-
creases to f pointwise, by the Monotone Convergence Theorem, fle f=
limg fp, fx. Combining this with (3.7) implies

L1=[ |1 @ s

Note that we cannot drop the nonnegativity condition in Tonelli’s The-
orem. See Exercise 3.47. For alternate proofs of the Fubini and Tonelli
Theorems, see [Ro, pages 303-309).

Tonelli’s Theorem can be used to check the integrability of a measurable
function f: R? — R*. If the iterated integral [y [¢ |f (z,y)|dydz is finite,
then | f| and, consequently, f are Lebesgue integrable by Tonelli’'s Theorem
and then, by Fubini's Theorem, ¢, f = [; fi f (z,y) dydz.

As an application of Fubini’s Theorem, we show how the area of
a bounded subset of R? can be calculated as a one-dimensional inte-
gral. If E C R? and z € R, the z-section of E at x is defined to be
E;, = {y:{(z,y) € E}. Similarly, for y € R, the y-section of E at y is
defined to be EY = {z: (z,y) € E}. We have the following elementary
observations.

a
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Proposition 3.111 Let E,E, CR?, a € A, and z € R. Then,

(1) xg (=,9) = xg, (¥);
(2) (E°), = (Ez);
(3) (UaeaEa)y = Unca (Ea)ys

(4) (maeAEa)m = Naeca (Ea)z'

For example, xg (z,¥) = (xg), (¥} = Xg, (v) since all three equal 1 if, and
only if, (z,y) € E.
From this proposition and Tonelli’s Theorem, we have

Theorem 3.112 Let E C R? be measurable. Then,

(1) for almost every x € R, the sections E, are measurable;
(2) the function x — m(E;) is Lebesgue integrable over R;
(8) mg (E) = [pm (E:)dz.

When f is a continuous function on an interval [a,b], we can use this
result to compute the area under the graph of f.

Example 3.113 Let f : [a,] — R be nonnegative and contin-
uous.  Then, the region under the graph of f is the set E =
{(x,y):x €a,b] and 0 <y < f(z)}. By considering the points where
T <a, x>b y<0andy > f(z) separately, one sees that the com-
plement of E is an open set, so that F is closed and hence measurable.
Thus, by the previous theorem, m (E) = fg m (E;) dz. Notice that

o [0, f(@)] if z € [a,b]
Ez—{y.(w,y)GE}—{ 0 ifz¢ad]’

which implies that

b
ms (F) :/ f(z)dz.

This result can be used to compute the area and volume of familiar
regions. See Exercises 3.48 and 3.49.
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3.9 The space of Lebesgue integrable functions

The space of Lebesgue integrable functions possesses a natural distance
function which we will study in this section and use to contrast the Lebesgue
and Riemann integrals. If X is a nonempty set, a semi-metric on X is a
function d : X x X — [0, co) which satisfies for all z,y,z € X :

(1) d(z,y) =d(y,x) [symmetry];
(2) d(z,2) <d(z,y)+d(y,z) [triangle inequality].

A semi-metric d is a metric if
(3) d(z,y) =0if, and only if, z = y.

If d is a (semi-)metric on X, then the pair (X, d) is called a (semi-)metric
space. Standard examples of metrics are the function d(z,y) = |z — y| in
R and d(z,y) = ||z — y|| in R™. For a proof of the triangle inequality in
R", see Exercise 3.12.

Example 3.114 If S is any nonempty set, the function d': §x.§ — [0, 00)
defined by

_JOifz=y
d(m’y)—{lifm#y

defines a metric on S. The metric d is called the discrete metric or the
distance-1 metric.

It is common for a (semi-)}metric in vector space to be induced by a
function called a (semi-)norm. If X is a real vector, a semi-norm on X is
a function || || : X — [0, 00) which satisfies for all z,y,z € X:

(1) llll 2 0;
(2) |ltzl| = |t] l|z]| for all t € R;
@) llz+yll < ll=ll + liyll-

Inequality (3) is known as the triangle inequality. From (2) it follows that
lI0]] == 0. A semi-norm || || is called a norm if, and only if:

(4) ||zl| =0 if, and only if, z = 0.

If || | is & (semi-)norm on X, then || || induces a (semi-)metric d, often
denoted d y, defined by d (z,y) = ||z — y|| (see Exercise 3.52). For example,
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the standard distances in R and R” are induced by the norms ||t|| = |¢| for
1/2
teR and | = (22;1 ‘z1~|2) for z € R™,
Let E C R™ be a measurable set and let L! (E) be the space of all real-

valued Lebesgue integrable functions on E. We define an integral semi-norm
| II; on L! (E), called the L'-norm, by setting

171, =fE|f|-

The semi-metric d; induced by || ||, is then dy (f,9) = [g|f —g|, for all
f,9 € L' (E). Since ||f|l, = 0if, and only if, f =0 ae. in E, || ||, is not a
norm (and d; is not a metric). However, if we identify functions which are
equal almost everywhere, then | ||, is a norm and d; is a metric on L! (E).

Let d be a semi-metric on X. A sequence {zx}y.; C X is said to
converge to x € X if for every € > 0, there is an N € N such that d (z, z) <
¢ whenever k > N. We call z the limit of the sequence {z;};_ ;. A sequence
{zx}rey C X is called a Cauchy sequence in X if for every € > 0, there is
an N € N such that j,k > N implies that d(z;,zx) < e. By the triangle
inequality, every convergent sequence is Cauchy. A semi-metric space is
said to be complete if every Cauchy sequence in (X, d) converges to a point
in X. For example, R is complete under its natural metric, while the subset
Q of rational numbers is not complete under this metric. Similarly, R" is
complete under its natural metric. See Exercise 3.13.

Example 3.115 Let (S,d) be a discrete metric space. Then, every
Cauchy sequence {zx}pe, C S converges to an element of S since the
sequence must eventually be constant. Thus, every discrete metric space is
complete.

Completeness is an important property of a space since in a complete space,
it suffices to show that a sequence is Cauchy in order to assert that the
sequence converges.

We establish a theorem due to F. Riesz (1880-1956) and E. Fischer
(1875-1954). The Riesz-Fischer Theorem asserts that L! (E) is complete
under the semi-metric d;.

Theorem 3.116  (Riesz-Fischer Theorem) Let E € M, and let {fy}o,
be a Cauchy sequence in (L' (E),dy). Then, there is an f € L (E) such
that { fi}pe, converges to f in the metric d.

Proof. Let {fr}re, C L' (E) be a Cauchy sequence. We first show that

there is a subsequence { fi, }:‘;1 C {f} ey which converges to f € L! (E)
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a.e.. Since {fi},o; is Cauchy, we can pick a subsequence { fkj};il such
that

(fkj-\-i’sz) < i

It follows that

Zdl (fij,fk,-) =1

=1

Set g; = Y0_, | fiisr — fr|- Then, {g;};2, increases to the function g
defined by

ijkhq fk (SE)I

Since || 595 < 1, by the Monotone Convergence Theorem, g is Lebesgue
integrable.
Define f by

f(z) = J 1 {fr;41 (@) = fx; ()} if the series converges absolutely
O otherwise

Then,

Z{sz+x — fr (@)} <

i=1

< g;(z) < g(2)

for almost every z. By the Dominated Convergence Theorem, f is ab-
solutely Lebesgue integrable and

dy (f+fk1’fkj) :/Ev‘l(f-l'fk]) —fkj+1f

:/ ‘f_Z{kal (z)—f’%(m)} —0
E i=1

as j — oo. Thus, {fkj} ._, converges to f + fi,. Since f and fx, are
Lebesgue integrable, f + fkl € L' (E). It remains to show that {fi}pe,
converges to f + fx,.
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Fix € > 0. Since {fx}r; is a Cauchy sequence in L! (F) and fi, —
f =+ fx,, there is a K > 0 such that for k,,k > K,

‘/;zlfk,.~fk\<§and/E|(f+fkl)_fkj|<%

Fix k; > K. If k > K, then

/;'(f+fk1)_fk(S‘/;;,(f+fk1)—fkyl+/E,fk—ka,<§+;—:6’

which implies that {fx}sc, converges to f 4 fi, in the metric d;. O

In contrast to the case of the Lebesgue integral, we show that the space
of Riemann integrable functions is not complete under the natural semi-
metric d, further justifying that the Lebesgue integral is superior to the
Riemann integral. Let R ([a,b]) be the space of Riemann integrable func-
tions on [a, b].

Example 3.117 Define fi : [0,1] — R by setting

_f 0 ifo<z<l
fk(ib‘)——{m_l/zif%SwSl-

It is easily checked that {fx},—; is a Cauchy sequence in (R ([0,1],d;)).
However, {fy},—, does not converge to a function in R([0,1]). For, sup-
pose that {fi}.o, converges to f with respect to d;. It follows from the
Monotone Convergence Theorem that {f}7 ; converges in d; to the func-
tion g: [0,1] — R defined by

0 if z=0
20 <z<1”

g(w)={

This implies that f = g a.e. in [0, 1] so that the function f does not belong
to R ([0, 1]) since f is unbounded.

Note that another counterexample is provided by the functions in Ex-
ample 3.3.

3.10 Exercises

Measure

Exercise 3.1 Prove that outer measure is translation invariant.
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Exercise 3.2 Let {I;; }:3‘=1 be a doubly indexed collection of intervals.
Prove that

Z £(li5) = Zzeuw)
i,5=1 i=1 j=1

Exercise 3.3 Let {a;x};_, be a doubly-indexed sequence of nonnegative
terms such that ajx < aj(y1) for all § and k. Prove that

Exercise 3.4 Prove that every subset of a null set is a null set and that a
countable union of null sets is a null set.

Exercise 3.5 Prove that
A={F c(0,1): For (0,1)\ F is a finite or empty set}
is an algebra.

Exercise 3.6 Let X be aset and § C P(X). Let
F={B:85C Band B is a o-algebra} .

Prove that C' = NpecxB is the smallest o-algebra that contains S.

Exercise 3.7 Show that we can replace “there is a closed set F” in Theo-
rem 3.36 part (3) by “there is a compact set F”.

Exercise 3.8 A measure u defined for all elements of B (R) is called inner
reqular if

p(E) =sup{u(K): K C E,K compact}

for all E € B(R). Prove that Lebesgue measure restricted to the Borel sets
is an inner regular measure.

Exercise 3.9 Prove that the complement of the Cantor set is dense in
[0,1].

Exercise 3.10 Show that every countable set is a Borel set.
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Lebesgue measure in R"

Exercise 3.11  Prove the Cauchy-Schwarz inequality. That is, if z,y € R™,
show that |z - y| = |31, ziyi| < ||z |y| by expanding the sum

n on
Zz Z:Yy _zj.%

=1 j=1
Exercise 3.12  Use the Cauchy-Schwarz inequality to prove that d(z,y) =
flz — y|| defines a metric on R™.
Exercise 3.13 Prove that (R”, d) is a complete metric space.
Exercise 3.14 Prove that m, is translation invariant; that is, given E C

R" and h € R, m* (E + k) = m®, (E).

Exercise 3.15 Prove that m}, is homogeneous of degree n; that is,
given E ¢ R” and a > 0, m},(aE) = a"m} (F), where aF =
{y € R : y = az for some z € E}.

Exercise 3.16 Let E C R™.

(1) Prove that E is measurable if, and only if, E + h is measurable for all
heR™

(2) Prove that F is measurable if, and only if, aF is measurable for all
a>0.

Exercise 3.17 Suppose that E C R is a null set and F' C R¥. Prove that
E x Fis a null set in RI**,

Exercise 3.18  Either prove or give a counterexample to the following state-
ment: if E C R is measurable and m (E) > 0, then E must contain a
non-degenerate interval.

Measurable functions

Exercise 3.19 Prove that E C R is a measurable set if, and only if, x5 is
a measurable function.

Exercise 3.20  Prove that the remark following Proposition 3.50 is valid.

Exercise 3.21 Give an example of a nonmeasurable function f on [0,1]
such that |f| is measurable.

Exercise 3.22 Let {mi};'il C R. Prove that lim;_,. x; exists if, and only
if, lim sup z; = lim inf z;.
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Exercise 3.23 Suppose that f and g are measurable functions. Prove that
|f|* is measurable for all a > 0. Prove that f/g is a measurable function if
it is defined a.e..

Exercise 3.24 Suppose that f : E — R* is measurable. Show that there
is a sequence of bounded measurable functions { fk}ic;l which converges to
f pointwise on E.

Exercise 3.25 Show that any derivative is measurable by showing that a
derivative is the pointwise limit of a sequence of continuous functions. That
is, if f: [a,b] — R is differentiable on [a, )], then f’ is measurable on [a, b].

Exercise 3.26 Suppose that f : R® — R and g : R¥ — R are measurable.
Define f@g: R  =R*" xR* - R by f®g(z,y) = f(z)g(y). Prove
that f ® g is a measurable function on R™+*,

Exercise 3.27 Let E C R™ be a Lebesgue measurable set. Suppose that
f: E — R is Lebesgue measurable and g : R — R is continuous. Prove
that go f is a Lebesgue measurable function. Note that we cannot conclude
that f o g is measurable. See [Mu, pages 148-149).

Lebesgue integral

Exercise 3.28 Suppose that f : E — R is measurable. If E has finite
measure and f is bounded, show that f is Lebesgue integrable.

Exercise 3.29 Suppose that f is a bounded, measurable function on E
and g is Lebesgue integrable over E. Prove that fg is Lebesgue integrable
over E.

Exercise 3.30 Let f : E C R® — R* be Lebesgue integrable and let
a € R™. Define f, : E+ a — R* by f,(t) = f(t— «). Prove that f, is
Lebesgue integrable and satisfies the linear change of variables

fadmn:/Efdmn.

E+a
Exercise 3.31 Let f:[0,1] — R be continuous. Show that the functions
z — f(z™) are Lebesgue integrable for all m and fol f(@™)dx — f(0).
Exercise 3.32 Evaluate lim, [} (1 + 2)" e~2*dz.

Exercise 3.33 Let f be Lebesgue integrable on R™ and define F' by
F(E)={ s/ fdmn for all E € M,,. Show that F is countably additive;
that is, F (U = Y io, F (E;) for all sequences of pairwise disjoint sets

{E}io, C Mn
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Exercise 3.34 Suppose that f : R — R is Lebesgue integrable. Show that
T+1
lim f=0.

—
T—o0 z

Exercise 3.35 Suppose that fi,h: E C R® — R* are Lebesgue integrable
over E and h < fi a.e. for all k. Prove that inf; fi is Lebesgue integrable
over E. Can the boundedness condition be deleted?

Exercise 3.36  Prove that Corollary 3.78 implies Theorem 3.77, and hence
show that the two are equivalent.

Exercise 3.37 Prove Corollary 3.86.
Exercise 3.38 Prove Corollary 2.23.

Exercise 3.39 Let f : [0,1] — R be Lebesgue integrable. Show that the
functions z — z* f (x) are Lebesgue integrable for all £ and fol zk f (z) dz —
0.

Exercise 3.40 If f: E C R* — R* is Lebesgue integrable and A, =
{z:|f (z)| > k}, prove that m, (Ax) — 0 as k — 0.

Exercise 3.41 Let A ¢ R’ and B C R* be compact sets. Suppose that
f: Ax B — R is continuous. Define F: A — R by F (z) = [ f (z,y)dy.
Show that F' is continuous.

Exercise 3.42 If f: R — R is Lebesgue integrable over R and uniformly
continuous on R, show that lim|;|. f (z) = 0.

Exercise 3.43  Suppose { fi } =, is a sequence of Lebesgue integrable func-
tions such that [ |fi] < M for all k. Show that if {tx}pe, satisfies
Y rey Itk] < 00, then the series Y7 | ¢x fi (z) is absolutely convergent for
almost all z € E.

Riemann and Lebesgue integrals

Exercise 3.44 Let R = {A C[0,1]: x4 is Riemann integrable}. Prove
that R is an algebra which is not a o-algebra.

Exercise 3.45 Prove that a function which is absolutely Cauchy-Riemann
integrable is Lebesgue integrable and the integrals agree.

Fubini’s Theorem
Exercise 3.46 Define f : R? —» R by

_ 0 if (z,y) = (
flzy) = {xy/ (x® + y?) if (z,y) # (0,0)
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Show that

/_11 /_llf(a:,y)dxdy=/jl /_llf(m,y)dydx

but f is not integrable over [—1,1] x [~1,1]. Hint: Consider the integral
over the set [0,1] x [0, 1].

Exercise 3.47 Define f : R? — R by

B 0 if (z,y) = (Oa 0)
flz,y) = { (2% - 42) / (<2 +y2)2 if (z,9) # (0,0)

Compare f_ll f_llf(a:,y) dzdy and f_ll f_ll f (z,y) dydz.

Exercise 3.48 Find the area inside of a circle of radius r and of an ellipse

:c2 yz
-+ i =1.
2 y2 Z2
Exercise 3.49 Find the volume inside of the elhps01d —+ 35 72 + — =1

Exercise 3.50 Suppose that f : R® — R and g : R¥ — R are Lebesgue in-
tegrable. Prove that f®g, defined in Exercise 3.26, is a Lebesgue integrable
function on R**t* and

/ f@gdmpir = / fdmg / gdmy,.
Rn+k n Rk

The Space of Lebesgue integrable functions

Exercise 3.51 If X # {0} is a vector space, show that the distance-1
metric on X is not induced by a norm.

Exercise 3.52 Let || || be a (semi-)norm on a vector space X. Prove that
d(z,y) = ||z — y|| defines a (semi-)metric.

Exercise 3.53 Show that

n
=Z|$i—yz’|
i=1
and
doo (xay) = ma‘x{lmi _yil 1 _<_ % S n}

define metrics on R".
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Exercise 3.54 A set D in a semi-metric space (5,d) is called dense if
D = S, where D is the union of D with the set of all of its limit points.
Show that the step functions on E are dense in L! (E).

Exercise 3.55 Prove that the continuous functions on [a, ] are dense in

L' ([a, ).
Exercise 3.56 Suppose that f € L' (R). Show that limy o f,~ |f| = 0.

Exercise 3.57 Suppose that ¢ is a step function on [0, 27]. Prove that

27

lim @ (z)cosnzdz = 0.
n—oo 0

Deduce from this the Riemann-Lebesque Lemma: Suppose that f :
[0,27] — R is a Lebesgue integrable function. Then
27
lim f (z) cosnzdz = 0.
n-—oo 0
Exercise 3.58 Suppose that f is Lebesgue integrable on R". Show that
lim |f (+ h) — f(z)|dz =0.
h—0 Rn

To prove this, consider first the case where f is a step function.
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Chapter 4

Fundamental Theorem of Calculus
and the Henstock-Kurzweil integral

In Chapter 2, we gave a brief discussion of the Fundamental Theorem of
Calculus for the Riemann integral. In the first part of this chapter, we
consider Part I of the Fundamental Theorem of Calculus for the Lebesgue
integral and show that the Lebesgue integral suffers from the same defect
with respect to Part I of the Fundamental Theorem of Calculus as does the
Riemann integral. We then use this result to motivate the discussion of the
Henstock-Kurzweil integral for which Part I of the Fundamental Theorem
of Calculus holds in full generality.

Recall that Part I of the Fundamental Theorem of Calculus involves the
integration of the derivative of a function f and the formula

b
/ f=10)-1@). (4.1)

In Example 2.31, we gave an example of a derivative which is unbounded
and is, therefore, not Riemann integrable, and we showed in Theorem 2.30
that if f’ is Riemann integrable, then (4.1) holds. That is, in order for
(4.1) to hold, the assumption that the derivative f’ is Riemann integrable
is required. It would be desirable to have an integration theory for which
Part 1 of the Fundamental Theorem of Calculus holds in full generality.
That is, we would like to have an integral which integrates all derivatives
and satisfies (4.1). Unfortunately, the example below shows that the general
form of Part I of the Fundamental Theorem of Calculus does not hold for
the Lebesgue integral.

Example 4.1 In Example 2.31, we considered the function f defined
by f(0) = 0 and f(z) = z®cos % for 0 < # < 1. The function f is
differentiable with derivative f’ satisfying f’ (0) = O and f’ (z) = 2xcos L+
27 sin % for 0 < z < 1. We show that f’ is not Lebesgue integrable.

T
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If0 < a < b < 1, then f/ is continuous on [a,b] and is, therefore,
Riemann integrable with

b
m T
f'=bcos = — a® cos .
e b a

Setting by = 1/v2k and a; = /2/(4k + 1), we see that f:: fl=1/2k.

Since the intervals [ay, bx| are pairwise disjoint,
1 , oo bk , o< 1
> > — = 00,
JRUE S RUEDE

Hence, f' is not absolutely integrable on {0, 1] and, therefore, not Lebesgue
integrable there.

The most general form of Part I of the Fundamental Theorem of Cal-
culus for the Lebesgue integral is analogous to the result for the Riemann
integral; it requires the assumption that the derivative f’ be Lebesgue in-
tegrable. This result is somewhat difficult to prove, and we do not have
the requisite machinery in place at this time to prove it. In order to have
a version of the Fundamental Theorem of Calculus for the Lebesgue inte-
gral, we prove a special case and later establish the general version for the
Lebesgue integral in Theorem 4.81 after we discuss the Henstock-Kurzweil
integral and show that it is more general than the Lebesgue integral.

Theorem 4.2 (Fundamental Theorem of Calculus: Part I) Let f :
[a,b] — R be differentiable on [a,b] and suppose that f' is bounded. Then,
J' is Lebesgue integrable on [a,b] and satisfies (4.1).

Proof. Note first that f’ is Lebesgue integrable since it is bounded by
assumption and measurable by Exercise 3.25. For convenience, extend f to
[a,b+ 1] by setting f (t) = f (b) for b <t < b+ 1. Define f, : [a,b] = R by

1y _
fn(t):f(t+n) f(t)

3=

By the Mean Value Theorem, for every n, n > ﬁ, and t € [a,b— %],
there exists an s, € [a,b] such that f, (t) = f'(sn,). Fort ¢ [b— %,b],
there is an s, € [, b] such that

Fle+2) = F0) _ F0) - f(1)

1 1
n n

fn (t) =

I

n(b—1t)f (snt),
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where n(b—t) < 1. Since f’ is bounded, it follows that {fn}n.; is uni-
formly bounded. Since {fn},., converges to f’ everywhere in [a, b], except
possibly b, the Bounded Convergence Theorem shows that

/f, o f"=nll.“§°{/ 18, /f(t)dt}

By Exercise 3.30, the linear change of variables s = ¢t + % in the next to
last integral above shows that

/abff:nlggo{n/:l‘ s)ds—n /f dt} (4.2)
=Jlff;°{n /bb+_f(s>ds— [ " (t)dt}

The function f is continuous and, therefore, Riemann integrable so from
the Mean Value Theorem (Exercise 2.18), for every n there are b, and an,

b < b, Sb-l—%andaﬁan < a+ 1, such that nfb”%f:f(bn) and

nf:+"17 f = f(ay). Since b, — b, a,, — a, and f is continuous on [a,b + 1],
from (4.2) we obtain

b
[ = lm {76 - Fan)} = £0) - (@)

as we wished to show. O

4.1 Denjoy and Perron integrals

Upon noting that the general form of Part I of the Fundamental Theorem
of Calculus failed to hold for the Lebesgue integral, mathematicians sought
a theory of integration for which Part I of the Fundamental Theorem of
Calculus holds in full generality, i.e., an integral for which all derivatives are
integrable. In 1912, A. Denjoy (1884-1974) introduced such an integration
theory. His integral is very technical, and we will make no attempt to
define or describe the Denjoy integral. Lusin later gave a more elementary
characterization of the Denjoy integral, but this is still quite technical. For
a description of the Denjoy integral and references, the reader may consult
the text of Gordon [Go].

Later, in 1914, O. Perron (1880-1975) gave another integration theory
for which the Part I of the Fundamental Theorem of Calculus holds in full
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generality. The definition of the Perron integral is quite different from that
of the Denjoy integral although later Alexandrov and Looman [Pe, Chap.
9] showed that, in fact, the two integrals are equivalent. We will give a very
brief description of the Perron integral since some of the basic ideas will
be used later when we show the equivalence of absolute Henstock-Kurzweil
integrability and McShane integrability.

Definition 4.3 Let f: [a,b] — R and z € [a,b]. The upper derivative of
f at z is defined to be

Df (x) = limsup M

t—ax -
Similarly, the lower derivative is defined to be Df (z)= liminf,_,; &t—fc(ﬂ

Thus, f is differentiable at z if, and only if, Df (z) = Df (z) and both
upper and lower derivatives are finite.

Definition 4.4 Let f: [a,b] — R*. A function U : [a,b] — R is called a
magor function for f if U is continuous on [a,b], U (a) = 0, DU (z) > —oo
and DU (z) > f(z) for all © € [a,b]. A function u : [a,b] — R is called a
minor function for f if u is continuous on [a, b], u (a) = 0, Du(z) < oo and
Du(z) < f(z) for all z € [a, b).

It follows that if f is differentiable on [q, b} and has finite-valued deriv-
ative, then f — f (a) is both a major and a minor function for f’.

If U is a major function for f and u is a minor function for f, then it
can be shown that U — u is increasing. Therefore,

—o0 < sup {u(b) : u is a minor function for f}

<inf {U (b) : U is a major function for f} < oo.

Definition 4.5 A function f : [a,b] — R is called Perron integrable over

[a,d] if, and only if, f has at least one major and one minor function on
[a,b] and

sup {u (b) : u is a minor function for f}
= inf {U (b) : U is a major function for f}. (4.3)

The Perron integral of f over [a,b] is defined to be the common value in

(4.3).
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If a function f : [a,b] — R has a finite derivative on [a,b], it then
follows from the definition that f’ is Perron integrable over {a, b] with Perron
integral equal to f (b) — f (a). That is, Part I of the Fundamental Theorem
of Calculus holds in full generality for the Perron integral. For a description
and development of the Perron integral, see [Go] and [N].

Both the Denjoy and Perron integrals are somewhat technical to define
and develop, but in the next section we will use Part I of the Fundamental
Theorem of Calculus as motivation to define another integral, called the
Henstock-Kurzweil integral, which is just a slight variant of the Riemann
integral and for which Part I of the Fundamental Theorem of Calculus holds
in full generality. It can be shown that the Henstock-Kurzweil integral is
equivalent to the Denjoy and Perron integrals (see (Go)).

4.2 A General Fundamental Theorem of Calculus

Suppose that f : [a,b] — R is a differentiable function and we are interested
in proving equality (4.1). Let P = {zo,z1,...,Zn} be a partition of [a, b].
By the Mean Value Theorem, there is a y; € (z;—1, ;) such that f(z;) —
fzi1) = f' (y:) (s — zi—1). Thus, given any partition P, there is a set of
sampling points {y1,...,¥yn} such that

S, P {witizy) Fy) (e — 2im1)

il
hE

T

Il
-

{7 (zi) — f(@i-1)} = £ (b) — f(a).

il

il
A

1

The problem is that given a partition P, there may be only one such set
of sampling points. However, if we want to show that f: f’ is equal to
f(b) — f(a), we do not need the Riemann sums to equal f(b) — f(a),
but rather be within some prescribed margin of error. Thus, we are led
to consider more closely the relationship between f’(y;) (z;41 — z;) and
f@iz1) — f ().

Fix an € > 0 and let y € [a,b]. Since f is differentiable at y, there is a
0 (y) > 0 so that if = € [0,b) and 0 < |z — y| < § (y) then

fz) - f(y)

P - f'y)| <e
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Multiplying through by |z — y|, we get
If (@) - fy) - f ()@ -y)l<elz—yl,

which is also valid for z = y. Now, suppose that u,v € [a,b] and y—§ (v) <
u<y<v<y+4d(y). Then,

|f (v) = f (u) = ' () (v — )]
={f)-FW - @e-}+{f@)- - y-u}
SIF@-f@-F@e-wl+If@)-f- @) Y-l
<e(v—y)te(y—u)=e(v—u).
So,ify—d(y) <u<y<v<y+6(y), then f'(y)(v—u) is a good
approximation to f (v) — f (u).

This result, known as the Straddle Lemma, will be useful to us below.

Lemma 4.6 (Straddle Lemma) Let f : la,b] — R be differentiable at
y € [a,b]. For each € > 0, there is a § > 0, depending on y, such that

F0)=fl) =y (v-uw)l<e(v-u)
whenever u,v € [a,b] endy —d<u<y<v<y+4.

The geometric interpretation of the Straddle Lemma is that the slope
of the chord between (u, f (u)) and (v, f (v)) is a good approximation to
the slope of the tangent line at (y, f (v)). It is important that the values
u and v “straddle” y, that is, occur on different sides of y. Consider the
function f equal to 22 cos (m/z) for  # 0 and f (0) = 0. This function has

derivative 0 for = 0, but for u = ﬁr and v = 5, the slope of the chord

joining (u, f (u)) and (v, f (v)) is

2
(%)2 cos 2nm — ((ﬁr) COS (27?/”' + %)) 1 2
S @,
1 1 1 '
In T Znyi n T ant]

Thus, if v and v do not straddle 0, then the slope of the chord is not a good
approximation to the slope of the tangent line.

This lemma already gives us a hint of how to proceed. When studying
Riemann integrals, we chose partitions based on the length of their largest
subinterval. This condition does not take into account any of the properties
of the function being considered. The Straddle Lemma, on the other hand,
assigns a 0 to each point where a function is differentiable based on how
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the function acts near that point. If the function acts smoothly near the
point, we would expect the associated § to be large; if the function oscillates
wildly near the point, we would expect ¢ to be small. This simple change to
varying the size of § from point to point is the key idea behind the Henstock-
Kurzweil integral. For the Henstock-Kurzweil integral, we will be interested
in partitions P = {zo,%y,...,%,} and sampling points {y;},_; such that
[®i—1, %) C (yi — 0 (y:),yi +6(yi)), where § : [a,b] — (0,00) is a positive
function.

There is another point that must be resolved, namely the relationship
between the partition and the sampling points. In the Riemann theory,
given a partition P = {xg, z1, ...,y }, we consider Riemann sums for every
set of sampling points {y;},—, such that y; € [z;—1,z;]. However, if P is
a partition with mesh at most d, then [z;,_,z;] C (y; — d,y; + J) for every
sampling point y; € {z;—1,2;]. We use this idea to determine which pairs of
partitions and sampling points to consider. In the general case, in which
is a positive function of y, we will consider only partitions P and sampling
points {y;};.; such that y; € [zi_1,2:] C (vi — & (%s) , ¥s + 0 (w:))-

Fix [a,b]. Suppose P = {z¢,z1,...,Z,} is a partition of [a,b] and
{t:};, is a set of sampling points associated to P. Let I; = [z;_y1,z;], s0
that ¢; € I;. Thus, we can view a partition together with a set of sampling
points as a set of ordered pairs (¢, I), where 7 is a subinterval of [a,b] and
t is a point in 7.

Definition 4.7 Given an interval I = [a,b] C R, a tagged partition is a
finite set of ordered pairs D = {(t;,1;) : 4 =1,...,m} such that I; is a closed
subinterval of [a,b], t; € I;, U, I; = [a,b] and the intervals have disjoint
interiors, I7 N I7 = @ if 7 # j. The point ¢; is called the tag associated to
the interval I;.

In other words, a tagged partition is a partition with a distinguished point
(the tag) in each interval.

Given a tagged partition D, a point can be a tag for at most two inter-
vals. This can happen when a tag is an endpoint for two adjacent intervals
and is used as the tag for both intervals,

Remark 4.8 By the preceding argument, a partition with a set of sam-
pling points generates a tagged partition (by setting I; = [zi—1,x;)). Simi-
larly, a tagged partition generates a partition and a set of associated sam-
pling points. Given a tagged partition D = {(t;, ;) : i = 1,...,m}, renum-
ber the pairs so the right endpoint of I;,_1 equals the left endpoint of I; and
set Ij = [x;_1,%;]. Then, P = {xg,21,...,Zm} is a partition of [a,b] and
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t; € I;. Note that while a partition is an ordered set of numbers, the inter-
vals in a tagged partition are not ordered (from left to right), so we must
first reorder the intervals so that their endpoints create a partition of [a, b).

Next, we need a way to measure and control the size of a tagged par-
tition. Based on the discussion leading to the Straddle Lemma, we will do
this using a positive function, §, of t.

Definition 4.9 Given an interval I = [q,b], an interval-valued function
« defined on I is called a gauge if there is a function ¢ : [a, b] — (0, c0) such
that y(£) = (t —6(t),t+6(t). UD={({,1L;):i=1,...,m} is a tagged
partition of I and v is a gauge on I, we say that D is y-fine if I; C v (t;)
for all i. We denote this by writing D is a v-fine tagged partition of I.

Let P = {zp,21,...,2Zn} be a partition of [a,b] with mesh less than ¢
and let {y;}*, be any set of sampling points such that y; € [z;_q,2;]. If
v(t) = (t—46,t+6) for all t € I, then [x;_q1,z;] C 7 (y) so that D =
{(i, [ziz1,z5]) : 2 =1,...,m} is a y-fine tagged partition of [a,b]. This is
the gauge used for the Riemann integral. Consequently, the constructions
used for the Riemann integral are compatible with gauges. The value of
changing from a mesh to a gauge is that points where a function behaves
nicely can be accentuated by being associated to a large interval, and points
where a function acts poorly can be associated to a small interval.

Example 4.10 The Dirichlet function f: [0,1] — R,

_JlifzeQ
re={ote e

defined in Example 2.7, is not Riemann integrable. This function is equal
to 0 most of the time, so we want a gauge that associates larger intervals
to irrational numbers than it does to rational numbers. Let {r;};c; be an
enumeration of the rational numbers in QN{0,1}. Let ¢ > 0 and define
§:(0,1] — (0,00) by

5(x)={ c if ¢Q

27cifr=r;€Q’

Then,

’y(a:)z{( (z—c¢,z+c) o z¢Q

-2z +27%)ifr=r,eQ’
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and every irrational number is associated to an interval of length 2¢ while
the rational number r; is associated to an interval of length 2! ~%c.

After introducing the Henstock-Kurzweil integral, we will use this con-
struction to prove that the Dirichlet function is Henstock-Kurzweil inte-
grable.

IfD={(;,1):i=1,...,m} is a tagged partition of I, we call

m
S(£,D) = f(t:)€(L)
i=1
the Riemann sum with respect to D.

Let us restate the definition of the Riemann integral in terms of tagged

divisions.

Definition 4.11 A function f : [a,b] — R is Riemann integrable over
la, b] if there is an A € R such that for all € > 0 there is a § > 0 so that if
D = {(ti, [zi—1,25]) : 1 <4 <m} is any tagged partition of [a, b] satisfying
i1, ] C (8t — d,t; +0), then |[S(f,D) — A| <e.

Note that the mesh of this partition is at most 26.

For the Riemann integral, the partitions are chosen independent of f.
Thus, this definition fails to take into account the particular function in-
volved. A major advantage of the Henstock-Kurzweil integral is one only
need consider partitions that take the behavior of the function into account.

Definition 4.12 Let f : [a,b] — R. We call the function f Henstock-
Kurzweil integrable on I = [a,b] if there is an A € R so that for all € > 0
there is a gauge y on I so that for every +y-fine tagged partition D of [a, b],

IS(f,D)— Al <e.
The number A is called the Henstock-Kurzweil integral of f over [a,b], and
we writeA:f:f =, f

The Henstock-Kurzweil integral is also called the gauge integral and the
generalized Riemann integral.

Notation 4.13  For the remainder of this section, we will use the symbols
f: [ and | ; [ to represent the Henstock- Kurzweil integral of f.

The first question that arises is whether this definition is meaningful.
We need to know that, given a gauge =, there is an associated «-fine tagged
partition, so that we have Riemann sums to define the Henstock-Kurzweil



142 Theories of Integration

integral, and also that the Henstock-Kurzweil integral is well defined. We
will return to both issues at the end of this section.

Observe that every Riemann integrable function is Henstock-Kurzweil
integrable. For, suppose that f is Riemann integrable. Let & correspond to
a given ¢ in the definition of the Riemann integral. Set y (t) = (t — é P )
Then, any tagged partition that is y-fine has mesh less than 4. Thus we
have proved

Theorem 4.14 If f : [a,b] — R is Riemann integrable then f is
Henstock-Kurzweil integrable and the two integrals agree.

However, there are Henstock-Kurzweil integrable functions that are not
Riemann integrable. In fact, the Dirichlet function is one such example.

Example 4.15 Let f :[0,1] — R be the Dirichlet function. We will show
that fol f =0. Let € > 0 and let v be the gauge defined in Example 4.10
with ¢ = £. Let D = {(t;, ;) : i = 1,...,m} be a y-fine tagged partition of
[0,1] and note that

m

D F () e(n)

i=1

=| > feed)+ D, f)

(t;,1,)€ED (t;,1:)eD
L ¢Q t;€Q

i

1S (f,D)-0[=[5(f, D)l =

The sum for t; ¢ DNQ equals 0 since f (t) = 0 whenever t ¢ Q. To estimate
the sum for ¢; € DNQ, note that f(¢;) = 1 since ¢; € Q and recall that
each tag ¢; can be a tag for at most two intervals. Since t; € QN [0, 1],
there is an j so that t; = rj. Thus, if (¢;,1;) € D, then I; C y(¢;), so that
(L) < (v (t:) = £ (y(ry)) = 277§, Thus,

DooF@ eI+ D fem)| =] Y f)edm)

t:¢DNQ +EDNQ t:€DNQ
<2 i 91-i% _ ¢
<23 27

We have shown that given any e > 0, there is a gauge v so that for any
~-fine tagged partition, D, |S (f, D) — 0] < e. In other words, the Dirichlet
function is Henstock-Kurzweil integrable over [0, 1] with fol f=0.
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Notice the use of the variable length intervals in the definition of the
gauge. We will give a generalization of this result in Example 4.38; see also
Exercise 4.7.

Let us return to the Fundamental Theorem of Calculus. The proof is
an easy consequence of the Straddle Lemma.

Theorem 4.16  (Fundamental Theorem of Calculus: Part I) Suppose that
f i [a,b] — R is differentiable on {a,b]. Then, f' is Henstock-Kurzweil

integrable on [a,b] and
b
[ r=ro-1@.

Proof. Fix an € > 0. For each t € [a,b], we choose a §(t) > 0 by the
Straddle Lemma (Lemma 4.6) and define a gauge « on [a,b] by v(t) =
(t—46(t),t+8(t)). Suppose that D = {(t;,;):¢=1,...,m} is a -fine
tagged partition of [a,b]. We reorder the intervals I; so that the right
endpoint of I;_; equals the left endpoint of I;, and set I, = [z;_1,z;] for
each ¢. Then,

Z z) - 1'1—1)]

i=1

so, by the Straddle Lemma,
IS(f,D) = (f(b) - f(a))] = Z{f zi = zie1) — [f (@) — f(ziz1)]}

< Ze(mi—xi_l)ze(b~a).

i=1
Thus, f’ is Henstock-Kurzweil integrable and satisfies equation (4.1). O

Thus, every derivative is Henstock-Kurzweil integrable. This is not
a surprising coincidence. Kurzweil [K]| initiated his study leading to the
Henstock-Kurzweil integral in order to study ordinary differential equations.
A few years later, working independently, Henstock [He] developed many
of the properties of this integral. We will establish a more general version
of Theorem 4.16 later in Theorem 4.24.

An immediate consequence of the Fundamental Theorem of Calculus is
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that the unbounded derivative

2
f,(x)___{2xcos£%+-§sin£—2-if0<x§1
if z=0

defined in Example 2.31, is Henstock-Kurzweil integrable on [0,1] with
integral equal to —1. Since f’ is unbounded, it is not Riemann integrable
and, as we saw in Example 4.1, f’ is not Lebesgue integrable.

Before concluding this section, we prove two results which guarantee
that the Henstock-Kurzweil integral is well defined. We prove that given
a gauge v, there is a related y-fine tagged partition, and that the value of
the integral is unique.

Theorem 4.17 Let v be a gauge on I = [a,b]. Then, there is a y-fine
tagged partition of I.

Proof. Let E = {t € (a,b:][a,t] has a y-fine tagged partition}. We
want to show b € E. First observe that E # @ since if z € v(a) 0 (a,b),
then {(a,[a,z])} is a «-fine tagged partition of [a,z]. Thus, = € E and
E #0.

We next claim that y = sup F is an element of E. By definition, y €
[a,b], so v is defined at y. Choose z € v (y) so that z < y and z € E, and
let D be a v-fine tagged partition of [, z]. Then, D' = DU {(y, lz,y])} is a
v-fine tagged partition of [a,y]. Therefore, y € E.

Finally, we show y = b. Suppose y < b. Choose w € v (y)N(y,b). Let D
be a y-fine tagged partition of [a,y]. Then, D' = DU {(y, [y, w])} is a v-fine
tagged partition of [a,w]. Since y < w, this contradicts the definition of y.
Thus, y =b. O

Thus, there is a ~-fine tagged partition associated to every gauge v. In
fact, there are many, as we can see by varying the choice of z in the first
step of the proof above.

Finally, we prove that the Henstock-Kurzweil integral is unique, jus-
tifying our notation in Definition 4.12. The proof employs a very useful
technique for working with gauges. Suppose that <y, and v, are two gauges
defined on an interval [a,b]. Then the (interval-valued) function vy de-
fined by 7 (t) = 7, (£) Ny, (¢) is also a gauge on [a,b]. In fact, if §; and
0o are the positive functions used to define 7; and 75, respectively, and
8 (t) = min {&; (¢),02 (t)}, then v(t) = (t - (¢),t + 6 (t)). Further, if D
is a y-fine tagged partition, then D is also a y,-fine tagged partition and a
vo-fine tagged partition, since for (t,I) € D, I C v (t) C v;(t), for i =1,2.
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Theorem 4.18 The Henstock-Kurzweil integral of a function is unique.

Proof. Suppose that f is Henstock-Kurzweil integrable over [a,b] and
both A and B satisfy Definition 4.12. Fix € > 0 and choose v, and vy
corresponding to A and B, respectively, in the definition with ¢ = §. Let
v (t) = v; (£) N4 (£) and suppose that D be a y-fine tagged partition, and
hence D is both v,-fine and ~,-fine. Then,

|A—B|<|A-S(f,D)|+|S(f,D) - B|<¢ +¢ =e.

Since € was arbitrary, it follows that A = B. Thus, the value of the
Henstock-Kurzweil integral is unique. O

Now, review the proof of Proposition 2.3. You will notice that the
proof is exactly the same as the one above, replacing positive numbers, 4,
with gauges, v, and partitions and sampling points, P and {t;}}_,, with
tagged partitions, D. In the following section, in which we establish the
basic properties of the Henstock-Kurzweil integral, we will begin with proofs
that directly mimic the Riemann proofs. Of course, as we progress with this
more advanced theory, we will need to employ more sophisticated proofs.

4.3 Basic properties

We begin with the two most fundamental properties of an integral, linearity
and positivity.

Proposition 4.19  (Linearity) Let f,g: [a,b] > R and let a,B € R. If f
and g are Henstock-Kurzweil integrable, then af + g is Henstock-Kurzweil

integrable and
b b b
[ ereso=af e[ 0

Proof. Fix ¢ > 0 and choose v; > 0 so that if D is a y,-fine tagged
partition of [a,b], then

b

f

s - |

a

€
S350+ [al)
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Similarly, choose v, > 0 so that if D is a v,-fine tagged partition of [a, b],
then

b €
S(Q,D)—/a g <m-

Now, let v (¢) = 74 (t) N, (t) and suppose that D is a +-fine tagged
partition of [a,b]. Then,

$(af + g, D) - (a/:fw/abg)

b b
(a8 (£,D) + S (9, D)) - (a/ f+ﬁ/ g)

a(smv)—ff) +ﬂ<5(g,v)—/:g)

S(f,D)—/:f

< €|al elB]
2(1+1al)  2(1+18))

Since € was arbitrary, it follows that o f+ 8¢ is Henstock-Kurzweil integrable

and
/ab(af+ﬂg)=a/:f+ﬁ/abg- ]

Proposition 4.20 (Positivity) Let f : [a,b] — R. Suppose that f is
nonnegative and Henstock-Kurzweil integrable. Then, f: f=0.

< |af

b
+Iﬂ|‘S(9,’D)—/ g

< €.

Proof. Let € > 0 and choose a gauge v according to Definition 4.12.
Then, if D is a «-fine tagged partition of [a,b],

< €.

S(f,D)—/abf

Consequently, since S (f,D) > 0,
b
/ f>S(f,D)—€e>—¢

for any positive €. It follows that f: f=>0. a
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A comparison of the last two proofs with the corresponding proofs for
the Riemann integral immediately shows their similarity.

Remark 4.21 Suppose that f is a positive function on [a,b]. If f
is Henstock-Kurzweil integrable, then the best we can conclude is that
f: f 2 0; from our results so far, we cannot conclude that the integral
is positive. The Riemann integral has the same defect. However, if f is
Lebesgue integrable, then the Lebesgue integral of f is strictly positive. Let
L f f be the Lebesgue integral of f. From Tchebyshev’s inequality we have

b
m({z € [a,b] : f(z) >)\})§,C/ f.

If f is strictly positive on [a,b], then [a,b] = U {z € [a,b] : > 1},
so there must be a k such that m ({z € [a,}] : f (z) > £}) > 0. But then,

L/ f>—m({z€[a,b]:f(:c)>%}> > 0.

Suppose that f < g. Applying the previous result to ¢ — f yields

Corollary 4.22 Suppose f and g are Henstock-Kurzweil integrable over
[a,b] and f (z) < g(x) for all x € [a,b]. Then,

/:fsfg

A function f defined on an interval [a, ] is called absolutely integrable
if both f and |f| are Henstock-Kurzweil integrable over [a,b]. A Riemann
integrable function is absolutely (Riemann) integrable, and a function is
Lebesgue integrable if, and only if, it is absolutely (Lebesgue) integrable.
We will see in Section 4.4 that a Henstock-Kurzweil integrable function
need not be absolutely integrable. For absolutely integrable functions, we
have the following result.

Corollary 4.23 If f is absolutely integrable over [a,b], then ‘fabf\ <

2151,

Proof. Since —|f| < f <|f|, the previous corollary implies that

fKMSLWsKUL

The result follows. O
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While the ability to integrate every derivative is a main feature of
the Henstock-Kurzweil integral, the Henstock-Kurzweil integral satisfies an
even stronger result. The derivative can fail to exist at a countable number
of points and still satisfy equation (4.1).

Theorem 4.24  (Generalized Fundamental Theorem of Calculus: Part I)
Let F,f : [a,b] —» R. Suppose that F is continuous eand F' = f except
for possibly a countable number of points in [a,b]. Then, f is Henstock-
Kurzweil integrable over [a,b] and

b
/ f=F()-F(a).

Proof. Let C = {cn},¢, be the points where either F” fails to exist or
F’ exists but is not equal to f. Let € > 0. If ¢ € [a,b] \ C, choose 6 (t) > 0
for this € by the Straddle Lemma. If t € C, then t = ¢ for some k. Choose
0 (t) = 6 (ck) > 0 so that |z — ¢i| < 6 (¢x) implies:

(1) |F (2) = F (ek)] < 27043,
(2) If (er)l |z — cx| < e27+3),

We can define such a § since F is continuous on [a,b] and |z — ¢x| can be
made as small as desired by choosing z sufficiently close to c;. Define a
gauge v on [a, b] by setting v (¢) = (¢ — 6 (¢) ,t + 6 (¢)) for all ¢ € [a, b].

Suppose that D = {(t;, ;) : ¢ = 1,...,m} is a y-fine tagged partition of
[a, b], where I; = [a;, b;] for each 7. Note that if a; # a, then there is a j so
that a; = b;, with a similar statement for each right endpoint b; % b. Let
D; be the set of elements of D with tags in [a,b] \ C and D3 be the set of
elements of D with tags in C. By the Straddle Lemma,

Z |F'(bi) — F(as) = f(t:) (b —ai)| < Z e(bi—a;))<e(b-a).

(ti,1:)EDy (t:,1:)EDy

If ¢; = ¢, for some k, by (1) and (2)

|F' (bi) = F (ai) — f (ts) (b — @)}

SHF (b:) — F (ce)| + | F (ck) = F (as)] + | f (cx) (bs — ai)]
€ € € €
< 2k-+3 + 2k+3 + 2k+3 < 2k+1"
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Therefore,

S IFB) - Fla) - ft)(bi—a)l <2 ser =e

(ti,1;)ED: k=1

since each ¢; can be a tag for at most two subintervals of D. Since each
endpoint, other than a and b, occurs as both a left and right endpoint,

ISU,D)—[FO)-F @)l =] Y {F(b)—F(a)~f(t:) (b —ai)}

(t:,1;)ED
<elb—a)+e=(1+b—a)e

and the result is established. O

The continuity of F' in Theorem 4.24 is important; see Exercise 4.16.

Example 4.25 Define F and f on [0,1] by F (z) = 2v/z, and f(0) =0
and f(z) = % otherwise. Then, F is continuous on [0,1] and F’ = f
except at £ = 0. Therefore, by Theorem 4.24, f is Henstock-Kurzweil
integrable over [0,1] and fol f=F(Q1)-F(0)=2.

Note that fol f is an improper integral in the Riemann sense since f is
unbounded, but we were able to show that f is Henstock-Kurzweil inte-
grable directly from Theorem 4.24. We will show in Section 4.5 that there
are no improper integrals for the Henstock-Kurzweil integral.

Using Theorem 4.24, we can prove a general form of the familiar inte-
gration by parts formula from calculus.

Theorem 4.26  (Integration by Parts) Let F,G, f,g : [a,b] — R. Suppose
that F' and G are continuous and F' = f and G' = g, except for at most a
countable number of points. Then, Fg+ fG is Henstock-Kurzweil integrable
and

b
/ (Fg+ fG)=F (b)G(b) - F(a) G (a). (4.4)

Moreover, Fg is Henstock-Kurzweil integrable if, and only if, fG is
Henstock-Kurzweil integrable and, in this case,

b b
/Fg+/ FfG=F(b)G®) - F(a)G ). (4.5)
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Proof. Since (FG) = Fg + fG except possibly at a countable number
of points, by Theorem 4.24, (FG)' is Henstock-Kurzweil integrable and
(4.4) holds. The last statement follows immediately from (4.4) since, for
example, Fg = (Fg + fG) — fG. O

In Example 4.53 below, we give an example in which neither Fig nor fG
is Henstock-Kurzweil integrable so that (4.5) makes no sense, even though
(4.4) is valid.

4.3.1 Cauchy Criterion

Suppose that f : [a,b] — R is Henstock-Kurzweil integrable over [a,b] and
€ > 0. Then, there is a gauge ~ so that if D is a ~-fine tagged partition
of [a,b], then ‘S £,D)— f f | < £. Let D; and D, be two v-fine tagged

partitions of [a,b]. Then,

IS (f,D1) - 5 (£,D2)| < |S (£, D1) -F/f—SmDﬂ<e

which is the Cauchy criterion. As in the case of the Riemann integral, the
Henstock-Kurzweil integral is characterized by the Cauchy condition.

Theorem 4.27 A function f : [a,b] — R is Henstock-Kurzweil integrable
over [a,b] if, and only if, for every € > O there is a gauge v so that if Dy
and D2 are two vy-fine tagged partitions of [a,b], then

IS (f,D1) = S(f,D2)| < e

Proof. We have already shown that the integrability of f implies the
Cauchy criterion. So, assume the Cauchy criterion holds. We will prove
that f is Henstock-Kurzweil integrable.

For each k € N, choose a gauge v, > 0 so that for any two «,-fine
tagged partitions Dy and Dy of [a, b] we have

IS (f,Dy) — S (f,Da)| < %

Replacing v, by ﬂ;;l'yj, we may assume that v, ,; C 7. For each k, fix
a 7v,-fine tagged partition Dy. Note that for j > k, since v; C v, D; is a
~,-fine tagged partition of [a, b]. Thus,

S (D0 = S, D)I < 7,
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which implies that the sequence {S(f, D)}, is a Cauchy sequence in R,
and hence converges. Let A be the limit of this sequence. It follows from
the previous inequality that

1S (f,De) — A <

El Nl

It remains to show that A satisfies Definition 4.12.

Fix € > 0 and choose K > 2/e. Let D be a vy -fine tagged partition of
[a,b]. Then,

1 1
IS (f,D) = Al =S (f,D) - S(f,Dx)| + 15 (f,Dk) — 4| < EYx <€
It now follows that f is Henstock-Kurzweil integrable on [a, b]. O

We will use the Cauchy criterion in the following section.

4.3.2 The integral as a set function

Suppose that f : I = [a,b] — R is Henstock-Kurzweil integrable over I and
J is a subinterval of I. It is reasonable to expect that the Henstock-Kurzweil
integral of f over J exists.

Theorem 4.28 Let f : [a,b] — R be Henstock-Kurzweil integrable over
[a,b]. If J C [a,b] is a closed subinterval, then f is Henstock-Kurzweil
integrable over J.

Proof. Let € > 0 and v be a gauge on [a,b] so that if Dy and Dy are
two v-fine tagged partitions of [a,b], then |S(f,D1) — S (f,D2)| < €. Let
J = [e,d] be a closed subinterval of [a,b]. Set J; = [a,c] and J, = [d,b)];
if either is degenerate, we need not consider it further. Let 7 = «y|; and
¥; = 7|s;- Suppose that D and £ are F-fine tagged partitions of J, and
D; is a v,-fine tagged partition of J;, ¢ = 1,2. Then D' = DU (D, UD3)
and £ = £ U (Dy UDs) are v-fine tagged partitions of I. Since D’ and &’
contain the same pairs (z;,I;) off of J,

1S(£,D) =S (£, &) =S (£, D) - S(f,€) <e
By the Cauchy criterion, f is Henstock-Kurzweil integrable over J. a

Thus, if f is Henstock-Kurzweil integrable over an interval 7, then it
is Henstock-Kurzweil integrable over every subinterval of I and the set
function F'(J) = [, f is defined for all closed subintervals J C I. Of
course, if f is Henstock-Kurzweil integrable over every closed subinterval
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J C I, then f is Henstock-Kurzweil integrable over I, since I is a subin-
terval of itself. Actually, a much stronger result is true. In order for f
to be Henstock-Kurzweil integrable over I, it is enough to know that f is
Henstock-Kurzweil integrable over a finite number of closed intervals whose
union is I, which is a consequence of the next theorem.

Theorem 4.29 Let f : [a,b] — R and let {Ij};nzl be a finite set of closed
intervals with disjoint interiors such that [a,b] = Uit L;. If f is Henstock-
Kurzweil integrable over each I;, then f is Henstock-Kurzweil integrable

over [a,b] and
b m
f= f.
=X,

Proof. Suppose first that [a, b] is divided into two subintervals, I; = [a, ¢]
and I = [¢,b], and f is Henstock-Kurzweil integrable over both inter-
vals. Fix ¢ > 0 and, for ¢ = 1,2, choose a gauge 7v; on I, so that

if D is a «y;-fine tagged partition of I;, then ‘S (f,D) - fl f‘ <5 If
z < ¢, then the largest interval centered at z that does not contain c is
(x—lz—cl,z+]z—c|) = (z — |z — ¢,c); similarly, if 2 > ¢, the largest

such interval is (c,z + |z — ¢}). Define a gauge on all of I as follows:

v (@) N(z—|z—d,c)if z € [a,c)
1@ =4 @ (oot le—d) ifze (b |
n{e)Nyg(c) if z=c

Since ¢ € «v(z) if, and only if, z = ¢, ¢ is a tag for every v-fine
tagged partition. Suppose that D is a ~-fine tagged partition of [a, b].
If (¢,J) € D and J has a nonempty intersection with both I; and Iy,
divide J into two intervals J; = J N I;, with J; C ~,(¢), ¢ = 1,2.
Then, f{c)€(J) = f(c)€(J1) + f(c)£(J2). Write D as Dy U Dy, where
D; = {(z,J)y € D: J C L}. By the construction of v, D; is a v;-fine tagged
partition of I;. After dividing the interval associated to the tag c, if neces-
sary, we have that S(f,D) = S(f,D1)+ S (f,D3). Thus,

sum-{f s ] H

S(,Dy) - f] [ (o0~ [ 1
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Thus, f is Henstock-Kurzweil integrable over [a, 6] and | : f=/ nf+ i) nd
The proof is now completed by an induction argument. See Exercise 4.17. O

A key point in the previous proof is defining a gauge in which a particular
point {¢) is always a tag. By iteration, one can design a gauge v that forces
a finite set of points to be tags for every y-fine tagged partition.

Let ¢ be a step function defined on [a, b] with canonical form ;" a;x7,.
Since the characteristic function of an interval is Riemann and, hence,
Henstock-Kurzweil integrable, by linearity

m m
[o=Ya [x1. =Y wen
i i=1 I i=1

So, every step function defined on an interval is Henstock-Kurzweil inte-
grable there, and the value of the Henstock-Kurzweil integral, [, ¢, is the
same as the value of the Riemann and Lebesgue integrals of ¢.

Lemma 4.30 Let f: I =a,b] — R. Suppose that, for every ¢ > 0, there
are Henstock- Kurzweil integrable functions ¢, and @y such that ¢; < f <
@y on I and [, ¢y < [, 1 +€. Then, f is Henstock-Kurzweil integrable on
I.

Proof. Let € > 0 and choose corresponding functions ¢; and ¢,. There
are gauges v, and v, on I so that if D is a ;-fine tagged partition of I,
then |S (¢;, D) — [, ;| < € for i =1,2. Set v(2) = 7; () N7, (2). Let D
be a y-fine tagged partition of I. Then,

/‘Pl"€<5(‘P1,'D)SS(f,D)SS(<P21D)</‘P2+6</801+25-
I I I

Therefore, if Dy and Dy are y-fine tagged partitions of I then

S(f,D1),5(f,D2) € (/%—6/901-}-26)

This implies that

IS (f,D1) = S(f,D2)] < 3e.

|

By the Cauchy criterion, f is Henstock-Kurzweil integrable.

Now, suppose that f is a continuous function on [a,b]. Let P =
{zo,Z1,...,Zm} be a partition of [a,b] and recall m; = infs, | <i<q, f(t)
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and M; = sup,, ,<i<s, f(t). Define step functions ¢, and ¢, by

(pl (t) le{zo,zl] Zm]X(IJ 1,133] )
and

@2 (t) = MiX(zy,zy) (¢ +ZMJX(9:] Ly ()

j=2

Then, clearly, ¢v; < f < ¢y and ¢; and ¢, are Henstock-Kurzweil inte-
grable. Further, since f is uniformly continuous on [a,b], given ¢ > 0,
there is a & > 0 so that |f (z) — f (y)] < = for all 2,y € [a,}] such that
|z — y| < 6. Suppose we choose a partition P with mesh less than §. Then
|M; —my| < 3% fori=1,...,m. It then follows that o, (z) < ¢, (z)+55

[ TS By Y

By the previous lemma, we have proved that every continuous function
defined on a closed interval is Henstock-Kurzweil integrable.

Theorem 4.31 Let f : [a,b] — R be continuous on [a,b]. Then, f is
Henstock-Kurzweil integrable over [a, b].

Of course, this result is not surprising. By Theorem 2.27, continuous
functions are Riemann integrable and, by Theorem 4.14, Riemann inte-
grable functions are Henstock-Kurzweil integrable.

4.4 TUnbounded intervals

We would like to extend the definition of the Henstock-Kurzweil integral
to unbounded intervals. Given a function f defined on an interval I C R,
it is easy to extend f to all of R by defining f to equal 0 off of I. This
‘extension’ of f to R should have the same integral as the original function
defined on 7. So, we may assume that our function f is defined on R.

To extend the definition of the Henstock-Kurzweil integral to functions
on R, we need to define a partition of R. A partition of R is a finite,
ordered set of points in R*, P = {—o00 = zg,21,...,2Z, = oo}. Still, if we
extend our definition of the Henstock-Kurzweil integral directly to R, we
run into problems immediately since any tagged partition of R will have
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at least one (and generally two) subintervals of infinite length since, if I is
an unbounded interval, we set £(I) = co. Even with the convention that
000 =0, if the value of the function at the tag associated with an interval
of infinite length is not O then the Riemann sum would not be a finite
number. Such a situation arises if we consider a positive function defined
on all of R.

Example 4.32 Define f : R—Rby f(z) = 5z, Let P # @ be a
partition of R. Then, P has two unbounded intervals, ones of infinite
length, say I and I,,. If ay,a, € R are the tags, then

f(a1) (1) + f(an) £ (L) = oo.
If f(2z) = 1%+ and a; < 0 < @y, this expression is not even well defined.

To get around this problem, we consider f to be defined on the ex-
tended real line, R* = RU{—00, 00}, and we define f : R* — R by setting
f(o0) = f(—o0) = 0. We call intervals of the form [a,00] and [~c0,aq]
closed intervals containing oo and —o0, and (a, 0o] and [—o0,a) open inter-
vals containing oo and —oo. If a; = —oc0 and a,, = oo, then we avoid the
problem above. To handle intervals of infinite length, we will often choose
gauges so that the only tag for an interval containing oo (—oo) will be oo
(—o0).

Remark 4.33 Suppose that f : I C R — R. For the remainder of this
chapter, we will always assume that f is extended to R* by setting f (z) =0
for z & I, this, of course, implies that f is equal to 0 at co and —oo.

Let I C R* be a closed interval. We define a partition of I to be a
finite collection of non-overlapping closed intervals {Iy,..., I} such that
= UL I;. A tagged partition of I is a finite set of ordered pairs D =
{(t;, Y :i=1,...,m} such that {I,;:i=1,...,m} is a partition of [a,}]
and t; € I;, i = 1,...,m. The point t; is called the tag associated to the
interval I,
Let I be a closed subinterval of R* and suppose that f : I — R. Let
D={(;,1;):i=1,...,m} be a tagged partition of . The Riemann sum
of f with respect to D is defined to be

m

S(f,D)=)_ft)e(L).

i=1
If co and —co are the tags for any intervals of infinite length, then this sum
is well defined and finite.
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For real numbers ¢, a gauge at t was defined to be an open interval cen-
tered at ¢, (t —d(¢),t+ d(t)). This definition does not make sense when
t = 00, so we need to revise our definition. It turns out that the impor-
tant feature of a gauge is that the gauge associates to ¢t an open interval
containing t, not that the interval is centered at ¢. Thus, we can revise the
definition of a gauge.

Definition 4.34 Given an interval I = [a, ], an interval-valued function
v defined on I is called a gauge if, for all ¢ € I, v(¢) is an open interval
containing ¢.

Since (t — 6 (t),t + & (t)) is an open interval containing ¢, if a function
~ satisfies the Definition 4.9, then it satisfies the Definition 4.34. In fact,
the two definitions of a gauge, one defined in terms of a positive function
¢ (t) and the other in terms of an open interval containing ¢, are equivalent.
See Exercise 4.18. This new definition extends to elements of R* by setting
v (00) = (a,00] and 7 (—o00) = [~00, b) for some a,b € R.

Definition 4.35 Given an interval I C R*, an interval-valued function vy
defined on I is called a gauge if, for all t € I, v (¢) is an open interval in R*
containing ¢. If D = {(¢;,1;) : i =1,...,m} is a tagged partition of I and
«v is a gauge on I, we say that D is y-fine if I; C v (¢;) for all i. We denote
this by writing D is a y-fine tagged partition of I.

We show first that for any gauge v, there exists a y-fine tagged partition.

Theorem 4.36 Let v be a gauge on a closed interval I = [a,b] C R*.
Then, there is a y-fine tagged partition of I.

Proof. We will prove the result for I = [a,00]. The other cases are
similar. There is a b € R such that vy(c0) = (b,00]. If b < a, then
D ={(o0,I)} is a v-fine tagged partition of I. If b > a, let Dy be a v-fine
tagged division of [a,b+ 1]. Then, D = Dy U {(o0, [b+1,00])} is a y-fine
tagged partition of I. a

We can now define the Henstock-Kurzweil integral over arbitrary closed
subintervals of R*.

Definition 4.37 Let I be a closed subinterval of R* and f: I — R. We
call the function f Henstock-Kurzweil integrable over I if thereisan A € R
so that for all € > 0 there is a gauge v on I so that for every y-fine tagged
partition D of [a, b],

IS (f,D) — Al <e.
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Note that the basic properties of integrals, such as linearity and positiv-
ity, are valid for the Henstock-Kurzweil integral. The proof that the value
of A is unique is the same as above. Thus, the notation A = [, ;[ is well
defined. Note that if I is an interval of infinite length, I = [a, o0}, say, we
write [, f= [T f.

Let I C R be an arbitrary interval. Suppose that f and g are Henstock-
Kurzweil integrable on . For all scalars a, § € R,

Jtar+p=a[1+8 [ s

that is the Henstock-Kurzweil integral in linear. It is also positive, so that
f > 0 implies that [, ;[ = 0, and satisfies a Cauchy condition. These
results generalize Propositions 4.19 and 4.20 and Theorem 4.27 and follow
from the same proofs. Finally, as in Theorem 4.29, the Henstock-Kurzweil
integral is additive over disjoint intervals. That is, f : I — R is Henstock-
Kurzweil integrable over I if, and only if, for every finite set {I; };"=1 of
closed intervals with disjoint interiors such that I = =115, f is Henstock-
Kurzweil integrable over each I;. In either case,

/abf:g/ij-

The proof of this result is a little easier than before, since we can use interval
gauges. Thus, using the notation of that proof, we can replace the gauge
in the proof by

71 (@) N (—00,¢) if z € 1 N(—00,¢)
y(@) =< vo(x)N(c,00) if z€ IN(c,00)
71 () Nyz(c) if T=c

Earlier, we proved that the Dirichlet function is Henstock-Kurzweil in-
tegrable over [0, 1] with an integral of 0. It is easy to adapt that proof to
show that a function which is 0 except on a countable set has Henstock-
Kurzweil integral 0. We now prove a much stronger result, namely that
any function which is 0 except on a null set (recall that a set E is null if
m (E) = 0) is Henstock-Kurzweil integrable with integral 0.

Example 4.38 Let £ C R be a null set. Suppose that f : R— R
and f = O except in E; ie, f = 0 ae. in R. We show that f is
Henstock-Kurzweil integrable over R and fIR f =0 Fixe >0 Set
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Em={t€eR:m—1<|f(t)] <m}. Note that the sets {E,, };._, are pair-
wise disjoint and E,,, C E since f equals 0 off of E, so each E,, is a null set.
For all m € N, there are countably many open intervals {I Tije am} such
that En, C Ujes, Ij" and 3 -, ¢ (I*) < €/2mm. If t € Em, let m(t) be
the smallest integer j such that ¢ € I7*. Define a gauge v on R by setting
()= (t—-1,t+1)fort ¢ E, y(t) = I fort € Enm, v (00) = (0, 00] and
v (=00) = [~00,0). (The choice of 0 for an endpoint is arbitrary.)

Suppose that D = {(t;, ;) ;¢ =1,...,k} is a y-fine tagged partition
of R*. Let Dy = {(t;,J;)€D:t; ¢ E} and, for m € N, let D,, =
{(t;, ;) €D :t; € Epy}. Then, S(f, Do) = 0 and, since the intervals
{Ji : (ts, Ji) € D} are non-overlapping and U, ,7.)ep,, Ji C Ujeon L]

S =| S @) Sm S L) < 5

(ti,J:)EDm (ti,J:)EDm
Thus,
o0 o E
S{f, D) < S(f, D) < — =€,
|5 (£,D)] ;:o' (£, D) ,,;2"‘

so f is Henstock-Kurzweil integrable over R and fR f = 0. In particular, if
E is a null set, then xp is Henstock-Kurzweil integrable with fR xg = 0.

As a consequence of this example, we see that if f: R —-Rand f =0
except on a null set F, then f ; [ =0 for every interval I C R. We will show
later, after discussing Part II of the Fundamental Theorem of Calculus, that
if f; f =0 for every interval I C R then f =0 a.e..

In particular, if £ C R is a null set, then xp is Henstock-Kurzweil
integrable with f ;1 Xg = 0 for any interval I < R. We show next that
the converse to this statement is true; that is, if fR xg = 0, then F is
measurable with m {F) = 0. In order to prove this result, we will use a
covering lemma. Suppose we have a set £ C R and a collection of sets
{5} scc such that B C UseeS. This covering lemma will be used to pick
a subset of C so that the union of the members of the subset still cover E
and have additional useful properties.

Lemma 4.39 Let I C R be a closed and bounded interval and E C I
be nonempty. Let v be a gauge on I. Then, there is a countable family
{(tk, Jx) : k € o} such that the intervals in {Jx : k € o} are non-overlapping
and closed subintervals of I, ty, € JyNE, Ji C v (tx), and B C Ugeodi C 1.
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Proof. Let Dy be the set of closed subintervals of T obtained by dividing
I into 2% equal subintervals. In other words, D; contains the two inter-
vals obtained by bisecting I into two equal parts, Ds consists of the four
intervals obtained by bisecting the two intervals in D;, and, in general, Dy,
is comprised of the 2* intervals created when the intervals in Dy_, are bi-
sected. Notice that U2, Dy, is a countable set and if J' € Dy and J” € Dy,
then either J’ and J” are non-overlapping or one is contained in the other.

Let £, consist of the elements J € D; for which thereisat € ENJ
with J C v (t). Next, let & be the family of intervals J € D, such that
there is at € ENJ with J C v(t) and J is not contained in any element
of &1, and continue the process. Thus, one gets a sequence of collections
of closed subintervals of I, {&x} 5., some of which may be empty. The set
& = U2 & is a countable collection of non-overlapping, closed intervals in
I. By construction, if J € £, then there is a t € EN J such that J C v (¢).
It remains to show that £ C UjeeJ.

Suppose t € E. Then, there is an integer K so that for £ > K, if
Jr@y € Di is the subinterval that contains t, then Jg) C 7 (t). Either
Ji € Ex or thereisa J € Uf;]l&c such that Ji C J. Thus, t € Ujeed, as
we wished to prove. O

We are now ready to prove

Theorem 4.40 Let E C R. Then, E is a null set if, and only if, xg is
Henstock-Kurzweil integrable and g x5 = 0.

Proof. The sufficiency is proved in Example 4.38. To prove the neces-
sity, assume that x g is Henstock-Kurzweil integrable with integral 0. By
Exercise 4.9, it follows that x gn|_, ) has integral 0. Thus, we may assume
that E is a bounded set, since if we can show that E N [-n,n] is a null set
for all n € N, it follows that E is a null set.

Let I be a bounded interval containing £. Fix ¢ > 0 and choose a
gauge v such that |S(xg,D)| < 5 for every 7-fine tagged partition D of
I. Let {(tx,Jx):k € 0} be the countable family given by Lemma 4.39.
Let o/ C o be a finite subset. The set I \ UgeyrJx is a union of a finite
set of non-overlapping intervals. Let Kj,...,K; be the closure of these
intervals, and let D; be a y-fine tagged partition of K;, ¢ = 1,...,l. Then,
D ={(tg, Ji) : k € '} Ul_; D; is a y-fine tagged partition of I. Since x5 >
01

D L) = 3 xp () ) < S (s, D) < 2

keo’ keo’
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Since this is true for every finite subset of o, it follows that

> Jk)<~

keo

Finally, for each k£ € o, let I;; be an open interval containing Jy with
2(Iy) = £(Jx)+€27%. Since E C UreoJi C Ueo Ik, {Ix} e, is a countable
collection of open intervals containing E. Further,

St =Y (e +5x) =Y e+ Y < s s =c

k€o keo keo k€o

Since this holds for all € > 0, we see that E is a null set,. g

In the following example, we relate Henstock-Kurzweil integrals to infi-
nite series.

Example 4.41 Suppose that E,;“;l ay, i1s a convergent sequence and set
fx) = 02, arXp,p41) (2). We claim that f is Henstock-Kurzweil inte-
grable over [1,00) and

Kmf:gak.

Since the series is convergent, there is a B > 0 so that |ax| < B for all
k € N. Let € > 0. Pick a natural number M so that 'Zk ak' < € and

la;| < € for j > M. Define a gauge « as follows. For ¢ € (k,k+ 1), let
v (t) = (k,k+1); for t = k, let v (t) = (¢ — min (585,1) ,¢ + min (555.1));
and, let v (oo) = (M, 00]. Suppose that D = {(t;,;):i=1,...,m} is a
~-fine tagged partition of [1, co]. Without loss of generality, we may assume
that t,, = 0o and I, = [b, 00], so that b > M and f (tm) ¢ (In) = 0. Let K
be the largest integer less than or equal to b. Then, K > M.

Note that for ¥ € N and & < b, kK must be a tag. Let Dy =
{(t;, ;) €D :t; e N}, For k € N, U{I;: (t,1;) € Dy and t; = k} C v (k).
Thus,

SUDMI= D ax Y. LEm|<D el D> L(H)

1 (t;,];)EDniti=k k=1 (t:,1:)EDxsti=k

sl €0y <Z|a’°]2k 1B sz T =2

K
a

<3
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Set Dy = {(ti, ;) € D : t; € (k,k +1)}. Note first that

IS(f,Px)—axl=| > axb(l)-ax
(t:,1:)€EDK

= lag Z C(L)-1)| <lak| <e.
(t:,1:)EDk

For 1 < k < K, by the definition of y(j) for j € N, U, n)ep, i is a

subinterval of (k,k + 1) with length ¢y > 1 — 585 — ser1, and

S(FD) = >, all)=ar Y, (L) =ayl.
(t:,1i)EDy (ti,0:)€Dx

Thus,

€ € €
1S (f,Dx) — ax| = lax (4 — )| < B (2’°B + 2k+1B) < 25T

Therefore,

oo

S S(,D0) + (D0 - S e
k=1

k=1

’S(faD) -Zak
k=1

K-1
D AS(f.De) — ax}

< + 15 (f, Pk ) — ak|
k=1
IS (£PW+]| D ax
k=K+1

<Z-2—:j-l-+€+2€+€=66.
k=1

It follows that f is Henstock-Kurzweil integrable over [1, oo).

Moreover, if the function f (z) = 3772, akX(kk+1) (%) is Henstock-Kurzweil
integrable, then the series ) 2 | a, converges. See Exercise 4.23.

This example highlights two of the important properties of the
Henstock-Kurzweil integral. Note that we have evaluated the integral of
a function defined on an interval of infinite length directly from the defini-
tion of the Henstock-Kurzweil integral. There is no need to view this as an
improper integral. We will discuss this issue in the following section.

We say a function f is conditionally integrable if f is Henstock-Kurzweil
integrable but | f| is not Henstock-Kurzweil integrable. Using this example,
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one can now easily construct conditionally integrable functions. If 3"7° ; ax
is a conditionally convergent series, then f(z) = 3732, akX(k k1) (%) i
a Henstock-Kurzweil integrable function by Example 4.41 while |f (z)| =
> kb1 lak] X (k641 (%) is not Henstock-Kurzweil integrable by Exercise 4.22.
Thus, f is a conditionally integrable function. This is in contrast to the
Riemann and Lebesgue integrals, for which integrability implies absolute
integrability.

Example 4.42 The function f (z) = 5o, = x(k k+1) (%) is a condi-
tionally integrable function on [1, c0).

4.5 Henstock’s Lemma

If f is Henstock-Kurzweil integrable over an interval I, given any ¢ > 0,
there is a gauge v so that if D = {(¢;,[;) : i1 =1,...,m} is a y-fine tagged
partition of I, then

<€ (4.6)

me)e(nwjlf

i=1

Since [, f = "I~ [, f, we can rewrite Equation (4.6) as

g{f(ti>e(fi)—/hf}‘=

Thus, one is led to consider if, in addition to controlling the difference
of sums, one can simultaneously control the estimate for a single interval

m

S -3 [ 1

i=1 i=1

< €.

fayed)y - J, f ’ < ¢ or, more generally, an estimate of part of the sum;
that is, if D’ C D, one might expect that

Fityem) - ;
(ti,g):ev' '/U(ti,li)evlli
- Z fe Z / <e (47)

(t:,L:)ED’ (ti.1;)eD ” I

However, in general, Equation (4.6) holds due to cancellation in the expres-
sion on the left hand side. Since the cancellation from one interval may help
the estimate for another interval, it is not at all clear that Equation (4.7)
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will hold, even if D’ contains a single pair (¢,7). In this section, we will
show that Equation (4.7) (with < replaced by <) follows from Equation
(4.6).

Let I C R be an interval. A subpartition of I is a finite set
of non-overlapping closed intervals {Ji}f=1 such that J; ¢ I for i =
1,...,k. A tagged subpartition of I is a finite set of ordered pairs S =
{(ti, Ji) 1 =1,...,k} such that {Ji}f=1 is a subpartition of I and t; € I,.
We say that a tagged subpartition is v-fine if I; C 7 (¢;) for all i. Note that
a v-fine tagged partition of I is also a y-fine tagged subpartition of I.

We will now prove Henstock’s Lemma, which is a valuable tool for deriv-
ing results about the Henstock-Kurzweil integral. We will apply Henstock’s
Lemma to the study of improper integrals and convergence theorems.

Lemma 4.43 (Henstock’s Lemma) Let f : I C R — R be Henstock-
Kurzweil integrable over I. For e > 0, let v be a gauge such that if D is a
v-fine tagged partition of I, then

< €.

st.o)- [ 1

I

Suppose D' = {(z1,J1),...,(zk, Jk)} s v-fine tagged subpartition of I.
Then

k

Z{f(xneui)—/hf}

i=1

k

geandz

i=1

fayewn - |

J,

< 2e.

f

Proof. Let € > 0 and 7 a gauge satisfying the hypothesis. The set I\
U%_, J; is a finite union of disjoint intervals. Let K7,..., K, be the closure
of these intervals. Fix n > 0. Since f is Henstock-Kurzweil integrable over
each K, there is a y-fine tagged partition D; of K; such that

<L
m

IS(f,Dj)—/ f

3

One can find such a partition by choosing a gauge ~; for the interval K;; and
the margin of error ;?L—, and then choosing a partition which is y N v,-fine.
Set D =D'UD;U---UD,,. Then, D is a y-fine tagged partition of I. Since



164 Theories of Integration

S(f»D)=S(f,D')+Z;Z:IS(f,'Dj),Wehave
iS(f,D’) / | S(f, D) - /f+Z{S(f, /}
“;{S(f,Dj)—/Kjf}l

sfsum- [+ sum- [ g

<etmd =etm.
m

Since n > 0 was arbitrary, it follows that

g{f(xi)wi)—/h f}’ = *su,p')_g/hf

To prove the other estimate, set

<e

Dt = {(mi,Ji) eD’:f(mi)e(Ji)—/JifZO}

and D~ = D'\D". Note that both D~ and D* are y-fine tagged subparti-
tions of I, so they satisfy the previous estimate. Thus,

Z F@) (i) -

This completes the proof of the theorem. O

Suppose that I is a subinterval of R and ¢ € I. Suppose that f : I — Ris
Henstock-Kurzweil integrable, so that f is integrable over every subinterval
of I. Define the indefinite integral F of f by F (z f fforalzel.

Theorem 4.44 If f : I — R is Henstock-Kurzweil integrable over I, then
F is continuous on I.
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Proof. Fixa € Iand x € I. Let € > 0. Choose a gauge -y so that
|S(f,'D) -/; fl < ¢ for every v-fine tagged partition D of I. If v(z) =
(a, ), set § = min {ﬁ —z,T— a, T—W;(T)—l} and suppose that y € I and
|y — z| < 8. Let J be the subinterval of I with endpoints z and y. Applying
Henstock’s Lemma to the +-fine tagged subpartition {(x, J)} shows that

f

<e.

pmaﬂ—/

J
This implies that

|F' (y) = F (2)| = ‘/Jf <e+|f(x)|€(J) < e+e=2

Thus, F is continuous at x. Since x € I was arbitrary, F is continuous on
I. O

Thus, Henstock’s Lemma implies that the indefinite integral of a
Henstock-Kurzweil integrable function is continuous, We apply the sec-
ond inequality in Henstock’s Lemma in the proof of the following corollary.

Corollary 4.45 Let f : I = [a,b] — R be Henstock-Kurzweil integrable
over I. If f:f = 0 for every ¢ € [a,b], then |f| is Henstock-Kurzweil
integrable with [, |f| = 0.

Proof. By hypothesis, if a < ¢ < d < b, then fcdf = f:f - facf =0,
so that f ; f =0 for every interval J C I. Let € > 0 and choose a gauge y
such that

< €

kmm—ff

I

for every vy-fine tagged partition D. Let D = {(t;, ;) :¢=1,...,m} bea
~-fine tagged partition. By Henstock’s Lemma,

m

Z If (@) £(1:) = Z

i=1

ﬂmum—ﬁds%

which implies that | f| is Henstock-Kurzweil integrable with [, |f] =0. O

We have seen above in Example 4.25 that an unbounded function can
be Henstock-Kurzweil integrable, and in Example 4.41 that a function de-
fined on an unbounded interval can be Henstock-Kurzweil integrable. Us-
ing Henstock’s lemma, we show that there are no improper integrals for the
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Henstock-Kurzweil integral. We begin by considering a function defined on
a bounded interval.

Theorem 4.46 Let f : [a,b] — R be Henstock-Kurzweil integrable over
[c,b] for every @ < ¢ < b. Then, f is Henstock-Kurzweil integrable over
[a,b] if, and only if, lim 4+ fcb [ exists. In either case,

b b
/a f:cl_l»rf+ . !

Proof. Suppose first that f is Henstock-Kurzweil integrable over [a, b].
Let € > 0 and choose a gauge <y so that if D is a ~y-fine tagged partition of
[a, b], then

b
‘su,o)—/ i<

a

For each ¢ € (a,b), there is a gauge v, defined on [c,b] so that if £ is a
~.-fine tagged partition of [c, b] then

‘S(f,ﬁ)—/cbf

Without loss of generality, we may assume that v, C -, by replacing ~, by
v, Ny if necessary. Choose ¢ € v (a) such that |f (a)| (c — a) < €/3.

Fix s € (a,c) and let £ be a v,-fine tagged partition of [s,b]. Set
D ={(a,la,s])} UE. Then, D is a y-fine tagged partition of [a,d], and

7f—]f < }f—S(f,D) +

<6+6+6—e
3 33 7

<€
3.

b

s<f,e>~/f +1f (@) (c - a)

8

Thus, lim,_, ,+ fcbf = f: f.

Next, suppose the limit exists. Choose {cx}z.; C [a,b] so that cg = b,
¢k > cpy1 and ¢ — a. Define a gauge y; on [c1, ¢g] so that if D is a y;-fine
tagged partition of [c1, ¢g], then

€
< =.

strmr- [ 1] <4

€1
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For k > 1, define a gauge 7, on [cg, ck—2] so that if D is a y,-fine tagged
partition of [c, cx—2], then

[S(f,D) - / f

Ck

<-2—k.

Set A = lim,_, .+ fcb f. Choose K so that | [° f — Al <efora<s<ecg
and |f (a)| (ck — a) < €. Define a gauge «y on [a, b] by

{—o0, cK) ft=a
() =< 7 (t)N(c1,00) ifcp <t< gy
Vi () N (e ep—2) ifep <t < g fork>1

Let D be a v-fine tagged partition of {a, b], and Dj, be the subset of D with
tags in (ck,ck—1]. Since D has a finite number of elements, only finitely
many Dy, # @ and D;ND; = @ for ¢ # j. Let Ji be the union of subintervals
in Dy. Then, Dy is v,-fine on Ji, and J; C (¢1,¢0) and J C (ck,ck—2). By
Henstock’s Lemma, for k > 1,

€

f—S(f)Dk) 2k'

J

<

Let (z,[a,d]) € D. By the definition of v, a € v(¢) if, and only if, t = a,
so that = = a. Since S(f,D) = f(a)(d —a) + 152, S (f,Dx) and [} f =
S [ 7. /> in which both sums have finitely many nonzero terms,

oo
€
< E — = 3€.
€+k=12k+6 €

A~ S(f, D) <[f(a)l(d—a)+ +

Thus, f is Henstock-Kurzweil integrable over [a,b] and f: f=A O

This proof can be modified to handle a singularity at b, instead of at a.
Further, for a singularity at an interior point ¢ € (a,b), one may consider
the integrals over [a, c] and (c, ] separately.

Suppose that f : [a,b] — R is Riemann integrable over [c,b] for all
a < ¢ < b and has an improper Riemann integral over [a,b]. Then, f is
Henstock-Kurzweil integrable over [e,b] and lim,_ .+ fcb f exists. Thus, f
is Henstock-Kurzweil integrable over [a, b].
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Example 4.47 Let p € R and define f : [0,1] - R by f(t) = t?, for
0 <t <1and f(0) = 0. By Example 2.44, we see that f is Henstock-

Kurzweil integrable over [0, 1] with integral fol tPdt =

1
7 if, and only if,
p>—1.
Suppose, next, that f is defined on an unbounded interval I = |a, o).
We show that integrals over I exist in the Henstock-Kurzweil sense as proper
integrals, demonstrating that there are no Cauchy-Riemann integrals in the

Henstock-Kurzweil theory. The proof is similar to the previous one, treating
the difficulty at co as the one at a was handled above.

Theorem 4.48 Let f: I = [a,00] — R be Henstock-Kurzweil integrable
over [a,b] for every a < b < 0. Then, f is Henstock-Kurzweil integrable
over a, 00| if, and only if, limy_, f: f exists. In either case,

/ f—hm/f

Proof. Suppose first that f is Henstock-Kurzweil integrable over . Let
€ > 0 and choose a gauge - so that if D is a ~-fine tagged partition of I,

then
\sw») - [

Suppose v {co) = (T, 00]. For each ¢ > max {T,a}, there is a gauge 7,
defined on [a, ¢] so that if £ is a 7y, -fine tagged partition of [a, ¢] then

swe- [ 1

and such that v, (z) C v (z) for all z € [a, ]
Fix ¢ > max {T,a} and let £ be a v, -fine tagged partition of [a, c]. Set
D = E U {(o0,][c,00])}. Then, D is a y-fine tagged partition of I, and

i

<e
5

€

< =
27

If—S(f,D)l+ S(16)= [ 1| +15 (el e(le,o0)

<ELif_.
2 2 7

b
since |f (00}| £([c, 00]) = O by convention. Thus, limb_,oo/ f=f
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Next, suppose the limit exists. Choose {cx}5e; C [a,o0) so that cp = a,
ck < cky1 and cg — oo. Define a gauge v, on [co, ¢1] so that

1s<f,1>>—/6:’f

for every v,-fine tagged partition D of [cg,c1]. For k > 1, choose a gauge
Yx on [cx—1,cr41] so that if D is a ,-fine tagged partition of [cx—1, cry1],

then
}S(f,D) - [

Cr—1

€

<%

€

< 2k+2"

Set A = limp_, o fab f. Choose K so that ‘f: f- A\ < €/2 for b > ck.
Define a gauge v on I by

Yo (B) N (~o0,c1) Hep<t<a
v () = < v, (&) N (ch—1,h+1) f ek <t < gy for k=1,
(ck, 00] if z=o00

Let D be a +-fine tagged partition of I. If I; = [o, 00| is the unbounded
interval of D, then t; = 0o and a > cx. For &k > 0, let Dy, be the subset
of D with tags in [ck,ck4+1). As above, only finitely many Dx # @ and
D; ND;j = P for i # j. Let Jx be the union of subintervals in Dy. Then,
Dy is y,-fine on Ji, and Jo C [co,¢1) and Jg C (ck—1,Cck+1). By Henstock’s
Lemma, for £ > 0,

™

f‘S(f’Dk) S

[\]
x
+
0

Jk

Since a > ¢k, it follows that

[A-S(f,D) < |A-

/f S(f.D

/ =3 S(£,De) + £ (00) £(1)
J k=0

l\’)lm
Mg TTMS \’?

< -+

k

2k+2 = €.

[T
i
o

Thus, f is Henstock-Kurzweil integrable over I and [, f = A. O



170 Theories of Integration

An analogous result holds for intervals of the form [—oo,b]. A version
of this result for [~o0, 0] follows by writing [—oc0, 00] = [—00,a] U [a, o).
The value of the integral so obtained does not depend on the choice of a.
See Exercise 4.28.

Example 4.49 Let p € R and define f : [1,00] — R by f(t) = ¢7?, for
t > 1. By Example 2.47, we see that f is Henstock-Kurzweil integrable

over [1, 00] with integral [ tPdt =

1
T if, and only if, p > 1.

Following Example 4.42, we saw that f (z) = Y 72, k x(k k+1) (2) 18
a conditionally integrable function on [1, co]. We now give another example
of a function that has a conditionally convergent integral.

Example 4.50 It was shown in Example 2.49 that f (z) = % has a con-
vergent Cauchy-Riemann integral over [1,00), but that |f| is not Cauchy-
Riemann integrable there. By Theorem 4.48, f is Henstock-Kurzweil inte-
grable and |f| is not, so f has a conditionally convergent integral.

We now use these theorems to obtain several useful results for guaran-
teeing absolute integrability. The first result includes a comparison test.

Corollary 4.51 Let f : [a,b] C R* — R. Suppose that f is absolutely
integrable over [a,c| for everya < c < b.

(1) Suppose f is nonnegative. Then, f is Henstock- Kurzweil integrable over
[a,b] if, and only if, sup { [7 f : a < ¢ < b} < o0.

(2) If there is a Henstock-Kurzweil integrable function g : [a,b] — R such
that |f (1)] < g(t) for allt € I, then f is absolutely integrable over I.

Note that b may be finite or infinite.

Proof. To prove (1), note that the function F (z) = [ f is increasing
on [a,b]. Thus, sup {[; f:a < c< b} =lim., [ f, and the result follows
from either Theorem 4.46 or 4.48.

For (2), define F as above and set G (z) = [”g. Since g is Henstock-
Kurzweil integrable, G satisfies a Cauchy condition near b. We claim that
F, too, satisfles a Cauchy condition near b. To see this, note that for

a<z<y<h,
/:f‘S/:Ifls/:g=0(y)—6'(w)-

IF(y) - F () =
Thus, F is Cauchy pear b, and f is Henstock-Kurzweil integrable, by either
Theorem 4.46 or 4.48. Applying the same argument to H (z) = faz ¥l
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shows that |f| is Henstock-Kurzweil integrable, so that f is absolutely
integrable. O

As a consequence of the corollary, we derive the integral test for con-
vergence of series.

Proposition 4.52 Let f : [l,00] — R be positive, decreasing and
Henstock-Kurzweil integrable over [1,b] for all 1 < b < oo. The integral
floo [ exists if, and only if, the series 3 .-, f (k) converges. In either case,

IS8 f® < f+5Q.

Proof. Since f is decreasing, fg’L +1) < flny<f@)fori<z<i+1,
which implies that f (i +1) < f:+ f < f(i). Summing in 1 yields

n-1 n n-—1
Zf(iH)S/l PTG, (4.8)

By the previous corollary, it now follows that f is Henstock-Kurzweil inte-
grable over [1, 0] if, and only if, the series converges. Letting n — oo in

(4.8) shows that [ f <352, f(k) < [ f+ £ (D). O

A function ¢ is called a multiplier if the product ¢f is integrable for
every integrable function f. For the Lebesgue integral, every bounded,
measurable function is a multiplier. For if ¢ is measurable and bounded by
B, then for any Lebesgue integrable function f, ¢f is measurable and ¢f
is bounded by the Lebesgue integrable function B|f|, so ¢f is Lebesgue
integrable by Proposition 3.94. Surprisingly, for the Henstock-Kurzweil
integral, continuous functions need not be multipliers, even on intervals of
finite length.

Example 4.53 Define F,G:[0,1] = Rby F(0) =G (0) =0and F (z) =
z?sin (z7*) and G (z) = z%cos (z7*) for 0 < < 1 and let f = F’ and
g =G'". Since (FG)' = Fg+ fG, Fg+ Gf is Henstock-Kurzweil integrable
by Theorem 4.16. However, F (z) g (z) — f (z) G (z) = % for  # 0, is not
Henstock-Kurzweil integrable over [0,1]. This implies that neither Fg nor
fG is Henstock-Kurzweil integrable over [0,1]. Since, for example, F is
continuous and g is Henstock-Kurzweil integrable, we see that continuous
functions need not be multipliers for the Henstock-Kurzweil integral. See
Theorem 4.26.

A function ¢ is a multiplier for the Henstock-Kurzweil integral if, and only
if, it is equal almost everywhere to a function of bounded variation, which
we define in the next section. (See [Lee, Theorem 12.9].)
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4.6 Absolute integrability

Let f be Henstock-Kurzweil integrable over I. Since f need not be ab-
solutely integrable, we do not know whether or not | f| is Henstock-Kurzweil
integrable. We now turn our attention to characterizing when a Henstock-
Kurzweil integrable function is absolutely integrable. For this characteri-
zation, we will use the concept of hounded variation.

4.6.1 Bounded variation

The variation of a function is a measure of its oscillation. A function with
bounded variation has finite oscillation.

Definition 4.54 Let ¢ : [a,b] — R. Given a partition P = {zg,...,Zm}
of [a, b], define the variation of ¢ with respect to P by

v, P) =Dl (@) — (1)l

and the variation of ¢ over [a, b] by
Var (¢, [a,b]) = sup {v (¢, P) : P is a partition of [a,d]}.

We say that ¢ has bounded variation over [a,b] if Var (p,[a,b]) < 0. In
this case, we write ¢ € BY ([a, b]).

A constant function has 0 variation, which follows immediately from the
definition. A function can have a jump discontinuity and still have bounded
variation. For example, the function f defined on [0,2] by f(z) = 0 for
0<z<1land f(z) =1for 1 < z < 2 has a variation of 1, equal to
the jump at £ = 1. Somewhat surprisingly, a continuous function need not
have bounded variation.

Example 4.55 The function ¢ : [0,1] — R defined by

(p(t):{o ift=0

tsin (3) if0<t <1
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1
is continuous on [0, 1]. Set z,, = ——+—. Then,
(m+3)w
! i if m is even
(m+3)m
¢ (Tm) = ) )
———v— if m is odd
(m+ 5)71'
2m 2
so that ZTm) — @ (Tm— = > ——. Since
e (zm) — ¢ (Tm-1)| (m+%)(m—%)ﬂ' m

m=1

50 _7}% diverges, it follows that Var(y,[0,1]) = oo and ¢ does not
have bounded variation on [0, 1].

We next develop some of the basic properties of functions with bounded
variation. We first show that a function with bounded variation is bounded
and that the variation of a function is additive over disjoint intervals.

Proposition 4.56 If ¢ € BV ([a,b]) then ¢ is bounded on [a,b].
Proof. For z € [a,b], consider the partition P = {a, z, b} of [a,b]. Then,
o () ~ @ (a)] + ¢ (b) — ¢ (2)] < Var (p,[a,b]),

which implies

o (@)] < = [l (@)] + ¢ ()] + Var (o, |a, b))
Thus, ¢ is bounded on [a, b]. |

If a < ¢ < b, by the triangle inequality

v (¢, {a,b}) = I (b) — ¢ (a)|
<lple) (@)l + 1 (b) — ¢ (c)] = v(p,{a,c,b}).
This inequality is the basic point in the proof that the variation of a function

increases as one passes from a partition to one of its refinements. We will
use this result to prove that variation is additive.

Proposition 4.57 Let ¢ :{a,b] - R. If P and P’ are partitions of [a, b]
and P’ is a refinement of P, then v (v, P) < v (¢, P).

Proof. Suppose first that P’ has one more element than P; that
is, there is an & such that P = {z¢,21,...,2,} and P’ =
{zo,z1,...,%i_1,& 24,...,2Zn}. Then, all the terms in the sum for
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v (p,P) are the same as those for v (p,P’) except for {p (z;) — ¢ (xi—1)|
which is bounded by | (z;) — ¢ (3)| + ¢ (&) — ¢ (wi-1)|. Thus, v (¢, P) <
v (¢, P’). The proof now follows by an induction argument. O

‘We can now show that the variation of a function is additive over disjoint
intervals.

Proposition 4.58 Let ¢ : [a,b] — R and suppose that a < ¢ < b. Then,
Var (p,a,b]) = Var (¢, [a,c]) + Var (¢, [c,b]) .

Proof. Let P be a partition of [a,b] and set P = P U {c}. Then,
P1 = {zx€P :x<c} is a partition of [a,c] and Po = {z € P’ :z > c}
is a partition of [c,b], and v (¢, P’) = v{(p, P1) + v{(p, P2). Thus, by the
previous proposition,

v(p,P) S v(p, P) =v(p,P1)+v(p,P2) < Var (¢, a,c]) +Var (g, [c,0]) .

It follows that Var (g, {a,b]) < Var (¢,[a,c]) + Var (e, [c, b]).
On the other hand, if P; is a partition of [a,c| and P; is a partition of
[c, b], then P = Py U P, is a partition of [a,b]. As above,

v(p,P1) + v (e, P2) =v (0, P) < Var (g, [a,8]).
Taking the supremum over all partitions P; of [a, ¢] yields
Var (¢,[a,c]) +v(p, P2) < Var (¢, [a,b]) .
Then, taking the supremum over all partitions Py of [c, b] shows that
Var (p,a,c]) + Var (¢,[c,b]) < Var (¢, [a,0]) ,
which completes the proof. |

Suppose that ¢ is an increasing function on [a,b]. fa <z < 2z <y < b,
then

lp(2) = @)+ ) —e ) =le ) —¢()].

It follows that for any partition P of [a,b], v{(p,P) = |¢(b) — ¢ (a)| and
¢ € BY (la,b]); moreover, Var (p,[a,b]) = |¢(b) — ¢ (a)]. One can argue
similarly for a decreasing function, so that every monotone function on a
bounded interval has bounded variation there. Another easy consequence
of the definition is that

v(ap + B, P) < |efv (e, P) + [Blv (¥, P),
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which implies that linear combinations of functions of bounded variation
have bounded variation. See Exercise 4.38. A surprising fact about func-
tions of bounded variation is that all such functions can be written as the
difference of increasing functions.

Theorem 4.59 A function ¢ € BV ([a,b]) if, and only if, there are in-
creasing functions p and g so that p =p —q.

Proof. If p and q are increasing functions on [a, b], by the observations
above, p—q € BV ([a, b]). So, suppose that ¢ € BV [a, b]. Define p by p(z) =
Var (¢, |a,z]), where Var (¢, [a, a]) = 0 by definition, and ¢ = p—¢. From
Proposition 4.58, p is increasing. lf a <z < y < b, then
q(y) =py) —¢ ) =Var(p,la,y]) - ¢ (y).
Thus,
q(y) — q(z) = Var (¢, [a,9]) — ¢ (¥) — {Var (g, [a,2]) — ¢ (z)}
= {Var (¢, 1a,y]) - Var (¢, [a,2])} - {0 (y) — ¢ (2)}.

Since Proposition 4.58 implies that Var (p,[a,y]) — Var(e,la,z]) =
Var (¢, [z,y)),

q(y) — q(z) = Var (¢, [z,9]) — (¢ (y) — ¢ ()) 2 0.

Therefore, g is increasing and the proof is complete. a

4.6.2 Absolute integrability and indefinite integrals

We are now ready to prove that a Henstock-Kurzweil integrable function
is absolutely integrable if, and only if, its indefinite integral has bounded
variation. Recall that we define the indefinite integral of f by F (z) = f; !

Theorem 4.60 Let f : I = [a,b] — R be Henstock-Kurzweil integrable
over I. Then, |f| is Henstock- Kurzweil integrable over I if, and only if, the
indefinite integral of f has bounded variation over I. In either case,

b
Var (F,[a,b]) = / £l

Proof. Let V = Var(F,[a,b]). Note that for a < z < y < b,

|F (y) — F(z)] = | [P | Suppose first that |f| is Henstock-Kurzweil in-
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tegrable. For any partition P = {x¢,...,2m} of I,

m m z; m z; b
v(F,P)=) |F(z:) = F(zi-1)| = f1 [fl= [ If].
; : i ; ‘/ziq ;~/(Ei—l ‘/;

Thus, V < [ |f] < o0, so F € BV ([a, b]).
Next, suppose that F' € BV ([a,b]) and let ¢ > 0. Choose a partition
P ={zg,...,Zm} of I such that

Voe<uv(F,P)<V.

Since f is Henstock-Kurzweil integrable over I, we can choose a gauge ¥
on I so that if D is a -fine tagged partition of I then IS (f,P) - fI f[ <e.
For convenience, set x_y = —o0 and zp,41 = 0. Define a gauge v on I by:

— ¥ (.'E) N (:Ei—hmi) ifz e (mi_l,xi)
o) = {P?(x)n(wi—l,wi+1) ifr=ux ’

Note that for ¢ P, v (z) is an open interval that does not contain any
elements of P. Thus, if (2,J) € D and there is an z; € P such that
z; € J C (%), then z € P. By the definition of + for elements of P, it
then follows that z = ;.

Let D={(z;,1;):i=1,...,k} be a y-fine tagged partition of I and,
without loss of generality, assume that maxl;_y = minI; for i = 1,...,k.
Let Q@ = {yo,...,yx} be the partition defined by D so that I; = [y;—1,¥s].
If z; € I?, the interior of I;, then xz; is the tag for I;. We replace
I; by the pair of intervals I} = [y;_1,z;] and I? = [z;,3] Repeat-
ing this for all the terms in P as necessary, one gets a new tagged par-
tition D'={(2},I]):i=1,..., K} in which all such terms (z;,[;) €-D
are replaced by the two terms (xz;,I}) and (z;,I?), and a refinement
P’ = PUQ of P. Note that D’ is v-fine since I} C I, C v(z;). Fi-
nally, since |f (z;)| € (L) = |f (z;)| € (I}) + |f (z;)| € (12) for all z; € P,
S{/1,D)=S{f1,D).

Since P’ is a refinement of P, by Proposition 4.57,

/1

i

K
V—e<v(F,P) Sv(E’P’):Z

i=]1

<V
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Since D’ is a v-fine tagged partition of I, it follows from Henstock’s
Lemma that

p x
;{lf(zé)lf(fé)* /If‘} <3 {!f(zé)lf(fi’)—‘/“f‘}’
<3 f(z;)wi')—/”f <2
Thus,
« x
501,2) = Vi< 50512 -3 /I;f oy /Iz{f V| < 2ete=3e
Therefore, | f| is Henstock-Kurzweil integrable and [, |f| = V. 0

Since BV ([a, b]) is a linear space, the following corollary is immediate.

Corollary 4.61 If f,g: I = [a,b] — R are absolutely integrable over I,
then f + g is absolutely integrable over I.

As a consequence of Theorem 4.60, we obtain the following comparison
result for integrals.

Corollary 4.62 Let f,g: I = [a,b] — R be Henstock-Kurzweil integrable
over I and suppose that |f (t)] < g(¢) for allt € I. Then, f is absolutely

integrable over I and
/ Ifl < f g-
I 1

Proof. Let P = {zg,...,zm} be a partition of I. Then

T m Ty
[ A= o=
z; 1 =1 Y Tio1 I

Thus, the indefinite integral F of f has bounded variation over [a, b], so by
Theorem 4.60 |f| is integrable over I and

151 = Var (Bla) < /1 0 i

Extensions of the three results in this section to functions f : R - R
are given in Exercises 4.42 and 4.43.

m

2

i=1
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The examples above of Henstock-Kurzweil integrable functions that are
not absolutely integrable involved functions defined on infinite intervals.
We conclude this section with an example of such a function on [0, 1].

Example 4.63 In Example 4.1, we exhibited a function f on [0, 1] whose
derivative f’ is not Lebesgue integrable. The key estimate in that proof is
fb'“ f' = 1/2k, where b, = 1/+/2k and a; = /2/(4k + 1). By the Funda-
mental Theorem of Calculus, f' is Henstock-Kurzweil integrable. Since the
intervals [o, 8] are pairwise disjoint,

N |Px N
var(n)> Y| [ |- 5
=1, k=1

Thus, f ¢ BV ([0,1]) so that |f’| is not Henstock-Kurzweil integrable over
[0,1].

4.6.3 Lattice Properties

We have seen that the sets of Riemann and Lebesgue integrable functions
satisfy lattice properties so that, for example, the maximum and minimum
of Riemann integrable functions are Riemann integrable. We now study
the lattice properties of Henstock-Kurzweil integrable functions.

Proposition 4.64 Suppose that f,g: I — R.

(1) The function f is absolutely integrable over I if, and only if, ft and
f~ are Henstock-Kurzweil integrable over I.

(2) If f and g are absolutely integrable over I, then fV g and f A g are
Henstock- Kurzweil integrable over I.

Proof. To prove (1), recall that f = f*—f, |fl=ft+f", ft =
If|+f and f- = 1=
2

1ntegral For (2), we observe that fVg=3[f+g+|f—glland fAg=
%[f +g—|f —g|]. By the linearity of the integral and the fact that the
sum of absolutely integrable functions is absolutely integrable, the proof is
complete. a

. The result now follows from the linearity of the

If we only assume that f and g are Henstock-Kurzweil integrable, we
need an additional assumption in order to guarantee that the maximum
and the minimum of Henstock-Kurzweil integrable functions are Henstock-
Kurzweil integrable. For example, if f’ is defined as in Example 4.1, then
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()", the maximum of f’ and 0, is not Henstock-Kurzweil integrable while
both f’ and 0 are Henstock-Kurzweil integrable.

Proposition 4.65 Suppose that f,g,h : I — R are Henstock-Kurzweil
integrable over I.

(1) If f < h and g < h, then fV g and f A g are Henstock-Kurzweil
integrable over I.

(2) If h < f and h < g, then fV g and f A g are Henstock-Kurzweil
integrable over I.

Proof. Suppose the conditions of (1) hold. Since h— f and h — g are non-
negative and Henstock-Kurzweil integrable, they are absolutely integrable.
By the previous proposition, (h — f) V (h — g) is Henstock-Kurzweil inte-
grable. Since,

(h= 1)V (k=)= 3 [(h= 1) +(h=g) +I(h = 1)~ (h=g)]
lph F—g+|-f+4ll

=h—§U+g—U—gH
:h’—f/\ga

it follows that f A g is Henstock-Kurzweil integrable. The remaining proofs
are similar. O

We saw in Example 4.53 that the product of a continuous function and
a Henstock-Kurzweil integrable function need not be Henstock-Kurzweil
integrable, even on an bounded interval, in contrast to the Riemann and
Lebesgue integrals. We conclude this section with conditions that guarantee
the integrability of the product of two functions.

Proposition 4.66 (Dedekind’s Test) Let f, : [a,b] — R be continuous
on (a,b)]. Suppose that F, defined by F (z f f fora <z < b, is bounded
on (a,b], ¢’ is absolutely integrable over [a bl, and limy_,,+ g () = 0. Then,
fg is Henstock-Kurzweil integrable over [a, b].

Proof. Fora < c<b, (Fg)' = —fg+ Fg' on the interval [c,b], so that
Fg' = (F g)'+ fg and, by the Fundamental Theorem of Calculus and the fact
that fg is continuous, Fg’ is Henstock-Kurzweil integrable over [c, b]. Since
F is bounded, there is a B > 0 so that |F¢'| < B|¢’|. Since ¢’ is absolutely
integrable, by Corollary 4.62, Fg' is absolutely integrable over [c, 8] for all
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a < ¢ < b. Thus, by Corollary 4.51, Fg’ is (absolutely) integrable over
[a,b]. Since fg = Fg' — (Fg)' from above, by the Fundamental Theorem of
Calculus,

/cbfgz/ch9’+F(C)g(C)-

Since F is bounded and lim,_,,+ g (z) = 0,

b
fg= 11m+ (

a c—a

b b b
/Fg’-%—F(c)g(c)): lim Fg’=/ Fg'

+
c c—a

by Theorem 4.46, so that fg is Henstock-Kurzweil integrable over [a, b]. O

See Exercises 4.31, 4.33, and 4.35 for additional examples of integrable
products.

4.7 Convergence theorems

The Lebesgue integral is noted for the powerful convergence theorems it
satisfies. We now consider their analogs for the Henstock-Kurzweil integral.
As we saw in the previous chapter, some restrictions are required for the
equation

/ lim fp = lim [ fe (4.9)
I k—o0 k—oo I
to hold.

Example 4.67 Define fi : [0,1] = R by fi (z) = kx(0,1/x) (z). Then,
{ fx} oo, converges pointwise to the function f which is identically 0 on [0, 1].
Thus, fol fr = 1 while fol f = 0. All the functions are Henstock-Kurzweil
integrable, but equation (4.9) does not hold.

A similar problem arises when one considers integrals over unbounded in-
tervals.

Example 4.68 The functions fx : [0,00) — R defined by fi(z) =
X(k,k+1) (%) converge pointwise to the 0 function, but each fy has Henstock-
Kurzweil integral equal to 1, so equation (4.9) does not hold.

Like the Riemann integral, the simplest condition that allows the inter-
change of limit and integral on bounded intervals is uniform convergence.
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See Exercise 4.45. However, such a result does not hold in full generality
for the Henstock-Kurzweil integral over unbounded intervals.

Example 4.69 Define fi : R — R by fi (z) = 5 x(_sx) (x). Each fx is
Henstock-Kurzweil integrable and [ fx = 1. Further, {fx}5c, converges
uniformly to the function f which is identically 0 on R so that equation
(4.9) does not hold.

The first convergence result will be an analog of the Monotone Conver-
gence Theorem for the Henstock-Kurzweil integral.

Theorem 4.70 (Monotone Convergence Theorem) Let fi, f : I C R* —
R be Henstock-Kurzweil integrable over I and suppose that {fi}re, in-
creases monotonically to f on I. Then, f is Henstock-Kurzweil integrable
over I if, and only if, sup,, [, fx < 0o. In either case,

J 1= [ jim o= jim [ .

Proof. First, assume that f is Henstock-Kurzweil integrable. Since
fe(t) < f(t) for all t € I, by positivity, [, fi < [; f so that supy [; fr < co.

Now, suppose that sup;, [, fe < oco. Since the sequence {fx (t)}pe;
is monotonic for all ¢t € I, it follows that { | 1 fk}zozl is monotonic and
converges to A = supy, [; fx, which is finite by assumption. Fix ¢ > 0 and
choose a K € N such that

OSA—-/fK<6. (4.10)
I

For each k, there is a gauge v, on I such that !S(fk,'D) -/, fkl < 5% for
every v, -fine tagged partition D of I.

Define ¢ : R > R by ¢ () = § 37371 27X (k-1<)t/<k}- Repeating the
proof of Example 4.41, ¢ is Henstock-Kurzweil integrable over R and [, ¢ =
3. Let v, be a gauge such that |S (¢, D) — [z ¢| < § for any ~,,-fine tagged
partition D of R. Then, 0 < S (¢, D) < fIR cp+-§- = 1 whenever D is v,,-fine.

By the pointwise convergence of fy to f, for each ¢ € I, choose a k (f) €
N such that &k (t) > K and

0<F(t) = fowy () <ep(t). (4.11)

Define a gauge v on [ by setting v () = v (6)N7,, (¢) forall t € I. Let
D= {(tL):i=1,...,m} be a v-fine tagged partition of I and consider
the difference |S (f, D) — A|. Adding and subtracting Y7 | fie,) (t:) € (I)—
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S fh fr(t:)> We see that
2 I =3 i
kat)t)z Z/fk(t)

—I+II+III.

15(f,D) - Al <

By (4.11) and the definition of ¢,

I<Z|f(t)—fk(t <Ze<,a (t:)£(L) = €S (p,D) <¢

=1 i=1

To estimate II, set S = max{k(t1),...,k(tm)} > K. Then,

Frees (6 /fkt)

>

k=K k(t;)=k

ney
-5

Frqesy () €(1s) / IONE

in which we have grouped together all terms corresponding to fx for a fixed
k. Note that the set {(¢;,[;) : k(t;) = k} is a ry,-fine tagged subpartition of
1, so that Henstock’s Lemma implies

S e ()€ /fk(”

k(t:)=k

Summing over k,

II<Z-—<26.

Finally, by monotonicity and the definitions of & (t) and S, fx < fi(,) <

fs, which implies
/fKS/ Frts) S/ fs.
I; I; I;

Summing over ¢, by (4.10) we see

A-e< [ o<y [ fuw< [1s<4
I i=1"1i 1
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so that I1] <e.

Combining these estimates, for any v-fine tagged partition D of I, we
have |S(f,D) — A| < 4e. Since € was arbitrary, f is Henstock-Kurzweil
integrable with integral A. Further, since { f; fk}:il is a monotonic se-
quence, A = sup,, fI fre = limg_ o0 fI fx, and the proof is complete. O

Suppose that {fx},-; is a sequence of Henstock-Kurzweil integrable
functions that decreases monotonically for each € I. Applying the the-
orem above to {—fx}ro,, We get an analogous version of the Monotone
Convergence Theorem for a decreasing sequence of functions, under the
assumption that inf f 1 fe > —o0.

In the proof of the Monotone Convergence Theorem above, we needed to
assume that the limit function was finite on /. In fact, as a consequence of
the monotonicity of the sequence of functions and the condition supy, | 1 <
00, the limit is finite almost everywhere.

Lemma 4.71 Let fi, : I C R* — R be Henstock-Kurzweil integrable over
I and suppose that { fy, (x)}5—., increases monotonically for each x € I and
SUpy f] fr < oo. Then, limg_,o fi (z) ezists and is finite for almost every
zel.

Proof. By replacing fr by fr — fi1, we may assume that each fy is
nonnegative. Then, we may assume that I is a bounded interval, since
I = Ug2,(IN[-n,n]) and if the conclusion holds on I N [-n,n], then
it holds almost everywhere in I. Set M = sup, fl fr and let E =
{z € I:limg_o fi (z) = oo} Let fi = 1A (%) fi and define h; : T — R by

v JIA(3) limgoseo fr (z) fz € T\ E
h“(z)‘{ 1 if zeE

For each fixed 4, { f,i},:l increases to h; pointwise as k — oo. Since [
is a bounded interval, 1 is Henstock-Kurzweil integrable over I. Thus, f};
Henstock-Kurzweil integrable, since the minimum of absolutely integrable

functions is, and
. 1 M
[r<t[n<
I tJr ¢

By the Monotone Convergence Theorem (for a decreasing sequence of func-
tions), h; is Henstock-Kurzweil integrable and

M
/sz_lim h; < lim — =0.
I

i—o0 Jr i—00
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Thus, by Theorem 4.40, E is a null set, so limg_,o fr exists and is finite
almost everywhere in 1. O

Using this lemma, we can improve the statement of the Monotone Con-
vergence Theorem by removing the assumption that the pointwise limit is
finite everywhere.

Corollary 4.72 (Monotone Convergence Theorem) Let fr, : I C R* —
R and suppose that {fy (x)},., increases monotonically for each z € I.
Suppose each fi is Henstock- Kurzweil integrable over I and supy, [, fi < oo.
Then, limg_.o fi () is finite for almost every x € I and the function f,
defined by

J(z) = limy— oo fi () if the limit is finite
- 0 otherwise

1s Henstock- Kurzweil integrable over I with

/If:kll»n;o Ifk'

Proof. By the previous lemma, the function f is defined almost every-
where in I. Let E = {x € I: limy o fx () = 0o}. Since F is a null set,

by Example 4.38
/sz/XEkaO-
E I

Define {gx}y—) by gk = xp\pfr- Since g = fx — Xg Sk, g is Henstock-
Kurzweil integrable and

/ngI/Ifk—/IXEka/Ifk-

Further, {gx (x)},o, increases pointwise to f on I. By the Monotone Con-
vergence Theorem, f is Henstock-Kurzweil integrable and

/,fzklggo ,gk:kll{gofffk'

The Monotone Convergence Theorem is equivalent to the following re-
sult about infinite series of nonnegative functions.

O
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Theorem 4.73 Let fi, : I C R* — R be nonnegative and Henstock-
Kurzweil integrable over I for each k and define f by

S ney fi () if the series converges
fa) = { Zh=, omveryes
otherwise

Then, the series converges for almost all x € I and f is Henstock-Kurzweil
integrable over I if, and only if, 3 5o, [, fx < 0o. In either case,

/If=gjl/1fk.

Proof. Suppose first that 307, [; fx < co. Let sy = Y17, fr. Since
each fi >0, {sm (2)},,_, forms an increasing sequence for each z € I and

o
sup/sm:Z/fk<oo.
m o JI k=171

By Lemma 4.71, Y72, fi = limy 00 S is finite almost everywhere and,
by the Monotone Convergence Theorem (Corollary 4.72), f is Henstock-
Kurzweil integrable over I.

On the other hand, suppose that f is Henstock-Kurzweil integrable and
E={zel:Y} , fr(z) =oc} has measure 0. Then, by the linearity of
the integral and the nonnegativity of the functions f,

o0 m
5 [ =3 [ -sp fonp [ s [1<om
P m /1 m JI m JI\E I

Finally, in either case,

f= lim S = lim /sz /fk.

I

Our next goal is to prove a version of the Dominated Convergence The-
orem for the Henstock-Kurzweil integral. As in the case for the Lebesgue
integral, the proof will be based on Fatou’s Lemma. We begin with a
lemma.

Lemma 4.74 Let fx,a : I C R* — R be Henstock-Kurzweil integrable
for all k, and suppose that o < fy, in I. Then, infy fi is Henstock-Kurzweil
integrable over I.
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Proof. Since a < fi, the function g = infi1<;<x fx is Henstock-Kurzweil
integrable over I by Proposition 4.65. Since a < gi for all k, infy f| 19k 2
J;a > —oco. Thus, by the comment in the paragraph following the proof
of Theorem 4.70, we can apply the Monotone Convergence Theorem to the
decreasing sequence of functions {gx }z.; which converges to infy fi. O

Note that since o < infy fi < fi1, infg fx is finite valued everywhere on
I. We can now prove Fatou’s Lemma.

Lemma 4.75 (Fatou’s Lemma) Let fi,o : I € R* — R be Henstock-
Kurzweil integrable for all k, and suppose that o < fr in I and
liminfy o f 1 fx < 00. Then, liminfx—oo fi is finite almost everywhere
in I and the function f defined by

@) = liminfy o fr (z) if the limit is finite
B 0 otherwise

1s Henstock-Kurzweil integrable over I with

/fgliminf S
I k—oo Jf

Proof. By Lemma 4.74, the function &, defined by
Oy (z) = inf {f; (z) : j > k}

for each k € N is Henstock-Kurzweil integrable over I.
Since oo < ¥, < fx on [ for all k, it follows that each function @ is

finite valued on I and
/055/@[5 S/fk)
I I I

/a < liminf | @ <liminf | fk. (4.12)
I I k—oo I

k—o00

which implies

Further, by definition, {®x},., is an increasing sequence which, by Lemma.
4.71, converges pointwise to f almost everywhere in /. Since { f ! @k}zll
is monotonic, it then follows from (4.12) that {[; @k}:__l converges and
is hence bounded. Thus, by the Monotone Convergence Theorem, f is
Henstock-Kurzweil integrable and by (4.12)

/f: lim | ® :liminf/fb,c Sliminf/fk,
I k—oo [r k—oo Jr k—o0 I
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which completes the proof. O

As in the case of the Lebesgue integral, the result dual to Fatou’s Lemma
also holds.

Corollary 4.76 Let fr,5: I CR* — R be Henstock-Kurzweil integrable
for all k, and suppose that fi, < B in I and limsup,_, fI fr > —o00. Then,
limsupy_, ., fix i finite almost everywhere in I and the function f defined
by

fla)= lim supy,_, o fi (2) if the limit is finite
- 0 otherwise

s Henstock- Kurzweil integrable over I with
f> limsup/fk.
1 k—oo JI

We are now prepared to prove the Dominated Convergence Theorem.

Theorem 4.77  (Dominated Convergence Theorem) Let fi, : I CR* = R
be Henstock-Kurzweil integrable over I and suppose that { fi}re, converges
pointwise almost everywhere on I. Define f by

@)= limg—c0 fx () if the limit is finite
- 0 otherwise ’

Suppose that there are Henstock-Kurzweil integrable functions o, 8: I — R
such that @ < fr < B almost everywhere in I, for all k € N. Then, [ is
Henstock-Kurzweil integrable over I and

/If:/Iklggofk :leIEO/Ifk-

Proof. Let Ex={zel: fi(z)<aor fr(z)> B (z)} Then, the set
E= {x el: klim fi (x) diverges} U UkenEx

has measure zero. If x ¢ E, then fi (z) — f(z) and a(z) < fi (z) < 8(x)
for all k € N. Since [, fr = fI\E fe and [ f =0, we may assume all the
hypotheses hold for all z € 1.

Since a < f, Fatou’s Lemma shows that lim infy_ o fr is finite almost
everywhere in I and

f_<_liminf/fk.
I k—oo Jp
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Similarly, since fi < 3, Corollary 4.76 implies that limsup_,., f is finite
almost everywhere in I and

/ f 2 limsup / .

Combining these results, we see

limsup/f;c S/fgliminf/fk Slimsup/f,c
k—oo JrI I k—oo Jr k—oo JI

/If :/clin;oflfk'

For the Lebesgue integral, the usual statement of the Dominated Con-
vergence Theorem employs the condition that |fi| < g, where g is a
Lebesgue integrable function. Since |fx| < g is equivalent to —g < fi < g,
such an hypothesis implies the hypothesis above. The importance of the
condition a < fi < B for the Henstock-Kurzweil integral is that the func-
tions fx, o, and S may be conditionally integrable. Note that if f; and
g are Henstock-Kurzweil integrable and |fx| < g, then g is nonnegative
and, hence, absolutely integrable and fi is absolutely integrable by Corol-
lary 4.62. Thus, the condition of Theorem 4.77 is more general than the
condition of Theorem 3.100.

We conclude this section with the Bounded Convergence Theorem.

so that

a

Corollary 4.78 (Bounded Convergence Theorem) Let f, : I CR* - R
be Henstock-Kurzweil integrable over a bounded interval I and suppose that
{fx}re, converges pointwise almost everywhere on I. Define f by

0 otherwise

fz)= { limg_c0 fi () of the limit is finite .

If there is a number M so that |fy (z)| < M for all k and all x € I, then

/;f - kli—»rgo_/lfk'

One need only observe that the function g () = M for all z € I is Henstock-
Kurzweil integrable over I.
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4.8 Henstock-Kurzweil and Lebesgue integrals

We saw earlier that every Riemann integrable function is Henstock-Kurzweil
integrable, by defining the gauge to have constant length. Further, there
are Henstock-Kurzweil integrable functions which are not Riemann inte-
grable. The unbounded function 1/4/z and the Dirichlet function, both
defined on (0, 1], provide examples. We now consider the relationship be-
tween Lebesgue integrability and Henstock-Kurzweil integrability. Since the
Lebesgue integral is an absolute integral (that is, a function is Lebesgue
integrable if, and only if, it is absolutely Lebesgue integrable) and the
Henstock-Kurzweil integral is a conditional integral, the conditions cannot
be equivalent. Further, the function in Example 4.1 is Henstock-Kurzweil
integrable and not Lebesgue integrable. We now show that the Henstock-
Kurzweil integral is more general than the Lebesgue integral. As above, we
will use £ [, f to denote the Lebesgue integral of f.

Theorem 4.79 Suppose that f : I — R is nonnegative and measurable.
Then, f is Lebesgue integrable if, and only if, f is Henstock- Kurzweil inte-
grable. In either case, L [, f = [} f

Proof. First suppose that f is also bounded, with a bound of M, and
I = [a,b] is a bounded interval. Then, by Theorem 3.67, there is a sequence
of step functions {¢,}r.; such that ¢, — f pointwise a.e. and |¢ (z)| <
M for all k € N and = € [a,b]. Since ¢, is a step function, [,f: Y =
f: 1, 50 that by the Bounded Convergence Theorem (which holds for both
integrals), £ [7 f = [ f.

Next, suppose that f is an arbitrary nonnegative, measurable, real-
valued function defined on an arbitrary interval in R. Define a sequence of
functions {fi}i—; by fx (z) = min {f (z),k} x|k (¢). Each fy is nonneg-
ative, measurable, and bounded so, by the previous case, £ ffk fr= ffk fr-
Since {fr},e increases to f pointwise, we can apply the Monotone Con-
vergence Theorem (which, again, holds for both integrals) to conclude that
f is Lebesgue integrable if, and only if, f is Henstock-Kurzweil integrable.
When either of the integrals is finite, we see that

C/Ifzkli’rgoL/fk—th/ szhm fk—hm/fk—

If f is Lebesgue integrable, then f* and f~ are Lebesgue integrable and,
consequently, f* and f~ are Henstock-Kurzweil integrable. By linearity,



190 Theories of Integration

f is absolutely Henstock-Kurzweil integrable. On the other hand, suppose
that f is absolutely Henstock-Kurzweil integrable. Then, by linearity, f*
and f~ are nonnegative and Henstock-Kurzweil integrable. Thus, we have
the following corollary.

Corollary 4.80 Suppose that f : I — R is measurable. Then, f is
Lebesgue integrable if, and only if, f is absolutely Henstock-Kurzweil inte-
grable. In either case, the integrals agree.

Thus, Lebesgue integrability implies Henstock-Kurzweil integrability, but
the converse is not valid. We will show in Corollary 4.86 that every
Henstock-Kurzweil integrable function is measurable, so the measurability
condition in Corollary 4.80 can be dropped.

We now have the necessary background to prove a general version of
Part I of the Fundamental Theorem of Calculus for the Lebesgue integral.

Theorem 4.81  (Fundamental Theorem of Calculus: Part I) Suppose that
f :{a,b] — R is differentiable on [a,b] and f' is Lebesgue integrable on [a,b).
Then,

b
c/ f=F0)-f(a).

Proof. By assumption, f' is Lebesgue integrable, so Corollary 4.80 im-
plies that ﬁf: = f: f’. By Theorem 4.16, fab "= f({b) - f (a), complet-
ing the proof. g

For a proof that does not use the Henstock-Kurzweil integral, see [N
Vol. I, IX.17.1] and [Swl, 4.3.3, page 158].

b

4.9 Differentiating indefinite integrals

One of the most valuable features of the Henstock-Kurzweil integral is its
ability to integrate every derivative. This is the content of Part I of the
Fundamental Theorem of Calculus (Theorem 4.16). We now turn our at-
tention to the second part of the Fundamental Theorem of Calculus, that
of differentiating integrals. We first observe that if f is continucus at z
then its indefinite integral ', F (z) = [ f (t)dt, is differentiable at z.

Theorem 4.82 Let f : [a,b] — R be Henstock-Kurzweil integrable on
[a,b] and continuous at = € [a,b]. Then, F, the indefinite integral of f, is
differentiable at x and F’ (z) = f (z).
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Proof. Since f is continuous at z, for € > 0 there is a § > 0 so that if
t € [a,b] and |t — x| < §, then

—e< f(t)— f(z) <e
If 0 < h < ¢ is such that  + h € [, b], then

ECNFE) sw= 1 [ 10—t
[T vw-rea
so that
3 SF(:c-i—h}i— ()—f(:c)<e
Similarly, for h < 0,
LETE SRS
Thus, for |h| < § and z + k € [a, ]], (F(x+h}3—F(w) — f(z)| € e Thus,

F'(z) = f (). U

When f is merely Henstock-Kurzweil integrable, the indefinite integral
is still differentiable almost everywhere.

Theorem 4.83 (Fundamental Theorem of Calculus: Part II) Suppose
that f : [a,b] — R is Henstock- Kurzweil integrable. Then, F s differentiable
at almost all x € [a,b] and F' (z) = f (z).

Observe that we cannot do better than a statement which holds almost
everywhere. Let E C {0,1] be a null set and consider f = xz. Then, f is
equal to 0 for almost all z € {0,1]. It follows that F', and consequently also
F', is identically 0 on [0,1]. Thus, F'(z) # f (z) if z € E.

In order to prove this theorem, we need another covering lemma. Given
an interval I, let 31 be the interval concentric with I and having three times
the length of I. Recall that if I is an interval in R, then the length of I,
£(I), is equal to the measure of I, m (I).

Lemma 4.84 LetC={I;:i=1,...,N} be a finite set of intervals in R.
Then, there exists a pairwise disjoint collection Jq,...,Jy € C such that

1
3m (UL L) <m (Vb ;) .
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Proof. By reordering the intervals if necessary, we may assume that
C(In) <E(In-1) S-S E(Ip) <E(L).

Set Jy =IL. Let Cy = {I€C: 1 NI =0} and note that if I; € C and
I; ¢ Cy, then I; C 3J;. Next, we let J; be the element of C; with the smallest
index (and hence the greatest length). Set C; = {I € C;: L, NI =0} and
continue as above. Since C is a finite set, the selection of intervals J;
ends after finitely many steps, say k. By construction, the intervals in
{J1,...,Jx} are pairwise disjoint, and if I; € C is not selected, then there
is a j so that I; € 3J;. Thus, UL, I; = US_; Uy, 20 I C U%_,3J;, so that

k k

m (Ui37) < 33 m () = 3o m(dy) =m (Ui ).

im (UML) <
3 3=1 j=1 O

1
3
We are now ready to prove Theorem 4.83.

Proof. For a fixed u > 0, we say that = € (a,b) satisfies condition (x,) if
every neighborhood of z contains an interval [u, v such that z € (u,v) and

Fv) - F(u)

v—u

~f (x)‘ > p. (4.13)

Let E, be the set of all ¢ € (a,b) that satisfy condition (*,) and set
E = U3 E /.. Suppose that x ¢ E. Then, for all n > 1, there is a
neighborhood U, of z such that for any interval [u,v] C U, with z € (u,v),
one has
<z

n

- f (=)

v—1Uu

\F(v)—F(u)

By the continuity of F (Theorem 4.44}, this inequality holds when u is
replaced by x. Thus, if z ¢ E, then F is differentiable at  and F' (z) =
f ().

It suffices to show that E, is null for any x > 0, since then E =
UpyE1/n has measure 0. If B, = {, there is nothing to prove, so assume
that E, # 0. Fix € > 0. Since f is Henstock-Kurzweil integrable, by
Henstock’s Lemma there is a gauge 7 on [a, b] such that

i

S IF (@) = F (w) - f (@) (v~ w)| < (4.14)

i=1
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for any ~-fine tagged subpartition D = {(z, [u;,v;]) : ¢ =1,...,1} of [a,b].
For z € E,, choose an interval [ug,vy] such that z € [ug,v;] C v(z) and
(4.13) holds. Next, choose a gauge v, on E, such that v, () C (ugz,vs)
for all x € E,. By Lemma 4.39, there exist countably many non-
overlapping closed intervals {Jy : k € o} and points {z) : k € ¢} such that
zx € JkNEy,, Je C 71 (2k) C (Usy, V2, ), and E, C UgeoJr C [a,b]. Let
=) 1cs€(Jk) £b—a < oo and pick N such that S (k) > %.

Apply Lemma 4.84 to {(uy,,vz.):k=1,...,N} to get a set of non-
overlapping intervals {(uy, , vy, ), .., (Uy,, Uy, )} such that

Since {(x;, [Ug;, vg,]) 14 =1,...,N} is a y-fine tagged subpartition of [a, ],
by (4.13) and (4.14),

N
€
"‘Zf( Uy,, y,)) < 21 (vz,) = F (uz,) = f (@) (v, — ue,)| < —Gﬁ

It now follows from (4.15) that € > a. Since E, C UreoJr and
Yoreco £ (Jk) = a <€, it now follows that E, is null. O

Since every Lebesgue integrable function is (absolutely) Henstock-
Kurzweil integrable, Part II of the Fundamental Theorem of Calculus of
Lebesgue integrals follows as an immediate corollary.

Corollary 4.85 Let f:[a,b] — R be Lebesgue integrable. Then, F' = f
a.e. in a,b.

For a proof that does not use the Henstock-Kurzweil integral, see [N,
Vol. 1, IX.4.2], [Sw1, 4.1.9, page 150], and [Ro, 5.3.10, page 107].

Suppose f is Henstock-Kurzweil integrable over [a, b]. Then, F is contin-
uous on [a, b]; extend F to [a, b + 1] by setting F' (t) = F (b) for b < ¢t < b+1.
Since the extended function is continuous on [a, b+ 1], it follows that the
sequence of functions {fi}..; defined by

Fle+}) - Fi

1
k

fe () =
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is measurable on |[a,Y]. By Theorem 4.83, f(t) = F'(t) =

F(t+4)-F(
Fttg)-F)

limg o0 ) for almost all ¢ € I, which implies that f is mea-

surable.

Corollary 4.86 Let f: I C R — R be Henstock-Kurzweil integrable over
I. Then, f s (Lebesgue) measurable over I.

Proof. The proof when I is a bounded interval is contained in the previ-
ous paragraph. If I is unbounded, set I, = I N [-n,n]. The function x;_ f
is measurable since I, is a bounded interval, and since f is the pointwise
limit of { x1.f }:;1, f is measurable. a

Other proofs of the measurability of Henstock-Kurzweil integrable functions
can be found in [Lee, 5.10] and [Pf, 6.3.3].

Due to this corollary, in Theorem 4.79 and Corollary 4.80, we can drop
the assumption that f is measurable, since both Henstock-Kurzweil and
Lebesgue integrability imply (Lebesgue) measurability. Thus, we have

Theorem 4.87 Suppose that f: I — R. Then, f is Lebesgue integrable
if, and only if, f is absolutely Henstock-Kurzweil integrable. In either case,
the integrals agree.

As in the Lebesgue integral case, we define the Henstock-Kurzweil inte-
gral of f over a set F in terms of the function x5 f.

Definition 4.88 Let f: I — R and E C I. We say that f is Henstock-
Kurzweil integrable over E if xzf is Henstock-Kurzweil integrable over I

and we set
=[xt
E I

The next result follows from Theorem 4.87.

Corollary 4.89 Suppose that f : I — R is Henstock-Kurzweil integrable
over I. Then, [ is Lebesgue integrable over I if, and only if, f is Henstock-
Kurzweil integrable over every measurable subset £ C I.

Proof. Suppose, first, that f is Lebesgue integrable. Let F be a measur-
able subset of I. Then, xzf is Lebesgue integrable over I. By Theorem
4.87, x g f is (absolutely) integrable over I, so that f is Henstock-Kurzweil
integrable over E.

For the converse, put Et = {tel:f(t)>0} and E- =
{tel: f(t)<0}. By Corollary 4.86, E* and E~ are measurable sets,
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so that [, f and [ f both exist. Since

L/If+=/1f+=/E+fand£/If“=/If_=/E_(‘f),

both ft and f~ are Lebesgue integrable over I. Thus, f = f+ — f~ is
Lebesgue integrable. 0O

4.9.1 Functions with integral 0

We have already seen that sets with measure 0 play an important role in
integration. We now investigate some properties of functions with integral

0.

Corollary 4.90 Let f : R — R be Henstock-Kurzweil integrable and sup-
pose that [, f =0 for every bounded interval I. Then, f =0 a.e..

Proof. Let F(zx) = ffn f for all z € [—n,n]. By definition, F(z) =0
for all z € [-n,n|. By Theorem 4.83, f(z) = F'(z) = 0 for almost all
z € [-n,n}. It follows that f = 0 a.e. in R. O

Let £ C R be a null set. Then, E is measurable and £ [ x5 = 0. Thus,
X g is Henstock-Kurzweil integrable and [ xz = 0. On the other hand, sup-
pose that x g is Henstock-Kurzweil integrable and f xg = 0. Then, xg is
absolutely Henstock-Kurzweil integrable, so that x5 is Lebesgue integrable
and m(E) =L [ xz =0. Thus, E is a null set. We have proved

Corollary 4.91 Let E C R. Then, E is a null set if, and only if, xp is
Henstock-Kurzweil integrable and [ xz = 0.

Of course, this is just Theorem 4.40, proved in Section 4.4. However, the
argument above can easily be modified to prove the following result.

Corollary 4.92 Let E C R. Then, E is a Lebesgue measurable set with
finite measure if, and only if, xp is Henstock-Kurzweil integrable. In either

case, [ xp =m(E).

4.10 Characterizations of indefinite integrals

In this section, we will characterize indefinite integrals for the three integrals
considered so far. We begin with the Henstock-Kurzweil integral. Suppose
that f is a Henstock-Kurzweil integrable function on an interval I C R.
Then, the indefinite integral of f, F, is differentiable and F’ = f almost
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everywhere. On the other hand, suppose that a function F is differentiable
almost everywhere in an interval I. Does it then follow that the derivative
F’ is Henstock-Kurzweil integrable? In general the answer is no. As we
shall see, in order for F’ to be Henstock-Kurzweil integrable, we need to
know more about how F' acts on the set where it is not differentiable in
order to conclude that its derivative is integrable.

Definition 4.93 Let f:I — R and E C I. We say that f has negligible
variation over E if for every € > 0, there is a gauge < so that for every
v-fine tagged subpartition of I, D = {{t;,[zi—1,xi]) : ¢ =1,...,m}, with
t;e Efori=1,...,m,

m

DOIf (@) = f(mim1)] S e

i=1

Note that the t;'s must be elements of F, in addition to being contained

in [:C,‘_l, :Ei].

Theorem 4.94 Let F: I =[a,b] = R. Then, F is the indefinite integral
of a Henstock-Kurzweil integrable function f : I — R if, and only if, there
is a null set Z C I such that F' = f on I\ Z and F has negligible variation
over Z.

Proof. For the sufficiency, assume F is the indefinite integral of a
Henstock-Kurzweil integrable function f. Then, by Theorem 4.83, F/ = f
almost everywhere on I. Let Z be the set where the equality fails. Define
fi:I—=-Rby fi(t)=f(@¢)fort € I\ Z and f;(¢t) =0 for t € Z. Then,
F(z) = [7 f1 and, consequently, F (b) = f: f1.

Given € > 0, there is a gauge vy such that |[S (f1,D) — F (b)| < € for every
v-fine tagged partition D of I. Suppose D = {(t;, [zi—1,2]) : i =1,...,m}
is a y-fine tagged subpartition of I with tags t; € Z. By Henstock’s Lemma,

z [f1(ts) (e — 2im1) — (F (23) = F (zi-1))} £ 2e.
i=1

But, since t; € Z, f(t;) =0foralli=1,...,m, so that

m

D OIF () — F (zi-1)| < 2€,
i=1
as we wished to show.
For the necessity, we assume that F' = f on I\ Z and F' has negligible
variation over Z, for some null set Z. Extend f to all of I by setting
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f(@)=0fort e Z. Let ¢ > 0. We claim that the extended function f
is Henstock-Kurzweil integrable and F (x) = f fforall z el Since F
has negligible variation over Z, there is a gauge v, satisfying Definition
4.93. Define a gauge y on I by setting v (t) =y, (¢) for t € Z and v (t) =
(t—46(t),t+d(t) for t € I'\ Z, where 6 (¢) is the value corresponding to
€ > 0 and the function f in the Straddle Lemma (Lemma 4.6).

Suppose that D = {(t;,[zi—1,2:]) : ¢ = 1,...,m} is a ~-fine tagged par-
tition of I. Then,

F(b)— F(a) - Zf (t:) (z: — ﬂli—1)i

i=1

I

= Fzi—1) = f (t:) (zi — 1)}

AN

Z {F (z;) — F(zi1) — f () (m: — miea)}

tEZ

Y AF (@) = F(mic) = f () (8 = 2i-1)}
LENz
=I+11.

Since F has negligible variation over Z and f = 0 on Z, I < e. By the
Straddle Lemma,

I7r<

NgE

e(z; —zi—1) <elb—a).

o
1l

1
ti€NZ

m
—~

Therefore,

F(b)~ F(a) =Y f(t:)(m:i —2ic1)| <

i=1

e(l4+b-a),

which shows that f is Henstock-Kurzweil integrable over I with

b
F(b)—F(a)=/ f.
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Applying the same argument to the interval [a,z| yields F (z) — F (a) =
[ f, so that F is an indefinite integral of f. (

We now turn our attention to characterizing indefinite integrals of
Lebesgue integrable functions. To do this, we first study monotone func-
tions and their derivatives.

4.10.1 Derivatives of monotone functions

In order to characterize indefinite integrals of Lebesgue integrable functions,
we need to know that every increasing function is differentiable almost
everywhere. Recall the upper and lower derivatives, Df and Df, discussed
in Section 4.1, and that f is differentiable at z if, and only if, —co <
Df (z) = Df (2) < co.

To prove that an increasing function is differentiable almost everywhere,
we will use Vitali covers. For later use, we will discuss Vitali covers in n-
dimensions. Given an interval I in R™, recall that v (I) represents the
volume (and measure) of I.

Definition 4.95 Let E C R™. A family V of closed, bounded subintervals
of R™ covers E in the Vitali sense if for all x € E and for all € > 0, there
is an interval I € V so that € I and the v (I} < e. If V covers E in the
Vitali sense, we call V a Vitali cover of E.

Given a set E C R?, the set

1 1 1 1
V= - =, —| X ly— ——, — | : (=,
{[x nx+n] [y n+1y+2n] (zy)eEandneN}
is a Vitali cover of E. A typical cover that arises in applications is given in
the following example.

Example 4.96 Let f : [a,b] — R be differentiable over [a,b]. For each
x € [a,b] and € > 0, let I, be a closed interval of length less than e,
containing z in its interior, such that

fy) - f (=)

18 pe)| <

for all y € I; N [a,b]. The existence of the intervals I, is guaran-
teed by the differentiability of f. Since £(I,.) < ¢, it follows that
V={lc:z€[ab and € > 0} is a Vitali cover of [a, b].
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Suppose a set F of finite outer measure is covered in the Vitali sense by
a family of cubes V. The next result, known as the Vitali Covering Lemma,
shows that a finite set of elements from V covers all of E except a set of
small measure.

Lemma 4.97 (Vitali Covering Lemma) Let E C R™ have finite outer
measure. Suppose that a family of cubes V is a Vitali cover of E. Given
€ > 0, there is a finite collection of pairwise disjoint cubes {Qi}fV:I cVy
such that m}, (E\ UL,Q;) <e.

The following proof is due to Banach [Ban].

Proof. Let J be an open set containing F such that m,(J) <
(L+¢€)my (E). We need consider only the ¢ € V such that @ C J.
Given a cube @, let e(Q) be the length of an edge of @ and note that
v(Q) =mn (Q) =[e(Q)]".

Define a sequence of cubes by induction. Since
sup {v(Q) : Q € V} <m, (J) < (1 +¢)m;, (E) < 0,

we can choose Q) so that e(Q1) > 3sup{e(Q):Q €V}. Assume that
Q1,...,Qx have been chosen. If E C U%_,Q;, set N = k and {Qi}f]:l is
the desired cover. Otherwise, let

S =sup{e(Q): Q €V and QN (UL,Q;) =0}.

Since my,, (J) < 00, Sk < oco. Since E ¢ UY_;Q;, there is an Q € V such
that e (Q) > Sk/2 and Q@ N (UL, Qi) = 0. Set Qi1 = Q.

When E\ UF_;Q; # 0 for all k, we get a sequence of disjoint cubes such
that U2, @Q; C J. This implies that

Zmn(Qi) <my, (J) < oco.

i=1

Choose an N so that Z?_';N_H ma (Q:) < £

It remains to show that m}, (E\ U Qi) < e. Suppose that z € E \
UN. Q. Since UX ;Q; is a closed set, there is a Q € V such that & € Q and
Qn (UﬁilQi) = 0. Since } > mn (Q;) < oo and 2e (Qr41) > Sk, it follows
that limg_,oo Si = 0. QN Q; =0 for all ¢ < k, then e(Q) < S;. Since
e(Q) > 0, there must be an ¢ such that @ N Q; # 0. Let j be the smallest
such index and let Q7 be the cube concentric with @; and having edge

length 5 times as long. By construction, j > N and e (Q) < S;-1 < 2e(Q;)-
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Therefore, since QN Q; # 0, @ C Q}. Thus, if z € E\ UX ,Q;, then
z € Q} for some j > N, which implies that E\UY ;Q; C U2y ,Q}. Since
e(QF) = 5e(Q:), my (QF) = 5"m,, (Q;) and we have

oo oo

my (BAULQ:) < ) ma(Q)=5" ) ma(Qi)<e

i=N+1 i=N+1
as we wished to prove. O

We have actually proved more. Since UY Q; C J and the Qs are
pairwise disjoint, Y1 m, (Q:) < (1+ €)mZ (E). By iterating the argu-
ment, replacing € by 27 %¢ at the k*® iteration, if V covers E in the Vitali
sense, then there is a sequence of pairwise disjoint cubes {Q;};o; such that
M (B\ U24@2) = 0 and 5252, ma (@) < (L+¢)m, ().

Remark 4.98 In Theorem 4.113, we will apply the Vitali Covering
Lemma to a collection of intervals that are obtained by repeated bisection
a fized interval in R™. The proof above for cubes applies to this situation
since the key geometric estimate, namely Q N Q; # 0 implies Q C QF (for
the smallest § such that QN Q; # @) continues to hold for such a collection
of intervals, which has fixed eccentricity.

We now return to the differentiation of monotone functions.

Theorem 4.99 Let [ : [a,b] — R be an increasing function. Then, f’
exists almost everywhere in [a, b].

Proof. We claim that E = {2 € [a,b]: Df (z) > Df (z)} has measure
zero. Since Df (z) > Df (z) for all z, this would imply that Df (z) and
Df (z) are equal almost everywhere.

Set Euvw = {z€la,b]:Df(z)>u>v>Df(z)} so that E =
Uu,wegPuv. It is enough to show that m* (Ey,) = 0 for all u,v € Q.
Let 7 = m* (Ey.), fix € > 0, and choose an open set I O E, , such that
m(I) < T+e

Let ¢ € E,,. Since Df(x) < v, there are arbitrarily short closed
intervals [, 8] containing x such that f (8) — f (o) < v (8 — a). Thus, E, ,
is covered in the Vitali sense by the collection

V=A{lo,8] CI:[,f]NEyy # 0 and f(B) - f(a) <v(B-a)}.

By the Vitali Covering Lemma, there are pairwise disjoint intervals
{[a:i,yi]}fil C V such that m* (Ey o \ UL, [#:,:]) < e. This implies that
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the set A = E, ,N(UN, [z:,1:]) has outer measure m* (4) > T—e. Further,

N

N
Z[f(y,-)—f(:ci)] <Zv(yi—xi) <vm(I)<v(T+e).
i=1

i=1

Suppose s € A is not an endpoint of any [z;,1;], ¢ = 1,...,N. Since
Df (s) > u, there are arbitrarily short intervals [\, u] containing s such
that [A, p] C [z;,3;] for some ¢ and f () — F(A) > u(u— A). As above,
by the Vitali Covering Lemma, there is a collection of pairwise disjoint
intervals {[s;,t;]}}7 such that m* (AN (UM, [s;,t;])) > 7 — 2¢ and

j=1
M M
Z f(s5) >Zut —8;) > u(r —2e).
ji=1 t==]

Since each [s;, t;] is contained in [z;, y;| for some %, and since f is increasing,

M

Do) = S < D1 (ws) = f (=)

7=1 i=1

2

This implies that « (7 — 2¢) < v (7 + ¢€). Since € > 0 was arbitrary, we have
ur < vT, and since u > v, we see that 7 = 0. Thus, m* (E, ,) = 0. Hence,
E. . is measurable with measure 0 and, consequently, E is measurable with
measure 0.

It remains to show that Df (x) is finite almost everywhere. For if this
were the case, then f’ exists almost everywhere and the proof is complete.

Fix k,e > 0 and set Ex = {z €[a,b]: Df (z) > k}. Repeating the
argument in the previous paragraph yields

f () —fla)> Z f(8)] > k(m” (Ex) —€).

Since € > 0 is arbitrary, f (b) — f (a} > km* (Ey). Finally, since

—_ b) —
m* ({a: € la,b]: Df(z) = oo}) <m* (Mg Ex) m* (Ey) < %f—(ﬂ
for all k > 0, it follows m* ({x € [a,b] : Df (z) = c0}) = 0 so that Df ()
is finite a.e. in [a,b]. Thus, f’ exists and is finite almost everywhere in
[a, b]. O
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We saw in Theorem 4.59 that every function of bounded variation is the
difference of two increasing functions. It then follows from Theorem 4.99
that a function of bounded variation is differentiable almost everywhere.

Corollary 4.100 If f : [a,b] — R has bounded variation on [a,b], then f
is differentiable a.e. in [a,b].

In Remark 3.93, we defined a measure ® to be absolutely continuous
with respect to Lebesgue measure if given any ¢ > 0, there isa § > 0
so that m (F) < § implies ® (E) < e. Suppose that f is a nonnega-
tive, Lebesgue integrable function on [a,b] and set F(z) = L[ f. In
the same remark, we observed that I is absolutely continnous with respect
to Lebesgue measure. Fix € > 0 and choose § > 0 by absolute continu-
ity. Let {[a;, bi]}f=1 be a finite set of nonoverlapping intervals in [a, b] and
suppose that Zf=1 (b; — a;) < 4. It then follows that

}i]F(bi)—F(am=i£/:f=ﬁfuf_

f<e
" las,bi)

We use this condition to extend the idea of absolute continuity to functions.

Definition 4.101 Let F : [a,b] — R. We say that F' is absolutely
continuous on [a,b] if for every € > 0, there is a § > 0 so that
ZL] |F (B;) — F (a;)] < e for every finite collection {{a;, bi”f:l of nonover-
lapping subintervals of [a, b] such that ZLI (b; — i) < 4.

Clearly, every absolutely continuous function is uniformly continuous,
which is seen by considering a single interval |e, 8] with §—« < §. Further,
every such function also has bounded variation.

Proposition 4.102  Suppose that F : [a,b] — R is absolutely continuous
on [a,b]. Then, F has bounded variation on [a,b).

Proof. Choose § > 0 corresponding to € = 1 in the definition of absolute
continuity. Thus, if [¢,d] C [a,b] and d — ¢ < §, then the variation of F

over [c,d] is at most 1. Choose N € N such that N > %a

divide [a,b] into N nonoverlapping intervals each of length

. Then, we can

b._
<5 T

follows that the variation of F over [a, b] is less than or equal to N. O
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4.10.2 Indefinite Lebesgue integrals

A well-known result for the Lebesgue integral relates absolute continuity
and indefinite integration. In the following theorem, we show that these

conditions are also equivalent to a condition similar to that of Theorem
4.94.

Theorem 4.103 Let F : [a,b] — R. The following statements are equiv-
alent:

(1) F is the indefinite integral of a Lebesgue integrable function f : [a,b] —
R.

(2) F is absolutely continuous on [a, b].

(3) F has bounded variation on [a,b] and F has negligible variation over
Z, where Z is the null set where F' fails to exist.

Condition (3) should be compared with the condition for the Henstock-
Kurzweil integral given in Theorem 4.94. In particular, for both integrals,
the indefinite integral has negligible variation over the null set where its
derivative fails to exist.

Proof. To show that (1) implies (2), note that

bi k bi
C / <> L / =L ;
a; / Z a; lf‘ Ut lag,bi) d

i=1
so that the absolute continuity of F follows from the comments above.

Suppose (2) holds. By Proposition 4.102 and Corollary 4.100, F has
bounded variation on {a, b] and F” exists almost everywhere. Let Z be the
null set where F’ fails to exist. We claim that F has negligible variation
over Z.

To see this, fix € > 0 and choose § > 0 by the definition of absolute
continuity. Since Z is null, there exists a countable collection of open
intervals {Jk}, such that Z C UgeoJi and Y ., €(Jix) < 8. Define a
gauge on [a,b] as follows. If t € I\ Z, set v(t) = R; if t € Z, let k; be
the smallest integer such that ¢t € Jy, and set y(t) = Ji,. Suppose that
D = {(t;,[rim1,%]) :4=1,...,m} is a y-fine tagged subpartition of [a, b]
with tags ¢; € Z. Then, [z;_1,2;] C Jx,, so that

k

k
D OIF (b))~ Flag)] =Y
i=1

i=1

m

Z (.’Ei — .’E,,;_l) S ZE(J]C) < 4.

=1 keo
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By absolute continuity,

m

D oIF (@)~ F(mia)l < e

i=1
so that Z has negligible variation over E. Thus, (2) implies (3).

To show that (3) implies (1), set f(t) = F/(¢t) fort € I\ Z and f(t) =

0 for t € Z. By Theorem 4.94, f is Henstock-Kurzweil integrable and
F(z)— F(a) = [ f for all z € [a,b]. Since F has bounded variation, f
is absolutely Henstock-Kurzweil integrable by Theorem 4.60. By Theorem
4.87, f is Lebesgue integrable and F is the indefinite integral of a Lebesgue
integrable function. g

4.10.3 Indefinite Riemann integrals

We conclude this section by considering indefinite integrals of Riemann
integrable functions. Suppose F is an indefinite integral of a Riemann
integrable function f : [a,b] — R. Since f is bounded, there is an M > 0
such that |f (z)| < M for all z € [a,b]. We observed above, in Section 2.2.5,
that

|F(z) — F(y)| < M|z —yl,

for all z,y € [a,b]. Thus, F satisfies a Lipschitz condition on [a, b]. Further,
by Corollary 2.42, f is continuous almost everywhere, so that by Part II of
the Fundamental Theorem of Calculus for the Riemann integral (Theorem
2.32), F' (z) exists and equals f (z) for almost every z € [a, b].

Theorem 4.104 Let F : [a,b] — R. Then, F is the indefinite integral of
a Riemann integrable function f : [a,b] — R if, and only if, F satisfies a
Lipschitz condition on [a,b], F' exists almost everywhere, and F' is equal
almost everywhere to a bounded function f which is continuous a.e..

Proof. By the previous remarks, it is enough to prove the necessity of the
result. By the Lipschitz condition, F is continuous and F’ is bounded when-
ever it exists. To see this, note that if M is the Lipschitz constant for F,
F(y)-F Fy)-F
then F' (z) = limy_,, M and M < M imply that
y—z y—x
|F' (z)] < M whenever the limit exists. Further, since F” (z) is the almost
F(z+3) - F(z)

n
1 )

F' is measurable if we define F’ to be 0 where F' fails to exist. ’f‘hus, F'is

everywhere limit of the continuous difference quotients
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Lebesgue integrable and since F’ = f almost everywhere, £ f: Fr=L] : f
for all z € [a,b]. Since f is continuous a.e., f is Riemann integrable, so
that R [Ff=L [ f=L [ F

Since F' satisfies a Lipschitz condition, it is absolutely continuous on
(@, b]; one need only choose § < ¢/M, where M is the Lipschitz constant for
F. By Theorem 4.103, F' is the indefinite integral of a Lebesgue integrable
function. As we saw in the proof of that theorem, F (z) — F (a) = L f: f1,
where f) = F' almost everywhere. Thus,

F(x)-F(a)=z/;f1:L[F’:R/:f.

Thus, F is the indefinite integral of the Riemann integrable function f. (]

There is something troubling about this proof. It relies on results for
the Lebesgue integral, which in turn are consequences of results for the
Henstock-Kurzweil integral, both of which require more sophisticated con-
structions than the Riemann integral.

4.11 The space of Henstock-Kurzweil integrable functions

In Section 3.9 of Chapter 3, we considered the vector space, L! (E), of
Lebesgue integrable functions on a measurable set E and showed that
L' (E) had a natural norm under which the space was complete. In this
section, we consider the space of Henstock-Kurzweil integrable functions.
Since the Henstock-Kurzweil integral is a conditional integral, the L!-norm

defined on L! (E),
1l = /E 91,

is not meaningful. For example, the function f’ defined in Example 2.31
is Henstock-Kurzweil integrable while |f’| is not. However, the space of
Henstock-Kurzweil integrable functions does have a natural semi-norm, due
to Alexiewicz [A], which we now define.

Definition 4.105 Let I = [a,b] C R and let HX (I) be the vector space
of all Henstock-Kurzweil integrable functions defined on I. If f € HK (I),
the Aleriewicz semi-norm of f is defined to be

[

11l = sup {

:agxgb}.
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(To see that ||-|| defines a semi-norm, see Exercise 4.58.) From Corollary
4.90 (which is also valid for intervals I C R) and Exercise 4.60, we have
that || f]| = 0 if, and only if, f = 0 a.e.. Thus, if functions in HK (I) which
are equal a.e. are identified, then ||-|| is actually a norm on HK (I).

The Riesz-Fischer Theorem (Theorem 3.116) asserts that the space
L' (E) is complete under the L!-semi-metric. We show, however, that
‘HK (I) is not complete under the semi-metric generated by the Alexiewicz
semi-norm.

Example 4.106 Let p: [0,1] — R be a continuous and nowhere differen-
tiable function with p(0) = 0. (See, for example, [DS, page 137].) By the
Weierstrass Approximation Theorem ([DS, page 239]), there is a sequence
of polynomials {px} 5=, that converges uniformly to p such that py (0) =0
for all k. By Part I of the Fundamental Theorem of Calculus, py (t) = fot Pl
for every t € [0,1]. Thus,

=55l = sun {| | 4~

= sup {|(px —p;) (O) :a <t < b}

:aStSb}

Since {px } ., converges uniformly to p, it follows that {p} }z- , is a Cauchy
sequence in HK ([0, 1]) with respect to the Alexiewicz semi-norm.

Suppose that there is an f € HK ([0, 1]) such that ||p}, — fll = 0ask —
oo. Then, py (t) = fot ph — fot f uniformly in ¢t € [0,1] so that p(t) = fot f
By Part II of the Fundamental Theorem of Calculus, p is differentiable a.e.
{with derivative f), which is a contradiction to the definition of p. Hence
‘HK ([0,1]) is not complete.

Although the space HK (I) is not complete under the Alexiewicz semi-
norm, the space does have other desirable properties. For a discussion of
the properties of HK ([0,1]), see [Sw2, Chapter 7].

4.12 Henstock-Kurzweil integrals on R™

We conclude this chapter by extending the Henstock-Kurzweil integral
to functions defined on n-dimensional Euclidean space. Since many of
the higher dimensional results follow from proofs analogous to their one-
dimensional versions, our presentation will be brief. We begin by laying the
groundwork necessary to define the integral.
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We define an interval I in (R*)" to be a product I = [[ I, where each
j=1

I; is an interval in R*. We say that [ is open (closed) in (R*)" if, and only

if, each I; is open (closed) in R*. The wolume of an interval I C (R*)" is

defined to be v (I) = [] ¢(I;), with the convention 0- 0o = 0.
§=1

Definition 4.107 A partition of a closed interval I C (R*)" is a fi-
nite collection of closed, nonoverlapping subintervals {J; : j =1,...,k} of
I with I = U5_,J;. A tagged partition of I is a finite set of ordered pairs
D = {(z;,J;):j=1,...,k} such that {J; : j=1,...,k} is a partition of
I and z; € J; for all j. The point z; is called the tag associated to the
interval J;.

As in the one-dimensional case, a gauge on I C (R*)" associates open
intervals to points in I.

Definition 4.108 A gauge v on an interval I C (R*)" is a mapping
defined on I that associates to each z € I an open interval J; containing
z. A tagged partition D = {(z;,J;): j =1,...,k} is called v-fine if z; €
JyCy(Jy) forj=1,...,k

Iff:Ic®) — RandD = {(z;,J;):5=1,...,k} is a tagged
partition of the interval I, the Riemann sum of f with respect to D is
defined to be

k
S(H:D)=2_ f(z5)v ().
=1
We assume, as before, that the function f has value 0 at all infinite points
(that is, any point with at least one coordinate equal to o) and 0- 0o = 0.
In order to use these sums to define a multi-dimensional integral, we need to
know that every gauge v has at least one 7-fine tagged partition associated
to it.

Theorem 4.109 Let I be a closed interval in (R*)" and v be a gauge on
I. Then, there is a v-fine tagged partition of I.

Proof. First, suppose that I = [} x --- X I, is closed and bounded.
Assume that there is no ~-fine tagged partition of I. Bisect each I; and
consider all the products of the n bisected intervals. This partitions I into
2" nonoverlapping closed subintervals. At least one of these subintervals
must not have any ~y-fine tagged partitions, for if each of the 2" subintervals
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had a ~-fine tagged partition, then the union of these partitions would be
a 7v-fine tagged partition of I. Let J; be one of the subintervals without
a ~y-fine tagged partition. Continuing this bisection procedure produces a
decreasing sequence of subintervals {J;};=, of I such that the diameters
of the J;’s approach 0 and no J; has a +-fine tagged partition. Let {z} =
M2, Ji. Since the diameters decrease to 0, there is a ¢ such that J;, C v (),
which implies that D = {(x, J;;)} is a v-fine tagged partition of J;,. This
contradiction shows that I has a ~-fine tagged partition.

Next, suppose that I C (R*)" is a closed, unbounded interval. Define
T

o [

s

—'5 lf = —-00
h(z) =< arctanz if —oo < z < o0
g if z=o
and o (R)" = [-2, 2] by R (@) = R (w1, 20) = (B (21), - b (@),

Note that & is one-to-one and let g be the inverse function of . Then, R
and § map closed intervals onto closed intervals and open intervals onto
open intervals. Consequently, R (I} is a closed and bounded interval and
R o~ is a gauge on h(I). By the previous case, h(I) has an h o v-fine
tagged partition D = {(=z;,J;) : j = 1,...,k}. It then follows that §(D) =
{(g(=;),3(J;)): 5 =1,...,k} is a v-fine tagged partition of I. O

We can now define the Henstock-Kurzweil integral for functions defined
on intervals in (R*)".

Definition 4.110 Let f : I C (R*)" — R. We call the function f
Henstock-Kurzweil integrable on I if there is an A € R so that for all € > 0
there is a gauge «v on I so that for every «-fine tagged partition D of I,

1S (f,D) - A] < e.

The number A is called the Henstock-Kurzweil integral of f over I, and we

write A = [} f.

The basic properties of the integral, such as linearity, positivity and
additivity, and the Cauchy condition, carry over to subintervals of (R*)"
as before; we do not repeat the staterments or proofs. In R*, a tag can be
associated to one or two intervals in a tagged partition; each tag in a tagged
partition in (R*)™ can appear as the tag for up to 2™ different subintervals
in the partition.
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We first show that the Henstock-Kurzweil integral of the characteristic
function of a bounded interval equals its volume.

Example 4.111 Let 7 C R™ be a bounded interval. Then, fRn X; =
v(I). Without loss of generality, assume n = 2. Let I C R? and
T = [a,b] x [c,d]. Fix € > 0 and choose § > 0 so that the sum of the
areas of the four strips surrounding the boundary of I, (a —d,a + 9) x
(c=8,d+8), (b=6,b+08) x (c—6,d+8), (a—08,b+8) x (c—4,c+9),
and (a —8,b+8) x (d—8,d+ ), is less than e. Let S be the union of
these four intervals. Define a gauge v on R? so that v (z) = I° for z € I°,
v (z) C S for z € 81, the boundary of I, and y(z)NT =@ forz ¢ I. If D
is a y-fine tagged partition of R, then

IS(xpD)—vDl=| >, oD+ Y x@v)-v(D)
(w,J)ED,zCI° (z,J)ED,x€dI
<| Y v
(z,J)ED,xcOl
< v (S) <¢,

since I\ Uz, NYeD,zelv J C U(z’J)echsJ.

Since the Henstock-Kurzweil integral is linear, it follows from Example
4.111 that step functions are Henstock-Kurzweil integrable. Further, if
plz) = ELI a;xy, (z) is a step function, then

k k k
/ ‘P=/ ZaiXIiZZai/ XI,-:ZGW(L‘)-
R =1 =1 JR" i1

The following example generalizes Example 4.41 to higher dimensions.

Example 4.112 Suppose that > po; aj is a convergent sequence. Set
Ji = (k,k+1) x (k,k+1) and, for z € R?, set f(z) = 3 poy ar Xy, (2)-
We claim that f is Henstock-Kurzweil integrable over R? and

o0
/ f: Q.
R? k=1

Since the series is convergent, there is a B > 0 so that |ax| < B for all
k € N. Let € > 0. Pick a natural number M so that |}:Z°=J ak' < € and
|a;| < € for > M. For each k € N, let O be an open interval containing
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Jx such that v (O \ Ji) < min {2—:1—3-,1}. If 2 ¢ U Jk U {{00,00)}, let

I be an open interval disjoint from US| Ji U {(00,00)}. Define a gauge v
as follows:

Oy if € i
v(z) = { I, if z ¢ U, Jp U {(c0,00)} .
(M, 00) x (M, 00] if z = (00, 00)

Suppose that D = {(¢;,1;) :i¢=1,...,m} is a v-fine tagged partition
of R2. Without loss of generality, we may assume that t,, = (00, 00) and
Im = [a,00] x [b,00], so that a,b > M and f (¢;m) v (Im) = 0. Let K be the
largest integer less than or equal to max {a,b}. Then, K > M.

Set D; = {(t;, ;) €D :t; € J;}. Note that v(J;) = 1 and, by the
definition of v, U, 1,)ep,fs C O;. For j = K, we have

IS(f,Dx) ~axl=| Y axv(L)-ax
(ti,1;)EDk
= lak ( > 'U(Iz')—v(JK))
(t:,1;)EDx

< |QK|’U(Ok \ Jk) < €,

while for 1 < j < K,

IS(£ D) —a5l=| D aju(li)—ay =g U(Ii)—v(Jj))

(t:,1:)€D; (t:.1:)€D;

€
<10;19(0;\ 7)) < loyl 575 <
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Therefore,

o o]
- Do =

k=1

o0 o0
Z (f, D) — Z ay
k=1 k=1
K-

Z faDIc _ak}

+15(f,Dk) — ax|

<Zzik+e+€=3€.

It follows that f is Henstock-Kurzweil integrable over R? with integral equal
to Y ro ) k.

Henstock’s Lemma holds for functions defined on intervals in (R*)™ and,
hence, the Monotone Convergence Theorem, Fatou’s Lemma and the Dom-
inated Convergence Theorem are also valid for the Henstock-Kurzweil inte-
gral in (R*)"™. Given the validity of the Dominated Convergence Theorem,
Corollary 4.80 extends to R™ and we have that absolute Henstock-Kurzweil
integrability in R™ is equivalent to Lebesgue integrability, once we know
that every Henstock-Kurzweil integrable function on R” is measurable. We
now prove this latter result, which implies a generalization of Corollary
4.87.

Theorem 4.113 Suppose that f : I C R® — R is Henstock-Kurzweil
integrable. Then, f is measurable.

Proof. Without loss of generality, we may assume n = 2, Consider first
the case in which I = [a1,b;] X [ag, bs] is a bounded interval. Set

I;(lz)c =la1+(~1)(b1—a1)27 a1 +j(by —a1)27]
x {ag + (k— 1) (b2 — a2) 27" az + k (b2 — a2) 274

and let E; = {I“,{ k= ,...,21}. Then,

!
(1) I=U1§f,{eELIJ(‘J)c;
o o
@ (1) 0 (50%)" =0 unless (. k) = (7, k')

(3) ma (1) = 27%ms (7).
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Define f; : I — R by

filzy= > (F(ll}”,)cjflf” )X(Im) (z).

fer

Let AI = I°\ (U?;l Uy e, BIj(l,)c), where 8J represents the boundary
4k ’

of the interval J. Since mgy <8Ij(l,)c) = 0 (see the comment on page 83
preceding Definition 3.43), it follows that mq (AI) = mqe (J°) = mq (I).
Thus, if { f; (z)};2, converges to f (z) a.e. in AT, then {f; (z)};2, converges
to f(z) a.e. in I

We next show that {f, (z)},-, converges to f (z) a.e. in AI. Let X =
{z € AI: {fi(x)};2, does not converge to f(x)}. If z € X then there is
a M € N and a sequence {l(z)} C N such that |fi(z) (= f(m)l >
for all I (z). Let Jy;) be the interval Ij(,g 2) ¢ Ej(z) that contains z in its
interior. Then, by the definition of f,,,

f = f@ms (Gw)| > 37m (i) (4.16)

Ji(e)

Let Xy = {z€ AI:|fi) (z) ~ f (z)| > &, for all [(z)}, so that X =
USe_; Xnm. It is enough to show that my (X)) = 0 for all M € N to prove
the claim.

Fix € > 0. Since f is Henstock-Kurzweil integrable over I, there is a
gauge v on [ such that l i) F=8(f, ’D)\ < ¢ for every «y-fine tagged partition
Dof I.

Let Vy = {J,(x) 11 € Xy and Jyz) C 'y(m)} and note that Vs is a
Vitali cover of Xj;. By the Vitali Covering Lemma, we can choose a
finite set of pairwise disjoint intervals Jyg,), Ji(zy)s- - s Ji(zx) such that
ms; (XM \ Uz:lJl(wr;)) < e. Further, D’ = {(.’El, Jl(ml)) - (IEK, Jl(zK))}
is a y-fine partial tagged subpartition of 7. Thus, by (4.16) and Henstock’s
Lemma,

K

my (Xn) < Y ma (Jyay) +

i=1

K
<MY
i=1

< 2Me + e.

f=fz)ma (Juwy)| +€




Henstock-Kurzweil integral 213

Since € > 0 is arbitrary, it follows that Xj; is measurable with measure
0. Consequently, ma (X) = 0 and {f; (z)},2, converges to f (z) a.e. in I.
Since every step function is measurable and the pointwise (a.e.) limit of
measurable functions is measurable, it follows that f is measurable.
Suppose I is an unbounded interval, and set I, = IN([—k, k] x [k, k}).
By the n-dimensional analog of Theorem 4.28, f is integrable over I, and
hence measurable on Iy by the first part of the proof. Let f; = fx 1.+ Since
I'\ I} is a measurable set, it follows that fy is measurable on I for all k.
Thus, since { fx}5., converges pointwise to f on I, f is measurable on I. [J

Since a function is absolutely Henstock-Kurzweil integrable if, and only
if, it is Lebesgue integrable, this implies that the Fubini and Tonelli The-
orems (Theorems 3.109 and 3.110) hold for absolutely Henstock-Kurzweil
integrable functions in R™.

Theorem 4.114  (Fubini’s Theorem) Let f : R x R — R be absolutely
Henstock-Kurzweil integrable. Then:

(1) fz is absolutely Henstock-Kurzweil integrable in R for almost every x €
R;

(2) the function x +— [pfo = [3f(z,y)dy is absolutely Henstock-
Kurzweil integrable over R;

(3) the following equality holds:

/Rxmf:,/m(Af”>dm:AAf(m,y)dydm.

Theorem 4.115 (Tonelli’s Theorem) Let f : R x R — R be nonnegative
and measurable. Then:

(1) fr is measurable on R for almost every x € R;
(2) the function x +— [¢ fo = Ji f(x,y) dy is measurable on R;
(8) the following equality holds:

/Rxmf B /IR (/sz) dz = /R/Rf(w,y)dydz.

It should be pointed out that there are versions of the Fubini Theorem
for (Henstock-Kurzweil) conditionally integrable functions in R™, but as
the proofs are somewhat long and technical, we do not give them. We refer
the reader to [Ma), [McL, 6.1] and [Sw2, 8.13].
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4.13 Exercises

Denjoy and Perron integrals
Exercise 4.1 Let f(z) = |z|. Find Df (0) and Df (0).

Exercise 4.2 Suppose that f : [a,] — R is increasing. Prove that
Df(z) > Df (z) > 0 for all z € [a, b].

A General Fundamental Theorem of Calculus

Exercise 4.3  Define positive functions 81,82 : [0,1] — (0,00) by 6; (t) = §
for all t € [0,1] and §5(0) = 6,(1) = 7 and 62(t) = tfor 0 < ¢t < 1.
Let -y; be the gauge on [0,1] defined by §;, for ¢ = 1,2; that is, v, (t) =
(t—0i(t),t+6;(t)). Give examples of v;-fine tagged partitions of [0, 1].

Exercise 4.4 Suppose that y; and +, are gauges on an interval I such that
71 (t) C v, (t) for all ¢ € I. Show that any -,-fine tagged partition of I is
also v,-fine.

Exercise 4.5 Suppose that v, and -, are gauges on an interval I and set
v(t) = v; (£) Ny, (). Show that v is a gauge on I such that any ~-fine
tagged partition of I is also «y;-fine, for i = 1, 2.

Excrcise 4.6 Let I = [a,b] and let vy be a gauge on I. Fix ¢ € (a,b) and
set Iy = [a,c] and Iy = [c,b]. Suppose that D; is a y-fine tagged partition
of I, for ¢ = 1,2. Show that D = D; U Dy is a -fine tagged partition of I.

Exercise 4.7 Let f: [a,b] — R and let C = {¢;},, C [a,b] be a countable
set. Suppose that f(z) = 0 except for z € C. Using only the definition,
prove that f is Henstock-Kurzweil integrable and f[a,b] f =0. Note that f
may take on a different value at each ¢; € C.

Exercise 4.8 Use the following outline to give an alternate proof of The-
orem 4.17:

Assume that the theorem is false. Use bisection and Exercise 4.6 to
construct intervals Is = I D Iy D I D --- such that £(I) < £(Ix—1)/2
and no vy-fine tagged partition of I; exists. Use the fact that N2, I} = {z}
to obtain a contradiction.

Exercise 4.9 Suppose that f,g: I = [a,b] C R — R, g is nonnegative and
Henstock-Kurzweil integrable, and |f(t)] < g(t) forallt € I. If [, g =0,
show that f is Henstock-Kurzweil integrable over I and || =0
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Exercise 4.10 Let f: I — R. If |f| is Henstock-Kurzweil integrable over
I and [, |f| = 0, show that f is Henstock-Kurzweil integrable over / and

;i f=o.

Exercise 4.11 Let a < zo < b. Show that there is a gauge v on [a, b] such
that if D is a y-fine tagged partition of [a,b] and (¢,J) € D with zg € J,
then t = =zg; that is, z¢ must be the tag for J. Generalize this result to a
finite number of points {zj,...,Z,}.

Basic properties

Exercise 4.12 Let f: I — R. Suppose there is a real number A such that
for every € > 0, there are Henstock-Kurzweil integrable functions g and h
satisfying g < f < hand A—e < [;9 < [;h < A+ e Prove that f is
Henstock-Kurzweil integrable with f; f = A.

Exercise 4.13 Let f,g : I — R. Suppose that f is Henstock-Kurzweil
integrable over I and g is equal to f except at countably many points in I.
Show that g is Henstock-Kurzweil integrable with [, g = [, f.

Exercise 4.14 Suppose that f,|f —g| = 0. Prove that f is Henstock-
Kurzweil integrable over I if, and only if, ¢ is Henstock-Kurzweil integrable

over I and [} f = [;g.

Exercise 4.15 This example studies the relationships between the
Henstock-Kurzweil integral and translations or dilations. Assume that
f : [a,b] — R is Henstock-Kurzweil integrable over [a, b).

(1) (Translation) Let h € R. Define f, : [a+h,b+h] — R by
frn(t) = f(t—h). Show that f, is Henstock-Kurzweil integrable over
la+h,b+h] with [T fu =[] f.

(2) (Dilation) Let ¢ > 0 and define g : [a/c,b/c] — R by g(t) =

f (ct). Show that g is Henstock-Kurzweil integrable over [a/c, b/c] with
c ://ch (t)dt = [? f(t)dt.

Exercise 4.16 Give an example which shows the importance of the con-
tinuity assumption in the Generalized Fundamental Theorem of Calculus,
Theorem 4.24.

Exercise 4.17 Complete the induction proof of Theorem 4.29.
Unbounded intervals

Exercise 4.18 Prove that Definitions 4.9 and 4.34 of a gauge are equiv-
alent. That is, given a gauge v satisfying the Definition 4.34, prove that
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there is a gauge 7' satisfying Definition 4.9 so that 7' (t) C v (t). This
implies that every v'-fine tagged partition is also a y-fine tagged partition.
Exercise 4.19 Suppose f,g: R — R. If f is Henstock-Kurzweil integrable
over R and g = f a.e., show that g is Henstock-Kurzweil integrable over R
with [ f = [z 9.

Exercise 4.20 Let f : R — R. Show that f is Henstock-Kurzweil inte-
grable over R if, and only if, there is an A € R such that for every € > 0 there
exist a,b € R, a < b, and a gauge v on [a,b] such that |S(f,D) —A| < €
for every v-fine tagged partition D of [a, b].

Exercise 4.21 Let f : R — R. Show that f is Henstock-Kurzweil inte-
grable over R if, and only if, there is an A € R such that for every € > 0
there exist 7 > 0 and a gauge v on R such that if a < —7 and b > r, then
| (f,D) — A| < € for every v-fine tagged partition D of [a, b].

Exercise 4.22 Suppose that a; > 0 for all & and 3 ;o ar = co. Prove
that the function f defined by f (z) = Y22 akX{k,k+1) (%) is not Henstock-
Kurzweil integrable over (1, co).

Exercise 4.23  Suppose {ax},—; C R and set f () = 3.2, axX[kk+1) (Z)-
Show that if f is Henstock-Kurzweil integrable over [1, 00), then the series
> hey ax converges. For the converse, see Example 4.41.

Henstock’s Lemma

Exercise 4.24 Using the notation of Henstock’s Lemma (Lemma 4.43),
k
> {ir@arew-|[ 1

show that
|

Exercise 4.25 Suppose that f : [a,b] — R is bounded on [a,b] and
Henstock-Kurzweil integrable over [c,b] for every a < ¢ < b. Show that
f is Henstock-Kurzweil integrable over [a, b].

< 2e.

Exercise 4.26 Use Example 4.47 to show that the product of Henstock-
Kurzweil integrable functions need not be Henstock-Kurzweil integrable.

Exercise 4.27 Recall that a function f has a Cauchy principal value in-
tegral over [a,d] if, for some @ < ¢ < b, f is Henstock-Kurzweil integrable
over [a,c — €] and [c + ¢, b] for every (sufficiently small) € > 0, and the limit

ﬁ%:(/ff+/;f)
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exists and is finite. Give an example of a function f whose principal value
integral over [a, b] exists but such that f is not Henstock-Kurzweil integrable
over [a, b].

Exercise 4.28 Suppose that f : [-00,00] — R is Henstock-Kurzweil in-
tegrable over [~o0,00]. Prove (% f= [ f+ [* f for every choice of
a €R.

Exercise 4.29 Let f : [a,00) — R be differentiable. Give necessary and
sufficient conditions for f’ to be Henstock-Kurzweil integrable over [a, 00).

Exercise 4.30  Show that the Fresnel integral, [;° sin (¢?) dz, exists in the
Henstock-Kurzweil sense. Is the integral absolutely convergent? [Hint: try
the substitution ¢ = z2.]

Exercise 4.31 Let f,g: I — R. Suppose that fg and f are Henstock-
Kurzweil integrable over [a,c] for every a < ¢ < b, g is differentiable and
g’ is absolutely integrable over [a,b]. Set F (t) = f:f fora <t <b
and assume that lim,_,,— F () exists. Prove that fg is Henstock-Kurzweil
integrable over [a,b]. [Hint: integrate by parts.]

Exercise 4.32 Prove the following limit form of the Comparison Test:
Suppose that f,g : {a,b] — R are Henstock-Kurzweil integrable over
[a,c] for all a < c < b, and f(t) > 0and ¢g(t) >0 for all t € [a,]]. Assume

IO cpe
o = LeR

(1) If L = 0 and g is Henstock-Kurzweil integrable over [a,b], then f is
Henstock-Kurzweil integrable over [a, b].

(2) If 0 < L < oo, then g is Henstock-Kurzweil integrable over [a, b] if, and
only if, f is Henstock-Kurzweil integrable over [a, b].

(3) If L = oo and f is Henstock-Kurzweil integrable over [a,b], then g is
Henstock-Kurzweil integrable over [a, b].

limt—bb_

Exercise 4.33  (Abel’s Test) Prove the following result:

Let f,g: [a,00) — R. Suppose that f is continuous on [a,c0). Assume
that F () = ft: f is bounded and assume that g is nonnegative, differen-
tiable and decreasing. If either (a) limi—oog(t) = 0 or (b) [° f exists,
then faoo fg exists. [Hint: integrate by parts.

int
Exercise 4.34 Use Abel’s Test in Exercise 4.33 to show that f1°° Eltant
exists for p > 0. Show that the integral is conditionally convergent for
0 < p < 1. It may help to review Example 4.50.
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Exercise 4.35 Suppose f : {a,00) — R is continuous and F (t) = f: fis
bounded on [a, 00). Assume g : [a,00) — R with lim;_,, g (¢) = 0 and that
g’ is nonpositive and continuous on [a,c0). Prove that [ :o fg exists.

Exercise 4.36 Use Exercise 4.35 to show that f3°° ;—;’;—Zdt exists.

Exercise 4.37 Suppose that f,g: [e,b] — R are continuous on (a,b] and
g’ is absolutely integrable over [a,b]. Assume F (t) = ftb f is bounded.
Show that fg is Henstock-Kurzweil integrable over [a,b] if, and only if,
lim__, .+ F (c) g (c) exists.

Absolute integrability

Exercise 4.38 Suppose that ¢,9¥ € BV ([a,b]) and «,8 € R. Prove that
ap + By € BV ([a,b]) and

Var (ap + B¢, [a,b]) < |a|Var (¢, [a,b]) + |8 Var (¥, [a, b]) .

Exercise 4.39  Suppose that ¢ € BY ([a,b]). Prove that |p| € BV ([a,b)).
Is the converse true? Either prove or give a counterexample.

Exercise 4.40 Prove that Var (p,[a,b]) = 0 if, and only if, ¢ is constant
on [a, b].

Exercise 441 We say a function ¢ € BV (R) if ¢ € BV (|—a,a]) for all
a > 0 and Var (¢, R) = lim, o Var (¢,[—a, a]) exists and is finite.

(1) Prove that ¢ € BV (R) implies ¢ € BY ({a,b]) for all [a,b] C R.

(2) Give an example of a function ¢ € BV ([a, b]) for all [a, b] C R such that
¢ ¢ BV (R).

(3) Prove that if ¢,y € BV(R) and «, 8 € R, then ap + By € BV (R).

Exercise 4.42 Prove Theorem 4.60 for I = R.
Exercise 4.43 Extend Corollaries 4.61 and 4.62 to I = R.

Exercise 4.44 Suppose that f: I — R is absolutely integrable over I and
let ¢ > 0. Define f. by

_Jf@ilfe)<c
fC(t)‘{ 0 if|f(t)>c’

Show that f, is absolutely integrable over I.
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Convergence theorems

Exercise 4.45 State and prove a uniform convergence theorem for the
Henstock-Kurzweil integral.

Exercise 4.46 Let fx : I — R be Henstock-Kurzweil integrable over I.
Show that there is a Henstock-Kurzweil integrable function g : I — R such
that |fr — f;| < gforallk, 5 € Nif, and only if, there are Henstock-Kurzweil
integrable functions h1 and Ay satisfying Ay < fi < hy for all k € N.

Exercise 4.47 Suppose that f,¢g,h : I — R are Henstock-Kurzweil inte-
grable. If |[f — h| < ¢ and h is conditionally integrable, prove that f is
conditionally integrable.

Exercise 4.48 Suppose that fx,8 : I — R are Henstock-Kurzweil inte-
grable over I and f, < B for all k. Prove that sup,, fx is Henstock-Kurzweil
integrable over I.

Exercise 4.49 (Dual to Fatou's Lemma) Suppose that fz,8 : I — R
are Henstock-Kurzweil integrable over I and f, < 8 for all & and
limsup,, [, f > —oco. Show that limsup, fi is finite a.e. and

limsup/fk < /limsup Sr-
k I Ik

Exercise 4.50 Suppose that f; : I — R is Henstock-Kurzweil integrable
over I and {fc}r., converges to f pointwise. Suppose there exists a
Henstock-Kurzweil integrable function g : I — R such that |fi] < g for
all k£ € N. Show that the conclusion of the Dominated Convergence Theo-
rem can be improved to include [, |fi — f| — 0.

Exercise 4.51 Let f: R — R and suppose A C B and both sets are mea-
surable. Show that if f is absolutely integrable over B then f is absolutely
integrable over A. Show that the result fails if we replace “absolutely inte-
grable” with “Henstock-Kurzweil integrable”.

Exercise 4.52 Suppose f,g : I — [0,00), f is Henstock-Kurzweil inte-
grable over I and g is Henstock-Kurzweil integrable over every bounded
subinterval of I. Show that f A g is Henstock-Kurzweil integrable over I.
In particular, for every & € N, f A k is Henstock-Kurzweil integrable over
I. [Hint: Use the Monotone Convergence Theorem.)
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Exercise 4.53 Let f: I — R be absolutely integrable over I. For k € N,
define f*, the truncation of f at height &, by

—k if f(t) < -k
f’“(t)={f(t)if f@OI<k .
k if f(t)>k

Show that f* is absolutely integrable over I. [Hint: consider g = f Ak and
h=(-k)Vgl
Henstock-Kurzweil and Lebesgue integrals

Exercise 4.54 Let f: I — R. Prove that f is absolutely integrable over I
if, and only if, x ; f is Henstock-Kurzweil integrable over I for all measurable
EcClL

Characterizations of indefinite integrals

Exercise 4.55 Show that V = {[z — 1,2+ 1] :2€[0,1]NQ and n € N}
is a Vitali cover of [0, 1].

Exercise 4.56 Show that the set of intervals with rational endpoints is a

Vitali cover of R.

Exercise 4.57 Let E = [0,1] x [0,1] and set |||, = max {|z1], |z2]}.

(1) 1If E. = [—r, 7] y, [—r2,r2],
show that V = {z+ E,: |jzf|, £1and 0 <r <1} is a Vitali cover
of E.

(2) Fix « > 0. If F. = [-rr] X [-ar,ar], show that V =
{z+ F |zl £1and 0 <r <1} is a Vitali cover of E.

The space of Henstock-Kurzweil integrable functions

Exercise 4.58 Show that the function ||-|| defined in Definition 4.105 is a
semi-norm. That is, prove that ||f + gl < ||f]| + llgll and [IAf]l < [AIIF]]
for all f,g € HK (I) and X € R.

Exercise 4.59 Let I C R and f € L' (I). Prove that | f{| < |[f|l;- This
shows that the imbedding L! (I) — HK (I) is continuous.

Exercise 460 Let I = [a,b] and define ||f||’ by

Tk =Sup{‘/Jf

Prove that || f||’ is a semi-norm and || f|| < {| £l < 2|If]-

:J C I is aclosed subinterval} .
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Exercise 4.61 Let I C R* be a closed, unbounded interval. Let HK (I)
be the vector space of Henstock-Kurzweil integrable functions on I. Prove
that || f]|’, defined by

I7) = sup {l/ f‘ : J C I is a closed subinterval}
J
defines a semi-norm on HK (I) such that

I < 1l
for all f € L ().
Henstock-Kurzweil integrals on R"”

Exercise 4.62 Let I =[0,1] x [0,1] and x = (z1,z2) € I. Show there is a
gauge v on I such that if D is a v-fine tagged partition of I, (2,J) € D and
2 € J, then z = z, In other words,  must be the tag for any subinterval
from D that contains z.

Exercise 4.63 Write the multiple integral in Example 4.112 as an iterated
integral.
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Chapter 5

Absolute integrability and the
McShane integral

Imagine the following change in the definition of the Henstock-Kurzweil
integral. Let v be a gauge on an interval I and D be a v-fine tagged
partition of I. Suppose we drop the requirement that if (¢,J) € D, then
t € J; in other words, suppose we allow the tag to lie outside of J. Thus,
we still require that {J : (t,J) € D} be a partition of I and that J C «v(¢),
but now require only that ¢ € I. This is exactly what E. J. McShane
(1904-1989) did (see [McS1] and [McS2]) and we next study the integral
that bears his name,

Clearly, every y-fine tagged partition of I will satisfy this new definition,
but so might some other sets D. Thus, every McShane integrable function is
also Henstock-Kurzwell integrable. Further, there are Henstock-Kurzweil
integrable functions which are not McShane integrable. This is a conse-
quence of the fact that the McShane integral is an absolute integral; every
McShane integrable function is absolutely integrable. This result is in sharp
contrast to the Henstock-Kurzweil integral, which is a conditional integral.
However, we have seen that absolutely Henstock-Kurzweil integrable func-
tions are Lebesgue integrable and we will conclude this chapter by proving
the equivalence of Lebesgue and McShane integrability.

We will use the word “free” to denote that the tag need not be an
element of its associated interval. Thus, the McShane integral is based
on v-fine free tagged partitions. Not surprisingly, any Henstock-Kurzweil
integral proof that does not rely on any geometric constructions will carry
over to prove a corresponding McShane integral result.

223
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5.1 Definitions

Let I C R* be a closed interval (possibly unbounded) and let f : I — R.
We shall always assume that f is extended to all of R* by defining it to be
0 off of I and that f (00) = f(—00) = 0.

Definition 5.1 Let I C R* be a closed interval. A free tagged partition
is a finite set of ordered pairs D = {(t;,1;) :i=1,...,m} such that [; is
a closed subinterval of I, U, I; = I, the intervals have disjoint interiors,
and t; € I. The point t; is called the tag associated to the interval I;.

The Riemann sum of a function f: I — R and a free tagged partition D is
defined to be

m

S(UD)=)_f(t:)e().
i=1
Definition 5.2 LetD = {(t;, ;) : ¢ = 1,...,m} be a free tagged partition
of I and v be a gauge on I. We say that D is y-fine if I; C v (¢;) for all 4.
We denote this by writing D is a v-fine free tagged partition of I.

For a tagged partition, the requirement that the tag lie in the associated
interval meant that a number could be a tag for at most two intervals. This
is no longer the case in a free tagged partition; in fact, a single number could
be a tag for every interval.

Example 5.3 Consider the gauge defined for the Dirichlet function f :
[0,1] — R in Example 4.10 with ¢ = 1. If 7 is an irrational number
in [0,1], then [0,1] C (7). Let {L;}*, be a partition of [0,1]. Then,
D= {(r,I;):i=1,...,m} is a y-fine free tagged partition of [0,1]. Note
that S (f,D) = 0 is a good approximation of the expected McShane integral
of f.

We saw in Theorem 4.17 that if -y is a gauge on an interval I, then there
is a y-fine tagged partition D of I. Since every tagged partition is a free
tagged partition, there are y-fine free tagged partitions associated to every
gauge v and interval 1.

Definition 5.4 Let f: I C R* —» R. We call the function f McShane
integrable over I if there is an A € R so that for all € > 0 there is a gauge
«v on I so that for every v-fine free tagged partition D of I,

IS (f,D) — A < e.
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The number A is called the McShane integrel of f over I, and we write
A:Lf

Since we are guaranteed that y-fine free tagged partitions exist, this defin-
ition makes sense. We will use the symbol f ; f to represent the McShane
integral in this chapter.

Several observations are immediate or follow from corresponding results
for the Henstock-Kurzweil integral. First, every McShane integrable func-
tion is Henstock-Kurzweil integrable and the integrals agree, since every
tagged partition is a free tagged partition. Using the proof of Theorem
4.18, one sees that the McShane integral of a function is unique.

It is not hard to prove that the characteristic function of a bounded
interval I is McShane integrable with [px; = £(I). In fact, if I has
endpoints @ and b, a < b, and € > 0, set vy (¢) = (a,b) for t € (a,b),
v(@) = (a—%a+£), y(b) = (b—%,b+ %), and for ¢ ¢ [a,b], let v(t)
be an interval disjoint with [a,b]. Then, for every y-fine free tagged parti-
tion, D, |S(f,D) — (b —a)| < e. We leave it to the reader to complete the
details. See Exercise 5.2.

In the next example, we consider the analog of Example 4.41 for the
McShane integral. Note that, in this case, the series E:’__l a, must be
absolutely convergent. See the comments following the example for a dis-
cussion of the difference between the two examples.

Example 5.5 Suppose that > .., ai is an absolutely convergent series
and set f(z) = 337 akX[k k41) (z) for z > 1. Then, f is McShane inte-
grable over {1, 00) and

Amfz’iak.

To prove this result, we use an argument analogous to that in Example
4.41, which we repeat here to allow the reader to more easily identify the
differences.

Since the series is absolutely convergent, there is a B > 0 so that |a] <
B for all k € N. Let € > 0. Pick a natural number M so that 3 po_,, lax| <
€. Define a gauge v as in Example 4.41. For t € (k,k+ 1), let v(¢) =
(k,k+1); for t = k, let v(t) = (¢t - min (555,1) 775t + min (555, 1));
and, let v (c0) = (M, o0]. Suppose that D = {(ti,I,-) ri=1,...,m}is a
v-fine free tagged partition of [1,00]. Without loss of generality, we may
assume that ¢,, = oo and I, == [b, 00}, so that b > M and f (t;,) £ (Im) = 0.
Let K be the largest integer less than or equal to b. Then, K > M.
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Let Dy = {(t;, ;)€ D:t; €N}, If k € Nis a tag, then k < K+ 1;
if b € v (k), then an interval to the left of I, could be tagged by k, and
b € v(k) implies k£ < K + 1. Not all natural numbers less than or equal
to b need to be tags, as was the case for the Henstock-Kurzweil integral,
because an integer k£ between M and b is an element of y (c0). For k € N,

Uil : (ti,Ii) €Dyand t; =k} Cy (k) Thus,

K+1 K+1

SEDI =Y e S e <Slal Y em
k=1 (t,‘,I')E'DN‘ =k k=1 (t,;,I‘)E'DN't‘=k
K+1 K+1

<Z|ak|€ Zla‘k|2k 1B<ng1=€‘

Set Dy = {(ti,Ii) eD:t; € (k,k + 1)} For1<k< M, U(thji)epkli is
a finite union of subintervals of (k, & + 1). If £ is the sum of the lengths of

these subintervals, then £ > 1 — 555 — serrg, and

S (f, Dk) = Z akf (Ii) = Qg Z ¢ (Il) = akék.

(ti 1:)EDy (t:,1;)EDy

Thus,

€ €
18 (£,Dx) = axl = low (6 — ) < B (505 + 5emrg) < 37

Note that the arguments for Dy and Dg, 1 < k < M, are the same as
before.

To estimate |S (f, Dy) — ag| for M < k < K, we have

IS D) —axl = | Y al(ls) —ax

(ti,li)EDk

= la| (1— > e(m) < lakl,
{

ti, 1) €Dy

the same estimate obtained for |S(f,Dk) — ak| in Example 4.41. One
cannot obtain a better estimate for these terms since, for k¥ > M,
(k,k+1) C v(00). Thus, Ug, 1,)ep, i, which is a finite union of subin-
tervals of (k,k + 1), could be a set of intervals the sum of whose lengths is
small. In fact, one could have Dy = @, in which case |S (f, Dx) — ax| = |ax|.
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Finally, let Do = {(o0,I;) € D}. Since f(o0) = 0, S(f,Des) = 0.

Combining all these estimates, we have

’S(f,D Zak

ZS(f,Dk+S<fDN)+S(f, o) = Y ax

k=1 k=1
K
D) = ar}| + | D {S(f,De) — ax}
k=M
FISUD+]| Y a
k=K+1
&) ¢ K
<Z§—— 37 Jak] +2¢ + Z |a|
k=1 k=M k=K+1
oQ € xR
:Z2k_1 Z lak| + 2€ < 5e.
k=1 k=M

It follows that f is McShane integrable over [1, 00).

As for the Henstock-Kurzweil integral, the converse of this example holds;
that is, if f (2) = 307, akX(x k+1) (z) is McShane integrable, then the series
S e ax is absolutely convergent. See Exercise 5.4.

Examples 4.41 and 5.5 provide an illustrative comparison between
the Henstock-Kurzweil and McShane integrals. When estimating
1S(f, D) —ax| for M < k < K, one needs to address the fact that if
(t,I) € D and I C (k,k+ 1), then the tag associated to I could be oo.
In that case f(o0)£(I) = 0 and, further, this term is not a summand in
S (f, D), so that E(ti,h)em ¢(I;) could be much less than one. For the
Henstock-Kurzweil integral, this situation could arise for at most one inter-
val. For the McShane integral, it can happen for arbitrarily many intervals;
that is, for the McShane integral, the point at oo may be a tag for more
than one interval. This leads to the sum Z,ﬁ; s 10x] in the estimate above,
with arbitrarily many terms. Hence, the series must converge absolutely.
This is related to the fact that the McShane integral is an absolute integral,
so if f is McShane integrable then so is | f|. See Theorem 5.11 below.

5.2 Basic properties

In this section, we list some of the fundamental properties satisfied by the
McShane integral.
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Proposition 5.6 Let f,g: I C R* — R be McShane integrable over I.

(1) (Linearity) If o, B € R, then af + Bg is McShane integrable and

/I(af+ﬁg)=a/lf+ﬂ/19-
(2) (Positivity) If f < g on I, then [, f < [, g.

See Propositions 4.19 and 4.20 for proofs of these results.
Similar to the Riemann and Henstock-Kurzweil integrals, McShane in-
tegrability is characterized by a Cauchy criterion.

Theorem 5.7 A function f : I — R is McShane integrable over I if, and
only if, for every € > 0 there is o gauge v so that if D1 and Dy are two
~v-fine free tagged partitions of I, then

IS (f,D1) ~ S(f, D2)| <e.

See Theorem 4.27 for a proof of this result.
Using the fact that continuous functions on closed and bounded intervals
are uniformly continuous there, one has

Proposition 5.8 Let I be a closed, bounded subinterval of R. If f : I —
R s continuous over I, then f is McShane integrable over I.

See Exercise 5.5.

Using the Cauchy condition, one can prove that if f is McShane in-
tegrable over an interval I and J is a closed subinterval of I, then f is
McShane integrable over J. The next result now follows.

Corollary 5.9 Let —oco < a < ¢ < b < 0. Then, f is McShane integrable
over I = [a,b] if, and only if, f 1s McShane integrable over [a,c] and [c,b].

Further,
Jo= L[

See Theorems 4.28 and 4.29 for details of the proof. Note that by induction,
the result extends to finite partitions of [a, b].

One of the key results for the Henstock-Kurzweil integral is Henstock’s
Lemma (Lemma 4.43). A free tagged subpartition of an interval I C R* is
a finite set of ordered pairs S = {(¢;,Ji) : i = 1,...,k} such that {Ji};;l is
a subpartition of I and ¢; € I. We say that a free tagged subpartition is
~-fine if I; C v (¢;) for all 4.
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Lemma 5.10 (Henstock’s Lemma) Let f : I C R*— R be McShane in-
tegrable over I. For € > 0, let v be a gauge such that if D is a y-fine free
tagged partition of I, then

‘S(f,D)—/If’ <e.

Suppose D' = {(x1,J1),...,(xk, Ji)} 15 a y-fine free tagged subpartition of
I. Then

k

Z{fm)eum/hf}

i=1

k

Seandz

i=1

< 2e.

faew - |

Ji

f

The proof is the same as before.

5.3 Absolute integrability

The previous section documented the similarity between the Henstock-
Kurzweil and McShane integrals. We now turn our attention to their fun-
damental difference. We will prove that every McShane integrable function
is absolutely integrable

Theorem 5.11 Let f: I — R be McShane integrable over I. Then, |f|
18 McShane integrable over I and
< / Ifl-
I

/1

To prove this theorem, we will use a couple of preliminary results.

Proposition 5.12 Let D = {(t;, ;) : i =1,...,m} be a free tagged par-
tition of an interval I and let 7 = {J; : 5 =1,...,n} be a partition of I.
Then,

D' ={(t,LinJ;):i=1,...,mj=1...,nI NJ; #0}

is o free tagged partition of I and S(f,D) = S(f,D’'). Further, if v is a
gauge on I and D is y-fine, then D’ is y-fine.

Proof. Let F; = {Ky=LNJ;:j=1,...,n,I7NJ #0} for i =
1,...,m and F = U2, F;. Since the intersection of two closed intervals (in
R*) is a closed interval, each K;; € F is a closed interval. Consequently,

I'=UZ L = Ul Uk er Kij
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decomposes [ into a finite set of closed intervals. The intervals are nonover-
lapping since

KGNKD = (0J2)n(IonJ5) =IPnIg)n (J3NJ3)

which is empty unless ¢ = 4/ and § = j'. Since t; € I for all 4, D’ is a free
tagged partition of I.

To see that S(f,D) = S(f,D’), note that £(I;) = 2ok ex L (Kij)-
Thus,

I
NgE
=

5(£,D)

=25 Y Ky

Ki;€F;
Z S(f.7).
i EF,

Finally, if D is v-fine, then (¢;, K;;) € D’ implies K;; C I; C v (t;), so that

.
I
-

Il
Mtng

T’ is a y-fine free tagged partition. a0

Notice that this result fails for tagged partitions, that is, par-
titions that are not free. In fact, if ¢ € I = [0,1], D =
{(¢,10,1))}, and J = {[0,1/3],[1/3,2/3],[2/3,1]}, then D’ =

{(c,[0,1/3]),(c,[1/3,2/3]),(c,[2/3,1])} is a free tagged partition (for any
choice of ¢}, but it cannot be a tagged partition because ¢ can be an element
of at most two of the intervals.

The proof of the following lemma makes crucial use of free tagged par-
titions. Thus, it is the first result we see that distinguishes the McShane
integral from the Henstock-Kurzweil integral.

Lemma 5.13 Let f : I — R be McShane integrable over I. Let € > 0
and suppose vy is a gauge on I such that |S(f, D) — fIf| < €_for every
v-fine free tagged partition D of I. If D = {(t;,L;):i=1,...,m} and
E={(s;,J5) 1 =1,...,n} are y-fine free tagged partitions of I, then

m n

YN = F(sp)leTin ) < 2e.

i=1j=1
Proof. Set F={Ky=LNJ:i=1,...,mj=1,..,nI?NJ+#0}
Define tags t;; and s;; as follows. If f(t;) > f(s;), set t;; = t; and
sij = 855 if f(ti) < f(s;), set t;; = s; and s;; = ti Thus, by defini-
tion, J (ti5) = f (s15) = If (&) = £ (s,)|- Let D’ = {(ts5, Kiy) : Kj € F} and
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&' = {(si;, Kij) : Ki; € F}. By Proposition 5.12, D' and £’ are y-fine free
tagged partitions if /, so by assumption,

SED) -5 |s(D) - [ 1+ [ =508 <2
On the other hand,
SN = Fsple@ndy) = | Y {f (ti) — £ (s55)} £ (Ki5)
i=1 j=1 Ki;eF
=|S(f£,D") - S(£,€),
which completes the proof. ]

In the proof above, we make use of the fact that D’ and £’ are free
tagged partitions. The proof does not work if they cannot be free.
We can now prove Theorem 5.11.

Proof. It is enough to show that |f| satisfies the Cauchy condltlon Let
e > 0 and choose a gauge v on I such that ‘S (f,D fI fl - for every
v-fine free tagged partition D. Let D = {(¢;, ;) 1 i =1,. m} and £ =
{(s;,J;):3=1,...,n} be v-fine free tagged partitions of I. By Lemma
5.13,

ISUf1,D) = SAfLE) = DD AIF @)l = 1f (sl (T )
i=1 j=1
m n
<D D () = Flsnl N ;) <
i=1 j=1
The integral inequality follows from part (2) of Proposition 5.6. a

Due to Theorem 5.11, it is easy to find examples of Henstock-Kurzweil
integrable functions that are not McShane integrable; one merely needs a
conditionally (Henstock-Kurzweil) integrable function. The function f :
[0,1] — R defined by f(0) = 0 and f(z) = 2xcos & + ZZsin 5 for 0 <
z < 1, which was introduced in Example 2.31, is one example of such a
function. (See also Examples 4.41, 4.42 and 4.50.)

Since the McShane integral is an absolute integral, it satisfies stronger
lattice properties than the Henstock-Kurzweil integral.

Proposition 5.14 Let f,g: I — R be McShane integrable over I. Then,
fVgand f Ag are McShane integrable over I.
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Proof. Since fVg=§[f+g+|f-glland fAg=3[f+g—I|f -4l
the result follows from linearity and Theorem 5.11. O

Recall that for the Henstock-Kurzweil integral, one needs to assume that
both f and g are bounded above by a Henstock-Kurzweil integrable func-
tion, or bounded below by one. (See Proposition 4.65.)

5.3.1 Fundamental Theorem of Calculus

The beauty of the Henstock-Kurzweil integral is that it can integrate every
derivative. Such a result cannot hold for the McShane integral. The ex-
ample above, in which f(z) = 2zcos & + Zsin % for 0 < z < 1 and
F(0) = 0, provides such an example. The function f is a derivative on
[0,1] and hence it is Henstock-Kurzweil integrable. But it is not absolutely
integrable, so it cannot be McShane integrable. In other words, not every
derivative is McShane integrable. We have the following version of Part I
of the Fundamental Theorem of Calculus for the McShane integral.

Theorem 5.15  (Fundamental Theorem of Calculus: Part I) Suppose that
f i la,b] — R is differentiable on [a,b] and assume that f’ is McShane
integrable over [a,b]. Then,

b
/f’=f(b)—f(a)-

Proof. Since f’is McShane integrable, it is Henstock-Kurzweil integrable
and the two integrals are equal. By Theorem 4.16,

b b
/af=HIC/af=f(b)—f(a)- ]

As for the Riemann and Lebesgue integrals, the assumption that f’ be
McShane integrable is necessary for Part I of the Fundamental Theorem of
Calculus. Concerning the differentiation of indefinite integrals, the state-
ment and proof of Theorem 4.82 yield the following result for the McShane
integral.

Theorem 5.16 Let f : [a,b] — R be McShane integrable on [a,b] and
continuous ot T € [a,b]. Then, F, the indefinite integral of f, is differen-
tiable at z and F' (z) = f (z).
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In fact, the McShane integral satisfies the same version of Part II of the
Fundamental Theorem of Calculus that is valid for the Henstock-Kurzweil
integral, Theorem 4.83.

Theorem 5.17 (Fundamental Theorem of Calculus: Part II) Suppose
that f : la,b] — R is McShane integrable. Then, F is differentiable ot
almost all z € [a,b] and F' (z) = f(z).

We conclude this section by showing that every McShane integrable
function can be approximated by step functions in the appropriate norm.
While the result follows from previously established relationships between
the McShane, Henstock-Kurzweil and Lebesgue integrals, we use a more
direct proof to establish the theorem.

Theorem 5.18 Let f : I — R be McShane integrable over I and € > 0.
There exists a step function g: I — R such that [;|f —g| <e.

Proof. Choose a gauge v, of I such that vy, (t) is a bounded interval for all
teINR and |S(f, D)~ f; f| < €/3 for every v,-fine free tagged partition
DofI. Let D = {(t;,1;) :i=1,...,m} be v,-fine. Define a step function
¢: I —>Rby () =3 i f(t)xy, (t). Note that by construction, co (or
—00) must be a tag for any unbounded interval and f (c0) = f (—o0) = 0.
Also, ¢ is McShane integrable by Exercise 5.8.

By linearity and Theorem 5.11, {f — ¢| is McShane integrable over 1,
so there is a gauge v, on I such that |S(|f — |, &) — [} |f — ol| < €/3 for
every v,-fine free tagged partition £ of I. Set v = v, N~,.

For each subinterval I; (from D), let &; be a y-fine free tagged partition
of I, Set & = U, so that £ is a +y-fine free tagged partition of I.
Assume that & = {(sk,Jx):k=1,...,n}. For each k, 1 < k < n, there
is a unique ¢ such that J, < I,,. Since Ji C I, C 7, (ti), the set
F={(ti,Jx) : k=1,...,n} is y;-fine. Since & is also v;-fine, by Lemma
5.13 we have

SO (55) ~ £ @)L 0 ) < ?g

k=1j=1

However ¢(J; N J) = 0 if j # k, so that

Z f ()€ () < =
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Since s; € I;, implies that ¢ (sg) = f (t:,),

n

SUF =l &) =D 1f (s) — @ (s) € (Ji)

k=1

3

=S 1f (o) = £t (k) < =

P 3
Finally, £ is also 7,-fine, which implies
€
Jir-el<ss-el.0)+ 5 <
as we wished to show. |

5.4 Convergence theorems

Since every McShane integrable function is Henstock-Kurzweil integrable,
when considering convergence results for the McShane integral we will need
to avoid the same problems that arise for the Henstock-Kurzweil integral.
Thus, our conditions must eliminate the pathologies demonstrated in Ex-
amples 4.67, 4.68, and 4.69. Further, since the McShane integral is an
absolute integral, it will satisfy convergence theorems stronger than the
ones satisfied by the Henstock-Kurzweil integral.

We could easily follow the approach in Section 4.4.7. However, in this
chapter we will present a slightly different one that highlights the impor-
tance of series of functions.

Theorem 5.19 Let fi,f : I C R* — R. Suppose each fi, is McShane

integrable over I, f(x) = 307, fe (x) pointwise on I, and > oo, [} |fe] <
oo. Set sn(z) = p_q fx (z). Then,

(1) f is McShane integrable over I;

(2)
f=1 n = fes
fj=tm [ =3 [ s
(3)
s [l s1=tim [ 3 5|=0.

k=n+1
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Proof. Let e > 0. The series } =, [, fr converges absolutely by hypoth-
esis, so V =3 27, [; fx is finite. Choose K € N such that

> /I:m <e (5.1)
k=K

For each n, s, is McShane integrable (since it is a finite sum of
McShane integrable functions) and there is a gauge <, on I such that
|S (5n,D) - [ snl < o for every v,,-fine free tagged partition D of I.

By modifying the proof of Example 5.5, the function ¢ : R — R defined
by @ (t) = 3 Y oey 27X {tn—1<|ti<n} 15 McShane integrable over R* and
Je- v = 1. Let v, be a gauge such that |S(p, D) — [gp| < 3 for any
v,-fine free tagged partition D of R. Then, 0 < S(p,D) < Jre+ i=1
whenever D is a y,,-fine free tagged partition of I.

By the pointwise convergence of s, to f, for each t € I, choose an
n(t) € N such that n (¢t) > K and, for n > n (t),

lsn (8) = F ()] < ep (B). (5.2)

Define a gauge -y on I by setting v (t) = v,y (6)N7,, () forall ¢ € I. Let
D ={(t;,I;) : i=1,...,m} be a y-fine free tagged partition of I. Then, by
the absolute convergence,

IS (£,D) - V| = Z{ka e -3 | fk}
i=1 \k=1 k=1 i
m n(ti) n(t;)
< {kam)e(m—szk}
i=1 | k=1 w1 YL

So0> el e(n)

i=1 k=n(t;)+1
=I+II+111

+

By (5.2) and the definition of ¢,

<y f: Fe ()

i=1 [k=n(t:)+1

L) = Z [sneey (t:) = f (ti)| (L)

i=1

<Y ep(t) (L) =€S(p,D) <e.

i=1
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Next,

mr<dy s Ny /IlfleZ/I!ka€
i k=K

i=1 k=n(t;)+1

by (5.1).
To estimate I, set S = max{n(t1),...,n(tm)} = K. By Henstock’s
Lemma,

= i > . {Sn(n) (t:) €(L;) ~ /1 Sn(ti)}

k=K n(t«;)=
S S p
< Z Z {Sk(ti)E(L‘)—/Sk} Sz-z—l-c-<6.
k=K |n(t;)=k L k=1

Thus, |S(f,D) — V| < 3e. It follows that f is McShane integrable with
[ f=V.

Finally, since

/Isn-/lf S/Ilsn—f|=/l s;/fml«

for n > K, [, f = limp_o [; 5, and [} |sn — f| — 0, completing the
proof. 0

S 5

k=n+1

As a corollary of this theorem, we prove a preliminary version of the
Monotone Convergence Theorem.

Theorem 5.20 (Monotone Convergence Theorem) Let fi,f @ I C
R* — R be McShane integrable over I and suppose that { fi}re, increases
monotonically to f on I. If sup, fl fi < oo, then f is McShane integrable

over I and
fi7= [ m = i [ s

Proof. Set fo = 0 and gx = fr — fr—1 for & > 1. Then, g > 0,
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Zzzl gx = fn — [ pointwise on I and

g;/;gk:"ﬁ"ng°,g/1(fk_fk_l):nli_.“éofffnzs‘;pflfn<oo.

Thus, {gi},-, satisfies Theorem 5.19 so that

/zfz/fk&%szg/lgk=klg{jo/1fk-

We next pursue a more general form of the Monotone Convergence
Theorem and then use this general version to obtain Fatou’s Lemma and
the Dominated Convergence Theorem for the McShane integral. We begin
with a series of three preliminary results. The first two results are analogs
of Theorem 4.40 and Lemma 4.71.

0

Theorem 5.21 Let E C R. Then, E is a null set if, and only if, xg is
McShane integrable and [ x5 = 0.

Proof. Suppose first that F is null and let € > 0. Let {G }°° a
sequence of open intervals covering E and such that Z GJ) < %
Since the characteristic function of an interval is McShane 1ntegrable by
Proposition 5.14, s, = X, V+ - *VXg, is McShane integrable. Since {s,},.;
increases monotonically, » = lim, s, exists. Since s, is a maximum of
characteristic functions and £ C US2;G;, we see that 0 < h < 1 and

Xg < h. Note that s, < Z]=1 Xa,» Wthh implies that

/Rsn<Ze(G sg <3

By the Monotone Convergence Theorem, h is McShane integrable and
k<%

Now, choose a gauge v so that if D is a ~-fine free tagged partition of
R*, then |§ (h,D) — g h| < &. Then, for any ~-fine free tagged partition,
D?

0<S(xg,D) <8 (h,D) </h+-;—<e.
R

Since € > 0 is arbitrary, x is McShane integrable with fR xg = 0.
To prove the necessity, we argue as in the proof Theorem 4.40. O
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Using the fact that every McShane integrable function is Henstock-
Kurzweil integrable, Lemma 4.71 yields the following result.

Lemma 5.22 Let fr : I C R* — [0,00) be McShane integrable over I
and suppose that {fi (x)}r.., increases monotonically for each z € I and
supy, [; fr < co. Then, limy_.oo fx () exists and is finite for almost every
zel.

Suppose that f is McShane integrable and g is equal to f almost every-
where. Then, E = {z: f(x) # g(z)} is a null set and hence [, xg = 0.
Employing this fact and the Monotone Convergence Theorem allows us to
prove the next lemma.

Lemma 5.23 Let f: I C R* —» R be McShane integrable over I and
suppose that g : I — R is such that g = f a.e. in I. Then, g is McShane

1.7 lteg! able over I 'U)Zth
I I

Proof. The function h = f — g equals 0 a.e. in I. By linearity, it suffices
to show that A is McShane integrable and || (h=0.
Let E={teI:h(t)#0}. Fix K € Z, and for n € N, set

b, = (|R] A1) X1k, K 41)-

Then, hn < NXpgr(k, Kk +1)- By the argument in the proof of Theorem 5.21,
h., is McShane integrable over IN (K, K + 1] with fIﬁ(K,K+1] h, = 0. Since
{hy}or, increases to |h| pointwise, the Monotone Convergence Theorem im-
plies that || is McShane integrable over IN(K, K + 1] and fIﬁ(K,K+1] |h| =
0. It now follows that h is McShane integrable over I N (K, K + 1] and
fIn(K,K+1] h = 0. (See Exercise 5.3.) Since h = 37, ez AXin(x kc41) OB 1,
Theorem 5.19 shows that h is McShane integrable over I with |, (h=0.0

We now have the necessary tools to prove a more general form of the
Monotone Convergence Theorem.

Theorem 5.24 (Monotone Convergence Theorem) Let fi : I C R* —
[0, 00) and suppose that { fx (z)} 5., increases monotonically for each x € I.
Suppose each fi is McShane integrable over I and supy, [; fx < co. Then,
limg— oo fie (2) is finite for almost every x € I and the function f, defined
by

@)= limg—oo fi (2) if the limit is finite
- 0 otherwise
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is McShane integrable over I with

/If=klgr;o/1fk.

Proof. By Lemma 5.22, limg .00 fx (t) is finite a.e. in I. Let E be the
null set where the limit equals co. Set f(t) = limy—oo fx (t) if ¢t ¢ E and
f(t)=0ift € E. Set gr = fexp p- Then, by Lemma 5.23, gi is McShane
integrable over I with [, gr = [, fi and {gi},_, increases to f pointwise
(everywhere in I). Thus, by Theorem 5.20, f is McShane integrable over I
and

I

k—oo J; k—o00 I 0

Recall that the proofs of Fatou’s Lemma and the Dominated Conver-
gence Theorem (Lemma 4.75 and Theorem 4.77) rely on the Monotone
Convergence Theorem. Thus, those arguments imply corresponding ver-
sions for the McShane integral.

Lemma 5.25 (Fatou’s Lemma) Let fr, : I C R* — [0,00) be Mc-
Shane integrable for all k, and suppose that iminfy_, |, 1 fe < 0o. Then,
liminfy_,o0 fx is finite almost everywhere in I and the function f defined

by

(@) = iminfy_ oo fi (z) of the limit is finite
- 0 otherwise

is McShane integrable over I with

/f<hrnmf/f;c

Theorem 5.26 (Dominated Convergence Theorem) Let fr, : I CR* = R
be McShane integrable over I and suppose that { fx} .., converges pointwise
almost everywhere on I. Define f by

f@) = limg o0 fr (z) if the limit exists and is finite
- 0 otherwise )

Suppose that there is a McShane integrable function g : I — R such that
Ife (2)| € g(z) for all k € N and almost all x € I. Then, [ is McShane
integrable over I and

,/If:/lkllnf}ofk:kﬁ_.n;o/lfk'
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Moreover,

im [ 17 - il =0

Extensions of Fatou’s Lemma analogous to Corollaries 3.98 and 3.99
hold for the McShane integral. The comparison condition for the Dom-
inated Convergence Theorem (|fi (x)| < g(z)) is the same as for the
Lebesgue integral (Theorem 3.100), unlike the condition for the Henstock-
Kurzweil integral (Theorem 4.77). This is because the Lebesgue and Mc-
Shane integrals are absolute integrals, while the Henstock-Kurzweil integral
is a conditional integral. The absolute integrability is also the reason why
the Dominated Convergence Theorem for the McShane integral includes
a stronger conclusion, that lim || ;|f = fx] = 0, than one obtains for the
Henstock-Kurzweil integral.

5.5 The McShane integral as a set function

Let f : I ¢ R*—R be McShane integrable and let M be the set of Lebesgue
measurable subsets of I. We say that f is McShane integrable over a set
E C Iif xgf is McShane integrable over I and define [, f = [, xgf. If f
is McShane integrable over I, we show that f is McShane integrable over
every measurable set in M and that [ f is countably additive. Our main
result in this section is the following theorem.

Theorem 5.27 If f: I — R is McShane integrable, then the set function
[ f: M; — R is countably additive and absolutely continuous with respect
to Lebesgue measure.

As an immediate consequence, we see that when f is nonnegative, [ f is a
measure on M;j.

Corollary 5.28 If f : I — R is nonnegative and McShane integrable,
then the set function [ f: M; — R is a measure on M.

The proof is a consequence of three results: f is McShane integrable
over every Lebesgue measurable subset of I; the indefinite integral of f is
countably additive; and, the indefinite integral of f is absolutely continuous.

Lemma 5.29 Suppose that f : I — R is McShane integrable over I.
Then, f is McShane integrable over every Lebesgue measurable subset E C
1.
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Proof. Fix e > 0 and let v be a gauge such that |S(f,D) - I f| < ¢ for
every v-fine free tagged partition D of I. Let E be a Lebesgue measurable
subset of I. For each k € N, choose an open set O, O E and a closed set
Fy, C E such that m (O \ Fi) < g5r. Define a gauge v on I by:

i _Jr@nOrifze E)k-1<|f(2)| <k
v (w)“{v(w)\F:ifwéE,k—lslf(w)|<k '

Suppose that D = {(¢;, L) :i=1,...,m} and £ = {(s;,J;) : j=1,...,n}
are +/-fine free tagged
partitions of E. Then, D' = {(t;, ;N J;):i=1,...,m,j=1,...,n} and
E={(s;, ;NJ;):i=1,...,m,j=1,...,n} are v'-fine free tagged parti-
tions, S (f,D) = S(f,D’') and S (f,£€) = S (f,£’). Note that D’ and &’ use
the same subintervals but have different tags. Relabelling to avoid the use
of multiple subscripts, we may assume that D’ = {(¢/,K;):l=1,...,N}
and &' = {(s},K;):l=1,...,N}. Then,

1S (fxg: D) = 8 (fxe ) = 15 (fxz: D) = S (fxg: &)

<D FENmE) =Y f(sp)ym(K)

tieE sjEE

) {f(tf)m(m)—/mf}

LEE,s;EE

. {Klf—f(SZ)m(Kz)}’

t,€EE,s]€E

A

+Y fym(Ky)

tEE 3¢ E

+ > f(s)m(K)

t¢E s)€EE
= R1 + Ry + Rs.
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By Henstock’s Lemma,

R<| T {f(ti)m(Kz)—/Klf}

ti€E,s)€EE

S {Klf—f(SQ)m(Kz)}

tiEE,s;EE
< 2e.

Next, set 0, = {{: )€ E,s]¢ E,k—1<|f(t;))| <k}. Ifl € ok, then
Ky ¢ (t]) C OxNy (t]) and K; C 4 (s]) C v (8})\Fk, so that K; C O\ Fx.
Consequently, Uieo, Ki C Ok \ Fi, and m (Uieo K1) < m(Ok \ Fi) < 255
Therefore,

Ry <D D If )Im(K) <D D km(K))

k=1l€oy k=1l€oy

oo 00
- Z UlEUk Kl S Z
k=1 k=1

A similar argument shows that Rz < ¢, so that
IS (fxg, D) = S(fxg,E)l < Ri+ Ry + R3 < 4e.

Thus, fxj satisfies a Cauchy condition and is McShane integrable. Since
E was an arbitrary measurable subset of I, the result follows. O

We show next that the indefinite integral of a McShane integrable func-
tion is countably additive.

Lemma 5.30 If f: I — R is McShane integrable, then the set function
J f: My — R is countably additive.

Proof. Let {E; }?i_] C M be a collection of pairwise disjoint sets and let
E =U$R,E;. Since E ¢ My, by Lemma 5.29, | f| x; is McShane integrable.

Since the sets { E; }J°f’__l are pairwise disjoint, we see that E;‘::l fXEj — fXxg
as k — oo and ‘Z?:l fXEj’ < |flxg- By the Dominated Convergence
Theorem for the McShane integral,

/u;;lEj f= ~/Ef N kli’riz:/}s,

which shows that the indefinite integral is countable additive. O
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Thus, the indefinite integral of a McShane integrable function f is de-
fined on M; and countably additive. When f is nonnegative, this implies
that the indefinite integral defines a measure on M.

We conclude by showing that the indefinite integral is absolutely con-
tinuous both as a point function and as a set function. First, we show the
indefinite integral is absolutely continuous as a point function in the sense
of Definition 4.101.

Lemma 5.31 Let I = [a,}], —oo<a<b<oo,andf I — R be
McShane integrable. Then, F (t f [, the indefinite integral of f, is
absolutely continuous.

Proof. Let ¢ > 0. There is a gauge v on I such that
|S(f,D) ~ [, f| < € for every v-fine free tagged partition D of I. Let
D' = {(ti]ai,b):i=1,...,m} be such a partition and set M =
max {|f(t;)|:4=1,...,m}+1and § = ¢/M.

Suppose that {[¢;,d;|:7=1,...,p} is a collection of nonoverlapping
closed subintervals of I such that 3%_, (d; ~¢;) < 4. By subdivid-
ing these intervals, if necessary, we may assume that for each j, there
is an ¢ € {1,...,m} such that [c;,d;] C [a;,b;]. For each i, set o; =
{7t le5,d5] C [as,b5]} and set & = U™, {(ts,[c5,d4]) 2 5 € 0,,} Then, £ is a
7-fine free partial tagged partition of I with >>7%, 37, (d; —¢;) < 6. By
Henstock’s Lemma,

j‘;{F(dj) ZZ{/ f-ft d—cg)}

i=1 jEo,

+1 N () (- <)

i=1j€o;

<e+ Md = 2.
Thus, F is absolutely continuous. O

We have shown that the point function F' : I — R is absolutely con-
tinuous. It is also true that the set function [ f satisfies the definition of
absolute continuity given in Remark 3.93. This result is an easy conse-
quence of Theorem 5.18.

Theorem 5.32 Let f : I — R be McShane integrable over I and define
F by F(E)= [, f for E € M;. Then, the set function F is absolutely
continuous over I with respect to Lebesgue measure.
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Proof, Suppose that f is McShane integrable over I and fix ¢ > 0.
By Theorem 5.18, there is a step function s such that fI If sl < 3.

Let Z:i::l axX 4, be the canonical representation of s and set M =

max {|a1],...,|a;|,1}. Set § = 357 and suppose that E is a measurable

subset of I with m (E) < §. Then,

J

Therefore,

< max {lai],...,|aj|} m (E) < M6 <

V)

J
Z arm (EN Ag)
k=1

PRIV TR

so that F' is absolutely continuous with respect to Lebesgue measure. 0O

<€+€_€
2 2 7

5.6 The space of McShane integrable functions

Let I C R* be an interval and let M!(I) be the space of all McShane
integrable functions on /. We define a semi-norm || ||, on M (I} by ||f], =
J; |f, and a corresponding semi-metric d; by setting d1 (f,g) = ||f —gll; =
Ji1f—gl forall f,ge M (I). It follows from (the proof of) Lemma 5.23
that || f]|, = 01if, and only if, f = 0 a.e. in I, so that || ||, is not a norm and,
consequently, d; is not a metric on M (I). Identifying functions which are
equal almost everywhere makes || [|; & norm and d; a metric on M ().
From Theorem 5.18, the step functions are dense in M (I).

We saw in Sections 3.3.9 and 4.4.11 that the space of Lebesgue inte-
grable functions is complete in the (semi-) metric d; (see the Riesz-Fischer
Theorem, Theorem 3.116) while the space of Riemann integrable functions
and the space of Henstock-Kurzweil integrable functions are not complete,
in the appropriate (semi-) metrics. That the space of McShane integrable
functions is complete is a consequence of the Dominated Convergence The-
orem (Theorem 5.26). We now observe that the Riesz-Fischer Theorem
holds for the McShane integral.

Theorem 5.33  (Riesz-Fischer Theorem) Let I C R* be an interval and
let {fe}req be a Cauchy sequence in (M (I), dl). Then, there is an f €
M (I) such that {fi}re, converges to f in the metric dy.

For a proof of this result, see Theorem 3.116.



McShane integral 245

5.7 MecShane, Henstock-Kurzweil and Lebesgue integrals

Suppose that f: I C R*—R is McShane integrable over I. Consequently,
|f] is McShane integrable so that both f and |f| are Henstock-Kurzweil
integrable over I, and f is absolutely (Henstock-Kurzweil) integrable over 1.
On the other hand, there are Henstock-Kurzweil integrable functions that
are not McShane integrable. In Section 4.4.8, we saw that Lebesgue and
absolute Henstock-Kurzweil integrability are equivalent. In this section, we
prove that in the one-dimensional case McShane integrability is equivalent
to absolute Henstock-Kurzweil integrability, and hence that the McShane
and Lebesgue integrals are equivalent. We extend these results to higher
dimensions in Section 5.5.10.

Since we will be dealing with three integrals in this section, we will
identify the type of integral by letters (M, HK, and L) to identify the
integral being used; for example, the McShane integral of f will be denoted
M [, f. The crux of the matter is to prove that absolute Henstock-Kurzweil
integrability implies McShane integrability.

In order to prove this result, we will employ major and minor func-
tions, variants of the ones defined in conjunction with the Perron integral
in Section 4.4.1. Let I = [a,b] be a finite interval and suppose f: I — R.

Let v be a gauge on I. For ¢ < z < b, we can also view y as a gauge
on [a,z]. Let 7, ({a,z]) be the set of all y-fine tagged partitions of [a,z].
Define m.,, M, : I — R* by

0 if z=a

o (2) = {inf{S(f,D) Den(aa)}ifa<a<b
and

0 if z=a
My (=) = {sup{S(f,D):Déﬂq([a>x])}if‘1<z5b '

It is clear that m, (z) < M, (z) for all z € [a,b]. The function M, is called
a magor function for f; m., is called a minor function for f.

By Exercise 4.18, we may assume that the gauge v is defined by a
positive function § : I — (0, 00); that is, y(z) = (x — § (z),x + & (z)), for
all z € [a,b]. We summarize our results for m, and M, in the following
lemma.
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Lemma 5.34 Suppose that f : I = [a,b] — R and v is a gauge on I
defined by 6 : I — (0,00).

(1) Ifz-6(x) <u<a<v<z+d(z), then M, (v) — M, ()
f (=) (v—u).

(2) Ifz—6(x) <u<z<v<ztbz), thenm, (v) - my(u) <
f(z) (v —wu).

(3) M., —m., is a nonnegative and increasing function on I.

(4) If f > 0, then both M., and m., are nonnegative and increasing func-
tions on I.

(5) Let f be Henstock-Kurzweil integrable over I and € > 0. Suppose that
v is a gauge on I (defined by §) such that

v

b
<€

S(f,D)—HIC/

a

f

for every D € 7, ([a,b]). Then, 0 < M, (b) —m, (b) < 2.

Proof. To prove (1), fix u and v and let D € m, ([a,u]). Then, DU
{(z, [u,v])} € 7y ([a,v]), so that

My (v) 2 5 (£, DU{(m [w,o])}) = S (£, D) + f (z) (v — u).

Taking the supremum over all D € 7, ([a, u]) shows that M, (v) > M, (u)+
f (z) (v — w), which proves (1). The proof of (2) is similar. See Exercise
5.26.

For (3), fix ¢ > 0 and @ < v < v < b. By definition, we can find
D,D’ € 7y ([a,u]) such that

My (u) = my (u) < S(f,D) - S(f, D) +e
Fix F € my ([u,v]), so that £ = DU F, &' = D'UF € m ([a,v]). Thus,

My (u) —m, (u) < S(f,D)—S(f,D')+¢
=S5(£E) - S(f,E€)+e< My (v)—my(v) +¢,
so that M, (u) — m, (u) < M, (v) — m, (v) and M, — m,, is increasing.
Since it is clearly nonnegative, (3) is proved.

Part (4) follows from the fact that the nonnegativity of f implies that
if u < v then

S(UAD)<SED)+ f () (v~ u) =S (f,DU{(z, [u,0])})
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for every D € 7, ([a,u]). To prove (5), note that the hypothesis implies
IS(va) - S(ffg)l <2

for D, & € 7, ([a,b]). The result now follows from the definitions of M, and
My O

Before considering the equivalence of McShane and absolute Henstock-
Kurzweil integrability, we collect a few other results.

Lemma 5.35 Let f: I C R* — R. Suppose that, for every ¢ > 0, there
are McShane integrable functions g, and gy such that g, < f < gs on I and
M fI g2 <M fI g1 +¢. Then, f is McShane integrable on I.

Proof. Let e > 0 and choose corresponding McShane integrable functions
g1 and go. There are gauges y; and -y, on I so that if D is a v,-fine
free tagged partition of I, then |S(g;, D) — M ; gi| < efori=1,2. Set
v(2) = v, (2) N5 (2). Let D be a v-fine free tagged partition of 7. Then,

M/gl—e<S(gl,D)gS(f,D)SS(gz,D)<M/gz+€<M/gl+2e.
I I I

Therefore, if D, and Dy are y-fine free tagged partitions of I then

S(f.D1),5(f,D2) € (M/Igl — e,M/Igl +2€.) )
This implies that
IS (f,D1) — S (f,D2)| < 3e.

By the Cauchy criterion, f is McShane integrable. 0

This result is an analog of Lemma 4.30 on Henstock-Kurzweil integration;
the proofs are the same.

As a consequence of this lemma, we show that increasing functions are
McShane integrable.

Example 5.36 Let f : I = [a,b] — R be increasing. Divide [a, ] into
7 equal subintervals by setting 3 = a + f (b—a), for k=0,1,...,7, and
Iy = [zk-1,@x], for k = 1,...,5. Set g1 (t) = Ty f(@x-1) X, () and
g2 (t) =37 f (=) x 1. (t). Then, g; and g; are step functions and, hence,
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McShane integrable. Since £ (I;) = b;_,a,
0 S M /92 - M /91

_Zf(xk —Zf(xk 1

Given € > 0, we can make M [, go -~ M f; 91 < € by choosing j sufficiently
large. By Lemma 5.35, f is McShane integrable.

—(f ) - f(@)°

We are now ready to prove the equivalence of McShane and absolute
Henstock-Kurzweil integrability.

Theorem 5.37 Let [ : I = [a,b] — R. Then, f is McShane integrable
over I if, and only if, f is absolutely Henstock-Kurzweil integrable over I.

Proof. We have already observed that McShane integrability implies ab-
solute Henstock-Kurzweil integrability. For the converse, by considering
f* and f~, it is enough to show the result when f is nonnegative and
Henstock-Kurzweil integrable.

Fix € > 0 and choose a gauge v on I such that iS(f, D) - HK f: fl <e
whenever D is a +y-fine tagged partition of [a,b]. Let & correspond to 7.
Extend f to [a,b + 1] by setting f (t) = 0 for b < ¢t < b+ 1, and extend m,
and M, to [a,b+ 1] by defining m, (t) = m, (b) and M, (t) = M, (b) for
b<t<b+1.

Define functions H, and h, by H, (t) = n (M, (t+ 1) — M, (¢)) and
hn(t) = n(my (t+ 1) —m,(t)). By Lemma 5.34 (4), M, and m, are
increasing so that Example 5.36 implies H, and h, are nonnegative and
McShane integrable. Set H = liminf,, . H, and A = limsup,,_, An.

By a linear change of variable (Exercise 5.6), observe that

b b
OSM/ Hn=M/ n<M~, (t+—71;) ——M,Y(t))dt
b+1/n a+1/n
=n (M / My~ M / M7>
b a
b+1/n
Sn(M/ M7)=M7(b).
b

Thus, liminf, . M f: H, < oo so that liminf,_,o H, is finite almost
everywhere and, by Fatou’s Lemma (Lemma 5.25), there is a real-valued
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function H which is equal to A a.e. and such that M fabﬁ < M, (b). If
Ey={t€la,b]: H(t)# H(t)}, then E, is null and H =0 on Ej.

Fix t € [a,b] and suppose that n > Wlﬁ‘ Then, by Lemma 5.34 (1) and
(2),

Fo < (8 (14 1) - 00, 0)) = E 0

and

F2n (my (143 ) =my(0) = 1)

Consequently, & (t) < f(¢) < H(t) for all ¢ € [a,b]. Since H, (t) > f(t) >
hy (t) for large n,
liminf (H — h,)" (t) = H (t) - limsup hy (t) = H (£) — h ()

for almost every t € [a,b]. Arguing as above shows that 0 < M [ : h, <
m., (b), so that

M[lb('i{’—hn)““SM/llb‘ﬁ+M/‘1bhnSMv(b)+m7(b).

By Fatou’s Lemma applied to (ﬁ - hn)+, there is a real-valued function
F which is equal to H — h a.e. and is McShane integrable. Note that
the function h = H — F is McShane integrable and equal to h a.e.. Let
Ey={t€a,b]: (H—h)(t)#F(t)}; then Ey is null and F = 0 on Ej.
Let £ = E1 U E; and redefine H and h to be 0 on E. Since this only
changes the functions on a set of measure 0, by Lemma 5.23, these new
functions are McShane integrable with the same integral as before. Define

f by

=\ _[fl@)ifz¢E
f(‘”)_{ 0 fzcE’

so that f = f almost everywhere and h < f < H on |[a, b].
We claim that

M/ab(ﬁ—ﬁ)gzs.
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In fact, by Lemma 5.34 (3), M, — m, is increasing, so

Ho (t) — ho () = n ({M7 (t + -71;) —m, (t + %)} —{M, () - m, (t)})

b+1/n a+l/n
(M [T s [,
b a

b+1/n at+l/n
_M/ m‘y + M/ m‘y
b a
b+1/n b+1/n
Sn(M/ M7—M/ m7>=MW(b)—m7(b)§26
b b

by Lemma 5.34 (5). Now, for almost every t € [a, ],

Ft)= lim inf (H—ha) (t)=H(@1)+ liminf (—hx (t))
= l'gn ioréf H, (t) + liminf (—h, (t)) < liminf (H, — hy) (t).

Define $ by

#(z) = liminf, oo (Hp — hpn) (2) if liminf,_,o (Hn — hyn) (z) is finite
- 0 otherwise

so that F < £ almost everywhere and §j is finite everywhere. By Fatou’s
Lemma,

b b b
a a n—o0 a

as we wished to show.

It now follows from Lemma 5.35 that f is McShane integrable over I.
Since f = f a.e., Lemma 5.23 shows that f is McShane integrable over
I and, of course, once f is McShane integrable over I, the McShane and
Henstock-Kurzweil integrals are equal. O
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By Theorem 5.37 and Corollary 4.80, it follows that McShane and
Lebesgue integrability are equivalent. We conclude this section by giving a
direct proof of this resuit, which uses arguments more like those found in
the Lebesgue theory.

Theorem 5.38 Let f: [a,b] — R. Then, f is McShane integrable if,
and only if, f is Lebesgue integrable. The value of the two integrals are the
same.

Proof. Assume first that f is Lebesgue integrable over [a,b]. Without
loss of generality, we may assume that f is nonnegative. Let ¢ > 0 and
by absolute continuity (see Remark 3.93) choose § > 0 so that £ f, f < ¢
whenever A C [a,b] is measurable and m (A) < §. Set A = min (¢, ).

Let o = min {1, zi= | Set Bx = {t € [a,b]: (k= 1)a < / (£) < ha}
for k € N. Then, ExNE; =0 if k # j and [a,b] = U | Ey. For each k,
choose an open set Gy, such that E, C G and m (Gi \ Ex) < —Q-AW. Define
a gauge v on [a,b] as follows. If t € Ej, then choose an open interval
v (t) C G that contains t.

Suppose that D = {(¢;, ;) : ¢ = 1,...,1} is a y-fine free tagged partition
of [a,b]. We will show that

< 3e,

'S(f,'D)—cff

which implies that f is McShane integrable with integral equal to £ fab f
Fori=1,...,[, choose k; so that t; € Ey,. Then,

’fp) c/ <Z£/|ft)— ()| dt
< Zﬁ/nak — f(8)]dt

+;£/IM t)+Z£/

= R; + Ry + Ra3.

\Ek

If t;,t € Ey, then both f(t;) and f(t) belong to the interval
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[(k; = 1) o, kicx), so that | f () — f (t)| < a. Thus,
!
R, < Zam(liﬂEk,i) <a(b-a)<e
i=1

To estimate Ry, since t; € Ey, and I; C v ({;) C Gy,, we have

B=Y Y L/ Py <Y S ko (I \ i)
k=1ik=k Y Ii\Ex; k=1 1ik; =k
< —_— _ =
__l;kam(Gk\Ek) ggkam < ;” €

i=1 1i:k;=k
< im(Gk\Ek)<§:_A_ <§Ei <4
_k=1 _k=12 k——k=12lc

Thus, by the choice of §, R3 < L [ 4 f < e Combining all these estimates
shows that ‘S (f,D)~C f: f ‘ < 3¢, proving that f is McShane integrable

and M [} f=L[]F.

For the remainder of the proof, assume that f is McShane integrable
over [a,b] and let F (t) = M f: f. By Theorem 4.103, it is enough to show
that F' is absolutely continuous on [a,b] to conclude that f is Lebesgue
integrable there. Fix € > 0 and let v be a gauge on [e,b] such that
,S’(f, D)-M f: f' < ¢ for every v-fine free tagged partition D of [a,b].
Let Do = {(t;, ;) :i=1,...,1} be a y-fine free tagged partition of [a, b],
let M =max{|f (t;)],t=1,...,1}, and set n = 377

Suppose that {{y;,2;]: j =1,...,k} is a finite collection of nonoverlap-
ping subintervals of [a, ] such that

(71 —y;) <n.

k
=1

2

Replacing [y;,2;] by the nondegenerate intervals in {[y;, ;] ﬂIi}:=1, we
may assume that for each j there is an ¢ so that [y;,2;] C J;. Set Dy =
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{(ts,ly5,25)) : [w4, 23] C L}, for i = 1,...,1. Then, D = U'_D; is a 7-fine
free tagged subpartition of [a,b]. Since

l

ko opz k
> [t Sf,D>=Z/ - S £ -s)

j=1 Yi 7j=1 Vi ’L-——l yJ,z]]CI

l
= { f—F )(ZJ )} <e
i=1 [y;,2;)CL \"Y)

by Henstock’s Lemma,

k k z;j
S (FE)-Fo) =D f
= j=1 Y3
k zj
- Z/ F-S(HD)|+IS(4, D)
j=1vY;

Thus, F is absolutely continuous with respect to Lebesgue measure and f
is Lebesgue integrable. a

Remark 5.39 Theorems 5.37 and 5.38 are valid for unbounded intervals
I C R. See Ezercises 5.27 and 5.28.

5.8 McShane integrals on R"

The McShane integral can be extended to functions defined on intervals
n (R*)" in the same manner as the Henstock-Kurzweil integral. If f is
defined on an interval I C (R*)", we assume that f vanishes at all infinite
points and extend the definition of f to all of (R*)"™ by setting f equal to
0 off of I. (See Sections 4.4.4 and 4.4.12 ). In fact, the only change needed
to define the McShane integral over I is to extend the definition of a free
tagged partition (Definition 5.1) to the interval I in the obvious way.
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Definition 5.40 Let I be a closed subinterval of (R*)" and f:I — R.
We call the function f McShane integrable over I if there is an A € R so
that for all € > 0 there is a gauge -y on I so that for every -y-fine free tagged
partition D of I,

IS(f,D) - A] < e.

Since every gauge « has at least one corresponding y-fine tagged parti-
tion, and hence a v-fine free tagged partition, this definition makes sense.
The number A, called the McShane integral of f over I and denoted by
A= ; f» is unique. The proof of this statement is the same as before.

Recall that every McShane integrable function is Henstock-Kurzweil
integrable. Since the value of the McShane integral is unique, it must equal
the Henstock-Kurzweil integral. Thus, the basic properties of the McShane
integral, such as linearity, positivity and the Cauchy criterion, carry over
to this setting without further proof. By Example 4.111, the characteristic
function of a brick is McShane integrable; by linearity, step functions are
MecShane integrable. Again, the McShane integral is an absolute integral
in this setting. Finally, the Monotone Convergence Theorem, Dominated
Convergence Theorem and Fatou’s Lemma hold for the McShane integral
in R™.

5.9 TFubini and Tonelli Theorems

One of the main points of interest in the study of multiple integrals concerns
the equality of multiple and iterated integrals. In Chapter 3, we gave
conditions for the equality of these integrals for the Lebesgue integral in the
Fubini and Tonelli Theorems (Theorems 3.109 and 3.110). We now establish
versions of these two results for the McShane integral. These results are
used later to establish the connection between the Lebesgue and McShane
integrals on R™. In proving the Fubini Theorem for the Lebesgue integral,
we used Mikusinski’s characterization of the Lebesgue integral. Since we
do not have such a characterization for the McShane integral, our method
of proof will be quite different and more in line with the usual proofs of the
Fubini and Tonelli theorems for the Lebesgue integral. (See [Ro, 12.4].)
For simplicity, we consider the case n = 2. We will use the notation
for sections and iterated integrals that was employed in Section 3.3.8. In
particular, it is enough for a function to be defined almost everywhere.
We begin with a lemma which establishes the connection between
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Lebesgue measure and the McShane integral.

Lemma 5.41 Suppose that E C R? is measurable with mq (E) < oo
Then, mg (E) = [p2 Xp-

Proof. First, assume that E is a brick in R?2. The gauge defined in
Example 4.111 for the Henstock-Kurzweil integral also proves that x is
McShane integrable and [z, xg = v (E) = mq (E).

Next, assume that E is open. Then, by Lemma 3.44, F is a union
of a countable collection of pairwise disjoint bricks, {B;},,. Since my is
countably additive, the Monotone Convergence Theorem implies

my (E) = ng(B Z/ XB; —/ ZXBl / XE>
i€o €T i€o 2
so the result holds for open sets.
Now assume that F is a Gs set. Then, F = N, G; with G; open,
ms (G;) < oo, and G; C G;41. By Proposition 3.34, the Monotone Conver-
gence Theorem, and the previous result, we have

mg (E) = lim mgy (G;) = lim . Xa, 2/11& lim xq, = /W XE-

1— 00 i— 00 2 1—00

We proved in Theorem 5.21 that if E C R is a null set, then [p xg = 0.
The same proofs works for subsets of R™, so the conclusion holds for null
sets in R2.

Finally, assume that F is measurable and ms (F) < oo. Then, E =
G\ B, where G is a Gs set, B is a null set, and B C G. This follows from
Theorem 3.36, which is valid in higher dimensions, by setting B = G\ E,
which is a null set. From the previous results, we have

ma(B)=m @)= [ xe= [ xo- [ xo= [ (e-x5)= [ xs

This completes the proof of the lemma. a

From the equivalence of the Lebesgue and McShane integrals in R (The-
orem 5.38) and Theorem 3.112, we derive

Lemma 5.42 Let E C R? be measurable with my (E) < co. Then:

(1) for almost every z € R, the sections E, are measurable;
(2) the function z — m(Em) s McShane integrable over R;

(3) ma(E) = fm
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We now have the machinery in place to establish a Fubini Theorem for
the McShane integral.

Theorem 5.43  (Fubini’s Theorem) Let f : R x R — R be McShane in-
tegrable. Then:

(1) fz is McShane integrable in R for almost every z € R;
(2) the function x +— [p fo = [g f(z,y)dy is McShane integrable over R;
(8) the following equality holds:

Lxmf:A(Af“) dx:/m/mf(x,y)dydx.

Proof. First, assume that f is a simple function with f(z) =
Ei;l a;X 4, (*), where the A;’s are measurable, pairwise disjoint, and
mg (A4;) < 0o. From Lemmas 5.41 and 5.42, (1) and (2) hold and

/sz=zk:ai/2XAi=ia¢Am((Ai)x)dx=Agaim((A) ) d

/Zaz/X(A dydx—-//f(a: y) dyda.

Next, assume that f is non-negative and McShane integrable. By
Theorem 3.62, there is a sequence of non-negative, simple functions
{fx}re; Which increases pointwise to f. By Exercise 5.30, each f is Mc-
Shane integrable, and from the Monotone Convergence Theorem, fw f=
Hmg oo fga f&- Since {(fi),}re, increases to f, for every z € R, the
Monotone Convergence Theorem implies that { f]R fx (m Y dy} ) IDCTEASES
to [, f (z,y)dy for almost every z. To see that [p f(z,y)dy is finite for
almost every z, note that by the Monotone Convergence Theorem,

(o )= | ()

= lim fe= f < .

k—oo [p2 R2

Thus, fg f(z,y)dy = limg_eo fg fx (2,7) dy is finite for almost every z.
Consequently, from our previous work and two applications of the Monotone
Convergence Theorem, we obtain

/R/Rf(x,y) dydz = klir&/m/mfk (z,y)dydz = kli.IEO ,/m fr = 9 f.
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Finally, assume that f is McShane integrable. Then, f is also Henstock-
Kurzweil integrable so f is measurable by Theorem 4.113. Further, f is
absolutely Henstock-Kurzwei! integrable, so f = fT — f~ with both f*
and f~ measurable and McShane integrable. The result now follows from
the case just proved. O

As was the case with the Lebesgue integral, we can use the Fubini
Theorem to obtain a criterion for integrability from the existence of iterated
integrals. This result is contained in the Tonelli Theorem.

Theorem 5.44 (Tonelli’s Theorem) Let f : R x R — R be nonnegative
and measurable. If [ [o f (2,y) dydx exists and is finite, then f is McShane
integrable and

/Rxmfzfm(/mfx> da= [ [ e dyde.

The assumption in Tonelli’s Theorem is that the iterated integral exists and
is finite, from which one can conclude that the double integral is finite. Of
course, the roles of z and y can be interchanged.

Proof.  Define fi by fi (z.y) = (f (2,4) AN &) X{—k k) x|~k .5 (z,¥). Then,
each fi is bounded, measurable and non-zero on a set of finite measure.
By Exercise 5.29, each fi is McShane integrable. From Theorem 5.43 and
the Monotone Convergence Theorem, we have that { [ fx (2,9) dy}:il in-
creases to fR f(z,y) dy for almost every z. By a second application of these
two results, we have

/R/Rf(:c,y)dydx=kirgo/;/u(fk(x,y)dydzzk&%/ntsz: sz. ]

5.10 McShane, Henstock-Kurzweil and Lebesgue integrals
in R®

In Section 5.5.7, we showed that in R the McShane and Lebesgue integrals
are equivalent and that a function is Lebesgue (McShane) integrable if,
and only if, it absolutely Henstock-Kurzweil integrable. In this section we
extend these results to R™.

Theorem 5.45 Let f: R™ — R. Then, f is Lebesgue integrable if, and
only if, f is absolutely Henstock-Kurzweil integrable.
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Proof. 1If f is non-negative and measurable, the proof of Theorem 4.79
applies to R™ since bounded step functions which vanish outside bounded
intervals in R™ are Henstock-Kurzweil integrable. Since any Henstock-
Kurzweil integrable function is measurable by Theorem 4.113, the result
follows by considering f = f* — f~ as in the proof of Corollary 4.80. [

Theorem 5.46 Let f: R®" — R. Then, f is Lebesque integrable if, and
only if, f is McShane integrable.

Proof. 1If fis McShane integrable, and hence absolutely McShane inte-
grable, then f is absolutely Henstock-Kurzweil integrable and, therefore,
Lebesgue integrable by Theorem 5.45.

Suppose that f is Lebesgue integrable. We may assume that f is non-
negative and, for convenience, that n = 2. Let £ [ and M [ denote
the Lebesgue and McShane integrals, as before. By Fubini’s Theorem for
the Lebesgue integral (Theorem 3.109), £ fp. f = £ [z £ [g f (x,y) dydz.
Since the Lebesgue and McShane integrals coincide in R, £ fnv f =
M f]RM f]R z,y) dydx. Now, by Tonelli’s Theorem for the McShane in-
tegral, f is McShane integrable and

M/szz/\/l‘/RM/Rf(z,y)dydmzﬁ n

Thus, the results of Section 5.5.7 hold in R™.

5.11 Exercises

Definitions

Exercise 5.1 Let v be a gauge on [0, 1] defined by v (0) = (-3,3),7 (1) =
(3,3), and v(t) = (4, %) for 0 < ¢t < 1. Give an example of a -fine
free tagged partition tagged partition of [0, 1] which is not a y-fine tagged

partition.

Exercise 5.2 Prove that the characteristic function of a bounded interval
I is McShane integrable and [ x; = £(I).

Exercise 5.3 Let f,h: 7 C R* — R. Suppose that |f| < h on I and that
h is McShane integrable over I with [, h = 0. Prove that f is McShane
integrable over I and [, f = 0.
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Exercise 5.4 Suppose {ax},; C R and set f(z) = 307 arX(x kt1) (%)
Show that if f is McShane integrable over [1, c0), then the series 21?:1 K
converges absolutely. For the converse, see Example 5.5.

Basic properties

Exercise 5.5 If I is a closed and bounded interval and f is continuous on
I, prove that f is McShane integrable over 1.

Exercise 5.6 (Translation) Let f : [a,b] — R be McShane integrable over
[a,b] and h € R. Define f, : [a+h,b+h] = Rby fr(t)= f(t—hz. Show

that fy, is McShane integrable over [a + h, b + h] with f;:: =1

Exercise 5.7 (Dilation) Let f : [a,b] — R be McShane integrable over
[@,b] and h > 0. Define f7 : [ra,7b] — R by f7 (¢) = f (£). Show that f7
is McShane integrable over [ra, 7] with f:b 7= Tf: f.

a

Absolute integrability

Exercise 5.8 Let ¢ : I C R* — R be a step function. Prove ¢ is McShane
integrable.

Exercise 5.9 Let I C R* and J C R be intervals. Suppose that g: J — R
satisfies a Lipschitz condition (see page 35) on J and f : I — J. Prove that
g o f is McShane integrable over I. [Hint: Use the proof of Theorem 5.11,
the Lipschitz condition and the Cauchy criterion.]

Exercise 5.10 Let f: R — R be bounded and McShane integrable. For
p € N, show that fP is McShane integrable. [Hint: Suppose that |f (t)| <
M. Use the function g : [-M, M] — R defined by ¢ (y) = y? in Exercise
5.9.

Exercise 5.11 Let f,g : R — R be bounded and McShane inte-
grable. Prove that fg is McShane integrable. [Hint: Recall that fg =

[(f +9)° - f2 - g2] /2]

Exercise 5.12 Let f : [a,00) — R be McShane integrable. Prove that

limpoo fy |f| = 0. [Hint: Pick v such that ~(t) is bounded for t € R
and IS (If1,D) - faoo If || < ¢ whenever D is y-fine free tagged partition of
[a,00]. Fix such a D = {(t;, ;) 1¢=1,...,k} with t; = oo, Iy = [b,00].
Consider [°|f| for ¢ > b.]

Exercise 5.13 Let f : I — R be McShane integrable over I. Show that
limg(s)o [;|f] = 0. [Hint: Pick v such that |S(|f], D)~ [, |fl] < e
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whenever D is y-fine free tagged partition of I. Fix such a partition
D={(ti,I;):i=1,...,k} and set M = max {|f (t:;)|:i=1,...,k}. Let J
be a subinterval of I. Consider £ = {(t;,[; N J):i=1,...,k} and use Hen-
stock’s Lemma to see how to choose ¢ so that £(J) < d implies [, |f| < 2¢/]

Exercise 5.14 Use Proposition 5.12 to prove the following variant of the
Cauchy criterion. The function f : I — R is McShane integrable if, and
only if, for all € > O there is a gauge v such that |[S(f,D) -~ S(f,&)| < €
for all v-fine free tagged partitions D = {(t;, ;) :i=1,...,m} and £ =
{(8i,I;) : i =1,...,m}, which employ the same subintervals of I.

Exercise 5.15 Use Exercise 5.14 to show that f : I — R is McShane
integrable if, and only if, for all € > 0 there is a gauge v such that

m

Z (f(t) — f(s)|€(L) <e

i=1

for all v-fine free tagged partitions D = {(¢;,;):¢=1,...,m} and
E={(si,;):i=1,...,m}.

Exercise 5.16 Use Exercise 5.15 to show that if f,¢g: I — R are bounded
and McShane integrable, then fg is McShane integrable.

Convergence theorems

Exercise 5.17 State and prove the analog of Theorem 5.19 for the
Henstock-Kurzweil integral

Exercise 5.18 Use Exercise 5.17 to prove the Monotone Convergence The-
orem, Theorem 4.70, for the Henstock-Kurzweil integral.

Exercise 5.19 Show that strict inequality can hold in Fatou’s Lemma.
[Hint: Consider fi = X0 for k odd and fi = x(1 g) for k even]

Exercise 5.20 Let f: I C R* — R be McShane integrable over I. For
k e N, define fi, the truncation of f at k, by

—k if f(t) < —k
fe@=S FOHIFQOI<E .
koif f(t)>k

Show that each fi is McShane integrable and [, fx — [, f. Further, show
that such a result fails for the Henstock-Kurzweil integral.
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Exercise 5.21 Suppose that f, g, and M are nonnegative and McShane
integrable, and 0 < fg < M. Prove that fg is McShane integrable. [Hint:
Use Exercises 5.20 and 5.11.]

Exercise 5.22 Suppose that f and g are McShane integrable and g is
bounded. Prove that fg is McShane integrable.

Exercise 5.23 Let f : [0,00) — R and suppose that the function z +—
e~ f (x) is McShane integrable over [0,00) for some a € R. Prove that
z — e~ f (z) is McShane integrable over [0, 00) for every b > a and the
function F defined by F (b) = [~ ¢ f (z) dz is continuous on [a, 00).

Exercise 5.24 Suppose that f : R — R is continuous and the function
z s 22 f () is bounded. Show that f is McShane integrable over R.

Exercise 5.25 Let f: I = [a,b] — R be McShane integrable and |f| <
c. Suppose that g : [—c,¢] — R is continuous. Use Exercise 5.10 and
the Weierstrass Approximation Theorem to show that g o f is McShane
integrable.

McShane, Henstock-Kurzweil and Lebesgue integrals

Exercise 5.26 Prove part (2) of Lemma 5.34.

Exercise 5.27 Extend Theorem 5.37 to unbounded intervals.

Exercise 5.28 Extend Theorem 5.38 to unbounded intervals.

Exercise 5.29 Suppose f : R? — R is measurable and bounded. If
ma ({z € B : (1) # 0}) < o0,

prove that f is McShane integrable.

Fubini and Tonelli Theorems

Exercise 5.30 Prove that a non-negative, simple function with support of
finite measure on R™ is McShane integrable.

Exercise 5.31 Suppose that f,¢ : R? — [0,00), with f McShane inte-
grable, ¢ simple and measurable, and 0 < p < f. Use Lemma 5.41 to show
that ¢ is McShane integrable.

Exercise 5.32 Extend Exercise 5.6 to R™ using the Fubini theorem.
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BV ([a, b)), 172

C(f,P), 6
X 12

S, 38

E°, 68
g(9), 39
#, 74

De (f)v 39
D(f), 40
Df, 136
Dy, 136
d(I,J), 64
di, 123, 244
FEz, 120
EY, 120
E+h, 61
7,28

Ft, 28

fz, 117

fY, 117
Fo, 73

g57 73
I'(z), 51
HK (I), 205
[2F, 12, 141
Je 1,31, 99
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[, £, 12, 141, 208, 225

[if, 22

[of. 22
S, 97

I°, 33
J(S,P), 38
L' (B), 123
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limiinfxi, 90
Iimsupmi, 90

L{f,P), 21
v, 28

M;, 20

M (I), 244
m, 68

my, 84

ma (E), 64
m* (E), 60
ms, (E), 81
M, 68

M;j, 240
M, 84

A, 28

mi, 20
1(P), 7,11
(1, 123, 244
w(f z), 38
w(f,S), 38
puf’f, 44
pv [ f, 45
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R*, 85

R™, 80

o, 60

sgn, 36

S(f,D), 141, 207, 224
S(f,P{t:},), 7,11
E,\AE, 80

U(f,P), 20

v(p,P), 172

Var (g, [a,b]), 172

v (I), 80

Abel’s Test, 217

absolutely continuous, 106, 202

absolutely convergent, 115

absolutely integrable, see Riemann
integrable, see Lebesgue integrable,
see Henstock-Kurzweil integrable,
see McShane integrable

additivity condition, 33

Alexiewicz semi-norm, 205

algebra, 69

almost all, 89

almost every, 89

almost everywhere, 42, 89

Archimedes, 2

ball, 80

Borel measure, 77

Borel sets, 72

bounded, 80

Bounded Convergence Theorem, 110,
188

bounded variation, 172

brick, 80

canonical form, 86
Cantor set, 79
generalized, 79
Carathéodory, 64
Cauchy, 6
Cauchy criterion, 19, 150, 228
Cauchy principal value, 44, 45
Cauchy sequence, 123
Cauchy sum, 6
Cauchy-Riemann integrable, 42, 44

conditionally, 46
Cauchy-Schwarz inequality, 127
change of variables, 37
characteristic function, 12
closed, 80
closure, 38
compact, 80 :
comparison test, 45, 170
complete, 123
conditionally integrable, see

Cauchy-Riemann integrable, 161
converge, 42, 80, 123
countable additivity, 60
countably additive, 73, 74
countably subadditive, 61
counting measure, 74

Darboux, 20
Darboux integrable, 22
Darboux sum

lower, 20

upper, 20
Dedekind’s Test, 179
Denjoy, 135
dense, 131
derivative

lower, 136

upper, 136
Dirichlet function, 14
discrete metric, 122
distance, 80
distance from I to J, 64
distance-1 metric, 122
diverge, 42
Dominated Convergence Theorem,

110, 187, 239

Egoroff, 90

even function, 47

extended real numbers, 85
extended real-valued function, 86

Fatou, 109

Fatou’s Lemma, 109, 186, 239
Fischer, 123

free tagged partition, 224



Inder

free tagged subpartition, 228

Fubini, 117

Fubini’s Theorem, 118, 213, 256

Fundamental Theorem of Calculus:
Part I, 34, 134, 143, see
Generalized Fundamental Theorem
of Calculus: Part I, 190, 232

Fundamental Theorem of Calculus:
Part II, 35, 191, 193, 233

~-fine free tagged partition, 224

«-fine tagged partition, 140, 156, 207

gamma function, 51

gauge, 140, 156, 207

gauge integral, 141

Generalized Fundamental Theorem of
Calculus: Part I, 148

generalized Riemann integral, 141

Henstock’s Lemma, 163, 229
Henstock-Kurzweil integrable, 141,
156, 208
absolutely, 147
Henstock-Kurzweil integral
indefinite, 164, 175, 190, 195

improper integral, 42
indefinite integral, see Riemann
integral, see Henstock-Kurzweil
integral, see Lebesgue integral
inner measure, 64
integrable
Darboux, see Darboux integrable
Henstock-Kurzweil, see
Henstock-Kurzweil
integrable
Lebesgue, see Lebesgue integrable
McShane, see McShane integrable
Riemann, see Riemann integrable
integrable over F
Henstock-Kurzweil, 194
Lebesgue, 103
McShane, 240
Riemann, 31
integration by parts, 37, 149
integration by substitution, 37

interior, 33
interval, 80, 207

Jordan content
outer, 38

Lebesgue, 56
Lebesgue integrable, 103
absolutely, 104
Lebesgue integral, 97, 99
indefinite, 203
Lebesgue measurable, 68, 83
Lebesgue measure, 68, 84
Lebesgue measure 0, 41
limit, 123
inferior, 90
superior, 90
linearity, 15
Lipschitz condition, 35
Lipschitz constant, 35
Littlewood, 92
Littlewood’s three principles, 92
Lusin, 93

major function, 136, 245
maximum, 28
McShane integrable, 224, 254
absolutely, 229
McShane integral, 254
Mean Value Theorem, 48
measurable
function, 86
set, 64
measure, 74
mesh, 7, 11
metric, 122
metric space, 122
Mikusinski, 113
minimum, 28
minor function, 136, 245
monotone, 61
Monotone Convergence Theorem,
100, 104, 181, 184, 236, 238
multiplier, 171

norm, 80, 122
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null set, 41, 68

odd function, 47
open, 80

operator, 15
oscillation, 38

outer measure, 60, 81

partition, 6, 11, 154, 155, 207

Perron, 135

Perron integrable, 136

positivity, 15, 16, 146, 228

probleme d’intégration, 56

probléme de la mesure des ensembles,
60

refinement, 22
regular
inner, 126
outer, 77
Riemann, 7
Riemann integrable, 12
absolutely, 46
Riemann integral
indefinite, 35, 204
lower, 22
upper, 22
Riemann sum, 7, 141, 207, 224
Riemann-Lebesgue Lemma, 131
Riesz, 123
Riesz-Fischer Theorem, 123, 244

sampling point, 7
semi-metric, 122
semi-norm, 122
o-algebra, 69

signum function, 36
simple function, 59, 86
step function, 27, 94
Straddle Lemma, 138
subpartition, 163
symmetric difference, 80

tag, 139, 155, 207, 224
tagged partition, 139, 155, 207
free, 224

tagged subpartition, 163
free, 228
Tchebyshev, 102
Tchebyshev’s inequality, 102
test set, 68
Tonelli, 119
Tonelli’s Theorem, 119, 213, 257
translation, 61
translation invariant, 61

variation, 172
negligible, 196
vector lattice, 29
vector space, 29
Vitali cover, 198
Vitali Covering Lemma, 199
volume, 80, 207

z-section, 120

y-section, 120



