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Preface

A practical approach through simulation

Simulation is an essential tool in any field related to engineering techniques,
whether it is used for teaching purposes or in research and development.

When teaching technical subjects, lab works play an important role, as im-
portant as exercise sessions in helping students assimilate theory. The recent
introduction of simulation tools has created a new way to work, halfway be-
tween exercise sessions and lab works. This is particularly the case for digital
signal processing, for which the use of the MATLAB® language, or its clones,
has become inevitable. Easy to learn and to use, it makes it possible to quickly
illustrate a concept after introducing it in a course.

As for research and development, obtaining and displaying results often
means using simulation programs based on a precise “experimental protocol”,
as 1t would be done for actual experiments in chemistry or physics.

These characteristics have led us, in a first step, to try to build a set of exer-
cises with solutions relying for the most part on simulation; we then attempted
to design an introductory course mostly based on such exercises. Although this
solution cannot replace the traditional combination of lectures and lab works,
we do wonder if it 1sn’t just as effective when associated with exercise sessions
and a few lectures. There is of course no end in sight to the debate on educa-
tional methods, and the amount of experiments being conducted in universities
and engineering schools shows the tremendous diversity of ideas in the matter.

Basic concepts of DSP

The recent technical evolutions, along with their successions of technological
feats and price drops have allowed systems based on micro-controllers and
microprocessors to dominate the field of signal and image processing, at the
expense of analog processing. Reduced to its simplest form, signal processing
amounts to manipulating data gathered by sampling analog signals. Digital
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Signal and Image Processing, or DSIP, can therefore be defined as the art of
working with sequences of numbers.

The sampling theorem

The sampling theorem is usually the first element found in a DSIP course, be-
cause it justifies the operation by which a continuous time signal is replaced
by a discrete sequence of values. It states that a signal can be perfectly recon-
structed from the sequence of its samples if the sampling frequency is greater
than a fundamental limit called the Nyquist frequency. If this 1s not the case,
it results in an undesired effect called spectrum aliasing.

Numerical Sequences and DTFT

The Discrete Time Fourier Transform, or DTFT, introduced together with
the sampling theorem, characterizes the spectral content of digital sequences.
The analogy between the DTFT and the continuous time Fourier transform is
considered, with a detailed description of its properties: linearity, translation,
modulation, convolution, the Parseval relation, the Gibbs phenomenon, ripples
caused by windowing, etc.

In practice, signals are only observed for a finite period of time. This
“time truncation” creates ripples in the spectrum and makes it more difficult
to the separate two close frequencies in the presence of noise. This leads to
the concept of frequency resolution. The DTFT is a simple way of separating
two frequencies, but only if the observation time is greater than the inverse of
the difference between the two frequencies. The frequency resolution will allow
us to introduce the reader to weighting windows. However, a more complete
explanation of the concept of resolution can only be made if noise disturbing
the signal is taken into account, which is why it will be studied further when
random processes are considered.

The Discrete Fourier Transform, or DFT is the tool used for a numerical
computation of the DTFT. Because this calculation involves a finite number
of frequency values, the problem of precision has to be considered. There are
a few differences in properties between the DFT and the DTFT, particularly
regarding the indexing of temporal sequences that are processed modulo N.
Some examples of this are the calculation of the DTFT and the DFT of a
sinusoid, or the relation between discrete convolution and the DFT. At this
point, the fast algorithm calculation of the DFT, also called FFT (Fast Fourier
Transform), will be described in detail.

Filtering and Elements of Filter Design

Linear filtering was originally used to extract relevant signals from noise. The
basic tools will be introduced: the discrete convolution, the impulse response,
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the frequency response, the z-transform. We will then focus on the fundamen-
tal relation between linear filtering with rational transfer functions and linear
constant-coefficient recursive equations.

Filter design 1s described based on a few detailed examples, particularly the
window method and the bilinear transform. The concepts of over-sampling and
under-sampling are then introduced, some applications of which are frequency
change and the reduction of quantization noise. From a broader perspective,
multi-rate processing and filter banks which are described here, are two subjects
that attract a lot of attention in the field of DSIP.

An introduction to images

Image processing is described in its own separate chapter. Many of the concepts
used in signal processing are also used in image processing. The only difference
is that two indices are used instead of one. However images have particular
characteristics that require specific processing: erosion, expansion, etc. The
computation time is usually much longer for images than it is for signals. It is
nevertheless possible to conduct image processing with MATLAB® or one of
its clones. This theme will be discussed using examples on 2D filtering, contour
detection, and other types of processing in cases where the 2D nature of the
images does not make them too different from a 1D signal. This chapter will
also be the opportunity to discuss image compression and entropic coding.

Random Processes

Up until now, the signals used as observation models have been described by
functions that depend on a finite number of well known parameters and on
simple known basic functions: the sine function, the unit step function, the
impulse function. .. This type of signal is said to be deterministic.

There are other situations where deterministic functions cannot provide us
with a relevant apprehension of the variability of the phenomena. Signals must
then be described by characteristics of a probabilistic nature. This requires
the use of random processes, which are time-indexed sequences of random vari-
ables. Wide sense stationary processes, or WSSP, are an important category
of random processes. The study of these processes is mainly based on the es-
sential concept of power spectral density, or PSD. The PSD is the analog for
WSSP of the square module of the Fourier transform for deterministic signals.
The formulas for the linear filtering of WSSP are then laid down. Thus, we
infer that WSSPs can also be described as the linear filtering of a white noise.
This result leads to a large class of stationary processes: the AR process, the
MA process, and the ARMA process.
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Spectral Estimation

One of the main problems DSIP is concerned with is evaluating the PSD of
WSSPs. In the case of continuous spectra, it can be solved by using non-
parametric approaches (smooth periodograms, average periodograms, etc.) or
parametric methods based on linear models (AR, MA, ARMA). As for line
spectra, the most commonly used methods are the periodogram and what are
called high resolution methods, which use the structures of the signal and the
noise: Prony, Pisarenko, MUSIC, ESPRIT, etc.

The least squares

This chapter discusses the use of the least squares method for solving problems.
This method is used in a number of problems, in fields such as spectral analysis,
modelling, linear prediction, communications... We will discuss such methods
as Wiener, RLS, LMS, Kalman. ..

Applications

This last chapter presents case studies that go a little further in depth than the
examples described earlier. The emphasis is set on audio signal processing, on
compression as well restoring and denoising for speech and music, and on mod-
ulation, demodulation and equalization issues for digital communications. This
chapter is also an opportunity to discover typical approaches and algorithms:

pitch detection, PSOLA, DTW, ACP, LBG, Viterbhi. ..

As a Conclusion

One of the issues raised by many of those who use signal processing has to
do with the artificial aspect introduced by simulation. For example, we use
sampling frequencies equal to 1, and therefore frequencies with no dimension.
There is a risk that the student may lose touch with the physical aspect of
the phenomena and, because of that, fail to acquire the intuition of these
phenomena. That is why we have tried, at least in the first chapters, to give
exercises that used values with physical units: seconds, Hz, etc.

This work discusses important properties and theorems, but its objective
is not to be a book on mathematics. Its only claim, and certainly an excessive
one, is to show how interesting signal and image processing can be, by providing
themes of study we chose because they were good examples, because they were
simple, while trying not to be too trivial.

All of the subjects discussed far from cover the extent of knowledge required
in this field. However they seem to us to be a solid foundation for an engineer
who would happen to deal with DSIP problems.
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Empty Set

Zk Zn
1 when
0 otherwise

sin(mx)

[t| < T/2

mr

{ 1 whenzec A

0 otherwise
{r:a<z<b}
{ Dirac Distribution when ¢ € R

Kronecker Symbol when t € Z
Real Part of z

Imaginary Part of z
v—1
Fourier Transform

Continuous Time Convolution

/ z(u)y(t — u)du
R
Discrete Time Convolution

Z z(u)y(t —u)

Y=y

(Indicator Function of A)
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Introduction to MATLAB

In this book the name MATLAB® (short for Matrix Laboratory) will refer to:

— the program launched by using the command matlab in Dos or Unix
environments, or by clicking on its icon in a graphic environment such as

x11, Windows, MacOS. ..,
— or the language defined by a vocabulary and syntax rules.

MATLAB® is an interpreter, that is to say a program that remains in
the computer’s memory once it is launched. MATLAB® displays a com-
mand window used for interpreting commands. If they are considered correct,
MATLAB® will execute them. This execution will itself lead to verifications.

Example 1 (Direct interpretation) Type a=2*1og10(5) then <return>.
The result is shown in a PC environment (Figure 1).

=] MATLAB Command Window EE
File Edit Options Windows Help

»a=2*10gl0(5) \
Command line

a =

+

1.3979 <« Result

» <—————— Prompt

12

] [

Figure 1 — The MATLAB® command window on MS- Windows

Commands can be gathered together in text files called matlab programs.
The user %ives them a name that can be called from the prompt line. The
MATLAB™ documentation explains how to use an editor to create such files.
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This editor may either be integrated in the software or kept external (the
user’s favorite editor). Program files use the extension .m. If a program is
called progi.m, all the user has to do is type progl in the MATLAB® com-
mand window to have it executed. MATLAB® then searches for the file in
the routine directory. If it doesn’t find the file there, it looks for progl.m in
the various files specified in the directory path. The latter can be defined di-
rectly in the command prompt window, or by using a program and executing
commands such as path, addpath, rmpath, genpath, pathtool, savepath (see
documentation, online help, or type help path).

Eile Edit Wiew Graphics Debug Deskiop Window Help

O & BB o o« |8 5| 7| curentDirectory | ustlocalimatiabimaliah7ri 4sp2inin_#| J
Shorteuts #] Howto Add 2] What's MNewr
wgrkqlacn FEET | Command Window 7 =
DEL S| |- |/

_@ @_ b | 7| —_— | <MATLAB>

Current Directony | Workspace | Copyright 1984-2005 The MathWorks, Inc.

Version 7.0.4.352 (R14) Senice Pack 2

05 4:34 PM %
4/8105 2:209 AM %
To get started, select MATLAB Help or Demos from the Help menu.

e

4 start|

Figure 2 — The MATLAB® window in an X-windows environment. The definition
of the routine folder can be done directly by clicking on the icon with “...”7 in the
top-right corner of the window. The definition of the directory path can be done by
selecting the item set path ... in the menu file

Clones of MATLAB® are now available. Some belong to the public domain.
There also exists a compiler that allows the user to translate MATLAB® pro-
grams in machine language, making the execution quicker, and meaning that
it 1s not required to own the interpreter.

1 Variables

1.1 Vectors and matrices

The MATLAB® language is dedicated to matrix calculations and was opti-
mized in this perspective. The variables handled as a priority are real or com-
plex matrices. A scalaris a 1 x 1 matrix, a column vector is a matrix with only
one column, and a line vector a matrix with only one line.

The notation (£ x ¢) indicates that the considered variable has ¢ lines and
¢ columns.
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Example 2 (Assignment of a real matrix) Type a=[1 2 3; 4 5 6] at

the MATLAB® prompt in the command window. The answer is shown in
Figure 3.

NE=————= Command =———————=VUH|
»a=[1 2 3;4 5 6] m
a = Assignment of matrix a
1 2 3 <«——Result
4 5 6 (2 lines, 3 columns)
=
<] [E

Figure 3 — Assigning a matriz

Values are assigned to the elements of a matrix by using brackets. A space
(or a comma) is a separator, and takes you to the next column, while the semi-
colon takes you to the next line. Elements are indexed starting from 1.
The first index is the line number, the second one is the column number. In
our example, a(1,1)=1 and a(2,1)=4. The assignment a=[1 2;3 4 5] will of
course lead to an error message, since the number of columns is different for
the first and second lines.

Character strings can also be assigned to the elements of a matrix. However,
the string length must be compatible with the structure of the matrix. For
example, N=[’paul’;’ john’] would be correct, whereas N=[’paul’; ’peter’]
would cause an error.

When the vector’s components form a sequence of values separated by reg-
ular intervals, it is easier to use what is called an “implicit” loop of the type
(indD:step:indF). This expression refers to a list of values starting at indD
and going up to indF by increments of step. Values cannot go beyond indF.
The increment value step can be omitted if it is equal to 1.

Example 3 (Implicit enumeration) Type a=(0:1:10) or a=(0:10).
MATLAB® returns:

a =

0 1 2 3 4 5 6 7 8 9 10

Example 4 (Incremented implicit enumeration) Type a=(0:4:10).
MATLAB® returns:
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The last element of a vector is indicated by the reserved word end. In the

previous example, a(end) indicates that its value 1s 8.

It is possible to extend the size of a matrix. The interpreter takes care of

available space by dynamically allocating memory space during the analysis of
the typed phrase.

Example 5 (Extension of matrix) Type the following commands one after

the other:
>>a=[12 3; 4 5 6]
a =
1 2 3
4 5 6
>>a=[a a]
a =
1 2 3 1 2 3
4 5 6 4 5 6
>>a=[12 3; 45 6];
>>a=[a;al
a =
1 2 3
4 5 6
1 2 3
4 5 6
COMMENTS:

1.2

When defining variables and objects, the language takes into account
whether letters are capital or lowercase.

@,

Typing ;" at the end of a command line prevents the program from
displaying the results of an operation.

The display format can be modified by using the format command. Exe-
cuting format long, for example, changes the number of significant digits
from 5 to 15.

The user must bear in mind that MATLAB® dedicates memory space
every time a variable is used for the first time. All of the variables used
during a work session are stored in the computer’s memory, which means
it is necessary to free space from time to time so as not to get the OUT
OF MEMORY error message (see the clear command in the documentation
or type help clear).

Arrays

Multidimensional arrays (not supported by all versions) are an extension of the
normal two-dimensional matrix. One way to create such an array is to start
with a 2-dimension matrix that already exists and to extend it. Type:
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A=[1:3;4:6]
>> A
A=
1 2 3
4 5 6
>> A(:,:,2)=zero0s(2,3), % or A(:,:,2)=0
A(:,:,1) =
1 2 3
4 5 6
AC:,:,2) =
0 0 0
0 0 0

The repmat and cat functions are provided in order to build multidimen-
sional arrays.

1.3 Cells and structures

In the most recent versions of MATLAB®, there are two groups of data that
are more elaborate than scalar arrays and character string arrays: the first one
is called a cell and the second a structure.

In an array of cells, the elements can be of any nature, numerical value,
character string, array, etc. Type:

langcell={’MATLAB’,[6.5;2.3],2002}
>> langcell(2)
ans =

[2x1 double]
>> langcell{2}
ans =

6.5000

2.3000
>> langcell{2}(1)
ans =

6.5000

langcell is made up of three elements: the first one is a character string,
the second omne i1s a column vector, and the third one i1s a scalar. This
example shows the difference in syntax between an array and a cell, a left
brace ({) and a right brace (}) being used instead of a left square bracket
([) and a right square bracket (]). As for the content, langcell(2) refers
to the vector [6.5000;2.3], langcell{2} to the content of this vector, and
langcell{2}(1) to the numerical value 6.5.

A structure is defined by the struct instruction. The following exam-
ple defines a structure, called langstruc, comprising three fields: Language,
Version, and Year. The instruction assigns the character string MATLAB to the
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first field, the character string 6.5 to the second field, and the numerical value
2002 to the third field:

>>langstruc=struct (’Language’, ’MATLAB’,’Version’,’6.5’,’Year’,2002) ;
>>langstruc.Year

ans =
2002
>>

The second instruction displays the content of langstruc.Year, which is
2002. A 1 x 1 dimension structure is organized in the same way as ann x 1
dimension array of cells, where n is the number of fields of the structure. Cells
can therefore be compared to structures with unnamed fields.

The following example defines a structure named langstruc, comprised of
two recordings. Each recording contains all three fields Language, Version,
and Year to which were respectively assigned the sequences of two character
strings MATLAB and C, of the two values 6.5 and 15.1, and of the two values
2002 and 2003:

>> langstruc=struct (’Langage’,{{’MATLAB’,’C’}},...
’Version’,[6.5;15.1], ’Year’,[2002;2003]) ;
>> langstruc
langstruc =
Language: {’MATLAB’ °’C’}
Version: [2x1 double]
Year: [2x1 double]
>> langstruc.Langage{1}
ans =
MATLAB
>> langstruc.Language (1)
ans =
"MATLAB’

>>

These objects can be handled using certain functions: isstruct,
fieldnames, setfield, rmfield, cellfun, celldisp, num2cell, cell2mat,
cell2struct, struct2cell... An example of a conversion is as follows:

>> clear all
>> langcell={’MATLAB’,[6.5;2.3],2002}
>> chps={’Langage’,’Version’,’Year’};
>> cell2struct(langcell,chps,2)
ans =

Language: ’'MATLAB’

Version: 6.5000
Year: 2002

>>

The 2 that is part of the instruction cell2struct(langcell, chps,2) indi-
cates the dimension of langcell that needs to be taken into account to define
the number of fields. Here, for example, size(langcell,2) means that the
number of fields 1s 3.
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2 Operations and functions

2.1 Matrix operations
The main matrix operations are the following:

— The (4, x) operations, sum and multiplication of two matrices.

Example 6 (Multiplication of matrices) Type the following com-
mands:

>>a=[1 2; 3 4] * [5;6]
a =
17
39
>>size(a)
ans =
2 1

The command size(a) returns “1 2”7 giving us the number of lines and
the number of columns of a.

— The backslash provides the solution to the linear problem Ax = b in the
form x=A\b. If A is a full-rank square matrix, this amounts to multiplying
on the left by the inverse matrix. Otherwise, the solution is given wn the

least squares sense! .

Example 7 (Solving a linear system) Type:

>>A=[1 2;2 3]; b=[1;1]; % Full rank square matrix
>>x=inv (A) *b % Solution using the inverse
x =
-1
1
>>x=A\b % Solution using the system resolution
x =
-1
1

— The operation 4/B amounts to performing the operation B*\4”.

— The operation ~ carries out the exponentiation of the argument, which
can be a fractional scalar, positive or negative, or a matrix.

— The apostrophe ’ is used for the transpose-conjugate or transconjugate.
As a reminder, if the (N x N) matrix A is the conjugate-transpose of B,
then A = B¥ and we have [a;;] = [b7;] for 1 <4, 5 < N.

IThe problem of solving a linear system in the least-squares sense plays a crucial role in
signal processing. This will be discussed further in Chapter 11.
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Example 8 (A few operations) Type the following commands:

>>a=[2 0;1 3];
>>a”2
ans =
4 0
5
>>a” .5
ans =
1.4142 0
0.3178 1.7321
>>a=(0:3);
>>b=(0:3);
>>c=bx*a’
c =
14
>>d=b’*a
d =

[=NeNele)
WN = O
R NO
OO WO

The vectors a and b are real (4 x 1) line vectors. The scalar ¢ is therefore
equal to the scalar product of the vectors a and b. On the other hand, d is a
“multiplication table”-type (4 x 4) matrix.

2.2 Pointwise operations

The operations “.x ” and “.”” work term by term. The phrase pointwise

operations is also used. For example, if A = [a;;] and B = [b;;] are two matrices
of the same dimension, A .* B returns the matrix [a;;b;;].

” 49
5 .

Example 9 (Pointwise operations) Type the following commands and
check the result:

>>clear Y% Free data memory space
>>a=(1:3)2 % (1:4); b=(5:7)’ * (1:2:7);
>>c = a.* b;

>>d=a ./ b;
>>e =a .~ (.5);
>>a,b,c,d,e

In this sequence of instructions:

— a and b are two matrices with 3 lines and 4 columns. They are obtained
by multiplying a dimension 3 column vector and a dimension 4 line vector;

— c is a matrix that has ¢; = a; X b; as its generic element;

— d is a matrix whose element d; = a;/b;;
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— e 1s a matrix whose element e; = /a;.

Example 10 (Alternating sequence)
(-1).7[0:9] leads to a sequence of alternating 1 and —1.

COMMENTS:
— 1n term by term operations, matrices must have the same dimensions;

— while the operation * (apostrophe) transconjugates a matrix, the opera-
tion .’ (period-apostrophe) transposes without conjugating.

Example 11 (Transposition and transconjugation) Type:

>>a=[1+j 2;3 4]
a =
1.0000 + 1.00001 2.0000
3.0000 4.0000
>>a’
ans =
1.0000 - 1.0000i 3.0000
2.0000 4.0000
>>a.’
ans =
1.0000 + 1.00001 3.0000
2.0000 4.0000

2.3 Constants and initialization

The constants pi, i, j are predefined: pi=3.14159265358979 - -, i = j =
V/—1. Keep in mind that executing the instruction pi=4 makes pi lose its
predefined value. It is recommended not to use pi, i and j as variables in a
program.

eps, realmin and realmax are other constants provided for limit
test purposes. Their values are respectively: 2.220446049250313¢ — 16,
2.225073858507201e — 308 and 1.797693134862316e + 308.

2.4 Predefined matrices

The following commands are used to obtain certain particular matrices:

— ones(L,C) returns a matrix with L lines and C' columns containing noth-
ing but ones. ones(1,N) returns a line vector made up of N ones;

— zeros(L,C) returns a matrix with L lines and C' columns containing
nothing but zeros;

— eye(N) returns the N x N identity matrix (ones on the diagonal and
zeroes everywhere else);
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— eye(L,C) returns the N x N identity matrix Iy, where N refers to the
smaller of the two numbers L and C', completed by a matrix containing
nothing but zeros, so as to obtain a matrix with L lines and C' columns.
eye(1,N), for example, will return a line vector with one “1”7 followed by

N _ 1 ((077;

— randn(L,C) returns a matrix with L lines and C' columns containing a
centered gaussian distributed sample with a variance equal to 1;

— rand(L,C) returns a matrix with L lines and C' columns containing a
sample uniformly distributed on the interval (0, 1);

— aside from the usual matrices, such as Hilbert, Hadamard, Vander-
monde, etc.; a large number of predefined matrices are available using
the gallery function. For a list of these matrices, type help gallery.

The reshape function is used to change the size of a matrix, for example,
to go from a (2 x 6) matrix to a (3 x 4) matrix (refer to documentation, or type
help). This change of size can also be done directly, as shown in the following
example:

a=[(1:6);(7:12)]1; % 2%6 matrix
c=zeros(3,4); % Predimensioning
c(:)=a; % Column by column filling-out

which would be the equivalent of c=reshape(a,3,4). The zeros(3,4) com-
mand initializes the choice of size for the matrix ¢. The purpose of the next
instruction c(:)=a is to fill out the matrix ¢, column by column, with the
sequence of 12 values taken from a column by column. a and ¢ must have the
exact same number of elements.

Example 12 (Predefined matrices) The instructions:

x=[ones(1,5) ;-ones(1,5)];
y=zeros(1,10); y(:)=x

return a line vector containing 10 alternate 1 and —1. As we have seen, the
same thing can be done with (-1).7[0:9].

2.5 Mathematical functions

Certain functions handle matrices only as an array of values. This is the case
for functions such as: abs, sqrt, exp, cos, sin, log, tan, acos, asin, atan,
etc.
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Example 13 (Exponential function) Type:

T=1024; tims=(0:T-1);

%===== Three frequencies

fq =[.01 .013 .014];

%===== Complex Signal

sig = exp(2*j*pi*xtims’*£fq);

%===== Displaying of the real part of the complex exponential
% for £g=0.01 that is to say cos(2%pi*0.01%n)

plot(tims, real(sig(:,1)))

tims is a (1 x 1024) line vector and therefore tims’#*fq is a (1024 x 3)
matrix. You can see this for yourself by typing, at the end of the previous
program, the command whos:

>>whos
Name Size Elements Bytes Density Complex
T 1 by 1 1 8 Full No
fq 1 by 3 3 24 Full No
sig 1024 by 3 3072 49152 Full Yes
tims 1 by 1024 1024 8192 Full No

The instruction sig = exp(2*j*pi*tims’*fq); applies the exponen-
tial function to each of the elements of the matrix 2*j*pi*tims’*fq.
The result is the (1024 x 3) matrix sig. In the last instruction
plot(tims,real(sig(:,1))), sig(:,1) refers to the last column of the ma-
trix sig.

Built-in functions

There is a large number of library functions that can be called using the
MATLAB® language. Some are provided with the MATLAB® interpreter,
while others have to be paid for, as part of extra modules.

Among the functions available in the basic version, the user will for example
find mathematical functions such as the exponential exp, the logarithm log, the
usual trigonometric functions. .. or functions that have more to do with signals
and images such as the Fourier transform £ft, the 2D convolution conv2, etc.

Some of these functions are written in the MATLAB® language, while
others are written in machine language, for reasons of execution speed.

Example 14 (“Source programs” and compiled programs) Type:
type compan. MATLAB® displays the text of the compan function, which can
be found in one of the folders of your hard-drive. However, if the instruction
type fft is executed, MATLAB® returns:

7?7 Built-in function
meaning that this function is compiled and that its source code cannot be
accessed.
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In the most recent versions of MATLAB®, many functions that used to be
written as “.m” programs (see paragraph 6) were rewritten and now appear as
“Built-in”.

2.6 Matrix functions

As we have seen, the exp(a) command calculates the exponential of each el-
ement of the matrix a. This operation must not be confused with the matrix
exponential. The letter “m” at the end of the functions expm(4), logm(4),
sqrtm(A) indicates that we are dealing with matrix functions. For example,
e is defined by:

A A AF

e =1+ ET.+....+ 7;r.+...
and is obtained with the function expm(4).

There 1s also a function called funm that can be used to calculate any

function of a matrix. Type help funm.

2.7 Other useful functions

The eig function returns the eigenvalues and the eigenvectors of a matrix. The
poly function returns the characteristic polynomial associated to a matrix, or
a polynomial whose roots are a given vector. The roots function returns the
roots of a polynomial.

Example 15 (A few functions - 1) Type:

>»a=[11 1];
>>rr=roots(a)
rr =

-0.5000 + 0.86601i
-0.5000 - 0.86601
>>poly(rr)
ans =
1.0000 1.0000 1.0000

The values of the complex roots of the polynomial a(z) = 2% + = + 1 are
obtained with roots(a).

Example 16 (A few functions - 2) Type:

>>a=[1 2;1 1];
>>poly(a)
ans =
1.0000 -2.0000 -1.0000
>>[vp,nd]l=eig(a)

vp =
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0.8165 -0.8165

0.5774 0.5774
md =

2.4142 0

0 -0.4142

>>roots (poly(a))
ans =

2.4142

-0.4142

In this example, a is a (2 x 2) matrix, its characteristic polynomial poly(a)
is equal to det(A\I—a) = A? —2X\ — 1. The eigenvectors of a are given by vp. md
is the diagonal matrix bearing the eigenvalues on its diagonal, which are also
the roots of the characteristic polynomial.

2.8 Logical operators on boolean variables

The logical operators AND (symbol &), OR (symbol |), and NOT (symbol

) operate on boolean quantities. The “false” boolean value is coded as 0

and “true” as a non-zero value. Boolean quantities can be used in struc-

tures such as “if ... elseif ... else ... end”, “switch ... case
otherwise ... end” or “while ... end”.

Example 17 (Logical functions) Type:

>>x=1;
>>if x==0,
A=[1 21;
else

A=[2 11;
end

>>A

A =

2 1

isnan, isinf, isfinite, isstr, ischar, etc. are boolean functions used
for testing purposes.

2.9 Program loops

The for ... end program structure works as a calculation loop.

Example 18 (Program loops) Type:

>>A=[1 .5; .5 .25];

>>M=eye(2,2); % Unit Matrix

>>for k=1:5

M=M=x* A; % Calculation of the consecutive powers of A
end
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The loop can be written in a single line with for k=1:5; ¥ = M * A; end.

As is the case for many interpreters, loops tend to deteriorate calculation
performances considerably. The user is therefore advised not to use them, by
replacing them with matrix functions when possible.

Example 19 (Avoiding loops) Type:

>>a=randn (400) ;
>>for k=1:400
for m=1:400
b(k,m)=a(k,m) ~2;
end
end
>>c=a ."2;

The last instruction returns a matrix ¢ identical to the matrix b. However
its execution is much faster.

3 Graphically displaying results

Display windows are chosen using the command figure(n), where n is a win-
dow number. Inside the active window, the plot command can be used to
graphically display results:

— If x and y are two real vectors of the same length, the plot(x,y) displays
the graph of y as a function of x.

— If x and y are two real matrices of the same size, the plot(x,y) command
displays the first column of y as a function of the first column of x, the
second column of y as a function of the second column of x, and so on
until there are no columns left. Each line has its own color.

— If x is a real vector with a length of N, and y is a size (N x K) real
matrix, the plot(x,y) command displays the K graphs corresponding
to the K columns of y as a function of x.

— If x 18 a complex vector, the plot (x) displays the graph of the imaginary
part of x as a function of the real part of x (see example 20).

— If the command subplot(3,2,4) or subplot(324) is added before the
plot command, the graph is divided in six “sub-windows” organized in
three lines of two columns each, and the display is done in sub-window
number 4.
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Example 20 (Drawing of a circle)
Type the following program:
clear;
z=exp (2%pi*j*[0:100]/100) ;
figure(1); plot(z); axis(’square’);
figure(2); subplot(121); plot(z); axis([-1.2 1.2 -1.2 1.2]);
subplot (122); plot(z); axis(’square’);

The axis(’square’) command forces the display to appear in a square.
The second axis command forces particular values on the minima and the
maxima of the x- and y-coordinates. The third one makes the calculation of
the minima and maxima automatic.

The zoom command is used to zoom in on a particular part of the graph.

In the recent versions of MATLAB®, windows and graphs are objects whose
properties can be consulted and modified using get and set. These properties
can also be accessed from the pull-down menus, meaning that the user does
not have to reprogram them. See exercise 2.8, page 80 which describes another
way to go about this.

Example 21 (Drawing an ellipse)

The exponents T and H refer to the transposition and the transposition-
conjugation respectively. If the matrix is real, then of course Y# = Y7,
In its matrix form, the equation of an ellipse is:

(X -X)EX - X¢)=¢

where ¢ 1s a positive constant, X is a dimension 2 vector characterizing the
center of the ellipse, and E is a 2 x 2 positive matrix, meaning that, for any
complex vector Y, YHEY is a positive number. A simple way of obtaining a
positive matrix is to take any real matrix G and to calculate GT G.

By diagonalizing E, we get E = PDP¥ where D is a diagonal matrix with
all its diagonal elements positive, and P a unitary matrix, that is to say such
that PPH = PHP =1 where I refers the identity matrix.

Let us assume F = PDY/2P¥  Incidentally, we have F = FH and FIF =
E. Fiscalled the square root of E. Starting with this, we have (X—Xg)?E(X—
Xo) = (X — Xo)¥FIF(X — Xg). By assuming Y = F(X — Xg), we get
Y#HY = ¢ which is the equation of a circle of center O and radius /¢ in a set of
orthonormal coordinates. This leads us to a calculation procedure of N points
of the ellipse characterized by Xp, E and ¢:

1. Calculate Y = +/c[cos @ sinf] for 6 from 0 to 2 in steps of 27/N.
2. Make the variable change X = X, +F~'Y.

Starting with this procedure, we now write a function with the ellipse’s center
defined by any vector X0, the positive matrix E, and the constant ¢ as input
parameters.
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HinT: type:

function ellipse(X0, E, ¢)

hh %
%% Drawing an ellipse Y%
%% SYNOPSIS: ELLIPSE(XO, E, c) %
YAA X0 = Coordinates of the ellipse’s center (2x1) %
%% E = A positive (2x2) matrix %
% c¢ = Scale Factor %
o %

N=100; theta = (0:N) * (2%pi) ./ N ;

Y = sqrt(c)*[cos(theta) ;sin(theta)];

Fmi=inv (sqrtm(E));

X = diag(X0)*ones(2,N+1)+Fml*Y;

plot (X(1,:),X(2,:)); set(gca,’DataAspectRatio’,[1 1 1])
return

Test this function? with the following program, choosing several values of ¢
and:

1.3628 0.7566

Xo=[00]and E= | /"-eo =166

>>X0=[0 0];
>>E=[1.3628 .7566;.7566 .5166];
>>c=1;

>>ellipse (X0, E,c)

We displayed in Figure 4 the results obtained for ¢ = {1,2,3,4,5}. n

10

c=5

-6 -4 -2 0 2 4 6

Figure 4 — Drawing of several ellipses

?Save this function under the name ellipse.m. It will be used later on.
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4 Converting numbers to character strings

As an example, let us consider the text(x,y, ’text’) command. It allows the
user to add text to a graph, placed at coordinates (z,y). To add a numerical
value to the text command, it must first be converted to a character string.
This can be done with the num2str command.

Example 22 (Numbers and character strings) Type:

fe=10;
valfe=num2str (fe)

The sprintf command can also be used to build a character string. In fact,
it 1s used by num2str.
Example 23 (Creating a character string) Type:

£fq=[10.5 20.566];
valf=sprintf (’F1 = %+15.2f, F2 = %4.2¢’, £q(1),£q(2))

The expression sprintf(...) leads to a character string obtained by con-
verting the numerical value to the format specified by format. For example,
the %10.4f format converts the given value with 4 decimal points. For more
information, 1t is recommended to read the printf function’s description in C
language.

The functions str2num and hex2num should also be looked into.

5 Input/output

MATLAB® makes it possible to perform input-output operations from the
keyboard, on the screen (as it was explained in the previous paragraph with
sprintf) or on files. Here are the main functions:

— input, ginput, ... for keyboard acquisition;
— disp, sprintf, ... to display on the screen;
— gtext, plot, grid, title, ... to display in a graph;

— load, save to load or save parts of the variables in a file, or all of them,
in a format specific to MATLAB®. By default, files have the extension
.mat.

For versions newer than MATLAB-4, it is still possible to ensure that
files are compatible with version 4 by using the option -v4 of the save
command,;

— fopen, fread, fwrite for input-output with formatting.
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Example 24 (Input/output in a file) Type:

clear; x=[1:100];
fid=fopen(’tryl.dat’,’w’);
fwrite(fid,x, ’short’); % Writing
fclose(fid)

Y==========
fid=fopen(’tryl.dat’,’r’);
y=fread(fid, ’short’) % Reading
fclose(fid);

This program creates the tryl.dat file of 16 bit integers, then reads its
content in variable y.

6 Program writing

We have seen that several commands can be grouped together in a file that can
be run by typing its name in the command window. Such a program often uses
functions with names corresponding to the .m files that contain them, and not
the ones declared by the reserved word function!

It is however possible to gather several functions in a single m file, so long
as these functions are called from inside the file, but they are not visible from
the outside.

The first lines of comment (lines starting with a % symbol) of a program
(or a function) are displayed when the help command is executed followed
by the name of the program. It is strongly advised to systematically use this
possibility to write down a synthetic description of the functions used.

MATLAB® authorizes the use of procedures written in an evolved language
such as C, Pascal or Fortran. These programs belong to the type called MEX.
Throughout the rest of this book, we will use only predefined functions and
those we are going to build in the MATLAB® language.

MATLAB® also makes it possible to create programs with a graphic inter-
face, combining buttons, pull-down menus, scrolling windows, etc. Using these
possibilities is a good way of building “press-a-button” demonstrations or lab
works that help to emphasize certain properties. The demonstrations included
with MATLAB® are an excellent source of documentation for creating such
programs.
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Deterministic Signals
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Chapter 1

Signal Fundamentals

Although this work is mainly focused on discrete-time signals, a discussion of
continuous-time signals cannot be avoided, for at least two reasons:

— The first reason is that the quantities we will be using — taken from nu-
meric sequences — are taken from continuous-time signal sampling. What
is meant i1s that the numeric value of a signal, such as speech, or an
electroencephalogram reading, etc., is measured at regular intervals.

— The second reason is that for some developments, we will have to
use mathematical tools such as Fourier series or Fourier transforms of
continuous-time signals.

The objective is not an extensive display of the knowledge needed in the
field of deterministic signal processing. Many other books have already done
that quite well. We will merely give the main definitions and properties useful
to further developments. We will also take the opportunity to mention systems
in a somewhat restricted meaning, this word referring to what are called filters.

1.1 The concept of signal

A deterministic continuous-time signal is defined as a function of the real time
variable ¢:

Signal = function z(t),t € R

The space made up of these functions is completed by the Dirac pulse
distribution, or 6(t) function.
The following functions spaces are considered:

— Li(R) is the vector space of summable functions such that [ [2(t)|dt <
+00;
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— Li(a,b) is the vector space (vector sub-space of L1(R)) of functions such
that f; | (t)|dt < +o0;

— Ly(R) is the vector space of finite energy functions such that
Jg |2(t)]?dt < +o0;

— Ly(a,b) is the vector space (vector sub-space of L2(R)) of functions such
that f; |z (8))?dt < 4o00;

— the set of “finite power” functions characterized by:

lim —/ ()2 dt < +o0
T—+oo T' -T/2

L2(0,T) has the structure of what is called a Hilbert space structure with
respect to the scalar product fx(t)y(t)dt, a property that is often used for
decomposing functions, for example in the case of Fourier series.

In the course of our work, we will need to deal with a particular type of
signal, in sets that have already been defined, taken from R7T.

Definition 1.1 (Causal and anticausal signals) Signals (1) such that
z(t) = 0 for t < 0 are said to be causal. Signals x(t) such that x(t) = 0
fort >0 are said to be anticausal.

1.1.1 A few signals

We will often be using particular functions characteristic of typical behaviors.
Here are some important examples:

— the unit step function or Heaviside function is defined by:
u(t) = 1(t € (0, 4+o0[) (1.1)

Its value at the origin, ¢ = 0, 18 arbitrary. Most of the time, it is chosen
equal to 1/2. The unit step can be used to show causality: z(t) is causal

if 2(t) = x(t)u(t);
— the sign function is defined using the unit step by sign(¢) = 2u(t) — 1;
— the gate or rectangle function is defined by:

recty (1) = 1(t € (=T/2,T/2)) = u(t + T/2) —u(t — T/2)  (1.2)

It will be used to express the fact that a signal is observed over a finite
time horizon, with a duration of T. The phrases rectangular windowing
and rectangular truncation of x(t) are also used: zp(t) = z(t)rectr(t);
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— the pulse, or Dirac function, has the following properties which serve the
purpose of calculation rules:

L. fpd(t)dt =1 and [ o(t)x(t)dt = 2(0).

2. 2(t) = [ x(u)d(t—u)du = (x*J)(t) (is the convolution operation).

3. 2(1)o(t —to) = x(te)d(t — to).

4. (x(u) *d(u—10))(t) = (x %) (t — to) = x(t — to).

5. d(at) = 6(t)/]a| for a # 0.

6. Vi, fioo d(u)du = 1(t € (0,400)) = u(t) and therefore du(t)/dt =
d(t). This result makes it possible to define the derivative of a
function with a jump discontinuity at a time t;. Let () =

2o(t) + au(t — ty) where zg(¢) is assumed to be differentiable. We
have dx(t)/dt = dxo(t)/dt + ad(t — to);

— the sine function is defined by:
z(t) = zosin(Qot + ¢) = zosin(2nFpt + ¢) (1.3)

zg is the peak amplitude of the signal, £y its angular frequency (in radi-
ans/s), ¢ its phase at the origin, Fy = /27 its frequency (in Hz) and
T = 1/Fy its period;

— the complexr exponential function is defined by:

z(t) = woexp(2jmFot + job) (1.4)

— the sine cardinal is defined by sinc(t) = sin(nt)/mt. It is equal to 0
for all integers except t = 0 (hence its name). We have fR sinc(t)dt = 1,
Jg sinc(u)sinc(u—t)du = sinc(t) and the following orthogonality property,
for n € IN:

. . 1 with n=0
/]Rsmc(u)smc(u —n)du = {0 with n %0
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1.1.2 Spectral representation of signals

Fourier series

A periodic signal with a period of T'= 1/F; may be decomposed as a sum of

complex exponentials, a sum we will refer to as Fourier series

1.

+oo
z(t) F5. Z X e2imkFot
k=—o0 (15)
1

T
S L [ st

Fy = 1/T is called fundamental frequency, and its multiples are called
harmonic frequencies. A few comments should be made:

a signal with a bounded support on (¢1,%3) is also expandable in a Fourier
series, but the series converges to the periodized function outside of the
(t1,12) interval;

expression 1.5 indicates that Xj is the k-th component of z(¢) in the
orthonormal basis of the complex exponentials {7'~1/2e2mkFot}, o in
the Hilbert space L2(0,T);

ey (t) = ZQ/I:—M X5,e27ktT g the best length M approximation of z(t)
in the sense of the least squares;

when z(t) is continuous, xp(t) converges uniformly to z(¢) for any ¢,
when M — 4o00;

if () shows first order discontinuities, #3s(t) converges in quadratic

mean, but not uniformly, to z(¢). This is indicated by the symbol 2 n
the developed expression. At discontinuity points, s (¢) will converge to
the half-sum of the left and right limits of z(¢). Finally, 237(¢) can show
some non-evanescent oscillations in the neighborhoods of all discontinu-
ities. This phenomenon is referred to as the Gibbs phenomenon;

we have Parseval’s relation:

T

T EGIRTED RN D SR TR T VD
0 keZ Rirez

where §(f — kFy) refers to the Dirac distribution at point kFy. Because

the first member of 1.6 is by definition the signal’s power, the sequence

{]Xk|?} can be interpreted as the power distribution along the frequency

axis. It is also called power spectral density, or PSD.

IWe will only be using the complex exponential decomposition, since it easily leads to the
one with the sine and cosine functions.
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Fourier transform

The spectral contents X (f) of the function x(t) € Li1(R) N La(R) can be rep-
resented by an integral that uses complex exponentials, an integral we will call
Fourier transform:

X(f):/Rx(t)e_Zj”ftdt — x(t):/RX(f)ezﬂftdf (1.7)

|X(f)] is called spectrum of #(t). The Fourier transform’s main properties
are summarized in Appendix Al.
The convolution property 14.1 leads to Parseval’s formula:

/R (1) dt = /R X ()|2df (1.8)

Because the left member of 1.8 is, by definition, the signal’s energy, | X (f)|?

can be interpreted as the energy distribution along the frequency axis. It is
also called energy spectral density, or esd.
More generally, we have:

[ st = [ Xy (1.9)

Example 1.1 (Analytical signal)
Let 2(t) be a time-continuous real signal. The analytical signal associated with
x(t) is the signal z(¢) that has Z(f) = 2U(f)X(f) as its Fourier transform,
where X (f) is the Fourier transform of (¢) and U(f) is the unit step function
equal to 1if f > 0 and 0 if f < 0. U(0) is chosen equal to 1/2.

Using the properties of the continuous-time Fourier transform, show that
the real part of z(?) is equal to z(?), and determine its imaginary part called
the Hilbert transform of x(t).

HINT: let:
p(t) = Re(z(1)) = (2(1) + 27 (1)) /2
Using the Fourier transforms, we get:
P =2+ 27 (=MN/2=UNX) +U=NX(=])
Because z(t) is real, X(f) = X*(—f), and therefore, P(f) = X(f), which
means p(t) = x(t). As a conclusion, Re(z(t)) = ().
Likewise, let:
q(t) = Tm(z(t)) = (=() —=7(1))/2j
Using the Fourier transforms, we get:
Q) = (Z(f) =27 (=1)/2i = —jUNX() = U(=HX"(=F))
= —jU) =U=MNHX{)
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Because U(f)=U(—f) is the sign(f) function, Q(f) = —jsign(f)X(f). This
equation can be interpreted as filtering (see paragraph 1.2) with the complex
gain filter —jsign(f). Its gain is equal to 1, meaning that the Fourier transforms
of the output and input have the same modulus, |Q(f)| = | X (f)|.

As a conclusion, the analytical signal associated with the real signal x(¢) is
written:

2(t) = (1) + j(1)

where #(t) refers to the Hilbert transform of x(¢). n

1.2 The Concept of system

A system transforms the signal z(¢) and delivers a signal y(¢), the result of this
alteration. We will refer to this transformation as y(t) = 7[z(u),], and z(¢)
and y(¢) will be called the input and the output of the system respectively.

Filters
A filter with z(¢) as the input and y(¢) as the output is a system defined by:

y(t):/Rx(u)h(t—u)du:/ z(t —u)h(u)du (1.10)

R

The existence of the integral has to do with how the set A’ of considered
signals #(t) is chosen. Among the sets that have practical interest, two of them
play a fundamental role: the signals that have a Fourier transform and those
made up of a linear mix of complex exponentials.

Certain conditions have to be met:

— first, in the case of X sets that show some practical interest, such a system
is linear: Tlajx1(u) 4+ azea(u),t] = a1 T [x1(w), 1] + a2 T [x2(u), t];

— second, it is time-invariant: Tlax(u),t —to] = Tlax(u —tp),?]. Another
way of expressing 1t 1s to say that the output is independent of the time
origin.

Example 1.2 (Counterexample) The system defined by:

¢
y(t) = / z(u)du
0
is linear but is time-dependent.

HINT: the output corresponding to the signal z(t — #g):

g(t):/Otl‘(u—to)du:/t_tox(v)dv

—to
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1s different from:

t—to
y(t —to) = / z(u)du
0
which is the output at time ¢ — g when z(¢) is used as the input signal. [

Impulse response

The h(t) function found in 1.10 is called the filter’s impulse response. The
output y(t), convolution product of #(¢) and h(t), is denoted y(t) = (z+h)(¢).

A causal system is a system that depends only on the current and previous
inputs. This means that a filter is causal if 2(¢) = 0 for ¢ < 0.

Frequency response

Let us first consider the case of (¢) signals that have a Fourier transform X (f).
Using the convolution product’s property leads us to:

The H(f) function is called the filter’s frequency response or complex gain.

Let us now take a look at signals z(¢) that are a linear mix of complex
exponentials. Because of the linearity property, all we have to do is calculate
the output with z(¢) = exp(2jnFyt) as the input. We get:

y(t) = /]Rexp(Qjﬂ'Fo(t —u))h(u)du = H(Fy) exp(2jmFyt)

Therefore, the complex output signal H (Fy) exp(2jmFyt) corresponds to the
complex exponential exp(2jm Fyt). In this case, complex exponentials are called
the eigenfunctions of the filters (the eigenvalue beeing H(Fy)).

Stability

A system is said to be BIBO stable if for any Bounded Input the Output is
Bounded. Stability is an essential system property.
A filter 18 BIBO stable if and only if:

/R | () |du < +00
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1.3 Summary

The following table contains some definitions and properties that will be used

throughout the next lessons.

Continuous time

Discrete time

Fourier transform
X(f):/x(t)e_2”ftdt
R
x(t) — / X(f)e2”ftdf
R

Discrete time Fourier transform

X(f)= Z x(n)6_2”"f

nez

1/2
z(n) =

X(fre2 ™ af

—1/2

Linear filter (¢t € R)

(@xh)(t) & X(SHH(S)

BIBO stability @/ |h(t)]dt < +o0
R

Linear filter (n € Z)

(@ xh)(n) & X(HH(f)

BIBO stability < ) _ |h(n)| < +oo
nez

Fourier series

e 25wkt /T
X(k) = —/ (t)e 2 T gy
T Jo
l‘(t) — EX(k)e2]Trkt/T
kez

Discrete Fourier transform

N-1
X(k) — x(n)6—2]7'rkn/N
n=0
1 N-1
x(n) — N Z X(k)62]7'rnk/N
k=0

Bilateral Laplace transform

z-Transform

X(s) = [ aleta X() = 3 a(n)s
1]R C+4jc0 nez
_ st 1 —
z(t) = 57 S X(s)e™ds z(n) = 2]_7r FX(,z),z Ydz

Filter (t € R)
(xxh)(t) & X(s)H(s)

BIBO stability < imaginary axis C do-
main of convergence of H(s).

Filter (n € Z)
(zxh)(n) & X(2)H(z)

BIBO stability < unit circle C domain
of convergence of H(z).




Chapter 2

Discrete Time Signals and Sampling

Signal processing consists of handling data in order to extract information
considered relevant, or to modify them so as to give them useful properties:
extracting, for example, information on a plane’s speed or distance from a
RADAR signal, making an old and decayed sound recording clearer, synthesiz-
ing a sentence on an answering machine, transmitting information through a
communication channel, etc.

The processing is called digital if it deals with a discrete sequence of values
{@1,25...}. There are two types of scenarios: either the observation is already
a sequence of numbers, as is the case for example for economic data, either the
observed phenomenon is “continuous-time”, and the signal’s value z(t) must
then be measured at regular intervals.

This second scenario has tremendous practical applications. This is why an
entire paragraph of this chapter is devoted to the operation called sampling.

The acquisition chain is described in Figure 2.1.

(Sampling
Period)

TY l
x(1) Continuous-Time Discrete-Time
Signal @ Signal (Sequence)
——>| Measure [ >
{x,(m)=x(nT,)}

Supply Voltage T +V, T—Vo
(References)

Figure 2.1 — Digital signal acquisition

The essential part of the acquisition device is usually the analog-to-digital
converter, or ADC| which samples the value of the input voltage at regular
intervals — every T seconds — and provides a coded representation at the output.

To be absolutely correct, this coded value 1s not exactly equal to the value
of (nTs). However, in the course of this chapter, we will assume that z;(n) =
z(nTy). The sequence of these numerical values will be referred to as the digital
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signal, or more plainly as the signal.

T, is called the sampling period and Fs = 1/T; the sampling frequency. We
will discuss later the problems caused by the gap between the actual value and
the coded value, which is called quantization noise.

Obviously, the sampling frequency must be high enough “in order not to
lose too much information” — a concept we will discuss later on — from the orig-
inal signal, and there is a connection between this frequency and the sampled
signal’s “frequential content”. Anybody who conducts experiments knows this
“graph plotting principle”: when the signal’s value changes quickly (presence
of high frequencies), “many” points have to be plotted (it would actually be
preferable to use the phrase high point density), whereas when the signal’s value
changes slowly (presence of low frequencies), less points need to be plotted.

To sum up, the signal sampling must be done in such a way that the nu-
merical sequence {z;(n)} alone is enough to reconstruct the continuous-time
signal. The sampling theorem specifies the conditions that need to be met for
perfect reconstruction to be possible.

2.1 The sampling theorem

Let 2(t) be a continuous signal, with X (F') its Fourier transform, which will
also be called the spectrum. The sample sequence measured at the frequency
Fy = 1/Ty is denoted by zs(n) = z(nT}).

Definition 2.1 When X(F) # 0 for ' € (B1,B2) and X(F) = 0 ev-
erywhere else, x(t) is said to be (By, Ba) band-limited. If x(t) is real, its
Fourier transform has a property called hermitian symmetry, meaning that
X(F) = X*(=F), and the frequency band’s expression is (—B,+B). A com-
mon misuse of language consists of referring to the signal as a B-band signal.

b x(F)

F

>

-B  Signal +B
band

Figure 2.2 — (—B,+B) Band-limited real signal

2.1.1 Perfect reconstruction

Our goal is to reconstruct z(t), at every time ¢, using the sampling sequence
zs(n) = x(nTy), while imposing a “reconstruction scheme” defined by the ex-
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pression (2.1):

+oo

y(t) = > a(nTy)h(t —nTy) (2.1)

n=—oQ

where h(t) is called a reconstruction function. Notice that 2.1 is linear with
respect to z(nT;). In order to reach this objective, two questions have to be
answered:

1. TIs there a class of signals z(¢) large enough for y(t) to be identical to z(¢)?
2. If that is the case, what is the expression of h(t)?

The answers to these questions are provided by the sampling theorem 2.1.

Theorem 2.1 (Sampling theorem)
Let x(t) be a (By, Ba) band-limited signal, real or complex, and let {x(nT;)} be
its sample sequence, then there are two possible cases:

1. If Fs = 1/Ts is such that Fy > By — By, then z(t) can be perfectly
reconstructed from its samples x(nTy) using the expression:

+oo
z(t) = > (i), b, (t —nl)) (2.2)

n=—oQ

where the F'T" of the reconstruction function h(p, p,)(t) is:

Hip, ) (F) = Fi L(F € (B1, B2)) (2.3)

2. If Fs = 1/T; < By — By, perfect reconstruction turns out to be impossible
because of the “spectrum aliasing” phenomenon.

The proof uses the Poisson summation formula which gives the relation
between X (F) and the values of #(t) at sampling times nT;, and makes it
possible to determine the expression of the spectrum of the signal y(t) defined
by equation 2.1.

Lemma 2.1 (Poisson formula) Let x(t) be a signal, and X(F) its Fourier
transform. Then for any T:

1 +oo +oo .
T > X(F —kF,) = n_z_:oo 2(nTy) exp(—2jmnFT) (2.4)

where the left member is assumed to be a continuous function of F.
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HINT: the left member of equation 2.4 will be written o(F). By construction,
o(F) is periodic with period Fy = 1/T;. Therefore, o(F) can be expanded in a

Fourier series that can be expressed as o(F) oL ;I;Zo_oo ene” 4™/ where:
IR ,
R _/ O_(F)eZJﬂ'nF/Fde
Fs 0
F, +oo
_ 2janFTs
= e X(F —kFy)| dF
+o0 P,
= > / 2™ ETe X(F — |F,)dF
k=—oc 0
+o0 —kF.+F, oo
— Z / eZ]ﬂ'nuTsX(u)du — / eZ]ﬂ'kuTsX(u)du
k=—o00 —kF; -0

where we have assumed that u = F' — kF in order to go from the first-to-last
line to the last line. By referring to property 1.7, which gives us the inverse
Fourier transform, we infer that ¢, = #(n7}), thus demonstrating formula 2.4.
n

We did not go into the detail of all the hypotheses necessary to justify the
previous calculations. We will assume that these calculations are valid. Other
books written on the Fourier transform can be looked up for a more rigorous
approach.

We will use the following definition for the discrete-time Fourier transform.
We will see another completely equivalent expression of it (definition 2.4, ex-
pression 2.21), but more frequently used in the case of numerical sequences.

Definition 2.2 (DTFT) The sum S 5 x(nT,) exp(—2janFT,) is called

n=—oQ

the Discrete-Time Fourier Transform (DTFT) of the sequence {x(nTy)}.

We now go back to the sampling theorem. By using the fact that the Fourier
transform of h(t—nT}) is H(F)e~ 2™ the Fourier transform of y(t), defined
by 2.1, can be written:

400 +oo

Y(F) = Z ¢(nTy) x H(F)e= %™ T = [ (F) Z w(nTy)e=2mnFTs
= @ f X(F — kF,) (2.5)

Therefore, if Fy > Ba — By, the different contributions X(F — kF;) do
not overlap, and by simply assuming Hp, p.)(F) = Ts1(F € (B1, Ba)), Y(F)
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1
T, X(F)
F
‘ >
n=too
rectyp(F) T ,,;DCX(F_”FS)
; ; ,\ : i Transition band
N\ -
AN % |
O\ N/ F
1 ; — : >
-F, B Bl F,
~F.2 Fi2

Figure 2.3 — Real signal reconstruction

coincides exactly with X (F'). Figure 2.3 illustrates this case for a real signal.
In this case, By = —B and Bs = B.

Except if specified otherwise, we will assume from now on that x(t) is real.
The sufficient reconstruction condition can be written as follows:

F,> 2B (2.6)

The limit frequency 2B 1s called the Nyquist frequency. Still in the same
case, the Fourier transform of a possible reconstruction function is Hp(F) =
Tsrectop(F), and therefore:

sin (27 Bt)

T (2.7)

hB(t) =

It should be noted that the filter Hp(F) = Tirectap(F) is not the only
possible filter. If Fs is assumed to be strictly greater than 2B, then we can
choose a filter with larger transitions bands (see Figure 2.3), making it easier
to design.

When there is no possible doubt, we will not indicate the dependence on
B, and simply write h(t) instead of hg(t).

Anti-aliasing filter

The reconstruction formula 2.1, is, according to the Poisson’s formula 2.4, as-
sociated with the periodization of the spectrum X (F) with the period Fy. Tt
follows that, for F; < 2B, the different non-zero parts of the spectrum over-
lap, making perfect reconstruction impossible. The overlapping phenomenon
1s called spectrum aliasing.

Figure 2.4 illustrates the spectrum aliasing phenomenon for a real signal
whose frequential content is of the “low-pass” type, implicitly meaning that it
“fills up” the band (—F,/2,+F;/2).
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Except in some particular cases (see example 2.1 and modulations), we will
assume that spectrum signals are of this type, or that they can be modified to
fit this description.

1
iX(F)

> F

n=too

rectp‘(F) A — z X(F—”Fx)

\ T n=—e

N 4
. D
Qe %

-F, FJ2  F,

Figure 2.4 — The aliasing phenomenon

For a real signal, showing aliasing means that the frequencies beyond the
frequency F;/2 can be “brought back” to the (—F;/2,4+F,/2) band.
In practice, the following cases will occur:

1. The sampling frequency is imposed: if, knowing how the data is used, the
aliasing phenomenon is considered to “cause damage”, the appropriate
procedure for sampling a real signal requires the use of low-pass filter-
ing called anti-aliasing filtering which eliminates the components of the
frequencies higher than Fy/2.

2. The sampling frequency is not imposed: in this case, it can be chosen
high enough so that the aliased components of the signal do not alter
the expected results. If this is not possible, F; 1s set, and the situation
becomes the same as in the first case.

Speech signals are a good example. If they are sampled at 8,000 Hz, an ex-
tremely common value, high enough to make the person speaking recognizable
and understandable, and if no anti-aliasing filtering is done, the reconstructed
signal contains a “hissing” noise. This alone justifies the use of an anti-aliasing
filter. The irretrievable loss of high frequency components is actually better
than the presence of aliasing.

Figure 2.5 illustrates the case of a “low-pass”, prefiltered, real signal to
prevent aliasing.

In general, it is important to understand that anti-aliasing filtering must
be done in the band that is considered essential (useful band) to the unaliased
signal reconstruction. The low-pass filtering mentioned here corresponds to a
low-pass sampled signal.

The following general rule can be stated:
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Figure 2.5 — Absence of aliasing after [—Bo, +Bo] filtering [—Bo, + Bo]

The sampling operation of a signal at the frequency Iy must be preceded
by an anti-aliasing filtering with a gain equal to 1 and with a width of F
i the useful band.

The following example illustrates the case of a real band-pass signal, there-
fore (B = [— Fmax, — Pmin] Y [Piin, Fmax]) band-limited. If this was not the case,
an anti-aliasing filtering in the useful band B would be necessary.

Example 2.1 (Sampling of a narrowband signal)

Let 2(t) be a (Fumin, Fmax) “band-limited” real signal. If (Fnax + Fmin)/2 >
(FPrax — Piin ), the signal is called a narrowband signal. Determine the sampling
frequencies that allow the perfect reconstruction of z(t).

HINT: the application of formula 2.6 leads to Fs > 2F .. We will now
show that it is still possible to conduct a slower sampling. In order to do this, let

us consider the Fourier transform of the signal y(¢) = :io_oo z(nTs)h(t—nTy)
given by expression 2.5:
H(F)
Y (F) = T k_z_: X(F — kF,)

This leads us to the conclusion that, in order for X (F) to coincide with
Y (F), the two following conditions have to be met:

1. the periodized function Y X (F — kF) shows no aliasing (Figure 2.6);

2. the function H(F) = T; for Fupin < |F| < Fmax and 0 otherwise (see
Figure 2.6).
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Figure 2.6 — Narrowband signal (Fuin, Frax)

The non-aliasing condition (1) is met for frequencies for which both the
following inequalities are true:

sz_Fmin<Fmin and (k+1)Fs_Fmax>Fmax
which is equivalent to the condition:

2Fmax < F. < 2Fmin
k41 : k

where k is an integer such that & < ky where kg i1s the integer part of
Fin/(Pmax — Fmin). For k = 0, We encounter once again the Nyquist fre-
quency 2Fpax, but if kg > 0, we get possible sampling frequencies that are
smaller than 2F,,x. Condition (2) leads to the following reconstruction func-
tion:

(2.8)

sin(rAFt)

h(t) =T cos(2m Fyt)

with AF = Fliax — Fiin and Fy = (Pnax + Fmin)/2. n

Causal approximation of the reconstruction formula

In order to calculate z(¢) at time ¢, expression 2.2 requires that all the future
samples beyond ¢ (absence of causality) and up until infinity be known. How-
ever, because h(t) decreases like 1/t, it is possible to approximate (¢) by using
a finite number of samples before and after t. A delay 1s therefore necessary
for practical reconstruction. For ¢ € (mTy, (m+ 1)T;) and a high enough value
of L, this can be written as follows:
m+L
w(t)~ Y w(kTo)h(t - kTy) (2.9)
k=m-L
Of course, this expression only allows the calculation of #(t), in the interval
(mTy, (m+ 1)Ty), if «((m + L)T) is known. Reconstruction can therefore be
accomplished by tolerating a delay LTj.

We will see in Chapter 4 an implementation based on the insertion of zeros
followed by a filtering. Polynomial interpolations are other methods which can

be used.
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Spectrum aliasing and ambiguity

Let us consider the continuous-time sine signal:
z(t) = cos(2w Fyt) with Fy = 350 Hz (2.10)

sampled at a frequency of Fy = 800 Hz. The sample sequence can be written
as follows:

zs(n) = x(n/Fs) = cos(2m fon) with fo = Fo/F;s

Let us also consider the continuous-time sine signal of frequency F} = Fys —
Foi

y(t) = cos(2nF1t) with Fy = 1,150 Hz
sampled at the same frequency Fs = 800 Hz. The sample sequence is:
ys(n) = y(n/Fy) = cos(2m fin) with f = F1/F;
Using Il = Iy + Fy, we get fi = fo 4+ 1. Replacing in y(n) leads us to:
yo(n) = cos(2r(fo + 1)n) = cos(2mfun) = z.(n)

This result shows that the use of samples taken at a frequency of F; alone
is not enough to be able to tell signal #(t) from y(¢). Therefore reconstruction
will lead to the same signals, whether it is done from samples z;(n) or ys(n).
In the case of the signal z(¢), the result is accurate, but it is false for y(t): we
started with a frequency of F; = 1,150 Hz and ended up with a signal frequency
of Fy = 350 Hz.

For a given signal, for any integer k, it is not possible to distinguish Fj
from Fy = Fy+ kFs, k € ZintSet, which is called the tmage frequency of Fy
relative to Fy. This is the ambiguity due to the spectrum aliasing phenomenon
(or generally speaking to the Poisson formula).

Example 2.2 (Ambiguity)

In the previous example, we now consider F; = 450 Hz. Write a program
illustrating this case. The continuous-time signal will be visualized over a
period of 5 ms, as well as the samples z;(n) and y,(n).

HINT: type the program:

%===== ALTASEXPLE.M

Fs=800; Te=1/Fs; F0=350; F1=Fs-F0;
tmax=.005; mtm=[0:tmax/100:tmax];
xt=cos (2*pi*F0*mtm) ;

yt=cos (2*pi*F1l*mtm) ;

plot (mtm, [xt’ yt’]); grid; hold on;
nimax=floor (tmax/Te) ;
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mtn=[0:nimax]*Te; % Sampling times
xen0=cos (2#%pi*F0*mtm) ;

plot (mtm,xen0,’07);

xenl=cos (2#%pi*F1l*mtm) ;
plot(mtm,xenl,’x’); hold off

O Samples from x(7) X Samples from y(7)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

fffffffffffffffffffffffffffffffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 ms
Figure 2.7 — An illustration of aliasing

We obtain the same result y;(n) = ;(n). In the case of z(t) = sin(2n Fyt)
we obtain y;(n) = —u,(n). n

Listen to the spectrum aliasing

We will now perform two simple experiments that will allow us to “hear” the
spectrum aliasing phenomenon.

The first one simply consists of recording speech at a frequency of 8 kHz,
then to take one out of every two samples, and to listen to the signal obtained
at a frequency of 4 kHz. Type the following program:

%===== SPEECHALIAS.M

%===== .mat file containing the speech signal
load speechsig

Fs=8000; N=length(x); xr=x(1:2:N);

goundsc (x,Fs) ; pause; soundsc(xr,Fs/2)

“Hissing” noises can be heard in the restored signal. We will come back to
this example in exercise 4.15 and give the proper method for undersampling a
signal while avoiding aliasing.

In the second example, we create a digital signal from the sampling of a
signal defined by its continuous-time expression. Instead of working the way
the sampling theorem tells us to, we are going to cause spectrum aliasing.
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Consider the continuous-time signal given by 2.11:
z(t) = Acos(O(t)) witht € R (2.11)
The time dependent function defined by:

1 do

(2.12)
is called the instantaneous frequency. If x(t) is a Fy frequency sine signal, the
instantaneous frequency is equal to Fyy. In general, #(t) is said to be frequency
modulated. Unfortunately, there is no simple expression for the spectrum of
z(t). However we can suspect that, for the most part, the energy can be
located in the frequency band scanned by the function Fj(t).

Consider, for example, the case of an instantaneous frequency that varies
linearly with time, which can be written:

Fl(t) = Fy+ Xt

where A is expressed in Hz/s. By observing the signal over long enough periods
of time, between instants 0 and 7', the frequency should vary linearly between
Fy and Fy = Fy+ AT. We will now determine the expression of z(t). By
integrating F;(t), and by assuming that F;(0) = 0, we get:

O(t) = 2m Fyt + mAt?

The following program creates the samples taken at a frequency of F, =
8,000 Hz of the signal z(¢), for a period of T'= 2 s, with Fy = 1,000 Hz and
for a value of A that we will change, so as to sweep frequency ranges of varying
widths:

%===== MODULFREQ.M

lambda=1000; % Parameter (1000 ou 2000)
Fg=8000; % Sampling Freq.

F0=1000; % Initialization Freq.
T=2; % Observation time

it=(0:Fs*T-1) /Fs; % Time Vector
theta=2%pi*FO*it+pi*lambda* (it .~ 2);
x=cos (theta) ;

soundsc (x,Fs) % Result

The soundsc(x,Fe) function reconstructs a continuous-time signal from
samples x at a sampling frequency Fs, and sends it to the calculator’s audio
output.

First listen to the signal obtained for A = 1,000 Hz/s, as it has been defined
in the example. You can hear a sound going from a low-pitched frequency to
a high-pitched frequency, because the instantaneous frequency varies linearly

from Fy = 1,000 Hz to F; = 3,000 Hz.
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Now listen to a signal for A = 2,000 Hz/s. This time, a low-pitched sound
can be heard, “rising” to a higher frequency, and finally going back down
to a low frequency. This result is rather unexpected, since the instantaneous
frequency varies linearly from Fy = 1,000 Hz to F; = 5,000 Hz. This is simply
the consequence of the spectrum aliasing phenomenon. Because the sampling
frequency is equal to 8,000 Hz, the frequencies beyond F,/2 = 4,000 Hz are
aliased in the (0 Hz - 4,000 Hz) band. This means that, during reconstruction
(see paragraph 2.1.2), when the instantaneous frequency varies between 4,000
Hz and 5,000 Hz, the soundsc(x,Fe) function sees the signal as a frequency
varying from 4,000 Hz to 3,000 Hz.

Interpolation and visual impressions

As we are now going to see, a sampling frequency equal to or slightly greater
than the Nyquist frequency leads to a continuous-time signal that cannot be
clearly identified simply by looking at it. This means that the eye, or more
precisely the brain, is a rather poor interpolator.

To observe this effect, consider a sine function with a frequency of 80 Hz
and a first sampling frequency of Fs; = 200 samples per second. This sampling
frequency 1s greater than the Nyquist frequency, equal only to 160 Hz, and
therefore is high enough to reconstruct the sine function. Now consider the
same signal sampled at a frequency of Fss = 1,500 samples per second. The
following program creates and plots the sequences of values corresponding to
these two sampling frequencies, over a period of 60ms:

%===== SINUS80.M

£0=80; % Sinus Freq.
obsdur=0.06; % Observation Time
Fs1=200; Fs2=1500; % Sampling Freq.

ni=round(obsdur*Fs1); n2=round (obsdur*Fs?2);
tps1=[0:n1-1]1/Fs1; tps2=[0:n2-1]/Fs2;

£1=3*%sin (2*pixfO*tpsl); s2=3*sin(2*pi*fO*tps2);
subplot (211); plot(tpsl,sl,’x’); grid

subplot (212); plot(tps2,s2,’x’); grid

The resulting plot is shown on Figure 2.8.

As you can see, the continuous-time sine function is not recognizable from
the top figure, corresponding to the 200 Hz sampling. On the other hand, the
bottom figure, corresponding to the 1,500 Hz sampling, gives a very good visual
impression of a sine function.

It should be pointed out that if the sampling frequency is chosen to be much
greater than the number of pixels on the screen, the dots on the graph are dis-
played as an almost “continuous-time” trajectory. An interpolation function
can then be used to build the trajectory. In Chapter 5, we will create an in-
terpolation program (exercise 4.14) that calculates (R — 1) intermediate points
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.06s

Figure 2.8 — Drawing of the 80 Hz sine function, sampled at a frequency of 200 Hz
(top graph) and at a frequency of 1,500 Hz (bottom graph)

regularly spaced out between each point of a sequence. R is called the interpola-
tion order. In the following exercises, the function used to plot continuous-time
signals may be used, simply by imposing R > 1.

Exercise 2.1 (An illustration of the sampling theorem)
Consider the function #(t) = sin(27 Fyt), sampled at a frequency of Fj.

1. What signal results from perfect reconstruction for Fy = 200 Hz and
Fy =500 Hz?

2. A 200 Hz sine function is sampled at a frequency of Fy = 250 Hz. What
signal is obtained by using the ideal formula for perfect reconstruction?

3. Write a program:

— displaying a 200 Hz sine function,
— displaying 10 of its samples taken at the frequency Fj,

— displaying the reconstructed signal (expression 2.2). The reconstruc-
tion will be performed using the filter function in the following
way:

xti = filter(hn,1,xtr)

where hn is the sample sequence h(nTy) of h(t) (expression 2.7) and
xtr the sample sequence of the sine function completed with zeros,

— and checking the accuracy of the results for questions 1 and 2.
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2.1.2 Digital-to-analog conversion

Reconstructing a continuous-time analog signal from a numerical sequence is
done by using a Digital-to-Analog Converter, or DAC. The DAC blocks the
value of #(nTs) during the time interval (nT, (n+1)T;) where Ty = 1/F;. The
converter is called a Zero-Order Hold (ZOH).

zq(t), the ZOH’s output signal, is shaped like a “staircase”. Tts expression
is:

wo(t) = w(nT)ho(t = nTy) = a(nT) (L € (nTy, 0T, + T,))

n n

Compared to the original signal #(t), the signal z¢(¢) has some of its power
in high frequencies due to the presence of steep transitions. The frequential
study (figure 2.9) clearly shows this behavior: the Poisson formula 2.4 gives us
the following expression for the Fourier transform of zy(t):

+oo
Xo(F) = Ho(F) Y X(F—n/Ty)
with:
in(rFT,) _. . .
Hy(F) = 7811171(_;@ )e_”FTS = 81nc(FTs)e_”FTS
Side lobes
Zero-Order Hold X(F
1 ero rer\ou | / (‘)
08 |-
0.6

I
| |

'
'

. N ‘ ‘ : ‘ :
-50 -40 -30 -20 -10-40 4 10 20 30 40 kHz

-50 —40 -30 20 -10-40 4 10 20 30 40 kHz
Figure 2.9 — Spectrum modulus at the ZOH’s output

The shape of |Xo(F)| shows two kinds of distortion when comparing the
original signal z(t) with the reconstructed signal zq(t):

1. The first one is due to the presence of the term [sinc(F'T;)| which deforms
the original spectrum in the band (—F,/2, F/2).
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2. The second one has to do with the spectrum’s periodization and the
presence of side lobes for the function [sinc(f7Ts)| beyond F/2, and par-
ticularly in the band (F;/2, F;) corresponding to the first side lobe.

For example, in the case of an “audio application” sampled at a frequency
of Fy = 8,000 Hz, these components appear between 4,000 Hz and 8,000
Hz and are perfectly audible. One possible solution is to apply a low-pass
filter to the ZOH’s output.

In general, the greater the sampling frequency (compared to the band of the
signal #(¢)), the weaker these distortions will be. This is why for some devices,
the ZOH 1s preceded by an interpolation operation. This processing technique
is explained on page 154.

2.2 Plotting a signal as a function of time

The sampling theorem makes it possible to go from a continuous-time signal
to a sequence of values obtained by using a filter with a gain equal to 1 in the
band (—Fs/2, Fs/2), followed by a sampling procedure at a frequency of Fj.
From now on, and except if specified otherwise, we will only be considering
discrete-time signals, that is to say sequences of values, that we will study
plotted as functions of time and frequency. These two kinds of plotting, which
are equivalent by definition, are nevertheless both useful when interpreting the
phenomena we are dealing with.

Digital signals

The first model, called the temporal model, for a digital signal, is made up of
the values of its samples. As is the case for continuous-time, the support of
these sequences can be limited to INT.

Definition 2.3 (Causal and anticausal signals) The causal signals x(n)
are such that x(n) = 0 for n < 0. If all the elements of the sequence are
equal to zero for n > 0, the sequence is said to be anticausal.

In the same way, some “basic” signals have to be considered to come up
with an ideal model for certain of the observed signals. This is the case for
example for a sine voltage or for very short pulses used to characterize the
behaviour of certain “systems”. Here is an (incomplete) list of some of these
signals:

— The unit pulse defined by:

(5(71):{ 1 forn=0 (2.13)

0 otherwise
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— The unit step defined by:

u(n):{ 1 forn>0 (2.14)

0 otherwise

— The sign function defined by:

. _ |41 for n>0
sign(n) = 2u(n) — 1 = {_1 for n<0 (2.15)

The gate function or rectangle function defined, for N > 0, by:

recty (n) = u(n) — u(n — N) = { b forn €10 N1 g 4
— The sine function defined by:

z(n) = wosin(27 fon + @) (2.17)
— The complex exponential defined by:

z(n) = xgexp(2jmfon) (2.18)
— The truncated sine function defined by:

z(n) = zosin(2w fon + ¢) x recty(n) (2.19)
— The truncated complexr exrponential defined by:

z(n) = xoexp(2jmfon) X recty(n) (2.20)

A discrete-time signal will be referred to as either the set {z(n)} of its
values, or by its generic element z(n) or z,, depending on the context.

Example 2.3 (Basic signals)
Write a program designed to create and plot basic signals.

HINT: the program basicfct.m plots a few basic signals, which are shown in
Figure 2.10.

%===== BASICFCT.M

N=20; mtime=[0:N-1];

impuls=eye(1,N); % Unit Pulse
untstep=ones (1,0); % Unit Step

£0=.1; fsin=gin(2*pi*fO*mtime); % Sinusoid
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Figure 2.10 — Basic functions
P=3; tps2=[-N:N]; % 2P+1 sample rect.

porteP=[zeros(1,N-P) ones(1,2*P+1) zeros(1,N-P)];
subplot (221) ; plot (mtime,impuls,’x’); grid
subplot (222); plot(mtime,untstep,’x’); grid
subplot (223) ; plot (mtime,fsin,’x’); grid

subplot (224) ; plot (tps2,porteP,’x’); grid

2.3 Spectral representation

The main goal in the spectral study of a signal is to find out how to decompose
this signal as a sum of sines. To evaluate the importance of the cos(2m fyn)
component with the frequency fy in the (n) signal, the first idea would be to
calculate:

Q(fo) = Z z(n) cos(2m fon)

nez

which can be interpreted as a quantity that measures how similar the sequences
{x(n)} and {cos(2mfyn)} are. It is exactly what the Discrete-Time Fourier
Transform (definition 2.2) does, as well, in fact, as the Fourier transform for
continuous-time functions.

2.3.1 Discrete-time Fourier transform (DTFT)

The sampling period T appears in the DTFT’s expression in definition 2.4.
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Definition 2.4 (DTFT) The discrete-time Fourier transform of a sequence
{x(n)} is the function of the real variable f, periodic with period 1, defined by:

+ oo

X(f)= Y x(n)exp(-2jmnf) (2.21)

n=—oQ

As you can see, we need only impose FT, = f and replace z(nT}) by z(n)
to go from 2.4 to 2.21%.

Definition 2.4 calls for a few comments: it can be proven (see ref. [27])
that if {x(n)} is summable (3_,, |z(n)| < +00), the series (2.21) converges uni-
formly to a continuous function X (f). However, if {z(n)} is square summable
(>, lz(n)|* < +00) without having a summable modulus, then the series con-
verges in quadratic mean. There can be no uniform convergence.

Because of its periodicity, the DTFT is plotted on an interval of length 1,
most often the intervals (—1/2,41/2) or (0, 1).

Example 2.4 (DTFT of the rectangle function)
Let recty(n) be the signal given by 2.16. Tts DTFT is:

N-1
X(f) = D e =14 eI (2.22)
n=0
N for f =0 mod 1
= 1 — e~ 207Nf . sin(Nrf)
e Al O\ b O i S VA 0 mod 1
1 — e-2inf ¢ sin(mf) or /7 0mo

The e=9™(V=17 ig of modulus 1, and only has influence on the phase of

X (f) (Figure 2.11).

9 / Mainlobes| L[\ | IN=I10

1

***************************************
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0 02 04 06 08 1 1.2 1.4 1.6 1.8

Figure 2.11 — Modulus of the DTFT of the rectangle signal for N = 10

L X (F), which refers to the FT in 2.4 must not be confused with X (f), the DTFT.
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|sin(N7f)/sin(rf)| shows one main lobe, with a width of 2/N and side
lobes with a width 1/N. We will often deal with this signal again, particularly
when observing a signal assumed to be of infinite duration, over a finite number
N of values, since it amounts to multiplying it by a rectangle with a duration

of N.

Starting off from X (f), how can we go back to #(n)? One possible answer
is given in the following result.

Theorem 2.2 (Inverse DTFT) If X(f) is a periodic function with period
1, and if fo | X (f)|?df < +oo, then X(f) = >, x(n)e=2™/  where the x(n)

coeﬁ?czents are given by:

1/2 0
z(n) = _1/2X(f)e gt qf (2.23)

Relation between the FT and the DTFT

First let us once again consider the reconstruction formula of a real signal z(¢)
from its samples z;(n):

sin (27 Bt)

sz Jhu(t—nl) with hp(t)= —
wF

(2.24)

F; refers to the sampling frequency and B to the bandwidth of the signal
z(t). We will assume Fs > 2B. The frequency, expressed in Hz, will be denoted
by F', the normalized frequency (no dimension) by f and the sampling period
by Ty = 1/F;.

In practice it is often needed to find the Fourier transform using the DTFT
of z4(n), the frequency F; and the band B. We get:

+oo
X(F)=1(F €(-B,B)) > X(F-kF,)
k=—o00
The Poisson formula 2.4 leads us to:

+ oo
Tsﬂ(F € (—B,B)) Z xs(n)eZJWnF/Fs

n=—oQ

X(F)

= T, (Fe(-B,B)X;(F/Fs)

where X (f) refers to the DTFT of z,(n). What should be remembered is that
the FT of #(t) is obtained:

— by calculating the DTFT of z,(n);
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— by dividing the amplitude by Fj;

— by multiplying the frequency axis by Fj;

— and by limiting the frequency band to the interval (—B, B).
Conversely, the DTFT of z,(n) is obtained:

— by calculating the FT of #(¢);

— by multiplying the amplitude by Fj;

by dividing the frequency axis by Fj;

and by periodizing with period 1.

+oo
X(f)=F Y X((F-h)F) (2.25)

k=—o0

The value of B is often omitted, and implicitly B = F,/2. For example,
the MATLAB® function soundsc(x,Fs), produces the signal in the band
(—=Fs/2, Fs/2) using the sequence x and the value Fs for the sampling frequency.

The discrete-time Fourier transform’s main properties are summarized in
Appendix A2.

As in the continuous-time case, we have the Parseval’s formula:

+oo 1/2
z(n)]* = X(H)*d 2.26
3 ker= [ ixorg (2.26)

and the conservation of the dot product:

oo 1/2
2 el )= [ XY (2.27)

Because the left member of 2.26 is, by definition, the signal’s energy, | X (f)|?
represents the energy’s distribution along the frequency axis. It is therefore
called the energy spectral density (esd), or spectrum. In the literature, this
last word is associated with the function | X (f)]. If X(f) is included, this adds
up to three definitions for the same word. But in practice, this is not important,
as the context is often enough to clear up any ambiguity. It should be pointed
out that the two expressions |X(f)| and |X(f)|? become proportional if the
decibel scale is used, by imposing:

Sap (f) = 201ogo | X ()] (2.28)
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Example 2.5 (Inverse DTFT of a rectangle)
Let X(f) = 1(f € (=b,b)) be a periodic function with period 1 and 0 < b <
1/2:

1. Determine the sequence {x(n)} that has X(f) as its DTFT.

2. Using this result, find the sequence y(n) that has Y (f) = (X(f — fo) +
X(f+ fo))/2 as its DTFT.

HINT:
1. By using relation 2.23, we get:

b .
l‘(n) = / erﬂ'nfdf _ 1 [ezjﬂ'nf]b_b — M

b 2jmn ™
{x(n)} is a non-causal sequence consisting of an infinity of terms.
2. Because of the linearity and modulation properties:

erﬂ'nfD +e—2j7rnfg
y(n) = z(n) 5 = z(n) cos(2m fon)

The sequence y(n) also has an infinity of non-zero values. [

Exercise 2.2 (Time domain hermitian symmetry)
Consider a signal z(n) such that z(n) = #*(—n). Notice that z(0) is real.

1. Show that its DTFT X (f) is real.

2. Determine the expression of the DTFT Y (f) of the sequence defined by:

z(n) for n>0
y(n) =< =(0)/2 for n=20
0 otherwise

Using Y*(f), find the relation between X (f) and Y (f).

2.3.2 Discrete Fourier transform (DFT)
Definition of the discrete Fourier transform

A computer calculation of the DTFT, based on the values of the samples z(n),
imposes an infinite workload, because the sequence is made up of an infinity of
terms, and because the frequency f varies continuously on the interval (0, 1).
This is why, digitally speaking, the DTFT does not stand a chance against the
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discrete Fourter transform, or DFT. The DFT calculation is limited to a finite
number of values of n, and a finite number of values of f.

The digital use of the DFT has acquired an enormous and undisputed prac-
tical importance with the discovery of a fast calculation method known as the
fast Fourier transform, or FFT. The algorithm for the FFT can be found in
paragraph 2.4.

Consider the finite sequence {z(0),
its DTFT is expressed as follows:

.., (P —1)}. Using definition 2.21,

P-1
— Z x(n)e—Zywnf
n=0

where f € (0,1). In order to obtain the values of X(f) using a calculator,
only a finite number N of values for f are taken. The first idea that comes to

mind is to take N values, uniformly spaced-out between 0 and 1, meaning that
f=k/N with k € {0, ..., N — 1}. This gives us the N values:

X(k/N) = Z Je~2mnk/N (2.29)

In this expression, P and N play two very different roles: N is the number
of points used to calculate the DTFT, and P is the number of observed points
of the temporal sequence. As we will see later on, N influences the precision
of the plotting of X (f), whereas P is related to what is called the frequency
resolution.

In practice, P and N are chosen so that N > P. We then impose:

. v | xn) forne{0,...,P—1}
x(n)_{ O( ) forne{P,...,N—1}

Obviously:
k’/N Z —2]7rnk/N — Z i,(n)e—Zyﬂ'nk/N
n=0 n=0

Because the sequence x(n) is completed with (N — P) zeros, an operation
called zero-padding, in the end we have as many points for the sequence #(n)
as we do for X (k/N). Choosing to take as many points for both the temporal
sequence and the frequential sequence does not restrict in any way the concepts
we are trying to explain. This leads to the definition of the discrete Fourier
transform.
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Definition 2.5 Let {x(n)} a N-length sequence. Its discrete Fourier trans-
form or DFT s defined by:

N-1

X(k)y= > z(m)WF,  ke(0,1,...N-1) (2.30)
n=0

where Wy = e~ %™IN (2.31)

1s an N -th root of unity, that is to say such that WJJ\\,T = 1. The wnverse formula,
leading from the sequence {X(k)} to the sequence {x(n)}, is:

z(n) = % Z_: X (k)yWym* (2.32)

To show 2.32, you need to calculate its second member by replacing X (k)
by 2.30 and using the following equality:

0 otherwise

N-1
1 , =
g(n) = = Z p2imkn/N _ { 1 forn=0mod N (2.33)
k=0

With MATLAB®, the ££t function uses the fast calculation algorithm for
the DFT. This is the proper syntax:

xf=fft(xt,N)

The resulting N-length sequence xf is the DFT of the P-length (N > P)
sequence xt (2.29).

If parameter N is missing, it is chosen equal to P. Although the function £ft
allows the calculation of the values of the DFT for any number N of frequency
points, N should be taken equal to a power of 2 to reduce the computation
time?.

Exercise 2.3 (Comparing computation speeds)

Write a program that compares the respective speeds of the direct calculation
using the expression . z(n) exp(—2jmnf) and the FFT calculation. Look into
the use of the functions tic, toc, etime... for purposes of measuring compu-
tation times.

Use of the DFT to plot and study the properties of the DTFT

As it was said before, the DFT is used to digitally determine the values of the
DTFT. The more precise the plotting of the DFT is, the higher the number of
frequency points has to be.

?The N=nextpow2(P) function returns the closest power of 2 greater than P.
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Exercise 2.4 (Spectrum of the triangle function)

Consider the triangle function defined by sig=[1:P P-1:-1:0]. This function
is real. Using the FFT, digitally verify hermitian symmetry properties by
plotting:

1. The modulus and the phase of its DTFT for P = 10.
2. The imaginary and real parts of the DTFT.

Example 2.6 (Time delay properties)

Let {z(n)} be a zero signal outside the {—ng, ..., n1} interval where ng and ny
are two positive integers, and let y(n) be defined by y(n) = x(n —ng), obtained
by a time-shift of ng samples:

1. Determine the DTFT of {x(n)}, expressing it as a function of the DTFT
of {y(n)}.

2. Write a program that checks the previous result for ng = 5. In order to
do this, set {z(n)} equal to 1 between —5 and 5, and y(n) = z(n—>5). To
digitally evaluate the DTFT over 256 frequency points regularly spaced-
out in the (0,1) interval, the ££t function is used.

HINT:

1. We have:

n1 ) ) ni1+no )
X(f) = Z x(n)e‘zjmf — Zimnof Z z(k — no)e_zﬂkf
n=-—ng k=0

ni1+no

— erﬂ'an Z y(k,)e—Zjﬂ'kf :erﬂ'any(f)
k=0

2. X(f) =sin(bnf)/sin(r f). This means that to get the DTFT of {x(n)},

all you have to do is calculate the DTFT of {y(n)} and multiply it by
eleﬂ'f )

The following program can be used to verify this:

%===== SHIFTF.M

Lfft=256; % Length equal to a power of two
£f=(0:Lfft-1) /Lfft; ¥ Normalized Freq.

n0=5; nl1=5; yt=ones(nl+n0+1,1);

Yf=fft (yt,Lfft); % DFT of y(n)

XE=Yf .* exp(2%j*pi*5xf’);

subplot(211); plot(real (Xf)); grid

%==== Imag. part roughly zero (temporal symmetry)
subplot (212) ; plot(imag(Xf)); grid
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Properties of the DFT

The properties of the DFT show strong similarities with those of the DTFT.
However, there is an essential difference. In the formulas associated with the
DFT, dall the index calculations are done modulo N. The discrete Fourier trans-
form’s main properties are summarized in Appendix A3.

Exercise 2.5 (Circular convolution of the rectangular signal)
Consider the rectangular signal z(n) = 1 (n € {0,---,7}). Compare and ex-
plain the effects of the following commands (if£t is the function used to obtain
the inverse DFT):

||x=ones(1,8); xs=fft(x); xs=xs .* xs; ifft(xs)

and:

||x=ones(1,8); xs=fft(x,16); xs=xs .* xs; ifft(xs)

Exercise 2.6 (Delay)
Because of the time shift property, in order to get the L points DFT of a signal
that has non-zero values between —ng and ny, the sequence’s DFT must be
calculated on N points and then the delay has to be taken into account, by mul-
tiplying the result, term-by-term, by the complex exponential exp(2jmnok/L),
where k € {0, ..., L—1}. This exercise introduces a different method to achieve
the same result.

Let #(n) be a signal equal to zero for n outside the set of indices {—ng, ...,
ny}, where ng and ny are positive, and let y(n) be the signal defined by:

z(n) forne {0,...,n1}
yn) =< 0 forne{n +1,...,L—ng—1}
z(n—L) forne{l —ng,...,L—1}

with L > ng + n1. One way of seeing it is to imagine the values of x(n) with
negative indices being translated to the right by L points.

1. Calculate the DTFT of y(n) on L points. Conclude.

2. Let 2(n) be asignal equal to 1 between —5 and 5, apply the previous result
to a program designed to calculate the DTFT of z(n) on 256 points.

The point of exercise 2.6 is to explain that, in order to determine the DFT of
a sequence z(n) with a length of N, for L points, with L > N, you need to
calculate the DFT of the sequence:

y(n mod L) = z(n)

meaning the sequence whose indices are calculated modulo L.
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Example 2.7 (Calculating the IDFT using the DFT)

Let X (k) be the DFT of 2(n), and let y(k) = jX* (k) be the sequence resulting
from the permutation of the imaginary parts and the real parts of X (k). In
other words, y(k) = X! (k)+j X (k), where X®(k) and X* (k) refer to the real
and imaginary parts of X (k) respectively.

Calculate the DFT of y(k). Use the result to determine a method for
calculating the inverse DFT of a sequence using a direct DFT function with
the real and imaginary parts as its input, and the real and imaginary parts of
the IDFT as its output.

HINT: applying the definition of the DFT to the sequence y(k), we get:

N-1 N-1
Y(n) — Z y(k)e—Zjﬂ'nk/N — ] Z xX* (k,)e—Zjﬂ'nk/N
k=0 0

*
I

= (i X(k)ezf”“k/N) = (Va()" = N((' () + jo* (n)

This means that the use of the DFT function on the sequence jX*(k) leads
to the reconstruction of the original sequence z(n) (multiplied by the factor N)
with its real and imaginary parts switched.

Let us now assume that we have at our disposal a direct DFT that has two
arrays as its input, one for the real part, and the other for the imaginary part of
the signal we wish to transform, and that has two arrays as its output, one for
the real part, and the other for the imaginary part of the transform, according
to the following synopsis:

| (xR,XI)= aft (xR,xI)

To go from this function to the inverse DFT, all we have to do is set the
transform as the input, by switching the roles of the real and imaginary parts.
The resulting output is the inverse DFT except for a factor 1/N. This can be
expressed as follows:

” (xI,xR)= dft (XI,XR)

In MATLAB®, the ££t function, used to directly calculate the DFT, has an
array of complex numbers as its argument, which means that it is not possible
to apply the previous result. MATLAB®’s ifft function, in order to calculate
the inverse DFT from the direct DFT, uses the conjugation property:

x(n) — % (Z_: X*(k)e—Zjﬂkn/N)

The inverse DFT is the conjugate of the conjugate’s direct DFT. This can
be written x=conj(fft(conj(X))) where £ft is the function calculating the
DFT (see next paragraph). [



Discrete Time Signals and Sampling 77

2.4 Fast Fourier transform

The fast Fourier transform, or FFT, first published in 1965 by J. W. Cooley and
J. W. Tuckey [24], is a fast DFT calculation technique. The basic algorithm,
many versions of which can be found, calculates a number of points N, equal to
a power of 2, and the time saved compared with a direct calculation is roughly:

N

log, (NV)

To get a better idea, if N = 1,024, the FFT is about 100 times faster than
the direct calculation based on the definition of the DFT.

To understand its mechanisms, consider the case N = 8. Using the notation
Wy = exp(—2jn/N), the DFT can be expressed as the sum of a term related
to even rank indices and of a term related to odd rank indices:

gain =

Xe = (2(0) + (2 ) ( YW + 2 (8)We*)
+WE (21 3wk (5)W§k+x(7)W§’“)
= (2(0)+2(2 )W4 +x( YW+ 2 (8) W)
+We (2(1) + z(3)W§ —|—x(5)W42k + z(T)WF) (2.34)

A length 8 DFT is thus replaced by two length 4 DFTs. By iterating the
process, the DFT’s length is divided by two at every step. It takes 10 steps to
go from a length 1024 DFT to length 2 DFTs. In our case, the next step is
(see Figure 2.12):

(2(0) + 2(OWF) + W (2(2) 4 2(6)W3") =
(2(0) + 2(OWF) + Wi (2(2) + 2(6)W5)
and:
(#(1) + 2(5)WE) + Wy (2(3) + (W) =
(o(1) + 2(5)WE) + WS (2(3) + (1))
Each term 1s associated with a sum, a subtraction, and a multiplication by a
power of Wx. An example for this kind of calculation is detailed in Figure
2.12.

By representing all of the terms in a diagram, the calculation algorithm,
Figure 2.13, shows an elementary structure called butterfly.

Evaluating the number of operations

As it can be seen in expression 2.34, a length 8 FFT was replaced, in the first
step, by two length 4 FFTs. We have to include 8 complex multiplication-
addition operations (call MAC operations?).

3The acronym MAC is in reference to the Multiplication-ACcumulation operation that
can be found in the s = s + a;b; algorithm, used to calculate a sum of products Y, a;b;.
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Figure 2.12 — Calculation of one of the FFT’s terms
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Figure 2.13 — Calculations of the FFT terms. The dotted arrows show the calculation
Of X3

This result can easily be generalized for a length N DFT, where N equals
a power of 2: if Cy is the number of MAC operations for the Nth step, Cy =
2CNy2 + N leads us to the complexity:

Cy =N x logz(N)

We also have to include an index calculation phase needed to access the
data. Figure 2.13 shows that the indices of the terms z, appear in an order
corresponding to the inverted binary code of n, as 1t 1s indicated in the following
table. This is called the bit reverse access.
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Rank | Binary Coding | Reversal | Element
0 000 000 0
1 001 100 1
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7

COMMENTS:

— All of the W% terms are displayed in the left part of Figure 2.13. The
part on the right was simplified by considering certain values, particularly

W4 = —1. As you can see, first level processing is limited to adding and
subtracting. The second level could also be dealt with in this particular
way.

In most of the FFT calculation programs, using these simplifications al-
lows you to save a little time.

— Processors designed for signal processing have a particular addressing
mode, exempting them from actually calculating the indices. The ad-
dressing mode is called bit reverse addressing.

Exercise 2.7 (FFTs of real sequences)

Consider the real sequence z(n), with n € {0... N —1}. Let X (k) be its DFT.
The complex sequence y(n) will be defined by y(n) = #(2n) + jz(2n + 1). Let
Ap and By be the DFTs of the sequences #(2n) and z(2n + 1) respectively. By
linearity, y(n) has the sequence Y (k) = A(k) + jB(k) as its DFT (notice that
A(k) and B(k) may be complex. Therefore A(k) and B(k) are not the real and
imaginary parts of Y (k) respectively).

1. By noticing that z(2n) is the real part of y(n) and is therefore equal to
(y(n) + y*(n))/2, express A(k) using the term Y (k). Do the same for
B(k).

2. Find a method similar to the decomposition given by expression 2.34 to
show that X (k) can be expressed as a function of A(k) and B(k). Using
this result, write an algorithm that calculates the DFT of a real length
N sequence based on a complex length N/2 FFT algorithm.

3. Compare the complexities of the previous algorithm and the complex
length N FFT algorithm.
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Exercise 2.8 (Using the FFT)
What is the purpose of the following program:

plot (£££ ([0 1],128))
set (gca, ’AspectRatio’,[1 1])




Chapter 3

Spectral Observation

The purpose of this chapter is to introduce the reader to the two following
fundamental concepts:

— the accuracy of the frequency measurement when the DFT is used to
evaluate a signal’s DTFT. As we will see, this accuracy depends on the
number of points used to calculate the DFT;

— the spectral resolution, which is the ability to discern two distinct frequen-
cies contained in the same signal. It depends on the observation time and
on the weighting windows applied to the signal.

3.1 Spectral accuracy and resolution

3.1.1 Observation of a complex exponential

To illustrate the DFT’s use in signal spectrum observation, we will begin with
a simple example.

Example 3.1 (Sampling a complex exponential) Consider the sequence
resulting from the sampling of a complex exponential e*7o! at a frequency
of Fy = 1/T;. If we set fo = Fy/F, and assume it to be < 1/2, we get
z(n) = eimfon
1. Determine the DTFT’s expression for the sequence {#(n) = exp(2jnfon)}
where fo =7/32 and n € {0,---,31}.

2. Using this result, find the DTFT’s values at the points of frequency f =
k/32, for k € {0,--- 31},

3. Using the £ft command, display the modulus of the DFT of {z(n)}.

4. Now let fy = 0.2. Display the modulus of the DFT of {#(n)}. How do
you explain the result?
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HINT:

1. Starting off with definition 2.21 of the DTFT, we get:

N-1 .
— 2jmon —~2jnfn _ ST = fo)) _jr(v=1)(fo-1)
X(f) = ;e e = =) ¢ (3.1)

Because a finite duration sequence is all we have at our disposal, the
signal’s DTFT shows ripples (ratio of the sines). |X(f)| is plotted in
Figure 3.1, illustrating this phenomenon. This was achieved with the
following program:

%===== RESOL1.M

N=32; % Number of points of the signal
£0=7/32; % Sine Frequency

npts=512; % Number of points of the frequency

fregqmin=-0.5; freqmax=0.5;
pas=(freqmax-freqmin) /npts;
f=[freqmin:pas:freqmax-pas]; freqM=f-£0;
%===== Direct calculion of the DTFT
fctM=sin (N*freqM*pi) ./ sin(freqM*pi);
plot (f,abs (fctM)); grid

hold on; plot([f0 £01,[0 35]); hold off

in which expression 3.1 is directly used.

N=32 ! ! ! | | 3 3 | DTFT
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25 ! | | ! | | | | |
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! ‘ ‘ ‘ ‘ ‘ ‘ ‘
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Figure 3.1 — Modulus of the DTFT of the complex exponential fo = 7/32 with
N =32

2. Because the DFT corresponds to a sampling of the DTFT at frequency
points k/N | its values are usually different from zero, except if fy is an
exact multiple of 1/N, which is the case for fy = 7/32. The values of f
are given by 0, 1/32, ..., 31/32. We then get X (k) =32 if k = 7/32 and
0 otherwise. Type:
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%===== RESOL2.M
N=32; L=32; freq=(0:L-1)/L;
£0=7/32; xt=exp(2*j*pi*f0*(0:N-1));

xf=fft (xt,L); % Calculation with the DFT
plot(freq,abs(xf),’x’);
%===== The DTFT calculated by FFT is superposed

L=512; freq=(0:L-1)/L; xf=fft(xt,L);
hold on ; plot(freq,abs(xf),’:’); grid; hold off

This leads to the graph in Figure 3.2.
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Figure 3.2 — DF'T of the complex exponential when fo is a multiple of 1/N

A “peak” is observed (this is actually the only non-zero value of X (k)),
with an amplitude of 32 at a frequency of 7/32, and all the other frequency
points have a zero spectrum. This result, which seems to agree with what
would be expected of a infinite duration complex exponential with only
one peak, is rather exceptional.

3. Figure 3.3 results from imposing f; = 0.2, and as it clearly shows, 1t is
quite different from a single “peak”. An explanation of this can be found
in paragraph 3.1.4 which deals with the subject of windowing.

3.1.2 Plotting accuracy of the DTFT

As we have just seen, the DFT is all we have at our disposal to plot the DTFT,
or rather its modulus. The previous example is a good illustration of a number
of important properties, the first of which 1s:
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Figure 3.3 — DF'T of the complex exponential when fq is not a multiple of 1/N

For those frequencies thal are not a multiple of 1/L, where L is the num-
ber of calculated DF'T points, a pure sine appears in the form of several
non-zero values. The value with the highest modulus is close to the actual
frequency.

It should be noted that the gap between the frequency fy and the frequency
associated to the maximum of the L = 32 values of the DFT’s modulus is, in
the worst case, equal to 1/L. This leads us to the following rule:

If L refers to the number of DF'T calculation points, the frequency accu-
racy is equal to 1/L. For signals sampled at a frequency of Fy (in Hz),
this leads to a accuracy of Fs/L Hz.

3.1.3 Frequency resolution

Accuracy must not be confused with the ability to distinguish (or separate) two
close frequencies in a signal. One possible definition of the frequency resolu-
tion is the minimum difference between the two sine frequencies with different
amplitudes, necessary to “observe” an attenuation greater than 3 dB between
their two maximums.

As we saw on page 68, limiting ourselves to handling a number of values
no greater than N causes lobes to appear in the sine spectrum. The main
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Figure 3.4 — Separation of frequencies

lobe’s width is equal to 2/N. This means that if z(n) contains two sines the
frequencies of which are separated by less than 1/N, their two main lobes
will be so close that it will be difficult to distinguish them by observing the
spectrum. This is even more true when their amplitudes are very far apart.

Resolution and noise

As we will see in Chapter 10, there is no point in talking about frequency res-
olution in the absence of noise. Consider observations made without noise and
assume we have 100 measurement points of the signal x(n) = A cos(27fin +
$1) + Aa cos(2m fan + ¢2). To determine, from the values of z(n), the two fre-
quencies, the two amplitudes and the two phases, we have to solve the following
system of six equations with six unknowns:

A1 + A2 = l‘(O)
Aycos(2mfi + ¢1) + Az cos(2mf2 + ¢2) = z(1)
Aycos(10mfy + ¢1) + Agcos(10mfa + ¢2) =  x(5)

The 94 remaining values must be consistent with the result! It should be
noted that the precision of the result is limited only by the calculator’s preci-
sion, and that no conditions have to be met regarding the difference between
f1 and fo. And there’s no point in using the DTFT calculation!

However, if there is some noise, the observed values of #(n) are “riddled
with errors”. The statistical estimation theory tells us that it is better to use
all of the values, calculating some sort of a mean value. This is precisely what
the DTFT does. Separating f; and f»> now depends on the difference between
f1 and fs, but also on the desired signal-to-noise ratio.

If Fy = 1/T; refers to the sampling frequency, we have:

The frequency resolution R is expressed in Hz. Its has the same order
of magnitude as Fs /N, which is also the inverse of the total observation
time I’ = NTj.
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Without additional informational, frequency differences of less than F;/N =
1/T should not be interpreted when studying a spectrum! In the literature,
the quantity R = F;/N = 1/T is called the Fourier limit.

As an example, type the following program:

%===== RESOLFREQ.M

N=32; L=128; freq=(0:L-1)/L;

%===== First frequency

£0=.2; xtO=exp(2*j*pi*f0*(0:N-1)); xfO=fft(xt0,L);
%===== Second frequence = 0.23

£1=.23; xtl=exp(2*j*pi*f1*(0:N-1)); xfi1=fft(xt1,L);
subplot (311); plot(freq,abs([xf0’ xf1’ (xf0+xf1)’1));

%===== Second frequency = 0.22
£1=.22; xtl=exp(2*j*pi*f1*(0:N-1)); xfi1=fft(xt1,L);

%===== Third frequency = 0.21

£1=.21; xtl=exp(2*j*pi*f1*(0:N-1)); xfi1=fft(xt1,L);
subplot (313); plot(freq,abs([xf0’ xf1’ (xf0+xf1)’1));
grid

Figure 3.5 shows the modulus of the DTFT for the sum of two sines, for
three frequency pairs. In the first case, fo = 0.2 and f; = 0.23, the presence of
two sines can be shown, whereas 1t is impossible in the other cases.
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Figure 3.5 — Frequency resolution: the closer the two frequencies are, the harder it
18 to distinguish their peaks

The R x T product plays the role of a merit factor when using the DTFT
to search for frequencies. For a given resolution R, choosing T so as to have
R x T > 3 usually allows an easy separation of the frequencies.
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Exercise 3.1 (Studying the resolution)
Consider the signal z(n), sum of two real sines with a frequency of f; and
fi = fo+ Af and amplitudes of ag > 0 and a; > 0 respectively.

1. Using gy (f) = sin(Nxf)/sin(mf), give an expression of X(f).

2. Let Nfy > 1, Nfi > 1 and N|Af| > 1. Use these inequalities to show
that | X (f)| has two maximums close to the 2 frequencies fy and f.

3. Write a program that displays the signal’s spectrum for a given a = a1 /ag
dB ratio, and a given phase shift. Change the difference A f from 1/N to
2/N for N = 32 and fy = 0.2. Without changing any other parameters,
compare the two resolutions corresponding to ® = 0 and ® = 7/2.

3.1.4 Effects of windowing on the resolution
Rectangular windows

Limiting the number of samples N of a signal can be interpreted as the term-by-
term multiplication of the signal by the sequence wy(n) = 1(n € {0,...,N —
1}). This sequence is called a rectangular window. The same signal was called
a “rectangle” in the previous chapter.

From a spectral perspective, this multiplication, or weighting, is equivalent
to convoluting the DTFT of #(n) with the DTFT Wx(f) of the sequence
wp (n). This can be written as follows:

{w(n) x w(n)} — (X *Wn)(f)
where Wi (f) is expressed (formula 2.22):

sin(Nf) e—im(N-1)f

Wn(f) = sin(mf)

The effect of this convolution operation is to cause unwanted ripples to
appear in the spectrum.

The concept of windows

Generally speaking, a window i1s a sequence of coefficients used to weight a
signal. A relatively detailed study of the windows used for signal processing
can be found in [43]. Usually, when the frequency resolution is improved:

— the main lobe grows narrower;

— and the side lobes become smaller.
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Unfortunately, reducing the height of the side lobes always means widening
the main lobe. A compromise must therefore be made between these effects. In
the following exercise, which illustrates these properties, we will only be using
the Hamming window, one of the most commonly used windows. Its expression
is:

2mn —
wn () :{ 0.54 — 0.46 cos(*5*) when n € {0,---, N — 1} (3.2)

0 otherwise

Exercise 3.2 (Effect of the Hamming windowing)

Consider a length N = 32 sample of a complex exponential z(n) with a fre-
quency of fo = 0.2 and an amplitude of A = 1. Each sample is multiplied by
cpwp(n), where wp(n) refers to the Hamming window and cp, is a constant we
have to determine.

1. Calculate, for any window, the constant ¢; such that the maximum am-
plitude of the DFT of the windowed signal at f; is equal to A.

2. Write a program that displays the DTFT of x(n) for the rectangular
windowing and the Hamming windowing.

3. For both windows, check the width of the main lobe and the height of
the side lobe (the lobe’s height will be expressed in dB compared to the
height of the main lobe).

4. We want to distinguish, in a signal sampled at 1,000 Hz, two sines of the
same amplitude. Use the previous plot to find an order of magnitude for
the resolution of the two windows that were studied.

5. We want to distinguish, in a signal sampled at 1,000 Hz, two sines with
an amplitude ratio now worth 25 dB. Find an order of magnitude for the
windows that were studied.

In practice, the frequency resolution for sines of the same amplitude is
roughly equal to 1/N when using a rectangular window. When the amplitude
ratio is no longer equal to 1, the resolution depends on which analysis window
is chosen. Exercise 3.2 shows that the Hamming window leads to a resolution
that is not as good as the one obtained with the rectangular window, for an
amplitude ratio of 0 dB, but this phenomenon is reversed for an amplitude
ratio of 25 dB.

A few windows

The following table gives a few characteristics for the most commonly used
windows (see Figure 3.6). A is the main lobe’s width and A4p is the attenu-
ation, in dB, of the first side lobe, compared to the main lobe’s height. The
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results of this table can be found using a MATLAB® program of the type (see
Figure 3.6):

%===== ONEWIN.M

% Blackman

N=10; w=0.42-0.5%cos(2*pi*(0:N-1)/N)+0.08*cos (4*pi*(0:N-1)/N);
w=w/sum (w) ; %===== Gain in 0 equal to 1

ws=fft(w,1024);

plot ((0:1023)/1024,20%1og10(abs (ws)))
set(gca,’xlim’,[0 .5],’ylim’,[-100 0]1); grid
%===== To measure freq. click once on each max.
[xm,ym]=ginput (2)

Type Expression for n € {0,..., N — 1} A Agp =
Rectangular | 1(n € {0,...,N —1}) 2/N | —13dB
Triangular N-width Triangle 4/N | —25dB
2
Hann 05— 0.5cos(%) 4/N | —31dB
. 2mn
Hamming 0.54 —0.46 COS(T) 4/N | —41 dB
2 4
Blackman | 0.42 — 0.5 cos(%) +0.08 cos(%) 6/N | —61.5 dB

—100

? 005 0.1 05 02 025 03 035 04 045 05
|

Half-width of the main lobe

Figure 3.6 — The Blackman window parameters
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Periodic and symmetrical window

Consider, forn € {0,---, N—1}, the two following expressions of the Hamming
window:

wp(n) = 0.54 — 0.46 cos (2%1) and wg(n) = 0.54 — 0.46 cos (]\?ﬂ-_nl)

The first one, indexed with a P, is periodic with period N, that is to
say wp(0) = wp(N). Tt is used, among other things, as a weighting window
for the spectral analysis, of length N portions of a signal. The second one,
indexed with an S, is symmetrical in the sense that ws(0) = wg(N — 1),
wg(1) = ws(N —2)... As we will see, it is particularly used as a weighting
window in the case of length N FIR filter design (see paragraph 4.7, page 133).

If you have the MATLAB® signal toolbox at your disposal, type help
hamming. Depending on what version you own, you may or may not have
the choice between periodic windows and symmetrical windows.

3.2 Short term Fourier transform

The Fourier transform “compares” the signals to the eternal exponentials by
calculating a mean on the time axis. It is therefore better suited for the study
of phenomena that vary little in time than it is for brief, transitory phenom-
ena. This does not mean, however, that information is lost, because the Fourier
transform is bijective under the conditions expressed in the introduction chap-
ter. Consider, for example, the signal z(¢) made up of two consecutive portions
of sines with durations of 77 and 75 and frequencies of f; = 0.1 and f = 0.2
(Figure 3.7). This signal can be created by the following program:

%===== TWOSIN1.M

T1=512; T2=256; % Respective durations
tps1=[0:T1-1];tps2=[0:T2-1]; tps=[tpsl Tl+tps2];

£1=0.1; x1=sin(2*pi*fl*tpsl);

£2=0.2; x2=sin(2*pi*f2*tps2);

x=[x1 x2]; plot(tps,x); grid 7% Plotting of the 2 sinusoids
set (gca, ’x1im’, [384 576])

The Fourier transform X (f) of the complete signal “contains” the informa-
tion regarding the order in which the two sines appear. However this informa-
tion’s interpretation is difficult, because it is found, not very explicitly, in the
transform’s phase. Therefore, by limiting ourselves to the visualization of the
modulus of X(f), there is no way for us to know that f, comes before f5. This
can be illustrated by typing the following program:

%===== SPECCT1.M
% Plotting of the modulus and phase of the signal x
% defined in program TWOSIN1.M
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Figure 3.7 — Two portions of sines

Lfft=1024; freq=(0:Lfft-1)/Lfft;

xf=fft (x,Lfft); xfa=abs(xf); xfph=angle(xf);
subplot (211) ; plot(freq,xfa); grid

set (gca,’x1im’, [0 0.5],’ylim’, [0 max(xfa)]);
subplot (212); plot (freq,xfph); grid

set (gca, ’x1im’, [0 0.5],’ylim’, [-pi pil);

Figure 3.8 shows two peaks at frequencies 0.1 and 0.2, but it does not tell
us which one comes first.

T —_—_—-
) S ——
1) N —
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% x1 and x2 are defined in TWOSIN1.M

xinv=[x2 x1]; xinvf=abs (fft(xinv,Lfft));

plot (freq,xinvf); grid

set (gca, ’x1im’, [0 0.5],’ylim’, [0 max(xinvE)]);

The resulting spectrum is almost identical to the previous one. However,
if the time interval is “cut up” in N,; sub-intervals with a duration of P,
and if Fourier transforms are performed on each of these sub-intervals, the
information concerning the order of the frequencies becomes clear. This leads
us to the concept of short term Fourier transform, or STFT. At the end of the
previous program, type:

Yi===== SPECCT3.M
% T1,T2, x defined in TWOSIN1.M
nfft=1024; freq=[0:nfft-1]/nfft;

nsi=8; npt=£ix ((T1+T2)/nsi);

xs=zeros (npt,nsi); xs(:)=x(1l:npt*nsi);
xsf=abs (fft (xs,nfft)); xsf=xsf(1:nfft/2,:);
mtime=[0:npt:npt*nsi-1];

subplot (211) ; imagesc(mtime,freq(1l:nfft/2),xsf);
set (gca, ’x1im’, [0 700])

nsi=32; npt=fix ((T1+T2)/nsi);

xs=zeros (npt,nsi); xs(:)=x(1l:npt*nsi);
xsf=abs (fft (xs,nfft)); xsf=xsf(1:nfft/2,:);
mtime=[0:npt:npt*nsi-1];

subplot (212) ; imagesc(mtime,freq(1l:nfft/2),xsf);
set (gca, ’x1im’, [0 700])

The spectra, which can be displayed using the imagesc command (see Chap-
ter 6), are represented in Figure 3.9 for two values of Ng;.

Figure 3.9 — Spectrum for Ny =8 (above) and N¢; = 32 (below)

surf or mesh can also be used for 3D graphs.
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It is clear that by following the time axis, the STFT tells us the order of the
frequencies used in the signal. By comparing the two figures, we notice that
the smaller the number of points K; in a sub-interval:

— the easier it is to locate the position on the time axis of 7} = 512, corre-
sponding to the frequency change;

— the harder it is to locate the positions 0.1 and 0.2 on the frequency axis
because of the width of the main lobes.

Let P; be the number of points in an interval. The following comments can
be made:

— Because the DTFT calculates a “mean” of P; values, choosing a high
value of P; causes an intense smoothing of the signal’s fluctuations in
time. This means that the time transitions cannot be located precisely.

— On the other hand, a high value of P; gives every DTFT more calculation
points. Therefore the width of the lobes (roughly equal to 1/ P;) decreases
and the frequency peaks appear more clearly.

Given the sampling frequency Fy = 1/T, the frequency resolution is roughly
equal to Rp = F;/P;, while the time resolution is roughly equal to Ry = P;Ty,
meaning that the product of the two remains roughly equal to 1.

When using the short term Fourier transform (STFT), improving time
resolution decreases frequency resolution.

Exercise 3.3 (Short term Fourier transform)

The incTF1.mat and incTF2.mat we are going to use are supposed to come
from the sampling at F; = 1,000 Hz of the sum of a certain number of frequen-
tial components with different durations. To access these files, execute the two
following programs:

%===== GENE1.M
T=0.35; Fs=1000; NT=fix(Fs*T); tp=(0:NT-1); xt=zeros(1,NT);
fq=[113 247 327 413]/Fs; org=fix([0 0 0.030 0.150]*Fs);
dur=fix ([0.350 0.050 0.200 0.200]*Fs); amp=[1 1.7 1.9 1.8];
for ii=1:4
xc=amp (i1)*cos (2*pixfq(ii) *tp);
ti=org(ii)+1;tf=org(ii)+dur(ii);
xt(ti:tf)=xt (ti:tf)+xc(ti:tf);
end
save incTF1 xt Fs
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%===== GENE2.M

T=0.35; Fs=1000; NT=fix(Fs*T); tp=(0:NT-1)/Fs;
£0=250; fm=3; beta=6;
phi=fO*tp+betaxsin(2*pi*fm*tp); xt=cos (2*pi*phi);
save incTF2 xt Fs

1. Write a short term Fourier transform function. It will be named:
|| [spec,tpsl=tfct(xt,Lb,ovlp,Lfft,win)

where:

xt is the signal,

— Lb the length (number of samples) of the blocks,
— ovlp the number of overlapping samples,

— Lfft the length of the FFT,

— win the window type,

— spec the complex spectrogram,

— tps the normalized time.
2. Load one of the two signals and display its chronogram.

3. Write a program designed to perform a time/frequency analysis of the
signal. The time interval will be cut up in sub-intervals of the same
length, with an overlapping coefficient of 50%. The contour function
will be used for displaying the results.

Exercise 3.4 (Visualizing the aliasing with the STFT)

Consider the signal 2.11 created in the paragraph on page 60 and illustrating
the the aliasing phenomenon by listening to the created signal. Visualize the
evolution of this signal’s spectrum using the mesh function, or in a 2D graph
by using the contour function. The values T'= 2 and A = 2,000 will be taken.
In order to achieve this, the signal will be cut up in “slices” with a length of
100 samples, on which FFTs will be performed. The blocks should not overlap.
A Hamming window can be used before performing the FFT.

3.3 Summing up

The following exercise illustrates on one hand the sampling effects with the
possible presence of aliasing and on the other hand the effects of truncation
with the presence of ripples.

Exercise 3.5 (Effects of sampling and windowing)
Consider the continuous-time signal z(t) = exp(—t/to)1(t € (0,+o0[) with
tg > 0. Its Fourier transform is called X (F).
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1. Determine the expression of its Fourier transform X (F). Use it to find the
value, as an expression of ¢y, of the frequency corresponding to | X (0)]/v/2.

2. (1) is sampled at the frequency Fy = 1/T;. Let z5(n) = x(nT;) be its
sample sequence and X;(f) the DTFT of #,(n). Using formula 2.25, find
X (f) as an expression of X (F). What can you notice?

3. The DTFT is evaluated using only the first M samples #;(0) to x,(M —1).
What is the resulting effect on the signal’s spectrum?

4. Write a program that gives you figure 3.10, illustrating the different sig-
nal spectra, continuous-time, discrete-time, and windowed discrete-time
(to = 1/0.7, M = 10, F; = 2 Hz and Lfft= 256). Check the results for
the period of the ripples.

: 0
0 2 4 6 8(s) -2 0 2 (Hz)

Figure 3.10 — Effects of sampling and windowing on the signal’s spectrum: (a)
original signal with its samples, (b) FT et DTFT with aliasing, (c) truncated signal,
(d) effects of tuncation (ripples) and values of the DFT.

3.4 Application examples and exercises

3.4.1 Amplitude modulations

Exercise 3.6 (Amplitude modulation)

Consider a B band, continuous-time real signal m(t), that is to say a signal
whose Fourier transform M (F) is equal to zero for |F| > B. Let Fy be a
frequency such that Fy > B (for broadcasting, the order of magnitude for
Fy/B is 100).
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We call amplitude modulation (AM)* the operation that generates the sig-

nal:

z(t) = (1 4+ km(t)) cos(2m Fyt)

Fy is called the carrier frequency. k refers to a positive constant called the
modulation index, and is chosen so as to have |[km(t)| < 1. When [km(t)]| > 1,
there is what 1s called overmodulation.

1.

Give the expression of the FT X (F) of 2(¢) as a function of k, M (F) and
Fy. How wide is the band occupied by X (F) around Fy?

To perform a spectral analysis of the signal z(t), it has to be sam-
pled at Fy = 500 kHz. We will assume that Iy = 50 and that
m(t) = cos(2nFit) + 1.8 cos(2nFat) + 0.9 cos(2n Fst) where Fy = 2,310
Hz, Fy = 3,750 Hz and F3 = 4,960 Hz. Let k = 1/2. Write a program
that generates x(¢) for a duration of 2 ms. Make sure the chronograms
for m(t) and z(t) show no overmodulation.

. Give the number of samples that have to be processed in order to distin-

guish the two frequencies contained in the signal.

How long must the FFT be if we want a precision of 100 Hz?

. Write a program that draws the modulated signal’s spectrum.

Exercise 3.7 (Carrierless Double Side-Band)
Consider the B band real signal m(t). Its spectrum is called M (F). M(F) =0
for |F'| > B. Let Fy > B be a frequency.

The carrierless amplitude modulation represented in Figure 3.11; is de-
scribed by the expression z(t) = m(t) cos(27 Fyt).

1.

m(t) 4>®—> x(£)=m(t) cos(2mF )

cos(ZTEFOt)T Oscillator

Figure 3.11 — Carrierless Double Side- Band

Determine the expression of the amplitude spectrum of the modulated
signal z(t).

I This modulation is called Double Side-Band (DSB) modulation as opposed to the Single
Side-Band (SSB) modulation [97].
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The signal z(¢) is modulated a second time by the local oscillator
2cos(2nFot + ¢). The result is the signal y(¢) = 2x(t) cos(2nFot + ¢).
Determine, as a function of M (F), Fy and ¢, the expression of the spec-
trum of y(t). Use this result to determine a method for reconstructing
the message m(t) from the signal y(¢). Why must we have ¢ = 07 This
operation is called synchronous demodulation when ¢ = 0.

. Consider m(t) = cos(2nFyt) 4+ 1.8 cos(2m Fat) 4 0.9 cos(27 Fst) where I} =

2,310 Hz, Fy = 3,750 Hz and F5 = 4,960 Hz. Set Fy = 50 kHz and
Fy, = 500 kHz as your display frequencies. Write a program that plots
the original, modulated and demodulated signals, as well as their spectra.

Exercise 3.8 (Stereophonic signal)

Some frequency modulated broadcasting are sent stereophonically. This means
that the received signal makes it possible to reconstruct both the left and right
signals. This is achieved by sending the composite signal:

e(t) = (I(t) +r(t)) + ({(@t) — r(2)) cos(2n Fyt)

where [(t) and r(t) refer to the left and right signals respectively. Notice that
the signal ({(t)—r(t)) is transmitted as carrierless double side-band modulation
(see exercise 3.7). TFor broadcasting, the signals [(¢) and r(¢) are band-pass
signals centered in Fy = 38 kHz with a bandwidth of 30 kHz.

1.

Determine the spectrum’s expression for the signal ¢(t). Draw a quick
sketch of its graph.

. Show that e(t) makes it possible to reconstruct the signal on a mono-

phonic set.

. Write a program that displays ¢(?), 2¢(¢) and 2d(t) for a sampling fre-

quency of Fy =1 MHz, where:

— the signal () is the sum of 5 sines with the amplitudes 0.7, 1.5,
1.9, 2.8 and 3.7, and with the frequencies 380 Hz, 957 Hz, 1,164 Hz,
1,687 Hz and 1,953 Hz respectively;

— the signal r(¢) is the sum of 5 sines with the amplitudes 0.3,1.5, 2.7,
1.7 and 2.3, and with the frequencies 347 Hz, 523 Hz, 1,367 Hz,
2,465 Hz and 3,888 Hz respectively.

Use this to find a method for separately reconstructing, by sampling, the
signals {(¢) and r(t).
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3.4.2 Frequency modulation

Let m(t) be a B band real signal. The name frequency modulation at the carrier
frequency Fy > B refers to the operation that generates the signal:

z(t) = Acos(2mFyt + ®(1))

where the instantaneous frequency F;(¢) defined by:

Fl)=Fo+ ———= (3.3)
is related to m(t) by:
Fi(t) = Fo + AF x mf(t) (3.4)

This leads us to ®(¢) = 2rAF fo u)du. For commercial broadcasting,
Fy>» B, since B = 15 kHz and Fy belongs to the 88 MHz to 108 MHz band.
We can rewrite z(¢) as:

z(t) = Acos(2rFyt + ®(1)) = Re {Aezj”F”t'l'jq)(t)} = Re {a(t)ezj”F”t}

where a(t) = AeZ®® . If [y > B, it can be shown [97] that, to obtain the
spectrum of z(t), all you have to do is determine the spectrum of «(¢), and to
translate it, after dividing by 2, around the frequencies % Fjp.

Let us now see the particular case of a sine message m(t) = cos(2nFt).
In this case, the instantaneous frequency F;(t) varies between Fy — AF and
Fy + AF. This is why AF is called the frequency deviation. Let 8 = AF/B.
B is the modulation index®.

It can be shown that the periodic function a(t) = Aexp(j®(t)) =
Aexp(jBsin(2rFput)) has, as its Fourier series expansion:

=A Z Jn (B) exp(2jmnFint)

n—=—oQ

where J,(3) refers to the Bessel function of the first kind of order n. Tts
spectrum shows peaks spaced-out at intervals of F,,. This means that the z(¢)
spectrum also shows peaks spaced-out at intervals of Fy,, around +Fy (Figure
3.12).

Figure 3.12 was obtained using the modfm2.m program. This program plots
the spectrum of a signal modulated in frequency by a sine with a frequency of
F, = 5 kHz and for a carrier frequency Fy = 2 MHz. Type:

2The modulation index plays a fundamental role in communications. In particular, it can
be shown the performances of the frequency modulation in the presence of noise increase like

5.
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1.98 1985 199 1995 2 2.

Figure 3.12 — Spectrum of a frequency modulated sine signal with a modulation index
B =2.4 (in this case, Fy peak is missing)

%===== MODFM2.M

Fs=1.0e7; % Sampling freq. for the simulation
npts=20000; mtime=(0:npts-1)/Fs;

F0=2.0e6; % Carrier freq.

Fn=5000; % Signal freq.

disp(’Carrier frequency:’);

disp(sprintf (’\t FO = %d MHz’,F0/1e6));

disp(’Message frequency:’);

disp(sprintf (’\t Fm = %d kHz’,Fm/1000));
disp(’Instantaneous frequency:’);

disp(sprintf (°\t £i(t)/(2 pi) = FO + Deltaf#*sin(2*pi*Fm*t)’));
%===== Frequency deviation

disp(’Choose the frequency deviation (kHz):’);

Df=input (sprintf (’\t Deltaf (kHz) = ’));

Df=Df%1000; % Deviation in Hz

beta=Df/Fm; % Modulation index

theta=2%pi*FO*mt ime+beta*cos (24pi*Fm*mtime) ; x=cos (theta);
LEfft=32%1024; fq=Fs*(0:Lfft-1)/Lfft;

xf=abs (fft (x,Lfft)); plot(fq,xf); ax=axis; grid
axis([max ([0 FO-2*Df]) min([Fs/2 FO0+2*Df]) ax(3) ax(4)])

The program asks for the value of the frequency deviation (input...). By
giving, for example, the value 2,4%Fm/1000 (in the program this corresponds
to Deltaf=12), the result is that the peak at Fy is erased because in this case,
B =24 and Jy(2.4) = 0.
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Chapter 4

Linear Filters

When building a model to describe the behavior of some of the most commonly
used systems, we often rely on the superposition principle. It amounts to as-
suming linearity (the use of Kirchoff’s laws are an example). Usually, time
wmnvariance is also assumed. It consists of saying that, on the time scales that
are used, the characteristics of these systems remain unchanged.

Linear filters are defined in the following by these two properties. Because
of their importance in the field of signal processing, the next two chapters deal
exclusively with filters. This chapter presents the main properties, as well as a
few design methods.

4.1 Definitions and properties

Definition 4.1 (Linear filter) A discrete-time linear filter' is a system
whose output sequence results from the input sequence {x(n)} according to the
erTpression:

+o0 oo
y(n) = (xxh)(n) = Y z(k)h(n—k)= > h(k)z(n—k) (4.1)

where the sequence {h(n)} that characterizes the filter is called the impulse
response. The (x x h) operation is called convolution (Figure 4.1).

For example, the processing defined by y(n) = %x(n)—l— %x(n— 1) is therefore
a linear filtering. The sequence {h(n)} is defined by h(0) = %, h(1) = % and
h(n) = 0 for any value of n # {0, 1}.

For commonly used classes of signals, expression 4.1 is perfectly well defined,
and satisfies the linearity property. We will now prove the time invariance
property. In order to do this, we will assume that the output sequence y(n)

"Most of the time, we will just write filter instead of linear filter.
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Input Linear filter Output
{x(n)} N th(m)} R (O)

" Convolution .-~

Figure 4.1 — Discrete-time linear filter

corresponds to the input signal z(n), and we must determine what output
signal v(n) corresponds to the input signal u(n) = x(n — ng). We can write:

+o0 oo
vin) = > u(k)h(n—k)= > a(k—no)h(n— k)
. “°°
= > a(p)h((n—no) = p) = y(n — no)

However, if there is an ng delay for the input, there i1s also a time delay
of ng for the output. It should be noted that linear systems as simple as the
following two:

y(n) = x(n)cos(2mfon)
+oo
yn) = D w(k)h(n—k)

do not possess the time invariance property.
Throughout the rest of this chapter, the two important concepts of causality
and BIBO stability will often be referred to.

Definition 4.2 (Causality) A system is said to be causal when its oulput
y(n) at time n depends only on the current and previous values of the sequences
z(n) and y(n):

y(n) = F{z(p)}, {y(p)}) withp,p’ <n

Definition 4.3 (Bounded input — bounded output stability (BIBO))
A system is said to be BIBO stable’ if, for any bounded input, the output
remains bounded:

Vn, Je(n)| < A= |y(n)| < B

We have the following two results:

2From now on, when there is no possible confusion, we will just write “stable” instead of

“BIBO stable”.
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Theorem 4.1 A filter is causal if and only if its impulse response {h(n)} is
such that:

h(n) =0 whenn <0 (4.2)

HINT: because of 4.1, y(n) depends only on {z(n), z(n—1), ..., z(n—k), ...}
for k > 0, if and only if (k) = 0 for k < 0. If the terms h(n ) are equal to zero
for n > M, the filter memory is finite, and its value is M. [

Theorem 4.2 A linear filter 1s BIBO stable if and only if its tmpulse response
{h(n)} verifies:

> lh(n)] < +o0 (4.3)

nez

HINT: let us first assume that ), |h(k)] = M < +o00. To any bounded input,
that is to say such that |z(n)| < A, corresponds a signal y(n) that verifies:

|<Z|h Wa(n— k)| < AM
kel

and which is therefore bounded itself. This means that the filter 1s BIBO stable.

Conversely, we assume that the filter is BIBO stable. We will use proof by
contradiction. Let us assume that )", [A(k)| = co. The question is “can we
find at least one bounded input yielding a non-bounded output?”. All we have
to do is take x(n) = sign(h(—n)) as our bounded input, resulting at the time
n = 0 in an infinite output y(0) = >, |h(k)]. L]

A first use of MATLAB®’s filter function

In MATLAB®, the filtering operation is performed by a built-in function called
filter. This function provides us with a causal implementation of the filtering
operation, so in order to “filter” the input sequence {z(1), ..., #(N)} by the
impulse response filter of finite length {h(1), ..., R(L)} (the phrase used will
be “finite impulse response filter”, or FIR filter), we need to type:

y = filter(h,1,x);

The output sequence {y(1), ..., y(N)} has the same length as the input
sequence. To calculate it, the (L —1) values preceding x(1) must first be known.
filter can accept a fourth argument, used to specify the initial state associated
with these values. If this argument is left blank, the £ilter considers that all



104 Digital Signal and Image Processing using MATLAB®

values are equal to zero, and we have:

y(1) = h(1)z(1)

y(2) = h(1)z(2) 4+ r(2)x(1)

y(L) = h(D)a(L)+- -+ h(L)x(1)

y(n) = h(l)z(n)+ -+ h(L)z(n — L +1)
y(N) : h(D)a(N) + -+ h(L)a(N = L +1)

Note that because the impulse response has a finite length, it necessarily
verifies 4.3, and therefore the filter is BIBO stable. The fourth argument’s
purpose will be discussed more in depth in paragraph 5.1.

Example 4.1 (Smoothing filter) We are going to filter the sequence [0 : 6]
with the use of the impulse response filter [1 1]. Type:

Yi===== EXFILTINT.M
clear; x=[0:6]; h=[1 1];
y=filter(h,1,x)

The resulting sequence is:

y =

0 1 3 5 7 9 11

Example 4.2 (Smoothing filtering of a random sequence)
We will now filter a random sequence x=rand(50,1) using a filter with the
impulse response:

h:[lllll]

This filter calculates a weighted mean of five consecutive samples. The
result is expected to be less “turbulent” than the signal we started with. Type:

%===== EXFILTRAND.M

clear; x=rand(50,1); % Input signal x
h=[1/8 1/4 1/4 1/4 1/8]; % Impulse response
y=filter(h,1,x); % Output signal y

plot ([x y1); grid

The result is shown in Figure 4.2.
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Figure 4.2 — Filtering a random sequence with the smoothing impulse response filter
{12221}/8

Definition 4.4 (Step response of a filter)

The step response of a filter is this filter’s output when the unit step (u(n) =
1 when n > 0 and 0 otherwise) is fed into the input. The step response’s
eTpression is:

y(n) = > hik)

k=—o0

In the case of a causal filter, y(n) = > ._o h(k) for n > 0 and 0 otherwise.

Example 4.3 (Step response of an FIR filter)

Consider the impulse response filter 2(n) = Aa”™ for 0 < n < 15 and 0 otherwise.
Tts step response is denoted y(n). Determine the expression of y(n). Use this
to find the expression of A that leads to 1 for n > 15. Write a program that
calculates, with the filter function, the 30 first samples of the step response.

HINT: we have, for n < 15:

For n > 15, y(n) = A(1—a'®)/(1—a). In order to have y(n) = 1 for n > 15,
A has to be set such that A = (1 — a)/(1 — a*®). The higher the value of |al,
the slower the step response will close in on the final value 1, reaching 1t at the
time n = 15. Type the following program:

%===== REPINDIC.M
% Impulse responses
N=16; a=[1/2 3/4 7/8]; HNct=length(a);




106 Digital Signal and Image Processing using MATLAB®

a=ones (l,1)*a; hh=(0:N-1) ’*ones (1,Nct) ;

h=a .~ hh; sigm=sum(h);

%===== The impulse responses are normalized in order

% to compare the rise times

ho=h(:,1)/sigm(1); hi=h(:,2)/sigm(2); h2=h(:,3)/sign(3);
Lrep=30; % Response’s length
tps=[0:Lrep-1]; x=ones(Lrep,1);

%===== Responses with null initial conditions
y=[filter(ho,1,x) filter(hl,1,x) filter(h2,1,x)];

plot (tps,y,’=’,tps,y,’0’); set(gca,’YLim’,[0 1.1]); grid

The results are given in Figure 4.3. [

0 5 10 15 20 25 30

Figure 4.3 — Step responses

4.2 The z-transform

An important tool used in discrete-time linear-filtering is the z-transform for
which we will give the definition, the main properties and a description of
how it is used in a filtering context. Most of the properties mentioned in this
paragraph are given without proof. Some of them will have no direct use for
what follows; however, it is useful simply to know they exist.

4.2.1 Definition and properties

Definition 4.5 (z-transform) The z-transform (ZT) of the sequence {x(n)}
is the function X, () of the complexr variable =z defined by:

+ oo

X.(z)= > w(n)e" (4.4)

n=—oQ

3When there is no possible confusion, we will use X (z) instead of X, (z).
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Jor values of z taken inside a ring described by {z € C : Ry < |z| < Ra},
assumed to be non-empty, and called the convergence area or domain of con-
vergence (Figure 4.4).

The values of z for which X, (z) is equal to zero are called zeros, and the
values of z for which X, (z) diverges are called poles.

Convergence (Z)

T T
N

Figure 4.4 — Convergence area

The properties enumerated in Appendix A4 provide calculation methods
pertaining to the sequence {z(n)} or to the function X, (z).

What should be remembered is that the analytical expression of X, (z) does
not characterize the sequence {x(n)}. What does characterize the latter is the
pair comprising the function X,(z) and a convergence area.

4.2.2 A few examples

The following results can be proved as an exercise, in particular by using the
fundamental formula:

1
— =14 u+tui+- w4 with [ul < 1 (4.5)

1—wu

— Unit impulse:

am:% when 1 =0 A(z) = 1,v: (4.6)
— Unit step:

un)=1(n>0)=U(z) = 1—1ﬁ’ with |z] > 1 (4.7
— Ramp:

r(n) =nl(n>0) = R(z) = L with |z] > 1 (4.8)

(1212
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— Causal exponential:

ec(n) =a”l(n > 0) = E.(z) = with |z]| > |a| (4.9)

1
(1—az"1)’
— Anti-causal exponential:

eg(n) = —a"l(n < —1) = Eu(z2) = , with |z] < |a| (4.10)

1
(1 —az™1)
We are going to prove 4.8 and 4.10. Because of 14.11 and 4.7, we have:

-1
ZdU(z) B z

R(z) = - dz (1—z71)2

which is expression 4.8.
For 4.10 we have:

+ oo
= —Za_pzp +1 with Ja7'z] <1
n=—oo p=0
o, 1
o S 1—alz T (I —az—1)

Fq(2)

Il
|
x
3
w

Note that F.(z) and F4(z) have the same analytical expressions. We can
tell them apart by their convergence areas.

The z-transform and the DTFT

When the unit circle belongs to the convergence area, the DTFT exists. In the
complex plane, the unit circle can be represented by z = e*™f where f varies
from 0 to 1. In that case:

Xz(ezj”f) = Zx(n)e‘zj”"f

n

is also the DTFT of #(n) which we denoted by X(f). The unit circle can
therefore be scaled, in values of f, from f=0for z =1,to f = 1/2for z = —1,
including f = 1/4 for z = j (Figure 4.5). To be less specific, if |z| = 1:

_ arg(z)
f== (4.11)
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f=1/4 (mod 1)
M (z = ¥™)

=172 2o
(mod 1) /=0 (mod 1)

f=—1/4 (mod 1)

Figure 4.5 — Unit circle

4.3 Transforms and linear filtering

Consider again the previous linear filtering. We will refer to the transforms of
the sequences {z(n)}, {y(n)} and {h(n)} as X,(z), Y.(z) and H,(z) respec-
tively, and to their DTFTs as X(f), Y (f) and H(f) (we will assume that all
these functions exist, and in particular that the convergence areas of X, (z),
Y. (%) and H,(z) contain the unit circle). We then have:

Property 4.1 (Filtering relations for finite energy signals)

Consider a BIBO stable linear filter with a BIBO stable impulse response
{h(n)}, meaning that ), |h(k)| < +o0o. In this case, for finite energy sig-
nals {z(n)}, that is to say such that 3", |x(k)|* < +o0o, we have the following
mput-output formulas:

y(n) = (e xh)(n) — 4 )T AN (4.12)
Y (f) = H(HX()

H,(z) is called the filter’s transfer function (TF) and:

H(f) = H.(e¥™) Z h(n)e=2imn (4.13)

n=—0oQ
is called the complex gain or frequency response. Remember relation 2.23:
1/2

h(n) = H(f)eX™Imdf (4.14)
-1/2

Let H(f) = G(f)e??). G(f) = |H(f)]| is called the filter gain, and ¢(f) =
arg(H (f)) is its phase.
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Property 4.2 For a linear filter whose impulse response h(n) is real, we have
H.(z) = H:(z*) and H(f) = H*(=f). In this case, the gain G(f) = |H(f)]
and the real part of H(f) are even functions. Its phase ¢(f) = arg(H(f)) and
its imaginary part are odd functions:
G(f)=G(=f) and ¢(f) = —o(=Ff)
In this case we can restrict the graphical representation of G(f) to f €

(0,1/2).

Property 4.3 (Harmonic response of a linear filter)
Let {h(n)} be the BIBO stable impulse response of a filter, and let {x(n) =
exp(2jmfon)} be the input signal. The expression of the output signal is:

y(n) = H(fo)x(n)
where H(f) =, h(n)e=2™/ 4s the DTFT of {h(n)}.

This can easily be shown by writing:
y(n) = D _h(k)a(n—k)=>_ h(k)exp(2imfo(n — k)
k k
= exp(2jmfon) Z h(k)exp(—2j7fok)
k

Complex exponentials are called the eigenfunctions of linear filters.

In the particular case of a real filter, that is in the case where h(n) is real,
with the input signal z(n) = cos(27 fyn), we obtain, by using the expression
z(n) = (exp(2jmfon) + exp(—2jmfon))/2 and the linearity property:

() = S H(fo) exp(2imfom) + 3 H (= fo) exp(~2jmfon)

Because h(n) is real, H(f) = H*(—f) and therefore:

sn) = o) exp(2infon) + S (fo) exp(~2jmfon)
G(fo) cos(2m fon + ¢(fo))

The output sine has the same frequency as the input sine, but its amplitude
is multiplied by G(fo) and its phase is shifted by ¢(fs).

Consider again the example of the impulse response filter [1 1]. Tts transfer
function is, for any z:

H.(z)=1+ 21
Its complex gain can be expressed:

H(f) = H(e¥™) = 14 7™ = 2797 cos(n f)
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Tts gain is therefore G(f) = 2| cos(nf)| and its phase is:
é(f) =—nf if fe(=1/2,1/2)
You can check that G(f) = G(—f) and that ¢(f) = —¢(—f). These char-

acteristics can be directly plotted using the following program:

%===== GAINPHASE.M
£=[0:.01:1];
gaincplxe=1+exp (-2*pix*j*f) ; % Complex gain

gain=abs (gaincplxe) ;
phase=angle(gaincplxe)*180/pi; % Phase (degrees)
subplot (211); plot(f,gain); grid

subplot (212); plot (f,phase); grid

4.4 Difference equations and rational TF filters

Consider this difference equation (d.e.):
Yn + Q1Yn-1+ -+ apYn_p =boxn + bixn_1+ -+ born_g (4.15)

We will assume that the z(n) are known (n € Z) and that we want to
calculate the y(n). Assuming that the z-transforms of z(n) and y(n) exist,
consider the z-transforms of the two sides of equation 4.15. Using the delay
property, we get:

Y. () (1 taz 4+ apz_P) = X.(2) (bo bz o+ sz_Q)

which leads us to:

Yo(2) bg + b1z~ 1 +~~~+sz_Q _ B(z)

H,(z) = -
(2) X, (2) l4+az7t+---4+apzF A(z)

(4.16)

The system relating the sequence y(n) to the sequence #(n) is therefore a
linear filter with the transfer function H,(z). This proves that linear recursive
equations with constant coefficients perform a linear filtering with rational
fractions (ratios of two polynomials) as their transfer functions.

But what convergence area should we choose? This choice is related to the
way we calculate the solution to the difference equation.

Example 4.4 (First order difference equation) Consider the example:
y(n + 1) — ay(n) = z(n)

If no further information is given, this equation cannot be solved. We have
to indicate the type of solution that we want: causal or non-causal. For these
hypotheses we get:
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1. Causal solution: a value is set at the origin, for example y(0), and y(n—+1)
is calculated based on y(n). We write the successive expressions:

y(1) = ay(0)+ z(0
(2) = a’y(0) +ax(0) +x(1)
y(n) = a"y(0) +a"1x(0)+ - +x(n—1)

2. Anticausal solution: a value is set at the origin, for example y(0), and
y(n) is calculated based on y(n+1). We write the successive expressions:

y(—=1) = y(0)/a—2a(-1)/a
y(-2) = y(O)/a2 — ar:(—l)/a2 —z(-2)

y(=p) = y(0)/a" —z(=1)/a" —--- = z(=p)

In an equivalent way, we can define the convergence area of the z-transform
of the sequence {y(n)} we wish to determine. Depending on whether z is set
such that |z| > « or |z| < «, where « has to be determined, we get a causal
solution or an anti-causal solution, respectively (see properties 4.9 and 4.10).

Example 4.5 (Counterexample: homogeneous first order d.e.)
Consider the difference equation:
yn — oy 1 =0 (4.17)
By changing over to the z-transform of the two sides, we get Y (2)(1 —
e2imfo ;=1 = 0, from which we infer Y,(z) = 0 and hence y, = 0. However,
we can directly check, using the difference equation, that, for any A, the signal
Yn = AeZ™Ion is solution to (4.17). The fact that this solution cannot be found
by changing over to the z-transform of (4.17) is precisely due to the fact that
yn does not have a z-transform.

4.4.1 Stability considerations

We know, first that the possible convergence areas are delimited by poles,
and second that stability is ensured so long as the unit circle belongs to the
convergence area. Hence, a stable solution exists if and only if there are no
poles on the unit circle.
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Theorem 4.3 (Stable solution) A system whose input x(n) and output y(n)
obey the recursive equation:

Un + @1Yn—1+ - -+ apYn_p =bozn + b1z 1+ -+ bgTn_gq
1s a stable filter iof and only if:
Ay =14a1z7 + -+ apz=F #0 when |z| = 1 (4.18)
In this case, the impulse response is the sequence {h(k)} of coefficients of the

Fourier expansion of the rational function H(f) = B(e*™)/A(e*™F), where
B(z) is defined by 4.16, and we have:

y(n) = 52020 o hk)e(n — k)

Causality

When faced with the recursive equation 4.15, we can always solve it “causally”,
by writing:

Yn =botn + izp1+ -+ borp_g — (@1Yn—1+ -+ apPYn-p)

Calculating y(n) requires that we know all the values of x(k) and y(k)
for £ < n. Obviously, this can also be inferred from the transfer function’s
expression. H,(z), given by 4.16 as a function of z (and not of =), is such that
the numerator and denominator polynomials are of the same degree, equal to
max(P, Q). Therefore, because of the properties 14.5, a causal sequence {h(n)}
exists with H,(z) as its z-transform. This solution corresponds, for H,(z), to
the convergence area {z € C: |z| > maxy(|px|)}. Here the py are used to denote
the poles of H,(z), that is the roots of A(z). However, the implementation of
this solution is not necessarily stable. It is stable if and only if the convergence
area contains the unit circle. This gives the following fundamental result:

Theorem 4.4 (Stable and causal solution)
The system whose input x(n) and output y(n) obey the recursive equation:

Un + @1Yn—1+ - -+ apYn_p =bozn + b1z 1+ -+ bgTn_gq
1s a causal and stable linear filter if and only if all of the poles of the transfer
funetion H,(z) = B(z)/A(z) have a modulus that is strictly less than 1, that is
to say if:

Ay =14a1z7 + -+ apz=F #0 when |z| > 1

In that case, the impulse response is such that hy, = 0 for k < 0 and:
yn) =z(n)+he(n—1)+ -+ hgz(n—Fk)+---

Note the importance of the words causal and stable when expressing this
property. It is quite possible for the system described by the recursive equation
4.15 to have, because of theorem 4.3, a stable solution (the convergence area
of H,(z) contains the unit circle) that is not causal.
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4.4.2 FIR and IIR filters

When the polynomial A(z) is only a constant, equation 4.15 can be written:
y(n) = boz(n) + brz(n—1)+-- -+ bgz(n — Q)

which can be seen, according to 4.1, as the convolution of #(n) with an impulse
response that has a finite number of non-zero values. The filter is then called
a Finite Impulse Response filter, or FIR filter. A direct consequence is the
stability of this type of filter, because of the absence of poles.

When the polynomial A(z) is not a constant, and if the rational function
H,(z) is irreducible, the filter is called an Infinite Impulse Response filter, IIR
filter, or recursive filter. The use of this term is justified by the fact that
the value y(n) is calculated not only using the sampled input values z(n),
z(n—1)..., but also the output ones y(n — 1), y(n — 2) ...

The expressions “Infinite Impulse Response” and “recursive” are not equiv-
alent. For example, the following filter I7,(z) has a transfer function that can
be expressed in two different ways:

1—afz=P

Hz(z)Il+az_1_|_..._|_aP—1Z—P+1: :

1—az™
This filter is fundamentally FIR. However, its implementation can be recur-
Sive Or non-recursive:

ay(n — 1) + z(n) — o x(n — P) (recursive)

either y(n)
ory(n) = z(n)+ax(n—1)+---+a""tz(n — P4+ 1) (non-recursive)

Filtering implementation using MATLAB®

The filter function, which we have already used for a finite impulse response
filter, provides what is called the causal solution:

y(n) = boz(n)+bhaen—1)+ - +bgz(n—Q)
~{@r(n— 1)+ + apyln - P)

to the recursive equation 4.15. All you have to do is type:
y = filter(B,A,x);

where A=[1 a1l ... aP] and B=[b0 bl ... bQ].

The output sequence has the same length as the input sequence. The first
term x(1) of the sequence x represents the oldest element. Theoretically, the
calculation requires the @) past values of {z(n)} and the P past values of {y(n)}.
Without any further explanation, these values are considered to be equal to
zero. The problem of the initial conditions using the fourth parameter of the
filter function will be discussed more in depth in paragraph 5.1.1.
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When using the filter function, because it prouvides the causal solution
to the recursive equation, and because a filter must always be stable, it is
imperative that there be no pole with a modulus greater than or equal to
1. Hence we must have A(z) # 0 for |z| > 1.

4.4.3 Causal solution and initial conditions

Consider this example of a recursive equation to which we want to find a causal
solution:

yn+2)+ ary(n+ 1) + azy(n) = z(n+ 1) with n > 0 (4.19)
We can write the successive expressions for n = 0, n = 1...and multiply by
1,271 272

bl

Lox y(2) +ary(l) + azy(0) = «
27 ox y(3) 4 ay(2) + azy(l) = x(2)
z X y(4) + a1y(3) + a2y(2) = &

By summing these relations, we get:
ZZYZ(Z) — zzy(O) —zy(1) + a1 (2Y;(2) — zy(0)) + a2Y,(2) = 2 X, (z) — z2(0)
Hence the ZT of the output is:

z X () + 22y(0) + zy(1) + zy(0) — z2(0)
224 a1z4+ay 224 ayz 4 as

This relation shows two terms. The first one corresponds to the “forced”

Y. (2) = (4.20)

part, or the particular solution to equation 4.19. The second term is the “free”
part corresponding to the solution to the homogeneous equation which provides
the solutions corresponding to the initial conditions.

Generally speaking, if we have:

y(n) +ay(n — 1)+ -+ any(n — N) =boz(n) + -+ byrx(n — M) (4.21)

with n > M where ag and by are constant coefficients, applying the ZT to 4.21,
taking into account the initial conditions, leads to expression 4.22:

bo +brz7t 4o 4 byre™™
X:(2)
1+ayz71 4+ +ayz=N
Po(2)
1+ayz71 4+ +ayz=N

= Y.(z)

(4.22)
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where Pg(z) corresponds to the initial conditions (see equation 4.20). The
quantity:
bo+brz7t 4 ™™
G:(2) = - N
1+az7t+---+anz
is the transfer function (TF). As you can see, the transfer function coincides
with Y, (2)/ X, (z) when the initial conditions are equal to zero.

It can be noted that, because of expression 4.22, simplifying, in the transfer
function, an unstable pole of the system by an “unstable” zero (outside the unit
disk) of another transfer function does not stabilize the system. There is no
reason for applying this simplification to the free part. Consider the following
example with |a| > 1:

X, (2) — ( _AC:)(ZO(Z) . ; _N;)(;)O(Z) — Y, (2)

There 1s indeed a simplification in the transfer function. However, if you
consider the free parts of the two systems with the initial conditions polyno-
mials, Py(z) and P[(z) respectively, the resulting free part is:

Po(2)Po(z)
(= —a)Do(2) A (2)
which remains unstable.

These considerations can be related to structural concepts (see exercise 12.3
in the following chapter) regarding filters, particularly their observability and
controllability, which we will not discuss in this book. Do remember, however,
that the transfer function i1s not enough to characterize the behaviour of a
system defined by the recursive equation, because 1t provides us only with an
input-output relation without enough information to lead to a model for the
system.

Given the method used to solve 4.19, we can consider that finding a causal
solution requires the use of a slightly modified z-transform, called the unilateral
z-transform.

Definition 4.6 (Causal z-transform)
The causal z-transform (CZT) of the sequence {x(n)} is the quantity:

Xoo(z) = 4y 2(n)z" (4.23)
for values of z such that R < |z|.

This is the definition of the z-transform accepted by control engineers who
are used to dealing with causal systems, and who take close interest in transient
states. Among the properties of the CZT, the lead property is fundamentally
different for the two transforms:
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Property 4.4 (Time advance)

z(n+ P)— ZPXZ(Z) — x(O)zP — l‘(l)ZP_l —x(P=1)z (4.24)

The convergence area is unchanged.

Applying this property to a recursive equation y(n+ P)+ajy(n+ P — 1)+
-+-4apy(n) = bpx(n+ P)+--- to which we are trying to find a causal solution
provides the free part of the answer. Using the z(n + P) — zF X, (2) property
only leads to the stationary solution (the one that “started at” n = —oo).

4.4.4 Calculating the responses
Evaluating the impulse response

The filter function can be used to directly plot the impulse response of a
rational transfer function filter from the coefficients of the recursive equation.
Consider as an example the causal and stable filter whose transfer function is:

. 1+ blz_l + b22_2
T 14 azl 4 agz?
with b = 0.7, b5 = 0.6, a1 = 1.5, az = 0.9 and for which you can check that

the two poles are complex, and that each one has a modulus smaller than 1.
To plot its causal impulse response, type:

H,(z)

%===== REPIMPULS.M

N=60; % Number of calculation points
b=[1 0.7 0.6]; % Numerator coefficients

a=[1 -1.5 0.9]; % Denominator coefficients
h=filter(b,a,eye(1,N));

stem(h)

The input signal is a 1 followed by several 0 (eye(1,N)). Obviously this
method is not appropriate if the filter, assumed to be stable, is not causal.

Evaluating a complex gain

In order to calculate the complex gain H, (e2/™/) of a rational transfer function
filter over L points at the frequencies f = k/L with k € {0,--- | L — 1}, we
need to calculate the quantities:

{ 14 aje=2mh/L 4 4 qpe—2imPk/L

bo+b16_2jﬂ-k/L+...+er—2j7TQk/L kE{O”L_l}

Notice that they represent the DFTs of the sequences {1,ay, ..., ap} and
{bo, b1, ..., bg} respectively, over L points. This leads to the following proce-
dure:
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The caleulation of the compler gain of a filter with H,(z) = B(z)/A(z)
as its transfer function over L points is performed by:

H = £fft(B,L) ./ fft(4A,L);

where B and A represent the sequences of the numerator and denominator
coefficients respectively, in decreasing powers of z.

Exercise 4.1 (The rectangular impulse response filter)
Consider an impulse response h(n) = 1/M when n € {0,---, M — 1} and
h(n) = 0 otherwise.

1.
2.

What can be the purpose of such a filter?

Calculate the gain and the phase of this filter. What can you say about
the latter?

. Use MATLAB® to plot the gain, the phase, the index response of the

filter h(n) for several values of M.

Two filters with an impulse response h(n) are arranged in a cascade.
What is the gain of the resulting filter?

4.4.5 Stability and the Jury test

Examining a filter’s stability requires you to know the poles of the transfer
function H,(z). Using the Jury, or Jury-Lee, test spares you the explicit cal-
culation of their value. Tt is applied to the denominator A(z) of H,(z), which
we will express as:

A(z) = apz™ + a1z" P4 ap_12 + an, with ag >0

We now set up the following 2n — 1 line array:

ap ay as e ay ap
QAn An—1 Qp-2 - An—3 - ag
bO bl bn—l
bn—l bn—Z bO

CO Cl e e e -

Ch—2 Cpn_3

q0 q1 q2
q2 q1 qo0
Lol 1
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Lines 3 and 4 are filled out based on the first two lines using b; = aga; —
G ap—;i, then lines b and 6 are filled out using ¢; = bob; — b,,_1b,—;—1, etc. The
necessary and sufficient condition for stability is the following set of conditions:

ap > |ay|
bo| > [br—1]

lgo| > |g2]
o] > |

and all of them have to be satisfied simultaneously. In practice a 2n — 3 line
array must be constructed such that its final values are ¢qo ¢1 ¢2, and the
conditions can then be expressed:

ap > |ay|
A(=1) <0 when n odd |bo| > [bs—1]
A1) >0, { A(=1) >0 when n even and
lgo| > lg2|
You can refer to Appendix Ab for the proof.

Exercise 4.2 (Purely recursive first order filter)
Consider the purely recursive first order filter with the transfer function:
1
Hi(z) = ———
:(2) 1—az"!
1. This filter is assumed to be stable and causal. Determine the convergence
area.

2. By writing H,(z) as the power series Zkezh(k’)z_k, find the impulse
response h(n).

3. Give the expressions of the complex gain, of the gain, and of the phase.

4. Using definition 4.4, determine the expression of the unit step response
as a function of a. Determine, as a function of a, the value of A such that
the unit step response tends to 1 when n tends to infinity.

5. Write a program using MATLAB® that calculates, with the use of the
filter function, the 30 first samples of the index response for a = —2/3,
a=1/2,a=3/4 and a = 7/8. What can you notice?

4.5 Connection between gain and poles/zeros

The positions of the poles and zeros in the complex plane can easily be used
to determine the shape of the gain. First of all, we need to study the transfer
function of the purely recursive second order filter.
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Purely recursive second order filter

Consider the filter whose transfer function coefficients are real:

1 1

H, =
(2) 1+az71 +ayz~2 (I—=prz=1)(1 = paz—1)

We assume that a? — 4a2 < 0, meaning that the two poles are complex
conjugates. They are denoted by p; = pel? and ps = pe=7%. We also assume
that p1ps = p? = as < 1 (the product of the roots is equal to as). Under these
conditions, the poles are inside the unit circle.

Figure 4.7 shows the positions of the poles and the unit circle. The filter
is therefore stable and causal, and its transfer function is H,(z), which will be
associated with the convergence area |z| > p. We will now calculate its impulse
response. We need to rewrite the transfer function:

H.(z) = ! ! ( n_ P2 )

(I—prz= (1 —paz=l) ~ pr—p2 \l—prz=l 1 —pyz?

with |z| > p. By applying formula 4.5 to the two fractions in z~! of the right
side and by isolating the coefficient of 27", we get for n > 0:

PPyt sin((n +1)0)
=p -
p1—p2 sin(f)
We plotted in Figure 4.6 the impulse response of this filter obtained with
the program repimp2.m, for p = 0.96 and 6§ = 7/12:

h(n) =L

%===== REPIMP2.M

N=60; % Number of calculation points
tps=[0:N-1]; % Time vector

theta=pi/12; rho=.96; 7, Parameters

%===== Direct calculation of the response

rep=rho .” tps .* sin((tps+l)*theta) / sin(theta);
stem(tps,rep); grid

The impulse response is a “damped sine”.

The farther away the poles are from the unit circle, the faster the impulse
response will decrease to zero (it decreases like p™). The filter “forgets” the
past faster as p is closer to 0. We can therefore define a time after which the
memory is “almost completely” gone, by calculating the index ng such that
p"% can be considered to be negligible, meaning that p”® becomes < ¢.

Let n = log(g), we have:

oy
" Tog(p) (4:29)

This result is common to many situations: we can consider that an IIR filter
which, in theory, has an infinite memory of the past, has an “almost finite”
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0 10 20 30 40 50 60

Figure 4.6 — Impulse response of a second order filter whose two conjugate complex
poles have a modulus p = 0.96 and a phase § = 7 /12

memory that becomes shorter as the poles move away from the unit circle.
This duration corresponds to the time the filter spends “forgetting” the initial
conditions, and to get close enough to asymptotic behavior.

Let us now study the gain using the position of the poles. First, notice that
the gain:

: 1
G(f) = |H.(e¥™)| = —————
() = [H-(2")] = S5 s
where M represents a point on the unit circle with the affix ™/, and P1 and
P2 the poles with p; and py as their respective affixes. We then see (Figure
4.7) that as MP1 decreases, G(f) increases. Consider, as an example, the case
of a denominator:

A2) =1-0.82"1 4+ 0.4272

The purpoles.m program gives the position of the poles on the complex
plane (Figure 4.7).

%===== PURPOLES.M

mycircle=exp (2xpixj*[0:100]/100);
plot(mycircle); hold on

plot(roots([1 -.8 .4]),’x’); hold off; grid
axis(’square’)

The gain plot is represented in Figure 4.8. As an exercise, you can check
that, if:

—a1(1 4+ a2)

1
4&2 <

-1«
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Figure 4.7 — Position of the poles on the complex plane for a purely recursive second
order filter with a; = —0.8 and ax = 0.4. We can graphically evaluate the gain as the
tnverse of the product MPyx MP;

0 005 01 015 02 025 03 035 04 045 05

Figure 4.8 — Gain of a purely recursive second order filter with a; = —0.8 and
az = 0.4. Notice the resonant frequency as well as the overvoltage

the gain shows a maximum at the frequency:

_ 1 —a1(1 + Clz)
fr = o, arccos (T) (4.26)

The frequency fr is called the resonant frequency. The value G(fr) of the
gain at resonant frequency is:

4&2
(1 — a2)?(4as — a?)

G(fr) =

Let the input signal be z(n) = £ cos(2n frn). According to property 4.3, the
output signal’s expression is y(n) = G(fr)e cos(2w frn+ ¢o). If G(fr) is much
greater than 1, the amplitude can reach catastrophic values (like the ones, due
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to the wind, that caused the suspender cables on the Tacoma bridge to snap,
in November 1940, only four months after its inauguration).

Exercise 4.3 (Purely recursive second order)

Consider a purely recursie second order filter whose transfer function has real
coeflicients:

B 1

T 14 azl 4 agz?

H.(2)

1. Sketch the gain in decibels of a second order cell whose poles are given
by p = pel? for p = 0.9 and for different values of ¢.

2. Do the same thing for different values of p, ¢ remaining constant.

3. Study the stability, in the sense of “bounded input - bounded output”,
as a function of a@; and as by applying the Jury test presented on page
118.

General second order filter

We now add two complex conjugate zeros to the purely recursive second order
filter, to see how the frequency response is changed. The transfer function can
be expressed as:

(1= 21271 (1 — 29271)
(I =prz=)(1 = p2z71)

By limiting ourselves to the case, which is actually very frequent, of zeros
chosen on the unit circle, we get a gain equal to zero at the frequency fo = o/27
where « refers to the argument of z;. Such a gain is represented in Figure
4.9. The value of a verifies 2cos(ev) = —1.1, which leads us to the gain’s
cancelling frequency fo = «/27 = 0.3427. Choosing to put the zero outside of
the bandpass reduced the gain’s value in the frequency band where the gain
was already small.

H.(2) =

Example 4.6 (Resonance and rise time)
Consider a purely recursive second order filter with the following transfer func-
tion:
1
H.(2)

1 +ayz7t 4+ agz—2

1. The poles are assumed to be complex with a given modulus p. Using
4.26, determine a1 and as such that the resonance frequency is fr = 0.1.

2. Derive the value of the gain G at the resonant frequency.
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Figure 4.9 — Gain of a second order filter with two zeros on the unit circle: ay =
—0.8, az =0.4. by = 1.1, bo = by = 1. Canceling frequency of the gain fo =~ 0.3427

3. Let the input signal be a sine signal z(n) = Gx'sin(27fgn). Determine
the output signal’s expression.

4. Let the input signal be a “causal sine”:
z(n) = Gl,_%1 sin(2r frn)1(n € N)

Write a program that plots the output signal y(n) for values of p from
0.99 to 0.999. What happens when n tends to infinity?

5. What connection is there between the convergence time and the position
of the poles?

HINT:

1. Because the poles are complex as = p?. Using 4.26 we obtain:

cos(27fR) (4.27)

al:_1—|—az

2. The gain is given by Gg = |1 + aje™?™/r 4 qoe4mifr|~1

3. Because of theorem 4.3, if the input signal z(n) = Gx'sin(27fon),
the output signal’s expression is y(n) = sin(2nfrn + ¢r) where ¢p =
arg(IT. (2731)).

4. Type:

%===== CTERES.M
clf; clear all; figure(1)
tho=[0.98:0.001:0.999]; fR=0.1; expfR=exp(-2j*pi*fR);
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a2=rho."2; al=-4*a2*cos (24pi*fR) ./(1+a2);
HRml=1+expfR*al+expfR"2 *a2;
GRm1=abs (HRm1) ; phase=angle (HRm1) ;
N=4000; mtime=(0:N-1); x=sin(2*pi*fR*mtime) ; % Input signal
for k=1:1length(rho)
AA=[1 a1(k) a2(k)];
set (gca,’ylim’,[-1.1 1.1],’x1im’, [0 30])
xe=x*GRm1(k); y=filter(l,AA,xe); % Filtering
plot (mtime,y); grid; title(sprintf (’rho=%5.3f’,rho(k)));
set (gca,’ylim’,[-1.1 1.1])
pause(0.1)
end

Notice that when n increases, the filter’s output ends up tending to the
sine y(n) with the amplitude 1. Everything works as if, after a while, the
filter has “forgotten” the initial conditions.

5. Tt should also be noted that the closer the pole gets to the unit circle, the
longer 1t takes the filter to reach its asymptotic behavior. As we saw on
page 120, expression 4.25 makes it possible to evaluate the rise time.

Generally speaking, as the amplitude of the resonance peaks increases, the
time constant increases. As a consequence, a small amplitude input can lead to
a high amplitude output so long as the energy is provided at the right frequency.
This is what happened to the Tacoma bridge because of the wind. [

Exercise 4.4 (Suppressing a sinusoidal component)

The rejection problem discussed in this exercise can be solved by using the
location of the poles and zeros in the complex plane. We wish to suppress the
frequential component f = fy. The first idea that comes to mind is to place a
zero on the unit circle at the frequency f = fy. Because we want a real transfer
function, we also need the conjugate zero. The numerator can be expressed as:

N, () =(1- ezjﬂf”z_l)(l — e_zj”foz_l)

If we restrict ourselves to this transfer function, the gain is too far from 1
for other frequencies than fy. This is why a pole 1s placed close to each zero.
Here we are going to impose pe®™fo and pe=2/™/o with p < 1 and ~ 1. Thus,
when z = €%/ is far away from the “pole-zero” pairs, the gain is roughly equal
to 1. We have MP ~ MZ and MP ~ MZ (Figure 4.10).

Consider now the second order filter with the transfer function:

1—2cos(¢)z=t 4+ 272
1 =2pcos(¢)z=1 4 p?z—2

H.(z) = Hy (4.28)

where p < 1, p = 1 and Hy such that (1) = 1.



126 Digital Signal and Image Processing using MATLAB®
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Figure 4.10 — Graphic interpretation of the gain

1. Write a program that plots the frequency response of this filter.

2. By making the approximation 27 f & ¢ in the neighborhood of the reso-
nant frequency, determine the expression of the frequency interval’s width
for which the attenuation is higher than 3 dB (decibels).

3. Download ([x,Fs] = wavread(’phrase.wav’);) an audio file sampled
at 8000 Hz. Add to the signal a sinusoidal component at 500 Hz.

Perform the filtering of the signal by using the filter function with
the filter H,(z) previously defined. Check that the 500 Hz peak was
suppressed by looking at the spectra of the original signal and of the
processed signal.

4. Instead of the filter defined by 4.28, let us consider the filter the transfer
function of which is the following:

1(1 2y _ 4 -1 1 2\,—2
2 1 —2pcospz=1 + p2z—2
(a) Verify that the gain is equal to 1 for f =0 and f = 1/2.
(b) Verify that, if the zeros are e*7?:
g = 2pCosy (4.30)
cosfl = ——— .
(14p7)

(c) Write a program that draws the poles and zeros of 4.28 and 4.29 in
the complex plane for a few values of p.

(d) Write a program that draws the gain of 4.29 for the same values of
p.
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A description of the gain of a filter

In many practical cases, we have to describe a filter based on its frequency
behavior. The frequency band is often partitioned in three zones (see Figure
4.9):
— the passband is the frequency band where the gain’s values belong to the
interval (1 —J,,14,), where §, 2> 0 is the passband ripple level;

— the stopband is the frequency band where the gain’s values are less than
dq, where 6, 2 0 is the maximum allowed value for the ripples in the
stopband,;

— the transition band is the area where the filter is “moving” between the
stopbands and passbands.

Figure 4.11 illustrates these points for a passband filter with characteris-
tics of mediocre quality, whereas Figure 4.12 illustrates the case of a lowpass
Butterworth filter (see paragraph 4.7.3).

Transition Transition
band band
Stopband

(dB) b
ob Lt
Ripples /!
—10 === o
70 ) Y R B W

' Passband
=30 p-oo- AN

P U o (S S
0 01 02 03 04 05

Figure 4.11 — Specification constraints and positions of the poles and zeros for a
passband filter

Summing up the temporal and spectral aspects of filtering

You will find in this paragraph a certain number of properties that must be
kept in mind:
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09

Figure 4.12 — Specification constraints and positions of the poles and zeros for a
low-pass Butterworth filter (paragraph 4.7.3)

— The impulse response of an FIR filter has a finite length.

— The impulse response of an IIR filter is the sum of “damped sinusoids”
(when there are complex poles) that decrease exponentially, decreasing
faster as the poles are closer to the unit circle. The decrease duration, or
time constant, has the same order of magnitude as 1/log(par) where pas
denotes the modulus of the pole with the highest modulus.

— A pole very close to the unit circle means an important gain at the reso-
nant frequency, which is roughly equal to arg(p)/2n.

— The angular part of the complex plane where the poles can be found
corresponds to the bandwidth. Depending on where the poles are, the
filter can be low-pass, high-pass, or band pass. These names mean that
the filter allows low or high frequencies, or a given band of frequency
components respectively, in the input signals to pass.

— The higher the number of poles, the more the bandwidth ripples can be
attenuated. A simplified way of seeing it is to imagine that as z travels
along the unit circle, the overvoltages associated with each pole do not
have the time to dampen.

— The angular part of the complex plane where the zeros can be found
correspond to the stopband.
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— The higher the number of zeros, the more the stopband ripples can be
attenuated.

— In the case where there are zeros on the unit circle, the gain is equal to
zero at the corresponding frequencies.

— A low-pass filter reduces the high frequency components making the tran-
sitions in the temporal domain smoother.

4.6 Minimum phase filters

Minimum phase filters have some optimality properties, particularly in terms
of response time. Before studying these properties the reader must first be
introduced to the concept of all-pass filters.

Definition 4.7 (All-pass filter) An all-pass filter is a stable filter with a gain
equal to 1.

Theorem 4.5 Let {by} be a sequence of N complex values with their moduli
smaller than 1. This means that the filter whose transfer function is:

N

27— b 1—b52

1s an all-pass, stable, causal filter and verifies:

<1 if |z >1
1P()[{=1 o [z]=1
>1 if |z|<1

All you have to do is check it for the term Py (z) = (1 —b52)/(z — by). First,
by taking z = e*™f  we get:
1 — bre?ims gins €T —b%
e2imf _ b = e e2imf _ b
the modulus of which is 1 (the modulus of the ratio of two complex conjugate
numbers is equal to 1). For |z| < 1, notice that |P,(0)] = 1/|bs] > 1. This
means we necessarily have |Px(z)| > 1 for |z| < 1, otherwise this would contra-
dict the maximum theorem [20] for holomorphic functions. When |z| > 1, the
same argument is used after noticing that |Py(1/2*)| = 1/|Pk(2)|.
Moreover, because the poles are strictly inside the unit circle, the filter 1s
stable and causal.
How are the zeros and poles of H,(z) placed? Again, all we have to do
is limit ourselves to the term (271 —b5)/(1 — by2~1). The pole is in px = b
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and the zero is in z; = 1/b}. The moduli of the complex values py and z
are therefore the inverse of one another, and their phases are the same. In the
complex plane, the two points are therefore the transforms of one another by
the inversion centered in O with a ratio of 1 (Figure 4.13).

by b

Figure 4.13 — Positions of poles and zeros in an all-pass filter

Exercise 4.5 (All-pass filter, properties of the maximum)
Prove geometrically, using the properties of the inversion, the property stated
in theorem 4.5.

Exercise 4.6 (All-pass filter)
Consider an all-pass filter. The input and output sequences will be denoted by
z(n) and y(n) respectively.

1. Show that S35 jx(n)]2 = S35 Jy(n)|.

n=—0Q n=—oQ

N l2 ()] >

n=—o0Q —_

2. Show that an all-pass causal filter verifies, for any N, >°

S ()]

Theorem 4.6 Let H,(z) be the rational transfer function of a stable and causal
filter. If we transform, by the wnversion centered in O with a ratio of 1, the
position of any zero, we get a stable, causal filter with the same gain.

If we denote by z; a zero of H,(z) and consider the transfer function:

-1 *
z -z

Fo(2) = H.(2) T

1— 212~

Because the poles have not moved, the filter whose transfer function is F,(z)
is stable and causal. However, the numerator has changed, but according to

4.5:

[F.(57)] = |H (7))
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To put it simply, if |z1| > 1, we made the zero go from outside the unit
circle to inside it, and without changing the filter’s gain. If we assume that
H,(2) has @ zeros, then there are 29 ways of placing them, either outside or
inside the unit circle. All the resulting filters have the same gain, but different
phases.

One of them, the filter with all its zeros inside the unit circle, plays an
important role. It is called the minimum phase filter.

Definition 4.8 (Minimum phase) A stable and causal filter is called a min-
wmum phase filter iof all the zeros of its transfer function, assumed to be rational,
are strictly inside the unit circle. Notice that the inverse filter is also a stable,
causal and minimum phase filter.

Often when designing a rational filter with @) zeros and P poles, the only
information given is the frequency gain. It i1s implicit that the filter is stable,
causal and minimum phase, making the solution unique.

Exercise 4.7 (Minimum phase filter)

If the numerator of the rational function B(z)/A(z) has @ zeros, there are 29
ways of placing them, either inside or outside the unit circle, without chang-
ing the modulus of B(e2™)/A(e2™). If A(z) # 0 for |z| > 1, the impulse
responses associated to all these rational functions are causal and stable. In
this exercise, the index m refers to the causal, stable, minimum phase filter
(all the zeros are inside the unit circle), whereas the absence of an index refers
to one of the (29 — 1) other causal and stable filters G(f) with the same gain
|G(f)] = |Gm(f)]. The responses of the filters G, (f) and G(f) to the signal
z(n) are denoted ym, (n) and y(n) respectively.

1. Show that if #(n) is causal, then |y, (0)| > |y(0)|.

2. Show that S0 |ym ()] > 0 [y(n)]%.

The results of exercise 4.7 show that, among all the causal and stable fil-
ters with the same gain, the minimum phase filter is the one with the fastest
response.

Definition 4.9 (Group time, phase time)
The phase delay at fy is the quantity (its dimension is time) given by:

__1 M‘
T¢(f0) - I f f=1o
The group delay in fo 1s defined by:
_ 1 de(f) ‘
)= o 4 p=r,
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Among all the filters with the same gain, the minimum phase filter is the
one with the lowest phase delay and the lowest group delay.

As an example we will demonstrate the group delay property: since the
zero b = |ble?/™/b contributes the factor 1 — b2~! to the transfer function, the
corresponding phase contribution is ¢5(f) = arg(l — be=27/). Then ¢,(f)
contributes the following to the group delay:

~ Ldeu(f) |b] — cos(27(f — f))
20 df  |bl+ b=t — 2cos(27(f — fu))

(4.32)

The denominator and f; are invariant by reflecting the zero b outside of the
unit circle. However, by reflecting b outside of the unit circle, the magnitude
of [b] in the numerator of (4.32) is increased. Thus, having b inside the unit
circle minimizes the group delay contributed by the factor (1 — bz~1). We can
extend this result to the general case of more than one zero since the phase of
the multiplicative factors of the form (1 — b;271) is additive.

The following example gives an explanation for the names group delay and
phase delay.

Example 4.7 (Group delay, phase delay)

Consider the complex signal z(n) = m(n) exp(2jnfon). #(n) can be seen as a
sine with the frequency fy; and its amplitude modulated by m(n). This signal
is the input for a complex gain filter exp(j®(f)).

We assume that the frequency fy is greater than the bandwidth B of the
signal m(n). Hence X (f) fills up a very narrow B frequency band around fy.
It is then justified to approximate ® by its first order series expansion around
fo. By assuming that 7, is an integer (or the closest integer), determine the
output signal’s expression as a function of m(n), Ho, 74, 74 and fo.

HINT: with ®(f) ~ ®(fo) + (f — fo)®'(fo) and definition 4.9, we have:
H(f) = Hoexp(j®(f)) ~ Hoexp(j®(fo) +j(f — fo)®'(fo))
= Hyexp(=2jmfory) exp(=2jm7y(f — fo))
We also have X (f) = M(f — fo), hence:
Y(f) = Hoexp(—2jmfory) exp(=2jmry(f — fo))M(f — fo)

According to the delay property, the term T'(f) = exp(—2jnr, f)M(f) is
the DTFT of the sequence m(n — 75). Therefore, the term T'(f — fo) is the
DTFT of the sequence m(n — 1) exp(2jmfon). If we multiply by the term
Hyexp(—2jnfors) which is independent from f, we get:

y(n) = Hoexp(—2jnfory)m(n — 1) exp(2jmfon)
= Hom(n — 1) exp(2jmfo(n — 74))
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In the end, we have:
m(n)exp(2jmfon) — Hom(n — 75) exp(2jmfo(n — 74))

The envelope is, on the whole, delayed by 7,, hence the name group delay,
and the phase of the carrier is shifted by 7. This result can easily be extended
to the signal z(n) = m(n)cos(2wfon). All we need to do is decompose the
cosine as two exponentials, one around — fy, and the other around + fy, [

4.7 Filter design methods

The methods explained in this paragraph make it relatively easy to design
the most common filters. We will only be using the window method and the
methods taken from “discrete-time” to “continuous-time” transformations.
The first paragraph shows the relation between the gain of a given
continuous-time filter and the gain of the digital filter that implements it.

4.7.1 Going from the continuous-time filter to the discrete-time fil-
ter

Consider a filter whose impulse response is h(t) with the continuous-time input
signal z(¢). The output signal is denoted by y(¢). The Fourier transforms of
z(t), y(t) and h(t) are denoted by X (F), Y(F') and H(F) respectively.

H(F)
Input x(1) Continuous-time | Output y(#)
system
ys(n)
[apc S e e
Hyf e
xs(n) Discrete-time ¥s(m) T
system

Figure 4.14 — Comparing the outputs at sampling times

Consider H(F). We are going to try and find a discrete-time filter with
an impulse response hs(n), which would have the samples y;(n) = y(nT) of
the signal y(¢) as its output when it has the samples #,(n) = z(nT) as its
input. In order to do this, we are going to calculate on one hand the DTFT
of the output samples of the digital filter’s output, and on the other hand the
DTFT associated with the output samples of the filter. By making these two
expressions equal, we obtain a relation between the two filters.

The discrete-time filter output samples we are trying to determine will be
denoted g, (n). Using obvious notations, the DTFT of g, (n) is given by:

Yo(f) = Hi ()X (f) (4.33)
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Because, by definition, H(f) is periodic with period 1, the function f](f),
defined on (—1/2,41/2) by H(f) = Hs(f)1(f € [-1/2,1/2]), is such that:

= H(f -k

To put it more graphically, f[(f) represents the truncated pattern of the
function H(f) in the (—1/2,1/2) band. Using formula 2.25 (see page 70),
which gives us X (f) as a function of X(F'), 4.33 can also be written:

ZHf k) ZX (f = k)F (4.34)

If we now assume that (¢) is (—F;/2,+F;/2) band limited, which hap-
pens in practice when an anti-aliasing filter 1s used before the analog-to-digital
converter, X (I") = Y, X(F — kF)I(F € (—F;/2,+F,/2)). In this case, the
truncated pattern of ", X(F — kF;), in the (—F,/2,+F,/2) band, coincides
with X (F) and expression 4.34 can also be written:

_ %Zf](f — K)X((f = k) Fy) (4.35)

As for continuous-time, we have Y(F) = H(F)X(F), and therefore, by
using once again formula 2.25, the DTFT of the sequence y;(n) = y(nT') can
be expressed:

ZY (f —k)F ZH (f=k)FO)X((f —k)F,) (4.36)

In order for 4.35 and 4.36 to coincide, we need:
H(f) = H(FF)U(S € (=1/2,1/2))
Hence the method for constructing the gain H,(f) from H(F):
— H(F) is truncated at the interval (—F;/2,+F;/2).
— The frequency scale 1s normalized by dividing by Fj.
— The resulting function is periodized* with period 1.

Once the function H,(f) has been determined, creating and implementing
it requires certain techniques, some of which are given in this chapter (see
exercise 4.11). Example 4.8 shows an application for which the filtering is
applied directly to the frequency.

4If the resulting function shows jumps such that X(f;) = a~ and X(f(;l') = a¥, the
condition X (fo) = (a~ + at)/2 is set for continuity reasons.
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Example 4.8 (Analytical signal)

As a reminder (see example 1.1), the analytical signal z(¢) associated with the
continuous-time real signal z(¢), is obtained by filtering x(¢) using the filter
with 2U(F) as its complex gain, where U(F) is the unit-step function, equal
to 1if FF > 0 and 0if F < 0.

We also saw in the same example that #(¢) was the real part of z(¢) and
that the Hilbert transform of x(t) was defined as the imaginary part of z(t):

1.

Using Z(F) = 2U(F)X(F) as the frequency’s expression, find the
discrete-time filtering that creates the samples of z(¢) by working with
the samples of the signal z(¢).

. We want to perform the frequency filtering Z(F) = 2U(F)X(F'), using

the DFT. What problems are we going to be faced with?

. Write a program that calculates the analytical signal of the real signal

z(n) resulting from the sampling of #(¢). Name this program siganal.m.

Use the function created for plotting the impulse response of the Hilbert
transform response, by typing siganal([zeros(32,1);eye(1,32)]).

. Record a speech signal, sampled at F; = 8,000 Hz. Using the previous

function, calculate its Hilbert transform. Visualize the signal, then listen
to 1t.

HINT:

1.

The analytical signal is obtained by applying the filter with the gain
H(F)=2U(F) to the real signal x(¢). Because we are working with the
sampled signals, the filter’s gain is, in the interval (—1/2,+1/2):

0 when —1/2< f<0
H(fy=<1 when fe{0,1/2}
2 when 0< f<1/2

The rest of the function H(f) is obtained by periodizing the expression
above with period 1.

. In the expression Y;(f) = H;(f) X5 (f), substituting the DFTs for DTFTs

leads to replacing a linear convolution with a circular convolution. In
practice, if the signal block on which the DFT is calculated is much
greater than the duration of the filter’s impulse response, the resulting
error 1s small, except at the beginning and at the end of the block. This
implementation can therefore be used since the impulse response of the
analytical filter decreases like 1/n.
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3. We are going to perform an L length DFT on the considered block signal.
As z(n) is the real part of the analytical signal z(n), as in the continuous
case, we have to verify Hay (k) + Hip(—k mod L) =2 for k=0to L—1.
We then multiply by 2 the portion of the DFT that goes from the indices
2 to L/2 (positive frequencies), by 0 the portion of the DFT that goes
from the indices L/2 + 2 to L (negative frequencies), and finally by 1
the terms for the indices 1 (zero frequency) and L/2+1 (frequency 1/2).

Type:

function sa=siganal(x)

hh %
%% Calculating the analytical signal of a real signal %
%% Synopsis: sa=SIGNANAL(x) %
o x = real signal VA
Wh sa = analytical signal associated with x %
o %

x=x(:); N=length(x);
xf=fft(real(x));

if rem(N,2)==

twoUf=[1; 2%ones(N/2-1,1); 1; zeros(ll/2-1,1)]1;
else

twoUf=[1; 2%ones((N-1)/2,1); zeros((N-1)/2,1)];
end
saf=xf .* twoUf; sa=ifft(saf);
return

4. We can now check the 1/n decrease of the Hilbert transform filter’s im-
pulse response. Type:

Y%===== RIHILBERT.M

clear; L=32;

%===== Impulse response of the analytical filter
riA=siganal ([zeros(L,1);eye(L,1)]1);

%===== Impulse response of the Hilbert filter

riH=imag(rid);

hyperbola=zeros(L,1); hyperbola(2:2:L+1)=(2/pi) ./ (1:2:L);
hyperbola=[0;-hyperbola(L:-1:2) ;hyperbolal;

stem(riH, ’x’); hold on; plot(hyperbola,’r:’); hold off

The imaginary part of the result is assumed to be equal to the Hilbert
transform. A direct calculation of the inverse DTFT of —jsign(f) leads
us to 2/nm if n is odd, and 0 otherwise.

5. Type:

%===== HILPHRASE.M
clear; load phrase
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yhilb=imag(siganal(y));

subplot (211), plot(y); grid
subplot (212), plot (yhilb); grid
goundsc (yhilb,8000) ;

By looking at the graph of the signal resulting from the Hilbert transform,
you can notice important modifications compared with the original signal, even
though the signal remains perfectly clear when listened to. This is sometimes
explained by saying that the human ear is mainly sensitive to the Fourier
transform’s modulus rather than to its phase, and it just so happens that the
Hilbert transform filter’s gain is equal to 1, hence the input and output Fourier
transforms have the same modulus. [

4.7.2 FIR filter design using the window method

The window method allows us to design finite impulse response filters, based
on an ideal frequency response. This implementation always leads to unwanted
ripples in the frequency response. Furthermore, the calculation time during a
filtering operation, expressed as a number of MAC operations (see footnote on
page 77), is usually much greater than for an equivalent ITR structure.

Its main advantage is that the calculation of the coefficients is simple.
Other, more complex algorithms (Remez)[9], use optimization criteria, such
as a separate setting for passband and stopband ripples.

We will start with an example.

Linear phase FIR filter

Most of the time, the window method is used to satisfy the linear phase con-
dition, which merely corresponds to a delay (see property 14.2 of the TFTD).
For “audio” applications, this property is often required to make sure the fil-
tered signal maintains a certain level of quality. It is related to the coefficient
symmetry property. To understand this, consider the impulse response {h(n)}

such that h(n) = h(P —n) for n € {0, ..., P} and h(n) = 0 otherwise. We
then have:
HU) = hO) R

—|—h(P _ l)e—ZjW(P—l)f + h(P)e—Zjﬂ'Pf
= Qe_j”Pf(h(O) cos(mPf) + h(1)cos(m(P —2)f)+ )

This expression shows that the phase of H(f) is ®(f) = 7 — Prf or ®(f) =
—Prf depending on the sign of the real term between parentheses. The filter
is then called a linear-phase filter. It can easily be checked that taking h(n) =
—h(P — n) leads to a similar result.
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In practice, in order to satisfy the symmetry properties, there are two possi-
bilities, depending on whether the impulse response we are trying to determine
has an odd or an even number of coefficients.

We will illustrate this with a simple example: consider a filter we want to
create, the gain of which is represented in Figure 4.15, and called a half-band
filter (notice that H(f)e~™/ also obeys this property).

H(f)

P

-1/2  -1/4 /4 172

Figure 4.15 — Ezample: half-band filter

1. If N is odd, the coefficients are given by:

) = 1/2 H(f)ezjﬂ—nfdf _ /1/4 el g — sin(nw/2)
—1/2 —1/4 nmw

The moduli of the terms of this infinite length sequence decrease with n.
Keeping only N terms introduces an error in the filter’s output signal. In
our example with N = 15, there 1s some justification for keeping only the
terms for the indices from n = —7 to n = +7. Hence this filter is non-
causal. When performing real-time filtering, the impulse response has to
be delayed by 7 samples to ensure causality. This leads to an equivalent
output delay of (N — 1)/2 samples.

Causal implementation gives the finite impulse response:

n 0 1 2 3 4 5 6 7
1 1 1 1 1
hn) |l=7 0 5 0 -5 T 2
n 8 9 10 11 12 13 14
1 1 1 1
hin) || = 0 -5 w0 =7
The filter’s complex gain is:
1 1 . 1 . 1 . 1 )
H - _ = —4jnf - _=8jnf ~ 125 f - —l4jnf
(%) T 571'6 371'6 + 71'6 t3¢
1 —16j5nf 1 —205nf 1 —245nf 1 —28jnf
+7re 371'6 + 571'6 771'6

. 2 2
— o l4nf [ _ 2 —
—e ( — cos(l4mf) + o cos(10mf)

_3% cos(6mf) + %COS(QTFf) + %)
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Its phase is linear, and given by ®(f) = A — 14nf, where A equals 0 or
m, depending on the sign of the term between parentheses.

2. If N is odd (see Figure 4.16), the coefficients are given by:

1/2 ) )
/ [H(f) —]7Tf:| 2]7Tnfdf / —]7Tf62]7rnfdf
1/4

—1/2
sin((2n — 1)m/4)
(2n—1)m/2

MT o x1d T

T T

-4 -3-2-10 -3-2-10 3

Figure 4.16 — Half-band filter: comparison of the impulse responses in the odd case
(a) and in the even case (b)

With N = 6, the indices n from —2 to +3 are kept. The causal imple-
mentation consists of designing the finite impulse response filter:

n || O 2 3 4 b
hn) | -2 £ L L2 @ f

This linear phase filter has the complex gain:

242 . 1 1
H(f) = ie_f)]ﬂ'f <_3 cos(br f) + 3 cos(3rf) + cos(ﬂ'f))
71'
Type
%===== EVENODD.M
Lfft=512; freq=[0:Lfft-1]’ / Lfft;
%===== 0dd case

N=11; K=(N-1)/2; idx=(-K:K);

hi=sin(idx*pi/2) ./ idx / pi; hi(K+1)=.5; hi=hi/sum(hi);
Hif=abs (fft (hi,Lfft));

%===== Even case

N=12; K=N/2; idx=2*(-K+1:K)-1;

hp=2%sin(idx*pi/4) ./ idx / pi; hp(K)=.5; hp=hp/sum(hp) ;
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Hpf=abs (fft (hp,Lfft));

== Drawing the gains

plot(freq,Hif,’-’,freq,Hpf,’-b’)

== Drawing the theoretical frequency response

hold on; plot([0 0.25 .25 .5],[1 1 0 0],’:’); hold off
set (gca, ’XLim’, [0 1/2]1); grid

Algorithm

To sum up, the window method comprises the following steps:

Steps:

1. Consider the compler gain H(f) we want to implement and the num-
ber N of the filter’s coefficients.

2. The coefficients h(n) are determined by:

h(n) = 15, H(F)eX ™ df if N is odd
h(n) = _152 H(f)e ImT 2™ df if N is even

and we then calculate N values symmetrically spaced-out around n =
0.

3. If needed, the resulting sequence is multiplied, term-by-term, by a

sequence w(n) called a weighting window.

Figure 4.17 shows a comparison of the answers calculated by the evenodd.m

program.

Type of filters obtained with weighting windows

Up until now, we have designed two types of filters for which the frequency re-
sponse was 1 or e=/™/. We also could have considered a complex gain sign(f)
or sign(f)e~I™/ . If we assume that we have made the impulse responses {h(n)}
causal, we end up with four possibilities, four types, depending on the charac-
teristics of the impulse responses:

1. type I: N odd and h(n) = h(N — 1 — n);

2. type II: N even and h(n) = (N — 1 —n);

3. type III: N odd and h(n) = —h(N — 1 — n);
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N—12
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0 005 0.1
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Figure 4.17 — Half-band filter: frequency response for N = 11 and N = 12

4. type IV:

We will denote by P =

N even and h(n) =

—h(N —1—n).

[ N/2] the integer part of N/2:

1. In the first, by a direct calculation:

—27inf 4 h(

Z_: h(n)e
Z_: h(n)e

—27inf 4 h(

e~ TIN-1)f Hi(f)

N-1
P)e_%jpf—l— Z h(n)e

n=P+1

—27T]Pf + Z h

—27inf

—27T]N 1—-m)f

e~ TIIN=1)f (22]1 ycosmf(N —1—2n)+h(P))

Hi(f) is the resulting filter when the coefficients h(n) are chosen sym-
metrically about n = 0 (hence before making the sequence causal). For
a low-pass, as we have already seen, the result is:

h(n)

fe

/

Ae2mind qf = A%
fe

in(2mnf.)

nmw



142 Digital Signal and Image Processing using MATLAB®

2. In the second case:

P-1 ' N-1 '
Z h(n)e_zmnf + Z h(n)e_zmnf
e~ mIN=1)f (22/1 ycosmf(N —1—2n))

= e W=D HL(f)

H([)

For a low-pass, we get:

fe .
h(n) = / Ae=ImF?mint g — Asm(2ﬂ'nfc —7fe)
~fe nr— /2

3. In the third case A(P) = 0 and:

P-1 N1
H(f) = Z h(n)e_%j”f +h(P)e_27Tij + Z h(n)e—%jnf
n=0 n=P+1

e~ mIN=1)f (2]2/1 ysinwf(N —1—2n))

— e TIN= 1)fHIII(f)

For a low-pass (defined by |H(f)| = 1), we get:

fe
by = [ g4 sign(pyermnt i = 4B =L

—fe nm

H(f) shows a “discontinuity” at the origin (gain = 0 for f = 0).

4. In the fourth case:

P-1
H(f) = > hn)e >l 4 Z o= 2ming
n=0

n=P

2

N-1-

P-1
= Z h(n)e—Zﬂ'jnf Z —1— m)e—zﬂ'j(N_l_m)f

= ¢ TIIN-If (232/1 ysinwf(N —1—2n))

= e ™WN=UIH(f)
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For a low-pass, we get:

Je ~ ~
h(n) :/ JA sign(f)e—j”fe%jnfdf:ACOS(Qﬂ'nfc fe)—1

—fe 2nmt—m

H(f) shows a “discontinuity” at the origin as for the previous case.

When designing a low-pass filter, it is actually preferable to choose types I and
II. However, if the frequency response has to be asymmetrical, types III and
IV can be used.

As an example, type:

%===== LOWPASS2.M

clear; nfft=256; freq=[0:nfft-1]’/nfft;
fc=1/8; % Low-pass filter [-fc,+fc]
Nt=56;

Y===== Type I (hn odd) =============

Mt=Nt+1; M=floor (Mt/2);

n=[-M:M]’; % with 2M+1=Mt coefficients
hnI=sin(2*pi*n*fc) ./ n/pi; hnl(M+1)=2%fc;

hnls=fft (hnl,nfft); hrIs=abs (hnls);

%===== Type II (hn even) ===============

Mt=Nt; nII=[-Mt/2+1:Mt/2]’;
hnIT=sin(2*pi*nII*fc-(pixfc)) ./ (Il*pi-(pi/2));
hnlls=fft (hnll,nfft); hrIls=abs (hnlls);

Y===== Type III (hn odd) ============

Mt=Nt+1; nIII=n;

hnITI=(cos (2*pi*nIIT*fc)-1) ./ (nIII*pi); hnITII(M+1)=0;
hnIlIs=fft (hnIII,nfft); hrIlIs=abs (hnIlls);

%===== Type IV (hn even) =============

Mt=Nt; nIV=nII;

hnIV=2%(cos (2*pi*nIV*fc-pi*fc)-1) ./ (2*nIV*pi-pi);
hnIVs=fft (hnlV,nfft); hrIVs=abs (hnlVs);

subplot(211); plot([hnI [hnII;0] hnIII [hnIV;0]1]1); grid
subplot (212) ; plot(freq, [hrIs hrIls hrIIls hrIVs]);
set(gca,’xlim’, [0 .5]); grid;

To sum up, if we choose the gain A(f), the impulse response calculations
are done by:

1. type It h(n) = ff}c A(f)e?mind df;

2. type II: h(n) = ff}c A(f)e=dmT 2mint df;

3. type I1I: h(n) = [ jA(f) sign(f)e™/ df;

4. type IV: h(n) = [75 jA(f) sign(f)e=I™ e2min/ df
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Figure 4.18 — Impulse responses and gains for the four types of low-pass filters

Weighting window

Keeping only a finite number of terms of the impulse response {h(n)} amounts
to multiplying it by an N width rectangle, and therefore to convoluting H(f)
with the function:

N-1 : .
: 1 — e 2™N sin(Nraf) _.
W, _ E —2j7nf _ _ —jn(N=1)f
)= — ‘  1—e"27f  sin(nf) ‘

This weighting function, called the rectangular weighting window, causes
ripples in the bandpass and the stopband, and widens the transition band,
hence the idea of applying other windows so as to modify these properties.
Among the most common ones, we can mention the Bartlett, Hamming, Hann,
and Kaiser windows [74], etc. Let us examine the Hamming window defined

by:

2mn

wpr(n) = 0.54 — 0.46 cos (N

1),forn€{0,...,N—1} (4.37)

We plotted in Figure 4.19 the gain of an ideal half-band filter as well as
the gains of the filters obtained by the window method, with the rectangular
window and the Hamming window respectively.

Notice that reducing the ripples in the passband and in the stopband causes
the transition band to widen, in other words the gain decreases more slowly
around the frequency f = 1/4.

Figure 4.19 is obtained using the program:

%===== RIFHAM.M
Lfft=1024; freq=[0:Lfft-1]1’> / Lfft; N=15; K=(N-1)/2;
%===== Rectangular window

h=sin((1:K)*pi/2) ./ ((1:K))/pi; h=[h(K:-1:1) 1/2 hl;
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Figure 4.19 — Gain of a 15th order filter for a rectangular window and a Hamming
window

h=h/sum(h) ; Hf=abs (£fft (h,Lfft));

%===== Hamming window
ham=.54-.46%cos (2%pi* (0:N-1) /(N-1)); hh=h .* ham;
hh=hh/sum(hh) ; Hfh=abs (fft (hh,Lfft));

plot (freq, [Hf;Hfh]); axis([0 1/2 0 1.4]1); grid

%===== Drawing the theoretical frequency response
hold on; plot([0 0.25 .25 .5],[1 1 0 0],’:’); hold off

The method gives rise to the following comments:

— the integral we wish to calculate requires the analytical expression of

H(f);
— the resulting filter is stable (by definition, since it has no poles);

— because the impulse response 1s symmetrical, the transfer function has
zeros on both sides of the unit circle. Therefore, it is not a minimum
phase filter;

— its phase can be linear (piecewise), unlike the ITR;
— the ripples do not have a constant amplitude;

— as we saw with the low-pass filter, the passband and stopband ripples are
the same;

— transition bands are widened because of the width of the chosen window’s
main lobe;

— unwanted ripples are due to side-lobes.
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NoTE: the window method is mainly used because it can be used to provide
linear phase filters. This property has to do with the symmetry of the coeffi-
cients: it is important for the weighting window to preserve this symmetry. In
particular, the two extreme values, for n = 0 and n = N — 1, are equal (see
expression 4.37). Bear in mind that the windows used to weight the signals do
not have this symmetry, but are periodic with period N.

Exercise 4.8 (Window method: low-pass filter)
We want to design an ideal low-pass filter, the gain of which is represented in
Figure 4.20.

1. Determine the expression of ~(n) in the cases where the length is chosen
even, and where it is chosen odd.

2. Write the rif (N,£0) function, which determines the filter’s coefficients
based on the length N and the cancelling frequency fy;. Write this func-
tion by implementing a Hamming window.

H()

f

-12 fo 12
Figure 4.20 — Ideal low-pass

Using the angle function, use a program to check that the phase is piecewise
linear.

Exercise 4.9 (Spectrum reversal encryption)
Starting off with a sound (B band real signal z(¢)), a typical encryption tech-
nique consists of performing the process represented in Figure 4.21.

A

-B +B +F,, F, +F,,

Figure 4.21 — Sound encryption: on the left, the spectrum of the real signal about
to be encrypted; on the right, the encrypted signal’s spectrum

1. Let us assume that y(t) = 2 x x(t) cos(2wF,t). Using the spectrum of
y(t) shows that, if Fl,, > B, the “encrypted” signal’s spectrum can be
obtained (see exercise 3.7).
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What does the decryption operation consist of?

2. Write a program that decrypts, at the frequency F,, = 12,800 Hz, a B
band signal sampled at Fj.

Exercise 4.10 (Window method: band-pass filter)
Let h(n) be the impulse response of a filter.

1. What is the complex gain of the filter 2h(n)cos(2rnfy)? How can a
band-pass filter be designed using a low-pass filter.

2. Write a program that uses the fir function to design a band-pass filter
centered at 0.2 with a width of 0.1.

Exercise 4.11 (Window method: derivative filter)
Let z(t) be a continuous-time signal and let X (F') be its Fourier transform.

1. Show that the derivative of the Fourier transform of z(¢) has the expres-
sion 27 F X (F'). Using a procedure similar to the one found on page 133,
determine the complex gain of a discrete-time derivative linear filter.

2. Using this result and the window method, find the coefficients of the
FIR filter that approximates a derivative filter for an odd number of
coefficients.

3. The resulting filter is not causal. Give a causal solution to the problem.
What is the consequence on the operation performed?

4. Write the derivative filter as a MATLAB® function and test it on different
types of signals, in particular on a signal of the type sin(27 fyn).

4.7.3 IIR filter design

A rather common method of recursive filter design is based on the continuous-
time/discrete-time change. Starting off with a “continuous-time” filter, the
characteristics of which are known, all that needs to be done is to “discretize”
that filter. This isn’t the only way to proceed of course. Other design methods
can be found in more specialized books, in particular methods that do not
require changing over to continuous-time (notably the Remez method).

A few characteristics of the analog filters used

1. The Butterworth filters have a continuous-time transfer function I (s)
(Laplace transform of their impulse response) resulting from a gain func-
tion that can be expressed:

|H (f)I° = W = H(s) = m
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2k—1
2n

where s, = j7 (
n 1s odd or even:

+ %) The situation changes depending on whether

n/2 1
H =
even kl;[l s2 4 2s cos((?k’ — 1)77/277') +1
(n=1)/2
1 1
d Hogq = ——
an odd s+ 1 1H—1 s 4+ 2scos(km/n) + 1

Butterworth filters show no ripples in their passband and stopband.
2. Type 1 Chebyshev filters have the gain |H;(f)|? = (1 +2T2(f))~" with:

cos(narccos(z))  for |z| <1

T (x) = { cosh(nargcosh(z) for |z|>1

And hence for k € {1,---,n}, py = —sinh(a)sin((2k — 1)7/2n) +
jcosh(a) cos((2k — 1)7/2n) with o = argsinh(e=1)/n.

3. Type 2 Chebyshev filters have the following gain:

1
T 14 212 (fa) TS

| (f)]

where f, is the frequency where the stopband begins. And therefore:

2nfaAx . 27faBs
= — for ke {1,---
h A = —sinh(«) sin((2k — 1)7/2n)
W By = cosh(o) cos((2k — 1)7/2n)

Pk

o = argcosh(A;1)/n, whereA, is the imposed passband amplitude. The
zeros are placed on the imaginary axis:

2j7fa
cos((2k — 1)m/2n)

e =

Chebyshev filters show:

— either a passband ripple but none in the stopband (type 1 filters);
— either a stopband ripple but none in the passband (type 2 filters).
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The passband ripple is equal to 1/4/1 4 2. The Chebyshev filter have
better attenuation characteristics than the Butterworth filters. The band-
pass ripple, the attenuation and the integer n all need to be known in
order to calculate these filters.

4. Cauer filters or elliptic filters are optimal in terms of the transition band,
and have the following gain:

1
2

where R, is a rational Chebyshev approximation, and where L character-
izes the attenuation. The Cauer filters show ripples in the bandpass and
in the stopband. The band pass ripple is equal to 1/v/1 + 2. The band-
pass ripple and the minimum attenuation in the stopband are needed to
be able to calculate these filters,which are defined by arrays.

Using the bilinear transform

Using the bilinear transform is justified by the calculation of an integral with
the trapezoid method. We will write #, = z(nT) to denote the function’s
values at points nT. If s, is the value of the integral from 0 to nT', s, obeys
the recursive equation:

Tpn + Tn_1

Snzsn—l'i'Tf = B(Z)I

S(z) _Zl—i—z_l
X(z) T 21— -1

B(z) is an approximation of the integral operator, which is expressed 1/s in
the Laplace transform. The bilinear transform method consists of replacing s
with 1/B(z) in the expression of the continuous-time filter’s transfer function.
[27, 8]. If the sampling is done fast enough, the frequency distortion caused by
this transformation is negligible. When this is not the case, there are methods
for compensating this distortion (to a certain extent).

Exercise 4.12 (Butterworth filter)
We wish to perform an IIR filter design based on the Butterworth filter.

1. Write a program designed to calculate the coefficients of the Butterworth
filter’s denominator, for a given value of n.

2. Write the program that provides the frequency response of the Butter-
worth filter for a few orders (for example, for n from 2 to 6). The gain,
in decibels, will be chosen as the y-coordinate, and log;,(w) as the x-
coordinate, where w is the angular frequency in rad/s (for a given value
of w, the value of a polynomial is the scalar product of its coefficients
with the vector [1 jw - - (jw)™]).
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3. Using the bilinear transform to obtain the digital filter:

(a) Consider the polynomial G(z) = ag + ayz + - -+ ayz™. Write its
development as a recursive relation based on the Horner polynomial
representation®.

(b) The variable change # = B(z)/A(z) is made, where A(z) and B(z)
are polynomials. Write the previous relation for the numerator and
denominator polynomials.

(c) Write the program that performs the bilinear transform of a poly-
nomial.

4. Compare the obtained discrete and continuous spectra.

Using the DFT

A method that would seem reasonable would be, for filter design, to start with
values of the DTFT H(f) (actually the values of the DFT), and to try to find
the original {A(n)} using the IDFT. As we are going to see in exercise 4.13, it
actually is not such a good idea.

Exercise 4.13 (Temporal aliasing and the use of the DFT)

Consider H(f), the complex gain of a filter with the impulse response {h(n)}.
Give the expression of the filter’s impulse response {71(77,)}, calculated based
on the DFT H(k/N) as a function of the h(n). Compare the results for the
window method and this method, on a low-pass filter. Compare the resulting
gains.

4.8 Oversampling and undersampling

The oversampling and undersampling operations play an important role in
digital signal processing.

Oversampling by an integer factor M consists of performing an interpolation
on the sequence #(n) by calculating M — 1 intermediate values between two
consecutive points.

Undersampling by an integer factor M consists of calculating, based on a
sequence sampled at the frequency Fj, the values of that same sequence as if it
had been sampled at F /M. Undersampling does not mean simply taking one
out of every M samples of the original sequence.

A typical application of oversampling and undersampling is the frequency
change. In order to go from 42 kHz to 48 kHz, for example, you can start by
oversampling by a factor of 8, and then undersample by a factor of 7. These

5A polynomial 2" + 12"~ + ... 4+ an can be developed by writing z(-- (z(z + a1) +
a2)--+) + an. This is known as the Horner polynomial representation or the Horner scheme.
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operations are also helpful for what is called “multifrequency” processing, which
is used in particular for bank filter techniques, presented in paragraph 5.2.

4.8.1 Oversampling

We are going to start with an example. Let z(n) be a sequence with X, (z)
as its z-transform. Consider the sequence y(n) = x(n/4) for n = 0 mod 4 and
y(n) = 0if n # 0 mod 4. This operation, called the expansion operation, inserts
three 0 in between the terms of the sequence #(n). Notice that the sequence
y(n) contains 4 times more samples than the sequence x(n), and theoretically,
should be interpolated at 4 times the sampling frequency F; associated to z(n).

We will now determine the expression of the z-transform of the sequence
y(n) as a function of z(n). With obvious notations, we have:

Va(z) =) x(n)e" = X, (2Y)

k

With z = %™/ the DTFT can be expressed as Y (f) = X(4f). The interval
(—=1/2,1/2) contains the spectrum of x(n) replicated four times. We say that
there are images in the spectrum (see Figure 4.22).

This means that if you consider the samples y(n) corresponding to a
continuous-time signal sampled at the frequency F! = 4F, the spectrum is
made up of these images in the (—2F;, +2F;) band (see page 69). Inserting
zeros where real values should be has added high frequency components corre-
sponding to the brutal transitions introduced in the temporal sequence.

X()

—i/2 ‘ ‘ ‘ +l}2 ‘
Figure 4.22 — Effects of oversampling

If we have a sequence y(n) and wish to reconstruct the intermediate samples
without causing the distortion due to the images, we simply need, after the
expansion operation, to perform a gain F!/F; = 4 filtering in the (—1/8,1/8)
band, in order to suppress the high frequencies found in the (—1/2,—1/8) and
(+1/8,41/2) bands. The resulting signal, after being reconstructed at the
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frequency 4Fs, is located in the (—4F;/8,4+4F,/8) = (—Fs/2,+F;/2) band,
with 4 times the number of samples.

All these results can easily be generalized. If we insert (M — 1) zeros in
between the elements of the sequence x(n), the resulting sequence’s z-transform
has the expression:

Y (2) = X: (M) (4.38)

In order to properly oversample, this expansion has to be followed by a low-
pass filter in the (—1/2M,1/2M) band, corresponding, after reconstruction at
the frequency F! = M Fj, to the original (—F; /2, Fs/2) band with M times the
number of samples. What should be remembered of all this is written below:

In order to oversample a signal x(n) by a factor M, one method consists
of inserting (M — 1) zeros in between the values of the signal, and then
to perform an M gain filtering in the (—=1/2M,+1/2M) band.

Exercise 4.14 (Interpolation)

1. Write a function that interpolates by a factor of M.

2. Apply this function to the x=rand(1,40); sequence.

Example 4.9 (Expansion and frequency translation) Starting off with
a speech signal the spectrum of which is placed, for the positive frequencies, in
the (0 Hz - 4,000 Hz) band, we are going to listen to the signal resulting from
the following operations:

1. The frequency scale is expanded by a factor of 5/4. Mathematically
speaking, this means that if S, (F') refers to the original signal’s spectrum,
the modified signal’s spectrum is Sy(F) = Sy(5F/4). Therefore, the
spectrum can be found, for the positive frequencies, in the (0 Hz - 5,000
Hz) band. How is this achieved?

2. The signal’s spectrum is shifted by Fy = 1 kHz toward the positive fre-
quencies. This means that if S} (F) refers to the part of the signal’s
spectrum found in the positive frequencies of the original signal, then the
part belonging to the positive frequencies of the modified signal’s spec-
trum is S;’ (F) = S} (F—Fp). Hence the spectrum is now, for the positive
frequencies, in the (1, 4) kHz band. How is this achieved?
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Write a program using MATLAB® that performs these two operations.
Listen to the obtained signals and compare the results. You can also compare
the spectra with the smperio.m function discussed in Chapter 9, example 9.1.

HINT:

1. According to the time scale expansion/compression property (see Chapter
1), all that is needed to expand the spectrum is to take the signal sampled
at the frequency F; = 8,000 Hz, and listen to it at the reconstruction
frequency %Fs Hz. Type:

|| soundsc(x, 10000);

In order to compare with the signal obtained in the next question, you
can also construct the signal interpolated by a factor of 2 corresponding
to the sampling frequency F! = 2F; = 16,000 Hz and listen to the result
at the frequency %Fs’ = 20,000.

2. The original signal, sampled at F; = 8,000 Hz, is in the (—4, +4) kHz
band. Because of the frequency translation, the desired signal is in the
(=5, +5) kHz band. Hence interpolation must first be performed in order
to have a sampling frequency at least equal to 10,000 Hz. To make the
interpolation operations simpler, we will set F! = 16,000 Hz, by using
the interpl function with an interpolation factor of 2.

The spectrum has then to be shifted by 1 kHz. This can be done by
multiplying the signal by the function e*71999% sampled at the frequency
F! = 16,000 Hz.

The (+1, +5) kHz band then has to be filtered. To this purpose, a
low-pass filter is implemented in the (—2, +2) kHz band and shifted in
frequency by 3 kHz. This result is achieved using the rif function in

the (=b,b) band where b = 126000000 followed by a multiplication of the filter

2j7n3000/16000

coefficients by e

Type the program:

Y%===== FRQSHIFT.M

close all; clear all

Fg=8000; load phrase.mat; % or [sn,Fs]l=wavread(’phrase.wav’);
Fep=2%Fs; xi2=interM(sn,2,100);

F0=1000; xi2trans=xi2.*exp(2*j*pi*(0:1length(xi2)-1) >*F0/Fep);

%===== Low-pass filter
Lh=201; h=rif (Lh,Fs/4/Fep);
%===== Band-pass filter centered on Fc

Fc=Fs/4+F0; htrans=h .* exp(2%j*pix(0:Lh-1)*Fc/Fep);
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xi2transfiltre=filter (htrans,1,xi2trans);

xtrans=real (xi2transfiltre);

%===== Listening (sound or soundsc depending on the version)
soundsc(sn,Fg); disp(’Press a key’); pause

goundsc (sn,5%Fs/4); disp(’Press a key’); pause

soundsc (xtrans,Fep) ;

Digital-to-analog conversion

In paragraph 2.1.2, we saw that distortions appear during the signal’s recon-
struction simply by using a ZOH. In the case of audio frequency applications
(speech, music, etc.), a simple way of avoiding this is to place before the ZOH
an oversampler with a high enough factor M.

This is because oversampling spreads further apart the periodized compo-
nents of the signal’s spectrum. Furthermore, concerning the ZOH, working M
times faster “widens” the sine cardinal lobes.

Figure 4.23 shows what the spectrum looks like for the output signal of the
ZOH, for M = 5 and for a sampling frequency of F; = 1/T = 8 kHz. The
result should be compared to the one in Figure 2.9 of paragraph 2.1.2.

0.8} - I L |
0.6} - I L |
04— I L |
02}
~e—

~A

0 . . . i . . .
-50 —-40 -30 -20 -10 0 4 10 20 30 40 kHz

Figure 4.23 — Output spectrum of a ZOH preceded by an oversampling with a factor
of M =5

The part found in the (—F;/2, F;/2) undergoes a slight distortion, since
sinc(fT/M) stays close to 1. Beyond Fy /2, the first term due to the periodiza-
tion of the spectrum can be found around 40 kHz, outside of the audible band.
This method is often used by the boards installed in our computers to avoid
having to use an analog high-quality low-pass filter: the signal is oversampled
by a factor M so as to have M x Fy greater than 40 kHz (typically, M x F ~ 48
kHz), and the obtained values are maintained constant, at the same processing
rate.
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4.8.2 Undersampling

Let {z(n)} be a sequence with X (z) as its z-transform. Consider the sequence
{y(n) = x(4n)} obtained by keeping only one out of every 4 samples of the
sequence {z(n)}. The operation that takes us from {z(n)} to {y(n)} is called
a factor M = 4 decimation.

By using the identity 2.33, the expression of the z-transform of {y(n)} is:

+o0 400 3
Yz (Z) = Z x(4n)z—n — Z l‘(p) (% Zerﬂ'kp/él) Z_p/4
n=-oe p=—0o0 k=0
—2j7 P 1 5 —9in
= —Z (p_z_:oo (21/46 2§ k/4) ) _ Z;X'Z (21/46 25 k/4)

Notice that you must not write p = 4n and then p € Z. The resulting
inexact expression would be Y, (2) = X,(2'/*). By using the DTFT, that is to
say by choosing z = ¢%™/ and by recalling the notation X (f) = X, (e%"7), we
get, for M = 4:

igx (lel;k) (4.39)

This expression shows that inside the interval (—1/2,1/2), Y(f) is the alge-
braic sum of the four contributions, shifted by 1/4. To obtain the signals of the
continuous-time signals (frequencies expressed in Hz), f has to be multiplied
by the sampling frequency as we have already said. The y(n) are the signal
samples taken at the frequency F;/4, hence the expression of Y(f) shows a
spectrum aliasing effect. Notice, by the way, the difference with the expansion
operation that creates “images” in the signal’s spectrum.

Y(f)

X0 |
W,

R

: uom o\
J T~ N Obtained result
/_m Expected result

s o121

Figure 4.24 — Effects of undersampling
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However, according to the sampling theorem, the undersampled signal’s
spectrum is the one referred to as Xa(f) in Figure 4.24. Therefore, to un-
dersample the signal z(n), a gain 1 filtering (see page 69 with the ratio
F!/Fs = 1/M already included in 4.39) has to be performed in the (—1/8,+1/8)
band before the decimation operation, so as to avoid spectrum aliasing.

These results can be generalized. If y(n) refers to the sequence obtained by
taking one out of every M values of the sequence z(n), the expression of its
z-transform is:

Y.(z) = iMilx (zl/Me—zj”k/M) (4.40)
2 - M z .
k=0

In order to undersample a signal (n) by a factor M, one possible method
is to perform a gain 1 filtering in the (—=1/(2M),+1/(2M)) band, followed
by a decimation operation of 1 out of every M values.

Exercise 4.15 (Undersampling)

1. Write a function for undersampling by a factor M.
2. Record a speech signal at 8,000 Hz.

— Create a new signal by taking one out of every 2 samples without
any particular processing. Listen to the result.

— Perform a “proper” undersampling by using the previous function
with M = 2. Listen to the result.

Figure 4.25 sums up the M factor oversampling and undersampling oper-
ations. It should be noted that all of these operations, including the filter-
ing, are performed in discrete-time, and on no occasion did we change to the
continuous-time signal!

Exercise 4.16 (Paralleled undersampling and oversampling)

The filtering operation necessary to the undersampling can be performed M
times faster by M parallel filters. The output at the time nM has the expres-
sion:

+oo
y(nM) = Y h(k)z(nM — k)
1\4_—100+oo
= Z Z h(mM 4+ rye((n —m)M —r)

r=0 m=-—oco
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Figure 4.25 — Oversampling and undersampling operations

y(nM) appears as the sum of M filterings with the impulse responses
{hy(m) = h(mM + r)}mez. The filter input is the sequence ..., z(r — M),
z(r), e(r+ M), x(r +2M),...obtained from z(n) by a delay of r followed by
a decimation. Notice that h, is the r-th M-polyphase component of h.

1. Give the processing architecture.
2. Write a paralleled undersampler simulation program.

3. Write a paralleled oversampler simulation program.
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Chapter 5

Filter Implementation

Mathematically speaking, using the filter with the transfer function H(z) for
filtering the sequence z(n) leads to a perfectly determined result. However,
depending on the practical implementation of the filter, the results can vary
in terms of precision, speed, etc. This chapter deals with the technical aspects
of filtering. If you restrict yourself to a “simulation” approach, as we have up
until now, the filter function is everything you will ever need. However, if
this filtering operation has to be implemented, its effectiveness requires some
additional knowledge that will be detailed in this chapter.

5.1 Filter implementation

5.1.1 Examples of filter structures

In this paragraph, we will study the implementation of the filtering function,
in other words its programming. Figure 5.1 shows a particular implementation
called the canonical direct form of a general recursive filter with the transfer
function:

H{(z)

Cbot bz 4 by
o ldaz i dape?

Choosing the same degree for both the numerator and the denominator does
not restrict us in any way; you need only consider that some of the coefficients
can be equal to zero.

This “implementation” first performs the calculation of:

t(n) =i(n) —ait(n — 1) — - - — apt(n — p)
then the calculation of:

o(n) = bot(n) + bit(n — 1) + - -+ bpt(n — p)
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i(n) +® t(n) l @_-:X o(n)
- +
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D D
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Figure 5.1 — Processing architecture

where {i(n)} and {o(n)} are the input and output sequences respectively.

For this algorithm, the vector x(n) 2 [a:o(n) zi(n) ... xp_l(n)]T (px
1) is called the filter state:

x(n) = [t(n) tn—=1) ... th—p+1)]"

Its components, referred to as state vartables, are the input values of the
“delay” cells denoted z~! in Figure 5.1. By introducing the vectors:

a=[a; az ... a)  andb=1[by by ... b,]"

we get the following expression for the algorithm:

t(n) = i(n) —aTx(n — 1)
(n):b t(n) +bTx(n - 1) (5.1)
(n) :[ (n) xzon—1) z(n-—-1) - l‘p_z(n—l)]

The following filter function implements this algorithm:

function [ys,xs] = filtrer (num,den,xe,xi)

%h %
%% Filter (direct canonical structure) %
%% SYNOPSIS: [ys,xs]=FILTRER(num,den,xe,xi) %
% num = [b0 bl ... bP] %
% den = [1 al a2 ... aP] %
% xe = input sequence %
%h xi = initial state %
% ys = output sequence %
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%h xs = final state Y%

lden=length(den); lnum=length(num) ;
if (lden<lnum), den(lnum)=0; lden=lnum; end
if (lnum<lden), num(lden)=0; end
1d=1den-1; N=length(xe);
av=zeros(1,1d); bv=av;
av(:)=den(2:1den); bv(:)=num(2:1den) ;
if (nargin==3), zzi=zeros(ld,1); end
if (nargin==4),
if length(xi)<1ld, xi(1d)=0; end
zzi=zeros(1d,1); zzi(:)=xi;
end
bO=num(1); xs = zzi; ys=zeros(1ld,1);
for ii=1:N,
xOn=xe(i1) - av * xs;
ye(ii)=b0 * x0n + bv * xs;
xs=[x0n ; xs(1:1d-1)]; % New state
end
return

Determining the initial state leading to a given input-output sequence is
another problem altogether. Using the recursive equations 5.1 that lead to t(n)
and o(n), we can also write:

by by - by 0 0
o(lp—1) 1 o a 0 ol [tp—1)
Z(p— 1) 0 bo bp—l bp 0 0
: =10 1 t(-1) | =oT
0((0)) : :
(0 0 -0 ... 0 by by - b ‘(—
P
0o 0 1 oar - ap] (=p)

This expression shows that the initial state T = [t(—1) ... t(—p)]? can
be reconstructed so long as the matrix O is invertible. The system theory
demonstrates that the possibility of reconstruction is related to the concept of
observability. A great number of observability criteria exist, based on the state
representations associated with a system [51].

The filtric function detailed hereafter carries out the reconstruction of
the state associated to the processing architecture implemented by filter:

function zi=filtric(num,den,xi,yo)

%h %
%% Initial state reconstruction for a direct %
%% canonical structure %
%% SYNOPSIS: zi=FILTRIC(num,den,xi,yo) %
hh num = [b0 bl ... bP] %

%h den = [1 al a2 ... aP] %
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% xi = input sequence %
% yo = output sequence %
%h zi = reconstructed initial state %
07 0 9,
%h A

lden=length(den); lnum=length(num) ;

if (lden<lnum), den(lnum)=0; lden=lnum; end
if (lnum<lden), num(lden)=0; end

1d=1den-1;

numv=zeros (lden, 1) ; denv=numv;

numv (:)=num; denv(:)=den;

1x=length(xi); ly=length(yo);

if 1x<1d, xi(1d)=0; end

if 1y<1d, yo(1d)=0; end

ysv=zeros(1,1d); xev=zeros(1,1d);
yesv(:)=yo(ld:-1:1); xev(:)=xi(ld:-1:1);
x=[ysv;xev]; vec=zeros(2%1d,1); vec(:)=x;
vO=[numv; zeros(1ld-1,1); denv; zeros(1ld,1)];
A=[]; for ii=1:1d, A=[A v0]; end
A=A(1:4%1d#1d) ;

Ax=zeros (2¥1d,2%1d); Ax(:)=A; Ax=Ax’;
zzi=inv (Ax) * vec; zi=zzi(1d+1:2%1d);
return

The state reconstruction function is inseparably related to the filtering
function, which is itself based on a particular processing architecture.

However, as the following example shows, the reconstruction function is
rarely used. The state vector xs, final state of the first block’s processing, is
transmitted as the initial state of the second block. The result yp is identical
to the one obtained for the filtering of the entire block etot.

%===== FIL2BLOCKS.M

inpl=randn(100,1); inp2=randn(100,1); etot=[inpl;inp2];
b=[1 .3]; a=[1 -.8 .9];

%===== Global filtering (null initial state)
y=filtrer(b,a,etot);

%===== Filtering the 2 blocks

[yl xs]l=filtrer(b,a,inpl); % Null initial state
y2=filtrer(b,a,inp2,xs); % Initial state xs
yp=[y1;y2];

%===== Drawing for the transition between 2 blocks
[y(90:110) yp(90:110)]

MATLAB®’s filtering function, filter, uses the Transpose-Form IIR struc-
ture [69], different from the previous one, represented in Figure 5.2. As in our
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example, filter transmits the state vector. It is however impossible to obtain
it using the reconstruction function filtic.m, available as part of the Signal
Toolbox. Exercise 5.1 1s a study of this structure.

Exercise 5.1 (Filter architecture)
Consider the Transpose-Form IIR structure (Figure 5.2) of a rational filter.

i(n) + ) o(n)

Figure 5.2 — Transpose-Form IIR structure

1. Determine the filter’s transfer function.

2. By defining the state x = [z1(n) ... x,(n)] at the time n, determine the
state representation and express it as follows:

1) + bi(n)

{ x(n) = Ax(n
=T 1) + di(n)

o(n) = ¢ x(n—
Use this to find the filtering program. It might be useful to notice that
the matrix A is the transpose of the companion matrix (compan function)
assoclated with the denominator polynomial [1 a1 as ... ap)].

3. Find the associated reconstruction function using only the filtering func-
tion. In order to do this, express x;(0) as the sum of an input filtering
and an output filtering.
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5.1.2 Distributing the calculation load in an FIR filter

We wish to distribute the calculation load for an FIR filtering algorithm among
several processors. Only two methods will be presented. The first one consists
of distributing the number of multiplication/accumulation operations (MAC
operations) among M branches without changing the processing rate. The
second one consists of organizing the calculation in different units, so as to
reduce this speed, at the cost of a certain delay.

Paralleled calculations

Consider the filtering equation y(n) = +oo h(k)xz(n — k). For a given M,

k=—o0

we define k = mM + r where r € {0, ..., M — 1}. We get:

M-1 4o

y(n) = Z Z h(mM + rye(n —mM —r)

r=0 m=—o0

This expression shows y(n) as the sum of M terms:

+oo
r=20 S>> h(mM)x(n—mM)

m=—00

r=1 -I—ZO:O h(mM 4+ z(n —mM — 1)

m=—00

+oo
r=M-—1 S h(mM+ M —1)z(n—mM —M+1)

m=—00

The first term is the filtering of a sequence ..., z(n— M), z(n), z(n+ M), ...
by the filter with the impulse response h(0), h(M),... The next terms cor-
respond to translated sequences filtered by the filters h,(m) = {h(r), ...,
h(r+mM), ...}. The filter h.(m) is called the r-th M-polyphase component
of h(n).

Figure 5.3 illustrates this processing method.

Exercise 5.2 (Parallel implementation of the FIR filtering)

Write a program designed to simulate the process described by Figure 5.3.
Choose M = 4 and a low-pass, (—0.3,40.3) band FIR filter with 25 coefficients.
The result will be compared to the one obtained through direct filtering.

This method for paralleling does not reduce the processing speed in inter-
mediate filters. Only the number of multiplications per filter is reduced.
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x(n) x(n—1) | x(n=2) | x(n-3) | x(n—4)| x(n=5) | x(n—6)
I I I
h) _ é 3 _ é he) é
\1 [y}
(1) h(4 (. e N
D, ® D, ® b—
M=3 /
h(2) h(5
- "l

Figure 5.3 — A representation of the paralleled process

5.1.3 FIR block filtering

Let us again consider the FIR filtering equation:
y(k) = h(0)x(k) + h(D)e(k—1)+ -+ h(P)z(k— P)

Let:
y(nN) h(0)
;- yoN =1) - h(;l)
y(nN — (N = 1)) h(P)
with:

B

X - z(nN —1) z(nN —2)

2(nN = (N = 1)) 2(nN — N)

By organizing the inputs modulo M, we get:

[x(nN)
[x(nN —1)
y= .

[e(nN — (N = 1))

[x(nN —1)
[x(nN —2)
[e(nN — N)

z(nN — M)
z(nN —1—-M)

z(nN —(N—-1)—-M)

z(nN —-1-M)
z(nN —2—-M)

z(nN —N—-M)

z(nN — P)
z(nN —1-P)

z(nN—(N-1)—-P)

[—
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By restricting ourselves to the case M = N = 2, the previous expression
can be written:

[ y(2n) ] _

y(2n —1)
FTh(0)]T
h(2)

[ [z(2n) v(2n—=2) - ] [#(2n=1) x(2n-3) - ]| || |

[x2n—1) z(2n—=3) -+ ] [#(2n—=2) z(2n—4) --- ] h(1)
h(3)

If we assume xg(n) = [z(2n), z(2n—2),...]¥ and x1(n) = [z(2n—1), z(2n—
3),...]F, we can also write:

y(2n) | _ [xo(n)  xi(n) | [Ho
[y(% - 1)] B [Xl(”) xo(n — 1)] [Hl]
where Hy = [R(0), h(2),...]7 and Hy = [h(1),h(3),...]7. If we develop y(2n)
and y(2n — 1), we get:

y(2n) = xo(n)Ho+ x1(n)H;
= xi(n)(Ho+ Hi) + (x0(n) — x1(n))Ho
y2n—1) = =x;(n)Hg+x0(n—1)H;

= xi(n)(Ho + Hy) + (x0(n — 1) — x1(n))Hy

Therefore, the calculation of the two terms y(2n) and y(2n — 1) requires the
calculation of a total of four terms. However, one of them, x;(n)(Hy + Hy),
appears twice. If P refers to the length of the filter h, the lengths of Hy and
H,; are at the most equal to P/2. Hence the three terms of the calculation of
y(2n) and y(2n — 1) correspond to P/2 length filtering. Figure 5.4 illustrates
all these calculations.

{x(n)} - {x(2n)} +EE +E P
‘ p—

A +

((2n—1 ()}
@ {/\( n )} ‘W

{x(2n-2)} Y - Y +

gy R

Figure 5.4 — Block filtering: the case where M = N =2

To sum up, in order to calculate y(2n) and y(2n — 1), the number of MAC
operations is roughly 3 x P/2. This value should be compared to the 2 x P
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MAC operations of the direct calculations. You may, as an exercise, simulate
the process described in Figure 5.4. There is more than one method organizing
the process. Consider for example:

y(2n) = xo(n)Ho+ x1(n)H;
= (xo(n) +x1(n))(Ho + Hy) — xo(n)Hy — x1(n)Ho
y2n—1) = =x;(n)Hg+x0(n—1)H;

Notice that the term xg(n — 1)H; was calculated previously. Hence there
are indeed only three MAC operations at this stage of the calculation. We can
also consider parallel block processing for values of M and N different from 2.

5.1.4 FFT filtering

A possibility for accelerating filtering operations is to work in the frequency
domain, using Fourier transforms to take advantage of the FFT algorithm’s
speed. Unfortunately, this 1s not as simple as it seems, because linear filtering
uses a linear convolution:

y(n) = +oo z(m)h(n —m) (5.2)

m=—00

the DTFT of which is H(f)X(f), whereas the product of the DFTs is the DFT
of the circular convolution. As a reminder, here is its expression 14.3:

SVl (m)h((n — m) mod N) (5.3)

m=0 x

A simple calculation shows that expressions 5.2 and 5.3 lead to completely
different results. Consider a finite impulse response filter {hx(n)} and a se-
quence {z(n)}. The output value at the time n is:

y(n) = hy(0)z(n)+ -+ hAn(N — Da(n—-N+1) (5.4)

For a clearer picture, let us assume N = 8. We are going to calcu-
late the terms resulting from a circular convolution of the length 8 block
{z(n),...,2(n — 7)} with a filter with the coefficients {n(0),...,h(7)}. The

following table describes the operations modulo 8.

m 0 1 2 3 4 5 6 7
hon [ ho [ b1 | ha | hs | ha | hs | he [h7]

| @n7 | Tne | ®nos [ Tnoa [En_s | Tno [2a_1 | 2, |

hom mod 8| ho | hr | he | hs | ha | hs | ha |hi]

hiom mod s | hi | ho | hr | he | hs | ha [ hs [ha]

ht—m mod s | hr | he | hs | ha | hs | hos [ A1 [ho]
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Notice that among the 8 results of the circular convolution, only the last
one, hoxy + hi®n_1+ -+ hrx,_7, corresponds to one of the terms from the
linear convolution, making this approach completely hopeless. This is actually
downright wrong, as we are going to see now.

The overlap-save algorithm

Consider an N = 5 length filter with its coefficients h(0), ..., h(4) completed
by 3 zeros. Let {x(n), ..., #(n — 7)} be the L = 8 length input block. As
we did before, we can build the sequence of the 8 output values by using the
following table:

m 0 1 2 3 4 5 6 7T
hn Lo | by | hy [ hs [ ha | O [ O [0 ]

X | Zn_7 | Tno6 | Tnos | Tn_a | a3 | Tn_s | Tn1 | 2n ]

h—m mod 8| hO | 0 | 0 | 0 | h4 | h3 | hz |h1 |

hl—m mod 8| hl | hO | 0 | 0 | 0 | h4 | h3 |h2 |

hr—m mod 8| 0 [ 0 [ 0 [ ha [ hg | ho | hi [ho]

The resulting circular convolution outputs are:

Ye(0) = hoxp—7+ hatn_3+ hatpn_o + hatpn_1 + bz,
Ye(l) = hizp_7+ hotn_¢ + hatn_2 + hatn_1 + hoxy,
Ye(2) = hawp_7+ h1xn_¢ + hoxn_s + haxn_1 + hsz,
Ye(3) = haxp_7+ hotn_¢ + hixn_s + hotn_a + haz,
Ye(4) = hawp_7+ hstpn_6 + howp_s + hi@n_a+ howp_3
Ye(D) = hapn_6+ hatn_s5 + howp_a + hizp_3+ hotp_2
Ye(6) = hap_5+ hatn_q + howp_s+ hixp_o + hoxn_1
Ye(7) = hap_a+ hatn_3+ howp_o + hin_1 + hoxy

Notice that the four last expressions correspond to terms found with the
linear convolution:

ye(4) = y(n = 3)

ye(5) = y(n —2)

Ye(6) = y(n — 1)
(1) =y(
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In order to calculate the next 4 values, we have to choose {x(n+4), ...,
z(n — 3)} as our input block. This block partly overlaps the previous one (see
Figure 5.5), hence the word overlap in the name “overlap-save algorithm”.

N-1 erroneous values
—

x(n=L+) - ()
1] [ 4
' Ly
Block p| | | L]
Vi S
———t ! |
h(N-1) N h(0) [ 1] | | Block p+1
v L
[ Save p |_| Save p+1 |

Figure 5.5 — Owverlap-save algorithm

All of the operations can be summed up as follows:

Overlap-save

1. Calculation (performed only once) of the DFT of the L length se-
quence h(n) completed by (L — N) zeros. L (the DFT’s length) is
usually a power of 2.

2. Calculation of the DFT of an L length block extracted from the input
data with an overlap of the (N — 1) last values of the previous block.

3. Term-by-term multiplication of the two DFTs, followed by an IDFT.

4. The (L — N 4 1) terms corresponding to the linear convolution 5.2
are saved.

Let us compare the number of operations for the overlap-save algorithm
with that of a direct calculation. The direct calculation of one convolution
point for an N length impulse response requires a loop comprising N MAC
operations.

Using the overlap-save algorithm, the impulse response’s DFT is calculated
in advance. There are two L length FFTs left for each step (one direct, one
inverse) and I complex multiplications, in all a calculation load of roughly
2 x Llogy(L) + L = 2Llog,(L\/2) MAC operations. This calculation provides
us with a block of (L — N +1) convolution points, equivalent to a load of about
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2L log,(L)/(L — N +1) MAC operations per calculation point. Hence the gain
is roughly:

_(L=N+1)N
G, 1) = 2L log, (Lv/2)

Thus, for N = L/2 and N > 32, the FFT technique is quicker.

Other parameters have to be considered. The FFT calculation implies the
use of array pointers, which cause a considerable increase in the calculation
time. The FFT also requires memory space to save the data arrays that are
too large for the filter’s memory. This is why convolution calculations that
use the FFT are usually undertaken only with filters with a length of more
than a hundred coefficients. In acoustics, impulse response of a quarter-second
sampled at 8,000 Hz lead to lengths of 2,000 samples. You also have to add to
that the delay caused by block processing, a delay roughly equal the block’s
length. For some applications, this delay is reason enough to discard these
techniques.

Overlap-add algorithm

Consider once again the previous example of a filter {n(0),..., h(4)}. We still
hope to obtain the output:

y(n) = hoxn + h12n_1 + hozn_o 4+ ha®p_s + hatp_a

Consider the convolutions concerning two consecutive length 8 blocks la-
belled x, and x,41.

m 0 1 2 3 4 5 6 7T
hoo [ ho | hi | hs | hs [Ra[ 000 |

xy (s [ns [#nmi | o [0 000

x4 (Zaer [nez [ Zags [7asa [ 0 [0 [0 0]

h—mmod8|h0| 0 | 0 | 0 |h4|h3|h2|h1|

hl—mmod8|h1 |h0| 0 | 0 |0|h4|h3|h2|

h7—mmod8| 0 | 0 | 0 |h4|h3|h2|h1|h0|
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The values obtained from the first block are:

Yep(l) = hizn_3+ hozp_s

Yep(2) = hoxpn_s+ hizp_o + hozn_1

Yep(3) = han_3+ hozp_o + hizp_1 + hon
Yep(4) = hazn_3+ hszn_o + hozpn_1 + hiz,
Yop(5) = hazn_o+ hazn_1 + hoz,

yc,p(6) = haxp_1 + hazn

yc,p(7) — h4xn

Ye,p+1(0) = hozni1

yc,p+1(1) = hlxn+1 + hOxn+2

Yep+1(2) = hozng1 + hiznyo + hotnts
Yep+1(3) = hazny1 + hoznyo + hings + hoZnta
Yept+1(4) = hazny1 + haznyo + hottnis + hi2nta
Yep+1(D) = hanyo + haZnys + honia

yc,p+1(6) = h4xn+3 + h3£n+4

Ye,p+1(7) = hatnia

As you can see:

y(n+1) = yep(4) + ye p+1(0)
y(n+2) = ye p(5) + ye pt+1(1)
y(n+3) = ye,p(6) + ye p+1(2)
y(n+4) = ye p (7) + Ye p+1(3)

The conclusion is that if the input block 1s completed with N — 1 = 4 zeros,
the circular convolution will calculate incomplete sums. These sums will then
be completed with values obtained from the next block translated by N — 1
values. The sequence of operations can be summed up in the following way:

Overlap-add
1. Calculation of the DFT of the N length sequence h(n) completed
with (L — N) zeros. Usually the length L of the DFT is 2F.

2. Caleulation of the DFT of a length (L — N + 1) block extracted from
the input data without any overlap and completed with (N —1) zeros.

3. Term-by-term multiplication of the two DFTs, followed by an IDFT;

4. Sum of the current block and of the next block with an overlap of
(N — 1) values.
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You can check that the overlap algorithm leads to basically the same cal-
culation load as the overlap-save algorithm.

To sum everything up, the overlap-save performs an overlap on the inputs
then delivers the result, whereas the overlap-add technique performs an overlap
not on the input but on the output (see Figure 5.6).

x(n—L+N) x(n)

N-1 jnull‘values

Blockp| ‘ ‘ T()[ [0‘
N INE N
BTN hO) T o o] Block p+1

= E——

Sum‘p Sum p+1

Figure 5.6 — Overlap-add algorithm

Exercise 5.3 (FFT filtering)

Let #(n) be a signal such that x(n) = sin(27 fon) +sin(27 fin), where fy = 0.15
and f1 = 0.3 and let h(n) be the following impulse response filter:
h(n)=[0.0002 0.0134 0.0689 0.1676 0.2498 0.2498 0.1676 0.0689
0.0134 0.0002].

1. Normalize the filter’s coefficients so as to have the gain at the frequency
0 equal to 1.

2. Display on the same graph the original signal and the filtered signal ob-
tained with the filter function.

3. Display the filter’s complex gain and the spectra of the original signal
and of the filtered signal.

4. Perform the filtering using an FFT on the entire signal.

5. Perform the same process with length 32 blocks. Notice that this requires
an overlap of consecutive blocks.

Appendix A6 gives another approach of the FFT filtering based on the prop-
erties of circulant matrices.
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5.2 Filter banks

The idea of using several parallel filters to “simultaneously” analyze several
frequency bands is very old. That is how some analog spectrum analyzers work.
Several filters, forming what is called a “filter bank” | with slightly overlapping
frequency responses, cover the entire extent of the frequency band we wish
to analyze. The short term Fourier transform time-frequency analysis (see
paragraph 3.2) is another example.

Signal spectrum analysis is not the only application of filter banks. For the
purpose of processing improvements, we can imagine performing operations on
signals coming from different filters. This is what is represented in Figure 5.7.

Analyslq Sub-band
bank /| processing
P-»

X))

Figure 5.7 — How filter banks work

There are two advantages to this method: on one hand, the calculations
are parallel, and on the other hand, the processes can be adapted to the vari-
ous channels. Among the main applications of subband filtering techniques, a
few are worth mentioning, such as subband coding, multicarrier modulations,
analog-to-digital conversion (X-A), etc. In this paragraph, we will only present
some results concerning filter banks that can be encountered when dealing with
processing architectures.

In digital processing, the fact that each channel operates on narrower fre-
quency bands allows the possibility, according to the sampling theorem, of
reducing the sampling rate at the filter’s output, as it is shown in Figure 5.7.
We end up with a system for which different processing frequencies are used
simultaneously in different points of the calculation chain. The oversampling
and undersampling operations are examples. Two operations form the basis
of these techniques: decimation and expansion. We have already encountered
them in paragraph 4.8, and we will now discuss them in greater detail.
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5.2.1 Decimation and expansion

Decimation: an operation that takes one out of every M samples. Symboli-
cally, it is represented by an arrow pointing down (Figure 5.8). According
to 4.40:

M-
Xy (2 Z 1/MI/V/IC where Wy = exp(—2jm/M) (5.5)

Expansion: an operation that inserts M — 1 zeros between two samples of the
original sequence. Symbolically, it is represented by an arrow pointing
up (Figure 5.9). According to 4.38:

Xpar(z) = X (M) (5.6)

Property 5.1 (Filtering and decimation)
We have the property illustrated by Figure 5.8.

x(n) y(n) x(n) u(n) y(n)
[ |M > HQ) > & —>{HEM) > | M >

Figure 5.8 — Fquivalence implicating a filtering and a decimation

HINT: on the right-hand side of Figure 5.8, we have:
M-

1
Y(z) =Um(z) = Z ('MW
By choosing U(z) = H(:M)X(z), we get:

Y(z) = 12) MY (W) M

which corresponds to the expression for the process on the left-hand side of

Figure 5.8. [

Property 5.2 (Filtering and expansion)
We have the properties illustrated by Figure 5.9.

HINT: starting off with the diagram on the left of Figure 5.9, and with
U(z) = H(z)X(z), we have:

Y(2) = UEM) = HEXEY) = HE) Xa(2)

corresponding to the expression for the process on the right of Figure 5.9. =
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x(n) u(n) y(n) x(n) y(n)
—>| H(2) > TM [ o — TM > H(M) >

Figure 5.9 — Fquivalence implicating a filtering and an expansion

Application: the comb decimation filter

Consider the filter represented in Figure 5.10. It 1s composed of the filter with
the transfer function 1/(1 — 271) cascaded with the filter with the transfer

function (1 — z_M).
M
x(n) +® = - 1 - y(n)
z Fasl S Z
+ m +¢

Figure 5.10 — Comb filter composed of the filter 1/(1 — 271} followed by the filter
(1-=7")
Hence its transfer function has the expression:

1
1—2-1

H,(z)= x(l—z_M)

A simplification leads to H,(2) = 142~ 442~ (M=1)_ This is therefore
an FIR filter with the impulse response h(n) =1 forn e {0,..., (M —1)} and
0 otherwise. Notice that 1/(1 — z7!) has a pole in z = 1 (zero frequency) and
that (1 — z=*) has M zeros placed on the unit circle in W, = e2ImmIM where
me{0,..., (M —-1)}.

Because of the location of the zeros of (1 — 2=M), regularly spread out on
the unit circle, the filter is called a comb filter. After a simplification, H,(z)
has (M — 1) zeros in e2™/M where m € {1, ..., (M — 1)}, and no poles.

The frequency response of the filter H,(z) is represented in Figure 5.11 for
M =16. Tt has a main lobe centered at 0 with a width of 2/M. Tt is therefore
a low-pass filter. By placing the first cell’s pole on another of the second cell’s
zeros, we can obtain a low-pass filter (see exercise 5.4).

Exercise 5.4 (Band-pass filter based on a comb filter)
In a method similar to the one used for the low-pass comb filter in Figure 5.10,
design a real band-pass filter centered at the frequency f,, = m/M.

Although the filter in Figure 5.11 is, after simplification, an FIR filter that
can therefore be achieved by a stable structure, the diagram in Figure 5.10 is
unstable because the first cell can produce an unbounded output even if the
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~05 04 —03 02 -01 0 01 02 03 04 05
Figure 5.11 — Frequency response of a comb filter for M = 16

input is bounded. For systems that use comb filters (see Figure 5.14), it is
ensured that this never happens. We will now see an application of the comb
filter.

The comb filter represented in Figure 5.10 can be used for designing a low-
pass filter (but not a very selective one) in the undersampling operation (see
paragraph 4.8.2, page 155), by placing it before an M order decimator. The
result is the first system represented in Figure 5.12.

Prefiltering
— — - Decimation
] 1-zM | M
. —
1-z7! U
! 1
— = | m 1-z-

Figure 5.12 — Permutation of the decimator and the derivative filter

According to property 5.1, the filtering and decimation operations can be
performed in any order. We end up with the second system in Figure 5.12.
In this system I(z) = 1/(1 — z~!) performs the operation that associates the
output u(n) with the input z(n) as follows:

u(n) =u(n—1) 4+ z(n)

which is an accumulation /integration and D(z) = 1 — 2~! performs the opera-
tion that associates the output y(n) with the input v(n) as follows:

y(n) =v(n) —v(n—1)

which can be seen as the approximation of a derivative filter.
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The selectivity can be increased by cascading several integrators and several
derivative filters, as it is done on certain audio CD players using what is called
the one-bit stream technique. Figure 5.13 explains how it works.

6,4 MHz 100 kHz
; 1

—— | M 1 400 | (-1t~
1bit | (=2 kHz 20 bits

M=16
Figure 5.13 — Undersampling filter

Starting off with a binary flux at 6.4 MHz, we accumulate input values, 0
or 1, then we decimate by a factor of 4. We obtain a flux of values represented
on 20 bits and sampled at 400 kHz. As we have already said, the integrator
cascade 1s, by nature, unstable. However, it can be shown that if we use
a modulo M summer, the “integrator, decimator, derivative filter” set does
not cause any overflow, so long as the summer contains M bits. Because the
cascade 1s comprised of four of these systems, an M + 4 = 20 bits summer is
used. Finally, the calculations performed by the fourth band output filter are
processed with 38 bits.

5.2.2 Filter banks

An analysis filter bank is a group of parallel digital filters, the input signals of
which are z(n), that cuts up the frequency band in K subbands. The synthesis
filter bank is a group of K filters placed after the the analysis filter bank and
generating the signal Z(n).

The processing system can be represented by a group of filters connected
by undersampling and expansion operators as shown in Figure 5.14.

Analyslq
bank

p-»

X()

z(n)
A

Sub-band
1| processing

Synthesis
bank

Figure 5.14 — How the filter bank works

We now reconsider the problem of perfect reconstruction: is there a filter
bank such that the aliasing effects for each band compensate each other exactly
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on the entire band? This question is justified by the fact that if no processing
is done, the least that can be expected of this structure is to produce an output
signal identical to the input signal. To make the rest of this discussion simpler,
we will consider the case where M = 2 according to Figure 5.15, a case of
important practical use.

x(n) ’ Gol@) W’ |2 +_>] 12 Hy(2)

2o(n) Yo(n)

(GO {12 e |

Figure 5.15 — Two channel filter bank

x(n)

Obvious solutions

Note that the perfect reconstruction problem has at least two obvious solutions.
The first one consists of taking two ideal low-pass filters in the (0,1/4) band
for Go(z) Hy(z), and two ideal high-pass filters in the (1/4,1/2) band for G (%)
H1(z). This solution has the advantage of using very selective filters, but its
filters are infinite impulse response filters, which is a drawback.

The second solution simply consists of choosing Go(z) = Hi(z) = 1 and
G1(2) = Ho(z) = 27!, In this case, the analysis filter bank is merely a de-
multiplexer distributing the even index values of z(n) to one channel and the
odd index values to the other channel, while the synthesis filter bank is a mul-
tiplexer that interlaces the two channels. This solution uses FIR filters (with
only one coefficient!). However, these filters are unfortunately band-pass filters
with a gain of 1 without any frequency selectivity.

One of the major problems we are faced with when using filter banks is
the difficulty of finding a solution that has a finite impulse response, a good
selectivity and the ability to perform perfect reconstruction, all at once.

Perfect reconstruction equations

By referring to the diagram in Figure 5.15, and by using formulae 5.5 and 5.6,
we can write:

Zo(z) = (GoX)yop2 = [Go(2)X(2) + Go(—2)X(—2)]/2
Z1(z) = (G1X) 212 [G1(2) X (2) + G1(=2) X (=2)]/2

and:

Yo(2) = Ho(2)[Go(2)X(2) + Go(=2)X(=2)]/2
Yi(z) = Hi(2)[G1(2)X(2) + Gi(=2)X(=2)]/2
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This leads us to the reconstructed sequence #(n) by X(z) =Yo(z) + Yi(2)
and therefore:

2X(z)

[Go(2)Ho(2) + Gu(2) Hi(2)] X(2) +
[Go(=2)Ho(2) + Gr(=2)Hi(2)] X(=2)
= T(=)X(z)+A(z)X(—2)
Perfect reconstruction is ensured when X (z) = 2" X(z). This gives us the
following two conditions:
T(z) = Go(z)Ho(2) + G1(2)Hy1(2) = 2277 (5.7)
A(z) = Go(—=2)Ho(2) + G1(—2)H1(2) =0 (5.8)

The first condition (5.7) expresses the absence of distortion, due to the fact
that the transfer function 7'(z) has a gain equal to 1 and a linear phase. The
second one (5.8) ensures that the term X(—z), characterizing the spectrum
aliasing, is zeroed out.

Quadrature filters

A first solution consists of imposing:

Hy(z) = Gi(—%) and Hyi(z) = —Go(—2) (5.9)
which ensures condition 5.8. Condition 5.7 then becomes:

Hy(2)Go(z) — Go(—z)Ho(—2) = 227" (5.10)

If Ho(z) and Go(z) are two polynomials in z71, equation 5.10 can be ex-
pressed a(z) — a(—z) = 227", where we have defined «(z) = Ho(2)Go(z). In
a(z)—a(—=z), only the odd degree coefficients of a(z) remain. Therefore, all the
odd degree coefficients of a(z) must be equal to 0, except for the r-th degree
coefficient. This implies, incidentally, that r is odd. We then have to factorize
a(z) = Hy(2)Go(z). Because the two constraints 5.9 are supposed to be obeyed
at all times, two simple solutions arise:

— We impose Gg(z) = G1(—=2). If we change over to the DTFTs, we get
Go(e¥™1) = G1(e¥™=1/2)) " Because the filters are real, this expres-
sion implies that the frequency responses of the filters have a “mirror”
symmetry about the frequency 1/4. This is called a QMF filter bank,
short for Quadrature Mirror Filters. Unfortunately, there are very few
solutions, and they are not selective. In order to show this, we replace
Go(z) = G1(—2) in the first expression of 5.9, meaning Hy(z) = G1(—2),
and we get Go(z) = Ho(z). Replacing it in 5.10 leads us to:

HE(z) — Hi(—z) = 227"
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For this solution to be satisfied, Hy(z) cannot have more than two non-
zero coefficients, in other words Hy(z) = hoz %o 4 hqz=%1. If we identify
the terms, we get:

4h0h12_(k0+k1) =277

and therefore kg and k1 can have any value so long as the sum is odd, for
example, kg = 0 and ky = 1, and hohy = 1/2. By imposing that the filters
be linear-phase filters, and therefore hy = hy, we get hg = hy = 1/\/5
This result is not satisfactory because the obtained filters are very poorly
selective. Thus, the frequency response of Hy(z), for kg = 0 and &y = 1,
is |Ho(e2™)|2 = cos®(rf)/2.

— The condition Gi(z2) = Go(—=2) is now replaced by Gi(z) =
(=2) "N Go(—271) or g1(n) = (=1)"go(N — n), which is equivalent. This
is called a CQF filter bank, short for Conjugate Quadrature Filters. By re-
placing G1(2) = (—2) N Go(—271) in 5.9, that is to say Ho(z) = G1(—2),
we have Ho(z) = (—2) N Go(271). Replacing it in 5.10 leads us to:

NV (Go(2)Go(=71) + Go(=2)Go(—=71))
and a sufficient condition on the phase is provided by:

GO(Z)GO(Z_l) + Go(—z)Go(—Z_l) =1

The transfer function D(z) = Go(2)Go(z71) is sometimes called a zero-
phase half-band. Because Go(e* ™) satisfies |Go(e*™)|? 4+ |Go(e¥ =122 =
1, Gy is said to be “power symmetric”. Searching for a solution can be summed
up as follows:

Steps:
1. Find an odd order, “power symmetric” filter D(z), approzimately

half-band.

In order to do this, we can start with the window method (using a
triangular window for which positivity is ensured), or with an itera-
tive method such as the Parks-McClellan algorithm [9] (the problem
is that there is no guarantee that the phase will be linear).

2. Perform a spectral decomposition of D(z) in Go(2)Go(z71).
3. Construct the filter bank using G1(z) = (—z) N Go(—271), then:
Ho(z) = Gi(=2) Hi(z) = =Go(—2)
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Orthogonal filters
We will again use equations 5.7 and 5.8, written below:
Go(2)Ho(2) + G1(2)H1(2) = 2277
{GO(—Z)HO(Z) +Gi(=2)Hi(2) =0

and solve this linear system in order to determine the expressions of Hy(z) and
H,(z) as an expression of Gy(z) and G1(z). We get:

= 227"Gh(—2)
Ho(2) = GG =) = Gr(2)Go(=2) (5.11)
Hy(z) = — 227"Go(—2)

Go(Z)Gl(—Z) — Gl(Z)GO(_Z)

Property 5.3 For the two channel filter bank, the perfect reconstruction prop-
erty 1s obtained if and only if:

Yo go(k)ho(2n — k) = d0(2n — )
Yo gi(k)hi(2n — k) =d0(2n — )
Yo gi(k)ho(2n — k) =0

HINT: let P(z) = Ho(2)Go(z). Using 5.11, we have:
P(z) =227"G1(—2)Go(z)/D(z)
where D(z) refers to the denominator of Hy(z) in 5.11. Likewise:
H1(2)G1(z) = =227 "Go(—2)G1(2)/ D(%)
Because D(z) = —D(—z), we have H1(z)G1(z) = P(—z), and we can write:
P(z)+ P(—z)=2z""

This condition implies that r is even, and that p(2r) = 6(2n — r). By
noticing that P(z) = Hy(z)Gy(%) is the z-transform of the convolution product
of ho(n) with go(n), we get:

S go(k)ho(2n — k) = 6(2n — )

Now let Qo(z) = H1(2)Go(2):
Qo(z) = =227"Go(2)Go(—2)/D(2)

Because 7 is even, Qg(z) is odd. And hence ¢o(2n) = 0. By noticing that
Qo(z) = H1(2)Go(z) is the z-transform of the convolution of hy(n) with go(n),
we get > g1(k)ho(2n — k) = 0. =
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The sequences gop(n) g1(n) on one hand, and hg(n) and hy(n) on the other,
lead to the definition of two sets of orthogonal sequences. Let:

Gon(k) = go(2n — k), dont1(k) =g1(2n — k)
VYon (k) = ho(k —2n),  tPonq1(k) = hi(k — 2n)

Property 5.3 shows that the two sequences {¢,(k)} and {4, (k)} verify for
any n # n':

S G (k)ar (k) = 0

The two sets {¢(n)} and {¢¥(n)} are said to have the bi-orthogonality
property. This is the equivalent for infinite dimension of the property of
two matrices such that ¥T® = diag(dy,...,dx) where diag(dy,...,dk) is a
diagonal matrix, the identity being a particular case.

We will now discuss the orthogonal case [98], where the sequences ¢, (k) and
¢ (k) coincide, that is where one is equal to the other translated. A sufficient
condition is to have hg(n) = go(r — n) and hy(n) = g1(r — n). Hence perfect
reconstruction and orthogonality require the impulse responses of the synthesis
filters to be reversed copies of the impulse responses of the analysis filters.
Changing over to the z-transforms, this leads to:

Hi(z) = z7"G;(1/z) where ¢ = {0,1} (5.12)
This means, first of all, that P(z), defined by P(z) = Hy(z)Go(z) can be
written:
P(z) = z7"Go(1/2)Go(z)

This relation implies that if zg is a root of P(z), then 1/zp is also a root of
P(z). Hence, the roots of P(z) are pairs of inverse values, one inside and one
outside the unit circle.

By replacing 5.12 in the second equation of 5.11, we get:

Go(—l/Z)Go(Z) + Gl(—l/z)Gl(z) = 0

If the polynomials Gg(z) and G1(z) share the same finite degree (FIR filters
of the same length) and are different from one another, then the roots of G1(z)
have to be roots of Go(—1/z). Therefore, Gi(z) = —2*-1Go(~1/z). This

relation can be expressed, in the temporal domain, as:
g1(n) = (=1)"go(2K — 1 —n)

To sum up, calculating analysis filter banks using orthogonal filters is
achieved using the following method: starting off with P(z) = Go(2)Go(1/2)
which verifies P(z) + P(—z) = 2:
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— we associate with Gp(z) the roots of P(z) that are inside the unit circle,
then we calculate go(n);

— we calculate hg(n) = go(—n);
— we calculate g1 (n) = (=1)"¢0(2K — 1 — n);
— we calculate hy(n) = g1(—n).

We still have to find a function P(z) = Go(z)Go(1/z) such that P(z) +
P(-z)=2.

A first crude method consists of imposing the relation P(z)+ P(—z) = 2 by
choosing a sequence p(n) such that p(2n) = 0 in the following manner: we start
off with an even sequence w,, for example, the one obtained by the FIR filter
design method (window method, Remez method), and all the even index terms
are replaced by zero, except for the zero index term. This can be expressed as
follows:

p(n) = wyep

where ¢a, = d(n). However, this does not guarantee that P(z) can be expressed
as Go(2)Go(1/z), or that P(e2™f) is positive, which is equivalent. We can
then determine the sequence ¢, such that P(e*™/) > 0. As a consequence, the
relation P(z) + P(—z) = 2 is not quite true anymore, and becomes even less
true as the minimum negative value of the DTFT of w, becomes smaller.

Let us now see an important example related to the Daubechies wavelets.
We start with a polynomial P(z), such that it is at the frequency 1/2. As a
consequence, this introduces in the sequence p(n) a kind of regularity similar
to the signal smoothing property when the energy of the high frequencies is
reduced, hence the idea to place a great number of zeros in z = —1. For this
we assume:

P(z) = (14 2 (1 4+ =) R(2)

where R(z) can be expressed as Ry(z)R1(1/z). R(z) is therefore a symmetrical
polynomial for which the degrees of its terms vary from —s to +s. Therefore,
P(z) has 2k 4 2s roots and is dependent on 2k + 2s + 1 coefficients, (k + s) of
which have to be equal to zero (p(2n) = 2d6(k)). This leads to (k+s) equations.
Yet we have 2s 4+ 1 linearly independent coefficients in R(z). This means we
have to set k4+s=2s+1,0or s =k — 1. Thus, for k£ = 2, we get s = 1. Hence
the length of the filter Gg(z) is 4. Generally speaking, this method leads to
FIR filters with lengths of L = 2k.

Let us calculate the coefficients for & = 2. For this we assume R(z) =
(az + B+ az71). The expression of the condition P(z) 4+ P(—z) = 2 will give
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us two equations with two unknowns a and 3. First we have:
P(z) = az 4 (@da+p)z"2+ 48 +Ta)z"" + (8a +63)
+(48 4+ Ta)z + (4a + B)2% + a2®
The condition:
P(z)+ P(—z) = 2((4a + )27 + (8a + 68) + (4a + 3)2°) = 2
is met if 4o + 8 = 0 and 8« + 65 = 1. This leads to &« = —1/16 and 3 = 1/4.

If we factorize R(z), then associate with Gy(z) the roots inside the unit circle,
we get:

Go(z) = ﬁ (V) + B+ VB + (3 VB + (1 - VB)=)
This leads to hg(n) = go(—n), then g1(n) = (—=1)"g0(3 — n) and hi(n) =

g1(—n).

The following program calculates the coefficients of Gy(z), plots the gains
of the analysis filters, and checks the perfect reconstruction property on a
trajectory.

%===== DAUB4.M
clear
r=4; % Delay due to the bank

g0=[1+sqrt (3) ;3+sqrt (3) ;3-sqrt (3) ;1-sqrt (3)1/4/sqrt (2) ;
hO=g0(r:-1:1); gi1=-h0 .* ((-1) .~ (0:r-1)’);
hi=gl(r:-1:1);

%===== Gains

Lfft=1024; freq=[0:Lfft-1]/Lfft;

GOf=abs (fft (h0,Lfft)); Gif=abs (fft(hl,Lfft));

subplot (311) ; plot(freq,[GOf G1f]); grid;

set (gca, ’X1im’, [0 .5])

Y%===== Verification

%===== Analysis

x0=filter(g0,1,x); x1=filter(gl,1,x);

%===== Decimation/expansion

v0=x0; v0(1:2:N)=zeros(li/2,1);

vi=x1; v1(1:2:N)=zeros(li/2,1);

%===== Synthesis

yO=filter(h0,1,v0); yl=filter(hl,1,vl);
xchap=y0+y1; max(abs (xchap(r:N)-x(1:N-r+1)))
subplot (312); plot(x(100:120)); grid

subplot (313); plot(xchap(100+r-1:120+r-1)); grid

Comments

— We often only restrict ourselves to the two-branch symmetrical filter,
because the same segmentation can be applied to both branches (Figure

5.16).
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Figure 5.16 — Decomposition of each branch

A particular decomposition in octaves (Figure 5.17) can be associated
with the wavelets using multi-scale analysis.

m»lﬂm»m
L

Figure 5.17 — Decomposition in octaves

— A commonly used approach in sub-band decomposition techniques uses
the FFT calculation structure. Analysis and synthesis filter banks consist
of inverse and direct “FFT blocks”. A reader curious for more information

on this method should read [27, 96].
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Chapter 6

An Introduction to Image Processing

This chapter provides the reader with a few elements on image processing
with MATLAB®, which comes equipped with 2D (two dimension) functions,
necessary when working in this field, a field not too different from 1D signal
processing.

This chapter is merely an introduction. The reader can benefit from read-
ing [31], a rather extensive overview of what is done with images, both still
and animated. Some important problems, related to sampling, rectangular,
hexagonal or of another kind, to perception, to content aspects in terms of
objects, etc., will not be discussed here. The only thing we will be dealing with
is handling two dimension arrays. We will also explain how to program some
of the functions contained in the “image” toolboz.

Examples in this chapter are illustrated by figures that cannot perfectly ren-
der the phenomena we are trying to underline. The printing process, whether
monochrome or not, adds its own imperfections (quantization, weaving, number
of colors, color transcription, etc.) when rendering images. In fact, every part
of the digital processing chain, from the data recording device to the printer,
has a role that will not be covered in this book.

6.1 Introduction

6.1.1 Image display, color palette

From now on, an image will be considered as a set of pizels (the contraction
of picture element), associated with a rectangular grid of the original image

(Figure 6.1).
In MATLAB®, there are several ways to display an image:

— Either directly with an (N x M x 3) or (N x M x 4) array depending on
the color model: RGB (Red, Green and Blue), CMYK (Cyan, Magenta,
Yellow and blacK), HSL (Hue, Saturation and Lightness), CIE Lab
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Figure 6.1 — Each point of the original image has an 8-bit coded “gray-level”. Fach
pizel appears as a gray square

(“Commission Internationale de I'Eclairage”: L is for luminance, and a
and b are color component coordinates), etc.

In the following example, an image in JPEG format is imported with the
use of the imread function as a 3 dimension 800 x 580 x 3 array, the 3
indicating that there are three RGB color planes. Notice that the data
type used is the 8-bit unsigned integer:

>> xx=imread(’elido72. jpg’,’jpeg’);

>> whos
Name Size Bytes Class
ans 1x94 188 char array
XX 800x580x3 1392000 uint8 array

— either by using a 2D (short for 2 dimension) array and a color palette.
This is the display mode we will be using; it is called an indezed repre-

sentation.

Let A =[a(i,5)], with 1 <i< Nand 1 <j< M, bean N x M array. The
number a(i, j), placed in line ¢ and column j, indicates the color of the point
with coordinates (7, j) in the image after it has been “sampled” and “quan-
tified”. The line index 7 represents the horizontal position, and the column
index j represents the vertical position. The point with the coordinates (1, 1)
is placed in the top-left corner (see Figure 6.2).
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Example 6.1 (Pixelizing an image) Type:

image1=[32 0 48;0 16 0];
image (imagel) ; colormap(’gray’)

The image displayed is comprised of 6 points, or logical pizels, and the one
associated with image1(1,1) is the one in the top-left corner (Figure 6.2).

Figure 6.2 — Siz logical pizels: notice the integer z- and y-coordinate corresponding
to the “center” of each pixel

Notice that an element of the array with the index (¢, j) can be associated
with several physical pixels of the display window. In fact, there is no reason for
the number of values of the matrix of elements a(%, j) to be equal to the number
of phystical pirels of the display window. Hence, a point with the coordinates
(,7) can be represented by several physical pizels, just as a physical pizel can
be used to represent several points with the coordinates (¢, j). From now on,
when we use the word pirel, we mean a logical pixrel, that is to say elements
identified by the pair (¢, 7).

If we want to display a Figure and preserve its real size (one screen
pixel corresponding to one image pixel), we will be using the properties
units, Position, AspectRatio...(these parameters can change from one
MATLAB®version to the next). In example 6.1, a real-size display is achieved
by typing:

” set (gca, ’units’, ’pixels’, ’Position’, [20 20 fliplr(size(imagel))])

In the indexed representation, a(%, j) indexes a color array called the palette
(Figure 6.3). The color palette is a (P x 3) array where each line is used to
code a color according to its Red, Green and Blue components (RGB) using a
real number between 0 and 1.

This representation is convenient since most bitmap editing programs can
provide an image description in three planes, each one of them correspond-
ing to a primary color R, G or B, encoded as an integer between 0 and
2" — 1 (n-bit encoding). The images we will be considering will be “in lev-
els of gray”. MATLAB® has a default palette that can be activated using the
colormap(’gray’) instruction.

Type colormap(’gray’) then colormap. You get a (64 x 3) array with
three identical columns of values between 0 and 1:
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Figure 6.3 — Connection between the image array and the palette

ans =
0 0 0
0.0159 0.0159 0.0159
0.0317 0.0317 0.0317
0.0476 0.0476

0.0476

0.9841 0.9841 0.9841
1.0000 1.0000 1.0000

COMMENTS:

— In example 6.1 the zero values of the imagel array are redefined as 1 and

therefore index the color (0,0,0), which is black (Figure 6.2).

— Help for the commands image, imagesc and colormap should particularly
be looked into.

— The standard palette is constructed linearly. Each column is of the type
[0:1/63:1]1° (1/63 ~ 0.0159). This does not quite correspond to the
perception we have of brightness. The visual response is roughly pro-
portional to the logarithm of the intensity (Fechner-Weber law), hence
the progression of the levels of gray should correspond to this law. In
practice, the palette’s linear conformation makes our work much easier
since palette index lines and gray levels are related by an affine relation.

— Other palettes come standard in the basic version of MATLAB® to make
the user’s work easier. Use the help color command to learn more
about them. Also, nothing stops you from defining your own palettes.
For example, to get a display with 256 levels of gray, all you need to do
is create a cmap array as follows:

cmap=[0:255] **ones (1,3) /255;
colormap (cmap) ;
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6.1.2 Importing images

If you don’t have an image you can perform tests on in MATLAB®, you can
always create one based on raw format images (no header) using image pro-
cessing software. At the same time, you can save the palette, if that is possible.
The following function allows you to read and/or create a file that can be used
directly by MATLAB®. The image that was chosen is an image universally
used by “image processors” to compare results obtained for different implemen-
tations. It is referred to as lena. We assume that the data is stored as unsigned
8-bit coded integers.

Figure 6.4 — Test image

function pixc=rawZmatf (NomFE,Nlig,Ncol,Tr ,Fc,NomFS)

%h %
%% Reading a raw image file %
%% SYNOPSIS: pixc=RAWZMATF (NowFE,Nlig,Ncol,Tr,Fc,NomFS) %
%%  NomFE = raw file ([.raw]) %
YAA Nlig,Ncol = Image dimensions %
%h Tr = when ’T’: transposing the image %
YAA Fc = when ’F’: creating the file NomFS (.mat) %
%% NomFS = Resulting file ([.mat]) %
%h %
if nargin<6é, NomFS=’fictrav.mat’; end

if nargin<5, Fc="N’; end

if nargin<4, Tr="N’; end
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%===== Raw image
nFS=findstr (NomFE,’.’);
if isempty(nFS),
NFE=[NomFE,’ .raw’];
else
NFE=NomFE; NomFE=NomFE(1:nFS-1);
end
fid=fopen(NFE,’r’); [pixc,Npix]=fread(fid,’uchar’);
if (Npix ~= Nlig*Ncol)
sprintf (’Dimensions error: %dx%d “= %d’,Nlig,Ncol,Npix)

return
end
pixc=reshape (pixc,Nlig,Ncol); if Tr=="T’, pixc=pixc’; end
fclose(fid);
%===== Creating the .MAT file
if Fc=="F’,

sprintf (’Creating the file %s’,NomFS)
eval([’save ’> NomFS ’ pixc’])

end
return

The image can be loaded and displayed (Figure 6.4) by the following pro-
gram:

Y%===== TSTRAW2MAT.M

pixc=raw2matf (’lenab0’,256,256,°T’);
%===== Palette construction
cmap=([255:-1:0]°/255)*[1 1 1];

%===== Displaying with the new palette

imagesc(pixc); colormap(cmap); axis(’image’)

In this program, the palette is defined, but it can also be saved in the image
processing application and stored in the .mat file.
COMMENTS:

— Recent versions of MATLAB® allow you to directly load and save images
in formats such as “bmp” (bit map), “tiff”, “jpeg”, “pcx”, etc. using the
imread and imwrite functions.

— Notice that when a palette is used, the image function works with an
array of integer values (the non-integer values are rounded) between 1
and M. The values above M are constrained to M, and those below 1
are constrained to 1. Type at the end of the previous program:

p256=pixc+256; subplot(121); image(p256); axis(’image’)
pO=pixc-256; subplot(122); image(p0); axis(’image’)

colormap (cmap)

You should see a white square and a black square.
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— Tt is usually preferable to use the imagesc function (suffix sc as in scale)
which displays a version with the same scale as the original image: the
values are changed to fit between 1 and size(colormap,1).

— The image’s color levels can have values such that it becomes difficult to
display the image because of a few extreme values. The use of image or
imagesc may not be satisfactory. The following function allows you to
improve the display by modifying the color distribution:

function mydisp(pixr,cmap,stdpar,style)

%h %
%% Displaying with gray level control %
%% SYNOPSIS: MYDISP(pixr, cmap, stdpar, style) %
o pixr = image A
Wh cmap = palette A
YAA stdpar = controls the min and max indices %
%h style = see AXIS function %
%h %

if nargin<2,

sprintf (’Error on arguments’);

return
end
if nargin<4, style=’image’; end
if nargin<3, stdpar=3; end
if (stdpar <= 0 | stdpar >10), stdpar=1; end
moy=mean (mean(pixr)); stdp=stdpar*std(std(pixr));
ninp=moy-stdp; maxp=moy+stdp;
idx=1+(pixr-minp) * (size (cmap,1)-1)/(maxp-minp) ;
colormap (cmap) ; image(idx); axis(style)

return

— When using scanners or digital cameras, the standard sampling values,
in “dots per inch” (dpi), are (300 x 600)*, (600 x 1,200), (1,600 x 3,200),
(2,700 x 2,700)..., and for quantification, 8, 10, 12... bits for each of the
primary colors.

6.1.3 Arithmetical and logical operations

Because images in MATLAB® are matrices, the usual operations can be di-
rectly applied to them. In particular, arithmetic and logical operations between
images, pixel by pixel, can be performed from the array values they are asso-
ciated with.

Thus, the sum of two images pix1 and pix2 of the same size can be written
pixl + pix2, or just as the square root of pix can be written sqrt(pix). You

IMeaning 300 dots per inch in one direction, and 600 dots per inch in the other.
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only have to make sure that the obtained values are consistent with the color
palette, or you can use the functions imagesc or mydisp.

As for the logical operations applied to the 8 bits of the image pixels’ bi-
nary representation, the problem is trickier, because MATLAB® has no integer
type to which we could directly apply the boolean operations (this was how-
ever modified in the recent versions). The operations have to be performed by
extracting bits one by one from the image matrices. Here is an example: con-
sider the two images in Figure 6.5 — we are going to perform the AND function
between the figure on the left and the figure on the right.

Figure 6.5 — Logical operation AND

The result is shown in Figure 6.6: the black areas of the image on the right in
Figure 6.5, which are encoded as byte 0000 0000, force the corresponding areas
of the resulting image to be black. This is because if xxxx xxxx is the value
associated with a pixel from the first image, the logical AND of xxxx xxxx
and 0000 0000 is 0000 0000. The white areas of the image on the right are
encoded as byte 11111111, leaving untouched the values of the corresponding
pixels of Lena. This 1s because the logical AND of xxxxxxxx with 1111 1111
i1s xxxx xxxx. Finally, the areas of the image on the right which are encoded
as yyyy yyyy lead to a pixel value with some bits unchanged, and others set
to 0.

Figure 6.6 — Result of the logical AND
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The ANDlog function performs the logical AND operation we have just de-
scribed:

function pixr=ANDlog(pix1,pix2,L)

hh %
%% Logical AND between two images %
%% SYNOPSIS: pixr=ANDLOG(pix1,pix2,L) %
%h pixl = first image (gray palette) %
Wh pix2 = second image (gray palette) %
YAA L = number of bits for color coding %
%h pixr = image result Y
o %

if (nargin<3), L=8; end
Ni=size(pixl);
if (W1 "= size(pix2)),
error (’Matrix dimensions are not appropriate’)

end

pixr=zeros(lil);

%===== Extraction of the bits one by omne
for k=1:L

pixr=pixr+ (rem(pix1,2) & rem(pix2,2)) * 2~ (k-1);
pixl = fix(pix1/2); pix2 = fix(pix2/2);

end

return

The program testlogic.m which uses the ANDlog fonction, leads to Fig-
ure 6.6:

%===== TESTLOGIC.M

load lena2b; % Loading and displaying
subplot (131); imagesc(pixc+1); 7% the first image
colormap (cmap) ; axis(’image’);

load testlogl; % Loading and displaying
subplot (132); imagesc(pixtl+1l); % the second image
axis(’image’)

%===== Logical operation

pixr = ANDlog(pixc,pixtl,size(cmap,1));

subplot (133); imagesc(pixr+l); axis(’image’);

Exercise 6.1 (Logical functions)

1. Write a function that uses the four basic logical operators AND, OR, EOR
and NOT, as well as the comparison operators. Use the eval function to
implement it.

2. Write a test program for the logical operator NOT, as well as for the
logical operator that is true when a,, < b,,, where a,, and b,, are the
bits corresponding to two bytes we wish to compare.
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6.2 Geometric transformations of an image

6.2.1 The typical transformations

The simple geometric transformations, such as translations, rotations and tor-
sions are problematic because of the “integer” nature of the pixels’ position in
an image (Figure 6.7).

o) Column (m.n) y

Line

Figure 6.7 — Rotations of an image

Example 6.2 (Rotation of an image)
We wish to rotate an image. To make things simpler, we will be using an image
in levels of gray.

1. The rotation matrix has the expression:

sinf  cos@

_ [cos # —sin 9]

2. We create an array for the pixel coordinates (change from the line and
column numbers over to the z, y coordinates). Applying the rotation
to every point provides, after rounding the resulting value, and changing
back to the line, column representation, leads us to the final image:

%===== GEOMTRANSF .M

% Geometric transformations / Rotation

fmt=’jpeg’; fn=’imageGG.jpg’; pixc=imread(fn,fmt);
figure(1); imagesc(pixc); Spix=size(pixc);
N1=Spix(1); Nc=Spix(2);

tbcolor=[0:1/255:1]1’*[1 1 1]; % Gray colormap
colormap (tbcolor) ; set(gca,’DataAspectRatio’,[1 1 1])
%===== Rotation center
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xor=(1+lc) /2; yor=-(1+N1)/2;

%===== tbidx=indices (columnwise)

tbx=ones (N1,1)*[1:Nc]; tby=[1:N1] *ones(1,Nc);
tbidx=[reshape (tby,1,N1#Nc) ;reshape (tbx,1,N1xlc)];
idtb=tbidx(1,:)+(tbidx(2,:)-1)*N1; % Linear indices

%===== tbcoord=coordinates pixels/rotation center
tbecoord=[tbidx(2,:)-xor;-tbidx (1, :)-yor];
%===== Rotation

theta=25; thet=theta*pi/180;

MRot=[cos (thet) -sin(thet);sin(thet) cos(thet)];
tbv=round (MRot*tbcoord) ;

xmin=min(tbv(1,:)); xmax=max(tbv(1l,:)); ncol=xmax-xmin+1;
ymin=min (tbv(2,:)); ymax=max(tbv(2,:)); nlig=ymax-ymin+1;
%===== Index Reconstitution
tbidxR=[-tbv(2,:)-ymin+1;tbv(1l,:)-xmin+1];
pixcR=zeros(nlig,ncol); pixcR2=pixcR-1;
idtbR=tbidxR(1,:)+(tbidxR(2,:)-1)*nlig;
pixcR(idtbR)=pixc(idtb); pixcR2(idtbR)=pixc(idtb);

save pixcR2 pixcR2 thet tbcolor N1 Nc; % for next processing
%===== Displaying the result

figure(2); imagesc(pixcR); colormap (tbcolor)

set (gca, ’DataAspectRatio’,[1 1 1]);

%===== Saving the image for median filtering

pxRmn=min (min(pixcR)); pxRmx=max (max (pixcR));
pixcRn=255%(pixcR-pxRun) / (pxRmx-pxRmn)+1;

imwrite (pixcRn,tbcolor,’imageGGR.bmp’, *bmp’)

Notice the use of the imread and imwrite functions, making it possible
to read and save images in a given format, “jpeg” in this example.

Rotating two neighboring pixels can result, after rounding, in identical co-
ordinates. This leads us to the conclusion that there are “holes” in the target
image. These are clearly visible in the image resulting from the rotation (Fig-
ure 6.8). We will see in exercise 6.12 how to deal with these isolated points. Tt
is also possible to process the pixels with identical coordinates using a weighted
mean of the source pixels.

Generally speaking, affine transformations are represented with expression

6.1:

X a b ty| |z
Y| =|e d t,| |y (6.1)
1 0 0 1 1

z and y are the coordinates of the source &, X and Y those of the target image
C. t; and t, define the translation applied to the image.
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Figure 6.8 — Flaws due to the rotation

Likewise, the word torsion (see exercise 6.3) is used when the relation be-
tween & and C is of the type 6.2:

U a b t.| |z
V] = d ty| |y andX:%,Y:% (6.2)
T ro1lh

These two types of transformations pose a problem for interpolation
(paragraph 6.5.2) and/or undersampling (paragraph 6.5.1) which we will
discuss later.

There is no rule that says you have to use an zQy axis system instead of a
“line, column” coordinate system (L C coordinates). In the case of a rotation,
it allows the transformation matrix to preserve its usual form. In general, the
transformation matrix can be identified immediately in LC coordinates.

Exercise 6.2 (Plane transformation)

Describing a transformation can be done in an interactive way using a simple
shape. Here we are going to use the triangle to define the affine transformation
we will apply to the image.

1. Write a linear transformation function of an n x m pixel image, knowing
that the (2 x 2) transformation matrix is described in an Oy system.

2. Write a program asking the user to define two triangles interactively,
which then calculates the (3 x 3) affine transformation matrix used to go
from one triangle to the other.

3. Apply the transformation to an image.



An Introduction to Image Processing 199

Exercise 6.3 (Transformation of a rectangular selection)

Many image processing applications allow you to deform a rectangular-shaped
selection by having an effect on each corner of the selection. Consider expression
6.2 of the “torsion”. For a corner with the coordinates zy, yg, the coordinates
X and Y}, after modifications can be expressed:

_ Uk amp + by, + 1o
T exi+ fyr +1
Vi cap+dyr + 1y

dY,=—=
e Tk Ty  exp+ fyp+1

Xy

{ Xi(exy + fyp + 1) = azp + byg + 4 (6.3)

Yi(exp + fur + 1) = cap + dys + 1y

If applied to all four corners, these expressions make it possible to determine
the eight coefficients of the transformation matrix.

1. Using 6.3, determine the linear system needed to find the transformation
matrix.

2. Apply this transformation to an image by assuming that the rectangular
selection is applied to the whole image.

6.2.2 Aligning images

Many applications — biometrics, identification number recognition, handwriting
recognition, etc. — require that an image be forced to fit a certain size before
undergoing whatever processing i1s needed. A method called the Procrustes
method 1s often used to perform this operation.

The idea 1s to start with a simplifed model based on characteristics points.
Thus, for a face, we can choose a model such as the one illustrated in Figure
6.9. In the case of a hand, you can either choose points on the outline of the
hand, or points on the outline of each finger. For a license plate, the natural
choice would be the four corners, etc.

Once we have a reference model A (the pattern on the left in Figure 6.10),
we can start searching for a transformation that drags the characteristic points
of the figure B to be analyzed (the pattern on the right in Figure 6.10) over
onto the points of the reference model, according to a criterion used to evaluate
the distance between two sets of points.

The fact that the two sets of points .4 and B must correspond exactly adds
a difficulty. When the points are provided by the automatic image analysis, A
and B do not necessarily have the same number of points, meaning that some
manual corrections may turn out to be unavoidable.

Let A € R™**® and B € R"** be two r x s matrices. In our case, the matrix
size is (N, 2) or (2, N), where N is the number of charateristic points. We are



200 Digital Signal and Image Processing using MATLAB®

NN/
ﬂ%@7§§
Mb‘

%
—.

Figure 6.10 — Characteristic points and Delaunay triangulation: the pattern on the
left serves as a reference, the set of points on the right corresponds to the figure we
wish to align

trying to determine the (r x r) matrix Q, solution to the problem, for which
we define a constraint:

ming [|A — QB||F
A
{ QTQ = 0-217' (6 )

The matrices A and B are centered. If their size is (N, 2):

X1 N
Xe Y
M= | . :
Xy Yy

they are centered by typing M - ones(N,1)*mean(l1).
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For a matrix M, the Frobenius norm is defined by ||[M||% = Tr{MMT7}.
We have:

|IA—-QB|% = Tr{AAT} —2Tr{QBA”} ++*Tr{BB”}
= Tr{AAT} - 2¢Tr{PBAT} + o’ Tr{BB”} (6.5)

where Q = oP where P is a unitary matrix. Hence, for a given o, the mini-
mization problem amounts to the maximization problem of Tr{PBA”} under
the constraint PTP = I,.

The matrix BA” is an r x r square matrix. Its singular value decomposition
can be written as follows:

BAT = UDV”
where U and V are unitary. This leads us to:
Tr{PBA’} = Tr{PUDV’} = T+{VIPUD}
If we assume Z = VIPU, and because D is diagonal, we have:

Tr{PBA”T} = T+{ZD} = ) ziidi;

7

where the z; and d;; are the diagonal terms of Z and D respectively. But,
because Z is a unitary matrix, |z;;| < 1 for 7, j any pair. Indeed using 777 =1,
for all j we have 3, |z;;|*> = 1. This means that, for any matrix P:

The upper bound )", dj;, which is independent of P, can be reached if we
let Z = VTPU =1, that is to say:

P=vU” (6.6)

which is unitary. Hence (6.6) is the solution we were looking for. To sum up,
after starting with A and B € R"**  we calculate, one after the other:

1. C =BAT7;

2. the singular value decomposition: C = UDV7;

3. P=VUT;

4. notice that minimizing 6.5 in regard to ¢ leads to:

_ Tr{PBAT} _ Tr{PBAT}
T Tr{BBT} ~ Tr{BBT}
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Notice that if A=B, Q =1.
The counterpart to the problem posed by expression (6.4) is determining
the r x r unitary matrix R, solution to the problem:

(6.7)

minR ||A — BRHF
RTR = 421,

Of course, its solution can be inferred from the previous one if you notice
that 6.7 is equivalent to:

1 AT _RTBT
{ ming || I3 63)

RTR = 31,

the solution of which is R = 5Y W7 where BTA = YD'WT.
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Figure 6.11 — Applying the multiplications on the right and on the left in the example
of Figure 6.10. In the bottom-right, the size of the transformation matriz is (2 x 2).
In the bottom-left, the size of the matriz is (N x N) where N is the number of points
in the mesh
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Notice in the example above that if one of the dimensions is always equal
to 2, for example:

X1 X2 Xs sl 9 P
Y1 Y2 N Ys:| an |:y1 Yo e Ys

the algorithm’s development is true for any r x s pair. In particular, the pixels
of two images we wish compare can be directly used.

6.3 Frequential content of an image

Just as it was done for 1D discrete-time signals, we are going to define the
Fourier transform X (v, p) of an image, referred to as the 2D-DTFT.

Definition 6.1 (2D-DTFT) Let z(k,{) be a two index sequence. The 2D-
DTFT is the function of v and of v defined by:

f f —271'] (ku+ev) (69)
k=—o0cl=—c

Because of its definition, X (u,v)is periodic with period 1 for the two vari-
ables p and v.

In practice, the images processed have a finite size K x L and we have:

>

—-1L-1
X(p,v) = w(k, ()¢ 2mi hutty) (6.10)
k=0 0

o~
I

In this case, X (u, v) poses no existence problems, since the values of z(k, {)
are bounded and the sequence is finite.
The inverse formula leading to z(k, £) from X (p,v) is:

1/2  p1/2
2 (k, 0) / X (g, v)e2m I kut ) gy dy (6.11)
1/2J-1/2

Property 6.1 (2D convolution) 2D convolution is the name of the opera-
tion that associates the two sequences x(k,£) and y(k,£) with the sequence:

+ oo [e%e)
k)= @)k 0= Y S wlidylk—i - j) (6.12)

{=—00 j=—00

The 2D-DTFT of the 2D convolution of x with y is the product of the
respective 2-DTEFTs. In other words:

(xxy) & X(p,v) xY(p,v) (6.13)
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Just as for 1D, the problem of the numerical calculation of the 2D-DTFT
leads to the introduction of the 2D-DFT, which corresponds to the 2D-DTFT’s
expression calculated in points regularly spread-out over the (0,1) x (0, 1) block.
Without being at all specific, and as for 1D, the number of points before and
after the transformation can be considered the same, by completing with zeros
if necessary. This leads to the following definition.

Definition 6.2 (2D Discrete Fourier Transform (2D-DFT))
The 2D discrete Fourier transform, or 2D-DFT, of the finite sequence {x(k,{)},

withk e {0, ..., M —1} and 1 € {0, ..., N — 1}, is the sequence defined, for
me{0, ..., M—1} andne {0, ..., N —1}, by:
M-1N-1 m n
X(m,n) = z(k, O)exps —27j | — 4+ — 6.14
mn = 33 stk e {2 (57 + 1) (6.14)

If we change the expression of X (m,n) to:

X(m,n) = Nz_:l (exp {—QWj%l} Mz_:l 2k, 0) exp {—zwj%”}) (6.15)

£=0 k=0

for each value of ¢, the 1D-DFT of the sequence z(k,¢) for the variable &
appears in the parenthesis. With MATLAB®, the N FFTs corresponding to
expression 6.15 are calculated by applying the ££t function to the (M x N)
array x. The 2D-DFT is then achieved simply by performing another FFT on
the resulting transpose array.

To sum up, the 2D-DFT is obtained by doing:

fEe(£ft(x). 7).

The ££t2 function, available in the basic version of MATLAB®, performs
the same operation. As was the case with 1D signals, typing £ft2(x,M,N)
completes, if necessary, the array x with zeros so as to have an M x N array.
Again, as it was the case for 1D signals, 1t is often preferable to display the
spatial frequencies with values between 0 and 1, or between 0 and 1/2. This is
what we did in example 6.3.

Example 6.3 (2D-DTFT of a square block)
The following program calculates the 2D-DTFT of a square block and displays
its modulus. The result is shown in Figures 6.12 and 6.13:

%===== TSTFFTBLOCK.M

block=zeros(8,8); delta=4;
block(1l:delta,l:delta)=ones(delta,delta);

set (gcf, ’color’,[1 1 1])

subplot (131) ; imagesc(block); colormap(’gray’);
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axis(’image’); set(gca, ’xcolor’,[0 0 0], ’ycolor’,[0 O 0])

%===== Spectral content
M=32; N=32; blockFgs=fft2(block,M,N);
%===== Normalized spatial frequencies

mu=(0:M-1) /M;nu=(0:N-1) /N;

subplot (132) ; contour (nu,mu,abs (blockFgs),20);
axis(’square’); set(gca,’xlim’,[0 .5],’ylim’,[0 .5])
set (gca, ’xcolor’,[0 0 0], ycolor’,[0 O 0])

subplot (133); imagesc(nu,mu,abs (blockFgs))
axis(’square’); set(gca,’xlim’,[0 .5],’ylim’,[0 .5])
set (gca, ’xcolor’,[0 0 0], ycolor’,[0 O 0])

04

, 03
I

Figure 6.12 — 2D-FFT applied to the rectangular block by restricting the frequencies
to ([0,1/2] x [0,1/2])

2 02 04

The lobes are similar to the ones obtained for the discrete-time sine cardinal

(Figure 6.13).

Figure 6.13 — 2D-FFT applied to the rectangular block with the frequencies belonging
to ([0,1] x [0,1])

The properties of the 2D-DFT are similar to those of the 1D-DFT:

Property 6.2 (Inverse 2D-DFT) The 2D-inverse-DFT of X (m,n) has the
erTpression:

1 km  In
z(k,£) = i Z X (m,n)exp {271']' (W + ﬁ)}

m=0 n=0
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where k € {0,..., M — 1} and £ € {0,...,N — 1},
This result is obtained by using the relation:
M-1N-1

ﬁ > Zexp{?ﬂ'j (%Jr%n)}

m=0 n=0

g(k, o)

_ { 1 ifk=0mod M and £ =0 mod N

0 otherwise

Property 6.3 (Circular convolution (2D-DFT))

Let x(k,t) and y(k,£f) be two images with the same finite size M x N. Let
X (m,n) and Y (m,n) be their respective 2D-DFTs calculated over M x N points.
Then the inverse 2D-DFT of Z(m,n) = X(m,n)Y (m,n) has the following
expression, fork € {0,.... M — 1} and £ € {0,..., N — 1}:

M-1N-1

z(k, ) = Z Z z(u, v)y((k — w) mod M, (£ —v) mod N)

u=0 v=0

where the indices of y are calculated modulo M and modulo N respectively.

Property 6.4 (Real image and hermitian symmetry (2D-DFT))
If the image x(k,£) is real then its 2D-DFT is such that:

X(m,n) = X" (—=m mod M,—n mod N)

where the first indices® are calculated modulo M and the second indices modulo

N.

Thus, X(0,0) = X*(0,0) which is therefore real. If M = 8 and N = 16,
X(4,3) = X*(8 — 4,16 — 3) = X*(4,13).

Example 6.4 (2D-DFT of a checkerboard)

The following program calculates the 2D-DFT of a checkerboard the horizon-
tal frequency of which is £0x=0.2 and the vertical frequency £0y=0.3, and
displays its modulus. The resulting graph shows lobes at the spatial frequen-
cies (0.2;0.3) and (1 —0.2;1— 0.3), since the image is real. You can try other
values of £0x and £0y.

%===== TSTFFTM0.M

%===== Checkerboard

clear; cote=8; bloc=zeros(cote,cote);

£f0x=0.2; £0y=0.3;

dom=f0x* (0:cote-1) *ones(1,cote)+fO0y*ones (cote,1)*(0:cote-1);
chkbd=cos (2*pi*dom)+1;

?Bear in mind that the array indices start at 1 and not 0.
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set (gcf, ’color’,[1 1 1])

subplot (121) ; imagesc(chkbd) ;

colormap (’gray’); axis(’image’)

set (gca, ’xcolor’,[0 0 0], ycolor’,[0 O 0])
%===== Spectral content

M=128; N=128; chkbdFqs=fft2(chkbd,M,N);
mu=(0:M-1) /M;nu=(0:N-1) /N;

subplot (122) ;

contour (nu,mu,abs (chkbdFgs) ,20) ; %imagesc(nu,mu,abs (chkbdFqgs)) ;
set (gca, ’xcolor’,[0 0 0], ycolor’,[0 O 0])
axis(’square’); grid

W =~ @& W s W N =

Figure 6.14 — 2D-FFT applied to a checkerboard

If 2(k,¢) is separable, that is if #(k,¢) = x1(k)x2(£), the 2D-DFT can be
expressed as the product of two 1D-DFTs (meaning that X (m, n) is separable).
Thus, we can write:

X (m, n) M_lxl(k) exp{—?ﬂ'jkﬁm} X Z_:lxz(ﬁ) exp{—?n’jlﬁn}

= Xl(m) ><X2(n)

The calculation then becomes quite simpler.

6.4 Linear filtering

The £ilter2 function, used for 2D filtering, is available in the basic version of
MATLAB®. This function uses the 2D-convolution function, the command line
of which is, in MATLAB®, c=conv2(a,b). The 2D-convolution is a built-in
function.

Definition 6.3 2D-linear filtering is the operation that associates the image

z(k, £) with the image y(k,t) defined by:

[e%e) + oo
y(k, 0) = (@ h)(k, )= > > w(k—m, = n)h(m,n) (6.16)

m=—0o0 Nn=—00
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The two index sequence h(k, ), characteristic of the filter, is called the Point
Spread Function, or PSF.

As was the case for 1D-filtering, the operation denoted by “x” in expression

6.16 is linear and space-invariant, and the sequence h(k, ) is the equivalent
of the impulse response for the one dimension case. Once again, property 6.1
leads to a simple expression of the filtering operation in the frequential range.
This gives us the following property.

Property 6.5 Consider a 2D-linear filter with the PSF h(k,?). H(p,v) de-
notes the 2D-DTFT of its PSF. It s called the optical transfer function, or
OTF. Because of property 6.1 we have:

Yip,v) = H(p,v)X(p,v)

where X (p,v) and Y (p,v) refer to the 2-DTFTs of x(k, ) and y(k,£) respec-
tively.

Thus, the identity filter has the PSF h(k, £) = §(k)J(£), where d(k) is equal
to 1 if & = 0 and 0 otherwise. Its OTF is equal to 1 for any frequency pair
(g, v). This filter leaves the input image untouched. Because of property 6.5,
we can also say that the identity filter passes all frequencies.

In MATLAB®, unlike the filter(b,a,x) function for 1D use, which allows
the user to design an infinite impulse response filter using the input coefficients
a, the filter2(B,x) function performs only the 2D equivalent of a finite im-
pulse response filtering, the expression of which is:

y(k,0) = (zxh)(k, £) = ZQ: i z(k—m, £ —n)h(m,n) (6.17)

The filter2 function has an additional parameter that allows the user
to set how the side effects should be taken into account: ‘same’ to have an
output image with the same size as the input image (this is the default option),
‘valid’ to keep only the part of the image unaffected by the side effect (the
resulting image is smaller than the original), and full to keep all of the points,
including the ones resulting from the filter’s impulse response (this leads to an
image larger than the original).

The concept of stability is essential, as it was with 1D signals. It states that
to any bounded input corresponds a bounded output. Because we will only be
considering filters characterized by expression 6.17 and similar to the 1D FIR
filters, the stability condition will always be met from now on.

On the other hand, the concept of causality, although fundamental when
it comes to signals, has very little significance in the case of images. This
1s because there is no reason for the quantity calculated for the coordinates
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(k,£) to be dependent only on the points placed “before” (k,£), that is to say
(k —m, ¢ —n), where m and n are positive. In 2D processing, all of the points
around (k, £) can contribute to the calculated value.

Example 6.5 (Circular filter)
Consider what is called the circular filter, h(k,l), defined in the program:

Y%===== SMOOTH1.M

h=[001110 0;
011111 0;
111111 1;
111111 1;
111111 1;
011111 0;
001110 0];

h=h/ sum(sum(h));

load wenmanu; subplot(121); imagesc(pixc);

colormap (cmap) ; axis(’image’);

set (gca,’units’, ’pixels’, ’DataAspectRatio’,[1 1 1])
pixr=filter2(h,pixc); subplot(122); imagesc(pixr);
set (gca,’units’, ’pixels’, ’DataAspectRatio’,[1 1 1])
axis(’image’)

This program smooths the image.

150 200 230 300 350

Figure 6.15 — Smoothing of an image test using the circular filter

As was the case with 1D smoothing filters, this filter tends to “erase” high
frequencies, particularly the ones contained in the contours, and therefore pro-
duces a blurred image (Figure 6.15) compared to the original image.

Definition 6.4 A filter is said to be separable when its PSE is such that:

h(k, €) = hy(k)hy(0) (6.18)
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In the case of a finite PSF, if h is the matriz with h(k, ) as its elements,
and if hy and hy, are the vectors with the respective components hy(k) and
hy(£), relation 6.18 is equivalent to:

_ T
h = h,h! (6.19)

We are going to show that a separable 2D filtering can be performed by
combining two consecutive 1D filters. This is how 1t works:

(@xh)(mn) = > > w(m—kn—0h(k,l)
= > ha(k) (Z x(m—k,n—ﬁ)hy(ﬁ))
= i hy(€) ( ZQ: z(m—k,n —E)hx(k))

Bear in mind that if the filter function is used for a separable 2D filtering,
you must take into account the fact that filter implements a causal design.
(exercise 6.4).

Exercise 6.4 (The rectangular filter)
Consider the rectangular filter defined by:

11111 1
Lt
h=— |1 1 1 1 1|==—|1|[t1111]
By 1] Bh
11111 1

Write a program that:
1. Performs the filtering of the test image;

2. Performs the same filtering using two separate 1D filterings.

Exercise 6.5 (The conical filter)
The conical filter is defined by:

00100
Loz 220
h=— 11 2 5 2 1
1o 2 2 2 0
00100

Apply the conical filter to the test image.
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Definition 6.5 (The Gaussian smoothing filter) The generating element
of the Gaussian smoothing filter’s PSF is:

1 k2 412
2mo? xp 202

This filter is separable, since we can write h(k,£) = hy(k)hy(€).

h(k,€) =

The smaller the o parameter is, the more the filter behaves like an identity
filter, that is to say that it passes all the frequencies of the plane. The gain
filter can of course be modified by mulitplying it by a constant.

Exercise 6.6 (The Gaussian smoothing filter)

1. Write a MATLAB® function that calculates the PSF of Gaussian smooth-
ing filter using o.

2. Apply the Gaussian filter to the test image.

2D-DFT frequency filtering

Starting with the circular convolution property 6.3, it is possible to consider
performing a filtering by simply multiplying the 2D-DFT of an image by the
2D-DFT of the filter’s PSF. Of course, just like in 1D, this process must take
into account the circular convolution property.

Consider the PSF h(k, £) of a K x L filter (number of non-zero coefficients),
and an M x N image z(k,£). We will assume M > K and N > L. H(m,n)
and X (m,n) refer to the 2D-DFTs of the PSF and of the image respectively.
Both are calculated for M x N points. According to property 6.3, the inverse
2D-DFT of the product H (m,n)X (m,n) can be written, for k € {0,..., M —1}
and £€{0,...,N —1}:

For k> K — 1, (k—u mod M) = k — u: there is no index “aliasing” when
we sum u from 0 to (K —1). This also true for £ > L—1, ({—v mod N) = {—wv.
In this case, the calculated points do correspond to those of the convolution
associated with the filtering. However, for k < K — 1 and/or £ < N — 1, there
is an index “aliasing” which leads to an incorrect result. One way of avoiding
this phenomenon is by completing the image with K zeros along the horizontal
axis, and L zeros along the vertical axis.

z(k —u mod M, ¢ —v mod N)

IIMI
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Derivative operations

To display the variations of a 2D function, the concept of derivative can be
used, as it was in 1D. The difference is that in 2D, the derivative comprises
two components corresponding to the two directions of the plane. Thus, to
perform a 2D-derivative, you can use a first derivative filter along the horizontal
direction, and a second one along the vertical direction.

Definition 6.6 (Prewitt derivative filter)
The PSF of a Prewtt derwative filter along the vertical direction s given by:

o =17
hU:§10—1:§1[10—1]
10 -1 1

and the PSF of a Prewitt derivative filter along the vertical direction by:

hy==|0 0 0|==]0][[1 1 1]

1
3

These two filters are therefore separable. Decomposing h, clearly shows:

— a smoothing function along one direction, smoothing corresponding to

the vector [1 1 1] /v/3;

— a derivative function in the other direction, corresponding to the vector
[1 0 —1] /\/§ Remember that the 1D causal filter defined by this
vector associates the input w(n) with the output v(n) = (u(n) — u(n —

2))//3, which can be seen as the derivative.

Definition 6.7 (Sobel derivative filter)
The PSF of a Sobel fitler along the vertical axis is given by:

(roo -1
hy =22 0 —2) =212 [1 0 —1] (6.20)
1 0 -1 1

The PSF of a Sobel fitler along the vertical axis is given by:

hy,=-[0 0 0 :% 0|1 2 1] (6.21)

1
Tl -2 -1

Sobel filters are separable. Notice that they perform a derivative along one
axis, and a smoothing operation along the perpendicular axis.
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Applying formula 6.19 leads to a 2D filter that derives in both directions
without any smoothing:

1 10
h=a|0|[l 0 —-1]=a|0 0 O
-1 -1 0

where « is a normalization coefficient.

Starting off in 1D, we can also design a 2D filter that approximates the sec-
ond derivative, by convoluting the impulse response filter [—1 1], which 1s an
approximation of the first derivative, with itself. If you type conv([-1 1],[-1
1]) in MATLAB®, the result is [1 -2 1]. By combining the two directions,
we get a 2D filter that performs a second derivative in both directions, defined

by:

1 0 1 0
h=a|-2[[1 -2 1]=a|l -4 1 (6.22)
1 0 1 0

where « is a normalization coefficient.
Generally speaking, it is of course possible to design other filters using one
dimension design methods, and then inferring a 2D separable filter with formula

6.19.

Exercise 6.7 (The Sobel derivative filter)
1. Apply the Sobel filters 6.20 and 6.21 to the test image.
2. Apply the filter 6.22 to the same image.

3. By using a similar method to the window method, calculate a derivative

filter.

4. Same question for a second derivative filter.

Definition 6.8 (Gaussian derivative filter)
Consider the function defined as the difference between two Gaussians, also
called a Difference of gaussians mask, or DoG mask:

(k.0) 1 k2 4+ 12 1 k2 4+ 12
= ——exp|— — exp | ————
g 271'0'% b 20’% 271'0'% b 20’%

with o9 = ro1 and r between 1.4 et 1.8. The Gaussian deriwative filter is the
filter with the following PSF:

h(k, 0) = g(k, ) — Zngﬁ

implying that >, >, h(k,£) = 0.
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The imposed condition, Y, >, h(k,£) = 0, is related to the fact that a
derivative filter has a gain equal to 0 at the frequency 0. This result is similar
to the one obtained in 1D in exercise 4.11.

The graph of a Gaussian derivative filter PSF 1s shaped like the one in
Figure 6.16.

Figure 6.16 — Graph shape of a Gaussian derivative filter’s PSF

Example 6.6 (Gaussian derivative filter)

1. Write a MATLAB® function that calculates the PSF of a Gaussian
derivative filter. Write it so that >~, >~ h(k,{) = 0.

2. Apply this filter to the test image for three values of oy = {1,2,3} and
for » = 1.4. Save the results in three different files (use the functions
sprintf and eval to change in a program the name of the saved file).

SOLUTION:
1. Type:
function hd=dergauss (sigma)
%h %
%% Gaussian derivative filter %

%% SYNOPSIS: hd = DERGAUSS(Sigma) %
YAA sigma = Standard deviation %
%% hd filter PSF (N*N) %
%h %
rho=[-sigma*3:sigma*3]; N=length(rho);
rp=1.4; s2=2%sigma”2; s22=s2%rp*rp;
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idx= ([1:N]-(N+1)/2)’ * ones(1,N); idy=idx’;
idxa=[1:N]’> * ones(1,N); idya=idxa’;

indices (1, :)=reshape(idx,1,N*N);

inda(1, :)=reshape (idxa,1,N*N);

indices (2, :)=reshape(idy,1,N*N);

inda(2, :)=reshape (idya,1,N*N) ;

rho2=sum(indices .* indices); rho=sqrt(rho2);

for k=1:N%N
gl=(1/sigma)*exp (-rho2(k) / s2);
g2=(1/sigma/rp)*exp(-rho2(k) / s22);
hd(inda(2,k),inda(1,k))=gl-g2;

end

hd=hd-sum (sum(hd) ) /N/N;

return

2. Applying the filter to the test image (Figure 6.17):

Loading the image
clear; load lena; subplot(221); imagesc(pixc+1);
colormap (cmap) ; axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])
Y%===== Gaussian derivative filter
for k=1:3
hd=dergauss (k) ;
pixr=round(filter2(hd,pixc));
subplot (2,2,k+1); imagesc(pixr); axis(’image’)
set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 0 0])

end
set (gcf,’Color’,[1 1 1])

The programs we have just described are used in the contour detection
program.

Definition 6.9 (Gaussian derivative-smoothing filter)
Consider the rotation of angle 6 that changes the point with coordinates (u,v)
according to the expression:

et = [ty o] [1] .
Consider the Gauss function:

hi(k,t) = Ul\l/ﬂ exp (—%) (6.24)
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Figure 6.17 — Gaussian derivative for o1 = {1,2,3} and 02 = 1.40;

and the derivative function:

ho(k, £) = _uk b exp (_v(k,ﬁ)z) (6.25)

3 2
o5 I 20’2

The Gaussian derivative-smoothing filter 1s the filter that performs a Gaus-
stan smoothing filtering (function hy) along the direction 6§ € (0,2n) and a
Gaussian derivative filtering (function hy) along the perpendicular direction.

The expression of its PSF’s generating element is:

h(k,£) = hy(k,0)ho(k, £) — ZZh (k, €)ha(k, L)

which verifies >, >, h(k, £) = 0.
Exercise 6.8 (Gaussian derivative-smoothing filter)

1. Write a MATLAB® function that calculates the PSF of a Gaussian
derivative-smoothing filter.

2. Apply this filter to the test image.
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6.5 Other operations on images

6.5.1 Undersampling

As it was the case with one dimension signals; the undersampling has to meet
some conditions to avoid the aliasing phenomenon. Remember that aliasing
occurs when the sampling rate is too slow compared to the frequencies found
in the image, and causes frequential artifacts to appear. In an image, high
frequencies correspond to important variations in color and/or brightness con-
centrated on small surfaces. Take the example of the images represented in
Figure 6.18. They were obtained with the following program:

%===== ALTASINGTRAINS

close all; clear all

load trainsV4

xx1se=xx1(1:5:512,1:5:768) ; % Under-sampling
lwpass=ones(5,5)/25;

yyl=filter2(lwpass,xx1); % Filtering before
yylse=yy1(1:5:512,1:5:768); % under-sampling
subplot (221) ; imagesc(xx1); colormap(’gray’)
subplot (222) ; imagesc(xxlse); colormap(’gray’)
subplot (223) ; imagesc(yyl); colormap(’gray’)
subplot (224) ; imagesc(yylse); colormap(’gray’)
set (gcf,’Color’,[1 1 11)

In the top-left corner, you can see the original image, a 512 x 768 array.
This image contains “high frequencies”, particularly around the electric cables
and the tracks, where the shapes are in some places less than a few pixels
wide. In the image represented in the top-right corner, obtained by taking 1
out of b pixels horizontally and vertically, you can clearly see major and erratic
variations in some areas of the image, due to aliasing.

Just like in 1D, a low-pass filtering must be performed before the under-
sampling. This can be done with a simple filter, calculating the mean over
5 x 5 cells. This operation is performed by filter2(lwpass,xx1), which uses
the filter2 function. The resulting image is shown in the bottom-left corner.
The filter causes a slight “blur”. The image in the bottom-right corner shows
the previous image after the undersampling operation. Most of the artifacts
are gone. The tracks in particular show less unwanted fluctuations.

6.5.2 Oversampling

As for the oversampling of 1D signals, the interpolation operation can be per-
formed by the insertion of “zeros” (the zero’s significance is not the same here)
followed by a low-pass filter. In the following example, we isolated the part
of the original image containing the clock, on the platform to the left. This
portion of the image is shown on the left-hand side of Figure 6.19. In order
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Figure 6.18 — Effects of spectrum aliasing. In the top-left corner, the original image
(512 x 768). In the top-right corner, the same image undersampled by a factor of 5.
In the bottom-left corner, the image filtered by a smoothing filter over a 5 x 5 square.
In the bottom-right corner, the image filtered and undersampled by a factor of 5

to improve the image rendering, we oversampled by a factor of 4, horizontally
and vertically. The low-pass filter is a separable filter with a PSF of the type
sin o/, to which a Hamming window is applied in order to reduce the ripples
in the resulting image. The following program was used to obtain the image
on the right of Figure 6.19:

OVERSAMP2DS .M
Over-sampling ratio
clear; Mx=4; My=4; cmap=’gray’;
load trainsV4; ima=xx1; % The file "trains" --> xx1
%===== Zooming in on the clock
pixc=ima(180:210,80:120);
[Lig,Coll=size(pixc);
%===== Low-pass filter PSF (Lfft>N)
N=30; [X,Y]=meshgrid(-N:1:N, -N:1:N); X=X+eps; Y=Y+eps;
FEP=Mx*My* (sin(pi * X/Mx) ./ X) .* (sin(pi * Y/My)./ Y);
%===== Hamming window
W= (0.54 - 0.46%cos (24pi* (X+I1) /(2%N)))
.k (0.54 - 0.46%cos (24pi*x (Y+N) /(2%N)));
FEP=FEP .x W;
%===== Expansion and filtering
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pixcz=zeros (Mx*Lig,My*Col) ;

pixcz(1:Mx:Mx*Lig, 1:My:My*Col)=pixc;
pixcSE=filter2(FEP,pixcz);

%===== Displaying the result

subplot (121) ; imagesc(pixc); axis(’image’); colormap (cmap);
subplot (122) ; imagesc(pixcS8E); axis(’image’); colormap (cmap) ;
set (gcf,’Color’,[1 1 11)

Figure 6.19 — Image on the left: zoom-in on the clock in the original image from
Figure 6.18. Image on the right: oversampling by a factor of 4 in both directions

These techniques, taken directly from signal processing, are not the only
ones used. The bibliography shows some sources of information for bilinear
interpolations, cubic interpolations, etc.

For example, the bilinear interpolation consists of constructing “intermedi-
ate” pixels P from four pixels Pyo, Fo1, Pio and Py; by making the values of
the parameters ¢, and ¢, vary from 0 to 1:

P = Pyo(l —to)(1 —ty) + Por(1 — o)ty + Piote (1 —ty) + Piitsty

Example 6.7 (Bilinear interpolation) The bilintrimg function performs
the bilinear interpolation of an image with (n x m) pixels:

function pixcR=bilintrimg(pixc,Rintx,Rinty)

hh %
%% Bilinear interpolation of an image %
%% SYNOPSIS: pixcR=BILINTRIMG(pixc,Rintx,Rinty) %
% pixc = Image (nl*nc) pixels %
YAA Rintx = Interpolation rate (x) %
YAA Rinty = Interpolation rate (y) %
o %

Spix=size(pixc); N1=Spix(1); Nc=Spix(2);
txt=[0:Rintx-1]/Rintx; ty=[0:Rinty-1]’/Rinty;
nlig=(N1-1)*Rinty+1; ncol=(Nc-1)*Rintx+1;
pixcR=zeros(nlig+Rinty,ncol+Rintx) ;




220 Digital Signal and Image Processing using MATLAB®

MOO=(1-ty)*(1-txt); MO1=(1-ty)*txt;
M10=ty* (1-txt); Mil=ty*txt;
pixc=[pixc zeros(W1l,1);zeros(l,Nc+1)];
for k1=1:N1
for kc=1:Nc
t1=(k1-1)*Rinty+[1:Rinty]l; tc=(kc-1)*Rintx+[1:Rintx];
PC=pixc(kl,kc)*MOO+pixc (k1 ,kc+1)*MO1+. ..
pixc(kl+1,kc)*M10+pixc (k1+1,kc+1)*M11;
pixcR(t1,tc)=PC;
end
end
pixcR=pixcR(1:nlig,1:ncol);
return

The following program loads an image in levels of gray and oversamples by
a factor of Rint using a bilinear transformation (Figure 6.20):

%===== INTBILIN.M

xor=40; yor=40; % Positionning in the window
pixcl=imread(’oceile.jpg’,’jpeg’);

Spix=size(pixcl); N1=Spix(1); Nc=Spix(2);
pixc=zeros(Spix); pixc(:)=pixcl;

cmap=[0:1/255:11’*[1 1 1];

subplot (121); imagesc(pixc); colormap(cmap)

set (gca, ’units’, ’pixels’, ’Position’, [xor yor Nc N1]);
set (gcf, ’color’,[1 1 1])

%===== Interpolation with ratio 4 in both directions
Rint=4;

pixcR=bilintrimg(pixc,Rint,Rint);

subplot (122) ; imagesc(pixcR); colormap (cmap)
Spix=size(pixcR); ncol=Spix(2); nlig=Spix(1);

set (gca, ’units’, ’pixels’, ’Position’, [xor+xor+lic yor ncol nligl);

6.5.3 Contour detection

Contour detection is a common application of image processing. A simple
method is to start by extracting the portions of the image with a significant
gradient. This can be done with a derivative filter. We then need to define a
boolean information, for each pixel, stating whether or not the pixel belongs
to a contour. This can be done simply by comparing the obtained results to a
threshold. The following program uses an image obtained by differentiation in
example 6.6:

= THRESHOLDG.M

File loading

clear; load lenabool?2;

subplot (121) ; mydisp(pixr,cnap);

%===== Threshold with manual choice of alpha
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Figure 6.20 — Applying the bilinear interpolation

alpha=0;
decal=round((max (max (pixr))+nin(min(pixr)))/2);
subplot (122) ; imagesc(-sign(pixr+decal+alpha));
axis(’image’)

The result of the thresholding is represented in Figure 6.21.

Figure 6.21 — Results of the thresholding after derivative filtering

It can be wiser to search for local maxima — peaks — in the result of the
derivative. The following function can find the maxima:

function resul=searchmax(pixr,cmap)

%h A
%% Searching the peaks %
%% SYNOPSIS resul=RECHMAX (pixr,cmap) %
%% pixr = image %

%% cmap = palette Y%
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%%  resul = result %
%h %

[nlig, ncoll= size(pixr); Lcmap=size(cmap,1);

pixr(:,1:pp)=zeros(nlig,pp); pixr(1l:pp,:)=zeros (pp,ncol);

pixr(:,ncol-pp+l:ncol)=zeros(nlig,pp);

pixr(nlig-pp+1:nlig,:)=zeros (pp,ncol);

%===== Searching the maxima

pixdyl= [pixr(2:nlig,:); pixr(nlig,:)];

pixdy2= [pixr(1,:); pixr(l:nlig-1,:)];

pixdx1= [pixr(:, 2:ncol) pixr(:,ncol)];

pixdx2= [pixr(:,1) pixr(:,1l:ncol-1)];

maxima = find ((pixr>pixdyl & pixr>pixdy2) |...
(pixr>pixdxl & pixr>pixdx2));

resul= zeros(size(pixr)); resul (maxima)= pixr(maxima);

resul (:,1:2)=zeros(nlig,2); resul(1:2,:)=zeros(2,ncol);
resul (:,ncol-2:ncol)=zeros(nlig,3);

resul(nlig-2:nlig, :)=zeros(3,ncol);
resul=resul/max(resul (:))*Lcmap; % Normalization
return

The following program displays the obtained result on a test image (Figure

6.22):

%===== TRTEYES1.M

load eyes3;

[nlig, ncoll= size(pixc); Mcmap=size(cmap,1)-1;
Y%===== Differentiation

hd=dergauss(1); pixr=(filter2(hd,pixc));
%===== Looking for the maxima

pixr(:,1:3)=zeros(nlig,3); pixr(1:3,:)=zeros(3,ncol);
pixr(:,ncol-2:ncol)=zeros(nlig,3);
pixr(nlig-2:nlig,:)=zeros(3,ncol);

tbmax = searchmax(pixr,cmap);

subplot (131) ; imagesc(pixc+1); colormap(cmap); axis(’image’)
subplot (132); imagesc(pixr); axis(’image’)

subplot (133); imagesc(tbmax); axis(’image’)

save eyetst pixr tbmax cmap

The results are saved (save command) to the file eyes3 for further process-
ing.

Combining a Gaussian low-pass filter with first order horizontal and vertical
derivatives, such as in the previous example, is a very common method for
contour detection. J. Canny [18] showed that this method is very similar to
applying a filter that optimizes a criterion related to precision and stability.
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Figure 6.22 — Results of thresholding and of the search for local mazima

Exercise 6.9 (Contours using Sobel filtering)
1. Apply the Sobel filters 6.20 and 6.21 to the test image.

2. Using the resulting pixels p, (k,1) and pp(k,!), construct the image of the
pixels \/p2(k,l) + p?(k,l). By defining an appropriate threshold value,
extract the contours of the image.

The function fminsearch implementing the Nelder-Mead algorithm can be
used for the seaching of extrema.

Detection of a given shape

Extracting contours is usually required to extract a given shape in an image.
In Figure 6.22, it may be useful to properly detect an iris, for identification
purposes for example. In order to achieve this detection, we are going to
perform a filtering with a circular PSF, and we will work with the maxima of
the results.

Exercise 6.10 (Iris search)
Using the array tbmax obtained in the previous program, imagine a way to
identify where the iris is located.

Hough method

For shape recognition, it may be useful to detect the presence of basic shapes,
such as circles, ellipses, straight lines, etc. The Hough method is one of the
most common.

Consider for example the case of line detection in an image previously pro-
cessed so as to outline the contours. For straight contour detection, we then
use sets of lines where each straight line is defined by the pair of paramaters
(p, 8) (Figure 6.23). p refers to the distance to the origin and @ the angle to
the direction perpendicular to the line.

In each point of the contour, a set of concurrent lines is built, with the
parameters p and @ (see Figure 6.23). Figure 6.24 shows that two sets of lines
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Figure 6.23 — Setting the parameters for the set of lines

on a portion of a line share a common point, or to be less specific, in the same
neighborhood, on the parameters.

The accumulation, resulting from all the filters associated with this portion
of a line, leads to a maximum in the neighborhood of this point. We then
proceed to partitioning the parameter space, so as to obtain a quantization
grid, then we count the points inside each box of the grid. The resulting values
are then used for different kinds of processing.
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Figure 6.24 — Using sets of lines

Example 6.8 (Implementing the Hough method)

Consider an image (Figure 6.26, image on the left), assumed to have been
obtained by contour extraction. The following program performs a search for
straight lines
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%===== HOUGH.M

load hough; [nlig,ncoll=size(pixc);

figure(1); subplot(121); colormap (cmap) ;
imagesc(pixc); axis(’image’)

%===== Contour extraction

indx=find(pixc==0); Nidx=length(indx);

Y=====

Nt=60; thetad=[0:180/Nt:180]; theta=thetad*pi/180;
thet=thetad(1:Nt); tbl=zeros (Nt,Nt);

figure(2)
%===== For each point and each value
% of theta, rho is computed

for k=1:Nidx
nc=floor((indx(k)-1)/nlig)+1; nl=indx(k)-(nc-1)*nlig;
for m=1:Nt, rho(m)=nc*cos(theta(m))+nl*sin(theta(m)); end
tbl(:,k)=rho’;
plot (rho,thet); hold on

end
rhomax=sqrt (nlig*nlig+ncol*ncol);

set (gca, ’Xlim’, [0 rhomax]); grid; hold off

%===== Result (visual examination)

figure(1); subplot(122); imagesc(pixc); colormap (cmap) ;
axis(’image’); hold on

plot ([0 54.5%cos(70%pi/180)], [0 54.5%sin(70%pi/180)])
hold off

The observation of the resulting set (Figure 6.25) provides us with a direc-
tion.
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Figure 6.25 — Zoom-in on the set of lines: we find the values p = 54.5 and § =70°
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The perpendicular direction is indicated in Figure 6.26 (the image on the
right). An automatic search requires searching for zones with a high point
density, hence the idea to use a 2D histogram to extract the (p, 6) positions of
the maxima.

Figure 6.26 — Search for a straight line

One example of an application for this type of processing is the search for
the writing line directions in a handwritten text. The method described here is
known as the Hough method [46], or Hough transform method, and allows the
extraction of directions, one of which still has to be chosen. The presence of a
high point density along a line can help find them.

The Hough method can also be used to search for other shapes. The idea
is the same. For example, for circular shapes, the parameter {r,6, R} can be
used, where the pair (r,#) refers to the polar coordinates of the circle’s center
and R is its radius.

6.5.4 Median filtering

Compared to other non-linear filters, median filtering is both simple and ef-
ficient. Just like a linear low-pass filtering, it smooths the image and can
therefore eliminate certain of the image’s imperfections. However, unlike a lin-
ear low-pass filter, which inevitably adds a blur around the contours, it better
preserves the sharp variations of the image.

Definition 6.10 (Median filter)

Let {a(k,€)} be an image. The median filter associates the mean value m(k, )
with the point with coordinates (k,t), in the (M x N) rectangular window,
centered on (k,t). If we assume N and M to be odd, and if u(n) denotes the
sorted sequence (u(n) > u(n — 1)) obtained from the array [a(i,j)] (M x N)
wherei € {(k— (M —=1)/2, ..., k+ (M —=1)/2y and j e {({ - (N =1)/2, ...,
{— (N +1)/2)}, we have:

m(k,0) = u((MN +1)/2)
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Exercise 6.11 (Median filtering)
Apply this program to the test image:

%===== SNOWING.M

load lena

dims = size(pixc);

msnow = (randn(dims)>-2);
pixcmsnow = pixc .* msnow;
imagesc(pixcmsnow); axis(’image’)

This causes white points to randomly riddle the image, a bit like snow.
Compare the effect of a Gaussian smoothing filter with the effect of a median
filtering on the “snowy” image.

Exercise 6.12 (Processing the result of a rotation)
Use the saved image in example 6.2.

1. Perform a 3 x 3 median filtering on the resulting image. Try several
rotation angles.

2. Perform a processing of the “missing” points by calculating a mean on
the surrounding pixels.

There are many possible methods for processing an image after it has undergone
geometric transformations: interpolations, morphological filtering (paragraph
6.5.7), median filterings. .. or other methods adapted to the case in question.
There are no absolute rules in the field.

6.5.5 Maximum enhancement

The use of a unique threshold for the entire image can hide local maxima from
view. Hence the idea to perform some transformations to enhance certain max-
ima before the thresholding. This non-linear processing significantly improves
the detection of “peaks” | in an image that has, more often than not, undergone
a derivative and an extraction of local maxima.

An example of this type of processing is given in the following program
which performs an affine transformation in order to bring the maxima to the

same level:

function vecnorm=NormVec(vec,max0,seuil)

%h %
%% SYNOPSIS: vecnorm=NORMVEC(vec,max0,seuil) %
YAA vec = vector to be normalized %
% max0 = global maximum %
YAA seuil = threshold for the local maxima Y%
o vecnorm = global vector %
%h %
ip=find(vec<0); vec(ip)=zeros(1l,length(ip));
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Lvec=length(vec); tbvec=zeros(l,Lvec);
ip=find(vec>seuil); tbvec(ip)=ones(1,length(ip));

for k=1:Lvec
if (indbool0 & tbvec(k)),
indboo0l0=0; ki1=k;
elseif ("indbool0 & “tbvec(k)),
[vmx, ivmx]=max(vec(kl:k-1));
indbool0=1; indm=[indm ivmx+k1-1];
vm=[vm vmx];
end

Lim=length (indm) ;

if Lim==0, vecnorm=vec; return; end

kl=indm(1) ; rapd=ones(1,k1)*max0/vn(l); rap=rapd;
k2=indm(Lim) ; rapf=ones(1,length(vec)-k2)*max0/vm(Lim) ;
rap=zeros(1l,Lvec);

if Lim==1,
rap=[rapd rapf];
else
rap=rapd;
for k=2:1ength(indm),
il=indm(k-1); i2=indm(k);
y1l=max0/vm(k-1); y2=max0/vm(k);
for m=il1+1:i2,
rap(m)=y1+(m-i1) *(y2-y1) /(i2-i1);

end
end
rap=[rap rapfl;
end
vecnorm=vec .* rap;
return

The following program uses the data taken from the search of maxima in
an image (Figure 6.27):

%===== ENHANCEYE.M

load eyetst

subplot (221); imagesc(pixr); axis(’image’);
subplot (222) ; imagesc(tbmax); axis(’image’);
colormap (cmap)

[nlig, ncoll= size(pixr); Mcmap=size(cmap,1)-1;
%===== Improving the peaks with the derivative
max0=max (max (pixr)); [nlig, ncoll=size(pixr);
seuil=6; resul=zeros([nlig, ncoll);

for k=1:nlig;
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vecnorm=NormVec(pixr(k,:) ,max0,seuil);
resul (k, : )=vecnorm;

end
subplot (223) ; imagesc(resul); axis(’image’);
%===== Improving the peaks

max0=max (max (tbmax)); [nlig, ncoll=size (tbmax) ;

seuil=45; resul2=zeros([nlig, ncoll);

for k=1:nlig;
vecnorm=NormVec (tbmax (k, :) ,max0,seuil);
resul2(k, :)=vecnorm;

end

subplot (224) ; imagesc(resul2); axis(’image’);

Figure 6.27 — Processing by contour extraction

6.5.6 Image binarization

Image binarization consists of intensifying the contrast until complete satura-
tion is reached. Black and white are the only two levels kept after this opera-
tion. It is used in particular for Optical Character Recognition, or OCR. The
technique described below is based on a method suggested by N. Otsu in 1979
[70]. Tt requires the calculation of an histogram first, followed by a separation
in two categories, C and C, associated with the two colors. It is quite simple to
adapt this method to a greater number of categories:
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1. The histogram calculation consists of initializing with zeros an array H =
[h(k)] with P = 256 entries. These entries correspond to P levels of gray.
The entire image is covered, and for each pixel (n,m) with a level of gray
k, the entry for h(k) in the array H is incremented. The histogram is
normalized by dividing H by the number N of pixels in the image. The
h(k) can then be interpreted as estimated values for the probabilities of
finding the 256 levels of gray in the image.

2. Separating the image pixels in two categories can be done by directly
comparing levels of gray with a threshold value defined by observing the
previous histogram.

This very simple method can give disappointing results. There are two main
drawbacks. First, isolated pixels can belong to an area and not be part of that
area’s category. In particular, this can lead to highly contrasted textures. The
second drawback concerns images showing the shadow of certain objects. It
is not always a good thing to have them belong to the same category as the
object they came from, whatever the lighting may be.

Consider for example the original image in Figure 6.29. The following pro-
gram first draws the histogram for the 256 levels (Figure 6.28), then uses it to
calculate threshold values. Based on these values, the program displays two bi-
narization examples. The results, for two threshold values, are shown in Figure

6.29:

%===== BINAR1.M

load elido72

[nlig ncoll=size(pixc); nbpix=prod(size(pixc));

%===== Global histogram

histog=zeros(1,256); pixc3=zeros(nlig*ncol,1); pixc3(:)=pixc;
histog=hist(pixc3,256)/nlig/ncol;

figure(1); plot([0:255] ,histog); grid

%===== Thresholds based on a visual examination

% of the histogram

figure(2); subplot(131);

imagesc(pixc); axis(’image’); colormap (cmap) ;

%===== Threshold 1

pixc2=zeros(nlig,ncol);

geuil=152; idxy=find(pixc>seuil);
pixc2(idxy)=255%ones (size (idxy)); subplot (132); imagesc(pixc2);
axis(’image’); colormap (cmap)

%===== Threshold 2

pixc2=zeros(nlig,ncol);

geuil=90; idxy=find(pixc>seuil);
pixc2(idxy)=255%ones (size (idxy)); subplot (133); imagesc(pixc2);
axis(’image’); colormap (cmap)

save histog histog
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Figure 6.28 — Histogram and global thresholds

Figure 6.29 — Binarization of the image above for two threshold values

Automatic threshold calulation: the Otsu method

We will now see how to make the choice of the threshold automatic. In order to
do this, we will write h(k) to refer to the percentage of values from the image
that are equal to k, where k € {0,...,255}, as it was calculated in the previous
histogram. h(k) provides an estimation for the probability of level k.

Let s be the threshold. s defines two categories of values: category Cr for
values below s, and category Cs for values above s. The method suggested by
Otsu [70] simply consists of choosing, as the threshold value s, the integer for
which the quadratic error is minimal between the observed random value & and
its corresponding value p(K) in one of the two categories.

This method is merely the particular case for 1 bit of the N scalar quan-
tification problem, the solution of which is known as the Lloyd-Max solution.

Let gy and pg be the number of pixels in the categories C; and Cg respec-
tively. The expression of the criterion we wish to minimize, with respect to s,
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pr and pg is:
L(s, o pis) = Sk = ur)*h(K) + 37 (k — pis) (k) (6.26)

Minimizing this ratio as a function of p; and pg can be achieved by zeroing
the partial derivatives of L(s, us, i) with respect to py and pg.
In the case of py for example, this leads to:

OL(s, . pis) _
—_— =2 k—ppn)h(k) =0
o S (k= )it
the solution of which is:
wo kh(k)

Th (k) (027

pr(s) =

Likewise, we have:

oo kh(k)
s, h(k)

Notice that there is an obvious interpretation for puy and pg: they are

s(s) = (6.28)

the respective means of each category. By replacing these two expressions of
L(s, pir, ps) in 6.26, we get an expression J(s), dependent only on s, which
needs to be minimal. The solution cannot be obtained analytically, but the
numerical solution can be found by calculating J(s) for the 256 possible values
of s.

There are two equivalent expressions of J(s) that are best adapted for the
numerical calculation. Let:

Pr(s) = Z_:h(k’) and Pg(s) = Z_: h(k) (6.29)

such that Pr(s) + Ps(s) = 1. The minimizing of J(s) with respect to s is
equivalent to maxrimizing:

G(s) = Pr(s)ui(s) + Ps(s)u5(s) (6.30)
with respect to s. This is because:

J(s) = gt kPh(k) — 230520 kpr(s)h(k) + S52g 3 (s)h(k) +
P R h(k) = 25002 ks (s)h(k) + S0, 13 (s)h(k)
= 5 “o K2h(k) = (13 (5)Pr(s) + i (s) Ps(s))
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Hence, because the first term is independent of s, minimizing J(s) is equiv-
alent to maximizing G(s) = p3(s)Pr(s) + p%(s)Ps(s).
The maximizing of G(s) found in 6.30 is equivalent to the maximizing of:

H(s) = Pr(s)Ps(s)(pr(s) = ps(s))* (6.31)

Notice that the quantity:
Pr(s)pr(s) + Ps(s)ps(s) = Yhzy k2h(k)

(see expressions 6.27, 6.28 and 6.29) is independent of s, we can calculate
its square and substract this square value from G(s) without changing the
maximizing with respect to s. We get:

H(s) = G(s) = (Pr(s)ur(s) + Ps(s)ps(s))*
= ui(s)Pr(s) + p(s)Ps(s) — ui(s)Pr (s) — u§(s) P5(s)

(s
(

—2P1(s) Ps(s)pr(s)ps (s)
= ui(s)Pr(s)(1 = Pr(s)) + pis(s) Ps (s) (1 = Ps(s))
—2P1(s) Ps(s)pr(s)ps (s)

If we use Pr(s) + Ps(s) = 1, we get the expected result 6.31.

Exercise 6.13 (Application of the Otsu method)

1. Using MATLAB®, write the function that calculates the threshold ob-
tained by maximizing expression 6.31.

2. Apply this function to a test image.

Figure 6.30 gives the result obtained by calculating the threshold with the Otsu
method.

Figure 6.30 — Binarization for the threshold calculated with the Otsu method
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6.5.7 Morphological filtering of binary images

A morphological filtering is a filtering that uses min and max operations. This
can be symbolized as follows:

pey = F (B(P)) (6.32)

where P is an image, B(P) a portion of the image extracted using a window
B, and F is a logical operation applied to pixels isolated by the window B.
The following function, called erosion, illustrates the process 6.32 applied to a
binary image when the min operation amounts to a logical AND:

function ppx=erosion(block,mtool)

%h %
%% SYNOPSIS: ppx=ER0SION(block,mtool) %
%% block = Data block of the same size as the tool %
%% mtool = Matrix defining the tool shape %
YAA Example: [0 1 0;1 1 1;0 1 0] defines a cross. %
%% ppx = Resulting pixel value %
%h %

L=round (log(size(colormap,1))/log(2));
ido=find (mtool==1); Lido=length(ido);
ppx=block(ido(1));
for m=2:Lido,
pps=block(ido(m)); ppt=ppx; st=0;
for k=1:L
st=st + (rem(ppt,2) & rem(pps,2)) * 27 (k-1);
ppt=fix(ppt/2); pps=fix(pps/2);
end
ppx=st;
end
return

In this function, the windowing matrix associated with the operator B is
referred to as the structuring element. It consists of a boolean matrix. A “1”
indicates a pixel that needs to be taken into account by the logical function
processing. Hence the processing can be symbolized by:

Pkl = ﬂ Pnom

{n,mb, m=1}
The program exerosion.m illustrates the erosion function call:

Y===== EXEROSION.M
clear
pixres=raw2matf (’exerode.raw’,128,128,°T’);

cmap=[1:-1/255:01"*[1 1 1]; [nl0,ncO]=size(pixres);
subplot (121) ; colormap (cmap); NbLevel=size(cmap,1);
imagesc(pixres); axis(’image’)
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%===== Defining the window
Nlig=1; Ncol=1; mtool=ones ((2*Nlig+1), (2%Ncol+1));
%===== The image must be coded between 0 and NbLevel-1

pixc=[ones(nl0,Ncol) (pixres-1) ones(nlO,Ncol)];
pixc=[ones (Nlig,nc0+2*Ncol) ;pixc;ones (Nlig,nc0+2+Ncol)];
subplot (122) ; imagesc(pixc); axis(’image’)
pixr=zeros(nl0,nc0);

for nl=Nlig+1:Nlig+nl0
for nc=Ncol+1:Ncol+ncO
blk=pixc(nl-Nlig:nl+Nlig,nc-Ncol:nc+Ncol);
ppx(nl-Nlig,nc-Ncol)=erosion(blk,mtool) ;
end
end
subplot (122) ; imagesc(ppx); axis(’image’)

In this program, the structuring element is a (3 x 3) square. Its execution is
particularly slow. MATLAB® is not well suited for this type of processing com-
prising many loops. The best method would once again be to write a dedicated
“.mex” function. The image toolboz, of course, provides such functions.

If, in the erosion.m function, the AND (N) function is replaced with an
OR (U) function, the result is a dilation function. This means we are dealing
with the implementation of the max function for binary images.

Figure 6.31 illustrates the respective effects of erosion and dilation. In the
case of erosion, any pattern not covered by the window disappears. The con-
tours of the objects in the foreground are “eroded”. Dilation, on the contrary,
emphasizes the image’s details by “increasing” their size.

8%
2o

P-»
©

&
o

Figure 6.31 — Effects of erosion and dilation: original, eroded and dilated images
from left to right respectively
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6.6 JPEG lossy compression

The JPEG format (Joint Photographic Experts Group) for coding image files is
widely used because of the compression rates it can achieve without significant
quality loss. We are going to construct the functions of this coding, without
trying, however, to construct the final binary flux.

The idea behind this coding has to do with the use of the discrete cosine
transform, or DCT.

6.6.1 Basic algorithm

The JPEG compression (lossy compression) algorithm can be very briefly
summed up as follows [42]:

— the image is divided 1n blocks of 8 by 8 pixels, to which a DCT is applied
(the blocks are read line by line, from top to bottom and from left to
right) The basic process implies that the levels associated with each pixel
are 8 bit coded. To make things simpler, we will assume that the images
we are going to process are given in “levels of gray”;

— the 64 coefficients of the DCT are quantified (rounded);

— the “mean value” (DCT value at the frequency 0) is subtracted from the
same term of the next block;

— the 63 other terms are read in “zigzags” (Figure 6.32);

P0,0)—=— ‘ ‘ P(0,7)

= P(7,7)

Figure 6.32 — Reading of the DCT coefficients

— the sequence of the obtained values is coded (Huffman entropic coding);

— each non-zero coefficient is coded by the number of zeros preceding it,
the number of bits needed for its coding, and its value. The coding rules
are imposed by the [93] standard.

We assume that we will keep the floating-point representation coding. We
will not try to optimize the size of the coded DCTs.
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6.6.2 Writing the compression function
Writing the DCT calculation and quantification functions

Consider an (8 x 8) array of pixels p(x,y) (z,y € {0,...,7}), the DCT’s ex-
pression for u,v € {0,...,7}:

77
1 (22 4+ 1)mu (2y + 1)mv
Pu,v) = 4C(U)C(v);§p(l‘,y) cos 16 cos 16 (6.33)
with C'(0) = % and C'(k) = 1 for k = 1...7. Once the coefficients are
obtained, the array is weighted and quantified:
P(u,v)

Py(u,v) = roundm
where Qtab is a quantification table for chrominance included with the standard
as an example. Tt is supposed [99] to provide good results for the type of coding
performed here and for most images commonly dealt with.

The following initialization function returns the Qtab table as well as the
indices used for the “zigzag” reading of the DCT array:

function [Qtab,zig,zagl=initctes

%h %
%% Init. of the constants for the JPEG algorithm %
%h %

global mNORM mYV mUX
nUX = cos([0:7] (2% [0:7]+1)*pi/16);
nYV = cos((2%[0:7]’+1)*[0:7]*pi/16);
mlNORM = [1/2 ones(1,7)/sqrt(2); ones(7,1)/sqrt(2) ones(7,7)]1/4;
Qtab=[16 11 10 16 24 40 51 61;
12 12 14 19 26 58 60 55;
14 13 16 24 40 57 69 56;
14 17 22 29 51 87 80 62;
18 22 37 56 68 109 103 77;
24 35 55 64 81 104 113 92;
49 64 78 87 103 121 120 101;
72 92 95 98 112 100 103 99];
zig=[19 2 3 10 17 25 18 ...
11 4 5 12 19 26 33 41 ...
34 27 20 13 6 7 14 21 ...
28 35 42 49 57 50 43 36 ...
29 22 15 8 16 23 30 37 ...
44 51 58 59 52 45 38 31 ...
24 32 39 46 53 60 61 54 ...
47 40 48 55 62 63 56 64];
zag=zig(64:-1:1);
return
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Exercise 6.14 (Writing basic functions)

1. Write the calculation function of the DCT using the vectors mNORM, mYV
and mUX, which will be declared global mNORM mYV mUX and initialized
with the initctes.m function.

2. Write the quantification function.
3. Check the processing using the following data [2].

The data we are working with are coded on one byte, a value between 0
and 255, that you need to bring back between —128 and 127:

%===== DATAEX.M

pix=[139 144 149 153 155 155 155 155;
144 151 153 156 159 156 156 156;
150 155 160 163 158 156 156 156;
159 161 162 160 160 159 159 159;
159 160 161 162 162 155 155 155;
161 161 161 161 160 157 157 157;
162 162 161 163 162 157 157 157;
162 162 161 161 163 158 158 158];

The result has to be:

15 0 -1 0 0 0 0 0
-2 -1 0 0 0 0 0 0
-1 -1 0 0 0 0 0 0
-1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

COMMENT: the quantification table is usually associated with a quality
factor F,. The previous table corresponds to £y = 50 %. The following function
can be used to generate tables for other values of Fj:

function [Qtabl=TabQuantif (Fq)

T )
%% SYNOPSIS: [Qtab]=TABQUANTIF (Fq) %
Wh Fq = Quality factor (0 to 100) %
o Qtab = Weighting table %
hh )
if nargin<1, Fg=50; end

%===== Table for a quality factor = 50

Qtab=[16 11 10 16 24 40 51 61 ;
12 12 14 19 26 58 60 55 ;
14 13 16 24 40 57 69 56 ;
14 17 22 29 51 87 80 62 ;
18 22 37 56 68 109 103 77 ;
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24 35 55 64 81 104 113 92 ;

49 64 78 87 103 121 120 101 ;

72 92 95 98 112 100 103 99];
Y=====
if (Fq<50)

scal = 5000/Fq; else scal = 200 - Fqgx2;

end
Qtabnew=floor (((Qtab.*scal)+50)./100);
idz=find (Qtabnew<=0); Qtabnew(idz)=ones(size(idz));
idz=find (Qtabnew>255) ; Qtabnew(idz)=255%ones (size(idz));
Qtab=Qtabnew;
return

Exercise 6.15 (Writing the compressed frame)

1. Using the functions written in exercise 6.14, write the function that cre-
ates the compressed frame for one block. The starting mean value is
assumed to be zero. For the previous exercise, the result, with some
comments, should be:

%==== Test block

5 number of bits used to code the difference

15 difference with the previous block’s mean (0 in this case)
1,2,-2 1 zero before the -2, which is 2 bit coded

0,1,-1 No zero before the -1 which is 1 bit coded

0,1,-1 Idem

0,1,-1 Idem

2,1,-1 2 zeros before the -1 which is 1 bit coded

0,1,-1 No zero before the -1 which is 1 bit coded

0,0 There is nothing left but zeros

Do not calculate, for now, the number of bits needed for coding each of
the DCT’s coefficients. We will assume it is the same for all of them, and
that its value is 17.

Save the compressed data to the file unbloccode.dat, but after having
added at the beginning of the file the number of line blocks and of column
blocks as follows:

fid=fopen(’unbloccode.dat’,’w’);

furite(fid,nby, ’integer*1’);

furite(fid,nbx, ’integer#*1’);

% Writing the compressed data

for k=1:...
furite(fid, ..., integerx1’);

end

fclose(fid);

2. Apply the obtained program to the test image. Save the compressed data
to the file imgtstcode.dat.
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6.6.3 Writing the decompression function
Inverse DCT

The inverse DCT, referred to as the ICDT, is given by 6.34:

ple,y) = % Z Z P(u,v)C(u)C(v) cos (22 —11_61)71-“ cos 2y —11_61)7”) (6.34)

Exercise 6.16 (Decompression)

1. Using the @Qtab table given on page 237, write the “dequantization func-
tion” of the DCT coeflicients.

2. Write the inverse DCT function.

3. Test the “decompression” operation by applying it to the previously used
test block which is coded as follows:

H A=[1,1,17,15,1,17,-2,0,17,-1,0,17,-1,0, ...
17,-1,2,17,-1,0,17,-1,0,0]

The first two terms indicate that there is only one block.

4. Apply the program to the file imgtstcode.dat obtained in exercise 6.15
(the result obtained with the test image that was chosen is shown in

Figure 6.33).

Figure 6.33 — Comparing original images with images obtained by coding and de-
coding for a quality factor of =~ 30%
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6.7 Watermarking

Having access to digitalized information such as images, sound or video raises
important issues regarding intellectual property and copyright. Those who
edit these contents have a strong demand for systems that can protect or at
least identify the documents that can be easily downloaded off of a network.
Watermarking is a collection of methods used for leaving a mark on these
documents. We will restrict ourselves to still images, and only give a few ideas
on the techniques that are used.

The difficulty is due to the fact that the watermarking must satisfy several
contradictory constraints: the mark left on the document must be both not
too visible (to a certain extent) and easy to reconstruct. This reconstruction
must however be easy only for the one who left the mark. Furthermore, the
mark must not be destroyed by the manipulations an image can undergo when 1t
travels (coding and decoding), when it is stored (compression), when it sustains
an ill-intentioned process or several successive markings.

Watermarks can be fragile or robust:

1. A fragile watermark implies that the watermark reconstruction will be
perfect. It makes it possible to know whether or not the image was
altered. This method is needed by users who wish to be certain that the
documents they receive are originals.

2. A robust watermark must make it possible to know if there has been
a watermark despite any attempt to destroy it, and must preserve the
copyright information attached to the document.

The following pages give a few ideas for watermarking methods. You can
now find articles (see [103] for example) that sum up all of the methods that
are used.

6.7.1 Spatial image watermarking

Spatial watermarking consists of adding a mark to the image, visible or invis-
ible, made up of another image, such as a logo, or a secret key that only the
image’s creator has.

Example 6.9 (Use of the least significant bits (LSB))

We are going to start by performing a highly fragile deterministic marking. The
mark i1s the image of a stamp added to the least significant bits for levels of
gray. The following program adds the image of a stamp to the original “lena”
image. We voluntarily chose to alter four bits in order to see the stamp in the
final image (Figure 6.34). Tt is impossible, of course, to perfectly reconstruct
the original in this case. In practice, because the stamp is coded on two levels,
it would have been enough to alter only one bit, and the transformation would
be invisible to the naked eye:
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f===== WMO1.M

load lena; subplot(221)

imagesc(pixc); axis(’image’); colormap(cmap)

set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

%===== NbBits trailing bits set to zero

NbBitsg=4; nbniv=2"NbBits-1;

mmask=(255-nbniv) * ones(size(pixc));

pixcm=FoncLog(pixc, ’&’, mmask);

subplot (222) ; imagesc(pixcm); axis(’image’); colormap (cmap)
set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

%===== Mark

load tampon; subplot (223);

imagesc(pixct); axis(’image’); colormap (cmap)

set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

mmark=round ( (pixct*nbniv) /255) ; % Level adjustment
pixcmm=FoncLog(pixcm, ’|’, mmark); %

subplot (224) ; imagesc(pixcmm); axis(’image’); colormap (cmap)
set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

Notice that the levels of gray of the mark are changed to adequate values,
so as to allow them to be included in the least significant bits of the image
(level adjustment).

Easy to implement, this method leads, however, to a watermark that is not
in the least robust in regard to compression and noising operations. Also, it is
possible for any user to reconstruct the mark.

Example 6.10 (The IBM method)

This method [65] was implemented at the Vatican’s request in order to certify
the origin of the works made available to everybody on the Internet. It consists
of inserting in the image a watermark that is both visible and reversible. The
color alteration algorithm is known only to IBM, and it is the only tool that
can be used to “wash away” the watermark image.

Example 6.11 (The patchwork method)

This method consists of choosing pairs of pixels based on a random selection.
One of the two is made brighter, and the other darker. This defines a transition
used to code a watermark.

Exercise 6.17 (Yeung and Wong method)
This method makes it more difficult to reconstruct the mark than it was in
example 6.9. First, we generate a key, allowing us to define a function that
associates a 0 or 1 value with each level of gray:

{0,1,...,255} & {0, 1}
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Figure 6.34 — Watermark using the least significant bits of the image. The top-left
tmage 18 the original. The top right image is the one with its four least significant
bits set to zero. The bottom-right image is the one with the “stamp”

Consider a mark M made up of (N x M) pixels coded on two levels my ;.
An (N x M) portion of the original image Z. Let ix; be the level of gray value
of a pixel from iy ;, and let i, be its modified value. Necessarily, f(i}, ;) = mx .

Knowing the function f; or in other words knowing the key, allows you
to reconstruct the original image. The point of the following exercise is to
implement this method.

1. Define a binary mark (two levels only).

2. Using the rand function, generate the function f and save it. Write the
image modification program.

3. Write the program designed to reconstruct the mark based on the modi-
fied image.

Other methods consist of adding a secret key to a group of pixels chosen in
the image. Each pixel contains only one bit of the key (the Walton method).

It is also possible to generate a random bipolar sequence (comprised of 1
and —1) which is added to each of the lines of the image, with a translation
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that changes from one line to the next (the van Schyndel method). Correlation
methods are used to search for the presence or the absence of the mark.

6.7.2 Spectral image watermarking

Watermarks based on frequency considerations can be justified by the following
comments:

— Using a transform (Fourier, Gabor, DCT, wavelets) to generate the mark
allows it to be stretched, in the transformed area, over the entire image.
This makes it harder to locate it.

— It is easier to include perceptual considerations in the method that is
chosen.

— When using the DCT, the result shows good robustness when 1t undergoes
compressions of the JPEG type.

Exercise 6.18 (DCT modulation)
The method implemented in this exercise makes it possible to confirm an im-
age’s authenticity, without visibly altering it.

1. Write the direct and inverse DCT calculation functions for any image size
using the expressions found for the DCT in the 8 x 8 case.

2. Write a program that performs the following operation:

(a) calculates an image’s DCT. Sorts the coefficients by modulus value.
Keeps only N of these coefficients, N depending on the percentage P
of the power contained in this set of coefficients. Let ¢, k =1... N
be these coefficients;

(b) generates a binary bipolar (—1 and +1) sequence wy, of length N —1;
(c) adds the ex, k=2...N, and the wy, k=1...N — 1.

3. Write a watermark identification program, knowing that you have at your
disposal the original image and the watermark.
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Random Signals
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Chapter 7

Random Variables

7.1 Random phenomena in signal processing

In many practical circumstances, the phenomena observed show important vari-
ations, when in fact the relevant information itself has not changed. Thus, if
you record the signals obtained when pronouncing several times the sound
“A”  asimple observation will tell you that all the recordings are different even
though they all sound basically the same. It i1s neither easy nor relevant to
try to find a deterministic equation to describe the evolution in time of such a
phenomenon. The model used to describe this variability is based on the con-
cept of random variables (r.v.), defined by the Probability Theory. A common
misuse of language consists of saying that this is a random phenomenon.

Another example of a random phenomenon is the background noise heard
with radio reception. It seems difficult to describe this noise without using sta-
tistical characteristics. In the complete chain of communications, an example
we will come back to later, every device, as well as the transmission medium,
causes background noise. But with such a system, this is not the only “source
of randomness”. From the receiver’s point of view, the message itself must also
be considered random.

In fact, any device or physical phenomenon has a random part to it. De-
ciding how important that random part is to the system is the only factor in
determining what type of model is used to describe the phenomena. If the
amount of information that we cannot have knowledge of is negligible, then we
will choose a deterministic approach. The evolutionary models this leads us to
are comprised of differential or recursive equations, analytical expressions, etc.
In the opposite case, we need to use probabilistic models to try to represent
the variability of the observed signal with a time-indexed sequence of random
variables. Each of the random variable describes the uncertainties related to
the phenomenon at a given time. A family of random variables is called a ran-
dom process. They will be studied in Chapter 8, but we will first give a quick
overview of the main properties of random variables.
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7.2 Basic concepts of random variables

Without describing in detail the formalism used by the Probability Theory, we
will simply remind the reader that a random variable is an application that
assoclates a numerical value with each possible outcome of a trial.

A familiar image is the presence of values between 1 and 6 in a trial con-
sisting of rolls of a dice. However, to be comfortable enough with probabilistic
tools, we need to go beyond this simple definition. This is why we advise the
reader to consult some of the many books with authority on the subject [28, 12].

From a practical point of view, it is often enough to distinguish two situ-
ations, that is whether the set of possible values of the random experiment is
discrete or continuous. The number of people waiting in a line 1s an example
of the discrete situation: the only possible values are zero or positive integers.
Whereas taking down the speeds of vehicles on a road is an example of a contin-
uous random variable: this time, the possible values are real numbers between

0 and 65 mph.

Definition 7.1 (Discrete random variable)

A random variable X is said to be discrete if the set of its possible values is, at
the most, countable. If {aq,...,an,...}, where n € N, is the set of its values,
the probability distribution (p.d.) of X is characterized by the sequence:

px (n) = Pr(X = a,) (7.1)
representing the probability that X is equal to the element a,,. These values are
such that 0 < px(n) <1land ) -, px(n)=1.

This leads us to the probability for the random variable X to belong to the
interval ]a, b]. Tt is given by:
Pr(X €]a,b]) = 32,50 px (n)1(an €la, b])
The function defined for z € R by:

Fx(r) = Pr(X <) =) 0., <0 px(0)
= Lnzobx(n)l(an €] - o0, 2]) (7.2)

is called the cumulative distribution function (cdf) of the random variable X. Tt
is a monotonic increasing function, and verifies Fix (—o0) = 0 and Fx (+o0) = 1.
Its graph resembles that of a staircase function (see Figure 7.6), the jumps of
which are located at z-coordinates a,, and have an amplitude of px (n).
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Definition 7.2 (Two discrete random variables)

Let X and Y be two discrete random wartables, with possible wvalues
{ag, ..., an, ...} and {bo,... by, ...} respectively. The joint probability distri-
bution is characterized by the sequence of positive values:

pxy(n, k) =Pr(X =a,,Y = by) (7.3)
with 0 < pxy(n, k) <1 and anozkzopxy(n,k) =1.

Pr(X = a,,Y = by) represents the probability to simultaneously have X =
a, and Y = by. This definition can easily be extended to the case of a finite
number of random variables.

Property 7.1 (Marginal probability distribution) Let X and Y be two
discrete random variables, with possible values {ag .. .a, ...} and {by.. .bg ...}
respectively, and with their joint probability distribution characterized by
pxy(n, k). We have:

+o0

px(n) =Pr(X =a,) = Y pxv(nk) (7.4)
+o0

py (k) =Pr(Y =b;) = pry(n, k)

px (n) and py (k) denote the marginal probability distribution of X and Y re-
spectively.

Definition 7.3 (Continuous random variable)

A random variable 1s said to be continuous if its values belong to R and f, for
any real numbers a and b, the probability that X belongs to the interval ]a, b
18:

Pr(X E]a,b]):/ px (x)dx (7.5)

where px () is a function that must be positive or equal to zero (not necessarily
less than 1) such that f_-l_;j px (z)de = 1. px () is called the probability density
funetion (pdf) of X.

The function defined for any =z € R by:

xr

Fx(z)=Pr(X <) = / px (u)du (7.6)
is called the cumulative distribution function (cdf) of the random variable X. Tt
is a monotonic increasing function and it verifies Fix (—oo) = 0 and Fx (+00) =
1. Notice that px (x) also represents the derivative of Fix (x) with respect to .
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Definition 7.4 (Two continuous random variables)

Let X and Y be two random variables with possible values in R x R. They are
said to be continuous if, for any domain A of R?, the probability that the pair
(X,Y) belongs to A is given by:

Pr((X,Y) e A) = //Apxy(x,y)dxdy (7.7)

where the function pxy (z,y) > 0, and is such that:

// pxy (z,y)dedy =1
R2

pxy (,y) is called the joint probability density function of the pair (X,Y).

Property 7.2 (Marginal probability distributions) Let X and Y be two
continuous random variables with a joint probability distribution characterized
by pxy(z,y). The probability distributions of X and Y have the following
marginal probability density functions:

px(x) = /_+Oopxy(x,y)dy (7.8)
pY(y) = /_+Oopxy(l‘,y)dx

The marginal probability density functions of X and Y are referred to as
px (x) and py (y).

An example involving two real random variables (X,Y) is the case of a
complex random variable 7 = X + jY.

It is also possible to have a mixed situation, where one of the two variables
is discrete and the other is continuous. This leads to the following:

Definition 7.5 (Mixed random variables)

Let X be a discrete random variable with possible values {ag...a, ...} and Y
a continuous random variable with possible values in R. For any value a,,, and
for any real numbers a and b, the probability:

b
Pr(X = a,,Y et = [ pxy(na)dy (7.9)

where the function pxy(n,y), withn € {0...k...} and y € R, is > 0 and
verifies ano Jrpxy (n,y)dy = 1.

Definition 7.6 (Two independent random variables)

Two random variables X and Y are said to be independent if and only if their
joint probability distribution s the product of the marginal probability distribu-
tions. This can be expressed (for the previous cases only):
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— For two discrete random variables:
pxvy(n, k) = px(n)py (k)

— For two continuous random variables:
pxy (2, y) = px(z)py (¥)

— For two mized random variables:
pxy (n,y) = px(n)py (y)

where the marginal probability distributions are obtained with formulae 7.4 and

7.8.

We wish to insist on the fact that, knowing pxy (x,y), we can tell whether
or not X and Y are independent. To do this, we need to calculate the marginal
probability distributions and to check that pxy (z,y) = px(z)py (y). If that is
the case, then X and Y are independent.

The following definition is more general.

Definition 7.7 (Independent random variables) The random variables
(X1,...,Xy) are jointly independent if and only if their joint probability dis-
tribution s the product of their marginal probability distributions. This can be
erpressed:

DX, Xo X, (X1, 2, ., 2n) = px, (21)px, (22) .. px, (25) (7.10)

where the marginal probability distributions are obtained as integrals with re-
spect to (n — 1) variables, calculated from px,x, x, (€1, %2,...,Ln).

For example, the marginal probability distribution of X; has the expression:
px, (1) = / . ~/pX1X2...Xn(l‘1, T, ..., &p)des. . . dz,
———
Rn—l

In practice, the following result is a simple method for determining whether
or not random variables are independent:

If px,x5. x,(®1,22,...,2y) is a product of n positive functions of the
type f1(x1)f2(z2) ... fa(2y), then the variables are independent.
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It should be noted that if n random variables are independent of one an-
other, it does not necessarily mean that they are jointly independent.

Definition 7.8 (Mathematical expectation)

Let X be a random variable and f(x) a function. The mathematical expectation
of f(X) (respectively f(X,Y)) is the value, denoted by E{ f(X)} (respectively
E{f(X,Y)}), defined:

— For a discrete random variable, by:

E{f(X)} = 3 Flan)px (n)

n>0

— For a continuous random variable, by:

E{f(X)} = /R J(2)px (2)da

For two discrete random variables, by:

E{f(XaY)} = Z Zf(an,bk)pXY (na k)

n>0k>0

— For two continuous random variables, by:

E{f(X.Y)} = / K/R f (e w)pxy (2, y)dady

Property 7.3 If {X1, Xo, ..., X,} are jointly independent, then for any
wintegrable functions fi, fo, ..., fa:
E{ka(Xk)} = [ EL/(X0)} (7.11)
k=1 k=1

Definition 7.9 (Characteristic function)
The characteristic function of the probability distribution of the random wvari-
ables X1, ..., X, is the function of (u1,...,u,) € R" defined by:

¢X1~~~Xn(u1a A ’un) — E{eju1X1+~..+juan} — E{ H ejuka} (712)

k=1
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Because |ej“X| = 1, the characteristic function exists and is continuous even
if the moments do not exist. The Cauchy probability distribution, for example,
the probability density function of which is px (z) = 1/m(14+2?), has no moment
and has the characteristic function e~!*l. Notice that |¢x,. x, (w1, -, un)| <

éx(0,---,0)=1.

Theorem 7.1 (Fundamental) (X1, -, X,) are independent if and only if
for any point (uy,ua, ..., uy) of R™:

n
¢x,x, (Ut u HQSXk )

Notice that the characteristic function ¢x, (uz) of the marginal probability
distribution of X} can be directly calculated using 7.12. We have ¢x, (u;) =
E{eJ“ka} — ¢>X1~~Xn(0, oo, 0, up, 0, - - - ’0),

Example 7.1 (First calculations)

Let X be a random variable with possible values in {0, 1} with Pr(X = 0) =
po > 0, Pr(X =1) =p; > 0and pp + p1 = 1. Calculate E{X}, E{XZ},
E{cos(rX)} and ¢x(u).

HINT: we get:
FE{X}=0xpo+1xp=prand B{X?} =0% x po + 1% x p1 = p
then:
E{cos(nX)} = cos(0) x po + cos(m) X p1 = po — p1
and finally:

¢x (1) = poe?™ 0 + pred > = py + pred®

Definition 7.10 (n-th order moment)
The n-th order moment is the mathematical expectation of the function f(x) =

z™.

Definition 7.11 (Mean, variance)

The mean of the random variable X is defined as the first order moment, that
is to say B{ X }. If the mean is equal to zero, the random variable is said to be
centered. The varitance of the random variable X 1s the quantity defined by:

var(X) = E{(X — E{X})?} = E{X?} — (E{X})?

The variance is always positive, and its square root s called the standard
deviation.



254 Digital Signal and Image Processing using MATLAB®

The standard deviation can be interpreted as a measure of the random
variable’s fluctuations around its mean: the higher it is, the more the values of
X are spread out around E{X}.

Property 7.4 (Chebyshev inequality)
Let X be a random variable, with E{ X} as its mean and var(X) as its variance.
Then for any § > 0:

Pr(IX—E{X}|>0) = Pr(E{X}-d<X<E{X}+d)
< LZ(ZX) (7.13)

Inequality 7.13 means that the probability for X to deviate from its mean
by £4 decreases when the variance decreases.
As an exercise, we are going to show that, for any constants a and b:

E{aX +b} = aB{X}+b (7.14)
var(aX +b) = azvar(X) (7.15)

7.14 is a direct consequence of the integral’s linearity. We assume that ¥ =
aX +b, then var(Y) = E{(Y — E{Y})?}. By replacing E{Y} = aE{X} + b,
we get var(Y) = E{a*(X — E{X})?} = a?var(X).

A generalization of these two results to random vectors (their components
are random variables) will be given by property 7.6.

Definition 7.12 (Covariance, correlation)
Let (X, Y)! be two random variables. The covariance of X andY is the quantity
defined by:

cov(X,Y) = E{(X -E{XHY"-E{Y"}} (7.16)
— E{XY*}-E{X}E{Y*}

X and Y are said to be uncorrelated if cov(X,Y) = 0 that is to say if
E{XY*} = E{X}E{Y*}. The correlation coefficient is the quantity defined
by:

cov(X,Y)
var(X)/var(Y)

p(X,Y) = (7.17)

Applying the Schwartz inequality gives us —1 < p(X,Y) < 1.

Except in some particular cases, the random variables considered from now on will be
real. However, the definitions involving the mean and the covariance can be generalized with
no exceptions to complex variables by conjugating the second variable. This is indicated by
a star (x) in the case of scalars and by the exponent H in the case of vectors.
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Definition 7.13 (Mean vector and covariance matrix)

Let {Xy, ..., X, } be n random variables with the respective means BE{ X;}. The
mean vector is the n dimension vector with the means B{ X;} as its components.
The n x n covariance matriz C 1s the matriz with the generating element Cy; =
cov(X;, X;) for1<i<nand 1 <j<n.

Matrix notation: if we write
Xy
X=]":
Xn
to refer to the random vector with the random variable X as its k-th compo-
nent, the mean-vector can be expressed:

E{X1}

E{X}=|
E{Xn}

and the covariance matrix:
C=E{(X-E{X})(X - E{X}) = B{XX"} ~E{X}E{X}" (7.18)

Notice that the diagonal elements of a covariance matrix represent the re-
spective variances of the n random variables. They are therefore positive. If
the n random wvariables are uncorrelated, their covartance matriz is diagonal.

Property 7.5 (Positivity of the covariance matrix)

Any covariance matriz 1s positive, meaning that for any vector a, we have
affCa > 0.

To obtain this result, consider for any sequence of complex values
{ay, - ,an} the random variable Y = Zi\;l ap(Xy — E{Xx}). We have, of
course, E{ |Y|2} > 0 (because it is the mathematical expectation of a positive
random variable). We will now express L { |Y|?}. We get:

N N
E{mek ~ LG Y a5 (X —E{Xm}>*}

k

E{Y]*}

1
-

akE{ (Xp = E{ X3 }) (X —E{ X })*}a,

kckma _aHCaZO

ﬁMZ ||M2
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Property 7.6 (Linear transformation of a random vector)
Let {Xy,..., X,} be n random variables with B{X} as their mean vector and
Cx as their covariance matriz, and let {Y1,...,Y,} be ¢ random variables
obtained by the linear transformation:
Y1 X1
Y, Xn
where A 1s a matriz and b 1s a non-random vector with the adequate sizes. We
then have:
E{Y} = AE{X}+b
Cy = ACxA”
The first expression i1s a direct consequence of the integral’s linearity. It
leads to Y —FE{Y} = A(X —E{X}). We now lay down the second expression:
Cy = E{(Y-E{Y})(Y-E{Y}"}
= AE{(X-E{XH(X-E{X}H¥} A" = ACxA¥
Definition 7.14 (White sequence) Let {X1, ..., X,,} be a set of n random

variables. They are said to form a white sequence if var(X;) = o? and if
cov(X;, X;) =0 for i # j. Hence their covariance matriz can be expressed:

C =1,

where 1, is the n x n identity matrix.

Property 7.7 (Independence = non-correlation)
The random variables {Xy, ..., X, } are independent, then uncorrelated, and
hence their covariance matriz s diagonal. Usually the converse statement is

false.

7.3 Common probability distributions

7.3.1 Uniform probability distribution on (a,b)

Definition 7.15 A random variable X is said to be uniformly distributed on
(a,b) with b > a if its probability density function has the expression:

px(e) = b—a) e e @by =4 0T FrEE@l g g

0 otherwise
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Notice that the set of all possible values of X is reduced to the interval
(a,b), and that the probability of X belonging to an interval (¢,d) C (a,b) is
equal to (d — ¢)/(b — a), and is therefore proportional to the interval’s length.
Its probability density function is shown in Figure 7.1. It is constant in the
interval (a, b).

px(x)
i S A
b-a
‘ P b > X

Figure 7.1 — Probability density of the uniform probability distribution

You can check as an exercise that its mean, its second-order moment and
its variance are given respectively by:

b
b
E{X}I/ =t

—a 2

b2 2 2
+ab+b
E{x?l = i d :a
X% /Gb—a v 3
(b —a)?
12

An example of quantities that can be described by a uniformly distributed
random variable is the errors that are made when, in calculations, numbers are
rounded to D decimal places. When a large number of operations is performed,
it can be assumed that the errors behave like random variables uniformly dis-
tributed between the values —107?/2 and 1072 /2. We will see on page 270
how this random variable model 1s used to describe uniform quantization noise.

var(X) = B{ X2} —E{X}" =

7.3.2 Real Gaussian random variable

Definition 7.16 A random variable X is said to be Gaussian, or normal, if
all its values belong to R and if its characteristic function has the expression:

éx(u) = exp (jmu - %Uzuz)

where m is a real parameter and o is a positive parameter. If o £ 0, it can be
shown that the probability distribution has a probability density function with
the expression:

px(x) = L exp (—M) (7.20)

202
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We also check that its mean is equal to m and its variance to o?.

In physics, many phenomena, which are the combination of a multitude
of microscopic effects, are distributed on the macroscopic scale according to
a Gaussian probability distribution: this is the case of background noise in
receptors. The Gaussian nature of these phenomena is a consequence of the
central limit theorem [28]. Figure 7.2 shows the shape of the probability density
function for the Gaussian random variable.

02 Pxt0)

016 -1 L N

0.12

0.08

0.04

m—o m m+o

60

A
Y

Figure 7.2 — Probability density function of the Gaussian random variable and 99%
confidence interval

It can be checked numerically that more than 99% of the values belong
to the interval (m — 30, m + 30). The interval can then be called a 99%
confidence interval. This leads us to a practical rule called the 3-sigma rule for
which the probability of “falling outside” this interval is less than 1%. If we
restrict ourselves to a 95% confidence interval, we have to choose the interval
(m — 20,m+ 20). If, on the contrary, we prefer a 99.9% confidence level, we
have to take (m — 40, m + 40).

7.3.3 Complex Gaussian random variable

In some problems, and particularly in the field of communications, the complex
notation X = U + jV is used, where U and V refer to two real, Gaussian,
centered, independent random variables with the same variance o2 /2. Because
of independence (definition 7.7), the joint probability distribution of the pair
(U, V) has the following probability density:

1 u? 4 v?
= ——exp|—
To? b o2
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If we notice that |z|? = u? + v?, and if we introduce the notation px(z) =
puv (u,v), we can also write:

px(x) = —exp (—@) (7.21)

Expression 7.21 1s called the probability density of a compler Gaussian
random variable. The word circular is sometimes added as a reminder that the
isodensity contours are the circles u? + v? = constant.

Note that:

E{XP} = E{XX"}=E{(U+jV)(U-jV)}
= E{U*}+E{V?} =¢"
Expression 7.21 deserves a few words of warnings:

— the argument z is complex;

— if you compare expressions 7.21 and 7.20 of the probability density of a
real Gaussian random variable, you will notice the disappearance of the

factors 2 and of the square root in 2.

7.3.4 Generating the common probability distributions
MATLAB® has two random number generators:

1. the first one generates probability distributions uniformly distributed on
(0, 1) (see definition 7.15). This generator is called by the rand command;

2. the second is a centered Gaussian probability distribution (see definition
7.16), with a variance equal to 1. This generator is called by the randn
command.

We will assume that when we use these generators several times, the re-
sulting samples correspond to independent random variables. This 1s why the
array randn(4,1000) can be considered as an experiment with a trial length of
1,000 on 4 independent, centered, Gaussian random variables with a variance
equal to 1.

COMMENT: prior to version 4 of MATLAB® the rand(’uniform’) or
rand(’normal’) initializes the random generator either for a probability dis-
tribution uniformly-distributed on the interval (0, 1) or for centered, Gaussian
probability distribution, with a variance equal to 1. Running the command
rand(k,c) would then construct a matrix with k lines and ¢ columns made up
of random numbers of the corresponding probability distribution. The type of
the currently used distributions could be known with the rand(’dist’) com-
mand. In the new versions of MATLAB®, the uniform generator is called with
the rand command, and the Gaussian generator with the randn command.
This is the only notation we will be using.
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Example 7.2 (Uniform probability distribution on (a, b))

We wish to obtain a random variable X with a uniform probability distribution
on (a,b), using the MATLAB® function rand which returns a random variable
with a uniform probability distribution on (0,1). As an exercise, you can show
that the random variable X = (b — a)U + a, where U is a uniform variable on
(0,1), is uniform on (a,b). The unifab.m function given below generates N
values uniformly distributed on (a, b):

function X=unifab(a,b,N)

%h %
%% Generating a r.v. uniformly distributed on (a,b) %
%% SYNOPSIS: X=UNIFAB(a,b,N) %
%h a,b = Interval Y
% N = Number of samples %
o X = Sequence of samples %
%h %
U=rand (1,N);

X=(b-a)*U+a;

return

In order to obtain 1,000 sample values of a random variable, uniform on
(—m,+m), type: x=unifab(-pi,pi,1000);. A sample of this type is repre-
sented in Figure 7.3.

0 100 200 300 400 500 600 700 800 900 1,000

Figure 7.3 — 1,000 trials of a random variable uniformly distributed on [—m,+7]

Now type hist(X). The result is a diagram called a histogram, representing
an estimation of the probability density shown in Figure 7.1.

Example 7.3 (Gaussian variable (m, ¢?))

Let Y be a centered Gaussian random variable with a variance of 1. If we
apply relations 7.14 and 7.15, we can easily verify that the mean of the random
variable X = oY + m is m and that its variance is 2. We will see on page
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263 that a direct consequence of the general definition of a Gaussian vector is
that its Gaussian nature is unchanged by linear transformation. To get a 5,000
value sample of a Gaussian probability distribution with a mean equal to 4 and
a variance equal to 7, type:

%===== HIST0G1D.M

clear; N=5000; m=4; sigma2=7;

X=sqrt (sigma2)*randn (1,N)+m;

figure(1); plot(X,’.’)

1k=0.5; [nn,xx]=hist (X, (-74m:1k:7+m));

pxchap=nn/ (N*1k) ; figure(2); bar (xx,pxchap)

CG=1/sqrt (2#pi*sigma2); px=CG*exp(-(xx-m) . 2/(2*sigma2));
hold on; plot(xx,px,’0’); hold off; grid

Notice the use of formula 7.23 in the command pxchap=nn/(N*1k) to esti-
mate the probability density using the results returned by the hist function.
The trials are shown in Figure 7.4. The theoretical probability densities (o)
and the estimated ones (bar chart) are show in Figure 7.5.

0 100 200 300 400 500 600 700 800 900 1,000

Figure 7.4 — Gaussian probability distribution trials (m = 4,0 = 7)

Example 7.4 (Complex Gaussian random variable)
To generate a 1,000 value sample of a centered, complex, Gaussian random
variable (see expression 7.21), with a variance of 5, type the following program:

%===== GCOMPL.M

varX = b ;

U = sqrt(varX/2) * randn(1,1000) ;
V = sqrt(varX/2) * randn(1,1000) ;
X=U+3j*V;
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Figure 7.5 — Histogram of the Gaussian probability distribution (m = 4,06 = 7)

7.3.5 Estimating the probability density

A theorem inaccurately called the “law of large numbers” states that the proba-
bility for a random variable X to belong to an interval A can be approximated,
if N is large enough, in the following way:

— consider N independent random variables with the same probability dis-
tribution as X; an experiment is conducted, leading to the trials z;, ...,
IN;

— the number n of values in these trials that belong to A is determined;
— the approximation used for Pr(X € A) is n/N.

The quantity n/N is called the empirical frequency. This result can be
used to estimate the probability density of px (x) at the point  of the random
variable X which is assumed to be continuous. By definition, we have:

Pr(X € A) :/ px (u)du
A
If A is a closed interval chosen small enough around the point &, we have
px (u) = px(x) and the second member is approximately equal to px(z) x £
where ¢ refers to the length of A. This leads us to a practical formula for
estimating px (z):

n

N — 22
N7 (7.22)

px (v)
where n is the number of observed points inside the closed interval A. Faced
with a sample of N values, the procedure for estimating the probability density
in P points can be summed up as follows:
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Steps:
1. The interval containing the observed values is partitioned in P sub-
wintervals Iy, -+, Ip with the respective lengths {1, - ,£p, located
around the points x1,...,xzp. Usually, the sub-intervals are chosen

so that they all have the same length, and so that xy, s placed in the
maddle of the sub-interval Iy, except possibly for the first and last
wintervals.

2. The probability density at the point xy 1is estimated by:

Nk

Nl

where ny is the number of points wn the interval I;. Note that

Zk ]A)X(l’k)gk =1.

px (z) = (7.23)

The choice of the value of P is a complex problem. What we can say is that
P has to be large enough for the probability density to be properly estimated
but also small enough for the number of points in each interval to remain large.
P = N1/3 for example, would be suitable, since it tends to infinity when N
tends to infinity, and N/P also tends to infinity when N tends to infinity.

The MATLAB® function hist implements this procedure. The usual syn-
tax 1s [ndelta x0]=hist(X). In this case, hist automatically chooses ten
values regularly spread out between the minimum and the maximum of the
sample X with intervals of the same length.

The sequence ndelta returns the number of points of X placed around
each element of the sequence x0. Thus a list of values for x0 can be set as a
parameter. Expression 7.23 is then used to find an estimation of the probability
density.

7.3.6 Gaussian random vectors

Definition 7.17 (Gaussian vector) {X;,..., X, } are said to be n jointly

Gaussian variables, or that the length n vector [X1 ... X,]* is Gaussian,
if any linear combination of its components, that is to say Y = a” X for any
a=[a; ... ay)?, is a Gaussian random variable.

Theorem 7.2 (Probability distribution of a Gaussian vector)

It can be shown that the probability distribution of a length n Gaussian vector,
with a length n mean vector m and an (n x n) covariance matriz has the
characteristic function:

1
dx(ur,...,uy) = exp (jmTu — §uTCu) (7.24)



264 Digital Signal and Image Processing using MATLAB®

where u = (uy,...,up)T € R®. Let x = (z1,...,2,)7. If det(C) # 0, the
probability distribution’s density has the expression:

1 1 Te—1
px (1, ..., 2n) = PUENGEIG) exp (—i(x—m) C (x—m)) (7.25)

Theorem 7.3 (Gaussian case: non-correlation = independence)
If n jowntly Gaussian variables are uncorrelated, then they are independent.

This is because if we replace C = ¢I in expression 7.25, px(x1,...,2,) =
px, (x1) ... px, (zs), hence, according to 7.10, the variables are independent.

Theorem 7.4 (Linear transformation of a Gaussian vector)

Let [ Xy ... Xn]T be a Gaussian vector with a mean vector mx and a co-
variance matriz Cx. The random vector Y = AX + b, where A and b are
a matriz and a vector respectively, with the ad hoc length, 1s Gaussian and we
have:

my — Amyx +b and Cy = ACxA”

In other words, the Gaussian nature of a vector is untouched by linear
transformations.

This result is a consequence of definition 7.17 and of property 7.6.
Exercise 7.1 (Confidence ellipse)

1. px(z1,®2) denotes the probability density of a length 2 random Gaussian
vector, with the mean m and the covariance matrix C, and let:

a=Pr(XeA(s)) = / px (1, x2)drdes
A(s)

where A(s) is the set of points in the plane defined by:
A(s) = {x: (21, 22) € R? : (x—m)TC_l(x—m) <5}
the borderline of which in R? is the ellipse centered on m with the equa-

tion (x — m)TC_l(x —m) =s.

We will now determine the relation between s and «. The ellipse £ is
called the 100a% confidence ellipse of the variable X.

By making the variable change Y = C~1/?(X — m), show that s =
—2log(1 — «).
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| 2.3659  —0.3787

= |_0.3787 0.6427 | 2nd @ =0.95.

2. We assume m = [0 0]7, C

Write a program:

— that generates a length 2 Gaussian sample of N = 200 values, with a
mean m and a covariance matrix C, using a centered, white sample
obtained with y=randn(2,N);

— that displays the points with the plane coordinates z, as well as the
ellipse with the equation (x—m)?C~!(x—m) = s (use the ellipse
function, given on page 38 where s = —2log(1 — «a));

— that counts the number of points outside the ellipse and compares
it to the value (1 — &) N. Think of using the find function for the
condition ¥} + y3 > s.

7.4 Generating an r.v. with any type of p.d.

Since the only generators MATLAB® provides are rand and randn, you may
wonder whether it is possible to infer the function that can generate random
variables with any type of probability distributions. The answer is yes, and one
solution is given by the inversion of the cumulative distribution function [21].

Generating a discrete random variable

Let X be a discrete random variable, a sample of which we wish to generate.
Let {ag, a1, ..., @pn..., } be the set of its values, px(n) = Pr(X = a,) its
probability distribution and Fx(z) = Pr(X < #) its cumulative distribution
function. Figure 7.6 shows the graph shape of the function Fx(z). Its value in

& = ay, is expressed Fx(ag) = Zi:o px(n).

A Ry
1
[/ R -
| )
Py0)| | )
: ‘ ‘ 7 >
4 a, 0 a, a

Figure 7.6 — Cumulative distribution function of a discrete random variable
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Now consider a random variable U, uniformly-distributed on (0, 1), and
let Y be the random variable obtained from U by inversion of the cumulative
distribution function, which we write:

[0, px (0)[ then Y = ag
[px(0),px (0) + px (1) then Y =a;
IfUe : (7.26)

[Fx(ak_l),Fx(ak)[ then Y:ak

We will now show that the probability distribution of the obtained random
variable Y is the very variable X we were looking for. Indeed, if we use the
fact that U is uniform, we can successively write:
Fx(ak)
Pr(Y =a;) = Pr(UE[FX(ak_l),FX(ak[):/ du
Fx(ar—1)
= Fx(ax)— Fx(ax—1) = px(ag)

The variable Y constructed with procedure 7.26 obeys the expected probability
distribution.

Example 7.5 (Uniform discrete random variable)

Generate a set of NV values obeying a uniform discrete probability distribution
on {0,..., N — 1}, meaning that Pr(X = k) = 1/N for 0 < k < N — 1. Draw
the histogram of its values.

HINT: because the cumulative distribution function is such that Fix (k) = k/N
for k € {0,..., N—1}, expression 7.26 provides us with, if U € [k/N, (k+1)/N|,
the value X = k/N, meaning that X is simply the integer part of NU. Type:
%===== HISTOUNIF.M

clear; clf; nbp=3000; N=10; U=rand(1,nbp); X=ceil (N*U);

px=hist (X, (1:N)); bar (px/nbp); grid

As we expected, the obtained graph matches the uniform probability dis-
tribution Pr(X = k) = 1/10. L]

Exercise 7.2 (Poisson distribution)
The random variable X, with possible values in IN, has a Poisson distribution
when:

Pr(X =k)=px(k) = —e™ ¢ (7.27)

where a refers to a positive quantity called the distribution parameter.
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1. Determine the mean and the variance of X.

2. Determine, for & € I, the recurrence relation that gives px(k) as a
function of px (k — 1), as well as the one that gives Fx (k) = Pr(X < k).

3. Using 7.26, write a program that generates a Poisson random variable
with a parameter @ = b, using a random variable U uniformly-distributed

on (0, 1).

4. Using the hist function, check the result.

Theorem 7.5 (Variable change formula)

Let x = f(u) be a bijective and differentiable function, and let U be a random
variable, with the probability density py(u). Then the random variable X =
F(U) has the following probability density:

du
dx

_ pu(u) _ pu(g(z))
1<) 1F(9())]

where f'(u) = dx/du refers to the derivative of f(u) and where u = g(x) refers
to the inverse function of ¥ = f(u), that is to say such that g(f(u)) = u.

px (%) = pu(u) (7.28)

Generating a continuous random variable

We now apply 7.28 in the particular case where U is a random variable uni-
formly distributed on (0, 1) the probability density of which has the expression
pu(u) = 1(u € (0,1)). The probability distribution for the random variable
X = f(U) then has the probability density:

du

. 1{g(x) € (0,1)} (7.29)

px(x) =

where u = g(z) represents the inverse of ¢ = f(u). For ¢g(x), we will choose the
function F(z), where F'(x) is precisely the cumulative distribution function of
the random variable we want to generate a sample of. We have Z—z =F'(x) > 0.
By replacing it in 7.29 and by noticing that F'(z) € [0, 1], we get px (¢) = F'(z),
meaning that the probability distribution of X has the probability density
F'(x), which is the probability density of the expected distribution.

We can use this result to our advantage, to generate, using the uniform
generator on (0,1), a sample of the random variable for a given probability

density px (x). Here is the algorithm:

Steps:

1. Determine the function u = f_xoo px (t)dt.
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2. Determine its inverse ¥ = g(u).

3. If U is a sample uniformly distributed on (0,1), then X = g(U) is a
sample whose distribution has the probability distribution px (x).

Example 7.6 (Exponential distribution)
A random variable has an exponential distribution if its values belong to R*
and its probability density has the expression:

px(z) = Aexp(—Az)1(z € [0, +0o0]) (7.30)

where the parameter A > 0.

1. Determine the mean and the variance of X.

2. Using the cumulative probability distribution of X, determine a func-
tion X = ¢(U) such that X has an exponential distribution with the
parameter A when U has a uniform probability distribution on (0, 1).

3. Check the result using the hist function.

HINT:

1. An integration by parts leads to E{X} = /\fo-l_Oo re Mdx = 1/X. Like-
wise, E{ X2} = 2/A? = var(X) = 1/A%

2. The cumulative distribution function of X has the expression u =
fox Ae™Mdt = 1 — e If we “inverse” it, we get ¥ = —log(1 — u)/\.
Hence the variable X = —log(1—U)/A has an exponential distribution if
U has a uniform probability distribution on (0, 1). Because U and (1-U)
have the same distribution, we can also simply choose X = —log(U)/A.

3. Type:

%===== EXPLAW.M

clear; N=3000; lambda=2; U=rand(N,1); X=-log(U)/lambda;
moyX=1/lambda; lk=moyX/10; maxx=max (X); pointsx=(0:1lk:maxx);
[nn,xx]=hist (X,pointsx); bar (xx,nn/(N*1k)); hold on

%===== Theoretical exponential distribution

pth=lambda*exp (-lambda*pointsx); plot(pointsx,pth,’r’)

hold off; grid

In the program, the step 1k, used to estimate the probability density, is
determined from the mean. [
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Exercise 7.3 (Rayleigh distribution)
X has a Rayleigh distribution if its probability density has the following ex-
pression:

X

px(z) = 3 eXD (—;7) 1(x € [0, 4+o0[) (7.31)

Check that E{X} = o+/n/2. Knowing that U has a uniform probability
distribution on (0, 1):

1. determine the function X = ¢(U) such that X has a Rayleigh distribu-
tion;

2. use the hist to check the result.

Exercise 7.4 (Bernoulli distribution)

B is said to have a Bernoulli distribution (the kind of distribution you get if you
flip a coin several times in a row) with a parameter p, if B is a random variable
with only two possible values, 0 and 1, with the probabilities Pr(X = 1) = p
and Pr(X = 0) = 1 — p respectively. Considering N independent Bernoulli
variables B, , let us assume:

|
S=5 2. B
n=1
1. Determine, as a function of p, the mean and the variance of B,,.

2. Determine, as a function of p, E{BiB,} for k # n. Remember that
if random variables U and V are independent, they are uncorrelated,

meaning that E{UV} = E{U}E{V}.

3. Determine as a function of p and N the mean m and the variance o? of
the random variable 5.

4. We assume that if N is large enough, the probability for S to be located
in the interval (m — 20, m + 20) is greater than 95%. This means we
can say that S provides an estimation of m with the relative precision
gr = 20/m. Determine the expression of ¢, as a function of p and of N.
Use this result to show that for ¢, = 10%, and for small values of p, an
approximate value of N is given by N & 400/p.

5. Write a program that calculates the length NV of a Bernoulli sequence with
the parameter p = 0.1 so that the empirical mean S is an approximation
of p with an accuracy of ¢,.
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The Bernoulli distribution can be used, among other applications, as a
random sequence of bits used to simulate a digital communications system, or
as 1t 1s explained in example 7.7, as a model for describing errors.

Example 7.7 (Error probability estimation)

Consider a random experiment where a sequence of values is received with an
error probability p. We are going to try and estimate p using a sequence of
N observations. In order to do this, a given sequence of length N is sent and
compared to the received sequence. The question we are faced with is “what
must be the value of N to estimate the error probability with an accuracy of
10%7”.

The model used for describing the error sequence is a sequence of random
variables B, such that B,, = 0 if the values in the n-th position are identical
in the original sequence and the erroneous sequence and B, = 1 if they are
different. This way, the random variable:

1 N
S= nz_:l B, (7.32)

gives an estimation of the probability error p. If we assume that the random
variables B, are independent, we can use the results obtained in exercise 7.4.
To estimate p with an accuracy &, roughly equal to 10% and a 95% confidence
interval, we need to start with a sequence with a length of N =~ 400/p. If
we restrict ourselves to a 70% confidence interval, the same accuracy &, = 0.1
is achieved for N = 100/p. This value is often the one used in practice to
calculate the length of a test. Note that Np represents approximately the
number of errors. This leads us to adopting the following rule:

To estimate an error probability with a precision of 10% and a confidence
level of T0%, you need to see a hundred errors “go by”. Hence the esti-
mation must be performed on a sequence with a length roughly equal to

100/p.

If the order of magnitude wanted for p is 10~°, you need N = 10,000,000.
Such a length can require a long simulation time, even with a fast computer.
This is a very common problem in the field of digital communications (see
exercise 12.25).

7.5 Uniform quantization

Quantization provides a non-trivial example using the concepts explained in
this chapter. The practical implications of the results are fundamental. In
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this paragraph, we will only discuss the very simple case of the uniform scalar
quantization.

The uniform quantization operation on N bits consists of dividing the inter-
val (—A, +A) in 2V sub-intervals of the same length ¢ = 24/2N. ¢ is called the
quantization step. When the quantization operation is performed, each sample
X is associated with the N-bit coded number of the interval it belongs to.
When the signal is reconstructed, this number is replaced by the median value
of the interval. If X denotes the sample we want to quantize and Y denotes
the reconstructed value, we have:

Y =kq+q/2 when kq< X < (k+1)q

Usually ADCs use a two’s complement binary coding for the quantized
samples. The code takes values between —2V~1 and 42V~ — 1 where N is
the number of bits used for coding. The conversion law can be described by
Figure 7.7.

Figure 7.7 — Quantization and two’s complement binary coding with 3 bits

Therefore, there is a gap between the “true” value and the reconstructed
value. If ¢ = X — Y refers to this gap, called the quantization noise, we can
write X = Y 4 . The quantization operation is the equivalent of adding a
noise with the power E{gz}.

. v

— 0 —> <:>X—>®—>Y

Figure 7.8 — Uniform quantization

Although it is possible to determine the probability distribution of £ using
that of X, it is often sufficient to just assume that £ 1s a uniform random
variable on (—¢/2,4+¢/2). This means that E{¢} = 0 and that:

+q/2 1 q2
E{¢’} = e’—de = = (7.33)
—q/2 q
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The uniformity hypothesis implies the absence of clipping, meaning that
none of the values we wish to quantize are located outside the range (—A4, +A4).
Otherwise, ¢ can assume much greater values than ¢/2. Tt just needs to be made
sure that the amplitudes of X higher than A have a negligible probability. In

the case where X is a centered random variable with a variance o2, we usually
choose:
A=F.o

where F is called Clipping Factor (CF). Thus, if X is Gaussian, by adopting
the “3 sigma” rule (page 258), corresponding to a 99% confidence level, F, = 3.
For a speech signal, the Gaussian hypothesis usually works poorly, and the value
of F. is rather chosen roughly equal to 4.

Exercise 7.5 (Signal-to-quantization noise ratio)

Consider the uniform quantization of an observation X described with a cen-
tered random variable with a variance 0. We wish to find the expression for
the level of noise quantization as a function of the number of bits used for
coding.

1. The signal-to-quantization noise ratio (SNR) is defined by:

SNR = 10log;, (%)

Show that in the absence of clipping, that is if A = F.o with F. high
enough, the SNR’s expression as a function of the number N of bits used
for coding the samples is:

SNR = 101log,,(E{ X*}/E{e*}) = 6N + 10log,,(3/F?) (7.34)
2. Write a function performing the two’s complement binary coding of a
sequence.

3. Write a program to check the hypothesis of uniform quantization noise
distribution. Perform a simulation to measure the SNR for values of V
from 1 to 7.

What should be remembered from formula 7.34 of exercise 7.5 is the follow-
ing rule, called the 6 dB per bit rule:

In uniform quantization, the signal-to-quantization noise ratio is en-
hanced by 6 dB every time 1 bit is added to the quantizer.




Chapter 8

Random Processes

8.1 Introduction

At the beginning of Chapter 7, we pointed out that the concept of random vari-
able was needed to describe with a model the variability of certain phenomena
said to be random. Speech signal observed at a microphone’s output is an
example. There is no use to try and describe it with a deterministic expres-
sion such as z(t) = Acos(2wfot), which is relevant however when describing
electrical voltage, hence the idea of using random variables for describing the
phenomenon at every instant. This leads us to the following definition.

Definition 8.1 A random process is a set of time-indered random variables
X (t) defined in the same probability space. If the possible values fort belong to
R, the process is called a continuous-time random process. If the possible values
for t belong to 7, then we are dealing with a discrete-time random process'.

The definition implies that a random process associates a real value called
a realization with every instant t and every outcome w. A random process can
therefore be interpreted as two different perspectives (Figure 8.1):

1. either as a set of functions of time, also called trajectories, each one
associated with an outcome;

2. or as a set of random variables, each one associated with a given time.

In MATLAB®, the randn function makes it possible to simulate the tra-
jectories of a zero-mean gaussian random process with a variance of 1. In the
following program, x is a matrix with 4 columns and 100 lines:

Y===== TRAJ1.M
x=randn (100,4) ;
for k=1:4

IWe will often use n, k, £, m, ...to denote time for a discrete-time random process.
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X(r,a0)
X(t,m,)

X(t,@,)

=30 40 50

Figure 8.1 — Trajectories of a random process

subplot(2,2,k); plot(x(:,k)); grid
end

x can be considered as the representation of four trajectories for the same
random process, for an observation time of 100 points (Figure 8.2).
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Figure 8.2 — Fzamples of random process trajectories

8.2 Wide-sense stationary processes

In some processings involving random processes, particularly in linear filtering,
the signals are assumed to be stationary, and only the first and second order
moments are taken into account. The two trajectories represented in Figure
8.3 illustrate these concepts. We might say, after observing them, that:

— the behavior of the signals with time show a certain permanence. Their
properties do not depend on the time origin;

— the mean seems to be equal to zero;
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— most of the power is located around roughly 110 Hz, because 11 oscilla-
tions are observed over a duration of 0.1 s, hence about 110 oscillations
per second.

N
o3 hoafl /\’m’A"Mﬂ”/\"A"A"’A”A”"i”f\’ VA
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Figure 8.3 — The two representations give an idea of the meaning of the word “sta-
tionary”

You will find here the mathematical definitions associated with these con-
cepts for random processes, and such a process is referred to as a Wide sense
stationary random process, or WSS.

8.2.1 Definitions and properties of WSS processes

Definition 8.2 (Mean) The mean of a random process is the mathematical
expectation of the random variable X (t). This quantity, which depends on the
time t, 1s a deterministic function of t, which will be denoted by:

mx(t) =E{X(t)} (8.1)

Definition 8.3 (Autocovariance function) Let X (¢) be a random process.
The autocovariance function is the function of t; and to defined by:

Rxx(t1,t2) = E{X (t1) X (t2)} (8.2)
where X (t) = X(t) —E{X(t)} refers to the centered process.

Definition 8.4 (Autocorrelation function) Let X (t) be a random process.
The autocorrelation function is the function of t1 and ts defined by:

E{Xc (1) X ()}
VE{IXc ()P HE{[Xc(t2) 7}

where X (1) = X(t) — E{X(t)} refers to the centered process. The Schwartz
wmequality tells us that for any random variables X1 and X5 :

IE{ X X5} < E{|X1 7} E{ X% (8.4)

pxx(ti,t2) = (8.3)




276 Digital Signal and Image Processing using MATLAB®

Inequality 8.4 implies that:
Vi, ta, [pxx(t,t2)] <1 (8.5)

A simple calculation shows that:
Rxx(t1,t2) = E{X (1) X" (t2)} — mx (t1)m% (t2) (8.6)

Definition 8.5 (Covariance function) The covariance function of two dis-
tinet processes X (t) and Y (t) is defined by:

Rxy (t1,t2) = E{Xc(01)Y. (t2)} = E{X(01)Y"(t2)} — mx (t1)my (t2)  (8.7)

Of course, in the case of a real process, it is not useful to have the con-
jugation (*) appear in expressions 8.6 and 8.7. The autocovariance function
i1s always a deterministic function of #; and t5. From now on, if there is no
possibility of confusion, we will omit the index xx when writing something of
the type Rxx (t1,12).

In the general case, the autocovariance function Rxx (t1,%2) depends sepa-
rately on t1 and t5. In the particular case where it only depends on ¢y —t5, the
time origin does not determine the level of covariance. This implies that the
trajectories of the process have an almost eternal permanence. The term sta-
tionaryis associated with this property. This concept is absolutely fundamental
in signal processing. It leads to the following definition.

Definition 8.6 (Second order stationary random process)
A random process is said to be “wide sense second order stationary” (WSS),
or simply “second order stationary”, if it obeys the following properties® :

— the mean BE{X(t)} = m is independent of t;
~ B{IX(O1} < +oo;

— the autocovariance function E{ X (t1)X;(t2)} = R(r) depends on the
time difference T = t; — to.

We have, according to relation 8.7, E{ X (#1)X*(t2)} = E{ X (t1) X (t2)} +
mx (t1)m (t2). If we let to = ¢ and ¢, =t + 7 we get:

E{X(t+ 1) X" (1)} = R(7) + [m|”

which depends only on 7.

2In the case of continuous-time processes, we add that the autocovariance function is
continuous at the origin.
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Example 8.1 (Complex harmonic process)
Consider the complex random process defined by:

P
1) = Zakezjﬂfkt (8.8)
k=1

where {fi} refers to a deterministic sequence of P frequencies and {ay} to
a sequence of P zero-mean, uncorrelated complex random variables with the
respective variances o2. Such a process is called a harmonic process. It does
not matter here whether ¢ is an integer or a real number.

First, we calculate the mean of X (¢). Because the expectation of the sum
is the sum of the expectations, we get E{X(¢)} = 0. Hence the process is
zero-mean. Its autocovariance function has the expression:

P P
E{X(t+7)X*()} = Z ZE{QW;}} Q2T fR(t47) g=2j 7 fut
k=1n=1
Because by hypothesis, E{ |ax]?} = ¢ and E{azal} = 0 for k # n, we
get:

E{X(t+7)X*(t)} = 20'2 2t (8.9)

E{X(+7)X*(t)} depends only on 7. This process is therefore WSS.

Example 8.2 (Real harmonic process)
Consider the random process:

P
= ZAk cos(2m frt + Dy) (8.10)
k=1
where {fi} refers to a deterministic sequence of P frequencies, {Ag} to a se-
quence of P independent, zero-mean, real random variables, with the respective
variances o; and {®;} to a sequence of P uniform random variables on (0,27),
independent of one another and of A;. A calculation similar to the previous
one leads to E{X ()} = 0. We now calculate the autocovariance function. We
get:

P P
E{X{t+7mX ZZE{AkA cos(2m fr (t + 1) + @) cos(2m frt + ) }

P
Z { AR A YE{cos(2m fir (t + 7) 4+ @) cos (27 fut + B,)}

M*u nM*u

{Ai}E{cos(?ﬂfk (t+ 1)+ @p) cos(2m frut + Pp) }

B
I
—
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where we used the non correlation of the Ag, then the independence of Ay and
of ®y. Next, we get:

P
E{X(t+7)X"(t)} = % Z oiE{cos(2m fiT) 4 cos(2m £, (2t 4 7) + 20) }
k=1

P
= %Z oj [cos2m o) + E{cos(2mfi (2t + 7) + 28y) }]
1k;1
= 52 cos(2m fiT) (8.11)

where we used the hypothesis according to which @ is uniform in (0, 27) and
therefore that:

27
E{cos(2mfi(2t + 1) +2®)} = / cos(2m fy (2t + 1) + 2(/))% dé =0
0

As a conclusion, the autocovariance function of a real harmonic process
depends only on 7 and therefore the process is WSS.

CoMMENTS: if the autocovariance function (expressions 8.9 and 8.11) of a
real or complex harmonic process is the sum of periodic functions, then the
variables X (¢ + 7) and X (¢) remain correlated, even for large time differences.
This is called a memory effect, and it lasts indefinitely.

The property 11.3, which we will see further on, gives it a more precise
mathematical meaning: a harmonic process 1s perfectly predictable from its
last P values.

Unlike harmonic processes, there are WSS processes for which the auto-
covariance function R(7) tends to 0 when 7 tends to infinity. This can be
interpreted as a memory loss of the process occurring with time.

8.2.2 Spectral representation of a WSS process

Definition 8.7 (Spectral density)

Let X (t) be a WSS process with the autocovariance function R(t). The Fourier
transform of R(r) is called the power spectral density (or PSD), or the spec-
trum. For continuous-time WSS random processes, the PSD therefore has the
erTpression:

+eo .
S(f) :/ R(r)e=2mI7dr (8.12)
and for discrete-time WSS random processes:
+oo
S(f) = Y R(k)e?mi* (8.13)

k=—o0
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Power 1s defined as:
P=E{|X(0)]*} = R(0) + |m|* (8.14)

The power’s square root is also called the root mean square. We will often
be dealing with zero-mean processes. In such cases, the power is equal to the
autocovariance function’s value at the origin.

By inversion of the FT, we have, for continuous-time WSS random pro-
cesses:

+eo )
R(r) = / S(f)e¥™ T df with 7 € R (8.15)
and for discrete-time WSS random processes:
+1/2 '
R(k) = / S(f)e¥ ™k df with k € Z (8.16)
—1/2

Note that because of 8.15 and 8.16, R(0) is merely the integral of S(f).
The following result can be proven [14]:

Theorem 8.1 (Positivity of the PSD) Let X () be a WSS random process,
and let S(f) be its PSD. We have:

S(f) =0 (8.17)

In the particular case of a real process, the PSD is an even function, that

is S(/) = S(=1).

It should be noted that the positive nature of S(f) is directly related to the
positive nature of the covariance, a property we showed on page 255.

Property 8.1 Let X(t) be a WSS random process. We have:

1. Hermitian symmetry: R(r) = R*(—7). Therefore, we only need to
evaluate R(7) for 7 > 0.

2. Positivity property: for any N, for any sequence of times {to, ..., {n—1},
and for any sequence of complex values {ag, ..., any—1}:
N-1N-1
afRa = Z Z agan, R(ty —tm) >0
k=0 m=0

where R 1s the N x N covariance matriz constructed from the covariance
function R(7) of the process, where a = [ag,...,an_1]7 and where the
exponent I indicates a transpose-conjugation (see also page 255).
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3. If the process has a mean different from zero, a “peak” with an ampli-
tude |m|? is attached to the spectrum at the origin (f = 0). This peak
at the origin, which simply indicates the presence of a non-zero mean,
15 called the continuous component of a process. Using the Dirac dis-
tribution amounts to choosing the Fourier transform of the second order
moment as the definition of the spectrum. Indeed, we have:

E{X(t+ )X (1)} = R(7) + [m|”

which has S(f) + |m|?d(f) as its Fourier transform.

4. The complex and real harmonic processes, expressions 8.8 and 8.10, have
periodic autocovariance functions, expressions 8.9 and 8.11. Therefore,
it does not exactly have a Fourier transform. However, we can find a
meaning to the PSD using Fourier series:

— in the case of a complex process:

=" o?( + fi) (8.18)

k=1
— and wn the case of a real process:

P

Z" S(f + fu) + izoié(f—fk) (8.19)

k=1

The PSD comprises peaks that indicate the presence in the signal of si-
nusoidal components with uncorrelated amplitudes.

5. As it was the case with the deterministic description, the spectrum rep-
resents the distribution (or localization) of the power along the frequency
axris. The power is given by:

+o0
P =R(0)+ |m|* = S(fydf +|m|*  (continuous-time)

— 00

o (8.20)
P =R(0)+ |m|* = / S(f)df + |m|*  (discrete-time)

—1/2

COMMENT: the fact that the PSD of an observed process contains peaks
can be used in some synchronization systems to retrieve, using a very narrow
band-pass filtering, a harmonic component with the same phase as a particular
component of the observed process.

We admit without proof the following result: [14]



Random Processes 281

Property 8.2 (Characterization of positivity) Consider a sequence T'(k)
with k € Z such that T'(k) = T*(—k) and >, |T'(k)| < +oo. This sequence is
the covariance sequence of a WSS process if and only if, for all f:

+ oo

(= 3 T >0

k=—o0

Example 8.3 Consider the real sequence T'(k) = 1 x1(k = 0)+axT1(k = x1).
Determine the condition on a such that the sequence is the covariance sequence
of a WSS process.

HINT: obviously we have, for any a, >, [I'(k)| < +o0. Using property 8.2,
T'(k) is a sequence of covariance if and only if:

S(f)y =14 2acos(2nf) >0

The condition S(f) > 0 is equivalent to |a| < 1/2. Notice that a represents
the correlation coefficient p(1). Hence, after 8.5, we already knew that
|p(1)] < 1. The fact that the sequence is a covariance sequence of a WSS
process imposes a stronger condition. [

Studying methods that make it possible to estimate the spectra of a second
order stationary random process is an important field in signal processing. We
will discuss this later on.

Positive Toeplitz matrix

Consider a WSS discrete-time random process X (n). We are going to determine
the covariance matrix at any K consecutive times of the process. If we start

at the times {n, n+1, ..., n+ K —1}3, the K x K covariance matrix has the
expression:
Xe(n)
Xc(n+1)
R = E , [X:(n) X:(n+1) ... X:(n+K-1)]

Xe(n —I—.K -1)
R()  R(-1) ... R(-K+1)
R(1) R(0) R(-1) .

: . R(-1)
R(K—1) ...  R(1) R(0)

3Most of the time, we will write the time sequence from left to right by increasing times.
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R(0) R*(1) ... R (K —1)
R(1)  R(0) R(1)
R = . ]
: g R*(1)
RK-1) ... R(1) R(0)

Notice that R = R¥ and that because of the stationarity of the process,
the matrix R is such that the lines parallel to the main diagonal are comprised
of equal terms. This type of matrix is called a Toeplitz matriz.

The MATLAB® function toeplitz (V) allows you to construct, from the
vector V. = [V(0) ... V(K — 1)]¥, the square hermitian Toeplitz matrix the
first line of which is [V(0), V(1), ..., V(K —1)].

Definition 8.8 (Gaussian random process)
A random process X (1) is Gaussian if, for any k, and for any time sequence
{t1, ..., tx}, the vector [X(t1),..., X (1x)] is Gaussian.

For the definition of a Gaussian vector, see 7.17.

Definition 8.9 (White noise) Discrete-time white noise is the name given
to a WSS, zero-mean, random process X (n), the covariance function of which
can be written:

Ry when k=0

R(k) = E{X(n—i—)X(n)} = { 0 when k#0

Because of formula 8.13, which provides us with the spectrum, the power
spectral density 1s constant, and has the expression:

S(f) = Ro (8.21)

In the continuous-time case, a definition similar to 8.9 poses a problem,
because it leads to a random process of infinite power (the integral fR S(f)df
diverges) and the autocovariance function can only be defined in the distribu-
tions context. Thus, we have:

S(f) = Ro = R(1) = Rod(7)

where (1) now refers to the Dirac distribution. We must say however, that
in most practical cases, the calculations performed with the Dirac distribution
lead to results that coincide with those obtained by starting off with a B band
noise (which does not lead to an infinite power problem), and then making B
tend to infinity.

The word white comes from the analogy made with white light, for which
the power is uniformly distributed among all the optical frequencies.
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White noise is the archetype of models used in practice for describing noise.
In communications systems, for example, it describes every kind of noise caused
by thermal phenomena in the transmission chain, from the emitter to the re-
ceiver. The rounding and quantization noises that occur in a digital processing
system are another example.

Although a process often is both Gaussian and white, particularly in ther-
mal noise models, there is no implication between these two properties. Thus,
a random process can be white without being Gaussian or Gaussian without
being white.

Example 8.4 (Trajectory of a noisy sine)

Write a program that displays a sequence of 30 samples taken at the frequency
Fy, = 1,000 Hz, from a signal X(t) = s(t) + B(¢), sum of a sine s(t) with a
frequency of Fy = 80 Hz and of a zero-mean, Gaussian, white noise B(t). The
power of B(t) is chosen so as to have a signal-to-noise ratio equal to 15 dB,
knowing that the signal s(¢) has an amplitude of 3.

HINT: having a signal-to-noise ratio equal to 15 dB means that the ratio
rp of the signal’s power to the noise’s power is such that 10log;y(rp) = 15,
and therefore rp = 10'°. Because the power of a sine with an amplitude A is
equal to P = A?/2, the noise variance has to be ¢? = A?/2rp. Since A = 3,

this leads to o = 3/v/2 x 1015,

To obtain a trajectory, type:

%===== SIN8OBR.M
N=30; F0=80; Fs=1000; tps=(0:N-1)/Fs;
sigma=3/sqrt (2%10 = 1.5); Y===== SR

g=3%cos(2 * pi * FO * tps);
x=s + sigma*randn(1,length(tps));
plot (tps,s,tps,x,’0’); grid

The result is shown in Figure 8.4. A cross indicates a sample without noise,
and a circle indicates a noisy sample. [

Example 8.5 (Linear transformation of a WSS process)

Let W (n) be a zero-mean, WSS, discrete-time random process. Ryw (k) refers
to the autocovariance function and W = [W(n) ... W(n + N — 1)] to the
vector obtained from N consecutive values of W (n).

1. Write, as a function of Rww (k), the expression of the covariance matrix

of W.

2. Given an (N x N) matrix M, let X = MW. Determine the expression
of the covariance matrix of the vector X (definition 7.13). What is the
probability distribution for X when W (n) is a Gaussian process?
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o Samples of the noisy signal x ~ x Samples of the signal s

0 0.005 0.01 0.015 0.02 0.025 0.03 (s)

Figure 8.4 — Sine with a frequency of 80 Hz, corrupted by white noise with a signal-
to-noise ratto SNR = 15 dB

3. Use this result to find a method for obtaining a sequence of N values with
a given covariance, when W (n) is white, zero-mean and with a variance
equal to 1.

4. Use this result to find a method for obtaining a sequence N values of a
white process with a variance equal to 1, when X(n) has Rxx (k) as its
autocovariance function. This is called whitening the process X (n).

HiINT:
1. Because W(n) is zero-mean, the covariance matrix is given by:
Ry = E{WW"} = [E{WHn+OW*(n+k)}]
= [Rwwn+£—n—k)]=[R{—-Fk)]
where £,k € {0,..., N — 1}, which leads us to:
Rww (0) s wa(—N + 1)
Ry = z z
Rww (N —=1) --- Ryww (0)

2. If we start off with X = MW, the covariance matrix has the expression:
Rx = E{XX"} = E{MWW*M#?} = MR,y M¥

If W(n) is Gaussian, the sample X is Gaussian itself, since Gaussian
nature is unchanged by linear transformation (see theorem 7.4). Tts mean
is zero and its covariance matrix is Ry, meaning that the probability
density has the expression:

1 1 _
px(x) = ~Rsx)

(27)N/2 det(RX)eXp< 2
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where x = [z, -, #pin_1]".

3. If the process W(n) is white, zero-mean and has a variance of 1, its
covariance matrix Ry = Iy, where Iy refers to the N x N identity
matrix. Given the matrix Rx, how should M be chosen for the sample
X = MW, where W is white, to have the covariance Rx7 All we need to
do is choose M such that MM¥ = Rx. M is called a square root of Rx.
Just like in the case of scalars, a positive matrix has several square roots*.
With MATLAB®, the sqrtm(R) function, with R positive, calculates the
principal square root of R.

4. Bear in mind that Ry = MRy M. If we want X(n) to be white with
a variance of 1, Rx has to be equal to the identity matrix. This can be
achieved by choosing M as the inverse of the square root of Ry, which
is obtained in MATLAB® using the command inv(sqrtm(Rw)).

If X(n) is Gaussian, then the sample W is Gaussian and white. If this
is the case, we know (see theorem 7.3) that non-correlation implies inde-
pendence. Therefore, the obtained sequence is comprised of independent
variables.

This provides us with the following important result:

Colored noise can be changed into white noise by multiplying the sample by
the inverse of the square root of the “colored” process’s covariance matriz.
This is called whitening the signal. Furthermore, if the original samples
are Gaussian, the processed samples are Gaussian and independent.

8.2.3 Sampling a WSS process
Consider a real, zero-mean, WSS random process X (), t € R, with the PSD:

+eo .
S(F) = / R(r)e= %™ qr
where R(r) = E{X(t + 7)X (1)} represents its autocovariance function. Here,
Fis a frequency expressed in Hz, and (¢, 7) are times expressed in seconds. We
assume that X (¢) is B-band limited, meaning that S(F) = 0 for |F| > B.

4With scalars, if » > 0, the equation mm* = r has the solution \/Re”5 where ¢ is an
arbitrary real number. /m is called the positive square root, and the number u = eI? is
such that wu* = 1. Likewise, the matrix equation MM# = R, where R > 0, has an infinite
number of solutions of the type vVRU where U is any unitary matrix that obeys UU¥ = I.



286 Digital Signal and Image Processing using MATLAB®

The signal X (t) is sampled at a frequency of Fy = 1/T;. Tts samples are
denoted by X (n) = X(nT,). It can be shown [100] that if Fy; > 2B, the
process can be reconstructed, as a limit in quadratic mean, from its samples
according to the reconstruction formula 2.24 proved in the deterministic case,
the expression of which is recalled below:

oQ

X(t) = Z Xs(n)hp(t —nTs) where hp(t) =

n=—oQ

sin (27 Bt)

.22
mFt (8.22)

In the case where Fy < 2B, perfect reconstruction is impossible because of
aliasing.

As it was the case with deterministic signals, when a continuous-time WSS
random process is sampled, the sampling operation at a frequency F; must be
preceded by anti-aliasing filtering with a gain of 1 in the (—F;/2, F;/2) band
to avoid aliasing.

We are now going to determine the relation between the PSD S(F) of the
continuous-time random process X (t) and the PSD S, (f) of the random process
sampled at X;(n) = X(n/F;). Because of definition 8.13:

So(f) = Y E{Xs(n+ k)X, (n)} e

If we use the fact that X,(n) = X(n/F;), we get:
E{X;(n+ k) X; ()} =E{X((n+k)/F)X(n/Fs)} = R(k/Fy)

Replacing in S, (f) leads us to:
Si(f) =D R(k/Fy)e™ Ik T

k

where we have assumed F = fF; and F7s; = 1. If we apply the identity given
by the Poisson formula 2.4 to the second member, we get:

S.(f) = E Y S((f —n)F) (8.23)

Finally, we find the PSD’s expression for the process X (t):

S(F) = Fi S, (F/F)I(F € (=B, B)) (8.24)

5

To sum up, it should be remembered that the PSD of X (¢) is obtained from
the PSD of X(n) by:

— multiplying the amplitude by 1/F;

— multiplying the frequency axis by Fj;
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— and by limiting the frequency band to the interval (—B, B).
Conversely, the PSD of X, (n) is obtained from the PSD of X (¢) by:

— multiplying the amplitude by Fj;

— dividing the frequency axis by Fj;

— and by periodizing with the period 1.

To illustrate this, we are going to apply these formulae to the problem of the
signal-to-quantization noise ratio when the signal is oversampled at frequency
higher than the Nyquist frequency.

Quantization noise and oversampling

When oversampling a band-limited signal without quantizing it, we know, from
the sampling theorem, that it is useless to oversample (compared with the
Nyquist frequency). This changes completely when the sampling is followed by
a quantization operation, because the quantization operation can be interpreted
as the addition of noise. Let us see the consequences of oversampling in terms
of signal-to-noise ratio.

Consider the B band, zero-mean, WSS, real random process X (¢). This
signal is sampled at the frequency Fy > 2B, the sequence of obtained signals
is denoted by {X;(n)}. These samples are then uniformly quantized, with a
quantization step ¢ (see paragraph 7.5). Let X2(n) be the samples that are
quantized. We are going to reconstruct a signal denoted by X9 (¢), from the
quantized samples X9 (n), using expression 8.22, then try to evaluate the power
of the “error” between the original signal X (¢) and the signal X% (t) obtained
from the quantized samples.

Starting off with 8.22, we can write successively:

E:XQ Vhp(t — nT})

where hp(t) is given by 2.24. Let us define ¢(n) with XsQ(n) = X;(n) +(n).
We get:

E:X' Vhp(t —nTy) +§: n)hp(t —nT})

By hypothesis, F; > 2B. Hence the first term is exactly equal to the signal
X (t) and therefore:

X9 +§: n)hp(t —nT})

=B9(t)
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The signal B?(t) represents the error between the original signal and the
reconstructed signal: it is called the quantization noise. Notice that its expres-
sion is obtained, from the process ¢(n), precisely by using the reconstruction
formula 8.22. Therefore, according to expression 8.24, we can determine the
PSD of B9 (t) from the PSD of £(n), and from there, determine its power.

By referring to the hypotheses on £(n) made in paragraph 7.5, we know
that ¢(n) is a zero-mean random process with a variance of ¢?/12 and such

that E{e(n)e(k)} = 0 for n # k. Hence the PSD of e(n) is given for any f by:

2

SN =135

Using formula 8.24, the PSD of B?(t) is then given by:

Su(F) = %Fisn(F € (—B, B)) (8.25)

The quantization noise’s power is obtained by integrating Sp(F):

+oo 2
_ _49° 2B
Pg _/_Oo Sp(F)dF = 2 F (8.26)

Using formula 7.34, we end up, in the case of uniform quantization with
oversampling, with the following expression of the signal-to-noise ratio:

SNR = 6N + 101log,((3/F2) + 10log,,(F,/2B) (8.27)

where N refers to the number of bits of the quantizer and F, to the clipping
factor. A 3 dB gain occurs every time the sampling frequency is doubled. This
result calls for a few comments:

1. According to the sampling theorem, oversampling is useless without the
quantization operation. All the information useful to reconstructing the
signal without errors is contained in the samples taken at Fy = 2B.

2. Formula 8.27 was obtained by assuming that the quantization noise is
white (the sequence £(n) is uncorrelated). If this happens to be false,
the PSD Sp(F), given by expression 8.25, has a different shape (sharper
peaks). This means that the quantization noise’s power is no longer given
by expression 8.26 and the gain can then be much less than 3 dB. This
is the case when the oversampling factor becomes too high, because the
non-correlation error hypothesis is not quite established anymore. Hence
there cannot be an infinite iteration of the 3 dB gain by doubling the
sampling frequency.

3. There is no point in interpolating (interpolating is not oversampling) the
already quantized discrete-time sequence in the hope of obtaining samples
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that would have been produced when oversampling a continuous-time sig-
nal. The errors introduced by the quantization process are permanently
added, and the reconstructed samples are noised in the same way.

8.3 Estimating the covariance

The concept of ergodicity

In practice, the covariance functions are not known, and we are faced with the
problem of estimating them. As we have already said, a random process can be
seen as great number of trajectories corresponding to a great number of realiza-
tions of the identically repeated experiment. However, in many practical cases,
we have at our disposal only one process trajectory. It then becomes clear that
the stationary process category, for which the moments can be estimated by
calculating a “temporal mean” on only one trajectory, will have an important
practical role.

Ergodicity i1s related to this concept. However, we will not give its gen-
eral definition here. We will only say that a WSS random process X (n)
with the mean m = E{X(n)} and the autocovariance function R(k) =
E{X.(n+ k)X (n)}, is ergodic if its mean and its autocovariance function
can be obtained as the convergence in probability, when N tends to infinity,
of a temporal mean calculated for only one trajectory. This can be expressed,
when N tends to infinity:

N-1
. 1
mN = nz_:o X(n) —m (8.28)
For the covariance, this leads to:

]%N(k) = % _Z:_ (X(n+k)—my)(X"(n) —my)) — R(k) (8.29)

This convergence actually is not all that surprising. We know, for example,
from the law of large numbers [28], that, for a sequence of independent random
variables, with the same mean m and the same finite variance, which is a
particular case of a WSS process, the empirical mean:

| -1
7 2 X(0)
n=0
converges in probability to m. The question is “does this result apply to a

larger class of random processes than just the sequences of independent random
variables, such as for example the WSS random processes?” The answer is yes



290 Digital Signal and Image Processing using MATLAB®

[82], but it is not fundamentally useful for what we are going to do to go into
it any further. We will simply assume that, for the WSS processes we will
be considering, the conditions are in fact met. We can then use expressions
8.28 and 8.29 to estimate the mean and the autocovariance function of a WSS
process from the observation of N samples.

Notice that if the mean of X (n) is m, then we can write that X(n) = m+
B(n), where B(n) is a zero-mean process. If we start off with this, formula 8.29
for estimating covariance consists of estimating m first, then of subtracting this
estimation to X (n), and finally of estimating the covariance of B(n). Generally
speaking, we have to consider X (n) = s(n;#)+ B(n) where B(n) is a zero-mean
random process and s(n; @) represents a deterministic signal that depends on a
parameter ! we have to determine. In this context, s(n; §) is sometimes referred
to as the trend term. This trend can be either affine, polynomial or periodic.
For the latter, the trend is said to be seasonal. In conclusion, estimating the
covariance is achieved on the process B(n), which is obtained in the following
way:

— if a non-zero mean is observed, center the process by calculating B(n) =
N-1
X(n) = % Y=o X(k);

— if an affine trend is observed, of the kind s(n;8) = a; + aan (here # =
(a1,az2)), use the program written in exercise 8.1, that allows you to
estimate the pair (a1, as) and then to obtain the residue B(n);

— if, finally, a seasonal trend is observed, of the kind s(n;0) = a +
beos(2mfon — ¢) (here 6 = (a,b,¢) and fy is known), use the program
written in example 8.6.

Suppressing a mean

With MATLAB®, the estimated mean %Zi\;l)((k’) is obtained with the
mean command. To obtain the zero-mean process, all you need to do is type
xc=x-mean(x). You can also type moyx=sum(x)/N, where x is assumed to be a
length N column vector, then xc=x-moyx.

Exercise 8.1 (Suppressing an affine trend)
Consider a discrete-time random process X(n) = a; + asn + B(n) where the
noise B(n) is a centered WSS random process. What happens is that in the
absence of noise, we get a line of equation Y (n) = a1 4+ asn, whereas in the
presence of noise, we get a scatter plot, more or less spread out around this
line. The problem will be to find the line that best fits the scattered points,
the meaning of which will soon become clear.

To do this, we start with the observation of X(n) over a time interval
{0,..., N =1}, and we assume that B(n) is a white, Gaussian, random process
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with an unknown variance 0'2. a1 and ay are the two unknown parameters we
are going to determine.

1. Give the expression of the probability density px (zq, ..., nx_1; a1, az, o2)
of the random vector {X(0), ..., X(N —1))} as a function of the param-
eters a1, as and 0'2.

2. Gauss had the idea of choosing the values of ay, as and 0'5 such that
px (o, ..., 2N_1; 01, a2, 0'5) would be maximum. ay, as and 0'5 are called
the mazimum likelihood estimators. We choose the following notations:

X(0) oo

a:[al],X: : and W = .

as . :
X(N-=1) 1 N1

Determine, as a function of X and W, the expression of a that maximizes

the likelihood.

3. Write a function that eliminates the affine trend and only keeps the sta-
tionary part zero-mean. Test this function.

COMMENTS:

— What exercise 8.1 teaches us is that in the case of a Gaussian hypoth-
esis, the maximum likelithood estimator coincides with the least square
estimator.

— The method explained here can easily be applied to any polynomial trend
of the kind X(n) = ag + ayn + -+ ayxn® + B(n).

Example 8.6 (Suppressing a seasonal trend)

In many fields, such as meteorology, economics and biology, certain behaviors
show a periodicity related to natural phenomena that are periodic themselves:
the rotation of the Earth around the Sun, the rotation of Earth on its axis,
etc. These behaviors are said to show a seasonal trend. A model can then be
used to describe them as a sum of deterministic components representing this
trend and of a zero-mean random process B(n), representing the variability of
the phenomenon, which can be written:

X(n)=a+bcos(2nfon — ¢) + B(n)

In this context, the frequency fy 1s assumed to be known. Studying the
process B(n) requires a preprocessing to eliminate the seasonal trend. In order
to do this, we estimate a, b, and ¢, then subtract a + bcos(2w fon — ¢) to X(n)
to obtain an estimation of the residual process B(n). A criterion often used
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for estimation is the one called the least squares criterion (see the following
comment in exercise 8.1). Beginning with the observation of X(n) for n €
{0,..., N — 1}, we are trying to find the values of a, b and ¢ that minimize the
RMS deviation:

N—1

J(a,b,¢) = > _(X(n) — (a+bcos(2nfon — ¢)))

n=0
between X (n) and the expected seasonal evolution.

1. Determine the expressions of a, b and ¢ that minimize J(a, b, ¢).

2. Write a function that eliminates the seasonal trend, leaving only the
stationary part zero-mean.

HINT:
1. Let 81 = bcos¢ and B = bsin¢. We have:

g p) = 3 (X(n) - (a+ beos(znfon - )’
= - (X(n) —a— 3 cos(2mfon) — Bo sin(27 fon))?

If we successively set to zero the derivatives with respect to a, 81 and s,
we get:

— with respect to a:

Z_: (X(n) —a— pfycos(2mfon) — B2sin(2n fyn)) =0

— with respect to By:

Z

-1

Z X (n)cos(2mfon) — a cos(2m fon)

n

I
=)

N-1

N—
-5 Z cos? (27 fon) — Z n(2m fon) cos(2w fon) =0

n=0

— with respect to Ba:

2
i)

Z X (n)sin(2nfon) — a sin(2m fon)

n

i
2
i)

N-1

-5 Z cos(2m fon) sin(2m fon) — fa sin?(27 fon) = 0

n=0 n=0
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Let:
U =1 ... 1)
X [X(0) ... X(N-1D]"
C [cos(2mfo x 0) ... cos(2mfy x (N — 1))]T
S = [sin(2nfo x0) ... sin(2rfyx (N — 1))

With these notations, we can group the three previous derivatives to-
gether to write a single matrix equation:

U7t a U7t
cT [U C S] Al =CTX
sT 62 sT
which can also be written:
N uTfc UuTs a U7t
CTu CTc CTs| |p|=|CT|X (8.30)
sTu sTc sTs 57 sT

If M refers to the 3 x 3 matrix found in the left-hand side of equation
8.30, and if we assume M to be invertible:

a uT
gl =M C; X (8.31)
8 S

In the case where fo N > 1, it can easily be checked that we successively
have UTC ~ 0, UTS ~ 0, SC ~ 0, CTC ~ N/2 and S”S ~ N/2.
This means that M ~ diag(N, N/2, N/2) for which we infer the following
approximate expressions:

| Nl
a & NH_OX(n)
g V-1
G = v X (n) cos(2m fon)
n=0
g V-1
and B = v X (n)sin(27 fon)
n=0

We will see in Chapter 11, on the least squares method, a generalization
of this result to the sum of several periodic components.
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2. Save the function trendseason.m:

function dx=trendseason(x,f0)

Wh %
%% Suppressing a seasonal trend %
%% SYNOPSIS: dx=TRENDSEASON(x,f0) %
% x = Input sequence %
o f0 = Seasonal frequency %
%h dx = Residue %
Wh %
x=x(:); N=length(x);

U=ones (N,1);

C=cos (2%pi*f0* (0:N-1)’); S=sin(2*pi*f0*(0:N-1)7);
M=[ N U’%C U’%S ; C’*U C’*C C’*S; S’*U S’*C S’%S];
theta=inv (M) *[U’;C’;S’ ] *x;

dx=x-[U C S]*theta;

return

Test the tendseason function by executing the following program:

Yi===== TESTTRENDSEASON.M

N=100; B=randn(N,1); a=4; £0=0.01; phi=pi/6;
tseason=3*cos (2*pi*f0* (0:N-1) ’-phi) ;

X=attseasont+B; Res=trendseason(X,f0);

subplot (311); plot(B); grid; set(gca,’ylim’,[-4 4])
subplot (312); plot(X); grid;

subplot (313); plot(Res); grid; set(gca,’ylim’,[-4 4])

Because fyN = 1, the terms that do not belong to the diagonal of matrix M
(see expression 8.31) are not negligible. You can check that the approximated
formulas provide results with noticeable differences. [

Estimating covariance

From now on, we will assume, except if specified otherwise, that the observa-

tion sequence has been previously processed in order to remove the mean and

the possible tendencies. This means, according to expression 8.29, that the

estimation of the autocovariance function from {X(0), ..., X(N —1)} is given,
for k€ {0,..., K — 1}, by:
R | Nohot

k)= — n+k X(m)X*(m—k .32

Rxx (k) NHZ::O X(n+ k)X Z ) (8.32)

Likewise, an estimation of the covariance functlon between two random

processes X (n) and Y'(n), both assumed to be WSS and zero-mean, is given
for k€ {0, ..., K —1} by:

Y(n+k)X*(n)== > Y(m)X*(m—k) (833)
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From a theoretical point of view, it can be shown, as we said at the be-
ginning of this paragraph, that for a very large category of WSS processes,
the estimators given by expressions 8.32 and 8.33 converge, when N tends to
infinity, to the true covariance [14].

In practice, ¥ must however remain much smaller than the number N of
observations. A practical rule is to choose k less than N/10.

Positivity of the estimated covariance matrix

Consider the first K values RXX(O), e EXX(K— 1) obtained with expression
8.32. To construct an estimation of the covariance matrix of a WSS process,
you only need the hermitian Toeplitz matrix, for which the elements of the first

column are precisely Rxx(0), ..., Rxx (K — 1). The matrix can be written:
Exx(()) Exx(—l) Exx(—f(—l—l)
R=| fx( Rax(0) ~ (8.34)
A : . RAXX(—l)
Rxx(K—-1) ...  Rxx(l)  Rxx(0)
A simple calculation shows that:
~ 1
R=—-DD :
I (8.35)
with D =
X*0) X*(1) .- XH(N-=1) 0 0
0 X*0) X*(1) X*(N = 1) (5.36)
o .. 0 X*(0) X*(1) . X*(N-1)

The fact that R can be written as DYD/N guarantees that R is both
hermaitian and positive. This is because for any vector a, we can write that:

~ 1 1 1
afRa—= —af (DHD)a: —(Da)H(Da) = vy
N N N

Hy is the

where we let v.= Da. We can conclude by noticing that the scalar v
sum of the square moduli of the components of v, and is therefore positive.
Obviously, in practice, you do not construct D to then calculate DED. You
calculate Rxx (k) for k£ = 0,..., K — 1 with formula 8.32, then you use the
toeplitz function of MATLAB® to store the obtained values in a matrix of

the type 8.34.
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In the literature, this method for calculating R is called the correlation
method. What we see is that, in a way, everything is as if we had padded the
observed sequence on the left and on the right with (K — 1) zeros. Its major
drawback is therefore to add false data, zeros to be precise, on both sides of
the observed data. This is why when the length N of the sample is small, 1t
1s usually discarded, to the benefit of the covariance method which consists of
choosing as the covariance matrix:

1

R = v_xP'D
with:
XK -1) X*K) - X" (N-1)
XK -2 X*(K—-1) - X*(N-2)
D — : : : (8.37)
X*(0) X*(1) .- X*(N-K)

The resulting covariance matrix remains, of course, positive, but it loses its
Toeplitz structure necessary to certain fast inversion algorithms.

There are two other methods for constructing D, padding with zeros either
on the left or on the right. For example:

X*(K -1) X*(N-1) 0 0
pH _ | XK =2) X*(K-1) X*(N-1) 0
: . - 0
X*(0) X*(1) X*(N-1)

We give in paragraph 9.2.1 a comparison of these methods. If N > K it is
obvious that they will give basically the same results.

COMMENT: in the correlation calculation, each of the terms can be inter-
preted as a convolution, hence the idea to use the DFT for calculating the
sequence of the covariance. We know that with a convolution in the time
domain corresponds a product in the frequency domain, and the estimated
autocovariance function can be seen precisely as the convolution of #(n) with
z*(—n), with which X(f)X*(f) = |X(f)|* corresponds by Fourier transform.
However, bear in mind that in the DFT context, we know that the associated
convolution is circular.

8.4 Filtering formulae for WSS random processes

Filtering formula for the PSD

Let X (#) be a WSS random process, with the autocovariance function Rx x (7)
and the PSD Sxx (f) fed into the input of a linear filter with the impulse
response h(t) and the complex gain H(f).
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Linear filter

h(t)
XO——> pyi [0

Figure 8.5 — Linear filter

We assume that A(t) is summable (BIBO stable filter). In the continuous-
time case, this can be expressed:

/ [h(t)|dt < +o0
R
and in the discrete-time case’:
D IA(1)] < 400
teZ
It can be proven [14] that the output random process Y(¢) is WSS itself.
Its mean is given by:
my = mxH(O) (838)

Therefore, it is zero-mean if the input signal is zero-mean. Its PSD is given
by the following expression:

Syy (f) = [H(f)I?Sxx (f) (8-39)

Notice that if we decide to use the distribution formalism, formula 8.39 can
still be applied when the process is harmonic. Consider for example as the input
signal of the filter the real harmonic process X (¢) = kazl A cos(2m fyt + Dy),
the PSD of which is given according to 8.19 by:

Sxx (f Zoza F+fe)+ Zaza F= 1)
A direct calculation of the output 51gnal Y (¢) leads to:
P P
- ZAkH(_fk)e—Zjﬂka‘I’k + ZAkH(fk)eZMka@k
k=1 k=1
If we use 8.19, we get, for the PSD of Y'(¢):
1 E
Syv(f) = 72 alH(=1)lP0(f + fi)
T
+3 2 ok H () PO(f = fi) (8.40)
k=1

5In this paragraph, t and 7 belong either to R or to Z depending on whether the considered
process is continuous-time or discrete-time.
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which can be identified with Syy (f) = [H(f)|*Sxx (f) if we use the identity
H(f)o(f — fo) = H(fo)d(f — fo), where §(f) refers to the Dirac distribution.
Starting off with 8.40, we end up with the following expression of the autoco-
variance function:

P
1
RYY 420_ |H |2 —2]7rfk7_|_ Zak|H fk)|2 25w f.T
k=1 k 1

If the filter is real, H(—f) = H*(fx) and:

Ryy (r ZO’MH (fr) | cos(2m fiT)

In the case where the input process is a white noise, the PSD Sxx(f) is
constant. It may be useful to write the Parseval formula again:

f_-l—;j |h(t)|2dt = f+°° |H (f)|*df (continuous time)

ree h f+11/22 DI?df  (discrete time)

(8.41)

which allows you to calculate the filter’s output power by integrating the im-
pulse response either in time or in frequency.

The output autocovariance function’s expression is not as simple as the
PSD’s. If we restrict ourselves to the discrete-time case, we have:

+oo
Ryy(r)= > ( Z h(n )) Rxx(r —m) (8.42)

m=—00 n=—oQ

Filtering formulae for the interspectrum

If the previous stationarity hypotheses are made, it can be proven that
the processes X(t) and Y (t) have stationary covariance, meaning that
E{Y:(t+ 7) X (t)} = Ryx(r) (the index ¢ refers to zero-mean processes) only
depends on the time gap 7. Once again this formula has an simpler expression
in frequency. We have:

Syx(f) = H()Sxx (f) (8.43)

where Sy x(f), which is called the interspectrum, refers to the Fourier trans-
form of Ry x(7). Note that this function has none of the PSD’s remarkable
properties. In particular, there is no reason why it should be positive, or even
real. If we restrict ourselves to the case of discrete-time random processes, we
infer:

Ryx(r) = B{Y.(t+1)X Z h(m)Rxx (1 —m) (8.44)

m=—00
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Notice that if X (¢) is white with a variance of 1, that is Rxx(r) = d(7),
formula 8.44 can be simplified, and leads to:

Ryx(7) = h(r)

The impulse response coincides with the output/input covariance. This
result can be used for estimating a filter’s impulse response (see exercise 8.5).

Exercise 8.2 (Smoothing filtering of noise)
Consider the filter h(n) = 1/8 for 0 < n < 7 and 0 otherwise. A white,
zero-mean random process with a variance of 1 is fed into the input.

1. Determine the gain |H(f)|? of the filter.

2. Use this result to find the output process’s spectrum and the output
power.

3. Use this result to find the form of the output autocovariance function.
Determine after which value k the output autocovariance function is null.

4. Write a program that simulates the filtering over 2,000 points of data,
that evaluates the output autocovariance function using formula 8.32, and
uses this to find the spectrum by an FFT calculation over 512 points.

5. Compare with the theoretical results.

Generating a random signal using white noise

We are often faced with the problem of simulating the trajectory of a WSS
process with a given spectrum. The functions randn and filter make it
possible to construct such a trajectory.

The randn function generates samples of Gaussian white noise with a vari-
ance of 1. Tts spectrum is therefore constant, and equal to 1 in the (—1/2,+1/2)
band. The WSS process filtering formula 8.39 shows that we can obtain the
trajectory of the process Y (n) with a given spectrum, by properly filtering
W(n). We have:

Syy (F) = [H(N)? x Sww (f) = [H())

Usually, the complex gain H(f) = H,(e*™/) is that of a filter whose
transfer function is a rational function that can be written H,(z) =
B.(z)/A;(z). This means we have to use the filter function with the com-
mand y=filter(b,a,w), where a and b refer to the denominator and numer-
ator polynomials of the transfer function.

When used like this, the filter function starts with zero initial conditions,
creating at the beginning of the trajectory a transient part that does not cor-
respond exactly to the intended trajectory. One way of partly avoiding this is
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to spread out the first P values of the obtained signal, when the choice of P
is directly related to the duration of the transient state of the filter’s impulse
response. For the numerator of the transfer function, this duration is simply
the number of coefficients. For the denominator, we know that this value 1s
related to the position of the poles with respect to the unit circle. A simple and
practical rule consists of considering the modulus pyax of the most resonant
pole, that is the one closest to the unit circle, and to choose P such that pf
is negligible compared with the root-mean-square of Y (n). Remember that for
a pole with the modulus p, the transient state decreases like p” (see impulse
response of a filter on page 128).

Example 8.7 (Generating a random signal)

Consider the process z(n) obtained as the output of the filter with the transfer
function H,(z) = 1/(1+ az~1'), where @ is a real number with its modulus less
than 1, the white noise W(n) with a variance of 1 being fed to its input.

1. Determine its PSD’s expression.

2. Write a program that generates a trajectory for the process X (n).
HINT:

1. Tts PSD’s expression is given by formula 8.39:

1 1
(14 ae2™)(1 + ae=27f) 14 2acos(2rf) + a2

Sxx(f)=H()I? =

2. Type:

Y===== AR1.M
a=0.9; N=1000; W=randn(N,1);
X=filter(1,[1 al,W); plot(X); grid

Note that 0.919° = 2.7 x 10~? is negligible. Hence we can consider that after
the hundredth sample the obtained signal almost represents the trajectory of
a stationary random process. [

Exercise 8.3 (Generating a band limited process)

Write a program that generates 7' = 1,000 samples of a real random process
sampled at a frequency of 10,000 Hz, the PSD of which is constant in the
(—1,000 Hz - 1,000 Hz) band and null beyond it. Its power is assumed to be 2
Watts.

Exercise 8.4 (Pre-emphasis and de-emphasis)
When transmitting a signal through a channel subjected to noise, the signal-
to-noise ratio can be enhanced by adding to the emitter a filter H,(f), called
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the pre-emphasis filter, and to the receiver the inverse filter Hy(f) = 1/H,(f),
called the de-emphasis filter. The choice of H,(f) depends on the spectral
properties of the signal and of the noise.

Consider the real, zero-mean, second order stationary discrete-time process
X (n), we will assume that its PSD Sx (f) is known. This signal is corrupted
by a zero-mean, WSS, additive noise B(n) for which the PSD Sp(f) is also
assumed to be known (Figure 8.6). This type of situation is encountered in
transmission channels of communication systems, but also in any processing
that adds noise to the signal, such as the quantization operation

iB(n)
X + X(n)+Wi
Wl #0) | HiD=1 ) |

Figure 8.6 — Pre-emphasis and de-emphasis system

The output signal has the expression X (n) + W(n) where W(n) refers to
the noise obtained by filtering the noise B(n). The goal is to determine H,(f)
(and hence Hq(f) = 1/H,(f) also) so as to minimize the power of W(n). But
a constraint has to be imposed, since we can make the power of W(n) as small
as we want it to be: we only have to multiply H,(f) by a very large factor A
and to divide H4(f) by that same factor A, thus dividing the power of W (n)
by A? while leaving X(n) untouched. This is why we are going to compare
the SNRs obtained with and without the pre-emphasis/de-emphasis system. Py
denotes the output power of the filter H,(f).

1. Determine as a function of Hy(f) and Sp(f) the expression of the power
of the signal W(n). Use this result to find the expression of the signal-
to-noise ratio ppp of the system represented in Figure 8.6.

2. Determine as a function of H,(f) and Sx (f) the expression of Py. Use
this result to find the expression of the SNR p = Py/E(|B(n)|?) for a pro-
cess that does not use the suggested pre-emphasis/de-emphasis system.

3. Let ¢ = ppp/p. The factor g can be interpreted as a gain: the higher it
is, the better the suggested system. Determine the expression of g.

4. Using the Schwarz inequality, determine the expression of the filter H,(f)
for which ¢ is maximum.

Exercise 8.5 (Estimation of an FIR filter’s impulse response)
As you may remember, the formula 8.44 giving the output/input covariance is:

Ryx (k) = E{Y.(n+ k)X (n)} = h(k) » Rxx (k) (8.45)
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In the case where X (n) is a white process with the PSD o2, the expression
can be simplified, leading to Ry x (k) = o?h(k). In this exercise, we are going
to use this result to estimate the impulse response of an FIR filter.

1. Determine again the expression we found relating the output/input co-
variance function Ry x (k) to the input autocovariance function Rxx (k),
for a linear filter with a finite impulse response of length L, assumed to be
known. Show that the vector h = [A(0) ... h(L —1)]7 is the solution to
a matrix expression of the type Rh = r where R is a matrix constructed
from Rxx (k) and r is a vector constructed from Ry x (k).

2. Write a program that performs an estimation of h based on the values of
X and Y generated by the following program:

%===== GENEREPIMP.M

tps=(-16:1.2:15); h=sin(tps*(pi/5.8)) ./ tps*(pi/5.8);
num=[0.3 0.4 -0.2 0.1]; den=[1 -0.8 +0.5];

x=filter (num,den,randn(1,300)); y=filter(h,1,x);

This method, called the method of moments should be compared with
the least squares method (see Chapter 11).

8.5 MA, AR and ARMA time series

The search for models to describe random processes is at the core of signal
processing, and the applications cover most of the applied fields. In this section,
we will discuss models originating from the linear filtering of a white noise, and
only discrete-time processes will be considered.

8.5.1 () order MA (Moving Average) process

Definition 8.10 (MA-Q process) An MA-Q process, MA for Moving Aver-
age, is the random process defined by:

X(n)=Wn)+bWn—-1)+---+boW(n—-Q) (8.46)

where W (n) refers to a centered, second order stationary, white random process
with a variance of 0% and {by,...,bq} is a sequence of Q) coefficients.

The process constructed in this manner turns out to be the mean weighted
by the sequence {1,b1,...,bo} of the last (@) + 1) input values. Everything
happens as if this weighting sequence was applied to the input signal, which is
why the process is called Moving Average. The process X (n) can also be seen
as the output of a linear filter the impulse response of which is the sequence
{1,b1...,bg}. Therefore, this FIR filter has the following transfer function:

B(z) =14bz 4 4 bge=9 (8.47)
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It has no poles, hence it is stable.

The filter function can be used to obtain the trajectory for such a process.
The following program generates 300 samples of an MA-2 process where b; =
1.5, bs = —1.2 and ¢? = 1:

%===== TRAJMA.M
B=[1 1.5 -1.2]; w=randn(1,300);
x=filter(B,1,w); plot(x); grid

Relations between the model’s parameters and the covariances for

an MA-Q

We are going to determine the relations between the model’s parameters and
the covariance of the process X(n), starting with the example of an (MA-2)
process associated to the equation:

X(n)=Wn)+bhW(n-—1)+bW(n—2)

where W (n) is a white, centered, WSS random process with the variance o=.
First, we have E{X(n)} = 0. Hence the process is centered. Let us determine
the expression of R(k) = E{X(n + k)X*(n)} as a function of by, b5 and o?.
Using linearity and the fact that 1 (n) is white, we successively get:

Rk)=FE{X(n+k)X*(n)} =0 for k< -3

R(=2) = E{X(n —2)X*(n)} = o?b3

R(=1) = E{X(n — 1)X*(n)} = o?(b] + b13)

R(0) = BAX(0)X* (1)} = o2(1+ b + [bal?) (3.45)
R() =E{X(n+1)X*(n)} = a(by + b2b7)

R(2) = E{X(n+2)X*(n)} = by

R(k)=0 for k>3

This result can be generalized to any MA-@Q process for which the autoco-
variance function has the expression (if we note that):

o I by for 0<k<Q
R(k) = EQ Ikl g, Vb for —Q < k<0 (8.49)
0 for |k| > @Q

We check that R(k) = R*(—k). The sequence of covariances of an MA-
@ has 2Q) + 1 non-zero terms. It is of the second degree with respect to the
parameters b;.

Obviously, equation 8.49 can be used for estimating the model’s (@ + 1)
parameters, by substituting the autocovariance coefficients R(k) with their
estimates given by 8.32. Before we see an example, we are going to focus on

the PSD of X(n).
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Spectrum of an MA-Q

According to equation 8.46, an MA-Q process can be seen as the output of a
filter the input of which is a white noise with the PSD o?. Hence formula 8.39
can be applied and leads, for the PSD, to:

S(f) = o’ |1 + bW 4y er_zjﬂQf|2 (8.50)

COoMMENT: shows 8.50 that knowing S(f), which is equivalent, by defini-
tion, to knowing the covariance coefficients, only allows us to determine the
modulus of B(e%7/). Because of theorem 4.6, we know that the roots of B(z)
can be inside as well as outside the unit circle without it changing the value of
|B(e%™7)|. Therefore, if we start with the covariance coefficients of the PSD, or
in practice with their estimates, we have 2% solutions for the polynomial B(z),
all of them leading to the same spectrum S(f). If this is all we know, there is
no reason why one of them should be chosen rather than another. However, if
we have reason to believe, in a particular problem, that B(z) has all its roots
inside the unit circle, that is if B(z) is minimum phase (definition 4.8), then
B(z) can be identified. Unfortunately, in digital communications, this is never
the case. Completely identifying B(z) requires the use of what is called higher
order statistics, or HOS (higher implicitly means higher than 2). This rules out
the Gaussian case for good, since in that case, the HOS are statistical functions
of the second order.

Example 8.8 (Minimum phase M A-1 process)

Consider a real MA-1 process defined by X(n) = W(n) + byW(n — 1), where

W (n) is a white, centered, WSS random process with the variance o?.

1. Determine the sequence of the covariances.

2. The first order correlation coefficient 1s defined by:

p = R()/R(0)

Starting with the definition of the PSD, show that |p| < 1/2 (use the
positive nature of the PSD).

3. Show that b; satisfies a second degree equation dependent on R(0) and
R(1).

4. Assuming that B(z) is minimum phase, show that only one of the two
solutions is possible.

HINT:

1. We have R(0) = o%(1 + b}), R(£1) = ¢?b; and R(k) = 0 for |k| > 2.
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2. By definition, the spectrum is:
S(f) = R(1)e*™ + R(0) + R(1)e=%™ = R(0)(1 + 2p cos(27f))

The condition S(f) > 0 imposes that |p| < 1/2 (see example 8.3).

3. We get:
pb? — by 4+p=0
This equation has two solutions: b; = EanVanil Vzlp_w and b = v A V;_w the

product of which 1s 1. Knowing p, or in the case of a sequence of N
observations X (1), ..., X(N), knowing its estimate:

these two roots are both as likely. This is another example of the problem
expressed in the comment that follows expression 8.50.

4. We assume that B(z) is minimum phase. In that case, |b1] < 1, and
therefore only one of the two solutions is possible.

n

Notice, finally, that the system of equations we wish to solve is not linear.

This is why when estimating an MA, even a short one, it is usually preferable

(see exercise 9.4) to approximate it with a long AR because, as we are going
to see, the system is now linear.

8.5.2 P order AR (Auloregressive) Process

Consider the recursive equation:

X(n)+ @ X(n—1)+---+apX(n—P)=W(n) (8.51)
where W (n) refers to a white, centered, WSS random process with the variance
o2, and where {ai, ..., ap} is a sequence of coefficients. If we let:

1
H,(z) (8.52)

T 1tae '+ tapF

then the signal X(n) can be seen as the output of the all-pole filter with the
transfer function H,(z) and the process W (n) as its input (Figure 8.7).
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W(n) 1 X(n)
A(z)

Figure 8.7 — Generating an AR process

Tt can be shown [14] that the recursive equation 8.51 has a single solution
X (n), second order stationary if and only if the denominator polynomial 8.52
is different from 0 for |z| = 1 (no poles on the unit circle). This results leads
us to adopting the following definition:

Definition 8.11 (AR process) A P order autoregressive process, or AR-P,
15 the only WSS process to the equation:
X(n)+ @ X(n—1)+---+apX(n—P)=W(n) (8.53)

where W (n) refers to a centered, second order stationary, white random process
with a variance of o2 and where the polynomial:

Ay =14az7 4+ +apz" P £0 for 2] =1 (8.54)
The expression of this solution is:
+oo
X(n)= Y mW(n—k) (8.55)
k=—o0

where hy is the sequence of the Fourier series expansion coefficients of the
function H(f) = 1/A(e%™7).

In the case where A(z) # 0 for |z| > 1, the poles of H,(z) are strictly inside
the unit cirele, hy = 0 for k < 0 and X(n) can be causally expressed as a
funetion of W(n):

Xn)=Whn)+hWh-1)+-+hWh—Fk +- - (8.56)

Notice that the stationary solution to equation 8.53 is the same as the
stable solution we obtained in the case of deterministic signals (see theorem
4.3, page 113). Finally, remember that if W(n) is Gaussian, then X(n) itself

is Gaussian since Gaussian nature is unchanged by linear transformations (see
theorem 7.4).

Spectrum of an AR-P

Since an AR-P can be interpreted as the output of a filter fed with a white noise
with the PSD o2, formula 8.39 can be used to determine the PSD’s expression.
This leads us to:

S(f)

0.2

- 8.57
|1—|—ale—2jﬂ'f_|_..._|_aPe—2j7rPf|2 ( )
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As an example, let us plot the trajectory of an AR-2 process associated
with the polynomial A(z) = 1+ a;2~! + as272, the two poles of which are
conjugated, imposing that a? — 4as < 0. Let p be the modulus of the two
conjugated poles and +¢ their respective phases. Starting off with p and ¢,
and by calculating the product and the sum of the roots, we get a; = p? and
a; = —2pcos(¢). The program trajAR.m displays a trajectory of this process.

%===== TRAJAR.M

sigma=2; phi=20%pi/180; rho=0.9;

al=-2*rho*cos (phi); a2=rho*rho;

w=randn(1,300); x=filter(sigma,[1 al a2],w); plot(x); grid

Example 8.9 (Noised sine function versus AR-2)
Write a program:

— that displays a sequence of N = 100 samples taken at the frequency F; =
1,000 Hz, from a signal Y'(t) = s(t)+ B(t), sum of a sine s(¢) = sin(27w Fyt)
with a frequency of Fy = 100 Hz and of a zero-mean, Gaussian, white
noise B(t) with variance of 0% = 0.04;

— that displays a sequence of N = 100 samples taken at the frequency
Fy, = 1,000 Hz, from an AR-2, solution of the equation X(n) + a1 X(n —
1) 4+ asX(n—1) = W(n), where W(n) is a white, centered, WSS process
with the variance O'IZ/V and with a; and as such that the filter has a
resonance at Fy = 100 Hz (see equation 4.26). Using 8.58, derive the
value of ¢, such that X(n) and Y (n) have the same power.

Compare the results.
HinT: type:

%===== SINUSVERSUSAR2.m
N=100; F0=100; FS=1000; tps=(0:N-1)/FS; sigmaB2=0.04;
y=sin(2*pi*FO*tps)+sqrt (sigmaB2) *randn(1,N) ;

%===== X and Y have the same power
RO=1/2 +sigmaB2; R1=-R0*al/(1+a2); R2=-al#R1-a2*R0;

sigmaW=sqrt (RO+al*R1+a2*R2); w=sigmaW*randn(1,N+1000);
x=filter(l,a,w); x=x(1001:length(x));

subplot (211); plot(tps,y); grid

subplot (212); plot(tps,x); grid

Figure 8.8 shows that the graph (a) presents irregularities but, however
large the errors, periodogram analysis is applicable to such curve, and, given
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.

Figure 8.8 — Noised sine function versus AR-2 process

a sufficient number of periods, should yield a close approximation to the pe-
riod. On the other hand, there are not abrupt variations in the graph (b), but
the amplitude varies within wide limits, and the phase is continually shifting.
Increasing the magnitude of W(n) simply increases the amplitude: the graph
remains smooth. [

Relations between the model’s parameters and the covariances for
an AR-P

Property 8.3 For a causal AR-P process, the relation between the model’s
parameters and the covariances R(k), with R(k) = R*(—k), are given by:

R(O) R(=1) - RE=P]r17 s
R(1) R(0) : oY (8.58)
R(P) - R() R@) |lerl L0

and for k > P by:

R(k) = — ZP: a; R(k — i) (8.59)

i=1

Equations 8.58 are called normal equations or Yule-Walker equations. We
will see later on that they are directly related to the problem of linear predic-
tion. More precisely, we will show that:

X(n)==Y axX(n—k)

k=

—_
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represents the best linear estimation in the least squares sense, of X (n) based
on its past and that the prediction error, defined by:

g(n) = X(n) — X(n) (8.60)
is therefore equal to W(n).

To establish relations 8.58 and 8.59, we start by multiplying the two mem-
bers of the recurrence relation 8.53 by X*(n— k), then if we consider its math-
ematical expectation, we get:

E{(X(n) + - +apa(n— P)X"(n—k)} = E{W (@) X" (n - &)}

For k > 1, the second member is equal to zero, since on one hand, X (n—k)
only depends on W(n—k), W(n—k—1)...because of the stationary solution’s
causality, and on the other hand, W(n) is white. If we use the stationarity of

X (n), and if we let R(k) = E{X(n 4+ k)X™*(n)}, then for any k& > 1:
R(E)+ arR(k — 1)+ -+ apR(k — P) = 0 (8.61)

We get the same relation as 8.59. Furthermore, if we multiply the two
conjugate members of the recurrence relation 8.53 by W (n) and if we consider
the expectation, we obtain:

E{(X*(n) + a1 X*(n = 1)+ +apX*(n = P)W(n)} =E{[W(n)|"} = o

The first member is reduced to E{X*(n)W (n)} because of the causality of
X (n) as a function of W(n) and because W (n) is white. As a consequence, we
have E{X*(n)W(n)} = o?. Replacing W(n) with X(n) + a1 X(n —1) +---+
apX(n — P) leads us to:

R(0) + ay R(=1) + -+ ap R(—P) = o* (8.62)

If we stack 8.62 and the P relations we obtained from 8.61 for k =1, 2, ...,
P, we get 8.58.

You can recognize the (P + 1)-th order covariance matrix of the process
X (n) in expression 8.58 . This matrix is hermitian in the general case, R(—j) =
R*(j), and is symmetrical if the process X (n) is real.

An important result states that, because the covariance matrix is a positive
Toeplitz matrix, the solution to equation 8.58 is such that the polynomial
A(z) = 14 aj2z7t + -+ apz~F has all its roots inside the unit circle. This
result is still true if the covariances are replaced with their estimates, so long
as the matrix remains a positive Toeplitz matrix, as it is the case for the
correlation method. The fact that A(z) has all its roots inside the unit circle
ensures that the filter with the transfer function 1/A(z) has a causal and stable
representation. This filter is used for creating X(n) from W(n). We will see
an application for it in speech processing.
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Conversely, if we know the sequence {ay, ..., ap} et 2, equation 8.58 allows
us to calculate the covariance coefficients R(k). The equations we have to solve
are linear. Thus, in the case of a real random process for which R(k) = R(—k),
we get the expression:

1 a - ap 10 0 R(0)/2 o’

a ap 0 ar 1 - 0 R(1) 0

: . . : + : . . : : = :

ap 0 -+ 0 ap -+ a; 1 R(P) 0
(8.63)

We have a system of (P + 1) linear equations with the unknowns R(0),
..y R(P). Once R(0), ...,R(P) have been calculated, 8.59 can be used to
calculate the values of R(k) beyond P, and the hermitian symmetry can be
used for k < 0.

Example 8.10 (First order AR model)
Consider the first order, real AR process, solution of the equation X(n) +

a1 X (n — 1) = W(n) where a; is real with its modulus strictly less than 1, and

W (n) is a white, centered, WSS process with the variance o?.

1. Write the Yule-Walker equations.
2. Use them to find the covariances as a function of a; et o2.
3. Use this result to find a; and o? as a function R(0) of R(1).
HINT:
1. The Yule-Walker equations are, for P = 1:
R(0) + a1 R(1) = ¢ and R(1) 4+ a1 R(0) =0 (8.64)

where we used R(1) = R(—1). And for k& > 1, equation 8.59 leads to
R(k) = —a1R(k - 1).

2. By solving equations 8.64 with respect to R(0) and R(1), we get:

Using the recurrence relation 8.59 then, for k¥ < —1, noticing that R(k) =
R(—k), leads us to:

R(k) = (-1)%'{“'% (8.65)
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We can also find a; and ¢? from R(0) and R(1):

_ _RQ) 2 _
al_—m and o = R(0)

R (1)
~ R(0)

(8.66)

These expressions can be used to estimate the parameters a; and ¢? from
a sequence of N observations. All we need to do is replace the covariance
coefficients with their respective estimates (equation 8.32), and we get:

ZnNz_oz X(n+1)X(n) and 5% = ZnNz_ol X*(n) (1- ﬁ%)

Sncs X2(n) N

n=0

=

Example 8.11 (Generating an exact Gaussian AR)

We have already seen how to generate a sequence of random processes with
given spectra by filtering a white sequence. We discussed the problem regarding
the transient state. In the case of a Gaussian AR process, we will see that an
exact process trajectory can be generated. This can be used to initialize the
previous method. Write a program:

that picks M poles at random inside the unit circle and then use the
MATLAB® function poly to calculate the coefficients of the polynomial
using these poles and their conjugates;

that calculates, using equations 8.63, the covariances of an AR process

defined by A(z) and o?;

that generates 20 samples of the AR process. Use a method similar to
that of example 8.5 on page 283 where we generated a colored noise using
a white noise and the square root of its covariance matrix;

that constructs a trajectory with the length 7" of this process from the
2M previous samples. Use the filtricII function to calculate, as a
function of the 2M previous samples, the nitial state that must be given
to the filter function;

that plots the sequence of covariance;

that plots in 2D the couples {a;, 2,41}

HinT: type:

%===== EXACTAR.M
% Polynomial generation
sigma2=2; M=5; rho=0.45*rand(1,M)+0.5; phi=pi*rand(1,M)/4;
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rac=rho .* exp(j*phi); rac=[rac conj(rac)];

coeff=real (poly(rac)); LgAR=length(coeff)-1;

%===== Calculation of the exact covariances

cl=[coeff zeros(1,LgAR+1)]; c2=[zeros(1,LgAR) coeff];
Al=toeplitz([coeff (LgAR+1) ;zeros(LgAR,1)],coeff (LgAR+1:-1:1));
A1=A1(: ,LgAR+1:-1:1);

A2=toeplitz(coeff, [coeff(1);zeros(LgAR,1)]1);
rx=(A1+A2)\[sigma2; zeros(LgAR,1)]; rx(1)=rx(1)*2;
Rcov=toeplitz(rx);

%===== Square root of the covariance matrix
MatM=sqrtm(Rcov(1:LgAR,1:LgAR)) ;
%===== Generating the first Ncoeff-1 values of X(k)

WO=randn(LgAR,1); X0=MatM*W0; ZO0=filtricII(1l,coeff,0,X0);
T=200; W=sqrt(sigma?2)*randn(T,1);

Xf=filter(1l,coeff,W,Z0); LXf=length(Xf);

Xf=Xf-mean(Xf); R=2*LgAR; covX=zeros(R,1);

for rr=1:R, covX(rr)=Xf(rr:T)’ ’*Xf(1:T-rr+1)/T; end

subplot (221) ; mycirc=exp(2*j*pi*(0:100)/100); plot (mycirc);
hold on; plot(rac,’x’); hold off; axis(’square’); grid
subplot (222) ; plot (Xf); grid

subplot (223); stem(covX/covi(1));

subplot (224) ; plot (Xf(1:LXf-1) ,Xf(2:LXf),’.”); grid

A high correlation between consecutive samples corresponds to poles near
the unit circle and gives a 2D-plotting in which points are gathered around a
straight line. [

8.5.3 The Levinson algorithm

We have seen that the covariance matrix of a WSS process is a Toeplitz matrix.
We are now going to give a fast algorithm, originally suggested by Levinson,
for solving the Yule-Walker equations 8.58. If k& is the size of the covariance
matrix, this algorithm has a complexity in k? whereas a general inversion al-
gorithm is in k3. Tt is useful only when implemented in a language like “C”,
or “Fortran”, since MATLAB® provides a built-in type matrix inversion func-
tion (the inv function). In the most recent versions, the signal toolbor has a
levinson function.

The Levinson algorithm is recursive. It calculates the coefficients of the
m-th step coefficients using those obtained in the (m — 1)-th step. To achieve
this recursion, we choose the following notation for equation 8.58, in which we
used the hermitian symmetry R(—k) = R*(k):

R(0) R*(1) -+ R (m-—1) am—1(0)
RO) RO -1 X

: . . }%*(1) : :
R(m—1) -~ R(1) R(0) tp—1(m —1) 0
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In this expression, the index (m — 1) indicates the (m — 1)-th step solution,
am-1(0) = 1 and v, refers to the variance of the input process. We will see

in section 11.4 that the coefficients a,,—1(k) have a fundamental meaning in
the linear prediction problem.

We can now rewrite expression 8.67 in the following two ways:
_ 0n—
R,,_1al | = [ Um—1 ] and R,,_1a2* , = [ m—2 ]

m—1 — *
0m-» Um—1

where we have assumed®:

A = [ () o apa(m—1))7
a0 = famam—1) - anoa() 17

The exponents F' and B (as in forward and backward) indicate the direction
chosen for the vectors.

By going on to the m-th step, the covariance matrix can be written:

IR CEA

m
I‘F Rm_ 1

R(0) m
where r2 = [R(m) -+ R(1)]¥ and rf, = [R(1) --- R(m)]?. Using the
expression of the (m — 1)-th step solution, we then get:
af ] [R , rBr ] [aF ] Lvm—1]
Rm m—1 — m m m—1 — Om—
[ 0 rp R(0) 0 I rmTaﬁz_l
r FH,_Bsx
R 0 1 _ [ RO rEH U I B
" anty ry, Ry anty | [ T_Z]
Um—1
By linear combination:
aF 0 Um—1 + kmrnF@HanBib*_l
S E T N B R .
m—1 vBTaf 4 kovh
By choosing:
BT _F
by = _rm*aim—l (8.69)
Um—1

the last term is set to zero and, by identification, we obtain the m-th step solu-
tion, which leads to vy, = vp_1 + knriHal* | By noticing that by definition,

riHaBx = (£BTal’ )* we infer from 8.69 that
FH_Bs _ _ 1%
rant ] = =k Umo1

8Remember that the exponent T refers to transposition without conjugation.
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and therefore that:
U = Vo1 (1 = [km]?) (8.70)
Because v, > 0 for any m, then (1 — |k, |*) > 0 and 0 < vy, < vp—1 and:
lkm| <1 (8.71)

The coefficients k,,, are called the reflection coefficients.
By identification, we infer from 8.68 the m-th step coefficients as functions
of those obtained at the (m — 1)-th step:

F
Fo_ Ap1 0

In particular, a,,(0) = 1 and ap, (m) = ky,. To sum up, starting off with the
sequence of the covariances R(k), or of their estimates in practice, the Levinson
algorithm can be written as follows:

Initial values: ag(0) =1 and vy = R(0)
Form=1, ..., K, repeat:

R(m)am—1(0) + - -+ R(Dap_1(m — 1)
2. am(0) = 1, am(m) = kp "
3.Forje{l, - ,m—1}:an(j) = am-1(j) + kmaj,_1(m — j)

4 vy = Vo1 (1 — |km|2)

1.k, = —

We have to check that for the step m = 1, we have:
k’l = —R(l)/R(O), 01(0) = 1, al(l) = k’l, v = Uo(l — |k’1|2)

In the case of an AR~ P process, we will show that the coefficients a,, (m) = 0
for m > P + 1, which makes it possible to stop the previous loop.

Exercise 8.6 (Levinson algorithm)

1. Write a function that calculates the covariance estimates then the param-
eters of a P order AR model using the Levinson algorithm. Check the
function on a P order AR model by comparing with the estimates from
the Yule-Walker inversion. Check that am,(m) = 0 when m > P+1. The
Levinson algorithm also returns the reflection coefficients k,, .
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2. Using a structure similar to the one used in the Levinson algorithm for
solving the matrix equation of the type R[1 a; --- a,]T =[¢? 0--- 0],
imaginer an algorithm that can solve the equation Rh = ¢, where R
is a Toeplitz matrix and ¢ 1s any vector. We will run into this type
of equations in section 11.2.5 when identifying a filter: see for example
equations 11.22 and 11.42 from Chapter 11. R is an autocovariance
matrix, ¢ is a covariance vector between the input and the output and h
is an FIR filter we have to estimate.

8.5.4 ARMA (P, Q) process

ARMA processes are obtained using an AR structure and an MA structure in
series. The process is the solution to the recursive equation:

X(n)+a: X(n—1)+---+apX(n—P) = W(n)+btW(n—1)+- - -+bgogW(n—0Q)

(8.73)

where W (n) refers to second order stationary, centered, white random pro-

cess with the variance o? and where {a1, ..., ap} and {by, ..., bg} are two
sequences of coefficients. Let:

o l4bzT b9

T l4az 4+ 4apzF

H,(z) (8.74)

It can be proven that equation 8.73 has a single, second-order stationary
solution X (n) if and only if the denominator’s roots, that is the poles of the
transfer function H,(z), have a modulus different from 1. In the case where
A(z) # 0 for |z| > 1, the poles of H,(z) are strictly inside the unit circle, X(n)
can be causally expressed as a function of W(n).

By definition, an ARMA (P, Q) process is the stationary solution to the
recursive equation of the type 8.73.

Spectrum of an ARMA-(P, Q)

Because an ARMA process can be interpreted as the output of a filter with a
white noise with the PSD o2 as its input, we can use formula 8.39 to determine
an expression of the PSD. This leads us to:

. . 2
_ |1 e 4 er—ZMQf|

1L+ aje=%7f 4. 4 ape=207Pf|?

S(f) (8.75)

Comments

Using an ARMA process as a model for describing an observation amounts to
assuming that its spectrum is a rational function. This 1s why 1t can seem
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restrictive to assume that the second order parameters of an observation only
depend on a finite number of parameters. From the engineer’s perspective, the
great “universal” nature of this model is due to the fact that rational transfer
functions make it possible to approximate a very large number of functions, and
quite naturally play a role in electric, electronic, or even mechanical devices,
often by way of a constant coefficient linear recursive equation.

Furthermore, any ARMA of MA process can be approximated with an AR,
order of a high enough order. This result is fundamental for practical applica-
tions, since if among these three models the wrong one is chosen, a reasonable
accuracy can still be achieved by taking a high enough order. However, it is
easily conceivable that a process for which the spectrum has “deep valleys” will
require less parameters if the MA model is used to represent it rather than an
AR model. And conversely for “high peaks”.

Finally, remember that estimating the coefficients of an MA model usually
is not simple, since the relations 8.49 between the model’s coefficients and the
covariances are not linear, whereas they are for an AR model. This is why we
will only be estimating the parameters of an AR model.



Chapter 9

Continuous Spectra Estimation

The object of this chapter is mainly a discussion of the power spectral density’s
(PSD) estimation. In this field, it is customary to separate two cases:

9.1

9.1.1

When the statistical properties of the observation depend on a finite, and
usually small number of parameters, the model is said to be parametric.
To be more precise, it means that knowing the few useful parameters
is enough to find the exact probability distribution of the observation.
We have already encountered an example of the parametric model: the
AR-P model in the case of a white Gaussian input. Knowing the (P +
1) parameters a1, ..., ap, o2 is enough to determine the probability
distribution. Without the Gaussian hypothesis, and although it is no
longer possible to write the probability distribution of the observation
precisely, it is still possible to estimate some useful quantities, such as its
spectrum, given a finite number of parameters: this is sometimes called
a semiparametric model.

Otherwise, the model is said to be non-parametric. In the first paragraph
of this chapter we will study a situation in which the only hypothesis is
that the process 18 WSS. Knowing the spectrum requires the estimation
of an infinity of parameters, that is the set of covariance coefficients.

Non-parametric estimation of the PSD

Estimation from the autocovariance function

We have seen that expressions 8.32 can be used to estimate R(k) from a se-
ries of N observations X (1), ..., X(N). Using the resulting estimate of the
autocovariance function and the definition 8.13 of the PSD, an estimate of the



318 Digital Signal and Image Processing using MATLAB®

latter can be obtained by:

K-1

S(fi= > R(k)e Hm* (9.1)

k=—(K-1)

For a real WSS random process, we can write 9.1 as follows:

S( )+ 2 Z ) cos(2mk f) (9.2)

since R(k) = R(—k).

COMMENTS:

— Even if we have at our disposal the actual values of the autocovariance
function (assumed to be with infinite support), the fact of restricting, in
the calculation of S(f), the sequence R(k) to k € {—(K—1),...,(K—=1)}
amounts to multiplying { R(k) } by the rectangular window w, (k) = 1(k €
{=(K—=1),...,(K=1)}). This operation causes unwanted ripples, as we
saw in Chapters 3 and 4. Because the lobes can have positive or negative
values, this can result in negative values for the PSD estimate. Losing
the positive nature (see page 279) of the PSD is not advisable. To avoid
such a phenomenon, the triangular window, or Bartlett window can be
used instead of the rectangular window, the expression of which is:

wy(k) = ( |[]i|)Il(ke{—(K—l),...,(K—l)}) (9.3)

It ensures the positive nature of the result, because the triangle function is
obtained by convolution of the rectangular window with itself. The DTFT
of the sequence wy (k) is therefore the function sin?(7(2K —1)f)/ sin®(r f),
which is always positive. Another commonly used window is the Ham-
ming window, the expression of which, as you may remember, 1s:

wh (k) = [o.54+0.46cos<K”f1)] 1k € {—(K—-1),...,(K=1)}) (9.4)

— Another important element is the choice of the number K of estimated
covariance points compared with the number N of observations. Consider
the case where N — oo (large samples). If K remains constant, the
covariance coefficients (expression 8.29) become more and more precise,
but the windowing effect remains. Hence the idea of increasing K as N
increases, but much “slower” than N. For example, we can take K = AN
with A = 1/10 and o < 1. That way, when N tends to infinity, a
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number K, that tends to infinity, of covariance points are calculated while
ensuring that the number of values used for estimating each covariance
point also tends to infinity.

The following function estimates the spectrum by DFT of K covariance
coefficients estimated from N observations:

function sf=covtodsp(x,K,wintype,Lfft)

%h %
%% Estimating the spectrum from the covariances %
%% SYNOPSIS: sf=COVTODSP(x,K,wintype,Lfft) %
% X = Input sequence %
YAA K = Number of estimated covariances %
%% wintype = ’r’, ’h’ ou ’b’ %
YAA for ’rectangular’, ’hamming’ or ’bartlett’ %
% Lfft = FFT size %
hh st = PSD %
%h %
N=length(x); x=x(:); rx=zeros(1,K); x=x-ones (1,N)#*x/N;
%===== Estimating the K covariances

for ii=1:K, rx(ii)=x(1:N-ii+1)’*x(ii:N); end

rx=rx/N;

%===== Windowing

if wintype(l) == ’b’,
rx=rx .* (K:-1:1)/K;
elseif wintype(l) == ’h’
rx=rx .* (0.54+0.46*cos(pix(0:K-1)/K));

end

%===== Using the hermitian symmetry property
rx(1)=rx(1)/2; st=fft(rx,Lfft); sf=2%real(sf);
return

The program is designed to process complex signals. In this case, the spec-
trum is of course real and positive, but no longer has the even symmetry any-
more. Any of the rectangular, Hamming or Bartlett, windows may be used
by assigning to fentype one of the three values ‘r’, ‘h’ or ‘b’. Calculat-
ing the PSD uses the hermitian symmetry property of the covariance function:
remember (see exercise 2.2 in Chapter 2) that to calculate the DFT of the
sequence, completed by hermitian symmetry, all you have to do is take the
real part multiplied by 2 of the monolateral sequence after having divided the
first element by 2. The behaviors for a Bartlett window are illustrated by the
spectra represented in dB in Figures 9.1 and 9.2 for two values of the number
of covariance estimates, K = 25 and K = 150. They are obtained using the
program:

%===== Complex process generated by the all-pole filtering
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% of a white noise

a=[1 -2.4788 3.0905 -2.0646 0.6856];
sw=[1;0%j]; Pw=sw’ *sw;

w=randn (N, 2) *sw; x=filter(l,a,w);

%===== K and the window type can be modified
K=25; sest=covtodsp(x,K,’b’ ,Lfft);
sestlog=10*1loglO(sest);

sth =10%1logl10(Pw * abs(1 ./ fft(a,Lfft)) .72);
plot (freq,sth,freq,sestlog,’r’); grid

set (gca,’x1im’, [0 1/2]); % if x is real

The real signal x is generated by a white noise filtered with N = 500 values.
The theoretical spectrum is given by the filtering formula, equation 8.39.

25 (dB)
20

Exact model |
=15 - - RS oo oe-e- R R RS

0 : : : : : : : Pt
0 005 0.1 0.15 02 025 03 035 04 0.45 05

Figure 9.1 — Non-parametric estimation of an AR-4 spectrum based on K = 25
estimates of the covariance coefficients. The length of the sample is N = 500. The
window used is the Bartlett window. The dashed line is the theoretical PSD

As you can see, when the number of estimates of the covariance coefficients
increases, the estimated spectrum’s fluctuations are “closer” to the theoretical
spectrum, but the fluctuations have higher amplitudes. You can easily check
with the program that the use of the rectangular or Hamming windows does not
ensure that the estimated PSD is positive (if not, the program returns an er-
ror message when the command plot(freq,sth,freq,sest,’r’) is executed,
since sest contains complex numbers because of the fact that the logarithm
of a negative number is a complex number). A complex signal can be used by
changing for example sw=[1;0%*j] to sw=[1;3#%j] and suppressing the last line.

9.1.2 Estimation based on the periodogram

Rather than to use the DTFT of the covariances to estimate the PSD, an
intuitive idea would be to start off with the Fourier transform of a trajectory,
or of a portion of a trajectory and to calculate its square modulus. This leads
to the following definition of the periodogram.
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Figure 9.2 — Non-parametric estimation of an AR-4 spectrum based on K = 150
estimates of the covariance coefficients. The length of the sample is N = 500. The
window used is the Bartlett window

Definition 9.1 (Periodogram) Let X(n) be a centered WSS random pro-
cess. A periodogram is the random function of f € (0,1) defined by:

() = |3 Xmpem2ims (95)

You would think that In(f) might be a good estimator of the PSD S(f)
of the process X (n) assumed to be WSS, but in fact not at all. Although the
mean E{In(f)} tends to the “true” value S(f) when N tends to infinity, the
square deviation E{ [In(f) — S(f)|2} does not tend to zero when N tends to
infinity.

We will now prove that the mathematical expectation of In(f) tends to
S(f). We have:

1 N-1 ' N-1 '
E{In(f)} = NE{ Z X (n)e=2mIn Z X*(m)eZJme}

n=0
] NoiN-d '
= x R(n — m)e~2mf(n=m)
n=0 m=0
N-1
k .
= (1 - %) R(k)e=?mik

where we used E{ X (n)X*(m)} = R(n—m) (the process is assumed to be WSS
and centered) and then the identity:

N-1N-1 N-1

YD gn—my= Y (1 = %) g(k) (9.6)

n=0 m=0 k=—(N-1)
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We can rewrite E{In(f)} as follows:

+ oo

E{In(f)} = Z:( —%51%6{4N—U,H4N_UDR%FJMM

k=—o0

+oo
> In(k)R(k)em2mI*

k=—o0

If we assume that R(k) is summable, we can calculate the limit of E{ Ix(f)}
by swapping the limit and the sum sign (dominated convergence theorem [28]).
By noticing that fy(n) tends to 1, we infer that E{In(f)} tends to S(f) when
N tends to infinity. Hence the periodogram is an asymptotic unbiased estimator
of the PSD: for N high enough, Iy (f) fluctuates around the “true” value S(f).

However, 1t can be proven, and we will assume so, that the amplitude of
the fluctuations, that is E{ [N (f) = S(H)? }, does not tend to 0 when N tends
to infinity. To be more precise, what can be shown is that, under very general
hypotheses, this quantity can have the same order of magnitude as the value
we wish to estimate.

The periodogram fluctuates around the true PSD. Even if N is
very high, the amplitude of the fluctuations still has the same
order of magnitude as the PSD we wish to estimate.

The following program illustrates this behavior:

%===== FLUCTPERIO.M
Lfft=1024; fq=(0:Lfft-1)/Lfft;
w=randn(1,1000); b=[1 1.2 0.9]; a=[1 -1.1 0.92];
PSDth= 20x1ogl10( abs (£ft (b,Lfft) ./ £ft(a,Lfft)));
x=filter(b,a,w); Yi===== Process
1xt=[100 200 500 1000];
for ii=1:length(1lxt)
xt=x(1:1xt(ii));
per=20*logl0(abs (fft(xt,Lfft)))-10%1ogl0 (1xt(ii));
subplot(2,2,ii); plot(fq,per,fq,PSDth,’w’); grid
axis([0 .5 -30 401);
title(sprintf ON = %d’,1xt(ii)));
end

The samples of the random process X (n) are obtained by filtering white
noise with a variance of 1. Based on the transfer function of the filter H,(z) =
(1412271 4+0.9272) /(1 = 1.1271 4+ 0.92272), the expression of the theoretical
PSD of the process X (n) is:

14 1267 % 4 0,964

S(f) = . :
) |1-—]ﬂle—zfﬂf-+(192e—4waf
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Figure 9.3 shows the periodograms for four values of N as well as the the-
oretical PSD. The periodograms fluctuate around the exact PSD and the am-
plitude of these fluctuations does not seem to decrease when N increases.

40 dB
20
0

-20

Figure 9.3 — Fluctuations of the periodogram for several values of N

Therefore, there is no point in directly using the periodogram for estimat-
ing the spectrum. However, in practice, every good estimator of the PSD is
constructed from the periodogram. We are going to explain two methods: the
smoothed periodogram and the averaged periodogram.

Frequency smoothed periodogram

The periodograms in Figure 9.3 show that the values obtained in several neigh-
boring frequency points fluctuate around the actual value: some are very close,
whereas others are very far, hence the idea of calculating a frequency mean. To
be more precise, consider an integer M and a sequence Wiy (k) of weighting
coefficients such that:

1. for any k, War v (k) = War v (—k) and Wi n (k) > 0;
2. ElleM WM,N(k) = 1;

3. Z|k|<M WJ%/IN(]?) — 0 when N — oo;

4. ZIkISM E*War (k)| /N? = 0 when N — oo.
If a relation of the type:
M =N witha <1 (9.7)
is chosen, then the above conditions are met. This is particularly the case for

the rectangular window defined by:

1

Wun (k) = 5357

1ke{-M, -, M}
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and of the triangular window, or Bartlett window, defined by:

WM,J\W@I%( —%)1(1476{—M+1,~~,M—1})

In the case of a rectangular window, condition 3 can be expressed:

1 1
< < (2M +1) 2M+1

If M tends to infinity with N, then this condition 3 is satisfied. Condition
4 can be expressed:

Zinigar H War v (k) S 1
N=2 2
h (2M + 1)N
1 M(M+1
NZ2(2M+1) ZlklgM k* = (3N2 )

The condition is satisfied if M/N — 0 at infinity, which is the case with the
conditions set forth.

Then we calculate the periodogram of the sequence {X(0),..., X(N — 1)}
at the points of frequencies k/N. Finally, the spectrum is estimated according
to the expression:

S (m/N) = S0y Wary (k) In ((m + k) /) (9.8)

To deal with the side effects, remember that I (f) is periodic with period
1.

Obviously, expression 9.8 leads to a decrease in the variance but on the
other hand adds bias. A detailed study of the properties of various window
and of the compromise between bias and variance can be found in [14]. We will
only be considering the triangular window.

Example 9.1 (Smoothed periodogram) Write a function that smooths
the periodogram using either a rectangular window or a triangular window,
with a length of 2m 4+ 1 and with the sum of its coefficients equal to 1.
Making the choice of L = N avoids withdrawing the empirical mean since
ZnNz_Ol pe= 2R IN = 0 for all k # 0 mod N. To make the choice of the win-

dow’s length automatic, you can take M = N2/® where N is the length of the
signal.

HinT: type:
function [sf,frql=smperio(x,M,window)
Wh A
%% Smoothed periodogram %

%% SYNOPSIS: [sf,frq]l=SMPERIO(x,M, window) %
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% X = Input sequence %
% M such that the window length is 2*M+1 %
%% window = ’r’ for rectangular %
%% = ’t’ for triangular %
YAA frq = Frequencies for the estimated PSD ¥
% st = Spectrum %
Wh %

if nargin<3, window=’t’; end
x=x(:); N=length(x);
if nargin<2, M=N"(2/5); end
sf=zeros (N-2xM+1,1) ;
if window==’t’
WE=[(1:M+1) (M:-1:1)1/(M+1)"2;
else
Wf=ones (1,2%M+1)/(2%M+1) ;
end
Periodogram=abs (fft(x)) ."2/N; % Periodogram
frg=(M+1:N-M-1) /N; sf=filter(Wf,1,Periodogram); sf=sf (2xM+2:I);

Averaged periodogram

This method, suggested by P. Welch [101], consists of cutting up the signal in
blocks and to calculate a mean of the different periodograms obtained for each
block. To be more explicit, the algorithm is as follows:

1. The sample {X(n)} of length N is divided in L blocks of the same
length K with overlapping.

2. A weighting window 1s applied to each of the L blocks. The resulting
sequences are denoted by {X,(k)} with£ =0:L—1and k =0 :
K—1.

3. The L periodograms are calculated, as well as their mean:

§N(f) = %Z_: (%

~ . 2
! e[ (9.9)

This algorithm calls for a few comments:

1. Numerically, 9.9 is calculated on a finite number of values of f = m/M
and m € {0,..., M — 1} using the ££¢ function of MATLAB®.
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2. It can be shown, with relatively general conditions, that §N(f) 18 a spec-
trum estimator the variance of which tends to 0 when N tends to infinity.
One condition in particular is that L also has to tend to infinity, but not
as fast as V. To make the choice of L automatic, you can take for example
L=NY3or L =N%5

3. In practice, the variance is reduced by choosing a large value for L. How-
ever, for a given value of N, increasing the number L of periodograms
amounts to reducing the number of points K = N/L of each analysis win-
dow and at the same time to reducing the frequency resolution. You may
remember that this is because when a signal is observed over a duration
of K, you cannot “see” frequency differences of less than 1/K. The con-
sequence 1s that the various periodograms show a discrepancy with the
actual spectrum: this is called a bias. The conclusion is that choosing L
1s a compromise between bias and variance.

4. The absence of weighting in expression 9.9 amounts to multiplying the

samples X (k) of the signal by the rectangular window:
1
wp(k) = —=1(ke{0,....(K-1
(k) TR (kef ( )}

the energy of which is >, wZ(k) = 1. This causes unwanted ripples to
appear, related to the side lobes of its DTFT, hence the idea of using a
different window to reduce these ripples. The consequence, of course, is a
decrease in the resolution related to the main lobe. Generally speaking,
the results are the same as those already found when studying the spectral
analysis of deterministic signals; or filter design:

— the wider the main lobe is, the more the details of the spectrum will

be rubbed out;

— the higher the second lobes are, the stronger the induced ripples
will be. This is particularly noticeable in the areas of the spectrum
showing few variations.

The Hamming window is very often used:
wy (k) = @ (0.54 — 0.46 cos(27k/K)) 1(k € {0,--- , (K —1)})
where « is chosen such that >, w? (k) = 1.

5. Multiplying some of the samples by very small weighting coefficients
(about 0.08 for the smallest values of the Hamming window) gives these
samples a very unimportant role in the calculation. This is why Welch
had the idea of choosing the intervals so they would overlap. The most
commonly used overlap factor is 50%. For example, if N = 1,000 and
K = 200, we get the following intervals:
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|X1)"' » X200 ||X201)"' » X400 ||X401)"' » X600 ||X501)"' » Xgoo ||X801)"' )X1000|

|X101,'~~ » X300 ||X301,'~~ > X500 ||X501,'~~ s X700 || X7015 > X900 |

Each sub-interval is then weighted by the appropriate Hamming window.
The 9 periodograms, and then the mean are calculated.

6. Averaging the periodograms does not completely eliminate the “fluctu-
ations”. To be more specific the reference [54] gives a % confidence
interval involving what is called the y-square distribution. If the latter
is approximated by a Gaussian distribution, we infer that the spectrum
has a 8% chance of being in the interval:

S (f) Sw (f) with ~ = ﬁerﬁnV(ﬁ) (910)
1+y 1-—4% \/f

where gw(f) is the periodogram averaged using the Welch method (50%
overlap). The erfinv(3) function is the inverse function of the error func-
tion, which can be called in MATLAB® using the command erfinv.
For g = 95% and L = 30, we get, in decibels, the confidence interval
(Sw(f) —1.33 ) Su(f) +1.92).

Exercise 9.1 (Estimating the spectrum using the Welch method)

1. Write a MATLAB® function that estimates the spectrum using the Welch
method, with as the input the signal to be analyzed, the type of window
(rectangular or Hamming), and the number of points of the spectra.

2. Using the filter function, generate a signal corresponding to a given
spectrum. Use the previous function to estimate the PSD of this test sig-
nal. Compare the result with the spectrum obtained with the smperio.m
function of example 9.1. Compare it with the theoretical spectrum.

Exercise 9.2 (Estimating the spectrum of a binary signal)
Write a MATLAB® function that associates with each term of the sequence
a, of independent random variables with possible values —1 or 1, either the
signal g(n) or the signal —g(n) respectively. The signal g(n) is a rectangular
impulse made up of a sequence of 77 = 10 values equal to A = 5, followed
by a sequence of To = 25 values equal to 0. Figure 9.4 shows this signal for
a sequence of 7 successive values of a,. This signal could originate from the
sampling of a “computer” signal used for transmitting a sequence of bits.

Use the welch.m function to estimate the spectrum of the signal associated
with a sequence of 1024 values. Compare with the theoretical spectrum the
expression of which, according to formula 12.55, is given by:

sin(mwf17)
sin(mf)

1 2

S = F1GUNN = 7

= (9.11)
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where T = T1 + T5 is the duration of the sample and G(f) is the DTFT of
the sequence g(n). S(f) is obtained either by applying the ££t function to the
sequence that defines g(n), or by using expression 9.11.

50 100 150 200

Figure 9.4 — Binary signal. The positive impulse corresponds to the bit 1 and the
negative impulse to the bit 0. Fach impulse i1s comprised of a constant amplitude for
a duration of 10 followed by a zero amplitude for a duration of 25

Example 9.2 (Estimating the PSD of the quantization noise)

Write a program that estimates, using the welch function designed in exercise
9.1, the PSD of the quantization noise for several values of the quantization
step. Remember that, using the notations of Chapter 7, page 271, under the
hypothesis that the quantization is uniform and that the quantization noise
is white, the quantization noise’s PSD is equal to ¢?/12 on the signal’s entire
band. Compare the theoretical and estimated values of the quantization noise’s
PSDs using a speech signal.

HinT: type:

Y===== DSPQ.M

load phrase; Ac=max(y);

Lfft=1024; Fe=8000; fq=Fex(0:Lfft-1)/Lfft;

for M=4:7 %===== Number of bits
q=2*Ac/2"M; %===== Quantization step
yQ=round(y/q) *q; eQ=y-yQ;
[sf gammal=welch(eQ,Lfft, ’rect’ ,Lfft,0.95);
plot(£q,10%logl0(sf)); hold on
sth=10%1og10(q*q/12); plot ([0 Fel, [sth sthl,’-.’)

end
hold off; set(gca,’xlim’,[0 Fe/2]1); grid

The results are shown in Figure 9.5. Notice that the theoretical values
(horizontal full line) are in agreement with the estimates. [

Exercise 9.3 (Spectral observation and oversampling)
Use the welch function designed in exercise 9.1 to estimate the spectra.
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Figure 9.5 — PSD of the quantization noise (in dB) as a function of the frequency
(in Hz) for various values of the quantization step. The test signal is a speech signal
sampled at 8,000 Hz. The dashed lines represent the theoretical value of the PSD
under the hypothesis that the quantization noise is whaite

1. Using filtering, create a signal X (n) with the length 1024. A crude ap-
proximation could make this signal a model for audio-frequency signal.
You can use the rif function (see page 599) with a small number of co-
efficients to generate this signal. Display the resulting signal’s spectrum.

2. Perform the expansion operation corresponding to an oversampling by a
factor of 8 (see page 151). Display the resulting signal’s spectrum.

3. Perform the oversampling operation necessary to the filtering operation.
You can use the rif function with a high number of coefficients. Display
the resulting signal’s spectrum.

9.2 Parametric estimation

9.2.1 AR estimation

The object of this section is to study methods for estimating the coefficients
of an AR-model from the observed data X (0), ..., X (N — 1), and correlatively
for estimating the dsp of this sample.

Least squares method

The first idea is to minimize, with respect to a = [a1, ..., ap], the criterion:

Snop(X(n) = 5L 4 X (n — §))° (9-12)
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Canceling the derivatives w.r.t. {a;} gives:
a=(DD)"'Dx

where x = [X(P) --- X(N — 1)]¥ and (see equation 8.37):

X*(P-1) X*(P) -  X*(N-2)
X*(P-2) X*(P—1) -~  X*(N-3)
D — : : : (9.13)
X*(0) X*(1) .- X*(N—P—1)

The resulting matrix D¥D is not Toéplitz due to end-effects. This might
produce a polynomial A(z) with zeroes outside the unit circle.

The Yule-Walker method

The Yule-Walker equations 8.58 provide us with a relation between the AR
model’s parameters and its covariance coefficients. This means they make it
possible to estimate the parameters of an AR model by replacing the covari-
ances with their estimates, provided for example by the equations 8.32.

The [a,sigma2]=xtoa(X,P) function given below estimates the sequence a
of the P coefficients of an AR model as well as the power sigma2 of the white
noise input from a sample X and the model’s assumed order P:

function [a,sigma2]=xtoa(x,P)

Wh %
%% XTOA estimates the (P+1) parameters of an AR model 7
%% SYNOPSIS: [a sigma2]=XTOA(x,P) %
o X = Signal %
%h P = Order of the model %
hh a =[1a.l..... a_P] %
%h sigma2 = Variance of the input white noise %
Wh %

N=length(x); x=x(:); x=x-mean(x);
for kk=1:P+1

rconj (kk)=x(kk:N) >*x(1:N-kk+1) /N;
end
Rc=toeplitz(rconj); vaux=Rc\eye(P+1,1);
a=vaux/vaux(1); sigma2=1/vaux(1);
return

In this program, the quantities rconj(kk) provide estimations for the co-
variances R*(k). We then know (see page 295) that the estimate RC of the
covariance matrix, provided by the toeplitz(rconj) function, is a positive
matrix.

To test the xtoa function, type the following program:
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%===== TESTXTOA.M
trueCoef=[1 -1.3 0.8]; P=length(trueCoef)-1; sw=sqrt(1);
Lrun=100; 1istN=(500:500:4000); lgN=length(listN); perf=zeros(1gN,1);
for ii=1:1gl
N=1listN(ii);
for ell=1:Lrun
w=swkrandn(N,1); x=filter(1,trueCoef,w);
[aest s2est]=xtoa(x,P);
% Performance for the estimation of the coeff trueCoef (2)
eQ=(aest (2)-trueCoef (2)) * (aest (2) -trueCoef (2)) ’;
perf (ii)=perf(ii)+eQ;
end
end
perf=perf/Lrun;

plot (listN,perf); hold; plot(listN,perf,’ro’); hold; grid

In this program, we consider the AR-2 process defined by X(n) —1.3X(n —
1) + 0.8X(n — 2) = W(n) where W(n) is a white noise with a variance of 1.
L =100 runs are performed identically, and we will take the mean over L runs
of the square deviation between the estimated value of a parameter and its
true value as an indication of the estimation error. The experiment is repeated
for several values N of the sample’s length. Notice that the obtained graph
shows that the deviation decreases when N increases. It can be shown that
this deviation has the same asymptotic behavior as 1/\/N The program can
be modified to evaluate the estimation deviations on another of the model’s
parameters, or to change the model’s order.

The Yule-Walker algorithm solves the least squares minimization by
padding data with P zeroes on each side of the sequence (see equations 8.36
and 8.37), which is equivalent to add false data to the observed sequence. The
main advantages are the following: the associated estimates define stationary
processes and the estimates may be easily computed using the Levinson recur-
sion.

Example 9.3 (Sunspot periodicity)
The sun’s magnetic field, and its interactions with the movements of plasma,
cause small, temporarily active regions called sunspots to appear on the surface.
The intriguing part is how their number follows a cycle. The number of these
sunspots has been recorded every month for over two centuries. The resulting
values are available for research, and can be downloaded off the internet. The
graph in Figure 9.6 shows the monthly data gathered from January 1750 to
December 1999. As you can see, there are 23 lobes of roughly equal widths,
over a period of 250 years. A tendency over a longer period is also visible, but
is more difficult to analyze.

In 1898, Schuster defined the periodogram as a method to discover the
frequencies of the “hidden harmonics” in a signal and was the first to use the
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periodogram to analyzing sunspot activity [85]. Later in 1927, the sunspot
data have first been studied by Yule [105] with an AR model (see example 8.9).

Write a program to analyzing sunspot activity using periodogram and AR-2
estimation. Notice that it is necessary to denoise the signal before processing
it. Use the function rif.m as a lowpass filter.
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Figure 9.6 — Number of sunspots recorded monthly during the period from January
1750 to December 1999, plotted against time

HINT: type the program (Figure 9.7):

%===== ANALSUNSPOTS.M

clear; load tachsol; y=tachsol; N=length(y);

Fg=12; tps=(0:N-1)/Fs; % 12 samples per a year

[AA yc]l=tendoff (y); Lyc=length(yc); % Detrend

h=rif (30,1/40); yc=filter(h,1,yc);

%===== Periodogran

Lfft=4096; fq=Fs*(0:Lfft-1)/Lfft;

perioy=abs (fft(yc,Lfft)). 2/N; [periomax indperiomax]=max(perioy);
f0=Fs* (indperiomax-1) /Lfft; mperiod=1/£0

%===== Covariance

P=2; rr=zeros(P+1,1);

for kk=1:P+1, rr(kk)=yc(kk:N) ’*yc(1:N-kk+1)/N; end
Rc=toeplitz(rr(1:P+1)); vaux=Rc\eye(P+1,1);

%===== AR model

aAR=vaux/vaux (1) ; sigma2=1/vaux(1);

SAR=sigma2 ./ (abs(fft(aAR,Lfft)) .~2);

[SARmax indSARmax]=max(SAR);

fO_AR=Fs*(indSARmax-1)/Lfft; mperiodAR=1/f0_AR

%===== Figures

subplot (221); plot(yc(2:Lyc),y(1:N-1),°x’);grid

subplot (222) ; plot3(yc(3:Lyc),yc(2:Lyc-1),y(1:N-2),’x’); grid
subplot (212); plot(fq,perioy,’g’); set(gca,’xlim’,[0 Fs/30]); grid
hold on; plot(f0,periomax,’or’);
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” plot (fq,8AR,’r’); set(gca,’x1lim’, [0 Fs/30]); hold off
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Figure 9.7 — Sunspots: DTFT calculated over 4,096 frequency points

Note that an estimation of the affine trend with function tendoff leads to
A(2) = 0, as we can expect from to the slope from Figure 9.6, which is almost
equal to zero. However, the mean is large since the signal’s values are positive.

The processing, for the period, leads to a value slightly above 11 years.
The previous program can be modified so as to estimate the period over sub-
intervals of the set of data. This is a method that can be used for studying
possible fluctuations. [

The Burg method

J.P. Burg had the idea [16] [38] of directly estimating the reflection coeffi-
cients (see paragraph 8.5.3) from the data, and to do this without first using
the covariance calculation. Once the reflection coefficients are calculated, the
recursive equation 8.72 is used to determine the model’s parameters.

To obtain the reflection coefficient estimates, J.P. Burg started off with the
expression (see 8.60) of the error prediction sequence at a step m > 0:

651(71) = X(n)+an(HDX(n—=1)4 -+ an(m)X(n—m)
= XT(n)a

for n from m + 1 to V. This error is said to be forward. Also, the error said to

be backward (see 11.34) is defined by:

ﬁ(n) = X'n—-—m4+an()X" (n—m4+1)+ 4+ an(m)X* (n)

= xf(n)al

£
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Notice that it is the conjugated values of X(n) that are involved in the
definition of ¢Z (n). If we introduce the k,, starting at equation 8.72, we can
write the m-th step forward error as a function of the (m — 1)-th step errors:

<o ([ %5 o g, ]

= b )+ kneB (n—1) (9.14)

)

!

=
|

Likewise, we have for the backward error:

<o ([l o5 ])

= B =1+ kel (n) (9.15)

)

Iw

=
(l

These two relations will be proven in section 11.3 as part of our discussion
on linear prediction.

In order to find an estimator of k,,, Burg suggests minimizing the sum
of the errors E{|cf (n)|? + |eB (n)|*} with respect to ky,. The two previous
equations lead us to a second degree equation in k,,. If we set its derivative to
zero, we get, for m > 1:

QE{Em (= 1)l 1(n)}
E{|ef,_1(n)|* + lef i (n = 1)]?}

m:

In the actual algorithm, an estimate of k,, is obtained with “temporal
means”. Thus, for m > 1, the numerator is estimated by:

LS -1 ()

E{eh_i(n—1)eh_1(n)} ~ Nomal

and the denominator by:

E{|6m 1 )|2} +E{|5n€—1(”_ 1)|2}

N N
1
¥ N Tmal (Z lem—1(n)]* + Z lem—1(n — 1)|2)

n=m

This is the Burg algorithm:
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Inetialezation:
eg(n) = e¥(n)=X(n)forne{l,... N}
ap(0) = landwy= %zfﬂ X (n)|?
Form=1,..., K, repeat:
T D (S ) 1)

N N
Zn:m |6g—1(n - 1)|2 + Zn:m |6§—1(n)|2

2. am(0) =1 and ap(m) = kn,

3. Forje{l,--- ,m—1}:am(j) = am-1(j) + kman,_1(m — )

4. v = Umo1 (1= k%)

5. el (n)=¢eb _(n) +kpel* (n—1) for n=m+1: N
Bm)y=el_(n—1)4knek™ (n) for n=m+1:N

One of the properties of the Burg algorithm is that it ensures that the
reflection coefficient estimates have a modulus < 1, and therefore guaran-
tees the stability of the lattice filter which will be described in Chapter 11.
This helps to avoid introducing false data the way the correlation method does.

Exercise 9.4 (The Burg estimation of the AR parameters)
1. Write a function that implements the Burg algorithm.
2. Write a program that compares the results of the Burg algorithm with
those obtained with the xtoa function from exercise 9.2.1.
The modified covariance method

If we stack the values of the forward error’s expression for n from p+1 to N —p,
we get:

X(p+1) X(p) e X() —ay er(p+1)
z - z S B RN .
X(N —p) X(N—-p-1) ... X(N-=2p)| |-ap ep(N —p)
= —Da+e¢p (9.16)
One approach consists of choosing a” = [al e ap]T so as to minimize

the norm of this error ep. We will see in Chapter 11 that the solution is given
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by formula 11.10 (page 396), which can be written:
a=—(D'D)"'DTX (9.17)

where X = [X(p—l— 1) ... X(N —p)]T. This expression has to be com-
pared with the Yule-Walker equations 8.58 that are constructed from the data
matrices 8.36.

Starting off with the backward error’s expression, we have:

X(p+1) X(p+2) o X2p+ 1) [—a ep(2p+ 1)
| = z D S
X(N —p) X(N—-p+1) ... X(N) —a, ep(N)
= —Ba+4e¢p (9.18)

The modified covariance algorithm, or Forward-Backward algorithm, con-
sists of minimizing the sum of the forward and backward errors, the way the
Burg method did. If A denotes the half-sum of the forward and backward
errors, we have:

1 1
X = —§(D +B)a+ 5(EF +ep)=-Ha+ A
If we minimize, we get:
a=—(H'H)'HTX (9.19)

The essential difference between this algorithm and the one suggested by
Burg is that no stability constraint is imposed. However, it is more efficient
when estimating sines, but it does not have the drawback of the correlation
method’s poor behavior for small samples.

Exercise 9.5 (AR-1 estimation and confidence intervals)

Let @ and &2 be the respective estimators of the parameters @ and o2 of the AR-
1 model. Because the estimators are functions of the random variables X (1),
.osy X(N), they are themselves random variables. However, even in cases where
X(1), ..., X(N) are assumed to be Gaussian, their probability distribution
does not have a simple expression, but when N tends to infinity, one version
of the central limit theorem states that the random variables (a, %) are jointly
Gaussian, independent, with the means a and o? respectively, and with the
variances (1 —a?)/N et 20*/N respectively. The general result for an AR-P is
given in [21].

1. For large values of N, determine the 98% confidence ellipse of the pair
(a,5?).
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2. Write a program that performs L = 500 consecutive runs of a length N =
1,000 sample of an AR-1 process defined by X(n) + aX(n — 1) = W(n)
with @ = —0.7 and ¢? = 1, then estimates @ and ¢?, and finally displays
the result in the 98% confidence ellipse. Check that roughly 2% of 500,

that is 10 points, are outside the ellipse (see exercise 7.1).

9.2.2 Estimating the spectrum of an AR process

We saw in paragraph 8.5.2 that an AR process is defined as the only WSS
solution to the recursive equation:

X(n)+ @ X(n—1)+---+apX(n—P)=W(n)

where W (n) is a white, centered, WSS random process with the variance o2

and where the polynomial A(2) = 14+ ayz7t +-- - +apz=F £ 0for |z| > 1. In
this case, X (n) has a causal expression as a function of W(n).

Relation 8.58 between the model’s parameters and the covariances provides,
as we have explained, a simple way of estimating the parameters ay, ..., ap and
o? by substituting the theoretical autocovariance sequence with the sequence
of the covariance estimates. The spectrum can then be estimated using the
formula:

~ o2

S(f) = , .
(/) |1+ @ e=27f ... _|_aPe—2MPf|2

This formula is obtained by replacing the model’s parameters with the esti-
mated parameters in expression 8.57 (page 306) of the spectrum obtained with
the filtering formula 8.39 and by considering an AR process as the output of
a filter with the complex gain H(f) = 1/A(e*™) and white noise with the
PSD ¢? as its input. Remember that solving equation 8.58 leads to sequence
of coefficients a1, ..., ap such that the polynomial A(z) # 0 for |z| > 1.

This spectral estimation method is sometimes called the high-resolution
method. Notice that it is not affected, unlike the periodogram method, by the
2/N limitation related to the time truncation. Once the parameters have been
measured, the spectrum is known with an “infinite” resolution. This may seem
surprising, but is simply due to the fact that @ priori information is added
when we say that the signal is a P order AR process.

An important obstacle to the AR identification however is the noticeable
loss of resolution in the case of noised observations. The signal is then of the
type Y(n) = X(n)+ B(n) where X(n) is an AR process and B(n) is a noise. It
can be shown that for small signal-to-noise ratios, the periodogram’s resolution
is improved. [54] gives the following order of magnitude: if the signal-to-noise
ratio, expressed in decibels, is less than (32log;q N — 24), the periodogram’s
resolution 1s better than that of the AR method. For example, for N = 100,
the formula indicates that if SNR < 40 dB, it is wiser to use the periodogram.
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9.2.3 The Durbin method of MA estimation
Consider a process MA-Q defined by:
Xn)=Wn)+nuWhn-1)+ - +bogW(n—-Q)

where W (n) refers to a white, WSS, centered random process with the variance
o2, (b1, ..., bg) is a sequence of @ coefficients. X (n) is observed for n = 1,
..., N, and we wish to estimate, using the coefficients, the parameters of this
model. Because the process is centered, the covariance estimates are denoted
with:

R(k) =+ 05 X (G + 0)X ()

We know (see page 303 on MA-Q process) that the equation system, aside
from not being linear, has more than one solution. The solution we are going
to give leads to minimum phase solution, that is the one for which all of the
roots of the polynomial B(z) = 1 +b1271 4+ -+ + bgz~% have a modulus < 1.

We wish here to indirectly estimate the parameters of the MA process by
using the estimation for an AR process. Theoretically, as the inverse of B(z),
the polynomial of the exact AR process we are looking for should have an
infinite length. In practice, the polynomial is chosen such that A(z) = 1+
a1z~ '+ -4apz~F with P high enough. The coefficient can then be estimated
using the Levinson algorithm.

Once the sequence {1, ay, as, ..., ap} is estimated, we express the fact
that A(z)B(z) & 1, in other words the convolution of the sequence {1, aj,
as, ..., ap} with the sequence we are trying to determine {1, by, bo, ...,

bo} is approximately d(n). For example, we can minimize the ¢* norm of the
discrepancy:

1 0 - 0
ay 1
1 1
dde | o
ay : -
ap bQ 0
0 ap ]

If we call A the first matrix of this expression, then multiply on the left by
A we get the expression R4 [1 by ... bQ]T — [1 0 ... O]T where we
have defined R4 = A7 A. Notice that Ry is a positive Toeplitz matrix. This
leads us to an equation similar to the Yule-Walker equation 8.58, which can
therefore be solved with the Levinson algorithm presented in paragraph 8.5.3.
This method was suggested by J. Durbin.
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The choice of P essentially depends on where the zeros of the MA process
are located: the closer they are to the unit circle, the higher P has to be.
Finally, we wish to mention the fact that solving the Yule-Walker equations
leads to a polynomial the zeros of which are inside the unit circle. Therefore,
this method leads, for the MA process, to the minimum phase solution.

The following function estimates the parameters of an MA-@) using the
Durbin method:

function [b,sigma2]=durbin(x,Q,P)

b )
%% DURBIN estimating the (Q+1) parameters of a MA process %
%% SYNOPSIS: [b,sigma2]=DURBIN(x,q) %
o X = signal %
Wh Q = model order A
% b =[1b.l..... b_ql 3
Wh sigma2 = power of the white noise input %
hh h

N=length(x); x=x(:); x=x-ones(1,N)#*x/I;

if nargin<3, P=8%Q; end

for kk=1:P+1, rx(kk)=x(kk:N) >*x(1:N-kk+1)/N; end
Rx=toeplitz(rx); Phix=Rx\[1;zeros(P,1)]; sigma2=1/Phix(1);
for kk=1:Q+1,ra(kk)=Phix(kk:P+1) ’*Phix (1:P-kk+2); end
Ra=toeplitz(ra); Phia=Ra\[1;zeros(Q,1)]; b=Phia/Phia(1);
return

The following program tests the result:

Y%i===== TESTDURBIN.M
sigma2=8; w=sqrt (sigma2)*randn(10000,1);
hh=[1;0.3]; % minimum phase case

% hh=[.3;1]; % non minimum phase case
Q=length(hh)-1; x=filter(hh,1,w);
[b,s2]=durbin(x,Q); [hh bl, [sigma2 s2]

You can change hh=[1;0.3] to hh=[0.3;1], thus moving the zero from
inside to outside the unit circle.

Example 9.4 (Estimating the PSD of an MA-1)
Using MATLAB®, write a program:

— that generates N values of an MA-1, WSS random process;

that calculates the theoretical spectrum;

that estimates the spectrum with the use of the welch function;

that estimates the spectrum from an estimation of Rxx (0), ..., Rxx (K)
for K =2 and K = 4 (covtodsp function);
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Figure 9.8 — Fstimating an MA-1 process’s PSD

— that estimates the spectrum using the Durbin method for P = 15.
HINT: type (see Figure 9.8):

%===== DSPMA1.M

N=3000; b1=[1;-0.7]; sigmaw2=1;
w=sigmaw2+randn(N,1); x=filter(bl,1,w);
Lfft=1024; bls=fft(b1,Lfft);

fq=(0:Lfft-1) /Lfft; Sth=sigmaw2*abs(bls) ."2;

%===== Welch method
Swelch=welch(x,16,’h’ ,Lfft,.95);
%===== K=2 covariances
Scov2f=covtodsp(x,2,’b’ ,Lfft).’;
%===== K=4 covariances
Scov4f=covtodsp(x,4,’b’ ,Lfft).’;
%===== Durbin method

[bich, sigma2ch]l=durbin(x,1,15);
Sdurb=sigma2ch*abs (fft (blch,Lfft)) . 2;
plot(fq, [Sth Swelch Scov2f Scov4f Sdurb])
set (gca, ’x1im’,[0 0.5]1); grid

Comment on Figure 9.8:

— (a) theoretical PSD;

— (b) PSD estimated with the Durbin method for an AR-15;

— (¢) PSD estimated with the Welch method for a Hamming window with
a length of 16;

— (d) PSD estimated as the DTFT of the sequence of 4 covariance coeffi-
cients estimated with the Bartlett window;

— (e) PSD estimated as the DTFT of the sequence of 2 covariance coeffi-
cients estimated with the Bartlett window.

The methods that directly use the covariance estimates (situations d and €)
often leads to results that are not as good as those obtained with the Durbin
method. [



Chapter 10

Discrete Spectra Estimation

As we have seen for both the deterministic and the random cases, a signal
composed of a sum of sines shows “peaks” in its spectrum. The object of
this chapter is to study methods for estimating their frequencies and their
amplitudes when the signal is corrupted by noise.

In this chapter, random processes will be denoted by lowercase letters so as
to reserve capital letters for Fourier transforms.

10.1 Estimating the amplitudes and the frequencies

10.1.1 The case of a single complex exponential

Consider an observation z(n) = s(n;0) + b(n) where s(n;0) = a;eX™1" is
a complex harmonic signal, where b(n) is a white, centered, WSS, complex
random signal, and where @ refers to the parameters (a1, f1). We are going to
try to estimate the complex parameter a1 and the parameter f;, which belongs
to (0,1), based on a sequence of N noised observations.

In practice, the noise b(n) is used to take into account the measurement
errors, but also the possibility that we are not quite sure of the model used for
the signal s(n; #). This occurs when we have a prioriinformation at our disposal
on the wanted signal, for example with an active radar, where s(n) represents
the signal emitted then sent back by the target. It is also the case with speech
when some of the noises originating from the vocal cords are described as a
sum of sines.

The least squares method, the general presentation of which is given in
Chapter 11, consists of calculating the values of a; and f; that minimize the
square deviation between the observed values, that is z(n), and the expected
values, that is s(n; ). When the noise is assumed to be Gaussian, the obtained
values are those that maximize the probability density. In that case, the method
is called the mazimum likelihood method.
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By stacking a sequence of N successive values of the model for the signal
s(n;0) = a1e?™51 for n from 0 to N — 1, we get the vector expression:

s(0) = are(f1)

. s(0) =[s(0) ... s(v-1)]"
with ,
e(fi)= |1 e¥rh HrH(N-D)
Notice that the expression s(f) = «je(f1) is linear with respect to ag

whereas it is not with respect to fi.
The square deviation between the observation and the model is given by:

N-1
S, fi) = |2(n) = 5(n; 0)] = (x — a1e) (x — are)
n=0
= (xf —atefl)(x — aje)
where x = [#(0) ... x(N — 1)]¥ represents the sequence of N observations.

The expression is similar to the one we encountered in example 8.6 page 291,
on suppressing seasonal trends. The minimization of J(ay, f1) with respect to
aq and f; 1s performed first by setting to zero the derivative with respect to
oy, then by replacing the result in J(aq, f1). We get:

H

a—J:2eH(x—oz1e) =0 eflx=ajefle
3@1

Noticing that efe = N for any f; leads us to:

1 1=
a] = NeHX =% nz_:o x(n)e‘zﬂfl" (10.1)

By replacing this expression of «; in the expression of J, we get a new
expression dependent only on fi:

N-1
1 3 .
Ji(f1) = xTx —ajeflx = x"x — N | = eln)e 0

and that we have to minimize with respect to f; € (0,1). Because the first
term x x does not depend on f;, the problem is equivalent to determining the
value of f; € (0,1) that maximizes the expression:

2

[{(f)_i Jvz_:l —2jmfin 10.2
D= Y e (102)
n=0
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There 1s no simple analytical solution to this problem. It will be denoted

by:

N-1
o —2jnfin
—arg max — E xr(n)e
hi g1‘16(0,1)]\7 = (n)

However, an approximation of the solution can be obtained digitally by
performing a tightened sampling of the interval (0,1). Once this value is cal-
culated, we get the numerical complex amplitude using expression 10.1:

1 N-1 o
31 = N 0 x(n)e—l?ﬂ'fln

n

The fact that we used expression 10.2 to estimate a frequency is not in the
least surprising, because it contains the expression of the DTFT of the sequence
{x(0),...,2(N — 1)} or to be more precise, its square modulus, which is the
expression of the periodogram (definition 9.5).

To estimate, wn the least squares sense, the frequency of one complex
exponential corrupted by white noise, all we have to do ts calculate the
observation pertodogram and find the frequency for which it reaches its
marimum.

10.1.2 Real harmonic mixtures

We now consider a real signal, sum of P sinusoidal components of the type:

P
s(n) = ZAk cos(2m fun + o)

k=1
P P

= Z ap cos(2mfiym) + Z by sin(27 fin) (10.3)
k=1 k=1

where Ay, fr and ¢ represent the parameters we wish to estimate based on a
sequence of N observations. The frequencies f1, ..., fp are all assumed to be
different.

Notice that we go from the pair (Ag, ¢x) € R¥ x (0, 27) to the pair (ay, bg) €
R x R using the bijection:

ap = Ap cos(dk) — Ay = Jai + b

by = —Ap sin(¢g) ¢ = — arctan(by /ay)

(10.4)
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From now on, we will assume that P i1s known, and that there are more

observations than there are parameters to estimate. Let £ = (f1,...,fp),
s=[s(0) ... s(N -1 and:
Af)= [C(f) S(f)] (10.5)
where
1
cos 27rl<7f1) e cos(2mk fp)
cos(2m(N = 1)f1) -+ cos(2n(N —1)fp)
0
sin 27rl<7f1) e sin(2mk fp)
sin(2r(N —1)f1) -+ sin(2n(N —1)fp)

is a (N x 2P) matrix. If we use these notations, and stack the N
equatlons of 5( ) for n from 0 to N — 1, we get the expression:

s=A(f)d (10.6)
where the ) = 2P sized vector
]T

d:[a1 ..o ap b1 bp I[dl dQ]

1s the amplitude vector we wish to estimate. The expression of the square
deviation is still given by:

J(d.f) = Z_: j2(n) = s(n)]” = (x = A(f)d)" (x — A(f)d)
= (x'—d"A)")(x - A(f)d) (10.7)
where x = [#(0) ... (N —1)]¥. To solve the problem, we are going to

proceed as we did previously by setting to zero the partial derivatives of J with
respect to each of the components of d. We have:

a%:a]T(x—A(f)d):o je{l,...,Q}



Discrete Spectra Estimation 345

where a; represents the j-th column of A. If we group together the equations
in matrix form, we get:

AR x-Af)d)=0< AF)TA(f)d= A(f)'x

Because the values of fi, ..., fp are assumed to be all different, the matrix
A(f)T A(f) is invertible. This leads to the expression of d, dependent on fi,
.., fp, that leads to the maximum:

d=[AF)TAE)] AR 'x (10.8)
If we then replace this value of d in J, the resulting expression is a function
of f1, ..., fp that we have to maximize:
Ji(fi,.. . fp) = (x' —d"AME)T)(x - A(f)d)

x'x —xTA(F)[AE)TAE)] A x

where we have used the fact that the matrix[A (f)TA(f)]~! is identical to its
transpose. Because the first term is not dependent on the frequencies f we are
trying to determine, the minimization is equivalent to the maximization of:

-1

K(fi,...,fr) =xTA(f) [AB)TAM)] A)Tx (10.9)

The expression of K contains the frequencies fi, ..., fp, but is not linear
with respect to these frequencies. Just as before, its maximization does not
lead to a simple analytical formula. We will simply write:

f=arg _ max  x"A(f)[A()TA()

Af)Tx
fe(0,1)x---x(0,1)

We still have the possibility of a numerical calculation, but the problem
quickly becomes overwhelming, because we have to find the maximum of a
function of P variables. Once f has been calculated, the amplitudes are found
by replacing its value in 10.8. We get:

d= [A(f)TA(f)}_l A(f)x (10.10)

10.1.3 Complex harmonic mixtures

The complex case is dealt with in exactly the same way as the real case. Con-
sider:

s(n) = Zak exp(2jmfin) (10.11)

where the ay are a sequence of P complex amplitudes and the f; are a sequence
of P frequencies assumed to be all different, and belonging to the interval (0, 1).
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The square deviation between the observation and the model has the ex-
pression:

N-1 P ' E

J(ay,...;ap, f1,..., fp) = Z z(n) — ajeZimiin (10.12)
n=0 k=1

If we let £ = (f1,..., fp) and:
1 1 1
e2imh e2imf2 e2imip
E(f) = ) . . (10.13)
L2T(N-Of 20n(N=Ofa . 2in(N=1)fp

J can be written:

x — B(f)al> = (x - B(f)a)" (x - E(f)a)
= (" - a"E(f)")(x - E(f)a)

J(ala"'aapafla"'afP)

where the exponent H indicates a transpose-conjugation. First, we minimize
with respect to a = [aq, ..., ap]’. If we set to zero the partial derivatives, we
get:

Ef)? (x —E(f)a) = 0 & E(f)’x = E(f)?E(f)a
You can check for yourself that if the P frequencies are different, the matrix
E(f)?E(f) is invertible. This means that:

1

a=[E(f)YE(f)]  E(f)"x (10.14)

and that the minimum’s expression 1s:
7 = xx — x"E{f) [E€)TEF)] E(F) x

We still have to minimize this quantity with respect to the set of frequencies
f. Because the first term x™x does not depend on f, this is equivalent to
maximizing the second term:

1

K(fi,...,fr)=x"E(f) [EE)PE(f)]  E(f)"x (10.15)

which implies the difficulties we mentioned earlier, and that will be studied in
detail in the following paragraph.
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10.2 Periodograms and the resolution limit

When P is greater than 1, it becomes difficult to maximize the function
K(f1,...,fp) with respect to the frequencies f1, ..., fp, whether in the real
case with expression 10.9, or in the complex case with expression 10.15, because
it is a function of several variables, and usually has several local maxima.

However, if the differences between the frequencies are greater than 2/N | the
method whereby the P maxima of the periodogram are determined is a quite
efficient method. This makes the calculations much simpler since the multi-
variable maximization problem is changed into a single-variable maximization
problem. This is what we are going to see now by numerically studying the
case where P = 2.

Presence of several maxima for &

Let us reconsider, for P = 2, the expression of the function K (fi, f2) defined
by 10.13. The matrix E has the expression:

1 e~2infi .. g-2m(N-1)f
EH(fl,fz):[l e=20mf2 .. p=2m(N-1)f2

This means that:

He 1 pn(fo — f1) ]
EE‘N[ﬁmﬁﬁ> 1

where:

sin(w N f)

pr(f) = eim v Il

(10.16)

By replacing this result in expression 10.15, we get:

K(fif) = = [Xalh) X))

N
[p}‘v(le— ) S fl)] : [iﬁg] (10.17)

X

where:
N-1 )
XN(f) — Z x(n)e—ZJﬂ'fn
n=0

is simply the DTFT of the sequence z(n). We are going to perform a numerical
study by considering the signal z(n) = s(n) + b(n) where:

. L0 . .0
s(n) = a?ezﬂfln + agez‘”b"



348 Digital Signal and Image Processing using MATLAB®

with @} = 1.5, a = 1, f = 0.12 and fJ = 0.61 and where b(n) is a white,
centered, Gaussian noise. There are N = 10 sample values. The following
program generates the signal z(n), plots the surface K(f1, f2) defined by 10.15
as well as the periodogram of xz(n) defined by:

In(f) = & IXn ()P (10.18)
Type

Yi===== CMLE.M

clear; T=10; £f01=.12; £02=.61; tps=[0:T-1]’;

Y%===== Signal

g=1.5%exp (2% j*xpi*f01l*tps) +exp (2% j*pi*f02%tps) ;
SNR=15; sigma2= (s’*s/T)/(10 "~ (SNR/10));
%===== Noised signal

xb=s+sqrt(sigma2) *randn(T, 1) ;

Lf=70; £1=(0:Lf-1)/Lf; £2=£f1;

mm=exp (2*j*piktps*fl) ;

%===== or: [X, Yl=meshgrid(f1,tps); mm=exp (2*j*pi*(X.*Y));
yy=zeros (Lf,Lf);
for ki1=1:Lf

for k2=1:k1-1

E=[mm(:,k1) mm(:,k2)];

yy (k1,k2)=abs(xb’ * E * pinv(E) * xb);
end

end
subplot (121) ; mesh(f1,£2,yy); view([115 35])

subplot (122); plot(f1l,abs(fft(xb,Lf))); grid

The results, obtained for a signal-to-noise ratio equal to 15 dB are shown in
Figure 10.1. Because K(f1, f2) = K*(fa, f1), we restricted the representation
to the half-plane delimited by the bisector of the first quadrant. The function
shows a global maximum in M the coordinates of which, f; and f>, are almost
equal to the two real values. But this function also has local maxima such as
m, making it difficult to find the global maximum using a numerical technique.

The graph at the bottom of Figure 10.1 shows that the obtained values f;
and f, are almost equal to the z-coordinates of the two highest maxima of the
periodogram of #(n). As we are going to show, this property has to do with
the fact that the frequency difference is such that |f{ — f9|N = 4.5 > 1. This
is a fundamental result, because it justifies the use of the periodogram for esti-
mating frequency sequences. Note that there is an essential difference between
the search for the global mazimum of the multivariable function K(f1, f2) and
the search for the two highest mazima of the single-variable function In(f).
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0 0.25 0.5 0.75 1

Figure 10.1 — Frequency estimation: the figures correspond to the function K(f1, f2)
given by equation 10.17. The bottom figure shows the periodogram (equation 10.18)
for N =10 and a signal-to-noise ratio of 15 dB

Resolution limit of Fourier

We are going to show that, when the frequencies contained in the signal s(n)
are such that:

1
min _|f) — [ > — 10.19
{6,355} = 5i1> 5 ( )
then the global maximum of K (f1,..., fp) is located at a point whose coordi-

nates are almost equal to the periodogram’s P highest maxima. First, let us
write once more expression 10.15:

K(fi,-- fr)=x"E(E"E)” Efx

If condition 10.19 is met, then according to 10.13, the diagonal elements of
EXE are equal to N and the non-diagonal elements have the expression:

(N1 (10— oy Sin(TN () — f2))
pn (f2 _fr?@ — JTWN=-1)(F =) . m
eI N sin(r( /g — 13)
Therefore, they quickly tend to 0 when (f? — f%)N becomes large. Hence

we can write, using the notation E = [ey, - - -ep] in the form of column vectors:
1 1 er
K(fi,...,fr) = NXHEEHX:NXH[el...eP] Sl x
H
ep

1
+ (

xHele{Ix—l— . ~~—|—xHepegx)
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But according to 10.18, NxHe]e] x = In(f;), and therefore:

K(fv,...,fp) = In(f1)+ - -+ In(fpP)

This function’s maximum is obtained by separately maximizing In(f) for
each variable, hence the maximum of K(fi,..., fp) is obtained by using the
periodogram as an univariate function. This is why the 2/N limit condition on
the use of the periodogram is called the fundamental resolution limat of Fourier.
Finally, the estimates, denoted by fi, are used to simplify formula 10.14 and
lead to the following estimates for the complex amplitudes:

N-1

1 7
Gk = nz_:o x(n)e=2minds (10.20)

We can also prove that, under condition 10.19 set by the resolution limit
of Fourier, the result is similar in the case of real harmonic signals. Based on
10.5, we first show that:

a07am =[Sl oo sw= g7 ]

As a consequence, the frequencies are provided by the periodogram’s max-
imum in the (0,1/2) band (because of the hermitian symmetry). As for the
amplitudes, all we have to do is replace A(f)TA(f) = (N/2)I in 10.10, then
use relations 10.4 and 10.6. We get:

Fk] _ 2 2 [ZnNz_ol z(n) COS(?Fﬁn)]
by N

TN |05 @ (n) sin(2r fin)

As a conclusion, the amplitudes a; and —by, are twice the real and imaginary
parts respectively of the complex quantities oy given by expression 10.20.

Consider the case of a signal containing only one real sine with the frequency
f1 = 0.1, that is to say two complex exponentials with the frequencies f; and
—f1. If we apply the previous result, the periodogram is effective so long as the
difference in frequency is such that 2f; N > 1. Let us assume that N = 100,
meaning that 2f1; N = 20. The following program implements the frequency
estimation based on the periodogram:

CT
ST

%===== EST1SINREEL

clear; £1=0.1; Lfft=4%1024; N=100; A1=2; phil=pi/3;

SNR=30; sigmab=A1%10" (-SNR/20) ;
xt=Al*cos(2%pi*f1*(0:N-1)+phil)+sigmab*randn(1,N) ;
al=Alx*cos(phil); bl=-Al*sin(phil);

xf=fft (xt,Lfft)/N; [amp flind]=max(abs (xf(1:Lfft/2)));
flest=(f1ind-1)/Lfft;

alest=2*real (xf (f1ind)); blest=-2ximag(xf (f1ind))

[f1 flest], [al alest], [bl blest], [Al sqrt(alest ™ 2+blest”2)]
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Notice that the frequency value is given by the z-coordinate of the maxi-
mum of Iy (f) on the interval (0,1). The maximum can be found using the
FFT-based computation of In(f) for f = k/L and k € {0,...,L — 1}. The
frequency estimate’s accuracy improves as the number L of FFT calculation
points increases. This accuracy has direct consequences on the amplitudes of
the sine and cosine components, and particularly on the measurement of the
phase, as you can see from the two displayed values.

The performances are “enhanced” when N increases

We will show that, on average, the higher N is, the better the periodogram’s
components stand out in the noise. Consider once again the case where P = 1.
In the presence of noise, the signal has the expression:

z(n) = apeXThn 4 b(n)

where n € {0, ..., N — 1} and where b(n) is assumed to be white with the
variance o2. We are going to determine the periodogram’s expression. Let:

. i N
() = eimv=1s I

and:
1 N-1 )
BN(f) = \/—N Z b(n)e_QJﬂ'fn
n=0

With these notations, the periodogram can be written:

2

N-1
I = |3 atme ™| = |VRapntf - )+ By ()]
n=0

Naipi(f = fr)
+2Re{VNaipy (f — f1) By (£)} + By (f))? (10.21)
Consider the expectation of In(f). The first term is deterministic. The

second term of 10.21 has an expectation equal to zero because b(n) is centered.
The expectation of the third term is expressed:

N-1N-1

n=0n'=0
where we have used the fact that E{b(n)b*(n’)} = 0?1 (n = n’). Therefore:
E{In(f)} = Naip} (f = f1) + o°

As a conclusion, E{Iy(f)} is comprised of two terms: the first one, related
to the wanted signal, shows a maximum in f; that increases with N. The
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second one, related to the noise, is independent of N and equal to ¢?. When
N increases, that part corresponding to the wanted signal tends to stand out
in the noise around f;. This can be checked by using the previous program.
Theoretically, when N is multiplied by 2, there is a 3 dB gain on the emergence
of the peak. This result can be generalized to the case of a signal containing P
complex exponentials.

To sum up, if the frequency differences are much greater than 2/N, deter-
mining the frequencies is equivalent to studying the periodogram, which shows:

— peaks around the real frequencies f7, ..., f%, the heights of which in-
crease proportionally to V;

— and farther away from these frequencies, a basically “constant” level for
the power of the noise.

Remember that using windows other than the rectangular windows makes
it possible to reduce the height of the side lobes and therefore to help the low
amplitude components stand out better, but at the cost of a worse frequency
separation.

A program for the search of the P maxima

As we just saw, the P frequencies contained in a noised signal can be esti-
mated by choosing the periodogram’s P maxima. However, this is difficult to
implement because the periodogram usually has local maxima that must not
be taken into account. To solve this problem, we are going to use the fact that
the periodogram of a sum of P sines, in the absence of noise, and under the
Fourier condition (condition 10.19) of P lobes with the width Af around the
frequencies. The value of Af essentially depends on the weighting window.

Example 10.1 (Finding the maxima)

Consider the length N = 25 sample of the signal 2(n) = s(n) + b(n) where b(n)
refers to a Gaussian, additive, white noise of unknown power o?. We know that
s(n) is the sum of 3 real sines with unknown frequencies and amplitudes and
that the differences in frequency are much greater than the resolution limit of
Fourier, which in this case is equal to 2/25 = 0.08.

Write a program that estimates the three frequencies by calculating the
periodogram over L = 256 frequency points. Remember that the choice of L is
related to the frequency accuracy: with L = 256, for example, the calculation
points on the spectrum are separated by 1/256 & 0.004. The method mentioned
previously consists of finding the first maximum then to eliminate the points in
the spectrum around this maximum in a range of Af = +«/N. The choice of
the value for « is based on the type of weighting window. For the rectangular
window for example, the value of « is slightly higher than 1. The procedure is
repeated until the P maxima are found.
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%===== PMAXSIN.M
clear; clg
P=3; A=[2 1.5 1]; F=[0.1;0.23;0.3]; N=25; Lfft=256;
deltaf=round (Lfft/N);
s=A*cos (2xpixF* (0:N-1)) ;
sigma2=0.5;x=s+sqrt(sigma2)*randn(1,N) ;
%===== Signal
subplot (221); plot(x); axis([0 N -5 5]); grid
text (16,4, Temps’)
%===== Spectrum
xf=abs (fft (x,Lfft)) . 2; xf=xf(1:Lfft/2)/max(xf);
subplot (222) ; plot((0:Lfft/2-1)/Lfft,xf);
set (gca, ’xlim’, [0 0.5]1, ylim’, [0 1]); grid
text(.25,.75, 'Frequence’)
subplot (212); grid
%===== Looking for the frequencies
for ii=1:P
[mm im]=max(xf); fs=(im-1)/Lfft;
ul=max(1,im-deltaf) ;u2=min(Lfft/2,imtdeltaf);
nb=u2-ul+1l; xf(ul:u2)=zeros(1,nb);
hold on; plot(fs,mm,’0’); hold off
axis ([0 0.5 0 1])
text (£s+0.01,mm,sprintf (’% .3g’,fs))
end

Figure 10.2 shows the temporal form of the signal and its spectrum. At
first, the periodicities are difficult to distinguish in the signal’s representation
as a function of time. The spectrum, on the other hand, clearly shows the
location of the three frequencies. This calls for a comment: a more relevant
study of the temporal signal consists of interpolating the signal (this is allowed
because it is in agreement with the sampling theorem) so as to obtain a time
discretization sufficient to estimate the periodicity.

The previous program also allows you to check the efficiency loss when the
differences in frequency are too small. This is achieved by choosing values of
Af with a modulus close to 1/N. (]

Example 10.2 (Analysis of a musical note)
Figure 10.3 shows the signal created by a piano note, a “C2” (264 Hz), sampled
at the frequency 24 kHz. The signal’s shape, as well as the physical phenomena
involved when the chords vibrate, lead us to describing the signal as a sum of
sines.

The spectrum in Figure 10.4, for a 600 samples portion of the signal, shows
peaks with frequencies that are approximatively the multiples of a fundamental
frequency corresponding to the note that is played. The spectral envelope, the
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Figure 10.2 — Top-left graph: the signal as a function of time. Top-right graph: the
stgnal’s spectrum. Bottom graph: location of the 3 maxima obtained with the program.
The signal-to-notse ratio s equal to 10 dB and the real frequencies are equal to 0.1,
0.23 and 0.3
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Figure 10.3 — Note played by a piano

virtual line that passes through the maxima of the peaks, 1s characteristic of
the instrument’s timbre.

We are first going to analyze the signal in such a way as to extract the
main frequential components, then, based on these components, synthetize a
signal. The point of this process is to have a small number of parameters (the
duration, the frequency, the timbre) that can then be modified, to create a
sound. After having recorded a sound created by a musical instrument such as
a piano, a guitar, etc. write a program:

— that cuts up the signal in windows covering a duration of a few periods;

— that extracts the amplitudes and the frequencies of the P most important
components. You can use the Hamming window, and with a method
similar to the one used in the previous program, spread out a certain
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Figure 10.4 — Spectrum of a 600 sample portion of the signal shown in Figure 10.3

number of points located on either side of the maxima. The value of P
can be chosen based on an a prioristudy or through an automatic process
such as the one we will see on page 357;

— that creates a signal from the extracted amplitudes and frequencies. Dis-
continuities appear in the trajectory when the created portions are placed
one after the other, and these discontinuities are distinctly audible. This
problem can be solved by cutting up the signal in windows with an a%
overlap. When the signal is created, the calculated window 1s multiplied
by a triangular or trapezoidal window then added with an overlap of a%
to the previous window (Figure 10.5).

Overlapping windows

+
W

Figure 10.5 — Reconstruction with overlapping blocks

This “Overlap-Add” technique ensures a satisfactory continuity of the
total trajectory.

HiNT: the following program analyzes and synthetizes a piano note. The
duration of a window was set to 350 samples, which corresponds for this note
to a little over 4 periods. The window must be chosen long enough, but not
too long to maintain a good stationarity. A long window is particularly badly
suited for the attack and the release of a note.
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%===== ANANOTE.M

clear

figure (1)

load piano; Fe=24000; N=length(piano);
%===== Splitting in blocks

1bloc=350; nbblocs=fix(/1bloc);
pianoF=piano (1:nbblocs*1bloc);
xsyn=zeros (nbblocs*1bloc,1);
tpsbloc=(0:1bloc-1)/Fe;
%===== Windows
fenH=0.54-0.46%cos (2%pi*(0:1bloc-1)’/(1bloc-1));
fenH=fenH*1bloc/sum(fenH) ; % Normalization
fenT=2%[(0:1bloc/2-1)’; (1bloc/2-1:-1:0)’]/1bloc;
%===== Parameters of the spectral analysis
P=12; Lfft=4096; deltaf=2%round(Lfft/1bloc) ;
fq=Fex (0:Lfft/2-1) /LEft;
%===== Processing
for jj=0:2*nbblocs-2
jj1=(1bloc/2)*jj+1; jj2=jjil+lbloc-1;
x=pianoF(jjl:jj2) .* fenH; x=x-mean(x);
fs=zeros(1,P); mm=zeros(P,1);
%===== Spectrum
xf=fft (x,Lfft); xf=xf(1:Lfft/2)/1bloc; xfvar=xf;
xfvar(1l:deltaf)=zeros(1,deltaf);
%===== Analysis
for ii=1:P
[bid im]=max(abs(xfvar));
fs(ii)=(im-1)/Lfft; mm(ii,1)=xfvar(im);
ul=max(1,im-deltaf) ;u2=min(Lfft/2,im+tdeltaf) ;
nb=u2-ul+1l; xfvar(ul:u2)=zeros(1,nb);

end

%===== Synthesis
xsyn_f=2+*real (exp (2*j*pi*(0:1bloc-1) ’*fs) *mm) ;

%===== Overlap-add

xsyn(jjl:jj2)=xsyn(jjl:jj2)+ xsyn_f .* fenT;

subplot (211) ;

plot (tpsbloc,pianoF(jj1:jj2),’:’ ,tpsbloc,xsyn_f); grid
%===== Drawing the spectra

subplot (212) ,plot (fq,20%1log10 (abs (xf))) ;

set (gca, ’ylim’,[-70 0])

hold on; plot(fs*Fe,20%log10(abs(mm)),’or’); hold off;
grid; pause

end
ti=(0:nbblocs*1lbloc-1);
%===== Displaying the reconstructed signal

figure(2); plot(ti,pianoF,’b’,ti,xsyn,’r’); grid
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The diagram at the bottom of Figure 10.6 shows the spectra of a signal
portion and of the estimated frequencies and amplitudes. The graph above it
shows the analyzed (dashed line) and synthetized signal (full line). [

0 1 ,600 2,000 3,000 4,000 5,000 6,000

Figure 10.6 — Frequency and amplitude estimates of the harmonic part for a win-
dow of 350 samples extracted from the signal shown in Figure 10.3. Top figure: the
original signal (dashed line) and the synthetized signal (full line). Bottom figure: the
periodogram. The dots ('0’) indicate frequency and amplitude estimates

We wish to determine sinusoidal frequencies, but in most problems, the
number of sines is unknown. We can mention the case of the number of signifi-
cant frequential components in a music signal (see example 10.2) or the case of
the RADAR where P represents the number of targets that are being tracked.
Unfortunately, estimating P is a difficult problem, and the reader can find more
detailed information in the literature [54]. We will now introduce a heuristic
method that has the advantage of being simple. It is based on the comment
made on page 352 explaining that the periodogram’s level is basically equal to
the noise levels at the frequencies other than the sine frequencies. We are also
going to estimate the value of ¢? and use it to estimate the number of sines:

— Let us assume that the number of sines is less than a set value Py,
given a priori. Its value depends on the practical information available
concerning the system being studied.

— The periodogram is computed over L FFT points, and the values located
in a A-wide interval around each of the P, maxima. This makes it
possible to eliminate the sinusoidal contributions. The choice of A de-
pends on the type of window used and the number of FFT points. It can
be adjusted depending on the situation. Usually the number of lobes is
chosen to be an integer.

2

— Based on the remaining values of the periodogram, o< is estimated.

— Finally, only the P maxima greater than a certain threshold are kept.
The choice of this threshold can be made according to the 3-sigma rule.
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In terms of power, this leads the values of the periodogram smaller than
962 to be considered as noise, and the rest as part of the signal.

NBSIN.M

Definition of the signal

A=[2 1.5 1]; F=[0.1;0.23;0.3]; N=100; Lfft=128;
deltap=3*round(Lfft/N); % Value to adjust

% typically 3*Lfft/N

%===== (Generation of samples
s=A*cos (2xpixF* (0:N-1)); sigma2=0.4;
Pmax=6; %==== Number of sines

mm=zeros (1,Pmax) ; x=s+sqrt(sigma2)*randn(1,N);
xf=abs (£ft (x,Lfft)) .~ 2 / N ;
xfplus=xf(2:Lfft/2);
for ii=1:Pmax
[mm(ii) im]=max(xfplus);
ul=max(1,im-deltap); u2=min(Lfft/2,im+deltap);
nb=u2-ul+1;
%===== Set to 0 close to the maxima
xfplus (ul:u2)=zeros (1,nb);
end
nbz=length (find (xfplus==0)) ;
%===== Mean of the values of the periodogram
sigma2est=sum(xfplus)/((Lfft/2)-nbz) ;
seuil=9*sigma2est;
P=length(find (mm>seuil));
disp(sprintf(’%2i sines’,P))

10.3 High resolution methods

Unlike the methods using the periodogram, even with windowing, the high
resolution methods are such that the error tends to zero when SNR — co.

10.3.1 Periodic signals and recursive equations

Property 10.1 Let s(n) be the harmonic signal such that:

s(n) = Zak exp(2jmfin) (10.22)

where ay is a sequence of P compler amplitudes and fi is a sequence of P
frequencies, all of them different from one another. Then there is a sequence
b1, ..., bp such that:

1. the signal s(n) obeys the recursive equation:

s(n)+bis(n—1)+---+bps(n—P)=0 (10.23)
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2. and the equation:
B(z) =2 +b2P 7 4 4 bp =0 (10.24)
has its P distinct roots on the unit circle.
Conversely, if s(n) obeys 10.23, and if B(2) = 2F +b1zF~1 + ...+ bp has

its P distinct roots on the unit circle, then s(n) is of the type 10.22 where the
ag are any P complexr values.

The proof of this i1s in every way the same as the one given in Chapter §,
page 409 for random harmonic processes. It leads to B(z) = Hkpzl(z — zi)
where z; = 23775

This is even more true when s(n) is a real signal, sum of P sines of the
type:

P
s(n) = Z ai cos(2mfyn + ¢r)
k=1

[l
]~

% [ej‘z’k exp(2jmfxn) 4 e7I9% exp(—?jﬂ'fkn)]
1

=
o
I

= > olf
k=1

where the (i are the 2P values of the type e This is because s(n) is
expressed as the sum of 2P complex exponentials the frequencies of which come
in pairs of positive and negative values. Therefore, according to property 10.1,
s(n) obeys a recursive equation of the type s(n)+bys(n—1)+...+baps(n—2P) =
0 where the 2P degree polynomial B(z) = 228 4 b, 22P~1 4+ .. 4 byp has all of
its roots on the unit circle come in pairs of complex conjugate values. Hence
the coefficients of B(z) are real.

An important example i1s that of a periodic signal with period T, sum of
sines the frequencies of which are multiples of the fundamental frequency 1/7.
In this case, the roots of B(z) are regularly distributed on the unit circle.

Notice that in any case, the recursive equation associated with the signal
depends on the sequence of frequencies of this signal (by way of the coefficients
of B(z)) but is independent of the sequence of complex amplitudes. Remember
that if the roots are strictly inside the unit circle, then the signal is evanescent
with a time constant that increases as the root with the highest modulus gets
closer to 1. We are now going to see that the recursive equation can be modified
by filtering.

*2j7 i

Filtering a periodic signal with a linear filter

We know that filtering a sine of frequency fy leads to a sine with the same fre-
quency fo, the amplitude of which is multiplied by H(fy), where H(f) refers
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to the filter’s complex gain. The same goes for any linear combination of sines.
Hence, because a sum of sines obeys the M-th order recursive equation, the
signal obtained after filtering obeys the same order recursive equation. This
result should not be surprising since, as we have just seen, this equation has
several solutions that differ only by the amplitudes of each frequential compo-
nent. And the amplitudes of these components are precisely what is set by the
filter’s frequency response.

Example 10.3 (Impulse train)
Consider the signal made up of a sequence of periodic impulses with period M
and with the same amplitude A:
A forn =0 mod M
zo(n) =

0 otherwise

1. Give the recursive equation verified by #(n).
2. Give the general solution z(n) to the previous recursive equation.

3. z(n) is fed into the input of a filter with the complex gain H(f). Give
the expression of the output signal y(n). Is it possible to determine H(f)
based on the signal y(n)?

4. Show that, when the filter is an all-pole filter with the transfer function
1/A(z) and M > 1, A(z) can be estimated using the least squares method
without having to estimate M. You can use the xtoa function written
previously (see page 330). Write a program that checks the result.

HINT:

1. The signal z(n) verifies the recursive equation z(n) — z(n — M) = 0.

2. To find the general solution, we must first solve the characteristic equation
zM —1 =0, the roots of which are ; = exp(2jrk/M), k=0,..., M —1.
The general solution is then given by:

M-1

z(n) = Z ok exp(2jmkn/M)
k=0

where the ay are M arbitrary complex constants. One example is the
impulse sequence zg(n) for which a, = A/M. We end up with the same
identity as 2.33.

3. Based on the complex exponential filtering property and because of lin-
earity, we have:

M

M
y(n) = ZakH(k/M) exp(2jmhkn/M) = Zﬁk exp(2jmkn/M)
k=1 k=1
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Hence y(n) also verifies y(n) — y(n — M) = 0.

Theoretically, without any further information, we cannot find H(f) for
any f based on the signal y(n), because the values of H(f) of the type
H(k/M) are found in the expression of y(n). However, if M is large,
the function H(f) will be sampled at a high rate, and under certain
regularity conditions, we can find a unique reconstruction of H(f). An
example of a constraint is for the sequence h(n), the inverse DTFT of
H(f), to have a duration shorter than M. Another example is to have
an all pole filter with the P-th order transfer function 1/A(z). In that
case, the polynomial A(z) is completely determined once the P frequency
points are known, and then we only need to have M > P.

. Since the filter has the P-th order transfer function 1/A(z), we can write:
y(n) +ary(n — 1)+ -+ apy(n — P) = z(n)

where z(n) is the sequence of impulses with the amplitude A and the
period M. Based on a sequence of observations y(1), ..., y(N), and by
stacking the recursive equations, we get the matrix expression:

y(P+ 1)+ ary(P) + -+ apy(l) = z(P +1)
y(P) +ary(P — 1) + -+ apy(0) = z(P)

y(N)+a1y(N —1)+ -+ apy(N — P) = z(N)
This set of expressions can be written as follows:

y Y] [;] v+ Ya-4i

and can be rewritten as:
y = —Ya + Ai (10.25)

where Y is the Toeplitz matrix the first line of which is [y(P) ... y(1)], and
the first column of which is [y(P) ... y(N —1)],y = [y(P+1) ...y(N)]7,
a=[a; ...ap]”, and where i is a periodic eigenvector comprised of a 1
followed by (M — 1) zeros. Let us now assume that M is much greater
than 1. The vector i contains almost nothing but zeros, and a can be
estimated using a “least squares” type approach by minimizing, with
respect to a, the norm J(a) = ||y — (= Ya)||> = (y + Ya)T (y + Ya). If
we set the gradient of J(a) to zero, we have:

dJ(a)
Oa

=2Y (y + Ya) = 2(Y'y + YT Ya) = 0
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leading to the estimate:

a=—(Y'Y)"'Y'y = —(YT'Y/N) L (YTy/N) (10.26)

The matrix (YZY)/N and the vector (YZy/N) can be seen as elements
constructed from the covariances. Hence expression 10.26 is similar to the
equation a = —R~'r derived from the Yule-Walker equations 8.58, which
relate the parameters of an AR process to the covariance coefficients.
Thus, we can use the xtoa function, the advantage of which is to provide
us with a stable filter. Type:

%===== FILTRAIN.M
clear all, close all
Fg=8000; F0=120; % FO frequency in Hz
M=round(Fs/F0); % Period in sample number
For "ideal'" pulse P=1
In all cases, P must be much smaller than M
P=1; pulse=ones(P,1);
% An other pulseshape:[0.2;0.7;1;0.3;0.1];
nbpulses=20; lx=nbpulses*M; xs=zeros(lx,1);
for tt=0:nbpulses-1

ii=tt*M+1;iifin=ii+P-1;

xg(ii:iifin)=pulse;
end
K=10; % Try any shift
xs=[zeros(K,1);xs]; 1lx=length(xs);
xs=xs*sqrt (1x) /sum(xs); Px=xs’#*xs/1x;
subplot (411); plot((1:1x)/Fs,xs)
nfft=2"nextpow2(1lx); freq=Fs*(0:nfft-1)/nfft;
Xf=abs (fft (xs,nfft))/sqrt(1x);
subplot (412); plot(freq,Xf); set(gca,’xlim’,[0 Fs/2]);
%===== Filtering
aa=[1;-1.6;0.9]; Hf=1./abs(fft (aa,nfft));
ys=filter(l,aa,xs); Yf=abs(fft(ys,nfft))/sqrt(1lx);
subplot (413) ; plot(freq,Yf);
hold on; plot(freq, Hf,’r’); hold off;
set (gca, ’x1im’, [0 Fs/2]);
[aae sse]l=xtoa(ys,2); [aa aael,[Px sse]
subplot (414) ; hatxs=filter(aae,1,ys); plot((1:1x)/Fs, hatxs)

The advantage of this method is that it requires neither the estimate of the
period M nor the estimates of the phases corresponding to the precise times
when x(n) is equal to 1.
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10.3.2 The Prony method

The least squares method used in paragraph 10.1 uses a model for the signal.
We already explained in paragraph 10.1 that this leads us to the difficult task of
finding the maximum of a multivariable function. The periodogram is another
method that approximates the previous calculation. Its advantage i1s that it
only requires the search for the M maxima of a single-variable function. It
is, however, limited when it comes to frequency resolution. We know that
the order of magnitude for this limit is 2/N, where N is the duration of the
observation.

We are now going to discuss a method invented in the 18th century by the
Baron of Prony, a method that enhances the resolution while still having the
advantage of requiring only the search for the maximum of a single-variable
function.

Exercise 10.1 (The Prony method)
Consider the noised harmonic signal z(n) = s(n) + w(n) where:

P
s(n) = Z ai cos(2mfyn + ¢r)

k=1

and where w(n) is a white, centered, Gaussian noise with the variance o%. {ay}
refers to a sequence of P unknown amplitudes, assumed to be all different from
one another, and ¢ refers to a sequence of P unknown phases belonging to

(0,2m).

1. Given equation 10.24, how can the sequence of frequencies fi, ..., fp be
determined based on the sequence of values by, ..., bap 7

2. If we assume that £(n) = w(n) + byw(n — 1) + -+ - 4+ bapw(n — 2P) and
add s(n) + b1s(n— 1)+ -+ -+ baps(n — 2P) = 0 to the second member,
we get e(n) = z(n) + bye(n — 1) + -+ -+ bapx(n — 2P). We are going to
try to determine the sequence by, ..., bop that minimizes ) £%(n).

Show that this is equivalent to minimizing, with respect to b =
[1by ... bap]”, an expression of the type:

b"(DTD)b

where D is a matrix obtained from the observations z(0), ..., (N —1).

Using the Lagrange multiplier method (see page 382 and the Capon
method), find the expression of b and therefore the frequencies fj.

3. Write a program that implements the Prony method. Study this method’s
performances by choosing for example the test signal x generated by the
program:
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%===== SIGNALTEST.M

N=25; Am=[2 1.5 1]; F=[0.2 0.225 0.3];
s=Am*cos (24pi*F’*(0:N-1));

SNR=40; sigma2= (s#*s’/N)/(10 ~(SNR/10));
x=s+sqrt (sigma2)*randn(1,N) ;

COMMENTS:

1. The recursive equation s(n) +b1s(n—1)+---+bps(n— P) =0, given in
property 10.1, should be assimilated to equation 8.53 (Chapter 8) which
defines an AR-P random process with its second member equal to zero
and with its poles on the unit circle. AR identification is known for
usually behaving very badly with noised observations. This is also the
case of the Prony method, which provides good results only when the
noise is low.

2. The Prony method can also be applied to signals that are sums of damped
sines of the type:

P

Z Agpl; cos(2mfon + ¢r)

k=1

s(n)

P
A , . iy )
= ZpZTk (6‘7¢k exp(2jmfxn) + e 719k exp(—?jﬂ'fkn))
k=1

It can easily be proven that s(n) verifies the recursive equation s(n) +
bys(n — 1) + -+ + baps(n — 2P) = 0, where the polynomial B(z) =
22 4 012°P~T 4 ... 4 byp has 2P complex conjugate roots given by zp =
pi exp(£2j7fi). The previous algorithm makes it possible to calculate
the by, then the roots z; and therefore the frequencies f; and the damping
coeflicients py.

Exercise 10.2 (The Pisarenko method)
Consider the real, discrete-time observation z(n) = s(n;#) + b(n), sum of a
centered, WSS, random sequence s(n;#), that represents the signal with the
vector parameter § we wish to estimate, and of a noise b(n) assumed to be
WSS, centered, white, with the variance ¢, and uncorrelated with s(n; 0).
Let R;s(k) = E{s(n+k;0)s(n;0)} be the autocovariance function of
s(n; @), and let Ry, Ry and Ry, be the (M x M) covariance matrices of the
random vectors obtained by stacking M consecutive times of s(n;#), b(n) and
z(n) respectively. Hence, because s(n;#) is centered, Ry can be written:

Ry, (0) o Ry (M —1)
R, = z g z
Re(=M +1) -+ Ry, (0)
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Because the sequence R, (k) is even, the matrix Ry is symmetrical. As for
the noise b(n) assumed to be white, we have Ry, = 0?1 where I refers to the
size M identity matrix.

1. Show that R, = R, + ¢°1.

2. The rank of the matrix R; is assumed to be R = (M — @) and let {Ay,
...y AM—q} be the non-zero (hence strictly positive) eigenvalues of R.
Use this to show that the eigenvalues p,, of R, can be arranged in the
following order:

f1 > fiy > > UM > MGl = BM G2 = = g = O

3. Let us assume the random signal is of the type:
s(n; A, fo) = Acos(2r fon + @)

where A is an unknown positive amplitude, fy is an unknown frequency
belonging to (0,1/2) and @ is a random variable with a probability distri-
bution uniformly distributed on (—m, +7) and assumed to be independent

of b(n).

Determine E{s(n)} and E{s(n+ k)s(n)}. By using the fact that any
sine 1s the solution to a recursive equation with its second member equal
to zero, show that the (3 x 3) matrix R, usually has a rank equal to 2.

This means that there is a non-zero vector of the typea = [I =2z 0]7
such that R;a = 0.

4. Generalize the previous result and infer a method for estimating f; based
on R;.

5. Evaluate this method’s performance using the test signal x generated by
the program signaltest.m, and compare the results to those obtained
with the Prony method.

Y===== STGNALTEST.M

N=25; Am=[2 1.5 1]; F=[0.2 0.225 0.3];
s=Am*cos (24pi*F’*(0:N-1));

SNR=40; sigma2= (s#*s’/N)/(10 ~(SNR/10));
x=s+sqrt (sigma2)*randn(1,N) ;

The Pisarenko method can be generalized and leads to the MUSIC algo-
rithm (for MUltiple SIgnal Classification) presented in paragraph 10.3.3.
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10.3.3 The MUSIC algorithm

In this paragraph, we are going to present a method that belongs to the cate-
gory of what are called subspace methods, and that will provide us with a way
of estimating the frequencies of a harmonic mixture by finding the P minima
of a single-variable function. The algorithm, the acronym of which is MUSIC,
for MUltiple Signal Characterization, works better than the DTFT when the
frequency differences are much smaller than the inverse of the number of ob-
served points (resolution limit of Fourier). TFurthermore, it can be applied to
a broader observation model than that of sines corrupted by noise.

Based on the example of a sum of P real sines corrupted by white noise,
we are going to end up with equation 10.29 responsible, because of how it is
written, for the notable properties of the covariance matrix.

Sum of P real sines corrupted by white noise

Consider the real observation z(n), n € {0, ..., N — 1}, of the type:
P
Zak cos(2m fxn) —|—Zbk sin(27 fyn) + b(n) (10.27)
k=1 k=1

1. {fx }is a sequence of P frequencies, all of them different from one another,
belonging to the interval (0,1/2);

2. {ag} and {bg} are two sequences of P real values;

3. b(n) is a centered, white noise, with the unknown variance o?.

Once the sequence fi has been estimated, the sequences ag and by can be
estimated using the least squares method. Refer to expression 10.8 on page
345.

Let us now develop s(n + £). We successively get:

P
(n+1) Z ap cos(2mn i) cos(2mlfi) — ag sin(2mn fi,) sin(27L fr)
k=1 k=1
P P
+ Z by cos(2mn fy) sin(2wlfi) + Z by sin(2mn fi, ) cos(2mL f)
k=1 k=1
Let 8 =[0, ... 0p]" where 0 = 2nfx and let:
cos(2mlf1) ay cos(2mn f1) + by sin(27nf1)
_ |cos(2nlfp) | apcos(2mnfp) + bpsin(2wnfp)
w(6) = sin(2mlf1) and s(n) = —aysin(2mnfi) + by cos(2mnfi)

sin(é;r.ﬁfp) —ap sin(?ﬂnfp.).—l.— bp cos(2mnfp)
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With these notations, we have:

s(n 4+ £) = ul (8)s(n) (10.28)
If we stack M values s(n +£) for £ =0, ..., M — 1, we can write:

s(n) u; ()
: = : s(n) = A(6)s(n)
s+ M-1)]  [ud,_,(0)

Finally, if we add noise, we end up with the observation model:

x(n) = A(8)s(n) + b(n) (10.29)

where we have assumed:

x(n) = [z(n) z(n+1) - zn+M-1]"

b(n) =[b(n) bn+1) - bn+M-—1)7"
and where A(0) is an (M x 2P) matrix with the expression:

A(B)=[C(8) S(6)] (10.30)

1 1
with  C(8) = cos(zﬁﬁl) e cos(£0p)
cos((M = 1)8y) -+ cos((M — 1))
0 0
and  S(0) = sin(zﬁﬁl) e sin(¢0p)
sin((M —1)01) - sin((M —1)fp)

Notice that, in expression 10.29, the observation is of the type “signal plus
noise” | and that the signal part, that is A(8)s(n), is the product of two terms,
one of them, A(6), depending only on the paramater 8 we wish to estimate,
and the other, s(n), depending only on n.

Based on a sequence of N observations #(0), ..., (N — 1), consider the
(M x M) matrix defined by:

Ry = N_;MH HZ_: x(n)x" (n) (10.31)

=0
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If we change over to the mathematical expectation on the two sides of 10.31,
then use 10.29 and the white noise hypothesis, we get:

E{f{N} = N_;MH Z:O E{x(n)x"(n)} = A(O)R,AT(0) + oIy

where I is the M x M identity matrix and where:

1 N-M
— H
Rs = m nz_% S(TL)S (n)

is a (2P x 2P) matrix, hence the mean of f{N is equal to A(Q)R A (0)+021y,.
We will assume rather than prove that if NV is much greater than M, Ry is a
good estimate of the M x M matrix defined by:

R = A6)R,A7(8) + 0’1y (10.32)

The MUSIC algorithm uses the fact that the eigendecomposition of the
matrix Rg = A(0)R;A¥(6) can be obtained directly from that of R, and
hence from that of its estimate f{N. Before we present the MUSIC algorithm,
we are going to determine an important property inferred from the general
form of the observation model provided by expression 10.29.

General form of the observation model

Consider the size M complex observation model:

x(n) = A(8)s(n) +b(n) (10.33)

signal

where the M x P matrix A(6) with M > P is of the type:
A(0) =[a(0y)---a(bp)] (10.34)

where 05 belongs to a scalar domain ©. Notice that the same function a(f)
is used to define the P columns of the matrix A(#). This model includes of
course the case of a sum of P real sines. This is done simply by decomposing
each sine with the frequency fx as the sum of two complex exponentials with
the frequencies +fx. In that case, the matrix A (0) is given by expression 10.30.
We will see another application for this observation model in paragraph 10.3.4.

We now come back to the general model 10.33. The P column vectors of
the matrix A(6) generate in C* a P’ dimension subspace, with P’ < P, called
the signal subspace. Tts complementary, dimension (M — P’) subspace is called
the noise subspace.
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Let s(n) be a centered, length P, complex vector, and let R, =
E{s(n)sH(n)} be its covariance matrix. Let b(n) be a centered, length M,
complex noise such that:

E{b(n)bH(n)} = Iy

s(n) and b(n) are assumed to be uncorrelated. This means that x(n) is centered
and that its covariance matrix has the expression:

R =E{x(n)x"(n)} = A(@)RAY(8) + 0’1y = Ro +’Iyy  (10.35)

where we have assumed Ry = A(0)R;A%(6). The form of expression 10.35
leads to the following properties:

Ry is a positive matrix with a rank < P
This is because R is a positive matrix, the rank of which is less than or
equal to P. Therefore A(8)R;A(8) is itself positive with a rank smaller
than or equal to P, since it is generated by the P column vectors of A.

If the ranks of A(#) and R are equal to P, in other words if A(€) and
R are full rank matrices, then Ry i1s a full rank matrix.

R and R, have the same eigenvectors
This is because Ry has P’ < P strictly positive eigenvalues and (M — P’)
null eigenvalues. This result i1s a direct consequence of the previous result.
The set of these eigenvectors is an orthonormal basis of C¥ .

Let vy, ..., vp: be the eigenvectors associated with the strictly positive
eigenvalues of Ry. We have Rgv; = A;v;. If we multiply equation 10.35
on the right by v;, we get Rv; = (¢2+\;)v;. Therefore, p; = o2+ X\; > o
is an eigenvalue of R associated with the eigenvector v;.

Let g1, ..., gk, with K = M — P’  be the eigenvectors associated with
the null eigenvalues of Ry. We have Rgg; = 0. If we multiply equation
10.35 on the right by g;, we get Rg; = o?g;. Therefore ¢? is an eigenvalue
of R with multiplicity K, associated with the eigenvectors g1, ..., gx.

Remember that Vfgk = 0 for any pair (j, k), which is a consequence of
the orthogonality of the eigendecomposition of a positive matrix.

COMMENT: we saw on page 352 that the periodogram of a sum of sines
and of a noise tends to 2 for the frequency values that are different from
the frequencies of the sine components. This result is similar to the pre-
vious one stating that the eigenvalues of the noise subspace are all equal
to ¢?. The Fourier transform performs some kind of orthogonal decom-
position that approximately separates the space in a signal subspace and
a noise subspace. In the noise subspace, each component then has the

samne power O'2 .

As a conclusion, we have the following theorem.
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Theorem 10.1 Let x(n) be the size M complex observation model:

x(n) = A(8)s(n) + b(n) (10.36)
where the (M x P) matriz A(0) with M > P is of the type:

A(8) = [a(6:)---a(bp)]

s(n) is a centered process with the covariance matrir Ry = E{s( st n)}, b(n)
18 a centered white noise with the covariance matrix E{b(n)b
s(n) and b(n) are assumed to be uncorrelated. If Ro = A(O)R;AH(6) then
x(n) is centered and its covariance matriz is such that:

R =R, + 0’1 =VAVH 1 GG (10.37)

where the matriz 'V is comprised of P’ < P orthonormal eigenvectors of Ry
associated with strictly positive eigenvalues, where A = diag(A1, ..., Aps) is the
diagonal matrix with these eigenvalues on its diagonal, and where the matriz
G is comprised of the M — P’ unit eigenvectors of Ry associated with null
eigenvalues. We have VIG = 0. Notice that GHG = 1 and therefore that
GGH is the orthogonal projector onto the noise subspace.

Theorem 10.1 implies the following.

Property 10.2 The subspace generated by the columns of 'V coincides with
the subspace generated by the columns of A(0)R;, and both are contained in
the space generated by the columns of A(6) This means that if P’ refers to the
rank of Ry where P’ < P, then there is a full rank (P x P') matriz T such that
V=A(0)T.

Estimation based on the noise subspace

Consider the general complex situation presented in theorem 10.1. Starting
off with the orthogonality property of A(#) with the noise subspace, we are
going to construct an estimation of #;, ..., #p based on the P minima of a
single-variable function. In the case where a(f) is of the complex exponential
type, this function is in the form of a trigonometric polynomial.

If we multiply equation 10.37 on the right by G, we get R¢G = 0 and
therefore:

ABRAT(8)G =0 (10.38)

The MUSIC estimator searches for the value of 8 such that A% (6)G = 0,
which means that 10.38 is true. The converse is true if the (M x P) matrix
A(O)R; is a full rank matrix.
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Remember that for any matrix M, we have the equivalence:

M = 0 <= Tr(MM#) = 0 (10.39)

We simply have to notice that Tr(MM#) = o> Mg |2, where myy, refers
to the generic element of M.

Using 10.39 then leads us to the following expression for the MUSIC esti-
mator of the 8 parameter.

Property 10.3 (MUSIC estimator) The MUSIC estimator of the 8 param-
eter associated with the model 10.33 1s:

Orusic = arg Join Tr (A(B)AT (8)GGT) (10.40)

where GG is the orthogonal projector onto the noise subspace obtained from
the decomposition of the covariance matriz estimate.

If we replace 10.34 in expression 10.40, we get:

Tr (A(0)AT (0)GGH) = > Tr(a(bp)a” (0:)GGH) =D a" (6,) GG a(0y)

Because GG is a positive matrix, the minimization is equivalent to finding
the P arguments of the P minima that are closest to 0 of the single-variable
function:

J(0) = a(0)? GG a(0) (10.41)

Numerical computation of the P minima

The simplest and broadest method for finding the minima of J(#) consists of
calculating J(#) on a set of values ¢ sampled on a fine grid (see also exercise
10.3). The minima are identified by typing:

| idxMin=find (diff (sign(diff (J)))==2);

This method will be used in the FFT-MUSIC algorithm.

We are now going to see methods for which a(f) is comprised of complex
exponentials, which means we can use the FFT.
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Case where the components are complex exponentials

Consider the particular case where the function can be written:
. . T
a(f) = [ 1 edf ... pd(M-1)8 ]

This includes the case defined by expression 10.30. All we have to do is
group together the two columns ¢(f;) and s(f;) obtained from the sequences
cos(£0;) and sin(€6y), and then set a(fy) = c(0k) + js(bk).

According to 10.41, an estimation of 1, ..., 8p is obtained by determining
the P minima of the single-variable function:

Q%) = af (0)GGHa(0)

Notice that @(e’?) can also be interpreted as the value, calculated on the
unit circle, of the polynomial:

Q(z) =af(1/:)GGa,(z) (10.42)
where a,(z) [ M_l]T and where z = ¢/%. With this notation,
we then have af(l/z y=[1 ==t ... »~M-D] and:

1
Q(z) = ,~WM-D M-t . 1]GGH Z =" M-DQ(z)  (10.43)
L

Q(z) is a 2(M — 1) degree polynomial in z the roots of which come in pairs,
since, by construction, if zp is a root, then 1/2{ is a root.

Calculation of the coefficients of the polynomial Q(z)
Let P = GG be the matrix with its generating element given by:

K
Pij :Zgikg;k fori,j=1,...,.M
k=1

where g, is the i-th component of the k-th column vector of G = [g1 ... gk

gk ]. The coefficients ¢4 of the polynomial Q( )= ?lMO qqz® are obtained

from the relation 10.43, which i1s written:
Q4= PM—dskryr for  d=0,... (M—1)
qd:sz_d_z with dIM,,(QM—Q)

As you can see, the coefficients ¢4 are calculated as the sum of the diagonal
terms of the matrix GG* according to the diagram in Figure 10.7.
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Degree M Degree 2M-2

Degree M—1 Piv

Degree d

Degree 0 P

Figure 10.7 — Calculation of the coefficients of Q(z) based on P = GG¥

Implementation of the MUSIC algorithm

The following sums up the MUSIC algorithm in the case of an observation
that is the sum of P complex exponential components. In the particular case
where the signal z(n) is the sum of P real sines, all we have to do is apply the
algorithm by considering z(n) as a linear combination of complex exponentials.

1. Choose M > P.
2. Calculate:

1 N-M
— H
RN = m HZ:% X(TL)X (n)

with X(n) = [x(n) x(n + M- 1)]H

3. Calculate the eigendecomposition of Rn. Use it to find the (M x
(M — P)) matriz G, constructed from the (M — P) eigenvectors
associated with the (M — P) smallest eigenvalues. Caleulate the
(M x M) matrir GGH .

4. Use the previous result to find the coefficients of the polynomual
(equation 10.43):

Q(z):[zM_l ez I]GGH[l PR zM_l]T

Once the polynomial Q(z) is obtained, the estimation of the P values f; =
0 /27 can then be achieved, among other possibilities:

1. by calculating the 2(M —1) roots of Q(z), then keeping the P stable roots
that are closest to the unit circle. This is called the root-music method;
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2. or by finding the P minima of Q(ej‘g). This is achieved simply by calcu-
lating, with the help of the £ft function, Q(e/%) for § = 27wk/L, where
k€ {0,...,L —1}. This is called the fft-music method.

The two methods lead basically to the same values if the roots of the poly-
nomial Q(z) are very close to the unit circle. Remember that they would be on
the unit circle if the signal were a perfect mixture of exponentials without noise.
The FFT method then has a small advantage, because root finding algorithms
often require more computation time. However, in the presence of significant
noise, it would seem the root finding method is better suited.

Performances depend on the choice of M. What should be remembered is
that M has to tend to infinity when N tends to infinity, but not as fast as IV,
which is the case for example for M = N7, with v < 1, such as v = 4/5, or

v =2/3.

ROOT-MUSIC The music(xm,p) function given below implements the MU-
SIC algorithm for the estimation of the frequencies of a sum of P com-
plex exponentials by using a root finding method for the polynomial
Q(z) It first calculates R, based on the expression 10.31 where we
chose M = N*/5 (try also for example M = N2/3). Then 1t calculates
the vectors of the noise subspace with the use of the MATLAB® function
svd! and uses the result to find the coefficients of the polynomial Q(z)
(given by 10.43). Finally, the function returns the roots of Q(z) using
the MATLAB® function roots. Based on the values of these roots, it

can then estimate the frequencies f1, ..., fp using the angle function.
function [z]=music(xm,p)
hh %
%% MUSIC: Estimation of the roots of a polynomial 7%
%% for p complex exponentials in a white noise %
%% SYNOPSIS: [z]=MUSIC(xm,p) %
Wh xm = Complex observations %
%h p = Number of complex exponentials %
%h z = Estimation of the p complex roots %
%h corresponding to the p frequencies %
o %
xm=xm(:); xm=xm-mean (xm); N=length (xm);
%===== M must be > p
M=fix (N~ (4/5));
R2x=zeros (M,M) ;

You can also use the MATLAB® function eig, since the matrix we are dealing with
is square, positive, and therefore its singular value decomposition (svd function) and its
eigendecomposition (eigen values) coincide. However, the eig function does not sort the

eigenvalues, and must be followed by the MATLAB® function sort.
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for ii=1:N-M+1
idb=ii; ifn=idb+M-1;
C2x=xm(idb:ifn)*xm(idb:ifn)’;
R2x=R2x+C2x;

end

R2x=R2x/ (N-M+1); [ul d1 vi]=svd(R2x);

GG=v1(:,p+1:M); PP=GG*GG’; QQ=zeros(2xM-1,1);

%===== Constructing Q(z)
for d=0:M-1
for k=0:d
QQ(d+1) = QQ(d+1) + PP(M-d+k,k+1);
end
end

QQ(M+1:2*M-1)=conj (QQ(M-1:-1:1));

zz=roots (QQ(2*%M-1:-1:1));

%===== The roots with moduli > 1

% and with non-zero imaginary parts
v=find(abs (zz)<=1 & imag(zz) “=0);

z=sort (zz(v)); mr=length(z); z=z(mr-p+1l:mr);

return

This function can be used for signals containing P real sines, simply by
considering 2P complex exponentials. The function returns a sequence
of complex conjugate values (see example 10.4).

FFT-MUSIC The musicFFT(xm,p) function implements the MUSIC algo-
rithm for the estimation of the frequencies of a sum of P complex expo-
nentials by searching for the minima of the polynomial on the unit circle.
It first calculates R, based on the expression (10.31) where we chose
M = N*/5 Then it uses the result to find the coefficients of the polyno-
mial Q(z) (given by 10.43). Finally, it returns the P values of z on the
unit circle that minimize Q(z). This is achieved by the FFT computation
of Lfft values of the polynomial Q(z) Then the P minima are found
first by determining the sign of the derivative between two consecutive
values with the use of the command dQQfft=filter([-1 1],1,QQfft)
(you can also use the diff function which returns one less value). When
the sign of the derivative goes from —1 to +1, it means we just went
by a minimum. To run this test, the filter function is used once more
by executing dsdQQfft=filter([1 -1],1,sdQQfft) and comparing the
result with the value (+1) — (=1) = 2.

The choice of Lfft modifies the accuracy of the calculation of the obtained
minima. We chose LEft=16%1024 in the function function musicFFT.m.
Restricting the search to the minima by calculating more values of Q(z)
could save you some time, but only in the neighborhoods of the obtained
values.

||function [zout ,QQfft]=musicFFT (xm,p)
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% %
%% MUSIC: Estimation of the frequencies in a mixture %
%% of p complex exponentials in a white noise %
%% SYNOPSIS: [zout,QQfft]=MUSICFFT (xm,p) %
%h Xm = Complex observation sequences %
% P = Number of complex exponentials %
Wh zout = Estimation of the p complex roots %
%h on the unit circle %
% %
xm=xm(:); xm=xm-mean (xm); N=length (xm);

%===== M must be > p

M=fix (N~ (4/5)); R2x=zeros(M,M);
for ii=1:N-M+1
idb=ii; ifn=idb+M-1;
C2x=xm(idb:ifn)*xm(idb:ifn)’; R2x=R2x+C2x;
end
R2x=R2x/(N-M+1); [ul di1 vil=svd(R2x);
GG=v1(:,p+1:M); PP=GG*GG’; QQ=zeros(2xM-1,1);

%===== Constructing Q(z)
for d=0:M-1
for k=0:d
QQ(d+1) = QQ(d+1) + PP(M-d+k,k+1);
end
end

QQ(M+1:2%M-1)=conj (QQ(M-1:-1:1)); QQ=QQ(2*M-1:-1:1);
Lfft=16%1024; QQfft=abs (£fft(QQ,Lfft));

%===== Computation of QQfft(n)-QQfft(n-1)
dQQfft=filter([1 -11,1,QQfft);
Y%===== If QQfft increases sdQQfft=+1

sdQQfft=sign (dQQfft); dsdQQfft=filter([1 -1],1,sdQQfft);
pos=find (dsdQQfft==2);

[QQfftpos indQQ]=sort (QQfft (pos));

pos=pos (indQQ) ; pos=pos(l:p);

zout=exp (2*j*pik(pos-1) /Lfft);

% pos=find(diff (sign(diff (QQfft)))==2);

% [QQfftpos indQQl=sort (QQfft(pos));

% pos=pos (indQQ); pos=pos(1l:p);

% zout=exp (2*j*pix(pos+1) /LEft);

return

Example 10.4 (Implementation and simulations)

1. Write a program that generates a size N = 80 samples of the P = 2 sines
defined by the values:

fz 102 021
ap | 1 0.2
by, | O 0
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with a noise added to it such that the SNR is equal to 20 dB.

2. We wish to evaluate the performances depending on the signal-to-noise
ratio. This is achieved by setting N = 80, f1 = 0.2, fo = 0.21 and the
amplitude ratio to 0.2. The signal-to-noise ratio varies between 10 and
20 dB. The square deviation between the estimator and the real value
1s a useful performance indicator. In practice, the analytical expression
of the result is impossible to obtain, which is why simulations are done
by performing a large number of trials. This is called a Monte-Carlo
simulation. Write a program that conducts such a simulation based on

300 trials.

HinT:
1. Type:
Yi===== APPLMUSIC.M
clear
nfft=1024; freq=(0:nfft-1)/nfft;
SNRdAB=20; % SHNR

N=80; tps=(0:N-1); % N = number of samples
£gq=[0.2 0.21]; p=length(fq); alpha=[1 0.2];
%===== Signal

sig=alpha * cos(2*pi*fq’*tps);
vseff=std(sig);
siggmab=sqrt (10~ (-SNRdB/10) ) #vseff/sqrt(2);
b=siggmab*randn(1,N) ;

x=sig+b; % Noised signal

——

[racm,QQfft]=musicFFT(x,2*p); % MUSIC
fgm=angle (racm) / (2*pi) ;

fqaux=sort (fqm) ; % Sort the frequencies

fgmo=fqaux (p+1:2%p); regang=2*pi*fqmo*tps;
RR=[cos (regang)’ sin(regang) ’];

ab=RR \ x’;

alphamo=sqrt(ab(l:p) .2 + ab(p+1:2%p) ."2);
%===== Displaying the DTFT

subplot (211)

plot (freq,20%logl0 (abs (fft (x,nfft))/N))

set (gca, ’x1im’, [0 0.5])

zoom xon; grid

LQ=length (QQfft);

subplot (212); plot ([0:LQ-1]1/LQ,-20%1ogl0 (abs(QQfft)));
set (gca, ’x1lim’, [0 1/2]); grid

%===== Displaying the results

disp(sprintf (’SNR : \t %5.4g dB’,SNRdB));
disp(sprintf (’Number of samples : \t %31i’,N));
disp(sprintf (’Number of sines : \t %31i’,p));




378 Digital Signal and Image Processing using MATLAB®

disp(’True values :’)
disp(sprintf (’Freq. = %5.4g\t ampl. = %5.4g\t \n’,
[fq;alphal))
disp(’Estimated values :’)
disp(sprintf (’\t freq. = %5.4g\t ampl. = ¥5.4g\t \n’,
[fgmo’ ;alphamo’]))

As you can see with the program applmusic.m, the DTFT is not able to
properly estimate the frequencies f; and fo whereas the MUSIC algorithm
does.

2. simumusic.m implements a simulation to evaluate the performances for
the measurement of f; and f> for several values of the signal-to-noise
ratio.

The graph on the left shows the mean square deviation of the estimation
of f1, and the one on the right shows the mean square deviation of the
estimation of f,, for several values of the signal-to-noise ratio. Notice
that in both cases, the square deviation “decreases” as the signal-to-
noise ratio increases. Furthermore, performances are better for f; than
they are for fs, because the amplitude of the sine with the frequency fs
1s much smaller than the one associated with fi.

h===== SIMUMUSIC.M

clear;

N=80; tps=(0:N-1); % N = number of samples
£q=[0.2 0.21]; alpha=[1 0.2]; p=length(fq);
%===== Signal

sig=alpha * cos(2*pi*fq’*tps);
vseff=std(sig) /sqrt(2);
%===== SHR
SNR=(10:2:20); 1SNR=length(SNR);
eqmfqg=zeros (1SNR,p);
L=30; % Number of trials
for ii=1:18NR
SNRAB=SNR(ii);
siggmab=sqrt (10~ (-SNRAB/10) ) *vseff;
fqmo=zeros(p,L); alphamo=zeros(p,L);

for jj=1:L
b=siggmab*randn(1,N) ;
%==== Noised signal

x=sig+b; racm=music(x,2*p);
fgm=angle (racm)/ (2*pi); fqaux=sort(fqm);
famo(:,jj)=fqaux(p+1:2*p);
end
dfgmo=fqmo-fq’ *ones (1,L);
eqmfq(ii,:)=std(dfqmo’);

end



Discrete Spectra Estimation 379

%===== Displaying results

subplot (121); plot (SNR,eqmfq(:,1),’0%); grid
hold on; plot (SNR,eqmfq(:,1)); hold off
subplot (122) ; plot (SNR,eqmfq(:,2),’0%); grid
hold on; plot (SNR,eqmfq(:,2)); hold off

You can also conduct the simulation for the function musicFFT.m. n

10.3.4 Introduction to array processing

Figure 10.8 shows a uniform linear array (ULA) comprising M = 3 sensors
assumed to be identical, isotropic and separated by the distance d. A source
located in the direction ¢ sends a wave with the carrier frequency Fy. This
source is assumed to be far enough for the wave’s front to be considered parallel
lines.

Distant sources

Figure 10.8 — Uniform linear array with 3 sensors and P = 1 distant source assumed
to be far away. The dashed lines represent the equiphase lines

Under these conditions, if y; () = z(¢)e? ™! where z(t) represents the
complex envelop of the signal y; (¢) received by sensor 1, then the signal y2(¢)
received by sensor 2, located at a distance d from sensor 1, has the expression
Y2 (t) = 1 (t—7) = 21 (t—7)e2 ™ (=7) where the delay 7 = dsin ¢/c and where
p € (—m/2,7/2). ¢ refers to the propagation speed. In radiocommunications,
c=3x10% m/s.

Narrow band hypothesis

Let us assume that By, <« Fj, where B, refers to the frequency band of the
signal x1(¢). Then the signal y;(¢) is said to be a narrow band signal around
Fy. In that case, if we use Fy = ¢/Ag where A refers to the wavelength and
7 =dsing/c, then Byr < Fod/e = d/fAy.

When ¢ = 3 x 108, the value of fyd/c can be close to 1, meaning that the
condition byT < 1 is met, and hence that x1(¢) varies little during the time 7.
We can then infer that #,(t — 7) & x1(¢). As a conclusion, when the signals
are narrow band and when the propagation speed is very high:

ya(t) = xl(t)e_zj”F”Tezj”F”t then a5(¢) = xl(t)e_zj”F”T (10.44)
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where x4 (t) represents the complex envelop of ya(t).

This result is no longer true for acoustic propagation (SONAR type propa-
gation), for which the value of ¢ is too small, meaning that the value of Fyd/e
is always high. In that case, it is not always possible to have B;7 < 1. From
now on, we will assume that the conditions are those of the first case, meaning
that the approximation z1(t — 7) & #1(t) is valid.

From now on, x(n), n € 7, denotes the received signal sampled at the
frequency Fs and fy = Fy/Fs. Expressions 10.44 are true for two sensors, and
can easily be extended to a set of M sensors, which leads to:

x(n) = [z1(n), ..., en(n)]" = a(p)ei(n)
where:

alg)=[ 1 e=i%0) . emi-1o0) |7 (10.45)

d .
O(p) = 271'/\— sin(yp) (10.46)
0
An antenna is said to be unambiguous if ¢ = ¢’ < 6 = #/( mod 27). Tt is
simple to show that the ULA is unambiguous if:
Ao
d< —
- 2
that is to say that the distance between two sensors must be smaller than half
the wavelength.
If we now assume that there are P sources, located in P directions

©1,...,pp of the plane, and that the observation is the sum of these P contri-
butions and of a noise, then we can write:
x() = Alg) x s+ b 047)
(M x 1) (M x P) (P x1) (M x 1) ’
where s(n) = [z1(n),..., 27 (n)]T (envelops on the first captor) and where:
Alp)=[alp1) alps) ... alep) ]

The vectors a(py) are called the steering vectors. b(n) is an (M x 1)
noise vector. The noise 1s assumed to be centered and white. We then have

E{b(n)} =0 and:
E{b(n)b" (k)} = 6, x0Ty

Notice that the signal model provided by equation 10.47 is identical to the
one given by equation 10.33 where 8 is given by 10.46.

We will not extensively discuss the problem of determining the P arrival
directions based on the observation of N shots {x(1),...,x(N)}.

We will merely give a few answers.
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Classical beamforming

A narrow band beamformer is basically a delay-and-sum processing to steer a
beam in a particular direction: the beamformer combines the signals sensed by
the antenna array with complex weights w. From equation 10.47, if:

P
= a(pr)sk + b(n)
k=1

denotes the observed signal, a beamformer gives the signal y(n) = wx(n).
For the ULA, the simplest idea is to choose w = a(py) for the extracting of
the source k. Then the output of the so-called classical beamformer is written:
7 (r)x(n)

H (o )alpn)si + 5z al (o1 )alop )5y + al (91 )b(n) (10.48)

where the first term of 10.48 represents the signal of interest, the second one
the interference and the third one the noise. It can be shown that:

y(n) =

Moo

o _ (MO = 0p)) jar-1)(6i-s,)
(er)aley) = sin(fs — 0y) e

where 8, = 2dsin(¢,) /Ao (equation 10.46). Then, if

min |6y — 6, > 1/M (10.49)
k#p
the term of interference will be close to 0. This condition can also be written:

min Af 2| sin((er — ¢p)/2) cos((¢r + ¢p)/2)| > 1
If we need to distinguish arrival angles separated by e, for small values of
e, we can write that Med/Ay > 1. For e = 1/10 radian and for d = Ag/2, we
have to set M > 20.
Classical beamforming approach may also be used to estimate, from N
observations, the P angles of arrival ¢, by searching the P maxima w.r.t. ¢ of
the function:

S5l¢) = = 3l (@x(m) = a” (9)Ralp) (10.50)

where Ry = N~! ZnN:1 x(n)xH (n).

In the case where condition 10.49 is not well satisfied, the performances
of this method become mediocre. Different methods can be used, such as the
MUSIC algorithm, seen in paragraph 10.3.3.
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The Capon method

In order to enhance the resolution obtained by the classic approach, Capon
suggests in [19] searching for the weighting vector w which, on the one hand,
minimizes:

E{|w"x(n)*} = w’Rw

where R = E{x(n)xH(n)} and, on the other, satisfies the constraint
wHa(pr) = 1. The idea is to perform a weighted sum of the observations
in order to cancel every component, except for the one coming from the direc-
tion ¢y for which the gain must be 1. w therefore performs a spatial filtering
that focalizes the antenna on the source located in the direction .

The solution 1s obtained using the Lagrange multiplier method, which con-

sists of solving the following equivalent problem:

miny [WHRW —Mwla(pr) — 1)]

wa(o) 1= 0 (10.51)

By setting to zero the derivative with respect to w of the first expression,
we get Rw — Aa(ypy) = 0, which leads to:

w = AR a(yy)

By expressing the fact that wfa(pr) = 1, we get A =
(af (pr)R~ta(pg)) L. If we replace it in w, we get:
1 -1
w = R~ a(yx)

afl (o )R~ "a(pr)
Replacing this in the expression of the criterion leads us to:

H -1 -1
wHRw = & )R RR™ a(py) 1

(af (pr)R71a(pr))? a ()R 1a(py)

In an estimation problem, the matrix R is replaced by:

n=1

The Capon method consists of determining the P maxima of the function:
1

al(p)R~"a(p)

This expression should be compared with 10.50.

Scapon(e) = (10.52)
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MUSIC

This approach was presented in detail in paragraph 10.3.3. Just remember
that, starting with equation 10.47, we end up with the following expression of
the covariance matrix:

R =Ry + I

where Ro(p) = A(p)RsAH () is assumed to be a matrix with rank P. We
showed with equation 10.37 that:

R=VAVH L 2GgGgH

where GGH refers to the orthogonal projector onto the noise subspace. The
MUSIC algorithm then consists of finding the P maxima of the function:

1
Smusic(p) = af (p)GGHa(yp)

(10.53)

ESPRIT

The ESPRIT algorithm, short for Estimation of Signal Parameters via Rota-
tional Invariant Techniques, was first suggested in [79]. Tt uses the fact that
the antenna can be decomposed in two identical sub-antennas. This approach
1s typically well-suited for ULA. It also assumes that R is a full rank matrix,
and therefore that there is (see property 10.2) a full rank (P x P) matrix T
such that:

V= AT

Let A; = [Ipr—1 0]A and As = [0 Ipy—1]A. In other words, A represents
the first (M — 1) lines of A and Aj the last (M — 1). The expression of A(yp)
implies that Ay = A;Q where Q = diag(e??, ... /%P) (see equation 10.45).

Let Vi = [Ips—q 0]V and Vy = [0 In—1]V. Because of the expression
V=AT V, = A;T and V, = A,T, and therefore:

V,=V,T'QT
The pseudo-inverse of V1 is denoted by Vfﬁ = (VHEv))~'V# By definition
VftVl = I. This means that we can write:
TV#V, = QT

Notice that Vf&Vz is a (P x P) matrix.
We are now going to show that, if TA = BT, then A and B have the
same eigenvalues. This is because if A is an eigenvalue of A associated with

the eigenvector u, meaning that Au = Au, then we have TAu = ATu on one
hand, and TAu = BTu on the other, and therefore B x Tu = A x Tu which
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leads to the fact that A is an eigenvalue of B associated with the eigenvector
Tu. Because of this property, and because €2 is a diagonal matrix, we have the
following result.

Property 10.4 (ESPRIT estimation) The ESPRIT estimator of the pa-
rameter 6 associated with the model 10.47 (see also 10.33) is OrspriT =
[01,...,0p] where the e/, ... eI%F are the P eigenvalues of the matriz Vf&Vz
where Vi = [Iyg_q1 0]V, Vo = [0 Ipr—1]V and where V is defined by equation
10.57.

The ESPRIT algorithm uses this property: the covariance matrix is esti-
mated based on a sequence of observations x(n), and its eigendecomposition
leads to the matrix V associated with the signal subspace of the P highest
eigenvalues. We then have to determine the eigenvalues of Vf&Vz. One of the
strong points of ESPRIT compared to MUSIC is that it does not require the
search for maxima.

Example 10.5 (Comparison of the MUSIC and ESPRIT algorithms)

Simulating three sources and an antenna with eight sensors, we compare

the MUSIC and ESPRIT algorithms.
1. Write a MATLAB® function that implements the ESPRIT algorithm.

2. Write a function that implements the MUSIC algorithm for antenna pro-
cessing:

— either with the FFT, by computing the function Syusic () given by
expression 10.53 then by determining its P maxima;
— or by finding the P roots closest to the unit circle with a modulus

smaller than 1 of the polynomial Q(z) given by expression 10.43.

3. Write a program that simulates the three sources coming in from the
three directions ¢1 = —30°, @2 = 15° and 3 = 20°, on an antenna
comprising M = 8 sensors. The distance between two sensors will be set
equal to half the wavelength.

Evaluate for 100 trials the square deviations for the estimations as func-
tions of the signal-to-noise ratio for 7" = 20 snapshots.

By referring to condition 10.49, notice that the difference e = @3 — ¢4 is
smaller than 1/10th of a radian and that therefore Med/Ay = 0.4.

HINT:

1. This function implements the ESPRIT algorithm. Type:
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function z=esprit_doa(xm,P)

Wh %
%% ESPRIT for DOA A
%% SYNOPSIS: =z=ESPRIT_DOA(xm,P) %
%% xm : (M x N) Observations of %
YAA N Snapshots on M Sensors (complex data) %
%% P : Number of Sources (P<M) %
%%h z : Eigenvalues of pinv(V1)*V2 %
Wh %

[M, N]l=size(xm);

xm=xm- (xm*ones (N,N) /) ; Rx=zeros(M,M);
for i1i=1:N, Rx=Rx+xm(:,ii)*xm(:,11i)’; end
Rx=Rx/N;

[UU dd VvV]I=svd(Rx);

S$1=UU(1:M-1,1:P); S$2=UU(2:M,1:P);

PHI=S1 \ S2; vp=eig(PHI); z=-angle(vp)’;
return

2. This function implements the MUSIC algorithm. Type:

function [z]=music_doa(xm,P,method)

%h A
%% FFT-MUSIC and ROOTS-MUSIC for DOA %
%% SYNOPSIS: [z]=MUSIC_DOA(xm,P,method) %
%% Xm = (M x N) Observations of %
YAA N Snapshots on M Sensors (complex data) %
% P = Number of Sources (P<M) %
% method = ’FFT’ ou ’RO0OTS’ %
% z = angles of the roots %
%h A

[M, N]l=size(xm);
xm=xm- (xm*ones (N,N) /) ; Rx=zeros(M,M);
for i1i=1:N, Rx=Rx+xm(:,ii)*xm(:,11i)’; end
Rx=Rx/N; [UU dd VV]=svd(Rx); GG=VV(:,P+1:M);
if strncmp (method, ’ROOTS’,3)
%===== FFT ROOTS
PP=GG*GG’;
QQ=zeros (2*M-1,1);
for d=0:M-1
for k=0:d, QQ(d+1) = QQ(d+1) + PP(M-d+k,k+1); end
end
QQ(M+1:2*M-1)=conj(QQ (M-1:-1:1));
zz=roots (QQ(2*M-1:-1:1));
%===== Keep the closest complex roots to
% the unit circle
v=find(abs (zz)<=1 & imag(zz) ~=0);
rac=sort (zz(v)); mr=length(rac);
rac=rac (mr-P+1:mr);
z=-angle(rac)’;
elseif method=="FFT’
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%===== FFT MUSIC

Lfft=1024; GGf=abs (fft(GG,Lfft)) . 2;
weights=ones (M-P,1); Smusic=1 ./ (GGf*weights);
diffSmusic=diff (Smusic) ;

SO0=max (Smusic) ;

%===== Look for P maxima
uM=zeros (1,P) ;
for pp=1:P

[Smax, indmax]=max(Smusic);
uM (pp) =(indmax-1) /Lfft;
if uM(pp)>1/2, uM(pp)=-1+uM(pp); end
%===== Suppress the found maximum
kkmin=max ([indmax-2 1]);
while diffSmusic(kkmin)>0&kkmin>1,
kkmin=kkmin-1;
end
kkmax=min([indmax Lfft-1]);
while diffSmusic(kkmax)<0&kkmax<Lfft-1,
kkmax=kkmax+1;
end
Smusic (kkmin:kkmax)=zeros (kkmax-kkmin+1,1);
end
z=-uM*2*pi;
else
error (’Method must be: ROOTS or FFT’)

end

3. Type the following program:

Y%===== TESTESPRITMUSIC.M
% BMS error for DOA Estimation as a function of the SNR
% (ESPRIT and MUSIC methods)

clear

%===== Distance between Sensors/Wavelength
d_on_lambda0 = 1/2;

M = 8; % Number of Sensors

= Try two sequences of vphi
vphi = sort([-30 10 20]); % true DOA
%vphi = sort([-30 15 20]); % true DOA

P = length(vphi); % Number of Sources
T = 20; % Number of Snapshots
%===== SNR list in dB

LISTEsnr=[10:2:18];
1n=length(LISTEsnr) ;

nbruns=100; %===== Number of Runs (> 2)
eqmE=zeros (1n,P); eqmM=zeros(1n,P);
for bb=1:1n

snr=LISTEsnr (bb) ;

for rr=1:nbruns
x=Fgene (d_on_lambda0,M,vphi,snr,T);
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zzE=esprit_doa(x,P);
sinthetaE=zzE/ (2*pi*d_on_lambda0) ;
ind=find (sinthetaE>1) ;
sinthetaE (ind)=ones (length(ind),1);
ind=find (sinthetaE<-1) ;
sinthetaE (ind)=-ones (length(ind) ,1);
deltathetaE=...
gort (asin(sinthetaE)*180/pi)-vphi;
eqmE (bb,:)=...
eqnmE (bb, :)+deltathetaE.*deltathetaE;
%===== Try the ROOTS or FFT methods
zzM=music_doa(x,P,’FFT’);
sinthetalM=zzM/ (2*pi*d_on_lambdal) ;
ind=find (sinthetalM>1) ;
sinthetaM(ind)=ones (length(ind),1);
ind=find (sinthetaM<-1) ;
sinthetaM(ind)=-ones (length(ind) ,1) ;
deltathetal=...
gort (asin(sinthetaM)*180/pi)-vphi;
eqmM(bb, :)=...
eqmM (bb, :)+deltathetal. *deltathetal;
end
eqnE (bb, : )=eqmE(bb, :) /nbruns;
eqmM (bb, : )=equM(bb, :) /nbruns;

end
for pp=1:P

subplot (P,1,pp); subplot(3,1,pp);

plot (LISTEsnr,equE(:,pp),’b’);

subplot (3,1,pp); hold on;

plot (LISTEsnr,equM(: ,pp),’r’); hold off
end

which uses the signal generating function:

function x=Fgene (d_on_lambdaO,M,vphi,snr,N)

%h %
%% Generate N Snapshots on M Sensors for DOA vphi %
%% SYNOPSIS: x=FGENE(d_on_lambdaO,M,vphi,snr,N,0PT) %

%% d_on_lambda0 = Sensors distance %
%% and wavelength ratio %
%h M = Number of Sensors %
% vphi = DOA of Sources (P=length(vphi)<M) %
%h snr = Signal to Noise Ratio in dB %
% N = Number of Snapshots %
Wh %

P=length (vphi);

1z=-2%j*pi*(0:M-1)’ * sin(vphi*pi/180) * d_on_lambdal ;
Az=exp(1z);

%===== P Random Sources
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so=randn(P,N); Pso=sum(trace(so*so’))/N;
go=so/sqrt(Pso); sr=zeros(M,N);

for tt=1:N, sr(:,tt)=Az*so(:,tt); end
nvb=sqrt (1/2)*10" (-snr/20) ;
x=sr+nvb* (randn (M,N) +j*randn (M,N) ) ;
return

Exercise 10.3 (MUSIC 2D) We consider an antenna comprising M sensors
assumed to be identical. The vectors ¥, = [®m Ym 2m]’, with m € {1,...,
M}, describe the 3D location of the m-th sensor. K < M sources are assumed
to be narrow band with a wavelength Ag. When the plane wave hypothesis is
valid (the sources are far from the antenna), the response of the m-th sensor
to the k-th source is given by:

am (G, 1) = exp (—jri B(Ce, x))
where the wave-vector:
BlGerin) = 1 (@) coslin) sinGe)singin) cos(i))”

and where (i is the elevation and ¢; the azimuth (see Figure 10.9) of the
direction of propagation of the k-th source.

Z

Figure 10.9 — Angular references

Under the narrow band assumption, the observed signal may be written:

x(n) = [a(C1, 1) - a(Cx, px)] s(n) +b(n)
1. Determine the expression of the MUSIC function (see formula 10.53).

2. Write a program:

— that simulates N = 100 samples of x(n) for K = 3 with ( =
[30°40° 50°], ¢ = [60°50°20°] and with an antenna comprising
M = 25 sensors located on a grid in the plane xQOy;

— that displays the MUSIC function in 2D.



Chapter 11

The Least Squares Method

In this chapter, we are going to present a series of techniques based on mini-
mizing mean square criteria to solve linear problems. But first we are going to
state a fundamental theorem, called the projection theorem. It was mentioned
more or less explicitly in the affine trend suppression problem, or when we
estimated the amplitudes of a harmonic signal’s components. We will see that
it has major applications both in a deterministic or random context.

11.1 The projection theorem

The projection theorem is presented in mathematical form. However, readers
that are not used to this formalism should not be worried, since the result
expressed by relation 11.1 is quite intuitive, as it is shown in Figure 11.1.

Definition 11.1 (Hilbert space) Let H be a vector space with a dot product
(x,y) for any two of its elements:

— The norm of an element x of H is the positive number defined by ||x|| =
Vi(x,x).

— x and y are said to be orthogonal, which is denoted byx Ly, if (x,y) = 0.

— The distance between two elements x and'y of H is the positive number
defined by d(x,y) = ||x—y|| = vV(x -y, x—y).

H s said to be a Hilbert space if it is a complete metric space, that is of any
Cauchy sequence converges in H.

The following examples are fundamental to signal processing applications:

— Deterministic case: the space (?(Z) of square summable complex se-
quences, that is the sequences such that >, |zx|* < 400, with the scalar
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product:
(Xa y) = Z l‘zyk
k

is a Hilbert space. Finite sequences of length N are an example of a
Hilbert space. The set of these sequences can also be seen as the space
CV of vectors with N complex components.

— Deterministic case: the space L?(0,T) of square summable complex

functions, that is the functions such that fOT |z (t))?dt < +oo, with the
scalar product:

(&y%=A o 1)y (t)de

1s a Hilbert space.

— Random case: the space L?(Q,F,P) comprising the zero-mean ran-
dom variables defined on a same probability space (€2, F,P), and square
summable, that is such that E{ |l‘|2} < 400, with the scalar product:

(z,y) = E{z"y}
1s a Hilbert space.

Theorem 11.1 (Projection theorem) Let H be a Hilbert space, C a sub-
space of H, and let y be any element of H:

— There exists a single element sy € C such that:

vsel,  ly —soll® < lly — sll” <= d(y,s0) < d(y.s)

— This element sy verifies:

Vs e, y—spLls (11.1)

— The minimal difference has the expression:

e = (y —s0,y —s0) = (y —s0,¥) (11.2)

Relation 11.1, also sometimes called the orthogonality principle, is what is
used in practice for determining sg. sg is called the orthogonal projection of y
onto C. Figure 11.1 illustrates this property.

We will now examine the applications of the projection theorem for the
previously described deterministic and random signals.
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Figure 11.1 — The projection theorem

— Deterministic case: # is the space CV of the length N vectors with
complex components, with the scalar product:

N
(Xa y) = Z l‘zyk
k=1

assoclated with the norm:

Let us choose for C the sub-space generated by the linear combination of P
vectors xt, x%, ..., xF of H, with P < N. Let X = [x! x? ... x%]
be the (N x P) matrix constructed from the N components of its P
vectors. Any vector of C can then be written:

where h 1s a vector with P complex components.

Let y be another vector of #. The closest element sy to y that belongs
to C is such that y — sg is orthogonal to the P vectors that generate C.
Because sy belongs to C, it can be written Xh. In order to determine it,
we need only express the fact that y — Xh is orthogonal to the P columns
of X. In matrix form:

X#(y —Xh)=0 <= X7Xh=X"y

Knowing y and X leads to the coefficient vector h that allows us to find
the projection sy we are trying to determine. For example, if X7 X is
invertible we get:

so = X(XAX)~1xfy (11.3)
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This result can be applied to the resolution of linear systems of equations,
or to the parametric approximation of a sequence of values (exercise 11.1
and example 11.1).

— Random case: H is the space of square summable zero-mean random
variables, defined on the same probability space, with the scalar product:

(z,y) = E{z"y}

assoclated with the norm:

2]l = VE{[z[}

Let us assume that C i1s the sub-space generated by the linear combina-
tions of P random variables 1, ..., zp de H, with P < N. Any random
variable of C can then be written:

5= Yyt hua

Let y be another random variable of H. sg, the element closest to y
belonging to C, is such that (y — sp) is orthogonal to the P random
variables that generate C. Therefore we are trying to determine s such

that, for any n € {1, ..., P}:
E{(y - s)ei} = B{ (v = Ti_y huae) 27} =0
= Yhoy b {apas} = E{yar} (11.4)

Relation 11.4 then makes it possible to determine the coefficients of iy by
knowing the values of E{yz}} and E{zxz}}. We saw, on page 407, an
application of this result to the linear prediction problem. In this case, y
is the value of the process at the time n, and the z; are the values of that
same process at the previous P times. We will see another application of
this result on page 417 when we discuss the Wiener filter.

COMMENT: the fact that the norm # is associated with a scalar product
plays a fundamental role in the demonstration of the theorem. If we choose
other norms, such as the norm ||.[|, in the case of the space CV:

N 1/]0
lelly = (024 la1)

which is not associated with a scalar product for p # 2, the theorem does
not apply. This is why, independently from its physical significance, which is
not always relevant, it is often preferable to use a quadratic approximation
criterion since the projection theorem provides a simple analytical solution to
the optimization problem.
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11.2 The least squares method

C. F. Gauss came up with the idea of the “least squares” method and used
it to study the movement of the planets’. Based on a sequence of a planet’s
N positions (z1(n),2z2(n)), n € [1..N] in its orbit plane (Figure 11.2), the
problem was to estimate the parameters characterizing the general equation of
an ellipse: ax% + bx% +cx1xs +dri +exs —1=0.

Figure 11.2 — Originally, the least squares method was created to study the movement
of the planets

Because of measurement errors, the observed values did not all perfectly
belong to a single ellipse. Gauss’s idea was to choose the values of the param-
eters that would characterize a “mean” ellipse. Mathematically speaking, the
goal is to minimize the sum of the square deviations of the points observed on
the ellipse to be determined, which amounts to choosing the values of a, b ¢, d
and e that minimize:

Z (ax%(n) + bx%(n) + cxy(n)xa(n) + dey(n) + exa(n) — 1)2

n=1

This is actually a rather optimistic objective, since it means we have to
assume that if the model works, we wouldn’t be wrong, “on average”. As for
the solution, it is of a simple form, which is not surprising since setting the
derivatives with respect to the various unknowns to zero leads to first degree
equations.

11.2.1 Formulating the problem

Consider a sequence of scalar observations y(n), presented as the sum of a
signal s(n;hg) the type of which is known and of an additive noise w(n). The

In 1801, Gauss calculated the orbit of the asteroid Ceres by observing it for 41 days.
At the moment where Ceres became hidden from view because of the Sun’s light, Gauss
managed to predict where the asteroid would reappear.
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vectorial parameter hg represents the parameter we wish to estimate. We have:
y(n) = s(n;ho) +w(n)

The noise (n) encompasses both the measurement noise and the modeling
noise, the latter expressing a lack of a priori knowledge of the theoretical model
s(n;hg).

Based on the N observations {y(1), ..., y(N)}, the least squares estimator
1s the value of h that minimizes the square deviation:

J(h) = > ly(n) = s(n;h)|* = (y = s(ho))" (¥ — s(ho)) (11.5)

where y = [y(1),...,y(N)]? and s(hg) = [s(1;hg),...,s(N;ho)]T. We al-
ready encountered this type of problem in paragraph 10.1. The goal was
to estimate the frequency and the amplitude of the complex exponential
s(n;hg) = ale2imfin corrupted by noise. In that case, the least squares method
consisted of determining h = (f1, &) such that:

N
Z |y(n) _ ae2j7‘l’f1n|2
n=1

would be minimum. We saw that the solution suggested in paragraph 10.1 did
not have a simple analytical form for f; because the expression of s(n;h) is not
linear with respect to f;. However, when the model is linear, the problem can
easily be solved.

11.2.2 The linear model

Let us now assume that the signal s(n; h) is expressed linearly as a function of
the unknown parameter hg = [A(0) --- k(P — 1)]¥ according to the expres-
sion:

s(n;ho) = 25, 1(0) + - - + 2, ph(P — 1)

The known quantities x,, ; are sometimes referred to as regressors. There-
fore the observation has the expression y(n) =z, 1h(0) + - -+ 2, ph(P — 1)+
w(n) where w(n) refers to the noise. By stacking N successive observations,
we get the matrix expression:

y(1) i1 ... x1p h(0) w(1)
=1 z ]
y(N) N1 ... xznp| [P -1) w(N)
which can be written, using obvious notations:
y=Xhg+w (11.6)
where hg = [R(0) --- h(P —1)]T refers to the actual value and where X is

the (N x P) matrix with z, ; as its generating element.
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11.2.3 The least squares estimator

Starting with N observations y = [y(1),...,y(N)]%, the least squares estimator
is the argument h that minimizes the square deviation:

J(h) = (v — Xh)" (y — Xh) (11.7)

First consider the case of a noiseless observation expressed as y = Xhg.
To estimate hg, we need as many equations as there are unknowns, hence we
choose N = P. If we assume that the square matrix X is invertible, the solution
can be written simply as:

h=X"1'y

Notice that in this case, the square deviation, expression 11.7, is precisely
equal to 0. Therefore, in the absence of noise, the observation of P of the
signal’s values is enough to estimate hg, and to do so without making an error.

In the presence of noise, this is no longer the case: there usually is no vector
h that simultaneously verifies the N equations y = Xh, that is to say such that
J(h) = 0. At best, we can hope to find a vector h that minimizes J(h). But
then why would we choose N > P77 The answer is given by property 11.1
on page 397, which states that the least squares estimator’s variance usually
decreases as N increases. Although the least squares method was not originally
meant for probabilistic purposes, this result justifies its use in the presence of
additive noise.

We now go back to the minimization problem, to consider the case where
the number N of equations is greater than the number P of unknowns: the
system 1s said to be over-determined. The fact that there is no vector h such
that Xh is exactly equal to the observation vector y is equivalent to saying
that the length N vector y does not belong to the vector subspace generated
by the P column vectors of X. This vector subspace is called the image of X
and is denoted by Image(X). The least squares method consists of finding the
vector of Image(X) closest to y in terms of square distance, hence the solution
is given by the projection theorem.

Solving

Using the same notations as in the projection theorem, H is the space CV
of length N vectors and C = Image(X) is the subspace generated by the P
column vectors of X. Any vector of C can be written Xh where h is any length
P vector. The orthogonality principle states that the vector Xh € C we wish
to determine is such that (y — Xh) is orthogonal to the columns of X. This
can be written in matrix form as follows:

X#(y-Xh)=0 <= XYXh=X"y (11.8)
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Figure 11.3 — Image of X

Figure 11.3 shows a representation of Image(X), as well as of the orthogonal
projection of y onto Image(X).

Remember that the orthogonal projection of y onto C is unique. This does
not mean, however, that h i1s unique. We have the following results:

— If the rank of X is P, in other words if X is a full rank matriz, then the
P column vectors of X are independent, and the (P x P) matrix X#X is
invertible, and the solution we are trying to determine has the expression:

h = (X*X)"1xfy (11.9)

In the particular case where P = N, the matrix X is square, and
(XEX)1XH = X~!. We end up with the usual inverse of a linear
system of P equations with P unknowns.

— If the rank of X is such that R < P, there are P — R independent length
P vectors, referred to as u, such that Xu = 0. The space N(X), the
dimension of which is generated by these vectors, is called the kernel of

X.

In that case, the orthogonal projection i1s always unique. However, the
vector h is no longer unique: let h be a vector that verifies 11.8, that is
to say such that X Xh = X#y. Then for any u € N(X), X#X(h +
u) = X#Xh + 0 = Xy and hence the vector g = h + u also verifies
the equation X7 Xg = XHy. Therefore, there is an infinite number of
solutions to equation 11.8. They are all completely defined, except for an
additive vector belonging to the kernel of X. Among all these vectors,
one of them has the minimum norm, the one orthogonal to the kernel of
X. In terms of square deviation values, the solutions are of course all
equivalent.

The conclusion is that there is always at least one solution to the equation
XHXh = Xy, called the least squares estimator, and we will denote it with:

h = X#y (11.10)
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X# is called the pseudo-inverse of X. There are two ways of calculating
the pseudo-inverse with MATLAB®:

— The function pinv, which is used as follows:
| h=pinv(X)*y

— The \ operator, which is used as follows:
| n=x\y

These two computations only provide the same result if X i1s a full rank
matrix (R = P). Otherwise, pinv returns among all possible solutions the
minimum norm solution, whereas \ returns the solution that has at most R
non-zero components. Of course, these two solutions lead to the same square
deviation, and without any further constraint, neither is better than the other.
If X 1s a full rank matrix, we can always use the expression:

X# = (xX#x)"1x# (11.11)

which then leads to h = (X#X)~!X#y. However, the computation with
MATLAB® can be numerically less accurate than with the other two methods.

Property 11.1 (Variance of the least squares estimator) Consider the
model y = Xhg + w where w s assumed to be a white zero-mean noise with
the covariance o?1. X2 X is assumed to be invertible, and h = (X¥X)~1XHy
denotes the least squares estimator. Then h is an unbiased estimator of hg and
the cumulated variance of all the components of h is given by:

op = o?Tr((XAX)~1) (11.12)
HINT: by replacing y = Xhg +w in h = (X#X)"1 Xy we get:
h=hy + (XX)"'X7w (11.13)

If we change over to the expectation on both sides and use the fact that
E{w} =0, we have E{h} = hg, hence the least squares estimator is unbiased.
Using 11.13, we can also write:

(h —ho)(h — h)? = (X X)X ww X(XHX)7!

If we change over to the expectation of the two members, we infer that the
covariance matrix of h defined by:

Cn = E{ (h —ho)(h — hy)""}
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has the expression:
Cp = o?(XHX)~!

where we have used the fact that E{WWH} = 0?I. Finally, we get:
o = E{ (h = ho)" (h — ho)} = Tr(Cu) = o?Tr((XTX) 7))

Notice that of is the sum of the variances of the P components of the
estimator h. [

In many practical problems, the sequence of the regressors involved with the
matrix X is chosen so that the matrix X X /N is almost equal to a matrix of
the type s21p where Ip is the (P x P) identity matrix. In that case, (X#X)~!
I,/Ns? and Tr((X#X)~1) ~ P/Ns?. By replacing this in 11.12, we get:

ip

s O
e
s2 N

This result shows that the smaller the variance is, the higher the number N
of observations, the higher the ratio p = s?/¢? and the smaller the dimension
of the parameter we are trying to identify.

Finally, note that expression 11.9 of the least squares estimator has a linear
form with respect to the observation y. Furthermore, it can be proven [74]
that it 1s, among all the unbiased linear estimators, the one with the minimum
covariance in the case of white noise. It is called the BLUE (Best Linear
Unbiased Estimator).

In the property 11.1, if w is assumed to be a zero-mean noise with the
covariance o2C, it is easy to prove by whitening with C~'/2 that:

h=(XAc1xX)"1xXHC 1y (11.14)

is the best linear unbiased estimator (BLUE) and the covariance matrix of h
defined by 11.14 has the expression:

Cp =2 (Xcix)~!

Weighted least squares

Expression 11.9 can be generalized by considering the scalar product defined
in CV by the expression:

yIWy (11.15)

where W refers to a positive matrix called a weighting matriz. W is typically
used to take into account the fact that the measurement noise is not white
or that the observations are not quite “stationary”. In this last case, the first
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components of y should probably be given less importance. The classic example
is to take:

AN-L g 0
N=2 . :

w=| 0 A - (11.16)
0 0 1

where the value A € (0,1) is called the forget factor. If A is close to 0, the
“past” values of y are assigned a very small weight.

If we once more apply the orthogonality principle, but use the scalar product
defined by expression 11.15, equation 11.8 can be rewritten as follows:

XAW(y — Xh) =0

If we assume that X¥ WX is invertible, we infer the expression of the
weighted least squares estimator:

h = (XAWX)"'X#wy (11.17)

This leads to the same expression as 11.9 when choosing W = I.

We are now going to see a few examples that use a least squares estimator.
In these examples, we chose A = 1. This study can of course be completed by
considering a forget factor A < 1.

Example 11.1 (Polynomial approximation)

We are going to try to approximate the function sin(z) by a (P — 1) degree

polynomial on the range (—m, +x). Let kg, ..., hp_1 be the P coefficients of

this polynomial. To achieve the approximation, we have decided to minimize

the square deviation between the polynomial we wish to determine and the

function sin(z) for a set of values of # from —m to +7 by steps of A. Let {#y,
.., zn} be the set of these values and y, = sin(x,,) the corresponding values.

COMMENT: in practice, the pairs of numerical values such as (x1,41), ...,
(zn,yn) are obtained through a series of measures, and we then try to find
a polynomial approximation that gives y as a function of & over the complete
range that was chosen.

1. By writing down the values s, of the polynomial we are trying to deter-
mine at the points x1, ..., xxn, show that the least squares optimization
problem can be interpreted as the orthogonal projection of the vector
[y1,...,yn]T onto a space generated by P vectors constructed from z1,

.., &n. Give the least squares solution.

2. Write a program that performs the approximation. Check the quality of
the results on the (—m, +n) grid by steps of A = 0.2.
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HINT:
1. Let @1, ..., xny be the values used to perform the approximation and
Y1, --., yn the ones corresponding to the sine function. We wish to

approximate the y, by an expression of the type:

$p=ho+ hixy+ -+ hp_jxl=?

If we stack the s, we get a vector generated by the P column vectors
ej = [¢], 2}, ..., 2] where j € {0,1,...,P — 1}. Hence the problem
is equivalent to finding the best approximation for y = [y1,...,yn]"
belonging to the space generated by the e;. Using the projection theorem,
we find that h verifies X¥Xh = X*y where X is the (N x P) matrix
defined by X = [eg,...,ep_1]. It can be proved that if x; # z; for any
pair (4, j) with i # j, then X is a full rank matrix.

2. The following programs returns Figure 11.4:

%===== APPROXSIN.M

% Approximation of a function

% with a (p-1) degree polynomial

x=(-pi:.2:pi)’; N=length(x);

y=sin(x); % Function to be approximated
pnil=14; % Polynomial degree

X=zeros (N,pnl);

%===== Matrix X

for ii=1l:pml, X(:,ii)=x ."(ii-1); end

%===== Solving the system
h=X \ y;
%===== Verification

x=(-pi:.01:pi)’; N=length(x); y=sin(x); X=zeros(N,pml);
for ii=1l:pml, X(:,ii)=x ."(ii-1); end

s=X*h; plot(x,y-s); grid

L]

Exercise 11.1 (Determining the TF using the gain)
We are going to determine the coefficients of the transfer function:

Bo b biz=l ... b 24

H(Z) — 0+ 012 + + g~

I+ arz7t 4 +apz™?
of a filter, that is the p + ¢ + 1 unknowns by, ..., by, a1, ..., a, from the N
values of the gain |H (e%7/)| taken at the frequency points f € {f1, ..., fn}.

We will assume that N > p+ ¢+ 1, and that the calculated filter is causal,
stable and minimum phase.
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Figure 11.4 — Error resulting from the polynomial approxzimation

1. Show that the problem is equivalent to solving a linear system of N
equations with p + ¢ + 1 unknowns.

2. Determine the values of by, ..., by, a1, ..., ap that lead to the best
least squares approximation. Use the result to find the causal, stable,
minimum phase filter with the same gain as the obtained filter.

3. Write a MATLAB® function that determines the filter’s coefficients from
the sequence of the pairs (frequency, gain) and from the degrees of the
numerator and denominator.

4. Use this function to create a real low-pass filter with the canceling fre-
quency 0.2 for the frequency sequence F=(0:0.01:0.5). Compare the
results with the theoretical graph, by testing different values of p and g¢.

COMMENT: the method used here does not allow you to determine the best
least squares approximation when you set the gain, the phase, and the stability
constraint.

Exercise 11.2 (Approximating the inverse of an FIR filter)
1. Consider the FIR filter with the transfer function:
H(z)=1-342""4+12=(1-3:"H(1 - 04271

Determine the expression of the impulse response g(n) of the stable filter
with the transfer function G(z) = 1/H(z). Is this filter causal?

2. We wish to approximate the filter GG(z), theoretically IR and non-causal,
by a FIR filter. In order to do this, C coefficients are assigned to the
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approximation of the causal part, and A coefficients to the anticausal part.
Under these conditions, the impulse response of the filter we are trying
to determine is written g(n) = {g(—A),...,¢(0),...,9(C)}. Of course,
when used in real time, the anticausal part will result in a processing
delay of A samples.

By writing the convolution of g(n) with h(n), show that the problem can
be expressed in a linear way. What sequence of values must be used for
approximating the sequence of values (¢ x h)(n)?

3. Using the least squares method, write a program that calculates g(—A),
., 9(0), ..., g(C) for given values of A and C'. Justify the values chosen
for A and C'.

11.2.4 The RLS algorithm (recursive least squares)

According to expressions 11.9 and 11.14, the calculation of h requires us to
handle an (N x P) matrix X. If this matrix has to be constructed from a
continuous flow of data, and if the calculations have to be performed in real
time, the limitless increase of the size N makes a direct calculation impossible.

The recursive least squares algorithm brings a solution to this problem. It
also has the advantage of not requiring matrix inversion calculations. It works
by updating the value of h as the data pours in.

We are going to start with the expression of the weighted least squares
(expression 11.17) and assign the index n to the solution obtained at the n-th
step:

h, = Q. X/ W,y, (11.18)

where the matrix Q,, = (XnHVVan)_1 is such that Q, = Q. If we choose
for W,, the matrix given by expression 11.16, we have:
AW, 0
Wit = [ of 1 ]

If we denote by x| the (n + 1)-th line of the matrix X, 41, we have:

X,
K1 = [XnH+1]
This leads us to:
X,
X aWanXop = [ X 0] Wap [XH+1]

H H
= AX, W, X, +xXp41X,41
Hence, the matrix Q,, verifies the recursive formula:

Qnt1 = (/\er1 + Xn+1XnH+1)_1
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We can easily check that if R is a matrix and u 1s a vector of the appropriate
length, then:
R 'uu”’R~!

R H—lIR—l_
(R +uu) 14+ufR-1u

(11.19)
All we need to do is multiply the member on the right by (R + uu®) to

end up with the identity. If we apply the identity 11.19 to Q 41, we get:

/\_2ann+1an+1Qn

1+ /\—1an+1ann+1

By replacing this expression in that of h, 41, given by 11.18, we have:

Qn+1 = A_lQn -

hopyt = QuiuaX Woiyng
AW, 0 y

_ H n n

= Qunt1 [Xn Xn+1] [ of 1 ] [yn+1]

= Qn+1(/\XnHWHYn + Xn+1yn+1)

_ /\_1Q B /\_2ann+1an+1Qn

n 1—1—/\—1an+1an”+1

) (/\XnHWnYn + Xn+1yn+1)
If we develop, using 11.18 and by noticing that XnH+1 Q. X, 41 18 a scalar, we
get:

A_1(‘ann+1
1+ /\—1an+1ann+1

hn+1 = hn + (yn+1 - XnH+1hn)

In this expression, the term (y,41 — XnH+1hn) is expressed as the difference
between the observed value y,41 and the value we would have observed if the
value hy, had been exact at the time (n + 1). The value h,1; is obtained by
adding to the value h,, calculated previously a corrective term proportional to
this difference. We will see in paragraph 12.14 that the Kalman algorithm has
a similar structure.

If we gather the results, the RLS algorithm can be written:

Initial values:
Qo =1p/6 withd <1 andhy =0
Repeat form=0...:

A_1(‘ann+1
Knt1 = T H
14+ A X1 QnXnt1
hn+1 =h, + Kn+1(yn+1 - XnH_|_1hn) (1120)

Qnt1 = /\_1Qn - (1+ A_lan+1ann+1)Kn+1KnH+1
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We could consider starting with the exact initial conditions by calculating
Qp = (XEWpXp)~! and hp = QpXEWpYp, but if the value of the size
N is high, this precaution is not necessary.

Example 11.2 (AR-P estimation by the RLS algorithm)
Consider the recursive equation describing an AR-P process:

z(n)+az(n—1)+---+apxr(n— P)=w(n)

where A(z) = 2P 4 a2~ 4. .4 ap has all of its roots outside the unit circle
and where w(n) is a zero-mean white noise with a variance of ¢?. Show that
the problem of estimating the parameters ay, ..., ap can be formulated as the
expression 11.6 of a linear model. Use this result to estimate the parameters
of an AR-P process using the recursive least squares algorithm.

HINT: notice that z(n) = —ajz(n—1) — - —apx(n — P) + w(n). If we
let y(n) = z(n), x, = [zx(n—1) -+ z(n—-P)¥ and h = —~[ay ---,ap],
we can write y(n) = x.h + w(n). By stacking the N successive values, we
get an expression of the same type as 11.6. To estimate h, we can therefore
use the recursive least squares algorithm. This method is implemented by the
following function. Type:

function [a]l=estARrls(x,P)

%h %
%% Estimation of the P coefficients of an AR-P ¥
%% model using the RLS algorihtm %
%% SYNOPSIS: [a]l=ESTARRLS(x,P) %
o x = Signal %
Wh P = Model order Y
% a=1[1a_1l... a_P] Y
%h %

N=length(x); x=x(:); x=x-ones(1,N)#*x/I;
hn=zeros(P,1); delta=10"-6; Qu=eye(P)/delta;
Y%===== (Correlations Method)
x=[zeros(P,1) ;x;zeros(P,1)];
for k=P+1:N+2%P,
xn=x(k-1:-1:k-P); yn=x(k);
Gn=Qn /(1+xn’*Qn#*xn); Kn=Gn*xn; en=yn-xn’*hn;
hn=hn+Kn*en; Qn=Qn-Kn*xn’*Qn;
end
a=[1 ; -hn];
return

The correlation method and the covariance method (see page 295) can both
be implemented, but the former was chosen, which is why the function returns
the same result as the xtoa function. The differences noticed are due to the
fact that the initial conditions are not the exact conditions. However, it does
not require the prior estimation of the covariances. [
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11.2.5 Identifying the impulse response of a channel
Formulating the problem

The objective in a number of problems is to find a model for describing the
communication channel as a simple FIR filter. Let {h(0), ..., h(P —1)} be its
impulse response. In order to achieve certain processes, the h(k) have to be
estimated. This is called, in this context, channel identification.

The easiest method consists of sending a known signal, called a training
signal, and to observe the channel’s output. In practice, if the channel varies
with time, we have to repeat this operation by periodically sending the training
signal. The channel output observation can be written:

y(n) = h(0)z(n)+ -+ h(P=1)z(n— P+1)+ w(n)

where w(n) represents an additive noise superimposed onto the transmitted
signal (Figure 11.5).

Channel w(n)
x(n) | . ¢ + $01)
i TS

Figure 11.5 — Channel identification

If we write the observation sequence in matrix form for n from P to N+P—1,
we get:

y(P) z(P) ex(1) h(0)
YN +P—1) dN+P—1) - 2N) | | nP=1)
w(P)
+ =Xh+w
w(N+P-1)

With the same matrix notations as before, the vector h that minimizes the
difference (y — Xh)#(y — Xh) is given by expression 11.9 rewritten below:

h = (XAX)"1xfy (11.21)
where we have assumed X to be a full rank matrix.

COMMENT: you may be wondering whether some input sequences are
better than others, and the answer is yes. If you consider the sequence z(n) as
the realization of a WSS process, chosen in a very vast class of WSS processes,
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it can be shown that optimal performances are achieved when the process
1s white. This is why in the practical problems of filter identification, the
learning sequences used are as often as possible chosen “similar” to white noise.

Equation 11.21 should be compared with the result from exercise 8.5. If we
multiply and divide by N, we can also write:

1 e 5
h= (NXHX) (NXHy) =R ¢ (11.22)

an expression where R is written as an input autocovariance matrix and r as
an output/input covariance vector of the filter. We will encounter later on an
expression similar to 11.22 when we discuss the Wiener filtering.

Implementing the recursive least squares algorithm

The following program implements the recursive least squares algorithm to
estimate an impulse response:

Yi===== IDENTIFRLS.M
SNR=10; h0=[1;-5/2;1]; P=length(h0);
N=200; x=randn(N,1); sigmab=10" (-SNR/20);

yssb=filter (h0,1,x); % Output
y=yssbt+sigmab*randn(N,1); % Noised output
%===== RLS Algorithm

Qn=10"7*eye(P); % Initialization
hn=zeros(P,1); xnpl=zeros(P,1);

for k=P:N

xnpl(:)=x(k:-1:k-P+1);

Qnh=Qn*xnpl; cc=1+xnpl’*Qunh; Kn=Qnh/cc;
en(k)=(y (k) -xnpl’#*hn); hn=hn+Kn*en (k) ;
dh (k-P+1)=(hn-h0) >* (hn-ho) ;

Qn=0Qn- (Qnh*xnp1’*Qn/cc) ;

end
plot (10%logl0(dh)); grid
Y%===== Theoretical limit

1imT=10%10og10 (P/N)-SNR;
hold on; plot ([0 N-P+1],[1imT 1imT]); hold off

Figure 11.6 shows the evolution in decibels of the difference between the
“true” filter and the identified filter, at each iteration step for different values
of the signal-to-noise ratio.

You can check that the obtained result is almost identical to the one found
with the direct calculation h = X#y . using the pseudo-inverse and obtained
with the following program:
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Figure 11.6 — Difference between the exact response and the obtained response in
dB

H X=toeplitz(x,[x(1) zeros(1,2)]);
h=X\y

The slight difference is due to the choice for the initial conditions of the
recursive algorithm.

11.3 Linear predictions of the WSS processes

11.3.1 Yule-Walker equations

The Yule-Walker equations, laid down on page 308, relate the parameters (aq,
..y ap, 0?) of an AR process defined by the recursive equation 8.53 to its
covariance coefficients. As we are going to see, these equations are also the
ones that relate the covariance coefficients of any WSS random process to the
linear prediction coefficients.
Consider a zero-mean, WSS random process z(n). The general expression
of the process’s linear predictor Z(n) at the time n, constructed from its N past
values, is of the type:

N
) =oz(n— 1)+ -+ aye(n—N) =Y am(n—i (11.23)
i=1
Theorem 11.1 states that the coefficients «q, ..., ax that minimize the

mean square error E{|z(n) —z(n)|?}, between the actual value x(n) and the
predicted value Z(n) are such that the error:

e(n) = z(n) — Z(n) (11.24)
is orthogonal to any #(n — k) with 1 < k£ < N. This can be written:
E{(x(n) —Z(n))a*(n—k)} =0 for 1<k <N (11.25)
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Using the expectation’s linearity, we get:
E{z(n)z*(n—k)} —E{Z(n)e"(n—k)} =0

By replacing Z(n) by its expression 11.23, then by again using the expecta-
tion’s linearity, we get:

N
E{z(n)z*(n—k)} — ZaiE{x(n —d*(n—k)} =0
i=1
Because the process is stationary, E{z(n)z*(n — k)} = R(k), and:

N
R(k) = > aiR(k—i)=0for 1<k<N (11.26)

i=1

The minimum mean square error is given by 11.2 which here has the ex-
pression:

e? = E{le(n)]*} = E{(z(n) — Z(n))2z*(n)} = R(0) — Z ai R(—i) (11.27)

Stacking 11.27 and the N equations 11.26 in matrix form leads us to:

R(0) R(-1) - RN 1 e
R(1)  R(O) : = 0 (11.28)
§ . R(-1) ~ :
R(N) -~ R() R(0) | Lmow 0

These equations are called the Yule-Walker equations, or the normal equa-
tions, and are the same as the equations 8.58 laid down in page 308. They
allow us to calculate the prediction coefficients and of the minimum prediction
mean-square error using the covariance matrix of a WSS process. In practice,
the exact covariances can be replaced by their estimates according to expres-
sion 8.32. Remember that we gave in section 8.5.3 a fast algorithm for solving
11.28, the Levinson algorithm.

We are now going to see how these prediction coefficients can be expressed
in the particular cases of a harmonic process and of an AR, process.

11.3.2 Predicting a WSS harmonic process

We are first going to prove the following property, analogous to the one given
on page 358 of Chapter 10 for deterministic signals:
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Property 11.2 Consider the WSS harmonic process defined by:

P
n) =Y apeXin (11.29)
k=1

where {ag} is a sequence of P zero-mean uncorrelated complex variables, with
the respective variances oi and {fi} a sequence of P frequencies.

1. There exist by, ..., bp such that:
z(n)+bz(n—1)+---+bpx(n—P)=0 (11.30)

2. The polynomial B(z) = z¥ 40127~ .- -4bp has its P roots on the unit
circle.

Conversely, if x(n) verifies 11.30 and if B(z) has all its simple roots located
on the unit circle, then x(n) is of the type 11.29 where the ay, are P zero-mean,
uncorrelated, complex random variables with any variances.

— To prove this, let z;, = ¢%™* and B(z) = Hkpzl(z — z). With these
notations we have on one hand z(n) = kaﬂ agz; and on the other
hand the fact that the P degree polynomial B(z) is such that B(z;) = 0.
The polynomial B(z) can also be developed as B(z) = zF + b2~ +

-+ bp. We will now show that the obtained coefficients by are such that
z(n)+biz(n—1)+ -+ bpr(n— P) = 0. This is because we have:

z(n) + blx(n -+-+ bpx(n - P)

P
_Zakzk —|—b12akz ~~~+bp2akzZ_P

P
Z apzy zk —|—bz ~~~—|—bp Zakzk B(z)

Therefore, the random variable x(n) + byz(n — 1) 4+ - -+ bpax(n — P) is
a linear combination of P random variables ay, each of them multiplied
by ZZ_PB(zk) which is equal to 0. This proves it is null.

— Conversely, let us assume that z(n) verifies 11.30. In that case, because
the set of solutions is a P dimension subspace, we only need to find P
solutions. We are going to find the ones of the type z(n) = ae?™/",
where a and f are to be determined. By replacing this solution type in
11.30, and by assuming that by = 1, we get, after simplifying by «, the
equation:

P P
Z bkerﬂ'f(n—k) — erﬂ'f(n—P) Z bkerﬂ'fkerﬂ'f(n—P)B(erﬂ'f) -0
k=0
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But by hypothesis, B(z) has P distinct roots on the unit circle. This gives
us the P solutions we were looking for. We still have to check that any
linear combination of these solutions, of the type >, ayexp(2jmfin), is
a WSS process. All we need to do i1s choose P zero-mean uncorrelated
complex variables, with any variances, as the ay.

After an obvious notation change, the recursive equation z(n) + byx(n — 1) +
-+-4+bpx(n—P) =0 can be rewritten as #(n) = fre(n—1)+-- -+ Bpx(n— P).
This result is expressed as follows.

Property 11.3 (Linear prediction of a harmonic process)
Let z(n) be the following harmonic process:

P
z(n) = Z ape2imin
k=1

where {ag} is a sequence of P zero-mean, uncorrelated, complex random vari-
ables with the respective variances o3, and {fi} a sequence of P frequencies.
Then for any N > P, the N-th order prediction coefficients 51, ..., By are
given by:

P —b; for 1<i<P
"l 0 for P<i<N

where the b; are the coefficients of the polynomial B(z) = Hkpzl(z—ezj”fk) and
the prediction mean square error is equal to 0.

As you can see, a process can be exactly predicted from its past. This
is what is meant by the term “almost deterministic”, used for such random
processes.

The recursive equation #(n) +bjx(n—1) 4+ -+ bpx(n— P) =0, given in
property 10.1, should be compared with equation 8.53 defining a P-order AR
random process but the second member of which would be null and the poles
of which would be on the unit circle.

The previous results, obtained for a complex harmonic process, are still true
for a process z(n) that is the sum of P real sines of the type:

P

z(n) = ZAk cos(2m fyn + )
k=1

where {®} refers to a sequence of independent uniform random variables on
(0,2m) independent of the A;. We can rewrite:

L P . . . 2r
z(n) = Z 7’“ (63¢k62yﬂfkn + 6_]‘I>k6_2]77fkn> — Zaké}?
k=1 k=1
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where the (; are 2P values of the type e¥27f% and where the «ay, are of the type

Ay exp(£j®y) and are zero-mean uncorrelated r.v. with variances o7. Hence
z(n) appears as the sum of 2P complex exponentials the frequencies of which
come in pairs of a positive and a negative value. Because of property, 11.2, z(n)
obeys a recursive equation of the type (n)+b1z(n—1)4- - -+bopr(n—2P) =0
where the 2P degree polynomial has all of its roots located on the unit circle,
come in pairs of complex conjugates. Therefore B(z) has real coefficients.

11.3.3 Predicting a causal AR-P process

Property 11.4
Let #(n) be a P order real AR process defined by equation 8.53 the expression
of which is recalled here:

z(n)+az(n—1)+---+apxr(n— P)=w(n)

with A(z) # 0 for |z| > 1 and where w(n) is a WSS white process with the
variance 2. Then for any N > P, the prediction coefficients o1, ..., ay to
the N-th order are given by:

—a; for 1<i<P
i:{ 0 for P<i<N
and the minimum prediction mean square error is equal to 2.
You can see this by rewriting equation 8.53 as follows:
r(n) =—ax(n—1)—---—apx(n— P)+w(n) =z(n) +w(n) (11.31)
where we have defined:
Z(n) =—az(n—1)— - —apx(n—P) (11.32)

For any N > P, Z(n) coincides with the best linear estimation given by
11.23. Indeed, for any £ > 1:

E{w(n)z*(n —k)} = E{w(n)}E{z*(n—k)} =0 (11.33)

This result simply expresses the fact that z(n — k) is a function only of
w(n — k), win — k — 1)... since the solution is causal and w(n) is white.
Therefore z(n — k) and w(n) are not correlated. We infer 11.33 from this
result. By replacing, according to 11.31, w(n) by #(n) — Z(n) in 11.33, we get:

E{(z"(n) —2"(n))x(n—k)} =0 for Vk > 1

This relation is identical to 11.25. Tt proves that Z(n) is the best linear
prediction of x(n), in terms of the minimum mean square error, calculated
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on any past with a duration higher than P. Notice that it only uses its last
P values. In other words, for a P-order AR, the orthogonal projection on the
entire past coincides with the orthogonal projection on the last P instants. Still
another way of saying it is that for an AR model, the prediction coefficients
coincide with the model’s parameters. This result is usually false for any WSS
process, for example an MA. This should not stop us, however, from looking
into the prediction of these processes.

Furthermore, the white input process w(n) appears as the prediction error
and its variance as the minimum mean square error.

We also should mention that in the field of statistics, the name linear re-
gression is also used for referring to linear prediction. Hence the name autore-
gressive given to these processes.

11.3.4 Reflection coefficients and lattice filters

When discussing the Burg algorithm, we presented two types of errors called
forward and backward. We are going to describe them more precisely as well as
the reflection coefficient k,, defined by 8.69. When linearly predicting z, as
a function of zp_1, ..., £p_my1 we write that the error prediction (equation
11.24) is orthogonal to the past?, that is:

m—1

ehoi(n) = (x(n) - Z ag(m — l)x(n—k)) L{z(n—=1),...,z(n—m+1)}

k=1

The exponent I’ (as in forward) indicates a prediction done from the past
to the present, and the index m — 1 indicates that the prediction is done based
on (m — 1) past values. Notice that ¢£ _;(n) is a linear combination of x,,
Tp_1, ..., Ln—my1, and that because of stationarity, the values of aj(m — 1)
that minimize the square deviation does not depend on n.

We are now going to perform what is called the backward “prediction” of
Zp_m as a function of the (m — 1) values of the immediate future, that is

Zn—mal, -5 Ln1. We have:

m—1
B n-1) = z(n—m)— Z Br(m—1)z(n —m+k)
k=1
L{z(n—m+1),...,2(n-1)}
eB_,(n—1)is a linear combination of z,,_1, T,_2, ..., Tn_m, hence the index
(n — 1) in its definition. Notice that, because of stationarity, ¢2 _;(n) = z(n+

1—m)— ZZ:ll Br(m — Dz(n 4+ 1 — m + k) with a sequence of coefficients
B (m — 1) that do not depend on n.

?In this paragraph, we assume the processes to be real and omit the star indicating
conjugation.
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By expressing the orthogonality, and by using the stationarity hypothesis,
we can easily check that the same Yule-Walker equations are obtained for the
forward and backward predictions and that:

ag(m—1) = Br(m—1) (11.34)

Notice that for m = 0, the Forward and Backward prediction errors are
written:

el (n) =2(n) and £f(n) =z(n) (11.35)
respectively. By construction, e£_;(n) and ¢Z_, (n — 1) are orthogonal to the
same subspace generated by xp_1, Tp_2, ..., Zn_m+1, and therefore for any
scalar A:

6 = 6an—1(n) + /\Eﬁ_l(n —1) L{xn_1,%n-2,- -, Tn—mt1}

Let us choose A such that J is also orthogonal to #,_,,, and refer to this
particular value of A as k,,. The vector &, = €& _;(n) + kmeZ _;(n — 1) is
therefore orthogonal to the subspace generated by z,_1, p—2, ..., Tp—m.
Because dp, is a linear combination of the type #(n) — u(n) where u(n) is a
linear combination of x,_1, ®,_2, ..., £n_m, Om 18, according to the projection
theorem, the m-th step prediction error. Hence we can write it:

em(n) = e (n) + kmeg 1 (n = 1)
where k,;, 1s defined by:

el (n) +kmel_(n—1) Lz(n—m)

m—1

which is expressed as E{ef,_; (n)z(n —m)} + kn,E{eE_ (n — Da(n—m)} =
0.

By replacing the prediction errors with their expressions as functions of
z(n), we get:

R(m) — Y50 aw(m — 1) R(m — k)

ke = — 1
R(0) = 2235 aw(m — 1) R(k)

where R(k) refers to the covariance function of the WSS process x(n). This
proves expressions 9.14 and 8.69. Expression 9.15, which is recalled below, can
be demonstrated in the same way:

em(n) = eqy(n = 1)+ kme” (1)



414 Digital Signal and Image Processing using MATLAB®

The analysis filter: z(n) — ¢l (n)
We are now going to construct a filter with the input #(n) and the two predic-

tion errors as the outputs. We need to start with equations 9.14 and 9.15:

em(n) = e (n) + kmeg 1 (n—1) (11.36)
em(n) =ep 1 (n—1) + kmef,_1(n)

Relations 11.36 lead to the simplified representation 11.70of the block where

the two input sequences are eZ_;(n) and ¢ _, (n) and the two output sequences
are ¢&’ (n) and 2 (n).
En-1 (1) B en

k"l ><

Sﬁ,l(ﬂ) —»@—» Sﬁ (n)

Figure 11.7 — Modulus of the lattice analysis filter

If we cascade these blocks and use the initial condition &f'(n) = 8 (n) =

z(n), we get the filtering diagram of Figure 11.8, called the lattice filter, which
changes the signal z(n) into the prediction errors.

x(n)

'@ ———fﬁ@—» SZ(n)
L kl>< kN><
k k,
FH e~ e do
Figure 11.8 — The lattice analysis filter

We are now going to study the transfer function’s expression. Starting with:

em(n) = 2(n) = 15y ax(m)z(n — k)
em(n) = x(n—m) = 3501, Be(m)a(n —m+ k)

we can denote by GZ (2) the FIR filter with x(n) as the input and £ (n) as
the output. This filter has the transfer function Gf, (2) = 1-37" | a(m)z=*.
Likewise, GB (z) = z=™ (1= 3", B (m)2") refers to the filter associated with
eB (n). Because ax(m) = Bk (m), we have GB (z) = z=™G¥E (1/2). Using obvi-
ous notations, we can write ELX (2) = GL (2)X(z) and EE(2) = GE (2)X(2).
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We are going to prove by mathematical induction that all of the zeros of
the filter G (2) have a modulus smaller than 1. If we consider the z-transform
of 11.36, we get:

GHF1 z) = GnFl_ z) + kmz_lGﬁ_ z
(2) = Ghia2) ) s
Ghl(2) = 27 GR_1(2) + kGl 1 (2)

Let z; be a zero of GL (z). According to the first equation of 11.37, we have
GE () + kmzi_lGB (z;) = 0. This can be written:

m—1
()| =
|k
where we have assumed:
P(z) = G%—l(z) _ am_—lz(m_l) +otaztl ”ﬁl 1— bz
GE () 2771 4t amooz + amen Pt z— by
with a = —ay(m — 1). We then check that if b5 is one of the denominator’s

roots, then 1/by is one of the numerator’s roots. If we assume that all of the
roots of G _, (z) have a modulus strictly smaller than 1, the rational function
P(z) is an all-pass filter and as such verifies theorem 4.5. In particular, |P(z)| <
1 for |z| > 1. But because |P(z;)| = |z|/|km|, and because of inequality 8.71,
|km| < 1, |P(z)] > |z:|. This means that |z;| < 1. In the case where k,, =1,
we know that the process is harmonic (the prediction error is null beyond a
certain point), and the roots of G (z) are all on the unit circle. Its inverse has

a causal and stable representation.

The synthesis filter: ¢f (n) — z(n)

The filter that changes ¢ (n) into z(n) is causal and stable. Starting off with
equations 11.36, we can write:

moi1(n) = e, (n) = kmeg 1 (n—1)

(11.38)
em(n) = 1(n—1) + kmep,_y (n)

Relations 11.38 lead to a cell set-up with the input sequences ¢l (n) and
eB _,(n) and the two output sequences &, _,(n) and €2 (n). If we cascade these
cells, we get the filtering diagram of Figure 11.9, called a synthesis filter,which
changes the signal ¢Z (n) into the signal z(n). The previous results guarantee
that if |kn, | < 1, the obtained filter is stable.

The two functions atok and ktoa allow us to go from the coefficients a; to

the k; and conversely:
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8N(”)

44;><D
ki
eN(n) _kN ><—k1
e

Figure 11.9 — The lattice synthesis filter

x(n)

function ki=atok(ai)

%h %
%% From the AR parameters (ai) to the reflection %
%% coefficients (ki) Y
%% SYNOPSIS: ki=ATOK(ai) %
% ai = AR model (1 al ... aP) %
YAA ki = reflection coefficients (k1 ... kP) %
%h %

P=length(ai)-1; ki=zeros(P,1);

for ii=P:-1:1
ki(ii)=ai(ii+1); bi=conj(ai(ii+l:-1:1));
umodk2=1-ki (ii)*ki(ii)’;
ai=(ai-ki(ii)*bi)/umodk?2;
ai(ii+1)=[1;

end

return

and conversely from the k; to the a;:

function ai=ktoa(ki)

%h %
%% From the reflection coefficients (ki) %
%% to the AR parameters (ai) %
%% SYNOPSIS: ai=KTOA (ki) %
YAA k1 = reflection coefficients (k1 ... kP) %
YAA ai = AR-model parameters (1 al ... aP) %
%h %
P=length(ki); ai=[1;zeros(P,1)];
for ii=1:P

ai(1l:ii+1) = ai(l:ii+1) + ki(ii)*conj(ai(ii+l:-1:1));
end
return

Exercise 11.3 (Lattice filtering)

1. Analysis: write the lattice filtering function that implements the formulae

11.36.

2. Synthesis: write the lattice filtering function that implements the formu-
lae 11.38.



The Least Squares Method 417

3. Write a program that checks the two previous functions by generating an
AR-P process using white noise and the filter function. Use the atok
function to extract the reflection coefficients.

11.4 Wiener filtering

Consider the diagram in Figure 11.10.

y(n) X(n) e(n)
—| g(n) ——
+ —
x(n) ?

Figure 11.10 — The Wiener filter

Let y(n) be the observation signal and #(n) the desired signal. x(n) and
y(n) are assumed to be zero-mean, WSS, real random processes with stationary
covariances. Stationarity implies:

E{a(n+ K)z(n)} = Rea(k)
E{y(n + k)y(n)} = Ryy(k)
E{w(n+k)y(n)} = Raey(k)

All of these sequences are assumed to be known.

We are going to determine the linear filter with the impulse response g(n)
that minimizes the positive quantity:

J{g(n)}) = E{e(n)’} = E{|e(n) — 2(n)|*} (11.39)
where:

i(n) = g(k)y(n — k)

The projection theorem gives us the solution. If we use the same notations
as in paragraph 11.1, H is the space of square summable random variables and
C 1s the subspace generated by linear combinations of elements of the sequence
{y(n)} written &(n) = >, g(k)y(n — k).

The filter that minimizes the square deviation between z(n) and #(n) is
such that the difference z(n) — #(n) is orthogonal to any element belonging to
the space C. Hence, in terms of orthogonality in the Hilbert space of square
summable random variables, we have for any k:

E{fz(n) = z(n)ly(n — k)} = E{fe(n) = 32, g(k)y(n —m)]y(n — k)} =0

If we develop and use the stationarity hypotheses of y(n) we get:

Roy(p) = Zg(k)Ryy(p_k) (11.40)
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This equation is called the Wiener equation and the solution is called the
Wiener filter. 1t is in agreement with the expression 11.22 we saw in the case
of channel identification.

Unconstrained solution in C

Let us first consider the case where C is the set of linear combinations of all
the variables of the sequence {y(n)}: the summation in equation 11.40 is then
performed from —oo to +oo. Hence we have a convolution of ¢(k) with Ry, (k).

To solve equation 11.40, we can then use the DTFT. If we denote by Sy, (f)
and Sgy(f) the respective DTFTs of Ry, (k) and Ryy(k), and if we use the

convolution properties, we get:

Syy (f)

G(f) = (11.41)

Expression 11.41 is usually in the form of a rational function with poles
inside and outside the unit circle. The stable solution is then bilateral. We
can, however, extract by truncation a causal approximation if we tolerate a
certain delay.

Imposing time constraints

The following three cases show some practical interest, but unfortunately they
cannot be solved as easily as expression 11.41:

— C is the set of linear combinations of y(k) with & < n up to the present
time n. In this case:

n + oo
pn)= > gln—kyk) =D g(m)y(n —m)

This is called filtering.

— C is the set of linear combinations of y(k) with k& < (n —p), p > 0, up to
the past time (n — p). In this case:

n—p +oo
pn)= > gln—kyyk) =>_g(k)y(n — k)

This is called prediction.
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— C is the set of linear combinations of y(k) with k < (n+p), p > 0, up to
the future time (n + p). In this case:

n+p +oo
i)=Y gln—kyk)= > gk)y(n —k)

This is called smoothing.

In the case of filtering, C is the set of linear combinations of all the variables
y(n) for n € {—oo,---,0} and equation 11.40 can be written:

Roy(p) = Zg(k)Ryy(p — k)

Because the summationstarts at 0, it cannot be solved simply by calculating
the DTFT of the two sides. Performing the calculation without taking any
precautions does lead to a causal solution but one that is not stable. The right
solution was found by Wiener. Its expression goes beyond the aim of this book,
but can be found in [84].

11.4.1 Finite impulse response solution

Imagine that we are trying to find as a solution for g(n) an FIR filter with a
length N = A + C, denoted by:

g(—=A), .. .,9(=1),9(0),...,9(C=1)

A is used here to take into account a certain delay. Using equation 11.40
leads us to the expression:

Rey(p) = g(=A)Ryy(p+A)+ -+ g(=1)Ryy(p+ 1)+
9(0)Ryy(p) + 9(1) Ryy(p = 1) + -+ g(C = 1) Ryy(p — C + 1)

If we stack the N = A+ C expressions of Ryy(p) for p from 0 to N — 1, we
get the matrix expression:

Rg=r (11.42)
where:
[ Rey(=4) ]
[ R RaNE0 ]
) T RO
Ryy(N - 1) Ryy(o) :
| Rey(C—1) |
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If R is invertible, the solution then has the expression:
g=R7'r (11.43)
It should be compared to expression 11.22.

Generally speaking, you can see that finding the solution requires the inver-
sion of the matrix R. It can however be avoided by implementing the gradient
algorithm.

11.4.2 Gradient algorithm

A general and simple idea for calculating a minimum with respect to g of the
function J(g) is to calculate g(n) at the n-th step using the value of g(n — 1)
at the (n — 1)-th step, going in the direction opposite to that of the gradient.
This can be written as follows:

() = gn—1) - 5 HE (11.44)

where p is a positive scalar called the gradient step.

If the function J(g) is regular enough and if y is small enough, g(n) should
converge and hence the resulting convergence value obeys equation 11.44.
Therefore, it sets the gradient to zero, which makes it a good candidate for
the search for a minimum.

Let us apply this result to equation 11.39. If we use the fact that g(n) has
a finite length, we get:

E{(z(n) —g"y(n))(z(n) —y" (n)g)}
= R..(0)—2g"r+g"Rg

J(g)

the gradient of which with respect to g has the expression:

dJ(g) _
e = —2(r — Rg) (11.45)

By replacing this expression, calculated at the point g = g(n — 1), in equa-
tion 11.44, we get the following recursive equation:

g(n) = g(n — 1) — u (Rg(n — 1) — ) (11.46)

called the gradient algorithm.
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Study of equation 11.46

We are going to determine the expression of the solution g(n) to equation 11.46
as a function of the initial value g(0) and of the matrix A =T — yR. In order
to do this, we need to write the recurrent equations for the first n values:

g(n) = (I—pR)g(n—1)+pr | x I
g(n—1) (I-pR)g(n—2) +pr | x (I-uR)

g(l) = (I-puR)g(0)+ pr X (I—pR)"!
If both sides are multiplied on the left by the indicated quantities, we get:
g(n) = pI+--+A"hr+A"g(0)
p(1— A")(I— A)~'r + A"g(0)
(I-A"R 'r+ A"g(0) (11.47)

where we have imposed A = (I—pR) and used the identity (I+---+A"~1)(I-
A)=1-A"

A classic result states that if the eigenvalues of A have a modulus smaller
than 1, the matrix A™ tends to the zero matrix when n tends to infinity. But
since any eigenvector of R associated with the eigenvalue \; is an eigenvector
of A associated with the eigenvalue (1 — A;pt), the stability condition can be
written —1 < 1 — Ajpu < 1. Because J; is positive (eigenvalue of a covariance
matrix), 0 < gt < 2/A;. Therefore, if y is such that:

0 L
SHS max; (A;)

then the algorithm converges and the convergence solution, denoted by g,
obeys the recurrent equation. This means that g = goo + f(Rgeo — 1), which
leads to Rgo, = v, which is precisely expression 11.42, Rg, = r, leading to
the Wiener filter g,,.

The misadjustment is defined by the expression:

A, = J(g(n)) — Jmin (11'48)

where Jupi, refers to the criterion value with the optimal filter. First we must
determine the criterion at the n-th step. We have:

J(g(n)) = Rea(0)—2g" (n)r+g" (n)Rg(n)
= Ry (0) — 28" (n)Rgw + 8" (n)Rg(n)

The criterion value with the optimal filter g, is given by:

Jmin = Rxx(o) - QI‘Tgw + ggng = Rx‘x(o) - ggng
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This means that the meisadjustment has the expression:

A, = (g(n) — guw) "R(g(n) — guw)

Therefore, when n — 400, the speed at which the misadjustment decreases
to 0 is related to the distribution of the eigenvalues of R.

Simulations

The following program uses simulation to evaluate the performances of the
gradient algorithm. For R and g such that r = Rg, the square deviation is
plotted against the number of iterations. The program shows that about a
thousand iterations are necessary to obtain g, with a good accuracy. The
gradient algorithm is slow:

SIMULGRADDETER .M

Eigenvalues

lambda=[1 0.01 0.0001]; nvp=length(lambda);
R=diag(lambda); gw=ones (nvp,1); rxy=R+gu;
Y%===== 1Initializations

lambda=[1 0.01 0.0001]; nlambda=length(lambda) ;
R=diag(lambda); gw=ones(nlambda,l); rxy=R#gu;

mu=1/2; N=100000;
d2g=zeros(N,1); gn=zeros(nlambda,l);
for n=1:N
gn=gn+mu* (rxy-R#gn) ;
d2g (n)=(gn-gw) ** (gn-guw) ;
end
semilogx (d2g); grid

Figure 11.11 shows the evolution of the square deviation over the course of
N = 100,000 iterations. Notice that the graph shows three different parts corre-
sponding to the three consecutive decompositions of the modes, corresponding
themselves to the three eigenvalues of R, from the smallest to the largest. This
is a very general result. The determinating factor in the decreasing speed of
the modes associated with each of the eigenvalues is the product ph;.

The speed increases as pA; gets closer to 2 (from below). Hence, for the
highest eigenvalue, the choice of g = 1 is the right one; however, for the smallest
eigenvalue 0.0001, a much greater value of p would be needed to accelerate
the decrease. Unfortunately, we can not change the value of u, otherwise the
algorithm might diverge.

The conclusion is that the number of iterations leading to the solution is
related to the smallest eigenvalue, and that the choice of the gradient step for
convergence is associated with the highest eigenvalue.

A more subtle method would be to work separately on each of the three
eigenvectors of the covariance matrix with three different steps better adapted
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1 10 102 103 10* 10°

Figure 11.11 — Fwolution of the square deviation between the actual value of g,
and the obtained value, as a function of the number of iteration steps of the gradient
algorithm

to the three eigenvalues. This can be expressed as follows:

w0 0
gn)=gn—1)—10 pz 0| (Rgrn—-1)-r)
0 0 H3

In fact, as we are going to prove, the right matrix is the inverse of the
covariance matrix. To understand this, consider the following algorithm:

_ 9*J(g)] ™" 9J(g)
B = g"_l_[ og? ] og

in which uI was replaced with the inverse of the Hessian of J(g). A simple
calculation shows that J(g) is equal to 2R.. Therefore, at the n-th step and for

any g(n —1):
gin) = gn-1) —R_l(—r—i—Rg(n—l)) =R lr=g, (11.50)

(11.49)

B=8n-1

Hence the algorithm reaches its minimum in one step, meaning that the
right matrix 1s not pI, with p having the same order of magnitude as the
inverse of the eigenvalues of R, but precisely R™. The major drawback is
that this algorithm loses its essential quality, that is to say its simplicity.

Comments

The criterion J(g) is shaped like a bowl, the bottom of which corresponds to
the Wiener solution we wish to reach. As p increases, J(g) takes bigger steps
towards the bottom of the bowl. However, as it gets closer to the minimum, 1t
is better to have a small value of p if we want to get as close as possible. To
give you an idea, a possible value for y is 2/(max; (A;) + min; (A;)).
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The following program plots, against pu, for a given number n of iterations
the square deviation in dB between the actual value g = R~'r and the value
given by expression 11.47 (for g(0) = 0):

g(n) =g, — A"R™'r (11.51)

You can see in Figure 11.12 that, for the values that were chosen, there is a
minimum deviation in the neighborhood of the value 2/(max; (A;)+min; (A;)) =
1/(1 4 0.1) indicated previously:

%===== GRADMU1.M
%===== (lambda * mu) must be < 2
lambda=[1 0.1]; nvp=length(lambda) ;
R=diag(lambda); gw=ones (nvp,1);
rxy=R*gw;
Y=====
N=50; mu=(1:0.02:1.99); L=length(mu);
desj=zeros(L,1); % J(g) estimated
for ii=1:L
mui=mu(ii);
A=eye (nvp) - (eye(nvp) -muix*R) "N;
gn=Axinv (R) *rxy;
desj(ii)=10*1ogl0((gn-gw) ** (gn-gw)) ;

end
plot (mu,desj); grid
%===== A good value

mu0=2/(1+0.1) ;

A=eye (nvp) - (eye (nvp) -muO*R) “N;
gn=Axinv (R) *#rxy;
desj0=10%1log10 ((gn-gw) ’*(gn-gw));
hold on; plot(mu0,desjO,’0’); hold off

Figure 11.12 — Square deviation in dB plotied against p. The ‘o’ indicates the
deviation obtained for the value 2/(max;(A;) + min;(A;))
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Influence of the eigenvalues of R on the performances

We are now going to numerically study how the distribution of the eigenvalues
of R influences the shape of the trajectories of g(n). We will assume that the
Wiener solution is the filter with two coefficients g,,(0) = 2 and g, (1) = 6.
This is possible, for a given matrix, if we choose r = Rg,, .

We saw that convergence was related to the eigenvalues of R. Remember
that R is a covariance matrix (its size here is 2 x 2). Therefore, it has two
positive eigenvalues. We are going to study changes in performance when
the ratio p of its two eigenvalues varies. If we consider again the criterion’s
expression:

J(90,91) = Rex(0) = 2[g0 g1lr+[90 o1]R [Zﬂ
where R is positive. This is a second degree polynomial in (g, ¢1) that gener-
ates a paraboloid, the sections of which are ellipses. The eigendecomposition
of R is as follows:

o[ -0l o

where U is a 2 X 2 unitary matrix, the column vectors of which are the direc-
tions corresponding to the major and minor axes of the ellipse, and ¢2 and o7
are quantities that measure the ellipse’s eccentricity. Let p = o7/02 and let
02 + 07 = 1. This condition means that the power y(n) is constrained to be
constant, because R. is the covariance matrix of y(n), which is assumed to be
stationary, and therefore the trace (sum of the diagonal elements) of R is equal
to 2R,y (0). But since the trace of a matrix is independent of the basis chosen
for its decomposition, the trace is also equal to ¢2 + o7 = 1. This means we
can make o2 and o7 parameters of our problem as functions of p, under the
constraint of a constant power, using the two expressions:

1
T+p

_r
T+p

ol = and o} =
We start with a known initial value g(1), and as p varies, observe the
shape of the trajectory described by g(n), which is calculated at each step
n of the algorithm. This trajectory tends to the point with coordinates g,
corresponding to the Wiener solution. The initial value can vary.
We used the following program to carry out the numerical study:

%===== GRADDET22.M

clear; N=70; % Number of iterations
gw=[2;6]; % Wiener filter
ginit=[1;5]; % Initialization

rho=(2:5); lrho=length(rho);
gn=zeros (2,N); gnc=zeros(N,1lrho);
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mu=0.1; % Step

%===== Unitary matrix

theta=-3%pi/7;

VP= [cos(theta) -sin(theta);sin(theta) cos(theta)]l;

for ii=1:1rho
rhoi=rho(ii);
vpl=1/(1+rhoi); vp2=rhoi*vpl; % sigma_1"2 and sigma_2"2
R=VP * diag([vpl vp2])*VP’; % Covariance matrix
rxy=R*gw;
gn(:,1)=ginit;
%==== Descent
for n=2:N
gn(:,n)=gn(:,n-1)+mu*(rxy-R*gn(:,n-1));
end
gnc(:,ii)=gn’*[1;j];

Y=====
plot ([1 jl*gw,’ro’); grid
hold on; plot(gnc); hold off

The results are shown in Figure 11.13. You can see that whatever the initial
value, the higher the eigenvalue ratio, the slower the convergence to the Wiener
solution.

1 1.5 2 25 3 35 g

Figure 11.13 — Gradient algorithm: evolution trajectories of the pairs (go(n), g1(n))
as functions of the ratios p € {2,3,4,5} of the two eigenvalues of the matriz R,
at a constant power, for four different initialization points. The Wiener filter s

8w = {27 6}
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The program graddet23.m draws the ellipses associated with the criterion
for each calculation point along the trajectory. The result is Figure 11.14:

%===== GRADDET23.M

clear; N=70; % Number of iterations
gw=[2;6]; % Solution of the Wiener filter
ginit=[1;5]; % Initialization

mu=0.2; % Step

%===== Unitary matrix

theta=-3%pi/7;
VP= [cos(theta) -sin(theta);sin(theta) cos(theta)]l;
rho=2; vpl=1/(1+rho); vp2=rho*vpl;
R=VP * diag([vpl vp2])*VP’;
rxy=R*gw;
gn(:,1)=ginit; c=(ginit-gw) ’*R*(ginit-gw) ;
ellipse(gw,R,c); hold on
plot(ginit (1) ,ginit(2), ’yx’)
%===== Descent
for n=2:N
gn(:,n)=gn(:,n-1)+mu* (rxy-R*gn(: ,n-1));
c=(gn(:,n)-gw) **R*(gn(:,n)-gw);
ellipse(gw,R,c);
plot(gn(1,n),gn(2,n),’yx’)
end
gnc=gn’*[1;j];
plot(gnc)
Y=====
plot ([1 jl*gw,’yo’); grid
plot ([gw(1)-VP(1,1) gw(1)+VP(1,1)],[gw(2)-VP(2,1) gw(2)+VP(2,1)])
plot ([gw(1)-VP(1,2) gw(1)+VP(1,2)], [gw(2)-VP(2,2) gw(2)+VP(2,2)])
hold off

The vector g(n) —g(n — 1) can be interpreted as the vector tangent to the
trajectory. But since we have:

g(n)—g(n—1) = p(r — Rg(n—1)) = pR(ges — g(n — 1)) (11.52)

when n — oo, the tangent vector tends to merge with the eigenvector of R
associated with the smallest eigenvalue. This is what you can see in Figure
11.14 which shows the two directions corresponding to the eigenvectors of the
matrix R.

11.4.3 Wiener equalization

Consider the diagram in Figure 11.15. The filter h(n) and the autocovariance
sequences of z(n) and b(n) respectively are assumed to be known. z(n) and
b(n) are also assumed to be centered and uncorrelated with each other.



428 Digital Signal and Image Processing using MATLAB®

6.05

‘ TN
6 I W 1. LY

T
s/

\\' 17777/

| [ T 17

\

5.95 O

=i

=
°z

5.9 i e Lo

5 2 25 3 3.5

585 e e AR

1.94 1.96 1.98 2 2.02 2.0%

=)}

A~
o

-
—_

L
‘ |
206  2.08

Figure 11.14 — Gradient algorithm: trajectory with its elliptical isocriterion contours

J(8(n))

We wish to determine the best filter g(n) for finding the signal z(n) based on
the observation of y(n). This operation is called an equalization. The resulting
signal Z(n) is not quite the same as z(n) but also depends on a certain residue

of terms associated with the other values of the input sequence: this residue 1s
called interference.

b(n)

(n) " (1) x(n)
v(n y(n x(n
h(n) ~ @ 2(n)?

x(n)

Figure 11.15 — Equalization by Wiener filtering

In the absence of noise, the equalizing filter has of course the impulse re-
sponse g(n) with (g * R)(n) = d(n) and the complex gain G(f) = 1/H(f).
Because g(n) forces the interference to zero, the filter g(n) is called a zero
forcing (ZF) filter.

In the presence of noise, the zero forcing filter is not the one that minimizes
the variance of the error between the sequence z(n) and the equalizer output
sequence Z(n). The optimum filter is the Wiener filter. Without any time
constraints, and based on formula 11.41 expressing the solution in the frequency
domain, we have to calculate Sy, (f) and Sy, (f) as functions of Sen(f), Swe(f)
and H(f). According to the figure, and because of formulae 8.39 and 8.43 and
the fact that z(n) and b(n) are assumed to be uncorrelated hence Syp(f) = 0),
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we get:

Say(f) = H*(£)Sew (f) and Syy(f) = [H(F)]* Sra(2) + Sbs(f)
Replacing these expressions in 11.41, leads us to:

_L(f) where :Sbb—(f)
STEGEL e DT 500 (1153)

Of course, the result is equivalent to the Zero Forcing filter 1/H(f) for a
noise equal to zero.

As we have already said, the main problem with expression 11.53 1s that the
stable solution usually is not causal. This is why we will only be considering
the case, which has important practical applications, where the solution to
the problem is approximated by an FIR filter with a sufficient delay. We
will continue to use the improper notation g(n) to refer to the filter’s impulse
response.

The FIR filter g(n) can then be obtained from expression 11.42. This means
we first have to determine the expressions of Ry, (k) and Ry, (k) as functions

of Ryp(k), Rep(k) and h(k). We get:

Ryy(k) = E{y(n+k)y(n)} =E{(v(n + k) +b(n+k))(v(n) +b(n))}
= va(k’) + Rbb(k’)

G(f)

where v(n) refers to the filter’s output and where we have used the fact that
b(n) and v(n) are not correlated. According to formula 8.42 (see page 298)
which gives the autocovariance function of a linear filter’s output, we have:

Ryy (k) = Ry (k) * (R(k) x h*(=k))
Meaning that:

Ryy(k) = Rye(k) % h(k) x h™(—k) + Rus(k)
Likewise, we have:

Rey(k) = E{a(n+k)y(n)} = E{a(n+k)(v(n) + b(n)))
= E{e(n+k)o(n)} = Reu(k)

Formula 8.44 gives us the intercorrelation between the input and the output
of a filter. Using it leads to:

Ry (k) = h(—k) % Ry (k)

To sum up, the expressions of Ry, (k) and Rgy(k) as functions of h(k),
Ry (k) and Rpp(k) are:

yy(k) = Ruo(k) x h(k) x 7 (=k) + Rop(k)
ey(k) = h(=k) % Reo (k)

~—
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At this point, we can construct the matrix R and the vector r and use
formula 11.43 to find the coefficients of the filter g(n).

Let us assume, for example, that A(k) = 0 for £ &€ {0,...,L — 1}, that
the signal z(n) is white and has the power o2, and that the noise is white,
with the power ¢?. This means that Ry, (k) = o2h(k)x h*(—k) + c26(k) and
Ryy(k) = 02h(—k). We can then determine the expressions of R and r involved
in 11.42 and 11.43:

R =c2Cy + 0?1
r=o’h

where Cj, is an N x N Toeplitz matrix constructed from the sequence h(n) x

h*(—n) and where h is:

oo 0O oh@-1) 0 0
h = N’
A C

We will come back to the concept of equalization when we discuss the
important case of communications systems (paragraph 12.17) with a sequence
of symbols as the input.

11.5 The LMS (least mean square) algorithm

11.5.1 The constant step algorithm

We now come back to equation 11.42; which gives us the Wiener filter. In
theory, if we perfectly knew the autocovariance matrix R and the intercovari-
ance vector r, equation 11.42 would give us the solution to the problem in the
form g = R™'r. The solution could then be obtained numerically, using the
gradient algorithm seen previously and defined by the recursive equation 11.46
rewritten here:

g(n) =g —1)+p(r—Rg(n—1)) (11.54)

For many practical problems, the autocovariance matrix R and the covari-
ance vector r are not known, and have to be estimated from the data observed.
Also, the stationarity hypotheses are never completely verified in the long run,
meaning a single estimation at the beginning of the process is not enough.
These quantities have to be re-estimated regularly. The LMS algorithm re-
turns a simple adaptive solution to the problem.
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Let y(n) = [y(n) y(n—1) ... y(n—P+1)]Y be the vector con-
structed from the last P observations, and let:

e(n) = z(n)—z(n)

gn—lgog

n—1 1

= z(n)—[y(n) y(n-1) y(n — P +1)] ! .
gn—l(P_ 1)

= an) -y (wgln— 1) (1159

be the difference between the value z(n) observed at the time n and the value
2(n) calculated from the observation of y(n), with the use of the coefficients
g(n — 1) obtained at the previous time. Be aware that e(n) is different from
the difference found in expression 11.39 and involving the desired Wiener filter
g. With these notations, we have at the (n — 1)-th step:

r—Rg(n—1)=E{z(n)y(n)} — E{y(n)y(n)T} gin—1)=E{y(n)e(n)}

If we replace the previous expression in 11.54, we get:

g(n) =g(n— 1)+ pE{y(n)e(n)} (11.56)

An idea we owe to Widrow [102] is to replace E{y(n)e(n)} in equation 11.56
with its “instantaneous” value y(n)e(n), leading to the following two equations
that make up the stochastic gradient algorithm, also called simply the LMS
algorithm:

Initial value: g(0) = 0,
Repeat:

(11.57)

y(n) x(n) e(n)
—| g(n) ——
+

x(n) ? -

Figure 11.16 — A reproduction of Figure 11.10

You can see in Figure 11.16 that the algorithm can be interpreted in a simple
way: if e(n) is null, then we can reasonably consider that the coefficients have
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the right value, in which case they are left unchanged. Otherwise, the correction
made to g(n — 1) by the term py(n)e(n) increases with e(n).

The idea of replacing the mathematical expectations with the instantaneous
values is sometimes associated with other criteria, such as the least squares
criterion, and leads to uneven results. As we did with expression 11.44, we
start with the expression J(g) of the criterion to minimize with respect to g,
then we determine the expression of its gradient with respect to g, and finally,
to obtain a minimum, we use the recursive equation:

gn)=gn—1)- % 62—? (11.58)

2 g=g(n—1)

If there are now unknown mathematical expectations in expression 11.58,
we can replace these expectations with instantaneous quantities obtained by the
plain and simple subtraction of the mathematical expectation, the same way
we did with the LMS algorithm. This leads us to a stochastic gradient type
algorithm. However, the results do not always meet expectations, whereas in
the case of the quadratic criterion, the results are quite good, as we are going
to see in some examples.

But in any case, we have to ask ourselves the following questions:

— Are there initial values g(0) and values of y that ensure convergence (the
exact definition will have to be given later on) since g(n) is random?

— If there is convergence, does g(n) lead to the global minimum of J(g) or
to some possible unwanted local minima?

— In the case of the existence of several minima, is there a practical con-
dition on the choice of the initial value that ensures convergence to the
global minimum?

These are difficult problems to solve because removing the mathematical
expectation from the recursive equation makes the analysis very complex. A
certain number of answers can be found in the literature, but they use hypothe-
ses that usually are not well verified in practice. An in-depth approach can be
found, for example, in [44], [60].

In practice, the following procedure is often used for setting the value of u:
1 1s progressively increased until the algorithm diverges, then decreased by at
least 10%. Once the value of p is set, the results are presented by displaying
the evolution, in dB, of the square of the instantaneous square deviation p(n) =
e?(n). However, because the shape of p(n) is often quite chaotic, it is a good
idea to smooth p(n) by calculating the mean ¢(n) of N consecutive values. This
can be done by using the qn=filter(h,1,pn) function with h=ones(N,1)/N.
The following expression can also be used:

g(n) = (1 —a)g(n —1) + ap(n)



The Least Squares Method 433

where « is a forget factor that can be chosen equal to 0.1. The closer a gets
to 0, the smoother the fluctuations of p(n) become.

Unlike in the deterministic situation, there appears, on average a misadjust-
ment at the convergence (see definition 11.48) causing oscillations around the
minimum. What should be remembered is that the misadjustment decreases
when p decreases and when the number of coefficients of g decreases. As u gets
smaller, the rise time decreases and the tracking capability declines. Therefore
we must find a compromise that takes these two requirements into account.
The following examples as well as paragraph 11.5.3 deal with these behaviors.

Example 11.3 (Suppression of a single tone jammer)

Consider a signal s(n) corrupted by a single tone jammer. The observed sig-
nal can be written z(n) = s(n) + b(n) where b(n) = Acos(2nfyn + @) refers
to the jammer, the frequency fp of which is assumed to be known, while its
amplitude A and its phase ¢ are unknown. b&(n) can also be expressed as
b(n) = gccos(2mfyn) + g, sin(2w fyn) where g. and g, are the unknown param-
eters we have to estimate.

The problem of extracting b(n) from the observed signal z(n) is identical
in every way to the one we encountered in example 8.6 on suppressing a trend.
The solution suggested here uses the LMS algorithm, hence it has the advantage
of being adaptive.

1. With the help of the diagram on Figure 11.17, prove that the problem is
equivalent to finding a two input filter.

¥

Yi(n) 7+><®—\+
2y

a(n)

g\ =

x(n) . . ®_>e(n)

Figure 11.17 — Two input Wiener filter
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Determine the Wiener solution of this filter that minimizes the least
squares criterion:

J(g) = Z (z(n) — [gecos(2mfon) + g5 sin(?ﬂ'j’},n)])2

n

Use this result to find the adaptation equations of the associated LMS
algorithm.

2. In order to test the tracking capability (adaptivity) of the LMS, we now
assume that the jammer is amplitude modulated according to the expres-
sion:

b(n) = A(1 + k cos(2m fun)) cos(27 fon) (11.59)

where the amplitude A, the constant & and the frequency f,, are un-
known. We assume as our hypothesis that this signal can be approxi-
mated by a sequence of time translated sines of the type:

b(n) ~ Z[gc(k’) cos(2m fo(n — k) + g5 (k) sin(27 fo(n — k))]

k=1

where the sequences {g.(k)} and {g;(k)} are unknown quantities we are
going to obtain by minimizing the square deviation between z(n) and
b(n). Show that the problem is also equivalent to finding a two input
filter. Give this filter’s impulse responses. Write a program, using the
LMS algorithm, that eliminates such a jammer for a speech signal.

3. Write a program that generates a f, = 1,000 Hz jammer modulated at
fm = 20 Hz according to expression 11.59. Let A =1 and &k = 0.5. After
applying this jammer to a speech signal. Implement the LMS algorithm
to try and eliminate it. Choose P empirically by listening to the result.

HINT:

1. The signal observed is #(n) = s(n) + b(n) where the expression of the
jammer b(n) is:

b(n) = gc cos(2mfon) + g5 sin(27 fon) (11.60)

Equation 11.60 can be interpreted as a FIR filtering of two input signals
y1(n) = cos(2w fen) and ya(n) = sin(27 fyn). The coefficients of the filter
are g. and g respectively. If you refer to Figure 11.16, you will see that
the two-dimension signal (cos(27fyn),sin(2nfyn)) represents the signal
y(n) shown in the figure, and the (two-dimension) filter’s two coefficients
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gc and gs. As for the signal e(n), it represents the denoised signal. This
is shown in Figure 11.17. We can then determine the two coefficients
ge and g that minimize the square deviation between b(n) and x(n).
s(n) therefore behaves as the unwanted signal when estimating the two
quantities. The LMS algorithm, which estimates g, and g,, is described
by the two equations:

e(n) = z(n) — [cos(27m fyn)  sin(27 fyn)] z:(z -1)

—1)
et Il o R e

. To take into account the modulation phenomenon, or other aspects of

the jammer, let us assume that the jammer’s expression is a sum of P
delayed sines of the kind:

b(n) = 3 [ge(k) cos(2my(n — k) + go (k) sin(2x i (n — k)]

k=1

This expression can be seen as the sum of the filtering of yi(n) =
cos(2m fyn) by the filter g.(n) and of the filtering of ya2(n) = cos(2n fpn)
by the filter gs(n). If we choose to minimize the least squares criterion
J(g), then the LMS algorithm is associated with:

5(n) = (0= 1) + ) | G|
where:
g0 =[[0:(0) - ge(P=D] [0(0) .. gu(P=1)o]]"
C(n) = [cos(?ﬂ'fbn) coo cos(2mfy(n — P+ 1))]T
S(n) = [sin(?ﬂ'fbn) .. sin(2nfy(n— P+ 1))]T

The signal e(n) represents the denoised signal.

. Load the previously recorded speech signal s and execute:

%===== scrambexple.m
load phrase
N=length(sn); sn=sn/max(abs(sn));
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%===== Modulation (A=1 for a pure jammer)

Fb=1000; Fe=8000; fb=Fb/Fe; Fm=20; fm=Fm/Fe ;

A=1; k=0.5;

b=Ax (1+k*cos (2xpi*fm* (1:N)’)) .* cos(2%pi*fb*(1:N)’);
%===== Jammed signal

x=gn+b;

%===== LMS implementation

mu=0.01; P=30; gch=zeros(2*P,1);

%===== schap is the reconstructed signal

schap=zeros(l,1);

for n=P:N
gY=[cos (2*pi*fb* (n:-1:n-P+1)’); sin(2*pi*fb*(n:-1:n-P+1)’)];
en0=x(n) -gch’*gY; gch=gch+mu*en0*gY;
gchap (n)=en0;

end
subplot (311); plot(sn); grid; subplot(312); plot(x); grid

subplot (313); plot(schap); set(gca,’ylim’,[-1 1]); grid

Example 11.4 (Linear prediction)

Prove that the problem of the linear prediction coefficient calculation can be
solved by an LMS algorithm. Apply this result to the estimation of an AR-
2 process’s coefficients. Plot the evolution of the square deviation for several
trials by choosing values of u that ensure “convergence” to a small and relatively
constant value.

HINT: linear prediction consists of estimating the value at the time n based
on the last P values, according to the expression:

z(n) =gox(n—1)+---+gp_12(n—P)

The diagram in Figure 11.16 shows that the sequence z(n—1), ..., z(n—P)
acts as the observation y(n), whereas z(n) acts as the reference signal z(n) in
the diagram. This means we have to replace the vector y(n) by x(n — 1) =

[x(n—1) ... =2(n—P)]T in the equations 11.57 of the LMS algorithm. We
get:
2(n—1)
e(n) = z(n) — go(n—=1) - gp_i(n—1)
2(n—P)
go(n) go(n —1) 2(n—1)
= + pe(n)
gp-1(n) gp-1(n—1) x(n— P)
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Notice that the Wiener solution provided by the equation Rg = r, an
equation where r is the vector with the following P components:

r(k) = E{z(n)x(n —k)} k€ (1,...,P)
and R is the matrix with the generating element:
E{z(n)z(n—k)}, k€ (0,...,P—1)

are simply the Yule-Walker equations 8.58. We saw on page 411 that, for an
AR process with its poles inside the unit circle, the linear prediction coefficients
coincide with the model’s coefficients.

The estARlms.m program generates an AR-2 and estimates its coefficients
using the LMS algorithm:

ESTARLMS.M
Generation of the AR-2 signal

a=[1 -1.6 0.8]’; P=length(a)-1;

N=4000; w=randn(N,1); % sigma2w=1
x=filter(l,a,w); % Signal

%===== Estimation of the eigenvalues

rO0=x’ * x/N; r1=x(2:N)’*x(1:N-1)/N;
r2=x(3:N)’*x(1:N-2) /N; % or D2=[x’ 0; 0 x’];
Rx=toeplitz([r0 ri]l); % and Rx=D2%D2’/N;
lambda=eig(Rx); muMax=2/max(lambda) % Estimated max.
%===== LMS implementation

mu=0.005; gest=zeros(P,1); err=[1;

for n=P+1:N

y=x(n-1:-1:n-P); en0=x(n)-gest’*y;
err=[err; en0]; gest=gest + muk*enO*y;

end

aest=[1;-gest];

%===== Yule-Walker equation
aYule=[1;-inv(Rx) * [ri1;r2]]1;
%===== Displaying the results

[a aest aYule], Jlim=std(err)"2
sigma2u_estime=r0 + aYule(2)*rl + aYule(3)*r2

The program estimates the eigenvalues of the covariance matrix to find
the maximum value of pg = 2/(max; A;) that ensures the convergence of the
deterministic gradient algorithm. If we now compare the convergences of the
stochastic gradient algorithm, we notice that g4 1s much greater than p. At
the convergence, the estimation slightly oscillates around the solution to the
equation Rg = r. As we have said, the fact that we eliminated the expectations
in the gradient algorithm introduces a misadjustment. The program gives the
value of the instantaneous square deviation e(n) (variable err) as well as its
variance denoted by J1im in the program. This value should be compared with
the theoretical value Jyi,, which in this case is equal to O'fu =1. n
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Exercise 11.4 (LMS algorithm: channel identification)

Consider the channel identification problem. A training signal z(n) is sent,
producing the output v(n) = hyg(n) x (n). Let us assume that the unknown
filter ho(n) is an FIR filter with P coefficients. In the presence of noise, the
observation y(n) has the expression y(n) = v(n) + b(n) where the noise b(n) is
assumed to be white.

In practice, when the length of the filter hg(n) is unknown, a large value
can be chosen in order to be sure that it is overestimated. In this case, we
will consider that this length is known, and we are going to determine a P
coefficient filter such that g(n) = (h*x)(n) is the one that best looks like y(n)
(see Figure 11.18).

b(n)
+
x(n) v(n) yn) + e(n)
h(n) y(n) T

Figure 11.18 — Identification of an hy channel

In mathematical terms, we have to find the A(n) that minimizes the square
deviation between y(n) and:

g(n) = h(0)z(n)+-- -+ h(P=-1)ax(n—P+1)

Minimizing the square deviation leads to the Wiener solution given by
Rg = r, where r is the vector whose P components have the expressions
E{y(n)x(n —k)} for k from 0 to P —1 and R is the matrix with the generating
term E{z(n)z(n — k)} for k from 0 to P — 1.

We choose to use the LMS algorithm to estimate hg(n), rather than to solve
this equation. Write a program that simultaneously performs:

— Input and output signal simulation: the input signal z(n) is a white noise
with a power equal to 1. The output signal is y(n) = h(n) x z(n) + b(n).
h(n) is the finite impulse response that simulates the channel. Let h=[1
0.6 0.3]°.

b(n) is a white noise. Determine its variance based on the value of the
signal-to-noise ratio between b(n) and z(n), expressed in dB.

— TImplementation of the LMS algorithm to identify hg(n).

— Presentation of the results: display the value in dB of the estimation
error’s power. Because this sequence of values is very chaotic, smooth it
by calculating a mean over a hundred values, using the filter function
or a forget factor.
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Study the convergence speed and the misadjustement for various values of
. What happens if p is too high? Compare with the value p = 2/ max; A;.

11.5.2 The normalized LMS algorithm
As a reminder, here is the structure of the LMS algorithm in its standard form:

g(n) = g(n—1) +py(n) [z(n) =y (n)g(n - 1)]

This version of the algorithm is not well adapted to the observation signal’s
power variations. This is because, as we have said, p has to be chosen according
to the inverse of the highest eigenvalues of R. Remember that the sum of these
eigenvalues precisely represents the power of y(n). Hence, in the practical
situation of signals that are not stationary and a power that varies, we have to
adjust p as time goes by. If we do not, the algorithm might diverge. Hence the
idea of taking as the step’s expression:

The step 1s then said to be normalized. We still have to find a simple way
of estimating P,(n) as time goes by. In order to do so, we can use one of the
following simple expressions:

— Py(n) = y'(n)y(n)/P where P is the length of the filter we wish to
estimate,

— or the empirical estimator:

Py(n) = L)+ @)+ 4P 0) = (1= 2P0 — 1)+ —y(n)

n
— or a recursive expression with a forget factor 0 < a < 1 of the type:
Py(n) = (1 —a)Py(n— 1)+ ay? (11.61)

This leads to what is called the normalized LMS algorithm:

initial value: g(0) = 0, Repeat:

e(n) = a(n) —y" (n)g(n —1)

Py(n) =(1 -« Py(n_l)‘FOf@/Z
B A

p(n) = Pn)+e

g(n) = g(n—1) + u(n)y(n)e(n)
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The positive quantity ¢ is only used to prevent p(n) from becoming too
high, particularly in the case of a rather long drop in the power of y(n).

You can do exercise 11.4 over again replacing the standard LMS algorithm
with the normalized one. You should focus on the cases of sharp power transi-
tions to compare the tracking capabilities of the two algorithms. The normal-
ized LMS often comes out with the better results.

The following program compares how the standard and normalized LMS
algorithms perform in an equalization program. This is done by generating a
signal with a power that varies, and then to consecutively filter it with two
different filters. The equalization is performed with a slightly too long FIR
filter, since it has a length of P = 6 coefficients. The values of muS and mulN are
set by trial and error, choosing the a that ensured stability:

clear; N=1000; x0=randn(1,N); x1=.2%randn(1,N);
x=[x0";x1’;x0°]; subplot(411); plot(x); grid
%===== Filtering and addition of noise

ho=[1 0.7]; vO=filter(h0,1,x0);

hi=[1 0.3]; vi=filter(hl,1,x1);
v=[v0’;v1’;v0’]; N=length(v);

SNR=30; Px=x’*x/N; sigma=sqrt(Px)*10"~(-SNR/20) ;
b=sigma*randn(N,1); y=v+b;

subplot (412) ; plot(y); grid

%===== Equalization using a P coefficient FIR filter
P=6;

HestS=zeros(P,1); % Standard LMS
HestN=zeros(P,1); % Normalized LMS

enS=zeros(N-P+1,1); % Error for the standard LMS
enN=zeros(N-P+1,1); % Error for the normalized LMS
%===== Implementing the LMSs

muS=0.06; % Standard LMS step

mulN=0.08; % Normalized LMS step

%===== Forget factor

alpha=0.05; umalpha=1-alpha;

%==== Py(n) initial

pyn=y (1:P-1) >xy(1:P-1)/P;

%===== Algorithms

%===== Standard

en05=x(n)-HestS’*y(n:-1:n-P+1);
HestS=HestS+muS#en0S#y(n:-1:n-P+1); enS(n-P+1)=en0S;
%===== Normalized

enON=x (n) -HestN’*y(n:-1:n-P+1);

% Two expressions for the estimation of Py

pyn=y (n:-1:n-P+1) **y(n:-1:n-P+1) /P;
%pyn=umalpha*pyn+alpha*y (n) *y(n) ;
HestN=HestN+mul*enON*y (n:-1:n-P+1) /pyn;




The Least Squares Method 441

enl (n-P+1)=en0N;

%===== Displaying the results
en2N=enl ."2; en2S=enS . 2;

moy=100; hmoy=ones (1,moy) /moy;
en2moyS=filter (hmoy,1,en2S(1:N-P+1));
en2moylN=filter (hmoy,1,en2N(1:N-P+1));
endBS=10 * logl0(en2moyS (moy:N-P+1));
endBN=10 * logl0 (en2moyN(moy:N-P+1));
subplot (212); plot(endBS); grid

hold on; plot(endBN,’r’); hold off

The results are shown in Figure 11.19. You can see that when there is a
loss of stationarity, the standardized LMS algorithm has the better response.
In the stationary parts, however, it behaves, in this example, basically in the
same way as the standard LMS algorithm. You can try this with several values
of the signal-to-noise ratio, or use a signal speech instead of the signal x.

0 Square deviation (dB)

Normalizéd LMS 1 1 1
0 500 1,000 1,500 2,000 2,500 3,000

Figure 11.19 — Comparing the tracking capabilities of the standard LMS and the
normalized LMS

Comments

The standard and normalized LMS algorithms are different from any other
adaptive algorithm because of how easy they are to implement. The gradient
step 1s the only parameter that has to be set. This setting often requires a
number of trials to ensure both the convergence of the algorithm (small value
of u) and a good enough tracking capability (large value of p).

Performances greatly depend on the covariance matrix of the observation,
and more particularly on how far apart the eigenvalues are from each other. The
highest eigenvalue is related to the final error obtained at the convergence and
the lowest eigenvalue is related to the total convergence time of the algorithm.

Notice, finally, that one of the hypotheses assumed for the determination of
the Wiener filter states that the channel is time-invariant. Yet, what is expected
of the adaptive algorithm is not so much to reach a stationary solution that
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may not exist so much as to follow a system that varies slowly. In this case,
the LMS is an acceptable solution.

11.5.3 Echo canceling

Echo canceling is an important example of the practical use of the LMS algo-
rithm.

In some situations such as with a “handsfree” device on a cellular phone, a
speaker is located close to a microphone (Figure 11.20). The signal emitted by
the speaker is transmitted along an acoustic path, dependent on where the user
1s, and reaches the microphone, creating an unwanted echo. In practice, a filter
with an unknown impulse response, sometimes with hundreds of coefficients,
can be used as a model to describe the acoustic path.

s(n) \“ (>—>X(”) i )

Figure 11.20 — The echo cancelation principle

Let y(n) be the speaker’s output signal, u(n) the resulting echo in front of
the microphone, s(n) the microphone input signal we wish to send, and z(n)
the microphone output signal observed. We can write:

z(n) = s(n) +u(n) = s(n) + h(n) x y(n)

where h(n) is the impulse response that serves as the model for the acoustic
path from the speaker’s output to the microphone’s input. The difficulty in
echo cancellation is to estimate s(n) based on two observed sequences z(n) and
y(n). This is done by assuming that:

— the sequences s(n) and y(n) are centered and uncorrelated;

— the estimation of s(n) is linear, of the type $(n) = z(n) — gTy(n), where
the filter g, the length of which 1s P, is determined by minimizing:

K(g) = E{|s(n) — (n)|*}
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We are going to prove that, in this case, echo cancellation is equivalent to
determining the Wiener filter according to the diagram in Figure 11.10. We
have:

B{Js(n) = s(m)} = B{(Is(n)  (2(n) — &7y (n)I*}
E{Js(n)[?} — 25 {s(n)(n)} -
2 {s(n)y” (n)} g+ E{a(n) — g7y ()]}

K(g)

where the second term is null because s(n) and z(n) are uncorrelated and
centered. Hence, the minimization of K(g) with respect to g is equivalent to
that of:

J(g) = E{ |a(n) - g"y(n)["}

which does not involve s(n). Therefore, the LMS algorithm can be used to
estimate g based on the sequences x(n) and y(n), then to substract the signal
gly(n) from z(n) to obtain an estimate of the signal s(n).

Absence of vocal activity

We are first going to consider the situation where there is no vocal activity, that
is to say when s(n) = 0 and perform the following simulation using MATLAB®:
the signal y(n) is a white noise and the signal that represents x(n) is created
by filtering y(n) with the finite impulse response filter {1 0.3 —0.1 0.2}.
Let y(n) be the filtered signal. The following program implements the LMS
algorithm:

Yi===== ECHOCANCEL1.M
clear; N=4000; alpha=0.2;
yn=randn(l,1); %=== Reference

hh=[1 0.3 -0.1 0.2];

xn=filter(hh,1,yn); %=== Echo

%===== LMS implementation

mu=0.05; P=20; gn=zeros(P,1);

en=zeros(l,1);

for n=P:N
en0=xn(n)-gn’*yn(n:-1:n-P+1);
gn=gn+mu*enO*yn(n:-1:n-P+1) ;
en(n)=(1l-alpha)*en(n-1)+alpha*abs(en0) " 2;

%===== Displaying the results
plot (10*1logl0(en(P+1:N)));
grid; set(gca,’x1lim’, [0 3000])

%plot (20%1og10(abs (f£t (hest,1024))))
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500 1,000 1,500 2,000 2,500 3,000

Figure 11.21 — LMS algorithm: evolution of the square deviation, in dB, as a
function of the number of steps of the algorithm, for the two values p = 0.02 and
p = 0.05 of the step. The echo ts a white nowse filtered by the filter with the finite
impulse response {1;0.3; —0.1; 0.2}

Figure 11.21 shows the values in decibels of the error squared, integrated
with a forget factor equal to 0.2, plotted against the number of steps of the
algorithm. The values g = 0.02 and p = 0.05 lead to convergence.

The results are particularly good: because the signal s(n) is null, the output
signal is also null, or at least should be if the calculations were completely
accurate. Notice that if the signal y(n) is no longer stationary or if the acoustic
transfer varies with time, it would be better to use the normalized step LMS
algorithm.

Presence of vocal activity

In the situation where there is vocal activity in front of the microphone, the
signal s(n) created by the user of the microphone behaves as a signal added to
the signal z(n). This makes it more difficult to adapt the algorithm, especially
given the fact that s(n) is relatively powerful compared to the signal #(n). The
following program conducts trials with the signal s(n) as the speech signal. The
echo signal u(n) is still a filtered white noise. In this case, the error signal, when
the echo is perfectly cancelled, should be a rather accurate copy of the signal
that entered the microphone. Figure 11.21 shows the results: the cancellation
1s satisfactory after about 200 samples:

%===== ECHOCANCEL2.M

clear; load phrase %=== Signal (sn)
sn=sn(:); N=length(sn); mm=max (abs(sn));
sn=sn/mm;

yn=randn(l,1); %=== Reference

hh=[1 0.3 -0.1 0.2]; echo=filter(hh,1,yn); xn=sn+echo;
subplot (311); plot(sn); grid; set(gca,’x1lim’,[3500 6800])




The Least Squares Method 445

subplot (312); plot(xn); grid; set(gca,’x1im’,[3500 6800])

%===== Implementing the LMS

mu=0.01; P=20; gn=zeros(P,1);
en=zeros(l,1); %=== Denoised signal
for n=P:N

en0=xn(n)-gn’*yn(n:-1:n-P+1);
gn=gn+mu*enO*yn(n:-1:n-P+1) ;
en(n)=en0;

%===== Displaying the results

subplot (313); plot(en); grid

set (gca, ’x1im’, [3500 6800])

%===== Audio tests

%soundsc(sn,8000) %=== Original signal

%soundsc (xn,8000) %=== Signal with echo

%sound (en,8000) %=== Signal after echo cancelling

TP RARAARA: i

1 : : : : : :
3,500 4,000 4,500 5,000 5,500 6,000 6,500

_s5 : : : : : :
3,500 4,000 4,500 5,000 5,500 6,000 6,500

-1

) : : : : : :
3,500 4,000 4,500 5,000 5,500 6,000 6,500

Figure 11.22 — LMS algorithm: top graph: speech signal without the echo; middle
graph: speech signal after adding the echo, which is a white noise filtered by the filter
with the finite impulse response {1;0.3; —0.1;0.2}; bottom graph: processed signal

The program can also be used to test the tracking capability by varying
either the filter or the power of the signal y(n).

Double talking

Finally, we can test the LMS algorithm by choosing speech signals for s(n) and
y(n). In this case, adapting the algorithm is more difficult, because the signal
y(n) is no longer stationary and has spectral properties that are close to those
of s(n). Tt is then better to use both the normalized LMS algorithm and a
vocal activity detector in front of the microphone. When the latter detects a
signal from the user, the adaptation of the algorithm is blocked, and the echo
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keeps on being cancelled with the coefficients used until then. After making a
few settings, the algorithm provides results that are quite satisfactory.

11.6 Application: the Kalman algorithm

In this paragraph, we will use the following notations:
— (s|C) refers to the orthogonal projection of s onto C;

— (=,y) refers to the scalar product of # and y, knowing that in the real
deterministic case, it is denoted by zTy, and in the random case by

E{zy};

— (®|y1, - ,yn) refers to the orthogonal projection of # onto the space
generated by (y1,- -, yn).

Let z and y be any two elements of a Hilbert space H. By assuming P = 1
in the formula 11.3, we get, for the orthogonal projection of # onto y, expression
11.62 (the projection is denoted by ay with « such that (y, (x—ay)) = 0, hence
the result).

(y, )
(y,9)

(zly) = y (11.62)

Consider a space H, C a subspace of H, and s a vector of # orthogonal to
all the elements of C. Let D be the subspace generated by C and s. Then for
any element of H, we have:

(z[D) = (#[C) + (x]s) (11.63)

Let {y.} be a sequence of vectors of a space H and « another vector of H.
By applying formulas 11.62 and 11.63, we get:

(@lyr, - ynpr) = (@lyr, o un) + (2fe)
(e, 2)
= c e Un 11.64
(@]y1, ’y)+(5,5)6 (11.64)
where € = yp41 — (Ynt1l¥1, -+, ¥n). Remember that £ is orthogonal to the
subspace generated by (y1,- -+, ¥n).

Formula 11.64 is the basis for recursive formulas.

11.6.1 The Kalman filter

Consider the system described by two sequences of centered random variables
X, and Y,. In practice, X, represents a non-observed parameter, also called
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a hidden parameter, and Y, represents an observation. The system’s variables
are assumed to obey the two equations 11.65:

(11.65)

Xn+1 =a, X, + B,
Y, =c, X + U,

{an} and {e, } are two sequences of scalars. {B,,} and {U, } are two centered
Gaussian sequences, independent of each other, with the variances® 0% (n) and
o?(n) respectively. In particular, (B,,Ys) = E{B,Ys} = 0 and (U, Xj) =
E{U, Xy} = 0. The first equation of 11.65 describes the evolution of the hidden
parameter.

We wish to calculate in a recursive way the orthogonal projection of X,
onto the subspace generated by the n random variables Y7,...,Y,. We will be
using the following notations:

Xn|n = (Xn|Y1a aYn)
Xn+1|n = (Xn+1|Y1a"' aYn)

If we use the projection property of the direct sum of two complementary
subspaces, we get:

Xotipnr = (X1 ¥1, 0 Vo) + (Xagalens)
= Xn+1|n + Gn+16n+1 (1166)

where we have assumed:

Xn a[‘:n
Ent1 = Ynp1 — (Y41 Y1, Y,) and Gpp = : ||6Jrl ||2+1)
n+1

If we replace X, 41 with a,X,, + By, then use the fact that orthogonal
projection is linear, as well as the hypothesis stating that B, is orthogonal to
the random variables Y7, ..., Y,, we get:

Xn+1|n = (Xn+1|Y1a t aYn) = an(Xn|Y1a t aYn) = aan|n (1167)

If we replace Y41 with ¢p41Xn41 + Uny1 and use the hypothesis stating
that Up,y1 and B, 41 are orthogonal to Yi,..., Y, we get:

(Yn+1|Y1a"' aYn) = Cn+1(Xn+1|Y1a"' aYn)
= Cn+1Xn+1|n
= Cn+1an+1Xn|n + (Bn+1|Y1a e aYn)

=0

= Cn+1an+1Xn|n

3Notice that the variances depend on n.
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If we replace this in 11.66, and use the expression of €,41, we also get:
Xntipng1 = Xngipn + Grnp1(Yag1 — cng1ang1 Xppn)
As a conclusion, using 11.67:
Xntiint1 = nXnjn + Grg1(Yat1 — cag1nt1Xnn) (11.68)
We will now determine the recurrence relation for G, ;1. We have:

Ent+1 = Cn+1Xn+1 + Un+1 _Cn+1Xn+1|n

=Ynt1

= Cn+1(Xn+1 - Xn+1|n) + Un+1

Let Ky = (Xng1 — Xntijns Xng1 — Xngijn ). Because (X1 — Xy 4q)) and
U, 41 are orthogonal, we can write:

lensill? = cngp1Kncngr +ofr(n+ 1)

Furthermore:
(Xng1,8n41) = (Xng1, Xng1 — Xogipn)ent1 + (Xng1, Ungr)
N— ———
:0
= (Xn+1 - Xn+1|na Xn+1 - Xn+1|n)cn+1
= A7ncn+1
And hence:
[/7774 n
Grp1 = 2ol (11.69)

oZ(n+ 1)+ cny1 Kncnpr
Let us now determine the expression of K,. We have:

Xnt1 = Xngin = (@ Xn + Bn) — anXppn

anXn + By — (an Xpjno1 + anGren)

an(Xn — Xnpno1) + Bn + Gran(cn (Xn — Xnjn-1) + Un)
= an(l = Gnen)(Xn = Xpjno1) + Bp + Gran Uy

This leads us to:

Ko = an(l=Gpen)Kp_1(1 — Gren)an
—1—0'123(71) + Gnancn(f{zj(n)Gnan (11.70)
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If we group expressions 11.68, 11.69 and 11.70 together, we get the following
algorithm called the Kalman algorithm:

I(n—lcn
Gn =
0'[2](71) + 2K,y
Xn|n = an—an—1|n—1+Gn (Yn —Cnaan_Hn_l) (1171)
K, = a2(1—=Gnen)*Kno1+ G2aZo? (n) +o%(n)

with the initial conditions zgjo = E{Xo} and Ko = E{XZ2}.

11.6.2 The vector case

In the case where the observations and the hidden variables are vectors rather
than scalars, the model can be written simply by replacing the scalars with
matrices of adequate size:

Xn =A,x, +b,
{ i (11.72)

Yn = Cnxp +u,

Example 11.5 Consider a vehicle moving along a straight line at the constant
speed v. Starting at an initial position dy, the position at the time n is given
by d(n) = dy 4+ vn. This motion equation can also be written:

{ din+1) =d(n) + v(n)
v(n+1) = v(n)

with the initial conditions d(0) = dy and v(0) = v. Notice that the second
equation of the system is reduced to v(n) = v if we assume that the vehicle
has a constant speed. But we have little faith in this hypothesis of a constant
speed. This is why the possible variability is taken into account by assuming
that:

=
=

+

=
Il

d(n) + v(n)
v(n 4+ 1) = v(n) + ba(n)

where by(n) is a random process acting as a modeling noise.
Hence the evolution equation has the expression, in matrix form:

dn+1) | _[1 1 d(n) n 0
vin+1) | 10 1 v(n) ba(n)
Let us now assume that the position d(n) is observed at the output of a
noised device delivering the value y(n) = d(n) 4+ u(n), where u(n) is a random
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process used as a model for the measurement noise. The set comprising the
equation that describes the motion and the one that describes the observation
leads to the following system of equations:

din+1) _ 1 1] |d(n) N 0
v(n+1) 0 1f [v(n) ba(n)
y(n) = [1 0} i(Z; + u(n)

If we let x,, = [d(n) wv(n)]¥, and if we write the expression of the observa-
tion y, in vector form, we get as expected the expression of 11.72:

Xn+1 = A,x, + b,
Yn = Cox, +1u,

The (m x 1) vector x, is called the state vector, or just the state, and
the first equation is called the state equation. The (p x 1) vector y, is the
measurement vector and the second equation is called the observation equation.
The sizes of the matrices A,, and C, are (m x m) and (p x m) respectively,
and may depend on n.

The respective covariance matrices of b, and u, are denoted by Ry(n) =
E{bnbg} and Ry (n) = E{unug}. A calculation in every way similar to the
one we did previously in the scalar case leads to the following algorithm:

Inetial values:
xoj0 = E{x0} and Ky = E{xox] }
Repeat:
G, =K, 1C! (C,K,_,CT + Ry(n)) ™
Xn|n = An—lxn—1|n—1 + Gy <le - CnAnxn—Hn—l)
K,=A,(I-G,C,)K,_, (I-G,C,)" AT ...
+A,G,R,(n)GLTAT 4 Ry(n)

We will come back to the Kalman filter in paragraph 12.14.



Chapter 12

Selected Topics

12.1 Simulation of continuous-time systems

12.1.1 Simulation by approximation

Design methods based on continuous-discrete time changes actually consist of
constructing a discrete-time simulator of a linear differential equation. This
method provides satisfying results because the simulated systems are linear.
Many precautions would have been needed had they not.

Exercise 12.1 illustrates the implementation of an RC filter simulator sub-

jected to a periodic input.

Exercise 12.1 (Full-wave rectifier and simulation)
Consider a full-wave rectifier followed by an RC filter (Figure 12.1).

s x()
% WA, R
Full-wave -

rectifier
;L: C |y®

Figure 12.1 — Full-wave rectifier

1. The input signal s(t) = Asin(27Fyt) with Fy = 50 Hz is fed to the
rectifier. Determine the Fourier series expansion of the rectified signal
z(t) = |s(t)]. What is the amplitude of the continuous component of

z(t)?
2. The output voltage y(t) of the RC filter verifies the differential equation:

Rcdz—(tt) +y(t) = z(t)
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Using the properties of the Fourier transform, determine the expression
of this filter’s complex gain H(F).

3. 1/RC is chosen to be much greater than Fy so that only the continuous
component and the first harmonics remain in the output signal. What is,
in this case, the expression of y(¢)?

4. We wish to simulate this system. In order to do so, we perform a sharp
enough discretization of time by choosing a sampling frequency Fs; =
1/Ts = 5,000 Hz much greater than the input sine’s frequency.

We define z;(n) = #(nT}) ys(n) = y(nTs). By using the Euler approxima-
tion dy/dt ~ Fs(y(nTs)—y((n—1)T})), show that the differential equation
is equivalent to the recursive equation y,(n) + (7 — 1)ys(n — 1) = 7a5(n).
Determine the expression of 7 as a function of RC' and 7.

5. Write a program that simulates the system’s output voltage when the
input is a sinusoidal voltage with a frequency of 50 Hz and an RMS (Root-
Mean-Square) voltage of 220V. The filter’s time constant is RC' = 0.01 s.
The filter function will be used to generate the output signal.

12.1.2 Exact model simulation

Consider a continuous-time filter with a frequency response that tends to 0
when the frequency tends to +oo (this is called a strictly proper filter). The
relation between the input i(¢) and the output o(t) is then assumed to be
described by a constant coefficient linear differential equation. This system
can be represented with the use of state equations as follows:

dx(t)

(12.1)

where b, ¢ and x(t) are n x 1 vectors and d is a scalar, equal to zero. A = [a;;]
is an n x n matrix with its [a;;] time-independent. x(¢) is called the state vector
of this representation, which is far from being the only possible one.

It can be shown that the solution to the first of the system’s equations 1s:

t
x(1) :eA(t—tu)X(t0)+/ eA(t_u)bi(u)du (12.2)

to

where the matrix exponential (the MATLAB® function expm) is given by:

t t? "
—A+—A%H~+JA”+~

At
o =lt Aty
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Given this definition, you can check that:

deAt

7 — AeAt — eAtA

and:
t t
A/ eMdu = / eAMdux A = (eAt -1)
0 0
The input-output relation is obtained by applying the Laplace transform to
the system 12.1. We get:
O(s) = ¢ (s — A)~'bi(s) (12.3)

where I(s) and O(s) are the Laplace transforms of () and o(t) respectively.

Example 12.1 (Second order systems) Consider a continuous-time sys-
tem, with the input i(¢) and the output o(t), both scalar, described by the
differential equation:

d?o(t) do(t)

e 41— + azo(t) = i(t) (12.4)
Let
x(1) = [O(t) dz_ﬂ

With this choice of the state vector, equation 12.4 leads us to a state rep-
resentation:

dx(t) | 0 1 0f .
T x(t) + i(t)

—as2 —ay 1

o(t)=[1 0}x(t)
similar to that of 12.1. We have to check that the input-output relation is:
1
(s)

s2 4+ ajs+ as
by applying the Laplace transform to 12.4 (the initial conditions are assumed
to be equal to zero) or by 12.3.

O(s) =

Exercise 12.2 illustrates the implementation, in the particular case of a
simulation based on a state representation. Such a simulation is particularly
useful in automatic control where the filter’s output (called a compensator in
this context) is applied to a continuous-time process through a digital-to-analog
converter.
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Exercise 12.2 (Simulation in the presence of a ZOH)

We wish to simulate the behavior of a continuous-time system described by
a state representation. The input signal is obtained with a ZOH DAC that
maintains the input value during the sampling period (Figure 12.2).

ik i(r) |Continuous | (7
(kT) DAC ® o ®

system

Figure 12.2 — Continuous-time system fed through a ZOH DAC

1. Give, based on expression 12.2, the relation between the state vector at
the time (k4 1)T and the state vector at the time 7. Show that we can
find a relation similar to:

x((k+1)T) = ®(T)x(kT) + i(kT)®(T)b

where W (T) is obtained as a k-independent integral of ®(¢) = e“?. Notice

that the integral fot eAdu does not require the calculation of A=, the
invertibility of which is not certain. It can actually be calculated directly
by taking the exponential exp(A.t) with:

A b
A= [QT 0]

2. Give x(t) as a function of ®(¢) and ¥(¢), for t € (kT (k + 1)T).

3. Consider the filter defined by the differential equation 12.5:

d?o(t) do(t) _
s LA 4 o(t) = 1(t € [0, +00)) (12.5)

with the unit step as its input. Starting with the initial conditions:

t=0
simulate the response to the unit step.

4. For the same system, apply the bilinear transform to perform the
continuous-discrete change, and find the same response to the unit step.
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Notice that, in this exercise, the unit step response given in question 3 is
correct. This means that the calculated values of the output sequence coincide
with the values o(nT) for all T. However, the answer found with the bilinear
transform is only an approximation.

Exercise 12.3 (Non-minimal system)
The use of linear, time-invariant, continuous-time models in the form of state
representations has led us the following expressions:

—11/4 —11/8 —5/4
A=|27/4 11/8 21/4
15/8 19/16  5/8
1
b=| -1 |,cT=[3/8 1/2 —1/4],d=0
—1/2

(12.6)

1. We wish to “digitally” simulate the response of this system when fed by
a unit step through a ZOH. Perform this simulation using the results
of the previous exercise, for several sampling values and for a minimum
simulation duration of 10 s.

2. Observe the evolution of the [|.||cc norm of the state vector during the
simulation. What conjecture can be made concerning the stability?

3. Find the transfer function (Laplace transform) associated with the system
12.6. What can be said of the stability? You may find the comments in
paragraph 4.4.3 on the role played by initial conditions in a system’s
behavior useful for answering this question (we have the same result in
continuous and discrete time cases).

4. Perform the simulation for a period of about 3 minutes. What happens?
What is this phenomenon caused by? It can be verified that the discrete
TF can be calculated by poly(phi-psib*c’)/poly(phi) - 1.

12.2 Dual Tone Multi-Frequency (DTMF)

On a Dual Tone Multi-Frequency (DTMF) phone keyboard, each key is asso-
ciated with the sending of a signal. This signal is the sum of two sines, the
frequencies (in Hz) of which are given in the correspondence Table 12.1.

This means that when you dial “5” on your phone, the signal () = cos(27 x
1,336 x t) + cos(2m x 770 x t) is sent through the phone line.
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Hz | 1,209 | 1,336 | 1,477
697 || 1 2 3
770 || 4 5 6
852 || 7 8 9
941 || % 0 #

Table 12.1 — Frequency correspondence table

COMMENTS:

— These frequencies belong to the (300 Hz - 3,400 Hz) band, the phone band
for the switched network (fixed phones). The frequencies associated to the
columns are all greater than those associated with the lines. This layout
can help to find the phone number using the signal. Finally, the frequen-
cies were chosen so as not to have frequency ratios equal to integers. As
we have seen, a non-linear operation can cause multiples (harmonics) of
the fundamental frequency to appear, causing some confusion.

— The keyboard is designed to always send signals for periods longer than
71 = 65 milliseconds. This value was chosen so that the two frequencies
contained in the signal could easily be separated. In the worst case, the
difference in frequency is AFpi, = 1,209 — 941 = 268 Hz (corresponding
to the x key), therefore 71 needs to be such that AFpinm >3 1. With the
values that were chosen, AFinm > 17.

— Finally, it must be possible to tell the difference between the number '
being sent for a duration of T and the number C'C' being sent for the
same duration. This is why, after each key 1s released, a zero signal is
sent for at least 80 ms (even if you can dial faster than that!).

Example 12.2 (DTMF signal processing)

We are going to try to find a 10 digit phone number using the signal sent
by the phone. We will start by sampling the signal at a frequency of 8,000
samples per second, a speed much higher than twice the highest frequency,

that is 2 x 1,477 = 2,954 Hz.
The following program creates such a signal:
%===== GENEKEY.M

Fg=8000; % Sampling freq.
tel="0145817178; 1lt=length(tel); % Seq. of numbers
%===== Coding table
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keys=’123456789*0#’; nbkeys=length(keys);
FreqB=[697 770 852 941]; FreqH=[1209 1336 1477];
Freqgskeys=...

[FreqB(1) FreqH(1); FreqB(1) FreqH(2); % 1 et 2
FreqB(1) FreqH(3); FreqB(2) FreqH(1); % 3 et 4
FreqB(2) FreqH(2); FreqB(2) FreqH(3); % 5 et 6
FreqB(3) FreqH(1); FreqB(3) FreqH(2); % 7 et 8
FreqB(3) FreqH(3); FreqB(4) FreqH(1); % 9 et *
FreqB(4) FreqH(2); FreqB(4) FreqH(3)1;% 0 et #
%===== Constraints
tton=0.065; tsi11=0.080; % in seconds
%==== Construction of the seq. of frequencies
Freqs=zeros(lt,2);
for ii=1:1t
ind=find(keys==tel(ii)); % Test of the number
Freqs(ii,:)=Freqskeys(ind,:); % Associated Freq.
end
freqs=Freqs/Fs; % Normalized freq.
%===== Construction of the signal
y=zeros (100+fix (100*rand) , 1) ; % Starting with signal=0

dton=fix (1000*rand (1t,1)+tton*Fs); % Number duration
dsil=fix (1000*rand(1t,1)+tsil*Fs); % Silence duration
for ii=1:1t
sigu=cos (2*pi* (0:dton(ii)) **freqs(ii,:))*ones(2,1);
y=Ly;sigu;zeros(dsil(ii),1)];

%===== Some noise is added

1x=length(y); py=y’ *y/lx;

SNR=30; pb=py*10~(-SNR/10); x=y+sqrt (pb)*randn(1x,1);
%===== Plotting of the signal

tps=(0:1x-1) /Fs; plot(tps,x); grid

set (gca, ’x1im’, [0 (1x-1)/Fs])

In order to simulate the perturbations on an actual phone call, the program
adds noise created by sqrt(pb)#*randn(L,1). SNR is the signal-to-noise ratio
(in dB) chosen equal to 30 dB. The resulting signal is shown in Figure 12.3.

We are going to find the 10 digit number in this signal in two steps. First,
we will determine the beginning and the end of the signal’s active zones, then
we will analyze each of the intervals to extract the frequencies and therefore
the corresponding digit. To determine the beginning and the end of the active
zones of the signal, we are going to estimate the “instantaneous power” and
compare it to a threshold value. We will see later on as we study random
phenomena what we mean exactly by “estimating the instantaneous power”.
Here, we will merely be considering the quantity:

1
Pr=— > (12.7)



458 Digital Signal and Image Processing using MATLAB®

Figure 12.3 — DTMF Signal

which gives a relevant indication on the signal’s fluctuations. The choice of N
is done as a compromise. Consider, for example the signal z(n) represented in
Figure 12.3. If N is very small, P, will be very close to the amplitude z%. The
risk would be to make the conclusion that the power is equal to zero whenever
the amplitude is close to 0 (which happens every period). If, on the contrary,
N 1s very high, we might include a silence and miss the beginning or the end
of an active part. Quantitatively, N must therefore be much greater than the
longest of the periods of the active parts, and much smaller than the duration
of the wanted signal, that is to say 65 ms. This can be expressed:

5

697
For Fs, = 8,000, and with N = 100, this double inequality 1s satisfied.

<« N < 65 x 1073F,

1. Write a program that measures the “instantaneous power” and deter-
mines the beginning and the end of the signals associated with a digit.

2. Write a program that determines the digit associated with each portion
of the signal.

HINT:

1. The expression 12.7 for the power can be seen as the result of the filtering
of the positive signal y, = 22 by the filter with the finite impulse response
h(k) =1/Nfork €{0,..., N—1}, and 0 otherwise. The filter function,
a function we will study in detail in Chapter 4, is used as follows to achieve
this filtering operation:

” hpb=ones (N,1)/N; pn=filter(hpb,1,x .* x);

The program that performs the complete signal activity detection oper-
ation is the following:
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%===== DETECTKEY.M
% input x=DTMF signal
N=100; hpb=ones(N,1)/N; % Estimation of the instantaneous

pn=filter (hpb,1,(x .* x)); % power for N points
prax=max (pn) ; mthresh=0.5%pnax;
marker=(pn>mthresh); lmarker=length(marker) ;
begend=marker (2:1lmarker)-marker (1:1marker-1); % diff (marker)
begs=find(begend==+1)-0/2; % Start indices
ends=find (begend==-1)-N/2; ¥ Stop indices
%===== Plotting the signal
subplot (211) ,plot (tps,x); set(gca,’xlim’, [0 (1x-1)/Fs])
%===== Plotting the transitions
hold on
for ii=1:length(begs)

plot(begs(ii)/Fsx*[1 1],4%[-1 11,°-r’);
end
for ii=1:length(ends)

plot(ends(ii)/Fs*[1 1],4%[-1 1],’-7);

end
hold off; grid
%===== Plotting of the instant. power and threshold

subplot (212); plot(tps,pn)

set (gca, ’x1im’, [0 (1x-1)/Fs],’ylim’, [0 1.2%pmax])
hold on; plot([0 (1x-1)/Fs], [mthresh mthresh],’-’);
hold off; grid

The filter output is compared to a threshold chosen equal to half of the
maximum instantaneous power. Using the logical expression pn>mthresh,
we then determine the sequence of the parts of the signal where P, is
above the threshold value. By subtracting this sequence to itself trans-
lated by 1, we get of sequence of values, where 41 indicates the be-
ginning of a signal and —1 the end of a signal. This operation corre-
sponds to a numerical derivative that could just as well have been written
debfin=diff (marque). In expression 12.7, the calculated power corre-
sponds to the signal portion going from the indices (n — N +1) to n. It is
therefore better to consider this measure as the median position n — N/2.
This is why we subtracted N/2 to the positions that were found, which
is done by the two following program lines:

begs=find (begend==+1)-N/2;
ends=find(begend==-1)-N/2;

We represented in Figure 12.4 the estimated instantaneous power.

. To determine the digit based on an active portion of the signal, the two
frequencies have to be extracted. The correspondence table provides the
corresponding number. All the frequencies extracted are already known,
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AR

Figure 12.4 — Estimated instantaneous power

so there 1s no use doing a spectral study on the entire frequency axis. It is
sufficient to evaluate the spectrum at frequencies that might be contained
in the signal, by calculating these four quantities:

Z x(n)erﬂ'fn

n

Q= (12.8)

for f € {697/F,,770/F,,852/F; 941/F}, with Fy = 8,000 Hz, and to
choose the frequency that corresponds to the highest value. The same is
done with the group of 3 high frequencies.

The program detectnum.m determines the phone number associated with
the signal: [

Y%===== DETECTNUM.M
nbDigitdet=min([length(begs) length(ends)]);
foundNum=[];
for tt=1:nbDigitdet
(B=zeros(4,1); QH=zeros(3,1);
sig=x(begs(tt):ends(tt)); % Signal associated with a number
lsig=length(sig);
%===== For each of the 4 freq., calculating the correlation
for ii=1:length(FreqB) % For each freq.
ps=sig .* exp(2#j*pi*FreqB(ii)*(1:1sig)’/Fs);
QB(ii)=abs (sum(ps));

%===== For each of the 3 freq., calculating the correlation
for ii=1:length(FreqH)
ps=sig .* exp(2#j*pi*FreqH(ii)*(1:1sig)’/Fs);
QH(ii)=abs (sum(ps));

%===== Maxima

[bid, indB]l=max(QB); [bid, indH]=max(QH);
detF=[FregB(indB) FreqH(indH)];

%===== Table Look-up




Selected Topics 461

while sum(Freqskeys(jj,:) =detF), jj=jj+1; end
foundNum=[foundium keys(jj)1;

end
disp(sprintf (7 **x**** The number is : %s’,foundNum))

12.3 Speech processing

Speech is an important field for the applications of digital signal processing.
This first paragraph deals with how transporting and storing a signal can be
facilitated by analyzing and compressing it.

12.3.1 A speech signal model
Overview

The first issue i1s the choice of the sampling frequency. When it comes to
telephone communications, there usually are two constraints: the message must
be comprehensible, and must make it possible to identify the person speaking.
These constraints mean that the frequency band can be restrained to the [300-
3,400] Hz interval, which implies a Nyquist frequency of 8 kHz. Figure 12.5
shows 2,000 values, or 0.25 s of a speech signal sampled at that frequency.

Voiced signal Unvoiced signal

-10

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000

Figure 12.5 — Speech signal sampled at 8,000 Hz. The x-coordinates correspond to
the number of samples

This 300-3,400 Hz band is called the telephone-band. Of course, the larger
the band, the better the quality. However, as the width of the band increases,
so does the amount of informations sent per unit of time!

In order to enhance the quality, a larger band is considered that goes from
150 Hz up to 7 kHz; this band is devoted to the wideband digital handsets
telephones. It works well for speech signals but is still insufficient for musical
signals. In the case of music, usually two qualities are considered: the FM
band (short for Frequency Modulation) quality used for frequency modulated
radio broadcasts, which goes up to 15 kHz, and the HIFT band quality, used for
example for compact discs, which goes up to 22 kHz. In any case, the speech
signal must be sampled, according to the sampling theorem, at a frequency at
least twice that of the band used.
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Quality Maximum frequency | Sampling frequency
Telephone-band 300-3,400 Hz 8,000 samples/s
Wideband 150-7,000 Hz 16,000 samples/s
FM band 50 Hz-15,000 Hz 32,000 samples/s
HIFI band <22,050 Hz 44,110 samples/s

A typology of vocal sounds

Consider the part of the signal shown in Figure 12.5. As you can see, there are
two clearly distinct sections corresponding to two types of sounds:

The sounds that have the aspect of a harmonic vibration and that are
said to be wvoiced. Vowels are a perfect illustration of this type of sound.
An example is shown in Figure 12.5 in the window with the indices from

0 to 1,200.

The sounds we interpret more as noise, and that are said to be unvoiced.
An example is shown in Figure 12.5 in the window with the indices from

1,200 to 1,800.

Vowels generally last longer than consonants. They can easily be recognized
by their harmonic aspect. Consonants are divided in the following categories:

the nasal consonants/m/, /n/...for which the “oral cavity 4+ pharynx”
system forms a closed resonant cavity, with the air going the nostrils;

the unvoiced fricatives /f/, [s/, [ch/... produced by turbulence of a
continuous air flow in the oral cavity. The cavity i1s divided in two sub-
cavities, the one in the back causing the “zeros” in the transfer function;

the voiced fricatives /v/, /z/... which can be described in the same way
as the unvoiced fricatives but with vibrations of the vocal folds;

the wvoice plosives b/, /d/...which are transitions caused by the sudden
opening of the oral cavity following a rise in pressure. They strongly
depend on the vowels they are pronounced with;

the voiced plosives [p/, [t/, etc.

Figure 12.6 illustrates the case of the sounds “sh” and “ee”.

The AR model of speech production

The production of sounds is a very complex phenomenon that cannot be easily
described by a model. It is bound to the anatomy of the vocal tract, represented
in Figure 12.7.
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Figure 12.6 — Temporal shapes of a speech signal sampled at 8,000 Hz: top graph:
an unvoiced sound; bottom graph: voiced sound
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Figure 12.7 — Anatomy of the vocal tract

A functional represents [35] is shown in Figure 12.8. The vocal tract is
simplified as a series of cavities, the shapes of which change with time as air,
coming from the lungs, flows through them.

Studies conducted on the vocal tract show that the two type of sounds,
voiced and unvoiced, can be described using as a model the output of a all pole
linear filter of the type 1/A(%), the order of which is between 10 and 50, and
with, as the input:
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Figure 12.8 — Elements of the vocal tract

— a white noise for unvoiced sounds;
— and an impulse sequence for voiced sounds.

The impulse sequence associated with voiced sounds corresponds the deriva-
tive of the volume of the air flowing through the glottis (the space between the
vocal cords) which opens and closes periodically, with opening phases that last
longer than the closing phases. This leads to a sudden decrease, during the
closing phase, of the air flow which causes by derivation a very brief negative
impulse (see Figure 12.9). Although it is sometimes sufficient to crudely ap-
proximate the sequence produced by the glottis by a simple sequence of ideal
impulses, there are more sophisticated glottal excitation models [47], such as
those of Rosenberg or Liljencrants-Fant (see Figure 12.9).

1 1

0.8 0.8 p--ommoooo /e X -- Liljencra‘nts—Fant
0.6 0.6 ‘
0.4 0.4
0.2 0.2

0 0

4 5

2

0 0
2
-4 I N\
—6
-8 i -10

0 50 100 0 100

Figure 12.9 — Typical shapes of the glottal excitation signal. Above figure: air flow
model. Bottom figure: derivative of the air flow model

The fundamental frequency of the periodic sequence of glottal impulses is
called the pitch. This frequency goes from about 70 Hz for a very low voice
to 450 Hz for very high one. For a man, it goes basically from 70 to 200 Hz,
for a woman from 140 to 350 Hz, and for a child from 180 to 450 Hz. In any
case, for a given person, the pitch varies in the course of a conversation. For
voiced sounds, the sequence of periodic impulses produced by the vocal folds
acts as a frequency analyzer and cause resonant frequencies to appear in the
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vocal tract. These frequencies are called formants. As you can see in Figure
12.10, 4 formants are found by following the spectrum’s envelope shown on the
right.

Vowel i/

,,,,,,,,,

0 2,000 4,000 6000 8,000

Figure 12.10 — Temporal shape and spectrum of a speech signal: the graph on the
right shows four formants (sampling frequency Fs = 8,000 Hz)

Let 1/A(z) be the transfer function of the filter used as a model for the
vocal tract. In the case of an unvoiced sound, the input can be seen as a white
noise, and therefore the speech signal is an autoregressive process. We can
then estimate the coefficients of A(z) from an unvoiced sound window, using
the results obtained for AR processes in paragraph 9.2.1 on page 329. Then,
when the unvoiced signal is applied to the FIR filter with the transfer function
A(z), we get an estimate of the white noise input.

In the case of a voiced sound, the glottis signal is assumed to be a sequence
of periodic impulses with the pitch frequency F,. If the vocal tract is described
as an all pole filter 1/A(z) and if we assume that:

g(n) = i(n— kM)~ > Ad(n— kM) (12.9)

provides a good approximation of the glottis signal with MT, ~ 1/F,, the
voiced signal s(n) is a periodic signal containing the same frequencies. If A(z)
is a P degree polynomial, s(n) obeys the filtering equation:

s(n)+ars(n—1)+---+aps(n— P) =g(n) (12.10)
Based on N observations, we get:
SPrl) s s 011 g(P:+ 1)
s N s N:— 1 s(N — P AN
I P I

which is written 1n matrix form:

[s ] H =g (12.11)

a
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S is a Toeplitz matrix. The vector g i1s a periodic vector containing an
A followed by (M — 1) zeros (see approximation 12.9). Typically, for a pitch
frequency of I, = 190 Hz, the pitch period is 7, ~ 5 ms. If 7}, is assumed to be
much greater than the glottal impulse duration (see example 10.3), the vector
g contains almost nothing but zeros. Equation 12.11 can then be written:

- o]

and a can be estimated using a least squares approach by minimizing this vec-
tor. The advantage of this method is its simplicity® because it requires neither
the estimate of the period M nor the estimate of the phase corresponding to
the exact moment when the glottis close. The minimization leads to:

a=—(ST8)"1sTs

an expression similar to the expression a = —R™'r found with the Yule-
Walker equation 8.58 which relates the parameters of an AR process with the
covariance coefficients. Once a has been estimated, we can then calculate g(n)
with the use of expression 12.10, that is simply by feeding the speech signal
{s(n)} into the input of the FIR filter with the transfer function A(z).

As a conclusion, whether the sound 1s voiced or not, the estimate of the
residual signal, glottis impulses in the first case and white noise in the second,
is obtained by filtering the signal by the filter with the transfer function A(z),
the coefficients of which are estimated as the parameters of an autoregressive
process. The following example allows you to experimentally check the shape
of the residual signal for a speech signal.

Example 12.3 (Observation of a speech signal’s residual) First record
a voiced sound /ee/ and an unvoiced sound /sh/ at 8 kHz. Then create a
program:

— that estimates the coefficients {ay} of a 20th order all pole model for an
analysis window with a duration of 30 ms, or 240 samples;

— that performs the filtering with the transfer function A(z) of the same
speech signal block.

Apply this process to both the voiced and the unvoiced sound.

HiINT: type the following program:

IWhen the glottal impulses have to be reconstructed with a higher accuracy, for example
when it is used to perform a medical diagnosis, the least squares method used here can give
insufficient results [35].
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%===== RESIDUAR.M
clear
load voye ; % Voyel
%load conch; % or consonant
Fs=8000; tbloc=.05; % Block size (ms)
modorder=20; nb=tbloc*Fs; mtime=(0:nb-1)/Fs;
sigi=1tre(1+1600:nb+1600); sigch=ltrch(1l:nb);
for k=1:modorder+1,
ri(k)=sigi(k:nb) *sigi(1:nb-k+1)/nb;
rch(k)=sigch(k:nb) >*sigch(1:nb-k+1) /nb;
end
RRi=toeplitz(ri); asi=-RRi \ [1;zeros(modorder,1)];

RRch=toeplitz(rch); asch=-RRch \ [1;zeros(modorder,1)];
ai=asifasi(1); resi=filter(ai,1,sigi);
ach=asch/asch(1); resch=filter(ach,1,sigch);

subplot (411); plot(mtime,sigi/max(abs(sigi))); grid
subplot (412); plot(mtime,-resi/max(abs(resi))); grid
subplot (413); plot(mtime,sigch/max(abs(sigch))); grid
subplot (414); plot(mtime,resch/max(abs(resch))); grid

The results are shown in Figure 12.11 and 12.12. The graphs give the shape
of the residual signal for a voiced sound and for an unvoiced sound. Very short
impulses are clearly visible for the residual signal of a voiced signal, with a
period of about 10 ms, that is about 100 Hz, corresponding to the closing
frequency of the glottis.

0 0.005 0.01 0.015 0.02 0.025 0.03s

Figure 12.11 — Temporal shape of a voiced sound (/ee/)and of the residual

Remember that the Toeplitz nature of the estimate of a covariance matrix
ensures that the filter with the transfer function 1/A(z) is causal and stable
(see page 309 on the stability of AR models). However, in the analysis problem,
which consists of constructing, as we have just done, the input signal based on
the observed signal, this property is not crucial since the filter A(z) is a FIR
filter, and is therefore stable. On the other hand, in the synthesis problem,
which consists of reconstructing the speech signal based on the input signal,
this property is of course essential. [
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0 0.005 0.01 0.015 0.02 0.025 0.03 s

Figure 12.12 — Temporal shape of an unvoiced sound (/sh/) and of the residual

12.3.2 Compressing a speech signal

We are going to present in this paragraph an example of speech signal com-
pression. The word compression is used for the digitization of a signal as a
bitstream with a rate as low as possible for a given level of distortion. Com-
pression is too difficult a problem to be discussed here thoroughly. The solution
we present 1s merely an introductory example, inspired from a encoder chosen
a very wide choice of existing encoders [66, 35].

The simplest form of signal digitization is the b-bit uniform quantization of
the values sampled at the frequency Fs. Typically, for F;, = 8 kHz and 6 = 8
bits, the result is a 64 kbits/s stream called PCM (Pulse Code Modulation).

To achieve compression, in other words to use less bits, while maintaining
a low level of distortion, a first idea would be to quantize the difference §(n) =
s(n) — s(n — 1) in place of the samples s(n). The resulting should be smaller
than s(n) and hence the same accuracy would be achieved with less bits. This
approach, which uses the correlations contained in the consecutive samples can
easily be generalized by quantizing the residual signal e(n) = s(n)—(a1s(n—1)+
---+aps(n—P)), where the sequence «,, is the one that minimizes [ { |¢(n)|?}.
As you may have noticed, we are once again faced with the linear prediction
problem. This approach, called DPCM, for differential PCM has the advantage
of being applicable to any signal for what we call waveform coding.

A second approach consists of considering the speech creating system and
describing it using a model comprising a small number of parameters we are
going to estimate. Then, all we have to do is reconstruct the signal from these
parameters to obtain a signal that “sounds” like the original one. This type
of encoder, called a vocoder, does not follow the shape of the original signal.
This i1s why it cannot be used to compress a signal originating for example from
a modem operating in the phone frequency band. However, the bitstream is
usually lower, for the same quality, than the ones obtained in the first approach.
The example we chose belongs to the second category.
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The compression principle we decided on is based on representing the speech
production system as an all pole filter, the input of which is either a sequence
of periodic impulses, in the case of voiced sounds, or a white noise in the case
of unvoiced sounds. The result is the synthesis diagram shown in Figure 12.13.
With this approach, we assume that the signal i1s stationary, which is almost
true for speech signals with a duration of about 10 to 20 milliseconds.

To have a better idea of this model, consider a signal sampled at 8,000
Hz with 8 bits, which corresponds to a rate of 64,000 bits/s, and assume that
for each block of N = 180 samples, corresponding to a duration of 22.5 ms,
P = 22 parameters are extracted. If we use 8 bits to represent each of the 22
parameters, 180 x 8 = 1,440 bits are replaced with 22 x 8 = 176 bits, which
means we have a compression factor of about 8. In terms of rate, everything
happens as if only 1 bit of each sample was kept. This would be the rate
obtained if, for example, we only kept the sign bit of the samples s(n). To
compare this with the result obtained in exercise 12.4, you can run the following
program:

signs=sign(s);
soundsc (signs,8000) ;

where s represents the sample sequence of a speech signal sampled at 8,000 Hz.

Voiced sound

Unvoiced sound

Figure 12.13 — Creating voiced and unvoiced sounds with all pole filtering

Exercise 12.4 (Compression of a speech signal)
The task you are supposed to do is divided in three parts:

1. Detecting whether a sound is voiced or unvoiced, and pitch measurement:
when a signal is periodic, its autocorrelation function, defined by the
normalized covariance (see definition 8.4 on page 275), shows maxima
distant from each other by one period of the fundamental. Hence the
idea to detect whether or not the sound is voiced and to measure the
pitch based on the computation of the estimate of the autocorrelation
function:

_ Stz(n)z(n—k)
J(k) = > xZ(n))l/Z(z 22(n — k))1/2 (12.12)
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The use of this function, incidentally, will be justified by a least squares
approach when we deal with the similar problem of cardiac rhythm esti-
mation (see page 494).

As we have seen, the pitch belongs, in practice, to an interval
(FPrnin, Fmax). You can therefore restrain the computation of the func-
tion J(k) to the values of k greater than kmin = Fs/Fmax and smaller
than kmax = Fs/Fmin, where Fy refers to the sampling frequency. If
the maximum of J(k) goes beyond a certain threshold, typically 0.6, the
sound is considered voiced, and the pitch period is then given by the value
ko corresponding to the maximum of J(k).

Write a function that detects sound activity, determines whether the
sound 1s voiced or unvoiced and measures, in the case of a voiced sound,
the pitch period. Use this function to divide the signal voiced and un-
voiced areas, using windows of 240 points, that is 30 ms of signal, with
an overlap rate of 25%.

2. All pole filter parameter extraction based on the previous partitioning:

— Use the xtoa function from page 330 to extract the P coefficients
of the all pole filter associated with each analysis window. You can
choose P = 20 as the model order for a voiced sound window and
P =10 for an unvoiced sound window.

— Create a coefficient file containing for each block the coefficient of
the all pole model, as well as the value of the pitch when the signal
is voiced. Set the pitch value to zero to indicate an unvoiced sound.

3. Synthesis: write a program that achieves the synthesis. To tone down
the possible sudden variations from the coefficients of one window to
those of the next, set the overlap to 25% for the consecutive outputs
calculated over time intervals of 30 ms. Use a white Gaussian noise or a
simple sequence of impulse with identical amplitudes as the filter’s input,
depending on whether the sound is voiced or unvoiced.

In exercise 12.4, we did not quite perform the encoding operation we said we
would. What we should have done is use 176 bits to encode all 22 parameters for
every time of analysis, but that is not as simple as it seems, because we cannot
just simply associate 8 bits to each of the 22 parameters, the bit distribution
has to be optimal. A classic approach is to study, using a speech database, the
parameter distribution and to create a codebook of representative elements by
a vector quantization (see paragraph 12.15.2).

A wvoice activity detector usually precedes the whole encoding system. Its
role is to determine the segments containing “silence”, for which no parameter
estimation is done. When reconstructing the signal, a faint noise is added to
these segments of silence for purposes of listening comfort.
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12.4 DTW

In signal processing, and particularly in the field of speech, different series of
measurement conducted in seemingly identical conditions can provide record-
ings that actually show significant differences in terms of amplitude, duration,
utterance speed, etc. The algorithm, which will be detailed later, performs a
time-alignment of two observation sequences independently from possible dif-
ferences in amplitude, duration, or utterance speed. It is commonly called the
DTW algorithm, short for dynamic time warping.

In 1975, Ttakura [34] suggested using the DTW for speech recognition. In
the particular case of the recognition of isolated words, a dictionary is used,
containing the sound recordings of the words to be recognized, and during the
recognition operation, it has to be decided which word has been pronounced
based on the observed sound signal. If the sound signal corresponding to a given
word were perfectly reproduced, we would simply have to subtract, sample by
sample, the sample signal from the reference signal: a word would then be
recognized if the difference is equal to zero. Unfortunately, this is never the
case. So, in order to perform the comparison, we are going to associate as best
we can the consecutive phases of the signal to be recognized with those of the
different dictionary signals and find a value for the discrepancy. The DTW
performs both those operations.

The DTW algorithm

Consider two sequences of length d vectors {x1,...,x;} and {y1,...,ys}. Let:

d
> (@i —yj0)?

=1

d(i, j) =

with 1 <¢ <7 and 1 < j < J, be the distance between the two vectors x; and
Y-

A solution to the time alignment problem consists of taking one by one the
indices of the sequences {x;} and {y;} using a pair of functions ¢ = (¢, ¢y)
defined on {1,...,7} and within the range {1,...,7} x {1,...,J}, and to
calculate the cumulated sum of the distances associated with ¢:

where the my are positive weighting coefficients and My is a normalization
constant given by:

T
M¢ = Z mpg
k=1
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It seems My should depend on the choice of ¢. In practice, the my are
chosen such that My is independent of ¢. This can be achieved for example by
choosing:

my = (¢z (k) — do(k — 1)) + (y (k) — 6y (k — 1)) (12.13)
The function ¢ satisfies different types of constraints, such as:
— initial and final values: ¢,(1) =1, ¢.(T) = I, ¢4(1) =1, ¢,(T) = J;

— trajectory monotony and continuity: 0 < ¢,(k) — ¢5(k — 1) < 1 and
0< ¢y(k) —¢y(k—1) <1

— local continuity: finally, the pair (¢ (k), ¢y (k)) satisfies certain pathfind-
ing rules.

Examples of pathfinding rules

To ensure local continuity, a sequence of possible paths is defined by a graph
such as the ones shown in figures 12.14 and 12.15: the arrows in these figures
show the only possible paths that can be taken to reach the final point.

Figure 12.14 — Pathfinding constraints: the numbers indicate the weight associated
with the considered paths

Figure 12.15 — Pathfinding constraints: the numbers indicate the weight associated
with the considered paths

The goal of the DTW algorithm is to determine:
D(I,J) =mindy(I,J
( ) ) glel‘g ¢>( ) )
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where & is the set of functions that satisfy the constraint.

Dynamic programming is a recursive approach which allows the previous
criterion to be minimized using the following property:

Consider two sequences {x1,...,x7} and {y1,...,ys} and let C(I,J) be
the minimal length DTW path associated with these two sequences. Then the
sub-path of the path C(I, J) which reaches the point with coordinates (x;,y;) is
optimal for the two sub-sequences {x1,...,x;} and {y1,...,y:}, because among
all the paths that lead to the point with coordinates (¢, j), minimization means
we only keep the shortest one and therefore:

D(i. 3 = mind. (5. i
(7,7) = mindy(i, j)
Thus, for the constraint graph shown in Figure 12.14, we infer that:

D(i—1,7)+4d(i,j)
D(i,j) =min{ D(i—1,j — 1) + 2d(i, j) (12.14)

Likewise, for the constraint graph shown in Figure 12.15, we have:

D(i—2,j— 1)+ 0.5d(i — 1,4) + 0.5d(i, j)
D(i,j) =minq D(i— 1,57 — 1)+ d(i, j) (12.15)
D(i—1,j—2)+0.5d(i,j — 1) + 0.5d(i, j)

Exercise 12.5 (DTW) Write a function that implements the DTW algo-
rithm by taking the pathfinding constraints found in the graph in Figure 12.14.
Use the two sequences of vectors as the input and as the output the array of
the cumulated sums D(4, j), as well as the value D(I, J)/(I + J) as the output.

Exercise 12.6 uses the function obtained in exercise 12.5 to recognize a word
in a given list of words. We will first briefly describe the cepstral analysis used
to provide the characteristic sound features the DTW alignment is based on.

Cepstral coefficients

We know that the phonetic content of a speech signal can be characterized
in a satisfactory way by a short-term spectral representation. This is why in
speech recognition the first signal is usually performed, consisting of such an
analysis over windows of about 20 milliseconds with overlap. Most of the time,
the extracted characteristics are the first values of the short-term cepstrum,
defined as the inverse Fourier transform of the logarithm of the modulus of
the signal’s DFT. If z(n),with n € {0,..., N — 1}, refers to a portion of a
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signal with a duration of N, possibly weighted by a window, then the cepstral
coefficients have the expression:

N-1

Z x(n)e—Zjﬂ'nZ/L

n=0

L-1
c(k) = %Z S(0)e* ™ with S(¢) = log
£=0

It can be proven that the first cepstral coefficient represents the energy of
the signal segment and that the following d coefficients, where d corresponds to
a duration of a few milliseconds, characterize the shape of the vocal tract. In
speech recognition, the relevant information is essentially characterized by the
shape of the vocal tract. This 1s why most recognition methods are based on the
use of the first cepstral coefficients. Most of the time, the cepstral coefficients
are calculated on a logarithmic frequency scale; this is called MFCC| for Mel
Frequency Cepstral Coefficients. Exercise 12.6 only uses a linear frequency
scale, leading to a sequence of length d vectors that will undergo the recognition
processes.

Exercise 12.6 (DTW word recognition)

1. Write a function that extract the short-term cepstrum from a speech
signal sampled at 8,000 Hz using the operations:

— multiplication of the time window by a Hamming window: choose
a window duration corresponding to 20 ms with a temporal overlap

of 50%;

— computation of the logarithm of the modulus of the Fourier trans-
form over L = 256 points;

— computation of the inverse Fourier transform;

— extraction of the 12 values useful to recognition.

2. Write a program that uses the DTW to compute, based on the sequences
of cesptral coefficients, the “distance” between two recordings of the
same pronounced word, and between two recordings of two different pro-
nounced words.

12.5 Modifying the duration of an audio signal

Modifying the temporal scale of a sound has applications in many fields, such as
solutions for the hearing impaired, speech design and recognition, movies, TV
and radio advertisement, etc. A simple way of performing this modification is
to reconstruct the signal with a sampling frequency different from the one used
for the acquisition. Unfortunately, this method causes frequency distortion,
because, as we know, if X(f) represents the Fourier transform of #(t), then
the Fourier transform of z(yt), with v > 0, is given by v~ X (f/v). Therefore,
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the frequency axis is dilated or contracted, depending on whether ~ is greater
or smaller than 1. You can observe the effects on a speech signal with the
use of the MATLAB® function sound and by trying different reconstruction
frequencies: when the frequency is greater than the acquisition frequency, the
pitch seems higher. To prevent this type of distortion, several techniques have
been suggested. The most popular one is probably the technique called PSOLA,
for Pitch Synchronous Querlapping Addition, which works in the time domain
[67]. Another one is referred to as the “phase vocoder”, which works in the
frequency domain [36]. One of the drawbacks of PSOLA is to add unwanted
noises. As for the phase vocoder, it causes a reverberation effect.

12.5.1 PSOLA

To reduce the total duration of the signal, while preserving the frequency scale,
we can simply eliminate small segments of the signal throughout the recording.
Conversely, to increase the total duration of the signal, we can duplicate some
of its segments. However, these segments have to be long enough to prevent
spectrum aliasing, but short enough compared with the duration of the basic
acoustic units: with PSOLA [67], the durations of the segments have to be cho-
sen equal to the “instantaneous” pitch period. PSOLA is essentially comprised
of two steps:

— Analysis: the signal s(t) is time-“marked” according to a sequence of
analysis times ¢, (¢) such that ¢,(i) = t,(i—1)+ Py, where P, refers to the
“instantaneous” fundamental period (the pitch) estimated with a window
long enough, starting at the time ¢,(¢ — 1).

— Synthesis: the modified signal §(¢) is constructed by an overlap-add
operation on the basic segments s;(¢) of the original signal relocated at
synthesis times ¢,(j) according to the expression:

5(t) = Y5t = ts(n))

n

where 5;(t — t5(n)) = h(t — t,(i(n)))s(t) is a signal segment centered in
to(i(n)). The synthesis times are such that ¢5(n) =t;(n — 1) + Py(i(n)).
If 4 refers to the speed modification rate, the index i(n) is the closest
integer to the value n~y.

Exercise 12.7 (PSOLA)

1. Analysis: use the fOcor.m function, which estimates a signal’s pitch, to
construct the sequence of analysis times t,(n) in the following way:
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— The initial values are set as t,(1) = 1 and P, = Lig where Lyg is
the number of samples corresponding to 10 ms.

— The window starting at the time ¢, (n) and lasting at least two pitch
periods P, is extracted. In practice, the duration has to be chosen
equal to twice the smallest period expected in the signal.

— Pitch detection is performed on the window. If the signal is voiced,
we get the pitch period P, and the analysis time t,(n+1) = t,(n) +
P,. TIf the signal is unvoiced, the value t,(n + 1) = t4(n) + Lip is
chosen.

At the end of this first process, we have a sequence of N, analysis times
(positions in the file) ¢,(n) that are synchronous with the pitch period.

2. Synthesis: we wish to modify the prosodic speed by a factor ~. This is
done by generating the sequence of synthesis times ¢, as follows:

— Inmitially, ts = 1.
— The following synthesis time is calculated by executing:

te=tetgamma;
ie=ceil (te);

The index is used to point out the analysis time after which the
segment of the signal used for creating the desired signal is extracted.
Hence, if v < 1, which corresponds to a slower utterance, the value
of ¢, after n iterations will be smaller than n. Hence, some segments
of the signal will be repeated and the signal created will last longer.

— The sequence of synthesis times is generated by executing:
||ts=ts+(ta(ie+1)—ta(ie));

This is equivalent to generating a window with a length equal to the
pitch (hence the phrase Pitch Synchronous), because (using obvious
notations), we can write:

ts(n+1) =t5(n) + (Lalic(n) +1) = ta(ic(n)))

Py

Array 2 shows some of the values for the sequences that were found for
~ = 0.8. As you can see, the portion centered in 7,668 in the original
signal is in position 9,610 in the synthesis signal. Notice also that, because
the signal is slowed down, as we wanted it to be, we have to duplicate the
portion centered un 7,629, once in position 9,532, and once more in the
following position 9,571. The signal synthesis i1s performed as follows:

— the segment centered in #,(i.) and with a length of 2(¢,(éic + 1) —
ta(ic)) is extracted from the original signal;
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n 1 199 200 201 202
te(n) |1 ... 1594 1602 161.0 161.8
ic(n) |1 ... 160 161 161 162
ty(n) |1 9,493 9,532 9571 9,610
talic(n)) | 1 7590 7,629 7,629 7,668

Table 12.2 — Sequences of synthesis and analysis times corre-
sponding to v = 0.8, that is a slower utterance

— the extracted segment 1s multiplied by a Hann window then added
to the previous portion with a 50 % overlap.

Write a function that consecutively performs the two steps of the process.

12.5.2 Phase vocoder

The basic idea behind the phase vocoder [36] is to perform a short-term Fourier
analysis. If the spectrum is comprised of narrow band spectral components,
which means that the sound is closer to a voiced sound than it is to an unvoiced
sound, and that the analysis window is much longer than the pitch period, then
the values of every pitch harmonic will be clearly identified. In this case, if the
spectral characteristics are maintained, for a duration slightly lower or slightly
greater than the original one, then the value of the pitch is preserved.

The only difficulty is that the phases associated with each frequency compo-
nent in the modified signal’s spectrum have to be calculated in such a way as to
ensure the proper alignment of the consecutive phases during the overlap-add
operation.

Exercise 12.8 (Hann window)
Consider the sequence (called a Hann window):

h(n) = { 0.5(cos(2mn/L) + 1) = Sinz(ﬂ'n/L) forne{0,...,L—1}

“ ] 0 otherwise

Let o € (0,1), and ? ng = |« L]. Write a program that plots against n the
sequence:

z(n) = h*(n— kny) (12.16)

Notice that the sequence h(n) has a finite length. Therefore, to construct
z(n), all you need to do is to calculate the sum of a finite number of segments
distant from each other by h?(n).

2|aL] refers to the integer part of aL.
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What happens when L varies, when o varies? Try other powers of h(n) in
expression 12.16.

Exercise 12.9 (Phase vocoder)
Write a program that performs the following operation:

— Calculation of the DFTs of the signal segments, each segment weighted
by a length L Hann window h(n). The consecutive windows are distant
from each other by a number of points ng = | L] where a € (0,1). With
such an overlap, we have:

Zg(n— kng) =C

where g(n) = h?(n) and where C' is constant depending on « that you
will determine. According to what we saw in exercise 12.8, if L is a power
of 2, the distance between the windows has to be in the form ng = L/2™.

— Generating the sequence of synthesis times with a factor v compared with
the original sequence according to the method suggested in exercise 12.7.

— Calculation of the modified DFTs by performing an amplitude interpo-
lation, proportional to the original DFTs on the interval containing the
synthesis time. For the phase calculations, sum the phase increases of
the original DFTs.

— Calculation of the inverse DFTs of the modified DFTs, each DFT being
once more weighted by a length L Hann window. For v = 1, everything
happens as if the window g(n) = h?(n) were applied and, therefore, the
correct amplitudes can theoretically be found by dividing the obtained
signal by the constant C'.

12.6 Quantization noise shaping

Shannon [88] showed that, for a given level of distortion, there is an encoding
that minimizes the rate measured in bits per second (bps). The first problem
is to define a measurement of distortion. We saw one possible definition in the
example on the signal-to-quantization noise ratio. A second difficulty resides in
the fact that, in practice, the relation between distortion and minimal rate 1s
usually impossible to determine, because 1t would require an analytical model
for the signal statistics, which most of the time we don’t have. Last but not
least, the theorem does not tell us how to reach the fundamental limit.
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Acquisition

Audio frequency signals are usually real, B band signals. The signal is sampled
at a frequency F; > 2B, then its samples are quantized, by linear quantization
using N bits. The rate is then equal to Fy; x N bps. To increase the SNR,
we can therefore increase N during the acquisition; remember that if Fy =
2B, the SNR increases by about 6 dB per quantization bit. On the other
hand, we can also increase F; beyond the Nyquist frequency 2B. One solution
(Figure 12.16) to take advantage of this oversampling consists of rejecting part
of the quantization noise’s power outside the useful band (=B, +B). This noise
shaping operation was first introduced by Cutler in 1954.

(N.F,=2B)

Filtering
>

+ AD Conversion

Filtering (N'Fi>2B)

+ AD Conversion

Noise
shaping

Over-sampling
Figure 12.16 — Acquisition for an audio CD with and without oversampling

Generally speaking, in order to decrease the rate for a given level of distor-
tion, the signal statistics have to be taken into account, but also the way the
signal is perceived. This is what has been implemented in certain compression
techniques where the samples are replaced by quantities, such as the prediction
coefficients in the case of speech, or by the DCT coefficients in the case of
music.

Concerning the sampling of B = 22 kHz band audio signals, the compromise
between sound quality and technical feasibility has led to several formats, the
most common of which are:

— the audio CD, which uses a sampling frequency of F; = 44.1 kHz and an
N = 16 bits quantization. The resulting rate i1s roughly 706 kbps, with
an SNR of about 96 dB;

— the audio DVD, which uses a sampling frequency up to Fy, = 192 kHz
and a quantization up to N = 24 bits. This corresponds to a rate of 4.6
Mbps and an SNR, of about 144 dB;

— the DSD (Direct Stream Digital) which performs a one bit quantization
at a sampling frequency F; = 128 x B, hence a rate of 2.8224 Mbps.
The resulting SNR 1s approximately 120 dB. Notice that the SNR, is the
same as the one resulting from a 20 bit format sampled at 44.1 kHz,
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which corresponds a third of the rate. The DSD is usually chosen for
technological reasons.

Reconstruction

The noise shaping operations mentioned previously can also be used for the
reconstruction (Figure 12.17). The first operation consists of “increasing” the
sampling frequency: this actually an interpolation which is sometimes inaccu-
rately called oversampling. This interpolation is followed by quantization noise
shaping. Here are a few implementation examples:

— Probably one of the oldest systems was the one imagined by Philips in
audio CD players to recover 16 bit quality at 44.1 kHz while using a 14
bits analog-to-digital converter, but set to four times the initial frequency,

hence 4 x 44.1 = 176.4 kHz.

— The more recent MASH digital-to-analog converter (for Multi-stAge
noise-SHaping), introduced by the Nippon Telephone and Telegraph, op-
erates on 4bits at a frequency of about 3 MHz. It is used in certain audio
DVD players.

+ Filtering

(N,Fy) DA conversion o

Interpolation

(NYES) | DA conversion o
7%~ | Processin >
(N,F,) + Filtering .

Noise
shaping

Figure 12.17 — Reconstruction of audio CD signal, with and without processing

— Finally, we will mention the One-Bit Stream technique introduced by
Philips for audio CDs: the digital-to-analog converter only has a one bit
resolution but operates at an interpolation frequency between 128 and
256 times the Nyquist frequency. The audio CD’s initial quality can be
restored by quantization noise shaping and a post-filtering.

Notice that in the case of the DSD format, it is possible to go back to
the 20 bit format at the frequency 44.1 kHz with the initial 120 dB quality.
However, this requires very long filters to suppress the frequencies outside the
useful band. The DSD can be seen as some kind of generic format, based on
which an entire range of other formats can be defined with varying levels of
quality.

The following exercise is meant to illustrate these interpolation and quan-
tization noise shaping techniques.
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Exercise 12.10 (Spectral quantization noise shaping)

In this exercise, the signal x(¢) is the sum of three sines with the respective
frequencies 437, 504 and 1,367 Hz. The following program generates samples
of #(t) for the sampling frequencies 44,100 Hz (SE1) and 4 x 44,100 Hz (SE2):

%===== MISFQ.M:

% Signal generation

clear; surech=4; % Oversampling factor
AA=T1.2 3.2 2.7]; % 3 amplitudes
freq=[437 504 1367]°/44100; % 3 frequencies
T=200;

SE1=AA*cos (2*%pi*freq*(0:T-1));

SE2=AA*cos (2*¢pi*freq* (0:surech*T-1)/surech) ;

1. In order for the errors introduced by the quantization to be seen, they
have to be much greater than the errors introduced by the interpolation
operations. The object of this first question is to justify the choices that
will be made concerning the number of bits used to encode in order to
perform a simulation that shows the properties of the quantization.

Using the the interpolation function® obtained in exercise 4.14 on page
152, calculate the sequence SE2int corresponding to the frequency feo =
4 x fe1. Create a program that compares SE2int with the correct se-
quence SE2. In order to do this, calculate the ratio of the signal’s root
mean square value to the difference (SE2-SE2int) using the MATLAB®
function std. Perform this computation on a reduced range so as to avoid
the side effects caused by the interpolation function.

2. The samples taken at the frequency f.; = 44,100 Hz are N; = 8 bit
quantized. Let SE1Q1 be the resulting sequence. Write a program that
evaluates the signal-to-quantization noise ratio for the signal. Formula
7.34 indicates that you should have roughly 48 dB.

Same question with No = 6 bits, where SE1Q2 is the resulting sequence.
Check that there is a loss of about 12 dB.

3. The sequence SE1Q1 is interpolated at the frequency f.o = 4 X fe1. This
leads to the sequence SE2Q2. It is important that you notice that the
sequence SE2Q2 contains quantization noise outside the frequency band
of the signal «(¢), and therefore that SE2Q2 has to be filtered before
comparing the result with SE2. This is done by using the rif function
obtained in exercise 4.8. Based on the expression of the quantization
noise’s power, show that there is a gain of about 6 dB. Check this result
with a simulation.

3Those who have access to the Signal Processing Toolbox can also use the interp function,
which at the cost of an algorithm which is a bit more complicated leads to a slightly better
interpolation.
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4. Consider the process represented by the diagram in Figure 12.18 where
@ 1s a system that goes from 8 bits to 6 bits by eliminating the two least
significant bits.

Xe1(n) (n)  + n .
e Interpolation% ) ® u(n) 0 )
8 bits 6 bits

8 bits
44,100 Hz 176,400 Hz -+ 176,400 Hz

t(n)
Figure 12.18 — Noise shaping

Therefore, it is equivalent, based on the diagram in Figure 7.8 on page
271, to adding a white noise e(n) with the power spectral density equal
to ¢?/12 in the band.

Use this result to show that z(n) = y(n) + e(n) — e(n — 1). By noticing
that going from e(n) to £(n) = e(n) — e(n — 1) is a linear filtering, infer
that the signal-to-noise ratio is enhanced by about 6 dB compared with
a system that would directly apply the quantization to y(n).

This is an interesting result, from a practical point of view, since it allows
you to find basically the same SNR as in question 1. Notice that the suggested
process cannot be done without the interpolation operation conducted on the
quantized signal with many more bits than what is necessary, in this case 8 at
the beginning compared with the 6 at the end.

12.7 Elimination of the background noise in audio

For practically every signal processing system, we are faced with the problem of
extracting a useful signal corrupted by noise. In the case of audio frequencies,
there are several different causes for the noise. We will mention for example
the noise due to the defects in the sensors and, in other recording devices, the
noise related to the environment in which the recording was done (conversation
noises in a public place, doors opening and closing, the tinkling of silverware in
a restaurant, etc.) or also the decay of the recording medium. Among all the
types of noises encountered in practice the following two types occur in almost
all audio systems:

— The background noise which can be represented by a stationary random
process. It often originates from the electronic circuits of the amplification
and reconstruction devices, hence the name.

— The impulse noises which can be represented as a sequence of very brief
impulses, with random amplitudes and locations. Listening to a scratched
record 1s a perfect example.
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To reduce these noises and restore the recording as best as possible; we are
going to consider them and deal with them separately.

Eliminating background noise is a particularly difficult problem, not to say
impossible to solve, since we have to find what characterizes the difference be-
tween the useful part of the signal and the unwanted part. Take the example of
a musical recording where we can hear the sound of a violin amidst background
noise. The program assigned with the separation would have to transform into
some kind of a music expert to distinguish the sound of the violin from the
background noise. As a consequence, the solution can sometimes be worse
than the problem when reducing background noise in musical recordings.

If we only concern ourselves with speech signals, we can mention [32, 33, 11]
among the different denoising methods in a stationary background noise. These
methods give satisfactory results, such as for example in cellular technology, or
for restoring “old” recordings, but only if the settings of the algorithm are very
well chosen. They usually require for the spectral properties of the noise to be
known. They can do this by using a portion of the signal that contains nothing
but noise. This portion is selected either by a direct “acoustic” observation of
the signal, or by automatically detecting the active areas of the useful signal.
In [11], the author suggests a very simple method leading to an acceptable
result that we are going to implement. If we assume that the noise is white
with the power o2, known or estimated from a portion of the signal containing
nothing but noise, the short-term amplitude spectrum of the denoised signal

o? is estimated by the expression:

X (k) = G(k)X (k) (12.17)

where:
N-1 '
X(k) =Y w(n)emmkN
n=0

refers to the DFT of a length N window of the noisy signal z(n) and where:

N AN
Gk = (“wa) ARy <!

7 otherwise

where the parameters A and p are adjusted experimentally so as to obtain
the best sound result. This method is sometimes called spectral subtraction.
According to 12.17, everything happens as if we were applying a gain G(k)
adapted to each component of the DFT. The results show that the background
noise is rather well eliminated, but the method introduces whistling noises,
that get louder as p decreases. In particular, the value p = 0 leads to the
plain and simple elimination of the spectral components below the threshold,
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causing certain components of the noise to be isolated and to behave as isolated
“peaks”. This “whistling” noise, referred to as musical noise, can be reduced
by decreasing A and increasing p, but at the cost of a lower noise reduction.

Exercise 12.11 (Denoising a speech signal)
First, record a speech signal, sampled at 8,000 Hz, which will serve as the
reference signal. Construct a noisy version of it, by adding noise so as to
ensure a signal-to-noise ratio of 10 dB.

Implement the method described by equation 12.17 to denoise the noisy file
by considering that o is known. Try the program for different values of N, of

A and of p.

12.8 Eliminating the impulse noise

We are now going to look into the restoration of recordings containing errors
with a relatively large amplitude and with a very brief duration (less than a
millisecond), referred to as clicks, and assumed to be in small numbers. Thus,
for the signal represented in Figure 12.19, originating from record, shows a
scratch spread over a few samples. Cracks are not always as “visible” as this
one, and the recording often has to be listened to in order to detect them.

0.8
0.6
04
02 ‘ ‘
0.2 [ i ‘

041
-0.6

08 : : : : : ‘ : :
079 0.8 081 082 083 0.84 0.85 0.86 0.87 0.88(s)

Figure 12.19 — Signal originating from a record and containing a click

The considered restoration method is comprised of two separate steps:
1. the detection of clicks in the signal;

2. the restoration of corrupted samples.

12.8.1 The signal model

When observing the signal s(n) shown in Figure 12.19, what makes us decide
that there is a click in position ng 1s that the value in ng is noticeably different
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from what would seem predictable to us based on the past signal. Therefore,
if we know how to calculate a prediction §(n) based on the last K values
s(n—1),...,s(n — K), the procedure can be made automatic, by deciding the
presence of a click in position n if the difference between §(n) and s(n) is above
a threshold that can be determined experimentally.

We showed in Chapter 11 that, for an WSS process, the best K order linear
predictor:

§(n)=a1s(n—1)4+ -+ ags(n — K)

in the least squares sense was obtained by choosing the solutions to the Yule-
Walker equations 11.28 as the coefficients a;. We have also determined, with
equation 11.27, the expression of the prediction error o?. Remember that
according to property 11.4, if s(n) is a K order AR process, the prediction
process s(n) — §(n), also called the residual signal, is white. Because we are
going to use this property in click detection, we will assume that this is the
case: in the absence of clicks, the signal s(n) is a K order AR process. From
now on, K is assumed to be known. In practice, its value is set by examining
the results.

If the number of clicks is small, we can assume that the effects caused by
thewr presence in the estimation window are negligible. We can then estimate
the parameters ay,...,ax and o2 of the K order AR process directly on the
signal’s window. Once these values have been estimated, the FIR filter with
the transfer function A(2) = 1+ a;z7* + -+ axz~% can be applied to the
signal z(n). The signal y(n) is obtained. Because s(n) is a K order AR, then
in the absence of clicks, this signal y(n) is a white noise with the variance o?.
If, in addition to that, s(n) is Gaussian, then y(n) is itself Gaussian. Let us
now see how to detect the presence of clicks.

12.8.2 Click detection

We now assume that a click is described as an impulse i(n) = Agd(n—ng) added
to the useful sound signal s(n). The observed signal is then z(n) = s(n) +i(n).
We are going to try to detect the possible presence of i(n) using a linear filter,
then by comparing the filter’s output with a threshold. The following exercise
shows how the methods works.

Exercise 12.12 (Detecting impulse clicks)

Let d(n) a signal with a known shape, corrupted by a noise b(n). “Detecting”
the signal d(n) means we have to choose a decision rule to be able to say if the
signal d(n) is or not in the observed signal y(n). Hence we have two hypotheses
that can be summed up as follows:

— in the absence of the signal, what we see is y(n) = b(n);
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— in the presence of the signal d(n), what we see is y(n) = d(n) + b(n).

We will assume that b(n) is a white noise, with the variance ¢. To conduct
the processing, we are going to impose that the detector is comprised of a linear
filter followed by a threshold comparator, and we will find the optimal settings
for the the filter and the threshold value.

ib(n)
+ =
d(n) + E y(n) 2(n) z(n)=zq4(n)+z,(n)

Figure 12.20 — Matched filter

Let zq(n) and zp(n) be the outputs of the filter g(n) we are trying to de-
termine, the inputs of which are the deterministic signal d(n) and the noise

b(n).

1. Show that the signal-to-noise ratio defined by p = |za(n)|?/E{ |zp(n)|?}
has the expression:

Lt s - )|

PN )P

U=—00

2. Using the Schwartz inequality, find the expression of the impulse response
of the filter g(n) that maximizes the value of p. In the literature, this
filter is called a matched filter (the phrase implies that the filter is matched
with the signal d(n)).

3. Consider now the problem of detecting, with a linear filter A(n), an im-
pulse d(n) in a K order AR signal defined by s(n) + a1s(n — 1)+ ---+
ags(n — K) = w(n) where w(n) is a white noise with the variance o?.
To achieve such a detection, we can decompose h(n) in a cascade of two
linear filters hy(n) and ha(n), the first one a FIR filter with the impulse
response h1(0) = Lhi(1) = aq, ..., h1(K) = ag (Figure 12.21). Let y(n)
be this filter’s output.

By applying the result of the previous question, determine the filter hy(n)

that maximizes the detection signal-to-noise ratio. Let z(n) be the output

of the filter ha(n).

4. In the absence of clicks, determine as a function of a1, ..., ax and &2
the expression of the variance P, at the output of the filter hs(n).
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Figure 12.21 — Signal whitening before detection

5. A threshold s is set, and the following decision rule is adopted: if |z(n)| >
s, the presence of a click is decided at the time n. Under the hypothesis
that s is Gaussian, use the decision rule to show that the expression of the
threshold that ensures a probability equal to a of deciding the presence
of a click where there isn’t one, is s = A(a)\/P,. For a = 0.01, we have
A=3.

6. Simulation: write a program that generates 500 samples of a 10 order AR
process, simulating the useful signal s(n). Use, as the parameters of the
AR-10 process, the values 02 = 1 and a1, ..., a0 given by:

Y===== AA.M
a= [1 -1.6507 0.6711 -0.1807 0.6130 -0.6085 0.3977 ...
-0.6122 0.5412 0.1321 -0.2393];

Let s, be the root mean square value of s(n), an estimate of which is given
under MATLAB® by seff=sqrt(s*s’/N). Add 5 clicks with amplitudes
equal to £1.5s. at arbitrary times. Let us assume that the order of the
filter is known, but that, despite the presence of a few clicks, the model’s
parameters can be estimated with the xtoa function. Successively esti-
mate the model’s parameters, the whitening, the matched filtering, then
the comparison with the previously determined threshold.

The results obtained with the previous program show that a given click
can lead to several close positions detected around the real value. In
practice, it is preferable to “group” these positions together. Describe a
processing algorithm corresponding to several positions detected for the
same click.

SUMMING UP: the previous results lead us to summing up click detection
in the following operations:

— estimation of the K order AR model’s K + 1 parameters ay, ..., ag and
o? based on the length N window z(n);

— filtering of #(n) by the filter with the impulse response {1,ay,...,ax};

— filtering of the previous signal by the matched filter with impulse response
{lag,ax—1,...,a1,1}. The output signal is denoted by z(n);
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— comparison of |z(n)| with the threshold:

s=M\/o2(1+a+ - +ad%)
where the parameter A & 3 is set experimentally.

12.8.3 Restoration

Once a click is detected in position ng, you would think that only one value
has to be reconstructed: that of the altered sample. But in fact, the error 1s
rarely found on only one point of the signal. This is why 1t is better to consider
several samples on both sides of the detected position to be errors. This means
we have a corrupt area of m consecutive values. Typically, m is chosen between
9 and 15 (see Figure 12.22).

The idea, which consists of performing a simple linear interpolation based
on the values placed on either side of the corrupt area, does not take into
account the correlations among the points of the signal. The solution we are
going to use consists of using the prediction structure associated with equation
11.23 of a K order AR process.

Exercise 12.13 (Restoring “missing values™)

Let us assume the parameters of the AR model have been estimated, and
that, in the considered block, the corrupt zone goes from position ¢ to position
£+ m — 1. We are going to try, by minimizing the square deviation, to search
for the best values of z(¢),...,z(£ +m — 1) (Figure 12.22).

e ¢+m—1

x T
X o X
M o X
O b N

Figure 12.22 — Several values are restored around the detected position

1. Show that estimating the m unknown values can be seen as a linear
problem depending on the non-corrupt values and the model’s coefficients.

2. Use this result to estimate, using the least squares method, y of the
corrupt zone y = [z(¢),...,z({+m — 1)]T.

Write the expression of ¥ in the form:

y = —(B"B)"'B" (Aoxo + Aix1) (12.18)
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where Ay, A; and B are matrices build from the model’s coefficients
(a1, ...,ax) and xq and x; are vectors constructed from the non-corrupt
observations z1,...,%s_1, Zeym, ..., LN

The plots in Figure 12.23 were obtained using the following program. They
show the signal containing the clicks and the signal after restoration:

%===== RESTAU.M

% Signal reconstruction

% Run the detection program, then

% select a position to restore in the list of

% positions detected by detect.m

pos=input (’Click position: ’);

lsig=length(sig); tps=[0:1sig-1]; sig=reshape(sig,lsig,1);
n=15; ell=pos-7;

X0=sig(ell-K:ell-1); Xl1=sig(ell+m:ell+m+K-1);
colT=[aest (K) ;zeros (m+K-1,1)];

ligT=[aest (K:-1:1)’ zeros(1,m+K)];
T=toeplitz(colT,1igT);

AO=T(:,1:K); B=T(:,K+1:K+m);

A1=T(: ,K+m+1:2%K+m) ; X=A0*XO0+A1%X1;

%===== Solving the systen

Y=-B \ X; sigr=sig; sigr(ell:ell+m-1)=Y;
plot(tps,sig,’-r’, tps,s,’b’, tps, sigr,’:y’); grid;

Restored signal

Figure 12.23 — Clicks (dashed line), restored signal (full line)

The method presented here is successfully used to clean up recordings, such
as the ones stored on old records. It requires a few adjustments to determine
experimentally the window size, the AR order and the threshold value that
provide the best acoustic results.



490 Digital Signal and Image Processing using MATLAB®

12.9 Tracking the cardiac rhythm of the fetus

12.9.1 Objectives

The human heart’s activity produces electrical currents that spread through
the tissue and can be measured with the use of electrodes attached to the skin.
These signals are called an electrocardiogram (ECG, or EKG). In obstetrics,
these signals can be used to keep watch over the cardiac condition of the fetus, in
particular during the delivery, which allows doctors to detect possible anomalies
very early on, and hence to treat them more rapidly.

There are essentially two methods that are used to track the cardiac rhythm
of the fetus. The first one, which can only be carried out during the delivery,
consists of measuring the electrocardiogram (ECG or EKG) directly off the
fetus by placing an electrode on its scalp. The second one, the main advantage
of which is to be non-invasive, consists of placing electrodes on the mother to
pick up signals from which the fetal cardiac signal will be extracted.

In the second method, the use of a single sensor placed on the mother’s ab-
domen is not sufficient because the amplitude of the fetal EKG can be several
times less than the noise produced by different sources of interference such as
the mother’s EKG, but also the signals caused by her muscle activity (elec-
tromyogram) or the ones related to her breathing. Therefore, the observation
is difficult. However, the use of several sensors makes it possible to separate
the signals (Figure 12.24).

Abdominal sensor —Xhest sensor

The fetus's /) |
heart ( ” ({1 C/ The mother's

heart

Figure 12.24 — Picking up the FKGs

The data we are going to process in this work come from measurements
done on EKG signals samples at Fy = 300 Hz over a duration of a few seconds.
Many websites make such signals available to the public. From now on, the
signal originating from the sensor on the chest will be denoted by z, and the
one originating from the sensor on the abdomen by x, (Figure 12.25).

A reading of such signals is shown in Figure 12.26.

Two processings have to be conducted. First, we have to extract the fe-
tus’s EKG from the signals z,(n) and #,(n) and, second, estimate the cardiac
rhythm of the fetus based on the obtained signal.
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Figure 12.25 — The model used for describing EKG tracking
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Figure 12.26 — Mother-fetus EKG signals. Graph on the top: signal measured off
the chest, and which can be considered as the signal originating from the mother’s
heart. Graph on the bottom: signal measured off the abdomen containing both cardiac
stgnals

12.9.2 Separating the EKG signals

Theoretically, the signal observed with the chest sensor represents the mother’s
cardiac signal noised by the fetus by the signal originating from the heart of
the fetus. However, because this sensor is located far away from the heart of
the fetus, because its heartbeat is faint, we will assume that the signal z,(n)
represents the mother’s heart filtered by traveling through the thoracic tissue.
If the mother’s cardiac signal is denoted by cpr(n), and if traveling through the
tissue acts as a linear filter with a length K, finite impulse response, we have:

rp(n) = gremw(n—np) + -+ g, cm(n—np, — Kp + 1) (12.19)
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where anyone n, accounts for the overall propagation delay through the chest.
In practice, this value turns out to be small.

As for the signal 2, (n), it is the sum of the cardiac signal of the fetus, filtered
by traveling through the abdomen tissue and a signal originating from the
mother’s heart. However, this last signal is not quite the signal #,(n) picked up
by the chest sensor, because the signal produced by the mother’s heart reaches
the abdomen sensor after traveling through the abdomen. Therefore, it has
undergone some transformations. By assuming once more that the abdominal
transfer behaves like a linear filter with a length K, finite impulse response
filter, the signal originating from the mother’s heart can be written (in fact the
FIR hypothesis should be related to the comments made on the approximation

of an TIR by a FIR):
vp(n) = fiecsr(n —na) + -+ fr,em(n —ng — Kq + 1)

where n, accounts for the overall propagation delay through the abdomen.
By replacing this expression in 12.19 we end up with a relation between the
disruptive signal from the abdomen sensor and the signal from the chest sensor,
which is written:

vp(n) = homzpn+ M)+ -+ hoqzp(n+1)
horp(n) + -+ b1y (n — (L — 1)

This expression calls for a few comments. The signal 2, (n) is not exactly the
one produced by the mother’s heart, because the latter is subjected, according
to 12.19, to a delay n, due to the propagation through the thoracic tissue.
Because the propagation times are unknown, n, may very well be greater than
nq. In that case, z,(n) is delayed with respect to var(n). This is why we
planned for an “anticausal” part represented by the terms h(—M),..., h(—1).
However, if n, < n4, which certainly is the case in this experiment, the signal
vm(n) is delayed with respect to z,(n) and we have to make sure that the
coefficients h(—M), ..., h(—1) are also almost null.

In the end, the two signals #,(n) and z,(n), picked up off the mother’s
chest and abdomen, are such that:

zy(n) = hoyzpn+ M)+ +h_qz,(n+1)
+hoxp(n) 4+ -+ hr_1zp(n— L4+ 1)+ cp(n)
where ¢p(n) represents the signal we are trying to determine, originating from

the heart of the fetus. We are going to estimate the coefficients h; in such a
way as to extract ¢p(n) from the signals z,(n) and z,(n).

Example 12.4 (Extracting the signal c¢p(n))
The first part of our work consists of identifying the abdominal transfer:



Selected Topics 493

1. Establish that estimating the linear sequence h = [h_pr ... hg ... hp_1]
is equivalent to a linear problem of the type:

xy, = Xph+cp

where x, and X, are respectively a vector and a matrix with the adequate
sizes, constructed from the observations. cg is a vector that represents
the signal originating from the heart of the fetus.

2. Using the ordinary least squares method, find the expression of an esti-
mate of h. Use the result to find the estimate of the signal e¢p(n).

3. Based on the previous result, write a function extract (Xp,Xv,M,L) that
estimates h_pr, ..., ho, ..., hp—1 and infers an estimate of the signal
cr(n) originating from the heart of the fetus.

COMMENT: the method considered for the extraction of the signal cp(n)
assumes that the useful information concerning the signal cp(n) (such as
its frequency, but also other characteristics useful to the practitioner) is not
contained in the space generated by the columns of the matrix X,. The
likelihood of this hypothesis can really be evaluated only by whether or not
the results are relevant. If, for whatever reason, a part of the signal originating
from the heart of the fetus actually does belong to the space generated by the
columns of X,,, then this signal is impossible to extract using the suggested
method. If this signal happens to be useful to the practitioner, then another
separation method will have to be considered. In this case, for the estimation
of the cardiac frequency, the results obtained are quite satisfactory.

HINT:

1. The observed sequences are indexed from 1 to V. If we stack the expres-

sions:

zy(n) = hoymzp(n+ M)+ +hoqz,(n+1)

+hoxp(n) 4+ -+ hr_1zp(n— L4+ 1)+ cp(n)

forne{L,L+1,---,N— M} and if we use a vector notation, we get:

xy, = Xph+cp
where x, = [z, (L) -+ 2,(N — M)]? and where:

ap(L+ M) - zp(1)
X, = : :
z,(N) oo 2p(N—L—-M+1)

is a Toeplitz matrix constructed from the observations z,(n).
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2. We infer that h = Xﬁ&xv. X# refers to the pseudo-inverse of X, which
can be obtained, either by using the pinv(Xp) function, or by typing
h=Xp \ Xv. Once h has been estimated, we can find an estimation of cp
using the expression cp = x, — XPX#XU.

The processing is performed by the program:

%===== SEPARECG.M

% The file FOETUS.DAT contains:

% xp (2500 * 1) (chest sensor),

% almost equal to the mother’s EKG,

% xv (2500 # 1) (abdominal sensor)

% equal to the fetus’s EKG plus

% the filterd mother’s EKG: Xv = h * Xp + cf
% Sampling frequency = 300 Hz

load fetus.dat

xp=fetus (:,1)-mean(fetus(:,1));
xv=fetus(:,2)-mean(fetus(:,2));
N=length (xv);

Y%===== Estimation of h
L=20; % L causal
M=3; % M anticausal

Xv=xv(L:N-M) ;
col=xp(L+M:N); lig=xp(M+L:-1:1);
Xp=toeplitz(col,lig);

h=Xp \ Xv; % Resolution
cf=Xv-Xp*h; % Fetal heart beats
%===== Displaying the results

Nmax=1000; indx=[1:Nmax];

subplot(311); plot(xp(indx)); grid

subplot(312); plot(xv(indx)); grid

subplot(313); plot([zeros(L-1,1);cf(L:Nmax)]); grid

We represented in Figure 12.27, in the bottom graph, the signal extracted
after processing. As you can see, the signal originating from the mother has
been correctly extracted from the signal picked up by the abdomen sensor
(middle graph). However, you can make out in some places the presence of a
very faint residue of the mother’s heart beats in the bottom graph. [

12.9.3 Estimating cardiac rhythms

We now have to estimate the fundamental frequency of the EKG signal assumed
to be periodic. We have already encountered this problem with pitch detection
in speech, and we used a correlation measurement to perform this estimation.
Here, we are going to give a theoretical justification for a least squares approach.

Theoretically, if a centered signal s(n) is periodic with period P, the func-
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Figure 12.27 — EKG signals: below, the EKG signal of the fetus, extracted from the
abdominal signal (middle graph) using the mother’s EKG (top graph)

tion defined by:

S~ i SHE e s(n + B)s(n)
Koo SR st s+ k)

is itself periodic with period P. It reaches its maximum in £ = 0, and reaches

(12.20)

it again for the various multiples of P.

Example 12.5 (Measuring the fundamental frequency)
Consider a signal s(n), with n = 1... N, periodic with period P, and let us

construct the two length L vectors vo = [s(0) ... s(L—1)]7 and v4 =
[s(k) ... s(L+k—1)]T. If k is a multiple of the period P, we will have:
Vi Vo
— =rk)——+¢
[Ivill [[voll

where the coefficient r(k), which is equal to +1 in the ideal case, is used in the
sequence to account for the slight variability of the signal’s amplitude. If we
assume that wo = vo/||vo|| and wi = v /||vi]|, the previous equation used as
a model for the periodicity of the signal s(n) can be written:

wi =r(k)wo +¢ (12.21)

Notice that ||wo|| = ||wg|| = 1.
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1. Using the least squares method, determine the estimator 7(k) of r(k) that
minimizes the norm of the error €.

2. Show that |r#(k)| < 1. What does the limit case where 7(k) < +1 signify?
Use this interpretation to determine a method for estimating the period
P of the signal s(n). How must the length L of the vector vy be chosen?

3. If the rhythm that has to be estimated is between 80 and 200 beats per
minute, and if the sampling period is equal to 1/300 s, determine the
range of values that must be chosen for P.

4. The previous estimate leads to a value of the period, expressed in seconds,
which is a multiple of the sampling period. How can this accuracy be
improved?

5. Write a MATLAB® function that estimates, using the previous method,
a signal’s fundamental frequency.

HINT:

1. Directly applying the least squares formula to equation 12.21 leads to the
following estimation of r(k):
1 vivy

®) = ™™ = Teollval

S ney 5(n + k)s(n)
VIl 2/, 570+ B)

This expression should be compared with the expression 12.20 defining
g(k). We can infer a method for estimating P:

(a) Calculate the sequence #(k) by varying k over a range of values
between P, and Pyy.

(b) The maximum of the resulting sequence is determined. If this max-
imum is close enough to 1, the signal 1s said to be periodic, the
maximum’s argument is chosen as the period.

The choice of L is essentially related with the practical duration N for
which it is reasonable to assume that the signal is periodic in a stationary
sense. Obviously, if we wish to detect the possible fluctuations of the
rhythm, the windows have to be chosen smaller. Once N is chosen, the
square deviation of the estimation decreases as L increases. Hence, if
Pyr refers to the maximum value for the period analysis, we can choose
L =N — Py.
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2. Using the Schwarz inequality, we have to check that »(k) has a modulus
smaller than 1. When r(k) < 41, vo & 4+vi,. We can then consider that
the signal is periodic and that the period is a sub-multiple of k. In the
opposite case, the signal is likely not to be periodic. This result leads to a
procedure for detecting and estimating the pitch. r(k) is calculated with
k belonging to an exploration range (P, Pas) of possible values. If the
maximum value of (k) is greater than a threshold p chosen beforehand,
the signal is considered periodic. In this case, the first maximum of »(k),
greater then p, leads to an estimation of the period P. The value of p
is chosen experimentally based on a large number of observations of the
signals to be processed.

3. For a rhythm of B beats per minute, that is b = B/60 beats per second,
the period P expressed as a number of points is given by the integer part
of bF,, where F; refers to the sampling frequency. As such, to explore
the pulse range (B, Bar), we have to explore the range of values of &
defined by (fix(Bm*Fe/60):fix(BM*Fe/60)).

4. Notice that the values that can be obtained for the period, expressed in
seconds, are multiples of 1/F;. Therefore, the determination accuracy of
the correlation function’s maximum depends on the choice of the sampling
rate, but because the signal is assumed to have been properly sampled, it
can interpolated with a rate R and thus increase the evaluation accuracy
of the maximum. Of course, in the same manner as with the frequency
resolution, this increases the accuracy with which the 2-coordinate of the
maximum is obtained, but in no way does it enhance, in the presence of
noise, the mean square error, which is related to the random position of
the maximum.

5. The £0cor.m function detects and estimates the fundamental frequency:

function [FO,corr]=f0cor(sn,Fe,R,thr_corr,Fmin,Fmax)

hh %
%% SYNOPSIS: [FO,corr]=FOCOR(sn,Fe,R,thr_corr,Fmin,Fmax) %
%h sn = Signal from which the frequency is extracted %
%h Fe = Sampling frequency (Hz) %
%h R = Oversampling factor %
%% thr_corr = Threshold %
%% Fmin = Min. frequeny (Hz) %
% otherwise Fmin=2+Fe/longueur(sn) ; %
%% Fmax = Max. frequency (Hz) %
%h otherwise Fmax=Fe/2-Fmin; %
%h  FO = Fundamental frequency (Hz) %
%% corr = Correlations sequence %
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sn=interp(sn,R); Fe=R*Fe;
N=length(sn); sn=sn(:); sn=sn-mean(sn);
lagmin=fix (Fe/Fmax); lagmax=fix(Fe/Fmin) ;
corr=zeros (1,lagmax-lagmin+1) ;
%===== The effects of the window’s size can be tested
% by taking wlg<wlgmax=N-lagmax
wlg=N-lagmax; vO=sn(1l:wlg);
for ii=lagmin:lagmax
vP=sn(ii:ii+wlg-1);
corr(ii-lagmin+1)=(v0’*vP)/sqrt ((vO’*v0)* (vP’*vP)) ;
end
[nivl, indmax]=max(corr);
if nivi<thr_corr
pf0=0; FO=NaN;
return
else
for ii=lagmin+1:lagmax
if corr(ii-lagmin+1)>nivi*0.9
while corr(ii-lagmin+1)>corr(ii-lagmin)

ii=ii+l;
end
pf0=ii-2; FO0=Fe/pf0;
return
else
FO=Fe/ (indmax+lagmin-1) ;
end
end
end
return

In the method considered for measuring the pitch in this example, the
correlation function shows maxima in the multiples of the period we wish
to determine. Therefore, when scanning the range of possible values,
several of these maxima can be encountered. Because of measurement
uncertainty, it is possible that the highest of these maxima does not
correspond to the period. Therefore, we must search for the possible
maxima at sub-multiples of the one corresponding the highest of these
maxima. The £Ocor.mfunction we have given performs such an operation
by searching for other possible maxima greater than 0.9 times the highest
maximum. Other more efficient processes can be designed to solve this
problem (see further on in this paragraph).

Figure 12.28 shows the levels of the correlation functions, in their respec-
tive exploration ranges, for the mother’s EKG (top graph), and for the
EKG of the fetus (bottom graph).
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Figure 12.28 — Levels of the correlation function for the mother’s EKG (top graph),
and for the EKG of the fetus (bottom graph)

These graphs were obtained using the following program:

===== EXTRYTHM.M
% Rhythm estimation
% This program uses signals from separeg.m

% with the file fetus.mat
% Uses: fOcor.m

pulsenin=50; %==== Beats per mn
pulsemax=300; %==== Beats per mn
%===== Oversampling rati

R=2;

maxcor_apriori=0.25;
[F_mother corr_mother]=...
fOcor (xp,Fe,R,maxcor_apriori,pulsemin/60,pulsemax/60) ;
[F_fetus corr_fetus]=...
fOcor (cf,Fe,R,maxcor_apriori,pulsemin/60,pulsemax/60) ;
%===== Displaying the results
disp (7 sskokokoskokskokskokokokskok ok ok sk kokkskok ok sk kok 7 )
disp(sprintf (’* Pulse of the mother: }5.2f’,60%F_mother));
disp(sprintf (’* Pulse of the fetus : %5.2f’,604F_fetus));
disp (7 sskokokoskokskokskokokokskok ok ok sk kokkskok ok sk kok 7 )
%===== Displaying the results
lagminM=fix (60*Fe*R/pulsemax) ;
lagminF=fix (60*Fe*R/pulsemax) ;
MinCM=min (corr_mother) ;
LCM=length (corr_mother); MaxCM=max (corr_mother) ;
subplot (211) ;
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plot ((lagminM:LCM+lagminM-1) /R, corr_mother)

grid; hold on;

plot (Fe/F_mother*[1 1]+1, [min(corr_mother) MaxCM],’:’);
hold off

MinCF=min (corr_fetus); MaxCF=max (corr_fetus);

subplot (212) ;

plot ((lagminF:length(corr_fetus)+lagminF-1)/R,corr_fetus)
grid; hold on;

plot (Fe/F_fetus*[1 1]+1, [MinCF MaxCF],’:’);

hold off

Running the program returns:

ok ok kKo ok ok ok kKR KR KRk ok ok ok skok ok ok ok
* Pulse of the mother: 97.56
* Pulse of the fetus : 160.71
ok ok kKo ok ok ok kKR KR KRk ok ok ok skok ok ok ok

n

We saw previously that the presence of several maximain the correlation we
are measuring can pose a problem. One way of eliminating this error consists
of calculating the spectral product defined by:

(e275F)|* where f < 1/2K (12.22)

M:]N

where X(f) is the DTFT of a block of the signal. If the latter is periodic with
the fundamental frequency fo = Fo/Fy, its spectrum will show high amplitude
peaks in frequencies that are multiples of the frequency fy. Hence the product
P(fo/2) of the spectrum’s values calculated in multiples of fy/2 will have a
small value. This 1s due to the almost null values associated with the frequencies
that are odd multiples of fy/2. This is not the case of the product P(fy)
calculated in fy, which accumulates the spectrum’s amplitudes in fy, 2f;, etc.
Therefore, the function P(f) allows us to do away with the ambiguity in fy/2:
if the frequency estimate f is close to Jo/2, the value of P(f) will be much
smaller than P(Qf). Comparing these two values then allows us to choose Qf
as the fundamental frequency. However, in order for this method to work well,
it requires precise calculation of the spectrum, especially if the spectrum has
very sharp peaks, which implies long calculation times.

COMMENT: when the signal we wish to estimate the pitch of contains much
higher frequencies than the pitch, we can also, as it 1s done with some speech
encoders, perform a low-pass filtering before estimating the pitch. For a narrow
band signal around a central frequency F., that is a signal in the form of a
brief oscillating impulse, we can also replace the signal x with its envelope.
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The sanal.m function given in example 1.1 calculates the analytical signal
associated with a real signal. The envelope can then be acquired by calculating
its modulus.

12.10 Extracting the contour of a coin

We are going to try to determine the ellipse representing the contour of a
coin (Figure 12.29). The process can be achieved in two very different ways:
the first one performs an approximate extraction of the contour, then applies
the least squares method. The second performs an approximate extraction
of the elliptical disk representing the coin, then extracts the contour using a
correlation method.

Example 12.6 (Extracting the elliptical disk) Based on the image of a
coin that you will save in “levels of gray” , write a program that approximately
extracts the elliptical disk corresponding to the inside of the coin, as it 1s shown
in Figure 12.29.

HinT: type:

Y===== PREPROCESSCOIN.M

clear all; closge all;

load mcoin2; % or imread...

figure(1); set(gcf,’color’,[1 1 11)

subplot (221) ; imagesc(pixc); Spix=size (pixc);
colormap(’gray’); axis(’image’); title(’Original’)

set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

%===== Threshold

ninpix=100; ipx0=find(pixc < minpix); yimO=ones (Spix)*255;
yimO (ipx0)=zeros (size (ipx0));

subplot (222) ; imagesc(yim0); colormap(’gray’);
axis(’image’); title(’Seuillage’)

set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

%===== Gaussian filter

hg=moygauss(5); yimOg=filter2(hg,yim0);

subplot (223) ; imagesc(yimOg); title(’Filtre gaussien’)
colormap (’gray’); axis(’image’)

set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])

%===== Threshold

minpix2=170;ipx02=find (yim0g < minpix2); yim02=ones (Spix)*255;
yim02 (ipx02)=zeros (size (ipx02));

subplot (224) ; imagesc(yim02); colormap(’gray’);
axis(’image’); title(’Seuillage’)

set (gca, ’Xcolor’,[0 0 0], ’Ycolor’,[0 O 0])
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Figure 12.29 — Result of pre-processing

Exercise 12.14 (Ellipse contour: the least squares method)
Remember that an ellipse can be described by the equation:

ax% + bx% +ecxixys +dry +exao—1=0 (12.23)

where (x1,x2) represents the point in the plane with the s-coordinate z; and
the y-coordinate x4. A first process leads to the least squares estimation over
N points of the ellipse, to the coefficients a, b, ¢, d and e of equation 12.23.

1. Write a program, based on the program in example 12.6, which extracts
an approximate contour of the coin. You can use the “numerical dif-
ferentiation” function (diff) or the Gaussian differentiation function
(dergauss).

2. Using the “least squares method”, determine the coefficients a, b, ¢, d,
and e of the ellipse closest to the contour that we found.

3. Write a function that plots the ellipse defined by equation 12.23. Do so by
rewriting the equation of the ellipse in the form (x —xo)TE(x — x0) = 7,
where x = [#; 23]7, then determine the expressions of E, xg and 7 as
functions of a, b, ¢, d, and e. Finally, plot the ellipse with the use of
the function ellipse.m designed in example 21, Chapter “Introduction

to MATLAB”.

Exercise 12.15 (Ellipse contour: the covariance method)

Consider a sequence of N points on the plane, described by N random vari-
ables x1, ..., xny assumed to be independent and uniformly distributed on the
elliptical disk defined by its contour:

(x—p)" M (x—p) =1
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where M refers to a positive matrix and p is the center of the ellipse. Let:
Yo =M7V2(x, — p) (12.24)

You can easily check that the sequence y, constitutes a sequence of in-
dependent random variables uniformly distributed on the circular disk with a
unit radius.

1. Determine the expression of the vector E{y;} and of the matrix
E{yiy{}.

2. According the law of large numbers, if y,, refers to a sequence of indepen-
dent random vectors with the mean v and the covariance C, then when
N tends to infinity:

N
1 . . 5,
N > (yn—on) (yn —on) 25 C

n=1

where oy = N~1 ZnN:1 ¥n- By applying the law of large numbers to the

sequence yi, ..., yn, infer that:
4 & 1 &
_ N ~ \T .
M~ Nng_l (Xn — piy) (Xn — fipy)” where iy = Nng_lxn

3. Apply these results to the problem of determining the ellipse closest to
the contour of the coin.

12.11 Principal component analysis (PCA)

The principal component analysis (PCA) provides a simple way of reducing a
complex set of data by projecting it onto a space with a small dimension while
preserving as much of the variability as possible. This method has the advan-
tage of being linear, and makes no hypothesis concerning the data distribution.
It is widely used in a number of applications.

12.11.1 Determining the principal components

Consider N length d vectors xy, ..., x5 each one of them associated with a
set of d measurements, and X the matrix:

11 *12 -+ L1N
g1 *12 - L4N

X can be understood from two points of view:
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1. either as a set of N columns x,,, each one of them representing d factors
associlated with a same individual. This leads to N points in the space

Bﬂ.

2. or as d lines, each one of them representing the same factor for N indi-
viduals. This leads to d points in the space RY.

We wish to reduce the number of factors to keep only the most significant
k < d ones.

First consider the case where k = 1. We have to search in R? the direction
of the unit vector v such that the projection of the set of the x, onto this
direction leads to the scatter of N points with the highest dispersion (Figure
12.30 for d = 2).

Vi

Figure 12.30 — Projecting the samples for the directions vi and vy : the dispersion
of the projected points is more favorable to an analysis for the vector vy than it is for
V2

This can be interpreted as follows: if we can only keep one component, it
might as well be the one that best separates all of the points. A classic criterion
to evaluate this dispersion is to consider the sum of the distances between all of
the projected points. Remember that the projection of x, is given by vv’x,
and that the distance between any two points is written ||vvx; — vvTx;||? =

vT(x; — x;)(xi — Xj)TV. The criterion to be minimized is then written:
N N
‘](V) 2]\72 vT ZZ _XJ _XJ)T v
i=1j=1
Let x = N~! Zj\f:l x;. Therefore:

U o (IR RS

i=1j=1

= VTRNV
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where we have let:

Ry =— Y (xn—%)(x, — %)7 (12.25)
n=1
Notice that the (dxd) matrix Ry can be interpreted as a covariance matrix.
Hence the problem can be laid out as follows:

maxy J(Vv)
with vIiv—1=0
The Lagrange multipliers lead us to the following equivalent problem:

maxy (VTRNV —Avlv - 1))
viv—1=0

which leads, by setting to zero the gradient with respect to v:
Ryv—-Av=0
viv—1=0

The first equation means that v is an eigenvector of the matrix Ry . If the
eigenvalue associated with v is denoted by A, then J(v) = A > 0. As such, the
maximum is reached when v is chosen as the eigenvector of R associated with
the highest eigenvalue: hence the name of this method, principal component
analysis (PCA).

By calculating the product v’ X, we get a line vector of RY. This line vector
can be interpreted as the “mean” factor that best characterizes, by itself, the
N individuals (it results in a good separation). However, this “factor” does
not really exist; 1t is merely a linear combination of factors that are actually
observed.

The previous result can easily be generalized: the k& principal directions are
the & eigendirections of the highest eigenvalues.

Implementing the previous calculations can pose a problem in the case of
image processing. Let us assume for example that we are dealing with images
comprised of 100 x 100 pixels represented in the form of length 10* vectors.
The matrix Ry associated with these vectors is a (104 X 104) matrix! The
following property can therefore be useful when d > N.

Property 12.1 Let A be a (d x N) matriz. Let {A1, - ,An} be the N eigen-
values of the (N x N) matrizr A A. Then the d eigenvalues of the (d x d)
matrizc AAH are:

{Ala"'aANaOa""O}
N —

d—N
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HINT: let A be an eigenvalue of A” A associated with the eigenvector v,
which is written A¥ Av = Av. If we multiply both sides of this equality on the
left by A, we get:

AATAv = \Av
Let w = Av. We get:
AATw = w

Therefore, X is the eigenvalue of AA associated with w = Av. [

Example 12.7 (Eigenfaces) Construct a database containing front views
of the faces of different people?. We can use the ORL database, available to
anyone on AT&T’s website. This database contains photographs showing the
faces of 40 people. Each one of them was photographed 10 times. These photos
are stored as images in levels of grey with 112 x 92 pixels. In our example, we
constructed a catalog called orlfaces, comprised of the catalogs named s1, s2,
...540, each one of them containing the 10 photographs we are going to process.

Write a MATLAB® program:
— that changes each (d; = 112) x (d2 = 92) photograph into a vector;

— that constructs, using a photograph of each of the N people, a subspace
H the dimension of which is less than or equal to N, and such as to
have the maximum dispersion of the N projections (think of using the
property 12.1);

— that checks the identity corresponding to a photograph by determining its
projection onto H then by comparing the distances of this projection with
respect to the N projections obtained with the N previous photographs;

— which constructs the confusion, for which the element (¢, j) represents the
number of times the person ¢ was chosen as being the person j.

HinT: type:

Y%===== EXEIGENFACES.M
clear all
d1=112; d2=92; d=d1*d2; figure(1l); colormap(’gray’)
imagesNb=10; peoplelib=10; images=cell(peoplelib, imageslb) ;
matX=zeros (d,peoplellb, imagesNb) ; eigenfacesl=zeros(d,peoplelib);
for ni=1:peoplelib

for kimg=1:imageslb

4When using PCA for face recognition, it is important for the photos corresponding to
the same person to be taken in approximately the same position and the same lighting. Oth-
erwise, an alignment and a calibration are often unavoidable to achieve satisfactory results.
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filename=sprintf (’orlfaces/s%i/%i.png’ ,ni,kimg);
images{ni,kimg}=imread(filename); aux=images{ni,kimg};
matX(:,ni,kimg)=reshape (aux,d,1);

end

== Training of the eigenfaces using the first image
of each person

moymatX=matX(:,:,1)*ones(peoplelib, 1) /peoplelib;
nbeig=6; eigenfaces=zeros(d,nbeig); matXc=zeros (d,peoplelib);
for ni=1:peoplelib, matXc(:,ni)=matX(:,ni,1)-moymatX; end
RR=matXc’#matXc; [UU, DD, VV]=svd(RR); DD=diag(DD);
UUpbT=matXc(:,:,1)*VV(:,1:nbeig);
UUpbT=UUpbT*diag(1./sqrt (DD(1:nbeig)));
for ni=1:peoplelib,
cni(ni,:)=matXc(:,ni,1)’*UUpbT;
vi=reshape (UUpbT*cni(ni,:)’,d1,d2);
subplot (211) ; imagesc(reshape (matX(:,ni),d1,d2));
axis(’image’); subplot(212);imagesc(vi); axis(’image’); pause

%===== Testing the pictures of the person

matriceconf=zeros (peoplelb,peoplelib) ;

for testedNb=1:peoplellb

for ii=2:imageslb
auxl=(matX(:,testedlNb,ii)-moymatX) ’*UUpbT;
for ni=1:peoplelib
aux2(ni)=norm(auxl-cni(ni,:));

end
[aa zz]=min(aux2);
matriceconf (zz,testedNb)=matriceconf (zz,testedlb)+1;

end
end
matriceconf

12.11.2 2-Dimension PCA

Consider N images of the same size dy x ds. Let Ay be the matrix representing
the image ¢ and:

N
Acc=A - N> A
j=1
be the centered image. We need to determine ki length dy unit vectors v
such that the vectors y, = VTACVZ are maximally dispersed. This 1s done by

maximizing the quantity:

N
E VTAcyzAZZV
=1
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A calculation similar to the one done in the previous paragraph, for length
1 vectors, proves that the vectors we are trying to determine are the k; eigen-
vectors of the (d; x dy) square matrix Ry:

N
Ri=N""> A, AL,
=1

Let V be the (di x k1) matrix obtained by compiling these ki vectors
according to the expression:

V=[vi - v (12.26)

Likewise, if we wish to determine the ko length ds unit vectors such that
the vectors y, = A, ,w are maximally dispersed, we end up finding that these
vectors are the ko eigenvectors of the (da x d2) square matrix Ra:

N
R,=N""> AT ,A.,
=1

Let W be the (dy x k») matrix obtained by compiling these ks vectors
according to the expression:

W=[w; - wg] (12.27)

In practice, k1 and k2 are chosen such that k; < d; and ks < d», leading
to a sequence of N “reduced” images of the size ki x ko, according to the
expression:

B, =VIAW (12.28)

Example 12.8 (2D-PCA) Write a program that extracts from a set of N
(d1 x d2) images the matrices V and W that allow us, according to expression
12.28, to obtain N (k1 x kz2) images. Have the program display the N images
in the form of an array of cells, each cell representing a (d; x dz2) image, and
return the matrices V. and W.

HINT: type the following function:

function [V,W]=PCA2D(matXcell,k1,k2)

%h %
%% SYNOPSIS: [V,W]=PCA2D(matXcell,kl,k2) %
%% matXcell = dimension N cell array %
YAA a cell is a dimension (dl x d2) array %
YAA k1 = Reduced nomber of rows %
YAA k2 = Reduced nomber of columns %
YAA V = dimension (k1 x d1) array %
YAA W = dimension (k2 x d2) array %
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%h %
N=length(matXcell); gXcellc=cell(1,N); [d1l,d2]=size(matXcell{1l});
moy_image=zeros(d1,d2); GG=zeros(d1,d2);

for ii=1:N, moy_image=moy_image+double (matXcell{ii}); end
moy_image=moy_image/N;

%===== Centered images

for ii=1:N, gXcellc{ii}=double(matXcell{ii})-moy_image; end
gR=zeros(d1,d1);

for ii=1:N, gR=gR+gXcellc{iil}*gXcellc{ii}’; end

%===== A covariance

gR=gR/N; [gU, lambda, gVl]=svd(gR);

ap=lambda(1:k1,1:k1); V=gU(:,1:k1);

%===== The other covariance

gR=zeros (d2,d2) ;

for ii=1:N, gR=gR+gXcellc{ii}’#gXcellc{ii}; end

gR=gR/N; [gU, lambda, gVl=svd(gR);

W=gU(:,1:k2);

This function is used in exercise 12.16. ]

When trying to recognize someone among g individuals, the PCA approach
makes you determine separately, during the training phase, the principal direc-
tions for each group of individuals. The approach we are now going to see makes
it possible to simultaneously optimize the choice of the principal directions and
the separation into groups.

12.11.3 Linear discriminant analysis (LDA)

We now consider g groups of individuals, each group comprised of Ny individ-
uals for which d factors were measured. The data can then be represented in
the form of ¢ matrices of the type:

11 L12 - T1N,
Xe=1| - : =[xe %]
Ld1 L12 - L4 N,
In the space R we obtain g scatters containing respectively Ny, ..., Ny

points. We assume that N =Y 7_, N,.

The goal of the linear discriminant analysis (LDA) is to find the best sep-
aration for these g scatters of points. To achieve this, we must first introduce
the following definitions:

— the mean, or barycenter, of a group:

Ny
—12 :

my = NZ Xzyj
j=1
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— the overall mean of the g groups:

g N

_ S, Nemy
m=N"! Xp; = O T
2 2% = S

— the intraclass covariance (internal to the considered class) defined by:

g N
-1 NeRy _
RI = &2717 with Rz = NZ 1 Z(szj - mg)(xm' - mz)T
ZZ:I NZ j=1
which leads us to:
g N g
R; = NTL Z ZXZ,jXZT,j - Nt Z szszT
=1j=1 =1

— the extraclass covariance defined by:
g
Rg = NTL ZN@(IKIZ - m)(mz - m)T
=1

which can be interpreted as the dispersion of the barycenters of each class
with respect to the overall mean,;

— the total covariance defined by:

g N

R=N"! Z Z(Xz,j —m)(x;; —m)”

=1j=1

A simple calculation shows that:

g N

BN YT -
=1j=1
These covariance matrices are (d x d) matrices. Tt can easily be proved that:
R=R;+ Rg

We are now going to find the direction, parallel to the vector v, such that
the intraclass dispersion is minimal and the interclass dispersion i1s maximal:
graphically speaking, the scatters are farther away from each other, and more
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compact. To achieve this objective, one possible criterion is to minimize the
evaluation function defined by:

vIRv
vIRv

This amounts to searching v such that:

J(v) =

minv! Ryv with vRv — 1 =0 (12.29)

Using the Lagrange multiplier method, we end up with the following equiv-
alent problem:

min, (VTR[V —AVTRv — 1))
with vIRv—1=0

By setting the gradient with respect to v to zero, we find that v is such
that:

R 'R;v=)\v

Notice that R™I'Ry is a positive matrix. If we now express the constraint
vIRv — 1 =0, we infer that J(v) = A > 0. Hence we have to chose the eigen-
vector associated with the smallest eigenvalue. An exactly identical calculation
can be done to prove that v is also an eigenvector of R™'R g associated with
the highest eigenvalue.

Let vy, ..., vk be the k eigenvectors associated with the k& highest eigen-
values of R™!Rg. By compiling these k vectors, we get the (d x k) matrix:

V=_[vi - v (12.30)
This means that for each of the ¢ families, the vectors:
vej=Vix (12.31)

which give the representative points of each image. Theoretically, each of the
g scatter has a minimal dispersion, and all of the scatters are as far away from
each other as possible.

Example 12.9 (LDA) Write a function that performs the linear discriminant
analysis of g groups, each group containing N, vectors of the same length d.
We will be using g cells as the data format with MATLAB®, where each cell
is a (d x N¢) matrix. The program returns the matrix V defined by equation
12.30 which is used for changing the ¢ scatters in R? into g “well” separated
scatters in R¥.

HINT: type the following function:
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function V=LDA (gX,kk)

%h %
%% SYNOPSIS: V=LDA(gX,kk) v
%h gX = array of cells. A cell is a (d x Nell) matrix %
% associated with les Nell vectors of a class %
%% kk = reduced dimension (kk<d) Y
YAA V = (kk x d) matrix used to reduce X with Xreduced=V’X Y%

o
9,

%

d=size(gX{1},1); G=length(gX);

XredLDA=cell(1,G); moyell=cell(1,G);

Nell=cell(1,G); gXc=cell(1,G);

moyT=zeros(d,1); NT=0; RI=zeros(d,d);

for ell=1:G
gXell=gX{ell}; Nell{ell}=size (gXell,2);
NT=NT+Nell{ell}; moyell{ell}=mean(gXell’)’;
moyT=moyT+Nell{ell}*moyell{ell};
gXellc=gXell-double (moyell{ell}) *ones (1,Nell{ell});
gXc{ell}=gXellc; RI=RI+gXellc*gXellc’;

end
RI=RI/NT; moyT=moyT/NT; RE=zeros(d,d);
for ell=1:G
vaux=moyell{ell}-moyT; RE=RE+Nell{ell}#vaux*vaux’;
end

RE=RE/NT; RR=RI+RE; AA=inv (RR)*RE;
[gV, lambda,bid]=svd(44);
lambda=diag(lambda); ap=lambda(1:kk);
V=gV (:,1:kk);

Exercise 12.16 (Face recognition) Consider a database comprised of g
groups of photographs in levels of grey of the same person’s face, taken from the
front. We can once again use the ORL database, available on AT&T’s website.
In this exercise, the database of N = 10 photos is divided in two: A pho-
tographs are used for training, and the N — A others are used for recognitions
tests.

Training: write a program:

— that determines, using the function in example 12.8, the matrices
V and W associated with each person (try for instance k1 = 4 and
k’z = 3),

— that determines the & = k1ks vector characterizing each person and
each photograph;

— that learns from the g previous groups of vectors the matrices of the
linear discriminant analysis. Use the function from example 12.9.
By choosing the dimension d = 2, you can display representative
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barycenters in the plane, but in order to obtain good recognition
results, you will need a higher value for d, for example d = 6;

— that finds the barycenters characterizing each individual.

Recognition: write a program that successively determines from expressions
12.28 and 12.31 the position of the test images in the space R? (d = 2).
Note that, usually, the person’s identity is not known. Therefore, the ob-
tained position has to be compared with the scatters characterizing each
person. As a test function, you can use, for example, the distance be-
tween obtained position and the barycenter of the scatter, and construct
the confusion matrix.

The programs developed in exercise 12.16 can also be used for character
recognition. The program geneBDDchif .m allows you to generate a database
of the 10 digits in printing characters, each digit being recorded in 12 different
copies. After having created the folders s0, ..., s9 in the folder mdigits, type:

%===== DIGITBDDGENE.M
clear all; closge all
name={’times’,’courrier’,’verdana’}; sizech=[120 100 60];
angle={’normal’,’italic’}; bolfCh={’normal’, ’bold’};
for ii=0:9
for jj=1:3
figure(1); tt=sprintf(’%i’,ii);
set (gcf,’color’,[1 1 1], ’position’, [60 500 180 180])
plot(0,0); set(gca,’unit’, ’pixel’)
set (gca, ’xtick’,[]1, ’xticklabel’, [])
set (gca, ’ytick’,[1, ’yticklabel’, [])
set (gca, ’box’,’off’, ’xcolor’,[1 1 1], ’ycolor’,[1 1 1])
ff=text(-1,0,tt);
set (ff, fontsize’,sizech(jj),’ fontname’ ,name{jj})
for kk=1:2
set (ff, ’fontangle’,angle{kk})
for mm=1:2
set (ff, ’fontweight’ ,bolfCh{mm}) ;
nun=242% (jj-1)+2% (kk-1) +mm;
%cde=sprintf (’print -dtiffnocompression mdigits/s¥i/%i.tif’,ii,num);
%cde=sprintf (’print -dpng mdigits/s%i/%i.png’,1ii,num);
% Windows only:
cde=sprintf (’print -dbitmap mdigits/s%i/%i.bmp’,ii,num);
eval (cde)
end

end
end

end

Use the program LDAPCAtest.m while adapting the values of the param-
eters. Try it in particular with nbimages_A=4;, dim barycenter=30; and
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k1=6; k2=6; (set in LDAPCAtraining.m). The -dbitmap parameter is only
supported by the MS-Windows operating system. The called functions will
have to be modified accordingly. It is usually preferable to use the options
dtiffnocompression or dpng.

12.12 Separating an instantaneous mixture

Consider a sequence of length d vector observations x,, obtained from a mixture
of signals s, of the same size according to the expression:

X, = As,

where A is a (d x d) matrix assumed to be invertible. We are going to try to
determine the sequence s, without knowing A. This is called a blind processing.
Of course, the problem is badly laid out, since there are more unknowns than
there are equations. However, if we make certain hypotheses concerning the
Sp, we can estimate the matrix B = A1,

Let us first assume that s,, is stationary (we can assume without being any
less general that s, is centered). We get E{xnan} = AE{snan} AP and
therefore, with obvious notations:

R, = AR, A" (12.32)

Now let us assume that A 1s a solution of 12.32. Then for any unitary matrix
U (UUH =1TI), we can easily check that the matrix A= ARi/zURs_l/2 is still
a solution of 12.32. As a consequence, knowing the second order moments only
allows us to know the matrix A multiplied by an unknown unitary matrix.
Therefore, it 1s not possible with a blind process to find s,, using only second
order moments. Some authors have considered using moments with orders
higher than 2. We will not be doing so in this work®.

Let us remove the independence hypothesis and consider that we have L
length N sequences x, o. The blocks of length N can be obtained by dividing
up the observations x, according to expression:

Xnt = X¢{N+n
with £ €{0,---, L —1} and n € {1,--- , N}. Let us assume that:
Xn L = ASn,Z

and that each block represents the samples of a white random process, meaning
that:

E{Sn,zSnH,z} = diag{o’ib e ao-czl,ﬁ} = DZ

5Notice that in the case of Gaussian signals, blind separation is never possible, since any
moment with an order higher than 2 is expressed with second order moments.
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Therefore, for any ¢:
R, = E{x,.x},} = AD,A”" & BRB"” =D,

Based on the blocks {x1 ¢, - -+, xn ¢}, We can estimate the L matrices f{z:
N
R, =N~} Z(Xn,z — X¢)(Xn,e — x0)
n=1

where x; = N1 Zi\;l Xn,. We can then search for the matrix B such that,
for any ¢, the positive matrix:

C, = BR,B”

is as close as possible to a diagonal matrix. A reasonable criteria would consist
of minimizing the sum of the non-diagonal terms with respect to the diagonal
terms according to the expression:

|Ce(4,4)]
12.33
ZZC@ (¢ ZCZ]]) ( )

=1 i#j

However, this criterion is very difficult to minimize. To simplify this search,
we are going to restrict ourselves to the case where d = 2 in the following
exercise.

Exercise 12.17 (Separating two sources) Consider the mixture of two

speech signals s? = [s] s2] obtained with the mixture matrix A:

1 1.3
A= [ ~0.1 08 ]
Based on x! = [z} 22] = As,,, we wish to restore the signals s’ and s2

n n
with the amplitudes multiplied by an unknown coefficient. This means that we
are trying to find the matrix B = diag(p1, p2) A~ where p; and psy are two

arbitrary values. Hence all we need to do 1s find B in the form:

p=[} 7]

1. Determine as a function of «, 3 and the partial covariances of the blocks,
the expression of the criterion J(a, 3) defined by equation 12.33.

2. Write a MATLAB® program that calculates J(a, 3) over ranges of values
for o and B chosen beforehand, and that reconstructs the signals s. and
s2 from the minimum. Choose the length N of a block equal to the
stationarity time.
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12.13 Matched filters in radar telemetry

What is called an active radar emits a signal s(¢) in the direction of the area
we wish to explore. If a target is there, the signal is sent back in the form of
an echo e(t). The presence or the absence of this echo in the received signal
indicates the presence or the absence of a possible target. Therefore, we have
to choose between the two following hypotheses:

— hypothesis Hy: z(t) = b(t) (noise alone);

— hypothesis Hi: z(t) = e(t) + b(t) (signal+noise).

We will assume that b(¢) is a Gaussian, white noise, with the power ¢, and

there is at most one target, that it is not moving (null speed), and that the
transmission channel does not distort the signal s(t).

In these conditions, the echo e(?) is equal to s(t — ), where 7 refers to
the delay due to the time it takes the signal to cover the distance to and from
the target. In radar observation, this delay is called the two-way echo delay.
We can infer the distance d to the target using the formula d = e7/2, where ¢
refers to the propagation speed of an electromagnetic field (c ~ 3 x 10% m/s).
If the target’s speed v is different from zero, we can show that the signal s(¢)
is modulated (multiplied) by a sine, the frequency fq of which is proportional
to v, and is called the Doppler frequency. From now on, we will assume that
v=20.

We saw in exercise 12.12 on matched filtering that the optimal processing,
for the given structure (filter 4+ threshold detector), consists of performing the
following operations:

1. Filter the received signal z(¢) by a filter with the impulse response s(—t)
(matched filtering) (Figure 12.31).

L Noise b(1)
+ i)
Echo e(1) + 8 x(1) s(-f) y(t)

Figure 12.31 — The principle of RADAR signal processing

The output signal then has the expression:

+oo
y(t) = /_ z(u)s(u —t)du

oQ

2. Find the maximum yas of y(¢) in an observation window Ty ax correspond-
ing to the radar’s maximum range. For instance, if the this range is equal
to 1.5 km, Tax = 10 us.



Selected Topics 517

3. Compare yyr to a threshold. If it is above the threshold, it is decided
that the target is present, and its distance is d = ¢7/2, where 7 refers to
the time corresponding to the maximum yus.

Exercise 12.18 (Radar telemetry)

We are going to study the performances related to the shape of the emitted
signal s(t). To do so, we will be considering two continuous-time signals s (%)
and s2(t) with a duration of 7' = 630 ns, both shown in Figure 12.32.

A s1(7) s2(1)
A A

t /7 T _i

Figure 12.32 — Two impulse shapes

“A

Let us assume that the total observation time of the received signal z()
18 Thnax = 10 ps, and that the sampling frequency is equal to 100 MHz, in all
1,000 samples.

1. Determine the energy F; of the two impulse s1(¢) and s2(t). In the pres-
ence of noise, we can define the signal-to-noise ratio as S/B = (E;/T)/o?.

2. Determine, in the absence of noise, the maximum output amplitude Ay
of the matched filter for each of the two impulses.

3. Write a program:

— that generates a Boolean random variable indicating the presence
or the absence of the target. The impulse detection performances
are in no way modified by imposing a value for the delay. You can
choose for example 7 = 2 us;

— that generates the signal z(t) for the types of impulse (take A = 1);
— that determines the matched filter’s output signal y(t);

— that decides whether the impulse is absent or present by comparing
the maximum of y(¢) to a threshold, and, in case the impulse is de-
cided as present, estimates the value of the delay. For the threshold,
you can choose the value E;/2.

4. Interpret the results.
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12.14 Kalman filtering

Kalman thought up an approach, introduced in paragraph 11.6 that makes it
possible to forgo the stationarity hypothesis made for the Wiener filtering. It
is based on a state representation (see also paragraph 5.1).

The Kalman filter provides the best mean square estimation of x,, from the
observation of y, . In its simplest form, the following hypotheses are made: the
components of b, and wu, are independent, centered, Gaussian, but not nec-
essarily stationary, random vectors. Hence the respective covariance matrices
are as follows:

E{bnbg} =Ry(n) (m x m)
E{b,bl, .} =0fork#0 (m x m)
E{unug} =Ry(n) (pxp)
E{unug_l_k}:Ofork;éO (p xp)
and E{uanZ} = 0 for any pair (n, k) (pxm)

In the particular case where the processes b, and u, are assumed to be
stationary, the matrices Ry(n) and Ry (n) are independant of n, and we then
have, for any n, Ry(n) = Rp(0) and Ry(n) = Ry (0). If we also assume
that their components are not correlated with each other, then the covariance
matrices are diagonal and have the respective expressions:

oz, 0 - 0 o2, 0 0 0
2 . 0 2 0

Ry0)=| " T2 O and R, (0) = Tuz

: I o0 : . 0

0 o0 ol 0 o0 ng

The Kalman filter provides at every time n the estimation x,, which

1s a linear function of yy, ..., y, that minimizes the mean square error
E{ |x, — fcn|2} We also know that in the case of a Gaussian signal, this lin-
ear estimation is the best one among all the functions yi, ..., y,. However,

“bluntly” solving this problem leads to an expression involving the inverse of
the (n x n) covariance matrix. Hence, when n increases, the size of this matrix
grows “uncontrollably”.

The Kalman filter is a recursive filter. It performs a computation of x,, at
the time n by updating the value x,_; obtained at the time (n — 1) taking
into account the last observed value y,,. And this calculation only requires the
memorization of the finite dimension state. Remember that it is expressed as
follows, as we have shown in paragraph 11.6 for n > 1:
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Inttial values:
xoj0 = E{xo} and Ky = E{xoxg}

Repeat:

Gy = Ky CF (CuKo i CT 4+ Ry (n) ™

Xnjn = An—1Xp_1jn-1+ Gn (Yo — CrAnXn_1)n-1)

K,=A,(I-G,C,)K,_, (I- G,C,)" AT ...
+A,G,R,(n)GTAT + Ry(n)

The expression of this algorithm calls for a few comments:

1.

Tts form is similar to that of the adaptive algorithms (such as the LMS)
seen in paragraph 11.2.4.

. In the particular case where the noises u, and b, are stationary, the

matrices Ry (n) and Ry(n) are independent of n.

. In the particular case where the “system” is time-invariant, the matrices

A, and C,, are independent of n.

. G, 1s called the Kalman gain. It can be calculated beforehand, since it

is determined by equations 12.34 and 12.34, which do not depend on the
observed data y,. However, except in the case of scalars (see exercise
12.19), the expression of G, requires us to solve a complex recursive
equation.

. The significance of equation 12.34 is obvious. According to the state

equation, if there were no noise, the value of x,, at the time n would
simply be A,x,_1. This is the first term of 12.34. But because of
the noise, this values has to be corrected by a quantity proportional to
the difference between the observed value y, and the value we should
have obtained, had the observation equation not been noised, that is
C,x, =C,A,x,_1.

. We wish to draw your attention to the fact that the algorithm requires

us to know Ry (n) and Ry, (n). However, the theory can be generalized to
include the situation where these quantities have to be estimated based
on the observed data. In that case, the sequence of gains can no longer
be calculated beforehand.
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As a conclusion, the main properties of the Kalman filter can be summarized
as follows:

— 1t leads to the minimum mean square error;

— 1t requires a detailed description of the signal’s model, without, however,
imposing stationarity hypotheses. If the model is changed, the results
can become quite wrong;

— the obtained algorithm is recursiwe. This implies that it can be imple-
mented with a small amount of memory space;

— 1its calculation time is long because of the number of operations to per-
form, which has sometimes limited its use.

Example 12.10 (Estimating the speed of moving object)

The position of an object moving on the plane is observed. The z and y-
coordinates of the trajectory, which are functions of continuous time, are given
by #14(t) and 224(t) respectively, and the velocity vectors by vy (t) = de14(t)/dt
and v2(t) = daq(t)/dt respectively. The samples of z1,(t) and z24(t) are
denoted by #1(n) and xa(n) respectively. We will assume that the sampling
satisfies the Nyquist condition.

Noised samples of the position are observed, that is:

where u(n) = [u1(n) wus(n)]¥ is a centered, white noise, with the known
covariance matrix ¢2I;. From now on we will use the notation y(n) =
i(n) ()]

We are going to try, based on N observations {y(1), ..., ¥y(N)}, to estimate
the velocity vector as a function of the time n, using the Kalman algorithm.

1. The state of the observed system is denoted by =x(n) =
[z1(n) =x2(n) wvi(n) wa(n)]T. Find the equation for the evolution of
x(n), if we assume that the object is moving at a constant speed, which
is not the case(!). We will assume that any noise in the model only affects
the components of the velocity, that it is stationary, and 1ts components
are uncorrelated with each other and with the same variance o7.

2. Find the expression of the measurement as a function of the state. We will
assume that the measurement noise is stationary and that its components

are uncorrelated with each other and with the same variance o2.
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3. Write a program that calculates the position, adds a noise, and estimates
the speed using the Kalman algorithm. Test the algorithm on the follow-
ing equation:

{ o o

with fo = 0.005. The observation noise is such that o2 = 0.5. Try
different values of the modeling noise’s variance ¢7. Compare the result
with the theoretical speed given by:

{ vi(n) = 2n
va(n) = 27 fo cos(2m fon)

HINT:

1. If we assume beforehand that the object is moving at a constant speed,
and that the measurement is accurate for the position, but not for the
velocity, then the state equation is given by:

zin+1)=z1(n)+vi(n)+0
za(n+1) = za(n) + va(n) + 0
vi(n 4+ 1) = vi(n) + bs(n)
va(n 4+ 1) = va(n) + ba(n)

that can be written:

x(n+ 1) = Ax(n) +b(n)

where A =

co o~
co— o
o — o -
— o~ o

and where b(n) is a noise that represents the uncertainty regarding the
hypothesis “the object is moving at a constant speed”. We have assumed
that:

E{b(n)b” (n)} = o?

o O oo
o O oo
O = OO
_ o O O
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2. We have:
v = [y 5 ] xm + ) = Exn +ue)

We have assumed that E{u(n)uT(n)} = oll,.

3. Type:

%===== KALTRAJECT2D.M
clear all, clf

N=600; £0=0.005; tps=(1:N);
Y%===== Position

%===== Theoretical speed

v1=24tps; v2=2*pi*fO*cos (2xpixfO*tps);

%===== Noisy observation

var_obs=0.5; Ru=var_obs*diag([1 11);
Y=[x1;x2]+sqrt (var_obs) *randn(2,N) ;

AA=[1010; 0101; 0010; 000 1];
CC=[1000; 010 0];

Y%===== Choice for the variance of the model noise
var_mod=0.000001;

Rb=var_mod*diag([0 0 1 1]);

Y%===== States

xchap=zeros(4,N);

Y%===== Initialization

Xnml=zeros(4,1); % xchap(n-1)

%===== Without an a priori on E(x(0)x’(0)), I(n,n) is taken
KK=eye (4);

%===== Kalman algorithm

for k=2:N,

GG=KK*CC’*1inv (CC¥KK*CC’+Ru) ;
xchap (: ,k)=AA*xchap (: ,k-1)+GG* (Y (: , k)~ ...
CC*AA*xchap (:,k-1));
KK=AA* (eye (4) -GG*CC) *KK* (eye (4) -GG*CC) "*AA’ . ..
+AA*GG*Ru*GG’*AA’+Rb;

——
figure(2); subplot(1,2,1); plot(x1,x2,’:’); hold on
plot(Y(1,:),Y(2,:),’r’); grid; hold off
subplot(1,2,2); plot(vl,v2,’:’); hold on;

plot (xchap(3,40:N) ,xchap(4,40:N),’r’);

plot (xchap(3,N) ,xchap(4,N),’xr’); grid; hold off

The graph on the right of Figure 12.33 leads to the estimation of the
object’s velocity without noise (dashed line) and the estimated one (full
line). Tts noisy trajectory is shown on the left.
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Figure 12.33 — Kalman algorithm in trajectography

Exercise 12.19 (Denoising of an AR-1 signal using Kalman)
The discrete-time signal y(n) = x(n) 4+ u(n) is observed, where n € Z. The
observation y(n) is obtained with the following program:

%===== MOBILEX.M

% Generation of the observed signal

T=200;

a=0.9; % Time constant of the model
sigmab=1; % Model noise, variance=1

b=sigmab*randn(T,1);
x=filter(1,[1 -al,b); % Trajectory
sigmau=3; % Observation noise, variance=9

y=x+sigmau*randn(T,1); % Observation
This program corresponds to the system described by:
{ z(n) =ax(n—1)+b(n) (state equation)
y(n) = z(n) + u(n) (observation equation)
b(n) and wu(n) are assumed to be two white noises, uncorrelated with each

other. Hence, z(n) is an AR-1 process. Let p = 07/c2. We want estimate z(n)
using the observed y(n).

1. Determine, as a function of a and o7, the expression of the power Py =
E{xZ(O)} corresponding to the stationary solution of the state equation.
This value will serve as the initial expression for E{ xZ(O)}.

2. Determine, as a function of a and p, the recursive equation of the Kalman
gain, as well as the initial value G(0).

3. Write a program that implements the Kalman filter on the suggested
trajectory.
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12.15 Compression

12.15.1 Scalar quantization

The scalar quantization of a random quantity X consists of partitioning R in
n sub-intervals:

Il — (ao = —OO,Cll), .. 'aIk‘ = (ak‘—laak)a .. 'aITl = (an—laan — +OO)
and of defining a sequence {p1, ..., u,} of real values. From then on:

— the coding process associates x, the value assumed by the random variable
X, with the index k of the interval to which the word belongs, that is,
assoclates k with x if x € Iy;

— the decoding process associates the index & with the value pig.

The value pj can be called either the code word or the representative element
of the interval Iy, or simply the reconstruction value. The set of code words 1s
called a codebook.

Hence you can see that the coding consists of associating the value z with
the adress of one of the words in the codebook. In practice, the codebook
size n is often chosen equal to a power of 2, that is n = 2V, and the memory
addresses are then written using N bits.

The linear quantization we studied in paragraph 7.5 is the simplest case of
scalar quantization. All of the n intervals, except for the first one and the last
one, are chosen with the same length ¢, and the representative elements are
taken from the middle of the interval. Coding amounts to testing whether x
belongs to one of the n intervals of the type (k¢ —q¢/2, kg+q/2) and to transmit
k.

Mathematically, these two operations, coding and decoding, are summa-
rized by the application:

X = p(X)

What this actually means is that no difference i1s made between all the
elements of the interval I and the code word pg. In this context, coding
improves as the distorsion caused by these operations grows fainter, for a given
number n of intervals. Of course, for the elements close to iy, the error is small.
On the other hand, for the elements far away, the error is high. Hence 1t is best
to have intervals of small length for the most frequent values of z and to let
the intervals be longer for the less probable values. We already mentioned this
when studying linear quantization. We are now going to give a mathematical
expression for this relation.

The problem is to find, based on a probability distribution of X known
beforehand, the best partitioning and the best representative elements with
respect to a given criterion of distorsion between X and p(X). In the search
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for a solution, the pioneers are undoubtedly Lloyd and Max, and the reader
can look up the famous reference [59, 64].

We will give here the solution in the case where the criterion that has to
be minimized is the square deviation defined by E{(X — p(X)}Z), and the
expression of which 1s:

e} dud) = E{ (X = u(X }—Z/ (0 = ) ?px (@)dz (12.34)

where px(x) refers to the probability density of X. The problem consists
of determining the (2n — 1) values a1, ..., ap—1, ft1, ..., fn that minimize
J({ag}, {pr}). This solution can be obtained by setting to zero the partial
derivatives of J with respect to the ap and the pg. This leads to a system of
equations which, once simplified, can be written:

:% k=1,...,(n=1)
faa:_l epx(z)de 1 (12.35)
Bk = ey 7o =L...n
fak_lpx(x)dx

The first expression simply means that the interval Ij 1s the set of points
closest to pg. And according to the second one, uy can be interpreted as the
barycenter of the interval Iy, weighted by px ().

Unfortunately, the expressions 12.35 generally do not lead to a simple ana-
lytical form for the quantities ay, ..., a,—1 and p1, ..., p,. Numerical methods
can then be used, such as the gradient algorithm, the general form of which is:

aJ
Oy = 0,1 — A = . A0 (12.36)
80 |y,

where @ refers to the parameter for which we want to determine the numerical
value that minimizes the criterion J(f). The index p refers in this case to the
p-th iteration. The positive number A is the gradient step. We have already
encountered and made comments on such an algorithm in paragraph 11.4.2 on
page 420.

In our case, the parameter we have to determine is 6 =
(ar,...,an_1, 1, -, pn)’, which is comprised of (2n — 1) values. Using 12.34,
we can infer the (2n — 1) component expression of the gradient:

oJ [aJ o] aJ 0.7

T s Fe w (12.37)
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with:
aJ 5 5
g = an =) = (ar = pesr) )px (ar) b =1,...,(n—1)
;Jk (12.38)
i —2faa:_l(x—uk)px(x)dx k=1,...,n
i

If px (%) is a Gaussian distribution, the second relation of the system 12.38
can be numerically evaluated using MATLAB® with the erf function. The
following program implements the gradient algorithm 12.36:

%===== LLOYD.M

usrpi=1/sqrt (2*pi); rc2=sqrt(2);

%===== 7 parameters to be calculated

n=4; Ga=zeros(n-1,1); Gmua=zeros(n,1); Gmub=zeros(n,1);
a=[-3; 0; 3]; Y%==== Initialization

mu=[-4; -2; 2; 4];

lambda=0.1; %==== Gradient step

for jj=1:2000
mul=mu(1l:n-1); mu2=mu(2:n);
expa=usrpixexp(-(a ."2)/2);
Ga=((a-mul) .2 - (a-mu2) .72) .* expa;
Gmua=-2%* ([0; expal -[expa;0]) ;
Gmub=mu .* (erf([a/rc2;+inf])-erf([-inf;a/rc2]));
Gnu=Gmua+Gmub; mu=mu-lambda*Gmu;
a=a-lambdaxGa;

%===== Estimated parameters

For n =4 and ¢ = 1, the program returned:

{ a3 = —a; = —09816 as = 0 (12 39)

H4e = — 1 = 1.5104 H3 = — o = 0.4528

In the case of a centered, Gaussian random process with the variance o2,

all we have to do is multiply these values by o. As we have already said, the

gradient method converges slowly and the calculation time is long. However, 1t

can be shown that, if the function log(px (z)) is strictly concave, the function
J has only one minimum.

12.15.2 Vector quantization

Introductory example

The vector quantization problem is formulated in the same way as the scalar
quantization. The difference is that we now wish to code length m vectors
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instead of real scalars. Hence we have to determine the best way of parti-
tioning R™ in n regions and associate each one of these regions with the best
representative element.

The simplest idea consists of coding the m components separately, using
scalar quantization. Consider, for example, the case where m = 2 and where
4 bits are used to code a point of R2. We can allocate 2 bits to each of the
vector’s two components and then code each of the two components using 2 bit
scalar quantization. But we can also try to directly code the point in R? using
4 bits. We are going to see, with an example first, that this second method can
be better.

To obtain a sequence of correlated vectors we consider the AR-1 process
defined by the equation s(n)+as(n—1) = w(n), where |a| < 1 and where w(n)
is a centered, Gaussian, random sequence with the variance o?. We are going
to use the following representation: based on the signal s(n), we construct
the two component vector sa(p) = [s(2p — 1) s(2p)]* obtained by grouping
together the two consecutive samples of s(n). The following program displays a
sequence of 1,000 values of s5(p) in the form of a scatter in R?. The results are
shown in Figure 12.34. The correlation found in the AR-1 process reveals itself
by the elliptical shape of the scatter (see exercise 9.5 on drawing the confidence
ellipse):

Y%===== PARTQV2AR1.M

N=1000; a=0.8; N2=N/2;

w=randn(N,1); s=filter(1,[1 al,w);
s2=zeros(2,/2); s2(:)=s; 82=827;
plot(s2(:,1),82(:,2),’x’); axis(’square’)

%===== Matrice de covariance
%C=s2"%xs2/(N/2) ; % Estimation de C
C=[1 -a;-a 1]/(1-a*a); % Valeur theorique
%===== Ellipse de confiance

alpha=.9; s=-2xlog(l-alpha);
hold on; ellipse([0 0],inv(C),s);
ellipse([0 0],inv(C),s);

hold off

grid

Coding the vector s3(p) € R? using 4 bits means that we have to partition
R? into 16 regions. In the case where the two components of s5(p) are coded
separately using 2 bits, this partition is made of rectangular regions with their
sides parallel to the axes. This is shown in Figure 12.34(«a). The positions of
the boundary lines are determined by the optimal values of the 2 bit scalar
quantization of a Gaussian random variable, provided by 12.39.

Figure 12.34(b) also shows a partition based on 16 other regions, which
takes more into account the elliptical distribution of the points in the plane.
The regions are delimited first by the ellipse’s major axis and second by the 8
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lines parallel to the minor axis located in scalar positions indicated by the 3
bit Lloyd-Max algorithm.

-10 I 1o bl s ~
-10 -5 0 5 10 -10 -5 0 5 10

Figure 12.34 — Two partitions of the plane in 16 regions (4 bits are used to code
each representative element of the corresponding region)

Another idea consists of whitening the two components of the sequence s2(p)
so as to transform the elliptical scatter into a circular scatter. This operation
is achieved (see example 8.5, page 283) by applying a square root of the inverse
of the covariance matrix:

i = Ty

to the sequence of vectors s3(p). Note that the operation suggested here does
not decorrelate the vectors that are transformed, only their two components.
In plainer terms, if we use the notation ts(p) = Msa(p), where M is the modal
matrix, E{tz(p)tg(p)} is diagonal but E{tz(p)tg(p + k)} #0.

In practice, the matrix R can be estimated, from the length N sequence
s(n) (and therefore the length of s3(p) is equal to N/2), as follows:

) | M
R= 575 ; s2(p)s3 (p)

We then obtain a sequence of vectors f{_l/zsz(p) the two components of
which are uncorrelated. We can then perform the 2 bit quantization of each of
the two components. You can check by typing:

Y%===== PARTQV2W.M

N=5000; a=0.8; N2=N/2;

w=randn(N,1); s=filter(1,[1 al,w);
s2=zeros(2,/2); s2(:)=s; 82=827;

subplot (121) ,plot(s2(:,1),82(:,2),’x);
grid; axis(’square’)

%===== Decorrelation

R2est=s2"*s2/N/2; s2t=s2*sqrtm(inv(R2est));
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subplot (122); plot(s2t(:,1),s2t(:,2),7%x’);
grid; axis(’square’)

As an exercise, you can perform a simulation on 1,000 values and compare
the square deviation of these three quantization rules by choosing as represen-
tative elements the points located in the center of these regions.

The last method which, after estimating the covariance matrix, whitens the
two components can be extended to a higher number of components. This
method can also be generalized to any form of transformation that tends to
perform a decorrelation of the data. This is the case, for example, of the
discrete Fourier transform, of the discrete cosine transform. The coding can
then be performed component by component in the transformed region: in this
context, this is called transform coding [66].

Voronoi regions and centroids

We now come back to the problem of determining the best partition and the
best representative elements in vector quantization. Let:

R ={Ri,...,R,} (12.40)
be the partition of the observation space R in n disjoint regions and:

C:{/'Lla'“a/in}

the codebook of the n representative elements (Figure 12.35) where py, is the
element in R™ that replaces every point of the region Rj.

Ry

7

Figure 12.35 — Partition R of the plane

Let us assume that the probability distibution of the vector observation X,
with possible values in R™, has a probability density denoted by px(z). Then
the mean square deviation has the expression:

J(R,C) = Z/B |z — pr||*px (¢)de (12.41)
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where ||v|| = VvT v represents the Euclidean-norm of the vector v. The goal is
to minimize J(R,C) with respect to R and C. This can be performed numeri-
cally, by repeating the two following operations:

1.

we start with n representative elements C, and find the n regions that

minimize J(R,C);

once the n regions have been determined, we find the n new representa-
tives that minimize J(R,C).

After each step, J(R,C) becomes smaller. The two operations are iterated
until J(R, C) reaches a value deemed small enough. Tt is unfortunately possible
with this algorithm to end up at a local minimum. Let us examine these two
operations in detail:

1.

If C is set, minimizing J(R, C) with respect to R amounts, according to
expression 12.41, to assigning to Ry all of the points of R™ such that:

Ri={e €R" : llo—pmll<lle—mll Yizk} (1242

The regions defined by such a partition are called Vorono: regions. This
concept can of course be extended to other distances, not just the basic
Euclidean distance.

Figure 12.36 shows the Voronoi regions for a set of points of R? when the
distance used in the Euclidean distance. In this case, we start with the set
of representative elements, and the lines delimiting the regions are simply
defined by the perpendicular bisectors of the line segments formed by the
pairs of these points. The points belonging to the perpendicular bisectors
can indifferently be assigned to either one of the adjacent regions.

Figure 12.36 — R partition by the perpendicular bisectors

2. If R is set, and under sufficient regularity conditions, J(R,C) can be

minimized with respect to C by setting to zero the partial derivative of
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J(R,C) with respect to uj. This leads to:

xpx (x)dz

The point in R™ defined by the expression 12.43 is called the centroid of
the region Ry for the ditribution with the probability distribution px (z).

In practice, the probability distribution of the observation X we wish to
code is unknown. However, px () can be estimated based on a set of outcomes.
This leads us to the algorithm presented in the following paragraph.

LBG algorithm

The LBG algorithm, named after its creators Linde, Buzzo and Gray (see ref-
erence [58]), allows us to determine the n best representative elements of an
unknown distribution based on a set of N outcomes called a training set:

D=A{ay, - ,zy} where z; € R™

In practice, N >3 n. Replacing the unknown probability distribution px (x)
with the histogram of the values i1s equivalent to assigning the same probability
1/N to every observation. If we then replace this in 12.43, we get:

1
Lo,
- Z:Rkif\’ _ b Z r; (12.44)

Br = T =
ZRk N Nk {i:wi€RL}

where Nj refers to the number of points in the region Rj. Using this result,
we can implement the following algorithm. We start with an initial codebook
C of n centroids {1, ..., pn } belonging to R™, then successively perform the
following operations:

1. construction of the n Voronoi regions associated with the n centroids,
that is to say the partition of the set D in n subsets containing the points
closest to the pg;

2. computation, based on expression 12.44, of the n new corresponding cen-
troids;

3. stopping criterion: if the n new centroids are “close” enough to the pre-
vious ones, the algorithm stops, otherwise, it picks up at step 1.

It can be shown that the estimated square deviation, defined by:

n N
1 2
&= 20D Mo — el 1 € Ry) (12.45)

k=11i=1
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decreases after each iteration and that the algorithm converges to a local min-
imum.

On the other hand, this algorithm poses two problems related to the ini-
tialization: first, we are not sure that the algorithm converges to the global
minimum, and second, empty spaces can appear while the algorithm is run-
ning. To avoid these problems, the LBG algorithm has the following efficient
initialization procedure:

1. The centroid is calculated for the set of the whole training sequence.

2. Based on each centroid, two points are constructed by a small shift in two
opposite directions. As a consequence, the number of points is doubled.

3. The Voronoi regions, associated with the set of previously obtained
points, are determined, as well as their respective centroids.

4. The algorithm goes back to step 2 until a set of n centroids is obtained.
The resulting codebook size 1s a power of 2.

The voronoi.m function

The voronoi.m function determines the n Voronoi regions associated with the
codebook C. It returns the vector indR that contains, for each element of the
training sequence x, the number of the region to which it belongs.

function indR=voronoi(x,C)

hh h
%% SYNOPSIS: indR=VORONOI (x,C) %
o X = (m x T) training sequence %
Wh C = n code words (m x n) array %
YAA indR = Length T vector associating a point x %
o to the region it belongs to %
hh %
[m, Tl=size(x); [m, nl=size(C);

%===== Euclidian norms(~2) of the representatives
norC=ones(1,m)*(C .* C);

%===== Searching the minimal distance for each x

for tt=1:T

d2=norC - 2*x(:,tt) ’*C;

[bid ind]=min(d2); indR(tt)=ind(1);
end
return

The centroides.m function

The centroides.m function determines the n centroids (matrix C) based on
the training sequence along with the number of the region to which each of
its elements belong. It returns the value of the square deviation E given by
expression 12.45:
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function [C,E]l=centroides(x,n,indR)

Nh %
%% Computing the n centroids of n regions %
%% SYNOPSIS : [C,E]=CENTROIDES(x,n,indR) %
o X = Training sequence %
%% n = Number of centroids %
YAA indR = Index of the region x belongs to %
Wh C = Centroids Y
Wh E = Square error %
% %
[m,T]=size(x); C=zeros(m,n);

E=0;

for jj=1:n % For each region

indRep=find (indR==jj); % Indices of points
% belonging to region jj
xjj=x(:,indRep); [m 1lxjjl=size(xjj);
if 1xj§7=0
C(:,jj)=(xjj*ones(1xjj,1))/1xjj; % Estimated mean
d2=(C(:,jj)*ones(1,1xjj)-xjj) .~ 2;
E=E+sum(sum(d2)) ;
end
end
E=E/T; % Estimated Error
return

The initlbg.m function

The initlbg.m function determines an initial size n codebook based on the

training sequence x. The value deltasets the shifts in the direction (1,1,---,1)
and in the direction (—=1,—1,---,—1):
function CO=initlbg(x,n);
hh %
%% Initialization of LBG: determine n centroids by dichotomy %
%% SYNOPSIS: CO=INITLBG(x,n) %
%h x = learning sequence (mxT array) %
%% n = number of representatives (power of 2) %
YAA CO = n representatives (mxn array) %
o %
delta=0.01; [m,T]=size(x);
CO=x*ones(T,1)/T; % First representative
indR=ones(1,T); % Initial array

jj=1; vv=zeros(m,n);
while (jj<mn)
for kk=1:3jj
vv(:,2%¥kk-1)=C0(:,kk)-delta;
vv(:,2%kk)=C0(:,kk)+delta;
end
vv=vv(:,1:2%jj);
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jj=jj*2; CO=centroides(x,jj,indR);
end
return

Implementing the LBG algorithm

The 1bg.m function implements the LBG algorithm and returns a size n code-
book, based on the training sequence x. This function also returns the initial
codebook produced by the function initlbg.m as well as the decreasing se-
quence of values of the square deviation. The length of E gives the number of
iterations needed to reach the minimum:

function [Cf,Ci,E]l=1lbg(x,n)

%h %
%% Calculating the dictionary using the LBG algorithm 7%
%% SYNOPSIS: [Cf,Ci,E]=LBG(x,n) %
o x = (mxT) training sequence with: %
%% m dimension of the observations %
%h T nomber of observations %
YAA n = Number of representatives (power of 2) %
o Cf = Dictionary Y
o Ci = Initial dictionary %
YAA E = Square error based on the iteration step %
%% Uses: voronoi.m, centroides.m initlbg.m %
%h %

[m, Tl=size(x); N=log2(n); Cn=zeros(m,n);
indR=zeros(1,T); E(1)=0; ncv=1; epsilon=0.001;

%===== Initialisation
Ci=initlbg(x,n); Cf=Ci;
%===== Iterations
rep=0;
while ncv
rep=rep+1;
%===== Searching the Voronoi regions corresponding
% to the n centroids. indR gives each point
% of x the number the region it belongs to.

indR = voronoi(x,Cf);
%===== Calculating the new centroids and the distorsion E
[Cn,E(rep)l=centroides (x,n,indR) ;
if max (abs(Cn-Cf))<epsilon
ncv=0; Cf=Cn;
else
Cf=Cn;
end
end
return

Example 12.11 (Applying the LBG function)
We are going to use the 1bg.m function to find the 4 representative elements
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of a centered Gaussian distribution with the variance 1. Type:

x=randn (1,4000) ;
[Cf,Ci,El=1bg(x,4);
cf

Through simulation, we found, values for Cf such as:

| -1.4809 -0.4369  0.4565  1.5036

This result 1s in agreement with the values gy = —p1 = 1.5104 and ps =
— 2 = 0.4528 obtained by numerical resolution of the Lloyd-Max equation (see
page 526).

The codebook size problem

Let us assume that we have to code the elements of R™ using 20 bits. A direct
application of vector quantization leads to the creation of a 22° a 1,000,000
word codebook. If this number is too large for the considered application, we
can, at the cost of an acceptable performance loss (see exercise 12.20), break
the 20 bits down to two or more smaller sub-codebooks. For instance, if the 20
bits are broken down to two sets of 10 bits, two codebooks have to be created,
each one containing 2% & 1,000 words. An illustration of this method is given
by the vector quantization of the prediction coefficients in a speech coder.
The MELP coder (Mized Frcitation Linear Prediction) converts speech sam-
pled at 8,000 Hz into a sequence of binary symbols flowing at a rate of 2,400
bits per second. As the name implies, the coder performs a linear prediction
analysis on 10 coefficients every 22.5 ms. Therefore, it has at its disposal
2,400 x 22.51073 = 54 bits to code a frame. 25 of these 54 bits are assigned
to coding the 10 prediction coefficients. A direct application of vector quan-
tization would lead to producing a 22° ~ 32,000,000 word codebook in R!'°.
Obviously, this is infeasible. Instead, the solution consists of creating several
nested codebooks. The principle can be explained, without being any less gen-
eral, by first considering a vector coding using 6 bits. A direct construction
would then consist of using a dictionary of 2° = 64 elements. Instead, and at
the cost of an acceptable performance loss, we can construct a first dictionary
of 4 representative elements,; therefore coded using 2 bits, then code the dis-
tance between the vector to be coded and the representative element using the
4 remaining bits with a single dictionary of 2* = 16 representative elements.
Thus, the set of two dictionnaries is now only comprised of 16 4+ 4 = 20 repre-
sentative elements instead of 64. To get a better idea, imagine a first partition
of the space in 4 regions, then each region is partitioned in an identical way in
16 sub-regions. All we need to do when decoding is concatenate the value of the
value of the representative element associated with the first two bits and the
value of the representative element associated with the last 4 bits. The solu-
tion chosen for the MELP coder uses 4 sub-codebooks with the sizes 27 = 128,



536 Digital Signal and Image Processing using MATLAB®

26 = 64, 26 = 64 and 2° = 64, respectively, for a total of only 320 words to
code the vector of the 10 prediction coefficients using 25 bits.

Exercise 12.20 (Performances with two sub-codebooks)
Consider the AR-1 process s(n) defined by the recursive equation:

s(n) +as(n — 1) = w(n)

where @ = 0.9 and where w(n) is a centered, Gaussian random sequence with
a variance equal to 1. The “vector” signal ss(p) = [s(2p — 1) s(2p)]* is recon-
structed from the signal s(n) by grouping together two consecutive samples of
s(n). We wish to code s;(p) using 6 bits.

1. Write a program that generates the length N = 5,000 sequence s3(p) then
constructs a codebook of 2° = 64 representative elements with the use of
the 1bg.m function.

2. Using the same sequence, construct two sub-codebooks with 2?2 =
and 2% = 16 representative elements, respectively. Compare the per-
formances. Bear in mind that the computation can take up to a few
minutes on a standard computer. However, this usually is not a prob-
lem since the computation is done once and for all before the use of the
codebooks.

Image applications

To illustrate the performances of the LBG algorithm, we are now going to
discuss the example of the compression of an image defined in levels of grey.
We are going to start with the size (256 x 256) image of Lena, and cut it up
into 7' “thumbnails” of m pizels. If we want to code each thumbnail using b
bits (hence b/m bits per pixel), we have to find 2° representative elements. The
following program applies the 1bg.m function to the T thumbnails:

%===== IMAGETTE.M

clear

b=2; % Number of bits / representative element
n=2"b; % Number of representative elements
nl=2; % Number of pixels / row

nc=2; % Number of pixels / column

m=ml*mc; % Number of pixels

nbbit_pixel=b/m;

load lena; % Reading the image pixc and colormap cmap
[lig coll=size(pixc); moy_pixc=mean(mean(pixc));
pixc_centre=pixc-moy_pixc;

blocl=lig/ml; % Number of blocs / row
blocc=col/mc; % Number of blocks / column
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nbimagette=ligxcol/m; % Number of images

%===== The image is divided in (m x 1) vector thumbnails
imaget=zeros (m,nbimagette) ;

if m==1,

imaget (:)=pixc_centre;

%===== T column vectors
for 11=0:blocl-1
i1=11%ml+1;
for cc=0:blocc-1
ic=cc*mc+1; ii=ic+il-1;
aux=pixc_centre(il:il+ml-1,ic:ic+mc-1);
imaget (:,ii)=aux(:);

end
end
end
%===== Searching the n representative elements
[Cf,Ci,E]l=1bg(imaget,n); Y%==== LBG

norC=ones(1,m)*( Cf .* Cf );
d2=zeros(n,1); auxcol=zeros(m,1);
%===== Coding the thumbnails
imag0=zeros(ml,mc) ; % Initialization
pixc_cod_centre=zeros(lig,col);
for 11=0:blocl-1
il=11%ml+1;
for cc=0:blocc-1
ic=cc*mc+1; ii=ic+il-1;
aux=pixc_centre(il:il+ml-1,ic:ictmc-1);
auxcol=aux(:);
for nn=1:n
d2 (nn)=-2*auxcol’*Cf(:,nn) + norC(nn) ;

end
[bid, ind]=min(d2); Ccod=Cf(:,ind); imag0(:)=Ccod;
%===== Reconstruction
pixc_cod_centre(il:il+ml-1,ic:ic+mc-1)=imag0;
end
end

pixc_cod=pixc_cod_centret+moy_pixc;

subplot (121) ; imagesc(pixc); colormap (cmap) ;

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0]); axis(’square’);
subplot (122) ; imagesc(pixc_cod); colormap (cmap) ;

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0]); axis(’square’);
set (gcf,’Color’,[1 1 11)

If m =1 and b = 1, this i1s equivalent to coding each pixel using 1 bit. The
result has to be a “finely detailed” image but with 2 levels of gray. If, on the
contrary, m = 4 and b = 4, hence still 1 bit per pixel, the image definition will
not be as good, with 2% = 16 thumbnails to represent the image. Figures 12.37
and 12.38 illustrate the differences obtained depending on the values of m and

b.
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Figure 12.37 — Original image on the left and the result of the LBG compression
with m =16 and b =3

Figure 12.38 — LBG compression: (m = 4,b = 2) on the left, (m =4,b = 4) on the
right

12.16 Digital communications

12.16.1 Introduction

Digital communications offer many challenges to people working in signal pro-
cessing. The new services provided for cellular communications or the internet
pose problems which have to do partly with digital signal processing.

Simply put, “making a digital communication” consists of transmitting a
continuous-time signal constructed from a message comprised of a sequence
{dg} of bits. To conduct this transmission operation, a device called a modu-
lator is used for emitting. When the signal is received, the opposite operation
is conducted by a device called a demodulator. Therefore, in two-way commu-
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nications, a modulator and a demodulator are necessary at both ends of the

communications line. The word modem comes from the contraction of these
two words.

According to the characteristic features of the channel, low-pass or high-

pass,

the modulation is implemented in baseband, or on a carrier frequency.

Baseband modulation

In baseband modulations, the modulation operation consists of producing a

signal z.(t) (Figure 12.39) defined by:

+o0
re(t)= Y aphe(t —kT) (12.46)
k=—o0
Modulator

d a X (t x(t

o e[ o
Size M he(t) he(t)
constellation Additive Gaussian
white noise

Demodulator

P Bl RON b ] i

h(1) T Decision

Figure 12.39 — Baseband modulation and demodulation

In expression 12.46:

ay 1s a sequence of symbols with possible values in a finite set of M values,
called a constellation. The sequence ay is constructed from the sequence
of the bits dg by an coding algorithm that associates a sequence of bits
with each symbol of the constellation. Most of the time, the constellation
is comprised of M = 2V real values, and hence, to each possible value in
the constellation corresponds a code word with the length:

N = log,(M) bits (12.47)

T represents the time interval between the transmission of two consecutive
symbols. The symbol rate, or modulation rate, expressed in Bauds, is
defined by:

1

== 12.4
R=o (12.48)



540 Digital Signal and Image Processing using MATLAB®

— The choice of the impulse function h.(¢) depends on the characteristic
features of the transmission channel.

“On the other end of the line”, the operations that have to be performed to
reconstruct the original sequence consist of a filtering, followed by a sampling
and a test designed to retrieve the symbols a; as best as possible. These
symbols are then decoded to obtain the sequence of bits di. The exercises
in this paragraph shed light on the methods used all along the transmission
channel.

Carrier frequency modulation

In carrier frequency modulations Fyy (Figure 12.40), the transmitted signal has
the expression:

ze(t) = Re (oz(t)ezj”F”t)
= Re(a(?))cos(2nFyt) — Im(a(2)) sin(2w Fyt) (12.49)
where a(t) = -If aghe(t — kT) (12.50)

The symbols a; are complex. The complex signal «(t) is called the complex
envelope of the real signal x.(t) with respect to the frequency Fy. The real and
imaginary parts of «(t) are called the phase component and the quadrature
component of x.(t) respectively.

The complex envelope can be quite useful both in theoretical calculations
and in simulation programs. This is due to the fact that the error probabilities,
in the presence of additive white noise, do not depend on the choice of the
carrier frequency Fy. Therefore, it is useless in a simulation to generate the
modulated signal.

The diagram in Figure 12.40 shows an implementation of the modulator
for which h¢(t) was assumed to be real. As for the demodulator, the received
signal is first processed so as to extract the real and imaginary parts from the
complex envelope. Each of the two signals is then filtered and sampled. The
two results make up the real and imaginary parts of a sequence of complex
observations used by the decision-making system to determine the transmitted
sequence of symbols, then the transmitted sequence of bits.

Relation between symbol rate and bit rate

As a result of the operation putting together the bits in groups of N, the time
T between the transmission of the two consecutive symbols is equal to N times
the time interval T} between two consecutive bits. If the binary rate is denoted
by D = 1/T}, and if we use expressions 12.47 and 12.48, we get formula 12.51,
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Modulator
¢cos(2nFOt)

Re(ak)
T@@
(i x,(t
Coder he(?) X(?) ®
Slze M ® h(1)
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Figure 12.40 — Carrier frequency modulation and demodulation

which shows the relation between the symbol rate, the binary rate, and the size
of the modulation alphabet:

D = Rlog,(M) (12.51)

12.16.2 8-phase shift keying (PSK)

We will start with the example of the 8-phase digital modulator that associates
the portion of the sinusoidal signal #(t) = A cos(27 Fyt+ @) lasting a duration of
T with each 3 bit group. Because there are 8 ways of grouping 3 bits together,
the values of @ are chosen in the set comprised of the 8 phases regularly spread
out between 0 and 2m. This set defined by {0, 27/8, 47/8, ..., 147/8} makes
up the constellation.

This constellation is represented in Figure 12.41, which shows a coding ex-
ample. Notice that the chosen coding is such that the codes of two adjacent
symbols differ by only one bit. This is called a Gray code. We will see (equa-
tion 12.63) what the point of such a coding is for the value of the bit error
probability. Figure 12.42 shows the signal corresponding to a sequence of 15
bits.

Let us check that the complex envelope of a phase modulation is written:

alt) = AZakrect(t—kT)
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Figure 12.41 — 8-PSK state constellation
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Figure 12.42 — 8-PSK modulation signal

where the a, = ¢/®* are the complex symbols shown in Figure 12.41. Indeed,
the signal z.(t) in the interval (KT, (k + 1)T) is written:

ze(t) = Acos(2rFut + P;) = A X Re (erWFDt+jq>k)
= Re (AakeZJﬂ'Fut> = Re (a(t)erant)

By referring to expression 12.49, we can conclude that the complex envelope
is equal to Aay in the interval (kT (k + 1)T'), which is the expected result.

Exercise 12.21 (Phase modulator)
Consider an 8-PSK modulator and a binary rate of 1,500 bps.

1. Determine the symbol rate.

2. Determine a coding such that 2 neighboring points of the constellation
differ by only one bit (Gray code).

3. Write a program that generates the signal transmitted, for a carrier fre-
quency Fy = 2 kHz (take a sampling frequency equal to 20 kHz for the
display) and for the binary sequence [000 101 001 100 011].
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12.16.3 PAM modulation

We now return to expression 12.46 of a baseband modulation, and we will
consider that the sequence {ay} is a sequence with possible values in the con-
stellation comprised of M real symbols and defined by:

ap € {—(M —1):2: +(M — 1)} (12.52)

Most of the time, M is a power of 2. For instance, if M = 8, the alphabet
is the set {—7,—5,—3, —1,4+1, 43,45, +7}. This modulation is called an M
state pulse amplitude modulation, or M-PAM. Still in the case where M = 8,
the association of 3 bit sequences with alphabet symbols can be done by using
the following Gray code:

Sequence | 000 | 001 | 011 | 010 | 110 | 111 | 101 | 100
Symbol | =7 | =5 | =3 | =1 | +1 | +3 | +5 | +7

An example of the type of signal transmitted, when h¢(¢) is a rectangular
impulse with a duration 7', is shown in Figure 12.43.

Bits [01{1[1/1}0[011:0{1{0{0[0:1}1
Symbols | -3 1 -1 7 -3

Baseband
MIA-8
signal |~

Figure 12.43 — An example of 8-PAM modulation

We will see, using formula 12.54, that this signal, in the case where h.(?) is
a rectangular impulse, theoretically takes up an infinite amount of space in the
spectrum, meaning that 1t cannot be transmitted through a B band limited
channel without distortion, particularly if B < 1/T. We will see in paragraph
12.16.5 that it is then preferable to choose h.(t) so as to satisfy a criterion
better suited to the demodulation problem, called the Nyquist criterion.

In any case, the signal is deformed when it is transmitted through the
channel. If we assume that the channel acts as a linear filter with the impulse
response h.(t) added to a noise w(t), the received signal is the following:

2 (t) =S4 aph(t — kT) 4 w(t)

k=—o0

where the impulse A(t) = (he * h¢)(t) corresponds to the cascading of the
emission filter h.(f) and h.(t).
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Under the hypothesis that w(t) is a white, centered, Gaussian noise, it can
be shown [50] that in order to perform an optimal detection of the sequence of
symbols {ag }, and hence of the sequence of binary elements {d}, all we need
to do is filter the signal #,.(t) as it is received by the matched filter with the
impulse response h*(—t), and to make the decision based only on the samples
taken at the symbol rate 1/T from the matched filter’s output.

Generally speaking, the transmission channel acts as a low-pass filter, which
causes the signals to stretch out in time. In most cases, such as for instance
the phone channel, h.(t) stretches out beyond 7'. As a consequence, the signal
corresponding to the symbol a; “overflows” onto the following time intervals.
This is called InterSymbol Interference, or IS1.

This phenomenon is a nuisance as it makes it more difficult to retrieve the
symbols from the matched filter’s output samples. Even if we assume that
the noise is Gaussian and white, the optimal receiver has to use a complex
algorithm, called the Viterb: algorithm, to retrieve the most likely sequence of
symbols (see paragraph 12.17). However, as we will see, retrieving the symbols
is very simple in the absence of ISI.

Error probability and signal-to-noise ratio

An important element for determining the performances parameters of the
transmission system is the value of the Bit Error Rate, or BER. For the simplest
modulations, it is possible to find an analytical expression [50]. However, most
of the time, it is simply estimated using a simulation program that compares
the sequence of emitted bits to the sequence of decided bits. Remember, while
we are on the subject, that to obtain a 10% accuracy on the error probability
P, with a 70% confidence, we need a test sequence with a length N = 100/ P..
For P, = 1072, this means N = 10,000, making it understandable that this
can lead to a long simulation time, even for a fast computer.

The BER is usually plotted against the signal-to-noise ratio Ey,/Ny between
the mean energy FEj necessary to send a bit and the quantity Ny, where Ny/2
represents the psd of a white noise. We wish to emphasize that Ny is expressed
in Joules, as it should be, because Ny represents a power spectral density, and
is therefore measured in Watt/Hz. The ratio E}, /Ny can also be expressed as a
function of the signal-to-noise ratio of the powers. If Ps refers to the power of
the useful signal, and P, refers to the noise power in the (—B, +B) band, then:

E
Py = =2 and P, = NyB
Ty

Hence the signal-to-noise ratio also has the expression:

E, PBT _P,B

No P PR

where R refers to the symbol rate (expression 12.48).
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12.16.4 Spectrum of a digital signal
Consider the digital signal:

2(t) = apg(t — kT +U) (12.53)

where {ay} is a WSS random sequence with possible values belonging to a finite
alphabet. We will use the notations m, = E{a,} and R,(k) = E{afl_l_kafl}
where a8 = a, — mq. g(f) is a modulation pulse, and U is a random variable
uniformly distributed on (0, T') and independent of the random variables {ay }.
T represents the time interval separating the transmission of two consecutive
symbols. We are going to prove that the signal x(t) is WSS stationary and
that its power spectral density has the expression:

So(f) = |G(j]j)| ZRG(E)e—zjnsz

ma|? b4
N T2| N (f)
££0
First, notice that the probability distribution of U/ has the probability den-
sity py(u) = 1(uw € (0,7))/T. Hence, because the random variables aj and U
are assumed to be independent (the product’s expectation is equal to the the
product of the expectations), we have:

E{x ()}_mGZE{gt—kT—i—U

26(f—£/T) (12.54)

g(t — kT + u)du

Making the Varlable change v =t — kT + u and noticing that the integrals
for k € Z are defined on adjacent intervals, we get:

My t—kT+T B my +o0o B my
B0} =T [ atde= 5 [ e = Zeci

where G(f) refers to the Fourier transform of g(t).
We now calculate E{x(t 4+ 7)x*(¢)}. Because aj and U are independent:

Efw(t+r)a* ()} => > Efawa;} E{g(t + 7 — kT + U)g™(t —nT + U)}
k n

If we make the variable change v = ¢ + 7 — k7" + u and use the expression

pr(u) =1(u € (0,7))/T, we get:
E{g(t+7—kT+U)g"(t —nT +U)}

:—/ t+7—kT+u)g™(t —nT +u)du

:_/t O (0= — (n— W)
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By defining ¢ = (n—k), by using the equality E{aga}} = Ra(k—n)+|mg|?
and by noticing that the integrals for & € Z are defined on adjacent intervals,
we have:

+ oo

Elalt+ 7)o" () = Y (Ral) + ImaP) g [ gl0lg” (0= 7+ 1)

? oQ

If we denote by h(6) the convolution of ¢(8) with g*(—#), the integral can
be written simply as h(r — €T'). This leads us to:

E{a(t +7)a"(t)} = %Z(Ra(ﬁ) + [ma|*)h(r — (T)

J2

which depends only on 7. #(t) is therefore a WSS process. The Fourier trans-
form of h(r — £T) is H(f)exp(—=2jmLTf). Because h(#) = g(f) » g* (—0), we
have H(f) = G(f)G*(f) = |G(f)|?. If we use the Poisson formula 2.4, we infer
that:

Zh T —L£T) ZH (m/T) exp(+2jmmr/T)

If we calculate the Fourier transform of the two sides of E{x(t + 7)z*(t)},
we then get:

|ma|

T(f ZR exp(=2jmfeT) + Z|G m/T)|*6(f — m/T)

where §(f — fo) was used to denote the Fourier transform of exp(2jmfor).
Remember that the psd is precisely I'(f) from which the peak |[E{z(t)}|*d(f)
at the origin is subtracted, which leads us to the expected result.

As you can see, the spectrum depends, on the one hand on the chosen pulse,
and on the other hand on the correlations introduced in the sequence {ax} by
way of the expression:

£) =) Ra(t)e 2T
12

Notice that this function is periodic with period 1/7. Therefore all we
have to do is calculate it on an frequency interval with a length of 1/T, or
by considering the normalized variable u = f7', on an interval with a length
of 1. If the sequence {a,} is real, then S,(f) is an even function, and we
can restrict our calculations to the positive frequencies. Theoretically, S;(f)
has an infinite support. However, because of the multiplication of the periodic
function S, (f) by the function |G(f)|?, we can restrict the plotting of S (f)
to a few length 1/7" intervals, since |G(f)|? usually decreases fast, typically
like 1/f? for the rectangular pulse. This is why in exercise 12.23, we only
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represented the function in the frequency interval (0,1/7), that is to say the
interval (0, 1) for the normalized variable u = fT.

Peaks can appear in multiples of 1 /T in the case where m, # 0. These peaks
can be used to retrieve the symbol rate by filtering the signal after receiving it.

In the particular case where the sequence ay is a sequence of uncorrelated
centered variables with the same variance 02, R,(k) = E{ayqra,} = 0 for
k # 0 and the spectrum’s expression comes down to:

2
Se(f) = agw (12.55)
T

In the following exercises, we are going to study, through calculation, then
through simulation the coding contribution for two codes of great practical
importance: the AMI code and the HDB3 code. We will see in particular that
these codes are such that Sy(f) is null in f = 0. This is one of the important
elements involved in the choice of a modulation, because many systems “pass”
the spectrum’s components very poorly around 0. Also, a zero gain in 0 can
possibly add a continuous components, ensuring the system’s power supply.

Exercise 12.22 (AMI code)

In AMI coding, the sequence aj i1s obtained using the following coding rule:
if the bit di = 0, then a;y = 0 is transmitted, and if the bit dy = 1, then
ar = —1 and ag = 1 are alternately transmatted. AMI stands for Alternate Mark
Inversion. We can check that a; € {—1,0,1} is obtained from the dj € {0, 1}
by using the following relations:

Sk+1 = (1 — Qdk)sk
ap — dksk

1. Let {di} be an sequence of random variables, i.i.d. in {0, 1}, with the
probability Pr(dy = 0) = Pr(dy = 1) = 1/2. Calculate E{as} and
E{anqran}. Use the result to find the expression:

Sa(f) = 2o Ralk)e2ImH/T

2. Design a program that calculates the theoretical psd of S,(f) and com-
pares it with the psd estimate obtained through simulation (use the welch
function from exercise 9.1 page 327 to estimate the psd).

Exercise 12.23 (HDB3 code)

In AMI coding, see exercise 12.23, the presence of a long sequence of zeros
can cause the receiver to desynchronize. We then have to make sure never to
transmit more than three consecutive zeros. In HDB3 coding (HDB stands
for High Density Bipolar) solves this problem in the following way: when we
encounter a sequence of four consecutive zeros, the fourth zero is coded as a
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“1”. To prevent any ambiguity when decoding, this 1 is coded by violating the
alternation rule: this is called bipolar violation.

EXAMPLE: consider the sequence 101100000000000010. Its coding leads to:

bit: +1 0 41 41 0 0 O 0
symb.: +1 0 -1 +1 0 0 0 +1

0 0 0 000 0 41 0
0 0 0 41 0 0 0 +1 -1 0
Locally, this sequence has a mean different from 0. To avoid this local
decentering phenomenon, an alternating rule is applied to the bipolar viola-
tion. In order to do this, we have to introduce a additional variable (p,) that
memorizes the bipolar violation.
If p1 denotes the variable used to store the polarity of the last bit coded as

“1”, then we have the following algorithm (see the diagram in Figure 12.44):

1. If the last bit coded as 1 is transmitted with a + polarity, which is mem-
orized as p1 = +1, then the sequence 0000 is associated with either the
sequence 000 41, or the sequence —100 — 1, depending on whether the
bit p, = —1 or 41 respectively. Then the polarity of p, is changed, and
we redefine p; = p,.

2. In the other case, p; = —1, the sequence 0000 is associated with either
4100 +1,0or 000 — 1, depending on whether the bit p, = —1 or +1
respectively. Then the polarity of p, is changed, and we redefine p; = p,.

0000
- ~
plz—l plzl\\
/ N\ /7 \
p=-1 p= {\ p=-1 p=1
1001 000-1 0001 -100-1
p=1 p=—1 p~=1 p=—1
125 p]:—l p1:1 pI:—l

Figure 12.44 — HDB3 coding: processing the four consecutive zeros and updating
the bipolar violation bits

It can be shown that the resulting sequence is centered. The decoding is
particularly simple: if a bipolar violation 1s encountered, the last 4 bits are set
to zero.

1. Starting with the initial conditions p, = 4+1 and p; = —1, apply HDB3
coding to the binary sequence:

0111000010000010
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2. Write a MATLAB® function that performs the HDB3 coding of any
sequence of bits.

3. With the use of the welch function from exercise 9.1 on page 327, perform
the signal’s spectrum estimation based on a sequence of 10,000 symbols
and for a rectangular pulse with a duration equal to the symbol rate.

Exercise 12.24 (Linear equalization of a communications channel)
Consider the double side band modulation with the complex envelope:

a(t) =Y aghe(t — kT)

k

The carrier frequency value Fy is not specified since all of the processings
will apply to the complex envelopes of the signals encountered in different places
along the transmission line.

Let ag = wug + jur where the possible values of ug and vy belong to
{—3,—1,41,+43}. This type of modulation is called Quadrature Amplitude
Modulation (QAM).

The received signal is sampled at a rate 1/T. Let {xy} be the sequence
of the samples. We will assume that the channel introduces by filtering an
intersymbol interference affecting L = 2 symbols, meaning that:

zp = hoag + h1ag_1 + wy
where wy, refers to a white, centered, complex, Gaussian, additive noise. A

simple, but not very effective idea is to invert the filter H(z) = hg + h1z71.

1. Represent the constellation associated with this code. Find a Gray code
associated with this constellation.

2. Determine a causal approximation of G(z) = 1/H (z) using a 21 coefficient
FIR filter in the following two cases: hg = 1,h; = —0.6 and hg = 1,h; =
—1.6.

3. Write a program that represents, in the complex plane, the samples that
are emitted, received, and processed by the inverse filter .

12.16.5 The Nyquist criterion in digital communications
Expressing the Nyquist criterion for PAM modulation

Given the digital signal )", aphe(t—kT), corresponding to a PAM modulation,
we are going to try to determine the conditions that the pulse k. (¢) has to satisfy
so that the emitted signal, once it has travelled through a B band limited tdeal
low-pass channel (its complex gain has the expression H.(f) = 1(-B < f <
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B)), then gone through the matched filter with the impulse response h¥(—t),
leads an output with no intersymbol interference at the sampling times.

Since the channel is B band, we can choose a B band limited signal without
being any less general. In that case the received signal can be written:

ro(t) =Y aghe(t — kT) + w(t)

k

where aj refers to a sequence of symbols from the alphabet {—(M
1), =3, =1, +1,43, - | +(M —1)}. If we assume that p(t) = he(t)xhi(—
and calculate the Fourier transform, we get:

P(f) = |He(f)
Hence, if P(f) is B band limited, that is if P(f) = 0 for |f| > B, then h¢(t)

1s B band limited itself. This condition precisely expresses the constraint that
has to be satisfied if the channel is B band limited. If y(¢) now refers to the
output signal of the matched filter® with the impulse response h*(—t), then we
can write:

y(t) = 3 ap(t — K1) + b1

k

0

where b(t) represents the noise w(t) after it has been filtered. The samples
taken from the sampler’s output at the times n7" then have the expression:

y(nT) = Z agp(nT — kT) 4+ b(nT)
= anp(0) + Y axp((n — k)T) +b(nT) (12.56)
k#n
ISI

The first term 1s directly related to the symbol a, emitted at the time
nT'. The second one represents the contribution, at the sampling times, of
all the symbols emitted other than a,. This term is called the InterSymbol
Interference.

A situation of particular practical importance is the one where p(t) satisfies
the two following conditions, called the Nyquist criterion:

1. P(f) =0 for |f| > B, where B refers to the channel’s bandwidth;

2. p(kT) =0 for k # 0.

6All of the results in this paragraph are still true in the case of side band modulations
with the carrier frequency Fy if we replace z,(t) with its complex envelope with respect to

Fy.
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According to the Poisson formula (page 53), condition 2 is equivalent to:

400 +oo
k .

S P(1-f) =T X sty exp(-2mjmsT) = T5(0)
k=—o m=—oco

This expression means that the algebraic sum of the spectra shifted by 1/T,
2/T...is equal to a constant. If we introduce the symbol rate R = 1/T', we can
determine a necessary condition for the Nyquist criterion to be satisfied on a
B band channel. This condition is expressed:

B> g (12.57)

Let us examine how the Nyquist criterion leads to a simplified decision rule.
If p(t) satisfies the Nyquist criterion, then the expression 12.56 giving y(nT)
can be simplified and we have:

y(nT) = anp(0) + b(nT) (12.58)

Because y(nT) only depends on one symbol, and because it can be shown (you
can do it as an exercise) that the noise samples are independent, since they are
uncorrelated and Gaussian, the decision can be taken symbol by symbol simply
by comparing y(nT') to thresholds.

What we did is start out with a transmission system designed for a pulse
he(t) such that p(t) = he(t) x hi(—t) verifies the Nyquist criterion, and in the
end, the reception set is composed of:

— a matched filter with the impulse response h}(—t);
— a sampler at the rate T

— and a symbol-by-symbol decision-making system that compares the sam-
ple with thresholds.

w(t) Decision

+
Tag h(t=kT) + i x,(1) | Matched | y() T,
4>®—> ——/—> jjo —

filter

Figure 12.45 — Diagram of the receiver

For example, with an PAM modulation with 4 symbols {—3,—1,+1,+3},
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the decision rule is as follows:

Observation Decision
y(nT) < —2p(0) an, = —3
=2p(0) <y(nT) <0 | a, =-1
0 <y(nT) <2p(0) |a,=+1
B(0) <ynT) | =+3

When the ISI is low but not completely non-existent, we can still use symbol-
by-symbol decision. To explain what a low ISI means, we have to go back to
expression 12.56. The most unfavorable case concerning the use of symbol-by-
symbol decision occurs when all the symbols other than a,, interfere destruc-
tively with the amplitude a,p(0). For example, if a, = 1 and p(0) > 0, all
the other symbols assume the value +£(M — 1) causing each contribution to be
negative. This leads us to the following definition on how to measure the level
of ISI, also called the mazimum ISI:

D= (M -1) Zk;ﬁo |p(k)| (12.59)

p(0)]

If D is close to 0, the ISI is low and the symbol-per-symbol detector will
yield excellent results. Otherwise, optimal processing requires a more complex
algorithm called the Viterbi algorithm (see page 562) that takes into account
all of the received symbols. In paragraph 12.16.6, we will discuss another tool
for evaluating the ISI called the eye pattern.

The raised cosine Nyquist function

We are now going to define a set of real functions he(¢) depending on one
parameter, and such that p(t) = he(t) x he(—t) satisfies the Nyquist criterion.
These functions play a major practical role. Consider the function:

1 4Q%COS <(1 + O‘)W%) + sin ((1 - Q)F%)
™T / ( tz)

he(t) = (12.60)

2
where the parameter o € (0, 1) is called the roll-off factor.
It can be shown by way of a long calculation that p(¢t) = he(t) * he(—t
satisfies the Nyquist conditions, meaning that p(k7T) = 0 for k& # 0 and P(f) =
0 for |f| > B with:

B %(1 +a) (12.61)
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Theoretically, h¢(?) has an infinite duration. However, the function quickly
becomes evanescent, and we can maintain satisfactory properties if we truncate
the function to keep about a dozen lobes around 0.

The racnyq.m function generates the samples of h¢(t) based on the roll-off
factor alpha, the number of lobes nblobes remaining to the right and left of
0, as well as the number of samples Npts on the interval with a duration 7'
Save this function as racnyq.m:

function hraclNyg=racnyq(alpha,nblobes,Npts);

hh %
%% RACNYQ: Square root raised cosine response %
%% SYNOPSIS: hracNyq=RACNYQ(alpha,nblobes,Npts) %
Wh alpha = Roll-off A
YAA nblobes = Response length (even symbol number) %
%h lpts = Number of points per symbol %
% hracNyq = Response %
o %

deminblobes=nblobes/2; tsurT=(1:deminblobes*Npts)/Upts;
ad4tsurT=4*%alpha*tsurT;
gammal=pi#* (1+alpha)*tsurT; gamma2=pi*(l-alpha)*tsurT;

num= a4tsurT .* cos(gammal) + sin(gamma?2);
den=(1- a4tsurT .* adtsurT) .* tsurT;
%===== den(t0)=0 if tsurT=1/(4*alpha)
t0=find (abs(den) <= 2.2204e-14);
lh=length (num) ;
if isempty(£0)

hracNyg=num ./ den;

else
Cl=pix(1+alpha)/(4*alpha);
hnul=(-0.5%cos (C1)+(pi/4) *sin(C1) ) *4*alpha;
hracNygq=[num(1:t0-1) ./ den(1:t0-1) hnul ...

num(t0+1:1h) ./ den(t0+1:1h)];

end

hO=4*alpha+pi*(1-alpha);

hraclNyq=[hraclNyq(lh:-1:1) hO hracNyq]l’;

hracNyqg=hracNyq/norm(hracNyq) ;

return

A long but not at all difficult calculation shows that:

11—«
T 1
T T " |1f|< 2T 1+
. ™ — (0%
P(f) = 5[1—81n<?(f—1/2T))] for 5T <|fl < 5T (12.62)
1+«
1
0 or |f| > 5T

with o € (0,1). P(f) is called a raised cosine function.
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Let us now check numerically that the function p(t) satisfies the Nyquist
criterion. Let R = 1/T = 1,000 symbols per second and B = 600 Hz (this way
we have B > R/2). Hence, according to 12.61, « = 2B/R—1 = 0.2. To perform
the computation, we will take 10 points per symbol time 7" and truncate h.(¢)
down to about 20 lobes around 0. The convolution p(t) = he(t) * he(—1) is

obtained using the MATLAB® function conv. p(t) and its Fourier transform
are plotted for 1,024 frequency points. To do this, type:

%===== CRITNYQ.M

clear

R=1000; T=1/R; B=600;

Y=====

alpha=(2*B/R-1);

WpS=10; Fe=NpS*R; Te=1/Fe; nblobes=20;
h=racnyq(alpha,nblobes,NpS); lh=length(h);
p=conv(h,h(1lh:-1:1));

%===== Temporal response

lpml=length(p)-1;

subplot (211); plot(Tex(-1lpm1/2:1pm1/2),p)
set (gca, ’xtick’, (-30:30)*T)

grid ; set(gca,’xlim’,[-5*T 5xT]);

%===== Spectral response

Lfft=1024; fq=Fex (0:Lfft-1)/Lfft;
subplot(212); plot(fq,abs(fft(p,Lfft))); grid
set(gca, ’x1lim’, [0 R]);

B=(1+alpha)*R/2; text(B,2,’B’);

The results are shown in Figure 12.46. As you can see, the function p(t) is
null for every multiple of T, except at the origin, and the spectrum is B band
limited, meaning that P(f) =0 for |f| > B = (1 + «)/2T.

: : : : \ 3 :
0 100 200 300 400 500 600 700 800 900 1,000 Hz

Figure 12.46 — A raised cosine function satisfying the Nyquist criterion
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12.16.6 The eye pattern

As we have said before, the receiver shown in Figure 12.45 is so simple because
of the absence of ISI. This is why it is essential to have access to a practical
tool for measuring its level. We have already given on page 549 a quantitative
definition, with equation 12.59, of the maximum ISI, and we are now going to
present another very important tool, called the eye pattern, for reasons that
will be obvious if you refer to Figure 12.47.

The eye pattern is obtained by superimposing a large number of trajectories,
with durations 27, of the matched filter’s output signal. It can be displayed
on an oscilloscope by synchronizing with the symbol rate 1/T. The afterglow
of the screen makes it possible for the superposition to persist. In the presence
of noise, as we are going to see, the wider the eye is vertically, the lower the
error probability. Therefore, we have to choose the decision time where the eye
is vertically “widest”.

In the following exercise, we are going to generate a complete simulation line
for 2-PAM modulation, in the form of five different programs. We will examine
the eye pattern and choose the optimal sampling time. All the computed
values are saved as we go along, so they can be used as input data for the next
program.

Exercise 12.25 (2-PAM modulation)
Consider a PAM modulation with two levels {—1,+1}. The binary rate is equal
to 1,000 bps. The signal’s expression is:

ze(t) = Z aghe(t —kT) = Zakrect(t — kT)

k k

To display the signal as if it were time-continuous, choose Fy = 20 kHz as
the sampling frequency.

1. Write a program that computes the samples xe of the signal z.(t) for a
random sequence of 300 bits. Display part of the chronogram of xe (zoom
xon). Save all of the values.

2. Write a program that generates and displays the received signal xr. To
simulate a transmission channel, use a low-pass filter h.(t) the impulse
response of which is obtained by he=rif (1hsT*NT-1,bc) with 1hsT=3.5
and bc=0.06, and where NT refers to the number of points correspond-
ing to the time interval between two symbols. Therefore the channel’s
response stretches out over 3.5 symbols.

3. Let h(t) = (he * he)(t). The receiver’s matched filter therefore has the
impulse response h(—t). The matched filter’s output signal is denoted
by xa. Write a program that superimposes the “sections” of xa lasting a
duration of two “symbol periods” so as to display the eye pattern. The
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program will have to be designed so that the time coordinate of the place
where the eye is vertically “widest” can be interactively defined as input
data. You can use the function ginput.

4. Write a program that displays the matched filter’s output signal xa and
superimposes the values taken from the sampler’s output.

5. Write a program that, based on the value of the signal-to-noise ratio,
expressed in dB:

— adds a white, centered, Gaussian noise with the power P, to the
received signal xc;

— decides that the bit is equal to 1 if its value at the sampler’s output
is positive and 0 if it is not;

— and evaluates the error probability.

In exercise 12.25, the overall impulse response ensures that the ISI is low
enough for the symbol-by-symbol decision to yield good results. The low level
of interference is clearly shown by the eye pattern without noise represented in
Figure 12.47. The trajectories almost converge to the same point at multiples
of T'. Therefore, if the sampling is done at these times, the values located
around 1 are likely to correspond to the transmission of a bit 1.

L5 Convergence of the trajectories
| 3 - /7/
! : : ‘

05| NG N

~ Maximal Maximal

o [ Maxmal N/ jooooviaxmal | N/
aperture ! aperture
05 Ne-- - L NG I A
| > : ‘
_15 : : :
0 0.005 0.001 0.0015 0.002 (s)

Figure 12.47 — PAM-2: eye pattern without noise

12.16.7 PAM modulation on the Nyquist channel

We are now going to present a sequence of programs designed to simulate a
PAM modulation on the Nyquist channel. The following paragraphs describe,
in this order:

— the generation of symbol sequences;
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— the generation of the emitted digital signal;
— the addition of noise by the channel,
— matched filtering and the examination of the eye pattern;

— symbol-by-symbol decision.

Generating the sequence of symbols

The gsymb.m function generates a sequence of N symbols taken from the al-
phabet {—=(M —1),---, =3, =1, 41,43, -- , (M — 1)} with M = 2™. Save this

function as gsymb.m:

function [symb,Esymbl=gsymb (m,N)

hh %
%% Generates a random sequence with values in an MIA 7
%% M=2"m symbols alphabet with a uniform distribution %

%% SYNOPSIS: [symb,Esymb]l=GSYMB (m,N) %
% m such as M=2"m A
Wh N = Sequence length %
Wh symb = Random sequence %
% Esymb = Mean energy %
%h A

M=2"m; alphabet=2*(0:M-1)+1-M;
la=length(alphabet) ;
ind=fix(rand (1,N)*la)+1;
symb=alphabet (ind) ;
Esymb=alphabet*alphabet ’/M;
return

Generating the receiver filter’s output signal

We are going to try to numerically compute the sample at the rate Ty = T/ Ny
of the signal xz.(t) = >, axhe(t — kT'). Np represents the number of samples
per symbol duration 7T'. These samples can be used for creating the continuous-
time signal using a digital-to-analog converter. In this case, these samples will
be used for the display. They have the expression:

re(nTy) =Y aghe(nTy — kNpTy) = > aphe((n — kN7)T,)

The samples of h.(t) taken at the rate T, can be obtained with the use of
the racnyq.mfunction. The function h.(t) can be truncated down to about 30
lobes around 0. If we choose a high enough value for Np, the resulting plot of
2 () is “almost continuous”. To calculate the samples of z.(t), we can use the
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diagram explaining the principle, from Figure 12.48, drawn for Np = 4. If we
let n = {Np +r, where r =0, ..., Np — 1, then we indeed have:

ve((Np +1)Ty) = Y aghe(((L = k)Np + 7)T)

If we let Z,(¢) = x.((¢(Np 4+ r)T;) and /Nzr(ﬁ) = h(((Np 4 7)T;), then we

can write:

() = D agh (0 —k)

k

hy
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Figure 12.48 — Constructing the signal transmitted based on the symbols and the
polyphase components of the emission filter in the case where Ny = 4
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The component Z,(f) is called the r-th Np-polyphase component. Tt is
obtained by filtering the sequence ag by the filter with the impulse response
h, (£) obtained by undersampling the sequence h.(mT;) by a factor Np. In
MATLAB®, given a sequence he of the coefficients of k. (t), the filter with the
impulse response /Nzr(ﬁ) is obtained simply by typing:

” hr = he(r:NT:length(he));

In Figure 12.48, we chose a response h.(¢) with 18 non-zero coefficients. The
number of samples per symbol is Ny = 4. The transmitted signal is obtained
by superimposing the 4 shifted components.

The roll-off expression of « is obtained with relations 12.51 and 12.61:

B B
a=2——1

=2———-1
R log,(M)D

Once the samples of z.(¢) have been generated, a noise is added by setting
the signal-to-noise ratio. The noised signal is filtered by the filter with the
impulse response he(—t). y(t) is the resulting signal. The following program
computes the samples of y(¢) and displays the result of the superimposing the
trajectories with a duration of 27"
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%===== OEILNYQ.M
% Eye pattern for a Nyquist Channel
% Uses: GSYMB, RACNYQ, GSIG

clear

N=5000; % Sequence length (bits) of the source
NbTraj=200; % Number of trajectories

%===== Binary rate

Db=1000; tt=sprintf(’Binary rate: %4.0f bits/s’,Db);

disp(tt); petitm=input (’Number of bits per symbol: ’);

M=2"petitm;

%===== Modulation alphabet

alphabet=2%(0:M-1)+1-M;

%===== Baud rate

Dgymb=Db/petitm;

Bnin=Dsymb/2; % alpha = 0

Bmax=Dsymb; % alpha = 1

tt=sprintf (’Band of the channel B between %3.1f and %3.1f :7,...
Bmin,Bmax) ;

disp(tt); Bc=input(’B = ’);

if (Bc<Bmin)

disp(’ISI=0 impossible: you must increase the bandwidth.’);

return;
end
if (Bc>Bmax),
disp(’The bandwidth must be decreased.’); return;
end
alpha=(2*Bc/Dsymb)-1; nblobes=30;
[symb, Esymb]l=gsymb(petitm,N); % Generation of the symbols
%===== Square root Nyquist
WpS=10; he=racnyq(alpha,nblobes,NpS);
lh=length(he); xe=zeros (lpS,N);
%===== Enmitted signal (Polyphase components in the columns)
for ii=1:NpS,hr=he(ii:NpS:1h); xe(ii,:)=filter (hr,1,symb); end
xe=xe(:,1:N); st=zeros(lpS*N,1); st(:)=xe;
%===== Mean energy per symble
Es_sim=(st’*st)/N; % Estimated value
Es=Esymb* (he’*he) ;
%===== Mean energy per bit
Eb=Es/petitm; RSB=input (’Ratio Eb/NO (en dB) = ’);
PB=Eb#*10~ (-RSB/10) ; sigmab=sqrt (PB/2);
xt=st+sigmab*randn (NpS*N,1); ¥ Addition of the noise

%===== Square root Nyquist

htfa=he(lh:-1:1); % Matched filter
stfa=filter(htfa,1,xt); % Output to be sampled
%===== Eye pattern

nbtraces=(N-nblobes)/2;
soeil=zeros (lpS*2,nbtraces); soeil(:)=stfa(nblobes*NpS+1:N*NpS);
nivMax=M-1+4*sigmab+4; t0=NpS+1;
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plot ([t0 t0], [-nivMax nivMax],’:’); hold on

%===== Some trajectories
for tt=1:NbTraj, plot ((1:2*NpS),sceil(:,tt)); end
%===== Sampling time

t0=NpS+1; plot([t0 t0], [-nivMax nivMax],’:’); hold off
set (gca, ’x1im’, [1 2*NpS])
save diagoeil

By superimposing portions of trajectories with a duration 27, that is to say
2N points, we get the eye pattern shown in Figure 12.49. If M refers to the
alphabet size, then there are (M — 1) eye apertures. In the case of a non-ideal
channel, the trajectories no longer have the shapes shown here. In particular,
they no longer perfectly converge in at the multiples of 7', which is imposed by
the Nyquist criterion.

Figure 12.49 represents the eye pattern for M = 4, a rate of 1,000 bps, and
a spectrum support of 300 Hz, hence o = 0.2.

(k-1T kT

Figure 12.49 — The eye pattern for M = 4. The noise is null. Spectrum support
B =300 Hz, rate 1,000 bps

Figure 12.50 shows the same eye diagram for M = 4, but for a spectrum
support of 500 Hz, hence o« = 1. The vertical opening at the times kT is
the same as before. In terms of probability, the performances are the same.
However, if the sampling time 1s slightly shifted, the vertical opening becomes
wider at that time for the 500 Hz. The error probability will be smaller. To
put 1t more simply, the vertical opening guarantees a better resistance when
the sampler 1s desynchronized.

Figures 12.51 and 12.52 show the eye pattern for a signal-to-noise ratio of
15 dB.

If we “place ourselves” in the center of the eye, and set the thresholds to
the values —2, 0 and 2, the error probability has to remain very small, which
is checked with the following program. Type:
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(k=)T KT

Figure 12.50 — Eye pattern for M = 4. The noise is null. Spectrum support B = 500
Hz, rate 1,000 bps

(=1)T kT

Figure 12.51 — Fye pattern for M = 4. The signal-to-noise ratio is equal to 15 dB,
the spectrum support is B = 300 Hz and the rate 1,000 bps

%===== PEESTIM.M

% Sampling the output of the matched filter
clear; load diagoeil

%===== Thresholds

seuil=2%(0:M-2)+1-M+1; seuil=[-inf seuil inf];
stfaech=stfa(t0:NpS:N*lNpS); lsfa=length(stfaech);
%===== Decision symb/symb by the "nearest" rule
aux=stfaech(lNpS:1sfa); laux=length(aux);
deci=zeros (1,laux); lalphabet=length(alphabet) ;

Figure 12.52 — Fye pattern for M = 4. The signal-to-noise ratio is equal to 15 dB,
the spectrum support is B = 500 Hz and the rate 1,000 bps
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for jj=1:lalphabet
v=find(aux>seuil (jj) & aux<=seuil(jj+1));
deci(v)=alphabet (jj)*ones(1,length(v));

end
decal=nblobes-NpS; deci=deci(decal+l:length(deci));

ldiff=length(deci); diff=deci - symb(1:1diff);
nbe=length(find (diff~=0)); pe=nbe/length(diff);
TEB=pe/petitm;

disp (7 sskokskorr kot kokokok ko ko dokok ok ko kR K ook ok ko ook )
tt=sprintf (’*Binary rate: %d bits/s’,Db); disp(tt)
tt=sprintf (’*Symbol rate: %3.1f bauds, M=%i’,Dsymb,M);

disp(tt)

tt=sprintf (’*Channel band: %3.0f Hz, alpha: %3.1f’,Bc,alpha);
disp(tt)

tt=sprintf (’*Eb/N0=Y,ddB ==> TEB=%5.2d ’, RSB,TEB);
disp(tt)

tt=sprintf (’*lb errors/symbol= %i pour N=%i’,nbe,N); disp(tt)
disp (7 sskokskorr kot kokokok ko ko dokok ok ko kR K ook ok ko ook )

The program estimates the error probability Ps per symbol. If the signal-to-
noise ratio is high, we can consider that the only errors are caused by a decision
in favor of one of the two symbols adjacent to the symbol actually transmitted.
Therefore, if we are using a Gray code, these adjacent symbols only cause one
false bit over the m = log, (M) emitted bits, leading us to the following formula,
which gives us the relation between the probability per symbol P, and the bit
error rate “BER”:

Py
BER~ —— (12.63)
log, (M)

With this program, we can also test the error probability increase when the
sampling time is shifted. All we need to do is modify the variable t0. We have to
check that this increase becomes greater as the chosen band becomes narrower.
However, when we are right in the center of the eye (where the trajectories
converge in the absence of noise), the error probability is independent of the
value of B.

12.17 Linear equalization and the Viterbi algorithm

Consider the case of the binary baseband modulation that associates the
continuous-time signal z.(t) = >, axhc(t — k1) with the sequence {dy} of
binary elements {0, 1} according to the following rule: if d = 0, then a; = —1
and if dy = 1, then a; = 1. The signal h.(t) refers to the impulse response
of the emission filter. The signal z.(¢) is filtered by the transmission channel
and is subjected to additive noise. The received signal can then be written
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zr(t) = >, aph(t — kT) + w(t) where h(t) is obtained by convoluting the filter
he(t — kT') with the channel filter, and w(#) is the noise. When the signal is re-
ceived, 1t is filtered by the matched filter then sampled. The result is a sequence
of values x4(n), the expressions of which linearly depend on the sequence aj of
the type:

za(n) =Y a(k)g(n — k) + b(n) (12.64)

k

The term b(n) accounts for the noise, which is assumed to be Gaussian.
Without being any less general, we can assume that b(n) is white. If it is not,
we know that there exists a causal filter that can make it white. This filter
changes the values of the coefficients g(k), but the general form of expression
12.64 stays the same. The variance of b(n) is denoted by 7.

The coefficients g(n) take into account the emission filter, as well as the
channel filter and the receiver matched filter. From now on, the sequence g(n)
is causal and has a finite duration L. This hypothesis is actually quite realistic.
The only problem is that the complexity of the processes increases with L.
Remember that we have already discussed the case where k£ # 0: this is the
case where the ISI is equal to 0.

In the end, we can describe the digital transmission line as a “black box”,
with the sequence of symbols a(n) (€ {—1, 1}) as the input, and as the output
the sequence of real values given by the expression:

zqa(n) = goa(n) + graln— 1)+ -+ gr_1a(n— L+ 1) + b(n) (12.65)

The choice of the likeliest decision sequence 1s based on the observations
zq(n) for n € {1,...,N}. In the example we are going to discuss, we have
chosen L = 3.

In practice, the emission and reception filters are known, whereas the chan-
nel filter is not. We have already said that in order to measure the quantities
g(k), we could then use a set sequence of symbols called the training sequence.

From now on, we will assume that the values of go, g1, ..., gr_1 are known.
If we then use the Gaussian distribution of the sequence b(n) and expression
12.65, the probability density of the observed sequence {z4(1), ..., 24(N)} can
be written:

1

1
; c. = ——A 12.
Px (Xa a, aaN) (O’b\/ﬁ)N exp ( 20_5 ) ( 66)

N
with A = Z [#4(n) — goa(n) — gr1a(n — 1) — gaa(n — 2)]2

where we have assumed that a(0) = a(—1) = —1. Based on the N observa-
tions {z4(1), ..., 24(N)}, the mazimum likelihood rule consists of finding the
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sequence {a(1), ..., a(N)} that maximizes px (x;a1,...,an), that is to say the
sequence that minimizes the quantity:

N

L{xq},{a}) = Z [#4(n) — goa(n) — gr1a(n — 1) — gaa(n — 2)]2 (12.67)

n=1

Theoretically, there are 2V possible sequences and we could just
bluntly compute the 2 values of (({z,},{a}) for the observed sequence
{£4(1),...,24(N)}, and choose the sequence a that leads to the minimum.

The Viterbi algorithm makes it possible to cut down to N x 2% the number
of values that have to be calculated. Before we present this algorithm, we are
going to study a simpler, but suboptimal process.

12.17.1 Linear equalization

The first idea consists of using the filter with the impulse response w(n) that
inhibits the effect of the channel {go, g1, go}. This is called equalizing the
channel and the filter w(n) is called an equalizer.

There are two common approaches:

— The equalizer is chosen so that, in the absence of noise, it completely
eliminates the intersymbol interference. This is called Zero Forcing.

— The equalizer is chosen so as to minimize, in the presence of noise, the
square deviation between the original signal and the signal after it has
been equalized. This is called the Wiener equalization. It requires for
the noise’s variance ¢ to be known. The expression of its complex gain
is given by equation 11.53:

_ G (f)
M= G e

Obviously, in the absence of noise (¢, = 0), the two solutions coincide.

Exercise 12.26 (“Zero Forcing” linear equalization)

In the absence of noise, the Zero Forcing equalizer eliminates the ISI. Tts transfer
function is W(z) = 1/G(z) with G(2) = go + g127 ! + g2z72. If G(2) has its
zeros inside the unit circle, the solution is stable and causal. Otherwise, the
stable solution has a non-causal impulse response. It is possible to implement
it by approximating it with a finite delay (see exercise 12.24).

Because ((z) is a polynomial, that is to say a filter with a finite impulse
response, the series expansion of W(z) has an infinite number of coefficients
and hence the filter has an infinite impulse response. In practice, it is often
approximated by a filter with a long enough finite impulse response. Here
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we are going to design the filter W(z) = 1/G(%) in its exact form using the
MATLAB® function filter, which is possible only if G(z) has all its zeros
strictly inside the unit circle.

1.

Using equation 12.65, show that the output signal y(n) of the equalizer
W (z) can be expressed as y(n) = a(n) + u(n), where u(n) is a noise.

. Let g0 = 1, g1 = —1.4 and g = 0.8. Notice that the zeros are inside

the unit circle, and therefore the equalizer w(n) is stable and causal.
Determine the variance of u(n). You can use expression 8.63.

. Use the result to find the probability distribution of y(n) when a(n) = —1

and when a(n) = +1.

Given the previous, we have come up with the following rule: if y(n) is
positive, then the decision is that a(n) = 1, and otherwise the decision is
that a(n) = —1. Determine the expression of the error probability.

. Write a program that:

— generates a random binary sequence, made up of —1 and +1, with
a length N;

— filters the resulting sequence by the filter with the impulse response
ge=[1 -1.4 0.8];

— adds a Gaussian noise with a variance o such that the signal-to-
noise ratio is equal to R dB;

— passes the obtained signal through a filter with the transfer function

W(z) =1/G(2);

— compares the equalizer’s output to the threshold 0 to decide what
symbol was transmitted;

— evaluates the number of errors (bear in mind that for the evaluation
to be relevant, about a hundred errors have to be counted, hence N
must be chosen high enough);

— compares the results with the theoretical plot.

Exercise 12.27 (Wiener equalization)
Consider again equation 12.65:

#(n) = goa(n) + gra(n — 1)+ -+ g(L — Da(n — L+ 1)+ b(n) (12.68)

a(n) is assumed to be a sequence of equally distributed i.i.d. random variables
with possible values in {—1,41}. This means that E{a(n)} = 0 and that
E{a(n+ k)a(n)} = §(k).
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We wish to find a filter with a finite impulse response w(n), with a length
N, that minimizes the square deviation:

E{la(n —d) —a(n)|*} (12.69)

where a(n) = #(n) xw(n) refers to this filter’s output. This filter is an example
of the Wiener filter. d is a positive integer that accounts for the fact that a
delay is required, because if the filter A(n) is not minimum phase, then we
know that the stable inverse is not causal. In practice, a delay must therefore
be introduced to obtain a proper causal approximation.

1. Determine, as a function of the autocovariance function Rgq(k) of the
sequence a(n) and of the covariance function Rz (k) between a(n) and
z(n), the filter w(n) that minimizes 12.69.

2. Determine the expression of Rg;(k) as a function of R4, (k), and the
expressions of g(k) and of the autocovariance function Rpp(k) of the noise

b(n).
3. Write the problem in matrix form. Determine the solution’s expression.
4. Write a program that performs the equalization.

5. Write a program that uses the equalized output and applies symbol-by-
symbol decision. Compare the results, in terms of error probability, with
those obtained with the Zero Forcing equalizer.

12.17.2 The Viterbi algorithm

As we said, based on the N observations, we have to calculate the 2%V quantities:

N

(s}, {a}) = 3 [o(n) = goa(n) = gra(n — 1) - gaa(n — 2)]°

n=1

corresponding to the 2V length N binary sequences. Let us assume that,
initially, a(0) = —1 et a(—=1) = —1. Let s(n) = [a(n — 1) a(n — 2)]¥ be
the size 2 vector constructed by concatenating 2 consecutive symbols. In our
case, s(n) can only assume 4 different values, denoted symbolically by {00, 01,
10, 11}.

Let us calculate the probabilities for s(n + 1) to be equal to 00, 01, 10 et
11, respectively, knowing that s(n) = 00. If s(n) = 00, the only possible states

for s(n + 1) are 00 if a(n) = —1 and 10 if a(n) = +1. Therefore:
Pr(s(n+ 1) = 00|s(n) = 00) = 1/2
Pr(s(n 4+ 1) = 01]s(n) = 00) =0
Pr(s(n 4+ 1) = 10|s(n) = 00) = 1/2
Pr(s(n+1) = 11]s(n) = 00) =0



Selected Topics 567

The probabilities of s(n + 1) with respect to the three other values of s(n)
can be calculated in the same way and represented by Figure 12.53.

00 : - 00
2 i /

72
01 2 01
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1

Figure 12.53 — Transition probability graphs for the 4 states depending on the input
symbol

The probabilities can be grouped together in a transition matriz:

/2 0 1/2 0
/2 0 1/2 0
0 1/2 0 1/2
0 1/2 0 1/2

representing the state transition probability for two consecutive times. This
description of the evolution of s(n) is called a Markov, or Markovian model.
The Markovian property is what makes it possible to use the Viterbi algorithm.
Consider again the expression we wish to minimize, and let g = [¢1  g2]7. We
are going to use the definition of s(n). If we stop the computation at step p,
we get:

d(s(p),p) = D _(2a(n) = goa(n) — g"s(n))’

n=1

From now on, the quantity d(s(p),p) will be called the path metric (a(1),
.., a(p)) at step p.

Let us assume that at step p, we still have 4 sequences (a1, ..., ap) com-
peting each other ending with s(p) equal to 00, 01, 10 or 11 respectively and
with the metric d(00,p), d(01,p), d(10,p) and d(11, p) respectively.

In order to calculate the metric of the sequence (a(1), ..., a(p+ 1)), we
then have to the positive term (z(p + 1) — goa(p + 1) — gTs(p + 1))? for the
two possible values of a(p + 1), that is to say —1 and +1. Hence each states
has two possible children. We will therefore have to calculate, as functions of
the observation z,(p 4+ 1) at the time (p 4 1), 8 values that lead to one of the
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4 possible states. These calculations are summed up in the following table:

s(p) s(p+1)

00 — 00  v(00,00)=d(00,p)+ (xa(p+1) — (—go — g1 — g2))?
N 10 v(00,10) = d(00,p) + (za(p+ 1) — (+g90 — 91 — g2))®

01 — 00 v(01,00) = d(01,p) + (za(p+ 1) — (—g0 — g1 + 92))?
N 10 v(01,10) = d(01,p) + (za(p + 1) — (+90 — g1 + 92))?

10 — 01 v(10,01) = d(10,p) + (za(p+ 1) — (—go + 91 — 92))*
\ 11 v(10,11) = d(10,p) + (za(p+ 1) — (+g0 + 91 — 92))®

11 = 01 v(11,01) = d(11,p) + (za(p+ 1) — (—go + 91 + g2))®
\ 11 v(11,11) = d(11,p) + (za(p + 1) = (+90 + g1 + 92))°

Notice that there are two ways of ending up in each state. For example we
end up in s(p—+1) = 10 either by starting in s(p) = 00, if we choose a(p+1) =1,
either by starting in s(p) = 01, if we choose a(p+1) = 1. These two possibilities
correspond to the two values v(00,10) and v(01, 10) respectively. It is useless
to keep the largest one of the two, since any further value will have a higher

metric. Hence d(10,p+ 1) = min(v(00, 10),v(01, 10)).
In the end, the algorithm calculates, at step p + 1:

d(00,p+1) = min{d(00,p) + [za(p+ 1) — (—g0 — 91 — 92)]°, (12.70)
d(01,p) + [za(p+ 1) = (—g0 — g1 + 92)]°}
d(0l,p4+1) = min{d(10,p) + [xa(p + 1) — (—go + 91 — 92)]°, (12.71)
d(11,p) + [za(p + 1) = (—go + g1 + g2)]°}
d(10,p4+1) = min{d(00,p) + [#a(p + 1) = (+g0 — 91 — g2)]%, (12.72)
d(01,p) + [za(p + 1) = (+g0 — g1 + 92)]*}
d(11,p+1) = min{d(10,p) + [za(p + 1) — (+g0 + g1 — 92)]%, (12.73)

d(11,p)+ [xa(p+ 1) — (+90 + 01 +92)]2}

At each step, all the parents leading to the smallest metric have to be
memorized. For example if the minimum of d(00, p+1) is obtained for d(01, p)+
(za(p+1) — (=90 — g1+ g2)?), it will be memorized as the state 00 at the time
p that leads to the state 01 at the time p + 1. The same is done for the three
other states. The initial values are calculated based on the fact that we have
assumed a(0) = a(—1) = —1, that is to say s(0) = 00. This means that when
the first symbol is transmitted, either the state 00 or the state 10 is reached,
and therefore:

d(00,1) = [z4(1) = (—go — g1 — g2)]*
d(10,1) = [xa(1) = (hgo — g1 — g2)]*
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We then infer that:

2

d(00,2) = d(00,1) + [£4(2) — (—g0 — g1 — 92)]
d(01,2) = d(10,1) + [24(2) — (=go + g1 — g2)]?
d(10,2) = d(00,1)+ [2a(2) — (+90 — 91 — g2)]°
d(11,2) d(10,1) + [24(2) = (+g0 + g1 — g2)]?

Obviously, the intermediate metrics do not need to be memorized. Only
the four current ones have to be. Hence, formulae 12.70 to 12.73 have to be
used as updating formulae for the 4 states reached at the considered state. The
algorithm stops at the end of the length N observation sequence. Then the se-
quence considered to be the most likely 1s the one that leads to the state with
the smallest metric. The sequence of states i1s determined by going back up the
table of parents corresponding to this sequence. Once the sequence of states
has been obtained, we simply compute the symbol sequence. The viterbi.m
program determines the emitted sequence using the Viterbi algorithm. The
results are given in Figure 12.54. The plot (‘o’) represents the error probability
when using the Viterbi algorithm. The plot (‘x’) reproduces the results pro-
vided by the program from exercise 12.24 (a Zero Forcing equalization followed
by a symbol-by-symbol threshold detection) by typing, after running it:

| hold on; semilog(RSBAB, PeTheo,’x’); hold off

As you can see, the Viterbi results are much better than the ones obtained
by linear equalization.

%===== VITERBI.M

N=5000; hc=[1 -1.4 0.8]; RSBdB=(5:17); longRSB=length(RSBdB) ;
PeVi=zeros (longRSB,1); ak=sign(randn(1,N));

ak(1)=-1; ak(2)=-1; sk=filter(hc,1,ak); vs=sqrt (skxsk’/N);

dec=NaN*ones (4,4); dec(1,1)=-1; dec(2,1)=1; dec(3,2)=-1;
dec(4,2)=1; dec(1,3)=-1; dec(2,3)=1; dec(3,4)=-1; dec(4,4)=1;
%=====
for jj=1:longRSB
RSB=10"(RSBdB(jj)/20); sigma_b=vs/RSB;
bk=sigma_b*randn(1,N); xk=sk+bk;

%==== Indexing 4 states (with the metric d2)
% 1 for 00, 2 for 01, 3 for 10, 4 for 11
%==== asc is the parents’ sequence
d2=zeros(4,1); asc=zeros(4,N);

Y%==== Initialization

d21=(xk (3)-(~hc(1)-hc(2)-hc(3)))"2;
d23=(xk (3)-(hc(1)-hc(2)-hc(3)))"2;
asc(1,3)=1; asc(3,3)=1;

d2(1)=d21+(xk (4) - (-hc (1) -hc (2)-hc(3))) " 2;
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Figure 12.54 — Comparing the error probabilities as functions of the signal-to-noise
ratio in dB. Plot (‘x’): zero forcing linear equalization. Plot (‘o’): Viterbi algorithm.
Results obtained through a simulation with a length of 5,000. The channel filter has
the finite impulse response (1 — 1.4 0.8)

end

d2(2)=d23+(xk(4) - (-hc (1) +hc(2)-hc(3)))"2;
d2(3)=d21+(xk(4) - (hc(1)-hc(2)-hc(3)))"2;
d2(4)=d23+(xk(4) - (hc(1)+hc(2)-hc(3)))"2;
asc(:,4)=[1;3;1;3]; d2kk=zeros(4,1); ind=zeros(4,1);
for kk=5:N f======

[d2kk (1) ind(1)]=min([d2(1)+(xk(kk)-(-hc(1)-hc(2)-hc(3)))"2;...

d2(2)+ (xk (kk) - (-hc (1) -hc(2)+hc(3))) "2]);

[d2kk (2) ind(2)]=min([d2(3)+(xk (kk)-(-hc(1)+hc(2)-hc(3)))"2;...

d2(4)+ (xk (kk) - (-hc (1) +hc(2)+hc(3))) ~2]);

[d2kk (3) ind(3)]=min([d2(1)+(xk(kk)-(hc(1)-hc(2)-hc(3)))"2;...

d2(2)+(xk (kk) - (hc (1) -hc(2)+hc(8))) ~21) ;

[d2kk (4) ind(4)]=min([d2(3)+(xk (kk)- (hc (1)+hc(2)-hc(3)))"2;...

d2(4)+ (xk (kk) - (hc (1) +hc (2)+hc (8))) ~21) ;

asc(:,kk)=[1*(ind(1)==1)42%(ind(1)==2) ;...
3% (ind (2)==1)+4% (ind(2)==2) ;...

1% (ind(3)==1)+2% (ind(3)==2) ; 3% (ind(4)==1) +4x (ind (4)==2)1;
d2=d2Kk;

end Yp======

[metN indN]=min(d2); akVi=zeros(1,N-2); akVi(1)=-1; akVi(2)=-1;

for kk=N:-1:3
EI=asc(indN,kk); EF=indN; akVi(kk)=dec(EI,EF); indN=EI;

end

nbe=sum(abs (ak (1:N-2)-akVi(3:N))/2); PeVi(jj)=nbe/N;

semilogy (RSBdB, PeVi,’0’); grid
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H1

Chapter 13

Hints and Solutions

Signal fundamentals

H2 Discrete time signals and sampling

H2.1 (An illustration of the sampling theorem) (see page 63)

1.

Because F; = 500 Hz is greater than twice the signal’s frequency (that
is, 2 x 200 Hz), the sampling makes it possible to perfectly reconstruct
the signal. Hence we end up with the same sine at the 200 Hz frequency.

. Because F; = 250 Hz is smaller than twice the signal’s frequency, the

sampling introduces aliasing. The +F; shifts in the spectrum (corre-
sponding to n = +1 in formula 2.5) contribute to the frequency with
—2504200 = 50 Hz. Since the spectrum is symmetrical, everything hap-
pens as if the 200 Hz frequency were “aliased” by symmetry about the
frequency Fy/2 = 125 Hz. The result of the reconstruction is a sine with
the frequency 50 Hz (Figure H2.1).

. Type:

%===== CECHAN2.M
Ds=.1; % Signal length
F0=200; % Frequency of the sine function

Fs=input (’Sampling frequency in Hz (F0=200 Hz) = ’);
Ts=1/Fs; Ne=Ds/Ts+1; % Number of samples

K=40; % Interpolation fonction for displaying
Tc=Ts/K; Nc=Ds/Tc+1; % Nb points of the "continuous" signal
%
tpc=[0:Nc-11*Tc; xtc=cos(2*pixtpc*F0); ¥ "Continuous" signal
tpe=[0:Ne-1]*Ts; xte=cos (2xpixtpe*F0); ) Samples

subplot (211); plot(tpc,xtc,’-’,tpe,xte,’0’);

%===== Interpolation function
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ht=sin(pi*Fs*tpc) ./ tpc /Fs / pi; ht(1)=1;

Ni=200; % Reconstruction filter
hti=[ht (Ni:-1:2) ht(1:Ni)]; % (length 2*Ni-1)

subplot (212); plot ([-Ni+1:Ni-1]*Tc,hti); grid

%===== Reconstructed signal

xtr=zeros(1,Nc); xtr(1:K:Nc)=xte;

xti=filter(hti, 1, [xtr zeros(1,Ni-1)]); Lxti=length(xti);
xti=xti(Wi:Lxti); % Delay of the filter

subplot (211); hold on; plot(tpc,xti,’-r’); hold off
grid; set(gca,’xLim’,[.03 .06]1); % Zoom in

Samp\les

F=250Hz Fy=200 Hz

0.03 0.035 0.04 0.045 0.05 0.055 0.06 s

Reconstruction'!
function

2002 -0.015 -0.01 -0.005 0 0.005 0.01 0.015 0.02s

Figure H2.1 — Sampling and reconstruction

H2.2 (Time domain hermitian symmetry) (see page 71)

1. Tf we take the conjugate complex of X(f) and use z(n) = 2*(—n):

400 +oo
X*(f) — Z x*(n)erﬂ'nf — Z x(_n)erﬂ'nf
= Y e = X()

If, furthermore, x(n) is real, then we know that X(f) = X*(—f), hence
X(f) = X(=f) = X*(f). The conclusion is that X(f) is real and even.
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2. The DTFT of {y(n)} has the expression Y (f) = Z:ﬁ z(n)e~ 2™ 4
2(0)/2. If we take the conjugate and use the fact that z*(n) = x(—n),
then we have:

400 +oo
V) = e T 4t 0)/2= 3 a(-m)e T 4 a(0))2
= f z(k)e ™ 4 1(0)/2
k=-1

Therefore, Y*(f) + Y(f) = 2Re{Y(f)} = X(f). This leads us to the
following method for calculating the DTFT of a sequence x(n):

(a) only the elements of z(n) with non-negative indices are considered

(n > 0);
(b) the value z(0) is divided by 2;
(c) the DTFT of the resulting sequence is calculated;
(d) the DTFT of the real part is calculated, then multiplied by 2.

H2.3 (Comparing computation speeds) (see page 73)
Type:

%===== COMPARE.M

clear; x=randn(1,1024); P=100;

tbcd=[]1; tbcf=[]; % Table of the durations

for k=7:10,
npts=2"k; % Number of frequency points
freq=[0:npts-1]/npts; n=[0:npts-1]’;
y=x(1:npts); 7% Same number of samples
t0 = clock; % Direct computation
for m=1:npts

fr=freq(m); caldir(m)=y * exp(-2#pi*j*fr*n);

end

te=etime (clock,t0); tbcd=[tbcd tel;

t0 = clock; % Computing with the FFT =====

for m=1:P % We repeat it to get
calfft=fft(y,npts); % a significant duration

end

te=etime (clock,t0); tbcf=[tbcf tel;

end
format long; [tbcd’ tbcf’/P (tbcd’./tbcf’)*P]; format short

H2.4 (Spectrum of the triangle function) (see page 74)
Type:



576 Digital Signal and Image Processing using MATLAB®

%===== CSPECTRI.M

nfft=512; freq=[0:nfft-1]/nfft;

sig=[1:10 9:-1:0]; plot([0:19],sig,[0:19],sig, ’x’)
sigspec=fft(sig,nfft);

subplot (411); plot(freq,abs(sigspec)); grid;
subplot (412) ; plot(freq,angle(sigspec)); grid;
subplot (223) ; plot (freq,real(sigspec)); grid;
subplot (224) ; plot (freq,imag(sigspec)); grid;

We have to check, using Figure H2.2, that the DTFT obeys the hermitian
symmetry property. Because of the periodicity with period 1, it means that
the graphs are symmetrical about the frequency f = 1/2. The modulus and
the real part are even, whereas the phase and the imaginary part are odd. The
unwrap function can be used to plot the phase.

100

M(:)dulus

50

0 01 02 03 04 05 06 07 08 09 1
100

Imaginary |

0.5 1

Figure H2.2 — Spectral features of the triangle function. Above, the even modulus
and the odd phase. Below, the even real part and the odd imaginary part

H2.5 (Circular convolution of the rectangular signal) (see page 75)
The difference comes from the fact that, in the second case, the sequence x is
padded with 8 zeros and the resulting convolution is linear.

H2.6 (Delay) (see page 75)

1. Let us calculate the DTFT over L points, that is to say the DFT. We
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get:
ni ' I '
Y(k’/L) = Zx(n)e—Zjﬂ'nk/L_i_ Z x(n_L)e—Zyﬂ'nk/L
n=0 n=L—ng
— Z (n)e —2]7mk/L+ Z e 2dm(p+L)k/L _ X(k/L)
n=0 p=—no

where we have defined p = n — L and where we have used the property
e~2™k = 1. To obtain the DTFT over L points of a signal that assumes
non-zero values between the indices —ng and ny, we have to shift by L the
negative index values and calculate the DFT of the resulting sequence.

2. Type the program:

%===== CDECAL1.M

Lfft=256; fq=(0:Lfft-1)/Lfft;

n0=5; ni1=5; xt=ones(n0+ni+1,1);

zs=zeros (Lfft-n0-n1-1,1);

yt=[xt (n0+1:n0+nl1+1) ;zs;xt(1:n0)];

xf=fft (yt,Lfft); plot(fq,real(xf)); pause
plot(fq,imag(xf)) ; % Almost zero

H2.7 (FFTs of real sequences) (see page 79

)
1. Let A(k) be the DFT of z(2n). Because z(2n) = (y(n) + y*(n))/2 and
because the DFT of y*(n) is equal to Y*(—k mod N), we have:

Alk) = % (Y (k) +Y*(—k mod N)) (13.1)
Likewise, if B(k) refers to the DFT of #(2n+ 1), and because z(2n+1) =
(y(n) —y*(n))/2j, we have:

B(k) = _% (Y (k) — Y*(—k mod N)) (13.2)

The two relations 13.1 and 13.2 allow us to directly calculate A(k) and
B(k) from Y (k).We will now see how X (k) is obtained from A(k) and

B(k).
2. Because A(k) = EHNLE ! z(2n )WJT\L/;z et B(k) = ZnNﬁ)_l x(2n + 1)er\17172’
we get for k€ {0,...,N —1}:
N/2-1 N/2-1
X(k) = SToz@a)WRF ) +wWh | DD z@n+ HWEM
n=0 n=0

A(k mod N/2) + WE B(k mod N/2)
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This last part can be written as follows:

A B
A + By AO i VIﬁlB
A+ WiB ! N

' N/ Ao Wa*™ Bya_
Anppor 4+ Wy By = W ! By e

MY PR

Anjaci + WX T'Byjaoa Anjooy — WJJVV/z_lBN/z_1

This tells us how to calculate the DFT of the real, length N sequence
z(n) using the DFT of the complex, length N/2 sequence y(n):

(a) We define the sequence y(n) = z(2n) + jx(2n + 1) and calculate its
N/2 order FFT Y (k).

(b) We calculate A(k) and B(k) using relations 13.1 and 13.2 respec-
tively.

(c) We calculate X (k) = A(k) + Wff,B(k’)

3. The previous algorithm is comprised of (N/2)log,(N/2) operations for
the computation of the complex; length N/2 FFT, and also of N
multiplication-additions for the computation of X (k). As a consequence,
the total computation is roughly N/2log,(N/2) + N operations. This
number should be compared with the computation load involved when
using the length N algorithm, which is N log,(N). For N = 1,024 we get
5,632 in the first case, whereas we get 10,240 in the second.

4. Simulation program (Figure H2.3):

%===== CFFTREEL.M

N=64; mtime=[0:N-1]; £0=.23; freq=[0:N-1]/N;
x=sin(2*pi*fO*mtime) ; x=[x zeros(l,rem(N,2))];
Nx=size(x,2); xspec=fft(x); xspeca=abs (xspec);
%===== Approximating the DTFT

atftd=fft(x,1024);

plot ([0:1023]1/1024,abs (atftd),’r’); grid; hold on
%===== Result of the direct calculation
plot(freq,xspeca);

set (gca, ’x1im’, [0 .5],’ylim’, [0 max(abs(atftd))])
x2n=x(1:2:Nx-1); x2npl=x(2:2:Nx); Ny=Nx/2;

y = x2n + j*x2npl; yspec=fft(y); %

inds=[1 Ny:-1:2]; % Conjugation
yspecs(1l,:)=conj(yspec(inds)); % in time
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Ak = (yspect+yspecs)/2; Bk = j*(yspecs-yspec)/2;
Wn=exp (-2*j*pix [0:Nx/2-1]/Nx); Wn=[Wn -Wn];
= [Ak Ak] + [Bk Bk] .* Wn;
%===== Result
plot(freq,abs(yk),’or’); hold off

0 005 Ol 0.15 02 025 03 035 04 045 0.5

Figure H2.3 — Comparing the results

H2.8 (Using the FFT) (see page 80)
The program draws a unit circle, since the calculation of the FFT of [0 1] leads
to the values:

X (k) = e72mk128  with k =0...127

H3 Spectral observation

H3.1 (Study of the resolution) (see page 86)
1. The expression of X(f) is

X(f) = aogn(f — fo) + argn (f = f1) + aogn (f + fo) + aign (f + f1)

2. Let us assume that fo > 1/N, f1 > 1/N and |fo — fi| > 1/N. Because
gn(f) is a quickly decreasing function for |f| > 1/N, the four terms
involved in the expression of X (f) are never simultaneously null. Hence,

for f belonging to a neighborhood of fy:
[X (N > aolgn (f = fo)l

| X (f)] shows a maximum in fy, the amplitude of which is roughly Nag.

3. Type the program:
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%===== CRESOL.M

N=32; % Signal length

L=1024; % Number of frequency points
f0 = 0.2;

mtime=(0:N-1)’; % Column vector for time

freq=(0:L-1)/L;

phi=input (’Relative phase between the two sines (degrees):

phi=phi*pi/180;
adb= input (’Amplitude ratio (dB): ’);
a = 10 ~(adb/20);
deltaf=(1/N:1/(5%N):3/N) ; % Frequency deviations
nbdf=length(deltaf); fi1=fO+deltaf;
x1=cos (2*pi*mtime*£0); x1f=20%1ogl0 (abs(fft(x1,L)));
Y%===== For each f1
for k=1:nbdf
x2=a * cos(2*pismtimexf1 (k)+phi);
x2£=20*10g10 (abs (fft (x2,L)));
subplot (211); plot(freq, [x1f x2f]); grid
axis([0 0.5 -20 401);
x=x1+x2; xf=20%log10(abs (fft(x,L)));
subplot (212); plot(freq,xf); grid;
axis([0 0.5 -20 401);
title(sprintf(’delta_f = %1.2g x 1/N’,deltaf (k)*N))
disp(’Press a key to proceed.’)
pause
end

As you can see, the resolution is highly dependent on the relative phase

betwe

en the two sines.

H3.2 (Effect of the Hamming windowing) (see page 88)

1. Calculation of the normalization coefficient ¢p: let Xp (f) be the spectrum

of the

windowed signal. We have:

N-1
Xp(f)=A Z chwp(n) exp (257 fon) exp(—2jmfn)
n=0

At point fy, we have Xp(fo) = AZN_l chwp(n), a quantity we wish to

n=0

have equal to A. Therefore, ¢, = 1/ ZnNz_Ol wp(n).

2. Type:

%===== CEFFHAM.M

N=32; L=1024; freq=(0:L-1)/L;

s=exp (2*i*pi*0.2%(0:N-1));

whamm = 0.54 - 0.46 * cos(2*pi*(0:N-1)/N);
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cr=1/N; ch =1/ sum(whamm) ;

%===== Wlindowing (rectangle and hamming windows)
sr=cr * 8; sh = ch * 8 .* whamm;

srf=fft(sr,L); shf = £fft(sh,L);

srfdb=20 * logl0(abs(srf)); shfdb=20 * logl0(abs(shf));
subplot (211) ; plot (freq,shfdb); grid

[xyl xy2]=ginput(2);

sprintf (’Ratio=%d dB’,abs (xy1(2)-xy2(2)))
subplot (212) ; plot(freq,srfdb); grid

[xyl xy2]=ginput(2);

sprintf (’Ratio=%d dB’,abs (xy1(2)-xy2(2)))

3. Figure H3.1 shows the DTFT of the Hamming window. The width of the
main lobe is measured, as well as the attenuation between the first side
lobe and the main lobe (look up how to use the ginput function):

| window | width attenuation |
rectangular | 2/N —13 dB
Hamming | 4/N —40 dB

0
0dB —
-25dB

Figure H3.1 — Comparing the rectangular window (above) and the Hamming window
(below)

4. In the case where the two sines have the same amplitudes, the resolution
is directly related to the width of the main lobe, because if the two sines
are distant enough from each other, then main lobes will not be too close,
and they can easily be distinguish (see exercise 3.1).

For N = 32 and F; = 1,000 Hz, the resolutions obtained for 1.5 times
the width of the main lobe are:

| window |Width resolution(Hz) |

rectangular | 1/N  1,500/32 = 47 Hz
Hamming | 2/N  3,000/32 ~ 94 Hz
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5. In the case where the two sines have different amplitudes, the resolution
is related to the width of the main lobe, but also to the height of the side
lobe. For example, if we wish to distinguish a possible ratio of 25 dB,
we have to go beyond the 6-th side lobe in the case of the rectangular
window, whereas we only need to go beyond the first main lobe in the case
of the Hamming window (see Figure H3.1). In this case, the Hamming
window therefore allows a resolution of 1.5 x 2,000/32 =~ 94 Hz, which
is better than the one obtained with a rectangular window, which is

6 x 1,000/32 ~ 188 Hz.

H3.3 (Short term Fourier transform) (see page 93)

1. The analysis function is as follows:

function [spec,normtm]=tfct(xt,Lb,ovlp,Lfft,win)

Wh %
%% Short Term Fourier Transform %
%% SYNOPSIS: [spec,normtm]=TFCT(xt,Lb,ovlp,Lfft,win) %
o xt = Signal %
Wh Lb = Block size %
% ovlp = Overlap length %
%h Lfft = FFT length Y
o win = window type %
% gspec = spectrogram %
% normtm = time vector (normalized) %
Wh %

if nargin<4, win=’rect’; end
xt=xt (:); x=xt; Nx=length(xt);
if win==’hamm’,
wn=.54-.46%cos (2¥pi*[0:Lb-1]’/Lb);
elseif win==’hann’
wn=.5-.5%cos (2xpi*[0:Lb-1]’/Lb);

else
wn=ones (Lb, 1) ;
end
blkS=(Lb-ovlp); nbfen=floor (Nx/blkS); Lxb=nbfen*blkS;
%===== Calculating the index

idxH=[1:Lxb]; idxtab=reshape (idxH,blkS,nbfen);
indx=idxtab(blkS,:)+1; idxv=[1:ovlp-1]’*ones(1,nbfen);
idxh=ones (ovlp-1,1)*indx; idxtab2=[indx;idxv+idxh];
idxtab=[idxtab;idxtab2]; idxmax=idxtab(Lb,nbfen);
idlm=find (idxtab(Lb, :)>=Nx); nbf=idlm(1);

xx=zeros (Lb,nbf); x=[x;zeros(idxmax-Nx,1)];
xx(:)=x(idxtab(:,1:nbf)); Nc=size(xx,2);

xxp=xx .* (wn*ones (1,Nc));

spec=fft (xxp,Lfft); normtm=[0:Nc-1]%blkS;

return
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2. The following program returns Figure H3.2 for 50 sample blocks:

%===== CTFDCT.M
% Uses GENE1.M or GENE2.M
Tt=length(xt); Lfft=128; frq=Fs * (0:Lfft-1)/Lfft;
frqs2=frq(Lfft/2:-1:1);
disp(sprintf (’Number of samples: %.0f’,Tt));
tbl=input (’Block size (0 to return)=’);
win=’rect’;
while (tbl "= 0)
[spec,tpsl=tfct(xt,tbl,floor (tbl/2) ,Lfft,win);
ntime=tps/Fs;
xreshf=abs (spec); xreshf=xreshf (Lfft/2:-1:1,:);
contour (mtime,frqs2,xreshf); grid
tbl=input (’Block size (0 to return)=’);

end

Hz ;
450 e

400
350
300
250
200
150
100

50

Figure H3.2 — Short term study for 50 sample blocks

H3.4 (Visualizing the aliasing with the STFT) (see page 94)

Y%===== MODULFREQ2.M

lambda=2000; Fg=8000; F0=1000; T=2;
nfft=128; Lbloc=100; freq=[0:nfft/2-1]1*Fs/nfft;
%===== Signal

it=(0:Fs*T-1) /Fs;
theta=2%pi*FO*it+pi*lambda* (it .~ 2);

x=cos (theta’); Lx=length(x);

nblocs=floor (Lx/Lbloc); x=x(1:nblocs*Lbloc);
x=reshape(x,Lbloc,nblocs) ;

%===== Windowing

w=.54-.46%cos (2%pi*[0:Lbloc-1]’/(Lbloc-1));
w=w * ones(1,nblocs);
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B=x.*w; A=abs(fft(B,nfft));

%===== Displaying between 0 and Fs/2
mesh([1:nblocs] ,freq,A(1:nfft/2,:))
view([-20 40])

80
(blocks)

Figure H3.3 — Time-frequency representation

H3.5 (Effects of sampling and windowing) (see page 94)

1. The signal #(t) has the following Fourier transform:

+oo
. [
X(F) = / e t/top=2imEt gy 7?
0 14 257 Ftg
Notice that |X(F)|? goes from the value {2 in F' = 0 to the value ¢2/2
in Fo = 1/(2ntg). The frequency F, which corresponds to a ratio of 2,
hence 10log;,(2) = 3 dB, is called the 3 dB cut-off frequency.

2. X,(f) is obtained by periodizing Fs then normalizing the frequency scale
by dividing by Fs. The fact that X (F) has an infinite band causes alias-
ing. However this aliasing decreases as F > F.

3. This is equivalent to mutiplying the signal z;(n) by a width M rect-
angular window, hence to convolute X,(f) with the function given by
expression 3.1. This results in oscillations with pseudo-period 1/M.

4. Type:
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%===== CEFFSAMP.M

clear; clf

%===== Continuous time
t0=1/0.7; Fa=100; M=10;
%===== Discrete time

Fg=2; Ts=1/Fs; Ntrg=5;

%===== Continuous time signal

tpsa=(0:MxFa-1) /Fa; xa=exp(-tpsa/t0);

subplot(2,2,1); plot(tpsa,xa);

%===== FT

subplot(2,2,2);

frqsa=(-100:0.1:100) /Fa;

XFa= abs(t0 ./ (1+2*j*pixtOxfrgsa));

plot (frgsa,XFa, ’-’ ,frgsa+Fs,XFa, ’g:’ ,frqsa-Fs,XFa,’g:’);
%===== Discrete time signal

subplot(2,2,1);

xe=xa(1:Ts*Fa:M*Fa); tpse=tpsa(l:Ts*Fa:M*Fa);

hold on; stem(tpse,xe); hold off

%===== DTFT

subplot(2,2,2);

Lfft=1024; frqstrq=Fs*(0:Lfft-1)/Lfft-Fs/2;

XFe=abs (fft(xe,Lfft))/Fs; XFs=fftshift (XFs);

hold on;

plot(frqstrq,XFs,’r’ ,frqstrq+Fs,XFs, ’r’,frqstrq-Fs,XFs,’r’);
plot ([Fs Fs],[1.2 0]1,7:’); plot([-Fs -Fs],[1.2 0],7:7)
hold off; set(gca,’xlim’,[-3 3]1);

%===== Truncated signal

subplot(2,2,3);

xatrq=xe(1:Ntrq); tpstrq=tpse(1l:Ntrq);
stem(tpstrq,xatrq); set(gca,’xlim’, [0 tpsa(M*Fa)l)
%===== DTFT

frqostrq=Fs*(0:Lfft-1)/Lfft-Fs/2;

XFtrg=abs (fft(xatrq,Lfft))/Fs;

XFtrgq=fftshift (XFtrq);

subplot(2,2,4);

plot(frqstrq,XFtrq, ’r’,frqstrq+Fs,XFtrq, 'r’ ,frqstrq-Fs ,XFtrq, ’r’);
set(gca, ’x1lim’, [-3 31);

%==== TFD

LEfftTFD=8; frqstrqTFD=Fs*(0:LfftTFD-1)/LfftTFD-Fs/2;
XFtrqTFD=abs (fft (xatrq,LfftTFD)) /Fs;
XFtrqTFD=fftshift (XFtrqTFD) ;

hold on
stem (frqstrqTFD,XFtrqTFD) ;

plot ([Fs Fs],[1.2 0]1,7:’); plot([-Fs -Fs],[1.2 0],7:7)
hold off
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H3.6 (Amplitude modulation) (see page 95)

1. We have z(t) = cos(2nFyt) + km(t) cos(2n Fyt). If we replace cos(2m Fyt)
with [exp(2jmFot) +exp(—2jnFyt)]/2 and take the Fourier transform, we
get:

2X(F) = &(F = Fo) +0(F + Fo) + kM (F) % (§(F — Fo) + 6(F + Fy))
= §(F—Fy)+8(F+ Fo)+ kM(F — Fo) + kM(F + Fy)

In any case, the spectrum of z(¢) contains two peaks at the frequencies
+Fy, as well as the spectrum of m(t) shifted by +Fy. If the width of
m(t) is B, meaning that its spectrum is non-zero between —B and + B,
then the spectrum of #(¢) occupies a 2B band around Fy. Because the
spectrum of m(¢) obeys hermitian symmetry (real signal), the spectrum
of X(F) has the same property around Fy. Hence we can restrict the
representation of X (F) to the frequencies beyond Fy.

2. The spectrum is comprised of 7 peaks in the positive frequencies (the
negative frequencies are obtained using hermitian symmetry):

— 50 kHz (carrier);

— 47,870 Hz and 52,130 Hz originating from the component at 2,130
Hz;

bl

— 46,250 Hz and 53,750 Hz originating from the component at 3,750
Hz;

bl

— 45,040 Hz and 54,960 Hz originating from the component at 4,960
Hz.

3. The program cmodam.m allows you to obtain Figure H3.4 for m(t) and
z(t).
The absence of overmodulation is characterized by the fact that (1 +
km(t)) never becomes negative. Notice that (1 + km(t)) is therefore the
the upper envelope of x(t). This is an essential practical result, as it
allows us to perform the demodulation operation in a very simple way:
a full-wave rectifier is used, followed by an RC filter (see exercise 12.1)
in order to detect the envelope. If B <« 1/RC « Fy, the output signal
will follow the envelope. The development of radiocommunications was
based on this very simple technique.

4. Here, the two closest peaks are 1,000 Hz apart, or in normalized frequen-
cies, 1,000/500,000 apart. Hence, in order to distinguish them using the
DTFT, we need a number of points much greater than 500. To be able to
have an outright separation we will choose N = 1,000, which corresponds
to 2 ms of signal.
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Figure H3.4 — Amplitude Modulation. Above: signal m(t). Below: modulated signal

5. In normalized frequencies, 100 Hz correspond to 1/5,000. Hence we need
an FFT size greater than 5,000.

6. Type the following program:

%===== CMODAM.M

Fs=500000; durat=2/1000; N=Fs*durat;
td=(0:N-1); t=td/Fs; %

F0=50000; fOr=FO0/Fs; % Mod. frequency

Fm=[2130 ; 3750 ; 4960]; fmr=Fm/Fs; Am=[1 1.8 0.9];
k=1/2; ac=1+k*Am * cos(2*pi*fmr*td);

xt=ac .* cos(2*pixfOr*td);

subplot (311); plot(t,ac); grid

subplot (312); plot(t,xt); grid

L=8192; freq=[0:L-1]/L#Fs; % Real frequency
subplot(313); plot(freq,abs(fft(xt,L))); grid

set (gca, ’xLim’, [40000 60000])

Figure H3.5 shows the spectrum obtained in agreement with the theoret-
ical spectrum.

H3.7 (Carrierless double side-band) (see page 96)

1. If M(F) refers to the Fourier transform of m(t), then that of the mod-
ulated signal #(t) = m(t)cos(2nFyt) is X(F) = (M(F + Fp) + M(F —
Fy))/2. The spectrum of z(t) is comprised, around Fjy, of the spectrum
M(F — Fy)/2, which has a width of 2B.
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40,000 ‘ ‘ 50,000 ‘ ‘ 60,000 Hz

Figure H3.5 — Spectrum of a double side band modulation

2. If we multiply the signal z(t) by 2cos(2rFyt + ¢), we get y(t) =
2m(t) cos(2n Fyt) cos(2mFyt + ¢) which can also be written y(t) =
m(t) cos(¢) +m(t) cos(dmFot 4+ ¢). The signal y(t) therefore has a low fre-
quency component m (), multiplied by cos(¢), and a (modulation type)
high frequency around 2Fy with a width 2B. If we then use a low-pass
filter, such as the one shown in Figure H3.6, the signal m(t)cos(¢) is
reconstructed.

It is important to have ¢ = 0, because if ¢ # 0, the useful signal is
attenuated. In the presence of noise, a mere amplification is not sufficient
to compensate this attenuation.

XU)“”:CK}‘”'IIEII”“"mm

X
cos(2nFyt) T Local oscillator

Figure H3.6 — Synchronous demodulator

3. %===== CMODDBSP.M
Fs=500000; durat=2/1000; N=Fs*durat;
td=(0:N-1); t=td/Fs; %
F0=50000; fOr=FO0/Fs; % Mod. frequency

Fm=[2130 ; 3750 ; 4960]; fmr=Fm/Fs; Am=[1 1.8 0.9];
nt=Am * cos(2*pi*fmr*td);

xt=mt .* cos(2*pixfOr*td);

subplot (311); plot(t,mt); grid
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subplot (312); plot(t,xt); grid

L=8192; freq=[0:L-1]/L#Fs; % Real frequency
subplot(313); plot(freq,abs(fft(xt,L))); grid
set (gca, ’xLim’, [40000 60000])

H3.8 (Stereophonic signal) (see page 97)

1. Spectrum of ¢(t) (Figure H3.7):

C(F) = (G(F)+ D(F)) + 5(G(F + Fo) + D(F + Fy))
+5(GUE — Fo) 4 D(F — Fo)) + 2 6(F + 20 + Za(s = 1)
19
L+R

L-R
| | ’}\H/M » F (KHz)

‘1‘5T‘ T

Sub-carrier 38

Figure H3.7 — Spectrum of the stereophonic signal used for FM radio broadcasting

2. For a monophonic set, all we need to do is filter the signal ¢(t) in the
(—15,415) kHz band to reconstruct the signal g(t) + d(¢). This is what
determined the choice of the composite signal’s shape. People who owned
a monophonic set had to be able to still listen to it without having to
buy a new set.

3. Type the program:

%===== CSTEREO.M
£a=1000000; £0=38000/fa;

£1=[380 957 1164 1587 1953]’/fa;
Al1=[0.7 1.5 1.9 2.8 3.7];
fr=[347 523 1367 2465 3888]’/fa;
Ar=[0.3 1.5 2.7 1.7 2.3];
T=1000; t=(0:T-1);

%===== Left and right signals
g=Al*cos (2#pi*fr*t); d=Ar*sin(2*pi*flxt);
c=(g+d)+(g-d) .* cos(2*pi*f0O*t);
plot (t’,[c’ 2*g’> 2*d’]); grid
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We need to sample the signal ¢(¢) at the frequency of 76 kHz. The odd
times correspond to the left signal, and the even times to the right signal
(Figure H3.8). Obviously, a slight delay causes crosstalk, meaning that
a small part of the right signal is mixed up with the left signal, and vice
versa.

0 100 200 300 400 500 600 700 800 900 1,000

Figure H3.8 — Composite stereophonic signal c(t): the upper and lower envelopes
represent the left and right signals

H4 Linear filters

H4.1 (Rectangular impulse response filter) (see page 118)

1. This filter calculates the mean of the last M values of the input signal.
This operation smooths the signal and eliminates the rapid fluctuations
corresponding to the high frequencies. This is a low-pass filter with a
cut-off frequency dependent on the value of M.

2. The complex gain is:

o Sin(Mrf)
sin(mf)

and the phase is piecewise linear with the slope —(M — 1)7:

o(f) =—(M =N)xf+(f)m

H(f) = eI (M-1)

where €(f) is equal +1 depending on whether % i1s positive or

negative.

3. These results are gathered in Figure H4.1 where the phase was represented
using the angle function which brings it back between —7 and .

Figure H4.1was obtained using the program:
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,,,,,,,,,,

1 ! Step response |
0 5 10 15 20 0 5 10 15 20

Figure H4.1 — Gain, phase, impulse response and step response

%===== RECTFILTER.M

T=20; mtime=(0:T-1); Lfft=1024; fq=(0:Lfft-1)/Lfft;
M=10; h=ones(1,M)/M;

Hf=fft (h,Lfft); % Frequency response
Gf=abs (Hf) ; Phif=angle (Hf);

d=eye(1,T); yd=filter(h,1,d); % Impulse response
u=ones(1,T); yu=filter(h,1,u); % Step response
subplot (221) ; plot(fq,Gf); grid

subplot (222); plot(fq,Phif); grid

subplot (223); plot(mtime,yd,’-’,mtime,yd, ’x’); grid
subplot (224) ; plot(mtime,yu,’-’,mtime,yu,’x’); grid

4. The filter resulting from cascading the two previous filters has as its
impulse response the triangle function (h x h)(n). The corresponding
gain is the square H?(f) of the previous gain.

H4.2 (Purely recursive first order) (see page 119)

1. Because the filter is causal, the convergence area is of the type |z| > |al.

2. If we perform the series expansion of H,(z), and according to the defini-
tion of the z-transform, we have:

_ _ h(n) =a” forn >0
_ 2,-2 4 N >
H:(2) =1+ az” T4a’z %\I { 0 otherwise

The BIBO stability condition is satisfied since:

STk =D laff <co=fa] < 1

keZ keN

3. The complex gain, the gain and the phase are:

;—ijf’ gain = |H(f)|, phase = arg(H(f))

1—ae

H. (™) = H(f) =
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4. We saw that the impulse response of the filter had the expression h(n) =
Aa” for n > 0 and 0 otherwise. Therefore, the index response can be
written:

If we choose A = 1 —a, then y(n) = 1 —a”*! tends to 1 when n tends to
infinity, with a decreasing speed as |a| get closer to 1.

5. The plots H4.2 were obtained using the following program:

%===== REPINDICAR1.M
N=30; mtime=(0:N-1); a=[-2/3 1/2 3/4 7/8];
Na=length(a); indic=ones(N,1); y=zeros(N,Na);
for ii=1:Na
y(:,ii)=filter(1-a(ii),[1 -a(ii)],indic);
end
plot(mtime,y,’-’,mtime,y,’0’);
set(gca,’x1lin’,[0 N-1]); set(gca,’ylim’,[0 1.8]); grid

As you can see, as |a| gets closer to 1, the output signal slowly converges to
its limit value 1. This “rise time” can be evaluated from the index beyond
which the difference with the value 1 is considered to be negligible. To
be more precise, we can write that if 0 < a < 1, y(n) = 1 — (Pt losla) =
1 — e~ (+D/7 where 7= 1/log(1/a) > 0.

If—1<a<0, yn)=1-(=1)"Te=+D/7 where 7 = 1/log(1/]a|) > 0.
Therefore, whether a € (—1, 1) is positive or negative, the index response
has an “exponential” shape, the time constant of which is given by 7 =
1/log(1/]a|). The closer |a| gets to 1, the larger 7 becomes.

Figure H4.2 — Step response of the filter H(z) = 1/1—az™", fora = —2/3, a = 1/2,
a=23/4 and a =7/8
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H4.3 (Purely recursive second order) (see page 123)
1. The transfer function is given by:

1 1
(I—piz=H) (1 —piz=t) 1 =2Re(p1)z~t + [p1]?272

Hz(z) =

Therefore, a; = —2Re(p1) and as = |p1]?. The variations as functions of

the phases of the poles is given by the program:

%===== CAR21.M

% Gain as a function of the phase with a constant modulus
Lfft=1024; freq=(0:Lfft-1)/Lfft; modp=0.9;
theta=(20:10:80); theta=theta * pi / 180;
nbph=length(theta) ;

al=-2*modp#*cos (theta); a2=modp "2 * ones(1,nbph);
AA=[ones (1,nbph); al; a2];

Df=fft (AA, LEfft); Hf=-20 * loglO(abs(Df));

plot (freq(1:Lfft/2) ,Hf (1:Lf£ft/2,:)); grid

25
20
15
10

-15

0 005 01 015 02 025 03 035 04 045 05

Figure H4.3 — Gains of a second order filter as functions of the phases of the poles

2. Type (Figure H4.4):

h===== CAR22.M

%==== Gain as a function of the modulus
Lfft=1024; freq=(0:Lfft-1)/Lfft;
modp=[0.1:0.2:0.9 .95 .98]; % A few moduli
theta=30 * pi / 180;

nbph=length (modp) ;

al=- 2 * modp * cos(theta); a2=modp .~ 2;
AA=[ones (1,nbph); al; a2];

Df=fft (AA, LEfft); Hf=-20 * loglO(abs(Df));
plot (freq(1:Lfft/2) ,Hf (1:Lf£ft/2,:)); grid
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Figure H4.4 — Gains of a second order filter as functions of the moduli of the poles

3. The Jury test leads to: (i) D(1) > 0 = 14+ a3 +az > 0, (ii) n even
= D(-1) > 0= 1—a; +ax > 0 and (iii) |ag| > |an] = 1 > |az|. In
the plane (a1, az2), these conditions delimit a triangle called the stability
triangle.

H4.4 (Suppressing a sinusoidal component) (see page 125)

1. Type:

C3UP50HZ1.M

Frequency response of the rejection filter
nfft=256; freq=[0:nfft-1] / nfft;

phi=pi/4; ro=.9;

nun=[ 1 -2*cos(phi) 1]; den=[ 1 -2*ro*cos(phi) ro*rol;
k=sum(den) /sum(num) ; num=k*num; % Normalization
snum=fft (num,nfft); sden=fft (den,nfft);

spec=snum ./ sden; plot(freq,abs(spec)); grid

o 01 02 03 04 05 06 07 08 09 1

Figure H4.5 — Gain of the rejection filter



Hints and Solutions 595

2. When the frequency f is very different from ¢ /27, the modulus is roughly
equal to 1 and the phase is roughly equal to 0.

In a neighborhood of ¢ (Figure H4.6), we have:

) = MZ. 2 — it ‘ _ ‘ 21 —cos(2nf — ¢)) |*/*
MP 2Tl — peid 1+ p? —2pcos(2mf — @)
2nf —2mfy
L—p

And therefore:

>

Figure H4.6 — Construction of the rejection filter’s frequency response

3. Type:

%===== REJEC500HZ .M

[x,Fs]=wavread (’phrase.wav’);

N=length(x); x=x(:)/max(abs(x)); mtime=(0:N-1)’;
Fb=500; % Hz

mnoise=sin (2*pi*Fb*ntime/Fs) ;

xnoisy=x+mnoise;

%====== rho is very close to 1. The transient part
% of the output is very long

rho=0.999; theta=2%pi*Fb/Fs; cost=cos(theta);
cosphi=cost* (1+rho*rho) /rho/2;
nunl=0.5%[1+rho*rho -4*rho*cosphi l+rho*rho]l;
denl=[1 -2*rho*cosphi rho*rho];

xdenoised=filter(numl,denl,xnoisy);
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goundsc (xnoisy,Fs)

disp(’Press a key’); pause

soundsc (xdenoised,Fs)

subplot (211); plot(xnoisy); subplot(212); plot(xdenoised)

Signal with the sinusoidal component

Filter's transient
response

St’ationary response

Figure H4.7 — Effect of a value p &= 1 on the filter’s response

4. Expression 4.30 is verified by writing that the numerator of 4.29 has the
same zeros as 4.28, that is:

4pcos ¢

= 2cosf
1+ p?

The program rejection.m draws the complex gains and the poles and
zeros of both transfer functions:

%===== REJECTION.M

nfft=1024; freq=[0:nfft-1]/nfft;

rho=[.8:.02:.99]; rho2=rho.*rho;

Lrho=length(rho) ;

theta=pi/4; cost=cos(theta);

figure(1); plot (£f£ft([0 1],128)); grid;

set (gca, ’AspectRatio’, [2 1], ’x1im’,[-1 1], ’y1lim’, [0 1])

hold on

num0=[1 -2%cost 1];

plot(roots (num0)+j*eps,’0’);

for k=1:Lrho
den1=[1 -2*rho(k)*cos (theta) rho2(k)];
plot(roots(denl)+j*eps,’xr’);
numl=numO*sum(deni) /sum (num0) ;
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num2=(1+rho2(k))*[1 -2*cost 1]1/2;
den2=[1 -cost*(1+rho2(k)) rho2(k)];
plot(roots(den2)+j*eps,’x’);
numls=fft (numil,nfft); num2s=£ft (num2,nfft) ;
denls=fft(denl,nfft); den2s=fft(den2,nfft);
figure(2)
plot (freq,abs (numls./denls)); grid on; hold on
figure(3)
plot (freq,abs (num2s./den2s)); grid on; hold on
figure (1)

end

hold off

H4.5 (All-pass filter, properties of the maximum) (see page 130)
Let by = ped¥. The transformation defined by:
I =brz 11— p°

P = = — b
k(z) Z—bk Z—bk k

transforms the unit circle into itself.

I
o QNS
r! S
PO [
M2y
1
z—by,

l"2

Figure H4.8 — Construction of Pi(z)

Let M (z) be a point inside the unit circle I'. z — by, translates T' to I''. M is
transformed into M' . The inversion 1/(z — by) takes M?, the transformation
of M!, outside the circle T'?, transformation of T'!, because the inversion center
remains inside T'! (]bg| < 1). The homothety and the translation that follows
maintain the successive transformations of M outside of the transformed circles.
In the end, the point P4(z) is therefore such that |Py(z)]| > 1.

Conversely, if M (z) is outside T', P(z) will be inside I', hence | Py (z)| < 1.
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H4.6 (All-pass filter) (see page 130)

1. Tf we use the Parseval formula 2.26, then the filtering formula Y (f) =
H(f)X(f), we have:

+00 1/2 1/2
3 |y<n>|2:/_1 HPdf = / DPIX () 2df

n=—oQ

+co +co
= D = Y e

where we used the fact that |H(f)| = 1.

2. Let:

n(n) = z(n)ifn <N

NPT 0 otherwise
and let yn(n) be the filter’s output signal. According to the result from
the previous question:

N +00 +o0
_Z jo(n) | = _Z o (n)] = _Z lyn (n)|”

Because the filter is causal, yy(n) only depends on the values of zx (k)
for k < n and therefore yny(n) = y(n) for n < N. This means that:

+o0 N +oo N
Yoo luwmP= Y )P+ Y lvm)F > Yy
n=-—00 n=-—00 n=N+1 n=-—00

Hence, for any N, Zn__oo lz(n)|? > ZnN:—oo ly(n)]?.

H4.7 (Minimum phase filter) (see page 131)

1. Because the signal z(n) is causal and because the filters G, (z) and G, (2)
are causal, the signals y(n) and y,, (n) are causal. Hence formula 14.12
can be applied, and we have:

{ y(0) = limy 5 o0 V2 (2) = limys) 5 oo G2 (2) X (2)
Ym (0) = limyz oy oo Yom (2) = limpz 5 oo Gom (2) Xz (2)
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But the relation between the transfer function Gy, (2) of the minimum
phase filter and the transfer function of one of the filters with the same
gain is of the type:

Go(2) = Gam (2)(1 = a2)/ (= - a)
where |a| < 1. So if we impose |z] = 400, we get:

[9(0)] = lym (0)[a| < [ym (0)]

This result, shown for only one of the zeros, can of course be generalized
to all of the zeros.

As a conclusion, the impulse response of the minimum phase filter is, from
the very first value, more “intense” than any other filter with the same
gain. Simply put, the minimum phase filter has a “quicker response”.

2. Any filter G,(z) can be seen as the series cascade of the minimum phase
filter G,m (%) and of an all-pass filter of the type:

1.(:) = [I67" = a0/ = az™) = TI0 - ai2)/ e = o)

where |a;] < 1. Because all the poles of H,(z) are inside the unit circle,
the stable solution of H,(z) is causal. If we apply the result from question
2 of exercise 4.6, we can prove the expected result.

Therefore, among all the systems that have a frequency response with
the same modulus, the minimum phase system is the one that transmits
the most energy over the shortest period of time.

H4.8 (Window method: low-pass filter) (see page 146)

1. For N odd, we have:

by = [ eensyp = Sl

~fo n
and for N even:

sin(2mw(n 4+ 1/2) fo)
m(n+1/2)

fo )
h(n) = / eIl 2Tt gf =
—Jo

2. Type:
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function h=rif (N,f0)

hh %
%% FIR synthesis using the window method (Hamming window) %
%% SYNOPSIS: h=RIF(N,f0) Y
% h = Length N impulse response %
hh N = Filter order %
o f0 = Normalized cut-off frequency %
o %
P=fix (/2); ham=0.54-0.46%*cos (2%pi*(0:P-1)/(N-1));

if (rem(N,2)==0) % N even

d=((-P:-1)+.5)*pi; h=sin(2%d*£0) ./ d;
h=h .* ham ; h=[h h(P:-1:1)];
else % N odd
d=(-P:-1)#pi; h=sin(2%d*f0) ./ d;
h=h .* ham ; h=[h 2%f0 h(P:-1:1)];
end
return

H4.9 (Spectrum reversal encryption) (see page 146)

1. The spectrum Y (F') can be written:
Y(F)=X(F + Fp) + X(F - Fp)

If X(F) = 0 for |F| > B, a low-pass filtering (—Fp, +Fn) leads to
the expected spectrum. The decryption operation is the same as the
encryption operation, that is a multiplication by 2 x cos(2n F,t) followed
by a low-pass filtering of the (—B,+B) band. Because of the shape of
the encrypted signal, this is sometimes called “spectrum reversal”.

2. Sample a crypted sound (such as the sound on certain television chan-
nels). Let us assume that B = 10 kHz and F,, = 12,8 kHz. Type:

===== DECOCPLUS.M

Fs=48000; Fm=12800; B=10000;

load soncrypt.dat; N=length(soncrypt);
fm=Fm/Fs; b=B/Fs;

y=soncrypt .* cos(2*pikfm*(1:N));
hh=rif(31,b); z=filter(hh,1,y); soundsc(z,Fs)

H4.10 (Window method: band-pass filter) (see page 147)

1. The DTFT of the sequence 2h(n)cos(2rnfy) = h(n)eX™fo 4
h(n)e=%™Jo can be written as H(f — fo) + H(f + fo). Hence, if H(f)
is the complex gain of a low-pass filter, the result is a filter the complex
gain of which is centered around = fj, therefore a band-pass filter.

2. Type:
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===== CFENPBANDE.M

%===== Band-pass filter

Lfft=1024; fq=(0:Lfft-1)/Lfft; £0=0.2; fb=0.1;
N=input (’length: ’);

P=fix(N/2); R=rem(N,2); h=rif (N,fb/2);

if (R==0), D=(-P:P-1)+1/2; else, D=(-P:P); end
g=2%h .* cos(2%pixf0*D); gf=fft(g,Lfft);

agf=abs (gf); phigf=angle(gf);

figure(1); plot (fq(1:Lfft/2) ,agf (1:Lfft/2)); grid
figure(2); plot(fq(1:Lfft/2) ,phigf (1:Lfft/2)); grid

Notice that if we want to maintain a linear phase, we have to multiply

by 2cos(2nnfy) if N is odd and by 2cos(27(n + 1/2) fy) if N is even.
Figure H4.9 shows the gabarit obtained for N = 80.

1

0.8
0.6
0.4

0.2

0 005 0.1 015 02 0.25-03 035 04 045 05

Figure H4.9 — Spectrum of the band-pass filter

H4.11 (Window method: derivative filter) (see page 147)

1. The Fourier transform of dz(t)/dt is 2jnF X (F) (page 728). This ex-
pression corresponds to the filtering of #(¢) by a filter with the complex
gain H,(F) = 2jmF. This expression calls for a comment: in the case of
(—=Fs/2,4+F,/2) band-limited real signals, the method given on page 133
provides, for the digital filter, a complex gain equal to H(f) = 2jnF; f
in the band (—1/2,1/2).

2. The previous results lead us to the Fourier series expansion coefficients
of H(f), which have the expression:

1/2 )
h(n) = F/ 2 feX™l df
—1/2
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In theory, a derivative filter is such that the output dimension is the same
as the input dimension divided by seconds, or in other words multiplied
by Hertz. This explains how the term F; appears in the digital filter’s
impulse response. When all the calculations are done, we get:

0 for n=0
h(n) = {Fscos(ﬂ'n) for n 0 (13.3)

The sequence is truncated between —N and +N, and the result is mul-
tiplied by the weighting function.

3. For N = 12, the filter’s output must have the expression:
u(n) = h(=12)x(n +12) + - - -+ h(0)a(n) + - - -+ h(12)x(n — 12)

This is not a causal solution: it requires the 12 future input values to be
known in order to calculate the output u(n). A causal realization consists
of taking:

y(n) = h(=12)z(n) + - -+ h(0)z(n — 12) + - - - + h(12)z(n — 24)
hence y(n) = u(n — 12). This solution causes a 12 sample delay.

4. The derivative function is:

function [y,hder]=deriv(N,x,Fs)

Nh %
%% Digital derivation %
%% SYNOPSIS: [y,hder]=DERIV(N,x,Fs) %
T N = (2N+1) coefficient FIR filter %
o X = Signal %
%h Fs = Sampling frequency (default: 1) %
Wh y = result %
YAA hder = Impulse response of the filter ¥
% %

if nargin<3, Fs=1; end;

if nargin<2, error(’Parameters are missing.’); return; end
hder=cos (pi*(1:N)) ./ (1:N); hder=[-fliplr(hder) O hder];
%===== Hamming window

hder=Fs * hder .* (0.54+0.46%cos((-N:N)#*pi/N));

y=filter (hder,1,x);

return

The following program tests the derivative filter on the function z4(¢) =
sin(2w Fyt). Notice the shift due to the causal design, as well as the
transient state due to the choice of the initial conditions. Type:
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%===== CDERSIN.M

N=12; Fs=4000; nfft=512; freq=(0:nfft-1)/nfft*Fs;
F0=300; T=100; t=(0:T-1)/Fs;

%===== Original

x=sin (2*%pi*FOx*t) ;

subplot (321); plot(t,x); grid

axis ([0 (T-1)/Fs -1.2 1.2]); title(’x(t)?)
Y%===== Theoretical derivative

xp=24pi*FO*cos (2*%pixFO*t) ; % result
ordm=1.2%2%pi*F0;

subplot (322); plot(t,xp); grid

axis ([0 (T-1)/Fs -ordm ordm]); title(’x’’ (t)’)
%===== Digital derivative

[y hder]l=deriv(N,x); y=Fs*y;

subplot (323); plot(t,y); grid

axis ([0 (T-1)/Fs -ordm ordm]); title(’y(t)’)
%===== Delay due to the filter

subplot (324); plot(t,xp,’b’,t-N/Fs,y); grid
axis ([0 (T-1)/Fs -ordm ordm]); title(’y(t-N/Fs)’)
%===== Gain of the derivative filter
hders=fft (Fsx*hder,nfft) ;

subplot (313)

plot(freq,abs(hders),[0 Fs/2],[0 Fs*pil);
axtemp=axis; axis([0 Fs/2 axtemp(3:4)]); grid

This program also provides the gain of the derivative filter and of the
obtained filter. Try both the rectangular window and the Hamming win-
dow. Check that the amplitude ratio of (t) to y(t) is equal to the value
of the gain in Fy = 300 Hz.

The following program tests the derivative filter on a periodic square
signal (Figure H4.10):

%===== CDERHOR.M

clear; N=30; Fg=100;

xT=[ones (1,50) zeros(1,50)]; x=[xT xT xT xT];
T=length(x); t=(0:T-1)/Fs;

[y hder]l=deriv(N,x); y=y*Fs;

%===== Original signal

subplot (311); plot(t,x);

axis ([0 T/Fs -1.5 1.5]); grid

%===== Impulse response of the filter

subplot (312) ;

plot ([0:2%N] ,hder,’-’, [0:2%N] ,hder,’0’); grid
%===== Result

subplot (313) ; plot (t-N/Fs,y);
axis ([0 T/Fs -Fs Fs]); grid
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Impulse response of the derivative filter
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Figure H4.10 — Differentiation of a periodic square signal

H4.12 (Butterworth filter) (see page 149)

1. Type:

%===== CBUTTER1.M
n=input (’Butterworth filter order: ’);
nr=rem(n,2); den=[1 nr zeros(1,n-1)];
nb=(n - nr)/2;
for k=1:nb
alp=pi* (24%k-1+nr)/n/2; den2=[1 2*cos(alp) 1];
den=filter(den2,1,den);

end

den % Displaying the result
2. Type:

%===== CBUTTER2.M

Nordre=6; mmax=40; omeg=[1:mmax] * 0.1;
y=j * omeg; g=zeros(mmax,Nordre-1);
for iord=2:Nordre
nr=rem(iord,2); den=[1 nr zeros(1l,iord-1)];
nb=(iord - nr)/2;
%===== Generating the denominator
for k=1:nb
alp=pi * (2%k-1+nr)/iord/2;
den2=[1 2xcos(alp) 1]; den=filter(den2, [1],den);
end
%===== mmax points
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for k=1:mmax
mn=triu(ones (iord+1),1) * y(k) + tril(ones(iord+1),0);

g(k,iord-1)=1/(prod(mm)*den’) ;

end
end

loglog(omeg,abs(g)); grid;

3. Bilinear transformation program:

(a) Horner representation of the polynomial g(z):

go = Qn
gs(®) = an_k +gs—1(x)x for k=1:N

(b) Rational function variable change: = = B(z)/A(z). If we define
9 = N/ Dy, we get for k=1, ..., N:

Ny(z) = ap and Dg(z) =1

z) = Dr_1(2)A(%)

Y
k=1,...N: { Ni(z) = an—kDi(2) + Nk—1(2) B(2)

(c) For the bilinear transform (in our case choose T' = 1):

_ 21—z"1
YT T T

4. Type:

function [B,Al=nbilin(pol,Ts)

b

%% Bilinear transform of a polynomial %
%% SYNOPSIS: [B,A]=NBILIN(pol,Ts) %
YAA pol = Polynomial (decreasing powers of s) %
%% = a0 s"n+al s"(n-1)+ ... +alN %
Wh Ts = Sampling period %
YAA B,A = Numerator and denominator of the result %

hh

h

if nargin<2, Ts=1; end

NX=[1 -11*2/Ts; DX=[1 1];

nP=length(pol); PP=zeros(nP,1); PP(:)=pol;
B=pol(1); A=[1];

for k=2:nP

A=conv (A,DX); B=conv(B,HNX) + pol(k)*A;

end
return
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H4.13 (Temporal aliasing and the use of the DFT) (see page 150)
Let us calculate the original h(n) of {H(k/N)}:

N-1 N-1 %]
~ 1 ink 1 _9g;mk Tj Rk
W) = DD HGEN)ETR = 37 ( D him)e “N)e“w
k=0 k=0 \m=-—o
1 %] N-1 i1k
= LY M X e
m=—00 k=0

The last sum is different from zero, and equal to N when m = n[N]. We
get:

h(n) = i h(n+rN), withne[0,N — 1]

r=—o0

This sum expresses a temporal aliasing phenomenon, which is negligible if
the number of points chosen for “sampling” H(f) is large. For example, in
the case of a low-pass filter, the coefficients behave like 1/n and the temporal
aliasing grows fainter as N increases:

% Window method

nfft=1024; freq=[0:nfft-1]/nfft;

fc=.1;

Ng=128; Npts=Ng/2; n=[-Npts:Npts-1]; tps=n+lpts;
pit=((-Npts:Npts-1)+.5) *pi;

hn=sin(2*pit*fc) ./ pit; hns=fft (hn,nfft);

hnf=hn .* (.54-.46%cos(pi*tps/Npts)); hnfs=fft (hnf,nfft);
subplot (221); stem(n,hnf); grid

Mx=max (hnf)*1.5; Mn=min (hnf)*1.2;

set (gca, ’ylim’, [Mn Mx])

subplot (212); plot(freq,abs(hnfs),’-’,freq,abs(hns),’-g’); grid
%===== Direct method

Ngt=128; frt=[0:Ngt-1]/Ngt;

fcd=fix(fcxligt)+1; Nz=Ngt-2*fcd;

Gfk=[ones(1,fcd) zeros(1,Nz+1) ones(1,fcd-1)]1;

subplot (212); hold on; plot(frt,Gfk, ’or’); hold off;

set (gca, ’x1im’, [0 .5])

%set(gca,’xlim’,[.5 1.5]*fc,’ylim’,[-0.05 1.3])

%===== Calculating hnt

hnt=real (ifft (Gfk)); hnt=[hnt (Ngt/2+1:Ngt) hnt (1:Ngt/2)];
subplot (222) ; stem([-Ngt/2:Ngt/2-1], hnt); grid

set (gca, ’ylim’, [Mn Mx])

%===== Windowing the hnt

hntf=hnt .* (.54-.46*cos(2%pi*x[0:Ngt-11/(Ngt-1)));
%===== Verification with the spectrum
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nfft=8192; freq=[0:nfft-1]/nfft;

hnts=fft (hnt ,nfft); hntfs=fft (hntf,nfft);

subplot (212) ; hold on;
plot(freq,abs(hnts),’b’ ,freq,abs (hntfs),’r’); hold off;
set (gca, ’x1im’, [fc*.8 fc*x1.2])

H4.14 (Interpolation) (see page 152)

1. The interM.m function interpolates by a factor M. To approximate the
ideal low-pass filter with the band (—1/(2M),+1/(2M)) and the gain 1,
we used the window method for the computation of the lenght 81 FIR
filter. The window used is a Hamming window:

function y=interM(x,M,Nf)

%h %
%% Interpolation function %
%% SYNOPSIS: y=INTERM(x,M,Nf) %
% x = Input sequence %
YAA M = Interpolation ratio %
% Nf = 2Nf+1 coeffts filter %
% y = Output sequence %
%h %
if nargin<3, Nf=40; end

%===== Low-pass filter
theta=pi*[1:Nf]; h=sin(theta/M) ./ (theta);
%===== Hamming window

h=h .*x (.54 + .46%cos(theta/Nf));

h=[fliplr(h) 1/M hl; h=h/sum(h)*M;

Y%===== Insertion of zeros
x0=zeros (length (x) *M+Nf,1); x0(1:M:1length(x)*M)=x;
y =filter(h,1,x0); y=y(Nf+1l:length(y));

return

2. An application example:

%===== INTERMEX.M

x=rand (1,40);

M=4; y=interM(x,M);

plot(y); hold on; plot(y,’xr’);

plot ([1:M:1length(y)],x,’0’); hold off
grid

H4.15 (Undersampling) (see page 156)

1. The decM.m function undersamples by a factor M. To approximate the
ideal low-pass filter with the band (—1/(2M),+1/(2M)) and the gain 1,

we used the window method for the computation of a FIR filter:
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function y=decM(x,M,Nf)

Wh %
%% Decimation function %
%% SYNOPSIS: y=DECM(x,M,Nf) %
% x = Input sequence %
% M = Decimation ratio %
% Nf = 2Nf+1 coeffts filter %
% y = Output sequence %
Wh %

if nargin<3, Nf=20; end

theta=(1:Nf)*pi; h=sin(theta/M) ./ (theta/M);

h=h .* (0.54 + 0.46 #* cos(theta/Nf)); % Hamming window
h=[fliplr(h) 1 hl/M;

x0=zeros (length(x)+Nf,1); x0(1:1length(x))=x;

y= filter(h, 1, x0);

y=y (Nf+1:M:1length(y)); % Decimation

return

2. Undersampling a speech signal:

%===== DECMPAROLE.M

load phrase

Lsn=length(sn) ;

soundsc (sn,8000) % Original signal
%===== One out of every 2 samples

sn2=sn(1:2:Lsn); soundsc(sn2,4000)

sn2se=decM(sn,2); soundsc(sn2se,4000) % Undersampling with M=2

H4.16 (Paralleled undersampling and oversampling) (see page 156)

1. Figure H4.11 shows the design structure of the factor M oversampler:
the signal we wish to undersample is “broken up” into M delayed and
undersampled signals that are filtered in parallel by M filters. If the ideal
low-pass filter is approximated by a length L = ¢M filter, each filter in
the diagram H4.11 has a length £.

L- {x(n—-mM—-M+1)} M—»®

Figure H4.11 — Polyphase architecture of undersampling
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2. For M = 4 and for a length 8 filter, let us write the output signal y(n).
In n = 0, we have y(0) = h(0)z(4n). For n = 1, y(4) = (h(0)x(4) +
h(4)x(0)) + h(1)x(3) + h(2)(2) + A(3)z(1). And for n > 1, we get:

y(dn) = (h(0)z(4n) + h(4)z(4n — 4))
+ (A(Mz(dn —1)+ A(5)z(4n — b))
+ (h(2)z(4n —2) + h(6)z(4n — 6))
+ (AB)z(dn =3)+ (T z(dn—T))

Therefore, y(4n) is the sum of 4 filterings involving the sequences {x(0),

z(4)... 1, {0, 2(3), =(7)...}, {0, #(2), x(6)...} and {0, (1), =(5)...}.

This computation is performed in the following program:

%===== DECPARA.M
clear; M=4;
N=1500; L=16; % N and M must be multiple of M
x=randn(N,1); h=(1:L);
%===== Direct undersampling -> yu
y=filter(h,1,x); yu=y(1:M:N);
%===== Parallelized undersampling -> yp
yp=zeros (N/M,1);
for k=1:M
auxx=x(k+1:M:N); lx=length(auxx); auxh=h(M-k+1:M:end);
yp(1l:1x)=yp(1l:1x)+filter (auxh,1,auxx);

end
max (abs (yu(M+1:1x)-yp(M:1x-1)))

3. Type:

%===== OVERPARA.M
clear all
M=4; N=150; L=16;
x=randn(N,1); h=(1:L);
xo=zeros (N*M,1); xo(1:M:end)=x;
%===== Direct oversampling -> yo
yo=filter(h,1,x0);
yp=zeros (N*M, 1) ;
%===== Parallelized oversampling -> yp
for k=1:M
auxh=h(k:M:end) ;
yp (k:M:W*M)=yp (k:M: N#M) +filter(auxh,1,x);
end
max (abs (yo (M:end) -yp (M:end)))
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H5 Filter implementation

H5.1 (Filter architecture) (see page 163)

1. We can write:

zp(n) = bpi(n) — ayo(n)

zp—1(n) = bp_1i(n) —ap_10(n) + xp(n —1)
w1(n) = bi(n) — aro(n) + 2a(n — 1)

0 = boi(n) —o(n) +x1(n—1)

z1(n) = b1i(n) —aro(n) + bai(n —1) — - --
= e bpi(n—p+ 1) —apo(n —p+1)
z1(n — 1) + bpi(n) = o(n)

In terms of the z-transform, we get, as expected, the transfer function:

Cbot bz 4 by
S ldaz i tape?

H{(z)

2. The state representation associated with this architecture is:

—a; 1 0 - 0
z1(n) —ay 0 . T zi(n—1) b1 — boay
= : = 0 : + : i(n)
p(n) 1| [zp(n—1) by = boay
—a, 0 - o 0]
on)=11 0 -.- 0|x(n—1)+bgi(n)

The corresponding filtering program is given below. Of course, this design
is far from being the optimal one in terms of execution. It would be
preferable to have a “mex” function. You can check that it leads to the
same output sequence as the one obtained with the filtering function
described in the text:

function [xout,zs]=filtrerII(num,den,xinp,zi)
%h %

%% Filtering (Transpose-form IIR filter structure) %




Hints and Solutions

Wh num = [b0 bl ... bP]
hh den = [1 al a2 ... aP]
Wh xinp = Input sequence
Wh zi = Initial state
% xout = Output sequence
% zs = Final state

%% SYNOPSIS: [xout,zs]=FILTRERII (num,den,xinp,zi)

)
%
%
)
%
)
%
%

lden=length(den); lnum=length(num);
if 1lden < lnum, den(lnum)=0; lden=lnum; end
if lnum < lden, num(lden)=0; end

av(:)=den(2:1den); bv(:)=num(2:1den) ;
if nargin==3, zi=zeros(ld,1); end;
if length(zi)<1ld, zi(1d)=0; end
zzi=zeros(ld,1); zzi(:)=zi; zs=zzi;
%===== State representation
bO=num (1) ; ma=compan([1;av])’;
vb=bv - b0 * av; vc=[1 zeros(1,1d-1)]; cd=b0;
%===== Filtering
for ii=1:N,
zsn =ma * zs + vb * xinp(ii);
xout (ii)=vc * zs + cd * xinp(ii); zs=zsn;
end
return

3. We can express the intial state reconstruction by:

2, (0) = — Z_: boilk —a) + Z_: ago(k — @)

This leads us to the state reconstruction program:

function zi=filtricII(num,den,xinp,xout)

1d=1den-1; N=length(xinp); av=zeros(1ld,1); bv=av;

%% Reconstruction of the initial state for a
%% Transpose-Form IIR structure
%% SYNOPSIS: zi=FILTRICII (num,den,xinp,xout)

Wh num = [b0 bl ... bP]

hh den = [1 al a2 ... aP]

Wh xinp = Input sequence

% xout = Output sequence

Wh zi = Reconstructed initial state

lden = length(den); lnum = length(num);
if lden<lnum, den(lnum)=0; lden=lnum; end
if lnum<lden, num(lden)=0; end

ld=1lden-1; numv=zeros(lden,1); denv=numv;
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numv (:)=num; denv(:)=den;

1x = length(xinp); ly = length(xout);

if 1x<1d, xinp(1d)=0; end

if 1y<1d, xout(1ld)=0; end

ysv=zeros (1,1d); xev=ysv; ysv(:)=xout(1:1d);
xev(:)=xinp(1:14d);
zi=filtrerII(denv,1,ysv)+filtrerII(-numv,1,xev);

return

H5.2 (Parallel implementation of the FIR filtering) (see page 164)
Type:

Y%===== POLYPHASE.M

x0=[1:103]; 1x0=length(x0); M=4;

b=0.3; N=25; h=rif(N,b);

%===== M-polyphase filters (with insertion of zeros

% for the processing)

hp=zeros (M,N) ;

for k=1:M, hp(k,1:M:N-k+1)=h(k:M:N); end

%===== Result of the filtering without polyphase

zl=filter(h,1,x0);

%===== Polyphase processing

z2=zeros (M,1x0) ;

for k=1:M,
xx = [zeros(1,k-1) x0(1:1x0-k+1)];
z2(k,:)=filter (hp(k,:),1,xx);

end

xx = sum(z2); [xx(1:1x0)’ z1(1:1x0)’]

H5.3 (FFT filtering) (see page 172)

1. The gain at the frequency 0 is equal to the sum of the impulse response
coefficients.

2. Type:

%===== FILTRAGEFFT1.M

nfft=256; freq=[0:nfft-1]/nfft;

hn=[0.0002 0.0134 0.0689 0.1676 0.2498 ...
0.2498 0.1676 0.0689 0.0134 0.0002];

nh = length(hn);

N=128-nh; temps=[0:N-1]; £0=.15; f£1=.3;

x=sin(2*pi*fO*temps) + sin(2*pixfilxtemps);

%===== Processing using the convolution

hn = hn / sum(hn); y=filter(hn,1,x);

subplot (311); plot(temps,[x’ y’]1)

subplot (312); plot(freq, abs(fft(hn,nfft)));

subplot (313); plot(freq, abs(fft([x’ y’],nfft)));
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3. Then type:
%===== FILTRAGEFFT2.M
T I
f :ZZZZZZZZZ:ZZZZZZZZZZZZZZZZZZZZZZZZZIZIZZZIZI:
%! N 0 h(nh-1) ... h(0) 0 ...

% b S )
xcompl = [zeros(1,nh) x]; nxc = length(xcompl);

hng = fft(hn,nxc); xcs = f£ft(xcompl,nxc);
yns = xcs .* hns; yn = real(ifft(yns));
figure(3)

plot(y); hold; plot(yn(l+nh:nxc),’or’); hold;

4. Then type:

%===== FILTRAGEFFT3.M
% Processing with size P blocks

clear hns; clear yns; P=32; hns = fft (hn,P);
kp=floor(nxc / (P-nh)); % Number of blocks
y=01;
for k =0:kp-1,
kdb=(P-nh) *k;
xbloc=xcompl (kdb+1:kdb+P); % "overlap"
xbs=fft(xbloc,P); yns=hns .* xbs;
yn = real (ifft(yns)); y=[y yn(nh+1:P)];
end
hold; plot(y,’ob’); hold; grid

H5.4 (Band-pass filter based on a comb filter) (see page 175)

A pole was placed in the first cell of the low-pass filter from Figure 5.10 in
order to cancel the zero placed at the frequency 0 in the second cell. Therefore,
all we need to do to design a real pass-band filter around the frequency m/M
is to precede the filter with another filter with the transfer function:

1 1

Fm = =
() (1 —wpmzH(1 —wz,z7t) 1 —=2cos(2rm/M)z=1 + 272

This leads to H,(2) = Fn(2)(1 — 2=M) which is still an FIR filter. Figure
H5.1 shows, for M = 16, the frequency response of the low-pass filter and of
the band-pass filter for m = 3.

The following program plots the frequency responses of the two filters:

%===== PEIGNE.M

M=16; m=(0:M-1); Lfft=512; fq=(0:Lfft-1)/Lfft-1/2;
fqi=(LEfft/2+1:LEft) ;£q2=(1:LE£t/2) ;

%===== Low-pass and band-pass comb filters
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16
14
12

2

Figure H5.1 — Frequency response: m =0 (low-pass) and m = 3 (band-pass)

ht=ones (1,M); k=4; gt=2 * ht .* cos(2*pi*k*m/M);
hf=abs (fft (ht ,Lfft)); hf=10%1ogl0(hf / max(abs(hf)));
gf=abs (fft (gt ,Lfft)); gf=10%logl0(gf / max(abs(gf)));
subplot (211); plot(fq, [hf (fq1) hf(£fq2)]1);
set(gca,’ylim’,[-20 0]); grid

subplot (212) ; plot(fq, [gf (fq1) gf(£q2)1);
set(gca,’ylim’,[-20 0]); grid

H6 An Introduction to image processing

H6.1 (Logical functions) (see page 195)

1. Logical functions:

function pixr=FoncLog(pix1,ffl,pix2)

hh %
%% Logical operation Y
%% SYNOPSIS: pixr=FONCLOG (pix1,ffl,pix2) %
Wh pixl = First image (gray levels) %
% ffl = Logical function ’&’, ’|’, ’xor’, ’77, }
%% )==), a<,, a>,, )<=), )>=), )==), » V= %
% elsewhere pixr="(pix1) %
Wh pix2 = Second image (gray levels) %
Wh pixr = Resulting image %
o %

cm=colormap; L=log(size(cm,1))/log(2); Ni=size(pixl);
if (nargin<3),
£f1="7;
else
if (W1 "= size(pix2)),
error (’Matrix dimensions have to match!’)

end
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end

pixr=zeros (1) ;

%===== Analysis of the logical function

if findstr(’"’,ffl),
chaine=’"(rem(pix1,2))’;

elseif findstr (’&|<<=>>=="=" £f1),

chaine=[’rem(pix1,2) > £f1 ’ rem(pix2,2)’];
elseif (findstr(ffl,’xor’)),

chaine=’"xor (rem(pix1,2) ,rem(pix2,2))’;
else,

chaine=""(rem(pix1,2))’; %

end

%===== Processing

for k=1:L
pixr=pixr+ eval(chaine) #* 2~ (k-1); pixl=fix(pix1/2);
if (nargin==3), pix2 = fix(pix2/2); end

end

return

2. Test program for the FoncLog function:

%===== TESTLOGIC2.M

load lena2b; % Loading and displaying
subplot (221); imagesc(pixc); % the first image
colormap (cmap) ; axis(’image’);

set (gca, ’units’, ’pixels’)

title(’0Original’)

%===== Loading and displaying the second image
load testlogl;

subplot (222); imagesc(pixtl); axis(’image’)
title(’Mask’)

%===== Logical operators >= and ~

pixr = FoncLog(pixc,’>=’,pixtl);

subplot (223); imagesc(pixr); axis(’image’);
title(’Result of the >=’)

pixr = FoncLog(pixc);

subplot (224) ; imagesc(pixr); axis(’image’);
title(’Result of the ~’)

H6.2 (Plane transformation) (see page 198)
1. Linear transformation:

function pixcR=lintrimg(pixc,M)

hh %
%% Linear transform of an image %
%% SYNOPSIS: pixcR=LINTRIMG (pixc,M) %
%4 pixc = Image (nl*nc) pixels ¥

%% M = Transform matrix %
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%%  pixcR = Result Y
o %
Spix=size(pixc); N1=Spix(1); Nc=Spix(2);
%=====. Pixel coordinates

tbx=ones (N1,1)*[1:Nc]; tby=[1:N1] *ones(1,Nc);
nlg=reshape (tby,1,N1#Nc); ncl=reshape(tbx,1,N1*Nc);
tbidx=[nlg;ncl];

idtb=nlg+(ncl-1)*N1; % Linear Indices

%===== Transformation

tbxy=[ncl;Nl-nlg]; % Coordinates

tbv=round (Mxtbxy) ;

xmin=min(tbv(1,:)); xmax=max(tbv(1l,:)); ncol=xmax-xmin+1;
ymin=min (tbv(2,:)); ymax=max(tbv(2,:)); nlig=ymax-ymin+1;
pixcR=zeros(nlig,ncol);
tbidxR=[nlig-(tbv (2, :)-ymin) ;tbv (1, :)-xmin+1];
idtbR=tbidxR(1,:)+(tbidxR(2,:)-1)*nlig; % Linear Indices
pixcR(idtbR)=pixc (idtb);

return

2. Defining the transformation (Figure H6.1), type:

%===== TRANSFTRI.M
% From one triangle to another using (x,y)-coordinates
hi=figure; set(hl,’color’,[1 1 0])
set (gca, ’x1im’, [0 100],’ylim’, [0 100], ’NextPlot’,’add’);
grid
trixy=[];
for k=1:3
pt=ginput(1); trixy=[trixy;ptl]; plot(pt(1),pt(2),’ob’)
text (pt (1) -1,pt(2)+3, int2str (k) )

end
plot ([trixy(:,1);trixy(1, )], [trixy(:,2);trixy(1,2)])
triXY=[]1;
for k=1:3
pt=ginput(1); triXY=[triXY¥;pt]l; plot(pt(1),pt(2),’or’)
text (pt(1)-1,pt(2)+3,int2str (k))
end
plot ([triXY(:,1);triXY(1,1)],[triXY(:,2) ;triXY(1,2)]1,’r’)
Y%===== Transformation matrix

Mxy=[trixy [1;1;111’; MXY=[triXY [1;1;11]1’;
M=MXY*inv (Mxy)

3. Applying the transformation (Figure H6.2) can lead to many “missing
points” that have to be processed. In the example we chose, a simple
median filtering is enough, but this is rarely the case:



H6.3 (Transformation of a rectangular selection) (see page 198)
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Figure H6.1 — Defining the transformation

Y%===== TRAITTRANSFTRI
load clah % Loading the image, the palette and
% the transformation matrix
set (gcf,’color’,[1 1 1]);
xor=40; yor=40; % Position in the window
subplot (121); imagesc(pixc0); colormap (cmap)
Spix=size(pixc0); N1=Spix(1); Nc=Spix(2);
set (gca, ’units’,’pixels’, ’Position’, [xor yor Nc N1]);
%===== Linear transform

%===== Display

imageS = median2D(pixcR,3,3);
Spix=size(pixcR); nlig=Spix(1); ncol=Spix(2);
subplot (122) ; imagesc(imageS); colormap (cmap)

617

set (gca, ’units’,’pixels’, ’Pos’, [xor+xor+lc yor ncol nligl);

We can write:

X
Y
X

By solving this system, we can determine the transformation matrix:
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Figure H6.2 — Applying the transformation

%===== RECTTRANSF.M
% Transformation of a rectangle
fmt=’jpeg’; fn=’christine. jpg’; pixc=imread(fn,fmt);
figure(1); imagesc(pixc); set(gcf,’color’,[1 1 1])
tbcolor=[0:1/255:1]"%[1 1 1]; colormap(tbcolor);
set (gca, ’DatadspectRatio’,[1 1 1], ’units’,’pixels’)
Spix=size(pixc); N1=Spix(1); Nc=Spix(2);
xor=40; yor=40;
set (gca, ’Position’, [xor yor Nc N1],’NextPlot’,’add’);
xy=[1 1;Nc 1;Nc N1;1 N11; XY=[1;
plot ([xy(:,1);xy (1,1, xy(:,2);xy(1,2)]1,°r’)
for k=1:4
pt=ginput (1) ; XY=[XY;ptl; plot(pt(1),pt(2), 0y’)
text (pt (1) ,pt(2) ,int2str (k))

end
plot ([XY(:,1) XY (1,11, [XY(:,2);XY(1,2)]1,y’)
set (gca, ’Position’, [xor yor Nc N1], ’NextPlot’,’replace’);

%===== Calculating the transformation matrix
Mt=[1;
for k=1:4

11=[xy(k,:) 1 zeros(1,3) -xy(k,1)*XY(k,1) -xy(k,2)*XY(k,1)];
12=[zeros(1,3) xy(k,:) 1 -xy(k,1)*XY(k,2) -xy(k,2)*XY(k,2)];
Mt=[Mt;11;12];

end

XX=zeros(8,1); XX(:)=XY’; cof=Mt\XX;

coeff=zeros(3,3); coeff(:)=[cof;1]; coeff=coeff’;




Hints and Solutions 619

%===== Application

xc=[1:Nc]; yec=[1:N1]";

tbx=ones (N1, 1) *xc; tby=yc*ones(1,lc);
tbxyl=[reshape(tbx,1,N1*lc) ;reshape(tby,1,N1*lc) ;ones(1,N1*Nc)];
idtb=(tbxy1(1,:)-1)*N1l+tbxyl(2,:); % Linear index
tbv=coeff*tbxyl;

tbv (1, :)=round(tbv(1,:)./tbv(3,:));

tbv (2, :)=round(tbv(2,:)./tbv(3,:));

xmin=min(tbv(1,:)); xmax=max(tbv(1l,:)); ncol=xmax-xmin+1;
ymin=min(tbv(2,:)); ymax=max (tbv(2,:)); nlig=ymax-ymin+1;
tbidxR=[tbv(1l,:)-xnin+l;tbv(2,:)-ymin+1];

pixcR=25b%ones (nlig,ncol);
idtbR=(tbidxR(1,:)-1)*nlig+tbidxR(2,:);
pixcR(idtbR)=pixc(idtb);

%===== Displaying the result

figure(2); imagesc(pixcR); set(gcf,’color’,[1 1 1])
colormap (tbcolor); set(gca,’DataAspectRatio’,[1 1 1])

set (gca,’units’, ’pixels’, ’Position’, [xor yor ncol nligl);

BEssan

20 40 B0 &0 100120

Figure H6.3 — Applying the torsion

H6.4 (Rectangular filter) (see page 210)

%===== LENARECT.M

load lena; dims=sgize(pixc);

figure(1); imagesc(pixc+1l);

colormap (cmap) ; axis(’image’)

%===== Rectangular filter

h=ones(5,1) * ones(1,5);

h=h/25; pixr=round(filter2(h,pixc));

figure(2); imagesc(pixr+1);

colormap (cmap) ; axis(’image’)

resul=zeros(dims (1)+2,dims (2)+2) ; resul2=resul;

%===== Implementing the filtering with two filters

pixc==[pixc ones(dims(1),2); ones(2,dims(2)+2)];

for 1=1:dims(2)+2,
resul(:,l)=filter(ones(5,1)/5,1,pixc(:,1));

end
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for k=1:dims(1)+2,
resul2(k,:)=filter(ones(1,5)/5,1,resul(k,:));

resul=round(resul2(3:dims (1)+2, 3:dims(2)+2));
figure(3); imagesc(resul+l); colormap(cmap); axis(’image’)

H6.5 (Conical filter) (see page 210)

LENACONE.M

Loading the original image

load lena; figure(l); imagesc(pixc+1);

colormap (cmap) ; axis(’image’)

%===== Conical filter

h=[0=0100;02 2 2 0;...
12521;02220;0010 0];

h=h/sum(sum(h)); pixr=round(filter2(h,pixc));

figure(2); colormap (cmap) ;

imagesc (pixr+1); axis(’image’)

H6.6 (Gaussian smoothing filter) (see page 211)

1. Function:

function hg=moygauss (sigma)

hh h

%% Gaussian filter %

%% SYNOPSIS: hg=MOYGAUSS(sigma) %

%%h  sigma = standard deviation %

%h  hg = Gaussian filter %

hh %
xx=-sigma*b:sigmax*5;

g=exp(-xx.*xx / (2*sigma*sigma)); % Gaussian

%===== Keeping only the significant values
hg=g (g>max (g)*.005) ; hg=hg/sum(hg(:));
hg=hg’ * hg;

return

2. Applying it to the test image (Figure H6.4):

%===== TSTMOYGAUSS.M

load lena; subplot(222); imagesc(pixc+1);

colormap (cmap) ; axis(’image’)

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

%===== Gaussian filter with sigma=4

h=moygauss (4); subplot(221); imagesc(h);

axis(’image’); set(gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 O 0])
pixr=round(filter2(h,pixc));

subplot (223); colormap(cmap); imagesc(pixr); axis(’image’)
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set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

%===== Gaussian filter with sigma=2

h=moygauss(2); pixr=round(filter2(h,pixc));

subplot (224) ; colormap(cmap); imagesc(pixr); axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

set (gcf,’Color’,[1 1 1])

Figure H6.4 — FEffect of the Gaussian smoothing filter for two values of o

H6.7 (Sobel derivative filter) (see page 213)
1. The Sobel filter:

%===== LENASOBEL.M

load lena

set (gcf,’color’,[1 1 1])

Spix=size(pixc); N1=Spix(1); Nc=Spix(2);
colormap (cmap) ; NbLevel=size (cmap,1);
subplot (131); imagesc(pixc); axis(’image’)

Y%===== Sobel filter
hx=[1 0 -1;2 0 -2;1 0 -1]1/4; hy=hx’;
%===== x-filtering

pixrx=filter2(hx,pixc);
subplot (132); imagesc(pixrx); axis(’image’)
%===== y-filtering
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pixry=filter2(hy,pixc);
subplot (133); imagesc(pixry); axis(’image’)

Figure H6.5 — Differentiation with respect to the x and y azes

2. Second derivative filter (Figure H6.6):

%===== LENADERSEC.M

load lena

subplot (121); imagesc(pixc);

colormap (cmap) ; axis(’image’)

%===== Second derivative filter

h=[0 1 0;1 -4 1;0 1 0];
pixr=(round(filter2(h,pixc)));

subplot (122); imagesc(pixr); axis(’image’);

Figure H6.6 — Second derivative

3. Derivative filter design (Figure H6.7):

%===== DERIVSYNTH.M

load lena; subplot(221); imagesc(pixc); axis(’image’);

colormap (cmap) ;

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 O],...
’XTick’,[1,’YTick’,[1)

Y%===== Derivative filter

N=5; hx=cos(pi*(1:I)) ./ (1:N); hx=[-hx(N:-1:1) 0 hx];
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hx=hx .* (.54 - .46%cos(2*pi*(0:2*N)/(2%N)));
hdp=hx’ * hx; % Derivation dans les deux directions
pixr=filter2(hdp,pixc);

subplot (223); imagesc(pixr); axis(’image’);

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 O],...
’XTick’,[1,’YTick’,[1)

%===== Second derivative filter

W=3; hx=2*cos(pix(1:M)) ./ (1:N) ./ (1:1);

hx=[hx(N:-1:1) pi*pi/3 hx];

hx=hx .* (.54 - .46%cos(2*pi*(0:2*N)/(2%N)));

hds=hx’ * hx; % Derivation along both axes

pixr=filter2(hds,pixc);

subplot (224) ; imagesc(pixr); axis(’image’);

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 O],...
’XTick’,[1,’YTick’,[1)

set (gcf,’Color’,[1 1 1])

Figure H6.7 — Derivative filter design

H6.8 (Gaussian derivative-smoothing filter) (see page 216)

1. Type:

function hd=dermoygauss(nl,n2,sigmal,sigma2,theta)

b

%% Gaussian derivative-smoothing filter

%% SYNOPSIS: hd = DERMOYGAUSS(nl,n2,sigmal,sigma2,theta)
Wh nl,n2 = Filter dimensions

%%  sigmal = Standard deviation in the x direction

%%  sigma2 = Standard deviation in the y direction

Wh theta = Rotation angle

hh hd = Filter PSF

Wh

)
)
)
%
)
)
)
%

h

623
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denl=sigmal*sqrt (2*pi); den2=sigma2”3*sqrt(2*pi);
512=2%sigmal~2; s22=2%sigmal”2;
ct=cos (theta); st=sin(theta);
mni=(ni1+1)/2; m2=(n2+1)/2; hd=zeros(nil,n2);
for k=1:nl
xc=k-m1;
for ell=1:n2
yc=ell-m2; u=xc*ct-yc*st;
v=xcxgt+yc*ct;
hil=exp(-u~2/s12)/denl; h2=-v*exp(-v~2/s22)/den2;
hd(k,ell)=h1%h2;
end

end
hd=hd / sqrt(sum(sum(abs(hd) .*abs (hd))));

return

2. Applying the filter to the test image (Figure H6.8):

Y%===== TSTDERMOYGAUSS.M

clear; load lena; colormap(cmap);

subplot (223); imagesc(pixc); axis(’image’)

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 O 0], ’XTick’,...
[1,’YTick’,[1)

%===== Gaussian derivative filter along y

hd=dermoygauss (20,20,3,2,pi/4);

subplot (221) ; mesh(hd); view(-30,20);

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

——

subplot (222); imagesc(1l-hd); axis(’image’)

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 O 0], ’XTick’,...
[1,’YTick’,[1)

%===== Filtering

pixr=round(filter2(hd,pixc));

subplot (224) ; imagesc(pixr); axis(’image’)

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 O 0], ’XTick’,...
[1,’°YTick’, [1)

set (gcf,’Color’,[1 1 1])

H6.9 (Contours using Sobel filtering) (see page 223)

%===== CONTOURSOBEL.M

load lena;

subplot (121) ; colormap (cmap); NbLevel=size(cmap,1);
imagesc(pixc); axis(’image’)

%=====8Sobel filter
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Figure H6.8 — Applying the filter to the Gaussian derivative-smoothing filter

pixrx=filter2(hx,pixc); pixry=filter2(hy,pixc);
%===== Processing the contours

pixr=sqrt (pixrx.*pixrx+pixry.*pixry);
spx=size(pixr); pixres=ones(spx);

threshold=25; [idl]=find(pixr>threshold);
pixres(idl)=NbLevel*ones(size(idl));

subplot (122) ; imagesc(pixres); axis(’image’)

H6.10 (Iris search) (see page 223)
A convolution is performed using the circle obtained with the function:

function hrnd=circpsf (radius,cmap)

%h %
%% Circular PSF Y
%% SYNOPSIS: hrnd=CIRCPSF (radius,cmap) %
YAA radius = radius of the circle (pixels) %
Wh cmap = palette Y%
% hrnd = N*N array %
%h %

rr = round(2*radius)/2 -.5;

N=rr#*2+1; hrnd=zeros(N); rrn=(N-1)/2/N;
delta=1/N/sqrt(2);

cx=1/2; cy=cx; quadrx=[0.5:1:N-0.5]/N;
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[X,Y]=meshgrid(quadrx); X0=X-cx; YO=Y-cy;
x2py2=X0.*X0+Y0.*Y0; dist=abs(sqrt (x2py2)-rrn);
indc=find(dist<delta);

hrnd (indc)=ones (length(indc) ,1) *(size(cmap,1)-1);
return

The following program returns, for a sequence of radius values, the location
of the circle that best corresponds to the contour of the iris.

%===== TRTEYES2.M
clear; load eyetst
Mcmap=size(cmap,1)-1; maxO=max (max (tbmax));
tbnor=tbmax; ip0=find(tbnor>40);
tbnor (ip0)=max0+*ones (1,length(ip0));
subplot (131); imagesc(tbmax); axis(’image’)
subplot (132); imagesc(tbnor); axis(’image’)
subplot (133)
seuil=230; pp=2;
for kn=1:12
radius=11+kn/2, hrnd=circpsf (radius,cmap);
resul=filter2(hrnd, tbnor) ;
resul=normim(resul,cmap) ;
[k 1]1=find(resul>seuil); Lk=length(k);
for m=1:Lk,
resul (k(m) -pp:k(m)+pp, 1 (m) )=Mcmap*ones (2%pp+1,1) ;
resul (k(m) ,1(m) -pp:1(m)+pp)=Mcmap*ones (1, 24%pp+1) ;
end
imagesc(resul); colormap(cmap); axis(’image’)
pause
end

trteyes2.m uses the function normim:

function pixn=normim(pixc,cmap)

Wh 72
%% SYNOPSIS: pixn=NORMIM(pixc, cmap) %
o pixc = image %
Wh cmap = palette Y%
%h pixn = normalized image %
Wh 72

if nargin<2,
sprintf (’Erreur sur les arguments’);
return
end
plc=size(cmap,1)-1;
maxp=max (max (pixc)); minp=min(min(pixc));
pixn = round((pixc-minp) * plc/(maxp-minp));
return

This method, however, is not very robust as it highly dependent on the
values obtained for the extracted contours.
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H6.11 (Median filtering) (see page 227)

Type:

function imageO=median2D(imagel,M,N)

hh %
%% Median filter Y
%% SYNOPSIS: imageO0=MEDIAN2D (imageI,M,N) %
%%  imagel = image to be filtered %
%h M = x dimension (odd) of the window %
%% N = y dimension (odd) of the window %
%%  imageD = filtered image %
o %

Me2=(M-1)/2; Ns2=(N-1)/2;
MN=M*N; med=(MN+1)/2;
dims=size(imagel);
image0 = zeros(dims) ;
for k=(Ms2+1) : (dims(1)-Ms2),
for 1=(Ns2+1): (dims (2)-Ns2),
pixbloc=imageI(k-Ms2:k+Ms2,1-Ns2:1+Ns2) ;
pixt=sort(pixbloc(:));
image0(k,1)=pixt (med); % Median value
end

end
return

The following program uses the median2D function as well as the
moygauss.m function (created in exercise 6.6) on the “snowy” test image.

Notice in Figure H6.9 that the median filtering is better at preserving the
contours and eliminating the snow than the Gaussian-smoothing filtering:

%===== LENAMEDIAN.M

load lena; dims=sgize(pixc);
subplot (221) ; imagesc(pixc);
colormap (cmap) ; axis(’image’)

%===== Noise (snow)

gnow=(randn(dims)>-2); pixcsnow=pixc .* snow;
%===== Median filtering

pixfilmed = median2D(pixcsnow,5,5);

%===== Gaussian filter

hd = moygauss(2); % Try 2 then 4

pixfilgauss=filter2(hd,pixcsnow);

subplot (222) ; imagesc(pixcsnow); axis(’image’)
subplot (223) ; imagesc(pixfilmed); axis(’image’)
subplot (224) ; imagesc(pixfilgauss); axis(’image’)
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Figure H6.9 — Suppression of the snow by gaussian-smoothing filtering (image on
the left) and by median filtering (image on the right)

H6.12 (Processing the result of a rotation) (see page 227)

1. Type:

%===== GEOMPROC.M

% Processing of the rotated image
pixc=imread(’imageGGR.bmp’, bmp’) ;

imageS = median2D(pixc,3,3);
tbcolor=[0:1/255:1]1’*[1 1 1]; % Gray colormap
imagesc(imageS); colormap (tbcolor)

set (gca, ’DataAspectRatio’,[1 1 1]);

imwrite (imageS,tbcolor,’imageGGRn.bmp’, *bmp’)

2. The mean is calculated over the four adjacent pixels (left, right, above
and below). Type:

%===== GEOMPROC2.M
% Processing of the rotated image
%===== Transformed image, original rotation angle

% and dimension
load pixcR2; % Image, angle and dims of the original image

spix=size(pixcR2); nl=spix(1); nc=spix(2);
imagesc(pixcR2); colormap(tbcolor)

set (gca, ’DataAspectRatio’,[1 1 1]);

tbx=ones (nl,1)*[1:nc]; tby=[1:nl] *ones(1,nc);
nunR=reshape (tby, 1,nl*nc) ;

nunC=reshape (tbx,1,nl*nc) ;

%===== Testing the pixels of the result
nbool=tstinrect (numR,numC,thet,N1,Nc,nl,nc);
idxrect=find(nbool); Lir=length(idxrect);
idxm1=find (pixcR2(idxrect)==-1); Liml=length(idxm1l) ;
pPp=pixcR2;

%===== Processing
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for k=1:Liml
nn=0; sp=0; ptc=idxrect(idxml(k));
kkl=ptc-nl; kkr=ptc+nl;
if kk1>=1 & pp(kkl) -1, sp=sp+pp(kkl); nn=nn+1; end
if kkr<=Lir & pp(kkr) -1, sp=sp+pp(kkr); nn=nn+1; end
kku=ptc-1; kkd=ptc+1;
if mod(kku,nl) =1 & pp(kku) -1,
sp=sp+pp (kku) ; nn=nn+1;
end
if mod(kkd,nl) =0 & pp(kkd) -1,
sp=sp+pp (kkd) ; nn=nn+1;
end
pp (idxrect (idxml (k) ))=sp/nn;

end
figure(3); imagesc(pp); colormap(tbcolor);

set (gca, ’DataAspectRatio’,[1 1 1]);

The previous program uses a function (tstinrect) that makes it possible
to detect the points of the resulting rectangle that belong to the original
rectangle. Notice that we can end up with more points than in the original
rectangle (Figure H6.10). The overlapping of the processed pixels is not
carried out:

Result for a Result for a

Original 45°rotation 30°rotation
image

Figure H6.10 — Effects of the rotation: the ‘x’s indicate the pizels of the resulting
rectangle that were found to have belonged to the original rectangle subjected to the
rotation

function nbool=tstinrect (numR,numC, thet,N1,Nc,nl,nc)

%h %
%% SYNOPSIS: nbool=TSTINRECT (numR,numC,thet ,N1,Nc,nl,nc) %
%% numB,numC = Points to be tested (vectors of the row Y%

%h and column numbers) %
%% thet = Rotation angle %
%h N1,Nc = Number of rows and columns of the %
o original image %
%4 nl,nc = Number of rows and columns of the %
Wh tranformed image %

%% mnbool = Result of the test %
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%h %
nx=length (numR) ; numR=reshape (numR, 1,nx) ;
nunC=reshape (nunC, 1,nx) ;

xor=(1+nc)/2; yor=(14n1)/2; Xor=(1+Nc)/2;;Yor=(1+N1)/2;
MRotM=[cos (thet) sin(thet);-sin(thet) cos(thet)];
V=[nunC-xor; yor-numR] ;

VmR=MRotM*V; % Reverse rotation
C1=(VmR (1, :)<Xor-0.5) & (VmR(1,:)>-Xor+0.5);
C2=(VmR (2, :)<Yor-0.5) & (VmR(2,:)>-Yor+0.5);

nbool=C1 & C2;

return

Figure H6.11 — Result of the mean calculation operation on the transformed image

H6.13 (Application of the Otsu method) (see page 233)
1. Threshold calculation function:

function [threshold,Hs]=otsu(pixc)

hh %
%% Binarization with the Otsu method %
%% SYNOPSIS: [threshold,Hs]=0TSU(pixc) %
Wh pixc = Image with 256 levels of gray %
%h threshold = Calculated optimal threshold %
YAA Hs = Criterium to be maximized for s=0:255 Y%
hh %
%===== Histogram of the image

[nlig ncoll=size(pixc);

Lhist=256; histog=zeros(Lhist,1);

for k=1:Lhist
histog(k)=length(find(pixc==k-1));

end

histog=histog/nlig/ncol;

%===== Calculating the criterium
Pinf=0; Psup=1; sinf=0; muinf=0; ssup=(0

:Lhist-1) *histog;
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%===== Calculating the criterium for the values of S
% Hs = Pinf*Psup* (muinf-musup) * (muinf-musup)
Hs=zeros(1,Lhist);

for S=0:Lhist-2

%===== Distributions
Pinf=Pinf+histog(5+1); Psup=1-Pinf;
%===== Local means

sinf=sinf+S*histog(S+1); ssup=ssup-S*histog(S+1);
muinf=sinf/Pinf; musup=ssup/Psup;
Hs (S+1) =Pinf*Psup* (muinf-musup) * (muinf-musup) ;

end
threshold=find (Hs==max (Hs)); % Threshold

return

2. Use of the previous function (Figure H6.12):

%===== BINAROTSU.M
load(’elido2.mat’);

nlig=size(pixc,1); ncol=size(pixc,2);
figure(1); colormap (cmap) ;

subplot (121); imagesc(pixc); axis(’image’)

thresholdOtsu=otsu(pixc);
pixc2=zeros(nlig,ncol); pixc2=255%(pixc>thresholdOtsu);
subplot (122); imagesc(pixc2); axis(’image’); colormap (cmap)

Figure H6.12 — Results of the threshold calculation
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H6.14 (Writing basic functions) (see page 238)
1. The DCT given by expression 6.33 can be written:
77

Plu) = TOWCW) Y3 plr,p)cos BT oo Cut D70

z=0y=0

= %C(U)C’(v) Z cos W Zp(x, y) cos W

=0 y=0

with C'(0) = % and C(k)y=1fork=1...7.

The second sum corresponds to the matrix product:

2 1
q(l‘, v) — [p(l‘, y)] % [Ct(y’ v)] with ct(y, v) = cos %
The first sum corresponds to:
2 1
P () = les(on, )] gt )] with es(on, ) = cos ot DT

The matrix N = [C'(u)C(v)]/4 is a weighting matrix, and we have:

Pu,v) = N.x[es(u, z)] * [p(z, )] * [ct(y, v)]

49

where “.*” denotes term-by-term multiplication:

function coeff=DCTp(pixc)

%h %
%% Calculating the DCT coefficients of an (8%8) block %
%% SYNOPSIS: coeff=DCTP (pixc) VA
%% pixc = (8%8) block %
YAA coeff = DCT coefficients (8%8) Y
%h %
% Uses the global variables mNORM, mYV, mUX: %
% mlORM = [1/2 ones(1,7)/sqrt(2); ... %
% ones(7,1)/sqrt(2) ones(7,7)]1/4; %
%h nYV = cos((2%[0:7]’+1)*[0:7]*pi/16); %
%h mUX = cos([0:7]’*(2%[0:7]+1) *pi/16); %
%h %

global mNORM mYV mUX
coeff = mNORM .* (mUX * pixc * mYV);
return
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2. Quantization function:

function matg=quant (dctcof, Qtab)

Wh A
%% Quantization and rounding of the DCT coefficient 7
%% SYNOPSIS: matq=QUANT(dctcof, Qtab) %
%h dctcof = DCT coefficients %
o Qtab = weighting matrix %
Wh YA
matq = round(dctcof ./ Qtab);

return

3. Verification:
Y%===== CORRIG1.M

global mNORM mYV mUX

[Qtab, zig, zagl=initctes;

pix=[139 144 149 153 155 155 155 155;
144 151 153 156 159 156 156 156;
150 155 160 163 158 156 156 156;
159 161 162 160 160 159 159 159;
159 160 161 162 162 155 155 155;
161 161 161 161 160 157 157 157;
162 162 161 163 162 157 157 157;
162 162 161 161 163 158 158 158];

coeff=DCTp (pix-128);

coeffQ=quant (coeff, Qtab);

valmoy=0;

tramec=codel (coeffQ,valmoy, zag)

where the codel.m function given below creates a frame without any
entropic coding:

function [framec,valm]=codel(coeffQ,meanval,zig)

%h %
%% Calculating a frame without entropic coding %
%% SYNOPSIS: [framec,valm]=CODE1(coeffQ,meanval,zig) %
%% coeffQ = quantized DCT coefficients %
%h meanval = mean value of the previous block %
% zig = zigzag indices for reading %
YAA framec = coded frame (bits numbers are set to 0) Y%
% valm = mean used for the next block’s coding %
%h %
bb=0;

if (coeffQ(1,1)==0), coeffQ(1,1)=eps; bb=1; end
frame=coeffQ(zig) ; % coeffQ read in zigzag

%===== Indices of the non-zero terms

idz=find (frame); lidz=length(idz);
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nbzer=diff (idz)-1; 1lnbz=length (nbzer);
valm=coeffQ(1,1); framec=[17 valm-meanval];
for ik=1:1nbz
framec=[framec nbzer (ik) 17 frame(idz(ik+1))];
end
framec=[framec 0 0];
if bb, framec(2)=-meanval; end
return

H6.15 (Writing the compressed frame) (see page 239)

1.

%===== UNBLOCCODE.M

global mNORM mYV mUX
[Qtab, zig, zagl=initctes;
%===== The test image
pix=[139 144 149 153 155 155 155 155;
144 151 153 156 159 156 156 156;
150 155 160 163 158 156 156 156;
159 161 162 160 160 159 159 159;
159 160 161 162 162 155 155 155;
161 161 161 161 160 157 157 157;
162 162 161 163 162 157 157 157;
162 162 161 161 163 158 158 158];
pixc=[pix pix pix ones(8,8)*255];
[nl,ncl=size(pixc);
%===== Analysis and coding of the block
nbx=floor (nc/8); nby=floor(nl/8);
fid=fopen(’unbloccode.dat’,’w’);
furite(fid,nby,’int8’); fwrite(fid,nbx,’int8’);
nbbits=0; meanval=0;
for indy=1:nby
for indx=1:nbx
idx=indx*8; idy=indy*8;
pix=pixc(idy-7:idy,idx-7:idx);

cofpix=DCTp(pix-128); coeffQ=quant (cofpix, Qtab);

[tramec,valm]=codel (coeffQ,meanval,zag) ;
fwrite(fid,tramec,’int8’);
meanval=valm;

end
end
fclose(fid);

%===== IMGTSTCODE.M
clear
global mNORM mYV mUX

[Qtab, zig, zagl=initctes;
load wendyg

figure(1); imagesc(pixc); colormap(cmap); axis(’image’)

[nl,ncl=size(pixc);
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%===== Analysis and coding of each block
nbx=floor (nc/8); nby=floor(nl/8);
fid=fopen(’imgtstcode.mat’,’w’); % Coefficients
furite(fid,nby,’int8’); % Header, number of rows
fwrite(fid,nbx,’int8’); % number of columns
nbbits=0; meanval=0;
for indy=1:nby
idy=indy*8;
for indx=1:nbx
idx=indx#*8; pix=pixc(idy-7:idy,idx-7:idx);
cofpix=DCTp(pix-128); coeffQ=quant (cofpix, Qtab);
[framec,valm]=codel (coeffQ,meanval,zig) ;
fwrite(fid,framec,’int8’); % Writing the frame
meanval=valm;

end
end
fclose(fid);
return

H6.16 (Decompression) (see page 240)

1. function dctcof=unquant(matq, Qtab)

%h %
%% Dequantization of the DCT coefficients %
%% SYNOPSIS: dctcof=UNQUANT (matq, Qtab) %

%% Qtab = Quantization matrix %
YAA matq = Quantized DCT coefficients ¥
%h %
dctcof = matq .* Qtab;
return

2. function pixels=iDCTp(Pdct)
%h %
%% Calculating the inverse DCT %
%% SYNOPSIS: pixels=IDCTP (Pdct) %
YAA Pdct = DCT coefficients (8%8) Y
% pixels = (8%8) block %
%h %
%% Uses the global variables mNORM, mYV, mUX. %
%h %

global mNORM mYV mUX
pixels = mYV * (mNORM .* Pdct) * mUX;
return

3. Test sequence obtained for the decoding:

framec =
17 15 1 17 -2 0 17 -1 0
17 -1 0 17 -1 2 17 -1 0

17 -1 0 0
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valm =
15

framec =
17 0 1 17 -2 0 17 -1 0
17 -1 0 17 -1 2 17 -1 0
17 -1 0 0

valm =
15

framec =
17 0 1 17 -2 0 17 -1 0
17 -1 0 17 -1 2 17 -1 0
17 -1 0 0

valm =
15

framec =
17 49 0 0

valm =
64

4. Y%===== IMGTSTDECODE.M

global mNORM mYV mUX
[Qtab, zig, zagl=initctes;

%===== File containing the codes
fid=fopen(’imgtstcode.mat’,’r’);
nby=fread(fid,1,’int8’); % Number of row blocks
nbx=fread(fid,1,’int8’) ; % Number of column blocks
framec=fread(fid,’int8’); % Data
fclose(fid);
pixcr=zeros(8*nby,8%nbx); pix0=0; idx=1;
%===== For each block...
for indy=1:nby

1d8=indy*8;

for indx=1:nbx

coeffQ=zeros(1,64); kz=1;

idx=idx+1; a=framec(idx);

a=at+pix0; coeffQ(zig(kz))=a; pix0=a;

idx=idx+1; kz=kz+1;

%===== Reading a frame associated to a block

while (framec(idx) =0 | framec(idx+1)~=0),
if framec(idx) =0, kz=kz+framec(idx); end
coeffQ(zig(kz))=framec(idx+2) ;
kz=kz+1; idx=idx+3;

end

idx=idx+2;

coeffQ=reshape (coeffQ,8,8);

coeff=unquant (coeffQ, Qtab);

pix=fix (iDCTp(coeff))+128;

pixcr(id8-7:1d8,indx*8-7:indx*8)=pix;

%===== Comparison of the images
load wendyg
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subplot (121); imagesc(pixc’); axis(’image’); colormap (cmap) ;
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

subplot (122) ; imagesc(pixcr’); axis(’image’); colormap (cmap);
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

set (gcf,’Color’,[1 1 1])

return

H6.17 (Yeung and Wong method) (see page 242)

1. The binary mark that was chosen is visible in Figure H6.13, in the bottom-
left corner.

Figure H6.13 — Inserting the mark: the image in the bottom-right corner is the part
that was modified by the mark

2. Inserting the mark:

%===== YEUNG.M

clear; load lena % pixc, cmap
[nblig, nbcoll=size(pixc);

load tnslogo % pixct, cmap

[nlt, nctl=size(pixct);

subplot (221); imagesc(pixc); colormap(cmap); axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

subplot (223); imagesc(pixct); colormap(cmap); axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

logo=pixct/255; % The levels are set to 0 and 1

%===== Generation of the function f
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rand(’seed’,1);
fdef=rem(round(rand(1,256)*255),2);
%===== Top left block of the original image
bloc=pixc(l:nlt,1l:nct);
subplot (222); imagesc(bloc); colormap(cmap); axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])
for k=1:nlt
for 1=1:nct
ig=bloc(k,1); mg=logo(k,1);
bloc(k,1l)=modifYW(ig,mg,fdef);
end
end
pixc(1:nlt,1:nct)=bloc;
subplot (224) ; imagesc(bloc); colormap(cmap); axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])
set (gcf,’Color’,[1 1 1])
save lenat pixc cmap fdef

The modification implemented by the following function is designed in
such a way as to have “faint” modifications of the levels of gray. A close
level of grey is chosen, immediately above, or if there is none, the first
level below that will satisfy the constraint:

function igs=modifYW (ig,mg,fdef)

%h %
%% If ig'mg then ig is modified %
%% SYNOPSIS: igs=MODIFYW(ig,mg,fdef) %
YAA ig = Ycolor" of the pixel of the image %
YAA ng = "color" of the pixel of the mark ¥
Wh fdef = key function %
Wh igs = modified "color" %
%h %
ig0=ig;

while fdef (ig) "=mg
if ig<=255, ig=ig+l; end

end
if ig==256,

ig=ig0

while fdef (ig) "=mg,

if ig<=255, ig=ig-1; end

end
end
igs=ig;
return

3. Reconstruction of the mark: notice that the method lacks robustness
when subjected to a simple noise with a low amplitude (Figure H6.14):
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%===== YEUNGR.M
clear; load lenat % Watermarked image and key
[nblig, nbcoll=size(pixc);

load tnslogo % Original mark

[nlt, nctl=size(pixct);

subplot (221); imagesc(pixc); colormap(cmap); axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

%===== Top left original block

bloc=pixc(l:nlt,1l:nct);

xx=fdef (bloc); resul=reshape (xx,nlt,nct);

subplot (223); imagesc(resul); colormap(cmap); axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

%===== The image is noised

A=1; mnoise=round(A*rand(nblig, nbcol));

pixc=pixc+mnoise;

subplot (222); imagesc(pixc); colormap(cmap); axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])
bloc=pixc(l:nlt,1l:nct);

xx=fdef (bloc); resul=reshape (xx,nlt,nct);

subplot (224) ; imagesc(resul); colormap(cmap); axis(’image’)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

set (gcf,’Color’,[1 1 1])

Figure H6.14 — Condition of the mark with and without noising

H6.18 (DCT modulation) (see page 244)
1. Calculation of the direct and inverse DCTs:

function coefDCT=DCTG(pixc)

hh %
%% Generalized DCT function %
%% SYNOPSIS: coefDCT=DCTG (pixc) VA
YAA pixc = Array corresponding to a color plane %
%h coefDCT = DCT coefficients %
o %

[Wy,Nx]=size (pixc);
alpha=sqrt (NxxNy) /2;
mUX = cos ([0:Ny-11’>*(2x[0:Ny-11+1)*pi/2/Ny);
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nYV = cos((2*[0:Nx-1]’+1)*[0:Nx-1]*pi/2/Nx) ;
mlNORM = [1/2 ones(1,Nx-1)/sqrt(2);
ones (Ny-1,1)/sqrt(2) ones (Ny-1,Nx-1)]/alpha;
coefDCT = mlNORM .* (mUX * pixc * mYV);
return

function pixc=IDCTG (coefDCT)

Wh %
%% Inverse generalized DCT function %
%% SYNOPSIS: coefDCT=IDCTG(pixc) %
YAA pixc = Array corresponding to a color plane %
%h coefDCT = DCT coefficients %
Wh %

[Wy,Nx]=size (coefDCT);
alpha=sqrt (Nx*Ny) /2;
mUX = cos ((2x[0:Ny-11+1) **[0:Ny-11*pi/2/Ny);
nYV = cos([0:Nx-1] % (2% [0:Nx-1]+1)*pi/2/Nx) ;
mlNORM = [1/2 ones(1,Nx-1)/sqrt(2); ones (Ny-1,1)/sqrt(2)
ones (Ny-1,Nx-1)]/alpha;
pixc = mUX * (wNORM .* coefDCT) * mYV;
return

2. Marking of the image:

%===== MODDCT.m

clear; load wendyg; pixc=pixc’; subplot(221)
imagesc(pixc); axis(’image’); colormap (cmap)
set (gcf,’Color’,[1 1 1])

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])
[nlt,nctl=size(pixc);

%===== Calculating the DCT

coeff = DCTG(pixc-128); mcoeff=abs(coeff);
zzc=zeros (nlt*nct,1); zzc(:)=coeff;

zz=zeros (nlt*nct,1); zz(:)=mcoeff;

%===== Looking for the coeffts to be modified
[zzt,idzz]=sort (zz); zzt=flipud(zzt); idzz=flipud(idzz);
zzcm=zzc (1dzz) ;

zztt=filter([1],[1 -1],zzt .* zzt);

sigT=zzt’*zzt; % Estimation of the power
parP=0.90; % Portion of the power
idd=find (zztt<=parP*sigT) ;

%===== Binary sequence length

Ls=max(idd)+1; rand(’seed’,3);

kcond=1; segbin=kcond#* (2*round(rand(Ls-1,1))-1);
%===== Some coefficients are modified
zzem(2:Lg)=zzcm(2:Ls)+seqbin; zzc(idzz)=zzcm;
W=zeros(nlt*nct,1); W(2:Ls)=seqbin; W(idzz)=W;
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W=reshape (W,nlt,nct);

coeffm=reshape (zzc,nlt,nct) ;

pixcm=iDCTG(coeffm)+128;

subplot (222) ; imagesc(pixcm); axis(’image’); colormap (cmap)
set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

subplot (223); imagesc(DCTG(W)); axis(’image’);

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

save wendygm pixcm cmap W

The program’s parameter kcond can be used to prevent a quantization,
such as the one used in the JPEG coding, from destroying the mark.

3. Checking the marking and the mark:

Y%===== DEMODDCT.M

clear; load wendygm; % Marked image

load wendyg; pixc=pixc’; % Original Image with the mark W
subplot (221); imagesc(pixc); axis(’image’); colormap (cmap)
subplot (222) ; imagesc(pixcm); axis(’image’); colormap (cmap)
pixcd=pixcm-pixc;

subplot (224) ; imagesc(pixcd); axis(’image’); colormap (cmap)
title(’Difference’)

set (gca, ’Xcolor’,[0 0 0],’Ycolor’,[0 0 0])

coeffd=DCTG (pixcd-128); coeffd(1,1)=0;

%===== The owner is authentified by comparing the marks

max (max (abs (coeffd-W)))

In practice, it is better to compare the original mark and the recon-
structed mark using a resemblance measurement such as the correlation,
in order to take into account the alterations the image may have under-
gone during its transmission.

H7 Random variables

H7.1 (Confidence ellipse) (see page 264)

1. By using the indicated variable change Y = C~Y2(X — m), then by
changing over to the polar coordinates, we successively get:

i TR —
a = ————exp| = (x—m)'C 7 (x—m) | dedzx
/A(s) 2m+/det(C) p<2( ) ( ) .
1 ( 1, 5 9 )
——exp | == (yi +v3) | dyrdys
/ylyyz ER2iy2+y2<s} 2m 27 ?

27 s/2
/ / e~ 2 drdl = / e ldu=1— e 5/2
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hence s = —2log(1 — «).
2. Type:

%===== CELLCONF.M

N=200; alpha=0.95;

s=-2%log(1l-alpha); Nth=fix((1-alpha)*l);
C=[2.3659 -0.3787;-0.3787 0.6427];

y=randn(2,N); x=sqrtm(C)x*y;

ellipse ([0 0],inv(C),s); hold;
plot(x(1,:),x(2,:),’+’); hold; axis([-6 6 -6 6]);
normy = ones(1,2) * (y .* y);

nb=length(find (normy>s)) ;

text(2,4,sprintf (’Nth=}g N=Yg’,Nth,nb))

H7.2 (Poisson distribution) (see page 266)
1. The mean is given by:

+oo

E{X} = Ze‘akak/k'! =a

k=0

and the variance by var(X) = E{ X?} — E2{X}. Because we have:

= —ak(k — 1) k = —a 2 ! k=2 2
E{X(X—l)}:Ze ¢ :Ze ama =a
k=0 ’ k=0 ’

then E{ X?} = E{X(X — 1)} + E{X} = a? + a. Therefore, var(X) = a.
2. Fx(k) = P-(X < k) can be written Fx (k) = Fx(k — 1) + px (k) and

to avoid calculating the factorial function, the following recursive form is
used for calculating px (k):

px (k) = apx(k—1)/k

3. In order to generate a Poisson variable with the parameter a, we can use
the following method:

(a) generate the sequence U by typing U = rand(1,N). The maximum
value is denoted by Upax;

(b) construct, as a function of a, the table of the cumulative probabilities
Fx (k) = P.(X < k) smaller than Upax;

(c) determine, for each U(k), the highest integer X (k) such that
Fx(X(k)) < U(k). We can use £ind((X>=a)&(X<b)) which ex-
tracts the indices of the values of z between a and b.
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%===== CPOISSON.M
clear; a=5; N=2000; U=rand(1,N); X=zeros(1,N);
Umax=max (U) ; p(1)=exp(-a); % P(X=0)
FX(1)=p(1); nmax=1;
Y===== cdf
while ((FX(nmax)<Umax)& (nmax<N))
p(umax+1)=a * p(nmax) / nmax; % Iterative calc.
FX (nmax+1)=FX (nmax) + p(nmax+1);
nmax=nmax+1;

%===== Generation of X

for ii=1:nmax-1
ind=find ((U>=FX(ii))&(U<FX(ii+1)));
X(ind)=ii * ones(1,length(ind));

Y%===== Extreme values

ind=find (UKFX(1)); X(ind)=zeros(1,length(ind));
ind=find (U>=FX (nmax)); lind=length(ind);
X(ind)=nmax * ones(1,length(ind));

Y%===== Verification

[pest x0]=hist (X, (0:nmax)); stem(x0,pest/N)
hold; plot((0:nmax-1),p,(0:nmax-1),p,’x’); hold

H7.3 (Rayleigh distribution) (see page 269)
1. We get:

/x t 1 gl =1 x?
u= —exp | —=— =1l—exp|—=
g 02 P\ 7952 P\ 7952

If we solve for #, we get © = oy/—2log(1 — u). Hence, if U has a uniform
distribution on (0, 1), X = o1/—2log(1 — U) has a Rayleigh distribution.
Because U and 1—U have the same distribution, it is equivalent to taking
X = oy/—2log(U) instead.

2. Type the program:

%===== CRAYLEIGH.M

clear; N=3000;

U=rand (1,N); X=sqrt(-2xlog(U));
1k=(max (X)-min (X)) /20; maxx=max(X);
pointsx=(0:1lk:maxx) ;

[nn xx]=hist (X,pointsx);

%===== Estimating the pdf
pest=nn/(l*1lk); bar(pointsx,pest)
%===== Theoretical Rayleigh pdf

pth=pointsx .* exp(-pointsx .* pointsx /2);
hold on; plot(pointsx,pth,’or’); hold off; grid
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Figure H7.1 shows the theoretical graph for the probability density of a
Rayleigh distribution and the histogram of the values obtained by the
generator.
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Figure H7.1 — Rayleigh distribution: probability density (o) and histogram of the
semulated length 3000 sample

H7.4 (Bernoulli distribution) (see page 269)

1. E{B,} =1x Pr(B, =1) 4 0 x Pr(B, = 0) = p. Likewise, E{B2} = p
and therefore var(B,) = p — p? = p(1 — p).

2. Because the random variables are assumed to be independent, they
are necessarily uncorrelated, and we have, for k # n, E{BgB,} =
E{ By} E{B,} = p*.

3. Because of linearity, E{S} = E{B,} = p. In order to determine the
variance, we first have to calculate the second order moment E{SZ}:

N N
E{s?} = ZZE{Ban}
1 al oy 1
n=1 nZk
_ %erN(JJVV;l)pz:szrp(lN—p)

In the end, m = E{S} = p and o? = var(S) = E{5?} — E*{S} = pg/N.

4. We have successively ¢ = 402 /m? = 4(1 — p)/Np ~ 4/Np if we assume
that p < 1, meaning that N ~4/(pe?). For ¢, = 0.1, we get N = 400/p.
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5. The inequalities 7.26 show that, in order to determine the random variable
B that has a Bernoulli distribution with a parameter p, from a random
variable U uniformly distributed on (0, 1), we have to choose B = 0 if
0<U < (1—-p)and 1 otherwise. This result is obtained in the following
program with the instruction B=(U>q) where ¢ =1 — p:

Y===== CBERNOU.M

p=0.1; g=1-p;

er=.1; N=fix(q/(p*er*er));
U=rand(1,N); B=(U>q);

mean (B)

H7.5 (Signal-to-quantization noise ratio) (see page 272)

1. Since all the amplitudes are assumed to belong to (—F e, +F o), the quan-
tization step is given by ¢ = 2Fo/2V. Because E{az} = ¢?/12, we have:

1202 92N

RSB = 1010g10 (W

) = 6N + 101og;o(3/F?)

Thus, we get the following practical rule: the signal-to-noise ratio is in-
creased by 6 dB for every additional coding bit.

2. Type:

function [rcval,codel=bincoding(x,N,A)

%h %
%% Two’s complement binary coding %
%% SYNOPSIS: [rcval,codel=bincoding(x,N,A) %
%hx = Sequence to be coded %
%hoN = 2°N codes (default 4) %
YAA A = Conversion between —-A and A %
%4 rcval = Reconstructed value %
YAA code = Two’s complement binary code %
% -2 (N-1)<=code<=2" (N-1) -1 %
%h %

if nargin<3, A=1; end
if nargin<2, N=4; end

if nargin<1, error(’Parameters missing...’); end
q=A/2" (-1); code=floor(x/q);
Y%===== Clipping

cm=-2" (-1); cM=2"(N-1)-1;

idm=find (code<cm); idM=find(code>cM);
code (1dM) =cM*ones (size (idM)) ;

code (idm) =cm*ones (size (idm)) ;
rcval=code*q+q/2;

return
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Notice the use of the floor function to directly calculate the reconsructed
values yt corresponding to the values of the unclipped signal xt. Of
course, some values of the signal xt are greater than A., and are therefore
clipped. Their number must be negligible for the chosen value of F.

3. The following program displays the histogram of the error signal and
both the theoretical and the measured ratios (S/B)4p plotted against N
(Figure H7.2). The peak value A, = F+/P is obtained from an estimation
P of the signal’s power and from an a priori peak factor of 3.5:

%===== CSSURBQ.M

clear; T=2000; xt=randn(1,T);

%===== RLF

Fc==3.5; Cc=10%*1ogl0(3/(Fc*Fc));

%===== Ac from the estimated power
px=xt#*xt’/T; Ac=Fcx*sqrt (px);

%===== Indices for which there is saturation

indmax=find(xt>=Ac); lindmax=length (indmax) ;
indmin=find(xt<=-Ac); lindmin=length(indmin);
figure(1);

for Nb=1:7
[yt,code]l=bincoding (xt,Nb,Ac) ;
ninter=2"Nb;

g=2*Ac/ninter; %==== Quantization step
errq=xt-yt; %==== Quantization error
%===== Histogran

hist (errq, (-5:5)*q/5) ; grid; pause
pe=errqg*errq’/T; ssb(Nb)=10%1log10(px/pe);
%===== Theoretical values
ssbth (Nb)=6xNb+Cc;
end
figure(2); plot([1:7],ssbth,’:y’,[1:7],ssb,’Xy’); grid

By examining the histograms, we can check the uniform distribution of
the quantization error hypothesis. As you can also see, the power of the
error is close to ¢2/12.

H8 Random processes

H8.1 (Suppressing an affine trend) (see page 290)

1. {B(n)} is a sequence of N Gaussian, centered random variables, uncor-
related, and 1s therefore independent. Hence, we have:

(b by_1) 1 ( bg+~~~+b]2v_1)
o byo) = ————exp [ ———— =1
y2:14l N-1 (ab\/ﬂ)N P 205
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Figure H7.2 — Both the theoretical and the measured “Signal-to-noise” ratios (SNR)
of a uniform quantization plotted against the number of coding bits. The “x”s are
obtained from a sample with the size 2,000

Because B(n) = X(n) — a1 — asn, the probability distribution of (X(0),
.., X(N —=1)) has the density:

(oo /2m) N 207

1 N-Lie —ay — asn)?
px(l‘o,"',l‘N—l;al,az,Ug):ieXP (—ZH_O( = : 2 ) )

2. Maximizing px(zo,...,TN—-1;a1,a2,02) with respect to a; and a is
equivalent to minimizing the sum found in the exponential, that is to
say J(a1,a2) = ZnNz_Ol(xn —ay — asn)?. By differentiating J (a1, az) with
respect to a; and a», and setting the derivatives to zero, we get the system

of two equations:
N-1 N-1 N-1
a1 Zn:O 1 +az Zn:O n= Zn:O Ln
N-1 N-1 N-1
a1 Zn:O n+ay Zn:O 7'L2 = Zn:O n¥n
which can be written, with the suggested notations, W/ Wa = W7X.
Because WT'W is invertible, the solution is a = (W W)~!WT* X which
happens to be the solution for the least squares estimator (page 393).

This is not surprising since maximizing the probability density in the
Gaussian case is equivalent to minimizing the square deviation.

3. The following function eliminates the affine trend:

function [A,dx]=tendoff (x)
%h %

%% Suppression of an affine trend %
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%% SYNOPSIS: [A,dx]=TENDOFF (x) %
% x = Input sequence %
%h A = Affine regression coeffts ¥
Wh dx = Residual %
o %

x=x(:); N=length(x); w=[ones(N,1) (0:N-1)’]1;
A=w\x; dx=x-w*A;
return

H8.2 (Smoothing filtering of noise) (see page 299)

1.

Starting with the definition, we get:

S —2jmfn d 1 —2§7fn 2 SiH(Sﬂ'f) 2
D S —Ssmw)\

. Because the input process is white with a variance of 1, Sxx (f) = 1 and

therefore Syy (f) = |H(f)]*.

. The output power can simply be written:

1/2 1/2
P:/ Syy (f)df = / HIPdf = Z|h I =1/8

—1/2

. The output autocovariance function is obtained as the inverse Fourier

transform of Syy (f). This is also the convolution of a rectangle of width
Ly = 8 with itself, which results in the triangle with the support (—(Ls —
1), Ln — 1). Theoretically, Ryy (k) is therefore null for |k| > L.

. The following program generates a trajectory for the signal y(t) and es-

timates 10 points of the autocovariance function. We have to check that
the estimated function is negligible beyond L, = 8:

%===== CMEANNOISE.M

T=2000; N=10; % Number of covariance coeffts
%===== Generating the signal using a rectangular FIR
Lh=8; h=ones(1,Lh)/Lh; w=randn(1,T); x=filter(h,1,w);
%===== Estimation of the autocovariance

xi=[x zeros(1,N-1)];

D=toepl(xi,[xi(1) zeros(1,N-1)]1); R=D*xi’/T;
%===== Drawing the autocovariance
tau=(-(N-1): (N-1)); Rs=[R(N:-1:2) ; R];
subplot (211); plot(tau,Rs,’0’); grid

%===== Drawing the spectrum

Lfft=512; freq=(0:Lfft-1)/Lfft;
Sf=10%1og10 (abs (fft (R,LEft)));

subplot(212); plot(freq,Sf); grid
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Figure H8.1 shows the N = 10 point estimate of the autocovariance
function. The triangular shape is visible for 0 < |k| < 7. Beyond that,
the values are almost equal to zero, as predicted by the theoretical results.
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Figure H8.1 — Triangular autocovariance function

We have to check that the estimated value in & = 0, which represents the
power of Y'(n), is in agreement with the theoretical value of 1/8.

0 01 02 03 04 05 06 07 08 09 1

Figure H8.2 — Spectrum estimate

The spectrum, calculated from the FFT estimation of the autocovariance
is represented in Figures H8.2 for f € (0,1/2). Tt corresponds to the
theoretical spectrum |H(f)|?. The width of its main lobe is equal to
0.25.

H8.3 (Generating a band limited process) (see page 300)
To shift the frequencies back to the (—1/2,+1/2) band, we have to divide the
frequency scale expressed in Hz by the sampling frequency Fs; = 10,000 Hz.
Hence the spectrum band for which the process is different from zero is the
(—0.1,40.1) band. Tts psd is shown in Figure H8.3. Because the power is equal
to the integral of the psd, P = 0.2« and therefore o = 10.
The following method can be used to obtain a trajectory:
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Figure H8.3 — Power spectral density of the low-pass process

— with the use of the randn function, construct a random sequence the
spectral density of which is equal to 1 in the (—1/2,41/2) band;

— multiply this sequence by 4/10, to obtain a power equal to 10;

— apply a filter with a gain 1 to the (—0.1,40.1) band. To generate the
coefficients of this filter, use the rif function (page 599).

%===== CPABLIM.M

Fs=10000; Fc=1000; fcr=Fc/Fs; T=1000;
w=sqrt (10) #randn(1,T) ; B=rif (50,fcr); x=filter(B,1,w);
subplot (211); plot(w); grid;

subplot (212); plot(x); grid

The trajectory of x is less “chaotic” than that of w. This phenomenon is
analogous to the one observed for deterministic signals: reducing the frequency
band leads to slower time fluctuations.

H8.4 (Pre-emphasis and de-emphasis) (see page 300)

1. Tf we use the filtering formula, we get the psd of the output signal W(n)
of the filter with B(n) as its input. This leads to the expression of the
power:

+1/2
W) = [ AP S

Because these two cascaded filters have no effect on the signal X(n)
(Figure H8.4), the power of the output signal’s useful part is given by

+1/2
H Sk (F)df
Hence the signal-to-noise ratio has the expression:
+1/2 g
, Sz 1/2 Hdf
PD =YD
A |ZSB< )df
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Figure H8.4 — The pre-emphasis and de-emphasis system

2. Using the filtering formula, we get the psd of the output signal of the
filter H,(f). This leads us to the expression of the power:

+1/2
Py = / [, (1)2Sx (F)df

—1/2

A system without pre-emphasis/de-emphasis amounts to the addition of
noise, with the power f_-|-11//22 Sp(f)df, to the useful signal. For an accurate
comparison of the systems with and without pre-emphasis, we have to
consider that the power available to the system without pre-emphasis is
equal to Py. Therefore, the signal-to-noise ratio has the expression:

+1/2

. Po f 1//2 | SX( )df
+1/2 - +1/2
I 1/2 f)df I 1/2

3.
+1/2 +1/2
g= PPD f 1/2 f 1/2 f
- — 41/2 +1/2

P (s >|25X< o T )IQSB(f)df

4. Using the Schwarz inequality, we get a lower-bound for the denominator,
then the fact that H,(f)Ha(f) = 1 leads us to:

+1/2 o +1/2 &
f 1/2 (fdf J” 1/2 (f)df
+1/2
e
The two sides are equal if and only if |H,(f)|?Sx(f) is proportional to

|Ha(f)|?Se(f). Finally, we infer that the maximum of the gain g is
obtained for:

(13.4)

Se(f)
Sx (f)

[Hp ()P =
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The corresponding gain is given by the right-hand side of equation 13.4
which is always greater than 1 according to the Schwarz inequality. As a
conclusion, we started out with the expressions of the spectra and ended
up with improved performances.

In many cases, the spectra of the signal and of the noise are such that a
low-pass filter provides a good approximation of the de-emphasis filter.
Therefore, a high-pass filter is used on the pre-emphasis side. To get
a better idea, imagine that the treble level is “raised”, hence the name
pre-emphasis.

Frequency modulation radio transmissions use this technique. It is also
found in speech coders, such as the one used in exercise 12.4, page 469.
In that case, the pre-emphasis filter used is very simple: it is a high-pass
FIR filter with the two coefficient impulse response h = [1  —0.9375] (see
the code.m program on page 633).

H8.5 (Estimation of an FIR filter’s impulse response) (see page 301)

1. We saw in expression 8.45 that Ry x (k) = h(k) » Rxx (k). Because h(k)
has a finite length L:

Ryx(k’) = h(O)Rxx(k’) + -+ h(L — I)Rxx(k’ - L+ 1)

2. If we stack the L equations for k& from 0 to (L — 1), we get the matrix
expression:

ryx = Rxxh
with:
h = [~(0) A(1) - h(L—1)]¥
ryx = [E{Y(n)X(n)} - E{Y(n)X(n— L+ 1)}]"
Rxx = [E{X(n =) X(n —j)}icij<z = Rxx(j —1)
Therefore, h = R)_(lXI‘y)(. Because Rxx is a Toeplitz matrix, the Levin-
son algorithm (see exercise 8.6) provides a fast technique for computing

the inverse of Rx x. Here we will only be using the MATLAB® function
inv.

3. To estimate Rxx (k) and Ry x (k) based on a sequence of N observations,
we first have to center X (n) and Y (n):

Xe(n) = X(n) - %ZX@) and Yo(n) =Y (n) = > Y ()
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then we use:

1]\7 k 1]\7 k
RXX ZXCj—i_k (.)andRYX ZYC.7+k ()
]:1 ]:1
Type:
%===== CREPIMP.M
N=26; Tx=length(x);
for jj=1:N

rx(jj)=[x zeros(1,jj-1)I*[zeros(jj-1,1) ; x’1;
ryx(jj)=Ly zeros(1l,jj-1)1*[zeros(jj-1,1) ; x’]1;
end
Rxx=toepl(rx); hest=inv(Rxx) * ryx’;

plot ((0:N-1) ,hest,’x’,(0:N-1) ,h,’0’)

H8.6 (The Levinson algorithm) (see page 314)
1. Save the function:

function [ai,s2]=levinson(x,K)

Wh %

%% Prediction: Levinson algorithm %

%% SYNOPSIS: [ai,s2]=LEVINSON(x,K) %

% x = Input sequence %

%h K = Model order %

%h 82 = Prediction error %

% ai = Model coeffts (1 a_1 ... a_K) %

Wh %
N=length(x); x=x(:); x=x-ones(1,N)*x/N; R=zeros(1,K+1);
%===== Estimation of the covariances

for kk=1:K+1
R(kk)=x(1:N-kk+1) ’*x(kk:N)/N;

end

varE=zeros (K+1,1) ; ki=zeros(K+1,1); ai=zeros(K+1);

varE(1)=R(1,1); ai(1,1)=1;

%===== Levinson algorithm

for kk=2:K+1
ki(kk)=-R(kk:-1:2)*ai(1:kk-1,kk-1)/varE(kk-1);
ai(1:kk,kk)=[ai(1:kk-1,kk-1);0]+...

ki(kk)*[0;conj(ai(kk-1:-1:1,kk-1))1;

varE (kk)=varE (kk-1) * (1-ki (kk) *ki (kk) ’) ;

end

s2=varE (K+1) ;

return
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Type:

Y%===== TESTLEVINSON.M

clear; K=7; N=2000; w=randn(N,1)+j*randn(N,1);
avrai=[1;0.48-0.45%1;0.89-0.22%1;0.48-0.4%1;-0.01-0.22%1];
P=length(avrai)-1;

x=filter(1,avrai,w);

[aestl sest2L]=levinson(x,K);

%===== Direct estimation

[aestD,sest2D]=xtoa(x,K);

[[avrai;zeros(K-P,1)] aestD aestL(:,K+1)]

In order to test the levinson function, we took a complex AR process
generated by a complex coefficient polynomial A(z) such that A(z) # 0
for |z| > 1. In the case of a complex process; the estimation of the
covariances has the expression:

R N-k+1
R(k) = % > Xe(n+k)X:(n)

We used the xtoa.m function written on page 330.

2. The Levinson algorithm allows us to solve the equation R[1 a; ...ap]7 =
[620---0]T where Risa (p+1) x (p+1) Toeplitz matrix. This algorithm
also applies to solving the equation:

Rh=c¢

where R is once again a Toeplitz matrix, but where ¢ is any vector. We
will encoutner this type of equation in section 11.2.5 when we identify
filters (see, for example, equations 11.22 and 11.42 in Chapter 11). R is
an autocovariance matrix, ¢ is a covariance vector between the input and
the output, and h is the FIR filter we have to identify.

As we did previously, we are going to try to find an iterative algorithm
that updates at step n the length (n — 1) solution h("=1 found at step
(n — 1). This solution h(®=1 is such that R"~Dh"~1 = ¢(*=1) where
R~V is the (n—1) x (n—1) Toeplitz matrix and ¢"=1) = (¢(1), ..., c¢(n—
1)T. Because R is a Toeplitz matrix, we can write:

R(n) h(n—l) _ R(n—l) I‘(n) h(n—l) _ c(n—l)
0 rT'(n)  R(0) 0 v’ (n)h(=1)
At step n, we need to find the solution h(™®) such that:

(e R0 )2 =)
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If we substract the two matrix equations, we get:

0

(R(n—l) r(n) )Ah(n)—

() R(0) )

v’ (n)h(”_l) —¢(n)

Notice that this equation is analogous to the one we solved with the
Levinson recursion. The algorithm therefore consists of applying this
recursion to the updating terms Ah(). This is what is done in the
following function:

function h=invToeplitz (rxx,rxy)

%h %
%% SYNOPSIS: h=INVTOEPLITZ (rxx,rxy) %
%% rxx = (NxN) autocovariance matrix %
%h rxy = (Nx1) covariances between x and y %
Wh h = (lixl)vector %
%h %
%===== Initial values : Rxx(0) h(0,0) = rxy(0)

NbCor=length(rxy) ; h=zeros (NbCor,1); h(1)=rxy (1) /rxx(1);
delta(1)=0; delta(2)=1/rxx(1);

for L=1:NbCor-1
p=0;
for I=1:L, p=p+rxx(I+1)*delta(I+1); end
beta=1/(p*p-1); alpha=beta*p;
for I=0:L
deltaP (I+1)=alpha*delta(L-I+1)-beta*delta(I+1);

end
for I=0:L, delta(I+2)=deltaP(I+1); end

q=0;
for I=1:L, g=q-h(L-I+1)*rxx(I+1); end
gq=q+rxy (L+1);
for I=0:L, h(I+1)=h(I+1)+gq*delta(I+2); end
end
return

To test this function, the following program constructs a Toeplitz matrix
R (denoted by RXX in the program) and a vector ¢ (denoted by rxy)
based on an impulse response denoted by h:

%===== TESTINVTOEPL.M
h=[1;0.3+j;-0.2-6%j;0.1;0.07;0.9]; lh=length(h);
%===== Positive Toeplitz matrix (1h x 1h)

N=100; w=randn(N,1); x=filter(0.5%ones(2,1),1,w);
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for ii=1:1h
cxx(11)=x(1:N-1i+1)’*x(ii:N);
end
RXX=toeplitz(cxx); rxy=RXXxh;
ha=invToepl(cxx,rxy); [h hal
H9 Continuous spectra estimation

H9.1 (Spectrum estimation using the Welch method) (see page 327)

1. welch function:

function [sf,gammal=welch(x,lgfen,typef,Lfft,beta)

% %
%% SYNOPSIS: [sf,gammal=WELCH(x,lgfen,typef,Lfft,beta) %
% X = Input sequence %
Wh lgfen = Analysis window %
% typef = Window: h(ham) or r(rect) %
o Lfft = FFT length %
% beta = Confidence parameter %
YAA gamma = Confidence interval (100xbetal) Y
% st = Spectrum VA
% %
x=x(:); N=length(x); sf=zeros(Lfft,1);

%===== Suppression of the trend

[abid x]=tendoff(x);
Ks2=fix(lgfen/2); lgfen=2%Ks2; nbblocks=fix (N/Ks2)-1;
if (typef(1)=="h’)
fen=0.54-0.46%cos (24pi* (0:1gfen-1) /1gfen) ;
elseif (typef(1l)==’r’)
fen=ones (1,1gfen);
else
disp(’Unknown window’)

return
end
wfen=(1/sqrt (fenxfen’))*fen’;
for tt=1:nbblocks
ti=(tt-1)*Ks2+1;tf=ti+lgfen-1; pt=x(ti:tf) .* wfen;
apf=abs (fft (pt,Lfft)) ."2; sf=sf+apf;
end
sf=sf/nbblocks; gamma=sqrt(2)*erfinv(beta)/sqrt(nbblocks);
return

2. The welch function is tested and compared with the smperio function
in the following program:

Y%===== CTESTWELCH.M
clear all
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T=1000; blocana=64; Lfft=1024; freq=(0:Lfft-1)/Lfft;
%===== Signal generation

w=randn(1,T); x=filter([1 .5 .02 .01],1,w);
xfth=20*10g10(abs(fft([1;.5;.02;.01],Lfft)));

[xfw gamma]=welch(x,blocana, ’ham’,Lfft,0.95);

[xfp fregpl=smperio(x,16,’t’);

xfw=10*1og10 (xfw) ; xfp=10*Llogl0(xfp);

df 1=-10%1log10(1+gamma) ; df2=-10%*1logl0(1-gamma) ;

plot (freq,xfw,freq,xfu+dfl,’g-.’ ,freq,xfu+df2,’g-.’ ,freq,xfth);
set (gca, ’x1im’, [0 0.5]);

hold on; plot(freqp,xfp,’r’); hold off

H9.2 (Estimating the spectrum of a binary signal) (see page 327)
Type:

%===== SPECBIN.M

clear; 1b=1024; A=b; T1=10; T2=25; T=T1+T2;
gn=[A*ones (T1,1) ;zeros(T2,1)]; an=sign(rand(1,1b)-1/2);
yn=gn#*an; yn=reshape (yn,1,T*1lb);

%===== Signal

figure(1),plot(yn(1:7+T)); grid

set (gca,’ylim’,1.2%[-A Al, x1im’, [1 7%T])

%===== Spectra

Lfft=1024; fq=(0:Lfft-1)/Lfft; tbloc=128;
spectheor=abs (fft (gn,Lfft)) .72 /T;

[syf gammal=welch(yn,tbloc, ’ham’,Lfft,95);

figure(2); subplot(212); plot(fq,10%logl0(syf)); grid
set (gca, ’x1im’, [0 1/2],’ylinm’, [-40 20])

subplot (211); plot(fq,10%1logl0(spectheor),’r’); grid
set (gca, ’x1im’, [0 1/2],’ylinm’, [-40 20])

%===== Theoretical spectrum

absGf=A*abs (sin(pi*(1:Lfft-1)*T1/Lfft) ./ sin(pi*(1:Lfft-1)/LEft));
spectheor2=[A*T1 absGf] ."2/T;

Both the theoretical and the estimated spectra are represented in Figure
H9.1. We can also use the smperio function (example 9.1), by typing:

[syfp, freqpl=smperio(yn);
figure(2); subplot(212); hold on;
plot (freqp, 10*logl0(syfp),’g’); hold off

With the values chosen for the size of the windows, the results are noticeably
better with the smperio function. Note, however, that the Welch method
calculates several (559) length 1,024 FFTs whereas the smoothed periodogram
method calculates only one FFT with a length at least equal to 35,840 in our
example.

H9.3 (Spectral observation and oversampling) (see page 328)
Type (Figure H9.2):
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Figure H9.1 — Signal spectra: above, the theoretical spectrum, below, the estimated
spectrum

Yf===== specoversmp.m
M=8; Npts=1024; Lfft=256; freq=(0:Lfft-1)/Lfft;
%===== Signal generation

NB=8; hn=rif (NB,1/4); xsig=filter (hn,1,randn(1,Npts));
xsigs=welch(xsig,16, ham’ ,Lfft,0.95);

subplot (311); plot(freq,xsigs); axis([0 .5 0 max(xsigs)]);
Y%===== Insertion of zeros

y=zeros (M,Npts); y(1,:)=xsig; yr=zeros(1,Npts*M); yr(:) = y;
yrs=welch(yr, 128, ham’ ,Lfft,0.95);

subplot (312); plot(freq,yrs); axis([0 .5 0 max(yrs)]);
%===== Lowpass filtering

NPB=50; unsur2M=1/(M*2); hinter=rif (NPB,unsur2M);

y=filter (hinter,1,yr);

ys=welch(y,128, ham’ ,Lfft,0.95);

subplot (313); plot(freq,ys); axis([0 .5 0 max(ys)]);

Notice that the window size used for the estimation of the spectrum is 8
times smaller in the first case than it is in the next two, in order to have the
same resolution for the three spectra.

H9.4 (The Burg estimation of the AR parameters) (see page 335)
1. Save the function:

function [ai,s2]=burg(x,K)

% %
%% SYNOPSIS: [ai, s2]=BURG(x,K) %
% x = Input sequence %
%h K = Prediction order %
%h 82 = Prediction error %

YAA ai Model coeffts (1 a_1 ... a_K) %



Hints and Solutions 659
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Figure H9.2 — Spectra of the generated signals

%h %

Nx=length(x); x=x(:)’; % Row vector

x=x-x*ones (Nx, 1) /Nx;

varE=zeros (K+1,1) ;

kburg=zeros (K+1,1); ai=zeros (K+1,K+1);

epsf=x(lx:-1:1); epsb=conj(x(Nx:-1:1));

varE(1)=x*x’/Nx; ai(1,1)=1;

for mm=2:K+1
le =length(epsf);
nun=-2*epsb(1l:le-1)*conj(epsf(2:1le)’);
den=epsb(l:le-1) *epsb(l:1le-1) *+epsf(2:1le) *epsf(2:1e) ’;
kburg (mm)=num/den; ai(l,mm)=1;
for nn=2:mn

ai(nn,mm)=ai(nn,mm-1)+kburg (mm)*ai (mm-nn+1,mm-1) >;

end
varE (mm)=varE (mm-1) * (1-kburg (mm) *kburg (mm) ’) ;
auxf=epsf(2:1le) + kburg(mm)*conj(epsb(l:le-1));
epsb=epsb(1:1le-1) + kburg(mm)*conj (epsf(2:1e));
epsf=auxf;

end

ai=ai(:,K+1); s2=varE(K+1);

return

2. The program testburg.m can be used to compare the results obtained
by direct resolution or by using the Burg algorithm:

clear; N=20000; w=randn(l,1)+3*j*randn(l,1);
avrai=[1;0.48-0.45%1;0.89-0.22%1;0.48-0.4%1;-0.01-0.22%1];
P=length(avrai)-1;
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x=filter(1,avrai,w);

K=7; % Over-estimated order if K>P

%===== Estimation using Burg
[aestB,sest2B]=burg(x,K);

%===== Estimation using Levinson
[aestL,sest2L]=levinson(x,K) ;

%===== Direct estimation
[aestD,sest2D]=xtoa(x,K);

[[avrai;zeros(K-P,1)] aestD aestL(:,K+1) aestB]

H9.5 (AR-1 estimation and confidence intervals) (see page 336)

1. As we saw in exercise 7.1, the 100a% confidence ellipse for a two dimen-
sion Gaussian distribution with the mean m and the covariance matrix
C is given by equation (X — m)’C~}(X — m) = —2log(1 — a).

2. Type (Figure H9.3):

%===== CAR1STAT.M

clear; s2=1; a=-0.7; N=1000; nbe=500; alp=98/100;

calp=-2*log(1-alp); C=[N/(2*s2%s2) 0; 0 N/(1-a*a)];

ellipse([s2 a],C,calp); hold on

plot([s2 s2],ax[.8 1.2],°-’); plot(s2%[.8 1.2],[a al,’-")

for ii=1:nbe
wn=s2%randn(1,N); xn=filter(1,[1 al,wn);
rOest=xn*xn’/N; riest=xn(2:N)*xn(1:N-1)’/(N-1);
aest=-rlest/rOest; s2est=rOesttaest*rlest;
plot(s2est,aest,’+’);

end

axis ([ s2%.8 82%1.2 a*1.2 a*0.8]); grid; hold off

Figure H9.3 — 98% confidence ellipse
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H10 Discrete spectra estimation

H10.1 (The Prony method) (see page 363)

1. According to property 10.1, the real signal s(n) satisfies a recursive equa-
tion:

s(n)+bis(n—1)+---+baps(in—2P)=0

such that the 2P roots of the real coefficient, 2P degree polynomial
B(z) = 2% +b6,22P71 4 ... 4 byp come in pairs of complex conjugates
on the unit circle. These roots are written z; = exp(+2jnf;). This ex-
pression makes it possible to calculate the frequencies f; based on the
calculation of the roots of the polynomial B(z).

2. If we start out with z(n) + byz(n — 1) 4+ -+ -+ bapax(n — 2P) = £(n) and
stack the N — 2P equations obtained fromn = 2P ton = N — 1, we get:

r(2P) +b1z(2P — 1) + -+ - + bapa(0) = ¢(2P)
(2P + 1)+ b12(2P) + - - - + bopa(l) = (2P + 1)

:x(N—1)—|—b1x(N—2)+~~~+b2px(N—2P—1):5(]\7—1)

which can be written, with obvious notations Db = e. D is an (N —
2P) x (2P +1) matrix constructed from the data and b = [1 by ... bap]T
is the vector associated with the coefficients of the polynomial.

In order to estimate b, the Prony method suggests minimizing the scalar
e’e = b"DTDb under the constraint stating that the first component of
b must be equal to 1. If we chooseu=[1 0 ... 0]¥ and R = DTD
(a (2P 4+ 1) x (2P 4 1) square matrix), we have to solve:

min(bT Rb)

. (13.5)
such that : b*u—-1=0

Note that the matrix R = D7D involved in this expression is the matrix
we associated with the covariance method on page 296.

The Lagrange multiplier method consists of substituting the problem for-
mulated by expression 13.5 with the following equivalent problem:

min {bTRb — /\(bTu — 1)}
such that : bTu—1=0
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If we differentiate the first expression with respect to b, we get the equa-
tion Rb = Au, which gives us b = AR 'u. If we take into account the
constraint, we have Au” R™'u — 1 = 0, based on which we can determine
A. In the end, we get:

1

Here 1s a summary of the frequency estimation algorithm:

Steps:

— Construct the matrix D then calculate R = D”D.
1
— Calculate b= ————R ™ 'u.
uTR-1u
— Theoretically, the polynomial constructed from the elements of b has
all its roots on the unit circle. They can be obtained either by direct
computation with the roots function, or by an FFT evaluation of

the expression:

1

G(f) = |14 bie=207] 4 ... 4 bype=4Fin]|

and determine its maxima, which theoretically, should be infinite.

3. Type the program:

Y%===== CPRONY.M
clear
%===== Original signal

An=[2 1.5 1]; P=length(Am); F=[0.2 0.225 0.3];
N=25; s=Am¥cos (2*pi*F’*(0:N-1));

SNR=40; sigma2= (s#*s’/N)/(10 ~(SNR/10));
%===== Noisy signal

x=s+sqrt (sigma2)*randn(1,N) ;

D=toepl (x (2%¥P+1:N) ,x (2*P+1:-1:1));

R=D*D’; U=[1;zeros(2%P,1)];

B=inv(R) *U;
lambda=U’*B; A=B/lambda;
Y%===== Verification

Lfft=256; fq=(0:Lfft-1)/Lfft;

gf=1 ./ abs(fft(A,Lfft));

subplot (211); plot (fq(1:Lfft/2),gf(1:Lf£ft/2)); grid
xf=abs (fft (x,LEft));

subplot (212) ; plot (fq(1:Lfft/2),xf(1:Lf£ft/2)); grid
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The result shown in Figures H10.1 indicates that the frequencies 0.2 and
0.225, having a difference of 0.025 (smaller than the Fourier limit which
has the same order of magnitude as 1/N = 0.04) can still be distinguished
on the first spectrogram, corresponding to the Prony method, while they
cannot on the second one obtained by a direct computation of the peri-
odogram. This only illustrates, rather than prove, the superiority of one
method over the other. The only way of proving it would be to compare
performances in the presence of noise, by conducting for example a simu-
lation based on a noisy signal with known frequencies, and by calculating
the square deviations around the true values.

Prony :

77777777777777777777777777777777777777777777777777777777777777777777

0 005 0.1 015 02 025 03 035 04 045 05
Periodogram ‘ ‘ ‘ ‘ ‘ ‘ ‘

———————————————————————————————————————————————————————————————

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

fffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

7777777777777777777777777777777777777777777777777777777777777777777

Figure H10.1 — Above: spectrum obtained with the Prony method; below: peri-
odogram. The signal-to-noise ratio is equal to 40 dB. The sample size is N = 25. The
frequencies are [0.2 0.225 0.3] and the amplitudes are [2 1.5 1] respectively

If the signal-to-noise ratio decreases, even by as little as 10 dB, the Prony
method leads to significantly worse results.

H10.2 (The Pisarenko method) (see page 364)

1. Tf we expand E{z(n + k)xz(n)}, and use the fact that there is no correla-
tion between s(n;a) and b(n), and that b(n) is centered, we get, for the
autocovariance function of z(n):

Ryp(k) =E{s(n+k)s(n)} + E{b(n+ k)b(n)} = Rss(k) + Rep(k)
Therefore, Ryr(k) = Rss(k) + o?d(k) and:

R, = R, + o1
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2. The rank of the matrix R is equal to (M —G). This is equivalent to saying
that the dimension of the kernel is equal to G and that the dimension
of the complementary subspace is equal to (M — G). Let {wy,...,wg}
be an orthonormal basis of the kernel and {vy,...,vayr_¢} a basis of the
orthogonal subspace. We then have R,w; = 0 and R,v; = A;v;.

If we multiply the two sides of the equation R, = R, + ¢°I by a vector

w;, we get Ryw; = o?w;. Any vector of the noise subspace is therefore

an eigenvector of R, associated with the same eigenvalue o2.

If we mutiply the two sides of the equation R, = R, + ¢*I by a vector
v;, we get Ryvy = (A + O'Z)VZ'. Hence any vector of the signal subspace
is an eigenvector of R, associated with the eigenvalue (\; + 0?) > o2.

To sum it all up:

R,w; = 0'2Wj
R,v;, = (/\z + 0'2)VZ'

The observation matrix R, therefore has M positive eigenvalues arranged
in the following order:

M+ > >Oy_gto?)>al=...=7*

The multiplicity of the smallest eigenvalue is equal to G.

3. Study of the stationarity:

27 d¢)
E{s(n)}:E{Acos(?ﬂ'fon—l—q))}:/ Acos(2rfon 4+ ¢)— =10
0 27
Likewise, we have:
Rss(k) = E{s(n+k)s(n)}
= E{Acos@rfo(n+k)+ ®)Acos(2rfon + D)}
= A?ZE{COS(Qﬂka) + cos(2mfo(2n + k) + 2®)}
2 2 2w
= A? cos(2m fok) + A?/ cos(2mfo(2n + k) + QU);Z—:_
0

2
= A? cos (27 fok)

Hence s(n) is second order wide sense stationary process.
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We saw on page 359 that a mixture of P real sines satisfies a 2P
order recursive equation. Here we can directly check that R, (k) =
Rs5(0) cos(2m fok) satisfies, for any k, the recursive equation:

Rss(k) — 220 Rs5(k — 1) 4+ Rss(k — 2) = 0 where zp = cos(2mfy)

If we take k = 0, 1 and 2, and stack everything, we get the matrix:

Res(0) Res(=1) Ris(—2)
R, = | Reo(l) Res(0) Rus(—1)
Res(2)  Res(l)  Rus(0)

such that R;a = 0ifa=[1 —2z5 1]7. The vector a is therefore a vec-
tor of the kernel R, and because of what was said previously, the vector
a i1s also an eigenvector of the matrix R, associated with its smallest
etgenvalue.

. This result can easily be generalized to the case where s(n) is the mixture
of P real sines. The eigenvector associated with the smallest eigenvalue
of the (2P + 1) order covariance matrix of the observation has, as its
components, the coefficients of the recursive equation associated with
the frequencies of the signal s(n). This leads us to what is called the
Pisarenko algorithm, used for measuring the P frequencies of a real signal:

Steps:

— the (2P 4 1) order covariance matriz Ry is estimated based on the
data,

— the eigendecomposition of Ry is performed. It gives us an eigenvec-
tor v associated with the smallest eigenvalue;

— the 2P degree polynomial A(z) is constructed based on v. The 2P
complex conjugate roots zj, are extracted from it, which leads us to
the frequencies fr = % arg(zy).

Rather than to extract the roots using the roots function, we can take
advantage of the fact that these roots belong a prior: to the unit circle.
All we need to do is compute the polynomial A(z) on the unit circle,
which is done by computing the FFT applied to its coefficients on a large
number of points, then to search for the minima, which are not exactly
equal to zero, because of the noise.
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5. The following program implements this algorithm:

%===== CPISAR.M

Lfft=256; freq=(0:Lfft-1)/Lfft;

N=25; Am=[2 1.5 1]; F=[0.2 0.225 0.3]; P=length(Am);
%===== Original signal

s=Am*cos (24pi*F’*(0:N-1));

SNR=40; sigma2= (s#*s’/N)/(10 ~(SNR/10));

%===== Noisy signal

x=s+sqrt (sigma2)*randn(1,N) ;

D=toepl (x (2*P+1:N) ,x (2%P+1:-1:1)); R=D*D’;

[Vvect Vall=eig(R); [ordVal iV]=min(diag(Val)) ;
Vvect=Vvect(:,iV); vf=1 ./ abs(fft(Vvect(:,1) ,Lfft));
plot (freq(1:Lfft/2) ,vf (1:Lfft/2)); grid

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,,,,,

ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

0 005 01 015 02 025 03 035 04 045 05
Figure H10.2 — Pisarenko separation of the frequencies

Figure H10.2 shows the result. Three maxima are clearly visible near the
frequencies contained in the noiseless test signal. Using the Prony method
in the same conditions, in exercise 10.1, we had maxima that were not as
clear cut as the ones obtained here. However we should not conclude and
say that the Prony methdo is less efficient than the Pisarenko method,
because if we apply a bijective function such as y = 1/2 to the variable
z, we can easily change a hardly visible maximum into a maximum high
amplitude. Of course, in no way does this improve the performances in
the presence of noise. The right way to compare these performances is
to evaluate the square deviation between the estimated frequencies and
the “true” frequencies as a function of the level of noise. The program
Ccomppp.m can easily be used to to compare the two methods through
simulation:

%===== CCOMPPP.M

N=25;Am=[2 1.5 1];F=[0.2 0.225 0.3];
P=length(Am) ; s=Am*cos (2*pi*F’*(0:N-1));
SNR=40;sigma2= (s*s’/N)/(10 ~(SNR/10));
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x=s+sqrt (sigma2)*randn(1,N) ;

D=toepl (x (2*P+1:N) ,x (2%P+1:-1:1)); R=D*D’;
%===== Prony

U=[1;zeros (2*P,1)];B=inv(R) *U; lambda=U’*B;
A=B/lambda; fkProny=angle (roots(4))/(2%pi);
FestProny=sort (fkProny (find (fkProny>0))) ’;
Y%===== Pisarenko

[Vvect Vall=eig(R); [ordVal iV]=min(diag(Val)) ;
Vmin=Vvect (:,iV); fkPisar=angle(roots(Vmin))/(2%pi);
FestPisar=sort (fkPisar (find (fkPisar>0)))’;

F, FestProny, FestPisar

As we have already observed, the frequencies can be estimated either by
using the roots function or the corresponding polynomial in the unit
circle by way of the fft function, and determine the maxima of the
FFT’s modulus. In the program, we chose the first method as it avoids
the search for the maxima.

H10.3 (MUSIC 2D) (see page 388)
1. The 2D-MUSIC function is given by

1
(€, 9)GGTa((, )

Smusic (¢, ¢) = o

where GG refers to the orthogonal projector onto the noise subspace.

2. Type:

Y===== MUSIC2D.m
clear all
N=100; K=3; M=25; sigma=0.3;

%===== dzeta from 0 to 180, phi from -180 to 180
dzeta=[30 40 70]; phi=[60 50 20];
%===== Array sensor location

loc_array=zeros(3,M);
for xx=1:5
for yy=1:5
loc_array(1:2, (xx-1) #5+yy)=[xx-1,yy-1]1’/2-1;
end
end
Aalpha=array2D(dzeta,phi,loc_array); sn=randn(K,N);
bn=sigma* (randn (M,N)+j*randn(M,N)); xn=Aalpha*sn+bn;
Y%===== Covariance estimation
Rest=zeros (M) ;
for nn=1:N, Rest=Rest + xn(:,nn)*xn(:,nn)’; end
Rest=Rest/N; [Uest,Dest,Vest]=svd(Rest);
%===== Noise subspace projector
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Vnoise=Vest(:, (K+1):M); PIlest=Vnoise*Vnoise’;
plage_theta=(20:0.5:90) ;1theta=length(plage_theta);
plage_phi=(10:0.5:80) ;1phi=length(plage_phi);
imageM=zeros (1theta,lphi) ;
for iphi=1:1phi
ph=plage_phi(iphi);
for itheta=1:1theta
th=plage_theta(itheta) ;
aij = array2D(th,ph,loc_array);
imageM(itheta,iphi)=-logl0(abs (aij’*PIest*aij));
end
end
imagesc(plage_phi,plage_theta, imageM); grid
xlabel ([’\phi = [’ sprintf(°%3.2g’,phi) ’1°1);
ylabel ([’\dzeta = [’ sprintf(’%3.2g’,dzeta) ’]1°1);

function A=array2D(dzeta,phi,loc_array)

%h %
%% SYNOPSIS: A=ARRAY2D(dzeta,phi,loc_array) %
%h %

DtoRAD=pi/180; M=size(loc_array,2); K=length(dzeta);
A=zeros (M,K) ;
for kk=1:K

tk=dzeta (kk)*DtoRAD; pk=phi (kk)*DtoRAD;

beta_kk=[cos(pk) *sin(tk) ;sin(pk)*sin(tk);cos(tk)];
A(: ,kk)=exp(2%pix*j* (Loc_array.’)*beta_kk);

end

return

H11 The least squares method
H11.1 (Determining the FT using the gain) (see page 400)

1. We can write B(e%™) = H (%™ )A(e2™) where A(z) = 1 +ayjz7! +
~-Fapz7? and B(z) = by N e -4 bgz7 9. If we use this expression
for f € {fi, ..., [n}, group everything together in matrix form, and
define z, = e*™/%  we get:

1 zl_l ez —H(zl)zl_1 <o —H(z)z? bo
Uo7t o 207 —H(w)z' - —H(w)z P Z‘i = Gc
R [E B TE B I
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We now need to determine the vector ¢ that minimizes the deviation
between Ge which depends linearly on the quantities we have to estimate,
and the vector we are trying to determine, whose components are the
complex gains at the frequencies fy:

T
h= [H(zl) oo H{zg) ... H(ZN)]
The solution, in the least squares sense, is given by:
c=(GPG)"'G"h

2. In practice, we would like to constrain the previous solution so that the
resulting filter is causal, stable; and minimum phase. To do so, we have
to ensure that the poles and zeros are inside the unit circle. Because
we do not have the solution to such a problem, we suggest making the
previously obtained filter causal, stable, and minimum phase without
changing the modulus of its complex gain. Remember that the modulus
of the complex gain remains the same if we use an inversion operation to
make all the poles and zeros go from outside the unit circle to inside it.
This process is implemented in the function htoz which uses the poly
and roots functions.

3. Type:

function [b,al=hftoz(H,F,ql,pD,r,W)

Wh %
%% Identification of the transfer function %
%% SYNOPSIS: [b,a]=HFTOZ(H,F,ql,pD,r,W) %
Wh (H,F) sequence of (complex gain, frequency) %
Wh qN = numerator’s degree %
Wh pD = denominator’s degree %
% if r=’real’, the filter is real. %
o W = weighting matrix diagonal %
% b = coefficients of the numerator b=[b0 bl .. b_ql %
% a = coefficients of the denominator a=[1 al .. a_p] %
Wh %

H=H(:); F=F(:); LH=length(H); LF=length(F);
if (LH"=LF) error(’H et F do not have the same length’); end;
if (LF<(gN+pD+1)) error(’Too high order’); end;
if (r==’real’) % H is symmetrized
H=[H; conj(H(LF:-1:2))]; F=[F; 1-F(LF:-1:2)];
end;
j=sqrt (-1); mexp=exp(-2*j*pi*F*(0:max([qN pD])));
Gb=mexp(:,1:qN+1); Ga=-diag(H)*mexp(:,2:pD+1); G=[Gb Gal;
if (nargin==6)
if (r==’real’)
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G= diag(sqrt ([W W(LF:-1:2)]))%G;
else
G=diag(sqrt (W))*G;
end;
end;
C2=inv (G’ *G) *G’*H; b=C2(1:qN+1);
a=[1; C2(gN+2:qN+pD+1)];
%===== Stable and minimum phase
ra=roots(a); va=find(abs(ra)>1);
ra(va)=1 ./ conj(ra(va)); a=poly(ra);
rb=roots(b); vb=find(abs(rb)>1);
rb(vb)=1 ./ conj(rb(vb)); b=poly(rb);
if (r==’real’) a=real(a); b=real(b); end;
return

Note that if we choose a real filter, the program pads the sequence with
values of the complex gain by hermitian symmetry. In that case, the

values {f1, ..., fn} have to belong to (0,1/2).

We added as an argument the weighting matrix W, which is supposed to
focus the effects of the least squares minimization on the passband and
the stopband of the filter. This matrix i1s difficult to choose. In practice,
the simplest matrix is diagonal, with 1 for the values in the passband and
in the stopband, and 0 for those in the transition band. The resulting
solution should theoretically be better. Another weighting would consist
of using a matrix of the same type, but with 1/4, for the passband and
1/6, for the stopband.

4. The following program allows us to test the hftoz.m function for the
design of a low-pass filter and of a derivative filter. Type:

%===== CTESTHFTOZ.M

Lfft=1024; freq=(0:Lfft-1)/Lfft;

num=10; den=2; F=(0:.01:0.5)’; LF=length(F);
Y%===== Passband

fcP=0.2; LfcP=ceil (2%fcP*LF) ;

%===== Ideal lowpass

H=[ones (LfcP,1) ;zeros(LF-LfcP,1)];

Y%===== Derivative

% H=j*pixF;

%===== {eighting

% deltaP=.03; deltaA=.1;

%===== leighting coeffts

% usP=1/deltaP; usA=1/deltal;

%===== Stopband

% fcA=0.21; LfcA=ceil (2*fcA*LF);

% W=[usP*ones(1,LfcP) zeros(1,LfcA-LfcP) usA*ones(1,LF-LfcA)];
Y=====
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[b1 all= hftoz(H,F,num,den, ’reel’);
hfl=abs (fft(bl,Lfft)) ./ abs(fft(al,Lfft));
hf1=20%10g10 (hf1/hf1(1));

plot (freq,hfl,’-’,F,20%logl0(H)); grid;
axis([0 .5 -40 10]);

Figure H11.1 shows the result for a low-pass filter with p = 2 and ¢ = 10.

0 005 01 015 02 025 03 035 04 045 05

Figure H11.1 — Designing an ideal low-pass filter

Notice that, when the weighting is related to the ripples (comments in
the program), the results are a little disappointing.

H11.2 (Approximating the inverse of a FIR filter) (see page 401)

1. The transfer function:

H(z)=1-34"1 +1.2=(1-32"1H(1-04z71

has two zeros in z; = 0.4 et zo = 3. Its impulse response is of course

h(0) =1, h(1) = =3, h(2) = 1.2. The expression of its inverse is:

1 22
G(z) = (1—32z-1)(1—0.4z-1) - (z —3)(z — 0.4)

Stability is ensured by associating G(z) with the convergence area con-
taining the unit circle, that is 0.4 < |z| < 3. As a consequence, the
impulse response has a causal part and an anti-causal part. If we use the
partial fraction decomposition of Gi(z) and the expansion of 1/(1 —u) for
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|u] < 1, we can calculate the impulse response {g(n)} explicitly. If we
define o = 1/2.6, we get:

9 o —o a 5 1 1
z + = —ar—
z—3 z—-04 3 1-2/3 1—-0.4z

_ Lo Sl ggenang
= 7.8Z (1—1—3 z+ + 377" + )

1
—5gr (LH 047 o (0.4)"2 7" )

G(z)

hence, if we identify g(n) with the coefficient of 27", we have:

1
2.6
——(3)”_2 for n< -1

(0.4)"* for n>—1

2. If we perform the convolution of g(n) with h(n), we get the sequence:
d(n) = h(0)g(n) + h(1)g(n — 1) + h(2)g(n - 2)

If we write this expression for n from —A to C' + 2, we get:

d-4) = h0)g(~A)

d(—A+1) = h(L)g(=A)+h(0)g(-A+1)

d(-A+4+2) = h(2)g(—A4) +h(1)g(-A+1)+h(0)g(—A+2)
4(0) = h(2)g(=2) + h(1)g(~1) + h(0)g(0)

a(C) = h(2)g(C —2) + h(1)g(C — 1) + h(0)4(C)
dC+1) = h(2)g(C— 1)+ h(1)g(C)

dC+2) = h(2)(C)

These expressions can be written in matrix form as d = Hg where H is
an (N 4+ A+C) x (A+C+1) Toeplitz matrix constructed from h(0), h(1)
and h(2), where N = 3 represents the length of h. Note that the column
vectors of H are independent. Therefore, H has a full rank (meaning that
the rank is A+C+1). In order to approximate the inverse filter, the vector
. _ T
Hg has to be as close as possible to the vector d = (u, 1, u .

A N+C—-1
One solution 1s given by the pseudo-inverse:

g = H#*d
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3. Type:

IDENTDET.M
== Filter to be inverted

%===== Causal and anticausal length
C=20; A=10;
%===== Impulse 0 ... 010 ... 0

delta=zeros (N+A+C,1); delta(A+1)=1;

Hb=toeplitz([h zeros(1l, A+C)],[h(1) zeros(1l,A+C)]);
g=Hb \ delta;

%===== Verification using a convolution
stem(conv(g,h))

%===== Verification using the theoretical values
gh=-(3 .~ (0:-1:-442))/7.8; gC=-(0.4 .~ (0:C+1))/2.6;
gth=[gA(A-1:-1:1) gC]’;

[gth g], max(abs(gth-g))

Note that the closer the zeros outside the unit circle are to the unit circle,
the higher A has to be. This goes for C' and the zeros inside the unit
circle as well.

H11.3 (Lattice filtering) (see page 416)

1. Type the function:

function [epsF, epsBl=lattice_analysis(xn, ki)

%h Y
%% SYNOPSIS: [epsF, epsBI=LATTICE_ANALYSIS(xn,ki) %
o xn = Signal A
YAA ki = Reflection coefficients (k1 ... kP) %
Wh epsF = Forward Error %
Wh epsB = Backward Error %
%h Y

N=length(xn); epsF=zeros(l,1); epsB=zeros(N,1);
P=length(ki); eB=zeros(P,1); eBml=zeros(P,1);
for nn=1:N
eF=xn(nn) ;
for pp=1:P
eFp=eF+ki (pp) *eBm1 (pp) ;
eB(pp)=ki (pp) *eF+eBm1 (pp) ;
eF=eFp;
end
eBmi=[xn(nn); eB(1:P-1)];
epsF (nn) =eFp;
epsB(nn)=eB(P) ;

end
return
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2. Type the function:

function [xn, epsBl=lattice_synthesis(epsF, ki)

hh %
%% SYNOPSIS: [epsF, epsB]=LATTICE_SYNTHESIS (xn,ki) %
Wh epsF = Forward Error %
YAA ki = Reflection coefficients (k1 ... kP) %
%h xn = Reconstructed signal %
Wh epsB = Backward Error %
o %

N=length(epsF); xn=zeros(N,1); epsB=zeros(N,1);
P=length(ki); eB=zeros(P,1); eBml=zeros(P,1);
for nn=1:N
eF=epsF (nn) ;
for pp=P:-1:1
eF=eF-ki (pp) *eBml (pp) ;
eB (pp)=eBm1 (pp) +ki (pp) *eF;
end
xn (nn)=eF;
eBml=[eF; eB(1:P-1)];
epsB(nn)=eB(P) ;
end
return

3. Run the following program:

%===== TESTLATTICE.M

clear all

ai=[1 -1.8 0.9]; N=1000;
wn=randn(N,1); xn=filter(l,ai,wn);
ki=atok(ai);
[eF,eB]l=lattice_analysis(xn,ki);
[xn_s, eB_s]=lattice_synthesis(eF,ki);
[max (abs ([wn-eF])) max(abs ([xn-xn_s]))]
figure(1); plot(xn);

hold on; plot(xn_s,’r’); hold off
figure(2); plot(eF);

hold on; plot(wn,’r’); hold off
figure(3); plot(eB,’b’);

hold on; plot(eB_s,’r’); hold off

H11.4 (The LMS algorithm: channel identification) (see page 438)
The following program allows us to test the LMS algorithm:

IDENTLMS .M

Channel identification

h=[1 0.6 0.3]’; P=length(h); % Theoretical chanmnel
N=4000; % Number of steps
%===== Signal generation
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x=randn(N,1); v=filter(h,1,x); Pv=v’*v/N;
SNR=20; b=sqrt(Pv*10~ (-SNR/10))*randn(N,1);

y=v+b; % Noisy observation
%===== LMS algorithm

mu=0.002;

hest=zeros(P,1); en=zeros(N-P+1,1);

for n=P:N

en0=y(n) - hest’*x(n:-1:n-P+1);
hest=hest + mu*enO*x(n:-1:n-P+1);
en(n-P+1)=en0;

%===== Smoothing of the error over 200 points
en2=en ."2; moy=200; hmoy=omnes (1,moy)/moy;
en2moy=filter (hmoy,1,en2(1:N-P+1));

endb=10 .* logl0(en2moy (moy:N-P+1));

plot (endb); grid

[h hest]

The results are shown in Figure H11.2. As you can see, the final difference
when the algorithm converges is directly related to the value of the signal-to-
noise ratio.

10} AN L R R
| SNR=15 dB

14 : 3 : g NN

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Figure H11.2 — LMS algorithm: the error signal plotted against the number of
iterations of the algorithm (square deviation in dB smoothed over 200 points)

As we saw for the deterministic gradient, the higher the gradient step p is,
the higher the algorithm’s descent speed. This is shown in Figure H11.3.

When pt increases, the error decreases faster to the final plateau. We can also
show that the higher pu is, the higher the final plateau for the difference. This
is called misadjustment. This behavior is the same for any adaptive algorithm:
convergence speed comes at the cost of a higher misadjustment. However, this
effect is rather faint in this case.

When comparing algorithms through simulation, the parameters are set so
as to reach the same misadjustment level (convergence plateau) for both, then
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Figure H11.3 — LMS algorithm: error signal plotted against the number of iterations
of the algorithm for different values of

the slopes of the error plots, which are characteristic of the convergence speed,
are compared.

The theoretical maximum value of the deterministic gradient step 1S piax =
2/ max;(A;). In our example, #(n) is a white noise with the variance 1, and
therefore the matrix R = I>. We then have p,x = 2. As the simulations show,
this value is much too high to ensure the convergence of the LMS algorithm.
In practice, this is always the case, and p is found experimentally, based on
the observed data, by determining the value of p that ensures convergence and
then by reducing this value by 10%.

The LMS is adaptive: this means that it can adapt to the possible fluctua-
tions the filter’s coefficients could be subjected to. This goes beyond the strict
context of linear filters, since the time invariance property is no longer obeyed.
The tracking capability of the LMS algorithm can be measured by adding a
break in the model and observing how the algorithm is able to track this break
(see paragraph 11.5.2). Performances crucially depend on the choice of .

H12 Selected topics
H12.1 (Full-wave rectifier and simulation) (see page 451)

1. The full-wave rectifier is periodic with period Ty = Ty /2 where Ty = 1/ Fj.
It is expandable in a Fourier series. The Fourier coefficients are:

Ty .
X, = — sin(?ﬂFot)e_zﬂm/Tddt
Ta Jo
= i " T (t)e_zjﬂ—nt/Tddt = iAXVT (n/Td)
Ty J_c Ty
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where z7(t) = Arectr,(t — Ty/2)sin(2wFyt). The Fourier transform of
z7(t) is denoted by X7 (F). We can write:

1
zr(t) = Arecty, (t — Td/2)2—j(exp(2j7rFot) — exp(—2jnFyt))

If we use the modulation property (see page 727) satisfied by the Fourier
transform of rectr, (t — Ty/2), we get:

_ ysin(m(F — Fo)Ta) _jnpopyyr,
Ye(F) = A= TRy ©
ASin(?T(F + Fo)Tq) e~ dT(F+F0)Tq
2jm(F + Fy)

and therefore:

| 94 1
Xp = = Xp(n/Ty) = —2
7,51 (n/Td) an? 1

The continuous component is Xo = 2A4/7.
. If we apply the Fourier transform to the differential equation, we get:

) 1
2jrRCFY(F)+Y(F)=X(F) = H(F)= [T 2j7ROT
. If the RC filter has a constant RC' >» 1/F; such that the components
with the frequency +2kFy, where k& > 2, are negligible, the continous
component and the first harmonic are all that i1s left in the output.
By remembering that the signal exp(2jnFt), after filtering, leads to
H(F)exp(2jnFt), the output signal has the expression:

H(O)Xo + H(_QFO)X_16_4j7TF0t 4 H(QFO)X164j7TFDt

2A
— + 2|H(2Fy)|| X1] cos(4m Fot + ®)
m

X

y(t)

. Because T, <« RC', approximating the derivative by:

S Foet) — veln - 1)

is acceptable. The differential equation becomes the recursive equation:

Folye(n) = peln = 1))+ pzpe(n) = ()
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Hence the simulation is equivalent to the filtering:
Ye(M)(1+7) —ye(n—1) = T2c(n)
if we choose 7= T./RC.

5. The following program illustrates the cases of the half-wave and full-wave
rectifiers (Figure H12.1):

%===== C2ALTERN.M

% Rectifiers

Fg=5000; Te=1/Fs; N=800; fa=50; A=220*sqrt(2);
t=(0:N-1) /Fs; xa=Axsin(2*pikfa*t);

xrS8=.5 *(sign(xa)+1) .* xa; % Half-wave
xrD=abs (xa) ; % Full-wave
%===== Simulation of RC(dy/dt) + y = x

RC=.02; tau=Te/RC; mu=1/(1+tau); nu=tau*mu;
yS=filter (nu,[1 -mu],xrS); yD=filter(nu, [1 -mu] ,xrD);
subplot (211); plot (t,xrS,’-’,t,yS,[0 max(t)],[A/pi A/pil);
grid; subplot(212); plot(t,xrD,’-’,t,yD,’ -7, ...

[0 max(t)],[(2#A4)/pi (2%A)/pil); grid

400 ‘ : ‘ : : : :
300 fn o ode ey by A
ol 4 T
100 ;“ | 3.‘ /\ 3," P 3' /'\ 3“ /’-\ 3. ) 3" g 3;‘ /T\
T T Y
0 \ ' \ fl ". lr' : H \ f‘ "I ‘;’ I', J \
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
400 : : : : ‘ : :
300 *7'&”7’%’3",“(”,“r’i’,‘\”’f‘f’i’f‘l”7‘(3”"‘(”;1‘(’3’5,‘”7’%’3’#””,’*\’i”,”\"”,’\"’
SYASERETESSRS SN SN
o0 A
3 A0 S I J A N O S N A O O
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16

Figure H12.1 — Simulation of the half-wave and full-wave rectifiers
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H12.2 (Simulation in the presence of a ZOH) (see page 454)

1. If we let ®(t) = eAt and notice that e(u) remains constant between kT

and (k+ 1)T, we have:

(k+1)T
®(T)x(kT) + /kT ®((k+ 1)T — u)be(kT)du
= (I)(T)X(k’T) + e(k’T)‘I’ka

x((k+ 1)T)

with:
(k+1)T T
W1 :/ <I>((k—|—1)T—u)du:/ ®(u)du = ®(T)
kT 0
The output at the sampling times is given by s(kT) = ¢ x(kT).
. The inter-sample response is given by:

{ x(t) = ®(t — kT)x(kT) + e(kT)¥(t)b
s(t) = cTx(2)

with ®(t) = g_kT'iI)(u)du. In order to know the system’s behavior

between kT and (k+ 1)7T', we need to know x(kT) and ¥(¢).

3. Type the following program:

%===== CREPETATS.M

% Sampling frequency (1/T)=10 Hz
% Simulation duration tmax=10 s

% Initial conditions x0

A=[0 1;-1 -1.4]; b=[0;1]; c=[1 0];
T=.1; tmax=10; x0=zeros(2,1);
[t,s]=Crepind(A,b,c,T,tmax,x0);
plot(t,s,’x’); grid

The Crepind function computes the system’s step response:

function [realt,xout] = Crepind(A,b,c,Ts,tmax,x0)

Wh 72
%% Step response of a linear system %
%% SYNOPSIS: [realt,xout]=CREPIND(A,b,c,Ts,tmax,x0) %
%% Entrees: (A,b,c) = State representation %
o Ts = Sampling frequency %
%% tmax = Observation duration %
%% x0 = Initial state %
%% Sorties: realt = Real time %
% xout = Response %
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%h %
npts=floor (tmax/Ts); [W,N]=size(A); 7% System order
%===== Sampling frequency = 1/Ts Hz

Ae=[A b;zeros(1,N+1)]1*Ts; Aexp=expm(Ae);
phi=Aexp(1:N,1:N); psib=Aexp(1:N,N+1);
tps=[0:npts-1]; realt=tps * Ts; xout=zeros(l,npts);
xx=x0; % Initial conditions
xout (1) =c*xx;
for k=2:npts

xx=phi * xx + psib; xout(k)=c * xx;
end
return

4. Changing from continuous-time over to discrete-time requires the use of
the bilinear transform obtained with the stoz.m function from exercise

4.12:
Y%===== CETATSCOMP.M
% CREPETATS.M must be run before
tmax=10;
Y%===== Direct calculation -> continuous time

A=[0 1;-1 -1.4]; b=[0;11; c=[1 0]; x0=zeros(2,1);
[tps,s]=Crepind(A, b, ¢, T, tmax, x0);

%===== Calculating using the bilinear transform (T=0.1)
pol=[1 1.4 1]; T=.1; [DX,NX]=nbilin(pol,T);
N=floor(tmax / T); repind=filter (NX,DX,ones(1,l));
%===== Calculating using the bilinear transform (T=0.4)
T=.4; N=floor(tmax / T); [DX,NX]=nbilin(pol,T);
repind2=filter (NX,DX,ones(1,l));

tps2=[0:N-1] * T;

plot(tps,s,’-’, tps,repind,’x’, tps2,repind2,’0’); grid

1.2
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Figure H12.2 — Comparing step response calculations: in continuous-time and in
discrete-time using the bilinear transform
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H12.3 (Non-minimal system) (see page 455)

1. Simulation:

%===== REPETAT.M
clear
%===== System definition

atc=[-11/4 -11/8 -5/4;27/4 11/8 21/4;15/8 19/16 5/8];
btc=[1;-1;-1/2]1; ctc=[3/8 1/2 -1/4];

%===== Parameters

T=.2; % Sampling period

x0=[0;0;0]; % Initial state

tpm=130; % Duration of the simulation
Wpts=tpm/T; tps=[0:Npts]*T; e=ones(1,Npts);
%===== Discrete time equivalence

atd=expm(atc*T); abs(eig(atd))
btd=inv(atc)*(atd-eye(3,3))*btc;
ctd=ctc;
%===== Simulation
x=x0; s=[ctd*x0]; m=[max(max(abs(x0)))]; zz=[x0"];
for k=1:Npts
x=atd*x+btd*e (k) ; s(k+1)=ctdx*x;
zz=[zz;x’];
m(k+1)=max (max (abs (x))) ;
end
figure(1); %subplot(211); plot(tps,m); grid
title(’Norm of the ste vector’)
%subplot (212);
plot(tps,s,’-’); grid

2. The state vector’s evolution indicates an instability.
3. The transfer function calculation ends up with:

1

G(S) = CT(SI — A)_lb = m

An “unstable” pair is eliminated. From an input-output point of view,
the system is stable. However, the presence of initial conditions causes
the output to diverge because the unstable pole is not simplified in the
free part of the response. It can be shown that the discrete time system
has the same property.

4. The system diverges because of the computation noise (Figure
H12.3). Calculating the roots of poly(phi-psib#*c’)-poly(phi) and
of poly(phi) shows that there are a pole and a zero which are almost
identical. As there 1s not really a simplification, this is another reason
for the divergence of the output.
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140

Figure H12.3 — Response for a longer simulation time (tpm=130)

H12.4 (Compression of a speech signal) (see page 469)
1. Pitch detection:

function [vnv,pitch]l=detectpitch(sig,trhld,tnin,tmax,energm)

Wh %
%% Pitch detection using correlation %
%% SYNOPSIS: y
% [vnv,pitch]=DETECTPITCH(sig, trhld,tmin, tmax,energm) %
Wh sig = signal block %
%h trhld = correlation treshold %
%h tmin,tmax = correlation window %
% energm = energy threshold %
% vnv = TRUE if voiced, otherwise FALSE %
Wh pitch = pitch period %
Wh %
nfa=length(sig); x=zeros(nfa,1); x(:)=sig; ae=x’*x;

if (ae > energm), % energy>trhld

for T=tmin:tmax
stmT=x(T:nfa); s0T=x(1:nfa-T+1);
autoc=stmT’*s0T; etmT=stmT’*stmT; e0T=s0T’ *s0T;
correl (T-tmin+1)=autoc/sqrt (etmT*e0T) ;

end

[corrmax,imax]=max(correl); tfond = imax+tmin-1;

if (corrmax < trhld),
vnv=(0==1); pitch=0; return;

else
pitch=tfond; vnv=(0==0);
end
else
pitch=-1; vnv=(0==1);
end;
return

Figure H12.4 shows the shape of the autocorrelation for a block. The
maximum 18 located in 7' = 82, which means that the pitch frequency is
roughly fo = 8,000/82 =~ 97.5 Hz. Determining 7' can become a difficult
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task when there are maxima present at the multiples of the pitch period.
One solution is to check for the possible presence of a high maximum
at sub-multiples of the z-coordinate found for the maximum. We can
also study the evolution over different consecutive windows by comparing
the obtained fundamental frequencies. Bear in mind, finally, that the
accuracy can be improved by oversampling the signal beforehand.

1
0.8
0.6
0.4
0.2

0

-0.2
-0.4
—0.6

Figure H12.4 — Fzamples of autocorrelation graphs

2. Coding program (using the xtoa function from page 330):

%===== CODE.M

%h %
%% code.m: Coding a speech signal based on an AR-model %
%% INPUT: y
Wh Signal sampled at 8000 Hz %
%% OUTPUT: array tab_cod(N,XX): VA
YAA tab_cod(N,1): energy in the block of signal %
%h tab_cod(N,2): pitch period %
YAA tab_cod(N,3:12): AR coefficients (AR-ordv if voiced ¥%
% sound, AR-ordnv otherwise) or reflection coeffs. %
%% Each block has a 240 sample length (30 ms) with an %
%% overlap of 60 samples. %
%% Uses: xtoa : AR-model coeffts %
% detectpitch : pitch detection %
%h ai2ki : reflection coeffs %
%h %
clear

load phrase; %===== Vector y

enerm=std(y) "2*.1;

% AR-model orders for voiced and non voiced sounds

ordv=20; ordnv=10;

NbParam=ordv+2;

phrase=y-mean(y);

%===== Parameters
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1bloc=240; % Block length
recouv=60; % Overlap
ltr=1bloc-recouv;

nblocs=floor ((length(phrase)-recouv)/ltr); % Nb of blocks
reste=rem(length(phrase)-recouv,ltr);
phrase=phrase(1:length(phrase)-reste);

tmin=40; tmax=150; seuil=0.7; % For pitch detection
Y=====

vnv=zeros (1,nblocs); % Boolean "voiced/non voiced"
pitch=zeros(1,nblocs); % Pitch period
tab_cod=zeros(nblocs,lbParam); % Coeffts of the model

%===== Detection "voiced/non voiced"

sprintf (’"Voiced/non voiced" on %5.0f blocks’, nblocs)

TIC

for k=1:nblocs,
ind=(k-1)*1tr;
blocan=phrase (ind+1:ind+1bloc); % Analysis block
[vnv (k) pitch(k)]=detectpitch(blocan,seuil,tnin,tmax,enerm);

%===== AR-model
gprintf (’AR-model’)
TIC
preacpar=filter([1 -0.9375],1,phrase); % Pre-emphasis
for k=2:(nblocs-1),
A —

if (vnv(k-1) == vnv(k+1)), % Correction of
vonv (k) =vnv (k-1); % errors of detection
if (vov(k)==1)
%==== "voiced" with pitch=mean
pitch(k)=floor((pitch(k-1)+pitch(k+1))/2);
else
%==== "non voiced" with pitch=0
pitch(k)=0;
end
end
%===== Analysis block

sigbloc=preacpar ((k-1)*1tr+1: (k-1) *1tr+lbloc) ;
if (vov(k)==1)
[pcoeff,enrgl=xtoa(sigbloc,ordv); Y<=======
> coeff_refl=ailki(pcoeff); % Reflection

tab_cod(k, 3:NbParam)=pcoeff (2:ordv+1) ’;
tab_cod(k,1)=enrg;
tab_cod(k,2)=pitch(k);
else
[pcoeff, enrgl=xtoa(sigbloc,ordnv);
=> coeff_refl=ailki(pcoeff); % Reflection
==> tab_cod(k,3:NbParam)= coeff_refl; % coeffts
tab_cod(k,1)=enrg;
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tab_cod(k,2)=0;
tab_cod(k, 3:NbParam)=[pcoeff (2:ordnv+1)’
zeros(1,ordv-ordnv)];
end;
end;
TOC
sprintf (’Writing array in tab_cod.mat’)

save tab_cod tab_cod

Notice the presence of a high-pass type pre-emphasis filter preceding the
operations for estimating the model’s parameters. We saw on page 652 a
presentation of results for such an operation.

The prediction coefficients, obtained by analyzing the signal, are stored
as “double floating point” numbers (8 bytes). If we had to use a “fixed-
point” processor, it might be better to consider the reflection coefficients
(refer to the Levinson algorithm on page 314) with values between —1
and +1. Speech coders also use what are called Isp coefficients, short for
Line Spectrum Pair ([66]).

3. Decoding program:

%===== DECODE.M

% Decoding the file tab_cod.mat

clear

TIC

load tab_cod; % tab_cod(nblocs,XX);
excgl=eye(1,40); % glottal signal
1bloc=240; % Block length
recouv=60; % Overlap

ltr=1bloc-recouv;

OvlRec=1bloc/3; % Overlap reconstruction(1/3)

LBrec=1bloc+2#* (OvlRec-recouv); % Reonstructed block length

nblocs=size(tab_cod,1); NbParam=size(tab_cod,?2);

outsig=[]; finalsig=zeros (1,nblocs*1ltr+0vlRec);

%===== Reconstruction window

fen_rec=[(1:0v1Rec)/0vl1Rec ones(1,lbloc-2*recouv)
(0OvlRec:-1:1)/0v1Rec];

ImpG1Ptr=0;

LgExcGl=1length (excgl) ;

NbSmpTot=LBrec+ LgExcGl; % Because of the filtering

drap_vnv=0;

for k=2:(nblocs-1),

if (tab_cod(k,2) " =0) %===== Voiced block
if (drap_vnv==1) % The previous one is voiced
%==== Continuity of the input signal

trame=[TmpSig (1tr+1:NbSmpTot), zeros(1l,1tr)];
NbSmp=NbSmpTot-1tr+ImpGlPtr;
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else % The previous one is not voiced
trame=zeros (1,NbSmpTot) ; NbSmp= 0;

end

PitchPeriod=tab_cod(k,2); % Block pitch

while (NbSmp<LBrec),
trame ( (NbSmp+1) : (NbSmp+LgExcGl) )=excgl;
NbSmp=NbSmp+PitchPeriod;

end
drap_vnv=1; ImpGlPtr=NbSmp-NbSmpTot;
TnpSig=trame; trame=trame (1:LBrec);

trame=trame/std (trame) ; % Normalization
else %===== Non voiced

ImpGl1Ptr=0;

drap_vnv=0; % Gaussian

trame=randn (1,LBrec); % white noise
end;

trame=sqrt (tab_cod(k, 1)) *trame; % Power
Y%den=ki2ai (tab_cod(k,3:NbParam)); }<===========
den=[1 tab_cod(k,3:NbParam)];
outsig=filter(1,den,trame); outsig=fen_rec .* outsig;
st=(k-1)*1tr;
%==== Construction with an overlap
finalsig((st+1): (st+LBrec))=...
finalsig((st+1):(st+LBrec)) + outsig;
end;
finalsig=filter(1,[1 -0.9375],finalsig); % De-emphasis
TOC, soundsc(finalsig,8000);

The length of the block can be modified in the instruction 1bloc=240 of the
decode.m program. By typing for example 1bloc=180, the reconstructed win-
dows are shorter and the same sentences are uttered faster. In both cases, this
modification of the wutterance speed occurs without a change in the timbre of
the voice, which keeps its original, natural aspect. This i1s no longer the case
if the sampling frequency is modified suddenly, with the same ratio by typing
for example soundsc(y,Fe*3/4) to slow down the sentence. You can listen to
the results and compare.

H12.5 (DTW) (see page 473)
Type the following function:

function [Dmin,DTWway,CD]=DTW1(xx,yy)

% %
%% Synopsis: [Dmin,DTWway,CD]=DTW1 (xx,yy) %
%% XX,yy = cepstrum of x and y signals %
YAA Dmin = minimal cumulative distance %
% DTWway = DTW way %
%% CD = array of cumulative distances %
% %
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mxx = 1; mxy = 2; myy = 1;
dd=size(xx,1); Ix=size(xx,2); Jy=size(yy,2);
distance=zeros(Ix,Jy);
for ix=1:Ix
for jy=1:Jy
diffe=xx(:,ix)-yy(:,jy);
distance (ix, jy)=sqrt(diffe’*diffe);

end
end
%===== Cumulative distance
CD = zeros(Ix, Jy);
%===== Parent to keep
Parent = zeros(Ix,Jy,2);
%===== CD initialization

CD(1,1) = distance(1,1);

Parent(1,1,:) = [1 11;

for ix = 2:1Ix
CD(ix,1) = distance(ix,1)+mxx*CD(ix-1,1);
Parent (ix,1,:)= [ix-1 1];

end

for jy = 2:Jy
CD(1,jy) = distance(1,jy)+myy*CD(1, jy-1);
Parent (1,jy,:) = [1 jy-11;

%===== Main loop
nT = min(Ix, Jy);
for tt = 2:nT
for ix = tt:Ix
DD = [CD(ix-1,tt)+mxx*distance(ix,tt),
CD(ix-1,tt-1)+mxy*distance (ix,tt),
CD(ix,tt-1)+myy*distance (ix,tt)];
[val,ind] = min(DD);
CD(ix,tt) = val;
switch ind

case 1
Parent (ix,tt,:)=[ix-1,tt];
case 2
Parent (ix,tt,:)=[ix-1,tt-1];
case 3
Parent (ix,tt,:)=[ix,tt-1];
end
end
for jy = tt+1:Jy
DD = [CD(tt-1,jy)+mxx*distance(tt,jy),

CD(tt-1,jy-1)+mxy*distance (tt,jy),
CD(tt,jy-1)+myy*distance(tt,jy)];
[val,ind] = min(DD);
CD(tt,jy) = val;
switch ind

case 1
Parent (tt,jy,:)=[tt-1,jy]l;
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case 2
Parent (tt, jy,:)=[tt-1,jy-1]1;
case 3
Parent (tt,jy,:)=[tt,jy-1]1;
end
end
end
%===== Normalization
%===== Minimal sum
Dmin = CD(Ix,Jy);
%===== Backtracking inverse
bi=zeros (nT+1,2);
Y%===== We start at the end
bi(1l,:)=[Ix Jy];
1i=2;

while (Parent(bi(ii-1,1),bi(ii-1,2),1) "=1 .
& Parent (bi(ii-1,1),bi(ii-1,2),2) "= 1)
bi(ii,:) = Parent(bi(ii-1,1),bi(ii-1,2),:);
ii = ii + 1;
end
DTWway = bi(ii-1:-1:1,:);

H12.6 (DTW word recognition) (see page 474)

1. Type the following function:

function cepstre=extractCEPSTRE(xt,Fe)

%h %

%% Synopsis: cepstre=EXTRACTCEPSTRE (xt,Fe) %

%% xt = Audio signal %

o Fe = Sampling frequency %

YAA cepstre = Cepstral coefficients %

%h %
xt=xt(:);

%===== Parameters

pp=10; % Cepstrum order
duree=15; % Window duration in ms
Lfen=fix (Fexduree/1000); % Window size
decal=fix(Lfen/2); % Shift for overlapping

Lfft=2"nextpow2(Lfen); % FFT size

hamm=0.5-0.5%cos (2*pi* (0:Lfen-1) ’/Lfen);

Lx=length(xt);

nbfen=fix(Lx/decal);

cepstre = zeros(pp,nbfen);

for ii = 1l:nbfen-1
inddeb=(ii-1)*decal+1;indfin=inddeb+Lfen-1;
xaux=xt (inddeb:indfin) . *hamm;
%===== Compute standard cepstral coefficients
Sx = log(abs (fft (xaux,Lfft)));
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%===== Power cepstrum

Cx = real (ifft(8x));

cepstre(:,ii)=Cx(2:pp+1); % Without energy
end

2. Type the following program:

%===== DTWTRY.n

clear all

[x,fe]l=wavread (Cutter2.wav’) ;
[y,fel=wavread (’utter4.wav’);
cepx=extractCEPSTRE(x,fe);
cepy=extractCEPSTRE(y,fe);
[Dmin,wayDTW,CD]=DTW1(cepx,cepy); Dmin
figure(1); imagesc(CD’);

set (gca, ’ydir’, ’normal’)

hold on

plot (wayDTW(:,1) ,wayDTW(:,2),’k’); hold off

H12.7 (PSOLA) (see page 475)
Type the program:

%===== PSOLATRY.M

clear all;
[x,Fel=wavread(’desgens.wav’);
gamma=0.8;
x_m=psola(x,Fe,gamma) ;
soundsc(x_m,Fe) ;

which calls the following function:

function s_synt=psola(s_orig,Fs,gamma)

% %

%% SYNOPSIS: s_synt=PSOLA(s_orig,Fs,gamma) %

o s_orig = Signal %

%h Fs = Sampling Frequency (Hz) %

%% gamma = Modification rate %

%h s_synt = Modified Signal %

%% Uses the FOcor function %

% %
seuil_pitch=0.7;

Rsurech=1; % To improve the pitch’s evaluation

L10ms=fix(Fs/100); % Constant size window (10 ms)
fp_min=70; fp_max=400; Lfen=2*fix(Fs/fp_min);

Ns=length(s_orig); Namax=fix (Ns*fp_max/Fs);
ta=zeros (Namax,1); ta(l)=1;

Pa=L10mg; inda=1;

%===== Analysis
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while ta(inda)<Ns-Lfen
indsdeb=ta(inda) ;
% The length Lfen must be large enough
% to allow the estimation of the lowest frequency
indsfin=indsdeb+Lfen; sextrait=s_orig(indsdeb:indsfin);
[Fpitch, corr]=...

fOcor (sextrait,Fs,Rsurech,seuil_pitch,fp_min,fp_max);

if isnan(Fpitch)

Pa=L10ms;
else
Pa=fix(Fs/Fpitch);
end;
inda=inda+1; ta(inda)=ta(inda-1)+Pa;
end
ta=ta(l:inda) ;Na=length(ta);
%===== Time scale modification and Synthesis

s_synt=zeros (fix (Ns/gamma) ,1) ;
ii=1;ts=1;ie=1;te=1;
while ie<Na-2
ii=ii+1;
te=tetgamma; ie=ceil(te);
Pa=ta(ie+1)-ta(ie); ts=ts+Pa;
winHann=gin (pi*(0:2%*Pa)’/(2*Pa)) . 2;
sola=s_orig(ta(ie):ta(ie)+2*Pa) .* winHann;
s_synt (ts-Pa:ts+Pa)= s_synt (ts-Pa:ts+Pa)+sola;
end
return

H12.8 (Hann window) (see page 477)
Type the following program:

%===== FENHANN.M
L=300; alpha=1/6;
n0=fix(alphaxL);
%===== Hann Window
hn=abs (sin(pi*(0:L-1)’/L)) ."2;
gn=hn."2; pp=500; x=zeros (pp*n0,1);
for ii=0:pp-ceil(L/n0)
id1=ii*n0;
x (id1+1:id1+L)=x (id1+1:id1+L)+gn;
end
figure(1);plot(x)
max(x), sum(gn)/no
%===== Plotting the DTFT of gn
figure(2); LEfft=4*1024; Gf=abs(fft(gn,Lfft));
plot ((0:Lfft-1) /Lfft,20%1logl0(GE))
set (gca, ’x1im’, [0 0.2]); hold on;
plot(ones(2,1)*(1:5)/n0, [-140%*ones (1,5) ;40*%ones(1,5)]1,7:7);
hold off
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As you can see on the resulting graph, the sequence #(n) is constant for any
value L. The constant is equal to the sum of the elements of the sequence g(n)
divided by ng. Therefore it depends on «. Notice that the property is still true
for other powers of h(n). By using the Poisson formula, we can show that this
property is equivalent to the fact that the sequence g(n) is equal to zero for
the multiples of 1/ny. This amounts to choosing the inverse of an integer as
the value of o and to choosing L so as to have La equal to an integer.

H12.9 (Phase vocoder) (see page 478)
Type the program:

Y%===== PHCODER.M
clear all
[x,Fel=wavread(’desgens.wav’);

gamma=0.8;

Lfft=256;

x_m = phasevoc(x, gamma, Lfft, Fe);
soundsc(x_m,Fe)

which uses the following functions:

function s_synt=phasevoc(s_orig,gamma,Lfft)

hh %
%% SYNOPSIS: s_synt=PHASEVOC(s_orig,gamma,Lfft) 7%

% s_orig = Audio source %

Wh gamma = Modification rate %

%h Lfft = FFT length Y%

Wh s_synt = modified audio signal %

%% Uses tfct.m, specinterp.m and spec2sig.m %

% %

% alpha is the shift rate relative to the FFT length
unsuralpha=8; % Power of 2

n0=fix (Lfft/unsuralpha) ;
win=sin(pi*(0:Lfft-1)’/Lfft) ."2;
grandC=sum (win.~2) /n0;

%===== Initial STFT

spec_a = tfct(s_orig,Lfft,n0,win);
%===== Calculus of the modified DTFT
spec_s = specinterp(spec_a, gamma) ;
%===== Inversion

s_synt = spec2sig(spec_s, n0,win)/grandC;
return

function sig=spec2sig(spec,n0,win)

hh %
%% Synthesis of a signal from its spectrogram 7%
%% SYNOPSIS: sig=SPEC2SIG (spec,ovlap) %

Wh spec = Spectrogram Y%
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Wh n0 = Shift value Y%
o sig = Signal A
%h A

[Lfft,nbcol] = size(spec);
ispec=real (ifft (spec));
sig = zeros(Lfft+(nbcol-1)#n0,1);
%===== Re-synthesis using a window
for icol = 1:nbcol
sigfen = ispec(:,icol) .* win;
%===== Overlap-Add
ixi = (icol-1)#*n0+1;
sig(ixi:ixi+Lfft-1) = sig(ixi:ixi+Lfft-1) + sigfen;
end
return

function spec_s=specinterp(spec_a, gamma)

% %
%% Interpolation of a Short Term FT array %
%% SYNOPSIS: spec_s=SPECINTERP (spec_a, gamma) %
Wh spec_a = original spectrogram (Short Term FT) %
%% gamma = Temporal modification rate %
%h spec_s = modified spectrogram %
% %

[Lfft,nbcol] = size(spec_a);
ts=1:gamma:nbcol-1;

spec_s = zeros(Lfft,length(ts));
%===== Phase and Phase increase
phase_a = angle(spec_a);
module_a = abs(spec_a);

diffp = zeros(Lfft,1);
phase_s=phase_a(:,1);

indcol = 1;

for tt = ts
%===== Two adjacent columns
ta_min=floor(tt); ta_max=floor(tt)+1;
%===== Weighted Mean

pound = tt - floor(tt);
modul = (1-pond)#*module_a(:,ta_min) + pond *module_a(:,ta_max);
gpec_s(:,indcol) = modul .* exp(j*phase_s);
%===== Phase diff and accumulation
diffp = phase_a(:,ta_max)-phase_a(:,ta_min);
phase_s = phase_s + diffp;
indcol = indcol+1;
end
return

H12.10 (Spectral quantization noise shaping) (see page 481)

1. Type:
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%===== CMISFQ1.M

%===== Signal generation

surech=4; AA=[1.2 3.2 2.7];

freq=[437 504 1367]°’/44100;

T=200; SEl=AAx*cos (2xpixfreq*(0:T-1));

SE4=AA*cos (2*%pi*freq#* (0:surech*T-1) /surech) ;

xteff=std(SE1);

SE4int=interM(SE1,surech) ;

plage=(30:T-30);

SSB1im=20*logl0(xteff/std(SE4(plage)- ...
SE4int (plage+15)));

disp(sprintf CSNR of INTERM: %.2f’,S8SBlim));

Because the interlM function only performs an approximation of the re-
construction formula, this operation introduces a calculation noise of
about 60 dB. Hence in order for the quantization noise to be appreciable,
its power has to be greater than the power of the calculation noise. If we
choose for example a signal-to-quantization noise ratio equal to 48 dB,
the quantization noise will be located about 12 dB above the calculation
noise. This particular ratio corresponds (formula 7.34) to an 8 bit quan-
tization. This is why, from now on, we will always set the number of bits
below 8 when studying performances.

. We saw in exercise 7.5 that the signal-to-quantization noise increases,
theoretically, by 6 dB for every additional quantization bit. Hence going
from 8 bits to 6 causes a loss of 12 dB. This is what we are going to check
through simulation.

In the suggested program, the peak value A, of the quantization system
1s chosen equal to the maximum value determined for the entire test
signal. In practice, this value can be obtained from an estimate P, of
the “instantaneous” power using an expression of the type A. = F+\/Py,
where F' refers to the clipping factor which usually has a value between
3 and 4. Type:

%===== CMISFQ2.M

clear; surech=4; AA=[1.2 3.2 2.7];

freq=[437 504 1367]°’/44100;

T=200; SEl=AAx*cos (2xpixfreq*(0:T-1));
SE4=AA*cos (2*%pi*freq#* (0:surech*T-1) /surech) ;

xteff=std (SE1); % RMS value

Ac=max (abs (SE1));

%===== N1=8 bit quantization

nb1=8; % Number of bits of the coder
ql=2#%Ac/(2"°nbl); % Quantization step

SE1Q8=round(SE1/q1)*ql;
SSB_SE1Q8=20%*10g10 (xteff/std(SE1-SE1Q8)) ;
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disp(sprintf (’%i bits : SNR = %.2f’,nb1,SSB_SE1Q8))
%===== N2=6 bit quantization

nb2=6; q2=2%Ac/(2°nb2); SE1Q6=round(SE1/q2)*q2;
SSB_SE1Q6=20%*10g10 (xteff/std (SE1-SE1Q6)) ;
disp(sprintf (’%i bits : SNR = %.2f’,nb2,SSB_SE1Q6))

3. Conducting this quantization operation on the oversampled signal al-
lows us to distribute the total power of the quantization noise in the

(—f§2/2,+f§2/2)band.

By going back to the (—Fs1/2,4F51/2) band, that is to say the
(—1/8,1/8) band in normalized frequencies (oversampling by a factor
M = 4), the power of the quantization noise is divided by 4 whereas the
useful signal’s power remains the same, hence a gain of 6 dB. We can
take this quantization of the oversampled signal to extremes, because the
result depends on whether or not the quantization noise is white on the
entire band. If this is not the case, the gain can be much smaller than 6

dB.

After a 6 bit quantization of the oversampled signal, it is essential to filter
it in order to eliminate the quantization noise outside the signal’s useful
band. This filtering is achieved by the 31 coefficient FIR filter with the

cut-off frequency 1/8. The following program is an illustration of this

result.
Type:
Y%===== CMISFQ3.M
%===== Oversampling
SE4Q8=interM(SE1Q8,surech); % Oversampling (8 bits)
Y%===== Truncation of SE4Q8 on 6 bits
SE4Q6HB=round (SE4Q8/q2) *q2; h=rif (31,1/(2*surech));
%===== Suppressing the out-of-band noise
SE4Q6=filter (h,1,SE4Q6HB) ;
%===== Avoiding side effects

bandm=(30:T-30) ;
SSB_SE4Q6=20% ...

logl0(xteff/std (SE4 (plage)-SE4Q6 (plage+30)));
disp(sprintf (’%i bits, oversamp. rate %i’,nb2,surech))
disp(sprintf (’SNR = %.2f’,SSB_SE4Q6))

4. We have (Figure H12.6) z(n) = e(n) + u(n), t(n) = z(n) — u(n) and
u(n) = y(n) —t(n — 1). Therefore z(n) = y(n) + €(n) where we have set:

e(n)=e(n) —e(n—1)
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Reference (SE = sampled signal, no quantization)
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Figure H12.5 — Process simulations (experimental values)
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Figure H12.6 — Noise shaping

This causes an additive noise €(n) to appear, obtained from the white
noise e(n), by a linear filtering with the impulse response A(0) = 1 and
h(1) = —1. We can therefore calculate its power using the psd, the
expression of which is given by Sc(f) = |H(f)|*¢?/12 where |H(f)|?

represents the complex gain of the filter which is written:
H(f)=1- e~ W™ = 9jemin] sin(mf)

This means that |H(f)|> = 4sin®(rf) = 2(1 — cos(27f)). We have a
high-pass filter. This quantization noise shaping makes it possible, by
oversampling, to reduce the noise in the useful band (Figure H12.7).

If we oversample by a factor of 4, the useful signal ends up in the
(—1/8,1/8) band. Therefore the power of the quantization noise has
the value:

1/8 .
e[ 2(1 — cos(2nf))df = a (1 - w) ~ 0.025 %

B==
12 —1/8 6 4

Compared with the power of the previous noise, which was equal to ¢% /48,
the power of the noise is reduced by about —7 dB, which improves the
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1/8

Figure H12.7 — Effect of the the quantization noise shaping (dark gray), shown for
n =2 and n = 3 order differentiations

signal-to-noise ratio by that much. However, this result is optimistic in
the sense that the hypothesis of a white quantization noise is only partly
true in practice. Type:

CMISFQ4.M
Noise shaping

euh=0;
for ii=1:length(SE4Q8)
ut=SE4Q8 (ii)+euh; zt (ii)=round(ut/q2)*q2;
euh=ut-zt(ii);
end
SE4Q6NS=filter (h,1,zt);
SSB_SE4Q6N3=20%* ...
log10 (xteff/std(SE4 (bandm)-SE4Q6NS (bandm+30)) ) ;
disp(sprintf (’SNRNS = %.2f’,SSB_SE4Q6NS))
ttl=sprintf (’%i bits ’,nb2);
tt2=sprintf (’Oversamp. rate %i with NS’,surech);
disp([tt1 tt2])
disp(sprintf CSNR = %.2f’,SSB_SE4Q6NS))

H12.11 (Denoising a speech signal) (see page 484)
Noising program:

%===== CNOISE.M

% Creation of the noisy file "phrasebruit"

T=1024; Lfft=4096; freq=(0:Lfft-1)/Lfft;

load phrase; % Speech signal file

ls=length(sn); nbi=fix(1s/T); ls=nbi*T; sn=sn(1l:1s);
ps=sn’*sn/ls; SNR=10; SB=10 "~ (SNR/10);

sigma=sqrt (ps/SB); svlB=snt+sigma*randn(ls,1);

save phrasebruit sviB sigma
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Denoising program:

%===== CDENOISE2.M
) PHRASEBRUIT = noisy signal
% and sigma”2 = power of the white noise

clear; load phrasebruit;
N=256; Lfft=1024; lambda=1.9; mu=0.13;
seuil=lambda*sigma*sqrt (N); nbi=fix(length(sviB)/N);
svldeb=zeros (nbi*N,1); %== Denoised signal
for ii=0:nbi-1
ind1=ii*N+1;ind2=ind1+N-1;
xn=sv1B(ind1:ind2);
Xk=fft (xn,Lfft); rap=seuil ./ abs(Xk);
gain=(rap<1) .* (l-rap) + (rap>1) .* mu;
Xkchap=gain .* Xk;
xnchap=real (ifft (Xkchap,Lfft));
svldeb(indl:ind?2)=xnchap (1:N);

end
soundsc (svildeb,8000)

A and p have been adjusted experimentally so as to achieve the best sound
result. In practice, the psd of the noise is not known beforehand and has to be
estimated based on the noisy data. The simplest method is to “visually” locate
a signal segment containing nothing but noise and to estimate the psd in this
segment. This method can effectively be applied to processes that do not have
to be conducted in real-time, such as the restoration of recordings. In other
cases, such as for example cellular technology, this operation has to be made
automatic. But detecting a “silent” segment in the case of speech signals is no
easy task, and the situation is even more complicated for music signals.

Figure H12.8 shows the effect of the frequency domain denoising operation.
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Figure H12.8 — Spectra of the first block before (on the left) and after the denoising
operation (on the right). The frequency is expressed in Hz
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H12.12 (Detecting impulse clicks) (see page 485)

1. We have:
2
| g(wd(n = )
po= 2\ — 1/2
E (|z(n )I ) o2 [0, |G (f)|2df
2
||t swdn - w)|
"2 (1)
ib(n)
d(n) + E+y(n) 2(n) z(n)=z4(n)+z,(n)

Figure H12.9 — Maiched filter

2. If we apply the Schwarz inequality to the numerator, we get:

2

+oo +oo +o00
_Z g(w)d(n —u)| < _Z 9°(u) _Z d*(u)

and therefore p < E;/0? where By = +oo d*(u). The resulting upper

U=—00

bound is reached if we assume g(u) = d(n — u). Tt is therefore the
maximum with respect to g(u). Note that the optimal solution is the
reversed copy of the signal g(n). In the case where d(u) has a finite
duration k, we will assume g(u) = d(k — u) in order for the filter g(n) to

be causal.

3. The filter with the transfer function A(z) = 1 +ajz= 4+ -+ agz~
is a linear filter with the finite impulse response {hi(n)} = {h1(0) =

hi(1) = a1, ..., hi(K) = ag}. If we feed the signal z(n) = é(n) + s

into this filter’s input, we get the signal y(n) = hi(n) + w(n), which is

the sum of the deterministic signal hi(n) and a white noise.

If we apply the result of the previous question, the conclusion is that
we have to filter the signal y(n) by the filter with the impulse response
hi(—n). Aside from a K sample delay, we get the causal filter with the
impulse response {ha(n)} = {h2(0) = ax, ho(l) = ag—1, ..., h2(K) =

1.
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4. In the absence of clicks, the input signal y(n) of the matched filter is a
white noise with the variance o?. Hence the output signal is centered and
the output spectral density has the expression S(e%™/) = o?|A(%™/)|2.
The output power is obtained by integrating the spectral density. Using
the Parseval formula, we get:

P, =c*(1+a?+ - +a%) (13.7)

5. In the absence of clicks, the output signal z(n) of the matched filter ha(n)
is a centered, Gaussian noise with the variance P,. The probability of
deciding the presence of a click is therefore given by:

+00 1
s V2rP,

+oo 1
2/ exp(—v?/2)dv
e VP

2Q(s/\/P:)

where @(c¢) is the integral function of the centered, Gaussian distribution
with the variance 1. If we choose Q(c) = 0.005, we have ¢ = 3 and
therefore:

5:3\/?,2

This threshold guarantees that the probability of deciding in favor of the
presence of a click, when there is no click, is less than 1%: this is called
the probability of false alarm. In order to set this level to satisfy a sound
criterion, we have to compare the matched filter’s output with a threshold
of the type A/P,. The choice of A will then be done by listening to the
denoised signal. P, can be estimated using expression 13.7.

Pr(|z(n)| > s|Ho) 2

exp(—u?/2P,)du

6. The following program generates the useful signal comprising 500 samples
of an AR-10. The impulses used to simulate clicks have an amplitude
equal to 1.5 times the square deviation of the signal. The program then
estimates the parameters, and computes the residual and the matched
filter. Finally, the resulting signal is compared to a threshold (Figure
H12.10):

%===== CCRAQ.M
clear
%===== Original signal (order 10-AR)

a= [1 -1.6507 0.6711 -0.1807 0.6130 -0.6085 0.3977 ...
-0.6122 0.5412 0.1321 -0.2393];
K=length(a); N=500; w=randn(1,N);
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g=filter(l,a,w); srms=sqrt(s*s’/l);

%===== NBCRAC clicks with an amplitude +/-1.5 srms
nbcrac=5; poscrac=[73 193 249 293 422];
ampcrac=1.5*srms* (2*round (rand (1 ,nbcrac) )-1);
sig=s; sig(poscrac)=s(poscrac)+ampcrac;

subplot (311); plot(s); grid

subplot (312); plot(sig); grid

%===== Detection of the clicks
[aest sw2est]=xtoa(sig,K); % Estimation of the AR
y=filter (aest,1,sig); % Whitening: estim. of residual

z=filter (aest(K:-1:1),1,y); % Matched filtering
subplot (313); plot(z); grid

VOeff=sqrt (sw2est*aest’*aest);

lambda=3; threshold=lambda*VOeff;
izthreshold=find(abs (z) >threshold); % Threshold

izthreshold=izthreshold-K; % Filter delay
lzs=length(izthreshold) ;
%===== Extraction of the maxima (3 samples from each other)

dist=izthreshold - [0 izthreshold(1l:1zs-1)];

mpl3=find (dist>3); 1lm3=length(mpl3); mpl3=[mpl3 lzs+1];

for ii=1:1m3
tl=izthreshold(mpl3(ii)); t2=izthreshold(mpl3(ii+1)-1);
[zmax(1i1) im]=max(z(t1:t2));
posEstim(ii)=im+t1;

end

izthreshold,poscrac,posEstim

Note that the instruction izthreshold=izthreshold-K, which sub-
stracts K from the detected positions, takes into account the K sample
delay caused by the causal implementation of the matched filter ha(n).

10 (Original signal

0 bbbl b

—100
10 rSignal with clicks

L B A B

-10

0 200 300 400 500
10 Detector's output : : :
-10 . . . .
100 200 300 400 500

Figure H12.10 — Signals obtained by declicking. The signal contains clicks that can
clearly be located on the residual
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H12.13 (Restoring “missing values”) (see page 488)

1. Let K be the order of the AR model and N the sample size. We wish to
minimize the square deviation between the sequence of values z(n) and
the sequence of predicted values #(n) = —ayz(n—1)— - —agx(n— K),
for n from 1 to N, that is to say the quantity:

N-K
Z —|—a1xu—1)—|—~~~—|—aKx(u—K))2

The minimization is done with respect to m unknown values, with indices
from £ to £+ m — 1 (Figure H12.11).

e ¢+m—1

ok T
19 S0 T I A

SO>S - X
T B : >K

Figure H12.11 — Several values are restored around the detected position

These values are only involved in a limited number of terms of this sum
which are:

L4+m+K—1
J = Z (J:(u)—i—alx(u—1)—|—~~~—|—aKx(n—K))2

Notice that J appears as the norm of the vector:

e=Tx
where T is an (m+ K) x (m+ 2K) Toeplitz matrix constructed from the
coefficients (ay, ..., ag):
aKg aK_1 e ap 1 0
T = 0 ag ag_1 cee aj 1 0

and x is a size (m + 2K) vector defined by:
x = [¢(l—=K), - ,x(l=1),2(6), - ,2({+m—1),

o : known y . unknown

e(l+m), - x(l+m+K-1)]"

x1 . known
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The size k vectors xp and x; are comprised of values that are known.
The size m vector y is comprised of values we have to reconstruct.

Hence we can partition T in three matrices of the adequate size such that
e = Apxg + A1x; + By, which we can also write x = Agxg + A1x; =
—By + e. In the end:

x=—-By+e

2. Minimizing the norm of e with respect to y involves the usual formulation
of a least squares problem seen in chapter 11. The solution 1s:

y=—-(B"B)"'B'x = —(B"B)"'BT (A;xo + A1x1)

H12.14 (Contour ellipse: the least squares method) (see page 501)

1. Type:

%===== CONTOURELLIPSE.M

% Contour detection using a differentiation

% of the disk obtained with preprocesscoin.m
figure(2); subplot(221); imagesc(yim02);
colormap(’gray’); axis(’image’); title(’Threshold’)
%===== Center of the ellipse
yimOv=(Spix (1) -sum(yim02/255))/Spix(1);
nx=[1:8pix(2)]; mx=(yimOv * nx’ / sum(yimOv));
hold on; plot([mx mx],[1 Spix(1)],’g’);
yimOh=(Spix (2)-sum(yim02’/2565))/Spix(2);
ny=[1:8pix(1)]; my=(yimOh * ny’ / sum(yimOh));

plot ([1 Spix(2)], [my myl,’y’); hold off

%===== Digital differentiation
yim=yim02(5:145,5:295) ;

yshn=diff (yim) ; dimy=size (yshm);

subplot (222) ; imagesc (yshm) ;

colormap (’gray’); axis(’image’)

title(’Digital filter’)

yims=ones (dimy) *255;

minsh=-220; maxsh=220;

ishl=find(yshm < minsh); yims(ishl)=zeros(size(ishl));
ish2=find(yshm > maxsh); yims(ish2)=zeros(size(ish2));
subplot (223); image (yims);

colormap (’gray’); axis(’image’)

title(’Threshold on the differentiation...’)
Yf=====

[xm,ym]=find (yshm < minsh | yshm > maxsh);

subplot (224) ; plot((ym),(xm),’.”)

set (gca,’Ydir’, 'reverse’); axis(’image’)
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title(’Idem...”)

L —

figure(3)

pixc2=pixc(6:145,5:295); pixc2(ishl)=zeros(size(ishl));
pixc2(ish2)=zeros (size(ish2));

imagesc(pixc2);

colormap(’gray’); axis(’image’); title(’Verification’)

2. Theoretically the points of the ellipse obey the equation ax? + bz +
cx1zo + dry 4+ exg — 1 = 0. Hence the idea of estimating the coef-
ficients based on N pairs {#1(n),2z2(n)} by determining the value of
O=[a b ¢ d ¢]? that minimizes:

(X6 — u)T(XH —u)

where X is the N x 5 matrix constructed from the sequences x;(n) and
z2(n), and where u refers to the length N vector containing nothing but
the components 1. The solution is given by:

8 — X#u

Once 68 has been estimated, we draw the ellipse using the ellipse
function from exercise 21, which draws the ellipse with the equation
(x—x0)TE(x—x0) —v = 0. In order to do this, we have to determine the
expressions which lead from 6 to the parameters xg, E and v. By expand-
ing (x—x0) T E(x—x0)—7 = 0, we get e1127 +eaaxi+2e1971 29— 2xT Exg+
x Exg—y =0 (ei; refers to the generating element of E where E = ET).
If we identify this expansion as ax% + bx% + cxiwe +doy +exy —1 =0,
we first have e;; = a, ea5 = b and e13 = es; = ¢/2. Then, for any pair

x =z x]7, —2xTExq =dr; +exs = x"[d ¢]”, meaning that:
1 ._11d

o= []
Finally, we have x)Exy — v = —1. The following function draws the
ellipse associated with the coefficients a, b, ¢, d and e.
Type:

%===== EQUATIONELLIPSE.M

undersamp=b;

%===== Reducing the number of points

[indz]=find (yims==0) ; Lindz=length(indz) ;
indz2=indz (1:undersamp:Lindz) ;



704 Digital Signal and Image Processing using MATLAB®

[indlig, indcol]=find (yims==0);
indcol2=indcol (1:undersamp: length(indcol));
indlig2=indlig(1:undersamp:length(indlig));
%===== Solution

x=indcol2; x2=x.*x; y=indlig2; y2=y.x*y;

xy= x.*y; Xmat=[x2 y2 xy x y];
observ=[indcol2 indlig?2];

bu=ones (length(indcol2) ,1);
coeff=Xmat\bu;

hold on; tracellipse(coeff); set(gca,’Ydir’,’reverse’)
hold off

which uses the function tracellipse:

function tracellipse(coeff)

Nh %
%% SYNOPSIS: TRACELLIPSE(coeff) %
%% coeff = Coefficients array %
YAA [coeff. of x"2, coeff. of y~2, coeff. of xy,...%
%h coeff. of x, coeff. of y] corresponding to: %
% ax”2+by” 2+cxy+dxtey-1=0 %
% %

a=coeff(1); b=coeff(2); c=coeff(3); d=coeff(4); e=coeff(5);
E(1,1)=a; E(2,2)=b; E(1,2)=c/2; E(2,1)=E(1,2);
X0=-inv(E)*[d;el/2;

gam=X0’*E*X0 + 1; %gam=a*x0*x0+b*y0*y0+c*x0*y0+1;

N=100; theta=[0:N]*pi*2 / N;

Y=sqrt (gam) * [cos (theta) ;sin(theta)];

Fmil=inv(sqrtm(E)); X=diag(X0)*ones(2,N+1)+Fml*Y;
plot(X(1,:),X(2,:),’r’);

return

H12.15 (Contour ellipse: the covariance method) (see page 502)

1. Let Uy and V; be the two components of y;. The mean vector E{y;}
has two components. The first one is:

1
E{Ul} I/ ulpy(ul,uz)dulduz = —/uldulduz
R2 T Jc
If we assume u; = pcos(d), we get:
1 27 1
E{U,} = —/ / pcos(f)pdpdf =0
m™Jo 0

We also have to check that the second component E{V;} = 0. In the
end, E{y;} = 0.
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The covariance matrix E{ylle} requires the calculation of three quan-
tities E{UZ}, E{V?} and E{U1V1}. If we assume u; = pcos(d), we
get:

1 2w 1 1
E{U?} = / uipy (us, us)duyduy = —/ / p? cos?(0) pdpdf = —
R2 - ™ Jo 0 4
Likewise, we have E{V{?} = 1/4 et E{U;V1} = 0. Therefore:
T 1
E{Y1Y1 } = ZIZ

2. The law of large numbers states that when N tends to infinity:

1 1
Nn (Yn —19N) (Yn —ﬁN)T ﬁ) 112

1
-

If we multiply on the left and on the right by M'/2 and by remembering
that according to 12.24, My,, = x,, — , we infer that:

N
(%n — b)) (% = fa) " 75 M/4

%===== RECHELLIPSECOVAR.M

clear all, close all

load piece?2

[nblign nbcoll=size(pixc); [yyl,xx1]=find(pixc<70);

points=[xx1 yy1]; NN=length(xx1);
mymean=mean(points) ;
points_centres=points-ones (NN, 1) *mymean;
RR=points_centres’*points_centres/NN;
image (pixc); hold on

MM=44RR; E=inv(MM); ellipse(mymean,E,1)
hold off

H12.16 (Face recognition) (see page 512)

First, make a catalog of the data corresponding to the photographs in levels of
gray. In our example, the catalog called orlfaces contains the catalogs called
s1, 82, ..., each one containing the 10 photographs that have to be processed.
Type the training program LDAPCAtraining.m. It is used by the test program
LDAPCAtest.m:
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%===== LDAPCATRAINING.M

k1=4; k2=3;

nbindiv=40; % Number of individuals
nbimages=10; % Number of photos
nbimages_A=3; % Photos for training

XredPCA2D=cell(1,nbindiv) ;
XredLDA=cell (1,nbindiv) ;
V=cell(nbindiv,1);
W=cell(nbindiv,1);
for ii=1:nbindiv
grandX=zeros (d,nbimages_A) ;
grandXcell=cell(nbimages_A,1);
for kimg=1:nbimages_A
filename=sprintf ([ImageFile ’/s%i/%i.png’],ii,kimg);
imge=imread(filename) ;
grandXcell{kimg}=imge;
end
[Vv{ii}, Ww{ii}]=PCA2D(grandXcell,k1,k2);
XredPCA2D{ii}=zeros (k1¥k2,nbimages_A) ;
for kimg=1:nbimages_A
VTGW=V{ii}’*double (grandXcell{kimg}) *W{ii};
XredPCA2D{ii}(: ,kimg)=reshape (VIGW,k1%k2,1) ;
end
end
dim_barycenter=6;
gLDA=ALD (XredPCA2D,dim_barycenter) ;
barycenter_nua=zeros (dim_barycenter,nbindiv) ;
for ii=1:nbindiv
XredLDA{ii}=gLDA’ *XredPCA2D{ii};
barycenter_nua(:,ii)=XredLDA{ii}*ones (nbimages_A,1)/nbimages_A;

end

Type the following recognition program:

%==== LDAPCATEST.M

clear all

ImageFile=’orlfaces’;

d=112%92;

nbindiv=40; % Number of individuals
nbimages=10; % Number of photos
nbimages_A=3; % Photos for training
LDAPCAtraining;

matriceconf=zeros(nbindiv) ;
for ii=1:nbindiv
for jj=nbimages_A+1:nbimages

filename=sprintf ([ImageFile ’/s%i/%i.png’],ii,jj);
grandXcell_T=double (imread(filename));
AA=double(V{ii}) ’*grandXcell_T#*double (W{ii});
Xred_T=reshape(AA,k1%k2,1);
XredLDA_T=gLDA’*Xred_T;
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for kk=1:nbindiv
aux (kk)=norm(barycenter_nua(: ,kk)-XredLDA_T, fro’);
end
[minaux indaux]=min(aux);
matriceconf (ii,indaux)=matriceconf (ii,indaux)+1;
end
end
matriceconf

H12.17 (Separating two sources) (see page 515)

1. We get J(a, 3) = Zszl Jy where:

with:

Ci(1,1) = rpq1+2arp 10+ ar
Ci(2,2) = 7111 +28r012+ B renn
Ci(1,2) = (14+af)ryia+ frenn +arg o

where r; ;; are the 4 terms of the covariance matrix estimated on the {-th

block with the length N.

2. Type the following program:

%===== SEPARESOURCES.M

clear

load sigs %===== s=[s1;82] array (2 x Ns)
fe=8000; Ns=size(s,2);

N=fe*10/1000; %===== Block duration 10 ms
A=[1 1.3;-0.1 0.8];

%===== Mix of s1 and s2

x=A*s; y=zeros(Ns,2);

%===== N=window size

L=fix(Ns/N);

rell=zeros(2,2);

%===== Range for alpha and beta
alpha=(-2:0.01:-1) ;beta=(0:0.01:2);
la=length(alpha) ; 1b=length(beta) ;

Y%===== JJ: evaluation function
JJ=zeros(la,lb);
for ii=1:L

id1=(ii-1)*N+1;id2=id1+N-1;
xell=x(:,id1:1d2);
xellc=xell-mean(xell’)’*ones(1,N);
R_ell=xellc*xellc’/N;
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r11=R_el1(1,1);r12=R_ell(1,2);r22=R_el11(2,2);
for ia=1:1a

for ib=1:1b
C12=(1+alpha(ia)*beta(ib))*r12+alpha(ia)*r22+...
beta(ib)*rii;

Cll=r11+2*alpha(ia)*ri12+alpha(ia) "2*r22;
C22=r22+2%beta(ib) *ri12+beta(ib) "2%ril;
jell=C12"2/(C11%C22) ;
JJ(ia,ib)=JJ(ia,ib)+jell;

end

%===== Minimum of JJ

[aa ida]l=min(JJ); [aa idb]=min(aa);
alpha0=alpha(ida(idb)); betal=beta(idb);

B=[1 alphaO;beta0 1]; y=B*x;

soundsc(y(1,:),fe); pause(3); soundsc(y(2,:),fe)

H12.18 (Radar telemetry) (see page 517)

1. In both cases, the energy is fOT |s; (¢))dt = A*T.

A s1(7) s2(1)
A A

Figure H12.12 — Two types of impulses

2. In the absence of noise, the matched filter’s output has the expression:

y(t) = /si(u)h(t — w)du = /si(u)si(u — )du

The maximum is reached in ¢ = 0 and is equal to Ay = A%T in both
cases.

3. Figure H12.13 shows the matched filter’s input and output chronograms
for the types of impulses that were chosen.

As you can see on the received signal, chronograms (a) and (¢) in Figure
H12.13, it is very difficult to decide the presence of an echo. That is the
point of the matched filter. Notice, also, that the signal y(¢) is sharper
when the impulse s () is used, chronograms (b) and (d) in Figure H12.13.
The fluctuations caused by the noise basically have the same amplitude
in both cases. Therefore, the maximum is easier to locate when using the
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®) § @

Figure H12.13 — Matched filtering: (a) noisy signal s1(t), (b) matched filter’s output
for s1(t), (¢) and (d) show the same information for the signal s2(t)

impulse s5(¢). Because the two signals have the same energy, this means
that performances are better for s5(¢). Of course, this comes at the cost
of a larger spectral area where s3(¢) is different from zero. Type:

%===== CTELRAD1.M
Tmax=1000; T=63; Ts7=T/7; Es=T; trhld=Es/2; SNR=0;
sigmab=sqrt (10~ (-SNR/10)); tau=200; trgt=(rand>.5);
if (trgt)

disp(sprintf (’Found target: tau=jg’,tau));

else

disp(’No target’);
end;
sl=ones(T,1);
s2=[ones(Ts7,1) ;—ones (2%Ts7,1) ;

ones (3%Ts7,1) ;-ones(Ts7,1)];

stl=[zeros(tau,1) ;sl;zeros(Tmax-T-tau,1)];
st2=[zeros(tau,1) ;82;zeros(Tmax-T-tau,1)];
bt=sigmab*randn (Tmax,1) ;
xtl=trgt*stl+bt; xt2=trgt*st2+bt;
yti=filter(s1(T:-1:1),1,xt1);
yt2=filter(s2(T:-1:1),1,xt2);
subplot (221); plot(xt1); subplot(223); plot(ytl)
subplot (222) ; plot (xt2); subplot(224); plot(yt2)
[ymax imax]=max(ytl);
if ymax>trhld

taul=imax-T; disp(sprintf (’Pulse 1: taul=}g’,taul));

else

disp(’Pulse 1: no target’)
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end

[ymax imax]=max(yt2);

if ymax>trhld
tau2=imax-T; disp(sprintf (’Pulse 2: tau2=}g’,tau2));
else
disp(’Pulse 2 : no target’)

end

The choice of the threshold is the result of a compromise between the
probability of a false alarm and that of non-detection. If the threshold is
increased, the probability of non-detection increases, while that of false-
alarm decreases.

H12.19 (Denoising of an AR-1 signal using Kalman) (see page 523)

1. The state equation shows that the stationary solution is an AR-1 process.
Therefore, its power has the expression:

2
Op

E{22(0)) = 12

2. According to 12.34, we have:

K(n—1)

Gn) = Kn-1)+40a2

(13.8)

which leads us to K(n—1)(1 —G(n)) = 02G(n). If we replace this result
in 12.34, and notice that C = 1 and that all the quantities are scalars,
we successively have:

K(n) = a*K(n—1)(1 - G0)*+a*G*(n)o? + ot
= azG(n)(l — G(n))ai + aZGZ(n)UZ + 0'5
aZO'ZG(n) —1—0'5

If we take (n — 1) and then replace K(n—1) = a?62G(n —1) + o} in the
expression 13.8 that gives G(n), we get the recursive formula:

G(n) = p+a’G(n—1)

14+ p+a’G(n—1) (13.9)

In this case, the initial conditions (see algorithm on page 519) lead to
K(0) =E{2%(0)} = ¢Z/(1—a?). Therefore G(1) = p/(14 p—a?). From
the calculation point of view, everything happens as if we started out

with formula 13.9 and the initial values #(0) = 0 and G(0) = p/(1 — a?).

The Kalman algorithm can be summed up as follows:
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— Initial conditions: #(0) = 0 et G(0) = p/(1 — a?).
— For n from 1 to N:

B p+a’G(n—1)
Gln) - = 14+ p+a?Gn—1)
z(n) = az(n—1)4+Gn) (y(n) —az(n—1))

3. The following program is designed to test the algorithm:

h===== CKALM.M

N=200; mtime=(0:N-1); xch=zeros(N,1);

a=0.9; % Time constant for the AR-1
sigmab=1; % Modelling noise with variance=1
%===== Trajectory

b=sigmab*randn(N,1); x=filter(1,[1 -al,b);

sigmau=3; % Observation noise: variance=9

y=x+sigmau*randn(N,1); % Observation
saux=9*sigmau”2;
%===== Tracking
a2=a*a; rho=(sigmab/sigmau) "2; G(1)=rho/(1-a2);
for nn=2:N
G (nn)=(rho+a2*G(nn-1) )/ (1+rho+a2*G (nn-1)) ;
xch(nn)=a*xch (nn-1)+G (nn-1) * (y (nn) —a*xch(nn-1) ) ;
end
plot(mtime,x,’-’,mtime,y,’:’ ,mtime,xch,’0’);

The results are shown in Figure H12.14.

— Observation !
10 | — Trajectory
o Estimation

ffffffffffffffffffffffffffffffffffffffffffffffff

20 40 60 80 100 120 140 160 180 200
Figure H12.14 — Results for the study of the filtering

When we presented the Kalman filter, and implemented it in the previ-
ous program, we assumed that the model as well as the characteristic
features of the noise were known. However, this is usually not the case.
For example, if in our case the signal x(n) is not an AR process, the
choice of a and of ¢ requires that we compromise between the ability of
z(n) to track the trajectory and the elimination of the noise. Choosing
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a too close to 1 means that the model does not take into account the
rapid variations of the signal x(n). Therefore, the filter has difficulties
“keeping up” with such variations. Likewise, if we choose o too high,
we assume that we expect significant variations of the signal z(n) with
respect to the equation z(n) = axz(n — 1). You can check by using the
previous algorithm and changing the parameters. Take for example
x=filter(1,[1 -a 0.2],).

H12.20 (Performances with two sub-codebooks) (see page 536)

1. Type:

%===== LBG64.M

N=5000; w=randn(2*N,1); xAR=filter(1,[1 0.9],w);
s=zeros(2,N); s(:)=xAR;

[CfD,CiD,ED]=1bg(s,64) ;

2. Type:

%===== First dictionary
[C£C1,CiC1,EC1]=1bg(s,4);
%===== Calculating the difference
diff=zeros (2,4%*N) ;
for ii=1:4
diff(:, (11-1)*N+1:1i*N)=s-CfC1(:,1i1)*ones(1,N);

%===== Second dictionary
[CfC2,CiC2,EC2]=1bg(diff,16);

In the first case, we obtained a mean square error ED=0.1189. In the
second one, we obtained for the first (very crude) codebook EC1=1.4684
and= for the second one, which is “more subtle”, EC2=0.5890. Hence
the second one gives the order of magnitude of the distortion caused by
this second type of partition. We therefore have to compare, in terms of
square deviation, the values 0.1189 and 0.5890. The loss is significant,
but the total size of the two sub-codebooks is 20 instead of 64 for the
maximum size dictionary.

H12.21 (Phase modulator) (see page 542)

1. Because the binary rate is equal to 1,500 bps, each bit lasts 1/1,500 s.
Since the bits are arranged in groups of three, the transmission of each
elementary signal lasts a duration of T'=3 x 1/1,500 = 2 ms.
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Figure H12.15 — Gray code for an 8 state phase modulation

2. Figure H12.15 shows a Gray code solution.
3. Type (see Figure H12.16):

%===== CPSK.M

M= 3; % Bits per symbol
dpM = 2°M; % Number of symbols
%===== Gray code

gray = [ 013276451;
% Exemple : 101=5 -> gray(5+1)=6
ak = exp(2*j*pi*gray/dpM) ;

Fe = 20000; % Frequency for displaying the results
FO = 2000; % Carrier frequency

FOr = FO/Fe;

Db = 1500; % Binary rate

T = M/Db; % Symbol duration

NT = FexT; % Number of display points

%===== 3K bits

gseqbit = [00010100110001 1];
nbsymb=length(seqbit)/M;

seqgr = reshape (seqbit,M,nbsymb) ;

%===== Indices for the symbols sequence
matcod = [4 2 1]; incod = matcod * seqgr + 1;
seqsymb = ak(incod);

%===== Complex envelope

ec = ones(NT,1)*seqsymb; ec = reshape(ec,1,nbsymb*lT);
tsa = (0:nbsymb*NT-1)/Fe;

sig = real(ec .* exp(2*j*pi*FOx*tsa));
subplot(311); plot(tsa,real(ec)); grid
subplot(312); plot(tsa,imag(ec)); grid
subplot (313); plot(tsa,sig); grid
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-0.5
1

—_

(=]

—

signal

H12.22 (AMI code) (see page 547)
1. Because dj is a uniform, i.i.d. sequence with possible values in {0, 1}:
E{dy} =1/2, E{d}} =1/2 and E{dkd;} = E{d} E{d;} = 1/4
for k # j. According to the coding rule:

Sk+1 = (1 — Qdk)sk
ap — dksk
therefore ap = di (1 — 2di_1)(1 — 2dk—2) . ..

Because the di are independent, E{ar} = 0. By expanding, we get
E{(1—2d)?} =1 and E{(1 — 2dj_1)dk_1} = —1/2.

Using the fact that the dj are independent, we get E{ az} =1/2 and:

Efagag—1} = E{dp} E{(1 — 2dy_1)dp_1} E{ (1 — 2dx_2)"} ,...

Therefore, R,(+1) = —1/4. We have to check that E{agas_;} = 0 for
|7] > 2. We infer that:

1. 1 1 .
Sa(f) = —Zez‘”fT + 3 Ze_zﬂfT = sin?(nfT)
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N=10000; bits=(rand(1,N)>0.5); N=length(bits);

symb=zeros (1,N) ;
Coder

for ii=1:N
if (bits(ii)==1),
symb (ii)=vp; vp=-vp;
else symb(ii)=0;
end;
end

srate=1000; Lfft=256; fq=srate*(0:Lfft-1)/Lfft;
blksz=50; ps=welch(symb,blksz,’rec’ ,Lfft,0.95);

pt=sin(pi*fq/srate) ."2;

plot(fq, [ps pt’]); grid; axis([0 srate/2 0 1.1]);

H12.23 (HDB3 code) (see page 547)

1. Starting with the initial values p, = +1 and p; = —1, we have:

dy,

P
Ak

P1

0
+1
0

-1

6o 1 1 1 0 0 0

0O +1 -1 +41 -1 0 O

+1 -1 41

2. Type:

function an=hdb3(dn,pv,pl)

0 1
S
-1 +1
-1 +1

0

0

0 0 0 0 1 O

T |

0 0 +1 0 -1 0
+1 -1

b

%% SYNOPSIS : an=HDB3(dn,pv,pl)
% dn =

hh pv =

%h pl =

% an = Coded sequence

Binary sequence to be coded

Initial value of the bipolar violation bit %
Initial value of the bipolar bit %

%h
N=length(dn); nz=0;
for ii=1:N

if (dn(ii)==1)

elseif (nz<3)

nz=nz+1; an(ii)=0;
else

nz=0; an(ii)=-pv;

pv=-pv; pl=pv;
end
end

return

nz=0; an(ii)=-pl;pl=-pl;

if (pv==pl) an(ii-3)=-pv; end;
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By typing:
hdb3([0 1110000100000 10],+1,-1)

check the result of the previous question.

3. Because the symbol sequence is centered in AMI coding, formula 12.54,
which gives us the digital signal’s spectrum, amounts to only the first
term. The welch function then allows us to estimate the periodic part
between 0 and 1/7', corresponding to the correlations of the symbols a,,
that is to say:

Sulf) = 3 Ra(0)e= 2777

at the frequency points f = m/TL where m =0, ..., L — 1 and where L
refers to the number of frequency points between 0 and 1/7. All we have
to do after that is multiply by the square modulus of the pulse spectrum,
given, except for a multiplication factor (related to the amplitude), by
G(f) =sin(nfT)/nfT. TIf we restrict ourselves to the (0,1/T') frequency
band, we have:

sin(rm/L)
mm/L

Se(m/TL) = Sa(m/TL)

where the S,(m/TL) are estimated by applying the welch function to
the sequence a,. Type:

%===== TESTHDB3.M

clear; N=10000; bn=(rand(1,N)>0.5);
an=hdb3(bn,1,-1);

%===== Estimation of the spectrum of the sequence an
Lfft=256; fq=(0:Lfft-1)/Lfft; tblocs=200;
Saf=welch(an,tblocs, ’rec’ ,Lfft,0.95);

%===== Rectangular pulse on (0,T)

fql=pix(1:Lfft-1) ’/LEft;

Gf=[1;sin(fql) ./ fq1l; Gf2=abs(Gf) ."2;

Sx= Saf .* Gf; plot(fq,Sx); grid

H12.24 (Linear equalization of a communications channel) (see page

549)

1. The constellation contains 16 symbols that can be coded using 4 bits.
Remember that if Fj refers to the carrier frequency, the transmitted signal
can be written s(t) = Re(a(t)e2™lot).
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0000X 0001 3 X00I1 0010

0100 X 0101 X 1 X 0111 X 0110
-3 -1 1 3

1100X 1101 -1 X 1111 X 1110

1000 XX 1001 -3 X1011 X 1010

Figure H12.17 — Constellation and Gray code

2. The filter G(z) = 1/(ho+h1271) is stable if the convergence area contains
the unit circle. Therefore, if the square root of the denominator has a
modulus greater than 1, the stable filter 1s anti-causal.

For ho =1 and hy = —1.6:

1 z PE z3
T N e N A W A
A length 21 causal approximation leads to a delay of 21 (see Figure
H12.20).
50 [ - 5f— - -
¥EwE | O REITE
o [ REHEE | of | MAHE
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xR | | ¥ EH ¥
=5 et L P e
-5 0 5 =5 6 5 =5 0 5

Figure H12.18 — Noised signal, the signal-to-noise ratio is equal to 20 dB; signal
containing the IST caused by the FIR filter, ho = 1 and hy = —1.6; signal after
equalization

3. Type:

%===== Alphabet

ar=2%(0:M-1)-M+1; un=ones(M,1); pa=2*ar*ar’/M;
ac=(un*ar+j*ar’#un’); M2=M"2; ind=ceil (M2*rand(N,1));
symb=zeros(N,1); symb(:)=ac(ind);

SNR=20; rho=10"(SNR/20); sb=sqrt (pa)/(rho*sqrt(2));
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Figure H12.19 — Comparison for a minimum phase channel
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Figure H12.20 — Comparison for a non-minimum phase channel

br=sb#* (randn (N, 1) +j*randn (N,1)); xt=symb+br;
subplot (231); axis(’square’); plot(xt,’x’); grid;
axis(1.2%[-1 1 -1 1]*max(abs(xt)));

%===== Non minimum phase channel
% he=[1 -1.6]; he=-(1/1.6) .~ (20:-1:0);
%===== Minimum phase channel

hc=[1 -0.6]; he=0.6 .~ (0:20);

yt=filter (hc,1,xt); subplot(232); axis(’square’)
plot(yt,’x’); grid; axis(1.2%[-1 1 -1 1]l*max(abs(yt)));
zt=filter (he,1,yt); subplot(233); axis(’square’)
plot(zt,’x’); grid; axis(1.2%[-1 1 -1 1]l*max(abs(zt)));
subplot (413) ;plot (real (xt (1:100))); grid

subplot (414) ;plot (real(zt (1:100))); grid

H12.25 (2-PAM modulation) (see page 555)

1. Generating the coded signal:

h===== CMIA1.M

Fe=20000; % Display frequency
Daff=500; % Wb of display points
Db=1000; % Binary rate = symbol rate

T=1/Db; % Interval between symbols
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NT=fix (FexT);

nbgymb=300; segbits=round(rand(1,nbsymb)) ;
seqsymb=2*segbits-1; he=ones(NT,1); xe=hex*seqsymb;
1x=NT*nbsymb; xe=reshape(xe,1,1x); % NT pts/bit
tx=(0:1x-1) /Fe;

%===== Displaying only Daff points

subplot (221); plot(tx(1:Daff),xe(1:Daff)); grid
axis([tx(1) tx(Daff) -1.2 1.2]);

save miadata

2. Received signal:

3. Type:

4. Type:

%===== CMIA2.M

% Output signal

clear; load miadata; hold off

1hsT=3.5; % hc length

bc=0.06; % Channel band

hc=rif (lhsT*NT-1,bc);

xr=filter(hc,1,xe); % Filtering by the channel
subplot (222) ; plot(tx(1:Daff),xr(1l:Daff))

axis ([tx(1) tx(Daff) -1.3 1.3]); grid

save miadata

%===== CMIA3.M
% Eye pattern
clear; load miadata; hold off
%===== Matched filter output
h=conv (he,hc); lh=length(h); h=h/sum(h);
xa=filter (h(lh:-1:1),1,xr);
xo=zeros (2*NT,nbsymb/2) ;
%===== Length 2*NT window (2 symbols)
for ii=1:nbsymb/2
tdeb=(ii-1) *2*NT+1; tfin=tdeb+2*NT-1;
xo(:,ii)=xa(tdeb:tfin)’;

%===== Displaying the trajectories

subplot (223) ; plot((0:2+NT-1)/Fe,x0(:,5:nbsymb/2));
axis(’square’); grid

%===== Choice of the decision time

disp(’Choose the sampling time’)
disp(’corresponding to the widest aperture’)

[aa bbl=ginput (1) ;

co=round (aa*Fe) ; % Eye center

co=co-fix (co/NT)*NT % between 0 and NT-1
save miadata

719
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%===== CMIA4.M

% Displaying the result of sampling

clear; load miadata

hold off; subplot(224); axis(’normal’)

plot (tx(1:Daff) ,xa(l:Daff))

hold on; plot(tx(co+1:NT:1x) ,xa(co+1:NT:1x),’0’)
hold off; axis([tx(1) tx(Daff) -1.3 1.31); grid

5. Type:

%===== CMIA5.M

% Estimation of the error probability Pe
clear; load miadata

retard=ceil (1hsT)-round(co/NT)+1;
Px=xa*xa’/lx; SNR=1;

Pb=(NT/2) * Px/(10 ~(SNR/10));

zc=xr + sqrt(Pb)*randn(1,1x);

%===== Matched filtering
za=filter (h(lh:-1:1),1,zc(1:1x));
%===== Threshold detection

sbest=(sign(za(co+1:NT:1x))+1)/2;
sbest=sbest (retard:length(sbest));
seqbits=segbits (1:1length(sbest));
merr=find(sbest “=seqbits); nbe=length(merr) ;
pe=nbe/length(sbest) ;

disp(sprintf (’SNR: %g dB’,SNR))
disp(sprintf (’Pe: %1.2f’,pe))

Original signal Received signal

1 o S A S B S
oI o PR
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Figure H12.21 — Signals at different points of the communication line
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H12.26 (“Zero Forcing” linear equalization) (see page 564)

1.

5.

If g(n) refers to the channel’s impulse response, the suggested equalizer
has the impulse response w(n), such that w(n)*g¢(n) = d(n). The equal-
izer’s output signal therefore has the expression:

z(n) = w(n) xg(n) *a(n) + w(n) xb(n)
b(n)

y(n) = win)*
= a(n)+wn)

*

Notice that y(n) only contains the contribution of the symbol a(n). In-
terference due to other symbols 1s completely eliminated. This is why
this equalizer is said to be “Zero Forcing”, in the sense that it forces the
ISI to be equal to zero.

. The output noise u(n) = w(n) x b(n) of the filter w(n) is Gaussian and

centered. Using formula 8.63 for P = 2, we get the variance:

2 2 2 go + g2
o,=Eju"(n); =0
fim} (90 — 92) (93 + 93 + 29092 — 97)

. We have y(n) = a(n) + u(n). Therefore, under the hypothesis that a,, =

—1, y(n) is a Gaussian variable with the mean —1 and the variance o?2.

Under the hypothesis that a,, = +1, y(n) is a Gaussian variable with the

mean +1 and the variance o2.

. The error probability is:

P. = Pr(Decide —1 knowing a, = 1) x Pr(a, = 1)

+ Pr(Decide 1 knowing a, = —1) x Pr(a, = —1)

1 1
= Pr(y <0lan = +1)5 +Pr(y > Ola, = —1)5

. 2
132

with p = 1/o,. In MATLAB®, Q(p) is obtained by typing
Q=(1-erf (rho/sqrt(2)))/2.

Type:



722 Digital Signal and Image Processing using MATLAB®

%===== EGALLIN.M

clear

N=5000; g=[1 -1.4 0.8];
%===== Calculating sigma

Ch2=(g(1)+g(3))...
/(g(1)"2+g(3) "2+2xg (1) *g(3)-g(2)"2) / (g(1)-g(3));

Ch=sqrt (Ch2);

Y%===== Several values for the SHNR

SNRAB=(5:17) ; longSNR=length (SNRAB) ;

Pelin=zeros(longSNR,1); PeTheo=zeros(longSNR,1);

ak=sign(randn(1,N)); sk=filter(g,1,ak);

ve=sqrt (sk*sk’ /) ;

RSB=10"(SNRdB(jj)/20); sigma_b=vs/RSB;
bk=sigma_b*randn(1,N) ;

xk=sk+bk; ykegal=filter(l,g,xk);
aklin=sign(ykegal(1:N));
Pelin(jj)=sum(abs(ak-aklin)/2);

sigma_u=sigma_b*Ch;
rho=1/sigma_u;
Y=====
PeTheo (jj)=(1-erf(rho/sqrt(2)))/2;
end
Pelin=Pelin/N;
semilogy (SNRdB, Pelin, ’x’, SNRdB, PeTheo, ’-’); grid

Figure H12.22 shows the results. They are in perfect agreement with the
theoretical values.

H12.27 (Wiener equalization) (see page 565)

1. Let us assume that w = (w(0), - ,w(N — 1))T and x(n) = (z(n), ...,
z(n — N + 1)), The expression we have to minimize with respect to
w, is written E{ la(n —d) — wa(n)|2}. Using the projection principle,
we have a(n — d) — wlx(n) L z(p) for p € {n, ..., n — N + 1}, which
can be written E{ (a(n —d) — wlx(n))z(n — k)*} = 0 where k € {0, ...,

N — 1}, or also, in matrix form:
E{a(n —d)x*(n)} = E{x(n)x" (n)} w (13.10)

2. If we assume that a(n) is an identically and independently distributed
sequence with possible values in {—1,41}, we have E{a,} = 0 and:

Raa(k) = 0'2(5(147) avec o> =1

a
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0.1 F-z:Z

0.01

Figure H12.22 — Symbol-by-symbol detection of a Zero Forcing equalizer’s output for
a binary transmussion. The equivalent channel has the coefficients go =1, g1 = —1.4,
g2 = 0.8. The x’s indicate the probabilities obtained through 5,000 simulations for
different values of the signal-to-noise ratio in dB

Let s(n) be the channel output. According to the filtering formulas, we
have:

Rys(k) = g(k) % g™ (—k) x Raa(k) = g(k) x 9" (—k)

This sequence only has 2 — 1 non-zero terms since g(k) is of length L.

By assuming that b(n) is independent of a(n), b(n) is independent of s(n)
and we have:

Reo(k) = E{(s(n+k)+b(n+k))(s*(n)+b*(n))}
E{s(n+k)"s(n)} +E{b(n+ k)b"(n)}
Rys(k) + 02 (k)

= g(k)*g" (k) + 036 (k)

Likewise, if we use the input/output filtering formula, we have:

Rap(k) = Efa(n+k)a™(n)} = E{a(n +k)(s™(n) +0%(n))}
E{a(n+k)s™(n)} = g*(—k)
3. If we refer to expression 13.10, E{x(n)x" (n)} = Ry + 021 where R,

is a Toeplitz matrix constructed from the sequence R,,(k). The vector
E{a(n — d)x*(n)} is comprised of the coefficients g(k):

Yar = [0---0g"(L—1)---¢7(0) 0---0]"
d L N-L-d

Therefore, the filter we are trying to determine is w = (Rss—i—UgIN)_lrM.
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4. The mmse.m program allows us to examine the histograms of the received
values as well as the histogram after equalization. As you can see, the
intersymbol interference leads to a more spread-out histogram:

===== MMSE.M

clear; N=5000; gc=[1 -1.4 0.8]; lg=length(gc);
ak=sign(randn(1,N)); % Sequence of symbols
sk=filter(gc,1,ak); 7% Emitted signal
vsth=sqrt (gc*gc’) ; RSBAB=20;

sigma_b=vsth*10~ (-RSBdB/20) ; bk=sigma_b*randn(1,N);

xk=sk+bk; % Received signal
%===== MMSE (order-50 FIR)
LW=50; d=23;

rss=conv(gc,gc(lg:-1:1));
rsspos=[rss(lg:2*1g-1) zeros(1,LW-1g)];
Rxx=toeplitz(rsspos)+sigma_b*sigma_b*eye (LW) ;
ras=[zeros(1,d) gc(lg:-1:1) zeros(1,LW-1g-d)];
w=1inv (Rxx) *ras’;

ykwiener=filter(w,1,xk);

%====== SNR after equalization
roMMSE=max (conv (w,gc)) /std(ykwiener) ;
%===== Displaying the results

points=50; subplot(211); hist(xk,points); grid
subplot (212) ; hist (ykwiener,points); grid

5. We can now perform the equalization with the Wiener filter, then, by
simple detection with the threshold 0, estimate the binary sequence and
measure the error probability. We can then compare the results for a Zero
Forcing equalization. If the filter g(n) is minimum phase, we can perform
the Zero Forcing equalization simply by typing filter(1,gc,xk) and
comparing the error probabilities. On the other hand, if the filter g(n) is
not minimum phase, the Zero Forcing equalization can only be achieved
using the command filter, which implements the causal solution that is
not stable. We then have to determine a causal and stable approximation
of the inverse of g(n).

The following program implements the performance comparison in terms
of error probability. After having run the mmse.m program, run the fol-
lowing program (Figure H12.23):

%===== EGALLINCMP.M
% Program to to be run after MMSE.M
SNRAB=(5:17) ; SNR1gth=length(SNRAB); retardW=d+lg-1;
Y=====
for jj=1:SNRlgth
RSB=10"(SNRdB(jj)/20); sigma_b=vsth/RSB;
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bk=sigma_b*randn(1,N); xk=sk+bk;
ykegalZF=filter(1,gc,xk); aklinZF=sign(ykegalZF(1:N));
PelinZF (jj)=sum(abs (ak-aklinZF)/2);

Rxx=toeplitz(rsspos)+sigma_b*sigma_b*eye (LW) ;
w=inv (Rxx)*ras’; ykegalW=filter (w,1,xk);
aklinW=sign(ykegalW (1:N));
PelinW(jj)=sum(abs(ak(1:N-retardW)-aklinW (retardW+1:N))/2);
end
PelinZF=PelinZF/N; PelinW=PelinW/N;
semilogy (SNRdB, PelinZF,’x’); hold on;
semilogy (SNRdB,PelinW, ’0’); hold off; grid

0.01

Figure H12.23 — Error probability plotted against the signal-to-noise ratio in dB
after equalizing with the Wiener filter (‘o’) and with the Zero Forcing filter {(‘x’).
The results are obtained through stmulation using 5,000 symbols. The channel filter
has the finite impulse response (1 — 1.4 0.8)

Notice that the results are significantly better with the Wiener filter.
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Chapter 14

Appendix

Fourier transform

Property 14.1 The main properties of the DFT are listed below:

— X(f) is bounded, continuous, tends towards 0 at infinity and belongs to

LQ(R);
the Fourier transform s linear;

expansion/compression of time: the Fourier transform of x(at) is

X (f/a);
delay: the Fourier transform of x(t — tq) is X(f)e~2"fto;
modulation: the Fourier transform of z(t)e?™/ot is X(f — fo);

conjugation: the Fourier transform of x*(t) is X*(—f). Therefore, if
the signal x(t) is real, X(f) = X*(—f). This property is said to be of
hermitian symmetry;

if the signal x(t) is real and even, X(f) is real and even;

if the signal is purely imaginary and odd, X(f) is purely imaginary and
odd;
the convolution product, written (x xy)(t), is defined by:
+ oo + oo
(zxy)(t) = / z(u)y(t — u)du = / z(t —w)y(u)du (14.1)

— 00 — 00

and has X (f)Y (f) as its Fourier transform;

likewise, the Fourier transform of x(t)y(t) is (X *Y)(f);
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— if 2(t) is m times continuously differentiable and if its derivatives are
summable up to the m-th order, then the Fourier transform of the m-th

derivative ™ (t) is (2§7f)" X (f);
— ift™u(t) is summable, then the Fourier transform of (—2jmt)™ x(t) is the
m-th derivative X (™) (f).
A2 Discrete time Fourier transform

Property 14.2 Let X(f) and Y (f) be the DTFTs of the sequences {x(n)}
and {y(n)} respectively. The DTFT has the following properties:

P~

. linearity: ax(n) + by(n) — aX(f) +bY(f);
2. time-shift:

z(n — ng) —>X(f)e_2j7m”f (14.2)

3. modulation: x(n)e™o" — X (f — fo);
4. time reversal: x(—n) = X (—f);
5. congugation: x*(n) — X*(—f);

6. real sequence: x(n) real = X(f) = X*(=f). X(f) has a property called
hermitian symmetry. Particularly, | X (f)| and the real part Re(X(f)) are
even functions. Its phase arg(X(f)) and its imaginary part Tm(X(f))
are odd functions. In this case, the plotting of X(f) can be limited to the
interval f € (0,1/2).

7. convolution: the convolution product or convolution defined by:

+o0 oo
z(n)xy(n) = > w(k)y(n—k)= > z(n—k)y(k)

has the product X ()Y (f) as its DTFT.
As an exercise, we will now demonstrate part 6 of properties 14.2. Starting
off with the definition 2.21, we get, after conjugating and changing the sign:

+ oo

X*(=f) = Z z*(n) exp(—=2jmnf)

n=—oQ

which is still equal to X (f) since z*(n) = z(n).



A3

Property 14.3 The main properties of the DFT are listed below:
1.
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Discrete Fourier transform

linearity: ax(n) + by(n) — aX (k) + bY (k);

time-shift: x((n — p) mod N) — X (k)e=20mPk/N .

time reversal: x((—n) mod N) = X((—k) mod N);
conjugation: x*(n) = X*((—k) mod N);

real sequence: x(n) real - X (k) = X*((—k) mod N);
circular convolution: the sequence 7 (k) = X (k)Y (k) has:

N—

z(n) = Z z(p)y((n — p) mod N)

=0

—

3

as its inverse DFT.

Parseval formula:

N-1 1 N-1
)= < S0 X ()P
n=0 k=0

(14.3)

(14.4)

e As an example, consider the case of time reversal (item 3) for N = 4. The
sequence y(n) = x(—n) refers to:

{9(0),9(1),9(2), y(3)} = {2(0), 2(3), 2(2), z(1)}

Its DFT 1is:

{¥Y(0),Y(1),Y(2),Y(3)} = {X(0), X(3), X(2), X(1)}

e To prove expression 14.3 of item 6, we will calculate the inverse DFT of

Z(k)

= X (k)Y (k), using 2.32. We get:

) = 5 3D XY (R)eHkN

a=0 £=0

_ 2()y(5) (% e—ww—mw)

X
1 N-1 ' N-1 ' '
= 2(o)e” Hmak/N Z y(B)e2mPRIN | (2imnk/N
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The equality 2.33 leads us to the expected result.

e To prove item 7, all you have to do is set y(n) = z*(—n) in 14.3, then
calculate z(n) for n = 0.

A4 z-Transform

Property 14.4 Let X1(z) and Xa(z) be the z-transforms of the sequences
{x1(n)} and {x2(n)} respectively, and Dy and Ds their convergence areas. We
have the following properties:

1. Linearity:
ajz1(n) + asxa(n) = a1 X1(2) + a2 X2(z) (14.5)
with D = D1 N Ds.
2. Time delay:
(n—k)—= 277X(2) (14.6)
The convergence area is unchanged.

3. Time reversal:

z(—n) > X(1/2) with Riz < |zl < Ril (14.7)

4. Reality and symmetry: if the sequence {x(n)} is real, then:
X(z) = X"() (14.8)
The convergence area is unchanged.

b. Convolution:

+oo

(x1 xx2)(n) = Z z1(n — k)za(k) = X1(2)X2(2) (14.9)
k=—o00
with D D Dy N Ds.
6. Parseval relation:
+oo
1 dz
r(n)] = — X(2)X*(1/z%)= 14.10
T 0P =g L XOX /T (14.10)

where the integration contour (T') is inside the convergence areas of X (z)
and of X*(1/z*). Note that the unit circle is inside the convergence area.
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7. Any function X,(z), holomorphic inside the ring Ry < |z| < Ra, is ea-

pandable in a unique power series X, (z) = >,z x(n)z™" with:
1

- X n—ld
z(n) 27 Fr, (z)z z

where (T') refers to a Cauchy contour [27] inside the ring Ry < |z| < Rs.
This integral can be calculated with the use of Cauchy’s integral formula
(also known as the “residue method” ).

The sum of the power series X,(2) = > .z ®(n)2™" is a holomorphic
function in the convergence area Ry < |z| < Ry and its derivative can be
obtained term-by-term:

dX,(z)

ne(n) — i (14.11)

The convergence area is unchanged.

The results below show that the convergence area’s shape is related to the
properties of the sequence {z(n)}.

Property 14.5 We have the following:

1.

x(n) is such that 3" |x(n)| < +oo if and only if the unit circle belongs
to the convergence area.

. The signal is causal if and only if the convergence area of its z-transform

verifies {z € C : |z| > Ry} (meaning also that Ra = +00), and we have:
z(0) = lim X,(2) (14.12)

z2—+00

. The signal is anti-causal if and only if the convergence area of its z-

transform verifies {z € C : |z| < Ra} (meaning also that Ry = 0).

. If X, (%) is a rational function B(z)/A(z), where the degrees of B(z) and

A(z) are equal to Q) and P respectively, the zeros are the Q roots of the
polynomial B(z), and the poles are the P roots of the polynomial A(z).

If X,(2) = B(2)/A(z), the possible convergence areas are the non empty
rings contatning no poles and delimited by two poles. Mathematically
speaking, a convergence area can be expressed:

{z€C:psl < [z < Ipxl}

where p; and py are two distinct roots of A(z) defined so that A(z) #0
for any z such that |p;| < |z| < |pk|. As a consequence, when using
B(z)/A(z), there are several possible converging areas, each one corre-
sponding to a different sequence {x(n)}.
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6. If X,(z) = B(z)/A(z), a necessary condition for the sequence {x(n)} to be
causal is that the degree (with respect to z) of the numerator is less than,
or equal to the degree (still with z as the variable) of the denominator.
All we have to do then, in order to completely characterize the causal
sequence, is to choose, as the convergence area:

{zeC:lz[> |parl}

where pyr denotes the pole of X,(z) with the highest modulus. As a
counter-example, you can check that no causal sequence corresponds to

the function X,(z) = (+ — 1)?/(z + 1).

7. If X, (2) = B(z)/A(z), and if the original corresponding sequence is real,
then the roots of A(z) and B(z) are either real, or come in pairs of con-
Jugate complex numbers.

A5 Jury criterion

HINT: let D(z) = An(2) be the transfer function’s denominator such that the
term with the highest degree has its coefficient equal to 1. We write:

Ap(z) =14 anylz_l +F a2
where the a, ; coefficients are real.
— Such a polynomial is “unstable” if |a, ,| > 1.

— In the case where |a, »| < 1, we cannot be sure that A,(z) is stable. By
writing the polynomial A,_;(z):

Ap(2) — ann A5 (2)
Ana(z) = 1— a2
An(2) — apnz""Ap(271)
= : 14.1
1—a2, (14.13)

and we show that:
Ap(z) stable < A, _1(z) stable
— First, a few properties:
— the A,_1(2) = An(z) relation:

(1— aiyn)An_l(z) = An(z2) — anynz_"An(z_l) (14.14)
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= (1- aiyn)An_l(z_l) = An(z_l) — an 2" An(7)

= tn n2” (1 - aiyn)An_l(z_l)
= an,nz_nAn(Z_l) 2 An(z) (1415)

- an,n
[14.14] + [14.15] gives:

Ap(z) = Ap—1(2) + anynz_"An_l(z_l) (14.16)

— The roots vary continuously with a,,. Let z; be a root of :” with
a multiplicity of m of A,(z) = f(z), for a given value of apn. ann
undergoes a variation of §. Can we find § such that the m roots zj of the
new z" A, (z) = g(z) remain in a neighborhood of z?

According to [14.16], the variation of the function 2" A, (z) can be ex-
pressed:

Az) = g(2) = f(2) = 6 A1 (z7)

Consider a disc with a contour 5 surrounding zp in such a way that zg
is the only root inside the disc. When z circles v once counterclockwise,
f(#) travels counterclockwise around the origin m times. We can always
choose § so as to have |A(2)] = §|A,_1(z71)| < |f(2)]. If fo is a lower-
bound of f(z) along v, all we have to do is set:

Jo
< ————
sup [Ap_1(z71)|

Under these conditions, ¢g(z) = f(z) + A(z) circles around the origin m
times. This can be shown by writing:

ot =16 (14507

Because |A(z)]| < |f(2)], the term 1+ A(2)/f(z) cannot circle around the
origin, leading us to the result (Rouché’s theorem).

The point of all this was to show that g(z) has m roots inside v, hence
the continuity of the variations with a, .

— Let us assume that 2" A,,_1(z) is stable. Consider relation [14.16]. If a root
of 2" A, (z) belongs to the unit circle, it can be written /¥ and:
Ap_1(e1%)

nn = _e—jnwAn_l(e—jw) = lanal =1
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If a, , = 0, the roots of 2" A, (z) are those of 27 A,,_1 () which are inside the
unit circle (there are n of them with at least one at the origin). If a,, , = o0
the roots are those of z71A,,_1(z71) (there are n of them with at least one
at infinity). They are outside the unit disk. When a, , varies, the roots
all remain inside the unit disk so long as |a, »| < 1, which is true by hypothesis.

— Conversely, let us assume that z" A, (z) is stable. We are going to prove
that 2z”A,_1(z) is stable. Notice that @, ,, because it is the product of the
roots, verifies |ap | < 1. We will use proof by contradiction. We assume that
2" Ap—1(#) has a root outside the unit disk. The method is the same as before.
The roots of 2™ A, (z) could not be outside the unit disk if |a, ,| > 1, which
contradicts our hypothesis.

Constructing the Jury table exactly corresponds to constructing the se-
quence of terms A, (z). The last condition applies to a second-degree polyno-
mial the stability of which is ensured when |as 5| < 1. As soon as one of the
ar r becomes greater than 1, the system becomes unstable. [

HINT: we can check that the first two conditions are met with proof by
induction. If we are given A,(z) = 14+a;2=t + -+ a,2~", we have:

P An-1 — Gnd1 Lt

1—a2

If we assume that A,_1(1) > 0, we can check that A, (1) > 0, and vice
versa. The same can be done for the conditions with 2 = —1. This means we
don’t have to take the calculation to its end (the calculation of A;(z)). We can
replace the last condition with the conditions on A, (1) and A,(—1), and not
have to construct the array if one of these conditions is not met. [

A6 FFT filtering algorithms revisited

We will now see another way of constructing FFT filtering algorithms. This
presentation is based on a property of circulant matrices.

Definition 14.1 (Circulant matrix) An L x L square matriz is said to be
circulant if its | lines are obtained by circular translation of an L length vector.

Thus, the matrix:

€1 €2 C3 C4
C4 €1 C2 C3
€3 €4 C1 C2

C =
C2 €3 C4 C

1s a 4 x 4 circulant matrix.
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Theorem 14.1 (DFT and circulant matrix) Let C be an L x L circulant
matriz. The eigendecomposition of C is:

1
C= EFDFH (14.17)

where F is the matriz known as the Fourier matriz with fr, = e=2mkn/L q¢
its generating element, and D the diagonal matriz constructed from the DFT

of the first line of C, that is to say:
L-1
dgr = Y cpe”Hmin/E (14.18)
n=0
All we have to do is multiply C on the right by the vector e, =
[1 e=HTh/L e‘zj”k(L_l)/L]T, which is a column of F. The result is
Cej = direi, and therefore CF = FD. Because the Fourier matrix verifies
FFY = LI, we infer 14.17.

Example 14.1 (A fast filtering algorithm that uses the FFT)
Consider the filtering equation y(n) = Zévz_ol h(k)ez(n — k) (N length filter).
Let y = [y(n), ..., y(n—M+1)]¥ be a column vector made up of M consecutive
values of y(n).

1. Show that y = Hx where H is an M x (M + N — 1) Toeplitz matrix
constructed from h(k) and where x is a column-vector made up of (M +
N — 1) consecutive values of z(n).

2. Overlap-save

(a) By completing H with N — 1 lines, show that:

2o

where C 1s an L x L circulant matrix where L = M + N — 1. From
now on, L will be used to denote the DFT’s length.

(b) Use this result to find a calculation of y that uses the FFT algorithm.

3. Overlap-add
The L x L Toeplitz matrix is denoted K. It is constructed from the vector
h? with (L — N) zeros, and it is an upper triangular matrix. Notice that
the matrix K coincides with C (from the previous part), except in the
bottom-left corner. x, = [z(pM), ..., x(pM — M +1)]7 is used to denote
a block of M = L. — N 4 1 consecutive input values. We assume:
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(a) Show that the M = (L — N + 1) consecutive output values can be
obtained with the expression:

On_ On_
Ly Oun_i] K ([ N 1,1] 43 [ N 1,1])
Xp Xp+1
where:
J— On_1m Inog
Oppmr Opr vt

(b) Show that K and J commute with each other and that Kv, = Cv,.
(c) Use this result to determine a filtering algorithm that uses the FFT.

SOLUTION:
1. We have:
ho hy - hyn_i 0 0
Y= 0 ho hi -+ hy_1 O : < — Hx
0O --- 0 ho hy oo hn_g

Hisa M x (M 4+ N — 1) Toeplitz matrix.
2. Overlap-save

(a) By completing H with (N — 1) lines with a length of (M + N — 1),
we get the length L = (M + N — 1) circulant matrix:

T ho hi - hyn_y 0 0
0 he  hy oo hy_1 0 :
: - - - ) 0
C=1 ¢ 0 ho hi - hn_i
hn_1 O 0 ho - hn-s
ko g 0 0 ho |

By multiplying x on the right, we get:

e

where z is an “unwanted” length (N — 1) vector.
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Using the previous equation and theorem 14.1 leads us to:

y = % [Ty On_1] FYDFx

where the diagonal matrix D has as its diagonal the DFT hg of h
calculated for L = M 4+ N — 1 points. This leads us to an algorithm
for calculating y.

L is such that L > N, and usually is a power of 2. After having
calculated once the I length DFT hp of h (the diagonal of D), the
following operations are reiterated:

— calculation of the FFT of the L modulo M = L— N+1 (overlap)
length block x that leads to xp = Fx;

— term-by-term multiplication of xp by hp that leads to vp;

— calculation of the inverse DFT of vp;

— the M = L — N + 1 first values of v are saved.

We end up with the same results as with the overlap-save algorithm.

3. Overlap-add

(a)

The M first lines of the product of K by the vector v =
[x(pM +N-1) ... z(pM+1) xp]T are the filter’s outputs at
the times pM + N — 1, ...

J selects the last (V — 1) lines of x,41, that is z(pM + N — 1),
..., &(pM +1). The linearity property allows us to demonstrate the
expected result.

KJ = JK because of the fact that K is upper triangular and that
the sub-matrices in the north-west and south-east corners coincide.
Kv, = Cv, simply because v, has (N — 1) leading zeros.

We can therefore write:

K(vp +JIvp41) =Cvp+JICv,ypy
=F’DFv, +tJF'DFv,
N——

——’
TFD TFD

This leads to the algorithm: L is such that L > 2N — 1, and usually
is a power of 2. After having calculated once the L length DFT hpg
of h (the diagonal of D), the following operations are reiterated:

— calculation of the FFT of the M = L — N + 1 length block
Xp+1, which is completed by (N — 1) zeros (there is no overlap),
leading to xp = Fxpy1;

— term-by-term multiplication of xr by hr which gives us sp,41;
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— calculation of the inverse DFT of sp 41 which gives us s,41;

— sum of the blocks sp41 and s, with an overlap of (N — 1) values.

We end up with the same results as with the overlap-add algorithm.



Bibliography

[1] B. S. Atal, V. Cuperman, and A. Gersho, editors. Advances in Speech
Coding. Kluwer Academic Publishers, 1991.

[2] M. F. Barnsley and L. P. Hurd. Fractal Image Compression. AK Peters,
Ltd., 1993.

[3] G. Battail. Théorie de UInformation. Collection Pédagogique de
Télécommunication. Masson, 1997.

[4] M. Bellanger. Traitement Numérique du Signal. Collection CNET-ENST.
Masson, 1980.

[6] A. Benveniste, M. Métivier, and P. Priouret. Adaptive Algorithms and
Stochastic Approrimations. Springer Verlag, 1990.

[6] P. Billingsley. Probability and Measure. J. Wiley, 1979.

[7] R.E. Blahut. Fast Algorithms for Signal Processing. Addison-Wesley,
1985.

[8] G. Blanchet and J. Prado.  Eléments d’Automatique.  Collection
Pédagogique de Télécommunication. Ellipses, 1994.

[9] R. Boite and H. Leich. Les Filires Numériques. Masson, Collection
CNET-ENST, 1980.

[10] F. M. Boland, J. J. K. J. O Ruanaidh, and C. Dautzenberg. “Water-
marking Digital Images for Copyright Protection”. Proceedings of the
International Conference on Image Processing and its Applications, July

1995. Edimburgh, Scotland.

[11] S.F. Boll. “Suppression of Acoustic Noise in Speech Using Spectral Sub-
straction”. IEEE Trans. Acoust., Speech, Signal Processing, pages 113—
120, April 1979.



740 Digital Signal and Image Processing using MATLAB®

[12] P. Brémaud. Introduction aux Probabilités. Springer Verlag, 1988.
[13] P. Brémaud. Signaux Aléatoires. Collection de I’X; Ellipses, 1993.

[14] P. Brockwell and R. Davies. Time Series: Theory and Methods. Springer
Verlag, 1990.

[15] J.M. Brossier. Signal et Communication Numérigue. Hermes, 1997.

[16] J. P. Burg. “Maximum Entropy Spectral Analysis”. PhD thesis, Stand-
ford Univ., 1975.

[17] C. S. Burrus, J.H. McClellan, A. V. Oppenheim, T.W. Parks, R. W.
Schafer, and H. W. Schuessler. Computer-Based FEzxercises for Signal
Processing using Matlab. Prentice Hall, 1994.

[18] J. Canny. “Computational Approach to Edge Detection”. IEEE Trans.
Pattern Anal. Machine Intell.| pages 679-698, November 1986.

[19] J. Capon. “High-resolution frequency-wavenumber spectrum analysis”.

Proc. IEEE, b7, no. 8:1408-1418, August 1969.

[20] H. Cartan. Théorie Elémentaire des Fonctions Analytiques de une ou
plusieurs Variables Compleres. Hermann, Paris, 1975.

[21] M. Charbit. Eléments de Théorie du Signal: Signaur Aléatoires. Collec-
tion Pédagogique de Télécommunication. Ellipses, 1996.

[22] M. Charbit and G. Blanchet. “Eléments de Traitement Numérique du
Signal”. Techniques de I’Ingénieur, 1998.

[23] F. Le Chevalier. Principes de Traitement des Signaur Radar et Sonar.
Masson, 1989.

[24] J.W. Cooley and J.W. Tuckey. “An Algorithm for the Machine Calcu-
lation of Complex Fourier Series”. Math. of Comp., 19:297-301, April
1965.

[25] R.E. Crochiere. “A Weighted Overlap-Add Method of Short-time Fourier
Analysis/Synthesis”. IEEE Trans. Acoust., Speech, Signal Processing,
ASSP-28(2):99-102, February 1980.

[26] Ronald E. Crochiere and Lawrence R. Rabiner. Multirate Digital Signal
Processing. Prentice Hall, Englewood Cliffs, 1983.

[27] J.P. Delmas. Eléments de Théorie du Signal: Signaur Déterministes.
Collection Pédagogique de Télécommunication. Ellipses, 1995.

[28] J.P. Delmas. Introduction aur Probabilités. Ellipses, 2000.



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]
[38]

[39]

[40]

[41]

[42]
[43]

[44]

Bibliography 741

P. Duhamel. “Blind Equalization. Tutorial Conference”. Proc. Interna-
tional Conference on Acoustics, Speech and Signal Processing, 1995.

P. Duvaut. Traitement du Signal, Concepts et Applications. Hermes,
1991.

Al Bovik (editor). Handbook of Image & Video Processing. Academic
Press, 2000.

Y. Ephraim and D. Malah. “Speech Enhancement Using a Minimum
Mean-square Error Short-time Spectral Amplitude Estimator”. [EEE
Trans. Acoust., Speech, Signal Processing, pages 1109-1121, December
1984.

Y. Ephraim and D. Malah. “Speech Enhancement Using a Minimum
Mean-square Error Log-Spectral Amplitude Estimator”. IEEE Trans.
Acoust., Speech, Signal Processing, pages 443-445, April 1985.

Itakura F. “Minimum Prediction Residual Principle Applied to Speech
Recognition”. IEEE Transactions on Acoustics Speech and Signal Pro-
cessing, AS23.1:67-72, 1975.

J. L. Flanagan. Speech Analysis, Synthesis, and Perception. Springer
Verlag, New York, 1972.

J. L. Flanagan and R. M. Golden. “Phase Vocoder”. Bell System Tech-
nical Journal, pages 1493-1509, November 1966.

P. Flandrin. Temps-Fréquence. Hermes, 1993.

B. Friedlander. “Lattice Methods for Spectral Estimation”. Proc. IEEE,
70, 1982.

W. Gardner. Cyclostationarity in Communications and Signal Process-
ing. IEEE Press, 1994.

A. Gersho and R.M. Gray. Vector Quantization and Signal Compression.
Kluwer Academic Publishers, Boston, 1992.

G. H. Golub and C. F. Van Loan. Matriz Computations. The John
Hopkins University Press, 1989.

J. P. Guillois. Techniques de Compression des Images. Hermes, 1996.

F.J. Harris. “On the Use of Windows for Harmonic Analysis with the
Discrete Fourier Transform”. Proc. IEEE, 66:51-83, January 1978.

S. Haykin. Adaptive Filter Theory. Prentice Hall, Englewood Cliffs, NJ,
USA, 2nd edition, 1991.



742 Digital Signal and Image Processing using MATLAB®

[45] S. Haykin. Communication Systems. John Wiley & Sons, New York, NY,
4th edition, 2001.

[46] P. Hough. “Method for recognizing complex patterns”, 1962. US Patent
3069654.

[47] M.R. Iseli and A. Alwan. “Inter- and Intra-speaker Variability of Glottal
Flow Derivative using the LF Model”. 6th International Conference on
Spoken Language Processing, pages 477-480, 2000.

[48] L. B. Jackson. Digital Filters and Signal Processing with Matlab Exer-
cises. Kluwer Academic Publishers, 3rd edition, 1995.

[49] N. S. Jayant and P.Noll. Digital Coding of Waveforms: Principles and
Applications to Speech and Video. Prentice Hall Signal Processing Series,
1984.

[60] M. Joindot and A. Glavieux. Introduction aur Communications Numéri-
ques. Collection Pédagogique de Télécommunication. Ellipses, 1995.

[61] T. Kailath. Linear Systems. Prentice Hall, Englewood Cliffs, 1980.

[62] S. M. Kay. Fundamentals of Statistical Signal Processing: Estimation
Theory. Prentice Hall, 1993.

[63] S. M. Kay and S. L. Marple JR. “Spectrum Analysis — A Modern Per-
spective”. Proc. IEEFE, 69(11):1380-1418, November 1981.

[64] S.M. Kay. Modern Spectral Estimation, Theory and Application. Prentice
Hall, Englewood Cliffs, 1988.

[55] R. Kumaresan and D. W. Tufts. “Estimating the Parameters of Exponen-
tially Damped Sinusoids and Pole-Zero Modeling in Noise”. IEEFE Trans.
Acoust., Speech, Signal Processing, ASSP-30(6):833-840, December 1982.

[66] M. Kunt. Traitement Numérique des Signauz. Presses polytechniques
romandes, 1980.

[67] J. Laroche. “The Use of the Matrix Pencil Method for the Spectrum
Analysis of Musical Signals”. JASA, 94(4):1958-1965, October 1993.

[68] Y. Linde, A. Buzzo, and R. Gray. “An Algorithm for Vector Quan-
tizer Design”. [IEEE Trans. on Communications, COM-28:84-95, Jan-
uary 1980.

[69] S.P. Lloyd. “Least Squares Quantization in PCM”. IFEE Trans. on
Information Theory, pages 129-137, March 1982.



[60]

[61]

[62]

[63]

[64]

[69]

[70]

[71]

[72]
[73]

[74]

Bibliography 743

O. Macchi. Adaptive Processing: The Least Mean Squares Approach with
Applications in Transmission. John Wiley & Sons, Inc., 1995.

S. Mallat. A Wavelet Tour of Signal Processing. Academic Press, London,
1999.

S. Mallat and F. Falzon. “Analysis of Low Bit Rate Image Transform
Coding”. IEEE Trans. Signal Processing, 46:1027-1042, April 1998.

H. S. Malvar. Signal Processing with Lapped Transforms. Artech House,
1992.

J. Max. “Quantizing for Minimum Distorsion”. IRE Trans. on Informa-
tion Theory, pages 7-12, March 1960.

F. Mintzer, A. Cazes, F. Giordano, J. Lee, K. Magerlein, and
F. Schiattarella. “Capturing and Preparing Images of Vatican Library
Manuscripts for Access via Internet”. Proceedings of the International
Conference on Imaging Science, Systems and Technology, Las Vegas, 43,
June 1997.

N. Moreau. Techniques de Compression des Signauz. Masson, 1995.

E. Moulines and F. Charpentier. “Pitch-synchronous waveform process-
ing techniques for text-to-speech synthesis using diphones”. Speech Com-

munication, 5-6(9):453-467, December 1990.

E. Moulines, P. Duhamel, J.F. Cardoso, and S. Mayrargue. “Subspace
Methods for the Blind Identification of Multichannel FIR Filters”. IEEE
Trans. on Signal Processing, 43(2):516-525, February 1995.

A. Oppenheimer and R. Shafer. Discrete-Time Signal Processing. Pren-
tice Hall, 1989.

N. Otsu. “A Threshold Selection Method from Gray-Level Histograms”.
IEEFE Trans. on Syst. Man and Cyber., 1:62-69, 1979.

A. Papoulis. Probability, Random Variables, and Stochastic Processes.
McGraw-Hill, New York, 3rd edition, 1991.

B. Picinbono. Théorie des Signauz et Systéemes. Dunod, 1988.

B. Porat. Dugital Processing of Random Signals: Theory and Methods.
Prentice Hall, Englewood Cliffs, 1994.

B. Porat. A Course in Digital Signal Processing. John Wiley & Sons,
Inc., 1997.



744 Digital Signal and Image Processing using MATLAB®

[75]

[76]

[77]
[78]

[79]

B. Porat and B. Friedlander. “On the Accuracy of the Kumaresan-Tufts
Method for Estimating Complex Damped Exponentials”. IEEE Trans.
Acoust., Speech, Signal Processing, ASSP-35:232-235, February 1987.

M.B. Priestley. Spectral Analysis and Time Series, vol. 1. Academic Press,
London, 1981.

J.G. Proakis. Digital Communications. McGraw-Hill, 4th edition, 2000.

J.G. Proakis and D.M. Manolakis. Digital Signal Processing: Principles,
Algorithms, and Applications. Prentice Hall, Englewood Cliffs, NJ, 1996.

T. Kailath R. Roy. “ESPRIT-estimation of signal parameters via rota-
tional invariance techniques”. I[EEE Trans. on Acoust. Speech, Signal

Processing, ASSP-37:984-995, August 1989.

D.C. Rife and R.R. Boorstyn. “Multiple-Tone Parameter Estimation
from Discrete-Time Observations”. Bell Systems Tech. J., 55(9):1389—
1410, November 1976.

O. Rioul and P. Duhamel. “Fast Algorithms for Wavelet Transform
Computation”. Wavelets in Biomedical Signal Processing, 1997.

M. Rosenblatt. Stationary Processes and Random Fields. Birkhauser,
1985.

R. Roy, A. Paulraj, and T. Kailath. “Esprit: A Subspace Rotation Ap-
proach to Estimation of Parameters of Cisoids in Noise”. IEEFE Trans.

Acoust., Speech, Signal Processing, ASSP-34:1340-1342, October 1986.

L. L. Scharf. Statistical Signal Processing: Detection, Estimation, and
Time Series Analysis. Addison Wesley, 1991.

A. Schuster. “On the Periodicities of Sunspots”. Philosophical Transac-
tions of the Royal Society of London, 206, Ser.A:60-100, April 1906.

R. J. Serfling. Approzimation theorems of mathematical statistics. Wiley
series in probability and mathematical statistics. John Wiley & sons,

1980.

C. Shannon. “A Mathematical Theory of Communication”. Bell Systems
and Technics Journal, vol.: 19:379-423 (part T), 623-656 (part IT), 1948.

C. Shannon. “Coding Theorems for a Discrete Source with a Fidelity
Criterion”. [IRE National Convention Record, pages 142-163, Part 4,
1959.

A. Skorokhod and I. Guikhman. Introduction a la Théorie des Processus
Aléatoires. Presses Polytechniques Romandes, 1980.



Bibliography 745

[90] P. Stoica and A. Nehorai. “MUSIC, Maximum Likelihood, and Cramér-
Rao Bound: Further Results and Comparisons”. IEEE Trans. Acoust.,
Speech, Signal Processing, ASSP-38(12):2140-2150, December 1990.

[91] C.W. Therrien. Discrete Random Signals and Statistical Signal Process-
ing. Prentice Hall signal processing series, Englewood Cliffs, NJ, USA,
1992.

[92] Cover T.M. and Thomas J.A. FElements of Information Theory. John
Wiley, New York, 1991.

[93] Union Internationale des Télécommunications, CCITT. “Technologie de
I'information - Compression numérique et codage des images fixes - de
nature photographique - Prescriptions et lignes directrices”, 1981.

[94] P. P. Vaidyanathan. “Quadrature Mirror Filter Banks, M-band Exten-
sions and Perfect-Reconstruction Techniques”. IEEE ASSP Mag., 4(3):4-
20, 1987.

[95] P. P. Vaidyanathan. “Multirate Digital Filters, Filter Banks, Polyphase
Networks, and Applications: A Tutorial”. Proc. IEEE, 78(1):56-93, Jan-
uary 1990.

[96] P. P. Vaidyanathan. Multirate Systems and Filter Banks. Prentice Hall,
Englewood Cliffs, 1993.

[97] D. Ventre. Communications Analogiques. Collection Pédagogique de Té-
lécommunication. Ellipses, 1991.

[98] M. Vetterli and J. Kovéevié. Wavelets and Subband Coding. Prentice
Hall, Englewood Cliffs, 1995.

[99] G. K. Wallace. “The JPEG Still Picture Compression Standard”. Com-
munications of the ACM, April 1991.

[100] E. Wang. Stochastic Processes in Information and Dynamical Systems.
Mac Graw Hill, 1971.

[101] P. D. Welch. “The Use of Fast Fourier Transforms for the Estimation of
Power Spectra: A Method Based on Time Averaging Over Short Modified
Periodograms”. IEEE Trans. Audio Electroacoust., AU-15, June 1967.

[102] B. Widrow and S. Stearns. Adaptive Signal Processing. Prentice Hall,
1985.

[103] R. B. Wolfgang and E. J. Delp. “Overview of Image Security Tech-
niques with Applications in Multimedia Systems”. Proceedings of the
SPIE Conference on Multimedia Networks: Security, Displays, Termi-
nals, and Gateways, 3228:297-308, November 1997.



746 Digital Signal and Image Processing using MATLAB®

[104] G. Yang, H. Leich, and R. Boite. “Multiband Code-Excited Linear Pre-
diction (MBCELP) for speech coding”. Signal Processing, 31(2):215-228,
March 1993.

[105] G.U. Yule. “On a Method of Investigating Periodicities in Disturbed Se-
ries, with special reference to Wolfer’s Sunspot Numbers”. Philosophical
Transactions of the Royal Society of London, 226, Ser.A:267-298, April
1927.



Index

0-order hold, 154

3 dB cut-off frequency, 584
6 dB per bit rule, 272

\ operator, 397

2D-DFT, 204
2D-DTFT, 203, 204
2D-IDTFT, 203

3-sigma rule, 258, 358

ACP, 508
ADC, 51
Addition (of matrices), 29
Addressing
bit reverse, 79
Affine, 291
trend (suppressing), 646
Algorithm
Burg, 334
coding, 539
Durbin, 338
deterministic gradient, 421
gradient (convergence condition),
421
gradient, 420, 525
Kalman recursive, 446
Kalman, 449
Levinson, 312, 338, 408
LMS, 430, 438
overlap-add, 171
overlap-save, 169
recursive (Kalman), 518

stochastic gradient, 438
RLS, 402
Aliasing, 55
temporal, 150, 606
All-pass, 130
All-pole, 305, 466
Alpha layer, 188
AM, 95
Ambiguity, 59
AMI, 547
Amplitude modulation, 95
Analog-to-Digital Converter, 51
Analysis (principal components), 503
AND (logical), 194
Antenna, 379
Anti-aliasing, 57, 286
Anticausal
sequence, 44
signal, 44, 731
Anticausality
(sequence), 65
AR, 302, 305, 306, 331, 334, 337, 364,
410, 436, 461, 485, 660, 685,
698, 710
AR process, 436
ARI1, 310
ARMA, 302, 305
Autocorrelation, 275
Autocovariance, 275
estimation, 317
hermitian symmetry, 279
positive nature, 295, 304
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positivity, 279
Toeplitz matrix, 282
Autoregressive, 302, 305, 306, 331,
334, 337, 364, 410, 461, 465,
485, 660, 685, 698, 710

Backward error, 313, 412
Band
base, 539
limited WSS rp, 285
Narrow, 379
pass, 144
stop, 144
transition, 144
useful, 56
Band-limited, 300
signal, 52
Band-pass
(filter), 128
Bandwidth, 128
Bar chart, 261
Baud, 539
BER, 544, 562
Bessel, 98
Best Linear Unbiased FEstimator
(BLUE), 398
Bi-orthogonality, 182
Bias, 397
Bilinear transform, 149
Binarization, 229
Binary
signal, 327
Bipolar violation, 548
Bit error rate, 544, 562
Bit reverse, 78
Bit reverse (addressing), 79
Blind processing, 514
BLUE, 398
Blur effect, 209
Burg, 333
Butterfly, 77
Buzzo (LBG), 531

Canny, 222

Capon, 382
Cardiac rhythm, 490
Carrier frequency, 96
Causal
(z-transform), 731
sequence, 44
signal, 44, 731
Causality, 58, 71, 102, 138
(sequence), 65
Causality (transfer function), 113
CD-audio, 177
cdf, 248, 249
Cells, 27
Centroid, 531
Cepstrum, 473, 686
CF, 272
Characteristic function, 252
marginal probability distribution,
253
Chebyshev, 254
CIE Lab, 188
Circulant (matrix), 734
Clicks, 484
Clipping, 272
Clipping factor, 272
CMYK, 188
Code
AMI, 547
Gray, b41
HDB3, 547
Code word, 524
Codebook, 524
Coding, 539
Colormap, 189
Comb, 177
filter, 175
Communications channel, 405
Compensator, 453
Complex exponential, 66
Confidence
ellipse, 264, 642
interval, 258
Constellation, 539



Continuous component, 280
Contour detection, 220
Convergence
area, 107, 731
condition (gradient), 421
DTFT, 68
Conversion
analog-to-digital, 51
digital-to-analog, 64, 154
functions, 39
Convolution, 101
z-transform, 730
(DTFT), 728
(FT), 727
circular, 167, 729
linear, 167
Correlation, 254
coeflicients, 254
deterministic, 67
method, 295
Correlation coefficients
first order, 304
Covariance, 254
estimation, 289
matrix, 279
method, 296, 661
stationary, 298
CZT, 116

d.e. (difference equation), 111
DAC, 64
Daubechies, 183
DBSP, 96
DCT, 236, 237
DCT (watermarking), 244
De-emphasis, 301, 652
Decibel, 70
Decimation, 155, 157, 174
Declicking, 484
Delay

z-transform, 730

FT, 727
Demodulator, 538

Index 749

Denoising, 484

Density (probability), 249
Derivative, 147

DFT, 72

DFT delay, 75

Difference equation, 111
Digital processing, 51
Digital-to-analog converter, 64
Dilation, 235

Dirac distribution, 282
Direct form (filter), 159
Direct Steam Digital, 480

Discrete cosine transform, 236, 237

Discrete Fourier transform, 72
Distribution
Bernoulli, 644
Poisson, 642
Rayleigh, 643
DoG mask, 213
Domain of convergence, 107
Dot product (DTFT), 70
DSD, 480
DTFT, 54, 68
hermitian symmetry, 575
properties of, 728
DTMF, 455
DTW, 471, 686
Dual tone multi-frequency, 455
Durbin, 338

Dynamic time warping, 471

ECG, 490

Echo, 516

Echo canceling, 442

Eigenfaces, 506

Eigenfunctions, 49, 110

EKG, 490

Energy spectral density, 47, 70

Envelope, 354, 501
detector, 586

Equalization, 428, 440
linear, 721
Wiener, 429, 564
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Zero Forcing, 564, 721 Gaussian  derivative-smoothing,

Equalizer, 564 215

Equation Gaussian derivative, 213
normal, 309, 407 Gaussian, 211
observation, 450 high-pass, 128
state, 160, 450 identity (2D), 208
Yule-Walker, 309, 338, 407, 466 Kalman, 447

Ergodicity, 289 lattice, 335, 412, 414

Erosion, 234 low-pass, 128

Error matched, 544, 550
prediction, 309 median, 226, 627

esd, 47, 70 memory, 103

ES}”RI”I‘ 383 Prewitt, 212

Estimati;)n perfect reconstruction, 53
AR, 337 rectangular, 210
MA, 338 Sobel, 212, 621

mean square, 518 second derivative, 213
Estimator separable, 209
unbiased, 397 stability (FIR), 146
type, 140
Wiener, 418, 421
Finite impulse response, 114

FIR, 114, 137, 164

Expansion, 151
Eye pattern, 555, 560

Factor FIR filter
forget, 399, 433, 438 linear response, 137
quality (JPEG), 238 Formant, 465

Fast Fourier transform, 72, 77 Formula

Fetus (ECG), 490 Poisson, 546

FFT, 72 Forward error, 313, 412
butterfly, 77 Fourier, 86
number of operations of the, 79 discrete-time transform, 54
real sequences, 79 series, 46

fft-music, 374 transform, 47

Filter Fragile (watermark), 241
(Daubechies), 183 Frequency
all pole, 361 carrier, 96, 98, 539, 540
all-pole, 466 Doppler, 516
band-pass, 128 deviation, 98
bank, 173 empirical, 262
circular, 209 fundamental (measuring the), 495
conical, 210 fundamental, 46, 497
FIR, 103 harmonic, 46

finite impulse response, 103 image, H9



instantaneous, 98
resolution, 84, 326, 347
resonance, 123
resonant, 122
response, 109

Fricatives, 462
Function

autocorrelation, 275
autocovariance, 275
Bessel, 98

characteristic, 252

complex exponential, 45
covariance (of two processes), 276

covariance, 298

cumulative distribution, 248, 249,

265, 267, 268
Dirac, 45
dilation, 235
erosion, 234

gate, 44, 66, 71, 118

probability density, 249

pulse, 45
reconstruction, 53, 55
rectangle, 44, 71
sign, 44, 66

sine cardinal, 45
sine, 45
transfer, 109
triangle, 74
ANDlog, 195
atok, 415
bilintrimg, 219
bincoding, 645
burg, 658
Crepind, 679
centroides, 532
circpsft, 625
codel, 633
compan, 163
conv2, 207
covtodsp, 319
DCTG, 639

DCTp, 632

DTW1, 686

decH, 607
dergauss, 214
deriv, 602
dermoygauss, 623
detectpitch, 682
durbin, 339
ESPRIT, 384
ellipse, 265
erosion, 234
estARrls, 404
eval, 215

expm, 452
extractCEPSTRE, 688
FoncLog, 614
££t, 73
filter2, 207, 208
filter, 103, 114, 162
filtic, 162
filtrerII, 610
filtrer, 160
filtricII, 611
filtric, 161
fminsearch, 223
hdb3, 715

hist, 263

hough, 224

htoz, 669

iDCTG, 640
iDCTp, 635
imagesc, 92
imread, 192
imwrite, 192
initctes, 237
initlbg, 533
interM, 607
invToepl, 655
ktoa, 416

LDA, 511

lbg, 534
levinson, 312, 653
lintrimg, 615
MUSICDOA, 385

Index 751



mean, 290
median2D, 627
mesh, 92
modifYW, 638
moygauss, 620
musicFFT, 375
music, 374
mydisp, 193
NormVec, 227
nbilin, 605
normim, 626
otsu, 630
phasevoc, 691
pinv, 397
poly, 669
psola, 689
quant, 633
randn, 259, 273
rand, 259
raw2matf, 191
rif, 146, 599
roots, 669
searchmax, 221
siganal.m, 136
spec2sig, 691
specinterp, 692
sprintf, 215
sqrtm, 285
std, 481
surf, 92
TabQuantif, 238
tendoff, 647
tfct.m, 582
trendseason, 294
tstinrect, 629
unifab, 260
unquant, 635
unwrap, 576
voronoi, 532
welch, 656
xtoa, 330

\, 397
format, 26
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nextpow2, 73
abs, 32
acos, 32
asin, 32
atan, 32
axis, 37
cat, 27
clear, 26
cos, 32
disp, 39
eig, 34
ellipse, 38
end, 26
expm, 34
exp, 32
eye, 32
fOcor, 497
figure, 36
fopen, 39
for, 36
fread, 39
function, 40
funm, 34
furite, 39
gallery, 32
get, 37
ginput, 39, 581
grid, 39
gsymb, 557
help, 40
hex2num, 39
if, 35
imread, 188, 197
imwrite, 197
input, 39
ischar, 35
isfinite, 35
isinf, 35
isnan, 35
isstr, 35
lattice_analysis, 673
lattice_synthesis, 673
load, 39



logm, 34
log, 32
MEX, 40
num2str, 39
ones, 31
PCA2D, 508
path, 24
plot, 36, 39
poly, 34
racnyq, 553
randn, 32
rand, 32
repmat, 27
reshape, 32
roots, 34
save, 39
set, 37
sin, 32
sprintf, 39
sqrtm, 34
sqrt, 32
str2num, 39
struct, 28
subplot, 36
switch, 35
tan, 32
title, 39
tracellipse, 704
while, 35
zeros, 31
zoom, 37
Fundamental frequency, 46

Gain

complex, 109

Kalman, 519

of a filter, 109
Gaussian, 285

process (whitening), 285

white noise, 283
Generating a trajectory, 299
Gibbs (phenomenon), 46
Glottal excitation, 464

Index 753

Gradient, 526

algorithm, 525
Gray

levels, 190
Gray (LBG), 531
Gray code, 562
Group

delay, 132

Half-band

filter, 138
Hamming, 88, 144, 318
Harmonic frequency, 46
HDB3, 547
Heart, 490
Heaviside function, 44
Hermitian symmetry, 71, 279

DTFT, 728

FT, 727
High-pass

(filter), 128
Higher order, 304
Hilbert

transform, 47, 135
Hilbert space, 389
Histogram, 260

of an image, 230
Horner, 150
HOS, 304
Hough, 223
HSL, 188

IBM watermark, 242
Identification
channel, 405, 438
IDFT, 73, 76
IR, 114
Image, 187
Image (oversampling), 151
Impulse
noise, 482
Impulse response, 101, 301
calculation, 117
Impulse sequence, 361
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Indexed image representation, 188
Inequality

Schwarz, 276
Infinite impulse response, 114
Initial conditions, 116, 299
Insertion, 174
Instantaneous

frequency, 61

mixture, 514

power, 457
Interference, 428
Intersection, 194
Interspectrum, 298
InterSymbol Interference, 544
Invariance, 101
Inverse DFT, 73, 76
ISI, 544, 550

JPEG, 236
Jury, 118, 732
Jury-Lee, 118

Kalman, 711
linear filter, 448, 518

Kernel of a matrix, 396

Lagrange multipliers, 363, 382, 505,
661
Lattice, 335, 412, 414
LBG, 531
LDA, 509
Lead (causal z-transform), 117
Learning sequence, 405, 438, 563
Least squares, 291, 292, 394, 647
Levels of gray, 190
Levinson, 338
algorithm, 312
Likelihood, 564
Limit (Fourier), 86
Linde (LBG), 531
Line Spectrum Pair, 685
Linear discriminant analysis, 509
Linear filter
all-pass, 130

anti-aliasing, b7, 286
Butterworth, 147, 149
by FFT, 167
Cauer, 149
Chebyshev, 148
causality, 49, 138
comb, 175, 177
complex gain, 49
de-emphasis, 301
derivative, 147
eigenfunctions, 49
elliptic, 149
FIR, 114
first order, 119
frequency response, 49
gain, 109
half-band, 138
IR, 114
implementation, 159
impulse response, 49
input/output covariance, 298
input/output interspectrum, 298
Kalman, 448, 518, 711
lattice, 335
low-pass, 146, 147
matched, 486, 516, 543, 551
minimum phase, 131
phase, 109
pre-emphasis, 301
purely recursive, 119, 123
recursive, 114
rejector, 125
second order, 123
smoothing, 299
stability, 49
state, 160
transient, 299
Wiener, 417, 421
WSS process, 297

Linear phase, 137

Linear prediction, 392, 407, 412, 436,

485, 535

Linear regression, 412



Linear system resolution (\), 29

Linear transformation
Gaussian, 285
whitening, 285

Linearity, 101
z-transform, 730

LMS, 430
convergence condition, 438
gradient step, 438
misadjustement, 422
misadjustment, 421
normalized, 439

Lobe, 69
main, 88
side, 88

Local oscillator, 97

Logical operation, 194

Low-pass, 146, 147
(filter), 128

Isp, 685

MA, 302, 305, 338
MAC operation, 164, 169
Marginal probability distribution
characteristic function, 253
Markov, 567
MASH, 480
Matched
linear filter, 486, 516, 543
Matrix
circulant, 734
companion, 163
confusion, 506, 513
covariance, 255, 279, 309, 312
Fourier, 735
positive (square root), 285
Toeplitz, 312
trace of a, 371
transition, 567
weighting, 398
Max, 525
Maximum ISI, 552

Maximum likelihood, 291, 341, 564

Index 755

Mean, 253
Mean vector, 255
Mel Frequency Cepstral Coefficients
474
MELP, 535
Merit factor, 86
Method
Burg, 333, 658
Canny, 222
Capon, 382
correlation, 295
covariance, 296, 661
Hough, 223
Levinson, 653
least squares, 341
MUSIC 2D, 388
modified covariance, 335
Otsu, 229
of moments, 302
Pisarenko, 364, 663
Procrustes, 199
Prony, 363, 661
patchwork, 242
Welch, 325, 326, 656
window, 137-139
Yeung and Wong, 242
Forward-Backward, 336
MFCC, 474
Minimum norm, 396
Minimum phase, 131, 145, 304, 669
Misadjustment, 421, 422
Mixed Excitation Linear Prediction
535
Mixture, 514
Model
autoregressive, 412
parametric, 317, 337
semiparametric, 317
Modem, 539
Modulation
amplitude, 95
Carrierless amplitude, 96

FT, 727

bl

bl
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frequency, 61, 97, 98
index, 96, 98

of the DCT (watermarking), 244

PAM, 543

quadrature amplitude, 549
Modulator, 538
Modulo N (DFT), 729
Monte-Carlo simulation, 377
Moving average, 302

Multi-stage noise-shaping (MASH),

480
Multifrequency, 173
Multiplication (of matrices), 29

Multiplication-accumulation, 164, 167

MUSIC, 366, 383

Noise
background, 258, 482
impulse, 482, 484
measurement, 394, 450
modele, 449
model, 394

quantization, 52, 271, 288, 289,

328, 481, 645
subspace, 368, 369
white, 282
Noise shaping, 479, 482
Norm, 389

Frobenius, 201
Nyquist

criterion, 551
Nyquist criterion, 550

OCR, 229
One-Bit stream, 177, 480
Operator

Backslash, 397
Optical characters recognition, 229
Optical transfer function, 208
Orthogonality, 389, 390
OTF, 208
Otsu, 229
Outcome, 273
Overlap, 169, 172

Overlap-add, 170, 355
Overlap-save, 169
Overmodulation, 96

Oversampling, 150, 289, 328, 481

PAM, 543
Parallel
oversampling, 157
undersampling, 157
Parameter
hidden, 447
Parseval, 70
formula (FS), 46
DFT), 729
FT), 47
formula (ZT), 730
formula, 298
Passband, 127, 144
Patchwork, 242
PCA, 503, 505
PCM, 468
Perfect reconstruction, 53
Periodic/symmetrical window, 90
Periodogram, 321, 343, 348, 369
averaged, 325
frequency smoothed, 323
Phase
component, 540
delay, 132
of a filter, 109
Vocoder, 477
Phase vocoder, 475
Phone dialing, 455
Pisarenko, 663
Pitch, 464
Pixels, 187
Plosives, 462
Point spread function, 208
Poisson
formula, 53
Poles (transfer function), 731
Polyphase, 164
Polyphases components, 157, 164

formula
formula

o —



Positivity, 279, 295, 304, 305
Power, 279
spectral density, 46, 278
spectral distribution, 280
Pre-emphasis, 301, 652
Prediction, 309
(Wiener), 418
error, 412
Principal component analysis, 503,
505
Probability
density, 249
distribution, 248
error, 544
false alarm, 710
joint, 249
non-detection, 710
Probability distribution
Bernoulli, 269
complex Gaussian, 258, 261
complex normal, 258
exponential, 268
Gaussian, 257
normal, 257
Poisson, 266
Rayleigh, 269
Process
random, 247
Processing (multifrequency), 173
Procrustes
(method), 199
Program
loops, 36
aa.m, 487
aliasexple.m, 59
aliasingtrains.m, 217
ami.m, 714
analsunspots.m, 332
ananote.m, 355
applmusic.m, 377
approxsin.m, 400
arl.m, 300
array2D.m, 668

basicfct.m, 66
binari.m, 230
binarOtsu.m, 631
C2altern.m, 678
CAR21.m, 593
CAR22.m, 593
Carilstat.m, 660
Cbernou.m, 645
Cbutteri.m, 604
Cbutter2.m, 604
Ccomppp.m, 666
Ccraq.m, 699
Cdecall.m, 577
Cdenoise2.m, 697
Cderhor.m, 603
Cdersin.m, 602
Cechan2.m, 573
Ceffham.m, 580
Cellconf.m, 642
Cetatscomp.m, 680
Cfenpbande.m, 600
Cfftreel.m, 578
Ckalm.m, 711
Cmag.m, 717
CmeanNoise.m, 648
Cmial.m, 718
Cmia2.m, 719
Cmia3.m, 719
Cmia4.m, 719
Cmia5.m, 720
CmisfQl.m, 692
CmisfQ2.m, 693
CmisfQ3.m, 694
CmisfQ4.m, 696
Cmle.m, 348
Cmodam.m, 587
Cmoddbsp.m, H88
Cnoise.m, 696
Cpablim.m, 650
Cpisar.m, 666
Cpoisson.m, 643
Cprony.m, 662
Cpsk.m, 713
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Crayleigh.m, 643
Crepetats.m, 679
Crepimp.m, 653
Cresol.m, 579
Cspectri.m, 575
CssurbQ.m, 646
Cstereo.m, 589
Csup50hz1.m, 594
Ctelradi.m, 709
Ctesthftoz.m, 670
Ctestwelch.m, 656
Ctfdct.m, 583
ceffsamp.m, H84
code.m, 683
compare.m, 575
complms.m, 440
contoursobel.m, 624
corrigl.m, 633
critnyq.m, 554
cteres.m, 124
DTWtry.m, 689
dataex.m, 238
daub4.m, 184
declparole.m, 608
decode.m, 685
decpara.m, 609
demodDCT.m, 641
derivsynth.m, 622
detectkey.m, 458
detectnum.m, 460
digitBDDgene.m, 513
dsplAl.m, 340
dspQ.m, 328
echocancell.m, 443
echocancel2.m, 444
egallin.m, 721
egallinCmp.m, 724
enhanceye.m, 228
estlsinreel.m, 350
estARIlms.m, 437
evenodd.m, 139
exactAR.m, 311
exerosion.m, 234
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exfiltint.m, 104
exfiltrand.m, 104
explaw.m, 268
extrythm.m, 500
fenHann.m, 690
fil2blocs.m, 162
filtragefftli.m, 612
filtragefft2.m, 613
filtragefft3.m, 613
filtrain.m, 362
fluctperio.m, 322
frgshift.m, 153
gainphase.m, 111
gcompl.m, 261
genel.m, 93
gene2.m, 93
genekey.m, 456
generepimp.m, 302
geomproc.m, 628
geomproc2.m, 628
geomtransf.m, 196
graddet22.m, 425
graddet23.m, 427
gradmul.m, 424
hilphrase.m, 136
histoGild.m, 261
histoUnif.m, 266
identdet.m, 673
identifrls.m, 406
identlms.m, 674
imagette.m, 536
imgtstcode.m, 634
imgtstdecode.m, 636
intbilin.m, 220
interMex.m, 607
kaltraject2D.m, 522
LBG64.m, 712
LBGcomp.m, 712
lenacone.m, 620
lenadersec.m, 622
lenamedian.m, 627
lenarect.m, 619
lenasobel.m, 621



lloyd.m, 526
lowpass2.m, 143
misfQ.m, 481
mmse.m, 724
mobilex.m, 523
modDCT .m, 640
modfm2.m, 98
modulfreq.m, 61
modulfreq2.m, 583
music2D.m, 667
nbsin.m, 358
oeilnyq.m, 558
onewin.m, 89
overpara.m, 609
oversamp2Ds.m, 218
PHcoder.m, 691
Pmaxsin.m, 353
PSOLAtry.m, 689
partgv2aril.m, 527
partgv2w.m, 528
peestim.m, 561
peigne.m, 613
polyphase.m, 612
preprocesscoin.m, 501
purpoles.m, 121
rectfilter.m, 590
recttransf.m, 617
rejec500Hz.m, 595
rejection.m, 596
repimp2.m, 120
repimpuls.m, 117
repindic.m, 105
repindicAR1.m, 592
repliemtemp.m, 606
residudR.m, 466
resoll.m, 82
resol2.m, 82
resolfreq.m, 86
restau.m, 489
rifham.m, 144
riHilbert.m, 136
scrambexple.m, 435
separecg.m, 494
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shiftf.m, 74
signaltest.m, 363, 365
simulgraddeter.m, 422
simumusic.m, 378
sin80br.m, 283
sinus80.m, 62
sinusversusAR2.m, 307
smoothl.m, 209
smperio.m, 324
snowing.m, 227
specbin.m, 657
speccti.m, 90
specct2.m, 91
specct3.m, 92
specoversmp.m, 657
speechalias.m, 60
testburg.m, 659
testcovtodsp.m, 319
testdurbin.m, 339
testellipse.m, 38
testhdb3.m, 716
testinvtoepl.m, 655
testlevinson.m, 654
testlogic.m, 195
testlogic2.m, 615
testtrendseason.m, 294
testxtoa.m, 330
thresholdg.m, 220
traittransftri.m, 617
trajl.m, 273
trajAR.m, 307
trajMA.m, 303
transftri.m, 616
trteyesl.m, 222
trteyes2.m, 626
tstdergauss.m, 215
tstdermoygauss.m, 624
tstfftblock.m, 204
tstfftlo.m, 206
tstmoygauss.m, 620
tstraw2mat.m, 192
twosinl.m, 90
unbloccode.m, 634
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viterbi.m, 569
wmO1.m, 241
yeung.m, 637
yeungr.m, 639
contourellipse.m, 702
equationellipse.m, 703
exeigenfaces.m, 506
LDAPCAtest.m, 706
LDAPCAtraining.m, 705

rechellipsecovar.m, 705

separesources.m, 707
Projection
orthogonal, 390
theorem, 390, 417
PSD, 46, 278
Pseudo-inverse, 397
PSF, 208
PSOLA, 475
Pulse Code Modulation, 468
Pulse Unit, 65

QAM, 549
Quadrature component, 540
Quantization, 190, 289
6 dB per bit, 645
and oversampling, 287
linear, 524
noise shaping, 695
noise, 328
uniform scalar, 270
vector, 527

Radar, 516
Radar telemetry, 517
Radiocommunications, 586
Raised cosine, 553
Random

harmonic, 280

process, 247

signal, 247

variable, 247
Random process

AR-1, 310

ARMA, 302, 305, 315

AR, 302, 305, 306, 331, 334, 337,
364, 410, 461, 485, 660, 685,
698, 710
almost deterministic, 410
autoregressive, 465
ergodic, 289
filtering, 297
Gaussian, 285, 306
harmonic, 277
MA, 302, 305, 338
outcome, 273
realization, 273
trajectory, 273
Wide-Sense Stationary (WSS),
276
Random value
mean, 253
variance, 254
Random variable
complex Gaussian, 258, 261
Gaussian, 257
independence, 251
standard deviation, 254
Random vector, 254
Rate
source coding, 478
Real sequences (FFT), 79
Reconstruction (of a state), 162
Reconstruction function, 53
Rectangle, 69
Rectangular windowing, 44
Reflection coefficients, 314, 335, 685
Regions
Voronoi, 530
Regressor, 394
Rejector, 125
Replica, 151
Residual, 466
Resolution, 366
Resolution x time product, 86
Resolution (frequency), 84
Resolution limit of Fourier, 350, 366
RGB, 188, 189



Ripple factor, 127
Ripples, 87, 144

Rise time, 105, 592
RLS, 402

Robust watermark, 241
Roll-off, 552

Root mean square, 279
Root-music, 373
Rotation, 196

Sampling, 190
deterministic signal, 52
frequency, 52
period, 52
random signal, 286
Scalar product, 389
Schwarz
inequality, 276
Seasonal, 292
Second order, 123
filter, 123
Separable (Filter), 209
Sequence (learning), 438, 563
Short term Fourier transform, 92, 93
Signal
analog (reconstruction), 64
analytical, 47, 135, 501
anticausal, 65
band-limited, 300
causal, 65
digital, 52
low-pass, 56
narrowband, 57
periodic, 494
rectangle, 69
residual, 466
speech, 461
stereophonic, 97
subspace, 368, 369
Signal-to-noise ratio, 272, 283, 300,
301, 337, 348, 406, 438, 482,
484, 486, 544, 556, 645, 693,
696
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(quantization), 645
Simulation, 328, 454
Simulation (Monte-Carlo), 377
Sine, 66

truncated, 66
Sine cardinal, 45, 154
Smoothing, 209, 299

(Wiener), 419
Sound

unvoiced, 462

voiced, 462, 466
Spectral distribution of power, 280
Spectral peak, 280
Spectrum, 47, 52, 70, 278

aliasing, 53, 55, 155

of a digital signal, 546

peak, 280

ripples in the, 87
Speech

AR model, 462

coding, 652

denoising, 484

expansion and frequency tranla-

tion, 152

model, 461

typology of sounds, 462
Square root

positive matrix, 285
Stability

(transfer function), 112

BIBO, 49, 102, 103

Toeplitz, 309

triangle, 594
State, 450

(of a filter), 160

reconstruction, 162

representations,; 452

vector, 450
Stationary random processes, 274
Statistics

higher order, 304
Steering vectors, 380
Step
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gradient, 420, 526
quantization, 271
response, 105
STFT, 92, 93
Stochastic gradient, 431, 432
Stopband, 144
Structures, 27
Subspace
noise, 368, 370
signal, 368, 370
Sunspots, 331
Superposition principle, 101
Suppressing
a mean, 290
a seasonal trend, 290
a trend, 290
Symbol, 539
(channel identification), 405
rate, 539

Synchronous demodulation, 97

Target, 516
Ternary alphabet, 547
Test sequence (length), 270
TF (transfer function), 109
Theorem
projection, 390, 417
Time
advance (z-transform), 117
constant, 123
delay (z-transform), 730
Reversal (DFT), 729
Time delay, 74
Torsion, 198, 617
Trace, 371
Training set (LBG), 531
Trajectory, 273
Transconjugate of a matrix, 29
Transfer function, 109
Transform
bilinear, 149
causal z-transform, 116
discrete Fourier, 72

Hilbert, 47, 135
unilateral z-transform, 116
z-, 106
Transformation
affine, 197, 198, 616
torsion, 198, 199, 617
Transient state, 300
Transition band, 127
Transpose-conjugate of a matrix, 29
Trend
affine, 291
seasonal, 292
Triangle
stability, 594
Truncated sine, 66

ULA (uniform linear array), 379

Undersampling, 155

Uniform linear array, 379

Uniform quantization
signal-to-noise ratio, 272, 645

Unit impulse, 282

Unit step, 44, 66

Van Schyndel method, 244
Vocal folds, 462

Vocoder, 468

Voice activity, 470
Voronoi regions, 530

Vowels, 462

Walton method, 243
Watermarking, 241
Waveform coding, 468
Wavelet, 183
Weighting, 87
Welch, 325
White
Dirac distribution, 282
Gaussian, 283
noise, 282
random sequence, 256
unit impulse, 282

Whitening, 285, 528
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Gaussian process, 285
Wiener

equalization, 429, 564

equation, 418

filter, 392

linear filter, 421
Window, 87

Hamming, 88, 144, 318

Hann, 477

method, 137

periodic/symmetrical, 90

rectangular, 87

symmetry, 146

triangular (Bartlett), 318, 324

weighting, 140

Yeung and Wong, 242

Yule-Walker, 338, 437, 485
equations, 309, 407
equation, 466

Zero Forcing, 428, 721
Zero-Order Hold, 64
Zero-Padding, 72

Zeros (transfer function), 731

ZOH, 64
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