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Preface

Electromagnetic Field Theory is one of the fundamental courses that an electrical 
and computer engineering student is required to take in order to gain a physical 
understanding of the foundations and the heritage of the field that will occupy his or 
her professional life for the several decades following graduation. The acquiring of 
an appreciation for the laws of nature that govern and limit the speed of the smallest 
computer chip continue to be crucial as this speed approaches the ultimate limit. 
With the many changes that are occurring in undergraduate curriculums due to the 
rapid development of new technologies and hence additional courses, it is common 
to find that only one course in electromagnetic theory is now required for students. 
However, most of the students are “computer savvy” and have been introduced to 
and have used MATLAB in their previous courses and are motivated by its ability to 
create pictures on a computer screen that can help illustrate complicated physical 
phenomena. 

Our Approach

The underlying philosophy of this one semester undergraduate text is to combine 
the student’s computer/MATLAB ability that has been gained in earlier courses 
with an introduction to electromagnetic theory in a coherent fashion in order to 
stimulate the physical understanding of this difficult topic. Where two terms of 
Electromagnetic Theory were once required, the challenge of squeezing study into 
one term can at least be partially met with the use of MATLAB to diminish the 
drudgery of numerical computations while enhancing understanding of concepts. 
Therefore, in this text numerous examples are solved using MATLAB along with 
the creation of several figures throughout the text, and all of the “.m” files are made 
available for the reader to examine and to modify. We therefore believe that it is 
possible to take this seemingly abstract material and make it understandable and 
interesting to the student. This belief has been confirmed by using the material in 
classes for six years and continually using student feedback to improve it.
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Organization of the Text

We review essential features of MATLAB immediately in Chapter 1 in order to sat-
isfy the novice’s initial trepidations and incorporate its MATLAB’s capabilities 
throughout the entire text. After an initial review in Chapter 1 of MATLAB, vector 
calculus, and phasors, we follow in the footsteps of the giants who have preceded us 
in and summarize the fundamentals of static electromagnetic fields, including sev-
eral examples that the reader may have encountered previously. We discuss analyti-
cal and MATLAB techniques in order to illustrate the spatial behavior of a static 
field in a finite boundary in Chapter 3. The majority of the text is directed toward 
the presentation of time varying electromagnetic fields and Maxwell’s equations in 
Chapter 4. From these equations we derive a wave equation that can be most easily 
understood using a diverse selection of examples from other disciplines. A study of 
plane electromagnetic waves directly follows this review of waves in Chapter 5. In 
Chapter 6 the subject of transmission lines is emphasized, owing to its importance 
in modern technology. This includes MATLAB programs for the creation of a Smith 
chart and its application. Finally, in Chapter 7 the subject of radiation of electro-
magnetic waves is explained, first from a very simple physical interpretation, and 
then summarizing many of the important parameters associated with antennas. 

Anticipating the student’s further study of modern topics in electrical engineer-
ing, we have tried to present a somewhat broader look in numerical methods than 
most introductory electromagnetics texts. The Finite Element Method, Method of 
Moments, and Finite Time Difference are all examples of this effort. With MAT-
LAB, we believe most students can handle this material well and will be better pre-
pared for their application later. 

Aids to Learning

The Appendices and page layout are designed to enhance the reader’s understand-
ing and appreciation of electromagnetic theory as it applies to their study. 

• Examples have been clearly set of from the text with rule lines. 

• Each time MATLAB is employed, whether in examples or chapter prob-
lems, the MATLAB icon is used to signify its use. 

• The answers to all problems have been included in Appendix G so that stu-
dents can check all of their work, not just some. Instructors are provided 
with complete worked-out solutions in hard copy and MATLAB files, to 
use at their discretion.
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• The most important equations occurring in the text have been boxed so that 
they might be quickly identified as such and committed to memory.

• Important mathematical formulae have been consolidated and placed 
together in Appendix A.

• Several interesting extensions of text material are offered in Appendix B 
(Mathematical Foundation of the Finite Element Method) and Appendix E 
(Plasma Evolution Adjacent to a Metallic Surface).

• Material parameters are listed in Appendix C.

• A fairly extensive and up-to-date list of references for both electromagnet-
ics and MATLAB is provided in Appendix F. 

Aids to Teaching

For instructors, we are working closely with SciTech Publishing to supply our 
teaching colleagues with ample resources and to add to them continuously, even to 
invite contributions from them and their students. An initial CDROM offers com-
plete solutions to problems in hard copy (PDF and Word) as well as MATLAB.m 
files. The code for all MATLAB-generated figures is made available on the CD, as 
well as on the web for students. All other figures used in the text are provided as 
EPS graphic files as well as in a PowerPoint file. A modest number of MATLAB 
animation files have been collected, with the hope that the authors and our adopting 
instructors will add to them. Check in frequently at our website to see what has been 
added: www.scitechpub.com/lonngren.htm 

Acknowledgments

The construction of an effective textbook, with its attendant resource materials, is a 
team effort akin to an engineering marvel. We are fortunate to work with a publisher 
that believes in our effort and maintains an open and constant dialog. In particular, 
our editor and SciTech Publishing founder Dudley Kay has extended his consider-
able years of experience in commercial publishing and at IEEE Press to dispense 
advice and encouragement, making the finished book even better than we had first 
envisaged. Robert Kern, Melissa Parker, and the team at TIPS Technical Publishing, 
Inc. provided an outstanding page design and worked tirelessly on the hundreds of 
art and equation files to bring text and graphics together into a coherent, attractive 
whole. Our early figures were brought to professional polish by Michael Georgiev, 
working under the demanding guidance of Prof. Savov. The striking time-delay 
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the publisher.

The authors have profited from extended discussions with several people who 
have influenced their thinking concerning the presentation of this material. This 
includes their former teachers, their past and present electromagnetics colleagues, 
and the many students who have asked stimulating questions in and outside of class 
over the last three decades. In particular, Professors Er Wei Bai, Adrian Korpel, and 
Jon Kuhl provided valuable assistance at crucial times.

Finally, the authors thank their wives Vicki and Rossi for their encouragement 
and understanding during this endeavor, and this book is dedicated to them.
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  1. MATLAB and vectors 

 In this chapter, we introduce and summarize several properties of the 

software program entitled MATLAB.  The topics in this summary have been 

selected based on their later application in our study of electromagnetics.  You 

have probably encountered MATLAB in other courses since the software is 

widely used in the educational community.  In addition, MATLAB is a tool that will 

permit you to easily obtain pictures of various electromagnetic phenomena that 

we will encounter in our journey through this book.  In addition, vectors which are 

crucial in describing electromagnetic phenomena can be easily manipulated 

using MATLAB.  Several of the figures in this text have been created using 

MATLAB.  Because of simplicity, we will emphasize Cartesian coordinates in this 

review.  The vector operations in other coordinate systems are included in 

Appendix 1.  Our motivation in employing vectors is that electromagnetic fields 

are vector quantities and their use will permit us to use a fairly compact notation 

to represent sets of partial differential equations. This review will include a 

derivation of the vector differential operations of the gradient, the divergence and 

the curl. The transformation of a vector from one coordinate system to another 

will be discussed. Additional symmetry found in a particular problem in one 

coordinate system over another one may suggest such a transformation. The 

reader who feels comfortable with vector terminology can easily skip this portion 

of the chapter and pass on with no loss of continuity. Just remember that in this 

text, bold-face type will be used to define a vector A and the symbol uA will be 
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used to indicate the unit vector corresponding to this vector. This chapter 

concludes with a few brief comments on phasors.  
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  1.1. MATLAB and a review of vectors  

 MATLAB is a software program that is widely available for digital 

computers at a large number of universities and on a large variety of machines. 

As will be noted in this text, we will make extensive use of it. The two and three 

dimensional plotting capabilities will be exploited throughout this text since a 

picture or a graph can usually aid in the physical interpretation of an equation. 

Herein, we will briefly present an introduction of several germane features of this 

program that will be useful for electromagnetic theory. Various functions such as 

trig functions appear in a MATLAB library that can be easily called and used. The 

user can customize and add to this list by writing a program in a ".m" (dot m) file. 

Several MATLAB figures will be included throughout this text. In addition, the files 

that have been used to create the figures in the text are available at the following 

web site: [http://www.scitechpub.com/].  These programs will be characterized 

with the names: “example_103” and “figure_103” to indicate the third example 

and the third figure in chapter 1.  The example and figure captions are identified 

in the book with the superscript notation MATLAB.  Matrix operations will not be 

examined since their application will receive minimal attention in this text.  We 

assume that the reader is able to call MATLAB and have the familiar MATLAB 

prompt ">>" appear on the screen. Typing the words, "help topic" after the 

prompt brings on-screen help to the user. 

 For example, we type without the following command after the prompt, 

press the enter key, and note the following statements that appear on the screen 
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  > > x = 3 

  x = 

3 (1.1) 

  > > 

The computer has assigned a value for the variable x that it will remember until it 

is changed or until we exit the program. It is now ready for the next input. Let us 

choose a value y = 4 but desire the computer to not print back this number 

immediately.  This is accomplished with a semicolon “;”. 

  > > y = 4; 

  > >   (1.2) 

This may not seem important to the stage.  However, a simple statement in a 

program could lead to a large waste of “computer screen” or computer paper as 

the numbers are spewed forth.     

 Mathematical operations with these two numbers follow and we write a 

mathematical operation at the prompt. In the table given below, the following 

three lines will appear after we push the return key. 

Addition Subtraction Multiplication Division 

> > z = x + y > > z = x – y > > z = x * y > > z = x / y 

z =  z =  Z =  z = 

      7        - 1       12        0.7500 

> > > > > > > > 

Note the four place accuracy in the last column. The accuracy can be controlled 

by the user. 
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 With the semicolon notation, it is possible to write any of the commands in 

one line.  For example, the addition program can also be written in one line as 

  > > x = 3; y = 4; z = x + y; (1.3) 

In order to obtained the solution using this operation, you just have to type “z” at 

the MATLAB prompt  and computer will respond 

   > > z 

             7 (1.4) 

  > > 

The semicolon will be very useful in a lengthy calculation if we do not wish to 

display intermediate results. Another useful tool to remember is the symbol "%" 

since anything typed on the line after it will receive no attention by the computer. 

It is a convenient way to add comments to a program or to an operation. 

 In electromagnetics, you'll frequently encounter fields that have both a 

magnitude and a direction associated with them.  Examples of physical effects 

from other disciplines that require a vector notation include force, acceleration, 

and velocity.  A car traveling with a velocity v from a location A to a different 

location B implies that the car has a certain speed v = |v| in a prescribed 

direction. In this case, the speed is the magnitude of the velocity. The vector 

should be contrasted with a scalar, a quantity that possesses only a magnitude 

and no direction. Energy, weight and speed are examples of scalar quantities. 

Our car can travel with a speed v in any direction but will pass us by with a 

velocity v in a definite direction.  
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 The convenience of employing vector notation allows us visualize 

problems with or without the specification of a coordinate system.  After choosing 

the coordinate system that will most accurately describe the field, the field is then 

specified with the components determined with regard to this coordinate system.  

Coordinate systems that we will encounter later are Cartesian, cylindrical, and 

spherical.  The derivations of vector operations will be performed in Cartesian 

coordinates with the equivalent results just stated in the other systems.  There 

are a large number of “orthogonal” coordinate systems and there is a generalized 

orthogonal coordinate system.  The term “orthogonal” implies that every point in 

a particular coordinate system can be defined as the intersection of three 

orthogonal surfaces in that coordinate system.  This will be further examined 

later. 

 A vector can be specified in MATLAB by stating its three components. We 

will use a capital letter to identify a vector in using MATLAB notation.  Lower case 

letters will be reserved for scalar quantities.  This is not required but it does add 

clarity to the work. The unit vector is defined as a vector whose magnitude is 

equal to 1 and it is directed in the same direction as the vector.  For example in a 

Cartesian coordinate system, the vector A = Axux + Ayuy + Azuz where Ax is the 

magnitude of the x component of the vector A and ux is a unit vector directed 

along the x axis is written as 

     > > A = [Ax Ay]; 

   > > A = [Ax Ay Az]; (1.5) 
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in two and three dimensions respectively.  In MATLAB notation, this vector can 

be displayed by just typing “A” at the prompt   

  > > A 

  A = 

          Ax Ay Az 

  > >   (1.6) 

We must insert a space between the components of the vectors that are 

numbers.  

 Let us now specify numerical values for the three components A = [1 2 3].  

A second vector B = 2ux + 3uy + 4uz is written as  

  >> B = [2 3 4]; (1.7) 

where we again employed the semicolon in order to save space. 

 Having stored the two vectors A and B in the computer, we can perform 

the following mathematical operations. The vectors can be added C = A + B by 

typing 

  >> C = A + B 

  C = 

         3   5   7  (1.8) 

  >> 

The vector is interpreted as C = 3 ux + 5 uy + 7 uz.  

 The two vectors can also be subtracted D = A – B with the command 

  > > D = A - B 

  D = 
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         -1   -1   -1 (1.9) 

  > > 

The vector is interpreted to be D = -1 ux -1 uy -1 uz.  We will incorporate other 

vector operations such as the scalar product, the vector product, and various 

derivative operations using MATLAB at the location of their introduction. 

 Finally, the magnitude of a vector can also been computed using the 

MATLAB command ‘norm’.  The unit vector can be defined in any direction.  It is 

equal to the vector divided by the magnitude of the vector.  This will be illustrated 

in Example1-1. 

Example 1-1MATLAB.  Using MATLAB, plot the addition of the vectors A = 3ux 

and B = 4uy.  The vectors are to start at the point (1, 1).  Plot and label the unit 

vectors ux, uy and uC and find the magnitude of the vector C.  

Answer.  The magnitude of the vector is calculated with the MATLAB command  

‘norm(A + B)’.  The unit vector is 
22 43 

4  3 

+

+
= yx

C

uu
u  The default accuracy in 

MATLAB is 4 decimal places.  This value can be controlled by the user.  In 

addition, the ‘title’ of this figure has been added using another MATLAB 

command in the program. 

 At the present time, MATLAB does not have a feature to directly to create 

a vector with arrows.  However, there exists a user contributed file entitled 

“vector3”  at  [http://www.mathworks.com/matlabcentral/spotlight/arrows.shtml/].  

We acknowledge Jeff Chang and Tom Davis who gave us permission to 

incorporate this feature into the book.     
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 The multiplication of two vectors can be accomplished with two different 

vector operations that have two different interpretations.  The first multiplication is 

given the name of being a scalar product or a dot product.  The definition of a 

scalar product of two vectors is 

   A • B ≡ AB cos θ (1.10) 

The result of this multiplication is a scaler quantity.  The scalar product yields the 

projection of the vector A on the vector B as shown in Figure 1-1.  Since cos θ  
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= cos(-θ), this can also be interpreted as the projection of the vector B on the 

vector A.  If one of the vectors is a unit vector, this is a useful technique to 

calculate the components of a vector. 

0 1 2 3
0

0.5

1

1.5

2

2.5

3

A

B

θ

x

y

 

Figure 1-1MATLAB.  Illustration of the scalar product of two vectors A = 2 ux + 0 

uy + 0 uz  and B = 1 ux + 2 uy + 0 uz. 

 

 We can also interpret this operation in terms of work which is a scalar 

quantity.  For example, if we are to move a box a distance ∆x in a prescribed 

direction, we must apply a certain force F in the same direction.  The total work 

∆W is given by the compact expression 
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  ∆W = F • ∆x  (1.11) 

 The MATLAB command that permits you to take a scaler product of the 

two vectors A and B is ‘dot (A, B)’ or ‘dot (B, A)’.   

 The second vector multiplication of two vectors is called the vector product 

or the cross product and it is defined as 

  A x B ≡ AB sin θ uA x B (1.12) 

This multiplication yields a vector whose direction is determined by the "right 

hand rule."  This implies that if you take the fingers of your right hand (vector A) 

and close them in order to make a fist (vector B), the unit vector uA x B will be in 

the direction of the thumb.  Therefore, we find that B x A = - A x B since you 

have had to rotate your right arm. The direction of rotation of a boat initially in a 

pond and carried up in a tornado or down in a whirlpool can be used as an indi-

cation of this asymmetry in the direction. 

  In Cartesian coordinates, we can easily calculate the vector product by 

remembering the expansion routine of the following determinant 

 
)BABA()BABA()BABA(

BBB
AAA  

xyyxzxxzyzzy

zyx

zyx

−+−+−=

=

zyx

zyx

uuu

uuu
B xA 

 (1.13) 

The MATLAB command which effects the vector product of two vectors A and B 

is ‘cross (A, B)’.  In Figure 1-2, we illustrate the cross product of two vectors. 
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Figure 1-2MATLAB.  The cross product of the two vectors A = 2 ux + 1 uy + 0 uz  

and B = 1 ux + 2 uy + 0 uz are shown   The vector product of the two vectors A 

and B is equal to C = 0 ux + 0 uy + 3 uz.   

  

Example 1-2MATLAB.  Show that it is possible to interpret the cross product of two 

vectors that are in a plane in terms of the area included between the two vectors. 

Answer. It is possible to give a geometric interpretation for the vector product. 

We can use the magnitude of the vector product |A x B| to find the area of a 

parallelogram whose sides are specified by the vectors A and B as shown in the 

figure.  
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From geometry, the area of a parallelogram is given by  

  Area = AB sin θ 

This is equal to the area of the rectangle whose area is given by the product of 

the horizontal distance A and the vertical distance B sin θ.  From the definition of 

the vector product (1.12), this is equal to |A x B| 

 

 A convenient method of stating that two non-zero vectors A and B are 

pendicular (θ = 90o) is to use the scalar product.  If  A • B = 0 and neither vector 

is zero, then the two vectors are perpendicular since cos 90o = 0. To state that 
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the two non-zero vectors are parallel (θ = 0o) or antiparallel (θ = 180o), we use 

the vector product. If  A x B = 0, then the two vectors are parallel or antiparallel 

since sin 0o = sin 180o = 0. 

 Two triple products will be encountered in electromagnetic theory and they 

are included here. The first is called the scalar triple product.  It is defined as 

                       A • (B x C) = B • (C x A) = C • (A x B) (1.14) 

Note the cyclical permutation of the vectors in (1.14). There are several 

additional possible permutations to this product since the change of the vector 

product will lead to a minus sign since,  

                                    B x C = - C x B. (1.15) 

 
The second triple product is called the vector triple product. 

  A x (B x C) = B (A • C) – C (A • B) (1.16) 

The proper inclusion of the parentheses in this triple product is critical.  Each of  

the vectors is mollified with a numerical value that is determined by the scalar 

product of two vectors. This triple product is sometimes called the "back - cab"  

rule since this is an easy way to remember the ordering of the vectors. We will 

use this particular vector identity extensively when the topic of Poynting's vector 

is introduced. 

Example 1-3MATLAB. Show that the volume ∆V of a parallelepiped defined by 

three vectors originating at a point can be defined in terms of the scalar and the 

vector products of the vectors. 

Answer: The volume ∆V of the parallelepiped is given by  
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 ∆V = (area of the base of the parallelepiped) x (height of the 

parallelepiped)  

  

( )( )

( )

( )BAC

B xA 
B xA   CB xA 

uCBA n

×•=





















••=

•×=

  

||

 

This is illustrated with the vectors defined as A = [3 0 0]; B = [0 2 0]; and C = [0 2 

4].  The calculated volume is equal to 24. 
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Note that the height of the parallelepiped is given by the scalar product of the 

vector C with the unit to vector ( )B xA B xA / 
 
that is perpendicular to the base.

 

 

 MATLAB provides extensive two and three dimensional graphical plotting 

routines. The data to be plotted can be generated internally in a program or it can 

be imported from an external program. The command ‘fplot’ specifies and plots a 

known function that is included in the MATLAB library. Labels and titles using 

different fonts and font sizes and styles can be placed on the graphs and the 

plots can be distinguished with different symbols.  The MATLAB notation for a 

superscript and a subscript require the additional statement ‘^’ and ‘_’ 

respectively in the text command.  We will present several examples here in 

order to illustrate the variety of two dimensional plots that are available. 

Additional graphs can be placed on one plot with the "hold" command.  Either 

axis can have a logarithmic scale. In addition, the command "subplot" permits us 

to place more than one graph on a page, either vertically or horizontally 

displaced. The command ‘subplot (1, 2, 1)’ states that there are to be two graphs 

next to each other and this command will be used to select the left one. The 

command ‘subplot (2, 1, 2)’ states that are two graphs, one on top of the other 

and the command selects the bottom one.  Other commands that follow detail the 

characteristics of that particular graph. This is best illustrated with an example. 

Example 1-4MATLAB. Construct 4 subplots on one figure.  (a) A bar graph that 

contains five numbers x = 2, 4, 6, 8, 10. (b) Plot the numbers y = 5, 4, 3, 2, 1 vs 

x. (c) Plot two cycles of a sine wave using the ‘fplot’ command. The introduction 



  MATLAB and a review of vectors  

 17

of the symbol θ is accomplished with the command ‘\theta’ in the xlabel or in a 

text statement. (d) Plot an exponential function in the range   0 < x < 3.  Calculate 

this function with the interval ∆x = 0.01.  Text items such as the ylabel or a 

statement can include superscripts and subscripts.  The superscript is introduced 

with the command ‘^’ and the subscript is introduced with the command ‘_’. 

1 2 3 4 5
0

5

10

#

y

(a)

0 5 10
1

2

3

4

5

x

y

(b)

0 5 10

−1

0

1

θ
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n 

θ

(c)

0 1 2 3
0

10

20

30

x

ex

(d)

 

 

 It is possible to customize a graph by changing the characteristics of the 

line.  This is illustrated by plotting the same function, say sin θ vs. the 

independent variable θ.  In addition, the text item “(a)” is sequenced in the 
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program using the command ‘s(2)=setstr(s(2)+1)’ after the initial inclusion of the 

statement s = ”(a)” in the program.  This is illustrated in Figure 1-3. 
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Figure 1-3MATLAB.  Illustration of a variety of different styles for the lines in a 

graph. (a) Solid line.  (b) Dashed line.  (c) Alternate ‘o –‘. 

 

 MATLAB also permits the graphical representation in a three-dimensional 

graph. The horizontal space is subdivided into a large number of points (xj, yk) 

and the function z = z(xj, yk) has to be evaluated at each of these points.  In order 

to accomplish this.  A “.” (period) must follow each of the independent variables 

in a program.  The results of a three-dimensional picture is illustrated in Figure  
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1-4.  There are two distinct plot commands, ‘mesh and ‘surf’.  In addition, there 

are also commands that allow the user to change the ‘viewing angle’, both in the 

rotation and in the elevation. 
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1

xy

(a)

z
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0
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1

xy

(b)

z

   

Figure 1-4MATLAB.  Three-dimensional plots of a Gaussian function.  (a) mesh 

plot.  (b) surf plot. 

  

 In addition to plotting the figure in Cartesian coordinates, it is also possible 

to plot the figure in polar coordinates. This will be useful in examining the 

radiation pattern of antennas. In addition, one can plot graphs in a semi log 

format or in a log log format.  This graph is useful when  one  wants  to  ascertain 
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Figure 1-5MATLAB.  Polar plot and a log-log graph.  (a) |sin θ| versus the angle θ 

where 0 < θ < 2π.  (b) y = xn where 1 < x < 100.   

 

the variation of a function y = xn, say in the interpretation on the data collected in 

a laboratory experiment.    Examples of these figures are shown in Figure 1-5. 

 The functions that have been used above are all functions that are 

included in the MATLAB library of functions.  The question then arises, "Can a 

program written by us which we expect to use again also be included in the 

library?" The answer is "Yes" and the process is given the name of creating a 

".m" (dot m) file with its unique name, say "custom.m".  The creation of the 

"custom.m" file involves a text editor, the form of which depends upon the local 

computer or work station to which the user has access. Once the file is created, it 

becomes a part of our personal library. In order to use this file, all we have to do 

is type the word "custom" after the prompt ">>" and this particular file is activated 
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at that point. These files are frequently shared over the internet and all of the files 

that have been used to create either the figures or the examples in this book are 

available at the following web site: [http://www.scitechpub.com/].   

 In the discussion above, we have focused on single vectors. As we will 

see later in this text, we will encounter a distribution of vectors that is called a 

vector field  This would be similar to the wind distribution in a region where the 

wind at any point has a magnitude and a direction associated with it. We typically 

would ascribe a vector field that had different length vectors as representing a 

nonuniform distribution of wind. The distribution of temperature throughout the 

nation would be specified by numbers or scalars and this would be an example of 

a scalar field. Examples of the two fields are shown in Figure 1-6. 

 

 

(a)                                  (b)  

Figure 1-6. Scalar and vector fields.  (a) The magnitude of a scalar is specified 

by the size of the circle.  (b) The magnitude and the direction of the vector at any 

point is indicated with the length and the orientation on the vectors. 
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  1.2. Coordinate systems 

 In this text, we will frequently encounter problems where there is a source 

of an electromagnetic field. To be able to specify the field at a point in space 

caused by this source, we have to make reference to a coordinate system. In 

three dimensions, the coordinate system can be specified by the intersection of 

three surfaces. Each surface is described with ξ1 = constant, ξ2 = constant, and 

ξ3 = constant where ξj is the jth axis of an orthogonal coordinate system. An 

orthogonal coordinate system is defined when these three surfaces are mutually 

orthogonal at a point.  Thus surfaces may be planar or may be curved.  This is 

illustrated in Figure 1-7. 

 

 

 

 

 

 

Figure 1-7.  A general orthogonal coordinate system.  Three surfaces intersect at 

a point and the unit vectors are mutually orthogonal at that point. 

 

 In Cartesian coordinates, all of the surfaces are planes and they are 

specified by each of the independent variables x, y and z separately being a 

constant.  In cylindrical coordinates, the surfaces are two planes and a cylinder.  

uξ3 

uξ1 
uξ2 
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In spherical coordinates, the surfaces are a sphere, a plane, and a cone.  We will 

examine each of these in detail in the following discussion.  There are many 

more coordinate systems that can be employed for particular problems and there 

even exists a generalized coordinate system that allows one to easily transform 

the vector operations from one system to another.    

 The three coordinate systems used in this text are also displayed in Figure 

1-8 (a), (b) and (c). The directions along the axes of the coordinate systems are 

given by the sets of unit vectors (ux, uy, uz); (ur, uφ, uz); and (uρ, uφ, uθ) for 

Cartesian, cylindrical and spherical coordinates respectively.  The radial variable 

in the cylindrical and spherical coordinates have been chosen to have different 

symbols.  In each of the coordinate systems, the unit vectors are orthogonal to 

each other at every point.  

 

 

 

 

 

 

 

Figure 1-8.  The three coordinate systems that will be employed in this text.  The 

unit vectors are indicated.  (a) Cartesian coordinates.  (b) Cylindrical coordinates. 

(c) Spherical coordinates. 
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 The cross product of two unit vectors can be used to to define a unit 

surface whose vector direction is in the direction of the third unit vector.  In 

Cartesian coordinates, the direction of the unit vectors is independent of position. 

However in cylindrical and spherical coordinate the directions do depend on their 

positions. For example, in spherical coordinates, The unit vector uρ will be 

directed in the +z axis if θ = 0  and it will be directed in the -z axis if θ = π. Since 

we will employ these three coordinate systems extensively in the following 

chapters, it is useful to summarize germane properties of each one. 

 

  1.2.1.Cartesian coordinates 

 

 

 

 

 

 

 

 

 

Figure 1-9.  A point in Cartesian coordinates is defined by the intersection of the 

three planes: x = constant, y = constant, z = constant.  The three unit vectors are 

normal to each of the three surfaces. 
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 The unit vectors in Cartesian coordinates depicted in Figure 1-8a are 

normal to the intersection of three planes as shown in Figure 1-9. Each of the 

surfaces depicted in this figure is a plane that is individually normal to a 

coordinate axis. 

 For the unit vectors that are in the directions of the x, y, and z axes, we 

have ux • ux  = uy • uy = uz • uz = 1 and ux • uy = ux • uz = uy • uz = 0.  In 

Cartesian coordinates, the following rules also apply to the unit vectors since this 

is a right-handed system. 

     







=×
=×
=×

yxz

xzy

zyx

uuu
uuu
uuu

    

(1.17) 

 The vector A from the origin of the coordinate system to the point 

determined by the intersection of the three planes in Figure 1-9 is given by 

                                   A = x ux + y uy + z uz (1.18) 

Example 1-5MATLAB.  State the MATLAB commands for the three unit vectors in 

Cartesian coordinates.   A general feature of all the orthogonal coordinate 

systems is that the unit vectors at any point defined by the intersection of the 

three surfaces is that the unit vectors are mutually orthogonal at that point. 

Answer.  The MATLAB commands for the unit vectors are written as:  

     ux  “ux = [1 0 0]”, uy  “uy = [0 1 0]”, and uz  “uz = [0 0 1]”. 

The unit vectors are depicted below. 
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 In Figure 1-10, a differential volume in Cartesian coordinates is illustrated.  

This small volume has six surfaces.  A differential surface area is a vector 

quantity whose direction is defined to be in the “outward normal” direction.  Three 

of the six differential surface areas are indicated.   
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Figure 1-10.  A differential volume dv = (dx) (dy) (dz) in Cartesian coordinates.  

Three of the six differential surface areas: dsx = (dy) (dz) ux, dsy = (dx) (dz) uy, 

and dsz = (dx) (dy) uz are indicated with the vectors.  The differential length dl is 

defined as dl = dx ux + dy uy + dz uz. 

 

Example 1-6. Find the vector G that joins point A to point B on the enclosed 

graph in Cartesian coordinates. In addition, determine the unit vector. 
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z dz 

dy 

dx 
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Answer: The vector is  

  G = (6 - 2) ux + (7 - 2) uy + 0 uz = 4 ux + 5 uy + 0 uz 

The unit vector is 

  
2 2 2 0  5  4

 0  5   4
  

++

++
= zyx

G

u u u
u  

 

Example 1-7MATLAB. Given the two vectors A = 3 ux + 4 uy and B = 12 ux + 5 uy 

in Cartesian coordinates, evaluate the following quantities.  In addition, state the 

MATLAB commands that can be used to check your answers. The vectors are 

written in MATLAB notation as “A = [3 4 0]” and “B = [12 5 0]”. 

(a) the scalar product A • B. 

(b) the angle between the two vectors. 

(c) the scalar product A • A. 
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(d) the vector product A x B. 

Answer:  

(a) The scalar product A • B is given by 

A • B = 36 ux • ux + 15 ux • uy + 48 uy • ux + 20 uy • uy 

Note – the scalar product of two orthogonal unit vectors is equal to 0 and two 

collinear unit vectors is equal to 1.  This leads to A • B = 36 + 0 + 0 + 20 = 56. In 

MATLAB, use ‘dot(A, B)’. 

(b) The angle between the two vectors is computed from the definition of the 

scalar product. 

 o

2222
30.5  θ or 

65
56

51243
56   θ cos ==

++
=

•
=

 |B| |A|
B A   

In MATLAB, ‘theta = acos (dot(A, B)/(norm(A)*norm(B)))*(180/pi)’ 

(c) The scalar product A • A is given by 

                A • A = 9 ux • ux + 16 uy • uy = 25 

The scalar product A • A is a convenient method to determine the magnitude of 

the vector A since  AA A •==   || A .  The MATLAB command is ‘dot(A,A)’.   

(d) The vector product A x B is given by 

  z

zyx

u
uuu

 B xA  33 -  
0512
043 ==  

The MATLAB command is ‘cross(A, B)’. 
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  1.2.2. Cylindrical coordinates 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1-11. Cylindrical coordinates. The point is defined by the intersection of 

the cylinder and the two planes.  A differential volume is also shown. 

 

 The unit vectors in cylindrical coordinates depicted in Figure 1-8b are 

normal to the intersection of three surfaces as shown in Figure 1-11. Two of the 

surfaces depicted in this figure are planes and the third surface is a cylinder that 

is centered on the z axis. A point in cylindrical coordinates is specified by the 
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intersection of the two planes and the cylinder. The unit vectors ur, uφ, and uz 

are perpendicular to the two planes and to the cylinder. 

 In cylindrical coordinates, the following rules apply to the unit vectors since 

this is a “right-handed system.” 

                                                  







=×
=×
=×

φ

φ

φ

uuu
uuu
uuu

rz

rz

zr

 
(1.19) 

The vector A from the origin of the coordinate system to the point determined by 

the intersection of the two planes and the cylinder is given by 

                                    A = r ur + φ uφ + z uz (1.20) 

 In cylindrical coordinates, the differential length dl, the differential surface 

area ds, and the differential volume dv are respectively written as 

                                    dl = dr ur + r dφ uφ + dz uz (1.21) 

                              ds = r dφ dz ur + dr dz uφ + r dr dφ uz (1.22) 

                                                        dv = r dr dφ dz (1.23) 

 A vector in cylindrical coordinates can be transformed to a vector in 

Cartesian coordinates or vice versa. The vector A = Ax ux + Ay uy + Az uz is in 

Cartesian acoordinates and the same vector A = Ar ur + Aφ uφ + Az uz is in 

cylindrical coordinates. The unknown quantities in this transformation are the 

coefficients associated with each of the unit vectors and the relationship between 

these unit vectors.  
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Figure 1-12MATLAB.  The transformation of a vector A = 3 ux + 2 uy + 4 uz in 

Cartesian coordinates into a vector into a vector in cylindrical coordinates.  The 

unit vectors of the two coordinate systems are indicated. 

 

 The transformation between the two coordinate systems is found by taking 

the scalar product of the unit vector in the cylindrical coordinate system with the 

vector in the Cartesian coordinate system and correctly interpreting the scalar 
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products of the unit vectors. We should immediately note that the Az terms are 

the same in either coordinate system. We write  

   Ax = A • ux 

                                                                = Ar ur • ux + Aφ uφ • ux 

From Figure 1-12, we note that 

                                              ur • ux  = cos φ 

  φ−=





 φ+=•ϕ  sin

2
π cosxuu  

Therefore   

                                        Ax = Ar cos φ - Aφ sin φ (1.24) 

Similarly 

                                                         Ay = A • uy 

                                                                = Ar ur • uy + Aφ uφ • uy 

where 

                                                       ur • uy = φ=





 φ−
π  sin
2

 cos  

                                       uϕ • uy = cos φ 

Hence 

                                                   Ay = Ar sin φ + Aφ cos φ (1.25) 

  In Figure 1-12 the vector A was assumed to be a constant. In reality, it 

may also be a function of the independent variables. These variables must also 

be transformed. From cylindrical to Cartesian coordinates, we write 
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φ=
φ=

zz
 sin ry
 cos rx

 
(1.26) 

 The inverse transformation from Cartesian to cylindrical coordinates is 

given by 

                                                            










=







=φ

+=
−

zz
x
ytan

yxr
1

22 

 
(1.27) 

 There are commands in MATLAB that will effect this transformation 

between cylindrical and Cartesian coordinates.  In addition, the command 

‘cylinder’ that includes additional parameters will create a picture of a cylinder. 

 

  1.2.3. Spherical coordinates 

 The unit vectors in spherical coordinates depicted in Figure 1-8c are 

normal to the intersection of three surfaces as shown in Figure 1-13. One of the 

surfaces depicted in this figure is a plane, another surface is a sphere and the 

third surface is a cone. The latter two surfaces are centered on the z axis. A point 

in spherical coordinates is specified by the intersection of the three surfaces. The 

unit vectors uρ, uθ, and uφ are perpendicular to the sphere, the cone, and the 

plane. 

 In spherical coordinates, the following rules apply to the unit vectors since 

this is a right-handed system. 
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  uρ x uθ = uφ 

   uθ x uφ = uρ (1.28) 

  uφ x uρ = uθ   

y

θz

φ
x

 

 

 

Figure 1-13MATLAB. Spherical coordinates. The point is defined by the intersection 

of a sphere whose radius is ρ, a plane that makes an angle φ with respect to the 

x axis, and a cone that makes an angle θ with respect to the z axis.  A differential 

volume is also shown. 

dρ 
ρ sin θ dφ 

ρ dθ 

ρ  
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 The vector A from the origin of the coordinate system to the point 

determined by the intersection of the sphere whose radius is ρ, the plane that 

makes an angle φ with respect to the x axis, and the cone that makes an angle θ 

with respect to the z axis.  The radial variable has a different letter in spherical 

coordinates than it had in cylindrical coordinates in order to avoid confusion.   

                                   A = Aρ uρ + Aθ uθ + Aφ uφ   (1.29) 

 The differential length dl, the differential surface area ds, and differential 

volume dv are respectively written as 

                              dl = dρ uρ + ρ sin θ dθ uθ  + ρ dφ uφ  (1.30) 

           ds = ρ2 sin θ dθ dφ uρ + ρ sin θ dρ dφ uθ + ρ dρ dθ uφ (1.31) 

                                           dv = ρ2 sin θ dρ dθ dφ (1.32) 

A convenient point to check at this point is the dimensions of these three 

expressions. In SI units, both the length ρ and the differential length dρ have 

units of meters. Hence the dimensions of dl are in meters, ds are in (meters)2, 

and dv are in (meters)3. 

Example 1-8. Show that a vector given in spherical coordinates can be ex-

pressed in Cartesian coordinates. 

Answer: The vector A = Ax ux + Ay uy + Az uz in Cartesian coordinates and A = 

Aρ uρ + Aθ uθ+ Aφ uφ  in spherical coordinates. The transformation between the 

two coordinate systems is found by taking the scalar product of the unit vector in 

the new coordinate system with the vector in the other coordinate system and 

correctly interpreting the scalar products of the unit vectors 
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                                                          Ax = A • ux 

                                                                = Aρ uρ • ux  + Aθ uθ • ux + Aφ uφ • ux 

From the figure, we note that 
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In a similar fashion, we write 
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 The transformations of the variables from Cartesian to spherical 

coordinates yields  
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22
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222

 (1.33) 

The transformation on the variables from spherical to Cartesian coordinates is 

  








θρ=
φθρ=
φθρ=

 cos z
 sin  sin y
 cos  sin x

 (1.34) 

 A summary of the unit vectors, the differential lengths, the differential 

surfaces, and the differential volumes for the three coordinate systems is given in 

Table 1-1 (see also Appendix A.1.4). 
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Coordinate system Cartesian

(x, y, z) 

Cylindrical

(r, φ, z) 

Spherical 

(ρ, θ, φ) 

Unit vectors ux uy uz ur uφ uz uρ uθ uφ  

Differential length dl dx ux 

dy uy 

dz uz 

dr ur 

r dφ uφ  

dz uz 

dρ uρ 

ρ sin θ dθ uθ 

ρ dφ uφ 

Differential surface area ds dy dz ux 

dx dz uy 

dx dy uz 

r dφ dz ur 

dr dz uφ 

r dr dφ uz  

ρ2 sin θ dθ dφ uρ 

ρ sin θ dρ dφ uθ 

ρ dρ dθ uφ 

Differential volume dv dx dy dz r dr dφ dz ρ2 sin θ dρ dθ dφ 

Table 1-1. Three orthogonal coordinate systems. 

 

 A summary of the transformations of the variables between coordinate 

systems is given in Table 1-2.  In addition, the MATLAB commands that will 

perform these operations are also presented.  Appendix 1 provides a summary of 

the vector operations which will be defined later in these three coordinate 

systems. 

 The simple vector mathematics of addition and subtraction in Cartesian 

coordinates that was described previously requires a little more care in the other 

coordinate systems. All of the vectors must be defined with reference to the 

same point. 
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  Cartesian to cylindrical MATLAB command 

22 yxr +=  





=φ −

x
ytan 1  

z = z [phi, r, z] = 

cart2pol(x,  y,  z) 

  Cartesian to spherical 

222 zyx ++=ρ  





=φ −

x
ytan 1  













 +
=θ −

z
yx

tan
22

1
[phi, psi, rho] = 

cart2sph(x,  y,  z) 

note θ−
π

=ψ
2

 

  Cylindrical to Cartesian 

x = r cos φ y = r sin φ z = z [x, y, z] = 

pol2cart(phi,  r,  z) 

  Spherical to Cartesian 

x = ρ sin θ cos φ y = ρ sin θ sin φ z = ρ cos θ [x,      y,       z]     =  

sph2cart(phi,psi, rho) 

note θ−
π

=ψ
2

 

Table 1-2. Summary of the transformation between coordinate systems. 
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  1-3. Integral relations for vectors 

 We will find that certain integrals involving vector quantities will be 

important in describing the material that is to be presented later in this text. 

These integrals will be useful initially in deriving vector operations and later in 

gaining an understanding of electromagnetic fields. For simplicity, the derivations 

will be presented in Cartesian coordinates. The fact that a field could depend 

upon its local position should not be too surprising to the reader since you may 

have noted the effects of a change in the gravitational field while watching the 

astronauts walking into a satellite when it is on the ground and then floating 

within the satellite as it soars above the earth. 

 The integrals on which we will focus are listed in Table 1-3. 

Line integral of a vector field F along a prescribed path from the 

location a to the location b. 
∫ •

b

a
dlF  

Surface integral of a vector field F through a surface ∆s. ∫∆ •
s

dsF

Volume integral of a density ρv over the volume ∆v. ∫∆ ρ
v vdv  

 

Table 1-3. Integrals of vector fields and densities. 
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  1.3.1. Line integral 

 The first integral that will be examined is a line integral. One possible 

application of this integral would be to compute the work ∆W that would be 

required to push the cart with a force F from point a to the point b along a pre-

scribed path as shown in Figure 1-14. This path could be dictated by metallic 

rails underneath the cart. The line integral is written as 

 

a

b

F

dl
 

Figure 1-14. The motion of the cart is constrained to move along the prescribed 

path from points a to b. 

 

                                             ∫ •
b

a
dlF    (1.35) 

The differential length element dl can be written in the three orthogonal 

coordinate systems and these were included in Table 1-1. The limits a and b will 

determine the sign of the integration, ie + or -. This integral states that no work 

will be expended in moving the cart if the direction of the force that is applied to 

the object is perpendicular to the path of the motion.  If we were to push the cart 

completely around the path so it returned to the original point, we would call this 

a closed line integral and indicate it with a circle at the center of the integral sign 

as in (1.36) 
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                                                       ∫ • dlF   (1.36)
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Figure 1-15. Two of the many possible paths that the line integral could be 

evaluated.  

 

 To illustrate this point, let us calculate the work required to move the cart 

along the path 1 indicated in Figure 1-15 against a force field F where 

  F = 3xy ux + 4xy uy. (1.37) 

In this example, we are be able to specify a numerical value for one of the 

variables along each segment of the total path since each path is chosen to be 

parallel to an axis of the Cartesian coordinate system. This is not always possible 

and one of the variables may have to be specified in terms of the other variable 

or these dependent variables may be a function of another independent 

parameter, for example time. In this example, the work is found using thise line 
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integral. This integral will consist of two terms since the path of integration is 

initially parallel to the x axis and then parallel to the y axis. In the first term, the 

incremental change in y is zero, hence dy = 0 and the differential length becomes 

dl = dx ux. Similarly, dl = dy uy in the second integration since dx = 0. Therefore, 

we write 

  ∫ •=∆
2) (4, 

1) (1,
dlFW  

  ∫∫ •++•+=
==

4

1 4x

4

1 1y
dy)xy4xy3(dx)xy4xy3(  

        
2

93
2
y16

2
x3

2

1

24

1

2

=+=                                   (1.38) 

 We could return from point b back to point a along the same path that we 

followed earlier or along a different path - say path 2 in Figure 1-15. We calculate 

the work along this new path.  The differential length dl remains the same even 

though there is a change of direction in the integration.  The limits of the 

integration will specify the final sign that will be encountered from the integration. 

  ∫ •=∆
1) 1, ( 

2) (4,
dlFW  

  ∫∫ •++•+=
==

1

2 1x

1

4 2y
dy)xy4xy3(dx)xy4xy3(  

  
2

102
2
y4

2
x6

1

2

21

4

2

−=+=  (1.39) 

 The total work that is required to move the cart completely around this 

closed path is not equal to zero!  A closed path is defined as any path that 

returns us to the original point.  In Figure 1-15, the cart could have been pushed 

completely around the loop.  There may or may not be something enclosed 
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within the closed path.  In order to emphasize this point, think of walking 

completely around the perimeter of a green on a golf course.  This would be an 

example of a closed path.  The entity that would be enclosed within this path and 

rising above the ground would be the flag.  If the closed line integral over all 

possible paths were equal to zero, then the vector F would belong to a class of 

fields that are called conservative fields.1  The example that we have just 

encountered would correspond to the class of nonconservative fields and in our 

method of exercise on the golf course, the flag would be flying. Both conservative 

and nonconservative fields will be encountered in electromagnetic fields.  

 As Electrical and Computer Engineers, you have already encountered this 

integral in the first course in electrical circuits without knowing it.  If we sum up 

the voltage drops around a closed loop, we find that they are equal to zero.  This 

is, of course, just one of Kirchhoff's laws.  For the cases that we have 

encountered in that early circuit's course, this would be an example of a 

conservative field. 

Example 1-9.  Calculate the work ∆W required to move the cart along the closed 

path if the force field is F = 3 ux + 4 uy. 

Answer. The closed line integral is given by the sum of four integrals. 

( ) ( )

( ) ( )∫∫

∫∫∫

•++•++

•++•+=•=∆

)1,1(

)2,1(

)2,1(

)2,4(

)2,4(

)1,4(

)1,4(

)1,1(

 dy43 dx43                                  

 dy43 dx43W

yyxxyx

yyxxyx

uu u uu u 

uu u uu u F

 

                  = [3 (3)] + [4 (1)] + [3 (-3)] + [4 (-1)] = 0 

                                                 
1 The field F = 3ux + 4uy is a conservative field as will be demonstrated. 
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In this case, the force field F is a conservative field. 

 

Example 1-10. Calculate the work ∆W required to move the cart along the 

circular path from point A to point B if the force field is F = 3xy ux + 4x uy. 

  

 

5 

0 
0 5

x

y 

A

B 

 

Answer: The integral can be performed in Cartesian coordinates or in cylindrical 

coordinates.  In Cartesian coordinates, we write 

  F • dl = (3xy ux + 4x uy) • (dx ux + dy uy) 

                                         = 3xy dx + 4x dy  

The equation of a circle is x2 + y2 = 42.  Hence 

 ∫∫∫ −+−=•
4

0

20

4

2B

A
dyy164dxx16x3ldF  

 
( ) π+−=














+−+−−= 1664

4
ysin 8y16

2
y 4x16

4

0

1 -2
0

4

2
32

 

In cylindrical coordinates, we write 
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  F • dl = 3xy ux + 4x uy  • dr ur + r dϕ uϕ + dz uz  

Since the integral is to be performed along the indicated path where only the 

angle φ is changing, we have dr = 0 and dz = 0. Also r = 4. Therefore 

  F • dl = (3xy ux + 4x uy) • (4 dφ uφ) 

From Table 1-2, we write the scalar products as 

  ux • uφ = - sin φ and uy • uφ = cos φ 

The integral becomes 

  [ ]∫∫
π

φφ−φφ−=• 2

0

22B

A
dcoscos sin64ldF  

  π+−=






 φ
−

φ
−−=

π

1664
4
2sin

23
sin364

2

0

3

 
 

The results of the two calculations are identical as should be expected. 

   

  1.3.2. Surface integral 

 Another integral that will be encountered in the study of electromagnetic 

fields is the surface integral which is written as  

  ∫∆ •
s

dsF  (1.40) 

where F is the vector field and ds is the differential surface arrea.  The differential 

surface areas for the three cooordinate systems are given in Table 1-1. This is 

shown in Figure 1-16 for an arbitrary surface. The vector F at this stage could 

represent a fluid flow. The loop, in some sense, monitors the flow of the field. 

 The differential surface element is a vector since a direction is associated 

with it. The vector direction of ds is in the direction normal to the surface and it is 
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directed in the outward direction.  For a closed surface, this direction is taken to 

be in the obvious direction.  However, for a non-closed surface such as a plane 

or our golfing green, this direction has to be specified by the user since there is 

no obvious outward direction. Using the “right hand rule” convention, it is taken to 

be in the direction of the thumb if the fingers of the right hand follow the perimeter 

of the surface in a counterclockwise sense.  A person standing above the green 

would observe a different direction than an individual buried beneath it.   

 

 

 

 

 

 

 

Figure 1-16. A surface integral for an arbitrary surface. At the particular location 

of the loop, the component of A that is tangent to the loop does not pass through 

the loop. The scalar product A • ds eliminates this contribution.  

 

 The surface integral allows us to ascertain the amount of the vector field A 

that is passing through a surface element ∆S which has a differential surface 

element ds. This vector field is frequently called a flux. A vector A that is directed 

in a direction such that it is confined to the surface will have the scalar product A 

• ds = 0, i. e. the vector A does not pass through surface.  

ds 
A 
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 If we integrated the vector field over the entire closed surface, the notation 

                                                           ∫ •dsA     (1.41) 

would be employed. As we will see later, this closed surface integral can be 

either: greater than 0, equal to 0, or less than 0 depending on what is inside the 

closed volume. The limits of the integration would be defined by the edges of the 

surface area.  

  

 

ds

ds 

ds 

ds 

ds 

ds 

 

Figure 1-17. There are six differential surface vectors associated with a cube. 

The vectors are directed outwards. 

 

 For the cubical surface shown in Figure 1-17, there are six vectors ds 

associated with the six differential surfaces. The vectors  

  ds = dx dy uz and ds = dx dy (-uz)  
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for the two surfaces that are perpendicular to the z axis and are opposite from 

each other have the vector directions also in the opposite directions. The other 

four surfaces are similarly defined. 

Example 1-11MATLAB. Assume that a vector field A = ρρ2
oA  exists in a region 

surrounding the origin of a spherical coordinate system. Find the value of the 

closed surface integral ∫ •dsA .  

Answer: The closed surface integral is given by 

  ( )∫∫∫
π=θ

=θ ρ

π=φ

=φ
π=φθθρ•








ρ

=•
0 o

2
2
o2

0
A4 d d  sin A uudsA ρ  

In this integral, we have used the differential surface area in spherical 
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coordinates that has a unit vector uρ. If the vector A had any additional 

components directed in the uθ or uφ directions, their contribution to this surface 

integral would be zero since the scalar product of these terms will be equal to 

zero. The MATLAB command ‘sphere’ is used to produce the plot. 

 

  1.3.3. Volume integral 

 Finally, we will encounter various volume integrals of scalar quantities, 

such as a volume charge density ρv. A typical integration would involve the 

computation of the total charge or mass in a volume if the volume charge or 

mass density were known. It is written as 

                                                           ∫∆ ρ=
v vdvQ  (1.42)

 
 

The differential volumes for the three cooordinate systems are given in Table1-1.  

This will be demonstrated with an example.  

Example 1-12. Find the volume of a cylinder that has a radius a and a length L. 

 

 

 

 

 

Answer: The volume of a cylinder is calculated to be 

  Ladz d rdrdvv 2a  r

0 r

2

0

Lz

0zv
π=φ==∆ ∫∫∫∫

=

=

π=φ

=φ

=

=∆
.  

a

L
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  1.4. Differential relations for vectors 

 In addition to the integral relations for vectors, there are also differential 

operations that will be frequently encountered in our journey through 

electromagnetic theory.  Each of these differential operators can be interpreted in 

terms of understandable physical phenomena.  We will derive these vector 

operations in Cartesian coordinates.  In addition, the operations in cylindrical and 

spherical coordinates will be included.  The three vector operations are given in 

Table 1-4.  

gradient of a scalar field ∇a 

divergence of a vector field ∇ • A 

curl of a vector field ∇ x A 

Table 1-4.  The three vector operations. 

 

  1.4.1. Gradient 

 It is possible to methodically measure scalar quantities such as a 

temperature at various locations in space. From this data, it is possible to 

connect the locations where the temperatures are the same. These 

equitemperature contours, when placed on a graph in a two dimensional plot are 

useful in interpreting various effects.  This could include the magnitude and the 

direction where the most rapid changes occur or ascertaining the direction and 

the amount of heat that will flow.  This would also be useful in planning a skiing 

or sunbathing vacation. The gradient of the scalar quantity which in this case is 
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the temperature allows us compute the magnitude and the required direction that 

we should follow in order to find the maximum spatial rate of change of the scalar 

quantity in order to attain the desired conditions. 

 In Figure 1-18, we sketch two equipotential surfaces in space, the 

potential of one surface is arbitrarily chosen to have the value V and the potential 

of the other surface is V + ∆V. Point 1 is located on the first surface. The unit 

vector un that is normal to this surface at P1 intersects the second surface at 

point P2. The magnitude of the distance between these two points is ∆n.  Point 

P3 is another point on the second surface and the vector distance between P1 

and P3 is ∆l. The unit vector from P1 to P3 is ul.  The angle between the two 

vectors is ζ. The distance ∆l is greater than ∆n.  Therefore, 

  
l
V

n
V

∆
∆

≥
∆
∆ . 

This allows us to define two differential operations.
 

 The gradient is defined as the vector that represents both the magnitude 

and the direction of the maximum spatial rate of increase of a scalar function. It 

depends upon the position where the gradient is to be evaluated and it may have 

different magnitudes and directions at different locations in space.  In Figure 1-

18, we write the gradient as 

  nn uu
dn
dV

n
VV Vgrad →
∆
∆

=∇≡  (1.43) 

In writing (1.43), we have used the common notation of replacing grad with ∇.   

In addition, we have assumed that the separation distance between the two 

surfaces is small and let ∆n → dn which is indicative of a derivative.  
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Figure 1-18.  Equipotential surfaces in space. 

 

 The directional derivative is defined as a derivative in a particular 

direction. From Figure 1-18, this will be in the ul direction and we write 

  ll uu
dl
dV

l
V

→
∆
∆  

where we have again let ∆l → dl. Using the chain rule, we find that 

  lln uuu •∇=•=ς== V
dn
dV  cos

dn
dV

dl
dn

dn
dV

dl
dV  (1.44) 

We realize that the directional derivative in the ul direction is the projection of the 

gradient in that particular direction.  Equation (1.44) can be written as 

  dV = ∇V • dl ul = ∇V • dl (1.45) 

 The gradient of the scalar function a(x, y, z) in Cartesian coordinates is  

  zyx uuu
z
a

y
a

x
aa

∂
∂

+
∂
∂

+
∂
∂

=∇  (1.46) 

The gradient of the scalar function a(r, φ, z) in cylindrical coordinates is 

V 

V + ∆V 

P1 

P2 

P3 
un 

ul 

ζ 
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  zr uuu
z
aa

r
1

r
aa

∂
∂

+
φ∂
∂

+
∂
∂

=∇ φ  (1.47) 

The gradient of the scalar function a(ρ, θ, φ ) in spherical coordinates is 

  φθρ φ∂
∂

θρ
+

θ∂
∂

ρ
+

ρ∂
∂

=∇ uuu a
 sin 

1a1aa  (1.48) 

 MATLAB also provides the capability of performing the gradient operation.  

In order to use this command, we must first calculate the contours that connect 

the points that have the same elevation.  After this calculation, the gradient 

operation can then be performed. 

Example 1-13MATLAB. Assume that there exists a surface that can be modeled 

with the equation ( )22 yxez +−=   Calculate ∇z at the point (x = 0, y = 0).  In 

addition, use MATLAB to illustrate the profile and to calculate and plot this field. 

Answer: ∇z = - 2x ( )22 yxe +−  ux - 2y ( )22 yxe +−  uy.   At the point (x = 0, y = 0), ∇z = 0. 

Using MATLAB, the function is illustrated in (a).  The contours with the same 

value are connected together and the resulting field is indicated in (b).  The length 

of the vectors and their orientation clearly indicate the distribution of the field in 

space.  The commands ‘contour’ and ‘quiver’ have been employed in this 

calculation in order to create the figure.  You should be aware that the accuracy of 

the calculation and the resulting figures are under the complete control of user. 
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(a)

(b)

 

 

 

  1.4.2. Divergence 

 The second vector derivative that should be reviewed is the divergence 

operation. The divergence operator is useful in determining if there is a source or 

a sink at a certain location in space in a region where a vector field exists. For 

electromagnetic fields, these sources and sinks will turn out to be positive and 

negative charges. This region could also be situated in a river where water would 
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be flowing as shown in Figure 1-19. This could be a very porous box that 

contained either a drain or faucet that was connected with an invisible hose to 

the shore where the fluid could either be absorbed or from which it could be 

extracted. 

 The divergence of a vector that applies at a point is defined from the 

expression 

  
v0v

lim
 div

∆

•

→∆
=•∇≡ ∫ dsA

A A  (1.49) 

The symbol ∫ •dsA  indicates an integral over the entire closed surface that 

encloses the volume ∆v. The point where the divergence is evaluated is within 

the volume ∆v and the surface for the closed surface integral is the surface that 

surrounds this volume. As we will see, the application of the "∇ •" notation where 

∇ is the del operator will help us in remembering the terms that will actually 

appear in the operation.  

 

 

 

 

 

 

 

 

Figure 1-19. Schematic of a source or a sink in a region where a fluid is flowing. 

fluid out 

∆x

∆y

∆z 

fluid in 
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 Let us evaluate this surface integral over two of the six surfaces in full 

detail. If we can do this, then the integrations over the remaining surfaces are 

straightforward and need not be repeated. To evaluate the surface integrals at 

2
xx ∆

±  which have an approximate surface area of (∆y ∆z), we choose a point 

that is at the center of the volume and expand the x component of the vector A = 

Ax ux about this point using a Taylor series. The Taylor series is an infinite series 

that allows us to approximate a function at an arbitrary point if the function and its 

 derivatives are known at a certain point ξo. It is defined as 

  ( ) ( ) ( ) ( ) ( ) ( ) •••+ξ−ξ
ξ∂
ξ∂

+ξ−ξ
ξ∂
ξ∂

+ξ=ξ
ξξ

2
o2

2

oo

oo

f
2
1fff  (1.50) 

where the function f(ξ) is expanded about the point ξ = ξo. In our application of 

the Taylor series, we will keep only the first two terms since the terms containing 

(ξ - ξo) to higher powers will be very small and can be neglected. Also, the 

function f(ξ) will be sufficiently smooth so the higher order derivatives will not 

blow up at any point of interest to us. 

 

 

 

 

 

 

Figure 1-20. Two surfaces that are located at x and at x + ∆x. 

x + ∆x 

∆s = ∆y ∆z ux ∆s = - ∆y ∆z ux 

x 

A 
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 Hence, we will just evaluate the integrals over these two surfaces. One 

surface is to the right of the point of interest and the other is to the left. Only the x 

component of the vector A will pass-through both surfaces.  Since the volume is 

assumed to be very small, Ax can be assumed to be approximately constant 

when evaluated on either of these two surfaces. The surface integrals will just 

yield factors of (∆y ∆z). Note that the outward normal vector ds must be 

employed for both surfaces and this will introduce an additional minus sign in the 

unit vector directed toward decreasing values of the coordinate x. See Figure  

1-20. 

 The surface integral becomes 

  

( ) ( ) ( ) ( )

( ) ( ) ( )

( )zyx 
x

A

zyAzy
x

AxA

zyAzyAA

x

x
x

x

xxxxxx

∆∆∆







∂
∂

=









∆∆−•+∆∆•















∂
∂

∆+≈

∆∆−•−∆∆•≈•
∆+∫

xxxx

xxxxx

uuuu

uuuudsu

 (1.51) 

If the values of Ax that are evaluated at the two surfaces are equal in the limit of 

∆x → 0, the differential term will be equal to zero since there is no change in the 

slope of the function Ax. This states that fluid that flows into one of the surfaces 

flows out of the other surface and none is lost nor created in the intermediate 

region. 

 The divergence of the x component of the vector A is evaluated from the 

definition (1.49) to be 
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  ( )
( )

( ) x
A

zyx

zyx 
x

A

0v
lim

A x

x

x ∂
∂

→
∆∆∆

∆∆∆







∂
∂

→∆
=•∇ xu  (1.52) 

where the volume of the small cube ∆V = ∆x∆y∆z. This procedure can be re-

peated for the other two components by summing up the contributions from the 

remaining four surfaces of the cube. Adding them up, we obtain  

  
z

A
y

A
x

A zyx

∂
∂

+
∂

∂
+

∂
∂

=•∇ A  (1.53) 

In writing (1.52), we note that the terms for the divergence of A in Cartesian 

coordinates can be remembered by thinking of the ∇ operator as a vector and 

taking the scalar product of this "vector" with the vector A. The resulting vector 

operation is analogous to a scalar product in that a scalar quantity ensues. The 

term “∇ •” is, however, an operator and not a vector: ∇•≠•∇ AA !  

Example 1-14. Find the divergence of the vector A where the vector is the radius 

vector r or 

  A = x ux + y uy + z uz 

Answer: Using (1.53), we write 

  ∇ • A = 1 + 1 + 1 = 3 . 

 

 We have found the divergence of a vector and we can suggest a physical 

interpretation of it.  If the divergence of a vector A is equal to zero, then there are 

no sources to create the vector A nor sinks to absorb the vector A at that location 

since the Taylor series expanded terms that were evaluated at the opposite 

surfaces would be the same and would therefore cancel. If the divergence of a 



Differential relations for vectors 

61 

vector is equal to zero, then everything that enters the volume will leave the 

volume unscathed. If there were either a source or a sink at that point, then the 

divergence would be non-zero and the convention that would be followed is that 

a source will have a positive divergence and a sink will have a negative 

divergence. In the context of electromagnetic theory, this will determine whether 

positive or negative electric charges exist within a volume and the fact that 

magnetic charges or magnetic monopoles do not exist in nature.  

 We derived the divergence in Cartesian coordinates. The extension to 

cylindrical and spherical coordinates follows immediately.  In the cylindrical 

coordinates, we write 

  ( )
z

AA
r
1

r
rA

r
1 zr

∂
∂

+
φ∂

∂
+

∂
∂

=•∇ φA  (1.54) 

In spherical coordinates, we write 

  
( ) ( )

φ∂

∂

θρ
+

θ∂
θ∂

θρ
+

ρ∂

ρ∂

ρ
=•∇ φθρ A

 sin 
1 sin A

 sin 
1A1 2

2A  (1.55) 

Example 1-15MATLAB.  Find divergence of the 2-D vector field ( ) rA
2/re α−= , where 

YX uur yx += and 222 yxr += by application of the MATLAB ‘divergence’ function 

( const=α ). 

Answer: The plot of the 2-D vector field by the ‘quiver’ function is presented in 

figure (a), while the contours of the scalar divergence field A•∇=D are 

presented in figure (b). 
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 From the definition of the divergence (1.49), we can also find a useful 

relation between a volume integral of the divergence of a vector and the integral 

of the vector field integrated over the closed surface enclosing the volume ∆v. 

This can be obtained from the following "hand-waving" argument. From (1.49), 

we write that 

  ( ) ( )∫∫ ∆
•∇≈∆•∇≈•

v
dvv AA dsA  (1.56) 

In passing from the second term that appears in the definition of the divergence 

to the integral in the third term, we have let the volume ∆v be so small that the 
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volume integral of the divergence of the vector is approximately equal to the 

product of the volume and this divergence operation.  

 Equating the two terms involving the integrals and replacing the 

approximately equal symbol with the equal sign, we obtain the divergence 

(Gauss’s) theorem  

  ( )∫∫ ∆
•∇=•

v
dvAdsA  (1.57) 

This theorem will be very useful in later derivations of electromagnetic fields as it 

allows us to easily move between a volume integral and a closed surface integral 

in which the surface encloses the volume ∆v. It is also known as Gauss's 

theorem. 

Example 1-16.  Evaluate the divergence theorem for a vector A = x ux within a 

unit cube centered about the origin. 

 

 

 

 

 

 

 

 

Answer: The volume integral is given by 
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The closed surface integral consists of two terms that are evaluated at x = -1/2 

and at x = +1/2. We write 

( ) ( ) 1dy  dzxdy  dzx     2
1z

2
1z 2

1x
2

1y

2
1y

2
1z

2
1z 2

1x
2

1y

2
1y

=∫ •




∫+∫ −•





∫=

∫ •

=

−= +=

=

−=

=

−= −=

=

−= xx uu

dsA
 

 

  1.4.3. Curl 

 The curl is a vector operation that can be used to state whether there is a 

rotation associated with a vector field. This is most easily visualized by consider-

ing the experiment of inserting a small paddle wheel in a flowing river as shown 

in Figure 1-21. If the paddle wheel is inserted in the center of the river, it will not 

rotate since the velocity of the water a small distance on either side of the center 

will be the same. However, if the paddle wheel were situated near the edge of 

the river, it would rotate since the velocity just at the edge will be less than in a 

region further from the edge. Note that the rotation will be in the opposite direc-

tions at the two edges of the river. The curl vector operation determines both the 

sense and the magnitude of the rotation. In German, this vector is given the 

name "rotation" that is abbreviated as rot (pronounced "rote"). 
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Figure 1-21. The paddle wheels inserted in a river will rotate if they are near the 

edges since the river velocity just at the edge is zero. The wheel at the center of 

the river will not rotate. 

 

 The curl of one component of a vector is defined from 

  
s0s

lim
 curl

∆

•

→∆
≡×∇= ∫ dlAu

A A n  (1.58) 

where we have incorporated the ∇ notation. Note also that we have incorporated 

the notation "x" in the curl operation. This should remind us that the curl has a 

sense of rotation associated with it if we think of ∇ as a vector. In order to find the 

terms that will be used for the curl A, we should examine Figure 1-22. 

 In order to calculate the uz component of curl A, we have to first evaluate 

the line integral 

  ∫∫∫∫∫ •+•+•+•=•
1

4

4

3

3

2

2

1
dlAdlAdlAdlAdlA  (1.59)  
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Figure 1-22. Orientation of the loop required to find the uz component of curl A 

at the point (x, y). 

 

The right-hand convention will be followed for the curl operation in that a 

counterclockwise rotation determines the +uz component. A clockwise path 

would yield a -uz contribution. Let us make the assumption that the square is 

sufficiently small such that the vector field A is approximately constant along 

each segment of the square. With this assumption, we can factor these terms out 

of the integrals. Hence, the closed line integral becomes approximately 

  

( ) ( )

( ) ( ) ∫∫

∫∫∫

•+•∆++

•∆++•≈•

1

4

4

3

3

2

y,xyy,x                  

y,xxy,x

dlAdlA

dlAdlAdlA
2

1

 (1.60) 

The integrals are equal to the vector distances that specify the square 

  ∫∫∫∫ =∆−=∆−=∆=∆
1

4

4

3

3

2
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1
dlydlxdlydlx     and   ;    ;    ;  (1.61) 
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 If ∆x and ∆y are sufficiently small, we can expand a function that is to be 

evaluated on the lines, at the point (x, y) using a two dimensional generalization 

of the Taylor series that was defined in (1.50). Keeping only the lowest order 

terms, we obtain 

  ( ) ( ) ( )
•••+∆

∂
∂

+∆
∂

∂
+≈ y

y
y,xfx

x
)y,x(fy,xfy,xf

oooo y,xy,x
oo  (1.62) 

Applying this to each term in (1.59), we obtain  
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 (1.63) 

The area of the square is ∆x ∆y. Using the definition given in (1.58), we have 

found the component of curl A that is oriented in the uz direction. This can be 

extended to three dimensions. If we collect all of the terms for all three coordi-

nates in Cartesian coordinates, the general expression for the curl A results. As 

with the vector product, we can easily remember the terms from the determinant. 

  

zyx AAA
zyx

 curl
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∂
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=

zyx uuu

A              

We derived the curl in Cartesian coordinates. The extension to cylindrical and 

spherical coordinates follows.  In cylindrical coordinates, we write  
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In spherical coordinates, we write 
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∂
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∂
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=
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  sin  

 sin 
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A  (1.66) 

Example 1-18MATLAB. Find curl of the 2-D vector field ( ) rωA ×= α− 2/re , where 

YX uur yx += , 222 yxr += and Zuω ω= by application of the ‘curl’ function. 

Answer: The curl operator here produces a vector C with only z-component 

ZuC ZC= . The plot of the 2-D vector field by the ‘quiver’ function is presented in 

figure (a), while the contours of the z-component ZC  of the vector curl field 

AC ×∇= are presented in figure (b). 
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 From the definition of the curl of a vector given in (1.58), we can obtain 

Stokes' theorem  that relates a closed line integral to a surface integral. Following 

the same “hand waving” procedure that we used to derive the divergence theo-

rem, we write 

  ( ) ∫∫ ∆
•×∇≈∆×∇≈•

s
dsAA dlA s  (1.67) 

This is finally written with the same caveats that we employed previously as 

  ∫∫ ∆
•×∇=•

s
dsAdlA  (1.68) 

This is called Stokes’s theorem. 
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In this case, the closed line integral is along the perimeter of the surface over 

which the surface integral is performed. Recall that in the right-hand convention 

that we are employing, the fingers of the right hand follow the path of the line 

integral dl and the thumb points in the direction of the vector surface element ds. 

Example 1-19. Given a vector field A = xy ux - 2x uy, verify Stokes's theorem 

over one-quarter of a circle whose radius is 3. 

   

 

 

 

 

 

Answer: We must first calculate ∇ x A and the surface integral.  
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The surface integral becomes 
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  ∫
=

=
−

3y
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2 dyy92  

requires the substitution y = 3 sin ϕ and the identity ( )ϕ+=ϕ 2 cos1
2
1cos2  to 

transform it to the integral  

  ( )∫
π

ϕϕ+2

0
d2 cos19  

which can be evaluated.  Therefore, we obtain 
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The closed line integral will involve three terms and using the right-hand con-

vention for the integration sequence, we write 

  ∫∫∫∫
==

==

==

==
•+•+•=•

0y,0x

3y,0x y

0y,3x

0y,0x
dydx uAdlAuAdlA

arcx  

The two integrals that are along the two axes will contribute zero to the closed 

integral since the vector A = 0 on the axis. The remaining integral becomes 
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 As we should expect, the two answers are the same. 
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1.4.4. Repeated vector operations 

 Having defined the vector operations of the gradient, the divergence and 

the curl; we may be curious about a repeated vector operation such as the di-

vergence of the curl of a vector. There are several methods of approaching this 

topic. A straight forward rigorous approach would be to mechanically perform the 

vector operations and find the answer. This approach is left for the problems. A 

second approach that will be followed here is based on intuitive arguments. 

Hopefully the meaning of the various vector operations will become more clear 

as the discussion is presented. 

 The three vector operations that will be examined are: 

  ∇ • ∇ x A = 0 (1.69) 

  ∇ x ∇a = 0 (1.70)  

  ∇ • ∇a = ∇2a (1.71) 

Other vector identities exist and a list of useful vector identities are also included 

in Appendix 1. 

 The first equation (1.69) can be interpreted in the following terms. The curl 

operation gives the magnitude and the sense of the rotation  of a vector that 

remains within a prescribed region. The quantity that this vector represents 

neither enters nor leaves the region. The divergence operation monitors the entry 

or departure of a vector field from a region due to a local source or sink within it. 

Therefore a vector A that has a nonzero curl just rotates and does not enter nor 

leave the region. One could think of a boat in a rotating whirlpool that cannot be 

paddled away from its impending doom as an example of this identity.     
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 The second equation (1.70) is understood from the following argument. 

The gradient of a scalar function expresses the direction and the magnitude that 

an inertialess ball would take as it rolls down a mountain along the path of least 

resistance. This path would not be expected to close upon itself. The curl, how-

ever, would require that the ball return to the same point on the mountain to in-

dicate rotation. This point could be back at, say back at the top. This would be af-

ter it had begun its meander down the mountain under its own volition. Hence we 

can conclude that (1.70) is correct since it could not return unless there were 

some new laws of nature such as anti-gravitational forces. 

 The third equation (1.71) is a definition of the Laplacian operation. It states 

that there is a vector field ∇a where a is some scalar quantity. The divergence of 

this vector field will determine whether a source or a sink exists at that point. In 

Cartesian coordinates, the Laplacian operator is written as 

  2
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2

2

2
2

z
a

y
a

x
aa

∂
∂

+
∂
∂

+
∂
∂

=∇  (1.72) 

As will be seen later, this operation will be important for finding the potential 

distribution caused by a charge distribution.  

 In cylindrical coordinates, the Laplacian operator is 
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In spherical coordinates, the Laplacian operator is 
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  1-5. Phasors 

 We frequently encounter a time-harmonic signal that represents a real 

physical quantity, say a voltage in a circuit, that varies sinusoidally in time.  This 

can be expressed as 

                                                          v (t) = V0 cos (ωt + φ)  (1.75) 

In (1.75), Vo is the amplitude of the signal, ω is the angular frequency  [ω = 2πf 

where f is the frequency in Hertz], and φ is the phase  of the signal. This is shown 

in Figure 1-23. 

 An alternative method of expressing (1.75) is to write it as 

                                                             v (t) = Re [V ejωt] (1.76) 

where Re [ ] implies that we are to take the real part of the terms that are con-

fined within the braces [ ] and 1j −= .  For (1.76) to represent (1.75), this 

implies that  

                                                              V = V0 e
jφ  (1.77) 

   

Figure 1-23. A time-harmonic signal v(t). 
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 This entity V contains that contains information concerning both the 

amplitude and the relative phase of the signal and it is given the acronym phasor. 

The phasor is independent of time although it may depend on a spatial variable r. 

In using phasor notation, we frequently omit the symbol Re [ ejωt ] for simplicity. 

 The time derivative and time integral of the signal v(t) are written as 

            
Re[

dt
dv

= V ]e tjω and 



ω

=∫ j
1Revdt' V tje ω






 (1.78) 

This follows from the operations on the equation (1.75) 

  ( ) [ ]tj
oo ejRe

2 
t cos V tsin V

dt
dv ωω=






 π

+φ+ωω=φ+ωω−= V
 (1.79) 

  
( ) 








ω

=





 π

φ+ω
ω

=φ+ω
ω

= ω∫ tj
oo e

j
1Re

2 
-tcos V1t sin V1vdt' V

 (1.80)
  

 Certain rules apply in the application of phasors. Phasor quantities can be 

added or subtracted only if they have the same frequency. The use of phasor 

notation implies signals with the same frequency. The product of two signals, say  

  [A cos (ωt)] x [B cos (ωt + φ)],   

cannot be represented in phasor notation since it is nonlinear. A "trig identity" for 

this product leads to two signals, one with a frequency 2ω, and one with zero 

frequency. For the linear world, phasors are a panacea. 

Example 1-19. Express v (t) = 10 cos (120πt + 60o) V in phasor notation.  

Answer: This is written as 

  V = 10 ej (π/3) = 5 + j8.7 volts 
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Example 1-20MATLAB. Express v (t) = 3 cos ωt - 4 sin ωt as A cos (ωt + φ). Use 

phasor notation. Plot the function. 

Answer: Let us use cos ωt as the reference and add the two phasors. 

  3 cos ωt ⇒ 3 

  4je4
2 

-t cos 4 - t sin 4 2j
=−⇒






 π
ω=ω−

π−  

 

Therefore, we write 

  V  = ( ) o1
53 j3

4tanj e5e54j3 ==+
−

. 

The real part of the product of this phasor and ejωt yields 

  ( )( ) ( )o53 tj 53 t cos 55e Ret sin 4 -t cos 3
o

+ω==ωω +ω  

The plot of the time-harmonic function is shown below. 
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Example 1-21. Express the loop equation for an RLC equation in phasor nota-

tion. The applied voltage is v (t) = V cos ωt and the loop equation is 

  v'idt
C
1Ri

dt
diL =++ ∫  
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v 

 

Answer:  The current i is written as 

  i (t) = I cos (ωt + φ) 

since we have chosen the cosine as the reference. Hence the differential equa-

tion is written as 

 ( ) ( ) ( ) t cos V t sin 
C
1 t cos Rt sin L- I ω=



 φ+ω

ω
+φ+ω+φ+ωω  

Mathematical manipulations beyond this point that would be required in order to 

determine I and φ are tedious at best and difficult at worst. 

 In phasor notation, we write 

  v (t) = V cos ωt = Re [Vej0 ejωt] = Re [V ejωt] 

and 

  i (t) = Re [Iejφ ejωt] = Re [I ejωt] 

The terms V and I are phasors.  They contain both the amplitude and the phase 

information that has been isolated from the time dependence t. The derivative 

term and the integral term that appear in the loop equation are replaced with the 

terms from (1.78).  The loop equation in phasor notation is 
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ω
−ω+

C
1LjR  I = V

 

The time factor ejωt, which is common to all terms in the equation, has been can-

celed. This algebraic equation can easily be solved for the phasor current I in 

terms of the phasor voltage V. The expression in the brackets is called the 

“impedance” Z. The current i is obtained by multiplying I by ejωt and taking the 

real part of the product. 

 

 



Conclusion 

80 

  1.6. Conclusion 

 The electromagnetic fields that will be described in the rest of this book 

will make use of MATLAB, vectors, and the various integral and differential 

operations that have been given in this chapter. In addition, the two theorems 

that allowed us to convert a surface integral into a closed line integral (Stokes's 

theorem) or a volume integral into a closed surface integral (divergence theorem) 

will be very important in gaining an appreciation of these fields. They will also be 

employed in later derivations to actually develop the basic laws of electro-

magnetic theory from the equations that arise from experimental observations. 

We have initially interpreted several applications of vectors using fluids. This was 

done since most of us have gone to the beach at one time or have seen 

mechanical systems. At this stage, electric and magnetic fields may seem rather 

opaque. 
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  1.7. Problems 

1. Find the vector that connects the two 

opposite corners of a cube whose volume is 

a3. One corner of the cube is located at the 

center of a Cartesian coordinate system. 

Write this vector also in terms of the 

magnitude times a unit vector. 

   

 

a 

x 

y 

z 

A 

B 
 

2. Find the vector B from the origin to the opposite corner that lies in the xy 

plane. 

3MATLAB. Given two vectors A = 3ux + 4uy + 5uz and B = -5ux + 4uy - 3uz, find C 

= A + B and D = A - B.  In addition, carefully illustrate these vectors using 

MATLAB. 

4MATLAB. Using the vectors defined in 3, evaluate A • B and A x B.  Check your 

answer with MATLAB. 

5MATLAB. Given two vectors A = ux + uy + uz and B = 2ux + 4uy + 6uz, find  

C = A + B and D = A - B.  In addition, carefully illustrate these vectors using 

MATLAB. 

6MATLAB. Using the vectors defined in 5, evaluate A • B and B x A.  Check your 

answer with MATLAB. 

7MATLAB. Using MATLAB, write a program to convert degrees C to degrees F. Plot 

the results. 
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8MATLAB. Using MATLAB, write a program to convert a yard stick to a meter stick. 

Plot the results. 

9MATLAB. Using MATLAB, plot y = e-x on a linear and a semilog graph. 

10MATLAB. Using MATLAB, plot two cycles of y = cos(x) on a linear and a polar 

graph. 

11MATLAB. Using MATLAB, carefully plot a vector field defined by A = y2ux - xuy 

in the region - 2 < x < + 2, - 2 < y < + 2.  The length of the vectors in the field 

should be proportional to the field at that point. Find the magnitude of this vector 

at the point (3, 2). 

12MATLAB. Using MATLAB, carefully plot a vector field defined by in the  

A = sin x ux – sin y uy in the region 0 < x < π, 0 < y < π.  The length of the 

vectors in the field should be proportional to the field at that point. Find the 

magnitude of this vector at the point (
2
π ,

2
π ). 

13MATLAB. Find the scalar product of the two vectors defined by  

A = 3ux + 4uy + 5uz and B = -5ux + 4uy - 3uz. Determine the angle between 

these two vectors.  Check your answer using MATLAB. 

14MATLAB.  Find the scalar product of the two vectors defined by  

A = ux + uy + uz and B = 2ux + 4uy + 6uz. Determine the angle between these 

two vectors.  Check your answer using MATLAB. 

15MATLAB. Find the projecthetion of a vector from the origin to a point defined at 

(1,2,3) on the vector from the origin to a point defined at (2,1,6). Find the angle 

between these two vectors.  Check your answer using MATLAB.  
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16MATLAB. Find the vector product of the two vectors defined by  

A = 3ux + 4uy + 5uz and B = -5ux + 4uy - 3uz.  Check your answer using 

MATLAB. 

17MATLAB.  Find the vector product of the two vectors defined by  

A = ux + uy + uz and B = 2ux + 4uy + 6uz.  Check your answer using MATLAB. 

18MATLAB. Express the vector field A = 3ux + 4uy + 5uz in cylindrical coordinates.  

Check your answer using MATLAB. 

19MATLAB. Express the vector B = 3ur + 4uφ + 5uz that is in cylindrical coordinates 

into Cartesian coordinates.  Check your answer using MATLAB. 

20MATLAB. Express the vector field A = 3ux + 4uy + 5uz in spherical coordinates.  

Check your answer using MATLAB. 

21MATLAB. Express the vector B = 3uρ + 4uθ + 5uφ   that is in spherical coordinates 

into Cartesian coordinates.  Check your answer using MATLAB. 

22MATLAB. For the vectors A = ux + uy + uz, B = 2ux + 2uy + 2uz, and  

C = 3ux +3uy + 3uz; show that A x (B x C) = B(A • C) - C(A • B).  Check your 

answer using MATLAB. 

23MATLAB. For the vectors A = ux + 3uy + 5uz, B = 2ux + 4uy + 6uz, and  

C = 3ux +4uy + 5uz; show that A x (B x C) = B(A • C) - C(A • B).  Check your 

answer using MATLAB. 
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24MATLAB. Find the area of the parallelogram 

using vector notation. Compare your result 

with that found graphically. 

       

25MATLAB. Show that we can use the vector definitions A • B = 0 and A x B = 0 to 

express that two vectors are perpendicular and parallel to each other 

respectively. 

26MATLAB. Let A = -2ux + 3uy + 4uz; B = 7ux + 1uy + 2uz; and  

C = -1ux + 2uy + 4uz.  Find (a) A x B. (b) (A x B) • C. (c) A • (B x C). 

  
27. Calculate the work required to 

move a mass m against a force field  

F = 5ux + 7uy along the indicated  

direct path from point a to point b. 
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y
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28. Calculate the work required 

to move a mass m against a 

force field F = yux + xuy along 

the path abc and along the path 

adc. Is this field conservative? 
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10 
x
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29. Calculate the work required to 

move a mass m against a force field 

F = rur  + rφuφ along the path abc. 

 
             

 y

x 
-2      0     +2 

a b c

 

30. Calculate the work required to 

move a mass m against a force field  

F = rφuφ if the radius of the circle is a 

and 0 ≤ φ ≤ 2π. 

 
            

 

  

31. Calculate the closed surface  

integral ∫ • dsA  if A = xux + yuy and 

the surface is the surface of a cube. 

Then apply divergence theorem to 

solve the same integral. 

 
    

 

x

y

z

2 

 

32. Evaluate the closed surface integral of the vector  

A = xyz ux + xyz uy + xyz uz over the cubical surface shown in Problem 31. 

33 Evaluate the closed surface integral of the vector A = 3 uρ over the spherical 

surface that has a radius a. 
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34. Find the surface area of a cylindri-

cal surface by setting up and evaluat-

ing the integral dsA •∫  where 

zr uuA 21 += . 

         

 

L 

a

 

 

 

35. A hill can be modeled with the equation H = 10 - x2 - 3y2 where H is the 

elevation of the hill. Find the path that a frictionless ball would take in order that it 

experienced the greatest change of elevation in the shortest change of horizontal 

position. Assume that the motion of the ball is unconstrained. 

36. Find the gradient of the function H = x2yz and also the directional derivative 

of H specified by the unit vector u = a (ux + uy + uz) where a is a constant at the 

point (1, 2, 3).  State the value for the constant a. 

37. By direct differentiation show that 







ρ

−∇=







ρ

∇
1'1  where 

  ( ) ( ) ( )222 'zz'yy'xx −+−+−=ρ  

and ∇' denotes differentiation with respect to the variables x', y', and z'. 

38. Calculate the divergence of the vector  

  A = x3y sin (πz) ux + xy sin (πz) uy + x2y2z2 uz  

at the point (1,1,1). 
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39. Show that the divergence theorem is valid 

for a cube located at the center of a Cartesian 

coordinate system for a vector 

A = xux  + 2uy. 

 

        

 

x

y

z 

2a 

 

40. Show that the divergence theorem is valid for a sphere of radius a located at 

the center of a coordinate system for a vector A = ρ uρ . 

41. The water that flows in a channel with sides at x = 0 and x = a has a velocity 

distribution  yuv  z 
2
ax

2
a z) (x, 2

22


















 −−






= . The bottom of the river is at z = 

0. A small paddle wheel with its axis parallel to the z axis is inserted into the 

channel and is free to rotate. Find the relative rates of rotation at the points 

  





 ==






 ==






 == 1z,

4
a3x and , 1z,

2
ax , 1z,

4
ax . 

Will the paddle wheel rotate if its axis is parallel to the x axis or the y axis?  



Problems 1 

88 

 

0
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42. Evaluate the line integral of the vector 

function A = x ux + x2y uy + xyz uz around 

the square contour C. Integrate ∇ x A over 

the surface bounded by C. Show that this 

example satisfies Stokes's theorem. 

 

 

x

y

z

1

1

 

 

43. Show that ∇ x A = 0 if ruA  
r
1






= in cylindrical coordinates. 

44. Show that ∇ x A = 0 if A = ρ2 uρ in spherical coordinates. 

45. In rectangular coordinates, verify that ∇ • ∇ x A = 0 where  

  A = x2y2z2 [ux + uy + uz]  

by carrying out the detailed differentiations. 

46. In rectangular coordinates, verify that ∇ x ∇a = 0 where                    
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  a = 3x2y + 4z2x 

by carrying out the detailed differentiations. 

47. In rectangular coordinates, verify that ∇ x (aA) = (∇a) x A + a∇ x A where  

A = xyz [ux + uy + uz]  and a = 3xy + 4zx by carrying out the detailed 

differentiations. 

48. In rectangular coordinates, verify that ∇ • (aA) = A • ∇a + a∇ • A where  

A = xyz [ux + uy + uz]  and a = 3xy + 4zx by carrying out the detailed 

differentiations. 

49. By direct differentiation, show that 012 =







ρ

∇  at all points where ρ ≠ 0 

where ( ) ( ) ( )222 'zz'yy'xx −+−+−=ρ . 

50. Express the signal v (t) = 100 cos (120 π t - 45o) in phasor notation. 

51. Given a phasor V = 10 + j 5. Find the sinusoidal signal this represents if the 

frequency = 60 Hz. 

52. Find the phasor notation of v (t) = cos [120 πt - 60o] - sin [120 πt]. 

53MATLAB. Find and plot the current i(t) in the 

circuit if v(t) = 10 cos (120 πt). 
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54MATLAB. Repeat problem 53 with v(t) = 10 cos (120 πt + 45o).  

 



Electric field 

2. Static electric and magnetic fields
 The important properties of time independent static electric and magnetic 

fields will be reviewed in this chapter. This will include a review of the force 

between two stationary charges, the concept of an electric field, the electric 

energy, and several procedures that are used to calculate the electric field.  It will 

also include a review of the magnetic effects that will be encountered If the 

charge is in motion with a constant velocity that can be described as being a 

current. A magnetic field will follow from this current and there will be a magnetic 

force between two current elements.  Several procedures to calculate the 

magnetic field will be described.  Various electrical circuit elements will be 

defined at this stage. In addition, the effects that are introduced due to the 

inclusion of various materials into the space will be summarized.  Finally, the 

boundary conditions that one encounters when different materials are in 

juxtaposition will be described.  This will be important in relating the electric and 

magnetic fields in one material to those in the other material. 

  

  2.1. Coulomb's law 

 The phenomenon that is the basis for the study of static electromagnetic 

fields has been known since ancient times. As early as 600 BC, Thales of Miletus 

is given credit for being the first to note that the rubbing of amber against a cloth 

caused the amber rod to attract light objects to itself. The use of amber by this 

ancient Greek experimenter has had a dramatic influence on the discipline that 

we now call Electrical Engineering 1 and on the subject of electromagnetic fields. 

Indeed, these ancient observers have given us a word that is still in everyday use 

- the Greek word for amber is élektron. Materials other than amber also exhibit 

                                            
1 This discipline is frequently called "Electrical and Computer Engineering." 
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this process of electrification and we today can observe the same effect when we 

rub a glass rod on a silk cloth or take off a wool sweater too quickly. Both the rod 

and the cloth will attract small pieces of "fluff and stuff".  

 A new entity in nature that we will call a charge has been uncovered in 

these experiments. It is as fundamental a quantity as those that we have already 

encountered: mass, length, and time. The charge can be either positive or 

negative. We will reserve the symbols Q, M, L, and T for the quantities charge, 

mass, length, and time respectively. We will call these “fundamental units” in this 

book.  This nomenclature will be useful in “checking the dimensions” of an 

equation that we may have derived. We cannot claim that a lengthy derivation is 

correct if we end up with “apples” on one side of the equality sign and “oranges” 

on the other side. 

 As we pass through middle of the eighteenth century, we find the names 

of many who have contributed to our understanding of this physical 

phenomenon: Benjamin Franklin, Joseph Priestley, Michael Faraday, Henry 

Cavendish, and Augustine Coulomb. Who has not heard the story of Franklin 

flying his kite in a thunderstorm? Through a series of experiments, they 

uncovered the fact that there would be a force of attraction for unlike charges and 

a force of repulsion for like charges. This force is somewhat similar to the force of 

gravity. Both forces have the same geometrical dependence on the separation 

distance ρ between the two objects. Both forces also depend on the product of 

the magnitudes of the charges Qj or of the masses mj. After much 

experimentation, they concluded that the magnitude of this electrical force could 

be written as 

  2
21

R
QQF∝  (2.1) 
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 An ancient experimental system is depicted in Figure 2-1. A charge is 

induced on the glass rod by rubbing it on a cloth and touching it simultaneously 

to the two pith balls.  In part (a), the "electrified" glass rod is just used to transfer 

the electrical charge to two stationary pith balls that are initially touching. The 

sign of the charge deposited on each ball is the same and it was found that both 

balls experienced a force that caused the balls to separate.  Let us assume that 

the experimenter performing the experiment shown in Figure 2-1 could 

accurately measure the following quantities. 

 a) The magnitude and the sign of the charges. 

 b) The magnitude and the vector direction of the force 

 c) The distance between the two pith balls.  

 d) The masses of the two pith balls.  

It was found in this experiment that the magnitude of a charge was an integer 

multiple of the magnitude of the charge of an electron.  If charges with different 

signs had been individually placed on these two balls, the balls would not 

separate but would be attracted to each other.  

 From the experimental results, this force that we will call an “electrostatic 

force” or a “Coulomb force” can be written in MKS or SI units as   

 

    R2
o

21

R4
QQ uF

πε
=   (N)  (2.2) 

The unit of force is measured in terms of Newtons (N), the unit of charge is mea-

sured in terms of Coulombs (C) and the distance between the charges is mea-

sured in terms of meters (m). The charge of an electron is  

                                                 Qe ≈ -1.602 x 10-19 C (2.3) 

and the charge of a singly charged proton is  

                                                Qp ≈ +1.602 x 10-19 C.  (2.4) 
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There are both positive and negative charges that exist in nature. All of the 

charges have values that are integer multiples of these values.  

 In a series of reports to the French Academy of Science from 1785 to 

1791, Charles-Augustin de Coulomb described the results of a series of 

experiments involving a carefully constructed torsion balance and which he 

verified the equation of the electrostatic force (2.2).  He also performed a series 

of experiments using small magnets and verified that the magnetic force between 

like and unlike magnetic poles would be either repulsive or attractive with the 

same geometrical dependence.  

 

 b 

L 

 

 

 

 

 

 

 

 
(a) (b)  

Figure 2-1. An experiment designed to demonstrate the electrostatic force.  

(a) Two uncharged pith balls are hanging from a vertical rod. The length of the 

string is L.  The only force is in the vertical direction and it is due to gravity. 

(b) The pith balls repel each other due to the Coulomb force in the horizontal 

direction to a distance b after the same charge is distributed on each ball.  
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 One Coulomb of charge is a very large amount of charge. For example, if 

we were to collect all the charge that is created by a single lightning stroke, we 

would only collect a total of approximately 10 to 20 Coulombs. Considering the 

violent nature of such a stroke, this does not appear to be a very big number. 

There are, however, a very large number N of charged particles in a lightning 

stroke. For example, we compute 

  particles 106
10602.1

10N 19
19 ×≈

×
=

−
 (2.5) 

 The constant  in equation (2.2) is called the permittivity of free space. In 

SI units, it has the numerical value  

0ε

  
m
F

meter
farads  10

36
110854.8 912

o ≡×
π

≈×=ε −−  (2.6) 

The approximate number 910
36

1 −×
π

 is a convenient number to remember 

although it is not the exact number. With this approximate number, we frequently 

will be able to obtain a numerical result without having to resort to a calculator in 

a computation. As we will see later when we discuss electromagnetic waves, this 

approximate number is useful and will yield the well known numerical value of  

3 x 108 for the velocity of light instead of the more accurate value that is slightly 

less than this.  

 We now call equation (2.2): Coulomb's law. At this time, we can still ex-

perience the phenomenon of electrification every day when we stroll across a 

shag rug and receive a shock upon touching someone else or if we comb our 

hair and later pick up pieces of paper with the comb. But don't attempt to stand 

outside in a lightning storm! If you did this latter experiment, you might find that 

your hair would "stand on its end" due to your body conducting like charge from 

the ground to the tips of the strands of your hair. The charge in one strand would 

repel the charge in an adjacent strand causing the wild effects suggested in this 

expression. 
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Example 2-1. Using Coulomb’s law, determine the fundamental units of the 

permittivity of free space. 

Answer:  The force equals the mass x acceleration or 2T
LM . Therefore, we write 

from Coulomb’s law (2.2) that the units of εo can be obtained 

  3

22

o
o

2

2

2R2
o

21

ML
TQ1

L
Q

T
LM

R4
QQ

=ε⇒
ε

=⇒
πε

= uF   

Remember, 4 and π are just numbers that do not have any units associated with 

them. The unit vector is also dimensionless. 

 
 The vector direction of the force acting on charge 1 due to a charge 2 is 

directed along the line between the two charges. We indicate this direction with 

the unit vector uR. The direction of the Coulomb force is either to cause the two 

charges to attract each other or to repel each other. Attraction or repulsion 

depends on the relative signs of the two charges. Two charges that have the 

same sign, either positive or negative, will repel each other. Two charges that 

have the opposite signs will attract each other. In the experimental system 

depicted in Figure 2-1, the charge with the same sign that was originally on the 

rod would be subsequently transferred to both pith balls. Therefore, the two balls 

will repel each other. 

 The Coulomb force equation is fundamental in the explanation of elec-

tromagnetic fields. It contains the new physical quantity - the charge - that makes 

electromagnetic theory unique. Charges that are in motion create currents that, in 

turn, create magnetic fields. The theory of relativity allows us to derive other laws 

of electromagnetic theory from the Coulomb force equation. Hence, this one 

simple equation will bear much fruit in our later discussion.  Rather than invoke 
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such an esoteric subject as relativity and considerable mathematical chicanery, 

we will examine these topics and follow in the footsteps of the giants who have 

walked ahead of us and who will guide us through the dark forest of seemingly 

unrelated experimental observations. 

Example 2-2. Find the magnitude of the Coulomb force that exists between an 

electron and a proton in a hydrogen atom. Compare the Coulomb force and the 

gravitational force between the two particles. The two particles are separated ap-

proximately by 1 Ångstrom = 1Å = 1 x 10-10 meters. 

Answer: The magnitude of the Coulomb force is computed from (2.2) 

  ( )
( )
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The gravitational constant κ = 6.67 x 10- 11    
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  = 1.02 x 10- 47   N. 

The ratio of the two forces is 

  39
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×=  . 
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  2.2. Electric field 

 When we step on the scale to determine our weight, we do not carry out a 

detailed calculation involving the mass of the Earth, our mass, and the distance 

between the center of the Earth and our center of mass.  We just assume that 

there is a gravitational field where we are standing and have the scale calibrated 

to indicate the multiplication of our mass times the gravitational field.  The 

gravitational field is a vector quantity that is pointing toward the center of the 

Earth.  We also encounter the same phenomenon with electric fields that will be 

described below. 

 The electric field E caused by a charge Q is a vector quantity that has the 

definition 

  





≡
C
N     

q
FE   (2.7) 

where F is the Coulomb force between the two charges Q and q. The standard 

symbol for the electric field is E.  Since we’re looking at static electric fields that 

did not depend upon time, this electric field is frequently called an electrostatic 

field.  The electric field in this region due to the charge Q is therefore written as 

  R2
oR4

Q uE
πε

=    (2.8) 

We will see later that the units for the electric field are also (volts / meter)=(V/m).   

 

 

 

 

 

 

Figure 2-2. Electric fields: (a) emanate from a positive charge. (b) terminate on a 

negative charge.  

(a) (b)

+ - 



Electric field 

99 

 Electric fields from a positive and a negative charge are depicted in Figure 

2-2. We note that the direction of the electric field depends on the sign of the 

charge. Gravitational fields only cause two masses to be attracted to each other. 

In analogy with the relation between the gravitational field and the gravitational 

force, we can find the force on a charged particle that is brought into a region 

containing an electric field E by just multiplying the electric field by the charge q, 

that is F = qE. This will be a particularly useful concept when we study the 

ballistic motion of charged particles in a region containing an electric field, say in 

a cathode ray tube.  Knowing the spatial distribution of the electric field in a 

particular region will have important practical consequences. 

 It is worth pointing out a conceptual point at this stage. We might be in-

clined to compare equations (2.2) and (2.8) and suggest that the electric field 

could be defined in terms of a derivative.  We remember the definition of the 

derivative to be  

   ( ) ( )
q

qqq
0q

lim
dq
d

∆
−∆+

→∆
≡⇒

FFFE    (2.9)                  

where the definition of the derivative is also explicitly stated in (2.9). The opera-

tion of performing a differentiation certainly appears to give the correct 

mathematical result. However, this differentiation will not be correct since the 

smallest charge that has been observed in nature is that of an electron or a 

singly charged proton whose charge has a magnitude of 1.602 x 10-19 C. The 

limiting procedure that is required in the definition of the derivative cannot be 

performed since the charge does not continuously and smoothly approach the 

value of zero.  This is because charges have a charge that is an integer multiple 

of the value of the electron or the proton. Quantum electrodynamics has 

suggested that entities with a charge magnitude that is equal to (1/3) of this value 
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exist but the mathematical limiting procedure in the derivative still fails. We must 

use the definition 
q
FE ≡  for the electric field. 

Example 2-3. Calculate the electric field at a distance of 1 µm (1 µm = 10-6 m). 

from a singly ionized proton. Calculate the Coulomb force on a second electron 

at this location. 

Answer: From (2.8), we compute the electric field to be 

  
( )

RR
269

19

R2
o

 1440
1010

36
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10602.1
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Q uuuE =






 ×

π
π

×
=

πε
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−−

−

   

The Coulomb force is  

  F = qE = (1.602 x 10-19) x (1440) uR = 2.3 x 10-16 uR   

Note that we have employed the approximate value for the permittivity of free 

space. 
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  2.3. Superposition principles 

 If we had more than one charge and each charge were at a different lo-

cation in a vacuum, the total electric field in the space external to the location of 

these charges would be the vector summation of the electric field originating from 

each individual charge.  The vacuum is a linear media.  In fact, a vacuum has the 

greatest number of linear properties that can be found in any media. The 

introduction of an additional material into the vacuum may cause the region to 

become nonlinear.  The principles of superposition apply in a vacuum.  The only 

caveat that we will encounter will be that we must be careful to apply vector 

superposition principles and just not scalar superposition principles.  Both the 

magnitude and the direction of the individual electric fields from each charge 

must be included in the addition. For N separate charges in the region of interest, 

this vector summation can be written as 

    ∑
=

=⋅⋅⋅+++=
N

n 1
 n321 EEEEE     (2.10) 

 The electric field created by each individual charge add them up as 

vectors and this is illustrated in Figure 2-3 for the particular case of two charges 

Q1 and Q2.  Remember that we have to include the correct sign of the charge in 

the vector addition operation. For the case depicted in Figure 2-3, the total 

electric field ET is calculated from the vector summation of the two individual 

components. Both charges are assumed to be positive, therefore the electric 

fields will be directed away from the charges. The total electric field intensity is 

given by 

  
2R2

2o

2
R2

1o

1
1 R4

Q
R4

Q uuEEE
12T πε

+
πε

=+=     (2.11) 

where 
jRu  indicates the unit vector associated with each individual charge Qj to 

the point where the electric field is to be computed. The distance between the 
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charge and this point is given by Rj. This vector addition is best illustrated with 

two examples. 

 

 

 

 

 

 

 

Figure 2-3. The total electric field is the vector sum of individual components.                             

 

Example 2-4. Two charges Q1 = +4C and Q2 = -2C are located at the points 

indicated on the graph. The units of the graph are in meters. Find the electric 

field at the origin (0, 0) of the coordinate system.  

 

 

 

 

 

  

 

Answer: The electric field E is computed from (2.11) 
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The vector direction of the electric field is directed from the charge #1 to the 

charge #2 at the origin.  Using the numerical values specified for the charges and 

the distances as determined from the graph, we write 

y

x 
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Note that the electric fields from the two charges add up at the origin. 

 

Example 2-5. Three charges Q1 = + 1 C, Q2 = + 2 C, and Q3 = 3 C are placed 

at the indicated points on the graph. Find the electric field at the point P. 

 

 

 

 

 

 

 

 

Answer: The electric field at the point P is computed from a linear superposition 

on the individual electric field components due to the individual charges.  We 

write 
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The further evaluation of this electric field is straightforward. 
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 Up to this point, our discussion of electrostatic fields has assumed that it 

was possible to calculate the electric field by merely summing the vector 

contributions from each individual charge.  In theory, this is the correct procedure 

that should always be followed. However, in many cases that one encounters in 

practice, we would quickly run out of steam in following such a procedure when 

describing realistic situations where the number of charged particles in a 

confined volume may be of the order of a power of ten, say fifteen or twenty. 

Numerical tools would soon be required to perform this summation. 

 If we can make certain assumptions concerning the distribution of the 

charges in a region and realize that an integration of the distributed charges over 

the region follows directly from a summation if we let a certain parameter become 

extremely small, then it is possible to obtain analytical solutions for a particular 

problem.  We will include some of these solutions in the following discussion. 

 The assumption that we will employ is that if a total charge ∆Q is dis-

tributed within a volume ∆v and we take the limit as this volume ∆v → 0, then we 

can define a volume charge density  ρ
v
 as 

  







∆
∆

=ρ 3v m
C   

v
Q   (2.12) 

This charge density may be inhomogeneous such that it depends on the local 

position r, and we write this charge density as ρv = ρv(r).  There may also be a 

uniform volume charge distribution. 

 If the charge is distributed on a surface whose area is ∆s and it is 

independent of the distance normal to the surface, then we can define this as a 

surface charge density  ρs as  

  







∆
∆

=ρ 2s m
C   

s
Q   (2.13) 

We take the limit of ∆s → 0.  This surface charge density could depend on its 

location on the surface r and we write ρs = ρs(r). It could also be uniformly 
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distributed on the surface and the charge distribution would be a constant in this 

case.   

 The charge could also be distributed along a line whose length is ∆L. The 

charge would have a uniform distribution in the two transverse coordinates of the 

line. This would yield a linear charge density  ρL where 

  







∆
∆

=ρ
m
C   

L
Q

L   (2.14) 

We again take the limit of ∆L → 0.  Once again, the charge could be distributed 

nonuniformly or uniformly along the line.   

 We will find it advantageous to use all three definitions in later derivations. 

We will later encounter "infinite sheets" or "infinite lines" that have charge 

densities given by (2.13) and (2.14). This merely implies that an infinite amount 

of charge is distributed over these infinite surfaces or lines but the ratios given in 

these two equations (2.13) and (2.14) are finite. 

 

 

 

 

 

Figure 2-4. Distributed charge densities: a) The charge is distributed in a volume 

∆v creating a volume charge density ρv, b) The charge is distributed on a surface 

∆s creating a surface charge density ρs, c) The charge is distributed along a line 

∆L creating a linear charge density ρL. 

  

 If we want to calculate the electric field that is created by either of the dis-

tributed charge density distributions, we will make use of the principle of 

superposition that was stated in equation (2.10) and shown in Figure 2-5. A quick 

(a) (b) (c)
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glimpse at Figure 2-5 should convince us that numerical techniques may have to 

be employed for most charge distributions in order to calculate the electric field. 

Fortunately for us, there are a few examples that can be treated analytically and 

some of them will appear in this text. 

 

 

 

 

 

 

 

 

Figure 2-5. In order to calculate the electric field at the point P, the differential 

electric fields ∆Ej caused by the charges in the differential volumes ∆vj are added 

together vectorially. 

 

 If we let the differential volumes ∆vj become very small and the number of 

the small volumes to become very large, then the summation of the distinct 

electric fields caused by the discrete charges within these volumes will eventually 

cause the summation to become an integral that must be performed over the 

entire volume v where the distributed charge density is located.  This integration 

is written as 

  ∫=
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uE 24
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  (2.15) 

 Equation (2.15) implies that there exists a differential electric field that is 

directed radially from each of the differential charges that is enclosed within each 

of the differential volumes.  The total electric field that will emanate from the 
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entire volume v is calculated by integrating the charge density over the entire 

volume.  Each of the incremental electric fields will have their individual unit 

vectors and the integration must incorporate this fact. 

        If we are given a particular charged object and wish to analytically 

calculate the electric field caused by it, the first thing that we must do is to select 

the proper coordinate system in which the integration must be performed. This 

choice is usually predicated on any possible symmetry that can be found in the 

problem. For example, if the charged body were a sphere that was centered on 

the origin of a coordinate system, we should attempt the solution in spherical 

coordinates. If the charged body were a long cylindrical rod that was centered at 

the origin, we should use cylindrical coordinates.  

 The variables that appear in this integral are defined as follows. The vari-

able R is the distance between the point of observation and the location of a 

particular charge element ρv(r')dv that is within the volume of integration v. In 

Cartesian coordinates, we write 

  ( ) 222 )'()'(' zzyyxxR −+−+−=   (2.16) 

where x', y', and z' specify the location of the differential charge element and x, y, 

and z specify the location where the electric field is to be determined at the point 

P. The unit vector uR is directed from this charge element to the point P. The unit 

vector uR will change as the integration is performed.  This will be noted when ac-

tually performing the integration. In this general equation (2.15), we have to be 

careful since vectors are present and we would have to perform the integration 

separately over the three components in the differential volume dv.  

 In order to illustrate the procedure involved in setting up the integral and 

identifying each term in the integral, we calculate the electric field from a finite 

amount of charge that is uniformly distributed on a finite line.  The linear charge 

density on this line will be ρL.  This linear charge density is depicted in Figure 2-6.  
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From this figure, we find that the unit vector from a differential charge that is 

localized on a section of the line whose length is dz to the point of observation is 

given by 

  
22

z

rz

rz

+

+−
= r

R
uuu   (2.17) 

The variation of the unit vector upon the variable z alluded to earlier is clearly 

displayed in (2.17).  In the calculation, we will assume that there is symmetry in 

that the point of observation is taken to be at the midpoint of the line.  Therefore, 

for every charge segment at a distance +z, there will be an equivalent charge 

element located at -z. This is an example of symmetry and it is shown in Figure 

2-6. Because of this symmetry, the components of the electric fields polarized  in 

the ±z directions will cancel (∆Ez+ = ∆Ez-). If the line of charge were infinite in 

length, the center of symmetry could be placed anywhere along the line. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-6. Calculating the electric field from a uniformly distributed finite line of 

charge.  The radial axis is at the center of the charged line. Because of this 

symmetry, the tangential components ∆Ez of the electric field cancel. 
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The term polarization means that the field is directed in that particular direction. 

Therefore, the radial component of the electric field is given in terms of the dif-

ferential electric field dE by 

  
22r

zr
rdE

R
r dE   cos dEdE

+
==θ=   (2.18) 

where the magnitude of differential electric field dE is calculated from the charge 

that is contained in the length dz.  This charge is equal to ρL dz.  Therefore, 

(2.15) becomes 
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=   (2.19) 

The total radial electric field is given by the summation of all of the infinitesimal 

components dEr since this is a linear media and superposition applies. This 

summation becomes an integration of the linear charge density over the length of 

the line and it can be performed analytically. 
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This integral can be performed with the substitution of z = r tan θ or by using an 

integral table. As the length of the line is made extremely long (2a→∞), the 

electric field decreases as this distance increases. 
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Example 2-6. Calculate the electric field from an infinite charged plane.  Assume 

that the plane consists of an infinite number of parallel charged lines as shown in 

the figure. 
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Answer: It is possible to consider the infinite plane as a parallel array of 

juxtaposed infinite charged lines. Hence, we can use (2.21) as our point of 

embarkation, where the distance 22 yxR += . The linear charge density ρL of a 

particular line whose width is dy is just equal to ρL = ρs dx. Due to symmetry, the 

components of the electric field that are tangent to the plane will cancel. 

Therefore, we need only find the component of the electric field that is normal to 

the plane 
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We find that the electric field is independent of the distance that it is above the 

infinite charged sheet.  An alternative integration could be performed by 

assuming that the differential surface areas are concentric circular washers. 

  

 Due to the symmetry found in these two examples, we have been able to 

obtain analytical solutions for the electric field from two different charge configu-

rations using the integral given in (2.15). We already know the electric field due 
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to a point charge in (2.8). The field varies respectively in distance from the 

charge region as R
-2

, R
-1 and being independent of R for the electric field from a 

point charge, an infinite line charge and an infinite surface charge. We would 

expect a difference since the infinite line charge and the infinite surface charge 

each contain an increasing order of infinity more charge than the point charge. 

The assumption of symmetry has made these two examples problems that 

can easily be solved.  There are, however, many more examples in which one 

cannot invoke these arguments of symmetry.  The resulting integration may have 

to be performed numerically and we’ll discuss this topic with reference to 

MATLAB later after we encounter the subject of the electric potential.  This will 

permit us to neglect any vector notation and this will simplify our discussion of 

that topic.  In the material that immediately follows, we’ll continue to make the 

symmetry assumption. 

 
 



Gauss's law 

112 

  2.4. Gauss's law 

 
There are cases where it is possible to find the electric field directly 

without the integrals that were described previously.  The only requirement that 

we will encounter is that there is sufficient symmetry inherent in the problem.  

This application will make use of various laws of vector calculus that were 

described in the first chapter.  In order to introduce this procedure, we assume 

that there is a charge Q that is uniformly distributed within a sphere whose radius 

is a. There will be a uniform volume charge density 

3
4 3a

Q
v π

ρ = within the sphere 

 

 

 

 

 

 

 

 

 

Figure 2-7. A charge Q is distributed uniformly within a sphere whose radius is a. 

 

 From equation (2.8), we write the electric field at the surface of the sphere 

as 

  ρπε
= uE 2

oa4
Q     (2.22) 

The next step is to integrate both sides of (2.22) over the entire spherical surface.  

This is a closed surface integral that is 
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At the surface of the sphere, the electric field is a constant and it is directed in the 

radial direction. This is in the same direction as the differential surface area ds 

which implies that the scalar product of the two unit vectors uρ • uρ = 1.  The 

closed surface integral yields the spherical surface area 4πa2.  Hence (2.23) 

becomes 

  
o

encQ
ε

=•∫ dsE   (2.24) 

where we have explicitly stated that Q = Qenc represents the charge that is en-

closed within the closed surface. This is Gauss's law. It is common to refer to the 

closed surface as a “Gaussian surface.”  In passing from (2.23) to (2.24), we 

have invoked symmetry arguments by stating that the electric field had a 

constant value on the surface.   

 We can rewrite equation (2.24) using the divergence theorem  given in 

Chapter 1 and express the enclosed charge Qenc in terms of a charge density ρv 

as 

  
o

v v

v

dv
dv

ε

ρ
=•∇=• ∫

∫∫ ∆

∆
EdsE   (2.25) 

In order for the two volume integrals in (2.25) to be equal for any arbitrary volume 

∆v, the two integrands must be equal. This implies that 

  
o

v

ε
ρ

=•∇ E   (2.26) 

Equations (2.24) and (2.26) express one of the fundamental postulates of 

electrostatics. These equations are the integral form and the differential form of 

Gauss’s law respectively.  We will make extensive use of both forms. 

 As written, (2.24) is Gauss's law that allows us to ascertain the electric 

field in cases where there is significant symmetry inherent in the problem. This 

will be demonstrated for a charge Q that is uniformly distributed within a spherical 

volume and for a charge that is uniformly distributed on a surface. 
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 Consider the spherical volume shown in Figure 2-8. A charge Q is uni-

formly distributed within the spherical volume 
3
a4v

3π
=∆ . The volume charge 

density ρv is specified to be 

  








 π
=

∆
=ρ

3
a4

Q
v

Q
3v   (2.27) 

 The total charge Qenc that is enclosed within the spherical volume is 

calculated to be 

  
o

enc

o

v v Qdv

ε
=

ε

ρ∫∆   (2.28) 

This integral can be performed in this case and for several other cases. The 

charge that is enclosed within the volume is given by Qenc and this volume could 

have a radius ρ that is greater than or less than the radius a of the sphere. This 

allows us to find the radial electric field both outside of and within the spherical 

volume.  

 

  

 

 

 

 

 

 

Figure 2-8. A charge Q is uniformly distributed within a sphere of radius a. 

 

a 

ρ 
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 Let us first calculate the electric field outside of the spherical volume ρ > a. 

In this case, a spherical surface will entirely enclose the entire charge Q. 

Therefore Qenc = Q and we have  

  
oo

v v Qdv

ε
=

ε

ρ∫∆   (2.29) 

Since the differential surface area is in the radial direction, we will have only a 

radial component of the electric field.  The closed surface integral can also be 

performed and this leads to  
  ρπρ=•∫ E4 2dsE   (2.30) 

Therefore, we use Gauss’s law (2.24) and equate (2.29) and (2.30) to yield 

  
o

2 QE4
ε

=πρ ρ   (2.31) 

The radial electric field Eρ in the region ρ > a is given by 

  2
o4

QE
ρπε

=ρ     (2.32) 

This is the same result that was obtained in (2.8) as we should expect since the 

charge is entirely enclosed within this larger spherical surface.  

 Within the sphere, ρ < a and the total charge that is enclosed within this 

volume is given by 

  
3

o
0

2
3

2

00
oo

v v

o

enc

a
Qd

3
a4

Qdd  sin1dvQ






 ρ

ε
=ρρ








 π
φθθ

ε
=

ε

ρ
=

ε ∫∫∫
∫ ρππ∆   (2.33) 

In (2.33), we have used the definition of the differential volume dv in spherical 

coordinates. The closed surface integral surrounding this charge is still given by 

(2.30).  Hence the radial electric field within the charged sphere is found from 

equating these two expressions  

  
3

o

2

a
QE4 






 ρ

ε
=πρ ρ   (2.34) 

Solving for the radial electric field with in the sphere, we compute 
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  3
oa4

QE
πε
ρ

=ρ     (2.35) 

We note that the electric field linearly increases with the radius ρ.  This increase 

is due to the inclusion of more charge within this expanding spherical surface.  A 

summary of the electric field as a function of radius is shown in Figure 2-9. 

 

 

 

 

 

 

 

Figure 2-9. The variation of the electric field inside and outside of a uniformly 

charged sphere.  

 

Example 2-7. A linear charge density +ρL is distributed on the inner hollow 

cylinder and a linear charge density -ρL is distributed on the outer hollow cylinder. 

Find the electric field in all regions of space using Gauss's law. 
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Answer: Due to the cylindrical symmetry that is found in this problem, the 

Gaussian surface will be a cylinder.  In the region r < a, the enclosed charge is 

equal to zero. Hence the electric field within the inner cylinder is equal to zero. In 

the region a < r < b, the enclosed charge in a length ∆L is equal to +ρL∆L. 

Therefore, from Gauss's law (2.24) in cylindrical coordinates, we write 

  
o

L

o

encLz

0z r

2

0

LQdzErd
ε
∆ρ+

=
ε

=φ=• ∫∫∫
∆=

=

π=φ

=φ
dsE  

The first integral contributes a factor of 2π and the second integral contributes a 

factor of ∆L. Hence, the radial electric field in the region a < r < b is equal to 

  
r2

E
o

L
r πε

ρ+
=    

In the region r > b, the enclosed charge is equal to {+ρL∆L - ρL∆L} = 0 in the 

length ∆L. The electric field external to the outer cylinder will be equal to zero. 

 

 In order to further emphasize the physical meaning of Gauss's law, let us 

introduce a slightly different derivation. Its interpretation will allow us to clearly 

see the meaning of the term "enclosed charge Qenc." This method will apply for 

problems where there is sufficient symmetry and there is a dependence on only 

one of the dependent variables such that (2.26) can be written as 

  



















ε
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=
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)E(d1

 scoordinate lcylindrica        )r(
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)rE(d
r
1

scoordinate Cartesian             )x(
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dE

o

v
2

2

o

v

o

v

E   (2.36) 

In writing (2.36), the assumption has been made that sufficient symmetry exists 

such that the electric field depends only on one of the coordinates. Hence we can 
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use the ordinary derivative rather than the partial derivative. Also, the charge 

density ρv is only a function of this coordinate.  For example, the charge could be 

distributed within a spherical volume has shown in Figure 2-10. 

   

 

 

 

 

 

 

 

Figure 2-10. Charge is distributed within the spherical volume whose radius is a. 

The charge Qenc refers to the charge that is enclosed within the sphere whose 

radius is ρ. 

 

 The charge Qenc, that is enclosed within the spherical volume depicted in 

Figure 2-10 is given from (2.33) where the integrations over the transverse 

coordinates (ρ and φ) yield a factor of only 4π. We are left with the following 

integral in the radial variable that has yet to be performed. 
  ∫

ρ
ρρρρπ=

0

2
venc

~d~)~(4Q     (2.37) 

where ρ~ is a dummy variable of integration.  Using the chain rule for 

differentiation, we write the left hand side of (2.36) as 

  

  

( ){ } ( ){ }ρπρ
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=ρρπρ
ρ

ρ
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ρ
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  (2.38) 
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where we have employed the definition for the differentiation of an integral using 

Leibnitz rule1. The term {4πρ2ρv(ρ)} arises from the application of this definition. 

Since the charge density ρv(ρ) is common to both sides of the equation, it cancels 

and (2.36) becomes 

  
oenc

2 1
dQ

)E(d4
ε

=
ρ

π   (2.39) 

This can be easily integrated to yield 

  2
o

enc

4
QE

ρπε
=   (2.40) 

Equation (2.40) explicitly states that the electric field external to a surface is de-

termined by the charge Qenc that is enclosed within the surface.  This is the 

physical interpretation of Gauss's law. 

 We can also use this technique to compute the electric field within a 

sphere that has a uniform charge density 

  








 π
=ρ

3
a4

Q
3v   (2.41) 

The charge Qenc that is enclosed within the spherical volume 
3

4 3πρ  is given by  

  
3

0

2
3

2

00v venc a
Qd

3
a4

Qdd  sindvQ 





 ρ=ρρ








 π
φθθ=ρ= ∫∫∫∫

ρππ

∆
  (2.42) 

Substitute this in (2.40) and obtain 

  3
o

2
o

3

2
o

enc

a4
Q

4
a

Q

4
QE

πε
ρ

=
ρπε







 ρ

=
ρπε

=     (2.43) 

                                            
1The differentiation of an integral is given by the expression that is known as Leibnitz’s rule  
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 The result in (2.43) is the same result that was given in (2.35) but from a 

slightly different point of view. We should not expect to find and do not find a 

different result. What we have done is employ a modified form of Lagrangian 

mass variables. This change of variables has been used by our colleagues in 

fluid mechanics who let the independent variable of space ρ become the total 

mass menc that is enclosed within the volume that is defined by this spatial vari-

able ρ.  Using this technique, they have been able to advance the solutions for 

fairly difficult problems.  We have merely borrowed and used their technique in 

order to further interpret that meaning of Gauss's law in electrostatics.   

 In using Gauss's law, we have made extensive use of various symmetry 

arguments. Because of this, we have been able to reduce the problem such that 

it depends on only one spatial variable. If the enclosing sphere is sufficiently 

larger than the container of the charge, then it may be a good approximation to 

assume that the enclosed charge is localized at a point that is at the center of the 

sphere in order to obtain an approximate solution for the electric field. In 

conclusion, Gauss's law states that there must be a charge that is enclosed 

within an enclosed surface in order to have an electric field emanate or terminate 

within the enclosed surface. Otherwise, the electric field will just pass through this 

region. 
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 2.5. Potential energy and electric potential  

 A charged particle will gain a certain amount of potential energy as the 

particle is moved in a region against an electric field as shown in Figure 2-11. 

This is because work has to be done to overcome the force due to the electric 

field.  

Figure 2-11. The transport of a charge Q against an electric field E from point a 

to point b causes the particle's potential energy to change. 

 

 The energy ∆We in Joules (J) that will be gained by the charged particle is 

calculated from the line integral 
  dlEdlF ∫∫ •−=•=∆

b

a

b

ae QW   (J)  (2.44) 

Note the appearance of a minus sign in this equation. This indicates that if the 

charge is positive, work must be done to overcome the electric field. Energy must 

be conserved in this process.  Therefore, the positive charge will gain in energy 

has calculated from (2.44).  The potential energy of the positive charge will be 

increased.  A negatively charged particle will experience a decrease of potential 

energy if it followed the same path as indicated in Figure 2-11.  The fact that the 

scalar product has been employed in this integral reflects the fact that no work is 

performed in regions where the force (or electric field) is perpendicular to the 

direction of the motion. This fact will be important in later work. 

a 
b 
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dl 
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 It is possible to define the total electrostatic energy stored in a volume 

using the following gedanken experiment.1  Let us assume that all charges ini-

tially are at ρ = ∞ and none exist in the laboratory. When we say that all of the 

charges are at ρ = ∞, we also imply that each of the charges is infinitely far from 

its neighbor and there are no Coulomb forces between them that will have to be 

included in our experiment. Any electric field far out at ρ = ∞ will have decayed to 

have a value of zero in the laboratory.  

 

Figure 2-12. Calculation of the work required to bring charges from x = -∞ into 

the defined space. (a) Moving the first charge Q1 requires no work.  (b) Moving 

the second charge Q2 requires work since the first charge Q1 creates an electric 

field.  (c) Moving the third charge Q3 requires work since there are two charges 

already present. 

                                            
1The word "gedanken" is German for the word thought. Hence we are to perform a thought 
experiment. 
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 Let us compute the total work required to bring the charges into the 

shaded region from "where the wild things are." This is illustrated in Figure 2-12. 

No work is required to bring the first charge Q1 into the shaded region since no 

force is required to move this charge in our frictionless wagon, hence W1 = 0. 

However, to bring the second charge Q2 into the region, we will have to do some 

work since we have to overcome the Coulomb force of repulsion caused by the 

presence of the first charge in the laboratory. Hence a minus sign will appear in 

this equation 

  
( ) 12

abo

21x

2
ao

21
2 VQ

xx4
QQdx

xx4
QQW b =

−πε
=

−πε
−= ∫ ∞−

    (2.45) 

In (2.45), the energy depends on the magnitude of the distance separating the 

two charges.  We factor the charge Q2 from the remaining terms.  The remaining 

terms are due to the presence of the first charge Q1. We will call this collection of 

terms as being the absolute potential V1 that is entirely caused by the charge 1 

residing in this region.  

  
( ) abo

1x

2
ao

1
1 xx4

Qdx
xx4

QV b

−πε
=

−πε
−= ∫ ∞−

    (2.46) 

The units of the voltage are volts [V].  We will encounter the term potential again 

in a few lines where it will be given a physical interpretation. Initially, we will just 

use this integration as a mathematical entity.  

 Since the charges that are carried into the room in Figure 2-12 each have 

a label on them (1 or 2), it behooves us to ask the following question, "Would it 

have made any difference in calculating the total energy that had been expended 

if we had brought the charge labeled #2 in before the charge labeled #1?" The 

answer is NO!  Equation (2.45) could equivalently be written as Q1V2 with no loss 

of generality. We'll encounter this point in a few minutes when we try to 

generalize this result. 
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 Passing on to the next iteration of carrying charges into the room as 

depicted in Figure 2-12, we now bring charge Q3 into the shaded region. The 

work that has to be performed, following the same procedure of calculating the 

work required to bring in Q2, will be against the electric fields due to charges Q1 

and Q2 already being in the laboratory. 

  
( ) ( )∫∫ ∞−∞− −πε

−
−πε

−= cc x

2
bo

32x

2
ao

31
3 dx

xx4
QQdx

xx4
QQW   (2.47) 

leads to the following expression  
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3 VQVQ
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QQW +=

−πε
+

−πε
=     (2.48) 

 The total work that has been expended in bringing the three charges into 

the shaded region is given by  

  Wtotal = W1 + W2 + W3 = 0 + Q2V1 2 + Q3 (V1 3 + V2 3)    (2.49) 

The double subscript notation for the potential Vi j allows us to explicitly indicate 

that the potential due to charge i is to be evaluated at the location where charge j 

is eventually to be located.  

 The total energy that has been expended in order to bring the charges into 

the shaded region has to appear somewhere. None was converted into heat and 

subsequently lost since the charges were transported in frictionless vehicles. This 

energy is stored in this region as electrostatic stored energy.  It can be recovered 

and used for other purposes at a later time. This energy has the potential to do 

work at a later time.  

 We could continue this process to include all N charges that were origi-

nally at the location ξ = - ∞. The procedure is straight forward and can be gen-

eralized to  

  ∑∑
≠

== πε
=

)ij(N

1j j io

ji
N

1i
total x4

QQ
2
1W     (2.50) 
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where xi j is the magnitude of the distance between the charge Qi and the charge 

Qj. The factor of ½ arises since the terms are counted twice in using the notation 

of this double summation. For example, a term with i = 6 and j = 8 will have the 

same value as the term with i = 8 and j = 6 and thus this value would be counted 

twice in the summation. The notation N(j≠ i) indicates that this particular 

summation excludes the term j = i.  

 Let the potential at the ith charge due to all of the other charges be given 

by Vj, that is 

  ∑
≠

= πε
=

)ij(N

1j j io

j
i x4

Q
V     (2.51) 

Hence the total stored electrostatic energy can be explicitly written as 

  ∑
=

==
N

1i
iitotale VQ

2
1WW    (2.52) 

We have used the notation We to indicate the total stored electrostatic energy. 

Later, the symbol Wm will be used to indicate the total stored magnetic energy 

when we discuss magnetic fields. 

Example 2-8. Demonstrate that the factor of ½ must be included in (2.50) for the 

case of N = 3 charges.  Recall that there is no energy required to bring in the first 

charge. 

Answer: Explicitly expand (2.50) for the case N = 3. We write 
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Since the distances satisfy xj,k = xk,j and the products of the charges satisfy Qj Qk 

= Qk Qj, this can be written as  
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This is the same value for the total energy that was obtained in (2.49). 
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 If the charge is distributed within a volume, we can further generalize the 

expression for the energy that is stored within a volume ∆v. The charge Qi in 

(2.52) can be replaced with a distribution of charge and the differential volume as 

ρv dv and the discrete potential Vj with a continuous term V. The summation is re-

placed with an integration of the volume charge density over the volume dv 

where the distributed charge is located. Hence, the stored electrostatic energy is 

given by 

 

  ∫
∆

ρ=
v

ve dv V 
2
1W     (2.53) 

 

where we have again defined the total electrostatic stored energy as We. There 

are alternative methods of writing this expression as will be noted later. 

 It is now possible to give a physical interpretation to the terms electric po-

tential or the more common expression voltage. The ratio of the work required to 

move the charge against the electric field from point a to point b divided by the 

value of that charge is defined as the electric potential difference  ∆Vab between 

the points a and b. This can be written with reference to the absolute potentials at 

the two points a and b as 

  { } { }∫∫∫∫ ∞−∞−∞−∞−
•−•=•−•=∆=−

abab

abba QQ
Q
1

Q
1VVV dlEdlEdlFdlF     

or  
  ∫ •=∆

b

aabV dlE     (2.54)

  

The units of the energy that has been expended to effect this action are given in 

SI units as Joules (J). The units of energy when we consider the individual 

charge is a very large quantity and we frequently measure the energy in terms of 
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the energy gained by an electron passing through a potential difference of 1 volt  

Coulomb 1
Joule 1

≡ .  This energy is given in terms of electron volts (eV)2.  

 To illustrate this method of calculating the potential difference given in 

(2.47), let us calculate the work (work = charge x potential difference) required to 

move a charge q from a radius = b to a radius r = a as shown in Figure 2-13. A 

charge Q is located at the center of the inner spherical surface. The electric field 

between the concentric spherical surfaces shown in Figure 2-13 is calculated 

using (2.8) 

  ρρπε
= uE 2

o4
Q   (2.55) 

Hence the potential difference between the two spherical surfaces is computed to 

be 
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 If the radius b of the outer sphere increased to a value of b  ∞, this 

would then be the potential difference between ρ = +∞  and ρ = a. The potential 

at ρ = ∞ is defined as being equal to zero. It is frequently designated as being the 

ground potential. In a properly connected three-wire electrical cord, the third wire 

is connected to this far-off place with a third wire. This far off place in practice 

may actually be the copper tubing that brings the water into the room.  In many 

student laboratories, copper tubing is frequently located above the pipe that con-

tains the electrical power for the instruments. This tubing is supposed to be 

connected to ground for safety reasons and to have a well defined ground 

potential in the laboratory. Imagine the red faces of teachers who might connect 

a light bulb to copper tubing in different parts of the laboratory or the building and 

have it shine brightly.  The potential at the radius ρ = a may be either positive or 

                                            
2One eV = 1.6 x 10-19 J. 
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negative depending upon the sign of the charge.  This electric potential with 

respect to the ground potential is defined as the absolute potential at that 

particular point. 

                                       

 

Figure 2-13. Two concentric spherical surfaces surrounding a charge Q.  The 

dashed lines indicate a possible path that is to be followed in order to calculate 

the potential difference between the two spheres. 

 

 We should note at this point that there is only a potential difference be-

tween the two spherical surfaces in Figure 2-13 (path 1->2 and path 3->4). If we 

move along a circumferential line on one of the surfaces (path 2->3 which is at a 

constant radius), no work would be required since E and dl are then perpen-

dicular to each other. From (2.54), the work required to effect this move is equal 

to zero. A surface that has the same potential is called an equipotential surface. 

This term will be encountered again in this text and we might expect to see it later 

in several practical situations. For example, a metal container surrounding an 

electronic device should be an equipotential surface and that surface for safety 

reasons should be at the ground potential. The third wire in the electric cable 

connects this outer cover to ground. If we reach for the container and the 
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connection is faulty, a "zap!" will quickly convince us that it is an unsafe im-

plement to have in the home. The water pipes and the "third wire conductor" in 

the home are designed to be good connections to the ground potential. 

Example 2-9. Calculate the variation of the potential between two concentric 

cylinders if the potential of the inner cylinder is Vo and the potential of the outer 

cylinder is 0.  

Answer: From (2.21), the radial electric field from an infinitely long cylinder that 

has a uniform linear charge density ρL C/m on the external surface of the inner 

conductor is given by 
r2

E
o

L
r πε

ρ
= . This charge density is, however, not known in 

this example and it must be computed. Only the potential difference between the 

two cylinders was given. The spatial variation of the potential between the 

cylinders is computed from the electric field using (2.54) to yield 
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This satisfies the requirement that the potential at r = b be equal to zero. In this 

case, the constant of integration is included in the charge density. In order to 

compute this constant, we evaluate the potential at r = a to be Vo. This yields 
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Eliminate the charge density ρ
L between these two expressions to obtain the 

potential variation between the two cylinders. 
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This electric potential satisfies the boundary conditions.  Recall that when r = b, 

we have ln(1) = 0.  When r = a, the numerator and denominator cancel. 

 

 If the separation between two equipotential surfaces is very small and the 

potential difference is also small, we can approximate the voltage difference 

between two surfaces using (2.54)  

                       dV ≈ - E • dl = - Ex dx - Ey dy - Ez dz    (2.57) 

From the chain rule, we write 
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=     (2.58) 

In comparing (2.57) and (2.58), we are able to relate the various terms of the 

electric field as Ex = - ∂V/∂x; Ey = - ∂V/∂y; and Ez = - ∂V/∂z.  Therefore, we can 

write the electric field in vector notation as 

  zyx uuuE
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−
∂
∂

−=     (2.59) 

 If we knew the location and values of various equipotential surfaces, say 

from a sequence of measurements, then it would be possible to calculate both 

the magnitude and the vector direction associated with the electric field. In writing 
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(2.59), we have made the statement that the electric field is defined to be in the 

direction of the maximum rate of change of the potential. In addition, we see that 

the electric field can also have the units of 

   
m
V 

meter
voltsE 






≡






=  

since the spatial derivative operation will introduce the unit of 1/(length).  These 

units are probably are the most commonly used in practice. 

 We identify (2.59) as being the three components of the gradient operation 

of the scalar electric potential in Cartesian coordinates. Hence the electric field 

can be found analytically by taking the negative gradient of the electrostatic 

potential.  This is a written as 

  E = -∇V    (2.60)  

 This equation has important ramifications since it is usually easy to 

measure the electric potential at various points in the space.  From these 

measurements, it is possible to connect all of the points in space that have the 

same potential.  The resulting surfaces or lines are equipotential surfaces or 

lines.  The application of (2.60) will then produce the magnitude and the direction 

of the resulting electric field in this space. 

Example 2-10. The potential is measured at several locations in space.  

Connecting the points that have the same value of the electric potential with a 

line produces equipotential contours that can be drawn on a graph.  Find the 

electric field at the point P. The graph is 5 meters x 5 meters. 
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Answer: The electric field is computed from E = - ∇V in 2 dimensions. The 

measured equipotential contours are indicated by the solid lines and are 

separated by a distance of 211 22 =+  m. The electric field at the point P is 

                   ( )  2
y
V

x
V

y yxx uuuuVE +−=
∂
∂

−
∂
∂

−=−∇= V/m. 

The electric field is a vector that is pointing from the higher potential to the lower 

potential.  There are several cases in practice where this “graphical” procedure 

can be performed using MATLAB. 

 

 We can substitute the electric field that is given in (2.60) into (2.26) in 

order to obtain the dependence of the electrostatic potential upon the charge 

density.  We write 

  ( )
o

vV
ε
ρ

=∇−•∇  

or 

  
o

v2V
ε
ρ

−=∇    (2.61) 

Equation (2.61) is called Poisson’s equation.  If the charge density ρv is equal to 

0, this is called Laplace’s equation.  These two equations are extremely important 
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in obtaining solutions for the electric potential and the electric field in terms of the 

charge density.  They will be studied in further detail in the next chapter since the 

methods of solution will involve either analytical or numerical techniques.  Rest 

assured, you’ll encounter this equation again. 

  If the charge is distributed within a volume ∆v, the absolute potential can 

also be calculated.  In this case, the summation of the individual charge 

contributions that appears in (2.51) is replaced with an integration over the entire 

volume in which the charge is distributed.   

 

 

 

 

 

 

 

 

Figure 2-14. The voltage at a location in space that is caused by a volume 

charge distribution that is located at a different point in space.  The distance 

between the volume charge distribution and the point where the voltage is to be 

determined is given by the magnitude of the difference of the two vectors r and r’. 

 

 From the definition of the absolute potential, we would write the potential 

caused by a volume distribution of charge that is not centered at the origin of a 

Cartesian coordinate system as 
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  ∫∆
ρ

πε
=

v
v

o

'dz'dy'dx
R

)'z,'y,'x(
4

1)z,y,x(V   (2.62) 

where the distance R is given by 222 )'zz()'yy()'xx(R −+−+−= . The 

expressions for the distance in other coordinate systems are given in Appendix 1. 

This distance is equal to the magnitude of the difference between the two vectors 

r’ and r shown in Figure 2-14.  In MATLAB notation, we define the distances 

using the command “norm.” 

 The gradient operation is carried forth at the observer's position and we 

can assume that the two variables defining the coordinates r and r' are 

independent from each other. Hence, the gradient operation ∇ that is in the 

unprimed coordinate system can be freely brought inside the integral since the 

integration is performed in the primed coordinate system. It is left as a problem to 

verify that 

  2RR
1 Ru

−=





∇   (2.63) 

Therefore, we can compute the electric field once the potential field is known 

from (2.60). There may be certain advantages in finding the electrostatic potential 

first using (2.62) that contains the integration operation. The reason is that there 

is only an integration that is involved in (2.62) and it is a scalar integral.  The 

direct calculation of electric field from a distributed volume charge distribution 

given in (2.15) was a vector integral.  This implies that the integration must be 

performed over the three coordinates in order to obtain the three components of 

the electric field. 

 In (2.53), we calculated the electrostatic energy stored in the volume ∆v 

after bringing in additional charges   We are now prepared to obtain other ex-

pressions for this energy by replacing the volume charge density ρv using (2.26) 

  ( )∫∫ ∆
∆

•∇ε=ρ=
v o

v
ve dv V 

2
1dv V 

2
1W E     (2.64) 



Potential energy and electric potential 

 135 

This equation contains the product of the divergence of the electric field and the 

scalar electric potential.  Using the vector identity from Appendix 1 

  ∇• (a B) = B • ∇a + a ∇ • B 

we rewrite (2.64) 

  ( )[ ]∫∆ ∇•−•∇
ε

=
v

o
e dv VV

2
W EE     (2.65) 

 The first term on the right hand side of (2.65) can be converted to a closed 

surface integral using the divergence theorem 
  ( ) ∫∫ •=•∇

∆
dsEE Vdv V

v
  (2.66) 

In this case, the surface ∆s encloses the volume ∆v.  Let us assume that this 

volume has a spherical shape and the volume charge density is localized near 

the center of the sphere.  The electric field and the electric potential on the 

spherical surface will depend upon the radius of the sphere as 2R
1 and 

R
1  as 

given in (2.55) and (2.47) respectively.  The surface area of the spherical surface 

will increase with increasing radius as R2.  Therefore, (2.66) will approach 0 as 

the radius R  ∞.  The conclusion is that (2.66) is equal to 0 for an infinite 

volume. 

 The total electrostatic energy can be written as 

  [ ] [ ]∫∫ ∆∆
•

ε
=∇•−

ε
=

v
o

v
o

e dv 
2

dv V
2

W EEE     

or 

  ∫∆
ε

=
v

2o
e dv E

2
W     (2.67) 

where we have incorporated the relation that the electric field can be derived 

from the gradient of the scalar electric potential stated in (2.60). Note that the 

electrostatic energy depends upon the scalar quantity of the magnitude of the 

square of the electric field. We will encounter (2.67) later. 
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 The following example which makes use of the superposition principles 

that were described above will introduce the reader to the subject of dielectric 

materials.  A material will consist of a very large number of atoms.  The Bohr 

model of a hydrogen atom assumes that there is a positive charge at the center 

of the atom and there is a negative charge that is located at a distance of 

approximately 10-10 meters from the center.  This is a very small separation in 

distance and our colleagues in physics have defined a new unit called the 

Ångstrom where 1 Å = 10-10 meters. 

Example 2-11MATLAB. Find the potential V due to two equal charges that have the 

opposite sign and are separated by a distance d in a vacuum.  If the point where 

the voltage is to be determined is much greater than the separation distance d, 

this configuration is known as an electric dipole. Using MATLAB, plot the 

equipotential contours and the electric field surrounding the charges. 

Answer:  Superposition will apply and the total electric potential and is computed 

by adding the individual contributions together.  We find 
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We have chosen that ρ >> d.  Therefore, we can assume that the three lines ρ, ρ1 

and ρ2 are almost parallel and the three angles θ, θ1 and θ2 are approximately 

equal.  With these assumptions, we write that 

    cos
2
d   and    cos

2
d

21 θ+ρ≈ρθ−ρ≈ρ . 

Using these approximations, the voltage is computed to be 
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The ratio of the distances 
ρ2
d is a small quantity and we can use it as a small 

parameter to expand the terms in the denominator and obtain 

  θ
ρπε

=







θ

ρ
+−θ

ρ
+

ρπε
≈  cos

4
Qd cos

2
d1 cos

2
d1

4
Q  V 2

oo

   

 Let us define an electric dipole moment vector p = Qd that is directed from 

the negative charge to the positive charge.  In addition, there is a unit vector uρ 

that is directed from the midpoint between the two charges to the point of 

observation. The term Qd cos θ can be interpreted as being the scalar product of 

these two vectors.  
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(a)
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(b)

 

 

 The normalized potential profile resulting from two charges that have the 

opposite signs at x = 0 and y = ± 0.25 is shown in (a). Note that it rapidly decays 

to zero.  Equipotential contours and the resulting electric fields are shown in (b).  

Note that between the two charges, the electric field is directed from the positive 

charge to the negative charge. 

 

 In moving the charge from point a to point b in a region that contained an 

electric field, we found from equation (2.45) that work was required. If we move it 

back to point a along a slightly different path as shown in Figure 2-15 in an 
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electrostatic field, we will find that the expended energy is returned to us. In this 

case, we write (2.45) as 

 
  0Q/We =•= ∫ dlE     (2.68) 

where an integral over a closed contour is indicated. Equation (2.68) states that 

no energy is either expended or created in this process. In this case, the 

electrostatic field belongs to a class of fields that are called conservative fields. 

You may recognize that (2.68) is almost identical to the Kirrchhoff’s voltage law 

that states “The sum of the voltage drops around a closed loop is equal to 0.”   

 Equation (2.68) is the second postulate of electrostatics. This equation can 

be converted into a surface integral via Stokes’s theorem. We write 

                                                 ∫∫ ∆
•×∇=•=

s
dsEdlE0   (2.69)

 
In order for this integral to be zero for any arbitrary surface, the integrand must 

be equal to zero.  This allows us to obtain the second postulate of electrostatic 

fields in differential form. 

  0=×∇ E   (2.70) 

Equation (2.70) states that an electrostatic field is irrotational.  We will encounter 

these postulates of electrostatics later when time-varying fields are described. 
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Figure 2-15.  The closed path of integration from a to b and then back to a.  

There is an electric field in the region. 

Example 2-12.  Calculate the work required to move a charge Q = 2 C around 

the closed path if there is an electric field E = 3 ux in the region. 

 

 

 

 

 

 

 

 

Answer: The total work is computed from evaluating the closed line integral 
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The limits that are included in each integral will determine the sign of a particular 

integration in this closed loop.  This electric field is a conservative field. 
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  2.6. Numerical integration 
 In the previous section, we have been able to calculate the electric 

potential that results from a distributed charge density.  The examples that were 

presented all required that there was sufficient symmetry in order to find the 

electric potential.  However, in practice, we usually encounter situations that do 

not have the required symmetry and we are forced to embark on a slightly 

different path.  One of these paths requires the numerical solution of an 

electrostatics problem.  Remembering that the integration is just a summation in 

which the number of distinct differential volumes, differential areas, or differential 

lengths has been allowed to approach 0, we now investigate whether a digital 

computer can actually perform the summation operation.  It turns out that 

MATLAB provides a solution to this problem that requires minimal effort.  In the 

following, we will initially develop the procedure before making use of the 

commands that are available in MATLAB. 

Figure 2-16.  The area under the curve y = y(x) is numerically obtained by 

subdividing the area into small trapezoidal subareas and adding the areas of the 

individual trapezoids. 

 

 This is first illustrated in Figure 2-16 for a simple one-dimensional 

integration where the area under the curve is approximated with the summation 

a b x

y 

xmin xmax
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of a number of trapezoids.   MATLAB has a command that creates the trapezoids 

automatically.  This allows us to perform this calculation with just three 

commands 

  xmin: ∆x = b – a: xmax , y(x); z = trapz(x, y).   (2.71) 

The choice of the value of ∆x is somewhat arbitrary and it depends upon the 

conflict between the desired accuracy and computational time.  There are 

additional numerical integration programs that can be employed and the 

evaluation of the truncation errors has received mathematical attention. 

 In addition, this integration can be performed using Simpson’s rule with the 

commands 

  quad (func, xmin, xmax)  

  dblquad (func, xmin, xmax, ymin, ymax) (2.72) 

  triplequad (func, xmin, xmax, ymin, ymax, zmin, zmax) 

where the function ‘func’ is defined by the user.  The numerical values for the end 

points of the integration are also stated in these commands.  The default 

tolerance for the integration is 10- 6.  For example, this function could be the 

product of the three variables xyz where we would write 

  func = inline (‘x.*y.*z’)  (2.73) 

In the definition for the function, we must remember to include the “.” after each 

of the first two variables. 

Example 2-13MATLAB.  Compare the analytical and the numerical evaluation of 

the area under the curve defined by the function y = x2 in the interval 0 ≤ x ≤ 4.  

Use both the ‘trapezoidal’ command and the ‘quadrature’ command. 

Answer.  The solution that is obtained from an analytical integration is 

  3333.21
3
64

3

4

0

34

0

2 ==== ∫
xdxxarea  

Using the trapezoidal commands, we write 
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  x = 0: 0.001: 4; y = x. ^ 2;  

  ztrapezoidal = trapz(x, y);.   

Typing ztrapezoidal yields the numerical value of 21.3333. 

 The quadrature command requires the definition of the function 

  func = inline (‘x.^2’);  

  zquadrature = quad (func, 0, 4); 

Typing zquadrature yields the numerical value of 21.3333. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-17.  Electric charge is distributed within a volume whose coordinate 

system is identified with an ‘.  The voltage is to be determined in the coordinate 

system that does not have the ’.  The vector R is directed from the charge to the 

point of observation. 

. 

 We find the electric potential due to an object that has a finite size as 

shown in Figure 2-17.  The potential from an arbitrary body of charge was 

obtained in (2.62) and for convenience, we rewrite it below 
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  ∫ πε
ρ

= 'dz'dy'dx
R4

)'z,'y,'x()z,y,x(V
o

v    (2.74) 

where 222 )'zz()'yy()'xx(R −+−+−= .  In our later development of a MATLAB 

program, we’ll replace this distance with the command “norm(r – r’).”  The primed 

variables refer to the location of the charge and the unprimed variables refer to 

the location at which the potential is to be computed.  This permits us to assume 

that neither the charged object nor the calculated voltage have to be at the origin 

of the coordinate system. 

 The procedure to numerically perform the integration will be developed in 

full detail.  After this development, we will use one of the commands that is 

presented in (2.71).  We assume that a finite charge Q is uniformly distributed on 

a thin finite sheet that is located at z' = 0.  This results in a uniform charge 

distribution ρs at every point on the sheet.  Let us also assume that the sheet has 

a rectangular shape that is centered on a Cartesian coordinate system as shown 

in Figure 2-18.  The procedure that we will follow is to subdivide this large sheet 

into a number of small subareas and assume that the charge in each small 

subarea is localized at its individual center.  Therefore, we have reduced the 

uniformly distributed charge to a large number of discrete individual charges.  

This reduction allows us to convert the integration (2.74) into a summation. 

 Therefore, (2.74) can be written as 

  ( )∑∑
−

=

−

= πε
∆∆ρ

=
1M

1k o

s
1N

1j R4
'y'xk,j)z,y,x(V  (2.75) 

where the rectangular sheet has been subdivided into (N – 1) x (M – 1) subareas.  

The area of each subarea is given by ∆x’∆y’.  The charge that is at the center of 

an individual subarea is ρs(j, k) ∆x’∆y’.  The charge density is not required to be 

uniform on the entire sheet.  However, it is assumed to be uniform within each 

subarea. 
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Figure 2-18.  The area containing the charge is subdivided into a number of 

small subareas.  Each subarea is replaced with an individual charge whose value 

is equal to the charge contained in the individual subarea. 

 

 It is convenient to assume that the sheet is centered upon a Cartesian 

coordinate system since we later will be able to invoke certain symmetry 

arguments in order to simplify the calculation.  In addition, we assume that it is 

located at z’ = 0.  With these assumptions, (2.74) becomes the following double 

integral 

  ∫∫ −− πε
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= 2
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2
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o

s2
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2
b

'dy'dx
R4

)z,y,x(V    (2.76) 

where the uniformly distributed charge density is ρs. Using the definition for the 

distance R, we write. 
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= 2
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Since the potential is to be determined along the z axis, this simplifies to 
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( ) ( ) ( )∫∫ −− ++πε

ρ
= 2
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2
a 222

o

s2
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b

'dy'dx
z'y'x4

)z,0,0(V    (2.78) 

 There are several cases that have a certain degree of symmetry 

associated with it. Symmetry may reduce the computational time required to 

perform the resulting calculation.  The integration will have to be performed in 

only one quadrant of the surface, say 0 ≤ x’ ≤ 
2
a , 0 ≤ y’ ≤ 

2
b .  The computed 

value resulting from the integration will then just have to be multiplied by a factor 

of 4.  Equation (2.78) becomes 

  
( ) ( ) ( )∫∫

++πε

ρ
= 2

a

0 222
o

s2
b

0
'dy'dx

z'y'x4
4)z,0,0(V    (2.79) 

 In order to numerically evaluate the integral (2.79), we subdivide the entire 

plane in the quadrant’ into small rectangles   We will be required to identify the 

edges of each of the subareas in a methodical manner.  One such procedure 

assumes that the point at the bottom-left corner is identified as being (j = 1, k = 1) 

and the point at the upper-right corner is identified as being (j = N, k = M).  

Therefore, there will be (N – 1) x (M – 1) small subareas in the subdivision 

process of the large area.  The area of each individual subarea is equal to 

  ( ) yxhh
)1M(

b
1N

aA =
−−

=∆  (2.80) 

The total charge ∆Q within each subarea is 

  ∆Q = ρs∆A = ρs hxhy    (2.81) 

and we assume that this charge is localized at the center of the subarea.  If the 

charge has a nonuniform distribution, then the charge distribution ρs will have 

different values at each individual subarea.  The incremental potential ∆Vj,k  due 

to the localized charge that is identified with the label “j, k” is given by 
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The center of a particular subarea is identified as 
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 All that we need do now is use superposition and sum the incremental 

potentials due to each incremental charge  
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or 
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 Hence, the double integral in (2.79) has been converted into a double 

summation (2.85).  The number of small subareas is determined by the 

compromise that must be made between accuracy and a computational time that 

is required to effect this calculation.   

Example 2-14MATLAB.  Evaluate the potential due to a charge Q being uniformly 

distributed upon a square surface whose area is equal to a2 at the point z = a if 

the number of subareas is equal to 1 and 4.  The center of the square is the z 

axis which creates significant symmetry in the problem.  
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Answer:  The first iteration assumes that the charge is localized at the center of 

the square.  Therefore, we compute from (2.46) that 
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The second iteration is evaluated using (2.85) since there are now 4 subareas. 

We calculate the potential to be 
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We could continue with this analytical procedure.  However, we find that this is 

better left for the computer.  Using MATLAB, we obtain the following numerical 

coefficients for the voltage vs. the number of subareas n.  The results are 

presented using the above procedure along with the ‘quadrature’ command that 

is included in MATLAB. 
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 The procedure of subdividing an area into a large number of subareas or a 

volume into a large number of subvolumes with the incremental charges located 

at the center of the subarea or the subvolume could be continued.  As noted In 

Example 2-13, there are significant inaccuracies in the resulting numerical 

computation results.  Therefore, we will exploit the MATLAB commands given in 

(2.72) in the following computation.   

 In particular, we focus on the following question.  “If one moves far away 

from the object, should it not appear that the charges are localized at a point?”  

Remember, the sun is bigger than the earth although it appears to be a small ball 

in the sky.  We will answer this question by examining the dependence of the 
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voltage as we move far away from the sheet of uniformly distributed charge.  This 

is demonstrated with an example. 

Example 2-15MATLAB.  Plot the coefficient for the electric field as a function of 

distance z from a square that contains a uniform charge distribution of ρs.  The z 

axis is at the center of the square. 

Answer:  The electric field is computed with the quadrature command that is 

given in (2.72).  In this case, there is an additional variable z. 
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 It is convenient to understand the asymptotic values on the spatial 

dependence of the electric field coefficient by plotting the calculated result using 

a log-log graph.  The slope of the dashed line is equal to (– 2).  This is the same 

dependence that was obtained for the electric field from a point charge (2.8). 
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 This example clearly illustrates that the potential will decrease at large 

distances and the unit square of uniform charge density will appear almost as a 

point charge.   

Example 2-16MATLAB.  Plot the potential in the x-y plane in the region x > 0 due to 

a uniformly charged line that is 10 units long that is located at y = 0.  Perform the 

integration with the ‘quad’ function.  

Answer:  In MATLAB, a function is defined using the command ‘inline’.  Since 

the calculation is to be performed as part of a “for x = 1: 20” loop, the numerical 

value of x must be converted to a string variable that can be incorporated into the 

inline command.  This is accomplished with a command ‘num2str’ command.  

The result of the calculation is shown below. 
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 There are other important problems in electromagnetics that will require 

numerical techniques that are far beyond the brief introduction that is presented 

here.  Some of these will be described in the next chapter. 
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  2.7. Dielectric materials 
 Up to this point, we have examined the behavior of electric fields in a vac-

uum. The results were correct but we may now be wondering what the effects of 

applying the electric field in a material would be.  The wearing of rubber gloves 

seems to have some desirable protective features when one is close to touching 

a high voltage line.  Manufacturers of capacitors or integrated circuits usually 

insert an oxide layer between the two metal surfaces in order to keep the top 

conductor from falling down and touching the bottom conductor.  How do these 

materials affect the electric field? Some answers will be provided here.  

Figure 2-19.  A material is placed between two electrodes that are separated by 

a distance L. An electric field is applied between the two electrodes.  (a) Random 

orientation of the atoms before the application of the electric field.   

(b) Reorientation of the atoms after the application of the electric field. 

 

 As noted earlier, materials consist of atoms and in a simple model, these 

atoms can be considered to be a large collection of randomly oriented small 

electric dipoles as shown in Figure 2-19. Certain molecules, called polar 

molecules  normally have a permanent displacement between the positively 

charged nucleus at the center of the atom and the negatively charged electron at 

the edge.  This distance is of the order of 10-10 meters.  This distance is also 
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equal to 1 Å in honor of the scientist Anders Jonas Ångstrom.  Each pair of 

charges acts as an electric dipole.  If an electric field is externally applied to this 

material, then the dipoles may reorient themselves. If the field is strong enough, 

there will actually be an additional displacement of the positive and negative 

charges. A nonpolar molecule  does not have this dipole arrangement of charges 

unless an external electric field is applied. The positive and negative charges 

separate by a certain distance after the application of the electric field. 

 In some materials, the dipoles may reorient themselves such that a large 

number or even all of the atoms will realign themselves causing the electric field 

created by the dipoles to add to the applied electric field. In other materials, the 

reorientation may cause the dipole electric field to subtract from the applied field. 

This dipole field created by the atoms will be examined here. 

 After the application of the electric field between the two electrodes in 

Figure 2-19b, the atoms have been reoriented.  Since the atomic distances 

depicted in this figure, it is possible to regroup the electric dipoles and suggest 

that the positive charge of one atom could unite with the negative charge of the 

adjacent atom in order to form a new distribution of electric dipoles as depicted in 

Figure 2-20.  This regrouping of the electric dipoles will leave a thin layer of 

charge of the opposite sign at either edge of the material.  This charge which is 

due to the application of the electric field is called the polarization charge.  The 

polarization charge cannot be found in a vacuum and it does not come out of the 

battery.  It is only due to the fact that the atoms had been reoriented due to the 

application of the electric field.  We will define a polarization charge density using 

the symbol ρp as being the polarization charge per unit volume. 
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Figure 2-20.  The reorientation of the atoms in a material due to the application 

of an electric field creates polarization charge at the two edges whose density is 

ρP.   This polarization charge creates a polarization field P 

 

 In the region between the two dashed lines, a positive nucleus of one 

atom "pairs" with an electron of the adjacent atom. The positive and negative 

charge centers overlap. However, in the region between the left electrode and 

the dashed line, there are more positively charged particles.  In the region be-

tween the second dashed line and the right electrode, there are more negatively 

charged particles. This effectively states that there is a very narrow region of 

charge of one sign that has migrated to that edge of the dielectric while there is a 

narrow region of charge of the opposite sign that has migrated to the other edge 

of the dielectric. Between these two edges, a charge-neutral region exists. This 

displaced charge cannot be removed from the material, it is bound to the 

material. It is given the name of a polarization charge. Herein, we will just 

describe the polarization charge at the surfaces that is called the surface 

polarization charge. The density of this polarization charge has the symbol ρP 

and it is shown in Figure 2-19b. This bound charge will set up a field that is called 

the polarization field P and it is defined as the dipole moment per unit volume. It 

is written via the relation 
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where   pj = Qdud   is  the  dipole  moment  of  an  individual  dipole.  The  units  

are  (C-m) / m3 = (C / m2).  Within the volume ∆v, there are N atoms. With the 

notation given in (2.86), we see that the polarization field depends on position 

since we have let the differential volume ∆v shrink to zero. In Figure 2-20, this 

would imply that the distance separating the two thin layers of polarization charge 

shrinks to zero. In analogy with Gauss's law, we can relate the polarization 

charge ρp to an electric field. This field is called the polarization P and we write 

  ρP = -∇ • P  (2.87) 

Let us add the polarization charge density ρp to the real charge density ρv. The 

real charge density could come from a battery or from the ground.  This will 

dramatically influence the resulting electric field that we calculated from (2.26)  

  
o

Pv

ε
ρ+ρ

=•∇ E   (2.88) 

Replacing the polarization charge density in (2.88) with (2.87), we finally obtain 

  ∇ • D = ρv  (2.89) 

where 

  D = εoE + P  (2.90) 

is called the electric flux density  or the displacement flux density. The unit of this 

quantity is also (C / m2).  The total electric flux Ψe that passes through a surface 

equals the surface integral of the electric flux density integrated over the surface 

∆s 
  ∫ •=

∆seΨ dsD   (2.91) 

Note that the displacement flux density has a significant meaning only when 

materials that can be polarized are discussed. In a vacuum, it is just equal to a 

constant εr times the electric field.  
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 Gauss’s law which was used to compute the electric field in a vacuum can 

be employed to calculate the displacement flux density with the same restrictive 

limitations of symmetry requirements that were encountered previously.  The 

procedure to develop this equation follows directly from an integration of (2.89) 

over the same volume.  The volume integration of the divergence of the 

displacement flex density can be converted to a closed surface integral using the 

divergence theorem.  The result of this is 
  encQ=•∫ dsD   (2.92) 

Therefore, the total dielectric flux emanating from or terminating on a closed 

surface ∆s is equal to the total charge that is enclosed within this surface. 

          A dielectric material is susceptible to being polarized.  In many materials, 

this polarization is linearly proportional to the applied electric field if the electric 

field remains small. In these cases, we can write that P = εoχe E where χe is the 

electric susceptibility.  Finally, we obtain 

                                         D = εo (1 + χe)E = εo εr E = ε E.           (2.93) 

The term εr is the relative dielectric constant for a material. Tabulated values of εr 

for various materials are given in Appendix 3. In a vacuum, χe = 0 and εr = 1 by 

definition.   

 The expression (2.93) applies only for linear and isotropic materials.  It is 

not difficult to create a material that does not satisfy this criterion.  For example, 

the application of an external magnetic field to an ionized gas will make it 

anisotropic.  Large amplitude signals that are applied to a material may cause the 

material to have a nonlinear response.  This case could occur if the relative 

dielectric constant changed, say due to the dielectric being modified where the 

modification was proportional to the square of the magnitude of the applied 

electric field |E|2. Such nonlinear materials do exist and are currently under 
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active investigation. In what follows, we will restrict our discussion to linear 

materials. 

Example 2-17. A dielectric slab is placed between two parallel plates. A battery 

is connected to one plate and the other plate is grounded. The area of each plate 

is equal to A and the charge on each plate is Q± .  The separation of the plates 

is d. Sketch the following quantities between the plates:  

 a) surface charge density ρs,  

 b) displacement flux density D,  

 c) electric field E,  

 d) polarization P, and  

 e) the bound surface polarization charge density ρps.   

Answer: a) The real charge Q can come from the battery or from ground. It will 

be distributed on the surface of the metal plates creating a surface charge 

density ρs = 
A
Q . 

 b) The displacement flux density D will be determined by the real charge 

from the battery or from the ground. It will not depend on whether a dielectric or a 

vacuum exists between the plates. It follows from Gauss's law that D = ρs. 

 c) The electric field E = D/(εoεr). Hence the electric field will be decreased 

within the dielectric below its value in the vacuum since εr > 1. 

 d) The polarization field P will exist in the dielectric. Its value will be de-

termined from (2.90). 

 e) The bound surface polarization charge density ρps can be evaluated 

from  
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  2.8. Capacitance 
 
 The electrical capacitance between two objects in space is defined as the 

ratio of the charge on one of the objects divided by the potential difference 

between the two objects.  This is expressed as  

  
V
QC =  (F) (2.94) 

and it is measured in (F) ≡ (farads) = (Coulombs / volts).  This is the formal 

definition for the capacitance and as we will see in the next chapter, it is possible 

to numerically calculate its value for objects that may have a very complicated 

shape.  This is sometimes called the “self capacitance” since there are only two 

objects that are being considered.  It could also be generalized to incorporate the 

“mutual capacitance” if there are more than two objects.  The procedure will be 

useful in practical situations such as finding the capacitance of various portions 

of an integrated circuit or of objects that have an odd shape.  This will also be 

useful in developing various models for a transmission line which will also be 

described later.  In this section, we’ll just examine some very simple objects.  

 Your first encounter with a capacitor was probably in the first course 

dealing with electrical circuits in which you encountered a very simple expression 

for the capacitance of the parallel plate capacitor.  In this book, we will obtain this 

expression using the terms that we have already discussed.  The area of each 

plate is equal to A = w x ∆z and the two plates are separated by a distance d as 

shown in Figure 2-21.  The choice for using these symbols for the dimensions is 

predicated on our future applications in this book.  In addition, let us assume that 



Capacitance 

161 

a charge +Q is uniformly distributed on the top plate and a charge –Q is uniformly 

distributed on the bottom plate.  This will result in a uniform charge density of 

A
Q

s =ρ±  being distributed on the two plates. 

 

 

 

 

 

Figure 2-21.  A parallel plate capacitor is depicted above.  The plates whose 

area A = w x ∆z are separated by a distance d. 

 

 We assume that the transverse dimensions are much greater than the 

distance between the two plates.  The electric field surrounding an infinite 

charged plate was obtained in Example 2-6 or we could obtain it using Gauss’s 

law.  We evaluate Gauss’s law (2.24) in order to obtain the electric field from one 

of the plates, say the top plate that has a positive charge density 

  
o

s

o

s

o

enc

2
EA)A2(EQ

ε
ρ

=⇒
ε
ρ

=⇒
ε

=•∫ dsE  (2.95) 

 The electric field between the two plates and in the regions above and 

below the two plates is evaluated using the principle of superposition.  The result 

is that the electric field is equal to 0 in the regions above and below the two 

plates since the contributions from the two plates have the same magnitude but 

are in the opposite directions and will therefore cancel.  The field in the external 

d 

w
∆z 
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region but between the two plates is called a “fringing field” and it will be 

neglected since it is small in comparison with the field directly between the two 

plates.  Using superposition, the electric field between the two plates becomes 

  
o

sE
ε
ρ

=  (2.96) 

In addition to neglecting the fringing field, we are also assuming that there is a 

uniform distribution of the charge on the surface.  The actual distribution of the 

charge on the plate is actually nonuniform and it will be numerically calculated in 

the next chapter. 

 The electric potential is calculated using (2.54) 

 EdV
b

aab ⇒•= ∫ dlE  (2.97) 

Therefore, the capacitance of the parallel plate capacitor is calculated using the 

definition (2.94) to be 

  
d
A

d

A
V
QC o

o

s

s ε
=









ε
ρ
ρ

==  (2.98) 

Equation (2.98) is the formula that you have frequently encountered previously 

but it has now been derived in terms of electromagnetic arguments.  Most 

capacitors will have a dielectric placed between the two conducting plates.  In 

these cases, you should replace εo with ε in order to reflect this situation.  

Example 2-18.  Calculate the capacitance of a hollow metallic sphere whose 

radius is a. 

Answer:  Assume that there is a charge Q at the center of the sphere.  The 

absolute potential at a radius a is found from (2.56) to be 
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a4

QV
oπε

=   

The capacitance is computed from (2.94) to be 

  a4

a4
Q
Q

V
QC o

o

πε=









πε

==  

It is interesting to calculate the capacitance of the earth by assuming that it is a 

hollow sphere.  Substituting the value of the radius of the Earth into this result, 

we compute 

  ( ) 0.7mFF  10710 6.37 10
36

14a4C 46 9
o =×≈×






 ×

π
π=πε= −−  

A unit of one farad is a very big number!   

 Hollow spheres are used as models to describe dust particles that can be 

found in integrated circuit manufacturing where they have a very deleterious 

effect on the final product.  Upwards of 10,000 mobile electrons can attach 

themselves to these dust particles.  In addition, charge dust particles are found in 

some of the rings that surround certain of the planets in our solar system such as 

Saturn.  These negatively charged dust particles may have a mass that is greater 

than the surrounding positively charged ions and this leads to a current area of 

research investigation. 

Example 2-19.  Calculate the capacitance of a coaxial cable whose length is ∆z 

and it consists of a cylindrical metallic rod whose radius is a and it is surrounded 

concentrically with a metallic sleeve whose radius is b.  There is a dielectric 
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material separating the two conducting surfaces and it has a relative dielectric 

constant εr.  

 

Answer: The displacement flux density between the two metallic surfaces can be 

calculated using Gauss’s law (2.92) since there is significant symmetry in this 

example.  The procedure is to assume that there is a linear charge density ρL on 

the inner conductor.  From (2.92), we calculate the displacement flux density as 

  encQ=•∫ dsD  D (2πr∆z) = ρL∆z 

The potential difference between the inner conductor and the outer conductor is 

computed from (2.54) 

  







πε
ρ

=
πε
ρ

=•= ∫∫ a
bln

2
dr

r 2
V Lb

8
Lb
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   The total charge that is enclosed within the coaxial structure is Q = ρL∆z.  

From (2.94), we write 
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 In addition to calculating the capacitance of a parallel plate capacitor, we 

can also find the electrostatic energy that is stored in this capacitor.  In order to 

do this, we just have to evaluate the integral (2.67) which we rewrite here 

  ∫∆
ε

=
v

2o
e dv E

2
W  (2.99) 

Equation (2.99) is a very general expression for the electrostatic energy that is 

stored between the two objects.  In our particular case, the volume ∆v is equal to 

the volume between the two parallel plates of the capacitor.  Since the electric 

field is uniform between the two plates, it is possible to easily calculate the stored 

electrostatic energy.  We write 

  ( ) 22o
2

o
e CV

2
1V

d
A

2
1Ad

d
V

2
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 ε=





ε

=  (2.100) 

In writing the final expression in (2.100), we have recognized that the 

capacitance C of a parallel plate capacitor (2.98) can be identified.  Therefore, 

we have obtained the electrostatic energy that is stored between the two parallel 

plates. 

 Further calculations involving the capacitance between conducting 

surfaces will be performed using numerical techniques in the next chapter.  In 

addition, the capacitance will also be obtained for other important structures that 

will be encountered in the later discussion of transmission lines.  The insertion of 

a dielectric slab that does not completely fill the intervening space between the 

two parallel plates will require considerable care in the analysis.  This calculation 

will be delayed until after the boundary conditions are examined. 
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  2.9. Electrical currents 
 Imagine that a wire is connected to a battery and a resistor as shown in 

Figure 2-22a.  The battery is a chemical source that provides particles with a 

positive charge and a negative charge. In the metallic wire, the ions are 

stationary and a portion of the electrons are free to move.  Benjamin Franklin 

gave us the convention that the direction of the flow of the current, however 

should be in the direction of the motion of the positive particles.  Between the two 

terminals of the battery, there will be an electric field that will accelerate the 

electrons.  Since the conductivity of a wire is significantly greater than the 

conductivity of the surrounding air, the motion of these accelerated electrons will 

follow the path of the wire.  The resulting current in this circuit is called the 

“conduction current.”  When we later describe electric fields that depend upon 

time, we will encounter another current that is called a “displacement current.” 

 The current that passes through the wire in Figure 2-22b can be computed 

from Ohm's law. Since we are more interested in local effects rather than in 

global effects, we would rather relate this current to a current density 
A
IJ =  and 

a voltage difference ∆V across an incremental length ∆L, i.e. an electric field. The 

resistance R of the wire is given by 
A
LR

σ
∆

=  where σ is the conductivity of the 

wire. This definition of resistance follows from the intuition gained in circuits 

where the total resistance of a circuit is computed by adding the resistors in 

series (i. e. increased length of the wire ∆L) and the conductors in parallel ( i. e. 

increased cross-sectional area A). The current density in a wire is therefore 

defined using Ohm’s law 

  E
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 ∆

==  (2.101) 
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This is a generalization of Ohm's law. One Ampere of current at a point is defined 

as the passage of one Coulomb of charge passing this point in one second.  We 

are assuming that none of the parameters that appear in (2.101) depend upon 

the magnitude of any of the other parameters which could be found in nonlinear 

materials.  One could think of a resistor whose resistance would change with 

increasing values of current caused by a heating of the resistor.  Such nonlinear 

effects are important in practice but will not be considered here. 

 An alternative derivation for the conductivity σ follows from the definition of 

the current density J = ρvvdrift where ρv is the electron volume charge density and 

vdrift is an average electron drift velocity. The drift velocity is proportional to the 

electric field E, the proportionality constant being called the mobility µ of the 

material. Hence, we write 

  J = ρv vdrift = ρv µE = σ E (2.102) 

where the conductivity σ = ρv µ. 

 

Figure 2-22. (a) A simple electrical circuit consisting of a battery and a resistor.  

(b) A current I flows through the wire whose area is equal to A = πa2 where a is 

the radius of the wire. 

 The total current I that passes through the wire is computed from the inte-

gral of the current density J integrated over the cross sectional area A of the 

(a) (b)
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wire. The current density J is a vector since it has both a magnitude and a 

direction 
  ∫ •=

A
I dsJ  (2.103) 

If the current is uniformly distributed in a cylindrical wire whose radius is a, this 

integral can be easily performed and we find that the total current I that passes 

through the wire is given by 

  I = J πa2 (2.104) 

This is equal to the product of the current density times the cross-sectional area 

of the wire. However, if the current is nonuniformly distributed in the wire, this 

integration requires more care as will be shown with an example. Later, we will 

encounter cases where the current is constrained to flow just on the surface of an 

object. These currents are called surface currents.  Having now presented some 

fundamental definitions for the currents in terms of local current densities and 

cross sectional areas, we are prepared to explore various properties of magnetic 

fields that will be created by these currents. 

Example 2-20. Given an inhomogeneous current density  

  J = (3y2zux - 2x3zuy + zuz)  A/m2,  

find the total current passing through a square surface at x = 1 in the ux direction. 

The dimensions of the surface are 1 ≤ y ≤ 2, 1 ≤ z ≤ 2. 

Answer: The differential surface area is defined as ds = dydz ux.  Therefore, the 

scalar product on the current density and the current density will yield a current 

only in the ux direction.  We write 

  A5.15
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Example 2-21. Calculate the current that flows through a wire whose radius is a.  

The inhomogeneous current density in the wire is 

  zuJ 





=
a
rIo  

Nonuniform currents can be important in high frequency applications in which 

one encounters “skin effects.” 

 

 

Answer:  The current is calculated from the following integration: 
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 The power that is dissipated within a conducting material can be 

calculated from the electric field and the current density that we have just 

encountered.  The power density in a particular volume is defined as 

  p = J • E   (W/m3) (2.105) 

The total power that is absorbed within the volume is calculated by integrating 

(2.105) over the entire volume ∆v.  This power is converted into another form and 

it is given the name “Joule heating.”  It is measured in SI in units   

  Watts = Joules / seconds.  

The reader has probably experienced the warming effects of Joule heating in 

cooking a meal on an electric stove or being warmed on a cold winter’s night by 

an electric heater that is present in the room.  Suffice it to say, this is a very 

important effect that has many practical applications. 

Example 2-22.  Calculate the power that is dissipated within a resistor that has a 

uniform conductivity σ.  The voltage between the two ends of the resistor is V 

and a current I passes through the resistor. 

   

 

 

 

Answer:  From (2.105), we obtain the power density.  The total power loss is 

calculated from the integration of the power density over the volume 
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  2.10. Fundamentals of magnetic fields 

 The effects of magnetic fields were known for almost three millennia when 

it was discovered that certain stones would attract iron.  A large deposit of these 

stones that are called “lodestones” was found in the district of Magnesia in Asia 

Minor.  This mineral later became known as magnetite [Fe3O4] and it had some 

interesting properties. Early navigators used its north- and south- seeking 

characteristics in their early explorations.  The first scientific study of magnetism 

was written in 1600 by William Gilbert. Little else was known about it until the 

early nineteenth century when Hans Christian Oersted discovered that an electric 

current in a wire affected a magnetic compass needle. This work together with 

the later work of Ampere, Gauss, Henry, Faraday and others raised the magnetic 

field to equal partner status with the electric field. This elevation in stature was 

confirmed with the theoretical work of Maxwell. 

 In studying electric fields, we found that electric charges could be sepa-

rated from each other such that a positive charge existed independently from a 

negative charge. Would the same separation of magnetic poles exist? Would it 

be possible to cut the earth at the equator and send one-half containing one of 

the pole faces (a "magnetic monopole") to a far off region and never see that pole 

again? As of the date of the writing of this text, a magnetic monopole has not yet 

been unambiguously observed in nature. Several observatories have searched 

for these elusive entities and in one five year period, only one momentary 

deflection of a needle on a satellite had been recorded throughout the world. 

Whether this deflection was due to a real event or due to some anomaly in the 
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detector is open to question since no confirming events have ever been detected. 

The scientist who reported the particular meter deflection later stated that the 

deflection was just an anomalous result. Patience seems to be wearing thin and 

observatories have ended their campaign of "monopole sighting." Therefore, we 

see that there is a major difference between magnetic fields and electric fields.  

 Since the magnetic monopole has not been observed to exist in nature, 

we find that the magnetic field lines are continuous and do not originate nor 

terminate at a point.  The total magnetic flux in a region is usually denoted with a 

symbol Ψm and the units are Webers.  Enclosing an arbitrary point with a closed 

surface, we can mathematically express this fact by stating that 

  0=•∫ dsB  (2.106) 

 The term B that appears in this equation is the magnetic flux density.  The 

SI units of magnetic flux density are given in Tesla (T). We may also see the 

equivalent unit of (Weber / meter2) where 1 T = 1 Wb / m2. A magnetic flux 

density of one Tesla is a very large value.  For example, the equatorial magnetic 

field strength at sea level of the Earth is approximately 0.5 x 10-4 Tesla. Another 

commonly employed unit for the magnetic flux density is the Gauss where           

1 Gauss = 10-4 Tesla. 

 We can also write (2.106) in differential form by making use of the 

divergence theorem that relates a closed surface integral to a volume 

integral ∫ •dsB = ∫∆ •∇
v

dv B .  In order for the closed surface integral be equal to 0 

for any arbitrary volume ∆v, the integrand must be identically equal to 0.  

Therefore, we write 
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  0=•∇ B  (2.107) 

 Equations (2.106) and (2.107) express the fact that the magnetic field 

closes upon itself and the field and does not terminate on nor originate from an 

isolated magnetic monopole.  If we cut a bar magnet in half with the hope of 

isolating one of the poles, we will just end up with two bar magnets of smaller 

physical size – see Figure 2-23.  We can contrast the first postulate of magnetic 

fields with the first postulate of electrostatic fields 
o

v

ε
ρ

=•∇ E .  Recall that that it 

was possible to physically separate a positive charge from a negative charge.   

 

Figure 2-23.  The physical cutting of a large permanent magnet creates a 

number of smaller permanent magnets.  It is impossible to separate the North 

Pole from the South Pole of a magnet. 

 

 The second property of steady magnetic fields was discovered by Hans 

Christian Oersted in 1820.  He observed that compass needles were deflected 

when an electrical current flowed through a nearby wire and concluded that the 
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effect was due to the creation of a magnetic field by this current.  Recall our 

earlier allusion to the model of an atom that consisted of an electron circulating 

about a positive nucleus.  It was modeled as an electric dipole.  The moving 

electron can also be interpreted as being a current.  Therefore, the atom can be 

thought of as being a small electrical dipole and a small magnetic dipole.  

  

  

    

Figure 2-24. A cylindrical wire carries a current I that creates a magnetic field 

whose density is B. If the thumb of the right hand points in the direction of the 

current, then the fingers follow the magnetic field. 

 

 The results of this experiment can be described with the following equation 

  enc0Iµ=•∫ dlB  (2.108) 

where the total current that is enclosed within the closed loop is specified as Ienc. 

The constant µo is the permeability of free space. In SI units µo is defined to have 

the numerical value of 

  
m
H

meter 
henries  104 7

o ≡×π≡µ −  (2.109) 

The magnetic flux density is perpendicular to the current density and follows the 

“right hand rule” convention in that the thumb of the right hand is in the direction 

a
I  

r

B 
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of the current and the fingers are in the direction of the magnetic flux density as 

shown in Figure 2-24. 

 With this value for the permeability of free space and the value for the 

permittivity of free space that we approximated earlier in (2.6) to be 

  
m
F  10

36
1 9

o
−×

π
≈ε    (2.110) 

we may be intrigued by the numerical value that is computed from the expression 

oo

1
εµ

.  Yes, this number has the same numerical value as the velocity of light. It 

also has the dimensions of a velocity but the demonstration of this will be 

discussed later. We will also see later that this coincidence is more than fortu-

itous and it will lead to something very fundamental. 

 Equation (2.108) is called Ampere's circuital law or Ampere's law and as 

we will see, it allows us to calculate magnetic flux density in many cases where 

there is considerable symmetry.  Several examples will be described in full detail 

in the following discussion since it is one of the fundamental methods of 

calculating the magnetic flux density caused by a current. 

 Equation (2.108) can also be written in differential form but this will require 

a vector operation.  The left-hand side of (2.108) can be converted to a surface 

integral using Stokes’s theorem 

  ∫∫ ∆
•×∇=•

s
dsBdlB  (2.111) 

Therefore, after equating the two surface integrals in (2.108) and (2.111), we 

obtain  
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  ∫∫ ∆∆
•µ=•×∇

sos
dsJdsB  (2.112) 

In order for these two integrals to be equal for any arbitrary surface, the 

integrands must be equal.  This leads to 

  JB oµ=×∇  (2.113) 

This is the differential form of Ampere's law.  The integral form and the differential 

form of Ampere's law are used in electromagnetic calculations.  

 Let us determine the magnetic field using (2.108) for the wire shown in 

Figure 2.24. It will be assumed that the wire is straight, it has no bends or kinks in 

it and it is of infinite length. In this case, the magnetic field will be entirely in the 

uφ direction. We will follow the right-hand rule convention that is standard for 

determining the direction of the magnetic field in that if the current is pointing in 

the direction of the thumb of the right hand, then the magnetic flux density will be 

in the direction of the fingers.  

 The line integral in (2.108) can be easily evaluated if there is symmetry in 

the system. For the particular case of the wire shown in Figure 2-25 where 

significant cylindrical symmetry abounds, the path of the integration will follow a 

circle of radius r and the integral is written as 

  φ

π

φ π=φ•=• ∫∫ rB2rdB
2

0 φφ uudlB  (2.114) 

 The surface integral on the right side of (2.108) can also be evaluated. It is 

equal to the µo times the current that is enclosed within the surface defined by 

the same radius r given in (2.114). For the moment, we will take the radius r to be 

greater than the radius of the wire a so the total current I that flows in the wire is 
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enclosed within the surface. Hence the integral on the right side of (2.108) is just 

µoI. The magnetic flux density external to the wire is computed to be 

  
r2
IB o

π
µ

=φ  (2.115) 

 

 

 

 

 

 

Figure 2-25.  A current I passes through a cylindrical conductor.  The magnetic 

flux density is to be computed for all values of the radius r. 

 

Example 2-23MATLAB. Plot the magnetic flux density in the regions that are 

internal to the wire and external to the wire that carries a current out of the paper. 

Answer:  The magnetic field is calculated using (2.115) and is illustrated in the 

following figure.  The length of the arrows is proportional to the magnetic field 

strength. 

a
I 

r
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 Using the same technique, we can also calculate the magnetic flux density 

within the wire. The procedure is the same as was used to calculate the field 

external to the wire; we first determine the current that is enclosed within a circle 

of radius r. If the current is uniformly distributed in the wire, the current density 

that flows through the wire is 2a
I

π
=zJ . The total current that is enclosed 

within the circle whose radius is r is given by 

  I
a
rddr'r' 

a
I 2

r r'

0 r' 2

2

0s






=φ







π

=• ∫∫∫
=

=

π=φ

=φ∆
dsJ  (2.116) 
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where r' is a dummy variable of integration. Equating this enclosed current mul-

tiplied by µo with the expression given in (2.114), we finally obtain the magnetic 

flux density within the wire to be 

  







π
µ

=

















µ

π
=φ 2

o
2

o a
r

2
II

a
r

r2
1B  (2.117) 

 At the edge of the wire (r = a), the two solutions given by (2.115) and 

(2.117) agree as they must. The magnetic flux density is shown in Figure 2-26.  

At the origin (r = 0), the magnetic flux density is equal to zero since no current is 

enclosed within a circle whose radius is equal to zero. As more current is 

enclosed, the field increases until all of the current is enclosed at the edge (r = a). 

For radii greater than the radius of the wire (r > a), no additional current is 

enclosed and the field decays geometrically as 
r
1 .  

 

 

 

 

 

 

 

Figure 2-26.  The radial dependence of the magnetic flux density as calculated in 

(2-115) and (2-117) is shown.  There is a homogeneous current distribution 

within the wire. 
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Example 2-24. The center conductor of a coaxial cable carries a current Io in the 

+uz direction (out of the page) and this current returns in the outer conductor. 

Calculate the magnetic flux density both within the coaxial cable and in the region 

external to the outer conductor.  

 

 

 

 

 

 

Answer: We will apply Ampere' law (2.108) separately to each of the regions in 

the coaxial cable. Due to symmetry, the left hand side of (2.108) will always have 

the value given in (2.114): 2πrBφ. Hence, we write 

0 ≤ r ≤ a 

  
2

oo

r r'

0 r' 2
o2

0oso a
rId dr'r' 

a
IrB2 






µ=φ








π

µ=•µ=π ∫∫∫
=

=

π=φ

=φ∆φ dsJ  

  
2

Oo

a
r

r2
IB 








π
µ

=φ  

a ≤ r ≤ b 

  ooso IrB2 µ=•µ=π ∫∆φ dsJ  

  
r2
IB oo

π
µ

=φ  
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b ≤ r ≤ c 

( )
( )
( )






−
−

−µ=φ







−π

µ−µ=•µ=π ∫∫∫
=

=

π=φ

=φ∆φ 22

22

oo

r r'

br' 22
o2

0oooso bc
br1Iddr'r' 

bc
IIrB2 dsJ  

  ( )
( )






−
−

−
π

µ
=φ 22

22
oo

bc
br1

r2
IB  

r > c 

  0rB2
so =•µ=π ∫∆φ dsJ  

  0B =φ   

 

Example 2-25. Use Ampere's law to find the magnetic field of a solenoid. A 

solenoid is constructed by uniformly winding wire around a cylindrical form such 

as a broomstick.  There are N turns of wire in the length of the solenoid. Assume 

that the length d is much greater than its radius a.  

 

 

 

 

Answer: Apply Ampere's law (2.108) to the loop that encloses the current that is 

coming out of the paper. There will be four terms [1→ 2, 2→3, 3→4, 4→1] that 

will contribute to the line integral defined in (2.108).  However, we have assumed 

that dimensions of the solenoid satisfied the relation that d >> a.  This 

assumption will allow us to neglect any "fringing fields" at the two ends.  

Therefore, only two of the integrals [1 →2 and 3 → 4] will contribute to our 

x x x

•

x x x x x x 

• • • • • • • • 
a d

1 2 

4 3 
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solution. This approximation implies that there is no component of magnetic field 

in the radial direction. The closed line integral yields  

  )d2(BZ≈•∫ dB  

The surface integral gives us the current that is enclosed within the loop. Our use 

of the approximately equal sign notation can be replaced with an equal sign if the 

current that is enclosed within the loop were an infinite current carrying slab out 

of the paper. Then the integral from 1 →2 would exactly equal the integral 3 → 4. 

Since there are N wires each carrying a current I into the paper, the surface 

integral yields 

  NIoso µ=•µ ∫∆ dsJ  

 Equating these two expressions, we find that the current enclosed within 

the this loop contributes a magnetic flux density beneath the coil that also encom-

passes the z axis of  

  
d2
NIB o

z
µ

=  

We note that this magnetic field is independent of the vertical distance. 

 Following the same procedure for the current that is going into the paper in 

the top portion of the solenoid, we find that the magnetic flux density has the 

same magnitude and direction. Applying the principle of superposition, we find 

that the two fields add in the center of the solenoid and subtract in the external 

regions. 

  
d
NIB o

z
µ

=  
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A more accurate calculation shows that the internal magnetic given above is 

exact in the center of the solenoid and its value differs by 50% at the ends where 

symmetry disappears.  

 

Example 2-26. Find the magnetic flux density within a toroid, whose cross-

sectional area is A. A toroid consists of N turns of wire uniformly wrapped around 

a torus.  

 

 

 

 

 

 

 

Answer: Within a mean circumference whose length is L, there are NI amperes 

of current entering the paper. From Ampere's law (2.108), we write 

  Bφ L ≈ µo N I 

which yields 

  
L
NIB oµ=φ  

 

 In order to emphasize this point that the magnetic flux density surrounding 

a current carrying region depends only on the current that is enclosed within the 

region, we will cast Ampere's law in Lagrangian mass variables as we had 

•x• 

•

x

x

x

•
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previously cast Gauss's law for electrostatics. The current that is enclosed within 

a radius r is given by 

    ∫∫∫∫
=

=

=

=

π=φ

=φ∆
π=φ=•=

r r'

0 r' z

r r'

0 r' z

2

0senc dr'r' )(r' J2ddr'r' )(r' JI dsJ  (2.118) 

In (2.118), r' is the variable of integration and we have assumed that the current 

that depends only on the radial coordinate.  The current is flowing in the z 

direction. The integration over the angular variable φ yielded the factor of 2π. The 

differential current dIenc is given by 

                                               dIenc = 2π r Jz (r) dr      (2.119) 

 We are treating the case where the magnetic flux density depends only on 

the coordinate r and the magnetic flux density is directed in the uφ direction. 

Hence (2.113) becomes 

  )r(J
dr

dB
zoµ=

φ  (2.120) 

Applying the chain rule to (2.120) and using (2.119), we write 

  ( ) )r(J)r(rJ2
dI
dB

dr
dI

dI
dB

dr
dB

zoz
enc

enc

enc

µ=π== φφφ  

or 

  
r2dI

dB o

enc π
µ

=φ  (2.121) 

where the explicit dependence on the current density Jz(r) has disappeared. The 

integral of (2.121) is explicitly stated as  

  
r2

IB enco

π
µ

=φ  (2.122) 
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 The application of (2.122) to the Figure 2-25 leads to the following results.  

The entire current I is enclosed within a circle whose radius r > a.  Therefore, we 

obtain the same result as given in (2.115).  The fraction of the current I that is 

enclosed within a circle whose radius r < a is I
a
rI

2

enc 





= .  Therefore, we obtain 

the same result has given in (2.117).  This calculation provides an additional 

interpretation of Ampere’s law in that the current must be enclosed within the 

closed line integral.   

Example 2-27.  There are two concentric hollow metallic cylinders.  Calculate the 

magnetic flux density at all regions of space if there is a current flowing out of the 

paper in the inner cylinder and returns in the outer cylinder. 

 

Answer: The current that is enclosed for the radius r < a is equal to 0.  

Therefore, the magnetic flux density within the inner cylinder is equal to 0.  In the 

region a < r < b, there is a current Ienc = I.  From (2.122), the magnetic flux 

density in this region is equal to 
r2
IB o

π
µ

=φ .   In the region r > b, the current that is 

enclosed is again equal to 0 resulting in no magnetic flux density in this region. 

 

a 

b 
uφ
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 It should be noted that all of the calculations using Ampere’s law have 

required considerable symmetry.  Unfortunately, there will be several problems in 

which this symmetry does not exist.  In these cases, we will have to resort to 

more complicated analytical or numerical methods in order to obtain a solution for 

a particular problem.  Some of these methods will be described in the ensuing 

section. 
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  2.11. Magnetic vector potential & the  

  Biot-Savart law 

 There are several cases in practice where it is very difficult to find the 

magnetic flux density in terms of a current density.  This is particularly true if 

there are difficulties invoking the symmetry arguments required for the 

application of Ampere’s law that was discussed in the previous section.  In the 

following, we will introduce techniques to find this magnetic flux density from a 

current distribution that has an arbitrary shape.  This will be based on some 

mathematical relations and physical considerations.  This will include the 

development of a new entity called the magnetic vector potential along with a 

derivation of the Biot-Savart law. 

 The nonexistence of magnetic monopoles allowed us to write that the 

magnetic flux density satisfied (2.107), that is rewritten for convenience 

  0=•∇ B   (2.123) 

The divergence of the magnetic flux density is now specified in (2.123).  We still 

have freedom to examine other properties of it.  In particular, we will define a 

vector A such that the magnetic flux density B can be expressed as the curl of 

this vector 

  (2.124) (2.124) 

This vector will be given the symbol A and it has the units of Tesla-meter or 

Webers / meter.  This term is called the magnetic vector potential or just the 

vector potential.  The substitution of (2.124) into (2.123) leads to 

AB ×∇=
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  0=×∇•∇ A  (2.125) 

which is a repeated vector operation that was discussed in Chapter 1.4.4.  

 We will find that the magnetic flux density and the vector potential are 

somewhat similar to electric fields where it was found that the electric field could 

be obtained by taking the gradient of a scalar electric potential.  This potential 

was found in terms of an electric charge distribution.  Magnetic fields are related 

to a current density J via the differential form of Ampere’s law (2.113) 

  JB oµ=×∇  (2.126) 

Replacing the magnetic flux density using (2.124), we find that the vector 

potential can be obtained from the current density  

  JΑ 0µ=×∇×∇  (2.127) 

There is a vector relation for this repeated vector operation.  In particular, we 

write (see Appendix 1) 

  ( ) JAA 2
0µ=∇−•∇∇  (2.128) 

 A vector is determined by two vector operations, namely its curl and its 

divergence.  The curl of the vector A is specified in equation (2.124).  We now 

choose the divergence of the vector A to be equal to 0.   There are other choices 

that could be made but this will simplify our calculation.  This is called a 

“Coulomb gauge” in the physics community and it has ramifications that are 

beyond the scope of this text.  We shall let our colleagues in that community 

dwell on these finer points.  With this assumption, (2.128) simplifies to 

  JA 0
2 µ−=∇  (2.129) 
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This equation is similar to Poisson’s equation (2.61) that related and electric 

potential to a charge density.  There is, however, a very significant difference in 

that (2.129) is a vector equation.  However, the vector potential A is in the same 

direction as the current density J.  This means that there is a separate Poisson’s 

type scalar equation for each component of the vector.  Frequently the current is 

flowing in only one direction which means that there will be only one component 

of the vector potential.  We will find that there may be certain advantages in using 

this intermediate calculation.  This is shown in Figure 2-27. 

Figure 2-27. The orientation of the magnetic vector potential A(r) and magnetic 

flux density B(r) that surrounds a current element J(r’) is depicted. 

 

 In Cartesian coordinates, (2.129) is written as 

  X0X
2 JµA −=∇ , Y0Y

2 JµA −=∇  , and Z0Z
2 JµA −=∇  (2.130) 

We can make use of the knowledge that we have gained from electrostatic fields 

and write down the solution for each of the components in (2.130).   

 In analogy with the electric potential (2.62), we write the solution for the 

vector potential as  

R
J 

A 

B r r' 



Magnetic vector potential & the Biot-Savart law 

 190 

  ( ) ( ) 'dv
R4 v

o ∫
∆π

µ
=

r'JrA  (2.131) 

 
where ( ) 222 )'zz()'yy('xxR −+−+−= is the distance between the current 

element in the point where the vector potential is to be evaluated.   The 

integration is to be performed over the volume ∆v that contains the current 

density.  Equation (2.131) is a vector equation that represents three scalar 

equations for the three components of the current density.  This is illustrated in 

Figure 2-27 where the vectors r and r’ are directed to the vector potential and the 

current density respectively.  The magnitude of the distance between these two 

vectors is given by R = | r – r’ |. 

Example 2-28. Find the vector potential A and the magnetic flux density B 

caused by a length 2a of current I = I uz at the midpoint of the line. 

  

 

 

 

 

 

Answer: Since the magnetic flux density is to be determined at the midpoint of 

the line, we can invoke the argument of symmetry and to the calculation 

analytically.  The vector potential at a distance R from the wire is found from 

(2.131). The volume integral becomes a line integral since we will assume that 

I

R

r

z' 2a 

dz'
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the current is uniformly distributed over the cross section of the wire. This states 

that 

  J dv' = J (ds') (dz') = I dz' uz 

The integral (2.131) becomes 

  










−+

++
π

µ
=

+π
µ

= ∫− ara
ara ln 

4
I

r'z
'dz

4
I

22

22
oa

a 22

o
zz uuA  

The magnetic flux density is computed from AB ×∇= . Note that the vector      

potential has only a uz component that depends only on the variable r. From the 

definition of the curl operation in cylindrical coordinates (see Appendix 1), the 

only nonzero contribution comes from the term 
r

A z

∂
∂

− φu . Therefore, the 

magnetic field due to a finite length current carrying wire is equal to 

  










+π
µ

= φ 22

o

ra
a

r2
IuB  

In the limit of an extremely long wire such that a >> r, the term within the brackets 

approaches 1 and this results in 

  r2
Io

π
µ

= φuB  

This is the value that we previously obtained using Ampere’s law (2.115). 

 

 Let us substitute the integral for the vector potential (2.131) into the       

expression for the magnetic flux density (2.124)  

  ( ) ( )








π

µ
×∇=×∇= ∫

∆

'dv
R4

    )(
v

o r'JrArB  (2.132) 
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It is desired to compute the vector potential at a location that is different from 

where the current distribution exists. This means that the curl operation required 

to determine the magnetic flux density will be performed at  the  field  point  of    

interest  and  it  is  somewhat  independent  of  where   the   current   element   is  

located (source point) except through the terms that appear in the distance R.  

 

 

   

 

      

        

 

Figure 2-28. Orientation of a current element in one coordinate system and the 

resulting vector potential in another coordinate system is shown.   

 

 Hence, we can think that there are two coordinate systems that exist and 

are independent of each other and indicate these coordinates as r and r’.  This 

will allow the curl operation to pass through the integral in (2.132) which is 

required when computing the magnetic field 

  ( )
∫
∆







×∇

π
µ

=
v

o 'dv
R4

 )( r'JrB  (2.133) 

 This can be further simplified using the vector identity that relates the curl 

of a vector times a scalar quantity, both of which are spatially varying, to be (see 

Appendix 1) 
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  ( ) βββ ×∇α+×α∇=α×∇  (2.134) 

In (2.134), α is a scalar and β is a vector. Applying the vector identity (2.134) to 

(2.133), we identify these terms as 

  
R
1

=α  and )J(r'β =  

Since the current is assumed to be in a coordinate system that is different from 

the system of the curl operation, 0=×∇ )J(r' .  Therefore, we obtain 

      ( ) ( ) ( )
∫∫∫
∆∆∆

×
π

µ
=×

π
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=×
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=
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o
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o 'dv
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'

4
'dv'

R4
- 'dv'

R
1

4
 )( RR urJrJurJrB  (2.135) 

The operation which is a derivative at the field point (unprimed coordinates) can 

be simplified with the relations that 

  2RR
1 Ru

−=





∇  

and the vector product property that 

   α x β = - β x α 

have also been employed in the effecting this derivation. The unit vector uR is in 

the direction from the current element to the location where the magnetic field is 

to be computed. 

 If the current is localized to pass through a wire, it is possible to simplify 

the volume integral given in (2.135) to read 

  ∫
×

π
µ

= 2
o

R
'I

4
  )( RudlrB  (2.136) 

Note that a closed line integral has been used since the current in a wire has to 

pass through a closed loop, say from one battery terminal through a wire and 
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back into the battery through the other terminal. Equation (2.136) is called the 

Biot-Savart law. 

Example 2-29. Use the Biot-Savart law to find the magnetic flux density from a 

finite length of line with a current element I dl' = I dz' uz at the midpoint of the 

line.  

 

 

 

   

 

   

Answer: Before setting up the integral, let us first perform this vector product 

where each term can be clearly identified 

  
φ2222 'zr

'rdz
'zr

'zr'dz' uuuuudl zr
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=
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×=×

 

Note the "-" sign in one of the terms of the unit vector. We have to be careful that 

we follow the path from the current element to the point of observation. Hence, 

the magnetic flux density can be calculated using the Biot-Savart law (2.136) 

from which we write 

  
( )∫− φ
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This integral can be performed analytically by a substitution θtanr'z =  to finally 

yield 
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As expected, this is the same result that was obtained in Example 2-28 although 

the integral here is more complicated. 

 

Example 2-30. Find the magnetic field on the axis that is perpendicular to the 

plane containing a circular loop of current. Use the Biot-Savart law.  

 

 

 

 

      

Answer: We must first identify the terms that appear in the Biot-Savart law 

(2.136).  We write dl’ = a dφ’ uφ, R = -a ur + z uz, and 22 zaR += .  Therefore, 

we write 
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Due to symmetry, the term with the unit vector ur will contribute zero to the    

magnetic field. The integration is performed along the path of the wire and yields 

a vector of 2π 
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This result has been written to incorporate the area enclosed within the current 

loop. 

  

 We will define the magnetic dipole moment as m = Iπa
2 

uz. The magnitude 

of the magnetic dipole moment equals the current I, carried by the wire that forms 

the circumference of the loop, times the area enclosed within the loop πa2. The 

unit vector is normal to the surface area of the loop using the right hand 

convention.  

 This current loop in Example 2-29 is in agreement with the simple model of 

an atom that considers an atom to have a positive nucleus and an electron that 

revolves about the nucleus at a fixed radius a. This is usually called a magnetic 

dipole.  We remember an earlier model described in Example 2-11 that 

considered that the atom to be an electric dipole.  This leads to a certain analogy 

between the electric field intensity E and the magnetic flux density B in that the 

electric dipole moment p is similar to the magnetic dipole moment m.  Both 

involve a volume integration of either an electric charge density or an electric 

current density.  In addition, both fields can be obtained from a vector 

differentiation of a potential, either a scalar potential for the electric field intensity 

or a vector potential for the magnetic flux density.  

 We have encountered three analytical methods to find the magnetic flux 

density at a point in space from a current element:  

 (1) Application of Ampere's circuital law which requires considerable 

symmetry. 
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 (2) Determination of the vector potential and the calculation of a magnetic 

flux density from the vector potential which does not impose the requirement of 

symmetry. 

 (3) Application of the Biot-Savart law which also does not impose the 

requirement of symmetry.  

 The particular problem that faces us in the future will dictate which 

approach we should follow.  Numerical methods are frequently employed in 

practice to obtain the magnetic flux density in complicated geometries such as 

may be found in an electric motor or an electric generator.  In fact, there are 

commercial products that have been developed to perform these calculations 

since they are so widely used.  

 



Magnetic forces 

 198

  2.12. Magnetic forces 

 The first statement that we made regarding the behavior of stationary 

charged particles concerned the Coulomb force that existed between the parti-

cles. The force was created upon a stationary particle that had a charge q if the 

particle were in an electric field E. This force is given by 

                                               EF qelectric =  (2.137) 

If the particle were in motion with a constant velocity v within a region that only 

contained an electric field, the particle would still experience the force that is 

given in equation (2.137).  

 

 

 

                                                                               

Figure 2-29. Charged particles entering a region containing a uniform magnetic 

field are deflected according to equation (2.138). The right hand rule determines 

the direction of the force on charge.  This direction will be in the opposite 

directions depending upon the sign of the charge. 

 

 However, if the particle is in motion with a velocity v in a region that 

contains only a magnetic field whose density is B, the force that acts upon the 

particle is given by 

F+

F-

V 
 

B
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                                           ( )BvF ×= qmagnetic  (2.138) 

The resulting magnetic force F is perpendicular to both the magnetic flux density 

B and to the velocity v of the particle and this is expressed with the vector 

product.   In Figure 2-29, this magnetic force on a positively charged particle and 

a negatively charged particle in a region of uniform magnetic field is illustrated. 

Since the sign of the charge of these two particles is different, the resulting forces 

will be in the opposite directions. If the charged particle moves with a uniform 

velocity v through a uniform electric and magnetic field, the force is given by 

  (2.139) 

This force which is the sum of the electrostatic and the magnetostatic forces is 

given the name "Lorentz force." 

 

 

 

 

 

 

Figure 2-30.  A charged particle moving with a constant velocity in a uniform 

magnetic field experiences a magnetic force that causes the particle to follow a 

circular trajectory.  This figure would correspond to either a positively charged 

particle with the magnetic field coming out of the page or a negatively charged 

particle with the magnetic field going into the page. 

 

rj 
v 

F 

( )BvEF ×+=q
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 In a region where the electric field is equal to zero, the charged particles 

will continue to experience the magnetic force given in (2.138). The resulting 

motion of the particles will be in a circular orbit as shown in Figure 2-30. It is 

possible to find the radius of curvature of the motion for the charged particles as 

will be demonstrated in the following discussion. The particle that has a mass Mj 

will experience a centripetal force whose magnitude is given by 

  
j

2
j

jjjj r
v

MaMF ==            (2.140) 

where rj is the radius of curvature and 
j

2
j

j r
v

a =  is the acceleration of the jth parti-

cle. The subscript j refers to the particular particle; j = “-“ for the negatively 

charged particles and j = “+” for the positively charged particles.  The positively 

charged particles could be singly charged or multiply charged positive ions.  The 

negatively charged particles could either be electrons or ions to which one or 

more electrons have become attached, thus creating negative ions.  In either 

case, the radius of curvature of the trajectory depends on the mass of the 

particle.  The magnitude of the force caused by the magnetic field is given from 

(2.138) as 

                                                          BqvF jmagnetic =   (2.141) 

 Equating the two forces given in (2.140) and (2.141) and solving for the 

radius of curvature rj for the particle with the subscript j, we obtain 

  
qB

vM
r jj

j =  (2.142) 
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This radius is called the Larmor radius or gyroradius of the charged particle.  We 

note that the Larmor radius for the electrons moving with the same velocity 

through the same magnetic field as the ions will be significantly less than that for 

the protons due to the mass difference of  

  





×






=

number atomic
1

1836
1

M
m

i

e  (2.143) 

 The mass dependence of the Larmor radius suggests that it can be used 

as a diagnostic tool in order to determine the mass of an unknown material. After 

ionizing the unknown material and passing all of the ions through a uniform 

magnetic field with the same velocity v, the ions can be collected in a juxtaposed 

series of collectors. The location of each collector is determined by the Larmor 

radius of the different elements and the presence or absence of ions in each 

collector can be monitored. We can include effects of an ion having more than a 

single charge also. Such a device is called a mass spectrometer.  This has also 

been used to separate various isotopes from each other. 

Example 2-31. Calculate the Larmor radius for an electron and an argon ion that 

pass through a magnetic field of 0.01 T. Both particles have been accelerated 

through a potential difference of one volt. 

Answer: Before calculating the Larmor radius for either particle, the velocity of 

each particle must be computed. Since the particles have gained an energy of 

qe∆V = 1 eV = 1.602 x 10-19J, this energy will appear as kinetic energy and we 

wherite 
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The atomic number of argon is 40 yielding a ratio of the masses to be  

   





×






=

40
1

1836
1

M
m

Ar

e    

The Larmor radius for the electron is found from (2.142) to be 
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The velocity of the argon ion can be expressed in terms of the electron velocity 

  e
Ar

e

e

e

Ar

e
Ar v

M
m

m
Vq2

M
mv =

∆
=  

Therefore, the Larmor radius for the argon ion is found from (2.142) which can 

also be expressed in terms of the electron Larmor radius 
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A comparison on the two Larmor radii indicates that the electrons are closely 

“tied” to the magnetic field lines and the ions are not.  In several applications, the 

electrons are said to be “magnetized” and the ions are “unmagnetized.” 
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Figure 2-31.  A positive charge moving a distance dl with a constant velocity v in 

a region containing a uniform magnetic flux density B is illustrated. 

  

       It is interesting at this time to calculate the work that is performed by the 

charged particle as it passes through the region of magnetic field. Recall that this 

work ∆W is computed from the line integral 

  ∫ •=∆
b

a
W dlF  (2.144) 

As shown in Figure 2-31and from equation (2.138), we find that the force is 

perpendicular to the direction that it travels.  This implies that the work that is 

computed from (2-144) will be zero. 

Example 2-32.  Show that the incremental work ∆W performed in moving a 

positive charge Q with a velocity v = voux an incremental distance ∆xux through 

a uniform magnetic field B = Bouy is equal to zero. 

 

 

 

 

 

Answer: From (2.144) and (2.138), we write 

B

F v x 

y 

z 

B

F
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( )

( ) ( )[ ] 0BQvxBvQ
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The term within the square brackets is identically equal to 0.  

 

 Earth and several of the other planets are examples which illustrate the 

effects of this force field upon charged-particle motion. See Figure 2-32.  

Particles are created by the collision of high-energy cosmic rays with low energy 

particles near the Earth as well as by complex acceleration processes due the 

interaction of the solar wind (a stream of ionized particles flowing from the Sun) 

and the Earth’s magnetic field.  These charged particles are trapped in the 

Earth’s magnetic field. This entrapped region is called a radiation belt.  As 

determined by the passage of the Voyager spacecraft on its more than twelve 

year journey from Earth into the far reaches of the solar system, several planets1 

have magnetic fields that capture these charged particles coming from the sun.  

Since we might expect that there are almost an equal number of electrons and 

positively charged ions in this region, there is electrical neutrality and this 

charged particle fluid is called a "plasma."  The Earth's radiation belt is called the 

Van Allen belt in honor of Professor James Van Allen who originally discovered 

its existence using the satellite “Explorer 1” in 1958. 

 

 

                                                 
 1 Voyager confirmed the presence of radiation belts at the planets: Jupiter, Saturn, Uranus and Neptune.  
Within the sensitivity limits of the instruments, no radiation belts were detected at Venus and at Mars.  This 
is indicative of the presence or absence of a magnetic field at these planets.  Magnetic fields at Pluto are as 
yet unknown.  The satellite is approaching the edge of the solar system in 2003. 
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           (a)  

(b) 
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Figure 2-33. (a) Schematic representation of the radiation belt. The first 

experimental detection of these charged particles was made on the satellite 

Explorer 1 in 1958.  

(b) A global view of Earth as observed from the Polar Visible Imaging System 

(VIS). This is an image of Earth's Aurora Borealis, Northern Auroral Oval or 

Northern Lights in the ultraviolet spectrum superposed on an image of Earth's 

surface for 25 March 1996.  A similar picture could be taken over the South Pole 

where it is called Aurora Australis, or Southern Lights.  Courtesy of  L. A. Frank, 

J. B. Sigwarth, The University of Iowa, and NASA/Goddard Space Flight Center. 

 

 At the start of this section, we wrote the force on a charged particle that 

passed through a uniform magnetic flux density B in equation (2.138).   A   

differential   charge dQ = ρv dv moving with a constant velocity constitutes a cur-

rent. If this current flows in a closed path, (2.138) can be written as 

 ( ) ( ) BdlBJBvBv ×=×=×ρ=×= I)dl)(ds(dvdQdF Vmagnetic   (2.145) 

The total force F is computed by integrating the differential force over the path 

  ∫ ×−= dlBFmagnetic I  (2.146) 

where the “-“ arises from the inversion of the vector product.   

 If we assume that the magnetic flux density is a constant, the magnetic 

flux density can be taken outside of the integral sign.  This leads to the closed 

line integral ∫dl  which is equal to zero.  This states that a closed loop will not 

move in a linear direction.  If the magnetic field is not uniform in space, then the 

net force will not necessarily be equal to zero.  Although the net translational 
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force in a uniform magnetic field is equal to zero, there may be a torque that acts 

on the loop and causes it to rotate about an axis.  

 Before examining the torque that will exist on the loop, let us first examine 

the force that exists between two parallel wires, each of which carries a current 

as shown in Figure 2-33. We are going to calculate the force that exists between 

these two wires. Before presenting the formal derivation, let us postulate certain 

properties of the force that may exist on the two wires. Let the two wires lie in the 

xz plane. In the first case, the currents are going in the same direction as shown 

in Figure 2-33a.  The magnetic field created by wire 1 will be directed in the +uy 

direction at the location of wire 2. The force on wire 2 as computed from (2.146) 

will be in the direction given by zy2 uuF 2dlIB ×−=  or in the -ux direction. This 

states that wire 2 will be attracted to wire 1. Similarly, the force on wire 1 caused 

by the magnetic field created by wire 2 will cause wire 1 to be attracted to wire 2.  

If the currents going in the opposite directions as depicted in Figure 2-33b, the 

magnetic force given in (2.146) will be in the direction that will cause the wires to 

be repelled from each other. 
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Figure 2-33. Currents are flowing through two parallel wires.  (a) The current in 

both wires is flowing in the same direction (attraction).  (b) The current in both 

wires is flowing in the opposite direction (repulsion). 

 

 These forces can also be argued from the following point of view. In the 

region between the two wires in Figure 2-33a, the magnetic fields caused by the 

two wires oppose each other will therefore cancel. The magnetic fields will add in 

the regions external to this separation region. Hence we could think that there is 

a "pressure" on the wires to fill in this region since there is an old world axiom 

that "nature abhors a vacuum."   The same argument could also be applied in 

describing the force for the situation depicted in Figure 2-33b were the 

cancellation of the magnetic fields occurs in the region external to the two wires. 

Example 2-33 A lightning rod is a device that provides an attractive path through 

a wire for lightning to discharge so that a building is hopefully protected. In order 

to attract the lightning to the rod, the path must originally have a low resistance. 

I1dl1
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However, after the lightning stroke starts to discharge through this rod, the 

resistance should suddenly increase in order to protect the rod so it can survive 

to another day. Discuss how this could be done with inexpensive parts.  

 

 

 

 

 

 

Answer: The lightning stroke will discharge through the shortest path between 

the two metal conductors as shown in (a). This discharge will act like a variable 

length conductor and will create a local magnetic field between the two metal 

conductors as depicted in (b). The direction of the resulting force (I dl x B from 

(2.145)) will cause this  arc to move to the right where the path length becomes 

longer. Since the path length increases with motion of the arc to the right, the re-

sistance will also increase. This device is called a lightning arrestor. The mecha-

nism described here is also used in a device called a rail gun that may have ap-

plications of spewing forth "plasma bullets." Movie aficionados should also 

recognize the Jacob's ladders that appear in the laboratory of the old Dr. 

Frankenstein movies. 
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 Now let us calculate the force between the two parallel current carrying 

wires depicted in Figure 2-33 more formally. The magnetic field that should be 

incorporated into the force equation (2.146) is determined from the Biot-Savart 

law (2.136).  We write for the force on wire 1 caused by the magnetic field cre-

ated by the current in wire 2 using the notation 

  ∫ ×−=
1L1I 11212 dlBF  (2.147) 

From the Biot-Savart law, we find that the magnetic flux density at wire 1 caused 

by the current in wire 2 is given by 

  ∫
×

π
µ

=
2

21

L 2
21

2o
12 R4

I - 2R dlu
B  (2.148) 

Substitute (2.148) into (2.147) and derive this force, which is called Ampere's 

force , as 

  
( )

∫ ∫
××

π
µ

=
1 2

21

L L 2
21

21o
12 R4

II 12R dldlu
F       (2.149) 

The force on wire 2 can be computed by merely interchanging the subscripts 1 

and 2.  

 In writing (2.149), we might be tempted to compare the force given by this 

equation with the Coulomb force equation given in (2.2). There are obvious 

similarities in that the force is proportional to the magnitudes I1dl1 and I2dl2 or Q1 

and Q2 for Coulomb's law. Both equations are inversely proportional to the 

square of the separation distance. This is similar to the gravitational force 

between two objects in that it is proportional to the masses on the two objects 

divided by the separation distance between them.  Closed line integrals are used 
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in (2.149) since one cannot experimentally construct isolated current elements. 

For the two infinite parallel wires depicted in Figure 2-33, they are closed at the 

place we call infinity. 

 

 

 

 

 

 

Figure 2-34. A rectangular current loop is inserted in a uniform magnetic field. 

The current in the loop flows in the counterclockwise direction. 

 

 Consider a current carrying loop of wire as shown in Figure 2-34.  We will 

assume, for simplicity, that B = Bo uz.  The separation distance between the two 

wires that our closest to the x axis can be assumed to be infinitesimally small.  

We can consider that two parallel wires that each carries a current in the opposite 

direction.  In addition, the other two wires also carry a current in the opposite 

directions.  In Figure 2-33, it was shown that two parallel wires that carry currents 

in the opposite directions will have a repulsive force.  Therefore, the net force on 

this closed loop will be equal to the sum of all these forces which is equal to 0.  

This implies that there will be no net translation of this closed loop in any 

direction. 
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Example 2-34.  Formally demonstrate that the sum of the forces acting on the 

rectangular loop shown and Figure 2-34 is identically equal to 0 which implies 

that this loop will not translate in any direction. 

Answer: The magnetic flux density is B = Bouz.  Using the definition of the 

magnetic force given in (2.146), we write the sum of the forces that act on the 

four sides as  
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Recall that the sign of the integral is determined by the limits of the integration.  

 

   

 

 

 

 

 

Figure 2-35.  Two of the edges of the rectangular loop rotate across the 

magnetic field while the other two are in the plane of the magnetic field and are 

unaffected by it.   

 

 Although the summation of the forces is equal to 0, there will be a torque 

on the loop that will cause it to rotate. The forces on wires 1 and 3 are in the 

θ 
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opposite directions as shown in Figure 2-35. If the normal to the cross section of 

the loop is at a slight angle θ with respect to the applied magnetic field, this 

torque acting upon the loop can be calculated.  In order to calculate the torque, 

we assume that loop is constrained to rotate about one axis only for simplicity. 

The torque on the loop is given by 

  





 ∆θ+






 ∆θ=

2
y  sin F

2
y  sin Ftorque 31  (2.150) 

where  

  x B IF andx  B IF o3o1 ∆=∆=  

This leads to 

  ( ) θ∆∆= sinyxIBtorque 0  (2.151) 

 The area of the loop is equal to nus y)x( ∆∆=∆  where the unit vector is 

normal to the surface area.  If we multiply this area by the current I, we can 

recognize this is a representation for the magnetic dipole moment that was 

described in Example 2-30.  Finally, we are able to write (2.151) in vector 

notation as 

  BmT ×=  (2.152) 

where FRT ×=  (N-m) is the torque causing the rectangular loop to rotate about 

its axis as shown in Figure 2-36.  We have made liberal use of the definition of 

the magnetic dipole moment in that we have replaced a circular loop with a 

rectangular loop.  This will have a dramatic effect when we consider the magnetic 

properties of materials.   
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Figure 2-36. Definition of the torque T in terms of the force F and the lever arm 

R. 
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  2.13. Magnetic materials 

 Having determined the magnetic field from a current carrying loop that 

could, in some sense, approximate an atom, we will now investigate the charac-

teristics of a material made of a very large number of atoms and their corre-

sponding magnetic dipoles. These dipoles will be assumed to be oriented 

randomly at the start of this discussion as shown in Figure 2-37. In addition to the 

magnetic dipole moments created by the electron orbiting about the positive 

nucleus, the electron by spinning about its own axis creates a magnetic field.  

The electron spins on its own axis but this is a topic that we do not have to 

understand here. 

 

 

 

 

 

Figure 2-37. Random orientation of magnetic dipoles in a material.   

 

 The question that will now be answered is, "What will happen to these 

magnetic fields from individual atoms if an external magnetic field is applied to 

the material?" The answer depends on the type of material that is being consid-

ered. There are three classes of materials that should be considered and the 

classification is based on the reorientation of the magnetic dipoles under the in-

fluence of an external magnetic field.  

 In the first class of materials, the magnetic dipoles get reoriented such that 

their magnetic dipole moments m are in slight opposition to the applied magnetic 

field B.  Under the influence of no external magnetic field, the atom's magnetic 
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moment that is created by the electron rotating about the positive nucleus 

cancels the magnetic field created by the spin of the electron. The application of 

the external magnetic field perturbs the velocities of the orbiting electrons. Hence 

a small magnetic moment for the atom is created that according to Lenz's law will 

oppose the applied magnetic field. Lenz's law will later be discussed in detail. A 

dimensionless parameter that measures this reorientation is called the magnetic 
susceptibility and the symbol is χ

m
. For this class of materials, it is usually very 

small and it is negative.  A typical value for χ
m
 is of the order of χ

m
 ≈ -10- 5. This 

class of materials is called a diamagnetic material. Examples of a diamagnetic 

material include bismuth, copper, diamond, germanium, gold, lead, mercury, 

silicon, silver and several inert gases. These materials exhibit no permanent 

magnetic field. 

 In the second class of materials, the magnetic moments created by the 

orbiting electrons and the spinning electrons do not completely cancel leaving the 

atom with a small net magnetic moment. The application of an external magnetic 

field tends to align these magnetic moments in the direction of the applied 

magnetic field. This effect is also very small and nonpermanent. In this case, the 
magnetic susceptibility is small and positive (of the order of χ

m ≈ +10-5). These 

materials are called paramagnetic materials and examples of these materials 

include aluminum, magnesium, oxygen, titanium, tungsten and yttrium oxide. 
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Figure 2-38. Domain structure of a ferromagnetic specimen is illustrated.  The 

magnetic moments of all of the atoms in our domain are pointed in the same 

direction. 

 

 The third class of magnetic materials is called a ferromagnetic material 

and it requires a different explanation. The materials that are in this class; iron, 
nickel and cobalt have χ

m
 ≈ 250 for nickel to χ

m
 ≈ 4,000 for pure iron.  There are 

special alloys having χ
m having values up to 100,000. The explanation, that has 

experimental confirmation, is that a ferromagnetic material consists of domains; 

whose dimensions range from a few microns to 1 mm and that contain 

approximately 1015 to 1016 atoms. Each domain has all of the magnetic moments 

aligned in the same direction in the absence of an applied magnetic field as 

shown in Figure 2-38. Separating one domain from the adjacent domain is a 

transition of approximately 100 atom thickness that is called a domain wall.  The 

net magnetization of the randomly oriented domains is zero. 

 Under the influence of an external magnetic field, the domains that have 

their magnetic fields aligned with the applied field grow at the expense of the 

other domains. If the applied field is small, this process can be reversed, that is, it 

can be made to forget its past history. However, if the applied field is strong, the 

domains rotate in the direction of the applied field and the process becomes 

irreversible in that the domain remembers its past orientation. This memory is 

useful in computer applications where the storage of information in various 

electronic components is important.  

 Before illustrating this process, we have to introduce the concept of mag-

netization of a material. The domains in the ferromagnetic material or the atoms 

in a diamagnetic or paramagnetic material each possess a magnetic moment that 
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we will label as mj.  It turns out that a ferromagnetic material will become a 

paramagnetic material if the temperature increases above some value that is 

called the Curie temperature.  Fortunately, we will attempt to stay below this 

temperature in the following discussion.  The total magnetization M that is the 

magnetic dipole moment per unit volume of a material in a volume ∆V is defined 

as 

  ∑
=

=∆→∆
≡

nj

1jv
1

0v
lim

jm  (2.153) 

Its units are (A.m2) / m3 = (A / m). This magnetization M creates a current Im that 

is bound to the domain of the atom. We can write an Ampere's circuital law for 

the domain or the atom as 
  ∫∫ ∆

•=•=
smI dsJdl m  (2.154) 

In this integral, we have set the closed line integral of the magnetization M equal 

to the magnetization current Im that is enclosed within this loop. This is not the 

real current I that you would draw from a battery. We, however, can analyze its 

effects. From Stokes's theorem, we write 
  ∫∫ ∆∆

•=•×∇
ss

dsJdsM m  (2.155) 

Therefore, the magnetization can be related to this magnetization current. Since 

the two integrands must be equal for (2.155) to be valid over any arbitrary sur-

face ∆s, we obtain 

  mJM =×∇  (2.156) 

 Let us add the magnetization current density to the current density that 

was used in the differential form of Ampere’s law (2.113) and write 

  MJJJB m ×∇+=+=×∇
µo

1  (2.157) 

This can be rewritten as  

  JMB
o

=







−

µ
×∇

µo

1  (2.158) 
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 We now define a new fundamental quantity, the magnetic field intensity  H: 

    MBH
o

−
µ

=  (2.159) 

with units  (A / m). Ampere's circuital law can then be written as  
  encI=•∫ dlH  (2.160) 

This states that a magnetic field intensity or "H field " can be created with a real 

applied current and it is independent of whether a material is within the vicinity. 

Recall that this property is similar to the displacement flux density being 

independent of the dielectric.  In a vacuum, the magnetization M is equal to zero 

and the magnetic flux density is directly proportional to the magnetic field in-

tensity. In magnetic materials, the magnetization is related to H and we can let   
M = χ

m
H where χ

m
 is the magnetic susceptibility. Equation (2.159) can be written 

as 

  HHHB µ=µµ=χ+µ= romo )1(  (2.161) 

where µr is the relative permeability of the material.  Except for the ferromagnetic 

materials iron, nickel, and cobalt, it is justified to assume that the relative 

permeability is equal to 1.  The values for several materials are included in 

Appendix 3. 

Example 2-35. A magnetic flux density of B = 0.05 T appears in a magnetic 

material with µr = 50. Find the magnetic susceptibility χm and the magnetic field 

intensity H. 

Answer: The magnetic susceptibility χm is given by  

  χm = µr - 1 = 50 - 1 = 49 

The magnetic field intensity H is computed from 

   A/m796
10450

05.0BH 7
or

=
×π×

=
µµ

=
−
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 In addition to having a large numerical value, the ferromagnetic materials 

also has a hysteresis behavior in that the dependence of the magnetic flux 

density on the magnetic field intensity is nonlinear.  In addition, it remembers its 

previous value and the direction in which it reached that value. This can best be 

described from an examination of Figure 2-39a.  In this figure, a sketch of the 

magnetic flux density B that could be obtained from an experimental 

measurement is plotted as a function of the magnetic field intensity H.  The latter 

quantity starts at a value of H = 0 and increases as the magnetic flux density is 

measured.  Initially, there is a linear increase in the magnetic flux density. 

 Let us start at the origin and slowly increase the magnetic field intensity H. 

This magnetic field intensity could be computed from (2.161) or measured in an 

experiment by uniformly wrapping a wire around a ferromagnetic material that is 

connected to a variable current supply. At small values of H, the magnetic flux 

density B will increase proportionally with H. As the value of H is further in-

creased, almost complete domain rotation and domain wall motion will have oc-

curred and a state of saturation will be achieved. If we now reduce the H field and 

eventually change its direction, the corresponding value of B does not follow the 

initial curve but follows a different path. This phenomenon is called hysteresis  

that follows from the Greek word meaning "to lag." Even at a value of H = 0, 

there will be a residual magnetic flux density. Eventually a saturation region will 

be achieved in the opposite direction. Reducing H and reversing its direction 

eventually brings us back to the original saturation point. From this curve, we 

note that the relative permeability µr depends on the value of H. Frequently, aver-

age values are used in practice and several of these values are included in 

Appendix 3. This total curve is called a hysteresis curve. 
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Figure 2-39. (a) Hysteresis curve in the B-H plane for a ferromagnetic material.  

The curve starts at the origin following curve 1 until it saturates.  The curve 2 

corresponds to decreasing values of H until it again saturates.  The curved 3 

corresponds to increasing values of H. (b) Idealized hysteresis curve useful for 

computer memories. 

 

 Since the magnetic material remembers the magnitude and the direction 

of the magnetic flux density (B > 0 or B < 0) at H = 0, it can be used as a memory 

element in a logic circuit. The critical factor that determines these values is the 

direction of the change of H, hence whether some current is flowing in one di-

rection or the other. Engineers and scientists who work with materials can and 

are able to optimize the hysteresis curve by making it almost rectangular in 

shape as shown in Figure 2-39b. This is of particular interest in computer 

applications such as a magnetic memory device.  Other requirements may 

dictate the size of the hysteresis curve. 
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H H 
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   2.14. Magnetic circuits 
 Because the relative permeability of ferromagnetic materials is much 

higher than the ambient regions in which they may be located, we can use this 

property to confine magnetic fields. This is similar to electric currents being con-

fined by or actually flowing through conducting materials instead of the sur-

rounding air since the conductivity of the conductor is so much higher than the 

air. There are quantities in magnetic circuits that are similar to the voltages, cur-

rents and resistances that we find in the electric circuits. Much of the well-devel-

oped power and knowledge that we may already possess from previous courses 

in circuit theory can be brought to bear upon magnetic circuits. In   particular, 

Kirchhoff's laws will apply as will be shown below. There is, however, one fly in 

the ointment. Although it is not a bad approximation to assume that the 

conductivity of the wire used in electric circuits is a constant that is independent 

of the amplitude or direction of the flow of the current, one has to be more careful 

in dealing with magnetic circuits. From the hysteresis curve shown in Figure 2-

39a, we note that we have to be concerned not only with the amplitude but also 

with the direction of the flow of the magnetic flux when selecting an average 

value for a relative permeability that may be used in the calculation of a magnetic 

circuit. 

 In order to demonstrate this concept, we will examine the magnetic circuits 

shown in Figure 2-40. There are N turns of wire that are wrapped around an iron 

core that has a relative permeability µr >> 1. Hence, we may assume with a 

reasonable justification that the magnetic fields are confined within the magnetic 

material just as we considered that the electric current to be confined within the 

high conductivity wire in an electric circuit. If we were to compare the ratios of the 

relative permeability of the magnetic material to the external region and the 
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relative conductivity of the wire to the external region, and the efficacy of using 

magnetic and electric circuit theory can be justified.  

 There is an additional assumption that is made concerning the very small 

gap that exists in the ferromagnetic material.  The assumption is to assume that 

the cross-sectional area of the gap is identical with the cross-sectional area of 

the magnetic material.  This implies that there is no fringing magnetic field.  In 

addition, the magnetic flux is uniformly distributed within the cross-sectional area 

of the iron resulting in a constant magnetic flux density in the gap.  In addition, 

we approximate the integration path of the closed line integral by assuming that it 

passes through the center of the iron - gap structure.  

 

 

 

 

 

 

 

 

 

Figure 2-40. (a) A magnetic circuit. A mean length within the iron region is L and 

the gap length is g. The cross-sectional area of the iron is A = a x b. (b) 

Equivalent circuit for the magnetic circuit where F is the magneto motive force, 

Riron is the reluctance of the iron, and Rgap is the reluctance of the gap. 
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N turns F 

Riron 

Rgap 
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 Let us apply Ampere's circuital law (2.108) to the magnetic circuit shown in 

Figure 2-40. Since the path is understood, we can eliminate the vector notation 

and write 

                                                     H (L + g) = Ienc = NI (2.162) 

Since there are N turns of wire, the current that is enclosed within this closed 

path Ienc = NI. In this magnetic circuit, the total magnetic flux Ψm passes through 

the magnetic circuit. This magnetic flux is defined as Ψm = B x A where A = a x b 

is the cross-sectional area of the iron. The magnetic flux density B is related to 

the magnetic field intensity H through the relation that B = µoµrH. Therefore, 

(2.162) can be written as 

  NI
A

g
A

LgBLB
oro

m
oro

=







µ

+
µµ

Ψ=
µ

+
µµ

 (2.163) 

 The term NI plays the role of a magneto-motive force (mmf) and it will be 

given the symbol F It has the units of "ampere-turns" and it creates the magnetic 

flux Ψm.  The source of the mmf is external to the magnetic circuit. Therefore, we 

can consider (2.163) as being similar to Ohm's law for magnetic circuits.  The 

term 







µ

+
µµ oro A

g
A

L  is called the reluctance Riron + Rgap of this circuit.  In this 

case, the total magnetic flux passes through the iron and the gap and we can 

consider that the two reluctances are in series.  The units of R are sometimes 

given in the units of "rels."  This is very similar to an electrical circuit containing a 

battery and two resistors in series.  Since the relative permeability of the iron 

core is of the order of 1000, the dominant contribution to the reluctance may be 

caused by the narrow gap region.  
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Example 2-36.   Assume that the reluctance of the gap is equal to the reluctance 

of the iron in Figure 2-40.  The iron has a relative permeability of µr = 1000.  

Determine the length of the gap in terms of the length of the iron. 

Answer:  The reluctance of the two regions is defined as Riron 
roA

L
µµ

=  and 

Rgap
oA

g
µ

= .  The length of the gap g is found to be g = 
1000

LL
r

=
µ

. 

 

Example 2-37. Write a set of coupled equations for the coupled circuit shown in 

(a).  The iron has a cross-sectional area of A and a relative permeability µr.  An 

equivalent circuit is given in (b). 

Answer: In this circuit, the mean distances between the intersection points are 

given by L1, L2 and L3.  

 

  (a)  

 

 

 

 

 

From figure (a), it is possible to draw an equivalent electrical circuit (b) that 

contains the following elements 

 R1 = 
A

L

or

1

µµ
, R2 = 

A
L

or

2

µµ
, R3 = 

A
L

or

3

µµ
,  F1 = N1I1, and  F2 = N2I2. 

 

            

N1 turns 

L1 L3

L2 N2 turns

I1 

I2 
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(b)  

 

 

 

 

 

 

Due to the winding of the wire about the material and the direction of the current 

in these wires, the magnetic flux from both coils will be in a direction such that 

the magnetic fluxes will add in the center conductor. Hence, we write from our 

magnetic circuit using Kirchhoff's law that 

  F 1 = Ψ1 (R 1 + R 2) + Ψ2 R 2 

  F 2 = Ψ1R 2 + Ψ2 (R 2 + R3) 

 

  

  As we see, the calculation that involves magnetic circuits is very similar to 

a calculation that we have already performed on electrical circuits.  In the latter 

case, the electrical current was confined to flow in a high conductivity wire.  In 

magnetic circuits, the magnetic flux is confined to the region of a high 

permeability iron. 

R1 R3 

R2 
   F1 F2 

Ψ2 Ψ1 
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   2.15. Inductance 
 The inductance of an object is defined as the ratio of the magnetic flux 

linkage Λ divided by the current flowing through the object.  The magnetic flux 

linkage is defined as the total magnetic flux Ψm linking the object.  There are 

cases where the magnetic flux linkage is not equal to the total magnetic flux.  For 

example, these two entities will be different in a solenoid as will be shown below.  

There are also cases where the two are equal such as two current carrying 

parallel wires.  Using the definition, we will be able to obtain the inductance of 

several important examples that are useful in electronic circuits and are found in 

the guided propagation of electromagnetic waves.   

The inductance of an object is written as 

  
k

j
jk I

L
Λ

≡    (H) (2.164)  

where the subscript indicates the magnetic flux linkage at an object j and the 

current that flows through an object k. If the current is flowing through the object 

(j = k), this is defined as the self inductance.  If the current is flowing through a 

different object but creating a magnetic field at another location (j ≠ k), this is 

called the mutual inductance.  In order to avoid getting bogged down with 

subscripts in simpler circuits, it is common to use the symbols L and M 

respectively for these two quantities. 

 

 

 

 

 

Figure 2-41.  A solenoid consists of N coils of wire that are uniformly wrapped 

around a core whose radius is a and length d. 

a
d

N turns 
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 Let us first find the self inductance of a solenoid which is created by 

wrapping wire around a core as shown in Figure 2-41.  We are assuming that the 

length of the solenoid d is much greater than its radius a which allows us to 

approximate the magnetic flux density to be a constant over the cross-sectional 

area at its midpoint.  There are N turns of wire that are uniformly distributed 

around the core.  This core could either be air or a magnetic material.  The 

magnetic flux density at the center of the solenoid was obtained in Example 2-24 

and can be written as 

  
d
NIBz

µ
=  (2.165) 

where we have incorporated the representation for the permeability µ = µrµo.  The 

total magnetic flux is just the product of the magnetic flux density times the cross-

sectional area πa2 of the solenoid.  We obtain 

  2
m a

d
NI

π
µ

=Ψ  (2.166) 

The magnetic flux linkage Λ is equal to the magnetic flux linking all N turns of the 

solenoid or 

  2
2

m a
d

INN π
µ

=Ψ=Λ  (2.167) 

Therefore, the self inductance of the solenoid is calculated from (2.164) to be 

  2
2

a
d
NL π

µ
=  (2.168) 

We note that the value increases as the square of the number of turns increases.  

In addition, larger values of inductance can be obtained if an iron core is inserted 

within the coils. 

 The calculation of the self inductance of a coaxial cable which will be later 

required when we talk about transmission lines can also be easily performed.  In 

this case, the magnetic flux linkage Λ will be equal to the total magnetic flux Ψm.  

The length of the coaxial cable will be ∆z.  The radius of the inner conductor is a 



Inductance 

 229

and the radius of the outer conductor is b as shown in Figure 2-42. Between the 

two conductors, there is a vacuum.  We will assume that there is a uniform 

current that flows in the +uz direction in the inner conductor and returns in the 

outer conductor of the coaxial cable.  This assumed current will be equal to the 

current that is in the denominator of (2.164) and will therefore not appear in the 

final result for the inductance.  The total magnetic flux that passes through the 

shaded region between the two conductors is computed by just integrating the 

magnetic flux density over the shaded area.  Because of the cylindrical symmetry 

that is found in a coaxial cable, we can use Ampere’s law (2.108) in order to 

obtain the magnetic flux density between the two conductors. 

 

 

 

 

 

 

 

 

Figure 2-42. A section of a coaxial cable.  The magnetic flux density passes 

through the shaded region between the two conductors. 

 

 Since we are only interested in the magnetic flux density external to the 

inner conductor, we can use a result that we have already obtained (2.115) which 

we rewrite here. 

  
r2
IB o

π
µ

=φ  (2.169) 
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The total magnetic flux that passes through the shaded region in Figure 2-42 is 

given by 

  z
a
bln

2
Idrdz

r2
I obr

ar
ozz

0zm ∆







π
µ
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π
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=

=

∆=

=
 (2.170) 

The substitution of (2.170) into the definition for the inductance (2.164) leads to 

the self inductance of a coaxial cable as being  

  z
a
bln

2
L o ∆








π
µ

=  (2.171) 

The value of the inductance will increase as the length of the core axial cable ∆z 

increases. 

Example 2-38.  Calculate the self inductance between two parallel planes.  This 

object is frequently called a “microstrip” or “microstrip line” transmission line and 

it is important for the understanding of integrated circuits.  The separation 

distance d can be assumed to be much less than the width w. 

 

 

 

 

 

 

 

 

Answer:  Since the current in each of the each of the conductors is in the 

opposite direction, the magnetic field between the two conductors will be in the 

same direction.  This magnetic field will pass through the rectangular area 

defined by the separation distance d and the length ∆z. An  

approximate value for the magnetic flux density between the two  

conducting strips can be obtained from Ampere's law (2.108).  For one of  

w 
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I 
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the strips, we write IwB2 0µ≈ . Superposition applies and we make the 

assumption that the magnetic flux density is uniform in the entire region between 

the two strips.  Therefore, the total magnetic flux Ψm is given by  

  zd
w

Idydz
w

I ody
0y

ozz
0zm ∆

µ
=∫

µ
∫=Ψ =

=
∆=

=  

In this case, the total magnetic flux will be equal to the magnetic flux linkage.  

The inductance is computed from (2.164) to be 

  z
w
dL o ∆µ=  

 

 It is possible to calculate the inductance of a torroid using the same 

approximations that were used to calculate the inductance of a solenoid.  The 

calculation of the inductance between two parallel wires will be described in 

Appendix 4 since it requires certain mathematical approximations or numerical 

techniques.  It will be very important in our later consideration of transmission 

lines. 

Example 2-39.  Calculate the mutual inductance M between two small parallel 

circular loops that have surface areas s1 and s2 that are separated by a large 

distance d.  There are N1 turns that have a current I1 in the first loop and N2 turns 

in the second loop.  The dashed lines indicate the magnetic flux density which is 

assumed to be approximately constant inside the loops. 
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Answer:  The mutual inductance between the two loops is calculated using the 

definition of a mutual inductance  
1

212

1

12
12 I

sBN
I

ML ≈
Λ

=≡ . We use the results of 

Example 2-30 where the magnetic field on the axis from a small current carrying 

loop was calculated.  Assuming that the separation distance is greater than the 

radius of either loop, we write 3
1110

1 dπ2
sINµB = . The mutual inductance is 

  3
21210

dπ2
ssNNµM ≈  

The calculation of the mutual inductance is important in understanding 

transformers. 

 The magnetic energy that is stored in the elements that have just been 

described can be calculated using material that has been described in a course 

in the circuit theory.  In this case, we assume that a current source is connected 

to the inductance and the value of the current I increases in time.  There will be a 

voltage V that is generated across the terminals of the inductance.  The magnetic 

energy Wm is just equal to 
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          For the solenoid, the magnetic energy is equal to 
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=  (2.173) 

where we have replaced the current I with the magnetic flux density using 

(2.165).  The volume ∆v within the solenoid is equal to dπa2.  Therefore, (2.173) 

can be written as v
µ

B
2
1W

2
z

m ∆= . The total magnetic energy that is stored within 

a volume ∆v is obtained from an integration of the magnetic energy density within 

that volume 

  dv
µ2

W
v

2

m ∫
∆









=

B  (2.174) 
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  2.16. Boundary conditions 
 Up to this point, it may have appeared that electromagnetic fields would be 

found only in an infinite space.  There has been no consideration of any 

boundaries that may have been introduced into the region.  This is a very 

idealized situation and it certainly does not describe the real world.  In this 

section, we will derive the necessary boundary conditions that will allow us to 

ascertain the relationship between an electromagnetic field in one region in 

space and an electromagnetic field in an adjacent region in space.  The interface 

between the two regions is considered to have an infinitesimal thickness although 

each of the regions is considered to be semi infinite in size.  The material 

parameters such as the relative dielectric constant and the relative permeability 

constant in the two regions may differ in value.  The boundary conditions that we 

will obtain will also be applicable for time varying electromagnetic fields.   

 

 

 

 

 

  

 

 

Figure 2-43.  Two different materials are in juxtaposition.  The relative dielectric 

constant and relative permeability constants are known for each material.  The 

electromagnetic fields in one region are related to those in the other region.  The 

interface is located at z = 0.   
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 The electromagnetic fields can be separated into a component that is 

normal to the interface and a component that is perpendicular to the interface.   It 

is reasonable to construct a two-dimensional coordinate system where one of the 

axes is normal to the interface and the other axis is tangent to the interface 

between the two materials as shown in Figure 2-43.  The components for the 

displacement flux density and the magnetic flux density are obtained separately 

using the physical intuition that we have gained in the previous sections. 

 

 

 

 

 

 

  

 

Figure 2-44.  The interface between two materials is enclosed with a “pillbox” 

whose thickness ∆z  0 and whose cross-sectional area is equal to ∆s.  There 

could be a surface charge density ρs (C/m2) that is distributed at the interface. 

 

  The first boundary conditions involve the normal components of the 

displacement flux density D and the magnetic flux density B that is shown in 

Figure 2-44.  The interface is encapsulated with a “pillbox” that has a cross-

sectional area ∆s and a thickness that will satisfy the condition that the thickness 

∆z  0.  We will first examine the displacement flux density.   

 Charge could be distributed just at the interface that has a surface charge 

density of ρs (C/m2).  The application of Gauss’s law (2.92) will lead will lead to 

ε1 & µ1 ε2 & µ2 

D1n & B1n D2n & B2n
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0
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be boundary condition for the normal component of the displacement flux density.  

We rewrite this law  

  encQ=∫ •dsD   (2.175) 

The charge that is enclosed within the pillbox is Qenc = ρs ∆s where ρs is the 

surface charge density that will be assumed to be independent of position.  

Recall that a closed surface integral requires that the scalar product of the 

differential surface area ∆s and the normal component of the displacement flux 

density D must be performed and this leads to (D2n – D1n) ∆s.  Therefore, (2.175) 

leads to the following boundary condition for the normal components of the 

displacement flux density 

  sn1n2 DD ρ=−   (2.176) 

This equation leads to the conclusion that the normal components of the 

displacement flux density differ by the surface charge density that exists at the 

interface of the two materials.  If the surface charge density is equal to 0, then the 

normal component of the displacement flux density is continuous.  

 Using the relationship between the displacement flux density and the 

electric field intensity which depends upon the relative dielectric constant of the 

material (2.93), we can write (2.176) as 

  sn1o1n2o2 EE ρ=εε−εε   (2.177) 

 A similar derivation can be used to find the normal component of the 

magnetic flux density.  In this case, we invoke the experimental fact that 

magnetic monopoles 

have not yet been observed to exist in nature.  This is manifested in (2.106) and 

it is rewritten below  
  0=•∫ dsB   (2.178) 

Applying (2.178) to Figure 2-44, we write 

  0BB n1n2 =−   (2.179) 
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This implies that the normal components of the magnetic flux density will always 

be continuous at all points in the space.  

 The magnetic flux density and magnetic field intensity is related via 

(2.161).  Therefore, (2.179) can also be written as 

  0HH n1o1n2o2 =µµ−µµ   (2.180) 

In this equation, the permeability of free space µo can be canceled. 

 

 

 

 

 

 

 

 

Figure 2-45.  The tangential components of the electric field intensity and the 

magnetic field intensity in the two materials are indicated.  The rectangular loop 

has the dimensions ∆x and ∆z.  The coordinate y is directed out of the page. 

 

 We will now derive the relation for the tangential components of the 

electromagnetic fields that are shown in Figure 2-45.  For the tangential 

components of the electric field, we calculate the total work that is expended in 

moving around a closed path and apply (2.68) which is rewritten as  
  0=•∫ dlE   (2.181) 

The application of (2.181) to the Figure 2-45 leads to the conclusion that the 

contributions at the top and at the bottom can be neglected since the tangential 
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electric field is perpendicular to the path of integration.  However, the integration 

along the other two edges yields the result 

  (E2t – E1t) ∆x = 0 

or 

  0EE t1t2 =−   (2.182) 

The tangential components of the electric field are continuous at an interface.  

We will later find that this boundary condition will be extremely important in 

understanding the warning that appears in the operations manual of a microwave 

oven in which you are told to “Never put a metal pan inside the microwave oven” 

since it also applies to time varying electromagnetic fields. 

  This can also be written in terms of the displacement flux density as 

  
1

t1

2

t2 DD
ε

=
ε

  (2.183) 

where the permittivity of free space εo has been canceled from this equation. 

 The boundary condition for the tangential component of the magnetic field 

intensity H is also depicted in Figure 2-45. In this case, there could be a surface 

current JL • uy that is enclosed within the rectangular loop and directed out of the 

page.  Therefore, we must evaluate the integral in (2.160) which we restate as 

  enclosedI=∫ •dlH   (2.184) 

The current that is enclosed within the loop is given by 

  Ienclosed = Js ∆x  (2.185) 

and it resides an entirely at the interface between the two materials.  If this 

surface current is directed in the ux direction, it will not pass through this 

rectangular loop and it will not affect this particular tangential component of the 

magnetic field intensity.  Once again, we can neglect the integration over the top 

and bottom edges.  The resulting integration yields the following result 

  (H2t – H1t) ∆x = JL ∆x   
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or 

  Lt1t2 JHH =−  (2.186)
 

 

The tangential components of the magnetic field intensity differ by the surface 

current density that passes between the two materials.  This conclusion also 

applies to time varying electromagnetic fields.  If the surface current density is 

equal to 0, then the tangential components of the magnetic field intensity will be 

continuous.  This can also be written in terms of the magnetic flux density as 

  Lo
1

t1

2

t2 JBB
µ=

µ
−

µ
  (2.187) 

Example 2-40. Calculate the change of electric field as it crosses an interface 

between the two dielectrics shown below. There is no charge distributed on the 

surface between the two dielectrics. 

 

   

 

 

 

Answer: Since there is no surface charge between the two surfaces, we know 

that the normal components of the displacement flux density are continuous 

                                       ε1 E1 cos θ1 =  ε2 E2 cos θ2 

The continuity of the tangential components of the electric field is given by 

                                            E1 sin θ1 = E2 sin θ2 

The ratio of these two terms gives 

  
2

1

2

1

 tan
 tan

ε
ε

=
θ
θ  

This example indicates that the electric field can be bent with different dielectrics. 
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Example 2-41. Two homogeneous, linear, isotropic magnetic materials have an 

interface at x = 0. At the interface, there is a surface current with a density         

JL = 20 uy A/m. The relative permeability µr1 = 2 and the magnetic field intensity 

in the region x < 0 is H1 = 15ux +10 uy + 25uz A/m. The relative permeability µr2 = 

5 in the region x > 0.  Find the magnetic field intensity in the region x > 0.  

 

 

 

 

 

 

Answer: The magnetic field is separated into components and the boundary 

conditions are applied independently. For the normal component, (2.180) implies 

  6  15 
5
2HHHH x1

2

1
x2n1o1n2o2 ==

µ
µ

=⇒µµ=µµ  A/m 

For the tangential components, we use (2.186) and write 
  

H2t – H1t = Js ⇒ H2z = H1z + Jy = 25 + 20 = 45  A/m
 

There is no change in the y component of the magnetic field intensity. Therefore, 

   H2 = 6 ux +10 uy + 45 uz  A/m. 

 

 If one of the materials is an ideal conductor, the tangential component of 

the electric field will be affected in the most dramatic fashion.  Since (2.182) 

states that the tangential electric field must be continuous, there would also be a 

tangential electric field at the edge of the ideal conductor.  From Ohm’s law 

(2.101), this would then imply that there would also be a very large tangential 

current that could approach infinity.  There would then be an infinite amount of 

power dissipation within the ideal conductor that nature would not allow.  The 
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conclusion that must be drawn from this argument is that the tangential current 

density at the edge of the conductor and therefore the tangential electric field at 

the edge of an ideal conductor must be equal to 0.  The ideal conductor is an 

equipotential surface. 

 

 

 

 

 

 

 

Figure 2-46.  A charge a distance d above a grounded metallic surface induces a 

nonuniform charge distribution on the surface.  The electric potential and electric 

field intensity can be calculated by assuming an image charge of the opposite 

sign exists beneath the surface and the metallic surface being removed. 

 

 The requirement that the tangential component of an electric field must be 

equal to 0 has some very important consequences.  For example, let us pose the 

problem, “What happens if a negative charge is placed above an ideal conductor 

as shown in Figure 2-46?”  From our earlier studies of electric fields, we found 

that the vector direction of the electric field would be entirely in the radial direction 

(2-8) which we rewrite here 

  R2
oR4

Q uE
πε

=   (2.188) 

The tangential component of the electric field that follows from (2.188) will be 

equal to 0 only at the point just beneath the charge as shown in Figure 2-46.  

What happens at the other points on the surface? 

d 
metallic surface 

image charge
d 

+

-
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 This last question can be answered by assuming that there is a charge of 

the opposite sign that is inhomogeneously distributed upon the surface of the 

ideal conductor.  It is usually difficult to calculate this distribution and there is a 

method to circumvent this calculation.  This method assumes that there is an 

additional charge that is located an equidistance beneath the ideal conductor.  

This particular charge that is called an image charge will have a value that is 

equal to the negative value of the original charge that was placed above the ideal 

conductor.  In order to calculate the resulting electric field, we remove this ideal 

conductor and use the principal of superposition since we’re talking about a linear 

material.  The tangential component of the electric field will then be equal to 0. 

 The use of image charges can be later generalized to time varying electric 

fields where one frequently encounters “image antennas” lying beneath the 

ground plane.  The conductivity of this ground plane has been improved by 

burying copper wires in the ground that radiate in the radial direction away from 

the antenna. 

Example 2-42MATLAB.  Two grounded semi infinite metallic plates are placed on 

the x axis and the y axis of a Cartesian coordinate system in order to form a 90o 

corner.  A positive charge 4πεo is located at the point (a, a) where a is arbitrary.  

Using MATLAB, carefully plot equipotential contours surrounding this charge and 

the expected electric field.   

Answer: There will be 2 negative image charges located at the points (a, -a) and 

(-a, a).  In addition, there will be a positive image charge at (-a, -a) since the 

electric potential at all points of the metallic corner must be equal to 0.  This 

system of four alternative charges is often called a “quadripole”. The results of 

the calculation are shown below.  We find that the electric field is always 

perpendicular to the metal surfaces.  This indicates that the metallic surfaces are 

equipotential contours that have a value equal to 0. 
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y

x

a

a  

 

 In high-energy particle experiments in which charged particles move 

through a metallic tube and are to collide together, the experimentalist must be 

aware of these image charges.  The image charges can be found for cases only 

when the corner has an angle that is a submultiple of 2π. 
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 The boundary conditions can also be written down in vector notation.  A 

summary of these boundary conditions is presented in tabular form.  In this table, 

the unit vector un is normal to the interface. 

 

Tangential component of the electric field intensity E ( ) 01 =×− n2 uEE  

Normal component of the displacement flux density D ( ) s1 ρ=•− n2 uDD  
Tangential component of the magnetic field intensity H ( ) L12 JuHH n =×−  
Normal component of the magnetic flux density B ( ) 01 =•− n2 uBB  
Tangential component of the electric field intensity E at a 

metallic surface – This directly follows from the first 

boundary condition and the fact that the current in a 

conductor must be equal to 0. 

0=× nuE  
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2.17.Conclusion 
 Our study of time-independent electric and magnetic fields has brought 

forth the many similarities and differences between the two fields. Both the 

Coulomb force for electric fields and Ampere's force for magnetic fields are 

proportional to the magnitudes of charges or current elements and inversely pro-

portional to the square of the distances separating the entities. Both fields require 

a charge as a source in that stationary charges yield electric fields and charges in 

motion with a constant velocity yield electric and magnetic fields. In a vacuum, 

superposition principles apply to both fields because of a linear relationship 

between the sources and the fields.  Each field could be related to an appropriate 

potential with a prescribed vector operation. By considering atoms as small 

electric or magnetic dipoles, we have found that materials may effect the 

characteristics of the both fields. 

 The major difference between the fields is that electric fields can originate 

or terminate on a charge which implies that there can be a nonzero divergence of 

the field. A surface that surrounded this charge could be used to ascertain the 

electric field. Magnetic fields are closed paths and do not terminate at a fixed 

point. If this closed path enclosed a current which implies a nonzero curl, the 

magnetic field could be found. 

 The elements that are frequently encountered in the study of electric 

circuits and magnetic circuits have been obtained from the fundamentals of static 

fields.  In particular, we have obtained the resistance, the inductance, and the 

capacitance for electrical circuits and the reluctance for magnetic circuits.  We 

will encounter these entities later in this book. 
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2.18. Problems 
1MATLAB.  Find the force on a charge Q that is located at the point (6, 3).  The 

charge has a value of Q = - 3 C.  The value of the other charges that are located 

at Q1 (2, 0) = + 2 C, Q2(2, 3) = - 4 C, and Q3(2, 6) = - 3 C.  All dimensionless are 

in meters. 

2MATLAB.  For the charges given in problem 1, find the force on the charge Q2. 

3.  Four equal charges (Q) are placed at the corners of a square whose 

dimensions are (a x a).  Find the magnitude of the force on one of the charges. 

4. Two small plastic balls, each with equal 

values of charge Q and mass M are 

constrained to slide on an insulating string. Find 

the separation of the two charges if the lower 

charge is constrained to one location on the 

string. 

 

5MATLAB.  Find the electric field at the point P that is located at (5, 1) due to the 

charges Q1(1,4) = +2 C and Q2(1, 1) = +4 C where the coordinates are measured 

in the units of meters. 

6MATLAB. Find the electric field at the point P that is located at (5, 1) due to the 

charges Q1(1, 4) = +2 C and Q2(1, 1) = -4 C where the coordinates are measured 

in the units of meters. 

7. Four equal charges Q = 1 C are located at the corners of a square (a x a) that 

is centered at the origin of a coordinate system in the xy plane. The dimension a 

= 1 m.  Find the ratio of the electric potentials along the z axis at the points z = 2a 

and z = a. Also, find the ratio of the magnitude of the electric fields at z = 2a to 

that at z = a. 

 

 

π/4 
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8MATLAB. Two charges of equal magnitude Q = 2(4πεo) C but with the opposite 

sign are located at the points (1, 2) and at (5, 2) respectively.  Find the electric 

field E on the line that would correspond to x = 3.  Plot your results with MATLAB 

in the region (-4 < y < 8). 

9MATLAB. Find the absolute potential at an arbitrary point P(x, y, z= 0) due to 

charges Q1(2, 2) = +2(4πεo) C and Q2(4, 5) = -4(4πεo) C. Plot your results with 

MATLAB in the region (0 < x < 6, 0 < y < 7). 

10MATLAB. On log-log graph paper, accurately plot the magnitude of the electric 

field E and the voltage V from a point charge as a function of the distance from 

the charge. Assume that E @ ρ = 1 m equals 1 V/m and V @ ρ = 1 m equals 1 V. 

11. By measuring the potential difference between two small probes separated 

by a distance ∆L, scientists are able to obtain data to plot electric field patterns 

caused by charges. By rotating the probes, the direction of the electric field can 

be obtained. From the following two measurements, find the location of the 

positive charge Q. At the origin, the probe measures a maximum electric field in 

the direction ux - √3uy. If the probes are moved to the point (0, 1), the maximum 

electric field is in the direction ux - uy. 

 

 

 

12. In terms of the fundamental units mass M, length L, time T, and charge Q, 

find the units of the permittivity of free space εo. 

13. In terms of the fundamental units mass M, length L, time T, and charge Q, 

find the units of the electric field E. 

14. Assume that Q = (4πεo) C of charge is uniformly distributed along a line of 

length 2L. Find an analytical solution for the electric field along a line that is 

perpendicular to the line and is located at the center of the charged line. 

∆LV 
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15MATLAB. Using MATLAB, perform the integration in problem 14 and plot the 

results. 

16MATLAB. Assume that Q of charge are uniformly 

distributed on the ring defined by a ≤ r ≤ b. Find an 

analytical expression for the electric field along the z 

axis. Use MATLAB to display the electric field 

distribution. 

 

17MATLAB. Find an analytical expression for the electric field along the z axis of a 

uniformly charged disc with radius a. Plot the field distribution. 

18. Set up the integral using the ring configuration in problem 16 to find the 

normal electric field from an infinite charged sheet. Evaluate this integral. 

19MATLAB. Find an analytical expression for the electric field along the z axis of a 

circular loop with a radius a, uniformly charged. Display the electric field 

distribution. 

20MATLAB. Find an analytical expression for the potential along the z axis of a 

circular loop in problem 19 assuming it is zero in infinity. Display the potential 

profile. 

 

21. Calculate the work that is expended 

in moving a positive charge Q from 

point A to B along the indicated path. A 

charged infinite plane with a charge 

density ρs (C/m2) exists in the yz plane 

at x = 0. 

 

 

 

 

x

 y 
a

b
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22. Given the electric field YX uuE y2x4 −=  V/m, find the voltage between the 

points A(2,0) and B(0,2) integrating along: a) straight line AB; b) broken line AOB, 

where O(0,0). 

23. Assume that there are two concentric cylinders with radii a < r < b.  Show that 

the electric field between the two cylinders approaches a constant value as the 

separation distance (b - a)  0. 

24. Assume that there are two concentric spheres with radii a < r < b.  Show that 

the electric field between the two spheres approaches a constant value as the 

separation distance (b - a)  0. 

25. A lightning rod provides a 

controlled path for a cloud to discharge 

itself to the ground in a safe way. 

Sketch the expected electric field distri-

bution about the rod. 

Pay particular attention to the electric 

field that you would expect at the tip of 

the lightning rod. 

 

26MATLAB. Compare the electric potential from a single charge, a dipole charge, 

and a quadripole charge by accurately plotting the potential as a function of dis-

tance from the region of the charge. Use MATLAB and assume that the potential 

equals 1 V at a distance of 1 m from the charge. 

27MATLAB. Charge is nonuniformly distributed within a sphere of radius a as 

aov
ρ

ρ=ρ . Using Gauss's law, calculate the electric field in the regions ρ < a and 

ρ > a. Accurately sketch the electric field and label the axes. 
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28MATLAB. A charge of +Q C is uniformly distributed in the central 

region 0 ≤ r ≤ a and -Q C is distributed in the external region b ≤ 

r ≤ c of a coaxial cable. Find the electric field in all regions of the 

coaxial cable and sketch the results. 

 

29MATLAB. Repeat problem 28 for a charge of +2Q C uniformly distributed in the 

inner region and -Q C distributed in the outer region of a coaxial cable. Find the 

electric field in all regions of the coaxial conductor and sketch the results. 

30. Assume that a uniform charge density +ρs 

(C/m2) exists on one infinite plane and –ρs (C/m2) 

exists on the other infinite plane. The two planes 

are parallel and are separated by a distance d. 

Using Gauss's law, find the electric field in the 

regions between the two plates and external to the 

two plates.  

 

31MATLAB.  Charges are placed on the concentric 

hollow spheres.  The values are: Q(ρ = a) = 2 C; 

Q(ρ = b) = -4C; and Q(ρ = c) = 4C where a < b < c. 

Find and sketch the electric field in all regions ρ ≥ 0.
 

32. Find the voltage between two small electrodes A and B for the system 

described in problem 31: A is fixed at the center ( 0=ρ ) while B is moving at 

positions a=ρ ,  b=ρ and c=ρ . 
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33. Calculate the total current that 

passes through the indicated surface. 

The current density  J = 3 xux + 4 xuy 

A/m2. 

x
1

1
y

1
z

 

34. Calculate the total current that 

passes through the indicated surface. 

The current density J = 3 xux + 4 xuz 

A/m2. 

x
1

1
y

1
z

 

35. The current density in a cylindrical wire whose radius is a is given by 

  zuJ 







−= 2

2

o a
r1J  

Compute the total current in the wire. 
 

36. A lightning stroke with a current 10I = kA  is fallen to a post. Find the voltage 

Vab between the legs of a man, situated on a distance m5a = from the post, if the 

step-size is m6.0L =  (see the figure). Assume that the ground is a homogeneous 

one with conductivity 02.0=σ m/S . 
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 I

 

 

 a Lσ 
J

 

 

37. A wire lying on the x axis carries a current 10 A in the positive x direction. A 

uniform magnetic field of B = 5ux + 10uy T exists in this region. Find the force 

per unit length of this wire. 

38. Magnetohydrodynamics (MHD) is based on passing charged particles (both 

electrons and positive ions) through a uniform magnetic field XuB 0B= with a 

velocity Zuv 0v= . The charged particles will separate due to their charge 

difference. Find the potential difference (called the Hall voltage) between two 

electrodes placed in the exhaust of a rocket engine1. 

                                            
1 The Hall voltage can be measured if the exhaust of certain toy rocket motors is passed through 
a magnetic field of 1T. Using a model C-60 and a surplus magnetron magnet, it is possible to 
generate 0.5 V for almost two seconds. 



Problems 2 

 252

 

39. An electron is injected into a uni-

form magnetic field Bo. Find the value 

of the accelerating potential Vo so that 

the electron will be captured in the 

detector that is at the end of the mag-

netic field at a distance d from the 

electron gun. 

  

40. Describe the motion of a charged particle in a uniform electric and magnetic 

field such that the net force acting upon the particle is equal to zero. 

41. In terms of the fundamental units of mass M, length L, time T, and charge Q, 

find the units of the permeability µo of vacuum. 

42. In terms of the fundamental units of mass M, length L, time T, and charge Q, 

show that the units of 
oo

1
εµ

have the same dimensions as a velocity. 
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43MATLAB. Find and plot the magnetic 

flux density as a function of radius for 

the concentric hollow cylinders that 

carry currents I and 2I in the indicated 

directions. 
0   a   b           r

2I

I

 

44MATLAB. Find and plot the magnetic 

flux density as a function of radius for 

the concentric hollow cylinders that 

carry currents 2I and 4I in the indicated 

directions. 
 

 

45. Due to a nonuniform conductivity of the material, the current density within a 

wire has a nonuniform distribution zuJ 







−= 2

2

o a
r1J for ar0 ≤≤ and J = 0 for r > a. 

Find the magnetic flux density as a function of radius for r > 0. 

46. If a long straight wire with a resistance of 1Ω is connected to a 1 V battery, 

find the distance from the wire where the magnetic field equals 1 T. 

47. An experimentalist desires to create a localized region where there is to be 

no magnetic field. Using a solenoid that contains 100 uniformly distributed turns 

that is connected to a power supply of 10 V, calculate the length of this region so 

the earth's magnetic field of 0.5 G = 5 x 10-5T can be canceled. The resistance of 

the wire = 0.1 Ω. 

48. In terms of the fundamental units of mass M, length L, time T, and charge Q, 

find the units of the vector potential A and the magnetic flux density B. 
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49. Two infinitesimal current elements 

are displaced by a distance 2a on the 

x axis. Find the vector potential A at 

the point P that is at y = b. Find B at P.

 

50. Use the Biot-Savart law to compute B at P for the configuration shown in 

Problem 49. 

51. Show, using the Biot-Savart law that the magnetic flux density from a finite 

length current element carrying a current I is given by 

  ( )21
o coscos
r4
IB θ−θ
π
µ

=  

Find the magnetic flux density profile in case 12 θ−π=θ (observation point on the 

axis of symmetry). Find the magnetic flux density in the limit of an infinitely long 

wire. 

  

52. Show that the vector potential A of two parallel infinite straight wires carrying 

currents I in the opposite direction is given by 

r
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  z
o uA 








π

µ
=

1

2

r
rln 

2
I  

  

z

P

I

I

r
r1

2

 

53. Use Ampere's circuital law to compute B at the point P in Problem 52. 

54. Use the Biot-Savart law to compute B at the point P in Problem 52. 

55. Find the magnetic field along the z 

axis caused by the current in the small 

square loop. a

z

I
 

56. Prove the vector identity 2RR
1 Ru

−=





∇  where uR is the unit vector in the 

direction between a current element and a point of observation. 

57. Find the approximate magnetic field at the center of a slender, rectangular 

loop that carries a current I. The dimensions of the loop are L >> W. 

 

  

W

I

L

 

58. Two parallel current carrying insulated wires are placed in close juxtaposition. 

Find the magnetic flux density at the center of the circle. 
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59. Four infinitely long wires, 

each carrying a current I into the 

paper, are located at the 

indicated points. Find the 

direction of the net force on  

wire 1. 

 

 

60. It is desired to move an axle of mass M up an inclined frictionless plane that 

makes an angle θ with respect to the horizontal plane. A uniform vertical mag-

netic field exists in the region of the inclined plane. What value must the battery 

Vo be in order that the axle will climb the plane? 

       



Problems 2 

 257

 

61. Find the force of repulsion 

between two conductors whose 

length is L of a planar 

transmission line with b >> d. A 

current Io flows in the opposite 

directions in the two conductors. 

Ignore any fringing magnetic 

fields. 

 

62MATLAB. Let B = 0.1 ux T. everywhere and let the relative permeability µr = 2 for 

|x| ≤ 1 and µr = 1 for |x| > 1. Plot Bx, Mx, and Hx everywhere. 

63. For the magnetic circuit shown, calculate the magnetic flux in the gap. The 

cross-section and relative permeability of the iron is A and µr >> 1. 
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64. Find the electric field in the region 

x > 0 if E = 2ux + 2uy  V/m in the 

region x < 0. There is no surface 

charge density. 

 

65 Repeat problem 64 with a surface charge density ρs = 1 C/m2. 

66. Find the electric field in the region 

x > 0. There is no surface charge den-

sity. The magnitude of the electric field 

is 5 V/m. 

 

67 Repeat problem 66 with a surface charge density ρs = 0.5 C/m2. 
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68. Find the magnetic flux density in 

the region x > 0 if B = 4ux + 4uy  T  

in the region x<0. The surface current 

= 0. 

 
69. Repeat problem 68 if the surface current density JL = (9 uz + 9 uy ) A/m. 

70. Can the indicated electric field ex-

ist? If not, suggest how an additional 

electric field will permit the existence of 

this field. 
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3. Boundary value problems using 
MATLAB 

 In the previous chapter, we learned that a static electric field would be 

created from a charge distribution. In addition, it was possible to determine this 

static electric field from a scalar potential. We also showed there that the 

potential V could also be obtained directly in terms of the charge distribution ρV 

via one partial differential equation : Poisson's equation. This equation reduces to 

Laplace's equation if the charge density in the region of interest were equal to 

zero. The general procedure of solving these equations for the cases where the 

potential V depended on only one or two spatial coordinates is given here. In this 

chapter, we will introduce analytical and numerical techniques that will allow us to 

examine such complicated problems. For mathematical simplicity, however, only 

problems that can be written in terms of Cartesian coordinates will be 

emphasized. 

 We also introduce numerical techniques for solution such problems (like 

Method of Moments and Finite Element Method) in this chapter and make 

extensive use of MATLAB in the process. Several MATLAB programs (dot m 

files) that have been used in this book are available on the web site 

[http://www.scitechpub.com/]  for the reader's benefit. These programs can be 

easily altered and customized by the user. They can also be translated into the 

reader's language of choice. They may also not be THE program for a particular 

task but they do work. 

 

  3.1. Poisson's and Laplace's equations 

 In the previous chapter, we learned that a static electric field E would be 

created in a vacuum from a volume charge distribution ρv.   This physical 
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phenomenon was expressed through a partial differential equation. We have 

been able to write this partial differential equation using a general vector notation 

as 

  
0

v

ε
ρ

=•∇ E   (3.1) 

which is Gauss’s law in a differential form. Here we have applied a shorthand 

notation that is common for the vector derivatives by using a vector operator ∇ 

called the “del operator”, which in Cartesian coordinates is 

  ZY zyx
uuuX ∂

∂
+

∂
∂

+
∂
∂

≡∇   (3.2) 

  The static electric field is a conservative field which implies that      

  0=×∇ E    (3.3) 

This means that the electric field could be represented as the gradient of a scalar 

electric potential V 

  V−∇=E   (3.4) 

Recall the vector identity  

  0V =∇×∇  
 

Combine (3.1) with (3.4) and obtain 

 

    (3.5) 

 

where we have used the relation that 2∇=∇•∇ . Equation (3.5) is called 

Poisson's equation. If the charge density ρv in the region of interest were equal to 

zero, then Poisson's equation is written as 

    (3.6) 

0

v2V
ε
ρ

−=∇

0V2 =∇
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Equation (3.6) is called Laplace's equation. Both of these equations have 

received considerable attention since equations of this type describe several 

physical phenomena, e. g. the temperature profile in a metal plate if one of the 

edges is locally heated. 

 In writing (3.5) or (3.6), we can think of employing the definition for 2∇  that 

∇•∇=∇2 . This operation is based on interpreting the ∇  operator as a vector 

and a heuristic application of the scalar product of two vectors that leads to a 

scalar quantity. The resulting operator 2∇  is called a "Laplacian operator" Since 

each application of the ∇  operator yields a first order differentiation, we should 

expect that the Laplacian operator 2∇  would lead to a second order dif-

ferentiation. 

 The Laplacian operator depends on the coordinate system that is chosen 

for a calculation. The definitions for the operator 2∇  operating on a function V in 

the three most commonly employed coordinate systems are written as follows  

1) Cartesian )z,y,x(  

  2

2

2

2

2

2
2

z
V

y
V

x
VV

∂
∂

+
∂
∂

+
∂
∂

=∇      (3.7)  

Using the definition for the del operator ∇  in Cartesian coordinates (3.2) we write 

  V
zyxzyx

V ZYZY 







∂
∂

+
∂
∂

+
∂
∂

•







∂
∂

+
∂
∂

+
∂
∂

=∇•∇ uuuuuu XX  

From the definition of the scalar product for the unit vectors ( 1=• XX uu ; 

0=• YX uu ; etc.), the only terms that survive are the three terms given above. 

2) cylindrical )z,,r( φ  

  2

2

2

2

2
2

z
VV

r
1

r
Vr

rr
1V

∂
∂

+
φ∂

∂
+








∂
∂

∂
∂

=∇       (3.8) 

3) spherical ),,( φθρ  

  2

2

222
2

2
2 V

sin
1Vsin

sin
1V1V

φ∂
∂

θρ
+








θ∂
∂

θ
θ∂
∂

θρ
+








ρ∂

∂
ρ

ρ∂
∂

ρ
=∇      (3.9) 
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  The choice of which form of this operation to actually employ in a calcula-

tion is usually dictated by any possible symmetry considerations inherent in the 

problem. For example, the calculation of the potential within a spherical ball 

would suggest the application of V2∇  in spherical coordinates rather than in the 

other representations. Definitions for the Laplacian operator exist for other 

coordinate systems than mentioned above. A definition in a general orthogonal 

coordinate system can also be written. For complicated shapes and/or for very 

difficult problems, a numerical solution may have to be attempted. This is 

typically the procedure that has to be followed in practice. We will encounter 

these procedures in the next sections. 

 Similar Posson’s and Laplace’s equation arise also for the magnetic field, 

where a magnetic vector potential A rather than an electric scalar potential V is 

involved. The nonexistence of magnetic monopoles allowed us to write that  

  0=•∇ B   (3.10) 

This equation implies that the magnetic flux density B can be expressed as the 

curl of another vector. This vector is given the symbol A and it is called the 

magnetic vector potential or just vector potential. This is a consequence of the 

vector identity 

  0=×∇•∇ A  

In electric fields, it was found that the electric field could be easily computed if the 

scalar potential  were known. This was accomplished by taking the gradient of 

the scalar potential (along with a minus sign). Magnetic fields are related to the 

vector current density J via a curl operation and this is significantly more 

complicated than the divergence operation through which the electric field is 

related to the charge density ρv. We suspect, therefore, that the potential that we 

seek should also be more complicated. This vector potential  A is, however, in 
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the same direction as the source current J. There are, however, some 

applications of a magnetic scalar potential that will not be described here.  

 The magnetic flux density B is determined from the vector potential A via 

the relation 

  AB ×∇=   (3.11) 

where the units of A are Tesla.meter. We combine this with the Ampere’s law in 

differential form  

  JB 0µ=×∇   (3.12)   

and obtain 

      JA 0µ=×∇×∇   (3.13) 

The operation on the left hand side of (3.13) can be reduced via a vector identity 

to yield 

  ( ) JAA 0
2 µ=∇−•∇∇   (3.14) 

 Two comments should be made concerning vectors at this point before 

proceeding. First, a vector is completely determined if its curl and  its divergence 

are specified. We have specified A×∇  in (3.11). Since the divergence of the 

vector A can be specified to have any value, we will choose the value that will 

ease our calculation:  

  0=•∇ A   (3.15) 

This is the so called Coulomb gauge.  Second, the operation 2∇ A states that the 

Laplacian operator operates on all three vector components of the vector 

potential A separately and each component is set equal to the corresponding 

component of the current density J. Therefore, with (3.15), (3.14) simplifies to 

   (3.16) 

This is similar to Poisson's equation (3.5) that was derived previously where the 

electric field was related to a charge density. In the case of magnetic fields, 

JA 0
2 µ−=∇
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(3.16) represents three scalar equations for each of the components. In 

Cartesian coordinates, these equations are 

  X0X
2 JA µ−=∇ ; Y0Y

2 JA µ−=∇ ; Z0Z
2 JA µ−=∇  

 We may at this stage wonder what has been gained by this little bit of 

vector manipulation since now we have a set of second order uncoupled differ-

ential equations to solve instead of a coupled set of first order differential equa-

tions. What has been gained is the good fortune of having the vector potential 

and the current density in the same  direction. This implies that each component 

of the vector potential can be solved separately and we have to solve at the most 

only three scalar  equations.  

Example 3-1MATLAB. The two-dimensional potential distribution can be 

approximated with the quadratic expression 

  ( )22

0

v yx
4

V +
ε
ρ

−= . 

Show that this function satisfies the Poisson’s equation (3.5). Plot the graphs of 

the charge and the electric potential distributions. 
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Answer: Using the Laplacian operator in Cartesian coordinates, we find that: 

0

v
2

2

2

2

2y
V

x
V

ε
ρ

−=
∂
∂

=
∂
∂ , which leads to Poisson’s equation (3.5). The two-

dimensional plot of the voltage distribution along with calculated charge 

distribution is shown.   

       

 Having derived Poisson's and Laplace's equations for three dimensional 

systems and having stated the definitions for 2∇  in the three most widely used 

coordinate systems, we will now obtain analytical solutions for these equations. 

Rather than first attempting a general three-dimensional solution, we will simplify 

the discussion by assuming that the potential depends on only one coordinate 
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rather a than on all three coordinates. The procedure that we will describe in 

these simpler problems will be later employed in more difficult calculations. 

Several important results will, however, be obtained as we pass through this 

fairly difficult initial stage. Techniques that are germane to these more 

complicated problems will appear in the next sections. 
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3.2. Analytical solution in one dimension – direct 
integration method 

 In order to conceptualize the method, we will calculate the potential 

variation between two infinite parallel metal plates located in a vacuum as shown 

in Figure 3-1a.  This will require solving Laplace's equation in one dimension and 

it will yield a result that approximates the potential distribution in a parallel plate 

capacitor where the separation between the plates is much less than any 

transverse dimension. Since the plates are assumed to be infinite and the 

conductivity of these metal plates is very high, they can be assumed to be 

equipotential surfaces. We can think just that these metal plates have zero 

resistance. Hence, in the y and the z coordinates, we can postulate with a high 

degree of confidence that 

     0
z
V

y
V

=
∂
∂

=
∂
∂  

 Since there is no variation of the potential in two of the three independent 

variables, we can let the remaining partial derivative that appears in Laplace's 

equation become an ordinary differential one. Hence,  the one-dimensional 

Laplace's equation is 

  0
dx

Vd
2

2

=   (3.17) 

Let us assume that the plate at x = 0 to be at a potential V = V0 and that the plate 

at x = x0 is connected to ground and therefore has the potential V = 0. These are 

the boundary conditions  for this problem. 

 The solution of (3.17) is found by integrating this equation twice 

  
21

1

CxCV

C
dx
dV

+=

=
  (3.18)                            
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Figure 3-1. (a) Two infinite parallel plates located at x = 0 and at x = x0.   

(b) Potential variation between the plates as determined from (3.19). 

 

where C1 and C2 are the constants of integration. These constants must be in-

cluded in the solution at each step in the integration and they will be determined 

from the boundary conditions that are imposed in the problem. Equation (3.18) is 

the most general solution of the ordinary differential equation (3.17) since it 

contains the two arbitrary constants of integration.  

 For the boundary conditions imposed by the battery (V = V0 at x = 0) and 

the ground potential (V = 0 at x = x0) in Figure 3-1a, we write 

  
201

210

C)x(C0
C)0(CV

+=

+=
 

Solving these two algebraic equations for the unknown constants of integration 

leads to the values C1= -V0/x0 and C2 = V0. Therefore, we write the solution for 

the potential variation between the two parallel plates that satisfies the specified 

boundary conditions as  

  







−=

0
0 x

x1VV   (3.19)            
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 The potential profile is shown in Figure 3-1b. Since this is an electrostatic 

potential, we can compute the electric field using (3.4). We find that 

  XX uuE
0

0

x
V

dx
dV

=−=    (3.20)  

a result that we have also obtained using Gauss's law. 

 There are cases where we cannot specify the potential V at a boundary 

but can only specify an electric field that is normal to the boundary. Since the 

electric field is given by (3.4), this in one dimension gives a value for E= - dV/dx 

at that boundary. These two different boundary conditions would be analogous to 

a metal plate being clamped at one edge or passing between two rollers that 

specify the slope of the plate at that edge. The vertical height of the rollers could, 

however,  be arbitrarily adjusted in a rolling mill. 

Example 3-2. The electric field normal to a surface at x = 0 in Figure 3-1a is 

arbitrarily specified to be E0 = - dV/dx. Find the potential variation between the 

plates if the potential at x = xo is still given by V = 0. 

Answer: From (3.18), the constant C1 = - E0 and C2 = - C1x0= E0x0. Therefore, 

the potential V is 

  )xx(EV 00 −=  

which is similar to the result shown in Figure 3-1b. 

 

 In the above calculation and in the example, it was assumed that no ad-

ditional charge was distributed between the plates. Let us now assume that a 

charge is uniformly distributed between the plates and has a constant density vρ . 

Other spatial distributions for this charge density could be encountered in 

practice, but let us not complicate the problem at this stage. For the problem that 

has been posed, we must solve a one-dimensional Poisson's equation that is 

written as 
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0

v
2

2

dx
Vd

ε
ρ

−=   (3.21)                            

where again we can neglect any variation in y or z since the plates have been 

assumed to be infinite in extent and are equipotential surfaces. This allows us to 

again employ an ordinary derivative. The two-step integration of (3.21) leads to 

  
43

2

0

v

3
0

v

CxC
2
xV

Cx
dx
dV

++
ε
ρ

−=

+
ε
ρ

−=

  (3.22) 

where C3 and C4 are the constants of integration. The constants of integration 

are found by specifying the boundary conditions and then solving the 

simultaneous algebraic equations 

  

403

2
0

0

v

43

2

0

v
0

C)x(C
2

)x(0

C)0(C
2
)0(V

++
ε
ρ

−=

++
ε
ρ

−=

 

Solving these two equations, we find the constants to be 







ε
ρ

−−=
2
xV

x
1C

2
0

0

v
0

0
3  

and 04 VC = . The substitution of these constants into the solution (3.22) yields 

the final potential to be 

  







−








ρ
ρ

+=
00C

v
0 x

x1
x
x1VV   

(3.23)
 

where 2
000C x/V2ε=ρ . The electric field E is computed from (3.20) to be 

  XuE 

















−

ρ
ρ

−=
0C

v

0

0

x
x211

x
V   (3.24) 

The electric potential and electric field are depicted in Figure 3-2 for three values 

of the charge density. 
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Figure 3-2MATLAB.  The electric potential and the electric field for three different 

values of the charge density ρ v as calculated in (3.23) and (3.24) is shown. 

 

Example 3-3. There is a sheath in a plasma that is very similar to the depletion 

width in a pn junction. A plasma is an ionized gas that contains an equal density 

ni of positively charged ions that is equal to the density of negatively charged 

electrons ne. A sheath connects the plasma to a foreign object such as metal 

wall. Since the electron and ion densities are equal, the electric field in the 

plasma can be assumed to be equal to zero. If the plasma were grounded at 

some far off place, we can assume that the absolute potential of the plasma is 
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also equal to zero. This is a common state in nature as over 99% of the universe 

is in the plasma state.  

 Let us now consider a plasma that contains a metal plate to which a 

negative potential is suddenly applied at a time t = 0. At t = 0+ after the switch is 

closed, electrons close to the plate are "blown" into and "lost" in the background 

plasma. Due to their heavier mass Mi ≥ 1836 me, the ions will not move at this 

early time. There is another narrow steady-state sheath that exists in such a 

plasma that is called the Debye’s sheath that "shields" the plasma from this metal 

plate and this narrow region of positive charge density from the plasma.  This 

allows us to state the boundary conditions at the edge of the electron depleted 

region at x = x0 to be V = 0 and E = 0.  The dimension x0 is, however, unknown 

and must be computed.  Plot the resulting electric potential and electric field 

distribution. 

  

 

0x x

0V−  

 

Answer: The system is modeled with a one-dimensional Poisson’s equation in 

the region 0 ≤ x ≤ x0 . Since the electrons have departed, only a bare cloud of 

ions with a uniform charge density ρv = niq exists within this region. We write this 

equation as 
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0

i
2

2 qn
dx

Vd
ε

−=  

This equation can be integrated twice to yield 

  BAx
2
xqnV

2

0

i ++
ε

−=  

where A and B are constants of integration. There are three unknown constants: 

A, B, and x0. Remember that we do not know where x0 is, we only know the 

boundary conditions at that location. The three boundary conditions are 

  

Axqn0)xx(E

BAx
2
xqn0)xx(V

BV)0x(V

0
0

i
0X

0

2
0

0

i
0

0

−
ε

=⇒=

++
ε

−=⇒=

=−⇒=

 

The simultaneous solution of this set of three algebraic equations gives us the 

location x0  

  qn
V2x

i

00
0

ε
=   

 This dimension x0 was originally called the "transient sheath" in plasma 

physics.  As time increases and the ions start to move, a full set of nonlinear fluid 

equations has to be solved numerically in order to describe the physical behavior 

of the ion motion. This set consists of the equations of continuity and motion for 

the ions, an assumption for the distribution of the electrons and Poisson's 

equation to account for the charge non neutrality.  

 In some plasma processing applications where plasma ions are to be 

implanted into a metal surface, this dimension is called the "ion matrix sheath." 

These applications are found in integrated circuit manufacturing. This sheath 

evolution phenomena is an active area for research. Because of the practical 

importance resulting from this calculation, the evolution of the implanting ions 

and the expanding sheath are more fully described in Appendix 5. 
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Example 3-4MATLAB. Find and plot the potential distribution between two long 

concentric cylinders.  The length on the cylinders is L. The boundary conditions 

are: V(r = a) = V0 and V(r ≥ b) = 0.  

   

 
0V   0V    

L

a

b

0V  

 

Answer: Because of the symmetry, we should employ Laplace's equation in 

cylindrical coordinates (3.8). We can assume that the cylinders are of infinite 

length and let ∂ V/∂ z=0. In addition, there is no variation in the φ direction, hence 

∂ V/∂ φ = 0.    

    We have to solve the one-dimensional Laplace's equation that becomes 

an ordinary differential equation in the independent variable r 

  0
dr
dVr

dr
d

r
1

=





   

After multiplying both sides of this equation by r, we find the first integral to be 

  
r

C
dr
dV 1=  

which is the radial component of the electric field with a minus sign. The second 

integral is given by 

  21 CrlnCV +=    

Applying the boundary conditions, we write  
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21

210

CblnC0)br(V
CalnCV)ar(V

+=≡=

+=≡=
 

The constants of integration C1 and C2 are found from the simultaneous solution 

of these 2 equations  

  
)a/bln(

VC 0
1 =  and blnCC 12 −=  

The potential variation between the two cylinders is finally written as 

  







=

)b/aln(
)b/rln(VV 0   

where bra << . The variation of the potential for the radius b = 4a is shown 

below.  Note that the potential within the inner cylinder is a constant.  
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Example 3-5MATLAB.  A problem that is found in the study of a plasma is to com-

pute the effect of introducing an additional charge into a previously neutral 

plasma. The electron density ne depends on the local potential V and can be 

described with a Maxwell-Boltzmann distribution  

  







−=

eB
0e Tk

)r(qVexpn)r(n  

where kBTe defines the random thermal energy of the electrons (Boltzmann's 

constant kB = 1.38 x 10-23 joules/oK and Te is the electron temperature in oK). 

The ion density ni = n0. Find the potential distribution caused by the introduction 

of one additional positive charged particle into a previously neutral plasma.  

Answer: Due to the spherical symmetry of the system, we can neglect any 

variation of potential in two of the coordinates ),( φθ and write Poisson's equation 

in spherical coordinates with the assistance of (3.9), using only the dependence 

on the radial coordinate ρ, where the charge distribution is given by 

( )qn)(n)( 0ev −ρ=ρρ : 

  
0

eB
0

0

v2
2

1
Tk

)(qVexp qn

d
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d
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−
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−≡
ε
ρ
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ρ

ρ
ρρ

  

 This differential equation is non-linear one, which has to be solved numerically in 

general – this is considered in the next section. The charge density has to be 

linearized in order to be solved analytically 

  V
Tk

qn1...
Tk

qV1qn

eB0

2
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0
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ε
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ε
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or 

  2
D

2
2

V
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d
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λ
=








ρ

ρ
ρρ

  

where )qn/(Tk 2
0eB0D ε=λ  is the Debye length. We have used a small potential 

expansion for the exponential term: x1)xexp( ±≈± . The solution of this equation 
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is facilitated if we define a new variable VW ρ= . Substitute this variable into this 

equation to obtain 

  2
D

WW
d
dW

d
d

λ
ρ

=







−

ρ
ρ

ρ
 

or 

  2
D

2

2 W
d

Wd
λ

=
ρ

  

The solution of this equation which is finite when ∞→ρ  is  

  







λ
ρ

−=
D

expW  or 







λ
ρ

−
ρ

=
D

exp1V .  

 This states that the effect of the additional charge will be "screened" away 

in a few Debye lengths. 

   

 

 

We can think of the Debye length as being analogous to a "time constant" in an 

electric circuit that has a potential that decays to zero in a few time constants.  
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 These examples illustrate the methodical procedure that should be fol-

lowed in order to analytically solve either Poisson's or Laplace's equations in one 

dimension.  

 (1) Choose the most appropriate representation for the Laplacian V2∇  

based on any symmetry that may be found in the problem. Certain derivatives 

may also be equal to zero due to the symmetry.  

 (2) Perform the integrations of the differential equation in order to obtain 

the most general solution for the potential being very careful to include all of the 

arbitrary constants of integration.   
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 (3) Let this general representation for the potential satisfy the boundary 

conditions of the problem. This will specify the values of the arbitrary constants of 

integration found in step 2.  

 The reader should be made aware that almost all of the electrostatics 

problems that can be solved analytically have already been solved and the 

method of solution and the answers usually appear as examples or problems in 

some textbook. Further calculations of electrostatic potential problems could be 

performed for two or three dimensional configurations. These will typically involve 

mathematical techniques such as separation of variables that will be encountered 

next.  
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3.3. Numerical solution of a one-dimensional 
equation – finite difference method 

 The technique that will be examined for the numerical solution of Laplace's 

and Poisson's equation in one dimension is the finite difference method (FDM).  

This will be developed using MATLAB although the techniques are not restricted 

to MATLAB. The first order derivatives are illustrated in Figure 3-3. There are 

three possible choices for the derivative, namely  

 

  
h

VV
dx
dV 01

0X

−
=  (Forward difference method) (3.25) 

  
h

VV
dx
dV 10

0X

−−
=  (Backward difference method) (3.26) 

  
h2
VV

dx
dV 11

0X

−−
= (Central difference method) (3.27) 

  

 V(x) 

x
V-1        V0        V1 

 x0 - h       x0       x0 + 
h  

Figure 3-3. Voltage as a function of position. The finite difference equations will 

be derived with reference to this figure.  

 

 We can interpret the Central difference method as being an average of the 

other two methods. In order to ascertain which method is better, we estimate the 

errors that might be expected to be found in each method. The errors can be 
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estimated by expanding the voltage in a Taylor series expansion about the point 

xo: 

   ++++=+
0X

3

33

0X
2

22

0X
00 dx

Vd
!3

h
dx

Vd
!2

h
dx
dV

!1
h)x(V)hx(V  higher order terms   (3.28) 

 If we neglect the third derivative and higher order terms, we write 

  
0X

2

2
00

0X dx
Vd

2
h

h
)x(V)hx(V

dx
dV

−
−+

=  (3.29) 

A comparison of (3.29) with (3.25) shows that this is equivalent to the Forward 

difference method with the additional term  

  
0X

2

2

dx
Vd

2
h  (3.30) 

This term is an error term.  There are, of course, additional higher order terms 

that could be included.  These additional terms are multiplied by the parameter h 

to a higher order power.  If the parameter h can be made sufficiently small, (3.29) 

could be useful.  

 In a similar manner, we write the Taylor series expansion )hx(V 0 −  about 

the point x0: 

+−+−=−
0X
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33

0X
2

22

0X
00 dx

Vd
!3

h
dx

Vd
!2

h
dx
dV

!1
h)x(V)hx(V  higher order terms (3.31) 

From (3.31), we compute 
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2
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Vd

2
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h
)hx(V)x(V

dx
dV

+
−−

=  (3.32) 

for the Backward difference method. The error term is also given by (3.32) plus 

higher order terms. 

 Subtracting (3.31) from (3.28) yields 

  
0x

3

33

0x
00 dx

Vd
6
h2

dx
dVh2)hx(V)hx(V +=−−+  (3.33) 

or 
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−−+

=  (3.34) 

In (3.34), the error is of the order of h2.  This is in the Central difference method.  

The error in using this method will be smaller than either of the other two 

methods and it will be the one employed throughout the rest of the chapter. 

 Using the Central difference method, we find the representation for the 

second derivative to be 
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dx
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dx
dV

dx
Vd

1001

2/h0X2/h0X

0X
2

2
−

−+

−
−

−

=
−

=  

or 

  2
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0X
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h
VV2V

dx
Vd −+−

=  (3.35) 

Example 3-6MATLAB. Find the potential distribution between two surfaces if  

V(x = 0) = 0 and V(x = 1) = 3. There is no charge distribution in the space  

0 ≤ x ≤ 1. 

Answer: Let us use only three points for the first iteration: 0x0 = , 5.0x1 = , 

1x2 = . Using the Central difference method with a step size 2/1h = , we write 

Laplace's equation as  

  0
5.0

VV2V
dx

Vd
2

012

1X
2

2

=
+−

=   

The boundary conditions imply 0)0x(VV 00 ===  and 3)1x(VV 22 === . Hence  

  ( ) 5.1VV5.0V 201 =+=  

which demonstrates the principle of the average value for the middle point 1x . 

The second iteration with the smaller steps size 4/1h =  is applied to five points 

in the same interval. The same boundary conditions are now 0V0 =  and 3V4 =  

leads to three simultaneous equations 

  )VV(5.0V 201 += ; )VV(5.0V 312 += ; )VV(5.0V 423 += . 
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In this case, the boundary conditions specify V0 and V4 and the voltage V2 was 

calculated in the previous iteration. 

The solution for the three intermediate points and the two end points are 

  0V0 = ; 75.0V1 = ; 50.1V2 = ; 25.2V3 = ; 3V4 = . 

A comparison of these computed values is in agreement with the analytical 

solution obtained in Example 3-2.  The MATLAB calculation produces the 

following results. 

V = 0 NaN 1.5000 NaN 3.0000 

V = 0 0.7500 1.5000 NaN 3.0000 

V = 0 0.7500 1.5000 2.2500 3.0000 

The voltage distribution is shown below. 
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Example 3-7MATLAB. Repeat Example 3-2 with a uniform charge distribution 

04ε−=ρ  in the space 1x0 ≤≤ . Find the potential distribution between two 

surfaces if V(x = 0) = 0 and V(x = 1) = 3.  

Answer: Using the Central difference method, we write Poisson's equation as 

  4
5.0

VV2V
dx

Vd
2

012

1X
2

2

=
+−

=   

for the first iteration. The boundary conditions imply V0 = V(x = 0) = 0 and V2 = 

V(x = 1) = 3. Hence  

  ( ) 40V234
5.0

VV2V
12

012 =+−=
+− 1V1 =⇒  

The second iteration with the boundary conditions V0 = V(x = 0) = 0 and V4 = V(x 

= 1) = 3 leads to 

  ( ) 4VV2V4 012 =+− ; ( ) 4VV2V4 123 =+− ; ( ) 4VV2V4 234 =+−  

The solution for the three intermediate points and the two end points are 

  0V0 = ; 375.0V1 = ; 1V2 = ; 875.1V3 = ; 3V4 =  

The term V2 equals 1 from the previous iteration. 

 Applying the same analytical technique as that used in Example 3-3, we 

find for the exact solution the following explicit expression: xx2)x(V 2 += . Once 

again, the approximate solution found numerically agrees with the analytical 

solution.  The output of the MATLAB program is: 
 
V = 0 NaN 1 NaN 3 
V = 0 0.3750 1.0000 NaN 3.0000 
V = 0 0.3750 1.0000 1.8750 3.0000 
 
The plot of the results is shown below.  
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 There is a critical restriction on the mesh size is that the first point must be 

at the center and its numerical value is determined by the value at the two 

boundaries. This will restrict the number of internal points N to have only certain 

values that are prescribed by the following prescription. 

                                      1; 3; 7; 15; 31; 63; ...[2N - 1] 

Let us call this the array size.  

 We may have noted that the length "h" that appears in our application of 

(3.35) has changed from 1/2 to 1/4. In the next step, it will be reduced to 1/8 and 

then 1/16 and so on. We can also evaluate (3.35) and keep h as a prescribed 

value but as we will see, the calculation will have to be repeated several times. 

The numbers will converge, hopefully in a reasonable time, to the correct answer. 
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 In order to introduce the procedure, we will redo the calculation of the one-

dimensional Laplace's equation that we have just performed but now make the a 

priori  assumption that h = 1/4. We set the three values internal to the fixed 

boundaries as initially being equal to zero. Hence, we write  

  0)0(V1 = , 0)0(V2 = , 0)0(V3 =  

The boundary values will remain fixed at all iterations, namely V0  = 0 and  

V4 = 3. 

 In our first iteration denoted with the "(1)" using (3.35), we write 

    0
25.0

)0(V)1(V2V
2

210 =
+− ;  

  0
25.0

)0(V)1(V2)1(V
2

321 =
+− ;  

  0
25.0

V)1(V2)1(V
2

432 =
+−  

In the second equation, we include the value for V1(1) that has just been obtained 

from the previous equation since it is now known. A similar argument holds for 

V3(1) in the third equation. In fact, this will be a general pattern. The 

simultaneous solution of this set of equations leads to 

  0)1(V1 = , 0)1(V2 = , 5.1)1(V3 =  

In order to compute the values at the second iteration, we use the values from 

the first iteration and sequentially write: 

  0
25.0

)1(V)2(V2V
2

210 =
+− ;  

  0
25.0

)1(V)2(V2)2(V
2

321 =
+− ;  

  0
25.0

V)2(V2)2(V
2

432 =
+−  

From this set, we compute 

  0)2(V1 = , 75.0)2(V2 = , 875.1)2(V3 =  

The third iteration is 
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 0
25.0

)2(V)3(V2V
2

210 =
+− ;  

 0
25.0

)2(V)3(V2)3(V
2

321 =
+− ;  

 0
25.0

V)3(V2)3(V
2

432 =
+−  

We obtain 

  375.0)3(V1 = , 125.1)3(V2 = , 0625.2)3(V3 =  

 We could keep going using our calculator, but let us stop here. The 

numbers seem to be approaching an asymptotic limit. We will write a MATLAB 

program to do this work. A more interesting question arises at this point. Is the 

answer correct? We can easily check this by dividing the parameter "h" by two 

and redoing the calculation again and again. If the numbers are the same or 

seem to asymptotically approach the same value, we are finished. 

Example 3-8MATLAB. Write a MATLAB program to evaluate and plot the first six 

iterations of the solution of the one dimensional Laplace's equation by FDM-

method. The boundary conditions are: V(1) = 0 and V(5) = 3. 

Answer: The iterations are indicated with the integer k. The analytical solution 

)1x.(75.0)x(V −=  is shown with a dashed line for a comparison in the figures 

below.  
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Example 3-9MATLAB. Using MATLAB, plot the voltage )xexp()x(V 2−=  and the 

electric field dx/dV)x(EX −=  as a function of x in the range 3x3 ≤≤− .  

Answer:The difference operation "diff(y)./diff(x)" sequentially performs and stores 

the values { h/)]1(V)2(V[ − , h/)]2(V)3(V[ − , …, h/)]1n(V)n(V[ −− }.  There are 

only (n-1) values of the derivatives. Therefore, if we wish to plot the results, we 

plot y in the range xa to xb at increments of h and dy/dx in the range [xa + h/2] to 

[xb - h/2] with the same increment h. The plots of the potential and the electric 

fields are shown in the figure below. 
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Example 3-10MATLAB. Consider again Example 3-5, which has been solved 

analytically after a linearization. Write a MATLAB program to calculate and plot 

the potential distribution using the function ‘ode45’ for obtaining numerical 

solutions of differential equations. 

Answer:  We first transform Poisson’s equation into a standard form with the 

substitution Udr/dV = .  This results in two coupled first order differential 

equations. 

  
( )1)V.Cexp(DU

r
2

dr
dU

,U
dr
dV

−−+−=

=
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where eBTk/qC =  and 00 /qnD ε= . Choosing numerical values of 25.0C =  and 

4D = , we normalize the Debye length 1D.C/1D ==λ  . Assuming that the value 

of the potential V at ρ = 0 has a value of 10 and that the electric field 
dr
dVU −=  at 

the same location has a value of 1, we are able to numerically evaluate the 

potential distribution in space.  The numerical results are shown below. 
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 3.4. Analytical solution of a two-dimensional 
   equation - Fourier series expansion 
 In this section, we will introduce the methodical procedure to effect the 

solution of the type of problem that is governed by Poisson's or Laplace's 

equation in higher dimensions. The technique that will be employed to obtain this 

solution is the powerful "method of separation of variables." 

 It is pedagogically convenient to introduce the technique with an example 

and then carefully work through the details. The problem that we will initially ex-

amine is to calculate the potential distribution within a charge-free unbounded re-

gion illustrated in Figure 3-4 where the potential is prescribed on all four edges. 

In our example, we will specify that the potential on two of the edges is equal to 

zero, approaches zero on the third edge, that is taken to be at ∞→y and the 

potential has a particular distribution on the fourth edge.  

  

 

x 

0V =

y  

0V =  

O  






=

a
πxsinVV 0

V

a

⇑

0

 

Figure 3-4. An unbounded rectangular region with the potential specified on all of 

the boundaries. 

 

 Since there is no charge within the interior region, we should solve 

Laplace's equation (3.6). Since the object has rectangular symmetry and there is 
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no dependence of the potential on the third coordinate z, the form of Laplace's 

equation in Cartesian coordinates (3.7) that we will use is written as 

  0
y
V

x
VV 2

2

2

2
2 =

∂
∂

+
∂
∂

=∇  (3.36) 

In writing (3.36), we have explicitly stated that the potential V = V(x, y) depends 

on the two independent variables x and y.  

 The philosophy of solving this equation using the method of separation of 

variables is to assert that the potential V(x, y) is equal to the product of two 

terms, X(x) and Y(y), that separately are functions of only one of the independent 

variables x and y.  The potential is then given by 

  )y(Y).x(X)y,x(V =  (3.37) 

 This is a critical assertion and our solution depends on it being a correct 

assumption. We may wonder if other functional forms would work at this stage. 

They might or they might not. The resulting solutions that would be obtained 

using different combinations might physically not make any sense or they might 

not satisfy the boundary conditions. Therefore, we will follow in the footsteps of 

those pioneering giants who have led us through the dark forest containing 

problems of this genre in the past and just use (3.37) and not concern ourselves 

with these questions. "If it works, why fix it?" will be our motto. 

 Substitute (3.37) into (3.36) and write 

  0
dy

)y(Yd)x(X
dx

)x(Xd)y(Y 2

2

2

2

=+  (3.38) 

Note that the terms that are to be differentiated only involve one independent 

variable. Hence, the partial derivatives can be replaced with ordinary derivatives 

and this will be done in the subsequent development. 

 The next step in this methodical procedure is to divide both sides of this 

equation by )y(Y).x(X)y,x(V = . Our friends in mathematics may stand up in 

horror at this suggestion! As we will later see, one of these terms could be zero at 
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one or more points in space. Recall what a calculator or computer tells us when 

we do this "evil" deed of dividing by zero! With this warning in hand and with a 

justified amount of trepidation, let us see what does result from this action. In our 

case, the end will justify the means. We find that 

  0
dy

)y(Yd
)y(Y

1
dx

)x(Xd
)x(X

1
2

2

2

2

=+  (3.39) 

 The first term on the left side of (3.39) is independent  of the variable y. As 

far as the variable y, it can be considered to be a constant that we will take to 

be 2
Yk− . Using a similar argument, the second term on the left side of (3.39) is 

independent  of the variable x and it also can be replaced with another constant 

that will be written as 2
Xk+ . Therefore, (3.39) can be written as two ordinary 

differential equations and one algebraic equation: 

  0)x(Xk
dx

)x(Xd 2
X2

2

=+  (3.40) 

      0)y(Yk
dy

)y(Yd 2
Y2

2

=−  (3.41) 

  0kk 2
Y

2
X =−  (3.42) 

A pure mathematician would have just written these three equations down by in-

spection in order to avoid any problems with dividing by zero that we have so 

cavalierly glossed over. 

  The two second-order ordinary differential equations can be easily solved. 

We write that 

  )xkcos(C)xksin(C)x(X X2X1 +=  (3.43) 

  )ykexp(C)ykexp(C)y(Y Y4Y3 −+=  (3.44) 

where we include the constants of integration, C1 to C4. Let us now determine 

these constants of integration from the boundary conditions imposed in Figure 3-

4. From (3.37), we note that the potential V(x, y) is determined by multiplying the 

solution X(x) with Y(y). Therefore, we can specify the constants by examining 
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each term separately. For any value of y at x = 0, the potential V(0, y) is equal to 

zero. The only way that we can satisfy this requirement is to let the constant C2 = 

0 since cos 0 = 1. Nothing can be stated about the constant C1 from this 

particular boundary condition since sin 0 = 0. For any value of x and in the limit of 

∞→y , the potential 0)y,x(V =∞→ . This specifies that the constant C3 = 0 

since the term ∞→)ykexp( Y  as ∞→y . The constant C4 remains undetermined 

from the application of this boundary condition. The potential on the third surface 

V(a, y) is also specified to be zero at x = a from which we conclude that 

a/nk X π=  since sin 0n =π . From (3.42), we also write that the constants 

XY kk = . With these values for the constants, our solution V(x, y) = X(x).Y(y) 

becomes 

  





 π







 π
−=

a
xnsin

a
ynexp]CC[)y,x(V 41  (3.45) 

For this example, the integer n will take the value of n = 1 in order to fit the fourth 

boundary condition at y = 0. Finally, the product of the two constants [C1C4] that 

is just another constant is set equal to V0. The potential in this channel finally is 

given by  

  





 π







 π
−=

a
xsin

a
yexpV)y,x(V 0  (3.46) 

The variation of this potential in space is shown in Figure 3.5 for the values of 

1a = , 10V0 = . 

 An examination of Figure 3-5 will yield some important physical insight into 

the variation of the potential. First, the potential V only approaches zero as the 

coordinate ∞→y . Second, the boundary conditions at x = 0 and at x = a were 

that the potential V equaled a constant that in this case was equal to zero. Recall 

from the previous chapter that y/VEY ∂−∂= . This implies that the component of 

electric field EY must also be equal to zero along these two surfaces. We can 

conclude that the tangential component of electric field adjacent to an 
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equipotential surface will be equal to zero. This conclusion will be of importance 

in several later calculations. 
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Figure 3-5MATLAB. Variation of the potential within the region for the prescribed 

boundary conditions depicted in Figure 3-4. 
 
 
 

 The procedure that we have conducted is the determination of the solution 

of a partial differential equation. Let us recapitulate the procedure before 

attacking a slightly more difficult problem.  

 (1) The proper form of the Laplacian operator ∇2V for the coordinate 

system of interest was chosen. This choice was predicated on the symmetry and 

the boundary conditions of the problem.  
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 (2) The potential V(x,y) that depended on two independent variables was 

separated into two dependent variables that individually depended on only one of 

the independent variables. This allowed us to write the partial differential 

equation as a set of ordinary differential equations and an algebraic equation by 

assuming that the solution could be considered as a product of the individual 

functions of the individual independent variables.  

 (3) Each of the ordinary differential equations was solved that led to 

several constants of integration. The solution of each ordinary differential 

equation was multiplied together to obtain the general solution of the partial 

differential equation.  

 (4) The arbitrary constants of integration that appeared when the ordinary 

differential equations were solved were determined such that the boundary 

conditions would be satisfied. The solution for a particular problem has now been 

obtained. Note that this step is similar to the methodical procedure that we em-

ployed in the one dimensional case. 

 Let us examine the potential distribution in a bounded space as depicted 

in Figure 3-6. The procedure will be the same as for the unbounded case treated 

above. In this case, the potential is required to be equal to zero on three of the 

boundaries and it has a sinusoidal variation on the remaining boundary. 

 In this case, the solution of Laplace's equation for X(x) and Y(y) is again 

given by (3.43) and (3.44).  
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Figure 3-6. A boundary value problem for a bounded surface. 

 

 We are able to predict the functional characteristics of the basic 

"eigenfunction." This is  a  German  word  that  means  "characteristic function."  

The values for kX and kY are called "eigenvalues" or characteristic values. In this 

case  again, the eigenvalue XY kk =  as determined from (3.42). We may also find 

this function referred to as a proper function.   

 The constants are again determined by the boundary conditions. From 

(3.43), the constant C2 = 0 again since the potential V = 0 at x = 0. The constant 

a/nk X π=  (n=0,1,2,…) since the potential V = 0 at x = a – these are the 

eigenvalues of the problem. From (3.44), we write 

  ( ) ( ) 0bkexpCbkexpC Y4Y3 =−+  

since the potential V = 0 at y = b, which yields a relationship between C3 and C4. 

Therefore, the potential within the enclosed region specified in Figure 3.6 can be 

written as 

  





 π















 −π
−−






 −π















 π

=
a
xnsin

a
)by(nexp

a
)by(nexp

a
bnexpCCV 31  

or 
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 π







 −π















 π

=
a
xnsin

a
)by(nsinh

a
bnexpCC2)y,x(V 31  (3.47) 

The constants within the square brackets will be determined from the remaining 

boundary condition at y = 0.  

 The boundary condition at y = 0 states that )a/xsin(VV 0 π=  for  

0 ≤ x ≤ a. Hence, the integer n = 1 and 

  






 π
−






 π

=

a
bsinh

a
bexp2

VCC 0
31  (3.48) 

The potential is finally written as 

  
( ) ( )

( )a/bsinh
a/xsina/)yb(sinhVV 0

π
π−π

=  (3.49) 

This is shown in Figure 3-7. Note that we do satisfy the imposed boundary 

condition that the potential equals zero on three edges. 
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Figure 3-7MATLAB. Normalized potential profile within the region described in 

Figure 3-6. Note that the potential is equal to zero on three edges. 

 

 In the two examples that were treated above, we assumed that the 

boundary condition at y = 0 had a nonuniform distribution.  This was an academic 

type distribution rather than a realistic one but we were able to "carry out the 

details" to the very end without having to introduce more complicated 

mathematics. However, we should look at the real world where we might expect 

that a more realistic distribution for the potential at y = 0 in Figure 3-8 would be to 

assume that the potential at y = 0 would be a constant, say V = Vo. The boundary 

conditions on the other three edges could remain the same in realistic situations. 

Let us carry through the details for this particular boundary condition.  

 Since the other boundary conditions have not been altered, the general 

solution of Laplace's equation can be written as a superposition of particular 

solutions given by (3.49)  

 

  

x

2aa      0 3a

0V+  

0V−

 
Figure 3-8. Periodic potential represents the constant potential V = Vo within the 

region 0 ≤ x ≤ a. 

   

  ( ) ( )
( )a/bnsinh

a/xnsina/)yb(nsinhd)y,x(V
1n

n π
π−π

= ∑
∞

=

 (3.50) 
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because of the linearity of Laplace's equation, where n is an integer (n=1,2,3,…). 

In writing this expression as a summation of an infinite series of sinusoidal 

functions, we are being guided by the fact that each term does satisfy the 

boundary condition that the potential V = 0 at x = 0 and at x = a, hence the infinite 

sum will also satisfy the boundary conditions. The coefficients cn will be chosen 

to yield the best fit of the remaining boundary condition at y = 0 that has now 

been specified to be a constant potential V = V0.  

 We may recognize (3.50) as the Fourier sine series and the constants cn 

as the Fourier coefficients. The coefficients cn and dn are defined for a general 

periodic function )0,x(V)x(F ≡ with a period L: 

  ∑
∞

=














 π

+





 π

+=
1n

nn
0

L
x2nsind

L
x2ncosc

2
c)x(F  (3.51) 

from the relations  

  dx
L

xncos)x(F
L
2c

2/L

2/L
n ∫

−







 π

= , dx
L

xnsin)x(F
L
2d

2/L

2/L
n ∫

−







 π

=  (3.52) 

 The potential V is known to have a constant value only in the region          

0 ≤ x ≤ a. Outside of this region, it is not specified and could have any value that 

we choose in order to ease our mathematical difficulties. In this case, the period 

of the wave is L = 2a. Our choice for the potential at the boundary is to assume 

that it is an odd  function in the variable x.  This means that there will only be sine 

functions in the expansion.  Therefore, 0cn = . 

 The coefficients dn with reference to Figure 3-8 are calculated from 

  





 π







 π

π
=






 π

= ∫∫ a
xnd

a
xnsin

n
V2dx

a
xnsin

a
V.2d

a

0

0
a

0

0
n  

This integral leads to  

  






=

=
π=

evenn0

oddn
n
V4

d
0

n  (3.53) 

The potential is given by (3.51) with the coefficients defined in (3.53) 
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  ( ) ( )
( )∑

∞

= π
π−π

π
=

,...5,3,1n

0

a/bnsinh.n
a/xnsina/)yb(nsinhV4)y,x(V  (3.54) 

 

Example 3-11MATLAB. Write a MATLAB program that calculates and plots the 

two-dimensional potential distribution for the problem, shown in Figure 3-8.  
 
Answer: The potential variation of the first five terms (n=1,3,5,7,9) is shown 

below.  
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 Certain general comments can be made about the potential variation that 

is shown in the figure of the previous example, especially when it is compared 
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with the potential profile in Figure 3-8 that is just the first Fourier term of the 

Fourier series. The fit to a constant value at y = 0 is better if more modes are 

included in the expansion. The fit at x = 0 and at x = a will not be possible as the 

function is double-valued there. However, for y = 0, V = Vo. If we had included 

more terms in the expansion, we would have observed a very rapid oscillation at 

either edge. This effect is given the name " Gibb's phenomenon" and it is a topic 

for further consideration in an advanced calculus course. 

 In this section, we found that it was desirable to sum all of the terms in the 

Fourier series in order to get a valid representation for the potential profile. As a 

general rule, we can say that the more terms that are included in the summation, 

the better the representation for the potential. The question then arises, "Is there 

something unique about each of the terms in the series?" We can answer this 

question by watching a gymnast jumping on a trampoline. If the gymnast lands in 

the middle of the trampoline, the perturbation in the canvas will be different from 

what it would be if the landing were at a point that is away from the center or if 

two gymnasts were doing their thing in tandem. There are different modes for the 

oscillation. The mathematical structure of the solution for an equation describing 

the motion of the canvas for all possible landing points is a solution that involves 

finding all of the Fourier modes.  
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3.5. Finite Difference Method using MATLAB 
 There are different methods for the numerical solution of the two-

dimensional Laplace’s and Poisson’s equation. Some of the techniques are 

based on a differential formulation that was introduced earlier. The Finite 

difference method is considered here and the Finite element method is discussed 

in the next section. Other techniques are based on the integral formulation of the 

boundary value problems such as the Method of moments is described later. The 

boundary value problems become more complicated in the presence of dielectric 

interfaces which are also considered in this section. 

 The finite difference method (FDM) considered here is an extension of the 

method already applied to a one-dimensional problem. This method allows 

MATLAB to be more directly involved in the solution of the boundary value 

problems. We will discuss this method here using a problem that is similar to that 

presented in Example 3-11. We will describe the technique to obtain and to solve 

a suitable set of coupled equations that can be interpreted as a matrix equation. 

 The algorithm that we use is based on the approximation (3.34) for the 

second derivatives in Cartesian coordinates.  In this case, we assume a square 

grid with a step size h in both directions for a two-dimensional calculation 

 ( ) [ ])y,x(V4)hy,x(V)hy,x(V)y,hx(V)y,hx(V
h
1y,xV 2

2 −−+++−++=∇  

This leads to the following “star shape” representation for a two-dimensional 

Laplace’s equation (3.36) as shown in Figure 3-9a 

  
4

VVVVV 4321
0

+++
=    (3.55) 

The voltage at the center is approximated as being the average of the voltages at  

the four tips of the star. For the three-dimensional case, the square is replaced 

with a cube and a seven-point scheme is applied. In this case, the coefficient 1/4 

in (3.55) is simply replaced with 1/6. 
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Figure 3-9. (a)The general five-point scheme; (b)The three-point scheme at the 

corner.  

 

 However, in Poisson's equation, it will modify the charge density that is to 

be evaluated at the central point (0). For the special case of a corner point, this 

five point scheme has to be modified to a three point one as shown in Figure     

3-9b. In this case the principle of the average value simply gives   

   

  
2

VVV 21
0

+
=   (3.56)  

This principle can be applied iteratively for the computation of the potential in the 

points of the square grid as shown in Figure 3-10.  This method is also called a 

relaxation method. After computing the first iteration, we determine the potential 

at the other points within the nine-point mesh. This will involve two more 

iterations as shown in Figure 3-11. In the second iteration, all of the potentials at 

the locations indicated by a solid circle   in Figure 3-11a are now known. The 

values indicated by a square  are to be computed in this iteration using (3.55). 

In the third iteration, the values of the potential indicated by the solid circles  

and squares   are known from the previous two iterations or as initial values in 
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the calculation. Again employing (3.55), the values of the potential at the 

locations indicated by the diamonds   can be computed.  In this mesh, it is 

assumed that the potentials at the boundaries are already given in the statement 

of the problem, hence the potentials at the locations indicated by the hollow 

circles   are also known as shown in Figure 3-11b. 

                  

 

0V =  0V =

x
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O 0VV =

0V =

a

a  

 

Figure 3-10. The square grid in two dimensions in Cartesian coordinates. 

 

  

 

)a(  )b(
 

Figure 3-11. The second and third iterations. (a) The values of the potential in-

dicated by the solid circles   are known.  The values at the locations of the solid 

squares   are computed in the second iteration. (b) The potentials at the bound-

aries indicated by the hollow circles  are assumed to be known. The potentials 

at the locations indicated by the diamonds   are computed in the third iteration. 
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 This iterative procedure can continue until the computed values at all of 

the points in the decreasing meshes become closer to each other. The accuracy 

of the calculation can be insured by repeating the calculation with a different 

initial mesh size. A mesh with a shape and orientation that is different than the 

one used here could also be employed in a numerical calculation.  This is 

particularly useful in calculations involving unusual shapes.  It is also possible to 

scale the various dimensions in order to use this particular mesh.  

 A critical restriction is also found on the square mesh size in that the first 

point must be in the center of the square. This point will be evaluated from the 

four boundaries of the square. This will restrict the number of internal points N of 

the square to contain the following number of points  

  12; 32; 72; 152; 312; 632; ...[2N - 1]2  

This is called the array size.  

Example 3- 12MATLAB. Given that the potential at the four sides of the square 

region have the values: 0)a,x(V)y,a(V)y,0(V === , V10V)0,x(V 0 == , plot the 

potential internal to the boundaries.  Use an array size of 31 x 31.  From (3.56), 

the potentials at the four corners are (0, 0, 5, 5). 
 
Answer:  The results of the numerical calculation are shown below.  Note not the 

solution satisfies the boundary conditions and also the values at the corners. 
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 In the discussion above, we assumed that the region to which the star 

given in (3.55) and depicted in Figure 3-11 had the shape of a square. This 

technique seemed to work well. However, this technique can be extended to an 

area with a more complex shape.  There are techniques that can be employed to 

enhance the rate of convergence to the final solution. For example, if one of the 

boundaries did not have a constant value, it might be advantageous to use a 

different mesh configuration.  It is not a large step to get into examples that are 

"beyond the scope of this text." We will let others tread in those waters. 
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Example 3-13MATLAB.  The potential in a certain region is described with the 

expression ))yx(exp(V)y,x(V 22
0 +−= .  Calculate and plot the volume charge 

density ρv(x,y) that would be calculated from Poisson's equation assuming that 

εo = 1. 
 
Answer: Here ‘del2’ function is applied. The results are shown in the figure 

below. 
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 In the material described so far, we have assumed that the potential was 

specified at the boundaries of a uniform dielectric region for which the potential 

was to be numerically determined. If the region contains two dielectrics as shown 
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in Figure 3-12, we have to obtain an algorithm that will allow us to evaluate the 

potential on both sides of the dielectric interface.  

 In order to calculate the boundary condition for the interface of the two 

dielectrics, we make use of Gauss's law. This is written as 

  0Qenc ==•ε∫ dsE                      (3.57) 

where we have assumed that there is no surface charge density at the interface.  

With reference to Figure 3.12, (3.57) can be written as 

  0dl
dn
dVzz =ε∆−=•ε∆=•ε ∫∫∫ dlEdsE   (3.58) 

where we have replaced the electric field with the derivative of the potential that 

is normal to the surface. The term ∆z is the distance in the third coordinate. The  

surface integral has become a contour integral times this distance ∆z that is 

directed out of the page. In terms of Figure 3-12, we write    

                 

( )

( )h
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2
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12
03

1
02

12
01

ε
−
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 ε+ε

−

ε
−

+





 ε+ε

−
=ε∫

  (3.59) 

Rearranging terms, we rewrite (3.59) as 

  ( ) ( ) ( ) 0V4V2VV2V 0214232121121 =ε+ε−ε+ε+ε+ε+ε+ε   (3.60) 

or 

  ( ) ( ) ( )[ ]4232121121
21

0 V2VV2V
4

1V ε+ε+ε+ε+ε+ε
ε+ε

=   (3.61)  

 This equation is an extension of the equation (3.55), which was written 

when ε=ε=ε 21 (homogeneous medium). Using the algorithm developed in 

(3.61), we can relate the potentials on one side of a dielectric to the other side.  
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Figure 3-12. Interface of two dielectrics. Points of the five-point scheme are in 

the two dielectrics. 
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3.6. Finite Element Method using MATLAB 
 
 The Finite element method (FEM) is a generalization of the finite 

difference method (FDM) that was considered in the previous section. Instead of 

subdividing the area into small squares with a side h, this technique subdivides 

the area into small triangles. As we will observe, this method is more flexible in its 

application.  For example, the calculation of the potential profile in the region 

between two concentric rectangular metallic surfaces can be handled with this 

technique.  We will develop the technique using this problem.  The technique has 

a strong foundation using matrix manipulations. 

In Figure 3-13a, one quarter of the cross section of a rectangular coaxial 

line is shown. Figure 3-13b depicts the appropriate modeling with the finite 

triangular elements. The mesh is irregular and the grid is denser in the vicinity of 

the corners where a more rapid variation of the potential is to be expected. The 

scalar potential V satisfies Laplace’s equation (3.6) inside the area S  

  0V2 =∇  (3.62) 

while it satisfies two different conditions on the boundaries. 1) On the boundary 

21 LLL += ,  the voltage is specified to have any particular value.  In Figure 3-13b, 

the voltages are V = 1 on one conductor and V = 0 on the other conductor.  This 

is called a Dirichlet’s boundary condition; 2) Because of the symmetry inherent in 

this problem, we require that the normal derivative of the voltage be equal to 0 on 

the plane of symmetry.  This is called a Neumann’s boundary condition.  The 

development of this technique will require some care. 



Finite Element Method using MATLAB 

313 

1V =

0V =  

0
n
V
=

∂
∂  

0
n
V
=

∂
∂

 (L1) (L2) 

( L2) 

 

(a)                             (b)  

Figure 3-13. (a) Cross section of ¼ of a square coaxial line is shown;  

(b) A finite element mesh is used to subdivide the square coaxial cable.  

 

 It was shown in Chapter 2 that the electric energy that can be stored in a 

volume with a cross section A is 

dsV
2

W 2

A

∇
ε

= ∫  (3.63) 

In Appendix 2, it is shown that this integral or “functional” has a minimum value 

for the actual solution of this boundary value problem.  The necessary condition 

for this minimum leads to Laplace’s equation for the potential V in the area A.   

 The most widely separated of the elements are the linear node elements 

for which the potential inside a triangle can be approximated with a linear 

polynomial 

  cybxa)y,x(V )e( ++=  (3.64) 
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where there are three unknown coefficients (a, b, c).    These coefficients will 

have to be determined.  

 In order to accomplish this, it is necessary to apply three additional 

conditions. The potential at the three nodes of the triangle (1, 2, 3) in Figure 3-14 

are known. This approximation replaces the smooth solution with a piecewise 

smooth function that is based on a linear interpolation. It is easy to check that the 

continuous linear function (3.64) satisfies Laplace’s equation (3.62). The 

coefficients (a, b, c) can be determined from the given node potentials ( 321 V,V,V ) 

provided that the coordinates of the nodes are known quantities: 

)y,x( jj ( 3,2,1j = ). 

 Using the interpolation criteria 

  jjj
)e( V)y,x(V =  ( 3,2,1j = ) (3.65) 

the following matrix equation for the coefficients is obtained 

  















=

































3

2

1

33

22

11

V
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c
b
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yx1
yx1
yx1

 (3.66) 

The determinant of the square matrix in (3.66) is equal to twice the area of the 

triangle 2Ae.  
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Figure 3-14. Triangular finite element. 

The substitution of the solution of the simultaneous equations (3.65) into 

(3.66) yields 

  [ ]































=

−

3

2

1
1

33

22

11
)e(

V
V
V

.
yx1
yx1
yx1

.yx1)y,x(V  (3.67) 

After performing a matrix multiplication of the first two matrices, we arrive at the 

following expression for the potential at an arbitrary point within the triangle as 

being a linear combination of the potentials at the nodes of the triangle  

      )y,x(V)y,x(V i

3

1i
i

)e( α= ∑
=

 (3.68) 

This potential is defined in terms of a set of new functions 

  ( ) ( ) ( )[ ]yxxxyyyxyx
A2
1)y,x( 23322332

e
1 −+−+−=α  (3.69) 

The other coefficients in (3.68) can be obtained with a cyclic permutation of the 

subscripts. Using the explicit expressions, it can be shown that these three linear 

basis functions satisfy the following interpolation criteria 
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=
≠

=α
ji,1
ji,0

)y,x( jji  (3.70) 

The details are included in Appendix 2. 

We differentiate the potential that is given in (3.68)  

    )y,x(V)y,x(V i

3

1i
i

)e( α∇=∇ ∑
=

 (3.71) 

and using (3.63) to find that the energy satisfies the following quadratic form 

  ∑∑
= =

=
3

1i

3

1j
ji

)e(
j,i

)e( VVS
2
1W  (3.72)  

where the following matrix known as Dirichlet’s matrix ]S[ )e( for the finite element 

is defined as 

     dSS j
Ae

i
)e(

j,i α∇•α∇ε= ∫  (3.73) 

and the permittivity r0εε=ε  is assumed to be a constant within the element. 

Analytical expressions for the elements of this matrix are derived in Appendix 2. 

The electric energy of the element from (3.72) can be written in a matrix form 

  ]V][S[]V[
2
1W )e(T)e( =  (3.74) 

where the superscript “T” indicates a transpose matrix. 

Example 3-14MATLAB. Find the voltage distribution within the triangular element if 

the voltages at the three nodes have the following values. 

V1 = 8 @ (0, 0); V2 = 0 @ (4, 0); and V3 = 0 @ (4, 3).   

Evaluate the electric energy that is stored in this element.  In order to simplify the 

calculation, the energy should be expressed in terms of the dielectric constant ε.  

Compare your analytical results with a MATLAB calculation. 
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Answer: The voltage distribution within the element is computed from (3.67) 
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It is easy to check that this linear function satisfies the interpolation criteria (3.65) 

and Laplace’s equation (3.62). 

 In order to calculate the energy, we must first calculate the numerical 

values for the explicit expressions for the [S(e)]-matrix elements.  The area 

enclosed within the triangle is Ae = 6.  We explicitly write using (A2.9) and (A2.10) 

that 
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This is a written as the matrix 
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The energy is computed from (3.74) 
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These results are confirmed using MATLAB.  
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 The total energy of the ensemble of all elements in the mesh can be 

calculated as just being the sum of the energy of each of the individual elements 

  ∑=
e

)e(WW  (3.75) 

We also need to know the procedure for adding a new element to the 

existing elements in the mesh.  For simplicity, we consider the case where the 

mesh consists of only one element as shown in Figure 3-15. The problem is in 

obtaining the S-matrix of the new ensemble in terms of the S-matrix of the 

previous triangular mesh ]S[ )1(   and the S-matrix of the new triangular 

mesh ]S[ )2( . We should expect that the potential to be the same at all of the 

common nodes for both meshes.  This will impose certain boundary conditions in 

that 41 VV =  and 62 VV = after coupling.  In addition, we also renumber the other 

node for convenience as 54 VV = after coupling. 
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Figure 3-15. (a) Decoupled elements; (b) Coupled elements. 

 

The decoupled potentials can be written as a column matrix.  The 

transpose of this matrix is   

[ ] [ ]Td654321d V,V,V,V,V,VV = ,  
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where the subscript “d” means “decoupled.” If the S-matrices of the two elements 

are ]S[]S[ j,i
)1( = ( 3,2,1j,i = ) and ]S[]S[ j,i

)2( = ( 6,5,4j,i = ), then the global S-matrix of 

the decoupled system is the following block-diagonal square matrix 

  [ ] 







=

]S[]0[
]0[]S[

S
)2(

)1(

d
)e(  (3.76) 

 We introduce also the column matrix of the coupled potentials 

  [ ] [ ]T4321 V,V,V,VV = . 

The boundary conditions from Figure 3-15 can be written using a special 

rectangular coupling matrix [ ]C  defined in Appendix 2. In this particular case, we 

obtain  
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)e(

S0SS

0SSS

SSSSSS

SSSSSS

]S[  (3.77) 

Note that two types of subscript numeration are used: 1) local for decoupled 

elements and 2) global for coupled elements. 

 It is now time to consider the role that sources have on the system and to 

ascertain their effect on the solution of the boundary value problem. There are 

two types of sources: 1) surface sources that are prescribed potentials on the 

boundary 1L  in Laplace’s equation and 2) volume sources such as a charge 

density in Poisson’s equation. For simplicity, only the charge free Laplace’s 

equation will be considered in this discussion.  Poisson’s equation can also be 

solved using similar techniques but it will not be discussed further. We assume 
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surface sources are known which means that the column matrix of the coupled 

potentials ]V[ can be split into two parts: a) the unknown potentials u]V[  and b) 

the known potentials k]V[  or [ ]Tku ]V[]V[]V[ = . The same separation holds for the 

matrix ]S[ )e(  which is split into four parts 







=

k,ku,k

k,uu,u)e(

]S[]S[
]S[]S[

]S[ . The necessary 

condition that the function (3.74) has a minimum is that the appropriate 

derivatives must be equal to zero as shown in Appendix 2. 

 This condition imposes a relation between the known and the unknown 

potentials that is given in (A.2.16).  We write 

  kkk,u
1

u,uu ]V][F[]V[]S[]S[]V[ ≡−= −  (3.78) 

provided that the matrix u,u]S[  is  non-singular. The last matrix equation shows 

that the unknown potentials can be represented as a linear combination of the 

known potentials although the coefficients may implicitly depend upon the 

geometry of the mesh.   

 The main advantage of the FEM-method in comparison with the FDM-

method is its flexibility.  This will be demonstrated by applying it to areas with 

different shapes. The shapes are covered by triangles in the domain of interest. 

This may lead to some complication in the mesh generation which is, of course, a 

disadvantage. This can be avoided to some extent by using a procedure for 

automatic mesh generation. In this book, the mesh is manually introduced for 

pedagogical reasons. There is a commercial package FEMLAB that can be used 

with MATLAB to solve more complicated problems then we will encounter here. 

 The procedure of using this technique has five stages:  
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1) Generation of the mesh; 

2) Inclusion of the surface and volume sources; 

3) Construction of the matrices for every element; 

4) Collection of all the elements of the [S(e)]-matrix; 

5) Solution of the resulting matrix equation.  

In order to illustrate the FEM-method, we consider a simple example. 

    

Example 3-15. Find the potential in the point (1) using the FEM-method. 

  

 

1

0V 

2 3

45 

6

7

8

9 

10V 

 

Answer: There are 5NN =  nodes denoted as # = 1, 2, 3, 4, 5 and 4NE = equal 

triangular elements #1-4-5, 1-2-5, 1-2-3, and 1-3-4. The only unknown potential is 

V1 and the other four potential have the numerical values: 0VV 32 == , 

V5
2

010VV 54 =
+

== .  

 Using the FEM-method, we first calculate the matrices using the known 

potentials at the points # = 2,3,4,5. Following the procedure outlined in the 
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previous example and (3.77), we find that the global sub-matrices required for the 

calculation in (3.78) are 

     ]S4[]S[ 1,1u,u = ; ]S2,S2,S2,S2[]S[ 5,14,13,12,1k,u = . 

Using the expressions in the previous example or from Appendix 2, the elements 

of the local [S(e)]-matrices can be calculated.  The area of each of the triangular 

elements is equal to 1 and the coordinates of the nodal points can be obtained 

from the figure.  We finally obtain 

  ε=1,1S ; 
2

SSSS 5,14,13,12,1
ε

−==== .  

The elements of the [F]-matrix are calculated from (3.78) 

  [ ]1,1,1,1
4
1],,,[

4
1]A[ =ε−ε−ε−ε−
ε

−=  

and since ]V[]V[ 1u =  and t
5432k ]V,V,V,V[]V[ = , we finally obtain 

  ( ) ( ) V5.25500
4
1VVVV

4
1V 54321 =+++=+++=  

 This problem can be also evaluated using the FDM-method.  We can write 

the potential in the point (1) as an average value of the potentials in other four 

points (# = 6,7,8,9)  

  ( ) ( ) V5.201000
4
1VVVV

4
1V 98761 =+++=+++= . 

This is the same result that we had obtained previously.  There are cases where 

the FEM-method has an advantage over the other techniques.  In certain cases, 

the other methods actually fail! 
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 In order to illustrate the power of the FEM-method, we examine a 

rectangular coaxial line. Because of the symmetry inherent in this problem, we 

shall consider only ¼ of the coaxial line as shown in the Figure 3-15a.  Even 

though there are only a few elements in the structure, the actual mathematics will 

become too tedious to do by hand.  The energy of the capacitor is found from 

equation (3.74) and (3.75). The capacitance can be calculated from the 

expression 2
0VC

2
1W =  which yields 

     20 V
W2C =  (3.79) 

 

Example 3-16MATLAB. Write a MATLAB program to: 

 1) Calculate the potentials in the three free nodes with # = 4, 5, 9;  

 2) Calculate the total electrostatic energy W stored between the plates 

and find the capacitance 0C of 1m of the line.  

Use a simple regular mesh shown in the figure and the following numerical 

values for the parameters: a = 1cm, b = 2cm, V = 10V on the outer conductor, 

and V = 0V on the inner conductor.  In this case, there are 11NN =  nodes and 

12NE =  elements. 
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Answer: 1) The potential is found by solving the matrix equation (3.78) using 

there a mesh that is manually generated. The unknown potentials calculated with 

the MATLAB program are: 

                             V5V4 = ; V5.7V5 = ; V5V9 = . 

2) The calculated normalized capacitance ( 00 /CC ε= ) per unit length of the line 

calculated from (3.79) is C = 11.0. The value, found in the literature for this 

square coaxial line with a2b = , is 2341.10C = . The accuracy can be improved 

by increasing the number of the nodes and elements which will be shown in the 

next example. 

  

Example 3-17MATLAB. Solve the same boundary value problem as in the previous 

example but apply a finer mesh shown in the figure below. There are 21NN =  
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nodes and 24NE = triangular elements.  In addition, plot the equipotential 

contours and the electric field between the two surfaces. 

1 2  3 4
6 7 85  

9  10 11 12

13  14 15 16

17 18

19 20

21 22

23 24

0V

10V

(b)

a b

 

Answer: 1) The potential is found by solving the matrix equation (3.78) using 

there a mesh that is manually generated. . The unknown potentials obtained from 

the MATLAB program are: 

 V111.5V6 = ; V2222.5V7 = ; V7778.5V8 = ; V8889.7V9 = ; 

 5.7778VV14 = ; 5.2222VV17 = ; 5.1111VV20 = . 

 2) The calculated normalized capacitance ( 00 /CC ε= ) for a unit length of 

the line is C = 10.8444. The relative error achieved here is smaller than in the 

previous example.  

 3)  The equipotential contours are plotted below using the ‘contour’ 

function.  The electric field is determined using the ‘gradient’ function and 

displayed using the ‘quiver’ function. 
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  Figure 3-17. A microstrip transmission line. 

 

The previous two examples were solutions of a closed electrostatics 

problem.  Closed problems can easily be handled by the FEM method.  A general 

conclusion can be drawn from these examples in that the accuracy can be 
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improved by using a finer mesh structure.  However, increasing the accuracy also 

increases the computational time. 

An open electrostatic problem is shown in Figure 3-17.  This would 

correspond to an open microstrip line.  A dielectric with a dielectric constant 

1r >ε  separates the conductors and also increases the capacitance of the line.  It 

is not appropriate to use either the FEM-method or the FDM-method to calculate 

the capacitance or the stored electrostatic energy for structures of this type.  This 

is because boundary conditions at infinity will have to be invoked at the open 

surfaces.  It is possible to introduce an absorbing boundary condition at these 

surfaces.  However, it is usually better to follow a different path of using the 

method of moments which will be introduced in the next section. 
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3.7. Method of Moments using MATLAB 
 In the previous chapter, we found that the electric potential V could be 

computed from a known charge distribution.  This was accomplished using 

integral             

  'dz'dy'dx
R

)'z,'y,'x(
4

1)z,y,x(V
V

V

0
∫∫∫
∆

ρ
πε

=     (3.80)  

where R is the distance between the charge located at the point (x’,y’,z’) and the 

point of observation at the point (x,y,z). If the charge distribution is known, then 

the potential can be easily computed. We note that (3.80) can be converted into a 

summation and hence the integral can be evaluated numerically. 

 There are cases, however, where the potential may actually be known and 

the charge distribution may be unknown. Static fields abound with such 

problems. An example would be the determination of an unknown surface charge 

distribution on a conductor if the potential of the conductor was specified. 

 The technique that will be introduced is called the “Method of Moments” 

and it will be identified as “MoM” in the following discussion.  This technique will 

be very powerful in calculating the capacitance of various metallic objects.  It is 

also useful in calculating the capacitance of a transmission line that will be 

encountered later.  Finally, it is useful in determining the shapes of various 

objects such as planes and rockets that may be impinging upon a nation by 

correctly interpreting the reflected high frequency signals from the objects by the 

observer.  

 Consider the configuration shown in Figure 3-18. Four charges are located 

in space. A  Cartesian  coordinate  system  is  also  introduced  and  the  location  
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Figure 3-18. Four charges distributed in space. The potential at the indicated 

points are assumed to be V = - 1 and V = + 1. 

  

of the centers of the four charges are specified with reference to this coordinate 

system. The potential at two of the charges (Q1 and Q2)  is specified to be 

1VV 21 −==  and the potential at the other two (Q3 and Q4) is specified to be 

1VV 43 +== . The value of the individual charges is unknown.  In order to obtain 

a unique solution for the values, of these 4 charges, we must be able to write-

down 4 equations that will describe the potential at the 4 defined locations. We 

assume that the region is a vacuum and we can use superposition.   We write 

four linear equations for the potentials at the four points 
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 (3.81)  

This can be written using the summation sign as 

  j

4

1j0
i Q.

||
1

4
1V ∑

= −πε
=

ji rr
 ( 4,3,2,1j = ) 

 The four equations in (3.81) can also be written in matrix notation.  

Remember that MATLAB was originally created in order to solve problems of the 

type  

  ]V[]Q][P[ =  (3.82) 

where [V] is the column vector of the known potentials, [Q] is the column vector 

of the unknown charges and [P] is the square matrix of coefficients 
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 (3.83) 

This matrix is symmetric because the potential between the charge and the point 

of observation depends upon the magnitude of the distance R between the two 

points. 

   The diagonal terms of this matrix (i = j) appear to give us problems since 

they become very large. These terms are called singular.  We remove this 

singularity with an approximation.  The approximation makes the assumption that 
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the potential at these singular points is evaluated at the edge of the spherical 

charge that has a radius a and not at the center.  It maintains that potential 

throughout the interior of the spherical charge.  The diagonal elements of a 

matrix [P] are  

  
a4

1P
0

i,i πε
=  (3.84) 

Example 3-18MATLAB. Find the values of the charges that will cause the potentials 

as shown in the Figure 3-18, if the coordinates of the points in the plane 

0z = are: )3,2(Q1 , )2,2(Q2 , )3,5(Q3  and )2,5(Q4  . Assume that the diameter of 

the charges is 1a2 = meter. 

Answer: The matrix [P] in (3.83) and (3.84) has the elements   

        



















πε
=

































+

+

+

+

πε
=

213333.03162.0
123162.03333.0

3333.03162.021
3162.03333.012

4
1

)2/1(
1

1
1

3
1

31
1

1
1

)2/1(
1

31
1

3
1

3
1

31
1

2/1(
1

1
1

31
1

3
1

1
1

)2/1(
1

4
1]P[

0

22

22

22

22

0
.   

The column vector for the potential is [V] = [- 1, - 1, 1, 1]T where the “T” indicates 

the transpose. Solving the matrix equation (3.82) leads to  

   )4(4254.QQQQ 04321 πε−=−=−== .  

 

 We could continue on with individual charges as has been presented up to 

this point. However, it is more meaningful to examine cases where the charge is 

distributed upon various surfaces. If the charge were distributed on a line as 

shown in Figure 3-19, it would be prudent to describe the charge distribution with 

a linear charge density Lρ  (C / m). The charge on a particular element j would be 
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j,Ljj la2Q ρ∆π=∆ (j=1,2,…N) and it would be located at the center of the jth sec-

tion. We proceed using the same method that has just been described. The 

identical problem with the singularity that was discussed above with individual 

charges will also be encountered in cylindrical coordinates. 

            

 

a  

r |rr| '
j−

'
jr

P

x  

y

  
Figure 3-19. The potential at point P results from charges jL l∆ρ  located at the 

centers of the jth section. 

 

 In this case, the column vector of the unknown charges is chosen to be 
T

N,L2,L1,L ],...,,[
L

Q
ρρρ=




∆

 while the column -vector of the known potentials is 

written as T
N21 ]V,...,V,V[]V[ = . The off-diagonal terms of the square-matrix are 

written as 

  
|xx|2
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|xx|
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a2P
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j,i −ε

∆
=

−

∆

πε
π

=  (3.85) 

The singularity in the diagonal terms of the matrix will also be encountered here 

but they also can be removed.  We evaluate the potential at the surface of the 

cylinder and assert that it is also equal to the potential at the center which is the 
"singular point." The evaluation of this potential jV  at the surface of this 

cylindrical section shown in Figure 3-20 is calculated using the integral 
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The integral can be performed and we find for the diagonal elements 

    
[ ]






























 ∆
++

∆
−








 ∆
++

∆

ε
=++

πε
π

=

∆

∆− 2
j2j

2
j2j

0

22

0
j,j

2
l

a
2
l

2
l

a
2
l

ln
2
a'xa'xln

4
a2P

2
jl

2
jl       

If we make the approximation that the radius a is much less than the length of the 
section ∆lj ( jla ∆<< ), this simplifies to  

  






∆

ε
≅

a
l

lnaP j

0
j,j  (3.86) 
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Figure 3-20. The jth section of a linearly charged line.  

 

Example 3-19MATLAB. Find the charge distribution on the cylindrical conductor 

whose radius is a=0.01 m and whose length is L=1 m. The potential on the 

surface is V=1 V. You may assume that the charge is uniformly distributed in 

each section. Assume that the number of the sections is N=5 and the step-size is 

20.0l =∆ m.  
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  1      2      3      4     5 x  

y

 

Answer: The matrix equation relating the potentials to the charges is (3.82), 

where the off-diagonal and the diagonal elements are given by (3.85) and (3.86) 

respectively. The solution for the unknown charge distribution is 

 05,L1,L 2556. ε=ρ=ρ , 04,L2,L 2222. ε=ρ=ρ , 03,L 2170. ε=ρ . 

Note that the charge density in the center of the line is smaller than at either end.  

We should expect this nonuniform distribution since there is a loss of symmetry 

at either end. 

 

 Let us also apply the method of moments to a slightly different topic, that 

of ascertaining the expected one dimensional charge distribution from a known 

potential profile. The potential profile and the resulting charge distribution could 

be very nonuniform as in, for example, the depletion layer of a pn junction. In 

this case, we assume that there are a sequence of sheets of charge as shown in 

Figure 3-21. The incremental charge density on each sheet "j" is uniform across 
the plane of that particular sheet and it has a value j,Sρ .The separation between 

each sheet will also be assumed to be uniform with a separation distance of d.   
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Figure 3-21. Charged sheet model to represent the pn junction.  

 

 The electric field surrounding an infinite plane of constant surface charge 
density j,Sρ  (C / m2) is given by 

  
ε

ρ
=

2
E j,S

j  

The electric potential at a point iz at a distance |zIzz ji −=  from the charged 

sheet j is found from the integral of the electric field 

  z
2

V j,S
j ε

ρ
−=  (3.87) 

where the constant of integration in (3.87) is set equal to zero. 

 The potentials at the two extremities z1 = -2d and z5 = +2d in Figure 3-21 

have a value that is equal to 1/2 of the value that is given in (3.87). This 

additional factor of 1/2 arises since we are only interested in the electric field that 

is be confined within the region of interest. The singularity that was previously 

encountered in the diagonal terms is automatically removed since the factor of 

"0" is introduced in (3.87). In this case the column vector of the source is 
T

5,S1,S ],...,[
s

Q
ρρ=




∆

. The elements in the square-matrix [P] are obtained from 

(3.87) to be 
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or as a matrix 
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01232/4
2/10122/3
2/21012/2
2/32102/1

2/43210

2
d]P[   

    

 Let us now specify the values of the potential as indicative of a linear 

variation in space to be [V] = [- 2, - 1, 0, 1, 2]T. Solving the matrix equation (3.82) 

we find that 

  
TT

5,S4,S3,S2,S1,S 1]   0,  0,  0,  ,1[
d
2],,,,[ +−
ε

=ρρρρρ  (3.89) 

This result expresses the fact that the electric field that is proportional to the 

negative gradient of the linearly varying potential is a constant that is determined 

by the charge densities that are localized at either edge. Other potential 

distributions could be employed.  This would lead to a different charge 

distribution.1 

 Other potential distributions can be assumed.  In studying a PN junction, 

you may encounter the term “linear graded junction” or a “quadratic graded 

junction.” A different choice will, of course, yield a different charge distribution. 

 The charge could have been distributed upon a surface resulting in an 

inhomogeneous surface charge density Sρ . In this case, we subdivide the surface 

into small rectangular areas ∆si ( N,...,2,1i = ). This is shown in Figure 3-22. In this 

case the column vector of the unknown charges is taken T
N,S2,S1,S ],...,,[

s
Q

ρρρ=




∆

  

_______________________  
1 K. E. Lonngren, P. V. Schwartz, E. W. Bai, W. C. Theisen, R. L. Merlino, and R. T. Carpenter, 
"Extracting Double Layer Charge Density Distributions using the Method of Moments," IEEE 
Transactions on Plasma Science, Vol. 24, pp. 278-280, (1994). 
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and  the  column  vector  of  the  known potentials  is T
N21 ]V,...,V,V[]V[ = .  In  this 

case, MMN ×= is the number of the square sections with individual areas ∆si = 

a2. The mutual-coupling terms of the square-matrix are easily obtained again to 

be  

  
||

s
4

1P j

0
j,i

ji rr −

∆

πε
=  (3.90) 

 The reader should expect at this stage that we will again encounter a 

singularity in the diagonal terms. In order to remove the singularity, we replace 

the small rectangular subarea whose area is ∆s with a circular region that 

contains the same incremental charge. This implies that the area of the circle πb2 

and the square subarea a2 are equal.  With this assumption, the radius of the 

circle b can be calculated to be   π= /ab . We assume that this charge that is 

distributed within the circle is localized at the center of the circle.  We then 

compute the potential at the perimeter of the circle from this localized charge and 

assume that it has this value throughout the circle. The evaluation of the potential 

leads to the following approximation for the diagonal terms 
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where the radius of the circle is written in terms of the area of the grid element. 
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Figure 3-22. Charge is distributed on a surface and has a density Sρ . Singular 

elements are replaced with discs with the same area. 

  
 Typical problems that are encountered in this case would be the calcula-

tion of the capacitance of a parallel plate capacitor. In such a calculation, the 

two plates are each subdivided into N subareas as shown in Figure 3-22. Here 

the capacitance 0C  is calculated from the equation 

  C0 =Q / V (3.92) 

where Q is the total charge stored on the top plate and V is the voltage difference 

between the plates. 

Example 3-20MATLAB.  Two charged parallel square plates with dimensions  

L x  L = 1m2 are separated by a distance of d=0.1 meter. Each side is subdivided 

into N = 64  equal subareas The potential of the top plate is +5 V and the 

potential of the bottom plate is  -5 V.   

 a) Find and plot the charge density distribution using the MoM;  

 b) Find the capacitance C of this charged conductor system. Compare the 

limiting case with the known simple classical solution 10d/L/C 2
0 ==ε .  
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d 

subsection “i” 
area ∆Si 
charge density ρS,i 

 
 

Answer: a)The column -vector of the known potential is  

  [V]=[+5,+5,…,+5;-5,-5,…,-5]T   

The matrix equation which must be solved is again (3.82) with a matrix [P] 

described by (3.90) and (3.91).  

 The solution of this matrix equation for the surface charge distribution is 

plotted in the following figure. 
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 b) The normalized capacitance 00 /CC ε= is calculated to yield of value of 

C0 = 13.3811 for the value of the number of sections N = 64.  This value is larger 

than that predicted from the elementary formula 0.10d/LC 2
0 == .  This formula 

assumed that the separation distance was significantly less than the area of the 

plate and all fringing fields at the edges could be neglected.  The accuracy can 

be improved by subdividing the area into smaller subareas. 

   

 This is a brief introduction to the method of moments.  As we have seen, 

the technique is very useful in determining a source distribution such as a 

charge in terms of a response function such as voltage between two plates 

containing an homogeneous dielectric. A further discussion of this technique is 

usually reserved for more advanced courses. 
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3.8. Conclusion 
 Solving boundary value problems for potentials has led us to certain 

general conclusions concerning the methodical procedure. First, nature has given 

us certain physical phenomena that can be described by partial or ordinary 

differential equations. In many cases, these equations can be solved 

analytically.Other cases may require numerical solutions. The analytical solutions 

contain constants of integration. Nature also provides us with enough information 

that will allow us to evaluate these constants and thus obtain the solution for the 

problem.Assuming that neither mathematical nor numerical mistakes have been 

made, we can rest assured that this is the solution.  

 Five techniques that are frequently encountered when we attempt a 

solution of more complicated problems in electromagnetic theory were introduced 

in this chapter. The first two are analytical methods: 1) direct integration of a one-

dimensional equation. 2) Fourier series expansion of a two-dimensional equation. 

The latter three techniques involve the application of numerical methods: 3) finite 

difference method; 4) finite element method; and 5) method of moments. The 

methods are described in both 1 and 2 dimensions  The first two of them are 

based on differential equations for the electric potential (Poisson's and Laplace's 

equations), while the last one is based on an integral equation for the unknown 

charge distribution.  The numerical techniques that were introduced here are also 

applicable to three-dimensional problems that may be later encountered. The 

numerical programs that had been written using MATLAB are available at the 

web site: [http://www.scitechpub.com/]  

 As presented in this chapter, all of the methods assume linearity which 

leads to linear superposition principles.  However, you will frequently encounter 

nonlinearity in nature which will lead to significant alterations in your method of 

obtaining a solution. Numerical questions concerning other specific programming 
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languages, convergence requirements, numerical errors, aliasing, etc. are better 

left to later courses. As problems arise, solutions can hopefully be found.  
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3.9. Problems 
1. For the indicated boundary conditions that are specified in the figure, find the 

potential distribution )y,x(V within the enclosed region by solving Laplace's 

equation and expanding one boundary condition in a Fourier series expansion.  
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V = 0 V = 0 
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0                            a
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0
⇑  
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∂
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2. Find the potential within the channel given in problem 1 using the boundary 

conditions at x = 0, x = a  and  y = ∞ as stated there. The boundary condition at y 

= 0 is given as E = Eouy where Eo is a constant.  

3. Find the potential within the channel given in problem 1 using the boundary 

conditions at x = 0, x = a and y = ∞ as stated there. The boundary condition at y 

= 0 is: V = +Vo for 0 < x < (a/2) and V = -Vo for (a/2) < x < a. 

4.  Find the components of the electric field (Ex,Ey) in problem 3. 

5. Find the expression for a potential V(x) = Vo (x/a) that describes the potential 

variation in the region 0 ≤ x ≤ a.  

6. Find the potential distribution )(V ρ by solving Laplace’s equation analytically 

for the region between two concentric hollow spheres (spherical capacitor). Apply 

a spherical coordinate system with the following boundary conditions: 0V = at 

a=ρ and 0VV = at b=ρ .  Simplify the calculation with symmetry arguments.  
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a
b

 

7.  Find the capacitance C  of the spherical capacitor in problem 5. 

8. Find the potential distribution )(V θ by solving Laplace’s equation analytically 

for the region between two hollow coaxial cones. A potential 1VV = is assumed at 

1θ=θ  and 0V = at 12 θ−π=θ=θ . The vertices of the cones are insulated at 

0=ρ . Simplify the calculation with symmetry arguments. 

  

 

2θ

1θ

 

9. Find the potential V(x) in the region 0< x < 1 satisfying the boundary 

conditions:    V(0) = 3 and V(1) = 0. 

10. Find the potential V(x) in the region 0< x < 2 if the electric field is normal with 

a constant value Ex = 4. 

11. Find the potential V(x) in the region 0< x < 1 assume that a charge uniformly 

distributed there with a density 0v 4ε−=ρ . The potential satisfies the boundary 

conditions:  V(0) = 3 and V(1) = 0. 

12. Find the normal electric field Ex (x) in problem 11. 
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13. Find the capacitance C0 of unit length of the cylindrical capacitor  -  two long 

concentric cylinders with radiuses a and b (b > a). The boundary conditions for 

the potential are: V(r = a) = V0 and V(r = b) = 0.  

14. Find the potential distribution 

V(x,y) in the region y > 0. Because of 

the periodicity of the boundary 

condition, expand boundary in a 

Fourier series.  This problem models 

a VLSI circuit where conductors are 

implanted on an insulating material. 

The thickness of the metal strip can 

be neglected. 

 

a a
x

y V=0V=V0

 

15MATLAB. For the indicated boundary conditions that are specified in the figure, 

find the potential distribution )y,x(V within the enclosed region by solving 

Laplace's equation. Plot the potential distribution (a = 1m, V0 = 10V).    

  

 

a 

x

V = V0y

0                        a 

V = 0  V = 0 

V = V0

 

16MATLAB. Using a product solution in Laplace’s equation in cylindrical coordinates 

)z(Z)()r(R)z,,r(V φΦ=φ , show that the term R(r) satisfies the ordinary differ-

ential equation  

  ( ) 0Rn)r(
dr
dRr

dr
Rdr 22
2

2
2 =−λ++  
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The separation constant is assumed to be 2n=α where n is a positive integer 

and the constant   λ  is real. The solutions for two of the dependent variables are 

( )ϕ±=ϕΦ jnexp)(n  and ( )zexp)z(Zn λ±= .  The solution for this equation is 

)r(J)r(R nn λ= and it can be obtained in terms of an infinite power series. Find the 

series expansion of the last function that is known as a Bessel function of a first 

kind, n-th order. Plot the first three functions (n=0,1,2; 1=λ ) using MATLAB . 

17. Using a product solution in Laplace’s equation in spherical coordinates 

)()()(R),,(V φΦθΘρ=ϕθρ , show that the term R(ρ) satisfies the ordinary differ-

ential equation 

  0R)1n(n
d
dR2

d
Rd
2

2
2 =+−

ρ
ρ+

ρ
ρ  

The separation constant is assumed to be )1n(n +=α where n ≥  0 is an integer 

and the term )(φΦ  - a constant (rotational symmetry). Find two particular 

solutions )(Rn ρ of this equation. 

18MATLAB. Show that the corresponding ordinary differential equation for )(θΘ  in 

problem 17 is 

  0.sin)1n(n
d
dcos

d
dsin 2

2

=Θθ++
θ
Θ

θ+
θ
Θ

θ  

Let ξ=θcos  and find an expression of the solution )(P)( nn ξ=θΘ of this equation, 

which is a polynomial of n-th order that is known as a Legendre polynomial. Plot 

the first three functions (n=0,1,2) using MATLAB. 

19. Find particular solutions of Laplace’s equation ),(Vn θρ  that increases with the 

distance ρ  for the following three cases: a) 0n = (charge); b) 1n = (dipole); c) 

2n = (quadruple), using the results from the problems 17 and 18. 

20. Compare the solution of Laplace's equation in cylindrical coordinates  

)r(J)r(f 01 λ=  found in problem 16 for 0n =  with the solution of Laplace's 

equation in Cartesian coordinates )ycos()xcos()r(f2 λλ=  using a second order 

approximation in the power series for small values of the argument ( 1r <λ ). 
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21. Compute using an analytical integration, 

the potential V(r) at the point P that is a 

distance m1r = from the midpoint of a narrow 

finite strip that has a length m2L2 = .  A 

charge of 1 C is uniformly distributed on the 

strip.  

 

zr 

2L

P
 

22. Repeat problem 21 with a nonuniform charge distribution 

( )L/|z|1)z( 0LL −ρ=ρ  where z = 0 is at the midpoint of the strip.  

23. Repeat problem 21 but compute the electric field rE (r) instead of the 

potential. 

24. Compute the potential V(z) along the z 

axis from the charged circular loop with a 

diameter 2a. Charge Q is distributed 

uniformly upon the loop.  

 

25. Compute the electric field Ez(z) in the 

previous problem. Find the solution in the 

limiting case 0a → . 

x

z 

a

 

 

26. Compute the potential V(z) along the z 

axis from the charged circular plate with a 

diameter 2a. Charge Q is distributed 

uniformly upon the plate.   

 

27. Compute the electric field Ez(z) in the 

previous problem. Find the solution in the 

limiting case ∞→a .  

x

z 

a
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28. Find the potential distribution V(z) between two parallel discs (0 < z < c) that 

have a large enough radius a such that the electric field is constrained to be 

entirely between them.  This implies that the fringing fields are neglected. The 

boundary conditions are V(0) = 0 and V(c) = V0. Find the normal electric field EZ, 

the flux density DZ and the surface charge density ρS on both plates. 

 

  

 

x 
y

z

0

V0

c 

 

 

29MATLAB. Find the potential distribution in the 

triangular region between the two charged 

surfaces using  the  FEM-method  with  a = 1m 

and     V0 = 16 V. Display the potential profile. 

 

 

 

 

V0 

a

a

x

y

V = ? 

0 

0
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30MATLAB. Find the surface charge density ρs in 

a square region a x a (a = 2 m) between two 

charged surfaces with a potentials 0 and V0 

( V10V0 = )  using the MoM-method applied to 

the boundary integral equation. Then by simple 

integration find the potential in every internal 

point of the mesh. Display the potential profile.  

 0 

0 

V0 

V0

x

y 

a

a
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4. Time-varying electromagnetic fields
 The subject of time-varying electromagnetic fields will be the central theme 

throughout the rest of this text. Here and in the following chapters, we will 

generalize to the time-varying case the static electric and magnetic fields that 

were reviewed in Chapter 2. In doing this, we must first appreciate the insight of 

the great nineteenth century theoretical physicist James Clerk Maxwell who was 

able to write down a set of equations that described electromagnetic fields. These 

equations have survived unblemished for approximately a century and a half of 

experimental and theoretical questioning and are now considered to be on an 

equal footing with the equations of Isaac Newton and many of the relativistic 

thoughts of Albert Einstein1. We will concern ourselves here and now with what 

was uncovered and explained at the time of Maxwell's life. 

 

  4.1. Faraday's law of induction 

 The first time varying electromagnetic phenomena that is usually encoun-

tered in an introductory course dedicated to the study of electrical circuits is the 

determination of the electric potential across an inductor that is inserted in an 

electrical circuit. A simple circuit that exhibits this effect is shown in Figure 4-1. 

 The voltage across the inductor is expressed with the equation 

                                                            
 V (t) = L d I(t)

dt  
(4.1) 

where L is the inductance, the units of which are Henries, V(t) is the time-varying  

voltage across the inductor, and I(t) is the time-varying current that passes 

through the inductor. The actual dependence that these quantities have on time 

will be determined by the voltage source. For example, a sinusoidal voltage 

                                                 
1 We can only speculate about what these three giants would talk and would write if they today 
met at a cafe and had only one “back of an envelope” between them 
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source in a circuit will cause the current in that circuit to have a sinusoidal time 

variation or a temporal pulse of current will be excited by a pulsed voltage source. 

In Chapter 2, we recognized that a time-independent current could create a time-

independent magnetic field and that a time-independent voltage was related to an 

electric field. These quantities are also related for time-varying cases as will be 

shown here.  

                     

 

R

LV  (t) V(t) o

 
Figure 4-1. A simple electrical circuit consisting of an ac voltage source Vo(t), an 

inductor and a resistor. The voltage across the inductor is V(t). 

 

 The actual relation between the electric and the magnetic field components 

is computed from an experimentally verified effect that we now call Faraday's law. 

This is written as 

                                                             dt
)t(d)t(V mΨ

−=  (4.2) 

where )t(mΨ  is the total time-varying magnetic flux that passes through a surface. 

This law states that a voltage )t(V  will be induced in a closed loop that completely 

surrounds the surface through which the magnetic field passes. The voltage V(t) 

that is induced in the loop is actually a voltage or potential difference V(t). This 

voltage exists between two points in the loop that are separated by an 

infinitesimal distance. The distance is so small that we can think of the loop as 
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being actually closed. The polarity of the induced voltage will be such that it 

opposes the change of the magnetic flux, hence a minus sign appears in (4.2). 

This effect is also known as Lenz's law. The voltage can be computed from the 

line integral of the electric field between the two points. 

 A schematic representation of this effect is shown in Figure 4-2. Small 

loops as indicated in this figure and which have a cross-sectional area ∆s are 

used to detect and plot the magnitude of time-varying magnetic fields in practice. 

We will assume that the loop is sufficiently small or that we can let it shrink in size 

so that it is possible to approximate ∆s with the differential surface area |ds|. The 

vector direction associated with ds is normal to the plane containing the 

differential surface area. If the stationary orientation of the loop ds is perpendicu-

lar to the magnetic flux density B(t), zero magnetic flux will be captured by the 

loop and V(t) will be zero. By rotating this loop about a known axis, it is also 

possible to ascertain the vector direction of B(t) by correlating the maximum de-

tected voltage V(t) with respect to the orientation of the loop. Recall from our dis-

cussion of magnetic circuits that we used the total magnetic flux mΨ . This is for-

mally written in terms of an integral. In particular, the magnetic flux that passes 

through the loop is given by 

  

 

ds

dl

B(t)

V(t) 

 

Figure 4-2. A loop through which a time-varying magnetic field passes. 
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  ∫
∆

•=Ψ
s

m )t( dsB  
(4.3)

 

 As we will see later, either the magnetic flux density or the surface area 

could be changing in time. The scalar product reflects the effects arising from an 

arbitrary orientation of the loop with respect to the orientation of the magnetic flux 

density. It is important to realize that the loops that we are considering may not be 

wire loops. The loops could just be closed paths. 

Example 4-1. Let a stationary square loop of wire lie in the xy plane that contains 

a spatially homogeneous time-varying magnetic field. 

  tsinB)t,( 0 ω= ZurB .  

Find the voltage V(t) that could be detected between the two terminals that are 

separated by an infinitesimal distance. 

  

 

B(t)

V(t) 

x 

y 

z

b

b

 

Answer: The magnetic flux that is enclosed within the loop is given by 

      ( ) ( ) tsinbBdxdytsinB 2
0

b

0y

b

0x
0

s
m ω=•ω=•=Ψ ∫ ∫∫

= =∆
ZZ uudsB . 

The induced voltage in the loop is given from Faraday's law (4.2) to be 

  
tcosbB

dt
)t(d)t(V 2

0
m ωω−=

Ψ
−= . 

 

Example 4-2. Let a stationary loop of wire lie in the xy plane that contains a 

spatially inhomogeneous time-varying magnetic field. 
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                                 tcos
b2
rcosB)t,( 0 ω





 π= ZurB . 

where the amplitude of the magnetic flux density is T2B0 = , the radius of the 

loop is m5.0b =  and the angular frequency of oscillation of the time-varying 

magnetic field is 314f2 =π=ω 1s− . The center of the loop is at the point r = 0. 

Find the voltage V(t) that could be detected between the two terminals that are 

separated by an infinitesimal distance. 

 

                    

 B(t)

V(t) 
b

x

y 

z

 
Answer: The magnetic flux mΨ  that is enclosed within the "closed" loop is given 

by   

                
[ ]ZZ uu

dsB

φ•







ω






 π=

•=Ψ

∫ ∫

∫
π

=φ =

∆

rdrdtcos
b2
rcosB

2

0

b

0r
0

s
m

 

The integral over φ  yields a factor of π2  while the integral over r  is  

solved via integration by parts that results in 

  ( ) tcosB1
2

b81
2

b4)2(tcosB 0

2

2

2

0m ω





 −
π

π
=














 −
π

π
πω=Ψ .    

The induced voltage in the loop is given from Faraday's law (4.2) to be 

 )t314sin(2.228tsinB1
2

b8
dt

)t(d)t(V 0

2
m =ωω






 −
π

π
=

Ψ
−=  (volts). 
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Example 4-3. Another application of Faraday's law is the explanation of a 

transformer. Find the voltage that is induced in side 2 if a time-varying voltage 

V1 is connected to side 1. 

 

  

 

N1 

I1 

N2 

I2 

 

Answer: Due to the use of an iron core, we can assume that the magnetic field 

is constrained to exist only in the core region. The voltage V2  is given by 

  dt
dNV m

22
Ψ

−=  

where mΨ  is the total magnetic flux that passes through the N2 turns of region 

#2. If the resistance of region #1 is very small and can be neglected, the 

induced voltage is equal to the primary voltage V1. Hence 

  
dt

dNV m
11

Ψ
−=  

Dividing the first equation by the second leads to 

  
1

2

1

2

N
N

V
V

= . 

This is also an application of a magnetic circuit that was discussed in Chapter 2. 

 

 Since the two terminals in Figure 4-2 are separated by a very small dis-

tance, we will be permitted to assume that they actually are touching, at least in 

a mathematical sense even though they must be physically separated. This will 
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allow us to consider the loop to be a closed loop in various integrals that follow 

but still permit us to detect a potential difference between the two terminals. The 

magnetic flux )t(mΨ  can be written in terms of the magnetic flux density 

BrB =)t,(  and the voltage V(t) can be written in terms of the electric field 

ErE =)t,( . This yields the result 

                                         
 

  

   (4.4) 

It is worth emphasizing the point that this electric field is the component of the 

electric field that is tangential to the loop since this is critical in our argument.  In 

addition, (4.4) includes several possible mechanisms in which the magnetic flux 

could change in time.  Either the magnetic flux density changes in time, the 

cross-sectional area changes in time, or there is a combination of the two 

mechanisms.  These will be described below. 

 Although both the electric and magnetic fields depend on space and time, 

we will not explicitly state this fact in every equation that follows. This will con-

serve time, space and energy if we now define and later understand that  

)t,(rEE ≡ and )t,(rBB ≡  in the equations. This short hand notation will also allow 

us to more easily remember the important results in the following material. In 

this notation, the independent spatial variable r refers to a three dimensional 

position vector where  

                                                      ZYX uuur zyx ++=   (4.5) 

in Cartesian coordinates. The independent variable t refers to time. We must 

keep this notation in our mind in the material that follows. 

 The closed line integral appearing in (4.4) can be converted into a 

surface integral via Stokes's theorem . We obtain for the left side of (4.4) 

                            
∫∫
∆

•×∇=•
s

dsEdlE  (4.6) 

∫∫
∆

•−=•
sdt

d dsBdlE
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Let us initially assume that the surface area of the loop does not change in time. 

This implies that ∆s is a constant. In this case, the time derivative can then be 

brought inside the integral.  

                                            ∫∫
∆∆

•
∂
∂

−=•×∇
ss t

dsBdsE
 

(4.7) 

The two integrals will be equal over any arbitrary surface area if and only if the 

two integrands are equal. This means that 

                                                            
 

 

   (4.8) 

Either the integral representation (4.4) or the differential representation (4.8) are 

equally valid in describing the physical effects that are included in Faraday's law. 

These equations are also called Faraday's law of induction in honor of their dis-

coverer. Faraday stated the induction’s law in 1831 after making the assumption 

that a new phenomenon called an electromagnetic field would surround every 

electric charge.   

Example 4-4. A small rectangular loop of wire is placed next to a time varying 

current I(t) carrying infinite wire. Calculate the current i(t) that flows in the loop if 

the conductivity of the wire is σ . To simplify the calculation, you may neglect the 

magnetic field created by the current i(t) that passes through the wire of the 

loop. 

  

 
b

D

a

I(t) 

 

t∂
∂

−=×∇
BE
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Answer: From the left-hand side of (4.4), we write the induced current i(t) as 

                                ( ) iR
A

b2D2i
=

σ
+

=
σ
•

=• ∫∫
dlJdlE  

where A is the cross-sectional area of the wire and R is the resistance of the 

wire. The current density is assumed to be constant over the cross-section of 

the wire. The magnetic flux density of the infinite wire is found by Ampere’s law 

(2.114) 

  
r2
)t(I)t(B 0

π
µ

=  

The right-hand side of (4.4) can be written as 

         

dt
)t(dI

a
abln

2
D

a
abln

2
)t(ID

dt
d

drdz
r2
)t(I

dt
d

dt
d

00

D

0z

ba

ar

0

s















 +

π
µ

−=













 +

π
µ

−=










π
µ

−=•− ∫ ∫∫
=

+

=∆

dsB
 

Hence, the current i(t) that is induced in the loop is given by 

  
dt

)t(dI
a

abln
2

D
R
1)t(i 0















 +

π
µ

−=  

The term in the brackets corresponds to a term that is called the mutual induc-

tance M between the wire and the loop. If we had included the effects of the 

magnetic field created by the current i(t) in the loop, an additional term 

proportional to dt/)t(di  would appear in the equation. In this case, a term called 

the self inductance L of the loop would be found. Hence a differential equation 

for i(t) would have to be solved in order to incorporate the effects of the self 

inductance of the loop.
 

 

 It is also important to calculate the mutual inductance between two coils.  

This can be accomplished by assuming that a time varying current in one of the 
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coils would produce a time varying magnetic field in the region of the second coil.  

This will be demonstrated with an example. 

Example 4-5MATLAB. Find the normalized mutual inductance 0/M µ of the system 

consisting of two similar parallel wire loops with a radius cm50R =  if their centers 

are separated by a distance R2h = (Helmholtz’s coils). 

R L2 

L1 

h
R

z

 

Answer: As shown in Example 2-39, the magnetic flux density can be replaced 

with the magnetic vector potential. Using AB ×∇=  (2.123) and Stokes’s theorem 

(4.6), we can reduce the surface integral for the magnetic flux to the following line 

integral 

   ∫∫ •=•×∇=Ψ
∆ 22 L

2
s

212m dlAdsA . 

The magnetic vector potential is a solution of the vector Possion’s 

equation (2.130).  With the assumption that the coil has a small cross-section, the 

volume integral can be converted to the following line integral 

  ∫π
µ

=
1L 12

10

R4
I 1dlA  

where 12R is a distance between the source (1) and the observer (2). The 

definition of the mutual inductance 
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1

12m

I
M Ψ
=  

yields the following double integral for the normalized mutual inductance 

  ∫∫
•

π
=

µ
12 L 12L0 R4

1M 21 dldl  

For the case of two identical parallel loops, we obtain after performing the 

integration 

         ∫
π

ϕ−+

ϕϕ
=

µ

2

0
222

2

0 cosR2R2h
dcos

2
RM . 

For the special case (h=2R), this single integral can be further simplified  

        C.R
cos3

dcos
22

1.RM 2

00

=










ϕ−
ϕϕ

=
µ ∫

π

 

This shows that the mutual inductance increases linearly with the 

increasing of the wire radius R. The integral for the constant C can be solved 

numerically by applying the MATLAB function ‘quad’. Assuming a radius R= 0.5 

m and a constant C = 0.1129, the normalized mutual conductance is computed to 

be 0564.0/M 0 =µ . 

 In the derivation of (4.7), an assumption was made that the area ∆s of the 

loop did not change in time and only a time-varying magnetic field existed in 

space. This assumption need not always be made in order for electric fields to 

be generated by magnetic fields. We have to be thankful for the fact that the ef-

fect can be generalized since much of the conversion of electric energy to me-

chanical energy or mechanical energy to electrical energy is based on this phe-

nomenon. 
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- -

vdl
+ + 

 

Figure 4-3. A conducting bar moving in a uniform time-independent magnetic 

field that is directed out of the paper. Charge distributions of the opposite sign 

appear at the two ends of the bar. 

 

 In particular, let us assume that a conducting bar moves with a velocity v 

through a uniform time-independent magnetic field B as shown in Figure 4-3. 

The wires that are connected to this bar are parallel to the magnetic field and 

are connected to a volt meter that lies far beneath the plane of the moving bar. 

From the Lorentz force equation (2.116), we can calculate the force F on the 

freely mobile charged particles in the conductor. Hence, one end of the bar will 

become positively charged and the other end will have an excess of negative 

charge. 

 Since there is a charge separation in the bar, there will be an electric field 

that is created in the bar. Since the net force on the bar is equal to 0, the electric 

and magnetic contributions to the force cancel.  This results in an electric field 

that is  

                                                          
BvFE ×=≡

q  
 (4.9) 

This electric field can be interpreted to be an induced field acting in the direction 

along the conductor that produces a voltage V and it is given by  

                                                     
( ) lV

b

a

dBv •×= ∫ .  (4.10) 
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Example 4-6. A Faraday disc generator  consists of a circular metal disc ro-

tating with a constant angular velocity 600=ω 1s−  in a uniform time-independent 

magnetic field. A magnetic flux density B = Bouz where T4B0 =  is parallel to the 

axis of rotation of the disc. Determine the induced open-circuit voltage that is 

generated between the brush contacts that are located at the axis and the edge 

of the disc whose radius is m5.0a = .  

  

 

ϕ 12

a

electron 

F 

B

v 

ω  

Answer: An electron at a radius r from the center has a velocity rω  and 

therefore experiences an outward directed radial force 0rBqω− . The Lorentz 

force acting on the electron is 

  ( )[ ] 0q =×+− BvE . 

At equilibrium, we find that the electric field can be determined from the Lorentz 

force equation to be directed radially inward and have a magnitude 0rBω . Hence 

we write     

 ( ) ( )[ ] 300
2

aBrdrBdrBrV
0

a

2
0

0

a

0
0

2

1

−=
ω

−=ω=•×ω−=•×−= ∫∫∫ rZφ uuudlBv  volts 

which is the generated potential due to this machine that is called a Faraday disc 

generator. 
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 If the bar depicted in Figure 4-3 were moving through a time-dependent 

magnetic field instead of a constant magnetic field, then we would have to add 

together the potential caused by the motion of the bar and the potential caused 

by the time-varying magnetic field. This implies that the principle of superposition 

applies for this case. This is a good assumption in a vacuum or in any linear 

medium.  

Example 4-7. A rectangular loop rotates through a time-varying magnetic flux 

density YuB tcosB0 ω= . The loop rotates with the same angular frequency ω . 

Calculate the induced voltage at the terminals. 

Answer: Due to the rotation of the loop, there will be two components to the in-

duced voltage. The first is due to the motion of the loop and the second is due to 

the time-varying magnetic field.  

 The voltage due to the rotation of the loop is calculated from 

  
edge_top

2/b

2/bedge_bottom

2/b

2/b
rotV ∫∫

−

−

•×+•×= dlBvdlBv  

The contributions from either end will yield zero. We write 

  
( ) ( )

( ) ( )dxsintcosvB

dxsintcosvBV

2/b

2/b
0

2/b

2/b
0rot

XX

XX

uu

uu

•θω+

•−θω=

∫

∫

−

−

 

The angle tω=θ  and the velocity av ω= . Hence the term of the induced voltage 

due to the rotation of the loop yields 

  t2sinbaBV 0rot ωω= . 

We recognize that the area of the loop is equal to ∆s = 2ab.  



Faraday's law of induction 

365 

 

ω

y

θ a

b
B

v 
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z 

slip rings 

θ
v

B 

ds 

z

y

 

 From (4.4), we can compute the voltage due to the time-varying magnetic 

field. In this case, we note that 

  [ ]dxdztsintcos ω+ω= ZY uuds  

Therefore the voltage due to time variation of the magnetic field is 

             
[ ]dxdztsintcostsinB

t
V

a

az

2/b

2/bx
0

s
var

ω+ω•ωω=

•
∂
∂

−=

∫∫

∫

−=−=

∆

ZYY uuu

dsB

 

The integration leads to 

  t2sinbaBV 0var ωω= . 

The total voltage is given by the sum of that due to rotation and that due to the  

time variation of the magnetic field 

  t2sinbaB2VVV 0varrot ωω=+= . 

This results in the generation of the second harmonic. 

 

 We can apply a repeated vector operation to Faraday's law of induction 

that is given in (4.8) to obtain an equation that describes another feature of time 



Faraday's law of induction 

366 

varying magnetic fields. We take the divergence of both sides of (4.8) and 

interchange the order of differentiation to obtain 

                                   ( )BBE •∇
∂
∂

−=
∂
∂

•−∇=×∇•∇
tt  

(4.11)
 

The first term E×∇•∇  is equal to zero since the divergence of the curl of a 

vector is equal to zero by definition. This follows also from Figure 4-2 where the 

electric field is constrained to follow the loop since that is the only component that 

survives the scalar product of dlE • . The electric field can neither enter nor leave 

the loop which would be indicative of a nonzero divergence. Nature is kind to us 

in that it frequently lets us interchange the orders of differentiation without inciting 

any mathematical complications. This is a case where it can be done. Hence for 

any arbitrary time dependence, we again find that 

                                                               
(4.12) 

This statement that is valid for time-dependent cases is the same result that was 

given in Chapter 2 as a postulate for static fields. It also continues to reflect the 

fact that we have not found magnetic monopoles in nature. 

 Let us integrate (4.12) over an arbitrary volume ∆v. This volume integral 

can be converted to a closed surface integral using the divergence theorem  
  ( ) ∫∫ •=•∇

∆

dsBB dv
V

 (4.13) 

from which we write 

                                                       

 

   (4.14) 

 

Equation (4.14) is also valid for time-independent electromagnetic fields. 

0=•∇ B

∫ =• 0dsB
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4.2. Equation of continuity 

 Before obtaining the next equation of electromagnetics, it is useful to step 

back and derive the equation of continuity. In addition, we must understand the 

ramifications of this equation. The equation of continuity is fundamental at this 

point in developing the basic ideas of electromagnetic theory. Its derivation is 

fairly simple since all of the hard work has already been accomplished in Chapter 

1 where we reviewed some vectors. It can also be applied in several other areas 

of engineering and science so the time that is spent here will be time well spent. 

                         
 

∆x 

t < 0                               t > 0

               0                                        0
                (a)                                     (b)

∆x

 

 Figure 4-4. Charges centered at x = 0 at time t < 0 as shown in (a) are 

allowed to expand at t = 0. As time increases (b) some of these charges may 

pass through the screens at 
2
xx ∆

±= . 

 

 In order to derive the equation of continuity, let us consider a model that 

assumes a stationary number of positive charges are initially located at the cen-

ter of a transparent box whose volume is ∆v = ∆x∆y∆z. These charges are at the 

prescribed positions within the box for times t ≤ 0. A one-dimensional view of this 

box consists of two parallel planes and it is shown in Figure 4-4a. We will neglect 

the Coulomb’s forces between the individual charges. If we are uncomfortable 
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with this assumption of noninteracting charged particles, we could have al-

ternatively assumed that the charges were just noninteracting gas molecules or 

billiard balls and derived a similar equation for these objects. The resulting 

equation could then be multiplied by a charge q that would  be impressed on an 

individual entity. For times t ≥ 0, the particles or the charges can start to move 

and actually leave through the two screens as time increases. This is depicted in 

Figure 4-4b. The magnitude of the cross-sectional area of a screen is equal to ∆s 

= ∆y∆z. The charges that leave the "screened in region" will be in motion. Hence, 

those charges that leave the box from either side will constitute a current that 

emanates from the box. Due to our choice of charges within the box having a 

positive charge, the direction of this current I will be in the same direction as the  

motion of the charge. 

 Rather than just examine the small number of charges depicted in Figure 

4-4, let us assume that there now are a large number of them. We still will ne-

glect the Coulomb force between charges. The number of charges will be large 

enough so it is prudent to describe the charge within the box with a charge 

density ρv where ρv = ∆Q/∆v and ∆Q is the total charge within a volume ∆v. 

Hence the decrease of the charge density ρv acts as a source for the total current 

I that leaves the box as shown in Figure 4-5.  

 



Equation of continuity 

369 

   

 

∆x
∆y

∆z

 

Figure 4-5. Charge within the box leaves through the walls. 

 

 A temporal decrease of charge density within the box implies that charge 

leaves the box since the charge is neither destroyed nor does it recombine with 

charge of the opposite sign. The total current that leaves the box through any 

portion of the surface is due to a decrease of the charge within the box. It is 

found from the expression  These are real charges and the current that we are 

describing is not the displacement current that we will encounter later 

                                                             dt
dQI −=  

(4.15) 

 This can be rewritten as 

                                                    ∫∫
∆ ∂

ρ∂
−=•

v

v dv
t

dsJ  
(4.16)

 

where we have taken the liberty of summing up the six currents that leave the six 

sides of the box that surrounds the charges; this summation is expressed as a 

closed-surface integral. The closed-surface integral given in (4.16) can be con-

verted to a volume integral using the divergence theorem. Hence equation (4.16) 

can be written as 

                                                 
( ) dv

t
dv

v

v

v
∫∫
∆∆ ∂

ρ∂
−=•∇ J

 (4.17)
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Since this equation must be valid for any arbitrary volume, we are left with the          

conclusion that the two integrands must be equal from which we write 

                                                           
 

    (4.18) 

 Equation (4.18) is the equation of continuity  that we are seeking. Note 

that this equation has been derived using very simple common sense arguments. 

Since these arguments are straightforward and logical, we can believe the result 

as being a fundamental truth of nature that must be valid for all cases and for all 

times. Although we have derived it using finite sized volumes, the equation is 

valid at a point. Its importance will be noted in the next section where we will 

follow in the footsteps of James Clerk Maxwell. 

 We recall from our first course that dealt with circuits that the Kirchhoff's 

current law stated that the net current entering or leaving a node was equal to 

zero. Charge is neither created nor destroyed in this case. This is shown in 

Figure 4-6. The dashed lines represent a closed surface that surrounds the node. 

The picture shown in Figure 4-5 generalizes this node to three dimensions. 

  

 

I1

I2

I3 

I4 
 

 Figure 4-6. A closed surface (dashed lines) surrounding a node. 

 

Example 4-8. Charges are introduced into the interior of a conductor during the 

time t < 0. Calculate how long it will take for these charges to move to the surface 

0
t
v =

∂
ρ∂

+•∇ J
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of the conductor so the interior charge density ρv = 0 and interior electric field E = 

0. 

Answer:  Introduce Ohm's law EJ σ=  into the equation of continuity 

  t
v

∂
ρ∂

−=•∇σ E  

The electric field is related to the charge density through Poisson's equation 

  ε
ρ

=•∇ vE  

Hence, we obtain 

  0
dt

d
v

v =ρ
ε
σ

+
ρ

 

whose solution is 

  








ε
σ

−

ρ=ρ
t

0vv e . 

The initial charge density 0Vρ  will decay to [1/ e ≈ 37 %] of its initial value in a 

time σε=τ /  which is called the relaxation time.  For copper, this time is 

  
sec105.1

108.5

10
36

1
19

7

9

0 −

−

×=
×

×
π=

σ
ε

=τ
 

Other effects that are not described here may cause this time to be different. 

Relaxation times for insulators may be hours or days. 

 

Example 4-9. The current density is ( ) XuJ 2xexp −= . Find the time rate of in-

crease of the charge density at x = 1. 

Answer: From the equation of continuity (4.18), we write 

  
J•−∇=

ρ
dt

d v ⇒ 736.)xexp(x2
dx
dJ

dt
d

1x

2xv =−=−=
ρ

=
 

 

Example 4-10. The current density in a certain region may be approximated with 

the function  
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                                                     ρuJ
ρ

=
τ− /t

0
eJ  

in spherical coordinates. Find the total current that leaves a spherical surface 

whose radius is a at the time τ=t . Using the equation of continuity, find an ex-

pression for the charge density )t,(V ρρ . 

Answer: The total current that leaves the spherical surface is given by 

            .eaJ4
a
eJa4I 1

0

t

/t
02

t,a
−

τ=

τ−

τ==ρ
π=








π=•= ∫ dsJ   

In spherical coordinates, the equation of continuity that depends only upon the 

radius ρ  is written as 

                 ( ) 2

/t

0

/t

0
2

2
2

2
v eJeJ1J1
t ρ

−=







ρ

ρ
ρ∂
∂

ρ
−=ρ

ρ∂
∂

ρ
−=

∂
ρ∂ τ−τ−

ρ  

Hence, after integration, the charge density is given by 

                                           ∫ ∂
ρ∂

=ρ dt
t
v

v ⇒ 2

/t

0v
eJ
ρ

τ
=ρ

τ−

 

iswhere the arbitrary constant of integration is set equal to zero. 
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4.3. Displacement current 

 Our first encounter with time-varying electromagnetic fields yielded 

Faraday's law of induction (4.2). The next encounter will illustrate the genius of 

James Clerk Maxwell. Through his efforts in the nineteenth century, we are now 

able to answer a fundamental question that would arise when analyzing a circuit 

in the following gedanken experiment.  Let us connect two wires to the two plates 

of an ideal capacitor consisting of two parallel plates separated by a vacuum and 

an ac voltage source as shown in Figure 4-7. An ac ammeter is also connected in 

series with the wires in this circuit and it measures a constant value of ac current 

I. Two questions might enter our mind at this point:  

 (1) "How can the ammeter read any value of current since the capacitor is 

an open circuit and the current which passes through the wire would be impeded 

by the vacuum that exists between the plates?"  

 (2) "What happens to the time-varying magnetic field that is created by the 

current and surrounds the wire as we pass through the region between the ca-

pacitor plates?" 

         

 

vacuum
I

 

Figure 4-7. An elementary circuit consisting of an ideal parallel plate capacitor 

connected to an ac voltage source and an ac ammeter. 

 The answer to the first question will require that we first reexamine the 

equations that we have obtained up to this point and then interpret them, guided 

by the light that has been turned on by Maxwell. In particular, let us write the 
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second postulate of steady magnetic fields – Ampere’s law (2.113). This 

postulate stated that a magnetic field B was created by a current J that is 

rewritten here 

                                                                   JB 0µ=×∇  (4.19) 

Let us take the divergence of both sides of this equation. The term on the left-

hand side  

                                                       0=×∇•∇ B   (4.20) 

by definition. Applying the divergence operation to the term on the right-hand of 

(4.19), we find that 

                                                          00 =•∇µ J  (4.21) 

This, however, is not compatible the equation of continuity (4.18) that we have 

just ascertained to be a truth of nature.  

 To get out of this dilemma, Maxwell postulated the existence of another 

type of current in nature. This current would be in addition to the conduction 

current discussed in Chapter 2 and a convection current that would be created by 

charge passing through space with a constant drift velocity. The new current with 

a density Jd is called a displacement current and it is found by incorporating the 

equation for the displacement flux density D into the equation of continuity by use 

of Gauss’s law (2.89). Hence 

  0
t
v =

∂
ρ∂

+•∇ J  

  ( ) 0
tt

=







∂
∂

+•∇=
∂
•∇∂

+•∇
DJDJ

 

(4.22)
 

where we have freely interchanged the order of differentiation. The displacement 

current density is identified as 

                                                             t∂
∂

=
DJd  

(4.23)
 

This is the current that passes between the two plates of the capacitor in our 
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gedanken experiment that was performed at the beginning of this section. 

 The time-varying conduction current that passes through the wire causes 

a build-up of charges of the opposite signs on the two plates of the capacitor. The 

time-variation of these charges creates a time-varying electric field between the 

plates1. The time-varying displacement current will pass from one plate to the 

other and an answer to the first question has been obtained. The conduction cur-

rent in the wire becomes a displacement current between the plates. This dis-

placement current does not exist in a time-independent system. 

 The postulate for magnetostatics (2.113) will have to be modified to 

incorporate this new current and any possible time-varying magnetic fields. It be-

comes  

                                          

    (4.24) 

 We can also answer the second question. With the inclusion of the dis-

placement current which passes between the capacitor plates, we can assert that 

the time-varying magnetic field which surrounds the conduction current-carrying 

wire will be equal in magnitude and direction to the time-varying magnetic field 

which surrounds the capacitor.  

 Let us integrate both sides of (4.24) over the cross-sectional area speci-

fied by the radius r at two locations in Figure 4-8. The first integral will be at a lo-

cation surrounding the wire and the second will be between the two capacitor 

plates. 

                                       
dsDJdsB

•







∂
∂

+=•







µ

×∇ ∫∫
∆∆ ss 0 t      (4.25) 

or using Stokes’s theorem, we write 

                                                 
1 Recall that in a vacuum D = ε0 E. If a dielectric is inserted between the plates, we must use      
D = ε E. 

t0 ∂
∂

+=
µ

×∇
DJB  



Displacement current 

376 

                                            
 

    (4.26) 

 

  

φB

(1) 
(2)

r 

(2)

r

 I 

 

Figure 4-8. Two parallel plates in a capacitor separate two wires. The circle 

whose radius is r could be surrounding the wire (#1) at either edge or between 

the plates (#2). The radius of the wire is a and the plate is b. 

 

 The left hand side of the integral in (4.26) yields 

                                                              0

B
r2
µ

π φ  

At location 1 in Figure 4-8, the displacement current equals zero and we are left 

with the integral 

                                                  
dsJ•=

µ
π ∫

∆

φ

s0

B
r2

 

(4.27)
 

At location 2 in Figure 4-8, the conduction current equals zero and we are left 

with the integral 

                                        dsD
•

∂
∂

=
µ

π ∫
∆

φ

s0 t
B

r2
 (4.28)

 

The next example will demonstrate that these currents are identical, hence the 

magnetic flux densities will be the same at the same radius r. 

dsDJdlB
•







∂
∂

+=•
µ ∫∫

∆s0 t



Displacement current 

377 

Example 4-11. Verify that the conduction current in the wire equals the dis-

placement current between the plates of the parallel plate capacitor in the circuit. 

The voltage source has tsinVV 0c ω= . 

  

 

VC

IC 

 

Answer: The conduction current in the wire is given by 

  tcosCV
dt

dVCI 0
c

c ωω==  

The capacitance of the parallel plate capacitor is given by 

  
d
AC ε

=  

where A is the area of the plates that are separated by a distance d. The electric 

field between the plates is given by d/VE C= . The displacement flux density 

equals 

  tsin
d
VED 0 ωε=ε=  

The displacement current is computed from 

  c00
A

d ItcosCVtcosV
d
A

t
I =ωω=ωω






 ε=•

∂
∂

= ∫ dsD . 

Example 4-12. The magnetic flux density in vacuum is given by 

  ( ) XuB ytcosx2cosB0 β−ω=  

Find the displacement current, the displacement flux density, and the volume 

charge density associated with this magnetic flux density. 

Answer: We write  

  BDJd ×∇
µ

=
∂
∂

=
0

1
t  
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( ) 00ytcosx2cosB

zyx
1

0

0

β−ω
∂
∂

∂
∂

∂
∂

µ
=

ZYX uuu

 

  
( ) Zuytsinx2cosB

0

0 β−ω
µ
β

−=  

The displacement flux density D is found from the displacement current as 

 
( ) ( ) ZZd uuJD ytcosx2cosBdtytsinx2cosBdt

0

0

0

0 β−ω
ωµ
β

−=







β−ω

µ
β

−== ∫∫  

The volume charge density is computed from 

  D•∇=ρv ⇒ 0
z

Dz =
∂
∂ . 

 
Example 4-13. In a lossy dielectric medium with a conductivity σ  and a relative 

permittivity rε  there is a time-harmonic electric field tsinEE 0 ω= . Compare the 

magnitudes of the following terms: a) the conduction current density cJ ; b) the 

displacement current density dJ . 

Answer: The conduction current density can be found from Ohm’s law (2.101) 

tsinEEJ 0c ωσ=σ= , while the displacement current density can be calculated 

from (4.23) tcosEt/DJ 0d ωωε=∂∂= . The ratio of their magnitudes is 

       
r0dm

cm

J
Jr

εωε
σ

== . 

For materials that have a relative dielectric constant that is close to 1, this fraction 

will depend mainly on the conductivity of the material and the frequency of the 

electromagnetic signal.  The conduction current is dominant at low frequencies in 

a conductor and the displacement current will be dominant in a dielectric at high 

frequencies.  This latter effect will be further discussed in the next chapter. 
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4.4. Maxwell's equations 

 Everything that we have learned up to this point can be summarized in the 

four differential equations of Maxwell1 which are rewritten below as 

 

                     

 

 

        (4.29) 

 

        (4.30) 

 

        (4.31) 

         

 (4.32)

 

These four equations along with a set of relations called the constitutive relations 

                                                 














σ=

µ=

ε=

EJ

HB

ED

   
 

(4.33)
 

describe electromagnetic phenomena. The constitutive relations relate the elec-

tromagnetic fields to the material properties in which the fields exist. We will see 

that the propagation of electromagnetic waves such as light is described by 

Maxwell's equations.  

 Nonlinear phenomena can also be described with this set of equations 

through any nonlinearity that may exist in the constitutive relations. For example, 
                                                 
1 It is common in engineering talks to place a standard six foot stick man next to a drawing of a 
machine in order to indicate its size. To emphasize the importance and size of these four 
equations, the reader could think of the symbol  as being an inverted pyramid arising out of the 
grains of sand of the remaining words and equations in this text and several others. 

 

t∂
∂−=×∇ BE

t∂
∂+=×∇ DJH

vρ=•∇ D

0=•∇ B
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certain optical fibers that are used in communication have a dielectric constant 

that depends nonlinearly on the amplitude of the wave that propagates in the 

fiber. It is possible to approximate the relative dielectric constant in the fiber with 

the expression ]|E|1[ 2
r α+≈ε  where α is a constant that has the dimensions of 

[volts/meter]-2. In writing (4.33), we have also assumed that the materials are 

isotropic and hysteresis can be neglected. The study of the myriad effects arising 

from these phenomena is of interest to a growing number of engineers and 

scientists throughout the world. We will, however, not concern ourselves with 

these problems here other than to be alerted of their existence. 

Example 4-14. Show that the two "divergence" equations are implied by the two 

"curl" equations and the equation of continuity. 

Answer: To show this, we must remember the vector identity 0≡×∇•∇ ζ  where 

ζ  is any vector. Hence 

  
( )BE •∇

∂
∂

−=≡×∇•∇
t

0  

implies ttancons=•∇ B . This constant equals zero since there are no sources 

nor sinks at which the magnetic flux density can originate nor terminate. This 

implies that magnetic monopoles do not exist.   

 We similarly write 

  
( ) ( )DDJH •∇

∂
∂

+
∂
ρ∂

−=•∇
∂
∂

+•∇=≡×∇•∇
ttt

0 v  

This implies that vρ=•∇ D . 

 

Example 4-15. In a conducting material, we may assume that the conduction 

current density is much larger than the displacement current density. Show that 

Maxwell's equations can be cast in the form of a diffusion equation in this mate-

rial. 
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Answer: In this case, (4.29) and (4.30) are written as 

  t∂
∂

−=×∇
BE

 
and

 
EJH σ==×∇  

where the displacement current has been neglected. Take the curl of the second 

equation  

  EH ×∇σ=×∇×∇  

Expand the left hand side with a vector identity and substitute the first equation 

into the right hand side. 

  t0

2

0 ∂
∂

σ−=







µ

∇−







µ

•∇∇
BBB  

From (4.32), the first term is zero leaving 

  t0
2

∂
∂

σµ=∇
BB  

This is a diffusion equation with a diffusion coefficient σµ= 0D . Since B is a 

vector, this corresponds to three scalar equations for the three components. The 

term 2∇  is the Laplacian operator described in Chapters 2 and 3.  A one-

dimensional diffusion equation will be encountered again in Chapter 6. 

 

Example 4-16MATLAB. Solve the diffusion equation, derived in Example 4-15, for 

the case of a magnetic flux density Bx(z,t) near a plane vacuum-copper interface 

assuming the following values for copper: m/H104 7
0

−×π=µ=µ and 

m/S108.5 7×=σ . Plot the solution for the spatial profile of the magnetic field, 

assuming a 60 Hz time harmonic electromagnetic signal is applied. 

Answer: Assuming ejωt time-variation, the diffusion equation is transformed to the 

following ordinary differential equation for the spatial variation of the magnetic 

field 

  x02
x

2

Bj
dz

Bd
σωµ=  

where z is the coordinate normal to the vacuum-copper boundary. Assuming 
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variation in the z-direction to be Bx=B0 exp(-γz), we write  
                            σωµ=γ 0

2 j  or σωµ=β+α=γ 0jj . 

The magnitude of the magnetic flux density decays exponentially in the z-

direction from the surface into the conductor 

                                          z
0x eB)z(B α−=   

with    2.117108.510460f 77
0 =×××π××π=σµπ=α − 1m− . 

The quantity α=δ /1  is called a “skin depth”. Here it is 5.8=δ mm. 

 The plot of the spatial variation of the magnitude of the magnetic field 

inside the conductor is presented in the figure below. 
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The subject of the skin depth will be encountered again in the next chapter. 

 

 As written, Maxwell's equations in (4.29) to (4.32) are partial differential 

equations evaluated at a particular point in space and time. A totally equivalent  
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way of writing them is to write these equations as integrals. This is accomplished 

by integrating both sides of the first two equations over the same cross-sectional 

area and applying Stokes's theorem to the terms involving the curl operations 

and by integrating both sides of the second two equations over the same volume 

and applying the divergence theorem. We summarize this as follows. 

  

(4.34) 

 

(4.35)

 

 

(4.36)

 

 

(4.37) 

 

 Equation (4.34) states that the closed line integral of the electric field 

around a closed loop is equal to the time rate of change of the magnetic flux 

which passes through the surface area defined by the closed loop. This is the 

meaning of Faraday's law. Equation (4.35) states that the closed line integral of 

the magnetic field intensity is equal to the current that is enclosed within the loop. 

The current consists of the contribution due to the conduction current and the dis-

placement current. This generalizes Ampere's circuital law which we encountered 

earlier.  

 Equation (4.36) states that the total displacement flux eΨ  that leaves a 

closed surface is equal to the charge that is enclosed within the surface (Gauss's 

law). If the enclosed charge is negative, then the displacement flux eΨ  enters the 

closed surface and terminates on this negative charge. Equation (4.37) states 

 

dsBdlE •∫
∆ ∂

∂−∫ =•
s tL

dsJDdlH •∫
∆

+
∂
∂

∫ =• 










s tL

dv
v vs
∫
∆

ρ=∫ •dsD

0
s

=∫ •dsB
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that the magnetic flux density is continuous and cannot terminate nor originate 

from a magnetic charge, i. e. the nonexistence of magnetic monopoles or 

magnetic charges. 

 Equations (4.34) to (4.37) are the integral form of Maxwell's equations and 

they are of the same importance as the differential form given in (4.29) to (4.32). 

Using the integral form of Maxwell's equations, we can easily derive the 

boundary conditions that relate the electromagnetic fields in one media to an-

other. This will be shown later.  

 Either of the two forms of Maxwell's equations can be used although we 

will encounter the differential form more often in practice. An important derivation 

which describes the magnitude and direction of the flow of electromagnetic power 

will employ vector identities and the differential form of Maxwell's equations. 
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4.5. Poynting's theorem 

 A frequently encountered problem in practice is to determine the direction 

that power is flowing if the electric and magnetic fields are independently mea-

sured in some experiment. This may not seem important for one in the laboratory 

where a signal generator can be separated from a resistive load impedance and 

the direction of the flow of power can be clearly ascertained. It is clear that the 

sun radiates energy that the earth receives. However, an investigator using a 

satellite floating in space may wish to determine the source of some anomalous 

extragalactic electromagnetic radiation in order to further map out the universe. 

Poynting's theorem will provide us with the method to accomplish this. This will 

be derived here. 

   

 

dsdv 

 

Figure 4-9. An arbitrarily shaped volume that contains a source of electromag-

netic energy. 

 

 To obtain Poynting's theorem for an arbitrary volume depicted in Figure 4-

9, we will require two Maxwell equations and a vector identity. The two Maxwell 

equations that are required for this derivation are 

                                                      
t∂

∂
−=×∇

BE  (4.38) 

and 

                                                    JDH +
∂
∂

=×∇
t  

(4.39) 
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Let us take the scalar product of E with (4.39) and subtract it from the scalar 

product of H with (4.38). Performing this operation leads to 

             



 +
∂
∂

•−
∂
∂

•−=×∇•−×∇• JDEBHHEEH
tt  

 

The left hand side of this equation can be replaced using vector identity (A.1.9) 

                               ( ) BAABBA ×∇•−×∇•=×•∇   

Therefore, we obtain 

                         ( ) JEDEBHHE •−
∂
∂

•−
∂
∂

•−=×•∇
tt  

(4.40) 

 After the introduction of the constitutive relations (4.33), the terms 

involving the time derivatives can be written as 

                   
[ ] [ ]22 EH

2
1

tt2
1

tt
ε+µ

∂
∂

−=•ε+•µ
∂
∂

−=
∂
∂

•−
∂
∂

•− EEHHDEBH
 

(4.41) 

Substitute (4.41) into (4.40) and integrate both sides of the resulting equation 

over the same volume ∆v. This volume is completely enclosed by the surface s. 

Performing this integration leads to 

                      
( ) [ ] dvdvEH

2
1

dt
ddv

vv

22

v
∫∫∫
∆∆∆

•−ε+µ−=×•∇ JEHE
 

(4.42) 

The volume integral on the left-hand side of (4.42) can be converted to a closed 

surface integral via the divergence theorem. With the substitution Ohm’s law 

EJ σ= , we finally obtain 

     

    (4.43) 

 

where HES ×=  is called the Poynting vector. It is the power density of the 

radiated electromagnetic fields.  The direction of the radiated power is included in 

this vector. 

 Let us now give a physical interpretation to each of the three terms that 

appear in this equation. The units of the closed surface integral are 

( ) [ ] dvEdvEH
2
1

dt
d

v

2

v

22 ∫∫∫
∆∆

σ−ε+µ−=•× dsHE
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  Wattsmeter
meter

Amperes
meter
Volts 2 =××  

or the closed surface integral has the units of power. Using the definition of the 

scalar product and the fact that the notation ds refers to the outward normal of 

the surface that encloses the volume ∆v, this term represents the total power that 

leaves  or is radiated from the volume ∆v.  

 The terms within the integrand of the first volume integral can be recog-

nized as the stored magnetic energy density and the stored electric energy 

density that was previously described in static fields. The time derivative intro-

duces a unit of (second)-1 The units of this term are  

  Wattsmeter
meter
Joule

ondsec
1 3

3 =××  

This term corresponds to the time derivative of the stored electromagnetic energy 

within the volume.  

 The units of the second volume integral corresponds to Joule heating 

within the volume and they are also in terms of watts 

  Wattsmeter
meter
Volts

meterOhms
1 3

2

2

=××
×

. 

The reference to Joule heating indicates that electromagnetic power is converted 

to heat and this power cannot be recovered. A toaster uses Joule heating. 

 Hence, Poynting's theorem states that the power that leaves a region is 

equal to the temporal decay in the energy that is stored within the volume minus 

the power that is dissipated as heat within it. A common sense example will illus-

trate this theorem. Additional applications of this important theorem will be found 

in the last chapter of this book that describes radiation. 

 The equation of the energy conservation (4.43) can also be written in 

differential form. Recalling that electromagnetic energy density is defined as 

  [ ]22 EH
2
1w ε+µ=  (4.44) 
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and the power loss density is given by 

  2
L Ep σ=  (4.45) 

We can reinterpret (4.42) in the following differential form of the energy 

conservation of the system  

  Lp
t
w

−=
∂
∂

+•∇ S  (4.46) 

This equation is somewhat similar to the equation of continuity (4.18) with a “sink” 

term that corresponds to the Joule heating.   

Example 4-17. Using Poynting's theorem, calculate the power that is dissipated 

in the resistor as heat. The electric energy is supplied by the battery. Neglect the 

magnetic field that is confined within the resistor and calculate its value only at 

the surface. In addition, assume that there are conducting surfaces at the top and 

the bottom of the resistor so they are equipotential surfaces. Also assume that 

the radius of the resistor is much less than its length. 

           

 

I 

V0 

a

L 

E

H S

 
Answer: The electric field has a magnitude of L/VE 0= and the magnitude of the 

magnetic field intensity at the outer edge of the resistor is )a2/(IH π= . The 

direction of the Poynting vector HES ×=  is into the resistor. There is no energy 

stored in a resistor.  The magnitude of the current density that is in the same 

direction as the electric field is )a/(IJ 2π= . Therefore, the various terms in 
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Poynting's theorem (4.43) are found to be 

  ( ) [ ] ( )La
L
V

a
Idv00

dt
daL2

a2
I

L
V 20

2
v

0 π














π

−+−=π







π







− ∫
∆

 

yielding 

  IVIV 00 −=− . 

The electromagnetic energy of the battery is fully absorbed by the resistor.  
 
 

Example 4-18. Using Poynting's theorem, calculate the power that is flowing 

through the surface area at the radial edge of a capacitor. Neglect the ohmic 

losses in the wires connecting the capacitor with the signal generator. Also 

assume that the radius of the capacitor is much greater than the separation 

distance between the plates. 

 

Q

V0 

a

b 

E

H
S

a

 

Answer: Assuming the electric field E is confined to be between the plates and is 

homogeneous, we can find the total electric energy that is stored in the capacitor 

to be 

  ( )ba
2
EW 2

2

π






 ε
=  
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The total magnetic energy that is stored in the capacitor is equal to 0.  The 

differentiation of this electric energy with respect to time yields 

  ( )
dt
dEEba

dt
dW 2πε−=−  

This is the only term which survives on the right side of (4.43) since an ideal 

capacitor does not dissipate energy. 

 The left-hand side of (4.43) requires an expression for the time varying 

magnetic field intensity in terms of the displacement current.  Evaluating (4.26) at 

the radial edge of the capacitor, we write 

  dsEdlH •







∂
∂

ε=• ∫∫
∆s t

 

There is no conduction current in this ideal capacitor.  We obtain 

  ( ) ( )2a
dt
dEa2H πε=π  or 

dt
dE

2
aH ε

=  

Now we can write the Poynting vector power flow as 

  ( )( ) ( )
dt
dEEbaab2EHP 2

S πε−=π−=  

The minus sign arises since the direction of Poynting vector is radially inward. 

Comparing both expressions, we find that they are equal which implies that  

  
dt

dWPS −=  

The states that energy is conserved in the circuit as should be expected. 

 

 In these two examples, we see that Poynting’s theorem can be interpreted 

in terms of electrical circuit elements.  In these examples, electromagnetic power 
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was directed into the element.  The radiation of electromagnetic power that is 

directed radially outward will be discussed in Chapter 7 when antennas are 

described.   
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4.6. Time-harmonic electromagnetic fields 
 In practice, we will frequently encounter electromagnetic fields whose 

temporal variation is harmonic. Maxwell's equations and the Poynting vector will 

assume a particular form since the fields can be represented as phasors. In 

particular, we write the fields as 

                            ]e)z,y,x(Re[)t,z,y,x( tjω= EE   (4.47) 

and 

                            ]e)z,y,x(Re[)t,z,y,x( tjω= HH  (4.48) 

where Re stands for the real part. There may be a phase angle φ  between the 

electric and magnetic fields that will be absorbed into the terms E(x, y, z) and 

H(x, y, z). We are able to employ either a cosine function or a sine function If we 

had chosen the sine function, the phase angle φ would have to be replaced with 

a new phase angle 2/' π−φ=φ . The only restriction that will be encountered is 

that we remain consistent throughout a calculation. 

 In terms of the phasors E  and H,  we write Maxwell's equations as 

                                                 HE ωµ=×∇ -j  (4.49) 

                                                 JEH +ωε=×∇ j  (4.50) 

                                                  ερ=•∇ /vE  (4.51) 

                                                 0=•∇ B    (4.52) 

where the term representing the temporal variation ejωt   that is common to both 

sides of these equations has been canceled. Hopefully, there will be little confu-

sion in notation since we have not introduced any new symbols. 

Example 4-19. Compute the frequency at which the conduction current equals 

the displacement current. 

Answer: From (4.50), we write 

   ( )EEJH ωε+σ=ωε+=×∇ jj  

The frequency is given by 
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  ε
σ

=ω  

For copper, the frequency πω= 2/f  is 

  
Hz1004.1

10
36

12

108.5
2

f 18

9

7

0

×=
×

π
×π

×
=

πε
σ

=
− . 

At frequencies much above this value, copper which is thought to be a good 

conductor acts like a dielectric.  In this case, the electromagnetic wave can 

propagate through the copper barrier.  

 

 The derivation of the Poynting vector requires some care when we are 

considering time harmonic fields. This is because the Poynting vector involves 

the product E x H. Power is a real quantity and we must be careful since 

                    [ ] [ ] [ ]tjtjtj eReeReeRe ωωω ×≠× HEHE  (4.53) 

 To effect the derivation of the Poynting vector, we make use of the 

following relations 

               ( ) ( ) 2/Re *EEE +=    and   ( ) ( ) 2/Re *HHH +=  (4.54) 

where the star indicates the complex conjugate of the function. We write 

            

( ) ( ) ( )[ ] ( )[ ]

[ ] 4/                 

2/2/ReRe **

**** HEHEHEHE

HHEEHE

×+×+×+×=

+×+=×
  

The time variation ejωt cancels in two of the terms and introduces a factor of  e±j2ωt 

in the remaining two terms.  After taking a time average of this power, these latter 

terms will contribute nothing to the result.  We finally obtain the time average 

power to be 

                             
[ ]*Re

2
1 HE ×=avS  (W / m2)  (4.55) 

Example 4-20. The field vectors in free space are given by 

  XuE 





 π

+ω= z
3
4tcos10 m/V and  

( ) π×= 120/EuH Z .m/A  
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The frequency MHz500f = . Determine the Poynting vector. The numerical value 

of π120  as a free-space impedance will become apparent in the next chapter.  

Answer:  In phasor notation, the fields are expressed as 

  
( )

Xuz3/4je10 π=E and ( )
Yuz3/4je

120
10 π

π
=H . 

and Poynting vector is  

  [ ] ZZav uuS 133.0
1202

10Re
2
1 2

* =
π×

=×= HE  W/m2. 

 

 Having now manipulated the complex phasors to derive (4.55), let us ap-

ply this to the derivation of Poynting's theorem. In particular, we desire to 

explicitly obtain the terms E and H*. The procedure that we will follow is to 

subtract the scalar product of E with the complex conjugate of (4.50) from the 

scalar product of H* with (4.49) resulting in 

        *JEEEHHHEEH •−•ωε+•ωµ−=×∇•−×∇• **** jj  (4.56) 

Employing the same vector identity that we previously used to derive (4.40), we 

recognize that (4.56) can be written as 

                                ( ) 222 EEH σ−ωε+ωµ−=×•∇ jj*HE  (4.57) 

where 2H=• *HH ; 2E=• *EE ; and 2Eσ=• *JE . 

 Following the procedure that has served us so well previously, we inte-

grate the terms that appear in (4.57) over the volume of interest 

       
( ) [ ] ∫∫∫

∆∆∆

σ−ε−µω−=×•∇
vvv

* dvdvjdv 222 EEHHE
 

(4.58) 

The volume integral is converted to a closed surface integral that encloses the 

volume ∆v 

                       
( ) [ ] ∫∫∫

∆∆

σ−ε−µω−=•×
vv

* dvdvj 222 EEHdsHE
               (4.59)

  

 The closed surface integral represents the total power that is radiated from 
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within the volume enclosed by this surface. The last term represents the power 

that is dissipated within this volume. This power could have been turned into heat 

and would not be recovered.  The remaining two terms are the time-average 

energy stored within the volume. The factor "j" indicates that this is similar to the 

reactive energy stored in the capacitor or inductor in an RLC circuit. 
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4.7. Conclusion 

 We have now come to the end of a long journey in order to obtain the set of four 

Maxwell's equations that describe electromagnetic phenomena. We have demonstrated 

that time-varying electric and magnetic fields can be determined from each other 

through these equations and that they are intimately intertwined. Faraday's law of 

induction and Ampere's circuital law with the introduction of a displacement current 

relate time-varying magnetic fields to time-varying electric fields. The term that 

represents the displacement current arises from the requirement that the equation of 

continuity must be satisfied. The boundary conditions that we encountered in static fields 

apply equally well in time varying fields. 

 There is a T-shirt that paraphrases the book of Genesis by stating that "In the 

beginning, God said '...,' and there was light" where these equations are included within 

the proclamation. The goal, and accomplishment, of hundreds of graduate students 

since Maxwell first inscribed these equations on paper has been to pose a new 

electromagnetic problem, solve it starting from these equations, and write a thesis. Even 

after obtaining a graduate degree, this set of equations usually appears as "Equation (1) 

to (4)" of many of their later scholarly articles that are then stored in dusty archives. You, 

as a student, are not expected to write these equations on a crib sheet and bring them to 

an examination or even memorize them for that inquiry, you are expected to 
know them! The intellectual and even the visceral understanding of these 

equations is what this course and much of electrical and computer engineering is about.  
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4.8. Problems 
1. In a source-free region, we find that ZY uuB xz += . Does E vary with time? 

2MATLAB. A perfect conductor joins two ends of a 100 Ω resistor and the closed 

loop is in a region of uniform magnetic flux density B = 10 exp(- t / 10) T. 

                                              

 
100 Ω

10 cm

uniform B(t) 

 

Neglecting the self-inductance of the loop, find and plot the voltage V(t) that ap-

pears across the 100 Ω resistor. A device based on this principle is used to moni-

tor time-varying magnetic fields in experiments and in biological studies. 

3. A closed loop (∆x = 30 cm x ∆y = 20 cm) of wire is passed through a nonuni-

form time-independent magnetic field B = xuz  T with a constant velocity  

vo = 5ux m/s. At t = 0, the loop’s lower left corner is located at the origin (see the 

figure below). Find an expression for the voltage V, generated by the loop as a 

function of time. You may neglect the magnetic field created by the current in the 

loop.  

                                          

 

v0 B

∆x

∆y

y

V(t)

x 
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4. Repeat problem 3 with the magnetic flux density being uniform in space 

z1.0 uB =  T.  Explain your result. 

5. Find the generated voltage if the axle moves at a constant velocity v =vux=3ux 

m/s in a uniform magnetic field of B = Bouz=5uz T. At t = 0, the axle was at x = 0, 

L= 40cm. 

        

 

V 

x 

y 

Lv

 
6. Repeat problem 5 with the constraint that the rails separate with L = Lo + L1x. 

The wheels are free to slide on the "trombone-like" axle so they remain on the 

rails ( m4.0L0 = , 04.0L1 = ). 

7. A tethered satellite is to be connected to 

the shuttle to generate electricity as it passes 

through the ambient plasma. Assuming that 

the shuttle takes two hours to go around the 

earth, find the expected voltage difference ∆V 

between the two objects. The shuttle flies 

approximately 400 km above the earth where 

B ≈ 10-5 Tesla. 

 

v 

B 

20 km

 

8MATLAB. A conducting axle oscillates over two conducting parallel rails in a 

uniform magnetic field B = Bo uz ( T4B0 = ). The position of the axle is given by  

x = (∆x/2) [1 - cosωt] ( m2.0x =∆ ; 1s500 −=ω ). Find and plot the current I(t) if the 
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resistance is R = 10 Ω and the distance between the rails is m1.0y =∆ . 

 

 

∆x

y
I

∆y R B

 

9MATLAB. Repeat problem 8 with the magnetic field also varying in time as                       

B = Bo cos ωt uz with B0 and ω having the same values. 

10. Calculate the voltage that is induced between the two nodes as the coil with 

dimensions 0.5m x 0.5m rotates in a uniform magnetic field with a flux density 

T2B = with a constant angular frequency 1s1200 −=ω . 

  

 

ω
B

B
ω 

 

11. A square loop is adjacent to an in-

finite wire that carries a current I. The 

loop moves with a velocity v = vo ur. 

The center of the loop is at r and the 

initial position is r = b. Determine the 

induced voltage V(t) in the loop 

assuming dimensions a x 2b. 

 

2b

a

r

v 

I
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12. The 1m long wire shown in the 

figure rotates with an angular 

frequency 1200 min-1 in the magnetic 
field φφ= uB sin5.0  T. Find the current 

in the closed loop with a resistance 

100 Ω.  

 

R=100Ω

φ

L=1m

r=0.2m 

13. The current density is XuJ )xsin(π= . Find the time rate of increase of the 

charge density t/V ∂ρ∂ at x = 1. 

14. The current density is ruJ )rexp( 2−=  in cylindrical coordinates. Find the time 

rate of increase of the charge density at r = 1. 

15. Compare the magnitudes of the conduction and displacement current 

densities in copper ( m/S108.5 7×=σ , 0ε=ε ), sea water ( m/S4=σ , 081ε=ε ), 

and earth ( m/S10 3−=σ , 010ε=ε ) at 60 Hz, 1 MHz, and at 1 GHz. 

16.  Given the conduction current density in a lossy dielectric as 

( )t102sin2.0J 9
c π=  A/m2. Find the displacement current density if m/S103=σ  

and 5.6r =ε . 

17. Show that the fields  

  XuB tcosB0 ω= and Z0 tcosE uE ω=  

do not satisfy Maxwell's equations in air 1r ≈ε .  Show that the fields  

  XuB )kytcos(B0 −ω=  and Z0 )kytcos(E uE −ω=  

satisfy these equations. What is the value of k in terms of the others stated 

parameters? 

18. Given Z0 )kytcos(E uE −ω= and XuH )kytcos()Z/E( 00 −ω= in a vacuum. Find 

Zc in terms of 0ε and 0µ so Maxwell's equations are satisfied. 
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19. Do the fields YuE tcosxcosE0= and Z00 tsinxsin)/E( uH µ=  satisfy 

Maxwell's equations? 

20. Find a charge density Vρ  that could produce in vacuum an electric field  

XuE tcosxcosE0=  . 

21. Write ( ) XuE z10t103cos120 9 −×π=  V/m and ( ) Y
9 z10t103cos1 uH −×= A/m in 

phasor notation. 

22. Write the phasors Xuzje3 β−=E and Yuzj45j ee4.0
0 β−−=H  in the time domain. 

The frequency of oscillation isω . Find the average Poynting's vector avS .  

23. Find the displacement current density flowing through the dielectric of a 

coaxial cable of radii a and b where b > a if a voltage tcosV0 ω  is connected 

between the two conducting cylinders. 

24. Find the displacement current density flowing through the dielectric of 2 

concentric spheres of radii a and b where b > a if a voltage tcosV0 ω  is 

connected between the two conducting spheres. 

25. Starting from Maxwell's equations, derive the equation of continuity. 

26. Write all of the terms that appear in Maxwell's equations in Cartesian coordi-

nates. 

27. If ( ) YuE ztcosE0 β−ω=  is a solution to Maxwell's equations, find H. Find Sav. 

28. If ( ) YuH ztcosH0 β−ω=  is a solution to Maxwell's equations, find E. Find Sav. 

29. At a frequency of f = 1 MHz, verify that copper ( m/S108.5 7×=σ , 1r ≈ε ) is a 

good conductor and quartz ( m/S10 17−=σ , 4r =ε ) is a good insulator.  

30. Find the frequency where quartz becomes a conductor. 

31. Find the frequency where copper becomes an insulator. 

32. Compute the stored electric energy that is stored in a cube whose volume is 

one cubic meter in which a uniform electric field of 104 V/m exists. Compute the 

stored energies if the cube is empty and if it is filled with water that has 081ε=ε .  
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5. Electromagnetic wave propagation 
 The reader of these pages has now been at the mountain top and has 

communed with the ideas of the great nineteenth century theoretical physicist. 

Four equations that form the basis of electromagnetic theory should have been 

inscribed on the reader's personal stone tablets during this period. The climb to 

the top has been strenuous, but as we will see, the efforts required to reach these 

heights will be well rewarded in that we will be now be able to understand how the 

warming light from the sun actually propagates toward us and what limits the 

ultimate speed of any electronic circuit. This will result from a proper manipulation 

of the four equations that are the foundation of this subject. As we pass over the 

pages of this chapter, we will examine the concept of an electromagnetic wave. 

The wave may challenge our mind but as we will see, it does carry elec-

tromagnetic energy that can warm our soul. 

 

  5.1. Wave equation 
 The point of embarkation for our study of electromagnetic waves is, of 

course, Maxwell's equations. This should not be too surprising since the expla-

nation of all phenomena in electromagnetic theory can trace their origin to these 

four equations. Starting from these equations, we will show that the equations can 

be cast in terms of a wave equation.  

 The wave equation that we will initially derive will describe wave propa-

gation in a homogeneous medium that could have losses. In our derivation, there 

will be no free charge density, hence 0V =ρ . Therefore, Maxwell's equations are 

written as 

  
t∂

∂
µ−=×∇

HE                                           (5.1) 

                                                  EEH σ+
∂
∂

ε=×∇
t  (5.2) 
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  0=•∇ E  (5.3) 

  0=•∇ H  (5.4) 
where we have incorporated the constitutive relations 

                                                          








σ=
µ=
ε=

EJ
HB
ED

 

(5.5)
 

to eliminate the terms D, B, and J. Here an absence of external currents is 

assumed in (5.2). All of the electromagnetic fields explicitly depend on space and 

time, i. e. E = E(r, t) and H = H(r, t). The independent variables of space and time 

will not be explicitly stated in what follows but are to be understood. As we will see 

later, the two equations involving the divergence operation will be used to specify 

the value of a certain term in a vector identity and we will initially manipulate the 

two equations that contain the curl operation.  

 Equations (5.1) and (5.2) are two first order partial differential equations in 

the two dependent variables E and H. We can combine them into one second 

order partial differential equation in terms of one of the variables. This is the same 

procedure that we normally employ when confronted with two coupled first order 

differential equations. We merely have to be careful here since we have vectors 

and vector operations in the equations.   

 For the electric field intensity E, this combination of the two equations is 

accomplished by taking the curl of (5.1) and inserting (5.2) for the term H×∇  that 

will appear on one side of the resulting equation. This operation is written in detail 

as 

( ) 2

2

ttttt
)(

∂
∂

µε−
∂
∂

µσ−=







∂
∂

ε+σ
∂
∂

µ−=×∇
∂
∂

µ−=×∇×∇
EEEEHE  

(5.6) 

Note that we have freely interchanged the orders of differentiation of space and 

time in this step. The magnetic field intensity H can be later computed from the 

electric field intensity E using (5.1). As we will see later, there are certain 
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advantages in solving for the electric field first since boundary conditions on the 

electric field are frequently found to be more easily specified. Recall that a metal 

conductor has a dramatic effect on the tangential component of the electric field 

intensity.  

 The next step that we should take in our journey into the understanding of 

wave phenomena is to employ the vector identity (A1.15) for the first term in equa-

tion (5.6). This leads to 

                                ( ) EEEE 22 −∇=∇−•∇∇=×∇×∇  (5.7) 

In reducing this equation, we have included the fact that the charge density Vρ  is 

absent. This is specified in the divergence equation (5.3). After substituting (5.7) 

into the vector equation (5.6), we finally obtain 

                                        0
tt 2

2
2 =

∂
∂

µε−
∂
∂

µσ−∇
EEE  

(5.8) 

 This is the general homogeneous three-dimensional vector wave equation 

that we are seeking that is valid for the case of the absence of external sources. 

Note that as it is written, this equation does not depend on the coordinate system 

that has been chosen. The form of the Laplacian operator that should be em-

ployed in a calculation will, however, be dictated by the selected coordinate 

system. The choice of a coordinate system for a particular calculation is based 

upon any symmetry that is found in the problem. The polarization of the electric 

field E will be determined by the polarization introduced with the excitation 

mechanism. This, for example, could be an antenna with a particular radiation 

characteristic, a laser, or a waveguide with a certain physical orientation. In the 

near field region around the antenna, an inhomogeneous vector wave equation 

has to be solved (see Chapter 7) which relates the electromagnetic field with the 

sources. 
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 The topic of the polarization of the electromagnetic field is an important 

subject that should not be glossed over lightly. Imagine for a moment that we 

have two infinite parallel metal plates that are connected to the two output termi-

nals of a sinusoidal voltage generator as shown in Figure 5-1. The plates are far 

from each other, say a distance that approaches infinity. The voltage applied to 

the top plate will be 180o out of phase with the voltage applied to the bottom plate. 

The resulting electric field directly between the two plates is said to be linearly 

polarized  in one direction that we will define as the uy direction. 

  

 

zy
x

yE 

 

Figure 5-1. A technique to linearly polarize the electric field between the two 

infinite metal plates. 

 

 In Figure 5-1, we have introduced a technique to create an electromagnetic 

field that has a linear polarization. There are other polarizations such as circular 

and elliptical polarizations. An example will later describe these polarizations after 

we describe the excitation of time-harmonic waves. Rest assured that it is an 

important topic and it will be discussed.  

 By convention, we describe the polarization of an electromagnetic wave as 

being determined by the electric field component rather than the magnetic field 

component. In practice, we find that boundary conditions will be specified by the 

electric field rather than the magnetic field. Ascertaining one of the components of 
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an electromagnetic wave determines the other component via Maxwell's 

equations, therefore all will be known. 

 Solutions of this general three-dimensional vector wave equation (5.8) may 

be difficult to write down and these solutions will certainly not be very useful at this 

stage in gaining an understanding of the concept of an electromagnetic wave. We 

must simplify the problem.  

Example 5-1. Show that the wave equation for the magnetic field intensity H can 

be cast in the same form as (5.8). 

Answer: From (5.1) and (5.2), we write 

  
( ) 








∂
∂

µ−
∂
∂

ε+







∂
∂

µ−σ=×∇
∂
∂

ε+×∇σ=×∇×∇
tttt

)( HHEEH
 

The left hand side of this equation is reduced via the vector identity (5.7) 

  ( ) HHHH 22 −∇=∇−•∇∇=×∇×∇  

where (5.4) has been employed. Therefore, we are left with 

  0
tt 2

2
2 =

∂
∂

µε−
∂
∂

µσ−∇
HHH  

Thus the wave equation for the magnetic field intensity has the same form as the 

electric field intensity E as given in (5.8) 

 

 The general wave equation that we have written in (5.8) contains terms that 

make it difficult to solve. We will suggest several simplifications. The first 

simplification that we will make concerns the material in which the wave is to 

propagate. We will initially investigate a vacuum. In a vacuum, the second term in 

(5.8) is set equal to zero since the conduction current EJ σ=  is nonexistent. The 

relative permittivity rε  and the relative permeability rµ  are both one and ε  and µ  

can be replaced with their vacuum values 0ε  and 0µ . 

 The second simplification that we can make is to choose a Cartesian co-

ordinate system with the electric field polarized in only one direction. We will 
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choose that direction for the polarization of the electric field to be specified by the 

unit vector uy. The third simplification that we will make is to assume that the 

wave is a function of only one of the three variables that make up the Cartesian 

coordinate system, say the z coordinate. This specifies that 0
yx
=

∂
∂

=
∂
∂ . The 

experimental scenario depicted in Figure 5-1 indicates how this could be effected. 

In this case, the vector wave equation (5.8) reduces to 

 

   0
t
E

z
E

2
y

2

002
y

2

=
∂

∂
εµ−

∂

∂
 (5.9) 

 

where the unit vector uy is common to all terms in the equation. The unit vector uy 

will not be written but it will be understood that the electric field intensity is 

polarized in that particular direction. Hence, (5.9) becomes a one dimensional 

scalar wave equation.  We note the appearance of the term ( 00εµ ) that appears in 

this equation. Let us understand the meaning of this term. The dimensions of the 

two terms in (5.9) that involve the derivatives are respectively given by  

  
( )2meter
meter
volts









 and 
( )2ondsec

meter
volts









 

In order for this equation to be correct dimensionally, the term ( 00εµ ) must have 

the units of  

  

2

meter
ondsec







 . 

 

Hence ( 00εµ ) has the units of (velocity)-2. If we insert the numerical values for 

0ε and 0µ that were obtained previously and solve for this velocity, we find that it 

has a numerical value that has the same value as the velocity of light. Therefore, 

we feel comfortable with the substitution of a symbol c where 
00

1c
εµ

=  into (5.9) 
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without yet knowing the true meaning behind it. Such good fortune in this term 

having the correct dimensions and a recognizable numerical value is not just pure 

happenstance but it is based on a firm theoretical foundation as will be shown 

below. The product of the velocity times the time, ct, has the dimensions of 

distance. Hence, the vector wave equation written in (5.8) could be thought of in 

terms of a four dimensional space, a concept that has occupied the time and 

energy of certain theoreticians at the graduate level and beyond. 

Example 5-2. Compute the numerical value for the velocity c. 

Answer: Using the numerical values for 0µ  and 0ε , we write 

  ( )
s/m103

10
36

1104

11c 8

9700

×≈







 ×

π
×π

≈
εµ

=
−−

  

This is the speed of light!   
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5.2. One-dimensional wave equation 
 In order to emphasize and understand some basic properties of waves, let 

us first examine waves in other disciplines. This slight diversion from our main 

task is to breed familiarity with the topic of waves using experiences that you may 

have encountered in the past. We will look at a pulse that travels in the direction 

of increasing positive values of the coordinate z in a series of gedanken 

experiments. 

 
  5.2.1. Related wave experiments 
 The first experiment could be performed in a water tank or in a bathtub. A 

repetitive wave-pulse is launched at a point labeled as z = 0 with a signal gen-

erator attached to a small plunger1.  This plunger can move up and down as 

shown in Figure 5-2. The repetition frequency of the plunger motion is slow 

enough so the excited waves will not interfere with each other. The waves are 

also absorbed at the walls and at the end of the tank so no reflection of the wave 

will occur. The water wave propagates with a very slow velocity compared with the 

velocity of light. Every time that the pulse is launched at z = 0, a trigger pulse is 

simultaneously sent from the signal generator to the oscilloscope. The trigger 

pulse will propagate at the velocity of light so this trigger signal can be considered 

in the time scale of the water wave propagation to be "instantaneous." The pulse 

is detected with a calibrated movable probe and the response is displayed on an 

oscilloscope that is triggered from the signal generator. This detector could be a 

device such as a photomultiplier that responds to the amplitude of the reflected 

light from the water. If the water is uniformly illuminated, the change of curvature 

due to the passage of the propagating wave would alter the detected signal. 

                                            
1 This plunger is sometimes called a “wavemaker.” 
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 Pictures are taken from the oscilloscope at various locations z in the water 

tank and a sequence of these photographs taken at equal spatial intervals is 

shown in Figure 5-3 (a). In this sequence, the t = 0 trigger time is lined up along 

one axis. Note that the pulse moves to the right with what appears to be a con-

stant velocity.  

  

 

pulse generator 

z
ϕ∆

detector 

trigger signal

 

Figure 5-2. Wave-making experiment for water waves. The amplitude of the wave 

is ∆φ. 

 

  From the sequence of photographs shown in Figure 5-3a and knowing the 

locations where they were taken, it is possible to obtain two numbers. These are 

the distance of propagation z and the time-of-flight t of a constant point on the 

pulse, say the rising edge of the pulse. This set of numbers is plotted on a graph 

that is shown in Figure 5-3b. The experimental points appear to lie on a straight 

line. The slope of this line is called the velocity of propagation and this figure is 

called the trajectory  of the wave propagation. This velocity of propagation for 

these surface waves is a function of the surface tension and mass density of the 

water. There are cases where this trajectory may not be a straight line and one 

will have to calculate the derivative 
t
zv
∂
∂

=  in order to define the slope and hence, 

the local velocity of propagation. Our use of the partial derivative notation in this 
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definition is because there are cases where the velocity may also depend upon 

other quantities such as the frequency of the wave (dispersion), the amplitude of 

the wave (nonlinear), etc.    

 
 

4z =
0

2z =

0z =

ϕ∆  

0 t  2 4 0 2 t  

z
2

4

6

(a) (b) 

4

 

Figure 5-3. (a) Sequence of oscilloscope photographs taken at various locations 

in the water tank. (b) Trajectory of the rising edge of the wave pulse. The velocity 

of propagation which is determined from the slope of the line is equal to 2. 

 

  

1t  
ϕ∆

z

2t  

3t  

 

Figure 5-4. A wave can be launched on a string by "plucking" one end and it will 

propagate to either end.  

 A second wave experiment uses a string that is stretched between two 

points as shown in Figure 5-4. In this case, a small perturbation is launched on 
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one end of the string and it propagates to the other end. As in the water tank 

experiment, we will neglect any reflection at the end. If a camera were available, 

we could take pictures of the perturbation as it moved along the string. From this 

sequence of pictures, the trajectory could be drawn and the velocity of the wave 

could be computed as shown in Figure 5-3b. In this case, the velocity of propa-

gation is a function of the tension on the string and the mass density of the string 

as is demonstrated below in Example 5-3.  In the case were the diameter of the 

string decreases as the distance increases, one would quickly encounter a 

nonlinear velocity of propagation.  A whip makes use of this property. 

 The third experiment employs a spring that is stretched between two walls. 

One of the walls is suddenly moved resulting in a perturbation in the spring that 

propagates to the other end as shown in Figure 5-5. Once again, the trajectory 

can be drawn as shown in Figure 5-3b and the velocity of propagation computed. 

This velocity will depend on the elasticity and the mass density of the spring. 

  

 

2t  

1t  

z
ϕ∆

3t  

 

Figure 5-5. A sudden compression-rarefaction in the spring causes a perturbation 

whose amplitude is ∆φ to propagate on the spring. 

 

 In all three of these examples, certain general conclusions can be drawn 

about the nature of wave propagation. The host medium does not propagate. Only 

the perturbation propagates and it propagates with a definite velocity that is 
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determined by the properties of the medium in which it propagates. After the 

perturbation passes, the host medium returns to its original unperturbed state 

since we are assuming that the perturbations are small. The host medium is not 

affected by the passage of the wave - no energy remains at a spot in the medium. 

There are no local hot spots caused by a large amplitude wave locally heating the 

medium. Except for a later comment, we will not further examine this important 

class of wave propagation problems, which involve an energy transfer from one 

form to another where it is either locally absorbed or dissipated. 

 There is a major difference between these three gedanken experiments. In 

the first two cases, the perturbation ∆φ was transverse to the direction of the 

wave's propagation. In the third case, the perturbation ∆φ was in the direction of 

propagation.  The first two cases are classified as being a transverse wave and 

the third case is classified as being a longitudinal wave. The electromagnetic 

waves that we will study in this text are transverse waves. Sound waves in which 

there are sequences of local compressions and rarefactions that propagate in the 

air and are launched by an instructor in class are longitudinal waves.2 Transverse 

electromagnetic waves can propagate in a vacuum, longitudinal sound waves 

require something to be compressed and therefore cannot propagate in a 

vacuum.  

Example 5-3. As an example of a wave that propagates in a nonelectromagnetic 

milieu, derive the wave equation for the transverse waves that propagate along a 

string. The string has a mass density Lρ  and the string is under a tension force T. 

Neglect the weight of the string. 

Answer: A segment ∆z of the string that suffers a displacement ∆φ normal to the 

string is shown in the figure. The tension T is constant along the string. If the 

                                            
2 We assume that the air is not being heated in class by the teacher.  Politicians are another 
story. 
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tension were not a constant, the string would break. For small amplitudes ∆φ, we 

can write   

  ( )
z

tansin
∂
ϕ∆∂

≈θ≈θ  

Hence the vertical force F on the string can be written as 

  ( ) ( ) ( )
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2

zzz
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Newton's equation of motion states that 
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∂
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Equating these two expressions, we obtain the wave equation 

  
( ) ( ) 0
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L

=
∂

ϕ∆∂
−

∂
ϕ∆∂

ρ
 

The velocity of the wave along the string is given by 
L

Tv
ρ

= . Waves are om-

nipresent in the universe and the example of the waves that propagate along the 

string is an easily visualized example of a transverse wave. The electromagnetic 

waves that we encounter will also be transverse waves. 

 

 We could have derived a wave equation and determined the velocity of 

propagation for all three of the waves depicted above. This was done here only for 

the transverse wave that propagates along the string in Example 5-3. Suffice it to 

say that a standard wave equation for the amplitude ∆φ would result in all cases 

and the wave would have its own unique velocity of propagation.3  It would have 

the same mathematical form as the wave equation for the electromagnetic waves 

as will be shown in the following discussion. Experiments of the type indicated 

                                            
3 These equations are derived in several texts. It is also shown there that these waves carry 
both energy and momentum as they propagate. The authors are familiar with  Introduction to 
Wave Phenomena, A. Hirose and K. E. Lonngren, Wiley-Interscience, New York, 1985; 
reprinted by Krieger, Malabar, Florida, 1991, 2001. 



One-dimensional wave equation 

415 

here for other waves can also be performed with electromagnetic waves and the 

velocity of propagation can be appropriately measured.  

 
5.2.2. Analytical solution of one-dimensional 

equation – traveling waves 
 Equation (5.9) can now be rewritten as 

  0
t
E

c
1

z
E

2
y

2

22
y

2

=
∂

∂
−

∂

∂
 (5.10) 

The most general nontrivial solution4 of this equation is given by 

    (5.11) 

where F and G are arbitrary  functions that are determined by the excitation. This 

can be checked by a substitution of (5.11) into (5.10). This excitation could be a 

pulse, a step function, a continuous time-harmonic wave, or any other function 

that is specified by, say, a function generator. The solution )ctz(F − is a traveling 

wave in the +z direction, while the solution )ctz(G + is a traveling wave in the –z 

direction. There are two possible scenarios that would create both waves 

simultaneously.  The first assumes that there are two function generators, one at  

z = - ∞ and the other at z = + ∞. The second assumes that there is a source at  

z = - ∞ and there is a reflecting boundary at some location, say z = 0.  In this case, 

there will be an incident wave and a reflected wave.  Reflection will be discussed 

later. 

 In order to show that general solution presented in (5.11) is indeed the 

mathematical solution for the scalar wave equation (5.10), we need only substitute 

this solution into this partial differential equation and show that it does indeed sat-

isfy this equation.  Let us do this operation very methodically since this is a crucial 

                                            
4 An electric field that is a constant, such as zero, is also a solution to this equation. However, 
this solution shall be viewed as being in the trivial class of solutions and will not be discussed 
further. 
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point in our argument.  It is easiest to first define two new independent variables ς 

and ψ that include the independent variables of space z and time t in a particular 

format as 

  ctz −=ς     and    ctz +=ψ  (5.12) 

and then use the chain rule for differentiation.   

 Therefore, we write that the first derivative of our general solution can be 

written as 
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where the last derivatives are computed from (5.12).   

The second derivatives lead to 
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 Hence, we have verified that (5.11) is indeed the most general solution of 

(5.10) since the functions F(ς) = F(z - ct) and G(ψ) = G(z + ct) are completely ar-

bitrary functions. This could be a pulse or a sine wave that depends only on the 

excitation. In order to actually draw the functions, numerical values must be 

specified for the arguments of the functions. Now we will invoke one of the truisms 

of life: "We are all getting older!" This truth states that time is always increasing. It 

manifests itself in the following way as far as the solution of (5.10) is concerned. 

The variables ς and ψ were chosen to have particular numerical values, say ς0 

and ψ0, where 

  000 ctz −=ς  and 000 ctz +=ψ  
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Figure 5-6. Particular solutions of the one-dimensional wave equation at two 

times.  Each pulse has a particular shape that is determined by the function 

generator. 

 We assume that the functions F(ς) and G(ψ) at a time t=to are located at z= 

-zo and at z= +zo respectively. The independent variables ς and ψ must also have 

the same numerical values in order that the shape of the signal be unaltered at a 

later time t > to. This implies that the location z of the pulse must correspondingly 

change. The signal F(ς) = F(z - ct) will pass to increasing values of z. The signal 

G(ψ) = G(z + ct) will pass to decreasing values of z. This is shown in Figure 5-6 

for two pulses of particular shape at two values of time.  

 We call this effect wave propagation or just propagation. Assuming that 

there is no distortion in the wave, we can follow the same point of the perturbation 

as it propagates. This implies that dζ = 0 and dψ = 0. The velocity of propagation 

of the wave is then computed from the relations 

                                  0cdtdzd =−≡ς  and   0cdtdzd =+≡ψ  (5.13) 

from which we determine the velocity of propagation of the two functions to be 

                                           c
dt
dz

=   
and  c

dt
dz

−=  
(5.14) 

z  

z  

0tt =  

0tt >  

G(z+ct) F(z-ct) 

-z0 +z0 
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The sign difference indicates that F(z - ct) propagates to increasing values of the 

coordinate z and G(z + ct) propagates to decreasing values of the coordinate z. 

 Having just solved for the electric field, we could compute the magnetic 

field intensity H from Maxwell's equations. Rather than do this now, we will defer 

this computation for a little while.  Rest assured, both components are required for 

the propagation of an electromagnetic wave. 

 In order to obtain a particular solution of (5.10) than the general solution 

(5.11) we will add two more initial conditions:  

1) We will assume that the solution is a known function P(z) at the time 0t =  

2) We will assume that the derivative of the solution is a known function Q(z) at 

the time 0t =    

  








=
∂

∂

=

)z(Q)0,z(
t

E
)z(P)0,z(E

y

y

 (5.15) 

It will be shown below that the particular solution of this problem is presented by 

the following expression 
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where the new auxiliary function ∫=
z

0

'dz)'z(Q
c
1)z(R  is introduced.  

Example 5-4. Check that (5.16) is the particular solution of (5.10) satisfying the 

initial conditions (5.15).  

Answer: Here the method of D’Alambert is applied. We assume the general 

solution is given by (5.11). After taking the derivative with the respect to the 

variable t and evaluating the result at the time 0t = , the following system of two 

functional equations is obtained 
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where z=ψ=ς  at the time 0t =  is used. The integration of the second equation 

yields  
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The addition and subtraction of these two equations leads to the following set of 

simultaneous equations 
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The substitution of both functions into (5.11) along with appropriate replacements 

of the variables ctzz −=ς→  in the first function and ctzz +=ψ→  in the second 

function yields the following particular solution for the initial value problem 
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This is (5.16).  Provided the two functions P(z) and Q(z) are given explicitly, it is 

not difficult to obtain the solution of this equation.  

 

Example 5-5. Show that the function ( )( )2
0 ctzexpF)ctz(F −−=−  is a solution of 

the wave equation (5-10). This is a so called Gaussian pulse traveling wave.  In 

addition, relate the solution to Example 5-4. 

Answer: Let ctz −=ς . Therefore )exp(F)ctz(F 2
0 ς−=−  and 0)ctz(G ≡+ .  Then, 

we write using the chain rule 
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Adding the second and the fourth equations yields (5.10). A sequence of pulses 

taken at increasing times illustrates the propagation of the pulses. The velocity of 

propagation is c. 

  

 

z  
0t =

1t =

2t =

3t =

 

We can define the propagation of the Gaussian pulse as an initial value 

problem that was discussed in Example 5-4.  In this case, 
  )zexp(F)(F)z(P 2

00t
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=
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 A simple integration yields the auxiliary function  
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After substituting this result into (5.16), we obtain  

 0 5
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1)ctz(FF
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which is a traveling Gaussian wave towards (+z) with a speed c. 

 
5.2.3. MATLAB solution of one-dimensional 

equation – finite difference in time-domain method 
 The numerical solution of the wave equation is a formidable task. One 

quickly encounters numerical difficulties that are beyond the scope of this text. 

Fortunately for us, we can be carried on the shoulders of giants in our first 

encounter with these potential pitfalls. Herein, we will introduce a path through 

this jungle and develop a numerical program that is written in MATLAB. The 

resulting figures should aid our understanding of wave phenomena. 

 In order to develop a numerical solution for the one-dimensional wave 

equation (5.10), we initially solve a first order partial differential equation. This 

equation is sometimes called the advection equation 

   0
tc

1
z

=
∂
ϕ∂

+
∂
ϕ∂  (5.17) 

For the initial condition 

  )z(F)0t,z( ==ϕ  (5.18) 

the analytical solution of the advection equation is given by 

  )ctz(F)t,z( −=ϕ  (5.19) 

which is the solution of the wave equation (5.10). This can be easily checked by 

a substitution of (5.19) into (5.17). 

 Both the wave equation and the advection equation belong to the same 

family of equations that are called hyperbolic equations. The diffusion equation is 

in the parabolic equation family and Laplace's and Poisson's equations are in the 

elliptic equation family. We will focus our attention here on the advection equation 
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as it is simpler and the procedure and some of the pitfalls along with the bridges 

that cross these pitfalls will be described. 

 As shown in Figure 5-7, we consider that the space z and time t can be 

drawn in a three dimensional figure. The amplitude φ of the wave is specified by 

the third coordinate.  In Figure 5-7, we set up a numerical grid. First, we have 

broken the region L in which the wave propagates into N sections. In the figure, 

we have chosen 4N = . Hence we write 

 

  

 

0

2/L  

2/L−

ϕ

τ

h

t  

z

 

Figure 5-7. Numerical grid that uses periodic boundary conditions. 

 

  
N
Lh ≡   (5.20) 

We assume that the velocity of propagation is c and that it takes a time t for the 

wave to propagate a distance h. Therefore 
  τ= ch   (5.21) 

With these restrictions, we will jump over numerical stability reservations that 

were originally noted by Courant-Fredrichs-Lewy (CFL). We will leave it as 

exercises to examine the cases where τ≠ ch . 
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 In addition to stability restrictions, we have also invoked periodic boundary 

conditions. This states that once a numerically calculated wave reaches the 

boundary at z = + L/2, it reappears at the same time at the boundary z = - L/2 

and continues to propagate in the region -L/2 ≤ z ≤ +L/2. As shown in Figure 5-7, 

we actually do not evaluate the wave at these two edges but at one-half of a 

spatial increment h/2 removed from them at z = -L/2 + h/2 and at z = +L/2 - h/2. 

 Let us now convert the advection equation (5.17) to the finite difference 

form that can be handled by the computer. The time derivative is replaced using 

the forward difference method that was introduced in Chapter 3 

  
τ

ϕ−τ+ϕ
⇒

∂
ϕ∂ )t,z()t,z(
t

nini  (5.22)  

In this notation with reference to Figure 5-7, we have 

  2/Lh)2/1i(zi −−=  and τ−= )1n(tn  (5.23) 

The space derivative is replaced using the central difference method 
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Substitute (5.22) and (5.24) into the advection equation (5.17) and obtain 

  0)t,z()t,z(
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ϕ−τ+ϕ

+
−ϕ−+ϕ  (5.25) 

 In (5.25), three of the four terms are evaluated at the same time tn and 

one term is evaluated at the next increment in time τ+nt . From (5.25), we write 

this term as 

  [ ])t,hz()t,hz(
h2

c)t,z()t,z( nininini −ϕ−+ϕ
τ

−ϕ=τ+ϕ  (5.26) 

The finite difference method based on this equation is called finite difference in 

time domain (FD TD) method. This is valid in the interior  range 2 ≤ n ≤ N - 1. In 

(5.26), we note that all values are known initially at the time t0 = 0. Hence, we use 

(5.26) to evaluate the values at the next increment in time and is also called a 

leapfrog scheme.  With the imposition of periodic boundary conditions, we must 
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carefully use (5.26) in order to find the values at the boundaries. This manifests 

itself with the requirement that  

  
[ ]

[ ])t,z()t,z(
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which makes the iteration process consistent. 

Example 5-6MATLAB. Use (5.26) and (5.27) to find the evolution of a rectangular 

pulse whose initial shape is defined by 
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2
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2
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Use the grid depicted in Figure 5-7. The stability requirement τ= ch  is also to be 

invoked in this calculation. 

Answer: We take a grid with small number of points N=4. The number of the 

calculated time steps is taken to be nstep=5. We tabulate the computed values to 

be 

         t    

        0       Τ     2 τ     3 τ      4 τ      5 τ 

   -3L/8         0     -1/2    - 1/2 1/2     5/2     9/2 

       Z     -L/8       1      ½    -1/2    -3/2    -3/2     1/2  

      L/8       1      3/2     3/2     1/2    -3/2    -7/2 

    3L/8       0      ½     3/2     5/2     5/2     1/2  

 

Note that the signal becomes distorted and increases in value as it propagates. It 

is unstable for every value of time! Our imposition of the stability requirement      

h = ct did not insure stability in this case! 
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 Fortunately for us, there is a simple solution to the instability problem that 

is in Example 5-6.  This is the Lax method. It replaces (5.26) with a slightly 

different iteration equation 

     [ ] [ ])t,hz()t,hz(
h2

c)t,hz()t,hz(
2
1)t,z( ninininini −ϕ−+ϕ

τ
−−ϕ++ϕ=τ+ϕ       (5.28) 

The first term on the right side is the average of the two neighboring terms. 

Similarly, the two equations that represent the periodic boundary conditions are 

modified to 
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  (5.29) 

Example 5-7MATLAB. Repeat Example 5-6 using the Lax’s method and sketch the 

solution with τ= ch  again. 

Answer: In MATLAB language, we write (5.28) and (5.29) in three steps. The 

first step finds the new interior values of j in terms of the previous interior values.  

These iterations are specified to have iterations in the range: 2 ≤ i ≤ (N - 1). The 

remaining two steps take care of the periodic boundary conditions at i = 1 and at  

i = N.  The results for the case of N=4 for the first five time steps are given in the 

table below. 

 

         t    

        0       Τ     2 τ     3 τ      4 τ      5 τ 

   -3L/8         0       0       1      1       0       0 

       z     -L/8       1       0       0      1       1       0 

      L/8       1       1       0       0       1       1 

    3L/8       0       1       1       0       0       1 
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Note that in this case, we have stability. In addition, the pulse is not distorted as it 

propagates. We plot the solution below. 

 

  

 

0

2/L  

2/L−

t  

z

 

 

Example 5-8MATLAB. Calculate the temporal and spatial evolution of a narrow 

pulse.  Use 50 grid points and 50 time steps. 

Answer.  The solution is shown in the following two figures.  The initial pulse and 

the final pulse are shown in (a) and the propagation is shown in (b). 
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5.3. Time-harmonic plane waves 
5.3.1. Plane waves in vacuum 

 Let us now derive the electric field for a wave that is excited with a sinu-

soidal excitation using the one-dimensional wave equation (5.10).  Since the 

excitation mechanism was a time harmonic signal, we should expect that the 

propagating wave should you also be a time harmonic propagating wave.  

Therefore, the field quantities Ey(z,t) will be of the form  

   =)t,z(Ey yE =ωtje)z( yE tje ω  (5.30) 

where the z dependence will be the dependent variable and will not be explicitly 
stated. The notation yE indicates that this term is a phasor quantity. In a vacuum, 

the phase velocity of the propagating wave is equal to the velocity of light c. With 

the assumption that is stated in (5.30), we write (5.10) as 
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 (5.31) 
where the exponential term tje ω  has been removed. The ratio (ω/


c) has the di-

mensions of (meter)-1. This ratio is called the wave number and it is usually given  

 

the symbol k.  

 The terms listed above are all interrelated as shown below where several 

alternative definitions are presented 

                                      λ
π

=
π

=
ω

=
2

c
f2

c
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(5.32)
 

Equation (5.31) can be finally written as 
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d 2
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=+ y
y Ε
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Equation (5.33) is also given the name of a one-dimensional Helmholtz equation.  

 A solution for the second order ordinary differential equation (5.33) is 

written as 
                                                     jkzjkz beae −− +=yE  (5.34) 

where we have let the two constants of integration a and b be real quantities. A 

substitution into (5.30) yields 
                                               ( ) ( )kztjkztj

y beaeE +ω−ω +=   (5.35) 

This can also be written as 
                                      ( ) ( )kztcosbkztcosaEy +ω+−ω=  (5.36) 

where we have taken the real part of the expression for the electric field given in 

(5.35). Either form of the electric field can be used since trigonometric functions 

are merely linear combinations of exponential functions. We could have 

equivalently chosen the imaginary part of (5.35) and obtained the sine functions. It 

is most common to use the real part assumption. In doing this, we have actually 

applied Euler's identity  

                            θ+θ=θ sinjcose j  (5.37) 

The first term in either expression (5.35) or (5.36) corresponds to a wave propa-

gating to increasing values of the spatial coordinate z and the second corresponds 

to a wave propagating to decreasing values of z.  Both terms are particular forms 

of the general solution (5.11).  The constants a and b are specified by the initial 

excitation signal and the known direction of propagation. 
 We have already discovered in (5.14) that the phase velocity dt/dzv =φ  of 

the propagation of these two traveling waves is obtained from the equation                             

                                                          c
k

v =
ω

=φ  
(5.38) 

because the medium in which the wave is propagating is a vacuum.  
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Figure 5-8. Examples of waves incident upon a beach where the phase velocity  
(a) φv  (beach) ≠ ∞ and (b) φv  (beach) = ∞ . 

 In general, the phase velocity is a vector quantity. This is because the 

phase velocity has both a magnitude and a direction associated with it. It can 

have a value that is greater than the velocity of light. Even water waves as they 

crash on the beach can have an infinite phase velocity along  the beach if the 

water waves are propagating exactly perpendicular to the beach as shown in 

Figure 5-8. In this case, the wave would hit two separated points on the beach at 

exactly the same time. This leads to an infinite phase velocity along the beach. 

There is, however, no energy transported along the beach. This point will be 

returned to later when discussing electromagnetic propagation in waveguides. 

Suffice it to say that Einstein was correct when he said that particles and energy 

can go no faster than the speed of light and he continues to be correct. In fact, 

effects of gravity are not instantaneous but have been recently observed to obey 

this upper limit for their velocity of propagation.   

  We can also use the wave number to tell us the direction that the wave is 

propagating if it is not directed along the z axis. In this case, the wave number will 

be a vector and it is so indicated with the vector notation k. It is frequently called 

the wave vector.  If the position at which the wave is to be determined is indicated 
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with the position vector r, then the term kz is replaced with the scalar product 

rk • . The magnitude of the wave vector, |k| = k = 2π/λ . We will encounter this 

notation later.  

 In the previous discussion, we have asserted that the wave depended on 

only one spatial coordinate. This was chosen to be the z coordinate and we have 
assumed that 0y/Ex/E yy =∂∂=∂∂ . A two dimensional picture of a segment of 

this one dimensional wave is illustrated in Figure 5-9. The transverse coordinate 

could have been either x or y. There is no change in the value of the perturbation 

of the electric field in a plane that its transverse to the z axis. In this plane, all of 

the field components have the same phase. This is defined as being a plane  

wave. Plane waves are nice waves from a theoretical and pedagogical point of 

view since the vector wave equation has been reduced to a one-dimensional 

scalar wave equation in Cartesian coordinates.  This equation is the easiest to 

solve. There are few cases where plane waves do actually exist.1 However in free 

space, such waves would have to be either launched at z = ± ∞ so any spherical 

radiation effects originating at a  finite sized antenna would have decayed to 0 or 

the antenna would have to be infinite in its transverse dimension.  

  

                                            
1 Plane waves also be encountered in ideal lossless transmission lines or coaxial cables.   
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Figure 5-9MATLAB. Illustration of a plane wave at a fixed instant of time. At a 

particular location z and at a particular time t, the electric field Ey will have the 

same phase at all points in the transverse plane. The wavelength λ is indicated.  

Example 5-9. In an experiment performed in a vacuum, we simultaneously 

measure the electric field to be polarized in the y direction at z = 0 and one wave-

length away at z = 2 cm. The amplitude is 2 µV/m. Find the frequency of excitation 

and write an expression that describes the wave if the wave is moving in the direc-

tion of increasing values of the coordinate z.   
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Answer: Since the wavelength was specified to be m02.0=λ , we can compute 

the wave number  

  π=
π

=
λ
π

= 100
02.0

22k  m/1 . 

Since the wave is propagating in a vacuum, the frequency of oscillation can be 

found from 

    kc=ω  or  GHz15Hz1015
2

103100
2

f 9
8

=×=
π
××π

=
π
ω

=  

where G is the abbreviation for "giga" and stands for 109. Finally, the wave can be 

expressed as 

  ( ) Y
96 ]z50t10152cos[102 uE −×π×= −  m/V . 

The polarization of the electric field and the direction of propagation of the wave 

are clearly indicated in this solution. 

 

 

Example 5-10. Show that a linearly polarized plane wave can be resolved into 

two equal amplitude waves  that rotate about the z axis. 

Answer: The linearly polarized wave 
  ( )kztj

Y0 eE −ω= uEy  

can be written as a sum of two components −+ += yyy EEE , where 

                     ( ) ( )kztj
XY

0 ej
2

E −ω+ −= uuEy    and   ( ) ( )kztj
XY

0 ej
2

E −ω− += uuEy . 

We will show that these two components represent respectively a right hand and a 

left hand rotating wave, each with an amplitude Eo/2. Taking into account that 

over the circle ϕ−= ϕ sinuux ;  ϕ= ϕ cosuuy  ,  we obtain   ϕ
ϕ=− jej uuu xy   and  

ϕ−
ϕ=+ jej uuu xy  which demonstrates that the first and second wave are rotating 

in the opposite directions. They are circularly polarized waves. The polarization of 
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the wave is a subject in the next section.  These are sometimes called 

"symmetrical components" in electrical machinery studies. 

 
5.3.2. Polarization and characteristic impedance 

 In the preceding discussion, we have emphasized the characteristics of the 

propagation of only one of the field components of the electromagnetic wave. This 

was chosen to be the electric field. We will now compute the magnetic field 

component of the plane wave. As the reader might expect, it will follow directly 

from Maxwell's equations. For the time-harmonic wave studied in the previous 

section, the appropriate equation is 

                                              HBE 0jj ωµ−=ω−=×∇  (5.39) 

 Let us explicitly find the magnetic field component for the wave that is 

propagating in the +z direction and is defined by the first term in (5.35). We write 

  

[ ] 0)kzt(jexpa0
zyxj

1
ZY

0

−ω
∂
∂

∂
∂

∂
∂

ωµ
−=

uuu

H

X

 

or after expanding the determinant, we write 

                
[ ]( ) ( ) [ ] XX uuH )kzt(jexpa

k/
1

z
)kzt(jexpa

j
1

00

−ω
ωµ

−=−
∂

−ω∂
ωµ

−=     (5.40) 

The field components for the electric field intensity E given in (5.35) and the 

magnetic field intensity H given in (5.40) for an electromagnetic wave propagating 

in the +z direction are illustrated in Figure 5-10. In addition, the direction of 

propagation which is indicated by the wave vector Zuk k=  is also shown. The 

constant in the denominator is a quantity that has the dimension of an impedance 

since the ratio of E/H = (volts/m) /(amperes/m) = (ohms).  Therefore 

  
0

0

00

000
C k

kc
k

Z
ε
µ

=
εµ

µ
=

µ
=

ωµ
=  (5.41) 
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This ratio is called the characteristic impedance or the intrinsic wave impedance of 

the medium. Substituting the values for a vacuum, we find the characteristic 

impedance equal to 120π Ω. We can then rewrite (5.40) to be  

  
[ ] ( )EuuH ZX ×=−ω−=

CC Z
1)kzt(jexpa

Z
1

 (5.42) 

 It is appropriate at this time to comment on various properties of this wave. 

The first comment concerns the direction of the propagation of the electromag-

netic power. From Poynting's theorem, we find that the power will flow in the 

direction of the Poynting vector S given by ZuHES S=×= . From Figure 5-10, we 

see that this will be in the +z direction.  This is the same direction as the wave 

vector k. This is consistent with our initial specification that we would examine 

only the electromagnetic wave component that is propagating in the +z direction. 

Since both field components are propagating in the +z direction, we should 

naturally expect that the electromagnetic power should flow in the same direction2. 

By measuring the electric and magnetic field components at the same instant of 

time in order to determine the polarization of the two components and computing 

the Poynting vector, space scientists and radio astronomers can determine the 

actual origin of radiation detected by satellites or by large ground based antennas. 

The actual power that flows through a given surface area can be computed by 

integrating the Poynting vector over that area.  

                                            
2 Certain waves will have their phase velocity and the direction of energy propagation in the 
opposite directions. Such "backward" waves need not concern us here since we are examining 
vacuum conditions. They will be described in a particular dispersive transmission line. 
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 z
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H

 

Figure 5-10. Orientation of the electric and magnetic fields at an instant in time 

that are propagating in the +z direction. The right hand rule indicates the direction 

of propagation from Poynting's theorem.  Only two of the three vectors and the 

right hand are required to determine the third vector. 

 

Example 5-11. Compute the characteristic impedance of a vacuum 0Z   

Answer:    Equation (5.41) yields 

  Ω≈π=
×

π

×π
=

ε
µ

==
−

−

377120
10

36
1

104
H
EZ

9

7

0

0
0  .      

 

 If we know the value of one of the field components, we also know the 

other field component since we have only to multiply or divide it by the 

characteristic impedance Zc. The reader should receive a word of caution at this 

point. This impedance is just a ratio of two field quantities and could not be 

measured by running outside with the two leads of an ohmmeter held up in either 

hand. 

Example 5-12. For the electric field described in Example 5-9, find the magnetic 

field intensity. 
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Answer: We can compute H from (5.42) to be 

  ( )[ ]( )YZ uuH ×−×π
×

=
−

z50t10152cos
377
102 9

6

 

  ( )[ ]( )XuH −−×π×= − z50t10152cos103.5 99  m/A . 

Note the direction of the magnetic field intensity. This direction for the magnetic 

field intensity is required so the power will flow in the +z direction.  

 

Example 5-13. The electric field in a vacuum is given by  

  ( ) XuE kztcos10 −ω=   V/m. 

Find the average power in a circular area in a plane defined by z = constant and 

whose radius is R=3 m. 

Answer: We first write the electric field in complex form as 

  ( )
XuE kztje10 −ω= V/m. 

Since π= 120Z0 , we write 

  ( )
YuH kztje

120
10 −ω

π
= A/m. 

The average power through this plane is 

  ( ) 75.33
120

10)10(
2
1Re

2
1P 2

S

*
av =π








π
=









•×= ∫ dSHE W. 
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5.4. Plane wave propagation in a dielectric medium 

5.4.1. Plane wave propagation in a lossless 

dielectric medium  

 In the definition of the wave number that was applicable for a vacuum 

(5.32), we showed that it was a function of the permeability of free space 0µ  and 

the permittivity of free space 0ε  via the relation 00f2k µεπ= . If the space were 

now uniformly filled with a gas or a linear homogeneous dielectric such as a 

plastic whose dielectric constant 0rεε=ε  where εr > 1, the wave number k would 

have to be modified by replacing 0ε with ε . We can usually assume the vacuum 

value 0µ for the permeability µ  since it differs significantly only for wave propaga-

tion in iron, nickel and cobalt - materials not normally known to admit wave 

propagation.  

 

 

 

z∆

phase 
detector 

plane waves 

signal 
generator 

 

Figure 5-11. Plane waves are launched from the signal generator. The phase of 

the detected signals can be monitored. 
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 As we will emphasize later, this effect can be used to diagnose the prop-

erties of the material. It also is important for the refraction  of light that allows 

glasses to work as vision correcting devices. To introduce this technique here and 

to describe the wave propagation in a dielectric, let us assume that two materials 

are juxtaposed as shown in Figure 5-11.   

 In this figure, we have assumed that plane waves are launched in the two 

adjacent media and propagate to the end where they are detected. Any phase 

difference that may exist between the two signals can be detected there. The 

wave numbers in the two media are  

  011 f2k µεπ=  and 022 f2k µεπ=   (5.43) 

Both signals will travel the same distance ∆z although with different phase ve-

locities 11 k/v ω=  and 22 k/v ω= . This difference will delay the arrival of one 

signal with respect to the other and create a detectable phase difference δθ . The 

phase difference δθ  is given by  

  ( ) zf2zkzk 020121 ∆µε−µεπ=∆−∆=δθ   (5.44) 

If we know the total phase change in the signal passing through one of the paths, 

say 1θ∆  where 

  zf2 011 ∆µεπ=θ∆   (5.45) 

We can then calculate the phase difference δθ  to be 

  

( )

1

2

01

0201

1

1

zf2
zf2

ε

ε
−=

∆µεπ

∆µε−µεπ
=

θ∆
δθ

  
(5.46) 
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Hence if the material in one of the regions is known (say a vacuum), then one can 

“diagnose” the material in the other region and determine the relative dielectric 

constant of that material. Modified versions of this idea have been used to 

diagnose plastic or paper properties in a manufacturing plant and this is a 

standard tool in those industries. 

 The ratio of the phase velocity of light in a vacuum c to the phase velocity 

in the dielectric is called the index of refraction for the material (here the medium # 

1  is a vacuum and medium # 2 is the unknown material). The index of refraction 

is usually given the symbol n and is defined as 

  r
r

dielectric

vacuum

1v
vn ε=

ε
=≡   (5.47) 

Optical materials are typically specified in terms of their index of refraction. 

Example 5-14. Using the setup shown in Figure 5-11, calculate the phase dif-

ference δθ  if one region is filled a gas with 0005.1r =ε  and the other region is a 

vacuum. The frequency of oscillation is 10 GHz and the length ∆z = 1 m. 

Answer: The phase difference δθ  is given by (5.44) 

       

( ) ( )
( ) ( )

0

8

10

8

10

r0000r00

3radians052.0

00025.0
103
1020005.11

103
102

1zf2zf2

−=−=

−
×
×π

=−
×
×π

=

ε−∆µεπ=∆µεε−µεπ=δθ

 

This number is small but detectable. We can increase the resolution by increasing 

the length ∆z or by passing the wave through the regions several times. 
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5.4.2. Plane wave propagation in a lossy dielectric 

medium  

 Electromagnetic waves can propagate in a material that has a nonzero 

conductivity σ . In order to show this, we return to the time harmonic form of 

Maxwell’s equations with the conduction current EJ σ=  included. We write the 

two curl equations for phasors as 

  HE ωµ−=×∇ j   (5.48) 

  ( )EEJH ωε+σ=ωε+=×∇ jj   (5.49) 

As before, we will assume that there is no free charge density ( 0V =ρ ). Following 

the procedure that we have employed previously, we combine these two equa-

tions to yield a vector wave equation  

                                                                ( ) 0jj2 =ωε+σωµ−∇ EE   (5.50) 

 Again, we will assume that the electric field is linearly polarized in the uY 

direction and the wave propagates only in the uZ direction. With these simplifi-

cations, the resulting wave equation becomes 

                                           ( ) 0jj
dz

d
2

2

=ωε+σωµ− y
y E

E
  

(5.51) 

This equation can be written as 

  0
dz

d 2
2

2

=γ− y
Y EE

  
(5.52) 

where 

  ( ) ( ) 







ωε
σ

+µεω=ωε+σωµ=γ
j

1jjj 22
  

(5.53) 
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Equation (5.52) is similar to (5.33) except that the coefficient γ  is complex. We 

write γ  as  

  β+α=γ j   (5.54) 

It consists of a real part α  and an imaginary part βj . In vacuum 0=α  and 

00k εµω==β  or it is a linear function of the frequencyω . As a result – the phase 

velocity c/v =βω=φ  is a constant. In the general case the real and the imaginary 

parts of the propagation constant γ  are nonlinear functions of the frequency ω . 

After a little algebra, we obtain 
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++
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ωε
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++ε
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11
2
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112

)(

  (5.55) 

The substitution of (5.55) into (5.54) leads to (5.53) for the term 2γ .  Therefore, the 

phase velocity depends on the frequency.  This is called dispersion and the media 

in which the wave is propagating is called a dispersive media 

  





















ωε
σ

++
µε

=
β
ω

=ωφ
2

11
2

1)(v   (5.56) 

The group velocity gv is defined as  

  
ω∂β∂

=
β∂
ω∂

=
/
1vg   (5.57) 
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We will encounter the group velocity again when we describe wave propagation 

on a transmission line. In the present case, the differentiation of (5.55) using the 

definition given in (5.57) leads to the following group velocity 
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1111
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2)(v   (5.58) 

The group velocity is different than the phase velocity (5.56).  The group velocity 

may equal the velocity of the transport of the energy in certain dispersive media.  

In other cases, the velocity of the energy transport may be different. 

 The electric field component for a wave that propagates to increasing 

values of the coordinate z can be finally written as 

                               
( ) ( )ztjz

0y
ztj

0yy eeEeEE β−ωα−γ−ω ==   (5.59) 

This implies that an electromagnetic wave will propagate with a phase constant β  

in the conducting medium but the wave will be attenuated with an attenuation 

constant α  as it propagates in space. The units of the attenuation constant α  are 

given in (Nepers/meter). If 1=α  Np/m, the amplitude of the wave will  decrease to 

368.0e 1 ≈−  of its original value at a distance of 1 meter. An attenuation of 1 Np/m 

equals 686.8)e(log20 10 =  dB/m. We recall that, although this decay of the 

amplitude of the wave is in space, this is similar to a time constant in circuits 

where the decay was in time.  
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 The magnetic field intensity again has only an xH  component which can be 

computed from (5.48). The ratio of these two terms yields the characteristic 

impedance of the conductor which in this case will be complex 

  
)(j)(

j
H
E

)(Z
x

y
C ωβ+ωα

ωµ
==ω   (5.60) 

where both parts of the propagation constant have to be replaced with the 

expressions (5.55). For a vacuum, 0=α and k=β  and equation (5.60) reduces to 

(5.41). 

Example 5-15. A 10 V/m plane wave whose frequency is 300 MHz propagates in 

the (+z) direction in an infinite medium. The electric field is polarized in the uX 

direction. The parameters of the medium are 9r =ε , 1r =µ , and 10=σ  S/m. 

Write a complete time-domain expression for the electric field. 

Answer: The attenuation constant is obtained from (5.55) and we write 
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This gives a numerical value 01.108=α   Np/m.  Similarly, equation (5.55) yields 

the phase constant 
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This gives a numerical value 65.109=β  rad/m. The complex propagation 

constant is 110j108 +≈γ  1m− . Hence the electric field is 

  ( ) XuE ]z110t103002cos[e10 6z108 −××π= −  m/V . 
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Example 5-16MATLAB. For the medium described in Example 5-15, plot the phase 

velocity and the group velocity as a function of frequency in the frequency range 

3000f30 << MHz.  Recall that 1GHz equals 1000 MHz. 

Answer: The phase velocity φv  and the group velocity gv based on equations 

(5.56) and (5.58) are shown in the figure below.  Both velocities are normalized by 

the vacuum value of the velocity of light c = 3 x 108 m/s. 

0 0.5 1 1.5 2 2.5 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

f(GHz)

v/
c

phase velocity
group velocity

        

It is evident that both velocities increase with increasing frequency. The theoretical 

limit of the two velocities when ∞→f  is the same:  

   88
r 109/103/cv =×=ε=∞ m/s.  
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 There are two particular cases that should be investigated further:  

 1) Dielectric with small losses ( ωε<<σ ) with a high-frequency 

approximation.  In this case we can replace the complex factor in the brackets in 

(5.55) with 

  211
2

≈






ωε
σ

++   
(5.61) 

From (5.55), (5.56) and (5.58), we obtain the approximate attenuation and 

propagation constants to be 

  
µε≈≈

µεω≈β

ε
µσ

≈α

φ /1vv

2

g

  
(5.62) 

The phase velocity and the group velocity remain the same as in the lossless 

case. We have, however, introduced a small attenuation into the wave. 

 We can think of an electromagnetic wave passing through a roast in a mi-

crowave oven where the water in the meat acts as the conductor. For the elec-

tromagnetic wave, the roast is a complex impedance. Since the field decays and 

energy must be conserved in the system, the energy that does not pass through 

the roast is absorbed and converted into heat to cook our dinner. The roast can 

be considered to be a local “hot spot.”  

 2) Dielectric with large losses ( ωε>>σ ) or imperfect conductor with a low-

frequency approximation. There is the second case that should be investigated 

further before leaving this topic since it has a multitude of practical implications.  

For example, we will answer the question “Can an electromagnetic wave 
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propagate in a good conductor where the conduction current is larger than the 

displacement current?”  The answer to this question will lead to the motivation of 

microwave oven manufacturers warning against the insertion of a metal pan into 

the oven.  The answer to this question will reappear in our discussion about the 

reflection of waves. In what follows, the underlying principle will be uncovered. 

 As we might expect from reading this text, answers to all important ques-

tions require that we return to Maxwell’s equations. In the case where the con-

duction current is much larger than the displacement current, we rewrite the 

second curl equation (5.49) as 

  EEJH σ≈ωε+=×∇ j . 

We obtain again the equation (5.52) where  

  ωµσ=γ j   (5.63) 

which is a consequence of (5.53). From (5.55) and taking into account that 

  






ωε
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≈






ωε
σ

++
2

11   (5.64) 

We obtain the following asymptotic terms 

  
2

ωµσ
≈β≈α   (5.65) 

Because ( ) 2/j1ej
045j +== , (5.65) follows directly from (5.63). The phase and 

group velocities will actually be different. 

 The equation (5.59) also gives the solution in this particular case – spatial 

propagating waves with an exponential decay in the amplitude. We can write the 
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attenuation constant as δ=α /1 , where δ  is a constant with a dimension (meter). 

This length is called the skin depth of the material. The explicit expression for it is 

  
µσπ

=
ωµσ

=ωδ
f
12)(   (5.66) 

The phase constant has the same value as the attenuation constant δ=β /1 . For a 

given medium ( σµ, =constant), the skin depth decreases with increasing 

frequency – this is known as the skin effect.  For the particular case of a perfect 

conductor (or superconductor when ∞→σ ), the skin depth is zero and it is 

independent of the frequency – the electric field does not penetrate into the 

medium at all. 

 One can imagine the problem that would arise in a microwave oven if the 

skin depth were much less than the size of the roast. The edge would become 

charred and the central part of the roast would remain uncooked. The wavelength 

at the standard microwave frequency of f ≈ 2.45 GHz is 

  12.0
1045.2

103
f
c

9

8

≈
×

×
==λ m 12= cm. 

Since the roast is heated from all directions, this is not a major problem.  

Example 5-17. Calculate the skin depth of copper at a frequency of 3 GHz. 

Answer: The conductivity of copper (see Appendix 3) is 7108.5 ×=σ  S/m 

( 0µ≈µ ).  Equation (5.66) yields 

 
( )( )( )

6

779
1021.1

108.5104103
1

f
1 −

−
×≈

××π×π
=

µσπ
=δ m 21.1= mµ . 

This is a very small value because copper is a good conductor and the frequency 

is sufficiently high. 
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Example 5-18MATLAB. Plot the spatial variation of the electric field )z(Ey at a fixed 

time ( 0t = ) of a plane wave propagating into a copper conductor. The frequency 

of the wave is 3GHz and it has an initial amplitude of 10E 0y = V/m.   Assume the 

material parameters are 1r =ε , 1r =µ , 7108.5 ×=σ S/m. 

Answer: First, we check the validity of the approximation that the conduction 

current is larger than the displacement current.  This is satisfied if ωε>>σ .  We 

compute: 1667.0)36/(101032 99 =π×××π=ωε − << 7108.5 ×=σ ! 

From equation (5.59), it follows that the amplitude of the wave yE  decays to e-1 of 

its initial value 0yE in one skin depthδ . Copper is a good conductor and this 

reduction in the amplitude occurs within the first wavelength.  We 

have πδ=βπ=λ 2/2  or 12/1/ <π=λδ . The spatial response for the electric field 

Ey(z) at one instant in time is shown in the figure below.  
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 The skin depth for a particular material depends on the frequency of the 

electromagnetic wave and the conductivity of the material. There are cases where 

a metal is gold-plated in order to decrease the skin depth by an additional small 

percentage since the conductivity of gold is slightly higher than aluminum or even 

brass. Electromagnetic energy that propagates into a conductor will be converted 

into heat and hence will be lost. This implies that electromagnetic waves that are 

guided by a conducting surface such as a stripline or a waveguide will attenuate 

as they propagate. Both of these topics which are of practical importance in 

modern communications will be described in the following chapter. 



Plane wave propagation in a dielectric medium 

451 

 From (5.60), one can find the characteristic complex impedance of the 

conductor by taking into account (5.65) 

  
( )

σ
ωµ

+=
2

j1Zconductor
  

(5.67)
 

For large values of conductivity σ  that are found in many metallic materials, this 

value will be approximately zero (perfect conductor). This will be important when 

we next discuss the topic of reflection of electromagnetic waves.  
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5.5. Reflection and transmission of 
an electromagnetic wave 

5.5.1. Normal incidence – propagating waves 
 The subject of electromagnetic waves could now be concluded if we were 

just interested in studying wave propagation in an infinite medium.  We are, 

however, confronted with a universe with various objects in it. The question then 

arises, "What happens if a plane wave hits one of these objects?" The object 

could be either another dielectric or a conductor. The answer to this question will 

require that we invoke the boundary conditions, derived in the previous chapters. 
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Figure 5-12. An electromagnetic wave ( ii HE × ) is normally incident upon an 

interface at z = 0. This results in an electromagnetic wave that is transmitted into 

the region z > 0 ( tt HE × ) and an electromagnetic wave that is reflected back into 

the region z < 0 ( rr HE × ). The x axis is into the paper. 

 Let us assume that a plane wave is launched in the region z < 0 in a 

lossless material whose dielectric constant is 1ε  and that the wave is perpendicu-

larly  incident on a second lossless material located in the region z ≥ 0 whose 

dielectric constant is 2ε . If the incident wave were incident at any other angle, we 

would be required to perform a little more work and this will be investigated later. 

The case of perpendicular incidence is depicted in Figure 5-12. 
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The permeabilities of both materials are both equal to their vacuum values 0µ . 

 Using the convention that arises from Poynting's theorem, we define the 

direction of propagation via the right-hand rule convention. This allows us to 

suggest at this stage that the polarization of one of the electromagnetic field 

components of the reflected field would have to be altered after the incident wave 

strikes the interface. Let us choose it to be the electric field and assume that the 

magnetic field is unchanged. This will be confirmed when we perform the 

mathematical manipulations. 

 The electric field components of the incident, the reflected and the 

transmitted electromagnetic wave are respectively written from (5.35) as 

                                               

( )

( )

( )zktj
tt,y

zktj
rr,y

zktj
ii,y

2

1

1

eAE

eBE

eAE

−ω

+ω

−ω

=

=

=

 (5.68)

  

where k1 is the wave number in region 1 and k2 is the wave number in region 2. 

We use the notation of employing the constants A and B to indicate respectively 

the terms that propagate to increasing and to decreasing values of the coordinate 

z that was introduced in (5.11). The additional subscripts i, r and t indicate the 

incident, the reflected, and the transmitted terms respectively. Since the materials 

were assumed to be lossless, the waves will not attenuate as they propagate 

( 0=α  and k=β ). The magnetic field intensities Hx for the three field components 

can be computed directly from Maxwell's equations or by using the characteristic 

impedances found in the two regions. We will use the simpler approach here. We 

write that 
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  (5.69) 

  The boundary conditions that are to be employed are that the tangential 

components of the electric field should be continuous across the junction and the 

tangential components of the magnetic field intensity differ by any surface current 

that is located at the interface. It is reasonable in practice to assume that this 

current is equal to 0.  This implies that the tangential components of the magnetic 

field intensity will also be continuous at the interface. Recall that these boundary 

conditions were discussed previously. 

 Before invoking these boundary conditions, we should be made aware of a 

trick that can be used in the calculation at this stage. By choosing that the inter-

face between the two media should be located at z = 0, the exponential factor 
( ) tj

0z

kztj ee ω

=

±ω =  will cancel in all of the terms. If we had not made this choice, we 

would have been forced to carry some more baggage along in the derivation. 

Nothing profound, but it does lighten the burden. We will use the same trick when 

we later study transmission lines. 

 At the boundary at z = 0, we therefore write that 

                                                         t,xr,xi,x

t,yr,yi,y

HHH
EEE

=+

=+

 (5.70)
 

Evaluating (5.68) and (5.69) at z = 0 and substituting them into these expressions, 

we obtain 
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                                 (5.71) 
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In order to proceed further, we must make an assumption that something is 

known. It is reasonable to assume that we know the amplitude of the incident 

electric field intensity Ai. In terms of this known quantity, we can find the other two 

terms from (5.71) to be 

    (5.72) 

                                                
   (5.72)( 

and 

     

                                                      
   (5.73) 

     

The symbols R and T are called the reflection coefficient  and the transmission 

coefficient respectively.  

 Hence, knowing the characteristic impedance of the materials allows us to 

determine the propagation characteristics and amplitudes of the wave that is 

transmitted into the second material and of the wave that is reflected at the 

interface and propagates in the first material.  If the characteristic impedances on 

both sides of the interface are equal, all of the incident electromagnetic energy will 

be transmitted into region 2 and none reflected back into region 1. This is called 

matching  the media and it has many practical applications.   

 Since the characteristic impedance εµ= /ZC , we can write the reflection 

and transmission coefficients in terms of the relative dielectric constants of the two 

dielectric materials. We find 

                                                           
21

21

ε+ε

ε−ε
=R  (5.74) 

and 
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Example 5-19MATLAB. Describe the expected reflection - transmission 

characteristics of an electromagnetic wave normally incident at a layered 

dielectric. Find the total reflection and transmission coefficients of a single layer 

with known thickness d and dielectric constant 0r2 εε=ε ( 031 ε=ε=ε ). Plot the 

frequency dependence on these coefficients assuming d = 0.1m and εr = 4. 
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Answer: We will use the notation "+" to indicate a wave moving to increasing 

values of z and "-" to indicate a wave moving to decreasing values of z. The ad-

ditional numerical subscript specifies the region in which the wave propagates. 

The superscript indicates the numerical iteration of transmission - reflection. A 

portion of the electromagnetic wave that is incident from material 1 will be 

transmitted into material 2 and a portion will be reflected. The wave that is now 

propagating in material 2 will encounter the interface separating materials 2 and 3. 

A portion of this wave will be transmitted into material 3 and a portion will be re-

flected back to the original interface. Once the wave is in material 3, it will propa-

gate to ∞→z  as there are no other boundaries. The total transmitted and 

reflected fields are given by 

  ∑
∞

=
+=

1n

)n(
(3)t EE  and  ∑

∞

=
−=

1n

)n(
(1)r EE  
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where n is the index of the particular wave traverses region #2. The amplitudes of 

each individual component are determined from repeated applications of (5.74) 

and (5.75). The wave as it propagates is depicted below.  
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However, the phase of the individual terms in the summation is different - after 

every crossing of the dielectric slab, an additional phase difference (k2d) appears. 

Suppose the reflection coefficient from the first interface is R1 in the direction (+z) 

and –R1 in the opposite direction, then R2 = –R1 in the direction (+z) and –R2 = R1 in 

the opposite direction (for the particular case that medium 3 is identical with 

medium 1). Then the transmission coefficient through the first interface in the 

direction (+z) is 11 RT +=+ 1 , while in the direction (-z) it is 11 RT −=− 1 . We write 

the following expression for the total reflected field  
( ) ( ){ }

( ) ( ) ( )[ ]{ }...ee1e1E

...eeeEE

2dk2jdk2jdk2j
i

dk6jdk4jdk2j
ir

222

222

+++−−=

+−+−++= −+−+−+

2
1

2
11

2
1

1212112121121

RRRRR

TRRRTTRRRTTRTR

1

2
1

 

The total reflection coefficient for the dielectric slab can be calculated by realizing 

that this equation can be written as 

  ( ) ( )
dk2j2

1

dk2j
1

dk2j2
1

dk2j2
1

1
i

r
2

2

2

2

e1
e1

e1
e11

E
E

R
R

R
R

RR
−

−
=









−
−

−=≡ . 

Similarly, we obtain the following expression for the transmitted field 
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The total transmission coefficient for the dielectric slab can also been obtained as 

  ( )
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The reflection coefficient of the first boundary is found to be 

3/1)21/()21()1/()1( rr1 −=+−=ε+ε−=R  and the wave number in the slab is 

k2kk r2 =ε= . The frequency dependence of the total reflection coefficient (solid 

line) and of the total transmission coefficient (dashed line) ( m1.0d = , 4r =ε ) are 

plotted in the figure below. 
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 Choosing the frequency GHz3f =  that corresponds to a free-space 

wavelength m 1.0d ==λ , where the coefficients are 0=R  and 1|| =T  (a 

transparent slab). It is easy to check that for every frequency the following 

condition is fulfilled 

  1|||| 22 =+ TR  

This results from the fact that the dielectric constant is a real value and no energy 

is absorbed in the slab – the entire incident energy is either reflected or 

transmitted. 

 If material two were a good conductor, a peculiar response would result. 

The characteristic impedance of the conductor would be very small and it would 

approach 0 as the conductivity approached infinity ( 0Z 2,C → ). In this case, there 

would be no transmission of electromagnetic energy into  the conductor, or T = 0 

which directly follows from (5.73).  It would all be reflected. From (5.72), we 

compute that R = -1 which states that the polarization of the reflected electric field 

would be opposite of the incident one.  Recall the warning on your microwave 

oven “Do not place a metal pan inside!” 

 This can best be demonstrated if we return to the most general solution of 

the wave equation given in (5.11). We will assume that the wave that arrives from 

−∞=z  is a pulse instead of a time-harmonic wave and propagates toward the 

interface as shown in Figure 5-13(a) and (b). At t = t + 3∆t, the tangential electric 

field must be equal to zero as shown in Figure 5-13(c). For times t > t + 3∆t, a 

reflected pulse will propagate back to −∞=z  as shown in Figures 5-13(d) and (e). 
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Figure 5-13. Propagation of a pulse from −∞=z and its location at five times. 

 

 One could think of this reflection in the following terms. A virtual pulse with 

a negative amplitude is launched at +∞=z  by a virtual pulse generator at the 

same time that the real pulse is launched from −∞=z . This virtual pulse propa-

gates to decreasing values of z with the same speed as the real pulse. At the time 

t = t + 3∆t, both pulses meet at z = 0. At z = 0, they interchange their nature in that 

the virtual pulse now becomes a real pulse continuing its propagation to de-

creasing values of the coordinate z. The real pulse transforms into a virtual pulse 

that propagates into the conductor. At the time t = t + 3 ∆t, the amplitude of the 

two pulses add up to equal zero at the interface in order to satisfy the requirement 

that the tangential component of the electric field must be equal to zero at a per-

fect conductor.  

Example 5-20. Pulse radars can be used can be used to determine the velocity of 

speeding automobiles. Show how such a radar might work.  
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Answer: A repetitive electromagnetic pulse from the radar is incident upon the 

automobile. Due to the high conductivity of the car, it is reflected back to the radar 

and the total time-of-flight i)T(∆  of the ith pulse can be measured. The repetition 

frequency of the radar pulses is 1)t( −δ . During the time )t(δ , the car travels a 

distance z∆ . The velocity of the automobile carv  can be computed from 

  
c

tv2
c

)tvL(2
c
L2

c
)zL(2
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L2)T()T( carcar

1ii
δ

=
δ−

−=
∆−

−=∆−∆ +  

or 

  [ ]
t2

)T()T(cv 1ii
car δ

∆−∆
= +  

As can be seen the actual distance of the car from the radar (L) is not important. 

Since both time of flights )T(∆  and the intervals between the pulses )t(δ  are 

known as they are parameters involving the radar set and the velocity of light c, 

the velocity of the car carv  can be computed. If the computed velocity is below the 

speed limit, no ticket need be issued. 

  

 5.5.2. Fabry-Perot resonator – standing waves 
 At this time, we will return to the investigation of the behavior of a time-

harmonic signal that is incident upon a perfectly conducting wall that has a 

reflection coefficient R = -1. The total electric field in the region z < 0 will be equal 

to the sum of the incident and the reflected components which we write as 
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       [ ]{ } [ ]{ } { }kzsinBe2jReeeBeReeeBReE tjjkzjkztj)kzt(j)kzt(j
y

ω−ω+ω−ω −=−−=−=  

or 
                                               kzsintsinAEy ω=  (5.76) 

where B2A = . The tangential electric field Ey = 0 at z = 0. In this case, the signal 

that consists of two oppositely propagating waves appears to be stationary in 

space and merely oscillating in time. This is called a standing wave  This standing 

wave results from the constructive and destructive interference of the two counter 

propagating waves.  This is shown in Figure 5-14 at equal intervals of time 

( 12/Tt =∆ , ωπ= /2T ). The separation distance between successive null points 

which are called nodes  is equal to one-half of the wavelength λ . The points 

where the electric field is a maximum is called an antinode.  

 If we moved a small detecting probe that responded only to the magnitude 

of the electric field and whose response time was slow with respect to the sinu-

soidal oscillation along the z axis, the response of the slowly moving probe would 

spatially alternate between zero and a maximum value and back to zero as the 

probe moved over a distance equal to one half of a wavelength. If the probe 

movement is calibrated, then we can measure the wavelength with a high degree 

of accuracy. In practice, a probe that would respond to the magnitude of the 

electric field would be connected to a diode detector. Such a detector is 

sometimes is called a "square-law" detector.  
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Figure 5-14MATLAB. Standing wave depicted at equal temporal intervals in the 

period of oscillation (A = 10 V/m, λ = 0.1 m). 

 

Example 5-21. An electromagnetic wave propagating in a vacuum in the region z 

< 0 is normally incident upon a perfect conductor located at z = 0. The frequency 

of the wave is 3 GHz.  The amplitude of the incident electric field is 10 V/m and it 

is polarized in the Yu  direction. Determine the phasor and the instantaneous ex-

pressions for the incident and the reflected field components. 

Answer: At the frequency f = 3 GHz, we compute  

  9106f2 ×π=π=ω rad / s 
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In phasor notation, the incident wave is expressed as 

  z20je10)z( π−= YuiE  V / m, 

  ( ) z20j

C

e
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Z
1)z( π−

π
−=×= XiZ uEuiH  A / m. 

where the characteristic impedance of free space is π= 120ZC Ω . The fields can 

also be written as  

  { } ( )z20t106cos10e)z(Re)t,z( 9tj π−×π== ω
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In phasor notation, the reflected wave is expressed as 

  z20je10)z( π+−= YurE   V / m, 
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The reflected fields can also be written as 

  { } ( )z20t106cos10e)z(Re)t,z( 9tj
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YuE rE  V / m, 
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π
−== ω uH rH   A / m. 

After the constructive and destructive interference occurs, standing waves appear 

as shown in Figure 5-14. The separation between the nodes in the standing wave 

is λ / 2= 5 cm ( 1.020/2k/2 =ππ=π=λ m).  

 

 An examination of the standing wave depicted in Figure 5-14 leads us to 

conjecture that it should be possible to insert another high conductivity metal wall 

at any of the nodes where the tangential electric field is equal to zero without 

altering the remaining electric field structure. The applicable boundary condition is 

that the tangential electric field must be zero at a conducting surface. This 

conjecture is depicted in Figure 5-15 where plates have been inserted at two on 

the many possible locations. For the moment, we will assume that the plates that 
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are infinite in transverse extent are instantaneously inserted at the nodes such 

that the electromagnetic energy is "trapped" between the plates and nothing else 

is disturbed. This energy is actually "coupled" between the plates with an antenna 

structure, a topic to be discussed later. 

 Let us now formally derive this result using the one-dimensional Helmholtz 

equation (5.33) which we reandwrite as 

                                                           0Ek
dz

Ed
Y

2
2
Y

2

=+  
(5.77) 

Recall that we have assumed a time-harmonic signal. The solution of this equa-

tion is given by 

  kzcosBkzsinAEY +=  (5.78) 

The constants of integration A and B are specified by the boundary condition that 

the tangential electric field must be equal to zero at a metal wall. These determine 

the constant 0B =  and )L/n(k π=  where n is an integer and L is the distance 

between the metal walls. If the maximum electric field has a magnitude 0YE , then 

the spatial distribution of the electric field is given by 

                                                  





 π

=
L

znsinEE 0YY  
(5.79) 

The parallel plate cavity depicted in Figure 5-15 is called a Fabry-Perot resonator 

or cavity. This cavity has a very high "Q" that could approach one million. 

Remember that the Q of aandn ordinary electrical circuit is of the order of ten.1 

Since it is very frequency selective, it has received wide application as the cavity 

that encloses various "lasing" materials. The total lasing material - cavity entity 

carries the acronym laser. The term laser stands for "Light amplification by 

stimulated  emission  and  radiation."  At  light  frequencies,  it  is  not  a  bad  

______________________ 
1 The Q of a circuit or a cavity is defined as Q=2π(energy stored)/(energy dissipated per cycle) 
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Figure 5-15MATLAB. By inserting thin conducting plates separated by )2/n( λ  at the 

locations where the standing wave is zero, the electromagnetic field structure will 

not be altered. Two of many possible locations are indicated in the figure. 

approximation to assume that the transverse dimension is a large number of 

wavelengths in extent. This very large number can be approximated as being 

infinity. 

 We recall that the wave number k is a function of the frequency of oscilla-

tion ω and the velocity of light in the region between the two parallel plates 

0/1c εµ=  where 0rεε=ε . For the cavities depicted in Figure 5-15, this resonant 

frequency rω=ω  will be given by 
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 For the two cavities depicted in Figure 5-16 which are either empty or filled 

with a dielectric, we find that the two Fabry-Perot cavities will resonate with slightly 

different frequencies. The difference of these two frequencies ω∆  is given by 

  
00r00

rbra
1n1n
µεελ

π
−

µελ
π

=ω−ω=ω∆  

If the resonant frequency for the vacuum case (Figure 5-16a) can be computed or 

measured, this frequency difference can be written as 

 

  

L

 

(a) (b)  

Figure 5-16. (a) An empty Fabry-Perot cavity. (b) A Fabry-Perot cavity filled with a 

dielectric 0rεε=ε . 

                 
rra

rb

ra

r 111
ε

−=
ω
ω

−=
ω
ω∆

 (5.81) 

Example 5-22. An empty microwave Fabry-Perot cavity has a resonant frequency 

of 35 GHz. Determine the thickness ∆L of a sheet of paper that is then inserted 

between the plates if the resonant frequency changes to 34.99 GHz. The 

separation L between the parallel plates is 50 cm. Assume that the integer n that 

specifies the mode does not change. You may ignore any reflection at the paper 

interface. 
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Answer: The relative dielectric constant paperε  of paper as determined from 

Appendix 3 is 3paper ≈ε . The relative dielectric constant separating the plates with 

the paper inserted can be approximated as  
  LL.)LL.(1L. paperpaperr +∆ε≈∆−+∆ε=ε  

Therefore, we write 
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Inserting the values, we compute 

  3
502
L

35
01.

35
99.3435

×
∆

≈=
−  

or ∆L ≈ .01 cm = 0.1mm.  

 From this example and the example mentioned earlier, we can discern that 

high frequency electromagnetic waves can be used in the diagnostics of various 

materials. This is a practical technique that has received wide currency in 

manufacturing paper where the ratio of less expensive water to the more costly 

wood pulp determines the ultimate grade of the paper. The relative dielectric 

constants of wood pulp and water are different.  

 Medical diagnostics for the determination of the ratio of diseased portion to 

the undiseased portion of a lung in an autopsy of a patient who died, of say 
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pulmonary emphysema, can be performed. Assuming that one of the lungs is 

sufficiently dried or a reasonable portion of one could be used to yield a value for 

relative dielectric constant for the lung, the percentage of the diseased lung could 

be determined. The disease has "eaten" holes in the lung. The solution of such 

“inverse problems” is part of an interesting new area called medical diagnostics. 
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5.6. Waveguide – propagation with dispersion 
  

We might suspect that all objects, be they dielectrics or conductors, do not always 

align themselves so that every incident electromagnetic wave has its wave vector 

k perpendicular to every surface. The wave vector k may also not even be 

coincident with the axes of a Cartesian coordinate system. This is shown in Figure 

5-17. The vector r is the position vector from the origin of the coordinate system to 

an arbitrary point on the plane. For simplicity, let us assume that the waves are 

propagating in a lossless region. 

  

 

plane 

 r
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 x 

 y
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Figure 5-17. Plane wave propagating at an arbitrary angle with respect to the 

axes of a Cartesian coordinate system. Both the electric and magnetic fields have 

equiphase contours in the plane.  

 

 We appeal to the intuition that you may have gained from sitting at a beach 

and watching the waves crashing on the shore with a thundering roar. You could 

probably even define a "velocity of crashing" that could be associated with this.  

This velocity could be defined in several directions, say parallel to the water-sand 

interface or perpendicular to this interface. The study of the reflection and the 
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transmission of electromagnetic waves in a similar situation will be slightly more 

complicated than the case of normal incidence.  

 Let us initially work through the details of the calculations that are required 

to ascertain the reflection properties of an electromagnetic wave obliquely incident  

upon a conducting surface. In addition to deriving important results, it will also 

expose us to the procedure required to characterize an electromagnetic wave 

whose direction of propagation is not coincident with one of the axes of the 

Cartesian coordinate system. In order to describe the electric field depicted in 

Figure 5-17, we generalize the expression given in (5.35) to 

                                            ( )rk
0EE •−ω= tje  (5.82) 

 The magnetic field intensity H is found from the electric field using 

Maxwell's equations or as we will do, just divide the electric field by the charac-

teristic impedance for the particular medium in which the wave is propagating 

using (5.42). The two components of the electromagnetic wave are perpendicular 

to each other and to the direction of propagation 

                                         
( ) ( ) ( )rk

KK EuEuH •−ω×=×= tj
0

CC

e
Z
1

Z
1

 
(5.83) 

where ( k/kuK = ) is the unit vector of the direction of the propagation. 

 In order to analyze the wave reflection and transmission properties, we will 

separate the general problem into two separate cases and treat each one 

individually. The first case will have the electric field of the incident plane wave be 

parallel to the conducting surface as shown in Figure 5-18a. The second case will 

have the magnetic field intensity tangent to this surface as shown in Figure 5-18b.  

We will analyze the first case in full detail since some interesing results that are of 

practical importance will ensue. 



 Waveguide – propagation with dispersion 

472 

 In both (5.82) and (5.83), the term rk •  appears. The term k is the wave 

vector. This term has a magnitude that equals the wave number that was defined 

previously: and in Cartesian coordinates  is ( ) 2/12
Z

2
Y

2
X kkkc/k ++=ω= .  The  wave  

      

 

Θr 

Θi 

 z 
reflected 
   wave 

incident 
  wave 

Er 
Hr 

Θr 

Θi 

Hi 
Ei 

 x 

 z 

x

Ei

Hi

Er

Hr

(a) (b)     

Figure 5-18. (a) Plane wave incident upon a conducting surface located at x = 0 

with the electric field out of the plane of the page. (b) Plane wave incident on a 

conducting surface located at x = 0 with the magnetic field out of the plane of the 

page.  In both cases, ky = 0. 

 

vector has a direction of propagation that is perpendicular to the plane that 

contains the electric and magnetic field components. In a two-dimensional 

situation which will be analyzed in the following discussion, we assume that ky = 0.  

The term r is the radial vector from the origin of the coordinate system to any point 

in the equiphase plane. We explicitly write this scalar product for the incident and 

reflected terms as  

 

                         
( ) ( )
( ) zkxksinzcosxk

zyxsinkcosk

zixiii

Zii

+=θ+θ=
=++•θ+θ=• ZYXXi uuuuurk

 (5.84) 

and 
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( ) ( )
( ) zkxksinzcosxk

zyxsinkcosk

zrxrrr

Zrrr

+−=θ+θ−=
=++•θ+θ−=• ZYXX uuuuurk

 (5.85) 

The magnitude of the wave vector k is determined by the media in which the 

electromagnetic wave propagates. 

 Now that the terms that are new have been defined, let us proceed without 

delay. We will find the propagation properties of the electromagnetic wave that 

has the electric field directed out of the plane of the page first. This is shown in 

Figure 5-18a. The electric field of the incident wave is given by 

                                   ( )ii sinzcosxjk
0i eE θ+θ−= Yi uE  (5.86) 

The magnetic field intensity of the incident wave is 

                   ( ) ( )ii sinzcosxjk
ZiXi

C

0i esincos
Z
E θ+θ−θ−θ= uuHi  (5.87) 

The reflected wave field has the components 

                                   ( )rr sinzcosxjk
0rr eE θ+θ−= YuE  (5.88) 

and 

              
( ) ( )rr sinzcosxjk

ZrXr
C

0r esincos
Z
E θ+θ−θ+θ= uuHr  (5.89) 

At the metal surface located at x = 0, the electric field is equal to zero. From (5.86) 

and (5.88), the boundary condition implies that 0i0r EE −=  and ir θ=θ (Snell’s law). 

The angle of incidence equals the angle of reflection. 

 Let us now suppose that an additional infinite metal plate is inserted 

parallel to the first plate. By convention, we assume that the separation distance 

is a as shown in Figure 5-19.  
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a  y

 x

 z
 

Figure 5-19. A parallel plate waveguide. The metallic plates that have an infinite 

conductivity are infinite in the y and z directions. 

 

 In addition, let us also assume that a second plane wave with the same 

amplitude as the first one and is simultaneously excited with the first one. We 

assume that the polarization of the two waves differ in phase by 180o. Both waves 

have the same value of kz. However, the transverse components kx of the 

wavenumbers differ by a "-" sign. The two waves are depicted in Figure 5-20. 

Since the media between the conducting plates is linear, the total electric field will 

be just the vector sum of the components 
                   ( ) ( )zkxktj|

0y
zkxktj|

0y2y1yy
zxzx eEeEEEE −−ω−+ω −=+=  (5.90)  

We factor the common terms that appear in (5.90) and write this as 
                                { } ( )zktjxjkxjk|

0yy
zxx eeeEE −ω−−=  (5.91) 

The two terms within the brackets are a definition of a sine function. Therefore, 

(5.91) can be written as 

                             ( ) ( ) ( )zktj
0y

zktj
n,X0yn,y

n,Zn,Z e
a
xnsinEexksinEE −ω−ω 





 π

==  (5.92) 

where |
0y0y E2jE = . The boundary condition that the tangential electric field at a 

conductor is satisfied if 0E
0xY =

=
and 0E

axY =
=

.  This is satisfied with 
a

nk nX
π

=,  
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where n=1,2,3,…. The electric field in (5.92) can be interpreted as a plane wave 

that propagates in the positive z direction and has an inhomogeneous distribution 

in the transverse x coordinate. The electric field is depicted at an instant of time in 

Figure 5-20. 

 The structure that we have just introduced is called a parallel plate 

waveguide. Since there is no variation in the third coordinate y and the electric 

field would be perpendicular to the surfaces at y = 0 and at y = b, additional 

parallel metal plates can be inserted there. This will create a completely enclosed 

rectangular metal pipe. High frequency electromagnetic waves called microwaves 

can propagate in such a structure.   You may already have familiarity with a 

microwave oven, a microwave telecommunications system, or a police microwave 

radar system. 

 The wavenumbers kx and kz are related via the equation 

                                                2
n,Z

2
n,X

2
2 kk

c
k +=






 ω≡  (5.93) 

 

 

 plane 
waves Ey 

 0 

 a 
  metal 
surfaces 

 z 
 

Figure 5-20. Two plane waves that propagate at an angle with respect to the z 

axis between two parallel metal planes. 

 

From (5.93), we write 

                                  
22

2
n,X

2

n,Z a
n

c
k

c
k 






 π

−





 ω=−






 ω=  (5.94) 
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In addition to the free space wavelength described previously, there is an 
additional wavelength called the “guide wavelength” gλ  that is depicted in Figure 

5-21.  It is related to the propagation in the direction z kz via n,Zn,g k/2π=λ . From 

(5.94), we note that the propagation constant n,Zk depends upon frequency.  For 

frequencies below a critical frequency 
a

n
c

π
<

ω
, the square root of a negative 

number will be imaginary.  This will cause the wave to attenuate as it propagates 

in the z direction.   
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Figure 5-21MATLAB. Electric field between two infinite parallel planes at an instant 

of time. 

 

 For the propagating wave, the propagation constant for each particular 

mode n,Zk  must be real. Therefore, the frequency of the excited wave must be 

above  a certain frequency that is called the cutoff frequency  

                                            
             

a2
nc

2
f n,C

n,C =
π

ω
=   (5.95) 

This follows from (5.94) with 0k n,Z = .  

 We have just obtained the electric field component of the electromagnetic 

wave that propagates in a rectangular waveguide.  Since the electric field is 

transverse to the direction of propagation, this is called the “TE mode” or “h mode” 

of propagation in the microwave community.  The electric field that propagates in 

the lowest order mode a parallel plate waveguide is depicted in Figure 5-21.  

 The propagation constant kz depends upon the frequency as shown in 

Figure 5-22. This curve is the dispersion relation (5.94). As the frequency 

becomes much greater than the cutoff frequency for a particular mode,  

c/kk n,Z ω=→   and the propagating wave will only be mildly affected by effects of 

dispersion. 
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Figure 5-22MATLAB. Dispersion relation for electromagnetic waves in a parallel 

plate waveguide for a particular mode. 

 It is possible to find the other components of the electromagnetic wave 
from the component n,yE  using Maxwell’s equations.  We obtain 

  
( )zktj

0Y
0

n,Z
n,X

n,Ze
a
xnsinE

k
H −ω






 π

ωµ
−=

 (5.96) 

                            
( )zktj

0Y
0

X
n,Z

n,Ze
a
xncosEkjH −ω





 π

ωµ
=  (5.97) 

The ratio of the electric field intensity divided by the magnetic field intensity is 

called the “wave impedance” of the waveguide.  This is similar to (5.60) 

  
2

n,C

0

22

0

Z

0

X

Y
n,C

f
f

1

Z

a
n

c

kH
E)f(Z









−

=







 π

−





 ω

ωµ
=

ωµ
=−=  (5.98) 
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where Ω≈ 377Z0  is the characteristic impedance of free-space and n.Cf is 

defined by (5.95).  This impedance depends upon frequency and it is resistive for 

frequencies greater than the cut off frequency and it is reactive for frequencies 

beneath this value.  It manifests itself by allowing propagation of the waves at 

higher frequencies.  The wave impedance 1,CZ for the TE10 mode as a function of 

frequency is shown in Figure 5-23.  Near the cutoff frequency it is very large and 

it decreases with increasing the frequency. The asymptotic value of the 

impedance is the free-space characteristic impedance Z0. 
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Figure 5-23MATLAB.The frequency dependence of the characteristic impedance 

for the lowest order mode of a parallel plate waveguide.  The normalizations are 

Z0 = 120π Ω and fc = c/2a (n=1). 
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 Other transverse electric modes TEnm can be similarly analyzed for 

rectangular waveguides whose dimensions are a and b.  Equation (5.94) for the 

propagation constant Zk  is replaced with the following expression  

  





 π

−





 π

−





 ω=

b
m

a
n

c
k

22

nm,Z  (5.99) 

 A similar analysis could be performed for cases in which there is no 

component of magnetic field in the direction of propagation.  These modes are 

called transverse magnetic modes and are written as TMnm modes.   The 

analysis will not be presented here. 

Example 5-23. Two infinite parallel conducting plates are separated by 5 cm. 

Calculate the cutoff frequencies for the lowest order mode if the region between 

the plates is filled with glass. 

Answer: From Appendix 3, we find that the relative dielectric constant of glass is 

6r =ε . From (5-95), we compute with n = 1 and recalling that the velocity of light 

in glass is defined as 
r

cv
ε

=  

  .GHz225.1
605.02

103
a2
cf

8

r
1,C =

×
×

=
ε

=  

 

Example 5-24. Determine the propagation characteristics of the lowest order 

mode (n = 1) for the waveguide in Example 5-23 at a frequency f = 1 GHz. 

Answer: From (5-94), we write 

 m/129.36j1
GHz225.12

GHz12
05.0

1
a

k
22

1,C
1,Z −=−








×π
×ππ

=−








ω
ωπ

=  

The additional factor of "j" implies that the wave will attenuate as it propagates 

  z29.36zjk ee 1,Z −− = . 
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Example 5-25. Calculate the cutoff frequency for the two lowest-order modes 

(n=1 and n=2) of a parallel plate waveguide described in Example 5-23.  

Answer: The cutoff frequency is defined from (5-95) . Hence 

  GHz3
05.02

103f
8

1,C =
×π
××π

= . 

for the fundamental mode (n=1). The cutoff frequency for the second mode (n=2) 

is twice as large, or   GHz6f 2,C = .  Waves with frequencies between 3 GHz 

and 6 GHz will propagate only in the lowest mode. Waves with frequencies 

above 6 GHz could propagate in either mode (n = 1 or n = 2).  In practice, one 

typically wants only one mode of propagation to exist at the same time.  

Therefore, waveguides come in all sizes with dimensions that can range from 

millimeters up to meters. 
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5.7. Conclusion 

 The propagation of plane electromagnetic waves that we have encountered 

in this chapter has provided us with the first application of Maxwell's equations. 

Electromagnetic waves are transverse waves in that the electric and magnetic 

fields are in a plane that is perpendicular to the direction of propagation. This is 

similar to waves that propagate on the surface of water or along a string and 

contrasts with sound waves that are longitudinal waves. The velocity of 

propagation c is determined by the materials in which the wave is propagating 

with the highest velocity being in a vacuum 00/1c µε= 8103×≈  s/m . The ratio 

of the electric field and the magnetic field intensity is given by the characteristic 

impedance which in a vacuum has a value of π= 120Z0 377≈ Ω . Time-harmonic 

waves have certain unique features such as wavelengths, frequencies of 

oscillation, and phase velocities but the general wave properties remain. Lossy 

materials will attenuate the wave as it propagates. 

 If the wave propagates from one material to another, a portion of the inci-

dent wave will be reflected back into the first material and a portion will be 

transmitted into the second material. Good conductors will reflect most of the in-

cident wave. The boundary conditions will determine the amplitude of each of 

these terms. If the wave reaches a knife-edge boundary of a conducting screen, 

the wave will change its direction of propagation or it will be diffracted by the knife-

edge. The diffracted wave then will cause an oscillation of the amplitude of the 

wave in the illuminated region near the line of sight.  However, a portion of this 
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wave will also appear in the shadow region behind the screen. The topic of 

diffraction will also be discussed in Chapter 7. 
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5.8. Problems 

1. In terms of the fundamental units mass (kg), length (m), time (s), and charge 

(C), show that 2/1
00 )( −µε  has the units of a velocity (m/s). 

2MATLAB. Let 1)ctz(F =−  and 2)ctz(G −=+  for 1|ctz| ≤−  and 1|ctz| ≤+  respec-

tively and 0)ctz(G)ctz(F =+=−  elsewhere. Accurately sketch the pulse with the 

velocity 2c =  at three times: 0t = , 1t =  and 3t = . Note: normalized variables are 

used. 

3. Define the functions )tvz(F 1−  and )tvz(G 2+  from the following sketch which 

was drawn at the times 0t =  and 2t = . 

  

4+

1

E

E

z

z

1

2+

2+ 4+

2−

2−

4−  

4−  

0

0

t=0 

t=2 

 

4. If the waves in problem 3 were electromagnetic waves, find the ratio of the di-

electric constants 1ε  and 2ε  for the two regions )0z/()0z( ><  if the relative per-

meabilities were 1 in the two regions. 
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5. A displacement wave on a string is described by a harmonic wave 

( )[ ]z5.0t102sin02.0 −π=ψ  m, where z is in meters and t is in seconds. Find: 

 (a) The propagation velocity v . 

 (b) Wavelength λ  and wave number k . 

 (c) Frequency f and angular frequency ω . 

 (d) The period T. 

 (e) Direction of propagation . 

 (f) Amplitude of the wave A. 

6MATLAB. Plot the wave given in Problem 5 as a function of z at t = (a) 0 s, (b) 0.025 

s, (c) 0.05 s, and (d) 0.075 s. Convince yourself that the wave pattern progresses 

in the positive z direction as time increases. 

7MATLAB. Assume that a wave reflector were installed at z = 5 in the problem 6. 

This reflector causes a positive amplitude pulse to be reflected as a positive 

amplitude pulse (reflection coefficient R = -1). Reflection implies that a wave 

traveling to increasing values of z would start traveling to decreasing values of z 

after reflection. Accurately sketch the expected oscilloscope pictures.  

8MATLAB. Show that the Gaussian pulse defined by ( ) ]t5zexp[5.0)t,z( 2−−=ψ  

satisfies a wave equation (5.10). Plot this function as a function of z for the three 

times: t = 0; 0.5s and 1s. 
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9MATLAB. Snapshots of two cycles of the electromagnetic wave propagating in a 

vacuum are taken at three locations: z = 0, z = 1, and z = 2 m.  Find the 

wavelength and the frequency of the wave.  Write the equation that describes the 

electric field. 

0 5 10 15 20 25 30
−1

0

1

t(ns)

E
y(V

/m
) z=0
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−1

0

1

t(ns)

E
y(V

/m
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0 5 10 15 20 25 30
−1

0

1

t(ns)

E
y(V

/m
) z=0.05

 

10. If we know that the magnetic field intensity of an electromagnetic wave is 

( )
YuH kztj

0eH +ω= , find the direction of power flow, the electric field E  and the time-

average Poynting vector avS . 

11. The electric field of an electromagnetic wave is ( )
XuE kztje10 −ω−= V/m. Find the 

magnetic field intensity H. Compute the time-average Poynting vector avS . 
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12. An electromagnetic wave with a frequency 1f =  MHz  propagates in a dielec-

tric material ( 4r =ε , 1r =µ ) and it has an electric field component 

( )kztcos3.1EY −ω=  V/m. Find the velocity of the wave v, the wave vector k, the 

characteristic impedance of the material ZC and the magnetic field H.  

13. A helium-neon laser emits light at a wavelength of 6328 Å = 6.328 x 10-7 m in 

air. Calculate the frequency of oscillation of the laser, the period of the oscillation 

and the wave number. The symbol Å is called an Angstrom where 1 Å = 10-10 m. 

14. Prove that E and H are orthogonal in a vacuum for an arbitrary function of 

)ctz( − . 

15. The complex electric field of a uniform plane wave propagating in air is given 

by ( ) ( )[ ]kztcoskztsinE0 −ω+−ω= YX uuE . Using a sketch, show that it is justified 

to call this wave circularly polarized. 

16MATLAB. The electric field of a uniform plane wave propagating in air is given by 

( ) ( )[ ]δ+−ω+−ω= kztsinakztsinE0 YX uuE  ( 1a ≠ ). Using an accurately drawn 

sketch with 1E0 = , 2a = , 4/π=δ show that it is justified to call this wave 

elliptically polarized.  

17. Show that the circular polarization and the linear polarization are special 

cases of an elliptical polarization.    

18. In free space, a signal generator launches an electromagnetic wave that has a 

wavelength of 10 cm. As the same wave propagates in a material, its wavelength 

is reduced to 8 cm. In the material, the amplitude of the electric field E and the 

magnetic field intensity H are measured to be 50 V/m and 0.1 A/m respectively. 

Find the generator frequency f and εr and µr for the material. 
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19. In free space, a signal generator launches an electromagnetic wave that has a 

wavelength of 3 cm. As the same wave propagates in a material, its wavelength is 

reduced to 1.5 cm. In the material, the amplitude of the electric field E and the 

magnetic field intensity H are measured to be 60 V/m and 0.1 A/m respectively. 

Find the generator frequency f and εr and µr for the material. 

20. Find the attenuation constant α (Np/m), the phase constant β (rad/m) and the 

phase velocity Φv  if the conductivity σ  of the material is such that ωε=σ  (the 

material parameters are 1r =µ  and 5.2r =ε ). The wavelength in free space is 

300 =λ cm. 

21. Convert the phase constant β  into (0/m) and the attenuation constant α  into 

(dB/m) for problem 20. 

22.  At what frequencies may earth be considered a perfect dielectric, if 

3105 −×=σ S/m, 1r =µ  and 8r =ε ? Can α  be neglected at these frequencies? 

What about the characteristic impedance CZ ? 

23.  Find the skin depth δ  at a frequency 4 MHz in aluminum, where 

71082.3 ×=σ S/m and 1rr =ε=µ . Also find the phase velocity Φv . 

24. Show that Maxwell's equations can be cast in the form of a one-dimensional 

diffusion equation (provided the direction of propagation is z) 

  0
t

E
z
E Y

2
Y

2

=
∂
∂

µσ−
∂
∂  

Describe when this derivation might be valid. 
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25. With the substitution Dt/z=ξ  and using the chain rule, show that the partial 

differential equation given in problem 24 will transform into an ordinary differential 

equation. Find the units of the diffusion coefficient µσ= /1D . 

26. Solve the ordinary differential equation obtained in problem 25 with the 

boundary condition that the electric field goes to 0 as z  ∞ and the integral over 

all space of the electric field is a constant.  In addition, the electric field in the 

region external to the point where it is excited is equal to 0 just after the excitation.  

This can be interpreted as the diffusion of a “pulse.” 

27. An electromagnetic wave with an amplitude of 1 V/m is normally incident from 

a vacuum into a dielectric having a relative dielectric constant 4r =ε . Find the 

amplitude of the reflected and the transmitted electric fields and the incident, 

reflected and transmitted powers. 

28. An electromagnetic wave with an amplitude of 1 V/m is normally incident from 

a vacuum into a dielectric having a relative dielectric constant 4r =ε . Find the 

amplitude of the reflected and the transmitted magnetic field intensities. 

29. An electromagnetic wave with an amplitude of 1 V/m is normally incident from 

a dielectric having a relative dielectric constant 4r =ε  into a vacuum. Find the 

amplitude of the reflected and the transmitted electric fields and the incident, 

reflected and transmitted powers. 

30. An electromagnetic wave with an amplitude of 1 V/m is normally incident from 

a dielectric having a relative dielectric constant 4r =ε  into a vacuum. Find the 

amplitude of the reflected and the transmitted magnetic field intensities. 
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31. In Example 5-17, a speeder pleads to the judge that because of inclement 

weather when the radar was tested and calibrated, the calibration was incorrect. If 

the radar assumed a calibration in a vacuum and said the speeder was traveling 

at 25% over the speed limit, what would the dielectric constant of ambient space 

have to be in order that the defendant would go free? 

32. A time-harmonic electromagnetic wave in a vacuum is incident upon an ideal 

conductor located at z = 0  and a standing wave is created in the region z ≤ 0. 

With a crystal detector connected to a volt meter, we measure a null voltage at 

equal increments of 10 cm in the region z ≤ 0. Find the frequency of oscillation of 

the electromagnetic wave. 

33. Compute the skin depth of copper, graphite and seawater at f = 2.45 GHz. 

34. A fisherman in the sea detects a

fish at a depth d with a radar operating

at a frequency f.  Find d if the delay-

time of the reflected signal is 20=τ ns.

Assume that fish scales are perfect

conductors and the conductivity of the

water σ  satisfies  the condition

ωε<<σ . 

 

 

 

d

 

OH2

35. Estimate the number of wavelengths of helium-neon laser light (λ = 6328 Å) 

where (1 Å = 10-10 m) that can be found between the two parallel end plates 

which are separated by 1 m. You may assume εr ≈ 1 between the end plates. 
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36. The resonant frequency of a Fabry-Perot cavity caused by the introduction of 

a dielectric is changed from its vacuum value of 10 GHz to 9.9 GHz. Calculate the 

relative dielectric constant εr of the perturbing material.  

37. The relative dielectric constant of a slice of lung of thickness ∆L is found to be 

1.5. A diseased lung of thickness ∆L as shown in Figure 5-16 is inserted between 

the plates of a Fabry-Perot cavity. The cavity has a resonant frequency of 9.9 

GHz for the undiseased lung and 9.95 GHz for the diseased lung. Find the 

percentage p of the diseased lung that has been eaten away by emphysema. 

38. A plane wave 

( )kztcosE)t,z( 0 −ω= YuE is incident

upon two air-dielectric interfaces.

Determine the thickness d of the

dielectric slab (εr) that would make

the field in the region z<0 the same

as the slab were not there. 

 

H

E

 

0 d  z

rε  
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39. A dielectric slab (εr) is inserted

between two plane wave launching

horns. Waves will be reflected and

transmitted at each interface.

Determine the ratio of EB / EA for a

wave that passes through the region

b. When it takes a maximum? 

 

 

      

B  A

 

rε

 

40. A dielectric that is λ/4 thick sepa-

rates two dielectrics. Find the values

of εr so none of the power launched

from A will be reflected back to A. 

   

 

B  A

 

2rε

4/λ

 

1rε

 

3rε  

41. For the infinite parallel plate waveguide depicted in Figure 5-19, determine 

why an initial assumption for an electric field E = Ex (x,y) ux will not lead to 

normal modes. 
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42. Show that the angle θ between the electric field component wave direction 

and the conducting sheets in a dielectric filled parallel plate waveguide can be 

computed from ( )a2/sin 1 λ=θ −  where a is the separation between the two plates. 

  

 

θ
a

 

43. Show that the phase velocity vФ can be written as  

  
θεµ

=
θ

=Φ cos
1

cos
cv  

where the angle θ  is defined in problem 42. 

44. Calculate the cutoff frequency for the two lowest-order modes of a parallel 

plate waveguide where the plates are separated by 3 cm. The region between 

the plates is filled with (a) paper or (b) glass. 

45. Show that a parallel plate waveguide operating at a frequency equal to the 

cutoff frequency of a higher order mode can be interpreted in terms of a Fabry 

Perot resonator. 

46MATLAB. Repeat Example 5-6 with (h/cτ) = 1/2. 

47MATLAB. Repeat Example 5-6 with (h/cτ) = 3/2.  

48MATLAB. The initial condition at t = 0 for a wave is  

  )z10exp(5)0,z( −=ψ .  

Write a MATLAB program to show the propagation of the wave in the region  

1z0 ≤≤ if 1c = . 
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49MATLAB. The initial condition at t = 0 for a wave is  

  )z10exp(5)0,z( −=ψ . 

Write a MATLAB program to show the propagation of ths wave in the region 

2z0 ≤≤ if 2c = . 

50MATLAB. The initial condition at t = 0 for a wave is  

  )z10exp(5)0,z( −=ψ . 

Write a MATLAB program to show the propagation of ths wave in the region 

5.0z0 ≤≤ if 5.0c = . 

 



Equivalent electrical circuits  

 495 

6. Transmission lines 
 In this chapter, we will model a coaxial cable, a strip line, and two parallel 

wires with distributed circuit elements and study the voltage and current signals 

that can propagate along a transmission line using these distributed elements. 

The circuit elements include inductors, capacitors, and resistors.  The equations 

that we will derive are called the Telegraphist's equations  since they were 

originally derived in order to describe the signals that propagated on the lengthy 

cables that spanned the country from one end to the other forming the nation's 

early communication network. Using the Telegraphist's equations, we will derive 

a wave equation that will describe the wave propagation on the transmission line.  

With the rapid development of integrated circuit technology and VLSI design, we 

now can even suggest that electromagnetic waves are also guided in such small 

structures and the propagation of the signals will be governed by the same one 

dimensional wave equation.  In our initial discussion of transmission lines, we will 

assume that the wave will suffer no loss as it propagates and will therefore not 

include any resistors in the introductory model.  Loss terms will be included after 

we develop the lossless transmission line. 

 

  6.1. Equivalent electrical circuits 

 The three types of transmission lines that have received considerable at-

tention in practice are depicted in Figure 6-1. These three lines are: (a) the 

coaxial cable - this structure usually has a dielectric that separates the inner 

conductor from the outer one; (b) the strip line or microstrip line – this structure 

has a dielectric that separates the two flat conductors; and (c) two parallel 

conducting wires or the twin lead – this structure may have a vacuum or a 

dielectric that separates the two wires. The dielectric in these transmission lines 
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is used because of mechanical considerations imposed by the requirement that 

long metallic structures remain separated. In our everyday experiences we rec-

ognize these lines as being transmission lines that respectively connect the cable 

TV into the house, connect two components in an integrated circuit within the TV 

and provide the connection between a TV and an outside or a rabbit-ears 

antenna. 

 

 

 

 

 

 

 

  

 

 

Figure 6-1. Three common transmission lines. (a) coaxial cable; (b) microstrip 

line; (c) two wire line (sometimes called a "twin lead."). 

 

 Rather than examine in full detail the electromagnetic field distribution 

within these transmission lines at this stage, we will simplify our discussion by 

just suggesting a simple model consisting of distributed inductors and capacitors 

can be employed. This model will be valid if any dimension that is transverse to 

the direction of propagation is much less than the free space wavelength.  If the 

dimension is comparable with the wavelength, then a more complicated analysis 

will be required that may include the various numerical tools that were introduced 

in Chapter 3. 
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In the three transmission lines depicted in Figure 6-1, such an analysis would 

show that the three lines support the propagation of a wave that has both the 

electric field intensity and the magnetic field intensity in a plane that is transverse 

to the direction of propagation.  This is sometimes called a TEM mode of 

propagation.  The analysis would have required that there be no losses in either 

the dielectric separating the conductors or in the conductors themselves.  In 

order for us to make this simplification in the mode structure, we have to first 

define the capacitance C and inductance L in terms of electromagnetic fields.  

Fortunately, we have already obtained these results for the coaxial cable and the 

microstrip line in Chapter 2.  The capacitance and inductance for the two parallel 

wires is given in Appendix 4.  The parameters for the three transmission lines are 

summarized in Table 6-1.  We note that the factor ∆z can be separated from the 

other terms for the three structures. 

 Inductance Capacitance 

coaxial cable z 
a
bln

2
L ∆








π
µ

=  z

a
bln

2C ∆







πε

=  

microstrip line z
w
dL ∆

µ
=  z

d
wC ∆
ε

=   

twin lead z
a2

DcoshL 1 ∆







π
µ

= −  z

a2
Dcosh

C
1

∆








πε
=

−

 

Table 6-1. Electrical circuit elements for the various transmission lines shown in 

Figure 6-1.  For the microstrip line, we are using the simplified expressions that 

have been obtained in Chapter 2.  A more accurate expression could be obtained 

using numerical techniques which would include the effects of fringing fields.  The 

parameters for the material between the two conductors are the permeability µ = 

µrµo and the permittivity ε = εrεo. 
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  We can, therefore, model the three transmission lines depicted in Figure 

6-1 with an equivalent circuit consisting of an infinite number of distributed 

inductors and capacitors as shown in Figure 6-2a. We could think of constructing 

such a distributed line by wrapping wire uniformly about a broom stick and 

locating it at a constant distance above a ground plane. In addition to the 

uniformly distributed inductance, there would be a uniformly distributed capaci-

tance between the wires of the coil and the ground plane. If the spirit moved us, 

we could actually carry on the tedious task of soldering the infinite number of uni-

formly distributed capacitors from the coil to the ground plane. 

 

    

 

 

 

 

 

 

 

 

Figure 6-2. (a) Distributed transmission line. (b) Equivalent circuit of this 

transmission line. The circuit elements are given in their per unit length values. In 

each section, the values are zĈ C and zL̂L ∆=∆=  respectively. Hence, 

transmission line models can be easily constructed in the laboratory.  

 

 The model for the distributed transmission line that is depicted in Figure 6-

2 has incorporated some obvious simplifications.  In particular, there are no 

elements that would describe any loss of energy as the wave propagates under 

L̂

Ĉ(b)  

(a)  



Equivalent electrical circuits 

 499 

transmission line.  This can be incorporated with a resistor in series with the 

inductor or with a conductance in parallel with the capacitor.  The effects of these 

additional elements will be described later.  In addition, parasitic capacitances 

exist between the wires that constitute the distributed inductance in Figure 6-2a. 

These capacitances will initially be assumed to be very small and can be 

neglected at this stage of our discussion. We will see later that the inclusion of 

these elements will give rise to a wave number and hence a phase velocity that 

is dependent upon the frequency of the wave. This phenomena is called 

dispersion and it will be discussed at the end of this chapter. The equivalent 

circuit that we will use at the present time is depicted in Figure 6-2b. The reader 

who is comfortable with circuit theory could consider the transmission line as a 

large number of distributed two port networks and be guided through well worn 

and understood techniques. We choose, however, not to follow this path in order 

to interpret the signals in terms of waves.  In particular, we choose the path that 

will lead to a coupled set of first order partial differential equations that are called 

the Telegraphist’s equations.  This set of equations will describe the temporal 

and spatial evolution of voltage and current signals along this transmission line.  

In addition, we can manipulate the set and obtain the wave equation whose 

solution has been described in the previous chapter.
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6.10. Dispersion and group velocity 
 In our first model for a distributed transmission line, we considered that a 

wire was wrapped uniformly around a cylindrical rod and distributed capacitors 

connected this wire to a ground plane.  Effects due to the finite conductivity of the 

wire or leakage currents through the capacitor introduced loss mechanisms 

which could lead to waves whose amplitude would decrease as they propagated 

on this transmission line.  In this section, we will examine another linear effect 

which is found in cases where the wavelength is comparable with the physical 

dimensions of the transmission line or in cases where the separating dielectric 

depends upon the frequency.  For example, this could be understood as the 

inclusion of the capacitance between the wires that had been wrapped uniformly 

around the rod.  As we will find, this will limit the frequency response of the 

transmission line and will lead to a new velocity of propagation that is called the 

group thevelocity.  Although there are several different transmission lines that 

exhibit this effect, we will just focus our attention on one of them. 
  

 

                          

                                              

 

 

Figure 6-18.  A model of a section of a transmission line whose length is ∆z that 

includes dispersion is shown. 

 

L̂ Ĉ

sĈ
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 A simple model consisting of linear elements that we will use to introduce 

the concept of dispersion is shown in Figure 6-18.  Following the same procedure 

that we have used previously, we will be able to write down the Telegraphist’s 

equations that are applicable for a transmission line consisting of a large number 

of identical sections that are shown in Figure 6-18.  There is one caveat that is 

immediately encountered, the current that enters the node at the left will 

subdivide into a current IL that passes through the inductor and a current that 

passes through the capacitor Ic that is in parallel with this inductor 

  CL III +=  (6.80) 

The appropriate equation that describes the voltage drop across the inductor is 

  
t

)t,z(IL̂
z

)t,z(V L

∂
∂

−=
∂

∂  (6.81) 

The equation that describes the voltage drop across the capacitor that is in 

parallel with this inductor is 

  ∫−=
∂

∂ dtI
Ĉ
1

z
)t,z(V

c
s

 (6.82) 

The units of this additional capacitor are F.m rather than F/m.  The equation that 

describes the current that passes through the shunt capacitor is given by 

  
t

)t,z(VĈ
z

)t,z(I
∂

∂
−=

∂
∂  (6.83) 

 From the set of equations (6.80) – (6.83), we derive the following wave 

equation 

  0
tz

)t,z(VĈL̂
t

)t,z(VĈL̂
z

)t,z(V
22

4

s2

2

2

2

=
∂∂

∂
+

∂
∂

−
∂

∂  (6.84) 

Let us assume that there is a time harmonic signal generator that is connected to 

this transmission line that is infinitely long.  The wave that is excited and 

propagates on this line is of the form  

  ( )ztj
0eV)t,z(V β−ω=  (6.85) 
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The substitution of (6.85) leads to the dispersion relation that relates the 

propagation constant β to the frequency of the wave ω.  We obtain 

  ( ) ( ) ( ) ( )[ ] 0eVjjĈL̂jĈL̂j )zt(j
0

22
s

22 =β−ω+ω−β− β−ω  (6.86) 

where the terms within the square bracket yield the dispersion relation.  We write 

this as 

  
s

2 ĈL̂1

ĈL̂

ω−

ω
±=β  (6.87) 

The propagation constant is a nonlinear function of frequency as shown in Figure 

6-19a. 

Example 6-20. Derive this dispersion relation (6.87) using (6.77) 

Answer: From (6.77), we write   
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Ĉj

Ĉj
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Since this expression is purely imaginary, α = 0 and there are no losses as the 

wave propagates. This is true only if the frequency ω is below a certain frequency 

called the "cutoff frequency." 

 Our final result that was obtained using two different approaches is 

interesting since we have found that the propagation constant depends on 

frequency. This is called dispersion.  The consequences of dispersion will 

dramatically influence the propagation of waves as we have already  

encountered in the previous chapter.  The dispersion relation shown in  

Figure 5-22 is different than that in Figure 6-19a. One could think of  

the difference between a high pass and a low pass filter in describing  

these two dispersion relations. The propagation constant will be a real number 

for frequencies from 0 up to a value that is called the cutoff frequency ωo where 
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=ω  (6.88) 
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Figure 6-19MATLAB.  The normalized propagation characteristics of a dispersive 

transmission line.  (a) The dispersion relation (6.87) is the solid line.  The dashed 

line is a non dispersive propagation constant.  (b) The phase velocity as a 

function of frequency.   

 This cutoff frequency is equal to the resonant frequency of the "tank" 

circuit in the series arm.  At this resonant frequency, the tank circuit will appear to 

be an infinite impedance. Above this frequency, the propagation constant will be 

imaginary and the wave will not propagate.  In addition, the velocity of 

propagation vo in the non dispersive frequency range is given by 

  
ĈL̂

1v0 =  (6.89) 
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The wave number βo in this region is  

  
o

o
o v

ω
=β  (6.90) 

.  Dispersive transmission lines or a dispersive media in general are very 

important and common in practice. Dispersion may be created by finite trans-

verse dimensions as in waveguides or inter atomic dimensions as in materials.  

Dispersion implies that the propagation constant depends upon the frequency of 

oscillation.  The relationship between these two quantities is depicted in Figure  

6-20.  We find that the curvature of the resulting dispersion curve can have 

different slopes and these are referred to as “positive dispersion” and “negative 

dispersion”.   

ω

β

positive dispersion

negative dispersion

 

Figure 6-20MATLAB. Dispersion curves. 
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 Electromagnetic waves that are confined to propagate within metallic 

structures can only propagate if the frequency is above some “cut off frequency” 

that could be determined by the physical dimensions of the structure.  Recall that 

we encountered this topic in our discussion of plane waves.  In the case of 

negative dispersion, a wave with a frequency from 0 to some “cut off frequency” 

will propagate.  Above this frequency, the wave will not propagate.  There are 

various longitudinal waves in ionized gases that is called a plasma in which such 

waves exist. 

 The question then arises, “What will happen if there are two signals that 

are propagating in the same linear media but with slightly different frequencies?”  

The answer to this question will lead us to the development of a new velocity that 

is called the group velocity.  We have already learned that a narrow pulse can be 

examined using a Fourier analysis and the pulse would consist of a number of 

high frequency components.  If this pulse propagates in a dispersive region, it will 

be difficult if not impossible to reconstruct the original pulse at a later stage. 

 In order answer the question that was just posed, we consider 2 waves 

that each have the same amplitude Vo and the following frequencies of oscillation 

  ω∆+ω=ω 01  and ω∆−ω=ω 02  (6.91) 

Corresponding to each of these frequencies, a signal that propagates in the 

positive z direction is excited.  From either of the dispersion curves in Figure  

6-20, the corresponding propagation constants are obtained to be 

  β∆+β=β 01  and β∆−β=β 02  (6.92) 

Since superposition will apply, the two waves can be added together in order to 

find the sum total of the response.   

   ( ) ( )]ztcoszt[cosVV 2211o β−ω+β−ω=  (6.93)  

Let us apply a trigonometric identity to (6.93) and obtain 

  ( ) ( )ztcosztcosV2V ooo β−ωβ∆−ω∆=  (6.94) 
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 In Figure 6-21, we illustrate the summation procedure by just adding 2 

cosine signals with slightly different frequencies together. 

−1
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1
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0

2

x+
y

t  

Figure 6-21MATLAB.  The linear summation of two cosine waves that have a 

slightly different frequency of oscillation.  There is a constructive and destructive 

interference between these two signals upon addition. 

 

 If we examine these two signals at various locations that are equally 

spaced as shown in Figure 6-22, we will be able to ascertain the velocity of 

propagation of a point of constant phase and the velocity of this modulation.  The 

points of constant phase yields the phase velocity vφ = 
o

o

β
ω .  The velocity of the  

amplitude modulation is vg ≈ 
β∆
ω∆ .  The velocity of the modulation in the limit  
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vg = 
β∂
ω∂

→
β∆
ω∆   is called the group velocity of the wave.  In a non-dispersive 

media, the two velocities are identical.  However, in a dispersive media, they can 

be vastly different and can even have the opposite sign.  

V

t

group velocity

phase velocity

z
1

z
2

 

Figure 6-22MATLAB.  The propagation of a signal in a dispersive media.  The 

signals are detected at two locations.  A point of constant phase and the peak of 

the envelope is followed.  The point of constant phase propagates with the phase 

velocity and the modulation envelope propagates with the group velocity.  In this 

figure, the phase velocity is greater than the group velocity. 

  

 An illustration of the signals that are detected at increasing values of the 

distance is shown in Figure 6-22.  A point of constant phase can be followed and 

it will yield data to compute the phase velocity.  The envelope of the modulating 
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signal will propagate with the group velocity.  Frequently, this modulating signal 

will spread as it propagates causing the detected signal to become vastly 

distorted.  For example, a very narrow pulse excitation that contains a very large 

number of frequency components and is propagating in a dispersive media could 

appear as a time harmonic signal with only one frequency component at 

distances that are far from the point of excitation. 

Example 6-21.  (a) Find the phase and group velocities for a normal 

transmission line depicted below.  (b) Find the phase and group velocities for a 

transmission line in which the circuit elements are interchanged. 

   

 

 

 

 

Answer:  (a)  From (6.77), we write 

  ( )( ) ĈL̂jĈjL̂jŶẐj ω=ωω==β+α=γ   

The phase velocity vφ is computed to be 

  
ĈL̂

1v =
β
ω

=φ  

The group velocity vg is computed to be 

  
ĈL̂

11v g =







ω∂
β∂

=
β∂
ω∂

=  

The two velocities are equal in this case and our independent of frequency. 

(b) From (6.77), we write 
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The phase velocity vφ is computed to be 

L̂

Ĉ
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  ĈL̂v 2ω−=
β
ω

=φ  

The group velocity vg is computed to be 

  ĈL̂1v 2
g ω+=








ω∂
β∂

=
β∂
ω∂

=  

In this case, the phase and the group velocities are in the opposite direction and 

both of them depend on frequency. 

 

 Suffice it to say, dispersion has very dramatic effects on the propagation 

of electromagnetic waves.  If the media, in addition to being dispersive, were also 

nonlinear in that the velocity of propagation depended upon the amplitude of the 

propagating wave, then it might be possible to have nonlinear waves that are 

called solitons propagating in this media.  A nonlinear dispersive transmission 

line can be constructed by replacing the linear shunt capacitor in Figure 6-18 with 

a capacitance whose value depends upon the local value of the voltage of the 

wave.  This is also called a nonlinear varactor diode. This is a topic of current 

research interest in several scientific and engineering communities. 
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6.11. Conclusion 
 Transmission lines that we have studied in this chapter are very important 

from several points of view. They are important in their own right and they can be 

used to model other forms of transmission media.  Several structures that are in 

wide use such as a coaxial cable, a strip line and two parallel wires can be 

modeled with a structure that consists of distributed inductors and capacitors. 

Summing the voltage drops around a loop and the current elements entering a 

node leads to two first order partial differential equations that are known as the 

Telegraphist's equations. Eliminating one of the dependent variables between 

these two equations led to a wave equation.   

 Sinusoidal waves propagated along this line to either increasing or de-

creasing values of the position coordinate if initial transient effects in the sinu-

soidal excitation could be neglected. The wave would repeat itself in a distance 

called the wavelength. The ratio of the voltage wave propagating in one direction 

to the current wave propagating in the same direction is the characteristic 

impedance of the transmission line. Terminating the transmission line with either 

a load impedance or another transmission line introduced the concepts of 

reflection and transmission coefficients, standing waves, the VSWR, and the idea 

of matching. The Smith chart facilitated matching.  Transient effects and their 

subsequent propagation along with pulse propagation were analyzed with a 

bounce diagram. The final asymptotic state of a transmission line excited by a 

step voltage was found. Finally, the effects of loss and dispersion were analyzed.   
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6.12. Problems 

1. Find an equivalent circuit for plane wave propagation in a vacuum. 

2. Show that the equivalent circuit element parameters for the coaxial cable and 

the strip line are correct representations. 

3. Show that the telegraphist’s can be derived using an argument based on a 

Taylor series. 

4. Show that the quantity  
ĈL̂

1v = does indeed have the units of a velocity. 

5. Show that the units of the diffusion coefficient 
ĈR̂
1D =  do indeed have the 

units of (length)2 / time. 

6. Show that a function that represents a wave that propagates to decreasing 

values of z satisfies the wave equation (6.7). 

7. Let us replace the linear capacitors in Figure 6-3 with nonlinear varactor 

diodes whose capacitance depends upon the voltage applied across it, In this 

case, the current ∆I into the diode can be written as ∆I = 
t

)V(Q
∂

∂ . Derive the re-

sulting wave equation for this transmission line. 

8. Show that the two equations given in (6.15) and (6.16) are equivalent and find 

expressions for the constants in one equation in terms of the constants in the 

other. 

9. Find an expression for the characteristic impedance of the strip line. 

10. Find an expression for the characteristic impedance of a twin lead. 
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11. In an integrated circuit, a dielectric with εr = 2 is inserted between two metal 

conductors. The width of the top metal strip is 10 µm and its separation from the 

bottom grounded metal plane is 5 µm. Find the characteristic impedance of this 

transmission line and the velocity of a signal.  

12. Design a strip line with a glass insulator that will have a characteristic 

impedance of 5Ω. You will have some freedom in this design but there is one 

constraint - it is to be used in an integrated circuit. 

13. A TV twin lead consists of two parallel 1 mm copper wires separated by 1 cm 

of a rubber dielectric with εr = 3. What is the capacitance per meter of this twin 

lead and what is its characteristic impedance? 

14. Prove that the voltage that appears across a load impedance will be less than 

the incident wave if ZL < Zc. 

15 . A VSWR is measured along a transmission line to be 2. Find two values for 

the reflection coefficient R.. Which of these values will correspond to ZL < Zc and 

which to ZL > Zc? 

16. For problem 15, find the two values of ZL if Zc = 50 Ω.  

17MATLAB. A load impedance ZL = 25 Ω is connected to a transmission line whose 

characteristic impedance is 50 Ω. Using (6.33), plot the impedance as a function 

of a distance from the load to a total distance of 2λ.  

18 Using (6.33), prove that the load impedance will repeat itself every λ/2. 

19. Using (6.33), prove that the input impedance of a transmission line termi-

nated in a short circuit with a length L where λ/4 < L < λ/2 is capacitive. 
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20. Using (6.33), prove that the input impedance of a transmission line termi-

nated in a open circuit with a length L where λ/4 < L λ/2 is inductive. 

21. An air-filled 50 Ω coaxial cable that is 1 m long is excited with a 300 MHz 

signal generator. The line is terminated with a load impedance ZL = (25 + j25) Ω. 

What is the input impedance of this line? 

22. A shorted 50 Ω transmission line of length L has an input admittance of  

- j 0.01 S. Find the length of the line in λ. 

23. Using (6.46) and (6.47), draw the circles for the values of r = 0, 1, and ∞ and 

x = -1, 0, and 1 to convince yourself that Figure 6-9 is correct.  

24MATLAB. Using a Smith chart, find the impedance Zin of a 50 Ω coaxial cable that 

is terminated in a load ZL = (25 + j25) Ω. The coaxial cable has a length of 3λ/8. 

25MATLAB. Using a Smith chart, find the admittance Yin of a 50 Ω coaxial cable 

that is terminated in a load ZL = (25 + j25) Ω. The coaxial cable has a length of 

λ/8. 

26MATLAB. Using a Smith chart, find the distance from a load impedance  

ZL = (25 + j25) Ω that is connected to a 50 Ω coaxial cable where the normalized 

input admittance Yin = 1 + jBin. How long should a transmission line that is ter-

minated in a short circuit be in order that the transmission will be matched? 

27. A load impedance ZL = (100 - j100) Ω terminates a 50 Ω transmission line. 

Find the characteristic impedance of the quarter-wavelength matching 

transmission line. 
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28. A lossless battery is connected to an ideal transmission line with a charac-

teristic impedance Zc of length L that is terminated in a short circuit. Sketch the 

potential at z = L/2 as a function of time 0 ≤ t ≤ 4(L/v). The switch is closed at t = 

0. 

  

 

L

V o 

 

 

29. Sketch the current profile at z = L/2 as a function of time 0 ≤ t ≤ 4(L/v) at  

z = L/2 for the transmission line stated in problem 28. 

30. A lossless battery is connected to an ideal transmission line with a charac-

teristic impedance Zc of length L that is terminated in an open circuit. Sketch the 

potential at z = L/2 as a function of time 0 ≤ t ≤ 4(L/v). The switch is closed at t = 

0. 

  

 

L

V o 

 

31. Sketch the current profile at z = L/2 as a function of time 0 ≤ t ≤ 4(L/v) at  

z = L/2 for the transmission line stated in problem 30. 
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32. Two transmission lines are joined with a resistor RL.  

 

 R

ZZ c1 

L

c2

 

Show that the transmitted voltage VT in line two can be written as  

  ( ) inc
2CL

2C
T V1

ZR
ZV R+
+

= where 
1C2CL

1C2CL

ZZR
ZZR

++
−+

=R  

if the voltage incident from z = -∞ is Vinc. 

33. At t = 0, the switch located at the load is closed. Sketch the voltage and the 

current at the load as a function of time (L/v). The impedance at the load RL = the 

characteristic impedance of the line Zc. 

 

 
 L

V 

R L 

o 

 

 

34. A transmission line with two switches, one at the battery and one at the load 

is shown below. Initially, switch S1 is closed and switch S2 is open. At t = 0, S1 is 

opened and S2 is closed. Sketch the voltage Vaa' as a function of time. 
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If the load impedance were located at the midpoint of this line, a large voltage 

pulse could be delivered across it. This is called a Blumlein transmission line. 

35. A pulse generator is connected to a transmission line of length L = 2 m 

having Zc = 50 Ω, RL = 20 Ω, and Rg = 30 Ω. The velocity of propagation in this 

transmission line is equal to 108 m/s. The amplitude of the pulse is 1 V and its 

width is 10-9 s. Plot the voltage at z = L/2 as a function of time, 0 ≤ t ≤ 100 ns. 

  

 
L

R 
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L 

 

36. In a digital computer, it is desired to transmit a sequence of binary pulses 

from a pulse generator to another point where they are to be sampled. Let us 

assume that the pulse sequence shown below is launched by the pulse generator 

shown in Problem 35 and we desire to detect the sequence at a time T = 3L/2v 
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later. Describe any limitations that might be imposed on the speed of this 

computer. 

  

(1 0 1)

t

δt δt

 

37. Generalize the results of Problem 36 to a "32 bit" and a "64 bit" machine. 

38MATLAB. Repeat Problem 35 if the transmission line is lossy and the signal de-

cays as e-αz as it propagates where α = .01, 0.1, and 1. 

39MATLAB. Sketch the dispersion relation for a transmission line consisting of a 

series resonant circuit in the series branch and a capacitor in the shunt branch. 

Calculate the propagation constant using (6.77). 
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40. Describe the dispersion relation for a transmission line consisting of an in-

ductor in the series branch and a "tank" circuit in the shunt branch. 
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41. Repeat problem 39 with the addition of a series resistor sR̂  added in series 

with the inductor. The dispersion relation will be complex. 
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42. Repeat problem 40 with the addition of a series resistor sR̂  added in series 

with the series inductor. The dispersion relation will be complex. 
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6.2. Transmission line equations 
 In order to analyze the equivalent circuit of the lossless transmission line, 

it is simpler to use Kirchhoff's laws rather than Maxwell's equations at this stage. 

The various currents and voltages are given in Figure 6-3. In order to simplify the 

notation, we have defined the inductance and capacitance per unit length 

z
CĈ  and  

z
LL̂

∆
=

∆
=   which respectively have the units of henries per unit length  

and farads per unit length.  You may also encounter the notations L’ and C’ or L0 

and C0 in  other books.  

 L̂  

  

 

 

 

 

Figure 6-3.  The lossless transmission line model contains a number of distinct 

sections.  The length of each section is ∆z and each section contains an 

inductance and a capacitance.  The values are 
z

CĈ  and  
z

LL̂
∆

=
∆

= . 

  

 The current that is entering the node at the location z is I(z).  From 

Kirchoff’s law, this current will subdivide into a current that goes through the 

capacitor in that section or goes into the next section.  This is expressed as 

  )t,zz(I
t

)t,z(VzĈ)t,z(I ∆++
∂

∂
∆=  (6.1) 

and it can be rewritten as 

  
t

)t,z(VĈ
z

)t,z(I)t,zz(I
∂

∂
−=

∆
−∆+  (6.2) 

z

L̂

Ĉ

z + ∆zz - ∆z

I(z) 

V(z) 
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In the limit of ∆z  0, the, the term on the left-hand side of (6.2) can be 

recognized as the definition of a spatial derivative.  Therefore, (6.2) becomes 

  
t

)t,z(VĈ
z

)t,z(I
∂

∂
−=

∂
∂

 (6.3) 

 Similarly, the sum of the voltage drops in this section can also be 

calculated using Kirchoff’s law and we find 

  )t,z(V
t

)t,z(IzL̂)t,zz(V +
∂

∂
∆=∆−  (6.4) 

Rewriting (6.4), we obtain 

  
t

)t,z(IL̂
z

)t,zz(V)t,z(V
∂

∂
−=

∆
∆−−  (6.5)  

Again, the left-hand side of (6.5) is recognized as a definition of a spatial 

derivative in the limit of ∆z  0 and we write 

  
t

)t,z(IL̂
z

)t,z(V
∂

∂
−=

∂
∂

 (6.6) 

 The two linear coupled first-order partial differential equations (6.3) and 

(6.6) are called the "Telegraphist's equations." The origin of this name follows 

from engineers trying to explain the signal propagation in a cable under the sea 

from England to France. It also described signal propagation along the great wire 

that stretched across this country from "sea to shining sea"  They are sometimes 

also referred to as the “Heaviside equations” in honor of the nineteenth century 

engineer-mathematician who successfully employed mathematical tools that had 

not yet been proven to be valid. In fact, he developed his own calculus which at 

the time apparently lacked proper rigor.1 

 We can eliminate one of the dependent variables V(z,t) or I(z,t) from these 

two coupled first order equations and obtain a second order partial differential 

                                                 
1 Another example of a function that was defined and successfully used prior to its rigorous proof 
is the "delta" function. Dirac made considerable use of it during the period that led to the 
development of quantum mechanics prior to and during the Great Depression. This was a decade 
before  it was proven to be a valid function.  
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equation. This can be written for the voltage V(z,t) or the current I(z,t). The 

resulting equations are 

  0
t

)t,z(VĈL̂
z

)t,z(V
2

2

2

2

=
∂

∂
−

∂
∂  (6.7) 

  0
t

)t,z(IĈL̂
z

)t,z(I
2

2

2

2

=
∂

∂
−

∂
∂  (6.8) 

 Both of the equations (6.7) and (6.8) are in the form of a standard wave 

equation that was described in the previous chapter.  In the present case, the 

velocity of propagation v is defined as 

  
ĈL̂

1v =  (6.9) 

Recall that the units for Ĉ and L̂ are henrys per meter and farads per meter.  This 

implies that (6.9) does indeed have the proper units of the velocity 
ondsec

meters .  The 

choice of the symbol v in (6.9) to represent the velocity of propagation in a 

transmission line is reasonable since this is also the velocity of a plane 

electromagnetic wave that propagates in the material that separates the 

conductors in a coaxial cable, a microstrip line, or between the two parallel wires.  

We will reserve the symbol c for the actual velocity of light. 

Example 6-1. Show that a transmission line consisting of distributed linear 

resistors and capacitors in an appropriate configuration can be used to model 

diffusion.   

 

 

 

 

 

 

Ĉ

z
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z + ∆zz - ∆z

I(z) 
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Answer: Assume that the resistance and the capacitance per-unit lengths are 

defined as 
z

CĈ  and  
z

RR̂
∆

=
∆

= respectively where ∆z is the size of a section. 

The potential drop ∆V across the resistor zR̂R ∆=  and the current ∆I through the 

capacitor zĈC ∆= can be written as 

  zR̂)t,z(I)t,z(V ∆=∆  

  
t

)t,z(VzĈ)t,z(I
∂

∂
∆=∆  

In the limit of ∆z  0, this reduces to the following set of equations 

  R̂)t,z(I
z

)t,z(V
=

∂
∂  

  
t

)t,z(VĈ
z

)t,z(I
∂

∂
=

∂
∂  

A second order partial differential equation for the potential V follows 

  







∂
∂

=
∂

∂
=

∂
∂
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t

)t,z(VĈR̂
z

)t,z(V
2

2

∂
∂

=
∂

∂  

This equation is of the form of a diffusion equation with a diffusion coefficient 

given by   

  
ĈR̂
1D =  

The dimensions of the diffusion coefficient D are )ond/(sec)meter( 2 . 

 

Example 6-2MATLAB. Show that a particular solution for the diffusion equation 

  t
)t,z(V

D
1

z
)t,z(V

2

2

∂
∂

=
∂

∂  

that describes the distributed "RC" transmission line where )ĈR̂/(1D =  is given by 

  







−

π
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Dt4
zexp
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Since the capacitors are linear, this voltage will also correspond to the charge on 

the particular capacitor.  This follows from Q(z, t) = )t,z(VĈ  with linear 

capacitors. 

Answer: Differentiating the solution with respect to z, we obtain 

  







−
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π
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2
3  
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∂
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Differentiating the solution with respect to t, we obtain    

  







−










+−

π
=

∂
∂

Dt4
zexp

Dt4
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1
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1

D
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2
3  

 Hence, the equation is satisfied. The voltage at the normalized times 1 to 

4 is shown below. Note that the peak remains at z = 0 as time increases. The 

total area under the curve at each of the times remains equal to one that is inde-

pendent of time.   
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 The solution that is shown in this figure is valid if a certain amount of 

charge is placed at the location z = 0.  There is a decrease in amplitude at the 

center by 50% as a time increases by a factor of 4.  The total area under every 

curve is equal to 1. 

  

 Diffusion analyzed in the above example would be similar to filling a 

balloon with helium, popping it at t = 0, and then monitoring the helium density in 

space at later times.   One can think of this source also in terms of a Dirac’s delta 

function since the area under this function is a constant.  A second boundary 

condition would be to fix the voltage at z = 0 with a battery and a switch that was 

closed at t = 0. Diffusion differs from waves in that the solution predicts that the 
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voltage could change at z = ± ∞ at a time t = 0+.  The diffusion equation is also 

called the heat equation from thermodynamics. A calculation associated with the 

second boundary condition would be to compute the temporal and spatial 

evolution of the temperature in an object if one end touches a hot plate located at 

z = 0 and whose temperature remains constant for all times.  

 The reader might find it instructive to analyze the diffusion of a step volt-

age excited at a location z = 0 at a time t = 0 of a distributed RC transmission line 

containing several sections using a computer circuit analysis program such as 

SPICE. The process of diffusion is common in semiconductors.  Diffusion is 

significantly different than the wave phenomena that we encounter in normal 

transmission lines. 
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  6.3. Sinusoidal waves 
 Let us now specify a particular form for the excitation of a normal trans-

mission line consisting of distributed inductors and capacitors and study the re-

sulting propagating wave. Let us assume that the transmission line is excited with 

a sinusoidal voltage generator at z = +∞ or at z = -∞ and the generator was 

turned on at an early time such that all transient effects have decayed to zero 

before you read these pages. We will return to the study of the transients and 

more importantly, the propagation of pulses, on this transmission line later 

because of its importance in modern digital communication systems. Suffice it to 

say at this point that pulses could be decomposed into their Fourier components 

and time-harmonic propagation is important in its own right. For, example, the 

electric power industry makes considerable use of 50 or 60 Hz sinusoidal prop-

agation throughout the world. It is convenient to determine the characteristic 

impedance of the transmission line using this excitation for the transmission line 

before a more general solution is obtained. This will be similar to the 

characteristic impedance for plane waves in free space that was described in the 

previous chapter. 

 In this case, a sinusoidal voltage and current wave will propagate to de-

creasing or increasing values of z and we can separate out the time dependence 

from the spatial term and write that 

                              V(z, t) = V(z) ejωt     and    I(z, t) = I(z) ejωt (6.10) 

where we again encounter phasors. We again could have chosen at this stage of 

the derivation to examine either just the real or the imaginary parts of the wave 

propagation via the relation ejωt = cos ωt + j sin ωt. The voltage and the current 

both have the same temporal dependence as they must since they are coupled 

by the first-order partial differential equations that make up the Telegraphist’s 
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equations (6.3) and (6.6). Substituting (6.10) into either (6.3) or (6.6) where we 

have employed the definition of the velocity given in  (6.9), we obtain 

  ( ) 0)z(
v
j

dz
)z(d

2

2

2

2

=
ω

−  (6.11) 

  ( ) 0)z(
v
j

dz
)z(d

2

2

2

2

=
ω

−  (6.12) 

This set of equations can be rewritten as 

  0)z(k
dz

)z(d 2
2

2

=+  (6.13) 

  0)z(k
dz

)z(d 2
2

2

=+  (6.14) 

where the wave number  k is defined as k = ω / v. The wave number is related to 

the wavelength λ as 
λ
π

=
2k . These two equations are similar in form to the 

equation we encountered previously in our discussion of plane waves with a 

time-harmonic excitation signal (5.31). Solutions of (6.13) can be written as 

                                     V (z, t) = A1 ej(ωt - kz) + B1 ej(ωt + kz) (6.15) 

                                 V (z, t) = A2 cos (ωt - kz) + B2 cos (ωt + kz) (6.16) 

where A1 and B1 or A2 and B2 are constants of integration. In writing this solu-

tion, we have incorporated the temporal dependence ejωt. Different combinations 

of the exponential terms with different values for the constants would allow us to 

write the trigonometric functions as sines instead of cosines. An astute reader 

may recall similar results from the previous chapter. We include it here only for 

completeness.  We could alternatively specify that the real or the imaginary por-

tions of the voltages are to be determined. Finally, an arbitrary constant phase 

shift ejθ (or θ) can be added to (6.15) or (6.16) if the need arises. 

Example 6-3MATLAB. The voltage wave that propagates along a transmission line 

is detected at the indicated points. From this data, write an expression for the 

wave. Note that there is a propagation of the sinusoidal signal to increasing 

values of the coordinate z. 
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Answer:  From the data shown in (a), we can obtain the following information. 

The peak to peak amplitude of the wave is 2 Vo. The wave is propagating to 

increasing values of the coordinate z. The period of the wave is 2 s, hence the 

frequency of consolation of the way is Hz 5.0
2
1f == .  The velocity of 

propagation v is obtained from the slope of the trajectory shown in (b).  The value 

is found to be 4
01
15v =

−
−

=  m/s.  The wave number k is computed to be 

π=





 π=ω= 4

2
124vk m-1.  The wavelength λ of the wave is equal to 

5.0
4
2

k
2

=
π
π

=
π

=λ m.  The wave is given by V = Vo cos (πt - 4πz). 
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 The current wave I(z, t) can be calculated by inserting the voltage wave 

solution (6.16) into either of the first order Telegraphist’s equations (6.3) or (6.6).  

If we assume that the wave is launched from the point z = -∞ and is propagating 

to increasing values of the coordinate z, then the value of the constant B2 in the 

voltage wave will have the value of B2 = 0.  The other constant B1 will be chosen 

to be Vo. We find using (6.6) that 

  
( )[ ] ( )[ ]

t
kztcosIL̂

z
kztcosV oo

∂
−ω∂

−=
∂

−ω∂  

  oo IL̂kV ω=  (6.17) 

The dimension of the ratio of the voltage divided by the current amplitudes is 

equal to an impedance.  This impedance is called the characteristic impedance of 

the transmission line and it will be denoted with the symbol Zc.  Therefore, we 

write (6.17) as 

  
k

L̂
I
VZ

o

o
C

ω
==  (6.18) 

The ratio 
k
ω  is the phase velocity v of the wave.  This velocity is given in (6.9) 

and we write   

  
ĈL̂

1L̂vL̂
I
VZ

o

o
C ===  

Finally, the characteristic impedance of the transmission line can be written as 

 

  Ω=   
Ĉ
L̂ZC  (6.19) 

 This characteristic impedance of a transmission lines is the ratio of the 

voltage wave divided by the current wave.  This is similar to our definition for 

plane waves where we defined the characteristic impedance as the ratio of the 

electric field intensity divided by the magnetic field intensity. Since the 

characteristic impedance is a constant, the current wave can be computed 

merely by dividing the voltage wave by the characteristic impedance Zc. We will 
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find that the characteristic impedance is one of the important parameters used to 

characterize a transmission line. The other parameter is the length L of the 

transmission line. This length is normalized by the wavelength λ and of the 

propagating wave. If the transmission line were lossy, the characteristic 

impedance would be a complex impedance instead of the real number obtained 

here. Since the transmission line has been assumed to be lossless, we could let 

Zc = Rc + jXc where Rc is a real number and Xc = 0 with no loss of generality. We 

will, however, keep the more general notation of defining the characteristic 

impedance as Zc even for the lossless transmission line. 

Example 6-4. Calculate the velocity of propagation and the characteristic 

impedance of a solid coaxial cable.  The radius of the inner conductor is 3 mm 

and the radius of the outer conductor is 6 mm.  There is a vacuum between these 

two conductors.  

Answer.  From Table 6-1, the inductance per unit length is given by 
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The capacitance per-unit length is given by 
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The velocity of propagation is computed from (6.9). 

  
( )( ) s

m103
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−−
. 

The characteristic impedance of the coaxial cable is computed from (6.19). 

  Ω≈
×
×

==
−

  42 
1080

0 1 0.14 
Ĉ
L̂Z 12

6 -

C . 

The velocity of propagation and the characteristic impedance can be decreased if 

a dielectric is inserted between the two conductors. 
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 In Table 6-1, we summarized the inductance per-unit length and the 

capacitance per-unit length for the transmission lines that are most commonly 

used.  In Table 6-2, we summarize the velocity of propagation and the 

characteristic impedances for the same transmission lines. 

 

 Velocity of propagation  Characteristic impedance 

coaxial cable 
µε

==
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ε
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Ĉ
L̂Z

1

c

Table 6-2. The velocity of propagation and the characteristic impedance of the 

various transmission lines shown in Figure 6-1.  The parameters for the material 

between the two conductors are the permeability µ = µrµo and the permittivity  

ε = εrεo.   

 

 The velocity of propagation of the wave is independent of the dimensions 

of the transmission line and it is only a function of the electrical parameters of the 

material that separates the two conductors.  However, the characteristic 

impedance depends upon these physical dimensions along with the electrical 

parameters. This fact will be important when two transmission lines are 

connected together and a signal is launched on one of them. 
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6.4. Terminations 

 In the above section, we assumed that the transmission line was infinite in 

length. This is not practical in spite of the best intentions of your instructor who is 

trying to present this difficult topic in a simple and logical manner. The 

transmission line will have both a beginning and an end that occur at finite lo-

cations in space. We therefore must incorporate this subject into our discussion 

and will examine terminations in this section.  

 A finite length of a lossless transmission line is illustrated in Figure 6-4. 

The transmission line is characterized with a characteristic impedance Zc that is 

a real quantity.  It is convenient to assume that the source of the time-harmonic 

wave is at z = -∞ and termination is located at z = 0. This termination could be 

either an impedance or another transmission line with a different characteristic 

impedance.  We will also assume that the signal generator was also turned on at 

the time t = -∞ so all transient effects will have disappeared. These choices are 

predicated on our desire to simplify as much as possible the various calculational 

procedures that we will encounter later. 

 

 

 

 

 

 

 

Figure 6-4. A semi infinite transmission line that is terminated in a load 

impedance ZL. 

 

 

ZLZc 

z = 0
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 The voltage at any point along the line can be expressed from (6.15) to be 

  ( ) ( )kztj
1

kztj
1 eBeA)t,z(V +ω−ω +=  (6.20) 

The current at any point along the line is calculated from the substitution of (6.20) 

into the Telegraphist’s equations (6.3) or (6.6).  We find 
  ( ) ( )( )kztj

1
kztj

1
C

eBeA
Z
1)t,z(I +ω−ω −=   (6.21) 

 Let us evaluate the ratio of (6.20) and (6.21) at the location of the load 

impedance ZL.  This ratio will be equal to the load impedance.  Since we have 

chosen this point to be at z = 0, the exponential terms will cancel or disappear 

and we write 

  C
11

11
L Z

BA
BA

)t,0(I
)t,0(VZ

−
+

==  (6.22) 

Our choice of placing the termination at z = 0 has been well rewarded. 

 It is reasonable to assume that we know the amplitude of the signal that is 

incident upon the load, that is A1 is a known value. Knowing the amplitude of the 

incident wave allows us to compute the amplitude of the reflected wave B1 from 

(6.22) to be 
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where we have introduced a normalized load impedance 
C

L
L Z

Zz ≡ .  Since we 

have chosen the transmission line to be lossless, this normalized load impedance 

is just equal to the actual load impedance divided by a number.  This ratio of the 

amplitudes of the reflected B1 to the incident A1 wave is called the reflection 

coefficient  and we will label it with the symbol R.1  Hence 

 

                                                 
1 Some authors prefer to use the Greek letter Γ to indicate the reflection coefficient. 
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=
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=≡R  (6.24) 

An astute reader realizes that the derivation of the reflection coefficient for a 

transmission line is very similar to the derivation that led to the reflection 

coefficient for plane waves (5.72). In terms of the reflection coefficient R, the 

voltage and the current at any point along the transmission line can be expressed 

as 

  ( ) ( )( )kztjkztj
1 eeA)t,z(V +ω−ω += R  (6.25) 

  ( ) ( )( )kztjkztj

C

1 ee
Z
A)t,z(I +ω−ω −= R  (6.26) 

 The ratio of these two quantities has the units of an impedance and it is 

the impedance Z(z) at a particular location z. If the reflection coefficient R = 0, this 

impedance will be equal to the characteristic impedance Zc of the transmission 

line. In this case, the load impedance is matched to the characteristic impedance 

on the transmission line.  This impedance will depend upon the position of 

observation. We will return to this point in the next section. 

 The reflection coefficient R is determined entirely by the value of the 

impedance of the load and the characteristic impedance of the transmission line. 

If the line is homogeneous and it has no discontinuities, this is a good as-

sumption. This implies that the voltages and the currents that appear at any point 

along the transmission line are determined by the signal generator and the load 

impedance which may be several wavelengths apart. Remember that our signal 

generator was turned on a long time ago and no transients are relevant in this 

discussion. We will examine them later since they are very important. 

 The reflection coefficient R  for a lossless transmission line can have any 

value between -1 and +1. Since the load impedance ZL may be complex, the 

reflection coefficient may also have complex values. In this case, it is better to 

express a complex reflection coefficient in phasor notation.  This will lead to a 
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phase shift between the reflected wave and the incident wave. More about that 

later. At this stage, we will confine our discussion to real impedances. 

 If the load impedance were a short circuit (ZL = 0), then the reflection 

coefficient R  that we compute from (6.24) will yield R = -1.  At the load, the total 

voltage at z = 0 that consists of the sum of the incident and the reflected compo-

nents must equal zero. If this impedance were an open circuit (ZL = ∞), then the 

reflection coefficient R = +1. In this case, the total voltage can be arbitrary but the 

total current must equal zero. An interesting case arises if the load impedance is 

equal to the characteristic impedance of the line (ZL = Zc). In this case, the re-

flection coefficient R = 0 and we say that the line is matched.  This matching  is 

very important in practice since all of the energy is transported down the line, 

absorbed at the load impedance, and none will be reflected back toward the 

signal generator. All of the energy will be gainfully employed in the load 

impedance and there will be none to come back. We will find that there are tech-

niques that can be employed in order to achieve this desirable state of operation, 

even if the load impedance has a value that is different from the value of  the 

characteristic impedance of the transmission line. 

Example 6-5. The dielectric in an infinitely long coaxial cable has a value for its 

relative dielectric constant of εr = 2 for z < 0 and εr = 3 for z > 0. Calculate the 

reflection coefficient R for a wave that is incident from z = -∞. 

 

 

 

 

Answer: The characteristic impedance of a coaxial line is given in Table 6-2. 

The load impedance ZL that appears in (6.24) will be the characteristic 

impedance of the coaxial cable in the region z > 0 since it acts as a load for the 

z = 0εr1 εr2 

2a 2b 
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coaxial cable in the region z < 0. Hence, we write the reflection coefficient in 

terms of the characteristic impedances of the two transmission lines in 

unnormalized form. 
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 Let us for the moment examine the voltage wave forms that arise when a 

sinusoidal voltage wave is incident upon a short circuit (ZL = 0) or an open circuit 

(ZL = ∞). In the first case, the reflection coefficient as computed from (6.24) is  

R  = -1 and for the second case R = +1. From (6.25), we write the voltage as 
  ( ) ( )( ) ( ) tj

1
kztjkztj

10Z
ekzsinA)j2(eeA)t,z(V

L

ω+ω−ω
=

−=−=  (6.27) 

and 
  ( ) ( )( ) ( ) tj

1
kztjkztj

1Z
ekzcosA)2(eeA)t,z(V

L

ω+ω−ω
∞=

=+=  (6.28) 

 In both (6.27) and (6.28), we have factored the temporal dependence ejωt 

from the exponential terms. This temporal variation merely causes the amplitude 

of the wave to oscillate between a maximum value of +2A1 and a minimum value 

of -2A1 where A1 is the amplitude of the wave that is launched from the signal 

generator. This point can be emphasized if we use the definition 

  ejωt = cos ωt + j sin ωt 

and select just the real or the imaginary terms for the voltages. The additional 

constant j can be absorbed into the constant A1 with no loss of generality. 
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Figure 6-5MATLAB.  Transmission line that has a characteristic impedance Zc. The 

line is excited at z = -∞ with a sinusoidal voltage. (a) Standing voltage wave if  

ZL = 0. (b) Standing voltage wave if ZL = ∞. The maximum amplitude of the volt-

age standing wave is 2 A1. 

 

 The addition of the two propagating waves that individually propagate to 

increasing values of the spatial coordinate z and to decreasing values of z 

created a signal that appears to be stationary in space but have its magnitude 

oscillate in time from zero to twice the value of the incident wave. This effect is 

called a standing wave since the resultant signal does not appear to propagate.  

We illustrate the measured voltages as a function of space at various times for 

the two values of load impedance in Figure 6-5. Recall that we first encountered 
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a standing wave in the previous chapter. Standing waves are also found on the 

strings of a violin as the force of the violinist's fingers create a local "short circuit" 

for the waves that are excited by the bow or the plucking motion of the finger, 

propagate along the string, and are trapped by these fingers and the bridge of 

the violin. 

Example 6-6MATLAB. Determine the standing current waves that corresponds to 

the standing voltage wave depicted in Figure 6-5. 

−2

−1

0

1

2

z/λ

I/I
o

(b)

−2 −1 0

−2

−1

0

1

2

z/λ

I/I
o

(a)

−2 −1 0

 

Answer: The current wave is equal to the voltage wave divided by the character-

istic impedance of the transmission line. In this case Io = A1 / Zc. The standing 

current wave is depicted below for the two cases: (a) ZL = 0 and (b) ZL = ∞. Note 

that the standing waves for the current waves are 90o out of phase with respect 

to the standing voltage waves. From Figure 6-5, we note that the maximum 

voltage that occurs along the line is equal to 2 A1 and the minimum voltage is 0. 
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The magnitude of the voltage repeats itself every half-wavelength. This is a 

crucial observation since a typical voltage detector used in practice is a "square-

law device" that responds to the magnitude of the voltage and cannot distinguish 

between plus or minus voltages.  

   

 The ratio of the maximum voltage to the minimum voltage that appears 

along this transmission line, that in this case is ∞, is an important quantity. The 

maximum value of the voltage is equal to magnitude of the incident voltage plus 

the magnitude of the reflected voltage. The minimum value equals the difference 

of these two quantities. The ratio is called the voltage standing wave ratio;. The 

abbreviation VSWR2 is frequently used in practice. From (6.25), we write for an 

arbitrary load that 

  
R

R

−

+
==

1
1

V
VVSWR

min

max  (6.29) 

We can solve this equation for | R | and obtain 

 

  
1VSWR
1VSWR

+
−

=R  (6.30) 

We note that the VSWR, the reflection coefficient R, and from (6.24) the ratio of 

the load impedance to the characteristic impedance of the line are intimately and 

crucially related. 

 If the amplitudes of the voltages are not very large, this may be a moot 

point. However, if the voltages [A1 (1 + | R |)] are large, say above the breakdown 

conditions of electronic components, serious problems may occur even if the 

amplitude of the incident wave A1 is beneath this critical value. The magnitude of 

                                                 
2 VSWR is pronounced as "vizwar" in practice. 
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the reflection coefficient R  must be reduced to zero. From (6.24), this implies that 

the load impedance ZL should have a value that approaches the characteristic 

impedance Zc of the line. The line must be matched! 

Example 6-7. Compute the ratio of the maximum voltage to the minimum voltage 

of an electromagnetic wave propagating in the coaxial cable described in 

Example 6-5 in the region z < 0. 

Answer: The reflection coefficient R was computed in Example 6-5 to be  

R = -0.1. From (6.29), we write 

  2.1
1.01
1.01

1
1

VSWR =
−−

−+
=

−

+
=

R

R
 

Hence the ratio of the maximum voltage to the minimum voltage along the 

transmission line in the region z < 0 will be 1.2. The VSWR equals 1.2.  This 

value is close to the ideal value of 1 that would be obtained if the two coaxial 

cables were matched..
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6.5. Impedance on the transmission line 
and matching 

 The ratio of the voltage to the current at any point on the transmission line 

has the dimensions of an impedance. This impedance is not a constant as we 

move along the line from the source to the load since these voltages and cur-

rents consist of both the incident and the reflected components. This impedance 

will also be a function of the load impedance and the characteristic impedance of 

the transmission line since the reflected wave is determined by these terms. 

 From (6.25) and (6.26), we write 
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 (6.31) 

In writing the final term of this equation, the factors of ejωt and A1 that are 

common to both the numerator and the denominator have been canceled.  This 

implies that the impedance is linear and time independent.  Let us now replace 

the reflection coefficient R using (6.24). We obtain 
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The exponential terms can be recognized as the definition for the trigonometric 

functions.  Therefore, we have  

  
)kztan(jZZ
)kztan(jZZZ

)kzsin(Z2j)kzcos(Z2
)kzsin(Z2j)kzcos(Z2Z)z(Z
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C
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CL
C −

−
=

−
−

=  (6.32) 

Since we have chosen to locate the load at the origin z = 0 and the signal 

generator at the location z  -∞, the impedance will always be evaluated at 

some location z < 0.  This point will be chosen to be at z = -L.  Therefore, the 

final expression for the impedance at any location on the transmission line is 

given by 
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)kLtan(jZZ
)kLtan(jZZZ)Lz(Z

LC

CL
Cin +

+
=−=  (6.33) 

This can also be written as a normalized impedance 
C

in
in Z

Zz =  where we have 

followed the convention of using a lowercase letter to indicate a normalized 

impedance 

  
)kLtan(jz1
)kLtan(jz)Lz(z

L

L
in +

+
=−=  (6.34) 

This impedance zin at this location will be called the normalized input impedance 

of the transmission line. 

Example 6-8.  A signal generator whose frequency f = 100 MHz is connected to 

a coaxial cable whose characteristic impedance is 100Ω and whose length is 100 

m.  The velocity of propagation is equal to 2 x 108 m/s.  The transmission line is 

terminated with a load impedance of 50 Ω.  Calculate the impedance at a 

distance on 50 m from the load. 

Answer:  The normalized load impedance zL is equal to 1/2. The wavelength λ is 

calculated from 

  m2
101
102

f
v

8

8

=
×
×

==λ  

The wave number k is calculated to be 
  1 -m 

2
22k π=
π

=
λ
π

=  

The normalized input impedance is calculated using (6.34) 

  
2
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π+
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Therefore, the input impedance at this location is equal to Ω== 50ZzZ Cinin
. 

 

 Recall that the wave number can be defined in terms of the wavelength λ  

as 
λ
π

=
2k  . Therefore, the length of the transmission line L can also be 
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normalized by the wavelength L2kL
λ
π

= .  The implication of this normalization is 

that the value of the load impedance will repeat itself every ½ wavelength since 

tan (kL) = tan (kL + nπ) where n is an integer.  If the transmission line is ¼ of a 

wavelength, we obtain 
24

2kL π
=






 λ

λ
π

= .  The trigonometric function 

tan ∞→





 π

2
and the input impedance is given by 
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 λ

−= λ
 (6.35) 

This implies that the normalized input impedance zin of a ¼ wavelength 

transmission line that is terminated with a load impedance ZL will have a 

numerical value that is equal to the normalized load admittance yL=1/zL. 

 This one-quarter wavelength  transmission line will be useful in joining two 

transmission lines that have different characteristic impedances or matching a 

load as will be now demonstrated.  One of the simplest techniques is to use a 

quarter wave transformer. A quarter wave transformer is a section of 

transmission line that has a particular characteristic impedance that is identified 

as Zc(λ/4) .  In addition, the length of this matching transmission line will be 

specified in terms of the wavelength of the wave as it propagates in this quarter 

wavelength transmission line.  We’re assuming that the value of the 

characteristic impedance Zc(λ/4) of this particular transmission line can be 

specified by the user. The value of this characteristic impedance will be chosen 

such that the reflection coefficient R at the input of the matching transmission 

lines section will be equal to 0.  This is shown in Figure 6-6. 
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Figure 6-6. A transmission line with a characteristic impedance Zc ≠ ZL is joined 

to the load with a quarter wave transformer. 

 

 In order to specify the value of this characteristic impedance Zc(λ/4) of this 

quarter wavelength transmission line, we recall the reflection coefficient R that 

was given in (6.24).  In the present application, we assume that the load 

impedance is the input impedance of the quarter wavelength transmission line 
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Cin

ZZ
ZZ

+
−

≡R  (6.36) 

where  
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4
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In order to minimize the reflection coefficient, this input impedance should be 

chosen to have a value of that is equal to the characteristic impedance Zc of the 

transmission line that is connected to the signal generator.  From (6.37), we 

obtain the characteristic impedance of the matching transmission line to be 
  LC)4/(C ZZZ =λ  (6.38) 

The characteristic impedance of this matching transmission line is chosen to 

have a value that is equal to the square root of the geometric mean of the load 

impedance and the characteristic impedance of the transmission line that is 

connected to the signal generator. 

Zc ZL Zc(λ/4) 

4
λ
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 This technique has certain disadvantages in that it is frequency sensitive 

since the velocity of propagation and therefore the wavelength is determined by 

the material parameters in the matching transmission line.  Techniques from 

modern filter theory can be employed to desensitize this restriction to a certain 

extent. 

Example 6-9.  A lossless transmission line is terminated with an impedance 

whose value that is ½ the characteristic impedance on the line.  What impedance 

should you put in parallel with the line λ/4 in front of the load to minimize the 

reflection of the wave from the signal generator? 

 

 

 

 

 

 

Answer:  In order to reduce the reflection, the parallel combination of ZQ and the 

input impedance at this location should be equal to the characteristic impedance 

of the transmission line.  Therefore, we write 
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 Three particular values of the load impedances should be mentioned at 

this point. In the first case, the load impedance ZL equals the characteristic 

impedance of the transmission line ZC. In this case, the transmission line is 

ZL ZQ Zc 

λ/4
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matched. There will be no reflected component of the incident wave and we find 

from (6.24) that the impedance Z(z) will always be equal to the characteristic 

impedance ZC. For the other two cases, the load impedance is either a short cir-

cuit (ZL = 0) or an open circuit (ZL = ∞). For the latter two cases, the impedance is 

found from (6.33) to be 
  )kLtan(jZ)Lz(Z C0Zin

L
=−=

=
 

    (6.39) 

  cot(kL) jZ
)kLtan( j

Z)Lz(Z C
C

Zin
L

−==−=
∞=

 

 In practice, it is easier to make a terminating load impedance that is a 

short-circuit that it is an open circuit because of the fringing fields that could exist 

at an open circuit.  The input impedance will be a reactance since we have 

chosen to study a lossless transmission line.  The value of this reactance is 

depicted in Figure 6-7.  The value will change from -j∞ < Zin < +j∞ and its value is 

specified by the length of this transmission line.  This implies that we can have 

every possible value of reactance that is either capacitive or inductive. 
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Figure 6-7MATLAB. Input impedance, that in a lossless line is a reactance, of:  

(a) a short-circuited transmission line and (b) an open-circuited transmission line. 

The vertical lines are repeated for equal intervals of 
4
λ . 

 

 

Length Short-circuit Open circuit 

0 < L < 
4
λ  Inductive Capacitive 

4
λ  < L < 

2
λ  Capacitive Inductive 

Table 6-3. Input impedance of a short-circuited or an open-circuited lossless 

transmission line. 
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 The reactance along a lossless transmission line of both the short circuit 

and the open circuit can vary from -∞ < Xin < +∞. The precise value depends on 

the length of the line. We summarize the input impedance of the two lines in 

Table 6-3. From (6.39), this also implies that the input susceptance Bin = -1/Xin 

can also change and have any value from -∞ < Bin < +∞ along this lossless 

transmission line. 

 The fact that the input reactance or susceptance of a transmission line 

that is terminated in either a short circuit or an open circuit can have any value 

from -∞ to +∞ has some practical consequences. From a practical point of view, it 

is better at this stage to think in terms of admittances rather than an impedance 

as will become clear in a few moments. 

 Let us assume that we have a transmission line that is terminated with a 

load impedance ZL or a load admittance YL that is not equal to the characteristic 

impedance Zc or the characteristic admittance Yc of the transmission line. At 

some distance d from the load, the input admittance of the line will have a value 

that is equal to Yc + jB (Figure 6-8a). The characteristic admittance Yc of the 

transmission line is defined as Yc = 1/Zc.  

 At this distance d from the load, a susceptance -jB is added in parallel  

with the transmission line causing the admittance to the left of this point to be 

equal to Yc (Figure 6-8b). If the transmission line were a coaxial cable, this could 

be satisfied by connecting a circuit element from the center conductor to the 

outer conductor. For the strip line, this element would be between the top and the 

bottom conductors. A series connection of the additional matching element is 

more difficult to achieve in practice since it would involve the separation of the 

transmission line into two sections and the subsequent insertion of the matching 

impedance. 
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 The addition of the matching element implies that the transmission line will 

be matched from this point back to the signal generator. Since a transmission 

line terminated in a short circuit can have any value of susceptance or reactance, 

all that is required is to connect this line at the location d as shown in Figure 6-8c. 

Since it  is difficult to construct an open circuit because there are fringing fields 

and leakage currents, one normally uses a short circuit as a load. Remember 

that an open circuit can be found one quarter wavelength from a short circuit.  

 

 

 

 

 

 

 

 

 

Figure 6-8. (a) The input admittance of a transmission line at a distance d1 from 

the load is equal to Yin = Yc - jB. (b) The addition of a susceptance whose value 

is equal to +jB at a distance d1 from the load admittance causes the input 

admittance at that point to the equal to Yc. (c)The addition of a short circuited 

transmission line whose length is d2 at the location d1 will match the load 

admittance/matching transmission line from this point back to the signal 

generator. 

 

 The length of this transmission line that is called a stub, is chosen so that 

its input admittance will equal +jB. The load impedance that now includes the 

added short-circuited transmission line is now matched to the rest of the 

YL Yc Vs 

jB 

(a) 

YL Yc Vs (b) 

YL Yc Vs (c) 

 d1 

d2 
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transmission line. This process of matching is called single-stub matching. This 

adjustable length transmission line is sometimes called a trombone line. In the 

next section, we will examine the matching in more detail after the Smith chart is 

introduced. 

 Single-stub matching requires that there be two adjustable distances, the 

location of the stub d1 and the length of the stub d2. There are several cases 

where it is not practical to make the distance d1 adjustable since it requires the 

milling of a narrow slit in the outer conductor of the coaxial cable or in one of the 

conductors of the strip line. In these cases, one may have to resort to the ad-

dition of a second or a third "stub" at additional fixed distances from the first one 

in order to match the load impedance to the transmission line.  

 One fly in the ointment remains to be removed before we leave this topic. 

All of the distances that were mentioned in this process were normalized by the 

wavelength of the wave. This implies that one can only match a load admittance 

at certain discrete frequencies. To improve upon this situation so that a band of 

frequencies can be matched, the designer's capacity that has been developed in 

circuit theory for designing flat pass-band filters is brought into play. Broad band 

operation can be achieved by a designer using these concepts, the appropriate 

techniques are better left to advanced courses in microwave design. 
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6.6. Smith chart 

 In the previous section, we learned that the input impedance of a trans-

mission line depended upon the impedance of the load, the characteristic 

impedance of the transmission line, and the distance between the load 

impedance and the point of observation. In addition, the value of the input 

impedance would vary periodically in space. This was demonstrated in Figure 6-

8 for the case of a load that was either a short circuit or an open circuit. Since the 

input impedance (6.33) and the normalized input impedance (6.34) involve a 

trigonometric function, we can infer that this periodicity will also be true for an 

arbitrary load impedance. Rather than always run to an abacus, a slide rule, a 

calculator or a computer whenever an equation is presented, we will suggest that 

the normalized input impedance (6.34) can be interpreted graphically. This 

suggestion follows the idea of the Bell Labs engineer P. H. Smith. The resulting 

graphical tool is called a Smith chart.  

 The equation that describes the normalized impedance at any location 

(6.34) is a complex equation which is rewritten below 

  
)kLtan(jz1
)kLtan(jz)Lz(z

L

L
in +

+
=−=  (6.40) 

An arbitrary normalized load impedance will also be a complex function. We can 

write it as 

zL = r + jx (6.41)

where r = 
C

L

Z
R  and x = 

C

L

Z
X . The lower case notation implies a normalized 

impedance, an impedance that has been divided by the characteristic impedance 

of the lossless transmission line Zc. The subscript "L" has also been dropped on r 

and on x in order to later conform to Smith chart notation. Remember that we 

have assumed that the characteristic impedance Zc is a real quantity since we 

are treating lossless transmission lines. 
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 The reflection coefficient R given in (6.24) is also a complex quantity that 

can be written as 

  
1z
1zj

L

L

+
−

=+= ir RRR  (6.42) 

In this equation, Rr is the real part and Ri is the imaginary part of the reflection 

coefficient R. Solving this equation for zL, we obtain 
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This equation is simplified by multiplying the numerator and the denominator by 

the complex conjugate of the denominator and we find 
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 Equating the real and the imaginary parts of (6.45) yields two equations 

that can, after some algebra, be written in the following form: 
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and 
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Writing the equations for the real and the imaginary terms in this format allows us 

to recognize them both as being equations for a family of circles in a plane 

whose axes are labeled as Rr and Ri.1  The center and radius of each circle will 

be determined by the value of the normalized resistance r and the normalized 

                                                 

1 The general form of the equation of a circle can be written as: 

                                                  (α − αo)
2 + (β − βo)

2 = ρ  2
o  

The center of the circle in the  (α, β) plane will be at (α0, β0) and the radius of the circle will be ρ0. 
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reactance x.  The maximum magnitude of the reflection coefficient R  is equal to 

1.  Therefore, all of these complete circles or portions of various circles should 

reside within a large circle whose radius is equal to 1.  The results are depicted in 

Figure 6-9.    

 This chart is called the Smith chart and the fine scale gradiation is 

determined by the user.  The normalized values of the resistance and the 

reactance which range from 0 < r < ∞ and -∞ < x < +∞ have also been included in 

this chart.  The intersection of an r circle and an x circle will specify the 

normalized impedance and the intersection of the two circles is orthogonal at that 

point.  The evenly spaced marks on the edge of the Smith chart indicate the 

fraction of a half wavelength since the impedance repeats itself every half 

wavelength.  Since we are examining a lossless transmission line, the magnitude 

of the reflection coefficient R is a constant at every point between the load and 

the signal generator.  This is manifested by carefully placing a circle that is 

centered on the origin of this coordinate system and whose radius is equal to the 

magnitude of the reflection coefficient R .  A clockwise rotation following this 

circle will be in the direction toward the signal generator and a counterclockwise 

rotation will be in the direction toward the load impedance.  The horizontal Rr axis 

and the vertical Ri axis have been removed from the Smith chart.  Although the 

Smith chart has been derived in terms of an impedance, it works equally well for 

admittances. 

 Before describing the application of the Smith chart, let isus summarize 

the properties its properties with reference to Figure 6-9.  For the case of the r-

circles we find that: 

 a) The centers of all of the r-circles lie on the horizontal axis which is the 

real part of the reflection coefficient Rr axis. 
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 b) As the value of r increases from r = 0 to r = ∞, the circles become pro-

gressively smaller.  

 c) All r-circles pass through the point Rr = 1, Ri = 0. 

 d) The normalized resistance r=∞ is at the point Rr = 1, Ri = 0. 

 For the x-circles which in actuality are portions of complete circles, we 

conclude that: 

 a) The centers of all of the x-circles lie on Rr = 1 line. The circles with x > 0 

(inductive reactance) lie above the Rr axis and the circles with x < 0 (capacitive 

reactance) lie below the Rr axis. 

 b) As the value of |x| increases from x = 0 to |x| = ∞, the circles become 

progressively smaller. 

 c) The normalized reactances x=±∞ are at the point  Rr = 1, Ri = 0. 

 The Smith chart has the property that the r-circles are orthogonal to the x-

circles at every intersection. The actual load impedance that is connected to a 

transmission line whose characteristic impedance is Zc is given by  

ZL = Zc (r + jx).   
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Figure 6-9MATLAB.  The Smith chart. 
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Example 6-10MATLAB.  On the simplified Smith chart, locate the normalized 

impedances (a) z = 1 + j0; (b) z = 100 + j100; (c) z = 0 + j0; (d) z = 0 – j1; and  

(e) z = 1 + j2. 

Answer:  The real and the imaginary parts of the reflection coefficient in (6.42) 

can be computed by multiplying the numerator and the denominator by the 

complex conjugate of the denominator.  We obtain 
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 At this stage, the reader is probably somewhat dubious about the reason 

we have expended all of this effort in order to obtain a chart in some strange 
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coordinate system. It may seem opaque at this stage, but hopefully it will become 

transparent in the next few lines. There is an oscilloscope available whose 

screen is calibrated in terms of a Smith chart. A high frequency circuit designer 

will use it in order to study the frequency response of various load impedances 

since a load impedance will cause a dot to meander over the screen as the 

frequency changes. 

 From (6.42) we realize that the reflection coefficient is a complex quantity 

that can also be expressed in polar coordinates  

  
1z
1ze 

L

Lj L

+
−

== θRR  (6.48) 

The magnitude of the reflection coefficient | R |  can have any value in the range 

0 ≤ | R | ≤ 1. This value is determined by the value of the normalized load 

impedance zL that is located at z = 0. In a lossless transmission line, this value 

will not change at any other location on the transmission line. Since the load 

impedance can be complex, there will be a phase angle θL associated with the 

reflection coefficient R. 

 The normalized input impedance at any point z = - z' on the transmission 

line can be written from (6.31) as 
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If we substitute (6.48) into (6.49), we obtain 
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where 

  φ = θL – 2kz’ (6.51)                

  Remember that the magnitude of the reflection coefficient remains a 

constant as we move along the transmission line back toward the signal 

generator.  In comparing (6.43) and (6.50), we note that the only difference is a 
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phase shift φ that is linearly proportional to the distance z’.  This implies that this 

translation on the Smith chart can be easily accomplished by just rotating the 

initial value of the load impedance along a circle whose radius is equal to the 

magnitude of the reflection coefficient | R |.    A clockwise rotation will be in the 

direction toward the signal generator and a counterclockwise rotation will be in 

the direction toward the load impedance.  The amount of rotation depends upon 

the distance 2kz’ = 
λ
π 'z4  where this phase angle must be subtracted from the 

initial value that was used to locate the load impedance upon the Smith chart.    

One notes that this impedance will repeat itself every half wavelength. 

 If we choose the distance to be equal to be 
4

'z λ
= , the rotation will be 

equal to π radians.  Referring back to (6.35), you remember that this distance 

converts the numerical value of an impedance into the numerical value of  an 

admittance.    For example, the impedance z =  0.5 + j0.5 has the admittance of  

  1j1
5.0j5.0

1y −=
+

=   

 Rather than performing this calculation with a calculator, it can also be found 

directly from the Smith chart.  The normalized impedance is first located on the 

chart.  A semi circle that has a radius that is equal to the reflection coefficient is 

drawn on the chart along with a straight line that passes through the center of the 

Smith chart and this impedance.  The intersection of the line with the semi circle 

will directly yield the proper value of the admittance.  This is illustrated in Figure 

6-10. 

 From Figure 6-10, we also note that a normalized load impedance equal 

to 0 will yield a normalized load admittance that is equal to ± j∞.  This implies that 

the input impedance that is 
4
λ  from a short-circuit will have an input impedance 

that is equal to that found from an open circuit.  In practice, it is difficult to make 
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an open circuit in the transmission line due to the fringing fields and a quarter 

wavelength shorted transmission line can be used to create an open circuit. 

∞

−j2

+j2

21

y=1−j1

+j1

−j1

0.5

z=0.5+j0.5

0.2

−j0.5

+j0.5

−j0.2

+j0.2

0

to load

to generator

 

Figure 6-10MATLAB.  The transformation of an impedance to an admittance using 

the Smith  chart.  A semi circle whose radius is equal to the magnitude of the 

reflection coefficient is drawn.  This corresponds to a distance of 
4
λ  on the 

transmission line. 

 

Example 6-11MATLAB. A load impedance ZL = 50 + j50 Ω terminates a 

transmission line that is 5 meters long and has a characteristic impedance of Zc = 

25 Ω. Using the Smith chart, find the impedance at the signal generator if the 
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frequency of oscillation f = 1 x 105 Hz.  The phase velocity for this transmission 

line is v =  2 x 106 m/s. 

Answer:  The wavelength λ is  

  m20
101
102

f
v

5

6

=
×
×

==λ  

The distance between the load and the generator is λ/4. The normalized load 

impedance is 

  2j2
25

50j50zL +=
+

=  

The normalized load impedance is first located on the Smith chart. 

 Using a compass located at the center of the Smith chart, rotate this point 

a distance λ/4 toward the generator. The normalized load impedance at the 

generator zin as read from the Smith chart is zin = 0.25 – j0 .25. Therefore, the 

input impedance that is connected to the signal generator is 

  Zin = Zc zin = 25 (0.25 –j0.25) = 6.25 – j6.25 Ω 
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 An examination of Figure 6-10 will also reveal an important  potential 

application of the Smith chart.  This chart can  equally well be interpreted in 

terms of an impedance or an admittance and we note that a constant coefficient 

circle will pass through the “1” circle at two locations.   Let us interpret this as an 

admittance chart.  At the locations where it has passed through the “g = 1” circle, 

an admittance can be added in parallel with the transmission line at either of 

these locations. Rather than separating a transmission line and inserting a 

matching element in series, it is better to just insert the matching element in 

parallel.  It should have a  value that will cause the input  admittance from that 
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location back to the signal generator to have a normalized value of1.  This is 

called matching a transmission line.  Let us illustrate this with an example. 

Example 6-12MATLAB.   A load admittance has the value 5.0j2.0yL −= . Find the 

locations where a matching admittance should be placed.  In addition, find the 

value for the matching admittance.   

Answer:  The input admittance will have the value yin = 1 ± jb at two locations 

that can be obtained from the Smith chart by rotating the load admittance on a 

constant reflection:coefficient circle.  This value has already been determined 

from the value at the load admittance.  At these locations, the real part and the 

imaginary part of the reflection coefficient will be 

  22

2

b4
b2         

b4
b

+
=

+
= ir RR  

where we have inserted g = 1 in (6.42) and have understood the Smith chart in 

terms of the admittance.  Since the magnitude of the reflection coefficient is 
already known ( 7257.0=R ), we just have to solve the algebraic equation for the 

value of the susceptance b that must be inserted at these locationands 
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This equation results in the following algebraic equation that must be solved. 
  ( ) ( ) 016b84b1 22242

=−−+− RRR . 

The roots of this polynomial are calculated to be 

  45.4b2 = ; 4b2 −=  

and because b must be a real number we neglect the second solution. Thus, we 

find two real solutions 11.2b1 ≈  and 11.2b2 −≈ , which are in good agreement 

with the two graphical solutions, obtained from  the  Smith  chart.  The above 

calculation using the Smith chart is shown below. 
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∞
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The location of the load admittance is indicated with a � and the radius of the 

circle which passes through this point is equal to the magnitude of the reflection 

coefficient circle.  The circle passes through the “g = 1” circle at two locations.  

The closest one is at a distance d1 from the load admittance.  One should insert 

an admittance equal to –jb at that location.  The transmission line will be matched 

from that point back to the signal generator.  There is a second location d2 that is 

further from the load admittance where one could insert an admittance that is 

equal to +jb and could be used if it is inconvenient to choose the first location.   

 The matching elements which were employed in the above example could 

easily be created by using a section of a transmission line that is terminated in a 

short-circuit.  The disadvantage on using the single stub matching technique is 
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that the distance d is variable.  In practice, this would typically be accomplished 

with a narrow slit inserted into the coaxial cable or the strip line.  There are 

techniques that can be used to eliminate or at least minimize this problem.  All of 

the techniques are frequency sensitive since the distances depend upon the 

wavelength.   
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6.7. Transient effects and the bounce diagram 

 The study of transmission lines that are excited with a sinusoidal voltage 

generator could continue for many more pages and all possible nuances would 

still not be uncovered. The reader may wish to explore this topic still further and 

this writer does not want to discourage these efforts. However in the limited time 

and space available to us, we should travel on a slightly different path, the path 

that integrated circuit designers regularly travel in designing chips for computers. 

As we enter this path, we must be cautious so that a passing zero or one does 

not strike us and knock us over. The knowledge that we have gained from the 

time-harmonic analysis should fortify us in our attempt to gain an understanding 

of transient effects and pulse propagation. 

 Consider the transmission line shown in Figure 6-11 in which a battery is 

connected to a transmission line. The battery has an internal impedance Zb, the 

transmission line is represented with a characteristic impedance Zc and the 

transmission line is terminated in a load impedance ZL. We will assume that they 

are pure resistances at this stage and that the signal will propagate with a 

velocity v. The voltage wave is governed by the Telegraphist's equations and the 

ratio of the voltage wave to the current wave is given by the characteristic 

impedance Zc of the transmission line. Since the load impedance is located a 

distance L from the battery-switch, it will take 
v
L  seconds before the signal 

arrives at the load impedance. 
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Figure 6-11. The battery is connected to the transmission line along with a 

switch that is closed at t = 0. 

 

 The amplitude of the wave V1 that is launched on the transmission line 

can be easily calculated using the “voltage divider” rule that probably has already 

been encountered in an earlier course.  This amplitude is dictated by the two 

impedances at the input of the transmission line, namely the battery impedance 

and the characteristic impedance of the transmission line.  It is given by 

  B
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C
1 V

ZZ
ZV
+

=  (6.52) 

 After a time 
v
L

=τ , the front of this propagating voltage step arrives at the 

load impedance ZL.  At this time, a portion of this incident voltage will be reflected 

from the load impedance and a portion of this incident voltage is “transmitted” or 

absorbed by this load impedance.  The reflection coefficient at the load RL is 

given by 
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L V
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ZZ
ZZ
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=R  (6.53) 

The amplitude of the reflected voltage step V2 can be positive or negative 

depending upon tthehe relative values of the impedances that appear in (6.53). 
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Zc ZL 
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 Eventually, the front of this propagating reflected voltage step V2 will reach 

the battery impedance at a time 
v
L22 =τ .  This front will be reflected from the 

battery impedance with a reflection coefficient Rb where 

  
2

3

CB

CB
B V

V
ZZ
ZZ

=
+
−

=R  (6.54) 

The battery impedance is essentially a “load impedance” for the incident wave 

V2.   

 The front of this reflected propagating voltage step V3 will reach the load 

impedance where a portion of this voltage step will be reflected by the load 

impedance.  This process may continue indefinitely.   

 The front of the propagating voltage step “bounces” back and forth 

between the load impedance and the battery impedance.  There is a graphical 

technique in order to evaluate the voltage at any location in space as a function 

of the time.  In other words, it is possible to predict the response of an 

oscilloscope that is inserted at a certain location on the transmission line.  This is 

illustrated by plotting the trajectory of this front as shown in Figure 6-12.  This 

diagram is called a bounce diagram.  It is convenient to have the vertical axis and 

the horizontal axis which are respectively time and position both be 

dimensionless.  The prediction of the temporal response at a certain location is 

obtained by inserting a vertical line at that location.  The intersection of the 

trajectory with this line indicates that the voltage at that location will change its 

value by the amplitude of that particular component of the wave. 
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Figure 6-12. The bounce diagram.  The magnitude of the slope of each line is 

equal to 1.  The amplitude of each individual component is usually specified.  A 

vertical line at a certain position on the transmission line indicates the location of 

an oscilloscope probe.  The intersection of this vertical line and the trajectory 

yields the times when the voltage will change.  These points are indicated with 

the short horizontal lines and the subsequent voltage during that interval is given. 

 

 Recall that a battery is the source of the voltage and it has a constant 

value.  Therefore, it is reasonable to assume that the voltage behind the 

propagating front of all the components will also be a constant and will have the 

same value of the front.  The voltage at any location along the transmission line 

is just the summation of the individual components 
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 The reader might suspect that an asymptotic value might be reached as 

the voltage step bounces back and forth between the battery and the load 
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impedance in Figure 6-11. Such suspicions will be well rewarded. Every voltage 

step that is incident on the load impedance will be reflected with a reflection 

coefficient RL and every voltage step incident on the battery will be reflected with 

a reflection coefficient RS. Adding up all of the individual contributions and 

regrouping the terms will lead to the following  
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The terms within the square brackets can be written using the summation relation 

that 

  1 for  
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=+ξ+ξ+ Λ  (6.57) 

For the cases where | RLRB | < 1, we may employ this summation relation and 

obtain 
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Substituting the definitions for the reflection coefficient at the load impedance and 

at the battery impedance, (6.58) becomes 
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This simplifies to 

  B
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=  (6.59) 

Based on our previous experience using circuits, this asymptotic value should not 

be too surprising. 
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Example 6-13MATLAB. A 12 V battery is connected via a switch to a transmission 

line that is 6 m long.  The characteristic impedance of the transmission line is  

50 Ω, the battery impedance is 25 Ω, and the terminated in a load impedance of 

25 Ω.  The velocity of propagation along this transmission line is 2 x 106 m/s.  

Find and sketch the voltage at the midpoint of this transmission line during the 

time  interval 0 < t < 9 µs. 

 

  

 

 

 

 

 

 

 

 

 

 

Answer:  The amplitude of the wave that is launched on the transmission line is 

calculated from 
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The reflection coefficient at the load is equal to 
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The reflection coefficient at the battery is equal to 
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In order to calculate the voltage at the midpoint of the transmission line, we make 

use of the bounce diagram.  In this case, we clearly identify the amplitudes of the 

waves.  The normalized time is t
6
2

L
vt

=    The bounce diagram is first obtained. 

 Using the bounce diagram, the voltage at the midpoint of the transmission 

line is equal to 0 until the front of the wave arrives.  The voltage increases to the 

amplitude of the wave, remains at that value until the wave that is reflected from 

the load impedance passes the midpoint.  This reflected wave is reflected again 

at the battery and arrives at the midpoint.  The picture on the right depicts the 

expected response of the oscilloscope that is located at the midpoint of the 

transmission line.  The final value of this voltage is calculated from (6.59) to be 
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 The current that flows through the load impedance is equal to the voltage 

heat the load divided by the load impedance.  The long time asymptotic value is 

given by 

  B
LBL

V
ZZ

1
Z
V I

+
==  (6.60) 

Example 6-14MATLAB. A battery with zero internal impedance has an open circuit 

voltage of 100 volts. At a time t = 0, this battery is switched into a 50 Ω air-dielec-

tric coaxial cable via a 150 Ω resistor. The cable is 300 m long and is terminated 

in a load of 33.3Ω. 

(a) Sketch a bounce diagram for the first 4 µs after the switch is closed. 

(b) Draw a graph of the voltage that appears across the load impedance as a 

function of time. 

(c) Find the asymptotic values of VL and IL as t  ∞. 

      

 

Zc = 50 Ω

150 Ω 

100 V 

300 m

33.3 Ω 

 

Answer: (a) The two reflection coefficients and the incident voltage step that 

propagates on the line are given by      
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In the (b) Since the coaxial cable is filled with air, the velocity of propagation 

equals 3 x 108 m/s. The voltage signal takes 1 µs to travel from one end to the 

other. 

(c) The asymptotic voltages and currents as computed from (6.59) and (6.60) are 

forVt ∞ = 18.2 V and It ∞ = 0.55 A. 
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6.8. Pulse propagation 

 In the previous section, we examined the transient characteristics of a 

step voltage as it propagated along a transmission line. We observed that the 

front propagated with a definite velocity and it took a nonzero time for the signal 

to pass from one point to another. This time was found to be of the order of L/v 

where L is the distance to be traveled and v is the velocity of propagation of the 

signal. In this section, we will devote our energies to the study of the propagation 

of a voltage pulse along a transmission line. An emphasis on this particular topic 

is certainly justified due to its practical importance in digital integrated circuits and 

in practical laboratory measurements. 

 Let us consider a transmission line that connects a pulse generator to a 

load impedance as shown in Figure 6-13.  

 

 

 

 

 

 

 

Figure 6-13. A pulse generator Vg that has an internal impedance of Zg is 

connected to a transmission line that has a characteristic impedance Zc and is 

terminated in a load impedance ZL. 

 

 As in the previous section describing transient effects, we can calculate 

the amplitude V1 of the pulse launched on the transmission line using a voltage 

divider rule 

Zg 

Zc ZL 

L 

Vg 
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  g
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We will assume that  the temporal width ∆t of the pulse is much less than the 

time that it takes for the pulse to travel from one end of the transmission line to 

the other, that is 
v
Lt <<∆  . In practical VLSI circuits whose dimensions are of the 

order of microns (1 micron = 1 µm = 10-6 meters), this time is of the order of  
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×≈
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≈  

The laws of nature set an upper limit to the speed of such a circuit . We have 

used the vacuum value for the velocity of light in this estimate although we know 

in actuality, it will be decreased by the square root of the dielectric constant of the 

dielectric that exists between the two conducting surfaces. 

 The pulse V1 that is launched from the signal generator and on the 

transmission line will propagate toward the load impedance. A portion of the 

pulse will be absorbed by the load impedance and a portion of the pulse will be 

reflected back toward the signal generator. The amount that is absorbed or the 

amount that is reflected will be determined by the ratio of the load impedance to 

the characteristic impedance of the transmission line. We can compute the value 

of the absorbed signal from a consideration of the flow of energy along the 

transmission line. 

 The energy of the incident pulse Pinc ∆t will be divided into the energy in 

the reflected wave Pref ∆t and the energy that is absorbed in the load impedance 

Pabs ∆t. The energy must be conserved in this junction. We write  

  tPtPtP absrefinc ∆+∆=∆  (6.62) 

The common factor ∆t will cancel in this expression and the various terms for the 

power can be written in terms of the impedances and the reflection coefficient 
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where VL is the voltage that appears across the load impedance.  Inserting the 

expression for the reflection coefficient (6.24), we write 
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Solving for the ratio of this voltage divided by the incident voltage V1, we obtain 
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where T is defined as the transmission coefficient. Note that this result agrees 

with the result that we previously obtained for plane waves using a different ap-

proach. That approach which matched boundary conditions at the interface could 

have been repeated here, but we wanted to make use the conservation of energy 

principle. 
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Figure 6-14. An integrated circuit transmission line element. 
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 This point can be emphasized if we consider the joining of two transmis-

sion lines that may have different dimensions as shown in Figure 6-14. The 

characteristic impedance of the transmission line between the two electrodes is 

different in the two regions of the integrated circuit. A portion of the signal 

launched from one electrode will reach the second electrode and a portion will be 

reflected back to the original electrode.  

Example 6-15. Calculate the transmission coefficient T for a wave that is 

propagating in the +z direction in a coaxial cable.  The relative dielectric constant 

of the separating dielectric in the region z < 0 is 2 and in the region z > 0 is 3.  

The physical dimensions of the cable are the same in all regions. 

Answer: Using (6.65) and the results given in Table 6-2, we write 
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Figure 6-15. Snapshots of a voltage pulse crossing a discontinuity in a 

transmission line. The pictures are taken at equal intervals in time and the 
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velocity of propagation has v| z > 0 > v| z < 0. In addition, the characteristic 

impedances of the two lines have the relative values Zc| z > 0 > Zc| z < 0. 

 A sequence of pictures of an incident pulse propagating from one trans-

mission line into another one is shown in Figure 6-15. Note that the reflected 

signal propagates with the same magnitude of velocity as the incident pulse while 

the transmitted pulse propagates with a different velocity. This is because the 

equivalent inductances and capacitances are different on the two sides of the 

discontinuity. The polarity of the reflected pulse will be the same as the incident 

one due to the sign of the reflection coefficient between the characteristic 

impedances of the two transmission lines. 

 Knowing the velocity of propagation v on a transmission line has some 

very practical consequences. Let us assume that we can launch a pulse on a 

transmission line and measure the time ∆T that it takes for the reflected pulse to 

return. From this data, we can compute exactly the unknown distance D from the 

pulse generator where the reflection took place since ∆T = 2D/v. Imagine that 

you are trying to locate a fault in an integrated circuit or a short circuit in a cable 

that is buried underground. Knowing where to probe or dig will save many hours 

of frustration. This practical technique is called time domain reflectometry. 

Example 6-16 Using the reflection coefficient R and the transmission coefficient T 

show that energy is conserved at the junction between two lossless transmission 

lines. 
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Answer: Conservation of energy implies that (6.62) must be satisfied.  This 

implies that 
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Substituting in the values for the reflection coefficient and the transmission 

coefficient, we write after canceling the value of the incident voltage wave 
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Example 6-17. A 1 volt pulse propagates from z < 0 on a transmission line. The 

line is terminated in an open circuit @ z = 0. Four oscilloscopes are triggered by 

the same pulse generator and are located at: za = - 6 ; zb = -4 ; zc = -2 ; and  

zd = 0 (meters). Find the velocity of propagation and interpret the voltage signals 

on the oscilloscopes. Sketch the corresponding voltage signals if the 

transmission line is terminated in a short circuit. 
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Answer. From the traces on oscilloscopes a and b, we find the velocity of 

propagation to be v = ∆z / ∆t = 2 m / 1 µs = 2 x 106 m / s.  Oscilloscope d is at the 

location of the open circuit and the incident and the reflected pulses add 

together. The signals that are detected after t = 4 µs are the reflected pulses that 

propagate toward the pulse generator. 

 The voltage signals detected by the oscilloscopes if the transmission line 

is terminated in a short circuit are depicted below. The voltage across the short 

circuit must be zero, hence the signal at oscilloscope d is zero. 

  

 

 

 

 

 

 

 

 
 
 It should be noted that the two oscilloscope pictures correspond to the 

voltage pulses.  If the oscilloscope pictures would correspond to the current 

pulses, the first picture would correspond to a load impedance that was a short-

circuit and the second picture would correspond to an open circuit. 
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6.9. Lossy transmission lines 

 Except for the example of diffusion, the transmission line models 

consisted of inductors and capacitors resulting in a characteristic impedance that 

was a real number.  In this section, we’ll extend this discussion to include ohmic 

losses within the conductors and leakage currents between conductors.  The 

model that was introduced earlier will have to be modified to take into account 

these effects.  This can be accomplished by inserting a resistance in series with 

the inductor and a conductance in parallel with the capacitor.  In this case, the 

characteristic impedance will become a complex quantity. 

 We can model these additional losses with the transmission line section 

model shown in Figure 6-16.     

                         

 

 

 

 

Figure 6-16.  The model of a section whose length is ∆z of a transmission line 

that includes loss terms is shown.  The units of all of the elements are per-unit 

length. 
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 Following the same procedure that we employed to write the first-order 

partial differential equations for the lossless transmission line (6.3) and (6.6), we 

obtain 

          
)t,z(IR̂
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where the circuit elements are defined as: 
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∆

=
∆

=
∆

=  (6.68) 

The set of the first order partial differential equations (6.66) and (6.67) are also 

known as the Telegraphist’s equations since the wires that crossed the country 

did possess loss. 

 In order to include the loss, it is convenient to assume that there is a time 

harmonic excitation of the transmission line.  If we make this assumption, then 

(6.66) and (6.67) become 

  [ ] )z(ĈjĜ
z

)z(
ω+−=

∂
∂  (6.69) 

   [ ] )z(L̂jR̂
z

)t,z(
ω+−=

∂
∂  (6.70) 

where we had introduced the phaser notation for the currents and voltages.  We 

recognize the terms within the square brackets can be replaced with a distributed 

admittance Ŷ and a distributed impedance Ẑ  quantities.  Hence we can rewrite 

these two equations as 

  )z(Ŷ
dz

)z(d
−=  (6.71) 

  )z(Ẑ
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)z(d
−=  (6.72) 
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 The coupled first-order ordinary differential equations can be replaced with 

a second order ordinary differential equation for either of the dependent 

variables.  We write 

  )z(ŶẐ
dz

)z(d
2

2

=  (6.73) 

  )z(ŶẐ
dz

)z(d
2

2

=  (6.74) 

 The solution of these two ordinary differential equations is given by 

  ztj
2

ztj
1 eIeI)t,z(I γ+ωγ−ω +=  (6.75) 

  ztj
2

ztj
1 eVeV)t,z(V γ+ωγ−ω +=  (6.76) 

where  

  ( )( )ĈjĜL̂jR̂ŶẐj ω+ω+±=±=β+α=γ  (6.77) 

In writing the solutions (6.75) and (6.76), we have reintroduced the time harmonic 

dependence.  In addition, the constants that appear before the exponential terms 

are evaluated from either the amplitude of the excitation signal or any reflection 

that is imposed by a load impedance.  The explicit inclusion of the real part α and 

the imaginary part β of the complex propagation constant γ is presented in (6.77). 

One would expect that the amplitude of the wave should always decrease as the 

wave propagates into a lossy material.  This expectation will specify the proper 

sign that is to be chosen.  This is also similar to the propagation of a plane wave 

into a conducting material that we encountered previously.  This is shown in 

Figure 6-17.  From this figure, it is possible to determine the numerical values of 

the constants α and β. 

 For the case where the loss terms are small, we can approximate this 

complex propagation constant (6.77) to be 
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R̂ j1ĈL̂j                 

Ĉj
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Figure 6-17MATLAB.  The evolution in space of a time harmonic voltage signal at 

an instant in time as a function of space. From this figure, one can determine the 

complex propagation constant π−−=
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From the approximation (6.78), we see that the wave will propagate in the ±z 

directions but the amplitude will attenuate as it propagates. The attenuation con-

stant α will approximately be given by 
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Ĉ
Ĝ
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R̂ĈL̂  (6.79)            

Note that the attenuation constant is independent of frequency.  

Example 6-18.  Find the complex propagation constant if the circuit elements 

satisfy the ratio 
Ĉ
Ĝ

L̂
R̂
= .  Interpret the propagation of such a signal that 

propagates on this line. 

Answer:  The complex propagation constant (6.77) can be written as 

    ( )( ) ( ) ( )L̂jR̂
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ĈĈj

L̂
ĈR̂L̂jR̂ĈjĜL̂jR̂j ω+±=










ω+ω+±=ω+ω+±=β+α=γ  

In this case, the attenuation constant α and the phase velocity 
β
ω  are 

independent of frequency.  This implies that there will be no distortion of a signal 

as it propagates on this transmission line.  There will only be a constant 

attenuation of the signal.  The characteristic impedance of this transmission line  
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=
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ω+
==  

is also independent of frequency.  This transmission line is called a 

"distortionless line."  

 

Example 6-19. The attenuation on a 50W distortionless transmission line is 0.01 

(dB/m). The line has a capacitance of 0.1 x 10- 9 (F/m). 

a) Find the values of the other transmission line elements. 

b) Find the velocity of wave propagation. 
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Answer: a) Since this is a distortionless transmission line, we write 
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Ĉ
L̂Z 792

C
−− ×=×=⇒Ω==  

  m/Np 0012.0m/Np 
69.8
01.0m/dB 01.0

L̂
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We also have the distortionless line criteria 
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b) The phase velocity is  
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7. Radiation of electromagnetic waves 

 In the previous chapters, we learned that electromagnetic waves can 

propagate in infinite free space and that these same waves can also propagate 

along a common transmission line or in a waveguide that can be held in our 

hands. A question that remains to be answered is whether the same electro-

magnetic wave can be excited in a finite region and then launched or radiated 

into infinite space. In this chapter, we will first examine the fundamentals of the 

radiation of electromagnetic waves. We will base our argument on material that 

has been uncovered in earlier chapters. This will naturally lead to an introduction 

into the important topic of antennas. Several of the important parameters and 

terms associated with antennas will be brought forth in this discussion. 

 

  7.1. Radiation fundamentals 
 Before we examine the radiation properties of an antenna, we should first 

understand a physical process that can actually cause the radiation of electro-

magnetic waves. This means that we have to examine possible radiation char-

acteristics of an electric charge from a fundamental viewpoint. There are certain 

requirements that an electric charge must meet in order to consider that it will ac-

tually radiate electromagnetic waves. These requirements will be argued from an 

intuitive point of view. If we understand this argument, the development of 

antenna radiation theory follows immediately since the principle of superposition 

applies in the linear medium that is being considered in this text and the antenna 

can be considered to consist of a large number of charges. The argument also 

illustrates the type of calculation that can be written on the backs of old en-

velopes.  
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 We can understand radiation of electromagnetic waves using Poynting's 

theorem. This theorem states that the total power rP  that is radiated from a 

source is given by the following closed surface integral 

 

                                           ∫ •×=
S

rP dsHE  (7.1)

 

 

Poynting's theorem tells us that the radiation of electromagnetic waves from a 

source that is located within a volume that is completely enclosed by a closed 

surface requires both an electric field and a magnetic field, the two fields being 

coupled together via Maxwell's equations. 

 A stationary  charge that was discussed in Chapter 2 will not radiate 

electromagnetic waves. This can be easily understood since a stationary charge 

will cause no current to flow, hence there will be no magnetic field associated 

with a stationary charge. From (7.1), the total radiated power is therefore equal to 

zero. From this, we can conclude that there will be no radiation of 

electromagnetic waves from a stationary charge.   

 We can also come to this conclusion from another point of view. If the 

point of observation where the power is to be detected is far from the source and 

if there were a spherically radiating wave, it would appear to be almost a plane 

wave at large distances from the charge and we can make use of the fact that 

the electric and magnetic field intensities of propagating waves are related 

through the characteristic impedance of free space Zc as described in Chapter 5. 

The magnitude of the magnetic field intensity H can be found from the electric 

field intensity E via 0Z/EH = .  
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 E

H
ds

R

 

Figure 7-1. Antenna radiation of electromagnetic waves. For a stationary charge, 

H will be equal to zero. 

 

 Therefore, a source of electromagnetic power located at the center of a 

sphere whose radius is R shown in Figure 7-1 would radiate a total radiated 

power whose value can be written as 

  )R4(
Z
EP 2

0

2

r π≈
 (7.2) 

Let us assume at this stage that the antenna is an isotropic radiator and has no 

directional characteristics. The total radiated power is equal to that which is de-

livered from the source that we will assume to be a constant. Hence, the total 

radiated power is independent of the distance R. Therefore, we would conclude 

that the electric field E of an electromagnetic wave must decrease with 

increasing distance as R-1. However, we find that the electric field from a static 

charge varies as R-2. Hence, we again come to the same conclusion that 

stationary charges cannot radiate electromagnetic waves. 

 We can also argue that a stationary charge will not radiate from an 

examination of Figure 7-1.  The electric field associated with radiation is in the 

surface of the sphere.  The electric field associated with a stationary charge is 

entirely in the radial direction.   
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 The next question that should be posed is whether a charge that is in mo-

tion with a constant velocity  v << c  can radiate electromagnetic waves. We 

know that a charge in motion constitutes a current and currents cause magnetic 

fields. We are not able to invoke the previous argument based on the radiated 

power that we used for the lack of radiation from a static charge since both an 

electric field and a magnetic field will now be present. We will, however, use a 

slightly different argument that is still based on the Poynting vector. 

 Let us assume that a positive charge Q is moving in the positive ux direc-

tion with a constant velocity v as shown in Figure 7-2. This velocity shall be 

chosen so that it is much less than the velocity of light c so it is nonrelativistic.  

We do not want to wade into the deep waters of relativity or advanced topics in 

physics at this time. 

  

Q  

)out(B

22 xrR +=

x
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XE

rE

O

r
|x|

v  
 

Figure 7-2. Electric and magnetic fields due to a moving charge. The velocity v is 

a constant and v << c. 

 

 The static electric field E from the charge Q is computed to be 

                                                      ruE 22
0 xr

1
4

Q
+πε

=  (7.3) 

where 22 xrR += . The magnetic field is computed from the Biot-Savart law. 

This leads to 
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                                                       22
0

xr
)(Q

4 +
×

π
µ

= ruvB  (7.4) 

 Let us compute the direction of Poynting's vector associated with these 

two fields. This is facilitated from an examination of a sphere centered on the 

charge at a certain instant in time as shown in Figure 7-3. The electric field 

caused by a charge moving with a uniform velocity is entirely normal to the 

spherical surface and the magnetic field is tangent to the surface. Hence, the 

Poynting vector HES ×=  is completely confined within the spherical surface and 

it does not  radiate in the radial direction away from the charge. Is there any hope 

for radiation? 

 

  

 
H E

HE×
 

Figure 7-3. The Poynting vector associated with a charge moving with a constant 

velocity v. 

 

Example 7-1. Calculate the component of the Poynting vector in the ux direction 

in Figure 7-2 and the total energy flow rate through an infinitely large plane 

placed normal to the x axis. Discuss the meaning of this result. 

Answer: The magnitude of the x component of the Poynting vector is computed 

from |(Er x B)/µo|. This leads to 
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The integral can be performed in Problem 1 to yield 
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r x
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32
vQP
πε
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The distance |x| is the instantaneous separation between the charge and the 

plane. In the one-dimensional system being considered here ( Xuv v→ ), the 

velocity v can be written as dt/dxv = . The power can be rewritten in the form 
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The quantity  

      
00

2

x32
QW
πε

=  

is the electrostatic energy stored in the region x > xo as in Problem 2. Therefore 

the power that is calculated using Poynting's theorem can be interpreted as the 

flow rate of electrostatic energy stored in space and has nothing to do with ra-

diation. The magnetic energy will be of the order of (v/c)2 times the electric en-

ergy and will be very small in nonrelativistic cases. 

 

 In order to answer the question whether there can be any radiation at all, 

let us consider a charge initially at rest at point A, which is accelerated in the x 

direction as shown in Figure 7-4. The acceleration lasts for a duration ∆t seconds 

until it reaches a point B after which the charge moves with a constant velocity v 

<< the velocity of light c to a point C and beyond. Remember that a signal cannot 

propagate faster than c. 

 We know that stationary charges and charges moving with a constant 

velocity do not radiate electromagnetic waves and have an electric field that is 

only radially outward. Thus the electric field lines when the charge is at A and at 

the point C are entirely radial. These electric field lines must be continuous since 

they are caused by the same charge. They are connected with "kinked" lines. 
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The kinks, that are disturbances in the electric field lines caused by the accelera-

tion of the charge, propagate with the speed of light. 

  
kink

A B C
x

no kink

no radiation 
     field 

radiation field Coulomb’s field

 

Figure 7-4. A charge that is accelerated does radiate electromagnetic waves. 

The dark lines are electric field lines E. 

 

 It takes ∆t seconds for the charge to move from the point A to the point B, 

therefore the separation between the two circles is approximately c∆t. In the 

kinks, there are components of electric field that are perpendicular to the 

Coulomb field. These transverse components are responsible for the radiation. 

Note that in this argument, there are directions where there are no radiated 

electric fields and only the static Coulomb field exists. The maximum radiated 

electric field will occur along the line that is perpendicular to the charge's ac-

celeration. 

 Consider a point L in Figure 7-5 that is normal to the direction of the 

charge's velocity at a certain instant. Let t be the time after the charge is acceler-

ated from a stationary point A to point B where it has a velocity v = a ∆t where a 

is the acceleration. We will assume that ∆t << t so the distance AB + BC ≈ BC = 

vt. 
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 At point L, there will be two components of an electric field. The first is the 

radial Coulomb field that is given by 
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Figure 7-5. The components of the electric field caused by a charge Q that is 

accelerated during a time ∆t from points A to B.  
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The radiation field Et can be computed from the triangle JKL 
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Solving (7.6) for Et, we obtain 
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 Eureka! This is what we were looking for!  There is a transverse 

component of the electric field that is proportional to the acceleration t/v ∆  and it 

has the proper spatial variation 1/R that is required in the Poynting vector (7.2). 

The minus sign that appears here is due to the direction of Et, that is opposite to 

the direction of the acceleration. From Figure 7-5, we note that there is a 
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preferred direction for this radiation. If we define the angle θ as being the angle 

between the point of observation and the velocity of the accelerated charge, (7.7) 

can be written with )c/(1 2
00 ε=µ  introduced as 

                                              
ρ

θ
π
µ

=
sin]a[

4
QE 0

t  (7.8) 

where [a]=a( c/t't ρ−= ) is the acceleration at an earlier time or as it is frequently 

called, a retarded acceleration of the charge taken in a previous moment t’. As it 

can be seen from Fig. 7-5 the signal needs time c/ρ=τ  to travel between points 

C and L.  This is the “propagation delay” due to the finite speed of light that we 

encountered in our earlier discussion of plane waves and transmission lines. 

 The magnetic field intensity Ht associated with Et can be computed by just 

using the characteristic impedance of the vacuum Z0 and the fact that the electric 

and magnetic field intensities are related by this characteristic impedance. We 

write including c/1Z/ 00 =µ  

                                               
ρ

θ
π

=
sin]a[

c4
QHt         (7.9) 

The Poynting vector is directed radially outward  and it's magnitude S is given by 

                                                2
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2
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22 sin
c16

]a[QS
ρ

θ
π

µ
=        (7.10) 

If we insert numerical values for the coefficient in (7.10), we find that a very small 

number will be obtained. Therefore, the requirement that must be satisfied for 

electromagnetic waves to be radiated from a source is that there be charged 

particles that are either accelerated or decelerated. A current with a time  

harmonic variation certainly satisfies this requirement and this will be the source 

that will be used for the antennas. Once this current is specified, the 

electromagnetic fields can be computed. We, of course, must keep in mind that 

the electric field at a distance ρ from the current element will be retarded  in time 

from this oscillating current. The retardation is given by Einstein's requirement 
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that things can go no faster than the velocity of light. Any effect will appear at a 

time ρ/c after the cause. 

 Now that a basic physical mechanism for radiation has been obtained, we 

are now able to describe the practical radiation characteristics of antennas. 

Several antenna structures will be examined in this chapter and important an-

tenna parameters will be defined.  
 
Example 7-2. Assume that an antenna could be described as being an ensemble 

of N oscillating electrons with a frequency ω in a plane that is orthogonal to the 

distance ρ. Find an expression for the electric field ⊥E  that would be detected at 

that location. 

Answer:  The maximum electric field is computed from (7.8) with 090=θ .  We 

obtain 

   





ρπ
µ

=





ρπ
µ

=⊥ dt
dJ1

4dt
dv1

4
NQE 00  

where the electric current density NQvJ = is introduced. This equation shows 

that radiation occurs when there is an oscillating current because the derivative 

dt/dJ  must be different from zero.  If we assume that the direction of oscillation 

in the orthogonal plane is x, then tsinx)t(x m ω=  and tcosxdt/dxv m ωω== . The 

substitution of these terms in the equation for the current density 

tcosNQx)t(J m ωω= . Finally, the expression for the transverse electric field 

becomes 

   'tsin1
4

NQx)t,(E 0m2 ω
ρπ

µ
ω=ρ⊥ . 
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This expression shows that the electric field is proportional to the square of the 

frequency which implies that radiation of electromagnetic waves is essentially a 

high-frequency phenomena rather than being a static occurrence. 
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7.2. Short electric dipole antenna 
 
 In order to apply the basic principles presented in the previous section, we 

will examine a very elementary antenna – the short electric dipole that is shown 

in Figure 7-6. The length of the antenna L is assumed to be short in comparison 

with the wavelength of the wave λ ( λ<<L ).  The small plates that are placed at 

the ends of the dipole provide capacitive loading. The short length and the 

presence of these plates result in a uniform current I along the dipole length. The 

dipole may be excited by a balanced transmission line such as a coaxial line. The 

radiation from the transmission line connection and the end plates of the dipole 

are considered to be negligible. The diameter d of the dipole is also small in 

comparison with its length ( Ld << ).  The current on this antenna follows directly 

from the equation of continuity 

  
dt
dQI =  (7.11) 

For a time-harmonic excitation with a frequency ω, (7.11) reduces to QjI ω= .  

The vector potential A can be calculated from the current density J in the 

wire using a three-dimensional generalization of the wave equation that was 

derived previously (5.10) in the case of the presence of a source 
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Figure 7-6. An oscillating short electric dipole radiates electromagnetic waves. 

 

Example 7-3. Show the vector-potential A satisfies a three-dimensional 

inhomogeneous wave equation (7.12). 

Answer: Recall Maxwell’s equations from Chapter 4 for a vacuum 
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=•∇

ε
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=•∇
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∂
∂

=×∇

∂
∂

−=×∇

E
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The magnetic flux density is found from the vector potential using the definition 

AB ×∇= .  The substitution of this relation into the second equation yields 

JEA 02 tc
1

µ+
∂
∂

=×∇×∇  

Using the vector identity for the repeated vector operation given in Appendix 1  

AAA 2∇−•∇∇=×∇×∇  , this equation becomes 
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  JEAA 02
2
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∂
∂

=∇−•∇∇  

Substituting 

  AB ×∇=  

into the first Maxwell equation yields 

  0
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=







∂
∂

+×∇
AE  or V

t
−∇=

∂
∂

+
AE  

This leads to  

  
t

V
∂
∂

−−∇=
AE ,  

where V is the scalar electric potential discussed in Chapter 2.  The substitution 

of this expression for E into the equation for the vector potential yields the 

following result 
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∂
∂

−∇=∇−•∇∇  

This equation can be simplified with the inclusion of one more constraint that 

relates the vector potential and the scalar electric potential.  This is called the 

Lorentz gauge 

  0
t
V

c
1
2 =
∂
∂

+•∇ A  

The application of this constraint leads to the wave equation for the vector 

potential 

  JAA 02

2

2
2
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1

µ−=
∂
∂

−∇ . 
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 A similar wave equation can also be derived for the scalar potential – this 

follows directly from the third Maxwell equation and an application of the Lorentz 

gauge.  We would obtain 

  
0

V
2

2

2
2

t
V

c
1V

ε
ρ

−=
∂
∂

−∇ . 

 

In the case of a static field, the second term on the left-hand side of (7.12) 

disappears and the equation reduces to Poisson’s equation.  It can be shown that 

(7.12) has a solution that is similar to the result that we obtained there. The only 

difference is that we must be cognizant of the finite velocity of light c.  This can 

be included by realizing that there are two distinct times that must be 

incorporated into the solution.  The current density J( 'r ) in the right-hand side of 

(2.131) must be replaced with the retarded current density [J] )c/Rt,'( −≡ rJ  in 

order to find the vector potential A(r, t) 

  'dv
R

)c/Rt,'(
4

)t,(
v

0 ∫
∆

−
π

µ
=

rJrA  (7.13) 

We leave it to the reader as an exercise to check that equation (7.13)  

is actually  a solution of the inhomogeneous wave equation (7.12). This equation 

takes into account the finite velocity of propagation for the electromagnetic waves 

c. The electric and magnetic fields radiated from the antenna can be found in 

terms of this vector potential A(r, t) as shown in Example 7-3. 

 We will now be able to obtain the general solution for the case of a short 

electric dipole antenna. A time-harmonic current density can be written as  

  ρ−=− jke)'r()c/Rt,'r( JJ  (7.14) 
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In writing this equation, we have defined the distance in the spherical 

coordinates.  The distance from the center of the dipole R = ρ and c/k ω=  is the 

wave number. The volume of the dipole antenna can be approximated as 

'Lds'dv = .  The current becomes ZuJ I'ds = .  Therefore, the vector potential can 

be calculated directly from (7.13).   

  







ρπ

µ
=

ρ− jk
0

z
e

4
)IL(uA  (7.15) 

 where (IL) is the current element of the radiating dipole.  This short dipole 

antenna is known as a Hertzian dipole. 

 Let us now find the field components at large distances from the antenna.  

In particular, we will make the assumption that these distances are much greater 

than the wavelength of the wave (ρ >> λ).  This is called the far field of the 

antenna.  In order to do this, we have to express the unit vector Zu in spherical 

coordinates as 

  θ−θ= sincosz θρ uuu           (7.16) 

The components of the vector potential ZuA ZA= in spherical coordinates are 

given by 

  

0A

sine
4

)IL(sinAA

cose
4

)IL(cosAA

jk
0

z

jk
0

z

=

θ







ρπ

µ
=θ−=

θ







ρπ

µ
=θ=

ϕ

ρ−

θ

ρ−

ρ

                     (7.17) 

 The magnetic field intensity is computed from the vector potential using 

the definition of the curl operation in spherical coordinates. We find that 
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          (7.18) 

where only the term in the far field or as it is called, the radiation field, is retained 

since 12k >>ρ
λ
π

=ρ . The electric field is computed from Maxwell’s equations that 

are applicable in a vacuum region in which the current density J = 0.  We write 

  
( ) ( )
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θ∂
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θρωε
=×∇

ωε
= ϕϕ HHsin
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j
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00
θρ uuHE  (7.19) 

The components of the electric field are calculated from (7.19).  In the far field 

region, we find them to be 

  

0E

sine
4

)IL(kjZE

0E
jk
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=

θ
ρπ

≈

≈

ϕ

ρ−

θ

ρ

 (7.20) 

where 377/H/EZ 000 ≈εµ== ϕθ ohms is the wave impedance of vacuum as 

noted in Example 5-11.  Equation (7.20) agrees with the result found in Example 

7-2 that was obtained using a different point of view.  This result could also be 

obtained by replacing the term Jj
dt
dJ

ω→ , including the retarded time (7.14),   

and making the substitutions 00 kZ→ωµ  and ILvJ →∆  (where v∆ is the antenna 

volume).  This is an entirely different approach to obtain the same result. 
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 Let us consider now the angular distribution of the radiated fields. Both 

θE and ϕH  are proportional to sinθ. This implies that there will be an angular 

variation for both fields and they both have a maximum value when 090=θ  

which is in the direction that is perpendicular to the axis of the dipole and they 

both have a minimum value when o0=θ  which is along the axis of the dipole. 

The angular variation of the electric field θE  is called the radiation pattern of the 

antenna.  The radiation pattern on a short dipole antenna is shown in Figure 7-7. 
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Figure 7-7MATLAB. Radiation pattern for a short dipole antenna. 
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Example 7-4. A small antenna that is 1 cm in length and 1 mm in diameter is de-

signed to transmit  a signal at 1 GHz inside the human body in a medical ex-

periment. Assuming the dielectric constant of the body is similar to that of distilled 

water (εr = 80) and that the conductivity σ can be neglected, compute the 

maximum electric field at the surface of the body that is approximately 20 cm 

from the antenna. The maximum current that can be applied to the antenna is 10 

µA. Find the new distance from the antenna 1ρ , where the signal will be 

attenuated by 3dB.  

Answer: The wavelength of the electromagnetic wave within the body is com-

puted to be 

  
cm3.3

8010
103

f
c

9

8

r

≈
×

=
ε

=λ
 

The characteristic impedance of the body is 

  
Ω≈=

εε
µ

= 42
80

377Z
r0

0
C

 

Since the dimensions of the antenna are much less than the wavelength, we can 

apply (7.20) for 090=θ and replace C0 ZZ → .Therefore 

  m/V320
2.0

1
033.0
242

4
10101kZ

4
IL|E|

25

C µ≈×
π

××
π
×

=
ρπ

=
−−

θ
 

The attenuation of 3dB implies that the power changes by a factor of 2 an electric 

field changes by a factor of 1.41.  The distance is found to be 

  
cm28m28.02.041.121 =≈×=ρ=ρ

  

The far field region is the most interesting for antenna applications.  In this 

region, both of the electromagnetic field components are transverse to the 

direction of propagation.  This is clearly seen from equations (7.19) and (7.20).  

In order to calculate the radiated power from this antenna, one just has to 
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perform the surface integration of the time-average Poynting vector as was 

shown in Example 5-13. 

       ( ) ∫ ∫∫
π
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ϕ φθθρ=•×=
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22
av0

S
av

*
r ddsin|H|Z

2
1Re

2
1P dsHE          (7.21)  

After a substitution from (7.19) into (7.21) and performing the integration over the 

variable φ which yields to 2π the expression (7.21) becomes   
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The last integral gives a factor of 4/3. The radiated power from this antenna is    

  
π

=
12

I)kL(ZP
2
av

2
0

r  (7.22) 

Here the constant current I can be replaced with its average value Iav assuming 

that there is a slow variation in space. 
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7.3. Long dipole antenna 

 We have now covered the basic idea of the radiation of electromagnetic 

waves from a short electric dipole antenna. As we take a short trip away from this 

book and into the hinterlands, we may see some tall structures that reach into the 

heavens and have flashing red lights at the top to warn passing airplanes. These 

antennas certainly do not seem to fall into the class of being “small”. Herein we 

will describe a technique to generalize our treatment of antennas so that more 

realistic antennas can be studied. 

 Let us consider two thin metallic rods having a total length L. The length of 

the long dipole (linear antenna) may be of the order of the free space wavelength 

λ of the electromagnetic wave that is to be radiated. A sinusoidal voltage 

generator whose frequency of oscillation is ω is connected between the two rods 

as shown in Figure 7-8. This voltage generator will induce a current in the rods 

that can have a distribution I(z) that is governed by the shape and length of the 

conductor. 

              

 

dz
z 

θ

ρ

ρ'

L 

current distribution I(z) 

 

Figure 7-8. A center fed dipole with an arbitrary current distribution I(z). 
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 It is reasonable to assume that the current distribution at the ends of the 

antenna (z = ± L/2) is equal to zero and that the current distribution is 

symmetrical about the center (z = 0). The first assumption is predicated on the 

idea that no conduction current could extend beyond the metallic surface. Since 

the antenna is "center-fed," symmetry arguments can be applied. The 

assumption for the approximated current distribution that is used in the integral 

requires some ingenuity since it is not a quantity that is measured in the 

laboratory. A typical requirement is that the current distribution is selected so 

certain integrals can actually be performed. Computers have now alleviated this 

restriction and more realistic distributions can be employed. However, finding the 

actual current distribution I(z) is a difficult task – an integral equation must be 

solved. The last one includes the boundary conditions and the investigator can 

iterate the solution starting from a very simple function that satisfies these 

conditions.  The iteration procedure is to initially assume a function for the current 

distribution, calculate the electric field resulting from this distribution, measure the 

electric field in the laboratory, and finally modify the initial choice for the current 

distribution and start the procedure over again.  For example, starting from a 

triangular one shown in Figure 7-9a and continuing on into a more realistic 

solution that is shown in Figure 7-9b.  This problem is a subject for an advanced 

course in electromagnetics and we will skip it here.  
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Figure 7-9. Two possible distributions of current on an antenna. (a) Initial 

triangular distribution. (b) Actual distribution ( 2/L λ= ). 

 One simple and quite reasonable approximation for the actual current 

distribution is the following sinusoidal function    

                                 













 −= |z|

2
LksinI)z(I m  (7.23) 

 The far field radiation properties such as the radiation power, directivity 

etc. are not very sensitive to the actual choice for the current distribution. 

However, the near field properties such as the input impedance etc. are sensitive 

to the actual shape. These terms will be defined in the next section. 

Example 7-5. Describe the excitation of a center fed dipole antenna using a 

transmission line model. 

  

 
 

)b(

)a(
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Answer: The current distribution of both the incident and the reflected compo-

nents of the current on an open circuited transmission line as discussed in the 

previous chapter are depicted in the figure. Its spatial distribution is sinusoidal as 

shown in (a). By bending the transmission line at λ/4 from the end, we form a 

half-wave dipole (L = λ/2) with the proper current distribution. This model has 

assumed that the terminating λ/4  of  the transmission line is unaffected by the 

bending of the transmission line. The actual distribution of the current on the line 

will be altered since the load is not infinite due to the fringing effects. 

 

 In order to develop the integration procedure, we start with a differential 

electric field due to a short electric dipole given in (7.20).  The infinitesimal 

current element IL is replaced with the current distribution at that particular 

location I(z)dz 

                                  ( ) θ
ρπ

=
ρ−

θ sin
'

edz)z(I
4

kZjdE
'jk

0  (7.24) 

The distance 'ρ  that appears here, can be written in terms of the distance ρ  

between the point of observation and the center of the dipole shown in Figure 7-8 

as 

                                      [ ] θ−ρ≈θρ−+ρ=ρ coszcosz2z' 2/122  (7.25) 

We are allowed to make this approximation since the field distribution in the far 

field is to be determined, that is ρ >> z. The difference in magnitude between 1/ρ’ 

and 1/ρ is insignificant and can be neglected. However, it is important that we 

incorporate this difference in the phase term e-jkρ’. Small changes in distance may 

be a reasonable fraction of a wavelength λ that could cause this term to change 

sign from a "+" to a "-". This will have dramatic effects as will be shown below. 

 In order to actually compute the electromagnetic fields radiated from an 

antenna, we have to select the distribution for the current and perform an inte-
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gration over the coordinate of the antenna z. This will be done with the current 

distribution given in (7.23) for which we write that 
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Before actually performing the integration required at this stage, let us comment 

on the terms within the integrand. The term with a sine is an even function in the 

variable of integration z as shown in Figure 7-9b. The product of this term and  

                                 ( ) ( )θ+θ=θ coskzsinjcoskzcose cosjkz  

will yield two terms, one of which is an odd function in the variable z and one that 

is an even function in the variable z. Since the limits of the integral are symmetric 

about the origin, only the integrand that includes the even function will yield a 

nonzero result. The integral (7.26) reduces to 
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After a lengthy integration, we finally obtain1  
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θ  (7.28) 

where the following explicit expression for the radiation pattern )(F θ is found 
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 (7.29) 

The final solution is a product of two terms. The first terms )(F1 θ corresponds to 

the radiation characteristics of a single element which is a short dipole with a 

                                                 
1 S. Ramo, J. Whinnery, T. van Duzer, Fields and Waves in Communication Electronics, J.Wiley,    
1965. 
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center, located at ρ = 0. The second term )(Fa θ  is sometimes called an array 

factor of the long dipole antenna. The  fact  that  the  radiation  is  the  product  of  
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Figure 7-10MATLAB. E-plane radiation patterns for center-fed dipole antennas of      

different lengths: (a) 2/L λ= ; (b) λ=L ; (c) 2/3L λ= ; (d) λ= 2L . The antenna 

with the dimension 2/L λ=
 
is called a half-wave dipole. In addition, the radiation 

pattern for a short dipole is indicated in (a) with a dashed line. 

these two terms is important in its own right.  Although the radiation from an 

infinitesimal element cannot be altered, it is possible to have control over the 
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array factor. This is the term that engineers can control.  This function depends 

also on the normalized length of the long dipole antenna kL=ξ .   

In Figure 7-10, we illustrate the E-plane radiation pattern for four different 

dipole lengths. The array in this case consists of an array of uniformly excited 

infinitesimal dipoles and the radiation pattern has the property that F(0o) = 0, 

while F(900) = maximum in the first two cases, but not in the third one, where the 

maximum shifts to θ = 450. The radiation for a half wave dipole is shown in Figure 

7-10a.  This can be compared with the radiation for the short dipole which is 

indicated with a dashed line.  The H-plane radiation patterns are azimuthally 

symmetric circles since )(F θ  is independent of the angleθ .   

 We note from Figure 7-10c that the maximum in the radiated power tends 

to shift away from 090=θ  as the length L is changed. If we set λ= 2L  in (7.29), 

we find that the radiation at 090=θ  is equal to zero (Figure 7-10d). The contours 

depicted in Figure 7-10 are called lobes.  The lobe in the direction of the 

maximum is called the main lobe  and the others are called side lobes. If we were 

to traverse about the antenna at a constant radius and monitored the received 

signal with a detector that was sensitive to the phase of the detected signal, we 

would note a phase shift of 180o as we move from one lobe to the adjacent one. 

The lobe structure is another example of constructive and destructive 

interference or phase mixing that was discussed when the topics of dispersion 

and group velocity were presented.  
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7.4. Antenna parameters 

 In addition to the radiation pattern for the antenna that was discussed in 

the previous sections, there are other parameters that are used to characterize 

an antenna. If we connected the antenna to a transmission line, we could think of 

the antenna as being merely a load impedance. The radiation of electromagnetic 

power into the external environment removes the power from the circuit and 

hence acts like a resistor that just heats up. This is depicted in Figure 7-11. We 

consider several important antenna parameters here.     

 

coaxial 
cable 

(a)                                   (b)

Zc LZ

(c) 
coaxial 
cable 

L

 

Figure 7-11. (a) An antenna that radiates electromagnetic energy is connected 

with a transmission line to a source of electromagnetic energy. (b) Coaxial cable 

connected to a ground plane. (c) Equivalent circuit of either structure. 
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   7.4.1. Radiation resistance 
 We consider the antenna shown In Figure 7-11c to be a load 

impedance ZL that is connected to the generator with a transmission line of 

length L that has a characteristic impedance ZC and a propagation constant γ. In 

order to compute the value of the load impedance ZL, we will have to return to 

Poynting's vector. Recall that this vector is a measure of the power density at a 

point in space that is calculated using the quantities in the electromagnetic wave. 

The total  power radiated from the antenna can be computed by surrounding the 

antenna with a large imaginary sphere whose radius is R as shown in Figure  

7-12. The radius R will be chosen so the surface of the sphere will be in the far 

field region. Then any power that is radiated from the antenna will have to pass 

through the sphere in order to propagate to distances greater than this radius R.  

As shown in Example 7-11, this radius can be approximated in terms of antenna 

size L to be λ≈ 2/LR 2 . 

 The total radiated power from the antenna is computed by integrating the 

time-average Poynting vector over this entire closed spherical surface. From 

(7.1), this becomes 

              
[ ]∫ ∫

∫
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2
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Re
2
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                      (7.30) 

The factor of (1/2) arises since we are considering a time - average  power over a 

temporal cycle of the oscillation.  As shown in Chapter 4, the conjugated value of 

H must be employed. This average radiated power can be considered to be lost 

as far as the source is concerned and therefore the antenna is similar to a 

resistor in that it is dissipating the power from the source. This resistance is 

called the radiation resistance  Rr and it is defined as 
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                                                               (7.31) (7.31) 

 

where I0 is the maximum amplitude of the current at the input terminals of the 

antenna. We will calculate the radiation resistance for the Hertzian dipole and a 

half-wave dipole as examples. 

  

 

R

  

Figure 7-12. Electromagnetic power radiated from an antenna will pass through 

a sphere of radius R. 
 

Example 7-6MATLAB. Find the radiation resistance of a short dipole. 

Answer: The radiated power Pr from Hertzian dipole is computed using (7.22).  

Substituting the terms for the Hertzian dipole into (7.22), using π= 120Z0  and 

λπ= /2k , and employing the definition (7.31), we obtain 
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where a uniform current distribution is assumed or 0av II = . If there were a 

triangular current distribution depicted in the next example, we could write  

Iav = Io/2   In this case, the radiation resistance is ¼ of the previous value  
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The frequency response of the radiation resistance (for 1kL <=ξ , or 

16.0/L <λ ) is shown in the figure below. The small values of the radiation 

resistance shows that this antenna is not very efficient.  Further comments 

concerning this antenna will be referred to Example 7-9. 
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Example 7-7. Find an expression for the radiation resistance of a short monopole 

antenna that is placed above a ground plane.  The length of the antenna is λ/8. 

Answer: The short electric monopole antenna near the ground is equivalent to a 

short dipole antenna with a length that is twice as long as shown in the figure 

below. The additional contribution is from the “image antenna.”  In order to 

ensure that there is an excellent ground plane beneath the monopole antenna, 
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conducting wires are typically implanted underneath the antenna and emanate 

radially away from the monopole a distance that is approximately equal to the 

height of the antenna. 

 

 

Actual current 
distribution 
Uniform current 
distribution 

ground
image

  

It is possible to estimate the validity of the approximation for a short dipole 

that is λ/4 in length.  From the previous example, the radiation resistance is 

computed to be he 3.12Rr ≈ Ω , while the actual value obtained from the theory 

of the linear antenna is1 7.6Rr = Ω . Hence, even for this small length, the short 

dipole approximation is not a valid approximation.  

 

Example 7-8MATLAB. Obtain the frequency response of the radiation resistance 

for a linear antenna.  

Answer: The expression for the radiation resistance of a linear antenna is much 

more complicated, than that derived in Example 7-6. It involves new special 

functions involving sine and cosine integrals and it is usually considered in the 

books on advanced electromagnetics1.  We are only interested in illustrating this 

result as shown in the figure. One can see that for the popular case of a half-
                                                 
1  C. Balanis, Antenna Theory, J. Wiley, 1997. 
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wave dipole the radiation resistance is found to be 1.73Rr = Ω  has shown in 

Problem 10, which is very close to the measured value. 
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  7.4.2. Directivity 
 The equation for the radiated power (7.30) can be written not only as a 

surface integral of the time-average radial component of Poynting’s vector 

{ }∗
φθρ = HERe

2
1S , it can also be written also as an integral over a solid angle. For 

this purpose, we define the radiation intensity as ),(SR),(I 2 φθ=φθ ρ  which yields 

to following representation of the radiated power 

 
  ∫

π

Ωφθ=
4

r d),(IP  (7.32) 
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 The ratio of ),(I φθ divided by its maximum value is the normalized power 

radiation pattern 

  
max

n ),(I
),(I),(I

φθ
φθ

=φθ  (7.33) 

 The beam solid angle of the antenna is defined as 
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4
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In a complete sphere, there are π4  steradians. From the definition, it follows that 

for an isotropic antenna that 1),(In ≡φθ  and the beam solid angle is π=Ω 4A . 

 The next parameter that defines an antenna system is the directivity. The 

directivity of an antenna is defined as the ratio of the maximum radiation intensity 

of a transmitting antenna divided by the the average radiation intensity from an 

isotropic radiator with the same input power is given by 

 

            (7.35)                            

 

Because the denominator ΩA is always less than 1, the directivity D > 1. 

Example 7-9. Find the directivity of the Hertzian dipole.  

Answer: Use the definition (7.35) for the directivity including the normalized 

radiation intensity for a short dipole θ=φθ 2
n sin),(I  and obtain  

                           
( )

5.1
2
3

2
3
2
2

cosd1cos

2

dsinsin2

4D

0

2

0

2

≡=
+−

=
θ−θ

=
θθθπ

π
=

∫∫
ππ

.  

For the short dipole, the directivity is 5.1D =  or 76.1)5.1(log10 10 = dB. 

 

 A more complicated calculation performed for the half-wave dipole leads 

to a little higher value for the directivity 64.1D = or 2.15 dB as given in Problem 9. 

  

A
4

n

max 4
d),(I

4
4/P
),(ID

Ω
π

≡
∫ Ωφθ

π
=

π
φθ

=

π
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  7.4.3. Antenna gain 
 The gain is a global characteristic of the antenna. Because of this, the 

antenna efficiency η  is involved and it is related to the directivity of the antenna. 

By definition the gain is 

  DG η=  (7.36) 

For the case of lossless antenna, 1=η  and the gain is equal to the directivity.  

For a lossy antenna, 1<η  and the gain is less than the directivity. 

 

  7.4.4. Beam width 
 The half-power beam width (HPBW) is a property that refers only to the 

the main lobe.  It tells nothing about the side lobes. By definition, it is defined by 

the angle HPθ where the power radiation pattern assumes one-half of the 

maximum value.  In the case of rotational symmetry, this value is 2/1)(In =θ .  It is 

reasonable to approximate the directivity of an antenna in terms of the beam 

width 

  
HPHP

4D
φθ
π

≈  (7.37) 

 

Example 7-10. Find the HPBW of a short dipole. 

Answer: The normalized radiation intensity for the electric field of a short dipole 

is given by θ=φθ 2
n sin),(I  and it has a maximum value 1In =  for 2/π=θ . The 

value 2/1In =  is found at the angles ;4/π=θ  4/3π .  Therefore, the HPBW for 

the electric field is 2/HP π=θ . The normalized radiation intensity for the magnetic 

field of a short dipole is 1),(In ≡φθ .  The HPBW for the magnetic field intensity is 

π=φ 2HP .  From (7.37), we can approximate the directivity to be 27.1/4D =π≈ .  

The value that was computed in Example 7-9 was  5.1D = . 
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  7.4.5. Effective aperture 
 Several of the parameters that we have already encountered in describing 

the radiation from an antenna can also be used to describe the reception 

characteristics of an antenna.  This is based on a principle that is called 

reciprocity and it is certainly valid in a vacuum.  There are certain parameters that 

are more common for antennas that are used for a receiving antenna.  One of 

these that is used to characterize a receiving aperture antenna is the effective 

aperture or its reception cross-sectional area. The effective area eA  of a 

receiving antenna is defined as the ratio of the average power PL delivered to a 

load impedance that is matched to the antenna if there is an average power 

density Sav incident upon the antenna 

                                                π
==

240
E

Z2
ES

2

0

2

av  
(7.38) 

It is reasonable to assume that there is a plane wave that is incident upon the 

receiving antenna that is terminated with a matched load impedance ZC as 

shown in Figure 7-11c. Assume the incident wave arrives in the direction of the 

maximum of the radiation pattern. Then 

                                                           eavL ASP =  (7.39) 

 As you may recall from the circuit theory that the maximum power can be 

delivered to a load if it has a value that is equal to complex conjugate of the 

antenna impedance ∗= AL ZZ . Replacing the antenna with an equivalent 

generator having the same voltage V and impedance AZ , we obtain a current at 

the terminals to be 

  
LA

0 ZZ
VI
+

=  (7.40) 

Therefore, the maximum power that is dissipated in the load is given by  

                              
A

2

L

2

AA
L

2
0L R8

VR
ZZ

V
2
1RI

2
1P =








+

==
∗

 (7.41) 
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where we have defined AAA R2ZZ =+ ∗ . 

 For the Hertzian dipole, the antenna resistance rA RR =  was calculated in 

Example 7-6 and the maximum voltage in the direction θ = π/2 was found to be 

ELLsinEV =θ=  

                                                  2

22

2
2

2

L 640
E

L808

)EL(P
π

λ
=









λ
π×

=

 (7.42) 

 For the Hertzian dipole, we find the effective area to be  

  π
λ

=







π
λ

=
8
3

2
3

4
A

22

e  (7.43)  

using (7.39), (7.38) and (7.42).  The effective aperture and the directivity of a 

short dipole antenna can also be obtained and it is written as 

    (7.44) 

  (7.44) 
 

   7.4.6. Friis transmission equation 

 In this section, we obtain the relation between an antenna that is used for 

transmission and another antenna which is used for reception.  This is depicted 

in Figure 7-13. 

         

 

 

 

Figure 7-13. Two antennas separated by a distance R. 

D
4

A
2

e π
λ

=

 

,

,

A 

B

θ

θ φ

φA A

B B

R



 Antenna parameters 

625 

 Let antenna A in Figure 7-13 transmit to antenna B. Both antennas are in 

the far field region. The gain of the transmitting antenna A in the direction of B is 

GA which in the lossless case is equal to DA. Hence, the time-average power 

density at B is 

                                                 t2
t

av G
R4

PS
π

=  (7.45) 

Write (7.39) for the received power and replace the gain of antenna A by the 

effective aperture t,eA using (7.44) and obtain 

          r,e2
t,e

2
t

r,et2
t

r,eavr A
A

R
PAG

R4
PASP

λ
=





π

==  (7.46) 

This can be written as  

    (7.47) 

                                
   

Equation (7.47) is called the Friis transmission equation. 

Example 7-11. Find a criterion that a receiving antenna is in the far field of a 

transmitting antenna. Make an estimation for the distance d of the far zone if 

D=10cm and λ=3cm. Assume that they have antenna gains 5.1GA = and 

64.1GB = respectively and find the ratio tr P/P at that distance. 

         

 

D 

∆ 

R 

point 
source 

R- ∆

 

22
r,et,e

t

r

R
AA

P
P

λ
=
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Answer: A requirement that the Friis transmission equation be applicable is that 

both antennas be in the far field. The  radiation from a point source is always in 

the far field. The receiving antenna will be in the far field if the incident spherical 

wave deviates from a plane wave by only a fraction of a wavelength. The largest 

dimension of the receiving antenna is D. This implies that the deviation ∆ is ap-

proximately 4/λ≈∆ which means a phase difference 090 . From the figure, we 

write 

  ( )
4

DR2R
2
DRR

2
2

2
22 +∆−≈






+∆−=  

This implies that the receiving antenna will be in the far field or the Fraunhofer 

zone if the second term is at least comparable with the third one or 
∆

≈
8
DR

2

.  This 

means 

   
λ

≈
2
DR

2

.  

 For the particular values, we obtain cm7.16
03.02

1.0R
2

=
×

=  - beyond this 

distance, the receiving antenna will be in the far field region of the transmitting 

antenna. 

 Applying (7.44) for the lossless case yields the effective apetures of both 

antennas to be 

                2
2

t,e cm07.1
4

5.103.0A =
π
×

= ;  2
2

r,e cm17.1
4

64.103.0A =
π
×

= . 

The Friis equation (7.47) gives the ratio  

  4
22

t

r 105
37.16
17.107.1

P
P −×=

×
×

=   

The degradation of a received signal is approximately 

   dB33)105(log10 4
10 =×− − . 
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7.5. Magnetic dipole antenna 

 We will find the electromagnetic fields that are radiated from a short 

magnetic dipole  as being a second example of a small antenna. The magnetic 

dipole consists of a small filamentary loop whose radius is a. The loop carries a 

harmonic current tcosI)t(i ω=  around its circumference. This antenna is depicted 

in Figure 7-14, where 1a2ka <<
λ
π

≡  is assumed. The retarded vector potential 

resulting from this current loop is determined from (7.13). Since the current is 

confined to the loop, this integral becomes  

                                       'dl
'

e
4 L

'jk
0 ∫ ρπ

µ
=

ρ−IA  (7.48) 

where ϕ= uI I and the time harmonic term tje ω is understood to be included. This 

integral is not easy to evaluate since the terms within the integrand depend on 

the particular location where dl' is being evaluated. We can, however, obtain an 

approximate solution that will illustrate the expected behavior using the following 

procedure.1 The exponential term can be written as 

                                 ( )[ ])'(jk1eeee jk)'(jkjk'jk ρ−ρ−≈= ρ−ρ−ρ−ρ−ρ−  (7.49) 

In expanding the second exponential term, we have made the approximation that 

the loop is small with respect to the distance ρ  between the center of the loop 

and the point of observation ( ρ<<a ). This is very similar to the approximation 

that we first encountered in describing an electrical dipole.  Hence (7.48) can be 

written as  

 

  ( ) 







−

ρ
ρ+

π
µ

= ∫∫ϕ
ρ−

LL

jk0 'dljk
'
'dljk1e

4
I uA  (7.50) 

 
                                                 
1 In order to obtain analytical solutions in electromagnetics, we have to resort to many  
approximations. The ingenuity of the practitioner is tested when it comes to making sure that the 
approximations are reasonable. The success of the practitioner is tested when it comes to 
deciding what "reasonable" means. 



Magnetic dipole 

628 

             

 

φ

x 

y

z

Idl’ 

a

θ

ρ
ρ'

E 

H 

u ρ

 

                    Figure 7-14. A magnetic dipole. 

                             

The second integral is equal to zero since this integral is akin to running around 

in a circle, we just return back to the original starting point and have progressed 

nowhere. The first integral is evaluated in Example 7-12.  

Example 7-12. Evaluate the integral ∫ ρL '
'dl .

 

Answer: Use the vector identity (see Appendix 1) 

                                           
( ) dsun •∇×= ∫∫

∆SL

bdl'b  

to convert the closed line integral into a surface integral. The scalar quantity b is 

equal to '/1b ρ= . With reference to Figure 7-14, we note that zn uu =  since the 

loop is in the xy plane. Therefore 

                        
∫∫∫
∆

ϕϕ
∆

•







ρ

×−=•







ρ

∇×=
ρ S

2
'

SL

ds
'

ds
'

1
'
'dl u

u
uuu ρ

zz      

where  

                                                     2''
1

ρ
−=

ρ
∇ ρu
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For large distances from the current loop, we can replace the amplitude and the 
unit vector with ρ≈ρ' and ρρ' uu ≈ . With these approximations, the integral 

becomes 

                              ∫∫
∆

ρ

∆

ρ

ρ

×
=

ρ

×

S
2

z

S
2

z ds
)(

ds
)( uuuu

  

The surface integral yields a factor of 2aπ . Finally, we make use of the vector 

relation θ−θ= sincos θρz uuu to compute in spherical coordinates that 

                                                θ=× φ sinuuu ρz   

Hence, the final result of the integrations yields 

  θ
ρ
π

=
ρ∫ sina
'
'dl

2

2

L
. 

 

 We find from (7.50) that the final evaluation of this integral leads to the 

vector potential in the far field being written as                                                   

   ( )
θ

ρπ
πµ

≈θ
ρ
ρ+

π
πµ

=
ρ−

ϕ

ρ−

ϕ sine
4

k)aI(jsinejk1
4

)aI( jk2
0

2

jk2
0 uuA  (7.51) 

We recognize the term )aI( 2π  from Example 2-26 as being the magnitude m of 

the magnetic dipole moment  zum )aI( 2π= . 

 Having found the vector potential, we can evaluate the electromagnetic 

fields in the far field using (7.18) and (7.19)  

  θ
ρπ

ωµ
−≈

ρ−

θ sine
Z4
mkH

jk

0

0  (7.52) 

  θ
ρπ

ωµ
≈−=

ρ−

θφ sine
4

mkHZE
jk

0
0  (7.53) 

 If we compare (7.52) - (7.53) with (7.18) and (7.20), we note a similarity in 

the field components of the short magnetic dipole and the short electric dipole. In 

the far field, the magnitude of the two fields each decay as 1−ρ , the ratio of the 

two fields is equal to the characteristic impedance Z0 of free space, and the 

radiation pattern θ=θ sin)(F  is the same and is shown in Figure 7-7. The 
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directivity of the short magnetic dipole antenna is also 5.1D =  as in the case of a 

short electric dipole that was evaluated in Example 7-9. 

 Using the definition (7.31) for the radiation resistance and assuming a 

uniform current distribution, we obtain  

     42
r )ka(20R π=  (7.54) 

The radiation resistance is different than we found in Example 7-6 for a short 

electric dipole. 

Example 7-13. Find the current that is required to radiate 10 watts from a loop 

whose circumference is equal to λ/5.  

Answer: Applying (7.54) for the case of 2.0/a2ka =λπ= , we obtain 

  316.02.020R 42
r =×π×= Ω . 

The radiated power can be found from (7.31) to be 

  2
rr IR

2
1P =  

which yields the current  

  95.7
316.0
102

R
P2I

r

r =
×

== A. 

It should be apparent that the small antenna would not be very useful in radiating 

large amounts of power. 

   

 Next, it will be of some interest to find a suitable expression for the 

radiation resistance of a long magnetic dipole (or a loop antenna) where the 

radius a is comparable with the wavelength, or 1ka ≥ . Again, it is a difficult task 

to find the actual current distribution – this yields to the solution of a proper 

integral equation. The current distribution strongly depends on the type of the 
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voltage exciatation. For the special case of a sinusoidal current distribution 

suitable equations and plots are available2.  

  
 

                                                 
2 S.V. Savov, “An efficient solution of a class of integrals arising in antenna theory”, IEEE 
Antennas & Propag. Magazine, vol. 44, Oct. 2002, pp. 98-101. 
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7.6. Aperture antennas. Diffraction of waves 
 

7.6.1. Diffraction of waves. Huygens’ principle 

 In Chapter 5, two effects concerning an electromagnetic wave incident 

upon an interface between two different dielectrics were considered, namely 

reflection and transmission. These effects can be interpreted in terms of 

constructive and destructive interference of a large number of elementary fields, 

each with a suitable amplitude and phase. In this section, we describe a new 

effect that is called diffraction. It usually appears near a sharp boundary such as 

an edge between a dielectric and a metal surface such as a knife edge. The 

understanding of this phenomenon is based on Huygens’ principle which states 

that each point of a primary wavefront can be considered to be the source of a 

secondary spherical wave that propagates radially from that point.  It is possible 

to construct a secondary wavefront from the envelope of these secondary waves. 

This fundamental principle that is widely used in physical optics is illustrated in 

Figure 7-15. This principle can be used to explain the “bending of plane waves” 

around obstacles or as it is properly known as the diffraction of waves. 

  

 

 primary wavefront
 secondary wavefront 
          envelope 

 point source

 secondary spherical 
            waves 

 
Figure 7-15. Illustration of Huygens’ principle in physical optics. 
  

In order to illustrate diffraction, we consider a plane electromagnetic wave 

that is incident upon a metallic surface that occupies half of the region of interest.  
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This is shown in Figure 7-16a.   The application of Huygens’ principle states that 

the electric field at an arbitrary point of the secondary wavefront envelope can be 

obtained from the following integral  
( )

dxeEdEE
a

jk

0

axisx
over

∫∫
∞ δ+ρ−

−
ρ

==  (7.55) 

where dE is the differential electric field at point P due to the point source at a 

distance x from the origin O, as shown in Figure 7-16b. The term δ  reflects the 

distance between two equiphase contours and it is written as  

ρ
=








−
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+ρ≈













−






















ρ

+ρ=ρ−+ρ=δ
2
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2
x11x1x

2

2

2
2/12

22  (7.56) 

where we have assumed that ρ<<δ .  Keeping the quadratic term in (7.56) is 

called the Fresnel approximation, while keeping the linear term only is called the 

Fraunhofer approximation. Geometric optics neglects the effects of diffraction 

and rays rather than the waves are considered. 

 Defining ρλ= /2q2  and qxu = leads to the following expression for the 

electric field at the point of observation 
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q
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dxeeEdxeeEE
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2
ujjk0
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2

∫
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∞
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−
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∞
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ρ
=

ρ
=

ρ
=

 (7.57) 

The last integral can be written as 

  











−

ρ
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π
−

∞ π
−ρ−

qa

0

2
uj

0

2
ujjk0 dueduee

q
EE

22

 (7.58) 

The integrals in (7.58) are of the form of a well studied integral in optics and are 

called Fresnel integrals1.  The solution of these integrals is given using the 

following expansion 

                                                 
1 M. Abramowitz, I.Stegun, Handbook of Mathematical Functions, NY: NBS, 1964. 
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−
ρ

= ρ− qajSqaC
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j1e
q
EE jk0  (7.59) 

where the Fresnel cosine integral and Fresnel sine integral are defined as   
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 π
=

 (7.60) 

 

 

 incident wavefront conducting 
  half-plane 

 E0 
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 ρ a 
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 ρ+δ  secondary
   sources 

 
 Figure 7-16. (a) Plane wave incident upon a conducting half-plane.  

(b) Physical optics interpretation of the diffraction by a conducting edge using 

Huygens’ principle. 

 

A graph of S(qa) as a function of C(qa) is known as Cornu’s spiral and it is 

presented in Figure 7-17 where the parameter 
ρλ

=
2a2qa . The MATLAB-

calculation of the Fresnel integrals is based on the computation of the complex 

error function. Both the Fresnel cosine integral and the Fresnel sine integral are 

odd functions and their asymptotic values are 5.0± . 

 The average power density avS  in (W/m2) is calculated using the Poynting 

vector and we write   

      
















 −+



 −==

22

0
0

2

av )qa(S
2
1)qa(C

2
1

2
1S

Z2
|E|)qa(S  (7.61) 
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Figure 7-17MATLAB. Cornu spiral showing the Fresnel integrals C(qa) and S(qa) 

as a function of the parameter pa ( )5qa5 <<− .  The final asymptotic values 

as ±∞→qa  are C(qa) = S(qa) = ±0.5. 

 

where 

  
ρ
λ

=
0

2
0

0 Z2
ES        W / m2 (7.62) 

is called the power density function of the incident wave at the point of 

observation if the obstacle were not present.  The following coefficient is defined 

as a field diffraction coefficient D 
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ED  (7.63) 
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The power diffraction coefficient is defined as the ratio of the average power at a 

point in the presence of a obstacle divided by the average power at the same 

point in the absence of this obstacle 0av
2 S/S|D| = . 

Example 7-14MATLAB. Plot the power diffraction coefficient for an obstacle that 

occupies ½ of the region.  Compare the physical optics solution with the 

geometric optics solution. 

Answer: Our calculations are based on equation (7.63). The result is plotted in 

the figure below. The physical optics solution is indicated with a solid line and the 

geometric optics solution is indicated with a dashed line. The region 

0qa > corresponds to the shadow region, while the region 0qa < corresponds to 

the illuminated region. It is obvious that the geometric optics (GO) solution 

predicts a sharp transition at the border 0qa =  while the physical optics (PO) 

solution predicts a smooth transition between the shadow and the illuminated 

regions. This has been experimentally verified. Because of the fact that 

0)0(S)0(C == , the physical optics solution (7.63) predicts a diffraction coefficient 

5.0)0(D = , which means that the power diffraction coefficient on the border is 

25.0|)0(D| 2=  as can be seen in the figure below. 

 The constructive and destructive interference between the incident wave 

and the diffracted wave as calculated from Huygens’ principle is responsible for 

the oscillations in the diffraction coefficients in the illuminated region close to the 

border. The power diffraction coefficient reaches a maximum value that is close 

to 4.1|D| 2≈ . In the shadow region, this coefficient smoothly drops to zero. 
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 In the deep shadow region ( 3qa > ), the following approximation for the 

diffraction coefficient is applicable 

  22

2
2

a4qa
1

2
1|D|

π
ρλ

=







π

≈  (7.64) 

This simple expression explains the fact that in the shadow region with ∞→a , 

the diffraction coefficient 0D → . However, for a fixed distance a, this coefficient 

increases with increasing distance between the observer and the screen ρ and 

also with increasing wavelength λ. 

Example 7-15. The direct ray between the transmitting antenna (TX) and the 

receiving antenna (RX) is obstructed by an obstacle. Assuming this obstacle acts 

as a knife edge, calculate the power attenuation 2|D| (dB ) of the diffracted ray by 
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the obstacle with respect to the direct ray at a typical mobile communication 

frequency of 1 GHz. Assume the obstacle is placed 5 m above the line of sight 

(LOS) between the TX and the RX, which are separated by a distance 40 m and 

the obstacle lies in the middle as shown in the figure. 

  

 Q

 LOS 
  direct ray

O

P
 ρ=18.19m 0 dB 

 a=9.70m  diffracted ray 
5 m

20 m20 m

 R  T 

 
Answer: From the figure, we find the incident ray from TOP∆  

  62.20520POTOTP 2222 =+=+= m PR= , 

The distance in the shadow region is found from the similar triangles 

  TOPTQR ∆∝∆ ⇒  
TP
TR

PO
QR

=  

  70.9
62.20
405

TP
TRPOQRa ≈

×
=

×
== m 

and the distance from the screen is found from PQR∆ to be 

  19.1870.962.20QRPRPQ 2222 ≈−=−==ρ m. 

For the frequency 1f = GHz , the corresponding wavelength is 3.0f/c ==λ m. In 

this case the characteristic parameter is 87.5/a2qa 2 ≈ρλ= >3. Applying 

(7.64), we obtain 

  0015.0
70.94

3.019.18
a4

|D| 2222
2 =

×π
×

=
π
ρλ

=  

or 

  3.28|D| 2 −= dB. 

Hence, the obstacle causes an attenuation of 28.3 dB in the diffracted signal 

compared with the direct signal. Since the actual shape of the obstacle is more 

complicated than a simple knife edge, the measured attenuation is usually higher 

and it may be more than 30 dB. 
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7.6.2. Slot antennas. Babinet’s principle 

 If a slot is cut in a large flat metal sheet and a transmission line is 

connected to the points AA’ shown in Figure 7-18a, this system will radiate 

because of the induced time varying current flowing on the sheet. The analysis of 

such a slot antenna is greatly facilitated by considering the slot’s complimentary 

structure - a dipole antenna, which is shown in Figure 7-18b. The background of 

this duality is based on Babinet’s principle first applied in optics. Let us assume 

that the dipole terminal impedance is dZ and the slot terminal impedance is sZ . 

Applying this principle to electromagnetics, it was shown that there is a simple 

relationship between them2 

      
d

2
0

s Z4
ZZ =  (7.65) 
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sheet

L

L

w
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Figure 7-18. (a) Slot antenna and (b) complimentary dipole antenna. Both have 

the same length L and width w. They are fed by a transmission line at the 

terminal points AA’. 

                                                 
2 J. Kraus, Electromagnetics, Mc Graw-Hill, 1984. 
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Example 7-16. Calculate the slot impedance of the half-wavelength slot antenna 

assuming w << L. 

Answer: In Example 7-8, we found that the input resistance of the dipole is 

1.73Rr = Ω . To find the input reactance, another method has to be employed – 

the result is 5.42Xr = Ω . This means that the dipole input impedance is 

5.42j1.73Zd += Ω . Substituting this value into (7.65) yields the following value 

for the slot input impedance 

      2.211j3.363
5.42j1.73

4/377Z
2

s −=
+

=  Ω . 

   

7.6.3. Horn and reflector antennas 

 Another option for the slot antenna shown in Figure 7-18a is to have it 

excited with a rectangular waveguide that is operating in the lowest order mode 

TE10 – see (5.92) with n=1. The electric field in the termination plane that is 

located at z = 0 is 

   ( )zktj
0yy

1,Ze
L
xsinEE −ω





 π=  (7.66) 

where the z-axis is normal to the flat conducting sheet and the propagation 

constant in this direction is obtained from (5.94) 

   
22

1,Z Lc
k 






 π−






 ω=  (7.67) 
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We can simply avoid the time-harmonic exponential factor and at the terminal 

plane, the exponential multiplier can be set equal to 1. This yields a sinusoidal 

aperture field distribution that can be calculated using Figure 7-19 

   





 π=

L
xsinEE 0yya  (7.68) 

  

 

 w
L

 z 
x

 y
P φ

θ

ρ

 

 Figure 7-19. Rectangular slot antenna excited by a waveguide.  

 

 In the far field, we can introduce a Fraunhofer approximation into Huygens’ 

principle (7.55). The result of this introduction leads to the calculation of the 

electric field at the point P being the two-dimensional Fourier transform of the 

distribution on the electric field in the aperture 

 dxdye
L
xsinECdxdye)y,x(EC)P(E )ykxk(j

L

0
0y

w

0

)ykxk(j
ap

YXYX +−+− ∫∫∫ ∫ 





 π==     (7.69) 

where the transverse components of the wave vector are φθ= cossinkk X  and 

φθ= sinsinkk Y . The integration of (7.69) yields the following normalized 

radiation pattern for the open waveguide slot antenna 

   ),(F),(F),(F Xy φθφθ=φθ  (7.70) 

where 
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Finally, the amplitude of the radiation pattern for an open rectangular waveguide 

is 
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 π=φθ . (7.73) 

The radiation pattern )(FE θ in the plane φ = 90o that is called the E-plane is 

   
θ







 θ

=θ
sin

2
kw

sin
2

kwsin
)(FE  (7.74) 

and it is shown in Figure 7-20a.  The radiation pattern )(FH θ in the plane φ = 0o 

that is called the H-plane results in 

   22

2

H
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2

kL
2
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2

kLcos

2
)(F







 θ−






 π







 θ







 π=θ  (7.75) 

and it is plotted in Figure 7-20b.  These results are for the particular case 

mm30=λ , mm23L = , mm10w = . Because of the fact that L > w, the H-field 

pattern is narrower than the E-field pattern. 
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Figure 7-20MATLAB. (a) E-field radiation pattern; (b) H-field radiation pattern.  

 

 In order to improve the radiation pattern and to increase the directivity D of 

this antenna, it is necessary to better match the waveguide with free space. This 

can be achieved by changing the shape and the size of the radiated end of the 

waveguide.  They result is called a horn antenna that is shown in Figure 7-21. 

The expansion of the dimensions of the radiating aperture introduces a quadratic 

phase term which in turn complicates the analysis. The radiation patterns are 

expressed again in terms of Fresnel integrals (7.60).  
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   Figure 7-21. Horn antenna. 

  

 One way to compensate for this additional phase term is to change the 

shape of the antenna that could lead to an antenna that is called a reflector 

antenna. Let us consider a parabolic reflector antenna shown in a cross section 

in Figure 7-22. Let us place the point source at the focal point of the parabola O. 

Assuming that the dimensions of the parabola are much larger than the 

wavelength λ , we can apply geometric optics. To achieve an equiphase 

excitation in the aperture plane, we have to construct a curve such that the path 

lengths of the different rays must be equal.  This implies that the profile must be a 

parabola. This means that the electrical distance OAO = OBC or that 

θ+= cosRRL2 , which yields 

   
θ+

=θ
cos1
L2)(R  (7.76) 

This equation defines a parabola with a focus O. The parabolic reflector 

transforms the spherical wavefront of the point source into a plane wavefront. 

This equiphase excitation in the aperture plane guarantees a high directivity of 

the antenna. 
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   Figure 7-22. Reflector antenna. 

 

Example 7-17MATLAB. Find the radiation pattern of a uniformly excited circular 

aperture with a radius a=1m, λ=10cm shown in Figure 7-22.  

Answer: We assume a uniform aperture excitation in order to evaluate the far-

field expression (7.69). In addition, we introduce polar coordinates in the aperture 

plane: ψ= cosrx  and ψ= sinry . This yields 

   ( ) ψ= ∫∫ ϕ−ψθ−
π

rdrdeC)P(E
a

0

cossinjkr
2

0

 

The integration over the variable θ is accomplished using the following identity3 

   ( )zJ2de 0

2

0

cosjz π=ψ∫
π

ψ−

                                                 
3 M. Abramowitz, I.Stegun, Handbook of Mathematical Functions, NY: NBS, 1964. 
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where )z(J0 is a Bessel’s function of the first kind and zero order. The application 

of the following integral identity leads to 

    )z(zJzdz)z(J 10 =∫   

where )z(J1  is a Bessel function of the first kind and first order. Finally, the far-

field pattern is obtained  

   
ζ
ζ

=θ
)(J2)(F 1 .  

where θ=ζ sinka .  A plot of the radiation pattern is presented in the figure below. 

MATLAB has an intrinsic special function ‘besselj’ for the calculation of the 

Bessel functions of the first kind.  

 Here the normalized radius of the aperture is 83.62/a2ka =λ×π= . The 

half-power level -3dB is reached for the argument 62.1=ζ . This yields for the half 

beamwidth 0θ the result 1.62=62.83sin 0θ  from which we compute the half-power 

beam-width HPBW = 2.950.  The side-lobe level related to the first side-lobe is 

found to be SLL = -17.57 dB. The reflector antenna has a very high directivity. 

Usually, the effective aperture is close to the physical one, so 2
e aA π≈ . Then 

(7.44) yields for the directivity: 3948a2A4D
2

e2 =







λ
π

≈
λ
π

= or dB36D ≈ ! 
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  7.7. Antenna arrays 
 In many antenna applications, we will not find a single antenna that 

radiates electromagnetic energy.  There will be a number of antennas that will be 

used radiate the energy in a desired direction.  We will examine one method of 

accomplishing this goal here. The technique to accomplish the desired radiation 

pattern that we will study is to set up an antenna array.     

 An antenna array is defined as a group of antennas that are arranged in 

prescribed physical configurations such as a straight line, a rectangle, a circle, 

etc.  Each of the individual antennas is called an element of the array.  We will 

initially assume that each of the elements that compose the members of the array 

are physically identical.  However, the amplitude and the phase of the excitation 

that is applied to each individual element may differ.  This is a simplification that 

will be useful.  The far field radiation from the array in a linear media is computed 

from the vector addition of the components of the electromagnetic fields that are 

radiated from the individual elements.  This is called the principle of 

superposition.   

 There are several possible configurations for an antenna array.  We will 

initially examine an antenna array where the elements are located in a straight 

line. Such an array is called a linear array.  To introduce the procedure, we will 

first examine an array that consists of two elements that are excited with the 

same amplitude signals but with different phases that differ by an amount ψ.  

This simple array will provide an illustration of the concept on the array. 

 A linear array consisting of two elements is shown in Figure 7-23.  The 

individual element can be characterized by its element pattern ),(F1 φθ  that 

generalizes our previous definition to the dependence on both angles in spherical 

coordinates. 
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  Figure 7-23. A two-element linear array. 

 At point P, the total far field electric field component consists of the sum of 

the contributions of the two individual elements 

                  2/j
2

2/j
1 eEeEE ψ−ψ +=

 (7.77) 

where E1 is the electric field at distance ρ1 due to source (1), E2 is the electric 

field at distance ρ2 due to source (2) and the phase difference between the fields 

of the two sources due to the physical separation d  and the different phase 

excitation δ  is δ+θ=ψ coskd . The phase center is taken at the point (0) - the 

midpoint of the array. Since the elements are identical ( 12 EE = ), we obtain 

  





 ψ=







 +
=

ψ−ψ

2
cosE2

2
eeE2E 1

2/j2/j

1  (7.78) 

It can be easily shown, that the change of the choice of the phase center point (0) 

changes only the phase of the result but not its amplitude. The total field pattern 

),(F φθ in (7.78) can be written as a product of the radiation pattern of an individual 

element F1(θ,φ) and the and the radiation pattern of the array Fa(θ,φ).  This term 

is called the array factor.  This product solution is called the multiplication of 

patterns and it will be frequently encountered in practice 

    (7.79) 

where  

),(F),(F),(F a1 φθφθ=φθ
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 δ+θ

=φθ
2

coskdcos),(Fa  (7.80) 

where δ  is the phase difference between the two antennas. 

 Note that this latter term depends on the geometry of the array and the 

amplitude and phase of the individual excitation signals applied to each element. 

In (7.77), the amplitudes were set equal, but this need not be a general re-

quirement. 

 Let us illustrate the far field radiation pattern for two isotropic radiating 

elements that are placed along the x axis. The two elements are separated by a 

distance d and the elements are excited with equal amplitude signals having a 

phase difference of δ (Fig. 7-23). 

Example 7-18MATLAB . Find and plot the array factor for three identical antennas 

that individually consists of two isotropic elements.  The antennas are separated 

by 5, 10, and 20 cm and each antenna is excited in phase. The frequency of the 

signal applied to each antenna is 1.5 GHz.  

Answer: The separation between the elements is normalized by the wavelength 

via   
λ
π

==ξ
d

2
kd  . 

 The wavelength in the free space is  

  cm20m2.0105.1/103f/c 98 ==××==λ  

or the normalized separation d is 4/λ , 2/λ  and λ  respectively. This yields the 

following values for the parameter ξ : a) 4/π ; b) 2/π  and c)π ; and the phase 

difference is  zero ( 0=δ ) . The corresponding array factor )(Fa θ  is found from 

equation (7.80) and it is plotted in the figure below for these three cases. 

Because the element pattern is uniform ( 1)(F1 ≡θ ) it follows from (7.79) that the 

total radiation pattern )(F)(F a θ=θ . The number of the lobes that are found in the 

pattern increases linearly with an increase of the normalized length of the array 
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and it can be approximately estimated by the nearest integer number to the real 

parameter λ/d4 .    
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 Another method of altering the radiation pattern of the array is to change 

electronically the phase parameter δ of the applied signal - we can have the 

antenna "sweep" through certain regions of space. Such a structure is called a 

phased-array antenna. Antennas of this type are of particular importance in large 

radar installations where it would be mechanically impossible to rotate an 

antenna that may be the size of a football field.  
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Figure 7-24. A uniform linear array. The current on the first element is I(z); the 

current on the second element is I(z) ejδ; the current on the third element is I(z) 

ej2δ; etc. 

 We can extend our investigation into this type of an antenna array in 

several ways. A technique of extending the analysis of antenna arrays is to con-

sider more identical elements than two as shown in Figure 7-24. In  this  array 

that is called a linear array,  there is a linearly progressive phase shift in the 

excitation signal that feeds the identical N elements. In this case, (7.77) 

generalizes to  

  [ ]ψ−ψψ ++++= )1N(j2jj
0 e...ee1EE  (7.81) 

 Fortunately, we do not have to carry along all of the terms within the 

square brackets since they can be summed using the relation 

  q1
q1q

N1N

0n

n

−
−

=∑
−

=  (7.82)
 

where q = ejΨ. Therefore, the electric field in (7.81) becomes
 
 

                                 








−
−

=
ψ

ψ

j

jN

0 e1
e1EE

 
(7.83)

 

If we examine only the magnitude of the electric field |E|, we can simplify (7.83) 

with the relation 

  2
sin2

2
sinje2|e1| 2/jj ξ

=
ξ

=− ξξ  

Hence, the equation (7.83) yields the magnitude of the electric field 

          
( )
( )2/sin

2/NsinE)(E 0 ψ
ψ

=θ
 

(7.84) 

where ψ(θ) = kd cosθ+δ and δ is the progressive phase difference between 

elements. The maximum value occurs when 0→ψ  and it is  

  0max NEE = .  (7.85) 
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In the direction of the maximum value, the condition 0=ψ  or δ−=θcoskd  is 

satisfied. Dividing (7.84) by (7.85) yields a normalized array factor 

  ( )
( )2/sinN

2/Nsin)(Fa ψ
ψ

=θ  (7.86) 

The angles where the first null in the numerator of (7.83) occur will define the 

main beam in the radiation pattern of the linear array – this happens for 1e jN =ψ  

provided 1e j ≠ψ  or for N/2k π±=ψ (k is an integer value). Similarly, zeroes in the 

denominator will yield maxima in the pattern. 

Example 7-19MATLAB . Find and plot the radiation pattern of two parallel thin half-

wavelength electric dipoles separated by 2/d λ= ; λ  and 2/3λ . The mutual 

coupling of the dipoles is neglected. 

Answer: Here the radiation pattern of this linear array is calculated by application 

of the multiplication property (7.79), where the radiation pattern )(F1 θ of a single 

element (half-wavelength dipole with 2/L λ= ) is given by (7.29) and presented by 

the first plot in Fig. 7-10. The array factor for this case (in phase excited 

with 0=δ ) is obtained from (7.86) for N=2, which yields ( )θ=θ cos)2/kd(cos)(Fa . 

The results for the total radiation pattern )(F θ for these three cases are plotted in 

the figures below for: a) 2/d λ= ;  b) λ=d ; c) 2/3d λ= . 
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 In Figure 7-25, we show the variation of F(θ) as the phase delay δ is 

changed in equal increments of 4/π  for a four element array (N=4). The 

separation of the elements d = λ/2. Hence, we observe that the antenna radiation 

pattern can be altered by changing the phase even though the physical elements 

are not changed. 
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Figure 7-25MATLAB. Field pattern of a four element (N=4) phased array with the 

physical separation of the elements d = λ/2 (isotropic elements). 

(a) δ = -4π/4; (b) δ = -3π/4; (c) δ = -2π/4; (d) δ = -π/4; (e) δ = 0; (f) d = π/4;  

(g) δ = 2π /4; (h) δ = 3π/4; (i) δ = 4π/4.  

(a) (b) (c) 

(d) (e) (f)

(g) (h) (i)
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 A second method would be to examine the expected behavior if there is a 

prescribed nonuniform excitation of the elements. For example, let us assume 

that we have a linear array that consists of three elements that are physically 

displaced by a distance d = λ/2  and each element is excited in phase (δ = 0). 

The excitation of the center element is twice as large as the outer two elements 

as shown in Figure 7-26a. The choice of this distribution of excitation amplitudes 

is based on the fact that 1 : 2 : 1 are the leading terms of a binomial series. The 

resulting array, that could be generalized to include more elements, is called a 

binomial array. 

 

 

λ/2 λ/2 
λ/2

(a) (b) 
 

Figure 7-26. (a) A three-element array. (b) Equivalent displaced two- element 

arrays.  

 

 Because of the excitation at the center element being twice the outer two 

elements, we can consider that this three element array is equivalent to two two-

element arrays that are displaced by a distance λ/2 from each other. This allows 

us to make use of (7.86) for N=2 where is interpreted to be the radiation pattern 

of this new element. The result is 

                                                





 θ
π

=θ cos
2

cos)(F  (7.87) 
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The array factor for these new elements is the same as the radiation pattern of 

one of the elements. Therefore, from (7.79) we write that the magnitude of the far 

field radiated electric field from this structure is given by 

                                          





 θ
π

=θ cos
2

cos)(F 2   (7.88) 

The radiation pattern for this array is shown in Figure 7-27. It is contrasted with 

the two-element array and we note that the radiation pattern of the three-element 

array with a nonuniform excitation is narrower. We note that in this binomial array 

that there are no side lobes to absorb power. If more elements are included in the 

array, the beam width will become narrower. 
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Figure 7-27MATLAB. Radiation patterns of a two element dipole array and a three 

element binomial array. (a) Element pattern. (b) Array factor. (c) Antenna array 

pattern. 

 

 In drawing the composite figure for the antenna array that is comprised of 

two small dipoles that are separated by a half-wavelength, we have multiplied the 

radiation pattern of the individual antenna by the array factor. In this case, the 

array factor is the same since this is a binomial array. The multiplication is 

illustrated best by working through an example. 



Antenna arrays 

657 

Example 7-20MATLAB. Using the concept of the multiplication of patterns, find the 

radiation pattern of the array of four elements as shown in the figure. 

λ/2 λ/2 λ/2

(a) 
      

 λ/2 λ/2 

(b) 
 

Answer: This array is to be replaced with an array of two elements a sub-array of 

three elements (1:2:1) each. The new array will have the following individual 

excitations (1:3:3:1). The result according to the multiplication property (7.79) will 

have a radiation pattern as follows  

  





 θ
π

=





 θ
π







 θ
π

=θ cos
2

coscos
2

coscos
2

cos)(F 32 . 

The results are shown in the figure below: (a) the element pattern, (b) the array 

factor and (c) the antenna array pattern. We note that the final pattern is narrower 

and has no side-lobes.  
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 Continuing the process, it is possible to obtain a pattern with arbitrary high 

directivity and with no side-lobes, if the amplitudes of the sources in the array 

correspond to the coefficients of binomial series. This means that the amplitude 
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of the kth source in the binomial array of N elements has to be calculated with the 

following equation 

  
)!kN(!k

!NIk −
=  (k=0,1,…,N) (7.89) 

 By definition, it is clear that this array will be symmetrically excitated or 

kkN II =− . The resulting radiation pattern of the binomial array of N elements that 

are separated by a half-wavelength is 

  





 θ
π

=θ − cos
2

cos)(F 1N  (7.90) 

 In the analysis above the mutual coupling between the elements of the 

antenna array was neglected. The simplest case is to consider an array of two 

elements, let say dipoles with lengths L1 and L2. The first dipole is driven by a 

voltage V1 while the second one is passive - see Figure 7-28. Assume the 

currents in both terminals are I1 and I2 respectively and the following circuit 

relations are fulfilled 

  

  
0IZIZ
VIZIZ

222121

1212111

=+
=+

                                         (7.91) 

 

  

 

2L1L

2I

d

1I

1V

(1) (2)  

  Figure 7-28. Array of two coupled parallel dipoles. 
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where 11Z and 22Z are the self-impedances of elements (1) and (2) and 

2112 ZZ = are the mutual impedances between the elements. Suppose the dipoles 

are equal in length (L1 = L2 = L), then the self-impedances are also equal. For the 

particular case of thin half-wavelength dipoles as in Example 7-8, we have for the 

self-impedance the value 5.42j1.73Z11 += Ω . The dependence of the mutual 

impedance between two similar thin half-wavelength  dipoles1  as  a function of 

the normalized distance d/λ is presented in Figure 7-29. Here 12R is shown with a 

solid line, while 12X  is shown with a dashed line. In the limiting case of the 

separation distance 0d → , the mutual impedance approaches the self-

impedance, which is to be expected. 

Example 7-21. Find the current in the one of the dipoles in an antenna array if 

there is a) no mutual coupling between the dipoles and b) there is a mutual 

coupling between the dipoles.  The driving voltage is V100V1 = and the distance 

between the two half-wave dipoles is 2/d λ= .  Estimate the amplitude and the 

phase change. 

Answer: a) For the case with no mutual coupling, we can apply (7.91) with 

0Z12 = .  This results in  

  Ae183.1Z/VI
017.30j

1111
−== . 

     b) For the case with mutual coupling, we obtain from Figure 7-29 that 

9.29j5.12Z12 −−= Ω .  The solution of (7.91) yields the current 

  Ae218.1I
080.21j

1
−= . 

The amplitude of the input current changes slightly while the change in phase is 

more significant. 

                                                 
1 R.C. Hansen (ed.), Array Theory and Practice, vol. 2, Academic Press, 1966. 
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Figure 7-29MATLAB. Mutual impedance between two parallel thin half-wavelength 

dipoles.  

 

 One may wish to find the directivity of one antenna array. Applying (7.35) 

for the particular case of N=2M+1 identical elements separated by a distance 

2/d λ= , the following equation is obtained   

    
∑

∑

−=

−=









= M

Mn

2
n

2M

Mn
n

I

I
D  (7.92) 

which means that the directivity measures the degree of the coherence of the 

total electric field. 
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Example 7-22. Compare the directivities of two arrays consisting of three 

identical elements separated by a half-wavelength for the following two cases: a) 

uniform array: ( A1III 101 ===− ); b) binomial array: ( A1II 11 ==− ; A2I0 = ). 

Answer: From (7.92), we compute 

 a) uniform array 9
111
)111(D

2

=
++
++

= ⇒  dB5.9D = ; 

 b) binomial array: 667.2
6

16
141
)121(D

2

==
++
++

= ⇒ dB3.4D =  

The directivity of a uniform array is greater than that of a binomial array. 

 

 The uniform array and the binomial array are just two examples of linear 

antenna arrays: the first one has a narrow half-power beamwidth (HPBW), but a 

relatively high side-lobe level (SLL), while the second one has a relatively wide 

HPBW, but a very low SLL. The designer of real antenna arrays has to make a 

tradeoff between these two important characteristics: 1) narrow HPBW and 2) 

low SLL. There are two different approaches for solving this optimization 

problem, such as: 1) choosing special excitation (i.e. Chebyshev array); 2) 

choosing non-uniform distance between the elements. However, these methods 

are topics for more advanced investigations. 
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7.8. Conclusion 
 The fundamental radiation characteristics of electromagnetic waves and 

its relationship to accelerating and decelerating charges have been reviewed. 

Using these concepts, the small Hertzian dipole radiator was described. A ra-

diation pattern for such an antenna was obtained.  

 A formal procedure using the concept of the vector potential was 

introduced and applied to several antennas. We focused our attention to an the 

examination of the far field properties of antennas. If the media in which the 

waves are propagating is linear, the principle of superposition applies. 

Constructive and destructive interference between fields radiated by displaced 

antenna elements with differing phases in the applied currents led to different 

radiation or reception characteristics of an antenna. Terms such as beam width, 

main and side lobes, radiation resistance, gain, directivity, and effective area 

were defined and applied.  

 The solution that we have obtained for the radiation patterns was predi-

cated on assuming a valid approximation for the current distribution on the 

antenna. Several distributions were analyzed. The method of moments which 

was introduced in Chapter 3 can be equally well applied to antenna calculations. 

In this case, the field distribution is known from the experimental measurements 

and the current distribution becomes the unknown term that must be ascertained. 

 The subject of an antenna array that consisted of several identical anten-

nas was introduced. By controlling either the phase or the amplitude of the signal 

that was applied to each individual antenna element or its spatial separation, we 

found that the resulting radiation pattern could be changed. We found that pre-

dictions of the radiation pattern could be found by multiplying the radiation pattern 

of an individual antenna times an array factor in order to find the radiation pattern 

of the entire antenna array.  
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1. Chapter 7: Problems 
1. Perform the integration of the integral  

2.  ( )∫
∞

+0
322

3

xR
dRR  

3. that arises in Example 7-1. 

2. Using dimensional arguments, show that the term 

4.  
00

2

x32
Q
πε

    )0x( 0 >  

5. corresponds to the electrostatic energy stored in the region x > xo in 

Example  

6. 7-1. 

7. 3MATLAB. A short electric dipole with a length L (L<<λ) is located above a 

ground plane a distance h = λ/4 (h>>L). The dipole is perpendicular to the 

ground plane. Find the directivity of this antenna. How does the ground 

plane change the directivity? Hint: use the method of images and the array 

concept, then apply a numerical integration. 

8. 4MATLAB. Find the directivity of two short electric dipoles that are excited out 

of phase and are physically separated by a quarter-wavelength.  

9. 5. A short magnetic dipole with a radius a (a<<λ) is located above a 

ground plane a distance h = λ/4 (h>>a). The dipole is parallel to the 

ground plane. Find the directivity of this antenna. How does the ground 

plane change the directivity?  

6. Find the directivity of two short magnetic dipoles that are excited in phase 

and are physically separated by a quarter-wavelength. 
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7. Find the radiation resistance of a short electric dipole with a length L 

(L<<λ) that is located a distance 4/h λ=  above the ground.  

8. Find the radiation resistance of a short magnetic dipole with a length L 

(L<<λ) that is located a distance 4/h λ=  above the ground.  

10. 9 MATLAB.  Find the directivity D of a half-wavelength electric dipole.  

11. 10MATLAB. Find the radiation resistance rR of a half-wavelength electric 

dipole. 

12. A thin vertical quarter-wavelength monopole is located above a horizontal 

conducting ground. Find the radiation resistance of the antenna. 

13. 12MATLAB. A half-wavelength dipole is located near a corner reflector with a 

flare angle 090=ψ as shown in the figure. Find the radiation pattern F(θ) 

for the case 2/s λ= , 00=φ . 

14.  

 

Half-wave
   dipole 

045045

Conducting
  sheets 

s
 

15. 13. Find the current required to radiate a power of 100W at 1GHz from a 

15cm dipole. 

14. A Hertzian dipole of length L=0.2 m operates at 10 MHz. Find the radiation 

efficiency rη  if the copper conductor has the following parameters: 
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m/S108.5 7×=σ , 1r =µ  and radius mm1a = . By definition, 

)RR/(R Lrrr +=η  where rR  is the radiation resistance and LR is the 

ohmic resistance.  

15. Calculate the effective aperture eA of the Hertzian dipole. 

16. Calculate the effective aperture eA of the half-wavelength dipole. 

17. Find the HPBW (half-power beam width) and the SLL (side-lobe level) of 

an electric dipole with a length λ= 5.1L . 

16. 18MATLAB.  Find the directivity of a reflector antenna that is considered in 

Example 7-17 (radius m1a = , wavelength m1.0=λ ). 
18. Find the aperture efficiency apη of the reflector antenna described in 

Problem 18. By definition, this parameter is peap A/A=η  where Ae is the 

effective aperture and 2
p aA π= is the physical aperture. 

19. Consider an antenna array that is excited in-phase ( 00=δ ) with N 

elements (N>>1).  Each element of the array is separated by a distance 

d.  Show that the direction of the main maximum is 0
0 90=θ (broadside 

array). Find an approximate expression for the HPBW. 

20. Consider an antenna array consisting of N elements with each of the 

elements excited with a phase-delay ( 00≠δ ).  Each element of the array 

is separated by a distance d.  Show that it is possible to have the 

direction on the main maximum to be θo = 0o.  This is called an end-fire 

array.  Find an approximate expression for the HPBW. 

17. 22MATLAB. Plot the radiation pattern )(F φ of two parallel half-wave dipoles 

that are separated by a distance 4/d λ=  and are excited by currents that 

have a phase difference 090−=δ . 

18. 23. Calculate the input impedance for an array of two half-wave parallel 

dipoles that are separated by a distance 2/d λ=  (Figure 7-28).  The 

currents are 12 II −= . 
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19. 24. Calculate the input impedance for an array of two parallel half-wave 

dipoles that are separated by a distance 2/d λ= .  The currents are 

12 II += . 

 

 

 

20. 25. A half-wave dipole with a terminal current 0I is placed a distance 

λ= 1.0s from a perfectly conducting xy-plane as shown in the figure.  

 

21.  

 
 x 

 y

 z

s
0I -s 

0I−  

 

22. Neglecting ohmic losses, compare the terminal currents with and without 

the reflector if the radiated power is 2 W.  

26. A TV broadcasting station (Tx) radiates a power of 500 W from an 

antenna on a 100m tower above a perfectly conducting ground.plane 

The antenna is omnidirectional in the horizontal plane, but has a 

HPBW=200 in the vertical plane. If the wavelength is 1 m, what is the 

optimum height for this antenna at a location of 2 km from the antenna 

for: a) vertical polarization; b) horizontal polarization? What is the 

received power in the receiver (Rx) for the both cases if the receiving 

antenna is a half-wave dipole? 
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23.  

 

 

1Rreflected 
  path 

direct  
  path 

 

rθiθ 2h  
1h  

2R

0R

1d 2d

Tx 

Rx

 

24. 27MATLAB.  Assume that there are 3 identical antennas that are separated 

by a distance 4/d λ= along a straight line. Each antenna is fed with the 

same current but there is a uniform progressive phase shift δ  along the 

line. Find and plot the array factor in three cases: a) 0=δ ; b) 2/π=δ ; c) 

π=δ . 

25. 28MATLAB. Repeat Problem 27 with a larger separation 2/d λ=  for the 

same phase differences. 

26. 29. Find an expression for the radar cross section Sσ  of a target. By 

definition, iSS S/P=σ  where Ps is the back scattered power and Si is the 

incident time-average power density. 

27. 30. Derive the radar equation, expressing the power received by a 

monostatic radar Pr in terms of the transmitted power from the same 

antenna Pt. Here the antenna gain is G and the operating wavelength is λ. 

The distance between the antenna and the target is R and the radar cross 

section of the target is σs.    
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Appendix 1: Mathematical formulas 
A.1.1. Vector identities 

A, B, and C are vectors and a and b are scalars. 

 ( ) ( ) ( ) BACACBCBA •×=•×=•×  (A.1.1) 

 ( ) ( ) ( )BACCABCBA •−•=××  (A.1.2) 

 ( ) BABA •∇+•∇=+•∇  (A.1.3) 

 ( ) baba ∇+∇=+∇  (A.1.4) 

 ( ) BABA ×∇+×∇=+×∇  (A.1.5) 

 ( ) BBB •∇+∇•=•∇ aaa  (A.1.6) 

 ( ) abbaab ∇+∇=∇  (A.1.7) 

 ( ) BBB ×∇+×∇=×∇ aaa  (A.1.8) 

 ( ) BAABBA ×∇•−×∇•=×•∇  (A.1.9) 

 ( ) ( ) ( ) ( ) ( )ABBAABBABA ×∇×+×∇×+∇•+∇•=•∇                     (A.1.10) 

 ( ) ( ) ( )BAABABBABA ∇•−∇•+•∇−•∇=××∇   (A.1.11) 

 aa 2∇=∇•∇  (A.1.12) 

 0=×∇•∇ A   (A.1.13) 

 0a =∇×∇  (A.1.14) 

 ( ) AAA 2∇−•∇∇=×∇×∇  (A.1.15) 
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A.1.2. Vector operations in the three coordinate systems 

Cartesian 

)19.1.A(
z
a

y
a

x
aa

)18.1.A(
y

A
x

A
x

A
z

A
z

A
y

A 

)17.1.A(
z

A
y

A
x

A

)16.1.A(
z
a

y
a

x
aa

2

2

2

2

2

2
2

xyzxyz

zyx

∂
∂

+
∂
∂

+
∂
∂

=∇









∂
∂

−
∂

∂
+








∂
∂

−
∂
∂

+







∂

∂
−

∂
∂

=×∇

∂
∂

+
∂

∂
+

∂
∂

=•∇

∂
∂

+
∂
∂

+
∂
∂

=∇

zyx

zyx

uuuA

A

uuu

Cylindrical 

( )

( )

)23.1.A(
z
aa

r
1

r
r
ar

r
1a

)22.1.A(A
r
A r

r
1

r
A

z
A

z
AA

r
1 

)21.1.A(
z

AA
r
1

r
rA

r
1

)20.1.A(
z
aa

r
1

r
aa

2

2

2

2

2
2

rzr
r

z

zr

∂
∂

+
φ∂
∂

+
∂









∂
∂

∂
=∇









φ∂

∂
−

∂

∂
+








∂
∂

−
∂
∂

+







∂

∂
−

φ∂
∂

=×∇

∂
∂

+
φ∂

∂
+

∂
∂

=•∇

∂
∂

+
φ∂
∂

+
∂
∂

=∇

φ
φ

φ

φ

φ

z

zr

uuuA

A

uuu

Spherical 

( ) ( )

( ) ( )

( )

)27.1.A(a
 sin 

1
a sin

 sin 
1

a
1a

)26.1.A(
AA 1

AA
 sin

11AA  sin
 sin

1

)25.1.A(
A

 sin 
1 sin A

 sin 
1A1

)24.1.A(a
 sin 

1a1aa

2

2

2 22

2

2
2

2

2

φ∂
∂

θρ
+

θ∂









θ∂
∂

θ∂

θρ
+

ρ∂









ρ∂
∂

ρ∂

ρ
=∇









θ∂

∂
−

ρ∂
ρ∂

ρ
+

+







ρ∂

ρ∂
−

φ∂

∂

θρ
+








φ∂

∂
−

θ∂

θ∂

θρ
=×∇

φ∂

∂

θρ
+

θ∂
θ∂

θρ
+

ρ∂

ρ∂

ρ
=•∇

φ∂
∂

θρ
+

θ∂
∂

ρ
+

ρ∂
∂

=∇

φ
ρθ

θ
φρ

ρ
θφ

φθρ

φθρ

u

uuA

A

uuu
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A.1.3. Summary of the transformations between coordinate 
systems 

Cartesian-cylindrical 

                               








=
φ=
φ=

zz
sinry
cosrx

         













=







=φ

+=

zz
x
y tan

yx  r

1-

22

 (A.1.28)  

 ru  φu  
zu  

Xu  φcos  φ− sin  0 

Yu  φsin  φcos  0 

 Zu  0 0 1 

   (A.1.29) 

Cartesian-spherical 

                                 








θρ=
φθρ=
φθρ=

cosz
sinsiny
cossinx

    






















=φ













 +
=θ

++=ρ

−

x
y tan

z
yx

tan

zyx

1 - 

22
1

222

 (A.1.30)                            

 ρu  θu  φu  

Xu  φθcossin φθcoscos φ− sin  

Yu  φθsinsin  φθsincos  φcos  

Zu  θcos  θ− sin  0 

          (A1.31) 

 Distance R=|r2-r1| in the three coordinate systems. 

1. Cartesian: [ ] 2/12
12

2
12

2
12 )zz()yy()xx(R −+−+−=  

2. cylindrical: ( ) ( )[ ] 2/12
121212

2
1

2
2 zzcosrr2rrR −+φ−φ−+=   

3. spherical: ( )[ ]{ } 2/1
12121212

2
1

2
2 cossinsincoscos2R φ−φθθ+θθρρ−ρ+ρ=  
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A.1.4. Integral relations 

     
                               ∫∫ •=•∇

∆

dsAA
V

dv  [divergence theorem] (A.1.32) 

                               ∫∫ •=•×∇
∆

dlAdsA
S

 [Stokes’s theorem] (A.1.33) 

                                           ∫∫ ×−=×∇
∆

dsAA
V

dv  (A.1.34) 

                                               ∫∫ =∇
∆

dsa adv
V

 (A.1.35) 

                                             ∫∫ −=×∇
∆

dlds aa
S

 (A.1.36) 

   
Coordinate system Cartesian 

(x, y, z) 

Cylindrical 

(r, φ, z) 

Spherical 

(ρ, θ, φ) 

Unit vectors ux uy uz ur uφ uz uρ uθ uφ  

Differential length dl dx ux 

dy uy 

dz uz 

dr ur 

r dφ uφ  

dz uz 

dρ uρ 

ρ sin θ dθ uθ 

ρ dφ uφ 

Differential surface area ds dy dz ux 

dx dz uy 

dx dy uz 

r dφ dz ur 

dr dz uφ 

r dr dφ uz  

ρ2 sin θ dθ dφ uρ 

ρ sin θ dρ dφ uθ 

ρ dρ dθ uφ 

Differential volume dv dx dy dz r dr dφ dz ρ2 sin θ dρ dθ dφ 
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Appendix 2: Mathematical foundation of the 

Finite element method 

A.2.1. Minimum energy condition 

Let us assume that )y,x(V  is the true solution of Laplace’s equation. In 

addition, let us assume that )y,x(U is another function that can be differentiated 

and is equal to zero on the boundary L1 of the region s. Then, the sum of the two 

solutions which we will call the variation is given by )y,x(U)y,x(V α+  where α is a 

small real parameter.  The variation will have the same value on the boundary L1 

as )y,x(V . The electrostatic energy of the summation of the two terms is obtained 

from the expression (3.63) 

  ds)UV(
2

)UV(W 2

A

α+∇
ε

=α+ ∫  (A.2.1) 

This functional-energy )UV(W α+  is expanded in powers of the small parameter 

α  

dsU
2

UdsV)V(W)UV(W
2

AA

2

∫∫ ∇ε
α

+∇•∇αε+=α+  (A.2.2) 

The third term on the right hand side can be identified from (3.63) as being the 

energy of the additional functions U. The second term on the right hand side can 

be transformed using the vector identity (A.1.6) 

  ( ) VUUVVU ∇•∇+∇•∇=∇•∇  (A.2.3) 

where U is a scalar and ∇V is a vector.  The last term in (A.2.3) can be written as 

U∇2V.  Therefore, we finally write (A.2.2) as 
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   dlVUVdsU)U(W)V(W)UV(W
LA

22
nu∫∫ •∇αε+∇αε−α+=α+  (A.2.4) 

The term
n
VV n ∂
∂

=•∇ u .  From Figure 3-13a, we have 0U =  on 1L  and 0
n
V
=

∂
∂  

on 2L . This means that the fourth term in (A.2.4), which is a line integral vanishes 

on the entire boundary L. The third term in (A.2.4), which is a surface integral on 

A, also vanishes since Laplace’s equation 0V2 =∇  must be satisfied.  Therefore, 

we finally obtain  

  )U(W)V(W)UV(W 2α+=α+  (A.2.5) 

Since 02 >α  and 0)U(W > , the term on the left hand side is greater than )V(W  

which proves that the energy has a minimum when V is a solution of Laplace’s 

equation.   

 

A.2.2. Linear interpolation coefficients 

 We calculate )y,x( 111α from (3.69) 

  ( ) ( ) ( )[ ]1231322332
e

111 yxxxyyyxyx
A2
1)y,x( −+−+−=α  (A.2.6) 

However, the expression in the brackets is equal to twice the area of the triangle 

Ae. Therefore, this term is equal to 1. Let us calculate the same term at a different 

point, say )y,x( 221α using (3.69) 

  ( ) ( ) ( )[ ] 0yxxxyyyxyx
A2
1)y,x( 2232322332

e
221 =−+−+−=α  (A.2.7) 

These results are summarized in (3.70). 
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A.2.3. S-matrix elements 

 Using the explicit expression for the α -functions (3.69), we find that the 

gradient of these functions are 

  [ ]Y3232
e

1 )xx()yy(
A
1 uuX −−−=α•∇  

  [ ]Y1313
e

2 )xx()yy(
A
1 uuX −−−=α•∇  (A.2.8) 

  [ ]Y2121
e

3 )xx()yy(
A
1 uuX −−−=α•∇  

Applying the definition (3.73) leads to the following elements of the S(e)-matrix  

  [ ]2
32

2
32

e
1,1 )xx()yy(

A4
S −+−

ε
= ; (A.2.9)

  [ ])xx)(xx()yy)(yy(
A4

S 13321332
e

2,1 −−+−−
ε

=  etc. (A.2.10) 

The other matrix-elements (diagonal and off-diagonal) can be found from these 

two expressions by applying suitable cyclic change of the subscripts: 

1321 →→→ . 

 

A.2.4.  Decoupled and coupled node potentials   

 The coupling matrix [ ]C  has a dimension (Nd x N) where Nd is the total 

number of the decoupled nodes (here 63x2Nd == ) and Nis the total number of 

the coupled nodes after assembling (here 413N =+= ). The decoupled nodes 

are numbered with a subscript k=1,2,…,Nd, while the coupled nodes are 

numbered with a subscript l=1,2,…,N. The elements of the coupling matrix are 
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defined by the following rule: 1C l,k =  when the k-th decoupled node corresponds 

to the l-th coupled node and 0C l,k =  otherwise. There are only one “1” on every 

row, but there can be one or two “0” on every column (the last case reflects the 

boundary conditions). For the particular problem considered in Fig. 3-15, the 

corresponding C-matrix is 

  [ ]



























=

0010
1000
0001
0100
0010
0001

C   

Now the following relation between the column matrices of the decoupled 

potentials d]V[ and coupled potentials ]V[ is obtained 

  [ ] [ ][ ]V.CV d =  (A.2.11) 

where the coupling matrix [C] is involved. 

 After the determination of the energy of the element from (3.74) via the 

potentials of the decoupled nodes and via the potentials of the coupled nodes as 

  ]V][S[]V[
2
1W T=  (A.2.12) 

we obtain for the global S-matrix of the coupled system using the following 

relation 

  ]C[]S[]C[]S[ d
T=  (A.2.13) 

We can show that the last equation yields equation (3.77) for the global S-matrix 

in explicit form. For convenience we can write this equation in two stages 
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]B[]C[]S[
],C[]S[]B[

T
d

=

=
 (A.2.14) 

From (3.76) for the decoupled matrix [S]d of the system of two triangles, the 

following expression is obtained 

  





























=

)2(
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d

SSS000
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000SSS

000SSS

000SSS

]S[  

Now after a simple matrix multiplication, we get for the intermediate matrix [B] the 

first equation (A.2.14) yields 

  





























=

)2(
5,6

)2(
6,6

)2(
4,6

)2(
5,5

)2(
6,5

)2(
4,5

)2(
5,4

)2(
6,4

)2(
4,4

)1(
1,3

)1(
1,3

)1(
1,3

)1(
3,2

)1(
2,2

)1(
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)1(
3,1

)1(
2,1

)1(
1,1

S0SS

S0SS

S0SS

0SSS

0SSS

0SSS

]B[  

Then from the second equation of (A.2.14) after a matrix multiplication, we obtain 

the result presented by equation (3.77) in Section 3.6. 
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A.2.5. The matrix equation for the unknown potentials 

The necessary condition that the function (A.2.12) has a minimum is that 

the appropriate derivatives must be equal to zero  

     0
]V[

W
uj

=
∂
∂         (j =1,2,…,N) (A.2.15) 

By use of (3.74), this can be shown to yield  

  [ ] 0
]V[
]V[

.]S[]S[
k

u
k,uu,u =








 or 

  0]V[]S[]V[]S[ kk,uuu,u =+  (A.2.16) 

which leads to the final equation (3.78). 
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Appendix 3: Material parameters 
 

Conductors                                                    Conductivity σ (S/m) 
Aluminum 3.5 x 107 
Brass  1.6 x 107 
Carbon 3 x 104 
Copper 5.8 x 107 
Germanium 2.3 
Gold  4.1 x 107 
Graphite 105 
Iron  107 
Mercury 106 
Seawater 4 
Silver  6.2 x 107 

Tungsten 1.8 x 107 
 
Insulators Conductivity σ (S/m) 
Bakelite 10-9 

Distilled water 10-4 
Dry earth 10-5 
Glass    10-12 

Mica    10-15 
Porcelain   2 x 10-13 
Quartz   10-17 
Rubber   10-15 
Silicon  3.9 x 10-4 
Transformer oil   10-11 
Wax    10-17 
Wet earth  10-3 
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Dielectrics                 Relative dielectric constant εr 
Air   1 
Barium titanate 1200 
Glass  6 
Mica  6 
Oil  2.3 
Paper  3 
Paraffin 2 
Polystyrene 2.6 
Porcelain 7 
Quartz (fused) 4 
Rubber 2.3 - 4.0 
Teflon  2.1 
Water (distilled) 80 
 
Magnetic materials                               Relative permeability µr 
Cobalt  600 
Commercial iron 250 - 9000 
Nickel  250 
Permalloy 8 x 103 - 105 
Purified iron 104 - 2 x 105 
Superpermalloy 105 - 106 

 
Paramagnetic materials 
Aluminum 1.000021 
Magnesium 1.000012 
Palladium 1.00082 
Titanium 1.00018 
 
Diamagnetic materials 
Bismuth 0.99983 
Gold  0.99996 
Silver  0.99998 
Copper 0.99999   
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Appendix 4: Transmission line parameters of 
two parallel wires 

 We calculate the capacitance of two parallel wires that are shown in 

Figure A.4-1. The radius of each wire is a. 

       

 

D

2s

x

yV = 0
P

r1 r2

a 

V(x, y) 

−ρL+ρL

equipotential contours 

 
Figure A.4-1. Equipotential contours surrounding two line charges +ρL and -ρL. 

The surfaces at r = a are equipotential surfaces so the electric field will always be 

normal to the metal surfaces. 

 

 The two wires can be replaced with two line charges +ρL and -ρL. The 

precise location of these equivalent line charges is determined from the re-

quirement that the surfaces of the metal wires be equipotential surfaces. This 

implies that the tangential electric fields will always be equal to zero on these 

surfaces. The potential V(x,y) at the point P is given by 
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The plane at the midpoint between the two wires is an equipotential surface that 

is equal to zero potential. Other equipotential contours are found by setting  
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This can be written as 

  ( ) ( )[ ]22222 yxskyxs +−=++  (A.4.3) 

or  
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The common factor  

                                         
1k
1ks 2

2
2

−
+  

has been added to both sides of (A4.3) in order to complete the squares. 

Equation (A.4.4) is an equation for a family of circles which have radii 
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and are centered at the points 
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where  
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1ksh 2

2

−
+

=  

Eliminating the term s between (A.4.5) and (A.4.6), we obtain 
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The two solutions for this equation are given by 
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±=  (A.4.8) 

The  root k with the + sign will give the equipotential contours in the region x > 0 

and the root k
)

 with the - sign will give the equipotential contours in the region x <  
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0. We will have particular interest in the equipotential contour at the surface of 

the wire at  ro = a. The spacing h must also be greater than this radius a of the 

wire and we will set it equal to D/2. 

 The potential difference between the wires is given by 
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Making use of the identity  

                                          [ ] ξ=−ξ+ξ −12 cosh1ln                                (A.4.10) 

we write the capacitance as 
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 In order to calculate the inductance per unit length, we make use of the 

relation that µε=
∆∆ z
C

z
L and write  

                                    







π
∆µ

= −

a2
DcoshzL 1                                  (A.4.12) 

 There are alternative derivations that can be used to approximate the 

equivalent circuit parameters. For example, if we define a point between the two 

cylinders as x̂  and place the left cylinder at x = 0, then the magnetic flux density 

is given in Figure A.4-2. 
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Figure A.4-2. Alternative cross section of a twin-lead transmission line. 

 

If the current is into the paper in the wire centered at x = 0 and out of the paper in 

the wire centered at x = D, the magnetic flux densities will add in the center. 

From Ampere's circuital law, we write the magnetic flux density as  
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The total magnetic flux that passes between the two wires is found from 
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The inductance per unit length is given by 
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which is in agreement with (A.4.12) in the limit of D >> a.  

 Applying Gauss's law to the two wires that are assumed to each have a 

linear charge density +ρL and –ρL C/m distributed on the two wires, we find the 

electric field at x̂  to be given by 
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The potential difference V∆  between the two wires is obtained by integrating the 

electric field between the two wires to yield 
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The capacitance per unit length is given by 
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This is in agreement with (A.4.11) in the limit of D >> a. 

 We present the both methods to obtain the same results since you may 

encounter them in different books. The twin-lead is commonly used in practice. In 

neither calculation did we include the self-inductance of each wire that arises 

when D ≈ a. This will cause an additional small constant term to appear in the 

final results.  
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Appendix 5: Plasma evolution adjacent to a 
metallic surface 

 The temporal and spatial evolution of the plasma adjacent to a metallic 

electrode whose voltage is suddenly decreased from 0 to a large negative value 

has certain implications.  A gaseous plasma consists of negatively charged 

electrons and positively charged ions whose mass is significantly greater than the 

mass of the electron.  In Example 3-3, we determined the potential profile at the 

time t = 0+ just after the switch connecting the negative potential source was 

closed at a time t = 0.  During this initial time interval, the electrons were expelled 

from the region adjacent to the metallic plate but the ions had not yet started to 

move.  The temporal and spatial evolution of these ions toward the negatively 

biased metallic electrode and the expansion of the ion density rarefaction into the 

plasma requires a numerical computation.1  The plasma is modeled with a 

dimensionless fluid modeled description. 

 The ion density perturbation ni and the ion velocity perturbation vi are 

described with the equation of continuity 
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and the equation of motion 
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Since the mass of the electron is so much smaller than the mass of the ion, the 

electron density perturbation ne can be approximated with a Maxwell-Boltzmann 

distribution  

  V
e en =  (A.5.3) 

                                                 
1 Widner, M., Alexeff, I., Jones, W.D. and Lonngren, K.E., "Ion- Acoustic Wave Excitation and Ion 

Sheath Evolution," Physics of Fluids, Vol. 13, October 1970, pp. 2532-2540. 
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In order to reflect the non-neutrality of the density perturbations, there will be an 

electric field 
dz
dVE −=  that is governed by Poisson’s equation 
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∂  (A.5.4) 

These equations have been written in dimensionless units that are defined by 
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where no is the equilibrium electron and ion density, the ’ indicates the laboratory 

variables, κB is Boltzmann’s constant K
J1038.1 o
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−×=κ , and  
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T  -- the electron Debye length  (A.5.7) 
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=ω  -- the ion plasma frequency (A.5.8) 

This model is valid if the electronic temperature Te is much greater than the ion 

temperature Ti. This is a valid approximation in a gaseous plasma that one 

normally encounters in the laboratory.  For example, a typical laboratory argon 

plasma will have an approximate ion acoustic velocity of 103 m/s and an ion 

plasma frequency of 2π x 106 radians/s.  

 The calculated results of the evolution of the density perturbations are 

shown in Figure A5-1a.  It is noted that there is an instantaneous decrease of the 

electron density adjacent to the electrode which is the “transient sheath” or the 

“ion matrix sheath” that was described in Example 3-3.  As time increases, this 

electron density rarefaction expands into the plasma.  Initially, this expansion is 

faster than the final asymptotic value which is the ion acoustic velocity.  In 

addition, the heavy positive ions are attracted to and move toward the electrode.   
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This results in a flux of the ions that impinges upon the electrode.  The temporal 

evolution of this flux is shown in Figure A5-5b.  These ions can implant 

themselves into the electrode and change the surface characteristics of the 

electrode. 
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Figure A.5-1.    (a) Evolution of the normalized electron density and the 

normalized ion density in space at equal increments in time after the application 

of a negative potential to a metallic electrode that had been inserted into a 

plasma.   (b) Temporal evolution of the Ion flux impinging upon the electrode. 
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