

CHAPMAN & HALL/CRC
A CRC Press Company

Boca Raton London New York Washington, D.C.

®

Kermit Sigmon
Timothy A. Davis

MATLAB
Primer
Sixth Edition

The front cover shows a smooth free-form surface consisting of trimmed bicubic splines.
The back cover shows a Bezier patch with its control polyhedron. The figures are courtesy
of Jörg Peters and David Lutterkort, CISE Department, University of Florida. MATLAB
code to generate the figures can be obtained from http://www.cise.ufl.edu/research/SurfLab.

MATLAB, Simulink, and Handle Graphics are registered trademarks of The MathWorks, Inc.

This book contains information obtained from authentic and highly regarded sources.
Reprinted material is quoted with permission, and sources are indicated. A wide variety
of references are listed. Reasonable efforts have been made to publish reliable data and
information, but the author and the publisher cannot assume responsibility for the validity
of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, microfilming, and recording, or by any
information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for
promotion, for creating new works, or for resale. Specific permission must be obtained in
writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice:

Product or corporate names may be trademarks or registered trade-
marks, and are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2002 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 1-58488-294-8

Library of Congress Card Number 2001047392
Printed in the United States of America 1 2 3 4 5 6 7 8 9 0

Printed on acid-free paper

Library of Congress Cataloging-in-Publication Data

Sigmon, Kermit.
MATLAB primer. — 6th ed. / Kermit Sigmon, Timothy A. Davis.

p. cm.
Rev. ed. of: MATLAB primer. 5th ed. / [MathWorks, Inc.] . c1998.
Includes bibliographical references and index.
ISBN 1-58488-294-8 (alk. paper)
1. MATLAB. 2. Numerical analysis—Data processing. I. Davis,

Timothy A. II. MATLAB primer. III. Title.
 QA297 .S4787 2001

519.4′

0285

′

53042—dc21 2001047392

http://www.crcpress.com
http://www.cise.ufl.edu/research/

Preface

Kermit Sigmon, author of the MATLAB Primer, passed
away in January 1997. Kermit was a friend, colleague,
and fellow avid bicyclist (although I’m a mere 10-mile-a-
day commuter) with whom I shared an appreciation for
the contribution that MATLAB has made to the
mathematics, engineering, and scientific community.
MATLAB is a powerful tool, and my hope is that in
revising Kermit’s book for MATLAB 6.1, you will be
able to learn how to apply it to solving your own
challenging problems in mathematics, science, and
engineering.

A team at The MathWorks, Inc., revised the Fifth Edition.
The current edition has undergone five major changes
since the Fifth Edition, in addition to many smaller
refinements. Only one of the five major changes was
motivated by the release of MATLAB 6.1:

1. Life is too short to spend writing DO loops.1 Over-
using loops in MATLAB is a common mistake that
new users make. To take full advantage of
MATLAB’s power, the emphasis on matrix operations
has been strengthened, and the presentation of loops
now appears after submatrices, colon notation, and
matrix functions. A new section on the ILQG function
has been added. Many computations that would
require nested loops with LI statements in C,
FORTRAN, or Java can be written as single loop-free

1 John Little, co-founder of The MathWorks, Inc.

© 2002 by CRC Press LLC

MATLAB statements with ILQG. Avoiding loops
makes your code faster and often easier to read.

2. In the Fifth Edition, the reader was often asked to
come up with an appropriate matrix with which to try
the examples. All examples are now fully described.

3. MATLAB 6.1 has a new and extensive graphical user
interface, the MATLAB Desktop Environment.2
Chapter 2, new to this edition, gives you an overview
of all but two of MATLAB’s primary windows (the
other two are discussed later). Managing files and
directories, starting MATLAB demos, getting help,
command editing, debugging, and the like are
explained in the new graphical user interface. This
book was written for Release R12.1 (MATLAB
Version 6.1 and the Symbolic Math Toolbox Version
2.1.2).

4. A new chapter on how to call a C routine from
MATLAB has been added.

5. Sparse matrix ordering and visualization has been
added to Chapter 13. Large matrices that arise in
practical applications often have many zero entries.
Taking advantage of sparsity allows you to solve
problems in MATLAB that would otherwise be
intractable.

I would like to thank Bob Stern, executive editor in
Mathematics and Engineering at CRC Press, for giving

2 Note that the Desktop Environment in Release R12.1 is not
supported on HP and IBM Unix platforms.

© 2002 by CRC Press LLC

me the opportunity to contribute to Kermit Sigmon’s
work. I would also like to thank Jörg Peters and David
Lutterkort for providing the cover art. I would like to
thank Naomi Fernandes, Madeline Leigh, Pei Li Li, Cleve
Moler, Jim Tung, and Dave Wilson for their helpful
comments on a draft of this book. Finally, I would like to
thank The MathWorks, Inc., for providing software and
technical support that assisted in the writing of this book.

Tim Davis

Associate Professor, Department of Computer and
Information Science and Engineering
University of Florida
http://www.cise.ufl.edu/research/sparse

© 2002 by CRC Press LLC

http://www.cise.ufl.edu/research/sparse

© 2002 by CRC Press LLC

Introduction
MATLAB, developed by The MathWorks, Inc., integrates
computation, visualization, and programming in a
flexible, open environment. It offers engineers, scientists,
and mathematicians an intuitive language for expressing
problems and their solutions mathematically and
graphically. Complex numeric and symbolic problems
can be solved in a fraction of the time required with a
programming language such as C, FORTRAN, or Java.

How to use this book: The purpose of this Primer is to
help you begin to use MATLAB. It is not intended to be
a substitute for the online help facility or the MATLAB
documentation (such as Getting Started with MATLAB
and Using MATLAB, available in printed form and
online). The Primer can best be used hands-on. You are
encouraged to work at the computer as you read the
Primer and freely experiment with the examples. This
Primer, along with the online help facility, usually
suffices for students in a class requiring the use of
MATLAB.

Start with the examples at the beginning of each chapter.
In this way, you will create all of the matrices and M-files
used in the examples (with one exception: an M-file you
write in Chapter 7 is used in later chapters).

Larger examples (M-files and MEX-files) are on the web
at http://www.cise.ufl.edu/research/sparse/MATLAB and
http://www.crcpress.com.

Pull-down menu selections are described using the
following style. Selecting the 9LHZ menu, and then the

http://www.crcpress.com
http://www.cise.ufl.edu/research/sparse/MATLAB

'HVNWRS /D\RXW submenu, and then the 6LPSOH menu
item is written as 9LHZ 'HVNWRS /D\RXW 6LPSOH.

You should liberally use the online help facility for more
detailed information. Selecting +HOS 0$7/$% +HOS
brings up the Help window. You can also type KHOS in
the Command window. See Sections 2.1 or 15.1 for more
information.

How to obtain MATLAB: Version 6.1 of MATLAB is
available for Unix (Sun, HP, Compaq Alpha, IBM,
Silicon Graphics, and Linux), and Microsoft Windows.
MATLAB 5 is also available for the Apple Macintosh. A
Student Version of MATLAB is available from The
MathWorks, Inc., for Microsoft Windows and Linux; it
includes MATLAB, Simulink, and key functions of the
Symbolic Math Toolbox. Everything discussed in this
book can be done in the Student Version of MATLAB,
with the exception of advanced features of the Symbolic
Math Toolbox discussed in Section 14.11. The Student
Edition of MATLAB Version 5, from Prentice-Hall, was
limited in the size of the matrices it could operate on.
These restrictions have been removed in the Student
Version of MATLAB Versions 6 and 6.1. For more
information on MATLAB, contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Phone: 508–647–7000
Fax: 508–647–7101
Email: info@mathworks.com
Web: http://www.mathworks.com

© 2002 by CRC Press LLC

http://www.mathworks.com

Table of Contents

1. Accessing MATLAB
2. The MATLAB Desktop

2.1 Help window
2.2 Launch Pad window
2.3 Command window
2.4 Workspace window
2.5 Command History window
2.6 Array Editor window
2.7 Current Directory window
2.8 MATLAB’s path

3. Matrices and Matrix Operations
3.1 Referencing individual entries
3.2 Matrix operators
3.3 Matrix division
3.4 Entry-wise operators
3.5 Relational operators
3.6 Complex numbers
3.7 Strings
3.8 Other data types

4. Submatrices and Colon Notation
4.1 Generating vectors
4.2 Accessing submatrices

5. MATLAB Functions
5.1 Constructing matrices
5.2 Scalar functions
5.3 Vector functions
5.4 Matrix functions
5.5 The find function

6. Control Flow Statements
6.1 The for loop

© 2002 by CRC Press LLC

6.2 The while loop
6.3 The if statement
6.4 The switch statement
6.5 The try/catch statement
6.6 Matrix expressions (if and while)
6.7 Infinite loops

7. M-files
7.1 M-file Editor/Debugger window
7.2 Script files
7.3 Function files
7.4 Multiple inputs and outputs
7.5 Variable arguments
7.6 Comments and documentation
7.7 Entering large matrices

8. Advanced M-file features
8.1 Function references
8.2 Name resolution
8.3 Error messages
8.4 User input
8.5 Efficient code
8.6 Performance measures
8.7 Profile

9. Calling C from MATLAB
9.1 A simple example
9.2 C versus MATLAB arrays
9.3 A matrix computation in C
9.4 MATLAB mx and mex routines
9.5 Online help for MEX routines
9.6 Larger examples on the web

10. Two-Dimensional Graphics
10.1 Planar plots
10.2 Multiple figures
10.3 Graph of a function
10.4 Parametrically defined curves

© 2002 by CRC Press LLC

10.5 Titles, labels, text in a graph
10.6 Control of axes and scaling
10.7 Multiple plots
10.8 Line types, marker types, colors
10.9 Subplots and specialized plots
10.10 Graphics hard copy

11. Three-Dimensional Graphics
11.1 Curve plots
11.2 Mesh and surface plots
11.3 Color shading and color profile
11.4 Perspective of view
11.5 Parametrically defined surfaces

12. Advanced Graphics
12.1 Handle Graphics
12.2 Graphical user interface

13. Sparse Matrix Computations
13.1 Storage modes
13.2 Generating sparse matrices
13.3 Computation with sparse matrices
13.4 Ordering methods
13.5 Visualizing matrices

14. The Symbolic Math Toolbox
14.1 Symbolic variables
14.2 Calculus
14.3 Variable precision arithmetic
14.4 Numeric evaluation
14.5 Algebraic simplification
14.6 Graphs of functions
14.7 Symbolic matrix operations
14.8 Symbolic linear algebraic functions
14.9 Solving algebraic equations
14.10 Solving differential equations
14.11 Further Maple access

© 2002 by CRC Press LLC

15. Help topics
15.1 General
15.2 Operators and special characters
15.3 Programming language constructs
15.4 Elementary matrices and matrix manipulation
15.5 Elementary math functions
15.6 Specialized math functions
15.7 Matrix functions — numerical linear algebra
15.8 Data analysis and Fourier transforms
15.9 Audio support
15.10 Interpolation and polynomials
15.11 Function functions and ODE solvers
15.12 Sparse matrices
15.13 Two-dimensional graphs
15.14 Three-dimensional graphs
15.15 Specialized graphs
15.16 Handle Graphics
15.17 Graphical user interface tools
15.18 Character strings
15.19 File input/output
15.20 Time and dates
15.21 Data types and structures
15.22 Version control commands
15.23 Microsoft Windows functions
15.24 Demos
15.25 Preferences
15.26 Symbolic Math Toolbox

16. Additional Resources
16.1 MATLAB
16.2 MATLAB toolboxes
16.3 Simulink
16.4 Simulink blocksets

© 2002 by CRC Press LLC

1. Accessing MATLAB
On Unix systems you can enter MATLAB with the
system command PDWODE and exit MATLAB with the
MATLAB command TXLW or H[LW. In Microsoft
Windows, the Apple Macintosh, and in some Unix
window systems, just double-click on the MATLAB icon:

�

2. The MATLAB Desktop
MATLAB has an extensive graphical user interface.
When MATLAB starts, the MATLAB window will
appear, with several subwindows and menu bars.

All of MATLAB’s windows are docked, which means
that they are tiled on the main MATLAB window. You
can undock a window by clicking its undock button:

��

Dock it with 9LHZ 'RFN. Close a window by clicking
its close button:

�

Reshape the window tiling by clicking on and dragging
the window edges.

The menu bar at the top of the MATLAB window
contains a set of buttons and pull-down menus for

© 2002 by CRC Press LLC

working with M-files, windows, preferences and other
settings, web resources for MATLAB, and online
MATLAB help. For example, if you prefer a simpler font
than the default one, select)LOH 3UHIHUHQFHV, click
on *HQHUDO and then)RQW 	 &RORUV. Select
/XFLGD &RQVROH (on a PC) or 'LDORJ,QSXW (on Unix)
in place of the default 0RQRVSDFHG font, and click 2..

2.1 Help window
This window is the most useful window for beginning
MATLAB users. Select +HOS 0$7/$% +HOS. The
Help window has most of the features you would see in
any web browser (clickable links, a back button, and a
search engine, for example). The Help Navigator on the
left shows where you are in the MATLAB online
documentation. I’ll refer to the online Help sections as
+HOS: 0$7/$%: *HWWLQJ 6WDUWHG: ,QWURGXFWLRQ,
for example. Click on 0$7/$% in the Help Navigator,
and you’ll see the MATLAB Roadmap (or +HOS: 0$7/$%
for short). Printable versions of the documentation are
also available (see +HOS: 0$7/$%: 3ULQWDEOH
'RFXPHQWDWLRQ �3')�).

You can also use the KHOS command, typed in the
Command window. For example, the command KHOS
HLJ will give information about the eigenvalue function
HLJ. See the list of functions in the last section of this
Primer for a brief summary of help for a function. You
can also preview some of the features of MATLAB by
first entering the command GHPR or by selecting +HOS
'HPRV, and then selecting from the options offered.

© 2002 by CRC Press LLC

2.2 Launch Pad window
This allows you to start up demos and other windows not
present when you start MATLAB. Try /DXQFK 3DG:
0$7/$%: 'HPRV and run one of the demos from the
MATLAB Demo window.

2.3 Command window
MATLAB expressions and statements are evaluated as
you type them in the Command window, and results of
the computation are displayed there too. Expressions and
statements are also used in M-files (more on this in
Chapter 7). They are usually of the form:

YDULDEOH� �H[SUHVVLRQ�

or simply:

H[SUHVVLRQ�

Expressions are usually composed from operators,
functions, and variable names. Evaluation of the
expression produces a matrix (or other data type), which
is then displayed on the screen or assigned to a variable
for future use. If the variable name and sign are
omitted, a variable DQV (for answer) is automatically
created to which the result is assigned.

A statement is normally terminated with the carriage
return. However, a statement can be continued to the next
line with three periods (���) followed by a carriage
return. On the other hand, several statements can be
placed on a single line separated by commas or
semicolons. If the last character of a statement is a
semicolon, display of the result is suppressed, but the

© 2002 by CRC Press LLC

assignment is carried out. This is essential in suppressing
unwanted display of intermediate results.

Click on the Workspace tab to bring up the Workspace
window (it starts out underneath the Launch Pad window)
so you can see a list of the variables you create, and type
this command in the Command window:

$� �>����������������������@�

or this one:

$� �>�
������
������
������@�

in the Command window. Either one creates the obvious
3-by-3 matrix and assigns it to a variable $. Try it. You
will see the array $ in your Workspace window.
MATLAB is case-sensitive in the names of commands,
functions, and variables, so $ and D are two different
variables. A comma or blank separates the elements
within a row of a matrix (sometimes a comma is
necessary to split the expressions, because a blank can be
ambiguous). A semicolon ends a row. When listing a
number in exponential form (e.g., ����H²�), blank
spaces must be avoided. Matrices can also be constructed
from other matrices. If $ is the 3-by-3 matrix shown
above, then:

&� �>$��$
���>��������@���]HURV�������@�

creates a 4-by-6 matrix. Try it to see what & is. The
quote mark in $
 means the transpose of $. Be sure to
use the correct single quote mark (just to the left of the

© 2002 by CRC Press LLC

enter or return key on most keyboards). Parentheses are
needed around expressions if they would otherwise be
ambiguous. If you leave out the parentheses around
�]HURV������, you will get an error message. The
]HURV function is described in Section 5.1.

When you typed the last two commands, the matrices $
and & were created and displayed in the Workspace
window.

You can save the Command window dialog with the
GLDU\ command:

GLDU\�ILOHQDPH�

This causes what appears subsequently on the screen
(except graphics) to be written to the named file (if the
ILOHQDPH is omitted, it is written to a default file named
GLDU\) until you type the command GLDU\ RII; the
command GLDU\ RQ causes writing to the file to resume.
When finished, you can edit the file as desired and print it
out. For hard copy of graphics, see Section 10.10.

The command line in MATLAB can be easily edited in
the Command window. The cursor can be positioned
with the left and right arrows and the Backspace (or
Delete) key used to delete the character to the left of the
cursor. Type KHOS FHGLW to see more command-line
editing features.

A convenient feature is use of the up and down arrows to
scroll through the stack of previous commands. You can,
therefore, recall a previous command line, edit it, and
execute the revised line. Try this by first modifying the
matrix $ by adding one to each of its elements:

© 2002 by CRC Press LLC

$� �$�����

You can change & to reflect this change in $ by retyping
the lengthy command & … above, but it is easier to hit
the up arrow key until you see the command you want,
and then hit enter.

You can clear the Command window with the FOF
command or with (GLW &OHDU &RPPDQG�ZLQGRZ.

Although all numeric computations in MATLAB are
performed with about 16 decimal digits of precision, the
format of the displayed output can be controlled by the
following commands:

IRUPDW�VKRUW fixed point, 5 digits
IRUPDW�ORQJ fixed point, 15 digits
IRUPDW�VKRUW�H scientific notation, 5 digits
IRUPDW�ORQJ�H�� scientific notation, 15 digits
IRUPDW�VKRUW�J� fixed or floating-point, 5 digits
IRUPDW�ORQJ�J fixed or floating-point, 15 digits
IRUPDW�KH[hexadecimal format
IRUPDW�� +, -, and blank�
IRUPDW�EDQN dollars and cents
IRUPDW�UDW approximate ratio of small
 integers

IRUPDW VKRUW is the default. Once invoked, the chosen
format remains in effect until changed. These commands
only modify the display, not the precision of the number.

The command IRUPDW FRPSDFW suppresses most blank
lines, allowing more information to be placed on the
screen or page. The command IRUPDW ORRVH returns to

© 2002 by CRC Press LLC

the non-compact format. These two commands are
independent of the other format commands.

You can pause the output in the Command window with
the PRUH RQ command. Type PRUH RII to turn this
feature off.

2.4 Workspace window
This lists variables that you have either entered or
computed in your MATLAB session.

There are many fundamental data types (or classes) in
MATLAB, each one a multidimensional array. The
classes that we will concern ourselves with most are
rectangular numerical arrays with possibly complex
entries, and possibly sparse. An array of this type is
called a matrix. A matrix with only one row or one
column is called a vector (row vectors and column
vectors behave differently; they are more than mere one-
dimensional arrays). A 1–by–1 matrix is called a scalar.

Arrays can be introduced into MATLAB in several
different ways. They can be entered as an explicit list of
elements (as you did for matrix $), generated by
statements and functions (as you did for matrix &),
created in a file with your favorite text editor, or loaded
from external data files or applications (see +HOS:
0$7/$%: *HWWLQJ 6WDUWHG: 0DQLSXODWLQJ
0DWULFHV). You can also write your own functions (M-
files, or mexFunctions in C, FORTRAN, or Java) that
create and operate on matrices. All the matrices and other
variables that you create, except those internal to M-files
(see Chapter 7), are shown in your Workspace window.

© 2002 by CRC Press LLC

The command ZKR (or ZKRV) lists the variables currently
in the workspace. Try typing ZKRV; you should see a list
of variables including $ and &, with their type and size. A
variable or function can be cleared from the workspace
with the command FOHDU YDULDEOHQDPH or by right-
clicking the variable in the Workspace editor and
selecting 'HOHWH 6HOHFWLRQ. The command FOHDU
alone clears all non-permanent variables.

When you log out or exit MATLAB, all variables are lost.
However, invoking the command VDYH before exiting
causes all variables to be written to a machine-readable
file named PDWODE�PDW. When you later reenter
MATLAB, the command ORDG will restore the
workspace to its former state. Commands VDYH and
ORDG take file names and variable names as optional
arguments (type KHOS VDYH and KHOS ORDG). Try typing
the commands VDYH, FOHDU, and then ORDG, and watch
what happens after each command.

2.5 Command History window
This window lists the commands typed in so far. You can
re-execute a command from this window by double-
clicking or dragging the command into the Command
window. Try double-clicking on the command:

$� �$�����

shown in your Command History window. For more
options, right-click on a line of the Command window.

2.6 Array Editor window
Once an array exists, it can be modified with the Array
Editor, which acts like a spreadsheet for matrices. Go to

© 2002 by CRC Press LLC

the Workspace window and double-click on the matrix &.
Click on an entry in & and change it, and try changing the
size of &. Go back to the Command window and type:

&�

and you will see your new array &. You can also edit the
matrix & by typing the command RSHQYDU�
&
�.

2.7 Current Directory window
Your current directory is where MATLAB looks for your
M-files (see Chapter 10), and for workspace (�PDW) files
that you ORDG and VDYH. You can also load and save
matrices as ASCII files and edit them with your favorite
text editor. The file should consist of a rectangular array
of just the numeric matrix entries. Use a text editor to
create a file in your current directory called
P\PDWUL[�W[W that contains these 2 lines:

������
������

Type the command ORDG P\PDWUL[�W[W, and the file
will be loaded from the current directory to the variable
P\PDWUL[. The file extension (�W[W in this example)
can be anything except �PDW. Large matrices may also
be entered with an M-file (see Section 7.7).

You can use the menus and buttons in the Current
Directory window to peruse your files, or you can use
commands typed in the Command window. The
command SZG returns the name of the current directory,
and FG will change the current directory. The command
GLU lists the contents of the working directory, whereas
the command ZKDW lists only the MATLAB-specific files

© 2002 by CRC Press LLC

in the directory, grouped by file type. The MATLAB
commands GHOHWH and W\SH can be used to delete a file
and display an M-file in the Command window,
respectively.

2.8 MATLAB’s path
M-files must be in a directory accessible to MATLAB.
M-files in the current directory are always accessible.
The current list of directories in MATLAB’s search path
is obtained by the command SDWK. This command can
also be used to add or delete directories from the search
path. See KHOS SDWK. The command ZKLFK locates
functions and files on the path. For example, type ZKLFK
KLOE. You can modify your MATLAB path with the
command SDWK, or SDWKWRRO, which brings up another
window. You can also select)LOH 6HW 3DWK.

3. Matrices and Matrix Operations
You have now seen most of MATLAB's windows and
what they can do. Now take a look at how you can use
MATLAB to work on matrices and other data types.

3.1 Referencing individual entries
Individual matrix and vector entries can be referenced
with indices inside parentheses. For example, $�����
denotes the entry in the second row, third column of
matrix $. Try:

$� �>����������������������@�
$�������

Next, create a column vector, [, with:

[� �>�����@
�

© 2002 by CRC Press LLC

or equivalently:

[� �>���������@�

With this vector, [��� denotes the third coordinate of
vector [, with a value of �. Higher dimensional arrays
are similarly indexed. A matrix or a vector accepts only
positive integers as indices.

A two-dimensional array can be indexed as if it were a
one-dimensional vector. If $ is P-by-Q, then $�L�M� is
the same as $�L��M���
P�. This feature is most often
used with the ILQG function (see Section 5.5).

3.2 Matrix operators
The following matrix operators are available in
MATLAB:

� addition
� subtraction or negation

 multiplication
A power

 transpose (real) or conjugate transpose (complex)
�
 transpose (real or complex)
? left division
� right division

These matrix operators apply, of course, to scalars
(1-by-1 matrices) as well. If the sizes of the matrices are
incompatible for the matrix operation, an error message
will result, except in the case of scalar-matrix operations
(for addition, subtraction, division, and multiplication, in
which case each entry of the matrix is operated on by the
scalar, as in $ $��). Also try the commands:

© 2002 by CRC Press LLC

$A��
$
[�

If [and \ are both column vectors, then [

\ is their
inner (or dot) product, and [
\
 is their outer (or cross)
product. Try these commands:

\� �>�����@
�
[

\�
[
\
�

3.3 Matrix division
The matrix division operations deserve special comment.
If $ is an invertible square matrix and E is a compatible
column vector, or respectively a compatible row vector,
then [$?E is the solution of $
[E, and [E�$ is the
solution of [
$ E. If $ is square and non-singular, then
$?E and E�$ are mathematically the same as LQY�$�
E
and E
LQY�$�, respectively, where LQY�$� computes
the inverse of $. The left and right division operators are
more accurate and efficient. In left division, if $ is
square, then it is factored using Gaussian elimination, and
these factors are used to solve $
[E. If $ is not square,
the under- or over-determined system is solved in the
least squares sense. Right division is defined in terms of
left division by E�$ �$
?E
�
. Try this:

$� �>���������@�
E� �>����@
�
[� �$?E�

The solution to $
[E is the column vector [>�����@.

3.4 Entry-wise operators
Matrix addition and subtraction already operate
entry-wise, but the other matrix operations do not. These

© 2002 by CRC Press LLC

other operators (
, A, ?, and �) can be made to operate
entry-wise by preceding them by a period. For example,
either:

>�������@��
�>�������@�

or:

>�������@��A���

will yield >��������@. Try it. This is particularly
useful when using MATLAB graphics.

Also compare $A� with $�A�.

3.5 Relational operators
The relational operators in MATLAB are:

< less than
> greater than
<= less than or equal
>= greater than or equal
== equal
~= not equal

They all operate entry-wise. Note that is used in an
assignment statement whereas is a relational operator.
Relational operators may be connected by logical
operators:

	 and
_ or
a not

© 2002 by CRC Press LLC

When applied to scalars, the result is � or � depending on
whether the expression is true or false. Try entering � �
�� � ! �� � �, and � �. When applied to matrices
of the same size, the result is a matrix of ones and zeros
giving the value of the expression between corresponding
entries. You can also compare elements of a matrix with
a scalar. Try:

$� �>���������@�
$�! ���
%� �>���������@�
$���%�

In logical expressions, a nonzero value is interpreted as
true, and a zero is interpreted as false. Thus, a� is �, a�
is �, and � 	 � is �, for example.

3.6 Complex numbers
MATLAB allows complex numbers in most of its
operations and functions. Two convenient ways to enter
complex matrices are:

%� �>���������@���L
>���������@�
%� �>���L�����L������L�����L@�

Either L or M may be used as the imaginary unit. If,
however, you use L and M as variables and overwrite their
values, you may generate a new imaginary unit with, say,
LL VTUW����. You can also use �L or �M, which cannot
be reassigned and are always equal to the imaginary unit.
Thus,

%� �>���������@����L
>���������@�

© 2002 by CRC Press LLC

generates the same matrix %, even if L has been
reassigned. See Section 8.2 to find out if L has been
reassigned.

3.7 Strings
Enclosing text in single quotes forms strings with the
FKDU data type:

6� �
,�ORYH�0$7/$%
�

To include a single quote inside a string, use two of them
together, as in:

6� �
*UHHQ

V�IXQFWLRQ
�

Strings, numeric matrices, and other data types can be
displayed with the function GLVS. Try GLVS�6� and
GLVS�%�.

3.8 Other data types
MATLAB supports many other data types, including
sparse matrices, multidimensional arrays, cell arrays, and
structures.

Sparse matrices are stored in a special way that does not
require space for zero entries. MATLAB has efficient
methods of operating on sparse matrices. Type KHOS
VSDUVH, and KHOS IXOO, look in +HOS: 0$7/$%: 8VLQJ
0$7/$%: 0DWKHPDWLFV: 6SDUVH 0DWULFHV, or see
Chapter 13. Sparse matrices are allowed as arguments for
most, but not all, MATLAB operators and functions
where a normal matrix is allowed.

© 2002 by CRC Press LLC

']HURV��������� creates a 4-dimensional array of
size 3-by-5-by-4-by-2. Multidimensional arrays may also
be built up using FDW (short for concatenation).

Cell arrays are collections of other arrays or variables of
varying types and are formed using curly braces. For
example,

F� �^>�����@��
,�ORYH�0$7/$%
`�

creates a cell array. The expression F^�` is a row vector
of length 3, while F^�` is a string.

A VWUXFW is variable with one or more parts, each of
which has its own type. Try, for example,

[�SDUWLFOH� �
HOHFWURQ
�
[�SRVLWLRQ� �>�����@�
[�VSLQ� �
XS
�

The variable [describes an object with several
characteristics, each with its own type.

You may create additional data objects and classes using
overloading (see KHOS FODVV).

4. Submatrices and Colon
Notation
Vectors and submatrices are often used in MATLAB to
achieve fairly complex data manipulation effects. Colon
notation (which is used to both generate vectors and
reference submatrices) and subscripting by integral
vectors are keys to efficient manipulation of these objects.
Creative use of these features minimizes the use of loops
(which slows MATLAB) and makes code simple and

© 2002 by CRC Press LLC

readable. Special effort should be made to become
familiar with them.

4.1 Generating vectors
The expression ��� is the row vector >���������@.
The numbers need not be integers, and the increment need
not be one. For example, ������� gives >����������
���������@, and ������ gives >���������@. These
vectors are commonly used in IRU loops, described in
Section 6.1. Be careful how you mix the colon operator
with other operators. Compare ����� with �������.

4.2 Accessing submatrices
Colon notation can be used to access submatrices of a
matrix. To try this out, first type the two commands:

$� �UDQG�������
%� �UDQG�������

which generate a random 6-by-6 matrix $ and a random
6-by-4 matrix % (see Section 5.1).

$������� is the column vector consisting of the first
four entries of the third column of $.

A colon by itself denotes an entire row or column:
$����� is the third column of $, and $������� is the
first four rows.

Arbitrary integral vectors can be used as subscripts:
$���>���@� contains as columns, columns 2 and 4 of $.
Such subscripting can be used on both sides of an
assignment statement:

$����>�����@�� �%���������

© 2002 by CRC Press LLC

replaces columns ����� of $ with the first three columns
of %. Try it. Note that the entire altered matrix $ is
displayed and assigned.

Columns 2 and 4 of $ can be multiplied on the right by
the 2-by-2 matrix >���������@:

$����>���@�� �$����>���@��
�>���������@�

Once again, the entire altered matrix is displayed and
assigned. Submatrix operations are a convenient way to
perform many useful computations. For example, a
Givens rotation of rows 3 and 5 of the matrix $ to zero
out the $����� entry can be written as:

D� �$�������
E� �$�������
*� �>D�E����E�D@���QRUP��>D�E@��
$��>���@����� �*�
�$��>���@�����

(assuming QRUP�>D�E@� is not zero). You can also
assign a scalar to all entries of a submatrix. Try:

$�����>���@�� ����

You can delete rows or columns of a matrix by assigning
the empty matrix ([]) to them. Try:

$�����>���@�� �>@�

In an array index expression, HQG denotes the index of the
last element. Try:

[� �UDQG�������
[� �[��HQG�������

© 2002 by CRC Press LLC

To appreciate the usefulness of these features, compare
these MATLAB statements with a C, FORTRAN, or Java
routine to do the same operation.

5. MATLAB Functions
MATLAB has a wide assortment of built-in functions.
You have already seen some of them, such as]HURV,
UDQG, and LQY. This section describes the more common
matrix manipulation functions. For a more complete list,
see Chapter 14, or +HOS: 0$7/$%: 5HIHUHQFH: 0$7/$%
)XQFWLRQ 5HIHUHQFH.

5.1 Constructing matrices
Convenient matrix building functions are:

H\H identity matrix
]HURV� matrix of zeros
RQHV matrix of ones
GLDJ create or extract diagonals
WULX upper triangular part of a matrix
WULO lower triangular part of a matrix
UDQG randomly generated matrix
KLOE� Hilbert matrix
PDJLF magic square
WRHSOLW] Toeplitz matrix

The command UDQG�Q� creates an Q-by-Q matrix with
randomly generated entries distributed uniformly between
0 and 1 while UDQG�P�Q� creates an P-by-Q matrix (P
and Q denote, of course, positive integers). Try:

$� �UDQG�����

© 2002 by CRC Press LLC

UDQG�
VWDWH
��� resets the random number generator.
]HURV�P�Q� produces an P-by-Q matrix of zeros, and
]HURV�Q� produces an Q-by-Q one. If $ is a matrix, then
]HURV�VL]H�$�� produces a matrix of zeros having the
same size as $. If [is a vector, GLDJ�[� is the diagonal
matrix with [down the diagonal; if $ is a matrix, then
GLDJ�$� is a vector consisting of the diagonal of $. Try:

[� �����
GLDJ��[��
GLDJ��$��
GLDJ��GLDJ��$���

Matrices can be built from blocks. Try creating this 5-by-
5 matrix:

%� �>$���]HURV����������
�SL�
�RQHV����������H\H�����@�

PDJLF�Q� creates an Q-by-Q matrix that is a magic
square (rows, columns, and diagonals have common
sum); KLOE�Q� creates the Q-by-Q Hilbert matrix, the
king of ill-conditioned matrices. Matrices can also be
generated with a IRU loop (see Section 6.1). WULX and
WULO extract upper and lower triangular parts of a matrix.
Try:

WULX��$��
WULX��$�� �$�

5.2 Scalar functions
Certain MATLAB functions operate essentially on scalars
but operate entry-wise when applied to a vector or matrix.
The most common such functions are:

DEV���FHLO���ORJ����VLJQ�
DFRV��FRV����ORJ����VLQ��

© 2002 by CRC Press LLC

DVLQ��H[S����UHP����VTUW�
DWDQ��IORRU��URXQG��WDQ�

The following statements, for example, will generate a
sine table. Try it.

[� ����������
�
\� �VLQ��[��
>[�\@�

Note that because VLQ operates entry-wise, it produces a
vector \ from the vector [.

5.3 Vector functions
Other MATLAB functions operate essentially on a vector
(row or column) but act on an P-by-Q matrix (P ! �) in a
column-by-column fashion to produce a row vector
containing the results of their application to each column.
Row-by-row action can be obtained by using the
transpose (PHDQ�$
�
, for example) or by specifying the
dimension along which to operate (PHDQ�$���, for
example). A few of these functions are:

PD[���VXP���PHGLDQ��DQ\���VRUW�
PLQ���SURG��PHDQ����DOO���VWG�

The maximum entry in a matrix $ is given by
PD[�PD[�$�� rather than PD[�$�. Try it.

5.4 Matrix functions
Much of MATLAB’s power comes from its matrix
functions. The most useful ones are:

HLJ eigenvalues and eigenvectors
FKRO Cholesky factorization
VYG singular value decomposition

© 2002 by CRC Press LLC

LQY� inverse
OX LU factorization
TU QR factorization
KHVV Hessenberg form
VFKXU� Schur decomposition
UUHI reduced row echelon form
H[SP matrix exponential
VTUWP matrix square root
SRO\ characteristic polynomial
GHW determinant
VL]H size of an array
OHQJWK length of a vector
QRUP 1–norm, 2–norm, Frobenius–norm,
 �–norm
FRQG condition number in the 2–norm
UDQN rank
NURQ Kronecker tensor product
ILQG find indices of nonzero entries

MATLAB functions may have single or multiple output
arguments. For example,

\� �HLJ��$��

produces a column vector containing the eigenvalues of
$, whereas:

>8��'@� �HLJ��$��

produces a matrix 8 whose columns are the eigenvectors
of $ and a diagonal matrix ' with the eigenvalues of $ on
its diagonal. Try it.

© 2002 by CRC Press LLC

5.5 The find function
The ILQG function is unlike the others. ILQG�[�, where
[is a vector, returns an array of indices of nonzero entries
in [. This is often used in conjunction with relational
operators. Suppose you want a vector \ that consists of
all the values in [greater than �. Try:

[� ��
UDQG�������
\� �[��ILQG��[�!�����

For matrices,

>L�M�[@� �ILQG��$��

returns three vectors, with one entry in L, M, and [for
each nonzero in $ (row index, column index, and
numerical value, respectively). With this matrix $, try:

>L�M�[@� �ILQG��$�!�����
>L�M�[@�

and you will see a list of pairs of row and column indices
where $ is greater than ��. However, [is a vector of
values from the matrix expression $! ��, not from the
matrix $. Getting the values of $ that are larger than ��
without using a loop (see Section 6.1) requires one-
dimensional array indexing. Try:

N� �ILQG��$�!�����
$��N��
$��N�� �$��N�������

The loop-based analog of this computation is shown in
Section 6.1.

© 2002 by CRC Press LLC

Here’s a more complex example. A square matrix $ is
diagonally dominant if

 ∑
≠

>
ij

ijii aa for each row i.

First, enter a matrix that is not diagonally dominant. Try:

$� �>�
������������
������������
������������
�����������@�

These statements compute a vector L containing indices
of rows that violate diagonal dominance (rows 1 and 4 for
this matrix $�.

G� �GLDJ��$��
D� �DEV��G��
I� �VXP��DEV��$������²�D�
L� �ILQG��I�! �D��

Next, modify the diagonal entries to make the matrix just
barely diagonally dominant, while still preserving the sign
of the diagonal:

>P�Q@� �VL]H��$��
N� �L����L���
P�
WRO� �����
�HSV�
V� ���
��G��L��! ��������
$��N�� ����WRO��
�V��
�PD[��I��L���WRO��

The variable HSV (epsilon) gives the smallest value such
that ��HSV ! �, about 10-16 on most computers. It is
useful in specifying tolerances for convergence of
iterative processes and in problems like this one. The

© 2002 by CRC Press LLC

odd-looking statement that computes V is nearly the same
as V VLJQ�G�L��, except that here we want V to be one
when G�L� is zero. We’ll come back to this diagonal
dominance problem later on.

6. Control Flow Statements
In their basic forms, these MATLAB flow control
statements operate like those in most computer languages.
Indenting the statements of a loop or conditional
statement is optional, but it helps readability to follow a
standard convention.

6.1 The for loop
This loop:

Q� ����
[� �>@�
IRU�L� ���Q�
����[� �>[��LA�@�
HQG�

produces a vector of length ��, and

Q� ����
[� �>@�
IRU�L� �Q������
����[� �>[��LA�@�
HQG�

produces the same vector in reverse order. Try them.
The vector [grows in size at each iteration. Note that a
matrix may be empty (such as [>@). The statements:

P� ���
Q� ���
IRU�L� ���P�
����IRU�M� ���Q�

© 2002 by CRC Press LLC

��������+��L�M�� ����L�M������
����HQG�
HQG�
+�

produce and display in the Command window the �-by-�
Hilbert matrix. The last + displays the final result. The
semicolon on the inner statement is essential to suppress
the display of unwanted intermediate results. If you leave
off the semicolon, you will see that + grows in size as the
computation proceeds. This can be slow if P and Q are
large. It is more efficient to preallocate the matrix + with
the statement +]HURV�P�Q� before computing it. Type
the command W\SH KLOE to see a more efficient way to
produce a square Hilbert matrix.

Here is the counterpart of the one-dimensional indexing
exercise from Section 5.5. It adds �� to each entry of the
matrix that is larger than ��, using two IRU loops instead
of a single ILQG. This method is much slower.

$� �UDQG�����
>P�Q@� �VL]H��$����
IRU�M� ���Q�
����IRU�L� ���P�
��������LI��$��L�M��!�����
������������$��L�M�� �$��L�M���������
��������HQG�
����HQG�
HQG�
$�

The IRU statement permits any matrix expression to be
used instead of ��Q. The index variable consecutively
assumes the value of each column of the expression. For
example,

© 2002 by CRC Press LLC

V� �����
IRU�F� �+�
����V� �V���VXP��F����
HQG�

computes the sum of all entries of the matrix + by adding
its column sums (of course, VXP�VXP�+�� does it more
efficiently; see Section 5.3). In fact, since ��Q >������
����Q@, this column-by-column assignment is what
occurs with IRU L ��Q.

6.2 The while loop
The general form of a ZKLOH loop is:

ZKLOH�H[SUHVVLRQ�
����VWDWHPHQWV�
HQG�

The VWDWHPHQWV will be repeatedly executed as long as
the H[SUHVVLRQ remains true. For example, for a given
number D, the following computes and displays the
smallest nonnegative integer Q such that �Q ! D:

D� ��H��
Q� ���
ZKLOH��AQ�� �D�
����Q� �Q�������
HQG�
Q�

Note that you can compute the same value Q more
efficiently by using the ORJ� function:

>I�Q@� �ORJ���D��

You can terminate a IRU or ZKLOH loop with the EUHDN
statement and skip to the next iteration with the
FRQWLQXH statement.

© 2002 by CRC Press LLC

6.3 The if statement
The general form of a simple LI statement is:

LI�H[SUHVVLRQ�
����VWDWHPHQWV�
HQG�

The VWDWHPHQWV will be executed only if the
H[SUHVVLRQ is true. Multiple conditions also possible:

IRU�Q� ������
����LI�Q�����
��������SDULW\� �����
����HOVHLI�UHP��Q���� ���
��������SDULW\� �����
����HOVH�
��������SDULW\� �����
����HQG�
����Q�
����SDULW\�
HQG�

The HOVH and HOVHLI are optional. If the HOVH part is
used, it must come last.

6.4 The switch statement
The VZLWFK statement is just like the LI statement. If
you have one expression that you want to compare
against several others, then a VZLWFK statement can be
more concise than the corresponding LI statement. See
KHOS VZLWFK for more information.

6.5 The try/catch statement
Matrix computations can fail because of characteristics of
the matrices that are hard to determine before doing the
computation. If the failure is severe, your script or

© 2002 by CRC Press LLC

function (see Chapter 7) may be terminated. The
WU\/FDWFK statement allows you to compute
optimistically and then recover if those computations fail.
The general form is:

WU\�
����VWDWHPHQWV�
FDWFK�
����VWDWHPHQWV�
HQG�

The first block of statements is executed. If an error
occurs, those statements are terminated, and the second
block of statements is executed. You cannot do this with
an LI statement. See KHOS WU\.

6.6 Matrix expressions (if and while)
A matrix expression is interpreted by LI and ZKLOH to be
true if every entry of the matrix expression is nonzero.
Enter these two matrices:

$� �>�����������@�
%� �>�����������@�

If you wish to execute a statement when matrices $ and %
are equal, you could type:

LI�$� �%�
����GLVS��
$�DQG�%�DUH�HTXDO
��
HQG�

If you wish to execute a statement when $ and % are not
equal, you would type:

LI�DQ\��DQ\��$�a �%���
����GLVS��
$�DQG�%�DUH�QRW�HTXDO
��
HQG�

© 2002 by CRC Press LLC

or, more simply,

LI�$� �%�HOVH�
����GLVS��
$�DQG�%�DUH�QRW�HTXDO
��
HQG�

Note that the seemingly obvious:

LI�$�a �%�
����GLVS��
QRW�ZKDW�\RX�WKLQN
��
HQG�

will not give what is intended because the statement
would execute only if each of the corresponding entries of
$ and % differ. The functions DQ\ and DOO can be
creatively used to reduce matrix expressions to vectors or
scalars. Two DQ\s are required above because DQ\ is a
vector operator (see Section 5.3). In logical terms, DQ\
and DOO correspond to the existential (∃) and universal
(∀) quantifiers, respectively, applied to each column of a
matrix or each entry of a row or column vector. Like most
vector functions, DQ\ and DOO can be applied to
dimensions of a matrix other than the columns.

Thus, an LI statement with a two-dimensional matrix
H[SUHVVLRQ is equivalent to:

LI�DOO��DOO��H[SUHVVLRQ���
����VWDWHPHQW�
HQG�

6.7 Infinite loops
With loops, it is possible to execute a command that will
never stop. Typing Ctrl-C stops a runaway display or
computation. Try:

© 2002 by CRC Press LLC

L� ���
ZKLOH�L�!���
����L� �L�����
HQG�

then type Ctrl-C to terminate this loop.

7. M-files
MATLAB can execute a sequence of statements stored in
files. These are called M-files because they must have
the file type �P as the last part of their filename.

7.1 M-file Editor/Debugger window
Much of your work with MATLAB will be in creating
and refining M-files. M-files are usually created using
your favorite text editor or with MATLAB’s M-file
Editor/Debugger. See also +HOS: 0$7/$%: 8VLQJ
0$7/$%: 'HYHORSPHQW (QYLURQPHQW: (GLWLQJ DQG
'HEXJJLQJ 0�)LOHV.

There are two types of M-files: script files and function
files. In this exercise, you will incrementally develop and
debug a script and then a function for making a matrix
diagonally dominant (see Section 5.5). Select)LOH
1HZ 0�ILOH to start a new M-file, or click:

�

Type in these lines in the Editor,

I� �VXP��$�������
$� �$���GLDJ��I����

© 2002 by CRC Press LLC

and save the file as GGRP�P by clicking:

�

You’ve just created a MATLAB script file.3 The
semicolons are there because you normally do not want to
see the results of every line of a script or function.

7.2 Script files
A script file consists of a sequence of normal MATLAB
statements. Typing GGRP in the Command window
causes the statements in the script file GGRP�P to be
executed. Variables in a script file are global and will
change the value of variables of the same name in the
workspace of the current MATLAB session. Type:

$� �UDQG�����
GGRP�
$�

in the Command window. It seems to work; the matrix $
is now diagonally dominant. If you type this in the
Command window, though,

$� �>��²��������@�
GGRP�
$�

then the diagonal of $ just got worse. What happened?
Click on the Editor window and move the mouse to point
to the variable I, anywhere in the script. You will see a
yellow pop-up window with:

3 See http://www.cise.ufl.edu/research/sparse/MATLAB for the
M-files and MEX-files used in this book.

© 2002 by CRC Press LLC

http://www.cise.ufl.edu/research/sparse/MATLAB

I� �
��������
��������

Oops. I is supposed to be a sum of absolute values, so it
cannot be negative. Edit the first line of GGRP�P and
change it to:

I� �VXP��DEV��$��������

save the file, and run it again on the original matrix $ >��
²������@. This time, instead of typing in the command,
try running the script by clicking:

�

in the Editor window. This is a shortcut to typing GGRP
in the Command window. The matrix $ is now
diagonally dominant. Run the script again, though, and
you will see that A is modified even if it is already
diagonally dominant. Fix this modifying only those rows
that violate diagonal dominance.

Set $ to >��²������@ by clicking on the command in
the Command History window. Next, modify GGRP�P to
be:

G� �GLDJ��$����
D� �DEV��G����
I� �VXP��DEV��$������²�D���
L� �ILQG��I�! �D����
$��L�L�� �$��L�L����GLDJ��I��L�����

and click:

�

© 2002 by CRC Press LLC

to save and run the script. Run it again; the matrix does
not change.

Try it on the matrix $ >���������@. The result is
wrong. To fix it, try another debugging method — setting
breakpoints. A breakpoint causes the script to pause, and
allows you to enter commands in the Command window,
while the script is paused (it acts just like the NH\ERDUG
command).

Click on line 5 and select %UHDNSRLQWV 6HW�&OHDU
%UHDNSRLQW or click:

�

A red dot appears in a column to the left of line 5. You
can also set and clear breakpoints by clicking on the red
dots or dashes in this column.

In the Command window, type:

FOHDU�
$� �>�����������@�
GGRP�

A green arrow appears at line 5, and the prompt .!!
appears in the Command window. Execution of the script
has paused, just before line 5 is executed. Look at the
variables $ and I. Since the diagonal is negative, and I is
an absolute value, we should subtract I from $ to
preserve the sign. Type the command:

$� �$���GLDJ��I��

© 2002 by CRC Press LLC

The matrix is now correct, although this works only if all
of the rows need to be fixed and all diagonal entries are
negative. Stop the script by selecting 'HEXJ ([LW
'HEXJ 0RGH or by clicking:

�

Clear the breakpoint. Edit the script, and replace line 5
with:

V� �VLJQ��G��L�����
$��L�L�� �$��L�L����GLDJ��V��
�I��L�����

Type $ >���������@ and run the script. The script
seems to work, but it modifies $ more than is needed. Try
the script on $]HURV���, and you will see that the
matrix is not modified at all, because VLJQ��� is zero.
Fix the script so that it looks like this:

G� �GLDJ��$����
D� �DEV��G����
I� �VXP��DEV��$������²�D���
L� �ILQG��I�! �D����
>P�Q@� �VL]H��$����
N� �L����L���
P���
WRO� �����
�HSV���
V� ���
��G��L��! ����������
$��N�� ����WRO��
�V��
�PD[��I��L���WRO���

which is the sequence of commands you typed in Section
5.5.

7.3 Function files
Function files provide extensibility to MATLAB. You
can create new functions specific to your problem, which
will then have the same status as other MATLAB

© 2002 by CRC Press LLC

functions. Variables in a function file are by default
local. A variable can, however, be declared global (see
KHOS JOREDO).

Convert your GGRP�P script into a function by adding
these lines at the beginning of GGRP�P:

IXQFWLRQ�%� �GGRP��$��
��%� �GGRP��$��UHWXUQV�D�GLDJRQDOO\�
��GRPLQDQW�PDWUL[�%�E\�PRGLI\LQJ�WKH�
��GLDJRQDO�RI�$��

and add this line at the end of your new function:

%� �$���

You now have a MATLAB function, with one input
argument and one output argument. To see the difference
between global and local variables as you do this
exercise, type FOHDU. Functions do not modify their
inputs, so:

&� �>��²��������@�
'� �GGRP��&��

returns a matrix & that is diagonally dominant. The
matrix & in the workspace does not change, although a
copy of it local to the GGRP function, called $, is modified
as the function executes. Note that the other variables, D,
G, I, L, N and V no longer appear in your workspace.
Neither do $ and %. These are all local to the GGRP
function.

The first line of the function declares the function name,
input arguments, and output arguments; without this line
the file would be a script file. Then a MATLAB

© 2002 by CRC Press LLC

statement ' GGRP�&�, for example, causes the matrix &
to be passed as the variable $ in the function and causes
the output result to be passed out to the variable '. Since
variables in a function file are local, their names are
independent of those in the current MATLAB workspace.
Your workspace will have only the matrices & and '. If
you want to modify & itself, then use & GGRP�&�.

Lines that start with � are comments; more on this in
Section 7.6. An optional UHWXUQ statement causes the
function to finish and return its outputs.

7.4 Multiple inputs and outputs
A function may also have multiple output arguments. For
example, it would be useful to provide the caller of the
GGRP function some control over how strong the diagonal
is to be and to provide more results, such as the list of
rows (the variable L) that violated diagonal dominance.
Try changing the first line to:

IXQFWLRQ�>%�L@� �GGRP��$��WRO��

and add a � at the beginning of the line that computes
WRO. Single assignments can also be made with a
function having multiple output arguments. For example,
with this version of GGRP, the statement ' GGRP�&�����
will assign the modified matrix to the variable ' without
returning the vector L. Try it.

7.5 Variable arguments�
Not all inputs and outputs of a function need be present
when the function is called. The variables QDUJLQ and
QDUJRXW can be queried to determine the number of
inputs and outputs present. For example, we could use a

© 2002 by CRC Press LLC

default tolerance if WRO is not present. Add these
statements in place of the line that computed WRO:

LI��QDUJLQ� ����
����WRO� �����
�HSV���
HQG�

An example of both QDUJLQ and QDUJRXW is given in
Section 8.1.

7.6 Comments and documentation
The � symbol indicates that the rest of the line is a
comment; MATLAB will ignore the rest of the line.
Moreover, the first contiguous comment lines are used to
document the M-file. They are available to the online
help facility and will be displayed if, for example, KHOS
GGRP is entered. Such documentation should always be
included in a function file. Since you’ve modified the
function to add new inputs and outputs, edit your script to
describe the variables L and WRO. Be sure to state what
the default value of WRO is. Next, type KHOS GGRP.

7.7 Entering large matrices
Script files may be used to enter data into a large matrix;
in such a file, entry errors can be easily corrected. If, for
example, one enters in a file DPDWUL[�P:

$� �>�
��������
��������
@���

then the command DPDWUL[causes the assignment given
in DPDWUL[�P to be carried out. However, it is usually
easier to use ORDG (see Section 2.7) or the Array Editor
(see Section 2.6), rather than a script.

© 2002 by CRC Press LLC

An M-file can reference other M-files, including
referencing itself recursively.

8. Advanced M-file features
This section describes advanced M-file techniques, such
as how to pass function references and how to write high-
performance code in MATLAB.

8.1 Function references
A function handle is a reference to a function that can
then be treated as a variable. It can be copied, stored in a
matrix (not a numeric one, though), placed in cell array,
and so on. Its final use is normally to pass it to IHYDO,
which then evaluates the function. For example,

K� �#VLQ�
\� �IHYDO��K��SL����

is the same thing as simply \ VLQ�SL���. Try it. You
can also use a string to refer to a function, as in:

\� �IHYDO��
VLQ
��SL����

but the function handle method is more general. See
KHOS IXQFWLRQBKDQGOH for more information.

The ELVHFW function, below, takes a function handle as
one of its inputs. It also gives you an example of QDUJLQ
and QDUJRXW (see also Section 7.5).

IXQFWLRQ�>E��VWHSV@� �ELVHFW��IXQ�[�WRO��
��%,6(&7���]HUR�RI�D�IXQFWLRQ�RI�RQH�
��YDULDEOH�YLD�WKH�ELVHFWLRQ�PHWKRG��
��ELVHFW��IXQ�[��UHWXUQV�D�]HUR�RI�WKH�
��IXQFWLRQ�IXQ���IXQ�LV�D�IXQFWLRQ�
��KDQGOH�RU�D�VWULQJ�ZLWK�WKH�QDPH�RI�D�

© 2002 by CRC Press LLC

��IXQFWLRQ���[�LV�D�VWDUWLQJ�JXHVV��7KH�
��YDOXH�RI�E�UHWXUQHG�LV�QHDU�D�SRLQW�
��ZKHUH�IXQ�FKDQJHV�VLJQ���)RU�H[DPSOH��
��ELVHFW��#VLQ����LV�SL���1RWH�WKH�XVH�
��RI�WKH�IXQFWLRQ�KDQGOH��#VLQ��
��
��$Q�RSWLRQDO�WKLUG�LQSXW�DUJXPHQW�VHWV�
��D�WROHUDQFH�IRU�WKH�UHODWLYH�DFFXUDF\�
��RI�WKH�UHVXOW���7KH�GHIDXOW�LV�HSV��
��$Q�RSWLRQDO�VHFRQG�RXWSXW�DUJXPHQW�
��JLYHV�D�PDWUL[�FRQWDLQLQJ�D�WUDFH�RI�
��WKH�VWHSV��WKH�URZV�DUH�RI�WKH�IRUP�
��>F��I�F��@��
�
LI��QDUJLQ������
������GHIDXOW�WROHUDQFH�
����WRO� �HSV���
HQG�
WUDFH� ��QDUJRXW� ������
LI��[�a ����
����G[� �[������
HOVH�
����G[� ��������
HQG�
D� �[���G[���
ID� �IHYDO��IXQ��D����
E� �[���G[���
IE� �IHYDO��IXQ��E����
LI��WUDFH��
����VWHSV� �>D�ID���E�IE@���
HQG�
�
��ILQG�D�FKDQJH�RI�VLJQ�
ZKLOH��ID�!���� ��IE�!����
����G[� ��
G[���
����D� �[���G[���
����ID� �IHYDO��IXQ��D����
����LI��WUDFH��
��������VWHSV� �>VWHSV���>D�ID@@���
����HQG�
����LI��ID�!����a ��IE�!����
��������EUHDN�
����HQG�

© 2002 by CRC Press LLC

����E� �[���G[���
����IE� �IHYDO��IXQ��E����
����LI��WUDFH��
��������VWHSV� �>VWHSV���>E�IE@@���
����HQG�
HQG�
�
��PDLQ�ORRS�
ZKLOH��DEV��E�D��!��
WRO
PD[�DEV�E������
����F� �D����E�D������
����IF� �IHYDO��IXQ��F����
����LI��WUDFH��
��������VWHSV� �>VWHSV���>F�IF@@���
����HQG�
����LI��IE�!���� ��IF�!����
��������E� �F���
��������IE� �IF���
����HOVH�
��������D� �F���
��������ID� �IF���
����HQG�
HQG�

Some of MATLAB’s functions are built in; others are
distributed as M-files. The actual listing of any
non-built-in M-file, MATLAB’s or your own, can be
viewed with the MATLAB command W\SH
IXQFWLRQQDPH. Try entering W\SH HLJ, W\SH YDQGHU,
and W\SH UDQN.

8.2 Name resolution
When MATLAB comes upon a new name, it resolves it
into a specific variable or function by checking to see if it
is a variable, a built-in function, a file in the current
directory, or a file in the MATLAB path (in order of the
directories listed in the path). MATLAB uses the first
variable, function, or file it encounters with the specified
name. There are other cases; see +HOS: 0$7/$%: 8VLQJ

© 2002 by CRC Press LLC

0$7/$%: 'HYHORSPHQW (QYLURQPHQW: :RUNVSDFH,
3DWK, DQG)LOH 2SHUDWLRQV: 6HDUFK 3DWK. You can
use the command ZKLFK to find out what a name is. Try
this:

FOHDU�
L�
ZKLFK�L�
L� ���
ZKLFK�L�

8.3 Error messages
Error messages are best displayed with the function
HUURU. For example,

$� �UDQG�������
>P�Q@� �VL]H��$����
LI�P�a �Q�
����HUURU��
$�PXVW�EH�VTXDUH
����
HQG�

aborts execution of an M-file if the matrix $ is not square.
This is a useful thing to add to the GGRP function that you
developed in Chapter 7, since diagonal dominance is only
defined for square matrices. Try adding it to GGRP
(excluding the UDQG statement, of course), and see what
happens if you call GGRP with a rectangular matrix.

See Section 6.5 (WU\/FDWFK) for one way to deal with
errors in functions you call.

8.4 User input
In an M-file the user can be prompted to interactively
enter input data, expressions, or commands. When, for
example, the statement:

LWHU� �LQSXW��
LWHUDWLRQ�FRXQW��
����

© 2002 by CRC Press LLC

is encountered, the prompt message is displayed and
execution pauses while the user keys in the input data (or,
in general, any MATLAB expression). Upon pressing the
return key, the data is assigned to the variable LWHU and
execution resumes. You can also input a string; see KHOS
LQSXW.

An M-file can be paused until a return is typed in the
Command window with the SDXVH command. It is a
good idea to display a message, as in:

GLVS��
+LW�HQWHU�WR�FRQWLQXH��
����
SDXVH�

A Ctrl-C will terminate the script or function that is
paused. A more general command, NH\ERDUG, allows
you to type any number of MATLAB commands. See
KHOS NH\ERDUG.

8.5 Efficient code
The function GGRP�P that you wrote in Chapter 7
illustrates some of the MATLAB features that can be
used to produce efficient code. All operations are
“vectorized,” and loops are avoided. We could have
written the GGRP function using nested IRU loops, much
like how you would write it in C, FORTRAN, or Java:

IXQFWLRQ�%� �GGRP��$�WRO��
��%� �GGRP��$��UHWXUQV�D�GLDJRQDOO\�
��GRPLQDQW�PDWUL[�%�E\�PRGLI\LQJ�WKH�
��GLDJRQDO�RI�$��
>P�Q@� �VL]H��$����
LI��QDUJLQ� ����
����WRO� �����
�HSV���
HQG�
IRU�L� ���Q�
����G� �$��L�L����

© 2002 by CRC Press LLC

����D� �DEV��G����
����I� �����
����IRU�M� ���Q�
��������LI��L�a �M��
������������I� �I���DEV��$��L�M�����
��������HQG�
����HQG�
����LI��I�! �D��
��������DLL� ������WRO��
�PD[��I��WRO����
��������LI��G������
������������DLL� ��DLL���
��������HQG�
��������$��L�L�� �DLL���
����HQG�
HQG�
%� �$���

This works, but it is very slow for large matrices. As you
become practiced in writing without loops and reading
loop-free MATLAB code, you will also find that the
loop-free version is easier to read and understand.

If you cannot vectorize some computations, you can make
your IRU loops go faster by preallocating any vectors or
matrices in which output is stored. For example, by
including the second statement below, which uses the
function]HURV, space for storing (in memory is
preallocated. Without this, MATLAB must resize (one
column larger in each iteration, slowing execution.

0� �PDJLF�������
(� �]HURV����������
IRU�M� ������
����(����M�� �HLJ��0AM����
HQG�

8.6 Performance measures
Time and space are the two basic measures of an
algorithm’s efficiency. In MATLAB, this translates into

© 2002 by CRC Press LLC

the number of floating-point operations (flops)
performed, the elapsed time, the CPU time, and the
memory space used. MATLAB no longer provides a flop
count because it uses high-performance block matrix
algorithms that make it difficult to count the actual flops
performed. See KHOS IORSV.

The elapsed time (in seconds) can be obtained with the
stopwatch timers WLF and WRF; WLF starts the timer and
WRF returns the elapsed time. Hence, the commands:

WLF�
VWDWHPHQW�
WRF��

will return the elapsed time for execution of the
VWDWHPHQW. The elapsed time for solving a linear system
above can be obtained, for example, with:

Q� �������
$� �UDQG��Q����
E� �UDQG��Q������
WLF�
[� �$?E���
WRF�
U� �QRUP��$
[�E��

The norm of the residual is also computed. You may wish
to compare [$?% with [LQY�$�
E for solving the
linear system. Try it. You will generally find $?E to be
faster and more accurate.

If there are other programs running at the same time on
your computer, elapsed time will not be an accurate
measure of performance. Try using FSXWLPH instead.
See KHOS FSXWLPH.

© 2002 by CRC Press LLC

MATLAB runs faster if you can restructure your
computations to use less memory. Type the following
and select Q to be some large integer, such as:

Q� ���������
D� �UDQG��Q������
E� �UDQG����Q����
F� �UDQG��Q������

Here are three ways of computing the same vector [. The
first one uses hardly any extra memory, the second and
third use a huge amount (about 2GB). Try them (good
luck!).

[� �D
�E
F����
[� ��D
E�
F���
[� �D
E
F���

No measure of peak memory usage is provided. You can
find out the total size of your workspace, in bytes, with
the command ZKRV. The total can also be computed
with:

V� �ZKRV�
VSDFH� �VXP��>V�E\WHV@��

Try it. This does not give the peak memory used while
inside a MATLAB operator or function, though. See
KHOS PHPRU\ for more options.

8.7 Profile
MATLAB provides an M-file profiler that lets you see
how much computation time each line of an M-file uses.
The command to use is SURILOH (see KHOS SURILOH for
details).

© 2002 by CRC Press LLC

9. Calling C from MATLAB
There are times when MATLAB itself is not enough.
You may have a large application or library written in
another language that you would like to use from
MATLAB, or it might be that the performance of your M-
file is not what you would like.

MATLAB can call routines written in C, FORTRAN, or
Java. Similarly, programs written in C and FORTRAN
can call MATLAB. In this chapter, we will just look at
how to call a C routine from MATLAB. For more
information, see +HOS: 0$7/$%: ([WHUQDO
,QWHUIDFHV�$3,, or see the online MATLAB
document External Interfaces. This discussion assumes
that you already know C.

9.1 A simple example
A routine written in C that can be called from MATLAB
is called a MEX-file. The routine must always have the
name PH[)XQFWLRQ, and the arguments to this routine
are always the same. Here is a very simple MEX-file;
type it in as the file KHOOR�F in your favorite text editor.

�LQFOXGH��PH[�K��
YRLG�PH[)XQFWLRQ�
��
����LQW�QOKV��
����P[$UUD\�
SOKV�>�@��
����LQW�QUKV��
����FRQVW�P[$UUD\�
SUKV�>�@�
��
^�
����PH[3ULQWI���KHOOR�ZRUOG?Q�����
`�

Compile and run it by typing:

© 2002 by CRC Press LLC

PH[�KHOOR�F�
KHOOR�

If this is the first time you have compiled a C MEX-file
on a PC with Microsoft Windows, you will be prompted
to select a C compiler. MATLAB for the PC comes with
its own C compiler (OFF). The arguments QOKV and
QUKV are the number of outputs and inputs to the
function, and SOKV and SUKV are pointers to the
arguments themselves (of type P[$UUD\). This KHOOR�F
MEX-file does not have any inputs or outputs, though.

The PH[3ULQWI function is just the same as SULQWI.
You can also use SULQWI itself; the PH[command
redefines it as PH[3ULQWI when the program is
compiled. This way, you can write a routine that can be
used from MATLAB or from a stand-alone C application,
without MATLAB.

9.2 C versus MATLAB arrays
MATLAB stores its arrays in column major order, while
the convention for C is to store them in row major order.
Also, the number of columns in an array is not known
until the PH[)XQFWLRQ is called. Thus, two-dimensional
arrays in MATLAB must be accessed with one-
dimensional indexing in C (see also Section 5.5). In the
example in the next section, the ,1'(; macro helps with
this translation.

Array indices also appear differently. MATLAB is
written in C, and it stores all of its arrays internally using
zero-based indexing. An P-by-Q matrix has rows � to P�
� and columns � to Q��. However, the user interface to
these arrays is always one-based, and index vectors in

© 2002 by CRC Press LLC

MATLAB are always one-based. In the example below,
one is added to the /LVW array returned by GLDJGRP to
account for this difference.

9.3 A matrix computation in C
In Chapters 7 and 8, you wrote the function GGRP�P.
Here is the same function written as an ANSI C MEX-
file. Compare the GLDJGRP routine, below, with the
loop-based version of GGRP�P in Section 8.5. The
MATLAB P[and PH[routines are described in Section
9.4. To save space, the comments are terse.

�LQFOXGH��PH[�K��
�LQFOXGH��PDWUL[�K��
�LQFOXGH��VWGOLE�K!�
�LQFOXGH��IORDW�K!�
�GHILQH�,1'(;�L�M�P����L���M�
�P���
�GHILQH�$%6�[����[��! ���"��[������[���
�GHILQH�0$;�[�\�����[�!�\���"��[���\���
�
YRLG�GLDJGRP�
��
����GRXEOH�
$��
����LQW�Q��
����GRXEOH�
%��
����GRXEOH�WRO��
����LQW�
/LVW��
����LQW�
Q/LVW�
��
^�
����LQW�L��M��N���
����GRXEOH�G��D��I��ELM��ELL���
����IRU��N� �����N���Q
Q���N����
����^�
��������%�>N@� �$�>N@���
����`�
����LI��WRO������
����^�
��������WRO� �����
�'%/B(36,/21���
����`�

© 2002 by CRC Press LLC

����N� �����
����IRU��L� �����L���Q���L����
����^�
��������G� �%�>,1'(;��L�L�Q�@���
��������D� �$%6��G����
��������I� �����
��������IRU��M� �����M���Q���M����
��������^�
������������LI��L�� �M��
������������^�
����������������ELM� �%�>,1'(;��L�M�Q�@��
����������������I�� �$%6��ELM����
������������`�
��������`�
��������LI��I�! �D��
��������^�
������������/LVW�>N��@� �L���
������������ELL� ������WRO��
��
������������������0$;��I��WRO����
������������LI��G������
������������^�
����������������ELL� ��ELL���
������������`�
������������%�>,1'(;��L�L�Q�@� �ELL���
��������`�
����`�
����
Q/LVW� �N���
`�
�
YRLG�HUURU��FKDU�
V��
^�
����PH[3ULQWI���8VDJH��>%�L@� ���
�����GLDJGRP��$�WRO�?Q�����
����PH[(UU0VJ7[W��V����
`�
�
YRLG�PH[)XQFWLRQ�
��
����LQW�QOKV��
����P[$UUD\�
SOKV�>�@��
����LQW�QUKV��
����FRQVW�P[$UUD\�
SUKV�>�@�
��

© 2002 by CRC Press LLC

^�
����LQW�Q��N��
/LVW��Q/LVW���
����GRXEOH�
$��
%��
,��WRO���
�
�����
�JHW�LQSXWV�$�DQG�WRO�
��
����LI��QOKV�!���__�QUKV�!���
����__�QUKV� ����
����^�
��������HUURU���
���������:URQJ�QXPEHU�RI�DUJXPHQWV�����
����`�
����LI��P[,V(PSW\��SUKV�>�@���
����^�
��������SOKV�>�@� �P[&UHDWH'RXEOH0DWUL[�
��������������������������P[5($/����
��������SOKV�>�@� �P[&UHDWH'RXEOH0DWUL[�
��������������������������P[5($/����
��������UHWXUQ���
����`�
����Q� �P[*HW1��SUKV�>�@����
����LI��Q�� �P[*HW0��SUKV�>�@���
����^�
��������HUURU���$�PXVW�EH�VTXDUH�����
����`�
����LI��P[,V6SDUVH��SUKV�>�@���
����^�
��������HUURU���$�FDQQRW�EH�VSDUVH�����
����`�
����$� �P[*HW3U��SUKV�>�@����
����WRO� ������
����LI��QUKV�!���
����		��P[,V(PSW\��SUKV�>�@���
����^�
��������WRO� �P[*HW6FDODU��SUKV�>�@����
����`�
�
�����
�FUHDWH�RXWSXW�%�
��
����SOKV�>�@� �P[&UHDWH'RXEOH0DWUL[�
����������������Q��Q��P[5($/����
����%� �P[*HW3U��SOKV�>�@����
�
�����
�JHW�WHPSRUDU\�ZRUNVSDFH�
��
����/LVW� ��LQW�
��P[0DOORF�

© 2002 by CRC Press LLC

������������Q�
�VL]HRI��LQW�����
�
�����
�GR�WKH�FRPSXWDWLRQ�
��
����GLDJGRP��$��Q��%�WRO��/LVW��	Q/LVW���
�
�����
�FUHDWH�RXWSXW�,�
��
����SOKV�>�@� �P[&UHDWH'RXEOH0DWUL[�
����������������Q/LVW�����P[5($/����
����,� �P[*HW3U��SOKV�>�@����
����IRU��N� �����N���Q/LVW���N����
����^�
��������,�>N@� ��GRXEOH���/LVW>N@�������
����`�
�
�����
�IUHH�WKH�ZRUNVSDFH�
��
����P[)UHH��/LVW����
`�

Type it in as the file GLDJGRP�F (or get it from the web),
and then type:

PH[�GLDJGRP�F�
$� �UDQG�������
%� �GGRP��$����
&� �GLDJGRP��$����

The matrices % and & will be the same (round-off error
might cause them to differ slightly).

9.4 MATLAB mx and mex routines
In the last example, the C routine calls several routines
with the prefix P[or PH[. These are routines in
MATLAB. Routines with P[prefixes operate on
MATLAB matrices and include:

P[,V(PSW\ 1 if the matrix is empty, 0 otherwise
P[,V6SDUVH� 1 if the matrix is sparse, 0 otherwise
P[*HW1 number of columns of a matrix
P[*HW0 number of rows of a matrix

© 2002 by CRC Press LLC

P[*HW3U pointer to the real values of a matrix
P[*HW6FDODU the value of a scalar
P[&UHDWH'RXEOH0DWUL[create MATLAB matrix
P[0DOORF like PDOORF in ANSI C
P[)UHH like IUHH in ANSI C

Routines with PH[prefixes operate on the MATLAB
environment and include:

PH[3ULQWI like SULQWI in C
PH[(UU0VJ7[W like MATLAB’s HUURU statement
PH[)XQFWLRQ the gateway routine from MATLAB

You will note that all of the references to MATLAB’s P[
and PH[routines are limited to the PH[)XQFWLRQ
gateway routine. This is not required; it is just a good
idea. Many other P[and PH[routines are available.

The memory management routines in MATLAB
(P[0DOORF, P[)UHH, and P[&DOORF) are much easier to
use than their ANSI C counterparts. If a memory
allocation request fails, the PH[)XQFWLRQ terminates and
control is passed backed to MATLAB. Any workspace
allocated by P[0DOORF that is not freed when the
PH[)XQFWLRQ returns or terminates is automatically
freed by MATLAB. This is why no memory allocation
error checking is included in GLDJGRP�F; it is not
necessary.

9.5 Online help for MEX routines
Create an M-file called GLDJGRP�P, with only this:

IXQFWLRQ�>%�L@� �GLDJGRP��$�WRO��
��GLDJRP���PRGLI\�WKH�PDWUL[�$�
��>%�L@� �GLDJGRP��$�WRO��UHWXUQV�D�

© 2002 by CRC Press LLC

��GLDJRQDOO\�GRPLQDQW�PDWUL[�%�E\�
��PRGLI\LQJ�WKH�GLDJRQDO�RI�$��
HUURU��
GLDJGRP�PH[)XQFWLRQ�QRW�IRXQG
���

Now type KHOS GLDJGRP. This is a simple method for
providing online help for your own MEX-files.

9.6 Larger examples on the web
The FRODPG and V\PDPG routines in MATLAB are C
MEX-files. The source code for these routines is on the
web at http://www.cise.ufl.edu/research/sparse/colamd.
Like the example in the previous section, they are split
into a PH[)XQFWLRQ gateway routine and another set of
routines that do not make use of MATLAB.

10. Two-Dimensional Graphics
MATLAB can produce two-dimensional plots. The
primary command for this is SORW. Chapter 11 discusses
three-dimensional graphics. To preview some of these
capabilities, enter the command GHPR and select some of
the visualization and graphics demos.

10.1 Planar plots
The SORW command creates linear x–y plots; if [and \
are vectors of the same length, the command SORW�[�\�
opens a graphics window and draws an x–y plot of the
elements of \ versus the elements of [. You can, for
example, draw the graph of the sine function over the
interval −4 to 4 with the following commands:

[� �������������
\� �VLQ��[����
SORW��[��\����

© 2002 by CRC Press LLC

http://www.cise.ufl.edu/research/sparse/colamd

Try it. The vector [is a partition of the domain with
mesh size ����, and \ is a vector giving the values of
sine at the nodes of this partition (recall that VLQ operates
entry-wise). When plotting a curve, the SORW routine is
actually connecting consecutive points induced by the
partition with line segments. Thus, the mesh size should
be chosen sufficiently small to render the appearance of a
smooth curve.

You will usually want to keep the current Figure window
exposed, but moved to the side, and the Command
window active.

As a second example, draw the graph of y = e−X
2
 over the

interval -1.5 to 1.5 as follows:

[� ����������������
\� �H[S���[�A�����
SORW��[��\����

Note that you must precede A by a period to ensure that it
operates entry-wise.

Select 7RROV =RRP ,Q or 7RROV =RRP 2XW in the
Figure window to zoom in or out of the plot. See also the
]RRP command (KHOS]RRP).

10.2 Multiple figures
You can have several concurrent Figure windows, one of
which will at any time be the designated current figure in
which graphs from subsequent plotting commands will be
placed. If, for example, Figure 1 is the current figure,
then the command ILJXUH��� (or simply ILJXUH) will
open a second figure (if necessary) and make it the
current figure. The command ILJXUH��� will then

© 2002 by CRC Press LLC

expose Figure 1 and make it again the current figure. The
command JFI returns the current figure number.

MATLAB does not draw a plot right away. It waits until
all computations are finished, until a ILJXUH command is
encountered, or until the script or function requests user
input (see Section 8.4). To force MATLAB to draw a
plot right away, use the command ILJXUH�JFI�. This
does not change the current figure.

10.3 Graph of a function
MATLAB supplies a function ISORW to easily and
efficiently plot the graph of a function. For example, to
plot the graph of the function above, you can first define
the function in an M-file called, say, H[SQRUPDO�P
containing:

IXQFWLRQ�\� �H[SQRUPDO��[��
\� �H[S��[�A�����

Then either of the commands:

ISORW��
H[SQRUPDO
��>��������@����
ISORW��#H[SQRUPDO��>��������@����

will produce the graph over the indicated x-domain. The
first one uses a string to refer to the function. The second
one uses a function handle (which is preferred). Try it.

A faster way to see the same result without creating
H[SQRUPDO�P would be:

ISORW��
H[S��[A��
��>��������@����

The variable [in the expression above is a place-holder;
it need not exist and can be any arbitrary variable name.

© 2002 by CRC Press LLC

10.4 Parametrically defined curves
Plots of parametrically defined curves can also be made.
Try, for example,

W� ���������
SL���
[� �FRV���
W����
\� �VLQ���
W����
SORW��[��\����

10.5 Titles, labels, text in a graph
The graphs can be given titles, axes labeled, and text
placed within the graph with the following commands,
which take a string as an argument.

WLWOH graph title
[ODEHO x-axis label
\ODEHO y-axis label
JWH[W� place text on graph using the mouse
WH[W position text at specified coordinates

For example, the command:

WLWOH��
$�SDUDPHWULF�FRV�VLQ�FXUYH
��

gives a graph a title. The command JWH[W�
7KH�
6SRW
� lets you interactively place the designated text on
the current graph by placing the mouse crosshair at the
desired position and clicking the mouse. It is a good idea
to prompt the user before using JWH[W. To place text in a
graph at designated coordinates, use the command WH[W
(see KHOS WH[W). These commands are also in the
,QVHUW menu in the Figure window. Select ,QVHUW
7H[W, click on the figure, type something, and then click
somewhere else to finish entering the text. If the edit-
figure button:

© 2002 by CRC Press LLC

��

is depressed (or select 7RROV (GLW 3ORW), you can
right-click on anything in the figure and see a pop-up
menu that gives you options to modify the item you just
clicked. You can also click and drag objects on the
figure. Selecting (GLW $[HV 3URSHUWLHV brings up a
window with many more options. For example, clicking
the:

�

box adds grid lines (the command JULG does the same
thing).

10.6 Control of axes and scaling
By default, the axes are auto-scaled. This can be
overridden by the command D[LV or by selecting (GLW
$[HV 3URSHUWLHV. Some features of the D[LV
command are:

D[LV��>[PLQ�[PD[�\PLQ�\PD[@�
 sets the axes
D[LV�PDQXDO freezes the current axes for
 new plots
D[LV�DXWR� � returns to auto-scaling
Y� �D[LV vector v shows current scaling
D[LV�VTXDUH axes same size (but not scale)
D[LV�HTXDO same scale and tic marks on axes
D[LV�RII removes the axes
D[LV�RQ restores the axes

© 2002 by CRC Press LLC

The D[LV command should be given after the SORW
command. Try D[LV�>�����²���@� with the current
figure. You will note that text entered on the figure using
the WH[W or JWH[W moves as the scaling changes (think
of it as attached to the data you plotted). Text entered via
,QVHUW 7H[W stays put.

10.7 Multiple plots
Two ways to make multiple plots on a single graph are
illustrated by:

[� ��������
SL��
\�� �VLQ��[����
\�� �VLQ���
[����
\�� �VLQ���
[����
SORW��[��\���[��\���[��\���

and by forming a matrix < containing the functional
values as columns:

[� ��������
SL���
<� �>VLQ�[�
��VLQ��
[�
��VLQ��
[�
@���
SORW��[��<��

The [and \ pairs must have the same length, but each
pair can have different lengths. Try:

SORW��[��<��>���
SL@��>���@��

The command KROG RQ freezes the current graphics
screen so that subsequent plots are superimposed on it.
The axes may, however, become rescaled. Entering KROG
RII releases the hold.

The function OHJHQG places a legend in the current figure
to identify the different graphs. See KHOS OHJHQG.

© 2002 by CRC Press LLC

Clearing a figure can be done with FOI, which clears the
axes, the data you plotted, any text entered with the WH[W
and JWH[W commands, and the legend. To also clear the
text you entered via ,QVHUW 7H[W, type FOI UHVHW.

10.8 Line types, marker types, colors
You can override the default line types, marker types, and
colors. For example,

[� ��������
SL���
\�� �VLQ��[����
\�� �VLQ���
[����
\�� �VLQ���
[����
SORW��[�\���
��
��[�\���
�
��[�\���
�
��

renders a dashed line and dotted line for the first two
graphs, whereas for the third the symbol � is placed at
each node. The line types are:

�
 solid
�
 dotted

��
 dashed
��
 dashdot

and the marker types are:

�
 point
R
 circle

[
 x-mark
�
 plus

 star
V
 square

G
 diamond
Y
 triangle-down

A
 triangle-up
�
 triangle-left

!
 triangle-right
S
 pentagram

K
 hexagram

Colors can be specified for the line and marker types:

\
 yellow
P
 magenta

F
 cyan
U
 red

© 2002 by CRC Press LLC

J
 green
E
 blue

Z
 white
N
� black

For example, SORW�[�\��
U��
� plots a red dashed
line.

10.9 Subplots and specialized plots
The command VXESORW partitions a figure so that several
small plots can be placed in one figure. See KHOS
VXESORW. Other specialized planar plotting functions
you may wish to explore via KHOS are:

EDU�������ILOO�����TXLYHU�
FRPSDVV���KLVW�����URVH�
IHDWKHU���SRODU����VWDLUV�

10.10 Graphics hard copy
Select)LOH 3ULQW or click the print button:

�

in the Figure window to send a copy of your figure to
your default printer. Layout options and selecting a
printer can be done with)LOH 3DJH 6HWXS and)LOH
3ULQW 6HWXS.

You can save the figure as a file for later use in a
MATLAB Figure window. Try the save button:

�

or)LOH 6DYH. This saves the figure as a �ILJ file,
which can be later opened in the Figure window with the
open button:

© 2002 by CRC Press LLC

�

or with)LOH 2SHQ. Selecting)LOH ([SRUW allows
you to convert your figure to many other formats.

11. Three-Dimensional Graphics
MATLAB’s primary commands for creating three-
dimensional graphics are SORW�, PHVK, VXUI, and
OLJKW. The menu options and commands for setting
axes, scaling, and placing text, labels, and legends on a
graph also apply for three-dimensional graphs. A
]ODEHO can be added. The D[LV command requires a
vector of length 6 with a 3-D graph.

11.1 Curve plots
Completely analogous to SORW in two dimensions, the
command SORW� produces curves in three-dimensional
space. If [, \, and] are three vectors of the same size,
then the command SORW��[�\�]� produces a
perspective plot of the piecewise linear curve in
three-space passing through the points whose coordinates
are the respective elements of [, \, and]. These vectors
are usually defined parametrically. For example,

W� �����������
SL���
[� �FRV��W����
\� �VLQ��W����
]� �W�A����
SORW���[��\��]��

produces a helix that is compressed near the x–y plane (a
“slinky”). Try it.

© 2002 by CRC Press LLC

11.2 Mesh and surface plots
The PHVK command draws three-dimensional wire mesh
surface plots. The command PHVK�]� creates a three-
dimensional perspective plot of the elements of the matrix
]. The mesh surface is defined by the z-coordinates of
points above a rectangular grid in the x–y plane. Try
PHVK�H\H�����.

Similarly, three-dimensional faceted surface plots are
drawn with the command VXUI. Try VXUI�H\H�����.

To draw the graph of a function z = f (x, y) over a
rectangle, first define vectors [[and \\, which give
partitions of the sides of the rectangle. The function
PHVKJULG�[[�\\� then creates a matrix [, each row of
which equals [[(whose column length is the length of
\\) and similarly a matrix \, each column of which
equals \\. A matrix], to which PHVK or VXUI can be
applied, is then computed by evaluating the function f
entry-wise over the matrices [and \.

You can, for example, draw the graph of z = e−x2−y2
 over

the square [-2, 2] [[-2, 2] as follows (try it):

[[� �����������
\\� �[[���
>[��\@� �PHVKJULG��[[��\\����
]� �H[S���[�A����\�A�����
PHVK��]��

Try this plot with VXUI instead of PHVK. Note that you
must use [�A� and \�A� instead of [A� and \A� to
ensure that the function acts entry-wise on [and \.

© 2002 by CRC Press LLC

11.3 Color shading and color profile
The color shading of surfaces is set by the VKDGLQJ
command. There are three settings for shading: IDFHWHG
(default), LQWHUSRODWHG, and IODW. These are set by
the commands:

VKDGLQJ�IDFHWHG�
VKDGLQJ�LQWHUS�
VKDGLQJ�IODW�

Note that on surfaces produced by VXUI, the settings
LQWHUSRODWHG and IODW remove the superimposed
mesh lines. Experiment with various shadings on the
surface produced above. The command VKDGLQJ (as
well as FRORUPDS and YLHZ described below) should be
entered after the VXUI command.

The color profile of a surface is controlled by the
FRORUPDS command. Available predefined color maps
include KVY (the default), KRW, FRRO, MHW, SLQN,
FRSSHU, IODJ, JUD\, ERQH, SULVP, and ZKLWH. The
command FRORUPDS�FRRO�, for example, sets a certain
color profile for the current figure. Experiment with
various color maps on the surface produced above. See
also KHOS FRORUEDU.

11.4 Perspective of view
The Figure window provides a wide range of controls for
viewing the figure. Select 9LHZ &DPHUD 7RROEDU to
see these controls, or pull down the 7RROV menu. Try,
for example, selecting 7RROV 5RWDWH ��', and then
click the mouse in the Figure window and drag it to rotate
the object. Some of these options can be controlled by
the YLHZ and URWDWH�G commands, respectively.

© 2002 by CRC Press LLC

The MATLAB function SHDNV generates an interesting
surface on which to experiment with VKDGLQJ,
FRORUPDS, and YLHZ. Type SHDNV, select 7RROV
5RWDWH ��', and click and drag the figure to rotate it.

In MATLAB, light sources and camera position can be
set. Taking the SHDNV surface from the example above,
select ,QVHUW /LJKW, or type OLJKW to add a light
source. See the online document Using MATLAB
Graphics for camera and lighting help.

11.5 Parametrically defined surfaces
Plots of parametrically defined surfaces can also be made.
The MATLAB functions VSKHUH and F\OLQGHU
generate such plots of the named surfaces. (See W\SH
VSKHUH and W\SH F\OLQGHU.) The following is an
example of a similar function that generates a plot of a
torus by utilizing spherical coordinates.

IXQFWLRQ�>[��\��]@� �WRUXV��U��Q��D��
��72586�*HQHUDWH�D�WRUXV��
��WRUXV��U��Q��D��JHQHUDWHV�D�SORW�RI�D�
��WRUXV�ZLWK�FHQWUDO�UDGLXV�D�DQG�
��ODWHUDO�UDGLXV�U���Q�FRQWUROV�WKH�
��QXPEHU�RI�IDFHWV�RQ�WKH�VXUIDFH��
��7KHVH�LQSXW�YDULDEOHV�DUH�RSWLRQDO�
��ZLWK�GHIDXOWV�U� ������Q� �����D� ����
��>[��\��]@� �WRUXV�U��Q��D��JHQHUDWHV�
��WKUHH��Q������E\��Q������PDWULFHV�VR�
��WKDW�VXUI��[��\��]��ZLOO�SURGXFH�WKH�
��WRUXV���6HH�DOVR�63+(5(��&</,1'(5��
LI�QDUJLQ������D� �����HQG�
LI�QDUJLQ������Q� ������HQG�
LI�QDUJLQ������U� �������HQG�
WKHWD� �SL�
�������
Q��Q���
SKL� ��
SL
������Q�
�Q���
[[� ��D���U
FRV�SKL���
�FRV�WKHWD����
\\� ��D���U
FRV�SKL���
�VLQ�WKHWD����

© 2002 by CRC Press LLC

]]� �U�
�VLQ�SKL��
�RQHV�VL]H�WKHWD�����
LI�QDUJRXW� ���
����VXUI��[[��\\��]]����
����DU� ��D���U��VTUW������
����D[LV�>�DU��DU���DU��DU���DU��DU@����
HOVH�
����[� �[[���
����\� �\\���
����]� �]]���
HQG�

Other three-dimensional plotting functions you may wish
to explore via KHOS are PHVK], VXUIF, VXUIO, FRQWRXU,
and SFRORU.

12. Advanced Graphics
MATLAB possesses a number of other advanced
graphics capabilities. Significant ones are object-based
graphics, called Handle Graphics, and Graphical User
Interface (GUI) tools.

12.1 Handle Graphics
Beyond those just described, MATLAB’s graphics
system provides low-level functions that let you control
virtually all aspects of the graphics environment to
produce sophisticated plots. The commands VHW and JHW
allow access to all the properties of your plots. Try
VHW�JFI� to see some of the properties of a figure that
you can control. This system is called Handle Graphics.
See Using MATLAB Graphics for more information.

12.2 Graphical user interface
MATLAB’s graphics system also provides the ability to
add sliders, push-buttons, menus, and other user interface
controls to your own figures. For information on creating
user interface controls, try KHOS XLFRQWURO. This

© 2002 by CRC Press LLC

allows you to create interactive graphical-based
applications.

Try JXLGH (short for Graphic User Interface
Development Environment). This brings up MATLAB’s
Layout Editor window that you can use to interactively
design a graphic user interface.

For more information, see the online document Creating
Graphical User Interfaces.

13. Sparse Matrix Computations
A sparse matrix is one with mostly zero entries.
MATLAB provides the capability to take advantage of
the sparsity of matrices.

13.1 Storage modes
MATLAB has two storage modes, full and sparse, with
full the default. The functions IXOO and VSDUVH convert
between the two modes. Nearly all MATLAB operators
and functions operate seamlessly on both full and sparse
matrices. For a matrix $, full or sparse, QQ]�$� returns
the number of nonzero elements in A.

An P-by-Q sparse matrix is stored in three one-
dimensional arrays. Numerical values and their row
indices are stored in two arrays of size QQ]�$� each. All
of the entries in any given column are stored
contiguously. A third array of size Q�� holds the
positions in the other two arrays of the first nonzero entry
in each column. Thus, if $ is sparse, then [$�����
takes much more time than [$�����, and V $����� is
also slow. To get high performance when dealing with
sparse matrices, use matrix expressions instead of IRU

© 2002 by CRC Press LLC

loops and vector or scalar expressions. If you must
operate on the rows of a sparse matrix $, try working with
the columns of $
 instead.

If a full tridiagonal matrix) is created via, say,

)� �IORRU�����
�UDQG�������
)� �WULX��WULO��)�����������

then the statement 6 VSDUVH�)� will convert) to sparse
mode. Try it. Note that the output lists the nonzero
entries in column major order along with their row and
column indices because of how sparse matrices are
stored. The statement) IXOO�6� returns) in full
storage mode. You can check the storage mode of a
matrix $ with the command LVVSDUVH�$�.

13.2 Generating sparse matrices
A sparse matrix is usually generated directly rather than
by applying the function VSDUVH to a full matrix. A
sparse banded matrix can be easily created via the
function VSGLDJV by specifying diagonals. For example,
a familiar sparse tridiagonal matrix is created by:

P� �����
Q� �����
H� �RQHV��Q������
G� ���
H���
7� �VSGLDJV��>H�G�H@��>������@��P��Q��

Try it. The integral vector >������@ specifies in which
diagonals the columns of >H�G�H@ should be placed (use
IXOO�7� to see the full matrix 7 and VS\�7� to view 7
graphically). Experiment with other values of P and Q
and, say, >������@ instead of >������@. See KHOS
VSGLDJV for further features of VSGLDJV.

© 2002 by CRC Press LLC

The sparse analogs of H\H,]HURV, RQHV, and UDQG for
full matrices are, respectively, VSH\H, VSDUVH, VSRQHV,
and VSUDQG. The latter two take a matrix argument and
replace only the nonzero entries with ones and uniformly
distributed random numbers, respectively. VSDUVH�P�Q�
creates a sparse zero matrix. VSUDQG also permits the
sparsity structure to be randomized. This is a useful
method for generating simple sparse test matrices, but be
careful. Random sparse matrices are not truly "sparse"
because of catastrophic fill-in when they are factorized
(see Section 13.4). Sparse matrices arising in real
applications typically do not share this characteristic.4

The versatile function VSDUVH also permits creation of a
sparse matrix via listing its nonzero entries:

L� �>�����������@���
M� �>�����������@���
V� �>������������@���
6� �VSDUVH��L��M��V��������
IXOO��6��

The last two arguments to VSDUVH in the example above
are optional. They tell VSDUVH the dimensions of the
matrix; if not present, then 6 will be PD[�L� by PD[�M�.
If there are repeated entries in >L�M@, then the entries are
added together. The commands below create a matrix
whose diagonal entries are �, �, and �.

L� �>�������@���
M� �>�������@���
V� �>�������@���
6� �VSDUVH��L��M��V��
IXOO��6��

4 See http://www.cise.ufl.edu/research/sparse/matrices for a
wide range of sparse matrices arising in real applications.

© 2002 by CRC Press LLC

http://www.cise.ufl.edu/research/sparse/matrices

The entries in L, M, and V can be in any order (the same
order for all three arrays, of course). In general, if the
vector V lists the nonzero entries of 6 and the integral
vectors L and M list their corresponding row and column
indices, then:

VSDUVH��L��M��V��P��Q��

will create the desired sparse P-by-Q matrix 6. As another
example try:

Q� �����
H� �IORRU�����
�UDQG��Q���������
(� �VSDUVH����Q����Q����H��Q��Q��

13.3 Computation with sparse matrices
The arithmetic operations and most MATLAB functions
can be applied independent of storage mode. The storage
mode of the result depends on the storage mode of the
operands or input arguments. Operations on full matrices
always give full results. If) is a full matrix, 6 and V are
sparse, and Q is a scalar, then these operations give sparse
results:

6�6�������6
6�������6�
6������6�
)�
6AQ�������6�AQ������6?V�
LQY�6�����FKRO�6����OX�6��
GLDJ�6����PD[�6�����VXP�6��

These give full results:

6�)�������)?6�������6�)�
6
)�������6?)�������)�6�

unless) is a scalar, in which case 6
),)?6, and 6�) are
sparse.

© 2002 by CRC Press LLC

A matrix built from blocks, such as >$��%��&��'@, is
stored in sparse mode if any constituent block is sparse.
To compute the eigenvalues or singular values of a sparse
matrix 6, you must convert 6 to a full matrix and then use
HLJ or VYG, as HLJ�IXOO�6�� or VYG�IXOO�6��. If 6
is a large sparse matrix and you wish only to compute
some of the eigenvalues or singular values, then you can
use the HLJV or VYGV functions (HLJV�6� or VYGV�6�).

13.4 Ordering methods
When MATLAB solves a sparse linear system ([$?E), it
typically starts by computing the LU, QR, or Cholesky
factorization of $. This usually leads to fill-in, or the
creation of new nonzeros in the factors that do not appear
in $. MATLAB provides several methods that attempt to
reduce fill-in by reordering the rows and columns of $:

FRODPG� approximate minimum degree
FROPPG� multiple minimum degree
FROSHUP sort columns by number of nonzeros
V\PDPG symmetric approximate min. degree�
V\PPPG� symmetric multiple minimum degree
V\PUFP� reverse Cuthill-McKee

The first three find a column ordering of $ and are best
used for OX or TU. The next three are primarily for FKRO
and return an ordering to be applied symmetrically to
both the rows and columns of a symmetric matrix $ (they
can also be used for unsymmetric matrices). Finding the
best ordering is so difficult that it is practically impossible
for most matrices. Fast non-optimal heuristics are used
instead, which means that no one method is always the
best. MATLAB uses FROPPG and V\PPPG by default in

© 2002 by CRC Press LLC

[$?E, although FRODPG and V\PDPG tend to be faster
and find better orderings.

Create the WU\BOX function, which also illustrates the use
of permutation vectors, the VS\, VXESORW, QRUPHVW, and
HWUHHSORW functions, and how to get a close estimate of
the flop count for LU factorization if we assume that all
zeros are taken advantage of:

IXQFWLRQ�WU\BOX��$��PHWKRG��LVV\P��
��VSDUVH�/8�IDFWRUL]DWLRQ�RI�$�
ILJXUH�����
FOI�UHVHW�
VXESORW������������
VS\��$���
WLWOH��
2ULJLQDO�PDWUL[�$
���
W� �FSXWLPH���
LI��QDUJLQ�!����
����6� �VSRQHV��$����VSRQHV��$
����
����S� �IHYDO��PHWKRG��6����
����$� �$��S�S����
HOVHLI��QDUJLQ�!����
����T� �IHYDO��PHWKRG��$����
����$� �$����T����
HQG�
WRUGHU� �FSXWLPH���W�
VXESORW������������
VS\��$���
WLWOH��
3HUPXWHG�PDWUL[�$
���
W� �FSXWLPH���
>/��8��3@� �OX��$�����
WOX� �FSXWLPH���W�
WRWDO� �WRUGHU���WOX�
VXESORW������������
VS\��/�8���
WLWOH��
/8�IDFWRUV
���
QRUPHVW��/
8�3
$���
/Q]� �IXOO��VXP��VSRQHV��/�����������
8Q]� �IXOO��VXP��VSRQHV��8
���
��������
IORSBFRXQW� ��
/Q]
8Q]���VXP��/Q]���
VXESORW������������

© 2002 by CRC Press LLC

6� �VSRQHV��$����
HWUHHSORW��6

6��
WLWOH��
FROXPQ�HOLPLQDWLRQ�WUHH
��

Next, try this, which evaluates the quality of several
ordering methods with a sparse matrix from a chemical
process simulation problem:

ORDG�ZHVW�������
$� �ZHVW�������
WU\BOX��$��
WU\BOX��$��#FROSHUP��
WU\BOX��$��#V\PUFP�����
WU\BOX��$��#FROPPG��
WU\BOX��$��#FRODPG��

See how much sparsity helped by trying this (the flop
count will be wrong, though):

WU\BOX��IXOO��$���

13.5 Visualizing matrices
The previous section gave an example of how to use VS\
to plot the nonzero pattern of a sparse matrix. VS\ can
also be used on full matrices. It is useful for matrix
expressions coming from relational operators. Try this,
for example (see Chapter 7 for the GGRP function):

$� �>�
������������
������������
������������
�����������@�
&� �GGRP��$��
ILJXUH�����
VS\��$�a �&��
VS\��$�!����

© 2002 by CRC Press LLC

What you see is a picture of where $ and & differ, and
another picture of which entries of $ are greater than �.

14. The Symbolic Math Toolbox
The Symbolic Math Toolbox, which utilizes the Maple V
kernel as its computer algebra engine, lets you perform
symbolic computation from within MATLAB. Under
this configuration, MATLAB’s numeric and graphic
environment is merged with Maple’s symbolic
computation capabilities. The toolbox M-files that access
these symbolic capabilities have names and syntax that
will be natural for the MATLAB user. Key features of the
Symbolic Math Toolbox are included in the Student
Version of MATLAB. Since the Symbolic Math Toolbox
is not part of the Professional Version of MATLAB, it
may not be installed on your system, in which case this
Chapter will not apply.

Many of the functions in the Symbolic Math Toolbox
have the same names as their numeric counterparts.
MATLAB selects the correct one depending on the type
of inputs to the function. Typing KHOS HLJ and KHOS
V\P�HLJ displays the help for the numeric eigenvalue
function and its symbolic counterpart, respectively.

14.1 Symbolic variables
You can declare a variable as symbolic with the V\PV
statement. For example,

V\PV�[�

creates a symbolic variable [. The statement:

V\PV�[�UHDO�

© 2002 by CRC Press LLC

declares to Maple that [is a symbolic variable with no
imaginary part. Maple has its own workspace. The
statements FOHDU or FOHDU [do not undo this
declaration, because it clears MATLAB’s variable [but
not Maple’s variable V. Use V\PV [XQUHDO, which
declares to Maple that [may now have a nonzero
imaginary part. The FOHDU DOO statement clears all
variables in both MATLAB and Maple, and thus also
resets the UHDO or XQUHDO status of [. You can also
assert to Maple that [is always positive, with V\PV [
SRVLWLYH.

Symbolic variables can be constructed from existing
numeric variables using the V\P function. Try:

]� ������
D� �V\P��]��
\� �UDQG�����
E� �V\P��\��
G
��

although a better way to create D is:

D� �V\P��
����
��

The V\PV command and V\P function have many more
options. See KHOS V\PV and KHOS V\P.

14.2 Calculus
The function GLII computes the symbolic derivative of a
function defined by a symbolic expression. First, to
define a symbolic expression, you should create symbolic
variables and then proceed to build an expression as you
would mathematically. For example,

© 2002 by CRC Press LLC

V\PV�[�
I� �[A��
�H[S��[��
GLII��I��

creates a symbolic variable [, builds the symbolic
expression f = x2 ex, and returns the symbolic derivative of
f with respect to x: �
[
H[S�[��[A�
H[S�[� in
MATLAB notation. Try it.

Next,

V\PV�W�
GLII��VLQ��SL
W���

returns the derivative of sin(t), as a function of t.

Partial derivatives can also be computed. Try the
following:

V\PV�[�\�
J� �[
\���[A��
GLII��J������������FRPSXWHV�∂J�∂[�
GLII��J��[���������DOVR�∂J�∂[�
GLII��J��\���������∂J�∂\�

To permit omission of the second argument for functions
such as the above, MATLAB chooses a default symbolic
variable for the symbolic expression. The ILQGV\P
function returns MATLAB’s choice. Its rule is, roughly,
to choose that lower case letter, other than i and M, nearest
[in the alphabet.

You can, of course, override the default choice as shown
above. Try, for example,

V\PV�[��[��WKHWD�
)� �[�
��[�
[����[�������

© 2002 by CRC Press LLC

GLII��)����������������∂)�∂[�
GLII��)��[�������������∂)�∂[��
GLII��)��[�������������∂)�∂[��
*� �FRV��WKHWD
[��
GLII��*��WKHWD���������∂*�∂WKHWD�

The second derivative, for example, can be obtained by
the command:

GLII��VLQ���
[���[�����

With a numeric argument, GLII is the difference operator
of basic MATLAB, which can be used to numerically
approximate the derivative of a function. See KHOS GLII
for the numeric function, and KHOS V\P�GLII for the
symbolic derivative function.

The function LQW attempts to compute the indefinite
integral (antiderivative) of a function defined by a
symbolic expression. Try, for example,

V\PV�D�E�W�[�\�]�WKHWD�
LQW��VLQ��D
W���E���
LQW��VLQ��D
WKHWD���E���WKHWD��
LQW��[
\A����\
]��\��
LQW��[A��
�VLQ��[���

Note that, as with GLII, when the second argument of
LQW is omitted, the default symbolic variable (as selected
by ILQGV\P) is chosen as the variable of integration.

In some instances, LQW will be unable to give a result in
terms of elementary functions. Consider, for example,

LQW��H[S���[A����
LQW��VTUW������[A����

© 2002 by CRC Press LLC

In the first case the result is given in terms of the error
function HUI, whereas in the second, the result is given in
terms of (OOLSWLF), a function defined by an integral.

The function SUHWW\ will display a symbolic expression
in an easier-to-read form resembling typeset mathematics
(see ODWH[, FFRGH, and IRUWUDQ for other formats).
Try, for example,

V\PV�[�D�E�
I� �[��D
[�E��
SUHWW\��I��
J� �LQW��I��
SUHWW\��J��
ODWH[��J��
FFRGH��J��
IRUWUDQ��J��
LQW��J��
SUHWW\��DQV��

Definite integrals can also be computed by using
additional input arguments. Try, for example,

LQW��VLQ��[������SL��
LQW��VLQ��WKHWD���WKHWD�����SL��

In the first case, the default symbolic variable [was used
as the variable of integration to compute:

∫
π

0
sin xdx �

whereas in the second WKHWD was chosen. Other definite
integrals you can try are:

LQW��[A���������
LQW��ORJ��[���������

© 2002 by CRC Press LLC

LQW��[�
�H[S��[���������
LQW��H[S���[A�������LQI��

It is important to realize that the results returned are
symbolic expressions, not numeric ones. The function
GRXEOH will convert these into MATLAB floating-point
numbers, if desired. For example, the result returned by
the first integral above is ����. Entering GRXEOH�DQV�
then returns the MATLAB numeric result �������.

Alternatively, you can use the function YSD (variable
precision arithmetic; see Section 14.3) to convert the
expression into a symbolic number of arbitrary precision.
For example,

LQW��H[S���[A�������LQI��

gives the result:

���
SLA������

Then the statement:

YSD��DQV������

symbolically gives the result to 25 significant digits:

���������������������������

You may wish to contrast these techniques with the
MATLAB numerical integration functions TXDG and
TXDG�.

The OLPLW function is used to compute the symbolic
limits of various expressions. For example,

© 2002 by CRC Press LLC

V\PV�K�Q�[�
OLPLW�������[�Q�AQ��Q��LQI��

computes the limit of (1 + x/n)n as n→∞. You should
also try:

OLPLW��VLQ��[���[�����
OLPLW���VLQ�[�K��VLQ�[���K��K�����

The WD\ORU function computes the Maclaurin and Taylor
series of symbolic expressions. For example,

WD\ORU��FRV��[����VLQ��[���

returns the 5th order Maclaurin polynomial approximating
cos(x) + sin(x). The command,

WD\ORU��FRV��[A�������[��SL��

returns the 8th degree Taylor approximation to cos(x2)
centered at the point x0 = π.

14.3 Variable precision arithmetic
Three kinds of arithmetic operations are available:

numeric MATLAB’s floating-point arithmetic
rational Maple’s exact symbolic arithmetic
VPA Maple’s variable precision arithmetic

One can obtain exact rational results with, for example,

V� �VLPSOH��V\P��
�������������
���

You are already familiar with numeric computations. For
example, with IRUPDW ORQJ,

SL
ORJ����

© 2002 by CRC Press LLC

gives the numeric result:

�����������������

MATLAB’s numeric computations are done in
approximately 16 decimal digit floating-point arithmetic.
With YSD, you can obtain results to arbitrary precision,
within the limitations of time and memory. For example,
try:

YSD��
SL�
�ORJ����
��
YSD��
SL�
�ORJ����
������

The default precision for YSD is 32. Hence, the first result
is accurate to 32 digits, whereas the second is accurate to
the specified �� digits.5 The default precision can be
changed with the function GLJLWV. While the rational
and VPA computations can be more accurate, they are in
general slower than numeric computations.

If you pass an expression to YSD, MATLAB will evaluate
it numerically first, unless it is a symbolic expression or
placed in quotes. Compare your results, above, with:

YSD��SL�
�ORJ������

which is accurate to only about 16 digits (even though 32
digits are displayed). This is a common mistake with the
use of YSD and the Symbolic Math Toolbox in general.

5 Ludolf van Ceulen (1540-������FDOFXODWHG� �WR����GLJLWV���7KH�
6\PEROLF�0DWK�7RROER[�FDQ�TXLWH�HDVLO\�FRPSXWH� �WR��������
digits or more. Try YSD�
SL
�������.

© 2002 by CRC Press LLC

14.4 Numeric evaluation
Once you have a symbolic expression, you can evaluate it
numerically with the HYDO function. Try:

V\PV�[�
)� �[A��
�VLQ��[��
*� �GLII��)��
+� �YHFWRUL]H��*��
[� ��������
HYDO��+��

The YHFWRUL]H function allows + to be evaluated with a
vector [. Also try:

V\PV�[�\�
6� �[A\�
[� ���
HYDO��6��
\� ���
HYDO��6��

The HYDO function returns a symbolic expression unless
all of the variables are numeric.

14.5 Algebraic simplification
Convenient algebraic manipulations of symbolic
expressions are available.

The function H[SDQG distributes products over sums and
applies other identities, whereas IDFWRU attempts to do
the reverse. The function FROOHFW views a symbolic
expression as a polynomial in its symbolic variable
(which may be specified) and collects all terms with the
same power of the variable. To explore these capabilities,
try the following:

© 2002 by CRC Press LLC

V\PV�D�E�[�\�]�
H[SDQG���D���E�A���
IDFWRU��DQV��
H[SDQG��H[S��[���\���
H[SDQG��VLQ��[����
\���
IDFWRU��[A�������
FROOHFW��[�
��[�
��[����������������
KRUQHU��DQV��
FROOHFW���[���\���]�
�[���\���]���
FROOHFW���[���\���]�
�[���\���]���\��
FROOHFW���[���\���]�
�[���\���]���]��
GLII��[A��
�H[S��[���
IDFWRU��DQV��

The powerful function VLPSOLI\ applies many identities
in an attempt to reduce a symbolic expression to a simple
form. Try, for example,

VLPSOLI\��VLQ�[�A����FRV�[�A���
VLPSOLI\��H[S���
ORJ�[��������
G� �GLII���[A��������[A��������
VLPSOLI\��G��

The alternate function VLPSOH computes several
simplifications and chooses the shortest of them. It often
gives better results on expressions involving
trigonometric functions. Try the following commands:

VLPSOLI\�FRV�[������VLQ�[�A��A�������
VLPSOH���FRV�[������VLQ�[�A��A�������
VLPSOLI\����[A����[A�����[���A�������
VLPSOH������[A����[A�����[���A�������

The function VXEV replaces all occurrences of the
symbolic variable in an expression by a specified second
expression. This corresponds to composition of two
functions. Try, for example,

© 2002 by CRC Press LLC

V\PV�[�V�W�
VXEV��VLQ�[���[��SL����
VXEV��VLQ�[���[��V\P��SL�����
GRXEOH��DQV��
VXEV��J
WA�����W��VTUW��
V���
VXEV��VTUW���[A����[��FRV�[���
VXEV��VTUW���[A������[A���FRV�[���

The general idea is that in the statement
VXEV�H[SU�ROG�QHZ� the third argument (QHZ)
replaces the second argument (ROG) in the first argument
(H[SU). Compare the first two examples above. The
result is numeric if all variables in the expression are
substituted with numeric values.

The function IDFWRU can also be applied to an integer
argument to compute the prime factorization of the
integer. Try, for example,

IDFWRU��V\P��
����
���
IDFWRU��V\P��
�������������
���
IDFWRU��V\P��
�������������
���

14.6 Graphs of functions
The MATLAB function ISORW (see Section 10.3)
provides a tool to conveniently plot the graph of a
function. Since it is, however, the name or handle of the
function to be plotted that is passed to ISORW, the
function must first be defined in an M-file (or else be a
built-in function or inline function).

In the Symbolic Math Toolbox, H]SORW lets you plot the
graph of a function directly from its defining symbolic
expression. For example, try:

V\PV�W�[�
H]SORW��VLQ���
[���

© 2002 by CRC Press LLC

H]SORW��W����
VLQ�W���
H]SORW���
[��[A��������
H]SORW�����������
H[S��[����

By default, the x-domain is >��
SL���
SL@. This can
be overridden by a second input variable, as with:

H]SORW�[
VLQ���[���>������@��

You will often need to specify the x-domain and y-
domain to zoom in on the relevant portion of the graph.
Compare, for example,

H]SORW��[
H[S��[���
H]SORW��[
H[S��[���>����@��

H]SORW attempts to make a reasonable choice for the y-
axis. With the last figure, select (GLW $[HV
3URSHUWLHV in the Figure window and modify the y-axis
to start at ��, and click OK. Changing the x-axis in the
Property Editor does not cause the function to be
reevaluated, however.

Entering the command IXQWRRO (no input arguments)
brings up three graphic figures, two of which will display
graphs of functions and one containing a control panel.
This function calculator lets you manipulate functions and
their graphs for pedagogical demonstrations. Type KHOS
IXQWRRO for details.

14.7 Symbolic matrix operations
This toolbox lets you represent matrices in symbolic form
as well as MATLAB’s numeric form. Given the numeric
matrix:

D� �PDJLF�����

© 2002 by CRC Press LLC

the function V\P�D� converts D to the symbolic matrix.
Try:

$� �V\P��D��

The result is:

>�������@�
>�������@�
>�������@�

The function QXPHULF�$� converts the symbolic matrix
back to a numeric one.

Symbolic matrices can also be generated by V\P. Try, for
example,

V\PV�D�E�V�
.� �>D���E��D���E���E���D��D���E@�
*� �>FRV�V���VLQ�V����VLQ�V���FRV�V�@�

Here * is a symbolic Givens rotation matrix.

Algebraic matrix operations with symbolic matrices are
computed as you would in MATLAB.

.�* matrix addition

.�* matrix subtraction

.
*� matrix multiplication
LQY�*� matrix inversion
.�*� right matrix division
.?* left matrix division
*A� power
*�
 transpose
*
 conjugate transpose (Hermitian)

© 2002 by CRC Press LLC

These operations are illustrated by the following, which
use the matrices . and * generated above:

/� �.A��
FROOHFW��/��
IDFWRU��/��
GLII��/��D��
LQW��.��D��
-� �.�*�
VLPSOLI\��-
*��
VLPSOLI\��*
�*�
���

Note that the initial result of the basic operations may not
be in the form desired for your application; so it may
require further processing with VLPSOLI\, FROOHFW,
IDFWRU, or H[SDQG. These functions, as well as GLII
and LQW, act entry-wise on a symbolic matrix.

14.8 Symbolic linear algebraic functions
The primary symbolic matrix functions are:

GHW determinant
�
 transpose

 Hermitian (conjugate transpose)
LQY inverse
QXOO� � basis for nullspace
FROVSDFH basis for column space
HLJ eigenvalues and eigenvectors
SRO\ characteristic polynomial
VYG singular value decomposition
MRUGDQ Jordan canonical form

These functions will take either symbolic or numeric
arguments.

© 2002 by CRC Press LLC

Computations with symbolic rational matrices can be
carried out exactly. Try, for example,

F� �IORRU����
UDQG�����
'� �V\P��F��
$� �LQY��'��
LQY��$��
GHW��$��
E� �RQHV�������
[� �E�$�
[
$�
$A��

These functions can, of course, be applied to general
symbolic matrices. For the matrices . and * defined in
the previous section, try:

LQY��.��
VLPSOLI\��LQY��*���
S� �SRO\��*��
VLPSOLI\��S��
IDFWRU��S��
;� �VROYH��S��
IRU�M� �����
����;� �VLPSOH��;��
HQG�
SUHWW\��;��
H� �HLJ��*��
IRU�M� �����
����H� �VLPSOH��H��
HQG�
SUHWW\��H��
\� �VYG��*��
IRU�M� �����
����\� �VLPSOH��\��
HQG�
SUHWW\��\��
V\PV�V�UHDO�
U� �VYG��*��
U� �VLPSOH��U��

© 2002 by CRC Press LLC

SUHWW\��U��
V\PV�V�XQUHDO�

See Section 14.9 on the VROYH function.

A typical exercise in a linear algebra course is to
determine those values of W so that, say,

$� �>W���������W���������W@�

is singular. The following simple computation:

V\PV�W��
$� �>W���������W���������W@�
S� �GHW��$��
VROYH��S��

shows that this occurs for t = 0, √2, and √−2.

The function HLJ attempts to compute the eigenvalues
and eigenvectors in an exact closed form. Try, for
example,

IRU�Q� �����
����$� �V\P��PDJLF��Q���
����>9��'@� �HLJ��$��
HQG�

Except in special cases, however, the result is usually too
complicated to be useful. Try, for example, executing:

$� �V\P��IORRU�����
�UDQG�������
>9��'@� �HLJ��$��

a few times. For this reason, it is usually more efficient to
do the computation in variable-precision arithmetic, as is
illustrated by:

© 2002 by CRC Press LLC

$� �YSD��IORRU�����
�UDQG������
>9��'@� �HLJ��$��

The comments above regarding HLJ apply as well to the
computation of the singular values of a matrix by VYG, as
can be observed by repeating some of the computations
above using VYG instead of HLJ.

14.9 Solving algebraic equations
For a symbolic expression 6, the statement VROYH�6�
will attempt to find the values of the symbolic variable for
which the symbolic expression is zero. If an exact
symbolic solution is indeed found, you can convert it to a
floating-point solution, if desired. If an exact symbolic
solution cannot be found, then a variable precision one is
computed. Moreover, if you have an expression that
contains several symbolic variables, you can solve for a
particular variable by including it as an input argument in
VROYH. The inputs to VROYH can be quoted strings or
symbolic expressions.

Try these symbolic expressions, for example:

V\PV�[�\�]�
;� �VROYH��FRV�[����WDQ�[���
SUHWW\��;��
GRXEOH��;��
YSD��;��
<� �VROYH��FRV�[����[��
=� �VROYH��[A�����
[������
SUHWW\��=��
D� �VROYH��[A����\A����]A����[
\
]��
SUHWW\��D��
E� �VROYH��[A����\A����]A����[
\
]��\��
SUHWW\��E��

© 2002 by CRC Press LLC

The result D is a solution in the variable [, and E is a
solution in \. To solve an equation whose right-hand side
is not �, use a quoted string. Some examples are:

;� �VROYH��
ORJ�[�� �[����
��
YSD��;��
;� �VROYH��
�A[� �[����
��
YSD��;��

This solves for the variable D:

$� �VROYH��
�����D�E���D�E�� �E
��
D
��

and this solves the same equation for E:

I� �VROYH��
�����D�E���D�E�� �E
��
E
��

The function VROYH can also compute the solutions of
systems of general algebraic equations. To solve, for
example, the nonlinear system below, it is convenient to
first express the equations as strings.

6�� �
[A����\A����]A�� ��
�
6�� �
[���\� ��
�
6�� �
\���]� ��
�

The solutions are then computed by:

>;��<��=@� �VROYH��6���6���6���

If you alter 6� to:

6�� �
[���\���]� ��
�

then the solution computed by:

>;��<��=@� �VROYH��6���6���6���

© 2002 by CRC Press LLC

will be given in terms of square roots.

The VROYH function can take quoted strings or symbolic
expressions as input arguments, but you cannot mix the
two types of inputs.

14.10 Solving differential equations
The function GVROYH attempts to solve ordinary
differential equations. The symbolic differential operator
is ', so that:

<� �GVROYH��
'\� �[A�
\
��
[
��

produces the solution &�
H[S����
[A�� to the
differential equation y’ = x2 y. The solution to an initial
value problem can be computed by adding a second
symbolic expression giving the initial condition.

<� �GVROYH��
'\� �[A�
\
��
\��� �
��
[
��

Notice that in both examples above, the final input
argument,
[
, is the independent variable of the
differential equation. If no independent variable is
supplied to GVROYH, then it is assumed to be W. The
higher order symbolic differential operators '�, '�, …
can be used to solve higher order equations. Explore the
following:

GVROYH��
'�\���\� ��
��
GVROYH��
'�\���\� �[A�
��
[
��
GVROYH��
'�\���\� �[A�
������
����
\���� ��
��
'\���� ��
��
[
��
GVROYH��
'�\���'\� ��
\
��
GVROYH��
'�\����
'\� ���
\
��
<� �GVROYH��
'�\����
'\�����
\� �
FRV�W�
��
<� �VLPSOH��<��

© 2002 by CRC Press LLC

GVROYH��
'�\����
'\� ��
\
��
SUHWW\��DQV��

Systems of differential equations can also be solved. For
example,

(�� �
'[� ���
[���\
�
(�� �
'\� �[����
\���]
�
(�� �
']� �\����
]
�

The solutions are then computed with:

>[��\��]@� �GVROYH��(���(���(���
SUHWW\��[��
SUHWW\��\��
SUHWW\��]��

You can explore further details with KHOS GVROYH.

14.11 Further Maple access
The following features are not available in the Student
Version of MATLAB.

Over 50 special functions of classical applied
mathematics are available in the Symbolic Math Toolbox.
Enter KHOS PIXQOLVW to see a list of them. These
functions can be accessed with the function PIXQ, for
which you are referred to KHOS PIXQ for further details.
The PDSOH function allows you to use expressions and
programming constructs in Maple’s native language,
which gives you full access to Maple’s functionality. See
KHOS PDSOH, or PKHOS WRSLF, which displays Maple’s
help text for the specified topic. The Extended Symbolic
Math Toolbox provides access to a number of Maple’s
specialized libraries of procedures. It also provides for
use of Maple programming features.

© 2002 by CRC Press LLC

15. Help topics
There are many MATLAB functions and features that
cannot be included in this Primer. Listed in the following
tables are some of the MATLAB functions and operators,
grouped by subject area.6 You can browse through these
lists and use the online help facility, or consult the online
documents MATLAB Functions: Volumes 1 through 3 for
more detailed information on the functions, operators, and
special characters.

Typing KHOS at the MATLAB command prompt will
provide a listing of the major MATLAB directories,
similar to the following table. Typing KHOS WRSLF,
where WRSLF is an entry in the left column of the table,
will display a description of the topic. For example,
KHOS JHQHUDO will display on your Command window a
plain text version of Section 15.1. Typing KHOS RSV will
display Section 15.2, starting on page 99, and so on.

Each topic is discussed in a single subsection. The page
number for each subsection is also listed in the following
table.

6 Source: MATLAB 6.1 KHOS command, Release R12.1.

© 2002 by CRC Press LLC

Help topics page
JHQHUDO� General purpose commands 96
RSV� Operators and special characters 99
ODQJ� Programming language constructs 101

HOPDW�
Elementary matrices and matrix
manipulation

104

HOIXQ� Elementary math functions 106
VSHFIXQ� Specialized math functions 108

PDWIXQ�
Matrix functions–numerical linear
algebra

110

GDWDIXQ�
Data analysis and Fourier
transforms

112

DXGLR� Audio support 113
SRO\IXQ� Interpolation and polynomials 115

IXQIXQ�
Function functions and ODE
solvers

116

VSDUIXQ� Sparse matrices 119
JUDSK�G� Two-dimensional graphs 121
JUDSK�G� Three-dimensional graphs 122
VSHFJUDSK� Specialized graphs 125
JUDSKLFV� Handle Graphics 129
XLWRROV� Graphical user interface tools 131
VWUIXQ� Character strings 134
LRIXQ� File input/output 136
WLPHIXQ� Time and dates 139
GDWDW\SHV� Data types and structures 140
YHUFWUO� Version control 143
ZLQIXQ� Microsoft Windows Interface Files 144
GHPRV� Examples and demonstrations 144
ORFDO� Preferences 144
V\PEROLF� Symbolic Math Toolbox 145

© 2002 by CRC Press LLC

15.1 General
KHOS�JHQHUDO

General information
KHOSEURZVHU� Bring up the help browser

GRF�
Complete online help, displayed in the
help browser (KHOSGHVN�in Version
6.0)

KHOS�
M-file help, displayed in the Command
window

KHOSZLQ�
M-file help, displayed in the help
browser

ORRNIRU� Search all M-files for keyword
V\QWD[� Help on MATLAB command syntax

VXSSRUW�
Open MathWorks technical support web
page

GHPR� Run demonstrations

YHU�
MATLAB, Simulink, and toolbox
version information

YHUVLRQ� MATLAB version information
ZKDWVQHZ� Access release notes

Managing the workspace
ZKR� List current variables
ZKRV� List current variables, long form
ZRUNVSDFH� Display Workspace window

FOHDU�
Clear variables and functions from
memory

SDFN� Consolidate workspace memory
ORDG� Load workspace variables from disk
VDYH� Save workspace variables to disk
TXLW� Quit MATLAB session

© 2002 by CRC Press LLC

Managing commands and functions
ZKDW� List MATLAB-specific files in directory
W\SH� List M-file
HGLW� Edit M-file
RSHQ� Open files by extension
ZKLFK� Locate functions and files

SFRGH�
Create pre-parsed pseudo-code file (P-
file)

LQPHP� List functions in memory
PH[� Compile MEX-function

Managing the search path
SDWK� Get/set search path
DGGSDWK� Add directory to search path
UPSDWK� Remove directory from search path
SDWKWRRO� Modify search path
UHKDVK� Refresh function and file system caches

LPSRUW�
Import Java packages into the current
scope

Controlling the Command window
HFKR� Echo commands in M-files

PRUH�
Control paged output in Command
window

GLDU\� Save text of MATLAB session
IRUPDW� Set output format
EHHS� Produce beep sound

Operating system commands
FG� Change current working directory
FRS\ILOH� Copy a file
SZG� Show (print) current working directory
GLU� List directory
GHOHWH� Delete file

(continued on next page)

© 2002 by CRC Press LLC

Operating system commands (continued)
JHWHQY� Get environment variable
PNGLU� Make directory
�� Execute operating system command
GRV� Execute DOS command and return result
XQL[� Execute Unix command and return result

V\VWHP�
Execute system command and return
result

ZHE� Open web browser on site or files
FRPSXWHU� Computer type
LVXQL[� True for the Unix version of MATLAB

LVSF�
True for the Windows version of
MATLAB

Debugging M-files
GHEXJ� List debugging commands
GEVWRS� Set breakpoint
GEFOHDU� Remove breakpoint
GEFRQW� Continue execution
GEGRZQ� Change local workspace context
GEVWDFN� Display function call stack
GEVWDWXV� List all breakpoints
GEVWHS� Execute one or more lines
GEW\SH� List M-file with line numbers
GEXS� Change local workspace context
GETXLW� Quit debug mode
GEPH[� Debug MEX-files (Unix only)

Profiling M-files
SURILOH� Profile function execution time
SURIUHSRUW� Generate profile report

© 2002 by CRC Press LLC

Locate dependent functions of an M-file
GHSIXQ� Locate dependent functions of an M-file

GHSGLU�
Locate dependent directories of an M-
file

LQPHP� List functions in memory

15.2 Operators and special characters
KHOS�RSV

Arithmetic operators (help arith, help slash)
SOXV� Plus ��

XSOXV� Unary plus ��

PLQXV� Minus ��

XPLQXV� Unary minus ��

PWLPHV� Matrix multiply
�

WLPHV� Array multiply �
�

PSRZHU� Matrix power A�

SRZHU� Array power �A�

POGLYLGH� left matrix divide ?�

PUGLYLGH� right matrix divide ��

OGLYLGH� Left array divide �?�

UGLYLGH� Right array divide ���

NURQ� Kronecker tensor product NURQ�

Relational operators (help relop)
HT� Equal �

QH� Not equal a �

OW� Less than ��

JW� Greater than !�

OH� Less than or equal � �

JH� Greater than or equal ! �

© 2002 by CRC Press LLC

Logical operators
DQG� Logical AND 	�

RU� Logical OR _�

QRW� Logical NOT a�

[RU� Logical EXCLUSIVE OR�
DQ\� True if any element of vector is nonzero
DOO� True if all elements of vector are nonzero

Special characters
FRORQ� Colon ��

SDUHQ� Parentheses and subscripting ����

SDUHQ� Brackets >�@�

SDUHQ� Braces and subscripting ^�`�

SXQFW� Function handle creation #�

SXQFW� Decimal point ��

SXQFW� Structure field access ��

SXQFW� Parent directory ���

SXQFW� Continuation ����

SXQFW� Separator ��

SXQFW� Semicolon ��

SXQFW� Comment ��

SXQFW� Invoke operating system command ��

SXQFW� Assignment �

SXQFW� Quote
�

WUDQVSRVH� Transpose �
�

FWUDQVSRVH� Complex conjugate transpose
�

KRU]FDW� Horizontal concatenation >�@�

YHUWFDW� Vertical concatenation >�@�

VXEVDVJQ� Subscripted assignment �����
^�`�

VXEVUHI� Subscripted reference �����
^�`�

VXEVLQGH[� Subscript index

© 2002 by CRC Press LLC

Bitwise operators
ELWDQG� Bit-wise AND
ELWFPS� Complement bits
ELWRU� Bit-wise OR
ELWPD[� Maximum floating-point integer
ELW[RU� Bit-wise EXCLUSIVE OR
ELWVHW� Set bit
ELWJHW� Get bit
ELWVKLIW� Bit-wise shift

Set operators
XQLRQ� Set union
XQLTXH� Set unique
LQWHUVHFW� Set intersection
VHWGLII� Set difference
VHW[RU� Set exclusive-or
LVPHPEHU� True for set member

15.3 Programming language constructs
KHOS�ODQJ

Control flow
LI� Conditionally execute statements
HOVH� LI statement condition
HOVHLI� LI statement condition

HQG�
Terminate scope of IRU, ZKLOH,
VZLWFK, WU\ and LI statements

IRU�
Repeat statements a specific number of
times

ZKLOH�
Repeat statements an indefinite number
of times

EUHDN�
Terminate execution of ZKLOH or IRU
loop

(continued on next page)

© 2002 by CRC Press LLC

Control flow (continued)

FRQWLQXH�
Pass control to the next iteration of IRU
or ZKLOH loop

VZLWFK�
Switch among several cases based on
expression

FDVH� VZLWFK statement case
RWKHUZLVH� Default VZLWFK statement case
WU\� Begin WU\ block
FDWFK� Begin FDWFK block
UHWXUQ� Return to invoking function

Evaluation and execution

HYDO�
Execute string with MATLAB
expression

HYDOF�
Evaluate MATLAB expression with
capture

IHYDO� Execute function specified by string
HYDOLQ� Evaluate expression in workspace

EXLOWLQ�
Execute built-in function from
overloaded method

DVVLJQLQ� Assign variable in workspace
UXQ� Run script

Scripts, functions, and variables
VFULSW� About MATLAB scripts and M-files
IXQFWLRQ� Add new function
JOREDO� Define global variable
SHUVLVWHQW� Define persistent variable
PILOHQDPH� Name of currently executing M-file
OLVWV� Comma separated lists

H[LVW�
Check if variables or functions are
defined

LVJOREDO� True for global variables
PORFN� Prevent M-file from being cleared

(continued on next page)

© 2002 by CRC Press LLC

Scripts, functions, and variables (cont.)
PXQORFN� Allow M-file to be cleared
PLVORFNHG� True if M-file cannot be cleared
SUHFHGHQFH� Operator precedence in MATLAB
LVYDUQDPH� Check for a valid variable name
LVNH\ZRUG� Check if input is a keyword

Argument handling
QDUJFKN� Validate number of input arguments
QDUJRXWFKN� Validate number of output arguments
QDUJLQ� Number of function input arguments
QDUJRXW� Number of function output arguments
YDUDUJLQ� Variable length input argument list
YDUDUJRXW� Variable length output argument list
LQSXWQDPH� Input argument name

Message display
HUURU� Display error message and abort function
ZDUQLQJ� Display warning message
ODVWHUU� Last error message
ODVWZDUQ� Last warning message
GLVS� Display an array
GLVSOD\� Overloaded function to display an array
ISULQWI� Display formatted message
VSULQWI� Write formatted data to a string

Interactive input
LQSXW� Prompt for user input
NH\ERDUG� Invoke keyboard from M-file
SDXVH� Wait for user response
XLPHQX� Create user interface menu
XLFRQWURO� Create user interface control

© 2002 by CRC Press LLC

15.4 Elementary matrices and matrix
manipulation
KHOS�HOPDW

Elementary matrices
]HURV� Zeros array
RQHV� Ones array
H\H� Identity matrix
UHSPDW� Replicate and tile array
UDQG� Uniformly distributed random numbers
UDQGQ� Normally distributed random numbers
OLQVSDFH� Linearly spaced vector
ORJVSDFH� Logarithmically spaced vector

IUHTVSDFH�
Frequency spacing for frequency
response

PHVKJULG� x and y arrays for 3-D plots

��
Regularly spaced vector and index into
matrix

Basic array information
VL]H� Size of matrix
OHQJWK� Length of vector
QGLPV� Number of dimensions
QXPHO� Number of elements
GLVS� Display matrix or text
LVHPSW\� True for empty matrix
LVHTXDO� True if arrays are identical
LVQXPHULF� True for numeric arrays
LVORJLFDO� True for logical array
ORJLFDO� Convert numeric values to logical

© 2002 by CRC Press LLC

Matrix manipulation
UHVKDSH� Change size
GLDJ� Diagonal matrices; diagonals of matrix
EONGLDJ� Block diagonal concatenation
WULO� Extract lower triangular part
WULX� Extract upper triangular part
IOLSOU� Flip matrix in left/right direction
IOLSXG� Flip matrix in up/down direction
IOLSGLP� Flip matrix along specified dimension
URW��� Rotate matrix 90 degrees

��
Regularly spaced vector and index into
matrix

ILQG� Find indices of nonzero elements
HQG� Last index
VXE�LQG� Linear index from multiple subscripts
LQG�VXE� Multiple subscripts from linear index

Special variables and constants
DQV� Most recent answer
HSV� Floating-point relative accuracy
UHDOPD[� Largest positive floating-point number
UHDOPLQ� Smallest positive floating-point number
SL� ���������������...
L��M� Imaginary unit
LQI� Infinity
1D1� Not-a-Number
LVQDQ� True for Not-a-Number
LVLQI� True for infinite elements
LVILQLWH� True for finite elements
ZK\� Succinct answer

© 2002 by CRC Press LLC

Specialized matrices
FRPSDQ� Companion matrix
JDOOHU\� Higham test matrices
KDGDPDUG� Hadamard matrix
KDQNHO� Hankel matrix
KLOE� Hilbert matrix
LQYKLOE� Inverse Hilbert matrix
PDJLF� Magic square
SDVFDO� Pascal matrix

URVVHU�
Classic symmetric eigenvalue test
problem

WRHSOLW]� Toeplitz matrix
YDQGHU� Vandermonde matrix
ZLONLQVRQ� Wilkinson’s eigenvalue test matrix

15.5 Elementary math functions
KHOS�HOIXQ

Trigonometric
VLQ� Sine
VLQK� Hyperbolic sine
DVLQ� Inverse sine
DVLQK� Inverse hyperbolic sine
FRV� Cosine
FRVK� Hyperbolic cosine
DFRV� Inverse cosine
DFRVK� Inverse hyperbolic cosine
WDQ� Tangent
WDQK� Hyperbolic tangent
DWDQ� Inverse tangent
DWDQ�� Four quadrant inverse tangent
DWDQK� Inverse hyperbolic tangent
VHF� Secant
VHFK� Hyperbolic secant

(continued on next page)

© 2002 by CRC Press LLC

Trigonometric (continued)
DVHF� Inverse secant
DVHFK� Inverse hyperbolic secant
FVF� Cosecant
FVFK� Hyperbolic cosecant
DFVF� Inverse cosecant
DFVFK� Inverse hyperbolic cosecant
FRW� Cotangent
FRWK� Hyperbolic cotangent
DFRW� Inverse cotangent
DFRWK� Inverse hyperbolic cotangent

Exponential
H[S� Exponential
ORJ� Natural logarithm
ORJ��� Common (base 10) logarithm

ORJ��
Base 2 logarithm and dissect floating-
point number

SRZ��
Base 2 power and scale floating-point
number

VTUW� Square root
QH[WSRZ�� Next higher power of 2

Complex
DEV� Absolute value
DQJOH� Phase angle

FRPSOH[�
Construct complex data from real and
imaginary parts

FRQM� Complex conjugate
LPDJ� Complex imaginary part
UHDO� Complex real part
XQZUDS� Unwrap phase angle
LVUHDO� True for real array

FSO[SDLU�
Sort numbers into complex conjugate
pairs

© 2002 by CRC Press LLC

Rounding and remainder
IL[� Round towards zero
IORRU� Round towards minus infinity
FHLO� Round towards plus infinity
URXQG� Round towards nearest integer

PRG�
Modulus (signed remainder after
division)

UHP� Remainder after division
VLJQ� Signum

15.6 Specialized math functions
KHOS�VSHFIXQ

Specialized math functions
DLU\� Airy functions
EHVVHOM� Bessel function of the first kind
EHVVHO\� Bessel function of the second kind

EHVVHOK�
Bessel function of the third kind (Hankel
function)

EHVVHOL�
Modified Bessel function of the first
kind

EHVVHON�
Modified Bessel function of the second
kind

EHWD� Beta function
EHWDLQF� Incomplete beta function
EHWDOQ� Logarithm of beta function
HOOLSM� Jacobi elliptic functions
HOOLSNH� Complete elliptic integral
HUI� Error function
HUIF� Complementary error function
HUIF[� Scaled complementary error function
HUILQY� Inverse error function
H[SLQW� Exponential integral function
JDPPD� Gamma function

(continued on next page)

© 2002 by CRC Press LLC

Specialized math functions (continued)
JDPPDLQF� Incomplete gamma function
JDPPDOQ� Logarithm of gamma function
OHJHQGUH� Associated Legendre function
FURVV� Vector cross product
GRW� Vector dot product

Number theoretic functions
IDFWRU� Prime factors
LVSULPH� True for prime numbers
SULPHV� Generate list of prime numbers
JFG� Greatest common divisor
OFP� Least common multiple
UDW� Rational approximation
UDWV� Rational output
SHUPV� All possible permutations

QFKRRVHN�
All combinations of N elements taken K
at a time

IDFWRULDO� Factorial function

Coordinate transforms

FDUW�VSK�
Transform Cartesian to spherical
coordinates

FDUW�SRO� Transform Cartesian to polar coordinates
SRO�FDUW� Transform polar to Cartesian coordinates

VSK�FDUW�
Transform spherical to Cartesian
coordinates

KVY�UJE�
Convert hue-saturation-value colors to
red-green-blue

UJE�KVY�
Convert red-green-blue colors to hue-
saturation-value

© 2002 by CRC Press LLC

15.7 Matrix functions — numerical
linear algebra
KHOS�PDWIXQ

Matrix analysis
QRUP� Matrix or vector norm
QRUPHVW� Estimate the matrix 2-norm
UDQN� Matrix rank
GHW� Determinant
WUDFH� Sum of diagonal elements
QXOO� Null space
RUWK� Orthogonalization
UUHI� Reduced row echelon form
VXEVSDFH� Angle between two subspaces

Linear equations

?�and �� Linear equation solution; use KHOS
VODVK

LQY� Matrix inverse
UFRQG� LAPACK reciprocal condition estimator

FRQG�
Condition number with respect to
inversion

FRQGHVW� 1-norm condition number estimate
QRUPHVW�� 1-norm estimate
FKRO� Cholesky factorization
FKROLQF� Incomplete Cholesky factorization
OX� LU factorization
OXLQF� Incomplete LU factorization
TU� Orthogonal-triangular decomposition

OVTQRQQHJ�
Linear least squares with nonnegativity
constraints

SLQY� Pseudoinverse
OVFRY� Least squares with known covariance

© 2002 by CRC Press LLC

Eigenvalues and singular values
HLJ� Eigenvalues and eigenvectors
VYG� Singular value decomposition

JVYG�
Generalized singular value
decomposition

HLJV� A few eigenvalues
VYGV� A few singular values
SRO\� Characteristic polynomial
SRO\HLJ� Polynomial eigenvalue problem

FRQGHLJ�
Condition number with respect to
eigenvalues

KHVV� Hessenberg form

T]�
QZ factorization for generalized
eigenvalues

VFKXU� Schur decomposition

Matrix functions
H[SP� Matrix exponential
ORJP� Matrix logarithm
VTUWP� Matrix square root
IXQP� Evaluate general matrix function

Factorization utilities
TUGHOHWH� Delete column from QR factorization
TULQVHUW� Insert column in QR factorization

UVI�FVI�
Real block diagonal form to complex
diagonal form

FGI�UGI�
Complex diagonal form to real block
diagonal form

EDODQFH�
Diagonal scaling to improve eigenvalue
accuracy

SODQHURW� Givens plane rotation
FKROXSGDWH� rank 1 update to Cholesky factorization
TUXSGDWH� rank 1 update to QR factorization

© 2002 by CRC Press LLC

15.8 Data analysis and Fourier
transforms
KHOS�GDWDIXQ

Basic operations
PD[� Largest component
PLQ� Smallest component
PHDQ� Average or mean value
PHGLDQ� Median value
VWG� Standard deviation
YDU� Variance
VRUW� Sort in ascending order
VRUWURZV� Sort rows in ascending order
VXP� Sum of elements
SURG� Product of elements
KLVW� Histogram
KLVWF� Histogram count
WUDS]� Trapezoidal numerical integration
FXPVXP� Cumulative sum of elements
FXPSURG� Cumulative product of elements

FXPWUDS]�
Cumulative trapezoidal numerical
integration

Finite differences
GLII� Difference and approximate derivative
JUDGLHQW� Approximate gradient
GHO�� Discrete Laplacian

Correlation
FRUUFRHI� Correlation coefficients
FRY� Covariance matrix
VXEVSDFH� Angle between subspaces

© 2002 by CRC Press LLC

Filtering and convolution
ILOWHU� One-dimensional digital filter
ILOWHU�� Two-dimensional digital filter

FRQY�
Convolution and polynomial
multiplication

FRQY�� Two-dimensional convolution
FRQYQ� N-dimensional convolution
GHFRQY� Deconvolution and polynomial division
GHWUHQG� Linear trend removal

Fourier transforms
IIW� Discrete Fourier transform
IIW�� 2-D discrete Fourier transform

IIWQ�
N-dimensional discrete Fourier
transform

LIIW� Inverse discrete Fourier transform
LIIW�� 2-D inverse discrete Fourier transform

LIIWQ�
N-dimensional inverse discrete Fourier
transform

IIWVKLIW�
Shift zero-frequency component to
center of spectrum

LIIWVKLIW� Inverse FFTSHIFT

15.9 Audio support
KHOS�DXGLR

Audio input/output objects
DXGLRSOD\HU� Windows audio player object
DXGLRUHFRUGHU� Windows audio recorder object

© 2002 by CRC Press LLC

Audio hardware drivers
VRXQG� Play vector as sound
VRXQGVF� Autoscale and play vector as sound

ZDYSOD\�
Play sound using Windows audio output
device

ZDYUHFRUG�
Record sound using Windows audio
input device

Audio file import and export
DXUHDG� Read NeXT/SUN (.au) sound file
DXZULWH� Write NeXT/SUN (.au) sound file
ZDYUHDG� Read Microsoft :$9((.wav) sound file
ZDYZULWH� Write Microsoft :$9((.wav) sound file

Utilities

OLQ�PX�
Convert linear signal to mu-law
encoding

PX�OLQ�
Convert mu-law encoding to linear
signal

Example audio data (MAT files)
FKLUS� Frequency sweeps
JRQJ� Gong
KDQGHO� Hallelujah chorus
ODXJKWHU� Laughter from a crowd
VSODW� Chirp followed by a splat
WUDLQ� Train whistle

© 2002 by CRC Press LLC

15.10 Interpolation and polynomials
KHOS�SRO\IXQ

Data interpolation

SFKLS�
Piecewise cubic Hermite interpolating
polynomial

LQWHUS�� 1-D interpolation (table lookup)
LQWHUS�T� Quick 1-D linear interpolation
LQWHUSIW� 1-D interpolation using FFT method
LQWHUS�� 2-D interpolation (table lookup)
LQWHUS�� 3-D interpolation (table lookup)
LQWHUSQ� N-D interpolation (table lookup)
JULGGDWD� Data gridding and surface fitting

JULGGDWD��
Data gridding and hyper-surface fitting
for three-dimensional data

JULGGDWDQ�
Data gridding and hyper-surface fitting
(dimension ����

Spline interpolation
VSOLQH� Cubic spline interpolation
SSYDO� Evaluate piecewise polynomial

Geometric analysis
GHODXQD\� Delaunay triangulation
GHODXQD\�� 3-D Delaunay tessellation
GHODXQD\Q� N-D Delaunay tessellation

GVHDUFK�
Search Delaunay triangulation for
nearest point

GVHDUFKQ�
Search N-D Delaunay tessellation for
nearest point

WVHDUFK� Closest triangle search
WVHDUFKQ� N-D closest triangle search
FRQYKXOO� Convex hull
FRQYKXOOQ� N-D convex hull
YRURQRL� Voronoi diagram

(continued on next page)

© 2002 by CRC Press LLC

Geometric analysis (continued)
YRURQRLQ� N-D Voronoi diagram
LQSRO\JRQ� True for points inside polygonal region
UHFWLQW� Rectangle intersection area
SRO\DUHD� Area of polygon

Polynomials
URRWV� Find polynomial roots
SRO\� Convert roots to polynomial
SRO\YDO� Evaluate polynomial

SRO\YDOP�
Evaluate polynomial with matrix
argument

UHVLGXH� Partial-fraction expansion (residues)
SRO\ILW� Fit polynomial to data
SRO\GHU� Differentiate polynomial
SRO\LQW� Integrate polynomial analytically
FRQY� Multiply polynomials
GHFRQY� Divide polynomials

15.11 Function functions and ODE
solvers
KHOS�IXQIXQ

Optimization and root finding

IPLQEQG�
Scalar bounded nonlinear function
minimization

IPLQVHDUFK�
Multidimensional unconstrained
nonlinear minimization

I]HUR� Scalar nonlinear zero finding

Optimization option handling

RSWLPVHW�
Create or alter optimization RSWLRQV
structure

RSWLPJHW�
Get optimization parameters from
RSWLRQV structure

© 2002 by CRC Press LLC

Numerical integration (quadrature)

TXDG�
Numerically evaluate integral, low order
method

TXDGO�
Numerically evaluate integral, higher
order method

GEOTXDG� Numerically evaluate double integral

Plotting
H]SORW� Easy-to-use function plotter
H]SORW�� Easy-to-use 3-D parametric curve plotter
H]SRODU� Easy-to-use polar coordinate plotter
H]FRQWRXU� Easy-to-use contour plotter
H]FRQWRXUI� Easy-to-use filled contour plotter
H]PHVK� Easy-to-use 3-D mesh plotter
H]PHVKF� Easy-to-use mesh/contour plotter
H]VXUI� Easy-to-use 3-D colored surface plotter
H]VXUIF� Easy-to-use surf/contour plotter
ISORW� Plot function

Inline function object
LQOLQH� Construct LQOLQH function object
DUJQDPHV� Argument names
IRUPXOD� Function formula
FKDU� Convert LQOLQH object to char. array

Differential equation solvers

RGH���
Solve non-stiff differential equations,
medium order method

RGH���
Solve non-stiff differential equations,
low order method

RGH����
Solve non-stiff differential equations,
variable order method

RGH��W�
Solve moderately stiff ODEs and DAEs
Index 1, trapezoidal rule

(continued on next page)

© 2002 by CRC Press LLC

Differential equation solvers (continued)

RGH��V�
Solve stiff ODEs and DAEs Index 1,
variable order method

RGH��V�
Solve stiff differential equations, low
order method

RGH��WE�
Solve stiff differential equations, low
order method

Boundary value problem solver for ODEs

EYS�F�
Solve two-point boundary value
problems for ODEs by collocation

1-D Partial differential equation solver

SGHSH�
Solve initial-boundary value problems
for parabolic-elliptic PDEs

Option handling
RGHVHW� Create/alter ODE RSWLRQV structure
RGHJHW� Get ODE RSWLRQV parameters
EYSVHW� Create/alter BVP RSWLRQV structure
EYSJHW� Get BVP RSWLRQV parameters

Input and output functions

GHYDO�
Evaluates the solution of a differential
equation problem (replaces EYSYDO)

RGHSORW� Time series ODE output function
RGHSKDV�� 2-D phase plane ODE output function
RGHSKDV�� 3-D phase plane ODE output function

RGHSULQW�
Command window printing ODE output
function

EYSLQLW� Forms the initial guess for BVP4C

SGHYDO�
Evaluates by interpolation the solution
computed by PDEPE

RGHILOH� MATLAB v5 ODE file syntax (obsolete)
EYSYDO� Evaluate solution (obsolete; use GHYDO)

© 2002 by CRC Press LLC

15.12 Sparse matrices
KHOS�VSDUIXQ

Elementary sparse matrices
VSH\H� Sparse identity matrix

VSUDQG�
Sparse uniformly distributed random
matrix

VSUDQGQ�
Sparse normally distributed random
matrix

VSUDQGV\P� Sparse random symmetric matrix
VSGLDJV� Sparse matrix formed from diagonals

Full to sparse conversion
VSDUVH� Create sparse matrix
IXOO� Convert sparse matrix to full matrix
ILQG� Find indices of nonzero elements

VSFRQYHUW�
Import from sparse matrix external
format

Working with sparse matrices
QQ]� Number of nonzero matrix elements
QRQ]HURV� Nonzero matrix elements

Q]PD[�
Amount of storage allocated for nonzero
matrix elements

VSRQHV�
Replace nonzero sparse matrix elements
with ones

VSDOORF� Allocate space for sparse matrix
LVVSDUVH� True for sparse matrix

VSIXQ�
Apply function to nonzero matrix
elements

VS\� Visualize sparsity pattern

© 2002 by CRC Press LLC

Reordering algorithms

FRODPG�
Column approximate minimum degree
permutation

V\PDPG�
Symmetric approximate minimum
degree permutation

FROPPG� Column minimum degree permutation
V\PPPG� Symmetric minimum degree permutation

V\PUFP�
Symmetric reverse Cuthill-McKee
permutation

FROSHUP� Column permutation
UDQGSHUP� Random permutation
GPSHUP� Dulmage-Mendelsohn permutation

Linear algebra
HLJV� A few eigenvalues, using ARPACK
VYGV� A few singular values, using HLJV
OXLQF� Incomplete LU factorization
FKROLQF� Incomplete Cholesky factorization
QRUPHVW� Estimate the matrix 2-norm
FRQGHVW� 1-norm condition number estimate
VSUDQN� Structural rank

Linear equations (iterative methods)

SFJ�
Preconditioned conjugate gradients
method

ELFJ� Biconjugate gradients method
ELFJVWDE� Biconjugate gradients stabilized method
FJV� Conjugate gradients squared method
JPUHV� Generalized minimum residual method
PLQUHV� Minimum residual method
TPU� Quasi-minimal residual method
V\PPOT� Symmetric LQ method

© 2002 by CRC Press LLC

Operations on graphs (trees)
WUHHOD\RXW� Lay out tree or forest
WUHHSORW� Plot picture of tree
HWUHH� Elimination tree
HWUHHSORW� Plot elimination tree
JSORW� Plot graph, as in "graph theory"

Miscellaneous
V\PEIDFW� Symbolic factorization analysis
VSSDUPV� Set parameters for sparse matrix routines
VSDXJPHQW� Form least squares augmented system

15.13 Two-dimensional graphs
KHOS�JUDSK�G

Elementary x-y graphs
SORW� Linear plot
ORJORJ� Log-log scale plot
VHPLORJ[� Semi-log scale plot
VHPLORJ\� Semi-log scale plot
SRODU� Polar coordinate plot
SORW\\� Graphs with y tick labels on left & right

Axis control
D[LV� Control axis scaling and appearance
]RRP� Zoom in and out on a 2-D plot
JULG� Grid lines
ER[� Axis box
KROG� Hold current graph
D[HV� Create axes in arbitrary positions
VXESORW� Create axes in tiled positions

© 2002 by CRC Press LLC

Graph annotation
SORWHGLW� Tools for editing and annotating plots
OHJHQG� Graph legend
WLWOH� Graph title
[ODEHO� x-axis label
\ODEHO� y-axis label

WH[ODEHO�
Produces TeX format from a character
string

WH[W� Text annotation
JWH[W� Place text with mouse

Hard copy and printing

SULQW�
Print graph or Simulink system; or save
graph to M-file

SULQWRSW� Printer defaults
RULHQW� Set paper orientation

15.14 Three-dimensional graphs
KHOS�JUDSK�G

Elementary 3-D plots
SORW�� Plot lines and points in 3-D space
PHVK� 3-D mesh surface
VXUI� 3-D colored surface
ILOO�� Filled 3-D polygons

Color control
FRORUPDS� Color look-up table
FD[LV� Pseudocolor axis scaling
VKDGLQJ� Color shading mode
KLGGHQ� Mesh hidden line removal mode
EULJKWHQ� Brighten or darken color map
FRORUGHI� Set color defaults

JUD\PRQ�
Set graphics defaults for grayscale
monitors

© 2002 by CRC Press LLC

Lighting
VXUIO� 3-D shaded surface with lighting
OLJKWLQJ� Lighting mode
PDWHULDO� Material reflectance mode
VSHFXODU� Specular reflectance
GLIIXVH� Diffuse reflectance
VXUIQRUP� Surface normals

Color maps
KVY� Hue-saturation-value color map
KRW� Black-red-yellow-white color map
JUD\� Linear grayscale color map
ERQH� Grayscale with tinge of blue color map
FRSSHU� Linear copper-tone color map
SLQN� Pastel shades of pink color map
ZKLWH� All-white color map

IODJ�
Alternating red, white, blue, and black
color map

OLQHV� Color map with the line colors
FRORUFXEH� Enhanced color-cube color map
YJD� Windows colormap for 16 colors
MHW� Variant of HSV
SULVP� Prism color map
FRRO� Shades of cyan and magenta color map
DXWXPQ� Shades of red and yellow color map
VSULQJ� Shades of magenta and yellow color map
ZLQWHU� Shades of blue and green color map
VXPPHU� Shades of green and yellow color map

Transparency
DOSKD� Transparency (alpha) mode
DOSKDPDS� Transparency (alpha) look-up table
DOLP� Transparency (alpha) scaling

© 2002 by CRC Press LLC

Axis control
D[LV� Control axis scaling and appearance
]RRP� Zoom in and out on a 2-D plot
JULG� Grid lines
ER[� Axis box
KROG� Hold current graph
D[HV� Create axes in arbitrary positions
VXESORW� Create axes in tiled positions
GDVSHFW� Data aspect ratio
SEDVSHFW� Plot box aspect ratio
[OLP� x limits
\OLP� y limits
]OLP� z limits

Viewpoint control
YLHZ� 3-D graph viewpoint specification
YLHZPW[� View transformation matrix
URWDWH�G� Interactively rotate view of 3-D plot

Camera control
FDPSRV� Camera position
FDPWDUJHW� Camera target
FDPYD� Camera view angle
FDPXS� Camera up vector
FDPSURM� Camera projection

High-level camera control
FDPRUELW� Orbit camera
FDPSDQ� Pan camera
FDPGROO\� Dolly camera
FDP]RRP� Zoom camera
FDPUROO� Roll camera

FDPORRNDW�
Move camera and target to view
specified objects

FDPHUDWRROEDU� Interactively manipulate camera

© 2002 by CRC Press LLC

High-level light control
FDPOLJKW� Creates or sets position of a light
OLJKWDQJOH� Spherical position of a light

Graph annotation
WLWOH� Graph title
[ODEHO� x-axis label
\ODEHO� y-axis label
]ODEHO� z-axis label
FRORUEDU� Display color bar (color scale)
WH[W� Text annotation
JWH[W� Mouse placement of text
SORWHGLW� Graph editing and annotation tools

Hard copy and printing

SULQW�
Print graph or Simulink system; or save
graph to M-file

SULQWRSW� Printer defaults
RULHQW� Set paper orientation
YUPO� Save graphics to VRML 2.0 file

15.15 Specialized graphs
KHOS�VSHFJUDSK

Specialized 2-D graphs
DUHD� Filled area plot
EDU� Bar graph
EDUK� Horizontal bar graph
FRPHW� Comet-like trajectory
FRPSDVV� Compass plot
HUURUEDU� Error bar plot
H]SORW� Easy-to-use function plotter
H]SRODU� Easy-to-use polar coordinate plotter
IHDWKHU� Feather plot

(continued on next page)

© 2002 by CRC Press LLC

Specialized 2-D graphs (continued)
ILOO� Filled 2-D polygons
ISORW� Plot function
KLVW� Histogram
SDUHWR� Pareto chart
SLH� Pie chart
SORWPDWUL[� Scatter plot matrix
URVH� Angle histogram plot
VFDWWHU� Scatter plot
VWHP� Discrete sequence or “stem” plot
VWDLUV� Stairstep plot

Contour and 2½-D graphs
FRQWRXU� Contour plot
FRQWRXUI� Filled contour plot
FRQWRXU�� 3-D contour plot
FODEHO� Contour plot elevation labels
H]FRQWRXU� Easy-to-use contour plotter
H]FRQWRXUI� Easy-to-use filled contour plotter
SFRORU� Pseudocolor (checkerboard) plot
YRURQRL� Voronoi diagram

Specialized 3-D graphs
EDU�� 3-D bar graph
EDU�K� Horizontal 3-D bar graph
FRPHW�� 3-D comet-like trajectories
H]JUDSK�� General-purpose surface plotter
H]PHVK� Easy-to-use 3-D mesh plotter

H]PHVKF�
Easy-to-use combination mesh/contour
plotter

H]SORW�� Easy-to-use 3-D parametric curve plotter
H]VXUI� Easy-to-use 3-D colored surface plotter

H]VXUIF�
Easy-to-use combination surf/contour
plotter

(continued on next page)

© 2002 by CRC Press LLC

Specialized 3-D graphs (continued)
PHVKF� Combination mesh/contour plot
PHVK]� 3-D mesh with curtain
SLH�� 3-D pie chart
ULEERQ� Draw 2-D lines as ribbons in 3-D
VFDWWHU�� 3-D scatter plot
VWHP�� 3-D stem plot
VXUIF� Combination surf/contour plot
WULVXUI� Triangular surface plot
WULPHVK� Triangular mesh plot
ZDWHUIDOO� Waterfall plot

Volume and vector visualization
YLVVXLWH� Visualization suite
LVRVXUIDFH� Isosurface extractor
LVRQRUPDOV� Isosurface normals
LVRFDSV� Isosurface end caps
LVRFRORUV� Isosurface and patch colors
FRQWRXUVOLFH� Contours in slice planes
VOLFH� Volumetric slice plot
VWUHDPOLQH� Streamlines from 2-D or 3-D vector data
VWUHDP�� 3-D streamlines
VWUHDP�� 2-D streamlines
TXLYHU�� 3-D quiver plot
TXLYHU� 2-D quiver plot
GLYHUJHQFH� Divergence of a vector field
FXUO� Curl and angular velocity of vector field
FRQHSORW� 3-D cone plot
VWUHDPWXEH� 3-D stream tube
VWUHDPULEERQ� 3-D stream ribbon
VWUHDPVOLFH� Streamlines in slice planes
VWUHDPSDUWLFOHV� Display stream particles

LQWHUSVWUHDPVSHHG�
Interpolate streamline vertices from
speed

(continued on next page)

© 2002 by CRC Press LLC

Volume and vector visualization (continued)
VXEYROXPH� Extract subset of volume dataset
UHGXFHYROXPH� Reduce volume dataset

YROXPHERXQGV�
Returns x,y,z and color limits for volume
data

VPRRWK�� Smooth 3-D data
UHGXFHSDWFK� Reduce number of patch faces
VKULQNIDFHV� Reduce size of patch faces

Image display and file I/O
LPDJH� Display image
LPDJHVF� Scale data and display as image
FRORUPDS� Color look-up table
JUD\� Linear grayscale color map

FRQWUDVW�
Grayscale color map to enhance image
contrast

EULJKWHQ� Brighten or darken color map
FRORUEDU� Display color bar (color scale)
LPUHDG� Read image from graphics file
LPZULWH� Write image to graphics file
LPILQIR� Information about graphics file

Movies and animation
FDSWXUH� Screen capture of current figure
PRYLHLQ� Initialize movie frame memory
JHWIUDPH� Get movie frame
PRYLH� Play recorded movie frames

URWDWH�
Rotate object about specified orgin and
direction

IUDPH�LP� Convert movie frame to indexed image
LP�IUDPH� Convert index image into movie format

© 2002 by CRC Press LLC

Color-related functions
VSLQPDS� Spin color map
UJESORW� Plot color map
FROVW\OH� Parse color and style from string
LQG�UJE� Convert indexed image to RGB image

Solid modeling
F\OLQGHU� Generate cylinder
VSKHUH� Generate sphere
HOOLSVRLG� Generate ellipsoid
SDWFK� Create patch
VXUI�SDWFK� Convert surface data to patch data

15.16 Handle Graphics
KHOS�JUDSKLFV

Figure window creation and control
ILJXUH� Create figure window
JFI� Get handle to current figure
FOI� Clear current figure
VKJ� Show graph window
FORVH� Close figure
UHIUHVK� Refresh figure
RSHQILJ� Open new or raise copy of saved figure

Axis creation and control
VXESORW� Create axes in tiled positions
D[HV� Create axes in arbitrary positions
JFD� Get handle to current axes
FOD� Clear current axes
D[LV� Control axis scaling and appearance
ER[� Axis box
FD[LV� Control pseudocolor axis scaling
KROG� Hold current graph
LVKROG� Return hold state

© 2002 by CRC Press LLC

Handle Graphics objects
ILJXUH� Create figure window
D[HV� Create axes
OLQH� Create line
WH[W� Create text
SDWFK� Create patch

UHFWDQJOH�
Create rectangle, rounded rectangle, or
ellipse

VXUIDFH� Create surface
LPDJH� Create image
OLJKW� Create light
XLFRQWURO� Create user interface control
XLPHQX� Create user interface menu
XLFRQWH[WPHQX� Create user interface context menu

Handle Graphics operations
VHW� Set object properties
JHW� Get object properties
UHVHW� Reset object properties
GHOHWH� Delete object
JFR� Get handle to current object
JFER� Get handle to current callback object
JFEI� Get handle to current callback figure
GUDZQRZ� Flush pending graphics events

ILQGREM�
Find objects with specified property
values

FRS\REM�
Make copy of graphics object and its
children

LVDSSGDWD� Check if application-defined data exists
JHWDSSGDWD� Get value of application-defined data
VHWDSSGDWD� Set application-defined data
UPDSSGDWD� Remove application-defined data

© 2002 by CRC Press LLC

Hard copy and printing

SULQW�
Print graph or Simulink system; or save
graph to M-file

SULQWRSW� Printer defaults
RULHQW� Set paper orientation

Utilities
FORVHUHT� Figure close request function
QHZSORW� M-file preamble for NextPlot property
LVKDQGOH� True for graphics handles

ActiveX client functions (PC only)
DFW[FRQWURO� Create an ActiveX control
DFW[VHUYHU� Create an ActiveX server

15.17 Graphical user interface tools
KHOS�XLWRROV

GUI functions
XLFRQWURO� Create user interface control
XLPHQX� Create user interface menu
JLQSXW� Graphical input from mouse
GUDJUHFW� Drag XOR rectangles with mouse
UEER[� Rubberband box

VHOHFWPRYHUHVL]H�
Interactively select, move, resize,
or copy objects

ZDLWIRUEXWWRQSUHVV�
Wait for key/buttonpress over
figure

ZDLWIRU� Block execution and wait for event
XLZDLW� Block execution and wait for resume
XLUHVXPH� Resume execution of blocked M-file
XLVWDFN� Control stacking order of objects
XLVXVSHQG� Suspend the interactive state of a figure
XLUHVWRUH� Restore the interactive state of a figure

© 2002 by CRC Press LLC

GUI design tools
JXLGH� Design GUI
LQVSHFW� Inspect object properties
DOLJQ� Align uicontrols and axes
SURSHGLW� Edit property

Dialog boxes
D[OLPGOJ� Axes limits dialog box
GLDORJ� Create dialog figure
HUURUGOJ� Error dialog box
KHOSGOJ� Help dialog box
LPDJHYLHZ� Show image in figure with zoom
LQSXWGOJ� Input dialog box
OLVWGOJ� List selection dialog box
PHQX� Generate menu of choices for user input
PRYLHYLHZ� Show movie in figure with replay button
PVJER[� Message box
SDJHGOJ� Page position dialog box
SDJHVHWXSGOJ� Page setup dialog
SULQWGOJ� Print dialog box
SULQWSUHYLHZ� Display preview of figure to be printed
TXHVWGOJ� Question dialog box

XLJHWSUHI�
Question dialog box with preference
support

VRXQGYLHZ� Show sound in figure and play
XLJHWILOH� Standard open file dialog box
XLSXWILOH� Standard save file dialog box
XLVHWFRORU� Color selection dialog box
XLVHWIRQW� Font selection dialog box

XLRSHQ�
Show open file dialog and call RSHQ on
result

XLVDYH�
Show open file dialog and call VDYH on
result

(continued on next page)

© 2002 by CRC Press LLC

Dialog boxes (continued)

XLORDG�
Show open file dialog and call ORDG on
result

XLLPSRUW�
Start the GUI for importing data (Import
Wizard)

ZDLWEDU� Display wait bar
ZDUQGOJ� Warning dialog box

Menu utilities
PDNHPHQX� Create menu structure

PHQXEDU�
Computer-dependent default setting for
MenuBar property

XPWRJJOH� Toggle checked status of XLPHQX object
ZLQPHQX� Create submenu for Window menu item

Toolbar button group utilities
EWQJURXS� Create toolbar button group
EWQUHVL]H� Resize button group
EWQVWDWH� Query state of toolbar button group

EWQSUHVV�
Button press manager for toolbar button
group

EWQGRZQ� Depress button in toolbar button group
EWQXS� Raise button in toolbar button group

Preferences
DGGSUHI� Add preference
JHWSUHI� Get preference
UPSUHI� Remove preference
VHWSUHI� Set preference
LVSUHI� Test for existence of preference

© 2002 by CRC Press LLC

Miscellaneous utilities
DOOFKLOG� Get all object children

FOLSERDUG�
Copy and paste strings to and from
system clipboard

HGWH[W� Interactive editing of axes text objects
ILQGDOO� Find all objects
ILQGILJV� Find figures positioned off screen
JHWSWU� Get figure pointer
JHWVWDWXV� Get status text string in figure
KLGHJXL� Hide/unhide GUI

OLVWIRQWV�
Get list of available system fonts in cell
array

PRYHJXL� Move GUI to specified part of screen
JXLKDQGOHV� Return a structure of handles
JXLGDWD� Store or retrieve application data
RYHUREM� Get handle of object the pointer is over
SRSXSVWU� Get popup menu selection string
UHPDSILJ� Transform figure objects’ positions
VHWSWU� Set figure pointer
VHWVWDWXV� Set status text string in figure

XLFOHDUPRGH�
Clears the currently active interactive
mode

15.18 Character strings
KHOS�VWUIXQ�

General
FKDU� Create character array (string)

GRXEOH�
Convert string to numeric character
codes

FHOOVWU�
Create cell array of strings from
character array

EODQNV� String of blanks
GHEODQN� Remove trailing blanks
HYDO� Execute string as a MATLAB expression

© 2002 by CRC Press LLC

String tests
LVFKDU� True for character array (string)
LVFHOOVWU� True for cell array of strings
LVOHWWHU� True for letters of the alphabet
LVVSDFH� True for white space characters

String operations
VWUFDW� Concatenate strings
VWUYFDW� Vertically concatenate strings
VWUFPS� Compare strings
VWUQFPS� Compare first N characters of strings
VWUFPSL� Compare strings ignoring case

VWUQFPSL�
Compare first N characters of strings
ignoring case

ILQGVWU� Find one string within another
VWUILQG� Find one string within another
VWUMXVW� Justify character array
VWUPDWFK� Find possible matches for string
VWUUHS� Replace string with another
VWUWRN� Find token in string
XSSHU� Convert string to uppercase
ORZHU� Convert string to lowercase

String to number conversion
QXP�VWU� Convert number to string
LQW�VWU� Convert integer to string
PDW�VWU� Convert matrix to HYDO’able string
VWU�GRXEOH� Convert string to double-precision value
VWU�QXP� Convert string matrix to numeric array
VSULQWI� Write formatted data to string
VVFDQI� Read string under format control

© 2002 by CRC Press LLC

Base number conversion

KH[�QXP�
Convert IEEE hexadecimal to double-
precision number

KH[�GHF�
Convert hexadecimal string to decimal
integer

GHF�KH[�
Convert decimal integer to hexadecimal
string

ELQ�GHF� Convert binary string to decimal integer
GHF�ELQ� Convert decimal integer to binary string
EDVH�GHF� Convert base B string to decimal integer
GHF�EDVH� Convert decimal integer to base B string

15.19 File input/output
KHOS�LRIXQ

File import/export functions
GOPUHDG� Read delimited text file
GOPZULWH� Write delimited text file

ORDG�
Load workspace from MATLAB (�PDW)
file

LPSRUWGDWD� Load workspace variables disk file
ZN�UHDG� Read spreadsheet (WK1) file
ZN�ZULWH� Write spreadsheet (WK1) file
[OVUHDG� Read spreadsheet (XLS) file

Image file import/export
LPILQIR� Return information about graphics file
LPUHDG� Read image from graphics file
LPZULWH� Write image to graphics file

Audio file import/export
DXUHDG� Read NeXT/SUN (.DX) sound file
DXZULWH� Write NeXT/SUN sound file
ZDYUHDG� Read Microsoft WAVE (.ZDY) sound file
ZDYZULWH� Write Microsoft WAVE sound file

© 2002 by CRC Press LLC

Video file import/export
DYLUHDG� Read movie (AVI) file
DYLLQIR� Return information about AVI file
DYLILOH� Create a new AVI file

PRYLH�DYL�
Create AVI movie from MATLAB
movie

Formatted file I/O

IJHWO�
Read line from file, discard newline
character

IJHWV� Read line from file, keep newline char.
ISULQWI� Write formatted data to file
IVFDQI� Read formatted data from file
LQSXW� Prompt for user input
WH[WUHDG� Read formatted data from text file

String conversion
VSULQWI� Write formatted data to string
VVFDQI� Read string under format control
VWUUHDG� Read formatted data from text string

File opening and closing
IRSHQ� Open file
IFORVH� Close file

Binary file I/O
IUHDG� Read binary data from file
IZULWH� Write binary data to file

File positioning
IHRI� Test for end-of-file
IHUURU� Inquire file error status
IUHZLQG� Rewind file
IVHHN� Set file position indicator
IWHOO� Get file position indicator

© 2002 by CRC Press LLC

File name handling
ILOHSDUWV� Filename parts
ILOHVHS� Directory separator for this platform
IXOOILOH� Build full filename from parts
PDWODEURRW� Root directory of MATLAB installation

PH[H[W�
MEX filename extension for this
platform

SDUWLDOSDWK� Partial pathnames
SDWKVHS� Path separator for this platform
SUHIGLU� Preference directory name
WHPSGLU� Get temporary directory
WHPSQDPH� Get temporary file

HDF library interface help
KGI� MEX-file interface to the HDF library
KGIDQ� HDF multifile annotation interface
KGIGI��� HDF raster image interface
KGIGIU�� HDF 8-bit raster image interface
KGIK� HDF H interface
KGIKG� HDF HD interface
KGIKH� HDF HE interface
KGIPO� MATLAB-HDF gateway utilities
KGIVG� HDF multifile scientific dataset interface
KGIY� HDF V (Vgroup) interface
KGIYI� HDF VF (Vdata) interface
KGIYK� HDF VH (Vdata) interface
KGIYV� HDF VS (Vdata) interface

HDF-EOS library interface help
KGIJG� HDF-EOS grid interface
KGISW� HDF-EOS point interface
KGIVZ� HDF-EOS swath interface

Serial port support
VHULDO� Construct serial port object

© 2002 by CRC Press LLC

Command window I/O
FOF� Clear Command window
GLVS� Display array
KRPH� Send cursor home
LQSXW� Prompt for user input
SDXVH� Wait for user response

FIG file support for plotedit and printframes
KJORDG� Load Handle Graphics object from a file
KJVDYH� Saves an HG object heirarchy to a file

Utilities

VWU�UQJ�
Convert spreadsheet range string to
numeric array

ZN�FRQVW� WK1 record type definitions
ZN�ZUHF� Write a WK1 record header

15.20 Time and dates
KHOS�WLPHIXQ

Current date and time
QRZ� Current date and time as date number
GDWH� Current date as date string
FORFN� Current date and time as date vector

Basic functions
GDWHQXP� Serial date number
GDWHVWU� String representation of date
GDWHYHF� Date components

Date functions
FDOHQGDU� Calendar
ZHHNGD\� Day of week
HRPGD\� End of month
GDWHWLFN� Date formatted tick labels

© 2002 by CRC Press LLC

Timing functions
FSXWLPH� CPU time in seconds
WLF� Start stopwatch timer
WRF� Stop stopwatch timer
HWLPH� Elapsed time
SDXVH� Wait in seconds

15.21 Data types and structures
KHOS�GDWDW\SHV

Data types (classes)
GRXEOH� Convert to double precision
VSDUVH� Create sparse matrix
FKDU� Create character array (string)
FHOO� Create cell array
VWUXFW� Create or convert to structure array
VLQJOH� Convert to single precision
XLQW�� Convert to unsigned 8-bit integer
XLQW��� Convert to unsigned 16-bit integer
XLQW��� Convert to unsigned 32-bit integer
LQW�� Convert to signed 8-bit integer
LQW��� Convert to signed 16-bit integer
LQW��� Convert to signed 32-bit integer
LQOLQH� Construct LQOLQH object
IXQFWLRQBKDQGOH� Function handle array
MDYD$UUD\� Construct a Java array
MDYD0HWKRG� Invoke a Java method
MDYD2EMHFW� Invoke a Java object constructor

Multidimensional array functions
FDW� Concatenate arrays
QGLPV� Number of dimensions

QGJULG�
Generate arrays for N-D functions and
interpolation

(continued on next page)

© 2002 by CRC Press LLC

Multidimensional array functions (continued)
SHUPXWH� Permute array dimensions
LSHUPXWH� Inverse permute array dimensions
VKLIWGLP� Shift dimensions
VTXHH]H� Remove singleton dimensions

Cell array functions
FHOO� Create cell array
FHOOIXQ� Functions on cell array contents
FHOOGLVS� Display cell array contents
FHOOSORW� Display graphical depiction of cell array
QXP�FHOO� Convert numeric array into cell array
GHDO� Deal inputs to outputs
FHOO�VWUXFW� Convert cell array into structure array
VWUXFW�FHOO� Convert structure array into cell array
LVFHOO� True for cell array

Structure functions
VWUXFW� Create or convert to structure array
ILHOGQDPHV� Get structure field names
JHWILHOG� Get structure field contents
VHWILHOG� Set structure field contents
UPILHOG� Remove structure field
LVILHOG� True if field is in structure array
LVVWUXFW� True for structures

Function handle functions
#� Create IXQFWLRQBKDQGOH

IXQF�VWU�
Convert IXQFWLRQBKDQGOH array into
string

VWU�IXQF�
Convert string into IXQFWLRQBKDQGOH
array

IXQFWLRQV� List functions associated with a
IXQFWLRQBKDQGOH

© 2002 by CRC Press LLC

Object-oriented programming functions
FODVV� Create object or return object class
VWUXFW� Convert object to structure array

PHWKRGV�
List names and properties of class
methods

PHWKRGVYLHZ�
View names and properties of class
methods

LVD� True if object is a given class
LVMDYD� True for Java objects
LVREMHFW� True for MATLAB objects
LQIHULRUWR� Inferior class relationship
VXSHULRUWR� Superior class relationship

VXEVWUXFW�
Create structure argument for
VXEVUHI/VXEDVJQ

Overloadable operators
PLQXV� Overloadable method for D�E
SOXV� Overloadable method for D�E
WLPHV� Overloadable method for D�
E
PWLPHV� Overloadable method for D
E
POGLYLGH� Overloadable method for D?E
PUGLYLGH� Overloadable method for D�E
UGLYLGH� Overloadable method for D��E
OGLYLGH� Overloadable method for D�?E
SRZHU� Overloadable method for D�AE
PSRZHU� Overloadable method for DAE
XPLQXV� Overloadable method for �D
XSOXV� Overloadable method for �D
KRU]FDW� Overloadable method for >D�E@
YHUWFDW� Overloadable method for >D�E@
OH� Overloadable method for D� E
OW� Overloadable method for D�E
JW� Overloadable method for D!E
JH� Overloadable method for D! E

(continued on next page)

© 2002 by CRC Press LLC

Overloadable operators (continued)
HT� Overloadable method for D E
QH� Overloadable method for Da E
QRW� Overloadable method for aD
DQG� Overloadable method for D	E
RU� Overloadable method for D_E

VXEVDVJQ�
Overloadable method for D�L� E,
D^L` E, and D�ILHOG E

VXEVUHI�
Overloadable method for D�L�, D^L`,
and D�ILHOG

FRORQ� Overloadable method for D�E
HQG� Overloadable method for D�HQG�
WUDQVSRVH� Overloadable method for D�

FWUDQVSRVH� Overloadable method for D

VXEVLQGH[� Overloadable method for [�D�
ORDGREM� Called to load object from �PDW file
VDYHREM� Called to save object to �PDW file

15.22 Version control commands
KHOS�YHUFWUO

Checkin/checkout
FKHFNLQ� checkin files to version control system
FKHFNRXW� checkout files
XQGRFKHFNRXW� undo checkout files

Specific version control
UFV� Version control actions using RCS
SYFV� Version control actions using PVCS
FOHDUFDVH� Version control actions using ClearCase
VRXUFHVDIH� Version control using Visual SourceSafe
FXVWRPYHUFWUO� Custom version control template

© 2002 by CRC Press LLC

15.23 Microsoft Windows functions
KHOS�ZLQIXQ

ActiveX client functions
DFW[FRQWURO� Create an ActiveX control
DFW[VHUYHU� Create an ActiveX server
ZLQIXQ?DFWLYH[� ActiveX class

ActiveX demos
PZVDPS� Sample ActiveX control creation
VDPSHY� Sample event handler for ActiveX server

DDE client functions
GGHDGY� Set up advisory link
GGHH[HF� Send string for execution
GGHLQLW� Initiate DDE conversation
GGHSRNH� Send data to application
GGHUHT� Request data from application
GGHWHUP� Terminate DDE conversation
GGHXQDGY� Release advisory link

15.24 Demos
Type KHOS GHPRV to see the list of MATLAB demos.
Section 15.26 lists the Symbolic Math Toolbox demos.

15.25 Preferences
KHOS�ORFDO

Saved preferences files
VWDUWXS� User startup M-file
ILQLVK� User finish M-file
PDWODEUF� Master startup M-file
SDWKGHI� Search path defaults
GRFRSW� Web browser defaults
SULQWRSW� Printer defaults

© 2002 by CRC Press LLC

Preference commands
FHGLW� Set command line editor keys
WHUPLQDO� Set graphics terminal type

Configuration information
KRVWLG� MATLAB server host ID number
OLFHQVH� License number
YHUVLRQ� MATLAB version number

15.26 Symbolic Math Toolbox
KHOS�V\PEROLF

Calculus
GLII� Differentiate
LQW� Integrate
OLPLW� Limit
WD\ORU� Taylor series
MDFRELDQ� Jacobian matrix
V\PVXP� Summation of series

Linear algebra
GLDJ� Create or extract diagonals
WULX� Upper triangle
WULO� Lower triangle
LQY� Matrix inverse
GHW� Determinant
UDQN� Rank
UUHI� Reduced row echelon form
QXOO� Basis for null space
FROVSDFH� Basis for column space
HLJ� Eigenvalues and eigenvectors
VYG� Singular values and singular vectors
MRUGDQ� Jordan canonical (normal) form
SRO\� Characteristic polynomial
H[SP� Matrix exponential

© 2002 by CRC Press LLC

Simplification
VLPSOLI\� Simplify
H[SDQG� Expand
IDFWRU� Factor
FROOHFW� Collect
VLPSOH� Search for shortest form
QXPGHQ� Numerator and denominator
KRUQHU� Nested polynomial representation
VXEH[SU� Rewrite in terms of subexpressions
VXEV� Symbolic substitution

Solution of equations
VROYH� Symbolic solution of algebraic equations

GVROYH�
Symbolic solution of differential
equations

ILQYHUVH� Functional inverse
FRPSRVH� Functional composition

Variable precision arithmetic
YSD� Variable precision arithmetic
GLJLWV� Set variable precision accuracy

Integral transforms
IRXULHU� Fourier transform
ODSODFH� Laplace transform
]WUDQV� Z transform
LIRXULHU� Inverse Fourier transform
LODSODFH� Inverse Laplace transform
L]WUDQV� Inverse Z transform

© 2002 by CRC Press LLC

Conversions
GRXEOH� Convert symbolic matrix to double

SRO\�V\P�
Coefficient vector to symbolic
polynomial

V\P�SRO\�
Symbolic polynomial to coefficient
vector

FKDU� Convert sym object to string

Basic operations
V\P� Create symbolic object

V\PV�
Shortcut for constructing symbolic
objects

ILQGV\P� Determine symbolic variables
SUHWW\� Pretty print a symbolic expression

ODWH[�
LaTeX representation of a symbolic
expression

FFRGH�
C code representation of a symbolic
expression

IRUWUDQ�
FORTRAN representation of a symbolic
expression

Special functions
VLQLQW� Sine integral
FRVLQW� Cosine integral
]HWD� Riemann zeta function
ODPEHUWZ� Lambert W function

String handling utilities

LVYDUQDPH�
Check for a valid variable name
(MATLAB toolbox)

YHFWRUL]H� Vectorize a symbolic expression

© 2002 by CRC Press LLC

Pedagogical and graphical applications
UVXPV� Riemann sums
H]FRQWRXU� Easy-to-use contour plotter
H]FRQWRXUI� Easy-to-use filled contour plotter
H]PHVK� Easy-to-use mesh (surface) plotter
H]PHVKF� Easy-to-use mesh/contour plotter

H]SORW�
Easy-to-use function implicit and
parametric curve plotter

H]SORW�� Easy-to-use spatial curve plotter
H]SRODU� Easy-to-use polar coordinates plotter
H]VXUI� Easy-to-use surface plotter
H]VXUIF� Easy-to-use surface/contour plotter
IXQWRRO� Function calculator
WD\ORUWRRO� Taylor series calculator

Demonstrations

V\PLQWUR�
Introduction to the Symbolic Math
Toolbox

V\PFDOFGHPR� Calculus demonstration
V\POLQGHPR� Demonstrate symbolic linear algebra

V\PYSDGHPR�
Demonstrate variable precision
arithmetic

V\PURWGHPR� Study plane rotations
V\PHTQGHPR� Demonstrate symbolic equation solving

Access to Maple (not in Student Version)
PDSOH� Access Maple kernel
PIXQ� Numeric evaluation of Maple functions
PIXQOLVW� List of functions for MFUN
PKHOS� Maple help
SURFUHDG� Install a Maple procedure

© 2002 by CRC Press LLC

16. Additional Resources
The MathWorks, Inc., and others provide a wide range of
products that extend MATLAB’s capabilities. Some are
collections of M-files called toolboxes. One of these has
already been introduced (the Symbolic Math Toolbox).
Also available is Simulink, an interactive graphical
system for modeling and simulating dynamic nonlinear
systems. The YHU command lists the toolboxes and
Simulink components included in your installation.
These can be explored via the command KHOS or from the
Launch Pad window. Similar to MATLAB toolboxes,
Simulink has domain-specific add-ons called blocksets.

16.1 MATLAB
MATLAB Compiler (convert M-files to C/C++)
MATLAB C/C++ Math Library
MATLAB C/C++ Graphics Library
MATLAB Report Generator
MATLAB Runtime Server
MATLAB Web Server

16.2 MATLAB toolboxes
Math and Analysis Toolboxes:
Optimization
Statistics
Neural Network
Symbolic/Extended Symbolic Math
Partial Differential Equation
Mapping (geographic information)
Spline

Data Acquisition and Import Toolboxes:
Data Acquisition

© 2002 by CRC Press LLC

Instrument Control
Database
Excel Link

Signal & Image Processing Toolboxes:
Signal Processing
Image Processing
Communications
System Identification
Wavelet
Filter Design
Motorola DSP Developer’s Kit
Developer’s Kit for Texas Instruments DSP

Control Design Toolboxes:
Control System
Fuzzy Logic
Robust Control
µ-Analysis and Synthesis
LMI (linear matrix inequality) Control
Model Predictive Control

Finance and Economics Toolboxes:
Financial
Financial Time Series
GARCH (volatility analysis)
Financial Derivatives
Datafeed (connect to financial data providers)

16.3 Simulink
Simulink Performance Tools
Stateflow
Stateflow Coder
Real-Time Windows Target

© 2002 by CRC Press LLC

Real-Time Workshop
Real-Time Workshop Embedded Coder
Real-Time Workshop Ada Coder
xPC Target
xPC Target Embedded Option
Simulink Report Generator
Requirements Management Interface

16.4 Simulink blocksets
CDMA Reference (mobile phone simulation)
Communications
Dials & Gauges
DSP (Digital Signal Processing)
Fixed-Point
Nonlinear Control Design
Power System

© 2002 by CRC Press LLC

	c2948_pdf_toc.pdf
	c2948_pdf_toc.pdf
	MATLAB® Primer Sixth Edition
	Preface
	Introduction
	Table of Contents

	C2948_PDF_SEC.pdf
	MATLAB® Primer Sixth Edition
	Table of Contents
	1. Accessing MATLAB
	2. The MATLAB Desktop
	2.1 Help window
	2.2 Launch Pad window
	2.3 Command window
	2.4 Workspace window
	2.5 Command History window
	2.6 Array Editor window
	2.7 Current Directory window
	2.8 MATLAB’s path

	3. Matrices and Matrix Operations
	3.1 Referencing individual entries
	3.2 Matrix operators
	3.3 Matrix division
	3.4 Entry-wise operators
	3.5 Relational operators
	3.6 Complex numbers
	3.7 Strings
	3.8 Other data types

	4. Submatrices and Colon Notation
	4.1 Generating vectors
	4.2 Accessing submatrices

	5. MATLAB Functions
	5.1 Constructing matrices
	5.2 Scalar functions
	5.3 Vector functions
	5.4 Matrix functions
	5.5 The find function

	6. Control Flow Statements
	6.1 The for loop
	6.2 The while loop
	6.3 The if statement
	6.4 The switch statement
	6.5 The try/catch statement
	6.6 Matrix expressions (if and while)
	6.7 Infinite loops

	7. M-files
	7.1 M-file Editor/Debugger window
	7.2 Script files
	7.3 Function files
	7.4 Multiple inputs and outputs
	7.5 Variable arguments
	7.6 Comments and documentation
	7.7 Entering large matrices

	8. Advanced M-file features
	8.1 Function references
	8.2 Name resolution
	8.3 Error messages
	8.4 User input
	8.5 Efficient code
	8.6 Performance measures
	8.7 Profile

	9. Calling C from MATLAB
	9.1 A simple example
	9.2 C versus MATLAB arrays
	9.3 A matrix computation in C
	9.4 MATLAB mx and mex routines
	9.5 Online help for MEX routines
	9.6 Larger examples on the web

	10. Two-Dimensional Graphics
	10.1 Planar plots
	10.2 Multiple figures
	10.3 Graph of a function
	10.4 Parametrically defined curves
	10.5 Titles, labels, text in a graph
	10.6 Control of axes and scaling
	10.7 Multiple plots
	10.8 Line types, marker types, colors
	10.9 Subplots and specialized plots
	10.10 Graphics hard copy

	11. Three-Dimensional Graphics
	11.1 Curve plots
	11.2 Mesh and surface plots
	11.3 Color shading and color profile
	11.4 Perspective of view
	11.5 Parametrically defined surfaces

	12. Advanced Graphics
	12.1 Handle Graphics
	12.2 Graphical user interface

	13. Sparse Matrix Computations
	13.1 Storage modes
	13.2 Generating sparse matrices
	13.3 Computation with sparse matrices
	13.4 Ordering methods
	13.5 Visualizing matrices

	14. The Symbolic Math Toolbox
	14.1 Symbolic variables
	14.2 Calculus
	14.3 Variable precision arithmetic
	14.4 Numeric evaluation
	14.5 Algebraic simplification
	14.6 Graphs of functions
	14.7 Symbolic matrix operations
	14.8 Symbolic linear algebraic functions
	14.9 Solving algebraic equations
	14.10 Solving differential equations
	14.11 Further Maple access

	15. Help topics
	15.1 General
	15.2 Operators and special characters
	15.3 Programming language constructs
	15.4 Elementary matrices and matrix manipulation
	15.5 Elementary math functions
	15.6 Specialized math functions
	15.7 Matrix functions — numerical linear algebra
	15.8 Data analysis and Fourier transforms
	15.9 Audio support
	15.10 Interpolation and polynomials
	15.11 Function functions and ODE solvers
	15.12 Sparse matrices
	15.13 Two-dimensional graphs
	15.14 Three-dimensional graphs
	15.15 Specialized graphs
	15.16 Handle Graphics
	15.17 Graphical user interface tools
	15.18 Character strings
	15.19 File input/output
	15.20 Time and dates
	15.21 Data types and structures
	15.22 Version control commands
	15.23 Microsoft Windows functions
	15.24 Demos
	15.25 Preferences
	15.26 Symbolic Math Toolbox

	16. Additional Resources
	16.1 MATLAB
	16.2 MATLAB toolboxes
	16.3 Simulink
	16.4 Simulink blocksets

