

MATLAB
Primer

Sixth Edition

Kermit Sigmon
Timothy A. Davis

CHAPMAN & HALL/CRC

A CRC Press Company
Boca Raton London New York Washington, D.C.

The front cover shows a smooth free-form surface consisting of trimmed bicubic splines.
The back cover shows a Bezier patch with its control polyhedron. The figures are courtesy
of Jorg Peters and David Lutterkort, CISE Department, University of Florida. MATLAB
code to generate the figures can be obtained from http://www.cise.ufl.edu/research/SurfLab.

MATLAB, Simulink, and Handle Graphics are registered trademarks of The MathWorks, Inc.

Library of Congress Cataloging-in-Publication Data

Sigmon, Kermit.
MATLAB primer. — 6th ed. / Kermit Sigmon, Timothy A. Davis.
p. cm.
Rev. ed. of: MATLAB primer. 5th ed. / [MathWorks, Inc.] . c1998.
Includes bibliographical references and index.
ISBN 1-58488-294-8 (alk. paper)
1. MATLAB. 2. Numerical analysis—Data processing. I. Davis,
Timothy A. II. MATLAB primer. III. Title.
QA297 .S4787 2001
519.4°0285’53042—dc21 2001047392

This book contains information obtained from authentic and highly regarded sources.
Reprinted material is quoted with permission, and sources are indicated. A wide variety
of references are listed. Reasonable efforts have been made to publish reliable data and
information, but the author and the publisher cannot assume responsibility for the validity
of all materials or for the consequences of their use.

Neither this book nor any part may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, microfilming, and recording, or by any
information storage or retrieval system, without prior permission in writing from the publisher.

The consent of CRC Press LLC does not extend to copying for general distribution, for
promotion, for creating new works, or for resale. Specific permission must be obtained in
writing from CRC Press LLC for such copying.

Direct all inquiries to CRC Press LLC, 2000 N.W. Corporate Blvd., Boca Raton, Florida 33431.

Trademark Notice: Product or corporate names may be trademarks or registered trade-
marks, and are used only for identification and explanation, without intent to infringe.

Visit the CRC Press Web site at www.crcpress.com

© 2002 by CRC Press LLC

No claim to original U.S. Government works
International Standard Book Number 1-58488-294-8
Library of Congress Card Number 2001047392
Printed in the United States of America 1 2 3 4 56 7 8 9 0
Printed on acid-free paper

http://www.crcpress.com
http://www.cise.ufl.edu/research/

Preface

Kermit Sigmon, author of the MATLAB Primer, passed
away in January 1997. Kermit was afriend, colleague,
and fellow avid bicyclist (although I'm a mere 10-mile-a-
day commuter) with whom | shared an appreciation for
the contribution that MATLAB has made to the
mathematics, engineering, and scientific community.
MATLAB isapowerful tool, and my hopeisthat in
revising Kermit's book for MATLAB 6.1, you will be
ableto learn how to apply it to solving your own
challenging problems in mathematics, science, and
engineering.

A team at The MathWorks, Inc., revised the Fifth Edition.
The current edition has undergone five major changes
since the Fifth Edition, in addition to many smaller
refinements. Only one of the five major changes was
motivated by the release of MATLAB 6.1:

1. Lifeistoo short to spend writing DO loops.* Over-
using loopsin MATLAB isacommon mistake that
new users make. To take full advantage of
MATLAB's power, the emphasis on matrix operations
has been strengthened, and the presentation of loops
now appears after submatrices, colon notation, and
matrix functions. A new section on the f1ind function
has been added. Many computations that would
require nested loops with i f statementsin C,
FORTRAN, or Java can be written as single loop-free

1 John Little, co-founder of The Mathworks, Inc.

© 2002 by CRC Press LLC

MATLAB statements with find. Avoiding loops
makes your code faster and often easier to read.

. Inthe Fifth Edition, the reader was often asked to
come up with an appropriate matrix with which to try
the examples. All examples are now fully described.

. MATLAB 6.1 has anew and extensive graphical user
interface, the MATLAB Desktop Environment.?
Chapter 2, new to this edition, gives you an overview

of all but two of MATLAB’s primary windows (the
other two are discussed later). Managing filesand
directories, starting MATLAB demos, getting help,
command editing, debugging, and the like are
explained in the new graphical user interface. This
book was written for Release R12.1 (MATLAB
Version 6.1 and the Symbolic Math Toolbox Version
2.1.2).

4. A new chapter on how to call a C routine from
MATLAB has been added.

5. Sparse matrix ordering and visualization has been
added to Chapter 13. Large matricesthat arisein
practical applications often have many zero entries.
Taking advantage of sparsity allows you to solve
problemsin MATLAB that would otherwise be
intractable.

| would like to thank Bob Stern, executive editor in
Mathematics and Engineering at CRC Press, for giving

2 Note that the Desktop Environment in Release R12.1 is not
supported on HP and IBM Unix platforms.

© 2002 by CRC Press LLC

me the opportunity to contribute to Kermit Sigmon’s

work. | would also like to thank Jorg Peters and David
Lutterkort for providing the cover art. | would like to
thank Naomi Fernandes, Madeline Leigh, Pei Li Li, Cleve
Moler, Jim Tung, and Dave Wilson for their helpful
comments on a draft of this book. Finally, | would like to
thank The MathWorks, Inc., for providing software and
technical support that assisted in the writing of this book.

Tim Davis

Associate Professor, Department of Computer and
Information Science and Engineering

University of Florida

http://www.cise ufl.edu/reseach/arse

© 2002 by CRC Press LLC

http://www.cise.ufl.edu/research/sparse

Introduction

MATLAB, developed by The MathWorks, Inc., integrates
computation, visualization, and programming in a
flexible, open environment. It offers engineers, scientists,
and mathematicians an intuitive language for expressing
problems and their solutions mathematically and
graphically. Complex numeric and symbolic problems
can be solved in afraction of the time required with a
programming language such as C, FORTRAN, or Java.

How to use thisbook: The purpose of this Primer isto
help you begin to use MATLAB. Itisnot intended to be
asubstitute for the online help facility or the MATLAB
documentation (such as Getting Sarted with MATLAB
and Using MATLAB, available in printed form and
onling). The Primer can best be used hands-on. You are
encouraged to work at the computer as you read the
Primer and freely experiment with the examples. This
Primer, along with the online help facility, usually
suffices for studentsin a class requiring the use of
MATLAB.

Start with the examples at the beginning of each chapter.
In thisway, you will create all of the matrices and M-files
used in the examples (with one exception: an M-file you
writein Chapter 7 isused in later chapters).

Larger examples (M-files and MEX-files) are on the web
at http://www.cise.ufl.edu/research/sparseeMATLAB and
http://www.crcpress.com.

Pull-down menu selections are described using the
following style. Selecting the view menu, and then the

© 2002 by CRC Press LLC

http://www.crcpress.com
http://www.cise.ufl.edu/research/sparse/MATLAB

Desktop Layout submenu, and then the SimpTe menu
itemiswritten asview » Desktop Layout » SimpTe.

Y ou should liberally use the online help facility for more
detailed information. Selecting Help » MATLAB Help
brings up the Help window. You can alsotype helpin
the Command window. See Sections 2.1 or 15.1 for more
information.

How to obtain MATLAB: Version 6.1 of MATLAB is
available for Unix (Sun, HP, Compaqg Alpha, IBM,
Silicon Graphics, and Linux), and Microsoft Windows.
MATLAB 5isalso available for the Apple Macintosh. A
Student Version of MATLAB is available from The
MathWorks, Inc., for Microsoft Windows and Linux; it
includes MATLAB, Simulink, and key functions of the
Symbolic Math Toolbox. Everything discussed in this
book can be done in the Student Version of MATLAB,
with the exception of advanced features of the Symbolic
Math Toolbox discussed in Section 14.11. The Student
Edition of MATLAB Version 5, from Prentice-Hall, was
limited in the size of the matricesit could operate on.
These restrictions have been removed in the Student
Version of MATLAB Versions6 and 6.1. For more
information on MATLAB, contact:

The MathWorks, Inc.

3 Apple Hill Drive

Natick, MA, 01760-2098 USA
Phone: 508-647-7000

Fax: 508-647-7101

Email: info@mathworks.com
Web: http://www.mathworks.com

© 2002 by CRC Press LLC

http://www.mathworks.com

Table of Contents

1. Accessing MATLAB
2. The MATLAB Desktop
2.1 Help window
2.2 Launch Pad window
2.3 Command window
2.4 Workspace window
2.5 Command History window
2.6 Array Editor window
2.7 Current Directory window
2.8 MATLAB’s path
3. Matrices and Matrix Operations
3.1 Referencing individua entries
3.2 Matrix operators
3.3 Matrix division
3.4 Entry-wise operators
3.5 Relational operators
3.6 Complex numbers
3.7 Strings
3.8 Other datatypes
4. Submatrices and Colon Notation
4.1 Generating vectors
4.2 Accessing submatrices
5. MATLAB Functions
5.1 Constructing matrices
5.2 Scalar functions
5.3 Vector functions
5.4 Matrix functions
5.5 Thefind function
6. Control Flow Statements
6.1 Thefor loop

© 2002 by CRC Press LLC

6.2 Thewhile loop
6.3 Theif statement
6.4 The switch statement
6.5 Thetry/catch statement
6.6 Matrix expressions (if and while)
6.7 Infinite loops
. M-files
7.1 M-file Editor/Debugger window
7.2 Script files
7.3 Function files
7.4 Multiple inputs and outputs
7.5 Variable arguments
7.6 Comments and documentation
7.7 Entering large matrices
. Advanced M-file features
8.1 Function references
8.2 Name resolution
8.3 Error messages
8.4 User input
8.5 Efficient code
8.6 Performance measures
8.7 Profile
. Calling C from MATLAB
9.1 A simple example
9.2 CversusMATLAB arrays
9.3 A matrix computation in C
9.4 MATLAB mx and mex routines
9.5 Online help for MEX routines
9.6 Larger examples on the web

10. Two-Dimensional Graphics

10.1 Planar plots

10.2 Multiplefigures

10.3 Graph of afunction

10.4 Parametrically defined curves

© 2002 by CRC Press LLC

10.5 Titles, labels, text in agraph
10.6 Control of axes and scaling
10.7 Multiple plots
10.8 Line types, marker types, colors
10.9 Subplots and specialized plots
10.10 Graphics hard copy
11. Three-Dimensional Graphics
11.1 Curveplots
11.2 Mesh and surface plots
11.3 Color shading and color profile
11.4 Perspective of view
11.5 Parametrically defined surfaces
12. Advanced Graphics
12.1 Handle Graphics
12.2 Graphical user interface
13. Sparse Matrix Computations
13.1 Storage modes
13.2 Generating sparse matrices
13.3 Computation with sparse matrices
13.4 Ordering methods
13.5 Visualizing matrices
14. The Symbolic Math Toolbox
14.1 Symbolic variables
14.2 Calculus
14.3 Variable precision arithmetic
14.4 Numeric evaluation
14.5 Algebraic simplification
14.6 Graphs of functions
14.7 Symbolic matrix operations
14.8 Symboalic linear algebraic functions
14.9 Solving algebraic equations
14.10 Solving differential equations
14.11 Further Maple access

© 2002 by CRC Press LLC

15. Help topics
15.1 Generd
15.2 Operators and special characters
15.3 Programming language constructs
15.4 Elementary matrices and matrix manipulation
15.5 Elementary math functions
15.6 Specialized math functions
15.7 Matrix functions— numerical Inear agebra
15.8 Data analysis and Faurier transforms
15.9 Audio suppott
15.10 Interpolatian and polynomials
15.11 Function functions and ODE solvers
15.12 Spase matrices
15.13 Two-dimensional graphs
15.14 Threedimensional graphs
15.15 Specializedyraphs
15.16 Handle Graghics
15.17 Graphical user interface took
15.18 Characterstrings
15.19 File input/output
15.20 Timeand dates
15.21 Data ypesand structures
15.2 Version control commands
15.23 Microsoft Windows functions
15.24 Demos
15.5 Prderences
15.26 Symbolic Math Toolbox
16. Additional Resources
16.1 MATLAB
16.2 MATLAB toolbaxes
16.3 Simulink
16.4 Simulink blocksets

© 2002 by CRC Press LLC

1. Accessing MATLAB

On Unix systems you can enter MATLAB with the
system command mat1ab and exit MATLAB with the
MATLAB command quit or exit. InMicrosoft
Windows, the Apple Macintosh, and in some Unix
window systems, just double-click on the MATLAB icon:

A

MATLAE E.1
2. The MATLAB Desktop

MATLAB has an extensive graphical user interface.
When MATLAB starts, the MATLAB window will
appear, with several subwindows and menu bars.

All of MATLAB'’s windows are docked, which means
that they aretiled on the main MATLAB window. You
can undock awindow by clicking its undock button:

[=]

Dock it with view» Dock. Close awindow by clicking
its close button:

Reshape the window tiling by clicking on and dragging
the window edges.

The menu bar at the top of the MATLAB window
contains a set of buttons and pull-down menus for

© 2002 by CRC Press LLC

working with M-files, windows, preferences and other
settings, web resources for MATLAB, and online
MATLAB help. For example, if you prefer asimpler font
than the default one, select File » Preferences, click
on F-General and then Font & Colors. Select
Lucida console (onaPC) or DialogInput (on Unix)
in place of the default Monospaced font, and click oK.

2.1 Help window

Thiswindow is the most useful window for beginning
MATLAB users. Select Help » MATLAB Help. The
Help window has most of the features you would seein
any web browser (clickable links, a back button, and a
search engine, for example). The Help Navigator on the
left shows where you are in the MATLAB online
documentation. I'll refer to the online Help sections as
Help: MATLAB: Getting Started: Introduction,
for example. Click onMATLAB in the Help Navigator,
and you'll seethe MATLAB Roadmap (or He'lp: MATLAB
for short). Printable versions of the documentation are
also available (see Help: MATLAB: Printable
Documentation (PDF)).

Y ou can also use the help command, typed in the
Command window. For example, the command help
eig will giveinformation about the eigenvalue function
eig. Seethelist of functionsin the last section of this
Primer for a brief summary of help for afunction. You
can also preview some of the features of MATLAB by
first entering the command demo or by selecting Help »
Demos, and then selecting from the options offered.

© 2002 by CRC Press LLC

2.2 Launch Pad window

This allows you to start up demos and other windows not
present when you start MATLAB. Try Launch Pad:
MATLAB: Demos and run one of the demos from the
MATLAB Demo window.

2.3 Command window

MATLAB expressions and statements are evaluated as
you type them in the Command window, and results of
the computation are displayed there too. Expressions and
statements are also used in M-files (more on thisin
Chapter 7). They are usualy of the form:

variable = expression
or smply:
expression

Expressions are usually composed from operators,
functions, and variable names. Evaluation of the
expression produces a matrix (or other data type), which
is then displayed on the screen or assigned to avariable
for future use. If the variable name and = sign are
omitted, avariable ans (for answer) is automatically
created to which the result is assigned.

A statement is normally terminated with the carriage
return. However, a statement can be continued to the next
line with three periods (. . .) followed by a carriage
return. On the other hand, several statements can be
placed on asingle line separated by commas or
semicolons. If the last character of a statement isa
semicolon, display of the result is suppressed, but the

© 2002 by CRC Press LLC

assignment is carried out. Thisis essentia in suppressing
unwanted display of intermediate results.

Click on the Workspace tab to bring up the Workspace
window (it starts out underneath the Launch Pad window)
so you can see alist of the variables you create, and type
this command in the Command window:

A=[123;456; -1709]
or thisone:

A=l

123

56
-17 9]

N

in the Command window. Either one creates the obvious
3-by-3 matrix and assignsit to avariable A. Tryit. You
will see the array A in your Workspace window.
MATLAB is case-sensitive in the names of commands,
functions, and variables, so A and a are two different
variables. A comma or blank separates the elements
within arow of a matrix (sometimes acommais
necessary to split the expressions, because a blank can be
ambiguous). A semicolon endsarow. When listing a
number in exponential form (e.g., 2. 34e-9), blank
spaces must be avoided. Matrices can also be constructed
from other matrices. If A isthe 3-by-3 matrix shown
above, then:

Cc = [A, A" ; [12 13 14], (zeros (1,3))]

creates a4-by-6 matrix. Try it to seewhat Cis. The
quote mark in A" means the transpose of A. Be sureto
use the correct single quote mark (just to the | eft of the

© 2002 by CRC Press LLC

enter or return key on most keyboards). Parentheses are
needed around expressionsif they would otherwise be
ambiguous. If you leave out the parentheses around
(zeros(1,3)), you will get an error message. The
zeros function is described in Section 5.1.

When you typed the last two commands, the matrices A
and ¢ were created and displayed in the Workspace
window.

Y ou can save the Command window dialog with the
diary command:

diary f7lename

This causes what appears subsequently on the screen
(except graphics) to be written to the named file (if the
f7lename isomitted, it is written to a default file named
diary) until you type the command diary off; the
command diary on causes writing to the file to resume.
When finished, you can edit the file as desired and print it
out. For hard copy of graphics, see Section 10.10.

The command linein MATLAB can be easily edited in
the Command window. The cursor can be positioned
with the left and right arrows and the Backspace (or
Delete) key used to delete the character to the left of the
cursor. Typehelp cedit to see more command-line
editing features.

A convenient feature is use of the up and down arrows to
scroll through the stack of previous commands. Y ou can,
therefore, recall a previous command line, edit it, and
execute therevised line. Try this by first modifying the
matrix A by adding one to each of its elements:

© 2002 by CRC Press LLC

A=A+1

Y ou can change C to reflect this change in A by retyping

the lengthy command C = ... above, but it is easier to hit
the up arrow key until you see the command you want,
and then hit enter.

You can clear the Command window with thic
command or witltedit » Clear Command window.

Although all numeric computations in MATLAB are
performed with about 16 decimal digits of precision, the
format of the displayed output can be controlled by the
following commands:

format short fixed point, 5 digits

format long fixed point, 15 digits

format short e scientific notation, 5 digits
format long e scientific notation, 15 digits
format short g fixed or floating-point, 5 digits
format long g fixed or floating-point, 15 digits

format hex hexadecimal format

format + +, -, and blank

format bank dollars and cents

format rat approximate ratio of small
integers

format short is the default. Once invoked, the chosen
format remains in effect until changed. These commands
only modify the display, not the precision of the number.

The commandormat compact suppresses most blank

lines, allowing more information to be placed on the
screen or page. The commafwimat Toose returns to

© 2002 by CRC Press LLC

the non-compact format. These two commands are
independent of the other format commands.

Y ou can pause the output in the Command window with
themore on command. Type more off to turn this
feature off.

2.4 Workspace window

Thislists variables that you have either entered or
computed in your MATLAB session.

There are many fundamental data types (or classes) in
MATLAB, each one a multidimensional array. The
classes that we will concern ourselves with most are
rectangular numerical arrays with possibly complex
entries, and possibly sparse. An array of thistypeis

called amatrix. A matrix with only one row or one
columnis called a vector (row vectors and column

vectors behave differently; they are more than mere one-
dimensiona arrays). A 1-by—1 matrix is called a scalar.

Arrays can be introduced into MATLAB in several
different ways. They can be entered as an explicit list of
elements (as you did for matry, generated by
statements and functions (as you did for mat}ix

created in a file with your favorite text editor, or loaded
from external data files or applications (sedp:

MATLAB: Getting Started: Manipulating

Matrices). You can also write your own functions (M-
files, or mexFunctions in C, FORTRAN, or Java) that
create and operate on matrices. All the matrices and other
variables that you create, except those internal to M-files
(see Chapter 7), are shown in your Workspace window.

© 2002 by CRC Press LLC

The command who (or whos) lists the variables currently
in the workspace. Try typing whos; you should see alist
of variablesincluding A and C, with their typeand size. A
variable or function can be cleared from the workspace
with the command clear variablename or by right-
clicking the variable in the Workspace editor and
selecting Delete Selection. Thecommand clear
alone clears all non-permanent variables.

When you log out or exit MATLAB, all variables are lost.
However, invoking the command save before exiting
causes al variables to be written to a machine-readable
file named matTlab.mat. When you later reenter
MATLAB, the command Toad will restore the
workspace to its former state. Commands save and
Toad take file names and variable names as optional
arguments (type help save and help Toad). Try typing
the commands save, clear, and then Toad, and watch
what happens after each command.

2.5 Command History window

This window lists the commands typed in so far. You can
re-execute a command from this window by double-
clicking or dragging the command into the Command
window. Try double-clicking on the command:

A=A+1

shown in your Command History window. For more
options, right-click on aline of the Command window.

2.6 Array Editor window

Once an array exists, it can be modified with the Array
Editor, which acts like a spreadsheet for matrices. Go to

© 2002 by CRC Press LLC

the Workspace window and double-click on the matrix C.
Click on an entry in € and change it, and try changing the
size of C. Go back to the Command window and type:

C

and you will see your new array C. You can also edit the
matrix C by typing the command openvar('c').

2.7 Current Directory window

Y our current directory is where MATLAB looks for your
M-files (see Chapter 10), and for workspace (.mat) files
that you Toad and save. You can aso load and save
matrices as ASCII files and edit them with your favorite
text editor. The file should consist of arectangular array
of just the numeric matrix entries. Use atext editor to
create afilein your current directory called
mymatrix.txt that contains these 2 lines:

22 67
12 33

Type the command Toad mymatrix.txt, and thefile
will be loaded from the current directory to the variable
mymatrix. Thefile extension (.txt in thisexample)
can be anything except .mat. Large matrices may also
be entered with an M-file (see Section 7.7).

Y ou can use the menus and buttons in the Current
Directory window to peruse your files, or you can use
commands typed in the Command window. The
command pwd returns the name of the current directory,
and cd will change the current directory. The command
dir liststhe contents of the working directory, whereas
the command what lists only the MATLAB-specific files

© 2002 by CRC Press LLC

in the directory, grouped by file type. The MATLAB
commands delete and type can be used to delete afile
and display an M-file in the Command window,
respectively.

2.8 MATLAB's path

M-files must be in a directory accessibleto MATLAB.
M-filesin the current directory are always accessible.

The current list of directories in MATLAB's search path
is obtained by the commampdth. This command can
also be used to add or delete directories from the search
path. Seéelp path. The commandhich locates
functions and files on the path. For example, tyipech
hiTb. You can modify your MATLAB path with the
commandpath, orpathtool, which brings up another
window. You can also seleef 1e » Set Path.

3. Matrices and Matrix Operations

You have now seen most of MATLAB's windows and
what they can do. Now take a look at how you can use
MATLAB to work on matrices and other data types.

3.1 Referencing individual entries

Individual matrix and vector entries can be referenced
with indices inside parentheses. For examp{@,, 3)
denotes the entry in the second row, third column of
matrixA. Try:

A=[123;456; -179]
A (2,3)

Next, create a column vectox, with:

x =[3 2 1]

© 2002 by CRC Press LLC

or equivalently:
X =[3; 2 ; 1]

With this vector, x (3) denotes the third coordinate of
vector x, with avalue of 1. Higher dimensional arrays
aresimilarly indexed. A matrix or avector accepts only
positive integers as indices.

A two-dimensional array can beindexed asif it were a

one-dimensional vector. If Aism-by-n,thenA(i,j) is
thesameasA(i+(j-1)*m). Thisfeatureis most often
used with the f1ind function (see Section 5.5).

3.2 Matrix operators

The following matrix operators are available in
MATLAB:

+ addition
subtraction or negation
* multiplication
A power
' transpose (real) or conjugate transpose (complex)
. " transpose (real or complex)
\ leftdivision
/ right division

These matrix operators apply, of course, to scalars
(1-by-1 matrices) aswell. If the sizes of the matrices are
incompatible for the matrix operation, an error message
will result, except in the case of scalar-matrix operations
(for addition, subtraction, division, and multiplication, in
which case each entry of the matrix is operated on by the
scalar, asin A=A+1). Also try the commands:

© 2002 by CRC Press LLC

AA2
A*X

If x and y are both column vectors, then x' *y istheir
inner (or dot) product, and x*y"' istheir outer (or cross)
product. Try these commands:

y = [12 3]'
va‘:¥
X'u’y
3.3 Matrix division

The matrix division operations deserve special comment.
If Aisaninvertible square matrix and b is a compatible
column vector, or respectively a compatible row vector,
then x=A\b isthe solution of A*x=b, and x=b/A isthe
solution of x*A=b. If A issquare and non-singular, then
A\b and b/A are mathematically the same as inv (A)*b
and b*inv (A), respectively, where inv (A) computes
theinverse of A. Theleft and right division operators are
more accurate and efficient. Inleft division, if Ais
sguare, then it is factored using Gaussian elimination, and
these factors are used to solve A*x=b. If A isnot square,
the under- or over-determined system is solved in the
least squares sense. Right division is defined in terms of
left divisonby b/A= (A'"\b')"'. Trythis

A=1[12; 3 4]
b = [4 10]"'
X = A\b

The solution to A*x=b is the column vector x=[2 ; 1].

3.4 Entry-wise operators

Matrix addition and subtraction aready operate
entry-wise, but the other matrix operations do not. These

© 2002 by CRC Press LLC

other operators (*, A, \, and /) can be made to operate
entry-wise by preceding them by a period. For example,
either:

[1234] .= [12 3 4]
or:
[1234] .A2

will yield [1 4 9 16]. Tryit. Thisisparticularly
useful when using MATLAB graphics.

Also compare AA2 with A.A2.

3.5 Relational operators
The relational operatorsin MATLAB are:

< lessthan

> greater than

<= |ess than or equal
>= greater than or equal
== equal

~= not equal

They al operate entry-wise. Notethat =isusedinan
assignment statement whereas == is arelational operator.
Relational operators may be connected by logical
operators:

& and
| or
~ not

© 2002 by CRC Press LLC

When applied to scalars, theresult is 1 or 0 depending on
whether the expression istrue or false. Try entering 3 <
5, 3> 5, 3==5,and 3 ==3. When applied to matrices
of the same size, the result is a matrix of ones and zeros
giving the value of the expression between corresponding
entries. Y ou can also compare elements of a matrix with
ascaar. Try:

=[12;34]

A >
B [13;42]
A

Al

Inlogical expressions, anonzero valueisinterpreted as
true, and azero isinterpreted asfalse. Thus, ~0is1, ~3
is0,and 4 & 5 is 1, for example.

3.6 Complex numbers

MATLAB allows complex numbersin most of its
operations and functions. Two convenient ways to enter
complex matrices are:

=[12;34]+1 [56; 7 8]

= [1+5i, 2+61 ; 3+71, 4+81i]

Either i or j may be used as the imaginary unit. If,
however, you use i and j as variables and overwrite their
values, you may generate a new imaginary unit with, say,
ii=sqrt(-1). Youcanalsouseli or 1j, which cannot
be reassigned and are always equal to the imaginary unit.
Thus,

=[12; 34] + 1i*[5 6 ; 7 8]

© 2002 by CRC Press LLC

generates the same matrix B, even if i has been
reassigned. See Section 8.2 to find out if i has been
reassigned.

3.7 Strings

Enclosing text in single quotes forms strings with the
char datatype:

S = 'T Tove MATLAB'

To include a single quote inside a string, use two of them
together, asin:

S = 'Green''s function'

Strings, numeric matrices, and other data types can be
displayed with the function disp. Try disp(s) and
disp(B).

3.8 Other data types

MATLAB supports many other data types, including
sparse matrices, multidimensional arrays, cell arrays, and
structures.

Sparse matrices are stored in a special way that does not
require space for zero entries. MATLAB has efficient
methods of operating on sparse matrices. Type help
sparse, and help full, look in Help: MATLAB: Using
MATLAB: Mathematics: Sparse Matrices, or see
Chapter 13. Sparse matrices are alowed as arguments for
most, but not all, MATLAB operators and functions
where a normal matrix is allowed.

© 2002 by CRC Press LLC

D=zeros(3,5,4,2) creates a4-dimensional array of
size 3-by-5-by-4-by-2. Multidimensional arrays may also
be built up using cat (short for concatenation).

Cdll arrays are collections of other arrays or variables of
varying types and are formed using curly braces. For
example,

c={[321] ,'T Tove MATLAB'}

creates acell array. The expression c{1} isarow vector
of length 3, while c{2} isastring.

A struct isvariable with one or more parts, each of
which hasitsown type. Try, for example,

'electron’
l[2 0 3]

x.particle
X.position
x.spin ="'

c
o

The variable x describes an object with several
characteristics, each with its own type.

Y ou may create additional data objects and classes using
overloading (see help class).

4. Submatrices and Colon
Notation

Vectors and submatrices are often used in MATLAB to
achieve fairly complex data manipulation effects. Colon
notation (which is used to both generate vectors and
reference submatrices) and subscripting by integral
vectors are keys to efficient manipulation of these objects.
Creative use of these features minimizes the use of loops
(which slows MATLAB) and makes code simple and

© 2002 by CRC Press LLC

readable. Specia effort should be made to become
familiar with them.

4.1 Generating vectors

The expression 1:5 istherow vector [1 2 3 4 5].
The numbers need not be integers, and the increment need
not be one. For example, 0:0.2:1 gives[0 0.2 0.4
0.6 0.8 1],and5:-1:1gives[5 4 3 2 1]. These
vectors are commonly used in for loops, described in
Section 6.1. Be careful how you mix the colon operator
with other operators. Compare 1:5-3 with (1:5)-3.

4.2 Accessing submatrices

Colon notation can be used to access submatrices of a
matrix. To try thisout, first type the two commands:

A
B

rand (6,6)
rand (6,4)

which generate a random 6-by-6 matrix A and arandom
6-by-4 matrix B (see Section 5.1).

A(1:4,3) isthe column vector consisting of the first
four entries of the third column of A.

A colon by itself denotes an entire row or column:
A(:,3) isthethird columnof A, and A(1:4, :) isthe
first four rows.

Arbitrary integral vectors can be used as subscripts:

A(:, [2 4]) contains as columns, columns 2 and 4 of A.
Such subscripting can be used on both sides of an
assignment statement:

A (:,[245]) =B (:,1:3)

© 2002 by CRC Press LLC

replaces columns 2, 4, 5 of A with thefirst three columns
of B. Tryit. Note that the entire altered matrix A is
displayed and assigned.

Columns 2 and 4 of A can be multiplied on the right by
the 2-by-2 matrix [1 2 ; 3 4]:

A (:,[24]) =A (:,[24D = [12; 3 4]

Once again, the entire altered matrix is displayed and
assigned. Submatrix operations are a convenient way to
perform many useful computations. For example, a
Givensrotation of rows 3 and 5 of the matrix A to zero
out the A(3,1) entry can be written as;

a=A(G,D
b=A(3,1)
G=T[ab; -ba]l / norm ([a b])
A([S 3]1 :)=G*A([5 3]! :)

(assuming norm([a b]) isnot zero). You can aso
assign ascalar to al entries of asubmatrix. Try:

A (:, [24]) =99

Y ou can delete rows or columns of a matrix by assigning
the empty matrix ([]) to them. Try:

A, [24D =]

In an array index expression, end denotes the index of the
last element. Try:

rand (1,5)
x (end:-1:1)

X
X

© 2002 by CRC Press LLC

To appreciate the useful ness of these features, compare
these MATLAB statements with a C, FORTRAN, or Java
routine to do the same operation.

5. MATLAB Functions

MATLAB has awide assortment of built-in functions.

Y ou have already seen some of them, such as zeros,
rand, and inv. This section describes the more common
matrix manipulation functions. For amore complete list,
see Chapter 14, or He1p: MATLAB: Reference: MATLAB
Function Reference.

5.1 Constructing matrices
Convenient matrix building functions are:

eye identity matrix

zeros matrix of zeros

ones matrix of ones

diag create or extract diagonals
triu upper triangular part of a matrix
tril lower triangular part of a matrix
rand randomly generated matrix
hilb Hilbert matrix

magic magic square

toeplitz Toeplitz matrix

The command rand(n) creates an n-by-n matrix with
randomly generated entries distributed uniformly between
0 and 1 while rand(m, n) creates an m-by-n matrix (m
and n denote, of course, positive integers). Try:

A = rand (3)

© 2002 by CRC Press LLC

rand('state',0) resetsthe random number generator.
zeros(m, n) produces an m-by-n matrix of zeros, and
zeros(n) produces an n-by-n one. If A isamatrix, then
zeros(size(A)) produces a matrix of zeros having the
samesizeasA. If x isavector, diag(x) isthe diagonal
matrix with x down the diagonal; if A isamatrix, then
diag(A) isavector consisting of the diagonal of A. Try:

x =1:3
diag (x)
diag (A)
diag (diag (A))

Matrices can be built from blocks. Try creating this 5-by-
5 matrix:

B = [A, (zeros (3,2)) ;
(pi * ones (2,3)), (eye (2))]

magic(n) creates an n-by-n matrix that isa magic
sguare (rows, columns, and diagonals have common
sum); hilb(n) creates the n-by-n Hilbert matrix, the
king of ill-conditioned matrices. Matrices can aso be
generated with a for loop (see Section 6.1). triu and
tril extract upper and lower triangular parts of a matrix.
Try:

triu (A)
triu (A) == A

5.2 Scalar functions

Certain MATLAB functions operate essentially on scalars
but operate entry-wise when applied to a vector or matrix.
The most common such functions are:

abs ceil Tog sign
acos cos Togl0 sin

© 2002 by CRC Press LLC

asin exp rem sqrt
atan floor round tan

The following statements, for example, will generate a
sinetable. Tryit.

x = (0:0.1:2)"
y = sin (x)
[x y]

Note that because sin operates entry-wise, it produces a
vector y from the vector x.

5.3 Vector functions

Other MATLAB functions operate essentially on a vector
(row or column) but act on an m-by-n matrix (m > 2) ina
column-by-column fashion to produce a row vector
containing the results of their application to each column.
Row-by-row action can be obtained by using the
transpose (mean(A') ', for example) or by specifying the
dimension along which to operate (mean (A, 2), for
example). A few of these functions are:

max sum median any sort
min prod mean all std

The maximum entry in amatrix A is given by
max (max (A)) rather thanmax (A). Try it.

5.4 Matrix functions

Much of MATLAB's power comes from its matrix
functions. The most useful ones are:

eig eigenvalues and eigenvectors
chol Cholesky factorization
svd singular value decomposition

© 2002 by CRC Press LLC

inv inverse

Tu LU factorization
qr QR factorization
hess Hessenberg form

schur Schur decomposition
rref reduced row echelon form
expm matrix exponential

sqrtm matrix sguare root

poly characteristic polynomial

det determinant

size size of an array

Tength length of avector

norm 1-norm, 2—norm, Frobenius—norm,
co—norm

cond condition number in the 2—norm

rank rank

kron Kronecker tensor product

find find indices of nonzero entries

MATLAB functions may have single or multiple output
arguments. For example,

y = eig (A)

produces a column vector containing the eigenvalues of
A, whereas:

[u, D] = eig (A

produces a matrid whose columns are the eigenvectors
of A and a diagonal matrix with the eigenvalues @fon
its diagonal. Try it.

© 2002 by CRC Press LLC

5.5 The find function

The find functionis unlike the others. find(x), where
x isavector, returns an array of indices of nonzero entries
in x. Thisisoften used in conjunction with relational
operators. Suppose you want a vector y that consists of

all thevaluesin x greater than 1. Try:

x = 2*rand (1,5)
y = x (find (x > 1))
For matrices,

[i,5,x] = find (A)

returns three vectors, with one entry in 1, j, and x for
each nonzero in A (row index, column index, and
numerical value, respectively). With this matrix A, try:

[i,j,x] = find (A > .5)
[iJx]

and you will see alist of pairs of row and column indices
where A is greater than . 5. However, x isavector of
values from the matrix expression A > . 5, not from the
matrix A. Getting the values of A that are larger than . 5
without using a loop (see Section 6.1) requires one-
dimensional array indexing. Try:

k = find (A > .5)
A (k)
A (k) =aA (k) + 99

The loop-based analog of this computation is shown in
Section 6.1.

© 2002 by CRC Press LLC

Here's amore complex example. A sguare matrix A is
diagonally dominant if

|aii|> a;| foreachrowi.
>
First, enter amatrix that is not diagonally dominant. Try:

A =
-1

0
1
3

ANNNA
1

PO W

RROA

]

These statements compute a vector i containing indices
of rowsthat violate diagonal dominance (rows 1 and 4 for
this matrix A).

diag (A)

abs (d)

sum (abs (A), 2) - a
find (f >= a)

“—h o

Next, modify the diagonal entries to make the matrix just
barely diagonally dominant, while still preserving the sign
of the diagonal:

[m n] = size (A)

k =1+ (i-1)*m

tol = 100 * eps

s=2%*((()>0) -1

A (k) = (1+tol) * s .* max (f (i), tol)

The variable eps (epsilon) gives the smallest value such
that 1+eps > 1, about 10*° on most computers. Itis
useful in specifying tolerances for convergence of
iterative processes and in problems like thisone. The

© 2002 by CRC Press LLC

odd-looking statement that computes s is nearly the same
ass=sign(d(i)), except that here we want s to be one
when d (i) iszero. Well come back to this diagonal
dominance problem later on.

6. Control Flow Statements

In their basic forms, these MATLAB flow control
statements operate like those in most computer languages.
Indenting the statements of aloop or conditional
statement is optional, but it helps readability to follow a
standard convention.

6.1 The for loop

Thisloop:
n =10
x = []
for i = 1:n
X = [x, 1A2]
end

produces a vector of length 10, and

n =10

x = []

for i = n:-1:1
X = [x, 1A2]

end

produces the same vector in reverse order. Try them.
The vector x growsin size at each iteration. Notethat a
matrix may be empty (such asx=[]). The statements:

—+5 S
o
S

Doy

o

Sl
[SRyEY

=

© 2002 by CRC Press LLC

end
end
H

produce and display in the Command window the 6-by-4
Hilbert matrix. Thelast H displaysthe final result. The
semicolon on the inner statement is essential to suppress
the display of unwanted intermediate results. If you leave
off the semicolon, you will seethat H growsin size asthe
computation proceeds. This can be slow if mand n are
large. Itis more efficient to preallocate the matrix H with
the statement H=zeros (m, n) before computing it. Type
the command type h1iTb to see amore efficient way to
produce a square Hilbert matrix.

Here is the counterpart of the one-dimensional indexing
exercise from Section 5.5. It adds 99 to each entry of the
matrix that islarger than . 5, using two for loops instead
of asingle find. This method is much slower.

A = rand (3)
[m n] = size (A) ;
for j = 1:n
for i = 1:m
if (A (G,3) > .5)
A (1’j) = A (1’J) + 99 ’
end
end
end
A

The for statement permits any matrix expression to be
used instead of 1:n. Theindex variable consecutively
assumes the value of each column of the expression. For
example,

© 2002 by CRC Press LLC

H
s + sum (c) ;

Sl
nnNno

s
fo

end

computes the sum of all entries of the matrix H by adding
its column sums (of course, sum(sum(H)) doesit more
efficiently; see Section 5.3). Infact, sincel:n=[1 2 3

. n], this column-by-column assignment is what
occurswith for i =1:n.

6.2 The while loop
The general form of awhile loopis:

while expression
statements
end

The statements will be repeatedly executed as long as
the expressionremainstrue. For example, for agiven
number a, the following computes and displays the
smallest nonnegative integer n such that 2" > a:

= 1e9

=0

hile 2An <= a
n=n+1;

end

n

a
n
w

Note that you can compute the same value n more
efficiently by using the Tog2 function:

[f,n] = Tog2 (a)

Y ou can terminate a for or whiTe loop with the break
statement and skip to the next iteration with the
continue statement.

© 2002 by CRC Press LLC

6.3 The if statement
The general form of asimple i f statement is:

if expression
statements
end

The statements will be executed only if the
expressionistrue. Multiple conditions also possible:

for n = -2:5

ifn<O
parity = 0 ;

elseif rem (n, 2) =0
parity = 2 ;

else
parity = 1 ;

end

n
parity
end

Theelse and elseif areoptiona. If theelse partis
used, it must come last.

6.4 The switch statement

The switch statement isjust likethe i f statement. |If
you have one expression that you want to compare
against several others, then a switch statement can be
more concise than the corresponding i f statement. See
help switch for more information.

6.5 The try/catch statement

Matrix computations can fail because of characteristics of
the matrices that are hard to determine before doing the
computation. If the failureis severe, your script or

© 2002 by CRC Press LLC

function (see Chapter 7) may be terminated. The
tryl/catch statement allows you to compute
optimistically and then recover if those computations fail.
The genera formis:

try
statements
catch
statements
end

The first block of statementsis executed. If an error
occurs, those statements are terminated, and the second
block of statementsis executed. Y ou cannot do this with
an if statement. Seehelp try.

6.6 Matrix expressions (if and while)

A matrix expression isinterpreted by if and while to be
true if every entry of the matrix expression is nonzero.
Enter these two matrices:

A
B

[12; 34]
[23; 35]

If you wish to execute a statement when matrices A and B
are equal, you could type:

if A ==
disp ('A and B are equal')
end

If you wish to execute a statement when A and B are not
equal, you would type:

if any (any (A ~= B))

disp ('A and B are not equal')
end

© 2002 by CRC Press LLC

or, more simply,

if A == B else
d disp ('A and B are not equal')
en

Note that the seemingly obvious:

if A ~=B
disp ('not what you think')
end

will not give what is intended because the statement
would execute only if each of the corresponding entries of
A and B differ. Thefunctionsany andalTl canbe
creatively used to reduce matrix expressions to vectors or
scalars. Two anys are required above because any isa
vector operator (see Section 5.3). Inlogical terms, any
and a1 correspond to the existential (LI) and universal
(0O) quantifiers, respectively, applied to each column of a
matrix or each entry of arow or column vector. Like most
vector functions, any and al1 can be applied to
dimensions of a matrix other than the columns.

Thus, an i f statement with atwo-dimensional matrix
expressionisequivalent to:

if all (a1l (expression))
g statement
en

6.7 Infinite loops

With loops, it is possible to execute a command that will
never stop. Typing Ctrl-C stops a runaway display or
computation. Try:

© 2002 by CRC Press LLC

i=1
while i > 0
i =1+

i 1

end

then type Ctrl-C to terminate this loop.
7. M-files

MATLAB can execute a sequence of statements stored in
files. These are called M-files because they must have
thefile type .m asthe last part of their filename.

7.1 M-file Editor/Debugger window

Much of your work with MATLAB will bein creating
and refining M-files. M-files are usualy created using
your favorite text editor or with MATLAB’s M-file
Editor/Debugger. See also Help: MATLAB: Using
MATLAB: Development Environment: Editing and
Debugging M-Files.

There are two types of M-files: script files and function
files. Inthisexercise, you will incrementally develop and
debug a script and then a function for making a matrix
diagonally dominant (see Section 5.5). Select File »
New » M-fiTe to start anew M-file, or click:

[

Typein these lines in the Editor,
f = sum (A, 2) ;
A=A + diag (f) ;

© 2002 by CRC Press LLC

and save thefile as ddom.m by clicking:

Youvejust created aMATLAB script file® The
semicolons are there because you normally do not want to
see the results of every line of ascript or function.

7.2 Script files

A script file consists of a sequence of normal MATLAB
statements. Typing ddom in the Command window
causes the statements in the script file ddom.m to be
executed. Variablesin ascript file are global and will
change the value of variables of the same name in the
workspace of the current MATLAB session. Type:

A = rand (3)
ddom
A

in the Command window. It seemsto work; the matrix A
is now diagonally dominant. If you typethisin the
Command window, though,

A=1[1-2; -11]
ddom
A

then the diagonal of A just got worse. What happened?
Click on the Editor window and move the mouse to point
to the variable f, anywhere in the script. You will seea
yellow pop-up window with:;

3 See http://www.cise.ufl.edu/research/sparse/ MATLAB for the
M-files and MEX-files used in this book.

© 2002 by CRC Press LLC

http://www.cise.ufl.edu/research/sparse/MATLAB

f =
-1
0

Oops. T issupposed to be a sum of absolute values, so it
cannot be negative. Edit thefirst line of ddom.m and
changeit to:

f = sum (abs (A), 2) ;

save thefile, and run it again on the original matrix A=[1
-2;-1 1]. Thistime, instead of typing in the command,
try running the script by clicking:

I3

in the Editor window. Thisis ashortcut to typing ddom
in the Command window. The matrix A is now
diagonally dominant. Run the script again, though, and
you will seethat A is modified even if it isalready
diagonally dominant. Fix this modifying only those rows
that violate diagonal dominance.

SetAto[1 -2;-1 1] by clicking on the command in
the Command History window. Next, modify ddom.m to
be:

d = diag (A) ;

a = abs (d)

f = sum (abS), 2) -a;

i = find (f >= a)

A (i,i) = A (i,i) + diag (f (3)) ;
and click:

=

© 2002 by CRC Press LLC

to save and run the script. Run it again; the matrix does
not change.

Tryitonthe matrix A=[-1 2;1 -1]. Theresultis

wrong. Tofix it, try another debugging method — setting
breakpoints. A breakpoint causes the script to pause, and
allows you to enter commands in the Command window,
while the script is paused (it acts just like Keyboard
command).

Click on line 5 and sele@reakpoints » Set/Clear
Breakpoint or click:

]

A red dot appears in a column to the left of line 5. You
can also set and clear breakpoints by clicking on the red
dots or dashes in this column.

In the Command window, type:

clear
A=1[-12;1-1]
ddom

A green arrow appears at line 5, and the pramyt

appears in the Command window. Execution of the script
has paused, just before line 5 is executed. Look at the
variablesa andf. Since the diagonal is negative, anig

an absolute value, we should subtraétom A to

preserve the sign. Type the command:

A = A - diag (f)

© 2002 by CRC Press LLC

The matrix is now correct, although this works only if all
of the rows need to be fixed and all diagonal entries are
negative. Stop the script by selecting bebug » Exit
Debug Mode or by clicking:

B

Clear the breakpoint. Edit the script, and replace line 5
with:

s = sign (d (1)) ;
A (i,i) = A (i,1) + diag (s .* f (i) ;

TypeA=[-1 2;1 -1] andrunthe script. The script
seems to work, but it modifies A more than is needed. Try
the script on A=zeros (4), and you will see that the
matrix is not modified at all, because sign(0) is zero.
Fix the script so that it looks like this:

d = diag (A) ;

a = abs (d)

f = sum (abs), 2) -a;

i=find (f >= a) ;

[m n] = size (A) ;

k =1+ (Gi-1)*m ;

tol = 100 * aps ;

s =2 d () >= 0) -

A (K = (I+tol) ~ WK max (f (i), tol);

which is the sequence of commands you typed in Section
5.5.

7.3 Function files

Function files provide extensibility to MATLAB. You
can create new functions specific to your problem, which
will then have the same status as other MATLAB

© 2002 by CRC Press LLC

functions. Variablesin afunction file are by default
local. A variable can, however, be declared global (see
help global).

Convert your ddom.m script into a function by adding
these lines at the beginning of ddom.m:

function B = ddom (A)

% B = ddom (A) returns a diagonally
% dominant matrix B by modifying the
% diagonal of A.

and add this line at the end of your new function;
B=A;

Y ou now have aMATLAB function, with one input
argument and one output argument. To see the difference
between global and local variables as you do this
exercise, type clear. Functions do not modify their
inputs, so:

C
D

[1-2; -11]
ddom (O

returns a matrix C that is diagonally dominant. The
matrix C in the workspace does not change, although a
copy of it local to the ddom function, called A, is modified
asthe function executes. Note that the other variables, a,
d, f, i, k and s no longer appear in your workspace.
Neither do A and B. These areall local to the ddom
function.

Thefirst line of the function declares the function name,
input arguments, and output arguments; without thisline
the file would be a script file. ThenaMATLAB

© 2002 by CRC Press LLC

statement b=ddom (C), for example, causes the matrix C
to be passed as the variable A in the function and causes
the output result to be passed out to the variable b. Since
variablesin afunction file are local, their names are
independent of those in the current MATLAB workspace.
Y our workspace will have only the matrices C and D. If
you want to modify C itself, then use c=ddom (C).

Linesthat start with % are comments; more on thisin
Section 7.6. Anoptiona return statement causes the
function to finish and return its outputs.

7.4 Multiple inputs and outputs

A function may also have multiple output arguments. For
example, it would be useful to provide the caller of the
ddom function some control over how strong the diagonal
isto be and to provide more results, such asthelist of
rows (the variable i) that violated diagonal dominance.
Try changing the first line to:

function [B,i] = ddom (A, tol)

and add a % at the beginning of the line that computes
tol. Single assignments can also be made with a
function having multiple output arguments. For example,
with this version of ddom, the statement b=ddom (C,0.1)
will assign the modified matrix to the variable D without
returning the vector i. Try it.

7.5 Variable arguments

Not all inputs and outputs of a function need be present
when the function iscalled. The variablesnargin and
nargout can be queried to determine the number of
inputs and outputs present. For example, we could use a

© 2002 by CRC Press LLC

default toleranceif toT isnot present. Add these
statements in place of the line that computed to1:

if (nargin == 1)
tol = 100 * eps ;
end

An example of both nargin and nargout isgivenin
Section 8.1.

7.6 Comments and documentation

The % symbol indicates that the rest of thelineisa
comment; MATLAB will ignore the rest of the line.
Moreover, the first contiguous comment lines are used to
document the M-file. They are available to the online
help facility and will be displayed if, for example, help
ddom is entered. Such documentation should always be
included in afunction file. Since you've modified the
function to add new inputs and outputs, edit your script to
describe the variables i and tol1. Be sureto state what
the default value of to1 is. Next, type help ddom.

7.7 Entering large matrices

Script files may be used to enter datainto alarge matrix;
in such afile, entry errors can be easily corrected. If, for
example, one entersinafileamatrix.m:

U= >

- YN
N W
[o >N

then the command amatrix causes the assignment given
inamatrix.m to be carried out. However, it is usually
easier to use Toad (see Section 2.7) or the Array Editor
(see Section 2.6), rather than a script.

© 2002 by CRC Press LLC

An M-file can reference other M-files, including
referencing itself recursively.

8. Advanced M-file features

This section describes advanced M-file techniques, such
as how to pass function references and how to write high-
performance code in MATLAB.

8.1 Function references

A function handle is areference to a function that can
then be treated as avariable. It can be copied, storedin a
matrix (not a numeric one, though), placed in cell array,
and so on. Itsfinal useisnormaly to passit to feval,
which then evaluates the function. For example,

h

@sin
y feval ¢h, pi/2)

isthe samething assimply y=sin(pi/2). Tryit. You
can also use a string to refer to afunction, asin:

y = feval ('sin', pi/2)

but the function handle method is more general. See
help function_hand1e for more information.

The bisect function, below, takes a function handle as
one of itsinputs. It also gives you an example of nargin
and nargout (see also Section 7.5).

function [b, steps] = bisect (fun,x,tol)
% BISECT: zero of a function of one

% variable via the bisection method.

% bisect (fun,x) returns a zero of the
% function fun. fun is a function

% handle or a string with the name of a

© 2002 by CRC Press LLC

% function. x is a starting guess. The
% value of b returned is near a point
% where fun changes sign. For example,
% bisect (@sin,3) is pi. Note the use
% of the function handle, @sin.

% An optional third input argument sets
% a tolerance for the relative accuracy
% of the result. The default is eps.
% An optional second output argument
% gives a matrix containing a trace of
% the steps; the rows are of the form

% [c (f(c))].

if (nargin < 3)
% default tolerance

tol = eps ;
end
trace = (nargout == 2) ;
if (x ~=0)
dx = x/20 ;
else
dx = 1/20 ;
end

a=x - dx ;
fa = feval (fun, a) ;
b =x+ dx ;
fb = feval (fun, b) ;
if (trace)
steps = [a fa ; b fb] ;
end

% find a change of sign
while (fa > 0) == (fb > 0)

dx = 2%dx ;
a=x-dx ;

fa = feval (fun, a) ;
if (trace)

steps = [steps ; [a fal] ;
en
if (fa > 0) ~= (fb > 0)

break
end

© 2002 by CRC Press LLC

b =x + dx ;
fb = feval (fun, b) ;
if (trace)
steps = [steps ; [b fb]] ;
end
end

% main loop
while (abs (b-a) > 2*tol*max(abs(b),1))

c=a+ (b-a)/2 ;
fc = feval (fun,) ;
if (trace)

steps = [steps ; [c fc]l] ;
1f (fb > 0) = (fc > 0)

C
fb fc;
else
a=c
fa = fc ;
end

Some of MATLAB's functions are built in; others are
distributed as M-files. The actual listing of any
non-built-in M-file, MATLAB’s or your own, can be
viewed with the MATLAB commandype
functionname. Try enteringtype eig, type vander,
andtype rank.

8.2 Name resolution

When MATLAB comes upon a new name, it resolves it
into a specific variable or function by checking to see if it
is a variable, a built-in function, a file in the current
directory, or a file in the MATLAB path (in order of the
directories listed in the path). MATLAB uses the first
variable, function, or file it encounters with the specified
name. There are other cases;s€kp: MATLAB: Using

© 2002 by CRC Press LLC

MATLAB: Development Environment: Workspace,
Path, and File Operations: Search Path. You can
use the command whi ch to find out what anameis. Try
this:

clear

E
which i
i=3
which i

8.3 Error messages

Error messages are best displayed with the function
error. For example,

A = rand (4,3)
[m n] = size (A) ;
ifm~=n
error ('A must be square') ;
end

aborts execution of an M-fileif the matrix A is not square.
Thisisauseful thing to add to the ddom function that you
developed in Chapter 7, since diagonal dominanceis only
defined for square matrices. Try adding it to ddom
(excluding the rand statement, of course), and see what
happensif you call ddom with arectangular matrix.

See Section 6.5 (try/catch) for one way to deal with
errorsin functions you call.

8.4 User input

In an M-file the user can be prompted to interactively
enter input data, expressions, or commands. When, for
example, the statement:

iter = input ('iteration count: ') ;

© 2002 by CRC Press LLC

is encountered, the prompt message is displayed and
execution pauses while the user keys in the input data (or,
in general, any MATLAB expression). Upon pressing the
return key, the datais assigned to the variable i ter and
execution resumes. Y ou can also input a string; see help
input.

An M-file can be paused until areturn istyped in the
Command window with the pause command. Itisa
good idea to display a message, asin:

disp ('Hit enter to continue: ') ;
pause

A Citrl-C will terminate the script or function that is
paused. A more general command, keyboard, allows
you to type any number of MATLAB commands. See
help keyboard.

8.5 Efficient code

The function ddom. m that you wrote in Chapter 7
illustrates some of the MATLAB features that can be
used to produce efficient code. All operations are
“vectorized,” and loops are avoided. We could have
written theddom function using nestefior loops, much
like how you would write it in C, FORTRAN, or Java:

function B = ddom (A,tol)
% B = ddom (A) returns a diagonally
% dominant matrix B by modifying the
% diagonal of A.
[m n] = size (A) ;
if (nargin == 1)
tol = 100 * eps ;
end
for i
d

1:n
A G,1)

© 2002 by CRC Press LLC

% = abs (d) ;
for j = 1:n
it (G ~=73)
f=°Ff+abs (A (i,7)) ;
end
end
if (f >= a)
aii = (1 + tol) * max (f, tol) ;
if (d<0)
aii = -aii ;
end
A (i,1) = aii ;
end
end
B =A;

Thisworks, but it is very slow for large matrices. Asyou
become practiced in writing without loops and reading
loop-free MATLAB code, you will also find that the
loop-free version is easier to read and understand.

If you cannot vectorize some computations, you can make
your for loops go faster by preallocating any vectors or
matrices in which output is stored. For example, by
including the second statement below, which uses the
function zeros, space for storing E in memory is
preallocated. Without this, MATLAB must resize E one
column larger in each iteration, slowing execution.

M = magic (6) ;
E = zeros (6,50) ;
for j = 1:50]]
E (:,3) = eig (MA) ;
end

8.6 Performance measures

Time and space are the two basic measures of an
algorithm’s efficiency. In MATLAB, thistranslates into

© 2002 by CRC Press LLC

the number of floating-point operations (flops)
performed, the elapsed time, the CPU time, and the
memory space used. MATLAB no longer provides aflop
count because it uses high-performance block matrix
algorithms that make it difficult to count the actual flops
performed. See help flops.

The elapsed time (in seconds) can be obtained with the
stopwatch timers t1ic and toc; t1ic starts the timer and
toc returns the elapsed time. Hence, the commands:

tic

statement

toc

will return the elapsed time for execution of the
statement. The elapsed timefor solving alinear system
above can be obtained, for example, with:

n = 500 ;

A = rand (n) ;
b = rand (n,1) ;
tic

X = A\b ;

toc

r = norm (A*x-b)

The norm of the residual isaso computed. Y ou may wish
to compare x=A\B with x=1nv (A) *b for solving the
linear system. Try it. You will generally find A\b to be
faster and more accurate.

If there are other programs running at the same time on
your compuiter, elapsed time will not be an accurate
measure of performance. Try using cputime instead.
Seehelp cputime.

© 2002 by CRC Press LLC

MATLAB runs faster if you can restructure your
computations to use less memory. Type the following
and select n to be some large integer, such as:

16000 ;

rand (n,1) ;
rand (1,n) ;
rand (n,1) ;

NT®S
I nn

Here are three ways of computing the same vector x. The
first one uses hardly any extra memory, the second and
third use a huge amount (about 2GB). Try them (good
luck!).

X
X
X

o
~
Q
O
A —
.
(@}

No measure of peak memory usageis provided. You can
find out the total size of your workspace, in bytes, with
the command whos. Thetotal can also be computed
with:

s = whos
space = sum ([s.bytes])

Try it. Thisdoes not give the peak memory used while
inside aMATLAB operator or function, though. See
help memory for more options.

8.7 Profile

MATLAB provides an M-file profiler that lets you see
how much computation time each line of an M-file uses.
The command to useisprofile (seehelp profile for
details).

© 2002 by CRC Press LLC

9. Calling C from MATLAB

There are times when MATLAB itself is not enough.

Y ou may have alarge application or library written in
another language that you would like to use from
MATLAB, or it might be that the performance of your M-
fileis not what you would like.

MATLAB can call routines written in C, FORTRAN, or
Java. Similarly, programs written in C and FORTRAN
can cal MATLAB. In thischapter, we will just look at
how to call aC routine from MATLAB. For more
information, see Help: MATLAB: External
Interfaces/API, or seethe online MATLAB
document External Interfaces. This discussion assumes
that you already know C.

9.1 A simple example

A routine written in C that can be called from MATLAB
iscaled aMEX-file. The routine must always have the
name mexFunction, and the arguments to this routine
are dwaysthe same. Hereisavery simple MEX-filg;
typeitinasthefilehello.c inyour favorite text editor.

#include "mex.h"
void mexFunction

int nlhs,

mxArray *plhs [],

int nrhs,

const mxArray *prhs []

~a

mexPrintf ("hello world\n") ;

Compile and run it by typing:

© 2002 by CRC Press LLC

mex hello.c
hello

If thisis the first time you have compiled a C MEX-file
on a PC with Microsoft Windows, you will be prompted
to select aC compiler. MATLAB for the PC comes with
itsown C compiler (1cc). Theargumentsnlhs and
nrhs are the number of outputs and inputsto the
function, and pThs and prhs are pointersto the
arguments themselves (of type mxArray). Thishello.c
MEX-file does not have any inputs or outputs, though.

ThemexPrintf functionisjust the sameasprintf.
You can also use printf itself; the mex command
redefinesit asmexPrintf when the programis
compiled. Thisway, you can write aroutine that can be
used from MATLAB or from a stand-alone C application,
without MATLAB.

9.2 Cversus MATLAB arrays

MATLAB storesits arraysin column major order, while
the convention for C isto store them in row major order.
Also, the number of columnsin an array is not known
until themexFunction iscalled. Thus, two-dimensional
arraysin MATLAB must be accessed with one-
dimensional indexing in C (see also Section 5.5). Inthe
example in the next section, the INDEX macro helps with
this translation.

Array indices also appear differently. MATLAB is
writtenin C, and it stores al of its arrays internally using
zero-based indexing. An m-by-n matrix has rows 0 to m-
1 and columns 0 to n-1. However, the user interface to
these arraysis always one-based, and index vectorsin

© 2002 by CRC Press LLC

MATLAB are always one-based. In the example below,
one is added to the Li st array returned by diagdom to
account for this difference.

9.3 A matrix computation in C

In Chapters 7 and 8, you wrote the function ddom . m.
Here is the same function written as an ANSI C MEX-
file. Compare the diagdom routine, below, with the
loop-based version of ddom.m in Section 8.5. The
MATLAB mx and mex routines are described in Section
9.4. To save space, the comments are terse.

#include "mex.h"

#include "matrix.h"

#include <stdlib.h>

#include <float.h>

#define INDEX(i,j,m) ((1)+(J) (m))
#define ABS(X) ((X) >= 0?7 (X) : ~(x))
#define MAX(X,y) (COO>(y)) ?2° () :(y))

void diagdom

double *A,
int n,

double *B,
doub]e to1
int *List,
int *nList

~a

int 1,
double
for (k
) B [kl = A [k] ;
}f (tol < 0)

tol = 100 * DBL_EPSILON ;

Jr ks
d, a, f, bij, bii ;
= ; k < n*n ; k++)

© 2002 by CRC Press LLC

—
I
()

;1< n o i)

~—h A
o
Sl

B [INDEX (i,i,n)] ;
SB§ @ ;
(G'=0; 3 <n; j+d)

S

r-*ﬂsh—hm o ~~O

}f G !'= P
bij = B [INDEX (1 j,n1;
! f += ABS (bij) ;

}
if (f >= a)
{

L1st [k++] =
bii = (1 + to1)
MAX (f, to1) ;
}f d < 0)
) bii = -bii ;
! B [INDEX (i,i,n)] = bii ;

*nList = k ;

void error (char *s)

mexPrintf ("Usage: [B,i] ="
"diagdom (A,to1)\n") ;
mexErrMsgTxt (s) ;

void mexFunction
int nlhs,
mxArray *plhs [],

int nrhs,
const mxArray *prhs []

© 2002 by CRC Press LLC

int n, k, *List, nList ;
double *A, *B, *I, tol ;

/* get inputs A and tol */
if (nlhs > 2 || nrhs > 2
%I nrhs == 0)

error (
"wWrong number of arguments") ;

%f (mxIsempty (prhs [0]))

plhs [0] = mxCreateDoubleMatrix
(0, 0, mxREAL) ;

plhs [1] = mxCreateDoubleMatrix
(0, 0, mxREAL) ;

) return ;

n = mxGetN (prhs [0]) ;

}f (n !'= mxGetM (prhs [0]))

) error ("A must be square") ;
}f (mxIsSparse (prhs [0]))

) error ("A cannot be sparse™) ;
A = mxGetPr (prhs [0]) ;

tol = -1 ;

if (nrhs > 1

%& ImxIsempty (prhs [1]))

) tol = mxGetScalar (prhs [1]) ;

¥

/* create output B

pThs [0] = mxCreateDoubleMatrix
(n, n, mMXREAL) ;

B = mxGetPr (plhs [0]) ;

/* get temporary workspace */
List = (int *) mxMalloc

© 2002 by CRC Press LLC

(n * sizeof (int)) ;

/* do the computation */]
diagdom (A, n, B,tol, List, &nList);

/¥ create output I */

plhs [1] = mxCreateDoubleMatrix
(nList, 1, mxREAL) ;

I = mxGetPr (plhs [1]) ;

for (k =0 ; k < nList ; k++)

I [k] = (double) (List[k] + 1);
/* free the workspace */

mxFree (List) ;

}

Typeitinasthefilediagdom. c (or get it from the web),
and then type:

mex diagdom.c

A = rand (6) ;
B = ddom (A) ;
C = diagdom (A) ;

The matrices B and C will be the same (round-off error
might cause them to differ dightly).

9.4 MATLAB mx and mex routines

In the last example, the C routine calls several routines
with the prefix mx or mex. These are routinesin
MATLAB. Routineswith mx prefixes operate on
MATLAB matrices and include:

mxISEmpty 1if the matrix is empty, O otherwise
mxIsSparse 1if the matrix is sparse, 0 otherwise
MXGetN number of columns of a matrix
mxGetM number of rows of a matrix

© 2002 by CRC Press LLC

mxGetPr pointer to the real values of a matrix
mxGetScalar thevalueof ascalar
mxCreateDoubleMatrix create MATLAB matrix
mxMalloc likemalloc in ANSI C

mxFree like free in ANSI C

Routines with mex prefixes operate on the MATLAB
environment and include:

mexPrintf likeprintfinC
mexErrMsgTxt like MATLAB’serror statement
mexFunction the gateway routine from MATLAB

You will notethat all of the referencesto MATLAB’smx
and mex routines are limited to the mexFunction
gateway routine. Thisisnot required; it isjust agood
idea. Many other mx and mex routines are available.

The memory management routinesin MATLAB
(mxMalloc, mxFree, and mxCalloc) are much easier to
use than their ANSI C counterparts. If amemory
allocation request fails, the mexFunction terminates and
control is passed backed to MATLAB. Any workspace
alocated by mxMalloc that is not freed when the
mexFunction returns or terminates is automatically
freed by MATLAB. Thisiswhy no memory alocation
error checking isincluded in diagdom. c; itis not
necessary.

9.5 Online help for MEX routines
Create an M-file called diagdom.m, with only this:
function [B,i] = diagdom (A, tol)

% diagom: modify the matrix A
% [B,1] = diagdom (A,tol) returns a

© 2002 by CRC Press LLC

% diagonally dominant matrix B by
% modifying the diagonal of A.
error ('diagdom mexFunction not found');

Now type help diagdom. Thisisasimple method for
providing online help for your own MEX-files.

9.6 Larger examples on the web

The colamd and symamd routinesin MATLAB are C
MEX-files. The source code for these routinesis on the
web at http://www.cise.ufl.edu/research/sparse/colamd.
Like the example in the previous section, they are split
into amexFunction gateway routine and another set of
routines that do not make use of MATLAB.

10. Two-Dimensional Graphics

MATLAB can produce two-dimensional plots. The
primary command for thisisplot. Chapter 11 discusses
three-dimensional graphics. To preview some of these
capabilities, enter the command demo and select some of
the visualization and graphics demos.

10.1 Planar plots

The plot command creates linear x—y plots; ifx andy

are vectors of the same length, the commahut (x, y)
opens a graphics window and draws an x-y plot of the
elements of/ versus the elements »f You can, for
example, draw the graph of the sine function over the
interval—4 to 4 with the following commands:

X = -4:0.01:4 ;
y = sin (x) ;
plot (x, y) ;

© 2002 by CRC Press LLC

http://www.cise.ufl.edu/research/sparse/colamd

Try it. Thevector x isa partition of the domain with
mesh size 0.01, and y isavector giving the values of
sine at the nodes of this partition (recall that sin operates
entry-wise). When plotting a curve, the plot routineis
actually connecting consecutive points induced by the
partition with line segments. Thus, the mesh size should
be chosen sufficiently small to render the appearance of a
smooth curve.

Y ou will usually want to keep the current Figure window
exposed, but moved to the side, and the Command
window active.

2
As asecond example, draw the graph of y = e* over the
interval -1.5to 1.5 asfollows:

X =-1.5:.01:1.5 ;
y_= exp (-X.A2) ;
plot (x, y) ;

Note that you must precede A by a period to ensure that it
operates entry-wise.

Select Too1s » zoom In or Tools » Zoom Out in the
Figure window to zoom in or out of the plot. See also the
zoom command (he1p zoom).

10.2 Multiple figures

Y ou can have several concurrent Figure windows, one of
which will at any time be the designated current figurein
which graphs from subsequent plotting commands will be
placed. If, for example, Figure 1 isthe current figure,
then the command figure(2) (or smply figure) will
open a second figure (if necessary) and make it the
current figure. The command figure (1) will then

© 2002 by CRC Press LLC

expose Figure 1 and make it again the current figure. The
command gcf returns the current figure number.

MATLAB does not draw aplot right away. It waits until
all computations are finished, until a figure command is
encountered, or until the script or function requests user
input (see Section 8.4). To force MATLAB to draw a
plot right away, use the command figure(gcf). This
does not change the current figure.

10.3 Graph of a function

MATLAB suppliesafunction fpTlot to easily and
efficiently plot the graph of afunction. For example, to
plot the graph of the function above, you can first define
the function in an M-file called, say, expnormal.m
containing:

function y = expnormal (x)
y = exp(-x.A2) ;

Then either of the commands:

fplot ('expnormal', [-1.5 1.5]) ;
fplot (@expnormal, [-1.5 1.5]) ;

will produce the graph over the indicated x-domain. The
first one uses a string to refer to the function. The second
one uses a function handle (which is preferred). Try it.

A faster way to see the same result without creating
expnormal.m would be;

fplot ("exp(-xA2)', [-1.5 1.5]) ;

The variable x in the expression above is a place-holder;
it need not exist and can be any arbitrary variable name.

© 2002 by CRC Press LLC

10.4 Parametrically defined curves

Plots of parametrically defined curves can also be made.
Try, for example,

t =0:.001:2%pi ;
X = cos (3*t) ;
y = sin (2%t) ;
plot (x, y) ;

10.5 Titles, labels, text in a graph

The graphs can be given titles, axes labeled, and text
placed within the graph with the following commands,
which take a string as an argument.

title graphtitle

xlabel x-axislabel

ylabel y-axislabel

gtext placetext on graph using the mouse
text position text at specified coordinates

For example, the command:

title ('A parametric cos/sin curve')

givesagraph atitle. Thecommand gtext('The

Spot') letsyou interactively place the designated text on
the current graph by placing the mouse crosshair at the
desired position and clicking the mouse. Itisagood idea
to prompt the user before using gtext. To placetextina
graph at designated coordinates, use the command text
(see help text). These commandsare alsointhe
Insert menuinthe Figure window. Select Insert»
Text, click on the figure, type something, and then click
somewhere else to finish entering the text. If the edit-
figure button:;

© 2002 by CRC Press LLC

o

is depressed (or select Tools » Edit PTot), you can
right-click on anything in the figure and see a pop-up
menu that gives you options to modify the item you just
clicked. You can also click and drag objects on the
figure. Selecting Edit » Axes Properties bringsup a
window with many more options. For example, clicking
the:

Grid [V
box adds grid lines (the command grid does the same
thing).
10.6 Control of axes and scaling

By default, the axes are auto-scaled. Thiscan be
overridden by the command axis or by selecting Edit »
Axes Properties. Some features of theaxis
command are:

axis ([xmin xmax ymin ymax])

sets the axes

axis manual freezesthe current axes for
new plots

axis auto returns to auto-scaling

vV = axis vector v shows current scaling

axis square axessame size (but not scale)
axis equal same scale and tic marks on axes
axis off removes the axes

axis on restores the axes

© 2002 by CRC Press LLC

The axis command should be given after the plot
command. Try axis([-2 2 -3 3]) withthecurrent
figure. You will note that text entered on the figure using
the text or gtext moves as the scaling changes (think
of it as attached to the data you plotted). Text entered via
Insert » Text stays put.

10.7 Multiple plots

Two ways to make multiple plots on asingle graph are
illustrated by:

= 0:.01:2%pi;
y1 = sin (x) ;
y2 = sin (2%x) ;

= sin (4*x) ;

p10t x, y1, x, y2, x, y3)

and by forming a matrix Y containing the functional

values as columns:
x 0:.01:2*%pi ;

[s1n(x)' sin(2*x) "', sin(4*x)'] ;

p]ot x, Y)

The x and y pairs must have the same length, but each
pair can have different lengths. Try:

plot (x, Y, [0 2*pi], [0 0])

The command hoTd on freezes the current graphics
screen so that subsequent plots are superimposed on it.
The axes may, however, become rescaled. Entering hold
off releases the hold.

The function Tegend places alegend in the current figure
to identify the different graphs. See help 1egend.

© 2002 by CRC Press LLC

Clearing a figure can be done with c1f, which clears the
axes, the data you plotted, any text entered with the text
and gtext commands, and the legend. To aso clear the
text you entered viaInsert » Text, type c1f reset.

10.8 Line types, marker types, colors

Y ou can override the default line types, marker types, and
colors. For example,

x = 0:.01:2%pi ;
yl = sin (x) ;

y2 = sin (2*x) ;
y3 = sin (4*x) ;
p10t (Xiyly -t

, X,Y2, y X,¥3, "+")

renders a dashed line and dotted line for the first two
graphs, whereas for the third the symbol + is placed at
each node. Thelinetypesare:

'-' solid ':' dotted
'--" dashed '-." dashdot

and the marker types are;

'.' point 'o' circle

'x' x-mark '+' plus

'E dar 's' square

'd'" diamond 'v' triangle-down
'A' triangle-up '<' triangle-left
'>' triangle-right 'p' pentagram

'h' hexagram
Colors can be specified for the line and marker types:

y' yellow
c' cyan

m' magenta
r' red

© 2002 by CRC Press LLC

'g' green 'b' blue
w' white 'k' black

For example, plot(x,yl, 'r--") plotsared dashed
line.

10.9 Subplots and specialized plots

The command subplot partitions a figure so that several
small plots can be placed in one figure. See help
subpTot. Other specialized planar plotting functions
you may wish to exploreviahelp are:

bar i1l quiver
compass hist rose
feather polar stairs

10.10 Graphics hard copy
Select File » Print or click the print button:

=

in the Figure window to send a copy of your figure to
your default printer. Layout options and selecting a
printer can be done with File » Page Setup and File »
Print Setup.

You can save the figure as afilefor later useina
MATLAB Figure window. Try the save button:

or File» save. Thissavesthefigureasa.figfile,
which can be later opened in the Figure window with the
open button:

© 2002 by CRC Press LLC

—

=

or with File » Open. Selecting File » Export allows
you to convert your figure to many other formats.

11. Three-Dimensional Graphics

MATLAB's primary commands for creating three-
dimensional graphicsare plot3, mesh, surf, and
Tight. The menu options and commands for setting
axes, scaling, and placing text, labels, and legends on a
graph also apply for three-dimensional graphs. A
zTlabel can be added. The axis command requires a
vector of length 6 with a3-D graph.

11.1 Curve plots

Completely analogous to plot in two dimensions, the
command plot3 produces curvesin three-dimensional
space. If x, y, and z are three vectors of the same size,
then the command plot3(x,y,z) producesa
perspective plot of the piecewise linear curvein
three-space passing through the points whose coordinates
are the respective elements of x, y, and z. These vectors
are usually defined parametrically. For example,

.01:.01:20%*pi ;
cos (t) ;

sin (t) ;

z t.A3

plot3 (x, y, z)

< Xt

produces a helix that is compressed near the x-y plane (a
“slinky”). Try it.

© 2002 by CRC Press LLC

11.2 Mesh and surface plots

Themesh command draws three-dimensional wire mesh
surface plots. The command mesh (z) creates athree-
dimensional perspective plot of the elements of the matrix
z. The mesh surface is defined by the z-coordinates of
points above arectangular grid in the x—y plane. Try
mesh(eye(20)).

Similarly, three-dimensional faceted surface plots are
drawn with the commansurf. Trysurf(eye(20)).

To draw the graph of a functia+ f (x, y) over a
rectangle, first define vectoxx andyy, which give
partitions of the sides of the rectangle. The function
meshgrid(xx,yy) then creates a matri each row of
which equalsx (whose column length is the length of
yy) and similarly a matriy, each column of which
equalsyy. A matrixz, to whichmesh or surf can be
applied, is then computed by evaluating the function f
entry-wise over the matricesandy.

You can, for example, draw the grapteof e‘xz‘y2 over
the square [-2, 2% [-2, 2] as follows (try it):

XX = -2:.2:2 ;

Yy = XX ;

[x, y]l = meshgrid (xx, yy) ;
z = exp (-X.A2 - y.A2) ;
mesh (z)

Try this plot withsurf instead ofesh. Note that you
must usex.A2 andy.A2 instead okA2 andyA2 to
ensure that the function acts entry-wisexandy.

© 2002 by CRC Press LLC

11.3 Color shading and color profile

The color shading of surfacesis set by the shading
command. There are three settings for shading: faceted
(default), interpolated, and flat. These are set by
the commands:

shading faceted
shading interp
shading flat

Note that on surfaces produced by surf, the settings
interpolated and f1at remove the superimposed
mesh lines. Experiment with various shadings on the
surface produced above. The command shading (as
well as colormap and view described below) should be
entered after the surf command.

The color profile of asurfaceis controlled by the
colormap command. Available predefined color maps
include hsv (the default), hot, cool, jet, pink,
copper, flag, gray, bone, prism, andwhite. The
command colormap(cool), for example, setsa certain
color profile for the current figure. Experiment with
various color maps on the surface produced above. See
asohelp colorbar.

11.4 Perspective of view

The Figure window provides a wide range of controls for
viewing the figure. Select view » Camera Toolbar to
see these controls, or pull down the Tools menu. Try,
for example, selecting Tools » Rotate 3-D, and then
click the mouse in the Figure window and drag it to rotate
the object. Some of these options can be controlled by
the view and rotate3d commands, respectively.

© 2002 by CRC Press LLC

The MATLAB function peaks generates an interesting
surface on which to experiment with shading,
colormap, and view. Type peaks, select Tools »
Rotate 3-D, and click and drag the figure to rotate it.

In MATLAB, light sources and camera position can be
set. Taking the peaks surface from the example above,
select Insert » Light, or type Tight to add alight
source. See the online document Using MATLAB
Graphics for cameraand lighting help.

11.5 Parametrically defined surfaces

Plots of parametrically defined surfaces can also be made.
The MATLAB functions sphere and cylinder
generate such plots of the named surfaces. (See type
sphere and type cylinder.) Thefollowing isan
example of asimilar function that generates a plot of a
torus by utilizing spherical coordinates.

function [x, y, z] = torus (r, n, a)

% TORUS Generate a torus.

% torus (r, n, a) generates a plot of a
% torus with central radius a and

% lateral radius r. n controls the

% number of facets on the surface.

% These input variables are optional

% with defaults r = 0.5, n = 30, a = 1.
% [x, y, z] = torus(r, n, a) generates
% three (n + 1)-by-(n + 1) matrices so
% that surf (x, y, z) will produce the
% torus. See also SPHERE, CYLINDER.
if nargin < 3, a =1 ; end

if nargin < 2, n =30 ; end

if nargin < 1, = 0.5 ; end

theta = p1 * (O 2 2*n)/n ;

phi = 2*pi* (0:2:n)"'/n ;

r*cos(phi)) * cos(theta) ;
r*cos(phi)) * sin(theta) ;

© 2002 by CRC Press LLC

zz = r * sin(phi) * ones(size(theta)) ;
if nargout == 0

surf (xx, yy, zz) ;

ar = (a + r)/sqrt(2) ;

axis([-ar, ar, -ar, ar, -ar, ar]) ;
else
XX
yy ;
7z ;

X
y
z
end

Other three-dimensional plotting functions you may wish
to exploreviahelp aremeshz, surfc, surfl, contour,
and pcolor.

12. Advanced Graphics

MATLAB possesses a number of other advanced
graphics capabilities. Significant ones are object-based
graphics, called Handle Graphics, and Graphical User
Interface (GUI) tools.

12.1 Handle Graphics

Beyond those just described, MATLAB’s graphics

system provides low-level functions that let you control
virtually all aspects of the graphics environment to
produce sophisticated plots. The commaseisandget
allow access to all the properties of your plots. Try
set(gcf) to see some of the properties of a figure that
you can control. This system is called Handle Graphics.
SeeUsing MATLAB Graphics for more information.

12.2 Graphical user interface

MATLAB's graphics system also provides the ability to
add sliders, push-buttons, menus, and other user interface
controls to your own figures. For information on creating
user interface controls, thelp uicontrol. This

© 2002 by CRC Press LLC

allows you to create interactive graphical -based
applications.

Try guide (short for Graphic User Interface
Development Environment). Thisbringsup MATLAB's
Layout Editor window that you can use to interactively
design a graphic user interface.

For more information, see the online document Creating
Graphical User Interfaces.

13. Sparse Matrix Computations

A sparse matrix is one with mostly zero entries.
MATLAB provides the capability to take advantage of
the sparsity of matrices.

13.1 Storage modes

MATLAB hastwo storage modes, full and sparse, with
full the default. The functions ful1 and sparse convert
between the two modes. Nearly all MATLAB operators
and functions operate seamlessly on both full and sparse
matrices. For amatrix A, full or sparse, nnz(A) returns
the number of nonzero elementsin A.

An m-by-n sparse matrix is stored in three one-
dimensional arrays. Numerical values and their row
indices are stored in two arrays of size nnz(A) each. All
of the entries in any given column are stored
contiguously. A third array of size n+1 holdsthe
positions in the other two arrays of the first nonzero entry
in each column. Thus, if A is sparse, then x=A(9, :)
takes much moretime than x=A(:,9), and s=A(4,5) is
also slow. To get high performance when dealing with
sparse matrices, use matrix expressions instead of for

© 2002 by CRC Press LLC

loops and vector or scalar expressions. |f you must
operate on the rows of a sparse matrix A, try working with
the columns of A" instead.

If afull tridiagonal matrix F is created via, say,

F
F

floor (10 * rand(6)) ;
triu (tril (F,1), -1 ;

then the statement S=sparse (F) will convert F to sparse
mode. Try it. Note that the output lists the nonzero
entriesin column major order along with their row and
column indices because of how sparse matrices are
stored. The statement F=fu11(S) returns F in full
storage mode. Y ou can check the storage mode of a
matrix A with the command issparse(A).

13.2 Generating sparse matrices

A sparse matrix is usually generated directly rather than
by applying the function sparse to afull matrix. A
sparse banded matrix can be easily created viathe
function spdiags by specifying diagonals. For example,
afamiliar sparse tridiagonal matrix is created by:

6 ;
onés (n,1) ;

;pd$a_c’]s ([e de], [-1 0 1], m, n)

—|aom>=3
o

Try it. Theintegral vector [-1 0 1] specifiesin which
diagonals the columns of [e d e] should be placed (use
ful1(T) to seethe full matrix T and spy (T) toview T
graphically). Experiment with other values of m and n
and, say, [-3 0 2] insteadof [-1 O 1]. Seehelp
spdiags for further features of spdiags.

© 2002 by CRC Press LLC

The sparse analogs of eye, zeros, ones, and rand for
full matrices are, respectively, speye, sparse, spones,
and sprand. Thelatter two take a matrix argument and
replace only the nonzero entries with ones and uniformly
distributed random numbers, respectively. sparse(m,n)
creates a sparse zero matrix. sprand also permitsthe
sparsity structure to be randomized. Thisisauseful
method for generating simple sparse test matrices, but be
careful. Random sparse matrices are not truly "sparse"
because of catastrophic fill-in when they are factorized
(see Section 13.4). Sparse matrices arising in real
applications typically do not share this characteristic.*

The versatile function sparse aso permits creation of a
sparse matrix vialisting its nonzero entries:

i=1[123444];
j=[123123];
s=[567289 10] ;

S = sparse (i, j, s, 4, 3)
full (s)

The last two arguments to sparse in the example above
areoptional. They tell sparse the dimensions of the
matrix; if not present, then s will bemax (i) by max(3).
If there are repeated entriesin [i j1, then the entries are
added together. The commands below create a matrix
whose diagonal entriesare 2, 1, and 1.

i=1[1231];
j=1[1231];
s=[1111] ;

S = sparse (i, j, S)
full (s)

4 See http://www.cise.ufl.edu/research/sparse/matrices for a
wide range of sparse matrices arising in real applications.

© 2002 by CRC Press LLC

http://www.cise.ufl.edu/research/sparse/matrices

Theentriesin i, j, and s can be in any order (the same
order for all three arrays, of course). In general, if the
vector s liststhe nonzero entries of S and the integral
vectors i and j list their corresponding row and column
indices, then:

sparse (i, j, s, m, n)

will create the desired sparse m-by-n matrix S. Asanother
exampletry:

n
e
E

13.3 Computation with sparse matrices

The arithmetic operations and most MATLAB functions
can be applied independent of storage mode. The storage
mode of the result depends on the storage mode of the
operands or input arguments. Operations on full matrices
always give full results. If Fisafull matrix, S and s are
sparse, and n is ascalar, then these operations give sparse
results:

6_;
floor (10 * rand (n-1,1)) ;
sparse (2:n, 1:n-1, e, n, n)

S+S S*S S.*S S.*F
SAn S.An S\s

inv(s) cho1(s) Tu(s)

diag(s) max (S) sum(s)

These give full results:

S+F F\s S/F
S*F S\F F/S

unless F isascalar, in which case s*F, F\S, and S/F are
sparse.

© 2002 by CRC Press LLC

A matrix built from blocks, suchas [A, B; C, DJ],is
stored in sparse mode if any constituent block is sparse.
To compute the eigenvalues or singular values of a sparse
matrix S, you must convert s to afull matrix and then use
eigorsvd,aseig(full(s)) or svd(full(s)). Ifs
isalarge sparse matrix and you wish only to compute
some of the eigenvalues or singular values, then you can
use the eigs or svds functions (eigs (S) or svds(S)).

13.4 Ordering methods

When MATLAB solves a sparse linear system (x=A\b), it
typicaly starts by computing the LU, QR, or Cholesky
factorization of A. Thisusually leadsto fill-in, or the
creation of new nonzerosin the factors that do not appear
inA. MATLAB provides several methods that attempt to
reduce fill-in by reordering the rows and columns of A:

colamd approximate minimum degree
colmmd multiple minimum degree

colperm sort columns by number of nonzeros
symamd symmetric approximate min. degree
symmmd symmetric multiple minimum degree
symrcm reverse Cuthill-McKee

The first three find a column ordering of A and are best
used for Tu or gr. The next three are primarily for chol
and return an ordering to be applied symmetrically to

both the rows and columns of a symmetric matrix A (they
can also be used for unsymmetric matrices). Finding the
best ordering is so difficult that it is practically impossible
for most matrices. Fast non-optimal heuristics are used
instead, which means that no one method is always the
best. MATLAB uses colmmd and symmmd by default in

© 2002 by CRC Press LLC

x=A\b, athough coTamd and symamd tend to be faster
and find better orderings.

Create the try_Tu function, which also illustrates the use
of permutation vectors, the spy, subplot, normest, and
etreeplot functions, and how to get a close estimate of
the flop count for LU factorization if we assume that all
zeros are taken advantage of:

function try_lu (A, method, issym)
% sparse LU factorization of A
figure (1)
clf reset
subplot (2, 2, 1)
spy_(A) :
title ('original matrix A')
t = cputime ;
if (narg1n > 2)
spones (A) + spones (A') ;
p feval (method, S) ;
A (p,p) ;
elseif (narg1n > 1)
q feval (method, A) ;
A=A (,9 ;
end
torder = cputime - t
subplot (2, 2, 2)
spy_(A)]
title ('Permuted matrix A')
t = cputime ;
[L, U, P] = Tu (A ;
tlu = cputime - t
total = torder + tlu
subplot (2, 2, 3)
spy_ (L+U)
title ('LU factors')
normest (L*U-P*A)
Lhz = full (sum (spones (L))) - 1 ;
Unz = full (sum (spones (U')))' - 1 ;
flop_count = 2*Lnz*Unz + sum (Lnz)
subplot (2, 2, 4)

© 2002 by CRC Press LLC

S = spones (A) ;
etreeplot (S'*S)_]
title ('column elimination tree')

Next, try this, which evaluates the quality of several
ordering methods with a sparse matrix from a chemical
process simulation problem:

load west0479 ;

A = west0479 ;

try_lu (A)

try_Tu (A, @colperm)
try_lu (A, G@symrcm, 1)
try_Tu (A, @colmmd)
try_Tu (A, @colamd)

See how much sparsity helped by trying this (the flop
count will be wrong, though):

try_Tu (full (A))
13.5 Visualizing matrices

The previous section gave an example of how to use spy
to plot the nonzero pattern of a sparse matrix. spy can
also be used on full matrices. It isuseful for matrix
expressions coming from relational operators. Try this,
for example (see Chapter 7 for the ddom function):

A=
-1

-4
0
1
1

wRo
AN
RO W

-]
C = ddom (A)
figure (2)

spy (A ~=_O)
spy (A > 2)

© 2002 by CRC Press LLC

What you seeis a picture of where A and ¢ differ, and
another picture of which entries of A are greater than 2.

14. The Symbolic Math Toolbox

The Symbolic Math Toolbox, which utilizes the Maple V
kernel asits computer algebra engine, lets you perform
symbolic computation from within MATLAB. Under

this configuration, MATLAB'’s numeric and graphic
environment is merged with Maple’s symbolic
computation capabilities. The toolbox M-files that access
these symbolic capabilities have names and syntax that
will be natural for the MATLAB user. Key features of the
Symbolic Math Toolbox are included in the Student
Version of MATLAB. Since the Symbolic Math Toolbox
is not part of the Professional Version of MATLAB, it
may not be installed on your system, in which case this
Chapter will not apply.

Many of the functions in the Symbolic Math Toolbox
have the same names as their numeric counterparts.
MATLAB selects the correct one depending on the type
of inputs to the function. TypinigeTp eig andhelp
sym/eig displays the help for the numeric eigenvalue
function and its symbolic counterpart, respectively.

14.1 Symbolic variables

You can declare a variable as symbolic withghas
statement. For example,

syms X
creates a symbolic variabke The statement:

syms X real

© 2002 by CRC Press LLC

declaresto Maple that x isasymbolic variable with no
imaginary part. Maple hasits own workspace. The
statements clear or cTear x do not undo this
declaration, because it clears MATLAB's variable x but
not Maple'svariable s. Use syms x unreal, which
declares to Maple that x may now have a nonzero
imaginary part. Theclear all statement clearsall
variablesin both MATLAB and Maple, and thus also
resetsthe real or unreal statusof x. You can also
assert to Maple that x is always positive, with syms x
positive.

Symboalic variables can be constructed from existing
numeric variables using the sym function. Try:

1/10

sym (z2)

rand (1)

sym (Cy, 'd")

OT< o N

although a better way to create a is:
a =sym ('1/10")

The syms command and sym function have many more
options. Seehelp syms and help sym.

14.2 Calculus

The function di ff computes the symbolic derivative of a
function defined by a symbolic expression. First, to
define a symbolic expression, you should create symbolic
variables and then proceed to build an expression as you
would mathematically. For example,

© 2002 by CRC Press LLC

syms X
f = xA2 * exp (X)
diff (f)

creates a symbolic variable x, builds the symbolic
expression f = x* €, and returns the symbolic derivative of
f with respect to x: 2*x*exp (x)+xA2*exp(x) in
MATLAB notation. Try it.

Next,

syms t
diff (sin (pi*t))
returns the derivative of sin(mt), asafunction of t.

Partial derivatives can also be computed. Try the
following:

syms X y
g = X¥y + XxA2

diff (g) % computes dg/ox
diff (g, x) % also dg/ox
diff (g, y) % 0g/dy

To permit omission of the second argument for functions
such as the above, MATLAB chooses adefault symbolic
variable for the symbolic expression. The findsym
function returns MATLAB'’s choice. lts rule is, roughly,
to choose that lower case letter, other than ijanbarest
x in the alphabet.

You can, of course, override the default choice as shown
above. Try, for example,

syms x1 x2 theta
F=x% (xX1*x2 + x1 - 2)

© 2002 by CRC Press LLC

diff (F) % OF /0x

diff (F, x1) % OF/ox1
diff (F, x2) % OF/9x2

G = cos (theta*x)

diff (G, theta) % 0G/0theta

The second derivative, for example, can be obtained by
the command:

diff (sin (2*x), x, 2)

With anumeric argument, d1i ff is the difference operator
of basic MATLAB, which can be used to numerically
approximate the derivative of afunction. Seehelp diff
for the numeric function, and help sym/di ff for the
symbolic derivative function.

The function int attempts to compute the indefinite
integral (antiderivative) of afunction defined by a
symbolic expression. Try, for example,

syms a b t x y z theta

int (sin (a*t + b))

int (sin (a*theta + b), theta)
int (X*yA2 + y*z, y)

int (xA2 * sin (X))

Note that, as with di ff, when the second argument of
int is omitted, the default symbolic variable (as selected
by findsym) is chosen as the variable of integration.

In someinstances, int will be unable to givearesult in
terms of elementary functions. Consider, for example,

int (exp (-xA2))
int (sqrt (1 + xA3))

© 2002 by CRC Press LLC

In the first case the result is given in terms of the error
function erf, whereasin the second, the result isgivenin
terms of E114 pticF, afunction defined by an integral.

The function pretty will display a symbolic expression
in an easier-to-read form resembling typeset mathematics
(see Tatex, ccode, and fortran for other formats).
Try, for example,

syms x a b

f = x/(a*x+b)
pretty (f)

g = int (f)
pretty (g9)
Tatex (g)
ccode (g)
fortran (g)

int (g)
pretty (ans)

Definite integrals can also be computed by using
additional input arguments. Try, for example,

int (sin (x), 0, pi)
int (sin (theta), theta, 0, pi)

In the first case, the default symbolic variable x was used
as the variable of integration to compute;
n.
J’S n xdx
0
whereas in the second theta was chosen. Other definite
integrals you can try are:

int (xAS5, 1, 2)
int (Tog (xX), 1, 4)

© 2002 by CRC Press LLC

int (x * exp (x), 0, 2)
int (exp (-xA2), 0, inf)

It isimportant to realize that the results returned are
symbolic expressions, not numeric ones. The function
doubTe will convert these into MATLAB floating-point
numbers, if desired. For example, the result returned by
thefirst integral aboveis21/2. Entering double(ans)
then returnsthe MATLAB numeric result 10. 5000.

Alternatively, you can use the function vpa (variable
precision arithmetic; see Section 14.3) to convert the
expression into a symbolic number of arbitrary precision.
For example,

int (exp (-xA2), 0, inf)
givesthe result:
1/2%pin(l/2)
Then the statement:
vpa (ans, 25)
symbolically gives the result to 25 significant digits:
.8862269254527580136490835

Y ou may wish to contrast these techniques with the
MATLAB numerical integration functions quad and
quad8.

The Tim1it function is used to compute the symbolic
limits of various expressions. For example,

© 2002 by CRC Press LLC

syms h n
'I1m1t ((1 + x/n)An, n, inf)

computes the limit of (1 + x/n)" asn- . You should
asotry:

Timit (sin (X, x, 0)
Timit ((sin(x+h)- s1n(x))/h h, 0)

The taylor function computes the Maclaurin and Taylor
series of symbolic expressions. For example,

taylor (cos (x) + sin (X))

returns the 5™ order Maclaurin polynomial approximating
cos(x) + sin(x). The command,

taylor (cos (xA2), 8, x, pi)

returns the 8" degree Taylor approximation to cos(x?)
centered at the point xg= Tt

14.3 Variable precision arithmetic
Three kinds of arithmetic operations are available;

numeric MATLAB's floating-point arithmetic
rational Maple’s exact symbolic arithmetic
VPA Maple’s variable precision arithmetic

One can obtain exact rational results with, for example,
s = simple (sym ('13/17 + 17/23"'))

You are already familiar with numeric computations. For
example, withformat long,

pi*log(2)

© 2002 by CRC Press LLC

givesthe numeric result:

2.17758609030360

MATLAB'’s numeric computations are done in
approximately 16 decimal digit floating-point arithmetic.
With vpa, you can obtain results to arbitrary precision,
within the limitations of time and memory. For example,

try:

vpa ('pi * log (2)')
vpa ('pi * log (2)', 50)

The default precision forpa is 32. Hence, the first result

is accurate to 32 digits, whereas the second is accurate to
the specifiedb0 digits® The default precision can be
changed with the functiodigits. While the rational

and VPA computations can be more accurate, they are in
general slower than numeric computations.

If you pass an expressiontpa, MATLAB will evaluate
it numerically first, unless it is a symbolic expression or
placed in quotes. Compare your results, above, with:

vpa (pi * log (2))

which is accurate to only about 16 digits (even though 32
digits are displayed). This is a common mistake with the
use ofvpa and the Symbolic Math Toolbox in general.

® Ludolf van Ceulen (1540-1610) calculated 7 to 36 digits. The
Symbolic Math Toolbox can quite easily compute x to 10,000
digitsor more. Try vpa('pi',10000).

© 2002 by CRC Press LLC

14.4 Numeric evaluation

Once you have a symbolic expression, you can evaluate it
numerically with the eval function. Try:

syms X

F = xA2 * sin (X)
G = diff (F)

H = vectorize (G)
Xx = 0:.1:

eval (H)

The vectorize function allowsH to be evaluated with a
vector x. Alsotry:

syms X y
S = XAy

X = 3
eval (S)
y =2
eval (S)

The eval function returns a symbolic expression unless
all of the variables are numeric.

14.5 Algebraic simplification

Convenient algebraic manipulations of symbolic
expressions are available.

The function expand distributes products over sums and
applies other identities, whereas factor attemptsto do
thereverse. Thefunction collect viewsasymbolic
expression as a polynomial in its symbolic variable
(which may be specified) and collects al terms with the
same power of the variable. To explore these capabilities,
try the following:

© 2002 by CRC Press LLC

syms a b x

expand ((a + b)AS)

factor (ans)

expand (exp (x + y))

expand (sin (x + 2*y))

factor (xA6 - 1)

collect (x * (x * (X + 3) +5) + 1)
horner (ans)

collect (X +y + 2)*(x -y - Z))
collect ((x +y + 2)*(X -y - 2), VY)
collect (X +y + 2)*(X -y - 2), z2)
diff (xA3 * exp (X))

factor (ans)

The powerful function simp11ify applies many identities
in an attempt to reduce a symbolic expression to asimple
form. Try, for example,

simplify (sin(x)A2 + cos(x)A2)
simplify (exp (5*Tog(x) + 1))
d = diff ((xA2 + 1)/ (xA2 - 1))
s1mp11fy ()]

The aternate function simp1e computes several
simplifications and chooses the shortest of them. It often
gives better results on expressions involving
trigonometric functions. Try the following commands:

simplify(cos(x) + (-sin(x)A2)A(1/2))
simple (cos(x) + (-sin(x)A2)A(1/2))
simplify((1/xA3+6/xA2+12/x+8)A(1/3))
simple ((1/xA3+6/xA2+12/x+8)A(1/3))

The function subs replaces all occurrences of the
symbolic variable in an expression by a specified second
expression. This corresponds to composition of two
functions. Try, for example,

© 2002 by CRC Press LLC

syms X s t

subs (sin(x), x, pi/3)

subs (sin(x), x, sym (pi)/3)
double (ans)

subs (g*tA2/2, t, sqrt(2%s))

subs (sqrt(1-xA2), x, cos(x))
subs (sqrt(1-xA2), 1-xA2, cos(x))

The general ideaisthat in the statement

subs (expr,old, new) the third argument (new)
replaces the second argument (o1d) in the first argument
(expr). Compare the first two examples above. The
result isnumeric if al variables in the expression are
substituted with numeric values.

The function factor can also be applied to an integer
argument to compute the prime factorization of the
integer. Try, for example,

factor (sym ('4248'))
factor (sym ('4549319348693'))
factor (sym ('4549319348597"'))

14.6 Graphs of functions

The MATLAB function fplot (see Section 10.3)
provides atool to conveniently plot the graph of a
function. Sinceitis, however, the name or handle of the
function to be plotted that is passed to fplot, the
function must first be defined in an M-file (or else be a
built-in function or inline function).

In the Symbolic Math Toolbox, ezplot lets you plot the
graph of afunction directly from its defining symbolic
expression. For example, try:

syms t X
ezplot (sin (2*x))

© 2002 by CRC Press LLC

ezplot (t + 3*sin(t))
ezplot (2*x/(xA2 - 1))
ezplot (1/(1 + 30*exp(-x)))

By default, the x-domainis [-2*pi, 2*pi]. Thiscan
be overridden by a second input variable, as with:

ezplot(x*sin(1/x), [-.2 .21)

Y ou will often need to specify the x-domain and y-
domain to zoom in on the relevant portion of the graph.
Compare, for example,

ezplot (x*exp(-x))
ezplot (x*exp(-x), [-1 41)

ezplot attempts to make a reasonable choice for the y-
axis. With thelast figure, select Edit » Axes
Properties in the Figure window and modify the y-axis
to start at -3, and click OK. Changing the x-axisin the
Property Editor does not cause the function to be
reevaluated, however.

Entering the command funtooT (no input arguments)
brings up three graphic figures, two of which will display
graphs of functions and one containing a control panel.
This function calculator lets you manipulate functions and
their graphs for pedagogical demonstrations. Type help
funtool for details.

14.7 Symbolic matrix operations

This toolbox lets you represent matrices in symbolic form
as well as MATLAB’s numeric form. Given the numeric
matrix:

a = magic (3)

© 2002 by CRC Press LLC

the function sym(a) converts a to the symbolic matrix.
Try:

A = sym (a)
Theresultis:

[8, 1, 6]

[3, 5, 7]

[4, 9, 2]

The function numeric(A) converts the symbolic matrix
back to a numeric one.

Symbolic matrices can also be generated by sym. Try, for
example,

mxm
I IIS

b s
[:+ b, a-bj;b-a, a+bl]
[cos(s), sin(s); -sin(s), cos(s)]

Here G is a symbolic Givens rotation matrix.

Algebraic matrix operations with symbolic matrices are
computed as you would in MATLAB.

K+G matrix addition

K-G matrix subtraction

K*G matrix multiplication

inv(G) matrix inversion

K/G right matrix division

K\G left matrix division

GA2 power

G.' transpose

G' conjugate transpose (Hermitian)

© 2002 by CRC Press LLC

These operations are illustrated by the following, which
use the matrices K and G generated above:

L = KA2

collect (L)

factor (L)

diff (L, a)

int (K, a)

J = K/G

simplify (3*G)
simplify (G*(G."))

Note that the initial result of the basic operations may not
be in the form desired for your application; so it may
require further processing with simpT1ify, collect,
factor, or expand. Thesefunctions, aswell asdiff
and int, act entry-wise on a symbolic matrix.

14.8 Symbolic linear algebraic functions
The primary symbolic matrix functions are:

det determinant

. transpose

! Hermitian (conjugate transpose)
inv inverse

null basis for nullspace

colspace basisfor column space

eig eigenvalues and eigenvectors
poly characteristic polynomial

svd singular value decomposition
jordan Jordan canonical form

These functions will take either symbolic or numeric
arguments.

© 2002 by CRC Press LLC

Computations with symbolic rational matrices can be
carried out exactly. Try, for example,

c = floor (10*rand(4))
D = sym (c)

A = 1inv (D)

inv (A)

det (A)

b = ones (1,4)

X = b/A

X*A

AA3

These functions can, of course, be applied to genera
symbolic matrices. For the matricesk and G defined in
the previous section, try:

inv (K)
simpTify (inv (G))
p = poly (G)
simplify (p)
factor (p)
X = solve (p)
for j = 1:4
X = simple (X)
end
pretty (X)
e = eig (G)
for j = 1:4
e = simple (e)
end
pretty (e)
y = svd (G)
for j = 1:4
y = simple (y)
end
pretty (y)
syms s real
r = svd (G)
r = simple (r)

© 2002 by CRC Press LLC

pretty (r)
syms s unreal

See Section 14.9 on the soTve function.

A typical exercisein alinear algebra courseisto
determine those values of t so that, say,

A=[tl10;1tl1;01t]
issingular. The following simple computation:
A=[t10;1tl1;01*t]

p = det (A)
solve (p)

shows that this occurs for t = 0, V2, and V-2.

The function ei g attempts to compute the eigenvalues
and eigenvectorsin an exact closed form. Try, for
example,

4:6

A = sym (magic (n))
[v, D] = eig (A)

for n

end

Except in special cases, however, the result is usually too
complicated to be useful. Try, for example, executing:

A = sym (floor (10 * rand (3)))
[v, b] = eig (A)

afew times. For thisreason, it is usually more efficient to
do the computation in variable-precision arithmetic, asis
illustrated by:

© 2002 by CRC Press LLC

A = vpa (floor (10 * rand(3)))
[v, D] = eig (A)

The comments above regarding eig apply as well to the
computation of the singular values of amatrix by svd, as
can be observed by repeating some of the computations
above using svd instead of eig.

14.9 Solving algebraic equations

For asymbolic expression s, the statement soTve(S)
will attempt to find the values of the symbolic variable for
which the symbolic expression is zero. If an exact
symbolic solution isindeed found, you can convert it to a
floating-point solution, if desired. If an exact symbolic
solution cannot be found, then a variable precision oneis
computed. Moreover, if you have an expression that
contains several symbolic variables, you can solve for a
particular variable by including it as an input argument in
solve. Theinputsto solve can be quoted strings or
symbolic expressions.

Try these symbolic expressions, for example:

syms X y z
X = solve (cos(x) + tan(x))

pretty (X)

double (X)

vpa (X)

Y = solve (cos(x) - x)

Z = solve (xA2 + 2*x - 1)

pretty (2)

a = solve (XA2 + yA2 + zA2 + Xx*y*Zz)
pretty (a)

b = solve (xA2 + yA2 + zA2 + X*y*z, y)
pretty (b)

© 2002 by CRC Press LLC

Theresult a isasolutioninthe variable x, and b isa
solution iny. To solve an equation whose right-hand side
isnot 0, use aquoted string. Some examples are:

X = solve ('Tog(x) = x - 2")
vpa (X)

X = solve ('"2Ax = x + 2")
vpa (X)

This solves for the variable a:

A = solve ('1 + (a+b)/(a-b) = b', 'a")
and this solves the same equation for b:
f = solve ('1 + (a+b)/(a-b) = b', 'b")

The function solve can also compute the solutions of
systems of general algebraic equations. To solve, for
example, the nonlinear system below, it is convenient to
first express the equations as strings.

S1 = "XA2 + yA2 + zA2 = 2!
S2 ="'x+y=1"
S3="'y+z=1"

The solutions are then computed by:

[X, Y, Zz] = solve (Ss1, S2, S3)
If you alter S2 to:

S2 ="'x+y+2z=1"
then the solution computed by:

[X, Y, z] = solve (Ss1, S2, S3)

© 2002 by CRC Press LLC

will be given in terms of square roots.

The solve function can take quoted strings or symbolic
expressions as input arguments, but you cannot mix the
two types of inputs.

14.10 Solving differential equations

The function dso1ve attempts to solve ordinary
differential equations. The symbolic differential operator
iSD, so that:

Y = dsolve ('Dy = xA2%y', 'x")

produces the solution c1*exp (1/3*xA3) to the
differential equationy’ = x*y. The solution to an initial
value problem can be computed by adding a second
symbolic expression giving theinitial condition.

Y = dsolve ('Dy = xA2*y', 'y(0)=4', 'x")

Notice that in both examples above, the final input

argument, 'x ', isthe independent variable of the

differentia equation. If no independent variableis

supplied to dsolve, thenitisassumedtobe t. The

higher order symbolic differential operatorsp2, D3, ...

can be used to solve higher order equations. Explore the
following:

dsolve ('D2y + y =0")

dsolve ('D2y + y = xA2', 'x")

dsolve ('D2y + y = xA2', ...
'y(0) = 4", 'Dy(0) = 1", 'x")

dsolve ('D2y - Dy = 2*y')

dsolve ('D2y + 6*Dy = 13*y')

Y = dsolve ('D2y + 6*Dy + 13*y =

cos(t)")
Y = simple (Y)

© 2002 by CRC Press LLC

dsolve ('D3y - 3*Dy = 2*y')
pretty (ans)

Systems of differential equations can aso be solved. For
example,

El = 'DXx = -2*X + y'
E2 = 'Dy = x - 2%y + z'
E3 = 'Dz =y - 2%Z'

The solutions are then computed with:

[x, vy, z] = dsolve (E1l, E2, E3)
pretty (x)
pretty (y)
pretty (z)

Y ou can explore further details with help dsoTve.

14.11 Further Maple access

The following features are not available in the Student
Version of MATLAB.

Over 50 specia functions of classical applied

mathematics are available in the Symbolic Math Toolbox.
Enter heTp mfunTist to seealist of them. These
functions can be accessed with the function mfun, for
which you are referred to help mfun for further details.
ThemapT1e function allows you to use expressions and
programming constructs in Maple's native language,

which gives you full accessto Mapl€e's functionality. See
help maple, or mhelp top7c, which displays Maple’s
help text for the specified topic. The Extended Symbolic
Math Toolbox provides access to a number of Maple’s
specialized libraries of procedures. It also provides for
use of Maple programming features.

© 2002 by CRC Press LLC

15. Help topics

There are many MATLAB functions and features that
cannot be included in this Primer. Listed in the following
tables are some of the MATLAB functions and operators,
grouped by subject area.® Y ou can browse through these
lists and use the online help facility, or consult the online
documents MATLAB Functions: Volumes 1 through 3 for
more detailed information on the functions, operators, and
special characters.

Typing help at the MATLAB command prompt will
provide alisting of the major MATLAB directories,
similar to the following table. Typing help top7c,
where top7cisan entry in the left column of the table,
will display a description of the topic. For example,
help general will display on your Command window a
plain text version of Section 15.1. Typing help ops will
display Section 15.2, starting on page 99, and so on.

Each topic is discussed in a single subsection. The page
number for each subsection is also listed in the following
table.

®Source: MATLAB 6.1 help command, Release R12.1.

© 2002 by CRC Press LLC

Help topics page
general General purpose commands 96
ops Operators and special characters 99
Tang Programming language constructs 101
elmat El ementary matrices and matrix 104
manipulation
elfun Elementary math functions 106
specfun Specialized math functions 108
matfun Matrix functions—-numerical linear 110
algebra
datafun Data analysis and Fourier 112
transforms
audio Audio support 113
polyfun Interpolation and polynomials 115
funfun Function functions and ODE 116
solvers
sparfun Sparse matrices 119
graph2d Two-dimensional graphs 121
graph3d Three-dimensional graphs 122
specgraph | Specialized graphs 125
graphics Handle Graphics 129
uitools Graphical user interface tools 131
strfun Character strings 134
iofun File input/output 136
timefun Time and dates 139
datatypes Data types and structures 140
verctrl Version control 143
winfun Microsoft Windows Inteidice Files 144
demos Examples and demonstrations 144
Tocal Preferences 144
symbolic Symbolic Math Toolbox 145

© 2002 by CRC Press LLC

15.1 General

help general

General information

helpbrowser

Bring up the help browser

Complete online help, displayed in the

doc help browser (helpdesk inVersion
6.0)
M-file help, displayed in the Command
help .
window
helpwin M-file help, displayed in the help
browser
Tookfor Search al M-files for keyword
syntax Help on MATLAB command syntax
support Open MathWorks technical support web
page
demo Run demonstrations
MATLAB, Simulink, and toolbox
ver Nl .
version information
version MATLAB version information
whatsnew Access rel ease notes

Managing the workspace

who List current variables

whos List current variables, long form

workspace Display Workspace window

clear Clear variables and functions from
memory

pack Consolidate workspace memory

Toad Load workspace variables from disk

save Save workspace variables to disk

quit Quit MATLAB session

© 2002 by CRC Press LLC

Managing com

mands and functions

what

List MATLAB-gpecific filesin directory

type List M-file

edit Edit M-file

open Open files by extension

which Locate functions and files

pcode ﬁlr;ate pre-parsed pseudo-code file (P-
inmem List functionsin memory

mex Compile MEX-function

Managing the search path

path Get/set search path

addpath Add directory to search path

rmpath Remove directory from search path
pathtool Modify search path

rehash Refresh function and file system caches
import Import Java packages into the current

scope

Controlling the Command window

echo Echo commands in M-files

more Cpntrol paged output in Command
window

diary Save text of MATLAB session

format Set output format

beep Produce beep sound

Operating syst

em commands

cd

Change current working directory

copyfile Copy afile

pwd Show (print) current working directory
dir List directory

delete Deletefile

(continued on next page)

© 2002 by CRC Press LLC

Operating syst

em commands (continued)

getenv Get environment variable

mkdir Make directory

! Execute operating system command

dos Execute DOS command and return result

unix Execute Unix command and return result

system Execute system command and return
result

web Open web browser on site or files

computer Computer type

isunix True for the Unix version of MATLAB

ispc True for the Windows version of

MATLAB

Debugging M-files

debug List debugging commands
dbstop Set breakpoint

dbclear Remove breakpoint

dbcont Continue execution

dbdown Change local workspace context
dbstack Display function call stack
dbstatus List all breakpoints

dbstep Execute one or more lines
dbtype List M-file with line numbers
dbup Change local workspace context
dbquit Quit debug mode

dbmex Debug MEX-files (Unix only)
Profiling M-files

profile Profile function execution time
profreport Generate profile report

© 2002 by CRC Press L|

LC

Locate dependent functions of an M-file

depfun L ocate dependent functions of an M-file
depdir :c_”oecate dependent directories of an M-
inmem List functions in memory

15.2 Operators and special characters

help ops

Arithmetic operators (help arith, help slash)
plus Plus +
uplus Unary plus +
minus Minus -
uminus Unary minus -
mtimes Matrix multiply ¥
times Array multiply
mpower Matrix power A
power Array power A
mldivide left matrix divide \
mrdivide right matrix divide /
Tdivide Left array divide A\
rdivide Right array divide -/
kron Kronecker tensor product kron

Relational operators (help relop)

eq Equal ==
ne Not equal ~=
Tt Less than <
gt Greater than >
le Less than or equal <=
ge Greater than or equal >=

© 2002 by CRC Press LLC

Logical operators

and Logica AND &
or Logical OR |
not Logical NOT ~
xor Logica EXCLUSIVE OR

any Trueif any element of vector is nonzero
all Trueif all elements of vector are nonzero

Special characters

colon Colon :
paren Parentheses and subscripting ()
paren Brackets []
paren Braces and subscripting {1}
punct Function handle creation @
punct Decimal point

punct Structure field access

punct Parent directory

punct Continuation

punct Separator)
punct Semicolon ;
punct Comment %
punct Invoke operating system command | !
punct Assignment =
punct Quote

transpose | Transpose -
ctranspose | Complex conjugate transpose '
horzcat Horizontal concatenation [,]
vertcat Vertical concatenation [;]
subsasgn Subscripted assignment g %
subsref Subscripted reference E %
subsindex | Subscript index

© 2002 by CRC Press LLC

Bitwise operators

bitand Bit-wise AND

bitcmp Complement bits

bitor Bit-wise OR

bitmax Maximum floating-point integer
bitxor Bit-wise EXCLUSIVE OR
bitset Set hit

bitget Get bit

bitshift Bit-wise shift

Set operators

union Set union

unique Set unique
intersect Set intersection
setdiff Set difference
setxor Set exclusive-or
ismember True for set member

15.3 Programming language constructs
help Tang

Control flow

if Conditionally execute statements

else if statement condition

elseif if statement condition

end Terminate scope of for, while,
switch, try and if statements

for Repeat statements a specific number of
times

. Repeat statements an indefinite number

while :
of times

break l'l;ggninate execution of while or for

(continued on next page)

© 2002 by CRC Press LLC

Control flow (continued)

Pass control to the next iteration of for

continue .
or while loop

switch Switch among severa cases based on
expression

case switch statement case

otherwise Default switch statement case

try Begin try block

catch Begin catch block

return Return to invoking function

Evaluation and execution

Execute string with MATLAB

eval ;
expression
evalc Evaluate MATLAB expression with
capture
feval Execute function specified by string
evalin Evaluate expression in workspace
N Execute built-in function from
builtin overloaded method
assignin Assign variable in workspace
run Run script

Scripts, functions, and variables

script About MATLAB scripts and M-files
function Add new function
global Define global variable
persistent Define persistent variable
mfilename Name of currently executing M-file
Tists Comma separated lists

. Check if variables or functions are
exist defined
isglobal True for global variables
mlock Prevent M-file from being cleared

(continued on next page)

© 2002 by CRC Press LLC

Scripts, functions, and variables (cont.)

munlock Allow M-file to be cleared
mislocked Trueif M-file cannot be cleared
precedence Operator precedencein MATLAB
isvarname Check for avalid variable name
iskeyword Check if input is a keyword

Argument handling

nargchk Validate number of input arguments
nargoutchk Validate number of output arguments
nargin Number of function input arguments
nargout Number of function output arguments
varargin Variable length input argument list
varargout Variable length output argument list
inputname Input argument name

Message display

error Display error message and abort function
warning Display warning message

lasterr Last error message

Tastwarn Last warning message

disp Display an array

display Overloaded function to display an array
fprintf Display formatted message

sprintf Write formatted data to a string

Interactive input

input Prompt for user input
keyboard Invoke keyboard from M-file
pause Wait for user response
uimenu Create user interface menu
uicontrol Create user interface control

© 2002 by CRC Press LLC

15.4 Elementary matrices and matrix

manipulation

help elmat
Elementary matrices
zeros Zeros array
ones Ones array
eye Identity matrix
repmat Replicate and tile array
rand Uniformly distributed random numbers
randn Normally distributed random numbers
Tinspace Linearly spaced vector
Togspace Logarithmically spaced vector
fregspace Frequency spacing for frequency
response
meshgrid x and y arrays for 3-D plots

Regularly spaced vector and index into
matrix

Basic array information

size Size of matrix

Tength Length of vector

ndims Number of dimensions

nume] Number of elements

disp Display matrix or text

isempty True for empty matrix

isequal Trueif arrays are identical
isnumeric True for numeric arrays
islogical True for logical array

Togical Convert numeric values to logical

© 2002 by CRC Press LLC

Matrix manipul

ation

reshape Change size
diag Diagona matrices; diagonals of matrix
bTkdiag Block diagona concatenation
tril Extract lower triangular part
triu Extract upper triangular part
fliplr Flip matrix in |eft/right direction
f1ipud Flip matrix in up/down direction
flipdim Flip matrix along specified dimension
rot90 Rotate matrix 90 degrees
Regularly spaced vector and index into
matrix
find Find indices of nonzero elements
end Last index
sub2ind Linear index from multiple subscripts
ind2sub Multiple subscripts from linear index

Special variabl

es and constants

ans

Most recent answer

eps Floating-point relative accuracy
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
pi 3.1415926535897...

i, J Imaginary unit

inf Infinity

NaN Not-a-Number

isnan True for Not-a-Number

isinf True for infinite elements

isfinite True for finite elements

why Succinct answer

© 2002 by CRC Press L|

LC

Specialized matrices

compan Companion matrix
gallery Higham test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse Hilbert matrix
magic Magic square
pascal Pascal matrix
Classic symmetric eigenvalue test
rosser
problem
toeplitz Toeplitz matrix
vander Vandermonde matrix
wilkinson Wilkinson's eigenvalue test matrix

15.5 Elementary math functions

help elfun
Trigonometric
sin Sine
sinh Hyperbolic sine
asin Inverse sine
asinh Inverse hyperbolic sine
cos Cosine
cosh Hyperbolic cosine
acos Inverse cosine
acosh Inverse hyperbolic cosine
tan Tangent
tanh Hyperbolic tangent
atan Inverse tangent
atan?2 Four quadrant inverse tangent
atanh Inverse hyperbolic tangent
sec Secant
sech Hyperbolic secant

(continued on next page)

© 2002 by CRC Press LLC

Trigonometric (continued)

asec Inverse secant
asech Inverse hyperbolic secant
csc Cosecant
csch Hyperbolic cosecant
acsc Inverse cosecant
acsch Inverse hyperbolic cosecant
cot Cotangent
coth Hyperbolic cotangent
acot Inverse cotangent
acoth Inverse hyperbolic cotangent
Exponential
exp Exponential
Tog Natural logarithm
Togl0 Common (base 10) logarithm
1 Base 2 logarithm and dissect floating-
0g2 .
point number
Base 2 power and scal e floating-point
pow2
number
sqrt Square root
nextpow?2 Next higher power of 2
Complex
abs Absolute value
angle Phase angle
Construct complex data from real and
complex) 8
imaginary parts
conj Complex conjugate
imag Complex imaginary part
real Complex real part
unwrap Unwrap phase angle
isreal True for real array
cplxpair Sort numbers into complex conjugate

pairs

© 2002 by CRC Press LLC

Rounding and remainder

fix Round towards zero
floor Round towards minus infinity
ceil Round towards plus infinity
round Round towards nearest integer
Modulus (signed remainder after
mod S
division)
rem Remainder after division
sign Signum

15.6 Specialized math functions

help specfun

Specialized math functions

airy Airy functions

besselj Bessel function of the first kind

bessely Bessel function of the second kind

besselh Bessgl function of the third kind (Hankel
function)

bessald mr(])gified Bessel function of thefirst

bessalk Modified Bessal function of the second
kind

beta Beta function

betainc Incomplete beta function

betaln Logarithm of beta function

ellipj Jacobi éliptic functions

ellipke Complete eliptic integral

erf Error function

erfc Complementary error function

erfcx Scaled complementary error function

erfinv Inverse error function

expint Exponential integral function

gamma Gamma function

(continued on next page)

© 2002 by CRC Press LLC

Specialized math functions (continued)

gammainc Incomplete gamma function
gammaln Logarithm of gamma function
Tegendre Associated Legendre function
cross Vector cross product

dot Vector dot product

Number theoretic functions

factor Prime factors

isprime True for prime numbers

primes Generate list of prime numbers

gcd Greatest common divisor

Tcm Least common multiple

rat Rational approximation

rats Rational output

perms All possible permutations

nchoosek All cpmbinations of N elements taken K
atatime

factorial Factorial function

Coordinate transforms

Transform Cartesian to spherical

2sph !

cartesp coordinates

cart2pol Transform Cartesian to polar coordinates

pol2cart Transform polar to Cartesian coordinates

sph2cart Transform spherical to Cartesian
coordinates

hsv2rgb Convert hue-saturation-value colors to
red-green-blue

rgb2hsv Convert red-green-blue colors to hue-

saturation-value

© 2002 by CRC Press LLC

15.7 Matrix functions — numerical

linear algebra
help matfun

Matrix analysis

norm

Matrix or vector norm

normest Estimate the matrix 2-norm
rank Matrix rank

det Determinant

trace Sum of diagonal elements
null Null space

orth Orthogonalization

rref Reduced row echelon form
subspace Angle between two subspaces

Linear equations

Linear equation solution; use help

\ and/ slash

inv Matrix inverse

rcond LAPACK reciprocal condition estimator

cond .Condi.ti on number with respect to
inversion

condest 1-norm condition number estimate

normestl 1-norm estimate

chol Cholesky factorization

cholinc Incomplete Cholesky factorization

Tu LU factorization

Tuinc Incomplete LU factorization

qr Orthogonal -triangular decomposition

1sqnonneg Linear Ieast sguares with nonnegativity
constraints

pinv Pseudoinverse

Tscov Least squares with known covariance

© 2002 by CRC Press LLC

Eigenvalues and singular values

eig Eigenvalues and eigenvectors

svd Singular value decomposition

gsvd Generalizgq singular value
decomposition

eigs A few eigenvalues

svds A few singular values

poly Characteristic polynomial

polyeig Polynomial eigenvalue problem

condeig Qonditi on number with respect to
eigenvalues

hess Hessenberg form

qz QZ factorization for generalized
eigenvalues

schur Schur decomposition

Matrix functions

expm Matrix exponential

Togm Matrix logarithm

sqrtm Matrix sguare root

funm Evaluate general matrix function

Factorization utilities

grdelete Delete column from QR factorization

grinsert Insert column in QR factorization

rsf2csf R_eal block diagonal form to complex
diagonal form

cdf2rdf C_omplex diagonal form to real block
diagonal form

balance Diagonal scaling to improve eigenvalue
accuracy

planerot Givens plane rotation

cholupdate rank 1 update to Cholesky factorization

grupdate rank 1 update to QR factorization

© 2002 by CRC Press LLC

15.8 Data analysis and Fourier

transforms
help datafun

Basic operations

max Largest component

min Smallest component

mean Average or mean value

median Median value

std Standard deviation

var Variance

sort Sort in ascending order
sortrows Sort rows in ascending order

sum Sum of elements

prod Product of elements

hist Histogram

histc Histogram count

trapz Trapezoidal numerical integration
cumsum Cumulative sum of elements
cumprod Cumulative product of elements
cumtrapz Cumul ative trapezoidal numerical

integration

Finite differences

diff Difference and approximate derivative
gradient Approximate gradient

del2 Discrete Laplacian

Correlation

corrcoef Correlation coefficients

cov Covariance matrix

subspace Angle between subspaces

© 2002 by CRC Press LLC

Filtering and convolution

filter One-dimensional digital filter

filter2 Two-dimensional digital filter

conv Conyol ution and polynomial
multiplication

conv2 Two-dimensional convolution

convn N-dimensional convolution

deconv Deconvolution and polynomia division

detrend Linear trend removal

Fourier transforms

fft Discrete Fourier transform

fft2 2-D discrete Fourier transform

Fftn N-dimensional discrete Fourier
transform

ifft Inverse discrete Fourier transform

ifft2 2-D inverse discrete Fourier transform

i Fftn N-dimensional inverse discrete Fourier
transform

Fftshift Shift zero-frequency component to
center of spectrum

ifftshift Inverse FFTSHIFT

15.9 Audio support

help audio

Audio input/output objects

audioplayer

Windows audio player object

audiorecorder

Windows audio recorder object

© 2002 by CRC Press LLC

Audio hardware drivers

sound Play vector as sound
soundsc Autoscale and play vector as sound

Play sound using Windows audio output
wavplay de?ilce 9 P
wavrecord Record sound using Windows audio

input device

Audio file import and export

auread Read NeXT/SUN (.au) sound file

auwrite Write NeXT/SUN (.au) sound file

wavread Read Microsoft WAVE (.wav) sound file

wavwrite Write Microsoft WAVE (.wav) sound file

Utilities

Tin2mu Convgrt linear signal to mu-law
encoding

mu2lin Convert mu-law encoding to linear

signal

Example audio

data (MAT files)

chirp Freguency sweeps

gong Gong

handel Hallelujah chorus
Taughter Laughter from a crowd
splat Chirp followed by a splat
train Train whistle

© 2002 by CRC Press LLC

15.10 Interpolation and polynomials

help polyfun

Data interpolat

ion

Piecewise cubic Hermite interpolating

pchip polynomial
interpl 1-D interpolation (table lookup)
interplq Quick 1-D linear interpolation
interpft 1-D interpolation using FFT method
interp2 2-D interpolation (table lookup)
interp3 3-D interpolation (table lookup)
interpn N-D interpolation (table lookup)
griddata Data gridding and surface fitting

. Data gridding and hyper-surface fitting
griddata3 for three-dimensiona data
griddatan Data gridding and hyper-surface fitting

(dimension>2)

Spline interpol

ation

spline

Cubic spline interpolation

ppval

Evaluate piecewise polynomial

Geometric analysis

delaunay Delaunay triangulation

delaunay3 3-D Delaunay tessellation

delaunayn N-D Delaunay tessellation

dsearch Search De_launay triangulation for
nearest point

dsearchn Search N-D Delaunay tessellation for
nearest point

tsearch Closest triangle search

tsearchn N-D closest triangle search

convhull Convex hull

convhulln N-D convex hull

voronoi Voronoi diagram

(continued on next page)

© 2002 by CRC Press LLC

Geometric analysis (continued)

voronoin N-D Voronoi diagram

inpoTygon True for pointsinside polygonal region

rectint Rectangle intersection area

polyarea Area of polygon

Polynomials

roots Find polynomial roots

poly Convert roots to polynomial

polyval Evaluate polynomial

polyvalm Evaluate polynomial with matrix
argument

residue Partial-fraction expansion (residues)

polyfit Fit polynomial to data

polyder Differentiate polynomia

polyint Integrate polynomia analytically

conv Multiply polynomials

deconv Divide polynomials

15.11 Function functions and ODE

solvers
help funfun

Optimization and root finding

fminbnd

Scalar bounded nonlinear function
minimization

fminsearch

Multidimensional unconstrained
nonlinear minimization

fzero

Scalar nonlinear zero finding

Optimization o

ption handling

optimset

Create or alter optimization options
structure

optimget

Get optimization parameters from

options structure

© 2002 by CRC Press LLC

Numerical integration (quadrature)

Numerically evaluate integral, low order

quad method

quad Numerically evaluate integral, higher
order method

dblquad Numerically evaluate doubleintegral

Plotting

ezplot Easy-to-use function plotter

ezplot3 Easy-to-use 3-D parametric curve plotter

ezpolar Easy-to-use polar coordinate plotter

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

ezmesh Easy-to-use 3-D mesh plotter

ezmeshc Easy-to-use mesh/contour plotter

ezsurf Easy-to-use 3-D colored surface plotter

ezsurfc Easy-to-use surf/contour plotter

fplot Plot function

Inline function

object

inline

Construct inT1ne function object

argnames Argument names
formula Function formula
char Convert inTine object to char. array

Differential equation solvers

Solve non-stiff differential equations,

ode45 medium order method

Solve non-stiff differential equations,
ode23

low order method

Solve non-stiff differential equations,
odell3 variable order method
ode23t Solve moderately stiff ODEs and DAEs

Index 1, trapezoidal rule

(continued on next page)

© 2002 by CRC Press LLC

Differential equation solvers (continued)

Solve stiff ODEs and DAEs Index 1,

odelss variable order method

Solve tiff differential equations, low
ode23s order method
ode23tb Solve stiff differential equations, low

order method

Boundary valu

e problem solver for ODEs

bvp4c

Solve two-point boundary value
problems for ODEs by collocation

1-D Partial differential equation solver

pdepe

Solve initial-boundary value problems
for parabolic-élliptic PDEs

Option handlin

g

odeset

Create/dter ODE options structure

odeget Get ODE options parameters
bvpset Create/dter BVP options structure
bvpget Get BVP options parameters

Input and outp

ut functions

Evaluates the solution of a differential

deval equation problem (replaces bvpval)

odeplot Time series ODE output function

odephas? 2-D phase plane ODE output function

odephas3 3-D phase plane ODE output function

odeprint Command window printing ODE output
function

bvpinit Forms theinitial guess for BVP4C

pdeval Evaluates by interpolation the solution
computed by PDEPE

odefile MATLAB v5 ODE file syntax (obsolete)

bvpval Evaluate solution (obsolete; use deval)

© 2002 by CRC Press L|

LC

15.12 Sparse matrices
help sparfun

Elementary sparse matrices

speye Sparse identity matrix

sprand ipa?:is):(e uniformly distributed random
sprandn ipa?:is):(e normally distributed random
sprandsym Sparse random symmetric matrix
spdiags Sparse matrix formed from diagonals

Full to sparse conversion

sparse Create sparse matrix

full Convert sparse matrix to full matrix

find Find indices of nonzero el ements

spconvert Import from sparse matrix external
format

Working with sparse matrices

nnz Number of nonzero matrix elements
nonzeros Nonzero matrix el ements
Amount of storage allocated for nonzero
nzmax .
meatrix elements
spones Rgplace nonzero sparse matrix elements
with ones
spalloc Allocate space for sparse matrix
issparse True for sparse matrix
spfun Apply function to nonzero matrix
elements
spy Visualize sparsity pattern

© 2002 by CRC Press LLC

Reordering algorithms

Column approximate minimum degree

colamd -
permutation

symamd Symmetric approximate minimum
degree permutation

colmmd Column minimum degree permutation

symmmd Symmetric minimum degree permutation

symrcm Symmetr_lc reverse Cuthill-McKee
permutation

colperm Column permutation

randperm Random permutation

dmperm Dulmage-Mendel sohn permutation

Linear algebra

eigs A few eigenvalues, using ARPACK
svds A few singular values, using eigs
Tuinc Incomplete LU factorization
cholinc Incomplete Cholesky factorization
normest Estimate the matrix 2-norm
condest 1-norm condition number estimate
sprank Structural rank

Linear equations (iterative methods)

Preconditioned conjugate gradients

Peg method

bicg Biconjugate gradients method
bicgstab Biconjugate gradients stabilized method
cgs Conjugate gradients squared method
gmres Generalized minimum residua method
minres Minimum residual method

gmr Quasi-minimal residual method
symmlq Symmetric LQ method

© 2002 by CRC Press LLC

Operations on graphs (trees)

treelayout

Lay out tree or forest

treeplot Plot picture of tree

etree Elimination tree

etreeplot Plot elimination tree

gplot Plot graph, asin "graph theory"

Miscellaneous

symbfact Symbolic factorization analysis
spparms Set parameters for sparse matrix routines
spaugment Form least squares augmented system

15.13 Two-dimensional graphs

help graph2d

Elementary x-y graphs

plot Linear plot

Toglog Log-log scale plot

semilogx Semi-log scale plot

semilogy Semi-log scale plot

polar Polar coordinate plot

plotyy Graphs with y tick labels on left & right
Axis control

axis Control axis scaling and appearance
zoom Zoom in and out on a2-D plot
grid Grid lines

box AXis box

hold Hold current graph

axes Create axes in arbitrary positions
subplot Create axes in tiled positions

© 2002 by CRC Press LLC

Graph annotation

plotedit Tools for editing and annotating plots
legend Graph legend
title Graph title
xTabel x-axis |abel
ylabel y-axis |abel
Produces TeX format from a character
texlabel -
string
text Text annotation
gtext Place text with mouse
Hard copy and printing
. Print graph or Simulink system; or save
print graph to M-file
printopt Printer defaults
orient Set paper orientation

15.14 Three-dimensional graphs

help graph3d

Elementary 3-D plots

plot3 Plot lines and pointsin 3-D space
mesh 3-D mesh surface

surf 3-D colored surface

fi113 Filled 3-D polygons

Color control

colormap Color look-up table

caxis Pseudocolor axis scaling

shading Color shading mode

hidden Mesh hidden line removal mode

brighten Brighten or darken color map

colordef Set color defaults

graymon Set graphlcs defaults for grayscale
monitors

© 2002 by CRC Press LLC

Lighting

surfl 3-D shaded surface with lighting
Tighting Lighting mode
material Material reflectance mode
specular Specular reflectance
diffuse Diffuse reflectance
surfnorm Surface normals
Color maps
hsv Hue-saturation-value color map
hot Black-red-yellow-white color map
gray Linear grayscale color map
bone Grayscale with tinge of blue color map
copper Linear copper-tone color map
pink Pastel shades of pink color map
white All-white color map
£ Alternating red, white, blue, and black

ag

color map

Tines Color map with the line colors
colorcube Enhanced color-cube color map
vga Windows colormap for 16 colors
jet Variant of HSV
prism Prism color map
cool Shades of cyan and magenta color map
autumn Shades of red and yellow color map
spring Shades of magenta and yellow color map
winter Shades of blue and green color map
summer Shades of green and yellow color map
Transparency
alpha Transparency (alpha) mode
alphamap Transparency (alpha) look-up table
alim Transparency (alpha) scaling

© 2002 by CRC Press LLC

Axis control

axis

Control axis scaling and appearance

zoom Zoom in and out on a2-D plot
grid Grid lines

box AXis box

hold Hold current graph

axes Create axes in arbitrary positions
subplot Create axes in tiled positions
daspect Data aspect ratio

pbaspect Plot box aspect ratio

xTim X limits

yTim y limits

zlim z limits

Viewpoint control

view 3-D graph viewpoint specification
viewmtx View transformation matrix
rotate3d Interactively rotate view of 3-D plot

Camera contro

campos Camera position
camtarget Cameratarget
camva Cameraview angle
camup Camera up vector
camproj Camera projection
High-level camera control
camorbit Orhit camera
campan Pan camera
camdolly Dolly camera
camzoom Zoom camera
camroll Roll camera
camlookat Mov.e.camer.a and target to view
specified objects

cameratoolbar

Interactively manipulate camera

© 2002 by CRC Press LLC

High-level light control

camlight

Creates or sets position of alight

Tightangle

Spherical position of alight

Graph annotation

title Graph title

x1abel x-axis label

ylabel y-axis label

zlabel z-axis label

colorbar Display color bar (color scale)

text Text annotation

gtext M ouse placement of text

plotedit Graph editing and annotation tools

Hard copy and printing

print Print graph or Simulink system; or save
graph to M-file

printopt Printer defaults

orient Set paper orientation

vrml Save graphicsto VRML 2.0file

15.15 Specialized graphs

help specgraph

Specialized 2-D graphs

area Filled area plot

bar Bar graph

barh Horizontal bar graph

comet Comet-like trajectory

compass Compass plot

errorbar Error bar plot

ezplot Easy-to-use function plotter
ezpolar Easy-to-use polar coordinate plotter
feather Feather plot

(continued on next page)

© 2002 by CRC Press LLC

Specialized 2-D graphs (continued)

fill Filled 2-D polygons

fplot Plot function

hist Histogram

pareto Pareto chart

pie Pie chart

plotmatrix Scatter plot matrix

rose Angle histogram plot

scatter Scatter plot

stem Discrete sequence or “stem” plot
stairs Stairstep plot

Contour and 2%-D graphs

contour Contour plot

contourf Filled contour plot

contour3 3-D contour plot

clabel Contour plot elevation labels
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter
pcolor Pseudocolor (checkerboard) plot
voronoi Voronoi diagram

Specialized 3-D

graphs

bar3 3-D bar graph
bar3h Horizonta 3-D bar graph
comet3 3-D comet-like trgjectories
ezgraph3 General-purpose surface plotter
ezmesh Easy-to-use 3-D mesh plotter
Easy-to-use combination mesh/contour
ezmeshc
plotter
ezplot3 Easy-to-use 3-D parametric curve plotter
ezsurf Easy-to-use 3-D colored surface plotter
Easy-to-use combination surf/contour
ezsurfc

plotter

(continued on next page)

© 2002 by CRC Press LLC

Specialized 3-D graphs (continued)

meshc Combination mesh/contour plot
meshz 3-D mesh with curtain

pie3 3-D pie chart

ribbon Draw 2-D linesasribbonsin 3-D
scatter3 3-D scatter plot

stem3 3-D stem plot

surfc Combination surf/contour plot
trisurf Triangular surface plot

trimesh Triangular mesh plot
waterfall Waterfall plot

VVolume and vector visualization

vissuite Visualization suite
isosurface | sosurface extractor
isonormals Isosurface normals

isocaps Isosurface end caps

isocolors Isosurface and patch colors
contourslice Contoursin slice planes

slice Volumetric dlice plot
streamline Streamlines from 2-D or 3-D vector data
stream3 3-D streamlines

stream? 2-D streamlines

quiver3 3-D quiver plot

quiver 2-D quiver plot

divergence Divergence of avector field
curl Curl and angular velocity of vector field
coneplot 3-D coneplot

streamtube 3-D stream tube

streamribbon 3-D stream ribbon
streamslice Streamlinesin dlice planes
streamparticles Display stream particles
interpstreamspeed Isgteeer(;i)olate streamline vertices from

(continued on next page)

© 2002 by CRC Press LLC

Volume and vector visualization (continued)

subvolume

Extract subset of volume dataset

reducevolume

Reduce volume dataset

volumebounds

Returns x,y,z and color limits for volume
data

smooth3

Smooth 3-D data

reducepatch

Reduce number of patch faces

shrinkfaces

Reduce size of patch faces

Image display and file 1/0

image Display image

imagesc Scale data and display asimage

colormap Color look-up table

gray Linear grayscale color map

contrast Grayscale color map to enhance image
contrast

brighten Brighten or darken color map

colorbar Display color bar (color scale)

imread Read image from graphicsfile

imwrite Write image to graphicsfile

imfinfo Information about graphicsfile

Movies and an

imation

capture Screen capture of current figure

moviein Initialize movie frame memory

getframe Get movie frame

movie Play recorded movie frames

rotate Rotate object about specified orgin and
direction

frame2im Convert movie frame to indexed image

im2frame Convert index image into movie format

© 2002 by CRC Press LLC

Color-related functions

spinmap Spin color map

rgbplot Plot color map

colstyle Parse color and style from string
ind2rgb Convert indexed image to RGB image

Solid modeling

cylinder Generate cylinder

sphere Generate sphere

ellipsoid Generate €llipsoid

patch Create patch

surf2patch Convert surface data to patch data

15.16 Handle Graphics

help graphics

Figure window creation and control

figure Create figure window

gcf Get handle to current figure

clf Clear current figure

shg Show graph window

close Close figure

refresh Refresh figure

openfig Open new or raise copy of saved figure

AXxis creation and control

subplot Create axesin tiled positions

axes Create axes in arbitrary positions
gca Get handle to current axes

cla Clear current axes

axis Control axis scaling and appearance
box AXis box

caxis Control pseudocolor axis scaling
hold Hold current graph

ishold Return hold state

© 2002 by CRC Press LLC

Handle Graphics objects

figure Create figure window

axes Create axes

Tine Createline

text Create text

patch Create patch

rectangle Crfaate rectangle, rounded rectangle, or
elipse

surface Create surface

image Create image

Tight Create light

uicontrol Create user interface control

uimenu Create user interface menu

uicontextmenu | Create user interface context menu

Handle Graphics operations

set Set object properties
get Get object properties
reset Reset object properties
delete Delete object
gco Get handle to current object
gcbo Get handle to current callback object
gcbf Get handle to current callback figure
drawnow Flush pending graphics events
Findobj Find objects with specified property
values

. Make copy of graphics object and its
copyob] children
isappdata Check if application-defined data exists
getappdata Get value of application-defined data
setappdata Set application-defined data
rmappdata Remove application-defined data

© 2002 by CRC Press LLC

Hard copy and printing

Print graph or Simulink system; or save

prant graph to M-file

printopt Printer defaults

orient Set paper orientation

Utilities

closereq Figure close request function
newplot M-file preamble for NextPlot property
ishandle True for graphics handles

ActiveX client functions (PC only)

actxcontrol

Create an ActiveX control

actxserver

Create an ActiveX server

15.17 Graphical user interface tools

help uitools

GUI functions

uicontrol Create user interface control

uimenu Create user interface menu

ginput Graphical input from mouse

dragrect Drag X OR rectangles with mouse

rbbox Rubberband box

selectmoveresize Interactivel_yselect, move, resize,
or copy objects

waitforbuttonpress Wait for key/buttonpress over
figure

waitfor Block execution and wait for event

uiwait Block execution and wait for resume

uiresume Resume execution of blocked M-file

uistack Control stacking order of objects

uisuspend Suspend the interactive state of afigure

uirestore Restore the interactive state of afigure

© 2002 by CRC Press LLC

GUI design tools

guide Design GUI

inspect Inspect object properties
align Align uicontrols and axes
propedit Edit property

Dialog boxes

ax1limdlg Axes limits dialog box
dialog Create dialog figure
errordlg Error dialog box
helpdlg Help dialog box
imageview Show image in figure with zoom
inputdlg Input dialog box
Tistdlg List selection dialog box
menu Generate menu of choices for user input
movieview Show movie in figure with replay button
msgbox M essage box
pagedlg Page position dialog box
pagesetupdlg Page setup dialog
printdlg Print dialog box
printpreview Display preview of figure to be printed
questdlg Question dialog box
uigetpref Question dialog box with preference
support

soundview Show sound in figure and play
uigetfile Standard open file dialog box
uiputfile Standard save file dialog box
uisetcolor Color selection dialog box
uisetfont Font selection dialog box

. Show open file didog and call open on
uiopen result
Uisave Show open file didog and call save on

result

(continued on next page)

© 2002 by CRC Press LLC

Dialog boxes (continued)

Show open file didog and call Toad on

uiload
result
s Start the GUI for importing data (Import
uiimport Wizard)
waitbar Display wait bar
warndlg Warning dialog box

Menu utilities

makemenu Create menu structure

menubar Computer-dependent default setting for
MenuBar property

umtoggle Toggle checked status of uimenu object

winmenu Create submenu for Window menu item

Toolbar button

group utilities

btngroup Create toolbar button group

btnresize Resize button group

btnstate Query state of toolbar button group

btnpress Button press manager for toolbar button
group

btndown Depress button in toolbar button group

btnup Raise button in toolbar button group

Preferences

addpref Add preference

getpref Get preference

rmpref Remove preference

setpref Set preference

ispref Test for existence of preference

© 2002 by CRC Press LLC

Miscellaneous utilities

allchild Get al object children

clipboard Copy and paste strings to and from
system clipboard

edtext Interactive editing of axes text objects

findall Find all objects

findfigs Find figures positioned off screen

getptr Get figure pointer

getstatus Get status text string in figure

hidegui Hide/unhide GUI

listfonts Get list of available system fontsin cell
array

movegui Move GUI to specified part of screen

guihandles Return a structure of handles

guidata Store or retrieve application data

overobj Get handle of object the pointer is over

popupstr Get popup menu selection string

remapfig Transform figure objects’ positions

setptr Set figure pointer

setstatus Set status text string in figure

uiclearmode

Clearsthe currently active interactive
mode

15.18 Character strings

help strfun

General

char Create character array (string)

double Convert string to numeric character
codes

cellstr Create cell array of strings from
character array

blanks String of blanks

deblank Remove trailing blanks

eval Execute string asaMATLAB expression

© 2002 by CRC Press LLC

String tests

ischar True for character array (string)
iscellstr Truefor cell array of strings
isletter True for letters of the al phabet
isspace True for white space characters

String operations

strcat Concatenate strings

strvcat Vertically concatenate strings

strcmp Compare strings

strncmp Compare first N characters of strings

strcmpi Compare strings ignoring case

strnempi _Compare first N characters of strings
ignoring case

findstr Find one string within another

strfind Find one string within another

strjust Justify character array

strmatch Find possible matches for string

strrep Replace string with another

strtok Find token in string

upper Convert string to uppercase

Tower Convert string to lowercase

String to number conversion

num2str Convert number to string

int2str Convert integer to string

mat2str Convert matrix to eval’able string
str2double Convert string to double-precision value
str2num Convert string matrix to numeric array
sprintf Write formatted data to string

sscanf Read string under format control

© 2002 by CRC Press LLC

Base number conversion

Convert |EEE hexadecimal to double-

hex2num L
precision number
hex2dec _Convert hexadecimal string to decimal
integer
dec2hex anvert decimal integer to hexadecimal
string
bin2dec Convert binary string to decimal integer
dec2bin Convert decimal integer to binary string
base2dec Convert base B string to decimal integer
dec2base Convert decimal integer to base B string

15.19 File input/output

help iofun

File import/export functions

dimread Read delimited text file

dimwrite Write delimited text file

1 Load workspace from MATLAB (.mat)
oad file

importdata L oad workspace variables disk file

wklread Read spreadsheet (WK1) file

wklwrite Write spreadsheet (WK1) file

x1sread Read spreadsheet (XLS) file

Image file import/export

imfinfo Return information about graphicsfile
imread Read image from graphicsfile
imwrite Write image to graphicsfile

Audio file import/export

auread Read NeXT/SUN (.au) sound file
auwrite Write NeXT/SUN sound file

wavread Read Microsoft WAVE (.wav) sound file
wavwrite Write Microsoft WAVE sound file

© 2002 by CRC Press LLC

Video file import/export

aviread Read movie (AVI) file
aviinfo Return information about AV file
avifile Create anew AV file

. . Create AVI movie from MATLAB
movie2avi

movie

Formatted file

I/0

Read line from file, discard newline

fgetl character

fgets Read line from file, keep newline char.
fprintf Write formatted data to file

fscanf Read formatted data from file

input Prompt for user input

textread Read formatted data from text file

String conversion

sprintf Write formatted data to string
sscanf Read string under format control
strread Read formatted data from text string

File opening and closing

fopen Openfile

fclose Closefile

Binary file I/0

fread Read binary datafromfile
fwrite Write binary datato file

File positionin

feof

Test for end-of-file

ferror Inquire file error status
frewind Rewind file

fseek Set file position indicator
ftell Get file position indicator

© 2002 by CRC Press LLC

File name handling

fileparts Filename parts
filesep Directory separator for this platform
fullfile Build full filename from parts

matlabroot

Root directory of MATLAB installation

mexext

MEX filename extension for this

platform
partialpath Partial pathnames
pathsep Path separator for this platform
prefdir Preference directory name
tempdir Get temporary directory
tempname Get temporary file

HDF library int

erface help

hdf

MEX-file interface to the HDF library

hdfan HDF multifile annotation interface
hdfdf24 HDF raster image interface
hdfdfrs HDF 8-hit raster image interface
hdfh HDF H interface

hdfhd HDF HD interface

hdfhe HDF HE interface

hdfm1 MATLAB-HDF gateway utilities
hdfsd HDF multifile scientific dataset interface
hdfv HDF V (Vgroup) interface

hdfvf HDF VF (Vdata) interface

hdfvh HDF VH (Vdata) interface

hdfvs HDF VS (Vdata) interface
HDF-EQOS library interface help

hdfgd HDF-EOS grid interface

hdfpt HDF-EOS point interface

hdfsw HDF-EOS swath interface

Serial port sup

port

serial

| Construct serial port object

© 2002 by CRC Press LLC

Command window /O

clc Clear Command window
disp Display array

home Send cursor home
input Prompt for user input
pause Wait for user response

FIG file support for plotedit and printframes

hgload Load Handle Graphics object from afile

hgsave Saves an HG object heirarchy to afile

Utilities

str2rng Convert spreadsheet range string to
numeric array

wklconst WK1 record type definitions

wklwrec Write a WK1 record header

15.20 Time and dates
help timefun

Current date and time

now Current date and time as date number
date Current date as date string
clock Current date and time as date vector

Basic functions

datenum Serial date number
datestr String representation of date
datevec Date components

Date functions

calendar Caendar

weekday Day of week

eomday End of month

datetick Date formatted tick labels

© 2002 by CRC Press LLC

Timing functions

cputime CPU time in seconds
tic Start stopwatch timer
toc Stop stopwatch timer
etime Elapsed time

pause Wait in seconds

15.21 Datatypes and structures

help datatypes

Data types (classes)

double Convert to double precision
sparse Creste sparse matrix

char Create character array (string)
cell Create cell array

struct Create or convert to structure array
single Convert to single precision

uint8 Convert to unsigned 8-bit integer
uintl6 Convert to unsigned 16-bit integer
uint32 Convert to unsigned 32-hit integer
int8 Convert to signed 8-hit integer
intlé Convert to signed 16-bit integer
int32 Convert to signed 32-bit integer
inTine Construct inT1ine object

function_handle | Function handle array

javaArray Construct a Java array
javaMethod Invoke a Java method
javaobject Invoke a Java object constructor

Multidimensional array functions

cat Concatenate arrays
ndims Number of dimensions

. Generate arrays for N-D functions and
ndgrid

interpolation

(continued on next page)

© 2002 by CRC Press LLC

Multidimensional array functions (continued)

permute Permute array dimensions

ipermute Inverse permute array dimensions
shiftdim Shift dimensions

squeeze Remove singleton dimensions

Cell array functions

cell Create cell array

cellfun Functions on cell array contents
celldisp Display cell array contents
cellplot Display graphical depiction of cell array
num2cell Convert numeric array into cell array
deal Deal inputs to outputs

cell2struct Convert cell array into structure array
struct2cell Convert structure array into cell array
iscell True for cell array

Structure functions

struct Create or convert to structure array
fieldnames Get structure field names
getfield Get structure field contents
setfield Set structure field contents
rmfield Remove structure field

isfield Trueif field isin structure array
isstruct True for structures

Function hand

le functions

@

Create function_handle

Convert function_handle array into

func2str .
string

str2func Convert string into function_handle
array

functions List functions associated with a

function_handle

© 2002 by CRC Press LLC

Object-oriented programming functions

class Create object or return object class
struct Convert object to structure array
methods List names and properties of class

methods

methodsview

View names and properties of class
methods

isa Trueif object isagiven class
isjava True for Java objects
isobject True for MATLAB objects
inferiorto Inferior class relationship
superiorto Superior class relationship
substruct Create structure argument for

subsref/subasgn

Overloadable operators

minus Overloadable method for a-b
plus Overloadable method for a+b
times Overloadable method for a. *b
mtimes Overloadable method for a*b
mldivide Overloadable method for a\b
mrdivide Overloadable method for a/b
rdivide Overloadable method for a. /b
T1divide Overloadable method for a. \b
power Overloadable method for a. Ab
mpower Overloadable method for aAb
uminus Overloadable method for -a
uplus Overloadable method for +a
horzcat Overloadable method for [a b]
vertcat Overloadable method for [a;b]
Te Overloadable method for a<=b
Tt Overloadable method for a<b
gt Overloadable method for a>b
ge Overloadable method for a>=b

(continued on next page)

© 2002 by CRC Press LLC

Overloadable operators (continued)

eq Overloadable method for a==b

ne Overloadable method for a~=b

not Overloadable method for ~a

and Overloadable method for a&b

or Overloadable method for a | b
Overloadable method for a (i) =b,

subsasgn a{i}=b, and a.field=b

subsref OverloaQabIemethodfor a(i),af{i},
and a.field

colon Overloadable method for a: b

end Overloadable method for a(end)

transpose Overloadable method for a. '

ctranspose Overloadable method for a*

subsindex Overloadable method for x (a)

Toadobj Called to load object from .mat file

saveobj Called to save object to .mat file

15.22 Version control commands

help verctrl

Checkin/checkout

checkin checkin files to version control system
checkout checkout files
undocheckout undo checkout files

Specific version control

rcs Version control actions using RCS

pvcs Version control actionsusing PVCS
clearcase Version control actions using ClearCase
sourcesafe Version control using Visual SourceSafe
customverctrl | Custom version control template

© 2002 by CRC Press LLC

15.23 Microsoft Windows functions

help winfun

ActiveX client functions

actxcontrol

Create an ActiveX control

actxserver

Create an ActiveX server

winfun\activex

ActiveX class

ActiveX demos

mwsamp Sample ActiveX control creation
sampev Sample event handler for ActiveX server
DDE client functions
ddeadv Set up advisory link
ddeexec Send string for execution
ddeinit Initiate DDE conversation
ddepoke Send data to application
ddereq Request data from application
ddeterm Terminate DDE conversation
ddeunadv Release advisory link

15.24 Demos

Type help demos to see thelist of MATLAB demos.
Section 15.26 lists the Symbolic Math Toolbox demos.

15.25 Preferences

help Tocal

Saved preferences files

startup User startup M-file
finish User finish M-file
matlabrc Master startup M-file
pathdef Search path defaults
docopt Web browser defaults
printopt Printer defaults

© 2002 by CRC Press LLC

Preference commands

cedit

Set command line editor keys

terminal

Set graphics terminal type

Configuration information

hostid MATLAB server host ID number
Ticense License number
version MATLAB version number

15.26 Symbolic Math Toolbox

help symbolic

Calculus

diff Differentiate

int Integrate

Timit Limit

taylor Taylor series
jacobian Jacobian matrix
symsum Summation of series

Linear algebra

diag Create or extract diagonals
triu Upper triangle

tril Lower triangle

inv Matrix inverse

det Determinant

rank Rank

rref Reduced row echelon form
null Basis for null space

colspace Basis for column space

eig Eigenvalues and eigenvectors
svd Singular values and singular vectors
jordan Jordan canonical (normal) form
poly Characteristic polynomial

expm Matrix exponential

© 2002 by CRC Press LLC

Simplification

simplify Simplify

expand Expand

factor Factor

collect Collect

simple Search for shortest form

numden Numerator and denominator
horner Nested polynomial representation
subexpr Rewrite in terms of subexpressions
subs Symbolic substitution

Solution of equations

solve Symbolic solution of algebraic equations

dsolve Symb_olic solution of differential
equations

finverse Functional inverse

compose Functional composition

Variable precision arithmetic

vpa

Variable precision arithmetic

digits

Set variable precision accuracy

Integral transforms

fourier Fourier transform
Taplace Laplace transform
ztrans Z transform

ifourier Inverse Fourier transform
ilaplace Inverse Laplace transform
iztrans Inverse Z transform

© 2002 by CRC Press LLC

Conversions

double

Convert symbolic matrix to double

Coefficient vector to symbolic

poly2sym polynomial

Symbolic polynomial to coefficient
sym2poly vector
char Convert sym object to string

Basic operatio

ns

sym

Create symbolic object

Shortcut for constructing symbolic

Syms objects

findsym Determine symbolic variables

pretty Pretty print a symbolic expression

Tatex LaTeX representation of asymbolic
expression

ccode C code representation of asymbolic
expression

fortran FORTRAN representation of asymbolic

expression

Special functions

sinint Sineintegral

cosint Cosine integral

zeta Riemann zeta function
Tambertw Lambert W function

String handling utilities

. Check for avalid variable name
svarname (MATLAB toolbox)
vectorize V ectorize a symbolic expression

© 2002 by CRC Press LLC

Pedagogical and graphical applications

rsums Riemann sums

ezcontour Easy-to-use contour plotter

ezcontourf Easy-to-use filled contour plotter

ezmesh Easy-to-use mesh (surface) plotter

ezmeshc Easy-to-use mesh/contour plotter

ezplot Easy-to-l_Jsefunction implicit and
parametric curve plotter

ezplot3 Easy-to-use spatial curve plotter

ezpolar Easy-to-use polar coordinates plotter

ezsurf Easy-to-use surface plotter

ezsurfc Easy-to-use surface/contour plotter

funtool Function calculator

taylortool Taylor series calculator

Demonstration

symintro

Introduction to the Symbolic Math
Toolbox

symcalcdemo

Calculus demonstration

symlindemo

Demonstrate symbolic linear algebra

Demonsgtrate variable precision

symvpademo arithmetic
symrotdemo Study plane rotations
symegndemo Demonstrate symbolic equation solving

Access to Map

le (not in Student Version)

maple Access Maple kernel

mfun Numeric evaluation of Maple functions
mfunlist List of functionsfor MFUN

mhelp Maple help

procread Install a Maple procedure

© 2002 by CRC Press LLC

16. Additional Resources

The MathWorks, Inc., and others provide a wide range of
products that extend MATLAB’s capabilities. Some are
collections of M-files called toolboxes. One of these has
already been introduced (the Symbolic Math Toolbox).
Also available is Simulink, an interactive graphical
system for modeling and simulating dynamic nonlinear
systems. The ver command lists the toolboxes and
Simulink components included in your installation.
These can be explored viathe command help or from the
Launch Pad window. Similar to MATLAB toolboxes,
Simulink has domain-specific add-ons called blocksets.

16.1 MATLAB

MATLAB Compiler (convert M-filesto C/C++)
MATLAB C/C++ Math Library

MATLAB C/C++ Graphics Library

MATLAB Report Generator

MATLAB Runtime Server

MATLAB Web Server

16.2 MATLAB toolboxes

Math and Analysis Toolboxes:
Optimization

Statistics

Neura Network
Symbolic/Extended Symbolic Math
Partial Differential Equation
Mapping (geographic information)
Spline

Data Acquisition and Import Toolboxes:
Data Acquisition

© 2002 by CRC Press LLC

Instrument Control
Database
Excel Link

Signal & Image Processing Toolboxes:
Signal Processing

Image Processing

Communications

System Identification

Wavelet

Filter Design

Motorola DSP Developer’s Kit

Developer's Kit for Texas Instruments DSP

Control Design Toolboxes:

Control System

Fuzzy Logic

Robust Control

p-Analysis and Synthesis

LMI (linear matrix inequality) Control
Model Predictive Control

Finance and Economics Toolboxes:

Financial

Financial Time Series

GARCH (volatility analysis)

Financial Derivatives

Datafeed (connect to financial data providers)

16.3 Simulink

Simulink Performance Tools
Stateflow

Stateflow Coder

Real-Time Windows Target

© 2002 by CRC Press LLC

Real-Time Workshop

Real-Time Workshop Embedded Coder
Real-Time Workshop Ada Coder

XPC Target

XPC Target Embedded Option
Simulink Report Generator
Requirements Management I nterface

16.4 Simulink blocksets

CDMA Reference (mobile phone simulation)
Communications

Dias & Gauges

DSP (Digital Signal Processing)

Fixed-Point

Nonlinear Control Design

Power System

© 2002 by CRC Press LLC

	c2948_pdf_toc.pdf
	c2948_pdf_toc.pdf
	MATLAB® Primer Sixth Edition
	Preface
	Introduction
	Table of Contents

	C2948_PDF_SEC.pdf
	MATLAB® Primer Sixth Edition
	Table of Contents
	1. Accessing MATLAB
	2. The MATLAB Desktop
	2.1 Help window
	2.2 Launch Pad window
	2.3 Command window
	2.4 Workspace window
	2.5 Command History window
	2.6 Array Editor window
	2.7 Current Directory window
	2.8 MATLAB’s path

	3. Matrices and Matrix Operations
	3.1 Referencing individual entries
	3.2 Matrix operators
	3.3 Matrix division
	3.4 Entry-wise operators
	3.5 Relational operators
	3.6 Complex numbers
	3.7 Strings
	3.8 Other data types

	4. Submatrices and Colon Notation
	4.1 Generating vectors
	4.2 Accessing submatrices

	5. MATLAB Functions
	5.1 Constructing matrices
	5.2 Scalar functions
	5.3 Vector functions
	5.4 Matrix functions
	5.5 The find function

	6. Control Flow Statements
	6.1 The for loop
	6.2 The while loop
	6.3 The if statement
	6.4 The switch statement
	6.5 The try/catch statement
	6.6 Matrix expressions (if and while)
	6.7 Infinite loops

	7. M-files
	7.1 M-file Editor/Debugger window
	7.2 Script files
	7.3 Function files
	7.4 Multiple inputs and outputs
	7.5 Variable arguments
	7.6 Comments and documentation
	7.7 Entering large matrices

	8. Advanced M-file features
	8.1 Function references
	8.2 Name resolution
	8.3 Error messages
	8.4 User input
	8.5 Efficient code
	8.6 Performance measures
	8.7 Profile

	9. Calling C from MATLAB
	9.1 A simple example
	9.2 C versus MATLAB arrays
	9.3 A matrix computation in C
	9.4 MATLAB mx and mex routines
	9.5 Online help for MEX routines
	9.6 Larger examples on the web

	10. Two-Dimensional Graphics
	10.1 Planar plots
	10.2 Multiple figures
	10.3 Graph of a function
	10.4 Parametrically defined curves
	10.5 Titles, labels, text in a graph
	10.6 Control of axes and scaling
	10.7 Multiple plots
	10.8 Line types, marker types, colors
	10.9 Subplots and specialized plots
	10.10 Graphics hard copy

	11. Three-Dimensional Graphics
	11.1 Curve plots
	11.2 Mesh and surface plots
	11.3 Color shading and color profile
	11.4 Perspective of view
	11.5 Parametrically defined surfaces

	12. Advanced Graphics
	12.1 Handle Graphics
	12.2 Graphical user interface

	13. Sparse Matrix Computations
	13.1 Storage modes
	13.2 Generating sparse matrices
	13.3 Computation with sparse matrices
	13.4 Ordering methods
	13.5 Visualizing matrices

	14. The Symbolic Math Toolbox
	14.1 Symbolic variables
	14.2 Calculus
	14.3 Variable precision arithmetic
	14.4 Numeric evaluation
	14.5 Algebraic simplification
	14.6 Graphs of functions
	14.7 Symbolic matrix operations
	14.8 Symbolic linear algebraic functions
	14.9 Solving algebraic equations
	14.10 Solving differential equations
	14.11 Further Maple access

	15. Help topics
	15.1 General
	15.2 Operators and special characters
	15.3 Programming language constructs
	15.4 Elementary matrices and matrix manipulation
	15.5 Elementary math functions
	15.6 Specialized math functions
	15.7 Matrix functions — numerical linear algebra
	15.8 Data analysis and Fourier transforms
	15.9 Audio support
	15.10 Interpolation and polynomials
	15.11 Function functions and ODE solvers
	15.12 Sparse matrices
	15.13 Two-dimensional graphs
	15.14 Three-dimensional graphs
	15.15 Specialized graphs
	15.16 Handle Graphics
	15.17 Graphical user interface tools
	15.18 Character strings
	15.19 File input/output
	15.20 Time and dates
	15.21 Data types and structures
	15.22 Version control commands
	15.23 Microsoft Windows functions
	15.24 Demos
	15.25 Preferences
	15.26 Symbolic Math Toolbox

	16. Additional Resources
	16.1 MATLAB
	16.2 MATLAB toolboxes
	16.3 Simulink
	16.4 Simulink blocksets

