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 Preface

Numerous books have been written on Radar Systems and Radar Applica-
tions. A limited set of these books provides companion software. There is
need for a comprehensive reference book that can provide the reader with
hands-on-like experience. The ideal radar book, in my opinion, should serve as
a conclusive, detailed, and useful reference for working engineers as well as a
textbook for students learning radar systems analysis and design. This book
must assume few prerequisites and must stand on its own as a complete presen-
tation of the subject. Examples and exercise problems must be included. User
friendly software that demonstrates the theory needs to be included. This soft-
ware should be reconfigurable to allow different users to vary the inputs in
order to better analyze their relevant and unique requirements, and enhance
understanding of the subject.

Radar Systems Analysis and Design Using MATLAB® concentrates on radar
fundamentals, principles, and rigorous mathematical derivations. It also pro-

vides the user with a comprehensive set of MATLAB1 5.0 software that can be
used for radar analysis and/or radar system design. All programs will accept
user inputs or execute using the default set of parameters. This book will serve
as a valuable reference to students and radar engineers in analyzing and under-
standing the many issues associated with radar systems analysis and design. It
is written at the graduate level. Each chapter provides all the necessary mathe-
matical and analytical coverage required for good understanding of radar the-
ory. Additionally, dedicated MATLAB functions/programs have been
developed for each chapter to further enhance the understanding of the theory,
and provide a source for establishing radar system design requirements. This
book includes over 1190 equations and over 230 illustrations and plots. There
are over 200 examples and end-of-chapter problems. A solutions manual will
be made available to professors using the book as a text. The philosophy
behind Radar Systems Analysis and Design Using MATLAB is that radar sys-
tems should not be complicated to understand nor difficult to analyze and
design.

 All MATLAB programs and functions provided in this book can be down-
loaded from the CRC Press Web site (www.crcpress.com). For this purpose,
create the following directory in your C-drive: C:\RSA. Copy all programs into
this directory. The path tree should be as in Fig. F.1 in Appendix F. Users can
execute a certain function/program GUI by typing: file_name_driver, where

1. All MATLAB functions and programs provided in this book were developed using 
MATLAB 5.0 - R11 with the Signal Processing Toolbox, on a PC with Windows 98 
operating system. 
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file names are as indicated in Appendix F. The MATLAB functions and pro-
grams developed in this book include all forms of the radar equation: pulse
compression, stretch processing, matched filter, probability of detection calcu-
lations with all Swerling models, High Range Resolution (HRR), stepped fre-
quency waveform analysis, ghk tracking filter, Kalman filter, phased array
antennas, and many more.

The first part of Chapter 1 describes the most common terms used in radar
systems, such as range, range resolution, Doppler frequency, and coherency.
The second part of this chapter develops the radar range equation in many of
its forms. This presentation includes the low PRF, high PRF, search, bistatic
radar, and radar equation with jamming. Radar losses are briefly addressed in
this chapter. Chapter 2 discusses the Radar Cross Section (RCS). RCS depen-
dency on aspect angle, frequency, and polarization are discussed. Target scat-
tering matrix is developed. RCS formulas for many simple objects are
presented. Complex object RCS is discussed, and target fluctuation models are
introduced. Continuous wave radars and pulsed radars are discussed in Chapter
3. The CW radar equation is derived in this chapter. Resolving range and Dop-
pler ambiguities is also discussed in detail. 

Chapter 4 is intended to provide an overview of the radar probability of
detection calculations and related topics. Detection of fluctuating targets
including Swerling I, II, III, and IV models is presented and analyzed. Coher-
ent and non-coherent integrations are also introduced. Cumulative probability
of detecting analysis is in this chapter. Chapter 5 reviews radar waveforms,
including CW, pulsed, and LFM. High Range Resolution (HRR) waveforms
and stepped frequency waveforms are also analyzed.

 The concept of the matched filter, and the radar ambiguity function consti-
tute the topics of Chapter 6. Detailed derivations of many major results are pre-
sented in this chapter, including the coherent pulse train ambiguity function.
Pulse compression is in Chapter 7. Analog and digital pulse compressions are
also discussed in detail. This includes fast convolution and stretch processors.
Binary phase codes and frequency codes are discussed. 

Chapter 8 presents the phenomenology of radar wave propagation. Topics
like multipath, refraction, diffraction, divergence, and atmospheric attenuation
are included. Chapter 9 contains the concepts of clutter and Moving Target
Indicator (MTI). Surface and volume clutter are defined and the relevant radar
equations are derived. Delay line cancelers implementation to mitigate the
effects of clutter is analyzed. 

Chapter 10 has a brief discussion of radar antennas. The discussion includes
linear and planar phased arrays. Conventional beamforming is in this chapter.
Chapter 11 discusses target tracking radar systems. The first part of this chapter
covers the subject of single target tracking. Topics such as sequential lobing,
conical scan, monopulse, and range tracking are discussed in detail. The
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second part of this chapter introduces multiple target tracking techniques.

Fixed gain tracking filters such as the  and the  filters are presented in
detail. The concept of the Kalman filter is introduced. Special cases of the Kal-
man filter are analyzed in depth. 

Synthetic Aperture Radar (SAR) is the subject of Chapter 12. The topics of
this chapter include: SAR signal processing, SAR design considerations, and
the SAR radar equation. Arrays operated in sequential mode are discussed in
this chapter. Chapter 13 presents an overview of signal processing. Finally, six
appendices present discussion on the following: noise figure, decibel arith-
metic, tables of the Fourier transform and Z-transform pairs, common proba-
bility density functions, and the  MATLAB program and function name list. 

MATLAB is a registered trademark 
 of The MathWorks, Inc. 

For product information, please contact:
 The MathWorks, Inc.                                                 

 3 Apple Hill Drive
 Natick, MA 01760-2098 USA

 Tel: 508-647-7000
 Fax: 508-647-7001

 E-mail: info@mathworks.com 
 Web: www.mathworks.com 

Bassem R. Mahafza
Huntsville, Alabama

January, 2000

αβ αβγ

© 2000 by Chapman & Hall/CRC

http://www.mathworks.com 


 Acknowledgment

I would like to acknowledge the following for help, encouragement, and
support during the preparation of this book. First, I thank God for giving me
the endurance and perseverance to complete this work. I could not have com-
pleted this work without the continuous support of my wife and four sons. The
support and encouragement of all my family members and friends are appreci-
ated. Special thanks to Dr. Andrew Ventre, Dr. Michael Dorsett, Mr. Edward
Shamsi, and Mr. Skip Tornquist for reviewing and correcting different parts of
the manuscript. Finally, I would like to thank Mr. Frank J. Collazo, the man-
agement, and the family of professionals at COLSA Corporation for their
support. 

© 2000 by Chapman & Hall/CRC



 

To my sons:

Zachary,

Joseph, 

Jacob, and

Jordan

To:

My Wife,

My Mother,

and the memory of my Father

© 2000 by Chapman & Hall/CRC



Table of Contents

 Preface
 Acknowledgment 
 

 Chapter 1  
Radar Fundamentals  

1.1. Radar Classifications   
1.2. Range  

MATLAB Function “pulse_train.m”  
1.3. Range Resolution  

MATLAB Function “range_resolution.m”  
1.4. Doppler Frequency 

MATLAB Function “doppler_freq.m”  
1.5. Coherence 
1.6. The Radar Equation  

MATLAB Function “radar_eq.m”   
1.6.1. Low PRF Radar Equation  

MATLAB Function “lprf_req.m”  
1.6.2. High PRF Radar Equation 

MATLAB Function “hprf_req.m”  
1.6.3. Surveillance Radar Equation 

MATLAB Function “power_aperture_eq.m”  
1.6.4. Radar Equation with Jamming  

Self-Screening Jammers (SSJ) 
MATLAB Program “ssj_req.m”  
Stand-Off Jammers (SOJ) 
MATLAB Program “soj_req.m”  
Range Reduction Factor  
MATLAB Function “range_red_fac.m”  

© 2000 by Chapman & Hall/CRC



      

1.6.5. Bistatic Radar Equation  
1.7. Radar Losses 

1.7.1. Transmit and Receive Losses  
1.7.2. Antenna Pattern Loss and Scan Loss  
1.7.3. Atmospheric Loss  
1.7.4. Collapsing Loss  
1.7.5. Processing Losses  
1.7.6. Other Losses  

1.8. MATLAB Program and Function Listings 
Problems  

 Chapter 2
Radar Cross Section (RCS)   

2.1. RCS Definition  
2.2. RCS Prediction Methods 
2.3. RCS Dependency on Aspect Angle and Frequency 

MATLAB Function “rcs_aspect.m”  
MATLAB Function “rcs-frequency.m”  

2.4. RCS Dependency on Polarization  
2.4.1. Polarization  
2.4.2. Target Scattering Matrix  

2.5. RCS of Simple Objects 
2.5.1. Sphere 
2.5.2. Ellipsoid  

MATLAB Function “rcs_ellipsoid.m”  
2.5.3. Circular Flat Plate 

MATLAB Function “rcs_circ_plate.m”  
2.5.4. Truncated Cone (Frustum)  

MATLAB Function “rcs_frustum.m”  
2.5.5. Cylinder  

MATLAB Function “rcs_cylinder.m”  
2.5.6. Rectangular Flat Plate  

MATLAB Function “rcs_rect_plate.m”  
2.5.7. Triangular Flat Plate  

MATLAB Function “rcs_isosceles.m”  
2.6. RCS of Complex Objects  
2.7. RCS Fluctuations and Statistical Models  

2.7.1. RCS Statistical Models - Scintillation Models  
Chi-Square of Degree 2m  
Swerling I and II (Chi-Square of Degree 2)  
Swerling III and IV (Chi-Square of Degree 4)  

2.8. MATLAB Program/Function Listings  
Problems 

© 2000 by Chapman & Hall/CRC



 Chapter 3
Continuous Wave and Pulsed Radars  

3.1. Functional Block Diagram 
3.2. CW Radar Equation 
3.3. Frequency Modulation 
3.4. Linear FM (LFM) CW Radar 
3.5. Multiple Frequency CW Radar 
3.6. Pulsed Radar   
3.7. Range and Doppler Ambiguities   
3.8. Resolving Range Ambiguity   
3.9. Resolving Doppler Ambiguity  
3.10. MATLAB Program “range_calc.m”  
Problems 

 Chapter 4
Radar Detection 

4.1. Detection in the Presence of Noise  
MATLAB Function “que_func.m” 

4.2. Probability of False Alarm 
4.3. Probability of Detection 

MATLAB Function “marcumsq.m”  
4.4. Pulse Integration 

4.4.1. Coherent Integration  
4.4.2. Non-Coherent Integration   

MATLAB Function “improv_fac.m”  
4.5. Detection of Fluctuating Targets 

4.5.1. Detection Probability Density Function  
4.5.2. Threshold Selection  

MATLAB Function “incomplete_gamma.m”  
MATLAB Function “threshold.m”  

4.6. Probability of Detection Calculation 
4.6.1. Detection of Swerling V Targets 

MATLAB Function “pd_swerling5.m”  
4.6.2. Detection of Swerling I Targets  

MATLAB Function “pd_swerling1.m”  
4.6.3. Detection of Swerling II Targets  

MATLAB Function “pd_swerling2.m”  
4.6.4. Detection of Swerling III Targets  

MATLAB Function “pd_swerling3.m”  
4.6.5. Detection of Swerling IV Targets  

MATLAB Function “pd_swerling4.m”  
4.7. Cumulative Probability of Detection 

© 2000 by Chapman & Hall/CRC



      

4.8. Solving the Radar Equation 
4.9. Constant False Alarm Rate (CFAR)  

4.9.1. Cell-Averaging CFAR (Single Pulse)  
4.9.2. Cell-Averaging CFAR with 

Non-Coherent Integration  
4.10. MATLAB Function and Program Listings  
Problems 

 Chapter 5
Radar Waveforms Analysis 

5.1. Low Pass, Band Pass Signals and Quadrature 
Components  

5.2. CW and Pulsed Waveforms 
5.3. Linear Frequency Modulation Waveforms  
5.4. High Range Resolution  
5.5. Stepped Frequency Waveforms  

5.5.1. Range Resolution and Range Ambiguity
in SWF 

MATLAB Function “hrr_profile.m”  
5.5.2. Effect of Target Velocity  

5.6. MATLAB Listings 
Problems 

 Chapter 6
Matched Filter and the Radar Ambiguity 
Function 

6.1. The Matched Filter SNR 
6.2. The Replica 
6.3. Matched Filter Response to LFM Waveforms 
6.4. The Radar Ambiguity Function 
6.5. Examples of the Ambiguity Function 

6.5.1. Single Pulse Ambiguity Function 
MATLAB Function “single_pulse_ambg.m”  

6.5.2. LFM Ambiguity Function 
MATLAB Function “lfm_ambg.m”  

6.5.3. Coherent Pulse Train Ambiguity Function  
MATLAB Function “train_ambg.m”  

6.6. Ambiguity Diagram Contours 
6.7. MATLAB Listings 
Problems 

© 2000 by Chapman & Hall/CRC



 Chapter 7
Pulse Compression  

7.1. Time-Bandwidth Product  
7.2. Radar Equation with Pulse Compression  
7.3. Analog Pulse Compression  

7.3.1. Correlation Processor  
MATLAB Function “matched_filter.m”  

7.3.2. Stretch Processor  
MATLAB Function “stretch.m”  

7.3.3. Distortion Due to Target Velocity  
7.3.4. Range Doppler Coupling  

7.4. Digital Pulse Compression  
7.4.1. Frequency Coding (Costas Codes)  
7.4.2. Binary Phase Codes  
7.4.3. Frank Codes  
7.4.4. Pseudo-Random (PRN) Codes  

7.5. MATLAB Listings  
Problems  

 Chapter 8
Radar Wave Propagation 

8.1. Earth Atmosphere 
8.2. Refraction  
8.3. Ground Reflection  

8.3.1. Smooth Surface Reflection Coefficient  
MATLAB Function “ref_coef.m”  

8.3.2. Divergence  
8.3.3. Rough Surface Reflection  

8.4. The Pattern Propagation Factor 
8.4.1. Flat Earth  
8.4.2. Spherical Earth  

8.5. Diffraction  
8.6. Atmospheric Attenuation  
8.7. MATLAB Program “ref_coef.m”  
Problems 

 Chapter 9 
Clutter and Moving Target Indicator (MTI) 

9.1. Clutter Definition 
9.2. Surface Clutter  

9.2.1. Radar Equation for Area Clutter  

© 2000 by Chapman & Hall/CRC



      

9.3. Volume Clutter 
9.3.1. Radar Equation for Volume Clutter  

9.4. Clutter Statistical Models  
9.5. Clutter Spectrum  
9.6. Moving Target Indicator (MTI)  
9.7. Single Delay Line Canceler  

MATLAB Function “single_canceler.m”  
9.8. Double Delay Line Canceler 

MATLAB Function “double_canceler.m”  
9.9. Delay Lines with Feedback (Recursive Filters) 
9.10. PRF Staggering 
9.11. MTI Improvement Factor 
9.12. Subclutter Visibility (SCV) 
9.13. Delay Line Cancelers with Optimal Weights 
9.14. MATLAB Program/Function Listings  
Problems 

 Chapter 10
Radar Antennas 

10.1. Directivity, Power Gain, and Effective Aperture 
10.2. Near and Far Fields 
10.3. Circular Dish Antenna Pattern  

MATLAB Function “circ_aperture.m”  
10.4. Array Antennas  

10.4.1. Linear Array Antennas 
MATLAB Function “linear_array.m”  

10.5. Array Tapering 
10.6. Computation of the Radiation Pattern via the 

DFT 
10.7. Array Pattern for Rectangular Planar Array 

MATLAB Function “rect_array.m”   
10.8. Conventional Beamforming 
10.9. MATLAB Programs and Functions  
Problems 

 Chapter 11
Target Tracking 

Part I: Single Target Tracking
11.1. Angle Tracking 

11.1.1. Sequential Lobing 
11.1.2. Conical Scan 

11.2. Amplitude Comparison Monopulse 

© 2000 by Chapman & Hall/CRC



MATLAB Function “mono_pulse.m”  
11.3. Phase Comparison Monopulse 
11.4. Range Tracking 

Part II: Multiple Target Tracking
11.5. Track-While-Scan (TWS) 
11.6. State Variable Representation of an LTI System  
11.7. The LTI System of Interest  
11.8. Fixed-Gain Tracking Filters  

11.8.1. The  Filter 
11.8.2. The  Filter 

MATLAB Function “ghk_tracker.m”  
11.9. The Kalman Filter  

11.9.1. The Singer -Kalman Filter 
11.9.2. Relationship between Kalman and  

Filters  
MATLAB Function “kalman_filter.m”  

11.10. MATLAB Programs and Functions  
Problems 

 Chapter 12
Synthetic Aperture Radar 

12.1. Introduction 
12.2. Real Versus Synthetic Arrays 
12.3. Side Looking SAR Geometry 
12.4. SAR Design Considerations 
12.5. SAR Radar Equation 
12.6. SAR Signal Processing 
12.7. Side Looking SAR Doppler Processing 
12.8. SAR Imaging Using Doppler Processing 
12.9. Range Walk 
12.10. Case Study  
12.11. Arrays in Sequential Mode Operation  

12.11.1. Linear Arrays  
12.11.2. Rectangular Arrays  

12.12. MATLAB Programs  
Problems 

 Chapter 13
Signal Processing  

13.1. Signal and System Classifications  

αβ
αβγ

αβγ
αβγ

© 2000 by Chapman & Hall/CRC



      

13.2. The Fourier Transform  
13.3. The Fourier Series  
13.4. Convolution and Correlation Integrals  
13.5. Energy and Power Spectrum Densities  
13.6. Random Variables  
13.7. Multivariate Gaussian Distribution  
13.8. Random Processes  
13.9. Sampling Theorem 
13.10. The Z-Transform 
13.11. The Discrete Fourier Transform 
13.12. Discrete Power Spectrum  
13.13. Windowing Techniques 
Problems 

 Appendix A
Noise Figure  

 Appendix B
Decibel Arithmetic  

 Appendix C
Fourier Transform Table 

 Appendix D
Some Common Probability Densities 

Chi-Square with N degrees of freedom 
Exponential 
Gaussian 
Laplace 
Log-Normal 
Rayleigh 
Uniform 
Weibull 

 Appendix E
Z - Transform Table 

 Appendix F
MATLAB Program and Function Name List  

 Bibliography 

© 2000 by Chapman & Hall/CRC



1

Chapter 1 Radar Fundamentals 

1.1. Radar Classifications

The word radar is an abbreviation for RAdio Detection And Ranging. In
general, radar systems use modulated waveforms and directive antennas to
transmit electromagnetic energy into a specific volume in space to search for
targets. Objects (targets) within a search volume will reflect portions of this
energy (radar returns or echoes) back to the radar. These echoes are then pro-
cessed by the radar receiver to extract target information such as range, veloc-
ity, angular position, and other target identifying characteristics.

Radars can be classified as ground based, airborne, spaceborne, or ship
based radar systems. They can also be classified into numerous categories
based on the specific radar characteristics, such as the frequency band, antenna
type, and waveforms utilized. Another classification is concerned with the
mission and/or the functionality of the radar. This includes: weather, acquisi-
tion and search, tracking, track-while-scan, fire control, early warning, over
the horizon, terrain following, and terrain avoidance radars. Phased array
radars utilize phased array antennas, and are often called multifunction (multi-
mode) radars. A phased array is a composite antenna formed from two or more
basic radiators. Array antennas synthesize narrow directive beams that may be
steered, mechanically or electronically. Electronic steering is achieved by con-
trolling the phase of the electric current feeding the array elements, and thus
the name phased arrays is adopted. 

Radars are most often classified by the types of waveforms they use, or by
their operating frequency. Considering the waveforms first, radars can be
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Continuous Wave (CW) or Pulsed Radars (PR). CW radars are those that con-
tinuously emit electromagnetic energy, and use separate transmit and receive
antennas. Unmodulated CW radars can accurately measure target radial veloc-
ity (Doppler shift) and angular position. Target range information cannot be
extracted without utilizing some form of modulation. The primary use of
unmodulated CW radars is in target velocity search and track, and in missile
guidance. Pulsed radars use a train of pulsed waveforms (mainly with modula-
tion). In this category, radar systems can be classified on the basis of the Pulse
Repetition Frequency (PRF), as low PRF, medium PRF, and high PRF radars.
Low PRF radars are primarily used for ranging where target velocity (Doppler
shift) is not of interest. High PRF radars are mainly used to measure target
velocity. Continuous wave as well as pulsed radars can measure both target
range and radial velocity by utilizing different modulation schemes. 

Table 1.1 has the radar classifications based on the operating frequency. 

High Frequency (HF) radars utilize the electromagnetic waves’ reflection off
the ionosphere to detect targets beyond the horizon. Some examples include
the United States Over The Horizon Backscatter (U.S. OTH/B) radar which
operates in the frequency range of , the U.S. Navy Relocatable
Over The Horizon Radar (ROTHR), see Fig. 1.1, and the Russian Woodpecker
radar. Very High Frequency (VHF) and Ultra High Frequency (UHF) bands are
used for very long range Early Warning Radars (EWR). Some examples
include the Ballistic Missile Early Warning System (BMEWS) search and
track monopulse radar which operates at  (Fig. 1.2), the Perimeter
and Acquisition Radar (PAR) which is a very long range multifunction phased

TABLE 1.1. Radar frequency bands.

Letter 
designation Frequency (GHz)

New band designation 
(GHz)

HF 0.003 - 0.03 A

VHF 0.03 - 0.3 A<0.25; B>0.25

UHF 0.3 - 1.0 B<0.5; C>0.5

L-band 1.0 - 2.0 D

S-band 2.0 - 4.0 E<3.0; F>3.0

C-band 4.0 - 8.0 G<6.0; H>6.0

X-band 8.0 - 12.5 I<10.0; J>10.0

Ku-band 12.5 - 18.0 J

K-band 18.0 - 26.5 J<20.0; K>20.0

Ka-band 26.5 - 40.0 K

MMW Normally >34.0 L<60.0; M>60.0

5 28MHZ–

245MHz
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array radar, and the early warning PAVE PAWS multifunction UHF phased
array radar. Because of the very large wavelength and the sensitivity require-
ments for very long range measurements, large apertures are needed in such
radar systems. 

 Figure 1.1. U. S. Navy Over The Horizon Radar. Photograph obtained 
via the Internet.

 Figure 1.2. Fylingdales BMEWS - United Kingdom. Photograph 
obtained via the Internet.
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Radars in the L-band are primarily ground based and ship based systems that
are used in long range military and air traffic control search operations. Most
ground and ship based medium range radars operate in the S-band. For exam-
ple, the Airport Surveillance Radar (ASR) used for air traffic control, and the
ship based U.S. Navy AEGIS (Fig. 1.3) multifunction phased array are S-band
radars. The Airborne Warning And Control System (AWACS) shown in Fig.
1.4 and the National Weather Service Next Generation Doppler Weather Radar
(NEXRAD) are also S-band radars. However, most weather detection radar
systems are C-band radars. Medium range search and fire control military
radars and metric instrumentation radars are also C-band.

 Figure 1.3. U. S. Navy AEGIS. Photograph obtained via the Internet.

 Figure 1.4. U. S. Air Force AWACS. Photograph obtained via the Internet.
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The X-band is used for radar systems where the size of the antenna consti-
tutes a physical limitation; this includes most military multimode airborne
radars. Radar systems that require fine target detection capabilities and yet can-
not tolerate the atmospheric attenuation of higher frequency bands may also be
X-band. The higher frequency bands (Ku, K, and Ka) suffer severe weather
and atmospheric attenuation. Therefore, radars utilizing these frequency bands
are limited to short range applications, such as the police traffic radars, short
range terrain avoidance, and terrain following radars. Milli-Meter Wave
(MMW) radars are mainly limited to very short range Radio Frequency (RF)
seekers and experimental radar systems. 

1.2. Range

Figure 1.5 shows a simplified pulsed radar block diagram. The time control
box generates the synchronization timing signals required throughout the sys-
tem. A modulated signal is generated and sent to the antenna by the modulator/
transmitter block. Switching the antenna between the transmitting and receiv-
ing modes is controlled by the duplexer. The duplexer allows one antenna to be
used to both transmit and receive. During transmission it directs the radar elec-
tromagnetic energy towards the antenna. Alternatively, on reception, it directs
the received radar echoes to the receiver. The receiver amplifies the radar
returns and prepares them for signal processing. Extraction of target informa-
tion is performed by the signal processor block. The target’s range, , is com-
puted by measuring the time delay, ; it takes a pulse to travel the two-way
path between the radar and the target. Since electromagnetic waves travel at
the speed of light, , then 

R
∆t

c 3 108× m sec⁄=

S ignal
p rocesso r

Tim e
C ontro l

Transm itter/
M odulator

S ignal
p rocesso r R eceiver

R

Figure 1.5. A simplified pulsed radar block diagram.

D uplexer
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(1.1)

where  is in meters and  is in seconds. The factor of  is needed to
account for the two-way time delay.

In general, a pulsed radar transmits and receives a train of pulses, as illus-
trated by Fig. 1.6. The Inter Pulse Period (IPP) is , and the pulse width is .
The IPP is often referred to as the Pulse Repetition Interval (PRI). The inverse
of the PRI is the PRF, which is denoted by ,

(1.2)

During each PRI the radar radiates energy only for  seconds and listens for
target returns for the rest of the PRI. The radar transmitting duty cycle (factor)

 is defined as the ratio . The radar average transmitted power is

, (1.3)

where  denotes the radar peak transmitted power. The pulse energy is
.

The range corresponding to the two-way time delay  is known as the radar
unambiguous range, . Consider the case shown in Fig. 1.7. Echo 1 repre-
sents the radar return from a target at range  due to pulse 1. Echo
2 could be interpreted as the return from the same target due to pulse 2, or it
may be the return from a faraway target at range  due to pulse 1 again. In
this case,

(1.4)

R
c∆t
2

--------=

R ∆t
1
2
---

T τ

fr

fr
1

PRI
---------- 1

T
---= =

tim e

tim e

transm itted  pulses

received  pulses

τ
IPP

pu lse  1

∆t

pu lse  3pu lse  2

τ
pulse 1  
echo

pulse  2 
echo

pulse  3  
echo

 Figure 1.6.  Train of transmitted and received pulses.
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Clearly, range ambiguity is associated with echo 2. Therefore, once a pulse is
transmitted the radar must wait a sufficient length of time so that returns from
targets at maximum range are back before the next pulse is emitted. It follows
that the maximum unambiguous range must correspond to half of the PRI,

(1.5)

MATLAB Function “pulse_train.m”

The MATLAB function “pulse_train.m” computes the duty cycle, average
transmitted power, pulse energy, and the pulse repetition frequency. It is given
in Listing 1.1 in Section 1.8; its syntax is as follows:

[dt pav ep prf ru] = pulse_train(tau,pri,p_peak)

where

Symbol Description Units Status

tau pulse width seconds input

pri PRI seconds input

p_peak peak power Watts input

dt duty cycle none output

pav average transmitted power Watts output

ep pulse energy Joules output

prf PRF Hz output

ru unambiguous range Km output

transm itted  pulses

received pulses

τ
PRI

pulse  1

∆t

pulse 2

ec ho 1   ec ho  2  

R1
c∆t
2

--------=

Ru

R2

∆t

tim e  o r ran ge

tim e o r ran ge

t 0= t 1 fr⁄=

 Figure 1.7. Illustrating range ambiguity.
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Example 1.1: A certain airborne pulsed radar has peak power ,
and uses two PRFs,  and . What are the required
pulse widths for each PRF so that the average transmitted power is constant
and is equal to ? Compute the pulse energy in each case.

Solution: Since  is constant, then both PRFs have the same duty cycle.
More precisely,

 

The pulse repetition intervals are

It follows that

.   

1.3. Range Resolution

Range resolution, denoted as , is a radar metric that describes its ability
to detect targets in close proximity to each other as distinct objects. Radar sys-
tems are normally designed to operate between a minimum range , and
maximum range . The distance between  and  is divided into

 range bins (gates), each of width ,

(1.6)

Targets separated by at least  will be completely resolved in range, as illus-
trated in Fig. 1.8. Targets within the same range bin can be resolved in cross
range (azimuth) utilizing signal processing techniques.

Pt 10KW=
fr1 10KHz= fr2 30KHz=

1500Watts

Pav

dt
1500

10 103×
-------------------- 0.15= =

T1
1

10 103×
-------------------- 0.1ms= =

T2
1

30 103×
-------------------- 0.0333ms= =

τ1 0.15 T1× 15µs= =

τ2 0.15 T2× 5µs= =

Ep1 Ptτ1 10 103× 15 10 6–×× 0.15Joules= = =

Ep2 P2τ2 10 103× 5 10 6–×× 0.05Joules= = =

∆R

Rmin
Rmax Rmin Rmax

M ∆R

M
Rmax Rmin–

∆R
----------------------------=

∆R
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Consider two targets located at ranges  and , corresponding to time
delays  and , respectively. Denote the difference between those two ranges
as :

(1.7)

Now, try to answer the following question: What is the minimum  such
that target 1 at  and target 2 at  will appear completely resolved in range
(different range bins)? In other words, what is the minimum ?

First, assume that the two targets are separated by ,  is the pulse
width. In this case, when the pulse trailing edge strikes target 2 the leading
edge would have traveled backwards a distance , and the returned pulse
would be composed of returns from both targets (i.e., unresolved return), as
shown in Fig. 1.9a. However, if the two targets are at least  apart, then as
the pulse trailing edge strikes the first target the leading edge will start to return
from target 2, and two distinct returned pulses will be produced, as illustrated
by Fig. 1.9b. Thus,  should be greater or equal to . And since the radar
bandwidth  is equal to , then

(1.8)

In general, radar users and designers alike seek to minimize  in order to
enhance the radar performance. As suggested by Eq. (1.8), in order to achieve
fine range resolution one must minimize the pulse width. However, this will
reduce the average transmitted power and increase the operating bandwidth.
Achieving fine range resolution while maintaining adequate average transmit-
ted power can be accomplished by using pulse compression techniques.

R1 R2
t1 t2

∆R

∆R R2 R1– c
t2 t1–( )

2
------------------ c

δt
2
----= = =

Rmin Rmax     

⋅ ⋅ ⋅

∆R∆R

C luster 3

C luster 2

C luste r 1

cross range

range

 Figure 1.8. Resolving targets in range and cross range.
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Figure 1.9. (a) Two unresolved targets. (b) Two resolved targets.
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MATLAB Function “range_resolution.m”

The MATLAB function “range_resolution.m” computes range resolution. It
is given in Listing 1.2 in Section 1.8; its syntax is as follows:

[delta_R] = range_resolution(var, indicator)

where

Example 1.2: A radar system with an unambiguous range of 100 Km, and a
bandwidth 0.5 MHz. Compute the required PRF, PRI, , and .

Solution:

  

  

Using the function “range_resolution” yields   

  

.   

1.4. Doppler Frequency

Radars use Doppler frequency to extract target radial velocity (range rate), as
well as to distinguish between moving and stationary targets or objects such as
clutter. The Doppler phenomenon describes the shift in the center frequency of
an incident waveform due to the target motion with respect to the source of
radiation. Depending on the direction of the target’s motion this frequency shift
may be positive or negative. A waveform incident on a target has equiphase
wavefronts separated by , the wavelength. A closing target will cause the
reflected equiphase wavefronts to get closer to each other (smaller wave-
length). Alternatively, an opening or receding target (moving away from the
radar) will cause the reflected equiphase wavefronts to expand (larger wave-
length), as illustrated in Fig. 1.10.

Symbol Description Units Status

var, indicator bandwidth, ‘hz’ Hz, none inputs

var, indicator pulse width, ‘s’ seconds, none inputs

delta_R range resolution meters output

∆R τ

PRF
c

2Ru

--------- 3 108×
2 105×
----------------- 1500 Hz= = =

PRI
1

PRF
----------- 1

1500
------------ 0.6667 ms= = =

∆R
c

2B
------- 3 108×

2 0.5 106××
------------------------------- 300 m= = =

τ 2∆R
c

----------- 2 300×
3 108×
------------------ 2 µs= = =

λ
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Consider a pulse of width  (seconds) incident on a target which is moving
towards the radar at velocity , as shown in Fig. 1.11. Define  as the distance
(in meters) that the target moves into the pulse during the interval , 

 (1.9)

where  is equal to the time span between the pulse leading edge striking the
target and the trailing edge striking the target. Since the pulse is moving at the
speed of light and the trailing edge has moved distance , then

(1.10)

Combining Eq. (1.9) and Eq. (1.10) yields

(1.11)

Now, in  seconds the pulse leading edge has moved in the direction of the
radar a distance ,

(1.12)

λ λ′>

λ′λ

re flected

λ′

in c id en t

o pen in g  ta rg et 

c los ing  targe t

λ

λ λ′<

rad a r

rada r

 Figure 1.10. Effect of target motion on the reflected equiphase waveforms.
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Therefore, the reflected pulse width is now  seconds, or  meters,

(1.13)

Substituting Eq. (1.11) and Eq. (1.12) into Eq. (1.13) yields

(1.14)

 (1.15)

(1.16)

In practice, the factor  is often referred to as the time dilation
factor. Notice that if , then . In a similar fashion, one can com-
pute  for an opening target. In this case,

(1.17)

To derive an expression for Doppler frequency, consider the illustration
shown in Fig. 1.12. It takes the leading edge of pulse 2  seconds to travel a
distance  to strike the target. Over the same time interval, the leading
edge of pulse 1 travels the same distance . More precisely, 

(1.18)

leading
edge

trailing
edge

incident pulse

reflected pulse

leading
edge

trailing
edge

t t0=

L cτ′=

d

s cτ=
at time

t t0 ∆t+=
at time

v

 Figure 1.11. Illustrating the impact of target velocity on a single pulse.
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 Figure 1.12. Illustration of target motion effects on the radar pulses.
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(1.19)

solving for  yields

(1.20)

(1.21)

The reflected pulse spacing is now  and the new PRF is , where

(1.22)

It follows that the new PRF is related to the original PRF by

(1.23)

However, since the number of cycles does not change, the frequency of the
reflected signal will go up by the same factor. Denoting the new frequency by

, it follows

(1.24)

where  is the carrier frequency of the incident signal. The Doppler frequency
 is defined as the difference . More precisely,

(1.25)

but since  and , then

(1.26)

Eq. (1.26) indicates that the Doppler shift is proportional to the target velocity,
and thus, one can extract  from range rate and vice versa. 

The result in Eq. (1.26) can also be derived using the following approach:
Fig. 1.13 shows a closing target with velocity . Let  refer to the range at
time  (time reference), then the range to the target at any time  is

(1.27)

c
fr
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c fr⁄
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------=
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The signal received by the radar is then given by

(1.28)

where  is the transmitted signal, and

(1.29)

Substituting Eq. (1.29) into Eq. (1.28) and collecting terms yield

(1.30)

the constant phase  is

(1.31)

Define the compression or scaling factor  by

(1.32)

Note that for a receding target the scaling factor is . Using Eq.
(1.32) we can rewrite Eq. (1.30) as

(1.33)

Eq. (1.33) is a time-compressed version of the returned signal from a stationary
target ( ). Hence, based on the scaling property of the Fourier transform,

v

R0

Figure 1.13. Closing target with velocity v.
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the spectrum of the received signal will be expanded in frequency by a factor
of . 

Consider the special case when

(1.34)

where  is the radar center frequency in radians per second. The received
signal  is then given by

(1.35)

The Fourier transform of Eq. (1.35) is

(1.36)

where for simplicity the effects of the constant phase  have been ignored in
Eq. (1.36). Therefore, the band pass spectrum of the received signal is now
centered at  instead of . The difference between the two values corre-
sponds to the amount of Doppler shift incurred due to the target motion,

 (1.37)

 is the Doppler frequency in radians per second. Substituting the value of 
in Eq. (1.37) and using  yield

(1.38)

which is the same as Eq. (1.26). It can be shown that for a receding target the
Doppler shift is . This is illustrated in Fig. 1.14. 
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Figure 1.14. Spectra of radar received signal.
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In both Eq. (1.38) and Eq. (1.26) the target radial velocity with respect to the
radar is equal to , but this is not always the case. In fact, the amount of Dop-
pler frequency depends on the target velocity component in the direction of the
radar (radial velocity). Fig. 1.15 shows three targets all having velocity : tar-
get 1 has zero Doppler shift; target 2 has maximum Doppler frequency as
defined in Eq. (1.38). The amount of Doppler frequency due to target 3 is

, where  is the radial velocity; and  is the total angle
between the radar line of sight and the target.

Thus, a more general expression for  that accounts for the total angle
between the radar and the target is

(1.39)

and for an opening target

(1.40)

where . The angles  and  are, respectively, the ele-
vation and azimuth angles; see Fig. 1.16.

Example 1.3: Compute the Doppler frequency measured by the radar shown
in the figure below.

v

v

fd 2v θcos λ⁄= v θcos θ

θ
v v

v

Figure 1.15. Target 1 generates zero Doppler. Target 2 generates 

 maximum Doppler. Target 3 is in-between. 

tgt1 tgt2 tgt3

fd

fd
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λ
------ θcos=

fd
2– v
λ

--------- θcos=

θcos θecos θacos= θe θa

vradar = 250 m/sec 

vtarget = 175 m/sec 

line of sight

target

λ 0.03m=
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Solution: The relative radial velocity between the radar and the target is
. Thus using Eq. (1.38), we get

  

Similarly, if the target were opening the Doppler frequency is

.   

    

 MATLAB Function “doppler_freq.m”

The function “doppler_freq.m” computes Doppler frequency. It is given in
Listing 1.3 in Section 1.8; its syntax is as follows:

[fd, tdr] = doppler_freq(freq, ang, tv, indicator)

where

Symbol Description Units Status

freq radar operating frequency Hz input

ang aspect angle degrees input

tv target velocity m/sec input

indicator 1 for closing target, 0 otherwise none input

fd Doppler frequency Hz output

tdr time dilation factor ratio none output

v

θa θe

 Figure 1.16.  Radial velocity is proportional to the azimuth and elevation angles.

vradar vt etarg+
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250 175+( )
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----------------------------- 28.3KHz= =
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1.5. Coherence

A radar is said to be coherent if the phase of any two transmitted pulses is
consistent, i.e., there is a continuity in the signal phase from one pulse to the
next, as illustrated in Fig. 1.17a. One can view coherence as the radar’s ability
to maintain an integer multiple of wavelengths between the equiphase wave-
front from the end of one pulse to the equiphase wavefront at the beginning of
the next pulse, as illustrated by Fig. 1.17b. Coherency can be achieved by
using a STAble Local Oscillator (STALO). A radar is said to be coherent-on-
receive or quasi-coherent if it stores in its memory a record of the phases of all
transmitted pulses. In this case, the receiver phase reference is normally the
phase of the most recent transmitted pulse.

Coherence also refers to the radar’s ability to accurately measure (extract)
the received signal phase. Since Doppler represents a frequency shift in the
received signal, then only coherent or coherent-on-receive radars can extract
Doppler information. This is because the instantaneous frequency of a signal is
proportional to the time derivative of the signal phase. More precisely,

(1.41)

where  is the instantaneous frequency, and  is the signal phase.

 For example, consider the following signal:

(1.42)

where the scaling factor  is defined in Eq. (1.32), and  is a constant phase.
It follows that the instantaneous frequency of  is

fi
1

2π
------

td
d φ t( )=

fi φ t( )

x t( ) γω0t ψ0–( )cos=

γ ψ0
x t( )

in teger m ultip le  o f λ

pulse  n+ 1 pulse  n

d istance

λ λ

(a)

(b )

 

                                        

 Figure 1.17. (a) Phase continuity between consecutive pulses. (b) M aintain ing an  
integer m ultiple o f w avelengths betw een the equ iphase w avefronts 
of any tw o successive  pu lses guarantees coherency.   
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(1.43)

where . Substituting Eq. (1.32) into Eq. (1.43) yields

(1.44)

where the relation  is utilized. Note that the second term of the most
right-hand side of Eq. (1.44) is a Doppler shift.

1.6. The Radar Equation

Consider a radar with an omni directional antenna (one that radiates energy
equally in all directions). Since these kinds of antennas have a spherical radia-
tion pattern, we can define the peak power density (power per unit area) at any
point in space as

(1.45)

The power density at range  away from the radar (assuming a lossless propa-
gation medium) is

(1.46)

where  is the peak transmitted power and  is the surface area of a
sphere of radius . Radar systems utilize directional antennas in order to
increase the power density in a certain direction. Directional antennas are usu-
ally characterized by the antenna gain  and the antenna effective aperture

. They are related by

 (1.47)

where  is the wavelength. The relationship between the antenna’s effective
aperture  and the physical aperture  is

(1.48)

 is referred to as the aperture efficiency, and good antennas require .
In this book we will assume, unless otherwise noted, that  and  are the
same. We will also assume that antennas have the same gain in the transmitting
and receiving modes. In practice,  is widely accepted.
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The power density at a distance  away from a radar using a directive
antenna of gain  is then given by

(1.49)

When the radar radiated energy impinges on a target, the induced surface cur-
rents on that target radiate electromagnetic energy in all directions. The amount
of the radiated energy is proportional to the target size, orientation, physical
shape, and material, which are all lumped together in one target-specific
parameter called the Radar Cross Section (RCS) and is denoted by . 

The radar cross section is defined as the ratio of the power reflected back to
the radar to the power density incident on the target,

(1.50)

where  is the power reflected from the target. Thus, the total power deliv-
ered to the radar signal processor by the antenna is 

(1.51)

substituting the value of  from Eq. (1.47) into Eq. (1.51) yields

(1.52)

Let  denote the minimum detectable signal power. It follows that the
maximum radar range  is

(1.53)

Eq. (1.53) suggests that in order to double the radar maximum range, one must
increase the peak transmitted power  sixteen times; or equivalently, one
must increase the effective aperture four times.

In practical situations the returned signals received by the radar will be cor-
rupted with noise, which introduces unwanted voltages at all radar frequencies.
Noise is random in nature and can be described by its Power Spectral Density
(PSD) function. The noise power  is a function of the radar operating band-
width, . More precisely
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(1.54)

The input noise power to a lossless antenna is

(1.55)

where  is Boltzman’s constant, and
 is the effective noise temperature in degree Kelvin. It is always desirable

that the minimum detectable signal ( ) be greater than the noise power. The
fidelity of a radar receiver is normally described by a figure of merit called the
noise figure  (see Appendix A for details). The noise figure is defined as

(1.56)

 and  are, respectively, the Signal to Noise Ratios (SNR) at the
input and output of the receiver.  is the input signal power,  is the input
noise power,  and  are, respectively, the output signal and noise power.
Substituting Eq. (1.55) into Eq. (1.56) and rearranging terms yield

(1.57)

Thus, the minimum detectable signal power can be written as 

(1.58)

The radar detection threshold is set equal to the minimum output SNR,
. Substituting Eq. (1.58) in Eq. (1.53) gives

(1.59)

or equivalently,

(1.60)

Radar losses denoted as  reduce the overall SNR, and hence 

(1.61)

Although it may take on many different forms, Eq. (1.61) is what is widely
known as the Radar Equation. It is a common practice to perform calculations
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associated with the radar equation using decibel (dB) arithmetic. A review is
presented in Appendix B. 

MATLAB Function “radar_eq.m”

The function “radar_eq.m” implements Eq. (1.61); it is given in Listing 1.4
in Section 1.8. The outputs are either SNR in dB or range in Km where a dif-
ferent input setting is used for each case. The syntax is as follows:

[out_par] = radar_eq (pt, freq, g, sigma, te, b, nf, loss, input_par, option, 
rcs_delta1, rcs_delta2, pt_percent1, pt_percent2)

If some of the inputs are not available in the proper format, the functions
“dB_to_base10.m” and / or “base10_to_dB.m” can be used first. Plots of SNR
versus range (or range versus SNR) for several choices of RCS and peak power
are also generated by the function “radar_eq.m”. Typical plots utilizing Exam-
ple 1.4 parameters are shown in Fig. 1.18. In this case, the default values are
those listed in the example. Observation of these plots shows how doubling the
peak power (3 dB) has little effect on improving the SNR. One should consider
varying other radar parameters such as antenna gain to improve SNR, or detec-
tion range.   

Symbol Description Units Status

pt peak power KW input

freq frequency Hz input

g antenna gain dB input

sigma target cross section m2 input

te effective temperature Kelvin input

b bandwidth Hz input

nf noise figure dB input

loss radar losses dB input

input_par SNR, or R max dB, or Km input

option 1 means input_par = SNR

2 means input_par = R

none input

rcs_delta1 rcs delta1 (sigma - delta1) dB input

rcs_delta2 rcs delta2 (sigma + delta2) dB input

pt_percent1 pt * pt_percent1% none input

pt_percent2 pt * pt_percent2% none input

out_par R for option = 1

SNR for option = 2

Km, or dB output
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 Figure 1.18. Typical outputs generated by the function “radar_eq.m”. 
Plots correspond to parameters from Example 1.4.
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Example 1.4: A certain C-band radar with the following parameters: Peak
power , operating frequency , antenna gain

, effective temperature , pulse width .
The radar threshold is . Assume target cross section

. Compute the maximum range.

Solution: The radar bandwidth is

the wavelength is

From Eq. (1.59) we have

where, before summing, the dB calculations are carried out for each of the
individual parameters on the right-hand side. We can now construct the fol-
lowing table with all parameters computed in dB:

It follows 

Thus, the maximum detection range is .

1.6.1. Low PRF Radar Equation

Consider a pulsed radar with pulse width , PRI , and peak transmitted
power . The average transmitted power is , where  is
the transmission duty factor. We can define the receiving duty factor  as

 

Pt 1.5MW= f0 5.6GHz=
G 45dB= Te 290K= τ 0.2µ sec=

SNR( )min 20dB=
σ 0.1m

2=

B
1
τ
--- 1

0.2 10 6–×
------------------------ 5MHz= = =

λ c
f0

--- 3 108×
5.6 109×
---------------------- 0.054m= = =

R
4( )dB Pt G

2 λ2 σ 4π( )3 kTeB F SNR( )omin
––––+ + +( )

dB
=

Pt λ2
G

2 kTeB 4π( )3 F SNR( )omin
σ

61.761 25.421– 90dB 136.987– 32.976 3dB 20dB 10–

R
4 61.761 90 25.352– 10– 32.976– 136.987 3– 20–+ + 197.420dB= =

R
4 10

197.420
10

-------------------

55.208 1018× m
4= =

R 55.208 1018×4 86.199Km= =

86.2Km

τ T
Pt Pav Ptdt= dt τ T⁄=

dr
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(1.62)

Thus, for low PRF radars ( ) the receiving duty factor is .

Define the “time on target”  (the time that a target is illuminated by the
beam) as

(1.63)

where  is the total number of pulses that strikes the target, and  is the radar
PRF. Assuming low PRF, the single pulse radar equation is given by

 (1.64)

and for  coherently integrated pulses we get

(1.65)

Now by using Eq. (1.63) and using  the low PRF radar equation can
be written as 

 (1.66)

MATLAB Function “lprf_req.m”

The function “lprf_req.m” implements the low PRF radar equation; it is
given in Listing 1.5 in Section 1.8. Again when necessary the functions
“dB_to_base10.m” and/or “base10_to_dB.m” can be used first. For a given
set of input parameters, the function “lprf_req.m” computes (SNR)np. Plots of
SNR versus range for three sets of coherently integrated pulses are generated;
see Fig. 1.19. Also, plots of SNR versus number of coherently integrated
pulses for two choices of the default RCS and peak power are generated. Typi-
cal plots utilizing Example 1.4 parameters are shown in Fig. 1.20. As indicated
by Fig. 1.20, integrating a limited number of pulses can significantly enhance
the SNR; however, integrating large amount of pulses does not provide any
further major improvement. 

The syntax for function “lprf_req.m” is as follows:

[snr_out] = lprf_req (pt, freq, g, sigma, te, b, nf, loss, range, prf, np, rcs_delta, 
pt_percent, np1, np2)

dr
T τ–

T
----------- 1 τfr–= =

T τ» dr 1≈

Ti

Ti

np

fr

-----= np⇒ Tifr=

np fr

SNR( )1
PtG

2λ2σ

4π( )3R
4
kTeBFL

----------------------------------------=

np

SNR( )np

PtG
2λ2σ np

4π( )3R
4
kTeBFL

----------------------------------------=

B 1 τ⁄=

SNR( )np

PtG
2λ2σTifrτ

4π( )3R
4
kTeFL

------------------------------------=
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Symbol Description Units Status

pt peak power KW input

freq frequency Hz input

g antenna gain dB input

sigma target cross section m2 input

te effective temperature Kelvin input

b bandwidth Hz input

nf noise figure dB input

loss radar losses dB input

range target range Km input

prf PRF Hz input

np number of pulses none input

np1 choice 1 for np none input

np2 choice 2 for np none input

rcs_delta rcs delta1 (sigma - delta) dB input

pt_percent pt * pt_percent% none input

snr_out SNR  dB output

 Figure 1.19. Typical output generated by the function “lprf_req.m”. Plots 
correspond to parameters from Example 1.4.
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1.6.2. High PRF Radar Equation

Now, consider the high PRF radar case. The transmitted signal is a periodic
train of pulses. The pulse width is  and the period is . This pulse train can
be represented using an exponential Fourier series. The central power spectrum
line (DC component) for this series contains most of the signal’s power. Its
value is , and it is equal to the square of the transmit duty factor. Thus,
the single pulse radar equation for a high PRF radar (in terms of the DC spec-
tral power line) is

(1.67)

where, in this case, we can no longer ignore the receive duty factor, since its
value is comparable to the transmit duty factor. In fact, . Addi-
tionally, the operating radar bandwidth is now matched to the radar integration
time (time on target), . It follows that

 Figure 1.20. Typical outputs generated by the function “lprf_req.m”. Plots 
correspond to parameters from Example 1.4.
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(1.68)

and finally,

(1.69)

where  was substituted for . Note that the product  is a “kind of
energy” product, which indicates that high PRF radars can enhance detection
performance by using relatively low power and longer integration time.

MATLAB Function “hprf_req.m”

The function “hprf_req.m” implements the high PRF radar equation; it is
given in Listing 1.6 in Section 1.8. Plots of SNR versus range for three duty
cycle choices are generated. Figure 1.21 shows typical outputs generated by
the function “hprf_req.m”. Its syntax is as follows:

[snr_out] = hprf_req (pt, freq, g, sigma, dt, ti, range, te, nf, loss, prf, tau, dt1, 
dt2)

where

Symbol Description Units Status

pt peak power KW input

freq frequency Hz input

g antenna gain dB input

sigma target cross section m2 input

dt duty cycle none input

ti time on target seconds input

range target range Km input

te effective temperature Kelvin input

nf noise figure dB input

loss radar losses dB input

prf PRF Hz input

tau pulse width seconds input

dt1 duty cycle choice 1 none input

dt2 duty cycle choice 2 none input

snr_out SNR  dB output

SNR
PtτfrTiG

2λ2σ

4π( )3R
4
kTeFL

------------------------------------=

SNR
PavTiG

2λ2σ

4π( )3R
4
kTeFL

------------------------------------=

Pav Ptτfr PavTi
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Note that either  or the combination of  and  are needed. One should
enter zero for  when  and  are known and vice versa. 

Example 1.5: Compute the single pulse  for a high PRF radar with the
following parameters: peak power , antenna gain ,
operating frequency , losses , noise figure ,
effective temperature , dwell interval , duty factor

. The range of interest is . Assume target RCS
. 

Solution: From Eq. (1.69) we have

The following table gives all parameters in dB:

.

dt fr τ
dt fr τ

 Figure 1.21. Typical output generated by the function “hprf_req.m”. 
Plots correspond to parameters from Example 1.5.
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Pt 100KW= G 20dB=

f0 5.6GHz= L 8dB= F 5dB=
Te 400K= Ti 2s=

dt 0.3= R 50Km=
σ 0.01m
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SNR( )dB Pav G
2 λ2 σ Ti 4π( )3 R
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Pav λ2 Ti kTe 4π( )3 R
4 σ

44.771 25.421– 3.01 202.581– 32.976 187.959 20–

SNR( )dB 44.771 40 25.421– 20– 3.01 32.976–
202.581 187.959– 5– 8–

+ + +
11.006dB

=
=
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1.6.3. Surveillance Radar Equation

Surveillance or search radars continuously scan a specified volume in space
searching for targets. They are normally used to extract target information such
as range, angular position, and possibly target velocity. Depending on the radar
design and antenna, different search patterns can be adopted. A two-dimen-
sional (2-D) fan beam search pattern is shown in Fig.1.22a. In this case, the
beam width is wide enough in elevation to cover the desired search volume
along that coordinate; however, it has to be steered in azimuth. Figure 1.22b
shows a stacked beam search pattern; here the beam has to be steered in azi-
muth and elevation. This latter kind of search pattern is normally employed by
phased array radars.

Search volumes are normally specified by a search solid angle  in steradi-
ans. The antenna  beam width can be expressed in terms of its azimuth
and elevation beam widths  and , respectively. It follows that the antenna
solid angle coverage is . In this book we will assume symmetrical anten-
nas (circular apertures) so that . Furthermore, when we refer to the
antenna beam width we will always assume the  beam width, . 

The number of antenna beam positions  required to cover a solid angle 
is (see Fig. 1.23)

(1.70)

For a circular aperture of diameter , the  is 

(1.71)

Ω
3dB

θa θe
θaθe

θa θe=
3dB θ3dB

nB Ω

nB
Ω
θaθe

----------- Ω
θ3dB

2
----------= =

D θ3dB

θ3dB
λ
D
----≈

(a ) (b )

azim uth

elevation

 Figure 1.22. (a) 2-D fan search pattern; (b) stacked search pattern.
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and when aperture tapering is used, . Substituting Eq. (1.71)
into Eq. (1.70) yields

(1.72)

As a rule of thumb, the  antenna beam width for a rectangular aperture of
length  is . 

Define the time it takes radar to search a volume defined by the solid angle
 as the scan time . The time on target can then be expressed in terms of
 as

(1.73)

In order to define the search radar equation, start with Eq. (1.69) and use Eq.
(1.73). More precisely,

 (1.74)

and by using Eq. (1.47) in Eq. (1.74) we can define the search radar equation as

 (1.75)

where the relation  (aperture area) was used. 
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an tenna
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θ3dB

Figure 1.23. A cut in space showing the antenna beam width
     and the search volume.
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nB

-------
Tscλ
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D
2Ω

-------------= =

SNR
PavG

2λ2σ

4π( )3R
4
kTeFL
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-------------=
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The quantity  in Eq. (1.75) is known as the power aperture product. In
practice, the power aperture product is widely used to categorize the radar abil-
ity to fulfill its search mission. Normally, a power aperture product is com-
puted to meet predetermined SNR and radar cross section for a given search
volume defined by .

Example 1.6: Compute the power aperture product for an X-band radar with
the following parameters: signal-to-noise ratio ; losses

; effective noise temperature degree Kelvin; search vol-
ume ; scan time seconds; noise figure . Assume a

 target cross section, and range . Also, compute the
peak transmitted power corresponding to 30% duty factor, if the antenna gain
is 45 dB.

Solution: The angular coverage is  in both azimuth and elevation. It fol-
lows that the solid angle coverage is 

Note that the factor  converts angles into solid angles. From
Eq. (1.75), we have

It follows that

Then the power aperture product is

Now, assume the radar wavelength to be , then 

; 

 

.

PavA

Ω

SNR 15dB=
L 8dB= Te 900=

Ω 2°= Tsc 2.5= F 5dB=
10dBsm– R 250Km=

2°

Ω 2 2×
57.23( )2

-------------------- 29.132dB–= =

360 2π⁄ 57.23=

SNR( )dB Pav A σ Tsc 16 R
4– kTe– L– F– Ω––+ + +( )dB=

σ Tsc 16 R
4 kTe

10– 3.979 12.041 215.918 199.059–

15 Pav A 10– 3.979 12.041– 215.918– 199.054 5– 8– 29.133+ + + +=

Pav A+ 33.793dB=

λ 0.03m=

A
Gλ2

4π
---------- 3.550dB= = Pav A– 33.793+ 30.243dB= =

Pav 103.0243 1057.548W= =

Pt

Pav

dt

-------- 1057.548
0.3

---------------------- 3.52516KW= = =
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MATLAB Function “power_aperture_eq.m”

The function “power_aperture_req.m” implements the search radar equa-
tion given in Eq. (1.75); it is given in Listing 1.7 in Section 1.8. Plots of peak
power versus aperture area and the power aperture product versus range for
three range choices are generated. Figure 1.24 shows typical output using the
parameters given in Example 1.6. The syntax is as follows:

[p_a_p, aperture, pt, pav] = power_aperture_req (snr, freq, tsc, sigma, dt, 
range, te, nf, loss, az_angle, el_angle, g, rcs_delta1, rcs_delta2)

where 

1.6.4. Radar Equation with Jamming

Any deliberate electronic effort intended to disturb normal radar operation is
usually referred to as an Electronic Countermeasure (ECM). This may also
include chaff, radar decoys, radar RCS alterations (e.g., radio frequency
absorbing materials), and of course, radar jamming. Jammers can be catego-
rized into two general types: (1) barrage jammers; and (2) deceptive jammers
(repeaters). 

Symbol Description Units Status

snr sensitivity snr dB input

freq frequency Hz input

tsc scan time seconds input

sigma target cross section m2 input

dt duty cycle none input

range target range Km input

te effective temperature Kelvin input

nf noise figure dB input

loss radar losses dB input

az_angle search volume azimuth extent degrees input

el_angle search volume elevation extent degrees input

g antenna gain dB input

rcs_delta1 rcs delta 1 (sigma - delta1) dB input

rcs_delta2 rcs delta2 (sigma + delta2) dB input

p_a_p power aperture product  dB output

aperture antenna aperture m2 output

pt peak power KW output

pav average power KW output
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 Figure 1.24. Typical outputs generated by the function “power_aperture_req.m”. 
Plots correspond to parameters from Example 1.6.
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When strong jamming is present, detection capability is determined by
receiver signal-to-noise plus interference ratio rather than SNR. And in most
cases, detection is established based on the signal-to-interference ratio alone.

Barrage jammers attempt to increase the noise level across the entire radar
operating bandwidth. Consequently, this lowers the receiver SNR, and, in turn,
makes it difficult to detect the desired targets. This is the reason why barrage
jammers are often called maskers (since they mask the target returns). Barrage
jammers can be deployed in the main beam or in the side lobes of the radar
antenna. If a barrage jammer is located in the radar main beam, it can take
advantage of the antenna maximum gain to amplify the broadcasted noise sig-
nal. Alternatively, side lobe barrage jammers must either use more power, or
operate at a much shorter range than main beam jammers. Main beam barrage
jammers can be deployed either on-board the attacking vehicle, or act as an
escort to the target. Side lobe jammers are often deployed to interfere with a
specific radar, and since they do not stay close to the target, they have a wide
variety of stand-off deployment options. 

Repeater jammers carry receiving devices on board in order to analyze the
radar’s transmission, and then send back false target-like signals in order to
confuse the radar. There are two common types of repeater jammers: spot noise
repeaters and deceptive repeaters. The spot noise repeater measures the trans-
mitted radar signal bandwidth and then jams only a specific range of frequen-
cies. The deceptive repeater sends back altered signals that make the target
appear in some false position (ghosts). These ghosts may appear at different
ranges or angles than the actual target. Furthermore, there may be several
ghosts created by a single jammer. By not having to jam the entire radar band-
width, repeater jammers are able to make more efficient use of their jamming
power. Radar frequency agility may be the only way possible to defeat spot
noise repeaters.

 Self-Screening Jammers (SSJ)

Self-screening jammers, also known as self-protecting jammers, are a class
of ECM systems carried on the vehicle they are protecting. Escort jammers
(carried on vehicles that accompany the attacking vehicles) can also be treated
as SSJs if they appear at the same range as that of the target(s). 

Assume a radar with an antenna gain , wavelength , aperture , band-
width , receiver losses , and peak power . The single pulse power
received by the radar from a target of RCS , at range , is

(1.76)

G λ A
B L Pt

σ R

Pr

PtG
2λ2σ

4π( )3R
4
L

-----------------------=

© 2000 by Chapman & Hall/CRC



The power received by the radar from an SSJ jammer at the same range is

(1.77)

where  are, respectively, the jammer’s peak power, antenna gain,
operating bandwidth, and losses. Substituting Eq. (1.47) into Eq. (1.77) yields

(1.78)

The factor  (a ratio less than unity) is needed in order to compensate
for the fact that the jammer bandwidth is usually larger than the operating
bandwidth of the radar. This is because jammers are normally designed to
operate against a wide variety of radar systems with different bandwidths.
Thus, the radar equation for a SSJ case is obtained from Eqs. (1.76) and (1.78),

  (1.79)

where  is the radar processing gain.

The jamming power reaches the radar on a one-way transmission basis,
whereas the target echoes involve two-way transmission. Thus, the jamming
power is generally greater than the target signal power. In other words, the ratio

 is less than unity. However, as the target becomes closer to the radar,
there will be a certain range such that the ratio  is equal to unity. This
range is known as the crossover or burn-through range. The range window
where the ratio  is sufficiently larger than unity is denoted as the detec-
tion range. In order to compute the crossover range , set  to unity in
Eq. (1.79) and solve for range. It follows that

(1.80)

MATLAB Program “ssj_req.m”

The program “ssj_req.m” implements Eqs. (1.76) through (1.80); it is given
in Listing 1.8 in Section 1.8. This program calculates the crossover range and
generates plots of relative  and  versus range normalized to the cross-
over range, as illustrated in Fig. 1.25. In this example, the following parame-
ters were utilized in producing this figure: radar peak power ,
jammer peak power , radar operating bandwidth ,
jammer bandwidth , radar and jammer losses

, target cross section , radar antenna gain
, jammer antenna gain . 
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The synatx is as follows:

[BR_range] = ssj_req (pt, g, freq, sigma, b, loss, pj, bj, gj, lossj)

where

Symbol Description Units Status

pt radar peak power KW input

g radar antenna gain dB input

sigma target cross section m2 input

freq radar operating frequency Hz input

b radar operating bandwidth Hz input

loss radar losses dB input

pj jammer peak power KW input

bj jammer bandwidth Hz input

gj jammer antenna gain dB input

lossj jammer losses dB input

BR_range burn-through range Km output

 Figure 1.25. Target and jammer echo signals. Plots were generated using 
the program “ssj_req.m”. 
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Stand-Off Jammers (SOJ)

Stand-off jammers (SOJ) emit ECM signals from long ranges which are
beyond the defense’s lethal capability. The power received by the radar from
an SOJ jammer at range  is 

(1.81)

where all terms in Eq. (1.81) are the same as those for the SSJ case except for
. The gain term  represents the radar antenna gain in the direction of the

jammer and is normally considered to be the side lobe gain.

The SOJ radar equation is then computed from Eqs. (1.81) and (1.76) as

(1.82)

Again, the crossover range is that corresponding to ; it is given by

(1.83)

and the detection range is 

(1.84)

where  is the minimum value of the signal-to-jammer power ratio
such that target detection can occur. 

Note that in practice, the ratio  is normally computed after pulse com-
pression, and thus Eqs. (1.82) and (1.83) must be modified by multiplication
with the compression gain . Plots in Figs. 1.25 and 1.26 were produced
without regard to pulse compression gain.

MATLAB Program “soj_req.m”

The program “soj_req.m” implements Eqs. (1.82) and (1.83); it is given in
Listing 1.9 in Section 1.8. The inputs to the program “soj_req.m” are the same
as in the SSJ case, with two additional inputs: they are the radar antenna gain
on the jammer  and radar to jammer range . This program generates the
same type of plots as in the case of the SSJ. Typical output is in Fig. 1.26 utiliz-
ing the same parameters as those in the SSJ case, with jammer peak power

, jammer antenna gain , radar antenna gain on the
jammer , and radar to jammer range . 
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Range Reduction Factor

Consider a radar system whose detection range  in the absence of jamming
is governed by Eq. (1.61), which is repeated here as Eq. (1.85):

(1.85)

The term Range Reduction Factor (RRF) refers to the reduction in the radar
detection range due to jamming. More precisely, in the presence of jamming
the effective radar detection range is

(1.86)

In order to compute RRF, consider a radar characterized by Eq. (1.85), and a
barrage jammer whose output power spectral density is . Then, the amount
of jammer power in the radar receiver is

(1.87)

where  is Boltzman’s constant and  is the jammer effective temperature. It
follows that the total jammer plus noise power in the radar receiver is given by 

 Figure 1.26. Target and jammer echo signals. Plots were generated using 
the program “soj_req.m”. 
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(1.88)

In this case, the radar detection range is now limited by the receiver signal-to-
noise plus interference ratio rather than SNR. More precisely,

(1.89)

The amount of reduction in the signal-to-noise plus interference ratio because
of the jammer effect can be computed from the difference between Eqs. (1.85)
and (1.89). It is expressed (in dBs) by

 (1.90)

Consequently, the RRF is 

(1.91)

MATLAB Function “range_red_fac.m”

The function “range_red_factor.m” implements Eqs. (1.90) and (1.91); it is
given in Listing 1.10 in Section 1.8. This function generates plots of RRF ver-
sus: (1) the radar operating frequency; (2) radar to jammer range; and (3) jam-
mer power. Its syntax is as follows:

 range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)

where

The following values were used to produce Figs. 1.27 through 1.29.

Symbol Description Units Status

te radar effective temperature K input

pj jammer peak power KW input

gj jammer antenna gain dB input

g radar antenna gain on jammer dB input

freq radar operating frequency Hz input

bj jammer bandwidth Hz input

rangej radar to jammer range Km input

lossj jammer losses dB input

te pj gj g freq bj rangej lossj

730K 150KW 3dB 40dB 10GHz 1MHz 400Km 1dB

Ni PJ+ kTeB kTJB+=

S
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  PtG

2λ2σ
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---------------------------------------------------------=
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 Figure 1.28. Range reduction factor versus radar to jammer range. This 
plot was generated using the function “range_red_factor.m”.

200 400 600 800 1000 1200 1400 1600
0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

0.028

0.03

0.032

Radar to jam m er range - K m

R
a

n
g

e
 r

e
d

u
c

ti
o

n
 f

a
c

to
r

 Figure 1.27. Range reduction factor versus radar operating wavelength. This 
plot was generated using the function “range_red_factor.m”.
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1.6.5. Bistatic Radar Equation

Radar systems that use the same antenna for both transmitting and receiving
are called monostatic radars. Bistatic radars use transmit and receive antennas
that are placed in different locations. Under this definition CW radars, although
they use separate transmit and receive antennas, are not considered bistatic
radars unless the distance between the two antennas is considerable. Figure
1.30 shows the geometry associated with bistatic radars. The angle, , is
called the bistatic angle. A synchronization link between the transmitter and
receiver is necessary in order to maximize the receiver’s knowledge of the
transmitted signal so that it can extract maximum target information.

The synchronization link may provide the receiver with the following infor-
mation: (1) the transmitted frequency in order to compute the Doppler shift;
and (2) the transmit time or phase reference in order to measure the total scat-
tered path ( ). Frequency and phase reference synchronization can be
maintained through line-of-sight communications between the transmitter and
receiver. However, if this is not possible, the receiver may use a stable refer-
ence oscillator for synchronization.

 Figure 1.29. Range reduction factor versus jammer peak power. This plot was 
generated using the function “range_red_factor.m”.
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One major distinction between monostatic and bistatic radar operations has
to do with the measured bistatic target RCS, denoted by . In the case of a
small bistatic angle, the bistatic RCS is similar to the monostatic RCS: but, as
the bistatic angle approaches , the bistatic RCS becomes very large and
can be approximated by

(1.92)

 where  is the wavelength and  is the target projected area.

The bistatic radar equation can be derived in a similar fashion to the mono-
static radar equation. Referring to Fig. 1.30, the power density at the target is

(1.93)

where  is the peak transmitted power,  is the gain of the transmitting
antenna, and  is the range from the radar transmitter to the target.

The effective power scattered off a target with bistatic RCS  is

(1.94)

and the power density at the receiver antenna is 

(1.95)

target

transmitter receiver

β
Rt Rr

Figure 1.30. Bistatic radar geometry.
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where  is the range from the target to the receiver. Substituting Eq. (1.93)
into Eq. (1.95) yields

(1.96)

The total power delivered to the signal processor by a receiver antenna with
aperture  is

(1.97)

Substituting  for  yields

(1.98)

where  is gain of the receive antenna. Finally, when transmitter and receiver
losses,  and , are taken into consideration, the bistatic radar equation can
be written as

(1.99)

where  is the medium propagation loss.

1.7. Radar Losses

As indicated by the radar equation, the receiver SNR is inversely propor-
tional to the radar losses. Hence, any increase in radar losses causes a drop in
the SNR, thus decreasing the probability of detection, since it is a function of
the SNR. Often, the principal difference between a good radar design and a
poor radar design is the radar losses. Radar losses include ohmic (resistance)
losses and statistical losses. In this section we will briefly summarize radar
losses.

1.7.1. Transmit and Receive Losses

Transmit and receive losses occur between the radar transmitter and antenna
input port, and between the antenna output port and the receiver front end,
respectively. Such losses are often called plumbing losses. Typically, plumbing
losses are on the order of 1 to 2 dBs. 
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1.7.2. Antenna Pattern Loss and Scan Loss

So far, when we used the radar equation we assumed maximum antenna
gain. This is true only if the target is located along the antenna’s boresight axis.
However, as the radar scans across a target the antenna gain in the direction of
the target is less than maximum, as defined by the antenna’s radiation pattern.
The loss in the SNR due to not having maximum antenna gain on the target at
all times is called the antenna pattern (shape) loss. Once an antenna has been
selected for a given radar, the amount of antenna pattern loss can be mathemat-
ically computed. 

For example, consider a  antenna radiation pattern as shown in Fig.
1.31. It follows that the average antenna gain over an angular region of 
about the boresight axis is

(1.100)

where  is the aperture radius and  is the wavelength. In practice, Gaussian
antenna patterns are often adopted. In this case, if  denotes the antenna
3dB beam width, then the antenna gain can be approximated by 

(1.101)
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Figure 1.31. Normalized (sin x / x) antenna pattern.
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If the antenna scanning rate is so fast that the gain on receive is not the same
as on transmit, additional scan loss has to be calculated and added to the beam
shape loss. Scan loss can be computed in a similar fashion to beam shape loss.
Phased array radars are often prime candidates for both beam shape and scan
losses. 

1.7.3. Atmospheric Loss

Detailed discussion of atmospheric loss and propagation effects is in a later
chapter. Atmospheric attenuation is a function of the radar operating frequency,
target range, and elevation angle. Atmospheric attenuation can be as high as a
few dBs.

1.7.4. Collapsing Loss

When the number of integrated returned noise pulses is larger than the target
returned pulses, a drop in the SNR occurs. This is called collapsing loss. The
collapsing loss factor is defined as

(1.102)

where  is the number of pulses containing both signal and noise, while  is
the number of pulses containing noise only. Radars detect targets in azimuth,
range, and Doppler. When target returns are displayed in one coordinate, such
as range, noise sources from azimuth cells adjacent to the actual target return
converge in the target vicinity and cause a drop in the SNR. This is illustrated
in Fig. 1.32.

ρc
n m+

n
-------------=

n m

cell 5

cell 4

cell 2

cell 1

rangeaz
im

ut
h

 Figure 1.32. Illustration of collapsing loss. Noise sources in cells 1, 2, 4, and 5 
converge to increase the noise level in cell 3.
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1.7.5. Processing Losses

a. Detector Approximation: 

The output voltage signal of a radar receiver that utilizes a linear detector is

 

where  are the in-phase and quadrature components. For a radar using
a square law detector, we have .

Since in real hardware the operations of squares and square roots are time
consuming, many algorithms have been developed for detector approximation.
This approximation results in a loss of the signal power, typically 0.5 to 1 dB.

b. Constant False Alarm Rate (CFAR) Loss: 

In many cases the radar detection threshold is constantly adjusted as a func-
tion of the receiver noise level in order to maintain a constant false alarm rate.
For this purpose, Constant False Alarm Rate (CFAR) processors are utilized in
order to keep the number of false alarms under control in a changing and
unknown background of interference. CFAR processing can cause a loss in the
SNR level on the order of 1 dB. 

Three different types of CFAR processors are primarily used. They are adap-
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques.
Adaptive CFAR assumes that the interference distribution is known and
approximates the unknown parameters associated with these distributions.
Nonparametric CFAR processors tend to accommodate unknown interference
distributions. Nonlinear receiver techniques attempt to normalize the root
mean square amplitude of the interference.

c. Quantization Loss:   

Finite word length (number of bits) and quantization noise cause an increase
in the noise power density at the output of the Analog to Digital (A/D) con-
verter. The A/D noise level is , where  is the quantization level.

d. Range Gate Straddle: 

The radar receiver is normally mechanized as a series of contiguous range
gates (bins). Each range bin is implemented as an integrator matched to the
transmitted pulse width. Since the radar receiver acts as a filter that smears
(smooths), the received target echoes. The smoothed target return envelope is
normally straddled to cover more than one range gate. 

Typically, three gates are affected; they are called the early, on, and late
gates. If a point target is located exactly at the center of a range gate, then the
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early and late samples are equal. However, as the target starts to move into the
next gate, the late sample becomes larger while the early sample gets smaller.
In any case, the amplitudes of all three samples should always roughly add up
to the same value. Fig. 1.33 illustrates the concept of range straddling. The
envelope of the smoothed target echo is likely to be Gaussian shape. In prac-
tice, triangular shaped envelopes may be easier and faster to implement.

Since the target is likely to fall anywhere between two adjacent range bins, a
loss in the SNR occurs (per range gate). More specifically, a target’s returned
energy is split between three range bins. Typically, straddle loss of about 2 to 3
dBs is not unusual.

Example 1.7: Consider the smoothed target echo voltage shown below.
Assume  resistance. Find the power loss due to range gate straddling over
the interval .

echo  envelope

early sam ple late  sam ple

on target sam ple

on  target range
b in

echo  envelope

early  sam ple

late  sam pleon  target sam ple

on  target range
b in

(a) Target on  the center o f a  range gate .

range gates

range gates

(b ) Target on the  boundary  betw een tw o range gates.

F igure 1.33 . Illustration of range gate stradd ling.
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Solution: The smoothed voltage can be written as

The power loss due to straddle over the interval  is 

The average power loss is then 

and, for example, if , then .

e. Doppler Filter Straddle:

Doppler filter straddle is similar to range gate straddle. However, in this case
the Doppler filter spectrum is spread (widened) due to weighting functions.
Weighting functions are normally used to reduce the side lobe levels. Since the
target Doppler frequency can fall anywhere between two Doppler filters, signal
loss occurs. This is illustrated in Fig. 1.34, where due to weighting, the cross-
over frequency  is smaller than the filter cutoff frequency  which nor-
mally corresponds to the 3dB power point.
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1.7.6. Other Losses

Other losses may include equipment losses due to aging radar hardware,
matched filter loss, and antenna efficiency loss. Tracking radars suffer from
crossover (squint) loss (see Chapter 11).

1.8. MATLAB Program and Function Listings

This section presents listings for all MATLAB functions and programs used
in this chapter. Users are encouraged to vary the input parameters and rerun
these programs in order to enhance their understanding of the theory presented
in the text. All selected parameters and variables follow the same naming nota-
tion used in the text, thus, understanding the structure and hierarchy of the pre-
sented code should be an easy task once the user has read the theory. 

For almost each MATLAB function or program provided in this book, there
is a companion file designated as “filename_driver.m”. These “driver” files
utilize MATLAB-based Graphical User Interface (GUI). For example, the

fc
fco

frequency

 effective
bandw id th

fco

fc

 effective
bandw idth

D oppler filters before  w indow ing

D oppler filters after w indow ing

fco cross ver frequency+=

fc cut off frequency=

frequency

crossover frequency = 

cutoff frequency = 

fco

fc

 Figure 1.34. Due to windowing, the crossover frequency may become smaller 
than the cutoff frequency.
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companion “driver” file for the function “lprf_req.m” is “lprf_req_driver.m”.
When a  “driver” file is executed, it opens a GUI work space which can be
used by the user to enter values to parameters and produce the relevant plots.
Figure 1.35 shows the GUI work space for the function “lprf_req_driver.m”.
Note that all MATLAB programs and functions developed in this book can be
downloaded from CRC Press Web Site “www.crcpress.com”.

 Figure 1.35 GUI work space related to the function “lprf_req.m”. Note 
that this GUI was designed on a Windows 98 Personal 
Computer (PC) using MATLAB 5 - Release 11 and thus, it 
may appear different on Apple or Unix based machines, 
or  PC systems using earlier versions of MATLAB.
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Listing 1.1. MATLAB Function “pulse_train.m”
function [dt, prf, pav, ep, ru] = pulse_train(tau, pri, p_peak)
% This function is described in Section 1.2.
c = 3.0e+8;
dt = tau / pri;
prf = 1. / pri;
pav = p_peak * dt;
ep = p_peak * tau;
ru = 1.0e-3 * c * pri / 2.0;
return

Listing 1.2. MATLAB Function “range_resolutio.m”
function [delta_R] = range_resolution(bandwidth,indicator)
% This function computes radar range resolution in meters
% the bandwidth must be in Hz ==> indicator = Hz.
% Bandwidth may be equal to (1/pulse width)==> indicator = seconds
c = 3.e+8;
if(indicator == 'hz')
   delta_R = c / (2.0 * bandwidth); 
else
   delta_R = c * bandwidth / 2.0;
end
return

Listing 1.3. MATLAB Function “doppler_freq.m”
function [fd, tdr] = doppler_freq(freq, ang, tv, indicator)
% This function computes Doppler frequency and time dilation factor ratio
% tau_prime / tau
format long
c = 3.0e+8;
ang_rad = ang * pi /180.;
lambda = c / freq;
if (indicator == 1)
   fd = 2.0 * tv * cos(ang_rad) / lambda;
   tdr = (c - tv) / (c + tv);
else
   fd = -2.0 * c * tv * cos(and_rad) / lambda;
   tdr = (c + tv) / (c -tv);
end
return

Listing 1.4. MATLAB Function “radar_eq.m”
function [out_par] = radar_eq(pt, freq, g, sigma, te, b, nf, loss, input_par, option, 

rcs_delta1, rcs_delta2, pt_percent1, pt_percent2)
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% This function implements Eq. (1.161). Parameters description is in Section 1.6. 
c = 3.0e+8;
lambda = c / freq;
p_peak = base10_to_dB(pt);
lambda_sq = lambda^2;
lambda_sqdb = base10_to_dB(lambda_sq);
sigmadb = base10_to_dB(sigma);
for_pi_cub = base10_to_dB((4.0 * pi)^3);
k_db = base10_to_dB(1.38e-23);
te_db = base10_to_dB(te)
b_db = base10_to_dB(b);
if (option == 1)
   temp = p_peak + 2. * g + lambda_sqdb + sigmadb - ...
           for_pi_cub - k_db - te_db - b_db - nf - loss - input_par;
   out_par = dB_to_base10(temp)^(1/4)
   % calculate sigma(+-)10dB (rcs +- rcs_delta1,2)
   sigmap = rcs_delta1 + sigmadb;
   sigmam = sigmadb - rcs_delta2.;
   % calculate.pt_percent1 * pt and pt_percent2% * pt 
   pt05 = p_peak + base10_to_dB(pt_percent1);
   pt200 = p_peak + base10_to_dB(pt_percent2);
   index = 0;
   % vary snr from.5 to 1.5 of default value
   for snrvar = input_par*.5: 1: input_par*1.5
      index = index + 1;
      range1(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ...
                  sigmam - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
                  ^(1/4) / 1000.0;
      range2(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb +  ....
                  sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
                  ^(1/4) / 1000.0;
      range3(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ...
                  sigmap - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
                  ^(1/4) / 1000.0;
   end
   index = 0;
   for snrvar = input_par*.5: 1: input_par*1.5;
      index = index + 1;
      rangp1(index) = dB_to_base10(pt05 + 2. * g + lambda_sqdb + ...
                  sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
                  ^(1/4) / 1000.0;
      rangp2(index) = dB_to_base10(p_peak + 2. * g + lambda_sqdb + ...
                  sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar) ...
                  ^(1/4) / 1000.0;
      rangp3(index) = dB_to_base10(pt200 + 2. * g + lambda_sqdb + ...
                  sigmadb - for_pi_cub - k_db - te_db - b_db - nf - loss - snrvar)  ...
                  ^(1/4) / 1000.0;
   end
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   snrvar = input_par*.5: 1: input_par*1.5;
   figure (1)
   subplot (2,1,1)
   plot (snrvar,range2,snrvar,range1,snrvar,range3)
   legend ('default RCS','RCS-rcs_delta1','RCS+rcs_delta2')
   xlabel ('Minimum SNR required for detection - dB');
   ylabel ('Detection range - Km');
   %title ('Plots correspond to input parameters from example 1.4');
   subplot (2,1,2)
   plot (snrvar,rangp2,snrvar,rangp1,snrvar,rangp3)
   legend ('default power','.pt_percent1*pt', 'pt_percent2*pt')
   xlabel ('Minimum SNR required for detection - dB');
   ylabel ('Detection range - Km')
else
   range_db = base10_to_dB(input_par * 1000.0);
   out_par = p_peak + 2. * g + lambda_sqdb + sigmadb - ...
      for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db
   % calculate sigma -- rcs_delta1,2 dB
   sigma5 = sigmadb - rcs_delta1;
   sigma10 = sigmadb - rcs_delta2;
   % calculate pt_percent1% * pt and pt_percent2*pt
   pt05 = p_peak + base10_to_dB(pt_percent1);
   pt200 = p_peak + base10_to_dB(pt_percent2);
   index = 0;
   % vary snr from .5 to 1.5 of default value
   for rangvar = input_par*.5 : 1 : input_par*1.5
      index = index + 1;
      var = 4.0 * base10_to_dB(rangvar * 1000.0);
      snr1(index) = p_peak + 2. * g + lambda_sqdb + sigmadb - ...
         for_pi_cub - k_db - te_db - b_db - nf - loss - var;
      snr2(index) = p_peak + 2. * g + lambda_sqdb + sigma5 - ...
         for_pi_cub - k_db - te_db - b_db - nf - loss - var;
      snr3(index) = p_peak + 2. * g + lambda_sqdb + sigma10 - ...
         for_pi_cub - k_db - te_db - b_db - nf - loss - var;
   end
   index = 0;
   for rangvar = input_par*.5 : 1 : input_par*1.5;
      index = index + 1;
      var = 4.0 * base10_to_dB(rangvar * 1000.0);
      snrp1(index) = pt05 + 2. * g + lambda_sqdb + sigmadb - ...
         for_pi_cub - k_db - te_db - b_db - nf - loss - var;
      snrp2(index) = p_peak + 2. * g + lambda_sqdb + sigmadb - ...
         for_pi_cub - k_db - te_db - b_db - nf - loss - var;
      snrp3(index) = pt200 + 2. * g + lambda_sqdb + sigmadb - ...
         for_pi_cub - k_db - te_db - b_db - nf - loss - var;
   end
end
rangvar = input_par*.5 : 1 : input_par*1.5;
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figure (2)
subplot (2,1,1)
plot (rangvar,snr1,rangvar,snr2,rangvar,snr3)
legend ('default RCS','RCS-rcs_delta1','RCS-rcs_delta2')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');
%title ('Plots correspond to input parameters from example 1.4');
subplot (2,1,2)
plot (rangvar,snrp2,rangvar,snrp1,rangvar,snrp3)
legend ('default power','.pt_percent1*pt','pt_percent2*pt')
xlabel ('Detection range - Km');
ylabel ('SNR - dB');

Input file “radar_reqi.m”

% Use this input file to reproduce Fig. 1.18
clear all
pt = 1.5e+6; % peak power in Watts
freq = 5.6e+9;  % radar operating frequency in Hz
g = 45.0;  % antenna gain in dB
sigma = 0.1; % radar cross section in m square
te = 290.0;    % effective noise temperature in Kelvins
b = 5.0e+6;    % radar operating bandwidth in Hz
nf = 3.0;      % noise figure in dB
loss = 0.0;        % radar losses in dB
option = 1; % 1 ===> input_par = SNR in dB

% 2 ===> input_par = Range in Km
input_par = 20;
rcs_delta1 = 5.0; % rcs variation choice 1
rcs_delta2 =10.0; % rcs variation choice2
pt_percent1 = 0.5; % peak power variation choice 1
pt_percent2 =2.0; % peak power variation choice 2

Listing 1.5. MATLAB Function “lprf_req.m”
function [snr_out] = lprf_req (pt, freq, g, sigma, te, b, nf, loss, range, prf, np, rcs_delta, 

pt_percent, np1, np2)
% This program implements the LOW PRF radar equation.
c = 3.0e+8;
lambda = c / freq;
p_peak = base10_to_dB(pt);
lambda_sq = lambda^2;
lambda_sqdb = base10_to_dB(lambda_sq);
sigmadb = base10_to_dB(sigma);
for_pi_cub = base10_to_dB((4.0 * pi)^3);
k_db = base10_to_dB(1.38e-23);
te_db = base10_to_dB(te)
b_db = base10_to_dB(b);
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np_db = base10_to_dB(np);
range_db = base10_to_dB(range * 1000.0);
% Implement Eq. (1.65)
snr_out = p_peak + 2. * g + lambda_sqdb + sigmadb + np_db - ...
   for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db
% Generate plots in Fig. 1.19
index = 0;
n1 = np_db;
n2 = base10_to_dB(np1);
n3 = base10_to_dB(np2)
for range_var = 25:5:400 % 25 - 400 Km
   index = index + 1;
   rangevar_db = base10_to_dB(range_var * 1000.0);
   snr1(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + n1 - ...
      for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * rangevar_db;
   snr2(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + n2 - ...
      for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * rangevar_db;
   snr3(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + n3 - ...
      for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * rangevar_db;
end
figure(1)
var = 25:5:400;
plot(var,snr1,'k',var,snr2,'k--',var,snr3,'k--.')
legend('np = 1','np1','np2')
xlabel ('Range - Km');
ylabel ('SNR - dB');
%title ('np = 1, np1 = 10, np2 =100');
% Generate plots in Fig. 1.20
sigma5 = sigmadb - rcs_delta.;
pt05 = p_peak + base10_to_dB(pt_percent);
index = 0;
for nvar =1:10:500 % 500 pulses
   index = index + 1;
   ndb = base10_to_dB(nvar);
   snrs(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + ndb - ...
       for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
   snrs5(index) = p_peak + 2. * g + lambda_sqdb + sigma5 + ndb - ...
       for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
end
index = 0;
for nvar =1:10:500 % 500 pulses
   index = index + 1;
   ndb = base10_to_dB(nvar);
   snrp(index) = p_peak + 2. * g + lambda_sqdb + sigmadb + ndb - ...
       for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
   snrp5(index) = pt05 + 2. * g + lambda_sqdb + sigmadb + ndb - ...
       for_pi_cub - k_db - te_db - b_db - nf - loss - 4.0 * range_db;
end
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nvar =1:10:500;
figure (2)
subplot (2,1,1)
plot (nvar,snrs,'k',nvar,snrs5,'k --')
legend ('default RCS','RCS-delta')
xlabel ('Number of coherently integrated pulses');
ylabel ('SNR - dB');
%title ('delta = 10, percent = 2');
subplot (2,1,2)
plot (nvar,snrp,'k',nvar,snrp5,'k --')
legend ('default power','pt * percent')
xlabel ('Number of coherently integrated pulses');
ylabel ('SNR - dB');

Input file “lprf_reqi.m”

% Use this input file to reproduce Fig.s 1.19 and 1.20
pt = 1.5e+6; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 45.0;  % antenna gain in dB
sigma = 0.1; % radar cross section in m square
te = 290.0; % effective noise temperature in Kelvins
b = 5.0e+6;     % radar operating bandwidth in Hz
nf = 3.0;          % noise figure in dB
loss = 0.0;      % radar losses in dB
np = 1;            % 1 number of coherently integrated pulses
prf = 100 ;      % PRF in Hz
range = 250.0;  % target range in Km
np1 = 10; % choice 1 of np
np2 = 100; % choice 2 of np
rcs_delta = 10.0; % rcs variation
pt_percent = 2.0; % pt variation

Listing 1.6.  MATLAB Function “hprf_req.m”
function [snr_out] = hprf_req (pt, freq, g, sigma, dt, ti, range, te, nf, loss, prf, tau, dt1, 

dt2)
% This program implements the High PRF radar equation.
c = 3.0e+8;
lambda = c / freq;
% Compute the duty cycle
if (dt == 0)
   dt = tau * prf;
end
pav_db = base10_to_dB(pt * dt);
lambda_sqdb = base10_to_dB(lambda^2);
sigmadb = base10_to_dB(sigma);
for_pi_cub = base10_to_dB((4.0 * pi)^3);
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k_db = base10_to_dB(1.38e-23);
te_db = base10_to_dB(te);
ti_db = base10_to_dB(ti);
range_db = base10_to_dB(range * 1000.0);
% Implement Eq. (1.69)
snr_out = pav_db + 2. * g + lambda_sqdb + sigmadb + ti_db - ...
   for_pi_cub - k_db - te_db - nf - loss - 4.0 * range_db
% Generate Plots in Figure 1.21
index = 0;
pav10 = base10_to_dB(pt *dt1);
pav20 = base10_to_dB(pt * dt2);
for range_var = 10:1:100
   index = index + 1;
   rangevar_db = base10_to_dB(range_var * 1000.0);
   snr1(index) = pav_db + 2. * g + lambda_sqdb + sigmadb + ti_db - ...
      for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db;
   snr2(index) = pav10 + 2. * g + lambda_sqdb + sigmadb + ti_db - ...
      for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db;
   snr3(index) = pav20 + 2. * g + lambda_sqdb + sigmadb + ti_db - ...
      for_pi_cub - k_db - te_db - nf - loss - 4.0 * rangevar_db;
end
figure (1)
var = 10:1:100;
plot (var,snr1,'k',var,snr2,'k--',var,snr3,'k:')
grid
legend ('dt','dt1,'dt2')
xlabel ('Range - Km');
ylabel ('SNR - dB');
%title ('dt = 30%, dt1 = 5%, dt2 = 20%');

Input file “hprf_reqi.m”

% Use this input file to reproduce Fig. 1.21
clear all
pt = 100.0e+3; % peak power in Watts
freq = 5.6e+9; % radar operating frequency in Hz
g = 20.0;         % antenna gain in dB
sigma = 0.01;  % radar cross section in m square
ti = 2.0;           % time on target in seconds
dt = 0.3;          % radar duty cycle
%%%%%%%%%%%% enter  dt = 0 when PRF and Tau are given %%%%%
prf = 0.0;         % PRF
%%%%%%%%%%%% enter fr = 0 when duty cycle is known %%%%
tau = 0.0;       % pulse width in seconds
%%%%%%%%%%%% enter tau = 0 when duty cycle is known %%%%
te = 400.0;      % effective noise temperature in Kelvins
nf = 5.0;     % noise figure in dB
loss = 8.0;       % radar losses in dB
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range =50.0;    % target range in Km
dt1 = 0.05;
dt2 = 0.2;

Listing 1.7. MATLAB Function “power_aperture_req.m”
function [p_a_p, aperture, pt, pav] = power_aperture_req (snr, freq, tsc, sigma, dt, 

range, te, nf, loss, az_angle, el_angle, g, rcs_delta1, rcs_delta2)
% This program implements the search radar equation. 
c = 3.0e+8;
% Compute Omega in steraradians
omega = (az_angle / 57.23) * (el_angle /57.23);
omega_db = base10_to_dB(omega);
lambda = c / freq;
lambda_sqdb = base10_to_dB(lambda^2);
sigmadb = base10_to_dB(sigma);
k_db = base10_to_dB(1.38e-23);
te_db = base10_to_dB(te);
tsc_db = base10_to_dB(tsc);
factor = base10_to_dB(16.0);
range_db = base10_to_dB(range * 1000.);
p_a_p = snr - sigmadb - tsc_db + factor + 4.0 * range_db + ...
   k_db + te_db + nf + loss + omega_db
aperture = g + lambda_sqdb - base10_to_dB(4.0 * pi)
pav = p_a_p  - aperture;
pav = dB_to_base10(pav) / 1000.0
pt = pav / dt
% Calculate sigma(+-) rcs_delta1,2 dB
sigmap = rcs_delta1 + sigmadb;
sigmam = sigmadb - rcs_delta2.;
index = 0;
% vary range from 10% to 200% of input range 
for rangevar = range*.1 : 1 : range*2.0
   index = index + 1;
   rangedb = base10_to_dB(rangevar * 1000.0);
   pap1(index) = snr - sigmadb - tsc_db + factor + 4.0 * rangedb + ...
      k_db + te_db + nf + loss + omega_db;
   papm(index) = snr - sigmam - tsc_db + factor + 4.0 * rangedb + ...
      k_db + te_db + nf + loss + omega_db;
  papp(index) = snr - sigmap - tsc_db + factor + 4.0 * rangedb + ...
      k_db + te_db + nf + loss + omega_db;
end
var = range*.1 : 1 : range*2.0;
figure (1)
plot (var,pap1,'k',var,papm,'k --',var,papp,'k:')
legend ('default RCS','RCS-delta1','RCS+1delta2')
xlabel ('Range - Km');
ylabel ('Power aperture product - dB');
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%title ('delta1 = 10dBsm, delta2 = 10dBsm');
index = 0;
% Vary aperture from 2 msq to 50 msq
for apervar = 2:1:50
   aperdb = base10_to_dB(apervar);
   index = index +1;
   pav = p_a_p  - aperdb;
   pav = dB_to_base10(pav) / 1000.0;
   pt(index) = pav / dt;
end
figure (2)
apervar = 2:1:50;
plot (apervar, pt,'k')
grid
xlabel ('Aperture in squared meters')
ylabel ('Peak power - Kw')  

Input file “power_aperture_reqi.m”

% Use this input file to reproduce plots in Fig. 1.24
clear all
snr = 15.0; % sensitivity SNR in dB
freq = 10.0e+9; % radar operating frequency in Hz
tsc = 2.5;       % antenna scan time in seconds
sigma = 0.1;   % radar cross section in m square
dt = 0.3;        % radar duty cycle
range = 250.0;  % sensitivity range in Km
te = 900.0;      % effective noise temperature in Kelvins
nf = 5.0;        % noise figure in dB
loss = 8.0;      % radar losses in dB
az_angle = 2.0;  % search volume azimuth extent in degrees
el_angle = 2.0;  % search volume elevation extent in degrees
g = 45.0;        % antenna gain in dB
rcs_delta1 = 10.0; 
rcs_delta2 = 10.0;

Listing 1.8. MATLAB Program “ssj_req.m”
function [BR_range] = ssj_req (pt, g, freq, sigma, b, loss, ...
   pj, bj, gj, lossj)
% This function implements Eq.s (1.76) through (1.80)
c = 3.0e+8;
lambda = c / freq;
lambda_db = base10_to_dB(lambda^2);
if (loss = = 0.0)
   loss = 0.000001;
end
if (lossj = = 0.0)
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   lossj = 0.000001;
end
% Compute Omega in steraradians
sigmadb = base10_to_dB(sigma);
pt_db = base10_to_dB(pt);
b_db = base10_to_dB(b);
bj_db = base10_to_dB(bj);
pj_db = base10_to_dB(pj);
factor = base10_to_dB(4.0 *pi);
BR_range = sqrt((pt * (dB_to_base10(g)) * sigma * bj * (dB_to_base10(lossj))) / ...
   (4.0 * pi * pj * (dB_to_base10(gj)) * b * ...
   (dB_to_base10(loss)))) / 1000.0  
s_at_br = pt_db + 2.0 * g + lambda_db + sigmadb - ...
      3.0 * factor - 4.* base10_to_dB(BR_range) - loss 
% prepare to plot Figure 1.25
index =0;
for ran_var = .1:10:10000
   index = index + 1;
   ran_db = base10_to_dB(ran_var * 1000.0);
   ssj(index) = pj_db + gj + lambda_db + g + b_db - 2.0 * factor - ...
      2.0 * ran_db - bj_db - lossj + s_at_br ;
   s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...
      3.0 * factor - 4.* ran_db - loss + s_at_br ;
end
ranvar = .1:10:10000;
ranvar = ranvar ./ BR_range;
semilogx (ranvar,s,'k',ranvar,ssj,'k-.');
% axis([.1 1000 -90 40]); % This line is specific to Fig. 1.25
xlabel ('Range normalized to cross-over range');
legend ('Target echo','SSJ')
ylabel ('Relative signal or jamming amplitude - dB');
grid

Input file “ssj_reqi.m”

% Use this input file to reproduce Fig. 1.25
clear all
pt = 50.0e+3; % peak power in Watts
g = 35.0;     % antenna gain in dB
freq = 3.2e+9;  % radar operating frequency in Hz
sigma = 10.0 ;   % radar cross section in m square
b = 667.0e+3;   % radar operating bandwidth in Hz
loss = 0.000;     % radar losses in dB
pj = 200.0;    % jammer peak power in Watts
bj = 50.0e+6;  % jammer operating bandwidth in Hz
gj = 10.0; % jammer antenna gain in dB
lossj = 0.0;   % jammer losses in dB
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Listing 1.9. MATLAB Program “soj_req.m”
function [BR_range] = soj_req (pt, g, sigma, b, freq, loss, range, ...
   pj, bj,gj, lossj, gprime, rangej)
% This function implements equations for SOJs
c = 3.0e+8;
lambda = c / freq;
lambda_db = base10_to_dB(lambda^2)
if (loss == 0.0)
   loss = 0.000001;
end
if (lossj == 0.0)
   lossj =0.000001;
end
% Compute Omega in steraradians
sigmadb = base10_to_dB(sigma);
range_db = base10_to_dB(range * 1000.);
range_db = base10_to_dB(rangej * 1000.);
pt_db = base10_to_dB(pt);
b_db = base10_to_dB(b);
bj_db = base10_to_dB(bj);
pj_db = base10_to_dB(pj);
factor = base10_to_dB(4.0 *pi);
BR_range = ((pt * dB_to_base10(2.0*g) * sigma * bj * dB_to_base10(lossj) * ...
   (rangej)^2) / (4.0 * pi * pj * dB_to_base10(gj) * dB_to_base10(gprime) * ...
   b * dB_to_base10(loss)))^.25 / 1000. 
%* (dB_to_base10(16)^.25)
s_at_br = pt_db + 2.0 * g + lambda_db + sigmadb - ...
   3.0 * factor - 4.0 * base10_to_dB(BR_range) - loss  
 % prepare to plot Figure 1.27
index =0;
for ran_var = .1:1:1000;
   index = index + 1;
   ran_db = base10_to_dB(ran_var * 1000.0);
   s(index) = pt_db + 2.0 * g + lambda_db + sigmadb - ...
      3.0 * factor - 4.0 * ran_db - loss + s_at_br;
   soj(index) = s_at_br - s_at_br;
end
ranvar = .1:1:1000;
%ranvar = ranvar ./BR_range;
semilogx (ranvar,s,'k',ranvar,soj,'k-.');
xlabel ('Range normalized to cross-over range');
legend ('Target echo','SOJ')
ylabel ('Relative signal or jamming amplitude - dB');
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Input file “soj_reqi.m”

% Use this input file to reproduce Fig. 1.26
clear all
pt = 50.0e+3; % peak power in Watts
g = 35.0;       % antenna gain in dB
freq = 3.6e+9;  % radar operating frequency in Hz
sigma = 10 ;  % radar cross section in m square
b = 667.0e+3;    % radar operating bandwidth in Hz
range = 20*1852;    % radar to target range
gprime = 10.0;   % radar antenna gain on jammer
loss = 0.01;     % radar losses in dB
rangej = 12*1852; % range to jammer in Km
pj = 5.0e+3;     % jammer peak power in Watts
bj = 50.0e+6;   % jammer operating bandwidth in Hz
gj = 30.0; % jammer antenna gain in dB
lossj = 0.01;    % jammer losses in dB
rangej = 12*1852; % range to jammer in Km

Listing 1.10. MATLAB Function “range_red_factor.m”
 function RRF = range_red_factor (te, pj, gj, g, freq, bj, rangej, lossj)
% This function computes the range reduction factor and produce
% plots of RRF versus wavelength, radar to jammer range, and jammer power 
c = 3.0e+8;
k = 1.38e-23;
lambda = c / freq;
gj_10 = dB_to_base10(gj);
g_10 = dB_to_base10(g);
lossj_10 = dB_to_base10(lossj);
index = 0;
for wavelength = .01:.001:1
   index = index +1;
   jamer_temp = (pj * gj_10 * g_10 *wavelength^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (rangej * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / te));
   rrf(index) = 10^(-delta /40.0); 
end
w = 0.01:.001:1;
figure (1)
semilogx (w,rrf,'k')
grid
xlabel ('Wavelength in meters')
ylabel ('Range reduction factor')
index = 0;
for ran =rangej*.3:1:rangej*2
   index = index + 1;
   jamer_temp = (pj * gj_10 * g_10 *wavelength^2) / ...
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      (4.0^2 * pi^2 * k * bj * lossj_10 * (ran * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / te));
   rrf1(index) = 10^(-delta /40.0);
end
figure(2)
ranvar = rangej*.3:1:rangej*2 ;
plot (ranvar,rrf1,'k')
grid
xlabel ('Radar to jammer range - Km')
ylabel ('Range reduction factor')
index = 0;
for pjvar = pj*.01:1:pj*2
   index = index + 1;
   jamer_temp = (pjvar * gj_10 * g_10 *wavelength^2) / ...
      (4.0^2 * pi^2 * k * bj * lossj_10 * (rangej * 1000.0)^2);
   delta = 10.0 * log10(1.0 + (jamer_temp / te));
   rrf2(index) = 10^(-delta /40.0);
end
figure(3)
pjvar = pj*.01:1:pj*2;
plot (pjvar,rrf2,'k')
grid
xlabel ('Jammer peak power - Watts')
ylabel ('Range reduction factor')

Input file “range_red_factori.m”   

% Use this input file to reproduce Fig.s 1.27 through 1.29
clear all
te = 500.0;    % radar effective temperature in Kelvin
pj = 500; % jammer peak power in W
gj = 3.0;      % jammer antenna gain in dB
g = 45.0;      % radar antenna gain
freq = 10.0e+9; % radar operating frequency in Hz
bj = 10.0e+6;   % radar operating bandwidth in Hz
rangej = 750.0; % radar to jammer range in Km
lossj = 1.0;   % jammer losses in dB

 Problems

1.1. (a) Calculate the maximum unambiguous range for a pulsed radar with 

PRF of  and ; (b) What are the corresponding PRIs?

1.2. For the same radar in Problem 1.1, assume a duty cycle of 30% and 
peak power of . Compute the average power and the amount of radiated 

energy during the first .

200Hz 750Hz

5KW

20ms
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1.3. A certain pulsed radar uses pulse width . Compute the corre-
sponding range resolution.

1.4. An X-band radar uses PRF of . Compute the unambiguous 

range, and the required bandwidth so that the range resolution is . What is 
the duty cycle?
1.5. Compute the Doppler shift associated with a closing target with veloc-
ity 100, 200, and 350 meters per second. In each case compute the time dilation 
factor. Assume that .

1.6. A certain L-band radar has center frequency , and PRF 

. What is the maximum Doppler shift that can be measured by 

this radar?
1.7. Starting with a modified version of Eq. (1.27), derive an expression for 
the Doppler shift associated with a receding target.
1.8. In reference to Fig. 1.16, compute the Doppler frequency for 

, , and . Assume that .

1.9. A pulsed radar system has a range resolution of . Assuming sinu-

soid pulses at , determine the pulse width and the corresponding band-
width.
1.10. (a) Develop an expression for the minimum PRF of a pulsed radar; (b) 
compute  for a closing target whose velocity is ; (c) what is the 

unambiguous range? Assume that .

1.11. An L-band pulsed radar is designed to have an unambiguous range of 
 and range resolution . The maximum resolvable Doppler 

frequency corresponds to . Compute the maximum required 

pulse width, the PRF, and the average transmitted power if .

1.12. Compute the aperture size for an X-band antenna at . 

Assume antenna gain .

1.13. An L-band radar (1500 MHz) uses an antenna whose gain is 
. Compute the aperture size. If the radar duty cycle is  

and the average power is , compute the power density at range 

.

1.14. For the radar described in Problem 1.13, assume the minimum detect-
able signal is . Compute the radar maximum range for 

.

τ 1µs=

3KHz

30m

λ 0.3m=

1.5GHZ

fr 10KHz=

v 150m s⁄= θa 30°= θe 15°= λ 0.1m=

30cm

45KHz

frmin
400m s⁄

λ 0.2m=

100Km ∆R 100m≤
vt etarg 350m sec⁄≤

Pt 500W=

f0 9GHz=

G 10 20 30 dB, ,=

G 30dB= dt 0.2=

25KW

R 50Km=

5dBm

σ 1.0 10.0 20.0m
2, ,=
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1.15. Consider an L-band radar with the following specifications: operating 

frequency , bandwidth , and antenna gain 

. Compute the peak power, the pulse width, and the minimum 

detectable signal for this radar. Assume target RCS , the single 

pulse SNR is , noise figure , temperature , and 

maximum range .

1.16. Repeat Example 1.4 with , , and .

1.17. Show that the DC component is the dominant spectral line for high 
PRF waveforms.

1.18. Repeat Example 1.5 with , , , 

, , and .

1.19. Consider a low PRF C-band radar operating at . The 

antenna has a circular aperture with radius . The peak power is 

 and the pulse width is . The PRF is , and 

the effective temperature is . Assume radar losses  and 

target RCS . (a) Calculate the radar’s unambiguous range; (b) cal-

culate the range  that corresponds to ; (c) calculate the SNR at 

.

1.20. The atmospheric attenuation can be included in the radar equation as 
another loss term. Consider an X-band radar whose detection range at  

includes a  atmospheric loss. Calculate the corresponding detec-
tion range with no atmospheric attenuation. 

1.21. Let the maximum unambiguous range for a low PRF radar be . 

(a) Calculate the SNR at  and . (b) If a target with 

 exists at , what should the target RCS be at 

 so that the radar has the same signal strength from both tar-

gets. 
1.22. A Milli-Meter Wave (MMW) radar has the following specifications: 
operating frequency , PRF , pulse width 

, peak power , noise figure , circular 

antenna with diameter , antenna gain , target RCS 

, system losses , radar scan time , radar angular 

f0 1500MHz= B 5MHz=

G 5000=

σ 10m
2=

15.4dB F 5dB= T0 290K=

Rmax 150Km=

Pt 1MW= G 40dB= σ 0.5m
2=

L 5dB= F 10dB= T 500K=

Ti 1.5s= dt 0.25= R 75Km=

f0 5000MHz=

2m

Pt 1MW= τ 2µs= fr 250Hz=

T0 600K= L 15dB=

σ 10m
2=

R0 SNR 0dB=

R 0.75R0=

20Km

0.25dB Km⁄

Rmax

1 2⁄( )Rmax 3 4⁄( )Rmax

σ 10m
2= R 1 2⁄( )Rmax=

R 3 4⁄( )Rmax=

f0 94GHz= fr 15KHz=

τ 0.05ms= Pt 10W= F 5dB=

D 0.254m= G 30dB=

σ 1m
2= L 8dB= Tsc 3s=

© 2000 by Chapman & Hall/CRC



coverage , and atmospheric attenuation . Compute the follow-

ing: (a) wavelength ; (b) range resolution ; (c) bandwidth ; (d) the SNR 

as a function of range; (e) the range for which ; (f) antenna 
beam width; (g) antenna scan rate; (h) time on target; (i) the effective maxi-
mum range when atmospheric attenuation is considered.

1.23. Repeat Example 1.5 with , , and .

1.24. Using Eq. (1.80), compute (as a function of ) the crossover 

range for the radar in Problem 1.22. Assume , , and 

.

1.25. Using Eq. (1.80), compute (as a function of ) the crossover 

range for the radar in Problem 1.22. Assume , , and 

. Assume  and . 

1.26. A certain radar is subject to interference from an SSJ jammer. Assume 
the following parameters: radar peak power , radar antenna gain 

, radar pulse width , radar losses , jammer 

power , jammer antenna gain , jammer bandwidth 

, and jammer losses . Compute the crossover range 

for a  target. 

1.27. A radar with antenna gain  is subject to a repeater jammer whose 

antenna gain is . The repeater illuminates the radar with three fourths of the 

incident power on the jammer. (a) Find an expression for the ratio between the 
power received by the jammer and the power received by the radar; (b) what is 

this ratio when  and ?

1.28. Using Fig. 1.30 derive an expression for . Assume 100% synchro-

nization between the transmitter and receiver.
1.29. An X-band airborne radar transmitter and an air-to-air missile receiver 
act as a bistatic radar system. The transmitter guides the missile toward its tar-
get by continuously illuminating the target with a CW signal. The transmitter 

has the following specifications: peak power ; antenna gain 

; operating frequency . The missile receiver has the 

following characteristics: aperture ; bandwidth ; 

200° 3dB Km⁄
λ ∆R B

SNR 15dB=

Ω 4°= σ 1m
2= R 400Km=

BJ B⁄

PJ 100W= GJ 10dB=

LJ 2dB=

BJ B⁄

PJ 200W= GJ 15dB=

LJ 2dB= G′ 12dB= RJ 25Km=

Pt 55KW=

G 30dB= τ 2µs= L 10dB=

PJ 150W= GJ 12dB=

BJ 50MHz= LJ 1dB=

5m
2

G

GJ

G GJ 200= = R λ⁄ 105=

Rr

Pt 4KW=

Gt 25dB= f0 9.5GHz=

Ar 0.01m
2= B 750Hz=

© 2000 by Chapman & Hall/CRC



noise figure ; and losses . Assume that the bistatic RCS is 

. Assume ; . Compute the SNR at the 

missile.

1.30. Repeat the previous problem when there is  atmospheric 
attenuation.

1.31. Consider an antenna with a  pattern. Let , 

where  is the antenna radius,  is the wavelength, and  is the off-boresight 

angle. Derive Eq. (1.100). Hint: Assume small , and expand  as an 
infinite series.
1.32. Compute the amount of antenna pattern loss for a phased array 
antenna whose two-way pattern is approximated by

 

where  is the  beam width. Assume circular symmetry.

1.33. A certain radar has a range gate size of . Due to range gate strad-
dle, the envelope of a received pulse can be approximated by a triangular 
spread over three range bins. A target is detected in range bin 90. You need to 
find the exact target position with respect to the center of the range cell. (a) 
Develop an algorithm to determine the position of a target with respect to the 
center of the cell; (b) assuming that the early, on, and late measurements are, 
respectively, equal to , , and , compute the exact target position.

1.34. Compute the amount of Doppler filter straddle loss for the filter 
defined by

 

Assume half-power frequency  and crossover frequency
.

F 7dB= Lr 2dB=

σB 3m
2= Rr 35Km= Rt 17Km=

0.1dB Km⁄

xsin x⁄ x πr θsin( ) λ⁄=

r λ θ
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4

=
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1 a
2
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-------------------=

f3dB 500Hz=
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71

Chapter 2 Radar Cross Section 
(RCS) 

In Chapter 1, the term Radar Cross Section (RCS) was used to describe the
amount of scattered power from a target towards the radar, when the target is
illuminated by RF energy. At that time, RCS was referred to as a target-spe-
cific constant. This was only a simplification and, in practice, it is rarely the
case. In this chapter, the phenomenon of target scattering and methods of RCS
calculation are examined. Target RCS fluctuations due to aspect angle, fre-
quency, and polarization are presented. Radar cross section characteristics of
some simple and complex targets are also introduced. The analysis of extended
RCS due to volume and surface clutter will be explored in a later chapter.

2.1. RCS Definition

Electromagnetic waves, with any specified polarization, are normally dif-
fracted or scattered in all directions when incident on a target. These scattered
waves are broken down into two parts. The first part is made of waves that
have the same polarization as the receiving antenna. The other portion of the
scattered waves will have a different polarization to which the receiving
antenna does not respond. The two polarizations are orthogonal and are
referred to as the Principle Polarization (PP) and Orthogonal Polarization
(OP), respectively. The intensity of the backscattered energy that has the same
polarization as the radar’s receiving antenna is used to define the target RCS.
When a target is illuminated by RF energy, it acts like an antenna, and will
have near and far fields. Waves reflected and measured in the near field are, in
general, spherical. Alternatively, in the far field the wavefronts are decom-
posed into a linear combination of plane waves. 
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Assume the power density of a wave incident on a target located at range 
away from the radar is . The amount of reflected power from the target is 

(2.1)

 denotes the target cross section. Define  as the power density of the
scattered waves at the receiving antenna. It follows that

(2.2)

Equating Eqs. (2.1) and (2.2) yields

(2.3)

and in order to ensure that the radar receiving antenna is in the far field (i.e.,
scattered waves received by the antenna are planar), Eq. (2.3) is modified

(2.4)

The RCS defined by Eq. (2.4) is often referred to as either the monostatic RCS,
the backscattered RCS, or simply target RCS. 

The backscattered RCS is measured from all waves scattered in the direction
of the radar and has the same polarization as the receiving antenna. It repre-
sents a portion of the total scattered target RCS , where . Assuming
spherical coordinate system defined by ( ), then at range  the target
scattered cross section is a function of ( ). Let the angles ( ) define the
direction of propagation of the incident waves. Also, let the angles ( )
define the direction of propagation of the scattered waves. The special case,
when  and , defines the monostatic RCS. The RCS measured
by the radar at angles  and  is called the bistatic RCS. 

The total target scattered RCS is given by

(2.5)

The amount of backscattered waves from a target is proportional to the ratio
of the target extent (size) to the wavelength, , of the incident waves. In fact, a
radar will not be able to detect targets much smaller than its operating wave-
length. For example, if weather radars use L-band frequency, rain drops
become nearly invisible to the radar since they are much smaller than the

R
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wavelength. RCS measurements in the frequency region, where the target
extent and the wavelength are comparable, are referred to as the Rayleigh
region. Alternatively, the frequency region where the target extent is much
larger than the radar operating wavelength is referred to as the optical region.
In practice, the majority of radar applications falls within the optical region. 

The analysis presented in this book assumes far field monostatic RCS mea-
surements in the optical region. Near field RCS, bistatic RCS, and RCS mea-
surements in the Rayleigh region will not be considered since their treatment
falls beyond this book’s intended scope. Additionally, RCS treatment in this
chapter is mainly concerned with Narrow Band (NB) cases. In other words, the
extent of the target under consideration falls within a single range bin of the
radar. Wide Band (WB) RCS measurements will be briefly addressed in a later
section. Wide band radar range bins are small (typically 10 - 50 cm), hence, the
target under consideration may cover many range bins. The RCS value in an
individual range bin corresponds to the portion of the target falling within that
bin. 

2.2. RCS Prediction Methods

Before presenting the different RCS calculation methods, it is important to
understand the significance of RCS prediction. Most radar systems use RCS as
a means of discrimination. Therefore, accurate prediction of target RCS is crit-
ical in order to design and develop robust discrimination algorithms. Addition-
ally, measuring and identifying the scattering centers (sources) for a given
target aid in developing RCS reduction techniques. Another reason of lesser
importance is that RCS calculations require broad and extensive technical
knowledge, thus many scientists and scholars find the subject challenging and
intellectually motivating. Two categories of RCS prediction methods are avail-
able: exact and approximate. 

Exact methods of RCS prediction are very complex even for simple shape
objects. This is because they require solving either differential or integral equa-
tions that describe the scattered waves from an object under the proper set of
boundary conditions. Such boundary conditions are governed by Maxwell’s
equations. Even when exact solutions are achievable, they are often difficult to
interpret and to program using digital computers. 

Due to the difficulties associated with the exact RCS prediction, approxi-
mate methods become the viable alternative. The majority of the approximate
methods are valid in the optical region, and each has its own strengths and lim-
itations. Most approximate methods can predict RCS within few dBs of the
truth. In general, such a variation is quite acceptable by radar engineers and
designers. Approximate methods are usually the main source for predicting
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RCS of complex and extended targets such as aircrafts, ships, and missiles.
When experimental results are available, they can be used to validate and ver-
ify the approximations. 

Some of the most commonly used approximate methods are Geometrical
Optics (GO), Physical Optics (PO), Geometrical Theory of Diffraction (GTD),
Physical Theory of Diffraction (PTD), and Method of Equivalent Currents
(MEC). Interested readers may consult Knott or Ruck (see bibliography) for
more details on these and other approximate methods. 

2.3. RCS Dependency on Aspect Angle and Frequency

Radar cross section fluctuates as a function of radar aspect angle and fre-
quency. For the purpose of illustration, isotropic point scatterers are consid-
ered. An isotropic scatterer is one that scatters incident waves equally in all
directions. Consider the geometry shown in Fig. 2.1. In this case, two unity
( ) isotropic scatterers are aligned and placed along the radar line of sight
(zero aspect angle) at a far field range . The spacing between the two scatter-
ers is 1 meter. The radar aspect angle is then changed from zero to 180 degrees,
and the composite RCS of the two scatterers measured by the radar is com-
puted. 

This composite RCS consists of the superposition of the two individual radar
cross sections. At zero aspect angle, the composite RCS is . Taking scat-
terer-1 as a phase reference, when the aspect angle is varied, the composite
RCS is modified by the phase that corresponds to the electrical spacing
between the two scatterers. For example, at aspect angle , the electrical
spacing between the two scatterers is

1m
2

R

2m
2

10°

 

rada r

radar line of sight

1m

rad ar

radar line of sight
0.707m

(a)

(b)

scat1 scat2

 Figure 2.1. RCS dependency on aspect angle. (a) Zero aspect   angle, zero 
electrical spacing. (b)  aspect angle,  electrical 
spacing.

45° 1.414λ
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(2.6)

 is the radar operating wavelength.

Fig. 2.2 shows the composite RCS corresponding to this experiment. This
plot can be reproduced using MATLAB function “rcs_aspect.m” given in List-
ing 2.1 in Section 2.8. As indicated by Fig. 2.1, RCS is   dependent on the radar
aspect angle. Knowledge of this constructive and destructive interference
between the individual scatterers can be very critical when a radar tries to
extract RCS of complex or maneuvering targets. This is true because of two
reasons. First, the aspect angle may be continuously changing. Second, com-
plex target RCS can be viewed to be made up from contributions of many indi-
vidual scattering points distributed on the target surface. These scattering
points are often called scattering centers. Many approximate RCS prediction
methods generate a set of scattering centers that define the back-scattering
characteristics of such complex targets.

MATLAB Function “rcs_aspect.m”

The function “rcs_aspect.m” computes and plots the RCS dependency on
aspect angle. Its syntax is as follows:

[rcs] = rcs_aspect (scat_spacing, freq)

elec spacing–
2 1.0 10( )cos×( )×

λ
-----------------------------------------------=

λ

 Figure 2.2. llustration of RCS dependency on aspect angle.
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Next, to demonstrate RCS dependency on frequency, consider the experi-
ment shown in Fig. 2.3. In this case, two far field unity isotropic scatterers are
aligned with radar line of sight, and the composite RCS is measured by the
radar as the frequency is varied from 8 GHz to 12.5 GHz (X-band). Figs. 2.4
and 2.5 show the composite RCS versus frequency for scatterer spacing of 0.1
and 0.7 meters. 

Symbol Description Units Status

scat_spacing scatterer spacing meters input

freq radar frequency Hz input

rcs array of RCS versus 
aspect angle

dBsm output

rad ar

radar line of sight

dist

scat1 scat2

 Figure 2.3. Experiment setup which demonstrates RCS 
dependency on frequency; dist = 0.1, or 0.7 m.

 Figure 2.4. Illustration of RCS dependency on frequency.
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The plots shown in Figs. 2.4 and 2.5 can be reproduced using MATLAB
function “rcs_frequency.m” given in Listing 2.2 in Section 2.8. From those
two figures, RCS fluctuation as a function of frequency is evident. Little fre-
quency change can cause serious RCS fluctuation when the scatterer spacing is
large. Alternatively, when scattering centers are relatively close, it requires
more frequency variation to produce significant RCS fluctuation. 

MATLAB Function “rcs_frequency.m”

The function “rcs_frequency.m” computes and plots the RCS dependency
on frequency. Its syntax is as follows:

[rcs] = rcs_frequency (scat_spacing, frequ, freql)

where

Symbol Description Units Status

scat_spacing scatterer spacing meters input

freql start of frequency band Hz input

frequ end of frequency band Hz input

rcs array of RCS versus 
aspect angle

dBsm output

 Figure 2.5. Illustration of RCS dependency on frequency.
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2.4. RCS Dependency on Polarization

The material in this section covers two topics. First, a review of polarization
fundamentals is presented. Second, the concept of target scattering matrix is
introduced.

2.4.1.  Polarization

The x and y electric field components for a wave traveling along the positive
z direction are given by

(2.7)

(2.8)

where ,  is the wave frequency, the angle  is the time phase
angle which  leads , and finally,  and  are, respectively, the wave
amplitudes along the x and y directions. When two or more electromagnetic
waves combine, their electric fields are integrated vectorially at each point in
space for any specified time. In general, the combined vector traces an ellipse
when observed in the x-y plane. This is illustrated in Fig. 2.6.

Ex E1 ωt kz–( )sin=

Ey E2 ωt kz– δ+( )sin=

k 2π λ⁄= ω δ
Ey Ex E1 E2

 Figure 2.6. Electric field components along the x and y directions. 
The positive z direction is out of the page.
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The ratio of the major to the minor axes of the polarization ellipse is called
the Axial Ratio (AR). When AR is unity, the polarization ellipse becomes a cir-
cle, and the resultant wave is then called circularly polarized. Alternatively,
when  and  the wave becomes linearly polarized. 

Eqs. (2.7) and (2.8) can be combined to give the instantaneous total electric
field,

(2.9)

where  and  are unit vectors along the x and y directions, respectively. At
,  and , then by replacing

 by the ratio  and by using trigonometry properties Eq. (2.9)
can be rewritten as

 (2.10)

Note that Eq. (2.10) has no dependency on .

In the most general case, the polarization ellipse may have any orientation,
as illustrated in Fig. 2.7. The angle  is called the tilt angle of the ellipse. In
this case, AR is given by 

    (2.11)
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âx ây
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 Figure 2.7. Polarization ellipse in the general case.
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When , the wave is said to be linearly polarized in the y direction,
while if  the wave is said to be linearly polarized in the x direction.
Polarization can also be linear at an angle of  when  and

. When  and , the wave is said to be Left Circu-
larly Polarized (LCP), while if  the wave is said to Right Circularly
Polarized (RCP). It is a common notation to call the linear polarizations along
the x and y directions by the names horizontal and vertical polarizations,
respectively. 

In general, an arbitrarily polarized electric field may be written as the sum of
two circularly polarized fields. More precisely,

(2.12)

where  and  are the RCP and LCP fields, respectively. Similarly, the
RCP and LCP waves can be written as

(2.13)

(2.14)

where  and  are the fields with vertical and horizontal polarizations,
respectively. Combining Eqs. (2.13) and (2.14) yields

(2.15)

(2.16)

Using matrix notation Eqs. (2.15) and (2.16) can be rewritten as

(2.17)

(2.18)

For many targets the scattered waves will have different polarization than the
incident waves. This phenomenon is known as depolarization or cross-polar-
ization. However, perfect reflectors reflect waves in such a fashion that an inci-
dent wave with horizontal polarization remains horizontal, and an incident
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wave with vertical polarization remains vertical but is phase shifted .
Additionally, an incident wave which is RCP becomes LCP when reflected,
and a wave which is LCP becomes RCP after reflection from a perfect reflec-
tor. Therefore, when a radar uses LCP waves for transmission, the receiving
antenna needs to be RCP polarized in order to capture the PP RCS, and LCR to
measure the OP RCS. 

2.4.2. Target Scattering Matrix

Target backscattered RCS is commonly described by a matrix known as the
scattering matrix, and is denoted by . When an arbitrarily linearly polarized
wave is incident on a target, the backscattered field is then given by

(2.19)

The superscripts  and  denote incident and scattered fields. The quantities
 are in general complex and the subscripts 1 and 2 represent any combina-

tion of orthogonal polarizations. More precisely, , and .
From Eq. (2.3), the backscattered RCS is related to the scattering matrix com-
ponents by the following relation:

(2.20)

It follows that once a scattering matrix is specified, the target backscattered
RCS can be computed for any combination of transmitting and receiving polar-
izations. The reader is advised to see Ruck for ways to calculate the scattering
matrix .

Rewriting Eq. (2.20) in terms of the different possible orthogonal polariza-
tions yields

(2.21)
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By using the transformation matrix  in Eq. (2.17), the circular scattering
elements can be computed from the linear scattering elements

(2.23)

and the individual components are 

(2.24)

Similarly, the linear scattering elements are given by

(2.25)

and the individual components are 

(2.26)

2.5. RCS of Simple Objects 

This section presents examples of backscattered radar cross section for a
number of simple shape objects. In all cases, except for the perfectly conduct-
ing sphere, only optical region approximations are presented. Radar designers
and RCS engineers consider the perfectly conducting sphere to be the simplest
target to examine. Even in this case, the complexity of the exact solution, when
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compared to the optical region approximation, is overwhelming. Most formu-
las presented are Physical Optics (PO) approximation for the backscattered
RCS measured by a far field radar in the direction ( ), as illustrated in Fig.
2.8.

2.5.1.  Sphere

Due to symmetry, waves scattered from a perfectly conducting sphere are
co-polarized (have the same polarization) with the incident waves. This means
that the cross-polarized backscattered waves are practically zero. For example,
if the incident waves were Left Circularly Polarized (LCP), then the backscat-
tered waves will also be LCP. However, because of the opposite direction of
propagation of the backscattered waves, they are considered to be Right Circu-
larly Polarized (RCP) by the receiving antenna. Therefore, the PP backscat-
tered waves from a sphere are LCP, while the OP backscattered waves are
negligible. 

The normalized exact backscattered RCS for a perfectly conducting sphere
is a Mie series given by 

(2.27)
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 Figure 2.8. Direction of antenna receiving backscattered waves.
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where  is the radius of the sphere, ,  is the wavelength,  is the
spherical Bessel of the first kind of order n, and  is the Hankel function of
order n, and is given by 

(2.28)

 is the spherical Bessel function of the second kind of order n. Plots of the
normalized perfectly conducting sphere RCS as a function of its circumference
in wavelength units are shown in Figs. 2.9a and 2.9b. These plots can be repro-
duced using the function “rcs_sphere.m” given in Listing 2.3 in Section 2.8.

In Fig. 2.9, three regions are identified. First is the optical region (corre-
sponds to a large sphere). In this case, 

(2.29)

Second is the Rayleigh region (small sphere). In this case,

(2.30)

The region between the optical and Rayleigh regions is oscillatory in nature
and is called the Mie or resonance region.

r k 2π λ⁄= λ Jn
Hn
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Hn
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kr( ) Jn kr( ) jYn kr( )+=
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2
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 Figure 2.9a. Normalized backscattered RCS for a perfectly conducting sphere. 
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The backscattered RCS for a perfectly conducting sphere is constant in the
optical region. For this reason, radar designers typically use spheres of known
cross sections to experimentally calibrate radar systems. For this purpose,
spheres are flown attached to balloons. In order to obtain Doppler shift,
spheres of known RCS are dropped out of an airplane and towed behind the
airplane whose velocity is known to the radar. 

2.5.2. Ellipsoid

An ellipsoid centered at (0,0,0) is shown in Fig. 2.10. It is defined by the fol-
lowing equation:

(2.31)

One widely accepted approximation for the ellipsoid backscattered RCS is
given by

(2.32)
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 Figure 2.9b. Normalized backscattered RCS for a perfectly 
conducting sphere using semi-log scale.
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When , the ellipsoid becomes roll symmetric. Thus, the RCS is inde-
pendent of , and Eq. (2.32) is reduced to 

(2.33)

and for the case when ,

(2.34)

Note that Eq. (2.34) defines the backscattered RCS of a sphere. This should be
expected, since under the condition  the ellipsoid becomes a
sphere. Fig. 2.11 shows the backscattered RCS for an ellipsoid versus  for

. This plot can be generated using MATLAB function
“rcs_ellipsoid.m” given in Listing 2.4 in Section 2.8. Note that at normal inci-
dence ( ) the RCS corresponds to that of a sphere of radius , and is
often referred to as the broadside specular RCS value.

MATLAB Function “rcs_ellipsoid.m”

The function “rcs_ellipsoid.m” computes and plots the RCS of an ellipsoid
versus aspect angle. It utilizes Eq. (2.32) and its syntax is as follows:

[rcs] = rcs_ellipsoid (a, b, c, phi) 

where 

θ

ϕ

Z

Y

X

D irec tion  to
rece iv ing  radar

 Figure 2.10. Ellipsoid.
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2.5.3. Circular Flat Plate

Fig. 2.12 shows a circular flat plate of radius , centered at the origin. Due to
the circular symmetry, the backscattered RCS of a circular flat plate has no
dependency on . The RCS is only aspect angle dependent. For normal inci-
dence (i.e., zero aspect angle) the backscattered RCS for a circular flat plate is 

(2.35)

Symbol Description Units Status

a ellipsoid a-radius meters input

b ellipsoid b-radius meters input

c ellipsoid c-radius meters input

phi ellipsoid roll angle degrees input

rcs array of RCS versus 
aspect angle

dBsm output

 Figure 2.11. Ellipsoid backscattered RCS versus aspect angle, .ϕ 45°=
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For non-normal incidence, two approximations for the circular flat plate
backscattered RCS for any linearly polarized incident wave are

(2.36)

 (2.37)

where , and  is the first order spherical Bessel function evalu-
ated at . The RCS corresponding to Eqs. (2.35) through (2.37) is shown in
Fig. 2.13. These plots can be reproduced using MATLAB function
“rcs_circ_plate.m” given in Listing 2.5 in Section 2.8.

MATLAB Function “rcs_circ_plate.m”

The function “rcs_circ_plate.m” calculates and plots the backscattered RCS
from a circular plate. Its syntax is as follows: 

 [rcs] = rcs_circ_plate (r, freq)

where

Symbol Description Units Status

r radius of circular plate meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

θ

ϕ

Z

Y

X

D irection  to
receiv ing radar

 Figure 2.12. Circular flat plate.
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2.5.4.  Truncated Cone (Frustum) 

Figs. 2.14 and 2.15 show the geometry associated with a frustum. The half
cone angle  is given by 

   (2.38)

Define the aspect angle at normal incidence (broadside) as . Thus, when a
frustum is illuminated by a radar located at the same side as the cone’s small
end, the angle  is 

(2.39)

Alternatively, normal incidence occurs at

(2.40)

At normal incidence, one approximation for the backscattered RCS of a trun-
cated cone due to a linearly polarized incident wave is

(2.41)

 Figure 2.13. Backscattered RCS for a circular flat plate. Solid line 
corresponds to Eq. (2.37). Dashed line corresponds to Eq. (2.36). 
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 Figure 2.14. Truncated cone (frustum).
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where  is the wavelength, and ,  are defined in Fig. 2.14. Using trigono-
metric identities, Eq. (2.41) can be reduced to 

(2.42)

For non-normal incidence, the backscattered RCS due to a linearly polarized
incident wave is

(2.43)

where  is equal to either  or  depending on whether the RCS contribu-
tion is from the small or the large end of the cone. Again, using trigonometric
identities Eq. (2.43) (assuming the radar illuminates the frustum starting from
the large end) is reduced to

(2.44)

When the radar illuminates the frustum starting from the small end (i.e., the
radar is in the negative z direction in Fig. (2.14)), Eq. (2.44) should be modi-
fied to 

(2.45)

For example, consider a frustum defined by ,
, . It follows that the half cone angle is .

Fig. 2.16 (top) shows a plot of its RCS when illuminated by a radar in the pos-
itive z direction. Fig. 2.16 (bottom) shows the same thing, except in this case,
the radar is in the negative z direction. Note that for the first case, normal inci-
dence occur at , while for the second case it occurs at . These plots
can be reproduced using MATLAB function “rcs_frustum.m” given in Listing
2.6 in Section 2.8. 

MATLAB Function “rcs_frustum.m”

The function “rcs_frustum.m” computes and plots the backscattered RCS of
a truncated conic section. The syntax is as follows:

[rcs] = rcs_frustum (r1, r2, freq, indicator)

where

λ z1 z2

σθn

8π z2
3 2⁄

z1
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2

9λ
--------------------------------------- αsin

αcos( )4
-------------------=

σ λz αtan
8π θsin
------------------ θsin θ αtancos–

θ αtansin θcos+
------------------------------------------ 
  2

=

z z1 z2

σ λz αtan
8π θsin
------------------ θ α–( )tan( )2=

σ λz αtan
8π θsin
------------------ θ α+( )tan( )2=

H 20.945cm=
r1 2.057cm= r2 5.753cm= 10°

100° 80°
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2.5.5. Cylinder

Fig. 2.17 shows the geometry associated with a cylinder. Two cases are pre-
sented: first, the general case of an elliptical cylinder; second, the case of a cir-
cular cylinder. The normal and non-normal incidence backscattered RCS for an

Symbol Description Units Status

r1 small end radius meters input

r2 large end radius meters input

freq frequency Hz input

indicator indicator = 1 when viewing from 
large end

indicator = 0 when viewing from 
small end

none input

rcs array of RCS versus aspect angle dBsm output

 Figure 2.16. Backscattered RCS for a frustum.
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elliptical cylinder due a linearly polarized incident wave are, respectively,
given by

(2.46)

(2.47)

For a circular cylinder of radius , then due to roll symmetry, Eqs. (2.46)
and (2.47), respectively, reduce to

(2.48)

(2.49)

σθn

2πH
2
r2

2
r1

2

λ r1
2 ϕcos( )2

r2
2 ϕsin( )2+( )

1.5
--------------------------------------------------------------------=

σ
λr2

2
r1

2 θsin

8π θcos( )2
r1

2 ϕcos( )2
r2

2 ϕsin( )2+( )
1.5

-------------------------------------------------------------------------------------------=

r

σθn

2πH
2
r

λ
----------------=

σ λr θsin

8π θcos( )2
--------------------------=

 Figure 2.17. (a) Elliptical cylinder; (b) circular cylinder.
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Fig. 2.18 shows a plot of the cylinder backscattered RCS using Eqs. (2.48)
and (2.49). This plot can be reproduced using MATLAB function
“rcs_cylinder.m” given in Listing 2.7 in Section 2.8. Note that the broadside
specular occurs at aspect angle of . 

MATLAB Function “rcs_cylinder.m”

The function “rcs_cylinder.m” computes and plots the backscattered RCS of
a cylinder. The syntax is as follows:

[rcs] = rcs_cylinder (r, h, freq)

where

Symbol Description Units Status

r radius meters input

h length of cylinder meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

90°

 Figure 2.18. Backscattered RCS for a cylinder,  and .r 0.125m= H 1m=
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2.5.6. Rectangular Flat Plate

Consider a perfectly conducting rectangular thin flat plate in the x-y plane as
shown in Fig. 2.19. The two sides of the plate are denoted by  and . For
a linearly polarized incident wave in the x-z plane, the horizontal and vertical
backscattered RCS are, respectively, given by

(2.50)

(2.51)

where  and

(2.52)

(2.53)

(2.54)

(2.55)

2a 2b

σV
b

2

π
----- σ1V σ2V

1
θcos

------------
σ2V

4
-------- σ3V σ4V+( )+ σ5V

1––
2

=

σH
b

2

π
----- σ1H σ2H

1
θcos

------------
σ2H

4
---------– σ3H σ4H+( ) σ5H

1––
2

=

k 2π λ⁄=

σ1V k θasin( )cos j
k θasin( )sin

θsin
-----------------------------– σ1H( )∗= =

σ2V
e

j ka π 4⁄–( )

2π ka( )3 2⁄
-----------------------------=

σ3V
1 θsin+( )e jk θasin–

1 θsin–( )2
--------------------------------------------=

σ4V
1 θsin–( )ejk θasin

1 θsin+( )2
-----------------------------------------=

 Figure 2.19. Rectangular flat plate.
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(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

Eqs. (2.50) and (2.51) are valid and quite accurate for aspect angles
. For aspect angles near , Ross1 obtained by extensive fitting

of measured data an empirical expression for the RCS. It is given by

(2.61)

 The backscattered RCS for a perfectly conducting thin rectangular plate for
incident waves at any  can be approximated by

(2.62)

Eq. (2.62) is independent of the polarization, and is only valid for aspect angles
. Fig. 2.20, shows an example for the backscattered RCS of a rectangu-

lar flat plate, for both vertical (Fig. 2.20a) and horizontal (Fig. 2.20b) polariza-
tions, using Eqs. (2.50), (2.51) and (2.62). In this example, 
and wavelength . This plot can be reproduced using MATLAB
function  “rcs_rect_plate” given in Listing 2.8 in Section 2.8.

MATLAB Function “rcs_rect_plate.m”

The function “rcs_rect_plate.m” calculates and plots the backscattered RCS
of a rectangular flat plate. Its syntax is as follows:

1. Ross, R. A. Radar Cross Section of Rectangular Flat Plate as a Function of Aspect 
Angle, IEEE Trans. AP-14:320, 1966.

σ5V 1 ej 2ka π 2⁄–( )

8π ka( )3
-------------------------–=
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4e

j ka π 4⁄+( )
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-----------------------------=
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e jk θasin–

1 θsin–
--------------------=
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e

jk θasin

1 θsin+
--------------------=

σ5H 1 e
j 2ka π 2⁄( )+( )

2π ka( )
-----------------------------–=

0° θ 80≤ ≤ 90°

σH 0→

σV
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2

λ
-------- 1

π
2 2a λ⁄( )2
------------------------+ 1

π
2 2a λ⁄( )2
------------------------– 2ka

3π
5
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 cos+

 
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 

=

θ ϕ,

σ 4πa
2
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λ2
------------------ ak θsin ϕcos( )sin

ak θsin ϕcos
------------------------------------------- bk θsin ϕsin( )sin
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------------------------------------------ 

  2

θcos( )2=

θ 20°≤

a b 10.16cm= =
λ 3.25cm=
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[rcs] = rcs_rect_plate (a, b, freq)

where

2.5.7. Triangular Flat Plate

Consider the triangular flat plate defined by the isosceles triangle as oriented
in Fig. 2.21. The backscattered RCS can be approximated for small aspect
angles (less than ) by

(2.63)

Symbol Description Units Status

a short side of plate meters input

b long side of plate meters input

freq frequency Hz input

rcs array of RCS versus aspect angle dBsm output

 Figure 2.20a. Backscattered RCS for a rectangular flat plate.
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(2.64)

(2.65)

σ0

αsin( )2 β 2⁄( )sin( )2–[ ]
2

σ01+

α2 β 2⁄( )2–
----------------------------------------------------------------------------=

σ01 0.25 ϕsin( )2 2a b⁄( ) ϕ βsincos ϕ 2αsinsin–[ ]2=

 Figure 2.20b. Backscattered RCS for a rectangular flat plate.
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 Figure 2.21. Coordinates for a perfectly conducting isosceles triangular plate.
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where , , and . For waves inci-
dent in the plane , the RCS reduces to

(2.66)

and for incidence in the plane 

(2.67)

Fig. 2.22 shows a plot for the normalized backscattered RCS from a per-
fectly conducting isosceles triangular flat plate. In this example ,

, and . This plot can be reproduced using MATLAB
function “rcs_isosceles.m” given in Listing 2.9 in Section 2.8. 

MATLAB Function “rcs_isosceles.m”

The function “rcs_isosceles.m” calculates and plots the backscattered RCS
of a triangular flat plate. Its syntax is as follows:

[rcs] = rcs_isosceles (a, b, freq, phi)

α k θ ϕcosasin= β kb θ ϕsinsin= A ab 2⁄=
ϕ 0=

σ 4πA
2

λ2
------------- θcos( )2 αsin( )4

α4
------------------ 2αsin 2α–( )2

4α4
-----------------------------------+=

ϕ π 2⁄=

σ 4πA
2

λ2
------------- θcos( )2 β 2⁄( )sin( )4

β 2⁄( )4
------------------------------=

a 0.2m=
b 0.75m= ϕ 0 π 2⁄,=

 Figure 2.22. Backscattered RCS for a perfectly conducting triangular 
flat plate,  and .a 20cm= b 75cm=
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where

2.6. RCS of Complex Objects 

A complex target RCS is normally computed by coherently combining the
cross sections of the simple shapes that make that target. In general, a complex
target RCS can be modeled as a group of individual scattering centers distrib-
uted over the target. The scattering centers can be modeled as isotropic point
scatterers (N-point model) or as simple shape scatterers (N-shape model). In
any case, knowledge of the scattering centers’ locations and strengths is critical
in determining complex target RCS. This is true, because as seen in Section
2.3, relative spacing and aspect angles of the individual scattering centers dras-
tically influence the overall target RCS. Complex targets that can be modeled
by many equal scattering centers are often called Swerling 1 or 2 targets. Alter-
natively, targets that have one dominant scattering center and many other
smaller scattering centers are known as Swerling 3 or 4 targets.

In NB radar applications, contributions from all scattering centers combine
coherently to produce a single value for the target RCS at every aspect angle.
However, in WB applications, a target may straddle over many range bins. For
each range bin, the average RCS extracted by the radar represents the contribu-
tions from all scattering centers that fall within that bin. 

As an example, consider a circular cylinder with two perfectly conducting
circular flat plates on both ends. Assume linear polarization and let 
and . The backscattered RCS for this object versus aspect angle is
shown in Fig. 2.23. Note that at aspect angles close to  and  the RCS is
mainly dominated by the circular plate, while at aspect angles close to normal
incidence, the RCS is dominated by the cylinder broadside specular return.
This plot can be reproduced using MATLAB program
“rcs_cyliner_complex.m” given in Listing 2.10 in Section 2.8.

Symbol Description Units Status

a height of plate meters input

b base of plate meters input

freq frequency Hz input

phi roll angle degrees input

rcs array of RCS versus aspect angle dBsm output

H 1m=
r 0.125m=

0° 180°

© 2000 by Chapman & Hall/CRC



2.7. RCS Fluctuations and Statistical Models

 In most practical radar systems there is relative motion between the radar
and an observed target. Therefore, the RCS measured by the radar fluctuates
over a period of time as a function of frequency and the target aspect angle.
This observed RCS is referred to as the radar dynamic cross section. Up to this
point, all RCS formulas discussed in this chapter assumed stationary target,
where in this case, the backscattered RCS is often called static RCS. 

Dynamic RCS may fluctuate in amplitude and/or in phase. Phase fluctuation
is called glint, while amplitude fluctuation is called scintillation. Glint causes
the far field backscattered wavefronts from a target to be non-planar. For most
radar applications, glint introduces linear errors in the radar measurements, and
thus it is not of a major concern. However, cases where high precision and
accuracy are required, glint can be detrimental. Examples include precision
instrumentation tracking radar systems, missile seekers, and automated aircraft
landing systems. For more details on glint, the reader is advised to visit cited
references listed in the bibliography. 

Radar cross-section scintillation can vary slowly or rapidly depending on the
target size, shape, dynamics, and its relative motion with respect to the radar.

 Figure 2.23. Backscattered RCS for a cylinder with flat plates.
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Thus, due to the wide variety of RCS scintillation sources changes in the radar
cross section are modeled statistically as random processes. The value of an
RCS random process at any given time defines a random variable at that time.
Many of the RCS scintillation models were developed and verified by experi-
mental measurements. 

2.7.1. RCS Statistical Models - Scintillation Models

This section presents the most commonly used RCS statistical models. Sta-
tistical models that apply to sea, land, and volume clutter, such as the Weibull
and Log-normal distributions, will be discussed in a later chapter. The choice
of a particular model depends heavily on the nature of the target under exami-
nation. 

Chi-Square of Degree 

The Chi-square distribution applies to a wide range of targets; its pdf is given
by

(2.68)

where  is the gamma function with argument , and  is the average
value. As the degree gets larger the distribution corresponds to constrained
RCS values (narrow range of values). The limit  corresponds to a con-
stant RCS target (steady-target case).

Swerling I and II (Chi-Square of Degree 2)

In Swerling I, the RCS samples measured by the radar are correlated
throughout an entire scan, but are uncorrelated from scan to scan (slow fluctu-
ation). In this case, the pdf is

(2.69)

where  denotes the average RCS overall target fluctuation. Swerling II tar-
get fluctuation is more rapid than Swerling I, but the measurements are pulse to
pulse uncorrelated. This is illustrated in Fig. 2.24. Swerling II RCS distribution
is also defined by Eq. (2.69). Swerlings I and II apply to targets consisting of
many independent fluctuating point scatterers of approximately equal physical
dimensions. 

Swerling III and IV (Chi-Square of Degree 4)

Swerlings III and IV have the same pdf, and it is given by

2m

f σ( ) m
Γ m( )σav

--------------------- mσ
σav

-------- 
 m 1–

e
mσ σav⁄–

= σ 0≥

Γ m( ) m σav

m ∞→

f σ( ) 1
σav

-------- –
σ
σav

-------- 
 exp= σ 0≥

σav
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(2.70)

The fluctuations in Swerling III are similar to Swerling I; while in Swerling
IV they are similar to Swerling II fluctuations (see Fig. 2.24). Swerlings III and
IV are more applicable to targets that can be represented by one dominant scat-
terer and many other small reflectors. Fig. 2.25 shows a typical plot of the pdfs
for Swerling cases. This plot can be reproduced using MATLAB program
“Swerling_models.m” given in Listing 2.11 in Section 2.8.

2.8. MATLAB Program/Function Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters. All functions have companion MATLAB “filename_driver.m”
files that utilize MATLAB Graphical User Interface (GUI). Figure 2.26 shows
a typical GUI screen capture associated with the cylinder case.

f σ( ) 4σ
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2
-------- –

2σ
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-------- 
 exp= σ 0≥

Swerling I Swerling II

Swerling V

Swerling IVSwerling III

 Figure 2.24. Radar returns from targets with different Swerling fluctuations. 
Swerling V corresponds to a steady RCS target case.
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Figure 2.25. Probability densities for Swerling targets.
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 Figure 2.26. GUI work space associated with the function “rcs_cylinder.m”.
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Listing 2.1. MATLAB Function “rcs_aspect.m”
function [rcs] = rcs_aspect (scat_spacing, freq)
% This function demonstrates the effect of aspect angle on RCS.
% Poit scatterers separated by scat_spacing meter. Initially the two scatterers
% are aligned with radar line of sight. The aspect angle is changed from
% 0 degrees to 180 degrees and the equivalent RCS is computed.
% Plot of RCS versus aspect is generated.
eps = 0.00001;
wavelength = 3.0e+8 / freq;
% Compute aspect angle vector
aspect_degrees = 0.:.05:180.;
aspect_radians = (pi/180) .* aspect_degrees;
% Compute electrical scatterer spacing vector in wavelength units
elec_spacing = (2.0 * scat_spacing / wavelength) .* cos(aspect_radians);
% Compute RCS (rcs = RCS_scat1 + RCS_scat2)
% Scat1 is taken as phase reference point
rcs = abs(1.0 + cos((2.0 * pi) .* elec_spacing) ... 
            + i * sin((2.0 * pi) .* elec_spacing));
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS in dBsm 
% Plot RCS versus aspect angle
figure (1);
plot (aspect_degrees,rcs,'k');
grid;
xlabel ('aspect angle - degrees');
ylabel ('RCS in dBsm');
%title (' Frequency is 3GHz; scatterer spacing is 0.5m');

Listing 2.2. MATLAB Function “rcs_frequency.m”
function [rcs] = rcs_frequency (scat_spacing, frequ, freql)
% This program demonstrates the dependency of RCS on wavelength 
eps = 0.0001;
freq_band = frequ - freql;
delfreq = freq_band / 500.;
index = 0;
for freq = freql: delfreq: frequ
   index = index +1;
   wavelength(index) = 3.0e+8 / freq;
end
elec_spacing = 2.0 * scat_spacing ./ wavelength;
rcs = abs (  1 + cos((2.0 * pi) .* elec_spacing) ... 
            + i * sin((2.0 * pi) .* elec_spacing));
rcs = rcs + eps;
rcs = 20.0*log10(rcs); % RCS ins dBsm
% Plot RCS versus frequency
freq = freql:delfreq:frequ;
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plot(freq,rcs);
grid;
xlabel('Frequency');
ylabel('RCS in dBsm');

Listing 2.3. MATLAB Program “rcs_sphere.m”.
% This program calculates the back-scattered RCS for a perfectly
% conducting sphere using Eq.(2.7), and produce plots similar to Fig.2.9 
% Spherical Bessel functions are computed using series approximation and recursion.
clear all
eps   = 0.00001;
index = 0;
% kr limits are [0.05 - 15] ===> 300 points
for kr = 0.05:0.05:15
   index = index + 1;
   sphere_rcs   = 0. + 0.*i;
   f1    = 0. + 1.*i;
   f2    = 1. + 0.*i;
   m     = 1.;
   n     = 0.;
   q     = -1.;
   % initially set del to huge value
   del =100000+100000*i;
   while(abs(del) > eps)
      q   = -q;
      n   = n + 1;
      m   = m + 2;
      del = (2.*n-1) * f2 / kr-f1;
      f1  = f2;
      f2  = del;
      del = q * m /(f2 * (kr * f1 - n * f2));
      sphere_rcs = sphere_rcs + del;
   end
   rcs(index)   = abs(sphere_rcs);
   sphere_rcsdb(index) = 10. * log10(rcs(index));
   end
figure(1);
n=0.05:.05:15;
plot (n,rcs,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
%xlabel ('Sphere circumference in wavelengths');
%ylabel ('Normalized sphere RCS');
grid;
figure (2);
plot (n,sphere_rcsdb,'k');
set (gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15]);
xlabel ('Sphere circumference in wavelengths');
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ylabel ('Normalized sphere RCS - dB');
grid;
figure (3);
semilogx (n,sphere_rcsdb,'k');
xlabel ('Sphere circumference in wavelengths');
ylabel ('Normalized sphere RCS - dB');

Listing 2.4. MATLAB Function “rcs_ellipsoid.m” 
function [rcs] = rcs_ellipsoid (a, b, c, phi)
% This function computes and plots the ellipsoid RCS versus aspect angle.
% The roll angle angle phi is fixed,
eps = 0.00001;
sin_phi_s = sin(phi)^2;
cos_phi_s = cos(phi)^2;
% Generate aspect angle vector
theta = 0.:.05:180.0;
theta = (theta .* pi) ./ 180.;
if(a ~= b & a ~= c)
   rcs = (pi * a^2 * b^2 * c^2) ./ (a^2 * cos_phi_s .* (sin(theta).^2) + ...
   b^2 * sin_phi_s .* (sin(theta).^2) + ...
   c^2 .* (cos(theta).^2)).^2 ;
else
   if(a == b & a ~= c)
      rcs = (pi * b^4 * c^2) ./ ( b^2 .* (sin(theta).^2) + ...
         c^2 .* (cos(theta).^2)).^2 ;
   else
      if (a == b & a ==c)
         rcs = pi * c^2;
      end
   end
end
rcs_db = 10.0 * log10(rcs);
figure (1);
plot ((theta * 180.0 / pi),rcs_db,'k');
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm');
%title ('phi = 45 deg, (a,b,c) = (.15,.20,.95) meter')
grid;

Listing 2.5. MATLAB Function “rcs_circ_plate.m” 
function [rcs] = rcs_circ_plate (r, freq)
% This function calculates and plots the RCS of a circular flat plate of radius r.
eps = 0.000001;
% Compute wavelength
lambda = 3.e+8 / freq; % X-Band
index = 0;
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for aspect_deg = 0.:.1:180
   index = index +1;
   aspect = (pi /180.) * aspect_deg; 
% Compute RCS using Eq. (2.35)
   if (aspect == 0 | aspect == pi)
       rcs_po(index) = (4.0 * pi^3 * r^4 / lambda^2) + eps;
       rcs_mu(index) = rcs_po(1);
    else
% Compute RCS using Eq. (2.36)
       x = (4. * pi * r / lambda) * sin(aspect);
       val1 = 4. * pi^3 * r^4 / lambda^2;
       val2 = 2. * besselj(1,x) / x;
       rcs_po(index) = val1 * (val2 * cos(aspect))^2 + eps;
% Compute RCS using Eq. (2.36)
       val1m = lambda * r;
       val2m = 8. * pi * sin(aspect) * (tan(aspect)^2);
       rcs_mu(index) = val1m / val2m + eps;
    end
 end
rcsdb_po = 10. * log10(rcs_po);
rcsdb_mu = 10 * log10(rcs_mu);
angle = 0:.1:180;
plot(angle,rcsdb_po,'k',angle,rcsdb_mu,'k--')
grid;
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm');
%title  ('Frequency = X-Band, radius = 0.25 m');

Listing 2.6. MATLAB Function “rcs_frustum.m”
function [rcs] = rcs_frustum (r1, r2, h, freq, indicator) 
% This program computes the monostatic RCS for a frustum.
% Incident linear Polarization is assumed. To compute RCP or LCP RCS
% one must use Eq. (2.24)
% Normal incidence is according to Eq.s (2.39) and (2.40)
index = 0;
eps = 0.000001;
lambda = 3.0e+8 / freq;
% Comput half cone angle, alpha
alpha = atan(( r2 - r1)/h);
% Compute z1 and z2
z2 = r2 / tan(alpha);
z1 = r1 / tan(alpha);
delta = (z2^1.5 - z1^1.5)^2;
factor = (8. * pi * delta) / (9. * lambda);
large_small_end = indicator;
if (large_small_end == 1)
   % Compute normal incidence, large end
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   normal_incidence = (180./pi) * ((pi /2) + alpha)
   % Compute RCS from zero aspect to normal incidence
   for theta = 0.001:.1:normal_incidence-.5
      index = index +1;
      theta = theta * pi /180.;
      rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta - alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
   %Compute broadside RCS
   index = index +1;
   rcs_normal = factor * sin(alpha) / ((cos(alpha))^4) + eps;
   rcs(index) = rcs_normal;
   % Compute RCS from broad side to 180 degrees 
   for theta = normal_incidence+.5:.1:180
      index = index + 1;
      theta =  theta * pi / 180. ;
      rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta - alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
else
   % Compute normal incidence, small end
   normal_incidence = (180./pi) * ((pi /2) - alpha)
   % Compute RCS from zero aspect to normal incidence (large end)
   for theta = 0.001:.1:normal_incidence-.5
      index = index +1;
      theta = theta * pi /180.;
      rcs(index) = (lambda * z1 * tan(alpha) *(tan(theta + alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
   %Compute broadside RCS
   index = index +1;
   rcs_normal = factor * sin(alpha) / ((cos(alpha))^4) + eps;
   rcs(index) = rcs_normal;
   % Compute RCS from broad side to 180 degrees (small end of frustum)
   for theta = normal_incidence+.5:.1:180
      index = index + 1;
      theta =  theta * pi / 180. ;
      rcs(index) = (lambda * z2 * tan(alpha) *(tan(theta + alpha))^2) / ...
         (8. * pi *sin(theta)) + eps;
   end
end
% Plot RCS versus aspect angle
delta = 180 /index;
angle = 0.001:delta:180;
plot (angle,10*log10(rcs),'k');
grid;
xlabel ('Apsect angle - degrees');
ylabel ('RCS - dBsm');
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%title  ('Wavelength = .861 cm');

Listing 2.7. MATLAB Function “rcs_cylinder.m”
function [rcs] = rcs_cylinder (r, h, freq)
% This program computes RCS for a cylinder. Circular symmetry is assumed.
% Plot of RCS versus aspect angle is produced
index = 0;
eps =0.00001;
% Compute wavelength
lambda = 3.0e+8 / freq;
% Compute RCS from zero aspect to broadside
for theta = 0.0:.1:90-.5
   index = index +1;
   theta = theta * pi /180.;
   rcs(index) = (lambda * r * sin(theta) / ...
      (8. * pi * (cos(theta))^2)) + eps;
end
% Compute RCS for broadside specular
theta = pi/2;
index = index +1;
rcs(index) = (2. * pi * h^2 * r / lambda )+ eps;
% Compute RCS from 90 to 180 degrees
for theta = 90+.5:.1:180.
   index = index + 1;
   theta = theta * pi / 180.;
   rcs(index) = ( lambda * r * sin(theta) / ...
      (8. * pi * (cos(theta))^2)) + eps;
end
% Plot results
delta= 180/(index-1)
angle = 0:delta:180;
plot(angle,10*log10(rcs),'k');
grid;
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm');
%title  ('Frequency = 9.5 GHz');

Listing 2.8. MATLAB Function “rcs_rect_plate.m”
function [rcs] = rcs_rect_plate (a, b, freq)
% This function computes the backscattered RCS for a rectangular flat plate. 
% The RCS is computed for vertical and horizontal polarization based on
% Eq.s(2.50)through (2.60). Also Physical Optics approximation Eq.(2.62) 
% is computed. 
eps = 0.000001;
lambda = 3.0e+8 / freq;
ka = 2. * pi * a / lambda;
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% Compute aspect angle vector
theta_deg = 0.05:0.1:85;
theta = (pi/180.) .* theta_deg;
sigma1v = cos(ka .*sin(theta)) - i .* sin(ka .*sin(theta)) ./ sin(theta);
sigma2v = exp(i * ka - (pi /4)) / (sqrt(2 * pi) *(ka)^1.5);
sigma3v = (1. + sin(theta)) .* exp(-i * ka .* sin(theta)) ./ ...
   (1. - sin(theta)).^2;
sigma4v = (1. - sin(theta)) .* exp(i * ka .* sin(theta)) ./ ...
   (1. + sin(theta)).^2;
sigma5v = 1. - (exp(i * 2. * ka - (pi / 2)) / (8. * pi * (ka)^3));
sigma1h = cos(ka .*sin(theta)) + i .* sin(ka .*sin(theta)) ./ sin(theta);
sigma2h = 4. * exp(i * ka * (pi / 4.)) / (sqrt(2 * pi * ka));
sigma3h =  exp(-i * ka .* sin(theta)) ./ (1. - sin(theta));
sigma4h = exp(i * ka * sin(theta)) ./ (1. + sin(theta));
sigma5h = 1. - (exp(j * 2. * ka + (pi / 4.)) / 2. * pi * ka);
% Compute vertical polarization RCS
rcs_v = (b^2 / pi) .* (abs(sigma1v - sigma2v .*((1. ./ cos(theta)) ...
   + .25 .* sigma2v .* (sigma3v + sigma4v)) .* (sigma5v).^-1)).^2 + eps;
% compute horizontal polarization RCS
rcs_h = (b^2 / pi) .* (abs(sigma1h - sigma2h .*((1. ./ cos(theta)) ...
   - .25 .* sigma2h .* (sigma3h + sigma4h)) .* (sigma5h).^-1)).^2 + eps;
% Compute RCS from Physical Optics, Eq.(2.62)
angle = ka .* sin(theta);
rcs_po = (4. * pi* a^2 * b^2 / lambda^2 ).*  (cos(theta)).^2 .* ...
   ((sin(angle) ./ angle).^2) + eps;
rcsdb_v = 10. .*log10(rcs_v);
rcsdb_h = 10. .*log10(rcs_h);
rcsdb_po = 10. .*log10(rcs_po);
subplot(1,2,1)
plot (theta_deg, rcsdb_v,'k',theta_deg,rcsdb_po,'k --');
set(gca,'xtick',[10:10:85]);
title ('Vertical polarization');
ylabel ('RCS -dBsm');
xlabel ('aspect angle - deg');
legend('Solid Eq.(2.51)','Dashed Eq.(2.62)');
subplot(1,2,2)
plot (theta_deg, rcsdb_h,'k',theta_deg,rcsdb_po,'k --');
set(gca,'xtick',[10:10:85]);
title ('Horizontal polarization');
ylabel ('RCS -dBsm');
xlabel ('aspect angle - deg');
xlabel ('aspect angle - deg');
legend('Solid eq.(2.50)','Dashed eq.(2.62)');

Listing 2.9. MATLAB Function “rcs_isosceles.m”
function [rcs] = rcs_isosceles (a, b, freq, phi)
% This program calculates the backscattered RCS for a perfectly
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% conducting triangular flat plate, using Eq.s (2.63) through (2.65)
% The default case is to assume phi = pi/2. These equations are
% valid for aspect angles less than 30 degrees
% compute area of plate
A = a * b / 2.;
lambda = 3.e+8 / 9.5e+8;
phi = pi / 2.;
ka = 2. * pi / lambda;
kb = 2. *pi / lambda;
% Compute theta vector
theta_deg = 0.01:.05:89;
theta = (pi /180.) .* theta_deg;
alpha = ka * cos(phi) .* sin(theta);
beta =  kb * sin(phi) .* sin(theta);
if (phi == pi / 2)
  rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* (sin(beta ./ 2)).^4 ...
     ./ (beta./2).^4 + eps;
end
if (phi == 0)
   rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* ...
      ((sin(alpha).^4 ./ alpha.^4) + (sin(2 .* alpha) - 2.*alpha).^2 ...
      ./ (4 .* alpha.^4)) + eps;
end
if (phi ~= 0 & phi ~= pi/2)
   sigmao1 = 0.25 *sin(phi)^2 .* ((2. * a / b) * cos(phi) .* ...
      sin(beta) - sin(phi) .* sin(2. .* alpha)).^2;
   fact1 = (alpha).^2 - (.5 .* beta).^2;
   fact2 = (sin(alpha).^2 - sin(.5 .* beta).^2).^2;
   sigmao = (fact2 + sigmao1) ./ fact1;
   rcs = (4. * pi * A^2 / lambda^2) .* cos(theta).^2 .* sigmao + eps;
end
rcsdb = 10. *log10(rcs);
plot(theta_deg,rcsdb,'k')
xlabel ('Aspect angle - degrees');
ylabel ('RCS - dBsm')
%title ('freq = 9.5GHz, phi = pi/2');
grid;

Listing 2.10. MATLAB Program “rcs_cylinder_complex.m”
% This program computes the backscattered RCS for a cylinder
% with flat plates.

clear all
index = 0;
eps =0.00001;
a1 =.125;
h = 1.;
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lambda = 3.0e+8 /9.5e+9;
lambda = 0.00861;
index = 0;
for theta = 0.0:.1:90-.1
   index = index +1;
   theta = theta * pi /180.;
   rcs(index) = (lambda * a1 * sin(theta) / ...
      (8 * pi * (cos(theta))^2)) + eps;
end
theta*180/pi;
theta = pi/2;
index = index +1;
rcs(index) = (2 * pi * h^2 * a1 / lambda )+ eps;
for theta = 90+.1:.1:180.
   index = index + 1;
   theta = theta * pi / 180.;
   rcs(index) = ( lambda * a1 * sin(theta) / ...
      (8 * pi * (cos(theta))^2)) + eps;
end
r = a1;
index = 0;
for aspect_deg = 0.:.1:180
   index = index +1;
   aspect = (pi /180.) * aspect_deg; 
% Compute RCS using Eq. (2.37)
   if (aspect == 0 | aspect == pi)
       rcs_po(index) = (4.0 * pi^3 * r^4 / lambda^2) + eps;
       rcs_mu(index) = rcs_po(1);
    else
       x = (4. * pi * r / lambda) * sin(aspect);
       val1 = 4. * pi^3 * r^4 / lambda^2;
       val2 = 2. * besselj(1,x) / x;
       rcs_po(index) = val1 * (val2 * cos(aspect))^2 + eps;
    end
 end
rcs_t =(rcs_po + rcs);
angle = 0:.1:180;
plot(angle,10*log10(rcs_t(1:1801)),'k');
grid;
xlabel ('Aspect angle -degrees');
ylabel ('RCS -dBsm');

Listing 2.11. MATLAB Program “Swerling_models.m”
% This program computes and plots Swerling statistical models
% sigma_bar = 1.5; 
clear all
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sigma = 0:0.001:6;
sigma_bar = 1.5;
swer_3_4 = (4. / sigma_bar^2) .* sigma .* ...
   exp(-2. * (sigma ./ sigma_bar));
%t.*exp(-(t.^2)./2.
swer_1_2 = (1. /sigma_bar) .* exp( -sigma ./ sigma_bar);
plot(sigma,swer_1_2,'k',sigma,swer_3_4,'k');
grid;
gtext ('Swerling I,II');
gtext ('Swerling III,IV');
xlabel ('sigma');
ylabel ('Probability density');
title ('sigma-bar = 1.5');

 Problems

2.1. Design a cylindrical RCS calibration target such that its broadside RCS

(cylinder) and end (flat plate) RCS are equal to  at . The

RCS for a flat plate of area  is .

2.2.  The following table is constructed from a radar cross-section measure-
ment experiment. Calculate the mean and standard deviation of the radar cross
section.

Number of samples RCS, m2

2 55

6 67

12 73

16 90

20 98

24 110

26 117

19 126

13 133

8 139

5 144

3 150

10m
2

f 9.5GHz=

A σfp 4πf
2
A

2
c

2⁄=
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2.3. Develop a MATLAB simulation to compute and plot the backscattered
RCS for the following objects. Utilize the simple shape MATLAB functions
developed in this chapter. Assume that the radar is located on the left side of
the page and that its line of sight is aligned with the target body axis. Assume
an X-band radar.

90cm

70cm
15cm

30cm

flat plate cylinder
frustum

flat plate

side view
top view

90cm

70cm

half ellipsoid
cylinder

frustum
flat plate

side view

10cm
30cm

15cm

flat plate

frustum flat plate

15cm 45cm

50cm
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2.4. The backscattered RCS for a corner reflector is given by

This RCS is symmetric about the angle . Develop a MATLAB pro-
gram to compute and plot the RCS for a corner reflector. The RCS at the

 is
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Chapter 3 Continuous Wave and 
Pulsed Radars 

Continuous Wave (CW) radars utilize CW waveforms, which may be con-
sidered to be a pure sinewave of the form . Spectra of the radar echo
from stationary targets and clutter will be concentrated at . The center fre-
quency for the echoes from moving targets will be shifted by , the Doppler
frequency. Thus by measuring this frequency difference CW radars can very
accurately extract target radial velocity. Because of the continuous nature of
CW emission, range measurement is not possible without some modifications
to the radar operations and waveforms, which will be discussed later.

3.1.  Functional Block Diagram

In order to avoid interruption of the continuous radar energy emission, two
antennas are used in CW radars, one for transmission and one for reception.
Fig. 3.1 shows a simplified CW radar block diagram. The appropriate values
of the signal frequency at different locations are noted on the diagram. The
individual Narrow Band Filters (NBF) must be as narrow as possible in band-
width in order to allow accurate Doppler measurements and minimize the
amount of noise power. 

In theory, the operating bandwidth of a CW radar is infinitesimal (since it
corresponds to an infinite duration continuous sinewave). However, systems
with infinitesimal bandwidths cannot physically exist, and thus the bandwidth
of CW radars is assumed to correspond to that of a gated CW waveform (see
Chapter 5).

2πf0tcos
f0

fd
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 The NBF bank (Doppler filter bank) can be implemented using a Fast Fou-
rier Transform (FFT). If the Doppler filter bank is implemented using an FFT
of size , and if the individual NBF bandwidth (FFT bin) is , then the
effective radar Doppler bandwidth is . The reason for the one-half
factor is to account for both negative and positive Doppler shifts.

Since range is computed from the radar echoes by measuring a two-way time
delay, then single frequency CW radars cannot measure target range. In order
for CW radars to be able to measure target range, the transmit and receive
waveforms must have some sort of timing marks. By comparing the timing
marks at transmit and receive, CW radars can extract target range. 

Figure 3.1. CW radar block diagram.
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The timing mark can be implemented by modulating the transmit waveform,
and one commonly used technique is Linear Frequency Modulation (LFM).
Before we discuss LFM signals, we will first introduce the CW radar equation
and briefly address the general Frequency Modulated (FM) waveforms using
sinusoidal modulating signals.

3.2.  CW Radar Equation

As indicated by Fig. 3.1, the CW radar receiver declares detection at the out-
put of a particular Doppler bin if that output value passes the detection thresh-
old within the detector box. Since the NBF bank is inplemented by an FFT,
only finite length data sets can be processed at a time. The length of such
blocks is normally referred to as the dwell time or dwell interval. The dwell
interval determines the frequency resolution or the bandwidth of the individual
NBFs. More precisely,

(3.1)

 is the dwell interval. Therefore, once the maximum resolvable fre-
quency by the NBF bank is chosen the size of the NBF bank is computed as

(3.2)

 is the maximum resolvable frequency by the FFT. The factor  is needed to
account for both positive and negative Doppler shifts. It follows that 

(3.3)

The CW radar equation can now be derived from the high PRF radar equa-
tion given in Eq. (1.69) and repeated here as Eq. (3.4)

(3.4)

In the case of CW radars,  is replaced by the CW average transmitted
power over the dwell interval , and  must be replaced by . Thus,
the CW radar equation can be written as 

(3.5)

where  and  are the transmit and receive antenna gains, respectively. The
factor  is a loss term associated with the type of window (weighting) used
in computing the FFT. Other terms in Eq. (3.5) have been defined earlier. 
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3.3.  Frequency Modulation 

The discussion presented in this section will be restricted to sinusoidal mod-
ulating signals. In this case, the general formula for an FM waveform can be
expressed by

(3.6)

 is the radar operating frequency (carrier frequency),  is the mod-
ulating signal,  is a constant, and , where  is the peak
frequency deviation. The phase is given by 

(3.7)

where  is the FM modulation index given by

(3.8)

Let  be the received radar signal from a target at range . It follows
that

(3.9)

where the delay  is 

(3.10)

 is the speed of light. CW radar receivers utilize phase detectors in order to
extract target range from the instantaneous frequency, as illustrated in Fig. 3.2.
A good measurement of the phase detector output  implies a good mea-
surement of , and hence range.
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 Figure 3.2. Extracting range from an FM signal return. 
K1 is a constant.
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Consider the FM waveform  given by

(3.11)

which can be written as

(3.12)

where  denotes the real part. Since the signal  is
periodic with period , it can be expressed using the complex expo-
nential Fourier series as

(3.13)

where the Fourier series coefficients  are given by

(3.14)

Make the change of variable , and recognize that the Bessel func-
tion of the first kind of order  is

(3.15)

Thus, the Fourier series coefficients are , and consequently Eq.
(3.13) can now be written as 

(3.16)

which is known as the Bessel-Jacobi equation. Fig. 3.3 shows a plot of Bessel
functions of the first kind for . 

The total power in the signal  is

(3.17)

Substituting Eq. (3.16) into Eq. (3.12) yields
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(3.18)

Expanding Eq. (3.18) yields

(3.19)

Finally, since  for  odd and  for  even we
can rewrite Eq. (3.19) as

(3.20)

The spectrum of  is composed of pairs of spectral lines centered at , as
sketched in Fig. 3.4. The spacing between adjacent spectral lines is . The
central spectral line has an amplitude equal to , while the amplitude of
the  spectral line is .
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Figure 3.3. Plot of Bessel functions of order 0, 1, 2, and 3.
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As indicated by Eq. (3.20) the bandwidth of FM signals is infinite. However,
the magnitudes of spectral lines of the higher orders are small, and thus the
bandwidth can be approximated using Carson’s rule,

(3.21)

When  is small, only  and  have significant values. Thus, we
may approximate Eq. (3.20) by

(3.22)

Finally, for small , the Bessel functions can be approximated by

(3.23)

(3.24)

Thus, Eq. (3.22) may be approximated by

(3.25)

Example 3.1: If the modulation index is , give an expression for the
signal .

Solution: From Bessel function tables we get  and
; then using Eq. (3.17) we get
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.

Example 3.2: Consider an FM transmitter with output signal
. The frequency deviation is , and the

modulating waveform is . Determine the FM signal band-
width. How many spectral lines will pass through a band pass filter whose
bandwidth is  centered at ?

Solution: The peak frequency deviation is . It fol-
lows that 

Using Eq. (3.16) we get

However, only seven spectral lines pass through the band pass filter as illus-
trated in the figure shown below.

3.4.  Linear FM (LFM) CW Radar

CW radars may use LFM waveforms so that both range and Doppler infor-
mation can be measured. In practical CW radars, the LFM waveform cannot be
continually changed in one direction, and thus periodicity in the modulation is
normally utilized. Fig. 3.5 shows a sketch of a triangular LFM waveform. The
modulation does not need to be triangular; it may be sinusoidal, saw-tooth, or
some other form. The dashed line in Fig 3.5 represents the return waveform
from a stationary target at range . The beat frequency  is also sketched in
Fig. 3.5. It is defined as the difference (due to heterodyning) between the trans-
mitted and received signals. The time delay  is a measure of target range, as
defined in Eq. (3.10).
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In practice, the modulating frequency  is selected such that 

(3.26)

The rate of frequency change, , is

(3.27)

where  is the peak frequency deviation. The beat frequency  is given by 

(3.28)

Eq. (3.28) can be rewritten as

(3.29)

Equating Eqs. (3.27) and (3.29) and solving for  yield 

(3.30)

Now consider the case when Doppler is present (i.e., non-stationary target).
The corresponding triangular LFM transmitted and received waveforms are
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sketched in Fig. 3.6, along with the corresponding beat frequency. As before
the beat frequency is defined as

(3.31)

When the target is not stationary the received signal will contain a Doppler
shift term in addition to the frequency shift due to the time delay . In this
case, the Doppler shift term subtracts from the beat frequency during the posi-
tive portion of the slope. Alternatively, the two terms add up during the nega-
tive portion of the slope. Denote the beat frequency during the positive (up)
and negative (down) portions of the slope, respectively, as  and . 

It follows that

(3.32)

where  is the range rate or the target radial velocity as seen by the radar. The
first term of the right-hand side of Eq. (3.32) is due to the range delay defined
by Eq. (3.28), while the second term is due to the target Doppler. Similarly, 

(3.33)
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 Figure 3.6. Transmited and received LFM signals and beat frequency, for a 
moving target.
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Range is computed by adding Eq. (3.32) and Eq. (3.33). More precisely,

(3.34)

The range rate is computed by subtracting Eq. (3.33) from Eq. (3.32),

(3.35)

As indicated by Eq. (3.34) and Eq. (3.35), CW radars utilizing triangular
LFM can extract both range and range rate information. In practice, the maxi-
mum time delay  is normally selected as

(3.36)

Thus, the maximum range is given by

(3.37)

and the maximum unambiguous range will correspond to a shift equal to .

3.5.  Multiple Frequency CW Radar

CW radars do not have to use LFM waveforms in order to obtain good range
measurements. Multiple frequency schemes allow CW radars to compute very
adequate range measurements, without using frequency modulation. In order
to illustrate this concept, first consider a CW radar with the following wave-
form:

(3.38)

The received signal from a target at range  is 

 (3.39)

where the phase  is equal to

(3.40)

Solving for  we obtain

(3.41)
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Clearly, the maximum unambiguous range occurs when  is maximum, i.e.,
. Therefore, even for relatively large radar wavelengths,  is limited

to impractical small values.

Next, consider a radar with two CW signals, denoted by  and .
More precisely,

(3.42)

 (3.43)

The received signals from a moving target are

(3.44)

and 

(3.45)

where  and . After heterodyning (mixing)
with the carrier frequency, the phase difference between the two received sig-
nals is

(3.46)

Again  is maximum when ; it follows that the maximum unambig-
uous range is now

(3.47)

and since , the range computed by Eq. (3.47) is much greater than that
computed by Eq. (3.41). 

3.6. Pulsed Radar 

Pulsed radars transmit and receive a train of modulated pulses. Range is
extracted from the two-way time delay between a transmitted and received
pulse. Doppler measurements can be made in two ways. If accurate range mea-
surements are available between consecutive pulses, then Doppler frequency
can be extracted from the range rate . This approach works fine as
long as the range is not changing drastically over the interval . Otherwise,
pulsed radars utilize a Doppler filter bank. 

Pulsed radar waveforms can be completely defined by the following: (1) car-
rier frequency which may vary depending on the design requirements and
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radar mission; (2) pulse width, which is closely related to the bandwidth and
defines the range resolution; (3) modulation; and finally (4) the pulse repetition
frequency. Different modulation techniques are usually utilized to enhance the
radar performance, or to add more capabilities to the radar that otherwise
would not have been possible. The PRF must be chosen to avoid Doppler and
range ambiguities as well as maximize the average transmitted power. 

Radar systems employ low, medium, and high PRF schemes. Low PRF
waveforms can provide accurate, long, unambiguous range measurements, but
exert severe Doppler ambiguities. Medium PRF waveforms must resolve both
range and Doppler ambiguities; however, they provide adequate average trans-
mitted power as compared to low PRFs. High PRF waveforms can provide
superior average transmitted power and excellent clutter rejection capabilities.
Alternatively, high PRF waveforms are extremely ambiguous in range. Radar
systems utilizing high PRFs are often called Pulsed Doppler Radars (PDR).
Range and Doppler ambiguities for different PRFs are summarized in Table
3.1.

Distinction of a certain PRF as low, medium, or high PRF is almost arbitrary
and depends on the radar mode of operations. For example, a  PRF is
considered low if the maximum detection range is less than . However,
the same PRF would be considered medium if the maximum detection range is
well beyond . 

Radars can utilize constant and varying (agile) PRFs. For example, Moving
Target Indicator (MTI) radars use PRF agility to avoid blind speeds. This kind
of agility is known as PRF staggering. PRF agility is also used to avoid range
and Doppler ambiguities, as will be explained in the next three sections. Addi-
tionally, PRF agility is also used to prevent jammers from locking onto the
radar’s PRF. These two latter forms of PRF agility are sometimes referred to as
PRF jitter.  

Fig. 3.7 shows a simplified pulsed radar block diagram. The range gates can
be implemented as filters that open and close at time intervals that correspond
to the detection range. The width of such an interval corresponds to the desired
range resolution. The radar receiver is often implemented as a series of contig-
uous (in time) range gates, where the width of each gate is matched to the radar
pulse width. The NBF bank is normally implemented using an FFT, where

TABLE 3.1. PRF ambiguities.

PRF Range Ambiguous Doppler Ambiguous

Low PRF No Yes

Medium PRF Yes Yes

High PRF Yes No

3KHz
30Km

30Km
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bandwidth of the individual filters corresponds to the FFT frequency resolu-
tion.

  

3.7.  Range and Doppler Ambiguities

As explained earlier, a pulsed radar can be range ambiguous if a second
pulse is transmitted prior to the return of the first pulse. In general, the radar
PRF is chosen such that the unambiguous range is large enough to meet the
radar’s operational requirements. Therefore, long-range search (surveillance)
radars would require relatively low PRFs.

The line spectrum of a train of pulses has  envelope, and the line
spectra are separated by the PRF, , as illustrated in Fig. 3.8. The Doppler fil-
ter bank is capable of resolving target Doppler as long as the anticipated Dop-
pler shift is less than one half the bandwidth of the individual filters (i.e., one
half the width of an FFT bin). Thus, pulsed radars are designed such that
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 Figure 3.7. Pulsed radar block diagram.
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 (3.48)

where  is the maximum anticipated target Doppler frequency,  is
the maximum anticipated target radial velocity, and  is the radar wavelength. 

If the Doppler frequency of the target is high enough to make an adjacent spec-
tral line move inside the Doppler band of interest, the radar can be Doppler
ambiguous. Therefore, in order to avoid Doppler ambiguities, radar systems
require high PRF rates when detecting high speed targets. When a long-range
radar is required to detect a high speed target, it may not be possible to be both
range and Doppler unambiguous. This problem can be resolved by using multi-
ple PRFs. Multiple PRF schemes can be incorporated sequentially within each
dwell interval (scan or integration frame) or the radar can use a single PRF in
one scan and resolve ambiguity in the next. The latter technique, however, may
have problems due to changing target dynamics from one scan to the next.

3.8. Resolving Range Ambiguity 

Consider a radar that uses two PRFs,  and , on transmit to resolve
range ambiguity, as shown in Fig. 3.9. Denote  and  as the unambigu-
ous ranges for the two PRFs, respectively. Normally, these unambiguous
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fdfd
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 Figure 3.8. Spectra of transmitted and received waveforms, and Doppler 
bank.  (a) Doppler is resolved.   (b) Spectral lines have moved 
into the next Doppler filter. This results in an ambiguous 
Doppler measurement. 

fr1 fr2
Ru1 Ru2
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ranges are relatively small and are short of the desired radar unambiguous
range  (where ). Denote the radar desired PRF that corre-
sponds to  as .

We choose  and  such that they are relatively prime with respect to one
another. One choice is to select  and  for some
integer . Within one period of the desired PRI ( ) the two PRFs

 and  coincide only at one location, which is the true unambiguous target
position. The time delay  establishes the desired unambiguous range. The
time delays  and  correspond to the time between the transmit of a pulse
on each PRF and receipt of a target return due to the same pulse. 

Let  be the number of PRF1 intervals between transmit of a pulse and
receipt of the true target return. The quantity  is similar to  except it is
for PRF2. It follows that, over the interval  to , the only possible results
are  or . The radar needs only to measure 
and . First, consider the case when . In this case,

(3.49)
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 Fgure 3.9. Resolving range ambiguity.
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for which we get

(3.50)

where  and . It follows that the round trip time to the
true target location is

(3.51)

and the true target range is 

(3.52)

Now if , then

(3.53)

Solving for  we get

(3.54)

and the round-trip time to the true target location is

(3.55)

and in this case, the true target range is

(3.56)

Finally, if , then the target is in the first ambiguity. It follows that

(3.57)

and

(3.58)

Since a pulse cannot be received while the following pulse is being transmit-
ted, these times correspond to blind ranges. This problem can be resolved by
using a third PRF. In this case, once an integer  is selected, then in order to
guarantee that the three PRFs are relatively prime with respect to one another,
we may choose , , and
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3.9. Resolving Doppler Ambiguity

The Doppler ambiguity problem is analogous to that of range ambiguity.
Therefore, the same methodology can be used to resolve Doppler ambiguity. In
this case, we measure the Doppler frequencies  and  instead of  and

.

If , then we have

(3.59)

And if ,

(3.60)

and the true Doppler is 

(3.61)

Finally, if , then

(3.62)

Again, blind Dopplers can occur, which can be resolved using a third PRF.

Example 3.3: A certain radar uses two PRFs to resolve range ambiguities.
The desired unambiguous range is . Choose . Compute

, , , and . 

Solution: First let us compute the desired PRF, 

It follows that
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.

Example 3.4: Consider a radar with three PRFs; ,
, and . Assume . Calculate the fre-

quency position of each PRF for a target whose velocity is . Calculate
 (Doppler frequency) for another target appearing at , , and

 for each PRF.

Solution: The Doppler frequency is

Then by using Eq. (3.61)  where , we can write

We will show here how to compute , and leave the computations of  and
 to the reader. First, if we choose , that means , which

cannot be true since  cannot be greater than . Choosing  is also
invalid since  cannot be true either. Finally, if we choose

 we get , which is an acceptable value. It follows that the
minimum  that may satisfy the above three relations are ,

, and . Thus, the apparent Doppler frequencies are
, , and .

Ru2
c

2fr2

--------- 3 108×
2 90 103××
----------------------------- 1.667Km= = =

fr1 15KHz=
fr2 18KHz= fr3 21KHz= f0 9GHz=

550m s⁄
fd 8KHz 2KHz
17KHz

fd 2
vf0

c
------- 2 550 9 109×××

3 108×
------------------------------------------ 33KHz= = =

nifri fdi+ fd= i 1 2 3, ,=

n1fr1 fd1+ 15n1 fd1+ 33= =

n2fr2 fd2+ 18n2 fd2+ 33= =

n3fr3 fd3+ 21n3 fd3+ 33= =

n1 n2
n3 n1 0= fd1 33KHz=

fd1 fr1 n1 1=
fd1 18KHz=

n1 2= fd1 3KHz=
n1 n2 n3, , n1 2=

n2 1= n3 1=
fd1 2KHz= fd2 15KHz= fd3 12KHz=

KHz

5            10          15          20           25          30          35

fr1fd1

3

© 2000 by Chapman & Hall/CRC



Now for the second part of the problem. Again by using Eq. (3.61) we have

We can now solve for the smallest integers  that satisfy the above
three relations. See the table below.

Thus, , and , and the true target Doppler is
. It follows that 

n 0 1 2 3 4

 from 8 23 38 53 68

 from 2 20 38 56

 from 17 38 39

KHz

5            10          15          20           25          30          35

fr2fd2

18

KHz

5            10          15          20           25          30          35

fr3fd3

12

n1fr1 fd1+ fd 15n1 8+= =

n2fr2 fd2+ fd 18n2 2+= =

n3fr3 fd3+ fd 21n3 17+= =

n1 n2 n3, ,

fd
fr1

fd fr2

fd fr3

n1 2 n2= = n3 1=
fd 38KHz=

vr 38000
0.0333

2
----------------× 632.7 m

sec
-----------= =
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3.10. MATLAB Program “range_calc.m”

The program “range_calc.m” solves the radar range equation of the form

(3.63)

where  is peak transmitted power,  is pulse width,  is PRF,  is trans-
mitting antenna gain,  receiving antenna gain,  is wavelength,  is target
cross section,  is Boltzman’s constant,  effective noise temperature,  is
system noise figure,  is total system losses, and  is the minimum
SNR required for detection. This equation applies for both CW and pulsed
radars. In the case of CW radars, the terms  must be replaced by the aver-
age CW power . Additionally, the term  refers to the dwell interval;
alternatively, in the case of pulse radars  denotes the time on target. MAT-
LAB-based GUI is utilized in inputting and editing all input parameters. The
outputs include the maximum detection range versus minimum SNR plots.
This program can be executed by typing “range_calc_driver” which is
included in this book’s companion software. This software can be downloaded
from CRC Press Web site “www.crcpress.com”. The related MATLAB GUI
workspace associated with this program is illustrated in Fig. 3.10.

 Problems

3.1. Prove that

 .

3.2. Show that . Hint: You may utilize the relation

 .

3.3. In a multiple frequency CW radar, the transmitted waveform consists of
two continuous sinewaves of frequencies  and .

Compute the maximum unambiguous detection range.
3.4. Consider a radar system using linear frequency modulation. Compute

the range that corresponds to . Assume a beat frequency

. 

R
PtτfrTiGtGrλ

2σ

4π( )3
kTeFL SNR( )o

-------------------------------------------------
 
 
 

1
4
---

=

Pt τ fr Gt
Gr λ σ

k Te F
L SNR( )o

Ptτfr
PCW Ti

Ti

Jn z( )

n ∞–=

∞

∑ 1=

J n– z( ) 1–( )n
Jn z( )=

Jn z( ) 1
π
--- z ysin ny–( )cos yd

0

π

∫=

f1 105KHz= f2 115KHz=

f· 20 10MHz,=

fb 1200Hz=
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3.5. A certain radar using linear frequency modulation has a modulation fre-
quency , and frequency sweep . Calculate the

average beat frequency differences that correspond to range increments of 

and  meters.

3.6. A CW radar uses linear frequency modulation to determine both range
and range rate. The radar wavelength is , and the frequency sweep is

. Let . (a) Calculate the mean Doppler shift; (b)

compute  and  corresponding to a target at range , which is

approaching the radar with radial velocity of .

 Figure 3.10. GUI work space associated with the program 
“range_calc.m”.

fm 300Hz= ∆f 50MHz=

10

15

λ 3cm=

∆f 200KHz= t0 20ms=

fbu fbd R 350Km=

250m s⁄
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3.7. In Chapter 1 we developed an expression for the Doppler shift associ-

ated with a CW radar (i.e., , where the plus sign is used for clos-

ing targets and the negative sign is used for receding targets). CW radars can
use the system shown below to determine whether the target is closing or
receding. Assuming that the emitted signal is  and the received signal

is , show that the direction of the target can be deter-

mined by checking the phase shift difference in the outputs  and .

3.8. Consider a medium PRF radar on board an aircraft moving at a speed of
 with PRFs , , and ; the

radar operating frequency is . Calculate the frequency position of a

nose-on target with a speed of . Also calculate the closing rate of a

target appearing at , , and  away from the center line of PRF ,

, and , respectively.

3.9. Repeat Problem 3.8 when the target is  off the radar line of sight.

3.10. A certain radar operates at two PRFs,  and , where

 and . Show that this multiple

PRF scheme will give the same range ambiguity as that of a single PRF with

PRI .

fd 2v± λ⁄=

A ω0tcos

kA ω0 ωd±( )t ϕ+( )cos

y1 t( ) y2 t( )

mixer
   A

mixer
   B

CW
transmitter

phase
shift

90°

y1 t( )

y2 t( )

transmitting
 antenna

receiving
 antenna

350 m s⁄ fr1 10KHz= fr2 15KHz= fr3 20KHz=

9.5GHz

300 m s⁄
6 5 18KHz 10

15 20KHz

15°
fr1 fr2

Tr1 1 fr1⁄( ) T 5⁄= = Tr2 1 fr2⁄( ) T 6⁄= =

T
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3.11. Consider an X-band radar with wavelength  and bandwidth

. The radar uses two PRFs,  and .

A target is detected at range bin  for  and at bin  for . Determine

the actual target range.
3.12. A certain radar uses two PRFs to resolve range ambiguities. The

desired unambiguous range is . Select a reasonable value for .

Compute the corresponding , , , and .

3.13. A certain radar uses three PRFs to resolve range ambiguities. The
desired unambiguous range is . Select . Compute the

corresponding , , , , , and . 

λ 3cm=

B 10MHz= fr1 50KHz= fr2 55.55KHz=

46 fr1 12 fr2

Ru 150Km= N

fr1 fr2 Ru1 Ru2

Ru 250Km= N 43=

fr1 fr2 fr3 Ru1 Ru2 Ru3
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141

Chapter 4 Radar Detection 

4.1. Detection in the Presence of Noise

A simplified block diagram of a radar receiver that employs an envelope
detector followed by a threshold decision is shown in Fig. 4.1. The input signal
to the receiver is composed of the radar echo signal  and additive zero
mean white Gaussian noise , with variance . The input noise is
assumed to be spatially incoherent and uncorrelated with the signal. 

The output of the band pass IF filter is the signal , which can be written
as

(4.1)

where  is the radar operating frequency,  is the envelope of
, the phase is , and the subscripts , respectively,

refer to the in-phase and quadrature components. 

A target is detected when  exceeds the threshold value , where the
decision hypotheses are

s t( )
n t( ) ψ2

v t( )

v t( ) vI t( ) ω0tcos vQ t( ) ω0sin+ r t( ) ω0t ϕ t( )–( )cos= =

vI t( ) r t( ) ϕ t( )cos=

vQ t( ) r t( ) ϕ t( )sin=

ω0 2πf0= r t( )
v t( ) ϕ t( ) vQ vI⁄( )atan= I Q,

r t( ) VT

s t( ) n t( )+ VT> Detection
n t( ) VT> False alarm
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The case when the noise subtracts from the signal (while a target is present) to
make  smaller than the threshold is called a miss. Radar designers seek to
maximize the probability of detection for a given probability of false alarm. 

The IF filter output is a complex random variable that is composed of either
noise alone or noise plus target return signal (sine wave of amplitude ). The
quadrature components corresponding to the first case are

 (4.2)

and for the second case,

(4.3)

where the noise quadrature components  and  are uncorrelated zero
mean low pass Gaussian noise with equal variances, . The joint Probability
Density Function (pdf) of the two random variables  is

 (4.4)

The pdfs of the random variables  and , respectively, represent the
modulus and phase of . The joint pdf for the two random variables

 is given by

(4.5)

where  is a matrix of derivatives defined by

From  an tenna
and  low  no ise B and  P ass

F ilte r (IF )
E nvelope
D etec to r

L ow  P ass
F ilte r

Threshold VT

T hresho ld
D etec to r to  d isp lay

d ev ices
v t( )

r t( )
A m p.

 Figure 4.1. Simplified block diagram of an envelope detector and threshold 
receiver.

r t( )

A

vI t( ) nI t( )
vQ t( ) nQ t( )

=
=

vI t( ) A nI t( )+ r t( ) ϕ t( )cos= = nI t( )⇒ r t( ) ϕ t( )cos A–=

vQ t( ) nQ t( ) r t( ) ϕ t( )sin= =

nI t( ) nQ t( )
ψ2

nI nQ;

f nI nQ,( ) 1

2πψ2
-------------

nI
2

nQ
2+

2ψ2
-----------------–

 
 
 
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1

2πψ2
------------- r ϕcos A–( )2

r ϕsin( )2+

2ψ2
-----------------------------------------------------------–

 
 
 

exp

=

=

r t( ) ϕ t( )
v t( )

r t( ) ϕ t( );

f r ϕ,( ) f nI nQ,( ) J=

J[ ]
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(4.6)

The determinant of the matrix of derivatives is called the Jacobian, and in this
case it is equal to

(4.7)

Substituting Eqs. (4.4) and (4.7) into Eq. (4.5) and collecting terms yield

(4.8)

The pdf for  alone is obtained by integrating Eq. (4.8) over 

(4.9)

where the integral inside Eq. (4.9) is known as the modified Bessel function of
zero order,

(4.10)

Thus,

(4.11)

which is the Rice probability density function. If  (noise alone),
then Eq. (4.11) becomes the Rayleigh probability density function

(4.12)

Also, when  is very large, Eq. (4.11) becomes a Gaussian probability
density function of mean  and variance :

J[ ] r∂
∂nI

ϕ∂
∂nI

r∂
∂nQ

ϕ∂
∂nQ

ϕcos r ϕsin–

ϕsin r ϕcos
= =
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2
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-----------------–

 
 
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------------------- 
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r ϕ

f r( ) f r ϕ,( ) ϕd
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(4.13)

Fig. 4.2 shows plots for the Rayleigh and Gaussian densities.

The density function for the random variable  is obtained from

(4.14)

While the detailed derivation is left as an exercise, the result of Eq. (4.14) is 

(4.15)

where

(4.16)

The function  can be found tabulated in most mathematical formulas and
tables reference books. Note that for the case of noise alone ( ), Eq.
(4.15) collapses to a uniform pdf over the interval .

f r( ) 1

2πψ2
----------------- r A–( )2

2ψ2
-------------------–

 
 
 

exp≈

ϕ

f ϕ( ) f r ϕ,( ) rd

0

r

∫=

f ϕ( ) 1
2π
------ A
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2ψ2
---------
 
 
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exp
A ϕcos

2πψ2
----------------- A ϕsin( )2–

2ψ2
--------------------------
 
 
 

exp F
A ϕcos
ψ

---------------- 
 +=

F x( ) 1

2π
---------- e
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 Figure 4.2. Gaussian and Rayleigh probability densities.
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One excellent approximation for the function  is

(4.17)

and for negative values of 

(4.18)

MATLAB Function “que_func.m”

The function “que_func.m” computes  using Eqs. (4.17) and (4.18) and
is given in Listing 4.1 in Section 4.10. The syntax is as follows:

fofx = que_func (x)

4.2.  Probability of False Alarm

The probability of false alarm  is defined as the probability that a sample
 of the signal  will exceed the threshold voltage  when noise alone is

present in the radar,

(4.19a)

(4.19b)

Fig. 4.3 shows a plot of the normalized threshold versus the probability of false
alarm. It is evident from this figure that  is very sensitive to small changes
in the threshold value.

The false alarm time  is related to the probability of false alarm by

(4.20)

where  represents the radar integration time, or the average time that the
output of the envelope detector will pass the threshold voltage. Since the radar
operating bandwidth  is the inverse of , then by substituting Eq. (4.19)
into Eq. (4.20) we can write  as 

(4.21)

F x( )

F x( ) 1
1

0.661x 0.339 x
2 5.51++

--------------------------------------------------------------
 
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  1
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----------e
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2 2⁄––= x 0≥
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r

ψ2
------ r

2

2ψ2
---------–

 
 
 

exp rd
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∞

∫ VT
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2ψ2
---------
 
 
 

exp= =

VT 2ψ2 1
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------- 
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Pfa

Tfa
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-------=
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Tfa
1
B
---

VT
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2ψ2
---------
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exp=
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Minimizing  means increasing the threshold value, and as a result the
radar maximum detection range is decreased. Therefore, the choice of an
acceptable value for  becomes a compromise depending on the radar mode
of operation. The false alarm number  was defined by Marcum (see bibliog-
raphy) as the reciprocal of . Using Marcum’s definition of the false alarm
number, the probability of false alarm is given by , where

 is the number of pulses and .

4.3.  Probability of Detection

The probability of detection  is the probability that a sample  of 
will exceed the threshold voltage in the case of noise plus signal,

(4.22)

If we assume that the radar signal is a sine waveform with amplitude , then its
power is . Now, by using  (single-pulse SNR) and

, then Eq. (4.22) can be rewritten as

0 5 10 15 20 25
0
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1.5

2

2.5

1 Pfa⁄( )log

VT

2ψ2
--------------

 Figure 4.3. Normalized detection threshold versus probability of false alarm.
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(4.23)

(4.24)

 is called Marcum’s Q-function. When  is small and  is relatively
large so that the threshold is also large, Eq. (4.24) can be approximated by

(4.25)

where  is given by Eq. (4.16). 

Many approximations for computing Eq. (4.23) can be found throughout the
literature. One very accurate approximation presented by North (see bibliogra-
phy) is given by

(4.26)

where the complementary error function is 

(4.27)

Table 4.1 gives samples of the single pulse SNR corresponding to few values
of  and , using Eq. (4.26). For example, if  and

, then the minimum single pulse SNR required to accomplish this
combination of  and  is .

MATLAB Function “marcumsq.m”

The integral given in Eq. (4.23) is complicated and can be computed using
numerical integration techniques. Parl1 developed an excellent algorithm to
numerically compute this integral. It is summarized as follows:

(4.28)

1. Parl, S., A New Method of Calculating the Generalized Q Function, IEEE Trans. 
Information Theory, Vol. IT-26, No. 1, January 1980, pp. 121-124.
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(4.29)

(4.30)

(4.31)

(4.32)

 (4.33)

, , and . The recursive Eqs. (4.29) through (4.31)
are computed continuously until  for some value . The accuracy
of the algorithm is enhanced as the value of  is increased. The MATLAB
function “marcumsq.m” given in Listing 4.2 in Section 4.10 implements Parl’s

TABLE 4.1. Single pulse SNR (dB). 

Pfa

PD 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 10-12

.1 4.00 6.19 7.85 8.95 9.94 10.44 11.12 11.62 12.16 12.65

.2 5.57 7.35 8.75 9.81 10.50 11.19 11.87 12.31 12.85 13.25

.3 6.75 8.25 9.50 10.44 11.10 11.75 12.37 12.81 13.25 13.65

.4 7.87 8.85 10.18 10.87 11.56 12.18 12.75 13.25 13.65 14.00

.5 8.44 9.45 10.62 11.25 11.95 12.60 13.11 13.52 14.00 14.35

.6 8.75 9.95 11.00 11.75 12.37 12.88 13.50 13.87 14.25 14.62

.7 9.56 10.50 11.50 12.31 12.75 13.31 13.87 14.20 14.59 14.95

.8 10.18 11.12 12.05 12.62 13.25 13.75 14.25 14.55 14.87 15.25

.9 10.95 11.85 12.65 13.31 13.85 14.25 14.62 15.00 15.45 15.75

.95 11.50 12.40 13.12 13.65 14.25 14.64 15.10 15.45 15.75 16.12

.98 12.18 13.00 13.62 14.25 14.62 15.12 15.47 15.85 16.25 16.50

.99 12.62 13.37 14.05 14.50 15.00 15.38 15.75 16.12 16.47 16.75

.995 12.85 13.65 14.31 14.75 15.25 15.71 16.06 16.37 16.65 17.00

.998 13.31 14.05 14.62 15.06 15.53 16.05 16.37 16.7 16.89 17.25

.999 13.62 14.25 14.88 15.25 15.85 16.13 16.50 16.85 17.12 17.44

.9995 13.84 14.50 15.06 15.55 15.99 16.35 16.70 16.98 17.35 17.55

.9999 14.38 14.94 15.44 16.12 16.50 16.87 17.12 17.35 17.62 17.87

αn dn
2n
ab
------αn 1– αn 2–++=

βn 1
2n
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dn 1+ dnd1=
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1 a b<
0 a b≥ 

 
 
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a b⁄ a b<
b a⁄ a b≥ 

 
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=

α 1– 0.0= β0 0.5= β 1– 0=
βn 10p> p 3≥

p
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algorithm to compute the probability of detection defined in Eq. (4.23). The
syntax is as follows:

Pd = marcumsq (alpha, beta)

where alpha and beta are from Eq. (4.24). Fig. 4.4 shows plots of the probabil-
ity of detection, , versus the single pulse SNR, with the  as a parameter.
This figure can be reproduced using the MATLAB program “prob_snr1.m”
given in Listing 4.3 in Section 4.10. This program uses the function “mar-
cumsq.m”. 

Example 4.1: A pulsed radar has the following specification: time of false
alarm  minutes; probability of detection  and band-
width . Find the radar integration time , the probability of
false alarm , and the SNR of a single pulse.

Solution: 

and from Table 4.1 or from Fig. 4.4, we read

 .

4.4. Pulse Integration

When a target is illuminated by the radar beam it normally reflects numerous
pulses. The radar probability of detection is normally enhanced by summing all
(or most) of the returned pulses. The process of adding radar echoes from
many pulses is called radar pulse integration. Pulse integration can be per-
formed on the quadrature components prior to the envelope detector. This is
called coherent integration or pre-detection integration. Coherent integration
preserves the phase relationship between the received pulses, thus a build up in
the signal amplitude is achieved. Alternatively, pulse integration performed
after the envelope detector (where the phase relation is destroyed) is called
non-coherent or post-detection integration. 

4.4.1. Coherent Integration

In coherent integration, if a perfect integrator is used (100% efficiency), then
integrating  pulses would improve the SNR by the same factor. Otherwise,
integration loss occurs which is always the case for non-coherent integration.
In order to demonstrate this signal buildup, consider the case where the radar
return signal contains both signal plus additive noise. The  pulse is

PD Pfa

Tfa 16.67= PD 0.9=
B 1 GHz= tint

Pfa

tint
1
B
--- 1

109
-------- 1nsec= = =

Pfa
1

TfaB
----------- 1

109 16.67 60××
---------------------------------------- 10 12–≈= =

SNR( )1 15.75dB≈

np

m
th
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 (4.34)

where  is the radar return of interest and  is white uncorrelated addi-
tive noise signal. Coherent integration of  pulses yields

(4.35)

The total noise power in  is equal to the variance. More precisely,

1 3 5 7 9 11 13 15 17
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 Figure 4.4. Probability of detection versus single pulse SNR, for several 
values of .Pfa
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 (4.36)

where  is the expected value operator. It follows that

(4.37)

where  is the single pulse noise power and  is equal to zero for 
and unity for . Observation of Eqs. (4.35) and (4.37) shows that the
desired signal power after coherent integration is unchanged, while the noise
power is reduced by the factor . Thus, the SNR after coherent integration
is improved by . 

Denote the single pulse SNR required to produce a given probability of
detection as . Also, denote  as the SNR required to produce
the same probability of detection when  pulses are integrated. It follows that

(4.38)

The requirements of remembering the phase of each transmitted pulse as well
as maintaining coherency during propagation is very costly and challenging to
achieve. In practice, most radar systems utilize non-coherent integration. 

4.4.2. Non-Coherent Integration

Non-coherent integration is often implemented after the envelope detector,
also known as the quadratic detector. A block diagram of radar receiver utiliz-
ing a square law detector and non-coherent integration is illustrated in Fig. 4.5.
In practice, the square law detector is normally used as an approximation to the
optimum receiver.

The pdf for the signal  was derived earlier and it is given in Eq. (4.11).
Define a new dimensionless variable  as

(4.39)

and also define 

(4.40)
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It follows that the pdf for the new variable is then given by

(4.41)

 The output of a square law detector for the  pulse is proportional to the
square of its input, which, after the change of variable in Eq. (4.39), is propor-
tional to . Thus, it is convenient to define a new change variable,

 (4.42)

The pdf for the variable at the output of the square law detector is given by

(4.43)

Non-coherent integration of  pulses is implemented as 

(4.44)

Since the random variables  are independent, the pdf for the variable  is

(4.45)

the operator  symbolically indicates convolution. The characteristic func-
tions for the individual pdfs can then be used to compute the joint pdf in Eq.
(4.45). The details of this development are left as an exercise. The result is 

(4.46)
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and  low  no ise M atched

F ilter
Square  L aw
 D etec to r

Threshold VT

T hresho ld
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x t( )∑A m p.

 Figure 4.5. Simplified block diagram of a square law detector and 
non-coherent integration.

x t( ) z t( )
sin g le  pu lse  

f yn( ) f rn( ) rnd

ynd
------- yn I0 yn ℜp( )

yn
2 ℜp+( )–

2
-------------------------- 
 exp= =

nth

yn

xn
1
2
---yn

2=

f xn( ) f yn( ) ynd

xnd
------- xn

ℜp

2
-------+ 

 – 
 exp I0 2xnℜp( )= =

np

z xn

n 1=

np

∑=

xn z

f z( ) f x1( ) f x2( ) … f xnp
( )•••=

•

f z( ) 2z
npℜp

------------ 
  np 1–( ) 2⁄

z–
1
2
---npℜp– 

 exp Inp 1– 2npzℜp( )=

© 2000 by Chapman & Hall/CRC



where  is the modified Bessel function of order . Therefore, the
probability of detection is obtained by integrating  from the threshold
value to infinity. Alternatively, the probability of false alarm is obtained by let-
ting  be zero and integrating the pdf from the threshold value to infinity.
Closed form solutions to these integrals are not easily available. Therefore,
numerical techniques are often utilized to generate tables for the probability of
detection. 

The non-coherent integration efficiency  is defined as 

(4.47)

The integration improvement factor  for a specific  is defined as the
ratio of  to  

 (4.48)

Note that  corresponds to the SNR needed to produce the same  as
in the case of a single pulse when  pulses are used. It follows that

. 

An empirically derived expression for the improvement factor that is accu-
rate within  is reported in Peebles1 as

 (4.49)

Fig. 4.6 shows plots of the integration improvement factor as a function of the
number of integrated pulses with  and  as parameters, using Eq. (4.49).
This plot can be reproduced using the MATLAB program “fig4_5.m” given in
Listing 4.4 in Section 4.10. 

Example 4.2: Consider the same radar defined in Example 4.1. Assume non-
coherent integration of 10 pulses. Find the reduction in the SNR.

Solution: The integration improvement factor is calculated using the func-
tion “improv_fac.m”. It is , and from Eq. (4.48) we get

1. Peebles Jr., P. Z., Radar Principles, John Wiley & Sons, Inc., 1998.
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Thus, non-coherent integration of 10 pulses where  pro-
vides the same detection performance as  of a single pulse
and no integration.

MATLAB Function “improv_fac.m”

The function “improv_fac.m” calculates the improvement factor using Eq.
(4.49). It is given in Listing 4.5 in Section 4.10. The syntax is as follows:

[impr_of_np] = improv_fac (np, pfa, pd)

where

Symbol Description Units Status

np number of integrated pulses none input

pfa probability of false alarm none input

pd probability of detection none input

impr_of_np improvement factor output dB

SNR( )10 6.55dB=
SNR( )1 15.75dB=

 Figure 4.6. Improvement factor versus number of pulses (non-
coherent integration). These plots were generated using 
the empirical approximation in Eq. (4.49).
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4.5. Detection of Fluctuating Targets 

So far when we addressed the probability of detection, we assumed a con-
stant target cross section (non-fluctuating target). However, when target scintil-
lation is present, the probability of detection decreases, or equivalently the
SNR is reduced. 

4.5.1. Detection Probability Density Function

The probability density functions for fluctuating targets were given in Chap-
ter 2. And for convenience, they are repeated here as Eqs. (4.50) and (4.51):

(4.50)

for Swerling I and II type targets, and

(4.51)

for Swerling III and IV type targets, where  denotes the average RCS over
all target fluctuations. 

The probability of detection for a scintillating target is computed in a similar
fashion to Eq. (4.22), except in this case  is replaced by the conditional pdf

. Performing the analysis for the general case (i.e., using Eq. (4.46))
yields 

(4.52)

To obtain  use the relations

(4.53)

(4.54)

Finally, using Eq. (4.54) in Eq. (4.53) produces

(4.55)

where  is defined in Eq. (4.52) and  is in either Eq. (4.50) or
(4.51). The probability of detection is obtained by integrating the pdf derived
from Eq. (4.55) from the threshold value to infinity. Performing the integration
in Eq. (4.55) leads to the incomplete Gamma function.
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4.5.2. Threshold Selection

In practice, the detection threshold, , is found from the probability of
false alarm . DiFranco and Rubin1 give a general form relating the thresh-
old and  for any number of pulses and non-coherent integration,

(4.56)

where  is used to denote the incomplete Gamma function, and it is given by

(4.57)

For our purposes, the incomplete Gamma function can be approximated by

(4.58)

The threshold value  can then be approximated by the recursive formula
used in the Newton-Raphson method. More precisely,

(4.59)

The iteration is terminated when . The
functions  and  are 

(4.60)

(4.61)

The initial value for the recursion is

(4.62)

1. DiFranco, J. V. and Rubin, W. L., Radar Detection. Artech House, 1980.

VT
Pfa

Pfa

Pfa 1 ΓI

VT

np

--------- np 1–,
 
 
 

–=

ΓI

ΓI

VT

np

--------- np 1–,
 
 
  e

γ– γ
np 1– 1–

np 1– 1–( )!
------------------------------ γd

0

VT np⁄

∫=

ΓI

VT

np

--------- np 1–,
 
 
 

1
VT

np 1–
e

VT–

np 1–( )!
--------------------------- 1

np 1–

VT

--------------
nP 1–( ) np 2–( )

VT
2

---------------------------------------

…
np 1–( )!

VT
np 1–

---------------------

+ + +

+

–=

VT

VT m, VT m 1–,
G VT m 1–,( )
G′ VT m 1–,( )
-----------------------------–= m; 1 2 3 …, , ,=

VT m, VT m 1–,– VT m 1–, 10000.0⁄<
G G′

G VT m,( ) 0.5( )
nP nfa⁄

ΓI VT np,( )–=

G′ VT m,( ) –
e

VT–
VT

np 1–

np 1–( )!
---------------------------=

VT 0, np np– 2.3 Pfalog– Pfalog– np 1–+( )+=

© 2000 by Chapman & Hall/CRC



MATLAB Function “incomplete_gamma.m”

In general, the incomplete Gamma function for some integer  is

(4.63)

The function “incomplete_gamma.m” implements Eq. (4.63). It is given in
Listing 4.6 in Section 4.10. The syntax for this function is as follows:

[value] = incomplete_gamma ( x, N)

where 

Fig. 4.7 shows the incomplete Gamma function for . Note that
the limiting values for the incomplete Gamma function are

(4.64)

Symbol Description Units Status

x variable input to units of x input

N variable input to none / integer input

value none output

N

ΓI x N,( ) e v–
vN 1–

N 1–( )!
---------------------- vd

0

x

∫=

ΓI x N,( )

ΓI x N,( )

ΓI x N,( )

N 1 3 10, ,=

ΓI 0 N,( ) 0= ΓI ∞ N,( ) 1=

 Figure 4.7. The incomplete Gamma function for four values of N.
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MATLAB Function “threshold.m”

The function “threshold.m” calculates the threshold using the recursive for-
mula used in the Newton-Raphson method. It is given in Listing 4.7 in Section
4.10. The syntax is as follows:

[pfa, vt] = threshold ( nfa, np)

where

Fig. 4.8 shows plots for the threshold value versus the number of integrated
pulses for several values of ; remember that .

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

pfa probability of false alarm none output

vt threshold value none output

nfa Pfa 2( )ln np nfa⁄( )≈

 Figure 4.8. Threshold  versus  for several values of .VT np nfa
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4.6. Probability of Detection Calculation

Denote the range at which the single pulse SNR is unity (0 dB) as , and
refer to it as the reference range. Then, for a specific radar, the single pulse
SNR at  is defined by the radar equation and is given by

(4.65)

The single pulse SNR at any range  is 

(4.66)

Dividing Eq. (4.66) by Eq. (4.65) yields

(4.67)

Therefore, if the range  is known then the SNR at any other range  is 

(4.68)

Also, define the range  as the range at which the probability of detection is
. Normally, the radar unambiguous range  is set equal to

.

4.6.1. Detection of Swerling V Targets

 Marcum defined the probability of false alarm for the case when  as 

(4.69)

The single pulse probability of detection for non-fluctuating targets is given in
Eq. (4.23). When , the probability of detection is computed using the
Gram-Charlier series. In this case, the probability of detection is 

(4.70)
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where the constants , , and  are the Gram-Charlier series coefficients,
and the variable  is 

(4.71)

In general, values for , , , and  vary depending on the target fluctu-
ation type. In the case of Swerling V targets, they are

(4.72)

(4.73)

(4.74)

(4.75)

MATLAB Function “pd_swerling5.m”

The function “pd_swerling5.m” calculates the probability of detection for
Swerling V targets using Eq. (4.70). It is given in Listing 4.8 in Section 4.10.
The syntax is as follows:

[pd] = pd_swerling5 (input1, indicator, np, snr)

where

Fig. 4.9 shows a plot for the probability of detection versus SNR for cases
. Note that it requires less SNR, with ten pulses integrated non-

coherently, to achieve the same probability of detection as in the case of a sin-
gle pulse. Hence, for any given  the SNR improvement can be read from
the plot. Equivalently, using the function “improv_fac.m” leads to about the
same result. For example, when  the function “improv_fac.m” gives

Symbol Description Units Status

input1 Pfa , or nfa none input

indicator 1 when input1 = Pfa

2 when input1 = nfa

none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

C3 C4 C6
V

V
VT np 1 SNR+( )–

ϖ
-------------------------------------------=

C3 C4 C6 ϖ

C3
SNR 1 3⁄+

np 2SNR 1+( )1.5
--------------------------------------------–=

C4
SNR 1 4⁄+

np 2SNR 1+( )2
-------------------------------------=

C6 C3
2 2⁄=

ϖ np 2SNR 1+( )=

SNR

np 1 10,=
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an SNR improvement factor of . Observation of Fig. 4.9 shows
that the ten pulse SNR is about . Therefore, the single pulse SNR is
about (from Eq. (4.48)) , which can be read from the figure. This fig-
ure can be reproduced using MATLAB program “fig4_9.m”, which is part of
the companion software of this book.

4.6.2. Detection of Swerling I Targets

The exact formula for the probability of detection for Swerling I type targets
was derived by Swerling. It is

(4.76)

(4.77)
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14.5dB

 Figure 4.9. Probability of detection versus SNR, , and 
non-coherent integration.
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MATLAB Function “pd_swerling1.m”

The function “pd_swerling1.m” calculates the probability of detection for
Swerling I type targets. It is given in Listing 4.9 in Section 4.10. The syntax is
as follows:

[pd] = pd_swerling1 (nfa, np, snr)

where

Fig. 4.10 shows a plot of the probability of detection as a function of SNR
for  and  for both Swerling I and V type fluctuating. Note
that it requires more SNR, with fluctuation, to achieve the same  as in the
case with no fluctuation. Fig. 4.11a shows a plot of the probability of detection
versus SNR for , where . Fig. 4.11b is similar
to Fig. 4.11a; in this case . 

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

SNR

np 1= Pfa 10 9–=
PD

np 1 10 50 100, , ,= Pfa 10 6–=
Pfa 10 12–=

 Figure 4.10. Probability of detection versus SNR, single pulse. .Pfa 10 9–=
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 Figure 4.11a. Probability of detection versus SNR. Swerling I. .Pfa 10 6–=
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 Figure 4.11b. Probability of detection versus SNR. Swerling I. .Pfa 10 12–=
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4.6.3. Detection of Swerling II Targets

In the case of Swerling II targets, the probability of detection is given by

(4.78)

For the case when  Eq. (4.70) is used to compute the probability of
detection. In this case,

(4.79)

(4.80)

(4.81)

MATLAB Function “pd_swerling2.m”

The function “pd_swerling2.m” calculates  for Swerling II type targets.
It is given in Listing 4.10 in Section 4.10. The syntax is as follows:

[pd] = pd_swerling2 (nfa, np, snr)

where

Fig. 4.12 shows a plot of the probability of detection as a function of SNR
for , where . 

4.6.4. Detection of Swerling III Targets

The exact formula, developed by Marcum, for the probability of detection
for Swerling III type targets when is

(4.82)

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output
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For  the expression is

(4.83)

MATLAB Function “pd_swerling3.m”

The function “pd_swerling3.m” calculates  for Swerling II type targets.
It is given in Listing 4.11 in Section 4.10. The syntax is as follows:

[pd] = pd_swerling3 (nfa, np, snr)

where

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

 Figure 4.12. Probability of detection versus SNR. Swerling II. .Pfa 10 9–=
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Fig. 4.13 shows a plot of the probability of detection as a function of SNR
for , where .

4.6.5. Detection of Swerling IV Targets

The expression for the probability of detection for Swerling IV targets for
 is 

(4.84)

where

 (4.85)

By using the recursive formula

(4.86)

then only  needs to be calculated using Eq. (4.85) and the rest of  are cal-
culated from the following recursion:

 Figure 4.13. Probability of detection versus SNR. Swerling III. .Pfa 10 9–=
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(4.87)

(4.88)

(4.89)

(4.90)

For the case when , the Gram-Charlier series and Eq. (4.70) can be
used to calculate the probability of detection. In this case,

(4.91)

(4.92)

(4.93)

(4.94)

MATLAB Function “pd_swerling4.m”

The function “pd_swerling4.m” calculates  for Swerling II type targets.
It is given in Listing 4.12 in Section 4.10. The syntax is as follows:

[pd] = pd_swerling4 (nfa, np, snr)

where

Fig. 4.14 shows a plot of the probability of detection as a function of SNR
for , where .

Symbol Description Units Status

nfa Marcum’s false alarm number none input

np number of integrated pulses none input

snr dB input

pd probability of detection none output

γi γi 1– Ai–= i 0>;

Ai

VT 1 SNR( ) 2⁄+( )⁄
np i 1–+

----------------------------------------------- Ai 1–= i 1>;

A1

VT 1 SNR( ) 2⁄+( )⁄( )
np

np! VT 1 SNR( ) 2⁄+( )⁄( )exp
---------------------------------------------------------------------=

γ0 ΓI

VT

1 SNR( ) 2⁄+( )
------------------------------------- np, 
 =

np 50≥

C3
1

3 np

------------ 2β3 1–

2β2 1–( )
1.5

----------------------------= C6

C3
2

2
------=;

C4
1

4np

-------- 2β4 1–

2β2 1–( )
2

-------------------------=

ϖ np 2β2 1–( )=

β 1 SNR
2

-----------+=

PD

SNR

np 1 10 50 100, , ,= Pfa 10 9–=

© 2000 by Chapman & Hall/CRC



4.7.  Cumulative Probability of Detection

The cumulative probability of detection refers to detecting the target at least
once by the time it is range . More precisely, consider a target closing on a
scanning radar, where the target is illuminated only during a scan (frame). As
the target gets closer to the radar, its probability of detection increases since the
SNR is also increased. Suppose that the probability of detection during the 
frame is ; then, the cumulative probability of detecting the target at least
once during the  frame (see Fig. 4.15) is given by

(4.95)

 is usually selected to be very small. Clearly, the probability of not detect-
ing the target during the  frame is . The probability of detection for
the  frame, , is computed as discussed in the previous section.

Example 4.3: A radar detects a closing target at , with probability
of detection equal to . Assume . Compute and sketch the single
look probability of detection as a function of normalized range (with respect to

 Figure 4.14. Probability of detection versus SNR. Swerling IV. .Pfa 10 9–=
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), over the interval . If the range between two succes-
sive frames is , what is the cumulative probability of detection at

?

Solution: From the function “marcumsq.m” or from Table 4.1 the SNR cor-
responding to  and  is approximately 12dB. By using a
similar analysis to that which led to Eq. (4.68), we can express the SNR at any
range  as

Then with the help of the function “marcumsq.m” we can construct the follow-
ing table:

 

R Km (SNR) dB

2 39.09 0.999

4 27.9 0.999

6 20.9 0.999

8 15.9 0.999

9 13.8 0.9

10 12.0 0.5

11 10.3 0.25

12 8.8 0.07

14 6.1 0.01

16 3.8

20 0.01

R 10Km= 2 20–( )Km
1Km

R 8Km=

F igure 4.15 . D etecting  a  target in  m any fram es.

…

fram e 1nth  fram e
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SNR( )R SNR( )10 40
10
R
------log+ 52 40 Rlog–= =
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where  is very small. Below is a sketch of  versus normalized range.

The cumulative probability of detection is given in Eq. (4.95), where the
probability of detection of the first frame is selected to be very small. Thus, we
can arbitrarily choose frame 1 to be at . Note that selecting a dif-
ferent starting point for frame 1 would have a negligible effect on the cumula-
tive probability (we only need  to be very small). Below is a range listing
for frames 1 through 9, where frame 9 corresponds to . 

The cumulative probability of detection at 8 Km is then

4.8.  Solving the Radar Equation

The radar equation was developed in Chapter 1. It is given by

(4.96)

where  is peak transmitted power,  is pulse width,  is PRF,  is dwell
interval,  is transmitting antenna gain,  is receiving antenna gain,  is
wavelength,  is target cross section,  is Boltzman’s constant,  is effective
noise temperature,  is system noise figure,  is total system losses, and

 is the minimum SNR required for detection.
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Assuming that the radar parameters such as power, antenna gain, wave-
length, losses, bandwidth, effective temperature, and noise figure are known,
the steps one should follow to solve for range are shown in Fig. 4.16. Note that
both sides of the bottom half of Fig. 4.16 are identical. Nevertheless, we pur-
posely show two paths so that a distinction between scintillating and non-fluc-
tuating targets is made.

com pute  the  p rob ability
pfaof fa lse  a larm  

find  the  s in g le  pu lse  S N R

using  E q . (4 .24)

is  R C S
 co nstan t

co m p u te  ad d itio n a l S N R  d u e  to  
sc in tilla tio n . U se  F ig . 4 .1 0  o r

is n p= 1
y es

no

coh eren t
in tegra tio n

y es n o

com p ute

fac tor I(n p )
 im provem en t

is n p= 1
yes

n o

coh eren t
in tegra tion

yesno

com p uteco m pu te

fac to r I(n p)
 im provem en t

y es no

so lve  th e  radar eq uation

SNR( )np

SNR( )1
np

-------------------=

com p ute

SNR( )np

SNR( )1
np

-------------------=

eq u iv a len t fo r  o th e r  S w e rlin g s

Figure 4.16. Solving the radar equation.
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4.9. Constant False Alarm Rate (CFAR)

The detection threshold is computed so that the radar receiver maintains a
constant pre-determined probability of false alarm. Eq. (4.19b) gives the rela-
tionship between the threshold value  and the probability of false alarm

, and for convenience is repeated here as Eq. (4.97):

(4.97)

If the noise power  is assumed to be constant, then a fixed threshold can sat-
isfy Eq. (4.97). However, due to many reasons this condition is rarely true.
Thus, in order to maintain a constant probability of false alarm the threshold
value must be continuously updated based on the estimates of the noise vari-
ance. The process of continuously changing the threshold value to maintain a
constant probability of false alarm is known as Constant False Alarm Rate
(CFAR). 

Three different types of CFAR processors are primarily used. They are adap-
tive threshold CFAR, nonparametric CFAR, and nonlinear receiver techniques.
Adaptive CFAR assumes that the interference distribution is known and
approximates the unknown parameters associated with these distributions.
Nonparametric CFAR processors tend to accommodate unknown interference
distributions. Nonlinear receiver techniques attempt to normalize the root
mean square amplitude of the interference.

In this book only analog Cell-Averaging CFAR (CA-CFAR) technique is
examined. The analysis presented in this section closely follows Urkowitz1.

4.9.1. Cell-Averaging CFAR (Single Pulse)

The CA-CFAR processor is shown in Fig. 4.17. Cell averaging is performed
on a series of range and/or Doppler bins (cells). The echo return for each pulse
is detected by a square law detector. In analog implementation these cells are
obtained from a tapped delay line. The Cell Under Test (CUT) is the central
cell. The immediate neighbors of the CUT are excluded from the averaging
process due to possible spillover from the CUT. The output of  reference
cells (  on each side of the CUT) is averaged. The threshold value is
obtained by multiplying the averaged estimate from all reference cells by a
constant  (used for scaling). A detection is declared in the CUT if

(4.98)

1. Urkowitz, H., Decision and Detection Theory, unpublished lecture notes. Lockheed 
Martin Co., Moorestown, NJ.
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Cell-averaging CFAR assumes that the target of interest is in the CUT and all
reference cells contain zero mean independent Gaussian noise of variance .
Therefore, the output of the reference cells, , represents a random variable
with gamma probability density function (special case of the Chi-square) with

 degrees of freedom. In this case, the gamma pdf is 

(4.99)

 The probability of false alarm corresponding to a fixed threshold was
derived earlier. When CA-CFAR is implemented, then the probability of false
alarm can be derived from the conditional false alarm probability, which is
averaged over all possible values of the threshold in order to achieve an uncon-
ditional false alarm probability. The conditional probability of false alarm
when  can be written as 

(4.100)

It follows that the unconditional probability of false alarm is

(4.101)
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 Figure 4.17. Conventional CA-CFAR.
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where  is the pdf of the threshold, which except for the constant  is the
same as that defined in Eq. (4.99). Therefore,

(4.102)

Substituting Eqs. (4.102) and (4.100) into Eq. (4.101) yields   

(4.103)

Observation of Eq. (4.103) shows that the probability of false alarm is now
independent of the noise power, which is the objective of CFAR processing.

4.9.2. Cell-Averaging CFAR with Non-Coherent Integration

In practice, CFAR averaging is often implemented after non-coherent inte-
gration, as illustrated in Fig. 4.18. Now, the output of each reference cell is the
sum of  squared envelopes. It follows that the total number of summed ref-
erence samples is . The output  is also the sum of  squared enve-
lopes. When noise alone is present in the CUT,  is random variable whose
pdf is a gamma distribution with  degrees of freedom. Additionally, the
summed output of the reference cells is the sum of  squared envelopes.
Thus,  is also a random variable who has a gamma pdf with  degrees of
freedom.

The probability of false alarm is then equal to the probability that the ratio
 exceeds the threshold. More precisely,

(4.104)

Eq. (4.104) implies that one must first find the joint pdf for the ratio .
However, this can be avoided if  is first computed for a fixed threshold
value , then averaged over all possible value of the threshold. Therefore, let
the conditional probability of false when  be . It follows
that the unconditional false alarm probability is given by

(4.105)

where  is the pdf of the threshold. In view of this, the probability density
function describing the random variable  is given by

(4.106)
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It can be shown (see problems) that in this case the probability of false alarm
is independent of the noise power and is given by

(4.107)

which is identical to Eq. (4.103) when  and . 

4.10. MATLAB Function and Program Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters. All functions have companion MATLAB “filename_driver.m”
files that  utilize MATLAB Graphical User Interface (GUI). 

Listing 4.1. MATLAB Function “que_func.m”
function fofx = que_func(x)
% This function computes the value of the Q-function
% listed in Eq.(4.16). It uses the approximation in Eq.s (4.17) and (4.18)
if (x >= 0) 
denom = 0.661 * x + 0.339 * sqrt(x^2 + 5.51);
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 Figure 4.18. Conventional CA-CFAR with non-coherent integration. 
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   expo = exp(-x^2 /2.0);
   fofx = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
else
   denom = 0.661 * x + 0.339 * sqrt(x^2 + 5.51);
   expo = exp(-x^2 /2.0);
   value = 1.0 - (1.0 / sqrt(2.0 * pi)) * (1.0 / denom) * expo;
   fofx = 1.0 - value;
end

Listing 4.2. MATLAB Function “marcumsq.m”
function PD = marcumsq (a,b)
% This function uses Parl's method to compute PD 
max_test_value = 1000.; % increase to more than 1000 for better results
if (a < b)
   alphan0 = 1.0;
   dn = a / b;
else
   alphan0 = 0.;
   dn = b / a;
end
alphan_1 = 0.;
betan0 = 0.5;
betan_1 = 0.;
d1 = dn;
n = 0;
ratio = 2.0 / (a * b);
r1 = 0.0;
betan = 0.0;
alphan = 0.0;
while betan < max_test_value,
   n = n + 1;
   alphan = dn + ratio * n * alphan0 + alphan;
   betan = 1.0 + ratio * n * betan0 + betan;
   alphan_1 = alphan0;
   alphan0 = alphan;
   betan_1 = betan0;
   betan0 = betan;
   dn = dn * D1;
end
PD = (alphan0 / (2.0 * betan0)) * exp( -(a-b)^2 / 2.0);
if ( a >= b)
   PD = 1.0 - PD;
end
return
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Listing 4.3. MATLAB Program “prob_snr1.m”
% This program is used to produce Fig. 4.3
clear all
for nfa = 2:2:12
   b = sqrt(-2.0 * log(10^(-nfa)));
   index = 0;
   hold on
   for snr = 0:.1:18
      index = index +1;
      a = sqrt(2.0 * 10^(.1*snr));
      pro(index) = marcumsq(a,b);
   end
   x = 0:.1:18;
   set(gca,'ytick',[.1 .2 .3 .4 .5 .6  .7 .75 .8 .85 .9 .95 .9999])
   set(gca,'xtick',[1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18])

   loglog(x, pro,'k');
end
hold off
xlabel ('Single pulse SNR - dB')
ylabel ('Probability of detection')
grid

Listing 4.4. MATLAB Program “fig4_5.m”
% This program is used to produce Fig. 4.5
% It uses the function "improv_fac"
pfa1 = 1.0e-2;
pfa2 = 1.0e-6;
pfa3 = 1.0e-10;
pfa4 = 1.0e-13;
pd1 = .5;
pd2 = .8;
pd3 = .95;
pd4 = .999;
index = 0;
for np = 1:1:100
   index = index + 1;
   I1(index) = improv_fac (np, pfa1, pd1);
   I2(index) = improv_fac (np, pfa2, pd2);
   I3(index) = improv_fac (np, pfa3, pd3);
   I4(index) = improv_fac (np, pfa4, pd4);
end
np = 1:1:100;
semilogx (np, I1, 'k', np, I2, 'k--', np, I3, 'k-.', np, I4, 'k:')
set (gca,'xtick',[1 2 3 4 5 6 7 8  10 20 30  50 70 100]);
xlabel ('Number of pulses');
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ylabel ('Improvement factor I - dB')
legend ('pd=.5, nfa=2','pd=.8, nfa=6','pd=.95, nfa=10','pd=.999, nfa=13');

Listing 4.5. MATLAB Function “improv_fac.m”
function impr_of_np = improv_fac (np, pfa, pd)
% This function computes the non-coherent integration improvement
% factor using the empirical formula defined in Eq. (4.49)
fact1 = 1.0 + log10( 1.0 / pfa) / 46.6;
fact2 = 6.79 * (1.0 + 0.253 * pd);
fact3 = 1.0 - 0.14 * log10(np) + 0.0183 * (log10(np)^2);
impr_of_np = fact1 * fact2 * fact3 * log10(np);
return

Listing 4.6. MATLAB Function “incomplete_gamma.m”
function [value] = incomplete_gamma ( vt, np)
% This function implements Eq. (4.63) to compute the Incomplete Gamma Function
format long
eps = 1.000000001;
% Test to see if np = 1
if (np == 1)
   value1 = vt * exp(-vt);
   value = 1.0 - exp(-vt);
   return
end
sumold = 1.0;
sumnew =1.0;
calc1 = 1.0;
calc2 = np;
xx = np * log(vt) - vt - factor(calc2);
temp1 = exp(xx);
temp2 = np / vt;
diff = .0;
ratio = 1000.0;
if (vt >= np)
   while (ratio >= eps)
      diff = diff + 1.0;
      calc1 = calc1 * (calc2 - diff) / vt ;
      sumnew = sumold + calc1;
      ratio = sumnew / sumold;
      sumold = sumnew;
   end
   value = 1.0 - temp1 * sumnew * temp2; 
   return  
else
   diff = 0.;
   sumold = 1.;
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   ratio = 1000.;
   calc1 = 1.;
   while(ratio >= eps)
      diff = diff + 1.0;
      calc1 = calc1 * vt / (calc2 + diff);
      sumnew = sumold + calc1;
      ratio = sumnew / sumold;
      sumold = sumnew;
   end
   value = temp1 * sumnew;
end

Listing 4.7. MATLAB Function “threshold.m”
function [pfa, vt] = threshold (nfa, np)
% This function calculates the threshold value from nfa and np.
% The newton-Raphson recursive formula is used (Eq. (4.59)
% This function uses "incomplete_gamma.m".
delmax = .00001;
eps = 0.000000001;
delta =10000.;
pfa = np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / deno);
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end

Listing 4.8. MATLAB Function “pd_swerling5.m”
function pd = pd_swerling5 (input1, indicator, np, snrbar)
% This function is used to calculate the probability of 
% for Swerling 5 or 0 targets for np>1.
if(np == 1)
   'Stop, np must be greater than 1'
   return
end
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
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delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
if (indicator ~=1)
   nfa = input1;
   pfa =  np * log(2) / nfa;
else
   pfa = input1;
   nfa = np * log(2) / pfa;
end
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
% Calculate the Gram-Chrlier coefficients
temp1 = 2.0 * snrbar + 1.0;
omegabar = sqrt(np * temp1);
c3 = -(snrbar + 1.0 / 3.0) / (sqrt(np) * temp1^1.5);
c4 = (snrbar + 0.25) / (np * temp1^2.);
c6 = c3 * c3 /2.0;
V = (vt - np * (1.0 + 2.*snrbar)) / omegabar;
Vsqr = V *V;
val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
val2 = c3 * (V^2 -1.0) + c4 * V * (3.0 - V^2) -...
   c6 * V * (V^4 - 10. * V^2 + 15.0);
q = 0.5 * erfc (V/sqrt(2.0));
pd =  q - val1 * val2;

Listing 4.9. MATLAB Function “pd_swerling1.m”
function pd = pd_swerling1 (nfa, np, snrbar)
% This function is used to calculate the probability of 
% for Swerling 1 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
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pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
if (np == 1)
   temp = -vt / (1.0 + snrbar);
   pd = exp(temp);
   return
end
   temp1 = 1.0 + np * snrbar;
   temp2 = 1.0 / (np *snrbar);
   temp = 1.0 + temp2;
   val1 = temp^(np-1.);
   igf1 = incomplete_gamma(vt,np-1);
   igf2 = incomplete_gamma(vt/temp,np-1);
   pd = 1.0 - igf1 + val1 * igf2 * exp(-vt/temp1);

Listing 4.10. MATLAB Function “pd_swerling2.m”
function pd = pd_swerling2 (nfa, np, snrbar)
% This function is used to calculate the probability of 
% for Swerling 2 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
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   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
if (np <= 50)
   temp = vt / (1.0 + snrbar);
   pd = 1.0 - incomplete_gamma(temp,np);
   return
else
   temp1 = snrbar + 1.0;
   omegabar = sqrt(np) * temp1;
   c3 = -1.0 / sqrt(9.0 * np);
   c4 = 0.25 / np;
   c6 = c3 * c3 /2.0;
   V = (vt - np * temp1) / omegabar;
   Vsqr = V *V;
   val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
   val2 = c3 * (V^2 -1.0) + c4 * V * (3.0 - V^2) - ... 
      c6 * V * (V^4 - 10. * V^2 + 15.0);
   q = 0.5 * erfc (V/sqrt(2.0));
   pd =  q - val1 * val2;
end

Listing 4.11. MATLAB Function “pd_swerling3.m”
function pd = pd_swerling3 (nfa, np, snrbar)
% This function is used to calculate the probability of 
% for Swerling 2 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
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temp1 = vt / (1.0 + 0.5 * np *snrbar);
temp2 = 1.0 + 2.0 / (np * snrbar);
temp3 = 2.0 * (np - 2.0) / (np * snrbar);
ko = exp(-temp1) * temp2^(np-2.) * (1.0 + temp1 - temp3);
if (np <= 2)
   pd = ko;
   return
else
   temp4 = vt^(np-1.) * exp(-vt) / (temp1 * exp(factor(np-2.)));
   temp5 =  vt / (1.0 + 2.0 / (np *snrbar));
   pd = temp4 + 1.0 - incomplete_gamma(vt,np-1.) + ko * ...
      incomplete_gamma(temp5,np-1.);
end

Listing 4.12. MATLAB Function “pd_swerling4.m”
function pd = pd_swerling4 (nfa, np, snrbar)
% This function is used to calculate the probability of 
% for Swerling 2 targets.
format long
snrbar = 10.0^(snrbar/10.);
eps = 0.00000001;
delmax = .00001;
delta =10000.;
% Calculate the threshold Vt
pfa =  np * log(2) / nfa;
sqrtpfa = sqrt(-log10(pfa));
sqrtnp = sqrt(np); 
vt0 = np - sqrtnp + 2.3 * sqrtpfa * (sqrtpfa + sqrtnp - 1.0);
vt = vt0;
while (abs(delta) >= vt0)
   igf = incomplete_gamma(vt0,np);
   num = 0.5^(np/nfa) - igf;
   temp = (np-1) * log(vt0+eps) - vt0 - factor(np-1);
   deno = exp(temp);
   vt = vt0 + (num / (deno+eps));
   delta = abs(vt - vt0) * 10000.0; 
   vt0 = vt;
end
h8 = snrbar /2.0;
beta = 1.0 + h8;
beta2 = 2.0 * beta^2 - 1.0;
beta3 = 2.0 * beta^3;
if (np >= 50)
   temp1 = 2.0 * beta -1;
   omegabar = sqrt(np * temp1);
   c3 = (beta3 - 1.) / 3.0 / beta2 / omegabar;
   c4 = (beta3 * beta3 - 1.0) / 4. / np /beta2 /beta2;;
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   c6 = c3 * c3 /2.0;
   V = (vt - np * (1.0 + snrbar)) / omegabar;
   Vsqr = V *V;
   val1 = exp(-Vsqr / 2.0) / sqrt( 2.0 * pi);
   val2 = c3 * (V^2 -1.0) + c4 * V * (3.0 - V^2) - ... 
      c6 * V * (V^4 - 10. * V^2 + 15.0);
   q = 0.5 * erfc (V/sqrt(2.0));
   pd =  q - val1 * val2;
   return
else
   snr = 1.0;
   gamma0 = incomplete_gamma(vt/beta,np);
   a1 = (vt / beta)^np / (exp(factor(np)) * exp(vt/beta));
   sum = gamma0;
   for i = 1:1:np
      temp1 = 1;
      if (i == 1)
         ai = a1;
      else
         ai = (vt / beta) * a1 / (np + i -1);
      end
      a1 = ai;
      gammai = gamma0 - ai;
      gamma0 = gammai;
      a1 = ai;

      for ii = 1:1:i
         temp1 = temp1 * (np + 1 - ii);
      end
      term = (snrbar /2.0)^i * gammai * temp1 / exp(factor(i));
      sum = sum + term;
   end
   pd = 1.0 - sum / beta^np;
end
pd = max(pd,0.);

 Problems

4.1. In the case of noise alone, the quadrature components of a radar return

are independent Gaussian random variables with zero mean and variance .
Assume that the radar processing consists of envelope detection followed by
threshold decision. (a) Write an expression for the pdf of the envelope; (b)
determine the threshold  as a function of  that ensures a probability of

false alarm .

ψ2

VT ψ

Pfa 10 8–≤
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4.2. (a) Derive Eq. (4.13); (b) derive Eq. (4.15).
4.3. A pulsed radar has the following specifications: time of false alarm

, probability of detection , operating bandwidth

. (a) What is the probability of false alarm ? (b) What is the

single pulse SNR? (c) Assuming non-coherent integration of 100 pulses, what

is the SNR reduction so that  and  remain unchanged?

4.4. An L-band radar has the following specifications: operating frequency
, operating bandwidth , noise figure ,

system losses , time of false alarm , detection

range , probability of detection , antenna gain

, and target RCS . (a) Determine the PRF , the pulse

width , the peak power , the probability of false alarm , and the mini-

mum detectable signal level . (b) How can you reduce the transmitter

power to achieve the same performance when 10 pulses are integrated non-
coherently? (c) If the radar operates at a shorter range in the single pulse mode,
find the new probability of detection when the range decreases to .

4.5. (a) Show how you can use the radar equation to determine the PRF ,

the pulse width , the peak power , the probability of false alarm , and

the minimum detectable signal level . Assume the following specifica-

tions: operating frequency , operating bandwidth ,

noise figure , system losses , time of false alarm

, detection range , probability of detection

 (three pulses). (b) If post detection integration is assumed, deter-

mine the SNR.
4.6. Show that when computing the probability of detection at the output of
an envelope detector, it is possible to use Gaussian probability approximation
when the SNR is very large.
4.7. A radar system uses a threshold detection criterion. The probability of

false alarm . (a) What must be the average SNR at the input of a

linear detector so that the probability of miss is ? Assume large

SNR approximation (see Problem 4.6). (b) Write an expression for the pdf at
the output of the envelope detector. 

Tfa 10 minutes= PD 0.95=

B 1MHz= Pfa

PD Pfa

f0 1.5GHz= B 2MHz= F 8dB=

L 4dB= Tfa 12 minutes=

R 12Km= PD 0.5=

G 5000= σ 1m
2= fr

τ Pt Pfa

Smin

9Km

fr

τ Pt Pfa

Smin

f0 1.5MHz= B 1MHz=

F 10dB= L 5dB=

Tfa 20 minutes= R 12Km=

PD 0.5=

Pfa 10 10–=

Pm 0.15=
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4.8. An X-band radar has the following specifications: received peak power

, probability of detection , time of false alarm

, pulse width , operating bandwidth ,

operating frequency , and detection range . Assume

single pulse processing. (a) Compute the probability of false alarm . (b)

Determine the SNR at the output of the IF amplifier. (c) At what SNR would
the probability of detection drop to  (  does not change)? (d) What is the

increase in range that corresponds to this drop in the probability of detection?
4.9. A certain radar utilizes 10 pulses for non-coherent integration. The sin-
gle pulse SNR is  and the probability of miss is . (a) Com-

pute the probability of false alarm . (b) Find the threshold voltage .

4.10. Consider a scanning low PRF radar. The antenna half-power beam
width is , and the antenna scan rate is  per second. The pulse width is

, and the PRF is . (a) Compute the radar operating band-

width. (b) Calculate the number of returned pulses from each target illumina-
tion. (c) Compute the SNR improvement due to post-detection integration
(assume 100% efficiency). (d) Find the number of false alarms per minute for a

probability of false alarm .

4.11. Using the equation 

 

calculate  when  and . Perform the integration
numerically.

4.12. Repeat Example 4.3 with  and .

4.13. Derive Eq. (4.107).
4.14. Write a MATLAB program to compute the CA-CFAR threshold
value. Use similar approach to that used in the case of a fixed threshold.
4.15. A certain radar has the following specifications: single pulse SNR
corresponding to a reference range  is . The probability of

detection at this range is . Assume a Swerling I type target. Use the

radar equation to compute the required pulse widths at ranges
 so that the probability of detection is main-

tained. 

10 10–
W PD 0.95=

Tfa 8 minutes= τ 2µs= B 2MHz=

f0 10GHz= R 100Km=

Pfa

0.9 Pfa

15dB Pm 0.15=

Pfa VT

1.5° 35°
τ 2µs= fr 400Hz=

Pfa 10 6–=

PD 1 e
SNR–

I0 4SNR uln–( ) ud

Pfa

1

∫–=

PD SNR 10dB= Pfa 0.01=

PD 0.8= Pfa 10 5–=

R0 200Km= 10dB

PD 0.95=

R 220Km 250Km 175Km, ,=
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4.16. Repeat Problem 4.15 for swerling IV type target.
4.17. Utilizing the MATLAB functions presented in this chapter, plot the
actual value for the improvement factor versus the number of integrated pulses.
Pick three different values for the probability of false alarm.
4.18. Reproduce Fig. 4.10 for Swerling II, III, and IV type targets.
4.19. Develop a MATLAB program to calculate the cumulative probability
of detection.
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Chapter 5 Radar Waveforms 
Analysis

 Choosing a particular waveform type and a signal processing technique in a
radar system depends heavily on the radar’s specific mission and role. The cost
and complexity associated with a certain type of waveform hardware and soft-
ware implementation constitute a major factor in the decision process. Radar
systems can use Continuous Waveforms (CW) or pulsed waveforms with or
without modulation. Modulation techniques can be either analog or digital.
Range and Doppler resolutions are directly related to the specific waveform
frequency characteristics. Thus, knowledge of the power spectrum density of a
waveform is very critical. In general, signals or waveforms can be analyzed
using time domain or frequency domain techniques. This chapter introduces
many of the most commonly used radar waveforms. Relevant uses of a spe-
cific waveform will be addressed in the context of its time and frequency
domain characteristics. In this book, the terms waveform and signal are being
used interchangeably to mean the same thing.

5.1.  Low Pass, Band Pass Signals and Quadrature
Components

Signals that contain significant frequency composition at a low frequency
band that includes DC are called Low Pass (LP) signals. Signals that have sig-
nificant frequency composition around some frequency away from the origin
are called Band Pass (BP) signals. A real BP signal  can be represented
mathematically by

(5.1)

x t( )

x t( ) r t( ) 2πf0t ψx t( )+( )cos=
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where  is the amplitude modulation or envelope,  is the phase modu-
lation,  is the carrier frequency, and both  and  have frequency
components significantly smaller than . The frequency modulation is

(5.2)

and the instantaneous frequency is

(5.3)

If the signal bandwidth is , and if  is very large compared to , the signal
 is referred to as a narrow band pass signal. 

Band pass signals can also be represented by two low pass signals known as
the quadrature components; in this case Eq. (5.1) can be rewritten as

(5.4)

where  and  are real LP signals referred to as the quadrature compo-
nents and are given, respectively, by

(5.5)

Fig. 5.1 shows how the quadrature components are extracted.

r t( ) ψx t( )
f0 r t( ) ψx t( )

f0

fm t( ) 1
2π
------

td
d ψx t( )=

fi t( ) 1
2π
------

td
d

2πf0t ψx t( )+( ) f0 fm t( )+= =

B f0 B
x t( )

x t( ) xI t( ) 2πf0tcos xQ t( ) 2πf0tsin–=

xI t( ) xQ t( )

xI t( ) r t( ) ψx t( )cos=

xQ t( ) r t( ) ψx t( )sin=

mixer

mixer

LP Filter

LP Filter

2 2πf0tcos

x t( ) xI t( ) 2πf0tcos
xQ t( ) 2πf0tsin–

=

2 2πf0tsin–

xQ t( )

xI t( )

Figure 5.1. Extraction of quadrature components.
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5.2.  CW and Pulsed Waveforms 

The spectrum of a given signal describes the spread of its energy in the fre-
quency domain. An energy signal (finite energy) can be characterized by its
Energy Spectrum Density (ESD) function, while a power signal (finite power)
is characterized by the Power Spectrum Density (PSD) function. The units of
the ESD are Joules per Hertz, while the PSD has units Watts per Hertz.

The signal bandwidth is the range of frequency over which the signal has a
nonzero spectrum. In general, any signal can be defined using its duration
(time domain) and bandwidth (frequency domain). A signal is said to be band-
limited if it has finite bandwidth. Signals that have finite durations (time-lim-
ited) will have infinite bandwidths, while band-limited signals have infinite
durations. The extreme case is being a continuous sine wave, whose bandwidth
is infinitesimal.

A time domain signal  has a Fourier Transform (FT)  given by

(5.6)

where the Inverse FT (IFT) is 

(5.7)

The signal autocorrelation function  is

(5.8)

The asterisk indicates complex conjugate. The signal amplitude spectrum is
. If  were an energy signal, then its ESD is ; and if it were a

power signal, then its PSD is  which is the FT of the autocorrelation
function,

(5.9)

First, consider a CW waveform given by

f t( ) F ω( )

F ω( ) f t( )e jωt–
td

∞–

∞

∫=

f t( ) 1
2π
------ F ω( )ejω t ωd

∞–

∞

∫=

Rf τ( )

Rf τ( ) f∗ t( )f t τ+( ) td

∞–

∞

∫=

F ω( ) f t( ) F ω( ) 2

Sf ω( )

Sf ω( ) Rf τ( )e jωτ– τd

∞–

∞

∫=
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(5.10)

The FT of  is 

(5.11)

where  is the Dirac delta function, and . As indicated by
the amplitude spectrum shown in Fig. 5.2, the signal  has infinitesimal
bandwidth, located at .

Next consider the time domain signal  given by

(5.12)

It follows that the FT is 

(5.13)

where

(5.14)

The amplitude spectrum of  is shown in Fig. 5.3. In this case, the band-
width is infinite. Since infinite bandwidths cannot be physically implemented,
the signal bandwidth is approximated by  radians per second or 
Hertz. In practice, this approximation is widely accepted since it accounts for
most of the signal energy. 

frequ ency

2πf0tcos

∞∞–

f0– f00

F igure 5.2. A m plitude spectrum  for  a  continuous sine  w ave.

f1 t( ) A ω0tcos=

f1 t( )

F1 ω( ) Aπ δ ω ω0–( ) δ ω ω0+( )+[ ]=

δ ⋅( ) ω0 2πf0=
f1 t( )

f0±

f2 t( )

f2 t( ) ARect
t
τ
-- 
  A

τ
2
---– t

τ
2
---≤ ≤

0 otherwise 
 
 
 
 

= =

F2 ω( ) AτSinc
ωτ
2

------- 
 =

Sinc x( ) πx( )sin
πx

-------------------=

f2 t( )

2π τ⁄ 1 τ⁄
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Now consider the coherent gated CW waveform  given by

(5.15)

Clearly  is periodic, where  is the period (recall that  is the
PRF). Using the complex exponential Fourier series we can rewrite  as

(5.16)

where the Fourier series coefficients  are given by

(5.17)

It follows that the FT of  is

(5.18)

frequency

τ

f0 1 τ⁄( )– f0 1 τ⁄( )+

f0

f3 t( )

f3 t( ) f2 t nT–( )

n ∞–=

∞

∑=

f3 t( ) T fr 1 T⁄=
f3 t( )

f3 t( ) Fne

j2πnt
T

--------------

n ∞–=

∞

∑=

Fn

Fn
Aτ
T

------ Sinc
nτπ

T
--------- 
 =

f3 t( )

F3 ω( ) 2π Fnδ ω 2nπfr–( )

n ∞–=

∞

∑=

 Figure 5.3. Amplitude spectrum for a single pulse, or a train of 
non-coherent pulses.
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The amplitude spectrum of  is shown in Fig. 5.4. In this case, the spec-
trum has a  envelope that corresponds to . The spacing between the
spectral lines is equal to the radar PRF, . 

Finally, define the function  as 

(5.19)

Note that  is a limited duration . The FT of  is

(5.20)

where the operator  indicates convolution. The spectrum in this case is
shown in Fig. 5.5. The envelope is still a  which corresponds to the
pulse width. But the spectral lines are replaced by  spectra that corre-
spond to the duration . 

τ

∞∞–

frequency

fr

f0 1 τ⁄( )– f0 1 τ⁄( )+

f0

 Figure 5.4. Amplitude spectrum for a coherent pulse train of infinite length.
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 
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5.3. Linear Frequency Modulation Waveforms

 Frequency or phase modulated waveforms can be used to achieve much
wider operating bandwidths. Linear Frequency Modulation (LFM) is com-
monly used. In this case, the frequency is swept linearly across the pulse width,
either upward (up-chirp) or downward (down-chirp). The matched filter band-
width is proportional to the sweep bandwidth, and is independent of the pulse
width. Fig. 5.6 shows a typical example of an LFM waveform. The pulse width
is , and the bandwidth is .

The LFM up-chirp instantaneous phase can be expressed by

(5.21)

where  is the radar center frequency, and  is the LFM coeffi-
cient. Thus, the instantaneous frequency is 

(5.22)

Similarly, the down-chirp instantaneous phase and frequency are given, respec-
tively, by

 Figure 5.5. Amplitude spectrum for a coherent pulse train of finite length.
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(5.23)

(5.24)

A typical LFM waveform can be expressed in complex notation by 

(5.25)

where  denotes a rectangular pulse of width . Eq. (5.25) can be
written as 

(5.26)

where

(5.27)

is the complex envelope function of .

The spectrum of the signal  is determined from its complex envelope
. The complex exponential term in Eq. (5.26) introduces a frequency shift

about the center frequency . Taking the FT of  yields

tim e
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τ

B f0

(a)

tim e

frequency

τ

B f0

(b)

F igure 5 .6 . Typ ical L F M  w aveform s. (a) up-chirp; (b ) dow n-chirp.
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(5.28)

Let , and perform the change of variable

(5.29)

Thus, Eq. (5.28) can be written as

(5.30)

(5.31)

where

(5.32)

(5.33)

The Fresnel integrals, denoted by  and , are defined by

(5.34)

(5.35)

Fresnel integrals are approximated by 

(5.36)

(5.37)
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Note that,  and . Fig. 5.7 shows a plot for
both  and  for . This figure can be reproduced using
MATLAB function “fresnel_int.m” given in Listing 5.1 in Section 5.6.

Using Eqs. (5.34) and (5.35) into (5.31) and performing the integration yield,

(5.38)

Fig. 5.8 shows a typical plot for the amplitude spectrum of an LFM waveform.
The square-like spectrum is widely known as the Fresnel spectrum.

5.4. High Range Resolution 

An expression for range resolution  in terms of the pulse width  was
derived in Chapter 1. When pulse compression is not used, the instantaneous
bandwidth  of radar receiver is normally matched to the pulse bandwidth,
and in most radar applications this is done by setting . Therefore,
range resolution is given by

(5.39)
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 Figure 5.7. Fresnel integrals. 
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Radar users and designers alike seek to accomplish High Range Resolution
(HRR) by minimizing . However, as suggested by Eq. (5.39) in order to
achieve HRR one must use very short pulses and consequently reduce the aver-
age transmitted power, and impose severe operating bandwidth requirements. 

Achieving fine range resolution while maintaining adequate average trans-
mitted power can be accomplished by using pulse compression techniques,
which will be discussed in Chapter 7. By means of frequency or phase modula-
tion, pulse compression allows us to achieve the average transmitted power of
a relatively long pulse, while obtaining the range resolution corresponding to a
very short pulse. As an example, consider an LFM waveform whose band-
width is  and uncompressed pulse width (transmitted) is . After pulse com-
pression the compressed pulse width is denoted by , where , and the
HRR is 

(5.40)

Linear frequency modulation and Frequency-Modulated (FM) CW wave-
forms are commonly used to achieve HRR. High range resolution can also be
synthesized using a class of waveforms known as the “Stepped Frequency
Waveforms (SFW).” Stepped frequency waveforms require more complex
hardware implementation as compared to LFM or FM-CW; however, the radar
operating bandwidth requirements are less restrictive. This is true, because the

 Figure 5.8. Typical spectrum for an LFM waveform.
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receiver instantaneous bandwidth is matched to the SFW sub-pulse bandwidth
which is much smaller than an LFM or FM-CW bandwidth. A brief discussion
of SFW waveforms is presented in the following section. 

5.5.  Stepped Frequency Waveforms 

Stepped Frequency Waveforms (SFW) produce Synthetic HRR target pro-
files because the target range profile is computed by means of Inverse Discrete
Fourier Transformation (IDFT) of frequency domain samples of the actual tar-
get range profile. The process of generating a synthetic HRR profile is
described in Wehner1. It is summarized as follows:

1. A series of  narrow-band pulses are transmitted. The frequency from
pulse to pulse is stepped by a fixed frequency step . Each group of 
pulses is referred to as a burst.

2. The received signal is sampled at a rate that coincides to the center of each
pulse. 

3. The quadrature components for each burst are collected and stored.
4. Spectral weighting (to reduce the range sidelobe levels) is applied on the

quadrature components. Corrections for target velocity, phase, and ampli-
tude variations are applied.

5. The IDFT of the weighted quadrature components of each burst is calcu-
lated to synthesize a range profile for that burst. The process is repeated for

 bursts to obtain consecutive synthetic HRR profiles.

Fig. 5.9 shows a typical SFW burst. The Pulse Repetition Interval (PRI) is
, and the pulse width is . Each pulse can have its own LFM, or other type

of modulation; in this book LFM is assumed. The center frequency for the 
step is 

 (5.41)

Within a burst, the transmitted waveform for the  step can be described as

 (5.42)

where  are the relative phases and  are constants. The received signal
from a target located at range  at time  is then given by

(5.43)

1. Wehner, D. R., High Resolution Radar, second edition. Artech House, 1995.

n
∆f n

N

T τ'
i
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fi f0 i∆f+= i; 0 n 1–,=

ith

si t( )
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=

iT t iT τ'+≤ ≤
elsewhere 

;

θi Ci
R0 t 0=

sri t( ) Ci′ 2πfi t τ t( )–( ) θi+( )cos= iT τ t( )+ t iT τ' τ t( )+ +≤ ≤;
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where  are constant and the round trip delay  is given by

(5.44)

 is the speed of light and  is the target radial velocity. 

The received signal is down converted to base-band in order to extract the
quadrature components. More precisely,  is mixed with the signal 

(5.45)

After low pass filtering, the quadrature components are given by

(5.46)

where  are constants, and 

(5.47)

…
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 Figure 5.9. Stepped frequency waveform burst.
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where now . For each pulse, the quadrature components are then sam-
pled at 

(5.48)

 is the time delay associated with range that corresponds to the start of the
range profile.

The quadrature components can then be expressed in complex form as

(5.49)

Eq. (5.49) represents samples of the target reflectivity, due to a single burst, in
the frequency domain. This information can then be transformed into a series
of range delay reflectivity (i.e., range profile) values by using the IDFT. It fol-
lows that 

(5.50)

Substituting Eqs. (5.49) and (5.47) into (5.50) and collecting terms yield

(5.51)

By normalizing with respect to  and by assuming that  and that the
target is stationary (i.e., ), then Eq. (5.51) can be written as

(5.52)

Using  inside Eq. (5.52) yields

(5.53)

which can be simplified to (see problems)
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(5.54)

where

(5.55)

Finally, the synthesized range profile is 

(5.56)

5.5.1. Range Resolution and Range Ambiguity in SFW

As usual, range resolution is determined from the overall system bandwidth.
Assuming a SFW with  steps, and step size , then the corresponding range
resolution is equal to 

(5.57)

Range ambiguity associated with a SFW can be determined by examining
the phase term that corresponds to a point scatterer located range . More
precisely,

(5.58)

It follows that

(5.59)

or equivalently,

(5.60)

It is clear from Eq. (5.60) that range ambiguity exists for .
Therefore,

(5.61)
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and the unambiguous range window is

(5.62)

Hence, a range profile synthesized using a particular SFW represents the rel-
ative range reflectivity for all scatterers within the unambiguous range win-
dow, with respect to the absolute range that corresponds to the burst time delay.
Additionally, if a specific target extent is larger than , then all scatterers fall-
ing outside the unambiguous range window will fold over and appear in the
synthesized profile. This foldover problem is identical to the spectral foldover
that occurs when using a Fourier Transform (FFT) to resolve certain signal fre-
quency contents. For example, consider an FFT with frequency resolution

, and size . In this case, this FFT can resolve fre-
quency tones between  and . When this FFT is used to
resolve the frequency content of a sine-wave tone equal to , foldover
occurs and a spectral line at the fourth FFT bin (i.e., ) appears. There-
fore, in order to avoid foldover in the synthesized range profile, the frequency
step  must be (from Eq. (5.62)) 

(5.63)

where  is the target extent in meters. 

Additionally, the pulse width must also be large enough to contain the whole
target extent. Thus, 

(5.64)

and in practice, 

 (5.65)

This is necessary in order to reduce the amount of contamination of the synthe-
sized range profile caused by the clutter surrounding the target under consider-
ation. 

MATLAB Function “hrr_profile.m”

The function “hrr_profile.m” computes and plots the synthetic HRR profile
for a specific SFW. It is given in Listing 5.2 in Section 5.6. This function uti-
lizes an IDFT of size equal to twice the number of steps. Hamming window of
the same size is also assumed. The syntax is as follows:

Ru
c

2∆f
---------=

Ru

∆f 50Hz= NFFT 64=
1600Hz– 1600Hz

1800Hz
200Hz

∆f

∆f
c

2E
-------≤

E

∆f
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τ'
---≤

∆f
1

2τ'
-------≤
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[hl] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote)

where

For example, assume that the range profile starts at  and that

In this case, 

Thus, scatterers that are more than 0.235 meters apart will appear as distinct
peaks in the synthesized range profile. Assume two cases, where in the first
case, 

[scat_range] = [908, 910, 912] meters

and in the second case,

[scat_range] = [908, 910, 910.4] meters

In both cases, let

[scat_rcs] = [ 100, 10, 1] meter square

Symbol Description Units Status

nscat number of scatterers that 
make up the target

none input

scat_range vector containing range to 
individual scatterers

meters input

scat_rcs vector containing RCS of 
individual scatterers

meter square input

n number of steps none input

deltaf frequency step Hz input

prf PRF of SFW Hz input

v target velocity meter/second input

rnote profile starting range meters input

hl range profile dB output

nscat tau n deltaf prf v

3 64 0.0

R0 900m=

100µ sec 10MHz 10KHz

∆R
3 108×

2 64× 10 106××
------------------------------------------ 0.235m= =

Ru
3 108×

2 10 106××
----------------------------- 15m= =
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Fig. 5.10 shows the synthesized range profiles generated using the function
“hrr_profile.m” and the first case when the Hamming window is not used. Fig.
5.11 is similar to Fig. 5.10, except in this case the Hamming window is used. 

Fig. 5.12 shows the synthesized range profile that corresponds to the second
case (Hamming window is used). Note that all three scatterers were resolved in
Figs. 5.10 and 5.11; however, the last two yesteryears are not resolved in Fig.
5.12, since they are separated by less than .

Next, consider another case where

[scat_range] = [908, 912, 916] meters

Fig. 5.13 shows the corresponding range profile. In this case, foldover occurs,
and the last Scatterer appears at the lower portion of the synthesized range pro-
file. Also, consider the case where

[scat_range] = [908, 912, 923] meters

Fig. 5.14 shows the corresponding range profile. In this case, ambiguity is
associated with the first and third scatterers since they are separated by .
Both appear at the same FFT bin.

∆R

15m

 Figure 5.10. Synthetic range profile for three resolved scatterers. No window.
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 Figure 5.11. Synthetic range profile for three scatterers. Hamming window.
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 Figure 5.12. Synthetic range profile for three scatterers. Two are unresolved.
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 Figure 5.13. Synthetic range profile for three scatterers. Third scatterer folds 
over.
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 Figure 5.14. Synthetic range profile for three scatterers. The first and third 
scatterers appear at the same FFT bin.
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5.5.2. Effect of Target Velocity 

The range profile defined in Eq. (5.56) was obtained by assuming that the
target under examination was stationary. The effect of target velocity on the
synthesized range profile can be determined by substituting Eqs. (5.47) and
(5.48) into Eq. (5.50), which after normalization yields

(5.66)

The additional phase term present in Eq. (5.66) distorts the synthesized range
profile. In order to illustrate this distortion, consider the SFW described in the
previous section, and assume the three scatterers of the first case. Also, assume
that . Fig. 5.15 shows the synthesized range profile for this case.
Comparisons of Figs. 5.11 and 5.15 clearly show the distortion effects caused
by the uncompensated target velocity.

This distortion can be eliminated by multiplying the complex received data
at each pulse by the phase term 
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 Figure 5.15. Illustration of range profile distortion due to target velocity.
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(5.67)

where  and  are, respectively, estimates of the target velocity and range.
This process of modifying the phase of the quadrature components is often
referred to as “phase rotation.” In practice, when good estimates of  and 
are not available, then the effects of target velocity are reduced by using fre-
quency hopping between the consecutive pulses within the SFW. In this case,
the frequency of each individual pulse is chosen according to a predetermined
code. Waveforms of this type are often called Frequency Coded Waveforms
(FCW). Costas waveforms or signals, which will be discussed in Chapter 7, are
a good example of this type of waveform. 

5.6. MATLAB Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters. 

Listing 5.1. MATLAB Program “fresnel_int.m”
clear all
n = 0;
 for x = 0:.05:4
  n = n+1;
  sx(n) = quad8('fresnels',.0,x);
  cx(n) = quad8('fresnelc',.0,x);
end
plot(cx)
x=0:.05:4; 
plot (x,cx,'k',x,sx,'k--')
grid
xlabel ('x')
ylabel ('Fresnel integrals: C(x); S(x)')
%
function cx = fresnelc(x)
cx = cos(pi * .5 .* x.^2);
%
function cx = fresnels(x)
cx = sin(pi * .5 .* x.^2);

Φ j– 2πfi

2v

c̃
------ iT

τ1

2
----

2R

c̃
-------+ + 

 
 
 exp=

v
˜

R
˜

v
˜

R
˜
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Listing 5.2. MATLAB Function “hrr_profile.m”
function [hl] = hrr_profile (nscat, scat_range, scat_rcs, n, deltaf, prf, v, rnote)
% Range or Time domain Profile
% Range_Profile returns the Range or Time domain plot of a simulated 
% HRR SFW returning from a predetermined number of targets with a prede-
termined
c=3.0e8;  % speed of light (m/s)
num_pulses   = n;
SNR_dB = 40;
%carrier_freq = 9.5e9; %Hz (10GHz)
freq_step    = deltaf; %Hz (10MHz)
V = v;  % radial velocity (m/s)  -- (+)=towards radar (-)=away
PRI = 1. / prf; % (s)
Inphase = zeros((2*num_pulses),1);
Quadrature = zeros((2*num_pulses),1);
Inphase_tgt    = zeros(num_pulses,1);
Quadrature_tgt = zeros(num_pulses,1);
IQ_freq_domain = zeros((2*num_pulses),1);
Weighted_I_freq_domain = zeros((num_pulses),1);
Weighted_Q_freq_domain = zeros((num_pulses),1);
Weighted_IQ_time_domain = zeros((2*num_pulses),1);
Weighted_IQ_freq_domain = zeros((2*num_pulses),1);
abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
dB_abs_Weighted_IQ_time_domain = zeros((2*num_pulses),1);
taur = 2. * rnote / c;
for jscat = 1:nscat
   ii = 0;
   for i = 1:num_pulses
      ii = ii+1;
      rec_freq = ((i-1)*freq_step);
      Inphase_tgt(ii) = Inphase_tgt(ii) + sqrt(scat_rcs(jscat)) * ...
          cos(-2*pi*rec_freq*(2.*scat_range(jscat)/c - 2*(V/c)* ...
         ((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));
      Quadrature_tgt(ii) = Quadrature_tgt(ii) + sqrt(scat_rcs(jscat))* ...
         sin(-2*pi*rec_freq*(2*scat_range(jscat)/c - 2*(V/c)* ...
        ((i-1)*PRI + taur/2 + 2*scat_range(jscat)/c)));
   end
end
Inphase = Inphase_tgt;
Quadrature = Quadrature_tgt;
Weighted_I_freq_domain(1:num_pulses) = Inphase(1:num_pulses)...
   .*(hamming(num_pulses));
Weighted_Q_freq_domain(1:num_pulses) = Quadrature(1:num_pulses).* ...
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   (hamming(num_pulses));
Weighted_IQ_freq_domain(1:num_pulses)= Weighted_I_freq_domain + ...
Weighted_Q_freq_domain*j;
Weighted_IQ_freq_domain(num_pulses:2*num_pulses)=0.+0.i;
Weighted_IQ_time_domain = (ifft(Weighted_IQ_freq_domain));
abs_Weighted_IQ_time_domain = (abs(Weighted_IQ_time_domain));
dB_abs_Weighted_IQ_time_domain = 
20.0*log10(abs_Weighted_IQ_time_domain)+SNR_dB;

plot((0:(2*num_pulses-1)), dB_abs_Weighted_IQ_time_domain,'k')
xlabel ('FFT bin')
ylabel ('Range profile - dB')
grid

 Problems

5.1. Derive Eq. (5.17).

5.2. Derive Eq. (5.66).

5.3. Derive Eq. (5.54).

5.4. Write a MATLAB program to perform HRR synthesis for frequency
coded waveforms.

5.5. Reproduce Fig. 5.5 for . Compare
your outputs. What are your conclusions?

v 10 50 100 150 250 m s⁄, , , ,=
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Chapter 6 Matched Filter and 
the Radar Ambiguity 
Function

6.1. The Matched Filter SNR

The most unique characteristic of the matched filter is that it produces the
maximum achievable instantaneous SNR at its output when a signal plus addi-
tive white noise are present at the input. The noise does not need to be Gauss-
ian. The peak instantaneous SNR at the receiver output can be achieved by
matching the radar receiver transfer function to the received signal. We will
show that the peak instantaneous signal power divided by the average noise
power at the output of a matched filter is equal to twice the input signal energy
divided by the input noise power, regardless of the waveform used by the
radar. This is the reason why matched filters are often referred to as optimum
filters in the SNR sense. Note that the peak power used in the derivation of the
radar equation (SNR) represents the average signal power over the duration of
the pulse, not the peak instantaneous signal power as in the case of a matched
filter. In practice, it is sometimes difficult to achieve perfect matched filtering.
In such cases, sub-optimum filters may be used. Due to this mismatch, degra-
dation in the output SNR occurs.

Consider a radar system that uses a finite duration energy signal .
Denote the pulse width as , and assume that a matched filter receiver is uti-
lized. The main question that we need to answer is: What is the impulse, or fre-
quency, response of the filter that maximizes the instantaneous SNR at the
output of the receiver when a delayed version of the signal  plus additive
white noise is at the input?

The matched filter input signal can then be represented by 

(6.1)

si t( )
τ'

si t( )

x t( ) C si t t1–( ) ni t( )+=
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where  is a constant,  is an unknown time delay proportional to the target
range, and  is input white noise. Since the input noise is white, its corre-
sponding autocorrelation and Power Spectral Density (PSD) functions are
given, respectively, by

(6.2)

(6.3)

where  is a constant. Denote  and  as the signal and noise filter
outputs. More precisely, we can define

 (6.4)

where

(6.5)

(6.6)

The operator ( ) indicates convolution, and  is the filter impulse
response (the filter is assumed to be linear time invariant). 

Let  denote the filter autocorrelation function. It follows that the output
noise autocorrelation and PSD functions are 

(6.7)

(6.8)

where  is the Fourier transform for the filter impulse response, . The
total average output noise power is equal to  evaluated at . More
precisely,

(6.9)

The output signal power evaluated at time  is , and by using Eq.
(6.5) we get
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(6.10)

A general expression for the output SNR at time  can be written as

(6.11)

Substituting Eqs. (6.9) and (6.10) into Eq. (6.11) yields

(6.12)

The Schwartz inequality states that

(6.13)

where the equality applies only when , where  is a constant and can
be assumed to be unity. Then by applying Eq. (6.13) on the numerator of Eq.
(6.12), we get

(6.14)
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Eq. (6.14) tells us that the peak instantaneous SNR occurs when equality is
achieved (i.e., from Eq. (6.13) ). More precisely, if we assume that
equality occurs at , and that , then

(6.15)

and the maximum instantaneous SNR is 

(6.16)

Eq. (6.16) can be simplified using Parseval’s theorem, 

(6.17)

where  denotes the energy of the input signal; consequently we can write the
output peak instantaneous SNR as

(6.18)

Thus, we can draw the conclusion that the peak instantaneous SNR depends
only on the signal energy and input noise power, and is independent of the
waveform utilized by the radar.

Finally, we can define the impulse response for the matched filter from Eq.
(6.15). If we desire the peak to occur at , we get the non-causal
matched filter impulse response,

(6.19)

Alternatively, the causal impulse response is

(6.20)

where in this case, the peak occurs at . It follows that the Fourier
transforms of  and  are given, respectively, by

(6.21)

(6.22)

h ksi
∗=

t t0= k 1=

h u( ) si
∗ t0 t1– u–( )=

SNR t0( )

2C
2

si t0 t1 u––( ) 2
ud

∞–

∞

∫
N0

--------------------------------------------------------------=

E C
2

si t0 t1 u––( ) 2
ud

∞–

∞

∫=

E

SNR t0( ) 2E
N0

-------=

t0 t1=

hnc t( ) si
∗ t–( )=

hc t( ) si
∗ τ t–( )=

t0 t1 τ+=
hnc t( ) hc t( )

Hnc ω( ) Si
∗ ω( )=

Hc ω( ) Si
∗ ω( )e jωτ–=
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where  is the Fourier transform of . Thus, the moduli of  and
 are identical; however, the phase responses are opposite of each other.

Example 6.1: Compute the maximum instantaneous SNR at the output of a
linear filter whose impulse response is matched to the signal

.

Solution: The signal energy is

It follows that the maximum instantaneous SNR is 

where  is the input noise power spectrum density.

6.2. The Replica

Again, consider a radar system that uses a finite duration energy signal ,
and assume that a matched filter receiver is utilized. The input signal is given
in Eq. (6.1) and is repeated here as Eq. (6.23), 

(6.23)

The matched filter output  can be expressed by the convolution integral
between the filter’s impulse response and ,

(6.24)

Substituting Eq. (6.20) into Eq. (6.24) yields

(6.25)

where  is a cross-correlation between  and . Therefore,
the matched filter output can be computed from the cross-correlation between
the radar received signal and a delayed replica of the transmitted waveform. If
the input signal is the same as the transmitted signal, the output of the matched

Si ω( ) si t( ) H ω( )
Si ω( )

x t( ) t
2– 2T⁄( )exp=

E x t( ) 2
td

∞–

∞

∫ e t
2–( ) T⁄ td

∞–

∞

∫ πT Joules= = =

SNR
πT

N0 2⁄
-------------=

N0 2⁄

si t( )

x t( ) C si t t1–( ) ni t( )+=

y t( )
x t( )

y t( ) x u( )h t u–( ) ud

∞–

∞

∫=

y t( ) x u( )si
∗ τ t– u+( ) ud

∞–

∞

∫ Rxsi t τ–( )= =

Rxsi t τ–( ) x t( ) si τ t–( )
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filter would be the autocorrelation function of the received (or transmitted) sig-
nal. In practice, replicas of the transmitted waveforms are normally computed
and stored in memory for use by the radar signal processor when needed. 

6.3. Matched Filter Response to LFM Waveforms

In order to develop a general expression for the matched filter output when
an LFM waveform is utilized, we will consider the case when the radar is
tracking a closing target with velocity . The transmitted signal is 

(6.26)

The received signal is then given by 

(6.27)

(6.28)

where  is the time corresponding to the target initial detection range, and 
is the speed of light. Using Eq. (6.28) we can rewrite Eq. (6.27) as

(6.29)

and

(6.30)

is the scaling coefficient. Substituting Eq. (6.26) into Eq. (6.29) yields

(6.31)

which is the analytical signal representation for . The complex envelope
of the signal  is obtained by multiplying Eq. (6.31) by .
Denote the complex envelope by , then after some manipulation we get 

(6.32)

The Doppler shift due to the target motion is

v

s1 t( ) Rect
t
τ'
--- 
  e

j2π f0t
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2
--- t

2
+ 

 
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t( ) s1 t ∆ t( )–( )=

∆ t( ) t0
2v
c

------ t t0–( )–=

t0 c

sr1
t( ) s1 t t0

2v
c

------ t t0–( )+– 
  s1 γ t t0–( )( )= =

γ 1 2v
c
--+=

sr1
t( ) Rect

γ t t0–( )
τ'

------------------- 
  e

j2πf0γ t t0–( )
e

jπµγ2
t t0–( )2

=

sr1
t( )

sr1
t( ) j2πf0t–( )exp

sr t( )

sr t( ) e
j2π f0 t0–

Rect
γ t t0–( )

τ'
------------------- 
  e

j2π f0 γ 1–( ) t t0–( )
e

jπµγ2
t t0–( )2

=
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(6.33)

and since , we get

(6.34)

Using the approximation  and Eq. (6.34), Eq. (6.32) is rewritten as

(6.35)

where

(6.36)

 is given in Eq. (6.26). The matched filter response is given by the convo-
lution integral

(6.37)

For a non-causal matched filter the impulse response  is equal to ;
it follows that

(6.38)

Substituting Eq. (6.36) into Eq. (6.38), and performing some algebraic manipu-
lations, we get

 (6.39)

Finally, making the change of variable  yields

(6.40)

It is customary to set , and it follows that 

(6.41)

fd
2v
c

------f0=

γ 1– 2v c⁄=

fd γ 1–( )f0=

γ 1≈

sr t( ) e
j2π fd t t0–( )

s t t0–( )≈

s t t0–( ) e
j2π f0t–

s1 t t0–( )=

s1 t( )

so t( ) h u( )sr t u–( )

∞–

∞

∫ du=

h u( ) s∗ t–( )

so t( ) s∗ u–( )sr t u–( ) ud

∞–

∞

∫=

so t( ) s∗ u( ) e
j2π fd t u t0–+( )

s t u t0–+( ) ud

∞–

∞

∫=

t' t u+=

so t( ) s∗ t' t–( )s t' t0–( )e
j2πfd t' t0–( )

t'd

∞–

∞

∫=

t0 0=

so t fd;( ) s t'( )s∗ t' t–( )e
j2π fdt'

t'd

∞–

∞

∫=
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where we used the notation  to indicate that the output is a function of
both time and Doppler frequency. 

The two-dimensional (2-D) correlation function for the signal  is
obtained from the matched filter response by replacing  by , then 

(6.42)

6.4. The Radar Ambiguity Function

The radar ambiguity function represents the output of the matched filter, and
it describes the interference caused by range and/or Doppler of a target when
compared to a reference target of equal RCS. The ambiguity function evalu-
ated at  is equal to the matched filter output that is matched
perfectly to the signal reflected from the target of interest. In other words,
returns from the nominal target are located at the origin of the ambiguity func-
tion. Thus, the ambiguity function at nonzero  and  represents returns from
some range and Doppler different from those for the nominal target.

The radar ambiguity function is normally used by radar designers as a means
of studying different waveforms. It can provide insight about how different
radar waveforms may be suitable for the various radar applications. It is also
used to determine the range and Doppler resolutions for a specific radar wave-
form. The three-dimensional (3-D) plot of the ambiguity function versus fre-
quency and time delay is called the radar ambiguity diagram. The radar
ambiguity function for the signal  is defined as the modulus squared of its
2-D correlation function, i.e., . More precisely, 

(6.43)

In this notation, the target of interest is located at , and the
ambiguity diagram is centered at the same point. Note that some authors define
the ambiguity function as . In this book,  is called the uncer-
tainty function. Denote  as the energy of the signal ,

(6.44)

We will now list the properties for the radar ambiguity function:

so t fd;( )

s t( )
t τ–

χ τ fd;( ) s t'( )s∗ t' τ+( )e
j2π fdt'

t'd

∞–

∞

∫=

τ fd,( ) 0 0,( )=

τ fd

s t( )
χ τ fd;( ) 2

χ τ fd;( ) 2
s t( )s∗ t τ+( )e

j2π fdt
td

∞–

∞

∫
2

=

τ fd,( ) 0 0,( )=

χ τ fd;( ) χ τ fd;( )
E s t( )

E s t( ) 2
td

∞–

∞

∫=
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1) The maximum value for the ambiguity function occurs at 
and is equal to ,

(6.45)

(6.46)

2) The ambiguity function is symmetric,

(6.47)

3) The total volume under the ambiguity function is constant,

(6.48)

4) If the function  is the Fourier transform of the signal , then by using
Parseval’s theorem we get

(6.49)

6.5. Examples of the Ambiguity Function

The ideal radar ambiguity function is represented by a spike of infinitesimal
width that peaks at the origin and is zero everywhere else, as illustrated in Fig.
6.1. An ideal ambiguity function provides perfect resolution between neigh-
boring targets regardless of how close they may be with respect to each other.
Unfortunately, an ideal ambiguity function cannot physically exist. This is
because the ambiguity function must have finite peak value equal to 
and a finite volume also equal to . Clearly, the ideal ambiguity function
cannot meet those two requirements.

6.5.1.  Single Pulse Ambiguity Function

Consider the normalized rectangular pulse  defined by

(6.50)

From Eq. (6.42) we have

 (6.51)

τ fd,( ) 0 0,( )=
4E

2

max χ τ fd;( ) 2{ } χ 0 0;( ) 2 2E( )2= =

χ τ fd;( ) 2 χ 0 0;( ) 2≤

χ τ fd;( ) 2 χ τ– f– d;( ) 2=

χ τ fd;( ) 2 τd fdd∫∫ 2E( )2=

S f( ) s t( )

χ τ fd;( ) 2
S∗ f( )S f fd–( )e j2πfτ–

fd∫
2
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2E( )2

2E( )2

s t( )

s t( ) 1

τ'
-------Rect

t
τ'
--- 
 =

χ τ fd;( ) s t( )s∗ t τ+( )e
j2πfdt

td

∞–

∞

∫=
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Substituting Eq. (6.50) into Eq. (6.51) and performing the integration yield,

(6.52)

MATLAB Function “single_pulse_ambg.m”

The function “single_pulse_ambg.m” implements Eq. (6.52). It is given in
Listing 6.1 in Section 6.7. The syntax is as follows:

single_pulse_ambg [taup]

taup is the pulse width. Fig. 6.2 (a-d) shows 3-D and contour plots of single
pulse uncertainty and ambiguity functions. These plots can be reproduced
using MATLAB program “fig6_2.m” given in Listing 6.2 in Section 6.7.

The ambiguity function cut along the time delay axis  is obtained by setting
. More precisely,

(6.53)

Note that the time autocorrelation function of the signal  is equal to
. Similarly, the cut along the Doppler axis is

(6.54)

Figs. 6.3 and 6.4, respectively, show the plots of the uncertainty function
cuts defined by Eqs. (6.53) and (6.54). Since the zero Doppler cut along the
time delay axis extends between  and , then, close targets would be
unambiguous if they are at least  seconds apart. 

τ

fdχ τ fd;( ) 2

0 0,( )

Figure 6.1. Ideal ambiguity function.
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χ τ 0;( )
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-------------------
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 Figure 6.2a. Single pulse 3-D uncertainty plot. Pulse width is 2 seconds. 

 Figure 6.2b. Contour plot corresponding to Fig. 6.2a.
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 Figure 6.2c. Single pulse 3-D ambiguity plot. Pulse width is 2 seconds. 

 Figure 6.2d. Contour plot corresponding to Fig. 6.2c.
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The zero time cut along the Doppler frequency axis has a  shape.
It extends from  to . The first null occurs at . Hence, it is
possible to detect two targets that are shifted by , without any ambiguity. 

We conclude that a single pulse range and Doppler resolutions are limited by
the pulse width . Fine range resolution requires that a very short pulse be
used. Unfortunately, using very short pulses requires very large operating
bandwidths, and may limit the radar average transmitted power to impractical
values.

xsin x⁄( )2

∞– ∞ fd 1 τ'⁄±=
1 τ'⁄

τ'

τ'τ– ' τ

amplitude

Figure 6.3. Zero Doppler uncertainty function cut along the time delay axis.

 

 Figure 6.4. Uncertainty function of a single frequency pulse (zero delay). This 
plot can be reproduced using MATLAB program “Fig6_4.m” given 
in Listing 6.3 in Section 6.7.
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6.5.2.  LFM Ambiguity Function

Consider the LFM complex envelope signal defined by

(6.55)

In order to compute the ambiguity function for the LFM complex envelope, we
will first consider the case when . In this case the integration limits
are from  to . Substituting Eq. (6.55) into Eq. (6.51) yields

(6.56)

It follows that

(6.57)

We will leave the rest of the integration process to the reader. Finishing the
integration process in Eq. (6.57) yields

(6.58)

Similar analysis for the case when  can be carried out, where in
this case the integration limits are from  to . The same result
can be obtained by using the symmetry property of the ambiguity function
( ). It follows that an expression for  that is
valid for any  is given by

(6.59)

and the LFM ambiguity function is
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(6.60)

Again the time autocorrelation function is equal to . The reader can
verify that the ambiguity function for a down-chirp LFM waveform is given by

(6.61)

MATLAB Function “lfm_ambg.m”

The function “lfm_ambg.m” implements Eqs. (6.60) and (6.61). It is given
in Listing 6.4 in Section 6.7. The syntax is as follows:

lfm_ambg [taup, b, up_down]

where

Fig. 6.5 (a-d) shows 3-D and contour plots for the LFM uncertainty and ambi-
guity functions for

These plots can be reproduced using MATLAB program “fig6_5.m” given in
Listing 6.5 in Section 6.7.This function generates 3-D and contour plots of an
LFM ambiguity function. 

The up-chirp ambiguity function cut along the time delay axis  is

(6.62)

Symbol Description Units Status

taup pulse width seconds input

b bandwidth Hz input

up_down up_down = 1 for up chirp

up_down = -1 for down chirp
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 Figure 6.5a. Up-chirp LFM 3-D uncertainty plot. Pulse width is 1 second; and 
bandwidth is 10 Hz. 

 Figure 6.5b. Contour plot corresponding to Fig. 6.5a.
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 Figure 6.5c. Up-chirp LFM 3-D ambiguity plot. Pulse width is 1 second; and 
bandwidth is 10 Hz. 

 Figure 6.5d. Contour plot corresponding to Fig. 6.5c.
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Fig. 6.6 shows a plot for a cut in the uncertainty function corresponding to
Eq. (6.62). Note that the LFM ambiguity function cut along the Doppler fre-
quency axis is similar to that of the single pulse. This should not be surprising
since the pulse shape has not changed (we only added frequency modulation).
However, the cut along the time delay axis changes significantly. It is now
much narrower compared to the unmodulated pulse cut. In this case, the first
null occurs at 

(6.63)

which indicates that the effective pulse width (compressed pulse width) of the
matched filter output is completely determined by the radar bandwidth. It fol-
lows that the LFM ambiguity function cut along the time delay axis is narrower
than that of the unmodulated pulse by a factor 

(6.64)

 is referred to as the compression ratio (also called time-bandwidth product
and compression gain). All three names can be used interchangeably to mean
the same. As indicated by Eq. (6.64) the compression ratio also increases as the
radar bandwidth is increased.
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ξ

 Figure 6.6. Zero Doppler Ambiguity function of an LFM pulse ( , 

). This plot can be reproduced using MATLAB 
program “fig6_6.m” given in Listing 6.6 in Section 6.7.
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Example 6.2: Compute the range resolution before and after pulse compres-
sion corresponding to an LFM waveform with the following specifications:
Bandwidth ; and pulse width .

Solution: The range resolution before pulse compression is

Using Eq. (6.63) yields

.

6.5.3. Coherent Pulse Train Ambiguity Function

Fig. 6.7 shows a plot of coherent pulse train. The pulse width is denoted as
 and the PRI is . The number of pulses in the train is ; hence, the train’s

length is  seconds. A normalized individual pulse  is defined by

(6.65)

When coherency is maintained between the consecutive pulses, then an expres-
sion for the normalized train is 

(6.66)

The output of the matched filter is

 (6.67)

Substituting Eq. (6.66) into Eq. (6.67) and interchanging the summations and
integration yield,

(6.68)
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Making the change of variable  yields

(6.69)

The integral inside Eq. (6.69) represents the output of the matched filter for a
single pulse, and is denoted by . It follows that

(6.70)

When the relation  is used, then the following relation is true1:

(6.71)

   Using Eq. (6.71) into Eq. (6.70) gives

(6.72)

1. Rihaczek, A. W., Principles of High Resolution Radar, Artech House, 1996. 
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Figure 6.7. Coherent pulse train. N=5.
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Setting , and using the relation

(6.73)

yield

(6.74)

Using Eq. (6.74) into Eq. (6.72) yields two complementary sums for positive
and negative . Both sums can be combined as

 (6.75)

Finally, the ambiguity function associated with the coherent pulse train is com-
puted as the modulus square of Eq. (6.75). For , the ambiguity func-
tion reduces to 

(6.76)

Thus, the ambiguity function for a coherent pulse train is the superposition
of the individual pulse’s ambiguity functions. The ambiguity function cuts
along the time delay and Doppler axes are, respectively, given by

(6.77)

(6.78)

MATLAB Function “train_ambg.m”

The function “train_ambg.m” implements Eq. (6.76). It is given in Listing
6.7 in Section 6.7. The syntax is as follows:

train_ambg [taup, n, pri]

z j2πfdT( )exp=

z
j

j 0=

N 1– q–

∑ 1 zN q––
1 z–

----------------------=

e
j2π fdiT

i 0=

N 1– q–

∑ e
jπ fd N 1– q T–( )[ ] πfd N 1– q T–( )[ ]sin

πfdT( )sin
------------------------------------------------------=

q

χ τ fd;( ) 1
N
---- χ1 τ qT– fd;( )e

jπ fd N 1– q+( )T[ ] πfd N q T–( )[ ]sin

πfdT( )sin
---------------------------------------------

q N 1–( )–=

N 1–

∑=

τ′ T 2⁄<

χ τ fd;( ) 1
N
---- χ1 τ qT– fd;( ) πfd N q T–( )[ ]sin

πfdT( )sin
---------------------------------------------

q N 1–( )–=

N 1–

∑=

χ τ 0;( ) 2 1 q
N
-----– 

  1 τ qT–
τ′

------------------– 
 

q N 1–( )–=

N 1–

∑
2

= τ qT– τ′<;

χ 0 fd;( ) 2 1
N
----

πfdτ′( )sin

πfdτ′
-------------------------

πfdNT( )sin

πfdT( )sin
----------------------------

2

=
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where

Fig. 6.8 (a-d) shows typical outputs of this function, for 

 

Symbol Description Units Status

taup pulse width seconds input

n number of pulses in train none input

pri pulse repetition interval seconds input

taup n pri
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 Figure 6.8b. Contour plot corresponding to Fig. 6.8a.
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 Figure 6.8c. Zero Doppler cut corresponding to Fig. 6.8a.
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6.6. Ambiguity Diagram Contours

Plots of the ambiguity function are called ambiguity diagrams. For a given
waveform, the corresponding ambiguity diagram is normally used to determine
the waveform properties such as the target resolution capability, measurements
(time and frequency) accuracy and its response to clutter. Three-dimensional
ambiguity diagrams are difficult to plot and interpret. This is the reason why
contour plots of the 3-D ambiguity diagram are often used to study the charac-
teristics of a waveform. An ambiguity contour is a 2-D plot (frequency/time) of
a plane intersecting the 3-D ambiguity diagram that corresponds to some
threshold value. The resultant plots are ellipses. It is customary to display the
ambiguity contour plots that correspond to one half of the peak autocorrelation
value. 

Fig. 6.9 shows a sketch of typical ambiguity contour plots associated with a
gated CW pulse. It indicates that narrow pulses provide better range accuracy
than long pulses. Alternatively, the Doppler accuracy is better for a wider pulse
than it is for a short one. This trade-off between range and Doppler measure-
ments comes from the uncertainty associated with the time-bandwidth product
of a single sinusoidal pulse, where the product of uncertainty in time (range)
and uncertainty in frequency (Doppler) cannot be much smaller than unity.
Note that an exact plot for Fig. 6.9 can be obtained using the function
“single_pulse_ambg.m” and the MATLAB command contour. 

 Figure 6.8d. Zero delay cut corresponding to Fig. 6.8a. 

0 1 T⁄ frequency

1 τ′⁄– 1 τ′⁄
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Multiple ellipses in an ambiguity contour plot indicate the presence of multi-
ple targets. Thus, it seems that one may improve the radar resolution by
increasing the ambiguity diagram threshold value. This is illustrated in Fig.
6.10. However, in practice this is not possible for two reasons. First, in the
presence of noise we lack knowledge of the peak correlation value; and sec-
ond, targets in general will have different amplitudes.

Now consider the case of a coherent pulse train described in Fig. 6.7. For a
pulse train, range accuracy is still determined by the pulse width, the same way
as in the case of a single pulse, while Doppler accuracy is determined by the
train length. Thus, time and frequency measurements can be made indepen-
dently of each other. However, additional peaks appear in the ambiguity dia-
gram which may cause range and Doppler uncertainties. This is illustrated in
Fig. 6.11.

time

frequency frequency

time

τ′ τ′

1 τ′⁄1 τ′⁄

long pulse short pulse

Figure 6.9. Ambiguity contour plot associated with a sinusoid
   modulated gated CW pulse. See Fig. 6.2.

time

frequency

time

frequency

low threshold value high threshold value

Figure 6.10. Effect of threshold value on resolution.
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As one would expect, high PRF pulse trains (i.e., small ) lead to extreme
uncertainty in range, while low PRF pulse trains have extreme ambiguity in
Doppler, as shown in Fig. 6.12. Medium PRF pulse trains have moderate ambi-
guity in both range and Doppler, which can be overcome by using multiple
PRFs, as illustrated in Fig. 6.13 for two medium PRFs. Note that the two dia-
grams (in Fig. 6.13) agree only in one location (center of the plot) which corre-
sponds to the true target location.

It is possible to avoid ambiguities caused by pulse trains and still have rea-
sonable independent control on both range and Doppler accuracies by using a
single modulated pulse with a time-bandwidth product that is much larger than
unity. Figure 6.14 shows the ambiguity contour plot associated with an LFM
waveform. In this case,  is the pulse width and  is the pulse bandwidth. In
this case, exact plots can be obtained using the function “lfm_ambg.m”. 
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 Figure 6.11. Ambiguity contour plot corresponding to Fig. 6.7. For an exact 
plot see Fig. 6.8b.
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Figure 6.12. Uncertainty associated with low and high PRFs.
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6.7. MATLAB Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is strongly advised to rerun the MATLAB programs in
order to enhance their understanding of this chapter’s material.

Listing 6.1. MATLAB Function “single_pulse_ambg.m”
function x = single_pulse_ambg (taup)
colormap (gray(1))
eps = 0.000001;
i = 0;
taumax = 1.1 * taup;
taumin = -taumax;
for tau = taumin:.05:taumax
   i = i + 1;
   j = 0;
   for fd = -5/taup:.05:5/taup 
      j = j + 1;
      val1 = 1. - abs(tau) / taup;
      val2 = pi * taup * (1.0 - abs(tau) / taup) * fd;
      x(j,i) = abs( val1 * sin(val2+eps)/(val2+eps));
   end
end

Listing 6.2. MATLAB Program “fig6_2.m”
clear all
eps = 0.000001;

time

frequency

1 τ′⁄

1 B⁄
 Figure 6.14. Ambiguity contour plot associated with an up-chirp LFM 

waveform. For an exact plot see Fig. 6.5b.
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taup = 2.;
taumin = -1.1 * taup;
taumax = -taumin;
x = single_pulse_ambg(taup);
taux = taumin:.05:taumax;
fdy = -5/taup:.05:5/taup;
figure(1)
mesh(taux,fdy,x);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
figure(2)
contour(taux,fdy,x);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
y = x.^2;
figure(3)
mesh(taux,fdy,y);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
figure(4)
contour(taux,fdy,y);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')

Listing 6.3. MATLAB Program “fig6_4.m”
clear all
eps = 0.0001;
taup = 2.;
fd = -10./taup:.05:10./taup;
uncer = abs( sinc(taup .* fd));
ambg = uncer.^2;
plot(fd, ambg)
xlabel ('Frequency - Hz')
ylabel ('Ambiguity - Volts')
grid
figure(2)
plot (fd, uncer);
xlabel ('Frequency - Hz')
ylabel ('Uncertainty - Volts')
grid

Listing 6.4. MATLAB Function “lfm_ambg.m”
function x = lfm_ambg(taup, b, up_down)
eps = 0.000001;
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i = 0;
mu = up_down * b / 2. / taup;
for tau = -1.1*taup:.05:1.1*taup
   i = i + 1;
   j = 0;
   for fd = -b:.05:b
      j = j + 1;
      val1 = 1. - abs(tau) / taup;
      val2 = pi * taup * (1.0 - abs(tau) / taup);
      val3 = (fd + mu * tau);
      val = val2 * val3;
      x(j,i) = abs( val1 * (sin(val+eps)/(val+eps))).^2;
   end
end

Listing 6.5. MATLAB Program “fig6_5.m”
clear all
eps = 0.0001;
taup = 1.;
b =10.;
up_down = 1.;
x = lfm_ambg(taup, b, up_down);
taux = -1.1*taup:.05:1.1*taup;
fdy = -b:.05:b;
figure(1)
mesh(taux,fdy,x)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
figure(2)
contour(taux,fdy,x)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
y = sqrt(x);
figure(3)
mesh(taux,fdy,y)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Uncertainty function')
figure(4)
contour(taux,fdy,y)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')

Listing 6.6. MATLAB Program “fig6_6.m”
clear all
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taup = 1;
b =20.;
up_down = 1.;
taux = -1.5*taup:.01:1.5*taup;
fd = 0.;
mu = up_down * b / 2. / taup;
ii = 0.;
for tau = -1.5*taup:.01:1.5*taup
   ii = ii + 1;
   val1 = 1. - abs(tau) / taup;
   val2 = pi * taup * (1.0 - abs(tau) / taup);
   val3 = (fd + mu * tau);
   val = val2 * val3;
   x(ii) = abs( val1 * (sin(val+eps)/(val+eps)));
end
figure(1)
plot(taux,x)
grid
xlabel ('Delay - seconds')
ylabel ('Uncertaunty')
figure(2)
plot(taux,x.^2)
grid
xlabel ('Delay - seconds')
ylabel ('Ambiguity')

Listing 6.7. MATLAB Function “train_ambg.m”
function x = train_ambg (taup, n, pri)
if( taup > pri / 2.)
   'ERROR. Pulse width must be less than the PRI/2.'
   break
end
gap = pri - 2.*taup;
eps = 0.000001;
b = 1. / taup;
ii = 0.;
for q = -(n-1):1:n-1
   tauo = q - taup ;
   index = -1.;
   for tau1 = tauo:0.0533:tauo+gap+2.*taup
      index = index + 1;
      tau = -taup + index*.0533;
      ii = ii + 1;
      j = 0.;
      for fd = -b:.0533:b
         j = j + 1;
         if (abs(tau) <= taup)
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            val1 = 1. -abs(tau) / taup;
            val2 = pi * taup * fd * (1.0 - abs(tau) / taup);
            val3 = abs(val1 * sin(val2+eps) /(val2+eps)); 
            val4 = abs((sin(pi*fd*(n-abs(q))*pri+eps))/(sin(pi*fd*pri+eps)));
            x(j,ii)=  val3 * val4 / n;
         else
            x(j,ii) = 0.;
         end
      end
   end
end

Listing 6.8. MATLAB Program “fig6_8a.m”
clear all
taup =0.2;
pri=1;
n=5;
x = train_ambg (taup, n, pri);
figure(1)
mesh(x)
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')
zlabel ('Ambiguity function')
figure(2)
contour(x);
xlabel ('Delay - seconds')
ylabel ('Doppler - Hz')

 Problems

6.1. Define  and . (a) Compute the

discrete correlations: , , , and . (b) A certain radar transmits

the signal . Assume that the autocorre-

lation  is equal to . Compute and

sketch  and .

6.2. Compute the frequency response for the filter matched to the signal 

(a) ; (b) ,

where  is a positive constant.

6.3. Repeat Example 6.1 for .

xI n( ) 1 1 1,–,={ } xQ n( ) 1 1 1–, ,={ }

RxI
RxQ

RxIxQ
RxQxI

s t( ) xI t( ) 2πf0tcos xQ t( ) 2πf0tsin–=

s t( ) y t( ) yI t( ) 2πf0tcos yQ t( ) 2πf0tsin–=

yI t( ) yQ t( )

x t( ) t
2–

2T
------- 
 exp= x t( ) u t( ) αt–( )exp=

α

x t( ) u t( ) αt–( )exp=
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6.4. Derive Eq. (6.43).
6.5. Prove the properties of the radar ambiguity function.
6.6. Starting with Eq. (6.61) derive Eq. (6.62).
6.7. A radar system uses LFM waveforms. The received signal is of the

form , where  is a time delay that depends on range,

, and . Assume that

the radar bandwidth is , and the pulse width is . (a) Give

the quadrature components of the matched filter response that matched to .
(b) Write an expression for the output of the matched filter. (c) Compute the
increase in SNR produced by the matched filter.
6.8. (a) Write an expression for the ambiguity function of an LFM wave-

form, where , and the compression ratio is . (b) Give an expres-
sion for the matched filter impulse response.

6.9. Repeat Example 6.2 for , and .

6.10. (a) Write an expression for the ambiguity function of a LFM signal
with bandwidth , pulse width , and wavelength

. (b) Plot the zero Doppler cut of the ambiguity function. (c) Assume

a target moving towards the radar with radial velocity . What is

the Doppler shift associated with this target? (d) Plot the ambiguity function
for the Doppler cut in part (c). (e) Assume that three pulses are transmitted

with PRF . Repeat part b. 

6.11. (a) Give an expression for the ambiguity function for a pulse train
consisting of 4 pulses, where the pulse width is  and the pulse repeti-

tion interval is . Assume a wavelength of . (b) Sketch the
ambiguity function contour.
6.12. Hyperbolic frequency modulation (HFM) is better than LFM for high
radial velocities. The HFM phase is 

where  is an HFM coefficient and  is a constant. (a) Give an expression
for the instantaneous frequency of a HFM pulse of duration . (b) Show that
HFM can be approximated by LFM. Express the LFM coefficient  in terms
of  and in terms of  and .

6.13. Consider a Sonar system with range resolution . (a) A

sinusoidal pulse at frequency  is transmitted. What is the pulse

width, and what is the bandwidth? (b) By using an up-chirp LFM, centered at

sr t( ) As t τ–( ) n t( )+= τ

s t( ) Rect t τ′⁄( ) 2πf0t ψ t( )–( )cos= ψ t( ) πBt
2– τ′⁄=

B 5MHz= τ′ 5µs=

s t( )

τ′ 6.4µs= 32

B 2 5,= 10GHz

B 10MHz= τ′ 1µs=

λ 1cm=

vr 100m s⁄=

fr 2000Hz=

τ′ 1µs=

T 10µs= λ 1cm=

ψh t( )
ω0

2

µh

------ 1
µhαt

ω0

-----------+ 
 ln=

µh α
τ′h

µl
µh B τ′

∆R 4cm=

f0 100KHz=
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, one can increase the pulse width for the same range resolution. If you want

to increase the transmitted energy by a factor of 20, give an expression for the
transmitted pulse. (c) Give an expression for the causal filter matched to the
LFM pulse in part b.

6.14. A pulse train  is given by

 

where  is a single pulse of duration  and the weighting
sequence is . Find and sketch the correlations ,

, and .

6.15. Repeat the previous problem for .

6.16. Modify the function “train_ambg.m” to accommodate the case
.

6.17. Using the MATLAB functions presented in this chapter,  generate the
exact plots that correspond to Figs. 6.13 and 6.14.
6.18. Using the function “lfm_ambg.m” reproduce Fig. 6.6b for a down-
chirp LFM pulse. 

f0

y t( )

y t( ) w n( )x t nτ′–( )

n 0=

2

∑=

x t( ) t
2– 2⁄( )exp= τ′

w n( ){ } 0.5 1 0.7, ,{ }= Rx
Rw Ry

x t( ) t
2– 2⁄( )exp 2πf0tcos=

τ′ T=
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Chapter 7 Pulse Compression 

Range resolution for a given radar can be significantly improved by using
very short pulses. Unfortunately, utilizing short pulses decreases the average
transmitted power, which can hinder the radar’s normal modes of operation,
particularly for multi-function and surveillance radars. Since the average trans-
mitted power is directly linked to the receiver SNR, it is often desirable to
increase the pulse width (i.e., increase the average transmitted power) while
simultaneously maintaining adequate range resolution. This can be made pos-
sible by using pulse compression techniques. Pulse compression allows us to
achieve the average transmitted power of a relatively long pulse, while obtain-
ing the range resolution corresponding to a short pulse. In this chapter, we will
analyze analog and digital pulse compression techniques.

Two analog pulse compression techniques are discussed in this chapter. The
first technique is known as “correlation processing” which is dominantly used
for narrow band and some medium band radar operations. The second tech-
nique is called “stretch processing” and is normally used for extremely wide
band radar operations. Digital pulse compression will also be briefly pre-
sented.

7.1. Time-Bandwidth Product

Consider a radar system that employs a matched filter receiver. Let the
matched filter receiver bandwidth be denoted as . Then, the noise power
available within the matched filter bandwidth is given by

(7.1)

B

Ni 2
N0

2
------ B=
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where the factor of two is used to account for both negative and positive fre-
quency bands, as illustrated in Fig. 7.1. The average input signal power over a
pulse duration  is

(7.2)

 is the signal energy. Consequently, the matched filter input SNR is given by

(7.3)

Using Eqs. (6.18) (from Chapter 6) and (7.3), one may compute the output
peak instantaneous SNR to the input SNR ratio as

(7.4)

The quantity  is referred to as the “time-bandwidth product” for a given
waveform, or its corresponding matched filter. The factor  by which the
output SNR is increased over that at the input is called the matched filter gain,
or simply the compression gain. 

In general, the time-bandwidth product of an unmodulated pulse approaches
unity. The time-bandwidth product of a pulse can be made much greater than
unity by using frequency or phase modulation. If the radar receiver transfer
function is perfectly matched to that of the input waveform, then the compres-
sion gain is equal to . Clearly, the compression gain becomes smaller than

 as the spectrum of the matched filter deviates from that of the input signal. 

B B

N0 2⁄

0

noise P SD

frequency

Figure 7.1. Input noise power.
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7.2. Radar Equation with Pulse Compression

The radar equation for a pulsed radar can be written as

(7.5)

where  is peak power,  is pulse width,  is antenna gain,  is target
RCS,  is range,  is Boltzman’s constant,  is effective noise temperature,

 is noise figure, and  is total radar losses.

Pulse compression radars transmit relatively long pulses (with modulation)
and process the radar echo into very short pulses (compressed). One can view
the transmitted pulse to be composed of a series of very short subpulses (duty
is 100%), where the width of each subpulse is equal to the desired compressed
pulse width. Denote the compressed pulse width as . Thus, for an individual
subpulse, Eq. (7.5) can be written as

(7.6)

The SNR for the uncompressed pulse is then derived from Eq. (7.6) as

(7.7)

where  is the number of subpulses. Equation (7.7) is denoted as the radar
equation with pulse compression.

Observation of Eqs. (7.5) and (7.7) indicates the following (note that both
equations have the same form): For a given set of radar parameters, and as long
as the transmitted pulse remains unchanged, then the SNR is also unchanged
regardless of the signal bandwidth. More precisely, when pulse compression is
used, the detection range is maintained while the range resolution is drastically
improved by keeping the pulse width unchanged and by increasing the band-
width. Remember that range resolution is proportional to the inverse of the sig-
nal bandwidth,

(7.8)

7.3.  Analog Pulse Compression

 Correlation and stretch pulse compression techniques are discussed in this
section. Two MATLAB programs which execute digital implementation of
both techniques (using the FFT) are also presented. 

SNR
Ptτ′G

2λ2σ

4π( )3R
4
kTeFL

------------------------------------=
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2λ2σ

4π( )3R
4
kTeFL

------------------------------------=
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Pt τ′ nτc=( )G2λ2σ

4π( )3R
4
kTeFL

-----------------------------------------------=

n

∆R c 2B⁄=
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7.3.1.  Correlation Processor

In this case, pulse compression is accomplished by adding frequency modu-
lation to a long pulse at transmission, and by using a matched filter receiver in
order to compress the received signal. As an example, we saw in Chapter 6 that
using LFM within a rectangular pulse compresses the matched filter output by
a factor , which is directly proportional to the pulse width and band-
width. Thus, by using long pulses and wideband LFM modulation we can
achieve large compression ratios. This form of pulse compression is known as
“correlation processing.” 

Fig. 7.2 illustrates the advantage of pulse compression. In this example, an
LFM waveform is used. Two targets with RCS  and 
are detected. The two targets are not separated enough in time to be resolved.
Fig. 7.2a shows the composite echo signal from those targets. Clearly, the tar-
get returns overlap and, thus, they are not resolved. However, after pulse com-
pression the two pulses are completely separated and are resolved as two
targets. In fact, when using LFM, returns from neighboring targets are resolved
as long as they are separated, in time, by , the compressed pulse width.

ξ Bτ'=

σ1 1m
2= σ2 0.5m

2=

τn1

time

amplitude

 Figure 7.2a. Composite echo signal for two unresolved targets.
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Radar operations (search, track, etc.) are usually carried out over a specified
range window, referred to as the receive window and defined by the difference
between the radar maximum and minimum range. Returns from all targets
within the receive window are collected and passed through a matched filter
circuitry to perform pulse compression. One implementation of such analog
processors is the Surface Acoustic Wave (SAW) devices. Because of the recent
advances in digital computer development, the correlation processor is often
performed digitally using the FFT. This digital implementation is called Fast
Convolution Processing (FCP) and can be implemented at base-band. The fast
convolution process is illustrated in Fig. 7.3

Since the matched filter is a linear time invariant system, its output can be
described mathematically by the convolution between its input and its impulse
response, 

(7.9)

where  is the input signal,  is the matched filter impulse response
(replica), and the  operator symbolically represents convolution. From the
Fourier transform properties, 

(7.10)

And when both signals are sampled properly, the compressed signal  can
be computed from

 Figure 7.2b. Composite echo signal corresponding to Fig. 7.2a, after 
pulse compression. 

range bins

amplitude

y t( ) s t( ) h t( )•=

s t( ) h t( )
•

FFT s t( ) h t( )•{ } S f( ) H f( )⋅=

y t( )
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(7.11)

where  is the inverse FFT. When using pulse compression, it is desirable
to use modulation schemes that can accomplish a maximum pulse compression
ratio, and can significantly reduce the side lobe levels of the compressed wave-
form. For the LFM case the first side lobe is approximately  below the
main peak, and for most radar applications this may not be sufficient. In prac-
tice, high side lobe levels are not preferable because noise and/or jammers
located at the side lobes may interfere with target returns in the main lobe. 

Weighting functions (windows) can be used on the compressed pulse spec-
trum in order to reduce the side lobe levels. The cost associated with such an
approach is a loss in the main lobe resolution, and a reduction in the peak value
(i.e., loss in the SNR), as illustrated in Fig. 7.4. Weighting the time domain
transmitted or received signal instead of the compressed pulse spectrum will
theoretically achieve the same goal. However, this approach is rarely used,
since amplitude modulating the transmitted waveform introduces extra bur-
dens on the transmitter.

Consider a radar system that utilizes a correlation processor receiver (i.e.,
matched filter). The receive window in meters is defined by 

(7.12)

where  and , respectively, define the maximum and minimum range
over which the radar performs detection. Typically  is limited to the extent
of the target complex. The normalized complex transmitted signal has the form 

(7.13)

 is the pulse width, , and  is the bandwidth. Note that this defi-
nition of the LFM pulse is different from that in Chapter 6. Earlier,  denoted
the chirp center frequency and in Eq. (7.13) it denotes the chirp start frequency. 

FFT multiplier

FFT of

Inv. FFT

input
signal

matched filter
     output

Figure 7.3. Computing the matched filter output using an FFT.
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The radar echo signal is similar to the transmitted one with the exception of a
time delay and an amplitude change that correspond to the target RCS. Con-
sider a target at range . The echo received by the radar from this target is 

(7.14)

where  is proportional to target RCS, antenna gain, and range attenuation.
The time delay  is given by 

 (7.15)

The first step of the processing consists of removing the frequency . This
is accomplished by mixing  with a reference signal whose phase is .
The phase of the resultant signal, after low pass filtering, is then given by 

(7.16)

and the instantaneous frequency is

(7.17)

The quadrature components are
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 Figure 7.4. Reducing the first sidelobe to -42 dB doubles the main lobe width.
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(7.18)

Sampling the quadrature components is performed next. The number of sam-
ples, , must be chosen so that foldover (ambiguity) in the spectrum is
avoided. For this purpose, the sampling frequency,  (based on the Nyquist
sampling rate), must be

(7.19)

and the sampling interval is 

(7.20)

Using Eq. (7.17) it can be shown that (the proof is left as an exercise) the fre-
quency resolution of the FFT is

(7.21)

The minimum required number of samples is

(7.22)

Equating Eqs. (7.20) and (7.22) yields

(7.23)

Consequently, a total of  real samples, or  complex samples, is suf-
ficient to completely describe an LFM waveform of duration  and bandwidth

. For example, an LFM signal of duration  and bandwidth
 requires 200 real samples to determine the input signal (100

samples for the I-channel and 100 samples for the Q-channel). 

For better implementation of the FFT  is extended by zero padding, to the
next power of two. Thus, the total number of samples, for some positive inte-
ger , is 

(7.24)

The final steps of the FCP processing include: (1) taking the FFT of the sam-
pled sequence; (2) multiplying the frequency domain sequence of the signal
with the FFT of the matched filter impulse response; and (3) performing the
inverse FFT of the composite frequency domain sequence in order to generate
the time domain compressed pulse (HRR profile). Of course, weighting,
antenna gain, and range attenuation compensation must also be performed. 

xI t( )
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Assume that  targets at ranges , , and so forth are within the receive
window. From superposition, the phase of the down converted signal is 

(7.25)

The times  represent the two-way time delays,
where  coincides with the start of the receive window. 

 MATLAB Function “matched_filter.m”

The function “matched_filter.m” performs fast convolution processing. It is
given in Listing 7.1 in Section 7.5. The syntax is as follows:

[y] = matched_filter(nscat, taup, f0, b, rmin, rrec, scat_range, scat_rcs, win)

where

The user can access this function either by a MATLAB function call, or by exe-
cuting the MATLAB program “matched_filter_driver.m” which utilizes MAT-
LAB based GUI. The outputs of this function are the complex array  and
plots of the uncompressed and compressed signal versus relative. This function
utilizes the function “power_integer_2.m” which implements Eq. (7.24): 

Symbol Description Units Status

nscat number of point scatterers within the 
received window

none input

rmin minimum range of receive window Km input

rrec  receive window size m input

taup uncompressed pulse width seconds input

f0 chirp start frequency Hz input

b chirp bandwidth Hz input

scat_range vector of scatterers range Km input

scat_rsc vector of scatterers RCS m2 input

win 0 = no window

 1 = Hamming 

2 = Kaiser with parameter pi

3 = Chebychev - sidelobes at -60dB

none input

y compressed output volts output

I R1 R2

ψ t( ) 2π f– 0τi
µ
2
--- t τi–( )2+ 

 

i 1=

I

∑=

τi 2Ri c⁄( ) i; 1 2 … I, , ,= ={ }
τ1

y
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function n = power_integer_2 (x)
m = 0.;
for j = 1:30
   m = m + 1.;
   delta = x - 2.^m;
   if(delta < 0.)
      n = m;
      return
   else
   end
end

As an example, consider the case where

Note that the compressed pulsed range resolution, without using a window,
is . Figs. 7.5 and 7.6, respectively, show the uncompressed and
compressed echo signal corresponding to this example. 

nscat 2 b 16 MHz

rmin 150 Km scat_range rmin in Km + {0, 50} meters

rrec 200 m scat_rsc {1, 1} m2

taup 0.005 ms win 2 (Kaiser)

f0 14 MHz

∆R 9.3m=

 Figure 7.5. Uncompressed echo signal. Scatterers are unresolved. 
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7.3.2.  Stretch Processor

Stretch processing, also known as “active correlation,” is normally used to
process extremely high bandwidth LFM waveforms. This processing technique
consists of the following steps: First, the radar returns are mixed with a replica
(reference signal) of the transmitted waveform. This is followed by Low Pass
Filtering (LPF) and coherent detection. Next, Analog to Digital (A/D) conver-
sion is performed; and finally, a bank of Narrow Band Filters (NBFs) is used in
order to extract the tones that are proportional to target range, since stretch pro-
cessing effectively converts time delay into frequency. All returns from the
same range bin produce the same constant frequency. Fig. 7.7 shows a block
diagram for a stretch processing receiver. The reference signal is an LFM
waveform that has the same LFM slope as the transmitted LFM signal. It exists
over the duration of the radar “receive-window,” which is computed from the
difference between the radar maximum and minimum range. Denote the start
frequency of the reference chirp as .

Consider the case when the radar receives returns from a few close (in time
or range) targets, as illustrated in Fig. 7.7. Mixing with the reference signal and
performing low pass filtering are effectively equivalent to subtracting the
return frequency chirp from the reference signal. Thus, the LPF output consists
of constant tones corresponding to the targets’ positions. The normalized trans-
mitted signal can be expressed by 

 Figure 7.6. Compressed echo signal. Scatterers are resolved. 
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Figure 7.7. Stretch processing block diagram.
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(7.26)

where  is the LFM coefficient and  is the chirp start frequency.
Assume a point scatterer at range . The received signal by the radar is

(7.27)

where  is proportional to target RCS, antenna gain, and range attenuation.
The time delay  is 

(7.28)

The reference signal is 

(7.29)

The received window in seconds is 

(7.30)

It is customary to let . The output of the mixer is made of the product of
the received and reference signals. After low pass filtering the signal is 

(7.31)

Substituting Eq. (7.28) into (7.31) and collecting terms yield

(7.32)

and since , Eq. (7.32) is approximated by

(7.33)

The instantaneous frequency is

(7.34)

which clearly indicates that target range is proportional to the instantaneous
frequency. Therefore, proper sampling of the LPF output and taking the FFT of
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the sampled sequence lead to the following conclusion: a peak at some fre-
quency  indicates presence of a target at range 

(7.35)

Assume  close targets at ranges , , and so forth ( ).
From superposition, the total signal is

(7.36)

where  are proportional to the targets’ cross sections,
antenna gain, and range. The times  represent
the two-way time delays, where  coincides with the start of the receive win-
dow. Using Eq. (7.32) the overall signal at the output of the LPF can then be
described by 

(7.37)

And hence, target returns appear at constant frequency tones that can be
resolved using the FFT. Consequently, determining the proper sampling rate
and FFT size is very critical. The rest of this section presents a methodology
for computing the proper FFT parameters required for stretch processing.

Assume a radar system using a stretch processor receiver. The pulse width is
 and the chirp bandwidth is . Since stretch processing is normally used in

extreme bandwidth cases (i.e., very large ), the receive window over which
radar returns will be processed is typically limited to few meters to possibly
less than 100 meters. The compressed pulse range resolution is computed from
Eq. (7.8). Declare the FFT size by  and its frequency resolution by . The
frequency resolution can be computed using the following procedure: consider
two adjacent point scatterers at range  and . The minimum frequency
separation, , between those scatterers so that they are resolved can be com-
puted from Eq. (7.34). More precisely,

 (7.38)

Substituting Eq. (7.8) into Eq. (7.38) yields

(7.39)
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The maximum resolvable frequency by the FFT is limited to the region
. Thus, the maximum resolvable frequency is 

 (7.40)

Using Eqs. (7.30) and (7.39) into Eq. (7.40) and collecting terms yield

(7.41)

For better implementation of the FFT, choose an FFT of size 

(7.42)

 is a nonzero positive integer. The sampling interval is then given by

(7.43)

MATLAB Function “stretch.m”

The function “stretch.m” presents a digital implementation of stretch pro-
cessing. It is given in Listing 7.2 in Section 7.5. The syntax is as follows:

[y] = stretch (nscat, taup, f0, b, rmin, rrec, scat_range, scat_rcs, win)

where

Symbol Description Units Status

nscat number of point scatterers within the 
received window

none input

rmin minimum range of receive window Km input

rrec range receive window m input

taup uncompressed pulse width seconds input

f0 chirp start frequency Hz input

b chirp bandwidth Hz input

scat_range vector of scatterers range Km input

scat_rsc vector of scatterers RCS m2 input

win 0 = no window

 1 = Hamming 

2 = Kaiser with parameter pi

3 = Chebychev - sidelobes at -60dB

none input

y compressed output volts output

N∆f± 2⁄

N∆f
2

----------
2B Rmax Rmin–( )

cτ′
---------------------------------------->

2BRrec

cτ′
-----------------=

N 2BTrec>

NFFT N≥ 2m=

m

∆f
1

TsNFFT

-----------------= Ts⇒ 1
∆fNFFT

------------------=
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The user can access this function either by a MATLAB function call or by exe-
cuting the MATLAB program “stretch_driver.m” which utilizes MATLAB
based GUI. The outputs of this function are the complex array  and plots of
the uncompressed and compressed echo signal versus time. As an example,
consider the case where

Note that the compressed pulse range resolution, without using a window, is
. Figs. 7.8 and 7.9, respectively, show the uncompressed and

compressed echo signals corresponding to this example. 

nscat 3

rmin 150 Km

rrec 30 m

taup 10 ms

f0 5.6 GHz

b 1 GHz

scat_range rmin in Km+ {1.5, 7.5, 15.5} m

scat_rsc {1, 1, 2} m2

win 2 (Kaiser)

y

∆R 0.15cm=

 Figure 7.8. Uncompressed echo signal. Three targets are unresolved. 
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7.3.3. Distortion Due to Target Velocity 

Up to this point, we have analyzed pulse compression with no regards to tar-
get velocity. In fact, all analyses provided assumed stationary targets. Uncom-
pensated target radial velocity, or equivalently Doppler shift, degrades the
quality of the HRR profile generated by pulse compression. In Chapter 5, the
effects of radial velocity on SFW were analyzed; similar distortion in the HRR
profile is also present with LFM waveforms when target radial velocity is not
compensated for. 

The two effects of target radial velocity (Doppler frequency) on the radar
received pulse were developed in Chapter 1. When the target radial velocity is
not zero, the received pulse width is expanded (or compressed) by the time
dilation factor. Additionally, the received pulse center frequency is shifted by
the amount of Doppler frequency. When these effects are not compensated for,
the pulse compression processor output is distorted. This is illustrated in Fig.
7.10. Fig. 7.10a shows a typical output of the pulse compression processor
with no distortion. Alternatively, Figs. 7.10b, 7.10c, and 7.10d show the output
of the pulse compression processor when 5% shift of the chirp center fre-
quency and 10% time dilation are present. 

 Figure 7.9. Compressed echo signal. Three targets are resolved. 
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 Figure 7.10a. Compressed pulse output of a pulse compression processor. No 
distortion is present. This figure can be reproduced using 
MATLAB program “fig7_10” given in Listing 7.3 in Section 7.5.
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 Figure 7.10b. Mismatched compressed pulse; 5% Doppler shift.
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 Figure 7.10c. Mismatched compressed pulse; 10% time dilation.
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 Figure 7.10d. Mismatched compressed pulse; 10% time dilation and 5% 
Doppler shift.
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Correction for the distortion caused by the target radial velocity can be over-
come by using the following approach. Over a period of few pulses, the radar
data processor estimates the radial velocity of the target under track. Then, the
chirp slope and pulse width of the next transmitted pulse are changed to
account for the estimated Doppler frequency and time dilation. 

7.3.4. Range Doppler Coupling

 Plots and characteristics of the ambiguity function for an LFM waveform
were presented in Chapter 6. However, the distinctive property of range Dop-
pler coupling associated with LFM was not presented. Range Doppler coupling
is a phrase used to describe the shift in the delay/range response of an LFM
ambiguity function due to the presence of a Doppler shift. The nature of range
Doppler coupling can be better understood by analyzing the LFM ambiguity
function. An expression for an LFM ambiguity function was developed in
Chapter 6, and is repeated here as Eq. (7.44):

(7.44)

For this purpose, consider the sketch of an LFM ambiguity function shown in
Fig. 7.11.

χ τ fd;( ) 2 1 τ
τ'
-----– 

 
πτ' µτ fd+( ) 1 τ

τ'
-----– 

 
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 sin

πτ' µτ fd+( ) 1 τ
τ'
-----– 

 
---------------------------------------------------------------

2

= τ τ'≤

fD µτ′–=

τ

fD

am b igu ity

τ′

 Figure 7.11. Illustration of range Doppler coupling for an LFM pulse.
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The ambiguity surface extends from  to  in range and from  to 
in Doppler. The response has a maximum at the point . Pro-
files parallel to the Doppler axis have maxima above the line  which
passes through the origin. The presence of radial velocity forces the peak of the
ambiguity surface to a point that has a peak value smaller than the maximum
that occurs at the origin. However, as long as the shift is less than the line

, the ambiguity function response exerts acceptable reduction in
peak values, as illustrated in Fig. 7.11. This is the reason why some times LFM
waveforms are called Doppler invariant. 

7.4. Digital Pulse Compression

In this section we will briefly discuss three digital pulse compression tech-
niques. They are frequency codes, binary phase codes, and poly-phase codes.
Costas codes, Barker Codes, and Frank codes will be presented to illustrate,
respectively, frequency, binary phase, and poly-phase coding. We will deter-
mine the pulse compression goodness of a code, based on its autocorrelation
function since in the absence of noise, the output of the matched filter is pro-
portional to the code autocorrelation. Given the autocorrelation function of a
certain code, the main lobe width (compressed pulse width) and the side lobe
levels are the two factors that need to be considered in order to evaluate the
code’s pulse compression characteristics. 

7.4.1.  Frequency Coding (Costas Codes)

Construction of Costas codes can be understood from the construction pro-
cess of Stepped Frequency Waveforms (SFW) described in Chapter 5. In SFW,
a relatively long pulse of length  is divided into  subpulses, each of width

 ( ). Each group of  subpulses is called a burst. Within each burst
the frequency is increased by  from one subpulse to the next. The overall
burst bandwidth is . More precisely,

(7.45)

and the frequency for the  subpulse is

(7.46)

where  is a constant frequency and . It follows that the time-band-
width product of this waveform is

(7.47)
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Costas signals (or codes) are similar to SFW, except that the frequencies for
the subpulses are selected in a random fashion, according to some predeter-
mined rule or logic. For this purpose, consider the  matrix shown in Fig.
7.12. In this case, the rows are indexed from  and the columns
are indexed from . The rows are used to denote the
subpulses and the columns are used to denote the frequency. A “dot” indicates
the frequency value assigned to the associated subpulse. In this fashion, Fig.
7.12a shows the frequency assignment associated with a SFW. Alternatively,
the frequency assignments in Fig. 7.12b are chosen randomly. For a matrix of
size , there are a total of  possible ways of assigning the “dots” (i.e.,

 possible codes). 

The sequences of “dots” assignment for which the corresponding ambiguity
function approaches an ideal or a “thumbtack” response are called Costas
codes. A near thumbtack response was obtained by Costas1 by using the fol-
lowing logic: only one frequency per time slot (row) and per frequency slot
(column). Therefore, for an  matrix the number of possible Costas codes
is drastically less than .   For example, there are  possible Costas
codes for , and  possible codes for . It can be shown
that the code density, defined as the ratio , significantly gets smaller as

 becomes larger. 

1. Costas, J. P., A study of a Class of Detection Waveforms Having Nearly Ideal 
Range-Doppler Ambiguity Properties, Proc. IEEE 72, 1984, pp. 996-1009.

N N×
i 1 2 … N, , ,=

j 0 1 2 … N 1–( ), , , ,=

N N× N!
N!

N N×
N! Nc 4=

N 3= Nc 40= N 5=
Nc N!⁄

N

 Figure 7.12. Frequency assignment for a burst of N subpulses. (a) SFW (stepped 
LFM); (b) Costas code of length Nc = 10. 
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There are numerous analytical ways to generate Costas codes. In this section
we will describe two of these methods. First, let  be an odd prime number,
and choose the number of subpulses as

 (7.48)

Define  as the primitive root of . A primitive root of  (an odd prime num-
ber) is defined as  such that the powers  modulo  generate
every integer from  to . 

In the first method, for an  matrix, label the rows and columns, respec-
tively, as

(7.49)

Place a dot in the location  corresponding to the frequency  (from Eq.
(7.46)) if and only if

 (7.50)

In the next method, Costas code is first obtained from the logic described
above; then by deleting the first row and first column from the matrix a new
code is generated. This method produces a Costas code of length .

Define the normalized complex envelope of the Costas signal as

(7.51)

(7.52)

Costas showed that the output of the matched filter is 

(7.53)

(7.54)
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(7.55)

(7.56)

Three-dimensional plots for the ambiguity function of Costas signals show
the near thumbtack response of the ambiguity function. All sidelobes, except
for few around the origin, have amplitude . Few sidelobes close to the ori-
gin have amplitude , which is typical of Costas codes. The compression
ratio of a Costas code is approximately . 

7.4.2. Binary Phase Codes

In this case, a relatively long pulse of width  is divided into  smaller
pulses; each is of width . Then, the phase of each sub-pulse is ran-
domly chosen as either  or  radians relative to some CW reference signal. It
is customary to characterize a sub-pulse that has  phase (amplitude of +1
Volt) as either “1” or “+.” Alternatively, a sub-pulse with phase equal to 
(amplitude of -1 Volt) is characterized by either “0” or “-.” The compression
ratio associated with binary phase codes is equal to , and the peak
value is  times larger than that of the long pulse. The goodness of a com-
pressed binary phase code waveform depends heavily on the random sequence
of the phase for the individual sub-pulses. 

One family of binary phase codes that produce compressed waveforms with
constant side lobe levels equal to unity is the Barker code. Fig. 7.13 illustrates
this concept for a Barker code of length seven. A Barker code of length  is
denoted as . There are only seven known Barker codes that share this
unique property; they are listed in Table 7.1. Note that  and  have com-
plementary forms that have the same characteristics. Since there are only seven
Barker codes, they are not used when radar security is an issue.
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Figure 7.13. Binary phase code of length 7. 
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In general, the autocorrelation function (which is an approximation for the
matched filter output) for a  Barker code will be  wide. The main
lobe is  wide; the peak value is equal to . There are  side
lobes on either side of the main lobe; this is illustrated in Fig. 7.14 for a .
Notice that the main lobe is equal to 13, while all side lobes are unity.

The most side lobe reduction offered by a Barker code is , which
may not be sufficient for the desired radar application. However, Barker codes
can be combined to generate much longer codes. In this case, a  code can be
used within a  code (  within ) to generate a code of length . The
compression ratio for the combined  code is equal to . As an example,
a combined  is given by 

(7.57)

and is illustrated in Fig. 7.15. Unfortunately, the side lobes of a combined
Barker code autocorrelation function are no longer equal to unity. 

Some side lobes of a Barker code autocorrelation function can be reduced to
zero if the matched filter is followed by a linear transversal filter with impulse
response given by

(7.58)

TABLE 7.1. Barker codes.

Code 
symbol

Code 
length Code elements

Side lode 
reduction (dB)

2 +- 

++

6.0

3 ++- 9.5

4 ++-+ 

+++-

12.0

5 +++-+ 14.0

7 +++--+- 16.9

11 +++---+--+- 20.8

13 +++++--++-+-+ 22.3
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 Figure 7.14. Barker code of length 13, and its corresponding 
autocorrelation function.
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where  is the filter’s order, the coefficients  ( ) are to be deter-
mined,  is the delta function, and  is the Barker code sub-pulse
width. A filter of order  produces  zero side lobes on either side of the
main lobe. The main lobe amplitude and width do not change. This is illus-
trated in Fig. 7.16.

In order to illustrate this approach further, consider the case where the input
to the matched filter is , and assume . The autocorrelation for a 
code is 

(7.59)

The output of the transversal filter is the discrete convolution between its
impulse response and the sequence . At this point we need to compute the
coefficients  that guarantee the desired filter output (i.e., unchanged main
lobe and four zero side lobe levels). Performing the discrete convolution as
defined in Eq. (7.58), and collecting equal terms ( ) yield the follow-
ing set of five linearly independent equations:

(7.60)

The solution of Eq. (7.60) is left as an exercise. Note that by setting the first
equation equal to  and all other equations to  and then solving for 
guarantees that the main peak remains unchanged, and that the next four side
lobes are zeros. So far we have assumed that coded pulses have rectangular
shapes. Using other pulses of other shapes, such as Gaussian, may produce bet-
ter side lobe reduction and a larger compression ratio.
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 Figure 7.16. A linear transversal filter of order N can be used to 
produce N zero side lobes in the autocorrelation 
function. In this figure, N = 4.
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7.4.3.  Frank Codes

Codes that use any harmonically related phases based on a certain funda-
mental phase increment are called poly-phase codes. We will demonstrate this
coding technique using Frank codes. In this case, a single pulse of width  is
divided into  equal groups; each group is subsequently divided into other 
sub-pulses each of width . Therefore, the total number of sub-pulses within
each pulse is , and the compression ratio is . As before, the phase
within each sub-pulse is held constant with respect to some CW reference sig-
nal. 

A Frank code of  sub-pulses is referred to as an N-phase Frank code. The
first step in computing a Frank code is to divide  by , and define the
result as the fundamental phase increment . More precisely,

(7.61)

Note that the size of the fundamental phase increment decreases as the number
of groups is increased, and because of phase stability, this may degrade the per-
formance of very long Frank codes. For N-phase Frank code the phase of each
sub-pulse is computed from

(7.62)

where each row represents a group, and a column represents the sub-pulses for
that group. For example, a 4-phase Frank code has , and the fundamen-
tal phase increment is . It follows that

(7.63)

Therefore, a Frank code of  elements is given by

(7.64)

τ'
N N

∆τ
N

2 ξ N
2=

N
2

360° N
∆ϕ

∆ϕ 360°
N

-----------=

0 0 0 0 … 0

0 1 2 3 … N 1–

0 2 4 6 … 2 N 1–( )
… … … … … …
… … … … … …

0 N 1–( ) 2 N 1–( ) 3 N 1–( ) … N 1–( )2 
 
 
 
 
 
 
 
 
 

∆ϕ

N 4=
∆ϕ 360° 4⁄( ) 90°= =

0 0 0 0

0 90° 180° 270°
0 180° 0 180°
0 270° 180° 90° 
 
 
 
 
  1 1 1 1

1 j 1– j–

1 1– 1 1–

1 j– 1– j 
 
 
 
 
 

⇒

16

F16 1 1 1 1 1 j 1– j– 1 1– 1 1– 1 j– 1– j{ }=

© 2000 by Chapman & Hall/CRC



The phase increments within each row represent a stepwise approximation
of an up-chirp LFM waveform. The phase increments for subsequent rows
increase linearly versus time. Thus, the corresponding LFM chirp slopes also
increase linearly for subsequent rows. This is illustrated in Fig. 7.17, for . 

7.4.4. Pseudo-Random (PRN) Codes

Pseudo-random (PRN) codes are also known as Maximal Length Sequences
(MLS) codes. These codes are called pseudo-random because the statistics
associated with their occurrence is similar to that associated with the coin-toss
sequences. Maximum length sequences are periodic with period  and the
code values take on two binary values (+1 and -1). The MLS correlation func-
tion is 

(7.65)

Fig. 7.18 shows a typical sketch for an MLS autocorrelation function. Clearly
these codes have the advantage that the compression ratio becomes very large
as the period is increased. Additionally, adjacent peaks (grating lobes) become
farther apart.

Maximum length sequences exist for all integer values , with a period
equal to . They can be generated using shift register circuits with the
proper feedback connections, where the sum is a modulo-2 operation. This is
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 Figure 7.17. Stepwise approximation of an up-chirp waveform, 
using a Frank code of 16 elements. 
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illustrated in Fig. 7.19 for  (i.e., ). Note that the circuit shown
in Fig. 7.19 is not the only one that can produce this code.

In radar applications, long codes are very desirable. However, having very
long codes presents many possibilities for the feedback connections through
the modulo-2 adder. For example, for , the period is ,
which is very huge and may take years to produce the corresponding code.
Therefore, there is a need for a more systematic method for producing MLS
codes. 

In practice, typical MLS codes are produced by using the primitive polyno-
mials with the proper degree that corresponds to the code, and the feedback
connections are made according to the chosen polynomial, as illustrated in Fig.
7.19 for . In this example the primitive polynomial is . Of
course the initial loading for the registers must be different from all zeros.
More details on primitive polynomials can be found in many sited references.
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 Figure 7.18. Typical autocorrelation of an MLS code of length L.
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 Figure 7.19. Circuit for generating an MLS sequence of length . 
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7.5. MATLAB Listings

This section presents listings for all MATLAB programs/functions used in
this chapter. The user is advised to rerun these programs with different input
parameters.

Listing 7.1. MATLAB Function “matched_filter.m”
function [y] = matched_filter(nscat, taup, f0, b, rmin, rrec, scat_range, 
scat_rcs, winid)
%
eps = 1.0e-16;
htau = taup / 2.;
c = 3.e8;
n = fix(2. * taup * b);
m = power_integer_2(n);
nfft = 2.^m;
x(nscat,1:nfft) = 0.;
y(1:nfft) = 0.;
replica(1:nfft) = 0.;
if( winid == 0.)
   win(1:nfft) = 1.;
   win =win';
else
   if(winid == 1.)
      win = hamming(nfft);
   else
      if( winid == 2.)
         win = kaiser(nfft,pi);
      else
         if(winid == 3.)
            win = chebwin(nfft,60);
         end
      end
   end
end
deltar = c / 2. / b;
max_rrec = deltar * nfft / 2.;
maxr = max(scat_range) - rmin;
if(rrec > max_rrec | maxr >= rrec )
   'Error. Receive window is too large; or scatterers fall outside window'
   break
end
trec = 2. * rrec / c;
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deltat = taup / nfft;
t = 0: deltat:taup-eps;
uplimit = max(size(t));
replica(1:uplimit) = exp(i * 2.* pi * (.5 * (b/taup) .* t.^2));
figure(3)
subplot(2,1,1)
plot(real(replica))
title('Matched filter time domain response')
subplot(2,1,2)
plot(fftshift(abs(fft(replica))));
title('Matched filter frequency domain response')
for j = 1:1:nscat
   t_tgt = 2. * (scat_range(j) - rmin) / c +htau;
   x(j,1:uplimit) = scat_rcs(j) .* exp(i *  2.* pi * ...
      (.5 * (b/taup) .* (t+t_tgt).^2));
   y = y + x(j,:);
end
figure(1)
plot(t,real(y),'k')
xlabel ('Relative delay - seconds')
ylabel ('Uncompressed echo')
title ('Zero delay coincide with minimum range')
rfft = fft(replica,nfft);
yfft = fft(y,nfft);
out= abs(ifft((rfft .* conj(yfft)) .* win' )) ./ (nfft);
figure(2)
time = -htau:deltat:htau-eps;
plot(time,out,'k')
xlabel ('Relative delay - seconds')
ylabel ('Compressed echo')
title ('Zero delay coincide with minimum range')
grid

Listing 7.2. MATLAB Function “stretch.m”
function [y] = stretch(nscat,taup,f0,b,rmin,rrec,scat_range,scat_rcs,winid)
eps = 1.0e-16;
htau = taup / 2.;
c = 3.e8;
trec = 2. * rrec / c;
n = fix(2. * trec * b);
m = power_integer_2(n);
nfft = 2.^m;
x(nscat,1:nfft) = 0.;
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y(1:nfft) = 0.;
if( winid == 0.)
   win(1:nfft) = 1.;
   win =win';
else
   if(winid == 1.)
      win = hamming(nfft);
   else
      if( winid == 2.)
         win = kaiser(nfft,pi);
      else
         if(winid == 3.)
            win = chebwin(nfft,60);
         end
      end
   end
end
deltar = c / 2. / b;
max_rrec = deltar * nfft / 2.;
maxr = max(scat_range) - rmin;
if(rrec > max_rrec | maxr >= rrec )
   'Error. Receive window is too large; or scatterers fall outside window'
   break
end
deltat = taup / nfft;
t = 0: deltat:taup-eps;
uplimit = max(size(t));
for j = 1:1:nscat
   psi1 = 4. * pi * scat_range(j) * f0 / c - ...
      4. * pi * b * scat_range(j) * scat_range(j) / c / c/ taup;
   psi2 = (4. * pi * b * scat_range(j) / c / taup) .* t;
   x(j,1:uplimit) = scat_rcs(j) .* exp(i * psi1 + i .* psi2);
   y = y + x(j,:);
end
figure(1)
plot(t,real(y),'k')
xlabel ('Relative delay - seconds')
ylabel ('Uncompressed echo')
title ('Zero delay coincide with minimum range')
ywin = y .* win';
yfft = fft(y,nfft) ./ nfft;
out= fftshift(abs(yfft));
figure(2)
time = -htau:deltat:htau-eps;
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plot(time,out,'k')
xlabel ('Relative delay - seconds')
ylabel ('Compressed echo')
title ('Zero delay coincide with minimum range')
grid

Listing 7.3. MATLAB Program “fig7_10.m’
clear all
eps = 1.5e-5;
t = 0:0.001:.5;                 
y = chirp(t,0,.25,20);
figure(1)
plot(t,y);
yfft = fft(y,512) ;
ycomp = fftshift(abs(ifft(yfft .* conj(yfft))));
maxval = max (ycomp);
ycomp = eps + ycomp ./ maxval; 
figure(1)
del = .5 /512.;
tt = 0:del:.5-eps;
plot (tt,ycomp,'k')
xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid
%change center frequency
y1 = chirp (t,0,.25,21);
y1fft = fft(y1,512);
y1comp = fftshift(abs(ifft(y1fft .* conj(yfft))));
maxval = max (y1comp);
y1comp = eps + y1comp ./ maxval; 
figure(2)
plot (tt,y1comp,'k')
xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid
%change pulse width
t = 0:0.001:.45;                 
y2 = chirp (t,0,.225,20);
y2fft = fft(y2,512);
y2comp = fftshift(abs(ifft(y2fft .* conj(yfft))));
maxval = max (y2comp);
y2comp = eps + y2comp ./ maxval; 
figure(3)
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plot (tt,y2comp,'k')
xlabel ('Relative delay - seconds');
ylabel('Normalized compressed pulse')
grid

 Problems

7.1. Starting with Eq. (7.17), prove Eq. (7.21).

7.2. The smallest positive primitive root of  is ; for 
generate the corresponding Costas matrix.
7.3. Develop a MATLAB program to plot the ambiguity function associ-
ated with Costas codes. Use Eqs. (7.53) through (7.56). Your program should
generate 3-D plots, contour plots, and zero delay/Doppler cuts. Verify the side
lobe behaviour and the compression ratio of Costas codes. 

7.4. Consider the 7-bit Barker code, designated by the sequence . (a)
Compute and plot the autocorrelation of this code. (b) A radar uses binary
phase coded pulses of the form , where

, , and

. Assume . (a) Give an expression for the

autocorrelation of the signal , and for the output of the matched filter when

the input is ; (b) compute the time bandwidth product, the increase
in the peak SNR, and the compression ratio.

7.5. (a) Perform the discrete convolution between the sequence 

defined in Eq. (7.59), and the transversal filter impulse response (i.e., derive
Eq. (7.60). (b) Solve Eq. (7.60), and sketch the corresponding transversal filter
output.

7.6. Repeat the previous problem for  and . Use Barker
code of length 13.

7.7. Develop a Barker code of length 35. Consider both  and . 

7.8. Write a computer program to calculate the discrete correlation between
any two finite length sequences. Verify your code by comparing your results to
the output of the MATLAB function “xcorr”.

7.9. Compute the discrete autocorrelation for an  Frank code.

7.10. Generate a Frank code of length 8, .
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x n( )
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283

Chapter 8 Radar Wave Propagation 

In the earlier chapters, radar systems were analyzed with the assumption that
the radar waves which traveled to and from targets are in free space. Signal
interference due to the earth and its atmosphere was not considered. Despite
the fact that “free space analysis” may be adequate to provide a general under-
standing of radar systems, it is only an approximation. In order to accurately
predict radar performance, we must modify free space analysis to include the
effects of the earth and its atmosphere. This modification should account for
ground reflections from the surface of the earth, diffraction of electromagnetic
waves, bending or refraction of radar waves due to the earth atmosphere, and
attenuation or absorption of radar energy by the gases constituting the atmo-
sphere.

8.1. Earth Atmosphere

The earth atmosphere is compromised of several layers, as illustrated in Fig.
8.1. The first layer which extends in altitude to about 20 Km is known as the
troposphere. Electromagnetic waves refract (bend downward) as they travel in
the troposphere. The troposphere refractive effect is related to its dielectric
constant which is a function of the pressure, temperature, water vapor, and gas-
eous content. Additionally, due to gases and water vapor in the atmosphere
radar energy suffers a loss. This loss is known as the atmospheric attenuation.
Atmospheric attenuation increases significantly in the presence of rain, fog,
dust, and clouds. 

The region above the troposphere (altitude from 20 to 50 Km) behaves like
free space, and thus little refraction occurs in this region. This region is known
as the interference zone.
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 The ionosphere extends from about 50 Km to about 600 Km. It has very low
gas density compared to the troposphere. It contains a significant amount of
ionized free electrons. The ionization is primarily caused by the sun’s ultravio-
let and X-rays. This presence of free electrons in the ionosphere affects electro-
magnetic wave propagation in different ways. These effects include refraction,
absorption, noise emission, and polarization rotation. The degree of degrada-
tion depends heavily on the frequency of the incident waves. For example,
frequencies lower than about 4 to 6 MHz are completely reflected from the
lower region of the ionosphere. Frequencies higher than 30 MHz may pene-
trate the ionosphere with some level of attenuation. In general, as the fre-
quency is increased the ionosphere’s effects become less prominent. 

The region below the horizon, close to the earth’s surface, is called the dif-
fraction region. Diffraction is a term used to describe the bending of radar
waves around physical objects. Two types of diffraction are common. They are
knife edge and cylinder edge diffraction.

8.2. Refraction

In free space, electromagnetic waves travel in straight lines. However, in the
presence of the earth atmosphere, they bend (refract). Refraction is a term used

Figure 8.1. Earth atmosphere geometry.
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to describe the deviation of radar wave propagation from straight lines. The
deviation from straight line propagation is caused by the variation of the index
of refraction. The index of refraction is defined as 

(8.1)

where  is the velocity of electromagnetic waves in free space and  is the
wave velocity in the medium. Close to the earth’s surface the index of refrac-
tion is almost unity; however, with increasing altitude the index of refraction
decreases gradually. The discussion presented in this chapter assumes a well
mixed atmosphere, where the index of refraction decreases in a smooth mono-
tonic fashion with height. The rate of change of the earth’s index of refraction

 with altitude  is normally referred to as the refractivity gradient, .
As a result of the negative rate of change in , electromagnetic waves
travel at slightly higher velocities in the upper troposphere than the lower part.
As a result of this, waves traveling horizontally in the troposphere gradually
bend downward. In general, since the rate of change in the refractivity index is
very slight, waves do not curve downward appreciably unless they travel very
long distances through the troposphere. 

Refraction affects radar waves in two different ways depending on height.
For targets that have altitudes, typically above 100 meters, the effect of refrac-
tion is illustrated in Fig. 8.2. In this case, refraction imposes limitations on the
radar’s capability to measure target position. Refraction introduces an error in
measuring the elevation angle.

n c v⁄=

c v

n h dn dh⁄
dn dh⁄

 Figure 8.2. Refraction high altitude effect on electromagnetic waves.
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In a well mixed atmosphere, the refractivity gradient close to the earth’s sur-
face is almost constant. However, temperature changes and humidity lapses
close to the earth’s surface may cause serious changes in the refractivity pro-
file. When the refractivity index becomes large enough electromagnetic waves
bend around the curve of the earth. Consequently, the radar’s range to the hori-
zon is extended. This phenomenon is called ducting, and is illustrated in Fig.
8.3. Ducting can be serious over the sea surface, particularly during the hot
summertime. 

Using ray tracing (geometric optics) an integral-relating range-to-target
height with the elevation angle as a parameter can be derived and calculated.
However, such computations are complex and numerically intensive. Thus, in
practice, radar systems deal with refraction in two different ways, depending
on height. For altitudes higher than 3 Km, actual target heights are estimated
from look-up tables or from charts of target height versus range for different
elevation angles. 

Simpler methods that are valid for altitude less than 3 Km, for calculating
target height, can also be employed. In this case, the most common way of
dealing with refraction is to replace the actual earth with an imaginary earth
whose effective radius is , where  is the actual earth radius, and k
is 

(8.2)

When the refractivity gradient is assumed to be constant with altitude and is
equal to  per meter, then . Using an effective earth radius

 produces what is known as the “four third earth model.” In
general, choosing 

(8.3)

re kr0= r0

k
1

1 r0 dn dh⁄( )+
-----------------------------------=

39 10 9–× k 4 3⁄=
re 4 3⁄( )r0=

re r0 1 6.37 10 3–× dn dh⁄( )+( )=

 Figure 8.3. Refraction low altitude effect on electromagnetic waves.
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produces a propagation model where waves travel in straight lines. Selecting
the correct value for  depends heavily on the region’s meteorological condi-
tions. Blake1 derives the “height-finding equation” for the 4/3 earth. It is

(8.4)

where  and  are in feet and  is nautical miles. All variables are defined in
Fig. 8.4.

 The distance to the horizon for a radar located at height  can be calculated
with the help of Fig. 8.5. For the right-angle triangle OBA we get

(8.5)

where  is the distance to the horizon. By expanding Eq. (8.5) and collecting
terms we can derive the expression for the distance to the horizon as 

(8.6)

Finally, since  Eq. (8.6) is approximated by

(8.7)

and when refraction is accounted for, Eq. (8.7) becomes

(8.8)

1. Blake, L. V., Radar Range-Performance Analysis, Artech House, 1986. 
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 Figure 8.4. Measuring target height for 4/3 earth.
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8.3. Ground Reflection 

When radar waves are reflected from the earth’s surface, they suffer a loss in
amplitude and a change in phase. Three factors that contribute to these changes
that are the overall ground reflection coefficient are the reflection coefficient
for a flat surface, the divergence factor due to earth curvature, and the surface
roughness. 

8.3.1. Smooth Surface Reflection Coefficient

The smooth surface reflection coefficient depends on the frequency, on the
surface dielectric coefficient, and on the radar grazing angle. The vertical
polarization and the horizontal polarization reflection coefficients are 

(8.9)

(8.10)

where  is the grazing angle (incident angle) and  is the complex dielectric
constant of the surface, and are given by

(8.11)
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 Figure 8.5. Measuring the distance to the horizon.
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Typical values of  and  can be found tabulated in the literature. For exam-
ple, seawater at  has  and  at X-band. Fig. 8.6 shows
the corresponding magnitude plots for  and , while Fig. 8.7 shows the
phase plots. The plots shown in those figures show the general typical behavior
of the reflection coefficient.
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Figure 8.6. Reflection coefficient magnitude.
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Note that when  we get

(8.12)

while when the grazing angle is very small ( ), we have

(8.13)

Observation of Figs. 8.6 and 8.7 yield the following conclusions: (1) The
magnitude of the reflection coefficient with horizontal polarization is equal to
unity at very small grazing angles and it decreases monotonically as the angle
is increased. (2) The magnitude of the vertical polarization has a well defined
minimum. The angle that corresponds to this condition is called Brewster’s
polarization angle. For this reason, airborne radars in the look-down mode uti-
lize mainly vertical polarization to significantly reduce the terrain bounce
reflections. (3) For horizontal polarization the phase is almost ; however, for
vertical polarization the phase changes to zero around the Brewster’s angle. (4)
For very small angles (less than ) both  and  are nearly one;

and  are nearly . Thus, little difference in the propagation of hori-
zontally or vertically polarized waves exists at low grazing angles. 

MATLAB Function “ref_coef.m”

The function “ref_coef.m” calculates and plots the horizontal and vertical
magnitude and phase response of the reflection coefficient. It is given in Sec-
tion 8.7. The syntax is as follows

[rh,rv,ph,pv] = ref_coef (epsp,epspp)

where

Symbol Description Status

epsp input

epspp input

rh vector of output

rv vector of output

ph vector of output

vh vector of output
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8.3.2. Divergence

The overall reflection coefficient is also affected by the round earth diver-
gence factor, . When an electromagnetic wave is incident on a round earth
surface, the reflected wave diverges because of the earth’s curvature. This is
illustrated in Fig. 8.8a. Due to divergence the reflected energy is defocused,
and the radar power density is reduced. The divergence factor can be derived
using geometrical considerations. A widely accepted approximation for the
divergence factor is given by

(8.14)

where all variables in Eq. (8.14) are defined in Fig. 8.8b. 
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8.3.3. Rough Surface Reflection

In addition to divergence, surface roughness also affects the reflection coef-
ficient. Surface roughness is given by 

(8.15)

where  is the rms surface height irregularity. In general, rays reflected
from rough surfaces undergo changes in phase and amplitude, which results in
the diffused (non-coherent) portion of the reflected signal. Combining the
above three factors, we can express the total reflection coefficient  as

(8.16)

 is the horizontal or vertical smoothed surface reflection coefficient.

8.4. The Pattern Propagation Factor

In general, the pattern propagation factor is a term used to describe the wave
propagation when free space conditions are not met. This factor is defined sep-
arately for the transmitting and receiving paths. The propagation factor also
accounts for the radar antenna pattern effects. The basic definition of the prop-
agation factor is

(8.17)

where  is the electric field in the medium and  is the free space electric
field. 

Near the surface of the earth, multipath propagation effects dominate the for-
mation of the propagation factor. In this section, a general expression for the
propagation factor due to multipath will be developed. In this sense, the propa-
gation factor describes the constructive/destructive interference of the electro-
magnetic waves diffracted from the earth surface (which can be either flat or
curved). The subsequent sections derive the specific forms of the propagation
factor due to flat and curved earth.

 Consider the geometry shown in Fig. 8.9. The radar is located at height .
The target is at range , and is located at a height . The grazing angle is .
The radar energy emanating from its antenna will reach the target via two
paths: the “direct path”  and the “indirect path” . The lengths of the
paths  and  are normally very close to one another and thus, the differ-
ence between the two paths is very small. Denote the direct path as , the
indirect path as , and the difference as . It follows that the
phase difference between the two paths is given by 
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(8.18)

where  is the radar wavelength. 

The indirect signal amplitude arriving at the target is less than the signal
amplitude arriving via the direct path. This is because the antenna gain in the
direction of the indirect path is less than that along the direct path, and because
the signal reflected from the earth surface at point  is modified in amplitude
and phase in accordance to the earth’s reflection coefficient, . The earth
reflection coefficient is given by

(8.19)

where  is less than unity and  describes the phase shift induced on the indi-
rect path signal due to surface roughness.

The direct signal (in volts) arriving at the target via the direct path can be
written as

(8.20)

where the time harmonic term  represents the signal’s time depen-
dency, and the exponential term  represents the signal spatial
phase. The indirect signal at the target is 

(8.21)

where  is the surface reflection coefficient. Therefore, the overall
signal arriving at the target is 

(8.22)

Due to reflections from the earth surface, the overall signal strength is then
modified at the target by the ratio of the signal strength in the presence of earth
to the signal strength at the target in free space. From Eq. (8.17) the modulus of
this ratio is the propagation factor. By using Eqs. (8.20) and (8.22) the propa-
gation factor is computed as

(8.23)

which can be rewritten as
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(8.24)

where . Using Euler’s identity ( ), Eq. (8.24)
can be written as

(8.25)

It follows that the signal power at the target is modified by the factor . By
using reciprocity, the signal power at the radar is computed by multiplying the
radar equation by the factor . In the following two sections we will develop
exact expressions for the propagation factor for flat and curved earth.

The propagation factor for free space and no multipath is . Denote the
radar detection range in free space (i.e., ) as . It follows that the
detection range in the presence of the atmosphere and multipath interference is

 (8.26)

where  is the two-way atmospheric loss at range . Atmospheric attenua-
tion will be discussed in a later section. Thus, for the purpose of illustrating the
effect of multipath interference on the propagation factor, assume that .
In this case, Eq. (8.26) is modified to

(8.27)

Fig. 8.10 shows the general effects of multipath interference on the propaga-
tion factor. Note that, due to the presence of surface reflections, the antenna
elevation coverage is transformed into a lobed pattern structure. The lobe
widths are directly proportional to , and inversely proportional to . A target
located at a maxima will be detected at twice its free space range. Alterna-
tively, at other angles, the detection range will be less than that in free space.

8.4.1. Flat Earth 

Using the geometry of Fig. 8.9, the direct and indirect paths are computed as

(8.28)

(8.29)

Eqs. (8.28) and (8.29) can be approximated using the truncated binomial series
expansion as
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(8.30)

(8.31)

This approximation is valid for low grazing angles, where . It follows
that

(8.32)

Substituting Eq. (8.32) into Eq. (8.18) yields the phase difference due to multi-
path propagation between the two signals (direct and indirect) arriving at the
target. More precisely,

(8.33)
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 Figure 8.10. Vertical lobe structure due to the reflecting surface as a 
function of the elevation angle. 
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At this point assume smooth surface with reflection coefficient . This
assumption means that waves reflected from the surface suffer no amplitude
loss, and that the induced surface phase shift is equal to . Using Eq. (8.18)
and Eq. (8.25) along with these assumptions yield

(8.34)

Substituting Eq. (8.33) into Eq. (8.34) yields

(8.35)

By using reciprocity, the expression for the propagation factor at the radar is
then given by

(8.36)

Finally, the signal power at the radar is computed by multiplying the radar
equation by the factor ,

(8.37)

Since the sine function varies between  and , the signal power will then
vary between  and . Therefore, the fourth power relation between signal
power and the target range results in varying the target range from  to twice
the actual range in free space. In addition to that, the field strength at the radar
will now have holes that correspond to the nulls of the propagation factor. 

The nulls of the propagation factor occur when the sine is equal to zero.
More precisely, 

(8.38)

where . The maxima occur at 

(8.39)

The target heights that produce nulls in the propagation factor are
, and the peaks are produced from target

heights . Therefore, due to the presence of sur-
face reflections, the antenna elevation coverage is transformed into a lobed pat-
tern structure as illustrated by Fig. 8.10. A target located at a maxima will be
detected at twice its free space range. Alternatively, at other angles, the
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detection range will be less than that in free space. At angles defined by Eq.
(8.38) there would be no measurable target returns. 

For small angles, Eq. (8.37) can be approximated by 

(8.40)

Thus, the received signal power varies as the eighth power of the range instead
of the fourth power. Also, the factor  is now replaced by .

8.4.2. Spherical Earth

In order to model the effects of multipath propagation on radar performance
more accurately, we need to remove the flat earth condition and account for the
earth’s curvature. When considering round earth, electromagnetic waves travel
in curved paths because of the atmospheric refraction. And as mentioned ear-
lier, the most commonly used approach to mitigating the effects of atmospheric
refraction is to replace the actual earth by an imaginary earth such that electro-
magnetic waves travel in straight lines. The effective radius of the imaginary
earth is

(8.41)

where  is a constant and  is the actual earth radius ( ). Using the
geometry in Fig. 8.11, the direct and indirect path difference is 

(8.42)

The propagation factor is computed by using  from Eq. (8.42) in Eq. (8.18)
and substituting the result in Eq. (8.25). To compute ( , , and ) the fol-
lowing cubic equation must first be solved for :

(8.43)

The solution is 

(8.44)
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(8.46)

Next, we solve for , , and . From Fig. 8.11,

(8.47)

(8.48)

Using the law of cosines to the triangles ABO and BOC yields
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 Figure 8.11. Geometry associated with multipath propagation 
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(8.49)

(8.50)

Eqs. (8.49) and (8.50) can be written in the following simpler forms:

(8.51)

(8.52)

Using the law of cosines on the triangle AOC yields

(8.53)

Substituting Eqs. (8.51) through (8.53) directly into Eq. (8.42) may not be
conducive to numerical accuracy. A more suitable form for the computation of

 is then derived. The detailed derivation is in Blake. The results are listed
below. For better numerical accuracy use the following expression to compute

:

 (8.54)

where

(8.55)

8.5. Diffraction

Diffraction is a term used to describe the phenomenon of electromagnetic
waves bending around obstacles. It is of major importance to radar systems
operating at very low altitudes. Hills and ridges diffract radio energy and make
it possible to perform detection in regions that are physically shadowed. In
practice, experimental data measurements provide the dominant source of
information available on this phenomenon. Some theoretical analyses of dif-
fraction are also available. However, in these cases many assumptions are
made, and perhaps the most important assumption is that obstacles are chosen
to be perfect conductors. 

The problem of propagation over a knife edge on a plane can be described
with help of Fig. 8.12. The target and radar heights are denoted, respectively,
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by  and . The edge height is . Denote the distance by which the radar
rays clear (or do not clear) the tip of the edge by . As a matter of notation 
is assumed to be positive when the direct rays clear the edge, and is negative
otherwise. Because of the fact that ground reflection occurs on both sides of
the edge, then the propagation factor is composed of four distinct rays, as illus-
trated in Fig. 8.13. An expression for the propagation factor corresponding to
the four rays is reported in Meeks (see Bibliography).

8.6. Atmospheric Attenuation

Electromagnetic waves travel in free space without suffering any energy
loss. Alternatively, due to gases and water vapor in the atmosphere radar

ht hr he
δ δ
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δ

 Figure 8.12. Diffraction over a knife edge. (a) Positive . (b) Negative .δ δ

(a) (b)

 Figure 8.13. Four ray formation.
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energy suffers a loss. This loss is known as the atmospheric attenuation. Atmo-
spheric attenuation increases significantly in the presence of rain, fog, dust,
and clouds. Most of the lost radar energy is normally absorbed by gases and
water vapor and transformed into heat, while a small portion of this lost energy
is used in molecular transformation of the atmosphere particles. 

The two-way atmospheric attenuation over a range  can be expressed as

(8.56)

where  is the one-way attenuation coefficient. Water vapor attenuation peaks
at about , while attenuation due to oxygen peaks at between  and

. Atmospheric attenuation is severe for frequencies higher than
. This is the reason why ground-based radars rarely use frequencies

higher than . 

Atmospheric attenuation is a function range, frequency, and elevation angle.
Fig. 8.14 shows a typical two-way atmospheric attenuation plot versus range at

, with the elevation angle as a parameter. Fig. 8.15 is similar to Fig.
8.14, except it is for . For further details on this subject the reader is
advised to visit Blake.
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8.7. MATLAB Program “ref_coef.m”

function [rh,rv,ph,pv] = ref_coef (epsp,epspp)
eps = epsp - i * epspp; %65.0-30.7i;
psi = 0:0.1:90;
psirad = psi.*(pi/180.);
arg1 = eps-(cos(psirad).^2);
arg2 = sqrt(arg1);
arg3 = sin(psirad);
arg4 = eps.*arg3;
rv = (arg4-arg2)./(arg4+arg2);
rh = (arg3-arg2)./(arg3+arg2);
gamamodv = abs(rv);
gamamodh = abs(rh);
figure(1)
plot(psi,gamamodv,'k',psi,gamamodh,'k -.');
axis tight
grid
xlabel('grazing angle - degrees');
ylabel('reflection coefficient - amplitude')
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legend ('Vertical Polarization','Horizontal Polarization')
pv = -angle(rv);
ph = angle(rh);
figure(2)
plot(psi,pv,'k',psi,ph,'k -.');
grid
xlabel('grazing angle - degrees');
ylabel('reflection coefficient - phase')
legend ('Vertical Polarization','Horizontal Polarization')

 Problems

8.1. Using Eq. (8.4), determine  when  and .

8.2. An exponential expression for the index of refraction is given by

where the altitude  is in Km. Calculate the index of refraction for a well
mixed atmosphere at 10% and 50% of the troposphere.

8.3. Rederive Eq. (8.34) assuming vertical polarization.

8.4. Reproduce Figs. 8.6 and 8.7 by using  and (a) 

and  (dry soil); (b)  and  (sea water at ); (c)

 and  (lake water at ).

8.5. In reference to Fig. 8.9, assume a radar height of  and a

target height of . The range is . (a) Calculate the

lengths of the direct and indirect paths. (b) Calculate how long it will take a
pulse to reach the target via the direct and indirect paths.
8.6. In the previous problem, assuming that you may be able to use the
small grazing angle approximation: (a) Calculate the ratio of the direct to the
indirect signal strengths at the target. (b) If the target is closing on the radar
with velocity , calculate the Doppler shift along the direct and

indirect paths. Assume .

8.7. Utilizing the plots generated in solving Problem 8.4, derive an emperi-
cal expression for the Brewster’s angle.

8.8. A radar at altitude  and a target at altitude , and

assuming a spherical earth, calculate , , and .

8.9. Derive an asymptotic form for  and  when the grazing angle is

very small.

h hr 15m= R 35Km=

n 1 315 10 6–× 0.136h–( )exp+=

h

f 8GHz= ε′ 2.8=

ε″ 0.032= ε′ 47= ε″ 19= 0°C

ε′ 50.3= ε″ 18= 0°C

hr 100m=

ht 500m= R 20Km=

v 300m s⁄=

λ 3cm=

hr 10m= ht 300m=

r1 r2 ψg

Γh Γv
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8.10. In reference to Fig. 8.8, assume a radar height of  and a

target height of . The range is . (a) Calculate the

lengths of the direct and indirect paths. (b) Calculate how long it will take a
pulse to reach the target via the direct and indirect paths.
8.11. Using the law of cosines, derive Eqs. (8.51) through (8.53).

8.12. In the previous problem, assuming that you may be able to use the
small grazing angle approximation: (a) Calculate the ratio of the direct to the
indirect signal strengths at the target. (b) If the target is closing on the radar

with velocity , calculate the Doppler shift along the direct and

indirect paths. Assume .

8.13. In the previous problem, assuming that you may be able to use the
small grazing angle approximation: (a) Calculate the ratio of the direct to the
indirect signal strengths at the target. (b) If the target is closing on the radar
with velocity , calculate the Doppler shift along the direct and

indirect paths. Assume .

8.14. Calculate the range to the horizon corresponding to a radar at 

and  of altitude. Assume 4/3 earth.

8.15. Develop a mathematical expression that can be used to reproduce
Figs. 8.14 and 8.15. 

hr 100m=

ht 500m= R 20Km=

v 300m s⁄=

λ 3cm=

v 300m s⁄=

λ 3cm=

5Km

10Km
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Chapter 9 Clutter and Moving Target 
Indicator (MTI) 

9.1. Clutter Definition

Clutter is a term used to describe any object that may generate unwanted
radar returns that may interfere with normal radar operations. Parasitic returns
that enter the radar through the antenna’s main lobe are called main lobe clut-
ter; otherwise they are called side lobe clutter. Clutter can be classified in two
main categories: surface clutter and airborne or volume clutter. Surface clutter
includes trees, vegetation, ground terrain, man-made structures, and sea sur-
face (sea clutter). Volume clutter normally has large extent (size) and includes
chaff, rain, birds, and insects. Chaff consists of a large number of small dipole
reflectors that have large RCS values. It is released by hostile aircaft or mis-
siles as a means of ECM in an attempt to confuse the defense. Surface clutter
changes from one area to another, while volume clutter may be more predict-
able.

Clutter echoes are random and have thermal noise-like characteristics
because the individual clutter components (scatterers) have random phases and
amplitudes. In many cases, the clutter signal level is much higher than the
receiver noise level. Thus, the radar’s ability to detect targets embedded in
high clutter background depends on the Signal-to-Clutter Ratio (SCR) rather
than the SNR. 

White noise normally introduces the same amount of noise power across all
radar range bins, while clutter power may vary within a single range bin. And
since clutter returns are target-like echoes, the only way a radar can distinguish
target returns from clutter echoes is based on the target RCS , and the antic-
ipated clutter RCS  (via clutter map). Clutter RCS can be defined as the
equivalent radar cross section attributed to reflections from a clutter area, .
The average clutter RCS is given by 

σt
σc

Ac
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(9.1)

where  is the clutter scattering coefficient, a dimensionless quan-
tity that is often expressed in dB. Some radar engineers express  in terms of
squared centimeters per squared meter. In these cases,  is  higher than
normal.

The term that describes the constructive/destructive interference of the elec-
tromagnetic waves diffracted from an object (target or clutter) is called the
propagation factor (see Chapter 8 for more details). Since target and clutter
returns have different angles of arrival (different propagation factors), we can
define the SCR as

(9.2)

where  is the clutter propagation factor,  and  are, respectively, the
transmit and receive propagation factors for the target. In many cases

. 

9.2. Surface Clutter

Surface clutter includes both land and sea clutter, and is often called area
clutter. Area clutter manifests itself in airborne radars in the look-down mode.
It is also a major concern for ground-based radars when searching for targets at
low grazing angles. The grazing angle  is the angle from the surface of the
earth to the main axis of the illuminating beam, as illustrated in Fig. 9.1.

Three factors affect the amount of clutter in the radar beam. They are the
grazing angle, surface roughness, and the radar wavelength. Typically, the clut-
ter scattering coefficient  is larger for smaller wavelengths. Fig. 9.2 shows a
sketch describing the dependency of  on the grazing angle. Three regions
are identified; they are the low grazing angle region, flat or plateau region, and
the high grazing angle region.

The low grazing angle region extends from zero to about the critical angle.
The critical angle is defined by Rayleigh as the angle below which a surface is
considered to be smooth, and above which a surface is considered to be rough.
Denote the root mean square (rms) of a surface height irregularity as ,
then according to the Rayleigh critera the surface is considered to be smooth if

(9.3)
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Consider a wave incident on a rough surface, as shown in Fig. 9.3. Due to
surface height irregularity (surface roughness), the “rough path” is longer than
the “smooth path” by a distance . This path difference translates
into a phase differential :

(9.4)

The critical angle  is then computed when  (first null), thus 

(9.5)

2hrms ψgsin
∆ψ

∆ψ 2π
λ

------ 2hrms ψgsin=

ψgc ∆ψ π=

4πhrms

λ
----------------- ψgcsin π=

ψgearth surface

Figure 9.1. Definition of grazing angle.

σ0
dB

grazing  ang le

low  grazing  
ang le  reg ion

p lateau  reg ion

h igh  grazing
ang le  region

0dB

critical angle 60°>

 Figure 9.2. Clutter regions.
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or equivalently,

(9.6)

In the case of sea clutter, for example, the rms surface height irregularity is

(9.7)

where  is the sea state, which is tabulated in several cited references. The
sea state is characterized by the wave height, period, length, particle velocity,
and wind velocity. For example,  refers to a moderate sea state,
where in this case the wave height is approximately equal to between

, the wave period 3.5 to 4.5 seconds, wave length
, wave velocity , and wind

velocity . 

Clutter at low grazing angles is often referred to as diffused clutter, where
there are a large number of clutter returns in the radar beam (non-coherent
reflections). In the flat region the dependency of  on the grazing angle is
minimal. Clutter in the high grazing angle region is more specular (coherent
reflections) and the diffuse clutter components disappear. In this region the
smooth surfaces have larger  than rough surfaces, opposite of the low graz-
ing angle region.
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 Figure 9.3. Rough surface definition.
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9.2.1.  Radar Equation for Area Clutter

Consider an airborne radar in the look-down mode shown in Fig. 9.4. The
intersection of the antenna beam with ground defines an elliptically shaped
footprint. The size of the footprint is a function of the grazing angle and the
antenna 3dB beam width , as illustrated in Fig. 9.5. The footprint is
divided into many ground range bins each of size , where  is
the pulse width.

From Fig. 9.5, the clutter area  is 

(9.8)

The power received by the radar from a scatterer within  is given by the
radar equation as

(9.9)

where as usual,  is the peak transmitted power,  is the antenna gain,  is
the wavelength, and  is the target RCS. Similarly, the received power from
clutter is

(9.10)

where the subscript  is used for area clutter. Substituting Eq. (9.1) for 
into Eq. (9.10), we can then obtain the SCR for area clutter by dividing Eq.
(9.9) by Eq. (9.10). More precisely,

θ3dB
cτ 2⁄( ) ψgsec τ
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Figure 9.4. Airborne radar in the look-down mode.
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(9.11)

Example 9.1: Consider an airborne radar shown in Fig. 9.4. Let the antenna
3dB beam width be , the pulse width , range

, and grazing angle . Assume target RCS ,
and clutter reflection coefficient . Compute the SCR.

Solution: The SCR is given by Eq. (9.11) as

It follows that

Thus, for reliable detection the radar must somehow increase its SCR by at
least , where  is on the order of  or better.

cτ
2
-----

AcRθ3dB

Rθ3dB ψgcsc

cτ
2
----- ψgsec

ψg

Figure 9.5. Footprint definition.
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9.3. Volume Clutter

Volume clutter has large extents and includes rain (weather), chaff, birds,
and insects. The volume clutter coefficient is normally expressed in squared
meters (RCS per resolution volume). Birds, insects, and other flying particles
are often referred to as angel clutter or biological clutter. The average RCS for
individual birds or insects as a function of the weight of the bird or insect is
reported in the literature1 as

(9.12)

where  is the individual bird or insect weight in grams. Bird and insect
RCSs are also a function of frequency; for example, a pigeon’s average RCS is

 at S-band, and is equal to  at X-band.

As mentioned earlier, chaff is used as an ECM technique by hostile forces. It
consists of a large number of dipole reflectors with large RCS values. Histori-
cally, chaff was made of aluminum foil; however, in recent years most chaff is
made of the more rigid fiber glass with conductive coating. The maximum
chaff RCS occurs when the dipole length  is one half the radar wavelength.
The average RCS for a single dipole when viewed broadside is

(9.13)

and for an average aspect angle, it drops to 

(9.14)

where the subscript  is used to indicate a single dipole, and  is the
radar wavelength. The total chaff RCS within a radar resolution volume is

 (9.15)

where  is the total number of dipoles in the resolution volume. 

Weather or rain clutter is easier to suppress than chaff, since rain droplets
can be viewed as perfect small spheres. We can use the Rayleigh approxima-
tion of perfect sphere to estimate the rain droplets’ RCS. The Rayleigh approx-
imation, without regard to the propagation medium index of refraction, is
given in Eq. (2.30) and is repeated here as Eq. (9.16):

(9.16)

where , and  is radius of a rain droplet.

1. Edde, B., Radar - Principles, Technology, Applications, Prentice-Hall, 1993.
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Electromagnetic waves when reflected from a perfect sphere become
strongly co-polarized (have the same polarization as the incident waves). Con-
sequently, if the radar transmits, say, a right-hand-circularly (RHC) polarized
wave, then the received waves are left-hand-circularly (LHC) polarized,
because it is propagating in the opposite direction. Therefore, the back-scat-
tered energy from rain droplets retains the same wave rotation (polarization) as
the incident wave, but has a reversed direction of propagation. It follows that
radars can suppress rain clutter by co-polarizing the radar transmit and receive
antennas. 

Defining  as RCS per unit resolution volume , it is computed as the
sum of all individual scatterers RCS within the volume,

(9.17)

where  is the total number of scatterers within the resolution volume. Thus,
the total RCS of a single resolution volume is 

(9.18)

A resolution volume is shown in Fig. 9.6, and is approximated by

(9.19)

where ,  are, respectively, the antenna beam width in azimuth and eleva-
tion,  is the pulse width in seconds,  is speed of light, and  is range.
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 Figure 9.6. Definition of a resolution volume.
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Consider a propagation medium with an index of refraction . The  rain
droplet RCS approximation in this medium is

 (9.20)

where 

(9.21)

and  is the  droplet diameter. For example, temperatures between 
and  yield

(9.22)

and for ice Eq. (9.20) can be approximated by

(9.23)

Substituting Eq. (9.20) into Eq. (9.17) yields

(9.24)

where the weather clutter coefficient  is defined as 

(9.25)

In general, a rain droplet diameter is given in millimeters and the radar reso-
lution volume in expressed in cubic meters, thus the units of  are often
expressed in .

9.3.1. Radar Equation for Volume Clutter

The radar equation gives the total power received by the radar from a  tar-
get at range  as

 (9.26)
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where all parameters in Eq. (9.26) have been defined earlier. The weather clut-
ter power received by the radar is

(9.27)

Using Eq. (9.18) and Eq. (9.19) into Eq. (9.27) and collecting terms yield

(9.28)

The SCR for weather clutter is then computed by dividing Eq. (9.26) by Eq.
(9.28). More precisely, 

(9.29)

where the subscript  is used to denote volume clutter.

Example 9.2: A certain radar has target RCS , pulse width
, antenna beam width . Assume the detec-

tion range to be , and compute the SCR if
.

Solution: From Eq. (9.29) we have

substituting the proper values we get
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9.4. Clutter Statistical Models

Since clutter within a resolution cell (or volume) is composed of a large
number of scatterers with random phases and amplitudes, it is statistically
described by a probability distribution function. The type of distribution
depends on the nature of clutter itself (sea, land, volume), the radar operating
frequency, and the grazing angle. 

If sea or land clutter is composed of many small scatterers when the proba-
bility of receiving an echo from one scatterer is statistically independent of the
echo received from another scatterer, then the clutter may be modeled using a
Rayleigh distribution,

(9.30)

where  is the mean squared value of . 

The log-normal distribution best describes land clutter at low grazing angles.
It also fits sea clutter in the plateau region. It is given by

(9.31)

where  is the median of the random variable , and  is the standard devi-
ation of the random variable .

The Weibull distribution is used to model clutter at low grazing angles (less
than five degrees) for frequencies between  and . The Weibull proba-
bility density function is determined by the Weibull slope parameter  (often
tabulated) and a median scatter coefficient , and is given by

(9.32)

where  is known as the shape parameter. Note that when  the
Weibull distribution becomes a Rayleigh distribution.

9.5. Clutter Spectrum

The power spectrum of stationary clutter (zero Doppler) can be represented
by a delta function. However, clutter is not always stationary; it actually exhib-
its some Doppler frequency spread because of wind speed and motion of the
radar scanning antenna. In general, the clutter spectrum is concentrated around
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 and integer multiples of the radar PRF , and may exhibit some small
spreading. 

The clutter power spectrum can be written as the sum of fixed (stationary)
and random (due to frequency spreading) components. For most cases, the ran-
dom component is Gaussian. If we denote the fixed to the random power ratio
by , then we can write the clutter spectrum as

(9.33)

where  is the radar operating frequency in radians per second, 
is the rms frequency spread component (determines the Doppler frequency
spread), and  is the Weibull parameter. 

The first term of the right-hand side of Eq. (9.33) represents the PSD for sta-
tionary clutter, while the second term accounts for the frequency spreading.
Nevertheless, since most of the clutter power is concentrated around zero Dop-
pler with some spreading (typically less than 100 Hz), it is customary to model
clutter using a Gaussian-shaped power spectrum (which is easier to analyze
than Eq. (9.33)). More precisely,

(9.34)

where  is the total clutter power;  and  were defined earlier. Fig. 9.7
shows a typical PSD sketch of radar returns when both target and clutter are
present. Note that the clutter power is concentrated around DC and integer
multiples of the PRF.
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 Figure 9.7. Typical radar return PSD when clutter and target are present.
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9.6. Moving Target Indicator (MTI)

Clutter spectrum is normally concentrated around DC ( ) and multiple
integers of the radar PRF , as illustrated in Fig. 9.8a. In CW radars, clutter is
avoided or suppressed by ignoring the receiver output around DC, since most
of the clutter power is concentrated about the zero frequency band. Pulsed
radar systems may utilize special filters that can distinguish between slowly
moving or stationary targets and fast moving ones. This class of filters is
known as the Moving Target Indicator (MTI). In simple words, the purpose of
an MTI filter is to suppress target-like returns produced by clutter, and allow
returns from moving targets to pass through with little or no degradation. In
order to effectively suppress clutter returns, an MTI filter needs to have a deep
stop-band at DC and at integer multiples of the PRF. Fig. 9.8b shows a typical
sketch of an MTI filter response, while Fig. 9.8c shows its output when the
PSD shown in Fig. 9.8a is the input. 

f 0=
fr

noise level

frequencytarget
return

frf 0=fr–

clutter returns

MTI filter
response

frequencyfrf 0=fr–

input to 
MTI filter

MTI filter
output

frequencyfrf 0=fr–

                
                   

(a)    

(c)    

(b)    

 Figure 9.8. (a) Typical radar return PSD when clutter and target are 
present. (b) MTI filter frequency response. (c) Output from an 
MTI filter.

© 2000 by Chapman & Hall/CRC



MTI filters can be implemented using delay line cancelers. As we will show
later in this chapter, the frequency response of this class of MTI filters is peri-
odic, with nulls at integer multiples of the PRF. Thus, targets with Doppler fre-
quencies equal to  are severely attenuated. And since Doppler is
proportional to target velocity ( ), target speeds that produce Dop-
pler frequencies equal to integer multiples of  are known as blind speeds.
More precisely,

(9.35)

Radar systems can minimize the occurrence of blind speeds by either
employing multiple PRF schemes (PRF staggering) or by using high PRFs
where in this case the radar may become range ambiguous. The main differ-
ence between PRF staggering and PRF agility is that the pulse repetition inter-
val (within an integration interval) can be changed between consecutive pulses
for the case of PRF staggering.

Fig. 9.9 shows a block diagram of a coherent MTI radar. Coherent transmis-
sion is controlled by the STAble Local Oscillator (STALO). The outputs of the
STALO, , and the COHerent Oscillator (COHO), , are mixed to produce
the transmission frequency, . The Intermediate Frequency (IF), ,
is produced by mixing the received signal with . After the IF amplifier, the
signal is passed through a phase detector and is converted into a base band.
Finally, the video signal is inputted into an MTI filter.
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Figure 9.9. Coherent MTI radar block diagram.

© 2000 by Chapman & Hall/CRC



9.7. Single Delay Line Canceler

A single delay line canceler can be implemented as shown in Fig. 9.10. The
canceler’s impulse response is denoted as . The output  is equal to the
convolution between the impulse response  and the input . The single
delay canceler is often called a “two-pulse canceler” since it requires two dis-
tinct input pulses before an output can be read.

The delay  is equal to the PRI of the radar ( ). The output signal  is 

(9.36)

The impulse response of the canceler is given by 

(9.37)

where  is the delta function. It follows that the Fourier transform (FT)
of  is 

(9.38)

where .

In the z-domain, the single delay line canceler response is 

(9.39)

The power gain for the single delay line canceler is given by

(9.40)

It follows that

(9.41)

and using the trigonometric identity  yields
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Figure 9.10. Single delay line canceler.
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(9.42)

MATLAB Function “single_canceler.m”

The function “single_canceler.m” computes and plots (as a function of )
the amplitude response for a single delay line canceler. It is given in Listing 9.1
in Section 9.14. The syntax is as follows:

[resp] = single_canceler (fofr)

where fofr is the number of periods desired. Typical output of the function
“single_canceler.m” is shown in Fig. 9.11. Clearly, the frequency response of a
single canceler is periodic with a period equal to . The peaks occur at

, and the nulls are at , where .
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Figure 9.11. Single canceler frequency response.
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In most radar applications the response of a single canceler is not acceptable
since it does not have a wide notch in the stop-band. A double delay line can-
celer has better response in both the stop- and pass-bands, and thus it is more
frequently used than a single canceler. In this book, we will use the names “sin-
gle delay line canceler” and “single canceler” interchangeably.

9.8. Double Delay Line Canceler

Two basic configurations of a double delay line canceler are shown in Fig.
9.12. Double cancelers are often called “three-pulse cancelers” since they
require three distinct input pulses before an output can be read. The double line
canceler impulse response is given by

(9.43)

Again, the names “double delay line” canceler and “double canceler” will be
used interchangeably. The power gain for the double delay line canceler is

(9.44)

where  is the single line canceler power gain given in Eq. (9.42). It
follows that

 (9.45)
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Figure 9.12. Two configurations for a double delay line canceler.
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And in the z-domain, we have 

(9.46)

MATLAB Function “double_canceler.m”

The function “single_canceler.m” computes and plots (as a function of )
the amplitude response for a single delay line canceler. It is given in Listing 9.2
in Section 9.14. The syntax is as follows:

[resp] = double_canceler (fofr)

where fofr is the number of periods desired.

Fig. 9.13 shows typical output from this function. Note that the double can-
celer has a better response than the single canceler (deeper notch and flatter
pass-band response).
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 Figure 9.13. Normalized frequency responses for single and double cancelers.
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9.9. Delay Lines with Feedback (Recursive Filters)

Delay line cancelers with feedback loops are known as recursive filters. The
advantage of a recursive filter is that through a feedback loop we will be able
to shape the frequency response of the filter. As an example, consider the sin-
gle canceler shown in Fig. 9.14. From the figure we can write

(9.47)

(9.48)

(9.49)

Applying the z-transform to the above three equations yields

(9.50)

(9.51)

(9.52)

Solving for the transfer function  yields

(9.53)

The modulus square of  is then equal to 

(9.54)

Using the transformation  yields 

y t( ) x t( ) 1 K–( )w t( )–=

v t( ) y t( ) w t( )+=

w t( ) v t T–( )=

Σ Σ delay, T
x(t) y(t)

+ - + +

w t( )

v t( )

1 K–

Figure 9.14. MTI recursive filter.
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(9.55)

Thus, Eq. (54) can now be rewritten as 

(9.56)

Note that when , Eq. (9.56) collapses to Eq. (9.42) (single line can-
celer). Fig. 9.15 shows a plot of Eq. (9.56) for . Clearly, by
changing the gain factor  one can control of the filter response. 

In order to avoid oscillation due to the positive feedback, the value of 
should be less than unity. The value  is normally equal to the number
of pulses received from the target. For example,  corresponds to ten
pulses, while  corresponds to about fifty pulses.

9.10. PRF Staggering

Blind speeds can pose serious limitations on the performance of MTI radars
and their ability to perform adequate target detection. Using PRF agility by
changing the pulse repetition interval between consecutive pulses can extend

z z
1–+ 2 ωTcos=

H ejωT( )
2 2 1 ωTcos–( )

1 K
2+( ) 2K ωT( )cos–

-------------------------------------------------------=

K 0=
K 0.25 0.7 0.9, ,=

K

K
1 K–( ) 1–

K 0.9=
K 0.98=

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

2

2.5

Norm alized frequency

A
m

p
lit

u
d

e
 r

e
s

p
o

n
s

e

K = 0.25
K = 0.7
K = 0.9

f fr⁄

 Figure 9.15. Frequency response corresponding to Eq. (9.56). This 
plot can be reproduced using MATLAB program 
“fig9_15.m” given in Listing 9.3 in Section 9.14.
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the first blind speed to tolerable values. In order to show how PRF staggering
can alleviate the problem of blind speeds, let us first assume that two radars
with distinct PRFs are utilized for detection. Since blind speeds are propor-
tional to the PRF, the blind speeds of the two radars would be different. How-
ever, using two radars to alleviate the problem of blind speeds is a very costly
option. A more practical solution is to use a single radar with two or more dif-
ferent PRFs. 

For example, consider a radar system with two interpulse periods  and
, such that

(9.57)

where  and  are integers. The first true blind speed occurs when

 (9.58)

This is illustrated in Fig. 9.16 for  and . Note that if
, then the process of PRF staggering is similar to that discussed in

Chapter 3. 

The ratio 

(9.59)

is known as the stagger ratio. Using staggering ratios closer to unity pushes the
first true blind speed farther out. However, the dip in the vicinity of 
becomes deeper, as illustrated in Fig. 9.17 for stagger ratio . In
general, if there are  PRFs related by

(9.60)

and if the first blind speed to occur for any of the individual PRFs is ,
then the first true blind speed for the staggered waveform is

(9.61)
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 Figure 9.16. Frequency responses of a single canceler. Top plot 
corresponds to T1, middle plot corresponds to T2, 
bottom plot corresponds to stagger ratio T1/T2 = 4/3.  
This plot can be reproduced using MATLAB program 
“fig9_16.m” given in Listing 9.4 in Section 9.14.
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9.11. MTI Improvement Factor

In this section two quantities that are normally used to define the perfor-
mance of MTI systems are introduced. They are “Clutter Attenuation (CA)”
and the MTI “Improvement Factor.” The MTI CA is defined as the ratio
between the MTI filter input clutter power  to the output clutter power ,

 (9.62)
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 Figure 9.17. MTI responses, staggering ratio 63/64. This plot can be 
reproduced using MATLAB program “fig9_17.m” given 
in Listing 9.5 in Section 9.14.
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The MTI improvement factor is defined as the ratio of the Signal to Clutter
(SCR) at the output to the SCR at the input, 

(9.63)

which can be rewritten as

(9.64)

The ratio  is the average power gain of the MTI filter, and it is equal to
. In this section, a closed form expression for the improvement factor

using a Gaussian-shaped power spectrum is developed. A Gaussian-shaped
clutter power spectrum is given by

(9.65)

where  is the clutter power (constant), and  is the clutter rms frequency
and is given by

(9.66)

where  is the wavelength, and  is the rms wind velocity, since wind is the
main reason for clutter frequency spreading. Substituting Eq. (9.66) into Eq.
(9.65) yields 

(9.67)

The clutter power at the input of an MTI filter is

 (9.68)

Factoring out the constant  yields

(9.69)

It follows that (Why?)

(9.70)
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The clutter power at the output of an MTI is

(9.71)

We will continue the analysis using a single delay line canceler. The fre-
quency response for a single delay line canceler is given by Eq. (9.38). The sin-
gle canceler power gain is given in Eq. (9.42), which will be repeated here, in
terms of  rather than , as Eq. (9.72),

(9.72)

It follows that

(9.73)

Now, since clutter power will only be significant for small , then the ratio
 is very small (i.e., ). Consequently, by using the small angle

approximation Eq. (9.73) is approximated by

(9.74)

which can be rewritten as

(9.75)

The integral part in Eq. (9.75) is the second moment of a zero mean Gaussian
distribution with variance . Replacing the integral in Eq. (9.75) by  yields

(9.76)

Substituting Eqs. (9.76) and (9.70) into Eq. (9.62) produces

(9.77)
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It follows that the improvement factor for a single canceler is

(9.78)

The power gain ratio for a single canceler is (remember that  is periodic
with period )

(9.79)

Using the trigonometric identity  yields

(9.80)

It follows that

(9.81)

The expression given in Eq. (9.81) is an approximation valid only for
. When the condition  is not true, then the autocorrelation func-

tion needs to be used in order to develop an exact expression for the improve-
ment factor. 

Example 9.3: A certain radar has . If the clutter rms is
 (wooded hills with ), find the improvement

factor when a single delay line canceler is used.

Solution: The clutter attenuation CA is

and since  we get

.

9.12. Subclutter Visibiliy (SCV)

The phrase Subclutter Visibility (SCV) describes the radar’s ability to detect
non-stationary targets embedded in a strong clutter background, for some
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probabilities of detection and false alarm. It is often used as a measure of MTI
performance. For example, a radar with  subclutter visibility will be able
to detect moving targets whose returns are ten times smaller than those of clut-
ter. A sketch illustrating the concept of SCV is shown in Fig. 9.18.

If a radar system can resolve the areas of strong and weak clutter within its
field of view, then the phrase Interclutter Visibility (ICV) describes the radar’s
ability to detect non-stationary targets between strong clutter points. The sub-
clutter visibility is expressed as the ratio of the improvement factor to the min-
imum MTI output SCR required for proper detection for a given probability of
detection. More precisely,

(9.82)

When comparing different radar systems’ performances on the basis of SCV,
one should use caution since the amount of clutter power is dependent on the
radar resolution cell (or volume), which may be different from one radar to
another. Thus, only if the different radars have the same beam widths and the
same pulse widths can SCV be used as a basis of performance comparison.

9.13. Delay Line Cancelers with Optimal Weights

The delay line cancelers discussed in this chapter belong to a family of trans-
versal Finite Impulse Response (FIR) filters widely known as the “tapped
delay line” filters. Fig. 9.19 shows an N-stage tapped delay line implementa-
tion. 
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 Figure 9.18. Illustration of SCV. (a) MTI input.  
(b) MTI output.
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When the weights are chosen such that they are the binomial coefficients (coef-
ficients of the expansion ) with alternating signs, then the resultant
MTI filter is equivalent to N-stage cascaded single line cancelers. This is illus-
trated in Fig. 9.20 for . In general, the binomial coefficients are given by

(9.83)

Using the binomial coefficients with alternating signs produces an MTI filter
that closely approximates the optimal filter in the sense that it maximizes the
improvement factor, as well as the probability of detection. In fact, the differ-
ence between an optimal filter and one with binomial coefficients is so small
that the latter one is considered to be optimal by most radar designers. How-
ever, being optimal in the sense of the improvement factor does not guarantee a
deep notch, nor a flat pass-band in the MTI filter response. Consequently,
many researchers have been investigating other weights that can produce a
deeper notch around DC, as well as a better pass-band response.

In general, the average power gain for an N-stage delay line canceler is

(9.84)

where  is given in Eq. (9.72). For example,  (double delay line
canceler) gives
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 Figure 9.19. N-stage tapped delay line filter.
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(9.85)

Equation (9.84) can be rewritten as

(9.86)

As indicated by Eq. (9.86), blind speeds for an N-stage delay canceler are iden-
tical to those of a single canceler. It follows that blind speeds are independent
from the number of cancelers used. It is possible to show that Eq. (9.86) can be
written as

(9.87)

A general expression for the improvement factor of an N-stage tapped delay
line canceler is reported by Nathanson1 to be

1. Nathanson, F. E., Radar Design Principles, second edition, McGraw-Hill, Inc., 
1991.
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(9.88)

where the weights  and  are those of a tapped delay line canceler, and
 is the correlation coefficient between the  and  samples.

For example,  produces

(9.89)

9.14. MATLAB Program/Function Listings

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun these codes with different inputs
in order to enhance their understanding of the theory.

Listing 9.1. MATLAB Function “single_canceler.m”
function [resp] = single_canceler (fofr1)
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .*((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
subplot(2,1,1)
plot(fofr,resp,'k')
xlabel ('Normalized frequency - f/fr')
ylabel( 'Amplitude response - Volts')
grid
subplot(2,1,2)
resp=10.*log10(resp+eps);
plot(fofr,resp,'k');
axis tight
grid
xlabel ('Normalized frequency - f/fr')
ylabel( 'Amplitude response - dB')
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Listing 9.2. MATLAB Function “double_canceler.m”
function [resp] = double_canceler(fofr1)
eps = 0.00001;
fofr = 0:0.01:fofr1;
arg1 = pi .* fofr;
resp = 4.0 .* ((sin(arg1)).^2);
max1 = max(resp);
resp = resp ./ max1;
resp2 = resp .* resp;
subplot(2,1,1);
plot(fofr,resp,'k--',fofr, resp2,'k');
ylabel ('Amplitude response - Volts')
resp2 = 20. .* log10(resp2+eps);
resp1 = 20. .* log10(resp+eps);
subplot(2,1,2)
plot(fofr,resp1,'k--',fofr,resp2,'k');
legend ('single canceler','double canceler')
xlabel ('Normalized frequency f/fr')
ylabel ('Amplitude response - Volts')

Listing 9.3. MATLAB Program “fig9_15.m”
clear all
fofr = 0:0.001:1;
arg = 2.*pi.*fofr;
nume = 2.*(1.-cos(arg));
den11 = (1. + 0.25 * 0.25);
den12 = (2. * 0.25) .* cos(arg);
den1 = den11 - den12;
den21 = 1.0 + 0.7 * 0.7;
den22 = (2. * 0.7) .* cos(arg);
den2 = den21 - den22;
den31 = (1.0 + 0.9 * 0.9);
den32 = ((2. * 0.9) .* cos(arg));
den3 = den31 - den32;
resp1 = nume ./ den1;
resp2 = nume ./ den2;
resp3 = nume ./ den3;
plot(fofr,resp1,'k',fofr,resp2,'k-.',fofr,resp3,'k--');
xlabel('Normalized frequency')
ylabel('Amplitude response')
legend('K=0.25','K=0.7','K=0.9')
grid
axis tight
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Listing 9.4. MATLAB Program “fig9_16.m”
clear all
fofr = 0:0.001:1;
f1 = 4.0 .* fofr;
f2 = 5.0 .* fofr;
arg1 = pi .* f1;
arg2 = pi .* f2;
resp1 = abs(sin(arg1));
resp2 = abs(sin(arg2));
resp = resp1+resp2;
max1 = max(resp);
resp = resp./max1;
plot(fofr,resp1,fofr,resp2,fofr,resp);
xlabel('Normalized frequency f/fr')
ylabel('Filter response')

Listing 9.5. MATLAB Program “fig9_17.m”
clear all
fofr = 0.01:0.001:32;
a = 63.0 / 64.0;
term1 = (1. - 2.0 .* cos(a*2*pi*fofr) + cos(4*pi*fofr)).^2;
term2 = (-2. .* sin(a*2*pi*fofr) + sin(4*pi*fofr)).^2;
resp = 0.25 .* sqrt(term1 + term2);
resp = 10. .* log(resp);
plot(fofr,resp);
axis([0 32 -40 0]);
grid

 Problems

9.1. Compute the signal-to-clutter ratio (SCR) for the radar described in

Example 9.1. In this case, assume antenna 3dB beam width ,

pulse width , range , grazing angle , target

RCS , and clutter reflection coefficient .

9.2. Repeat Example 9.2 for target RCS , pulse width

, antenna beam width ; the detection

range is , and .

θ3dB 0.03rad=

τ 10µs= R 50Km= ψg 15°=

σt 0.1m
2= σ0 0.02 m

2
m

2⁄( )=

σt 0.15m
2=

τ 0.1µs= θa θe 0.03radians= =

R 100Km= σi∑ 1.6 10 9–× m
2

m
3⁄( )=
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9.3. The quadrature components of the clutter power spectrum are, respec-
tively, given by

Compute the D.C. and A.C. power of the clutter. Let .

9.4. A certain radar has the following specifications: pulse width

, antenna beam width , and wavelength . The

radar antenna is  high. A certain target is simulated by two point targets

(scatterers). The first scatterer is  high and has RCS . The sec-

ond scatterer is  high and has RCS . If the target is detected at

, compute (a) SCR when both scatterers are observed by the radar; (b)
the SCR when only the first scatterer is observed by the radar. Assume a reflec-

tion coefficient of , and .

9.5. A certain radar has range resolution of  and is observing a target

somewhere in a line of high towers each having RCS . If the

target has RCS , (a) How much signal-to-clutter ratio should the

radar have? (b) Repeat part a for range resolution of .

9.6. (a) Derive an expression for the impulse response of a single delay line
canceler. (b) Repeat for a double delay line canceler.
9.7. One implementation of a single delay line canceler with feedback is
shown below:

(a) What is the transfer function, ? (b) If the clutter power spectrum is
, find an exact expression for the filter power gain.

(c) Repeat part b for small values of frequency, . (d) Compute the clutter
attenuation and the improvement factor in terms of  and . 

SI f( ) δ f( ) C

2πσc

---------------- f
2– 2σc

2⁄( )exp+=

SQ f( ) C

2πσc

---------------- f
2– 2σc

2⁄( )exp=

σc 10Hz=

τ′ 1µs= Ω 1.5°= λ 3cm=

7.5m

4m σ1 20m
2=

12m σ2 1m
2=

10Km

1– σ0 30dB–=

300m

σtower 106
m

2=

σt 1m
2=

30m

-

+
Σx(t)

y(t)
delay, TΣ

+
+

K

H z( )
W f( ) w0 f

2– 2σc
2⁄( )exp=

f
K σc
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9.8. Plot the frequency response for the filter described in the previous

problem for .

9.9. An implementation of a double delay line canceler with feedback is
shown below:

(a) What is the transfer function, ? (b) Plot the frequency response for
, and .

9.10. Consider a single delay line canceler. Calculate the clutter attenua-

tion and the improvement factor. Assume that  and a PRF

.

9.11. Develop an expression for the improvement factor of a double delay
line canceler.
9.12. Repeat Problem 9.10 for a double delay line canceler.

9.13. An experimental expression for the clutter power spectrum density is

, where  is a constant. Show that using this

expression leads to the same result obtained for the improvement factor as
developed in Section 9.11. 
9.14. Repeat Problem 9.13 for a double delay line canceler.

9.15. A certain radar uses two PRFs with stagger ratio 63/64. If the first

PRF is , compute the blind speeds for both PRFs and for the

resultant composite PRF. Assume . 

9.16. A certain filter used for clutter rejection has an impulse response

. (a) Show an implementation
of this filter using delay lines and adders. (b) What is the transfer function?
(c) Plot the frequency response of this filter. (d) Calculate the output when the
input is the unit step sequence.
9.17. The quadrature components of the clutter power spectrum are given

in Problem 9.3. Let  and . Compute the improvement

of the signal-to-clutter ratio when a double delay line canceler is utilized.

K 0.5 0 and 0.5, ,–=

-

+
Σx(t) y (t)

d e lay, TΣ
++

K 2

+

-
d elay, TΣ+

K 1

H z( )
K1 0 K2= = K1 0.2 K2, 0.5= =

σc 4Hz=

fr 450Hz=

W f( ) w0 f
2 2σc

2⁄–( )exp= w0

fr1 500Hz=

λ 3cm=

h n( ) δ n( ) 3δ n 1–( )– 3δ n 2–( ) δ n 3–( )–+=

σc 10Hz= fr 500Hz=
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9.18. Develop an expression for the clutter improvement factor for  single
and double line cancelers using the clutter autocorrelation function. Assume
that the clutter power spectrum is as defined in Eq. (9.65).
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343

Chapter 10 Radar Antennas

An antenna is a radiating element which acts as a transducer between an
electrical signal in a system and a propagating wave. The Institute of Electrical
and Electronic Engineers (IEEE)’s Standard Definition of Terms for Antennas
(IEEE std. 145-1973) defines an antenna as “a mean for radiating or receiving
radio power.”

10.1.  Directivity, Power Gain, and Effective Aperture 

Radar antennas can be characterized by the directive gain , power gain
, and effective aperture . Antenna gain is term used to describe the ability

of an antenna to concentrate the transmitted energy in a certain direction.
Directive gain, or simply directivity, is more representative of the antenna radi-
ation pattern, while power gain is normally used in the radar equation. Plots of
the power gain and directivity, when normalized to unity, are called antenna
radiation pattern. The directivity of a transmitting antenna can be defined by

(10.1)

The radiation intensity is the power per unit solid angle in the direction
 and denoted by . The average radiation intensity over  radi-

ans (solid angle) is the total power divided by . Hence, Eq. (10.1) can be
written as

(10.2)

GD
G Ae

GD
maximum radiation intensity
average radiation intensity

---------------------------------------------------------------------------------=

θ φ,( ) P θ φ,( ) 4π
4π

GD
4π maximum radiated power unit solid angle⁄( )

total radiated power
-------------------------------------------------------------------------------------------------------------------------------------=
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It follows that

(10.3)

As an approximation, it is customary to rewrite Eq. (10.3) as

(10.4)

where  and  are the antenna half-power (3-dB) beamwidths in either
direction. 

The antenna power gain and its directivity are related by

(10.5)

where  is the radiation efficiency factor. In this book, the antenna power
gain will be denoted as gain. The radiation efficiency factor accounts for the
ohmic losses associated with the antenna. Therefore, the definition for the
antenna gain is also given in Eq. (10.1). The antenna effective aperture  is
related to gain by 

 (10.6)

where  is the wavelength. The relationship between the antenna’s effective
aperture  and the physical aperture  is

(10.7)

 is referred to as the aperture efficiency, and good antennas require 
(in this book  is always assumed, i.e., ). 

Using simple algebraic manipulations of Eqs. (10.4) through (10.6) (assum-
ing that ) yields

(10.8)

Consequently, the angular cross section of the beam is

(10.9)

GD

4πP β φ,( )max

P β φ,( ) βd φd∫∫
-----------------------------------------=

GD
4π

β3φ3

-----------≈

β3 φ3

G ρrGD=

ρr

Ae

Ae
Gλ2

4π
----------=

λ
Ae A

Ae ρA
0 ρ 1≤ ≤

=

ρ ρ 1→
ρ 1= Ae A=

ρr 1=

G
4πAe

λ2
------------ 4π

β3φ3

-----------≈=

β3φ3
λ2

Ae

-----≈
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Eq. (10.9) indicates that the antenna beamwidth decreases as  increases. It
follows that, in surveillance operations, the number of beam positions an
antenna will take on to cover a volume  is

(10.10)

and when  represents the entire hemisphere, Eq. (10.10) is modified to

(10.11)

10.2. Near and Far Fields

The electric field intensity generated from the energy emitted by an antenna
is a function of the antenna physical aperture shape and the electric current
amplitude and phase distribution across the aperture. Plots of the modulus of
the electric field intensity of the emitted radiation, , are referred to as
the intensity pattern of the antenna. Alternatively, plots of  are called
the power radiation pattern (the same as ).

Based on the distance away from the face of the antenna, where the radiated
electric field is measured, three distinct regions are identified. They are the
near field, Fresnel, and the Fraunhofer regions. In the near field and the Fresnel
regions, rays emitted from the antenna have spherical wavefronts (equi-phase
fronts). In the Fraunhofer regions the wavefronts can be locally represented by
plane waves. The near field and the Fresnel regions are normally of little inter-
est to most radar applications. Most radar systems operate in the Fraunhofer
region, which is also known as the far field region. In the far field region, the
electric field intensity can be computed from the aperture Fourier transform. 

Construction of the far criterion can be developed with the help of Fig. 10.1.
Consider a radiating source at point O that emits spherical waves. A receiving
antenna of length  is at distance  away from the source. The phase differ-
ence between a spherical wave and a locally plane wave at the receiving
antenna can be expressed in terms of the distance . The distance  is given
by

(10.12)

and since in the far field , Eq. (10.12) is approximated via binomial
expansion by 

Ae

V

NBeams
V

β3φ3

----------->

V

NBeams
2π

β3φ3
-----------

2πAe

λ2
------------ G

2
----≈ ≈>

E β φ,( )
E β φ,( ) 2

P β φ,( )

d r

δr δr

δr AO OB– r
2 d

2
--- 

  2

+ r–= =

d r«

© 2000 by Chapman & Hall/CRC



(10.13)

It is customary to assume far field when the distance  corresponds to less
than  of a wavelength (i.e., ). More precisely, if

 (10.14)

then a useful expression for far field is 

(10.15)

Note that far field is a function of both the antenna size and the operating
wavelength.

10.3. Circular Dish Antenna Pattern

Circular dish reflectors are widely used in microwave and radar applications
because of their simplicity in design and fabrication. Additionally, closed form
far field expressions can be easily computed for all existing modes over the

r

δr

d

r

antenna
spherical
wavefront

 Figure 10.1. Construction for far field criterion.

radiating
source

δr r 1
d
2r
----- 

  2

+ 1– 
  d

2

8r
-----≈=

δr
1 16⁄ 22.5°

δr d
2 8r⁄ λ 16⁄≤=

r 2d
2 λ⁄≥
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circular aperture. Fig. 10.2 shows the geometry associated with a circular aper-
ture. Denote the aperture radius as . A far field observation point  is
defined by range  and angular position . The aperture factor at  is
given by

(10.16)

 (10.17)

where ,  is the wavelength, and  is the current distri-
bution over the aperture. Due to the circular nature of the aperture, it is more
convenient to adopt cylindrical coordinates. It follows that

(10.18)

(10.19)

(10.20)

(10.21)

r P
R β φ,( ) P

E β φ,( ) D x′ y′,( )ejψ x ′ y ′,( )∫ x′d y′d

aperture

∫=

ψ x′ y′,( ) k x′ β φcossin y′ β φsinsin+( )=

k 2π( ) λ⁄= λ D x′ y′,( )

x′ ρ φ′cos=

y′ ρ φ′sin=

x′ β φcossin y′ β φsinsin+ ρ β φ φ′–( )cossin=

dx′dy′ ρdρdφ′=

E β φ,( ) ρ ρd

0

r

∫ e
jkρ β φ φ′–( )cossin

0

2π

∫ dφ′=

ρx′

y′

r

R

β

φ
φ′

P

r y
x

z

aperture

Figure 10.2. Circular aperture geometry.
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where the current distribution over the aperture is assumed to be unity. The
second integral in Eq. (10.21) is of the form

(10.22)

where  is the Bessel function of the first kind of order zero. Because of the
circular symmetry over the aperture, the electric field is independent of .
Hence, , and Eq. (10.21) can now be rewritten as

(10.23)

Using the Bessel function identity

(10.24)

leads to the following expression for the aperture factor 

(10.25)

The far field circular dish antenna pattern is computed as the modulus of the
aperture factor defined in Eq. (10.25). The first null occurs when the Bessel
function is zero. More precisely,

 (10.26)

Through tapering (windowing) the current distribution across the aperture, one
can significantly reduce the side lobe levels. 

MATLAB Function “circ_aperture.m”

The function “circ_aperture.m” computes and plots the antenna patter for a
circular aperture of diameter . It is given in Listing 10.1 in Section 10.9. The
syntax is as follows:

[emod] = circ_aperture (lambda, d)

where lambda is the wavelength and d is the aperture diameter; both parame-
ters should be in meters. Fig. 10.3 shows typical outputs produced using this
function. In this example,  and . 

e
jz ζcos ζd

0

2π

∫ 2πJ0 z( )=

J0
φ

E β φ,( ) E β( )=

E β( ) 2π ρJ0 kρ βsin( ) ρd

0

r

∫=

ρJ0 qρ( ) ρd

0

r

∫ r
q
--- J1 qr( )=

E β( ) πr
2 2J1 kr βsin( )

kr βsin
------------------------------=

2πr
λ

--------- βn1sin 1.22π= βn1 1.22
λ
2r
-----≈⇒

d

d 0.3m= λ 0.1m=
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 Figure 10.3a. Circular aperture radiation pattern. Typical output produced 
by “circ_aperture.m”. .d 0.3m λ; 0.1m= =
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 Figure 10.3b. Three-dimensional array pattern corresponding to Fig. 10.3a. 
Typical output produced by “circ_aperture.m”. 

.d 0.3m λ; 0.1m= =
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10.4.  Array Antennas

An array is a composite antenna formed from two or more basic radiators.
Each radiator is denoted as an element. The elements forming an array could
be dipoles, dish reflectors, slots in a wave guide, or any other type of radiator.
Array antennas synthesize narrow directive beams that may be steered,
mechanically or electronically, in many directions. Electronic steering is
achieved by controlling the phase of the current feeding the array elements.
Arrays with electronic beam steering capability are called phased arrays.
Phased array antennas when compared to other simple antennas such as dish
reflectors, are costly and complicated to design. However, the inherent flexibil-
ity of phased array antennas to steer the beam electronically and also the need
for specialized multi-function radar systems have made phased array antennas
attractive for radar applications.

10.4.1. Linear Array Antennas

Fig.10.4 shows a linear array antenna consisting of  identical elements.
The element spacing is  (normally measured in wavelength units). The com-
bined electric field measured at a far field observation point  is computed as
the product between the array factor and the element pattern,

 Figure 10.3c. Polar plot for a circular aperture. Typical output produced by 
“circ_aperture.m”. .d 0.3m λ; 0.1m= =
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(10.27)

The array factor is a general function of the number of elements, their spacing,
and their relative phases and magnitudes. 

Consider the linear array shown in Fig. 10.4. Let element #1 serve as a phase
reference for the array. From the geometry, it is clear that an outgoing wave at
the  element leads the phase at the  element by , where

. The electric field at a far field observation point with direction-
sine equal to  (assuming isotropic elements) is

(10.28)

Expanding the summation in Eq. (10.28) yields

E P( ) E one element( ) array factor( )=

nth n 1+( )th kd βsin
k 2π λ⁄=

βsin

E βsin( ) ej i 1–( ) kd βsin( )

i 1=

N

∑=

y

z

x

to a far fie
ld point P

β

d βsin

d

N 1–( )d

Figure 10.4. Linear array of equally spaced elements. 
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(10.29)

The right-hand side of Eq. (10.29) is a geometric series, which can be
expressed in the form

(10.30)

Replacing  by  yields

(10.31)

The far field array intensity pattern is then given by

(10.32)

Substituting Eq. (10.31) into Eq. (10.32) and collecting terms yield

(10.33)

and using the trigonometric identity  yields 

(10.34)

which is a periodic function of , and its period is equal to . 

The maximum value of  occurs at , and it is equal to . It
follows that the normalized intensity pattern is equal to

 (10.35)

The normalized two-way array pattern (radiation pattern) is given by

(10.36)

Fig. 10.5 shows a plot of Eq. (10.36) versus  for . The radiation
pattern  has cylindrical symmetry about its axis , and it is
independent of the azimuth angle. Thus, it is completely determined by its val-
ues within the interval . This plot can be reproduced using MAT-
LAB program “fig10_5.m” given in Listing 10.2 in Section 10.9.

E βsin( ) 1 ejkd βsin … ej N 1–( ) kd βsin( )+ + +=

1 a a
2

a
3 … a N 1–( )+ + + + +

1 a
N–

1 a–
---------------=

a e
jkd βsin

E βsin( ) 1 e
jNkd βsin–

1 e
jkd βsin–

----------------------------- 1 Nkd βsincos j Nkd βsinsin––
1 kd βsincos j kd βsinsin––

-----------------------------------------------------------------------------= =

E βsin( ) E βsin( )E∗ βsin( )=

E βsin( ) 1 Nkd βsincos–( )2
Nkd βsinsin( )2+

1 kd βsincos–( )2
kd βsinsin 2( )+

------------------------------------------------------------------------------------------

1 Nkd βsincos–
1 kd βsincos–

---------------------------------------

=

=

1 θcos– 2 θ 2⁄sin( )2=

E βsin( ) Nkd βsin 2⁄( )sin
kd βsin 2⁄( )sin

-----------------------------------------=

kd βsin 2π

E βsin( ) β 0= N

En βsin( ) 1
N
---- Nkd βsin( ) 2⁄( )sin

kd βsin( ) 2⁄( )sin
----------------------------------------------=

G βsin( ) En βsin( ) 2 1

N
2

------ Nkd βsin( ) 2⁄( )sin
kd βsin( ) 2⁄( )sin

---------------------------------------------- 
  2

= =

βsin N 8=
G βsin( ) βsin 0=( )

0 β π< <( )
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  Figure 10.5a. Normalized radiation pattern for a linear array; 

 and .N 8= d λ=

 

 Figure 10.5b. Polar plot for the radiation pattern in Fig. 10.5a.
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The main beam of an array can be steered electronically by varying the
phase of the current applied to each array element. Steering the main beam into
the direction-sine  is accomplished by making the phase difference
between any two adjacent elements equal to . In this case, the normal-
ized radiation pattern can be written as

(10.37)

If  then the main beam is perpendicular to the array axis, and the array
is said to be a broadside array. Alternatively, the array is called an endfire array
when the main beam points along the array axis. 

The radiation pattern maxima are computed using L’Hopital’s rule when
both the denominator and numerator of Eq. (10.36) are zeros. More precisely, 

(10.38)

Solving for  yields

(10.39)

where the subscript  is used as a maxima indicator. The first maximum
occurs at , and is denoted as the main beam (lobe). Other maxima
occurring at  are called grating lobes. Grating lobes are undesirable and
must be suppressed. The grating lobes occur at non-real angles when the abso-
lute value of the arc-sine argument in Eq. (10.39) is greater than unity; it fol-
lows that . Under this condition, the main lobe is assumed to be at

 (broadside array). Alternatively, when electronic beam steering is con-
sidered, the grating lobes occur at 

(10.40)

Thus, in order to prevent the grating lobes from occurring between , the
element spacing should be .

The radiation pattern attains secondary maxima (side lobes). These second-
ary maxima occur when the numerator of Eq. (10.36) is maximum, or equiva-
lently

(10.41)

Solving for  yields

β0sin
kd β0sin

G βsin( ) 1

N
2

------
Nkd 2⁄( ) βsin β0sin–( )[ ]sin
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----------------- mπ±= m; 0 1 2 …, , ,=
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-------± 
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90°±
d λ 2⁄<

Nkd βsin
2

---------------------- 2l 1+( )π
2
---±= l; 1 2 …, ,=

β

© 2000 by Chapman & Hall/CRC



(10.42)

where the subscript  is used as an indication of side lobe maxima. The nulls of
the radiation pattern occur when only the numerator of Eq. (10.36) is zero.
More precisely,

(10.43)

Again solving for  yields

(10.44)

where the subscript  is used as a null indicator. Define the angle which corre-
sponds to the half power point as . It follows that the half power (3 dB)
beam width is . This occurs when

(10.45)

MATLAB Function “linear_array.m”

The function “linear_array.m” computes and plots the linear array radiation
pattern, in linear and polar coordinates. This function is given in Listing 10.3 in
Section 10.9. The syntax is as follows:

[emod] = linear_array (ne, d, beta0)

where

Fig. 10.6 shows typical outputs produced using this function. In this exam-
ple, , , and . The array axis is assumed to be
aligned with the line passing through the 90-to-270 degrees line. Fig. 10.7 is
similar to Fig. 10.6 except in this case  and . Note how the
grating lobes get closer to the main beam as the element spacing is increased,
thus, limiting the electronic steering capability of the array to within the first
pair of grating lobes.

Symbol Description Units Status

ne number of elements in array none input

d element spacing (e.g., 

)

wavelengths input

beta0 steering angle degrees input

emod radiation pattern vector dB output

βl
λ

2d
------2l 1+

N
--------------± 

 asin= l; 1 2 …, ,=

l
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2
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n N 2N …,,≠

β
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d
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N
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 asin=
n 1 2 …, ,=

n N 2N …,,≠
;

n
βh

2 βm βh–

N
2
----kd βhsin 1.391= radians βh⇒ λ

2πd
----------2.782

N
------------- 

 asin=

d λ d; λ 2⁄= =

ne 8= d λ 2⁄= beta0 30°=
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 Figure 10.6a. Normalized radiation pattern for a linear array. , 
, and .
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 Figure 10.6b. Polar plot corresponding to Fig. 10.6a.
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 Figure 10.7a. Normalized radiation pattern for a linear array. , 
, and .
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 Figure 10.7b. Polar plot corresponding to Fig. 10.7a.
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10.5.  Array Tapering

Fig. 10.8 shows a normalized two-way radiation pattern of a uniformly
excited linear array of size , element spacing . The first side
lobe is about  below the main lobe, and for most radar applications
this may not be sufficient. 

In order to reduce the side lobe levels, the array must be designed to radiate
more power towards the center, and much less at the edges. This can be
achieved through tapering (windowing) the current distribution over the face
of the array. There are many possible tapering sequences that can be used for
this purpose. However, as known from spectral analysis, windowing reduces
side lobe levels at the expense of widening the main beam. Thus, for a given
radar application, the choice of the tapering sequence must be based on the
trade-off between side lobe reduction and main beam widening. 

 

10.6. Computation of the Radiation Pattern via the DFT

Fig. 10.9 shows a linear array of size , element spacing , and wavelength
. The radiators are circular dishes of diameter . Let  and ,

respectively, denote the tapering and phase shifting sequences. The normalized
electric field at a far field point in the direction-sine  is

N 8= d λ 2⁄=
13.46 dB

-1 -0 .5 0 0 .5 1
-6 0

-5 0

-4 0

-3 0

-2 0

-1 0

0

s ine  a ng le  - d im e ns io nle s s

a
rr

a
y 

p
a

tt
e

rn

 Figure 10.8. Normalized radiation pattern for a linear array. 
 and .N 8= d λ 2⁄=

N d
λ D d= w n( ) ψ n( )

βsin
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(10.46)

where in this case the phase reference is taken as the physical center of the
array, and 

(10.47)

Expanding Eq. (10.46) and factoring the common phase term
 yield

(10.48)

By using the symmetry property of a window sequence (remember that a win-
dow must be symmetrical about its central point), we can rewrite Eq. (10.48) as

(10.49)

where . 

Define . It follows that
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w 1( )
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d

D
 Figure 10.9. Linear array of size 5, with tapering and phase shifting hardware.
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(10.50)

The discrete Fourier transform of the sequence  is defined as

(10.51)

The set  which makes  equal to the DFT kernel is

(10.52)

Then by using Eq. (10.52) in Eq. (10.51) yields

(10.53)

The one-way array pattern is computed as the modulus of Eq. (10.53). It fol-
lows that the one-way radiation pattern of a tapered linear array of circular
dishes is

(10.54)

where  is the element pattern. Fig. 10.10 shows the one-way array pattern
for a linear array of size , element spacing , and the ele-
ments being circular dishes of diameter ; no tapering is utilized. 

10.7.  Array Pattern for Rectangular Planar Array

Fig. 10.11 shows a sketch of an  planar array formed from a rectangu-
lar grid. Other planar array configurations may be composed using a circular or
hexagonal grid. Planar arrays can be steered electronically in both azimuth and
elevation .

If the array were composed of only one line of elements distributed along the
x-axis, then the electric field at a far field observation point defined by 
is
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 Figure 10.10. Normalized one-way pattern for linear array of size 8, 
isotropic elements, and circular dishes. This plot can be 
reproduced using MATLAB program “fig10_10.m” 
given in Listing 10.4 in Section 10.9.
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(10.55)

where  is the element spacing along the x-axis. Now, if  of these linear
arrays are placed next to one another along the y-axis, a rectangular array
would be formed. In this case, the total electric field at a far field observation
point is computed as

(10.56)

where

(10.57)

and  is the element spacing along the y-axis. 

y

z

x

φ

β

dy

dx

far field
 point

Figure 10.11. Planar array geometry.
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The rectangular array one-way intensity pattern is then equal to the product of
the individual patterns. More precisely,

(10.58)

The radiation pattern maxima, nulls, side lobes, and grating lobes in both the x-
and y-axis are computed in a similar fashion to the linear array case. Addition-
ally, the same conditions for grating lobes control are applicable. 

MATLAB Function “rect_array.m”

The function “rect_array.m” computes and plots the linear array radiation
pattern, in linear and polar coordinates. This function is given in Listing 10.5 in
Section 10.9. The syntax is as follows:

[emod] = rect_array (nex, ney, dx, dy)

where

Fig. 10.12 shows a three-dimensional radiation pattern for a rectangular array
of size , element spacing , and isotropic elements. 

10.8.  Conventional Beamforming

Adaptive arrays are phased array antennas that are normally used to auto-
matically sense and eliminate unwanted signals entering the radar's Field of
View (FOV), while enhancing reception about the desired target returns. For
this purpose, adaptive arrays utilize a rather complicated combination of hard-
ware and require demanding levels of software implementation. Through feed-
back networks, a proper set of complex weights is computed and applied to
each channel of the array. Adaptive array operation can be considered a special
case of beamforming, where the basic idea is to enhance the signal in a certain
direction while attenuating noise in all other directions.

Symbol Description Units Status

nex number of elements in x-direction none input

ney number of elements in y-direction none input

dx element spacing in x-direction 

(e.g. )

wavelengths input

dy element spacing in y-direction 

(e.g. )

wavelengths input

emod radiation pattern vector dB output

E β φ,( ) Nkdx β φcossin( ) 2⁄( )sin

kdx β φcossin( ) 2⁄( )sin
-------------------------------------------------------------

Nkdy β φsinsin( ) 2⁄( )sin

kdy β φsinsin( ) 2⁄( )sin
------------------------------------------------------------=

d λ d; λ 2⁄= =

d λ d; λ 2⁄= =

5 5× dx dy λ 2⁄= =
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 Figure 10.12a. Three-dimensional pattern for a rectangular array 
of size 5x5, and uniform element spacing.

 Figure 10.12b. Contour plot corresponding to Fig. 10.12a.
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Multiple beams can be formed at the transmitting or receiving modes. Also,
it can be carried out at the RF, IF, base band, or digital levels. RF beamforming
is the simplest and most common technique. In this case, multiple narrow
beams are formed through the use of phase shifters. IF and base band beam-
forming require complex coherent hardware. However, the system is operated
at lower frequencies where tolerance is not as critical. Digital beamforming is
more flexible than RF, IF, or base band techniques, but it requires a demanding
level of parallel VLSI processing hardware.

A successful implementation of adaptive arrays depends heavily on two fac-
tors: first, a proper choice of the reference signal, which is used for comparison
against the received target/jammer returns. A good estimate of the reference
signal makes the computation of the weights systematic and effective. On the
other hand, a bad estimate of the reference signal increases the array's adapting
time and limits the system to impractical (non-real time) situations. Second, a
fast (real time) computation of the optimum weights is essential. There have
been many algorithms developed for this purpose. Nevertheless, they all share
a common problem, that is the computation of the inverse of a complex matrix.
This drawback has limited the implementation of adaptive arrays to experi-
mental systems or small arrays.

Consider a linear array of  equally spaced elements, and a plane wave inci-
dent on the aperture with direction-sine , as shown in Fig. 10.13. Conven-
tional beamformers appropriately delay the outputs of each sensor to form a
beam steered at angle . The output of the beamformer is

(10.59)

(10.60)

where  is the element spacing and  is the speed of light. Fourier transforma-
tion of Eq. (10.59) yields

(10.61)

which can be written in vector form as

(10.62)

N
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(10.63)

(10.64)

where the superscript  indicates complex conjugate transpose.

Let  be the amplitude of the wavefront defined by ; it follows that

the vector  is given by

(10.65)

where  is a steering vector, and in general  is given by

(10.66)

Ignoring the phase term , we can write Eq. (10.63) as

(10.67)

and the beamformer output will be

...

d βsinβ
2d βsin

N 1–( )d βsin
d

xo x1 x2 xN 1–

τo
τN 1–

∑ y t( )

w avefron t

τ1
τ2

 Figure 10.13. A linear array of size , element spacing , and 
an incident plane wave defined by .
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(10.68)

The array pattern of the beam steered at  is computed as the expected value

of . In other words,

(10.69)

where  and  is the correlation matrix. If , then
the power spectrum is

(10.70)

Consider  incident plane waves with directions of arrival defined by

(10.71)

The  sample at the output of the  sensor is

(10.72)

where  is the amplitude of the  plane wave, and  is white, zero-
mean noise with variance , and it is assumed to be uncorrelated with the
signals. Eq. (10.72) can be written in vector notation as

(10.73)

A set of  steering vectors is needed to simultaneously form  beams.
Define the steering matrix  as

(10.74)

Then the autocorrelation matrix of the field measured by the array is

(10.75)

where , and  is the identity matrix.

The array pattern can now be computed using standard spectral estimators.
For example, using the Bartlett beamformer yields
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(10.76)

The spectrum defined by Eq. (10.76) generates spectral peaks at angles  for
each wavefront defined by . Assuming the  wavefront, then the SNR is

(10.77)

10.9. MATLAB Programs and Functions

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun these codes with different inputs
in order to enhance their understanding of the theory.

Listing 10.1. MATLAB Function “circ_aperture.m”
function [emod] = circ_aperture (lambda, d)
eps = 0.000001;
k = 2. * pi / lambda;
r = d /2.;
beta = -pi:pi/200.:pi;
sinbet = sin(beta);
var = k * r .* sinbet; %2.0 * pi * (-2:0.001:2);
pattern = (2. * r^2)  .* besselj(1,var) ./ (var);
maxval = max(abs(pattern));
pattern = pattern ./ maxval;
emod = 20. * log10(abs(pattern));
figure(1)
plot(var,emod,'k')
grid;
xlabel('kr*sin(angle)')
ylabel('Normalized radiation pattern');
minval = fix(min(var));
maxval = fix(max(var));
var3d = minval:.5:maxval;
[X,Y] = meshgrid(var3d,var3d);
U = sqrt(X.^2 + Y.^2) + eps;
z = 2. * besselj(1,U) ./ U;
figure (2)
mesh(abs(z))
axis off
figure(3)
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ki ith
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------ 
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polar(beta,pattern,'k')

Listing 10.2. MATLAB Program “fig10_5.m”
clear all
eps = 0.0000001;
beta = -pi : pi / 10791 : pi;
var = sin(beta);
%var = -1.:0.00101:1.;
num = sin((8. * 2. * pi * 0.5) .* var);
if(abs(num) <= eps)
   num = eps;
end
den = sin((2. * pi * 0.5) .* var);
if(abs(den) <= eps)
   den = eps;
end
pattern = num ./ den;
maxval = max(abs(pattern));
pattern = abs(pattern ./ maxval);
i=0;
mod=abs(pattern);
figure (1)
plot(var,mod,'k');
grid;
xlabel('sine angle - dimensionless')
ylabel('array pattern')
figure(2)
polar(beta,abs(pattern),'k')

Listing 10.3. MATLAB Function “linear_array.m”
function [emod] = linear_array (ne, d, beta0)
eps = 0.0000001;
beta = 0 : pi / 10791 : 2.*pi;
beta0 = beta0 * pi /180.;
var = sin(beta) - sin(beta0);
num = sin((0.5 * ne * 2. * pi * d) .* var);
if(abs(num) <= eps)
   num = eps;
end
den = sin((0.5 * 2. * pi * d) .* var);
if(abs(den) <= eps)
   den = eps;
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end
pattern = num ./ den;
maxval = max(abs(pattern));
pattern = abs(pattern ./ maxval);
emod=abs(pattern);
figure(1)
plot(sin(beta),emod,'k');
grid;
xlabel('sine angle - dimensionless')
ylabel('array pattern')
figure(2)
polar(beta,abs(pattern),'k')

Listing 10.4. MATLAB Program “fig10_10.m”
pattern = num ./ den;
maxval = max(abs(pattern));
pattern = abs(pattern ./ maxval);
i = 0.;
for ii=-1:0.001:1
i = i + 1.;
if(pattern(i) < 0.001)
   pattern(i) = 0.0011;
end
end
mod = abs(pattern);
subplot(2,1,1);
plot(var,20.0 .* log10(mod),'k');
grid;
xlabel('sine angle - dimensionless')
ylabel('array pattern')
gtext('main lobe');
gtext('grating lobe');
gtext('grating lobe');
var1 = 1. * pi .* var;
patternj = 2. .* besselj(1,var1) ./ var1;
mod = abs(pattern) .* abs(patternj);
subplot(2,1,2);
plot(var,20.0 .* log10(mod),'k');
grid;
xlabel('sine angle - dimensionless')
ylabel('array pattern')
gtext('main lobe');
gtext('grating lobe');
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gtext('grating lobe');

Listing 10.5. MATLAB Function “rect_array.m”
function emod = rect_array(nex,ney,dx,dy)
eps = 0.0000001;
factx = nex * 2. * pi * 0.5 * dx ;
facty = ney * 2. * pi * 0.5 * dy ;
ii = 0.;
delpi = pi / 10.;
for betax = 0.+delpi : pi/101 : 2.*pi-delpi
   ii = ii + 1.;
   numx = sin(factx * sin(betax));
      if(abs(numx) <= eps)
         numx = eps;
      end
      denx = sin(factx * sin(betax) / nex);
      if(abs(denx) <= eps)
         denx = eps;
      end
   jj = 0.;
   for betay = 0.+delpi : pi/101 : 2.*pi-delpi
      jj = jj + 1.;
      numy = sin(facty * sin(betay));
      if(abs(numy) <= eps)
         numy = eps;
      end
      deny = sin(facty * sin(betay) / ney);
      if(abs(deny) <= eps)
         deny = eps;
      end
      emod(ii,jj) = abs(numx / denx) * abs(numy / deny);
   end
end
maxval = max(max(emod));
emod = emod ./ maxval;
figure(1)
mesh(emod)
figure(2)
contour(emod)
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 Problems

10.1. Consider an antenna whose diameter is . What is the far
field requirement for an X-band or an L-band radar that is using this antenna? 
10.2. Consider an antenna with electric field intensity in the xy-plane

. This electric field is generated by a current distribution  in the yz-
plane. The electric field intensity is computed using the integral 

where  is the wavelength and  is the aperture. (a) Write an expression for
 when  (a constant). (b) Write an expression for the normal-

ized power radiation pattern and plot it in dB.

10.3. A linear phased array consists of 50 elements with  element
spacing. (a) Compute the 3dB beam width when the main beam steering angle
is  and . (b) Compute the electronic phase difference for any two con-

secutive elements for steering angle . 

10.4. A linear phased array antenna consists of eight elements spaced with

 element spacing. (a) Give an expression for the antenna gain pattern
(assume no steering and uniform aperture weighting). (b) Sketch the gain pat-
tern versus sine of the off boresight angle . What problems do you see is

using  rather than ? 

10.5. In Section 10.6 we showed how a DFT can be used to compute the
radiation pattern of a linear phased array. Consider a linear of 64 elements at
half wavelength spacing, where an FFT of size 512 is used to compute the pat-
tern. What are the FFT bins that correspond to steering angles ?
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Chapter 11 Target Tracking 

Part I: Single Target Tracking

Tracking radar systems are used to measure the target’s relative position in
range, azimuth angle, elevation angle, and velocity. Then, by using and keep-
ing track of these measured parameters the radar can predict their future val-
ues. Target tracking is important to military radars as well as to most civilian
radars. In military radars, tracking is responsible for fire control and missile
guidance; in fact, missile guidance is almost impossible without proper target
tracking. Commercial radar systems, such as civilian airport traffic control
radars, may utilize tracking as a means of controlling incoming and departing
airplanes.

Tracking techniques can be divided into range/velocity tracking and angle
tracking. It is also customary to distinguish between continuous single-target
tracking radars and multi-target track-while-scan (TWS) radars. Tracking
radars utilize pencil beam (very narrow) antenna patterns. It is for this reason
that a separate search radar is needed to facilitate target acquisition by the
tracker. Still, the tracking radar has to search the volume where the target’s
presence is suspected. For this purpose, tracking radars use special search pat-
terns, such as helical, T.V. raster, cluster, and spiral patterns, to name a few.

11.1.  Angle Tracking

Angle tracking is concerned with generating continuous measurements of
the target’s angular position in the azimuth and elevation coordinates. The
accuracy of early generation angle tracking radars depended heavily on the
size of the pencil beam employed. Most modern radar systems achieve very
fine angular measurements by utilizing monopulse tracking techniques.
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Tracking radars use the angular deviation from the antenna main axis of the
target within the beam to generate an error signal. This deviation is normally
measured from the antenna’s main axis. The resultant error signal describes
how much the target has deviated from the beam main axis. Then, the beam
position is continuously changed in an attempt to produce a zero error signal. If
the radar beam is normal to the target (maximum gain), then the target angular
position would be the same as that of the beam. In practice, this is rarely the
case. 

In order to be able to quickly achieve changing the beam position, the error
signal needs to be a linear function of the deviation angle. It can be shown that
this condition requires the beam’s axis to be squinted by some angle (squint
angle) off the antenna’s main axis. 

11.1.1. Sequential Lobing

Sequential lobing is one of the first tracking techniques that was utilized by
the early generation of radar systems. Sequential lobing is often referred to as
lobe switching or sequential switching. It has a tracking accuracy that is lim-
ited by the pencil beam width used and by the noise caused by either mechani-
cal or electronic switching mechanisms. However, it is very simple to
implement. The pencil beam used in sequential lobing must be symmetrical
(equal azimuth and elevation beam widths). 

Tracking is achieved (in one coordinate) by continuously switching the pen-
cil beam between two pre-determined symmetrical positions around the
antenna’s Line of Sight (LOS) axis. Hence, the name sequential lobing is
adopted. The LOS is called the radar tracking axis, as illustrated in Fig. 11.1. 

As the beam is switched between the two positions, the radar measures the
returned signal levels. The difference between the two measured signal levels
is used to compute the angular error signal. For example, when the target is
tracked on the tracking axis, as the case in Fig. 11.1a, the voltage difference is
zero and, hence, is also the error signal. However, when the target is off the
tracking axis, as in Fig. 11.1b, a nonzero error signal is produced. The sign of
the voltage difference determines the direction in which the antenna must be
moved. Keep in mind, the goal here is to make the voltage difference be equal
to zero.

In order to obtain the angular error in the orthogonal coordinate, two more
switching positions are required for that coordinate. Thus, tracking in two
coordinates can be accomplished by using a cluster of four antennas (two for
each coordinate) or by a cluster of five antennas. In the latter case, the middle
antenna is used to transmit, while the other four are used to receive.
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11.1.2. Conical Scan

Conical scan is a logical extension of sequential lobing where, in this case,
the antenna is continuously rotated at an offset angle, or has a feed that is
rotated about the antenna’s main axis. Fig. 11.2 shows a typical conical scan
beam. The beam scan frequency, in radians per second, is denoted as . The
angle between the antenna’s LOS and the rotation axis is the squint angle .
The antenna’s beam position is continuously changed so that the target will
always be on the tracking axis.

Fig. 11.3 shows a simplified conical scan radar system. The envelope detec-
tor is used to extract the return signal amplitude and the Automatic Gain Con-
trol (AGC) tries to hold the receiver output to a constant value. Since the AGC
operates on large time constants, it can hold the average signal level constant
and still preserve the signal rapid scan variation. It follows that the tracking
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Figure 11.1. Sequential lobing. (a) Target is located on track axis.
                      (b) Target is off track axis. 
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error signals (azimuth and elevation) are functions of the target’s RCS; they are
functions of its angular position with the main beam axis.

 In order to illustrate how conical scan tracking is achieved, we will first con-
sider the case shown in Fig. 11.4. In this case, as the antenna rotates around the
tracking axis all target returns have the same amplitude (zero error signal).
Thus, no further action is required.

tracking axis

beam
 axis

ϕ squint angle

rotating
feed

Figure 11.2. Conical scan beam.
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Figure 11.3. Simplified conical scan radar system.
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Next, consider the case depicted by Fig. 11.5. Here, when the beam is at
position B, returns from the target will have maximum amplitude. And when
the antenna is at position A, returns from the target have minimum amplitude.
Between those two positions, the amplitude of the target returns will vary
between the maximum value at position B, and the minimum value at position
A. In other words, Amplitude Modulation (AM) exists on top of the returned
signal. This AM envelope corresponds to the relative position of the target
within the beam. Thus, the extracted AM envelope can be used to derive a
servo-control system in order to position the target on the tracking axis. 

Now, let us derive the error signal expression that is used to drive the servo-
control system. Consider the top view of the beam axis location shown in Fig.
11.6. Assume that  is the starting beam position. The locations for maxi-
mum and minimum target returns are also identified. The quantity  defines
the distance between the target location and the antenna’s tracking axis. It fol-
lows that the azimuth and elevation errors are, respectively, given by

(11.1)

(11.2)

These are the error signals that the radar uses to align the tracking axis on the
target.
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 Figure 11.4. Error signal produced when the target is on the tracking 
axis for conical scan. 

t 0=
ε

εa ε ϕsin=

εe ε ϕcos=

© 2000 by Chapman & Hall/CRC



beam
 ax

is

tracking axis

beam
 positi

on A

beam position B

                   

tim e

E t( )

E0

 Figure 11.5. Error signal produced when the target is off the 
tracking axis for conical scan. 

ϕ εa

εe

ε

beam axis at t 0=

maximum target
return 

minimum target
return 

tracking
axis

target

Figure 11.6. Top view of beam axis for a complete scan.

© 2000 by Chapman & Hall/CRC



The AM signal  can then be written as

(11.3)

where  is a constant called the error slope,  is the scan frequency in radi-
ans per seconds, and  is the angle already defined. The scan reference is the
signal that the radar generates to keep track of the antenna’s position around a
complete path (scan). The elevation error signal is obtained by mixing the sig-
nal  with  (the reference signal) followed by low pass filtering.
More precisely,

(11.4)

and after low pass filtering we get

(11.5)

Negative elevation error drives the antenna beam downward, while positive
elevation error drives the antenna beam upward. Similarly, the azimuth error
signal is obtained by multiplying  by  followed by low pass filter-
ing. It follows that

(11.6)

The antenna scan rate is limited by the scanning mechanism (mechanical or
electronic), where electronic scanning is much faster and more accurate than
mechanical scan. In either case, the radar needs at least four target returns to be
able to determine the target azimuth and elevation coordinates (two returns per
coordinate). Therefore, the maximum conical scan rate is equal to one fourth of
the PRF. Rates as high as 30 scans per seconds are commonly used.

The conical scan squint angle needs to be large enough so that a good error
signal can be measured. However, due to the squint angle, the antenna gain in
the direction of the tracking axis is less than maximum. Thus, when the target
is in track (located on the tracking axis), the SNR suffers a loss equal to the
drop in the antenna gain. This loss is known as the squint or crossover loss.
The squint angle is normally chosen such that the two-way (transmit and
receive) crossover loss is less than a few decibels.   

11.2.  Amplitude Comparison Monopulse

Amplitude comparison monopulse tracking is similar to lobing in the sense
that four squinted beams are required to measure the target’s angular position.
The difference is that the four beams are generated simultaneously rather than
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sequentially. For this purpose, a special antenna feed is utilized such that the
four beams are produced using a single pulse, hence the name “monopulse.”
Additionally, monopulse tracking is more accurate and is not susceptible to
lobing anomalies, such as AM jamming and gain inversion ECM. Finally, in
sequential and conical lobing variations in the radar echoes degrade the track-
ing accuracy; however, this is not a problem for monopulse techniques since a
single pulse is used to produce the error signals. Monopulse tracking radars can
employ both antenna reflectors as well as phased array antennas. 

Fig. 11.7 show a typical monopulse antenna pattern. The four beams A, B, C,
and D represent the four conical scan beam positions. Four feeds, mainly
horns, are used to produce the monopulse antenna pattern. Amplitude
monopulse processing requires that the four signals have the same phase and
different amplitudes.

A good way to explain the concept of amplitude monopulse technique is to
represent the target echo signal by a circle centered at the antenna’s tracking
axis, as illustrated by Fig. 11.8a, where the four quadrants represent the four
beams. In this case, the four horns receive an equal amount of energy, which
indicates that the target is located on the antenna’s tracking axis. However,
when the target is off the tracking axis (Figs. 11.8b-d), an unbalance of energy
occurs in the different beams. This unbalance of energy is used to generate an
error signal that drives the servo-control system. Monopulse processing con-
sists of computing a sum  and two difference  (azimuth and elevation)
antenna patterns. Then by dividing a  channel voltage by the  channel volt-
age, the angle of the signal can be determined.

The radar continuously compares the amplitudes and phases of all beam
returns to sense the amount of target displacement off the tracking axis. It is
critical that the phases of the four signals be constant in both transmit and
receive modes. For this purpose, either digital networks or microwave compar-
ator circuitry are utilized. Fig. 11.9 shows a block diagram for a typical micro-
wave comparator, where the three receiver channels are declared as the sum
channel, elevation angle difference channel, and azimuth angle difference
channel.

A

B

D

C

Figure 11.7. Monopulse antenna pattern.
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To generate the elevation difference beam, one can use the beam difference
(A-D) or (B-C). However, by first forming the sum patterns (A+B) and (D+C)
and then computing the difference (A+B)-(D+C), we achieve a stronger eleva-
tion difference signal, . Similarly, by first forming the sum patterns (A+D)
and (B+C) and then computing the difference (A+D)-(B+C), a stronger azi-
muth difference signal, , is produced.

A simplified monopulse radar block diagram is shown in Fig. 11.10. The
sum channel is used for both transmit and receive. In the receiving mode the
sum channel provides the phase reference for the other two difference chan-
nels. Range measurements can also be obtained from the sum channel. In order
to illustrate how the sum and difference antenna patterns are formed, we will
assume a  single element antenna pattern and squint angle . The
sum signal in one coordinate (azimuth or elevation) is then given by

(11.7)

A B

D C

A B

D C

A B

D C

A B

D C

(a) (b) (c) (d)

                 
 Figure 11.8. Illustration of monopulse concept. (a) Target is on the 

tracking axis.  (b) - (d) Target is off the tracking axis.
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and a difference signal in the same coordinate is

(11.8)

MATLAB Function “mono_pulse.m”

The function “mono_pulse.m” implements Eqs. (11.7) and (11.8). Its output
includes plots of the sum and difference antenna patterns as well as the differ-
ence-to-sum ratio. It is given in Listing 11.1 in Section 11.10. The syntax is as
follows:

mono_pulse (phi0)

where phi0 is the squint angle in radians. 

Fig. 11.11 (a-c) shows the corresponding plots for the sum and difference
patterns for  radians. Fig. 11.12 (a-c) is similar to Fig. 11.11, except
in this case  radians. Clearly, the sum and difference patterns
depend heavily on the squint angle. Using a relatively small squint angle pro-
duces a better sum pattern than that resulting from a larger angle. Additionally,
the difference pattern slope is steeper for the small squint angle.
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 Figure 11.11a. Two squinted patterns. Squint angle is  radians.ϕ0 0.15=
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 Figure 11.11b. Sum pattern corresponding to Fig. 11.11a.
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 Figure 11.11c. Difference pattern corresponding to Fig. 11.11a.
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 Figure 11.12a. Two squinted patterns. Squint angle is  radians.ϕ0 0.75=
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 Figure 11.12b. Sum pattern corresponding to Fig. 11.12a.
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The difference channels give us an indication of whether the target is on or
off the tracking axis. However, this signal amplitude depends not only on the
target angular position, but also on the target’s range and RCS. For this reason
the ratio  (delta over sum) can be used to accurately estimate the error
angle that only depends on the target’s angular position.

Let us now address how the error signals are computed. First, consider the
azimuth error signal. Define the signals  and  as

(11.9)

(11.10)

The sum signal is , and the azimuth difference signal is
. If , then both channels have the same phase  (since

the sum channel is used for phase reference). Alternatively, if , then the
two channels are  out of phase. Similar analysis can be done for the ele-
vation channel, where in this case  and . Thus, the
error signal output is

(11.11)

 Figure 11.12c. Difference pattern corresponding to Fig. 11.12a.
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where  is the phase angle between the sum and difference channels and it is
equal to  or . More precisely, if , then the target is on the track-
ing axis; otherwise it is off the tracking axis. Fig. 11.13 (a,b) shows a plot for
the ratio  for the monopulse radar whose sum and difference patterns are
in Figs. 11.11 and 11.12.
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 Figure 11.13a. Difference-to-sum ratio corresponding to Fig. 11.11a.
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 Figure 11.13b. Difference-to-sum ratio corresponding to Fig. 11.12a.
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11.3.  Phase Comparison Monopulse

Phase comparison monopulse is similar to amplitude comparison monopulse
in the sense that the target angular coordinates are extracted from one sum and
two difference channels. The main difference is that the four signals produced
in amplitude comparison monopulse will have similar phases but different
amplitudes; however, in phase comparison monopulse the signals have the
same amplitude and different phases. Phase comparison monopulse tracking
radars use a minimum of a two-element array antenna for each coordinate (azi-
muth and elevation), as illustrated in Fig. 11.14. A phase error signal (for each
coordinate) is computed from the phase difference between the signals gener-
ated in the antenna elements. 

 

Consider Fig. 11.14; since the angle  is equal to , it follows that

(11.12)

and since  we can use the binomial series expansion to get
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Figure 11.14. Single coordinate phase comparison monopulse antenna. 
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(11.13)

Similarly, 

(11.14)

The phase difference between the two elements is then given by

(11.15)

where  is the wavelength. The phase difference  is used to determine the
angular target location. Note that if , then the target would be on the
antenna’s main axis. The problem with this phase comparison monopulse tech-
nique is that it is quite difficult to maintain a stable measurement of the off
boresight angle , which causes serious performance degradation. This prob-
lem can be overcome by implementing a phase comparison monopulse system
as illustrated in Fig. 11.15. 

The (single coordinate) sum and difference signals are, respectively, given
by

(11.16)

(11.17)

where the  and  are the signals in the two elements. Now, since  and
 have similar amplitude and are different in phase by , we can write

(11.18)
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It follows that

(11.19)

(11.20)

The phase error signal is computed from the ratio . More precisely,

(11.21)

which is purely imaginary. The modulus of the error signal is then given by

(11.22)

This kind of phase comparison monopulse tracker is often called the half-angle
tracker.

11.4. Range Tracking

Target range is measured by estimating the round-trip delay of the transmit-
ted pulses. The process of continuously estimating the range of a moving target
is known as range tracking. Since the range to a moving target is changing with
time, the range tracker must be constantly adjusted to keep the target locked in
range. This can be accomplished using a split gate system, where two range
gates (early and late) are utilized. The concept of split gate tracking is illus-
trated in Fig. 11.16, where a sketch of a typical pulsed radar echo is shown in
the figure. The early gate opens at the anticipated starting time of the radar
echo and lasts for half its duration. The late gate opens at the center and closes
at the end of the echo signal. For this purpose, good estimates of the echo dura-
tion and the pulse centertime must be reported to the range tracker so that the
early and late gates can be placed properly at the start and center times of the
expected echo. This reporting process is widely known as the “designation pro-
cess.”

The early gate produces positive voltage output while the late gate produces
negative voltage output. The outputs of the early and late gates are subtracted,
and the difference signal is fed into an integrator to generate an error signal. If
both gates are placed properly in time, the integrator output will be equal to
zero. Alternatively, when the gates are not timed properly, the integrator output
is not zero, which gives an indication that the gates must be moved in time, left
or right depending on the sign of the integrator output.
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Figure 11.16. Illustration of split-range gate. 
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Part II: Multiple Target Tracking

Track-while-scan radar systems sample each target once per scan interval,
and use sophisticated smoothing and prediction filters to estimate the target
parameters between scans. To this end, the Kalman filter and the Alpha-Beta-
Gamma ( ) filter are commonly used. Once a particular target is detected,
the radar may transmit up to a few pulses to verify the target parameters, before
it establishes a track file for that target. Target position, velocity, and accelera-
tion comprise the major components of the data maintained by a track file.

The principles of recursive tracking and prediction filters are presented in
this part. First, an overview of state representation for Linear Time Invariant
(LTI) systems is discussed. Then, second and third order one-dimensional
fixed gain polynomial filter trackers are developed. These filters are, respec-
tively, known as the  and  filters (also known as the g-h and g-h-k fil-
ters). Finally, the equations for an n-dimensional multi-state Kalman filter is
introduced and analyzed. As a matter of notation, small case letters, with an
underneath bar, are used.

11.5. Track-While-Scan (TWS)

Modern radar systems are designed to perform multi-function operations,
such as detection, tracking, and discrimination. With the aid of sophisticated
computer systems, multi-function radars are capable of simultaneously track-
ing many targets. In this case, each target is sampled once (mainly range and
angular position) during a dwell interval (scan). Then, by using smoothing and
prediction techniques future samples can be estimated. Radar systems that can
perform multi-tasking and multi-target tracking are known as Track-While-
Scan (TWS) radars.

Once a TWS radar detects a new target it initiates a separate track file for
that detection; this ensures that sequential detections from that target are pro-
cessed together to estimate the target’s future parameters. Position, velocity,
and acceleration comprise the main components of the track file. Typically, at
least one other confirmation detection (verify detection) is required before the
track file is established. 

Unlike single target tracking systems, TWS radars must decide whether each
detection (observation) belongs to a new target or belongs to a target that has
been detected in earlier scans. And in order to accomplish this task, TWS radar
systems utilize correlation and association algorithms. In the correlation pro-
cess each new detection is correlated with all previous detections in order to
avoid establishing redundant tracks. If a certain detection correlates with more
than one track, then a pre-determined set of association rules are exercised so

αβγ

αβ αβγ
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that the detection is assigned to the proper track. A simplified TWS data pro-
cessing block diagram is shown in Fig. 11.17. 

Choosing a suitable tracking coordinate system is the first problem a TWS
radar has to confront. It is desirable that a fixed reference of an inertial coordi-
nate system be adopted. The radar measurements consist of target range, veloc-
ity, azimuth angle, and elevation angle. The TWS system places a gate around
the target position and attempts to track the signal within this gate. The gate
dimensions are normally azimuth, elevation, and range. Because of the uncer-
tainty associated with the exact target position during the initial detections, a
gate has to be large enough so that targets do not move appreciably from scan
to scan; more precisely, targets must stay within the gate boundary during suc-
cessive scans. After the target has been observed for several scans the size of
the gate is reduced considerably.

Gating is used to decide whether an observation is assigned to an existing
track file, or to a new track file (new detection). Gating algorithms are nor-
mally based on computing a statistical error distance between a measured and
an estimated radar observation. For each track file, an upper bound for this
error distance is normally set. If the computed difference for a certain radar
observation is less than the maximum error distance of a given track file, then
the observation is assigned to that track.

All observations that have an error distance less than the maximum distance
of a given track are said to correlate with that track. For each observation that
does not correlate with any existing tracks, a new track file is established
accordingly. Since new detections (measurements) are compared to all existing
track files, a track file may then correlate with no observations or with one or
more observations. The correlation between observations and all existing track
files is identified using a correlation matrix. Rows of the correlation matrix
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Figure. 11.17. Simplified block diagram of TWS data processing. 
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represent radar observations, while columns represent track files. In cases
where several observations correlate with more than one track file, a set of pre-
determined association rules can be utilized so that a single observation is
assigned to a single track file. 

11.6.  State Variable Representation of an LTI System 

Linear time invariant system (continuous or discrete) can be describe mathe-
matically using three variables. They are the input, output, and the state vari-
ables. In this representation, any LTI system has observable or measurable
objects (abstracts). For example, in the case of a radar system, range may be an
object measured or observed by the radar tracking filter. States can be derived
in many different ways. For the scope of this book, states of an object or an
abstract are the components of the vector that contains the object and its time
derivatives. For example, a third-order one-dimensional (in this case range)
state vector representing range can be given by 

(11.23)

where , , and  are, respectively, the range measurement, range rate
(velocity), and acceleration. The state vector defined in Eq. (11.23) can be rep-
resentative of continuous or discrete states. In this book, the emphasis is on
discrete time representation, since most radar signal processing is executed
using digital computers. For this purpose, an n-dimensional state vector has the
following form:

(11.24)

where the superscript indicates the transpose operation. 

The LTI system of interest can be represented using the following state equa-
tions:

(11.25)

(11.26)

where:  is the value of the  state vector;  is the value of the  out-
put vector;  is the value of the  input vector;  is an  matrix; 
is an  matrix;  is  matrix; and  is an  matrix. The

x

R

R
·

R
··

=

R R
·

R
··

x x1 x·1 … x2 x·2 … xn x·n …
t

=

x· t( ) A x t( ) Bw t( )+=

y t( ) C x t( ) Dw t( )+=

x· n 1× y p 1×
w m 1× A n n× B

n m× C p n× D p m×

© 2000 by Chapman & Hall/CRC



homogeneous solution (i.e., ) to this linear system, assuming known
initial condition  at time , has the form

 (11.27)

The matrix  is known as the state transition matrix, or fundamental matrix,
and is equal to

(11.28)

Eq. (11.28) can be expressed in series format as

(11.29)

Example 11.1: Compute the state transition matrix for an LTI system when

 

Solution:

The state transition matrix can be computed using Eq. (11.29). For this pur-
pose, compute  and . It follows

 

Therefore,

 

The state transition matrix has the following properties (the proof is left as
an exercise):
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(11.30)

2. Identity property

(11.31)

3. Initial value property

(11.32)

4. Transition property

(11.33)

5. Inverse property

(11.34)

6. Separation property

(11.35)

The general solution to the system defined in Eq. (11.25) can be written as

(11.36)

The first term of the right-hand side of Eq. (11.36) represents the contribution
from the system response to the initial condition. The second term is the contri-
bution due to the driving force . By combining Eqs. (11.26) and (11.36) an
expression for the output is computed as

(11.37)

Note that the system impulse response is equal to . 

The difference equations describing a discrete time system, equivalent to
Eqs. (11.25) and (11.26), are 

t∂
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∫+=
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(11.38)

(11.39)

where  defines the discrete time  and  is the sampling interval. All other
vectors and matrices were defined earlier. The homogeneous solution to the
system defined in Eq. (11.38), with initial condition , is

 (11.40)

In this case the state transition matrix is an  matrix given by

 (11.41)

The following is the list of properties associated with the discrete transition
matrix

(11.42)

(11.43)

(11.44)

(11.45)

(11.46)

(11.47)

The solution to the general case (i.e., non-homogeneous system) is given by

(11.48)

It follows that the output is given by

(11.49)

where the system impulse response is given by
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(11.50)

Taking the Z-transform for Eqs. (11.38) and (11.39) yields

(11.51)

 (11.52)

Manipulating Eqs. (11.51) and (11.52) yields

(11.53)

(11.54)

It follows that the state transition matrix is 

(11.55)

and the system impulse response in the z-domain is

(11.56)

11.7.  The LTI System of Interest 

For the purpose of establishing the framework necessary for the Kalman fil-
ter development, consider the LTI system shown in Fig. 11.18. This system
(which is a special case of the system described in the previous section) can be
described by the following first order differential vector equations

(11.57)

(11.58)

where  is the observable part of the system (i.e., output),  is a driving force,
and  is the measurement noise. The matrices  and  vary depending on the
system. The noise observation  is assumed to be uncorrelated. If the initial
condition vector is , then from Eq. (11.36) we get

(11.59)
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The object (abstract) is observed only at discrete times determined by the
system. These observation times are declared by discrete time  where  is
the sampling interval. Using the same notation adopted in the previous section,
the discrete time representations of Eqs. (11.57) and (11.58) are

(11.60)

(11.61)

The homogeneous solution to this system is given in Eq. (11.27) for continuous
time, and in Eq. (11.40) for discrete time. 

The state transition matrix corresponding to this system can be obtained
using Taylor series expansion of the vector . More precisely,

(11.62)

It follows that the elements of the state transition matrix are defined by

(11.63)

Using matrix notation, the state transition matrix is then given by 

Σ Σ
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∫ G
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v

 Figure 11.18. An LTI system.
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(11.64)

The matrix given in Eq. (11.64) is often called the Newtonian matrix.

11.8.  Fixed-Gain Tracking Filters 

This class of filters (or estimators) is also known as “Fixed-Coefficient” fil-
ters. The most common examples of this class of filters are the  and 
filters and their variations. The  and  trackers are one-dimensional sec-
ond and third order filters, respectively. They are equivalent to special cases of
the one-dimensional Kalman filter. The general structure of this class of esti-
mators is similar to that of the Kalman filter.

The standard  filter provides smoothed and predicted data for target
position, velocity (Doppler), and acceleration. It is a polynomial predictor/cor-
rector linear recursive filter. This filter can reconstruct position, velocity, and
constant acceleration based on position measurements. The  filter can also
provide a smoothed (corrected) estimate of the present position which can be
used in guidance and fire control operations. 

Notation: 

For the purpose of the discussion presented in the remainder of this chapter,
the following notation is adopted:  represents the estimate during the

 sampling interval, using all data up to and including the  sampling
interval;  is the  measured value; and  is the  residual (error).

The fixed-gain filter equation is given by 

 (11.65)

Since the transition matrix assists in predicting the next state, 

(11.66)

Substituting Eq. (11.66) into Eq. (11.65) yields

(11.67)
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The term enclosed within the brackets on the right hand side of Eq. (11.67) is
often called the residual (error) which is the difference between the measured
input and predicted output. Eq. (11.67) means that the estimate of  is the
sum of the prediction and the weighted residual. The term  repre-
sents the prediction state. In the case of the  estimator,  is row vector
given by

(11.68)

and the gain matrix  is given by 

(11.69)

One of the main objectives of a tracking filter is to decrease the effect of the
noise observation on the measurement. For this purpose the noise covariance
matrix is calculated. More precisely, the noise covariance matrix is 

(11.70)

where  indicates the expected value operator. Noise is assumed to be a zero
mean random process with variance equal to . Additionally, noise measure-
ments are also assumed to be uncorrelated,

(11.71)

Eq. (11.65) can be written as 

(11.72)

where 

(11.73)

Substituting Eqs. (11.72) and (11.73) into Eq. (11.70) yields

(11.74)

Expanding the right hand side of Eq. (11.74) and using Eq. (11.71) give
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(11.75)

Under the steady state condition, Eq. (11.75) collapses to

(11.76)

where  is the steady state noise covariance matrix. In the steady state, 

(11.77)

Several criteria can be used to establish the performance of fixed-gain track-
ing filter. The most commonly used technique is to compute the Variance
Reduction Ratio (VRR). The VRR is defined only when the input to the tracker
is noise measurements. It follows that in the steady state case, the VRR is the
steady state ratio of the output variance (auto-covariance) to the input measure-
ment variance. 

In order to determine the stability of the tracker under consideration, con-
sider the Z-transform for Eq. (11.72),

 (11.78)

Rearranging Eq. (11.78) yields the following system transfer functions:

(11.79)

where  is called the characteristic matrix. Note that the system trans-
fer functions can exist only when the characteristic matrix is a non-singular
matrix. Additionally, the system is stable if and only if the roots of the charac-
teristic equation are within the unit circle in the z-plane,

(11.80)

The filter’s steady state errors can be determined with the help of Fig. 11.19.
The error transfer function is 

(11.81)

and by using Abel’s theorem, the steady state error is

(11.82)
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Substituting Eq. (11.82) into (11.81) yields

(11.83)

11.8.1. The  Filter

The  tracker produces, on the  observation, smoothed estimates for
position and velocity, and a predicted position for the  observation.
Fig. 11.20 shows an implementation of this filter. Note that the subscripts “p”
and “s” are used to indicate, respectively, the predicated and smoothed values.
The  tracker can follow an input ramp (constant velocity) with no steady
state errors. However, a steady state error will accumulate when constant
acceleration is present in the input. Smoothing is done to reduce errors in the
predicted position through adding a weighted difference between the measured
and predicted values to the predicted position, as follows:

(11.84)

(11.85)

 is the position input samples. The predicted position is given by

(11.86)

The initialization process is defined by
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 Figure 11.19. Steady state errors computation.
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A general form for the covariance matrix was developed in the previous sec-
tion, and is given in Eq. (11.75). In general, a second order one-dimensional
covariance matrix (in the context of the  filter) can be written as

(11.87)

where, in general,  is

(11.88)

By inspection, the  filter has

(11.89)
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 Figure 11.20. An implementation for an  tracker.αβ
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Finally, by using Eqs. (11.89) through (11.92) in Eq. (11.72) yields the steady
state noise covariance matrix,

(11.93)

It follows that the position and velocity VRR ratios are, respectively, given by

(11.94)

(11.95)

The stability of the  filter is determined from its system transfer func-
tions. For this purpose, compute the roots for Eq. (11.80) with  from Eq.
(11.89),

(11.96)

Solving Eq. (11.96) for  yields

(11.97)

and in order to guarantee stability

 (11.98)

Two cases are analyzed. First,  are real. In this case (the details are left as
an exercise),

(11.99)

The second case is when the roots are complex; in this case we find

 (11.100)

The system transfer functions can be derived by using Eqs. (11.79), (11.89),
and (11.90), 
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Up to this point all relevant relations concerning the  filter were made
with no regard to how to choose the gain coefficients (  and ). Before con-
sidering the methodology of selecting these coefficients, consider the main
objective behind using this filter. The purpose of the  tracker can be
described twofold:

1. The tracker must reduce the measurement noise as much as possible.

2. The filter must be able to track maneuvering targets, with as little residual 
(tracking error) as possible.

The reduction of measurement noise reduction is normally determined by the
VRR ratios. However, the maneuverability performance of the filter depends
heavily on the choice of the parameters  and . 

A special variation of the  filter was developed by Benedict and Bord-
ner1, and is often referred to as the Benedict-Bordner filter. The main advan-
tage of the Benedict-Bordner is reducing the transient errors associated with
the  tracker. This filter uses both the position and velocity VRR ratios as
measure of performance. It computes the sum of the squared differences
between the input (position) and the output when the input has a unit step
velocity at time zero. Additionally, it computes the squared differences
between the real velocity and the velocity output when the input is as described
earlier. Both error differences are minimized when

(11.102)

In this case, the position and velocity VRR ratios are, respectively, given by

(11.103)

(11.104)

Another important sub-class of the  tracker is the critically damped filter,
often called the fading memory filter. In this case, the filter coefficients are
chosen on the basis of a smoothing factor , where . The gain coeffi-
cients are given by

(11.105)

1. Benedict, T. R. and Bordner, G. W., Synthesis of an Optimal Set of Radar Track-
While-Scan Smoothing Equations. IRE Transaction on Automatic Control, AC-7. 
July 1962, pp. 27-32.
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(11.106)

Heavy smoothing means  and little smoothing means . The ele-
ments of the covariance matrix for a fading memory filter are

(11.107)

(11.108)

(11.109)

11.8.2. The  Filter

The  tracker produces, for the  observation, smoothed estimates of
position, velocity, and acceleration. It also produces predicted position and
velocity for the  observation. An implementation of the  tracker
is shown in Fig. 11.21.

The  tracker will follow an input whose acceleration is constant with no
steady state errors. Again, in order to reduce the error at the output of the
tracker, a weighted difference between the measured and predicted values is
used in estimating the smoothed position, velocity, and acceleration as follows:
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(11.110)

(11.111)

(11.112)

(11.113)

and the initialization process is 

 

 

 

 

Using Eq. (11.63) the state transition matrix for the  filter is 

(11.114)

The covariance matrix (which is symmetric) can be computed from Eq.
(11.76). For this purpose, note that 
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Substituting Eq. (11.117) into (11.76) and collecting terms the VRR ratios
are computed as

(11.118)

(11.119)

(11.120)

As in the case of any discrete time system, this filter will be stable if and only if
all of its poles fall within the unit circle in the z-plane. 

The  characteristic equation is computed by setting 

(11.121)

Substituting Eq. (11.117) into (11.121) and collecting terms yield the following
characteristic function:

(11.122)

The  becomes a Benedict-Bordner filter when 

(11.123)

Note that for  Eq. (11.123) reduces to Eq. (11.102). For a critically
damped filter the gain coefficients are 
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(11.126)

Note that heavy smoothing takes place when , while  means that
no smoothing is present.
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MATLAB Function “ghk_tracker.m”

The function “ghk_tracker.m”1 implements the steady state  filter. It is
given in Listing 11.2 in Section 11.10. The syntax is as follows:

[residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)

where

Note that “ghk_tracker.m” uses MATLAB’s function “normrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox.
If this toolbox is not available to the user, then “ghk_tracker.m” function-call
must be modified to

[residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)

which is also part of Listing 11.2. In this case, noise measurements are either to
be considered unavailable or are part of the position input array.

To illustrate how to use the functions ghk_tracker.m and ghk_tracker.m1,
consider the inputs shown in Figs. 11.22 and 11.23. Fig. 11.22 assumes an
input with lazy maneuvering, while Fig. 11.23 assumes an aggressive maneu-
vering case. For this purpose, the program called “fig11_21.m” was written. It
is given in Listing 11.3 in Section 11.10. 

Figs. 11.24 and 11.25 show the residual error and predicted position corre-
sponding (generated using the program “fig11_21.m”) to Fig. 11.22 for two
cases: heavy smoothing and little smoothing with and without noise. The noise
is white Gaussian with zero mean and variance of . Figs. 11. 26 and
11.27 show the residual error and predicted position corresponding (generated
using the program “fig11_20.m”) to Fig. 11.23 with and without noise.

1. This function was written by Mr. Edward Shamsi of COLSA Corporation in Hunts-
ville, AL.

Symbol Description Status

X0 initial state vector input

smoocof desired smoothing coefficient input

inp array of position measurements input

npts number of points in input position input

T sampling interval input

nvar desired noise variance input

residual array of position error (residual) output

estimate array of predicted position output

αβγ

σv
2 0.05=
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 Figure 11.22. Position (truth-data); lazy maneuvering. 
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 Figure 11.23. Position (truth-data); aggresive maneuvering. 
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 Figure 11.24a-1. Predicted and true position.  (i.e., large gain 
coefficients). No noise present.
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 Figure 11.24a-2. Position residual (error). Large gain coefficients. 
No noise. The error settles to zero fairly quickly.
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 Figure 11.24b-1. Predicted and true position.  (i.e., small 
gain coefficients). No noise present.
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 Figure 11.24b-2. Position residual (error). Small gain coefficients. No noise. 
It takes the filter longer time for the error to settle down.
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 Figure 11.25a-1. Predicted and true position.  (i.e., large 
gain coefficients). Noise is present.
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 Figure 11.25a-2. Position residual (error). Large gain coefficients. Noise present. 
The error settles down quickly. The variation is due to noise.
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 Figure 11.25b-1. Predicted and true position.  (i.e., small gain 
coefficients). Noise is present.
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 Figure 11.25b-2. Position residual (error). Small gain coefficients. Noise present. 
The error requires more time before settling down. The 
variation is due to noise.
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 Figure 11.26a. Predicted and true position.  (i.e., large gain 
coefficients). Noise is present.
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 Figure 11.26b. Position residual (error). Large gain coefficients. No noise. 
The error settles down quickly.
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 Figure 11.27a. Predicted and true position.  (i.e., small gain coefficients). 
Noise is present.
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 Figure 11.27b. Position residual (error). Small gain coefficients. Noise present. 
The error stays fairly large; however, its average is around zero.  
The variation is due to noise.
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11.9. The Kalman Filter

The Kalman filter is a linear estimator that minimizes the mean squared error
as long as the target dynamics are modeled accurately. All other recursive fil-
ters, such as the  and the Benedict-Bordner filters, are special cases of the
general solution provided by the Kalman filter for the mean squared estimation
problem. Additionally, the Kalman filter has the following advantages:

1. The gain coefficients are computed dynamically. This means that the same 
filter can be used for a variety of maneuvering target environments. 

2.  The Kalman filter gain computation adapts to varying detection histories, 
including missed detections.

3. The Kalman filter provides an accurate measure of the covariance matrix. 
This allows for better implementation of the gating and association pro-
cesses. 

4. The Kalman filter makes it possible to partially compensate for the effects 
of miss-correlation and miss-association. 

Many derivations of the Kalman filter exist in the literature; only results are
provided in this chapter. Fig. 11.28 shows a block diagram for the Kalman fil-
ter. The Kalman filter equations can be deduced from Fig. 11.28. The filtering
equation is

(11.127)

The measurement vector is

(11.128)

where  is zero mean, white Gaussian noise with covariance ,

(11.129)

The gain (weights) vector is dynamically computed as

(11.130)

where the measurement noise matrix  represents the predictor covariance
matrix, and is equal to

(11.131)

where  is the covariance matrix for the input ,
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(11.132)

The corrector equation (covariance of the smoothed estimate) is

(11.133)

Finally, the predictor equation is 

(11.134)

 

11.9.1. The Singer -Kalman Filter

 The Singer1 filter is a special case of the Kalman where the filter is gov-
erned by a specified target dynamic model whose acceleration is a random pro-
cess with autocorrelation function given by

 (11.135)

1. Singer, R. A., Estimating Optimal Tracking Filter Performance for Manned Maneu-
vering Targets, IEEE Transaction on aerospace and Electronics, AES-5, July, 1970. 
pp. 473-483.
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 Figure 11.28. Structure of the Kalman filter.
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where  is the correlation time of the acceleration due to target maneuver or
atmospheric turbulence. The correlation time  may vary from as low as 10
seconds for aggressive maneuvering to as large as 60 seconds for lazy maneu-
ver cases. 

Singer defined the random target acceleration model by a first order Markov
process given by

(11.136)

where  is a zero mean, Gaussian random variable with unity variance,
 is the maneuver standard deviation, and the maneuvering correlation coef-

ficient  is given by 

(11.137)

The continuous time domain system that corresponds to these conditions is as
the Wiener-Kolmogorov whitening filter which is defined by the differential
equation 

(11.138)

where  is equal to . The maneuvering variance using Singer’s model
is given by

(11.139)

 is the maximum target acceleration with probability  and the term
 defines the probability that the target has no acceleration. 

The transition matrix that corresponds to the Singer filter is given by

(11.140)

Note that when  is small (the target has constant acceleration),
then Eq. (11.140) reduces to Eq. (11.114). Typically, the sampling interval  is
much less than the maneuver time constant ; hence, Eq. (11.140) can be
accurately replaced by its second order approximation. More precisely,
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 (11.141)

The covariance matrix was derived by Singer, and it is equal to

(11.142)

where

(11.143)

(11.144)

(11.145)

(11.146)

(11.147)

(11.148)

Two limiting cases are of interest:

1. The short sampling interval case ( ),

(11.149)
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and the state transition matrix is computed from Eq. (11.141) as

(11.150)

which is the same as the case for the  filter (constant acceleration).

2. The long sampling interval ( ). This condition represents the case 

when acceleration is a white noise process. The corresponding covariance 
and transition matrices are, respectively, given by

(11.151)

 (11.152)

Note that under the condition that , the cross correlation terms  and
 become very small. It follows that estimates of acceleration are no longer

available, and thus a two state filter model can be used to replace the three state
model. In this case,

(11.153)

(11.154)

11.9.2. Relationship between Kalman and  Filters

The relationship between the Kalman filter and the  filters can be easily
obtained by using the appropriate state transition matrix , and gain vector 
corresponding to the  in Eq. (11.127). Thus,
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(11.155)

with (see Fig. 11.21) 

(11.156)

(11.157)

(11.158)

Comparing the previous three equations with the  filter equations
yields,

(11.159)

Additionally, the covariance matrix elements are related to the gain coeffi-
cients by

(11.160)

Eq. (11.160) indicates that the first gain coefficient depends on the estimation
error variance to the total residual variance, while the other two gain coeffi-
cients are calculated through the covariances between the second and third
states and the first observed state.

MATLAB Function “kalman_filter.m”

The function “kalman_filter.m”1 implements the Singer-  Kalman filter.
It is given in Listing 11.4 in Section 11.10. The syntax is as follows:

[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)

1. This function was written by Mr. Edward Shamsi of COLSA Corporation in Hunts-
ville, AL.
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where

Note that “kalman_filter.m” uses MATLAB’s function “normrnd.m” to gener-
ate zero mean Gaussian noise, which is part of MATLAB’s Statistics Toolbox. 

To illustrate how to use the functions “kalman_filter.m”, consider the inputs
shown in Figs. 11.22 and 11.23. Figs. 11.29 and 11.30 show the residual error
and predicted position corresponding to Figs. 11.22 and 11.23. These plots can
be reproduced using the program “fig11_28.m” given in Listing 11.5 in Sec-
tion 11.10.

Symbol Description Status

npts number of points in input position input

T sampling interval input

X0 initial state vector input

inp input array input

R noise variance see Eq. (11-129) input

nvar desired state noise variance input

residual array of position error (residual) output

estimate array of predicted position output
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 Figure 11.29a. True and predicted positions. Lazy maneuvering. Plot produced 
using the function “kalman_filter.m”.
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 Figure 11.29b. Residual corresponding to Fig. 11.29a.
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 Figure 11.30a. True and predicted positions. Aggressive maneuvering. Plot 
produced using the function “kalman_filter.m”.
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11.10. MATLAB Programs and Functions

This section contains listings of all MATLAB programs and functions used
in this chapter. Users are encouraged to rerun these codes with different inputs
in order to enhance their understanding of the theory.

Listing 11.1. MATLAB Function “mono_pulse.m”
function mono_pulse(phi0)
eps = 0.0000001;
angle = -pi:0.01:pi;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ysum = y1 + y2;
ydif = -y1 + y2;
figure (1)
plot (angle,y1,'k',angle,y2,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Squinted patterns')
figure (2)
plot(angle,ysum,'k');
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 Figure 11.30b. Residual corresponding to Fig. 11.30a.
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grid;
xlabel ('Angle - radians')
ylabel ('Sum pattern')
figure (3)
plot (angle,ydif,'k');
grid;
xlabel ('Angle - radians')
ylabel ('Difference pattern')
angle = -pi/4:0.01:pi/4;
y1 = sinc(angle + phi0);
y2 = sinc((angle - phi0));
ydif = -y1 + y2;
ysum = y1 + y2;
dovrs = ydif ./ ysum;
figure(4)
plot (angle,dovrs,'k');
grid;
xlabel ('Angle - radians')
ylabel ('voltage gain')

Listing 11.2. MATLAB Function “ghk_tracker.m”
function [residual, estimate] = ghk_tracker (X0, smoocof, inp, npts, T, nvar)
rn = 1.;
% read the initial estimate for the state vector
X = X0; 
theta = smoocof;
%compute values for alpha, beta, gamma
w1 = 1. - (theta^3);
w2 = 1.5 * (1. + theta) * ((1. - theta)^2) / T;
w3 = ((1. - theta)^3) / (T^2);
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   error = (inp(rn) + normrnd(0,nvar)) - XN(1);
   residual(rn) = error;
   tmp1 = w1 * error;
   tmp2 = w2 * error;
   tmp3 = w3 * error;
   % compute the next state
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   rn = rn + 1.;
end
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return

MATLAB Function “ghk_traker1.m”

function [residual, estimate] = ghk_tracker1 (X0, smoocof, inp, npts, T)
rn = 1.;
% read the initial estimate for the state vector
X = X0; 
theta = smoocof;
%compute values for alpha, beta, gamma
w1 = 1. - (theta^3);
w2 = 1.5 * (1. + theta) * ((1. - theta)^2) / T;
w3 = ((1. - theta)^3) / (T^2);
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.;0. 1. T;0. 0. 1.];
while rn < npts ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   error = inp(rn)  - XN(1);
   residual(rn) = error;
   tmp1 = w1 * error;
   tmp2 = w2 * error;
   tmp3 = w3 * error;
   % compute the next state
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   rn = rn + 1.;
end
return

Listing 11.3. MATLAB Program “fig11_21.m”
clear all
eps = 0.0000001;
npts = 5000;
del = 1./ 5000.;
t = 0. : del : 1.;
% generate input sequence
inp = 1.+ t.^3 + .5 .*t.^2 + cos(2.*pi*10 .* t) ;
% read the initial estimate for the state vector
X0 = [2,.1,.01]';
% this is the update interval in seconds
T = 100. * del;
% this is the value of the smoothing coefficient
xi = .91;
[residual, estimate] = ghk_tracker (X0, xi, inp, npts, T, .01);
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figure(1)
plot (residual(1:500))
xlabel ('Sample number')
ylabel ('Residual error')
grid
figure(2)
NN = 4999.;
n = 1:NN;
plot (n,estimate(1:NN),'b',n,inp(1:NN),'r')
xlabel ('Sample number')
ylabel ('Position')
legend ('Estimated','Input')

Listing 11.4. MATLAB Function “kalman_filter.m”
function [residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar)
N = npts;
rn=1;
% read the initial estimate for the state vector
X = X0;
% it is assumed that the measurmeny vector H=[1,0,0]
% this is the state noise variance
VAR = nvar;
% setup the initial value for the predication covariance.
S = [1. 1. 1.; 1. 1. 1.; 1. 1. 1.];
% setup the transition matrix PHI
PHI = [1. T (T^2)/2.; 0. 1. T; 0. 0. 1.];
% setup the state noise covariance matrix
Q(1,1) = (VAR * (T^5)) / 20.;
Q(1,2) = (VAR * (T^4)) / 8.;
Q(1,3) = (VAR * (T^3)) / 6.;
Q(2,1) = Q(1,2);
Q(2,2) = (VAR * (T^3)) / 3.;
Q(2,3) = (VAR * (T^2)) / 2.;
Q(3,1) = Q(1,3);
Q(3,2) = Q(2,3);
Q(3,3) = VAR * T;
while rn < N ;
   %use the transition matrix to predict the next state
   XN = PHI * X;
   % Perform error covariance extrapolation
   S = PHI * S * PHI' + Q;
   % compute the Kalman gains
   ak(1) = S(1,1) / (S(1,1) + R);
   ak(2) = S(1,2) / (S(1,1) + R);
   ak(3) = S(1,3) / (S(1,1) + R);
   %perform state estimate update:
   error = inp(rn) + normrnd(0,R) - XN(1);
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   residual(rn) = error;
   tmp1 = ak(1) * error;
   tmp2 = ak(2) * error;
   tmp3 = ak(3) * error;
   X(1) = XN(1) + tmp1;
   X(2) = XN(2) + tmp2;
   X(3) = XN(3) + tmp3;
   estimate(rn) = X(1);
   % update the error covariance
   S(1,1) = S(1,1) * (1. -ak(1));
   S(1,2) = S(1,2) * (1. -ak(1));
   S(1,3) = S(1,3) * (1. -ak(1));
   S(2,1) = S(1,2);
   S(2,2) = -ak(2) * S(1,2) + S(2,2);
   S(2,3) = -ak(2) * S(1,3) + S(2,3);
   S(3,1) = S(1,3);
   S(3,3) = -ak(3) * S(1,3) + S(3,3);
   rn = rn + 1.;
end

Listing 11.5. MATLAB Program “fig11_28.m”
clear all
npts = 2000;
del = 1/2000;
t = 0:del:1;
inp = (1+.2 .* t + .1 .*t.^2) + cos(2. * pi * 2.5 .* t);
X0 = [1,.1,.01]';
% it is assumed that the measurmeny vector H=[1,0,0]
% this is the update interval in seconds
T = 1.;
% enter the measurement noise variance
R = .035;
% this is the state noise variance
nvar = .5;
[residual, estimate] = kalman_filter(npts, T, X0, inp, R, nvar);
figure(1)
plot(residual)
xlabel ('Sample number')
ylabel ('Residual')
figure(2)
subplot(2,1,1)
plot(inp)
axis tight
ylabel ('position - truth')
subplot(2,1,2)
plot(estimate)
axis tight
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xlabel ('Sample number')
ylabel ('Predicted position')

 Problems

11.1. Show that in order to be able to quickly achieve changing the beam
position the error signal needs to be a linear function of the deviation angle. 
11.2. Prepare a short report on the vulnerability of conical scan to amplitude
modulation jamming. In particular consider the self-protecting technique
called “Gain Inversion.”

11.3. Consider a conical scan radar. The pulse repetition interval is .
Calculate the scan rate so that at least ten pulses are emitted within one scan.
11.4. Consider a conical scan antenna whose rotation around the tracking
axis is completed in 4 seconds. If during this time 20 pulses are emitted and
received, calculate the radar PRF and the unambiguous range.

11.5. Reproduce Fig. 11.11 for  radians.

11.6. Reproduce Fig. 11.13 for the squint angles defined in the previous
problem.
11.7. Derive Eq. (11.33) and Eq. (11.34). 
11.8. Consider a monopulse radar where the input signal is comprised of
both target return and additive white Gaussian noise. Develop an expression

for the complex ratio .

11.9. Consider the sum and difference signals defined in Eqs. (11.7) and
(11.8). What is the squint angle  that maximizes ?

11.10. A certain system is defined by the following difference equation:

 

Find the solution to this system for  and .

11.11. Prove the state transition matrix properties (i.e., Eqs. (11.30) through
(11.36)).
11.12. Suppose that the state equations for a certain discrete time LTI sys-
tem are

 

If , find  when the input is a step function.

11.13. Derive Eq. (11.55).
11.14. Derive Eq. (11.75).

10µs
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11.15. Using Eq. (11.83), compute a general expression (in terms of the
transfer function) for the steady state errors when the input sequence is:

 

 

 

 

11.16. Verify the results in Eqs. (11.99) and (11.100).
11.17. Develop an expression for the steady state error transfer function for

an  tracker. 

11.18. Using the result of the previous problem and Eq. (11.83), compute
the steady-state errors for the  tracker with the inputs defined in Problem
11.13.

11.19. Design a critically damped , when the measurement noise vari-

ance associated with position is  and when the desired standard

deviation of the filter prediction error is .

11.20. Derive Eqs. (11.118) through (11.120).
11.21. Derive Eq. (11.122).

11.22. Consider a  filter. We can define six transfer functions: ,

, , , , and  (predicted position, predicted

velocity, predicted acceleration, smoothed position, smoothed velocity, and
smoothed acceleration). Each transfer function has the form

  

The denominator remains the same for all six transfer functions. Compute all
the relevant coefficients for each transfer function.

11.23. Verify the results obtained for the two limiting cases of the Singer-
Kalman filter.
11.24. Verify Eq. (11.160).

u1 0 1 1 1 1 …, , , , ,{ }=

u2 0 1 2 3 …, , , ,{ }=
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433

Chapter 12 Synthetic Aperture Radar 

12.1.  Introduction

Modern airborne radar systems are designed to perform a large number of
functions which range from detection and discrimination of targets to mapping
large areas of ground terrain. This mapping can be performed by the Synthetic
Aperture Radar (SAR). Through illuminating the ground with coherent radia-
tion and measuring the echo signals, SAR can produce high resolution two-
dimensional (and in some cases three-dimensional) imagery of the ground sur-
face. The quality of ground maps generated by SAR is determined by the size
of the resolution cell. A resolution cell is specified by range and azimuth reso-
lutions of the system. Other factors affecting the size of the resolution cells are
(1) size of the processed map and the amount of signal processing involved;
(2) cost consideration; and (3) size of the objects that need to be resolved in the
map. For example, mapping gross features of cities and coastlines does not
require as much resolution when compared to resolving houses, vehicles, and
streets.

SAR systems can produce maps of reflectivity versus range and Doppler
(cross range). Range resolution is accomplished through range gating. Fine
range resolution can be accomplished by using pulse compression techniques.
The azimuth resolution depends on antenna size and radar wavelength. Fine
azimuth resolution is enhanced by taking advantage of the radar motion in
order to synthesize a larger antenna aperture. Let  denote the number of
range bins and let  denote the number of azimuth cells. It follows that the
total number of resolution cells in the map is . SAR systems that are

Nr
Na

NrNa

© 2000 by Chapman & Hall/CRC



generally concerned with improving azimuth resolution are often referred to as
Doppler Beam-Sharpening (DBS) SARs. In this case, each range bin is pro-
cessed to resolve targets in Doppler which correspond to azimuth. This chapter
is presented in the context of DBS.

Due to the large amount of signal processing required in SAR imagery, the
early SAR designs implemented optical processing techniques. Although such
optical processors can produce high quality radar images, they have several
shortcomings. They can be very costly and are, in general, limited to making
strip maps. Motion compensation is not easy to implement for radars that uti-
lize optical processors. With the recent advances in solid state electronics and
Very Large Scale Integration (VLSI) technologies, digital signal processing in
real time has been made possible in SAR systems. 

12.2. Real Versus Synthetic Arrays

A linear array of size , element spacing , isotropic elements, and wave-
length  is shown in Fig. 12.1. A synthetic linear array is formed by linear
motion of a single element, transmitting and receiving from distinct positions
that correspond to the element locations in a real array. Thus, synthetic array
geometry is similar to that of a real array, with the exception that the array
exists only at a single element position at a time. 

The two-way radiation pattern (in the direction-sine ) for a real linear
array was developed in Chapter 10; it is repeated here as Eq. (12.1):

(12.1)

Since a synthetic array exists only at a single location at a time, the array
transmission is sequential with only one element receiving. Therefore, the
returns received by the successive array positions differ in phase by ,
where , and  is the round-trip path difference
between contiguous element positions. The two-way array pattern for a syn-
thetic array is the coherent sum of the returns at all the array positions.

Thus, the overall two-way electric field for the synthetic array is

(12.2)

By using similar analysis as in Section 10.4, the two-way electric field for a
synthetic array can be expressed as
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(12.3)

and the two-way radiation pattern is 

(12.4)

Comparison of Eq. (12.4) and Eq. (12.1) indicates that the two-way radiation
pattern for a real array is of the form , while it is of the form

 for the synthetic array. Consequently, for the same size aperture,
the main beam of the synthetic array is twice as narrow as that for the real
array. Or equivalently, the resolution of a synthetic array of length  (aperture
size) is equal to that of a real array with twice the aperture size , as illus-
trated in Fig. 12.2.
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Figure 12.1. Geometry of real or synthetic array. 
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12.3.  Side Looking SAR Geometry

Fig. 12.3 shows the geometry for the standard side looking SAR. We will
assume that the platform carrying the radar maintains both fixed altitude  and
velocity . The antenna  beam width is , and the elevation angle (mea-
sured from the z-axis to the antenna axis) is . The intersection of the antenna
beam with the ground defines a footprint. As the platform moves, the footprint
scans a swath on the ground.

The radar position with respect to the absolute origin , at any
time is the vector . The velocity vector  is

 (12.5)

The Line of Sight (LOS) for the current footprint centered at  is defined

by the vector , where  denotes the central time of the observation inter-

val  (coherent integration interval). More precisely,

(12.6)
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 Figure 12.2. Pattern difference between real and synthetic arrays. This plot 
can be reproduced using MATLAB program “fig12_2.m” given in 
Listing 12.1 in Section 12.12.
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Figure 12.3. Side looking SAR geometry.
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where  and  are the absolute and relative times, respectively. The vector 
defines the ground projection of the antenna at central time. The minimum
slant range to the swath is , and the maximum range is denoted , as
illustrated by Fig. 12.4. It follows that

(12.7)

Notice that the elevation angle  is equal to 

(12.8)

where  is the grazing angle. The size of the footprint is a function of the
grazing angle and the antenna beam width, as illustrated in Fig. 12.5. The SAR
geometry described in this section is referred to as SAR “strip mode” of opera-
tion. Another SAR mode of operation, which will not be discussed in this
chapter, is called “spot-light mode,” where the antenna is steered (mechani-
cally or electronically) to continuously illuminate one spot (footprint) on the
ground. In this case, one high resolution image of the current footprint is gen-
erated during an observation interval. 

12.4.  SAR Design Considerations

The quality of SAR images is heavily dependent on the size of the map reso-
lution cell shown in Fig. 12.6. The range resolution, , is computed on the
beam LOS, and is given by

 (12.9)
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where  is the pulse width. From the geometry in Fig. 12.7 the extent of the
range cell ground projection  is computed as

(12.10)

The azimuth or cross range resolution for a real antenna with a  beam
width  (radians) at range  is

(12.11)

However, the antenna beam width is proportional to the aperture size, 

(12.12)

where  is the wavelength and  is the aperture length. It follows that

(12.13)

And since the effective synthetic aperture size is twice that of a real array, the
azimuth resolution for a synthetic array is then given by

(12.14)

τ
∆Rg

∆Rg
cτ
2
----- ψgsec=

3dB
θ R

∆Ar θR=

θ λ
L
---≈

λ L

∆Ar
λR
L

-------=

∆A
λR
2L
-------=

cτ
2
-----

cτ
2
----- ψgsec

ψg

Figure 12.7. Definition of a range cell on the ground.

LOS

x

z

h

radar

θ

mg

© 2000 by Chapman & Hall/CRC



Furthermore, since the synthetic aperture length  is equal to , Eq.
(12.14) can be rewritten as

(12.15)

The azimuth resolution can be greatly improved by taking advantage of the
Doppler variation within a footprint (or a beam). As the radar travels along its
flight path the radial velocity to a ground scatterer (point target) within a foot-
print varies as a function of the radar radial velocity in the direction of that
scatterer. The variation of Doppler frequency for a certain scatterer is called the
“Doppler history.”

Let  denote range to a scatterer at time , and  be the corresponding
radial velocity; thus the Doppler shift is

(12.16)

where  is the range rate to the scatterer. Let  and  be the times when
the scatterer enters and leaves the radar beam, respectively, and let  be the
time that corresponds to minimum range. Fig. 12.8 shows a sketch of the corre-
sponding  (see Eq. (12.16)). Since the radial velocity can be computed as
the derivative of  with respect to time, one can clearly see that Doppler
frequency is maximum at , zero at , and minimum at , as illustrated in
Fig. 12.9. 

In general, the radar maximum PRF, , must be low enough to avoid
range ambiguity. Alternatively, the minimum PRF, , must be high enough
to avoid Doppler ambiguity. SAR unambiguous range must be at least as wide
as the extent of a footprint. More precisely, since target returns from maximum
range due to the current pulse must be received by the radar before the next
pulse is transmitted, it follows that SAR unambiguous range is given by

(12.17)

An expression for unambiguous range was derived in Chapter 1, and is
repeated here as Eq. (12.18), 

 (12.18)

Combining Eq. (12.18) and Eq. (12.17) yields

(12.19)
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SAR minimum PRF, , is selected so that Doppler ambiguity is avoided.
In other words,  must be greater than the maximum expected Doppler
spread within a footprint. From the geometry of Fig. 12.10, the maximum and
minimum Doppler frequencies are, respectively, given by

(12.20)

(12.21)
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It follows that the maximum Doppler spread is

(12.22)

Substituting Eqs. (11.20) and (11.21) into Eq. (12.22) and applying the proper
trigonometric identities yield

(12.23)

Finally, by using the small angle approximation we get

(12.24)

Therefore, the minimum PRF is 

(12.25)

Combining Eqs. (11.19) and (11.25) we get

(12.26)

It is possible to resolve adjacent scatterers at the same range within a foot-
print based only on the difference of their Doppler histories. For this purpose,
assume that the two scatterers are within the  range bin. Denote their angu-
lar displacement as , and let  be the minimum Doppler spread
between the two scatterers such that they will appear in two distinct Doppler
filters. Using the same methodology that led to Eq. (12.24) we get

(12.27)

where  is the elevation angle corresponding to the  range bin. 

The bandwidth of the individual Doppler filters must be equal to the inverse of
the coherent integration interval  (i.e., ). It follows that

(12.28)

Substituting  for  yields
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(12.29)

Therefore, the SAR azimuth resolution (within the  range bin) is

(12.30)

Note that when , Eq. (12.30) is identical to Eq. (12.14).

12.5.  SAR Radar Equation

The single pulse radar equation was derived in Chapter 1, and is repeated
here as Eq. (12.31),

(12.31)

where:  is peak power;  is antenna gain;  is wavelength;  is radar cross
section;  is radar slant range to the  range bin;  is Boltzman’s constant;

 is receiver noise temperature;  is receiver bandwidth; and  is radar
losses. The radar cross section is a function of the radar resolution cell and ter-
rain reflectivity. More precisely,

(12.32)

where  is the clutter scattering coefficient,  is the azimuth resolution,
and Eq. (12.10) was used to replace the ground range resolution. The number
of coherently integrated pulses within an observation interval is

(12.33)

where  is the synthetic aperture size. Using Eq. (12.30) in Eq. (12.33) and
rearranging terms yield

(12.34)

The radar average power over the observation interval is 

(12.35)

The SNR for  coherently integrated pulses is then
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(12.36)

Substituting Eqs. (11.35), (11.34), and (11.32) into Eq. (12.36) and performing
some algebraic manipulations give the SAR radar equation, 

(12.37)

Eq. (12.37) leads to the conclusion that in SAR systems the SNR is (1)
inversely proportional to the third power of range; (2) independent of azimuth
resolution; (3) function of the ground range resolution; (4) inversely propor-
tional to the velocity ; and (5) proportional to the third power of wavelength. 

12.6.  SAR Signal Processing

There are two signal processing techniques to sequentially produce a SAR
map or image; they are line-by-line processing and Doppler processing. The
concept of SAR line-by-line processing is as follows. Through the radar linear
motion a synthetic array is formed, where the elements of the current synthetic
array correspond to the position of the antenna transmissions during the last
observation interval. Azimuth resolution is obtained by forming narrow syn-
thetic beams through combination of the last observation interval returns. Fine
range resolution is accomplished in real time by utilizing range gating and
pulse compression. For each range bin and each of the transmitted pulses dur-
ing the last observation interval, the returns are recorded in a two-dimensional
array of data that is updated for every pulse. Denote the two-dimensional array
of data as .

To further illustrate the concept of line-by-line processing, consider the case
where a map of size  is to be produced,  is the number of azimuth
cells, and  is the number of range bins. Hence,  is of size ,
where the columns refer to range bins, and the rows refer to azimuth cells. For
each transmitted pulse, the echoes from consecutive range bins are recorded
sequentially in the first row of . Once the first row is completely filled
(i.e., returns from all range bins have been received), all data (in all rows) are
shifted downward one row before the next pulse is transmitted. Thus, one row
of  is generated for every transmitted pulse. Consequently, for the current
observation interval, returns from the first transmitted pulse will be located in
the bottom row of , and returns from the last transmitted pulse will be in
the first row of . 
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In SAR Doppler processing, the array  is updated once every  pulses
so that a block of  columns is generated simultaneously. In this case, 
refers to the number of transmissions during an observation interval (i.e., size
of the synthetic array). From an antenna point of view, this is equivalent to
having  adjacent synthetic beams formed in parallel through electronic steer-
ing.

12.7.  Side Looking SAR Doppler Processing

Consider the geometry shown in Fig. 12.11, and assume that the scatterer 
is located within the  range bin. The scatterer azimuth and elevation angles
are  and , respectively. The scatterer elevation angle  is assumed to be
equal to , the range bin elevation angle. This assumption is true if the
ground range resolution, , is small; otherwise,  for some
small ; in this chapter .

The normalized transmitted signal can be represented by

(12.38)
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where  is the radar operating frequency, and  denotes the transmitter
phase. The returned radar signal from  is then equal to

(12.39)

where  is the round-trip delay to the scatterer, and  includes scat-
terer strength, range attenuation, and antenna gain. The round-trip delay is 

(12.40)

where  is the speed of light and  is the scatterer slant range. From the
geometry in Fig. 12.11, one can write the expression for the slant range to the

 scatterer within the  range bin as

(12.41)

And by using Eq. (12.40) the round-trip delay can be written as

(12.42)

The round-trip delay can be approximated using a two-dimensional second
order Taylor series expansion about the reference state . Per-
forming this Taylor series expansion yields

 (12.43)

where the over-bar indicates evaluation at the state , and the subscripts
denote partial derivatives. For example,  means

(12.44)

The Taylor series coefficients are (see Problem 11.6) 
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(12.47)

Note that other Taylor series coefficients are either zeros or very small, hence
they are neglected. Finally, by substituting Eqs. (12.45) through (12.47) into
Eq. (12.43), we can rewrite the returned radar signal as

(12.48)

Observation of Eq. (12.48) indicates that the instantaneous frequency for the
 scatterer varies as a linear function of time due to the second order phase

term  (this confirms the result we concluded about a scatterer
Doppler history). Furthermore, since this phase term is range-bin dependent
and not scatterer dependent, all scatterers within the same range bin produce
this exact second order phase term. It follows that scatterers within a range bin
have identical Doppler histories. These Doppler histories are separated by the
time delay required to fly between them, as illustrated in Fig. 12.12.

Suppose that there are  scatterers within the  range bin. In this case, the
combined returns for this cell are the sum of the individual returns due to each
scatterer as defined by Eq. (12.48). In other words, superposition holds, and the
overall echo signal is

(12.49)

τtt
2v

2

hc
-------- 
  βicos=

si t µi,( ) Ai ψi t µi,( ) ξ0–[ ]cos=

ψ̂i t µi,( ) 2πf0 1 τtµµi–( )t τ τt t
t
2

2
---––=

ith
2πf0 τt tt

2 2⁄( )

I kth

sr t( ) si t µi,( )

i 1=

I

∑=

Doppler histories

time

Figure 12.12. Doppler histories for several scatterers within the same range bin.
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A signal processing block diagram for the  range bin is illustrated in Fig.
12.13. It consists of the following steps. First, heterodyning with carrier fre-
quency is performed to extract the quadrature components. 

This is followed by LP filtering and A/D conversion. Next, deramping or
focusing to remove the second order phase term of the quadrature components
is carried out using a phase rotation matrix. The last stage of the processing
includes windowing, performing FFT on the windowed quadrature compo-
nents, and scaling of the amplitude spectrum to account for range attenuation
and antenna gain.

The discrete quadrature components are

(12.50)

(12.51)

and  denotes the  sampling time (remember that ).
The quadrature components after deramping (i.e., removal of the phase

) are given by

(12.52)

12.8.  SAR Imaging Using Doppler Processing

It was mentioned earlier that SAR imaging is performed using two orthogo-
nal dimensions (range and azimuth). Range resolution is controlled by the
receiver bandwidth and pulse compression. Azimuth resolution is limited by
the antenna beam width. A one-to-one correspondence between the FFT bins
and the azimuth resolution cells can be established by utilizing the signal
model described in the previous section. Therefore, the problem of target
detection is transformed into a spectral analysis problem, where detection is
based on the amplitude spectrum of the returned signal. The FFT frequency
resolution  is equal to the inverse of the observation interval . It follows
that a peak in the amplitude spectrum at  indicates the presence of a scat-
terer at frequency .

For an example, consider the scatterer  within the  range bin. The
instantaneous frequency  corresponding to this scatterer is 

kth

x̃I tn( ) x̃I n( ) Ai ψ̃i tn µi,( ) ξ0–[ ]cos= =
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Figure 12.13. Signal processing block diagram for the kth range bin.
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(12.53)

which is the same result derived in Eq. (12. 27), where . Therefore,
the scatterers separated in Doppler by a frequency greater than  can then be
resolved. 

12.9.  Range Walk

As shown earlier SAR Doppler processing is achieved in two steps: first,
range gating and second, azimuth compression within each bin at the end of the
observation interval. For this purpose, azimuth compression assumes that each
scatterer remains within the same range bin during the observation interval.
However, since the range gates are defined with respect to a radar that is mov-
ing, the range gate grid is also moving relative to the ground. As a result a scat-
terer appears to be moving within its range bin. This phenomenon is known as
range walk. A small amount of range walk does not bother Doppler processing
as long as the scatterer remains within the same range bin. However, range
walk over several range bins can constitute serious problems, where in this
case Doppler processing is meaningless. 

12.10. Case Study

Table 12.1 lists the selected design system parameters. The 3 dB element
beamwidth is . The maximum range interval
spanned by the central footprint is

(12.54)

(12.55)

(12.56)

Substituting the proper values from Table 12.1 into Eqs. (12.54), (12.55), and
(12.56) yields

(12.57)

which indicates that the system should have a total of 82 range bins. Doppler
shift over the footprint is proportional to the radial velocity. It is given by

(12.58)

For this example,  is
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(12.59)

To avoid range and Doppler ambiguities the Pulse Repetition Frequency (PRF)
should be

(12.60)

Using the system parameters defined in Table 12.1, we find
. The DFT frequency resolution  is com-

puted as the inverse of the observation interval, and it is equal to . The
size of the DFT, denoted as , is equal to the number of positions the
antenna takes on along the flight path. The maximum Doppler variation
resolved by this DFT is less than or equal to .

12.11. Arrays in Sequential Mode Operation

Standard Synthetic Aperture Radar (SAR) imaging systems are generally
used to generate high resolution two-dimensional (2-D) images of ground ter-
rain. Range gating determines resolution along the first dimension. Pulse com-
pression techniques are usually used to achieve fine range resolution. Such
techniques require the use of wide band receiver and display devices in order
to resolve the time structure in the returned signals. The width of azimuth cells

TABLE 12.1. List of selected system parameters.

Parameter Symbol Value

 # subintervals   

 size of  array   

 wavelength   

 element spacing   

 velocity   

 height   

 elevation angle   

 range resolution   

 observation interval   

M 64

N 32

λ 3.19mm

d 16λ

v 65m s⁄

h 900m

β∗ 35°

dr 1m

Dob 20ms

1489.88Hz– fd 1489.88Hz< <

2v
λ
------θ PRF

c
2Rspan

----------------≤ ≤

5.995KHz PRF 1.31579MHz≤ ≤ ∆f
50Hz

NFFT

∆f NFFT 2⁄×
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provides resolution along the other dimension. Azimuth resolution is limited
by the duration of the observation interval.

An approach for multiple target detection using linear arrays operated in
sequential mode was previously presented by Mahafza. This technique is based
on Discrete Fourier Transform (DFT) processing of equiphase data collected in
sequential mode (DFTSQM). DFTSQM processing was also developed for 2-D
real and synthetic arrays to include applications such as SAR imaging. The
Field of View (FOV) of an array utilizing DFTSQM operation and signal pro-
cessing is defined by the 3 dB beamwidth of a single element. Advantages of
DFTSQM are (1) simultaneous detection of targets within the array’s FOV
without using any phase shifting hardware; and (2) the two-way array pattern
is improved due to the coherent integration of equiphase returns. More specifi-
cally, the main lobe resolution is doubled while achieving a 27 dB sidelobe
attenuation. However, the time required for transmission and processing may
become a limitation when using this technique. A brief description of
DFTSQM is presented in the next section.

12.11.1. Linear Arrays 

Consider a linear array of size , uniform element spacing , and wave-
length . Assume a far field scatterer  located at direction-sine .
DFTSQM operation for this array can be described as follows. The elements
are fired sequentially, one at a time, while all elements receive in parallel. The
echoes are collected and integrated coherently on the basis of equal phase to
compute a complex information sequence . The x-
coordinates, in -units, of the  element with respect to the center of the
array are

. (12.61)

The electric field received by the  element due to the firing of the , and
reflection by the  far field scatterer  is

(12.62)

(12.63)

(12.64)

N d
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-------------– n+ 
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l
th
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E x1 x2 sl;,( ) G2 sl( )
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φ x1 x2, sl;( ) 2π
λ

------ x1 x2+( ) sl( )=

sl βlsin=

© 2000 by Chapman & Hall/CRC



where  is the target cross section,  is the two-way element gain, and
 is the range attenuation with respect to reference range . The scat-

terer phase is assumed to be zero, however it could be easily included. 

Assuming multiple scatterers in the array’s FOV, the cumulative electric
field in the path  due to reflection from all scatterers is 

(12.65)

where the subscripts  denote the quadrature components. Note that the
variable part of the phase given in Eq. (12.63) is proportional to the integers
resulting from the sums . In the far field
operation there are a total of  distinct  sums. Therefore,
the electric fields with paths of the same  sums can be collected
coherently. In this manner the information sequence  is
computed, where  is set to equal zero. At the same time one forms
the sequence  which keeps track of the number of
returns that have the same  sum. More precisely, for

(12.66)

(12.67)

It follows that

(12.68)

which is a triangular shape sequence.

The processing of the sequence  is performed as follows: (1) the
weighting takes the sequence  into account; (2) the complex sequence

 is extended to size , a power integer of two, by zero padding; (3)
the DFT of the extended sequence  is computed,

(12.69)
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and (4) after compensation for antenna gain and range attenuation, scatterers
are detected as peaks in the amplitude spectrum . Note that step (4) is
true only when

(12.70)

where  denotes the direction-sine of the  scatterer, and  is
implied in Eq. (12.70).

The classical approach to multiple target detection is to use a phased array
antenna with phase shifting and tapering hardware. The array beamwidth is
proportional to , and the first sidelobe is at about -13 dB. On the other
hand, multiple target detection using DFTSQM provides a beamwidth propor-
tional to  as indicated by Eq. (12.70), which has the effect of dou-
bling the array’s resolution. The first sidelobe is at about -27 dB due the
triangular sequence . Additionally, no phase shifting hardware is
required for detection of targets within a single element field of view.

12.11.2. Rectangular Arrays 

DFTSQM operation and signal processing for 2-D arrays can be described as
follows. Consider an  rectangular array. All  elements are fired
sequentially, one at a time; after each firing, all the  array elements
receive in parallel. Thus,  samples of the quadrature components are col-
lected after each firing, and a total of  samples will be collected. How-
ever, in the far field operation, there are only  distinct
equiphase returns. Therefore, the collected data can be added coherently to
form a 2-D information array of size . The two-way
radiation pattern is computed as the modulus of the 2-D amplitude spectrum of
the information array. The processing includes 2-D windowing, 2-D Discrete
Fourier Transformation, antenna gain, and range attenuation compensation.
The field of view of the 2-D array is determined by the 3 dB pattern of a single
element. All the scatterers within this field will be detected simultaneously as
peaks in the amplitude spectrum.

Consider a rectangular array of size , with uniform element spacing
, and wavelength . The coordinates of the  element, in -

units, are

(12.71)

(12.72)
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Assume a far field point  defined by the azimuth and elevation angles .
In this case, the one-way geometric phase for an element is

(12.73)

Therefore, the two-way geometric phase between the  and 
elements is

(12.74)

The two-way electric field for the  scatterer at  is

(12.75)

Assuming multiple scatterers within the array’s FOV, then the cumulative
electric field for the two-way path  is given by

(12.76)

All formulas for the 2-D case reduce to those of a linear array case by setting
 and .

The variable part of the phase given in Eq. (12.74) is proportional to the inte-
gers  and . Therefore, after completion of the sequential fir-
ing, electric fields with paths of the same  sums, where

 (12.77)

 (12.78)

can be collected coherently. In this manner the 2-D information array
 is computed. The coefficient sequence
 is also computed. More precisely,

(12.79)

(12.80)

It follows that
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(12.81)

The processing of the complex 2-D information array  is simi-
lar to that of the linear case with the exception that one should use a 2-D DFT.
After antenna gain and range attenuation compensation, scatterers are detected
as peaks in the 2-D amplitude spectrum of the information array. A scatterer
located at angles  will produce a peak in the amplitude spectrum at
DFT indexes , where

 (12.82)

(12.83)

In order to prove Eq. (12.82), consider a rectangular array of size ,
with uniform element spacing , and wavelength . Assume
sequential mode operation where elements are fired sequentially, one at a time,
while all elements receive in parallel. Assuming far field observation defined
by azimuth and elevation angles . The unit vector  on the line of sight,
with respect to , is given by 

(12.84)

The  element of the array can be defined by the vector 

(12.85)

where . The one-way geometric phase for this element is

(12.86)

where  is the wave-number, and the operator  indicates dot
product. Therefore, the two-way geometric phase between the  and

 elements is

(12.87)

The cumulative two-way normalized electric due to all transmissions in the
direction  is

(12.88)
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where the subscripts  and , respectively, refer to the transmitted and received
electric fields. More precisely,

(12.89)

(12.90)

In this case,  denotes the tapering sequence. Substituting Eqs.
(12.87), (12.89), and (12.90) into Eq. (12.88) and grouping all fields with the
same two-way geometric phase yield

(12.91)

(12.92)

(12.93)

(12.94)

(12.95)

The two-way array pattern is then computed as

(12.96)

Consider the two-dimensional DFT transform, , of the array

(12.97)
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Comparison of Eq. (12.96) and (12.97) indicates that  is equal to
 if

(12.98)

(12.99)

It follows that 

(12.100)

which is the same as Eq. (12.82).

12.12. MATLAB Programs

This section contains the MATLAB programs used in this chapter.

Listing 12.1. MATLAB Program “fig12_2.m”
clear all
var = -pi:0.001:pi;
y1 = (sinc(var)) .^2;
y2 = abs(sinc(2.0 * var));
plot (var,y1,var,y2);
axis tight
grid;
xlabel ('angle - radians');
ylabel ('array pattern');

 Problems

12.1. A side looking SAR is traveling at an altitude of ; the elevation

angle is . If the aperture length is , the pulse width is

 and the wavelength is . (a) Calculate the azimuth reso-
lution. (b) Calculate the range and ground range resolutions.
12.2. A MMW side looking SAR has the following specifications: radar
velocity , elevation angle , operating frequency

, and antenna 3dB beam width . (a) Calculate

E u( )
W' p q,( )

2π
Na

------ 
  p–

2π
λ

------d β αcossin=

2π
Na

------ 
  q–

2π
λ

------d β αsinsin=

α q
p
--- 
 tan 1–=

15Km

β 15°= L 5m=

τ 20µs= λ 3.5cm=

v 70m s⁄= β 35°=

f0 94GHz= θ3dB 65mrad=
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the footprint dimensions. (b) Compute the minimum and maximum ranges. (c)
Compute the Doppler frequency span across the footprint. (d) Calculate the
minimum and maximum PRFs.
12.3. A side looking SAR takes on eight positions within an observation
interval. In each position the radar transmits and receives one pulse. Let the
distance between any two consecutive antenna positions be , and define

 to be the one-way phase difference for a beam steered

at angle . (a) In each of the eight positions a sample of the phase pattern is

obtained after heterodyning. List the phase samples. (b) How will you process
the sequence of samples using an FFT (do not forget windowing)? (c) Give a
formula for the angle between the grating lobes.
12.4. Consider a synthetic aperture radar. You are given the following Dop-

pler history for a scatterer:  which corresponds to

times . Assume that the observation interval is

, and a platform velocity . (a) Show the Doppler

history for another scatterer which is identical to the first one except that it is
located in azimuth  earlier. (b) How will you perform deramping on the
quadrature components (show only the general approach)? (c) Show the Dop-
pler history for both scatterers after deramping.
12.5. You want to design a side looking synthetic aperture Ultrasonic radar

operating at  and peak power . The antenna beam is

conical with 3dB beam width . The maximum gain is . The radar

is at a constant altitude  and is moving at a velocity of . The

elevation angle defining the footprint is . (a) Give an expression for
the antenna gain assuming a Gaussian pattern. (b) Compute the pulse width
corresponding to range resolution of . (c) What are the footprint dimen-
sions? (d) Compute and plot the Doppler history for a scatterer located on the
central range bin. (e) Calculate the minimum and maximum PRFs; do you need
to use more than one PRF? (f) How will you design the system in order to
achieve an azimuth resolution of ?

12.6. Derive Eq. (12.45) through Eq. (12.47).

12.7. In Section 12.7 we assumed the elevation angle increment  is equal

to zero. Develop an equivalent to Eq. (12.43) for the case when . You
need to use a third order three-dimensional Taylor series expansion about the
state  in order to compute the new round-trip delay
expression. 

d
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463

Chapter 13 Signal Processing 

13.1.  Signal and System Classifications

In general, electrical signals can represent either current or voltage, and may
be classified into two main categories: energy signals and power signals.
Energy signals can be deterministic or random, while power signals can be
periodic or random. A signal is said to be random if it is a function of a random
parameter (such as random phase or random amplitude). Additionally, signals
may be divided into low pass or band pass signals. Signals that contain very
low frequencies (close to DC) are called low pass signals; otherwise they are
referred to as band pass signals. Through modulation, low pass signals can be
mapped into band pass signals. 

The average power  for the current or voltage signal  over the interval
 across a  resistor is 

(13.1)

The signal  is said to be a power signal over a very large interval
, if and only if it has finite power; it must satisfy the following rela-

tion:

(13.2)
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1
T
--- x t( ) 2

t ∞<d

T– 2⁄

T 2⁄

∫T ∞→
lim<
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Using Parseval’s theorem, the energy  dissipated by the current or voltage
signal  across a  resistor, over the interval , is 

(13.3)

The signal  is said to be an energy signal if and only if it has finite
energy,

(13.4)

A signal  is said to be periodic with period  if and only if 

(13.5)

where  is an integer.

Example 13.1: Classify each of the following signals as an energy signal, as
a power signal, or as neither. All signals are defined over the interval

: , .

Solution:

 

Note that since the cosine function is periodic, the limit is not necessary.

.  

Electrical systems can be linear or nonlinear. Furthermore, linear systems
may be divided into continuous or discrete. A system is linear if the input sig-
nal  produces  and  produces ; then for some arbitrary
constants  and  the input signal  produces the output

. A linear system is said to be shift invariant (or time invari-
ant) if a time shift at its input produces the same shift at its output. More pre-
cisely, if the input signal  produces  then the delayed signal 
produces the output . The impulse response of a Linear Time Invariant
(LTI) system, , is defined to be the system’s output when the input is an
impulse (delta function).

E
x t( ) 1Ω t1 t2,( )

E x t( ) 2
td

t1

t2

∫=

x t( )

E x t( ) 2
t ∞<d

∞–

∞

∫=

x t( ) T

x t( ) x t nT+( )= for all t

n

∞– t ∞< <( ) x1 t( ) tcos 2tcos+= x2 t( ) α2
t
2–( )exp=

Px1

1
T
--- tcos 2tcos+( )2

td

T 2⁄–

T 2⁄

∫ 1= = power signal⇒

Ex2
e

α2
t
2–( )

2
td

∞–

∞

∫ 2 e
2α2

t
2–

0

∞

∫ dt 2
π

2 2α
-------------- 1

α
--- π

2
---= = = = energy signal⇒

x1 t( ) y1 t( ) x2 t( ) y2 t( )
a1 a2 a1x1 t( ) a2x2 t( )+

a1y1 t( ) a2y2 t( )+

x t( ) y t( ) x t t0–( )
y t t0–( )

h t( )
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13.2.  The Fourier Transform

The Fourier Transform (FT) of the signal  is

(13.6)

or

(13.7)

and the Inverse Fourier Transform (IFT) is

(13.8)

or

(13.9)

where, in general,  represents time, while  and  represent fre-
quency in radians per second and Hertz, respectively. In this book we will use
both notations for the transform, as appropriate (i.e.,  and ).

A detailed table of the FT pairs is listed in Appendix C. The FT properties are
(the proofs are left as an exercise):

1. Linearity:

(13.10)

2. Symmetry: If  then

(13.11)

3. Shifting: For any real time 

x t( )

F x t( ){ } X ω( ) x t( )e jωt–
td

∞–

∞

∫= =

F x t( ){ } X f( ) x t( )e j2π f t–
td

∞–

∞

∫= =

F
1–

X ω( ){ } x t( ) 1
2π
------ X ω( )ejω t ωd

∞–

∞

∫= =

F
1–

X f( ){ } x t( ) X f( )ej2πft fd

∞–

∞

∫= =

t ω 2πf= f

X ω( ) X f( )

F a1x1 t( ) a2x2 t( )+{ } a1X1 ω( ) a2X2 ω( )+=

F x t( ){ } X ω( )=

2πX ω–( ) X t( )e jω t–
td

∞–

∞

∫=

t0
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(13.12)

4. Scaling: If  then

(13.13)

5. Central Ordinate: 

(13.14)

(13.15)

6. Frequency Shift: If  then

(13.16)

7. Modulation: If  then

(13.17)

(13.18)

8. Derivatives:

(13.19)

9. Time Convolution: if  and  have Fourier transforms  and 

, respectively, then

(13.20)

F x t t0±( ){ } e
jωt0±

X ω( )=

F x t( ){ } X ω( )=

F x at( ){ } 1
a
-----X

ω
a
---- 
 =

X 0( ) x t( ) td

∞–

∞

∫=

x 0( ) 1
2π
------ X ω( ) ωd

∞–

∞

∫=

F x t( ){ } X ω( )=

F e
ω0 t±

x t( ){ } X ω ω0+−( )=

F x t( ){ } X ω( )=

F x t( ) ω0tcos{ } 1
2
--- X ω ω0+( ) X ω ω0–( )+[ ]=

F x t( ) ω0t( )sin{ } 1
2j
----- X ω ω0–( ) X– ω ω0+( )[ ]=

F
t
n

n

d

d x t( )( )
 
 
 

jω( )n
X ω( )=

x t( ) h t( ) X ω( )
H ω( )

F x τ( )h t τ–( ) τd

∞–

∞

∫
 
 
 
 
 

X ω( )H ω( )=
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(13.21)

11. Autocorrelation:

(13.22)

12. Parseval’s Theoerem: The energy associated with the signal  is

(13.23)

13. Moments: The  moment is

(13.24)

13.3.  The Fourier Series

A set of functions  is said to be orthogonal over
the interval  if and only if 

(13.25)

where the asterisk indicates complex conjugate, and  are constants. If
 for all , then the set  is said to be an orthonormal set.

An electrical signal  can be expressed over the interval  as a
weighted sum of a set of orthogonal functions as 

(13.26)

F x t( )h t( ){ } 1
2π
------ X τ( )H ω τ–( ) τd

∞–

∞

∫=

F x τ( )x∗ τ t–( ) τd

∞–

∞

∫
 
 
 
 
 

X ω( )X∗ ω( ) X ω( ) 2= =

x t( )

E x t( )2
td

∞–

∞

∫ X ω( ) 2 ωd

∞–

∞

∫= =

nth

mn tnx t( ) td

0

∞

∫ ωn

n

d

d X ω( ) ω 0=
= =

S ϕn t( ) n 1 … N, ,=;{ }=
t1 t2,( )

ϕi
∗ t( )ϕj t( ) td

t1

t2

∫ ϕi t( )ϕj
∗ t( ) td

t1

t2

∫
0 i j≠
λi i j= 

 
 

= =

λi
λi 1= i S

x t( ) t1 t2,( )

x t( ) Xnϕn t( )

n 1=

N

∑≈
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10. Frequency Convolution: 



where  are, in general, complex constants, and the orthogonal functions
 are called basis functions. If the integral-square error over the interval

 is equal to zero as  approaches infinity, i.e., 

(13.27)

then the set  is said to be complete, and Eq. (13.12) becomes an
equality. The constants  are computed as

(13.28)

Let the signal  be periodic with period , and let the complete orthogo-
nal set  be 

(13.29)

Then the complex exponential Fourier series of  is

(13.30)

Using Eq. (13.28) yields

(13.31)

The FT of Eq. (13.30) is given by

(13.32)

where  is delta function. When the signal  is real we can compute
its trigonometric Fourier series from Eq. (13.30) as 

Xn
ϕn t( )
t1 t2,( ) N

x t( ) Xnϕn t( )

n 1=

N

∑–

2

td

t1

t2

∫N ∞→
lim 0=

S ϕn t( ){ }=
Xn

Xn

x t( )ϕn
∗ t( ) td

t1

t2

∫

ϕn t( ) 2
td

t1

t2

∫
-------------------------------------=

x t( ) T
S

S e

j2πnt
T

--------------

n ∞ ∞,–=;
 
 
 

=

x t( )

x t( ) Xne

j2πnt
T

--------------

n ∞–=

∞

∑=

Xn
1
T
--- x t( )e

j– 2πnt
T

-----------------

td

T– 2⁄

T 2⁄

∫=

X ω( ) 2π Xnδ ω 2πn
T

----------– 
 

n ∞–=

∞

∑=

δ ⋅( ) x t( )
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(13.33)

(13.34)

The coefficients  are all zeros when the signal  is an odd function of
time. Alternatively, when the signal is an even function of time, then all  are
equal to zero. 

Consider the periodic energy signal defined in Eq. (13.33). The total energy
associated with this signal is then given by

(13.35)

13.4.  Convolution and Correlation Integrals

The convolution  between the signals  and  is defined by

(13.36)

where  is a dummy variable, and the operator  is used to symbolically
describe the convolution integral. Convolution is commutative, associative,
and distributive. More precisely,

(13.37)

For the convolution integral to be finite at least one of the two signals must be
an energy signal. The convolution between two signals can be computed using
the FT

(13.38)

x t( ) a0 an
2πnt

T
------------ 
 cos

n 1=

∞

∑ bn
2πnt

T
------------ 
 sin

n 1=

∞

∑+ +=

a0 X0=

an
1
T
--- x t( ) 2πnt

T
------------ 
 cos td

T– 2⁄

T 2⁄

∫=

bn
1
T
--- x t( ) 2πnt

T
------------ 
 sin td

T– 2⁄

T 2⁄

∫=

an x t( )
bn

E
1
T
--- x t( ) 2

td

t0

t T+

∫ a0
2

4
-----

an
2

2
-----

bn
2

2
-----+ 

 

n 1=

∞

∑+= =

φxh t( ) x t( ) h t( )

φxh t( ) x t( ) h t( )• x τ( )h t τ–( ) τd

∞–

∞

∫==

τ •

x t( ) h t( )• h t( ) x t( )•=

x t( ) h t( ) g t( )•• x t( ) h t( )•( ) g t( )• x t( ) h t( ) g t( )•( )•= =

φxh t( ) F
1–

X ω( )H ω( ){ }=
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Consider an LTI system with impulse response  and input signal . It
follows that the output signal  is equal to the convolution between the
input signal and the system impulse response, 

(13.39)

The cross-correlation function between the signals  and  is defined
as

(13.40)

Again, at least one of the two signals should be an energy signal for the corre-
lation integral to be finite. The cross-correlation function measures the similar-
ity between the two signals. The peak value of  and its spread around
this peak are an indication of how good this similarity is. The cross-correlation
integral can be computed as

(13.41)

When  we get the autocorrelation integral, 

(13.42)

Note that the autocorrelation function is denoted by  rather than .
When the signals  and  are power signals, the correlation integral
becomes infinite and thus, time averaging must be included. More precisely,

(13.43)

13.5.  Energy and Power Spectrum Densities 

Consider an energy signal . From Parseval’s theorem, the total energy
associated with this signal is

h t( ) x t( )
y t( )

y t( ) x τ( )h t τ–( ) τd

∞–

∞

∫ h τ( )x t τ–( ) τd

∞–

∞

∫= =

x t( ) g t( )

Rxg t( ) x∗ τ( )g t τ+( ) τd

∞–

∞

∫=

Rxg t( )

Rxg t( ) F
1–

X∗ ω( )G ω( ){ }=

x t( ) g t( )=

Rx t( ) x∗ τ( )x t τ+( ) τd

∞–

∞

∫=

Rx t( ) Rxx t( )
x t( ) g t( )

Rxg t( ) 1
T
---

T ∞→
lim x∗ τ( )g t τ+( ) τd

T 2⁄–

T 2⁄

∫=

x t( )
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(13.44)

When  is a voltage signal, the amount of energy dissipated by this signal
when applied across a network of resistance  is

(13.45)

Alternatively, when  is a current signal we get

(13.46)

The quantity  represents the amount of energy spread per unit fre-
quency across a  resistor; therefore, the Energy Spectrum Density (ESD)
function for the energy signal  is defined as

(13.47)

The ESD at the output of an LTI system when  is at its input is

(13.48)

where  is the FT of the system impulse response, . It follows that the
energy present at the output of the system is 

(13.49)

Example 13.2: The voltage signal  is applied to the
input of a low pass LTI system. The system bandwidth is , and its input
resistance is . If  over the interval  and zero
elsewhere, compute the energy at the output.

Solution: From Eqs. (13.45) and (13.49) we get

 

E x t( ) 2
td

∞–

∞

∫ 1
2π
------ X ω( ) 2 ωd

∞–

∞

∫= =

x t( )
R

E
1
R
--- x t( ) 2

td

∞–

∞

∫ 1
2πR
---------- X ω( ) 2 ωd

∞–

∞

∫= =

x t( )

E R x t( ) 2
td

∞–

∞

∫ R
2π
------ X ω( ) 2 ωd

∞–

∞

∫= =

X ω( ) 2 ωd∫
1Ω

x t( )

ESD X ω( ) 2=

x t( )

Y ω( ) 2
X ω( ) 2

H ω( ) 2=

H ω( ) h t( )

Ey
1

2π
------ X ω( ) 2

H ω( ) 2 ωd

∞–

∞

∫=

x t( ) e
5 t–

t 0≥;=
5Hz

5Ω H ω( ) 1= 10– π ω 10π< <( )

Ey
1

2πR
---------- X ω( ) 2

H ω( ) 2 ωd

ω 10π–=

10π

∫=
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Using Fourier transform tables and substituting  yield

 

Completing the integration yields

 

Note that an infinite bandwidth would give , only 11% larger.

The total power associated with a power signal  is

(13.50)

Define the Power Spectrum Density (PSD) function for the signal  as
, where

(13.51)

It can be shown that (see Problem 1.13)

(13.52)

Let the signals  and  be two periodic signals with period . The
complex exponential Fourier series expansions for those signals are, respec-
tively, given by

(13.53)

(13.54)

The power cross-correlation function  was given in Eq. (13.43), and is
repeated here as Eq. (13.55),

R 5=

Ey
1

5π
------ 1

ω2 25+
------------------ ωd

0

10π

∫=

Ey
1

25π
--------- 2π( )atanh 0( )atanh–[ ] 0.01799 Joules= =

Ey 0.02=

g t( )

P
1
T
--- g t( ) 2

td

T 2⁄–

T 2⁄

∫T ∞→
lim=

g t( )
Sg ω( )

P
1
T
--- g t( ) 2

td

T 2⁄–

T 2⁄

∫T ∞→
lim

1
2π
------ Sg ω( ) ωd

∞–

∞

∫= =

Sg ω( ) G ω( ) 2

T
------------------

T ∞→
lim=

x t( ) g t( ) T

x t( ) Xne

j2πnt
T

--------------

n ∞–=

∞

∑=

g t( ) Gme

j2πmt
T

---------------

m ∞–=

∞

∑=

Rgx t( )
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(13.55)

Note that because both signals are periodic the limit is no longer necessary.
Substituting Eqs. (13.53) and (13.54) into Eq. (13.55), collecting terms, and
using the definition of orthogonality, we get

(13.56)

When , Eq. (13.56) becomes the power autocorrelation function,

(13.57)

The power spectrum and cross-power spectrum density functions are then
computed as the FT of Eqs. (13.57) and (13.56), respectively. More precisely,

(13.58)

The line (or discrete) power spectrum is defined as the plot of  versus ,

where the lines are  apart. The DC power is , and the total

power is .

13.6.  Random Variables

Consider an experiment with outcomes defined by a certain sample space.
The rule or functional relationship that maps each point in this sample space
into a real number is called “random variable.” Random variables are desig-
nated by capital letters (e.g., ), and a particular value of a random vari-
able is denoted by a lowercase letter (e.g., ). 

Rgx t( ) 1
T
--- g∗ τ( )x t τ+( ) τd

T 2⁄–

T 2⁄

∫=

Rgx t( ) Gn
∗Xne

j2nπ t
T

--------------

n ∞–=

∞

∑=

x t( ) g t( )=

Rx t( ) Xn
2
e

j2nπ t
T

--------------

n ∞–=

∞

∑ X0
2 2 Xn

2
e

j2nπ t
T

--------------

n 1=

∞

∑+= =

Sx ω( ) 2π Xn
2δ ω 2nπ

T
----------– 

 

n ∞–=

∞

∑=

Sgx ω( ) 2π Gn
∗Xnδ ω 2nπ

T
----------– 

 

n ∞–=

∞

∑=

Xn
2

n

∆f 1 T⁄= X0
2

Xn
2

n ∞–=

∞

∑

X Y …, ,
x y …, ,
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The Cumulative Distribution Function (cdf) associated with the random vari-
able  is denoted as , and is interpreted as the total probability that the
random variable  is less or equal to the value . More precisely,

(13.59)

The probability that the random variable  is in the interval  is then
given by 

(13.60)

The cdf has the following properties:

(13.61)

It is often practical to describe a random variable by the derivative of its cdf,
which is called the Probability Density Function (pdf). The pdf of the random
variable  is

(13.62)

or, equivalently,

(13.63)

The probability that a random variable  has values in the interval  is

(13.64)

Define the  moment for the random variable  as

(13.65)

The first moment, , is called the mean value, while the second moment,
, is called the mean squared value. When the random variable 

X FX x( )
X x

FX x( ) Pr X x≤{ }=

X x1 x2,( )

FX x2( ) FX x1( )– Pr x1 X x2≤ ≤{ }=

0 FX x( ) 1≤ ≤

FX ∞–( ) 0=

FX ∞( ) 1=

FX x1( ) FX x2( )≤ x1 x2≤⇔

X

fX x( )
xd

d FX x( )=

FX x( ) Pr X x≤{ } fX λ( ) λd

∞–

x

∫= =

X x1 x2,( )

FX x2( ) FX x1( )– Pr x1 X x2≤ ≤{ } fX x( ) xd

x1

x2

∫= =

nth X

E X
n[ ] X

n
x

n
fX x( ) xd

∞–

∞

∫= =

E X[ ]
E X

2[ ] X
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represents an electrical signal across a  resistor, then  is the DC com-
ponent, and  is the total average power.

The  central moment is defined as

(13.66)

and thus, the first central moment is zero. The second central moment is called
the variance and is denoted by the symbol ,

(13.67)

Appendix E has some common pdfs and their means and variances.

In practice, the random nature of an electrical signal may need to be
described by more than one random variable. In this case, the joint cdf and pdf
functions need to be considered. The joint cdf and pdf for the two random vari-
ables  and  are, respectively, defined by

(13.68)

(13.69)

The marginal cdfs are obtained as follows:

(13.70)

If the two random variables are statistically independent, then the joint cdfs and
pdfs are, respectively, given by

(13.71)

(13.72)

Let us now consider a case when the two random variables  and  are
mapped into two new variables  and  through some transformations 
and  defined by

1Ω E X[ ]
E X

2[ ]

nth

E X X–( )n[ ] X X–( )n
x x–( )n

fX x( ) xd

∞–

∞

∫= =

σX
2

σX
2

X X–( )
2

=

X Y

FXY x y,( ) Pr X x Y y≤;≤{ }=

fXY x y,( )
x y∂

2

∂
∂

FXY x y,( )=

FX x( ) fUV u v,( ) ud vd

∞–

x

∫
∞–

∞

∫ FXY x ∞,( )= =

FY y( ) fUV u v,( ) vd ud

∞–

y

∫
∞–

∞

∫ FXY ∞ y,( )= =

FXY x y,( ) FX x( )FY y( )=

fXY x y,( ) fX x( )fY y( )=

X Y
U V T1

T2
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(13.73)

The joint pdf, , may be computed based on the invariance of proba-
bility under the transformation. One must first compute the matrix of deriva-
tives; then the new joint pdf  is computed as

(13.74)

(13.75)

where the determinant of the matrix of derivatives  is called the Jacobian.

The characteristic function for the random variable  is defined as

(13.76)

The characteristic function can be used to compute the pdf for a sum of inde-
pendent random variables. More precisely, let the random variable  be equal
to

(13.77)

where  is a set of independent random variables. It can be
shown that

 (13.78)

and the pdf  is computed as the inverse Fourier transform of  (with
the sign of  reversed),

 (13.79)

The characteristic function may also be used to compute the  moment for

the random variable  as

U T1 X Y,( )=

V T2 X Y,( )=

fUV u v,( )

fUV u v,( ) fXY x y,( ) J=

J
u∂

∂x

u∂
∂y

v∂
∂x

v∂
∂y

=

J

X

CX ω( ) E e
jωX[ ] fX x( )ejωx

xd

∞–

∞

∫= =

Y

Y X1 X2 … XN+ + +=

Xi ; i 1 …N,={ }

CY ω( ) CX1
ω( )CX2

ω( )…CXN
ω( )=

fY y( ) CY ω( )
y

fY y( ) 1
2π
------ CY ω( )e jωy– ωd

∞–

∞

∫=

nth

X
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(13.80)

13.7.  Multivariate Gaussian Distribution

Consider a joint probability for  random variables, . These
variables can be represented as components of an  random column vec-
tor, . More precisely,

(13.81)

where the superscript indicates the transpose operation. The joint pdf for the
vector  is

(13.82)

The mean vector is defined as

(13.83)

and the covariance is an  matrix given by

(13.84)

Note that if the elements of the vector  are independent, then the covariance
matrix is a diagonal matrix.

By definition a random vector  is multivariate Gaussian if its pdf has the
form

(13.85)

where  is the mean vector,  is the covariance matrix,  is inverse of
the covariance matrix and  is its determinant, and  is of dimension . If

 is a  matrix of rank , then the random vector  is a k-variate
Gaussian vector with

(13.86)

and

(13.87)

The characteristic function for a multivariate Guassian pdf is defined by

E X
n[ ] j–( )n

ωn

n

d
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=
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X
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=
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fx x( ) fx1 x2 … xm, , , x1 x2 … xm, , ,( )=
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=

m m×

Cx E X X
t[ ] µx µx
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Cx
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2
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(13.88)

Then the moments for the joint distribution can be obtained by partial differen-
tiation. For example,

(13.89)

Example 13.3: The vector  is a 4-variate Gaussian with

Define

Find the distribution of  and the distibution of

Solution:

 has a bivariate Gaussian distribution with

The vector  can be expressed as

CX E j ω1X1 ω2X2 … ωmXm+ + +( ){ }exp[ ]

jµx
t ω 1

2
---ωt

Cxω–
 
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ω1 ω2∂ ω3∂
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6 3 2 1

3 4 3 2

2 3 4 3

1 2 3 3
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X1 2X2+
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2

1
= Cx1

6 3

3 4
=

Y
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It follows that

13.8. Random Processes

A random variable  is by definition a mapping of all possible outcomes of
a random experiment to numbers. When the random variable becomes a func-
tion of both the outcomes of the experiment as well as time, it is called a ran-
dom process and is denoted by . Thus, one can view a random process as
an ensemble of time domain functions that are the outcome of a certain random
experiment, as compared to single real numbers in the case of a random vari-
able.

Since the cdf and pdf of a random process are time dependent, we will denote
them as  and , respectively. The  moment for the random
process  is 

(13.90)

A random process  is referred to as stationary to order one if all its sta-
tistical properties do not change with time. Consequently, ,
where  is a constant. A random process  is called stationary to order two
(or wide sense stationary) if

(13.91)

for all  and . 

Y
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Define the statistical autocorrelation function for the random process 
as

(13.92)

The correlation  is, in general, a function of . As a con-

sequence of the wide sense stationary definition, the autocorrelation function
depends on the time difference , rather than on absolute time; and

thus, for a wide sense stationary process we have

(13.93)

If the time average and time correlation functions are equal to the statistical
average and statistical correlation functions, the random process is referred to
as an ergodic random process. The following is true for an ergodic process:

(13.94)

(13.95)

The covariance of two random processes  and  is defined by

(13.96)

which can be written as

(13.97)

13.9.  Sampling Theorem

Most modern communication and radar systems are designed to process dis-
crete samples of signals bearing information. In general, we would like to
determine the necessary condition such that a signal can be fully reconstructed
from its samples by filtering, or data processing in general. The answer to this
question lies in the sampling theorem which may be stated as follows: let the
signal  be real-valued and band-limited with bandwidth ; this signal can
be fully reconstructed from its samples if the time interval between samples is
no greater than .
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Fig. 13.1 illustrates the sampling process concept. The sampling signal 
is periodic with period , which is called the sampling interval. The Fourier
series expansion of  is

(13.98)

The sampled signal  is then given by

(13.99)

Taking the FT of Eq. (13.99) yields

(13.100)

where  is the FT of .

Therefore, we conclude that the spectral density, , consists of replicas
of  spaced  apart and scaled by the Fourier series coefficients

. A Low Pass Filter (LPF) of bandwidth  can then be used to recover the
original signal .
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∞
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Figure 13.1. Concept of sampling.
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When the sampling rate is increased (i.e.,  decreases), the replicas of
 move farther apart from each other. Alternatively, when the sampling

rate is decreased (i.e.,  increases), the replicas get closer to one another. The
value of  such that the replicas are tangent to one another defines the mini-
mum required sampling rate so that  can be recovered from its samples by
using an LPF. It follows that

(13.101)

The sampling rate defined by Eq. (13.101) is known as the Nyquist sampling
rate. When , the replicas of  overlap and thus,  cannot

be recovered cleanly from its samples. This is known as aliasing. In practice,
ideal LPF cannot be implemented; hence, practical systems tend to over-sam-
ple in order to avoid aliasing.

Example 13.4: Assume that the sampling signal  is given by 

 

Compute an expression for .

Solution: The signal  is called the Comb function. Its exponential Fourier
series is

It follows that

Taking the Fourier transform of this equation yields

.
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Before proceeding to the next section, we will establish the following nota-
tion: samples of the signal  are denoted by  and referred to as a dis-
crete time domain sequence, or simply a sequence. If the signal  is
periodic, we will denote its sample by the periodic sequence .

13.10.  The Z-Transform

The Z-transform is a transformation that maps samples of a discrete time
domain sequence into a new domain known as the z-domain. It is defined as

(13.102)

where , and for most cases, . It follows that Eq. (13.102) can
be rewritten as

(13.103)

In the z-domain, the region over which  is finite is called the Region of
Convergence (ROC). Appendix D has a list of most common Z-transform
pairs. The Z-transform properties are (the proofs are left as an exercise):

1. Linearity:

(13.104)

2. Right-Shifting Property:

(13.105)

3. Left-Shifting Property:

(13.106)

4. Time Scaling:

(13.107)
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5. Periodic Sequences:

(13.108)

where  is the period.

6. Multiplication by :

(13.109)

7. Division by ; a is a real number:

(13.110)

8. Initial Value:

(13.111)

9. Final Value:

(13.112)

10. Convolution:

(13.113)

11. Bilateral Convolution:

(13.114)

Example 13.5: Prove Eq. (13.109).

Solution: Starting with the definition of the Z-transform,

Z x n( ){ } z
N

z
N 1–

--------------Z x n( ){ }=

N

n

Z nx n( ){ } z–
zd

d X z( )=

n a+

Z
x n( )
n a+
------------

 
 
 

x n( )za
u

k– a– 1–
ud

0

z

∫–
 
 
 
 

n 0=

∞

∑=

x n0( ) z
n0X z( )

z ∞→=

x n( )
n ∞→
lim 1 z

1––( )X z( )
z 1→
lim=

Z h n k–( )x k( )

k 0=

∞

∑
 
 
 
 
 

H z( )X z( )=

Z h n k–( )x k( )

k ∞–=

∞

∑
 
 
 
 
 

H z( )X z( )=

© 2000 by Chapman & Hall/CRC



Taking the derivative, with respect to z, of the above equation yields

It follows that

In general, a discrete LTI system has a transfer function  which
describes how the system operates on its input sequence  in order to pro-
duce the output sequence . The output sequence  is computed from
the discrete convolution between the sequences  and ,

(13.115)

However, since practical systems require that the sequence  be of finite
length, we can rewrite Eq. (13.115) as

(13.116)

where  denotes the input sequence length. Taking the Z-transform of Eq.
(13.116) yields

(13.117)

and the discrete system transfer function is

(13.118)

X z( ) x

n ∞–=

∞

∑ n( )z n–=

zd
d X z( ) x n( ) n–( )

n ∞–=

∞

∑ z n– 1–=

z
1––( ) nx n( )z n–

n ∞–=

∞

∑=

Z nx n( ){ } z–( )
zd

d X z( )=

H z( )
x n( )

y n( ) y n( )
x n( ) h n( )

y n( ) x m( )h n m–( )

m ∞–=

∞

∑=

x n( )

y n( ) x m( )h n m–( )

m 0=

N

∑=

N

Y z( ) X z( )H z( )=

H z( ) Y z( )
X z( )
-----------=

© 2000 by Chapman & Hall/CRC



Finally, the transfer function  can be written as

(13.119)

where  is the amplitude response, and  is the phase response.

13.11.  The Discrete Fourier Transform

The Discrete Fourier Transform (DFT) is a mathematical operation that
transforms a discrete sequence, usually from the time domain into the fre-
quency domain, in order to explicitly determine the spectral information for the
sequence. The time domain sequence can be real or complex. The DFT has
finite length , and is periodic with period equal to . 

The discrete Fourier transform for the finite sequence  is defined by 

(13.120)

The inverse DFT is given by

(13.121)

The Fast Fourier Transform (FFT) is not a new kind of transform different
from the DFT. Instead, it is an algorithm used to compute the DFT more effi-
ciently. There are numerous FFT algorithms that can be found in the literature.
In this book we will interchangeably use the DFT and the FFT to mean the
same. Furthermore, we will assume radix-2 FFT algorithm, where the FFT size
is equal to  for some integer . 

13.12.  Discrete Power Spectrum

Practical discrete systems utilize DFTs of finite length as a means of numeri-
cal approximation for the Fourier transform. It follows that input signals must
be truncated to a finite duration (denoted by ) before they are sampled. This
is necessary so that a finite length sequence is generated prior to signal pro-
cessing. Unfortunately, this truncation process may cause some serious prob-
lems.
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To demonstrate this difficulty, consider the time domain signal
. The spectrum of  consists of two spectral lines at .

Now, when  is truncated to length  seconds and sampled at a rate
, where  is the number of desired samples, we produce the

sequence . The spectrum of  would still be
composed of the same spectral lines if  is an integer multiple of  and if the
DFT frequency resolution  is an integer multiple of . Unfortunately, those
two conditions are rarely met and as a consequence, the spectrum of 
spreads over several lines (normally the spread may extend up to three lines).
This is known as spectral leakage. Since  is normally unknown, this discon-
tinuity caused by an arbitrary choice of  cannot be avoided. Windowing tech-
niques can be used to mitigate the effect of this discontinuity by applying
smaller weights to samples close to the edges.

A truncated sequence  can be viewed as one period of some periodic
sequence  with period . The discrete Fourier series expansion of 
is 

(13.122)

It can be shown that the coefficients  are given by

(13.123)

where  is the DFT of . Therefore, the Discrete Power Spectrum

(DPS) for the band limited sequence  is the plot of  versus , where

the lines are  apart,

 (13.124)

Before proceeding to the next section, we will show how to select the FFT
parameters. For this purpose, consider a band limited signal  with band-
width . If the signal is not band limited, a LPF can be used to eliminate
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frequencies greater than . In order to satisfy the sampling theorem, one must
choose a sampling frequency , such that

   (13.125)

The truncated sequence duration  and the total number of samples  are
related by

(13.126)

or equivalently,

(13.127)

It follows that

 (13.128)

and the frequency resolution is

(13.129)

13.13.  Windowing Techniques

Truncation of the sequence  can be accomplished by computing the
product,

(13.130)

where 

(13.131)

where . The finite sequence  is called a windowing sequence, or
simply a window. The windowing process should not impact the phase
response of the truncated sequence. Consequently, the sequence  must
retain linear phase. This can be accomplished by making the window symmet-
rical with respect to its central point. 

If  for all  we have what is known as the rectangular window. It
leads to the Gibbs phenomenon which manifests itself as an overshoot and a
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ripple before and after a discontinuity. Fig. 13.2 shows the amplitude spectrum
of a rectangular window. Note that the first side lobe is about  below
the main lobe. Windows that place smaller weights on the samples near the
edges will have lesser overshoot at the discontinuity points (lower side lobes);
hence, they are more desirable than a rectangular window. However, side lobes
reduction is offset by a widening of the main lobe (loss of resolution). There-
fore, the proper choice of a windowing sequence is continuous trade-off
between side lobe reduction and main lobe widening.

The multiplication process defined in Eq. (13.131) is equivalent to cyclic
convolution in the frequency domain. It follows that  is a smeared (dis-
torted) version of . To minimize this distortion, we would seek windows
that have a narrow main lobe and small side lobes. Additionally, using a win-
dow other than a rectangular window reduces the power by a factor , where

(13.132)

It follows that the DPS for the sequence  is now given by
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Figure 13.2. Normalized amplitude spectrum for rectangular window. 
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(13.133)

where  is defined in Eq. (13.133). Table 13.1 lists some common windows.

Figs. 13.3 through 13.5 show the frequency domain characteristics for these
windows.

 

TABLE 13.1. Some common windows. 
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Figure 13.3. Normalized amplitude spectrum for Hamming window. 
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Figure 13.4. Normalized amplitude spectrum for Hanning window. 

2 0 4 0 6 0 8 0 1 0 0 1 2 0

-9 0

-8 0

-7 0

-6 0

-5 0

-4 0

-3 0

-2 0

-1 0

0

s a m p le  n u m b e r

2
0

*l
o

g
(a

m
p

lit
u

d
e

)

© 2000 by Chapman & Hall/CRC



 Problems

13.1. Classify each of the following signals as an energy signal, as a power
signal, or as neither. (a) ; (b) ; (c)

; (d) .

13.2. Compute the energy associated with the signal .

13.3. (a) Prove that  and , shown in Fig. P13.3, are orthogonal

over the interval . (b) Express the signal  as a weighted

sum of  and  over the same time interval.

13.4. A periodic signal  is formed by repeating the pulse

 every 10 seconds. (a) What is the Fourier transform of

. (b) Compute the complex Fourier series of ? (c) Give an expression

for the autocorrelation function  and the power spectrum density

.

Figure 13.5. Normalized amplitude spectrum for Kaiser 
window (parameter ).π
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13.5. If the Fourier series is

 

define . Compute an expression for the complex Fourier series

expansion of .

13.6. Show that (a) . (b) If  and

, then , where the average values for 

and  are zeroes.

13.7. What is the power spectral density for the signal

 

13.8. A certain radar system uses linear frequency modulated waveforms of
the form

 

What are the quadrature components? Give an expression for both the modula-
tion and instantaneous frequencies.

13.9. Consider the signal  and let

 and . What are the quadrature components?

13.10. Determine the quadrature components for the signal

 .
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13.11. If , determine the autocorrela-

tion functions  and  when . 

13.12. Write an expression for the autocorrelation function , where 

 

and . Give an expression for the density function

.

13.13. Derive Eq. (13.52).
13.14. An LTI system has impulse response 

 

(a) Find the autocorrelation function . (b) Assume the input of this sys-

tem is . What is the output?

13.15. Suppose you want to determine an unknown DC voltage  in the

presence of additive white Gaussian noise  of zero mean and variance .

The measured signal is . An estimate of  is computed by

making three independent measurements of  and computing the arithmetic

mean, . (a) Find the mean and variance of the random

variable . (b) Does the estimate of  get better by using ten measure-

ments instead of three? Why?

13.16. Consider the network shown in Fig. P13.16, where  is a random

voltage with zero mean and autocorrelation function .

Find the power spectrum . What is the transfer function? Find the power

spectrum .

x t( ) x1 t( ) 2x1 t 5–( ) x1 t 10–( )+–=

Rx1
t( ) Rx t( ) x1 t( ) t

2– 2⁄( )exp=
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2
-------------- 
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2t–( )exp t 0≥
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Rh τ( )
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vdc
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2
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)

vdc

)

vdc

x t( )
ℜx τ( ) 1 a t–( )exp+=

Sx ω( )

Sv ω( )
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13.17. (a) A random voltage  has an exponential distribution function

 where . The expected value

. Determine .

13.18. Assume the  and  miss distances of darts thrown at a bulls-eye

dart board are Gaussian with zero mean and variance . (a) Determine the

probability that a dart will fall between  and . (b) Determine the
radius of a circle about the bulls-eye that contains 80% of the darts thrown. (c)

Consider a square with side  in the first quadrant of the board. Determine 
so that the probability that a dart will fall within the square is 0.07.

13.19. Let  be the PSD function for the stationary random process

. Compute an expression for the PSD function of

.

13.20. Let  be a random variable with

 

(a) Determine the characteristic function . (b) Using , validate

that  is a proper pdf. (c) Use  to determine the first two moments

of . (d) Calculate the variance of .

13.21. Let  be a stationary random process,  and the

autocorrelation . Define a new random variable

 

L R

C
x(t)

+
-

v(t)

Figure P13.16.
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Compute  and .

13.22. In Fig. 13.1, let 

Give an expression for .

13.23. Compute the Z-transform for 

(a) ;  (b) .

13.24. (a) Write an expression for the Fourier transform of

 

(b) Assume that you want to compute the modulus of the Fourier transform
using a DFT of size 512 with a sampling interval of 1 second. Evaluate the

modulus at frequency . Compare your answer to the theoretical
value and compute the error.

13.25. A certain band-limited signal has bandwidth . Find the

FFT size required so that the frequency resolution is . Assume
radix 2 FFT and record length of 1 second.
13.26. Assume that a certain sequence is determined by its FFT. If the

record length is  and the sampling frequency is , find .

E Y t( )[ ] σY
2

p t( ) ARect
t nT–
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Appendix A Noise Figure

Any signal other than the target returns in the radar receiver is considered as
noise. This includes interfering signals from outside the radar and thermal
noise generated within the receiver itself. Thermal noise (thermal agitation of
electrons) and shot noise (variation in carrier density of a semiconductor) are
the two main internal noise sources within a radar receiver. 

The power spectral density of thermal noise is given by 

(A.1)

where  is the absolute value of the frequency in radians per second,  is
temperature of the conducting medium in degrees Kelvin,  is Boltzman’s
constant, and  is Plank’s constant ( ).
When the condition  is true, it can be shown that Eq. (A.1) is
approximated by 

(A.2)

This approximation is widely accepted, since, in practice, radar systems oper-
ate at frequencies less than ; and, for example, if , then

. 

The mean square noise voltage (noise power) generated across a 
resistance is then

(A.3)

where  is the system bandwidth in hertz.
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Any electrical system containing thermal noise and having input resistance
 can be replaced by an equivalent noiseless system with a series combina-

tion of a noise equivalent voltage source and a noiseless input resistor 
added at its input. This is illustrated in Fig. A.1.

The amount of noise power that can physically be extracted from  is
one fourth the value computed in Eq. (A.3). The proof is left as an exercise.

Consider a noisy system with power gain , as shown in Fig. A.2. 

The noise figure is defined by

(A.4)

More precisely,

(A.5)

where  and  are, respectively, the noise power at the output and input of
the system.

Rin
Rin

noiseless
systemn

2〈 〉 4kTBRin=

Rin

Figure A.1. Noiseless system with an input noise
                                         voltage source. 

n
2〈 〉

AP

Rin

n
2〈 〉

AP

Figure A.2. Noisy amplifier replaced by its noiseless equivalent
       and an input voltage source in series with a resistor.

FdB 10 total noise power out
noise power out due to Rin alone
-------------------------------------------------------------------------------------------------log=

FdB 10
No

Ni Ap

---------------log=

No Ni
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If we define the input and output signal power by  and , respectively,
then the power gain is

(A.6)

It follows that

(A.7)

where

(A.8)

Thus, it can be said that the noise figure is the loss in the signal-to-noise ratio
due to the added thermal noise of the amplifier

.

We can also express the noise figure in terms of the system’s effective tem-
perature . Consider the amplifier shown in Fig. A.2, and let its effective
temperature be . Assume the input noise temperature is . Thus, the input
noise power is 

(A.9)

and the output noise power is

(A.10)

where the first term on the right-hand side of Eq. (A.10) corresponds to the
input noise, and the latter term is due to thermal noise generated inside the sys-
tem. It follows that the noise figure can be expressed as

(A.11)

Equivalently, we can write 

(A.12)

Example A.1: An amplifier has a 4dB noise figure; the bandwidth is
. Calculate the input signal power that yields a unity SNR at

the output. Assume  degree Kelvin and an input resistance of one
ohm.
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Solution: The input noise power is

Assuming a voltage signal, then the input noise mean squared voltage is 

 

From the noise figure definition we get

and 

Finally,

Consider a cascaded system as in Fig. A.3. Network 1 is defined by noise
figure , power gain , bandwidth , and temperature . Similarly, net-
work 2 is defined by , , , and . Assume the input noise has temper-
ature .

The output signal power is 

(A.13)

The input and output noise powers are, respectively, given by

(A.14)

kToB 1.38 10 23–× 290 500 103××× 2.0 10 15–× w= =
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Figure A.3. Cascaded linear system.
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(A.15)

where the three terms on the right-hand side of Eq. (A.15), respectively, corre-
spond to the input noise power, thermal noise generated inside network 1, and
thermal noise generated inside network 2.

Now if we use the relation  along with Eq. (A.13) and Eq.
(A.14), we can express the overall output noise power as

(A.16)

It follows that the overall noise figure for the cascaded system is 

(A.17)

In general, for an n-stage system we get

(A.18)

Also, the n-stage system effective temperatures can be computed as 

(A.19)

As suggested by Eq. (A.18) and Eq. (A.19), the overall noise figure is mainly
dominated by the first stage. Thus, radar receivers employ low noise power
amplifiers in the first stage in order to minimize the overall receiver noise fig-
ure. However, for radar systems that are built for low RCS operations every
stage should be included in the analysis.

Example A.2: A radar receiver consists of an antenna with cable loss
, an RF amplifier with , and gain ,

followed by a mixer whose noise figure is  and conversion loss
, and finally, an integrated circuit IF amplifier with  and

gain . Find the overall noise figure.

Solution: 

From Eq. (A.18) we have
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It follows that

 Problems

A.1. A source with equivalent temperature  is followed by

three amplifiers with specifications shown in the table below. 

Assume a bandwidth of . (a) Compute the noise figure for the three
cascaded amplifiers. (b) Compute the effective temperature for the three cas-
caded amplifiers. (c) Compute the overall system noise figure.

A.2. Derive Eq. (A.19).

 

Amplifier F, dB G, dB Te 

1 You must compute 12 350

2 10 22

3 15 35

G1 G2 G3 G4 F1 F2 F3 F4

1dB– 20dB 8dB– 60dB 1dB 6dB 10dB 6dB

0.7943 100 0.1585 106 1.2589 3.9811 10 3.9811

F 1.2589
3.9811 1–

0.7943
------------------------- 10 1–

100 0.7943×
------------------------------- 3.9811 1–

0.158 100× 0.7943
---------------------------------------------+ + + 5.3628= =

F 10 5.3628( )log 7.294dB= =

Te 500K=

150KHz
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Appendix B Decibel Arithmetic

The decibel, often called dB, is widely used in radar system analysis and
design. It is a way of representing the radar parameters and relevant quantities
in terms of logarithms. The unit dB is named after Alexander Graham Bell,
who originated the unit as a measure of power attenuation in telephone lines.
By Bell’s definition, a unit of Bell gain is 

(B.1)

where the logarithm operation is base 10,  is the output power of a standard

telephone line (almost one mile long), and  is the input power to the line. If

voltage (or current) ratios were used instead of the power ratio, then a unit Bell
gain is defined as

(B.2)

A decibel, dB, is  of a Bell (the prefix “deci” means ). It follows
that a dB is defined as

(B.3)

The inverse dB is computed from the relations

(B.4)
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Decibels are widely used by radar designers and users for several reasons.
Perhaps the most important of them all is that utilizing dBs drastically reduces
the dynamic range that a designer or a user has to use. For example, an incom-

ing radar signal may be as weak as , which can be expressed in

dBs as . Alternatively, a target may be located

at range  which can be expressed in dBs as

.

Another advantage of using dB in radar analysis is to facilitate the arithmetic
associated with calculating the different radar parameters. The reason for this
is the following: when using logarithms, multiplication of two numbers is
equivalent to adding their corresponding dBs, and their division is equivalent
to subtraction of dBs. For example,

(B.5)

In general,

(B.6)

(B.7)

Other dB ratios that are often used in radar analysis include the dBsm (dB -
squared meters). This definition is very important when referring to target
RCS, whose units are in squared meters. More precisely, a target whose RCS is

 can be expressed in dBsm as . For example, a  tar-

get is often referred to as  target, and a target with RCS  is

equivalent to a . 

Finally, the units dBm and dBW are power ratios of dBs with reference to
one milliwatt and one Watt, respectively. 

(B.8)

(B.9)

To find dBm from dBW, add 30 dB, and to find dBW from dBm, subtract 30
dB. 
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Appendix C Fourier Transform 
Table 

; rectangular pulse

; triangular pulse

; Gaussian pulse
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Appendix D Some Common 
Probability Densities

Chi-Square with N degrees of freedom

; 

Exponential

Gaussian

; 

Laplace
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Log-Normal
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Appendix E Z - Transform Table 
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Appendix F MATLAB Program 
and Function Name 
List 

A MATLAB program and function1 name list is provided in this appendix on
a per-chapter basis. Programs and functions that have associated MATLAB
GUI are identified. All these programs and functions can be downloaded from
CRC Press Web site (www.crcpress.com). For this purpose, create the follow-
ing directory in your C-drive: C:\RSA. Copy all programs into this directory.
The path tree should be as shown in Fig. F.1. Users can execute a certain func-
tion / program GUI by typing: file_name_driver, where file names are as indi-
cated in the left columns of the tables listed in this appendix.

1. All MATLAB programs and functions provided in this book were developed using 
MATLAB 5.0 - R11 with the Signal Processing Toolbox, on a PC with Windows 98 
operating system. 

C

RSA

ch ap te r 1

chapter 3

ch ap te r 2

programs

programs

programs

 Figure F.1. Path tree. 

and so on
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 Chapter 1:

 Chapter 2:

Name Purpose

pulse_train compute duty cycle, average power, pulse energy

range_resolution compute range resolution 

doppler_frequency compute Doppler frequency

radar_equation implement the radar equation - with GUI

lprf_req implement the LPRF radar equation - with GUI

hprf_req implement the HPRF radar equation - with GUI

power_aperture implement the surveillance radar equation - with 
GUI

ssj_req implement self-screening jammer radar equation - 
with GUI

soj_req implement the stand-off jammer radar equation - 
with GUI

range_red_fac compute and plot the range reduction factor associ-
ated with ECM - with GUI

Name Purpose (all functions have associated GUI)

rcs_aspect compute and plot RCS dependency on aspect 
angle

rcs_frequency compute and plot RCS dependency on frequency

rcs_sphere compute and plot RCS of a sphere

rcs_ellipsoid compute and plot RCS of an ellipsoid

rcs_circ_plate compute and plot RCS of a circular flat plate

rcs_frustum compute and plot RCS of a truncated cone

rcs_cylinder compute and plot RCS of a cylinder

rcs_rect_plate compute and plot RCS of a rectangular flat plate

rcs_isoceles compute and plot RCS of a triangular flat plate

rcs_cylinder_complex reproduce Fig. 2.22

swerlin_models reproduce Fig. 2.24 
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 Chapter 3:

 Chapter 4:

Name Purpose

range_calc perform radar range equation calculation - with 
MATLAB-based GUI

Name Purpose

marcumsq compute and plot single pulse probability of detec-
tion versus SNR

improv_fac compute and plot non-coherent integration 
improvement factor

incomplete_gamma compute and plot Incomplete Gamma function

threshold compute appropriate threshold for probability of 
detection calculation

pd_swerling5 compute and plot probability of detection for 
Swerling 5 targets

pd_swerling1 compute and plot probability of detection for 
Swerling 1 targets

pd_swerling2 compute and plot probability of detection for 
Swerling 2 targets

pd_swerling3 compute and plot probability of detection for 
Swerling 3 targets

pd_swerling4 compute and plot probability of detection for 
Swerling 4 targets 
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 Chapter 5:

 Chapter 6:

 Chapter 7:

Name Purpose

fresnel compute and plot Fresnel functions

hrr_profile compute and plot High Range Resolution Profiles 
associated with Stepped Frequency waveforms

Name Purpose

single_pulse_ambg compute and plot single ambiguity function 

fig6_3 reproduce Fig. 6.3

fig6_5 reproduce Fig. 6.5

lfm_ambg compute and plot LFM ambiguity function, with 
GUI

fig6_6 reproduce Fig. 6.6

fig6_7 reproduce Fig. 6.7

train_ambg compute and plot ambiguity function for a coher-
ent pulse train

fig6-9a reproduce Fig. 6.9a

Name Purpose

matched_filter Compute and plot compressed output from a 
matched filter

stretch implements stretch pulse compression

fig7_10 reproduce Fig. 7.10
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 Chapter 8:

 Chapter 9:

 Chapter 10:

Name Purpose

ref_coef compute and plot reflection coefficient - vertical 
and horizontal

Name Purpose

single_canceler plot output from a single delay line canceler

double_canceler plot output from a double delay line canceler

fig9_15 reproduce Fig. 9.15

fig9_16 reproduce Fig. 9.16

fig9_17 reproduce Fig. 9.17

Name Purpose

circ_aperture compute and plot antenna radiation pattern for a 
circular aperture, including 3-D

fig10_5 reproduce Fig. 10.5

fig10_10 reproduce Fig. 10.10

linear_array compute and plot radiation pattern for a linear 
phased array

rect_array compute and plot radiation pattern for a rectangu-
lar array
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 Chapter 11:

 Chapter 12:

Name Purpose

mono_pulse compute and plot sum and difference patterns for 
monopulse antenna

ghk_tracker implement ghk 3-state tracker

fig11_21 reproduce Fig. 11.21

kalaman_filter implement a 3-state Kalman filter

fig11_28 reproduce Fig. 11.28

Name Purpose

fig12_2 reproduce Fig. 12.2
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