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PREFACE

This book, with apologies for the pretentious title, represents the text of a course
we have been teaching at Harvard for the past eight years. The course is aimed
at students with an interest in physics who have a good grounding in one-
variable calculus. Some prior acquaintance with linear algebra is helpful but not
necessary. Most of the students simultaneously take an intensive course in physics
and so are able to integrate the material learned here with their physics education.
This also is helpful but not necessary. The main topics of the course are the theory
and physical application of linear algebra, and of the calculus of several variables,

method™ wherein we cover the same topic several times at increasing levels of
sophistication and range of application, rather than the ‘rectilinear approach’ of
Qtrict logical order. There are, we hope, no vicious circles of logical error, but we
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general definition and setting only after a broader perspective can be achieved
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rewardea by a deeper intuifive understanding of the subject as a whole.

Here is an outline of the contents of the book in some detail. The goal of the
first four chapters is to develop a familiarity with the algebra and analysis of
square matrices. Thus, by the end of these chapters, the student should be thinking
of a matrix as an object in its own right, and not as a square array of numbers.
We deal in these chapters almost exclusively with 2 x 2 matrices, where the most
complicated of the computations can be reduced to solving quadratic equations.
But we always formulate the results with the higher-dimensional case in mind. We
begin Chapter 1 by explaining the relation between the multiplication law of 2 x 2
matrices and the geometry of straight lines in the plane. We develop the algebra
of 2 x 2 matrices and discuss the determinant and its relation to area and

orientation. We define the notion of an abstract vector space, in general and
eXDlaln ﬂ"IP concepts f nd an
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In Chapter 2 we discuss conformal linear geometry in the plane, that is, the

geometry of lines and angles, and its relation to certain kinds of 2 x 2 matrices.

quantum mechanics. We use these notions to give an algorithm for computing

the powers of a matrix. As an application we study the basic properties of Markov

chains

£ Chan 3 3o
The principal goal-of Chapter 3-1st

linear differential equations with constant coefficients can be written as du/dt = Au
where A is a matrix and u is a vector, and that the solution can be written as
e?'u, where u, gives the initial conditions. This of course requires us to explain
what is meant by the exponential of a matrix. We also describe the qualitative
behavior of solutions and the inhomogeneous case, including a discussion of
resonance.

Chapter 4 is devoted to the study of scalar products and quadratic forms. It is
rich in physical applications, including a discussion of normal modes and a detailed
treatment of special relativity.

Chapters 5 and 6 present the basic facts of the differential calculus. In Chapter 5
we define the differential of a map from one vector space to another, and discuss

ts basic properties, in particular the chain rule. We give some physical applications
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directional and partial derivatives, and linear differential forms.

In Chapter 6 we continue the study of the differential calculus. We present the
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function theorem. We discuss critical point behavior and Lagrange multipliers.

Chapters 7 and 8 are meant as a first 1ntroduct1on to the 1ntegral calculus
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Particular attention is pala to the behavior under change of variables.

one-dimensional integrals such as arc length are also discussed.

(‘hﬂanr 8 is devoted to the studv of exterior two-forms and their corres
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under pullback is stressed. The two-dimensional version of Stokes’ theorem, i.e.
Green’s theorem, is proved. Surface integrals in three-space are studied.

Chapter 9 presents an example of how the results of the first eight chapters can
be applied to a physical theory — optics. It is all in the nature of applications, and
can be omitted without any effect on the understanding of what follows.

In Chapter 10 we go back and prove the basic facts about finite-dimensional
vector spaces and their linear transformations. The treatment here is a straight-
forward generalization, in the main, of the results obtained in the first four chapters
in the two-dimensional case. The one new algorithm is that of row reduction. Two
important new concepts (somewhat hard to get used to at first) are introduced:
those of the dual space and the quotient space. These concepts will prove crucial

in what follows
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matrlcPQ The subject is developed axiomatically, and the basic computational
algorithms-are presented.
Chapters 12—14 are meant as a gentle introduction to the mathematics of shape,

that 15, algebralc opology In Chapter 12 we begm the study of electrical networks

how the various branches are interconnected. In mathematlcal language thls is
known as the topology of one-dimensional complexes. The other is the study of
how the network as a whole responds when we know the behavior of the individual
branches, in particular, power and energy response. We give some applications to
physically interesting networks.

In Chapter 13 we continue the study of electrical networks. We examine the
boundary-value problems associated with capacitive networks and use these
methods to solve some classical problems in electrostatics involving conductors.

In Chapter 14 we give a sketch of how the one-dimensional results of Chapters 12
and 13 generalize to higher dimensions.

Chapters 15-18 develop the exterior differential calculus as a continuous version
of the discrete theory of complexes. In Chapter 15 the basic facts of the exterior

alculus are m‘eqented exterior algebra, k-forms, mrl]hack exterior derivative and

ca
Stokes™theorem:
Chapter 16 is devoted to electrostatics. We suggest that the dielectric properties

of the vacuum give the continuous analog of the capacitance of a network, and

dimensional space. The basic facts of potential theory are presented.
Chapter 17 continues the study of the exterior differential calculus. The main

topics are vector fields and flows, interior products and Lie derivatives. These are
applied to magnetostatics.

Chapter 18 concludes the study of the exterior calculus with an in-depth
discussion of the star operator in a general context

Chapter 19 can be thought of as the culmination of the course. It applies the
results of the preceding chapters to the study of Maxwell’s equations and the
associated wave equations.

Chapters 20 and 21 are essentially independent of Chapters 9-19 and can be
read independently of them. They are not usually included in our one-year course.
But Chapters 1-9, 20 and 21 would form a self-contained unit for a shorter course.

The material in Chapter 20 is a relatively standard treatment of the theory of
functions of a complex variable, suitable for students at the level of this book.

Chapter 21 discusses some of the more elementary aspects of asymptotics.

Chapter 22 shows how the exterior calculus can be used in classical thermo-
dynamics, following the ideas of Born and Carathéodory.

The book is divided into two volumes, with Chapters 1-11 in volume 1.

Most of the mathematics and all of the physics presented in this book were

eveloned by the firet decade ~f the tuyran +1a The material i thue at
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east seventy-five years old. Yet much of the material is not yet standard in the




elementary courses (although most of it with the possible exception of network

theory must be learned for a grasp of modern physics, and is studied at some stage

~AF the nhucicict’e careerl The reasons are lareelv historical Tt wac ammarant to

Ul LI Pu_you.«xoto aiviily I 1VAOULND dlIv 1Al 5oy 1k »v Avul ITL VWADS a,l_)pa,l\,],x(, L4
g 1 1 1 1 £ 1

Hamilton that the real and compleX Mumoers weie insufficient for t aeeper stuay
of geometrlcal analysis, that one wants to treat the number pairs or triplets of

ree dimensions as obj ects in their own right
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quaternions, a theory which had a good deal of populanty in England in the
middle of the nineteenth century. Quaternions had several drawbacks: they more
naturally pertained to four, rather than to three dimensions —the geometry of
three dimensions appeared as a piece of a larger theory rather than having a
natural existence of its own; also, they have too much algebraic structure, the
relation between quaternion multiplication, for example, and geometric construc-
tions in three dimensions being somewhat complicated. (The first of these objections
would, of course be regarded far less seriously today. But it would be replaced by
an objection to a theory that is limited to four dimensions.) Eventually, the three-
dimensional vector algebra with its scalar and vector products was distilled from
the theory of quaternions. It was conjoined with the necessary differential
operations, and give rise to the vector analysis as finally developed by Gibbs and
promulgated by him-in-a famous-and-very influential-text:

So vector analysis, with 1ts grad, div, curl etc. became the standard language 1n
which the geometric laws of phvsws were taught. Now while vector analysis is
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he theory is wedded to a three-dimensional orientated
Euclidean space. A related problem is that the operators do not behave nicely
under general changes of coordinates — their expression in non-rectangular co-
ordinates being unwieldy. Already Poincaré, in his fundamental scientific and
philosophical writings which led to the theory of relativity, stressed the need to
distinguish between those laws of geometry and physics which are ‘topological’,
Le. depend only on the differential structure of space and so are invariant under
smooth deformations, and those which depend on more geometrical structure such
as the notion of distance. One of the major impacts of the theory of relativity on
mathematics was to encourage the study of higher-dimensional spaces, a study
which had existed in the previous mathematical literature, but was not regarded

as central to the study of geometry. Another was to emphasize general coordinate
ChﬁﬂﬁPQ The vector qnq]vsis was-notupto fhese two-t tasks and so was Qnrm]em nted
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in-the more advanced literature by tensor analysis. But tensor analym withits
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being that itis extraordinarily o tell which operations have any geometric

significance and which are artlfacts of the coordinate system. Thus, while it is

ably well- suited for computation, it is hard to assess exactly what it is that

reasona E:
ole pur the d ve aslonmentinitiated by Ha

one is computing-The whole purpose of the developmentinitiated by Hamilton—to
have a calculus whose objects have a perceived geometrical significance — was
vitiated. In order to make the theory work one had to introduce a relatively
sophisticated geometrical construct, such as an affine connection. Even with such
constructs the geometric meanings of the operations are obscure. In fact tensor
analysis never displaced the intuitively clear vector analysis from the elementary
curriculum.

It is generally accepted in the mathematics community, and gradually being
accepted in the physics community, that the most suitable framework for geo-
metrical analysis is the exterior differential calculus of Grassmann and Cartan. This
calculus has the advantage that its computational rules are simple and concise,
that its objects have a transparent geometrical significance, that it works in all

Maxwell’s equations in the course of history
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Xvi Preface

dimensions, that it behaves well under maps and changes of coordlnates that it

between the ‘topological” and ‘metrical” properties. The geometrical laws of physics
take on a simple and elegant form in terms of the exterior calculus. To emphasize
this point, it might be useful to reproduce the above table, taken from Thirring’s

Course on Mathematical Physics.
Hermann Grassmann (1809-77) published his Ausdehnungslehre in 1844. It was

not appreciated by the mathematlcal community and was dismissed by the leading

-«
n @

1 1

university position in mathematics. He remained a high-school teacher throughout
his career. (Nevertheless, he seemed to have a happy and productive life. He raised a
large family and was recognized as an expert on Sanskrit literature.) Towards the
end of his life he tried again, with another edition of his Ausdehnungslehre, but this
fared no better than the first. Only one or two mathematicians of his time, such as
Mobius, appreciated his work. Nevertheless, the Ausdehnungslehre (or calculus of
extension) contains for the first time many of the notions central to modern
mathematics and most of the algebraic structures used in this book. Thus vector

aces. exterior algebra, exterior and interior nrndu(‘fe and a form of the oenemlﬂed

S Oka lﬂC()I'CIIl dll IIldKC LIlCll dppcaialicc.

Elie Cartan (1869—1951) 1s now universally recognized as the leading geometer
of our century. His early work, of such overwhelming importance for modern
mathematics, on Lie groups and on systems of partial differential equations was
done in relative obscurity. But, by the 1920s, his work became known to the broad
mathematical eommumty, due in part, to the writings of Hermann Weyl who
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— published his book Legons sur les invariants intégraux in which he showed how
the exterior differential calculus, which he had invented, was a flexible tool, not
only for geometry but also for the variational calculus and a wide variety of
physical applications. It has taken a while, but, as we have mentioned above, it
i1s now recognized by mathematicians and physicists that this calculus is the

appropriate vehicle for the formulation of the geometrical laws of physic

Accordingly, we feel that it should displace the ‘vector calculus™in the elementary
curriculum and have proceeded accordingly.

Some explanation is in order for the time and effort devoted to the theory of
electrical networks, a subject not usually considered as part of the elementary
curriculum. First of all there is a purely pedagogical justification. The subject
always goes over well with the students. It provides a down-to-earth illustration
of such concepts as dual space and quotient space, concepts which frequently seem
overly abstract and not readily accepted by the student.—Also, inthe discrete,
algebraic setting of network theory, Stokes’ theorem appears as essentially a
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Stokes’ theorem in the settlng of the exterior calculus. There are deeper, more

philosophical reasons for our decision to emphasize network theory. It has been

ahont a centurv t orces_that hold _macrace nv“
Ul (2] A~ y 13 VLI VVD L2

rrrirzod "‘nr
recogniZcd—101—avo

-
-

c Whnadia
at—hnolad—1mMacrosc UPICUOUICS

1

together are essentially electrical in character. Thus (in the approximation where
the notion of rigid body and Euclidean geometry makes sense, that is, in the
non-relativistic realm) the concept of a rigid body, and hence of Euclidean geometry,
derives from electrostatics. The frontiers of physics, both in the very small (the
study of elementary particles) and the very large (the study of cosmology) have
already begun to reopen fundamental questions as to the geometry of space and
time. We thought it wise to bring some of the issues relating geometry to physics
before the student even at this early stage of the curriculum. The advent of the
computer, and also some of the recent theories of physics will, no doubt, call into
question the discrete versus the continuous character of space and time (an issue
raised by Riemann in his dissertation on the foundations of geometry). It is to be

hoped that our discussion may be of some use to those who will have to deal with
hicnrahl
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Of course, we have had to omit several important topics due to the limitation

of a one-year course. We do not discuss infinite-dimensional vector spaces, in

nartiendar Hilbert enacec noardoswe define oretnidvahbhetract differentiable manifolde
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and their properties. It has been our experience that these topics make too heavy
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a demand on the sophistication of the student, and the effort 1nvolv d in explaining
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to pay the price for not having these concepts at our disposal. More serious is the

omission of a serious discussion of Fourier analysis, classical mechanics and
t

eoryv. These topics
A 9
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subject of study. Our only excuse is that a thorough study of each would probably

require a semester’s course, and substantive treatments from the modern viewpoint
are available elsewhere. A suggested guide to further reading is given at the end
of the book.

We would like to thank Prof. Daniel Goroff for a careful reading of the
manuscript and for making many corrections and fruitful suggestions for improve-
ment. We would also like to thank Jeane Morris for her excellent typing and
her devoted handling of the production of the manuscript from the inception of
the project to its final form, over a period of eight years.
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ImChapter 1 we explain the relation between the multi-

plication taw of 2 x 2 matrices and the geometry of straight

1: hd 1 1 h & 4 3 1 1 1 1 £~ ~ 4o
Imes I the plane. we aevelop the algeprd ol 2 X 2 matrices

and discuss the determinant and its relation to area and

orientation. We define the notion of anm abstract vector space,

in general, and explain the concepts of basis and change of

basis for one- and two-dimensional vector spaces.

1.1. Affine planes and vector spaces

The familiar Euclidean plane of high-school plane geometry arose early in the

history of mathematics because its properties are readily discovered by physical
experiments with a tabletop or blackboard. Through our experience in using rulers
and protractors, we are inclined to accept ‘length’ and ‘angle’ as concepts which
are as fundamental as ‘point’ and ‘line’. We frequently have occasion, though, both
in pure mathematics and in its applications to physics and other disciplines, to
consider planes for which straight lines are defined but in which no general notion
of length is defined, or in which the usual Euclidean notion of length is not
appropriate. Such a plane may be represented on a sheet of paper, but the physical
distance between two points on the paper, as measured by a ruler, or the angle
between two lines, as measured by a protractor, need have no significance.

An example of such a plane is the one used to describe graphically the motion

of particles along a line (the x-axis). A point P or Q in this plane represents the

physical concept of event, something which has a time and place. A line [ also
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Figure 1.1

has physical significance; it corresponds to the motion of a particle which is subject
to no force. We can compare the lengths of segments along the t-axis (time intervals)
or along the x-axis (distances). Yet the distance between P and Q, as measured
with a ruler, is devoid of physical significance. Furthermore, the origin in such a
plane, where the axes cross, is of no fundamental physical significance.

The mathematical concept of real affine plane is the appropriate one to represent
this and many other ‘two-dimensional’ situations. An affine plane contains points,
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we shall call ssmply lme and represent by lower-case letters

=

for the affine plane, we shall follow Descartes and consider the set of all

73

o N
w

Q

u

mnd e tha
lCllllllU uy tiia

numbers, and t superscr1pt 2 indicates that we are considering pairs of real

numbers (Wh nw lot the plane on paper, the usual convention is to plot x

S

‘perpendicular’ or the size of any angle is undefined for us at the moment. We
could just as well plot x and y along any axes.) A line is a particular kind of set
of points. We assume that you are familiar with (straight) lines from your previous
studies of geometry, and, in particular, that you are acquainted with the description
of lines in analytic geometry.

y A

°[5]

s |




The lines of the affine plane AR? can be described in various ways. One way is

o

o give an equation satisfied by the points of the line, for example

= s X ax=+Fby=<c
oy (-
LY/ ] J
hd : 4 x 4 44 ik 1
This is to be read as ‘I 1s the set of points such that theequatiomax+by=¢
A}
Y

is satisfied’. Here it is assumed that a and b are not both zero.
This method of characterizing a line is a little inconvenient because the para-
meters a, b, ¢ which characterize the line are not unique. For example

(-

and

{[: 3ax + 3by = 36}

are the same line. More generally the parameters ra, rb, rc, for r # 0, describe the
same straight line as a, b, c.

even more redundant than the previous one: we can replace our points Py and

P, by any other pair of distinct points on the same line.

Another convenient way of dPQ(‘thmo a q‘rmwhf line (a more ‘dvnamic’ as

J
NN Y /144.
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th line’: thus the set of all points of the form

{[XO] + t<u> telR} where (u) 7&(0> 1s a fixed vector
Yo v v 0

is a line. (Here we think of the line as being traversed by a particle moving with

Q

ron-vector

. : u : x .
velocity vector’ ( ) and situated at [ 0] at time zero.) Here we have used
v Yo

) u
four parameters to describe the line. But we can multiply ( ) by any non-zero
v

scalar and get the same line (just traversed with different velocity) and we can

isplace along the line, showing that we have two redundant parameters.




Of course, this ties in with our second description if
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the awkward feature that it does not describe absolutely all lines in the same way.

If g and b are any real numbers, the set

R

is a straight line which intersects the y-axis at the point [

b
a; i.e., for points on the line, an increase in one unit of x implies an increase in a
units of y. This set is a line, and the description is not redundant, for we have
described a and b in terms of geometric properties of the line. But not all lines
are of this form. We must add the lines which are parallel to the y-axis, and which

have the description
y ||

O] and which has ‘slope’

From a strictly logical point of view, we should take one of the four descriptions
iven above as our definition of a straight line; for example, we should say that,
£ +1

N

by dennluon a line is a subset, 1, of AR* such that there are three real numbers

p X

s
L3 )\ V v

T

We should then prove that such a subset can be given by either of the other three

descriptions. We shall not go into such logical niceties here, since you have seen,

17 nv\n 17t 1n meteyw
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tis important to remember that a ne plane has no origin and that it makes
no sense to add points of an affine plane We attach no special significance to the

: 0 : : 2 3
point [ O} and we resist the temptation to add points like |: 1] and [ 6]

‘coordinate by coordinate’. There is, however, a closely related mathematical
structure, called a two-dimensional vector space, in which an operation of addition
is defined. We construct a vector space from an affine plane by associating with

. . . s _ [PREE T
any pair of points the ‘displacement vector’ PQ whose ‘tail’ is at P and whose
‘head’ is at Q. We denote vectors by lowercase bold letters: v,w, etc. A vector v is

. . 5 .
also given as a pair of real numbers, for example v = (2) (Notice that we use
5\

> 2 W
( ) for vectors and not [ ] as for points.) The vector v= 5 ‘ 1S to be thmlgh‘r




Figure 1.3

. . . 1], 6 .
of as that displacement which carries the point I: 3] into [5], carries the point

— 2 : :
3 into and, in general, carries any point P = X into Q = X+5 ]
2 4 y y+2

Thus each vector v determines a (particular kind of) transformation of the affine
plane into itself, a rigid translation of the whole plane. If P is any point in the
plane, we will denote the displaced point @ by P*“+”v: the “+” is a symbol for
this operation of vectors on points. Thus v sends P into Q = P“+v. Explicitly,

if P= |:x:| and v= (a)) then P“+"v= |:x +a].
y b y+b

1 ~

two different kinds of object, points and vectors, and so differs from the usual
notion of addition. Similarly, given any pair of points P and O, there is a unique

vector v— 0O “_—_"P cuc
¥ A 4

O ¥ < X [SA~ 2 =f =3 b 3

P 13 + ”V — 0.
We put quotation marks around the — because it relates different kinds of objects,

it gives a vector from a pair of points. You should convince yourself, by working

P O andR-S determine

S, Z [€2 RN 3 l\, U A\UASIAS) D YO RS

Q and RS are opposite

1
n. on freqnp 1 finds it de ‘rhat a vector

is determined by ‘magnitude and
as

either magnitude or directio they are not invariant concepts for us.

=

b i 1 A4
figure 1.4
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We can define the sum of two vectors: if u= \ } and v={ |, define their
N7/
sum by
/n -L-('\
utv={_ )
\b+d/
Notice that
P‘€+”(u+v)=(P6‘+’,u)6$+”v (1.1)
) a c X )
since, if u= (b)’ V= (d) and P= [y} then both the left and the right hand
. a+c+x
id f the above equation equal The equation (1.1) says
side o q q btd+y q (1.1) say

that the displacement corresponding to u-+v can be obtained by successively
applying the displacement v and then the displacement u. Notice thatu +v=v +u.
We can visualize the addition of vectors by the familiar parallelogram law: if we
start with a point P and write R=P“+”u,Q =P“+”vand S = P“+”(u + v), then
the four points P, Q, S, R lie at the four vertices of a parallelogram. You should
convince yourself of this fact by working out some examples on graph paper. The

[a)\
proof of this fact goes as follows. For any vector v=| , | and any real number
\b/

1. +1 v 1 ¢ 4 1 ta\ b £ /O 1D LA +1 .
t, define their product, tv, by tv={"_ . If v “Jand P isany point, the set
N

I={P“+”tv} (ast varies over R)

is a straight line passing through P (just look at the third of our four descriptions

of straight lines). If R is some other point, then the line

m={R"+"sv; (as s varies over R)

lintorcanr mm b 1€ 41a BN
1 Y 8
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t, such that
R*+7s,v=P“+7tv
which means that
R=P“+7(t; —s)v
and hence, for every s, that
R“+7sv=P“4+7(s+1t; —S)V.

This means that the lines m and [ coincide. In other words, either the lines | and
m coincide, or they do not intersect, i.e., either they are the same or they are

. 0
parallel. Now let us go back to our diagram for vector addition. If v # (0), then

at
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Vector spaces and their affine spaces 7

lie on the line I, so that u # tv for any ¢, the lines | and m are parallel. A similar
1+ do that +hha £ 000

+lhn HP= PN PUS: |
argumcut dpput:b to ulc othertwo—stdes—and—we buuuuuc tiat e 11gu e lb d

parallelogram. 1f u = tv, then all four points lie on the line I. We can still view this

__picture as a sort of ‘degenerate’ parallelogram:

5 //%v
//;
2 Q
Figure 1.5
/0 AN
If either u or v= ( ‘I the picture degenerates further:
\0/
a0
/
pe—
Figure 1.6
We say that the vectorsu and v are linearly dependent if there are numbers r and s, not
hoth 7zera ceuie that
UVl ViU, ouviiuiiat

degenerates into segments on a line | or ifu=v= o) into a single point }. This

is the reason for the term linearly dependent. If two vectors are not linearly
dependent, we say that they are linearly independent.

0 .
The zero vector (U) denoted by 0, has the same point for its head and tail.

It is called an additive identity because

0+v=v+0=v torallv.

The set of all vectors v= <x
y

called R2 The space R? is an example of a vector space, to be defined in the
next section. The notational distinction between R? and AR? lies in the fact that

) where x and y are arbitrary real numbers is

ot (O
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1.2. Vector spaces and their affine spaces

Itiseasy to check that the operations of addition of vectors in R2 and for multiplying
vectors by real numbers satisfy the following collection of axioms:




‘ .inear transformations of the plane

Laws for addition of vectors
\ ative ] f addition: | _ (

Commutative law of addition: u+4+v=v+u

Existence of additive identity there is a vector 0 such that 0 +v=v
foraitv

Existence of additive inverse: for every v there is a — v such that
Vv+(—v)=0

Laws involving the multiplication of vectors by real numbers
‘One’ acts as multiplicative
identity: lv=v for every v.
Associative and distributive laws: for any real numbers r and s and any
vectors u and v
(rs)v =r(sv)
(r+s)v=rv-+sv
r(a+v)=ru+rv.
The above axioms are known as the axioms for a vector space. By definition, a

veetar-enace ticea eallection I of abicete 11 v ote called veetare enteh that we ara
yLLivl spavv 15 a VULIVLLIULL, v, UTTUUJLOLS, T, 7, L., LAl VULTULS, sUblll lidl woL alv
given a binary operation, +, which assigns to every pair of vectors w and v a third
vector u + v and a multiplication which assigns to every real number ¢t and every
veetar vanoth 31 tar tveneh that the alhnay moe hald
YLLLUL Y A1Vt UL 1Yy ouvldrl tiial vuiv avu JAN N
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We have verified that R? is an example of a vector space. As a second example,
we could take R* where a

¢ a vector now consists of a triplet
a
v=|b

C

of real numbers. Addition of vectors is done componentwise as in R*:

a, a, a, +a,
lf V1= bl and V2= b2 5 then V1 +V2= b1+b2
o C,y ci+¢,y

The space R? is just the space of vectors in our familiar three-dimensional space.
We shall study the concept of dimension later on. We could also consider the
space R = R! of the real numbers themselves as a vector space. Here addition is just
the ordinary addition and multiplication ordinary multiplication. When we
introduce the notion of dimension, this will be an example of a one-dimensional
vector space.

As a different looking example of a vector space, consider the collection of all
polynomials. We can add two polynomials:

Qe L T ]
J

2y o] v2 | 4 6
./‘,_I_I./\,}"T_ e A T A

—_~

(1 1
T

just add the coefficients. We can also multiply a polynomial by a real number:

T+ 3x +3x2) =7+ 21x + 21x~

'U
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Veector spaces and their affine spaces
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consider the space of polynomials of at most a given degree. For example, the

most general polynomial of degree at most two is of the form

D 2 .73 R
I =4adax + 00X+ C.

The sum of two such polynomials

P,=ax*+b;x+¢; and P,=a,x*+b,x+c,
1s

P, +P,=(a; +a))x* +(b; + b)x + ¢, +c,.
For example, if
P, =3x*+2x+1, P,=7x*—10x+2
then
Pl +P2=10x2_8x+3.

The set of polynomials of degree at most two is also a vector space. Notice that it
‘looks like’ R? in the sense that the preceding equations look like

3 7 10
2 +|—-10)=1]-—8
] — 2, 3
We will return to this point later
Sunnose that we are givepn a vector snace 17 for examnle IV conld be 1 2 Ap
Uut}t}vo\d \Z2¥ic a9 \AA AR T B ) vbuvt; L% 2 VWO LUL uyuvw L4 E) TN Vl\ulllt}l\d, L4 WVOUQIV Uvw U0\ ) LHANY UL
an dffine space associated to ¥V, we mean a set A consisting of points P, Q,
etc., and an operation “+” which assigns to each PeA and each veV another
point in-4 which is denoted by P“ +”v. This rule is subject to the following axioms:
Associative law: (P“+"m)“+"v=P“+"(u+v) for any PeA
and u,veV
. g
‘Zero’ acts as identity: P“+”0=P for any PeA.
Transitivity: given any two points P and Qe A, there is a
veV such that P“+”v=_0.
Faithfulness: if, for any P, the equality P“+"u=P*“+"v

holds, then u =v.
Combining the last two axioms, we can say that, given any two points P and Q,
there is a unique vector v such that P“+”v= Q. It is then sometimes convenient
to write v=Q“—"P.

The notion of a vector space and associated affine space lies at the basis of three
centuries of physical thought, from Newtonian mechanics through special relativity
and quantum mechanics. The purpose of the present chapter is to develop most
of the key ideas in the study of these structures by examining the intuitively simple

case of the two-dimensional* vector space R2. Let us begin, however, with some

* We will give a precise definition of the term ‘two-dimensional’ in §1.12, of ‘one-dimensional’ in

a few lines, and of the general concept of the dimension of a vector space in Chapter 10.




comments about the one-dimensional case. Here the concepts are so ‘obvious’ that

a detailed discussion of them may appear so pedantic as to be non-intuitive. Yet

1f worth the effort
15 T
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A vector spacec v 1s called one-dimensional 1 11 salisies —tne Tollowing two

conditions: (i) it possesses some vector v # 0; and (ii) if v#0, then any ueV can

be written as u = rv for some real number r. Notice that the r in this equation is

uulq ueif
T'IV = I‘ZV,

then we claim that r; =r,. Indeed, from r;v=r,v we can write
(ri—ry)v=0
If r, —r, #0, then setting s = (r; —r,)” !, we have
0=s[(ry —r)v]=(s(ry —72))}v
=1v
=v,

so v=0, contradicting our original assumption that v 0. (You should check
exactly which of the vector space axioms we used at each stage of the preceding
argument.) Once we have chosen a v # 0 in a one-dimensional vector space, then to

each vector u there is assigned a real number, r,

u—r where u=rv.

+1

If w, =r;vand u, =r,v, then u; +u; =(r; +ry)v. Thus u; +u, corresponds to

ry +r,. Similarly, if u=rv and ¢ is any real number, then tu=(tr)v so that tu

corresponds to tr. In short, every vector corresponds to a real number, and the

ml X7

P . 1o M e | 1a M
vector-operations correspond-tothe operations on R~ We say that we havean

isomorphism of the one-dimensional vector space V with R*. This identification of

V with R! depends on the choice of v. A choice of v is called a choice of basis of

I/ and the number » acemertiated ¢ »v 1e nalled the canrdinate of nrelative
V, alica LuC namocer 7 ssocirated LU (75 v1a =rviscauca tinc cooramatc orarcratrve
to the basis v. Suppose we choose a different basis, v'. Here v/ = av where a is some

non-zero real number. If u = rv, then

u=(ra” YHav
SO
-1

u=rv. where r=a 'r

Thus, changing the basis, by replacing v by av, has the effect of changing the
coordinate of any vector by replacing the coordinate r of any vector by a~!r. The
choice of a basis in a one-dimensional vector space is much like the choice of a
unit for some physical quantity. If we change our units of mass from kilograms
to grams, an object that weighs 1.3 kilograms now weighs 1300 grams. The difference
is that, for many familiar physical quantities, the measurement of any object is
given by positive numbers (or zero) only. It usually makes no sense to say that

somethine has ne An exception is in the theory of

e diile 1t « 1 XIX A ST STty

1

electricity, where electric charge can be positive or negative. For instance, we might




imagine situations in which we might want to choose the charge of the electron

as our unit. In terms of this basis, the electron would have charge + 1 1nstead of

—1 602191 %« 10— 19 coulombs-—where-the-coul] 1e o ‘ot
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that has been agreed upon by imternational convention.

Let A be an affine space associated to the one-dimensional vector space V. If

we_pick some point O in A, then every other point, P, determines a vector u=
P —”O. If we-also choose-abasis; v-of ¥, theneach Pgets-assigned-a number;
x(P), where

P=0%“+"x(P)v.

We call x(P) the coordinate of P, but here we had to make two choices: we had
to choose an ‘origin’ O, which allowed us to identify points with vectors, and then
we had to choose a basis of V, which allowed us to identify vectors with numbers.
If we change our basis, by replacing v by v’ = av, then x is replaced by x’ where

x'(P)=a~ 'x(P).
If, in addition, we replace O by O’, where O'= 0 “+”w, then
P“_”OI — (P“_”O) _ w

If w = bV, then this has the effect of replacing x’ by x”, where now

t 1 1 1 e 1 et f ¢h
We-should-compare-the-above-discussion—with- Newton’s-introduction—of the
concept of absolute time. Newton wrote
Ahecaliste t 4 +1h t1nn] ¢ A5 +1 1 1 | A mahly fea
Absottetruc-and matnematical time-or duration ltows ¢venly ana ¢quaoty irom

its own nature and independent of anything external; relative, apparent and

g
common time is some measure of duration by means of motion (as by the motion

of-a-clock) which-is commeonlyused-instead-of true-time
In our terminology, what Newton said is that there exists a concept of absolute
time;-and-the set-of all-absolute times-hasthe structure-of a-one-dimensional affine

space. The idea of ‘flowing evenly and equably’ is made mathematically more
precise by the assertion that there is the action, given by “+”, of a one-dimensional
vector space V on the set of all times. It is this postulated action which allows us
to compare different intervals of time. Newton’s distinction between ‘true’ and
‘common’ time corresponds to our discussion of the degree of arbitrariness involved
in introducing coordinates on the affine line.

We should pause for a moment and ponder over this abstract postulate of
Newton, which lay at the cornerstone of physics for over two centuries. We have,
each of us, our own psychological perception of time. Our psychological time
differs in many important respects from Newton’s absolute time. The first striking
difference is that for us time has a definite direction. The future is to some extent
unknown and subject to our volition and intervention. (In many European

languages, for example, the future tense is indicated by volition (in English ‘I
wall LIS o 4 »n 1.3 /(: b ) p IS i ¢ s )
will g0 — 1 WISl 10 EO J Ol coInpuision (ir r I'Cl'l(.«l'l _] lfdl — 1 1[IAve O §gU)7




The past is, to some extent, known or remembered. Yet Newton’s laws of
motion are insensitive to the change of direction of time. If we were to

planetary system backwards, we would discover no discrepancy with Newton’s
laws. The second difference is that our psychological time does not ‘flow
evenly and equably’, at least in comparison with Newton’s absolute time. We have

‘hich-are recurrent. and so-st
certain bodily functions-which-are recurrent,-and so-s

time interval: we get hungry a ‘certain amount of time’ after having had our last
meal. But this is very variable, being determined by the level of our blood sugar,
which in turn depends on what exactly we ate, what we have been doing in the
interim, our overall physiological profile, etc. Also, our psychological perception
of these intervals of time varies greatly. Time passes quickly when we are interested
and excited by what we are doing, and slowly when we are bored. Nevertheless,
our internal rhythms appear to be somewhat correlated to periodicities in the
world about us; from the earliest records of civilization, the measurement of ‘external
time’, whether for civil or for scientific purposes, has always been based on the
revolution of the celestial bodies. The period of apparent revolution of the sun,

i.e., the interval between successive crossings of a meridian, has been the usual
standard for a dnv The Fovnfmnc divided the dnv into 24 hours of Pmml length,

t ta e anationaf -a
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while the Greeks divided the period from sunrise to sunset into twelve equal hours,
and similarly the night. These subdivisions were marked off by various devices
such as sundials during the day or water clocks. (Those who adopted the Greek

4+

o1 had ¢ [N P M 4 1 1 MY N e Py $a - | M +1a
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the hours could be modified according to the needs of the season.) All of these
devices have in common that they move in one direction with psychological time —

the shadow of the sundial movesin the same direction-every day, the water-always
runs downhill. (The civil day itself 1s irregular, due to the varying motion of the
sun on the celestial sphere. The simplest relatively accurate measure of time is the
sidereal day. This is-the revolution-of the-earth-about-its-axis;-and-is-measured by

observing some fixed star: the period between two successive transits of some fixed
star across some meridian line is a sidereal day. A civil day is, on the average,
about four minutes longer than a sidereal day.)

The earliest clocks seem to have come into use in Europe during the thirteenth
century, but were highly inaccurate. The first major step in the improvement of
the clock came in the seventeenth century when Galileo discovered that the time
intervals between swings of a pendulum were constant (as measured against a
normal pulse beat, for instance). He seems to have made little practical use of this
information, except for the invention of a little instrument for doctors to use in
measuring the pulse of their patients. His son, however, is said to have applied
the pendulum to clocks. From then on, the development of mechanical clocks was

fairly rapid. Thus 1t was just around the tlme of Newton that one finally had a
to.arbitra rﬂv small equal intervals.
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Functions and affine functions 13

clock isentirely conventional. It is also easily reversible. By a simple change of
1 14 1 the handec rafat 1 1 3 £ 3 1
ne gedl ulg, we can make the hands rotate counterclockwise instead of clockwise:

It is interesting to speculate how much the development of mechanical clocks had

to do with Newton’s conception of time.

1.3. Functions and affine functions

In the next few sections we will study those transformations of AR? into itself
which carry straight lines into straight lines. We must begin with some general
discussion of the notion of ‘transformation’ or ‘function’.

Let W and X be sets. A rule f: W— X which assigns one element f(w) of X to
each we W is called a function (or map, or mapping, or operator) from W to X. The
set W is called the domain of f. If A is a subset of W, we let f(A) denote the subset
of X consisting of the element f(w) where we A:

F(A4)={f(w)lwe4).
The set f(W) is called the image of f: in general, it is a subset of X.

For example, suppose f is the map of R? into itself given by f(P)=P“+”v

where v is a fixed vector. Then f(A4) is obtained from A4 by ‘translating 4 through

2 If P tnl ica line than (I D 1 w1 1 ia anas ther Line _Ths the

4 ] —f N 1Q
Vo A== i 18 a1ime;men =L T VT tﬂj is-another line.Thus the

image of a line under a translation is another line.

Figure 1.7

This notion of function is very general and powerful. The only restriction, really,
is that the ‘output’ of the function must be well-defined. It is not acceptable, for
example, to have a function f: R — R with the property that f(1)=2and f(1)=3
There would be nothing wrong, however, with a function f:R— R? for which

()= (i)

Certain standard terminology concerning the domain and range of f is worth

lcarning.

1Tffn

{‘ <
X1, xze", then f is called injective (or one-to-one). Equivalently, f 1s

injective if f(w,) =f(w,) implies w, = w,.
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2. Iftheimage of £, f (W), is the entire set X, then f is called surjective (or onto).

Eauivalently. if the eauation fiw)= x has at least one solution for each
A=y Mg S -1 P A S had 1101 Caexd

Tt

YV ¢+ha £ a6 crrpriantiue
XA, UICLE Iy Sul jeCtive.

3. If fis both injective and surjective, it is called bijective (or one-to-one onto).

Equivalently, f is bijective if the equation f(w) = x has a unique solution w

for each xeX. In this case there exists a function f~!: X — W, called the
inverse of f, which maps each xeX into the unique w for which f(w) = x.

Figure 1.8 may help you visualize why a function must be both injective and
surjective in order to be invertible.

@ w_ |, [x=rm

—L

*ﬁz\f>x

®) 3 PR
Wit | )N\
=\
Woe. \ \
f >e J
~—
) [w f X
Wie \‘xl

Wz.\ f /Xz

Figure 1.8(a) Surjective but not injective. Not invertible: F~'(x) would
not be well-defined. (b) Injective but not surjective. F ~(x) is not defined.
(c) Bijective (injective and surjective). F~!(x;)=w, and F~!(x,) = w,.

In many cases we can describe a function by means of a formula. There are two
equivalent notations for associating the formula with the function. To describe

the familiar squaring function F: R — R, for example, we may write either F(x) = x2
or

F:x x>

X

"

3 PO, Y
I

ot +1h j Py | PPN
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the same function is described by

) /AN +
rey=i
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or
G:(x, y)2x + 3y.
This function G takes the ordered pair of numbers (x, y) and produces the number
2x + 3y.
One further notion that applies to functions is that of composition. Let W, X, Y, Z
all denote sets, and suppose we have functions

[ W-X,

gX—-Y,

h:Y—>Z.
We denote the function which takes we W, operates on it with f to obtain an
element of X, then operates on that element with g to produce an element of Y,
by g°f, calted the composition of g with—f.More succinctly, (g=f }{wy=g(f (7))

Notice that the composition

(f followed by

ODer. f\ﬂ f\f

Ut}vlub‘\/l‘ <

1

real mumbers.

We turn now to functions on affine lines and planes and on vector spaces,

beginning with one-dimensional ex xamples which, a]thgngh important, are so subtle
+h .1

that they can easily be overlooked.

Let A be an affine line, illustrated in Figure 1.9. Given any ruler, we can choose

P R Q
-& -® ®

Figure 1.9

an origin and orientation for this line and assign a coordinate to each point on
the line. Mathematically speaking, we have chosen an origin, O, of A and a basis,
v, of V as described in the last section. Thus we construct an affine coordinate
function

x:A-R.

Of course, there are many possible affine coordinate functions on a line, and which

ne
1IN

O

X

we-construct depends on our origin and unit of measurement. We call xa

coordinate Tfunction because 1t is 1nvert1b1e knowing x(P) we can reconstruct P.

Notice tha

R=(1-tP +1t0,




x(R) = $x(P) + 1x(Q).

You have probably never thought of this x as a function before. You cannot

write a formula for it. Yet you can hardly do elementary physics without it, because

it is what lets you express other functions on a line in terms of formulas. If, for
example, the force which acts on a particle on a line is a function of position

fA->R
you cannot write a formula for f, but you can introduce an affine coordinate
x:A—-R

and a function F: R — R and write f(P) = F(x(P)) = (F °x)(P). This is what a formula
like Force =sin x, used to represent a function on a line, really means.

Time is an affine line whose points are ‘instants’. The affine coordinate function
t: A - R assigns a number to each instant. To define t we use a clock. Clocks
which run at different rates lead to different functions t, but any ‘good’ clock yields
an affine function. A defective clock, for example a pendulum clock whose pendulum

varies-inlength-because-of temperaturechange, would yield-anon-affine coordinate
function

The motion of a particle along a straight line determines a function from one
real affine line A, (time) to another real affine line A, (space). This function
A=A, acts on an instant of time E to yield a point P on the line, so that
P = f(E). We cannot write a formula for f because E and P are not numbers. If
we W ﬂt a formula to describe the particle’s motion, we have to-introduce-affine

3
-SD

[

™

where F:R— R can be represented by a formula like F(o) = xq + voot + 1aa?.

1.4. Euclidean and affine transformations
A map f:R? - R? s called a Euclidean transformation if f preserves distance. This

X X .
means that for any two points P, =|: 1} and Pzz[ 2}, the distance from
Y1 Y2

f(P,) to f(P,) is the same as the distance from P, to P,. If we express f in terms
of two functions ¢: R?— R and : R? - R so that

x| [¢x,y)
! [y]_[w(x,y)]

-—Xl]z + (v, — Vl)z




Euclidean geometry can be thought of as the study of those properties of subsets

of the plane which are invariant under the application of any Euclidean trans-

Formation_th

fA 1 a9 cirele r]{'oopnn]rlaoﬂf
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f(Ayis again a circle. If Tis a stralght line, then f(f) is again a straight line. It is

clear from the definition that, if f and g are Euclidean transformations, then geof

oain Euclidean

109
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A map fR*=R>iscalled-angffine transformation-if it carries straight lines
into straight lines. Thus f(/) must be a straight line for any straight line /. For
example, suppose f is the transformation defined by

x| [2x+y+1
f[y]_[y—xﬁ]'

The most general straight line in the plane is given by an equation of the form

ax + by +c=0.
That 1s,
X
={|: :| ax+by+c=0}.
y
So
(Fw] )
f() {L w=2x+y+1l,z=y—x+5 and ax+bv+c=0J}.
Z
Duf weo ran_ealue the anqafioanc
1) L VWL LAll OULIVL LIIV \A:[uauuuo

1d yin term
™1 1 4
The solution 1s
1 I
x=3w—1)—3(z—5),
g 4N 20 &Y
J —=3Ww Ly 3l J)
so the condition
ax+by+c¢c=0

can be written as
alz(w—1)—3(z—5) 1+ b[3Ww—1)+3(z—5)]+c=0
or as
Ya+bw+GBb—3a)z+c+5a—-4b=0.

In other words

f(4)= {[ﬂ ew + gz +h=0}
where
e=%a+b),
g=3%b—3a,
and




This is again a straight line.

—+

Notice that f is not a Euclidean transformation. Afﬁn

study of t

those pronerties _of si
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(but will be an ellipse as we shall see later on).

Suppose that f is such an afﬁne transformation. Then f carries straight lines
ht linec (hv _defi and_narallel ofr 1 1

ﬂ1l" 1’\ \

cusul, TIITIWO \UJ \SAVIPREY) L J.} CLIId Palull\dl I
lines (since distinct points go into distinct points). Thus f carries parallelograms
into parallelograms. Thus the concept of a parallelogram makes sense in affine
geometry (figure 1.10) (while the concept of rectangle or square does not

(figure 1.11)).

<[ =

Figure 1.10
L] [
l/
| 4

h mid 1 1%
Figure 1.11

1.5. Linear transformations

The simplest kind of affine (and Euclidean) transformations are the translations

X xX+a
- .
y y+b
By a translation we can move any point of the plane into any other point. Before
proceeding further it is convenient to restrict attention to affine transformations

) 0
that keep one point, say [

0], fixed. We can then get to any other point by

applying a translation.
Let f be a one-to-one affine transformation which keeps the origin fixed. Choose

0= as the origin. We can now identify a point P=| ~ | with its position

0 y
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Figure 1.12

vector V= (x)’ so P=0“+"v. We shall, accordingly, drop the [ ] notation
y

and the distinction between AR? and RZ2. Since f carries parallelograms into
parallelograms, it follows immediately that, if the position vector of Q is v+ w,
the position vector of f(Q) is f(v) + f(w). Therefore

Sy +w)=1(v)+f(w), (1.2)
if v#w. We can now show that f preserves ratios of segments along any line.
From the parallelogram spanned by w,v,v+ w and 2v, we see that

Ny
_— N\
~ N
/ N\ AN
w/ O\ .
// N _— vtv=l
/

Figure 1.13

f@v)=2f®v)

s0 (1.2) holds also when v = w. By repeating the argument,

f(mv)=nf(v)
for any integer n > 0. Applied to (1/m)v, this implies

flav)=af(v)
for any rational number a > 0.
From the parallelogram with vertices O, w, — v+ w, — v we see that

f(=v)=—f(v

so that

for any rational number, a, positive or negative, and alt v.




If we assume that f is continuous, it would follow that

J
for all real numbers, a. It turns out that it is not necessary to make this assumption.

That ic it fallowe from nronerties of the real number VQme that knox xl ne that £
IIat 15, TT TUIO WO U piropulavo Ul tiiv T vl it Uel—o yovetia—eik U IXIIT VY 11X That—y
carries lines into lines in the plane implies that f is continuous, and hence that

f(av) = af(v) for all real numbers a and all vectors v. The proof of this fact is a
little tricky, and we shall present it in an appendix at the end of this chapter. For
the moment we shall restrict attention to those affine transformations which do
satisfy f(av) = af(v) for all real a, although, as we said, this turns out not to be a
restriction at all. For such f, we have the identity

flav+bw)=af(v)+bf(w) (1.3)
for any real numbers a and b and for any vectors v and w in R,

A map f:R?*— R? satisfying (1.3) is called a linear transformation of the plane.
We have converted the study of affine transformations of R? which hold the
origin fixed into the study of linear transformations of the vector space R2.

Any map of R?*—R? satisfying (1.3) is linear, by definition. Not every linear
transformation is one-to-one. For example, the transformation which maps every

Afage an D2 s g tho Ao craad e
vOLLOL I HITOU 0 ZC1 U VAU LU,
/x\ 0 / x\
Sl Jj=1_]) forall [ |},
\V/ v \V/

is linear, but not one-to-one
I fis ati ; on
f(v+tw) =f(v)+tf(w)

If f is also one-to-one, then w0 implies f(w)#0. Thus f carries the line
{v+ rwlrchl into the line { f(v)+ tf(w)[teR}, so f carries lines into lines. Hence

...... £ gatan

cvery one-to-one lineartransformationis-affine-A-one-to-one lincar transformation
1s called regular or non-singular. A llnear transformation which 1s not one-to-one
is called singular. We have seen that every regular linear transformation is affine.
We shall see that the singular ones collapse the whole plane either into the origin
or into a line.

It is clear that if f and g are linear transformations (regular or not) then gof is
again a linear transformation. Indeed, (g°f)(av + bw) = g(af(v) + b f(w)) since f is
linear. Since g is linear this equals ag°f(v) + bg°f(w) which shows that gof is linear.

To summarize: Linear transformations are, by definition, those f which satisfy
(1.3) for all pairs of vectors v and w and all real numbers a and b. An affine
transformation is a one-to-one map of R? into itself which carries lines into lines
Any affine transformation can be written as a (non-singular) linear transforma-
tion followed by a translation; that is, any affine transformation f satisfies

fW=Iw+v

...... Iv-—every f of thig
A\ 2 § J AV S 9 Iy
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1.6. The matrix of a linear transformation

/ x\
Let f be a linear transformation. We can write any | X | in the plane as
\YV/

\

1\ /0
[ J=x{_ ]+yl ]
v/ \1/

()=o) (3)

This formula shows how f is completely determined by what it does to the two

basis vectors ((1)) and (?) Suppose that f((1)>=(j) and f(?):(Z)

Then f is completely determined by the four numbers a, b, ¢, and d,

x\ _[ax+by
f(y) B (cx + dy)'

We write these four numbers as a square matrix

A VAR

. . A . .
The image of any point ( \I is then given hy

\
) \y/

(a b\\(’x\\_l’ax—fby\

\c d)\y) \ex+dy)

\

[

'
by the matrix ku y
c d

each of the two components. Thus the top component is ax + by which is obtained

). Similarly for the

), to give another vector. It says to take the row x column for

X

from the top row (a,b) of the matrix and the column (
y

bottom component.
For example, suppose that R, is counterclockwise rotation of the plane through

angle 0. Then
1 cosf
R —
”(0) (mne)

and




so that R, has the matrix
cosf® —sinf
sin 0 cosf /)
The image of any point (;C) is given by
cosf —sinf \(x\ [(cosO)x—(sinf)y
sin 0 cosf J\y/) \(sin@)x +(cosf)y )’
The formula (1.4) shows how to assign a linear transformation to each matrix. We
can thus identify 2 x 2 matrices with linear transformations of R2.

1.7 AMMatriv multinlicatian
) 4 IVIAULIA ululuyuuauuu
ya AN
“““““““ that E 10 a lincar trancfarmatinn srhace 1mafris a /a b\ and 7 1c o
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/e f\
linear transformation whose matrix is ( \ Then Fo (G is acain a linear trans-
[=]
\g h)
formation. It has a matrix whose first column is
1 (e a b\/e [ ae + bg \
rogy =F = = .
( ) 8} \ 1 A n ro 4 Adn }

The second column is

o

ol (-2 )0)-(7%)

Thus we define the ‘multiplication’ of matrices to correspond to composition of
linear transformations, (Mat F) x (Mat G) = Mat (F°G). The rule for multiplication

is

a b\(e f\_[ae+bg af—l—bh)

¢c d/\g h) \ce+dg cf+dh
For any position in the product matrix we take the same row from the first matrix
and the same column from the second matrix and multiply row by column.




For example, if R, i1s (counterclockwise) rotation through angle 6 and R is

ion through angle ¢, the ‘R = nd

(cost —smnbU\ [cos¢p —sing

\ sin 6 cosf )~ \\sin ¢ cos (,b/}

~[costcos¢ —sinfsing —cosfsing —sinfcos @

_\\sin9cos¢+cosﬂsinq§ cos A cos ¢ — sin A sin (Tb//

Comparing this with the matrix of R, 4
(cos @+ @) —sin(0+ @) )
sin (6 + ¢) cos (0 + ¢)
gives the standard trigonometric formulae for cos (6 + ¢) and sin (6 + ¢). Thus you
need no longer remember the identities for the sine and cosine of the sum of

two angles. You can derive them from the more general rule of matrix multiplication.
Notice that matrix multiplication, in general, is not commutative: for example,

636 96 3

4
4

while

o

(1-2\ (4 8

L

I—

/
05\U3l\015

1 114 e

(T PONPEIUTONDN ol |n) WA DAY arat » o ~n 14 1 vt 1 bt ae 4 1a
(IWOTroLtdtions Ol GO LCOIHIIULIC Wil OIIC allOTHCT SHILC TUUOCS 11O 1dllcl LT Ough

which angle we rotate first. But, in general, two matrices need not commute.)

I prove a ‘triple product decom-
nacition. which wiall he niced later on Thic decompoction otatee that anyv mateiv
PUDILIUII ywilllivil vWilil UV oLyl jdatltuvi Ull PR PN \«l\./\JUlllPUDJ.LlUlJ JLatvy Laiial ail TITAUITA
7/ 2\
(@ ) .
with- a3 £ 0O can e writfenac a trinlae mnradiiet-af the farm
\ d } Willl U -~ U Lvall v wliltlvili ao a lllt}l\d lJlUUuUL (SR UVAVANLU) B U
\C 7
{a B (1 0\/r O\/1 x\ s
\e 4/ \y 1)\o s\o 1)
N\ 7 A4 >/ N7 VAR /

To prove this result we simply devise a procedure for determining y,r,s, and x.
We first multiply the matrices on the right. Since

(0 26 1)-( %)
(4 9=C G )-(0 o)

Now we can equate corresponding entries in the left-hand and right-hand matrices.
First, a =r, and since by assumption a # 0, r # 0. Next, b = rx and so x = b/r = b/a
(remember that a #0). Similarly, ¢ =ry and so y =c/r =c/a. Finally, d=rxy +$

we want

and so




A similar decomposition, important in the analysis of lens systems, is

[/ l\\ /1 15\ /In f\ /1 +\

R Y A A | B

\¢ d) \0 1/\e 0/\0 1)
wvalid far anv-matriy it £ O The nroof of thic decomnpocitinn ic cimnle acain
vdilld 101 auy HMatlta—withi ¢ 7= U, 10U pProor Oty oo pOSIUOI 15 51N PIiC. dagatlls
just mulfiply out the triple product and equate corresponding matrix entries on

both sides of the equation.

1.8. Matrix algebra

Let F and G be two linear transformations of R?. We define their sum by
(F + G)(v) = F(v) + G(v).
Notice that
(F + G)(av + bw) = F(av + bw) + G(av + bw)
= aF(v) + bF(w) + aG(v) + bG(w)
= a(F(v) + G(v)) + b(F(w) + G(w))
= a(F + G)(v) + b(F + G)(w).

7 r .y oo : 1 + £ 43 h P 1 thattts A A4 :
Inus rr =+ U IS dgdainn 4 1ncdr ransiorimatiofnl. 1t 1§ cicar tnat tiis 4aditionn 18

associative and commutative, that the zero transformation, O(v) =0, for all v, is

the zero for this addition and that (= F)(v) = — F(v) defines the negative of F, ie,

{ m i I O whereD-11n—thi 41 + de far-th 1114 ¢+ £ 41
()T =V, whHUIC U 111 LIS CUHUAUOLL Slallds 10T LT ZC1U 1H1vdl 1 alNOTIIAa O,

If H is a third linear transformation, then composition, represented by matrix

multiplication, has the following property:

He(F + G)(v) = H[(F + G)(v) ]

— HIE(\ . G} ]

— 41T L \UJTT I W]

= H[F(v)] + H[G(v)]

— (o IN(+\ 1 (Ho (N1
=T LUy HI oY)

for all v, or, in short,

Ho(F+ G)=H°F + H°G,
and, similarly,

(F+G)eH=F°H + G°H.

Thus multiplication is distributive relative to this addition.
It follows directly from the definition of the sum of linear transformations that if
the matrices of F and G are

a b e f\_
Mat(F)=(c d) and (g h)—Mat(G)

[fa+e b+f
dth

N

L oy

_|_

Mat(F + G) = |
\c+9




In other words, we add matrices by adding the entries at each position. We can

[a b\ [2a 2b\

Notice that

also multiply a matrix by a number: 2| =1, 5, )]
\¢ a4/ \zC 24/

a b\ (2a 2b\ (2 0\[a b\

2

. 1 PP |

I R W PN 1
C u/ \LL Lu/ \U L/ \(, [£]
We have now defined addition and multiplication for 2 x 2 matrices, and the

rules for addition and multiplication satisfy most of the familiar rules for adding
and multiplying numbers. Thus:

Addition is commutative and associative with the existence of a zero and a
negative;

e e .. : . . : 1 0
Multiplication is associative with the existence of an identity, ( 0 1), and

is distributive over addition.
There are, however, two important differences:

(1) multiplication is not commutative;
(2) the product of two non-zero matrices can be zero, so the cancellation law
for multiplication need not hold:

[0 1\ (0 1 0 0)

Lo o)Xty o)1= )

O0—0/—0°0 0—07

transformations as if they were numbers.

Instead of linear transformations of the vector space R*, we could consider linear

/x\‘
transformations of the vector space R>. The vectors of R® are described-as Y and
\Z/
1 0 0
there are now three basis vectors, | 0 }, | 1 } and | 0 ). The most general linear
0 0 1
NN/ \1/
transformation of R? is now described by a 3 x 3 matrix of the form
a1 412 4q3
a1 4z Qz3
431 dsz; ds;
1
where the first column is the image of the first basis vector | O ), etc. The formula for
0

multiplication is

dyy 4yp 4g3 by by, by €11 €12 Ci3
Ayy Aay Aay |X| byy byy byz |=|cay €22 €23

G317 432 433/ \Ysr U372 033/ \¢31 ¢32 ¢33/

where, for any i and j ranging over 1,2,3,

Cij=a;1 01+ 85055+ ai305;.




Again, for any position, the row from the first matrix multiplies the column from the

second. Thus for example, taking i = 2 and j = 3 in the above formula corresponds

HI e

P13

P23

Figure 1.15

The law for addition is again positionwise addition. The various associative,
distributive laws apply as before, as does the commutative law for addition

Egua "v well, we could consider 4 x 4, 5 x 5, or in general n x n matrices. Also
qualyv consiae trices. AlSo

¥ oily e ATA= 2= 2 XX CIIoIar 1¢ i s> 31= 3

mm3

we can multiply a vector in R* by a 3 x 3 matrix:

fa—b e\ fx\—fax+by+ez\
[ A [ Co
|4 ¢ Ty )= 't-ey-t-jZ’
\g h 1/ \z/ \gx+hytiz/

n
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1.9. Areas and determinants

We return to the plane. Let f be a non-singular linear transformation of the plane.

Since f(v + tw) = f(v) + tf (w), we know that f carries lines into lines and hence is an
affine transformation. Thus f carries squares into parallelograms. Furthermore, let
[, be the unit square whose left-hand lower corner is at v,

o))
={v+w|lwe,}

Then the image of [, under f, which we denote by f([],), is just a translate of
the image of ], under f:

A(O)={fW)+fwiweO,}

0<s<l, 0<t<1}

= {f(V) +uluef (0o}
and thus f([7,) has the same area as f([,). The same clearly holds if we consider a
sguare A anvu ciza 2~ napaccarily tha 11nit SQUAare. nn thP nfhp nd_we _can
quarc ol any size, not necessarily the-unit-square e-other har na,—we-can
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Figure 1.18

subdivide the unit square into four congruent squares and their images are all
congruent and fit together to form the image of [J,; thus each of these images has
area equal to # x (the area of £([J,)).

By repeated subdivision we conclude that, if (] is any square whose side length is
1/2* then

area f ()

area []




is a number which is independent of [] (and of the size 2*). Let us denote this

number by Ar (f), so that

v o area (f(00))
A ) = =
area []
If D 1s any region in the plane
D
Figure 1.19
N
\__| ]
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\
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\
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Figure 1.20

we can approximate it by a union of squares (and its image by the image

paralleloerams) so that
parallclograms) so that

area f (D)
area D

Ar(f)=

for any (nice) region. (Strictly speaking, we should approximate it from the inside
and the outside. If we assume that we can cover the boundary by a finite union
of small squares whose total area can be made as small as we like, then the total
area of the parallelograms covering the image of the boundary will also be as
small as we like. Hence the approximation is legitimate. This is the meaning of
our qualification that the region be ‘nice’.)

Thus Ar(f) gives the factor which tells us how area changes when we apply f.
If f and g are two non-singular linear transformations,

area (f°g)([7) =areafOQV(D) B area g([)

(1 area | |
pL— —
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At(fog)=1(Ar(f)) x (Ar(g)).

We now_combpute Ar(f) for some _special ecacec by inshection_then comnose
Vv C I\JVY \IUI.I..I.]:I“L\J 1Ixx \J ] TOUL VUITIV Ut}\dvlul A7 & B AW, ) V.4 AIIOPVULIVIA A\ SA=S S V\JILIPUOV
them to get the gemeral case. Notice that Ar(f)y=area [ f(J,)]=area of the

__image of the unit square under f.

Case 1a: fis represented by

F=Mat(f):<’(; 2) r>0 s>0

Ar(f)=rs.

VA A

Figure 1.21(a)

__Case 1bh: f is represented by

. _[r O\ o A
I =\\n S/) r<<v >~ U
Ar(f)=rs|.
/ /o

0\ / f / / 15)

e A /f

/ 7/ / /

/ (1) (1) /

/ \o/ o/ /
Figure 1.21(b)

In general it is clear that Ar(f)=|rs| in any case where F is a diagonal matrix.

Case 2a: fis represented by

A A

‘Figure 1.22(a)




N (1) (1) [(1+
SITNICC 1NC SITdacd LITdlIglc Wil VETLICES \ 0 }, \ 1 , \ 1 J can be obtalned Irom
PNEPRNTAN ,
X .
i i ding |

1
[ . ] to each vertex |, the image of the unit parallelogram has the same area as

\Y/

the unit parallelogram. That is, area is unchanged by this shear transformation.
Ar(f)=1 in this case.

Case 2b: f is represented by

Figure 1.22(b)

Again the two shaded triangles have the same area, and so Ar(f)=1 in this

case also

For any matrix F =

Ar(fy=|DetF|, (L.7)

We have proved this formula for each ot the three kinds of matrices listed above.

To prove it in general we make use of the following important property of

Det (FoG) = (Det F) x (Det G)

which can be verified by direct multiplication: if G = (; };z) then

ae+bg af + bh)
ce+dg cf +dh

= (ae + bg)(cf + dh) — (af + bh)(ce + dg)
= (ad — bc)(eh — fg) = (Det F) x (Det G).

From the two rules Ar(fog)=(Arf) x (Arg) and Det(F°G) = (Det F) x (Det G)
we conclude that the formula

Det (F°G) = Det (

Ar f=|DetF]




is true for any matrix that can be written as a product of matrices for which we

already know the formula to be true. We proved in section 7 (equation (1.5)) that

a0 we-can uzﬂfp

Ha7F+Fv wetar

=

[a b\ 1 0\/r
\ ’

\—/

CD'—‘

0\/
\

Sl.

1
I

10—

We have thus proved the formula for all matrices with a #0. To deal with the

case a =0 we can proceed in either of two ways:
(i) Direct verification:

0 b 0 b
Ar(c d)—lbcl—‘Det<c d)}

(Details of the proof are left to the reader.)
(ii) Continuity argument: We can notice that both Ar f and Det F are continuous
functions of the entries of F (i.e., if we change the entries slightly, the values of

. - {0DbY .
Arf and of Det F change only slightly). Now, if ( d) 1s non-singular, so is
c

(e Z) for sufficiently small e <indeed Ar(e Z) is non-zero). Thus, since we
c c

know that the equality

arl e = lpaf b))
\c d) \c 4

is true for all e close to zero, we conclude that it is true for e=0as well:

We should point out the significance of the sign of Det F when Det F # 0. (We

have given a meaning to its absolute va]ne,) The meaning, at present, is best

1 FalY
illustrated by example. The transformation {\(1) \1} ) is a reflection about the
X-aXis.

- e dN
/...o '...\
14 3\
\ /I
M
([ (L x
VAU UNROUNUN *
)

Figure 1.23

It has the effect of switching counterclockwise rotation into clockwise rotation.

Thus the fact that the determinant is neoahvp has to do with the fact that the

A A i3 eb

f\l“!nnf
AR AT 9 | s B

A
lUll Ul LIIC pldIlC lb reversea.
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1 \an H
have the two possibilities

/0\ /—biu@\ /n\ / 0
Fl )= | or | )
\1/ \ cosf/ \1/ \ —cosf/
In the first case we have a rotation through angle 0.
cosf —sinf
F=| . and DetF =1.
sin 0 cos 6
/cos@  sinf)\ ]
In the second case the transformation F = ), for which
\sint —cost)
/COS 1 9\ o 11 Fad

det F= —1 is a reflection about the line through \sm It follows from
the addition formulas of trigonometry that

cos 6 sinf \ (cos30\ (cos3z0

sinf —cosf/\sinif /  \sinid

os%
so that the vector ( 12 \ s fixed and the line through the origin containing

\sinzf0 )
. : . /1 0) :

this vector is mapped into self. Furthermore, FoF = l\O 1/], so that F is indeed

a reflection.

1.10. Inverses

For any matrix F = | ,/], we define F? by

\¢ d
/ d b\

F? = ).

—cC a/

Direct multiplication shows that

. . (DetF 0 B 1 0
F*F =FF _(0 DetF)—DetF<0 1

G is called the (multiplicative) inverse of F if GF =FG =

\ uitl =7

- D

TN

S e

\_//
»
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equation shows that F cannot have an inverse if DetF=0: if F G=<(1) (1))’

we see from the above that

(DetF 0 \G—(DetF)G
DetF/

FF=FFG=

10
certainly impossible to find a G such that F G=(0 1). The same equation,

= (Det F)G, shows that if Det F # 0 then

is the inverse of F.

i iplicati e formula does give th

inverse of F. We have thus proved the following theorem:

A 4«‘, l«nnv\1v\ rArQ 1f an An] MU AY E_+DO IfDet L0 than thea
I\ lll LLIA 1 11as all 1 IV\JID 11 AT\l Ul l‘y 1 17 I 7 VUil 17vl 1 7 U L1ivil LIy
inverse matrix, F~! has the formula
[—d b
Det F Det F
Fl= (1.8)
— a
\DetF DetF|

We should understand the geometric meaning of F~; it ‘undoes’ the effect of
F.If we apply first F and then F~! then we are back to the identity transformation.

/4 AN\

We see also that FF~1 = ((l) \1)) (by direct multiplication if you like).

F~'Fv=F"!'Fw or v=w for any F having an inverse.
It is reasonable that the condition Det F = 0 corresponds to the singularity of
F in view of the interpretation of Det F in terms of area. Indeed, suppose that the

. a b .
meaning that (c) and (d\l do not lie on same straight line through the origin.

) a b
This means that Det ( ) # 0, since ’Det ( ,])
. ¢ 4/]

In this case the inverse matr1x exists, so we can write

is the area of this parallelogram.

/1 0\ /a K\ / — /é. \
(o )= 2)G 3) e =(05)
/1N /u\ /b\ /0\ a\ / B\

= h .

o) rola) o (1)~ )+ Ma)

This is the same as saying that ( (l)) =
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This, of course implies that we can express any vector in the plane as a linear

b
combination of (j) and (

). (e, f, g and h are just numbers.)

d
Recall that the vectors u and v are said to be linearly dependent if there are
numbers r and s, not both zero, such that
ra + sv=0.
If r #0, we can solve this equation for u to obtain u= —(s/r)v and, if s#0, we
can solve this equation for v = — (r/s)u. In either case, the ‘addition parallelogram’

. . : 0y . . .
degenerates into segments on a line (or, if u=v=< 0), into a single pomt).

matrix

m=(* )

\y t/

. . 1 0} .
is non-singular. Indeed, the matrix M carries the unit vectors ( 0) and < 1) into

; v-vector-inthe plane R*-St /{-is non-singular, we can fo
the matrix M~ ! and consider the vector M tw. This is a well-defined vector in
R? and hence we can write

Aqg—1

_(4) -
1vi W \\h/} a

\NT/ N/

If we apply M to both sides of this equation, we get

MM‘1w=w=aM<(1)>+bM((1)>=au+bv.

Thus if w and v are linearly independent, every vector in the plane can be written
as a linear combination of u and v. Conversely, suppose that u and v are vectors
such that every vector in the plane can be written as a linear combination of u
and v. Then u and v clearly cannot lie on the same line through the origin, since
this would imply that every vector in the plane would have to lie on this line. Thus

plane can be written as a linear combination of u and v.
Suppose that F is a matrix and u, and u, are any pair of linearly independent




Inverses 35

The parallelogram spanned by u, and u, has non-zero area
F(u;) and F(u,) will be linearly independent if and only if Det F 0.

o Q
B~d

(2) Det F £0;

b
(3) the vectors (j) and ( d) do not lie on the same line through the origin;

4
4

1 o
LIAAS

(
\

(5) for some pair uy,u, of vectors, the vectors F(u,) and F(u,) are linearly
indenendent'
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and F (Vz) are 11near1y 1ndependent,
F is not singular.

A
~
N

(1.9)

Let us use the preceding considerations to illustrate some reasoning in affine

geometry. We first remark that, in affine geometry, not only does the Iength of a

segment make no sense, but also the comparative lengths of two segments which
do not lie on the same line make no sense. Indeed, if u and v are two independent

b4 2 ]

v—sv for any non-zero numbers r and s. Thus, by adjusting s/r, we can make the
ratio of the lengths of f(u) and f(v) anything we please. On the other hand, the
ratio of lengths of two segments lying on the same line does make sense. Indeed,
since translations preserve length, we may assume that the line | and its 1mage

l igin. Si i may appl
a rotation and assume that f(l) = But then if 0 # u = [, the image f(u) also lies
in [ so f(u)=cu for some constant ¢ and hence f(v)=cv for any vcl. Thus f
changes the length of all segments on I by the same factor |c|.

We should also point out that given any two triangles A; and A, there is an
affine transformation, f, with f(A,)=A,. Indeed, by translating, we may assume
that one of the vertices of A, is the origin. Let u, and v1 be the two remaining

of a trlangle so do not lie on a 11ne Similarly we may assume that the vertices of
A, are 0,u,,v,. But then there is a unique linear f with f(u;) =u, and f(v;) =V,

Now consider the following proposition: for any m’angle, the three lmgs joining

This is an assertion in affine geometry — the notion of midpoint makes sense,
as does the assertion that three lines meet at a common point. To prove this
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theorem, it is enough to verify it for a single triangle, since we can find an affine
transformation carrying any triangle into any other, and, if the theorem is true
for one, it must be true for the other. But the theorem is clearly true for equilateral
triangles. So we have proved the theorem in general.

Let us examine what can happen when Det F = 0. There are two alternatives:

/0 0) 0
either F =| | or #f
\0 0/ \0 0

A4

If F is the zero matrix, then F maps every vector into 0; it collapses the whole

plane into the origin. In the alternative case where F is not the zero matrix, but
= 1 he followin erti 1d:

(i) thereisaline, , such that F(u)el for every uin R% Furthermore, every vel is

of the form v = F(u). In other words F collapses the plane onto the line /.

1—,— 0 27 \aq]— 1

be the two columns of F = (a b\)
NI/

Since F is not the zero matrix, ¢, and ¢, can not both be equal to 0. On the
other hand, if ¢, and ¢, did not lie on the same line, then by the equivalence of
assertion (3) and assertion (1) of (1.9) (on the preceding page) we would conclude
that Det F # 0, contrary to our assumption. Thus ¢, and ¢, lie on a line. Call this
line I. Every vector u can be written as

1\ (0
u=| J=xl4 )t
\y/ b4

so F(u)=xe¢; + ye, lies on [. If ¢, #0, every vel can be written as v = x¢, for some

0
for some number y and hence v= F(( )) This completes the proof of (i).

y
Let us now prove (ii). Let b, and b, be the first and second columns of the

matrix F% so that
—b
b1=( d) and b2=( )
—C a

Since Det F*=Det F =0, we know from (1.9) that b, and b, must be linearly
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24
hypothesis. So they span a line. Call it k. Direct computation shows that

. ; s e A X -
Fb, =0=Fb, so every wek satisfies Fw=0. If w= ) satisiies Fw =0 then w
Y7

must satisfy the equation
ax —by=0.

This is the equation for a line, unless a=b =0, i.e. b, =0, and this line must then
be k. If b, =0, then ¢ and d can not both vanish. But w must also satisfy

cx—dy=0,

and this is the equation of a line, and the line must be k. This proves (ii).
For any F whatsoever, let im (F) denote the subset of R? consisting of all elements
of the form F(u). In symbols,

im(F)={v|v=F(u) for some u}.

The set im (F) is pronounced as ‘the image of F’. Similarly, we define the ‘kernel

M -., eN-A e alals e 1L o € ) N N are en -.l.'. a
cl U . U .

ker(F) = {w| f(w) = 0}.
. There are thus three possibilities:

ker(F)=k is a line. In other words both im(F) and ker(F) are one-

dimensional vector spaces.

If think of {0} as being a ‘zero-dimensional’ vector space we see that in all

aSe
(= 24~

g
o
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7]
ot

r’e
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e
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-

dimension of im(F) + dimension of ker(F) = 2.

Special kinds of singular transformations. We now examine some special kinds of
singular transformations.

\ N kernel
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1. Projections

if v is a vector in the image of p,p(v) =v.

This is rather special, since all we can expect in general for a singular trans-
formation f 1s that f(v) lies on the same line as v; i.e., f(v) = av for some number
o. Now, if w is an arbitrary vector, v = p(w) is in the image of p, and

(pep)(w) = p(v) = v = p(w).

P2 =P. Thus

[a b\(a b\_[a’+bc ab+bd\ (a b\
\c dJ\c d] \ac+cd bc+d*] \c d)

So ab+bd=>b, and if b#0, a+d=1. Furthermore, ac+cd=c, so if ¢ #0,
a+d=1.Evenifb=0and ¢=0, we have a>=4q, d> =d, and Det P=ad =0, so
either a= 1, ; , or . Therefore, unless , the trace o
P defined as tr P = a + d must equal 1.

To summarize: a non-zero (singular) projection p satisfies pop = p; its matrix P
satisfies P> = P and has zero determinant (ad — bc = 0) and unit trace (a +d =1).

Conversely, suppose that ad —bc=0and a+d=1.Thenab+ bd=(a+db=>b
and ac + cd = ¢, while a®> + bc=a? + ad = a, and bc +d*> =d. Thus P>=P and p
is a projection onto a line.

More generally, let us call an operator p a projection if p° = p. Then there are
three possibilities

(1) Pisnon-singular. In this case, we can multiply the equation P? = P on both
sides by P~! to obtain

R? onto a line and is the identity when restricted to this line. Here tr P =
1 =dim(im(p)), where we write im for image.

10— 0\ s
(3) P=[\U U) so P maps the whole plane to the origin and trP =

0 = dim (im (p)).

2. Nilpotents

For a general singular matrix, the two lines imF and kerF will be

OIL 1N, W PTOPC

that its image and its Kernel are the same. Applying n to any vector w yields a
vector v = n(w) which is the image of n and hence also in the kernel. It follows
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that n(v) = non(w) = 0. Thus nen collapses the entire plane into the origin, and the
matrix N representing n must satisfy N> =0. So

a b\(a b\ [a*+bc ab+bd\ (0 0
¢c dJ\c d) \ac+cd bc+d*) \0 0/
In particular, ab +bd =0 and ac+cd =0, so if b#0 or ¢ #0, then a+d=0. If
/00
= - {0 0
Conversely, if tr N=a+d=0 and det N = ad — bc =0, then N2 = 0.
e all-a matrix nilpotent if some power-of it vanishes—Thus N is milpoter
if N¥=0 for some k. For such a matrix, we must have det N =0, for otherwise

ad — bc =0 and hence

{ +

{a b\ /(a—l,—f])a (n—l—(])h\
kc d) zk(a+d)c (a+d)d)'

Then

“\a+df e (a+dfd

This can only vanish if (@ + d) = 0. But then, we already know that N2 = 0. Thus,
in the plane, a matrix N is nilpotent if and only if N2 = 0 and this holds if and only if

detN=0 and trN=0.

NE— ((a +dff " ta (a+ d)"‘lb>

1.12. Two-dimensional vector spaces

A vector space V is called two-dimensional if we can find two vectors, u; and u, in V,
such that every veV can be written uniquely as

v=a.u; +a,u,

The word ‘uniquely’ means that if

V=all11 +a2l12 and Vzblul +b2ll2

then we must have

a,=b;, and a,=0>,.

alead a odsis O

, of V onto R?2

vector space. Such a choice of basis determines a map L=1L,

I

V- R?

by

/ AY

L(V)z(al) if V=a1u1+a2li2
a,

—The—uniqu iqueness” part of our assumption above guarantees that the map E1s—

well-defined; the components a, and a, are completely determined by v. The map




[a

is also onto: given \ the vector v=a,u; + a,u, clearly satisfies L(v)=
Vs

Nt
N2 \“2/

1 1

If v=a,u; + a,u, and w=b,u; + b,u, then

v - w S 2 1 hn
T |74 — U

a. . 4-a
" | L% ]

M ki 11 292 1%1 242

=(a; +b;)u; +(a, + b,)u,

SO

L(v+ w)= L(v) + L(w)

and similarly
L(rv) =rL(v)

for any real number r and any vector v of V. We say that L is an isomorphism* of
V with R2 It allows us to identify all operations on and properties of the vector
space V with operations on and properties of R?, just as in the one-dimensional
case, a choice of basis allowed us to translate properties of a one-dimensional
vector space into those of R!. Of course, just as in the one-dimensional case, the
isomorphism, L, depends on the choice of basis. Thus, the choice of basis, {u,u,}
is the two-dimensional analog of a ‘choice of units’. Only those properties which
are independent of the choice of basis will be interesting to us and of true geometrical

character. We shall shortly study how L changes with a change ol basis. For the

moment, let us observe that the basis {u,,u,} can be recovered from L. Indeed

u =L_1/1\\ and—u =L_1/0\
1 \o) 2 \1 /)
M/ -/
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viTalygo
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of u; and u,, and the isomorphism associated with {u;,u,} is clearly L.

A linear transformation F:V —V 1s a map of V into V which satisfies our usual

identity:
F(au + bv) = aF(u) + bF(v).
A choice of basis gives an identification L: ¥ —R? and we can define a linear
transformation of R? by
LFL™1.

Here L"*:R>->V, then F:V—>V and L:V—R2 It is best to visualize the
situation by a diagram:

vV V
L~ L
R2 R2

* In mathematics, the word isomorphism means a one-to-one mapping which preserves all the

relevant structure. For vector spaces, V and W, we say that a map L from V to W is an

isomorphism if it is linear, is one-to-one and onto.
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The transformation LFL™" going from R?— R? along the bottom is obtained by
going up, across and down. Now any linear transformation of R* — R? is given bya
matrix. Thus, once we have chosen the basis L, we have associated a matrix

Mat, (F) =
atp )

IVE L

to any linear operator F: V— V. 1If G: V— V is a second linear transformation, then
LGFL '=LGL 'LFL™!

w
©

L = L L

In other words, composition of linear transformations goes over into matrix multi-
plication. Similarly for addition of linear transformations. Thus the algebra of
linear transformations on V gets translated into the algebra of 2 x 2 matrices.

2 i o - o (1
The space R” 1s 1tsell a vector space. It has a matural” basis consisting of | |
U

and ( X ) If :R? —»R? is a linear transformation, its matrix relative to this natural

basis is the matrix F, in the language of the preceding few sections. The map

L:R? > R?* =V corresponding to this basis is just the identity I. Thus the relation
between f and F should be written as

F = Mat,(f).

From a strictly logical point of view we should have used the notation Mat,(f)

instead of F from the very beginning, but it would have been too cumbersome.
From now on, once we have the idea of a linear transformation on a general vector
space, we shall drop the distinction between lower case letters and upper case letters.

The assignment of Mat,(F) to F does depend on an artifact, namely on the
choice of basis. We now must examine what happens when we change the basis.
So suppose that we are given two bases. This means that we are given two isomor-

phisms, L: ¥V —»R? and M:V — R2. Then we can consider the matrix B=ML™ !
R? - R2, so

M = BL.

We can visualize the situation by the diagram:

V
LN\
2 R
B

The matrix B is called the ‘change of basis matrix’ (relative to the bases Land M),
It is the two-dimensional analog of the factor 1000 by which we have to multiply
all numerical values of masses when we pass from kilograms to grams in our

choice of unit. To repeat: L(v) and M(v) are two points in R? corresponding to

the same point v in V by the two choices, L and M, of bases. These two points in
R? are related to one another by the change of basis matrix:

M(v) = BL(v).
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The matrix B gives an isomorphism of R? — R?, i.e. it is non-singular. (It is clear
that, if we are given L and also given a non-singular matrix B, then we can define
M = BL, and this M is an isomorphism of V with R2 Thus, once we have fixed
some basis, L, of V, the set of all other bases is parameterized by the set of all
} ble 2 x ices, B.

Now suppose that F: V— V is a linear transformation. Then

and
Mat, (F)= MFM™1.
But MFM ™! =(BL)F(BL)"!=BLFL *B~'=B(LFL )B™1, so
__ Mat,(F)=BMat, (F)B~1,

This important formula tells us how the two matrices of the same linear transforma-

For a given linear transformation, F: V"=V, it may be possible to choose a basis,
L, so that Mat, (F) has a particularly convenient or instructive form. For example,
suppose that F: ¥V — V sends all of V onto a line and sends this line into 0, in other

i = : u ose u, to be some vector that does
not belong to ker F and set u; = F(u,), so u; #0 and F(u,) =0. We take u,,u, as

1
our basis. Then LFL’l(O)zLF(ul)zL(0)=(3> and LFL_1<(1))=LF(u2)=

[ 1) . . .
L[Il J= . 00, IOor This ChoiCce oI basis we have
! 0

Mat, (F) = ( g é) (1.10)

Now in this entire discussion, there is nothing to prevent us from considering the
case where our vector space, V, happens to be R? itself. When we identified a linear
transiormation with a matrix, it was with respect to the standard basis. In other

. words, when we wrote F in sections 1.5 and 1.6, it should have been written
as Mat,(F). So, for example, let N be a non-zero nilpotent matrix. Thus
N = Mat,(F), where F is a linear transformation of R* with ker F = im F. (In words
we would say that N is the matrix of the linear transformation F relative to the
standard basis.) From the preceding considerations we know that we can find
some other basis, L, relative to which (1.10) holds. By the change of basis formula
(the change of basis from L to I) we know that

0 1\ _
N=B(O O>B L, (1.11)

We have thus proved: given any non-zero nilpotent matrix N, we can find an
considerations (and, in particular, how to find B) in the next chapter.
For an important application to physics of the results of this chapter please
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turn to Chapter 9. There we show how Gaussian optics is really the study of 2 x 2

Most of Chapter 9 can be read with only a knowledge of Chapter L

maratrices
TGO A pPe

Appendix: the fundamental theorem of affine geometry
We wish to prove the following:

70\
Let f be an affine transformation of R* satisfying f ko) =

70\
ko). Then f is

linear.

| In proving this theorem, we can make a number of simplifying reductions. Notice |
that, if g is an invertible linear transformation, then geof is linear if and only if f is

1 0
linear. Now f ( 0) and f ( 1) cannot lie on the same line through the origin. They

| are thus linearly independent and hence we can find a linear transformation g with |

1 0 0 _
gOf((l\) =(n) and gOf((1 )) =(1 ) Thus, replacing f by gef, it is enough to
N VAN \\*// N/

prove the following:

Let f be an affine transformation satisfying f((g)) = (8), f((é)) =
(é) and f <((1)>) = ((1)) Then f is the identity transformation.
| |

1 1 0 1

om section 1. ¢ kno = =
1 0 1 0
/ /s /

‘ /0\ /1 r\ AN r\ - N ‘
(1) = (1 ) (In fact, we proved that f (( )) = ( ) whenever r and s are rat1ona1.)
S s

Thusf carries the x-axis, the y-axis and the line x = y | which is the line through

0

1
| and ( , )\ into themselves. |
\t//
Thus, for any real number a

() ) 2@)
| "\\o// \ o) |

. . - 0
where ¢ is some function. (We want to prove ¢ (a) = a for all a.) Similarly f ( ( b)) =

0
| (wm) for some function i, and since




we have

A\ _ (¢
J\\\\b/}/} _ l\,/,(b)/'

We claim that the functions ¢ and y are the same. Indeed, consider the line x = a.
P

It is parallel to the y-axis, and hence its lmﬂoP under £ must be nara"P] to_the

CHLEE el —1uot UG arcriivr

ne
h
11

| 1~ 11
_y'cl)&lb alid ICIILC llb uudgc mustoe the ne x= (p\u) lV owW LllC llIlG X =d lIlLCl sects

. . a . . .
the line x = y at the point (a)’ and the line x = ¢(a) intersects the line x =y at

¢(a)
(d’(a))' Hence o
a a
/ ((a>)=<¢(a)>

and so ¢(a) = y(a) for all a.

/

/

/ a ¢ a)

b nt 1 IR
riguic .40

AN / / N\ //b\\

"Varll7))so

V\—r ,
J) 7\\o/J) “\\o//

¢la+ by= (@) + ¢(b).
All of this is essentially the same level of argument as in section 1.2. We now
establish the surprising fact that

¢(ab) = p(a)p(b).
Indeed, consider figure 1.26:
The line joining (i) to (g) is parallel to the line joining (Z) to (L:)b)' Thus

the value ab can be obtained by parallels and intersections. Therefore, drawing

b
the same diagram for ((/)(()a) ) and (d)(() )) we see that

l/d)(ab)\’ _ ab\ ( $(a) ¢(b)\}

NI 0/ —X




/
/
(2)
\“)
/ T~
\
o~

Figure 1.26

SO
¢(ab) = ¢(a)p(b).

Now a real number x is positive if and only if x = y* for some other number y. Then

$(x)=d(y*) = ()’

0 implies ¢(x)>0.

>
lies d(a) — (b)) >0. T
HeS-Pe— =Y

us if
D41

p S

Now for-any real number ¢ we can find rational numbers r and s with r<a <s
and s — rassmallas we please. But, for rational numbers, ¢(r) = rand ¢(s) =s. Thus

-~
<
—

P
N’

that ¢(a) =a1o all realnumbers: QED
Summary
A Transformations of the plane

You should be able to define the terms affine transformation, linear transformation,
and Euclidean transformation.

You should be able to identify geometric properties that are preserved by affine
transformations and properties that are preserved by Euclidean transformation.

B Matrix algebra
You should know how to add and multiply two square matrices of the same size.
You should be able to calculate the determinant of a 2 x 2 matrix and to write

down the inverse of an invertible 2 x 2 matrix
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C Matrices and linear transformations

Given sufficient information about a linear transformation of the plane, you should
be able to write down the 2 x 2 matrix that represents the transformation.
You should understand the signiﬁcance of matrix multiplication in terms of

You should be able to determine the image and kernel of the transformation
represented by a given 2 x 2 matrix.

1.1 Here are some theorems of Euclidean plane geometry. Decide whether
each is a valid statement in affine planc geometry.

(@) The medians of a triangle meet at a point which is 2/3 of the way from
each vertex to the midpoint of the opposite side.
(b) The angle bisectors of an isosceles trlangle are equal in length.

(e) Let PQR and P'Q'R’ be two triangles such that the lines PQ and P'Q’
are parallel, QR and Q'R’ are parallel, and PR and P'R’ are parallel.
Then the three lines PP, QQ’, and RR’ are either parallel or
concurrent.

1.2(a) Let A, and A, be affine lines. Let x be an affine coordinate function on A ;;
let y be an affine coordinate function on A,. Let f:A; > A, be an
affine mapping. Associated with f is a function F:R— R such that if

Floy=ra+s.

(b) Let x'=ax +b, y =cy+d, so that x’ and y" are new affine coordinate
functions on A, and A, respectively. If y(Q) = Fox(P) where F(o) =ro +s,
find the formula for the funct10n F’'(p) such that y Q)= F'°x' (P)

plane and 1f for any parallelogram u(P) +u(R) —u(Q) + u(S) where the
vertices are labeled as in figure 1.27. Suppose that u: R? > R is affine and
t 3] 2]

-9

P

that u =3, u =8,u

(2] 7 L3 | -1

Figure 1,27
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: [x]
(a) Find a formula for uL J
y

(b) Sketch R2, showing the lines u = constant.

1.4 Find the image of the rectangle ABCDE shown in figure 1.28 under the

linear transformation represented by each of the following matrices. In
each case calculate the determinant of the transformation and verify that
the area and orientation of the image of the rectangle are correctly

———predicted-by this determinpantt———— — — — — — 00—

Figure 1.28

0 —

(a) The rotation R, = (1

o) ~

/1 1\
(b) The rotation R, =(1/\/2)L1 1).
‘ , /2 0
(c) The “distortion’ D, =\ N }
\U—1727
. _ 5/4 3/4
3/4 5/4)

1 1
(e) The shear transformation S, =( )

0 1
f) The shear transfi tion S ( 1/2 1/2)
(f) The shear rays ormation §7 ={ 12 32)
/1 G\
(g) The reflection M, ={ \
\o -1/
, /0 1)
(h) The reflection M, =| |
0/
() Th ction P (1/2 1/2)
i) The projection P, = 2 12)
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0 1
(j) The nilpotent transformation Ny = ( )

0 0
| | —12 172 \
(k) The nilpotent transformation N, = )
—1/2 1/2
1.5. Calculate algebraically each of the following products of matrices defined

<t d )

the product matrix

1.6.

(a) R, xR 4 |
(b) 5%

(c) Rn/ZM 0

(d) P24

(e) Nﬁ/4 ‘
Calculate the inverse of each of the following matrices, and interpret the

result geometrically.

—
(¢
N’
7]
oy
li
N
—
e Yt

—
o
S
h
[N
|
N
Blw Bjer
Blon Pl
- e N—

(A AL /0 1\
(a) lVln/4—\1 0/.

image and the kernel.

1.8.

;o
(a) P11:/4-=(l l>'

2 2

1 1
(b) Nﬁ/4:( f f\.

\-2 3/

1 2
(C) A=( 1 ﬂ\,'

N— L =4/

Apply the triple product decomposition proved in section 1.7 to express

the matrix
‘

in the form

/1 0\/r 0\/1 x\

\» 1/\o s/\o 1/

. .. . [a
1.9. Devise a procedure for writing any matrix (

b
d) with ¢ # 0 as a triple |
\

c
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1.10.

0 b
Prove that Ar =
c d

(a) direct verification (find the image of the unit square), and by
(b) using the decomposition in Exercise 1.9, which works even when a = 0.

1.11. Construct a 2 x 2 matrix which represents each of the following trans-
formations of the plane:
(a) A transformation P, satisfying P?> = P, which maps the entire plane
onto the line y = 2x and which maps the line y = — 2x into the origin.
(b) A shear transformation S which carries every point on the line y = 2x
into itself, which transforms the y-axis into the line y = — x, and which
satisfies the condition (S —I)? =0.
{1 (2
(c) A transformation which carries | ) into | |} and which carries
N2/ \4/
/1) /1N
[ Vinto{ 2 ).
\-2/ \-1)
(d) A nilpotent transformation N, satisfying N> =0, whose image and
kernel are both the line y = 3Xx.
1.12. For practice in multiplying 3 x 3 matrices, consider the two matrices
/0 1 a\ 00— O\
( U I A\ \ U U A\
U=t 0 0 TJTL=t1T 0 U]
0 00 0 1 0
Calenlate I T I and I73
CalLuldiv Ui, LU aliil v
1.13. Define the determinant of a 3 X 3 matrix by

a;, 4y5 Qg3

azz a23 a21 a23
a21 a22 a23 =(111Det( —alzDet
sz Qdss a3 d4ss

a;y 4ap;
+ a13Det(
a3y djz;

=a110;,033 — 011023037 — 015071833 + a1,8;3034

a3y Q3 Q433

+ 413051035 — Q1383,03;.
Prove that

Det (FoG)=Det F x DetG.

1.14. Show that, if the matrix

Q

['S]
iy
[~
L

/a,
[

a

1

]
|
™y

a
21 22 b4 ) =

431 43z U433

satisfies the conditions a,; # 0 and a,,a,, — a,,a,, # 0, then we can write




F as a triple product

/1 0 0N\/e 0 ON\/1 X X3\
~ ! 12 Is

I 1 0O 0 £ 0 sy 1
I = y21 1 U U J \vJ U 1 .ﬂ23

Y3r y32 /U U g/ \U U I/

1.15. In R? we can define Vol F for any non-singular linear transformation F

_ volume F(D)

volume D

Vol F

for any region D and, in particular,
Vol(FeG)= Vol F x VolG
and Vol F =volume F([]), where [] is the unit cube. Prove that

Vol F =|Det F|.
1.16. Consider an affine transformation of the plane which does not leave the

origin fixed:
X X a
(3)-40)G)
y y b

where A4 represents an affine transformation which leaves the origin fixed.

(*)

he—vector L) inthe plane 13
S a4
7\
Ead

represented by the threescomponent vector{ y J You should verify the

[« R
+

s y - a ] a ] . +
WIICIC A I a 2 X 2 HIalllA, PIovIiuc

following:

{9) 1ch 9 2
@y oucna o

/ X\
(b) When such a 3 x 3 matrix acts on ky , the third component of the
1

resulting vector is 1.

1 0 a
(c}) The matrices T(a,b)=| 0 1 b | represent pure translations, and
0 0 1

they obey the composition law
T(a,b)T(c,d)y= T(a+ ¢, b+ d).
From a geometric point of view we can give the following interpretation to

Exercise 1.16: We are considering the affine plane as the plane z=1 in R3. We

have identified the group of affine motions as a group of linear transformations
/ 3\

1 damtifir +tha s atae ( 4y 31 tha mlanes - 1 it +lan l44a
- INOW WO Call IUCIUY e POl v I uic piallc 2 =1 willl tiiv 1111V
1

1123 NI
I
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N

wy

Figure 1.29

oining that point to the origin; any point on our plane determines a unique line

it at a unique point. We can thus identify ‘points’ in our affine plane with certain kinds
of lines through the origin in R>: those that intersect the plane z = 1. The advantage
to this interpretation is that it gives us a grip on the notion of (artistic) perspective:
two plane figures in R* (not containing the origin) are ‘in perspective’ from the

origin if they determine the same family of lines through the origin. This suggests

Figure 1.30

that we consider a new geometry in which ‘points’ are lines through the origin in
R3; in other words, we drop the requirement that the line must intersect the z=1
plane. The new ‘points’ that we have added are those lines through the origin in
R® which lie in the z = 0 plane, as these are the only lines through the origin which

/u\ /0\
do not meet the plane z = 1. Let( b );é ( O)be a point of R3in the z = 0 plane and let
0 0
N RN
P denote the line through the origin and | b ] so P is one of our new ‘points’. Thus
v/

at
P= {(bt) } From the point of view of R?, where P is a line, we can approximate
Q7 ter
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P by the family of lines through the origin P, where

at
P.={| bt
&t eR

As ¢-0, P> P. But P, intersects the z=1 plane, when t=1/¢, at the point

/ ale\

/O
/

SR

€
1

AZ

// ////

/ VAR

=y

Figure 1.31

The points P, in the affine plane tend to infinity as €= 0 in a defimite direction

hd 1 1 /a\ h &4 1 1. 1 £ 1 4 hd L] b Y 4 :
1v€n by tnc vector . we can thus think oI the néw point F as a point at
b
\Y/

infinity’ of the affine plane. These new ‘points at infinity’ were first introduced in
the theoretical study of perspective by artists and geometers of the fifteenth and
sixteenth centuries.

We have thus introduced a new space, called P2, the projective plane. A ‘point’

of P? is just a line through the origin in R>. Let us now see how to define a ‘line’

in P2 From the point of view of R3 a ‘line’ in the affine plane z =1 consist of a

ot
L

=

\ R

P

£, 5 5 41 M ) O, SR 43 1 1 ¢+ M
family of lines through the origin- which intersect the plane z =1 alonga straight

line.

{
¢

/|
o~
N

Figure 1.32
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But this means that the family of lines through the origin sweep out a plane

words—from-the 3 P . S Hre_tn +]h
woOoTas, IToIr tirCc puuu 8) 1 v1cw, annc 111 tne auulc pmne IS Just

in R3 Inother
a plane through the origin in R> which intersects the z =1 plane. It is now clear
what to do: we drop thle last intersection COI’ldlthl’l and define a ‘line’ in rD2 to be

F 224

UG

14 ll»

R3 which does not intersect the plane z = I and that is the plane z=0. We have
thus to add just one ‘line at infinity’. A ‘point’ P lies on the ‘line’ [ if the line through
the origin lies in the plane through the origin, I. Two distinct ‘points’, P and Q
(that is, two distinct lines through the origin) determine a unique plane through
the origin, 1.€., two dlstmct pomts determlne a unique ‘line’. Anv two distinct

2

two ‘lines’ inm P“intersect im a ‘point’. (Notice that this is different from affine

geometry where two lines can be parallel. Two parallel lines in the affine plane
intersect ‘at infinity’ in the projective plane.)

itk

To summarize:

A ‘point’ in P? is a line through the origin in R3;
A “line’ in P? is a plane through the origin in R3;

Any two distinct ‘points’ lie on a unique ‘line’;

Any two distinct ‘lines’ intersect at a unique ‘point’.

Any invertible 3 x 3 matrix acts on R3 so as to carry lines through the origin into

origin.
1.17. (a) Show that any invertible 3 x 3 matrix determines a one-to-one
transformation of the projective plane, P2, which carries ‘lines’ into
‘lines’.
(b) Show that two invertible 3 x 3 matrices 4 and B determine the same
transformation of P? if and only if 4 =cB for some non-zero real

number, c.
- —equation of the form

an+bv+cw=0

can hold unless a, b and c are all zero. Show that if u,v and w are linearly
independent, then there exists a unique 3 x 3 matrix 4 such that

1 0 0
Aa=| 0], Av=] 1 and Aw=| 0
0 0 1

N/ \"Y/ \N*/

and that 4 is invertible. (The general version of this theorem for any finite-
dimensional vector space will be proved later.)

110 ¢ $? 32 M2 nivns oy tha linecthraonch the orioin
.17, \d} L/UL 1' 1s l' 25 1'3 UC Luc pU S gIveIroy TN TR Ou st v olisit
1 0 0
and{ 0 || 1 Jand | O )respectively. Let Q,,0,,Q; be any three
0 0 1

‘points’ of P? which do not lie on the same ‘line’. Show that there is an
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Ps.

(b) Let @y, 03, 03, O, be the four ‘points”in P2, no three of which lie on the
same line. Let R, R,, R, R, be another set of four “points’, no three of
which lie on a ‘line’. Show that there exists a 3 x 3 matrix which carries
Q,to R, Q,t0 R,, Q3 to Ry and Q4 to R,.

(c) Prove the fundamental theorem of projective geometry’ which asserts
that any one-to-one transformation of P? which carries ‘lines’ into
‘lines’ comes from a 3 x 3 matrix. (Hint: Reduce to the fundamental
theorem of affine geometry proved in the appendix to this chapter.)

1.20. As an illustration of the use of 1.19(b), prove Fano’s theorem which says.
Let A, B, C, D be four points, no three of which lie on a line

R

a4
Yy
Y
e

tl’

Figure 1.33

Let P be the point of intersection of ABand CD:

Let Q be the point of intersection of AC and BD.

Let R be the point of intersection of AD and BC.

Then P,Q and R do not lie on a line.

(Hint: Reduce to a special case; for example, 4, B, C, the three vertices of an
equilateral triangle and D its center.)
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In Chapter 2 we discuss conformal linear geometry in the
plane, that is, the geometry of lines and angles, and its relation
to certain kinds of 2 x 2 matrices. We also discuss the notion
of eigenvalues and eigenvectors, so important in quantum
mechanics. We use these notions to give an algorithm for
computing the powers of a matrix. As an application we
study the basic properties of Markov chains.

2.1. Conformal linear transformations

We wish to consider those linear transformations f of R? that

£4N b |
(1) preserve angle,

(2) preserve orientation, 1.e., Det F > 0,
o .

ot N att
115 J INUL

» @
[
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7
s
ot
=
o]
ot
Lt}
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e
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]
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7]
o
N
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oy
u

transformations, so is their composition gef.

Suppose that f preserves angle and orientation. We can find some rotation r_,

0

<

lies

4

1 . s :
such that r_,of takes '\0/] into a point on the positive x-axis. Then r_gof |

on the positive y-axis since r_,° f preserves angles and Det(r_q° f) > 0. Thus the




matrix representing r_4°f is of the torm

/;, 0
r 9odf= ]
0 s/
. . /1N
with » > 0, s > 0. Since r_,°f preserves angles, it must carry the line through (\ i /l
o [r O\/1\, (1)

into itself. To say that \0 }\ { / lies on the line through k { } means that

0
r_gof= (S r)'

The matrix representing f is therefore of the form
F=(r 0>(cos9 ——sinB)
0 r/\sinf cos 6
_(rcosH —rsin@)_(a —b)
rsin @ rcos@ b a

where a=rcos0, b=rsinf. It is clear that any such matrix preserves angle and

r =s. Thus

satisfies Det F=a’ +b%>=r*>0.

a —b\
Conversely, any non-zero matrix of the form | ) preserves angle and
1% u/
orientation since, starting with
/u b\
{ \I, a’4+b%*+£(0
\b___a)
we can set 7> = a° + b2 and then find 6 such that
cosO=ar—! —sin§=br—!
since a < r and sin20 + cos?0 = (a% + b?)/r* = 1. And therefore it follows that

a —b ‘rcos@ —rsinf
b a rsin 6 rcos )
Thus the most general matrix of the form

(“ 'b>, 2% + b2 #£0,
b a

preserves angle and orientation, with

Det(a B b) =a® + b2
b a

The product of any two such matrices is clearly such a matrix, but notice in addition
that




so that, in this case, multiplication is commutative. Furthermore, the inverse exists,

unless a =b =0, since the determinant = g2 + b%. Finally

{a —=b\ [(a -V [a+a —(b‘*'b’)\\

b o)\ o) \bar et )

£ tegrn AtpPion
1T LwWO 1HIallIVC> O

so that the sumo

somewhat remarkable and not to have been expected from the definition. Let us call

b
Thus the non-zero conformal matrices are the ones that preserve angles and
orientation.)

We have proved that the set of all conformal matrices is closed under addition and
multiplication, that multiplication is commutative for such matrices, and each non-
zero conformal matrix has an inverse. Thus conformal matrices behave very much
like numbers.

We can write any conformal matrix as

6 ) )l )

a matrix of the form (a a) conformal. (We allow the possibility that a=b = 0.

b
0 —1
Notice that ) 0 is rotation through ninety degrees and thus
[0 N2/ 1§ 0 /10
( =| |=— | )
\1 0) L 0 —1) \0 1)
We write
/1 0\
1 for | |
and
; [0 — 1)\
i for kl 0)
so that
a —b
=al +b
(b a) al + b1
where

In other words, we can identify the set of conformal matrices with the set of complex
numbers.

The usual representation of a complex number as a point in the plane simply is the

: . : oy 1 -
identification of the complex number with image of ( n)‘ For conformal matrices

N/
/N / .\
he point | %} d (¢ —7)
the pomt \ b / determines-the matrix \b /
. a




It is very easy to compute the nth power of a conformal matrix. Indeed, if we write

la——bN— L0\ fcosd AN
A=‘ U\z r—u Cosv —San\
\b aJ) \0O r/\sinf cosf )
0 .
then, since 0 | commutes with all 2 x 2 matrices,

AN

/ n\n/ . Fa) 1 3\ N VA S « X W N Fa) . n
A" _ 4 AV COM U —OIl1vU _ [4 AV, COMTIU — Il nu
0 r/ \sin® cos @ 0 r*/\sinnf cosnf /)

rcos@ —rsinf \" r"cosnf —r"sinnf
rsin 0 rcos6 r" sin né r"cosnf )

Thus

In the language of complex numbers, this says that if
z=r(cos 0 + isin 0)

then
z" =r"(cos n + 1sin nf)

and is known as DeMoivre’s theorem.
Another way of computing A" is to use the binomial formula: since

A WY A N I AU WY AR
L0 a/"0 1) Wb o) =\1 o)
{10\ (0 —T\Y
=\ )T o))
NONY N+ v/ 7
1 0 _ =1\ _ —1)\2
L P ) BN £ (e il Y R
U 1 \I vJj U
/0 —1\* /1 0\
But | =| ] so
\1o) U0 =y

N\ /

/ e 0
A=(a —kz)a b+(4)a b+"')0 )
Y w1z (T n-333 , ... 0 —1
(o)) 7o)

In the next section we will provide an efficient algorithm for computing powers of
any 2 x 2 matrix, not necessarily conformal. It will involve the notion of eigenvalue,

a concept that plays a key role in quantum mechanics.

— D

2.2. Eigenvectors and eigenvalues

Let F be a linear transformation. We can ask whether F carries some line through

the origin into itself. (No non-trivial rotation has this property, ior example, while

any non-zero singular transformation carries its image into itself.)




If v 1s a non-zero vector lying on such a line, we must have

b o VALY 1
F(vy=24v

for some real number A. If this equation holds with v # 0, Ais called an eigenvalue of f
roctnondine to the cigensortar < Wa mran romrite the aboave eanation ac
COT1IUSPUIR u1115 tO 111G v&yDILUCL,LUI V. vwe Can 1owinc tne avovevquatiOinr—ad
[ /1 0\
F=il ., |[v=0.
[ \V 1/
Since v is not zero, this implies that
1 O
Det =
( (0 ))
a b
which is an equation for A. Explicitly, if F = d) so that
c
0 -1 b
F—J
0 1 c d—7
the preceding equation becomes
a—1 b ,
Det ; g =(@a@a—A)(d—A)—bc=i*—(a+d)l+(ad—bc)=0
€ =4y
or
A* —(tr F)A+ Det F =0.
Tla Iy SN 1
111U pUlyllUl Jatail

P(X)=X?—(a+d)X +(ad = bc)
[a b\
is called the characteristic polyrnomial of | , J and the equation
NEC a7
P(A) =0

1s called the characteristic equation. It will have real roots
=4i[(a+d)+./{(a+d)?*—4ad—bc)}]

=3l(a+d)+/{(a—d)* + 4bc}]
if and only if
(a—d)*+4bc = 0.
If this occurs, we know that
a—4 b d—1
( c d-— Z)( —c )2 0

and




ofd—2 b
so that lf( . ) or ( —(a— /1)) are non-zero they are eigenvectors and they both

) d— A b _
lie on the same line, since Det( ) = — Det a—A4 b =0.If
—c  —(a—A) c d— A

they are both zero, then a= 1, b=c=0 and d = 4 so that

a c A 0
= F:
(b d) (0 2)’ M

and every (non-zero) vector in the plane is an eigenvector.

Case 1. Real Distinct Roots

If (a — d)* + 4bc > 0, so that there are two distinct real eigenvalues, 4, and 1,, then

F # Al and so there are only two lines through the origin left fixed, each spanned by

. X X
an eigenvector v, = ( 1) or v, =< 2). We have
Y1 Y2

(e 2)C)-7()

o Q

and

o Q

(¢ )G)==()

If we let B be the matrix

xz\

n

(%
JANZ

then B is not singular since ( \ and ( \ do not lie on the same line, and we can

\F1/ Y2/
combine the two equations for the eigenvectors to read

L"D DA

1L — DIy

where A is the matrix 4 0 , or
0 A,




so the first column of B is an eigenvector of F with eigenvalue 4, and, similarly, the

second column is an eigenvector with eigenvalue 4,.

Case 2. Repeated Real Root

If (a — d)* + 4bc = 0, so that P(X) =0 has a double root, /, the situation is a little
more complicated. Consider the two matrices

(9 9\ and (9 }\
\00) \0 0/

For both of these matrices the characteristic polynomial is P(X) = X%so that A = 0is

a double root. Every non-zero vector in the plane is an eigenvector of the first matrix

x ) )
while only the vectors ( n\' are eigenvectors for the second. Notice, however, that

\V/
both matrices satisfy the equation F? =0, which we can write as P(F) =0, i.e., we
substitute F (as if it were a number) into its own characteristic polynomial and we get

0. We claim that this is a general fact, called the Cayley—Hamilton theorem.

Given any matrix F whose characteristic polynomial is P(X) then

P(F)=0

ie.,

b\ b 1 0
(“ \ —(a+d)(a J\]—I-(ad—bc)(n ') =o0.
\e 4] Y 017

For our case of 2 x 2 matrices this can be verified by direct calculation:

712

(a bY= a*+bc ab+ bd ,
\¢c d)

\ca+cd cb+d*)

(a+d)<j b\_(a2+ad ab + bd

d] \ca+tcd ad+d*)

and
/

,_..
-
g
™

&

L

—be 0\

(ad — bo) ):k

0 1 0 ad—bc)

SO

(4 Y _araf® D\ awi—boL %)=o
\¢ ¢/ \¢ d) \0 1/

If P(X) has a double root,

P(X)=(X — A)
so that

_—

SEE

there are two possibilities:

F—,l(l 0\—0 SO F—()L‘ O\
\0 1) \0 1)
or
F_af ! G\\,in
\0 1/



. X . " P A
In this second case, let ( vl\} beaneigenvector of Fand let l/ \, be some on=Zero
A 4
1. 12 ataanmuvectar of F Then
veCTOT WIICIT 1§ ol a1l Cc1genveCitor o1 . 1iich
B /1 0N\ ]/ x5\
F—Alo L")
N \V 1/ J\rV2/
(A 0\\*

is an eigenvector of F since kF k 0 A)) = 0, and so is some non-zero multiple of

<x1>. By multiplying ( 2) by a suitable non-zero constant, we can arrange that
1 Y2

=0 916G
=3 )

is non-singular, and we can write the above equation as

Again the matrix

re=p(" 1)
\U 4/

or
(i 1\
F=B|_  |B!
\U 4/
—Conversely-any matrix of the foom—— — — — ——
//‘lL 1\
F=B[" \p~!
\0 1)
N 1 0\ ]? 10\ ‘
has the property that | F — A 0 1/] =0but F—1 0 1];aréO as can easily be

checked.

Case 3. Complex Roots

We still have to deal with the case of a transformation that has no real eigenvalues
or eigenvectors. The most obvious example of such a transformation is a rotation
through an angle that is not a multiple of 7. Such a rotation clearly does not carry
any non-zero vector into a multiple of itself. More generally, a conformal
transformation, which may be viewed as a rotation of the plane followed by a
uniform ‘stretching’, will have no real eigenvectors.

Consider, now, what happens if we try to find eigenvalues and eigenvectors for a

=7

Ix
\y x)




The characteristic equation is

(x=2*+y*=0
so that
(A _ x]2 - — 2
A=x=11y
and
A=x+1y
. : . (x -
We previously observed, in section 2.1, that the conformal matrix ( y > can
y X

be used to represent the complex number x + iy; now we see that this complex
number is an eigenvalue of the matrix. Furthermore, given any pair of complex
conjugate numbers, x +1iy and x —iy, there is a real conformal matrix that has
these numbers as its eigenvalues. Of course, we cannot interpret these complex
eigenvalues geometrically, since the associated eigenvectors have complex com-
ponents and cannot be regarded as vectors in the real plane.

We will show that we can write a matrix F, whose eigenvalues are x + iy, in the
form

4
F=BCB™', C=(\

Proof. Consider the matrix

;
A

ey

The Cayley~Hamilton theorem says that

(F —xI? + y*I =0.

Thus

So pick any vector v, # 0 and define

v,=y 'Gv,
Then

Gv, =y 'G?’v; = —yv,
while, by definition

le = va.

Let B be the matrix whose columns are v, and v,. Then v1=B<1) and

0
0
V2=B(1),So
1 0\ 0 1 0 —y
GB - — _ _ ,
(O) yB(1> and GB<1> yB(O) so GB B(y O)

[0 —p\

Multiplying these equations by B~ ' shows that G = B| B
YY)




Thus

— 17\
~ )
0y

xI +B|

\Y

F =

since B(xI) =(xI)B

P4 lB_1
0

B(x)B_ '+ B[

\y

/0

So

)

For example, we can make the convenient choice v,

as was to be proved.

>, though any other

(s

choice would have been equally suitable. Then, since Gv; = yv,, we have v,

), while v,, the second

1
). Thus v,, the first column of B, is ( 0

1
0

y” 1G<
column, is the first column of G divided by y.
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Suppose we are givenm a matrix F and wanttocompute—
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Jarge) values of n. (In the next section, we shall give an instance where this problem

e of interest.)
IS O3k 7

Case 1. Real Distinct Roots

If

0\

/1.0
A=l " .|

\0 43/

o0
A" =
(5 2

So computing the powers of a diagonal matrix is reduced to computing the powers
of real numbers. If

then clearly

F=BAB™1
then
F?=BAB 'BAB '=BA?B!
and (by induction)

F"=BA"B~1.
Case 2. Repeated Real Root
Next let us examine the matrix
(A 1\ (A 0\ [0 1)
= + 5
Lo 2)=lo 1) 0 o)
A 0\ - ) .
Now N ] commutes with all 2 x 2 matrices and
\V) /L/

0 1\
0 =

o

so, we may apply the binomial formula:

(9 R () A V) R R R R

(as the remaining terms in the binomial formula vanish). Thus

AL\ /2t nar?
0 i/ \0 A )

So if
F=B8B Aot B!
: - \0 4
then
—
A1\ PLERE YLk
F*=B A ) B—1=B B~ 1
U 4 U A




Case 3. Complex Roots

Finally, if

F=BCB™!
1 ~ /X _y\ Y 1 PSR |
where L = \ ’ 1S a conrormal matrix, thcn
1 X
A4 V7

F'=BC'B™"!

and where we can compute C" by either of the two methods given at the end of
section 2.1.

Thus, for each of the three possibilities listed above (distinct real eigenvalues,
repeated eigenvalues, complex eigenvalues), we have a simple method for computing
the powers of a matrix F, once we have computed the eigenvalues and the change
of basis matrix B.

Actually, for the last two cases, we do not have to compute B: for case 2,

(F — AI) = N satisfies N>2=0
SO

F"=(Al + Ny = 2l + ni* 'N

by the binomial formula;

For case 3, with eigenvalues x + iy,

F—xI=yH where H*>=—1
$O
/n
F"=(xI + yH)" = x"I + nx" 1vH+(\2 x""?y?H? +
/ /1) \ SN /n
=lx"— Jx 22 p J+{{ xty— )x" 334 |H
o \2) J \\1/ \3

A

2.3. Markov processes

In this section we give an application of matrix multiplication to probability. We
do not want to write a whole introductory treatise on the theory of probability.
We just summarize the most basic facts: Probability assignments assign real
numbers
0<p4)<1, 0<pB)<I,...

to ‘events’ A, B, etc., according to certain rules. These are

The probability of an event that is certain is 1;

The probability of an event that is impossible is 0;

If the event A4 can occur in k mutually exclusive ways (we write this as

ey A ANNA.=CF, [#£7]
l J A~ IJ

A— 4
X L2 S I A=Y ]




then

L4

Ok p(Ay)

In particular, if A° denotes the ‘complementary event’, the event that A does not

occur, then

AU A° is certain (either A will occur or not)

and

AnA =&
SO
p(4) + p(A4°) = 1.

One also has ‘conditional probabilities’
p(B| A) = the conditional probability of B given A.

Thus, if A4 is the event ‘it is raining today’ and B is the event ‘it is clear tomorrow’,
then p(B|A) is the probability that it will be clear tomorrow given that it is raining
today. We then have the rule

p(AnB) = p(B|A)p(A)
1e.,

the probability of A

and B equals the product of the conditional probability
th +tha
L1

< dUlll l,_y Ul /1.

pro
.. A, are mutually exclusive alternatives, A; NA;= ¢ and B

then

pB)=pBNA)+ -+ pBN4)) ,
SO

n(B) = n(RI Mn( } . 1 n(RlL A N( )

[ [ A EEE U/ ACES VAR N A A EEY I AT 7 5

We shall now consider a system which can exist in one of two states; a switch

micht he A Ar aff ~Ar ;v\ a_agame-aofb badmintan ‘n{-ni—a 1? sioht denate the Qit119t10N0
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where player number 1 is serving while ‘state 2 is where player number 2 is serving.
We envisage a situation in which in one ‘step’ there can be a ‘transition’ from one
state to another. Thus, in our badminton example, at each ‘step’ in the process
(at each point of the game), the system can stay in the same state (server makes
the point and serves again) or make a transition from one state to the other (server
loses the point and opponent gets to serve). For example, we can imagine that at
some stage of the game if player 1 is serving, he has probability 0.8 of winning
the point and probability 0.2 of losing, while if player 2 is to serve, then she has
probability 0.7 of winninlg the point and probability 0.3 of losing. In a real game,
the probability of a given player winning a point at some stage of the game
will depend on a whole lot of factors (how encouraged or demoralized he is by

the game up to that stage, how tired she is, etc.). We make the drastic assumption




that none of these considerations matter, that all that matters is who are the
onnonents and who is servmg We can thus summarize the above probability

’ g tie—a A

3
)

TN
o o
o (oo
© O
\\] U)

conditional probability of the system being in state 1 after

the step if it is in state 1 before the step, while 0.2 represents the conditional
probability of being in state 2 after the step if the system was in state 1 before the step.

In general a (discrete time, two-state, stationary) Markov process is a process
in which the states can change in discrete units of time, but where the probability
of transition from one state to another depends only on the state the system is in,
not on the past history of the system or on the time that the transition is taking
place. Thus there are four ‘transition probabilities’ which can be arranged as a

matrix
a b
A=
[« o)

b=rprobability of transition from state 2 to state 1;
¢ = probability of transition from state 1 to state 2;

d= nrnhahili‘ry of transition from state 2 to state 2

where

122

te 1;
4

"t

Suppose that we do not know what state the system is in at a given time; all that

bab S
q=t—=pthat it is in state 2. This probability assignment can be represented by
the vector

p\
v=|"|.
q)

After one step, the law for conditional probability says that
probability of trans. prob. prob. of
being in state 1 »=< from state 1> x< being in
after the step to state 1 state 1

trans. prob. prob. of
+< from state 2 »x< being in
to state 1 state 2
=ap+ bq

and similarly the probability of being in state 2 after one step is

cp + dg.

In other words ~the new ‘prnb ability vector’ 1s

A g




Let us illustrate this in our badminton examples. Suppose we know that player 1|

is to serve the first point. The vector

o=\,

then represents the initial probability vector at the beginning of the game. After

the first point, the probability vector is

gy (08 03)\(1)_/(08
1= =102 07)\0) 02"
After the second point, it is
0.8 0317038 0.7 5
=AY = <0.2 0.7)(0.2) - (0.3) =4
After the third point,

08 03)/07\ [065\ .
va=Av: = (0.2 0.7)(0.3) - (0.35) =4

and so on. In general, the effect of playing n points is represented by the matrix 4",
On thinking about this situation, you may realize that the probability vector

after a large number of steps ought to be practically independent of the initial

4+ fa. shothar wlaver 1 corvine_far the fifteonth naint 1 nlil-olx +n deanend

slatv. WwWhnetner pla_ycl 1 lb SUL VIS TUL 0 THIVULIL l}UlllL 1S 'Lhuu\cl_y LUV

strongly on which player served for the first point. This suspicion is confirmed by

calculation: we find

2= {08 031/08 03} /07 0.55)
l\o.z 0.7 /”\0.2 0.7 _‘\0.3 0.45 )
44 [/0.7 n.ss\}2 [/0.63 056\'
—\03 045/ 1037 044/
0.63 0.56\* /0.602 0.598)
A8 = =| )
037 044/ (0398 0402/

416 — 0.602 0.598\> (0.600006 0.599994
0.398 0.402/  10.399994 0.400006

and we might conjecture that

lim A" = 0.6 06 exactl
A= 04 04 Y

In fact it is easy to show in general that, as long as b and ¢ do not both equal
0 or both equal 1, lim,_, , A" exists. We need only determine the eigenvalues and
eigenvectors of A. Since a+c=1, b+d =1, we may write

[1—c b

=\
\

~ 1 L
C p Sl 74

Since Tr4d =2—(b+4c)and Det 4 =1 —b—c+bc—hc=1 — (b + ¢), the charac-




teristic equation 1s

or

™ : 1 1 1 b . | (1 \ 4+ 21 411 4 .9 124 1
The eigenvalues are 4; =1, 4; = I —=(b+¢). Note that {4, < 1, with equality only

fb=c=0orifb=c=1.

The eigenvectors are easily found by considering

1—c¢ b 1 O —c b
A_111_< c 1—b>_(0 1)_< c —b>'

The kernel of this singular matrix consists of multiples of the eigenvector corres-
ponding to 4, = 1: we normalize this vector so that its components sum to 1 and

find
1 b
vl_b+c '

The image of A — 1,1 consists of multiples of the eigenvector corresponding to 4,:

1

: : . . —1
a convenient choice of this eigenvector is v, = ( .
N\ /7

T + v £ 41, - 4o ga i | - 1 +1. i £ 4 2 <1
11T LCIHILIS O LIICHU CIBUIJVULLUID allla ClgCllVdJ.UUb LLIT UpCIdllUll Ul A D Cdblly
: 1: I | T, 4 1. +1 1: 4 . : /1\1_ /0\ 3 .
VISUAQIIZCU. 111IC VCCLOL Vl 11CS Ol UIC II1IT ngIIlCIlL _]UlIllIlg \ 0 l LO \ 1 }, ald dIly
N~/ N7/
/ 1\
— 1
1/
/1N (1 .
Al 1=2,] ), wefind
N U1
[/ 1 \
Av=yv, + acllzl ]
\ 1/
0 0
1 1
-1
“( 1)
' ()
Av
vl 1 l
(o) " (0)
AN & N

Figure 2.2




and more generally

yA 1\
Av=v +alyl ]
Y

ol

P [ | 1 141 oar that . 1 1 + 211 ottt a4 AN, _
oOINCC [Ax | = Ly ltIsUIbdal LldL, no mditer wndl tne veClor v may ve tnlitaily, 1lilY AV =v, .

To diagonalize A explicitly, we write A = BAB~ ' where

4 171 \ £\ / 14 1 N\ / 1 0\
%Z(ﬁlﬁ ;) Bﬂ:(——c;(b—}—c) b/(b1+c)) and Az((l) Zz)
Then
A" = BA"B™ 1.
Since .
im 8 =(y )
we find

i e b6+ —1\(1 0 1 I
no _(c/(b+c) 1)(0 0)(—c/(b+c) b/(b+c))

_(bfb+c) —1\{1 1)

1{1 " AY 1 Fay 0N
\c/(b+7) X007
1 /b b
“bFe\e ¢
)
Thus if v = \w1thp+q=1
\q/
/N /b //b+c N
lim an[ P\ [P/ +0)
oo \q) \c/(b+c))
7N\
. . ) a b
To summarize: if A4 is a stochastic 2 x 2 matrix, that is A=/ ) with
\c d)
az0, b=20, ¢c=0,d>0, a+c=1, b+d=1, then its eigenvalues are 1 and
b/(b+ ¢)

-1 )
1 —(b + ¢), with eigenvectors ( ) and ( 1) respectively. If all its entries are

c/(b+c¢)
strictly positive, then repeated action of A causes the system to approach the limiting

¢/(b+c)
: o . . 08 03
1s multiplied by 4, at each step. In the badminton example, with 4 = )

b/(b+c ) e
state ( A )). The ‘discrepancy’ between the current state and this limiting state

02 0.7

®

o . (0.
A, =0.5, and the limiting state is ( 04
points have been played, we expect to find player 1 serving 60% of the time.

>. On wandering into a game after many

/01
The matrix A=[ . _ ] is a stochastic matrix which does not satisfy the strict
\1 Y/




positivity conditions. It is clear that

(I if nis-even

4" — 4 LEAVAAY) § Y

{ Aif n'is odd
The mnn“‘nn- ~f the matriv 4 1c abhvione [t rentracentc o A tvmomcitianto +tha
J P LI ¥ § LW g Ol e IRAtTTA 7T 15 00 VIOUS IO PICSCIItS —a — Surc transiion to—tnc
other state. There is no limit as #— 0. (Yet, in a certain average sense, we expect

to find each state occupied about half the time.)

It is a straightforward matter to represent Markov processes for systems with
more than two states by larger matrices — a three-state process by a 3 x 3 matrix,
and so on. The entries in each column are non-negative and sum to unity. A
typical 3 x 3 stochastic matrix is

05 0 0.1
A=103 06 O
02 04 09

The important features of the 2 x 2 case persist, with some differences. For instance

05 03 0 O
05 07 0 O
0 0 0 1

\'o o0 10

\
resents a system in which it is impossible to get from the first two states to the
N o

repr 1 t t
last-two-and vice versa. A probability vector concentrated in the first two states
will tend to a limit. A vector concentrated in the last two states (i.e., with first two
components zero) will move around and its value will depend on whether n i
even or-odd. It is not difficult to characterize when this kind of phenomenon can
occur in terms of he matrix entries of 4. With the exception of such cases, the

t
n-dimensional case is the same as the two-dimensional one — the matrix has an

p_a

-
—

”

G il Vet tih

eigenvalue of 1, with an associated mgenvm‘fnr deqr'rlhmo a hm1f1no state, the
11
dal

+1a M
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transforms any probability vector into the eigenvector corresponding to 1= 1.

Summary

A Conformal matrices
You should be able to identify a conformal matrix and describe in geometric terms
the transformation that it represents.

You should be able to state and apply the isomorphism between conformal
matrices and complex numbers.

B Eigenvalues and eigenvectors
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of a 2 x 2matrix and discribe the action of the matrix in terms of its eigenvectors and
eigen-values.

C Similarity of matrices

1 1 £ e Araramal
, WIHCIC U5 Uldg0llal 1

BCB

b s vraliroc o and s
has complex eigenvalues, and Ciso

value, but A # Al. In each case you should be able to interpret the columns of B
geometrically.

D Markov processes
You should be able to write down the n x n matrix that represents a Markov process
with n states.

For a 2 x 2 matrix A that represents a Markov process, you should be able to

relate the eigenvalues and eigenvectors of A to the behavior of the probabilities of
the two states of the process.

Exercises

2.1 Consider the conformal matrices

/3 _4\
F—| ) and

P \4 3)

by
I
—

o 3
> \=-3 4)

matrices.

(b) Express F, and F, each as the product of a multiple of the identity
matrix and a rotation. Using the identity €' = cos 6 + isin 0, express z,
and z, in ‘polar form’ z = re*.

(c) Calculate F;!. Calculate z;!, rationalizing the denominator.

2.2 Explicitly verify DeMoivre’s theorem for the conformal matrices F, and
F, of exercise 2.1; that is calculate F3 and F2.

0.8 —-0.6

0.6 0.8
through an angle of about 37°. Calculate R 1.

2.3(a) Show that R=( ) represents a counterclockwise rotation

2
(b) S= (0 1) represents a shear along the + x-axis. Calculate S™! and

interpret it geometrically.

(c) Calculate 4 = RSR™! and interpret it geometrically. Do the same for 4™ 1,
for B=RS™ 'R !, and for B~ L.

X o 18
2.4 Apply the diagonalization procedure to F = g ) 3 follows:

(@) Form the characteristic polynomial P(4) and setitequalto zero to find

the eigenvalues of F. (Answer: A=2,A=—1))




(b) Check that P(F) =0, as promised by the Cayley—Hamilton theorem.
(c) Find an eigenvector for each eigenvalue. Let y = 1 in each eigenvector.

(d) Form the matrices B and B~ !, and confirm that F = BAB~1

3
4
s
a

| fen

it as L, = BAB™ !, where B is a rotation and A is diagonal. Interpret the
result geometrically

2.6 Find an invertible matrix B and a diagonal matrix D such that

4 -3\ __
B B '=D.
-1 2

-1
2.7 Diagonalize the matrix F = (

5), which has a repeated eigenvalue,
by the following procedure:

(a) Form the characteristic polynomial P(1) and find the eigenvalues.

(b) Find an eigenvector of F of the form (T1>

(c) Form the matrix G=F — AI. Show that the Cayley—Hamilton

theorem implies that G?> =0, and confirm this explicitly. Find the
image and kernel of G.

/%,
(d) Find a vector| ~ ) with the property that G[ ) = [ ) Now form
\I/ 1/
the matrices B and B~ ' and check that you have succeeded 1n writing

(A 1\,
\\n i

b il +1 I D
ruaruciormr=»n

i)
8 Aoptv-the<di fization’ l ] :
[ 3 1N
F={ _, ;)
\—5 5/

which has a repeated eigenvalue. Find the image and kernel of G = F — A1,
and describe geometrically the transformation represented by F

o Ws Nk SO E ) LY LY P ) : 1 9 L} n
4.7 LU A DOC d 2 X 2 MAlrix witll CIgenvalucs Ay = A, > U.

(a) Describe a procedure for calculating the matrix G, = A; " A" easily by
diagonalizing 4. Show that the matrix F =1lim,_, G, is singular.

3 =2
(b) Carry through this procedure for the matrix A = (1 0), calculat-

ing G, and F explicitly. Find the eigenvalues and eigenvectors of 4, and
find the image and kernel of the transformation F, and relate them to
the eigenvectors of A.

2.10 For any matrix A, the trace of the matrix, Tr 4, is defined as the sum of the

a b
entries on the principal diagonal. Thus, if A= (c d)’ TrA=a+d.

(a) Prove thatif A and B are two 2 x 2 matrices, Tr (AB) = Tr(BA) even if
A and B do not commute.

(b) Prove that Tr 4 equals the sum of the eigenvalues of 4. Conclude that
if A=SBS™ !, then TrA=TrB.

(c) Using the result of (a), prove that Tr(ABC) = Tr(BCA) =Tr(CAB).
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form F = BCB™! by the following procedure

il r

Lt

(a) Find the eigenvalues of F.

(b) Construct a conformal matrix C with the same eigenvalues as F.

c\

/1
(c) Construct B in the form |~ |.
\U a/
4 -5 i .
212 Let A= ) 0) Find a conformal matrix C, and a matrix S that
represents a shear transformation, such that A = SCS™ 1

a b
2.13 Let F = ( d) be a matrix with real distinct eigenvalues 4; and A,. Let
c

=34+ 42), y =34, — 4,).
(a) Show that H = F — xI obeys the equation H? = y?].

X
(b) Show that S =< y) has the same eigenvalues as F.
y Xx

(c) Devise a procedure for constructing a matrix B, whose first column is

( \ such that H = R{ y\R ! and F= R( y\R 1

y
(d) Find-a matrix R such that
/ }’\ K//h 0 \K .
S P—
\U— %3/
/AT o
Prove that BR| _Jan K\ | are eigenvectors of F.
\V/ Nt/

2.14 Let F be a 2 x 2 matrix with distinct real eigenvalues A, and A,. Define

E Y 4 K Y 4
T /\oz‘ P4 /\ol.‘
Pl = P2 =
Ay—4, Ay — 4y
Prove the followine properties of P. and P.-
ove the 1ollowing properties of I’ and P,

(a) P, and P, are projections: P} =P,, P=P,.
(b) P, P,=P,P,=0.

(©) F=4,P, +4,P,.

(d) F"=A"P, + AnP,.

3 4
(e) Calculate P, and P, explicitly for the case F = ( 1 2), and use

the result to calculate F’.

2.15 Let F be a2 x 2 matrix whose characteristic equation has roots A = x + 1y.

We can alternatively write x+iy=re*”, where r=./(x>+y?) and

et®=cos0 +isinf. If F is a conformal matrix, it rotates the plane
through angle 6 and stretches it uniformly by a factor of r. This problem

explores the case where F is not necessarily conformal.

(a) Show that F" is a multiple of the identity for integer » if and only if

_ . . . e




76 Eigenvectors an eigenvalues

F'=(— 1)"y"].

Hint: F = BCB™ !, where C is conformal.

4
(b) Write F=| ) in the form BCB™?, and thereby find the

=1 =1

smallest integer n for which F" is a multiple of the identity. Check your
answer by direct multiplication.

(c) Show that your answer to (b) follows from the Cayley—-Hamilton
theorem.

) -2 15
(d) Find a ‘square root’ of G =

), 1e., find a matrix 4 such
3 10

that A2 = G. Reminder:
cos?30=1(1 + cos @), sin?30=1(1—cosh)
2.16 Modernistic composer Allie A. Tory constructs his two-tone works by the

following Markov process:

1. Ifnote N — 1 was an F, then the probability py that note Nisan Fis 2,
while the probability g, that note N is a G is 3.

2. If note N — 1 was a G, then the probability py that note N is an F is 3,
while the probability g, that note N isa Gis

TIN

o)
=

i
=
w

fins
jon

(2} Construct-a 2 w2 matrix_ 4 which tranc e nrobabilities
\u} NUTIOLL UVL UL 4 /7N 4 1l 7 VWITLIWVIT LI GR110T AN t}LUU“ULLAL‘.\IJ
(v~_1\

\YN-1/

into the probabilities
/ N\
[(Fv)
\QN/
(I Qg athatmnatalican i T P PO Y P W PR tnalilis
(V) OUPPUDC tUlal HTULC 1T all I, USCULLIC ITIALlIA A LO I LIIC pl UUdUlllLy
h

that note 3 is an F.

(c) Determine the eigenvalues of 4 and find an eigenvector of A4

corresponding to each eigenvalue.

(d) Suppose that note 1 is an F, so that

(o))

Show on a diagram the sequence of vectors

(o) ()

Determine the limit of this sequence, and interpret it in terms of the
eigenvectors of A.

2.17 The quarterback of the Houston Eulers, who majored in probability
theory in college, has devised a play-calling procedure with the following
properties:

1. If play N — 1 was a pass, then the probability py that play N is a pass is
1 o 1 M e S




(a) Construct the 2 x 2 matrix A which transforms the probabilities

(pN—lw

\dn-1/

/ N
)
qn
(b) Determine the eigenvalues of A and find an eigenvector of A
corresponding to each eigenvalue. Illustrate on a diagram the
action of A4 on each eigenvector.
(c) No one knows how the quarterback decides what to do for play 1,

but observation of game films shows that play 2 is a pass half the
time, a run half the time. What are the probapbilities

)

into the probabilities

for the first play?

2.18 Professor Constantine Bayes has been teaching his course ‘Stochastic
Methods in Classical Archaeology’ for decades. It is widely known that

Bayes selects examination questions by drawing colored balls from ancient

Greek urns which he keeps in his office, but the contents of the urns are

1. If the final examination in year N — 1 had a question on statues, the
final examination in year N will have a question on statues half the
time, a question on notterv half the time

2_Ifthe finale a vear N — 1 had a gquestion_on potterv. the
L2t £ G * T yoat—¥ FHad—ad e OnPotel Y Hic
finalevaminationinvear N vl have a anectioan-aon-ctatireg 1 afthe time
IaalrvAaniiativolr iy _yvcu iy vwilliliave a \.luUD Liviruvlirsiatuvo 4 vl i,
4 4 3 £ ¢+1 Fo
d JUCSLIOIT 011 POLICTY 4 O UIT LHIIT

Dn—
(a) Write the matrix M which transforms the probabilities |~ ,
\4n-1/

for a statue question or pottery question respectively, into the

probabilities (p N
dn _
(b) Find the eigenvectors and eigenvalues of M, and write M in the

form SDS™!, where D is diagonal.

(c) By attending Bayes’ office hours regularly, a student has finally
learned details of his method. Bayes has two urns, but he uses them
once for the hour examination, then once again for the final
examination, so that the matrix M represents two steps of a Markov
process! By using your diagonalization of M, find the two possible
matrices N for one step of the process.

) for the next year’s final examination.

2.19 John and Eli are playing a game with a ball that can roll into one of two
pockets labelled H and Y. John wants to keep the ballin H and Eli wants
tokeep itin Y. When it is John’s turn to play, if he finds the ballin H that1s
fine with him and he does nothing; but if he finds it in Y he attempts to roll
it into pocket H. This takes some skill: the probability that he succeeds is 3,
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there being a 4 chance that the ball will roll back into Y. When Eli’s turn

comes, he does nothing if the ball is in Y, but tries to get it there if he finds it

in H. Eli is less skillful than John and his probability of succeeding in his

effort is only 4

4 owrith -t}

{a} Q 441 2 1+l ¢ Ihall s h #.4 A ¥als + 1 ot tot} 1 1 1o
(@) stalting win e oatr i r and Jyonn to piay, wirat 15 tne probabIlity
+1 + 41 “H

2.20

that the balt-witt-bein H after John's second ptay?

(b) Find a formula for the probability that the ball is in H after John’s nth
play (i.e., after John has played n times and Eli (n — 1) times).

(c) Suppose the game has been going on for a ‘long time’ and you look in
just after Eli has played. What is the probability that the ball is now in
H? How many turns constitutes a ‘long time’ if we want to be certain
that this probability is correct within 0.001?

A bank has instituted a policy to prevent the tellers’ lines from ever getting
more than two persons long. If a third person arrives, all three customers
are escorted into the manager’s office to receive high-level personal
service, and the teller starts again with no line. Furthermore, an armed
guard at the entrance to the bank assures that no more than one customer
per minute can enter (it takes that long for a really thorough search). As a
result, the length of a teller’s line is determined by the following Markov

i PSR PR | 11~ 1. 1. M T 11t 1 £ 41
ProCcess, WIHICID UUSTITOUS what IIApPpells 11 4 OIIC minrute mtervar ot time.

1._If the line has zero customers, the probability is 3 that one customer

arri\!es, 3 that no one arrives
7 I the line hac one_cuctomer_the nrobabilitv ic L that the customer.is
r-r3 11 LIV OOV 11y Uil \/UDLULLLUL, L% 8393 yluuuulll J Py ) 6 IIUL LIV VUHoLUIIIWwVYL Iy
1 1.1 . U | £~ 1an 'u ttha lima an A1 ¢loe
SUTVEUL Al Teaviy, 3 Uidl 4 SCLULIU CUSLULLICT JUII S LIIC llllc, alild 5 tldt

nothing happens.

3. If the line has two customers, the probability is £ that one customer is

served, ¢ that a third customer arrives and all three are taken to the

manager, leaving no line, and # that nothing happens.

time t into the probabilities for time ¢ + 1.
(b) At 9 am, when the bank opens, p; = 1. What are the probabilities

P
p, | at 9:03 am?

D3
(c) Find the eigenvalues and eigenvectors of M.

P
(d) Whatis the limiting value of | p, | after the bank has been open for
3
a long time? Estimate at what time the probabilities p,, p,, and p,
will all be within 0.001 of these limiting values.
(¢) On the average, how many customers per minute are served? How
many are taken to the manager’s office?




by the integer i. So there are n + 1 states: i=0, i=1,...,i = N. At each instant of

time, one of the N balls is picked at random (i.e., with probability 1/N) and moved

from-_the box 1t is 1n to -the other bhox ne i can chanoce to either i 1 ~pe 51 1
TTOTH TR Ao~ ot OtV DO T 1IIay T vl vadll g v 1to v ¢ O I T 1
1 h |

a
<
1 Le ml
1

according as the ball picked was in the first or second box. The probabilities of

these transitions are iN~ " and (N — i)N "' respectively. Thus

pi—l,i:iN_l
Piv1,1=(N—i)N~!
p;i=0, j#Fi—1lori+1.

For example, if N =4, the 5 x 5 transition matrix is

01000
1 04100
P=|0 2 0 2 0
00101
000 L0

Notice that P transforms any state with i even into a state with i odd and vice
versa. Thus P? transforms even states into even states and odd states into odd

states: P2 has the form

Pi—z;=ii—1)N"~°

n. . —Ti#N — 7 L 1YL (N NG NVIN—2
yl,l le\.l‘ L2000 L}T\LV P’\DTL}JLV
— ; ; =2
Pirz.i=(N—i)(N—-i—1)N
n..— 0 1f 3 L3 o IS 2 s ]
Pt Ui JF1 z, Lt T =
Thus, for N =4, squaring the_preceding matrix gives \
I . \
: 0 g 0 0)
03 0320
p2_—_I3 n 3 n 3
£ 49 4 Y37
N3 N 5 An
U 8 U 8 U
1 1
0 0 3 0 3

Since transitions for P? are only between states of the same parity, we may as
well consider the states i =0,2,4 and i =1, 3, 5, ... separately. (In the above matrix,
this means combining separately the matrices obtained by considering only the
even—even positions and the odd—odd positions:

11
£ it
-3 3 -
Q—4‘1L and R=|; )
oy 8 8
0 3

N — prp— O

2.21.(a) For the matrix Q show that (

\)is an eigenvector with eigenvalue 1 and
\1/

o

1\

for Rthat {1 ) s an eigenvector with eigenvalue 1:
\N*7




(b) Do the same compufations for N =5: Show that the ‘even’ eigenvector

1

with eigenvalue 1 is proportional to (10 |and the ‘odd’ one is propor-

5

O

Q
o

)

'y

7

/

(c) Prove in the general case that the ‘even’ and ‘odd’ eigenvectors with
eigenvalue 1 are proportional to the vector whose entries are the even or
odd binomial coefficients. In other words,

N
1

)
(1;> and (1:>
oG

even odd
eigenvector  eigenvector.

No
N
¥
.3

T Py N1 197 8 11 5 Had +1 ) N 1
rne—sequence U, I, 1, 2,3, 5,6, 13, 1S caled tinerroonacct sequence.

These numbers appear in the study of many interesting physical and
mathematical problems ranging from plant growth to celestial mechanics
(see, for example, D’Arcy Thompson’s On Growth and Form). The
recursion which generates the sequence is

( 0N
Ap+2 = Ap+1 T Ay A=V

(a) Compute the ratio x,.,/x, for n=1 up to 8 or so. Do you think this
sequence has a limit?
b) Find a matrix such that

(xn+2\_A/xn+1\.
\%pur/ T\ %, /

Xn+2 ) . X1
Use A to express in terms of .
Xn+1 Xo

(c) Find an explicit expression for x, in terms of x, and x,. (Hint:
Diagonalize A4.)

(d) Show that lim,_, ., x,. ,/x, €xists and compute its value.

(e) What does (d) tell you about the infinite continued fraction

1

1+

1
* 1

1+

(f)_Are there any values of x, and x, such thatlim,_, . x, . ,/x, differs from
| | btained in (d)?
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The principal goal of Chapter 3 is to explain that a system
of homogeneous linear differential equations with constant
coefficients can be written as du/dt = Au where A is a matrix
and u is a vector, and that the solution can be written as
e?'u, where u, gives the initial conditions. This of course
requires us to explain what is meant by the exponential of
a matrlx We also describe the quahtatwe behawor of

nhomogeneous

e cace 1
Neno HIOgtncous case o

1‘(7 +Ihh a Casdeoxvr—TXamt

1
We have already encountered (inour discussion-of the Cayley—Hamilto
a‘

polynomial in a matrix’. More generally, let Q(X) be any polynomial. 1t

Yy=a,X"+a, X"+ F+a,; X F+ag

Now we can multiply two polynomials (QQ,)(X)= Q,(X)Q,(X) to obtain a third.
Similarly
0,0,(F) = Q,(F)Q,(F).

There is no problem with the fact that in general matrix multiplication 1s not
commutative, since powers of a fixed matrix always commute with one another.

FkFl Fk+l — Fle
on account of the associative law. Similarly,

(Q1 + Q2)(F) = Q:(F) + Q(F).

I I1x,

n b l"[ LHCIC lb no [l"()U[)lC lIl Clelel.lIlg d pOlyIlUIIlldl lLlIlbLl()Il ata UACU ma

and the usual algebraic laws are satisfied. We would like to consider some more




general functions of matrices, and for this we need a slight digression about power

series.

R(X)=an+a1X+azX2+---+a”Xn+.“

X 1

where the a;, i =0, 1,..., are real numbers and X is a symbol (as is X* for all k)

is called a formal power series. We add two power series according to the rule

(ag+a, X +a X*+ )+ (bg+ b, X +b,X*>+--°)
=(aop+bo)+(a; + b)X +(ay +b)X*+ -,

that is, we add the coefficients term by term. We multiply two power series by using
the rule X*- X' = X**! and collecting coefficients:

(@ +a; X +a,X*>+ - )(bg+ b, X +b,X*>+-)
=agbo + (a1bo + aoh )X + (ashg + a;b; +agh)X* 4+ .
Thus, for instance,
I+X+X*+ )1 +X+X*+)=14+2X+3X*+.

It is easy to check that all the usual rules for addition and multiplication of
polynomials hold equally well for formal power series.

Let £ be
vl U UV

&

nv_real niimber We define_the
1 L Uwi. A AT P U B § Sy 5 ~

Iy roa Pyryv ey \Aj

1 1 1
exp(tX)=1+tX+§t2Xz+3—it3X3+4—it4X4+"- . (3.1)

Then

/ 1 \ 1
exD(SX)exD(tX)=[\1 +s)(+5s2)(2 +/] 1 +tX+2—it2X2+"'

1
=1+(S+t)X+E(sz+28t+t2)X2+'~*

where, on the right, the coefficient of X" is

1 n—1
— s"+ns”_1t+n(_)s”_2t2+'°°+t"
n! 2

which, by the binomial theorem, is just (1/a!)(s + t)". Since
1 1
1+(s+ t)X+§(S+ t)?X? +§(s+t)3X3 + - =exp(s+ )X

by definition, we conclude that
exp(sX)exp (tX)=exp(s + )X 3.2)

as an identity in formal power series.
In contrast to polynomials we cannot, in general, ‘evaluate’ a formal power

series, R(X) at a number, r, or at a matrix F. That is, if we try to substitute the

Lz 2

real number r for the symbol X n

RX)=aq+a, X +a,X*+




we get an ‘infinite sum’ of numbers

which, as it stands, makes no sense. One way of trying to make sense of such an
1 1 o off 1+l .o

a i1 S

O—ocet 4+
Ursbll a e uill

1

O—C A e + A M
UrEIvpP O iie CLIAd Al »yoO1aue 1iin
t

we go out far enough. We would then assign to R(r) the value obtained as the

9imiting value’ of the finite sum. Let us explain this procedure more precisely. For
any integer M, define R¥(r) to be the finite sum

RM)=aq + a;r +a,r* + - + ayr™.

We say that the power series R(X) converges at the number r if, for any positive
number &, no matter how small, we can find some large enough M, so that for
any integers M and N > M, we have

|IRM(r) — RN(r)| < e.

In other words, if we go far enough out, all the values R™(r) lie in some interval
of length & Thus the further out we go, the closer the RM(r) cluster about some
limiting value, and this limiting value is what we call R(r).

We can now make essentially the same definition for matrices. For any matrix

F the expression

T o P ool Uik

RM(Fy=ao+a.F + - +ayuf™

roc marfantlyy o pu | The Aiffor
HIARCS PULICCU Y gO0U SUTILGL, 1T ULLITUICIILT

RM(F) — R¥(F)

1s again a matrix, and we shall take the condition

to- mean that nac]ﬂ Of the four entries of th xuatrix RM(F'\ NI\ hae aheoliite
Tl ara ~ 28 8 p s 1IN P § \.l ) I\ \l } 114y AQAUOVIULWY
value less than ¢. We say that R(X) converges at F, if for any ¢ > 0 there is an M,

such that |RM(F) — R¥(F)| < ¢ for M and N > M,. When this happens each of the

entries of R™(F) clusters about some limiting value as we go out far enough. We
thus get a matrix of limiting values and this limiting matrix is denoted by R(F).
It is clear that if R,(X), R,(X) and R;(X) are formal power series such that

R1(X)R,(X) = R;3(X)
and if all three of these series converge at F then
R1(F)R2(F) = R3(F)

since we can replace each R,(X) by a finite approximation. Similarly for addition:
if R,(X)+ R,(X)= R5(X) and the series all converge at F, then R,(F)+ R,(F)=
R4(F).

3.2. The exponential of a matrix

We have a formal power series (3.1) for the exponential function and we Know

the identity (3.2). We will now prove that the power series for exp (£X) converges
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when we substitute a 2 x 2 matrix A for the symbol X. As a first step, We review
the proof that the series converges absolutely when we substitute any real number
k for X. We consider the power series

1 1
expy=14+y+—y24+_—p3>4... (3.3)
. 2! 3! N

WNETE 24 ’
series is positive and thereby guarantee absolute convergence of exptk, once we

O m. 1 11S 1S €ast SIHOwWnh comparing-tnc remamacr Series
I =_ym+;ym+l+ 1 ym+2+_,,
"1 m mi(m + 1) ml(m + 1)(m + 2)
+ 1 ym+n

with the geometric series
1 m m+1 1 m+ 2 1 m-+n
Sun ==Y +——V +——Y +o ==y
T om! m!m mim m!' m

Clearly, r,, , < s, , for all m. But we can sum s, , explicitly:

ooy (yNV (v AV
mn= N\ T T TG T,
Tri. \ 7y 14412 \"L \I’l
or
AR
Smn =\ L={ 2] |Sm
\mj
where
yr 1
Sm = /
m-r—y/m
Thus
.
Suppose we choose m > 2y, so that
1 1
< =2
y—ym 1—3

Then s,, < 2y™/m!, and, whenever we increase m by 1, we multiply s,, by a factor
which is less than 1. Clearly, by choosing m large enough, we can make s,, as
small as we like, and since r,, , < s,,, we can thus make r,, , as small as we like. It
follows that the series

1 1
exptk =1 +tk+§T(tk)2 +3—,(tk)3 + -




le exponentia 0 4

converges absolutely. Incidentally. th well-known ‘ratio-test’, in which one proves

"1 q
w
o
"1

2]

bsolute convergence of a powe
PJoUr ) wdAR

by showing that

m—> oo amy

relies on the argument just presented.

. . a . }
Suppose now that 4 is a 2 x 2 matrix: 4 = (c i) in which every entry is less

. a b\fa b\.
in magnitude than k/2. Each entry in A% = (C d) <c d) is the sum of two terms,

each of which is smaller in magnitude than (k/2)> = k?/4, and thus each entry in
A? is smaller than k?/2. By a similar argument, each entry in A3 is less than k3/2,
and by induction we can prove that each entry in A™ has absolute value less than
k™/2. Thus when we sum the series

2

3
2 t 3 4

Ay J & + |

exp{tA)y=1 TLAT%"A +§'—A +

each of the summands of the four entries in the resulting matrix is less than the

corresponding summand of the series

k 2k 2k

a
series converges when A4 is an 1 x n matrix.

It now follows that the fundamental identity for the exponential function

exp (s + t)A =exp (sA)exp(tA4)
holds for matrices.
You might ask, how about a more general identity of the form

exp (A + B) = (exp A)(exp B)
where A and B are arbitrary matrices? To see what is involved, let us expand both
sides

exp(A+B)=I+A+B+1A+ B>+

=I+A+B+3A*+ AB+BA+ B+
while

AW 4

{ AL n\ (r 4 o+ 1 42 N
[CXPA}[CXPDJ=U 't‘/i‘i‘j/i ‘f"" )[1 ‘i‘D-f'zD —1' }

=I+A+B+(34>+ AB+1BY) 4

where -~ denotes a sum of terms of degree higher than 2 1n 4 and B. 1l we comparc
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the quadratic terms, we see that they are not equal unless

L(AB+ BAY= 4R
‘\ T } 4P W &4

b

1.., unless

AB = BA.

Thus, if the matrices A and B do not commute, there is no reason to expect that

X = > ) 5

neral,

¢ (rue.

Oor a

concrete example, take
0 1
A= .
(O 0)

In this case A> =0, and hence all the higher order terms in exp 4 vanish and we

have the simple expression

1 1
epr=I+A:( )
\0 1/

axKe
0 0
B=(1 0) so B*’=0
and
1 0
exp B I+B=( )
1 1
Then
rd AN\ £ b At /1 1 /1 0\ 2 1\
CXPANXP D) =g Ny )T )
\\I A \1 L/ Py l/
On the other hand
/O 1\
A+B={ |
\1 o)
SO
(4+B)2—/1 0\.
\o 1)
Thus
1 1
exp(A+B)=I+(A+B)+%I+3—'(A+B) 4—'1+---
, 11 \, [ TN
KLTETET /1-rkl-r§!——t—§—1— '}\A—t—u}
Now
1 .1, =3fe+e 1)
1-7,#-4,1' pA\ }
and
1 1 11 el
1+2'+§'+7 se—e™Y)




SO

is that the matrices s4 and t4 commute.

Having shown that exp (tA4) is well-defined by its power series, we next generalize
the well-known formula

d
& [exp (tk)] = kexp (tk). (3.4)
We define the derivative of exp(t4) with respect to the real number ¢ by
d 1
—[exp(t4)] = lim—[exp ((t + h)A) — exp (t4)].
dt h-—)()h

(The limit on the right-hand side of this equation means that each of the matrix
entries tends to a limit.) Since exp ((¢ + h)A) = exp (hA) exp (tA), we have

9 lexp (tA)] = lim - [exp (hd) — ITexp (t4)

=01
But
hZAZ h3A3
exp(hd)—I=hA+——"+—7—-+
) 3
SO
1 hA? B4
—(exphA)—I)=A+—+—
p n L J.

A & &4

We have thus proved that

d
g;Lexp (t4)] = Aexp (tA),

which is just like (3.4) except that the multiplication on the right is now matrix
multiplication.

X . . . .
Now let v0=(y0> be a fixed vector in the plane, and consider the time-
0

dependent vector v(t) defined by

v(t) =exp(tA)v, where A=(a Z)
c

We _can define v(1)_the time derivati
W I/,, CIEG L2 % W NAVL X (=35

n define ¥(t), the tim. vativ

vw=ﬁm%UU+m—WQL

h—=>01!




{ ()
N [l'llS blmply Medns V(t} = l

If we write v(t) = P ). Since v, is constant, we
\\P AL I/

Hdave

1

v(t) =Iim . [exp ((¢ + h)A) — exp (tA) ]v,.
h—~0

That 1s,

v(t) d exp (tA)

V(t)=— v

dt p 0

so that

V(t) = Aexp(tA)vy = Av(t).

We have shown that v(z) satisfies the differential equation

W)= Av(t), v(0)=v,

x(t)

we see that
ﬂﬂ)

Writing v(t) = (

that is,
Y AN eaf Y L Fasff
W)= BAL) T UL,
50 = ex(0) + dy()
Thus

/J‘/It\\ /.k\
[T ) = expa) 0]

W/ 7 Ao/

is a solution to the system of linear ordinary differential equations written above.

In fact, it is easy to prove that any solution to the differential equation v(¢) =

v(t ) isof theform v(ﬂ =exp (@ A\v Q1mn]v consider the vector w(ﬂ = PYn(— tA\v t)

IIOTCGvI tIiv v ewt o1 ¥y v

w(t) = % (exp (— tA))v(t) + exp (— tA)v(t).
But

ad—texp(——tA)= — Aexp(—tA)

and by hypothesis

v(t) = Av(z).
SO
w(t)= — Aexp(—tA)W(t) + exp(—tA)Av(t) =0

since the matrices A and exp (— t4) commute. It follows that w is a constant vector

(call 1t vy) and we have




or

V(t) = eXp (IA)V().

We thus see that the function exp (r4) determines the general solution to a system

various methods for computing exp (1 4).
p

3.3. Computing the exponential of a matrix

Suppose F and G are matrices which are related as
F=BGB™!,
Then
F*=BG*B™!
for any k, and hence it follows from the power series expansion of exp (t4) that
exp (tF) = Bexp(tG)B™ 1.
Case 1. F has distinct real eigenvalues. We can now make use of our
ability to diagonalize 2 x 2 matrices. Suppose that F has distinct real eigenvalues

A; and 4,. Then we can write

AN

D

1

[/ A
E=B["t " \pg-1.
\0 4,/

S

ICCE T

/ a A \n / an FaNiAN
(/“1 U\_(/Ll U\

\0 4,)] \o 1)

and 1t follows from the power series definition of the exponential function that

exp( 0 Oy _(e 0
"\0 ) \ 0 e
so-that
et 0\ _
| exp(tF)zB( 0 eht>B 1

7 4
As a concrete example of this technique, take F =< ) The

-8 -5
characteristic polynomial of this matrix is A2 — 24 —3 =0, so the eigenvalues are
\ L 4 4 .

Ay =3, A,=—1. Considering (F —3I) =( g 8)’ we find eigenvectors

1 t
A1 =< 1), the kernel of F — 31, and v, :( 2)’ the image of F — 3I. Thus

n
D_




and

F=

> N [

[/ 1 —1\/3 0N/2 1\
27X =1 X1 1/

It follows immediately that

(1 —T\/e* 0 \/2 1)

E
1

Axras (g
CXpii

= o e Ny

AN

and we can multiply out the matrices to obtain
2e3t_e—t e3t__e—t )

exp(eF) = (— 2e3* +2e7" —ed 42"

Given any vector v, which specifies initial conditions, that is the value of v at t =0,
we can now write down the solution to v(t) = Fv(f). Suppose, for example, that

Vo= (i) Then
1 3e3 —2e7!
v(t) = exp(tF)<1> = (_ 3e3‘+4e_‘)'

Differentiating each component, we find

[ 9eT+2e
\

F A
YT g3 _get )
A} i 7/

and we confirm that

/

g ={ | 4 2T [ %er42e
RIS

AY
) also:
7

\—8 —5/\ —3e3‘+4e",/=\ —9e3 —4e”’

7N N

Case 2. Repeated eigenvalues. The method just described works when F has

distinct real eigenvalues. Suppose, instead, that F has a repeated eigenvalue 4. Then

/ 9 faly /At N N\
either F=[" ° \l, in which case exp(tF)= N v \, Or we can write
\0 i) \0 e/
A1
F=B B~ 1.
) At t .
To exponentiate 0 it we write

At t 0 ¢
= Atl
(0 u) * (0 0)
and make use of the fact that, if matrices C and D commute, then

exp(C + D) = (exp C)(exp D).

Since Al commutes with any matrix we have

[ At

o O
L

A
| =exp(Atl)exp

o

eXply o,
\YV 2y




/0 t\* [0 0\ N
But \ a0 } =\ 0 n ), so we have from the power series tor the exponential
N =/ N7 =/
(0 1) 1 0\ /0 ¢\ -
EXPly )=\ , J+1, )+ terms which are all zero,
Y AV Y 177 \V v
0 ¢ [1 ¢
ie,expl o 6)= g 4 )-ands0
\V) AV \v 1/

ox At t\ (e* 0 lt_e’“ teM
Plo a1/ Vo e*lo 1/ o ex)

i1
if F=B B!

At

t At
then exp (tF) = B(eo :M )B‘ 3

It follows that

As an example of this case, consider the system of equations

xX=x+ty,
vP— — v+ vy
J L 4

I'he matrix F={ ] has characterisiic equation A* —44+4=0, with
\ - 1

7/
pa N\
a - dashhls e + 1 Y Canetderinoe R 2l AY /_1 l\ 370 frad +tha Arevonvarntar
a UOuulc 1000 A= 4. CUILIUCL] 15 \1 —41}—-‘\ 1 1 ’ wo IO UIC UIBCIJVCULUI
=
/11\ /0\
v, ={ \ and the vector v, =( \ for which (F —2D)v, =v, Thus
\1/ \1)
/ AN/~

(1 0y/2 1

Fo Yoo
\1 1J)\o 2)\-1 1)
2t 2t

Since exp(zot 2tt> = <e0 t:2t> we have

1 0\/e? te* 1 0
expF)={1 N o ex)\_1 1

(1 —pt)e? te? )

or

—te? (1 +1p)e?

exp(tF) =<

If, for example, we wish to solve the above differential equations for initial conditions
Xo=2, yo=1, we just form

2 et —te?!

exp(F)|  J=1 5 . 2

o~

9y | VIR A v




92 Linear differential equations in the plane

Then
- A2t 2t e 2t .
X=4C c ZieT =xy,
y=2e"—¢e""—2te”"= — x + 3y.
T4r Fant + 3a 1 ~t wnal] NnAanNAQQaTr ta write JF — D/ A‘ 1\D_1 PR h
I faCl, I s TTotIeairy neilsoary 1to-wiliv 14—

F has a repeated eigenvalue 1. By the Cayley—Hamilton theorem,
(F—A)?=0
so the matrix G = F — [ is nilpotent. Now, since A and G commute,
exp (tF) = exp (Atl) exp (tG).
But exp(tG) is easily computed from the power series:
exp(tG)=1+1tG

since (tG)? and all subsequent terms are zero. So

e 0
exp(tF)=(n Mtj(1+tG).
N 4
In the nrevioncs_exvamuple
HnCpProvioas Cxarltprc;
/1 1\ —
F={ ), G=F-2I= )
\—l J/ — 1
and
/e 0N[/1 0 —t )]
exptF)=| o »)lq ]+l . ]
\ VAN -t ot/
/(1 —1t)e* te?t \l

a9 ]’\P ore
A UCITULI G,

Case 3. Complex eigenvalues. We have finally to deal with the case where F has
complex eigenvalues. We have proved that, if the eigenvalues of F are a + i, we

can write F =BCB~! where C is the conformal matrix Cz(; —'B) The
o

problem is now to exponentiate C.

. 0 —1 )
Notice that C=al +fJ where J= ( { 0). The matrix J satisfies
J = —Tand corresponds to the complex number i = \/ (—1). Because ol and BJ

commute, we have

exp (tC) = exp(tal)exp(tfJ).

Of course

had ]

ot O\

expta)={ __ |
\U ¢/




Ompu ing t 1e expo

To compute exp(t8J), we use the power series

CXP(tBJ)—I+tBJ———(tﬁ)2 (t,B)3J+—lT(tﬁ)41+

2 4 3
=(1—(t§!) (tf')_i_m) (tﬁ—(ﬁ) .)J_

The coefficient of I is the power series for cos Bt; the coefficient of J is the power
series for sin ft, so we conclude that

exp(tfJ) =cos ftI +sinftJ = (c"sf“ — sin it )

sin St cos ft )’

which is a time-dependent rotation matrix. Identifying J with the complex number
i, we see also that

e =cos fr+ isin pt.

. A
Thus, if C =| ,
\B )
[e* 0 \[cosft —sinpt )
expltO)=\g e N\ ging  cospt/
\U C / \blll Pl COS Pt/
and, if F = BCB™ ", we can calculate exp(fF) as
exp(tF)y="Bexp{C)B—1
3 —10
As an example, consider F=| _ . |. The characteristic equation 1s
4 - J
A2 4244 5=0,withroots A= —1+2i.So F=BCB™!, where C is the conformal

2 -1
the first column of B, and the second column of B is then the first column of

1/3+1 2 t 2 1 2
F—— 1vi . 1 —_ = . — =
ol divided by f: that is 2( 5 ) (1) So B (0 1) and F (0 1)

x(—l ~2) <(1) —2)' We now calculate exp(tC) by the procedure just

-1 - 1
matrix < 2). As described in section 2.2, we can choose ( O) as

2 —1 1
described: '

exn(tC):(eﬂ 0\(C082t —sin 2t

L0 e "/\sin2t cos 2t/

and so

/12 /1
exp(tF) =] lexp (tC)}
\0 1) \U




Multiplying the matrices, we have
PFOES PAY - —4 -~
rZt) —5e~*sin2t

/e~ *(cos 2t + 2si
exp(tF) = ( _ -, . )
\ e ~'sin 2¢ e ‘(cos2t —2sin2t) /
7 1 1- £ vranrriranlf +lhat
Y Oou can CneckK 10T yoursciitinat
d :
Eexp (tF)= Fexp(tF).

Again in this case, it is not really necessary to do the decomposition F = BCB™*
explicitly. Suppose that F has eigenvalues a + iff so that its characteristic equation is

(A—a)* + B*=0.
Then, by the Cayley—Hamilton theorem,
(F—al)> +B%1=0
so the traceless matrix G = F —al satisfies G*> = — *1. Writing F =al + G, we
see that
exp (tF) = exp(atl)exp(tG).
Again we exponentiate tG by using the power series:
2G> *G*  *G*

exp(tG)=1+tG+———+——+—

L. Je .

'T'aking advantage of the fact that Gi=_— r/jz I, we obtain
N B ﬂztz i ﬂZtSG ﬁ4t4 i
exp(tG)=1+1G=—~1—— TR
The coefficient of I is again the power series for cos ft. The coefficient of Gis
t—ﬁ‘ts +ﬁ4t5 ——1~/ Dt——p‘sts +ﬁ5t5 +— -\—/bi“l Y/ B

We conclude that

exp(tG)=cos ft I + [(sin ft)/B1G

and
e 0
exp(tF)= < 0 e"“) exp(tG).

—10 )
Returning to the example F =(2 ), for which a=—1, =2, we

v 10), a traceless matrix satisfying G> = — 4]. Then

form G=F+ 1=
S
cos2t 0 1o 4 —10

exp(tG)=( 0 cos2t>+28m2t<2 4

. [cos2t+2sin2t —5sin2t
explt6) =| sin 2t cos 2t —2sin2t )’
\ olll &t COO <& 7




34 Differential equations-and phase-portraits
We have seen—that-thedifferential equation V= Av, with-theinitial condition
v(0) = v, has the unique solution

v(t) =exp(tA)v,.

This solution v(¢) defines a function from the time axis to a two-dimensional vector
space. Because exp(tA) is defined for negative t as well as positive ¢, the domain
of v(t) is — o0 <t < . By plotting the point whose position vector is v for all
values of t, we obtain a solution curve for the differential equation. This curve is
like the path of a particle which moves in a plane, and the vector ¥(t) = Av(t),
which is like the velocity vector for that particle, is tangent to the path. Through
each point in the plane there passes a unique solution curve, and the effect of the
transformation exp(tA) is represented by moving ¢ units along the solution curve.

t=-1
\
4t=0
vo /. \
S\
/ \t—l _
\ x
\
8(1) \\
\‘ t=2
Figure 3.1

By plotting a whole family of solution curves, we can create a phase portrait
which conveys the important features of the solutions of the differential equation.
Although there are many different matrices A which could appear in the differential
equation ¥ = Av, there are only a limited number of different types of phase portraits.
To be specific, if matrices 4 and F are conjugate, so that A= BFB™, then the
solution curves for v= Av are obtained from those for w= Fw by the linear
transformation v(t) = Bw(t). The proof is simple: since B is constant, v(t) = BWw(t),

——and it follows that, if W= Fw, then

‘;’ = B‘.V%BEW = BFB_l‘v' =AYV




Thus the phase portraits for v = Av are essentially the same as those for w = Fw

if A and F are conjugate. We can therefore determine possible phase nortralts (up

to_a linear transformation) by ng the different noccihilitice for the eiocen
Gy 10 IS ATARTI S N7

a-Hpcdrtransiorimnati tHe-dhekent POSSIO1HITICS —t )

leucb Ul /‘i.

We note first that 1f v, is an eigenvector of A, with eigenvalue A, then

1

vit) = exp(tAv
7 r\ 4

Vo 14+tA -g-i{r/ﬂz-g-
!\ 7

B

Fl +td +%(tﬂ.)2 + ---]vo =ey,.
So in this case the solution curve is the straight line through the origin on which
v, lies. If A is positive, v(t) moves away from the origin as ¢ becomes large and
positive; if A is negative, v(f) moves in toward the origin as t — co. If 1 =0 then
v(t) = v, for all t, so each point on the line through v, stays fixed.

We can now enumerate all possible cases.

Case 1. A is a multiple of the identity matrix.

(0 0) _(1
Case Ia.A—(n n/,exp(tA)—\n

0 :
1 ) So all points stay fixed.
/

[0\ et 0\
Case 1b. A= |l exptA)=|_. |
N, 0"/
\ / \ /
\ / \ /
\ / ~ \ / ~
N\ / ~ N\ / /
S~ \ ~ ~_ \ / .~
\ \\ / . \ /
AN AR
/ A/ \\\\\ ///// \ \\

()]

Figure 3.2(a) 1> 0. Figure 3.2(b) A <0

Every vector is an eigenvector, so all solution curves are straight lines through the
origin. If A >0, each point moves exponentially away from the origin as t — co; if
4 < 0 each point moves towards the origin.

Case 2. A has real distinct eigenvalues 4, and 4,.
Then

A
|B~
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PA
In the special case whe e solution curves-areas-illustratedinfigure 3:3(a).

._3..

The x- and y-axes are solutlon curves.

Since

/%) [eMixg)

J’) - ety

and e*'* > e*?, x/y becomes larger and larger as t — c0. As t - — o0, curves become
tangent to the y-axis.

/ \
(a)
[ 0
Figure 3.3(a) A =| )
LU Py

Lv/If\rn generallv _let v. and v.. be the eigcenvectors of ‘4 Llnes algno v. and v, are
Ut ghiiviall y, 1V vy adud vy Uvthiv Tigvil Voot oto— et & 1
solution curves. Since A; > 4,, other curves become parallel tov; as t=+o0;

tangent to v, as t — — o0, as illustrated in figure 3.3(b)

\£)

/ Vi
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\l /, Pt

/
—— -—’
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AN

(b)

>a

1

Figure 3.3(b) 4 = R(\

o
Rull=
\—’




Case 2b. /., and A, both negative, |4,

| <|4,]. This is similar to Case 2a, but all

__arrows are reversed. As £— oo, all solution curves approach the origin. |
Crace Dpe 1 snAcitive 1. neoative Inthe enecial ca . N _ I +ba v aviQ and v
Cadse ¢, A7 POSTHvVC A7 HCEAve I tnCHpelidrease wnere b — 1, tic X—datsallda

» 3

J
axis are again both solution curves. As t increases, x becomes larger, y smaller.

Other solution curves approach the x-axis as t — oo, the y-axis as t > — o0, as
illustrated in figure 3.4(a)

\\ ,’
/

N vi ! Vi
AU N B
AN Y

N
\ ||l /
\ 1 17
Vil s
(I |

(a)

(a0 N3\ {eMix\
Figure 3.4(a) A= | L =1 I

\0 4,/ \y/ \e'w)%)

More generally, suppose eigenvector v, corresponds to eigenvalue 4, >0, while
ercenvectorwv. corresbonds to eicenvalue 1 0O Points alone line throuch v. move
UISVLJVUVLUL '2 \d\lll\dot}\llluﬂ L3 g uleuxxvuluv Ibz Ve L VUTIILY ul\}lls TI1IN llll\.’uell v 1 IIIVUvY Vv
out, those along line through v, move in. Solution curves approach the line through
v, as t— + oo, the line through v, as t > — oo, as illustrated in figure 3.4(b).
AN
AN
\\\\\ ~ .///

(b)
Ay 0N
Figure 3.4(b) A=B B

Case 2d. A, positive, 1, zero.

-axis—as—+t—+ oo, toward it as




o

{3}
A4

O At
Figure 3.5(a) 4 = (ll ), (x) = (e x0>
0 0/ \y Yo

t— — co. More generally, suppose eigenvector v, corresponds to 4, >0, while v,
corresponds to 4, =0. The line through the origin along v, is held fixed. Lines
parallel to v, are solution curves. Points move away from the line through v, as
t — 00, toward this line as t = — 0.

(o)

Case 2e. 1, is negative, A, zero. Just reverse all arrows in the preceding case.
As t - + o0, entire plane is projected onto the line of eigenvector v,.

Case 3. Repeated eigenvalue 4, but A4 # AL

A 1t
A= -1. — Ar —1.
B(O A)B ;exp(tA) = Be (0 1)B

In this case there is only one eigenvector v, .

Case 3a. 1> 0.

In the special case where B = I, the eigenvector v, lies along the x-axis

Y Qv;o :c 0 Gf\]lI";I\ﬂ oC1Nrve' naintce nan ;f mMave n1it Ac 3 ~n v Ihecoamec muc
ATAATY T A YUIUUIVII vuil VU, PUIILLD Ul ITU 111UV UuUulL., 1y L—_’W, A UCOULITIIVY 1110gwix




greater than y; curve becomes parallel to x-axis. As t - — o0, x becomes opposite

in sign to y. All curves cross the y-axis for t = — x_/y

urJouUT

(% e:,/x0+tYO\

T Al N
N/ N JU

More generally, the line through the origin along v, is a solution curve; all other
onrvee _bhecome narallel tao thie line ac f — ~n A1l ecnirvec ecrace ovorv_other Line
vul yvy UL uiiny ycuauu.l LU 1Y IV Aoy UV — W, Ml vul vuy vivoy CUvleyd LIV 1
through the origin




In the special case where B = I, the x-axis stays fixed. Lines parallel to it are

solution curves. For any , exp (t4) is a shear transformation.

(2)

A arae ganarally +the 15
IVIUIC gllivially, LU 11

[

plane 1s sheared parallel to this line.

, 21
Figure 3.7(b) A= B(O Al) B!

Case 4. A4 has complete eigenvalues o« + 1. In this case there are no eigenvectors.

Case 4a. a=0
In the eherial race wwhere R I +h I - ro mimalae anitar
In-the-special-case-where B=1, the solution—curves-arecircles centered at the




origin. The transformation e€xp(tA4) is a rotation. The solution is periodic with

period 2n/B.

Figure 3.8(a) A = (g ! ),exp(tA) _ (C"S pr —sin fi )

sin it cos ft

More generally, the solution curves are ellipses. The solution 1s periodic with

period 2m/f.

(b)

. (0 —ﬁ) _
Figure 3.8(b) A=B 8 B!

Case 4b. a > (. Solution curves are counter-clockwise spirals. Points move out as




Al /

(a)

Figure 3.9(a) A = (Z _aﬂ )’ exp (tA) = eat(

cosft —sin fit )

sin fit cos fit

Case 4c. a < 0. Same as above, but spiraling into the origin as ¢ — 0.

3.5. Applications of differential equations

The best-known physical system which gives rise to a differential equation of the
sort we have just been considering consists of a mass M which moves under the

N\
\

Figure 3.10




influence of a spring which exerts a force, — kx and proportional to the displace-
ment, x, a ‘linear dashpot’ which exerts a force — zu, proportional to the veloc1tv

pPYrt

d law savs that 4y — Lo~y Taile the
<t ot yo it Vil = — KX — Zu WHHC t1iC

ar
IICT

= ——X——1Uu
S VAV

we can write this differential equation as

w=Aw
where
0 1 k z
A= f=—, T=—.
(—a% -—r)’ YT T T M

The character of the motion is determined by the eigenvalues of A. Since the
characteristic equation is

PZ+Tl+wi=0,

we have

r
1

T

There are four distinct possibilities:
1. If I'=0 (no fr1ct1on) A= +iw,, and the oscillator 1is undamped The phase

1 xr

The equation of one of these ellipses s $Kx* +$Mu? = constant, which implies
conservation of energy. The period of the motion is 27/w,.

D
la i




2. If I'>0 but I'” —4w3 <0, the eigenvalues are

e U oz tr2)

t
i —‘\/\W” i)

The oscillator 1scalled underdamped. The phase portrait corresponds to case 4c;

the solution curves spiral into the origin.

(@)
\W/

Fig .
2 T2 _An2 the oharacterictic_eatnation_hac a danble root 2 '/ The
Je 111 —"fUJO LIV Uiial davilClIbliv vyyualivll 1lads a duuuviv 1vuvtl 24 — p /L. 111V
oscillator is critically damped and the phase portrait corresponds to case 3b. On

looking at
(T2 1\ \
\—-T%4 —T)2)
AU

A

xYy

(©) ~

w
ey
ok
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Figure




. This impli

(Xo\_{ %
\uo)  \ = (T/2)x,)

7

then x and u remain proportional throughout the subsequent motion.

4. If I'? > 4w} the characteristic equation has real negative roots

A= -T2+ /(T*/4 — ).
The oscillator is overdamped, and the phase portrait corresponds to case 2b.

AU

F 9= Y
Uy
Figure 3.11(d)
In order to understand better these four types of motion, let us pick a typical
tratectorivand nlat the v roardinate ac a funetionof £
tIrajuwior [e3 8LV} PIUL LIIV ATVUULTUILIIALLY AY A TullvlIvuIl Ul

0 1\ [wg'® 0 0 wo\/wi* 0
—w¢ 0/ U 0 wi?/\—w, 0 0 wgl?

0 1 wg? 0 cos wot  sinwgt \ [ wy? 0
Cxp 2 = 1/2 : -1/2
—w§ 0 0 wi?/\ —sinwgt coswet)\ 0 w,

and x as a function of ¢ will be of the form
X =mcos gyt + nsin wyt
where m and n depend on the initial condition. Writing

m? + n? = p?

and defining ¢ by

— : oy 5 PP
m=psng, "n=pLosy




W€ can write

x(tl= 0 cos{~t+ &)
Mot )
"FLA mhace A A +la h DR |
The ucpcu e 1S blllUbUl(ldl with Irequency Wy e pHasc; @, ana tne ampirtude,
p, depend on he nitial conditions.
,\+ 4
Figure 3.12
Case 2. Here we know that
(e Tcoswyt  —e Msinwgt\
exptA Bl -TIt 2 —-TIt + )B
N SImrat € coswyt/
where
Wy =% /(42 —T2)
AVARN O 7
x(f\: nn—r et b))
tw)=pc SNOTUT ¢

where p-and ¢ depend on the initial conditions. This is am exponentialty damped

sinusoidal curve.

[\/\eﬂ N,

\/V\t

Figure 3.13

Cases 3 and 4

There is no sinusoidal component, x decays exnnnenhallv with t and crosses the

— N i
— U

line_at Aot
1V Al 111VsStL U
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> 7 /. ——— |
0 0

Figure 3.14 Figure 3.15
Forced oscillation
Ereauentlv the differential eaunations which arice in <olvine nhveice nrobleme are
Py L\J\iu\JIALAJ CIEG S\ 11IvVI vViivilwy V\i“ul—l\llju LARANWITE AL 1N AAL IUX ll‘& tJllJUlvu tJLvUAVLL‘U [= 5 W ]
not homogeneous equations of the form v— Av=~0but inhomogeneous equations of
the form

K
—— 000000 ——
N y F (@
| ——
\ z
A\
Figure 3.16

with b not identically zero. To see how the term b(¢) might arise, consider a driven
oscillator, a mass M acted upon by a spring, a dashpot, and a motor which supplies a
force F(t). Then x = u and mi = — kx — Zu + F(t) so that

G) - ( - z?/M - Z/IM)C) B (F(t?/M)'

To solve the equation v — Av =h(t) we generalize the method called variation

of parameters, a well-known technique for solving linear differential equations in




a single variable. Recall that for one dependent variable, to solve

1.+

x—nw—e o

x — kx = b(t), we obtain

so that
u(t) = e " ¥b(1).

Then, integrating once with respect to time, we find
t
u(t) = J e " **b(s)ds
0

and finally

x(t) = eu(t) = e’“J e **b(s)ds
0
or

x(t) = r e"*~9b(s)ds,

\
0
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solution, satistying the initial condition x{0) = x,, we simply add on the appropriate

solution to the homogeneous equation, € x,, so that the solution to X — kx = b(t)

1+l 0
\VJ

Wwith .X( )— Xo IS

ft

x(t)= | e**~9b(s)ds + e*'x,,.

JO

+1a 1. hitl Qine

" 1 | O R, 1o v Axs o
Exactly the same approach works when we set out to solve v—Av =D0b(l). dince

exp(tA)v, is a solution of the homogeneous equation v — Av =0, we replace the

constant _vector_v, by a function w(t), and try the solution v(f) = exp(tA)w(z).

Substituting into v — Av = b(t), we obtain

Aexp(tA)w(t) + exp(tA)w(t) — A exp (tA)w(t) = b(1)
so that
w(t) =exp(— tA)b(¢).

Integrating, we have

% w(t)= Jtexp( — sA)b(s)ds

0
and finally

V(1) = exp(tA)w(z),

V't
Vha B ]

v(t)= [ exp[(t=s)4]b(s)ds. -

JO
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obtaining

v(t) = J lexp [(t — s)A]b(s)ds + exp(tA)v,
0

which satisfies v(0) = v,.

This general solution is not the one which is usually found in discussions of the
forced oscillator in physics textbooks. There it is usually assumed that the driving
term b(t) is sinusoidal with fixed frequency w; for example,

b(o) = (sm wt + cos cut).

3coswt

Then b(t) satisfies b= — w?b, and we can use integration by parts to evaluate the
integral in the more general solution which we obtained above. The trick is the
same one used to evaluate antiderivatives like [e ~**sin s ds: integrate by parts twice

to get an equation for the unknown integral

h S
1.CL

[4

I'{+ N\ 47 AW |
v={ exp[{t—s)Alb(s)ds:

JU

Integrating once by parts, and assuming that A is non-singular, we have

lntegratlng again by parts, we have
r r{+ Wk eS| = Y
V=L eApLit—o)alAa 0 - ) Jo
t
+ J exp [(t — s)A14 ~2b(s)ds.
0

Replacing b(s) by — w?2b(s), we see that the last term is just — A4~ 2w?v. Thus

v+ A" 2w?v= —[exp[(t — 5)A][A ™ 'b(s) + A~ 2b(s)1T,
or

(A% + w?I)v= — [exp [(t — 5)A][B(s) + Ab(s)]T5.

Unless the eigenvalues of A are + iw, in which case (4% + w?I) would be singular,
we can multiply both sides by (42 + w?I)~ ! to obtain the explicit solution

= — (A2 + w2I)~1[b(t) + Ab(t) — exp (tA) (b(0) + Ab(0))].
The term involving exp(tA) serves only to guarantee that v(0)=0; if I" > 0, then

EXptA times any vector tends to 0 as t — + oo. Thus, for large t, we can drnp this

=3

foarm
U
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v= —(A>F oD~ Ib() + Ab() 1. i




To check this result, notice that

and

= — (42 + 1)~ [Ab(t) + A%b(t)]

<a-that
b [*F 9 3= 3

V— — - 2

This check shows that the result is correct even if 4 is a singular matrix!
Suppose, for example, we wish to solve

b —1 —=2\(x\ (sin3t
j;)—< —1/\y) cos3t>'
-1 =2 sin 3t
Az( 2 —1>’ bm:(cos?;t)

and b(t) = — 3?b(t), so w = 3. Then

1 —2\/—=1 —2\ /9 0 6 4
2 2r _
A+“’I"( 2 —1>( 2 —1>+<o 9)‘(—4 6)’
1

N

Here

1 /6 —4\ 1(3 —2)
(A2 + 0’l) " =—| =—|
5204 6/ 26\2  3)
and
1 /’3 —2\\—/’ 3cos3t‘\ [ /’—sin3t—2cos3t\|"

26\2  3J[\ —3sin3¢t )"\ 2sin3t—cos3t /|
1/3 —2\/ cos3t—sin3r) 1 [sin3t — 5cos 3t

26\\2 ?/}\ — cos 3t —sin 3t } 76\ 5sin 3t +cos3t }

A T a g

This is the steady-state solution to the original differential equation. Notice that

as the forcing term. However, both the amplitude of the wave form of the com-
ponents of v and its phase (the location of the crests and troughs) have been changed.

Let us examine what the steady-state behavior is for the case of the physical
system described at the beginning of the section, with sinusoidal forcing term, so

0 1 0
A= ( —wf — F)’ b(e) = (sinwt)’

Then
42 —w)y -T
Twi T?—w}
s0
+ w?* — wj —T
A%+ 0] = °
o ( TCw? I+ w? — w?
Qnrl

Det (A2 + w?l) = (0> — w3 + + T (0? — wd) + i = (m — m3)* + 2?2




T 7t

Therefore

2 2
(A7+w‘)‘r)—1= 1 /r +C!)2—60n r \
(fl)z —_ (1)2‘2 + rzmz\ T2 2 (nz }
L 07 X 10y W =0/

and our formula for the steady-state behavior of the system is given by

—1 I'? + w? — wé r 0 N sin ot
T (0% — w)? +Tw? — Tw? w?* — w} @ cos wt — I'sinwt

Thus the x-component of the motion is

_1 :
x(t) = @ — ol § T2 [wI cos wt + (w? — w3)sin wt]
= psin(wt + ¢)
where
1

, ¢ = arcsin(— I'w/p) = arccos (w3 — w?)/p.

P N0 — 0d)? + T2w?)

Notice that, if I is small, the amplification factor is large for w near w,. This

phenomenon is known as resonance. Notice also how the phase shift, ¢, changes

from 0, for small values of @w? to —n/2 for w? = w3, to arccos(—1)= —x for
large valuesof w?
3
\
[
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Figure 3.17. Response curve
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Figure 3.18. Phase shift graph




Summary

A

The exponential of a matrix

as a formal power

£

L'Fd gad-q arls dM‘A

You should be able to express the exponential function e*

X haveapar uuu1auy' sin

IPIC 10T

You should be able to

explain the meaning of the derivative (d/df)e™* and to

show that it equals Xe'*

B.

C.

time-dependent vector.

Linear differential equations
You should be able to show that every solution to v = Av is of the form v = et',,
You should be able to calculate e* for any 2 x 2 matrix 4 and thereby to solve
v = Av for given initial conditions.
By determining the eigenvalues of a 2 x 2 matrix A, you should be able to
identify or sketch a phase portrait that represents solution curves for v = Av.

Inhomogeneous equations and the harmonic oscillator
You should be able to convert the second-order differential equation that describes
a harmonic oscillator to the form v— Av=>b, where A is a 2 x 2 matrix and b a

You should be able to solve the above equation and relate the solution to

properties of the behavior of an oscillator such as damping and resonance

Exercises

3.1.(a) Write the power series expansions for (1 — X)~ ! and for (1 — X)~ 2,

(b) Multiply these two series and compare the general term with the series for

(b) Try to evaluate (

N N
Njw =

(1 —_ Y\ 3
Z)
(3 3\
AN Tt 4 4 P ot 2 1 1 4ttt EH r/yn—1 Y71 41
J.2\d) LCL r =\ 1 1 }. rTove thdl I~ =5r ana tdL r =rjz Usiag U
Nd— 4/
recitlt _evaliiate the ceries exnancion-of (1 N1 Coamnute_the inverse
FESH G OVaua t€tRCSCCSCXpansion o011 1} T SOHPUtCTHCH v eIoo
directly, and compare.

by writing it

as (I + P)"! where P is the

.
matrix
=39

3.3(a) The matrix N,,,4=<

11

projection (f f) and using the series expansion of (1 + X)~!. Notice
2 2

that although the inverse exists, the series fails to converge.

1

2

1
2

1
2
1

) has the property that N2,

2

advantage of this property, evaluate the matrix F(t) =exp(tN,,) and
check explicitly that F'(t) =

n/4F (t)

=0. Taking

inem A1

(b)Y _The
A

n/&

o _[?
\1




advantage of this property, evaluate G(t) = exp (tP
G’(t) - Pn/4G(t).
3.4. Suppose that a matrix P satisfies the equation P2 = 3P

) and check that

/4

exp(tP)=I+g(1)P.
Find an expression for the function g(t).

3.5. Suppose that B is a 2 x 2 matrix which has a repeated eigenvalue A.
(a) Show that the matrix N = B — Al is nilpotent (ie., N> =0).
(b) By writing B=N + Al and using the series for the exponential
function, show that

exp (tB) = (I + tN)exp (tAl).

3.6. Use exercise 3.5 to solve the system of equations
X(t) = x(t) — y(t)
y(8) = x(2) + 3y(2)

. e . X
for arbitrary initial conditions ( 0).
Yo

. Calculate exp(t4) for the following matrices, and verify that (d/d¢)
exp(tA)= AexpltA).
(—4 5\

.L)«)
~l

3.8. Let A be a2 x 2maftrix which has two distinct real eigenvalues 4, and 4,,

with associated eigenvectors v, and v,.

(a) Show that the matrix P, = (4 — A,I)/(1; — 4,) is a projection onto the
line determined by the eigenvector v,:P? = P,, the image of P, is the
set of Av, and the kernel of P, is the set of Av,.

(b) Similarly P, =(A4 — A,I)/(1, — A,) is a projection onto the line deter-
mined by v,. Show that P,P, = P,P, =0, that P, + P, =1, and that
IPy+ AP, = A.

(c) By using the power series for the exponential, show that

exp (tA, P, + tA,P,) =e*'P +e*?'P,.
(d) Use this result to solve the equations
X(t) = — 4x(t) + 5y(2),
P(t)= —2x(6) + 3y(t)

X
for arbitrary initial conditions ( 0).
3}l

JU7

39. Let A be a 2 x 2 matrix whose trace is 0 and whose determinant is 1.
(a) Write down the characteristic equation of 4, and state what this
implies about 42




(b) Using the power series expansion of the exponential function, develop

an expression for exp(tA) of the form

[ al )

£+ AN ) nT A 4 \ A4
CAPUA)=T ()l T Uz

where F(t) and G(¢) involve trigonometric functions of ¢.

(c) The solution curve for the equation v= Av, with initial condition

V=V, is an ellipse as shown in figure 3.19. Prove that all chords

joining exp (tA4)v, to exp(—tA)v, are parallel to Av, and that the

midpoint of each such chord lies on the diameter of the ellipse on
which v, lies.

diameter

\ otr exp(td)v, \

L=}
~
L

Figure 3.19

3.10. Suppose that G is a matrix whose trace is zero and whose determinant
is — B2
(a) According to the Cayley~Hamilton theorem, what does G equal?
(b) Using the power series for the exponential function, show that exp G
+ exp(— G)is a multiple of the identity matrix. Find a function f such
that

v exp(G) +exp(—G)=f(PL

(c¢) By multiplying the above identity by exp G and applying the Cayley—
Hamilton theorem, show that Det(exp(G))=1, and find an ex-

M £ +lhe ¢ £ Y Al
PICSSIONN TOT UIC HIdLG U1 CAD U,

Y 4+ T Pl & S 3 1 1 1 . + T / Pl (trF)
(d) Let F =il + G. Using the above resuits, show that Det (exp F) =¢**-

3.11. For each of the following differential equations, determine which of the

phase portraits given in cases 1 through 4¢ best represents the nature of the




general solution, then solve the equation completely for initial cond1tions

(*N\_(>)ats=o.

—_ at

\1/

L~

<

(=]
. e e N

BA
y=x—4y
(b) A=A 2}”
y=—2x+4y
(c) x=4x— 135y,
y=4x —4y
(d) x=2x+y,
y=—Xx+4y.
() x=x—75y,
y=2x—35y.
(f) x=—2x+4y,
y=—x+2y.

3.12. For each of the following differential equations, determine which of the
phase portraits given in cases 1 through 4c best represents the general
solution, then solve the equation completely for initial conditions
()=(72)

= _jatt=0.

Yo/ \ 1/

(a) x =3y,
y=x—2y

(b) xX=—x+y,
y=—5x+3y

() xX=3x+y
Pp=—x+y-

(d) x=—"5x+4y,
y==—8x+ Ty

() xX=—4x—12y,
y=5x+12y

(f) x=x+ 2y,
y=2x—4y

3.13. By generalizing what you know about calculating and using the

exponential of a 2 x 2 matrix to the 3 x 3 case, solve the differential
equations

X=y,
y=z,
i=—6x—11y—6z
X 1

for initial conditions | y |= 2 |att=0.
z —1

(Note: The one tricky new step is inverting a 3 x 3 matrix. If you regard
this as the problem of solving three sets of simultaneous linear equations,

volrean-d 1+ by bayrta £ate hY
JUU LAl QUL Dy UIHULC 10ICC)

[FY]

—
3

. By generalizing the techniques which you already know. Solve the

equations

Y=Y 4 v ~
a3 a2l |

J “3




)')=——x+5y+2a

2= —2x+2y+4z

for initial condition
al conditior

Q
>

X 1

={1

y
\7 1

3.15.

3.16.(a)

By introducing the variable v = x, convert the second-order differential
equation

X+4x+5x=0
to a pair of first-order equations, then solve these equations for arbitrary
X
initial conditions 0).
Vo
The differential equation for a critically damped harmonic oscillator,
expressed in units chosen so that w3 =1, is
X+2X+x=0.
Solve this equation by matrix methods, introducing v=Xx as a new

. . . . el .. X X
variable. Write down the solution for initial conditions ( )= OO) and
v

1T

—_

X Wi istinct real eigenvalues, et e=0. ysically, this

corresponds to using a shightly weaker spring.) Carry through the

. 4 ; (%o d/o

procedure; first finding solutions for mitral conditions |, j2n IE
i3]

-

0 1 Jo ¢+
= U, WIIKI'icads to'd

i

X
o this, again showing

N\ A\

matrix with complex eigenvalues, then let ¢ = 0.

3.17.

X 0
what happens to the solutions for initial conditions ( 00) and ( ) and
Uo

to the phase portraits, as ¢ —0.

Consider the function cos tx.

(a) Show, by use of formal power series, that
d2
—(costx) = — x?costx
i ( )

and that

x

d
—(costx)=0 for t=0.
dt

X X

(b) Suppose that ( ) = — B( ), where B is a matrix which has a square
y y

/ x{ 0\

7

" "] is a solution to the second-order

root A. Show that costA4|
\Jyw)/




system of equations

d2

v(t) = — A%(r)

142
Ul

with initial conditions v(0) = v, and dov/d#0) =0.
s 3
5 ). Find a matrix 4, with positive eigenvalues, such

2
that 42 = B. (Hint: diagonalize B.)

(d) Forthe matrix 4 which you have just constructed, compute the matrix
cos(tA). (Hint: You have already diagonalized 4. Use procedure
similar to that for computing exp (tA4).)

(e) Use the above results to solve the equations

/
(c) LetB=|

2
_3
2

X=— %x + %y s
y=3x—3y
for initial conditions X(0) = y(0) =0, x(0) = x,, y(0) = y,.
3.18. Consider the system of differential equations
X=4px—y
y=9x+ Py
where f is a real-valued parameter.
(a) Solve the system for arbitrary initial conditions and f=0.
(b) Find two critical values of the parameter, f; <0 and 8, > 0, at which
the nature of the solution changes. Discuss the solutions for f = f, and
B = B 2-

(c) Draw phase portraits which describe qualitatively the nature of the

(=21

et A= "
\ 2 —1)

=

210
J. L7,

(a) Find matrices D and B so that A= BDB ™ *.

(b) Construct the solution to the differential equation v = Av for arbitrary
. o . 1 g 0 x 'l 1 '] 1 O 4
initial conditions v, = ( 0\} when r = 0. Please remember thate® = 1.

Yo/
(c) Sketch a phase portrait for the equation v = Av. Determine the image

and kernel of the matrix

F = lim exp (A¢t),
t—w

and explain their significance in relation to the phase portrait.
(d) By using the trial solution v = exp (At)w, construct a solution to the

1
differential equation v — Av = (2)

3.20.(a) By introducing u = X as a new variable, convert
X4+ 2% —3x=3sin2t + 2cos 2t

to an equation of the form




(b) Solve this equation for initial conditions x(0) =0, u(0) =0 by using the
results developed in section 3.4.

3.21. When an undamped oscillator is acted upon by a force at the natural

C( [] D NS OSC ato onven onal Meinods O () ON 14 DECd

£4) S o PUP A'lb(
)= exXptu SIS

[+

works fine, however. Use it to solve

(- 00 (amer)

for initial conditions x(0) =0, u(0) =0.
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Chapter 4 is devoted the study of scalar products and
quadratic forms. It is rich in physical applications, including a
discussion of normal modes and a detailed treatment of
special relativity.

4.1. The Euclidean scalar product

In an _affine plane, as you will recall, we have only a very restricted notion of

) . - - O 1Y) \ ot ¥ 0 o~
=4 . YV Cl U [ JA a U S U LAl d s U = L)

b -

segments along lines which are not parallel. For example, it is meaningful to say
that the length of QR (or Q'R’) is twice the length of PQ in figure 4.1, but we

CD{

cannot-comnare t lenot af POY it that of PO
vainniIol \/Ullltlal\./ LI 1\4115!—11 Ul I Z vwiLlil liiat U i1 Z
-
'
/ﬁ//

Q

Figure 4.1

A Euclidean plane is an affine plane endowed with a distance function which
assigns to every pair of points a non-negative real number, D(P,Q), called the
distance between them. This distance function is compatible with the limited notion
of length in affine geometry; e.g., D(Q’,R')=2D(P,Q) in figure 4.1, but it also
permits us to compare lengths of nonparallel segments such as PQ and PQ'. In
the Euclidean plane R?, the distance function is defined by the well-known formula




D(P, Q) = /[(xg—xp)* + (Yo — ye)°l.

A Fuy

flann Stormat £ p2 2 0 4 £ 43 121
aean sSetotindation f ik — R 1S an allime transtormation which preserves

I"
IRy EUCH
12

this distance function: i¢ » D(f(P), f(Q))=D(P, Q).

Turning our attention to the Euclidean vector space of displacements in the

Fnchdean Dlane we see that the distance function provides a wav of assienine—a
> L= =2 5 ¥ 4 =) y § o pProviato—a—way Ol s 5 a

lanmath ta cach veactmee tla 1 +1 . 1 1 h L £ 41 14

rength-to-cati-voector: tne length 1s simply the distance from "head” to “tail”. We

denote the length of a vector v by || v||. Clearly, if v= ( ), then ||v|| =./(x? + y?).

Figure 4.2
In general, the linear transformations of the vector space R? do not preserve

the lengths of vectors. Those linear transformations which do preserve length are

called orthogonal transformations: they are all either rotations about the origin

or reflections in lines through the origin

[
7\
\ )
N\ f
N ~_ /¢
N\ ~/
P R /\

f (1&

Figure 4.3 FR)

Since a Euclidean transformation of the plane preserves length, it carries every
triangle into a congruent triangle and hence preserves angles as well as lengths. In
particular, the notion of ‘perpendicular’ makes good sense in Euclidean geometry
(though not in affine geometry). We say that two vectors v and w are perpendicular or
orthogonal if the triangle which they define satisfies the Pythagorean theorem: i.e., if

VI + Twl? = v — wi|*.
[

V—w

AN

v

b mid A
Figure 4.4
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In terms of length and angle, we can now define the Euclidean scalar product

14

X
of two vectors. If v= ) and v'=| , | are two vectors, their scalar product,
Y] \Y/

(v,V) is defined as
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geometry of the plane any linear transformation which preserves length must also
preserve the scalar product: any such linear transformation preserves lengths of
vectors and the angle between them, hence preserves their scalar product. In other
words, if M is any orthogonal transformation then

(Mv, MV)=(v,V)

for any pair of vectors v and v'. We shall give a more algebraic proof of this fact
(cf. eq. (4.1)) below. Conversely, since (v,v)=||v|? any M which satisfies the
above equation for all v and v’ is certainly orthogonal. Suppose we hold v fixed
and consider (v,v’) as a function of v.. We claim that (v,v') is a linear function of
V; i.e. that

’ n ’ ’ ’ ’

We can see this most simply as follows. Suppose that we first consider the special

!

case where v=| :] lies on the x-axis. Then (v,v)=cx” for v'=| " ). This
\Y/




expression clearly depends linearly on v/, so we have verlﬁed the above assertion

for this special case. But now let v be apy vector. We can find a rotation M which
moves-v-to-the x-axis. But ( (v, v')=(Mv, Mv’)depen dS linearly on Mv'; and Mv

depenas nneany Oon Vv SO we are done. T repeat the ¢ argument in more detail:

! 4 ’ !’

) 3

=(Mv,aMV + bMw) since M is linear

= a(Mv, Mv') + b(Mv, Mw') because we have verified this in the
special case that My lies on the x-axis

=a(v,V') + b(v,w') since M is orthogonal.

Since the scalar product (v, v)) is symmetrical in v and v/, we see that (v, v)) is also
linear as a function of v when we hold v’ fixed. These two facts allow us to write

down the formula for the scalar product: write v= (x) = x( (1) ) + y(?) and
y

' 1 0
v’=<;,>=x'(0)+y’(l>. Now the scalar product of (é) with (?)

vanishes since the vectors are orthogonal, and each of these basis vectors has
length one. So,

[TAAVA N FAATA
\\1)

{ TAY N hd +1 1 APy hd
(v,v)=x vV i+y \ usmg the hmeartty im v
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using linearity in v’
, (O OV == (O 0))
=xx'+yy" since \ 0/,\()//:1:\\1/,\1// and
//1\ (0\\ O (/0\ {1\\'
\\0/’\1/) \\1/°\o/)
We have thus found a convenient formula for the scalar proaucr of two vectorsin the

plane:
(v, v)=xx"+yy.
We can summarize the important properties of the Euclidean scalar product as
follows:

(1) Symmetry: (v,v) = (v, v).
(2) Bilinearity: (v,av' + bw') = a(v, V') + b(v, w').
(3) Positive defmlteness (v,v) 20, and (v,v) =0 only if v=0.

Using these properties, it is easy to express the scalar product in terms of length.

Just consider




Because the scalar product is linear m each factor,

12 _ (v v}y (v _ \
=V V) —(V; W) —(w, v) =+ (w, w).

But since (v,v) = | v||%, (w,w) = ||w|? and (w,v) = (v, w), we have

2wy =IviPFwiF—=v—w]?

and so

v, w) = 3{IvIZ + Iwl|? — v —wi?}. (4.1)

This formula makes it clear that the Euclidean scalar product follows immediately
from the Euclidean notion of length. If you write (v,w)=|[v| || w| cos § and look
at figure 4.6 you will see that (4.1) is nothing more than the ‘law of cosines’ in
disguise.

V—w
w
i)
L
Figure 4.6

4.2. The Gram-Schmidt process

Let V be an abstract two-dimensional vector space and sup
Adyiet Y A I/ That 1

a-positive in analar me :
a-posttrve=aciintte scaiar proauct; {—, )y on v. Inatis; su

function which assi to each pair of vectors v, v, in V a real number (vl,v2 v

gns
and which satisfies the co ndltlo s of svmmetrv. b111near1tv and positive definiteness.

(v, Vo)y = (Lvy, Lv,).

In other words, by the correct choice of a basis on V¥, we can arrange that the
scalar product ( , ), on V looks just like the Euclidean scalar product ( , ) on R
To prove this, choose some non-zero vector w in V. Since ||w |7 = (w,w), > 0, the
vector
oW
T wly

has unit length, i.e.,

1
ey 1> =(ey, 1)y =W(w W)y = 1.




ow let u be any vector in ¥V which is linearly independent of ¢,. We know that
su h a u exists since V is two-dimensional. Let

T

We observe that u; i

Indeed,;

(uy,er)y =(u—

SlnCC (el, el)V = 1. AISO
dependent. Now set

(n,e1)pe1,€1)y
(u,e;)y(e;,e;)y
(ll, e1)V = 0

= (“> e1)V -
=(u,e,)y —

u, #0, for otherwise e, and u would be linearly

1
e2 = 7“2.
[z lly

Then (e,, €;)y = (1/[ v, ||,)(u;,e.)y =0,and ||e, |, = 1. We will use e, e, as our basis
of V. The most general vector in V can be written as

vV=xe; + ye,.

Notice that

— (v e
\' A3

)
J

s Vad
N

sv]

since (e,,e,) =0 and (e,,

e,) = 1. Similarly

y =(V, ez)-
Q st
SUPPOsC Ltiral .
2 x.e. 4+ v.e
1 viIver t Y1v2

vV, = X,€; + yo€,

2 1

so that the map L: V=R

by our basis satisfies

(
L
yl

Then

X2
> and vaz( )
Y2

(Vi Va)y =(x1€; + yi€5, X528, + p,e5)y

=X1Xy +V1)2

as (e, €,)y =(eye;)y =0

and (e;,e;), = (e, e,)y =1

= (Lvl, LVZ)‘

This is what we wanted to prove.
On R?® we can define the Euclidean scalar product by

Vi pl Vo) =x,%, +y,y5 4+ 2,2,
I 4
\CAWER LY/ -




Again, 1t 1s clear that it v={ y | then
z
e l2 7
Fvi =1v,¥V)
presents the sq f the Euclidean length of the vector v The arg"mPnt given

formula, (4.1):
W W) =3UvIZ+ Iwl> — v —w]]?).

So any rotation of three-dimensional space preserves the scalar product. In parti-
cular, if we are given two vectors, v and w, we can rotate the plane that they
span into the z =0 plane. For vectors in that plane, the scalar product reduces to
the scalar product for R For such vectors we know that

(v, W)= v] {|wl cos

and hence (since both sides are invariant under rotation) it is true for all pairs of
vectors.

A vector space V is called three-dimensional if every four vectors are linearly
dependent but there are three vectors which are linearly independent. Thus given

any four vectors v,,v,,v3,v, we can find four numbers a,,a,,a;,a, not all zero

such that

alVl + a2V2 + a3V3 + a4V4 _ 9

but there exist three vectors u, v, w such that

au+bv+cw=0

isnot true unless a = b = ¢ = 0. Suppose that V has a positive-definite scalar product

(, )y We can now repeat the argument given above for the two-dimensional case.

Lmal

it has

BT AT e et Il e Py s S Ovaialy Tatige it

Pick some non-zero vector By multinlvine by a scalar, we can arrange tha
1

7 1 1 b

unit fength.—Call it e, Choose some vector uw so that e, and u are linearty

independent. Set

u, =u—(ue,)e,
and

1
e2 =
luy

Then e, and e, satisfy
leslly =le;lly=1 and (e;,e))y =0

The set of all vectors of the form xe, + ye, is isomorphic to R? and hence is a
two-dimensional vector space. Thus it can not be all of V. (We can not find three
linearly independent vectors in this set.) Thus there must be some vector w in V
which is not of the form xe, + ye,. Thus

Wy =W— (w, e, )ye, — (W, e,)ve,




is not zero. Set

1

€y = W3-
3 3
lwslly

Then

leglly =leslly=lleslly =1

o
pat
>

(e1,€5)y = (e}, e3)y = (e, €3)y, = 0.
If v is any vector in V, we claim that
v—(v,e;)pe; —(v,e,),e, — (v,e5)pe3 =0.

Indeed, by the same argument as before, we set

Vy=v—(v,e,)e; —(v,e,)e, — (v,e3)e;
then

(Vas€1)y = (Y4, €2)y = (V4,€3)y = 0.

But this means that if v, # 0 the vectors e,, e,, e;, v, would be linearly independent:
indeed, taking the scalar product of

a,e, +a,e, +aze;+a,v, =0

with e,,e, and e; shows that a; =0, a, =0, a;=0. Thus, if v, #0, g, =0. This

contradicts the assumption that V is three-dimensional.

Thiie TR V4

AYVOPrY Yo
r1IIus UVDl_y \ A%

Il
I

This map is a linear, one-to-one, map of ¥ onto R* and
(ua V)V = (Lus LV)Ra'

It is clear that we can prove the same sort of result in four, five,...,n dimensions.
On R" define the Euclidean scalar product
Xy Wy
: ’ =X Wyt +XxXW,
xn wﬂ
A vector space V is called n-dimensional if there exist n linearly independent vectors
but every collection of n+ 1 vectors is linearly dependent. We shall study the
general theory of n-dimensional vector spaces in Chapter 10. If V is n-dimensional

and has a positive-definite scalar product, then we can find an orthonormal basis




e;,...,e, Thatis, we can find »n vectors e,,..., e, such that

La ol no )
reriivy="1lezllv= Ty =1

and

(e,e)y =0 i#j,

Every vector v in V can be written as

e L e.. L
&

Y = Yy h"ad
V=X1¢1 X5

and thus define the map L: V- R"

Lv=
b's

Then
(v, W), = (Lv, Lw).

In fact, if we start with n independent vectorsv,, ..., v,, we can get es by the algorithm

e]_:

€ u,,
[zl
21
u; =v3 —(v3,e)e; —(v3,e,)e,,
|
A
3= = 3
sl
ete Thig o]nt\r;f m™m nown_ac the Gram  Schmidtorthanormalizationntracediire
ViV 1INy ulsulltlll 1ITUVWILT QA LIV OTwirn o nimiu UTLIIUNRIUT TN iturg }Jluuuuulv

A £~

Asafirstexample of the Gram—Schmidt process,

a
it) to vectors v,,v,,v,,v, in R* where

[ /

1 3

1 3

iz 1P V275
-1 3

(We will only carry it to the first two steps so v, and v, are irrelevant.) The scalar
product in R* is the ‘usual’ one. That is, we are assuming that

1 0\ /0\ /O
0 1 0110
ortoprytplo
0/ 10/ 10 1
form an orthonormal basis.
The first step is to convert v, to a unit vector:
(vpv) =P+ P2+ 12+ (1) =4




S50

J(Vy,v) =2

and

T~
L~

1 N b bl

~

\
Next we subtract the component of v, along e,:

1313 3 2
s sy 8
s/ \3) 1))\
3 1 1
3 3,3.5_ 3 3 1
Wy = 5 -—G+3+3—3) % =13
3 -5 5

Finally we convert w, to a unit vector:

/

1 1
ra Y 1 1 4 o] ~) -) ~
Wy, Wy = A =177+ 174+ +53"= 30
[N &
WY /)
SO
/1)
5> 141
€©=—""=—-1n1
6 613
)
T BN
- As a check, note that ! : =0,
’ 11’13
-1 5

Now we can easily write any vector v in R* as the sum of a vector nv which is a
linear combination of e; and e, (and hence of v, and v,) and a vector which is
perpendicular to both e; and e,. Consider, for example,

4

_ 0

V= _1 .

‘ 7

Define nv by
v =(v,e;)e; + (v,e,)e,

/] 4 A\ AN /1 4\ [1\ /1)
1 | o 1 1] L o} 1 W1
v = 1] 1 1 +T; B T ) 2 o]
4 1 1 I 36 ) § J )
W7/ =1 =T W 7/ \3 /9]




[ 1\ N -1\ 1\ [0\
1 AN 1 1 1 1 ‘—1 1 0
nv=z\(—4) 1 +36 00 NN E PN
1 5 1 4 é
v VN N VY
Then you can check that
JEPR 7 -\ / \
[ 2y 9y [ 4]
. 0 _ 01 0
vemv= | 4 2 1=123
7 6 1

is orthogonal to e, and e,, either by verifying that it is orthogonal to the original
basis vectors v; and v, or to the orthonormal vectors e; and e,. We say that
the transformation 7 sending v into nv is orthogonal projection onto the subspace
W spanned by v, and v,.

As a second example of the Gram-Schmidt process, consider the (four-
dimensional) space of polynomials of degree < 3, with scalar product

9= J Sagtoa

If we started with different basis elements, or even the same elements 1n a different

order, we would end up with a different orthonormal basis. We first calculate

I

4

/ \ 1 A
Vi, V1) = dl = 4

J — 1

and convert v, to a unit vector:

€, = V1/\/(V1a"1) = 1/\/5-

X7 ¢

We next calculate

(e, v,) = f_ll(t/\/i)dt =0
and conclude that v, is already orthogonal to e;. Since
(Vz,v2)=f11t2dt=2/3
we have e, =1/,/(2/3) = /(3/2)t.

Next we calculate wj:

Wy =v; —eleg, v3) —ey(ez,V3)

=r2—-;-f1 tzcu-étfl 3dt

. 2 o,

|
LS
I
W~




Since

(Wy,wy) = ((2—1)2dt=2
-1
e third narmalized bacic s + 3
LIIC U nuriiranZodad udasty veClOoT 18
2 1
= ey =y =vR6E =)
AVAVE

Finally, we calculate w,:

W, =v,— e (e;,v,) —ey(e,,v,) —esle;,v,)

1 1 1
=t3—%J t3dt——%tJ t4dt—%(3t2-'1)J (36> — )t
-1

-1 -1

=?-0—-3t2-0=2¢>—31.

Dividing by ./(w,,w,) we obtain finally
__ W

a \/(w4,w4)

Clearly, proceeding in this manner, we could construct a sequence of orthogonal

e, = /Z(5t3 = 3p).

polynomials —of higher and higher degree. These polynomials, knmown as the

Legendre polynomials, will appear naturally in the solution of problems in

electrostatics using spherical polar coordinates. Indeed, it is usually true in physical

14 41 1ot 4 £Le 41 i ~da £ +1 : 1541 ¢+
d,ppllbd,UUIlb Lildl vCCtO1 bpdbe Ol TUNCLOID, WICIT llcquclllly dIISC dd SOIULIOINS 1O

differential equations, have orthogonal bases which arise naturally from physical

considerations. For this reason it is rarely necessary in practice to carry out the

E P P

PN Qi
Lalil=oUHIIIAL PITOLOSS.

4.3 Quadratic forms and symmetric matrices

In sections 4.1 and 4.2 we have studied the Euclidean scalar product which satisfied

three conditions: it was bilinear, symmetric, and positive-definite. We now want to
investigate more general ‘scalar products’, which are not necessarily positive-
definite. They play a central role in the theory of relativity.

We return to R2. Suppose that we are given a scalar product, { , > on R?, which
is not necessarily positive-definite. Thus we assume that ¢ , ) is

bilinear: {v,au + bw) = alv,u> + b{v,w)
and
symmetric: {u, v> = {v,u)

for all vectors u, v, w and all real numbers g and b. We wish to compare { , ) with
the Euclidean scalar product ( , ). We begin with the following elementary lemma.

Let ' R*> R be a linear map. Then there is a unique vector w such that

(vy=(v,w) forallvinR%2.
iV} v .




Indeed, ! is given by a 1 x 2 matrix (a b), i.e.,

/x\ /x\
! =ax +by foranyvz( \eR?
y \y/
Thentake
[ a\
w=(")
\V/

So

o= ((2)(2))-ax v

as desired, and it is clear that w is the unique vector in R? with this property. Now
consider {u,v) as a function of v for fixed u. This is a linear function of v, hence there
is a vector w such that

{u,v) =(v,w) for all veV.

The vector w depends on u, so we should write w(u) in the above equation. To repeat,
w(u) is that vector whose Euclidean scalar product with any v equals {u,v). Let u,
and u, be two vectors, and w(u,) and w(u,) their corresponding ws. Now

au; +bu,,v) =<v,au; +bu,) by symmetry

—adv D> L hv u. N hv bilinearity

UN'wu X J

=aluy,v) + b{u,,v) by symmetry

— alw w(u_ﬂ_)__’__b(_v_wfn 1)
ALY > YIAW2J)

= (v, aw(u,) + b(w(u,))).

1 2) = 1 2) other wo . epends linea yonu us

we can write w(u) = Au, where A4 is a linear transformation. Going back to the

definition of w = 4u,_we see that

ettt

{u,v) =(v, Au)

forallwand vin R? So far we have only used the fact that {u, v) is bilinear, i.c., linear
inu when vis fixed and linear in v when u is fixed. (This is how we used the symmetry
of (', ).) Now let us use the fact that { , ) is symmetric. Since

<“: V> = <V, ll>
this implies that

(v, Au) = (u, Av)
and, since (u, v) = (v, u), that

(v, Au)=(Av,u)

for all wand vin V. Let us see what this says for the matrix 4.

For any matrix B, the expression (Bv, u)is linear in vand u separately. Thus, by our




preceding argument, there is a unique linear transformation, call it B, the transpose

of B, such that

(Bv,u) = (v, B'u)

for v;u-in V. To see what B™ is, suppose
[ x / x"\ e f
V= 2 u= ‘ ! l and B = 1
\Y \Y/ gy n
Then
(Bv,u) = (ex + fy)x' + (gx + hy)y'
=exx' + fyx' + gxy' + hyy'
= x(ex’ + gy') + y(fx' + hy')
SO
BT xl _ exl + gyl
yl fxl + hyl
or

r_(€ 9
b _(f h>‘

In other words, the transpose of a matrix is obtained by flipping the matrix along the

diagonal.
1 + canditia +hat
Then-our symmetry conditionsays-that

It we set

then, as in section 4.1,

(u,v) =7(Q(u) + Q(v) — Q(u — )

and

Q(v) = (Av,v) = ax?® + 2bxy + cy?

()

A function Q of this type is called a quadratic form. Thus by the preceding formulas,
each quadratic form Q determines a scalar product { , ), and every scalar product
determines a quadratic form.

' ,2b, ic polynomial Q(v) give us the matrix 4;

if

which is just another way of saying that Q determines 4 and hence also { , -




The characteristic polynomial of 4 is

2

I N B VUS| 1.2
A \WTL}./\;_I_M(,—D

and

(a+c)®> —4(ac —b*)=(a—c)*> + 4b> > 0.

This expression, (@ — ¢)> + 4b?, is called the discriminant of the quadratic form Q.

The discriminant can equal zero if and only if

a=c and b=0

SO
a O
A= =al

and
{u,v) = a(u, V).

In this case, { , ) is just a scalar multiple of ( , ).

Suppose that 4 has two distinct eigenvalues, 1, # 4, corresponding to eigenvec-
tors v, and v,. We claim that v, and v, are orthogonal, i.e., that(v,, v,) = 0. The proof
is easy:

(Av,,v,)=(v,,Av,) because A4 is symmetric;

o

{1 AY % 7 v\ lheraea—w = | are atoenvertare:
A1Y¥1,¥2) = V1,12V2) Dullalsue ¥ allld ¥y daltC UIgUIIVOULLULS,

A1(v1,¥,) = A,(v,,V,) because the scalar product is linear;

/. Y N h o) 7 1
(v, v2) =10 because 4; # 45:
Converselv. suppose that we start with an eigenvector v, of A corresponding to
—ORYECy;su PP t & 1 P &
1 2 - 1»
(v..v.) =0
(V{,v5)=0.
Then
(v Av ) =(Av. . v.)=A (v.. v.) =0
Vo= AV Yy WiVl
so Av, 1s again orthogonal to v, . But there is only one line perpendicular to v,, and
0 #£v, lies on it. Hence Av ust be some multinle of v. _1e. Av. — 1 v_for some
U#£ v, lics on it. Hence Av, must be some multiple ol v,, 1.e., Av, = A,v, lor some
1

L]

eigenvalue 7.
We have thus shown that any symmetric matrix A has two orthogonal
eigenvectors, v, and v,. By multiplying v, and v, by suitable scalars, we can arrange

that v, and v, both have length 1, and that the matrix (;1 ;2>, where v, = (;1>
1 2 1

X\ . .
and v, = , 1s a rotation.
Y2

Thus 4 =R 4 0
0 4,

matrix M satisfies (Mv, Mv) = (v, MTMv) = (v, v) for all v. We see that MT=M "1,
and we can equivalently write

)R‘l for some suitable rotation R. Since an orthogonal

A O\ o
P & W

0 4

N

A4 D/
1‘1—[\\
N\

N




Suppose that we have chosen our eigenvectors so that 4, >4,. Then the

L 2 19 1€k

eigenvector v, , which has been chosen to have unit length, can be characterized,
m

among all vectors v of unit length, as one for which Q(v)-assumes-its maximumvalue,
+ 1 +1 £ 4 s 1 3
while v, 1sthe vector of unit le ength for which Q(v, v) assumes its minimum value: i <.,
Qv,) = Qv) = Q(vy)
L____

for any v with (v,vJ=1. To prove this statement, we Write v=v, cos 4 v, sin 0.
Clearly, since the eigenvectors v, and v, are orthogonal and have unit length,

(v,v) = (v,,v;)cos? 0 + (v,,v,)sin* @ = 1.

V2

Figure 4.7

Q
—_
-
~—
,—\

v, V)

=(Av,cos 8 + Av,sin 8,v, cos 8 + v, sin 6)

=(A v cosB+ A,v,sint, vy cos O+ v, sinb)

= A4(v,,V;)cos? 0 + A,(v,,¥,)sin* 0, since (v,,v,)=0

X<

L) 2 n 1 2 n
=A,cos” @+ 4,sin” 6

Clearly Q(v) achieves its maximum value when sin“ 6§ =0, (when v= +v,) and its

minimum value when sinZ0 = 1 (when v= +v,)

O N

It-is now apparent howto-drawthe grapn

diagonalize A by a rotation R:
i 0
A=R R71
( 0 lz)

o) = R(él i)R‘lv,v)

Since R is orthogonal, R = R™!, and we have

Q'(V)=(<'11 0 )R_1V,R"1v).

so that

Ifwewrlte( j=R 1(\ R~ 1y, then
\V/ y

Y
///11 x\ [ x"\
oV =11, ]
A2 /

Yy / J




If 4, and 4, are both positive, the graph of Q(v, v) = k is an ellipse if k > 0, the origin

only if k = 0, empty if k < 0.If 2, and 4, are hoth negative, the graph is an ellipse if

k < 0. If 4, and 4, have opposite signs, the gra aphof O(v) is a hyperbela; which

degenerates to two straight lines if ks =0. The vertices of the ellipse or hyperbola,
where the distance from the origin is a local extremum, lie along the lines determined
by the eigenvectors of A.

»)

o

X

ar-

;;

/9 2\
Suppose, for example, that 4 = ( 5 6)’ so that

Q(v)=9x* + 4xy + 6y>.

The eigenvalues of 4 are 4, =10, 4, =5, with associated eigenvectors f and

—1 ) 10 O . .
( 2). We can write A = R( 0 S)R"l, where R is the rotation

=t )

By introducing new coordinates

/ "\ _ x\_l 2 1\/x
’ == I 0 A U
IS A Ve S
1.€E.,

1
X—T(ZX‘F_V),
y,=—/7(_x+2y)a

5

we can write

The graph of Q(v)=1, ie., of

10x> +5y?=1

is an ellipse of minor axis /15, major axis /3. The axes coincide with the

. —1
eigenvectors of A:<f) and ( 2).

V2 T
y 'ﬁ -

Vi

—

~ X

\

Figure 4.8




Suppose we allow not only rotations as changes of coordinates but also non-

hogonal transformati 0o " _ Ry . "

Ay
Q) = = x"‘ + Rzy

If A, #0, we can choose 22 = |1, | so that 1,/¢* = +1 and similarly for 4,. We have

thus proved:
Let Q be any quadratic form in R?. We can then find coordinates x” and y” such
that Q has one of the following expressions:

xuz + y

QW) =1 .,

If there are two plus signs, Q(v) has a minimum at v=0; if two minus signs, a
maximum If there is one olus sign, one minus sign, then Q(v) has neither a

eaddle naint-ac - argenc ad £1 51 /1 10
SJull uu: l/UL“oL, ad DUSSUDLUU l 5 =.1U.
/yn
o~ 4/
) =5
=\
——f ey ,
AT T
L R\
’/
Figure 4.9 Figure 4.10

4.4. Normal modes

One of the most important applications of the results of the preceding section is to
the theory of coupled oscillators. To explain what is involved, consider the following
mechanical system. We have two undamped oscillators which we connect by a
spring with spring constant k. The equations of motion, from Newton’s laws, are

myXy = —kyx; —k(x; —x,),
MmyX, = —kyx, — k(x, — x4)

or

o N\ [ e\
T )= —H["')
\ X, \xz/




where the symmetric matrices T and H are

r—(™ O p_(la¥k —k)
\O m/)° —k ky+k)

8. 9. 9. 9.0\ /o v. 0.0
voov—* *— VU0V
kl g} my k2
Figure 4.11 Uncoupled oscillators
kl ml k m2 k2

— X —_— X,

Figure 4.12 Coupled oscillators

Our strategy will be to try to simultaneously diagonalize T and H, so as to
‘uncouple’ the equations. Let us discuss the general case. We want to consider two

symmetric matrices T and H where Tis positive-definite. Our first claim is that we

T O | 141 P Y s P n i S
Udlil 1A a POSITUVOE-UCLIHIIIC THAUIA D SUCIT UIdu

T=B2

Indeed, if T is diagonal, as in our example, set

N\

(mi® 0\

R
D

Lo miz)

Otherwise, we can find a rotation R, such that

faal

T'=R,AR; where A is a diagonal matrix.

is symmetric, positive-definite, and satisfies B> = T. Now define

w = By
SO

Then

and the equation TV= — Hv becomes
TB 'w= —HB 'w

or, since T= B?




or

W=—Aw “}her@ 4=B_1”H_1,

Note that A 1s again symmetric, so we have reduced the problem to the case where

T = I. (The astute reader may have noticed that, from a geometric point of view, we

>
vecamndblvynassed toa coordin

havesimpiy-passéato-acoordina

to T takes on the normal form x

To solve the equation w = — Aw, all we have to do is to find the eigenvalues and
eigenvectors of A. Suppose that v, is an eigenvector of A with eigenvalue w? > 0.
Then, for any choice of amplitude p and phase o, the function

w(t) = p cos(w,t +a)v,

is clearly a solution. Similarly for the second eigenvector and eigenvalue giving
pcos(w,yt + ). These are called the normal modes of oscillation of the vibrating
system.

Suppose that

A=RDR™!
where D is a diagonal matrix. Then writing

w = Ru

1.
WU 11dVvuU

w=Rii= —RDR " 'Ru

Ul

u= —Du.

Since D-is diagonal, this is just two separate differential equations for each of the

components. Assume that the eigenvalues of 4 are both positive — say w? and w3.

Then the general solution of

i= —Du

is

/ N\ Vd AN

Uy \_ [ prcos(of+ay)
(uz) (pzcos(w2t+ocz))'

If
1 0
v, =R , =R
ko) vr(l)
are the two eigenvectors of 4, we see that the most general solution of W = —Aw is
w=p;cos(w1t+a1)v1 + p, cos(wyt + ay)v,. ﬁ

Thus the general solution is a ‘superposition’ of normal modes.
Let us illustrate this result in the case of two identical coupled springs. We thus

— = upling, the equation of

each spring would be




I the nracanece of the aarraaliser 4 o
Hidieproschnccorhcecoupimg, 1tis
X1 = _(Cl){z}"}"S)xl +§x2 fzzQYL_(w(z)JI_S)xz, S_k/m
or
Wy + 3 =3
V=—Av, A=|["0 )
\ —s oj+s)

By symmetry we see that the eigenvectors of 4 are

1 .
( 1) with eigenvalue wj

and

1
( 1) with eigenvalue w3 + 2s.

These are the two normal modes of oscillation in this case. The first corresponds to
the bobs moving in tandem, the second to their moving in opposite directions.
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Then the general solution for our differential equation is

3 PN, ¥a V. !

Xy = pycos(wet + 0;)+ p,cos(w't + a,),
{r
O\W

3}
2)

{
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Let us examine the particular solution where we excite one spring and let it go at
time ¢ = 0. Thus we wish to consider the initial conditions.

x(0)=C, x,(0)=0,
x,(0)=0, %,(0)=0.

Substituting into the above equations, we see that p, = p, =+C and a; = x, =0.
The particular solution is this:

x; =3C(cos wyt + cos w't),
x, = +$C(cos wgt — cos w't).

Recall that coso =4(e’ + e @) and therefore

a—B\__{o+P
cosa + cos = 2cos — Jcos| —
2 U 2




and similarly

y P / ~
Coso—cos ff = 2siq{a—ﬁ\sm( il \.
\2 J7\ 2 )
Substituting @ =w,t and = «'t, we see that our particular solution is given by
v — C ol -V coS -1
~1 —VUos (W Qo jreoo g,
X, = —Csin(w — we)t SIn wgt.

In the case of small coupling o’ — w, is a small quantity. If we graph the motion of
both springs, we get figure 4.14. The oscillators of each spring (with natural
frequency w,) are modulated. The beats are determined by the modulating factors
cos (W' — wy)t, sin (o’ — w,)t. The energy alternates between the two springs; when
one oscillates with maximum amplitude, the other is at rest. This phenomenon is
known as resonance.

Figure 4.14

PO (

‘tuning’ results iman incomplete transfer of energy from the first spring to the second-
We will leave the details, which are a straightforward, if somewhat messy,
calculation of eigenvectors and eigenvalues of A, as an exercise to the reader.

4.5. Normal modes in higher dimensions

Let V be an n-dimensional vector space equipped with a positive-definite scalar pro-
duct. Let ¢ , ) be some other, not necessarily positive-definite, scalar product. An
examination of the argument given in section 4.3 will show that there exists a linear
transformation A4: V— V such that

{u,v) =(Auw,v) forall u,vinV

and A is symmetric in that

N

(Au, v)=1(u, Av).




In fact, we know from section 4.2 that we can find an isomorphism of V with R" so

that (, }is carried over into the Euclidean scalar product. Then the arguments of

7
n 4 3 work without anv chanoe to show _th 4
e/ A\ S 5 Iy

at g At 1ot (n]
HotUT—ally Clhanlg 1o ->now that A Ib a byl IOt 1Ha
P

e claim that we can turn the argument of section 4.3 around to show that A hasn

mutually perpendicular eigenvectors. Indeed, consider the quadratlc form

P VORI, N (4 \
W)=, v, =14vy)

restricted to the unit sphere

{vllvl =1}

This function is continuous and is bounded. Indeed, if all the entries A;; of A satisfy

| Ayl <M
for some number M, then if
X1
v=| :
xn

we have |v||?=2Zx? =1 so |x;/ <1 for all i and
(AV V) ZAU iX

So

uarantee that there will indeed exist a point on the sphere where Q takes on i

maximum value). We claim that v is an eigenvector of A. Indeed, define the vector w

by
Y

W= Av — (Av, V)v.

We will show that w = 0 if Q takes its maximum at v. Since (v, v) = 1, the vector w is

_perpendicular to v,
(w,v) =
and hence
(Av,w)= || w]>.
Then, for any real number s

[v+sw|?=(v+sw,v+sw)=|v]|>+s*|w[*=1+s%|w|>
and

(A(V + sw), v + sw) = (Av, V) + (4w, V) + 5(Av, w) + s*(Aw, w)
or, since (Av, w) = (w, Av),

(A(V + sw), v + sw) = (AV, V) + 25(Av, W) + s*(Aw, w)

= (Av,v) + 2s||w|? + s*(Aw, w)




Let us rescale the vector v + sw so as to make it of unit length: replace it by

4

1
]

(V.4 Sw).

AN

| v+ sw|

f(s) éé‘f(All, u) = —1—,(A.(v + SW),V -+ SW)

[vswl

1
=1y 2 (B 251w 17 + 574w, w)

This expression is a differentiable function of s. By hypothesis, it has a maximum at
s = 0. We conclude that its derivative, f'(0), at s = 0 must vanish. But f'(0) = 2 ||w 2.
So ||w||?> =0 and hence w=0. Thus

F Av = (Av,v)v.

In other words, v is an eigenvector of 4 with eigenvalue (Av, v). Call this eigenvector
v, and the eigenvalue (Av,,v,) = 4,.
Now consider the space of all vectors z in V which are perpendicular to v,. Thus

we look at all z such that

(Z,v)=0.

h h Y
oI suclr z,

Consider the set of all z of unit length, that is the set of all z such that

HZH=1: (Z,V1)=0

vk

\

Figure 4.15

Let v, be a point where Q takes a maximum among these vectors. Write

sz = (AVZ, VZ)VZ + W,.

Since (v,,v,) =0 and (4v,,v,) =0, we see that (w,,v,)=0. As before, we conclude

PR V4




that (w,,v,) =0, then that

1
1§

———————— (A(v, + 5W,), (v, + sw,))
lvy +sw,”

1
T

= ((AV,,V5) + 25| W, ||2 + s} (4Aw,, W
L+ 57wyl

5= : : .
We keep proceeding in this manner: Look at all z satisfying (z, v;) = (2,v,) = 0 and
|z|| = 1, etc. At each stage, we produce a new eigenvector of A, perpendicular to all
the previous ones. When does it all come to an end? When we run out of non-zero
vectors perpendicular to vy, ..., v,. This can happen only if k = n. Indeed, k can not
be >n since then v,,...,v,,; would be mutually perpendicular and hence linearly
independent. This contradicts the assumption that V has no n+1 linearly
independent vectors (one of the hypotheses is the assumption that V is n-

dimensional). On the other hand, if k < n, the equations

(vl’ W) =0

(vk’“:’) =0

in R™are a system of k homogeneous linear equations in n unknowns. This always
has a solution. We will prove this general fact among others in Chapter 10. Hereis a

™ OO0 M) e e ence-oOo A . e nin OINNDHOonNnen a .
D100 D oG = S = - 3 DO =

x,wy + .-+ x,w, =0

which we can solve for w, in terms of w,...,w,_,:

=1
n x (xlwl + ”'xn—lwn—l)'

n

w

Substituting this into the preceding equation gives k— 1 equations in n—1
unknowns and we can proceed by induction. If the nth component of any of the
vectors vy,...,v, does not vanish, we can still do the same — just use the v; with
non-vanishing nth component to solve for w,. If the nth components of all the
Vy,...,v, vanish, then the vector

0
w=| :
1
is a solution (all the first n — 1 components vanish).
QA we mnet keean - an oatho nntil - —n
[SACV R LAVESFEEU NI B CCP Uil suuls Uit n Tts




Normal Modes as Waves

— (k(x; — X1 1) F k(X = xi- 1))

Newton’s equations then say
mX; = —k(2x; — X;— 1 — X;4 1)

We will also assume that the first and last point are also connected by the same
spring: so we can imagine the points arranged in a circle.

‘e Y
~
=

N S el

Figure 4.16

Thus with w? = k/m, the equations are

X= —w2Ax
where 4 1ic tha materiy
TICIC 72 15 U1IIC HIAUlTA
[ 2 —1 0 0 —1\
-1 2 \
0 -1 2
: : : —1
—1 0 —1 2

Our problem is to find the eigenvalues and eigenvectors of A. Before describing the

general solution, let us work out a few low-dimensional cases, beginning with the
case n=3.

2 -1 —1\/1 0
-1 2 —1){1])=(0
-1 -1 2/ \l 0




1 1
orthogonal to| 1) Soletustry |—1] Then
/ 2 — 1 — 1\ / 1\ j\ Vi 1\
—1 2 —1 —1]=1-3}=3[|-1
-1 —1 2 0 0 0
/ AN VAP
1 0
So (—— 1 ) and similarly ( 1) are eigenvectors with eigenvalue 3. Thus O and 3 are
0 —1
the eigenvalues, with 3 occurring with multiplicity 2.
Now to n=4:
2 -1 0 —1
—1 2 -1 0
A=0 o -1 2 -1}
-1 0 -1 2
Then
1 0
Jd1 1 [0
1117 1o
1 0O
) \V/
as before. Also
[ T [ 1
=11 (=1
A 1= 4 1
\—1] \— 1/

The remaining eigenvectors must be

Then

and similarly

2 -1 0 -1
—1 2 -1 0\(
0 -1 2 -1

1

1 0 —1 ) \=1] \-1]

Thus 0 and 4 are eigenvalues occurring once and 2 occurs twice.




In order to deal with the n-dimensional case, we shall introduce some

methodology offar reaching significance. Notice that the problem is invariant under

£ S1oniicance. k
the ‘rotation’ sendincs—the firet PRI UIPS R the _second_into_the first _ete
v Uttt Toviiaiil g UG TITST pUlllL INTO N0 Tt T T B oot o 1T IO Tt
with the nth into the (n — 1)st. This is the matrix:
01 o ... 0\
|J ES A\v4
/r\ 0O 1 0O
[ U U 1 U
S=1":
0 1
1 O 0
It is easy to check that
SA=AS.

We shall find eigenvectors of S. If Sw = Aw, then SAw = ASw = A(Aw) = AdAw. So if w is
an eigenvector of S with eigenvalue 4; so is Aw. We will find n distinct eigenvalues of
S. Then if Sw = Aw, Aw will have to be a multiple of w — hence an eigenvector of A.

The ‘eigenvalues’ of S that we will find will be complex numbers and the
‘eigenvectors’ will have complex entries. Both the real and imaginary parts of these
eigenvectors will be eigenvectors of A. Here are the details:

Let
1;—92””"
SO
T =1
Then
/1\\ /1\‘
N I ] I P \
1
/1 \ JZ A I A\ A
\ [ 2) 2 \
T T T
St = = =71
Tn—1 ,L..n Tn—l
1 1
TZ TZ
S ~ =12 o
‘L'6 'L'6
TZ(n—l) TZ(n—l)

etc. The eigenvalues 1,71,1t2,...,7" ! are all distinct. Thus each of the eigenvectors
of § must be an eigenvector of 4. Let us call these ‘eigenvectors’ e, ...e,. We know
that

COTYY
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Now the entry of the second row of Ae, is

N’

195k 2k .
=1+ 2=t =(=r*F 2 -t

= 2(1 — cos 2nk/n))t*.
We conclude that the kth eigenvalue is
A = 2(1 — cos (2zk/n)).

This is the same eigenvalue for k and for n — k. We may thus get real eigenvectors
by adding and subtracting the eigenvectors for k and for n — k. Thus

1 0
cos(2nk/n) sin(27k/n)
cos(4rk/n) | and | sin(4zk/n)

cos (67tk/n) sin(6nk/n)

are orthogonal eigenvectors with eigenvalue

2(I +cos(2nk/n)).
If n=2m is even, then the second column vanishes for k=m. Otherwise all
thc vectors UO not VdIllb[l ‘V‘VC Cdll l[lub bOIlblUCl Cd(.«[l Ilorﬂldi IIIUUC f LIc byblC[Il
as

a sine or cosine ‘wave’ of compression of the system.

4.6. Special relativity

In this section we wish to study in some detail th eometry of a two-dimensional
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We shall see that the geometry of this space gives a good model for understanding
spec1a1 relat1v1ty We use the word model in the following sense. Our ordlnary

Thetraf 2£ 57
. TIICICIOIC, 11
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)
D
"HL
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we get a four-dimensional Spacetime. In our model, we shall-imagine that space
is one-dimensional, so that our spacetime becomes two-dimensional instead of
four, and we will be able to draw all the geometric constructs Actuallv most of

ayve try Qav T ~1a

what-wehave to-say works in the honest fo
modification from our two-dimensional model.

The first postulate of special relativity is to keep Newton’s law which asserts
that particles not subject to any forces will move along straight lines. Thus the
geometry of our spacetime singles out the straight lines among all possible curves.
Our spacetime is the affine plane with, perhaps, some additional geometrical
structure.

The second postulate is that the speed of light is a finite absolute constant.
Thus, at each point of spacetime there are two well-defined lines representing light
moving to the right or to the left. The spatial and temporal invariance of the speed
of light says that translating P into Q will carry the two light rays through P into
the two light rays through Q.

N~ ‘
x \
P NP
AN X
2N\

=
[y
®

—
rigure

We want to investigate those affine transformations that carry light rays into
light rays. Since translations do, we are reduced to investigating which linear
transformations preserve the light rays through the origin. We are thus given two
lines x = =+ ct, and ask for the linear transformations which preserve these lines.
In doing our computations, it will be convenient to introduce natural units of
length and time so that the speed of light is unity. For example, we could measure
t in years and x in light-years. Or, if we choose a nanosecond (10~ seconds) as
the unit of time, then the corresponding unit of length is one foot to remarkable
accuracy. So we could introduce natural units by measuring ¢ in nanoseconds and

x in feet

We thiie gr

a interected 1in otfndvino thoce inear trancfarmationce whie nreserve
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the figure given by the pair of lines x=tand x= —¢




\ X / x=t
N /
N /

AN /
AN
RN ’

/ ! \\

Figure 4.19

To repeat: having determined these linear transformations, we will have deter-
mined all transformations of spacetime which preserve straight lines and preserve the
speed of light.

In fact, we wish, at least temporarily, to exclude certain kinds of transformations.
For example, the reflections

(1)) ana (D)=( )
- and —
A A W ¥/ N X/

=/ N— "

A4 N
XM= [ X
/N /

/ N\ / AN

Figure 4.20
N / N /
=/ N/
TN \/IHI

Figure 4.21
and the inversion

t —t

X —Xx

|| | = |l I

Figure 4.22
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and preserves the 1irst quadrant. Thus
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Let us write ad =s* and a/d =r"so

S

Thus R~ FR preserves the coordinate axes and the positive quadrant. Thus R~ !FR
i atrancfoarmation which nrecerves the coordinate axvee hence a diacoanal materix
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1s a scale transformation and

=1\

o

R-1— _(r+r 7
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cancfarmationI—icealed-a nronerf SN
ranstormation L 1s-catca-a proper Lorentz tranS]orma[wn withparat eter r.

<Lrv13Lrv2> = <V1, V2> (43)

for any pair of vectors v,,v,. Indeed, by the analogue of (4.1) for the scalar product
{ , >, it is sufficient to prove that

Q(v) = Q(L,v)

Now
Qv)=1t*—x*=—4pq
and if
o) w4
X q r q
and
o(v) 4p'q=—4pg="10(v)

which is what we wanted to prov

o
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measurements by a factor of s. The existence of atomic clocks, along with definite

clo
spectral lines, shows that the transformation S, for s # 1,isnot a symmetry of nature

11 the cancea thaot

mPpACAY A

1s called a Lorentz transformation. Such an A must carry the light cone (also called

the null cone)

{v|Q(v) =0}
into itself, i.e., preserve the set {x = =+ t}. If, in addition, A carries the forward region
into itself, it must be a proper Lorentz transformation

A=L,
for some r.
The proper Lorentz transformations can be characterized among all Lorentz
transformations by the property that they can be continuously deformed to the
identity through a family of Lorentz transformations. Indeed, let A(z) be a family

of Lorentz transformations with 4(0)=1I, A(1)= A. Let v be some point in the
forward region. Then A(t)v can not cross the null cone since Q(A(t)v) = A(v) > 0.

Similarly Det 4 = 4+ 1 for any Lorentz transformation since A times a matrix of
/0 1\

/1
0—1 +1 V) 5 3
the form { \ o - \ is _a proper Lorentz transformation —

1o/ "\ 0o +1)

and Det .= 1 for a proper Lorentz transformation L. Thus since Det A(t) varies




continuously with ¢ and Det A(0) =1, we must have DetA(t)=1 so Detd =
Thus, if 4 can be continuously deformed to the identity, A must be proper On

L LA t/ X
+h r ha 417 Al s I and AL1)

the-ot her ha uu H—A=15, _]ubt set A[[) = Lt, SO A(U} =Tand A(l)=4A.

The product of two proper Lorentz transformations 1s again a proper Lorentz

transformation. Indeed, if

L=rR(" % VRt and L, =R[" O Jr-1
\0 rt) r \o r )7 >
then
r O r 0
LL.=R -1 -1
T (O r*l)R R(O r’_l)R
)
r LrLr’ = er" (44)

It is convenient to write r = ¢* and set
L“=La=—1~ e"+e * e"—e ° '
¢ 2\le*—e™* e*4e ¢
Then

[%]¥ =[*+% (4.5)

+1a 13
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cosh o = %(e“ +e7%

- |
a1d

are used so

Then the Lorentz transformations [* look very much like the rotations R,

cosha sinho cosf@ —sinf
La = 1 = .
(sinh o cosh oc) while Ry (sin ®  cos 9)

We have the multiplication formulas
[o[2=1%%%2 while Ry R, =Ry 1o,

as we let a vary, the point L,v moves along a hyperbola, except in the limiting
case where v lies on the light cone, in which case I*v moves in or out along the
light cone (unless v = 0 when I[*v = 0 for all a). It is for this reason that the functions
cosh and sinh are called hyperbolic functions, with cosh called the hyperbolic cosine
and sinh the hyperbolic sine. As we let 6 vary, the point R,v moves along a circle,

except for v=0 which stays fixed. This is why cos and sin are called circular

f f neg
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A Luciigean motion ol the plane 1S a transformation of the form

A r 1= 1 hd L +1 1 . 1 L /x\
\y)
\

/N
Rlx\-l-{u\ where R is an ortho

My )T\ TR ores

Euclidean transformation is the composite of a

120 153

transformation. Euclidean geometry-is-the study of properties of subsetsof the

plane which are ivariant under all Euclidean transformations. A Poincaré

transformation of the plane is a transformation of the form (x)HL<x> + (Z)
y y

where Lis a Lorentz transformation. The geometry of special relativity is concerned
with those properties which are invariant under all Poincaré transformations. To
be parallel to the y-axis is not a Euclidean property of a line, I if [ is parallel to
the y-axis, then RI will not be parallel to the y-axis if R is a rotation other than
through 0° or 180°. Similarly, to be parallel to the x-axis is not an admissible
property of a line in special relativity; if [ is parallel to the x-axis, then LI will not
be, for any proper Lorentz transformation L other than the identity. This last
assertion is usually formulated by saying that ‘the notion of simultaneity does not
make sense for spatially separated points in the theory of special relativity’.

Similarly, the notion of a particle ‘being at rest” makes no sense. We might want

to say that the line x =0, the t-axis, represents a stationary particle at the origin.

But the Lorentz transformation L. carries this line into the line through

origin and

r—r 2 =1

where P

RV Y
AT — Ul WIIULI O U —

r+r-t P21

1'his now looks like the line of a particle moving with constant velocity v». We can

solve the equation
v=(r*>—-1)/r*+1)
for r in terms of v
r=((1+v)/(1 —v))
as can easily be checked. We can, if we like, use v as a parameter to describe L: define
Lw)y=L,=L.
where

r=J((1 +0)/(1—v)=e

1 —a

r—r- e*—e sinh o

Notice that

b 4 i

L)L) =L,,, r=J((I+v)/(1—=0), r=y{T+v)




But

[~ v+ v 7172
1+ 1 1 gagef
rr, _ T T UU
v+
—
14+
SO
v+
L(v)L(v') = L(l — ) (4.7)

This is the addition of velocity law in special relativity.
We are thus using three different parametrizations of the same proper Lorentz
transformation:
L,=L"=L(v)
where

r=e*=./((1 +v)(1 —v)).

The formula for multiplying two of them is given by equations (4.4), (4.5), or (4.7),
depending on the parametrization.
We have shown that the linear transformations of special relativity preserve the

1 PR JERPY o ¥ AR Y b TS 1a eyt a3 4+ sl vrot | I £ N
quUIallb 10THIYIY ). DUl wi lld ve 110t glveil a4 Ulicet pliyslcal HICTPIclatlonn Ol ¢/ (V).

Here is one involving only light rays and clocks: Consider the points £; and ¢, on

A
the t-axis which are joined to| ) by light rays (lines parallel to t = x and t = — x).
\*/

Figure 4.25

Then

t—tiy=x or t({=t—Xx

and




SO

4+ £ Va VAR il
i, =0Q\v) for v=lv,.

(

} 0} ; )
Point WYL at rest or in uniform motion, wishes to communicate with v. It records
7

the time t; when a light signal emitted at ¢ will reach v and records the time t,

when the return signal, issued immediately is received. The product, t,t,, is the
Minkowski distance Q(v) between the two events. Notice that if v lies on the line
x =0 then t, =t, =t since the transmission will take no time at all. If v lies on a

0
light ray through <0), then t;, =0. If Q(v) <0, then ¢t; <0 and ¢, > 0.

Figure 4.26

Here 1s another important property of the geometry of Minkowski space: Recall

that in Euclidean geometry, we have the triangle inequality

lu+v| < [ull+ v,

with-equality only if wand v 1ie on the same line and point in the same direction.

This 1s illustrated in figure 4.27.

c=a+b, a=|uf, b=]v].




The broken path is clearly longer than the straight line. This shows that ‘the

straight line is the shortest distance between two points’ in Euclidean geometry

o 7
R 1

circles

are replaced by hyperbolas O(4 — P)=a? and Q(B — R) =b*. But now for any

segments [ and m which give a broken path from P to R we have

o) <a®* and Q(m)<b’.
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O(B—R)=1" Q4-P)=a’
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Figure 4.28

Now o) is 1ust the square of the length of time elapsed on a clock moving
n
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survives the bumps) will be younger than the twin moving uniformly from P to
R. This is sometimes known as the twin paradox. It is, of course, no paradox, just
an immediate corollary of the reverse triangle inequality.

4.7. The Poincaré group and the Galilean group

So far we have been describing the transformations of Euclidean geometry and of
special relativity in terms of natural units. The points of spacetime are sometimes
called events. They record when and where something happens. If we record the
total events of a single human consciousness (say roughly 70 years measured in
seconds) and several hundred or thousand meters measured in seconds we get a

set of events which is enormouslv stretched out in one Dartlcular time dlrectlon
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Figure 4.29

skinny in the space direction as compared with the time direction we tend to have

distances in space with much smaller units (such as meters) than the units we use
(such as seconds) to measure time. Of course, if we use a small unit the correspond-

ing numerical value of the measurement will be lm‘ge; that is in terms of human
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the time differences. This suggests that we consider variables T and X related to
the natural units t and x by T=¢ and X =¢x, or

(T (1))

)'d 0 ¢ ¥

where ¢ is a large number. The light cone |x| = |t| goes over into ¢~ !|X|=|T]| or
| X|=c|T]|.

We say that ‘the speed of light is ¢ in ordinary units’. Similarly, the hyperbola
t* —x2=k goes over into the curve T2 —c2X2?=k; the ‘timelike hyperbolas’
corresponding to k > 0 look very flattened out, almost like vertical straight lines
for small values of X.

Let us see how to express a Lorentz transformation in terms of ordinary units.

: T .
We do this as follows: we pick a point , find the point Flo : (_) T
X x 0 ¢ P/\X

) to obtain

. . t
that it corresponds to then apply the Lorentz transformation L to (

x

(L 9Ny,
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Figure 4.30
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Thus, in ordinary units a Lorentz transformation sends the vector | ;( into the

T
vector M ( , where M 1s the matrix

\4 /
/1 0N\ /1 0\
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This is the expression for any a. Let us look at Lorentz transformations, L, for
which « is ‘small’: Let tanh a = sinh a/cosh o = v/c, where we think of ¢ as being a
very large velocity and v an ordinary sized velocity, so that « is very small. Now

( cosh o ¢~ ! tanh « cosh oc)

ctanh o cosh o cosh o
or
x 1 v/c?
M= cosha( / )
v 1
Now
1
cosha = =(1 ——_,72,/52)_1/2

(1 —tanh*a)'/=
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where the entries of E are all of order ¢~ 2. The matrix

o (10
R

is called a velocity transformation corresponding to velocity v. It preserves the lines

T T
T = constant; in fact G”(X) = (X o T)' We thus see that the velocity trans-

formations can be regarded as ‘limiting cases’ of Lorentz transformations. When
considering the velocity of light to be very large, the timelike hyperbolas go over
into vertical straight lines, and Lorentz transformations with small values of «

become velocity transformations
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as can easily be checked; and thi group preserves the notion of simultaneity.

[T\

[a
A transformation of the form { ]v——»G [ )+| ] 1s known as a Galilean

transformation. Thus a Galilean transformatlon 1s a translation composed with a

velocity transformation. Newtonian mechanics was based on the geometry of
Galilean—relat th ~co A rra1 all Cials Y £
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It was the genius of Lorentz, Poincaré and Einstein to recognize that our notion of

simultaneity is only approximately valid, over small distances and velocities, and

/1 0N
I \VJ

that the velocity transformation Gv=( 1) must be regarded as an
v

approximation to the Lorentz transformation:

(1/\/(1 —v?/c®) v/c? /(1 —v*/c?)
v/ /(1 =0v?/c?) 1/ /(1 =v?/c?)

(expressed in ordinary units).

4.8. Momentum, energy and mass

The passage from the Galilean group to the Poincaré group required a refor-
mulation of the basic concepts of mechanics. The outline for such a theory

was pointed out by Poincaré in his address to the World’s Fair in St Louis

in 1904 and was carrled out by h1m and 1ndependently, by Einstein, in their




o principles which are useful in describing the

In classical mechanics there are
motion of particles — the consery
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Let p, denote the momentum of particle A before the collision, and p/, denote its

D
o)
=

momentum after the collision. Similarly for particl he law of conservation of

momentum says that

conservation

PatPs=PatPs ¢ omentum

The collision is called elastic if the total kinetic energy is conserved. An example of an
inelastic collision is one where the particles get stuck together upon impact.
Conversely, if two particles are initially in contact, and at rest, say, with an explosive
charge between them, when the charge is exploded the particles will move apart.
This can be regarded as a reverse ‘collision’. if we ran a film of it backwards, it would
look like two particles colliding and sticking together. Total kinetic energy is not
conserved — the total kinetic energy was zero before the explosion and positive after
the particles were set in motion. The energy released by the explosion was converted
into kinetic energy. Similarly, we believe that when two particles collide and stick
together, kinetic energy is converted into energy of some other form; heat or

potential energy. For an 1nelast1c colhsmn one still has the law of conservatlon of
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energy after the collision, etc.
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It turns out that the laws of conservation of momentum and of energy hold in
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the detinition of momentum and of energy:

In Newtonian mechanics, the momentum of a particle is defined as
p=mv

where v is the velocity of a moving particle and m is its mass. The velocity (and hence
the momentum) is a vector in three-dimensional space. In our model universe it will
be considered as one-dimensional. (Alternatively, we can consider particles cons-
trained to move on a line.) The mass can, in principle, be defined by the following
series of experiments. Suppose we have a collection of objects — say little balls made
of different materials. We consider two held together at rest and then pulled apart by
an explosion set off between them or by a spring released between them. One object
will then move to the right and the other to the left. If the two objects are identical —

<—-”—> B |

Figure 4.31




the same size balls made of the same material, say — we would expect that the

motion will be completely sy mel:rlcal. For example, if there are reflecting barrlers
CI.

N P et
Xptoston, weexpect tha
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will bounce back and collide with one another at precisely the initial point of
explosion. We can perform the experiment and observe that this is indeed the case.
Next let us take two balls made of the same material but of different sizes. Say the

ot

) PR £ anllician 1

o ey We will-then-ahbe + W
Ltnc pu tof cotlision wul UC to

targer batlis onthe right- We-will- then-observe th
the right of center — the smaller ball will have travelled further. We can then perform
the same experiment with balls of differing materials. For example, we will find that if
we use two balls of the same diameter, one of lead on the right and one of aluminum
on the left, the point of collision will be to the right. On the other hand, if we take a
very small ball of lead on the right with our fixed size ball of aluminum on the left, we
will find that the point of collision will be to the left. Assuming that we have enough
sizes of balls of lead, we will find a lead ball which exactly matches the aluminum
ball.

We can now compare lead balls with copper balls, say. Suppose we found an
aluminum ball that matches a lead ball (in the sense that the point of recollision is at
the center) and a copper ball that matches the lead ball. We can than compare the
aluminum ball with the copper ball. It is an experimental fact that the aluminum ball

can now define the notion of mass by declaring that two objects have the same mass i
they match in our exolos1on colhslon experiment. The law of nature referred to

rewell defined —if 4 hacthec
1Iswenaciinea — i A nastne same

s C, then A has the same mass as C. We
following law of nature: If A, matches B, and 4, matches B
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showthat A, and A4, match B, and B,. (Alternatively, we could also observe that the
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Figure 4.32

mass of a ball of the same material is proportional to its volume: if a ball of radius r ,
of lead matches a ball of radius r of copper, then a ball of radius 3r, of lead will
match 27 balls of radius r; of copper.) This allows us to introduce units of mass:
having fixed one object say a lead ball of volume 1cm?, we can then compare any
other object with a multiple of our given object (a lead ball of volume m) and this
assigns, in a well-defined way, a numerical value to any mass. Originally, in the
metric system the gram was taken to be the mass of the 1 cubic centimeter of water of

* We will aiso find as a law of nature that turning the apparatus around —that is, interchanging
right and left — will not affect the matching or non-matching properties of objects.




4°C. Since water at 4°C is difficult to work with 1n our collision experiments, we

might want to define the gram as a mass of a ball of copper whose volume is 0.11.
3 Tt i dinterectine ta ahcecorus that 1 thae abhove series of exneriments we did-not
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need any clocks.

We now return to the conservation of momentum. In Newtonian mechanics

is laws says that if we define momentum by

Lu

p=my .

then the total momentum is conserved. (In fact, it i1s not hard to show that this
version of the law of conservation of momentum is a consequence of our definition
of mass and of the assumption that the laws of nature are invariant under the
Galilean group. See Feynman’s Lectures on Physics, I, Chapter 10 for a very lucid
presentation of this argument.) In special relativity this definition of momentum
makes no sense because velocity makes no sense! After all, velocity is defined as

_dx
T dr

and this presupposes that we have chosen x and t axes and have decided to
parameterize the curve describing the motion of the particle by ¢ — that is why we

are writing the curve as x(f). If we apply a Lorentz transformation, we will get

different t’- and x'-axes and hence a different velocity, v’. Let us put the problem

of the particle i spacetime by some neutral third parameter, 5. For example, s

might be the reading on some internal clock that the particle might be carrying

along with it on its motion. Thus the curve in our space time pl;me is given by
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At some instant sg, we can compute the tangent vector

du [ de/ds [a)

ds \dx/ds} U \)

A X
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Figure 4.33




The velocity v = dx/dt 1s then given by

79 L/
v="fa,

in the t, x coordinate system. It is clear that for a vector

W (@)

“\»)

the ratio v = b/a makes no sense in that if we replace w by

w=Lw

wI:(Z’>, vl=bl/al

then (unless v = + 1 or L= I) v’ will not be equal to v. The one property of w that is
conserved 1s

and write

Q(w) = a’ — b>.

The condition Q(w) > 0 is the same as the condition |v| < 1. Since 1 is the speed
of light in our units, it does make sense to say that the velocity v is less than the
speed of light.

It is an experimental fact that all particles with positive rest mass (defined below)

move at speeds less than the speed of light — that, for them, Q(w)>0

Q 1.4 11
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and let

bla=v

ina particular spacetime splitting. Notice that the equation b/a = v only determines

the ratio of b to a. (This is a reflection of the fact that we have not really specified

the mysterious parameter s in the curve u(s).) But we can solve the two equations
a* —b%*=pu? and b/a=v to get

a:#
Ja=v?’

___ M

b_\/(l—vz)’

in a given spacetime splitting. For small values of v we have the Taylor expansion

SO




Notice that the expression for b looks very much like p=mv if we identify u
wzth m, and i Enore th ms in v. In the same wa the second term

mechamnics. We are thus fed to the following modification of the definitions of
energy and momentum. Associated to any object there is a definite value of p. To
avoid confusion this value is denoted by mg and called the rest mass of the object

U
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coincides (up to a choice of units, of course) with the rest mass defined experi-
mentally above. Suppose that m, > 0 (as we have been implicitly assuming). Then,
when the object is in motion, its energy-momentum vector is defined to be the

Q(w) = E2 — p* = m}

such that

and
w is a scalar multiple of ﬁ=d—: where u(s) is the curve describing the

motion of the object in spacetime.

In terms of a given spacetime splitting where

()

u(s) = ;;
SO
(i)
u(s) = ‘
\ X(S)
and
_dx_i0)
t Ks)
we have
_ mgo
P= JA =%
and
mg
E=———+.
\/(1 — vz)

In particular, if the object is at rest in a spacetime splitting so that v =0, then
p=0 and E=m,

in that system of coordinates.
The law of conservation of energy-momentum now says that

(B} (En)_(Ex), (Fo)

\pa) \ps) \Pa) \Ps)

at any collision —a conservation law for vectors in spacetime.




We have written all of the above equations in terms of natural units where the

speed of light is one and v is a number, so an expression such as /(1 — v%) makes

sense. Tf Ve use - ‘neg fr‘hn]no al units’ t 1. 1t Unlnr‘If\l ex
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ut
in cmys, for example. So an expression such as \/(1 — makes No Sense as it
stands. We must replace it by /(1 — (v%/c?)). To make p look as it should in the

small v approximation, we must write

_ mgv/e
P A=)
Similarly, to make the units of E and the kinetic energy term come out right, we
must write

myc?

J=v?/c?y
This is the appropriate rescaling. For the particle at rest, we get the famous Einstein
mass—energy relation
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the Euclidean scalar product defined by
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and the Lorentz scalar product
/¢ [t
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we get a linear function of the other

(aw, + bw,, W) = a(w,, W) + b(w,, W)
and so on. Also, both of these scalar products are symmetric:

(W, W) = (W', W)
and
(v, v) = (¥, V).
We now introduce a third kind of product between two vectors in the plane which
is bilinear, but anti-symmetric: we define

a)(v,v’)=qp’—q’p=Det<q q,) where v=(q) and v’=(q,>.
pp p p

Here

FAN Yy hY

(v, V)= —=w(v,V)
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Figure 4.34.

which is what we mean by anti-symmetric. The geometric meaning of w(v V) is

clear that w(v,v’) is bilinear. Such an w is called a symplectic scalar product.
A linear transformation, A, is called symplectic if it preserves the scalar product
w. Thus A is symplectic if and only if

w(Av, AV') = (v, V')

for all v and v'. The matrix whose columns are Av and Av' is just the product of

the matrix A with the matrix (q q,>. Therefore
p p

w(Av, Av'y=Det A (i Z ) = (Det A) (Det (q ;)) = Det Aw(v, v').
p

Thus 4 is symplectic if and only if Det A = 1. Any symplectic matrix clearly has
an inverse which s again symplectic and the product of two symplectic matrices is
again symplectic. Thus the collection of all 2 x 2 symplectic matrices forms a group,

called the (two-dimensional) symplectic group. The symplectic group plays a very

15 1 |
A Euclidean scalar product

. You should be able to Iist and apply the properties of a Euclidean scalar product.
_ You should be able to write down the transpose of a matrix and to apply the
transpose operation in connection with scalar products and Euclidean
transformations.

Given a vector space of 2 or more dimensions, with a Euclidean scalar product,
you should know how to use the Gram—Schmidt process to construct an ortho-
normal basis and to find the orthogonal projection onto a subspace.

B Quadratic forms
You should be able to express a quadratic form Q(v,v) in terms of a symmetric
matrix A and relate maximum and minimum values of Q to the eigenvectors and
eigenvalues of A.

Given a quadratic form Q on the plane, you should be able to introduce




coordinates x” and y" so that

Fa) 1 12, A L2
= X"+ 4,y

C Coupled oscillations
You should be able to reduce the problem of two coupled oscillators-to the form
W= — an

eigenvalues of A.

D Lorentz scalar product

You should be able to calculate the Lorentz scalar product of two vectors, identify-
ing Lorentz transformations that preserve this scalar product, and apply these
concepts to the special theory of relativity.

Exercises

4.1.(a) Using the three properties of the scalar product (symmetry, linearity,
positive-definiteness), prove the Cauchy—Schwartz inequality

(v, W) < /((v,v)(w, W)

can not have any real roots unless v=aw.)
(b) Prove the triangle inequality
v wif < v+ [wl]
(where [[v]“ = (v,v), etc.) (Hint: square both sides and use (a))

4.2.(a) Let vand v be two vectors in the plane. Show that a rotation R, through
an angle 6 for which

(v,v')

{ {o) u

i \ 1)
v v vivovy)

cosf =

2
will carry v into a multiple of v'. Determine the angle between <1> and

(o)

(b) Let vand v’ be two vectors in two-dimensional spacetime which are either
both spacelike, both forward timelike, or both backward timelike. Show
that a proper Lorentz transformation L, for which

{v.v}
JEv YY)

will carry v into a multiple of v'.

cosho =

Use this result to find a Lorentz transformation which carries (4) into

/5
a multiple of | _}.
NI/




What goes wrong if v is spacelike but v is timelike? If v is forward
timelike but v’ is backward timelike? If v or v’ is lightlike?

43. For practice with the Lorentz scalar product, consider the following

el th

18-X.)
[ —2\ {—1) (1 (1)
VI _\\ 2/,, v2=‘\ 3/J, V3=\\3/J, V4—\\1/}

(a) Calculate the Lorentz scalar product {v, v} of each vector with itself.
Plot each vector on a spacetime diagram and identify each as
spacelike, forward or backward lightlike, or forward or backward
timelike.

(b) Calculate the Lorentz scalar products {v,,v3}, {vs,v¢}, and {vs,v¢}.

(c) Calculate the vectors w,,...,wy which result from applying the
Lorentz transformation:

%
ne3 3
4

to each of the vectors v, ...v,. Plot the transformed vectors on the
spacetime diagram.

(d) Calculate {w,,w,}, {We, W}, {W,, W3}, {Ws,We}, and {w;,we}. All
these scalar products should be the same as for the corresponding v
vectors.

Pl plw

4.4, Let S be asymmetric mafrix with positive eigenvalues. Define a new scalar

2} Show _tha 1¢_cealar nroduect 1 svmmetriec bilinear _and positive

u) WLIEOUVY LIECY By ) IVERTAAY t’l AvAw ") 0 j ) U.’ llllll\.{l—ll\{, Ulllllvul, CRIIG l.l\.lulbl'v
A Afinnrta
UCIIIHTC.,

. . . S

(b’ ShUW ﬁjat a matrix 6 pIESEI veS thls SCHIHI pIOd[ICt 'I.e., l 6\?, GW.IS =

[v,w]s if and only if CTSC=23).

(c) Describe a procedure for constructing a matrix B with the property
thatifv = B~ v, w = B~ 'w, then [v, w]5 = (v/, w'). Explain how, given
one matrix B with this property, you could construct many others.

p d —_—

1
(a) Find a vector v which is orthogonal to w =( ) under the scalar

product defined by S, so that [v,w]s=0.

(b) Construct a matrix B with the properties described in 4.4(c), and
verify that with v and w as in part (a), (B~ 'v, B™'w) =0.

(c) Construct an orthogonal projection matrix P, satisfying P? = P, whose

1 .
image consists of multiples of w=( ) and which satisfies

[w, Pv]s = [w, v]¢ for all vectors v

D
(d)_ Construct a matrix C. satisfving C2 = — I which p
(O} COMIRUCHdibldttiA oy od J ? B +5—WiHeH-P

reserves the scalar
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product defined by 5. \nm[. R =\ ) N } satisfies R“=—1an
7

T

\
preserves the ordinary scalar product. ]

4.6. Apply the following procedure to the quadratic form

4

Va VAR Q.2 4 4~ - 2
o) =8x"+12xy+ 17y*:

(a) Write Q in the form (Av,v) where A is a symmetric matrix.
(b) Find the eigenvalues of A.
(c) Express A in the form

o0\
A=R9 Ro .
0 4

(d) Find coordinates x’ and y’ such that Q can be expressed in the form
Q(v) =20x"%2 + 5y'2.

(e) Sketch a graph of the equation Q(v) = 20. Indicate both the xy-axes
and x'y’-axes on the sketch.

9 2
4.7.(a) Determine the eigenvalues 4, and 4, of the matrix S = (2 6)’ and find

eigenvectors v, and v, associated with these two eigenvalues.
(b) Construct a rotation matrix R such that S = RAR !, where A is diagonal.

Be sure that R represents a rotation!

(c) Find new coordinates x' and ', linear functions of x and y, such that

9%> Fdxy +6y> =4, X >+ 1y 2.

4.8.(a) Determine the eigenvalues and eigenvectors of the matrix

{10 o‘\

=6 10/

(b) Construct a rotation matrix R and a diagonal matrix A such that

A=RAR 1.

(c) Sketch the graph of the equation 10x* + 12xy + 10y* =24.

4.9.(a) Find coordinates x’ and )’ such that the quadratic form

OV = —=x>+6xy+7y?
can be expressed in the form
Q(v) = A, x' %+ A,y%

Identify and sketch the graph of Q(v) = 40.

(b) Let x and y lie on the unit circle, so that x = cos 6, y = sin 0. Find the values
of 0 for which Q achieves its maximum and minimum values, and calculate
those maximum and minimum values. What is the relationship of these
answers to the answers to part (a)?

4.10. Suppose that M and K are both symmetric 2 x 2 matrices.
(a) Construct an example to show that M~'K is not necessarily

symmetric.
(b) Describe how to construct a symmetric matrix B such that B2 = M ™1,

Show that the matrix S = BK B is symmetric, and hence can be written

A 0)

A 1

C D D — 1 D 3 eyt PP |
ds O = RAR 7, wWheTe N IS 4 ToldUoOL aiid 74 —\ 0 p }




(c) Show thatif A = BR, then M~ 'K = AAA~'. This proves that M~ 'K
has real eigenvalues.

AR Y T\ x \ I /x\ 4
(d) Define new coordinates x’ and y’ by \ ., J=4 "{ ) Showthat, i
Y/ V7

/ 3\
V=K%}ﬂwthw%=fz+y2ka(Kwﬂ=iﬂQ+lﬁﬂ.

(Hints: B is symmetric, so (Bv,w)=(v, Bw). R is orthogonal, so
(Rv,w)=(v,R"'w).)

. 0 «
4.11.(a) Show that, if 4 =( 0), exp(tA) is a Lorentz transformation.
o

(b) In relativistic mechanics, the total energy E and the linear
momentum p of a particle of mass m moving along a line form a

E
vectorv = ( )with {v,v) = E? — p? = m?. If the particle moves so that its
P

acceleration is always a according to an observer who sees the particle as
instantaneously at rest, then E and p are related by

dE dp E
dt_ap, E[__a ’

where 7 is time as measured by a clock carried along with the particle.
Solve these equations to determine

{ E(1)\
\p(T)/

for initial conditions | _ | when t = 0.
\Po/

4.12. Suppose that distances along two perpendicular axes in the plane are
meaqured in umtq Wthh dlffer bv a large factor c. For examn]e in

L § : 1 ';l'\ 1Q 1 FaYay
Y WIHICI IS 1 oon
b | {1 ) | S rolh ¢ | ) 3
wide alog V), wu uugut wihihill 1O UGllIlU 1ICW Ul(.lllld.ly coordmates U_y
xr PPN

X =xand Y=cy, where c= 10, so that X is measured in kilometers
while Y 1s measured 1n centlmeters. Construct the matrix that represents a
rotation through angle 6 in terms of coordinates X and Y, and show that
for lines whose slope Y/X in ordinary coordinates is a number of the order
of unity, the rotation matrix becomes a shear matrix in the limit ¢ - co.
Explain this phenomenon geometrically by considering what happens to
the circles x* + y? = k.

(Note: After working this problem, reread the discussion of the limit ¢ — oo
for Lorentz transformations, in section 4.3.)

4.13. Calculate the symplectic scalar product w(v,,v,) for the vectors

() ()

Confirm explicitly that this scalar product is preserved under the action of

4.1.. il an
LIIC ylllPlele lllatl 1X

(5  3)




4.14. Consider the system of springs and masses shown in figure 4.35.

7
Fay
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/ 411},11 /m M
g 000 00—
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Figure 4.35

(a) Show that, if x; and x, represent displacements to the right of
equilibrium, then the motion of this system is governed by

where

4 0 4 —1
T=( ) and H=( :
0 1 -1 1

(b) Let B be the diagonal matrix with positive entries satisfying B> = T.
Construct the matrix A = B"'HB™ 1, find its eigenvalues and eigen-
vectors, and use them to determine the general solution to w = — Aw.

(c) Describe the normal modes of the system by specifying the frequency

E=S
;—A
h

.~ Comnsider the system of masses and springs shown in figure 4.36. Let x; and
x, denote displacements to the right of equilibrium.

7] K K
A— 00 M 00 M
vV VvV \YAY
/l
L | .
| X1 r Xs

Figure 4.36

(a) Determine the frequencies w, and ®, of the normal modes and
determine the ratio x,/x, for each mode.

(b) Suppose the masses are released from rest, with initial displacements
x; =4, x,=0. Find expressions x,(t) and x,(t) that describe the
subsequent motion of the system.

E
4.16. A particle whose energy-momentum vector 1is <p> is subjected to a
Lorentz transform represented by the matrix
1/r+r! r—r—l)
2\r—r"t r+rt)
Show that the sum of its energy and momentum is multiplied by r, while

their difference is divided by r. Interpret this result in terms of eisenvectors
and eigenvalues of L

A 17 A _vartind P \IFVPNPIPL. W Y PN {112 111t
.17 A pPpdlliViv O 1ldss 1o (al I uUines




where ¢ = 1) collides with a stationary particle whose mass is 6 units, and

the two combine to form a single particle.

/BN
(a) Determine the energy-momentum vector (\ p) for each of the colliding

particles and for the single particle formed in the collision. Thereby

determine the mass and velocity of the particle that is formed.

1\ ¥ T

T —

Vi d 1 L3 r3 . 3 r 3 3 4

(b) Usmg the Lorentz transformation matrix L=\ 4 5 ), which
—3 3

3
corresponds to a velocity of %¢, determine the energy-momentum

vector ( ) for each particle as viewed from a frame of reference
p
moving to the right at speed %c.

. E
4.18. Suppose that two particles have energy-momentum vectors w, =< 1)
D1

E :
and w, = ( 2) respectively, where m; = E} —p}, m, = E2 — p2.
P>
(a) Write the Lorentz scalar product.of these two vectors as {w,,w,} =
m,m, cosho. Show that v = tanho = \/(cosh®a — 1)/cosh o represents
the speed of one of these particles in a frame of reference where the
other is at rest.

(b) Determine v for the case where

E

) is the transpose of this
p

(a) Show that the matrix that transforms (

matrix.
(b) Show that the same matrix L will serve to transform energy-
momentum if we represent it as a row vector, ie.,

(E',p") = (E,p)L.

4.20. A photon has energy and momentum that are equal in magnitude (in units

where ¢ = 1). That is, its energy-momentum vector is of the form E(l ) or

F‘( \, deppnding on its direction of motion.

B\ 1) en no

o |

{a}Y Qrreviy + age D) Je | t1a b sala ~F
(a)j-d>upposct nasszZm-daecays mtoa particic ol




mass m plus a photon. Use conservation of energy-momentum to

determine the speed of the particle of mass m and the energy of the

photon.

(b) Use the Lorentz transformation to describe this decay process in a

frame of reference where the particle of 2m is initially moving at speed

(LYY

4.21.

E,
A photon of energy E,, whose energy-momentum vectoris| " |in units

4.22.

4.23.

\Ly/
where ¢ = 1, collides with a stationary particle of mass m, to form a single
particle of mass m,. Show that

m3 —mi
E,=

’ 2m,

Using the scalar product (f,g) = _[3° f(t)g(t)dt, construct an orthonormal
basis for the space of functions which satisfy the differential equation
X+3x+2x=0.

Construct an orthonormal basis for the subspace of R* spanned by the
three vectors

2 4
2 0
1

o/ o/ 2

1. Define a scalar product on R? by (v;,V,)=4x,X, + y,y,. Construct a

2 x 2 matrix P which projects any vector v orthogonally (with respect to

1

+1 1 b ] 1 Fay 4 +1 1z Q1 +1 4 ra 4 P\ M
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Chapters 5 and 6 present the basic facts of the differential
calculus. In Chapter 5 we define the differential of a map from
one vector space to another, and discuss its basic properties,
in particular the chain rule. We give some physical applic-
ations such as Kepler motion and the Born approximation.

We define the concepts of directional and partial derivatives,

and linear differentiat forms:

Introduction

Our first goal is to develop the theory of the differential calculus for four types of

functions:

[Rl — @2’

a
AN

Rl
5
]
-
i
D
=
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Jal] £ 2 im
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(1) functions from R* — R’, and

(iv) functions from R? — R,

Functions from R!— R? can be visualized as curves in the plane: The graph of a
function from R? — R* can be visualized as a surface in three-space. Functions from
R! > R! are familiar from first-year calculus. We studied linear functions from one
plane to another in Chapter 1.

—

p f@)

Ficure 5.1 A functi 1 2
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Figure 5.2 A function from R? to R!

We now want to extend that study to include nonlinear functions from one
plane to another: In order not to have to consider the various cases separately,
we will introduce some uniform notation when we develop the theory. In what

follows we will let V. W. Z. etc. stand for either R! or R?. So when we write

V=W

™ @

(3]
3
8]

a

Figure 5.3

(read: /f maps V to W’ or ‘f is a function from V to W’), we can be in any of the
four cases according as V is R! or R? and W is R! or R2. In fact, our notation
and proofs will be such that we can allow V, W, etc. to be the spaces R", or, more
generally, any finite-dimensional real vector spaces or affine spaces (when we get
to learn what these spaces are in Chapter 10). In fact, we shall illustrate some of
these more general computations in this chapter, even though we will not have
made all of the formal definitions.

We begin by pointing out a fact that the reader is probably aware of by now, as an
easy generalization of the discussion in Chapter 1: alinear map from R? to R?is given

— by a matrix with ¢ rows and pcolumns. Thus |

1 0
0

O o
I

O W |

\¥

o
—

o

1
I
W B |




gives the linear map from R% to R® with

Hy AN
0 5 | 2
AlO0 |=]4] A[O |=| 1] etc.
0 3 0 0
Lo/ o/
If
1 5 9
2 6 10
B= 3 7 11
4 8 12

so that B maps R® —» R*, then B4 maps R®> —» R* and so is a matrix with four rows
and five columns whose entries are computed according to the usual rules of
matrix multiplication.

BA =

x =(2)(1) + (6)(— 1) + (10)(1) in our example.

In particular, a linear map from R? — R* = R (usually just called a linear function)

is given by a matrix with one row and p columns. This is usually called a row

vector-Thus
1=(1,2,3,4)
is the linear map from R*— R such that
[1\ [a\
1 v
o) =1, 1)~ =2, ete.
0 ’ 0 ’
0 0

Ny -
Evaluated on any vector, we have

| =x+2y+ 3z +4w.

T N X

So again, the value of the row vector
l=(a,b,c,d)

on the column vector

=
__/

T N




18 given by the usual rule of matrix multiplication — this time with just one entry:

(M =ax+ by + cz + dw.
If A:RP ->R? and ILRT> R, then leA4:- R R

iy vl il

—

multinlicat ne o 1
lllultlyll\d“b -
and
I=(1,2,3)
5 2 1 0 1
A=|l4 1 —-1 0 3
3 0 1 1 0
then

5 2 1 0 1
A=(1,2,3)|4 1 -1 0 3|=(22,4,2,3,7).
30 1 10

One final bit of notational reminder from section 4.1. On the space R* we have

the Euclidean scalar product ( , ) and associated norm || || given by
vl =@ v)=xT+ - +xi
when
X3\
N <
¥ — B
\ Xk

__The triangle inequality says that |

lu+v] <[ul]+]v].

o
Q.

n the theory of the di

ve-a-derivative A at a point x i

difference quofient,

ave
1iave

(s
(2]

-

flxr+0)—f(x)
U b
defined for all sufficiently small v 5 0, tends to the limit A as v—0. We would like
to generalize this definition to maps f: ¥V — W. Our first obstacle is that division

by a vector makes no sense, so we cannot use the notion of a difference quotient.
So we consider rather

fx+v)—f(x)=Av+ p(v). (5.1
The condition that A be the derivative of f at x is that the error term ¢(v) go to
zero ‘faster than v. We can give a precise meaning to the assertion in quotation

marke x Ty 1
marks by requiring that

=0 as |v]|—0, (5.2)




or, to be even more precise, this means that

1A AT Y

Given any ¢ >0there exists a 6 > O such that

for all v such that ||v| <5

h Afth

0 o P 4yt
In (5:2)-and(5:3), the expression || v{ denotes the lengthof the vector vin the space

V and perhaps we should make this explicit by writing [[v|l,,. Similarly, [[¢(V)]|
denotes the length of the vector ¢(v) in the space W, so to emphasize this point,
we might want to write || ¢(v)|,,. We would then write the first inequality in
(5.3) as

loM) w < elvlly.

Since these subscripts would tend to clutter up the notation, we will not use them,
but stick to the notation (5.2) and (5.3).
For example, suppose that f, and hence ¢, is a map from R? to R!. Suppose that

: : X
we write the most general vector v in R? as v=<y) and, for typographical

simplicity, write ¢(v) as ¢(x, y). Then ||v| = (x> + y?)*/? and || ¢(v) | = |$(x, y)|. In this
case, condition (5.3) reads:

Given any ¢ > 0 there exists a 6 > 0 such that

Lhlx WM < ofxx2 4 p2)1/2
v J1 hd G LI S §

for all x and y such that
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satishes (5.3) 1s said to be ‘little oh of v'. In symbols, we write "¢ 1S o(v) or, with some

abuse of notation, ¢ = o(v). Thus we would write the condition that A4 is the

fx+v)—f(x)=Av+ ¢(v) where ¢(v)is o(v) or ‘where ¢p(v) = o(v)

or, even more succinctly, as

f(X + V) — f(x) = AV + o(v). ' (5.4)

This last version is logically a bit sloppy but is the one that we will frequently use for
convenience. The expression o(v) in (5.4) really stands for ‘some function ¢(v) which is
o(v). In many cases we are not interested in the error functions ¢, we just want to
know that they satisfy (5.3). So it is convenient not to have to introduce a separate
symbol for each function ¢ that arises.

To get some feeling for the concept of o(v), let us prove the following lemma:

Suppose that ¢:V — W is a linear transformation and that ¢(v)= o(v). Then
$=0 (5.5)




choose r = [[w]|/0, and write

wW=rw—if w=0;

Then | W || =6 so

[¢W [ =rl¢W)[<re[w [ =erd=elw].

[dw) | <elwl for all w+#0

(and this is clearly true for w = 0 as well, since ¢(0) = 0 if ¢ is a linear map). But this
inequality is to hold for all &. So ¢ =0.

From (5.5) it follows that if (5.4) holds, then the 4 occurring in (5.4) is uniquely
determined. Indeed, suppose that

fx+v) = f(x)= AV + $(v)

and
fx+v)—f(x)=AV+ d'(V)
where both ¢ and ¢’ are ov). Then

(A" — A = $(v) — ¢'(v).

But, we claim, the sum or difference of two functions that are both o(v) is again o(v).
Indpnd or-anv-e¢ 0 we_ecan-_find S 0O an 5 0O enuch that
A1 ) U1 Q4ix ¢ ¥YYOW WL 11114 Ul U Al U2 U ouUuvil uvuaiatil
lpW) | < zelv]| for v <4,
']“f’l
CALIG
4 1 o
¢V sze||v] lor |[v]<o,
Then choacino S tahe the cmaller af the tywwaniimhbherce S and S o abtain hyv tha
T IIuIx ULIUUDIIIS U LU UV LG silladllivl U v twUO 1aUuiliioelty Ul alng U2, wL ooilaiii, Uy LG
triangle inequality,
o hfay AN e 1 AL 1 1 A2\ ] all vl
TP TPV TTWAYITT TP <e| Vvl
The linear transformation 4’ — A4 is o{v) and hence must vanish; in other words

4 47
1= A.

A function f which satisfies (5.4) for some (and hence a unique) A4 is said to be
differentiable at x. The unique linear transformation A is then called the differential of
fat x and will be denoted by df,. To repeat, the differential of f at x is the unique
linear map from Vto W which approximates the actual change in f at x for small vin
the sense that

Jx+v) = f(x)=df,[v]+o(v).

In order to prove the basic theorems about the differential calculus, we will need
to assemble some facts about functions that are o(v), and for this it is convenient to
introduce some more notation.

A subset S of Vis called a neighborhood of 0 if it contains some ball about the
origin, i.e., if, for some é > 0, it contains the set of all v with ||v|| <§. Clearly, the

1nfprcecti0n oftwoneishborhoodsis aoqin.a heichborhood (iust take the emaller of
EFSaa=) o) \Av4 uulsuuux TIOOUgY 10 u5u111 G Iiw & vvvvvvvv A=A~ 2 uul, AN Uuiv onaimaninvi vl
the two balls, it is contained in the intersection). Similarly, we can talk of the




neighborhood of any point x. It will be a set which contains some ball about x, i.c.

which contains a set of the form {y||ly — x| <&}

YY A 1101 nm 1B AR
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have the same di mensmn) then we can find constants k; and k, > 0 so that

[T | b} T il
AV =R 1TV

and

A7 W] <k, |l w]
or, setting w = Av,
ky vl < | Av].
Thus the image of any ball of radius r is contained in a ball of radius k,r and contains

a ball of radius k; 'r. In particular, 4 carries neighborhoods into neighborhoods as
does A~1

/—
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Figure 5.4
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Let us now return to the general case wher
m™m t n[T/ I/T/'\ de en

ongs to o(V, W

-
=

&

[+¥]

c
=
(2]
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Q

=
S
,f_D.

We say that a function ¥ is O(v) (read as ‘Y is big oh of v') if ¥ is deﬁned in some
neighborhood of 0 and there is some constant k > 0 such that

Iy | <klvl
for all v in this neighborhood. For example, any linear map is automatically O(v).
Also, clearly any function which is o(v) is certainly O(v). We let O(V, W) denote the
space of all functions which are O(v). Finally, we let I(V, W) denote the space of
functions defined near 0 which tend to 0 as v— 0. Thus
xelI(V, W) if y is defined in some neighborhood of the origin and, for every
¢ >0, there is a 6 > 0 such that

lx(W) |l <e when |v| <.

Clearly

oV, Wyc OV, wyc I(V, W).




If for example we take V= W= R! and define

P(xy=x

Y(x)=x
and

X(x) — |x|1/2,
then

peo(V, W),

YyeO(V,W) but yé¢o(V,W)

and

xel(V,W) but x¢O0(V, W)

so the above inclusions are strict.

We have proved that the sum of two functions in o(V, W) is again in o(V, W). The
same proof shows that the sum of two functions in O(V, W) is in O(V, W) and
similarly for I(V, W).

We now study the behavior of these spaces under composition. Let X be a third
space. We will prove the following three useful facts:

If y,€0(V, W) and y,eO(W, X), then y, oy, €O(V, X), (5.6)
H €0V, W)y and y,eo(W, X), then Yo, €o(V, X), (&N
If l// eo(V, W) and |// LeO(W, X), then :I/ o:// CQ(V, X). (3.8)
Proof  If |y (W) <k, |lv| for ||v] < J, and | ¥, LWl < k,|lw]|| when ||w] < J,, then
e oy wril] ]»\n A frmnand £fAar el +1 crmrallat £ tha 127 smberce S
Y2 Y1 will UV UleliIca 10T [V \(} WU.CIU U lb LT SiHlidlliCl U1 U0 TwU 1uiivvis Uy
and 6,/k,. For this range of v, we have
1Y) I (<) Hoate £3de £ - ol o) - I- Ul
T2 Y 1T = TYAW V)T K2 TV IV s RaR 1TV
proving (5.6). I zeo(W, X) we can make k, as small as we like by choosing 0,
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(and hence 5) cmn (17 YA\ ,.t.,..

G G—Honce—o0) uuaﬂ. il o pLUVCb \J /; 11 tplv:U\V w, Lucu we can cnoose :’»1 as

small as we like by choosing J, (and hence 6) sufficiently small. This proves (5.8).

If ¢ is a function from V to W and g: V — R a real-valued function, the product

g(v)¢(v) makes sense for any v that lies in the domain of both ¢ and g. So we can
form the function g¢ which is a map from a subset of V to W.

If yeO(V, W) and gel(V, R), then gy co(V, W). (5.9)

Proof. We are told that there is a k such that | ¥(v)|| < k| v| in some neighborhood

of the origin. Given any ¢ >0, choose & so small that | g(v)|| <e/k for all v with
| v|]| <. Then, for such v,

gy M < /)Yyl <elvl

proving (5.9). Similar arguments prove

If yeI(V, W) and geO(V, R), then gy co(V, W). (5.10)




It  1s a bounded map from V to W defined in some neighborhood of the

origin, and geo(V, R), then gyreo(V, W) (5.12)

(To say thata map y: V=W is bounded means there is some positive
real number k V)

5.2. The differential calculus

Let f: V— W be defined in some neighborhood of a point xeV. Define the function
V. f by the formula

V.S (h) =f(x+h)— f(x).
It is defined for all h in some neighborhood of 0 and measures the change in f
relative to its value at x. The function f is continuous at x if V_feI(V, W). (This
means that V_f(h) tends to 0 as h— 0, so f(x + h) - f(x).) Recall that the function
f is said to be differentiable at x if there is a linear transformation df:V— W
such that

AL Thl . A(h)
oy

J
The linear traannrmation df iq uniquely determined by this equation and is called
t1

A\

1
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10
a function 1in O(V, W) and a function 1n o(V, W) lies in O(V, W). From this we

conclude that

If f 1s differentiable at x, then Vf eO(V, W). (5.13)

Fa's SIS M I — FaVA G40 & FAY | VA FAL§ FA - i | VR NP i Al J:€CF, IS G | -t
(N pdriculdr, Since ULy, w ) . Iy, vy ], we Concludce tdtl, 11 j 15 dUICTCADIC dl X,

then it is certainly continuous at x.) If f i1s a linear function, f(x) = Ax, then

Vf [h]=A(x +h)— Ax = Ah, so, -

A linear function f(x)= Ax is differentiable at all pm'nfq, and its differen-

H—f ) LA 1

tial 1s given by df, = A, independent of x.
If f is a constant function, then Vf, =0, and (5.4) holds with A =0, so

A constant function is differentiable everywhere and its differential is
identically zero.

We now state and prove the rule about the differential of a sum:

If f and g are two functions from V to W and both are differentiable at x,
then so is their sum and

d(f +g),=df, +dg,. (5.14)
Proof. 1t is clear that V(f +g), = Vf, + Vg.. Since

.1

7.£ | i
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and

qu = dgx + ¢)2

where ¢, and ¢, are in o(V, W), we conclude that

Since (¢, + ¢,)eo(V, W), this proves (5.

We can mnlhn]v an R-valued fnnnhnn a4 with_a We-valued function to
\A B VAL Il IJ “arr YEIITUw 1U1lve y Witll vy vyaruva I PR =AWy (AW

W-valued function. For this combination we can state the usual rule for the
derivative of a product:

Suppose that f: V— Wand g: V- R are both differentiable at x. Then their
product, gf, is also differentiable at x and
d(gf)[h] = g(x)df,[h] + (dg,[h])f(x).
Proof.

Vigf)[h]=g(x +h) f(x + h) — g(x) f (x)
=g(x +h)(f(x + h) — f(x)) + (9(x + h) — g(x)) f (x)
=g(x)(f(x +h) —f(x)) + (9(x + h) — g(x)) f (x)
+(g(x +h) — g(x)(f(x + h) — f(x))
= g(x)Vf,[h] + (Vg,[h]) f(x) + (Vg,[h])(V/,[h])
= g(x)(df,[h] + o(h)) + (dg,[h] + o))/ (x) + O(h)- O(h),

since f and g are both differentiable at x and hence both Vf and Vg, are o(h) by
: uncti hic] )(h) is o(h ). Both £
U | oo I i R N 4a 1144 112 Fant { ;1 ) { =) P o o8 |L\ £ £\
and g are vounded near X Since, m iact, g(X+nj—g(Xx) and (X +nj—J{X)
tend to zero. The product of a bounded function and one which 1s o(h) 1s
o(h). Putting these facts into the last expression above gives
V(gf)[h] = g(x)df,[h] + (dg,[h]) f(x) + o(h)
which was to be proved.
We now come to the very important:

again

Chain rule. Suppose that f:V— W is differentiable at xeV and that
g: W— X is differentiable aty = f(x)e W. Then gof: V— X is differentiable at
x and its differential is given by

d(gof), = (dgy)-(df)- (5.15)

(On the right-hand side of this equation we have the composition of two linear
transformations, dg,,.W—X and df;:V—-W. On the left-hand side we
have the composition of g and f))

Proof.

V(g f)[h]=g(f(x + ) — g(j{x))




= Vg,,[Vf,[hl]
=dg,_[df.[h1]-+dg,,[e[h]]+ (doy)(h),

TSI fix) L= xLTId

where ¢eo(V, X) (coming from the error term in Vg, ) and y = Vf €O(V, W) by
5.13). By (5.8) this composite function is in o(¥, X). Also dg,,, s linear, and hencem

( P ar B Y= P vuxuv >3 I e =g A
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element of o(V, W) and so is o(V, X) by (5.7). Thus
V(gof),[h] = (dg°df,)[h] + olh)

1in
111

as was to be proved.

Examples

We now give some examples of differentials and the chain rule. For functions
oa: Rt - R, the differential da, when evaluated on some heR is given by multi-
plication by the derivative «'(x). Thus

do [A] =o' (x)h.

This is just the definition of the derivative o'(x). For example, let a: R! - R! and
p: R —» R! be given by

ay)=y*, By=5x>+1

so that
a0 B(x) = (5x3 + 1)2
AN \ 7
Then
to, | ltiplication by 2.

dp. is multiplication by 15x2,

- N M h RIS b e 1 la Wi ~4 " L AW V-
d(oo p), s multiphication by 2(5x” + 1)(15x

SO -
drzﬁ(x) is multiplication by 2(€x3 + 1)
and
alil
dag,odp, 1s multiplication by 15x2 followed by multiplication by
2(5x*+ 1) or
dotgy°dp, is multiplication by 2(5x% + 1) (15x?)
or

dotyyodf, = d(ao B), — the chain rule.

It is clear that the notation here is cumbersome. Leibniz’s notation for functions of
one variable is better:

If o is a function of y write




This last equation is taken to mean that at any value of v

da,(h)=a'(y)h.

In other words, dy is a dummy symbol into which we substitute the value of A Thuyg

d(y®) = 2ydy,

d(5x® + 1) = 15x2dx.
The chain rule now says substitute
y=(5x>+1)
dy = 15x%dx

into the formula for d(y?) to get the formula for d[(5x*® + 1)?]. The chain rule
becomes mechanical substitution in the Leibniz notation.

We will continue to do some examples in our more cumbersome notation where,
we hope, the meaning of the operations is clear.

Let f: R - R? and ¢: R* »> R! be given by

x?+1 X 5
=350 ) #((3)-

and

To evaluate df,, we note that

Visl=fx+5)—f(x)

Similarly,

Vg(,yc)[(:>} =(x+95)*(y+1t)—x2y

=x2t + 2sxy + 2sxt + s%y + s%t
_ N s
@1 +o((()

dg(,yc) = (2xy, x?).

so that dg(x) is the matrix
y

The composite function gof: R* — R is given by

offx)—(x2 + D2(2x—1
J YT AGid LIS 7

K@




so that

d(gof), =2(x% + N(2x)2x — 1) + 2(x* + 1),

The chain rule says this must equal the matrix product dg ;,°df, which'is given by

N\

P9
dg . ..odf. —(2(x2 + DN2x — 1), (x* + 1)? \
TIX) J X A Cd Gl T VAS V22BN 7 /\ 2/

which equals d(g°f),.
We can also form the composite function fog: R* — R? given by

x\\ _[(x*y)P?+1
r((}))- (e 1)‘
To compute d(f° g)(t), we expand

wag((;)-

e+ y+12 + 1Y) [x*y?+1
2(x +s)*(y+1)—1 2x%y—1

2(x* + 2xs + s*)(y + t) — 2x2y

___((x + 4x3s + 6x2s +4xs3+s4)(y2+2yt+t2)—x4y2>
/

so that

The chain rule says that this must equal dfq((x))Odg(x) which is given by
y y N

_(2x?y 5
Yo dg(;‘)—( 2 )(2"”)

4x3y? 2x*y
d4xy  2x*
which equals d(f og)(x).
)

As another example of the chain rule, let F: R? - R? and G: R* - R? be given by

e((*)) = (x ) //x\\ /3xy2\

) U xy ) T\\y))




We then have

CFPF o\ (XYY

Fl))
y\\//

x+s)y+t) J \ xy

X0} (5

N
Pk

(
\
(/
\xt+sy)  \st)

“0A0)

y
so that
2x 1
(x) ( x)'
Similarly
(3 +s)(y+1)? (3xy
“(())‘( (x +5)? )
_ ( sy? + 3xy(2t)) N (.’)xt2 + 3s(2yt + t2)>
N EARCATEAWNIEAY
x o Mool
so that

~ {/ 3y7 6xy\\

4dG
=t 0 /)

The composite function FoG:R*— R? is given by

FOG/ X F//3xv _((Bxy*) + x*\
()= -(420)
/QYZ})4+\:2\
- 3x3y2

We then have

()

B (9(x + )2y + O+ o+ 5)2\ 9%yt x?
B 3(x + 5)3(y + 1)? 3x3y?
_(9(2xs)y* + 9x*(4y°t) + 2xs

T\ 3(3x2s)y? + 3x3(2y1)

/9x2(6y t2 4 4yt3 + 40 + 18xs[(y + D* — y*1 + 9s%(y + 0)*)

3x31% ’%(’%Yc + <3\(v + ﬂ2 4 9x2 s(2yt + rz\

\

7

[18xy* +2x 36x*y*\/[s {{s$\)

1 gy2,2 6xiv e )T ))
\ 7 B 4 ox

Y/ \%/ NN/ 7




so that

Ahie24,3N

d(E oGy = (185 20 36X

G 9x*y? 6x°y

he chain rule, thi 1d iG hich is @i i
By the c e, this must equal dF () au(;} which is given by

2(3xy*) 1 3y?  6xy
dF 1 ° e
()" ( ! 3xy2)<2x 0
[ 18xy*+2x  36x?y?
C\3x2y? +6x2y?  6x3y
=d(F°G),x.
%)

In the next few sections we will spend some time extracting important conse-
quences of the chain rule.

We first give some more ‘abstract’ examples of the chain rule and introduce some
notation.

5.3. More exampbples of the chain rule
. - IJLUU Ay CAANS WAICALTITL 1 UV
Let us consider the mult1nl1r~qﬁnn man a-R2 5 R defined bv
1 9 3 ‘t"‘vu\rlvl‘ L““y y A A SAWVITIINVOUE UJ
[ x\\
g\ ]=xy
\\Y//
/Y r
Ifv=| |and h= , then
\V/ S
alv 4+~ —=(x 4+ Myt ¢d— vy L vo L vp-L pe
HY T+ )= T FRY 5 =Xy + XS+ S

SO

d,g(h) = xs + yr,
and its matrix (with one row and two columns) is
(¥, X).

Let f: R! - R? be given. We can think of f as describing a curve in the plane, or,
more simply, as giving a pair of real-valued functions of one real variable,

_ ()
ro-(0)

Then
x&+m> (Aﬂ+f@h+dm>
h = =t
Je+h (y(t + 1)) =\ 0) + y(Oh + oh)
fae+m—ro=h{ =Y 4 o
\y(t))




or

[ x' ()

FO= )

\EAL

Multiplying the matrices

dg @6 — (v(0), x(z))

and

: x'(t)
wr0-(50)
gives
d(gef). = (gof ) (&) = x'@y(®) + x(6)y'(1).

But (geof)(t) = x(¢)y(t). Thus the chain rule implies Leibniz’s formula for the
derivative of the product of two functions.

Before proceeding, it will be convenient to introduce and explain some further
notation. Instead of writing

dg,(h)=yr + xs where v=(x), hz(r) and g((x))=xy,
y S y

it 1s more convenient to write all of this information as

T thic amra t1ann ¢ 2o by
) § U
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as a linear map from R?— R the map which assigns to each vector its first

coordinate. Thus

P +1 1
alid Siiiliarly,

dy(h) =s.

In-theexpression ydx, the yisa function of v, that function which assigns to v its

, %
second coordinate, where v =<
y

kinds of variables, the variable v which tells us where we are computing the deriva-
tive and the h which is the measure of the small displacement. The d(xy) that occurs
on the left-hand side is a shorthand way of writing ‘dg,,; where g is that function

). So the terms like ydx really depend on two

defined by g(v) = xy when v= (x) . In applying the chain rule as in the above
y

example, we would say

Consider x as the function* on R? which assigns to each vector its first coordi-
nate. Then (xof)(t) = x(t) by the definition of the map f. By the chain rule,




d(x°f), = x'(t)dt, where, in this equation, x'(¢) is a function evaluated

at the point ¢
where we are comnnfmo the derivative, and_dt is the part which measures the
emallinecrement Sa suhom thhinml-Afyv ne P, mne r\ﬁ ~f + o1 ve +1a r
SHiaerCHIaent—Ho-winen we think-orx-dasatunc ttonof+ aelv tous Uy LIIC Inap],

we make the ‘substitution” dx = x'df where now x'is a Iunctlon of z. Similarly, the

chain rule tells us that if we consider y as a function of ¢ given to us by the map f,

then we must ‘substitute’ dy = y'dt

e —ay

We would then write
d(geof)=yx'dt + xy'dt

with x, y,x" and y’ substituted on the right-hand side as explicit functions of t.
For example, suppose x(t) =t + sin t, y(t) = €. Then we would write

dg =d(xy) = ydx + xdy,
t+sint 1 + cost
df: d( eZt ) = ( 2e21 )dt

d(gef)=d((t + sint)(e*)) = (€*(1 + cost) + 2e(t + sint))dt.

Let us state the chain rule once more in diagrammatic form: We are given two
differentiable maps f:V—>W and g:W—Z, so we can form their composite

and

nnf I/ y7Z At com atd

& oyl
74, LU OV IJUI

v-inV-we-ecan apply f toget tUJ \v; and then g to get
he ma

to gl ] (v)). In computln dig° j Jv(h) we can follow t ps along, by first applymg

df, to h and then dg,, to the image.

df, PN A

d o)

. —f ——=\ dg/ ) (dF, (1)) = dig- ), )
P2 Ja4, ) \

j 8 3 ‘ b
[V\ rf \ . PN
\ Jtv) g (v)

f et o P
———

F;ﬂll.‘n : :

x lsulc wdea)

T A came

Cetus nowgo-some Sliguﬂy
rule. In these computations we will take V, W etc. to be higher-dimensional vector
spaces, so the logical purist might want to postpone studying them until after
reading the chapter on linear algebra. Nevertheless, we recommend having a look
at them here. We begin with a computation of the derivative of a product of two
matrices. Let V be the vector space consisting of pairs of n x n matrices, so a typical
vector in V is of the form

G

where A and B are n x n matrices. (This becomes a vector space by componentwise
addition and scalar multiplication:

AN “-}-”’\ [ aA\
va—( ]andv _Jthenv+v =" ',,,]andav—[ !
5/ 5/ B+ B \aB/




This obviously makes V into a vector space of dimension 2n°.) Let W denote the

vector space of all n x n matrices, and define the map g: V—>Wbygl | , | | =4B.
\\*/

VA / xr \
va—/A\\and h-—{A ) then
\B) \Y )
gv+hn)j—glv)= - = + + = +o0
SO

dg.(h)= XB + AY, (5.16)

In doing computations, we might want to use our more convenient notation which
drops the subscript v and the values at a particular h. We could write (5.16) as

d(AB)=(dA)B + AdB. (5.17)

In this notation, the AB occurring on the left is a sloppy but convenient way of
writing the function g. The dA4 occurring on the right is the derivative of the function

A o
which assigns to (B) the matrix A. This derivative when evaluated at the point

A X\ . . :
( B) on the vector (Y) yields the value X. Thus dA is the linear map which

acctaret .-.AL{X\\tl.,. calliiae VYV Q far avarmmla A4 AR 1 +ha lin g0 g o n | I
assigns-to-each{— —ythe-value-A-oo; for exampie, {dA)5 15 the lmear map which
N\ /
/X\
assigns to [ ) the value XB. In this sense, (5.17) i1s a shorthand form of writing
\Y )
(5.16)
A . +1 1 £ 41 ot 1+ £ A 41 . £ X7 4 b A 1
Asanother example of this notation, let f denote the map from W to V given by
(A
flA)=|
\ 4
Q‘;ncn f 1¢ linear wvo know -that 1te dorivative 1o indenendeant AF 4 and e et the
=g Vv ) o lneal, we RIIUvy Liidl 1ty Ullivatllve 1o IIIUDPDIIUCIIL Ul 71 ali\l 15 JuDl Ll
same map again, evaluated on vectors, i.e.
X
df 4(X) = .
X

In the differential notation we would write this as

o(4)- ()

(wWhere again, d4 is the linear function which assigns the value X to any element
X). Now let us consider the map h of W— W defined by

h(A)= A*.
We clearly have h(A4) = g(f(A)) or h=gef. So the chain rule applies:
| .
\! NG )
v4 Ux) ) 4

’ T XA+AX

Figure 5.6




It says:

Z\
dh(Z) = d(g°f)4(2) = ngr(A)(de(Z)) =dg Z) =ZA+ AZ.

(Notice once again, that on account of the non-commutative nature of matrix multi-
plication this is the correct generalization of the formula d(x?) = 2xdx of functions
of one variable. It is not true that d(4%)=2A4dA.)

The Born expansion
Let us now consider the map (inv) which assigns to each invertible matrix its
inverse, SO

(inv)(4)=A"1.
The map (inv) is not defined on all of W, but only on that subset of W consisting

of all matrices which are invertible. Assuming that inv is differentiable where defined,
we shall show how to compute the derivative of the map (inv) using the chain

rule: Define the map f by

L4 AN — \
f@A@=t,-7)
A/
or, more symbolically,
. { (d)
J _\ (inv) }
\\ 77
Recall that ¢g is the map defined by -
o =5
\B)

Then (gof)(A)=AA~' =1 where I is the unit matrix. In other words, gof is a
constant, and hence d(gof)=0. By the chain rule,

_(dadx)\_( X
df4(X) = (dA(inv)(X)) B (d(inv)A(X))

and, by the chain rule again,
0=[d;g]l(d f(X))=XA" '+ A(d 4(inv)(X)).
Multiplying this equation on the left by 47! and solving for d ,(inv)(X) gives
d(inv)(X)=—A"tXA"1.

In “differential notation” we would write the preceding argument as follows: Since

AA~' =1, we know that d(44~")=0. ‘Substituting’ A and A~* for A and B in

a rriila AL AR (d A\D_L A(A R\ ocivec
V1O HIIUIAa U\[ll)} \uajo I \anry EIVUO

0=d(AA"YY=(dA)A~ ' + Ad(4~Y)




and solving this equation for d(4 ') gives the formula

| d(A™Y) = — A=} dAaya-L. (5.18)

of one-variable calculus.) We pause to give a slightly different explanation of the
preceding formula. Suppose that A4 is an invertible matrix, i.e. that Det 4 # 0. Then
if X is a matrix whose entries are sufficiently small, Det(4 + X)#0so that 4 + X
is also invertible. We can write

A+ X =+ XA HA.
If X is sufficiently small the matrix X A~! will also be small and the series
T+XA H 1=1—-(XA"H+(XA4 )Y (XA )3+
will converge. Then we have
A+X) '=[(I+XA " HA] ' =471 T+ X4 H!
=AM - (XA H+ XA Y)Y -

or
(A+X) 1=A 1A 'XA '+ A" 1XA1XA!

A=l va4—-1lyvg4-1lyvg—1,
A PL g ! A1 A7 -+

£ 1. 1 1t M PR, +] A 1 Bk | + I 4~ 1
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the entire Born expansion in order to derive the first Born approximation; we got
it straight from the chain rule

Oy the ~Athear hand a mament’c raflactian-chawurcthat $ho T s arrga o g age toaials o
UL LU OLICl HAalll, d HHTOLIICIIU S TCLHCCUHULT SITUWDS tllat thC DO11L CApallblU 11 lll}llcb
that

A+X) '—A"1=—A4"1X47! 4+ o(X).
This proves that the function (inv) is differentiable — a fact that we had to assume
in applying the chain rule.
Let B be a constant matrix, and consider the map f(4) = ABA™'. Then
d(ABA™')=(dA)BA~! + AB(dA™1)
=(dA)BA™!' — ABA~1(dA)A ™.

In other words,
d,f(X)=XBA '—ABAT'XA™ 1
Suppose that t — A(t) is some differentiable curve of matrices, and let
C(t)= A(t)BA(t)™!

where B is a constant matrix and we assume that A(t) is invertible for all t. Applying
T

oy 7

o Ahas q ¢ mesnadima farmila w
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C'(t)= A'(H)BA(t)"* — A(t)BA()A' (1) A(t)~ .
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Suppose that A(0) =1 and A'(0) = X. Then setting ¢ = 0 into the preceding formula

gives

C'(0)=XB— BX.

+1 PR s tan It
the most basic i matn

e S
side of this formula is called the commutator of X and B

[X,B]=XB - BX.

For example, suppose that A(t) =exptX so

A)=T1+tX +3i2 X% +
Then clearly A(0) =1 and A'(0) = X so the above formula applies. Let us verify it
directly. We have A(t)"' =(exptX) ' =exp(—tX)=I—tX +12X? + -.-s0

ADBA@) ' =( +tX +L12X2+ - )BUI —tX + 12 X% — ...)
=B+ {(XB—BX)+1t*(X*B—2XBX + BX?*) + ---

Collecting the terms which are of degree two or higher in ¢ gives

A(t)BA(t)~ ' = B+ t[ X, B] + o(t).

Kepler motion

We have seen that the chain rule implies Leibniz’s rule for the derivative of a

P2 P VAN % ~f trinne wwhara tha 109107

oI matricCs—wnere—tne ululupuuauuu lb 11Ut

_ 7 £ thao e
pluuuut even 1ot —tnc pro

commutative. We now wan

product in R3. (We will remin
“““““ ;]l Aﬁ‘.‘ 1X 7 Vﬁ ]nf

Ay
uu
to a pply this same reasoning to the so-called vector
nd y u ofits definition in a moment.) As a consequence,
A

Q aanr\
WL will ULLIVUL IANCPIVL S OVLU

In three-dimensional space there is a vector product d fined as follows:
/x\ /n\ /vr — zg\
hd | o r J 1 \
Ifv=y | and w=[¢q | thenvxw={zp—xr|.
z r XxXq —yp

It follows immediately from the definition that
(Vi+ V)XW=V XWHV, XW, VX(W;+W,)=VXW, +VXW,
(av) x w=v x (aw) = a(v x w)
and
vxv=0.

It follows from the first three equations that x acts like a multiplication and hence
that

divxw)=dv x w+ v x dw.

In particular, if v(t) and w(t) are curves in R* and if we set

|I(E) — \l(t) x-wit)
\U)

then

w(0) = V() x w(t) + (1) x W (D).




Suppose that r(¢) denotes the position at time ¢ of a particle moving in space, and

suppose that p(z) denotes the momentum at time ¢ of the particle. The vector

1) =p(t) x r(t)

1S CQHCA the anaular-—momentum—of the nartiele ralative +athe_aricin {(at fime )
(7 Gt unigvtwrrauinic it i ulualvryal iiuic 1ciall ve OtV unlsial e L}
Suppose that the particle has mass m and that it is subject to a force F(z) pointing

along the line from the origin to the particle, so that F(t) = c(t)r(t). Then

r'(t)=(1/mp(t) and p'()=F(t)=c(®)r(t)
and hence

p' () =p'(t) x r(t) + pt) x r'(t)
= c(O)r(t) x r(t) + (1/m)p(t) x p(t) =0

In other words, g must be a constant. This law is known as the conservation of
angular momentum. Let us suppose (for simplicity) that g # 0. It follows easily from
the definition of vector multiplication that for any vectors v and w we always have
(v x w)w=0. Since g = p(t) x r(t) we conclude that g-r(t)=0 for all t. In other
words the particle always moves in a fixed plane, the plane perpendicular to . Let us
rotate our coordinate system in R3 so that g lies along the z-axis, and hence the
particle lies in the xy-plane. Thus

x(t} x(t) / 0
0

r(t) = | y(t) | and therefore p(t)=m| y'(t) | and g =m|

0
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hatched region in figure 5.7. The area of the triang\gle is (up to sign) given by
3(x(t + h)y(t) — x(B)y(t + h)).

r(t+h)

r(t)

(=]

-

-~

-

Figure 5.7




But

/1

x(t + h) = x(£) + hx'(t) + o(h)

and

(et +h)=y(t)+hy'(t) + o(h)

i g

so the area of the triangle is given by

Fa Y

(O y(e)y = x(O)y (O)h + o(h).

We conclude that the rate at which ‘area is swept out by the radius vector’ is a
constant, Kepler’s second law. Thus, by use of the chain rule, we see that Kepler’s
second law, and the fact that the particle moves in a fixed plane, follow whenever
there is a central force law. The fact that the planets move in a fixed plane and
sweep out equal areas in equal times is a consequence of the fact that their motion
is determined by a force directed toward the sun. The preceding derivation of
Kepler’s second law is due to Newton.

5.4. Partial derivatives and differential forms

In this section we will introduce some concepts and some notation that are

convenient for the chain rule. Let us consider a differentiable function f:R* > R.

For example, take k = 3 and suppose that

/ /4 N\

fily])=xy2"

A
NN\N77

Then df, is a linear map from R° — R. So df, can be represented as a row vector. We
X

claim that, at any point v=| y ], the row vector is given by

\ z /

N/

df, = (2xy°z*,3x%y*z*, 4x*y°2°).

1\ /0 70\
To check this, we need only to evaluate on each of the vectors O), (1 and}{ O ].
0/ \O 1
For example,
1 s
flv+st 0 ) )—fW=df,{ O |+ o(s)
0 0

1
=sdf,| 0 )+ ofs)
0

by the definition of df, and the fact that df,[h] is linear in h. Now

1 X B X + S X

W | -

flv+slO 1 |l—flly ll=—1|f y —fily

ALz ) /)

0 \\ 7 ) z \Z
X Y/ 7/ N\ /77 N\ // \\"// ]




and the limit of this expansion as s—0 is just the derivative of f with respect to
the variable x when y and z are kept fixed. This is called the partial derivative of

A0 wtitwel

f with rCSpCCt to-x-and-is-denoted b by af/a,)u If
//x
f V et \52 \;324'
“\\J g
\\"/ /J
then
=2xy3z*
from elementary calculus. Thus
1
0
0
Similarly,
dlld
/NN
v of
dfv 0 == -
1 0z
Thus
(of _8f _of \
df—[ I ()M V), ==V} |-
0z

Is a more convenient way of organizing this information. Recall that we have written
dx for the linear function which assigns to each vector its first component. Thus

dx =(1,0,0)
and similarly
dy=(0,1,0), dz=(0,0,1).

Then we can write the equation

dfv=( T, —f( L 2 )) Lm0 0)+—f( )0,1,0+ 2 @0,0,1)
as
0
df = gf afdy-l—afd
Thus

d(x2y3z%) = 2xy3z*dx + 3x*y?ztdy + 4x?y323 dz.

The expression on the right is a sum of three terms, each a function fimes a dx




or a dy or a dz. Such a sum is called a linear differential form. Its meaning is that

Gl

it is a rule which assigns to each point of R3 a row vector.

The formu 114 ic can tha if-we substitute the function
[ AW 11 >4 oLy N LIEN W LI

ant 1 +1a A
UL 11T UG SOIIGU U1

IO 19 ararag 1

then

to get
df =dx.

With this notation, the chain rule reduces to substitution. Let us illustrate what we
mean. Consider the map ¢: R* —» R? given by

o((5))=Cnt)

Let f: R? — R be some function, say

//5\ ;
L ] )=x3+y2x.
\\Y/
Then
[
foo| =r3cosfh
\\¢
Tha mam_AAh 2111 e carmea) N gnerface caxy
THIC 1 ldl) U(l)(r) WILI UC 0G4 X Z 1ldUIA,. say
]
{a b
do = :
o) —\c d
To find the top row of this matrix, we need only to multiply it on the left by the

b
(1,0)(2’ d) — (a,b).

Now (1,0) is just dx. The chain rule says that
r\\° r = d © -
() 995 = A= 9)g)

But wa((Z)) =r cos 6, so

d(xe qb)(,) =cosfdr—rsin0do
0
= (cos 6, — rsinb)

as a row vector. So a=cosf, b= —rsin 6. Similarly
/a b 1/ ] - N 4 N 1A
@D=0D{ ., J= ) 98¢ = d0°¢) ) =sinddr+reosfdf

\v a ) G/ ¢/

=(sin 0. r cos O).




So d¢ .,y 18 the matrix

\g/

/[ e e 3\
{ COS U = rsmvuv ‘\
\sin @ rcosf )
Now
A f——(?vz_L \72\[‘\/‘ L Yvv Ay
Ao A\ ad Yy AT L yAUdY,
and

d(fop)=3r*cosOdr —r3sin0do.
In principle, the chain rule says

cosf —rsinf

(372 cos26 + r? sin?6, 2r* sin O cos 6)| .
sin 0 rcos

) = (3r?cos 8, — r3sin ).

This is, of course, correct. But in effect, the chain rule says substitute

x=rcosf, dx=cosfdr—rsinfdo,
y=rsinf, dy=sinfdr+rcosfdf
into the expression
df =(3x* + y*)dy + (2xy)dy

then multiply, collect coefficients and you will get

alj°o)
Tn ather wwar Ace thinl - af v ac a9 funetitan—af » and A sthirh 1t hornmsce v the
Il ULV WUIUS, LR Ul A ds d TULIVUIVULL U7 aAllud U, WilNuIl 1L UCLUTITcS Uy [B 8 L
map ¢, i.e., x is replaced by the function x°¢ =rcos8, and then take d of this

. 09, 09,
ag = = UX‘FH—‘;(.I_V
SO
9 3
hdg = h L ax + h9 dy.
0x dy
Then

dl(gh)°¢]=(g°¢p)d(ho )+ (hop)d(go ).

Thus, in our example

F<x> =x34+y’x=(x*+y*)x= gh(i)
y

with
g=x*+y* and h=x
Thus
fod =r*rcosb
SO

o0s 0)2rdr + r*(cos 8 dr — rsin 6 d6)

=3r2cos§dr — r>sin6dé.




This procedure is completely general: let y,, .. . , y; denote the coordinate functions

on R —so a typical point of R is

y_l
\Ft/
Let f:R*— R be a differentiable function. Then
of of
df = L dy, + - +=—dy,.
f ayl N1 ayl 1

Suppose that xy, ..., x, are coordinates on R*. Let ¢: R* —» R be a differentiable map.
Define ¢, = y;°¢, ¢, =y,°d, etc,, so

$1(v) X1
o(v) = where v=| :
¢,(v) Xk
Then

do, = ¢1d SR B (/’1

0x k

., 09, 09,

dd)l:?dxl + +——dxk
UJbl U./\«k

and the linear map d¢, is given by the matrix

/

\
/ ad)l FERN a¢1 / \\

ax. dx
Gy X
20, ad>,
—— (V) (V)
\ 0Xq /
or. put more simplv
Ay puvy AR LRy s
/ \
09, . 9%
0x, 0x;,
ap=| :
O 0
0x, 0xy,
The chain rule says that
_ f
d(fe¢)= °¢ do, +

al°¢d¢z

qbld oy 00

dx, are used in this formula.
a 1 a k

where the expressions d¢; =

We close this section with two theoretical points

[ at] Folud 4 " IS 1C ad ~fir

A

Ine dlIICICu[llellly of J at-p-was—useato define th

e
existence of the partial derivatives with respect to x and with respect toy does




not necessarily imply the differentiability of s at p as can be shown by some

athological examples. Sufficien iti i i

gnnan hv the followine theorem

Vil Uy v 1oaovriil & v oTeials

of of
Theorem. Let f:R*>—R' have continuous partial derivatives EJ— and a—J
X y

at_p.

Then f is differentiable at p.

Proof. 1f f is differentiable at p, then the linear map df, must be given by

S of of
d =s——| +t=—
()=, 5
of off . . : . .
Thus, if E and -~ 3 exist, then f is differentiable at p if and only if
X |p Vi
S of of
— 5| 4t R2, RY).
Vf"((t)) So% ,,+ 6y,,+0( )
. X S
Letting p = ( "), we can expand Vf"((t)) as
Vo
[/ s\\
pr[ . ' l:f(xp+s’yp+t)_f(xpﬂyp)
\\t//
_Jf(xp + S’ "p + t) Jf(xpﬂ yp J'_ t) +Jf{xps yp —]L_ t} Jf{xps :Vp}
i af| afl
The continuity of ——| and —| implies by the mean-value theorem of
X |p gy |p
one-variable calculus that
fly o v 1) £l uJ.f\:caf
J\J\/p—ro,.yp T b} J\J\«p,_yp T 'r} Oax { xO \
-y,
af

Sy, F O —f Oy =t =175y
dy P
o/

for some x, and y, satisfying x, < x, < x,+ s and y, <y, <y, +t. Therefore

()2 =yl

(y,,+t)+té;
()2
Y R, 1
i) e ) )

so that

(1e

Y|
As tends to zero, the coefficients of s and t each tend to zero so that these

o~




coefficients are in I(R?* RY). Since s and ¢ considered as functions are each in

O(R?,R'), the entire expression is in o(R2, R?), completing the proof.

Another important property of partial derivatives is given by

Theorem: Let f:R?* > R! be differentiable at p with continuous second partial

_a[af\ a(f\
derivatives —| == | and —| == | at p. Then
oy\0x ) 0x\ 0y

a(ar\| o (of
ay\ox )|, ox\ay/|,

The intuitive idea behind the proof of this important theorem is very simple.

: f ints [~ X+s * )and X+
Consider the four points ) y Py Y

(x ) (x+s>

o [
y+t y+t

(x+s)

[ )
y

AN\ xHSNN xS\ x
]U\y 7 ”\l\ y /’/ +J\\l\}’+t/,/’ ”\l\y*‘t//
in two different ways as
A (XFSNN (SN VX)) (5.10)
AN N AU VR AN WY S EEAR Y B ). N
el (XFSNN A x AN L/ xS\ XN (5 20\
T\\y+e)) e ) ULy )G il

So both of these expressions are equal. The first is

Wl (6)-76l(0)
el ()25

s\\_ of
Vf(’ﬁ((o)) ~Sox )

If the error terms implied by the expressions o(s) were actually zero, then we would
have

Now

(x0T

and




Apply the same argument to (5.20) and the sum will give

) () o0

oof dof
oxdy oOyox’

In order to make this argument work, we just need to take care in examining the
error terms. We can do this by appealing to the mean value theorem in the calculus

and hence, dividing by ts

The function ¢ is differentiable in y and our sum (5.20) is just

g(y +1t) —g(y).

By the mean-value theorem

alv 4 1) Al — ta’fa)
VAN P&y IryJ ty )
where j is some point between y and y + t. But
1f =N 12 1/ £ — N Vi N
g'(7)y =Tim=(g(y + &)= g(y))
1/ [[x+s\) [[x+s\\ [ [/ x //x\\\
=lm-—{f1 1 _ J)=F1" - )=/ lll—f[( | ]])

—oe\T\\J+e// T\ T /) U\\T+e))) T\\v/ /)

=((7)-5(0)

By assumption, the function df/dy is differentiable. So applying the mean-value
theorem once more we get

S5)-5(6) == GN6)

Thus the sum given by (5.20) equals

()

is continuous. So for any ¢ >0 we can find a

gl

By assumption, the function =

”

b3

[of
\
X

/




o > 0 such that

6 a / /NN
____f

V- ((*))
)] oxdy” \\y/)

><l

o]
52 <g if|s|+|t| <.

s
xdy” \\

=i

WA AVEL AN \
st| —{ = WL J]+r)
\OX\OY /\\Y// /

where |r;| <e if |s| + [t] <. Similarly, (5.19) is

(%))

Assume |st| > 0. Dividing by st we see that
0 of [(x 0of [(x
Ox oy \\y Jy ox\\ y

Pl S|ryl + 7l <2 af  |s|+[t] <.

<r,

where

Since the left-hand side of this inequality does not depend on § —it is just the
—difference between two numbers — and 75 can be made as well as we like, we conclude

. e e e . o¢of . oéf
the equality of the crossed derivatives [ie,_—-—and .- _— |

L e Wa RV

s 5 Directional derivati

Let I be some interval containing 0 in R and let y: 7= ¥ be differentiable at 0. (As
usual, ¥ can be any of our choices of vector spaces, but let us visualize the case where
V=[R2 J-Suppose that 'n(ﬂ\ = x. We will use the notation 1'(0)-to_denote the vector

e+ o It GGttt

dyo(t)sothat

11111

The vector y'(0) is called the tangent vector to the curve y at t = 0. If y, is a second
curve with y,(0) = y(0) and y’(0) = 7'(0), then we say that y and y, are tangent at 0, or
agree to first order at 0. If y is tangent to y, at zero and y, is tangent to y, at zero, then




clearly y 1s tangent to y, at zero. In other words, we have defined an equivalence

relation on differentiable curves; two curves are cqunza]ent if they agree to first order

at zero. Tfm (n\ = v then the nair {x vl det inetha amiiva lence-class. We visu
AR H (% vy uu.cxuuuc LIC Cqulvalbuuu CIaoo vy T

e pa
thisequivalence class asa(little) vector vwhose tail starts at x, and we call it a tangen;
vector at x. Any x and v comes from an equivalence class, because we can always

consider the straight line curve

W) =x+tv

which satisfies y(0) = x and y'(0) = v. We will sometimes use a single Greek letter such
as & for a tangent vector at x. So & specifies both x and v.

Suppose that V= R2 The curve v is then specified by giving the two functions Xoy
and yey, usually written as x(t) and y(¢). Thus, for example

x(t)=tsint +1

yty=¢
specifies the curve
tsint + 1
e) =( . )
e
with
o=,
\1)
N/
dlld
or—(0)
7W) \1 }
\N*"/

, sint +tcost
y(6)= ,

€

can be recovered as the coefficients of dt in d(x°y) and d(y°y).

Let /: V— R be a function defined in some neighborhood of p. For each curve y
with y(0) = p, the function foy is defined near 0 in R. If f is differentiable at p and
v is differentiable at 0, then, by the chain rule, f°y is a (real-valued) function which is
differentiable at 0 and its derivative is given by

(foyY(0) = df(y'(0)

according to the chain rule.
In terms of our differential form notation in R?, we would substitute d(x°7) for dx,
d(yoy) for dy and 8f /0x, 0f /0y for 0f /ox and 0f /0y in the expression for d f. Thus, in

Ie
our-preceding example, if we took




af =2xdx + 2ydy,
d(foy)=2(tsint+ 1)(sint -+ tcost)dt 4 2e’-e' dt
=2(tsint + 1)(sint + rcost) + 2e*dt.
The_coefficient_of dr is { FonVi Setfino t— O aives {FoauYIO)
1 JIAYARA A2 2 T V‘Vl‘ \" e L2 d \J )’} \L} LJUL(.IIIB [ A\v4 élVVU \J )/} \U’c

t

Notice that (f°y)'(0) depends on p and y'(0) but on no further information about
the curve y. In short, it depends on the tangent vector &. We shall write this value as
D,f. We call D, f the directional derivative of f with respect to & Thus

D,f=df,v) if &€={p,v}.

1 0
For example, if v= ( 0) then D, f = %(p). Let f, and f, be two functions which are

differentiable at x, and let f=f, + f,. Let y be a curve passing through x whose
tangent vector at pis &. From the calculus of functions of one variable we know that

(foy)(0) = (f1°7Y(0) + (£ °7)(0)

and so we conclude that

Dz(fi +f2) = fol + szz-

(hoy)(0) = ( f, W) £527)(0) + (f1o7)(O)(f527)(0)

=17 2 1 2°7 >

D (f1/)= (D)2 + /i D;f,.

Another example of the directional derivative follows. Let y: R — R* with

AN /

» —1—1 X N
= =X
l (t2+2t+2)’ ((y) Yy

Then df(x) and & = {(0),y'(0)} are given by

syt s-{( ()
Dg(f):df(—é)(<;))—( 4, 13)( )=—4+26=22.

To verify that this equals (f°y)(0), we note that
foy(e)=(t — D(t* + 2t + 2) + (% + 2t + 2)°,

SO that

(fopY (D =2(t—1)(t* +2t +2) + (t — 1)*2t +2)

L U422 L N2,

+3(t 2t +2)H 2t +2)




so that

PAY/7a1Y 1\ /™ Y L WP ~
(For) O =2=D2) + (= 1)%2) + 3(2)*(2) = 22
As an example of the formula for the directional derivative of a product, let
£ e O\
. A
g R? - R be given by g{ ‘ ‘ = x2 — y2 Then the product mapping fg:R? .
\ y// 7 } o r [V v ] LA\ B

AV AV

()= ACDG)) =i
The differentials dg and d(fg) are given by
dg(;) = (2x, —2y)
d(fg)) = 2xy(x* = y?) + (x%y + y))(2x), (x* + 3y?)(x* — y?)
+(x?y + y°)(=2y)).
We then have

(= atsa-3( ()

= (—4(—3)+10(-2) 13(—3)“0('4”(;)

= —8—158= —166.
By the product formula, D,(fg) must also be given by
/ AN / EEAY
D(f9)=Dy(Ng| ) +/| , Do)
with
1 ) — pm 3
gl L, )= =22==3 7 ,|==1D)2+27=10
[ {1\ (1
D,(g) = dg(- i)l\l\z/l =(=2, —4)l\2 =~—10
so-that

D,(fg) = 22(—3) + 10(— 10) = — 166

which agrees with the previous calculation. It will be convenient for us to think of the
set of all tangent vectors at x as constituting a vector space, called the tangent space
atx and denoted by TV,. Thus, if £ = {x, v} and 5 = {x, w} are two tangent vectors at
X, then their sum is defined as & + n = {x, v + w}. Similarly, if £ = {x, v} and a is any
real number, then a§ = {x, av}. In short, TV, looks just like V except that it has the
extra dummy label x attached to everything. At present this seems like a

cumbersome piece of excess notational baggage, but its value will become clear later.
If & ={x,v} and g = {x,w}, then

D,,,f=df.[v+ W]

—df x[v]+df.[w]

=D,/ +Duf,




SO

D, ,/=D.f+D,f.

.

Similarly,

5.6. The pullback notation

Let ¢: V— W be a differentiable function with ¢(x)=y. If f: W— R is a function
defined neary, then fo ¢ is a function defined near x. In order to emphasize a point of
view which will be central in this book, we will denote this function by ¢*f and call it
the pullback of f under ¢. So
o=,
(*N)(x) = f(d(x)).

We think of ¢ as fixed and f as varying, so that ¢* pulls all functions on Wback to V.
Notice that

,I\as(ff | f)—@S*f | ¢$(‘
b 1 2)— 1 J2

and

O*(f 1) =(@*f)(P*f,)

we would write

We should pause to explain our point of view about these equations. We have
an rf-plane and an xy-plane. We are thinking of ¢ as the map which assigns to each
point of the rf-plane a point in the xy-plane. We are considering x as a function on
the xy-plane: that function which assigns to each point its x-coordinate. Then ¢*x

0 y

Figure 5.9




becomes a function on the rf-plane, and in fact,

by

F 3 Pa)
P*xXx=rcos b

and similarly

HFv —raing
¢ LA

13 ¥ v

We now want to define the pullback under ¢ of differential forms. We begin by

defining the pullback of the basic forms dx and dy. We define

d*dx =d(¢p*x)=cos 0dr — rsin 6 d0,
¢*dy =d(¢p*y)=sin0dr +rcos6do
and for any linear differential form such as
x2dx + y*dy
we define
¢*(x*dx + y>dy) = p*(x*)- p*dx + ¢*(y*)p*dy
= (r? cos? B)(cos 8 dr — rsin 6 d6) + (r* sin? 6)(sin 6 dr + r cos 6 d6)
=r?(cos® 0 + sin® 6)dr + r3(sin” 0 cos 6 — cos? O sin H)d6.

In other words, for a differential form

P | T A |
adx+0ay

where g and b are functions, we define

xy-plane

df=" ax+ 9 gy
7 ox dy -
SO
ordr= o+ D) grax o[ LV gy
\éx ) \ oy /
0 0
=(—fo¢)d(xo¢)+(—’io¢>d(yo¢)
X dy
= d(fo¢)

by the chain rule. Thus

p*df =d(¢*f).

This notation works in complete generality for differentiable maps from RF— R
For example, consider the map ¢ of R*— R? given by

AN r
¢ =! sr |
\s//] \;2




Then, if X, y,z denote the three coordinates on R, then

P*x=r> so ¢*dx=2rdr,

o*y=sr so ¢*dy=sdr+rds,

A3k 2 {3k Yard

Q¥z=7s"so ¢rdz =12180s:

For any function f on R3

_W' f of
df =— d + e —dz
and we can compute ¢*(df) in either of two ways; either as
d(¢*f)

or as
¢*(df) = ¢*< f)(b*d +¢*( f)d)*d +¢*( f)qb*dz

For example, suppose that

=

flly )=y —=xz

V4

SO

1L L I N

df = —zdx+zydy—Xxdz
Then

p*f=0
SO
¢*df =d(@*f)=0

Combputine h*df directly. _we oet
VUL&IF“V‘LA& lf/ “J CALX U\JV‘J ) \AS avb

— s%-2rdr + 2sr-(sdr + rds) — r*-2sds

—r 29%. 1+ %2334+ 1 2% 1+ ".2.1A1
=L T4 TS TTJUAr | —=Fr T4AS T 4 5S]AS

= 0.
The general situation is now clear. If x,,...,x, are the coordinates on R* and
Yi,...,y are the coordinates on R, then a differentiable map ¢: R* — R! is given by
$1(v) X1
M=\ : |} v=|:
G4(v) Xk
Then
0¢ 0¢
* _ 1 1
¢*y, = ¢1s ¢*dy, =d¢p; =——dx; + - +—dx,
0x, 0%,
% *
¢*y = ¢y, ¢*dy, =dé,.
The oneration dh* carries functions on R to functione on Rk and linear di PrPntlﬂl
E 3 % L =) valublull \f,l VAT IV TUnIDOtivry Uil uthv v O 1TUlIotivorny O 1N Al 111IvAl Uriivi's
forms on R’ to linear differential forms on R*.All algebraic operations, such as




adding or multiplying two tunctions, adding two forms, multiplying a function by 5

form, are preserved by ¢*. Furthermore, the chain rule says that

¢¥df=do*f,
far anv funefion f aon l
101 dll y TUHCLIOUMH Ui
Suppose that we have
b 24 LA 4 [ 9AwS Yy T 7 4s

We can compose the two maps to obtain

Yop: V> Z.
If g is any function on Z, we can form
Y*g=g°y

which is a function on W and then
P*(*g) =(goy )¢
which is a function on V. By the associative law for composition, we know that

(gor)od =geo(Yeod).

(o) g = p*(Y*g),

o)™ = p*oy*.

Notice the reversal of the order.

Suppose V=R W=R" and Z=R" with coordinates x!,...,x* y!, ..., }%

z' ...,z™ then if

w=a,dz" + - +a,dz"

is-a-differential formonR™then
Y*w
is a differential form on R! and
P*Y*w

1s a differential form on R*. If follows from the chain rule that
p*y*d f= d*(dy*f)
=do*y*f
— W= 9)*f.

Since ¢* and y* preserve all algebraic operations, so does (i o ¢)*,

¢*¢*(gdf) !// ¢) (gdf)




the form

it follows that

<=
g

o
NS
g

for all linear differential forms.
Let y:R—V be a curve passing through x ie., y(0)=x. Then ¢oy is a curve
passing through y. If y is differentiable at 0, then so is ¢ oy and, by the chain rule,

(¢°7)(0) = do,(y'(0)).
The right-hand side of this equation depends only on the tangent vector & associated
to y. Thus d¢, maps tangent vectors at x to tangent vectors at ¢(x):
do TV, »TW,,

where we define

do. &= {d(x),dp,(v)} if &={x,v}.
We can thus visualize the differential d¢, as taking infinitesimal curves through x
into infinitesimal curves through ¢(x)

Now let f:W—R be a function which is differentiable at ¢(x). Then by the

associative law for composition

(@*f)ey=fod°y
=f

Q O"\'\

r‘-\

=7 77

Differentiating this equation at t = 0 gives

{4k £ i Y Voliia ko Y

D¢ =Dy f (5.22)

T'his means we can pull f back by ¢ and then take the directional derivative with

respect to &, or, we can push forward by d¢, and then take the directional derivative

of £ with resnect to-ddh-E Rath nroceduree vield the eame anc

v yvvitirvopovtio Ukl/xb. PP iVEDY l.ll \WASLSLU AV Y § W ) _yu.u.u v oailie auo'v'v'er.

Letting &= {x, v}, the above identity is given explicitly by
Dy (@*f) = Dynanmlf)

or equivalently,
d(f ¢),[v] = df [do,[V]]
which states that
d(fe @) = df¢(x)°d¢x

which is a special case of the chain rule.
As an example of this identity, let f: W— R and ¢: V— W be given by

(X)) [T\ _ (reos6

\\v}}_"y’ PN )" sing /)

\N\7 77 \N\"// NT R/




Then

df = (Dxv x2)
“‘J(-" \&=Nys )
y
44 _[cosf —rsinf
(P(;)_\ Qiﬂn vnncn}
oY reosv~

so that

D Gaepmt V= Volp) P HM

. cosf —rsinf \ /v,
= (2(r cos B)(r sin 0), (r cos 6)2)(Sin 6 ¥ COS 9) <UG>

v,€0S 0 — vy sin 9)

— 2 : 2 29
= (2r*cos Osin 0,r* cos )(v,sin9+rvec080

— 2r2 cos O sin B(v, cos O — rv, sin 0) + r? cos® O(v, sin 8 + rvg cos 0)
— 312 cos? @sin O v, + r3(— 2 cos O sin? O + cos® O)v,

To verify that this equals D { (g)v}(qb* f), we note that

(b*f(( \\I ((rcosg\\—(rcos6)2r81n6—r cos?0sin 6

\rsm

D {,L*l‘\_d/,L*l'\ //v"\\
(L=, ))

=3r?cos?0sinfv, + r’(—2cos Bsin” § + cos” Oy,

Summary

A Differentials and partial derivatives
You should be able to state the definition of the differential df of a function fin terms
of ‘0’ and ‘O’ notation.

You should be able to state and apply the rules for differentiating the sum,
product, or composition of functions.

You should be able to express the differential of a function in terms of partial
derivatives and to construct the matrix that represents the differential of a function
f=R?->R2

B Coordinate transformations

Given a transformation that can be used to introduce new coordinates on the plane,




you should be able to use the chain rule to express differentials and partial

derivatives in terms of these new coordinates

I

C Applications of differentials
Y ; uation of the line or plane tangent to the

graph of a function at a given point.

You should be able to use the chain rule to solve ‘related rate’ problems that

involve functions on the plane.

Exercises
5.1. Show that if f: V— W is differentiable at o and if T: W — Z is linear, then
Tof is differentiable at o and
d(Tef),= Todf,.

5.2. Let F: V- R be differentiable at o and let f: R — R be a function whose
derivative exists at a = F(a). Prove that fo F is differentiable at a and that

d(foF),=f"(a)dF,.
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5.5. Let y: R — R? denote the curve y(t) =| ], and let F: R%— R? be the

\sint/

mapping
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(a) Compute the tangent vector for y at t =0 and t = x/2

(b) Find the directional derivative of F with respect to each of these
tangent vectors.

5.6. Let f:R? > R? and g: R*> —» R? be given by

x x2y x cos xy
f = 3 3 g = . ‘
y y y sin xy
Verify the chain rule for the mapping gof: R? —» R2.
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5.7. Letg: V — Wbe the mapping g = ,and let A:R— Vbethe
y COS Xy

straight line
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ne tauge 1t-vectorat \ 1 } to the curve goA,

(b)_ Compute the directional derivative D in-tw
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Let ¢ V= Whethemapping ¢: g ) \ and letf/W— Rbegiven
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by 1. | > x3y* Verify that

\y/
D:(¢*f)=Dyy,0f

for all tangent vectors &= (a, v).

59. Define mappings F: R —»R? G:R*—> R?, f:R!' - R? and g: R? > R' by
3 2 2 2
A((G)-C57) <G)-C5)
y xy Y y
t2+ 1+ cost x
t) = s = x3
S (G
Verify that
(a) d(FOG) =dF (( ) OdG(X)
(b) d(G F)/x\_dG ux\\ dF{ XY
Fy)) )
d(g f)m =dg°dFy,
(d) d'(fog)(x\ = df ((x\\odg(x\
G G 187
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5.10. Let f:R? - R be differentiable in some neighborhood of{ " | and satisfy
\JYo/
f ((*)) #0-Show-that-in seme neighborhood-of (o) the- mapping g
\\we// \ v/ ’
7 {x\\ [/x\\ _
givenby g{ | | )=1/f[ | ) is differentiable and that
\\y// \\y//
s =—ar AN
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5.11. A function f on the plane is defined in terms of affine coordinates x and y
by
f(P)=/(Ix(P)y(P)))
(a) Is f continuous at the origin Py(x =0,y =0)? Justify your answer
carefully in terms of the definition of continuity.
(b) Isf differentiable at the origin? Justify your answer carefully in terms of
the definition of differentiability.
5.12. So-called parabolic coordinates on the plane are defined in terms of

Cartesian coordinates x and y by

(u\\_(\/(x2+y2)—x\|

\v) \J6+y)+x/
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by means of a 2 x 2 matrix, theminvert

/d"l\
|

in terms of ( .W
\dv

/x\
(b) Invert the coordinate transformation by solving for| |in terms of u

\Y/

- : /dx\ : /du\
and v. Differentiate to express ) in terms of ( .
dy dv

(c) Show that the curves u =constant and v = constant are parabolas
which are perpendicular where they cross. Sketch these families of
curves.

(d) Consider the function f on the plane defined by f(p) = 1/(u(p) + v(p)).
Expressd, f, where q is the point with coordinates u(q) = 4, v(q) = 16,in
terms of du and dv, then in terms of dx and dy.

(¢) Suppose that a particle moves along the path defined by the function

o: R — R? such that
X 24+t
(=)
y t

Calculate the derivatives of xoea, yoa, ucea, and vea at t=2.

5.13. Consider coordinates v and v in the plane which are related to x and y by

the equations
(x\_( 2w

0=l )

\w v 7

(a) Calculate the dertvative (the Jacobian matrix) of this transformation at

[dx [du

the point u = 2, v = | (equivalently, express \ o] in terms of\ L jat
ay/ N1
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(b) Consider the function f (&, vy =u>v>. Find the equation, in terms of x

and y, ot the line tangent to the curvef (u,v) =4atthepomntu=2,v=1

(ie, at x =4, y = 3). (Do not try to solve for u and v as functions of x

and y; just use the chain rule.)

(c) Suppose that a particle moves along the path

v/ \3/)
At the instant ¢t = 2, when the particle is passing through the point

v
are du/dt and dv/dt at this instant?

5.14. Let A denote an affine plane, let P, be a point in this plane. Invent a
functionf: A - R, satisfying f(P,) = 0, which has the property that for any

%) 9,
affine coordinates s(P), t(P) on the plane, (-a—f ) and (—%) are defined and
S t N

u 2 - .
( > = ( 1 ), at what rate are its u and v coordinates changing; i.e., what

equal to zero at Py, yet f is not differentiable at P,. (Hint. replace
‘differentiable’ by ‘continuous’, ‘partial derivative’ by ‘limit as a function of




one coordinate’, and an answer would be

0 at D
) at 0
FPY=2—x*
ﬂ Y otherwise
x* + y2
wrhore v (P Y and (P Y are il A \
WNere X{1 o) ana y o) are vothzero)

5.15.

In Quadratic Crater National Monument, the altitude above sea level is

described by the function
z(x,y) = \/ (x* +4y?), (x,y,z in kilometers).
The Fahrenheit temperature is described by
T(x,y) =100 + 2x — ;x?y>.

(a) Express dz and dTin terms of dx and dy at the point x =3, y=2.

(b) Find the equation of the tangent plane to the crater at the point x = 3,
y=2.

(c) At the point x =3, y=2, along what direction is the temperature
changing most rapidly? If one follows a path along this direction, what
is the rate of change of temperature with respect to altitude (accurate
to the nearest degree per kilometer)?
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In Chapter 6 we continue the study of the differential calculus.
We present the vector versions of the mean-value theorem, of
Taylor’s formula and of the inverse function theorem. We
discuss critical point behavior and Lagrange multipliers. You

might want to read the chapter quickly without concentrating
on _details of the prnnfc But do _the exercises

6.1. The mean-value theorem

This is one of the few theorems that we will not be able to state, in the higher-

" O

X7 i " .

We first recall the statement in one variable. It says that, 1f
differentiable on some interval [g, b], then

f(b)—fla)=1"(z)(b—a) (6.1)

where z is some interior point of the interval. The point z is in fact difficult to
determine explicitly, and the mean-value theorem is usually applied as an inequality:

If f'(x) < m for all xe[a,b], then f(b)— f(a) <m(b — a). (6.2)

This inequality is of course an immediate consequence of the mean-value theorem as
stated above, since f'(z) < m. But it is easy to give a direct proof of this inequality
using the fundamental theorem of the calculus:

0 —1(a) = f bf’(S)dS<medS<m(b—a). 63)




™1 d o1
Foy=1(a)= Ef(a +tb—a)ydr= | f'la+tb—a)b—ayds
JU JO
i}
S<b=ay{ fla+ub—a)dr<mb—a). (6.4)
o/ U

(Notice that the second equality involved a use of the chain rule.) One advantage of

(6.2) or (6. 4) over the original mean-value theorem(6.1)is that it extends immediately

2 I 2 etV o titat i ;vuluuuly

to the case where f'is a mapping from R to R*. Suppose that f'is such a map, so fis
given as a function:

f1()
fo=\:
fi®)

Then f'(t) = lim,_, o (1/h)(f(t + h) — f(t)) = df,[ 1] (where we think of 1 as a vector in
R! in the notation of the preceding sections). Clearly the vector f'(t) is given as

1)
f'o={ :
fi®)
We can now write, as in the first equations of (6.4),
1 d r1 \
f(b)—f(a)= —tf(a + t(b — a))dt = (\ f'(a+t{b— a))dt/\(b —a). (6.5)
JO JO
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components are the integrals of the components:

/ 3\ /
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It g=| - then g(t)dt =

di v jj‘qk(.t)dt,

N/

Of course, we have the direct definition of the integral from approximating Suims:

r n
Jstrdz = lim (1/m) 3. Gfm).

Since each of the components of this approximating sum of vectors is an
approximating sum for the integral of the corresponding component function, the
two definitions of integral for a vector-valued function of one variable coincide.
Since ||vy + v, || < |lv, | + |lv,|, it follows for the approximating sum and hence,
passing to the limit, for the integral that

fg(t)dt < fll g(t) |l dt.

Substituting into (6.5) with g = f”, we get

H ey ~ 1 7 . g H e N1 £ 11 i ] YV AN
I fW)—J@)llsmb—a) 1 | )l sm lorall 1ea,bo). (0:6)

At this point-we—can-see-the trouble-involved-in trvine to seneralize (6-1) to-a
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R*-valued function. We could apply (6.1) to each component f; of f. For each such

component we would get f}(b\ —fia)y=F1" (ZJ)(h — qa), but the z; would vary from

nwotlk for all th
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1

1 1 LY i &=\

O
1S and so the analogue of (6.1) need not be true. Nevertheless, (6.5) is true.

We now want to generalize (6.6) to the case where f is a map from V— W and
where V 1s not necessarily one-dimensional. We have already observed that the

X =GO YU IIG Ict+—tlilv

—t e o]

n,-and-we have to

understand what we mean by |A|l when A is a linear transformation from V to
W. We define
I A]l = max || Au||
i =1
or, equivalently,

A
| A] = max AYI
v#0 ”V”
Thus

[Av[ < ||Af [Iv]l forall v
and || A|| is the smallest number with this property, i.e., if

[Av|| <k|v| forall v

] 'y

then
[Al <k
i A and A, are two linear transformations from ¥ to W, then
WA A = A A< A A < A A

SO

A+ A <A+ [A4,]. (6.7)

ny points a a in e et {a, enote 1 joi
to b, so [a,b] consists of all points of the form a + t(b —a) for 0 <t < 1. (This is
natural generalization of the one-dimensional notation.)
v

2 /Q;/a)

1

Figure 6.1

We wish to prove the following:
Suppose that f:V— W is differentiable at all points of [a,b] and its
differential, df,, is a continuous function of x on this segment. Suppose
further that




Then

I/ (b)—f(@)| <m|b—a]. (6.8)

h(t)=a + t(b—a).

=foh, = =a)). i i i om
[0,1]— W and, by the chain rule,

dFt = dfh(t) Odht.

Now dh,[1]=b—a so

Fl(ty=dF,[1]= dfh(t) [b—a].
Also

1

fb)—f(@)=F(1)—-FO)= J F(r)de

0

= j dfi[b — alds

— A(b—a) (6.9)

where A is the linear transformation

J U
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Just-as we dealt with vector-valued integrals, for instance, since ¥ and W have

standard bases, we can identify every linear transformation with a matrix. The
integral of a matrix-valued function g, where

g(t) = (g:;(t)
1s given as the matrix whose ijth entry is the integral of the numerical valued function
gij- Or, as before, the integral can be given as a limit of approximating sums. It

follows then from (6.7) that
‘ Jg(t)dt < _[n g(t)|| dt.

In particular, substituting into (6.10) and using the hypothesis that || df, | < m for all
X€[a,b], we conclude that

Al <m
and hence, from (6.9), that (6.8) holds.




AT . . O0f
+-| == ] which we denot€ by =75,
OXN0xX/ v

0 [ 3f\ L 0
-\ == | which we denot€ by =3
Uy vy e 4

and

g /5f\ which we denote U_y 0‘f .
ax \dy ) dx dy

We have already seen that

o’f @ (of
oxdy dy\ox )
Similarly we can define higher-order partial derivatives when they exist, and have
the appropriate equality among mixed partials. For example,

S50 ((2)-((3)

etc. The significance of the second (and similarly higher) derivatives is given by
Taylor’s formula Wthh we will now state and prove.
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J1(x, )= J ——(tx,ty)dt and f,(x,y)= J —=(tx, ty)de.

Then f, and f, are differentiable functions, and

f(xa _V) =f(0s O) + xfl(xs y) + yfz(x>Y)
or, more succinctly.

J=70,0)+xf; + yf>.

Furthermore,

%)
£100,0) = % (0,0) and £,(0,0)= 2—5(0, 0).

Now apply the same argument to f, and f,:

f (x : = fF (0. O+ xf. (
JIVF \

TS V) =19 X 1




where

. nlaﬁ . "15f1 )
J11(6y) =1 ——(x,ty)dt and f,(x,y)= | =—(&x,ty)de
JO V¥ JO vy
and similarly,
f,=1,(0,0)+ y;fz + xf
J & J 4\T7 7 11 ] 272

T
TIIUDS

F=700,0y+xf1(0,0) + yf,(0,0) + x°f,; + xy(f12 +f21)-
If f has continuous derivatives up to third order, we can repeat the process once
again to get
f=1(0,0)+ x£,(0, 0) + y£5(0,0) + x2f1,(0, 0) + xy(f1 (0, 0) + f24(0, 0))
+ Y2 f2200,0) +x3f 111 + X2 Y(f112 + 121+ f211)
+ Xy (f122 +f212 +S221) + V222

where all the functions f,,, f12, €tc., are continuous. If we compute the second
derivatives of both sides of this equation at the origin, we conclude that
2

0
2f11(0,0)=5-3(0, 0)

f1 7(09 O) +f71(0, 0) =

and

;9

21,,(0,0) = JO 0).
oy~

Thus we have proved

52
fx,y) = f(00)+x0 (OO)+V—(OO)+1x2 4(00)

3

Q))

2r N
2 (0,0)+ 0 {" (6.11)
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It is clear that, if f has still higher-order continuous derivatives, we can keep on
going, It is also clear that the same argument works in R* as well as in R?. Finally,

.. {0 X
we may replace the origin < O) by any vector u and ( ) by u+w
y
Let f: R¥ - R have continuous derivatives up to order n + 1. Then there is a poly-
nomial P, in the coordinates of v such that
f+v)=P,v+0(v]"*h).

The coefficients of P,(v) can be determined by successive differentiations and
evaluation at v=0.
If f:R? - R?, the matrix of second partial derivatives

/azf L

ox ﬁrﬁyu”
Hp(f)_ A o 2
0°f 1,
7\




is called the Hessian matrix and the corresponding quadratic form is denoted by

d3f
Jp‘

We use simply H when f and p are understood. Thus we can rewrite (6.11) as

fp+v)=1(p)+df,(v) +3d°f,( + o(ll¥] %) (6.11)
where
/.,
d2f,(vy=vTHv= (vl,vz)Hk ) (6.12)

The Hessian dzfp, as a quadratic form, is subject to the analysis we presented in
Chapter 4. For example, if f (P) = [x(P)]*y(P), then, at the point where x = 2, y = 3,
we have

of
ox

o*f 0% f 0%f
= 12 - = == 4, - = 2 = 6, = =4, J—
=2xy= 3y X 52 3% 3y 2x =4 3y

-0,

so that at p= (g)dfis represented by (12,4) and H by (6 4).

Maxima and minima

The Hessian 1s especially useful in analyzing the behavior of a function near

a critical point where its differential df is zero. If P, =| ~° } is such a point, then

\Jo
£P LN — £(P Y 132, (.
JE o V)=o) +2d77,(v)
If the quadratic form d? f,1s positive definite (H has two positive eigenvalues), then
1# fallavre fera Tax wla f.-n» 1la_that £UP N\ for emall vand f acrhiecves
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a minimum at P,. 1l d*f 18 egatwe definite (H has two negafive eigenvalues), then

Q-Q-C)
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fPo+v)<f (Pn) an f chieves a maximum at P,,. Flnallv if H has one positive

n Azf(n\ on]’nntr hath _nosi

D
D
3
3
@ 3

e 1t and _negative
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values for small v, so f achieves neither a maximum nor a minimum at P;

what it has there is a saddle point. If H has one or more zero eigenvalues, and is
therefore singular, we have to inspect higher derivatives to determine whether f
has a maximum or a minimum at P,,.

As an example of using the Hessian, we find and classify the critical points of
the function

f=3x%*+2y%—6xy.

To locate the critical points, we set the partial derivatives with respect to x and
y equal to zero:

a—f—f(x,y) 6x—6y=0 sox=y
g{} =f4(x,y) =6y —6x=0 sox=y>

The critical points are therefore at x=0, y=0and x=1, y=1.




Next we calculate the second partial derivatives in order to form the Hessian:

3 =20, ==20, ]—12}’
0x 0x 0y 0y?*
A ¢ 0N 0O the Hecctan 1o theraf
ATt X =0,y =y, tiic ricssian s tnerciore
q [ 6 —6)\
— l __r Pay ]
\— 0 ()

This has a negative determinant, hence its eigenvalues are of opposite sign and
the critical point at the origin is a saddle point. To confirm this conclusion, we
note that f(x, y) is positive for points near the origin along the x-axis, while along
the line x = y the function is negative near the origin.

At x=1, y=1 the Hessian is

H=( 6 "6).
-6 12

This has positive determinant, so its eigenvalues are of the same sign; since the
trace is positive, both eigenvalues are positive. Hence F(x, y) has a relative minimum
atx=1,y=1.

On an affine plane, the only property of the second differential d?f which is

W | Jant-nfeorhaie £ A~ rdrrat 1o—th Thorf 141 41 4
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eigenvalues of the Hessian. On a Euclidean plane, we can inquire about another

coordinate-independent property of a function f: namely, how its average value

9, A d L] & § i A DO 0 O | ) d d L] a 0 N
from (6.11),
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/ N \nsing
h
A°
Py
Figure 6.2

Since df [ — v] = —df[v], the average value of df[v] for any circle centered at

P, is clearly zero. To find the average value of 3d2f(v), we set v= (ZC?S(g),
sin
so that using (6.12)

[ &%f/ox®  3%f/ox dy

=
(]
)
4]
Rea)

3d2f(v) =4(hcos 8, hsin 0)

( A2, A A y~

Ny

z

=

T
~_

\0°f/0x 0 a%f 10y> Y




or

112 1 z_ﬁzf 2{‘ 32
1d%f (V) =4h*| == cos?6 + 2— ~—cosBsinf + 5 sin*0
ox 0x 0y oy?

Since the average value of cos? 8 or sin2 § on [0,2x] is 3, while the average value of
sim@-cost-is-zero;, we-see-that
, e o
<2d f(v)>average Zh LaXZ + ayZ_I
and that
<f(P0 + V) >average (PO) + 1h2< ) + error.

The quantity 82f/8x* + 6*f /0y*, which determines whether f increases or decreases
‘on the average’ as we move away from Py, is called the Laplacian of f. By virtue of its
definition in terms of an average over a circle, for any coordinates obtained from x
and y by a rotation, the Laplacian will have the same value. For this reason the
equation

which does ot depend on the choice of Euclidean coordinates. Not surprisingly,
this equation arises frequently in conjunction with functions on a plane which have a

1.

RNRafAtra ] .
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strained extremum problem on the plane: where, along the curve defined by g(P) =
constant, does the function f(P) achieve a maximum or minimum? The condition

N

AN
AN

Py

g = constant

Figure 6.3

for such an extremum to occur at Py is that dfp,(v) = 0 for any vector v which lies
tangent to the curve g(P) = constant. But such a vector satisfies dg(v) = 0. It follows
that, at the point P, where the maximum or minimum is achieved, df p, Must be a
multiple of dg, :say df = Adg. Thus we are led to the Lagrange multiplier method for




the constrained extremum problem: to maximize or minimize f (P) along the curve
g(P) = constant, consider the function f — 1g, where A is an undetermined scalar

along with g = constant, determine the unknown quantities x,y, and 4. To
determine whether the extremum thus found is a maximum, a minimum, or neither.

we first find a vector v for which dg(v\ 0. This vector is tangent to the level curveg
naotant of 4k,. D r than cancider t
_/ =—constant auu g= constantattnecC lbd.l pUlIlL Ir. W thenconsiact UJC 1uubt10n

h=f— Ag, which, by construction, has a crltlcal point at P as a function on the plane,
We calculate the best quadratic approximation to h near this critical point and
evaluate it on our vector v for which df(v) = dg(v) = 0. If this quantity, 3d2h(v), is
positive, we claim that h(P) > h(P,) at all points near P, on the curve. Indeed,
suppose we parameterize the curve g =0 by p = p(t). That is, we choose a function
p: R — R? such that

gp(®)=0, pO)=p, and pO)=v.
(That this is always possible will be proved in the next section — it is a consequence of
the implicit function theorem to be proved there.) Then
hop=fop since gep=0.
Also

(fop)' = (h°p)'(0) = d®hs (V).
Thus (#op)”(0y > 0 and hence f has a minimum at P, along g = 0. Similarly, f hasa
maximum along the curve g = 0 if d?A(v) < 0.

For example._suppose we wish to maximize the qnadratic form

Pres hd o o B2 eSS X2 CEL

O(x, y) = 8x* — 12xy + 17y

on the circle G(x, y) = x> + y* = 1. Setting the differential of 0 — AG equal to zero,
we find

T6x — 12y —24ix=0
and
—12x + 34y — 24y =0.
On eliminating A between these equations, we find
16 — 12(y/x) = — 12(x/y) + 34

or
(x/y) — (y/x) = 3/2.
Thus
x? —3xy —y*=0
SO

|
Nl
=

-




intersect the circle x* + y? =1, at

Lot o / 1/ J&\
b — (VY s oz sl Y5
\1/./5) \—2/5)
We now investigate the nature of these critical points. The differentials of Q and G

arc

_ A
——dO=(t6x=12y)dx+(—12x+34y)dy,

dG =2xdx + 2ydy.

Figure 6.4

At P,, where x =2y, we have

— 1 1
We calculate (1,—2)( 3 6)( >—(1 2)( 5)=75 and conclude

6 12 2 - 30
that Q has a minimum on the circle at P.
At the other critical point, where y = — 2x, we find

dQ = 40xdx — 80xdy; dG=2xdx—4xdy, so A=20.

A vector for which dQ(v) =dG(v) =0 is (?), and, on evaluating the Hessian of
Q — 20G for this vector, we find that

—12 —6\/2 —
(25 )0)-en( )

1/J/5]

so that Q has a local maximum on the circle x* + y> = I at the point

_2/ /57T
| <V




6.3. The inverse function theorem

Let U and V be vector spaces of the same dimension, and let f:U—>V be 3

differentiable map with f(p,) =q,. We would like to know when there ex1st an

immverse_manp n V—-» Tf such that nof—n-l Reafare we formulate the an
IV oo taapy oW elil—tiiat Y O DCIOoTC wi 1ohncaavre vilv—ayp

theorem, we first examine some necessary limitations on the pro.ncm

If we expect that g is also to be differentiable, then the chain rule says that

dg,p°d f, =id.
Thus the linear map d f, had better be invertible. If it is, then we expect the formula

dgsp = [dfp]” '
to hold.

A familiar case where d f is not invertible is where U = V=Rt and f(x)=x* At

0, df, =0 and there is trouble with g(y) = \/'y near y =0. In fact, there are three

pICblely, no pOlIlL y< 0 lb m [HC lmdgC Ol ] DCLOH(lly, the Squdrc root for y lb not

uniquely specified: for a given y > 0 there are two values of x with x* = y. Thirdly,

the derivative of ,/y blows up as y — 0. To get around the second of these difficulties,
we can proceed as follows. Suppose we choose some x, #0 with x3 =y,. For

Yo

Xo




the sake of argument, suppose x, > 0. Then in a sufficiently small neighborhood

about yo (small enough so as not to inc]udc y = (), there is a unique inverse function,

the square root. speci ) PR nt

Ve's +1

Xo- U0 this case ‘close enough® means not to be negative —once we specify that
the square root be positive, it is uniquely determined.)
We can not only assert the existence of the square root, we can give an

it —atobelieite

algou fOI' "Ulupuuﬁg asclosean d.ppfOXl "“'i to-the Square roo otaswe 111(6 We
recall one of these algorithms — Newton’s method — but formulate it more generally.

Suppose we are given a map f: U — V with f(py) = qo. We are given some q near
qo and wish to find a p near p, such that f(p)=q. Finding p is the same as
finding p — po- We wish to have

S(Po+pP—Po)=¢q
But
S(Po+P—Po) =S(po) +df, (p— Po) + o(p — po)
=qo +df, (P~ Po) + o(p — Po).

If we could ignore the term o(p — p,), we would obtain the approximate equation

q—qo=df, (p—Ppo)

or, since d fpo has an inverse,

This suggests defining

and starting anew. Thus \  Newton’s method
p.=p+df, (9—qy)

etc.
Suppose U = V= R* and f(p) = p> Then df, is multiplication by 2p and hence

df, '(w)=w/2p. Thus, in this case,
1
P1—P0+2 (@ — q0).
Po
For example, suppose we take
Po=3 so qo=9
and take ¢ = 10. Then
p; =3+%(10—9)=3.166...

The

£ =3

2 1N\ AT~
g =p; = 1002777




(Notice that p, 1s already a much better approximation to /10.) The next
approximation is given by

1

+

N

1
X

(98

P2=

o

—
o
(o)

I

—
<
D
N

e

x 31

(e O\

1622816, ..

w
Q)

Then

q, = p3 = 10.000 024

so p, is correct to four decimal places.
Let us give a second example, with U = V= R2. Suppose that the map f is given

) (-2

Then d f(x) is the linear transformation whose matrix is
y

3x2  —3y?
2y 2x )’

Suppose
(%)
Po=
\1/
so that
/Q 4\ /[ =\
P LAt Y A
\2:21) \4)
and
df _//12 —3\\
=2 4
and
(Af 11 i/ 4 ‘5\
e Tsg\ 2 12)

Suppose we take

Then
P1=Po "f‘(dfp)_l(q—‘Io)
2 1 4 3 0.5
_<1> +§(—2 12)(-0.2)
2.026
- (0.937)‘
we get
7.493\
4 =1 5 2y ’
3.796 )




which 1s already quite close. Notice that at each successive stage in this algorithm
we have to compute a different value of d£ 1

BRSO A eI A T
A mofhp 1{" ] han latad vnl\;n agerts t + nnderaenitahle
3 3 u.u., cnm Wlll Uﬁ 1()11uu1cu,cu WIITCIT asdTrity © L, uigeil sultauic

mat
1Y Hralinaviiiac vu,
1

hypotheses about 7, Newtons method will give a sequence of points p; which
converge to a solution p of f(p)=gq, prov1ded that q is sufficiently close to q,,.
Another algorithm which converges much more slowly than Newton’s method is

g€ Ly T2 o R 2 S o T o 3

(1
Fayen
r

to set
L= (dfpo)_1
and
P1 = Po + L(q — qo),
q; =f(p1),
p.=p:+Lqg—gq,)
q; =f(p2), etc.

This is known as Picard’s method. For example, with f:R—>R, f(p)=p? and
po = 3, we get

pl - 3.16

g, = 10027,
as before, but

p, =3.16 + 2(— 0.027) = 3.162 036,

g, =9.9984817, etc
\ ] f Pi r hod. is tl ] 1 [ It i
A~ at 4aa 4+ P I 1 1 ~ Tt £ g | + NI 4~ o et o

casicer LU lUf lluldlC alld prove thie SIOW LULIVUT gCIILC Ol ricargsoriNewton smetnoa
with fewer assumptions about f thanitis to prove the fast convergence of Newton’s
method, which requires more hypotheses about f, as we shall see.

Proofs of convergence

We now formulate the hypotheses we need about f and prove the convergence of
both methods. Recall that, if f is differentiable at p, then

fY)=f(p)+df(p' —p)+ o' —p)

which means that given any ¢ we can find a ¢ such that

1/ (") —f (@) —df (" —p)l <&l p* —pl (6.13)

whenever ||p! —p|| < 4. The é that is required for this inequality may depend on
the point p. Let us assume that f is uniformly differentiable in the sense that for
any ¢ we can find a J such that (6.13) holds for all points p and p' in some ball
centered at p,. So we assume that there is some a > 0 such that given any & we
can find a J such that (6.13) holds if

P —pPI<é, lP—Poli<a, Tp'—pol<a

+ 1 +1a 4.,11'_1:n"m1f m

T 1xs b 4+ ¢+ M a ey
Let usalsoassume that d f ;" 1s uniformly bounded, i.e., that there is some cons




K such that

We also assume that df, itself is uniformly bounded, i.e., that

[dj, <M fdorall [p—pol<a
inallvy farthe Picard methoad let ne aceinime that A £ o nmntiniion Q .1’\ the cance th
1 ld.ll_)’, TOT tIIVU T 1CAai G HHICtIo G 10 0o doo ulnie tiidt UJ P lb buuuuuu Gy IO OCIISCUTIAT
1

a
ldf,—dfpll<3e if Ip—p' 1< lp—Ppoll<alp' =Pl <a (6.15

and we only need assume that (df, )™ " exists.

Convergence of Newton’s method
Now let us look at Newton’s method. The step going from p; to p;.  is given by

Pioi =P+ (df,) (@~ (p) J

But
S)=fPi-1 +Pi—Pi-)=f(Pi-) +df,_ (B —Pi-1) +0(p; — P;- 1)

and

l_l\l'l Ly i/

Also, if |[p; —p;—1 | <0 then |lo(p, —p;,— ;)| <el/p; —p;—1 | by (6.13). So

IPir: — Pl < Kellp;—Ppi-1 - (6.16)

P —Poll <O

If 26 < a, so in particular § < 1q, the point p, will satisfy

Ipy —poll <a

so that, in particular, p, is in the domain of definition of f, and we can use the
algorithm to define p,. It follows from (6.16) that

Ip, —p; | <30 <3Ga)
SO
P2 —Poll <l p2—psll + 1P —Poll <G+ Dia<a

Thus p, is again in the ball of radius a so we can apply the algorithm and (6.16)
to get

[ps — P2l < Hp,—pill < 40

and hence




etc. We can always continue to the next step since (by induction)

[ Y]

Ty — P11 <0/2

and

+-F1|3a<23axa

i ~Ni—1
Z

) /1
P = poll <[ 5+
\1_

The sequence of points p; converges to some point p since

Pk —Pill SFHGN +-4+1)0<=—6-0 as i—>o0.

1
21 Ai—1
Finally,

lq—f()Il =df @i — P <Mpis,—pill =0

so, by the continuity of f, we see that

fp=q.
Uniqueness of solution
We now look at uniqueness. Notice that K is determined by f. We are free to
choose a smaller value of a, if we wish, without changing K. This is at the expense
of choosing 0 and hence /K smaller. In particular, we may assume that a has
been chosen so small to start with that (6.13) holds for any pair of points p and

p! where eK < 1. Now for any pair of points

lp—p | =1df)" " @fp—pNI<K|df(p—p)I.

If f(py=/(p"), then (6.13) implies that {|d ]p(p‘ —p/ir<elfpt —pl and combining

these two inequalities we get

~an

hieh anly
wHch-Can ot

solution of f(p

/—')-A
\v'

Now let us look at Picard’s method. Let L=(df, )" '. Then

Piv1=p+Lq—f(p:)
=p;+ Lg—f(p- ) +df,_ (P —Pi-1) + o(p: — Pi- 1))
as before. Now

q—f(pi+1) + dfpo(pi —pi-1)=0
SO

lq—f @) +df, (=P )l = 1dF,_, —df, )@~ P
<%\|Pi"l’i—1”

provided we take a small enough. Also, we can choose § small enough so that ¢
is replaced by ¢ in (6.13). Then

Piv1— p: i< %b“pi—'l’i—lii +%biipi—9i—1“)§ kb“l’i_l’i—1ill




so that (6.16) holds as before, where k = || L ||. Actually, we can use the mean-value

heorem to rephrase the argume i so as to avoid th
unnecessarv_assumpntion_of uniform difforontinhilis Tedeand concider the man
ulll‘,\lv\/\)oulj uuuux‘;ytlu;x A= S 3 Vlr'l’y Ur7re (11 JC’ cr LLuulllLy llluccu, LUILIIOIWU VI v 11X L < 5

where L=(df, )" *. By the continuity of d f, we can choose a small enough so that

[dh, II=1T—Ld <3
Then
IPis1 — Bill = 1 A(p:) — h(p;— )| < 31 pi — Piz1 |l
by the mean-value theorem and we can proceed as before.
We can also understand why Newton’s method converges so much more rapidly,

when it works. Suppose that f has two continuous derivatives. Then, by Taylor’s
formula,

|f")—fp)—df,(p' —p<c|p' —pl?
(where ¢ is a constant given by the maximum of |d? f|), a much stronger inequality

than (6.13). Going back to the proof of (6.16) and substituting this inequality, we
get

IPiv: — P <Kklp; —pio1 %

£ fAar  avarmnala 1o ot o rdad 1y d s 1} o erall Aga oh o +hat
10T —¢CtXamplic,—we —Sstartcd—out— witlt— || p; — Po || Small <nougn SO tnat
kllpi —poll’“ <1 (and ||p; — poll <1), the above 1nequality would say that

I i T n3/2

Piv1 — PP = Pi-1l
so

Pt =Pl <y = po ¥,

an exponential rate of decrease instead of the geometrical one |p;,, —p:ll <
(eK)" || pr — Ppoll given by the Picard method

hypotheses there exists a ball B around q, =/ (p,) and a ball C around p, such
that for each qeB there is a unique peC with f(p)=q. In other words, we have
defined a map

g.B->C
such that

feg=id
and

gof=id.

Differentiability of solution

We now want to prove that g is differentiable. Notice that the uniqueness of ¢

implies that g is actually continuous. Indeed, suppose that g(q) = p. Draw a small
ball around p. Then a the results obtained so far to p and q. This means that

+h H 111 3 3 frnettan—inveres—+ £ i o—1nto—93
UICTC WIIL D€ a4 Smatll pall around q d4iid a Tulicudoiivel Se o jinapplirg 1o -4a
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Figure 6.7

small ball around p. But, by uniqueness, this inverse must coincide with g. Hence
g maps a small ball around q into a small ball around p, i.e., is continuous. Now

v=1(g(q+v))—f(g(q)) = df (g(q + v) — g(q)) + o(g(q + v) — g(q)).
Applying (df,)”! to both sides we get
(df)”'(v) = g(q + v) — g(q) + o(g(q + v) — g(q)).

Since g is continuous we can choose v small enough so that || o(g(q + v) — g(q)) || is
smaller than 3{/g(q + v) — g(q) ||. The preceding equation implies that

IS ™ M + lolgla +v) — g@) | >l gla + v) — g(@) |

SO

lo(@+v) = gl@) | < 2}(df,)~ ‘W)

1., g(q + v) — g(q) = O(v). But then

o(g(q+v)=g(@))=0(0(v))=o(v)

so from the above we have

3 ¥ \Ad =S

g(q +v) — g(p) = (d f,)"'(v) + o(v),

ie, g is differentiable at q with derivative

(A1

px
SOrp — B

We have thus proved the

—_—

Inverse function theorem. Let f:U —V be continuously differentiable with
f(po)=qoand d fpo invertible. Then there exist balls B and C around qq and p,,
such that there is a unique map g: B— C such that fog=id. This map is
continuously differentiable and

dgf(P) = (dfp) -1

The implicit function theorem
Let us draw some consequences of the inverse function theorem. Suppose
G: R? - R! with G(x,, yo) =0 and

0G

VANAY at { hY
U dt \Aos Yol

ay




Let f:R*— R? be defined by

AN >
\\v//) \Gx,y))
Then
/ 1\
df=
0G 0G
dx 0Oy

) ) ) Xo
as a matrix, and is nonsingular at (y
0

can find an inverse map g with fog =1id. We may write

()~ (i)

so that the equation fog =id becomes

). By the inverse function theorem we

F(u,v) = u,
G(F(u, v), H(u,v)) = v.

Substituting the first equation into the second gives

G(u, Hu,v))=v

and setting v =0, h(u) = H(u,0) gives

N‘ £

existence of uniqueness and differentiability of  is the content of the implicit

function theorem. Thus the implicit function theorem in one variable is a consequence

of the inverse function theorem in two variables. We state it once more as a formal

A g T o L o e T e e e s e = o o 1AM eO A R e G e e = o e L

lIlCUI CIII.

Gl(xg, Yo} =0 and (0G/0y)(xg, yo) # 0 T'hen there exists a unique function h(x) defined
near x = x, such that h(x,) =y, and G(x, h(x)) = 0. The function h is differentiable
and h'(x) = — (0G/dx)/(0G/dy).

We can reformulate the preceding argument. The simplest map (other than the
constant map) that we can imagine from R?— R! is projection onto one of the

factors

(W)

Now let G: R? - R! be any continuously differentiable map and suppose that
deo is surjective (which, in our case, where the range is one-dimensional, means
that dG, #0). We claim that there are local changes of coordinates, i.e., maps

. Mm2 ., m2
—7 N\

grin




locally defined and having a differentiable inverse so that

Gog:: 7TT.

: S Uit atvied

Indeed, since dG,_ 0, we can make a preliminary linear change of coordinates

A1 /A 011

ane «o-that + 1s ’ 11 DL PPy
i sutilal ¢vUu/0y 7 U, 1Thel L 4dvove dl gul cnt appucb to glvc d H1dp

g such that Gog = 7. Thus, if we allow arbitrary cnanges of coordinates, the most

general continuously differentiable map with dG, surjective ‘looks like’ projection
onto a factor. For example

G(x,y) = (x2 +y)} Gog(0, r)=r

R e

g(2)=(reesd) |

Figure 6.8

The simplest non-trivial map from R' — R? is the map i which simply injects R! as
the ‘x-axis’

We claim thatif G:R* = R*isany continuously differentiable map with dG, #0,we

can ﬁnd a change of coordinates, i.e., a continuously differentiable map f with

foG=i,

Figure 6.9

Indeed, by a preliminary linear change of variables in the plane, we can arrange that

a6, (1)

By a translation we may assume that G(p,) = (I:)()). Now define

£ m2 _, @2 p/(x\\\ [ Gi)

)] \Gyx)+y/




where

o (G
=1
\2lt))/
Then
4F (1 O)

Fe={o 1)

and hence F has a continuously differentiable inverse. Now

G
Foi= 1 =G
-(c)

by the definitions of F and i. Hence, taking f=F~'
i=f°G.

Locally, we can ‘straighten out any curve’ by a change of variables.

6.4. Behavior near a critical point

Suppose that f has a critical point at p,. Let us assume that we have made a
preliminary choice of coordinates so that p, =0 in R2 Suppose d2f, is non-

degenerate i.e. that Det(d?f,) # 0. In other words, we assume that the symmetric

[ 3% f 9% \

A 2 o) A
— UX1q UX10Xy
o> f o’ f
Ay A A2
VOATORS CA3 7

is non-degenerate at 0. By the results of section 4.2, we know that we can make a
1 +
U

Linecar chanae-af cantdinatee T ean that T IHNMTIT hae ane-af the thras farme
ivar viida AEC Ul CUOUL U LS L dSYU Ulal a1 \U}.LJ 1IIAad Ul Ul U1IC I CC 1TULTHIDD
‘ n 4 l’
\V 1/

—1 0
LHO)L" = ( 0 1),

—1 0
kor 0 —1/)

Let us assume that we have made this preliminary linear change of coordinates,
so that d? f, already has one of these three standard forms. Now by our proof of the
Taylor expansion, we know that

f(x, ) =f(0) + by 1(x, )x* 4 2b, 5(x, Y)xy + b,,(x, y)y*
-ro+en(y 3 )(5)
f0)+(x,y) b, by )\y

X
V
P

\
)

LLON /
= f(0)+(x,3)B{
N\




where the b;; are continuous functions of x and y and the matrix valued function

11x Do

B when evaluated at the origin is just d2f,, ie.,

B(0)= H(0)

or

1 f
b1 1(0) = —,.—_(0)9
ox

52
b1al0) =52 0)

o f
b,,(0) = 3 (0).
Now B is a symmetric matrix. Let us apply the Gram—Schmidt procedure to

1 0 .
B(x)( 0) and B(x)< 1). By the continuity of B we know that the scalar products

(I,O)B(X)((l)>,

0
(I,O)B(X)(,
\1l/
and
[0\
O, )B(x){ . |
\1l/
svn mfrmsv M) Levivros Insr $la o £ langsan  CAaleagens J¢ sngen A Ay crinh flaat
1HALL 1A %\A} \51VGu U_y LIIC 1l AllT— O U1 PLUL/CUUJ.C} oUCll tiidl

B(x) = O(x)" BO)Q(x)

The Gram-Schmidt algorithm guarantees that Q is a differentiable function of x.

Thus

L) £40) I WaYSRY B 3 77 \VaYARW
JR)=JU) 7T X X)) IHUUZA)A
or
f(x)=£(0)+ y"H(0)y,
where

y = Q(x)x.
Now the map x—y given by this formula is invertible by the inverse function
theorem! In more detail: let ¢: R?— R? be defined by

B(x) = Q(x)x.
Then, by the product formula,
depo(x) =(dQ(x))0 + Q(0)x
or

d¢, =id.

Thus the inverse function theorem guarantees that ¢ has a differentia

X = Ji(v).
7




But then (W*f)(y) = f(x) so

In other words, y*( f—£(0,
t

degenerate critical point. i
g al point, 1

T ate oliitiv

0)) is quadratic! We have proved that, near any non-
< ] )

where

Q(ylayZ):i(y%-f_y%)a or _y%+y%
Which of the three alternatives holds is determined by the normal form (the number
of negative eigenvalues) of d2f,.
This proof is completely general — it works in n dimensions: So, if 0 is a non-
degenerate critical point of f it is possible to find coordinates in terms of which

f(y)=/(0)+ Q(y)

oy)=tyityi+-.

The number of — signs (called the index of Q) is the same as the number of negative
eigenvalues of the matrix d?f,. This result is known as Morse’s lemma. We will
make use of this lemma in our study of asymptotic integrals in Chapter 21.

where

Summary

A Higher derivatives

afives _or cecond-arder  nartial differantial Aamiatiane 1n foarme o
YyYatrvey Ul ASAVIVINLY iV ) R W13 § l.)a]. tial ulnieiviitial b\.iua\-lUllD 11X (AW S ¥ ¥4 1Ty
g0
coordinates.
B Critical noints
—tivdl POty

a
You should be able to locate the critical points of a function on the plane and to
classify each critical point as a maximum, minimum, or saddle point.

You should know how to use the method of Lagrange multipliers to find the
Critical values of a function of several variables subject to constraints.

C Inverse functions
You should be able to state and apply the inverse function theorem.

You should know how to use Newton’s method to find an approximate solution
to f(p) = q where f is a function from R2? to R2

Exercises
0 if x=y=0

6.1. Let F(x,y)=< x°y

otherwise.




(a) Calculate 0F/0x and 9F/dy. Are they continuous at (0,0)?

(b) Calculate 8?F/xdy and 9%F/8ydx. Are they continuous at (0,0)?

(Note: If they are not, you may not compute their values at the origin

by finding a general formula and trying to let x and y both approach

zero!)

(c) Show that (62F/0xdy)(0,0) 5 (8%F /8y 0x)(0,0)
(d) Invent a smooth curve through the origin described by x = X()
>
y= y{f‘ with ‘((n\—_— ViOr— 0 _cuch that the funetion ((+) — E(Y (£
vwitil 7 \U] y \U’ Uy, vuvir ot e 1 unotaoid U\L}—j \A\L),

6.2.

6.3.

6.4.

Y(t)) is not differentiable at the origin.
Find and classify all the critical points of the function F: R? — R given by
F(x,y)=x*>+y* — 3xy.
Let F(x,y) = x%y — 3xy + 1x? + y2.
(a) Find the equation of the tangent plane to the graph of z = F(x, y) at the
point x=2,y=2,z=2.
(b) The function F(x, y) has three critical points, two of which lie on the

line x=y. Locate these critical points and classify each as
maximum, minimum or saddle point.

Consider the function F on R? given by
F(x,y)=x2—4xy +y*—6x~ ..
(a) Find the equation of the plane tangent to the graph z = F(x, y) at the

point corresponding to x= — 1, y= — 2.

(b) Locate the critical point of this function and determine its nature.

. Find and classify all critical points of the function F(x,y)=y*+

fx —3x)log y, defined in the upper half-plane y >0

77

=)
_c:r\

Show that the function F(x, y)=y(e**=1D=+9x>=+6y> hasacritical point

at the origin, and determine the nature of this critical point. Describe the

level curves of F(x, y) in the neighborhood of the origin. Sketch a couple of

typical curves. Describe the level curves of F(x, y) in the neighborhood of

6.7.

the point x = 0 y =1, and sketch typical curves.

6.9.

equations. The resultlng homogeneou s po
points have integer coordinates.)

ynom1al f ctors. The critical

Find the critical points of the function F(x,y) = xy%e™**),

Determine the nature of the critical point which is not at the origin.
Sketch, as accurately as you can, some level curves near the point.

For the critical point at the origin, the Hessian vanishes and is no help.
Figure out whether the critical point is a maximum, minimum, or saddle
point. Sketch some level curves near the origin.

Let x and y be the usual affine coordinate functions on a plane. Another
pair of coordinate function on the right half-plane (x > 0) is defined by the
equations.

2 2
u=x"—ys, v=2xy
(aY v e diranddrantermenftdyand-d 4 2ta tha matrivywhich
{a) Lxpressdu and dvin-terms-of dx-and dy, and write the matrix-whicn
Fdu o
expresses ( ‘ n terms of ( \\ at the point P with coordinates
\dv \dy/
x=2y=1lLu=3v=4




(b) Find the approximate x and y coordinates of a point @ such that
Q) =3.5uQ) =

(c) Let ¢ denote the electric potential function on the plane. Given that at
the point P(x=2, y=1, u=3, v=4)(8¢/0u)=2 and d¢/0v = — 1,
calculate d¢/0x and d¢/0dy at this point. Describe the direction along
which ¢ increases most rapidly

(d)_At the same point, express az(T/)/ﬁyﬁY in terms of partial derivatives of ¢

Ay

" Loy ol i

functions of x and y, of course.

6.10. Suppose that coordinates u and v on the plane are expressed in terms of x

and y by
(u) (cos « —sina )(x)
v/ \sina cosa/\y/
Let f be a twice-differentiable function on the plane. Show that
O*f orf o*f o*
e s e |
our ot ox* oy?
6.11. Polar coordinates r, 0 on the plane are related to Cartesian coordinates by
the equations

X rcos @
\y/ \rsing/
uppos 2LRi i isfyi ’
52 2
]4 ]=&
ox?  oy?
i i irely i of derivatives of f with respecttor

and 6.

Feon U\
6.12. Let f:R2R be a twice-differentiable function w (F)=( )

\y/ \rsin0)

express 02 /06 in terms of partial derlvatlves of f with respect to x and y.

Let £-@2
(-
0/ \arctan(y/x)/)’

- j i) N J DA)
express 0 f /0x? in terms of partial derivatives of f with respect to r and 0.
6.14. Given that 0f/ox=f+0df/0y, show that 0*f/ox*>— d*f/oy*=
f+20f/oy).
6.15. With polar coordinates as in exercise 6.11:

(a) Let f be a function on the plane. Suppose that at the point whose
coordinates are x=23, y=4, 0f/0x=2 and Jf/dy=1. Calculate
df/or and 3f/060 at this point.

(b) Suppose that f satisfies the partial differential equation

0? 10 1 &2
aNUNY
or ror r°o00

o
-
(8]




6.16."Suppose that f is a function on the plane which safisfies Laplace’s
equation 0 f/0x? + 9 f/dy* = 0. Express this equation in terms of the
parabolic coordinates of exercise 5.13. It may involve 0%f/du?, 0*f/ov?,
0°f/0udv, of /ou, of /ov, u, and v, but not x, y, or any partial derivatives
with respect to x or y.

6.17. Let ¢:R? - R? be the mapping

x e*+¢
¢ = X y :
y e*—e
Show that ¢ can be inverted in the neighborhood of any point and

compute the Jacobian of the inverse map.

6.18. Consider the surface in R*® defined by z=F(x,y), where F(x,y)=
x2 = 2xy + 2y? 4+ 3x + 4y.

. 1
(a) Find the best affine approximation to F near the point (x) =< )
y 1

. . 1
(b) Write the equation of the plane tangent to the surface at (1)

(c) Find the equation of the line normal to the surface at the same point.
(d) The equation F(x, y) =8 defines a function y = g(x). Evaluate g'(1).

6.19. An important problem of statistical mechanics is the following: Consider
a physical system which can have energy + E, 0 or — E. Let x denote
the probability that the energy is + E; let y denote the probability that

the enerev is — E. Then 1 — x — v is the probabilitv that the energv is
&7 J } ol 7 o

+ RE 1 P AR it R Fia ol h k PRIV I LIS M-
y=C T, WIILIC L= — ZLHHUT DL, (1O LABlallgt TNUIUPHCT IS Cast
turns out to equal 1/T, where T is absolute temperature.)

6.20. Consider the function «: R? — R? defined by the formula

X312
an=r((;))-(22)

(a) Calculate the 2 x 2 Jacobian matrix which represents the linear part of

X 4 :
the best affine approximation to « near the point ( ) = (1) Use this
Y

4.2
matrix to determine the approximate value of F ((1 1))

X
(b) Use the matrix to obtain an approximate solution of F ((y) =

6.21. Let f(x.y)=/(x*y* +9x?)
it AV AL CAS IS & ] V.\ 7 7
(a2} _Find the best affine approximationto-thic funetionnearthe noint x = 1
\a) THNU L oot intt A i Ot touadnoranoniivii novar viiv pgoiiat ¥




(b) At the point x = 1, y = 2, along what direction is the rate of change of

the function f(x, y) greatest?

(c) A solution of the equations

£ AY -d
JAMVI=0,

X+y=3

is x=1, y=2. Construct an approximate solution to the equations

S y)y=534,
x+y=3.05
by using the approximation from part (a).

6.22 Functions s and t are defined in terms of the affine coordinate functions x
and y on the region x > 0, y > 0 of the plane by

s=xy, t=logy—Ilogx.

(a) Express the differentials ds and dt, at the point whose coordinates are
x=1, y=2, in terms of dx and dy.

(b) At the point x=1, y=2, the values of s and ¢t are s=2, t=
log2 ~0.693. Use the Jacobian matrix at this point to find the
approximate x and y coordinates of a point where s = 2.02, t = 0.723.

(c) Let f be a twice differentiable function on the plane. Express ¢ f/dx,
df /0y and 8* f /(3y 0x) in terms of x, y, and partial derivatives of f with

respect to s and t.
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Chapters 7 and 8 are meant as a first introduction to the
integral calculus. Chapter 7 is devoted to the study of linear
differential forms and their line integrals. Particular attention
is paid to the behavior under change of variables. Other one-
dimensional integrals such as arc length are also discussed.

Introduction

In this chapter we shall disclose the true geometric meaning of linear differential

numbers. We begin with some examples. Consider the one-form

5 1Ay s dae)
W=3Xx4ay yaxy

] X
By its definition it is the rule which assigns to every point | | the row vector

2(—y,x). Now a row vector is a linear function on vectors. The row vector

7\
%(— y,x) is the linear function that assigns to the vector h={ | the number
5)
@ vl —1l/v¢ vr)
(x L*] 2\ Y PANS
y
x+r
yts
—fr
n=(2)
X
¥y
Figure 7.1
/x N /)C AN /i.
which is just the oriented area of the triangle from the origin te (*) to (7 )+
\w) \y/ \s
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is the total oriented area of the various triangles. In the limit, as the polygon
joining the p; approximates the curve, we expect this sum will tend to a limit — the
(oriented) area swept out by the radius vector moving along the curve. We have

already encountered this notion in our study of Kepler’s second law.

A second example to keep in mind is the notion of a force field. In three

il

e
A=A A F =3 xdAdd P e 7
Ml

dimensions, a force field

o=Fdx+Gdv+ Hdz
ST A
gives a linear function
r,G,H)
at ach natnt-~f cracea Ths Linear firaetian—measchrrec the roactctancearimnetice to
at vdlll Poilit U1 bl}dbc- 111 Hifcal TUNIVUHOIN THCasUr L tlv 1o tallLL Ul THiputius Lo

£ rE

(F,G,H){ v, |=Fv,+Go,+ Hv,
UZ

to any displacement vector v at the point p. Along any path, I', we expect to be
able to integrate and get

J o = the work done by moving along I'.
r

Notice that we wish to be able to assign work to all paths. We can imagine a
two-dimensional universe in which a force field would be

w=Fdx+ Gdy.

For example, see figure 7.3, we can imagine feeling the influence of gravity while

being constrained to move on a surface

z=f{xy).
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Figure 7.3
The force field would then be proportional to
of af
w=df=_=dx + :
/= ox dy

Suppose we had a perfectly reversible electric car. (By perfectly reversible we mean
that all the energy of braking is returned to the battery — no air or other kind of
resistance.) We could keep track, using a meter, of the total energy flow into and
out of the battery. Let us call this B — B, (the difference between the final and
initial readings of the battery). We can also consider the kinetic energy at the
beginning and end of the trip, KE, and KEg. The principle of conservation of
energy says that

KE;, —KE, + B — B, = [ w = the work done along the path.
J1

(Throughout this discussion we are assumlng that the forces are not velocity

denendent: that ther g
Cpe nds omy on the

‘IC (5]
u\/yuuuuub (2 ¥ lal. tIIviv 1o a

location in space.)

D

Notice a subtle difference in viewpoint from the use of force in Newton’s laws
In Newton’s 1a aws. we-are interested 1n nredicting how article vl
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L <
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-
-
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11

set a pebble rolling on our surface, how will it continue to move? Newton says
that the motion is determined by the equations

o
iy

In our present discussion we are interested 1n how much energy is used in driving
along a given curve. The force field w assigns energies to paths I". If w =d f, then
we expect that the total work done along the path is just the potential difference

(@) —f(P)
0

P
Figure 7.4




where P and Q are the initial and final points of the path.
With this motivation in mind, we now turn to the mathematical discussion.

By an oriented path in the plane (or in R¥) we shall mean a curve which is to be
ey nva Ain o oﬂnrﬂ' 1DA Qange nat ];]’D T whace nnAﬂn;ﬂfQ l'lf\ not f‘n1ﬂf‘;f‘n ha
tidaviistUu T d sPLUiivoUilobr 7 Pa i HRC T wHUSU L HU PO SU- Ul ouinieide, 11ds

well-defined ‘beginning’ (P, in figure 7.5) and ‘end’ (P,); interchanging ‘beginning’
and ‘end’ reverses the orientation. A closed path like I', has no well-defined
endpoints; any point P can function as both ‘beginning’ and ‘end’. For this sort
of closed path, it is still possible to assign an orientation, which then determines
a ‘beginning’ and ‘end’ for any piece of the path.

Physically, such a path is appropriate to represent the trajectory of a particle
in circumstances where we know through what points the particle moved, and in

for a segment of a path to be traversed two or more times; for example a particle

might move twice counterclockwise around the unit circle, or it might move from

D lhaeck ta R than farwar A Q. L axs HEenlt to
xz tU Z LllCll UdUN LU 1A, LllCll 10I'wdiud aga 1T LU 1 b uuuu pa LI ay v C Ullllbult o

represent unambiguously by drawing curves with arrows attached, but they make
good physical sense, and as we shall see, they are easy to describe in terms of
functions.




We shall restrict our attention exclusively to piecewise differentiable paths—

(1))
o
=}

A— VYV ol p 3

!

continuous paths for which a well-defined tan exists at all except possibly a

=

nite number - of nointe Cirnla th o
e os o poLtts.~sucn a path can
1

+1

f the real

Q

me under a continuous map

o R — R?

Figure 7.8

which is differentiable except at finitely many points where « may not be
differentiable. The function « is called a parameterization of the path. Physically we

may think of « as the function which assigns to each instant of time the position of

the particle at that instant. We usually describe o by specifying the pullback of the

I ] \ "
I/ I/ \\
//I /I \\ A
/ re )
/ / /
I

Figure 7.9

coordinate functions; that is, by writing formulas which give the numerical values of
the x- and y-coordinates as functions of time. For example, if a particle moves along

R 0 .
a circular arc of radius R from ( 0) to (R) we may describe its path by

Rcost
o t— . 02t
Rsint

or bv
J

‘u$j: J— R cos t J[* D s +
[#.4 _— s Y = I\»IILL.
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Figure 7.10

A given path may have many different parameterizations, which correspond

physically to traversing the path at different rates. For example, the segment of
1)

/0 1
the hyperbola y* —x%2 =1 from | X to | ,2/] may be parameterized in any of

the following ways:

x=ro*y=J(t*+1) 0<r<1

o*x =sinht, a*y =cosht 0<t<arcsinh 1

a¥*x =tant a*y =sect 0<4t<n
y 4
(5.)
AN
70\ rd
(%)
| | >
1 lx
Figure 7.11

Paths that involve traversing portions of the same curve more than once are
frequently easy to describe in parameterized form. For example, the parameter-
1zation

a*x =cost.a*y=sint 0<t<4n

describes the unit circle traversed twice counterclockwise, while

akx =sin?t;a*y=sin’t 0<2A<3n —
o= s =




Paths an memeg ¢ . -

; o PR /0 70\
aescribes the hine segment from | . | to [ , | traversed forward from | | to
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As a practical m
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1
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. m s-usually parameter-
ized separately. For example, the path shown in figure 7.12 might be parameterized

as

a*x=ta*y=t 0<t<l1

followed by

-
R
L

displacement vectors

Vo=PoP,v; =P, Py,vy_ 1 =Py_,Py.

Py=P,
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—
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By choosmg the subdivision points close enough together, we can in this manner

iecewise Smoo e by a pol

cannot be well-approximated in this manner, but such paths cannot be parameter-

ized by differentiable functions, and we shall not concern ourselves with them.

We now describe a natural way in which a differential form assigns a real
1a ¢+ axvmath Hash nt
numocCt 1o aliy pdtll. cacn bcs nt
vector v; attached. The dlfferentlal form w assigns to such a segment the real
number w(P;)[v;]. We form the sum over all segments:

N-1

Iy= Z (P)[v]

i=0

""7
=

e eTyEe ; int P it
1 1S speciited by a pomt I; with g

which is very much like a Riemann sum for an ordinary integral. We now take
the limit as the number of subdivision points increases in such a way that all
vectors v; approach zero. If this limit exists, independent of the precise manner
in which the subdivision points are chosen, it defines the line integral of the one-form
w over the path T, which we denote by [rw. That is,

( o=1lim Y oP)[v

Noop (=0

[Vae 8

We shall soon prove that for piecewise difierentiable paths, the limit exists, and

is independent of the subdivision, and shall give a formula for [rw using pullback

Three mrancrtioc af the line inteoral £ ra ara ammosnnt £onny dlan Jafimies o
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(1) Tt is linear in : that is, if @ = w; + @,, then |0 = @, + fw, and i
o = Aw' for a real number 4, then {rw = A[rw'. Both these results follow immediately
fram - the dafinitianaf the cuium aof diffarantial formoeand the nradiet oaf o diffarantial
11VUTI LIV ULIIIuir Ul vdlv sulil vl il vniiliar 1O IS Aat1iud uie PlUUuUl Ul a Jdiliviviivial
form and a real number.

(2) If I" consists of I'; followed by I',, then

w= W+ w:
LY r [y, 1_‘1 o/ Fz

This implies that we can always subdivide a piecewise differentiable path into
differentiable portions, as suggested by figure 7.14, and calculate the line integral
over each portion.

Figure 7.14
fis AWER &l ml 11T e
(2) 111l and 1 diier only in their orlentatlon then
. r
= — .
o/ r' v r




This is true because reversing the orientation of T" just changes the sign of each

of the vectors v, and, since ¢ is li ear,

Tk

w(P)[—v] = — o(P)[V].

“71\ 4‘ now 4~ 1141 1ealx
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The strategy is to reduce the problem to calculation of an ordinary integral over

the parameter for the path of integration. The parameterization

a: R - R?
maps an interval [a,b] of the real line into the path I'. We assume that aq,
the lower bound of the interval [a, b], is mapped onto the beginning point P, of
the path, while b 1s mapped into the end point P,. By looking separately at the

smooth pieces of our path, we may assume that o can be described by a pair of
differentiable functions,

oa*x = X(1), a*y = Y(2),

/ '
“y
—
.
o~
i
/
7
Figure 7.15

so that, by the chain rule,
a*dx = X'(r)dt, a*dy = Y'(r)dt.
We may assume that our subdivision of the path corresponds to a subdivision

a=ty<t, < - <t,=b

P;=oft;) = (X(t‘)\

SO

\ 1'(t))

-+
~-*

Suppose tha

o =gdx + hdy.




Thus our approximating expression to the line integral can be written as

Y a
LJW
i

19(o2)) (X (54 1) — X(2,)) + Moz ) (Y (2,0 ) — Y (D))} (7.1)

=2 {9(PydxTelt )= a() T+ h(P)dy[alt;+ 1) — #(E)1}
Y

Recal
o*w = fdr
where
S(£) = g(a())X"(2) + h(o2)) Y '(2).
We will show (under appropriate hypotheses on «, f and g) that the approximating
expression (7.1) converges to

b
J fdt (7.2)

as the subdivision (and hence the polygonal approximation to our path) gets more
and more refined. This will prove that the limit is independent of the choice of
subdivisions. So we wish to compare (7.1) and (7.2) for a fixed subdivision and

show that their difference tends tozero as the mesh size, max{t;,;—1;) goes to

zero. Now we can write

X (1 Y — X () — (DNds
17 ] “x\t7/ LGS A2

N

p

“EWiHT [1

Y(t,. )= Y(t)= | Y(s)ds

J b

( Lty tgq )]
Lﬁl glodt; )) X'(s)ds + hlo(t;)) Y'(s)ds )>

1] LY

while (7.2) can be written as

ZJ fs)ds = z{ f g(o(s)) X (s)ds +J

t

h(o(s)) Y'(s) ds }

The difference between these two expressions is that for (7.1) we have g(a(t;)) or
h(a(t;)) occurring outside the integrals in each summand, while in (7.2) we have
g(a(s)) and h(e(s)) occurring under the integral sign. It is intuitively clear that, for
S and g continuous and o smooth, the sum of these differences is negligible for a
fine enough subdivision. Here are the assumptions we shall make in order to get
a precise estimate on the difference between (7.1) and (7.2). Weaker assumptions
would suffice, but require more careful argument.

(1) We assume that g-and h are uniformly continuous, ie.
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(with nN = ¢) if the derivatives dg and dh satisfy [|dg|l <N and |[dh[| <N at all
points.

(i)-We-assume-that thereis-a constant-M-such-that
]
X' <M
and
CLLL s
[ F IV AL
Y (o) <M

for all ¢. This is an assumption about the path a.

By the mean-value theorem, we can find a 6 > 0 such that for any ¢ and t” with

|t —t"| <o
we have
|o(t') — alt")| < 7.
Let us choose our subdivision so that its mesh size is less than ¢, i.e., |t;,; — ;| <
for all i. Thus by (i) we have
9(x(s)) — glalt:))| <& for t; <<ty

with a similar estimate for h. Thus

olote)) | " Xt~ [ gt (5)ds

| J i i

o/ tl
<81\4“1+1 tl|

between (7.1) and (7.2) is at most

A1l

h Wl W § L W I ~ t
JEMIt =t +eMt =t =2eMb—al.
i

We can arrange to have ¢ as small as we like by making 9, i.e, the mesh size,
i

In this equation, the left-hand side has an obvious intuitive meaning, while we use
the right-hand side for computation.

Example

As an example of the use of this result, we evaluate the integral I of w=
. . 0 1

xydx +x*dy alo \1,0'\0/' 1

= " 3
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Figure 7.16
To parameterize I'; we introduce
t
ot 0,
1 —¢?
1e.,
a¥x=t  o*y=1—1¢2
sothat
o*dx =dt, a*dy = — 2tdt.

/0\ /1\
The orientation is correct: «(0) :{ ‘, while a(1) —I \l

\1)/ \0/

Then
w*o=t(I=t>ydt+3(=2tdty=(t=73t>)dt
and
) r1
w=| (=3)dt=[3t*—3t"lpo=—13.
o ri Y, 0

To parameterize I', we introduce

t
ﬁ:t—)(l_t),

Le.,
p*x =t, pry=1-—t
so that
p¥dx=dt, p*dy=—dt
and

B*w = t(1 —t)dt + t2(—dr) = (t — 2t3) dt.

For this path, then,

D
L




Exact forms

In this example, you will n
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Suppose that the one-form w =df. 1

this Ccasec
™ b ~b
df=| e*df)=] d(e*f)
vI N, Ja

By the fundamental theorem of calculus,
b
J da* f)=o* f(b) — a* f(a).

But o* f(b) = f(a(b)) = f(P,), where P, is the endpoint of T, and similarly, o* f(a) =
f(P,). We conclude that, if I" extends from P, to P,

L df=f(Py) —f(P,)

independent of the choice of T'.
Notice that this result, combined with the preceding calculation, shows that not

every differential form w can be written as w = d f. Indeed, it is easy to write down

a necessary condition: suppose

By the equality of cross derivatives, i.e. sifice 0° f /0x0y = 0° f /0y0x, we must have

A AH
U\J vl
y 0x
Yo 41 1 1 11 2
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— =XF—=2X
oy 0x
A Aiffarantial farm-rm-which can he swritten ae ) — Af 1c ealled-exact
Y GIIILICHITIAQrl 1O U WILIVELD LAl UL ywiliitivil Aasy W UJ 1Y CAlIVvG CTAUCT,
We will now show that locally (we shall explain what this entails) the condition
0G OH
dy ox

is enough to guarantee that w = df for some f, determined up to a constant.
We first choose a convenient point P, and declare that f(P,) =0. We then define
f by the rule f(P)= [rw, where T is a convenient path extending from P, to P.
Of course, we could add a constant to f without changing its differential df. The
choice of P, in effect chooses this constant of integration.
Let us describe this procedure in terms of coordinates. Suppose that

o = G(x, y)dx + H(x, y)dy.
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Figure 7.17

Since we are using x and y to describe the endpoints of the path I', we will use x

and y as names for the dummy variables of integration. Thus

a*x = xt, ¥y = yI,
o*dx =xdt, o*dy=ydt
and
o*w = G(xt, yt)xdt + H(xt, yt)y dt.
Then
r1
f(P)=| o*w
Jo
so that
1
i vy = | [xG(xt, yt) + yH(xt, yt)] dt (7.3)
J \J\v’ y} 0 L= AY v 7 4 N s 7 AN 7

is a formula by which we reconstruct a function f from w. Notice that this
construction will succeed only if the functions G and H are defined everywhere
on the path T

So far we have not used any hypothesis on w, other than that it be defined
along the paths of integration. So we do not expect, in general, that d f = w. Here
is where our hypothesis will come in. Let us compute Jf/0x. By differentiating
with respect to x under the integral sign in the definition of f, we see that

af fG(xt yt)dt+fl(xta (xt, yt)+fya (xt, yt)>dt

0

Now

d oG oG
— (tG(xt, yt)) = G(xt, yt) + tx— (xt, yt) + 1y — — (xt, yt)
oX oy

e
[e X2




Paths and ine integra s 0

SO
~1 d
G(x, y) = [tG(xt, y) ] = | — (¢tG(xt, yt))dt
PARAe= A | 0 dt
(s 3G ble \
= | [ G(xt, yt) + tx — (xt, yt) + ty — (xt, yt) }dt
Jo \ 0x dy ),

Substituting this into the expression for 0 f/0x, we see that
1

%___ G(x,y) + -[
0x

0

oH oG
ty(a(xt, yt) — E(Xt, yt))dt.

Under our assumption

0G _0H

dy ox
everywhere, so

of

—=G.

ox
Simitarly

af_ ry

a—y == 11
or

w=df.

o =2xy3dx + 3x2y3dy

Since w is defined everywhere, and

- (2xp%) = 63y =~ (3x%y?)
dy 0x
w is a differential, d f. We find f by calculating

1
flx,y)= f [xG(xt, yt) + yH(xt, yt)] dt

1
flx,y)= f (2x2y3 + 3x2y3)etdr = x2y°.
0

Indeed,
d(x?y?) = 2xy3 dx + 3x2y% dy.

Closed forms that are not exact

Qur construction shows that if w is defined and bounded in a star-shaped region, a
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segments lying in R, then the condition dG/dy = 0H/0x is sufficient to show that wis




exact. If G or H fails to be defined at one point in the region, then this conclusion no

longer holds.

N
/'._\\v/ »)
[~ ad
\ AN
™~ N\
T e
Figure 7.18
For example
y X
S d d
@ X2+ )2 x+x2+y2 y

satisfies 0G/0y = 0H/0x, but ® is not defined at x=0, y=0. In this case there
exists no function f for which w = df. Indeed, the integral of w around the unit
circle is easily shown to be different from zero. Take

Ky — Gt Ry — o1
A COS; &y oIt
a¥*dx= —sintdf, a*dy=cost
so that
N*I\—O‘ﬁZfAf 1 ﬁﬂﬂZfAf—Af
W W=uoil1 Ut T LU0 Ut —ui
Then
* 27
w= dt = 2m.
J unit JO

If w were exact, its integral around this closed path would have to be zero. Ina

later chapters we shall consider this and related ideas, which are of great significance

A form w=Gdx+ Hdy defined in some region of R? is called closed if
O0H/0x = 0G/0dy. If the region is star-shaped we have proved that a closed form is
exact. In general this is not true.

Pullback and integration
Since the definition of the line integral [y is independent of any specific choice
of parameterization for T, it is clear that the calculated value of the integral cannot

foa

P
K'_\/

(.z b s a({a) a(.b) t

Figure 7.19




depend on the parameterization. Still, it is worth demonstrating this independence

explicitly. Suppose that we have two alternative parameterizations of I" in terms

P= 1'% o

af narametere c and +

O parailTtClo—5dIa 1.

Then there exists a one-to-one mapping « of the s-line into the r-line, as shown

in figure 7.19, so that we may write the parameterizations of I" as

AW

P=p@t) and P=p(as))=Pou(s)

Using the parameter s, we calculate

b b a(b)
_[rw = J (Boa)*o = f *F(fro)=1 p*o

a(a)

by the chain rule, and by the change-of-variables formula for ordinary integrals,

This is exactly what we would have obtained by using the parameter t. As a
practical matter, this means that using a different parameterization is equivalent
computationally to making a change of variable in the integral set up by using
the original parameterization.

It is also possible to transform a line integral from one plane to another, as
suggested by figure 7.20. Here f is a differentiable one-to-one mapping of the path
I' in plane A into a path f(I') in plane B. Given a one-form @ on plane B, we

1 3af 3 ¢ Marl—1
nave daclineda 1S pullbavk Uy

B*a(P)[v] = w(B(P))[dBy[¥]]
Pra— % Biv~ °
‘/éVOOl ’26(}))
- v )/Zz, /
P for
g /
1 V:
a b t
Figure 7.20

We claim that

j W= J p*w.
A(I) r

j fro=Tlim Y fa(P)v]
r

N-ow i=0

Indeed, by definition,

N-1

= lim ) w(B(P))[dBp,[v:1].

N—-w i=0
But, as N — oo, the vectors dB[v;] lie along the path §(I') more and more clqsely,
so that this last sum, in the limit N — oo, equals the integral [pro. Indeed if we

parameterize I by the mapping &, we have

™ b b

fro=| a*(f*w)=| (Boa)*w

Jr In da




by the chain rule. But foa 18 a parameterization of A(I'), so this last integral equals

[4e@, which is what we wanted to prove

JV

Example
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coordinate system in the plane for purposes of evaluating a line 1ntegra1. For

example, if we wish to evaluate the integral of w = x dy — y dx over the unit semi-

—1\ . .
circle from (é) to ( 0) in the xy-plane, we may express the semicircle as

the image of a directed line segment I in the polar coordinate plane by means of

6
the mapping ﬂ:(;)—»(rcés ) Then

rsin 6
B*w = (r cos H)d(r sin 0) — (r sin 8)d(r cos 0) = r>d6

Ay
i .
" 8
Ta
> [ \
1 r l L
Figure 7.21
On the segment I', r =1 and so
24 PR - A0 — =
IJ U7 — v =Jjl.

{cost)
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7.2. Arc length

So far we have considered only directed line integrals, evaluated over an oriented
path on a plane where no scalar product is necessarily defined. Given a scalar




rc¢c eng 1 PEDIN

roduct, it is possi lute line integral o i

segments, with v, = P,P,, |, then take the length of each segment by using the scalar
product: s; = ||v;|| =./(v,, v,). The integral is again defined as the limit of a sum:

des— lim z f(P)s,.

N-w i=

Clearly in this case the orientation of I' does not matter, since the length of v, is
the same as the length of —v,.
To evaluate an absolute line integral, it is again convenient to parameterize T.
We write
a¥*x = X(t), o*y=7Y(r)
so that
a*dx = X'(t)dt, a*dy=Y'(t)dt.

Then the vector u;, =t;t;,, is mapped into the vector

dafu] = X dofu]
\1)/

o /(doz[u ]
o
t] / b L TP
P — g
Figure 7.23

By definition

S(P)=f(dt;)) = a*f(t)
so that

ffds- lim 3 ¥, a* F X + Yt~ 1)

N—w i=

which may be recognized as the integral

f fds= fboc*f(t)\/(X’(t)z + Y'(t)*) dt.
r a

If f=1, the integral [ds defines the length of the curve I'. More generally, f(P)
might represent the linear mass density of a thin wire in the form of the curve 1;
then [ fds represents the total mass of the wire

bbUluLC T llll.t:gl d.l lUL Whlbu tnc
the calculation of the proper fime associate
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=
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scalar product is nof Euclidean i

=]




with the world line of a moving particle, which is the elapsed time as measured
by a clock moving with the particle. In this case, since t always increases along a

Y

xrrtf

~
j 8w

w
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dafu,;]

~ ¥
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Figure 7.24

Now the Lorentz length of the vector

[ 1\
dofu;] = dt[u,]
X'(1)

1 N2 : !

N A4 T Q h V.48
Jatpu; j-Simcee X

s /(1 b TT AN PRI 1 iy £41 o1 fy
1S \/ I—Aall) ()15 Jusl LI VEIOCILY U Ol Le partticle, we Illay wilic

J(‘ J(1—v?)dt

as the integral which defines proper time.

Summary

A Line integrals
You should be able to explain the meaning of a line integral of the form [w and to
list and apply properties of this integral.

You should know the prescription for evaluating a line integral by pullback, and
you should be able to introduce appropriate parameterizations for evaluating line

—integrals and specified paths.




B Differentials and differential forms
Given a one-form w defined on a star-shaped region of the plane, you should be able
to determine whether or not  can be ezpressed as the differential of a functionf; and
to calculate such a function f if one exists

Exercises

7.1.

Let w =(ycosxy + e*)dx + (xcos xy + 2y)dy.

0
(a) Evaluate [rw along the segment of the parabola y = x? from (O) to

1
(1). Use the parameterization ¢ described by the pullback
¢*

(on)-(2)

(b) Evaluate | for the case where I' is the straight line joining the origin

4
t2

to the point . Do the same for the case where I" consists of the segment

0 < x < o on the x-axis, followed by the segment x=a, 0 < y < p.

(c) Find a function f(x, y) such that o =df.

Let o= +Px\dv-l-(\f(‘nc Y\;—I—?V\dv

LAt

(vcos.x
o RS FALS &

(a) Evaluate |rw along the parabola y defined by

{»

f ) f \ for 0<t<1.

\y/ \t*/
(Y Find f{+ ) oeneh tha @ =df
\U} 1 llluJ Ay _,V} SUvll tiia = .

7.3. Let w = ydx — xdy.
y.3 - ~ - 1\ /1\ ¥ 31
(a) Evaluate |, along the semicircle y irom \ N ’ to \ N } detined by
p%4 \\I

[x\ [ —cost)

14.

7.5.(a)

\y}= sin t
forO<t<m.

(b) Show explicitly that you can obtain a different value from that in (a) by
1

0)'

Let o = (15x2y? — 3y)dx + (10x3y — 3x)dy. Evaluate [, where T" is the

path from (— 1,0) to (1,0) along the semicircle x* + y* =1, y >0.
Evaluate [rw, where

-1
choosing a different curve joining ( 0> to (

w=dx + 2xdy

and T is the segment of the parabola x =1— y* between y= —1 and
y= + 1, as shown in figure 7.25.

(b)

Find a constant a and a function f such that e =df.




Figure 7.25

7.6.(a) Let w = (x* —2xy)dx + (y* — 2xy)dy. Evaluate (o, where I is the path
from (— 1,1) to (1,1) along the parabola y = x>
(b) Let 0 =30x%y°dx + 40x>y*dy. Find an integer n and a function f such
that df = (xy)"o.

7.7. Let @ = 10y*dx + 4xydy.

(a) Evaluate |-, where I is the circular arc of radius 1 joining | Jto
\V

Figure 7.26

(b) Find an integer n and a function f such that x"w = df.
7.8.(a) Show that the differential form
w = 3xydx + 2xdy

is not the differential of any function f.

(b) Find the equation for the one-parameter family of curves with the




property that w(v) =0 for any vector v which is tangent to one of the

curves.
. [ 1
I

) and you have a differential equation for
E'(~
NE AN/

(c)

Find functions f(x, y) and g(x, y) such that df = g

7.9.(a)

RV A N i a4 4

(Hint: f must be constant along the curves which you found in part (b).)
Sketch the semi-ellipse described by the polar equation
9
r=———
5—4cosf

Recalling that x =rcos 0, y = rsin 6, show that this semi-ellipse is part of
the graph of

for 0<O<.

(x—4?
——+—=1
25 9
(b) Express the differential form
xydy — y*dx
x? + y?
in terms of polar coordinates (in terms of r, 6, dr, and df)
(c)_Evaluate {-w. where T is the semi-ellinse of part (a)._using polar
\=7 JI K r r ASadid =T o hadd
nnnrrh'natpc The nnnrrﬁnatn O makes g nnnvnn:‘nnt narameter
VOUUTUIILIIA VY. TIllv VOULTUILIIUlY U I1iIanvy a4 v U ASISILTI DY t}ululll\/tul.
(AN Raalbirata { 1a a1 and ac o gl ntaa A g s ¢+ g0y ¢+ :
Uy Lvaludatio er Uy Udlilfig A dllll Y ad LOOLUILAatCs. A COLTVUITIVIIU Pal dalllviviiz=
ation is the one defined by the mapping
{4+ 5cost
tl—>l . o0<t<m.
o osmt )/
T 10 AN C +1 4 1 1> h hd + M n +1
7-10:(a)-Suppose that wand vare curvilinear coordimates om a region D on the

plane, with the Jacobian

/ﬁu/ﬁx ﬁu/ﬁy\

Det | )

(b)

7.11.

\ov/0x  0v/0y )/
nowhere zero on D. Let @ be a smooth differential form defined on D, let I'
be a curve in D. Show that e has the same value whether w and I are
expressed in terms of x and y or in terms of u and v. (The preceding
problem was an example of this result.)
Let I' be a closed path described in polar coordinates by p = F(8), with
F(0) > 0 and F(2m) = F(0). Show that the area enclosed by this closed path
equals [rw, where w =%p2d6.
(Hint: Try expressing w in terms of Cartesian coordinates.)
The state of a gas confined to a cylinder can be represented by a point in a
plane. In terms of coordinates P (pressure) and V (volume) on this plane,
the quantity of heat absorbed by the gas during a process represented by a
path I in the plane is Q = [rw, where

w=3PdV +3VdP.
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Figure 7.27

(a) Evaluate [ where I is the broken line shown in figure 7.27, connec-
ting V=1,P=32to V=1,P=8,thento V=8, P=1.

(b) Evaluate [r.co where I''is the curve PV5/3 = 32 joining V' = 1, P = 32 to
V=8, P=1.

(c) Find a function S such that dS = w/PV.

7.12.(a)

V5]
)
=
Q
=
=
5

(b)

7.13.

7.14.

Figure 7.28

Solve the same problem for the case where the linear density of the wire is
proportional to y, with the mass still equal to M.

1
Express the length of the cubic curve y = (x — 2)® connecting ( 1) and

3
(1) in the Euclidean plane as an integral.

Consider the differential form

o = S5ydx + 3xdy.

ers-m-and n such that d(x"y"w) =0

a.
x T oy lida s




(b) For these integers find a function f such that df = x"y"w.

(c) If we map the uv-plane into the xy-plane so that

/U.\ / LLZ + ﬁ N\
AN
\B/ \Bp"+2a/
what is the pullback of w?
[0\ /1\
(d) Calculate (e over the path I"; and I', connecting [\0/) and (\ | /) where

1
I'; goes in two straight segments via (0) and I', in two straight

0
segments via (1>

(e) Evaluate the absolute arc-length integral [, || | ds.

(You may leave one term of your answer in the form of an ordinary
definite integral.)
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Chapter 8 continues the study of integral calculus and is
devoted to the study of exterior two-forms and their corre-
sponding two-dimensional integrals. The exterior derivative
is introduced and invariance under pullback is stressed. The

4 H : 1 : £ Qinl s 41 : P L)
IWO-UNITIISIONdD VCISIOMT O SUOKTS  NCOTCIN, 1.C, UICTN S

theorem, 15 proved: Surface integrals 1 three-space are

4 1+ 1
StudaIicda.

We h

ave alreadyv seen_ how the di
L= 3 W AL WAL (S A~A ™D A\ LI Al

Yy Pa= o

approximation to the change in the value of f as we move from a point P to a

nearby point P + v. To be specific,

1 £

fPvI=fP+v—rP)y+olv)

where the error, o(v), goes to zero faster than the length of v if v is made small.
We can think of df as a linear function whose value on the vector v is determined
by the values of the function f itself on the boundary (endpoints) of the segment
defined by v, in the limit where the vector v becomes very small.

Using a similar approach, we can construct from a one-form t a two-form dr,
called the exterior derivative of t, which is, at each point P, a bilinear function of
two vectors vand w: Given a point P, an ordered pair of vectors v, w, and a one-form
T, we can obtain a number by integrating t around the parallelogram spanned
by v and w, moving forward’ from P along the first vector v of the pair, eventually
backwards along the second vector w. If the vectors v and w are small enough,
and t is reasonably well-behaved near P, then we expect the value of this integral

to be approximately bilinear, i.e., to depend approximately linearly on v (for fixed

w) and linearly on w (for fixed v). Denoting the parallelogram spanned by hv and




P+w

|
f |
[
w |
-I P+v
—
—
P
Figure 8.1

kw by P(h,k) we would like to define dt (P) by

J © = hkdt(P)[v,w] + error (8.1)
P(h.k)
w

kw i

/ [ — Y

/ /

[ nv

Fignrp 8.2

where (we hope) the error term goes to zero faster than n as h — 0 (with k lixed), and

also goes to zero f h -

A4 P\ a1 1t 1c 1INIANn The nranf ic crccantiallvy the came ac the nranf that
ES uL\l ] \.«AIDLD, lL 15 uu.].Li \./ 111V l)LUUl 15 uaauuuau_y lll\/ saliie aos wiiv PLUUL uiiatl
he differential of a function is unique. Suppose that equation (8.1) holds for two
different bilinear functions dr and dz. Then, letting o denote the difference

dt —dt, we would have

0 = hko[v,w] + error.
Dividing by hk and letting h approach zero, we find
1
0=o[v,w] + --lim (error/h).
k h—0
But the error approaches zero faster than h, so a[v, w] = 0. This proves that ¢[v,w]

is the zero function, so that dr cannot be different from dr.

We turn next to the problem of calculating dt(P) and proving that it exists. For
simplicity, we assume initially that t is of the form f dx, where f is twice differentiable
everywhere near P. Here dx is the form which assigns to every tangent vector its

o v\ .
x-component. In particular, dx[hv] = hdx[v] = hv_ if v=/ * 1. A typical con-

i - \v,/




tribution from one side of the parallelogram, say the side from PtoP+hv s

found by using the parameterization t— P 4 thv so that the contribution is

[
[

Figure 8.3

The contribution from the opposite side, from P + hv + kw to P + kw, is similarly

— hdx[v] Jl f(P + kw + thv)dt.

Combining the two terms, we obtain

1

— hdx[v] | [f(P + thy + kw)— f(P + thv)]dt.

JO

£ resan

oy £ 2 12 o] dgre 4. £F, +1alxl sl T 1 3 4a 1
SHICT [ 15 ddsUHIICU IWILC ULICICIIUIAQUIC, WU dlidy apPply 1aylol 5 101ilUld

' 7

p+ihv

to write this last expression as

1
P 3

—hdx[v] | dfpi[kwldt+OMKY.
HUALY] UJ(P+rhv)Ll\ .

0
U

From the other two sides of the parallelogram we obtain terms which combine

similarly to give

1
+ kdx[w] J dfp , s [PV]dE + O(R2K).
0

Substituting these results into the integral around the parallelogram, we get

f T= hk[ —~ jl dfp,mylwlde-dx[v] +'Jldﬁp+tkw)[v]dt'dx[w]j|
P(hk) 0

0
+ O(h*k) + O(hk?).
Now dfp , 4y is just the row vector
(éf_(P + thv), g(P + rhv)\
\ Ox " oy /

By assumption, the partial derivatives of f are differentiable. Hence, by the mean-




value theorem

o p
ox

SO

1L r _ P YA YA AN
dfpam[WI=dfe[Wi+Oh)

or, upon integration,

f dfiprmy[Wldt =dfe[w] + O(h).

0

Substituting into our integral around the parallelogram gives

J\P(h k)r = hk(dfplv]dx[w] — dfp[wldx[v]) + O(h?k) + O(hk?).

We thus get our desired expression (8.1) if we set

‘ deglv, W] = df[v]dx[w] — df,[w]dx[v].

We see that dr is an antisymmetric function of its two arguments: dz[w,v] =
—dt[v,w].

We canex

D
vy o odii o pt X p o3

of two one-forms, defined by

(6 A [v,w] =0o[v]A[W] —o[W]A[V]

- ; ors. Then we may write

or, more concisely,

From the definition of the wedge product it is clear that

ANG= —0 A A,

ie, the product is antisymmetric. In particular, 6 Ao=—cAc=0: the
wedge product of any one-form with itself is zero.

It is also apparent that

(c+w)Ad=(cAA)+ (0 A1)

the wedge product is distributive with respect to addition.

Consider now the most general one-form f'dx + gdy. The same argument applied
to gdy will lead to

d(gdy) =dg A dy.

Since the integral of w is linear in w, we get




as can also be verified directly from the definition of d. But we may express df
and dg in terms of dx and dy:

df=0jdx+gdy dg:a—gdx-r--(?—g—dy.
Ox aJ ’ ox Oy
Since dx A dx=0and dy A dy =0, we find
di=Jay ndxt+PZdx nd
r—a—y y A x+a x A dy.
Finally, since dy A dx = —dx A dy, we have
dg af
dt=———|dxAad
. (ax ay) % Ady

As an example, let

T =x%y%dx + x3ydy.

Then
dr =d(x%y?) A dx + d(x3y) A dy
= (2xy?dx + 2x2ydy) A dx + B3x*ydx + x3>dy) A dy
=2x2ydy A dx + 3x%ydx A dy = x2ydx A dy.
In—the-special-case-where-the-one-form—t-is-exact, t=d¢, we find that dr="0:
t

because of the equality of mixed second partial derivatives. Thus we see that the
condition for a form to be closed is precisely that

dt=0 J

We have shown that, if f is differentiable and if x is the coordinate function,
then d(fdx) =df A dx. We now use this result to prove a more general product
formula

d(ft)=df At+fdr
where f is a differentiable function and t a differentiable one-form. Writing
T =gdx + hdy, we have ft = (fg)dx + (fh)dy, so that
d(fr)=d( fn) A-dx+d(fh) A dy

Dl W \JI ~=\J




Theretore

{ ¢ £ Ph |

P | \ 1+~ 1 1 1 . L £ o]
dJt)=gdj naxt+jagAaax~ndj Ady+jun Ady

and we see that

A ad £

d(fr)=df A (gdx + hdy)+ f(dg ~ dx+dh ~ dy),

1.€.,

—

L d(fry=df A t+fdr.

8.2. Two-forms

Since the most general one-form in the plane has the expression fdx + gdy, the
most general product of two one-forms will be some function multiple of dx A dy.
We call such an expression a two-form so a two-form looks like

o =fdx A dy = F(x, y)dx A dy.

We want to think of the value of the two-form at P, i.e., F(P)dx A dy, as a rule
which assigns numbers to pairs of vectors.

{\F Hvn
Ul

v

he,

Figure 8.4

More generally,
dx A dy[he,, ke, ] = hk.

Clearly this is the area of the rectangle defined by the vectors he, and ke, in units
where the rectangle defined by e, and e, is taken to have unit area.

More generally still, we can evaluate dx A dy on an ordered pair of vectors (v, wW).
We may write v=ae, +ce, W=be,+de, so that, in terms of the matrix

a b 1 0
-_ == = . h
A (c d),v A(O),w A(l) Then

dx A dy[v,w] = dx[vldy[w] — dx[w]dy[v]
=ad — bc

=Det 4




_ Jouble integrals

a(p)(v,w) = f(p)Det 4

where v,w and A are as above. We can think of o(p) as assigning a notion of
signed area to each parallelogram based at p. The signed area of the parallelogram
spanned by v and w (in that order) is a(p)(v, w).

It is important to remember that the value of dx A dy on a parallelogram depends
on the orientation of the parallelogram, as determined by the ordering of the
vectors which define the parallelogram. On the oriented rectangle which corres-
ponds to the pair [e,,e,], the value of dx A dy is + 1, while the value of dy A dx
is — 1. On the same rectangle with opposite orientation, which corresponds to the
pair [e,,e,], the value of dy Adx is + 1 but the value of dx A dy is —1. More
generally, to evaluate a two-form t on a parallelogram defined by v and w, we
look at the orientation to determine which vector, v or w is ‘first’, then evaluate
t[v,w] or t[w,v] as appropriate.

7 3 A
" \ a——
& /] & )]
‘ 4
» >
e, e,
dx ndy [e,, e, ]=+1 dx A dy e, e, J=—1
Figure 8.5

Since a two-form 7 assigns a number to each small oriented parallelogram (pair
of vectors) just as a one-form assigns a number to each small directed line segment
(vector), we can integrate two-forms over a region R in the plane much as we
integrate one-forms along paths. Given a rectangular region R, oriented as shown

AY

=y

Figure 8.6
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in figure 8.6, we break it up into N, N ,small rectangles, then form the Riemann sums

Nx—1Ny—1 [b—a d-—c
OnaNy = 2 2 O o6
i=0 Jj=0 V% Ny
If
o = F(x, y)dx A dy,
then
b——ud—-CN"_1N"_1
Sneny= > > F(x;, y;)
N, N, <o =0
where, of course,
_ ; ! h—p) I V2R B
xi—a+~wa a), yj—c+Ny(a ).

We then define the integral of the two-form 7 over the oriented region R as

J 1= lim Sy y,
R Nyx— o0

Ny—
provided the limit is independent of the refinements of the partition.

We may evaluate the double integral of F(x, y)dx A dy over the rectangle R as
an iterated integral. To evaluate the expression
. b—ad—cM 1M1
I= lim Z z F(x;,y;)

N.oo Ny N, =0 j=0o
Ny— oo

we may first sum over j for each fixed i, then let N, — oo before summing over i. Since

. Ny—1 rd

e .
lim —— > F(x,y)=| F(x;,y)dy

Ny—)w IVy j:O Je

we have
— r
b—aWNet [
I=1lim —— y | F(x,)dy.
Nx—w 1Vy =0 JC
Again recognizing the limit of a Riemann sum as an integral, we may express
thic ac
IS das
b/ (d \
I=| [ | F(x,y)dy |dx
Ja \ e /

an iterated integral which can be evaluated by techniques of single-variable calculus.
We could equally well have summed first over i, then over j, to obtain

I= Jd(ij(x, y)dx)dy.

In evaluating the integral of a two-form t over an oriented rectangle R, we must
pay attention to the orientation of the rectangle. If R is oriented so that x is the
“first’ coordinate, y the ‘second’, as in figure 8.7(a), we write T = F(x, y)dx A dy,
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Figure 8.7 (a) Oriented with x first. (b) Oriented with y first.

then evaluate the iterated integral.

Jb<JdF(x,y)dy)dx or jd(JbF(x,y)dx)dy.

If, on the other hand, R is oriented so that y is the ‘first’ coordinate, as in figure

8.7(b), we must write

(2

T — n{l’
kY

¢ the iterated integral

a \J¢C 4 JTU NJa 7

Reversing the orlentatlon of R changes the sign of the integral.
$

oation r\r Fa't

F=3 "‘ 2% al
1849 LUblUll Ul orivirt

1 1

readinos . F onsomeinternalmeter nprhanc Chan
'"‘—AA‘DU, UB .I_JA’ VIL OUINIV 11 LV 1A 111\4\.\.«1, y\dl LlulJu. A Ty

Eg— E, with E, — Eg.) It is important to have a similar intuitive example for our
two-dimensional integrals. Here is one: One way of visualizing a change in orienta-
tion in the plane is to look at it from above and from below. That is, suppose
that we imagine our xy-plane as being the z = 0 plane in three-dimensional space.
Then a rotation which is clockwise when viewed from above will appear counter-
clockwise when viewed from below. So choosing an orientation on a surface in
space is closely related to choosing a ‘side’ of the surface. Now imagine that
material is flowing through the surface. For instance, imagine that the surface is

PSR N

Figure 8
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a piece of a cell membrane and we are interested in the transport of a particle

ion across the membrane
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direction — a definite ‘side’ regarded as ‘n’° — for the surface. Thusin measuring the

total flux across the surface, we must choose an orientation. Changing the orienta-

tion will change the sign of the total flux

Double integrals

Frequently one encounters absolute double integrals, which are to be evaluated
over a region in the plane which has no orientation. If, for example, ¢ represents
the density (mass per unit area) of a plane lamina in the shape of a rectangle R,
then the mass of the lamina is given by the double integral

M=J cdA.
R

Clearly M must be a positive number; orientation of R cannot matter. We may
regard dA4 in such an integral as a function which assigns to any small parallelogram
its true geometrical area; that is, the absolute value of its directed area. If we are
using x and y as coordinates, we may write d4 =dx dy or d4 =dydx; the

L)

Q-

Figure 8.9

order of the coordinates does not matter. The absolute integral [ F(x, y)dxdy may
be evaluated as the iterated integral

rb/ rd
( J F(x, y)dy)dx
”d(JbF(x, y)dx)dy.

The important point is that there are two quite distinct types of geometric
objects — expressions such as odA4, which we may call densities, which assign

or as

numbers to regions R by integration independent of any orientation — and two-




orientation. They are each appropriate in quite different physical contexts. As we

1 i or pull-back. We sh
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Double integrals as iterated integrals

Double integrals may be evatuated as iterated integrals for any region which is
bounded by lines x = constant and by function graphs which do not cross. For
example, in the region in figure 8.10, bounded on the left by x =a, on the right by

YA

(')

integral |z F(x, y)Jdxdy may be evaluated as

b/ r‘ll"(x) 3
F(x,y) dydx
« \ Juw /

As an illustration, we calculate the integral I = |,2xydx dy over the quarter-circle
bounded by x=0, x=a, y=0 and the circular arc y= V/(nz — yz) Integrating

1
Hy—y 4 o e g O e

AY

=]
—
-

o
Figure




first over y, then over x, we find
a/ V(a2 _&2) AN
[ = 2xy dy \dY
o\ Jo /
aq (fa
= | [en219@ =393y = | x(a? — x¥)dx =143
Ly 10 hed X 7 4
0 JO
Sometimes a double integral is more easily evaluated as an iterated integral if

the integration over x is performed first. For example, the integral I = {sF(x, y)dxdy
over the region § in figure 8.12, which is not easily evaluated by first integrating

—
X
Q19
l"lgl.llt: 0.1 4
over y, may be calculated as
fd / B \
I= F(x,y)dx ]dy.
v e \NJay)
Eyvanfar roagiance s iol asn ot sen b oon o loge 2t 20 Loan o nint]ly, sancatlhla £ avaliiate
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a double 1ntegral as an iterated integral 1n either order. Suppose, fo

example, that
we wish to evaluate I = [rydxdy for the region R between the parabola y = x?

Yy=x
=x2?
R y
1 X
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and the line y = x. This may be evaluated as

t
I= ydy |dx = L%\)Z"Ix, dx =— (x2 —xHNdx = -11::.
L7 FXE Y \ 7 I
J O J x2 JO 2. 0
Al¢fopmativaly ywwoa mwmayvy AdAeccarilha +tha 12 +1 luala ac o
Aaltclidtively,—wolla y aGLiIVCUICTINC as X =y, (€ Paravold ds— 4 -—\/_y, and

Iintegrate Iirst over Xx:

f1/ rJy

! :J OUY dx)ydy= Jpol [Vy—ylydy= Jpol (¥ —yHdy=+4is.

Sometimes it pays to regard an iterated integral as a double integral in order
to reverse the order of integration. For example, the integral

1 1
I=J (J e"’zdy)dx
0 x

is unattractive to evaluate as it is written. We can, however, convert it to the double
integral

I=J e dxdy
R

where R is the triangular region bounded by x =0, y =1, and the line y = x. This

by

double integral can be evaluated by integrating first with respect to x, then with

respect to y:
"1 y
I= e_”z(J dx)dy
Jo 0

r 1
I=| ye ¥dy= f e *du=3(1—e1).

JO (¢}

SO

Incidentally, the original integral can be evaluated as it is written. If we define
an antiderivative of e ~** by

—2 1

G(y) = [ (.li,




1 1
p Y P Y

[ = dae e Y dy= (G{1) = G(x))dx
ax € a A w 7

F 3
Fa Q

b

Now integration by parts yields

1

I=[(6(1)— G(x)x1; - J x(— G'(x)) dx.

0
The first term vanishes at both limits. Since G'(x)=e~*, we find that
1
I= J xe Fdx=31—eY),
0

exactly as before.
Sometimes, in order to evaluate a double integral in terms of integrals over x
and y, it is necessary to divide up the region of integration. For example, to

y4

8 |

Figure 8.15

evaluate {F(x, yydxdy over the circular sector shown, we first divide the sector

into regions R, and R,, then evaluate

J F(x, y)ydxdy + J F(x,y)dxdy
R1 RZ

by converting each integral to an iterated integral. A more natural way to evaluate
the same integral is to introduce polar coordinates. We shall discuss this important
problem of change of variables in section 8.5.

8.4. Orientation

We have seen that the sign of a line integral depends on the orientation of the
path and that of a two-form on the orientation of the plane. We hope that you

o

have an intuitive idea of what orientation means, but suspect that you might feel
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Before plunging into abstract mathematical definition, let us consider the problem

In the plane, for example, it is intuitively clear that there are two possible

orlentations:
WL IWVAILAA LIV,

9, )

Figure 8.16

We cannot intrinsically characterize one or another but do know that they are
different and that there are only two of them. Similarly for the line:

> <

Figure 8.17

or for three-space when we try to describe right- or left-handedness:

) Z

Vadd d

<y
<y

Figure 8.18

Getting back to the plane, we do know (see section 1.5) that a nonsingular
matrix A preserves or reverses orientation according as Det A is positive or negative.
This provides us with the clue that we need for the general definition:*

Let V be an abstract two-dimensional vector space. As we saw at the end of
Chapter 1, giving a basis of V is the same as giving an isomorphism L: V— R% If
L and L’ are two such bases, then

L' =BL

R? B - R’

Figure 8.19
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where B 1s a nonsingular 2 x 2 matrix. Let us call L and L similar if Det B> 0
and opposite if Det B < 0. We claim that the set of all bases of V decomposes into

A7) a - Ayalnkd s N 3 . A6 o 13 BAaSE & e a = n.

similar, € bases in the collection % ,; isin the collection
F , 1S opposite to every basis in the collection & ,. Indeed, pick some basis L,.
Let &, consist of all bases of the form

BL, DetB>0

and let &, consist of all bases of the form

BL; DetB<O.

Every basis must belong to one or the other of these collections. If L and L’ both
belong to & ;, then

L=BL,, L'=BL, DetB>0, DetB >0
SO

L'=BB 'L and DetBB !=DetB (DetB) ! >0,

so L and L are similar. If both Det B< 0 and Det B' <0 in the above, we shall
get that L and L are similar; while, if one of the determinants i1s positive and the

FnF, =

An orientation in V is defined to be a choice of one or the other of these two

) . £ 17 1. ¢l st .- 4 ) N ~ : 41 | i PRSP s bV D o | 1a
udses Ul ¥V SuUull Uial dlly LWU UDddUS 111 LT COLICULIVILT dl'C Sillliial, aiida dlly U
similar to a basis in the collection 1s in the collection.

Notice that giving a basis, L, of V determines an orientation on V — the set of

asis

ases similar toL:

Once we have chosen an orientation on V, then a basis L will be called good
or positive if it belongs to the collection and bad or negative if it does not. Thus
once we have chosen an orientation, every basis is either good or bad. (Of course,
if we had chosen the opposite orientation, these appellations would be reversed.)

Let W be a second two-dimensional vector space and let 4: V— W be a linear
isomorphism. That is, A4 has an inverse A~ !: W— V. Suppose that we have chosen

an orientation, @, on V and an orientation Oy on W. Let Me@y, be a good basis

aH
an

V— W




of W.Now M: W— R?*so M°A4: V- R2is an isomorphism: hence is a basis of V. So

1 hd £ ¥

R? ————» @

Figure 8.21

Then C = MAL™! is the change of basis matrix between M A4 and L; in other words
MA=CL.

So M A is good if and only if Det C > 0. If we replace L by L' = B,L(Det B, > 0)
and M by M’ = B,M(Det B, > 0), then

C =MAL Y=B,MAL 'B;t=B,CB;*

SO

as

pu | + LL $1 1 1 : £r Pra) 1 AqL /1

Uit O LT palliculdl CIlolCe O el dlid M E:UW

say that A is orientation- preservmg (or positive). If DetC <0

A " . '
W — £ are two linear 1somorphisms and we have chosen orientations on each of the
three spaces. Then it is easy to check that

If 4 and A4’ are orientation-preserving, so is 4’0 A4;

If A and A’ are both orientation-reversing, then A’°A is orientation-
preserving;

If one is orientation preserving and the other is orientation reversing, then
A’° A is orientation reversing.

Let ¢: V— W be a differentiable map. Then, at each peV, dg, VoWisa linear
map. We say that ¢ is orientation preserving if d¢, is an orientation preserving
linear map for every p. (In particular, we assume that d¢, is a linear isomorphism
for each p.)

In our definition, we have assumed that V was two-dimensional. This is irrelevant.

For example if V is three-dimensional, the same deﬁmtlons work. We merelv need
to l(nn' tha v R me?ﬁA 1 1

e T AT vIack _I N JaqQvuri

41

h |
and that any three linearly independent vectors i a three-

Q..
=L

imensional space




form a basis of V' — hence an isomorphism with R°. Then the discussion at the end

of Chapter 1 applies as do all the preceding discussions in this section. Similarly
£t an# A1 A cltani +1 ~ethe definitionof ndimencioneand of the
U1 Al il ® 8 § ulcuoluual bpdge — [[115 rcqulle the acHntion o1 aGimMeEnsions andotrtne

determinant of an n x n matrix. We will discuss these topics in Chapters 10 and

11. (In one dimension. a basis is just a non-zero vector, 1 x 1 matrix (a) is just a

aumber and this number @ can be regarded as the determinant of (a).)
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8.5. Pullback and integration for two-forms

The usual motivation for introducing new coordinates in a double integral is to
simplify the integration. For example, the region W shown in the xy-plane can be
expressed as the image of a rectangle R in the rf-plane by making the familiar
polar coordinate transformation « defined by a*x =rcos0, a*y =rsinf. We can

«(B)

=y

Figure 8.22

use this transformation to convert a directed double integral f, 7 into the integral

of a suitable two-form in the r8-plane. This is achieved by defining the pullback

LS —

2 2 2 bl

o o
T= | a*t.
JW JR
To define pullback of a two-form, we extend the definition of the puliback of
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o*r T
W do(w)
P v a(P)
da(v)
)(xr’/
Figure 8.23

a*A(p)[v] = A(a(p))[da[v]], we now define the pullback of a two-form by applying
do to both the vector arguments of 7. That is,

o*7(p)[v, W] = t((p)) [dex[v], dx[W]].

R — Ja(R)




rectangular region R, provided of course that « is differentiable and orientation

preserving and that both integrals exist. We approximate ‘R(z*jc as a Riemann sum

over many small rectangles:
)Y A~ Alel\/ﬂ
= LIS
Pl av R a(R)

Figure 8.24

The contribution of the rectangle at point p is a*t(p)[hv, kw]. By definition, this
equals t(«(p))[da[hv], da[kw]], that is, the value of 7 on the parallelogram which
is the best linear approximation to the image under o of the rectangle defined by

hv and kw.
Of course, the image of the rectangle under a is not precisely a parallelogram

/ ,—\/
/ S
yd
L—d
Figure 8.25
and the value

2(o(p)) [dec(hv), da(kw)]

AY

does not precisely equal the integral of ¢ over the image of the rectangle. So we
make two types of error: replacing the image afrect.) by a parallelogram, call it P,

l\ﬂrl Q
[28§ LS S

(1) Ia(rect.) by jP’
then

(i) replacing [, by t(x(p)) [dee(hrv), do(hw)].
Now, if 7 is continuous, the error involved in (i) is clearly o(hk): if = had uniformly
bounded first derivatives on the entire region bounded by « say, then

[t(q) — t(a(p))| < k(h* + k*)'/* for any qin P.
Thus the error involved in (ii) is at most
k(h* + k*)'*hk.

Theerrorinvolved in (i) can be estimated by Taylor’s formula; for example, replacing

the curved image of each side by an approximating straight line. The error here

(aSSlean the first and second derivatives of o are bounded over R) will be a sum

AT Owe TG
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of terms bounded by h%k and hk* multiplied by a suifable constant, thus

r

a*(r(p-Whv. hwl = T + error
AR NAN PP = 3 =
Ja(rect.)
where
1/2
lerror| < C(h? + k*)!/? x (the area of R).

Summing over all rectangles, we get

Z“*(T(Pi))[h", hw] = T 4 error
a(R)
where

lerror| < C(h? + k?)'/? x (the area of R).

As we make the mesh finer and finer, the sum on the left approaches {zo*t while
the error on the right approaches zero. It follows that

Ja*rzj T.
R «(R)

For a more careful proof of this important result, not requiring such stringent
hypotheses on o and on 1, and valid in » dimensions, see Loomis and Sternberg,

rn

0 -
Sternberg (which cam be read independently of the rest of the book) for its treatment
of the theory of integration.

We still need a procedure for cnmpnfing the pnllhm‘k of a two-form. Since any

two-form in the plane can be expressed-as a wedge product of two one-forms; we
first calculate a*(4 A 0), where 4 and ¢ are one-forms. By definition,

H ] A
a* (A ~o)lv,wl= ; = ]

— A[da[w]]lo[da[v]].

[

On the other hand,
(a* 2 A a*c)[v,w] = a*A[v]a*o[w] —a*A[w]a*c[V].

By the definition of puliback for a one-form, a*A[v] = A[da[v]]. It follows then that

a*(AAc)=a*A A a*o

that is, pullback commutes with the wedge product.
Since the most general two-form in the xy-plane is of the form

t=fdx Ady

we find immediately that
a*t = (a*f)d(a*x) A d(o*y).

If, for example, a*x = rcos 0, a*y =rsin 0, then

d(o*x) A d(a*y) = (cos 8 dr — rsin 8d0) A (sin O dr.+ rcos §df) =rdr ~ do.
f
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coordinates:

»

(o*F)(r,0)rdr A dO = F(x,y)dx A dy.

JR a(R)

T + farmemwdr r A0 accionce ta ans PSR | Hal +a1m—inthe 0
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its directed area (dr A d@ does that) but rather the directed area of its image in the

xy-plane under the transformation .

We can now establish the general change of variables formula for directed double
integrals. Let R be an oriented region in the uv-plane which is carried by the
differentiable transformation « into the oriented region a(R) in the xy-plane. We

v4 * y
oaTT 1 D C T
o
——e
D_
A B A B
2 %
Figure 8.26
describe o by specifying the pullback of the coordinate functions x and y:
7 r o o r 7
o*x = X(u,v), a*y=Y(u,v)
so that
O(o*x) O(a*x) 0X 0X
dlo*x) =22 D du+ = 2 dp=""du+——dp,
ou ov ou ov
AT YL ¥
d("*}_d(“ y)1 Id(“ J’)i _91] g]
ou ov ou ov

The two-form 7 on the xy-plane may be expressed as 7 =f dx A dy = F(x, y)dx A dy.

Its pullback is

0(o*x) Ola*y)  d(a*x) ola*y)
ou ov ov ou

oa*t = o* fd(a*x) A d(a*y) = oc*f[ Jdu A dv

or, equivalently,

a*t = F(X(u,0), Y(4,0)) [‘”( oY _oX a—qdu A db.

We recognize the factor in square brackets as the determinant of the Jacobian
matrix J which represents da relative to the given coordinates,

O(a*x) O(a*x) /6_X Q{
ou ov ou v
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Ola*y)  O(o*y) QZ 6_Y

o pa | A
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so that we may write

dex A dy — n(*fDetJdu A dv.
#(R) JR

Tlas araq

+ PRSI | 11 oo ™. ¢ F +las ¢ IPRPRY S-S 2 4+ £ +1
IS 1S CNUrcly reasonable, Since DetJ 1S N arca-transiorming iactor 10r the

linear transtormation de, Det J du A dv assigns to any small region in the uv-plane

the directed area of its image in the xy-plane. If the ordering of u and v has been

determined by the orientation of R and the ordering of x and y by the orientation
of a(R), and if « is orientation-preserving, then the Jacobian matrix J will have a
positive determinant. Reversing the order of u and v, or of x and y, corresponds
to a change in orientation in the uv- or xy-planes. It will interchange columns or
rows of J and thereby change the sign of Det J.

As an illustration of the change of variables formula, we calculate the area of
the oriented region W bounded by the x-axis, the line y =mx, the hyperbola
x?—y?=1, and the hyperbola x> —y?>=4. To achieve this we write W= a(R)
where o*x = ucosh v, «*y = usinh v. Then « maps the oriented rectangle R, defined
by 1 <u<2,0<v<arctanh m,into the region W. For example, the vertical segment
u =2 is mapped into a portion of the hyperbola x* — y* =4.

™
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A
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v Ay /S / .
S/ )
Y% ’
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R) - /
D)
A B )| 4%8)
1 2 u a(d) 1 2 x
Figure 8.27 Figure 8.28

Since W has the ‘x-first’ orientation, its area is A4 = [dx A dy. Pulling back, we
have A= {go*(dx Ady)= {gDetJdu Andv. Here o*(dx A dy)=d(ucoshv)a
d(u sinh v) = (cosh vdu + u sinh vdv) A (sinh v du + u cosh vdv) =u cosh?*vdu A dv +
usinh? pdv A du = udu A dv so that

2 tanh ™ 1m
A=J udu/\dv=J uduJ dv=3tanh™ ' m.
R

1 0

Equivalently, we may compute

DetJ = det(c,oSh v usinhy \ =u

\sinhv wucoshv/




Clearly the secret of a useful coordinate transformation is to make the boundary

n W be the image of the si i -plane. If, forexam
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Figure 8.29

coordinate transformation will be one which carries the lines u = constant, for a
fixed interval in v, into segments x + y = constant between the coordinate axes. Such
a coordinate transformation is described by a*x = uv, a*y = u(1 — v), which has the
property that a*(x + y) =u. You should convince yourself that « carries the unit

square R in the uv-plane into the region W, but that R must be given the ‘v-first’

Ariontfatian . 1mn ardoar A mala tha ~rtartatiannm ~F (R aAran th ¢that ~Ff YA/
vlLIciitalivil 111 VULl LU 1ITIane LIV Uliviitativil Ul LL\]\} a51 | wi ] wuu tlat O ryry.
Conitirmation of this fact i1s that, when v 1s taken as the hirst coordinate, the Jacobian

ov ou [ u v
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hac determinant 1 which 1t mactifive (T€f 9 worae the firct i nt s Nat T vareild
as—aoiviinmniane u, HIVIT IS POSILIVC. (11 &4 CIC LIIV 1150 Voldiiiate, 10U J wOull
equal —u.)

We may use this coordinate transformation to evaluate the integral

1= S e nd
x A dy
JW \/(xy

which would be very difficult as an iterated integral over x and y. We find

( —(x+y)> e ¥ e 1

V) )Pl =01 u Tl —v)]

and o*(dx A dy) = (udv + vdu) A (—udov + (1 — v)du) = udv A du, so that the integral
in the uv-plane is simply

e—u
I=| ———=dvAadu
g/ [0(1 —0)]
e—u

Nate thh 1. 1
tvote-that, because R has the ‘v-first orientation, we write TF1 g av A du, mot
: ViE—YH
its—negative, before converting to anm iterated integral. The final result is f=




dov

f(1lo—ud,, (1 » PN ¥ Atating the connn PPN I IS A
Jov ¥¥Jo /r (1 Y =1 —e Ym (Imevaluaunginescconaimegrarweusca inc
AL =p) |
dv
fact that | — arcsin(—2v 4 1).)

V(=01

We turn finally to the question of changing variables in an absolute double

T

| — £ alre
F 3 JWJ AUy T UTIIARY
1-1 r

o

Q (51
[ (%7
irected double integral I = {, f dx A dy, giving W the “x-first” orientation. We next

v yi

Ry
=

Figure 8.30

X, \. ..
’—) is positive,

write Was a(R); this procedure assigns an orientation to R. If Det J (
u,v

R has the ‘u-first’ orientation, and

v (vfirst)

e

(unoriented)

In either case, the rule is to use the absolute value of Det J:

y
7 kLI Tt r/x’y\ 5 DU
1= 2y UULJ\ auav.
Py u, v
v R N7

When this rule is used, questions of orientation, or of the order of coordinates, never
arise; interchanging x and y, or u and v, does not affect the absolute value of Det J.
In Chapter 15 we will discuss integration of forms in higher dimensions.

8.6. Two-forms in three-space

In the preceding section, we defined pullback for two-forms. The computational rule
was very simple: if w, and w, are linear differential forms, then

P*(wy A ;) = d*w; A P*w,.

~

If fis a function and 7 is a two-form, then

O*( f1) = ¥ (D *1
¥ YUY

\J¥7




If 7, and 7, are two-forms, then

e ¥

LR U + TZ) = ¢*Tl -+ ¢*7:2
In short, all algebraic operations are preserved. We also defined the linear operator ¢
ocorino from-one-form totwa-forme
£0omg 1 omn-onc-1oITn—tOtwo-10TIinms;

d(fdg) =df  dg

4 7 J T

or, more generally,
dfw)=df A o+ fdw,
and
d(w; + w,) =dw,; + dw,.
The pullback ¢* commutes with d in the sense that
¢*(df)=do*f f a function

and
¢p*do =do¢*w o a one-form.

The notion of a two-form makes perfectly good sense in R>: a typical two-form
in R (where the coordinates are x, y, z) is an expression of the form

adx Ady+bdx Adz+cdy Adz,

where a,b and ¢ are tunctions. Ii

4-4 R4 Falt|
W=AUX T+ DUy 7+ Lz

Ay 8z
\ 0% oy 0z—/
0B 94 6C 94 6C 3B
(Z N axndy+ (- Yax ndz 4+ [ 2~ P2 Vdy A de.
<6x ay) *A y+(6x az) *A Z+(ay 62) YA

If ¢: R*> - R3 and 7 is a two-form in R3, then ¢*z is a two-form on R2. If R is some
region in R? and we have chosen an orientation on R?, then we can form the integral
{r¢*t which we might think of as the ‘integral of T over the oriented surface a(R)

-

[* ]
w
"

_—
kigure




8.7. The difference between two-forms and densities

Let us return to two dlmensmns We have seen that the pullback, a*z, is defined for

o*(fdx A dy) = (a*f) (DetJ)du A dv (8.2)
where .J is the Jacobian matrix
Joy Oy
Je ou Ov e oy .
ou Ov

This formula is correct for any differentiable map o. We also proved that, if « is one-
to-one and orientation preserving, then

J a*(7) =J T. (8.3)
R a(R)

This is true when we consider the integral of a two-form, where the orientation
matters. Suppose, however, we want to consider an absolute integral. Then a choice
of orientation should not matter — but then the formula for change of variables or
pullback for the express1on j dA or j dxdy should not be the same as (8.2). In fact, if

J a(rect.)

= f(P) x oriented area of rect.

Itis clear thatin the absolute integral case we must replace oriented area by absolute
area. So we must replace (8.2) by

a*(f dxdy) = «*f-|Det J[dudv. (84)

invertible, then
J oc*(fdxdy)zj fdxdy
R a(R)

without any conditions on orientation.

So two-forms, T = fdx A dy, and densities like fdxdy are quite different objects —
they transform differently under change of variables. For example, a density can be
positive or negative (as in a density of electric charge): if f > O then making a change
of variables replaces fdxdy by o*(f)|Det J|dudv and o*f-|Det J| is still positive (if
Det J # 0. which will hold if o~ ! is differentiable). But it makes no sense to ask
whether a two-form 7 is positive or negative — since the factor DET J which enters

into (8.2) can be Dosmve or negative. It i1s only when we choose an orientation (and
c ese ¢ hich




8.8. Green’s theorem in the plane

In considering line integrals we have encountered one generalization of the

fundamental theorem of the calculus, namely

where the path y runs from A to B. This theorem relates the integral of df over a one-
dimensional region (the path y) to the values of f'itself on the boundary of the path
(the endpoints of the path).

v
.
Figure 8.32
A_similar result-involving a two-dimensional regionand-its one-dimensional
s

ey 1

boundary —is—known as Green’s theorem. This theorem states that, for any

differentiable one-form t and any oriented region R in the plane,

) n

dr — -
Ui L.

R ¥ 2
< Ui

theintegralon h rightis th integral of t he ore-form tover the path 6 R whichis the
boundary of R. The sense in which the path R is to be traversed is determined by the

orientation of R. For example, if R is an annular region with a counter-clockwise

orientation, as shown in figure 8.33, then dR consists of the outer bounding circle
traversed counterclockwise and the inner bounding circle traversed clockwise. If R
were given a clockwise orientation, the R would consist of the same two circular
paths, but each traversed in the opposite sense.

oR

Figure 8.33




Before proving Green’s theorem formally, it is worth reviewing the definition of
the operator d acting on a one-form in order to see why such a theorem ought to

old.
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vectors v, w with the property that

dz(P)[hv, kw] = T + error

 P(h.k)

where P(h, k) is the parallelogram spanned by vectors hv and kw, and the error term
goes to zero faster than the product hk (faster than the area of the parallelogram). If

kw

/ A
/ /
L

we now consider a region which is a union of N paralielograms, each spanned by

vectors hv and kw, we have

AL Al

2
>
%

Iy A

~

Al
d T —_ V‘ a0 fnrrnr\_
i 5 T y» LR ALY I

i=1

i=1

In the sum of line integrals over the parallelograms, the contributions irom the

interior segments, each of which is common to two parallelograms, cancel, since
each segment appears once with each orientation. Thus all that remains is a single
line integral around the boundary of R, and we have

N

Y dt(P)[hv,kw] = J T+ Z (error);.

i=1 i=1
Now, as h and k approach zero, the sum on the left side approaches the integral
[rdz. Since N is proportional to 1/hk, while each error term goes to zero faster
than hk, the sum of the error terms approaches zero as h and k approach zero,

and we have
[ dr = f T

JR J R

PP

£ canreatlal
Iparallelograms.

Q

for-any regionwhich-is-a-union




To prove Green’s theorem more rigorously, we first consider the special case

= nd evaluate the line i rectangle with sides
marallel to the v and v-avee The onlv econtrihiatinmeto tha inteoral come from-the
palanCito e A—diia aavo. TV UILY CULILLTUULIVIL LU LIV TTtvyaslal it it t1le

s
[

|
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Figure 8.35

side x = a, traversed from y =0 to y = b, and from the side x =0, traversed from
y=bto y=0. Thus

[Ad *b 0
T=1{ Gla,y)dy+ | G(0,y)dy
JOR JO Jb
) b
= | Gla,y)dy — | G(O,y)dy.
JO J O

But, by the fundamental theorem of calculus,

*0G

N’

G(a,y

=G(0,))=| - (xy)dx

Jo 0%

We may therefore express (.7 as the iterated integral

b/ 3G

—(x,y)dx |dy
uokuoax }

which in turn is equal to the directed double integral

0x

A similar argument, applied to the one-form [ F(x, y)dx, yields the result

J F(x,y)dx = Ja< fbai(x,y))dx Ady
oR o\Jo 9y

- _ Ja(F(x, b) — F(x,0))dx.

oG
f —(x,y)dx A dy.
R

Adding this to the previous result, we have

r f A ol

F(x,y)dx + G(x,y)dy = —— (%, ) —=—(x, ) dx A dy.
R 0X ay

R

Y] o




But, of course, if

7= F(x,y)dx+ G(x,y)dy,

then

JdF oG

di= ———(x,y)dx A dy+=—(x,y)dx A dy
oy U

EN
A

so we have again proved that

-[ T= J dr,
JR R
which is Green’s theorem.
We can now extend the proof of Green’s theorem to any region in the plane which
is the image of a rectangle under a smooth transformation . The strategy is familiar:

we pull back the integrals |, .7 and |, . dz to the st-plane, in which the region of
integration is just a rectangle:

14 Y4
o*r o ola(R)]
3R (a® T
2 \P
</ V
- 5 %
Figure 8.36

It is clear that, if o is continuous, then the boundary of R is carried into the

hmmdary of a(R) Therefore

%
T = o T.

ar DY) o 2
JotR)] JOR

But for the rectangular region R we have already proved that

J o*t =j d(a*7).
dR R

Furthermore,

J dr =J a*(dr)
a(R) R

by the definition of pullback. To prove that | SRt = [wryd7, therefore, we need only
to show that

o*T = (o*f)d(o*x) + (a*g)d(e* y).




Then, using the rule d(fdh)=df A dh, we have

Al
e t)= a*g

On the other hand, we know that

dt =df A dx + dg A dy.

— % ot

, Weé nhave

a*dt = o*(df) A a*(dx) + a*(dg) A a*(dy)
so that
a*dt =d(a*f) A d(o*x) + d(a*g) A d(a*y).

Comparing with (8.2) above, we see that
d(a*7) = a*(d7).

J‘ TZJ oc*r=J d(cx*'c)=J oc*(dr)=J. drz
a(OR) dR R R a(R)

which proves Green’s theorem for a region which is the image of a rectangle.
We have proved Green’s theorem for a region which is the image of a rectangle.

T Infa thicicenot ananoh We warld ilke ta eca v\o 1
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polygons. Now, in the plane, every polygon can be decomposed into triangles.
Indeed, we can decompose any polygon into convex polygons:

Thus we have

SANAPra

1
crmorc gencrai

N |
AN /
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Figure 8.37

Any convex polygon can be decomposed into triangles by simply choosing a point
in the interior and joining it to all the vertices:

Figure 8.38

If we knew Green’s heorem for one
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Figure 8:39

We thus need only to prove the theorem for triangles. Since any triangle can
be mapped into any other by an affine transformation, the invariance of the
integrals under smooth (in particular, affine) transformations means that it is
enough to prove it for a single triangle. So consider the triangle T, = {0 < x <y < 1}
in the xy-plane.

Ty

Figure 8.40
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And this map has a smooth inverse,

1

~

—_— x/\’
1Ys

-

v=1y,

so long as y=>¢&>0. Hence we have reduced the theorem to a case we already
know — the image of a rectangle. QED
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As an 1illustration of Green’s theorem, we consider the integral of the one-form

Figure 8.42
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B*x=1~—1t, p=1—(1—=1>=2t—1> O<t<l

o/

we find
pro=(1—1*(2 —2ndr=2(1 —1)*ds,
and
A 1
t=| 20 —03di=1%
J R Jo

According to Green’s theorem, the integral of dr = 2xdx A dy over the region R
should have the same value. Evaluating this integral as an iterated integral, we

obtain
1 1—x2
J 2xde dy = J‘ 2(1 — x*)xdx =1,
0 0 0
as expected.

We can use Green’s theorem to obtain expressions for the area of a region in terms
of line integrals. For example, if T = xdy, then dr =dx A dy, and

j rzjdx/\dy:areaofR,
oR R

t R has a col

assuming that | a_counterclockwise orientation. Of course, any one-form
4 £

u | S

EJ x

] t L= ‘4 . salhle firnots safxr
=xdy+df, where fisanarbitrary differentiable tunction, has the same property,




SInce

we obtain, after some calculation,
a*t =4r?do
which leads to the well-known formula

2n
A= J 11246

0

for the area of the region bounded by a closed curve which is described in terms of

polar coordinates.
The basic formulas of this chapter:

Ina=—a A4

{ t
(i Fw)"o=o, ~roFw, A0

difo)=df rw+ fdw

{1 N % 1 %
ATAANOC)=ATANTTT

oa*(r, + 1) =o*t, + a1,
a*dt=da*t
r r
¥t = 7 for orientation-
VR JaR preserving o
r r
1= | dr
JOR JR
Summary
A Two-forms

Given a differential one-form 7 on the plane, you should be able to state the
definition of its exterior derivative dz and to calculate dz in terms of coordinates x

and y.

You should know how to define and evaluate the integral of a two-form over an

oriented rectangular region of the plane.




B Double integrals
Youshould be able to evaluate double integrals over regions of the plane by carrying

Ol lnwgrduon nan lIlLt:gIdl Uy convertlng it to a double lntegrcu
Given a transformation from one region of the plane to another, you should be
able to evaluate integrals over the second region by pullback, and you should be able

t smvant cnneh trancfoarmationceta n:mal«(‘., tla Aavaliratineaf danitbhle sntoara
tomvent Sucit transSiormations to SITPII Y UL1IIC Ovaldalloll U1 av o1 lutcglalb
’

C Green’s theorem

You should be able to state and apply Green’s theorem in the plane.

Exercises

8.1. Ineach of the following cases, u and v are functions on a plane where x and
y are affine coordinates. Express dx A dy in terms of du A dv. Make a
sketch showing typical curves u = constant and v = constant in the first
quadrant (x, y > 0) and try to give a geometric interpretation to the re-
lations between dx A dy and du A dv by applying both to a parallelogram
whose sides are tangent to u = constant and v = constant respectively.

(a) x=ucosuw. y=usinv

(b) x=wucoshuy, usinh v

(c) v—uz—nz
)~ vy

\: \<
to

iD
Wi

8.2. Evaluate))sx“y“dxdy, where S is the bounded portion of the first
quadrant lying between the hyperbolas xy = 1 and xy = 2 and the straight
lines y= x‘and y =4x.

R 23} Show by reversine the order of inteoration_that
O 0@ oaOwW, DYy ICVCOlotg il Ol Or itCgtatio, tiiav
W Ve [
m(n v) r 1 1 ya m(ﬂ—f) £y 1
W fx)dx Jdy="|"(a=x) (x)dx
0O \vO / 0

where a and m are constants, a > 0.

(by Show that [5([5[[5 f(®)de]duydo = 1[35(x — > (F)dE.
If you do this in two steps, you never actually have to consider a triple
integral!

8.4. Evaluate the iterated integral

1 1= gin 1tx
I=1y o—dx |dy
0 0 X

by expressing it as a double integral over a suitable region W, then
evaluating the integral as an iterated integral in the opposite order. Make
a sketch to show the region W. (You may want to consult an integral
table if you find the evaluation of the single integrals hard.)

8.5. Consider the mapping defined by the equations

x=u+v, y=v-—u-

(a) Compute the Jacobian determinant of this mapping as a function of u

and
dila v,

1) Fall

(b) A triangle T in the uv-plane has vertices (0,0), (2,0), (0, 2). Sketch its

image S in the xy-plane.




(c) Calculate the area of S by a double integral over S and also by a double

integral over T

(d) Evaluate

Ff dxdy

B4

Jls=y+ 1>

8.6.(a) Let s denote the unit square in the uv-plane. Describe and sketch the image

of s under the mapping
u uv
: - .
¢ (v> (v(Z—uz))

Label ¢(A), ¢(B), ¢(C) on your sketch.

Figure 8.43

tha y_nlamn

Y Fvathiate—ttvdvd v thic ragtan—in 1
(D) Evalualc yydxa)y ovel s 1CglOimicX y=plallc.

(c) Evaluate this same integral by integrating the appropriate function over

the square s 1n the uv-plane.

8.7.(a) Evaluate the integral

(x +2y)dxdy

Jw
for the triangular region W shown in figure 8.44.




(b)

Evaluate the same integral by using coordinates  and v related to x and y

by x =2uv, y = u — uv.

8.8.

Evaluate

fra /

uO\uO

N
first as an iterated integral over y and x

L =4

o0
O

—~
o

g

(b)

(d)

R 1 40 sl 1tavatad 1ntagral
EvalUudit LT el atcd 11 gl al

1 1/v
J (J‘ u5vgdu)dv.
o \J1

Interpret this integral as a double integral over a suitable region in the uv-
plane. Draw a picture of this region labelling its boundary curves clearly.
(Do not be concerned, here or later, by the fact that the region is
unbounded.)

Reinterpret the double integral as an iterated integral in the other order,
and evaluate this integral.

Make the substitution u=x2y 3, v=x"!y? in the double integral,
obtaining a new double integral in the xy-plane. Draw a picture of the
domain of this new integral.

Convert the new double integral to an iterated integral and evaluate it.
Show that x, y are differentiable coordinates on the whole of the (open)

first quadrant of the uv-plane.

ydA,

JJQ

where Q is the first quadrant of the unit disk, by converting it to an iterated

integral in x and y. (‘A’ refers to the usual area in the xy-plane.)

(b)

Introduce polar coordinates r and 6 into the xy-plane as usual and convert

the given integral into an integral over a suitable region in the r8-plane

ew conv of 22
1IEW-CO Of

11X e 3 ;S

¥J

—_—
C
el

Convert the new integral to-aniterated integrat in 7 and 6-and evaluate it

8.11.(a)

Evaluate the integral I = [, 2ydx A dy as the sum of two iterated integrals
in the xy-plane. The region W is bounded by the lines y = 1x and y = 2x
and the hyperbolas xy =2 and xy =8.

y =2x

i id < =
Figure 845




(b) Find a rectangle R in the uv-plane such that Wis the image of R under the
transformation o described by a*x = 2uv, a*y = u/v.

(c) Calculate a*(2ydx A dy)

(d) Evaluate the integral I as an integral over the region R.

1 Hra Q AL 1a 21 ot £l line cpo
ure .46, which consistsof thelmneseg

I
=

nitg

+1a : 1 2 2 A £ N

the circular arc x* + y* =4 forx =0,y =0.

(b)-Construct a double integral over the region bounded by y which must be
equal to the line integral in (a). Evaluate this double integral by

transforming to polar coordinates.

®

=

CL =
D

Figure 8.46

when the integral is evaluated around any closed curve in the plane.

8.13. One way to change coordinates in a directed double integral I=
fwfdx A dy, where W = ¢(S), is to use Green’s theorem to express I as a
line integral over the closed path W, transform the result to a line integral
in the uv-plane, then use Green’s theorem again to express I as a double
integral in the uv-plane. Use this approach to derive the change of
variables formula for double integrals.

8.14. Let u and v be functions on the plane whose first and second partial

derivatives with respect to x and y are continuous. Let S be a connected
region in the plane with boundary 8S. Show that

r -~ rr ‘\2
RV AW I VLA
p t dx+{u——v—Jdy =2 U dxdy
JasL\Uox  “ox) \ oy v/ s\ 6x6v axav/
Q1L (N T com nsat Af tartia far a0 nlana lamtanaga O af 21, : Aot atfrr aco PAr
o. 1o(a) Tnemoment-orietrita1ora pranciamina > ol unirorm ucub _y ass pot
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Figure 8.47

unit area) ¢ about the x-axis is

I, = O'J- y2dxdy.
S

Show that I, =o|,xy*dy where 05 is the boundary of the lamina
traversed counter clockwise.
(b) The moment of inertia about the y-axis is

~
2

I 1o
i, =0 lx"dxdy.

Find two different differential forms @ and 7 such that

2 2 1 3 —F ¥
=0 [P+ y)dxdy=1,+1,:

Find a differential form Qsuch that I, = ¢ ., Q. Express Qin terms of polar

coordinates r and 8.
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Chapter 9 presents an example of how the results of the first
eight chapters can be applied to a physical theory — optics. It
is all in the nature of applications, and can be omitted without
any effect on the understanding of what follows.

In the history of physics it is often the case that, when an older theory is superseded
by a newer one, the older theory retains its validity, either as an approximation

1o 42 mAAG s 1o A vty + mastar +la

circumstances, or as as pcual case of the newer theor
can be regarded as an approximation to relativistic mechanics, valid when the
velocities that arise are very small in comparison to the velocity of light. Similarly,

-

T MNarzr PRSP anth ol
ImusINewtonran mecnanics

<

Newtontanmechanies eanbe regarded asanapproximation to-quantum mechanies,
valid when the bodies in question are sufficiently large. Kepler’s laws of planetary
motion are a special case of Newton’s laws, valid for the inverse square law of force
between two bodies. Kepler’s laws can also be regarded as an approximation to the
laws of motion derived from Newtonian mechanics when we ignore the effects of the
planets on each other’s motion.

The currently held theory of light is known as quantum electrodynamics. It
describes very successfully and very accurately the interaction of light with charged
particles, explaining both the discrete character of light, as evinced in the photo-
electric effect, and the wave-like character of electromagnetic radiation. The triumph
of nineteenth century physics was Maxwell’s electromagnetic theory, which was a
self-contained theory explaining electricity, magnetism and electromagnetic radi-
ation. Maxwell’s theory can be regarded as an approximation to quantum
electrodynamics, valid in that range where it is safe to ignore quantum effects.
Maxwell’s theory fails to explain a whole range of phenomena that occur at the
atomic or subatomic level.

(=




One of Maxwell’s remarkable discoveries was that visible light 1s a form of

electromagnetic radiation, as isradiant heat_In fact, since Maxwell, optics is a specia]
Fal ter of the ﬂ-\pnrv nf electricitv_and maoneticrm_which treats plpnfrnmqn'nnfin
A~ U1 Ut LV} laEIICle I WHICIT v Cawn EivotiYUitta gl tic

L2 Sl N 4 A2 A AT I § v vy all
1
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vibrations of all - wavelengths, from the shortest 7 rays of radioactive substances
(having a wavelength of one hundred-millionth of a millimeter) through the X-rays,
the ultraviolet visible light, the infra-red, to the longest radio waves (having 3

3ra r\ ot pm(\ viilametere In the nnf\/l PN ATV s liaht that 1 18 nn SS 1lhle ¢
waveiC 5 ormany Knometers)janthei1ooq oi invisible ngntinatisaccessiolC to LIle

mental eye of the physicist, the physiological eye is almost blind, so small is the
interval of vibrations that it converts into sensations.

Maxwell’s theory dealt with the source of electromagnetic radiation as well as its
propagation. Before Maxwell, there was a fairly well-developed wave theory of light,
due mainly to Fresnel, which dealt rather successfully with the propagation of light
in various media, but had nothing to say about the production of light. Fresnel’s
theory did account for three physical effects which could not be explained by earlier
theories — diffraction, interference, and polarization. Diffraction has to do with the
behavior oflight in the immediate vicinity of surfaces through which it is transmitted
or reflected. A typical diffraction effect is the fact that we cannot produce an
absolutely straight, arbitrarily narrow beam of light. For example, we might try to
produce such a beam by lining up two opaque screens with holes in them, to

Fa X “71‘\5“ l«a I'\ Aﬁ ot xr «11 ]1 I
ML vy IICN thiC noics et very Smatt [Ul
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ta
the order of the wavelength of the light), we find that the region to the right of the
second screen is suffused with light, instead of there being a narrow beam.
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Figure 9.1

‘Interference’ refers to those phenomena where the wave character of light manifests
itself by the constructive or destructive superposition of light travelling different
paths. Typical is the famous Young interference experiment illustrated in figure 9.2.
‘Polarization’ refers to the fact that when light passes through certain materials, it
appears to acquire a preferred direction in the plane perpendicular to the ray; such
effects can be observed, for example, by using Polaroid filters.

Geometrical optics is the approximation to wave optics in which the wave
character of light is ignored. It is valid whenever the dlmemmm of the various
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do not examine too closely what is happening in the neighborhood of shadows or
foci. It does not account for diffraction, interference or polarization.

Linear optics is an approximation to geometrical optics that is valid when the
various angles which enter into consideration are small. In linear optics one makes
the approximation sin 6 = 60, tan 8 = 0, cos 0 = 1, etc.; i.e., all expressions which are
quadratic (or of higher order) in the angles are ignored. For example, in geometrical
optics, Snell’s law says that if light passes from a region whose index of refraction
(relative to vacuum) is n, into a region whose index of refraction is n’, then nsini =

n’sini’ where i and i’ are the angles that the light ray makes with the normal to the
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ni = n'#’, which is a good approximation if i and i’ are small. (This approximate law
was known to Ptolemy.) The deviations between geometrical optics and the linear
optics approximation are known as (geometrical) aberrations. For instance, if a
bundle of parallel rays is incident on a spherical mirror, a careful examination of the
reflected rays shows that they do not all intersect at a common point. The rays near

the diameter do intersect near a common focal point. In linear optics we restrict
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ourselves to rays close enough to the diameter so that we may assume that there is a

common focus. (This deviation from focussing for a spherical mirror is a case of

A= o= 11 A= T 1o

Gaussian optics is a special case of linear optics in which it is assumed that all

the surfaces that enter are rotationally symmetric about a central axis. This is a very

9.2. Matrix methods

In Gaussian optics we are interested in tracing the trajectory of a light ray as it
passes through the various refracting surfaces of the optical system (or is reflected by
reflecting surfaces). We introduce a coordinate system so that the z-axis (pointing
from left to right in our diagram) coincides with the optical axis (i.e., the axis of
symmetry of our system). We shall restrict attention to coaxial rays — those that
lie in a plane with the optical axis.*

By rotational symmetry, it is clearly sufficient to restrict attention to rays lying in
one fixed plane. The trajectory of a ray, as it passes through the various refracting
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o have a way of specitying straight lines. We do so as follows:
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Figure 9.6

adjusted to each stage in the calculation. Thus, for example, if light enters our optical
system from the left and emerges from the right, we would choose one reference
plane z, to the left of the system of lenses and a second reference plane z, to the right.

*~Although thisis introduced here as a simplifying assumption, it can be proved that tinearity

. 1: 1 1 1 1, 1 1 4 + 1 1 : Iy
impties that the study of the most general tay can be reduced to the study of coaxial raysby

projection onto two perpendicular components.
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Figure 9.7

A ray enters the system as a straight line specified by g, and 8, atz, and emerges asa
straight line specified by ¢, and 8, at z,. Our problem, for any system of lenses, is to
find the relation between (q,,6,) and (q,,8,).

Now comes a simple but crucial step, of far reaching significance, which is basic to
the geometry of optics and of mechanics.

Replace the variable 6 by p = nfl where nis the index of refraction of the medium at
the reference plane. (In mechanics, the corresponding step is to replace velocity by
momentum.)

We thus describe a light ray by the vector (Z) and our problem is to find (qz) as
1)

. q \ : . . . . .
a function of { 1) Since we are ignoring all terms qlmdmﬁc or h1gher, it follows

\p./

G\
from our approximation that ] is a linear function of [ " |}, i.e., that
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assertion that

DCtM21 = 1.

In other words, that the study of Gaussian optics is equivalent to the study of the

group of 2 x 2 real matrices of determinant one, the group S1(2,R). To prove
this, observe that if we have three reference planes, z, , z,, and z5, situated so that the
light ray going from z, to z, passes through z,, then by definition

i
I

My, =M3,M,;. J‘
Thus, if our optical system is built out of two components, we need only verify
Det M =1 for each component separately. To simplify the exposition, assume that

our system does not contain mirrors.

The basic components
Any refracting lens system can be considered as the composite of several

Quetama £ ¢ | Y P T
SYOLLIIs U LWU Dasiv Ly pCos.




(a) A translation, in which the ray continues to travel in a straight line between

two reference planes lying in the same medium. To describe such a system we must
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clear for such a system that 6 and hence p do not change and that g, = q, + (t/n)p;.
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Figure 9.8

We write T=t/n (called the reduced distance) and see that

()= )G) 2o )=

(b) Refraction at the boundary surface between two regions of differing refractive

mndex. We must qnemfv the curvature of the surface and the two indices of refracti

A oD L T = 5 v\r ]
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immediately to the right of the surface.

At such a surface of refraction, the g value does not change. The angle, and hence

involves the slope of the tangent to the surface at the point ol reiraction. In our

anoroxlmatlon we are ignoring quadratic terms in this slope, hence terms of degree

X

w
ot
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Then the derivative of z with respect to q is z'(g) = kg, which is tan (n/2 — i) where
Y is the angle in figure 9.9. For small angles 6, i.e., for small values of g, iy will be close
to /2 and hence we may replace tan(n/2 — ) by /2 — , if we are willing to drop
higher order terms in g or p. Thus n/2 — = kq is our Gaussian approximation. On
the other hand, if (n/2 — i,) denotes the angle that the incident ray makes with this

~

Figure 9.9




tangent line, then the fact that the sum of the interior angles of a triangle add up to
shows that (n — )+ 0, + (/2 — i) =7 or

1 =0,+kq

where g = q; = g, is the point where the rays hit the refracting surface. Multiplying
the first equation by n, and the second equation by n,, and using Snell’s law in the
approximate form n,i, = n,i,, give

()= )G
P2 —P 1/\p,
where P =(n, — n,)k is called the power of the refracting surface.

Conjugate planes
Thus each Gaussian optical system between two reference planes corresponds to a
matrix

A B .
M=(ﬂ | with AD—-BC=1
\~ Y
and one can set up a dictionary which translates properties of the matrix into optical
—properties:
For instance, the two planes are called conjugate (or in focus with one another) for

__anyq, atz, ifall the light raysleaving g, converge to the same point ¢, at z,. Thisof

—The thinlens

+1 £ 1 0\ vt aotth .
thetorm \ b 1 } agamny has thissame
AN 7

( 1 0)( 1 0)_ 1 0
—P, 1)\-P, 1)—(_(P1+P2) 1>'

This gives the equation for the so-called thin lens consisting of refracting surfaces
with negligible separation between them. In this case, the reference planes z, and z,

Nt +1 + 413 3 4 £ 4 4 g £
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can conveniently both be taken to coincide with the plane of the lens. The plane z,

relates, of course, to rays incident from the left, while z, relates to rays which emerge
from the lens and continue to the right:

The matrix for the left refracting surface is

/ 1 0\

( nl—n )
2 1 .
1

R,
The matrix for the right refracting surface is

1 0
ny—n,
R, 1

(Note that R, is negative in figure 9.10.) Multiplying these matrices, we find that the
matrix for the thin lens is

1 0
<—1/f 1)’ where 1/f= (1 ~n)(1/R; — 1/Ry).

We shall assume that the lens is in a vacuum, so n; = 1 and n, > 1. In the case where

R, is positive, R, is negative, and n, — n, > 0 (a double-convex lens), the focal length
£1a nmarts ve If we cralenlate the matriy f\f the thin lence hetwean a raference nlane E
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Figure 9.11

located a distance fto the Ieft of the Iens and a reference plane F, located a distance |
to the right, we find

(3) D(-i/f (1)><c1> {>=(—(1)/f g)

The plane F, is called the first focal plane. If a ray, incident on the lens, passes
through this plane at g, = 0 with slope p,, then the outgoing ray has

()-(0 9))-(%)

i.e., it has zero slope and so is parallel to the axis. Conversely, if the incident ray has
zero slope, the outgoing ray has

a2y _( 0 f\(a\_{- O

7
l 1/ L Fa ll\

1) — O/ 0/ \=qi/f

—
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1.e., it crosses the axis in the second focal plane. More generally, we can see that p, is

independent of so that incident i a given point in the first

faocal nlane emeroe as narallel rave e Furthermore iq
Tvval Plu ].V \/111\-415 [= 2w yu;u;xvl Iayys A 3 u AAAAAAAAAA 3 |,12 ¥ e )
rnd

'LI

y $
independentof py, so thatincident rays all emerge to pass through the same position
in the second focal plane.

As a simple illustration of the use of matrix methods to locate an image, suppose

a distance s, to the right of the lens. Between these planes, the matrix is

1 s, 1 0)(1 sl>_(l—sz/f 32+sl—slsz/f>
(0 1><—l/f t\o 1)\ —yf 1—s/f )

The planes are conjugate if the upper right entry of this matrix is zero. Thus we
obtain 1/s, + 1/s, = 1/f, the well-known thin lens equation. We shall write this as

Sl +SZ—PSISZ=0’

where P=1/f.

We can solve this equation for s, so long as s; # 1/P. Thus each plane other
than the one corresponding to s, = f has a unique conjugate plane. For s, =/, i.e.,
at the first focal plane, all light rays entering from a single point g emerge parallel, so
the bUllJugd.LC plauc to-the first focal pl eis—at ulﬂuuy A-similar-discussion (with
right and left interchanged) applies to the second focal plane.

Fors, # fand s, corresponding to the conjugate plane, the magnification is given

o
<

magnification is negative, which means that the image is inverted.
By multiplying matrices, it is straightforward to construct the matrix for any
combination of thin lenses. For example, in the case of thin lenses with focal length f,

and £ PR I | . -y ) I : £ 1 21, P
alld j,, sCpdaldatcd Dy distallCe ¢ il 41, wo 111d UIc THdU 1A

( 1 0)(1 z)( 1 0)_( 1—Uf, 1 )
—1/f, 1)\O t\=1/f 1) \Ufifa—1/fo—1/fx 1=IIf,

between the reference plane z, (first lens) and z, (second lens).
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The telescope

takes the form

TAIXwO IO 10T

(A B\
\o D/

ie., C = 0.This means that p, = Dp, . i.e. that the outgoing directions depend only on

the incoming directions. The condition is satisfied in the astronomical telescope,
which consists of an objective lens of large positive focal length f, and an eyepiece of
small positive focal length f,, separated by a distance f, + f,. Such a telescope
converts parallel rays from a distant star into parallel rays which are presented to the
eye.

l
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m

Figure 9.13
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The angular magnification of such a telescope isthe ratio o

outgoing rays to the slope of the incoming rays, which equals

i r PRI o r
D —1 by Jh7Ja o I
p >4 P

p 8

fs fs fa

This magnification is negative (the image is inverted) and its magnitude is the ratio
of the focal length of the objective to that of the eyepiece.

The general system
We now want to show that any 2 x 2 matrix with determinant 1 can arise as the

matrix of some optical system. First of all, suppose that the matrix is telescopic,
A B

1 0\(A B
ie, C=0. Then A #0, and if P #0, then(_P 1)(0 D)z(—PA D—PB)

(A B i
has PA #0, so is not telescopic. We shall show that every matrix ( C D) with

C # 0 can be written as

[A B\_/l t 1 0) 1 s\ (0-1)
‘e p)7\o t/\e 1t)\o 1) i




and thus arises as an optical matrix. If C =0, then we need only multiply

[ A B N\ [1

0 /A B\
‘ oo ) 0¥ . Jontheleft toget{ . . |, soittoois an optical
L 9y \U

\-P4 D—PB) > \I D)

matrix. To prove (9.1), consider

/1 N/ A4 BN/S1 £\ VAV B~ ) Y .. S » SR ) A
Y S g S g 1 13 _{ATDL/ L(dTDU)TUTDTU\
\0 IJ\B D/)\0 1] \ C Ct+D ]

Since C # 0, we can choose s so that 4 + sC =1 and then choose t = — (Bs + D).
The resulting matrix has 1 in the upper left-hand corner and zero in the upper
right-hand corner. This implies that the lower right-hand corner is also 1 so that
the matrix on the right has the form

(e 1)

and this proves our assertion.

Gauss decomposition
Notice that s and ¢ were uniquely determined. Thus, for any non-telescopic optical
system, there are two unique planes such that the matrix between them has the

e Aaa 1mlanac ara ~Ann aato o O Ot thaotr amd bhaoove oot
101111 \(" ] / 1T 1ICSU l)ld IVS Alv DUIIJUEGLU VU UILIU dlloudiv] alllda l1lavuo lldslllll‘
\ 7/

i Y ) allad +hans +ha * H 1 1 I£ A tor et 41 ¢+l 4+ 1
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P / l 0\ 1 4 41 4+ M M 1 1 1 +1 £
matrix \ ] ’ between the two principal planes, we can proceed exactly as for

e/
+1 +1. 2 1 + ¥ ol 1 <1 : + 1 4+ 1 A 11 1 + = | b bR
the thim iens, to find the conmjugate plane to any plane. All we have to do 1s write
C= — P= —1/f. For instance, the two focal planes are located f units to the
right and left of the principal planes:
r r r
(1 N 1L O0N/1 f\ [ O f)
Vo 1)\ e i No 1 )T _yr o)

Gauss gave the following interpretation in terms of ray tracing of the decomposition
we derived above for the more general non-telescopic system. Suppose a ray (?)),

parallel to the axis, enters the system at z,. When it reaches the second principal

1\

zy

Second principal plane

Figure 9.14
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plane, it is at the same height but is bent mto {~ 4 Ny and is focussed on the
AN 1 /
axis-at-the second focal point, F,. Similarly, a raye merging from the first focal

point is bent at the first principal plane into a ray parallel to the axis and arrives

at z, still parallel to the axis and at the same height above the axis as it was at

the firs st orincinal nlanea

tIIe 11Ot y;;xx\.uyul lJl S S LN

We see that the most general optical system which is not telescopic can be
expressed simply in terms of three parameters — the location of the two principal
planes and the focal length. (We know that there should be three parameters, since
there are only three free parameters in the matrix, the fourth matrix coefficient
being determined by the fact that the determinant must equal 1.)

Once we have located the principal planes, we have also located the focal planes
by
Hl_Flzf and F2“‘H2=f.
If we use the two focal planes as the reference planes for our system, then, by the
very definition of focal planes, we know that the optical matrix for these two planes

must have zeros in the upper left-hand corner and in the lower right-hand corner.
Thus the matrix between the two focal planes is given by

(/ O f\\
\—-1/f 0)

Suppose that we now consider two other planes, y, and y,, related to the focal planes

by

t’l—y1=n1x1 anda y2—1"2=n2x2.

[ R X ™ [ Ry Xy—™

Figure 9.15
The matrix between these two planes will be

1 x, ( 0 (1 xi\_[—x/f f—(xlxz/f)>
(0 1) —1/f 0)(0 1)_(—1/1” —x,/f /)

We see that y, and y, are conjugate if and only if x,;x, = f? (this is known as
Newton’s equation), in which case the magnification is given by




We can summarize the results of this section as follows: Let S1(2, R) denote the

group of all 2 x 2 matrices of determinant 1. We have shown that there is ap
veen 1{2 ) and flnnnm'n
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an optical system, multiplication of matrices corresponds to composition of the
corresponding system.
We next turn to Hamilton’s ideas, in embryonic form

9.3. Hamilton’s method in Gaussian optics

Suppose that z, and z, are planes in an optical system which are not conjugate,
This means that the B term in the optical matrix is not zero. Thus, from the equations

g, = Aq, + Bp,
»=Cq, + Dp,

we can solve for p, and p, in terms of ¢, and ¢, as

, =(1/B)(q, — Aq,)
and
»=(1/B)(Dq, —q,)

AAAAAA codthe fact tha Thie hacthefallawin :
(where we have used the fact that AD—BC=1)-This has the following geometrical

significance: given a point g, on the z,-plane and a point g, on the z,-plane, there

exists a unique light ray joining these two points. (This is exactly what fails to
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there will be finity of light rays joming g, and g,, 1n fact, all hght rays leaving
g, arrive at ¢,. If g, is not the image of ¢,, then there will be no light ray joining

>..

1A OO

where K is a constant. Then we can write the equations for p; and p, as

{AYAT I D AY NYXT )

=(0W/0q,) and p,=0W/0q;.

Hamilton called this function the point characteristic of the system. In the modern
physics literature this function is sometimes called the eikonal. Suppose that z, z,
and z; are planes such that no two of them are conjugate, with z, <z, < z3, and
such that z, does not coincide with a refracting surface. Let W,, be the point
characteristic for the z,—z, system and let W,, be the point characteristic for the
2,-z3 system. We claim that (up to an irrelevant additive constant) the point
characteristic for the z,~z5 system is given by

W31(q1,93) = W,1(41,92) + W32(42, q3)

where, in this equation, g, = ¢,(q;, g3) is taken to be the point where the ray from
4, to g5 hits the z,-plane.




Now apply the chain rule to conclude that 0W5;,/0q; = — p; and similarly that

aW'n/aa—x = Ps at (ﬂ
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constant. Hamilton showed that, by an appropriate choice of the constant, we can

arrange that W(q,, g,) is the optical length of the light ray joining q, to q, where

the optical anm‘h is defined as follows. For a line segment of Iemzth lin a medium

~f ~Aanctant 1'...,1,\. +ha al lan al ~thh
t t

of constant-index of wuauuuu, n,tne be cal1¢c 15m 1snA pain; 7, 1sdefined to
be a broken line segment, where each component segment lies in a medium of
constant index of refraction. If the component segments have length [; and lie in
media of refractive index n;, then the optical length of y is

L{y) =} nd:.

Let us prove Hamilton’s result within the framework of our Gaussian optics
approximation. Our approximation is such that terms in p and g of degree
higher than one are dropped from the derivatives of W. Thus, in computing optical
length and W, we must retain terms up to degree two but may ignore terms higher
than the second. We will prove this by establishing the following general formula
for the optical length (in the Gaussian approximation) of a light ray y whose

and cp Ittt
dllll wWlusU Uutsuu

are (/CI2\\:
\p,/

Leh=L. . +y(p g n.a.)

\Y V4 axis v A\l ri1al7
where L .. denotes the optical length from z, to z, of the axis{(p, = q, =0=p, =¢g,)
of the system. Notice that once this is proved, then, if we assume that z, and z,

are mon-conjugate, we can solve for p, and p; as functions of g; and ¢, ie;

substituting p, = (1/B)(q, — Aq,), p, = (1/B)(Dq, — q,) into the above formula gives

our Pxnrecqinn for W with K =1,
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we combine systems: if we have z,, z, and z,, then the Iength along the axis certainly

adds, and 3(p,q; — P141) +3(P3q5 — P292) = 3(P3g3 — p14:)- So we need only
prove the formula for our two fundamental cases.

(1) If n is constant,

L(y) = n(d* + (g, — ‘h)z)llz

1
—nd+—ﬁ(q2 4,)?

1
=nd + 3 |: (g2 — 611):|(‘I2“‘Q1)

=nd +3p(q, — q,)

where p, = p, = p = (n/d)(q, — q,) is the formula which holds for this case:

(2) At a refracting surface, z’' — z = 1kg? with index of refraction n, to the Teft

and n, to the right. Here the computation must be understood in the following

byttt 1Yk




Figure 9.16

sense. Suppose we choose some point z; to the left and some point z, to the right
of our refracting surface. If n, were equal to n,, the optical length would be
n,ly + ny(l + 1) where I; is the portion of the ray to the left of our plane and / + 1,
is the portion to the right, and where I, is the portion to the right of the surface.
(We have drawn the figure with k > 0, but a similar argument works for k <0.) If
n, # n,, then n,l, will be different, but would be calculated by (1) from z to z,. In

replace cosec; by tso
(n, —ny)l = %k("h - nz)q2 = “‘%qu

= 3[k(n; —n,y)qlq
1

3(p2 —p1)a

since g, =q, =q and p,=p, —pq at a refracting surface, where p = k(n, — n,).
This completes the proof of our formula.

9.4. Fermat’s principle

Let us consider a refracting surface with power p = (n, — n,)k located at z. Here
P might be zero. Consider planes z, to the left and z, to the right of z. We assume
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b 1~ , 4, a point on 2" ¢ z-plane.
Consider the path consisting of three pieces: the light ray joining g, to g, across

e o
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l
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q; //‘; b >
Zy Z Zy
Figure 9.17

the surface of refraction at q and then the light ray joining g to

bl

q,. This path will not

5 op a D

nid, +nl+n,l,

is given, in the Gaussian approximation, by the sum of three terms, as we saw in the
last section:

ny
Phn=7G—4q1)
at

and

N, \
P2 = d, g.—9q)
SO we can write

1 d
L= Laxis +3 —%"p% +ip% _pqz

2n, n,
Suppose that we hold g, and ¢, fixed, and look for that value of g which
extremizes L: in other words, we wish to solve the equation ¢L/0g =0 for fixed
values of ¢, and ¢,. Substituting into the last expression for L, together with facts

that dp,/0q = (n,/d,)(0q,/0q) = — n,/d,, we obtain the equation
P1—p,—pq=0.

In_other words:
ILIIVE YY U LGSO

p7=Dq+p1-

But this is precisely the relation between p, and p, given by the refraction matrix
at z.




We have thus proved the following fact. Let us fix q, and q, and consider the

set of paths joining q, to q, which consists of two_segments, from g’ to q,. Among

o Y
I’n
aa

. t

13 PV N “rp

can ve umluuci‘ize

This is (our Gaussian approximation to) the famous Fermat principle of least time,

Let us substitute p, =(n,/d,)(q — q,) and p, = (n,/d,)(q, — q) into our formula for
L to obtain a third expression for L:

L=nyd, + nyd, +3[(n,/d,)(q — q:)* + (n,/d;)(q, — 9)* — pq*].
The coefficient of ¢* is n,/d, + n,/d, — P. Thus the extremum is a minimum if
(ny/dy) + (ny/dy) — P >0
and a maximum if
ny/d, +n,/d, — P <0.

If P > 0 we see that we get a minimum for small values of d, and d, but a maximum
for large values of d, and d,. The situation is indeterminate (and we cannot, in

general, solve for g') when

/] 1 /1 D
/ey T 1ny/d, =1

mimmum 1f the bOl’l_]U.gd[C pldl'lc to Z4 does not lie between Z4 and Zy and a

maximum otherwise. The fact that L is minimized only up to the first conjugate

pointis true in a more general setting, where it is known as the Morse index theorem
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being reflected from a concave spherical mirror. We take a point Q inside the

sphere and let the light shine along a diameter so that it bounces back to Q. Then

1t 1a nlepagr that the Adicta
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the center, and a maximum otherwise.

9.5. From Gaussian optics to linear optics

What happens if we drop the assumption of rotational symmetry but retain the
approximation that all terms higher than the first order in the angles and distances
to one can be ignored? First of all, in specifying a ray, we now need four variables:
g. and g,, which specify where the ray intersects a plane transverse to the z-axis,
and two angles, 0, and 6,, which specify the direction of the ray. A direction in
three-dimensional space is specified by a unit vector, v =(v,,v,,v,). If v is close to
pomtmg in the positive z-direction, it will have the form v= (Hx, v,), where
v, = 1 — 1(62+03)-—1 provided 6, and 6, are small. Again, we renlace the 6
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crystals, the relation between the 6 variables and




the p variables can be more complicated, but we will not concern ourselves with

that here.) All of this, of course, is takin g place at some fixed plane. If we consider

Ir
two-planes z;-and z5, the ray will correspond-to-vectors
/q;; 1\ /qv')\
le ILIyZ
u, =|? and u,=| ~
Fx1 Px2
Py \Pyz/

at the respective planes.
Our problem is to find the form of the relationship between u, and u,. Since
we are ignoring all higher-order terms, we know that

u, = Mu,,

where M is some 4 x 4 matrix. Our problem is to ascertain what kind of 4 x 4
matrices can actually arise in linear optics. The most obvious guess is that M must
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of determmant I can actua ly arise as
T

condition that mus

a1 I
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1

condition that a 2 x 2 matrix has determinant 1. W

in four variables. Let
W= (q) and w = (q,)
4 4

be two vectors in the plane. We defined in section 4.9 an antisymmetric ‘product’,
o(w,w’), between these two vectors by the formula

(W, W) =qp" —q'p.
The geometric meaning of w(w,w’) is that it represents the oriented area of the

parallelogram spanned by the vectors w and w’ (see figure 9.18). It is clear from
both the definition and the geometry that w is antisymmetric:

(W, W) = — (W, w).
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equals 1. Thus a 2 x 2 matrix M has determinant 1 if and only if

AL
WVIW, = )

for all w and w. Now suppose that

/ A\ r A\

7
qx qx

7

P qv 3 /2 qv
= diia u = M
Dx Px

/

Py by

are two vectors in four-dimensional space. We define
(W, W) = g, P — 4xPx + 4,0y — 4, Dy-
The product w is still antisymmetric,
o', u) = — w(u,w’)

but the geometric significance of w is not so transparent.
It turns out that a 4 x 4 matrix M can arise as the transformation matrix of a
linear optical system if and only if

o(Mu, Mu') = w(u, u’),

for all vectors u and u'. These kinds of matrices are called (linear) canonical transfor-

mations in the physics literature, and are called (linear) symplectic trai nsformations i

LA a-asa—an 24 4 s asdvarys

the mmathematics literature. 1ncy [dDU their ngﬂCI-UlIIlCHblOHdI gCIlCIdllL'dUODS)

play a crucial role in theoretical mechanics and geometry.

After develnping some of the basic facts about the group of linear qymplecﬁc

Gaussian optics is equivalent to SI(2, R) can be used to show that linear optics is

equivalent to Sp(4, R), the group of linear symplectic transformations in 4 variables.
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Qon Visany fu is linear in each variable when the other

function Q: V x V- R that
variable is held fixed; that is, Q(u, v) is a linear function of v for each f d u and
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— Q(v,u) for all w and v in V. We say that Q is nondegenerate if the 11near function
Q(u, ') is not identically zero unless u itself is zero. An antisymmetric, nondegenerate
bilinear form on V is called a symplectic form. A vector space possessing a given
symplectic form is called a symplectic vector space, or is said to have a symplectic
structure. If V' is a symplectic vector space with symplectic form Q, and if A is a
linear transformation of V into itself, we say that A4 is a symplectic transformation
if Q(Au, Av) = Q(u,v) for all w and v in V. It is a theorem (cf Guillemin & Sternberg,
Symplectic Techniques in Physics Chapter II) that every symplectic vector space
must be even-dimensional and that every symplectic linear transformation must
have determinant 1 and, hence, be invertible. It is clear that the inverse of any
symplectic transformation must be symplectic and that the product of any two

symplectic transformations must be symplectic. The collection of all symplectic




Now let us assume that ¥ = R" + R” and write the typical vector in V as

{q) ar . Py
u=| "], where q={ : and  p=1|
\P/ \qnl \pnt
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Qu,u)=p-q' —p'-q

where - denotes ordinary scalar product in R". In terms of the scalar product
uw' =q-q +p-p’ we can write this as

Qu,u’) =u'-Ju,

. I :
where J is the 2n x 2n matrix ( 0) and [ is the n x n identity matrix. A linear

transformation T on V is symplectic if, for all u and o/,
Q(Tu, Tu') = Qu, w).
We can write this as
TYJTu-u' = Ju-vu,

We can write

£ N\ /4 R\
gy I T e Bd

\p/ \Cq+Dp/)

where 4, B, C, and D are n X n matrices; that is,

/A B\
T=| )
\C D)
Then
TT— (AT CT>
BT DT/

where AT denotes the n-dimensional transpose of A, etc. The condition T*JT =J
becomes the conditions ATC = CT4, BTD = DB, and A™D — C"B = I. Notice that
T, which is also symplectic, is given by

4 DT _ BT
T={_c )
DCT=CD" and BAT= ABT.

We now turn to the problem of justifying the assertion that the group of linear

and so we also have

ympl- tic transformations (in four dimensions) is precisely the collection of all
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can be split into two parts. The first i1s a physical part showing that (in the linear




approximation) the matrix , where P = PT is a symmetric matrix,

AT TN
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0
1

/

corresponds-to refraction at a surface between two regions of constant index of
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the axis. The second is a mathematical argument showing that every symplectic
matrix can be written as a product of matrices of the above types.

We will omit the mathematical part, which is a rather tricky generalization of
the arguments of section 9.2. We refer the reader to Guillemin & Sternberg
Symplectic Techniques in Physics section 4, pp. 27-30. We concentrate on the
physical aspects of the problem. As in Gaussian optics, we describe the incoming
light ray by its direction v = (v,,v,,v,) and its intersection with the plane parallel
to the xy-plane passing through the point z on the optical axis. Here |v]? =
vZ+v2+v2=1 Now

v,=(1—vZ+0v)Y2=1—-2w2+v2)+ =1,

since we are ignoring quadratic terms in v, and v,, which are assumed small. We
set

— Ny n —ny
x HY5s Py oy
where n is the index of refraction. Moving a distance ¢t along the optica
the same (up to aguadratic terms in o and v ) as movinoe a dictanee t alone the
tHeoditiv(Hp toqudtdiduc ol v, —«ahla uy) o UV aUhtalltv 1 alvll g Uiv

12x Y1ix Yx
and
q‘) - q1y — tuv
or
(/qz\\ - //17 di\\//ql \\l
\p.) \0_ I \p,)
where d = t/n (see figure 9.19).
4
/ q ->=( qx
q qy

Figure 9.19




Now let us turn to refraction. We may assume that our surface is quadratic,

and is given by

- N
r
)]
3
D
1]
3
2,
-

1Q

1- a o M PP ~ 1a e - 4 3 .
€ K 1$-a symmetric 2 x 2 matrix. o-this-surfaceat the pointqis

(Up to quadratic terms and higher, u has length 1.) The projection of a vector v
onto the tangent plane to the surface at q is given by

v—(v-u)u.
Writing v = (v,,v,,1) = (v,1) we see that v-u=kg+-v— 1 and
v—(vuwu=(1)—(kqg-v— 1)(kq, — 1).
Ignoring the quadratic term kg-v this becomes
(v + kq,0).

Snell’s law says that n, (v, — (v, *u)u) = n,(v, — (v, -u)u). In the linear approximation,
with p; =nv, and p, = nv,, this becomes

P1 — N Kq=p, —ny,kq

or

P= _{nl _nzjk.

I

/[ o
We thus get the refraction matrix | \II‘I This concludes our proof that

linear optics is isomorphic to the study of the group Sp4, R)
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Suppose that our optical system is rotationally invariant; then at each refracting

surface, the power matrix P is of the form P = ml, where m is a scalar and I is the
2 x 2 identity matrix. It is clear that the collection of matrices that one can get

by multiplyi h matri ih (L 1Y will be of the f al bl
y multiplying such matrices wit o ) Will be of the form { . .. )

Note that a matrix of the above form, when acting on

4x
dy

H

Dx

Dby

in the same fashion. This 1s a consequence of the linear approximation.




The basic formula for the optical length

L= Laxis + %(p2'q2 — D .ql)

(where the p and q components are now vectors) is proved exactly as it was in
tha (tancceian cace bv loolkinoe at what hos ¢ A.-.AL A e acie e s s e o
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There is no point in repeating the proof.

Two planes are called nonconjugate if, in the optical matrix relating them, the

matrix B is nonsingular. Then we can solve the equations

q, = Aq, + Bp,
and
p, = Cq; + Dp,

for p, and p, as

pp=—-B'4q;+B7'q,
and
p,=(C— DB_IA)ql + DB_lqz-
We can then write

L= Laxis + W(ql’ q2)’

‘III‘\ erg
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W(q,,q9,) =3[DB 'q,°q, + B~ Aq,"q, —(2BY) 'q;"q, 1.

(In proving this formula we make use of the identity

(RPTY—1 Nnp—1 4
\D } \/ — D A,
which follows for nonsingular Bfrom A™D — BTC = I) A direct computation (using

the-above-identity) shows that (in the obvious sense)

oL
Py =P,
oq,
and
eL
oq, P:

Thus a knowledge of L allows us to determine p, and p, in terms of q, and q,.

We can now briefly describe the transition to (nonlinear) geometrical optics.
We can put the condition that the matrix A be symplectic in the following way.
Consider the two-form

o =dgq, Adp,+dg, A dp,
on R* Then the linear map A4: R* —» R* is symplectic if and only if
A*w = w,

in other words, the pullback of w under A is again . We can now call a differentiable

map ¢ symplectic if




We simply drop the condition that ¢ be linear. (In the older literature, symplectic

11

maps were called canonical transformations.) Hamilton showed that the maps (from
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ncomin ngt LBUlIlg maps) 90} geomet tricat-opticsare preciscry-the sympilectacmaps
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€ also showed that under approx1mate non-congruency hypomcbes a symplecuc

map is determined by the characteristic function L as above, where L(q,, q,) is the

optical length of the path joining q, to q,. (Of course, L no longer has the simple
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Some ten years after writing his fundamental papers on optics, Hamilton made
a startling observation: that the same formalism applies to mechanics of point
particles. Let q,,...,q, represent the (generalized) position coordinates of a system of
particles and p,,..., p, the corresponding momenta. Replace the optical axis, z, by
the time. Then the transformation from initial position and momenta to final
position and momenta is always symplectic. This discovery led to remarkable
progress in theoretical mechanics in the nineteenth century. In the 1920s — almost
a century later — Hamilton’s analogy between optics and mechanics served as one
of the major clues in the discovery of quantum mechanics.

Summary
A Matrix formulation of Gaussian optics
You should understand the use of a two-component vector to represent a ray

pdbbll’lg Lnrougu d rcfc:rcuw pldIlC

You should be able to develop and use the 2 x 2 matrices that represent the effect

of a translation, a refracting surface, or a thin lens

B Lens systems
dla alhle tacalenilate tho maateriv Fara cuctam-af rafracting earfacece nr thin
l ou bllUUIU DT aIC o LaltUialC UHICIHAatI A TOT a s ystCHT Ortvirattills sultatoy Uty
lenses between two given reierence planes.
Given such a lens system, you should be able to locate the principal planes and
focal planes;-use-themfor raytracing,-andlocate-the-image-of a-given object

@

Hamiltonian optics

For a Gaussian optical system, you should know how to write down the
Hamiltonian point characteristic between two reference planes and to use it to
determine what ray connects a pair of points in the two planes.

Exercises

9.1. Figure 9.20 shows the focal planes and principal planes for a thick lens.
Rays incident from the left which are parallel to the axis are refracted so
that they pass through a focal po1nt in the plane F,, while rays emanating

fromthe focal point-in-the plane F

Prinet

.,m 11 tvn] nlanaa and ar
pd[dllCl to ulc axis. It luxpal plauca 1T alld 115 a1cC

F, respectively.




S A opIcs

(a) By ray tracing on the diagram, locate the image of the object in the

plane z,. Trace the ray R, plus two other rays.

(b) Use Newton’s equation to calculate the position of the image which
you located in (a). Specify the location of this image with respect to one

of the planes in figure 9.20

(c) Construct the matrix of the system between planes z, and z,. Use this
matrix to determine the position and slo ofray R, asitemerges from
the lens at z,.

Fy H, Hz, F,
Z3,

1em?t z (cm)

L

4
-
-+
-+

Figure 9.20

9.2. The thick lens shown in figure 9.21 is made of glass with n = 3. Construct

the matrix between reference planes z, and z,. Locate the focal planes F,

and F, and principal planes H, and H,, and show them on a diagram. By

tracing rays on the diagram, locate the image of an object located 1 cm to

th

e left of z. . and phpnlr your result by usin

T t+—O1 17 SHUTLTUl uL P AN

6. cm
e ™\ 72
\\ /
IRT=4cm I[RI=6cm
Figure 9.21

9.3. Suppose that you take ray tracing as the fundamental characterization of
the properties of a thin lens; i.e., you assume that the intersection of a ray
through the center of the lens with a ray which is parallel to the axis on the
left and is bent through the focal point on the right determines the
intersection of all the rays from a given object.

(a) Derive the thin lens equation from this assumption. Consider only the
case where p,q and f are all positive.

(b) Prove from the same assumptions that a thin lens can be represented
by a 2 x 2 matrix, and derive the form of this matrix.

9.4. A crystal ball of radius 6 cm is made of glass with index of refraction 3. For

rays which are close to a diameter, this crystal ball behaves like a linear

thick lens (i.e_a evlindrica P a diameter-asits-axis_is iust a thick
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Exercises
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the focal planes:

Locate the principal planes H, and H, and construct the matrix between

them. The easy way to do this is to use the fact that the focallengthis f = 6

and that each principal plane is therefore 6 cm away from the correspond-

ing focal plane. Notice that both principal planes lie between the two

(d)
()

9.6.

lenses, and that H, lies to the right of H, in this case.

Make a diagram of this optical system, showing the focal planes and
principal planes.

Let z, be the plane 12 cm to the left of z,. Find the plane conjugate to this
plane in four ways: by matrix multiplication, by using the thin lens
equation twice, by using Newton’s equation x, x, = f 2, and by ray tracing.
A lens system consists of two thin lenses, whose focal lengths are f, and f,

- —r«— | ———»|a— ], —>

N fa

Figure 9.24




respectively, mounted a distance ¢ apart. The first focal planeislocated at a
distance /; to the left of lens I, the second focal plane is located a distance /,
to the right of lens 2. Prove that the focal length f of this system satisfies the
equationf? — tf — I, 1, = 0. Bearing in mind that /. [, f.f, and f, all make
sense even if they are negative, decide which root of this quadratic
equation is physically meaningful

/1

FathY
U

1 .
(0 1). (Note: this takes several lenses. You might wish to start by

constructing a system whose matrix M satisfies M2 =I.)
9.8. A ray enters the optical system shown in figure 9.25 at z, with coordinates

1
(ql) = (2) Find the coordinates of the outgoing ray at z,.
D
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zZ =1 f=-1 f=1 Zy
Figure 9.25
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9.9. The thick lens shown in figure 9.26 is made of glass with index of refraction

n=3.

(a) Construct the matrix between reference planes z, and z,.

q.

) is transformed into the outgoing
Dy

(b) Determine what incoming ray (

ray <q2> =( ) at plane z,.
1) 6

9.10. The converging lens shown in figure 9.27 has f = 10 cm. It is made of glass
with n =14, and its two convex surfaces both have the same radius of
curvature R.

(a) Calculate R, and determine the thickness b of the lens as a function of
the distance ¢ from the axis. (Note: b(2) =0.)

(b) A rayfrom A will follow the path ACF. Show that this path requires a
minimum time compared with any path which passes through the lens
at a different value of q.
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(d)Write down the function W(q, qF) for the planes of 4 and F, and
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Figure 9.27 Not to scale.

show that Hamilton’s equations give the correct slopes for the ray with
d4s=1, gr =0. Do the same for the planes of 4 and B. Finally, use
W(q 4, qp) to determine what ray passes through the axis in the planes
of both 4 and B.

/ o\ /> N\
9.11. Let v, ={*') and v, =| (fl | denote two rays entering an arbitrary
\p./ \p./

Gaussian optical system. The symplectic scalar product of these vectors is

defined by w(v,,V,)=¢

1
(a) Show that this scalar product 1S preserved by the action of the optical

the optical axis:

(c) Suppose that two rays pass through the same point g, in reference

plane z{, with an angle ¢; between them. If these rays meet in the

conjugate plane z, with angle ¢, between them, what is their distance

g, from the axis? (Assume n=1 at planes z, and z,.)
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In Chapter 10 we go back and prove the basic facts about
finite-dimensional vector spaces and their linear transform
ations—The—treatmenthere—is—a-straightfoerward generaliz
ation, in the main, of the results obtained in the first four
chaptersinthe two-dimensional case- The-one-new-algorithm

Introduction

We have worked extensively with two-dimensional vector spaces, but so far always
with one of two specific models in mind. A vector space V was either the set of
displacements in an affine plane, or it was R?, the set of ordered pairs of real
numbers. By introducing coordinates, we were able to identify any two-dimensional
vector space with R* and thereby to represent any linear transformation of the
space by a 2 x 2 matrix.

We shall now begin to view more general vector spaces from an abstract and
axiomatic point of view. The advantage of this approach is that it will permit us
to consider vector spaces that are not defined either in geometrical terms or as
n-tuples of real numbers. It will turn out that any such vector space containing
only a finite number of linearly independent elements can be identified with R” for
some integer n so that eventually we shall return to the study of R” and the use of
matrices to represent linear transformations. In what follows, you should keep in
mind the familiar two-dimensional geometrical model of a vector space in order
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to remind vourself that the definitions and axioms are reasonable. The emphasis
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context. ch vector spaces are part of the natural mathematical l language of many

branches of physics, notably electromagnetic theory and quantum mechanics.

10.1. Properties of vector spaces

We begin by repeating the basic definitions.

A vector space, also known as a linear space, consists of a set of elements called
vectors which satisfy certain axioms listed below. We shall denote vector spaces
by capital letters, e.g, V, W* ,C,, and elements by lower-case bold letters, c.g,
v, W,,bl.

Part of the characterization of a vector space V is a rule that assigns to any
two elements v, and v, a unique third element v, usually called the sum and denoted
v, + v,. This operation satisfies the same axioms as addition of real numbers:

Commutative law: v, +v, =V, + v,. (10.1)

1 2 37" 2 3

Existence of zero: There is an element 0 such that v+ 0 =v for all v.

(10.3)
Existence ol negative: For any v there is an element — v such that —v +
v=0. (10.4

In some cases the operation of addition is defined directly in terms of addition

u | 1.
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For example, in R* we define

al\\ (01\ {al"i‘Dl\

\az/ \b2) \ay+b,/)

Similarly, we might consider the two-dimensional vector space of all functions
defined on a two-element set, {4, B}, with addition defined pointwise, so that
h={f+ g is the function with the property that

h(4) =£(4) + g(4),

h(B) = f(B) + g(B).
As a final example, we might consider the space of all continuous functions on
the interval [0,1], with addition again defined pointwise, so that if f and g are
elements of the space, their sum is the function h given by h(x) = f(x) + g(x). In this

case it is crucial to notice that, for any f and g, the sum h is also a continuous
function and so lies in the vector space.

inverse element are

Q..

In all these examples 1t is clear that the zero element an
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it is easily proved from the axioms. The proofs are feft to th

The other operation that must be defined as part of the characterization ol a




vector space is multiplication of a vector by a scalar. In this chapter the scalar

will always be a real number and the resulting vector space a real vector space,
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by complex numbers. Again the axioms are those of ordinary multiplication, so

that, if ¢, and ¢, are scalars and v, and v, are vectors, we have

Associative taw: ¢ (c,v) =(c c,)v. (10.5)
e e . CitHCyv=c,V+cC,V,

Distributive laws: (€t ca)v=c, 275, (10.6)
c(vy +v,)=cv, +cv,

Multiplication by 1 is the identity: 1v=yv for all v. (10.7)

Because the axioms of addition and scalar multiplication in any vector space
are the same as in ordinary arithmetic, almost any property which is true in
arithmetic is also true in vector algebra. Here is a list of such properties, all readily
provable from the axioms. Think about these, and convince yourself that they
really require proof: they are not true just by definition.

(@) Ov=0
(b) c0=0
() (—c)v=—(cv)=c(—V)

£ 1

(d) v+v=2v,v+v+v=73y,etc.

(e) If av =0 then eithera=0or v=0

10.2. The dual space

Given any vector space V, we can consider the set of all linear functions from V

to R. These form a vector space, called the dual space V*, as we shall now show.

convention which will be usetul later on, 1dentity them by superscripts rather than

by subscripts. Thus v,,v,,... are elements of V, while a!, &2, ... are elements of V*.
The action of an element V* on an element of V will be denoted by using square
brackets, e.g., a[v].

We define the sum of two elements of V* in the usual manner for functions:
ie., for any veV, (' + &?)[v] = a*[v] + &?[v]. Since the sum of linear functions is
is also a linear function, &' + 2 is indeed an element of V*, and it is easy to
see that all the addition axioms (10.1)-(10.4) are satisfied, with the zero element in
V* being the zero function, which is certainly linear. Similarly, we define scalar
multiplication by

(Cd) EVJ = c(a[v])




ing variety of ways in which elements of a dual space may be defined. Here are

some examples:

/ x\
l. V is R?, with a typical element v=|"]. Then V* may be identified with
\Y/
/x\
two-component_row._ vectors. for_example a=(a. b). with alvl=(g k\( \-—
Rkl wAE T A=7 = s A~ A 4 \A A4 A~F = Iammr A= s 5 o (Hy Sty t 2 W | (s Ul\ v}

2. Vis the space of all functions on the two-element set {4, B}. Then the rule
e: V- R which assigns to an element feV its value on the element A4, so that

a?[f]1=1(A), is an element of V*. In this case, in fact, the general element of V*
is of the form

a[f]=af(4)+bf(B)
for arbitrary a and b. What is interesting about this example is that we have
identified 4 with a* and similarly can identify B with &%, Although an expression
like ‘aA + bB’ makes no sense, aa? + ba® makes perfect sense as an element of V*.
Thus we have a procedure for associating a vector space to any finite set so that

[
-
w
Q
P
=

networks.

3. V is the space of differentiable functions f(t) on the interval [0,1]. Then all

v fo)de
0

"1

o:f | tf (f)de

JO

eff(3)+1 3+ thf(t)dt

10.3. Subspaces

Frequently a vector space W arises as a subspace of a larger vector space V with
addition and scalar multiplication defined in W just as in V. In such a case, since
V is known to satisfy all the vector space axioms, there is no need to check them
for W. All that must be done to confirm that W is a vector space is to show that
it is closed under addition and multiplication; i.e., that for any w,, w,€ W, the sum
w, + w, is an element of W, and, for any real number ¢ and any weW, cw is an
element of W. In particular, the zero vector must be an element of W.

In practice, subspaces are usually defined by one of two methods, either by




Method 1. Let w, w,,..., W, be vectors in V. Then the set of all linear combinations

of the form

k
=Y
W ya Clwl
i=1
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satisfying
a'[v] =0,
2
a’[v]=0,
A .
a‘[v]=0

is a subspace of V. The proof is simple. Let w, and w, be two vectors in this set
W. Then, because the functions !, &, ... are all linear,

d[w, +w,]=a'[w, ]+ [w,]=0 i=12,..k
so that w, + w,eW. Similarly,
a'[cw] = cal[w] =0

so that cwe W. Thus W is closed under addition and scalar multiplication and is

a subspace. (It may, of courqe, be {0} —the zero subspace consisting of 0 above.)
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the onigin) in R°. Me thod 1 describes the plane in terms of two vectors that span
it; e.g.

7 ’ N\ ’ N
1 0 1 —1
Il ) and { 1}, or | 2| and 0
0 2 2 2
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Method 2 describes the plane by means of a linear equation, e.g.,

2x -2y +z=0,

which is the same as saying that ¢[w] =0 where

X
a=(2,—2,1) and w=|y
z
As another example, consider the space V of polynomial functions of degree
< 2, with a typical element

f(t)=a+ bt + ct®.

A one-dimensional subspace W can be described by method 1 as the space of all
constant multiples of the function 1 — t2. The same subspace can alternatively be
described by method 2 in terms of the two conditions

(\ and £( 1) —
J\ 7= g\ *) hd
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10.4. Dimension and basis

To proceed further with the study of vector spaces, we need the notions of linear
dependence and linear independence of a set of vectors. A set of vectors {v,,v,,...,v,}
is said to be linearly dependent if there exist real numbers 4,,4,,...,4,, not all
zero, such that

AIVI +},2V2 + tee + Aka =0.

If this equation holds only for 4, =1, = --- = 4, =0, then the set of vectors is said
to be linearly independent.

Here are some examples of these important concepts:

1. Let V be R3, and consider

1 0 /2N

n=l1) w=(2), -.r3={ 4

\07/ \1/ \d
The set {v. v vl is linearlv_dependent because
A 1IW IVl ('1’ '2’ V3J 10X l‘vull] uvt}vlluvl‘& U UV

2\ [0\ /2

2vl+vl—v,=’2\+|2|—-'4\=0
\o/ \{/ \{/
U/ N1/ \1/

On the other hand, the set {v,, v,} is linearly independent, because

1\ 0\ /3 \
A4 \ L3

Aﬂ«l 1 +Aﬂ,2 2 = An.«l +2Aﬂ,2
0 1 A

2

and it is apparent on inspection that this last vector can only be zero if 4, =0
and 4, =0.
2. Let V be the space of functions on [0, 27] and consider

v, =cos®t, v,=sin’t, v;=cos2t.

This set of vectors is linearly dependent because v, —v, —v3;=0.
3. Let V be the space of functions on the set {4, B}, and consider

f:f1(4)=1, f1(B) =2,
f,: f2(4)=2, fo(B)= -3,
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elements of I'*:

a: f— t £ ds
v s
-2
R‘ f_; f’(n\
yoJ g T W
Writing f(t) = A + Bt + Ct* we find
2
a[f]= J (At + Bt?> + Ct3)dt =12B
-2

and
plf]1=B
so (¢ —1EB)[f] =0 and the set {a, B} is linearly dependent.

It is probably clear from these examples that there are situations in which it
may not be apparent on inspection whether a set of vectors is linearly dependent
or independent. We shall have to develop a systematic procedure for investigating
this question.

We say that a set of vectors {v,,v,,...,V,} spans a vector space V if any vector
veV can be written as a linear combination Y¥_, uv,. (The set {v,,...,v,} may
be linearly dependent, in which case the coefficients u,,..., are not uniquely

determined.) Consider the following examples:

1. Let V be R3. The set

(/1\ /O
0Ll 1)40
o/ \o/ \4
UNY/ N\ 72
VAT
clearly spans R?, since any element | ey } can be written
2Ky
VATIA /1 /0\ 0
! iy ‘_ 1’ ’ 0 Ly ’ 1 \I 0O
Ha J= s Y gl ) O
K3 \Y/ v/ \l/
Less obviously, the set
1 0 1
11O
0 1 1
also spans R?, but the set
1 0
111
0/ \l

does not.
2. Let V be the space of functions f(t) on [0, co) which satisfy the differential

equation

f£1r !

LY JANE. ¥ Y 1 1
I +I31 7421 =V.




The vectors e~* and e~2* span V, because the general solution to the equation is
of the form

2T ot I e ¢l £ firmntinne nf the form FIH)— 4 1 Rt3 Than the ot
S =CL V- DCthe space oI runctions Ot IoiA )y =110t 1T eI thie vCClOTS
a: £ £(0),
r~1

p:f— | tf(Hdt

-1

span the dual space V*. Clearly
alf]=A4,

BLf] =J

But any element yeV* must be of the form y[f] = a4 + bB for some constants
a and b. Thus y = ax+3bpB, and o and B span V*.

Let vy,...,v, be a finite set of linearly independent vectors that spans a vector
space V. The number n of vectors in such a collection is called the dimension of
V. To establish that dimension is a well-defined integer; i.e., that all such sets for
agiven space contain the same number of elements, we must prove the following
result:

(2At + Bt*)dt =ZB.
1

Theorem. Lef (v,,V,,...,V,y be a set of vectors that span a vector space V.
Then any set of k + 1 vectors in V is linearly dependent.

T fis by induction: . blish t] It for = 1: |
that if it is true for a space spanned by k— I vectors, it is true for a space
spanned by k vectors. When k = 1, the theorem states that, if V' is spanned by one
vector v, then-any two vectors-in ¥ are 1

such vectors, w, and w,. Since v spans ¥, there exist real nu i, and g,
that w, = u,v and w, = u,v. Clearly, then,

PaWi = H Wy = Lot V— [ iV =10
so that w, and w, are linearly dependent.

We now assume that the theorem is true for any set of k vectors in a space
spanned by k — 1 vectors, and we consider a set of k + 1 vectors, {wl,...,wk+1},
in a space spanned by {v;...v,}. We can write W, =a,,;v; +a,,v, +" " +auv
because the vectors {v;} span V. If w, =0, then rw, = 0 with r # 0 gives a non-trivial
relation among the ws and there is nothing further to prove. So we may assume
that w; # 0 and hence we may as well assume that we have ordered the vectors
{Vi,V5,...,V} so that a;; #0. Thus

1
12 1k
— W=V +—V,++—V;
11 11 i1
But
Wy =0y1Vy +ap,Vy + 0+ AoV




Thus

as, [{ azlalz\ [ Ay 1Ak
w2_n w1=la22_ ,V2+"‘+la2k_ — \
ar1 N iz / \ G411
and similarly we can express
a;,
W3 ———W,, efC.
£1
a1t

in terms of the k — 1 vectors {v,,...,v,}. But we are assuming that the theorem is
true for k — 1 vectors, so that the set of k vectors

sz asq A+ 1)1
{WZ“‘—WI,W3“‘—‘—W1,...,W,‘+1~ Wl
ayy asq Ay

is linearly dependent. Thus there exist constants A,,...,4,, not all zero, such that

a, asy A+ 1)1
12<W2——1W1)+13(W3————W1)+"‘+/1k<wk+1~— ( ) Wl =0.
agq aiq a1y

But this means that {w,,w,,...,w,,,} is a linearly dependent set, as we wished to
show.

Now we can easily show that the dimension of a vector space is well-defined.
Suppose we have, in a vector space V, a collection {v,,...,v,} which is linearly

) A 127> n

By the same argument k < n, otherwise {vy,...,v,} would be linearly dependent.
We conclude that k= n, so that any finite collection of linearly independent and

we have the right to call this number the dimension of V.
In fact, in a vector space V of dimension n, any set of n independent vectors

an arbitrary non-zero vector. The set {w,v,,...,v,}, which contains n + 1 vectors,
must be linearly dependent, so there exist constants 4, 4,,..., A, such that

AOW+/»1V1 +"'+/{,,V,,=0.

Now A, cannot be zero; otherwise {v,,...,v,} would be dependent, contrary to
hypothesis. Hence we can write

W= —Zl(;(llvl + A4V,
and we have expressed the arbitrary non-zero vector w as a linear combination
of {v,,...,v,}, which therefore spans.

A linearly independent and spanning collection of vectors, {vi,...,v,}, when
written in a specified order is called a basis of V. Thus {v,v,,...,v,} is a different
basis from {v,,v;,v;,...,V,}.

Starting with fewer than n independent vectors in an n-dimensional space V,

spanned by {w,,...,w,. Continuing this process for n —k steps, we eventually




arrive at a basis for ¥ which includes the vectors w,,...,w,. In particular, given

a vector space V of dimension n with a subspace W of dimension k, we can always

construct a basis for V-in -which the first k vectors form a basis for W. This process

SR WO U OOSTS JUI vy iri VVILLLH tre ot ooy 124 7 Yoy P L7 In )
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alled extending a basis for the subspace W toa basis for the entire space ¥:

Once we have chosen a basis, say {€,-.-,€,4, for a vector space V, we can write

any element of V uniquely as a linear combination of basis vectors

vV=2Xx,€e; + X,&, + "+ Xx,e,.
The numbers x,...,x, are called the components of v with respect to the given
basis. To show that they are uniquely determined, we imagine that v can be
expressed alternatively as

V=y1€; +y,8+ -+ ye,
Then, subtracting, we have

0=(x; —yi)es +(x;—yj)es + -+ (x, — ynle,.
But, since the basis elements are linearly independent, x;, —y; =x, —y, ==
x, — ¥y, =0 which proves the uniqueness of the components.
Thus, a basis determines an isomorphism, L, of ¥V with R", where

/1) /o\

0 1
\YJ 1

LV 1= - 1s LV2 = o etc.

: v
\0 :

.
7 Ay

~

Conversely, if L is such an isomorphism, then

1\ /

v, =171 v, = etc

I 5
.

0
Fay 1
0 1
0

i

7 A\

is a basis V. We may thus identify a basis {vy,...,v,; with the corresponding

isomorphism L, just as we did in Chapter 1 in the two-dimensional case.
Let L: V- R" and L: V— R” be two bases of the same n-dimensional space, V.

V

Rn____’ Rn

Then B=LoL™! is a linear isomorphism of R"— R", hence an invertible n x n
matrix. It is called the change of basis matrix.

Let V be a vector space of dimension k and W a vector space of dimension [
Let T:V— W be a linear transformation. Suppose that we choose bases of V' and
of W. So we have isomorphisms L: V— R* and M: W— R and we can define the map




the matrix of T relative to the bases I and M, and denote it by Mat, (7). So

AL i £ vy 2 vy —1
Mat; ,(TY=MTL™
We can picture the sitnation by the diagram
7
|4 » W
L M
i v
Rk » R
MatL,M(T)

If we make a different choice L' = PL of basis on V and M’ = QM of basis on W,
then

L~ 1 _ L~ 1P- 1
SO
M'TL '=QMTL P!
or
Mat;, 5 (T) = Q(Mat, y(T))P™*
when

L'=PL M =0M

is the change of basis formula. It tells us how the matrix representation of a linear

nsformation changes when we change the basis.

10.5. The dual basis

Having constructed a basis for a vector space V, we can readily construct a dual basis

[ov]
M
=

vleel +X2e2 + .- +xnen.

Now let o be an element of I'*. Since « is a linear function on V,
o v]=xole; ]+ x,x[e,]+ - + x,a[e,].

This means that « is determined completely by its values on the basis vectors
{e,,...,e,}. We therefore introduce vectors £1,...,&" in V* with the property that

,. 1 if i=j,
8Dﬂ_{0ifi¢f

To prove that the elements £ are linearly independent, we consider ZA.£°. Applying
this to an arbitrary basis element e;, we obtain

3 2ele] = 4.

i=1




Now, given any aeVV*, we write

a=ale Je' +ale;]e* + - +ale,Je"

1

Clearly both sides of this expression have the same value on any basis elements €;

and so are the same element of V*. This proves that the elements ¢',..., £" span V'*.

Since these elements are also independent, we conclude that V* is also n-

{ﬁmpneinnal and fel ™"l form-a basi r it
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We can use this basis to identify V* with R"*. When we express an element ac V'*
in terms of the dual basis:

oa=A "+ 1,82+ -+ ] ¢"

we find it convenient to identify elements of R™ as row vectors. So & becomes
identified with the row vector (4,,4,,...,4,). An advantage of this notation is that
the action of & on v is then described by the usual rule for multiplying matrices:

X1

V] =Ly, Agseves ) | 2 | = Ay + Apxg 4 o+ Ay

It is important to bear in mind that this technique is correct only if the dentlﬁcatlon
nf I/onr'] I/*]ﬁ t n 1
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must be dual to the basis used in i enmylng V-with R".

e
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Q
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Suppose now that we have an n- dlmenswnal space V with a k-
k o

space W. We can choose a basis

Topave Yo vallrenuvovoe a ¢

3 ?E’

[‘l VYV, ¥ 1
LY1o+ 3 ks Yk+15°°°> an

and then construct the dual basis

o it i=j,

alvil= {O otherwise’
The (n — k)-dimensional subspace spanned by {o**?,..., "} is called the annihilator
space of W, denoted W™ . It derives its name from the fact that if ere W+ and weW,
then ofw] = 0; that is, W* ‘annihilates’ the subspace W. What was earlier called
method 2 for describing a subspace was in fact a specification in terms of the
annihilator space. For example, the vector (a,b,c) defines a one-dimensional
subspace W* of the dual of R?. The subspace W of R3 annihilated by W™ is two-
dimensional: it is the plane ax + by + cz = 0. If we specify two independent elements
of the dual of R3, (a;, b,,¢,) and (a,, b,, c,), then the subspace of R3 annihilated by
these is one-dimensional: it is the line which satisfies the pair of equations

ax+by+c,z=0,

- L 1 n
ayx+byy+cz=0:




Notice that the annihilator space W+ of a subspace W< V does not depend on
any SDCleiC choice of basis for V. Introducing a basis was only a convenient device to

to_calculate the dimension-of IJ/J-
U v IQte tav Gnnvnoit'ollr U1 vy .

Q
We stilt fack a systematic procedure for calculating the dimension of a subspace
by specified elements of a vector space, or of a subspace annihilated by
elements of the dualofa Vector space QuCh a procedure is the row reduction

10.6. Quotient spaces

We continue to consider an n-dimensional vector space V with a subspace W of
dimension k.

It seems reasonable that there should be a space of dimension n — k which is in
some sense the ‘difference’ between V and W. This space is called the quotient space
V/W. Its elements are not elements of ¥, however; they are sets of elements of V called
equivalence classes. Before defining these classes, we should first see why something
simpler will not suffice.

For a concrete example of a vector space V with subspace W, we can take V' to be
the plane R? and W a line in the plane, as depicted in figure 10.1. One possibility for

th
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V'which are not in W. Alas, these span the entire space V; for example, in figure 10.1
the vectors v, and v,, neither of which is in W, clearly span the entire plane.

isfor ¥, or subs which is spanned by the n — k basis vectors whic
are not in W. This gives a subspace of the desired dimension, but one which depends

\£

V3
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figure 10.1, we select w as the ﬁrst basis vector and we could then choose V1. V2,01 Vs

fhﬂfn t r Ageny ¥/ wo cniild calant flaa crilacma
there were ascalar proauu, definedon ¥ , weCotha scicctine suospace or IUgUIldl LO
W, but, lacking a scalar product, there is no way to prescribe a choice of the second

basis element.

The construction which works

1
ANQlrety £ 1z 1.

ulo
consisting of a set of vectors in ¥ whose differences all lie in W, We denote the
equivalence class of a vector by writing a bar over it; thus, for example, v denotes the
set of all vectors of the form v + w, where v is a specified element of V and w is an
arbitrary element of W.

Figure 10.2

£ ¢l

agrira_10D 0N ~
to figure 10:2,-we see, for example, that 0, the equivalence classof the

zero vector, 1s the subspace W, aline through the origin. The vectors v, and v,, which

differ by an lement of W, belong to the same equivalence class, which we may denote
Y P Thicamivalaneas nlacatca ine wur 1\ Ia\ A~pa At nacethe ‘If\'l’\ tha A 1n n. The
V1 vl V2 . LIS b\.iu valo lbb Viadsd 15 a 11U WILIUIL UUCS 71Ut l}abb L1l usu Lllb vliglt 1Ne

equivalence class v, is a different line, again not passing through the origin. In this
case the equivalence classes are a family of lines parallel to W. More generally, we
can view a subspace W as a k-dimensional hyperplane through the origin of Vand the
equivalence classes modulo W as a family of hyperplanes parallel to this one.

To introduce the operation of addition of equivalence classes, we look first at the
arithmetic of the integers modulo 4, with which you are probably familiar. Here there
are four equivalence classes:

0=1{0,4,—4, 8 —8,...) ={4n},
=3, 9,—7,..}={4n+1},

1,5
2={2,6,—-2,10,—6,...} = {4n + 2},
3=13,7, —1,11, —5,...}={4n+3}.




together and then find the class to which the sum belongs. For example, to add 2 and

3, we could select 6 from the class 2. 3 from the class 3, and form the sum 6 + 3 = 9,

I HHE1C

TQ(\"I? L

vvulCu ass1t—o>o=z T I3 = j_ DIIILC d_uy otner CuOl € (Su] Z T 1=
—3) would have led to the same conclusion, this operation of addition is well
defined.

Addition of equivalence classes of vectors modulo the subspace W is defined

io AL A T T ¥ 2 3%

similarly. We simply make the definition v, + v, = (v; + v,);i.c,, add any two vectors
from the classes v, and ¥,, and find the class to which the sum belongs. Suppose we
choose v, + w, from v, and v, + w, from ¥,, where w, and w, are arbitrary elements
of W. Then the sum v, + ¥, is the equivalence class containing (v, + v,) + (w; + w,);
which is (;'1+—v2), no matter what choice of w, and w, may have been made.

This operation of addition is illustrated geometrically in figure 10.3. The point is
that ¥, +V, =¥;, no matter whether v, and v, or u;, and u, are chosen as
representatives of the classes v, and v,.

W\‘n_
////
/ /] ]
/ /]

Figure 10.3

We define multiplication of an equivalence class by a scalar in a similar way:
¢Vy =(cv,). That is, multiply any element of ¥, by ¢, and take the equivalence class of

the result. Because W is a subspace, the result is unique.




Quotient spaces 355

construct a basis for it ly choose a basis for Wand extend it to a basis forall of /.

Vi, ¥2,-..,V,_, (not elements of W). We claim that the equivalence classes

Vi:¥3,...,¥,_, form a basis for V/W. To prove this, we must show that they are
mdenPndent and that thev span V/W

AT Ty opdnt

Let us deal first with the question of independence. Suppose that ¥,,¥,,...,¥,_,
were not independent. Then constants 4, 4,,...,4,_, exist such that

AVi+ A+ o+ A, ¥, =0
which implies that

AqVi 4+ AgVy 4+ o+ AV, €W
contradicting the assumption that the set of vectors {w,,...,w,;v,...,v,_,} is

linearly independent.
We can write a vector veV as a linear combination of basis elements:

V=XV; +X,V, + -+ X, _,V,_, + element of W

which implies that

v =x1V1 + XZVZ + s +xn_kvn_k.

This proves that the equivalence classes v,,v,,...,v,_, span the space V/W. We
conclude that ¥,,¥,,..., v,_, form a basis for V/W, and that

dim(V/W)=dim V — dim W.

The time has come for some examples of quotient spaces:

1\

. Since

Example 1. V'is R®, Wis the one-dimensional subspace spanned by

1

I

0
1\ /0 / 0\ 70\ /0

(1), kl), and (O) span R?, we can choose (1) and (0) as a basis for the two-
0 0 1 0 1

dimensional quotient space V/W. Now, for example,

3 1 0 0
L)=311|-2{1]+1]0
1 0 0 1
SO
3 0 0
1)J==-2{1]+]0
1 0 1
In a similar manner we can express the equivalence class of any vector in R*asa
/0 0\

tinear combinationof {1 ] and | 0

\U/ A\l
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Because their sum is an element of W, they are not linearly independent elements of

V/W:

N\ O\ /1N /1 /o)
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Example 2. V is the space of polynomials f(t) of degree <2; W is the
two-dimensional subspace of such polynomials satisfying the additional condition
f(1)=0. A basis for Wis f; (t)=1—1t and f,(t)=1—t> A basis for V/W is the
equivalence class 1. In this case, the general element of V' is

f(t)=A+ Bt + Ct?
SO

f()=A+ B+ C—B(l —t)— C(1—-1t?).

This means that

1‘/1 0O nd th
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thereiore be regarded as a linear function on the space of equivalence classes.
Conversely, any linear function on V/W can be regarded as a linear function on
V. Simply define g[v] as

BLv]l= B[]

Then P[w]=p[0]=0. So B is an element of W~. We can therefore
identify W* with the dual space of the quotient space V/W. Recall that both W* and
V/W have dimension equal to dim ¥V — dim W,

Similarly, we may consider the quotient space V*/W*, whose elements are
equivalence classes f whose elements differ by elements of W+, i.e.,

={p+a:acW'}.




weW. This says that ge W* or f=0. So f is completely determined by the linear
function it dPﬁnpe on W.

AR AP T P 2 1] 11

CuuvULbCly, we claim that every y€ W* is of the form ¥= f—for some ﬁ% V*
Indeed choose a basis w,,...,w, of Wand extend It to a basis Wy, .., Wi, Vi,...,V, ¢
of V,.

Let B be any linear function with 'B[W] = y[w:! for all i and let B take any

classes, the quotzent space V* / Wl with the dual space W*,
The results just proved may be summarized in the following diagram:
V*W' « V¥« W
WV -V/W

Here the spaces which are dual to one another are arranged vertically: ¥V and V*
(dimension n) are dual, W and V*/W* (dimensionk) are dual, V/W and W*
(dimension n — k) are dual.

Much of linear algebra and its applications to electric network theory rests on this
single theorem, which deserves your most careful consideration.

As an illustration of the theorem, let ¥ be the space of polynomials f(t) of degree

<2, and let W be the two-dimensional subspace of even polynomials. Then V/Wis
one-dimensional, and a basis element, which we shall call h,, is the equivalence class

of the function f(f)=¢. Thus if f(f)= 4 + Bt + Ct%, f(t) = Bh,.
In this case, the annlhllator space W is also one-dimensional. One choice for a

r1
a:f(H~ tf(f)dt.
J—1

R
D

W

. DRe + 42N Je
( DL+ Ul Al =

J —1

we see that & does indeed annihilate any even polynomial and assign the value § to
the polynomial f(t) =t, which specifies the basis h, of V/W. That is, 3o is the
basis element dual to h,,.

We can extend « to a complete basis for V* by adjoining the basis elements

B.: f(6)~f(0)

and
B, f(t)>3 f"(0)
whose effect is to pick -out the coefficients 4 and C respectively. That is,
B.[A+ Bt + Ct*] = A,
B,[A+ Bt+ Ct*] =C.

L clearly alsoform a




basis for W*; indeed, they are the dual basis elements for the basis elements 1 and ¢?

in_the subspace W of even polynomials.

10.7. Linear trans

We consider now a linear transformatio

AV-W

where Vis a vector space of dimension m and Wis a space of dimension n. As always,
to state that A is linear means that A(c,v, + c,v,) = ¢, Av; + ¢, Av,.

Associated with a linear transformation A: V'— W are two subspaces, the kernel of
A and the image of A.

The kernel of 4, denoted ker 4, is the set of vectors ve Vsuch that Av = 0. To verify
that ker 4 is a subspace of V¥, we note that, if v, and v, are in the kernel of A4, then
A(c,vy +¢v,) = ¢, Avy + ¢, Av, =0so that ¢, vy + c,v,€ker 4 also. This proves that
ker A is closed, and hence a subspace.

The image of A, denoted im A, is the set of vectors we Wwhich are of the form Av
for some ve V. If w, and w, are vectorsinim 4, then w, = Av, and w, = Av, for some
v,,V,€V. Because of the linearity of A4,

%‘}(H—F%H—M—Fh‘“—ﬁw—“*ﬂl1 2¥7) = C1Avy 271V =1(71Wq pAMY)

so that ¢, w, + ¢,w, is also an element of im A4. This proves that im 4 is a subspace

of A/

urrr.

The dimensions of ker 4 and of im 4 are related by the equation

4 X

dim (im A) + dim (ker 4) = dim V. (10.8)
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1s called the nullity of A, and equation (10.8) 1s called the rank-nullity theorem.
You alreadv famlhar with the theorem in the special case of transformations

r-A:-R2 - R2:
j

2L U\ LD\ Y

(1) A has the entire plane as its image and carries no non-zero vector into the
origin (rank 2, nullity 0).

(2) A collapses the plane into a line, and carries a line into the origin (rank 1,
nullity 1).

(3) A collapses the entire plane into the origin (rank 0, nullity 2).

To prove the rank—-nullity theorem we choose a convenient basis for V. Suppose
that dim V= n, dim(ker A) = k. We choose a basis {u,u,,...,u} for ker 4, then
extend this to a basis for all of V by choosing r = n — k vectors v,,v,,...,v,. For
convenience, we order this basis as

(Vi) Voo, Vs Uy, Uy, ., 1)

so that the first r vectors in the basis do not lie in ker 4. Th problem is now to show

fhﬂf the » vectors { Ay Av Ay 1 form-a haSiS

are—¢ v [»] 111'1,11'2, ,ﬂ' Uil G v




We first show that the vectors {Av,,Av,,..., Av,} are linearly independent.
Suppose that

which implies that 37 ; 4,v;€ker 4. But the vectors {v;}, along with the basis {u ;} for
ker A, form a basis for V. Therefore

Y Av;=u with uckerA4
i=1

implies that all the A; are zero, and therefore that {Av,, Av,,..., Av,} are linearly
independent.

To show that the vectors {Av,, Av,,..., Av,} span im A, we consider an arbitrary
vector weim A. There 1s some vector veV such that w= Av. We can write

r k
=1

i=1

But all the basis vectors u; are in ker 4, so

—k, where dim V=n and dim(ker Ay=k. Thus

that dim(imA)=7r. But r=
dim (im A) = di

=
h
=0
8
o
=
9]
-
S
| E
=.
(@]
=
53.
-
=
(¢]
]
jav]
=)
T
=
=
E
hed
* e
=
(€]
Q
]
(€]
B

already conjectured about the annihilator space of @ subspace. Suppose that
{a',a?,..., 0"} are elements of V*. Then we can define a linear transformation

A V>R

by
a'[v]
af[v]

o"[v]

The vectors {a',a?,...,a”}spanasubspace U* < V* which annihilates the subspace
ker A. The rank—nullity theorem says that dim (im A) = dim V — dim (ker A). But we
saw in section 10.4 that

Av =

dim (U") = dim V — dim (ker A).
It follows that .

: e 4 . rrl

| AY h |
dim(im A)=dmm




In terms of matrices, each element «' is a row of the matrix, and dim U~ is the

dim N D s % he
hand; dim{im}is the dimensionof the subspace of Wspanned by the columnsofthe
matrix. Both of these numbers equal r, the rank of the matrix.

This view of the rows of a matrix as elements of the du 1 pace V* is particularly
useful when we are trying to solve systems of linear equations. For example, th:‘:

sysrem Ul CquLIUIlb
X+y+z=0,
X+2y+3z=0,
2x+3y+4z=0

may be represented as Av =0 where

1 1 1 X
A=|1 2 3}, v=|y
2 3 4 z

Here the rows of A are associated with individual equations. Because the third
equation is the sum of the first two, the three rows span only a two-dimensional

subspace of V*, the rank of the matrix A is 2 and its nullity is 3 — 2 = 1. Therefore
ker 4 is one-dimensional.and there exists a one-dimensional subspace of non-trivial

7
. N
bUlUUUIlb to LIlC UquUUl AV =Vv.

10.8. Row reduction

Consider now a linear transformation

T 1/ YA
1.V —=Vy

that by-a proper choice of basis for ¥-and W we canassure that T has-an-especially
simple matrix representation. We simply choose as a basis for V the vectors
{Vi,Va,eet, Vs v,+1,...,vm}
where the last m —r basis vectors form a basis for ker T, so that Tv,, ,=
Tv,,,=--=Tv,=0. Then Tv,,Tv,,..., Tv, form a basis for im 7. We choose
w;=Tv,,w,=Tv,,...,w,= Tv, as a basis for im T, then extend to a basis for all of
W. Now the matrix representation of T relative to this basis is simply the matrix
I, 0
Y nTOWS (10.9)
0 0
\——vﬁ—}
m columns

which has a string of r 1s down the diagonal from the upper left-hand corner and all
its other entries zero.

1- ala k]
clative to some other, less convenient basis. An important computational problem




1s then to find the change of basis for V and W which converts the matrix

representation relative to the given basis, 4, to I,. In practice this is most efficiently
a hieved kv ¢l +1 l‘ ..... od1s f'on, "X'Ihlcu 1S 1n essence 1ust a ovcfnmotic

Chleve ; ¢ 1 . r
CIHCVCd 0y tne algorinny Ol row reauctit ta-oystlilid
1

proceaure for solving linear equatlons Dy the familiar process of elimination. We

problem

HININAC

0 4 —4 8
M=[2 4 o0 2
30 6 —9

The index of any non-zero row of M is the position of the first non-vanishing
entry, and this entry is called the leading entry. Thus, for the first row of M, the index
is 2 and the leading entry is 4, while for the third row the index is 1 and the leading
entry is 3.

The first step in row reduction is to locate a row of smallest index, to move it to the
top position by interchanging it with the top row if necessary, and to divide it by its
leading entry. For the given matrix M, we interchange the first and second rows to
obtain

e S

in turn. In our example, we subtract 3 times the top row from the third Tow,
obtaining

1 2 0 1
0 4 —4 8
0 —6 6 —12
The matrix now has a leading entry one in the top row, and all other rows which
are not zero have an index greater than the index of the top row. We next move arow
of next smallest index to the second position and divide by its leading entry. In the
example, the second row already has next smallest index, and we divide it by its
leading entry, 4, to obtain

N\ -
Weonaweclearthe cohiimn correenondinc totheleadinocentrvin the cponnd TOW hV
\AAYB LY} LitalthHe otouluialourvopounidiil s 1o v icadUiirzg it T TIICOTETIE1 J




subtracting a suitable multiple of the second row from all other rows. In the example,

we subtract twice the second row from the first and substract — 6 times the second

row_from_the third _obtaininge
AALL\A,

TOV 11Ot tiiv ¢ ootaitiing

/1 n oY AN\
( T U Z —_J
ot =12} (10:10)

00 0 0

Now the first and second columns both contain just a single 1, which is the leading
entry of a row.

In the general case, we now again interchange rows, if necessary, to move a row of
smallest leading entry-to the third position, divide this row by its leading entry, and
subtract multiples of it from all other rows to clear the column of the leading entry.
Eventually there are no more non-zero rows, and we have a matrix in row-reduced
form. In the example this has already happened. Note the following features of a
row-reduced matrix such as given in (10.10).

(a) All zero rows, if any, are at the bottom.

(b) The non-zero rows are arranged in order of increasing index.

(c) Every column containing the leading entry of a non-zero row has a one as
its leading entry and zeros elsewhere.

Each operation in the tow-reduction process can be achieved by feft multiplic-

ation by an invertible n x n matrix. For example, multiplying on the left by the

matrix

/0 1 0\
S,=[1 0 0]
\o o 1/
\\J J 1/
interchanges the first and second rows:
0 1 0\/0 4 -4 B8\ /2 4 0 2
1 0 OJl2 4 0 21=10 4 -4 8
0 0 1 3 0 6 —9 3 0 6 —9
A 7 X 7/ N 4
Multiplying on the left by the matrix
100
S,={0 1 0
0 0 1
divides the first row by 2:
I 0 0\/2 4 0 2 1 2 0 1
01 O)JO 4 —4 81=10 4 —4 8
0 0 1/J\3 0 6 -9 30 6 —9

Multiplying on the left by the matrix
/

_

(ol

J3 =

W O
O e O
—_ O O




subtracts three times the first row from the third:

0 0\/1 2 0 /1 2 0 1\\
0O 1 Offo 4 —4 8 1= 0 4 —4 81
3 0 1 3 0 6 —9Y 0 -6 6 —12

or as

where S is an invertible n x n matrix. Notice that, since S is invertible, dim
im B=dimim M.
The image and kernel of the row-reduced matrix B are easy to determine. Clearly

the image is the r-dimensional subspace corresponding to the r non-zero rows of B,
spanned by the columns

1 0

0 1
0,101..
\ o/ \a/
\0/\0/

which contain the leading entries of all the non-zero rows. By the rank—nullity

theorem, the kernel of B has dimension m — r, equal to the number of columns that

1
Ane-at - a timeta-calenlate the camnannente in the nacitioneaf the leadino-entrv
UICat a o 1o Lallulatc U LU PULICIT LU PUsiu Ol vl v ivatnil 5=
columns.

For example, with

0 2 =3
B= 1 —1 2
0 0 0
1
a basis for im Bis clearly| O |and . The columns without leading entries are the

1

0

0

0

1

0 0

third and fourth, so we search for basis vectors of ker B which have the form
X1 Vi
o, =*2] and uw,= P2

1 0
0 1

1

Setting Bu, = 0, we find

(RN
I
O




SO

Of course, we were interested in the kernel and image of the original matrix A4, not
of the row-reduced matrix B. However, B = SA4, where § is invertible, so

A=S"'B.

Clearly any vector in the kernel of B is also in the kernel of A, so by finding the kernel
of B we have also found the kernel of A. To find the image of A we must invert S and

let S™! act on the image of B. To summarize, we have B= SA, ker B=ker 4, and

VSV » |

P B Aiian 1ean A
UL LI D = Uil il A,

Suppose now that we wish to solve an equation of the form

4
AV=W,

et s
obtamning

Ay=S8Sw or Bv—=u

[SEE =

where B is row-reduced and u = Sw. This equation is of a form like

o
~J
8}
.~
I

S
—
[
™N
P

/1 ) 3 thy

(0 1 -1 21| ={ u,

00 o0 o\ Uy
X4

and it can be solved by inspection, as follows.

(1) If any component of u corresponding to a zero row of B is different from
zero, the equation has no solution.

(2) Ifthe components of u corresponding to the zero rows of B are all zero, then

Q
-
=

[¢]
o

1 aneaenhitia £
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quation.

i
[72]

(3) The general solution to the equation is of the form v, + v, where veker A.




We combine A and w into the array

2 4 2 2 0
1 3 2 0 —1
3 1 -2 8 5

and apply row reduction, obtaining successively

1 2 11 0

1 3 2 0 -1},
31 -2 8 5
(1 21 0N
0 1 t——=1—=t1,
0 -5 =5 ) b}
{ro—t 3 2\
{01 1 —1 =17
\0 0 0 0 0/
One solution to the equation s therefore
[ 2\
=1
U
0
\ 7

To find the general solution, we must construct a basis for the kernel of 4. One basis
1

vector, with one in the third position and zero in the fourth, is . The other,

—1
1
0

with zero in the third position and one in the fourth, is . So the general

—_ O —= W

solution to Av=w 1s

+ ] + 2

OIS = N
Pt
N
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where A, and 4, are arbitrary real numbers. Note the characteristic form of the

solution in relation to the columns of the row reduced matrix which do not contain

leadine entries of rows (1n this case. columne and-4) The particular solution to-the
I wWALAL L,v i
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equation has zeros in both the third and fourth positions, while the basis vectors for

ker A each have zeros in all but one of these positions. There are many ways to write

the general qolutlon to the equation, but this is the simplest.
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efficient method of atrix inversion. The transformation S that row-reduces 4 to
the identity matrix is just the matrix A ™', and it can be calculated step by stepif each
individual row-reduction operation is applied to a matrix that begins as the identity

1 2 1
matrix. Suppose, for example, that A = 2 3 3 }. We begin with 4 and the
-1 -1 0
identity matrix,
1 2 1| 1.0 0
2 3 31 01 0f,
—1 —1 0] 0 O 1

and apply row-reduction operations to both. Substract twice row 1 from row 2; add

row 1 to row 3:

1 21 1 00
0 —1 1 —2 1 0
0N 1 1 1 0O 1
\U p Y I I AV L/
Divide row 2 by —I:
T 2 1] 1T 00
01 —1 2 —1 0
\o- 1 1 1 o 1,

Subtract twice row 2 from row 1; subtract row 2 from row 3:

1 0 3] -3 0

01 -1 2 -1 0

0 0 2] -1 11
Divide row 3 by 2:

1 0 37 -3 2 0

0 1 -1 2 -1 0

00 1l -3 33

Subtract 3 times row 3 from row 1; add row 3 to row 2:

100/ =3 +3 -3\
o1 0] 3 —-% 1]
00 1| =% 3 3




Row recuction R

It follows that 4~ is the matrix
= — 1
L N U |
\ 7

Let us now return to the case of a general rectangular matrix. Instead of
performing row operations, we could perform column operations: just the same
operations as in row reduction, but with the word ‘row’ replaced by ‘column’. We
would end up with a matrix

C=MT
where T is an invertible square matrix and C is column reduced. That is:

(@) All zero columns of C, if any, are on the right;
(b’) The non-zero columns of C are arranged in order of increasing index (when
the index of a non-zero column is the position of the first non-vanishing

entry);
and
(c') Every row containing the leading entry of a non-zero column has a one as
1te loadineeoantrivand sarac oalcawvrhaora
IS ICaullly CIItly allld ZC1 U5 CISUWIILIL

Notice that now
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To find a basis of ker M apply row reduction. The resulting rows of the

row reduced matrix B=SM give a set of r equations for ker B which are in

‘solved’ from — solved for the positions of the columns containing leading
entries in terms of the remaining m — r positions. A basis can be found by
successively choosing 1 for one of the remaining positions with the other
remaining positions zero and solving.

We can also perform both column and row operations. For example, suppose we
perform column operations to the row-reduced matrix

1 0 2 3
B=|0 1 —1 2
0 0 0 0

Subtracting multiples of the first column from the third and fourth yields

N\

OO.—.\
Ol—-— O
|
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and subtracting multiples of the second column from the third and fourth ;

Yields
(1+0-0-0)
01 0 Of
00 00

In general, by performing column operations to row-reduced matrix B, we can first
arrange (by switching columns) that the leading columns are exactly the firet .
columns. (This step was not needed in the example above). Then, successively Sl;b:
tracting off multiples of each of the first r columns from the remaining m —
columns, we end up with a matrix whose only non-zero entries are r 1s down the
principal diagonal, i.e., of the form (10.9). We have thus described an effective
algorithm for finding matrices S and T such that

SMT has the form (10.9).

10.9. The constant rank theorem*

If we combine the results of the preceding section with those of section 6.3, we obtain
some very powerful information about the behavior of differentiable maps. Let v

and W be vector spaces of dimension m and n respectively. Let O be some (open)
region in V' and suppose that

™1 q-0f FRONG B I Sl 1+ £ VY44~ 4 L9 94 3 frn 14 L— My
p. 1 1ICUlICIClIUal Ujp 15d ICal Iap O v 11O W, d11d 50O We TIldy COIIPULC ILS TAllK. U1
course, this rank depends on the point p. Our purpose is to prove the following
theorem

Th 1 [ such that the

¢ mapping a neighborhood of X into R™ such that ¢ has a differentiable inverse, and a
one-to-one differentiable map y mapping a neighborhood of f(x) in Winto R” also with
differentiable inverse, such that the composite map

Yofod LR R
is a linear map with matrix (10.9).

In short, this theorem says that, for differentiable maps of constant rank, the main

theorem of row reduction holds: we can ‘make changes of variables’, i.e., find maps ¢
and ¥, such that

*1
X .
Wered™ =15
X m .
\ o/
\7/

* This section can be omitted on first reading.




Proof. By making a preliminary change of variables consisting of a translation in

¥, we may assume that x =0 and, by another translation in W, we may assume

+ £l = ﬂ Thuc in-ardar tL. t £(0) 0N

[[ldl._} \x) Y—usn-order to st 1phf:y

and that we are interested in f nea

(D"!

df, to the form (10.9), that is, w
S: V— R" such that

dRfS™y=Fdf,S™
has the form (10.9). Thus we can write
fi
R S-— 1 — fr
f fr+ 1

f,

of,
(5 )

where the matrix

is the identity matrix at 0. Hence it is 1nvert1ble in some neighborhood of 0. Consider

the map g defined near 0-in R™ by

/ \
[ fi\
e\
all - 11 =1"7"
\\x_// Xr+1
NN m/j .
\ x,, /
\
That is, the first r components of g are given by f,,....f,, while the last m —r
comnonente ara et tha Inct » neanrdinateac Naticre that the matriv
UUILIPULI\JLILD ars JUDL Ll 1aol 71t T LUUIUILIIAIVY,., 1T YULIVLG tIIAt Liiv 1IIa s
of; r
ox; rows
g, J
dx: ) 1 0 m—r
J 0 ..
0 | rows
r m-—r

columns columns

is invertible at 0, and hence is invertible near 0. We now apply the inverse function
theorem of section 6.3 to the map g. Review the proof there to see that it was valid for
arbitrary finite-dimensional vector spaces. (Observe also that the implicit function

theorem and its proof are valid, where x and y are taken as vector variables and the
k

nobace
15 oacis
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to our current problem, we can find an inverse for g. Let

h=(RfS"T)eg™".




Then

/7% NN /fl\
(RfS—1 : B )
Jo—) : :
‘ Xm In/
and
5\
X .
N\
x.m xr:l-l
x-m
SO
Y1
W) =
y' r+1(y)
gn(y)

Jr+15--5Yn
dh =d(Rf.S " YNodg ! where g =a(Sp)
q Up 7 Jq A v ASsd 44
Hence
rank dh =r
Looking at the matrix , .
[1 0\ r
[ ~g N\ rO\'xIS
((jhi \=
\5\1} I}
NRGAO W/ N et
\\ : 0y; / rows
r n—r

columns columns

the only way that this can happen is if all the partial derivatives occuring in the

lower right-hand corner vanish identically. Thus the last n — r hs must depend only
on the first r coordinates, y. That is,

Ir+1 =gr+1(y15"'ayr’05"'a0)9 ete.
Now introduce the transformation H on R" given by

Zl \\ Zl
Zr

\\ Z?‘+1 ~ Z,.+1—g'_+1(21,...,2,,0,...,0)




This is a smooth map defined near z =0 in R". It is clearly invertible. Indeed, its
inverse is given by

il

/W1 \\
I/W\\ .
H ! .1 =
.W W1+ Grs 1 (Wy, ,W,,V,...,O)
wn+gn(w1" ,wra09° 50)
Then
Y1
V1 .
Heh ([ + ) =2
: 0
Ym .
0

Substituting the definition h=(RfS™1)eg~! into Hoh gives
Heh=(HR)>fo(S"'g™").

Defining
Y =H-R
and
¢=gOS
] hat-drofod="11 he-desired form:
73
7Y\ :
Wrofoh™1 ” . I
¥ J ¥ . O
Ym :
\o/
Q.E.D.

The most important application of this theorem is to the case where r =n, the
dimension of the image. If df, is continuous and has rank n at some point p, then we
claim that it has rank n at all points sufficiently close to p. Indeed, by row reduction,
we can find R and S such that Rdf,S ~* has the form (10.9) with » = n. Now, for q close
to p, the upper left-hand block of Rdf,S ™! will be close to the identity matrix. Hence
the dimension of the image of df, is at least n. Since the dimension of this image
cannot exceed dim W=n, we conclude that rankdf,=n for all q in some
neighborhood of p. From the constant rank theorem, we conclude:

The solution set theorem. Suppose that f: 0 — W is a continuously differentiable map
. . . . . nd

1BIADDIN—
[44 M[Il}b'by 1%2

.
34
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differentiable maps @




neighborhood of f(p) into R", both with continuously differentiable inverses such thg:

¢(p) =0 in R™ and Y(f(q))=0 in R" and

X1\
(1/11\\ X
ey -1 . Xom
22 | | I
Xm

YY)

In particular, a point x is the solution to the equation

fX)=f(p) x nearp
if and only if

4
.

1 1n oy 4

L

a 114 1A ever 111 1o tha td 4+ £ 41 1y 144 4
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1
theorem more succinct. Let H,,_, denote the subspace of R™ determined by the

equations

x1=0,...,xn=0.

(1Y : I ) N A 1 + AL f 1: : 1 4+ 17
(AACIC /118 4SSUIMed Lo 0C . m.) A SUDSCL VI Ol d1l m-dIImMensiondl veCloT Space vV 1S

called a submanifold of codimension m — n if it has the following property: about each

point xe M we can find a neighhnrhnnd O in V and a differentiable map (/r 0 —-R™

FEPAY 12 a fao ottt mantabhhbharh = |

£
I

r1tth A 4 5 e J7
F1338 ] (/}\A) = U, DULU Llld.l. ([) llldpb U lll a onec- LU OUIIC 1adsiIIOIN] ltU d llClglIUUIUUUU, U,0

¢~ ! is differentiable, and such that

M Hp_p

Figurp 104




In other words, the condition on M says that, near each of the points, we can find a

smooth distortion of the full space (the distortion being given by the map ¢)so that

q

L T 7

A cets flattened-out-and lanlke 1il-e q nicce of hvpnerpnlane Forevamnle the "-Al,.
1¥L Yo Maittbliivid vl alld TUOURDS 1TIRCU a Py Ul iy pevlpiall 11Ul \.Acuul.uc, LIIC LIITCICT
2 4 4 PP 4 4 ™2 1 . 4
x>+ y*= l'is a submanifold of codimension 1 in R?, because we can introduce the

map

o(x, y) =

{\arctan (/x))

at all points with x # 0 (followed by an appropriate shift in the vertical direction
to center the image at the origin). At the points x = 0, we can use arctan (x/y). The
perimeter of a square is not a submanifold, because there is no smooth way of
straightening out the corners.

Let f: 0 — W be a continuously differentiable map. A point peO is called a regular
point of f if df, is surjective; in other words, if rank d f,=dim W. A point which
is not a regular point is called a critical point. If W= R, then p is a critical point
if d f, = 0. This agrees with our earlier notation.

A point ge W is called a regular value if all points p in f ~(q) are regular points.
Then we can formulate our theorem as

\ r—1z
|

If q is a regular value of f, then f~(q) is a submanifold.

Here are some examples

Let W= S(R) denote the vector space all kxk qvmme'r ic_matrices — those
P n 1 1 P nT 1 1 rxz 17./7 + 41y ¢ 3 <1
matrices D which satisfy D =D. Then n=dim W=35k(k + 1). Consider the map
fiVoW f(A)=AA"
Then

dfB)=BA" + ABT

as you can easily check. We claim that the identity matrix, I, is a regular value
of f. We must show that d f, is surjective if AAT = I. That is, we must be able to
solve

BAT + AB"=C
for B given any symmetric matrix C. Indeed, take B =1CA. Then
BAT + ABT=1CAAT +1A4ATCT

=1C+3CT since AAT=ATA=1
C

.
= { <ince
OITIGY

<




Thus the set of all orthogonal matrices — those satisfying 44" =1 —is a sub-

manifold of the space of all matrices.

When studying transformations from one affine plane to another, we made 1

e r 3 22Ty Pratde—+

£

a

the concept of pullback of a function. Recall that a transformation ¢ fromran affin
plane A to another affine plane B gave rise, in a natural way, to a linear trans-
formation from the functions on B to the functions on A, as depicted in figure 10.5.

¢*
/—\
~ B o~
4 o F ) f
/ — | T~
P (@*NHP) = f(o(P)

Figure 10.5

interest in the pullback of linear functions on W (i.e., of elements of the dual space
W*) which arises as a consequence of a linear transformation 4 from V to W. In
this case the pullback transformation from W* to V* is called the adjoint of A.
We denote the adjoint by 4*, and define its action on an element e W* by

(A*B)[v] = Bl Av].
The proof that 4*, thus defined, is linear in B is the same as the proof that
pullback in general is linear: if B* and B? are elements of W*, then

(A*(c1B* + cBD) V] = (8" + c,B) [AV]
= ¢, B'[AV] + ¢, B[ AV]
= ¢, A*B'[V] + c, A*B2[V]

so that

2




and A* is linear. Notice that the linearity of f and A imply that A*$ 1s a linear

function of v, so that A*g does indeed lie in V*.

Y5 oY

a * 4
It is crucial to observe that the adjoint A* acts ‘in the o

A 1

Note caretully: if A transforms a vector veV into a vector Ave W, the adjoint A*

transforms a vector fe W* into a vector A*BeV*. This can be summarlzed in the

diagram
&

V*(A* W*
A
V—Ww

As an example of the adjoint transformation, let ¥ be the three-dimensional space
of even polynomials of degree <4, and let W be the two-dimensional space of
odd polynomials of degree < 3. Then the operation of differentiation defines a
linear transformation D from V to W:

D: f(&)—f'(¢).
A typical element of W* is

B:g-g(1).
For example, B(t + 2t3)=142=3 To calculate D*f we use the definition
D*p[f] = BIDf].
In the case at hand, Df =f'(t) and B[DfT=f"(1)- We conclude that D*f 1s the

linear function on V (element of V ).

a:g— | g(t)dt

Now

D*a[f]=a[Df] = J f@®dt=f(1)—-£(0)

so D*« is the linear function

D*a: f(t)-f(1) — f(0).

When we introduce bases for V, W, V*, and W*, the description of the adjoint
becomes particularly simple. Suppose that V is m-dimensional, with basis
{¥1,V3,...,Vn}, and that we have introduced a dual basis {o U a?,...,a™} in the dual
space V*. Similarly, let {w,,w,,...,w,} and {8, B,..., B"} be dual bases in W and
W* respectively. If 4 is a linear transformation from V to W, then

1 +1 antitiee La 3 PR B SR +
WHIETS TNC qUALIIUCS U1, Gap - -5 Uy TOTIIT L




represents A. Now we can calculate how 4* acts on a basis element of W*:

n n
= d=Pp X ayw; |= L aif iwil
=1 N =1
But since the basis {#°,..., 8"} is dual to {w,,...,w,}, we have
(1 ]
Biw=4 =
0 j#k

so that

(A*BY)[vi] = a:
Thus we may express A*B* in terms of the basis elements {a’,...,a™} of V* as

A*ﬁkz Z akldl.

=1

The quantities {a,} = {a,y, Ai2s - - -, Q) form the kth column of the matrix which
represents A*, but they are also the kth row of the matrix which represents A.
This means that the matrix which represents A* is just the transpose of the matrix

which represents 4. Thus, for example, if V'is three-dimensional, W two-dimensional
and A: V— W is represented by

/n 71 71
Uit w12 “i3
A=|

\dz1 4y, day3

e *. JAZ% | .4 3 o T

+1 t1ad 4 £ 42 A . 4+
LIIC dUJUlllL LI dISIONIIaUOI A 7. vy =dl 4 IS ICpleCIlLCU Uy

/a 12 AN
11 21
A —‘ 12 U3z2 ,
\413 d23/
AN enscv wav-ta cae that tha matricac ranracanting and 4% ara trancrnacecaf
xXirvaos A K" AU AN VIVERB I« AE S LVES IR <A N LW W)\, ) LDPI\/OUIILI 15 /1 Al 71 alrsv uauoyuoua Ul
one another is to recall that elements of the dual space may be represented as row

r t
vectors. In the present example, an element of W* may be thought of as a two-

combonent row - vector:
~. LAY Wil .

ol poi

ﬁ_-_ (;11, ;Lz:'

while an element of V is a three-component column vector:

Now (4*B)[v] = B[ Av] is written as
(MJz)(all 2)) a13) v,

Q7 Qi3 AQz;

It is most natural to think of the matrix A as acting first on the column vector to
its right to yield Av, which is then acted upon by §. Alternatively, though, we can

think of it as acting first on the row vector to its left:

Pl Val Va1

\
12) Cit 12 13 }=(H1,U')s Nz)

(As,

1
I

Gy, Q3 4z3)




where (., 1. u.) represents the vector (4*B)eV*, which then acts on ve V. Thus,

if we reverse the usual conventions of matrix multiplication, letting a matrix act

At +he came matrix renresents hoth 4 and 4% Tf we won

o~

M veetar fa 1fae ] 4»
oW vVCCIlOoT TO 1ts Heji; tne-same-matrix T pPlocotvo D07 allll—71T . 11 Wl Watlt

o represent A* more conventionally, by a matrix which acts on a column vector

to its right, we must write

m /“11 a1\ /7.\

1z Az, )
A
\ ) ka13 6123)\ 2)
Now, of course, the matrix representing A* is the transpose of the one which
represents A.

We turn now to an investigation of the kernel and image of the adjoint A*, If
BeW* is in the kernel of A*, then A*B[v] = 0 for all veV, so that B[ Av] = 0. This
means that f annihilates all vectors of the form Av. We conclude that the kernel
of A* annihilates the image of A.

Now suppose that aeV'* is in the image of A*, so that

a=A*f for some PeW*.

Suppose that v is an element of ker A. Then

alv]=A*B[v] =p[Av] =0.

We conclude that the image of A* annihilates the kernel of A.

Putting these results together with the general results abou

quotient spaces proved at the end of section 10.5, we can construct two diagrams
which summarize our general picture of vector spaces and linear transformations.

Looking at subspaces of V and V*, we have

V*[im A* « V*—im A*

I1i1 7'x

ker A— V-V /ker A.

This diagram reflects the fact that the quotient space V*/im A may be identified

with the dual of ker 4, while the image of A* is dual to V /ker A.
Looking at subspaces of W and W#*, we have the diagram
W*/ker A* « W* «ker A*
imAd—-W-W/im A.
Here W*/ker A* may be identified with the dual of im 4, while ker A* is dual to

W /im A. Numerous examples of these relationships will appear as we study electric
network theory.
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A Vector-spaces

You should know the axioms for a

<

ector space and be able to apply them.




Given a basis for a vector space, you should be able to recognize or construct
a dual basis for its dual space.

Given-a-subspace U of a vector

oelmaernas I/ PP-C T haoild be able to ¢
space 'y, IO O auliv (U ©

+1 1111t 7 b S L

use a basis for the annihilator space Ut and the quotient space V/

D

B Linear transformations
You should be able to write down the matrix that represents a linear transformation
A: V— W between given bases.

You should be able to state, prove and apply the rank-nullity theorem.

Given the matrix of a linear transformation A4, you should know how to use
row reduction to determine bases for ker A and im A and to find the general
solution to Av=w.

You should know the definition of the adjoint A* of a linear transformation A4
and be able to state, prove, and apply relations between the kernel and image of
A and the kernel and image of 4*.

Exercises

10.1. Consider the five-dimensional vector space V of polynomials f(t) of degree
< 4. Determine whether each of the following is a subspace. If not, explain
why. If so, find a basis.

(a) Elements of V satisfying f(¢t) =f(—1t).
(b) Elements satisfying f(0)= 1.
(c) Elements satisfying f(1)=f(—1)
. o 1
—{(d) Elements satisfying {_ tf()dt=0.
10.2.(a) Find a basis for the subspace of R* defined by a[v] =0, where
a=(2,—3,1)
(b) Find a basis for the subspace of R> defined by a[v]=0 and p[v]=0,
where ¢=(2, —3,1) and f=(2,1, - 1).
(c) Find a basis for the annihilator space of the subspace WeR? spanned by

A A
k— 3) and \ 1).
1 —

10.3.(a) Show that the set of functions f(t) satisfying f” + 5f' + 6 f=01is a vector

space V.
(b) Three elements of the space V* dual to this space are
a' =fi>f(0),
a’ =fif'(0),

a®=fis [Pe'f(t)dt.

Find a relation among a!, a? &> which shows that they are linearly
dependent.

(c) As a basis for V, choose




LXErclses

Express the dual basis elements §* and B2 in terms of ! and a? above.

intersection Sy

12

subspace of V.
1

(b) Show that S + T (the set of vectors that are linear combinations of vectors

in S and T is a subspace of V.
(c) Show that dim(S + T) =dim(S) + dim (T) — dim (S~ T).
Hint: Start with a basis for S T and extend it to a basis for S+ T

1 2

. . 0
(d) Suppose Vis R*, § is spanned by X and ; ,and T is spanned by

0 1

—_ = N) =

and . Construct a basis for SN T, for S + T, and for the annihilator

SO - O

space of (S+ T).

10.5. Let W be the subspace of R* spanned by{ 2

4
1 ]
{al QShawvz+hat o 1 and a  — 1 farm a hacic foar tha Anratiant acnaca
\a} WDIITUYVYY Lldat c:l el \ I S )‘auu c2 _ \ Fy J IV a4 UaAviy 1V Lliv \-luUl'l\./lll. DP“U\/
U/ \1/
1 0 0
R3/W. Express| 0 )1 1 Jand | 0 ]as linear combinations of these
k Fay } FaY \ 1 J
\YU/ \Y/ \l/

basis elements.

(b) Show that = (2, — 1,0) and = (4,0, — 1), both elements of the dual

of R3, are a basis for the annihilator space W=. In terms of & and B,
construct a basis {¢!, £2} for W* which is dual to the basis {e,, e, } for
R3/w.
10.6.(a) Let W be a subspace of a vector space V; let U be a subspace of W. Prove
that W/U is a subspace of V/U, and show that there is a natural

identification of

ViU |
with V/W.
U

(b) For the case where V is R?, W is the plane x + y + z=0, and U is the line
|
spanned by [— 2 |, construct explicit bases for these spaces.
1
(c) Figure out what is happening in the dual space, that is, construct
subspaces of V* which are the dual spaces or annihilator spaces for the

various spaces in (a). Do this first in general, then for the explicit case

juy
o
NE

A ” L£L£) Ar + B/t
tnerorm j (i) ==l 1+ D/t
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Two elements of the dual space V'* are

B —7m),

B2 f(O—f(2).

r
Express

b (s
=
l¢’

' CI)
"S

o La
s 1a a*}-which-are-dua
B2

™

10.8.(a)

(b)

10.9(a)

(b)

combinations of p ana p - Before wormng eXercises
section 4.2 on the Gram—-Schmidt process.

Find the dimension of the space of trigonometric polynomials spanned by
{1,sin’x, cos’x, sin“x, sin®x cos®x, cos*x}.

Define a scalar product on this space by

1 4
(ﬁm=;ffumqu

With respect to this scalar product, construct an orthonormal basis.

Consider the vector space of odd polynomials of degree < 3 with basis
{t,t3} and scalar product [§ f()g(t)dt. Construct an orthogonal basis (you
need not normalize).

Given the linear operator f: V — V defined by f (p(t)) = tp’(t), construct the
matrlx A whichr represents f with respect to the {z, ¢} basis and the matrix

Y2k <1 31 1 + h .4

—~
€
~—

u
[ al] 1 1 i I 1 £~H
I'iree elements of V*# [IIC aual bp'd.LC O ¥V, Midy OC ACHIEd dS 10HOWS?
|

[p1=p(1), &*[p]= P ©), &’[p]= Jotp(t)dt

Fmd a relationship among a*, &%, a® which shows explicitly that they are

dependent.

10.10

combina t

nsof £ =1 and £ _COSzf. De

COoOIoind }OAA O 7 1T
{ £

7z
nnnnn A\ Ve WA 1P ru)

j (Y A ¢
space by (f,9)=1{2/n)§o " S {t)gtt)dt.

(a) Construct an orthonormal basis for V.

Note:

9 /2 1 9 (‘w2

— cos’tdt =—; — cos*tdt =3/8

10.11.

T Jo 2 T )y

o

(b) Three elements of the dual space V* are:

n/2 w2
alif - f(n/2), o&f—»j f(t)costdt, oc3:f—+f f(t)sintdt.
0 0

Show explicitly that these are linearly dependent.
Consider the three-dimensional vector space V whose elements are the
polynomials of degree <2 multiplied by e~ %. A basis for this space is

vi=e ¥ v,=te ¥, vy=tle” %

(a) With respect to this basis, write down the matrix D which represents
the operation of differentiation; i.e.,

(1)

W + 4+ 4 4gut
U) COILBILITULL LT HIdITIA

matrixt)

1 P 1 . 1 . . A A —2t 1: : 1
(c) The general solution to the equation X + 4% +4x=¢ *lies in the

vector space V. Find it by using the matrix that you constructed in (b).




10.12. Consider the vector space V of solutions to the difterential equation

¥4+3%x4+2x=0.

Define a scalar product on this space by
(* o

£g)=| f(H)g)de

v o

(Remember that [Je™* = 1/a.)
(a) Takef, = e~ * as the first basis vector for V. Construct a second vector
f, that is orthogonal to f,.

(b) With respect to the basis {f;,f,}, construct the matrix D that
represents the operation of differentiation with respect to . Verify that
D?+3D+2I=0.

Three elements of the dual space V* are the following:
a,[f]=1(0),
a,[f]1=1(0),

ay[f] = J oof(t)dt.
0

(c) State on what grounds you know that there exist numbers 4,, 4, and 4,
(not all zero) such that .

Aoov, L Aot + A.o0. =10
) Sl UL AV AL AT, T ]

Then determine 4,,4, and 1;.
(d) In terms of &; and a,, construct a basis {8,,8,} for V* that is dual to
the basis {f,,f,} that you constructed in part (a).

1 "

space: Df(ty="(t), and let T, be the translation operator: T,f(t)=

ft+a. |

(a) Construct the matrices which represent D and T, relative to the given
basis, and show that

T It Doy 1
Ia—l -ruu-r2

(b) Prove, that if V is the space of polynomials of degree <n,
T, =eP°
(Hint: Think of Taylor’s theorem, and you need not construct any
matrices.)

10.14. Let V be the space of one-forms on the plane for which the coefficients of
dx and dy are quadratic functions. A basis for V is x2dx, xydx, y*dx, x*dy,
xydy, y*dy. Any curve I in the plane defines an element ay of the dual

space V* by the rule
arfw] = J .
r

(a) Invent a non-trivial curve I for which e is the zero element of V*.

(b) Find a basis for the subspace of ¥V which is annihilated by &y, where I
is any closed curve.

(c) LetI'y,I", and I'; be any three closed curves in the plane. Prove that
er,, &r,, and e, are linearly dependent. (Hint: Use Green’s theorem to
convert the integrals to double integrals.)
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(d) Find curves I';,I,..., ¢ (straight line segments will do the job) so

that the elements ar ,0p,..., op form a basis for V* which is dual to
the basis listed above. For example

x“dx 1 while dex=0 i—23456
wWililC J Ly dy Ty ™
J T, r]
(l fad
xydx =1 while xydx=0 j=1,3,4,5,6.
v Iz JvI;
10.15. Consider the linear transformation f from R* to R® whose matrix is
1 2 0 1
1 0 2 -3
0 1 -1 2
(a) Find a basis for the kernel (null space) of f, and construct the general
solution to the equation
1
f=1 3
—1
(b) Let N denote the kernel of f; let G be the quotient R*/N. Construct a
hagte for G and-evnlain bow valntare enre that vonr bhacdie vectore ara
vasiy 1Vl U, dliliu \JAlJlalll ovy bk arv oulilv aaatdl UUlLl UAdodIy YLULLUIT O Ay
independent-elements-of G-
10.16. Consider the linear transformation f from R* to R” whose matrix is
/24 2 N\
( 1 s ] ~ Fay \
‘ 1 D Z U ’
\3 1 -2 8/
(a) Find a basis for the kernel of f, and construct the general solution to
tha aanatian
|2 9 L) U\.iual.l\)ll
0
fW=} —11
5/
N/
(b) Write down a basis for the image of f.
(c) Two elements of the quotient space H are
0 0
h,={1] and h,={ O
0 1
Show explicitly that h; and h, are linearly dependent. (Hint: Look back
at part (a).)
10.17. Let A be the matrix of a linear transformation f: R* —» R* given by

1 0 —1 1
0 2 4 —38
A= 2 1 —4 6
1 5

1 -3

o]

1. 1 £ A4 o

{2 1 1 £
a) DYy TOW lcuuuuuu, uuu tllU IdIlKN Ol A allll 11l

Eabet this basis v, .., v, (k=dimker 4).

(b) Find the solutions w,,..., w, to the equations AwW; =v,.




(c) Do the vectors Wi, ...,Wx Vi,--+» ¥ form a basis for R*? What does

your answer imply about the transformation f?

(d) Find a basis for imA4 and express this basis in terms of the w; and the v,.

How does this answer relate to your answer to (c)? Hint: Something

strange is going on!)
it =3 o o

7

101Q T o+ 4 4o ¢la A 4 matriy
V.10, LCL A UCIHTULD LIIU A iatida
/ \
[2 4 2 2\
1 20 2
A=
3 6 5 1
0 0 3 -3
(a) Using row reduction, construct a basis for the kernel of A and a basis
for the image of A, and construct the general solution to the equation
4
3
Av = .
4
-3
(b) Construct basis vectors u, and u, for the quotient space U = R*/ker A.
4
3.
Express the vector | 4 in terms of u, and u,.
\—3
K /
10.19. Let W be the subspace of R* spanned by the vectors
/ \ [\ [\
1 3 |
| 3 1
W, = law2=§’w3_-§
—1 2 5
v o/ 7

The scalar product in R* is the ordinary Euclidean one.

(a) Construct an orthonormal basis for W.

[ 4\

. 0 )
(b) Write the vector v= { as the sum of a vector in W and a vector

7

orthogonal to W.
(c) Let f:R*—R3 be defined by

(wl’ V)
JW =] (w,,)
(W3, V)
Write down the matrix representing f. By row-reduction, construct
the general solution to the equation

f(v)=( 2\
— \—2/

=]
wn
3

e
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annihilator space U™ is spanned by the row vectors

oy NN

“ 2, U, — 1,2},
2 £~

a= (1’7 47 js 4, 4)’

a”=(0,0,1,2, 1),

a*=(3,6,5,7, 8).

Then ecanctriiet the ceneral caliitian_fta +ha pmmrleamanie Hnear aapnatianae
ITNCIHCoIhirutithaegoiacra>ordtion 1o tne Ssrmuitancousnmmcar Tyuatiolns
dl[v]=5, o&’[v]l=16; a®[v]=3; «*[v]=2T.

10.21. Use row reduction to calculate the inverse of the matrix
1 -2 1
A=|-2 5 —4
1 —4 6

10.22. Let V be the space of functions f on R? with the property that
f(Ax, Ay) = 23f(x,y). A basis for Vis

{vi=x% v,=x%y, vy=xy%, v,=y}.
Let W be the space of one-forms on the plane which are quadratic
functions of x and y, with basis

{w, = x?*dx, w, = xydx, wy = y*dx, w, = x*dy, ws = xydy, we = y*dy}.

The operator d is then a linear transformation from V to W.

(a) Write down the matrix which represents d relative to the given bases

AN

(b) Construct_a basis for the imagce of d and for the guotient space
\U NUITIO LTI AWl L%3 L4 e p e TOUL LI AXEIC &v AIEICYT TOUKX AL ﬂ“ ‘rl TIL Utlwvv
ral A 1 AN
o=w/tmdy).
2
P4
1 —
1
o
» 1
< >
X
"
V [l
-1 »

Figure 10.6

(c) Two elements of the dual space W* are &', which assigns to any we W
the value of the integral [,1w, where a' is the unit square 0 < x <1,
0 < y <1, traversed counterclockwise, and a2, which uses instead the
unit square 0 < x <1, — 1 < y<0. Construct the row vectors which
represent &' and e?, and construct linear combinations of ! and &>
which are the dual basis for your basis of G.

(d) Let U denote the space of two-forms on the plane which depend
linearly on x and y, with basis

{u1 =xdx Ady, u, = ydx Adyj.

represen s the operator d from Wto U.




10.23. Let A be a linear transformation from V to W, A* the adjoint transform-
ation from W* to V*. Suppose that we have not chosen dual bases in V' and
V*. Instead, we have a basis {vy,V5,...,V,} for V, a basis {a*,a?,...,a™}
for V*, with a'[v,]=S,; The numbers §;; form an m x m matrix S.
Similarly, we have bases {wy, W,,...,w,} and {#', ..., "} in Wand W*
respectively, with *[w,] = T,. The numbers T,, form an n x n matrix T.
(1f we had chosen dual bases, S and T would both be identitv matrir‘e&\

1 A is the matrix-of the transformation relative to bases !v 1 and fw.l

I 71 o TG TRar v O e+ et elatd I anoy el BAF SN

what is the matrix of A* relative to bases {#'} and {«'}? Express your
answer in terms of A7, the transpose of the matrix A, and the matrices S
and T.

10.24. For a vector space V with a scalar product (v, v,), the adjoint A* of a linear
transformation A:V — V is another linear transformtion A*: V-V de-
fined by

(A*vq,v3) = (v, AV,).

(a) Show that this definition follows from the definition of A* as a
transformation from V* to V*, combined with the usual identification
of V* with V which arises from the scalar product.

(b) Show that, relative to an orthonormal basis {e,...,e,}, the matrix
representing A* is the transpose of the matrix representing A.

(¢c) Let = denote the linear operation of orthogonal projection from V
onto a subspace W; ie, for any veV, nv lies in W, and v—nv is
orthogonal to nv. (Note: n is a transiormation from V to V, with
im7 = W.) Show that n* ==.

(d) Let V be the space of polynomials of degree <2, with scalar product
(f, g) = {5 f(1)g(t)dt. Choose a bas1s v, =1,v, =1,V3= t2 (which is not

< TI

1ven basis

10.25. Consider the linear transformation from a four-dimensional vector space
V to a three-dimensional vector space W, which is represented by the
matrix

1
(a) Let M denote the image of 4. Show that the vectors m; =| 2 Jand
2
1
m, =| 1 |form a basis for M.
3
(b) Let H= W/M.Show that a basis for this quotient space consists of the
1
single element h, = | 0 ], which is the equivalence class containing all
’ N 0 v N\
| 0
vectors| O |+ m, where m is an element of ‘M. Show that| 1 }=

-




——h, | ie., find an element m of M such that| 1 }= ——{ 0 |4+ m )
\ 0 No
/0\ N A4
\
Then-express \ 0-|intermsof hy:
\I
/ \
1
(c) Let N denote the kernel of A. One element of Nisn, = | g Find a
1

second vector n, such that n; and n, form a basis for N. | Hint: Apply

a
row reduction to A, then look for a vector of the form 117
0

(d) Let G denote the quotient space V/N. Define basis vectors in this space

/

1\ i n\ I
I U

b

o S|~

0

Y8r= 0 82—
0
\

/ - v

0
0
in terms of g, and g,.

)
\1/

(e) Construct the non-singular 2 x 2 matrix C which represents 4 as a
transformation from G (basis g,,g,) to M (basis m,, m,).

/2\

(f) Express| 1 |interms of m; and m,. (Hint: Apply the same operations
7

that you used to row-reduce the matrix.) Then apply C !, and thereby
2

solve the equation Av=| 1 }, obtaining the answer in the form v=
7

ag, + bg, = +n, where n is an arbitrary element of N.

a
b
0
0

10.26. Let f* denote the adjoint of the transformatio

=




original bases in ¥ and W, it is represented by the transpose of 4:

) 2\
13
AT =1A Y ~
U 2 —2Z
3 2 10
(2)_Show that the imaageof £* is dual to the space G. Let ¢* and o%* be
() 2Ty tac tau g c oy r o0 Bl

AT in terms of g¥ and g%.
(b) Show that the kernel of f* is dual to the space H. Let " be dual to
h,:ie., y'(h,) = 1. Let B' be the element of W* which picks out the first
a
component of a vector; i.e., wf| b J=a. Express g' in terms of y’. Do
¢
the same for B2 and B3, which pick out the second and third
components respectively.
(c) Find vectors &' and a? in W* such that f*a' = g', f*a® = . Show
that !, &2, ' form a basis for W*.
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Chapter 11 is devoted to proving the central facts about
determinants of n x n matrices. The subject is developed
axiomatically, and the basic computational algorithms are
presented.

A |

Introduction

In this chapter we discuss properties of the determinants of # x n matrices. Let 4

be an n x n matrix. We will let 4,,..., A4, denote the columns of 4. Thus, if I is
- the n x n identity matrix,
[\ [0}
1
1
I 0 JF A} ate
X 1 _— . Py 12 bl \‘I « WLG.
0 :
Vo \O/
i AP 4o A4 41
"ol 4ally IHdlrix A, Ulctl

A, =Al,,...,A,=Al,;

in other words, A4; is just the image of I;, the ith element of the standard
basis, under A.

We expect to be able to define Det A as the oriented volume of the parallelepiped
spanned by A,,...,A,. Our experiences in Chapters 1 and 9 suggest that this
oriented volume may be multi-linear — that is, linear in 4, when A4,,..., 4, are
held fixed, linear in 4, when A, 45,..., A, are held fixed, and so on. Also (due to
the orientation), we expect that Det A4 should be antisymmetric in the columns;
that is, interchanging the columns of a matrix changes the sign of its determinant.
We must define the determinant, and prove that it has the requisite properties. In

fact, we shallfollow the classical treatment of Artin and characterize the determinant

axiomatically. That is, we shall write down a simple list of properties we expect




the determinant function to have, and shall show that these properties uniquely
characterize the determinant. In other words there is only at most one such function.

doesexista functlon satisfying the axioms. By showing that various other definitions

also satisfy the axioms, we will be able to conclude that all these definitions must
give the same function.

In_what fallawre : it i
n-what 1oHowWSs, we will be llltclcaLud in-a functio 1 D, of matrices. W hen-tt1s

evaluated on a matrix A we write D(A) or D(4,,..., A,) when we want to emphasize
that it is a function of the n column vectors A4,...,4,. If we keep all the columns
but the kth constant, we obtain a function of a single column. We shall write this
function as D,. (It is understood that all the other columns are held fixed with given
values.) For example, we shall write

X 1 x 7
D,(l vy for D ||-2 vy 9
z 3 z -1
1
(Strictly speaking, we should specify the vectors A;=|-—2 and
3
/ 7\‘
A= 9—|in the notation for D, and write
—1
7\
/' N\ o\
o (N
i il & Wl A\S7);
\3 \-1/

but the notation would be overly cumbersome:)

11.1. Axioms for determinants

A function D of matrices is called a determinant if it satisfies the following
conditions:

Each of the functions D, is linear:
Dk(Ak + A;c) = Dk(Ak) + Dk(A;c):
Dk(CAk) == CDk(Ak) (11'1)
In other words, D is linear in each column when all the other columns are
kept fixed.

If two adjacent columns of a matrix A are equal, then D(4)=0. (11.2)
And
D(I)=1. (11.3)

We will now draw some consequences from (11.1) and (11.2)— assuming that
some function D exists satisfying (11.1) and (11.2).




Adding any multiple of one column to an adjacent column does not change the value

of D.

Proof
D(A4,,..., A cAr+ A, iy A)
=D(A13"'3Ak9Ak+13'~-,An)+CU(AI,...,Ak,Ak,...,An)
by (11.1). But D(4,,..., A, A,...,A,)=0 by (1.2). So
D(AIS"',CAk-’_Ak+13“‘sAn)zD(Al""iAn)' (114)
For example,
1 4 7 1 4-—-41 7
Dil2 5 8}|=D|]2 5-42 8
3 6 9 3 6—-43 9
1 0 7
=D|l2 -3 8
3 -6 9

Now add the kth column to the (k + l)st, then subtract the resulting (k + 1)st
column from the kth, then add the kth to the (k + 1)st again — so

DA)=DAy, .5 A A+ A 15 Ak 4255 Ap)

=D(A, Ay —(Ap+ Ap )y A+ A Ay
Sl ¥ [ 4 A\t . 2 K+1/7 L K+ 13 [l 1
:D(Alﬁ""—Ak+15Ak+Ak+1""’An)
— D(A 4 A 4 A, . — A 4)
N U L o Uy SR £ o | e+ 15 s ‘i)
= (Ala"'a—Ak+1aAkaAk+2=°"sAn)
= D(A A 4.4 4 ) by (111D (11.5)
U\Ill,-o.,llk+1,llk,.llk+1,...,an} UJ \ll J.’. A J
La mb |
rous

Intorf*hnn/nmn two_adiacentcolumne chanaes the cianof - DLAN
A o rrvrrnyuleniLUitdiniioLnange s tne Jiyrn Uy 1\ 1),
Now this implies that
If any two columns of A are equal, then D(A) = 0. (11.6)

Indeed, if two columns are equal, we can keep interchanging adjacent columns until
the two columns are adjacent then apply (11.5) to conclude (11.6). We can now apply
the argument proving (11.4) to conclude:

Adding any multiple of one column to another does not change the value of

D(A). (11.6)
Thus, continuing our example,
147 1 07 subtract 7 x first
Dil2 5 8))=D||2 -3 column from last
3 6 9 3 -6 9
1 v 0\ now add — 2 x second
=D|}l2 =3 =6 column-to-last
3 —6 —12

A 77




1 0
=D||l2 -3
3 6

0
0}] =0by (11
0/

Let us do another example.

N

>

l
o
l

‘11 add 2 x first
column to second
4
add first column
1 to third

subtract 4 x second

il
o
7 T N
O O OO OO OO MW

O = NONN NDNORN NN = NN -
[

= D —_— 0 )
(( 1 column from third
(S
= D ||- 0/ by (11.1)
\\ 9
010 . ~
— _aD _1.0.0 subtract 2 X third
- ~ ~ 4] column from second
\\ V2 LY
01 0O\
— _9p L 00 interchange first
\\ .~ .~ J] and second columns
\ 0 0 1/
(A0 Oy
=+9D{[0—1 O by (t1.1)
U 0 1

1 00
=-—9D [0 1 O}}.
0 0 1

If we now apply (11.3) we conclude from the axioms that

21 4
pll1 2 1]} =-9
4 2 —

We also observe that it follows from (11.7) (as in the proof of (11.5)) that
Interchanging any two columns changes the sign of D(A).
We can also conclude:

(11.8)

If the columns of A are linearly dependent, then D(A)=0.

(11.9)

Indeed, if 2,4, + -+ 4,4,=0 and some 4, # 0, then we can solve for the ith

A8 Sl !




column 1in terms of the others

4 ~ A4 4 Fa 0O
TS T T —C, A, =V, =V
ing ¢, A,, etc. from th hange D(A) (by (11.6
and vielde 9 matriv.whose ith colimn vanichee Then byuy (11 Y DA —=0
arlr y.l\.dub a IHatl A ywiinosU it CoTualiair valtliSTics. 1 11CIT U (T O\7L) .
In particular, we know that any 7 vectors of the form
/o \\
a,
a

(with a zero in the first position) are linearly dependent. Therefore
If all the entries of the top row of A are zero, then D(A4)=0. (11.10)

Suppose that at least one entry in the top row of 4 does not vanish. By an
interchange of columns, if necessary, we can arrange that the first column has a
non-zero entry in the top row. So

D(A)= + D(B) where b, #0.
Now
D(B) =b.,D(B)
where the first column, B| of B’, is B| =(1/b,,)B1-
By subtracting off suitable multiples of the first column from each of the

. ~
n1 /

1 7

Now consider D(B”) as a function of the columns of C. Clearly it satisfies conditions
(11.1) and (11.2). Also, if C were the (n— 1) x (n — 1) identity matrix, we could
without changing the value of D(B”) make all the entries b}, b3,, etc., in the first
column vanish just by subtracting off multiples of the second, third, etc., columns
from the first. For example,

1 0 0 O .
210 0 subtracting
D 3010l 2 x the second
40 0 1 column from the first
(1) (1) 8 8 subtracting 3 x the
D|(l. ~ . |l =third column from the
J U 1 U
\\4 00 1 /’ second




//1 0 0 0\ ] L
5100 subtracting 4 x the
D 5 (‘) L ol = tourth. column from
S the third
\\4 U v U//
{1 0 0 0\
0 1 0 0
D 0D 0D 1 FaY
AV, \VJ 1 U
0O 0 0 1
In other words,
D || B

as a function of C, satisfies all the axioms for a determinant for (n — 1) x (n — 1)
matrices. Therefore

D(B") = D(C)

where, on the right, we mean the D-function (if it exists) f

or(n— 1) x (n — 1) matrices.
Apply -n‘ the same argument over nomn we_conclude

S A il

=

1)m
that either D(C) 0 (f

H+¢1 N

-function

e
[
=
[
(g
=
=
e
w2

» a
—
a
t: A

all the entries in its top row are zero) or we can express D(C) 1

for (n — 2) x (n — 2) matrices. Eventually we get down to a 1 x 1 ‘matrix’ where

the axioms (11.1) and (11.3) imply that

D(a) = a(D(1)) = a.

This proves that the D function, if it exists, is unique and gives a definite recipe for

computing it.

For example, suppose
[0 3 —1 4
2 4 1 5
A=l _4 7 2 8}
2 9 3 2
D(A) = — D(B) where
-1 3 0 4
_ 1 4 2 5
B= 2 7 —4 8/
39 2 2
D(B) = D(B") where
1 0 0 O
pr_ |1 7 2 9

—2 13 —4 16

-3 18 2 147




and D(B”) = D(C) where

/7 2 9\
C=(13 —4 16|
18 2 14
Now
/7 1 9\\
D(C)=2D [[13 -2 16
18 1 14
1 0 O
= —2D -2 13 16
1 1 14
1 0 0
=-2D ||-2 27 34
1 —6 5

= — 2275+ 34-%).

tha mnavi carntimtr chall ag1ve s 00 fthpo 1 ihianenece £ DY AN

I ~f +tha P |
111 L1IT IICAL DCLUUU w¢e blldll EIVU a ditterent lJlUUl Ul LllC UIIIHUCIICDD U 1), and

a difterent recipe. The uniqueness implies that these two recipes must give the

same answer. But we must still show that a D(A) satisfying (11.1), (11.2) and (11.3)

avigte

VATISLS.

We can, however, derive an important consequence from our current algorithm

procedure for computing D(A4). Suppose the matrix A4 is of the form

(5 W)

where L is a k x k matrix, N an (n — k) X (n — k) matrix and M a matrix with k
rows and n — k columns. In other words, suppose that the first k columns of A
all have zeros in their last n — k positions. Then the first k columns of 4 are linearly
dependent or independent if and only if the columns of L are. That is, the last
n— k zero positions in these vectors do not affect the dependence or independence
of these columns. If these columns are linearly dependent, then

D(A)=0 and D(L)=0.

If these columns are linearly independent, then in applying our algorithm, we can

use the first k columns in the first k steps and thus replace M by the zero matrix




but not affect the entries of N at all, until we get to the (k + 1)st step. Thus

M)\

(T1.11)

| = D(L)D(N).

N/

/L

D|

This is the generalization to n dimensions of the “base times height” formula for

the area of a parallelo
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with a similar interpretation.
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112 The multiplication Taw and other consequences of the axioms

Let us draw some further consequences from (11.8). Let (vy,.--,v,) be any permu-
tation of (1,...,n). We can rearrange the columns, one at a time in the matrix

N({ A 4 4 A
viA,,...,4,,,...,4,)))

until they are back in their original order. At each stage we apply (11.8), and
conclude that

D((4,,,...,A,))=+D((Ay,..., 4,)) (11.12)

where the + does not depend on the particular entries of A. Applying (11.12) to
the identity matrix, we see that

p(,,....,1,))=+1

and hence that

D((A,,,...,A,))=D(,,,...,1,))D(A). (11.13)
Now let B=(b;;) be a second n x n matrix and let
C=AB.

fa'nl
1

1 1 il . R
IS COIUIIILS O C alv glvlll Uy

For example, in the 3 x 3 case

C,=b, A +b, A, +b. A
1 U114t T Y212 T Y3143

P o | 4 L1 4 1 4
Lo =U12A41 T U245 T U33A4,,
C3=0,34; + 0,534, + 03345

SO

D(Cy,Cy, C3)=by1D(A,,C,, C3) + by D(A,, Cy, C3) + b3 D(A5,C,, Cs)
=b11{b12D(4,41,C3) + b3,D(A,, A5, C3) + b3, D(4,, 45, C5)}
+b,y1{b12D(A2, A1, C3) + by D(A,, Ay, C3) + b3, D(Ay, A3, C3)}
+b31{b1,D(A3, A1, C3) + by,D(A5, 4,,C;3) + b3, D(A3, A3, Cs)}.
Before proceeding to the next step, we can eliminate all repeated columns. It is
clear that at the end only expressions of the form D((4,,, 4,,, 4,,)) will be left and
these, by (11.12), are equal to + D((4)). Thus, in general, we see that
D(C)=D(A)> +b,,1b,,5...b, , (11.14)

where the sum is taken over all permutations and the + sign is the one given by
(11.12).
Suppose we use (11.14) and take 4 = 1. Then C = B and we conclude that

=]

FaVa » S U W | (11 1R\
D\D)=) 0,1 " Dyp (rrs)
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If we substitute (11.15) into (11.14), we get

D(AB) = D(A)D(B) (11.16)

(11.1y
Now in (11.14) take i to be some number 1 < i < n and take 4 to be the matrix with

A, =1, k#ii+1,

Ai=L;+1;,,,
Aiv1=0.
For example, with n =3 and i =2 we would have the matrix
1 0 0
0 1 0
010

Notice that AB has all its rows except the (i + 1)st the same as the rows of B. The

(i+ 1)st row has been replaced by the ith. In the above example

/T 0 0\ /1T 5 9\ /1T 5 9\

[0 1 0]{2 6 8]|=[2 6 8}

\o 1 0/\3 7 4/ \2 6 8/

Also D(A) =0 since it has one whole column zero. For this we conclude that

D !

If B has two adjacent rows equal, then D(B)=10: (tr.2)

D(BT) satisfies axioms (11.1) and (11.2)

because replacing B by its transpose, BT, interchanges the role of rows and columns.
But IT = I, so (11.3) is also satisfied. Thus D(BT) satisfies axioms (11.1)—(11.3), hence
by uniqueness must coincide with D(B). In other words

D(B™)= D(B). (11.17)

11.3. The existence of determinants

We shall now prove the existence of determinants. That is, we shall construct a
function of n x n matrices that clearly satisfies (11.1), (11.2) and (11.3).

Forn=1

Forn=2




It 1s easy to check directly that (11.1)-(11.3) are satisfied. We now proceed

inductively. Suppose that we assume the existence of (n— 1) x (n — 1) determinants

Dttt

Let

AIIVL

= (a,-k)

be an n x n matrix. Consider some definite position, say the position at the ith

row and kth column. Let us cancel the ith row and kth column in 4 and take the

determinant of the remaining (n — 1)-rowed matrix. This determinant multiplied
by (— 1)' ** will be called the cofactor of a; and be denoted by A;,. The distribution of
the sign (—1)'** follows the chessboard pattern, namely

+ - + -
-+ — +
+ - 4+ -
-+ — +

Let i be any number from 1 to n. We consider the following function D of the
matrix (A):

D=a; Ay + a4y + -+ + 4y Ay (11.18)
It is the sum of the products of the ith row and their cofactors
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equal columns in A4;, so that 4;, = 0. The determinants used in the computation of

A;and A4, , . , are the same but the signs are opposite; hence 4, , = — A4, .., whereas

., =a., ... ThusD=0and (11,7\ holds. For the an(‘ml case 4, =1 ,v=1 2 n
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proves the existence of an n-rowed determlnant as well as the truth of formula

(11.18), the so-called development of a determinant according to its ith row

Equation (11.18) may be generalized as follows. In our determinant replace the ith
row by the jth row and develop according to this new row. For i # j that determinant
is 0 and for i =j it is D:

(11.19)

D for j=i
a1 Aiy + apAp + -+ ap Ay = { 7=t }

0 for j+#i
If we interchange the rows and the columns, we get the following formula:

D for h=k,
0 for h#k |’

Equation (11.20) says that, if we form the matrix

alhA1k+a2hA2k+ °e +a,,hAnh={ (11.20)

5] {

A
D =14;5)

called the cofuctor matrix of A, then

B4 = D(A)I.




Exercises 399

Notice that we have already proved that if 4 is singular (so that the columns of 4 are
inearly dependen an D - cnad; _ . .
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where B is the cofactor matrix of A.
| This formula for A™' is known as Cramer’s rule. It is not an effective way of |
computing A~ ! if n > 2. (For n = 2, it coincides with the prescription in Chapter 1.)
For n>2, it is better to use the algorithm described in Chapter 10. However,

Cramer’s rule does have theoretical importance. For instance, it shows that the
: - : . 5
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‘ determinant: ‘
Summary

| A Determinants |

You should know the axioms for determinants and be able to use them directly for
evaluation of determinants.
| You should be able to state and apply the rule for evaluating a determinant by use |
of cofactors.
You should be able to state and apply Cramer’s rule for the inverse of a
| nonsingular square matrix |

Exercises

Youshould write down several 3 x 3and 4 x 4 matrices and evaluate their
determinants. You will find that already in the 4 x 4 case the expression
(11.15) or (11.19) becomes quite unpleasant (involving 4! multiplications
on 4! — 1 additions) while the algorithm described in section 11.1 is quite
manageable. Here are several against which you can check your

arithmetic.
1 2 3 4
5 8 11 12
(8) Det| o g 13 15 |=—2
\7 10 14 16
\ )
/o 2 2 2
| R . ) 5
®) Det] s 5 4 5 [=12
| 333 5
11011
23 3 3
(C)Det223 3=1.
22 2 3
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I
. In generalization of example (b), show that

r, a a a

b r, a a bf(a)— af(b)
b b ry a - b—a

b b b r

Det if a#b

where f(x) =(ry — x)(r, — x)(r; — x)(rs — x).
Hint: The determinant of the matrix below is a function F(x).
rn—Xx a—x a4—x a—x
b—x r,—x a—-x a—x
b—x b—x r;—x a-—x
b—x b—x b—x r;—x
But it is a linear function of x since we may subtract the first row from all
the remaining rows to eliminate the x from all but the first row. Hence

F(x)=A+ Bx

for some constants A and B. But F(a)= f(a)and F(b) = f () So solvetor 4

and set x = 0. What does the formula become when a =b?

11.2

In generalization of example (c), show that

{ \
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=(a=x)(b=y)c=2)
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11.3.

In generalization of (c), show that

1 1 1 1)

[

114,

11.5.
11.6.

A R Uy G (R L)
X3 y3

State and prove the corresponding fact with 4 replaced by n.
Show that

w2
3

42
z3 w

Det(Ay,..., A)| <Ay ll--- 14,1
When does equality hold?
(Hint: Use the interpretation of |Det| in terms of volume.)
Show that if O is an orthogonal matrix (so 00" =1I), then DetO = + 1.

A matrix R is a rotation if RRT = I and Det R = + 1. Show that a rotation
in an odd-dimensional space always leaves at least one non-zero factor
fixed; ie., R has 1 as an eigenvalue.

(Hint: Consider Det(R —I).)




SUGGESTED READING

The short list of books that we give at the end of this section is not meant as
bibliography. Rather, it consists of books that students of the course have found
helpful in supplementing and extending the material covered in this volume. The
book by Loomis and Sternberg can be considered as a companion text. The
presentation there is more abstract and formal, with more of an emphasis on
mathematical proof. The actual mathematical prerequisites are the same as for this

definitions and argumentation are greater. On one or two occasions in this book and
in Volume 2 we have referred to L.oomis and Sternberg for the detailed proof of

elegant presentation of physics at the level of this book.
One of our main subjects is linear algebra. The text by Halmos i lassic with a
tilt towards extension of the finite dimensional theorv in the d on_of Hilbert
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The text by Strang empha51zes computational techniques and applications that we
barely touch upon here. A good strategy is to read all three to get a balanced view of

the subject.

Our discussion in Chapter 1 started with the geometry of lines. The natural place
to go from there is to the study of projective geometry, and we gave some indications
in this direction in the appendix to Chapter 1 and in Exercises 1.16—1.20. The text by
Hartshorne gives a coherent introduction to the subject.

At the end of Chapter 2 we make a brief mention of probability theory, and it is
one of our major gaps that we don’t give a serious discussion of this important topic.
A good all-round introduction to probability which does not make heavy
mathematical demands are the three volumes by Hoel, Port, and Stone. Probability
theory can easily lead into rather imposing mathematical machinery such as
measure theory and intricate questions in Fourier analysis. These books have the
advantage of illustrating the important ideas without getting into the subject deeply
enough to be entangled in heavy mathematics. The book by Moran is harder




discussion of finite Markov chains and can be read as a continuation of Chapter 2.
The book by Deyle and Smell is a delightful short introduction to both Markov
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chains and to networks nrl'nnh we-cha
C HIO—aAld—tO0 Gt WOLIIKY; WHHCIT-WE SN

— Chapter 3 gives an introduction to differential equations. The text by Hirsch and

Smale would be a natural next book from a point of view close to the one we

l Cl
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attention paid to the details of many and varied applications makes this book

worthwhile. The book by Simmeons is also fairly standard but has interesting
historical information. The two books by Arnol’d are classics and are delightful
reading. The interplay between geometry and analysis displays the sure hand of one
of the masters of the subject.

In Chapter 4 we spend two sections on relativity theory. We have listed three
books on the subject. The book by Misner et al. is big and heavy, but full of ideas.
The book by Taylor and Wheeler is short and inspirational and involves a minimum
of mathematics. The book Spacetime, Geometry, Cosmology by Burke develops
many of the mathematical ideas we try to explain in our book and gives a very well
thought out discussion of the physics of relativity. It is ‘user friendly’ and we
recommend it strongly.

be regarded as parallel with ours, and are recommended as general supplementary

and collateral reading.
In Chanter 6 and-aocain
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in a course on differential topology. The book by Guillemin and Pollackis writtenin
a discursive style with many pictures and intuitive guides along with the formal
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€ theorems and proofs and a minimum of
discussion. But of course this can be an advantage. The books cover somewhat

different topics and we recommend them both
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very terse, with concise statements of t
e
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bijective 14 Euclidean transformation 16

| Cartan xiii xtending a basis 349
| Cayley—-Hamilton theorem 61 ~ exterior derivative 275,276,305 |
chain rule 184 exterior product 275
change of basis matrix 41, 349
characteristic equation 59 Fermat’s principle 326-8
characteristic polynomial 59 Fibonacci sequence 80
closed forms 262 focal length 319
cofactor matrix 398 force field 248
collision 161 forced oscillator 108
column reduction 367 formal power series 82
composition 15 forward region 151
conditional probability 67 fundamental theorem of affine geometry 43
conformal linear transformation 57 fundamental theorem of projective
conjugate planes 318 geometry 54
conservation of energy 161
conservation of energy momentum 165 Galilean transformation 160
conservation of momentum 161 Gauss decomposition 322
constant rank theorem 368 Gibbs xii
coordinate function 15 Gram-Schmidt process 124-131

critically dam 105 Green’s theorem 298-303
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Poincare’ transformation 154
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implicit function theorem 238
inelastic collision 161

probability 66, 67
projection 38

injective 13

projective plane 53

inverse function theorem 230-7

proper Lorentz transformation 152

inverse of a matrix 32, 33

pullback 209-13, 289-95

isomorphisnt 40

Kepler motion 195
kernel 37, 358
kernel, finding a basis of 367

Lagrange multipliers 227-9
Laplace’s equation 227
Laplacian 227

law of cosines 124

light cone 152

line integrals 250-64

linear dependence 7, 34
linear differential form 199, 247-61
linear independence 7, 34, 53
linear optics 328-35

linear transformation 18, 20
lines, parametrization of 3, 4

Quadratic form 133
Quotient space 354

rank—nullity theorem 358
regular 20

resonance 112, 141

response curve 112

rest mass 165

reverse triangle inequality 157
Riemann xv

row reduction 360-8

saddle point 135

scalar product, axioms for 123, 131
simultaneity 154
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Lorentz transformation 152

special relativity 148—66
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matrix multiplication 22, 25, 26
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matrix of a rotation 22
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orthogonal projection 130
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perspective 51
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This textbook has been developed froma
course taught at Harvard over the last
decade. The course covers principally the
theory and physical applications of linear
algebra, and of the calculus of several
variables. particularly the exterior
calculus

The authors adopt the 'spiral method' of
teaching covering the same topic several
times al increasing levels of
sophistication and range of application
Thus the student develops a deep
intuitive understanding of the subjectas a
whole andanappreciation of the natural
progression of ideas

Thefirst four chapters deal with the
algebra and analysis of square, in
particular 2 x 2, matrices. Inthese
chapters such matters as determinants
and their relation to area and orientation,
vector spaces, conformallinear geometry
inthe plane, eigenvalues and
eigenvectors, the power of a matrix
Markov chains, homogeneous linear
differential equations, the exponential ofa
matrix, scalar products, quadratic forms,
and special relativity are explored

The nextiwo chapters cover difierential
calculus beginning with the differential of
a map between vector spaces, and
discussing such topics as the chainrule
Kepler motion, the Born approximation
directionaland partial derivatives, and
linear differential forms. In Chapter 6
topics covered include vector versions of
the mean-value theorem, Taylors
formula, and the inverse function
theorem, critical point behaviour and
Lagrange multipliers

Cover design: Ken Vall
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InChapters 7 and 8 attention moves to
the integral calculus, the student
progressing from linear aifferential forms
and their line integrals to exterior
lwo-forms and their corresponding
two-dimensional integrals. The exterior
dernvative is introduced and invariance
under pullback is stressed. Green's
theorem is proved, and surface integrals
inthree-space are studied

In Chapter 9 the mathematics of the first
eight chapters is applied to the theory of
oplics.

The last two chapters contain
generalizations and developments of the
theory of vecior spaces and
determinanits.

this book will serve as afundamental
text not only for students in physics, but
also for students in mathematics
interested in the mostevident
applications of mathematical definiions
results and theories.’
Padiatre and Padologie

there is to my knowledge no
comparable book, anditis hardto
imagine a more inspiring one

Times Higher Education Supplement

‘Not only is the mathematics clean,
elegant. and modern, but the presentation
is humane, especially for a mathematics
text. Examples are provided before
generalisation, and motivationand
applications are kept firmly inview. .
is first rate!'
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