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Preface

This book emerged from a close collaboration of the authors which started in
the fall of 2000. Early that year one of us (J.S.) had joined the Stanford faculty
after spending nearly 15 years at the IBM Almaden Research Center and the
other (H.C.S.) had just retired from a chair at the ETH Zürich and come to
Stanford as a visiting professor. Together we organized magnetism meetings
of a small group of scientists which oscillated weekly between the Stanford
Synchrotron Radiation Laboratory (SSRL) and the Advanced Light Source
(ALS) in nearby Berkeley. We also organized annual winter workshops at Lake
Tahoe where all participants reported on their research – of course we snuck
in a few ski runs, as well. These meetings were great fun and some seemed
to go on forever because there was so much interest and enthusiasm and so
much to discuss. . . The participants varied over the years and consisted of stu-
dents, postdocs, Stanford and Berkeley scientists, visiting scientists and par-
ticipants from industry. In alphabetical order, some of the people involved were
Yves Acremann, Scott Andrews, Andreas Bauer, Mark Burkhardt, Venkatesh
Chembrolu, Kang Chen, Sug-Bong Choe, Bruce Clemens, Alexander Dobin,
Thomas Eimüller, Stefan Eisebitt, Sara Gamble, Alexander Kashuba, Marcus
Lörgen, Jan Lüning, Gereon Meyer, Hendrik Ohldag, Howard Padmore, Ra-
mon Rick, Andreas Scherz, Bill Schlotter, Andreas Scholl, Christian Stamm,
John Paul Strachan, Jan Thiele, Ioan Tudosa, Ashwin Tulapurkar, Shan Wang
and Xiaowei Yu. All this would have been impossible without support from
the Office of Basic Energy Sciences of the US Department of Energy (DOE),
and we gratefully acknowledge DOE’s support of our research program.

We have also greatly benefitted from discussions with colleagues and from
material they have provided, and we would especially like to thank Elke Aren-
holz, Sam Bader, Carl Bennemann, Matthias Bode, Patrick Bruno, John Clen-
denin, Markus Donath, Olle Eriksson, Jürgen Kirschner, Peter Oppeneer, Jürg
Osterwalder, Stuart Parkin, Danilo Pescia, Dan Pierce, Theo Rasing, Andrei
Rogalev, Kai Starke, Dieter Weller and Ruqian Wu.

With the present book we intend to give an account of the historical de-
velopment, the physical foundations and the continuing research underlying
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the field of magnetism, one of the oldest and still vital field of physics. Our
book is written as a text book for students on the late undergraduate and
the graduate levels. It should also be of interest to scientists in academia and
research laboratories.

Throughout history, magnetism has played an important role in the de-
velopment of civilization, starting with the loadstone compass. Our modern
society would be unthinkable without the generation and utilization of elec-
tricity, wireless communication at the speed of light and the modern high-
tech magnetic devices used in information technology. Despite the existence
of many books on the topic, we felt the need for a text book that reviews the
fundamental physical concepts and uses them in a coherent fashion to explain
some of the forefront problems and applications today. Besides covering the
classical concepts of magnetism we give a thorough review of the quantum
aspects of magnetism, starting with the discovery of the spin in the 1920s.
We discuss the exciting developments in magnetism research and technology
spawned by the computer revolution in the late 1950s and the more recent
paradigm shift starting around 1990 associated with spin-based electronics or
“spintronics”. The field of spintronics was largely triggered by the discovery
of the giant magnetoresistance or GMR effect around 1988. It utilizes the
electron spin to sense, carry or manipulate information and has thus moved
the quantum mechanical concept of the electron spin from its discovery in the
1920s to a cornerstone of modern technology.

These historical and modern developments in magnetism are discussed
against the background of the development and utilization of spin-polarized
electron techniques and polarized photon techniques, the specialties of the
authors. It is believed that the technological application of magnetism will
continue with a growth rate close to Moore’s law for years to come. Interest-
ingly, the magnetic technology goals of “smaller and faster” are matched by
“brighter and faster” X-ray sources, which are increasingly used in contempo-
rary magnetism research. Novel ultra-bright X-ray sources with femtosecond
pulse lengths will provide us with snapshots of the invisible ultrafast magnetic
nanoworld. These exciting developments are another reason for the present
book.

Last not least, this book is born out of our passion for the subjects dis-
cussed in it. In the process we had to get to the bottom of many things and
understand them better or for the first time. This process took a deep com-
mitment and much time, with “the book” often preoccupying our minds. The
process was greatly aided by discussions with our colleagues and students and
we would like to thank them at this place. In particular, we need to thank
Ioan Tudosa for his critical comments and for helping us with numerous il-
lustrations. In this book we give an account of the field of magnetism that is
colored by personal taste and our way of looking at things. We hope that you
will enjoy the result.

Stanford, CA Joachim Stöhr
January 2006 Hans Christoph Siegmann



Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Magnetism: Magical yet Practical . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 History of Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Magnetism, Neutrons, Polarized Electrons, and X-rays . . . . . . . 12

1.3.1 Spin Polarized Electrons and Magnetism . . . . . . . . . . . . 15
1.3.2 Polarized X-rays and Magnetism . . . . . . . . . . . . . . . . . . . 22

1.4 Developments in the Second Half of the 20th Century . . . . . . . 25
1.5 Some Thoughts about the Future . . . . . . . . . . . . . . . . . . . . . . . . . 30
1.6 About the Present Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

Part I Fields and Moments

2 Electric Fields, Currents, and Magnetic Fields . . . . . . . . . . . . . 39
2.1 Signs and Units in Magnetism . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.2 The Electric Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.3 The Electric Current and its Magnetic Field . . . . . . . . . . . . . . . . 40
2.4 High Current Densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.5 Magnetic and Electric Fields inside Materials . . . . . . . . . . . . . . . 47
2.6 The Relation of the Three Magnetic Vectors in Magnetic

Materials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
2.6.1 Stray and Demagnetizing Fields of Thin Films . . . . . . . 52
2.6.2 Applications of Stray and Demagnetizing Fields . . . . . . 54

2.7 Symmetry Properties of Electric and Magnetic Fields . . . . . . . . 57
2.7.1 Parity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
2.7.2 Time Reversal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3 Magnetic Moments and their Interactions with Magnetic
Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.1 The Classical Definition of the Magnetic Moment . . . . . . . . . . . 61
3.2 From Classical to Quantum Mechanical Magnetic Moments . . 64



X Contents

3.2.1 The Bohr Magneton . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
3.2.2 Spin and Orbital Magnetic Moments . . . . . . . . . . . . . . . . 66

3.3 Magnetic Dipole Moments in an External Magnetic Field . . . . 68
3.4 The Energy of a Magnetic Dipole in a Magnetic Field . . . . . . . 69
3.5 The Force on a Magnetic Dipole in an Inhomogeneous Field . . 72

3.5.1 The Stern–Gerlach Experiment . . . . . . . . . . . . . . . . . . . . . 74
3.5.2 The Mott Detector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.5.3 Magnetic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . 83

3.6 The Torque on a Magnetic Moment
in a Magnetic Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
3.6.1 Precession of Moments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
3.6.2 Damping of the Precession . . . . . . . . . . . . . . . . . . . . . . . . . 87
3.6.3 Magnetic Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.7 Time–Energy Correlation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.7.1 The Heisenberg Uncertainty Principle . . . . . . . . . . . . . . . 97
3.7.2 Classical Spin Precession . . . . . . . . . . . . . . . . . . . . . . . . . . 98
3.7.3 Quantum Mechanical Spin Precession . . . . . . . . . . . . . . . 99

4 Time Dependent Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
4.2 Basic Concepts of Relativistic Motion . . . . . . . . . . . . . . . . . . . . . 106

4.2.1 Length and Time Transformations Between Inertial
Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.2.2 Electric and Magnetic Field Transformations between
Inertial Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.3 Fields of a Charge in Uniform Motion: Velocity Fields . . . . . . . 109
4.3.1 Characteristics of Velocity Fields . . . . . . . . . . . . . . . . . . . 109
4.3.2 Creation of Large Currents and Magnetic Fields . . . . . . 112
4.3.3 Creation of Ultrashort Electron Pulses and Fields . . . . 115
4.3.4 The Temporal Nature of Velocity Fields . . . . . . . . . . . . . 118

4.4 Acceleration Fields: Creation of EM Radiation . . . . . . . . . . . . . . 121
4.4.1 Polarized X-rays: Synchrotron Radiation . . . . . . . . . . . . 125
4.4.2 Brighter and Shorter X-ray Pulses: From Undulators

to Free Electron Lasers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5 Polarized Electromagnetic Waves . . . . . . . . . . . . . . . . . . . . . . . . . . 141
5.1 Maxwell’s Equations and their Symmetries . . . . . . . . . . . . . . . . . 142
5.2 The Electromagnetic Wave Equation . . . . . . . . . . . . . . . . . . . . . . 143
5.3 Intensity, Flux, Energy, and Momentum of EM Waves . . . . . . . 145
5.4 The Basis States of Polarized EM Waves . . . . . . . . . . . . . . . . . . . 147

5.4.1 Photon Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . 147
5.4.2 Linearly Polarized Basis States . . . . . . . . . . . . . . . . . . . . . 148
5.4.3 Circularly Polarized Basis States . . . . . . . . . . . . . . . . . . . 149
5.4.4 Chirality and Angular Momentum of Circular EM

Waves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153



Contents XI

5.4.5 Summary of Unit Polarization Vectors . . . . . . . . . . . . . . 154
5.5 Natural and Elliptical Polarization . . . . . . . . . . . . . . . . . . . . . . . . 155

5.5.1 Natural Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
5.5.2 Elliptical Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
5.5.3 The Degree of Photon Polarization . . . . . . . . . . . . . . . . . 157

5.6 Transmission of EM Waves through Chiral and Magnetic
Media . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

Part II History and Concepts of Magnetic Interactions

6 Exchange, Spin–Orbit, and Zeeman Interactions . . . . . . . . . . . 167
6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
6.2 The Spin Dependent Atomic Hamiltonian or Pauli Equation . . 169

6.2.1 Independent Electrons in a Central Field . . . . . . . . . . . . 170
6.2.2 Interactions between two Particles – Symmetrization

Postulate and Exclusion Principle . . . . . . . . . . . . . . . . . . 172
6.3 The Exchange Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

6.3.1 Electron Exchange in Atoms . . . . . . . . . . . . . . . . . . . . . . . 175
6.3.2 Electron Exchange in Molecules . . . . . . . . . . . . . . . . . . . . 180
6.3.3 Magnetism and the Chemical Bond . . . . . . . . . . . . . . . . . 186
6.3.4 From Molecules to Solids . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.3.5 The Heisenberg Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 190
6.3.6 The Hubbard Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.3.7 Heisenberg and Hubbard Models for H2 . . . . . . . . . . . . . 195
6.3.8 Summary and Some General Rules for Electron

Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202
6.4 The Spin–Orbit Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

6.4.1 Fine Structure in Atomic Spectra . . . . . . . . . . . . . . . . . . . 203
6.4.2 Semiclassical Model for the Spin–Orbit Interaction . . . . 204
6.4.3 The Spin–Orbit Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . 206
6.4.4 Importance of the Spin–Orbit Interaction . . . . . . . . . . . . 209

6.5 Hund’s Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
6.6 The Zeeman Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

6.6.1 History and Theory of the Zeeman Effect . . . . . . . . . . . . 212
6.6.2 Zeeman Versus Exchange Splitting of Electronic States 218
6.6.3 Importance of the Zeeman Interaction . . . . . . . . . . . . . . . 220

7 Electronic and Magnetic Interactions in Solids . . . . . . . . . . . . . 221
7.1 Chapter Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221
7.2 Localized versus Itinerant Magnetism: The Role of the

Centrifugal Potential . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
7.3 The Relative Size of Interactions in Solids . . . . . . . . . . . . . . . . . . 230
7.4 The Band Model of Ferromagnetism . . . . . . . . . . . . . . . . . . . . . . . 234

7.4.1 The Puzzle of the Broken Bohr Magneton Numbers . . . 234



XII Contents

7.4.2 The Stoner Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
7.4.3 Origin of Band Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 240
7.4.4 Density Functional Theory . . . . . . . . . . . . . . . . . . . . . . . . 243

7.5 Ligand Field Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 245
7.5.1 Independent-Electron Ligand Field Theory . . . . . . . . . . 247
7.5.2 Multiplet Ligand Field Theory . . . . . . . . . . . . . . . . . . . . . 256

7.6 The Importance of Electron Correlation and Excited States . . 261
7.6.1 Why are Oxides often Insulators? . . . . . . . . . . . . . . . . . . . 262
7.6.2 Correlation Effects in Rare Earths and Transition

Metal Oxides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
7.6.3 From Delocalized to Localized Behavior: Hubbard

and LDA+U Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
7.7 Magnetism in Transition Metal Oxides . . . . . . . . . . . . . . . . . . . . . 274

7.7.1 Superexchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
7.7.2 Double Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
7.7.3 Colossal Magnetoresistance . . . . . . . . . . . . . . . . . . . . . . . . 282
7.7.4 Magnetism of Magnetite . . . . . . . . . . . . . . . . . . . . . . . . . . . 283

7.8 RKKY Exchange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
7.8.1 Point-like Spins in a Conduction Electron Sea . . . . . . . . 291
7.8.2 Metallic Multilayers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 292

7.9 Spin–Orbit Interaction: Origin of the Magnetocrystalline
Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 294
7.9.1 The Bruno Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
7.9.2 Description of Anisotropic Bonding . . . . . . . . . . . . . . . . . 297
7.9.3 Bonding, Orbital Moment, and Magnetocrystalline

Anisotropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299

Part III Polarized Electron and X-Ray Techniques

8 Polarized Electrons and Magnetism . . . . . . . . . . . . . . . . . . . . . . . . 313
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
8.2 Generation of Spin-Polarized Electron Beams . . . . . . . . . . . . . . . 314

8.2.1 Separation of the Two Spin States . . . . . . . . . . . . . . . . . . 314
8.2.2 The GaAs Spin-Polarized Electron Source . . . . . . . . . . . 315

8.3 Spin-Polarized Electrons and Magnetic Materials: Overview
of Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

8.4 Formal Description of Spin-Polarized Electrons . . . . . . . . . . . . . 319
8.4.1 Quantum Behavior of the Spin . . . . . . . . . . . . . . . . . . . . . 319
8.4.2 Single Electron Polarization in the Pauli Spinor

Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
8.4.3 Description of a Spin-Polarized Electron Beam . . . . . . . 324

8.5 Description of Spin Analyzers and Filters . . . . . . . . . . . . . . . . . . 327
8.5.1 Incident Beam Polarization: Spin Analyzer . . . . . . . . . . 327
8.5.2 Transmitted Beam Polarization: Spin Filter . . . . . . . . . . 328



Contents XIII

8.5.3 Determination of Analyzer Parameters . . . . . . . . . . . . . . 329
8.6 Interactions of Polarized Electrons with Materials . . . . . . . . . . . 329

8.6.1 Beam Transmission through a Spin Filter . . . . . . . . . . . . 329
8.6.2 The Fundamental Interactions of a Spin-Polarized

Beam with Matter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331
8.6.3 Interaction of Polarized Electrons with Magnetic
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1

Introduction

Magnetes Geheimnis, erklär mir das!
Kein größer Geheimnis als Lieb’ und Hass.
The magnet’s mystery, explain that to me!
No greater mystery but love and hate.1

Johann Wolfgang von Goethe (1749–1832)

1.1 Magnetism: Magical yet Practical

What is magnetism? This question has fascinated people ever since Thales of
Miletus (about 634–546 BC) first described the phenomenon as the attrac-
tion of iron by “lodestone”, the naturally occurring mineral magnetite, Fe3O4.
Over the last 2,500 years we have not only extensively used the phenomenon
for navigation, power production, and “high tech” applications but we have
also come a long way in exploring its origin. Yet, even today, it is extremely
difficult to answer the simple question why magnets attract. In fact, the term
“magnetic” has acquired such a fundamental and familiar meaning that, fol-
lowing Thales of Miletus, “magnetic” and “attractive” (or repulsive) are used
synonymously, and this association still serves to “explain” the phenomenon.
Any deeper scientific explanation sooner or later runs into “mysteries”. An
example is the very concept of spin which magically emerged from Dirac’s rela-
tivistic treatment of an electron in an external electromagnetic field. Today
we simply accept this concept and base our understanding of magnetism on
the elementary concepts of spin, giving rise to the spin magnetic moment, and
the motion of electronic charges and the associated orbital magnetic moment.

Of the four forces of nature that form the pillars of contemporary physics,
the electromagnetic force is arguably of greatest importance in our everyday
lives because we can easily manipulate it and hence utilize it for our needs.
We truly live in an electromagnetic world and electromagnetic phenomena
form the basis of the modern industrialized society. This fact alone gives the
old topic of magnetism a modern day vitality. The importance of magnetism

1For Goethe the magnet constitutes a fundamental phenomenon (Urphänomen)
that cannot be further explained. It incorporates the polarity (like love and hate)
which became the essence of Goethe’s “Weltanschauung”. In this “natural philo-
sophy” only pairwise opposites (e.g., love–hate, north–south) constitute a “whole”. It
is interesting that this philosophy agrees with our modern knowledge of magnetism,
i.e., that no magnetic monopoles have been found.
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is enhanced by the fact that the field still undergoes dynamic developments.
Ever new magnetic phenomena continue to be discovered in conjunction with
our ability to atomically engineer new materials.

As throughout history, today’s magnetism research remains closely tied
to applications. It is therefore no surprise that some of the forefront research
areas in magnetism today are driven by the “smaller and faster” mantra of ad-
vanced technology. The goal to develop, understand, and control the ultrafast
magnetic nanoworld is furthermore accompanied by the development of new
experimental techniques, that offer capabilities not afforded by conventional
techniques. We shall see below that polarized electrons and X-rays provide us
with unprecedented opportunities to get to the bottom of long standing and
novel problems. At the brink of the 21st century we find ourselves in a situ-
ation where the old field of magnetism is full of vitality, life, and excitement
and this fact constitutes the basis for our book.

Because magnetism is one of the oldest scientific topics there is of course
(too) much to write about. It is therefore not easy to find the right emphasis
on the many concepts, definitions, laws and the experimental and theoretical
developments of this old and broad field. Our book aims at discussing funda-
mental concepts and modern applications of magnetism and we have selected
topics based on three main principles. First, they were chosen to be the fun-
damental pillars of magnetism. Second, we emphasized those fundamentals
with applications in modern magnetism research and technology. Third, we
emphasized topics where new experimental approaches such as polarized elec-
tron beam and X-ray experiments, the specialties of the authors, have led to
new insights and promise further breakthroughs in the future. In many cases
we have chosen modern applications to illustrate the basic laws.

Rather than covering all aspects of magnetism, our book concentrates on
magnetic phenomena that are the subject of modern conferences on mag-
netism and magnetic materials. Today’s magnetism community is interested
in the scientific understanding of magnetic phenomena and magnetic mate-
rials and, following the historical trend, is clearly motivated and influenced
by the goal to utilize the acquired knowledge for technological advancement.
Our treatment therefore does not cover other electron correlation phenomena
which give rise to interesting charge and spin ordering effects, and may play
an important role in high temperature superconductivity, for example. These
phenomena deserve an extensive separate treatment since they are causing a
paradigm shift in condensed matter physics.

It is only fitting that we start this book by taking a look at the historical
development of the field. Some of the magnetism terminology used in this
introduction is not explicitly defined but we shall come back to the important
aspects later in this book. The following historical review is based on informa-
tion from many sources. We found the books by Segrè [1,2], Verschuur [3] and
Livingston [4] very valuable. In the age of the internet, much information was
gathered and checked for consistency by means of searches and comparisons
of sources on the world wide web.
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1.2 History of Magnetism

The most primitive electrical and magnetic phenomena were no doubt obs-
erved before recorded history began, and they are perhaps the oldest topics
in physics. According to Pliny the Elder’s (23–79 AD) Historia Naturalis
the name “magnet” came from a shepherd called Magnes, who found his iron-
nailed shoes or iron-tipped cane stuck to the ground.2 It seems more likely that
the name originates from Magnetes, the inhabitants of a town called Magnesia,
located in Asia Minor (part of the Greek Empire), who knew about ore in the
area nearby that was naturally magnetic. Since around 1500 AD, the name
lodestone (“lode” being old English for “lead”) has been used to describe
such magnetic ore because of its use in navigation. Today we more specifically
associate lodestone with the spinel magnetite, Fe3O4, which is magnetically
aligned in nature, most likely by the earth’s magnetic field during the cooling
process of hot lava.

Local alignment may also occur by the strong magnetic field of a lightning
bolt that leaves a characteristic circular pattern around the point of impact as
shown in Fig. 1.1 [5–8]. A lightning bolt contains a current of the order of 100

A

CD

B

Current

Ground

Tower
post

(a) (b)

(c)

8 m

Fig. 1.1. Imprint of the magnetic field caused by a lightning current in the iron-
oxide containing ground at the foot of a transmission-line tower. (a) shows the
geometry of the transmission-line tower, (b) the direction of current (positive charge)
flow and the associated magnetic field lines, and (c) the measured magnetization
around the four feet of the transmission-line tower labelled A, B, C, and D [5]. The
magnetization (arrows) in the iron-oxide rock is seen to follow the circular magnetic
field around the four points

2The smelting of iron was developed already around 1200 BC.



4 1 Introduction

Fig. 1.2. Working model of the first instrument known to be a compass, called Si
Nan (the south governor) by the Chinese. The spoon is of magnetic lodestone, and
the plate is of bronze [10]

kA with a typical current density of 105 A/m2 in a flash of a few microseconds
duration. The current direction (flow of positive charge) is typically from the
ground to the clouds, i.e., is in the opposite direction as that observed in the
case shown in Fig. 1.1.

The first definite statement on magnetism is attributed to Thales of Mile-
tus (about 634–546 BC) who said that lodestone attracts iron. Starting with
the Chinese writer Guanzhong (died 645 BC) the Chinese literature in later
centuries is also full of references to lodestone, called ci shi, the “loving stone”
because of its ability to attract iron [9]. It is believed that the first direction
pointers were made during the Qin dynasty (221–206 BC) by balancing a piece
of lodestone. The lodestone was ground into the shape of a serving spoon that
was placed on a bronze plate as shown in Fig. 1.2. Its handle miraculously
pointed to the south.

Rather than navigation, these simple direction pointers were likely used for
feng shui 3 or geomancy, the technique of achieving harmony with the forces of
nature by properly aligning buildings and placing of objects. In particular, feng
shui seeks to optimize the attractive and repulsive forces of magnetic fields that
according to ancient Chinese philosophy surrounds all objects. In the context
of magnetic energy it is interesting that much later, around 1780, Franz Anton
Mesmer formulated a healing method on the belief that living bodies could be
magnetized and healed – “mesmerized” – by magnetic fields [4]. His influence

3Feng shui (also fung shui), which translates literally as “wind water”, is an an-
cient Chinese philosophy and practice based on the principle that all living things
in the universe are subject to the control of the environment. It is still widely prac-
ticed today and tries to achieve harmony with the eight elements of nature – heaven,
earth, hills, wind, fire, thunder, rain, and ocean. Also important are energies such
as the air or “chi” and the magnetic energy, as are the spirits of yin (female-passive)
and yang (male-active).
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was so strong that his name has passed into the English language, an honor
accorded to few.4

The development of civilization has been defined by mastering the pro-
duction and use of materials. To our knowledge, magnetic direction pointers
or compasses were first used for navigation in China in the late 11th or early
12th century and the compass became known in Europe sometime later in the
12th century. Without magnetic materials in the form of a compass, the great
voyages of discovery may not have taken place and the history of the world
might have evolved differently!

The first scholarly treatment of magnetism is attributed to the French cru-
sader and scholar Peter Peregrinus (Pierre Pèlerin de Maricourt) who in 1269
wrote an extended letter, an epistola, that described facts known about load-
stones and discussed how to make instruments with them [3]. Three centuries
later William Gilbert (1540–1603), a medical doctor and gentleman scientist,
built on this work and conducted a truly systematic study of magnetism, sum-
marized in his famous treatise De Magnete, published in 1600. He proposed
that the earth itself is a giant magnet, with a field similar to that of a bar
magnet. He also suggested that the magnetic poles do not coincide with the
geographic ones defined by the earth’s axis of rotation. This explained earlier
observations of navigators like Columbus, who noted discrepancies between
the direction of a compass needle and directions indicated by the stars. The
earth’s field was modeled in detail later around 1835 by Carl Friedrich Gauss
(1777–1855).5

Until 1819 only one kind of magnetism was known, the one produced by
lodestones or by iron compasses that had been magnetized by lodestones.6

Over the following years the world of magnetism was revolutionized by the
work of four people.

In 1819 Hans Christian Ørsted (often spelled Oersted) (1777–1851) obs-
erved the magnetic force exerted on a magnetic needle by the electric current
in a nearby wire. A year later the French scientists Jean-Baptiste Biot (1774–
1862) and Felix Savart (1791–1841) derived the magnetic field around a cur-
rent carrying wire and during 1820–1825 André Marie Ampère (1775–1836)
considered the forces between current carrying wires. This led to the famous
laws named after the discoverers.

4Mesmer’s teachings were based on earlier claims by Paracelsus (1493–1541) that
magnets could be used for healing. In addition, Mesmer claimed that animal mag-
netism was residing in humans, and that healing could proceed by exchange of a
“universal fluid” between him and his patients, without the explicit use of magnets.

5The origin of the earth’s magnetic field is not well understood but is attributed
to turbulent motions within electrically conductive liquid Fe in the earth’s core (see
Fig. 3.2).

6It is interesting to note that compass needles were typically made of iron which
has a larger saturation magnetization than lodestone. However, because Fe has a
much smaller coercivity than lodestone the needle often had to be remagnetized by
a lodestone that was carried on board of ships [4].
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Classical electromagnetism peaked with the work of two of the greatest
physicists of the 19th century, the experimentalist Michael Faraday (1791–
1867) and the theorist James Clerk Maxwell (1831–1879) [1]. In 1831 Fara-
day discovered electromagnetic induction, and in 1845 he discovered a direct
connection between magnetism and light: the magneto-optical or Faraday ef-
fect [11]. The magneto-optical Faraday effect is the change of light polarization
in transmission through a magnetized material. The same effect in reflection
was discovered in 1876 by the Scottish physicist John Kerr (1824–1907), and
is called the magneto-optical Kerr effect in his honor. Faraday’s ideas deve-
loped in his book Experimental Researches in Electricity, and in particular,
his discoveries of electric motors, generators, and transformers, have become
the foundation of the industrialized society. We shall come back to this point
at the end of this section, in conjunction with the importance of strong per-
manent magnets.

Maxwell placed Faraday’s notion of a connection between electricity and
magnetism on a firm mathematical footing, developed in his book Treatise
on Electricity and Magnetism. This constituted the birth of electromagnetism
and the electromagnetic field. Today the concept of a “field” is a cornerstone
of physics. In 1855 Wilhelm Eduard Weber (1804–1891) had derived a value
1/
√
µ0ε0 = 3.1074 × 108 m/s in laboratory based experiments but could not

understand why this was close to the speed of light. This connection was made
by Maxwell who through studies of the equations describing electric and mag-
netic fields was led to the value c = 1/

√
ε0µ0. Maxwell concluded that light is

a form of electromagnetic wave. The connection between magnetism and light
had been established. Even today we still marvel at the power of Maxwell’s
equations and our continued struggle to comprehend their full content makes
it even more remarkable that they were derived as early as 1864 – they are
one of the truly great achievements in physics!7

Maxwell’s theories and their experimental verification by Heinrich Hertz
(1857–1894) in Germany, who discovered radio waves in 1888, today are the
basis for global communications at the speed of light. It is fair to say that
Maxwell’s theory became accessible mostly through Hertz and the theoretical
teachings of Henri Poincaré (1854–1912) in France. The 19th century deve-
lopment of magnetism concluded with Pieter Zeeman’s (1865–1943) discovery
in 1896 of the effect named after him. The century was crowned by the dis-
covery of the electron by Joseph John Thomson (1856–1940) in 1897, and
independently around the same time by Emil Wiechert (1861–1928) [13].

The understanding of magnetic phenomena in the 20th century largely
concentrated on the development of an atom-based picture [2]. While corre-
spondence between Augustin Jean Fresnel (1788–1827) and Ampère already
mentioned the idea of microscopic currents as the origin of magnetism, a for-

7Maxwell’s work was already deeply appreciated during his lifetime. For example,
Ludwig Boltzmann wrote full of admiration “Was it a God who wrote these symbols
. . .?” [12]
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Fig. 1.3. Postcard sent by Walther Gerlach to Niels Bohr on February 8, 1922. In
translation it says “Honorable Mr. Bohr, here [is] the continuation of longer work
(see Z. Phys. 8, 110 (1921)). The experimental proof of directional quantization. We
congratulate [you] on the confirmation of your theory! With respectful greetings,
yours truly, Walther Gerlach.” From [15]

mal treatment was not developed until 1907 when Pierre Weiss (1865–1940)
introduced a theory of ferromagnetism based on a molecular field concept [14].
His theory, combined with that of Paul Langevin (1872–1946), explained the
ferromagnetic–paramagnetic transition observed by Pierre Curie (1859–1906)
at the so-called Curie temperature.

In 1913 Niels Bohr (1885–1962) first postulated that the angular momen-
tum of electrons is quantized and that orbital magnetic moments are asso-
ciated with orbiting electron currents. An elegant experiment by Otto Stern
(1888–1969) and Walther Gerlach (1889–1979) in 1921 showed the splitting
of a beam of Ag atoms upon traversing a nonuniform magnetic field due to
quantized spin orientation. The important experiment is discussed in detail
in Sect. 3.5.1. A postcard sent by Walther Gerlach to Niels Bohr on Febru-
ary 8, 1922, showing the refined results of the original experiment is shown in
Fig. 1.3. The postcard shows photographs of the recorded pattern of Ag atoms
without (left) and in the presence of (right) a magnetic field. It is interest-
ing that the observed splitting into a doublet was incorrectly interpreted as
arising from an orbital magnetic moment with l = 1 and m = ±1, as evident
from Gerlach’s note on the postcard in Fig. 1.3. He believed his experiment to
confirm Bohr’s theory of orbital angular momentum. At the time, the concept
of spin was still unknown. The proper explanation of the splitting is due to
the fact that Ag atoms have a single electron in their outer shell with s = 1/2,
and so the splitting is actually due to the states ms = ±1/2.

In order to account for the observed splitting of the emission lines of
alkali atoms in magnetic fields, called the “anomalous Zeeman effect” (see
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Sect. 6.6.1), Wolfgang Pauli (1900–1958) asserted in January 1925 that no two
electrons may occupy the same states and cannot be described by the same
set of quantum numbers, the famous principle later named by Dirac the Pauli
exclusion principle. It is remarkable that at the time of Pauli’s paper [16] the
electron spin had not yet been discovered. Instead of today’s quantum num-
bers n, l,ml,ms, Pauli’s paper used a different, not easy to understand, set of
quantum numbers. He realized that a satisfactory explanation of the anom-
alous Zeeman effect required more than the three quantum numbers n, l,ml

and called this a “Zweideutigkeit” (two-valuedness) of the quantum properties
of the electron without specifying its origin [17]. The important step of iden-
tifying the “Zweideutigkeit” with the electron spin was taken by Uhlenbeck
and Goudsmit later that year, in October 1925 [18–20] (see later).

The three year period 1925–1928 constituted a quantum jump in physics.
It saw the development of quantum mechanics by Werner Heisenberg (1901–
1976) and Erwin Schrödinger (1887–1961) and the introduction of the electron
spin. The idea of a “spinning electron” was mentioned for the first time by
Arthur Holly Compton (1892–1962) in 1921 for reasons that were wrong and
unconvincing [20]. Unaware of Compton’s suggestion, George E. Uhlenbeck
(1900–1988) and Sam A. Goudsmit (1902–1978) in 1925 used the fine structure
(spin–orbit splitting) in atomic spectra to hypothesize the existence of the
electron spin [18–20]. The revolutionary idea was the fact that the electronic
spin had only half, h̄/2, of the natural integer unit of angular momentum.
The spin had independently been proposed in early 1925 by Ralph de Laer
Kronig (1904–1995) [2] who told Pauli about it. Pauli objected to Kronig’s
suggestion of a half integer spin because it led to a discrepancy of a factor of
2 in the calculation of the fine structure splitting. Kronig did not publish his
idea owing to Pauli’s objection, as evidenced by the letter in Fig. 1.4.

In contrast, when Uhlenbeck and Goudsmit showed their idea to their
mentor Paul Ehrenfest (1880–1933), he encouraged them to proceed with
publication. For Uhlenbeck and Goudsmit, ignorance was bliss since they were
unaware of the factor-of-2 problem. They worried more about the fact that it
did not make sense to associate the spin with a classically rotating charged
electron. The factor of 2 pointed out by Pauli was explained by a celebrated
calculation of Llewellyn Hilleth Thomas (1903–1992) [20, 21] who in 1926
showed it to be due to a reference frame effect. Uhlenbeck and Goudsmit
had been right after all!8

The concept of the spin with half-integer angular momentum is indeed
quite amazing and even today its origin is not easily understandable. It nat-
urally fell out of the celebrated relativistic theory of Paul Dirac (1902–1984),
who in 1928 treated an electron in an external electromagnetic field, with-

8Much has been written about the discovery of the spin and the fact that Uhlen-
beck and Goudsmit (or Kronig) did not receive the Nobel Prize. For a more detailed
account and more references the reader is referred to the Pauli biography by Charles
P. Enz [22], especially Chap. 5.
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Fig. 1.4. Part of a letter sent by Thomas to Goudsmit on March 26, 1926 [20].
It chronicles some of the events associated with the discovery of the spin. It reads
as follows. “I think you and Uhlenbeck have been very lucky to get your spinning
electron published and talked about before Pauli heard of it. It appears that more
than a year ago Kronig believed in the spinning electron and worked out something;
the first person he showed it to was Pauli. Pauli ridiculed the whole thing so much
that the first person became also the last and no one else heard anything of it. Which
all goes to show that the infallibility of the Deity does not extend to his self-styled
vicar on earth.”

out explicitly introducing the electron spin [23, 24]. Dirac’s quantum electro-
dynamics (QED) theory correctly described the magnetic properties of the
electron and its antiparticle, the positron, but it proved difficult to calcu-
late specific physical quantities such as the mass and charge of the particles.
This was overcome in the late 1940s when Sin-Itiro Tomonaga (1906–1979),
Julian Schwinger (1918–1994), and Richard P. Feynman (1918–1988) inde-
pendently refined and fully developed QED9. An important feature of QED
is that charged particles interact by emitting and absorbing photons, so that
photons are the carriers of the electromagnetic force.

9The theories by Tomonaga, Schwinger, and Feynman were later shown to be
equivalent by Freeman J. Dyson (b. 1923).
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In 1928, the year of Dirac’s QED theory, there was another important
breakthrough in the history of magnetism with Heisenberg’s formulation of a
spin-dependent model for the exchange interaction [25]. The molecular field
postulated by Weiss could now be interpreted as having its origin in the ex-
change interaction. The introduction of the strong, short-range exchange inter-
action constituted the birth of modern magnetism theory, which has its roots
in, both, quantum theory and relativity. In a series of papers starting in 1932,
Louis Néel (1904–2000) developed the concept of antiferromagnetism [26].
Néel’s ideas of antiferromagnetic and ferrimagnetic spin alignments were later
verified by neutron diffraction, pioneered by Clifford G. Shull (1915–2001). In
the mid 1930s, band theory was first applied to magnetic systems by Neville
F. Mott (1905–1996) [27], John C. Slater (1900–1976) [28, 29] and Edmund
C. Stoner (1899–1968) [30, 31]. Today further developments of this theory
are a cornerstone of modern magnetism, explaining the noninteger values of
magnetic moments.

While research in magnetism today is largely driven by the fast moving
pace of information technology, especially data storage and memory applica-
tions, one cannot forget that from a world-wide economic and societal point of
view another more mundane application of magnetic materials may be more
important. It is the use of high energy product permanent magnets that under-
lie the generation and use of electricity. Under the term “high energy product
magnets” one understands magnets which exhibit a magnetization loop that is
both wide (maximum coercive field) and high (maximum magnetization) [32].
Such magnets facilitate the reduction of the size and the weight of a device
made from them, for example, electric motors and audio speakers. The his-
torical increase of the energy product, formally defined as the product of the
applied field and the magnetic induction (H B)max, is illustrated in Fig. 1.5.

Today the strongest commercial magnet is Nd2Fe14B, developed in 1984
by Croat et al. [34] and Sagawa et al. [35]. Permanent magnets are key com-
ponents of electrical generators.10 On a global scale, it is well established that
the economic output of nations today is strongly correlated with their use
of electricity since electrification makes an economy more efficient [36]. For
example, today about half of the US energy is consumed as electricity and
the US electricity retail sales amount to about 250 billion dollars per year, or
about 2.5% of the US gross domestic product (GDP). It is therefore important
to keep in mind the future development of improved permanent magnets. Such
work was given new impetus by the suggestion of spring magnets by Kneller
and Hawig in 1991 [37] and Stromski and Coey in 1993 [38]. Recent research
on spring magnets has been reviewed by Bader [39]. More information on the
properties of magnetic materials can be found in O’Handley’s book [40].

10They have also revolutionized accelerator technology, allowing the construction
of permanent magnet wigglers and undulators at third generation synchrotron ra-
diation sources.
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Fig. 1.5. Historical evolution of the performance of permanent magnets, defined by
their energy product (H B)max. Shown are five principal industrial magnet families.
Note that the ordinate has a logarithmic scale. Figure taken from [33] after [32]

The most advanced applications of magnetism today are closely related to
the technology underlying magnetic storage and memory [41,42]. As early as
1888 magnetic recording was proposed by Oberlin Smith and the first success-
ful magnetic recording device, the telegraphone, was patented by Valdemar
Poulsen in 1894 [41,43]. In 1949, physicist An Wang at Harvard created a de-
vice based on small ferrite rings, so-called “cores”, that could be switched by
current flow through wires that penetrated the rings, as illustrated in Fig. 1.6.
In the 1950s this led to the development of nonvolatile magnetic core memo-
ries which became the dominant computer memories in the early 1960s but
were replaced by semiconductor memories in the 1970s.11

For the last 40 years magnetism has been used to store information in
computers. This 50 billion dollars per year industry is based and dependent
on fast developing concepts. It has fuelled a renaissance in magnetism research
based on artificially engineered thin film structures [44,45]. Nonvolatile mag-
netic memory is also making a comeback as so-called MRAM for magnetic
random access memory [46]. From a science point of view the last 15 years
have been particularly exciting and these developments and envisioned future
concepts and technologies will be extensively discussed in this book.

11Wang’s patent was not granted until 1955, and by this time core memory was
already in use. This started a long series of lawsuits, which eventually ended when
IBM paid Wang several million dollars to buy the patent outright.



12 1 Introduction

~500µm 

Magnetic core memory (1950s)

Fig. 1.6. Schematic of magnetic core memory used in computers in the 1960s.
Currents through two wires were used for writing “bits”, i.e., opposite magnetization
states shown as white and black arrows, in small ferrite ceramic rings. The third
wire was used for reading changes in magnetization through induction

1.3 Magnetism, Neutrons, Polarized Electrons,
and X-rays

Early experiments to elucidate magnetic phenomena and materials were based
on the measurement of forces and torques exerted on “samples” placed into
magnetic fields produced by current flow through wires. Later experiments
involved measurements of the magneto-optical Faraday (transmission) and
Kerr (reflection) effects. Today the Kerr effect forms the basis of the magneto-
optical recording technology by utilizing powerful yet small semiconductor
lasers. The laser was proposed by Arthur L. Schawlow and Charles H. Townes
in 1958 [47] and the first laser, made out of synthetic ruby, was built by
Theodore H. Maiman in 1960. It is a powerful research tool for the study of
modern magnetic materials, typically in the form of thin films, and scanning
and imaging Kerr microscopy gives microscopic information with a resolution
near the diffraction limit of light (about 200 nm). This diffraction limit is one
of the Achilles’ heals of visible light (and lasers) for the study of matter. The
other one is the strong absorption of visible light by matter, making it difficult
to look into or through many bulk materials. In principle, these limitations
were overcome by Wilhelm Conrad Röntgen’s (1845–1923) discovery of X-rays
in 1895 [48] but the use of X-ray for the study of magnetic materials had to
wait for nearly another century, as discussed later.

With the development of neutron diffraction and spectroscopy techniques
in the 1940s and 1950s it was finally possible to determine the spin structure on
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an atomic level. The seminal contribution of neutron techniques to magnetism
is reflected by the October 1994 press release by the Royal Swedish Academy
of Sciences on the 1994 Nobel Prize in Physics, won by Bertram N. Brockhouse
(1918–2003) and Clifford G. Shull (1915–2001), “Neutrons are small magnets,
as are the atoms of a magnetic material. When a neutron beam strikes such
material, the neutrons can therefore change direction through magnetic inter-
action with the atoms of the material. This gives rise to a new type of neutron
diffraction which can be used to study the relative orientations of the small
atomic magnets. Here, too, the X-ray method has been powerless and in this
field of application neutron diffraction has since assumed an entirely dominant
position. It is hard to imagine modern research into magnetism without this
aid.”

At the time of this press release efforts were already underway to change
the role of X-rays in magnetism. This relatively recent and important deve-
lopment will be discussed later. The last 30 years have seen another important
development, the generation and manipulation of spin polarized electrons [45].
This development has culminated in phenomena like giant magnetoresistance
and “spintronics”. We shall see later that studies by means of polarized elec-
trons and X-rays have provided important new information. Today one could
rephrase the last sentence of the above quote by the Nobel Prize Commit-
tee: It is hard to imagine modern research into magnetism without polarized
electron and X-ray probes.

Within this book we shall not discuss the technique and applications of
neutron scattering for the study of magnetic materials. This has been done
extensively by others such as Bacon [49], Squires [50], Balcar and Lovesey [51],
or more recently by Fitzsimmons et al. [52] and in the book on magnetism
techniques by Zhu [53]. Another reason is that in today’s magnetism research,
materials with nanoscale dimensions and phenomena associated with surfaces,
thin films, and interfaces are of prime importance. This has led to an increased
demand for techniques with high sensitivity to small amounts of magnetic
material or a small number of magnetic atoms. The atomic sensitivity of
different techniques based on neutrons, electrons or X-rays may be expressed
by a figure of merit per atom per second (FOM), defined by the product of
the respective atomic interaction cross-section, the available incident flux, and
the square of the magnetic contrast, as done in Table 1.3.

In the Table we have assumed that we can use samples as large as
10mm × 10mm so that we list the incident flux per cm2. For smaller sam-
ples the neutron flux and FOM would be reduced proportional to the area
while the electron and photon flux remains unchanged down to sample areas
of mm2 or less. The Table shows that the use of neutrons with a small FOM
is unfavorable for nanoscale magnetism research where the quest is for tools
that can image small magnetic structures in short observation times. Neu-
tron techniques have been and remain important for studies of bulk materials
where the small FOM per atom is overcome by the large number of contribut-
ing atoms. In contrast, electron, resonant X-ray, and optical techniques offer a
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Table 1.1. Comparison of factors determining the interactions of neutrons, low en-
ergy (< 10 eV) electrons, X-rays, and optical photons with magnetic materials such
as the ferromagnets Fe, Co, and Ni. For neutrons and X-rays, the listed elastic scat-
tering cross-sections σ refer to the magnetic cross sections per atom, for all other
cases we list the combined charge and magnetic cross sections and indicate the mag-
netic contribution through a fractional value for the magnetic contrast P . We also
list the incident monochromatic flux per appropriate experimental bandwidth Φ, and
the relative figure of merit per atom per second, defined as σΦP 2. The true magnetic
signal for a given sample will depend on the probed number of magnetic atoms in
the beam. For a given lateral sample size the number of atoms can be increased by
making the sample thicker but the maximum number of probed atoms is inversely
proportional to the cross-section. Therefore neutron techniques can overcome the
limited scattering signal per atom by use of large and thick samples

technique atomic cross- magnetic incident figure of merit

section σ contrast P flux Φb 10−7σΦP 2

[barn/atom]a [s−1cm−2BW−1]

neutrons El. Scatt.c 1 1 1 × 107 1

electrons El. Scatt 1 × 108 0.5 1 × 1010 2.5 × 1010

X-rays El. Scatt. 5 × 10−2 1 1 × 1012 5 × 103

Res. El. Scatt.d 5 × 103 0.5 1 × 1012 1.25 × 108

Res. Abs.d 5 × 106 0.3 1 × 1012 4.5 × 1010

light Kerr Effect 5 × 106 0.01 1 × 1016 5 × 1011

a 1 barn = 10−24 cm2

b We have used monochromatic fluxes with appropriate experimental bandwidths
(BW). The BWs are 1% for neutrons and 0.1% for electrons and photons
c The nuclear and magnetic neutron cross sections are about the same
d Total resonant cross-section at 3d transition metal L-edge

large sensitivity per atom and are well suited for the studies of surfaces, thin
films and nanostructures.

Of the various techniques the magneto-optical Kerr effect (MOKE) has a
very high FOM and the technique is relatively simple in practice [54,55]. Con-
sequently, it is the technique that enjoys the greatest popularity, particularly
for the study of ultrafast magnetization dynamics where the availability of
short and intense laser pulses is a great asset [56, 57]. The main drawback of
the Kerr technique is its limited spatial resolution which arises from the rela-
tively long wavelength of near-visible light. This makes MOKE unsuited for
imaging the magnetic structure of nanoscale magnetic elements. It is therefore
expected that in the future the use of X-ray techniques will increase, especially
for the study of nanoscale dynamics as discussed in Chap. 15.

In the following we shall discuss the developments of electron and X-ray
techniques.
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1.3.1 Spin Polarized Electrons and Magnetism

Quantum theory as well as the discovery of electron-spin resonance in 1945
by Evgeny Konstantinovich Zavoisky (b. 1907) [58] had made it clear that the
magnetization in Fe, Co, and Ni must be predominantly generated by the spin
polarization of the metallic electrons. However, for a long time it appeared
impossible to extract spin polarized electrons from metals into vacuum by
field emission or photoemission techniques despite expectations that the spin
should be conserved in these emission processes. The problems were not due
to the lack of a method to detect the spin polarization since “Mott detectors”
were already used by H. Frauenfelder [59] in 1957 to detect the spin polari-
zation of the electrons emitted in β-decay, verifying parity violation in weak
interactions as suggested by Lee and Yang in 1956 [60]. Mott scattering is
based on the spin–orbit coupling in the Coulomb scattering of electrons from
heavy nuclei such as Au, discussed in Sect. 3.5.2. In the end, the inability
to extract spin polarized electrons from ferromagnetic cathodes proved to be
mainly due to improper surface preparation.

In 1969 Siegmann and collaborators [61, 62] showed that once atomically
clean surfaces of the magnetic metals are prepared, photoelectrons emitted
from all kinds of ferromagnets exhibit sizeable spin polarization. Figure 1.7
shows a congratulatory postcard sent to H. C. Siegmann by Walther Gerlach
in March 1969. Over the last thirty-plus years Spin-polarized photo-emission
spectroscopy (SPES) has been developed into a powerful tool for the deter-
mination of the occupied spin polarized band structure of magnetic solids,
particularly near or at the surface. The surface sensitivity arises from the
very short mean free path of electrons in metals, which is of order 1 nm.
SPES provides a rigorous test of our understanding of magnetism and the
connection between electron emission and the electronic structure.

Spin polarized electron spectroscopies in their various forms were essen-
tial in the development of surface and thin film magnetism, an area that has
provided the basis for a renaissance in magnetism research and enabled the
development of innovative magnetic technologies over the last 15 years. The
new structures of interest have nanoscale sizes in at least one direction so that
interfacial and surface properties often dominate their static magnetic struc-
ture and transport behavior (see Chap. 13). The power of SPES techniques
lies in their sensitivity to the spin polarized band structure of magnetic solids,
be it in the form of insulators, metals, or the exotic half-metallic ferromagnets,
distinguished by their complete spin polarization at the Fermi-level EF.

As an example of the insight that can be obtained by measurement of the
spin polarization of photoelectrons, we show in Fig. 1.8 results for the oldest
magnetic material, magnetite Fe3O4, obtained in 1975 by Alvarado et al. [63]
with natural crystals found in a dry river bed close to Zermatt, Switzerland.
For a long time, the electronic structure of the ferrites was a subject of specu-
lation [64] due to the ambiguities of spectroscopies without spin analysis. The
Fe3O4-spectra are complex due to the coexistence of 3 different Fe-ions and the
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Fig. 1.7. Postcard sent by Walther Gerlach to H. C. Siegmann on March 28, 1969.
In translation it says “My dear Siegmann, Thank you very much and congratulations
on the nice work. It pleases me very much. I wish you much success in the future –
first of all happy holidays for your wife and you. Always, yours Walther Gerlach.
Please also extend my greetings to Mr. Busch. Munich, 28. 3. 69”

oxygen 2p-bands. The ambiguities in the interpretation are overcome by spin
analysis. The negative spin polarization at photoelectric threshold shows that
the highest lying levels are occupied with minority spins. This confirms the
famous model for the metal/insulator or Verwey-transition at 119 K in Fe3O4

put forward by Mott [64] that the electrical conduction at EF is generated by
hopping of minority spins. The data shown in Fig. 1.8 also provide evidence
that magnetite is a half-metallic oxide, i.e., that conduction occurs in one
spin channel only. We shall discuss the electronic structure and magnetism of
magnetite in more detail in Sect. 7.7.4.

While conventional magnetism techniques typically measure the magnetic
signal of the bulk of a ferromagnet or the combined signal from different layers
in sandwich-like structure, SPES can probe the surface magnetism indepen-
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Fig. 1.8. Spin polarization of photoelectrons as a function of photon energy from
single crystal magnetite, Fe3O4, measured by Alvarado et al. in 1975 [63]. The energy
dependence of the spin polarization P supports the half-metallic character. The high
value of P suggests that the energy of the oxygen 2p-bands lies below that of the Fe
3d-levels (see Sect. 7.7.4)

dent of the magnetic properties of the underlying material because of its small
probing depth. Photoemission spectra from the elemental ferromagnetic met-
als Fe, Co, and Ni are complex because the 3d-states are not separated from
the 4s, p-states as in magnetite. Additionally, a rich mixture of surface reso-
nances and surface states is superimposed onto the bulk states [65]. Initially, it
was difficult to understand the observations of SPES even in the simplest case
of threshold photoelectrons. The difficulties in the interpretation arose because
threshold photoemission was in fact the first manifestation of the unexpec-
tedly strong preferential scattering of minority spins in ferromagnetic metals,
today often called the “spin filter effect” [66], as discussed in Sect. 12.6.1.

The low energy secondary electrons emerging from the ferromagnetic met-
als exhibit as much as a threefold enhancement of the degree of spin polariza-
tion over that expected from the magnetic moment. This again is due to the
spin dependence of the electron scattering generating the low energy electron
cascade. The high polarization of the low energy cascade is used in scanning
electron microscopy with polarization analysis (SEMPA), pioneered by Koike
and Hayakawa in 1984 [67] and developed in the following years mostly by
Unguris, Pierce, and Celotta [68], to produce stunning high resolution im-
ages of magnetic structures at surfaces with a spatial resolution of ∼10 nm.
Figure 1.9 shows a particularly beautiful SEMPA image which pictures the
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Fe whisker [001]

Cr wedge 46 layers

Fe film

Fig. 1.9. Magnetic image, recorded by scanning electron microscopy with polariza-
tion analysis (SEMPA), of a thin Fe film, separated by a wedge-shaped Cr spacer
layer from a single crystal Fe whisker [69]. The indirect magnetic coupling between Fe
oscillates as a function of the Cr-spacer layer thickness from ferromagnetic (aligned
Fe magnetizations) to antiferromagnetic (opposed Fe magnetizations). The actual
data are shown superimposed on a schematic of the wedge structure. Black and white
contrasts in the image correspond to opposite in-plane magnetization directions

oscillatory magnetization pattern in a thin Fe film that is coupled via a Cr
wedge to a single domain Fe substrate [69].

In contrast to photoemission, field emission of electrons from the metals
into vacuum yields mostly weakly polarized electrons. The initial results with
field emitted electrons were nonreproducible due to improper measurement of
the small spin polarizations in the presence of a magnetic field at the field-
emission cathode. However, Meservey and Tedrow discovered in 1971 that
high spin polarization similar to the one observed in photoemission or sec-
ondary emission occurs also in tunneling of electrons from the ferromagnetic
metals into super-conducting Al [70]. The interpretation of the sign and mag-
nitude of the spin polarization observed in tunneling constituted a problem as
documented by the letter shown in Fig. 1.10, and it is still a challenge today.
Spin polarized magnetic tunneling spectroscopy holds many promises for the
future.

Spin polarized photoelectrons may also be extracted from nonmagnetic
materials if circularly polarized light is used for the excitation of the photo-
electrons and if spin–orbit coupling is large. Such nonmagnetic photocathodes
are more convenient than ferromagnetic ones since no magnetic field is present
at the cathode that can disturb the electron-optics. The spin can simply be
switched from up to down by switching from right- to left-circularly polarized
light in the excitation of the electrons. For this reason GaAs-type photo-
cathodes, first proposed and demonstrated in 1974 by Garwin, Pierce, and
Siegmann [72, 73] are now the most common sources of polarized electrons,
delivering intense, highly monochromatic, and almost completely polarized
electron beams in which the spin direction can be chosen at will without af-
fecting other beam characteristics. The possibility to flip the spin separates the
scattering due to the spin from the dominant scattering due to the Coulomb
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Fig. 1.10. Letter by Sir Neville Mott about spin polarized electron experiments
on Ni by means of photoemission [62] and tunneling [70]. It indicates the problems
associated with the interpretation of the sign of the spin polarization observed in
these experiments. Mott refers to Phil Anderson’s paper [71]

interaction. Over the years, spin modulated electron beams have been exten-
sively used to probe magnetism. In fact, spin modulated electrons have been
called “surface neutrons” because they are as important in surface magnetism
as neutrons are in bulk magnetism.

A number of striking experiments can be done with the GaAs source. In
inverse photo-emission spectroscopy (IPES), the Bremsstrahlung is measured
when incident electrons with spin parallel or antiparallel to the magnetization
recombine with the solid. It is thus possible to measure the spin polarized
unoccupied band structure and to detect magnetism in the various surface
states. When an electron beam with spin at an angle to the magnetization
traverses a magnetic solid or when it is reflected from a magnetic surface, the
spin of the electron precesses at a very fast rate due to the exchange inter-
action. It also rotates into the direction of the magnetization due to inelastic
scattering. Both, precession and rotation can be separately measured by
observing the position of the spin polarization vector after the interaction.
This directly determines the exchange interaction as it depends on electron
momentum and energy as well as the inelastic scattering events that are es-
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Fig. 1.11. Strained GaAs/GaAsP superlattice cathode developed at the Stanford
Linear Accelerator Center (SLAC) for the creation of spin polarized relativistic
electron beams. The structure of the cathode is shown on the left and the polarization
and quantum efficiency (QE) as a function of laser excitation energy are shown on
the right. The cathode is taken from a 2-inch diameter substrate wafer onto which
layers are grown by gas-phase molecular beam epitaxy. The lattice of these layers is
distorted from cubic symmetry which increases the electron polarization created by
incident circularly polarized light. To avoid depolarization, the cathode is Be-doped
with a low concentration, except in the top 5 nm the concentration is increased to
5 × 1019 cm−3 to improve the QE [77]

sential in many magnetic phenomena. In yet another application of the GaAs
source, called spin polarized low energy electron diffraction (SPLEED), the
magnetic structure can be observed superimposed on the crystallographic one.
In spin polarized low energy electron microscopy (SPLEEM), very low energy
spin polarized electrons are reflected from the magnetic surface yielding dy-
namic information on magnetic processes at surfaces at video frequencies and
at ∼10 nm spatial resolution [74].

GaAs sources are also used to create polarized relativistic electron beams
for high energy physics experiments. For example, an early version of the
source shown in Fig. 1.11 was used in a famous experiment in 1978 at the
Stanford Linear Accelerator Center (SLAC) which revealed a very small but
consequential spin dependence of 10−5 in the scattering of electrons with
energies around 20 GeV on deuterium and hydrogen [75,76]. The electron spin
was oriented parallel to the beam direction to separate the electromagnetic
from the weak interaction. The experiment constituted an important step
toward the confirmation of the Weinberg–Salam gauge theory of the weak
and electromagnetic interactions, underlying the “Standard-Model” in which
the two interactions are unified.

Today the concepts underlying the production of spin polarized electrons
by laser excitation of GaAs are used in semiconductor based spintronics re-
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search. In this case the electrons are excited with circularly polarized light
from the valence to the conduction band with an energy that is insufficient
for photoemission from the sample. The excited conduction band electrons are
spin-polarized and may be manipulated or probed by a well defined second
laser pulse [78].

In 1988, Albert Fert and collaborators in Paris [79] and Peter Grünberg and
collaborators in Jülich [80, 81] independently12 discovered that spin selective
scattering is observed in multilayered magnetic structures as well, generating
the phenomenon of giant magneto-resistance (GMR). In 1990 Stuart Parkin
et al. [82, 83] demonstrated that GMR is present not only in single crystal
materials but also in sputtered multilayers that are compatible with manu-
facturing techniques and that through thickness control of the nonmagnetic
spacer layer the coupling may be changed from ferromagnetic to antiferromag-
netic. These discoveries have transformed magnetism, and GMR has become
an important component of high speed, high-density magnetic recording.

More recently, John Slonczewski [84] and Luc Berger [85] proposed that
spin polarized electron currents can transport angular momentum from one
ferromagnet to another and excite spin waves or even switch the magnetiza-
tion. As discussed in Sect. 14.2, this idea has been verified in experiments and
attracted much attention. It combines interesting scientific questions related
to the dynamics of the exchange coupled spins with the promise of applications
in high density magnetic recording and storage. All-solid-state spin polarized
electron physics and spin electronics, so called “spintronics”, have become an
important topic in magnetism.

Yet another basic capability of magnetometry with spin polarized elec-
tron spectroscopy includes time resolution. As will be discussed in detail in
Chap. 15, photoemission of electrons is a very fast process that occurs on a
time scale of less than 10−15 s for kinetic energies larger than a few eV. If
combined with pulsed lasers or photon pulses from synchrotron sources, it can
be used to generate a short pulse of photoelectrons. The spin polarization of
the photoelectron pulse can be measured. It is proportional to the magne-
tization of the initial electron states from which the electrons were emitted.
These initial electron states can be selected by choosing the photon energy or
by selecting the energy of the photoelectrons. In this way, the time scale and
the mode on which the magnetization reestablishes itself after an excitation,
e.g., by the generation of electron–hole pairs, can be studied [86]. The spin
dependence of the lifetime of electrons that have been excited to states above
the Fermi-energy has been observed, as well [87], providing direct evidence for
the preferred scattering of minority spins in the time domain.

12Note that in contrast to the publication dates, the Grünberg paper was sub-
mitted to Physical Review on May 31, 1988 while the Fert paper was submitted to
Physical Review Letters on August 24, 1988.
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1.3.2 Polarized X-rays and Magnetism

Despite the power of optical techniques for magnetic studies, we have already
mentioned limitations set by the wavelength and energy of light. Today’s most
powerful applications of X-rays in magnetism utilize fully polarized, tuneable
synchrotron radiation, where the X-ray energy is tuned to the absorption edge
of a magnetic atom [88]. This was first suggested by Erskine and Stern [89]
in 1975 by considering an extension of the magneto-optical Faraday and Kerr
effects into the ultraviolet/soft X-ray region. The principles underlying optical
and X-ray effects are illustrated and compared in Fig. 1.12. Optical methods
rely on spin dependent transitions between valence band states at certain
wave-vector (k) points in the Brillouin zone. In contrast, X-ray techniques
utilize core to valence transitions. The resonant X-ray signal is element and
even chemical state specific since core level binding energies depend on the
atomic number and chemical state. In addition, the measured resonant X-ray
intensity is quantitatively linked by sum rules with the spin and orbital mag-
netic moments since it measures wave-vector integrated properties of the va-
lence shell, in contrast to optical methods which measure specific wave-vector
dependent transitions. Finally, as dimensions enter the nanoscale, typically
identified with dimensions below 100 nm, visible light becomes “blind” and
one needs shorter wavelength X-rays to see the magnetic nanoworld.

Following the pioneering use of X-rays for magnetic studies by de Bergevin
and Brunel [90] in 1972, important new developments occurred in the mid
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Fig. 1.12. Comparison of the processes underlying the Faraday and Kerr effects
in the visible spectral range and the processes in X-ray magnetic circular dichroism
(XMCD). In the visible one typically uses linearly polarized light and measures the
polarization rotation and ellipticity of the transmitted or reflected light. In XMCD
one measures the difference of the absorption spectra obtained with left and right
circularly polarized X-rays
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1980s. In 1985, Blume first pointed out the advantage of performing magnetic
scattering experiments by tuning to an absorption edge, so-called resonant
magnetic scattering, and developed its theory. The effect was first observed in
the same year by Namikawa et al. using tuneable synchrotron radiation [91].
Later work by Gibbs et al. in 1988 [92] clearly showed the advantage of using
the large cross-section enhancements associated with absorption edges and
this work established X-rays as a viable alternative to neutrons for the study
of magnetic structure.

In the same time period, two other developments took place which were
based on X-ray absorption spectroscopy instead of X-ray scattering. In 1985,
Thole, van der Laan, and Sawatzky [93] predicted the occurrence of a linear
X-ray magnetic dichroism effect in near-edge X-ray absorption spectra which
was observed by van der Laan et al. in 1986 [94]. Another breakthrough came
in 1987 when Schütz et al. [95] demonstrated a circular magnetic dichroism
effects in X-ray absorption. By the late 1980s the stage was set for exploring
and refining X-ray techniques for magnetic studies.

In the 1990s it became clear that soft X-rays play a particular important
role for magnetic studies [98,99]. The power of soft X-rays arises from the fact
that the most important absorption edges for resonant magnetic studies, the
L-edges (2p core shell) of Fe, Co, and Ni and the M-edges (3d core shell) of the
rare earths fall into the 700–1,500 eV range. These absorption edges exhibit
large magnetic effects and through dipole allowed 2p → 3d and 3d → 4f
transitions provide access to the magnetic properties of the important 3d and
4f valence electrons which dominate the magnetic properties of transition
metals and rare earths, respectively. Figure 1.13 illustrates the relative size of
the magnetic dichroism effect, defined as the difference in absorption between
right and left circularly polarized X-rays, near the Co K-edge and the L-edges.
The effect is seen to be larger at the soft X-ray L-edge by a remarkable factor
of 2,000.

The experimental soft X-ray studies triggered theoretical work on the in-
formation content of the experimental spectra, leading to fundamental sum
rules linking the measured dichroic intensities to spin and orbital magnetic
moments and their anisotropy [100–102]. The importance of the sum rules lies
in the fact that they allow the use of X-rays for quantitative magnetometry.
The final important developments were the demonstrations that X-rays can be
used for domain imaging in ferromagnets in 1993 [103]13 and antiferromagnets
in 1999 [105–107]14. With the beginning of the new millennium versatile ex-
perimental soft X-ray tools were in place to tackle problems in the field of
magnetism.

13An independent yet later paper in 1993 published by Schneider et al. [104] also
demonstrated magnetic imaging with X-rays. It used Auger electron detection, in
contrast to total or secondary electron yield detection employed by Stöhr et al. [103].

14Following first attempts by Spanke et al. in 1998 [108] the first clear images of
antiferromagnetic structure were obtained by Stöhr et al. in a series of experiments
starting in 1999 [105–107].
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Fig. 1.13. The top row shows absorption spectra near the L-edge (left) [96] and
K-edge (right) [97] of magnetized Co metal with magnetization and photon angu-
lar momentum parallel and antiparallel, respectively. For the Co K-edge the two
spectra are indistinguishable on the plotted scale. In both cases the spectra have
been normalized to the same average edge jump, which was set to 1. Underneath
are shown the XMCD specta, defined as the difference spectra of the polarization
dependent absorption spectra. Comparison of the size of the XMCD effect reveals
that the L-edge XMCD effect is larger by a factor of 2,000

An illustrative example of the development of X-ray science in the first 100
years is shown in Fig. 1.14. The figure compares one of the first X-ray images
recorded by Röntgen with the first magnetic image recorded by Stöhr et al.
with soft X-rays in 1993 [103]. The figure illustrates several important general
points. X-rays can be used for electron density as well as for magnetic imaging.
While high energy X-rays are most suitable for imaging of bulk objects, soft
X-rays are particularly well suited for imaging the structure of thin films, e.g.,
magnetic domains. Kortright et al. [44] have discussed the opportunities in
the study of magnetic materials and phenomena by means of X-rays.
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10 mµ

Fig. 1.14. 100 years of X-ray imaging. The left X-ray image is one of the first
pictures taken by Röntgen, recorded in November 1895, possibly of his wife’s hand.
The right image shows the magnetic bit structure of a CoPtCr magnetic recording
disk, recorded in 1993 using the Co L-edge X-ray magnetic circular dichroism [103].
Note that the field of view is smaller by a factor of about 104 in the right image,
and the contrast is of magnetic origin

1.4 Developments in the Second Half of the 20th
Century

It is quite fascinating that after about 1960 independent revolutions occurred
in the utilization of X-rays and magnetism. On the X-ray side this revolu-
tion was triggered by the advent of synchrotron radiation sources. A funda-
mental measure of the properties of a photon source and good measure for
its usefulness for materials science research is its brightness, the number of
photons emitted per source size, angular emission cone, and energy band-
width [109]. Figure 1.15 shows a plot of the increase in average source bright-
ness through 3rd generation synchrotron sources and the anticipated increase
in peak brightness by X-ray free electron lasers in the near future (black curve).
The average brightness increase is a remarkable factor of 1013 over the 40 year
period 1960–2000 with an anticipated growth of peak brightness of about 10
orders of magnitude in the future. These growth rates significantly exceed the
well known Moore’s law [110] of chip density growth, shown as a dotted curve.

One may argue that the modern era of magnetism dawned around 1957
with the first hard disk storage drive, the IBM RAMAC (for random access
method of accounting and control) [111]. We have seen above that throughout
history magnetism has had important practical applications. Even today, a
close link exists between scientific research and technological applications. The
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Fig. 1.15. Improvement of the brightness of X-ray sources with time (black) in
comparison to the development of the areal magnetic storage density in computers
(gray). Moore’s law [110], representing the doubling of the transistor density on an
electronic chip every two years, is shown as a dotted curve. The X-ray brightness
is plotted as an average brightness on the left and has been aligned to the right
scale of peak X-ray brightness at the point representing 3rd generation synchrotron
radiation sources

topics at modern magnetism conferences are greatly influenced and fueled by
existing and future applications of magnetic phenomena, and often empirical
developments precede a thorough scientific understanding. It is for this reason
that the growth curve of lateral magnetic storage density shown in Fig. 1.15
is quite representative of the developments in modern magnetism. Indicated
in the figure are milestones in this development when innovations have driven
technological progress. Examples, which are marked in the figure, are the
developments of new read heads that can sense ever weaker signals from the
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decreasing magnetic bits. The overall growth rate is seen to be close to that
of Moore’s law.

The science and technology of magnetic materials is largely fuelled by the
50 billion dollars per year magnetic storage industry. Of interest are sand-
wiched magnetic sensors or “read heads”, such as spin valves, and magnetic
“media” consisting of ferromagnetic thin films and multilayers that can store
information in nanosized “bits”. On the horizon are nanoscale magnetic mem-
ory structures that are read out by their tunneling magnetoresistance which
depends on the relative orientation of the magnetization in different layers.
Some of the structures of interest are shown in Fig. 1.16.

It is apparent from Fig. 1.16 that today’s magnetic materials are not the
bulk materials of old, but atomically engineered thin film and multilayer struc-
tures that often have lateral dimensions on the nanometer scale [44–46, 112].
The study and understanding of such materials requires the use of better
experimental and theoretical techniques that can give reliable information
for the new low-dimensional materials. The growth of magnetic technologies
shown in Fig. 1.15 is due to scientific and technological developments in three
key areas (1) the development of new magnetic materials, (2) the progress in

valve

m c

l

r
T

Fig. 1.16. Illustration of various structures used for magnetic memory and storage
applications. They form the first generation of spintronics devices, as discussed in
the text
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theoretical developments, and (3) the developments of new experimental tech-
niques. We have already touched on area (3) and described the developments
of spin polarized electron and X-ray techniques. We shall now briefly discuss
areas (2) and (1).

It is widely recognized today that part of the unfolding of a new scientific
revolution is based on the development of electronic structure theory. This
has formally been acknowledged with the award of a Nobel Prize for den-
sity functional theory to Walter Kohn in 1998. Computational modeling and
simulation of real materials problems has been made possible by utilizing the
continued explosive growth of computer power. Simulations of ever-increasing
complexity on more and more realistic models has become possible through
the introduction of massively parallel computer platforms. These simulations
now serve to fill the increasingly urgent demands of scientists and engineers.
Some examples that demonstrate the power of modern theory of magnetism
include the following:

– The success of density functional theory in the local spin density app-
roximation to account for many of the magnetic properties of the bulk
ferromagnetic metals.

– The calculation of the strong enhancements of both spin and orbital
moments in thin films and at surfaces.

– The prediction of the existence of magnetism in thin films of metals such
as Cu that are nonmagnetic in the bulk, when they are adjacent to a
ferromagnet.

– The ab initio calculation of surface and interface magnetic anisotropies
despite their small value of only 10−4–10−5 eV.

– The first principles calculation of the magneto-optical response in both
the visible and X-ray range.

Despite all the successes of electronic structure calculations it needs to be
recognized, however, that it is valid only in certain limits, namely small corre-
lation effects and zero temperature. As reviewed by Albert et al. [113] insights
into finite temperature magnetism have only been gained on the basis of some
form of mean field theory, with small fluctuations taken into account within
a linear approximation. This approximation is known to break down in the
vicinity of the critical point of a ferromagnet, so that the ab initio description
of finite temperature magnetism remains one of the grand challenges of the
future.

We now come to the most important development – new materials. The
various applications shown in Fig. 1.16 require magnetic materials that at
room temperature possess a sizeable equilibrium magnetization, a preferred
magnetization direction (anisotropy) and a well defined coercivity.

In practice, the materials used for high-tech applications contain the mag-
netic metals Fe, Co, Ni with rare earths playing a relatively minor role. Sci-
entific investigations are concerned with the origin of magnetic coupling and
spin transport across interfaces and the time dependence of magnetic reversal
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processes. In today’s devices magnetic switching times are about one nano-
second. In advanced recording studies times as short as 100 picoseconds have
been achieved. The future of the magnetic storage and memory technology
is dependent on new materials that are patterned or can self-assemble on
the nanoscale and are magnetically stable at room temperature, on new ma-
terials and structures that at room temperature exhibit large magnetoresis-
tance changes in small external fields, and on the development of methods to
manipulate the magnetization on the subnanosecond time scale. An impor-
tant challenge is the understanding of the size and speed limits of magnetic
technologies. We shall specifically discuss the existence of a speed limit for
precessional magnetic switching in Chap. 15.

One may refer to the structures shown in Fig. 1.16 as the first generation of
spintronics devices [112]. They are based on ferro- and antiferromagnetic ma-
terials containing atoms with sizable magnetic moments, typically transition
metals and oxides. A second generation, which aims to couple such magnetic
materials with semiconductors is rapidly gaining importance today [114,115].
Such a combination of semiconductor and magnetic materials would allow
a seamless integration of magnetic, electronic, and optoelectronic functional-
ity in a single device that offers additional degrees of freedom, and therefore
may offer enhanced performance. We will discuss an example of such a hy-
brid structure, a novel spin-based transistor, proposed by Datta and Das in
1989 [116] in Sect. 14.3.

Semiconductor based spintronics research has been fueled by two impor-
tant discoveries, the existence of magnetic semiconductors such as Mn doped
GaAs with Curie temperatures as high as 120 K, and the existence of long-lived
nonequilibrium magnetization densities in nonmagnetic semiconductors [117].
In the latter systems, the magnetization is produced by spin-dependent laser
excitations from the valence to the conduction band or through spin injection
from an adjacent ferromagnet. The remarkably long spin lifetime of nano-
seconds in semiconductors, corresponding to a spin flip or coherence length of
tens of microns, raises the possibility of manipulating and probing spins states
in small devices. The spins may be manipulated by external fields, optical ex-
citation and even through the hyperfine interaction, and this forms the basis
of the futuristic concept of quantum computing.

It is important to realize that the nonequilibrium magnetization densi-
ties in semiconductors are tiny compared to the equilibrium magnetization
densities in conventional magnetic materials. Because of the weak magneti-
zation densities, it appears that the field of semiconductor based spintronics,
at present, is limited by the nonexistence of a spin current amplifier, as dis-
cussed in Sect. 14.4. Despite their great potential we shall not treat magnetic
semiconductors and semiconductor based spintronics in this book but refer
the interested reader to the book by Awschalom, Loss and Samarth [78] or
the review by Žutić, Fabian and Das Sarma [115].
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Fig. 1.17. Timescales in the ultrafast research and technology worlds. On the left
side we show the capabilities of various ultrafast methods, with the benchmark set
by 1 fs laser pulses. Third generation storage rings typically produce X-ray pulses of
about 50 ps length. Today we can envision various concepts to reach pulse lengths
shorter than 100 fs, such as “slicing” of an electron bunch with a laser or bunch
compression in X-ray free electron lasers (X-FELs, see Sect. 4.4.2). Note the lack
of technological or man-made applications below about 100 ps, indicating great
research opportunities to help explore and develop faster technologies

1.5 Some Thoughts about the Future

It is obvious from Figs. 1.15 and 1.16 that the future of the magnetic data
storage and memory technology is concerned with cramming information into
smaller and smaller bits and manipulating these bits faster and faster. To-
morrow’s magnetic bit sizes will lie in the range of tens of nanometers and
processing times will be in the picosecond (ps) range. Typical length scales and
timescales in the ultra-small and ultra-fast worlds are illustrated in Fig. 1.17.
The figure clearly reveals a general technology gap, not limited to magnetic
technologies, in the ultrafast domain below about 100 ps.

In present day devices, the magnetic system responds to external magnetic
field pulses on the nanosecond time-scale. The main challenge in magnetism
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today is the development of new methods of magnetization control that over-
come the limits imposed by classical electromagnetism such as the long range
and slow spatial decay of regular magnetic fields and their limited rise- and
decay-time imposed by the induction laws. The goal is to develop new methods
of magnetization control on the nanometer length scale and the picosecond or
even femtosecond (fs) time scale. These efforts involve conventional magnetic
materials such as transition metals and rare earths but also novel materials
such as semiconductors.

Of particular interest is the utilization of the strong, short range quantum
mechanical exchange interaction for magnetic switching. This effect naturally
matches the nanoscale of future devices and requires the use of spin currents,
where the switching is mediated by the exchange interaction and angular
momentum transfer between the injected spin polarized “itinerant” electrons
and “localized” moments in the ferromagnet. This mechanism is not fully
understood. In fact, it goes to the very origin of transition metal magnetism
which is often envisioned to involve exchange of “itinerant” and “localized”
electrons.

X-rays can play an important role in this development. They facilitate
ultrafast imaging on the magnetic nanoscale. Present facilities offer pulses as
short as 50 ps. Careful inspection of Fig. 1.15 reveals that the revolutionary
development and growth is all but over. On the X-ray horizon are develop-
ments that boggle the mind – leading to an X-ray free electron laser (X-FEL)
within the next five years. Such a source has a peak brightness that is a fac-
tor of about 1010 larger than that of present 3rd generation X-ray sources.
The factor of 1010 arises from a 107 times larger flux per pulse and a 103

times shorter pulse length than for present sources. Today’s 3rd generation
synchrotron sources deliver an average photon flux per second that origi-
nates from about 106 electron bunches that each radiate about 106 photons
with a pulse length of about 100 picoseconds. With this intensity of about
1012 X-rays per second we can typically record a diffraction image in one
second. In the future, a soft X-ray FEL will emit about 1013 X-rays in a
single ultrafast burst of about 100 femtoseconds. That means we will be able
to record complete diffraction images with a single shot and see how things
move with a resolution of 100 femtoseconds. Advanced X-ray FEL schemes
even promise shorter pulses down to about 1 femtosecond or even into the
attosecond (10−18 s) range. This time scale corresponds to a characteristic
energy of about 1 eV (see footnote 15) and therefore may allow us to take a
closer look at the ultimate problem in magnetism – the understanding of the
exchange interaction itself.

15As discussed in Sect. 3.7, it is often useful to correlate a characteristic energy E
of a system with a time of change ∆t. Using the relationship E = hν = h/∆t, where
∆t corresponds to a complete cycle time (see Sect. 3.7) we get E∆t = h = 4.136 eV
fs, so that 1 eV corresponds to about 4 fs.
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1.6 About the Present Book

It is apparent that there is much excitement in the field of magnetism and its
past and projected future growth provides much material to write about. Our
book aims to form a bridge between fundamental and advanced concepts. We
try to accomplish this by dividing the book into five major parts positioned
between the Introduction, Chapter 1, and appendices gathered in Chapter 16
or Chap. A.

Part 1 deals with static electric and magnetic fields, magnetic moments,
and the concepts of time-dependent fields, with emphasis on electromagnetic
waves and their polarization.

In Chap. 2 we start with a review of the origin and basic concepts un-
derlying electric and magnetic fields and discuss how the fields change inside
materials. We emphasize fundamental differences in the symmetry properties
of electric and magnetic fields.

In Chap. 3 we discuss the origin and concepts of magnetic moments and
their basic interactions with magnetic fields, their energy in a magnetic field,
the force experienced in inhomogeneous fields and the important concept of
torque. We use the concept of magnetic force in conjunction with the Stern-
Gerlach experiment to introduce the quantum mechanical concept of the spin.
The concept of torque is linked to the fast temporal evolution of the mag-
netization, described by the precession and damping terms in the Landau-
Lifshitz-Gilbert equation, and probed by magnetic resonance. We explicitly
discuss how the dynamics can be probed in either time or frequency (energy)
space and the origin of this important energy–time correlation.

Chapter 4 extends the concepts of static electric and magnetic fields to
time-dependent fields. In particular, we discuss fields created by relativistic
electrons because of the importance of such fields in ultrafast magnetism re-
search. After a brief review of relativistic concepts we discuss velocity fields,
defined as fields that remain attached to the generating charge, and point out
how ultra-short and ultra-strong field pulses can be created by relativistic elec-
tron beams. We then discuss the more familiar acceleration fields, i.e., electro-
magnetic (EM) radiation, emitted by relativistic charges that are accelerated
or decelerated. In particular, we review the concepts underlying synchrotron
and X-ray free electron laser radiation.

Chapter 5 is devoted to the discussion of EM waves, which are shown
to naturally emerge from Maxwell’s equations. In particular, we discuss the
nature of polarized EM waves and, by use of the example of circularly polarized
waves, emphasize the difference between the important concepts of angular
momentum and chirality. We end with a brief illustration of these concepts by
discussing the transmission of EM waves through magnetic and chiral media.

Part 2 consists of two extensive Chapters on the historical development
and modern description of the fundamental magnetic interactions in atoms,
molecules and solids.
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In Chap. 6 we review the history and the concepts underlying the three
magnetic interactions: the exchange, spin–orbit, and Zeeman interactions. Our
goal is to provide a history of the quantum mechanical concepts of magnetism.
We review the seminal role played by early atomic and molecular spectroscopy,
and by the quantum theory that was developed to explain the spectra. The
major part of the Chapter deals with the important exchange interaction. We
discuss how the concept of electron correlation, manifested in the Coulomb
and exchange integrals, and the Pauli principle emerged from the study of
the helium atom and the hydrogen molecule. We discuss the famous Heitler–
London calculation for the hydrogen molecule, why it forms the basis for our
modern view of electron “localization”, and how it links magnetism with the
formation of the chemical bond. We also discuss the origin of the independent
electron model which emphasizes the “delocalized” or itinerant (meaning tra-
veling) character of electrons. We then discuss the important Heisenberg and
Hubbard models. We point out that, despite their great importance in modern
magnetism research, they are not ab initio methods, but were constructed to
circumvent the difficulties encountered in treating correlation in systems that
contain more than two electrons. The discussion of exchange is followed by a
treatment of the spin–orbit and Zeeman interactions. Both were first observed
in atomic spectra and were readily explained once quantum theory and the
concept of spin had been introduced. We also discuss Hund’s three rules which
postulate the favored orientations between spins, between orbital moments,
and between spin and orbital moments.

Chapter 7 deals with the concepts underlying the description of electronic
and magnetic interactions in solids. We start by discussing the basic concepts
of localized versus delocalized electronic states and link them to the existence
of centrifugal barriers in the atomic potential. These concepts lead to the in-
terplay between band-like and localized behavior and the relative size of the
major electronic interactions in 3d and 4f compounds. Next we introduce the
band model of electronic structure, starting with the Stoner model, followed
by a more general discussion of band theory and its practical implementation
in terms of density functional theory in the local spin density approximation
(LSDA). The ligand field approach is discussed next, both in terms of an in-
dependent electron and correlated electron or multiplet approach. We then
discuss the origin of correlation effects and link them to a proper description
of excited states which are associated with electron conduction. In this context
we touch upon computational schemes such as the Hubbard and LDA + U
methods. We then link the concept of excited states in transition metal oxides
to the existence of ferromagnetism and antiferromagnetism in such systems.
Specific subsections deal with the concepts of superexchange, double exchange,
the origin of the colossal magnetoresistance effect and the magnetism of mag-
netite, the oldest yet still interesting magnetic material. The following section
deals with another form of indirect exchange, the RKKY interaction, and its
existence in diluted magnetic impurity systems and multilayers. The final sec-
tion deals with the spin–orbit interaction in solids. We present a particularly
simple model, the so-called Bruno model, that links the magnetocrystalline
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anisotropy with the anisotropy of the orbital magnetic moment. In support
of this model, we present a model calculation and direct measurements of the
anisotropy of the orbital moment by XMCD.

Part 3 discusses polarized electron and X-ray techniques for the study of
magnetic materials, the specialty of the authors.

In Chap. 8 we discuss the generation of polarized electrons by laser exci-
tation of GaAs, give experimental concepts of polarized electron experiments,
and present the formal description of individual spin polarized electrons in
terms of the quantum mechanical Pauli spinor formalism and the spin po-
larization vector. This concept is then extended to spin polarized beams. We
discuss the interactions of polarized electrons with magnetic materials in terms
of spin filtering, “spin-flip” excitations and spin “de-phasing”. By extending
the Pauli spinor formalism by concepts due to Poincaré we show how to des-
cribe the transmission of a spin polarized beam through a magnetic material,
the equivalent of the Faraday effect. The same formalism is then shown to be
usable for both spin polarized electrons and polarized photons. As an exam-
ple, we present experimental measurements of the X-ray Faraday effect and
describe it within our formalism.

Chapter 9 provides a semiclassical and quantum mechanical description of
the interaction of EM radiation with matter. We link the concept of the refrac-
tive index, historically used in the optical regime, with that of the scattering
factors (including resonant effects), commonly used for the description of
X-ray interactions with matter. We then discuss the relationship between the
general concept of “scattering” (including reflectivity) with the more specific
concept of “absorption” and present the important Kramers-Kronig relations.
In the remaining Sections we introduce the quantum theory underlying po-
larization dependent X-ray absorption spectroscopy and resonant magnetic
scattering, which is based on the calculation of polarization dependent tran-
sition matrix elements. In particular, we discuss the physics behind X-ray
natural linear dichroism (XNLD), X-ray magnetic linear dichroism (XMLD)
and X-ray magnetic circular dichroism (XMCD). In the process we take a look
at the famous sum rules that make X-ray magnetic circular dichroism into a
powerful quantitative magnetometry tool.

Chapter 10 is devoted to experimental concepts and results of X-ray dichro-
ism spectroscopy and microscopy. After a general introduction of nomen-
clature, i.e., the distinction between “natural” and “magnetic” dichroism, we
concentrate on three dichroism techniques, XNLD, XMLD, and XMCD. We
present the experimental concepts and details of polarization dependent spec-
troscopy, discuss the quantitative analysis of experimental spectra and present
the spectra of important materials such as the elemental ferromagnetic metals
Fe, Co, Ni, and Gd, and the various transition metal oxides. Using the spectra
of small metal clusters as an example, we then explain the information con-
tent of the measured resonance intensities and derive important information
on the orbital magnetization of these systems. We also discuss the determina-
tion of extremely small magnetic moments, and as an example present XMCD



1.6 About the Present Book 35

measurements of Pauli paramagnetism in Pd metal. We then extend the spec-
troscopy concepts to those used in X-ray magnetic microscopy. We discuss
four microscopy methods, three based on direct imaging in real space and one
on inverting reciprocal space scattering intensities into real space. We finish
with selected microscopy results for ferromagnetic and antiferromagnetic thin
films and multilayers.

Part 4 covers the general description of ferromagnetism and then more
specifically deals with the fundamental properties of the ferromagnetic metals
which form the basis for most magnetic devices today.

In Chap. 11 we discuss fundamental aspects of ferromagnetism, such as the
origin of the spontaneous magnetization, the description of its temperature
dependence and the Curie temperature, and give a discussion of the meaning
of “exchange” in the Weiss, Heisenberg, and Stoner models. We specifically
discuss spin waves and critical phenomena. We continue with a discussion of
the origin of magnetic anisotropy and distinguish the shape anisotropy from
the magnetocrystalline anisotropy. We finish with a discussion of aspects of
magnetic micro- and nanostructures such as magnetic domains, the origin of
hysteresis loops and the magnetism in small particles.

Chapter 12 treats the magnetism in the elemental ferromagnetic metals
Fe, Co, Ni, and Gd. Our emphasis reflects the important role these materials
have played in the development and testing of our scientific understanding of
ferromagnetism and the utilization of magnetism in modern technology. The
overriding goals of this Chapter are our present day understanding of two top-
ics, the phenomenon of metallic ferromagnetism and the electrical and spin
transport in such materials, which are discussed in turn. Results of band struc-
ture calculations for the elemental ferromagnetic metals are compared to ex-
perimental results by spin resolved photoemission and inverse photoemission.
The rest of the Chapter deals with spin transport in metals. We first discuss
the all-important two current model, based on separate conduction channels
for up and down spins, which underlies our modern thinking. We then briefly
discuss the phenomenon of anisotropic magnetoresistance. In the two follow-
ing sections we differentiate between two fundamental scattering channels in
spin transport and spin polarized beam experiments, namely, spin-conserving
and spin nonconserving scattering. We show that spin-conserving scattering
events determine the electron mean free paths in the two separate spin chan-
nels, and that they dominate over spin nonconserving, often called “spin flip”,
scattering events. This fact constitutes the physical basis for the two current
model. Several experimental results are presented that demonstrate the dom-
inance of spin-conserving scattering. We also show the experimental detection
of the much weaker “spin-flip” channel. At the end of the Chapter we briefly
comment on remaining challenges in our understanding of the phenomenon of
ferromagnetism.

Part 5 deals with three important topics in contemporary magnetism re-
search: surfaces and interfaces, spin transport, and ultrafast magnetization
dynamics.
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Chapter 13 builds on the revolution in magnetism ushered in by our ability
to prepare well defined surfaces and interfaces, in particular “spin engineered”
magnetic multilayers. It first discusses the study of magnetic surfaces by
spin polarized techniques such as photoemission and spin polarized tunneling
microscopy. It then reviews studies of the reflection of spin polarized electron
beams from surfaces. The last section discusses various coupling phenomena in
multilayer structures that are engineered from ferromagnetic, paramagnetic,
and antiferromagnetic layers. We show how modern magnetism techniques
have led to an improved understanding of interface phenomena like exchange
bias, the existence of induced magnetic moments in atoms like Cu and C, and
the exchange coupling of ferromagnets across a non-magnet.

Chapter 14 is devoted to the discussion of spin transport. It presents the
basic theory underlying electron and spin transport across an interface be-
tween a ferromagnet and a nonmagnet. By introducing concepts like the spin
dependent chemical potential and spin dependent diffusion, we are led to
important new effects associated with interfaces like the spin accumulation
voltage, the boundary resistance, and spin diffusion lengths and times. These
allow us to explain the origin of the giant magnetoresistance effect. In the
second half of the Chapter we deal with the topic of spin injection into a
ferromagnet. We discuss the detailed mechanisms underlying the transfer of
angular momentum from the spin polarized current to the magnetization of
a ferromagnet. Starting from the master equation of conservation of the total
angular momentum, we derive the torques acting on the injected spins and
on the magnetization. We also present experimental results for switching the
magnetization of a ferromagnet by spin currents. At the end of the Chapter we
compare spin transport in metals and semiconductors and discuss the concept
of a spin current amplifier.

Chapter 15 treats the topic of magnetization dynamics. We restrict our-
selves to the interesting “ultrafast” time regime below 100 picoseconds, defined
by the present limits of technology and the spin–lattice relaxation time. We
start with a general overview of the exchange of energy and angular momen-
tum between the three fundamental physical reservoirs: the electronic system,
the lattice (phonons) and the magnetization system. We then present state-of-
the-art studies of the magnetization dynamics following ultrafast excitations,
triggered by lasers (electronic excitations) and electron pulses (magnetic exci-
tations). We then address the specific problem of reliably switching the mag-
netization on ultrafast time scales. We discuss various schemes, precessional
switching by conventional field pulses, switching by spin injection, and finally
the possibility of all-optical switching.

Several Appendices, gathered in Chap. A, contain tables of important con-
stants, equations, and functions.

Before we get started we point out that within this book we use the units
and definitions of the système international (SI). It is based on the funda-
mental units: Volt [V], Ampère [A], meter [m], second [s], as summarized in
App. A.1.
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Electric Fields, Currents, and Magnetic Fields

2.1 Signs and Units in Magnetism

In our world, electrons play a more important role than the positrons of
the antiworld. The historical choices that the electron has a negative charge
q = −e (we shall always assume that e = 1.602×10−19 C is a positive number)
and the definition that the current I reflects the motion of positive charges is
somewhat of a nuisance because the electrons move against the direction of the
electric current. Another consequence of the negative charge of the electron is
that the most important quantity of magnetism, the magnetic moment of the
electron, is directed antiparallel to its intrinsic angular momentum, the spin.
In this chapter we will define and discuss two basic quantities of magnetism,
the static electric and magnetic fields.

The long history and international development of magnetism has gene-
rated yet another nuisance, possibly the largest of all, namely the various
systems employed to measure magnetic quantities.

We shall use exclusively the units and definitions of the système inter-
national (S.I.) which all nations have, in principle, agreed on.

Unfortunately, this is not always practiced. More important than small
possible advantages of one system over the other is the common use and
teaching of one and the same system. Once one has understood the funda-
mentals of magnetism, it is easy to switch from one system to the other, but
for the novice, the various systems that are in use can be disturbing and easily
lead to errors. When in doubt, consult the Appendix A.1.

2.2 The Electric Field

An electric charge gives rise to an electric field. The historical sign convention
is that the electric field originates on a positive charge. Two simple cases of
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Fig. 2.1. Examples of electric fields, illustrating the sign convention. The electric
fields originate on positive and terminate on negative charges. In the case of the field
between two charged condenser plates we have also indicated the force on a positive
and negative charge, defining the direction of motion

electric fields are shown in Fig. 2.1. The electron charge is measured in units
of Coulomb, with q = −e = −1.602×10−19 C. For a point charge q the electric
field is given by

E =
q

4π ε0 r2
r0 , (2.1)

where ε0 = 8.86× 10−12 A s V−1m−1 is the dielectric constant of the vacuum
and r0 is a unit vector pointing away from the origin of the charge. With the
conversion 1C = 1A s, the electric field has units of [ V m−1].

The electric field E is measured in units of [ V m−1].

As shown in Fig. 2.1, a charge in an electric field is subject to a force

F = qE , (2.2)

that leads to a motion of the charge.

2.3 The Electric Current and its Magnetic Field

As soon as electric charges move we say that there is an electric current.
Steady electric currents may flow by injecting charge carriers into vacuum
or by applying a voltage to a conductor such as a metal. The strength of
the electric current I is defined as the charge q that flows per time interval
∆t through a cross section, I = q/∆t, and is measured in units of Ampère
[A]. 1 A corresponds to the motion of the charge q = 1C, corresponding to
1/e = (1/1.6) × 1019 elementary charges, through a surface in ∆t = 1 s. The
direction of the electric current is defined as the direction in which a positive
charge moves.
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In vacuum, and in superconductors, electric currents may persist without
the presence of an electric field while in matter, an electric field E must be
applied to sustain the current. The force F = qE generated by the electric
field compensates for the frictional force acting on the charge carriers moving
in matter.

The current density j is a vector pointing in the same direction as the
current but of magnitude j = I/S, where I is the electric current flowing
through the surface S. Hence j is measured in [ Am−2]. It follows that j = ρv
is proportional to the volume density of the electric charges ρ = q/V and to
the velocity v with which the electric charge moves. The velocity reverses when
the time runs backwards, i.e., in a time reversal transformation t→ − t. Hence
the current density j changes sign upon time reversal.

In 1820 Hans Christian Oersted discovered with the help of a ship’s com-
pass that an electric current generates a magnetic field. If we assume that
a straight current I flows in the z direction, the magnetic field vector H is
found to lie in the x–y plane. The strength of H is given by the Biot–Savart
law

H =
I

2π r
, (2.3)

where r is the distance from the center of the current. This defines the units
of the magnetic field.

The magnetic field H is measured in [ Am−1]. The often used units of
Oersted [Oe] are defined as 1Oe = (1,000/4π) Am−1 = 79.59Am−1.

It turns out that the magnetic field lines are closed generating a curl of
the magnetic field around the current as shown in Fig. 2.2. The magnetic
field lines can be made visible with a number of small compasses or iron
particles arranged in the x–y plane around the current. The corresponding
magnetic pattern produced by the current of a lightning strike at the foot
of a transmission line tower is shown in Fig. 1.1. The magnetic particles are
iron oxide occurring naturally in the earth and we have here an example of
magnetic recording as it occurs without human interference. If the electric
current flows in a closed loop, then it generates a magnetic field H in the

r

I

H

2R

Fig. 2.2. Magnetic field H around a straight
tube or wire with radius R carrying an
electric current I. The direction of the mag-
netic field is obtained by the right hand rule.
When the thumb of the right hand is pointed
into the direction of the current, defined as
the flow of positive charges, the fingers will
indicate the direction of the magnetic field
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rI

H

Fig. 2.3. The direction of the magnetic field H defines the sense of rotation of the
current. The right hand rule illustrated on the right applies to determine the sense
of rotation. Therefore one says that H has a handedness

center of the loop that is perpendicular to the plane in which the current
flows. The direction of this magnetic field can again be determined with the
right hand rule as illustrated in Fig. 2.3 and in the center of the loop has the
magnitude

H =
I

2 r
. (2.4)

The basic discovery of Oersted, and the further development by Ampère
and by Biot and Savart, thus tells us the units in which a magnetic field
is measured. However, it additionally shows the two fundamental symme-
try properties of the magnetic field. First, H is a so-called axial vector (see
Sect. 2.5), because it defines a handedness or chirality. Second, it changes sign
when the current reverses, that is, it depends on the sign of the parameter
time. More generally, the current density j (in [ Am−2]) and the magnetic
field H (in [ Am−1]) are related by Ampère’s law

j = ∇× H , (2.5)

where ∇ is the gradient or Nabla-operator ∇ = { ∂
∂x ,

∂
∂y ,

∂
∂z}. To calculate

magnetic fields from (2.5), one makes use of Stokes’ theorem [118].

Stokes’ theorem links the integral of any vector field H around a closed
loop L that bounds an arbitrary surface S to the component (∇ × H)n

normal to the surface according to

lim
S→0

1
S

∮
L

H · dl = (∇×H)n or
∮

L

H · dl =
∫∫

S

(∇×H)n dS . (2.6)

For instance, let us calculate the magnetic field of a current flowing in the
z direction in a cylindrical tube with radius R, centered at x = y = 0, as
shown in Fig. 2.2. To obtain the field outside the tube we choose the closed
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integration path to be a circle of radius r ≥ R in the x−y plane. Then S = πr2

and L = 2rπ, and we obtain from (2.6) H2πr = jπR2, or with I = jπR2 we
recover (2.3) or H = I/(2πr).

To calculate the magnetic field inside the tube (r < R) we assume a
uniform current density j = I/πR2 = constant inside the tube and choose an
integration path with r < R. We get H2πr = jπr2 and inserting the constant
current density we obtain

Hi =
I

2πR2
r . (2.7)

We see that the magnetic field strength Hi inside the current carrying tube is
zero in the center and increases linearly with the distance r from the center.
The maximum field strength H = I/2πR is reached at the edge r = R of the
wire.

The magnetic induction B is another quantity used to describe magnetic
fields. It relates to the production of magnetic fields by electromagnetic induc-
tion according to Faraday’s induction law ∇×E = −Ḃ where Ḃ = ∂B/∂t. In
vacuum and to a very good approximation also in gases at normal conditions,
the magnetic field H and the magnetic induction B are related by B = µ0H.

In vacuum the magnetic induction B is given by

B = µ0 H . (2.8)

The units of B are [ V s m−2], where 1V s m−2 = 1T.
µ0 = 4π×10−7 V s A−1 m−1 is the magnetic permeability of the vacuum.
In vacuum, B = 1T corresponds to H = 104 Oe.

The laws expressed by (2.5) and (2.7) have a host of important applica-
tions. One contemporary of them is the large magnetic field surrounding a
“bunch” of charged particles that are accelerated to nearly the speed of light
in electron accelerators, illustrated in Fig. 2.4. We will come back to the ori-
gin and applications of such fields in more detail in Sect. 4.3.2 and Chap. 15.
Such electron bunches may carry about 1 nC of charge or about 1010 elec-
trons and have very high current densities because of their short duration. For
the experimental geometry shown in Fig. 2.4 with the electron beam traveling
in the z direction the actual current density across the electron beam can
be measured with fine carbon wires spanned in the x and y directions. The
current density in the beam has a Gaussian shape centered at x = y = 0.
The lower part of Fig. 2.4 shows the calculated magnetic induction B = µ0H
in units of Tesla for such a Gaussian distribution of the current density as
a function of the distance x or y from the beam center. In the frame of an
observer or a stationary sample the magnetic field direction resembles that of
a current carrying wire and is shown in the upper part of the figure. As for
the calculation with a uniform current density according to (2.7), the mag-
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Fig. 2.4. Geometry and calculated magnetic field for a Gaussian shaped “bunch”
of 1.2× 1010 electrons and a lateral size of 6 µm moving nearly at the speed of light.
In the laboratory frame of reference, the pulse width is assumed to be 2×10−12s, so
that the corresponding peak current is 960 A. Note that the maximum field strength
is reached near the edge of the beam (see (4.27))

netic field is zero in the center of the current and decays with 1/y at large
distances. The maximum field strength is reached at the “edge” of the beam,
corresponding to the steepest drop of the Gaussian current density distrib-
ution. The distance-dependent expression for the field strength is given by
(4.27).

The conventional way of generating magnetic fields is, of course, with
current carrying wires wound into a coil. Equation (2.5) yields for the magnetic
field of a long and thin coil

H =
n I

L
, (2.9)

where I is the electric current, n the number of windings, and L the length
of the coil. In practice, it is difficult to reach large field strengths with a coil
because of the heat generated by the current in the wire. Without cooling,
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Table 2.1. Some values of magnetic field strengths

where? mag. field duration

(Tesla)

brain activity 10−13 milliseconds

heart activity 10−11 milliseconds

MilkyWaya 10−9 average

Earth–dipole ∼5 × 10−5 average

Sun–dipole ∼5 × 10−3 average

Sun–spot ∼0.5 min–hours

perm. magnets ∼1 average

relat. e-bunch ∼102 ∼10−13 s

pulsed coils ∼103 ∼10−6 s

exchange fieldb ∼104 average

neutron star ∼107 average

a For cosmological magnetic fields see P. P. Kornberg, Phys. Today, Dec. 2002, p. 40
b This is not a true field but acts like one on the electron spin

coils typically produce only fields of 10 mT. Higher fields of up to 20 T are now
routinely produced with coils made of superconducting wire [119]. Table 2.1
lists the size of some magnetic fields found in the Universe. The spectacular
image shown in Fig. 2.5 of the sun arises from the X-ray emission of hot
plasmas by electrons and ions that also create magnetic fields.

2.4 High Current Densities

It is instructive and important for contemporary magnetism to examine the
current densities that exist in nature or may be produced with new technolo-
gies available today.

The current densities existing naturally in some of the stationary electronic
states of atoms are actually surprisingly high. In Bohr’s model of the atom, the
electron moves in a circle of radius a0 = 0.5× 10−10 m at a circular frequency
ω = 2πν around the atomic nucleus. This establishes an electric current of
I = νe where −e is the charge of the electron. For an electron that circles with
the Rydberg frequency of ν ≈ 3 × 1015s−1 we obtain a current of ∼0.5mA
and a current density of j = I/a2

0π ≈ 1 × 1017Am−2. The only limitation
to the current density in the atom is Pauli’s exclusion principle which does
not allow more than one electron in the same state. One could imagine that
the atoms shrink in size due to the magnetic field produced by the electrons
whereby sufficient electrostatic energy would be gained to compensate for the
energy necessary to produce the magnetic field. This would then destabilize
the atoms. However, it has been shown that matter is stable in arbitrarily
strong magnetic fields due to the Pauli principle [120].

If one wanted to produce the current density existing in atoms in a Cu-wire
of 1mm2 cross-section, one would have to inject 1011 A. This is larger than
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Fig. 2.5. X-ray image of the sun taken by NASA’s SoHo satellite. Magnetic fields
are at the root of virtually all of the features we see on and above the Sun. The
magnetic fields are produced on the Sun by the convective flow of electrically charged
ions and electrons and can be readily probed by the Zeeman splitting of the atomic
levels discussed in Sect. 6.6.1. Sunspots are places where very intense magnetic lines
of force break through the Sun’s surface. The sunspot cycle results from the recycling
of magnetic fields by the flow of material in the interior. The loops above the surface,
known as prominences, are rarely as big as the one seen on the lower left. The sun
also has a smaller dipolar field (see Table 2.1) which changes polarity once about
every 11 years for reasons that are not well understood. The earth’s magnetic field
is shown in Fig. 3.2

what can be done by about 10 orders of magnitude. There are two obstacles
to attaining high current density. In solids it is the scattering of the charge
carriers producing heat, and in vacuum it is the electrostatic repulsion in the
space charge that counteracts high electron densities. Both obstacles may be
overcome to a large extent.

In metals, the electrostatic repulsion of the electrons is reduced greatly
because the charge of the electrons is compensated by the charge of the atom
cores, and furthermore, any Coulomb field is screened by the conduction elec-
trons reducing the range of all electrostatic interactions significantly. Hence
the space charge is not a problem but the scattering must be avoided if high
current densities are to be reached. The most obvious way to avoid scatter-
ing is to use superconductors. However, Oersted’s magnetic field associated
with the current breaks the superconducting pairs if the currents are large.
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Another way to reduce scattering is to reduce the length of the pathway of
the electrons in the material to below the scattering length. This is achieved
in nanoscopic constrictions. In tunneling microscopy, for instance, a very fine
point contact is produced when the tunneling tip approaches a surface and
all the current passes through the last atom on the tip. Current densities of
1013Am−2 have been reported between a nickel tip and a nickel surface and
between a silver tip and Co/Cu multilayer without inducing any permanent
damage in the tip or the surface [121, 122]. When such current densities flow
through a ferromagnet a large spin polarized current can be created which
may be used to manipulate the state of the magnetization in another mag-
netic layer into which it is injected. This exciting new concept of spin injection
will be discussed later in Sect. 14.2.

We have already seen in connection with Fig. 2.4 that high current densi-
ties can also be produced in vacuum, although we did not explain how this
fascinating and useful effect is possible despite the large Coulomb repulsion
between the charges. In order to understand it, we need to first discuss rela-
tivistic effects, which is done in Sect. 4.2.2. High current densities in electron
beams will then be explained in Sect. 4.3.2.

2.5 Magnetic and Electric Fields inside Materials

In Sect. 2.3 we have seen that the magnetic field H and the magnetic induction
B are related by B = µ0H. This strictly applies only in vacuum. In order to
describe the fields existing in matter as well, a third field vector is introduced,
the magnetization M . The magnitude of M is defined as the volume density
of magnetic moments.1

The three magnetic field vectors are related according to

B = µ0H + M . (2.10)

M is measured in the same [ V s m−2] or [T] units as B.

We shall see later that the magnetization is an important property of
magnetic materials. For example, it determines the maximum magnetic field
that can be generated by a fully magnetized body. The magnetizations for the
three important ferromagnetic metals Fe, Co, and Ni are listed in Table 2.2.

All three magnetic field vectors must have the same symmetry because
they occur as a sum in the same equation (2.10). That is B, H, and M each
define a sense of rotation, and as discussed later, are therefore called axial
vectors. They also change sign upon time reversal. The symmetry properties

1Magnetic moments are discussed in Chap. 3.
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Table 2.2. Saturation magnetizations for the ferromagnetic elemental metals Fe,
Co, and Ni at 4.2 K in [Tesla] [123]

metal M [T]

Fe (bcc) 2.199

Co (hcp) 1.834

Ni (fcc) 0.665

of the magnetic field vectors are based on experimental observation. We shall
discuss this point in more detail later.

In isotropic paramagnetic and diamagnetic substances we have the simple
linear relationship

B = µµ0 H , (2.11)

where µ is called the relative magnetic permeability. It is dimensionless and
>1 for paramagnetic but <1 for diamagnetic media. It typically differs from
unity by a factor of about 10−5.

The relation between the magnetization M and the magnetic field H
defines the often quoted magnetic susceptibility χ according to

M = χµ0 H. (2.12)

The magnetic susceptibility is dimensionless. From (2.10) and (2.12) one ob-
tains a relation between the magnetic parameters: µ = 1 + χ. Thus, with
paramagnetic media χ > 0 and with diamagnetic media χ < 0.

For the case of the electric field vector E and the dielectric field or dielectric
displacement D, analogous equations exist. In vacuum and in many materials
of interest here we have D = ε0E, where ε0 = 8.86 × 10−12A s V−1 m−1 is
the dielectric constant of the vacuum. To generally describe the electric fields
in matter, the dielectric polarization P is introduced which is the density of
electric dipoles.

The three electric vectors are related by the equation

D = ε0E + P , (2.13)

D has units [ A s m−2], and ε0 = 8.86×10−12A s V−1 m−1 is the dielectric
constant of the vacuum.

In isotropic substances we have the linear relationship

D = ε ε0E , (2.14)

where ε is the dimensionless relative electric permittivity and ε0 is the dielectric
constant.

In contrast to the magnetic field vectors, the electric field vectors do not
indicate a sense of rotation, they only define a direction and do not change sign
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when the time is inverted (see later). The electric field vectors are therefore
called polar vectors.

2.6 The Relation of the Three Magnetic Vectors
in Magnetic Materials

To understand the nature of the three magnetic vectors B, H, and M dis-
cussed in Sect. 2.5 we take a closer look at relation (2.10) that links them.
We use the example of a flat ferromagnetic disk that has been perpendicu-
larly magnetized, as shown in Fig. 2.6 by an external magnetic field. After this
process the external magnetic field has been turned off, so that we consider
only the field generated by the ferromagnetic disk itself. Such magnetized
disks can nowadays be made from materials that exhibit anisotropic atomic
structure to favor an out-of-plane magnetization direction. Examples are given
in Sect. 11.2.

We can now write down expressions for the magnetic field H in the interior
of the disk and outside the disk by use of (2.10). The field inside the disk is

H

Hd

Hs

B

m

M

Hd

M

BM B H= − d  0

Inside:

0 m

Fig. 2.6. In the absence of an external magnetic field, a flat disk magnetized per-
pendicular to the surface is characterized by the three magnetic vectors B, H , and
M , as shown. The magnetic field inside the magnetic material is called the de-
magnetizing field Hd because it is oriented opposite to the magnetization M , thus
tending to destroy it. The field outside the material is called the stray field H s and
it loops around in space. Note the opposite relative orientations of Hd and H s near
the sample. In the lower part of the figure we show the directions and an example
of the relative magnitudes of the three vectors
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given by

Hd =
1
µ0

(B − M) , (2.15)

and the field outside of the magnetic material is

Hs =
1
µ0

B . (2.16)

We have chosen specific indices for the fields inside and outside the disk which
reflect their common names.

The magnetic field inside a magnetic material is called the demagnetiza-
tion field, that outside the magnetic material the stray field.

In order to more clearly see the nature of the two fields we choose a closed
integration path that follows the B field in Fig. 2.6. Since there are no currents
flowing through the area bordered by the integration path, we conclude from
(2.5) that ∮

H · dl = 0 . (2.17)

This can only be the case if Hd is directed opposite to the field Hs. Hence
inside the disk the demagnetization field Hd must be directed opposite to the
magnetization M . The directions of the M , B, and H fields are illustrated
in Fig. 2.6.

When the magnetization direction of a material is turned, the demagne-
tization field also changes direction. In fact, the case of perpendicular mag-
netization shown in Fig. 2.6, is actually unusual for a thin film. In most thin
film materials it is favorable for the magnetization to lie in the plane of the
film. The demagnetization field is then oriented parallel to the film surface.
Clearly, the demagnetizing field depends on the shape of the magnetic body
and is generally not homogeneous over the whole sample volume.

Let us take a closer look at the implications of the connection between the
fields illustrated in Fig. 2.6. We can obtain insight on the magnetic induction
B by combining the fundamental Maxwell equation governing magnetostatics
(see (5.2))

∇ · B = 0, (2.18)

with Gauss’ theorem [118].

Gauss’ theorem states that the outward flux
∫∫

S
B · n dS of any field B

through a surface S that encloses a volume V is related to the divergence
of the field ∇ · B inside the volume V by

lim
V →0

1
V

∫∫

S

B ·n dS = ∇·B or
∫∫

S

B ·n dS =
∫∫∫

V

∇·B dV . (2.19)
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By combining (2.18) and (2.19) we see that the total flux of the magnetic
induction emerging from a closed surface must be zero. Isolated magnetic
poles would generate a nonvanishing total flux and therefore cannot exist.
We can state this result in a complementary way as a conservation law for
the magnetic induction B that enters into and emerges from any volume V
surrounded by a closed surface S. Since there cannot be a magnetic source
inside any volume that adds to or subtracts from the incoming flux we see
that “what goes in must come out.” An example of his law is seen in Fig. 2.6
where the flux of B that enters into the gray sample volume on one side comes
out on the other. Note that this conservation law does not hold for H and M ,
individually, but since B = M + µ0H it holds for the sum. We shall make
use of this next.

We can use the relation ∇ · B = ∇ · [µ0H + M ] = 0 to define the stray
field as the field which is generated by the magnetization M . The sinks and
sources of the magnetization act like positive and negative “magnetic charges”
or “magnetic poles” for the stray field Hs, as illustrated in Fig. 2.7. In analogy
with the electric field, the magnetic field originates on positive charges, as
shown. In contrast to electric charges, magnetic charges or poles never appear
isolated but are always balanced by opposite charges or poles. By definition,
the positive magnetic pole of a body is taken to be the north pole (see Sect.
3.1, below), so that magnetic fields point from the north pole to the south
pole.

s

Fig. 2.7. The stray field H s of a flat sample magnetized perpendicular to the
surface can be viewed as arising from positive and negative “magnetic charges”
or “magnetic poles” that act as the sinks and sources of the magnetization M .
Note that by definition the field H s originates on positive “magnetic” charges, also
identified with the “north pole” of the material
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The sinks and sources of M act like positive and negative poles for the
field H according to,

µ0 ∇ · H = −∇ · M . (2.20)

The field H is called Hd inside and Hs outside the material. The mag-
netic stray field Hs generated by a magnetic body contains energy. The
total energy Ed is given by

Ed =
µ0

2

∫∫∫

all space

H2 dV = −1
2

∫∫∫

sample

Hd M dV . (2.21)

The energy Ed connected to the stray field is always positive. The second
integral in (2.21), expressing the energy of the field Hd inside the sample is
often easier to evaluate since it extends only over the volume of the magnetic
sample. Hd has a negative sign because it is opposed to M . The factor 1/2
is introduced to avoid double-counting the interactions between two magnetic
dipoles, as explained in detail in the book by Aharoni [124].

2.6.1 Stray and Demagnetizing Fields of Thin Films

In modern magnetism research, magnetic thin films are of key importance and
in such systems the magnetization may have two extreme directions, either
in the film plane or perpendicular to it. We will now take a look at the stray
and demagnetizing fields for these two cases.

To do so we make use of the concept of virtual magnetic surface charges
as illustrated in Fig. 2.7. In this model the magnetic charges are located in
an arbitrarily thin sheet at the surface, neglecting the atomic structure. The
stray field will not change if one locates the sheet with the poles either inside
the magnetized body or just outside of it in the vacuum.

In order to explore this concept we shall now calculate the stray field inside
an extended slit-like cavity inside a homogeneously magnetized material. The
result will also apply for the opposite case where the cavity is filled with
magnetic material but outside of it is vacuum, i.e., the case of a magnetic
thin film. The sheet with the surface charges is the same in both cases, hence
it produces the identical magnetic field, but in one case the field corresponds to
the stray field Hs outside the magnetic material while in the other it reflects
the demagnetizing field Hd inside the magnet. We only need to remember
that in the two cases the fields have opposite signs.

We consider a homogeneously magnetized material with a two-dimensional
thin slit cavity that is oriented either parallel or perpendicular to M as de-
picted schematically in Fig. 2.8. The field in the cavities arises from the shown
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− − − − − −

M

Fig. 2.8. A large homogeneously magnetized piece of material with a two-
dimensional thin slit cavity, oriented parallel or perpendicular to M . For the parallel
orientation, we consider a line integration according to Stokes’ theorem along the
dotted line. For the perpendicular slit we use a surface integration around a volume,
whose projection is indicated by a solid black line, according to Gauss’ theorem

magnetic surface charges. According to our above reasoning, we can now cal-
culate the field Hs inside the cavities and, apart from the sign, the result will
also correspond to the demagnetizing field Hd inside a magnetic thin film
that has the shape of the cavity.

The magnetic field Hs inside the thin slit cavity oriented parallel to M
is obtained from Stokes’ theorem (2.6) by choosing a line integration path
along the dotted loop in Fig. 2.8. Since there are no currents, the closed loop
integral

∮
H · dl must be zero, according to (2.5). Inside the cavity we have a

contribution
∫

Hs ·dl to the integral around the whole loop and in the material
we have a contribution −

∫
Hd · dl, because the element dl has the opposite

direction in the cavity and outside the cavity. The two path contributions
perpendicular to the cavity–material interface vanish. This gives

∮
H · dl =

∫
(Hs − Hd) · dl = 0 (2.22)

and therefore Hs = Hd. In our case the magnetic field component in the
cavity points in the direction of M and it is continuous across the interface
separating the cavity and the magnetic material ! Additionally, we see that
Hs inside the slit must also be very small because the surface charges that
generate it are far apart. Because of the surface charge analogy discussed
above, this means that the demagnetizing field Hd of a magnetic thin film
magnetized along an in-plane direction is very small, as well.
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Now consider the slit-like cavity oriented perpendicular to M . We make
use of Gauss’ theorem and put a closed surface in the shape of a rectangular
“Gauss” box so that one side of the box is inside the cavity and the other
side is inside the material, as shown in Fig. 2.8. With ∇ ·B = 0 we have from
(2.19)

∫∫
S
B · n dS = 0 and the magnetic flux from inside to outside the box

is zero. In the cavity we have an induction Bc and in the material Bm so that
we have the following two nonvanishing contributions to the closed surface
integral ∫∫

S

(Bc − Bm) · n dS = 0 (2.23)

because the outward surface normal n has opposite signs on both sides of
the box. This gives Bc = Bm. The component B⊥ is therefore continuous
across the cavity–material interface, and therefore a large magnetic stray field
Hs = M/µ0 must exist inside the slit. One concludes that the demagnetizing
field inside a thin film that is magnetized perpendicular to the surface has a
maximum value Hd = −M/µ0, and the demagnetizing field is opposed to M
of the sample. We can summarize as follows.

The magnitude of the demagnetizing field for a homogeneously magnetized
thin film Hd is nearly zero for in-plane magnetization.
The demagnetizing field is largest for out-of-plane magnetization and its
direction and magnitude is given by,

Hd = −M

µ0
. (2.24)

2.6.2 Applications of Stray and Demagnetizing Fields

A ring magnetized along its circumference is equivalent to an infinitely long
bar because the charges at the end-surfaces are neutralized if the bar is bent
into a ring. Hence a ring-shaped sample has no demagnetizing field at all,
and no field is generated on the outside according to (2.21). Closed magnetic
rings or approximations of them are used in transformers where field leakage
to the outside would generate losses. A ring can be magnetically saturated
with a weak additional field produced by a coil wound around it, yet in the
radial slit also called “the gap” there will be a sizeable field Hs ∼ M/µ0

because it corresponds to the perpendicular situation in Fig. 2.8. A magnetic
core surrounded by a coil in the form of a ring with a small slit or “gap” is
an electromagnet and finds many applications in the generation of magnetic
fields. A “high-tech” application is a magnetic recording “head” that writes
tiny magnetic domains, or “bits,” into a magnetic medium that is deposited
on a disk that spins underneath the head as shown in Fig. 2.9.
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Magnetic medium
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head

Yoke

Write-
coil
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Fig. 2.9. A magnetic recording “head” is basically a tiny electromagnet that writes
magnetic “bits” of different magnetization directions into a magnetic medium. The
magnetic material in the head is shaped into a yoke with a gap at the bottom end.
The gap is only a fraction of a µm wide to write the small bits required in magnetic
recording. A flat lithographically made coil produces a relatively small field that
is sufficient to saturate the “soft” (i.e., easily saturated) magnetic yoke material,
e.g., a CoFe-alloy with a high value of M . The field in the gap is remarkably large
of order of ∼1 T. The field used for writing is the stray field that protrudes out
of the gap

The rate at which the write field polarity is changed determines the rate at
which data can be written. With a macroscopic electromagnet, self-induction
produces decay times of the magnetic field in the gap which are typically ∼1 s.
As self induction decreases proportional to the cross-section of the magnetic
core, the miniaturized electromagnet allows one to change the magnetization
in a time of ∼10−9 s. This makes possible the data rates in contemporary
computers of ∼1GHz. We see that miniaturization not only saves space and
material, but also produces faster devices.

Spherical voids in magnets or magnetic samples with the shape of a sphere
are of practical interest as well. Even without a detailed calculation it is
plausible that a spherical void in a magnetic material will lie in between the
two limiting cases of the parallel and perpendicular slits in Fig. 2.8. It turns
out that for a spherical hollow Hs = (1/3) M/µ0. Furthermore, the field
inside a spherical or elliptical void is homogeneous, while the fields in voids
of other shapes are generally inhomogeneous. Again, we conclude that the
demagnetizing field inside a magnetic sphere is Hd = −(1/3) M/µ0.

In general, we can write

Hd = −N
µ0

M , (2.25)

where N is called the demagnetizing factor. For a crystalline material, N is a
tensor. For homogeneously magnetized isotropic materials we have the follow-
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ing values for three special cases: N = 0 for a long and thin bar, magnetized
along its axis, or for an in-plane magnetized thin film; N = 1 for a thin
film magnetized perpendicular to the surface, and N = 1/3 for a spherical
particle.

In many applications, the demagnetizing field presents a problem because
it tends to destroy the homogeneously magnetized state. As we shall see later,
the magnetization has preferred directions in a solid where the energy is at
a minimum. The demagnetizing field tends to twist M out of this “easy”
direction. In the case of a material consisting of small particles, thermal fluc-
tuations may then lead to the destruction of the homogeneously magnetized
state. The bits recorded into magnetic recording media for instance tend to
disappear with time due to the combined action of demagnetizing fields and
thermal fluctuations. One dilemma of magnetic recording is that one would
like to have a small demagnetizing field to ensure a long term stability yet,
without a demagnetizing field, there would be no stray magnetic field, which
is needed to read the magnetization direction of the bits.

The concept of “synthetic antiferromagnet media,” illustrated in Fig. 2.10
tries to overcome this problem through an ingenious compromise [125]. The
stray field extending below the magnetic bits is not necessary for the reading
process of the bits. It is therefore short circuited by an antiparallel-coupled
“slave layer” approximating a closed magnetic ring for the lower half of each
bit and in this way helping to stabilize it. By making the slave layer only
about half as thick as the main layer, the upper half of the magnetic flux
needed for the readout process is still present.

M MM

Fig. 2.10. Magnetic stray field for an in-plane magnetized thin film recording
medium with an underlayer or “slave” layer that is coupled antiparallel to the
main layer by a very thin ruthenium spacer layer. Such “synthetic antiferromag-
net media” presently support the highest bit densities. The stray field above the
thin film medium is still present and usable for read-out of the bits, while the stray
field below is short-circuited by the antiferromagnetically coupled slave layer. As
is common in magnetism, hypothetical magnetic charges are assumed from which
the stray field seems to originate. Note, however, that isolated magnetic poles do
not exist
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2.7 Symmetry Properties of Electric and Magnetic
Fields

Electromagnetic phenomena are guided by two fundamental symmetries,

– Parity, P , or inversion of spatial coordinates about a chosen origin.
– Time reversal, T , or the reversal of the direction of motion.

These symmetries provide important guidelines for the prediction of experi-
mental results and tests for the detection of anomalies and errors. They are
particularly important in the context of electromagnetic interactions because,
as we shall see later, electric and magnetic fields behave distinctly different
with respect to spatial and time coordinates. Let us look at the two symmetry
concepts in turn.

2.7.1 Parity

We start with the mathematical definition of the parity operation.

The parity transformation is defined by the replacement

x→ −x
y → − y
z → − z. (2.26)

By introducing the parity operator P we say that a quantity A with

P A = +A (2.27)

is of even or ungerade (g) parity. When the operation changes the sign

P B = −B (2.28)

we say that B has odd or ungerade (u) parity. P has eigenvalues ±1.

The above definition allows us to now take a look at the parity of the
fields E and H. In order to see the properties of E and H on inversion we
consider their origin and invert the field generating system, i.e., two oppositely
charged plates for E and a rotating charge for H, about the origin O. This
is illustrated in Fig. 2.11.

When the two charged plates are inverted at O the electric field E, which
by definition points from the positive to the negative plate, is seen to invert
sign. Since magnetic monopoles do not exist we cannot use hypothetical mag-
netic charges to generate H but use the well-known fact that a circling positive
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Fig. 2.11. Illustration of the concept of axial and polar vectors. The electric field
vector E, like most common vectors, changes sign upon inversion of spatial coor-
dinates. This is illustrated here by inversion of the system of charged plates that
generates E about the origin O of a coordinate system. E is a polar vector. The
magnetic field vector H , originating from a rotating positive charge q, remains in-
variant under the same inversion operation since the rotation direction is preserved.
H is an axial vector

charge q produces a magnetic field H according to the right hand rule. We
see that the rotation sense of the charge remains the same upon inversion and
hence the H field is unchanged in direction by a parity transformation and
is of even parity. The different behavior of H and E leads to the concept of
polar and axial vectors. This is summarized as follows.

The electric field vector E is of odd parity and is called a polar vector.
The magnetic vectors H, B, and M are all of even parity. They are
called axial vectors.

P f(E, H) = f(−E, H). (2.29)

Like the electric field vector E, most common vectors are polar vectors,
such as the radial vector r, the gradient vector ∇, the force F , the velocity v
and the related momentum p, and wave k vectors. Vectors that are related to
a rotation, such as the magnetic vectors, the angular velocity ω, the torque T ,
the orbital l and spin s angular momenta, and the photon angular momentum
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are axial vectors. The cross product between two like vectors is an axial vector,
and the cross product between two unlike vectors is a polar vector. We can
summarize the parity transformation properties of some important quantities
as follows.

P f(t, r, H, E, l, v, F , T ) = f(t,−r, H,−E, l,−v,−F , T ) (2.30)

2.7.2 Time Reversal

Similar to the parity operator, we can define a time reversal operator T .

Time reversal is defined by the operation

t→ − t . (2.31)

By use of the time reversal operator T we say that the quantity A with

T A = +A (2.32)

is time-even, and that the quantity B with

T B = −B (2.33)

is time-odd. T also has eigenvalues ±1.
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Fig. 2.12. Left : Parity transformation, consisting of inverting a system at the origin
of a coordinate system. The position vector r turns into −r and a right handed helix
into a left handed one. Both quantities are parity-odd, while the angular momentum
vector L = m(r × v) is parity-even. Right : The opposite is true under the time-
reversal operation, consisting of replacing t by −t. Now r and the helix are time-even
and L is time-odd
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It is now straightforward to determine the time-reversal properties of phy-
sical quantities of interest. All quantities that do not originate from time-
dependent process must be time-even, and all quantities that depend linearly
on time or are first derivatives of time must be time-odd. We can readily write
down the time reversal properties of the quantities in (2.30).

T f(t, r, H, E, l, v, F , T ) = f(−t, r,−H, E,−l,−v, F , T ). (2.34)

Note that the velocity v is odd in both parity and time, and the torque
T = m×H = dl/dt is always even.

The parity and time-reversal properties of three important quantities, the
position vector r, a handed helix, denoted hR for right and hL for left handed,
and the angular momentum L are summarized in Fig. 2.12. We shall come back
to the concepts of chirality and angular momentum later in this book.
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Magnetic Moments and their Interactions with
Magnetic Fields

3.1 The Classical Definition of the Magnetic Moment

In analogy with an electric dipole, we can imagine that a magnetic dipole
is formed by a fictitious positive magnetic charge p+ = +p and a negative
magnetic charge p− = −p of equal magnitude separated by a distance d, as
shown in Fig. 3.1. In the spirit of the analogy to the electric field of a point
charge given by (2.1), we then postulate that each point-like pole produces the
magnetic field of strength p. The magnetic field HD at a point with position
vector r1 from the positive and r2 from the negative pole is then given by

HD =
p

4πµ0r31
r1 −

p

4πµ0r32
r2 . (3.1)

The magnetic fields generated by a dipole are the familiar fields of permanent
magnets. The field lines seem to originate from a point source and disappear in
a point-like sink. However, as discussed in conjunction with Fig. 2.11, it should
be remembered that the magnetic dipole (like the other magnetic vectors H,
B, and M) is an axial vector. This is not evident from the historical definition
of the dipole moment based on hypothetical magnetic poles but is evident from
Fig. 2.11.

The magnetic dipole moment m points from the negative or south mag-
netic pole to the positive or north magnetic pole and has units of V s m.
The magnetic field H points from the positive or north pole to the neg-
ative or south pole.

Equation (3.1) allows us to calculate the magnitude of the magnetic field
|HD| at an average distance r = (r1 + r2)/2 from the center of the dipole as

|HD| =
|m|

4πµ0r3

√
1 + 3 cos2 ϕ ∝ |m|

r3
, (3.2)
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Fig. 3.1. Definition of the magnetic moment m based on imaginary magnetic
charges p+ and p−, separated by a distance d. By definition, the dipole moment
m = pd points from the negative to the positive magnetic pole. We also show the
correlation of the “charges” with the magnetic poles and the direction of the field H

where ϕ is the angle between the dipole moment and the position vector r.
The important result to note is that |HD| decreases with distance r from the
dipole according to r−3.

It turns out that any inhomogeneous magnetic field can be described by the
superposition of the magnetic fields generated by an even number of magnetic
poles. The higher poles are called quadrupoles, sextupoles, octopoles, etc.
But the field strength from these higher multipoles naturally decreases even
faster with distance r than for the dipole, namely with r−5, r−7, r−9, etc.
Consequently, at large distances, the field HD from the dipole is the dominant
contribution to the total magnetic field. Hence any magnetic field looks like
the magnetic field of a dipole at large distances. This explains why magnetic
dipoles are most important in magnetism.

We shall see later that the magnetic field of a closed current loop is iden-
tical to that of a dipole. Current loops exist wherever electric charges rotate.
Examples are the current produced by orbiting atomic electrons which create
orbital magnetic moments and contribute to atomic magnetic fields or the
electric currents in the liquid iron outer core of the earth which create the
earth’s magnetic field as shown in Fig. 3.2. At large distances, the magnetic
fields are always well described by the dipole-like form given by (3.2).

A macroscopic current loop may be realized with a current carrying wire
as shown in Fig. 3.3. By comparing the field of the current loop with the field
generated by a magnetized disk, one proves that the magnetic dipole moment
of a current loop is given by

|m| = µ0 I S, (3.3)

where I is the current and S the area enclosed by the loop.
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The Earth and its magnetic field

Fig. 3.2. Illustration of the geological structure of the earth (left) and its magnetic
field (right). The earth’s field resembles that of a magnetic dipole. It is believed to
be produced mainly by electric currents in the outer core consisting of liquid Fe and
changes direction every 500,000 years, on average. The geographic poles, defined
by the rotation axis of the earth, differ from the magnetic poles. The earth field
direction can be directly determined by a compass in form of a small bar magnet
as shown on the bottom right. The end of the compass or bar magnet that points
north is said to be its north pole. From Figs. 2.6 and 3.1 we then find that the
magnetic north pole of the earth actually corresponds to the south pole if the earth
is considered a bar magnet. Note that the magnetic field of the earth has nothing
to do with ferromagnetism as the Fe inside the earth is in a nonmagnetic state

m

I

H

s

Fig. 3.3. Magnetic moment m and magnetic field H of a closed current (I) loop
with area S. The magnetic field generated by the incoming leads is negligible because
their fields cancel if the two wires are close together



64 3 Magnetic Moments and their Interactions with Magnetic Fields

d

Fig. 3.4. A flat disk magnetized perpendicular to the
surface produces a magnetic field similar to a cur-
rent loop. The arrows indicate atomic magnetic dipole
moments generating the magnetization M (compare
Fig. 2.6). The disk has an area S and a thickness d,
and the dashed line is the pathway of the integration

To prove (3.3), one considers a disk of very small thickness d magnetized in
a direction perpendicular to the disk surface, as shown in Fig. 3.4. The fields
of the disk have been discussed in Sect. 2.6 and from (2.17) we have

∮
H · ds =

1
µ0

∮
B ds − 1

µ0

∫ d

0

M ds = 0, (3.4)

which can only be the case if
∮

B · ds =
∫ d

0
M · ds. This in turn means that

1
µ0

∮
B · ds =

1
µ0
Md. (3.5)

However, for the current loop, I =
∮

B ds/µ0 so that the current loop and
magnet are identical if I = Md/µ0. With this result and the volume of the
disk V = S d, we get for the magnetic moment of the macroscopic magnet
disk |m| = M V = M S d = µ0IS. This last expression can then be taken to
define the magnetic moment of a current loop, giving (3.3).

3.2 From Classical to Quantum Mechanical
Magnetic Moments

In the historical development of the concepts of magnetism rotating electric
charge distributions have played a crucial role. Before the discovery of the
spin they were held solely responsible for the magnetic moments of atoms
and the magnetization of solids. We have already derived the magnitude of
the magnetic moment of a ring current given by (3.3). We can rewrite this
equation in a more general form. The current is given by I = q (ω/2π), where
ω is the angular frequency with which the charge q moves around the current
loop, and the area of the loop is S = r2π, so that we obtain |m| = µ0 q ω r

2/2
[V m s]. This equation can be written in vector form as

m =
qµ0

2
r2ω , (3.6)
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r

v
e−

m

Fig. 3.5. Definition of the magnetic moment
caused by an electron q = −e that orbits
around a center at a distance r with a tan-
gential velocity v and angular velocity ω. The
classical angular momentum l of the rotating
electron with mass me is also shown

or with the definition v = ω × r we obtain the magnetic moment for a circu-
lating electron with charge q = −e as

m = − eµ0

2
(r × v). (3.7)

The moment is perpendicular to the orbit of the circulating charge as shown in
Fig. 3.5. The magnetic moment given by (3.6) or (3.7) is seen to have a similar
form as the classical angular momentum l (units [ V A s2]) of a circulating
electron with mass me (units [ V A s3 m−2])1

l = me(r × v) = me r
2ω . (3.8)

Combining (3.7) and (3.8) we obtain an expression for the magnetic moment
m of the electron with charge q = −e in terms of the classical angular mo-
mentum l of a orbiting electron with mass me,

Classical relation: m = − eµ0

2me
l . (3.9)

The minus sign arises from the negative charge of the electron.

3.2.1 The Bohr Magneton

The classical expression (3.9) may be converted into a quantum mechanical
one.2 In doing so one has to realize that in quantum mechanics the expectation
value of l cannot be observed but only the component along a quantization

1Note that the electron mass me in S.I. units is given by me = 9.109 ×
10−31V A s3 m−2 = 9.109 × 10−31 kg.

2For historical reasons this is often done by use of Bohr’s model of the atom and
postulating that any wave function has to be unique. For an orbiting atomic electron
the wave function then has to assume its starting value again after a full revolution.
This can only happen if the angular momentum l is quantized and occurs in integer
multiples of Planck’s constant.
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axis, say z, defined by an alignment field. Thus we can only observe the ex-
pectation value 〈lz〉, which for a single electron with wavefunction |l, lz, s, sz〉
is given by 〈lz〉 = 〈l, lz, s, sz|lz|l, lz, s, sz〉 = h̄lz. In the last expression we
have specifically indicated that h̄lz is the eigenvalue of the operator lz. The
quantum mechanical expression for the measured magnetic moment along z
is therefore

Quantum relation: 〈mz〉 = − eµ0

2me
h̄ lz . (3.10)

The unit [ V A s2] of the classical angular momentum l is the same as that of
the quantum mechanical quantity h̄lz since lz is a dimensionless integer and
h̄ = 1.055 × 10−34 V As2.

The quantum mechanical relation (3.10) is used to define the so-called
Bohr magneton, µB. It is commonly defined as µB = eh̄/2me. With this
definition the Bohr magneton is given in units of [Am2], with a value µB =
0.927× 10−23 Am2. We prefer a different definition in [V m s] units which will
be used throughout this book.3

The Bohr magneton is defined as,

µB =
e µ0h̄

2me
= 1.17 × 10−29 V ms . (3.11)

Since the magnetic moment 〈m〉 also has [V m s] units, we can express it
in units of Bohr magneton [µB], according to 1V ms = 0.855 × 1029µB.

3.2.2 Spin and Orbital Magnetic Moments

The quantum mechanical relation (3.10) describes the magnetic moment due
to a circling electron, also called the orbital magnetic moment. By use of the
Bohr magneton we may write in general,

〈mz
o〉 = −µB

h̄
〈 lz〉 . (3.12)

The orbital angular momentum is therefore given by the expectation value of
the angular momentum operator, 〈 lz〉 (units [h̄]). In solids, the expectation

3With our definition, both µB and the magnetic moment m have units of [V m s].
This leads to the simple relation m = MV , where V is the volume in m3, and the
magnetization M has units [V s m−2], according to (2.10). With these definitions the
magnetic energy is written E = −m ·H in order to have the proper [A V s] units in
the S.I. system. If we had defined µB and m in units of [A m2], as is often done, we
would have the awkward relation m = µ0 MV , or we would have to rewrite (2.10)
as B = µ0(H + M ). Then H and M would have the same units [A m−1]. The
magnetic energy would be E = −m · B in order for E to have the units [A V s].
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value 〈 lz〉 is calculated with the appropriate band or ligand field wavefunctions
as discussed in Sect. 7.9.3 (in particular see (7.67)).

In addition, the electron itself has an intrinsic angular momentum or spin
with half-integer spin quantum number s = h̄/2 and observable projections
sz = ±h̄/2. This emerged from the study of optical transitions in atoms
where the electron spin is conserved because it couples only weakly to the
electromagnetic wave. Particles with half-integer angular momentum, such as
the electron with h̄/2, are called Fermions, in honor of Enrico Fermi, those
with integer intrinsic spin are called Bosons, in honor of Satyendranath Bose.4

It is of key importance that the electron spin generates a full Bohr mag-
neton with a spin of only h̄/2. For the spin magnetic moment 〈ms〉 we can
write a similar general expression as (3.12) for the orbital moment, namely

〈mz
s〉 = −2

µB

h̄
〈sz〉 . (3.13)

Quantum mechanically, the measured value of ms is again determined by the
expectation value 〈sz〉 along the quantization axis. In solids, the expectation
value 〈 sz〉 is again calculated with the appropriate wavefunctions as discussed
in Sect. 7.9.3 (in particular see (7.65)).

In actual fact, the spin generates a slightly larger moment, by a fraction
of ∼10−3µB. This latter small increase of the magnetic moment is called the
anomalous magnetic moment and is caused by the effect of the fields of the
moving electron on itself. It was experimentally discovered in 1951 by Willis
Lamb through a slight shift of a spectral line for H, the Lamb shift. When writ-
ing the magnetic moment in terms of a so-called g-factor as ms = − g µB s/h̄
the small correction corresponds to g = 2.002319304386. It is important in
quantum electrodynamics but not when discussing magnetism.

The total magnetic moment is given by the sum of the spin and orbital
magnetic moments, and when neglecting the anomalous correction to the g-
factor, it is given by

〈mz
tot〉 = −µB

h̄
( 2〈sz〉 + 〈lz〉 ) = −µB

h̄
( gs〈sz〉 + g�〈lz〉 ) . (3.14)

Therefore we can associate a g-factor gs = 2 with the spin moment and g� = 1
with the orbital moment.

4It is one of the most mysterious phenomena that the famous Pauli exclusion
principle applies to Fermions but not to Bosons. As discussed in Sect. 6.2.2, the
Pauli exclusion principle together with the electric Coulomb interaction generates
the coupling between the electron spins commonly called the exchange coupling that
leads to the magnetization of solids in a fashion that is not rigorously understood
up to now. The photon on the other hand is an example of a Boson. As discussed in
Sect. 5.4.1, for photon propagation along the z quantization axis, a linearly polarized
photon has an angular momentum component �z = 0 and a circularly polarized
photon an angular momentum of �z = ±h̄, depending on its handedness. With
photons, one can put as many of them as one wishes into the same state, which is
realized in optical or X-ray lasers.
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The nuclear magnetic moments µK generated by the spin h̄/2 of the nu-
cleons are reduced compared to µB by the ratio of the mass of the electron to
the mass of the proton, that is by 1/1,836. Therefore nuclear magnetic mo-
ments do not contribute significantly to the magnetization of a solid. Larger
nuclei also possess a complicated internal structure and the resulting nuclear
g-factors can vary significantly.

We next look at the interaction of magnetic moments with the magnetic
field.

3.3 Magnetic Dipole Moments in an External Magnetic
Field

After our previous excursion into quantum mechanics, we now consider the
behavior of classical magnetic moments, i.e., magnetic dipoles, in external
magnetic fields. The interactions of magnetic moments with magnetic fields
are basic to the understanding of all magnetic phenomena and may be applied
in many ways. In the following, we will derive the energy, the force, and the
torque that a magnetic dipole experiences in a magnetic field and mention
some of the most important applications of each interaction.

In the applications, one uses the interactions to measure either the mag-
netic moment or the magnetic field existing at the site of the magnetic mo-
ment. Homogeneously magnetized solids also exhibit a magnetic moment,
which for a given volume V is given by m = VM . If V is the atomic vol-
ume, then m is the magnetic moment per atom, if V is the volume of the
the magnetic solid, m is the total magnetic moment of the body. The latter
case is often called the “macrospin approximation.” It assumes that the ex-
change coupling which extends over the magnetic solid can strongly couple all
the individual electron spins to form one single giant spin or moment. Under
these conditions, the equations given below are valid for solids as well, but we
will confine the discussion for the time being mostly to noninteracting atomic
magnetic moments. It should be remembered that the magnetic dipole mo-
ment m is an axial vector constructed to describe the interaction of current
loops with the magnetic field, and that magnetic poles are fictitious, that is
they do not exist in reality.

Conservation of energy is of course as important in magnetism as in all
fields of physics. Yet typically, when applying magnetic energy equations, one
cannot determine how fast the state of lowest energy is reached, and in fact
it sometimes is reached only on the scale of years or perhaps never. There-
fore, another conservation law is at the root of contemporary developments in
magnetism, namely the conservation of angular momentum. The “two current
model” and the spectroscopic observation of the magnetization to be discussed
later are based on it, and it governs magnetization dynamics. Most notably,
it also leads to the precession of the magnetic moment in a magnetic field
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and to magnetic resonance from which in turn a wealth of new basic knowl-
edge on magnetic moments and many applications such as magnetic resonance
imaging in medicine or the atomic clock have emerged.

Conservation of angular momentum means that the vector L of the angu-
lar momentum of a rotating inert mass must remain constant in magnitude
and direction unless angular momentum is carried away. Our intuition of the
motion of a magnetic dipole in a magnetic field is influenced by the oldest
and most honorable magnetic experiment, seeing how a compass needle turns
into the direction of the earth’s magnetic field. This is only part of the story.
What really happens is the following. When the magnetic needle is placed
into a uniform magnetic field, e.g., the earth’s field which is uniform over the
size of the needle, the magnetization of the needle actually starts precessing
about the field direction. The precession of the magnetization relative to the
body of the compass needle induces a frictional or damping torque that forces
the magnetization of the needle to turn into the magnetic field. Conserva-
tion of angular momentum and energy requires that the frictional torque be
transferred from the magnetization to the body of the compass and then to
the surrounding environment (compass mount and air). In the end the body
of the compass aligns itself again with the magnetization in the north–south
direction.

In fact, the detailed visualization of the entire precession and damping
motion of a magnetic moment in a magnetic field has only been accomplished
in recent times. It was made possible by using pulsed laser magneto-optics
which allowed the observation of the detailed motion of the magnetization
vector M in a solid. The experiment required a time resolution of the order
of 10−12 s combined with a spatial resolution of at least a few µm. In these
experiments one detects how M spirals into the direction of the magnetic field
in a time of typically 10−9 s.

If suspended properly one could see that the compass needle does not just
turn into the field direction but rotates when the angle between M and H
changes, thus conserving angular momentum. The famous experiment of Ein-
stein and de Haas has in fact verified that solids rotate when the magnetization
direction is changed. The process that transfers the angular momentum from
the spin magnetic moment to the solid crystal lattice is called spin–lattice re-
laxation. We shall see below that the magnetization dynamics is described by
the so-called Landau–Lifshitz–Gilbert equation. But before we take a detailed
look at this equation we need to first review the basic physics of a magnetic
dipole in an external magnetic field.

3.4 The Energy of a Magnetic Dipole in a Magnetic Field

Our definitions of the units of the magnetic moment and the magnetic fields
determines the form of the magnetic energy of a dipole in a magnetic field.
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The energy of a dipole m in a field H is given by

E = −m · H. (3.15)

The units of energy are [V A s]. 1V A s = 1 J = 0.624 × 1019 eV.

To derive (3.15), one assumes a magnetic dipole as defined in Fig. 3.1,
which is initially perpendicular to H and is then turned into the direction of
the magnetic field, as illustrated in Fig. 3.6. In doing so, one gains energy given
by the force times length of the path travelled by the magnetic poles in the
direction of the magnetic field. The forces are F + = p+H = pH and F− =
p−H = −pH and by means of Fig. 3.6 we see that H · d� = H(d/2) cosφdφ
and the energy gain is given by

E = 2 p
∫

H · d� = p dH

∫ 0

π/2

cosφ dφ = −m · H . (3.16)

Here we have used the definition pd = m from Fig. 3.1. We see that the
energy is a true scalar obtained by multiplying two axial vectors. A true
scalar conserves parity. It is mandatory for the energy to be a true scalar.

Equation (3.15) shows that magnetic moments tend to align themselves
parallel to the magnetic field. Thermal motion, on the other hand, tends to

p

p

F

F

H

d
f

Fig. 3.6. A magnetic dipole m = p d initially perpendicular to the magnetic field
direction is turned into its stable state parallel to the magnetic field. The energy
gain is given by the forces F + = p+H = pH and F − = p−H = −pH times the
length of the path traveled by the poles p in the direction of the field. Note that the
net force on the dipole is zero
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destroy this alignment. This leads to an equilibrium magnetization that can
be calculated with thermodynamics. This treatment is so common in all text
books on solid state physics and magnetism that we shall for simplicity only
treat the simple case s = 1/2 since it contains the important physics.

For a magnetic moment s=1/2 (in units of h̄) there are only two levels
corresponding to sz = ±1/2. From (3.13) and (3.15) it follows that the energy
levels in the magnetic field are E = ±µBH. The saturation magnetization at
T = 0 when all spins are aligned isM(0) = NµB whereN is the volume density
of the spins. The Boltzmann factor ex with x = −µBH/kBT is proportional
to the probability that the state with energy µBH is occupied, where kB is
the Boltzmann constant. The magnetization of the two level system is then
given by ex − e−x divided by the sum of all probabilities which is ex + e−x.
This yields the magnetization as a function of temperature T and magnetic
field H, the so-called Brillouin function which for s = 1/2 is simply the tanhx
function5

M(H,T ) = NµB
ex − e−x

ex + e−x
= NµB tanh(x) = M(0) tanh(x) , (3.19)

The result (3.19), derived by L. Brillouin in 1927 assumes that the individ-
ual spins are quantized in two orientations sz = ±1/2. An earlier theory
derived by P. Langevin in 1905, based on a “macrospin” composed of classi-
cal magnetic moments with no direction quantization, yielded a quite similar
function called the Langevin function L(x) = cothx−1/x (see footnote 5 and
Fig. 11.1).

Magnetic energies are generally small compared to the energy of thermal
fluctuations. A moment of 1 µB in a field of B = 1 T corresponding to H =
7.96 × 105 Am−1 yields a splitting between the spin up and the spin down
levels of 2µBH = 1.86× 10−23 V As = 1.16× 10−4 eV. This splitting is about
equal to the thermal energy at T = 1 K, since 1 eV/kB = 1.16 × 104 K (see
Appendix A.1). Therefore, x
 1 in most cases, and we can approximate e±x

by 1 ± x. This yields

M(H,T ) = NµB x =
Nµ2

B

kB

H

T
. (3.20)

5The general Brillouin function for angular momentum J is given by

BJ(x) =
2J + 1

2J
coth

(
2J + 1

2J
x
)
− 1

2J
coth

(
x

2J

)
. (3.17)

For J = s = 1/2 one gets B1/2(x) = tanh x. In another limit J → ∞ one obtains
the Langevin function

B∞(x) = L(x) = coth x − 1

x
. (3.18)
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We recognize Pierre Curie’s famous law for the temperature dependence of
the magnetic susceptibility χ = M/µ0H,

χ(T ) =
M(H,T )
µ0H

=
Nµ2

B

µ0kB

1
T

=
µB

µ0kB

M(0)
T

=
C

T
. (3.21)

where C is called the Curie constant, which in our case corresponds to s =
1/2. The Curie law is an approximation of the Brillouin function for small
fields and/or large temperatures. Curie’s law emerged from the study of the
magnetization of oxygen gas. The oxygen molecule has a spin moment of 2µB

generated by two parallel electron spins.
In the other limiting case x � 1, that is at low temperature or in high

fields, we obtain from (3.19) M = M(0) = NµB. This “paramagnetic” satu-
ration magnetization is reached asymptotically. Materials to which the theory
applies are called paramagnetic.

In paramagnets the magnetization M(T ) is generated by aligning preex-
isting magnetic dipoles in an external field. The average magnetization is
always parallel to the field and varies with temperature as 1/T .

The condition for the applicability of the Brillouin function to a material
is the absence of interactions between the magnetic moments. This applies in
diluted systems. In cases where interactions exist, one may add an appropri-
ately chosen effective field to the applied external field, as will be shown in
Sect. 11.1.

Curie’s law does not apply to the itinerant electrons in a metal. The mag-
netic susceptibility of the metal electrons is independent of temperature as
explained later by W. Pauli in conjunction with the degeneracy of the Fermion-
gas as discussed in Sect. 15.3.

3.5 The Force on a Magnetic Dipole in an
Inhomogeneous Field

Let us now consider a magnetic dipole in an inhomogeneous static magnetic
field H(x, y, z). In general, the force F is given by the negative gradient of
the energy

In general, the force on a dipole m in a field H is given by

F = ∇(m · H). (3.22)

The force F is a polar vector. It is the negative gradient of the energy
and has units [ V A s m−1], where 1V A s m−1 = 1N.
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We can expand the right side of (3.22) according to the gradient operator
rules listed in Appendix A.2, and by assuming that the dipole is small we
obtain

F = (m · ∇)H . (3.23)

As an example, let us consider the case illustrated in Fig. 3.7. We have an
increasing magnetic field in the z direction of our coordinate system and,
for simplicity, we have assumed that the magnetic dipole moment is already
aligned along z. There is then a net force acting on the dipole to move it into
the direction of the increasing field. According to (3.23) we have F = (m·∇)H
and neglecting the cylindrically symmetric force in the x–y plane which has
no net effect on the dipole we have

Fz = (m · ez)
∂Hz

∂z
. (3.24)

The same result is obtained from the simple argument presented in the caption
of Fig. 3.7.

Generally it is helpful to remember that whenever a magnetic moment is
parallel to the magnetic field such as is the case in paramagnetic materials
where the magnetization is generated by alignment of preexisting magnetic
moments, it experiences a force toward increasing field. Yet when the magne-
tization is antiparallel to the field such as in diamagnetic or superconducting
materials, the force (3.22) pushes it toward the weaker field. The fact that the

_

+ H

d y

z
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+p

Fig. 3.7. A magnetic dipole is aligned in a cylindrically symmetric inhomogeneous
magnetic field along the z-axis. Since any field gradient perpendicular to z is cylin-
drically symmetric, the net force on the dipole, to first order, is determined by the
fact that the field at p+ is larger compared to the one at p− by d (∆Hz/∆z). The
resulting force on m = pd is Fz = p d ∆Hz/∆z = |m|∆Hz/∆z
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magnetization induced in diamagnetic or superconducting materials is neg-
ative when a magnetic field is applied, arises from the minus sign in (5.3).
Actually, paramagnetic materials always have a diamagnetic contribution to
the susceptibility but it tends to be weaker compared to the paramagnetic
part.

In the following sections we shall discuss three important examples where
forces on magnetic moments play the key role.

3.5.1 The Stern–Gerlach Experiment

The discovery of the direction quantization of the magnetic moments in 1921
by Stern and Gerlach with an atomic beam of silver atoms is one of the
important consequences of (3.22), yet it involves going beyond a classical
picture. The experiment is probably the most beautiful early demonstration
of the concept of quantization and it constitutes one of the foundations of
modern magnetism, which is based on the concept of spin and its quantum
mechanical behavior. It is for this reason that it is often used as an illustration
of the counterintuitive quantum behavior of the spin, e.g., by Sakurai [126].

In the experiment, a beam of silver atoms was directed through an inho-
mogeneous magnetic field, in a geometry illustrated in Fig. 3.8, with the shown
atomic H source replaced by a silver atom source. After the magnet, the beam
hits a screen so that the deposited distribution of silver atoms could be di-
rectly observed. Ag has 47 electrons and the outer 5s electron is unpaired and
gives rise to a spin-only magnetic moment. After inspection of the detector
screen, two distinct spatially separated Ag spots were observed. The story of
the discovery is nicely described in an article by Friedrich and Herschbach [15]
from which the picture of the postcard in Fig. 1.3 is taken.

We shall now discuss the significance of this observation by comparing
three hypothetical experiments. In one experiment we assume that the spin is
a classical dipole, as pictured in Fig. 3.7. We shall see that the interaction of
a classical dipole with the magnetic field cannot explain the observed result,
which therefore demonstrates the breakdown of classical concepts. We shall
also show how the experiment can be explained by the quantum mechanical
description of the spin, which is counterintuitive yet underlies our modern
thinking and description of the electron spin.

As illustrated in Fig. 3.8, we imagine that a source produces beams consist-
ing of three kinds of magnetic “objects,” either small classical dipoles, small
bar magnets, or hydrogen atoms which contain a single electron with an un-
paired spin. We have designed our “Gedanken” experiments to bring out the
difference in behavior of all three objects as they traverse the Stern–Gerlach
(SG) magnet. The beams are directed along the y direction and the magnetic
field and its gradient are along the z direction, as in Fig. 3.7.

The case of classical magnetic dipoles is shown in Fig. 3.8a. We assume
that the dipoles are the idealized objects shown in Fig. 3.7 so that the force
exerted by the magnetic field is given by (3.24). Because of the necessity
to conserve energy and angular momentum, the idealized dipoles cannot
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Fig. 3.8. Illustration of the quantum behavior of the electron spin. We consider a
Stern–Gerlach experimental arrangement consisting of a source, a gradient magnet
that produces a force on a magnetic object along z as in Fig. 3.7, and a detector
screen where the arriving objects produce a characteristic intensity distribution. In
(a) we consider a collimated “beam” of fictitious dipoles (see Fig. 3.7) with random
orientation relative to the field direction z. When this beam traverses the gradient
magnet, the force on the individual dipoles depends on their orientation according to
(3.24), resulting in a beam intensity on the detector screen that resembles a vertical
line. In (b) we imagine a beam of bar magnets. These objects behave differently from
the classical dipoles in (a) because frictional torque associated with the precession
of the magnetization inside the physical body of the bar leads to the rotation of the
bar into the field direction so that all bars are deflected into the same direction. In
(c) we consider a simple atomic beam of H atoms which are charge neutral but have
a single spin per atom which we assume to be randomly oriented. In accordance with
the original Stern–Gerlach experiment the quantum behavior of the spin results in
two spots on the detector screen corresponding to H atoms with spins parallel and
antiparallel to z. Because of the opposite direction of m and s, the antiparallel
“down” spins are deflected upward as shown
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change their orientation relative to the magnetic field as this corresponds
to a change of angular momentum and of energy. The classical force act-
ing on the magnetic dipole, given by (3.24), is directed along the z-axis and
varies as F = |m| cos θ(∂Hz/∂z) with the angle θ between m and the z-axis.
Thus the intensity distribution on the detector screen lies along a continuous
line between the maximum beam deflections determined by the force maxima
F = ±|m|(∂Hz/∂z).

In Fig. 3.8b we replace the ideal dipoles by real small bar magnets with
a magnetic material with magnetization M connected to their physical bar-
shaped body. Such real magnetic bodies, even if consisting of only few atoms,
possess a large number of vibrational and rotational modes. These modes cou-
ple to the magnetization and thus can accept energy and angular momentum
from a change of the direction of the magnetic moment of the particle. As men-
tioned in Sect. 3.3 and discussed in more detail in Sect. 3.6, for real magnets
like a compass needle, one has to consider the action of two torques in addition
to the force (3.24). We know by experience that the compass needle turns into
the field direction as shown in Fig. 3.2. Thus if we assume that the little bar
magnets quickly turn into the field direction as they enter the Stern–Gerlach
magnet, the force F = m(∂Hz/∂z) will bend the beam upward, resulting in
a single spot on the detector screen.

The observed intensity distribution on the detector screen actually depends
on the time it takes the bar magnets to turn into the field direction relative to
their flight time through the SG magnet. The detailed process will be discussed
in Sect. 3.6 below and goes as follows. The precessional torque acting on the
magnetization, causes M to precess at a constant angle about the average
field direction H ‖ z. The change in angular momentum associated with the
precession of M relative to the field H is absorbed by the SG magnet as
a whole. The precessional motion of M relative to the physical body of the
bar induces a frictional or damping torque which causes M to rotate into
the field direction H ‖ z. This process is accompanied by a change in energy
and angular momentum which needs to be dissipated. When it is passed to
the lattice of the bar magnet (on a timescale of several hundred picoseconds),
the whole body of the bar responds. If the angular momentum and energy
cannot be passed on further from the body to the environment, e.g., when the
experiment is conducted in vacuum, the torque passed from the magnetization
to the magnet body will cause the body to perform complicated motions
(nutations). If the body can transfer energy to the environment, e.g., to the
surrounding gas, the body will physically align itself with the magnetization.

The difference between the ideal dipole and the bar magnet therefore lies
entirely in the frictional torque and the associated damping time of the mag-
netization (not the body). If the damping time of the magnetization is long
compared to the beam transit time through the SG magnet, the bar magnet
will not turn into the field direction while traversing the SG magnet. The
pattern on the detector screen will then be a line as for the ideal dipole in
Fig. 3.8a. If the damping time is much shorter than the flight time, which is
more typical, we will observe the intensity distribution in Fig. 3.8b.
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This experiment has actually been done with tiny bar magnets consist-
ing of clusters of 5–1,000 atoms of Ni, Co, and Fe [127, 128], and results are
shown in Fig. 3.9. The clusters exhibit ferromagnetic ordering of the spin mo-
ments and therefore each cluster has a large magnetic moment depending on
the number of atoms, but the orientation of that moment fluctuates on the
10−9 s time scale. This is possible in those cases where the moment is only
weakly attached to the cluster atomic lattice. Thermal agitation from the clus-
ter vibrational modes causes the moment to explore all possible orientations
during the several hundred µs the cluster spends in the SG-magnet. The av-
erage magnetic moment along the magnetic field direction in the SG-magnet
is then responsible for the deflection of the cluster according to (3.24). The
average moment is related to the total magnetic moment by the Langevin
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Fig. 3.9. Magnetic moment per atom of small transition metal clusters in a low-
temperature molecular beam measured in a Stern–Gerlach apparatus [127]. Small
clusters have larger, more atomic like, magnetic moments
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function given by (3.18). It can therefore be determined from the observed
deflection of the cluster beam.

In the determination of the magnetic moments of the clusters shown in
Fig. 3.9 it was assumed that the intensity distribution in Fig. 3.8b is applicable.
The derived result is that the smaller the number of atoms in a cluster, the
more the magnetic moment per atom approaches the large value of the free
atom. Only with clusters containing about 700 atoms, the magnetic moment
per atom settles to the reduced value observed in bulk Ni, Co, and Fe, as
shown in Fig. 3.9. However, Bennemann and coworkers [129] have shown that
this simple picture does not hold under all conditions. The anisotropy field
introduced in Sect. 11.2 is attached to the rotating atomic lattice of the cluster.
It acts on the cluster magnetization like an oscillating magnetic field. This can
induce resonant transitions of the magnetization with respect to the magnetic
field direction. The strength of the anisotropy field and the relaxation time are
thus important variables that determine the magnetic behavior of the clusters
in the SG-experiment. It often lies in between case (a) and case (b).

The effect on the spin is illustrated by the simple case of a H atom beam
in Fig. 3.8c. The experiment was actually performed by Phipps and Taylor
in 1927 [130]. The simplicity is due to the fact that the H atom in vacuum
has no degrees of freedom to absorb the energy or angular momentum that
is connected with a change of the direction of the magnetic moment. Hence,
due to the conservation laws, it has to remain in the state in which it en-
tered the SG-magnet. The positively charged H nucleus renders the atoms
charge-neutral, so that the magnetic field acts only on the spin. The H atom
distribution on the detector screen consists of only two spots, as for the actual
SG experiment with neutral Ag atoms. This result is obviously at odds with
classical expectations based on either of the experiments in Fig. 3.8a, b.

The fascinating result requires a new quantum mechanical concept, the
Pauli spinor formalism, discussed in more detail in Sect. 8.4.2, that can be
stated as follows.6

The quantum mechanical superposition principle describes a spin s, ori-
ented at an arbitrary angle relative to a magnetic field H that defines
the quantization axis, as a coherent superposition of two partial waves
with spin parallel (“spin up” ↑) and antiparallel (“spin down” ↓) to H.
A general spin wavefunction has the form,

χ = u1 |+〉 + u2 |−〉 = u1 | ↑〉 + u2 | ↓〉 , (3.25)

where u1 and u2 are complex numbers with |u1|2 + |u2|2 = 1.

6More generally, the superposition principle states that if two states have the
same energy then a general state with that energy can be written as a linear super-
position of the two states.
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Thus an electron with arbitrary spin orientation relative to the quantiza-
tion axis has a probability u1u

∗
1 to be in the “spin up” |+〉 = | ↑〉 state and

a probability u2u
∗
2 to be in the “spin down” |−〉 = | ↓〉 state. For the special

case that the spin is oriented perpendicular to z we have |u1| = |u2| = 1/
√

2
(see Fig. 8.3 below).

Like the magnetic dipoles, the H atoms with magnetic moments m along
+z are deflected into the +z direction of increasing field strength by the force
F = +|m|∂Hz/∂z while the atoms with magnetic moments along −z are de-
flected toward the weaker field direction −z by the force F = −|m|∂Hz/∂z.
In contrast to the classical magnetic dipole case, however, atoms with mag-
netic moments perpendicular to z, must be thought of as consisting of two
quantum components, parallel and antiparallel to z. They therefore do not go
straight through the field without deflection but have a 50% probability of be-
ing deflected in either of two directions ±z by forces F = ∓2µBsz(∂Hz/∂z).
On average, they therefore contribute equally to the two discrete intensity
spots observed. In general, all atoms with finite angles θ of their spins relative
to z contribute to both spots, with the relative contributions u1u

∗
1 and u2u

∗
2

determined by θ (see Sect. 8.4).

3.5.2 The Mott Detector

Unfortunately, it is not possible to separate the two spin states of a free
electron in the same way, as discussed in detail by Kessler [131]. This is due
to the fact that electrons unlike the neutral silver atoms carry a charge and
therefore experience a Lorentz force, given by (4.10). For typical low-gradient
macroscopic magnetic fields the Lorentz force is many orders of magnitude
larger then the force on the magnetic moment given by (3.22). Therefore,
according to this reasoning, known as Bohr’s argument, it is not possible to
spatially separate the two spin states of the free electron in a macroscopic
magnetic field. In Bohr’s days some people thought that this excludes the
existence of free spin-polarized electrons.

Mott recognized that this means that classical mechanics cannot describe
the motion of a free electron. Instead, he suggested to separate the two
spin states by scattering the free electron on the Coulomb field of heavy
atoms [132]. This is often referred to as spin–orbit coupling in elastic Coulomb
scattering. To this day, “Mott scattering” is still mostly used to measure the
spin polarization of an electron beam. It is also an instructive example of the
effect of the force on the magnetic moment of the free electron and we shall
discuss it below.

In the original concept of Mott scattering, one prepares an electron beam
of fairly high energy of a few hundred keV. The de Broglie wavelength is
then rather small and one can assume classical electron trajectories. As a
scattering center, we first consider an atom with a high nuclear charge, in
actual practice mostly a gold atom. The scattering electron penetrates deep
into the Coulomb field of the atom. In the rest system of the electron, the
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atom moves toward the electron. When the electron is inside the atom the
atomic charge is dominated by the positive nuclear charge. In the rest frame
of the electron, the moving electric field generates a magnetic field as discussed
in Sect. 4.2.2 and the magnetic field lines are circular according to Sect. 2.3.
The magnetic field is inhomogeneous, it becomes weaker as the distance to the
atomic nucleus increases. The large magnetic field gradient exercises a sizeable
force on the magnetic moment of the electron. This force is superimposed onto
the Coulomb force acting on the charge of the electron.

If the magnetic moment is “up” and if the electron passes on the right side
of the atom, magnetic field and magnetic moment are parallel and the force
given by (3.22) pushes the electron toward increasing field, that is toward
the left, as illustrated in Fig. 3.10. If the electron passes on the left side of
the atom, magnetic field and magnetic moment are antiparallel and the force
(3.22) pushes the electron toward the weaker field, that is toward the left, as
well. Altogether, an electron with magnetic moment “up” with respect to the
scattering plane is then preferentially scattered to the left, and an electron
with magnetic moment “down” is preferentially scattered to the right. The
scattering plane in this elastic scattering is defined by the linear momentum

v
m

H

+

Fig. 3.10. Illustration how spin-orbit coupling in elastic Coulomb scattering can
spatially separate the two spin states: The electron with its magnetic moment up
is incident on an atom whose projection perpendicular to the incidence direction is
shown. In the rest system of the electron, the positive charge of the atomic nucleus
moves toward it with a velocity v. This is equivalent to an electric current with
circular magnetic field lines as shown. The force F on the magnetic moment of the
electron is directed toward increasing field when the moment is parallel to the field
(right), but toward decreasing field when it is antiparallel (left). If m and H are
perpendicular the force is zero. In this way, the magnetic moment of the electron
experiences a force toward the left side when it is aligned upward no matter on which
side of the atom it passes. In contrast, electrons with magnetic moment “down” are
preferentially scattered to the right in our figure
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p of the incident electron and the momentum p′ of the electron scattered by
the scattering angle θ. The product p×p′ is an axial vector perpendicular to
the scattering plane. This is the reason why one can determine the direction
of the axial magnetic moment by scattering on a polar electric field as long
as the moment has a component perpendicular to the scattering plane.

Figure 3.11 sketches an experimental setup that can be used to determine
the degree of spin polarization P⊥ of an electron beam perpendicular to the
scattering plane. As discussed in Sect. 8.4.3 below, the degree of spin polariza-
tion is given by

P⊥ =
n↑ − n↓
n↑ + n↓

. (3.26)

Here n↑ and n↓ are the numbers of electrons in the beam with spin up and
down, respectively. The beam hits a very thin gold foil so that one mainly has
scattering on a single gold atom. Two detectors at exactly the same scattering
angle θ to the right and to the left count the number of scattered electrons.
If the electron spin (antiparallel to the magnetic moment) has a preferred
projection onto the normal of the scattering plane, i.e., points below or above
the plane shown in Fig. 3.11, one counter will count more electrons than the
other. According to (8.32), the scattering asymmetry is given by

A =
Iright − I left
Iright + I left

, (3.27)

q

Fig. 3.11. Experimental setup to measure the scattering asymmetry A caused
by the spin polarization of an electron beam. The electrons elastically scattered
into the scattering angle θ to the right and to the left are measured. If the spins
of the electrons in the incident beam are polarized perpendicular to the scattering
plane, a scattering asymmetry occurs which is proportional to the degree of spin
polarization P⊥.



82 3 Magnetic Moments and their Interactions with Magnetic Fields

where Iright and I left are the currents of electrons scattered to the right and
to the left, respectively. The asymmetry A is proportional to the degree of
spin polarization P⊥ according to A = SP⊥. The Sherman function S(θ,E)
has been calculated in the central field approximation and is as large as 0.4
at E = 150 keV and θ ∼ 120◦ in the case of a gold-atom [133].

Originally it was thought that one needed relativistic electron energies
to obtain large asymmetries. This turned out not to be the case. In fact,
close to complete spatial separation of the spins is obtained in scattering on
gold atoms at E � 100 eV. The reason is that at these electron energies,
the de Broglie wavelength is of the order of the diameter of the atom and one
obtains a diffraction pattern where the scattered intensity can be close to zero
at certain scattering angles. The zero intercept occurs at different θ values for
the two spin states because the electron penetrates deep enough into the gold
atom to become relativistic [134]. Hence close to the destructive interference
experienced by one spin state, the other one still has a sizeable scattering
probability. An additional advantage occurs due to the fact that at these low
energies, the scattered electrons stem mostly from the first atomic layer of the
solid gold target, and the scattered intensity is given in good approximation
by the superposition of the intensity scattered from single atoms. Hence it is
sufficient, for example, to let electrons of 150 eV energy impinge normal to
the surface of an amorphous gold film and measure the intensity of the elastic
diffuse scattering to the right and to the left in order to determine the degree
of spin polarization perpendicular to the scattering plane. The characteristic
of such low-energy spin-polarized scattering from atoms is the occurrence of
rapid changes of the Sherman function S = A/P from positive to negative
values close to the scattering angles where the intensity is small (Fig. 3.12). To
detect the spin polarization, low-energy scattering is applied in spin-resolved
photoemission and in secondary electron microscopy with spin polarization
analysis (SEMPA) [68]. In practice, one still uses the more robust high energy
Mott scattering in many applications.

However, substantially better detection schemes for the spin polarization
are on the horizon based on the ferromagnetic exchange interaction of the
electrons in magnetic materials. It will be shown in Chaps. 8 and 12 that these
interactions provide excellent spin filters in transmission of polarized electrons
[135,136] and also generate energy gaps in the electronic structure which are
responsible for spin-dependent reflection of electrons from a magnetic surface
or interface. The spin-dependent reflection is already used in spin polarized low
energy electron microscopy (SPLEEM), where spin-polarized electrons from a
GaAs-type photocathode are reflected at low kinetic energy from the magnetic
surface yielding dynamic information on magnetic processes at surfaces at
video frequencies and at ∼10 nm spatial resolution [74]. The high speed in
conjunction with good spatial resolution achieved in SPLEEM proves that
exchange scattering used in elastic reflection from a magnetic surface is a more
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Fig. 3.12. Schematic diffraction pattern as observed in electron scattering from
atoms at low electron energies of ∼100 eV. The scattered intensity is plotted versus
the scattering angle θ. At some θ the interference is destructive and no electrons are
scattered but due to spin–orbit coupling, the zeros occur at different θ for the two
spin states. In this way, separation of the two spin states can occur with characteristic
rapid changes of the sign of the Sherman function S(θ, E) = A/P as θ varies

efficient way to spatially separate the spin states compared to the spin–orbit
scattering utilized in Mott detectors. An example for the spin asymmetries in
reflection of electrons from an Fe surface is given in Fig. 13.11.

3.5.3 Magnetic Force Microscopy

Another application of (3.22) is magnetic force microscopy (MFM). A very fine
tip is prepared from a ferromagnetic metal such as cobalt. For the magnetic
moment of the fine tip the approximation of the “macrospin” may be valid,
meaning that all the magnetic moments of the electrons in the tip are tightly
coupled to form one giant magnetic moment fixed in its direction along the
tip axis. This magnetic moment experiences an attractive or repulsive force in
an inhomogeneous magnetic field depending on whether it has a component
parallel or antiparallel to the field, respectively. Hence the measurement of the
force allows one to determine the gradient of H as it depends for instance on
location above the surface of a magnetic medium. Since the tip can be made
quite fine, of the order of few nanometers, the spatial resolution of magnetic
force microscopy is high enough to detect the stray fields above the magnetic
bits of 40 nm width, written into the magnetic medium of the hard disks of
computers, as shown in Fig. 3.13. The magnetic force that can be detected
is amazingly small: It has recently been shown that one must flip only one
single electron spin to produce an observable change of the force on a magnetic
tip [137].
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Fig. 3.13. Magnetic recording bits with alternating in-plane magnetization, shown
on the left, give rise to strong out-of-plane magnetic field gradients near the transi-
tion regions, as shown. The field direction depends on the orientation of the mag-
netization in the adjacent bits. On the right is shown a magnetic force microscope
image of such a bit pattern. The pattern in the upper left has a transition density of
500 transitions per mm, the pattern on the lower right has a density of 5,000 tran-
sitions per mm (the shown track corresponds to an areal density of 3 Gbits inch−2)
(courtesy of A. Moser, Hitachi Global Storage Technologies)

3.6 The Torque on a Magnetic Moment
in a Magnetic Field

If the magnetic field is homogeneous, it has the same magnitude at the location
of the poles p+ and p− of a magnetic dipole, as shown in Fig. 3.6. Hence it
exerts an equal but opposite force F = pH on each magnetic pole. The net
force is then zero. However, the dipole experiences a torque T .

The torque on a dipole m in a field H is given by

T = m × H . (3.28)

T is an axial vector perpendicular to m and H and has the units [V A s]
of energy.

The derivation of the above torque equation for the magnetic moment in
a field follows from Fig. 3.6, by use of the definition of the mechanical torque
caused by a force F acting on a lever r,

T = r × F . (3.29)
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The torque causes the vector of the angular momentum L to move according
to Newton’s classical equation of motion dL/dt = T . By use of (3.28) we
obtain

dL

dt
= T = m × H. (3.30)

3.6.1 Precession of Moments

Historically the relationship between the magnetic moment m and angular
momentum L that appear in (3.30) is written in terms of the gyromagnetic
ratio γ, according to m = γL, where L is given in units of V A s2 and γ =
qgµ0/2me. The sign of γ depends on the charge q of the particle. We have
seen before in (3.9) that for an electron m and L have opposite signs and
therefore γ = − egµ0/2me is negative in this case. By substituting m = γL
in (3.30) we obtain an important equation.

The equation of motion of a magnetic moment m in a field H is given by

dm

dt
= γ [m × H ] = γ T . (3.31)

γ = qgµ0/2me is the gyromagnetic ratio which is negative for an electron
with charge q = −e. This leads to the Larmor precession of m about the
magnetic field H at the angular frequency ω = − γ H.

It is not difficult to derive the Larmor precession frequency. According to
(3.31), the change dm of the magnetic moment is perpendicular to both m
and H. Therefore, m can only precess around H. If m⊥ is the component of
m perpendicular to H, than dm = m⊥ dϕ where dϕ is the angle by which
m precesses in the time interval dt. This yields dm/dt = ωm⊥. From (3.31),
dm/dt = γm⊥H yielding ω = γH. Figure 3.14 shows the precession of the
magnetic moment of an electron about the field direction.

The motion of m is in agreement with the conservation of angular momen-
tum. Because of Newton’s law actio = reactio, the torque acting on m acts
with the opposite sign on the source of the magnetic field and, in principle,
sets it in opposite rotation so that the total angular momentum is conserved.

It is remarkable that the precession frequency ω does not depend on the
angle between the magnetic moment and the magnetic field. This means that
ω is independent of the component m⊥ of the magnetic moment perpendic-
ular to the axis of precession and explains why quantum mechanics delivers
the same result for the Larmor frequency as the classical approach. In quan-
tum mechanics, the component of the magnetic moment perpendicular to the
axis of quantization remains undetermined, yet whatever its value may be, it
precesses with ω.
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Precession of magnetic moment in fieldm H

Fig. 3.14. The magnetic moment m of an electron precesses about a field H
with the Larmor frequency ω = − γ H, as derived from the torque (3.31). The
gyromagnetic ratio γ is negative for an electron and this determines the precession
direction according to the right hand rule as shown. The torque vanishes when m
and H are parallel and it is largest when the two vectors are perpendicular. Note
that ω is independent of the angle θ enclosed by H and m

It is important to note that the angle θ between H and m does not change
in the precession, hence the energy E = −m · H = −mH cos θ is constant
and not at a minimum. Obviously, this contradicts experience since we know
that magnetic moments do turn into the field direction when given sufficient
time. Changing θ and thus the energy of the dipole requires an additional
torque that precesses at the same rate as the magnetization. We shall see
below that this additional torque arises from damping or friction.

The Larmor precession frequency of the spin moments in magnetic fields
typically present in ferromagnets sets the time scale for magnetization dynam-
ics. According to Sect. 2.6, the relevant demagnetization fields are of the order
of µ0H ∼ M , that is of the order of 1 T. For an electron we have g = 2 and
γ = −eµ0/me so that the spin precession frequency is ω = −γH = (e/me)B.
It can be shown that the relationship between the angular velocity vector ω
and the field B is a true vector equation [118]. If we move the direction of B
the direction of ω moves with it to keep it parallel to B.

The angular velocity ω of a precessing spin in a field B is given by

ω =
e

me
B . (3.32)

ω is an axial vector. We have
ω

B
= 1.759 × 1011 radT−1s−1. (3.33)

In a field of 1 T an electron spin makes one full precession in 36 ps.
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Since in a 1 T field the spin precesses by 1 rad = 360◦/2π = 57.3◦ in 5.7 ps
it is convenient to remember that it takes about 10 ps for a 90◦ spin precession,
which is required for initiating a switch of the magnetization into the opposite
direction. We see that the magnetization dynamics in ferromagnets caused by
typical external fields occurs on the tens of picosecond time scale. With the
advent of spectroscopic techniques to measure the magnetization in a time
as short as ∼10−12 s, the precession can now be directly imaged in the time
domain as discussed in Chap. 15.

3.6.2 Damping of the Precession

Experience tells us that the magnetic moment eventually moves into the field
direction. This fact underlies the earliest magnetic device, the compass. We
have seen that the precessional torque T = m × H cannot accomplish this
as it is perpendicular to H. As illustrated in Fig. 3.15 an additional torque
T D must be introduced which is perpendicular to the precessional torque and
perpendicular to m. We shall call T D the damping torque.

From Fig. 3.15 we see that we can write

T D = C [m × dm

dt
] . (3.34)

The constant of proportionality C is purely phenomenological, analogous to
the friction coefficient for a linear motion. According to Fig. 3.15 T D causes a
rotation toward the +z axis for positive C. It describes unspecified dissipative
phenomena in a material whose exact nature remains an intriguing topic of
magnetism research. As expected for a dissipative phenomenon the torque
T D changes sign when time is inverted in contrast to the precessional torque

T

TD

H

m

dm
dt

Fig. 3.15. The precessional torque T and the damping torque TD acting on
the precessing m. The precessional torque T = (1/γ) dm/dt causes m to pre-
cess into the direction dm/dt since γ is negative, and the damping torque T D =
(α/m)[m×dm/dt] turns m into the direction of H for a positive damping parameter
α. The motion is depicted in Fig. 3.16 as calculated from the Landau–Lifshitz–Gilbert
equation (3.39) inserting α = +0.15.
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T = m × H which is invariant with time reversal. We have the following
important fact.

The damping torque T D causes the motion of m to become irreversible.

A realistic equation of motion for m is the Landau–Lifshitz (LL) equation

dm

dt
= γ [m × H ] +

αγ

m
[m × (m × H) ] , (3.35)

where m = |m|. A modified version of the LL equation, the so-called Landau–
Lifshitz–Gilbert (LLG) equation, is often used. It reads

(1 + α2)
dm

dt
= γ [m × H ] +

αγ

m
[m × (m × H) ] , (3.36)

and hence contains another term (1+α2) which is negligible for small α. The
LLG equation is typically written in a slightly different form that is equivalent
to (3.36).7

The Landau–Lifshitz–Gilbert (LLG) equation is given by

dm

dt
= γ [ m × H ] +

α

m

[
m × dm

dt

]
. (3.39)

The phenomenological constant α, the so-called damping parameter,
stands for unspecified dissipative phenomena.

The first term describes the precession of m at a fixed angle θ about the
magnetic field direction H, as illustrated in Figs. 3.14 and 3.15 due to the
torque T = m × H into the direction dm/dt = γT (note γ is negative for
an electron). The second term describes the change of m due to the damping
torque T D, causing m to turn toward the direction of H for a positive value
of α, as shown in Fig. 3.15. Solving the LL- or the LLG-equation shows how
m spirals into the magnetic field direction as depicted in Fig. 3.16.

7To prove the equivalence of (3.39) and (3.36) we start from (3.39) and insert for
the last term the entire expression for dm/dt to obtain

dm

dt
= γ [ m × H ] +

α

m

[
m ×

(
γ [ m × H ] +

α

m
[ m × dm

dt
]
)]

. (3.37)

By use of the cross product rules in Appendix A.2 we get

dm

dt
= γ [ m × H ] +

αγ

m
[ m × (m × H )] − α2 dm

dt
, (3.38)

which is the same as (3.36).
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m

H

Fig. 3.16. Precessional motion of the magnetic
moment m according to (3.39) with a posi-
tive damping parameter α = +0.15. m spirals
into the direction of the field H at which point
both the precessional torque and the damping
torque vanish

The damping may be thought of as being generated by an effective mag-
netic field Heff ∝ dm/dt. Induction currents indeed create a magnetic
field varying with the frequency of the precessing magnetization m but in
nanoscopic materials and thin films they cannot contribute to the damping
torque T D [138]. Therefore different mechanisms than electromagnetic induc-
tion must be active in thin films to explain the observed damping. As shown
in Fig. 3.16, during the damping process the magnetization spirals into the
field direction and this process corresponds to a change in angular momen-
tum. Angular momentum conservation then demands that during the damping
process angular momentum must be transferred to another reservoir. These
processes will be discussed in detail in Sect. 15.2.2. We shall see that initially
angular momentum may be transferred within the spin system itself by exci-
tation of spin waves (see Sect. 11.1.5), but ultimately the angular momentum
is transferred to the lattice.

The LL and LLG equations describe the motion of a magnetic moment m
with a constant absolute value |m|, so that the endpoint of m moves on a
sphere as shown in Fig. 3.16. When the formalism is applied to the description
of the magnetization M of a magnetic body one therefore implicitly assumes
that the magnetization of the body M = m/V , where V is the volume con-
taining m, remains constant in magnitude. This assumption constitutes the
“macrospin approximation” as discussed in Sect. 3.3, in which the individual
spins in the entire volume of the body, VB, are strongly coupled parallel to each
other to form the “macrospin” or “macromoment” mms = VBM . We shall
later see in Chap. 15 that this assumption may break down in certain cases,
e.g., when the individual spins dephase in the course of an excitation, and
thus the magnitude |mms| changes in time. In such cases, the basic assump-
tion of the LLG equation is not fulfilled and it cannot be used. Instead, one
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m

H

Fig. 3.17. Precessional motion of the magnetic
moment m according to (3.39) with a negative
damping parameter α = − 0.15. m spirals away
from the direction of the field H into a final
position opposite to H thereby gaining energy

might be able to use the phenomenological Bloch-equations discussed briefly
in Sect. 3.6.3 below. We therefore need to keep in mind the following fact.

The LL and the LLG equations describe the temporal evolution of a
magnetic moment m or magnetization M = m/V , assuming that the
magnitudes |m| or |M | remain constant in time.

In 1996 John Slonczewski [84] and Luc Berger [85] independently proposed
that the damping torque may have a negative sign as well, corresponding to
a negative sign of α. Under this condition, m moves into a final position
antiparallel to H as illustrated in Fig. 3.17.

The seemingly bizarre negative damping is familiar in mechanics with spe-
cial spinning tops having a low lying center of gravity. Due to the friction on
their support, these “tippe” tops flip their angular momentum by π. Fig-
ure 3.18 shows that the motion of a “tippe” top fascinated even some of the
great minds of physics.

In magnetism, the negative damping phenomenon is highly welcome since
it allows one to switch the magnetization. Clearly, energy has to be supplied to
achieve the motion of m in which the angle θ between m and H is enlarged.
This energy is thought to be provided by injecting spin-polarized electrons
from an adjacent ferromagnet, magnetized in the opposite direction compared
to the magnetic material under consideration. The injected electrons are then
minority spins and therefore at higher energy than the average electron. If
their spin polarization is conserved, they will add to the magnetization com-
ponent antiparallel to H thus effectively enlarging θ.

In fact, a number of experiments have already demonstrated the existence
of spin switching as discussed in the later Sects. 14.2 and 15.6.3. It can happen
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Fig. 3.18. Wolfgang Pauli (left) and Niels Bohr marvel at the motion and eventual
upside-down flip of a “tippe” top

only in nanosized contacts supporting high current densities and in magnetic
samples that are not thicker than the spin relaxation length, which is typically
a few nanometers only. This shows that spin switching is a topic confined
to magnetism in nanoscopic samples and therefore naturally supports the
technological quest for smaller devices and faster switching.

Pulsed magneto-optics in the visible and X-ray energy range offers the
possibility to directly observe the motion of m. X-rays offer the advantage of
higher spatial resolution and are able to probe nanoscale phenomena. Once
X-ray methods are fully developed, one can expect great progress in the un-
derstanding of the damping torque. Studies addressing the motion of m are
discussed in detail in Chap. 15.

3.6.3 Magnetic Resonance

Historically, the dynamics associated with the motion of m in an external
magnetic field has been thoroughly studied by means of magnetic resonance
techniques. The fields and torques underlying a magnetic resonance experi-
ment are illustrated in Fig. 3.19. A strong static field H causes the magnetic
moment to precess, and a weaker field H ′ that rotates in a plane perpendicu-
lar to H is used to keep the precession angle θ constant. The field H ′ therefore
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Fig. 3.19. Fields and torques in magnetic resonance for the case of an electron spin.
A constant field H ‖ z (µ0H � 1 T) causes the magnetic moment m to precess
about z according to the right hand rule (3.31), with dm/dt parallel to the x–y
plane. A weaker magnetic field H ′ ⊥ m (µ0H � 10−4 T) in the x–y plane rotates
at the same Larmor frequency as m and generates a torque T ′ on m according to
the right hand rule. The resonance condition consists of balancing the characteristic
damping torque and energy of the sample, driving m toward H , by the torque T ′

and energy, generated by the external field H ′, which drive m away from H . This
balance keeps m at a fixed small angle θ ∼ 1◦. In practice one changes the static
magnetic field strength H until maximum absorption of energy occurs from the
microwave field H ′

supplies the torque and energy to compensate for the damping or “friction”
present in the material under study. By establishing the proper balance (i.e.,
resonance) between the static (H) and frequency dependent (H ′) fields and
the internal properties of the magnetic sample, one can determine fundamen-
tal static and dynamic magnetic parameters. Magnetic resonance techniques
involve different frequencies, depending on the type of magnetic moments in
the sample. The prominent forms are electron paramagnetic resonance (EPR)
and ferromagnetic resonance (FMR) with frequencies in the 10 GHz range
and nuclear magnetic resonance (NMR) with frequencies of order 10 MHz.

In order to understand the principle of the magnetic resonance technique,
we utilize Fig. 3.19 and first consider the coordinate system that rotates with
the Larmor frequency about the magnetic field H ‖ z. In this system, the
magnetic moment m and magnetic field H ′ ⊥ m are at rest. In the rotating
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system, the field H ′ will exert a torque T ′ on m according to the right hand
rule. The torque causes m to increase its angle θ with the z-axis. This costs
energy according to (3.15) which is taken from the field H ′. At resonance, the
energy and torque taken from H ′ compensate for the characteristic damping
torque and energy of the sample which try to reduce θ to zero. The condition
for keeping θ constant is that the field H ′ and the magnetic moment m rotate
together around H at the Larmor frequency.

In the case of the electron spin, appropriate frequencies of the rotating
magnetic field are generated by establishing a standing electromagnetic wave
with a wavelength λ of a few cm in a cavity. Since λν = c = 3×108 ms−1 this
corresponds to frequencies in the Gigahertz range. The H ′ field is oriented
in the x–y plane of the coordinate system in Fig. 3.19 and the EM wave can
be linearly polarized, because a linear polarized wave is a superposition of a
right and a left circularly polarized wave. The sample under study is placed
into the antinode of the standing wave and the absorption of energy from
the EM field is measured. In practice, one changes the static magnetic field
strength H until maximum absorption of energy occurs from the microwave
cavity. Then the precession around H and the frequency in the microwave
cavity are exactly equal, inducing a steady-state precession with constant
angle θ. In this condition, the energy absorbed from the microwave cavity
exactly compensates the energy loss from the damping of the precession in
the material.

The measurement of the resonance of atomic and nuclear magnetic mo-
ments has many applications which are discussed in the specialized literature.
Examples are the determination of the gyromagnetic ratio of particles and
atoms, the measurement of the magnetic field strength with very high preci-
sion, and most importantly, the use of NMR for the structure determination
of proteins that cannot be crystallized and for magnetic resonance imaging
(MRI) of large biological molecules. In MRI, the resonance of the proton spin
is used to measure the magnetic field generated by the valence electrons at
the site of the proton. This field varies depending on the nature of the chem-
ical bond of the proton in the organic molecule. Magnetic resonance imaging
has become a very powerful and entirely nondestructive tool, e.g., for medical
diagnostics of carcinogenic tissue.

Magnetic Resonance, Spin-Flip Transitions and Spin De-Phasing

One may also view a magnetic resonance experiment in a frequency domain
picture. The absorption reaches a maximum when the externally applied static
field H together with the intrinsic fields present in the sample reach the
condition of resonance, where the Larmor frequency equals the frequency of
the EM standing wave associated with H ′. At resonance, a transition from
sz = h̄/2 to sz = −h̄/2, or vice versa takes place. The energy which is absorbed
or emitted in such a “spin-flip” transition is ∆E = 2µBH per electron and
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corresponds to the absorption or emission of one quantum h̄ω from or to the
EM field in the cavity, i.e., we have

∆E = h̄ω = 2µBH. (3.40)

Inserting µB = µ0eh̄/2me yields ω = (e/me)B which is the Larmor frequency.
This argument can be considered as either a proof of energy conservation or
as an elegant way to derive the Larmor frequency. Angular momentum is con-
served since the absorbed or emitted circularly polarized radiation quantum
carries an angular momentum h̄ which is transferred to the electron.

The magnetic resonance process may be described phenomenologically by
the so-called Bloch equations [139, 140]. Within these equations two types of
dissipative processes are specifically specified.8 One damping mechanism that
affects the magnetic moment component mz along the static field direction
H ‖ z is due to spin-flip transitions. It is characterized by the so-called lon-
gitudinal relaxation time T1. The second damping mechanism arises from the
interactions between different moments, in particular, the decay of their phase
relationship as they precess about H. This spin de-phasing mechanism affects
the components mx and my and is described by a characteristic transverse
relaxation time T2. We shall come back to the processes of spin-flips and spin
de-phasing in Sect. 8.6.2 when we consider the fundamental interactions of
spin polarized electrons with matter.

Ferromagnetic Resonance

Of special interest to magnetism is ferromagnetic resonance (FMR). Before we
discuss the technique in more detail, let us briefly continue the idea of ”spin-
flips” mentioned above in conjunction with FMR. It turns out that “spin-flips”
in FMR are intimately connected with the important concept of spin waves,
suggested in 1930 by Felix Bloch [141].

Let us assume for simplicity that the constant external magnetic field H is
used to align the magnetization along the anisotropy axis. Then the magnetic
moments precesses around the combined external and anisotropy fields with

8For the geometry shown in Fig. 3.19 the Bloch equations are,

dmx

dt
= γmyH − mx

T2

dmy

dt
= −γmxH − my

T2

dmz

dt
= −mz − m0

T1
, (3.41)

where γ is the gyromagnetic ratio and m0 the value of the equilibrium magnetic
moment. T1 is the longitudinal and T2 the transverse relaxation time.
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a typical value µ0H � 1 T. This field causes a splitting between the up and
down states ∆E = 2µBH � 40 µ eV, corresponding to a radio frequency of
10 GHz. Thus in this case the “spin-flip” energy per electron is quite small,
much smaller than the exchange splitting in a ferromagnet, which is of order 1
eV as we shall see in Sect. 11.1 below. Following the ideas of Stoner [30,31], a
“spin-flip” in a ferromagnet should cost the energy of the exchange splitting.
The discrepancy of the two energies is explained by Bloch’s concept of spin
waves [141]. Spin waves involve spins on different lattice sites. This concept
allows the energy of a spin wave to cover a large energy range from nearly
zero when the spin excitation extends over many sites to the Stoner splitting
when only one spin is involved. We shall come back to the important concept
of spin waves in Sect. 11.1.5 below.

In bulk metals the rotating magnetic field cannot penetrate due to the
induction of eddy currents. Typical penetration depths or “skin depths” of
the magnetic field at Gigahertz frequencies are of the order of 0.1−1 µm. On
the other hand, nanoscopic metallic samples or thin films are well suited for
electron spin resonance if their dimensions are small compared to the skin
depth. In FMR one usually asserts that the macrospin approximation is valid
so that the magnetization precesses as a whole around the sum of all fields
existing in the ferromagnetic sample. This is called the uniform FMR-mode.
Such measurements give important information on the magnetic moments and
their dynamics which we shall briefly discuss now.

We have seen earlier that the total magnetic moments have a spin and
orbital part according to (3.14) or

〈mtot〉 = 〈ms〉 + 〈mo〉 = −µB

h̄
( gs〈sz〉 + g�〈�z〉 ) . (3.42)

and that the g-factors for the spin and orbital atomic moments are gs = 2
and g� = 1, respectively. With atoms the total magnetic moment is an integer
multiple of µB. This is not the case with the magnetic moment per atom in
the 3d transition metals. Experiments show that the magnetic moment/atom
at zero temperature is 2.19, 1.57, and 0.62 µB for Fe, Co, and Ni, respectively.
This will be discussed in detail in Sect. 7.4.1. The magnetic moments also
contain a small orbital moment contribution. This contribution can be directly
inferred by magnetic resonance measurement. When the magnetic resonance
equation (3.31) is written in terms of the dimensionless gyromagnetic factor,
the FMR resonance frequency ω = −γ H directly determines γ, which is
characteristic of the total magnetic moment of the atoms in the sample. From
γ one can then determine a material dependent g-factor according to

g = −2meγ

eµ0
. (3.43)

One finds that the g-factors of the pure metals g = 2.09 (Fe), g = 2.18 (Co),
and g = 2.21 (Ni), deviate from the spin-only value of 2.0 by a small amount.
This difference is a direct consequence of the presence of an orbital moment.



96 3 Magnetic Moments and their Interactions with Magnetic Fields

Its ratio to the spin moment may be derived from the measured g-values by
use of Kittel’s formula [142,143]

g − 2
2

=
〈mo〉
〈ms〉

. (3.44)

This shows that the total moments for Fe, Co, and Ni metal are predominantly
generated by the spin of the electron (which would give g = 2), with an
orbital moment contribution of only about 4–10%. Although small, the orbital
moment is nevertheless essential to magnetism. As discussed in Sect. 11.2 it
turns out that in crystals both the orbital moment 〈mo〉 and the g-factor
may be anisotropic relative to the lattice directions. The favored direction of
the orbital moment then generates a favored magnetization direction in the
crystal, i.e., the easy magnetization axis.

In FMR the width of the resonance is a measure of the damping of the pre-
cessional motion, as discussed in Sect. 3.6.2. With a single electron in vacuum,
the damping of the precessional motion is absent for all practical purposes,
and the resonance will be a δ-function. In a solid the spin or magnetization
gradually turns into the field direction and, at resonance, energy and angular
momentum is taken from the external field H ′ to compensate for the intrin-
sic damping. This situation corresponds to a forced harmonic oscillator (see
Sect. 9.4.2) where the damping term broadens the δ-function into a charac-
teristic resonance lineshape of finite width. The measured FMR linewidth is
therefore proportional to the amount of damping. Damping in a solid occurs
by angular momentum transfer to some other reservoir. In ferromagnetic met-
als this typically involves excitation of spin waves (discussed in Sect. 11.1.5),
but finally the angular momentum (and energy) is transferred to the lat-
tice, a mechanism called spin–lattice relaxation. From the width of the FMR
resonance for nearly perfect transition metal films, one can determine the in-
trinsic spin–lattice relaxation time to be about 100 ps as discussed in detail
in Sect. 15.2.2.

It is interesting that FMR studies have revealed a direct relationship be-
tween the deviation of the g-factor from the value 2.0, given by (3.44), and the
Gilbert damping parameter α in (3.39), as reviewed by Pelzl [143]. This indi-
cates that orbital magnetism which provides the link between the spin system
and the lattice plays the key role in both the static and dynamic spin–lattice
coupling.

When nonuniform modes are excited, the width of the resonance curve does
not necessarily yield the true intrinsic damping [144]. In fact, the nonuniform
precession can be viewed as two coupled resonances that are close in frequency
and hence produce a larger apparent width of the total resonance. Generally,
the angle θ between m and the magnetic field is very small (≤ 1◦) in FMR,
so that the damping derived from the uniform FMR-mode cannot be directly
applied to determine the damping in a magnetization reversal process where
θ is of course large. This is discussed in more detail in Sect. 15.6.
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We may summarize important points of this section as follows.

The position of the ferromagnetic resonance line as a function of the size
and direction of the applied magnetic field yields the gyromagnetic ratio
(g-factor) and the magnetic anisotropies. The width of the resonance line
contains information on the spin–lattice relaxation.

3.7 Time–Energy Correlation

The motion of spins in magnetic fields discussed above provides a good oppor-
tunity to introduce and discuss an important concept that is extensively used
in physics and chemistry to describe the dynamics of a system. It is the corre-
lation between energy and time. There are two good reasons for our discussion.
First, as expressed by the title of our book, time-dependent phenomena are
of great importance in modern magnetism research and they may be studied
either in the frequency (energy) or time domain. For example, FMR measures
the magnetization dynamics in the frequency domain and magnetic imaging
can directly observe the time evolution. The question of interest then con-
cerns the link between such energy and time domain measurements. A second
reason for taking a closer look at the energy–time correlation concept is that
there is considerable confusion in the literature about its physical basis and
its relationship with the Heisenberg uncertainty principle.

3.7.1 The Heisenberg Uncertainty Principle

Let us start with the Heisenberg principle. In 1927 Werner Heisenberg [145]
formulated a general quantum mechanical principle that, in its most common
form, states that it is not possible to simultaneously determine the position
and momentum of a particle. The better the position r is known, the less well
the momentum p is known, and vice versa. The principle is commonly known
as the Heisenberg uncertainty principle, and can be stated as

∆r∆p ≥ h̄

2
. (3.45)

This inequality is a special case of the uncertainty between arbitrary ob-
servables A and B associated with quantum mechanical operators A and B.
The general uncertainty relation then states that for any two operators A
and B,

∆A∆B ≥ 1
2
|〈i[A,B]〉| (3.46)

where [A,B] denotes the commutator. If the operators commute, the uncer-
tainty is zero, if they do not commute as for example r and p, the right side
in (3.46) is finite.
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Heisenberg’s original paper does not attempt to rigorously determine the
exact quantity on the right side of the inequality, but rather uses physical
arguments to show that the uncertainty is approximately given by Planck’s
constant h. Heisenberg also gave an alternative form involving the uncertainty
between energy and time, which he stated as [145]

∆E∆t ∼ h. (3.47)

The more precisely you know the time (uncertainty ∆t) when an event occurs,
the less you know about the energy involved and vice versa.

In contrast to the position/momentum uncertainty the energy/time uncer-
tainty is not a special case of (3.46) since time in quantum mechanics is not
an operator but a parameter [126]. Thus if we let A = H, the Hamiltonian,
and B = t, the time, the right side of (3.46) is zero since all observables com-
mute with complex numbers. Thus the validity of an energy–time uncertainty
relation is a nontrivial matter [146]. Although it is guided by a similar expres-
sion, the energy–time correlation of interest to us here is not based on the
uncertainty principle but rather on a quantum mechanical description of the
system which satisfies the time dependent Schrödinger equation [126].

The time evolution of a quantum mechanical system is treated extensively
in quantum mechanics books [126, 147] and for brevity we restrict ourselves
here to the treatment of a specific example, dealing with the important con-
cept of spin precession discussed earlier. We shall discuss the spin precession
process shown in Fig. 3.20 from a classical point of view and in terms of a
time-dependent quantum mechanical treatment.

3.7.2 Classical Spin Precession

We start with a classical treatment. We assume an electron with spin s which
is placed at an angle θ with respect to a homogeneous magnetic field H aligned
along the z axis of our coordinate system, as shown in Fig. 3.20.

We have earlier used semiclassical arguments to derive the motion and
energy associated with the moment in the field. Assuming g = 2 the spin will
precess about H with an angular velocity or Larmor frequency ω given by
(3.32) or

ω =
eµ0

me
H . (3.48)

and the energy of the associated magnetic moment in the field is given by
(3.15)

E = −m · H =
2µB

h̄
szH (3.49)

so that with sz = −h̄/2 we have E1 = −µBH and for sz = +h̄/2 we have
E2 = +µBH. We see from (3.33) that for a field B = µ0H = 1 T the spin
precesses with an angular velocity ω = 0.176 rad ps−1 so that it takes a time
of 35.8 ps for a full 360◦ spin precession.
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Fig. 3.20. Classical (left) and quantum mechanical (right) picture of the motion
of an electron spin s in an external magnetic field H directed along the z-axis of
our coordinate system. In the classical picture a spin that is not aligned with the
field precesses about it with the Larmor angular frequency dϕ/dt = ω = eµ0H/me

that is independent of θ. According to (3.31), the precession direction is given by
the right hand rule as in Fig. 3.14. In the quantum mechanical picture the spin has
finite probabilities in both, the spin-up state +sz and the spin-down state −sz. Spin
precession about H corresponds to a change in the phases of the up and down
spin components, and the precession frequency is given by dϕ/dt = ω = 2µBH/h̄.
Changes in the angle θ correspond to a change in the relative probabilities of the
up and down states, so that any angular rotation dθ/dt, if present, is determined
by the spin-flip frequency between the two states. Such a θ rotation into the field
direction corresponds to dissipative processes

3.7.3 Quantum Mechanical Spin Precession

The quantum mechanical picture looks quite different. Again we assume that
the electron is placed into the magnetic field and that the spin and field are
not collinear. To describe the spin motion in the field by quantum theory we
start at a time t = 0 and then calculate the time dependence by acting on the
initial state of the system at t = 0 by a time evolution operator

U(t, 0) = exp
(
− iH t
h̄

)
(3.50)

that takes the system from a state at time t = 0 to a new state at time t. In
our case the time evolution of the moment in the field is entirely determined
by the Hamiltonian H

H =
2µB

h̄
Hsz, (3.51)
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where sz is a quantum mechanical operator that acts on the wavefunctions.
From (3.25) we know that the spin wavefunction has the general form

χ = u1 |+〉 + u2 |−〉 , (3.52)

with |u1|2 + |u2|2 = 1. Here |u1|2 and |u2|2 are the probabilities of the electron
to be in the up (along +z) and down (along −z) states, respectively. We have
not yet discussed the origin of the form of the wavefunction (3.52) in detail
but will do so in Sect. 8.4.2 below. Borrowing another result from that section,
we have for the specific cases that the spin is aligned along the x and y axes
of our coordinate system (z being the quantization axis) (see Fig. 8.3 below),

χ+x =
1√
2
|+〉 +

1√
2
|−〉

χ+y =
1√
2
|+〉 +

i√
2
|−〉 . (3.53)

This allows us to see how the wavefunction changes as the spin rotates in the
x–y plane. The 90◦ rotation is seen to correspond to a change in the phase
of the complex spin down coefficient by eiπ/2 = i. We therefore expect to find
that, quantum mechanically, the spin precession corresponds to a change in
the phases of the coefficients u1 and u2. Let us now discuss how this comes
about in general.

We assume that the spin is oriented at an angle θ from the field direction
as shown in Fig. 3.20 but we do not specify it specifically.9 Instead we assume
that at the time t = 0 the spin state χ(0) is given by the general form (3.52),
so that it points into some arbitrary direction. The quantum mechanical time
evolution of the state χ(0) to the state χ(t) at a later time t is given by

χ(t) = U(t, 0)χ(0) = e−i2µBHszt/h̄2
[u1 |+〉 + u2 |−〉] . (3.55)

This can be evaluated by use of the known operator rules sz|+〉 = h̄/2|+〉 and
sz|−〉 = −h̄/2|−〉 (see Table 6.1 below) as

χ(t) = u1 e−iµBHt/h̄ |+〉 + u2 e+iµBHt/h̄ |−〉. (3.56)

We can now replace µBH by the difference in the energies E1 and E2 for the
spin-down and spin-up states, as defined in Fig. 3.20. In particular, we have
for the total splitting ∆E = E2 − E1 = 2µBH and obtain

χ(t) = u1 e−i ∆E t/2h̄ |+〉 + u2 e+i ∆E t/2h̄ |−〉. (3.57)

Relative to the original state χ(0), the time-evolved state χ(t) therefore cor-
responds to a phase shift in the spin up and spin down coefficients, expressed

9According to Sect. 8.4.3 the angle θ is related to the spin-up and spin-down
probabilities according to

cos θ = |u1|2 − |u2|2 . (3.54)
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by the exponential factors in (3.57). The total phase shift between the up and
down states is seen to be ϕ = ∆E t/h̄.10 We can state as follows.

Spin precession about a field H, in quantum mechanics corresponds to
a change in the phase between the up and down spin states. The phase
change with time is given by

dϕ
dt

= ω =
∆E
h̄

, (3.59)

where ∆E = 2µBH.

In our derivation of (3.59) we have assumed that the spin is at an arbitrary
angle θ with respect to the field H. Therefore we find that the precession
frequency does not depend on θ, as for the classical result.

It is important to distinguish the change in ϕ which corresponds to a
change in phase between the up and down states as the spin precesses, from
the change in θ. The latter corresponds to a change in the occupation of
the up and down spin states (see footnote 9), and is therefore associated
with “spin flips.” We shall come back to this process later in Sects. 8.6.2 and
12.6.

Our quantum mechanical result (3.59) is identical to the classical Larmor
precession frequency in (3.48), which is easily seen by use of µB = µ0eh̄/2me.
The precession frequency ω is determined by the energy ∆E = 2µBH that
separates the up and down spin states, that is the two eigenvalues of the
Hamiltonian (3.51). The system changes through a complete cycle ϕ = 2π in
a time t = h/∆E. We can take this as our (approximate) quantum mechanical
time energy relation.

A quantum mechanical two level system separated by two eigenstates
with energy separation ∆E changes over a characteristic time t = 2π/ω
or τ = 1/ω according to

t � h

∆E
or τ � h̄

∆E
, (3.60)

where h = 4.136 × 10−15 eV s and h̄ = 0.6583 × 10−15 eV s.

10The oscillatory motion of the system can also be derived by calculating the
expectation value of 〈Sx〉 = 〈φx(t)|Sx|φx(t)〉. With the operator rules of Table 6.1
it is readily shown that

〈Sx〉 =
h̄

2
cos

(
∆E t

h̄

)
(3.58)

and therefore this quantity oscillates with an angular frequency dϕ/dt = ω = ∆E/h̄.
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This relationship allows the connection between a time-dependent mea-
surement of the orientation of the magnetization and an energy or frequency
dependent measurement.11 From a time-dependent measurement we would
be able to determine the magnetization motion in real space and could find
the cycle time t, corresponding to a 360◦ spin rotation in the (x–y) plane
(see footnote 11). From a frequency dependent measurement, like an in-
elastic spectroscopic measurements that measures an energy loss, we would
find that the system resonantly absorbs energy at a certain cycle frequency
ν = 1/t = ∆E/h = 2µBH/h.

Examples of Time–Energy Relations

We may generalize our energy–time relation (3.60) to other two level systems,
involving a precession, as illustrated in Fig. 3.21 for three prominent cases. On
the left we show again the precession of a magnetic moment of the general
form m = −gJ µBJ/h̄ (see Sect. 3.2.2) about a magnetic field, as discussed
earlier. The moment may be due to the spin, orbital or a coupled momentum.
The characteristic time τ = 1/ω of a precession by 1 rad corresponds to the
inverse Zeeman energy.

In the middle of Fig. 3.21 we illustrate the case of the precession of an
electron in a magnetic field. The cyclotron frequency with which an electron
circles around a homogeneous magnetic field B = µ0H is determined from
the equilibrium between the centrifugal force and the magnetic part of the
Lorentz force (4.10), merω

2 = evB. With v = ωr one obtains for the cyclotron
frequency

ω =
e

me
B. (3.61)

Note that this is an exact result while for the Larmor frequency the same ex-
pression (see (3.48)) holds only if g ≡ 2.0.12 In reality, the cyclotron frequency
and the Larmor frequency are different on the order of 10−3 due to the anom-
aly of the g-factor. Quantum mechanically the system is again described by a
Zeeman Hamiltonian H = µBH �z/h̄ since the precessing electron creates an

11 For “frequency” and “time” we use the notation τ = 1/ω = 1/(2πν) = t/2π.
The angular frequency ω has the dimension [ angle/time ] and is typically given in
units of rad s−1 where 1 rad = 360◦/2π = 57.3◦. In contrast, the cycle frequency ν is
given in units of [Hz] (s−1). It is common to express the energy in either units of [eV]
or [Hz]. The conversion is shown in Fig. 4.5 and is given by 1 eV = 2.418×1014h Hz.

12This difference between the cyclotron frequency and the Larmor precession fre-
quency has in fact been used to determine the anomaly of the g-factor with incredible
precision. Namely, if one injects a particle into a magnetic field with its spin pointing
into the direction of the linear momentum p = mev, both the spin s and the linear
momentum p will precess with almost the same frequency. However, after ∼1,000
revolutions there will be a difference in the direction of p and s which can be de-
tected in a Mott scattering experiment (see Fig. 3.11) or by the asymmetry of the
decay of the µ and τ leptons.
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Fig. 3.21. Illustration of three important processes in the time domain (top row)
and the frequency domain (bottom row). The processes are the precession of a mag-
netic moment m = −gJ µBJ/h̄ about a perpendicular magnetic field H (Larmor
precession, left), the precession of an electron with initial velocity v about a per-
pendicular magnetic field H (cyclotron precession, middle), and the precession of
an electron about the nucleus (Bohr precession, right). We assume that in the time
domain the precession has an angular velocity ω corresponding to a characteristic
time τ = 1/ω. In the frequency domain the precession process corresponds to an
energy difference ∆E = h̄ω = h̄/τ

orbital momentum � = me(r×v) = mer
2ω which interacts with the magnetic

field.
The third example in Fig. 3.21 is the electron motion about the nucleus.

For simplicity we assume a simple H atom. The classical Bohr precession of an
electron is quantum mechanically described by the central field Hamiltonian
which for the H atom yields a 1s electron binding energy of EB = 13.6 eV.
This characteristic energy of the atom (corresponding to the energy difference
relative to the vacuum level with binding energy EV = 0) can then be used
to calculate the Bohr precession time τ . For H this gives a time 2πτ = t = 0.3
fs for a 360◦ Bohr orbit precession.
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Time Dependent Fields

4.1 Overview

We have now developed a good understanding of static electric and magnetic
fields. Both are produced by charges that are either stationary or moving.
Initially the concepts of electric and magnetic fields appear quite distinct and
disconnected. However, this is not so and this chapter will take a look at the
connectedness of electric and magnetic phenomena. To do this we shall use
well established concepts but we shall illustrate them with new applications.
The structure of the chapter is as follows.

We shall first review the laws underlying the description of phenomena in
different reference frames, touching on the subject of special relativity, and
by reviewing the transformation laws of electric and magnetic fields between
reference frames that move relative to each other with a constant velocity,
so called inertial frames. We shall see, for example, that a pure electric field
in one frame may appear as a combination of electric and magnetic fields in
another, showing the intricate connectedness of electric and magnetic fields.
As an example we shall discuss the electric and magnetic fields surrounding a
moving point charge.

In the next two chapters we make an important distinction between fields
associated with charges that either move at a constant velocity, so called
velocity-fields, or are accelerated, acceleration fields. Velocity fields move with
and are attached to the moving charge and the magnetic field strength is
proportional to the current. Since a current is defined as the change of charge
with time, there are two ways to increase magnetic fields: either increase the
charge or decrease the time over which the charge flows. This chapter discusses
a fascinating way to create ultraintense and ultrashort magnetic field pulses
that will be used in Chap. 15 for the investigation of ultrafast dynamics in
magnetic recording media.

Acceleration fields, discussed in the final section, are the familiar electro-
magnetic waves which separate from the charge and radiate into space.
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As examples of EM waves we shall discuss synchrotron radiation and the
ultrabright radiation produced by free electron lasers.

4.2 Basic Concepts of Relativistic Motion

In order to illustrate the connectedness of electric and magnetic fields let
us consider the transformation of the fields between two reference systems
that move relative to each other with a constant velocity v. Such systems are
called inertial systems and their consideration has played a crucial role in the
development of physics, leading to Einstein’s special theory of relativity [148].
According to the principle of relativity all laws of nature are identical in all
inertial systems. We can state as follows.

The equations expressing the laws of nature are invariant with respect
to transformations of coordinates and time from one inertial system to
another.

Before we discuss the connection between fields, we have to take a quick
look at the laws of relativity [148].

4.2.1 Length and Time Transformations Between Inertial Systems

We define the rest frame of an object as the coordinate system in which it is
at rest. The length measured in the rest frame is called the proper length, and
the time measured by a clock in the rest frame is called the proper time.

We now want to relate the proper length l0 in the rest frame to the length l
in a system moving with a velocity v relative to the rest frame. For convenience
we define the following relationships involving the ratio of v and the speed of
light c as

β ≡ v/c γ ≡ 1√
1 − β2

. (4.1)

We shall see later that for relativistic electrons with energy Ee in units of [GeV]
we have γ � 2 × 103Ee and therefore γ can be of order 103–105 in modern
electron accelerators. If we measure both l0 and l parallel to the direction of
v we then have the following well known Lorentz relationship1

1The general equations governing the Lorentz space–time coordinate transforma-
tions for motion in the z direction, using the definitions β ≡ v/c and γ ≡ 1/

√
1 − β2,

are given by [149]

t = γ

(
t′ +

β z′

c

)
z = γ

(
z′ + β c t′

)
x = x′ y = y′. (4.2)

Equations (4.3) and (4.4) are derived from these coordinate equations by taking the
difference between two coordinates.
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l =
l0
γ
. (4.3)

If l0 and l are measured perpendicular to v we have v⊥ = βc = 0 and l0 = l.
This shows that the length is always largest in the rest frame, which is the well
known Lorentz contraction observed for a moving system. The time behaves
exactly opposite. If we measure a time t0 in the rest frame, the time t in the
moving frame is

t = t0 γ. (4.4)

The proper time measured in the rest frame is therefore always shortest, and
we observe a time dilation for a moving system.

4.2.2 Electric and Magnetic Field Transformations between
Inertial Systems

We are now ready to discuss the electric and magnetic fields in inertial systems
that move relative to each other with a constant velocity |v| < c. For the
following discussion we define two coordinate systems as shown in Fig. 4.1,
with the primed system moving at a velocity +v relative to the unprimed
system. The transformation equations for the fields can be found in standard
textbooks [118,149] and they are given below.

The transformation of the fields associated with two inertial systems K
and K ′, where the frame K ′ moves away from the frame K with a velocity
+v is given by

E′
‖ = E‖ E‖ = E′

‖
E′

⊥ = γ (E⊥ + v × B) E⊥ = γ (E′
⊥ − v × B′)

(4.5)

B′
‖ = B‖ B‖ = B′

‖

B′
⊥ = γ

(
B⊥ − v × E

c2

)
B⊥ = γ

(
B′

⊥ +
v × E′

c2

)
,

(4.6)

where the parallel and perpendicular labels are relative to the direction
of v and

γ =
1√

1 − (v
c )2

=
1√

1 − β2
. (4.7)

If the fields have a wave vector and time dependence, we have the trans-
formations

ei (k′·r′−ω′t′) = ei (k·r−ωt). (4.8)

The last expression means that counting the number of times the field
goes through zero should give the same answer in both systems of reference.
These equations show that a pure electric field E in the unprimed frame looks
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System K
with fields
E and B

System K9
with fields
E9 and B9

V

Fig. 4.1. Transformation of electromagnetic fields between coordinate systems with
constant relative motion v, so-called inertial systems. In our case the frame K′

with fields E′ and B′ moves away from the frame K with fields E and B with a
velocity +v

like an electric E plus magnetic B field in the primed frame. In particular,
the term v × B may be interpreted as an additional electric field E∗ = v ×
B. The dimension of B is [Vs/m2] so that with v in [m/s] we get E in
[V/m], as required. Similarly, the term (v × E)/c2 can be interpreted as an
additional magnetic field. The latter fact is important when considering the
motion of an electronic spin in a pure electric field. The additional magnetic
field in the rest frame of the electron may then cause an energy splitting or
spin precession (see Sect. 3.7). This is the basis of the Rashba effect which
exists in two-dimensional semiconductor and metal structures with structural
inversion asymmetry [150–153].

Hence we see that, in general, E and B do not exist independently of
each other. A mixture of electric and magnetic fields may appear as a pure
electric or magnetic field in another inertial system. From the appearance of
the factor γ in the field transformation equations we see that the equations
include relativistic effects.

The force F acting on a charge q in an electric field E is given by

F E = qE. (4.9)

This force does not depend on the velocity v of the particle carrying the
electric charge. In contrast, the force on a charge moving in the magnetic
induction B is the well known Lorentz force

F B = q v × B (4.10)

and depends on the particle velocity.
If v,B, and E are all perpendicular to each other and the velocity has the

special value v = E/B, we have F E = −F B , and the electron can traverse
both fields without experiencing any force. Crossed electric and magnetic fields
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can therefore be used as a velocity or energy filter for electrons, known as a
Wien filter.

4.3 Fields of a Charge in Uniform Motion: Velocity
Fields

An important example of the field transformations discussed above are the
fields surrounding a charge that moves with a constant velocity. A prominent
example of such fields are those surrounding a cluster of charges, or “bunch”,
in a linear accelerators, as previously shown in Fig. 2.4. The name “acceler-
ator” implies that the charges do not move with a constant velocity. This is
indeed so at the beginning of the accelerator. However, as soon as the ve-
locity reaches an energy that is of order 10 times the electron rest mass of
0.5 MeV the electrons already move well within 1% of the speed of light as
seen from (4.22). As the energy is further increased, the speed remains almost
constant and therefore the acceleration is negligible (only the mass increases
according to (4.23)). Since 5 MeV is considered a small energy for most high
energy physics accelerators, one may consider the electrons in uniform motion
through most of the accelerator.

The electric and magnetic fields for the case of uniform motion are called
velocity fields, and one calls the fields associated with accelerated charges
acceleration fields. Other names for velocity fields are Coulomb fields and
near fields because we shall see that they fall off fast with the inverse of the
distance squared. Acceleration fields are also called far fields but are best
known by a familiar name, electro-magnetic radiation, as will become clear in
Sect. 4.4 later.

4.3.1 Characteristics of Velocity Fields

The fields that we will discuss in this section are for charges moving with con-
stant velocities and the field transformations between stationary and moving
charges are therefore those between inertial systems and the field transforma-
tions are described by (4.5) and (4.6). We would like to compare the strength
and angular distribution of fields surrounding a moving charge, for example
an electron. In the rest frame of the electron we know that there is a radial
electric field that terminates on the negatively charged electron (q = −e) as
shown in Fig. 2.1 and there is no magnetic field and B = 0. The situation is
shown on the left side of Fig. 4.2.

In order to derive the fields of a moving electron we shall assume that the
electron sits at the origin of the frame K ′ in Fig. 4.1 which moves away with
a velocity +v from our observer frame K. We can then transform the fields
from the electron rest frame K ′ back into the observer frame K. We start in
the frame K ′ and denote all quantities in that frame by primes. The fields in
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Fig. 4.2. Example of the electric and magnetic fields of a single electron in different
reference frames. Left : Electric field in the frame of the electron with charge q = −e,
which is the well known radial Coulomb field with the electric field vector pointing
toward the negative electron. There is no magnetic field. Right : The same electron
is assumed to move with a highly relativistic (constant) velocity |v| ≈ c relative
to the stationary observer, and the fields are observed from the stationary frame.
The electric field is now nearly contained in a plane perpendicular to v since the
component E⊥ ⊥ v is enhanced by a factor γ according to (4.15) and the component
parallel to the field is reduced by a factor 1/γ2 according to (4.14) over the field
in the rest frame of the electron. The moving charge also gives rise to a field B
which lies in the plane perpendicular to v and at any point has the direction and
magnitude B = (v×E)/c2 according to (4.6). Both the electric and magnetic fields
move with the electron and hence there is no “radiation”

the primed electron rest frame are expressed in terms of the proper distance
r′. If we denote the unit position vectors in the two frames as r0 and r′

0, we
have

E′ =
q

4πε0 (r′)2
r′
0 B′ = 0. (4.11)

We can use the transformation properties for the fields given by (4.5) and
(4.6) to derive the fields of the moving charge in the observer frame K

E‖ = E′
‖ B‖ = B′

‖ = 0. (4.12)

and

E⊥ = γE′
⊥ B⊥ = γ

v × E′

c2
. (4.13)

We now need to express the field E′ in (4.11) in terms of coordinates r in the
frame K since the distance in the two frames are different due to relativistic
effects. According to (4.3) we have the following relationships,
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r0, r
′
0 ‖ v: r′ = γ r

r0, r
′
0 ⊥ v: r′ = r.

We obtain:

E‖ =
q

4πε0 γ2 r2
=
E′

γ2
(4.14)

E⊥ =
qγ

4πε0 r2
= γ E′. (4.15)

These are our desired results for the fields of a charge moving with a constant
velocity. The above equations directly compare the fields of the moving charge
E‖ and E⊥ seen by the observer to the fields E′ that the same charge would
produce if it was stationary located at the same distance r in the frame of
the observer. We see from (4.14) and (4.15) that the field is reduced by a
factor 1 − β2 = 1/γ2 parallel to the propagation direction2 and enhanced by
a factor γ = 1/

√
1 − β2 perpendicular to v. Hence to the stationary observer

the field lines extending radially out from the charge look squished along the
propagation direction. The situation is shown on the right side of Fig. 4.2 for
the case of an electron moving with nearly the speed of light.

We can write (4.14) and (4.15) in a single general expression [154,155]

E(r) =
[

1 − β2

(1 − β2 sin2 θ)3/2

]
q

4πε0 r2
r0 =

[
1 − β2

(1 − β2 sin2 θ)3/2

]
E′(r), (4.16)

where θ is the angle between E and the direction of motion v.
In addition we see from (4.12) and (4.13) that the moving charge also

creates a magnetic field B given by

B⊥ = γ
v × E′

c2
B‖ = 0. (4.17)

The field is entirely contained in the plane perpendicular to v, as shown in
Fig. 4.2 for the case of a single electron.

In the relativistic limit v → c we have a large magnetic field of magnitude
B = γE′/c = E/c. At nonrelativistic speeds v 
 c we have γ → 1 so that
E � E′ and we obtain with c2 = 1/ε0µ0

B � v × E

c2
=

q

4πε0c2 r2
(v × r0) = µ0

q

4π r2
(v × r0) . (4.18)

This is the Ampère–Biot–Savart expression for the magnetic field of a moving
charge.

2This seems to contradict (4.12), stating that E‖ = E′
‖ , but one needs to realize

that this assumes that the field E′
‖ is expressed in terms of coordinates r′ in the

frame K′. The relativistic correction comes from expressing the field in terms of
coordinates r in the frame K.
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Note that for a relativistic electron bunch, the charge is relativistically
stretched along the beam direction in the rest frame of the electron and the
magnetic field in the laboratory frame would look like that around a one-
dimensional line of electrons or a current, similar to the Biot-Savart field
around a straight current carrying wire, given by (2.3). It is derived from
(4.18) by superimposing the fields coming from the charge at various positions
along a straight path, that is by integration over the length of the wire [149].
The magnetic induction then falls of with 1/R, where R is the distance per-
pendicular to the wire direction according to

B =
µ0I

2π R
. (4.19)

We see that the integration over the path of the electron positions (the current)
yields a factor of 2 relative to just substituting qv = Ir and r = R in (4.18).
It also changes the general distance dependence from 1/r2 to the special 1/R
falloff as a function of the perpendicular distance R.

Figure 4.2 illustrates that the fields stay attached to and move with the
charge. They do not “radiate” away from, i.e. separate from, the charge. We
shall come back later to the difference between velocity fields and electro-
magnetic radiation. At this point we can make the following summary state-
ment regarding the velocity fields surrounding a charge in uniform motion.

Velocity fields are attached to the charged particle and they extend out
radially from the particle to infinity, with the sign of the radial field
determined by the sign of the charge. The angular field pattern depends
on the speed v of the particle. For a single charge the fields fall off with
the distance r from the particle as 1/r2. For a line of charged particles
the fields fall off with the perpendicular distance R as 1/R.

4.3.2 Creation of Large Currents and Magnetic Fields

High magnetic fields are of great value in many scientific fields such as bio-
sciences, chemistry, geosciences, materials science, and physics and several
laboratories have been constructed around the world to achieve ultrahigh mag-
netic fields. Examples are the National High Magnetic Field Laboratory in the
United States [156] or the Grenoble High Magnetic Field Laboratory [157] in
Europe. The highest fields are created in pulsed coils and field strength of
about 100 T over a period of several milliseconds have been achieved with
nondestructive pulsed magnets. The fields from such magnets are limited by
the problem of the exceedingly high electromechanical stresses, with the mag-
net conductor and reinforcement materials experiencing plastic deformation.
Destructive pulsed magnets sidestep the materials problem and are designed
to explode with every pulse. Since the intense magnetic field exists only as long
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as it takes a shock-wave to propagate through the magnet, the pulse duration
is limited to a few microseconds. The highest magnetic fields are achieved by
explosively compressing the magnetic field into the sample. The sample itself
is destroyed with each pulse! Field strengths of up to 1,000 T over a period of
several microseconds can be produced.

Here we want to discuss another fascinating way to achieve ultrahigh mag-
netic field strengths and we shall show later in Sect. 4.3.3 that, in addition,
the field pulses can be made as short as tens of femtoseconds. We have al-
ready seen in conjunction with Fig. 2.4 that large current densities can be
produced in linear accelerators and that they allow the generation of large
and ultrashort magnetic field pulses. We shall now explore the reason behind
this remarkable fact.

Electron beams in accelerators consist of individual electron “bunches”
that contain a large number of electrons. For a moving electron bunch, we
measure the temporal pulse width τ or the pulse length l in our laboratory
reference frame, and we see from (4.3) and (4.4) that strange things happen
as v → c. Let us consider realistic cases of v/c. If we denote the energy of the
beam in the laboratory system by Ee, the ratio of Ee and the rest energy of
the electron mec

2 = 0.511 MeV is given by3

Ee

mec2
=

1√
1 − (v

c )2
= γ . (4.20)

With Ee in units of [GeV] this leads to the simple relationship

γ = 1.96 × 103Ee . (4.21)

The particle velocity v can then be expressed in terms of the parameter γ as

v =

√
γ2 − 1
γ

c , (4.22)

and we see that the particle travels already at v = 0.992 c at a moderate
accelerator energy of 4 MeV. As the particle energy is further increased, the
particle velocity remains relatively constant at about the speed of light, with
the increase in energy originating from the increasing relativistic mass m∗

e of
the particle according to

m∗
e = γ me, (4.23)

which follows from writing Ee = m∗
ec

2 in (4.20).
For different beam energies we can now relate the proper length and time

in the frame of the moving electron to the length and time measured by a
stationary observer according to

3Note that the electron mass me in S.I. units is given by me = 9.109 × 10−31

VAs3 m−2 = 9.109 × 10−31 kg.
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� =
mec

2

Ee
�0 = �0/γ , (4.24)

and
τ =

Ee

mec2
τ0 = γ τ0 . (4.25)

For an electron beam of 50 GeV we have γ = 105 and the electrons essentially
move with the speed of light. Hence an electron bunch that appears to be
� = 1mm long in the laboratory frame, has a proper length �0 = 100m in
the rest frame of the electron bunch.4 This explains why one can obtain high
current densities in relativistic beams, as previously discussed in conjunction
with Fig. 2.4. Since the electrons are distributed over a large length in their
rest frame their Coulomb repulsion is reduced and one can pack more electrons
into a bunch, of the order of 1 nC or about 1010 electrons.

In the frame of a stationary observer a bunch length of � = 1 mm corre-
sponds to a temporal pulse length τ = �/c ≈ 3× 10−12 s, so that typical pulse
lengths are a few picoseconds. The peak beam current is given by I = Ne e/τ ,
where Ne is the number of electrons in a bunch, and the current density is
j = Ne e/(τ a), where a is the lateral cross section (area) of the beam. Using
typical numbers of Ne = 1010, τ = 3 ps and a beam cross section of a = 5 µm2

we obtain a peak current of I � 500A and a current density of j � 1014 A/m2.
To date current densities of 1016 A/m2 have been reached by tightly focusing
the relativistic electron beam [158].

Relativistic beams containing a large charge give rise to large fields. In
order to derive a value for the fields, we assume that the electron bunch
with Ne electrons has a Gaussian bunch profile in all directions, and we shall
characterize the beam in the rest frame of the observer by standard deviations
in space and time. Note that the standard deviation or “one-sigma” width σ
is related to the full width at half maximum Γ according to σ = Γ/2.355
(see Appendix A.10). For simplicity we shall use our previous temporal and
physical length labels τ = �/c and associate them with standard deviations.
We have τ = σt = σz/c = �/c along the beam and σr = σx = σy perpendicular
to the beam. At distances larger than the diameter of the bunch5 the magnetic
field resembles that around the current in a straight wire and is given by

B(r, t) =
µ0I(t)
2πr

= B0(r) exp
[
− t2

2τ2

]
, (4.26)

4Another interesting way of looking at the relativistic effect is that the 3 km long
Stanford linear accelerator appears to be 3 cm long from the moving frame of a
50GeV electron!

5The general expression for the field, which is also valid inside or close to the
bunch is given by

B(r, t) =
µ0Nee

(2π)3/2 τ r

(
1 − exp

[
− r2

2σ2
r

])
exp

[
− t2

2τ2

]
.
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where

B0(r) =
µ0Nee

(2π)3/2 τ r
(4.27)

is the peak intensity of the magnetic field pulse at a distance r from the center
of the bunch. In particular we see from (4.27) that the factor B0 τ is directly
proportional to Nee, the total amount of charge in the bunch. This factor
plays an important role in considering the switching of a magnetic sample by
such a beam as discussed in detail in Chap. 15.

The magnetic induction has a peak value Bpeak at r = 1.58σr, the outside
edge of the bunch. With τ in [ps] and σr in [µm] the peak value in Tesla
(1T = 1Vs/m2) is obtained from (4.27) as

Bpeak =
5.8 × 10−9Ne

σr τ
. (4.28)

For typical beam parameters τ = 1 ps, σr = 1 µm, and Ne = 2.5 × 1010

electrons we obtain a remarkable magnetic peak field amplitude of 145 T.
The peak electric field in [V/m] is given by

Epeak = cBpeak =
1.74Ne

σr τ
. (4.29)

For the same beam parameters we obtain a peak electric field of 4.4×1010 V/m
corresponding to an energy of 9 eV over the 0.2 nm size of an atom. The
dependence of the B field on the distance from the beam center is shown in
Fig. 4.3 for some realistic beam parameters.

The absence of relativistic effects limits the achievable peak current densi-
ties in low energy electron beams (energies of tens of keV) that are easily gene-
rated in one’s laboratory. Since � ∼ �0 for such energies, the strong Coulomb
repulsion limits the number of electrons per bunch or pulse, thus precluding
the generation of ultrashort low-energy electron pulses with reasonable inten-
sities. Such pulses would be of great value for the study of ultrafast dynamics
in many systems, e.g., the study of chemical reactions on the femtosecond
scale [159].

Another example of the importance of the relativistic effects discussed
above is the beam lifetime in today’s electron storage rings used for the gene-
ration of synchrotron radiation. In high-brightness storage rings the electron
bunch is compressed as much as possible and the beam lifetime is often limited
by the so-called Touschek effect, which is due to electron–electron scattering
within a bunch. It is clear from our discussion above that in the rest frame
of the bunch the separation between electrons decreases the scattering. This
leads to longer beam lifetimes in higher energy rings.

4.3.3 Creation of Ultrashort Electron Pulses and Fields

Besides being useful for the creation of short and large field pulses, relativistic
electron bunches can also be used for the production of short, high-intensity
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Fig. 4.3. Amplitude of magnetic induction B in units of Tesla as a function from the
beam center, measured perpendicular to the propagation direction. We have assumed
1 × 1011 electrons per pulse and a Gaussian bunch profile in all directions, with
standard deviations σr = σx = σy = 1 µm (black) or 10 µm (gray) perpendicular to
the beam and σz = � = 330 µm corresponding to a temporal pulse width of τ = 1 ps.
The peak value of the field occurs at r = 1.58 σr from the beam center, effectively
at the “edge” of the bunch

synchrotron radiation pulses when bent in a magnetic field, as discussed in
more detail later. The shorter the length of the electron bunches in the labo-
ratory frame, the shorter the photon pulses that can be produced with it. In
fact both electron and photon pulses have comparable lengths. For the study
of ultrafast dynamics by means of high intensity X-rays or with large magnetic
field pulses, it is therefore highly desirable to compress the electron bunches,
preferably without losing electrons.

This has indeed been accomplished by use of the 3 km long Stanford linear
accelerator (linac), which can generate ultrarelativistic electron beams with
energies up to 50 GeV. At an energy of 28 GeV a bunch length as short as
24 µm in the laboratory frame has been achieved while maintaining 2 × 1010

electrons in the bunch. Such bunches pass by a point in the laboratory in
a time span of 80 × 10−15 s or 80 femtoseconds (fs) and therefore create a
peak current of 3×104 A. The manipulation of the shape and size of relativis-
tic electron bunches has become a science in itself and so has the accurate
measurement of the pulse characteristics.

The bunch compression of nearly a factor of 1,000, from initially 50 ps
to 80 fs, actually occurs in three stages. The first compression from 50 ps
to 9 ps occurs as the electron bunch travels around a curve and begins its
journey down the linac. The second compression occurs at the 1 km point of
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Fig. 4.4. Illustration of electron bunch compression. (a) In the accelerator the
relativistic electron bunch can be made to surf on the accelerating RF-wave and
acquire an energy/position “chirp”, meaning that the electron energy varies with
position, being lower in the front and higher in the back of the bunch. Note that at
the high energies all electrons in the bunch travel with the same speed, independent
of their small energy differences. (b) When passed through a four-bending-magnet
chicane the bunch rotates by 90◦ due to the shorter path of the electrons in the
tail. The emerging bunch is compressed in its physical and temporal length but its
energy spread is increased as shown in (c)

the linac where the electrons have been accelerated to an energy of 9 GeV.
In the acceleration process, the electron bunch is positioned so that it rides
slightly ahead of the maximum electric field amplitude of the radio-frequency
(RF)-wave as shown in Fig. 4.4a.

By riding the RF-wave the tail of the electron bunch acquires more energy
compared to the front. It should be kept in mind that at 9 GeV, all electrons
travel very closely with the same speed, the speed of light, irrespective of
their energy. The beam then enters a series of four bending magnets, called a
“chicane”, as illustrated in Fig. 4.4b. The electrons with lower energy, which
are located in the front of the bunch, take a longer path through the chicane
compared to the electrons with higher energy in the tail end of the bunch.
Therefore the tail of the bunch catches up with the front and the bunch is
compressed as shown in Fig. 4.4b. The phase space product of pulse length and
energy spread is kept constant so that the emerging beam is better defined in
time but less so in energy, as shown.
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Fig. 4.5. Wavelength, energy, frequency, and oscillation period ranges associated
with terahertz radiation. It is seen to fall into the far infrared (FIR) and infrared
(IR) parts of the electro-magnetic spectrum

The final compression step occurs at the end of the linac when the beam
is compressed from 0.4 ps to 80 fs, corresponding to a bunch length of 12 µm.
This ultrashort electron bunch can be used to create ultrafast X-ray beams
as discussed in Sect. 4.4.2 later.

4.3.4 The Temporal Nature of Velocity Fields

An important characteristic of velocity fields is that both the E and B fields
are attached to and move with the charge as illustrated on the right side of
Fig. 4.2. The fields do not separate from the charge and hence do not “radiate”
away from it [149,160]. For an ultrarelativistic charge the electric and magnetic
fields are perpendicular to the direction of charge motion v, so that E ×B =
const. v. The two fields are also perpendicular to each other and they obey
the same relationship |E| = c|B| just like an electromagnetic wave.6 When
such an electron beam traverses a sample or passes by it, the velocity fields
look to the sample just like an EM wave. The only difference is that the
“wave intensity” is not constant along the wavefront but for a line of charges,
representative of a relativistic electron bunch, it falls off perpendicular to the
beam as the inverse distance from the beam center.

In fact, the picosecond (τ = 10−12 s) field pulses from a linac may be
thought of as pseudo-radiation consisting of pseudo-photons with a frequency
spectrum extending to about one terahertz (THz), owing to the fact that
1/τ = 1012 Hertz = 1THz. From Table A.1 in the Appendix we find that
radiation of 1 THz frequency has a photon energy of h̄ω = 4.14 meV and a
wavelength of 300 µm and corresponds to far-infrared radiation as illustrated
in Fig. 4.5.

6Strictly, |E| = c|B| is only true for photons but for highly relativistic electrons
it is a good approximation.
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Fig. 4.6. Illustration of a temporal Gaussian magnetic field pulse and its Fourier
transform which again is a Gaussian. As the temporal width τ of the pulse decreases
the corresponding frequency spectrum of the pulse, given by the Fourier transform
contains increasingly higher frequency components

In order to explore this concept in more detail we assume a beam with the
Gaussian profile given by (4.26). Its Fourier transform is also a Gaussian as
shown in Appendix A.10 and illustrated in Fig. 4.6. It is given by

B(r, ω) = B0(r) τ exp
[
− ω2

2(1/τ)2

]
. (4.30)

The Fourier transform B(ω) of the temporal pulse B(t) exhibits a peak at
zero frequency (note that only positive frequencies are allowed) whose value
B0τ is directly proportional to the total integral of the field. The fact that
B(ω) is maximum at zero frequency shows that the field has a major dc-
component. This important fact is discussed in more detail in Appendix A.11,
where the properties of a picosecond Gaussian pulse surrounding a relativistic
electron bunch are compared to those of terahertz EM waves consisting of only
half a cycle or a few cycles. The transform B(ω) has a bandwidth 1/τ and
we see that by making the electron bunch shorter while keeping the number
of electrons constant, we add higher frequency components to the Fourier
spectrum. We shall see in Chap. 15 that this has important consequences
and leads to a limitation of the ultimate speed of precessional switching for
magnetic materials.

We have seen above that the fields around a relativistic electron resemble
a plane wave moving in the direction of the beam, but with a decaying field
strength away from the beam center. This fact can be used in describing the
field properties by the pseudo-photon method proposed by Fermi [161,162]. In
this picture, illustrated in Fig. 4.7, the Fourier spectrum of the temporal pulse
profile can be simply thought of as a plot of the number of pseudo-photons
as a function of their energy.

When the Fourier intensity is plotted on a logarithmic scale it bears a strik-
ing resemblance to the synchrotron radiation intensity emitted by a bending
magnet source as a function of photon energy (see Fig. 4.13 later). One may
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Fig. 4.7. Pseudo-photon spectrum associated with the fields of a relativistic electron
bunch in a linac. Shown are the Fourier transforms or the Fourier spectra plotted
as a function of frequency for different temporal lengths τ of the electron bunch. As
the bunch length gets shorter, the spectrum extends to higher frequency. When the
magnitude of the Fourier intensity B(ω) is converted into the number of pseudo-
photons according to (4.31), the plot corresponds to the spectrum of pseudo-photons
emitted by the bunch. The pseudo-photons propagate in the direction of the bunch
and their intensity falls of perpendicular to the bunch as the inverse distance from
the center of the bunch

envision that the energy of the electromagnetic field per volume element is
stored as Nph(ω) pseudo-photons per unit energy h̄ω in the same volume. This
equivalence is expressed by the relation,

Nph(ω) =
B2(ω)
µ0 h̄ω

=
B2

0τ
2

µ0 h̄ω
exp

[
−ω2τ2

]
. (4.31)

For example, for an electron bunch of pulse length τ = 1 ps that contains
a sufficient number of electrons to create the field B0(r) = 1T at a point on
the sample (which is located at a perpendicular distance r from the center
of the beam) we can calculate the number of pseudo photons as a function
of frequency or photon energy. We can then calculate the number of h̄ω =
1meV (242 GHz) photons by means of (4.31) and obtain Nph(ω) ≈ 5 × 1015

pseudo-photons. Relativistic electron beams are therefore a powerful source of
far-infrared pseudo-photon radiation. For all practical purposes these pseudo-
photons act on the sample the same way as real photons.

The velocity fields surrounding a relativistic electron beam may be sep-
arated from the electron bunch by making the beam traverse a dielectric
medium, resulting in so-called transition radiation. As the electron bunch ap-
proaches the boundary between vacuum and the dielectric medium, it forms
an electric dipole with its mirror image in the dielectric. The time-dependent
dipole field then causes the emission of EM radiation [163].
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4.4 Acceleration Fields: Creation of EM Radiation

The EM fields associated with a moving electron come in two categories as
mentioned earlier, velocity fields and acceleration fields. Historically their cal-
culation posed a considerable challenge because of the finite speed of light. The
complication arises from the fact that the light that is detected by an observer
at a time t at a distance r was actually emitted by the charge at an earlier
time t−r/c, called the retarded time. The calculation of the fields radiated by
an electron that moves with an arbitrary velocity was first accomplished by
Alfred-Marie Liénard (1869–1958) in 1898 [164] and independently by Emil
Wiechert (1861–1928) in 1900 [165]. Today, the electric fields and radiation
patterns associated with a charge in arbitrary motion can be visualized by
the real time radiation simulator written by Shintake, which is available on
the web [166].

Before we come to the mathematical description of the fields of a moving
charge, the Liénard–Wiechert fields, we shall first discuss the concept of “EM
radiation”, in particular, how it differs from conventional electric and magnetic
fields.

We have learned in Sect. 4.2 that systems that move relative to each other
with a constant velocity v, so-called inertial systems, are special in that the
laws of nature are invariant in going from one system to another. Whether a
charged particle is at rest or in uniform motion, the electric field lines emanat-
ing out from the particle to infinity are also at rest or in uniform motion. As
illustrated in Fig. 4.2, when the velocity becomes large, the electric field lines
in the frame of a stationary observer become squished along the propagation
direction, but they are still straight and radial, as shown in Fig. 4.8a. The
velocity fields are therefore always intimately attached to the particle.

When a particle is accelerated it moves relative to an inertial system
and this causes a distortion of the electric field lines as shown in Fig. 4.8b.
Here we have assumed that a particle is accelerated from a time t0 to
the time t1 with an acceleration a. We picture the event in the inertial
frame of the particle associated with its uniform motion (v = const.) prior
to t0. The fact that the particle has accelerated from t0 to t1 is known
only within a limited area – the event horizon – since the “signal of ac-
celeration” travels away from the particle source at the finite speed of
light c. Therefore, field lines outside the shaded radius c(t1 − t0) around
the position of the particle at time t0 are the same as before. They still
point to the original location of the particle at t0. Within the event hori-
zon, the field lines emerging from the particle are bent and join the old
straight field lines at the event horizon. The bent field lines within the
event horizon have a nonradial component along the direction of accelera-
tion a. It is this field distortion with an E-component parallel to a and
traveling away from the particle with the speed of light, that we call radi-
ation.



122 4 Time Dependent Fields

Fig. 4.8. (a) Electric fields E seen by an observer at rest that originate from a
charge that is at rest or in uniform motion v = const. (also see Fig. 4.2). In (b) we
picture a charge in an inertial reference system (v = const.) that is accelerated from
t0 to t1 along a direction a. The acceleration causes a distortion of the field lines
within an “event horizon” shown in gray shading, given by the distance c(t1 − t0)
around the charge position at time t0. Outside the event horizon the field lines still
resemble those at time t0. Continuity of the field lines at the event horizon determines
the form of the bent field lines inside the horizon (adapted from Wiedemann [160]).
The direction of the radiated field Erad is also indicated

Electro-magnetic radiation is the electric field distortion E that is created
parallel to the acceleration direction a of a charged particle. It moves away
from the particle with the speed of light and the associated fields fall off
with the distance r from the particle as 1/r.

In our earlier discussion we have described the field distortion in the
inertial frame of the particle which may move with any constant velocity
v relative to a stationary observer. In the frame of a stationary observer we
also need to account for the effect of the uniform motion v. A simple example
is accelerated motion of a particle along a straight line so that both a and
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v point in the same direction, as in a linear accelerator. A more important
case, however, is if the particle moves around a circle. Then the velocity v
is in the tangential direction and the acceleration a points toward the center
of the circle. This is the case of synchrotron radiation emitted by an electron
storage ring, and we shall come back to it later.

Our conceptual discussion of the difference in velocity and acceleration
fields is mathematically founded in the Liénard–Wiechert field equations.
We shall not derive them here but will simply state the result later. For a
detailed discussion the reader is referred to other texts [149,155,167]. In par-
ticular, the book of Hofmann [155] provides a nice derivation of the field
equations and their application to different situations, especially the descrip-
tion of synchrotron radiation. As mentioned earlier, the tricky part in describ-
ing the fields mathematically is the treatment of the so-called “retardation
effects”.

Retardation effects arise from the finite velocity of light. Let us for a mo-
ment assume that the velocity of light was infinite. We could then describe
all fields in a “snapshot picture” that instantaneously correlates time and po-
sition. For example, the E-field measured at a given time could be directly
expressed as a function of the position of the charged particle at the same
time, as in electro-statics. However, since the speed of light is finite, the snap-
shot concept does not work in certain cases. For example, for EM radiation
there is a time difference between the emission and observation of the light
since it takes the light a finite time ∆t = R/c to travel the distance R. We can
then no longer simply write down an expression for the field E(t), measured
at an instantaneous time t, in terms of the particle properties (e.g., position,
velocity, and acceleration) at that very same time t, since the relevant parti-
cle properties that determine E(t) occurred at an earlier time t∗ = t − R/c.

at time t

“Retarded”
position at
t* = t −r*/ c

r*

“Present”
position
at t

Observation

a(t*) =a*

n*

v v(t*)= *

Fig. 4.9. Illustration of the retarded time concept. A charge moves on an arbitrary
trajectory. The fields at the observer at a time t are determined by the position
r∗, the velocity v(t∗) = v∗, and the acceleration a(t∗) = a∗ at the retarded time
t∗ = t − r∗/c
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This important concept of retardation is illustrated in Fig. 4.9. In order to
calculate the field at an observer at time t we must know the position r∗, the
velocity v(t∗) = v∗, and the acceleration a(t∗) = a∗ of the charge q at the
retarded time t∗. The relation between t and t∗ is given by two general equa-
tions [155] but they may have very complicated solutions for certain particle
motions!

t = t∗ +
r∗

c
, dt =

(
1 − n∗ · v∗

c

)
dt∗ (4.32)

Liénard and Wiechert succeeded in deriving equations that express the
electric and magnetic fields of a point charge in arbitrary motion. Later we give
these equations using the notation of Fig. 4.9, where at the time of emission the
unit vector n∗ = r∗/r∗ points from the charge to the observer [149,155,167].

The Liénard–Wiechert field E(t) of a point charge q detected by an ob-
server at a time t is determined by the distance r∗, the velocity v∗, and
acceleration a∗ of the charge at the emission or retarded time t∗ = t−r∗/c.
Defining β∗ = v∗/c we have

E(t) =
q

4πε0
1 − (β∗)2

(r∗)2 (1 − n∗·β∗)3
[ n∗− β∗]

︸ ︷︷ ︸
velocity field

+
q

4πε0
1

c2 r∗ (1 − n∗·β∗)3
{n∗ × ([ n∗− β∗] × a∗)}

︸ ︷︷ ︸
acceleration field

.

(4.33)

We have indicated all retarded quantities by an asterisk.

Our sign convention is that of Fig. 4.9, where n∗ · v∗ ≥ 0 is the velocity
component of the charge toward the observer. Equation (4.33) is valid for
any given motion of the electron with any velocity. However, it holds only if
the particle is a point charge. The reason is that only then can the particle’s
instantaneous motion and position be described in terms of a single retarded
time. In (4.33) we have explicitly identified the two contributions to the electric
field of the charge.

We readily see that (4.33) yields well known expressions in certain limits.
For example, for v∗ = a∗ = 0 we have

E(t) = Erest =
q

4πε0(r∗)2
n∗ =

q

4πε0r2
n (4.34)

which is just the Coulomb field of a point charge, and by omission of the
asterisk we have indicated that retardation effects are absent. For a∗ = 0 the
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second term in (4.33) vanishes and the first velocity term can be evaluated to
yield (4.16) [155]. Note that in our earlier expression (4.16) the distance r is
not the distance r∗ at the retarded time t∗. Rather, in the actual evaluation
of the retarded field expression, r∗ has been expressed in terms of the distance
r at the observation time t.

We see from (4.33) that the velocity fields decrease with the square of the
distance from the charge to the observer while the acceleration fields decrease
more gradually with the first power. At large distance the acceleration fields
dominate and we see from the second term in (4.33) that the field E is per-
pendicular to n∗ pointing from the charge at the retarded time t∗ toward the
observer. For both terms in (4.33) the E and B fields are perpendicular and
are linked by the following relation (also see Sect. 5.2 later),

B(t) =
1
c

[n∗ × E(t)] . (4.35)

4.4.1 Polarized X-rays: Synchrotron Radiation

Today, one of the most important applications of the Liénard–Wiechert equa-
tion (4.33) is the description of synchrotron radiation. It is created by electrons
or positrons of constant energy (a few GeV) and velocity that circle around
a storage ring. The electrons are propelled forward by a microwave radiofre-
quency (rf) field that consists of “rf-buckets” that rotate around the ring.
Electrons that are filled into a bucket form a so-called “bunch”. In the sta-
tionary frame of an observer such bunches have a typical length � � 10 mm,
corresponding to a pulse length of about τ = �/c � 30 ps, a lateral cross-
section of about 100 µm, and one bunch contains of the order of 1010 electrons.
The charged particles are kept on the desired horizontal orbit by vertical mag-
netic fields produced at locations around the ring by dipole electro-magnets.
Other magnets, such as quadrupoles and sextupoles, help keep the bunches
focused to a well defined cross-section. In general, magnetic devices play a
prominent role in accelerator technology! Examples of different magnets used
in an electron storage ring are shown in Fig. 4.10.

Within a bending magnet, the electron bunch travels on an approximately
circular path around the vertical magnetic field lines. The velocity vector v
points in the tangential direction and the perpendicular acceleration a points
toward the center of the orbit, as illustrated in Fig. 4.11.

The calculation of the emitted acceleration fields, i.e., synchrotron radia-
tion, proceeds via the Liénard–Wiechert equation (4.33) [155]. The calculation
of the complete angular and time (or frequency) dependence of the fields is
quite complicated and outside the scope of the present book. We shall only
touch on some important points and start with the form of the radiation
pattern as illustrated in Fig. 4.11.
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Magnets in electron storage rings
Quadrupole magnet focuses beamDipole magnet bends beam

Sextupole magnet corrects aberrations Section of electron storage ring

Fig. 4.10. Different kinds of electro-magnets used in charged particle storage rings
and, on the bottom right, a complete magnet assembly forming the storage ring
SPEAR-3 at SLAC

In the calculation of the angular radiation pattern we can fortunately
ignore the time dependence of the fields and therefore do not have to worry
about retardation effects. We simply evaluate the fields at the emission
(retarded) time and give them at a fixed time later, without their time de-
pendence. Obviously, our approach will not give information on the emitted
frequency spectrum of the emitted radiation. We can then drop the asterisk
superscripts in (4.33). By evaluating the cross products (see Appendix A.2)
we obtain the radiation field E created by an electron (q = −e) as

E(t) = − e

4πε0
[n − β](n · a) − a(1 − n · β)

c2 r (1 − n · β)3
, (4.36)

where r is the distance between the electron and the observer in the direction
n. The E-field is always perpendicular to n.

The radiation pattern is given by the radiated X-ray intensity which is
given by the Poynting vector

S = E × H =
1
µ0

E × B (4.37)
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Fig. 4.11. Illustration of the radiation pattern emitted by a charge moving on a
circular orbit with a tangential velocity v. The acceleration a points toward the
center of the orbit. On the left the radiation pattern is pictured in the rest frame of
the charge (v = 0). It has the shape of the donut centered about the axis defined by
the acceleration direction a. On the right we show the radiation pattern in the frame
of a stationary observer, assuming a relativistic velocity of the charge v ∼ c. This
is the characteristic pattern of synchrotron radiation emitted by electron storage
rings. The opening angle containing most of the radiation is about 2/γ as discussed
in the text

and because of (4.35), S can be written in terms of the square of the electric
field

S =
√
ε0
µ0

|E|2n = cε0 |E|2n . (4.38)

By means of (4.36) we obtain for our case of v ⊥ a,

S =
ce2

16π2ε0

a2(1 − n · β)2 − (n · a)2(1 − β2)
c4 r2 (1 − n · β)6

. (4.39)

The left case illustrated in Fig. 4.11 corresponds to the radiation pattern
observed in the frame of the electron (v = β = 0). In this case, the pattern
given by (4.39) is cylindrically symmetric about the acceleration direction.
This is seen by expressing (4.39) in terms of the angle ϑ between n and a, as
shown in Fig. 4.11, so that

S =
ce2

16π2ε0

a2 − (n · a)2

c4 r2
=

ce2

16π2ε0

a2 sin2 ϑ

c4 r2
. (4.40)

The radiation pattern has a node along a (ϑ = 0) and resembles the shape
of a donut, as shown on the left in Fig. 4.11. This is the well known dipole
radiation pattern.
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In contrast, the radiation pattern observed by a stationary observer at a
large distance from the source is quite different when the electron velocity
becomes relativistic, as is the case in a typical electron storage ring operating
at an electron energy of several GeV. In this case the pattern is distorted
as shown on the right of Fig. 4.11 and most of the intensity is emitted into
the forward direction. The distortion is due to relativistic effects, expressed
through the terms containing β in (4.39), and it is easily seen by evaluating
this equation for different extreme directions of n. While for the (moving)
electron rest frame the pattern has a node along the a direction, in the (sta-
tionary) observer frame, the nodal direction of the radiation pattern is bent
forward in the a−v (or z−x) plane. Defining the angle between the observa-
tion direction n and the velocity v as θ (see Fig. 4.11) the node occurs at an
angle θ0. This angle is readily calculated from (4.39) by finding the condition
for zero intensity, i.e.,

a2(1 − n · β)2 − (n · a)2(1 − β2) = 0 . (4.41)

If we take n to lie in the orbit plane of the electron defined by a and v we
find the emission angle θ0 where the intensity has dropped to zero as

cos θ0 = β . (4.42)

Rewriting we find sin2 θ0 = 1 − β2 = 1/γ2 and for large γ we obtain

θ0 =
1
γ
. (4.43)

The total emission angle in the electron orbit plane, between the two intensity
nodes, is therefore 2θ0 = 2/γ, as shown on the right side of Fig. 4.11.

Synchrotron radiation is emitted into a narrow cone of opening angle 2/γ.

Originally considered a “waste product” and nuisance in high energy
physics because the radiated energy had to be replaced by electric rf-power,
over the last thirty years the utilization of synchrotron radiation has had great
impact on many areas of science.

In our previous discussion we have neglected the time and frequency
dependence of the radiation emitted by the accelerated charge. The full time
dependent treatment of the Liénard–Wiechert fields is quite complicated [155]
and we shall therefore take a shortcut. Our goal is to understand the physical
processes that determine the spectral distribution, intensity vs. frequency, of
the emitted radiation.

Just as the pulsed nature of the electron beam determined the pseudo-
photon spectrum discussed in Sect. 4.3.4, the pulsed nature of the radiation
determines the frequency spectrum or band width of the associated fields. We
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Fig. 4.12. Illustration of the pulse formation of synchrotron radiation. The X-ray
pulse seen by an observer through a small aperture has a temporal width ∆t that
determines the bandwidth ∆ω of the synchrotron radiation spectrum as discussed
in the text. The length of the arc from A to B is �, that of the straight line is d, and
ρ is the bending radius

assume that an observer is located at the end of a “beam line” which is built
out in a tangential direction of the storage ring. As the electron bunch travels
around the ring it will only radiate down the beam line into the direction of
the observer when its radiation cone of full width 2θ0 = 2/γ sweeps by. We
shall furthermore assume that the direction of the radiation to the observer
is well defined by an aperture as shown schematically in Fig. 4.12.

The duration of the X-ray pulse ∆t can be calculated from the time dif-
ference between the arrival time of the first photons from point A and the
last photons from point B in Fig. 4.12. This is not simply the time it takes
the electron to travel along the arc of length � from point A to point B, but
rather the difference of the time te = �/v it takes the electron to move across
the arc of length � minus the time it takes the light to cover the straight line
of length d from point A to point B. Thus we have

∆t =
�

v
− d

c
=

2ρ
vγ

−
2ρ sin

(
1
γ

)

c
. (4.44)

This expression specifically identifies the electron arc length � = 2ρ/γ as the
source of the radiation. It is convenient for our later discussion to express the
bending radius ρ experienced by an electron of velocity v in a magnetic field
B in terms of the cyclotron frequency of a nonrelativistic electron given by
(3.61) or

ω0 =
e

me
B . (4.45)

For a relativistic electron, the mass in the laboratory frame is enhanced by
a factor of γ according to (4.23), and accounting for this enhancement we
obtain the electron bending radius as

ρ =
γ me v

eB
=
v γ

ω0
. (4.46)



130 4 Time Dependent Fields

We can now evaluate (4.44) for small angles 1/γ by using the expansion
sin(1/γ) = 1/γ−1/6γ3 and for v � c we obtain an expression for a typi-
cal width of the emitted radiation spectrum, i.e., the band width,

ω =
1

∆t
= 3 γ2 e

me
B = 3 γ2 ω0 . (4.47)

It turns out that half this frequency, the quantity ωC = 3γ2ω0/2, actually has a
well defined meaning. It corresponds to the so-called critical energy EC = h̄ωC

which divides the total emitted energy, the number of emitted photons times
the photon energy, into two equal parts. Because most of the emitted energy
is at higher frequencies, ωC also corresponds to the energy where the number
of emitted photons starts to decrease and it is therefore often used as an
estimate of the high-frequency “cut-off” of the spectrum. When the emitted
intensity is plotted as a function of energy normalized to the critical energy,
one obtains a universal synchrotron radiation spectrum [155, 160], which is
shown in Fig. 4.13 on linear and logarithmic scales.

The synchrotron radiation spectrum from a bending magnet is determined
by the finite pulse length of the radiation seen by a stationary observer,
originating from motion of the electron across a small arc of length �.

We have found in (4.47) that the frequency spectrum is related to the
angular frequency or cyclotron frequency ω0 of the moving charge about the

Universal synchrotron radiation spectrum
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Fig. 4.13. Universal synchrotron radiation spectrum emitted from a bending mag-
net in an electron storage ring. We have normalized the energy axis to the critical
energy Ec and normalized the peak intensity to 1. On the left, the spectrum is plot-
ted on linear scales, on the right on log–log scales. The critical energy divides the
total spectrum into two parts of equal area under the curve
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perpendicular bending magnet field. One may understand this correlation
in another way, namely, that the emitted frequency is determined by the
fundamental cyclotron frequency, corrected by reference frame effects for the
electron and the emitted radiation. This can be derived in a two step picture.
First we place ourselves into the rest frame of the electron (v = 0) just
like in Fig. 4.8 and calculate the frequency of the acceleration (radiation)
fields created in that frame. We then transform the radiation frequency from
the frame of the electron to the frame of the observer by accounting for the
Doppler shift.

The idea behind this calculation is that an electron is accelerated in a
perpendicular magnetic field due to the Lorentz force F = mea = −e(v ×
B), given by (4.10). This acceleration causes the emission of radiation whose
frequency is simply the cyclotron frequency (3.61) ω = eB/me, where the
field is that experienced by the electron in its rest frame. For the electron the
bending magnet field B moves toward it with relativistic speed v and this
requires a correction of the field amplitude according to (4.6), leading to an
enhancement by a factor of γ so that in the electron rest frame we have

ωel = γ
e

me
B . (4.48)

Due to the experienced Lorentz force acceleration, the electron radiates an
EM wave with the frequency ωel in its rest frame, as illustrated in Fig. 4.8.
When observed by a stationary observer, the emitted radiation is subject to
a Doppler shift. When the radiating electron moves toward an observer in the
laboratory with speed v = cβ, the frequency in the laboratory frame ω is
enhanced according to the relativistic Doppler formula [109]

ω = ωel γ (1 + β). (4.49)

For a relativistic electron we have β � 1, and the observer sees an EM wave
with frequency

ω = 2γ2 e

me
B = 2γ2ω0 . (4.50)

This frequency is of the same order of magnitude as the spectral band width
given by (4.47). We can therefore make the following statement.

The emitted frequency of synchrotron radiation is determined by the elec-
tron cyclotron frequency in the bending magnet field, enhanced by a factor
γ due to the relativistic electron motion, and by another factor γ arising
from the Doppler shift of the emitted radiation.

The two ways of looking at the origin of the spectrum have the common
link that in both pictures the radiation is determined by electron motion
across a short arc of length � � 2ρ/γ, illustrated in Fig. 4.12. In one picture
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we consider the time associated with emission of radiation from this arc, in
the other we calculate the electron precession frequency or cyclotron frequency
associated with electron motion across this arc.

Finally, we briefly address the origin of the polarization of the emitted ra-
diation. While the intensity is governed by the conservation of energy between
the electron and photon systems, the polarization is due to the conservation
of angular momentum. This is illustrated for a bending magnet source in
Fig. 4.14.

As illustrated in Fig. 3.5, the angular momentum of a circulating electron
is defined according to the right hand rule. When the fingers of the right hand
point in the direction of electron motion, the thumb defines the direction of
angular momentum L. For the electron motion shown in Fig. 4.14, L there-
fore points in the down direction. In the radiation process, energy and angular
momentum from the circulating electron are transferred to the x-rays. If ra-
diation in the plane of the electron orbit is selected by a suitable aperture,
as illustrated in the middle of the figure, the x-ray propagation direction z is
perpendicular to L and the angular momentum component Lz is zero. The
emitted radiation is linearly polarized.

Fig. 4.14. Origin of polarized synchrotron radiation from a bending magnet source.
According to Fig. 3.5, electrons moving on a circular orbit have an angular momen-
tum L, which for the electron motion shown here points in the down direction. When
the accelerated electron radiates, it transfers both energy and angular momentum
to the emitted photons. For radiation emitted in the plane of the electron orbit, as
shown in the middle, the x-ray propagation direction z is perpendicular to L. The
emitted x-rays have Lz = 0 and are linearly polarized. In contrast, L has a finite pro-
jection Lz along x-ray emission directions below or above the electron orbit plane.
For radiation above the orbit plane, as shown on the left, the projection of L is along
−z and the x-rays have an angular momentum Lz = −h̄. In this case, the E-vector
rotates in time about the propagation direction (direction of the thumb) according
to the left hand rule and the wave is left circularly polarized. For radiation below
the orbit plane, L has a projection along +z, and the x-ray angular momentum has
the value Lz = +h̄. Now the right hand rule applies and the wave is right circularly
polarized
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In contrast, radiation emitted at a finite angle above or below the orbit
plane will have a finite angular momentum, since now L has a finite projection
Lz along the x-ray propagation direction z. As illustrated in Fig. 4.14, above
the orbit plane, the projection Lz is along −z and the circularly polarized wave
is called left handed and has an angular momentum Lz = −h̄. As discussed in
more detail in Sect. 5.4.4 below (see especially Figs. 5.2 and 5.3), we define the
“handedness” of the wave as the rotation sense of the E-vector in time relative
to the x-ray propagation direction. This is illustrated for x-ray emission above
and below the electron orbit plane on the left and right sides of Fig. 4.14,
respectively.

It is important to distinguish between the intrinsic angular momentum of
a photon L from that along a quantization axis Lz. Since photons are Bosons
they possess an even angular momentum L = 1 (in units of h̄). This leads to
the well known optical selection rules ∆L = ±1 when the photon angular mo-
mentum is transferred in an electronic transition. In contrast, the projection
along the quantization direction, Lz, depends on the photon polarization. We
need to remember this difference which can be summarized as follows.

Photons are Bosons and possess an even integer angular momentum of
magnitude L = 1 (in units of h̄).
The angular momentum projection along the propagation direction, Lz,
depends on the photon polarization. It is Lz = ±h̄ for circular and Lz = 0
for linear polarized photons.

4.4.2 Brighter and Shorter X-ray Pulses: From Undulators to Free
Electron Lasers

Starting in the early 1970s, the benefit of synchrotron radiation from bending
magnets was recognized and the first experiments were performed. Typically
the radiation was used in a parasitic mode, where the control of the accelerator
was in the hands of high energy physicists and the synchrotron users were
allowed to use the “waste product”.7 We now call this the first generation of
synchrotron radiation research. The success and impact of the early studies
led to the construction of dedicated storage rings, the second generation, in
the early 1980s.

It soon became clear that tricks could be used to produce radiation with
improved properties by manipulating the electron beam by so-called insertion
devices. These devices that can be inserted in the vacant straight sections of
the ring are typically built from permanent magnets. The magnetic fields are
configured to make the electron beam oscillate about its propagation direction
many times. Devices with strong fields and large oscillation amplitudes are

7A notable exception was a small storage ring in Madison, Wisconsin, called
Tantalus, which was dedicated to synchrotron radiation production.
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called wigglers. In contrast, undulators are devices where the beam is only
weakly modulated back and forth, either in a plane or on a helical trajectory
about the propagation direction. Storage rings designed in the 1990s with
optimum space for insertion devices constituted the third generation.

With the beginning of the new millennium, we are embarking on the con-
struction of the fourth generation of synchrotron radiation sources [168]. One
may actually argue with this definition because the X-ray free electron lasers
now under construction are not mere synchrotron radiation sources. The emit-
ted radiation is no longer simply due to acceleration fields, but is enhanced
by a self amplified spontaneous emission (SASE) process that originates from
the interaction of synchrotron radiation with the very electron bunch that
creates it.

We shall now give a brief discussion of the characteristics of the radiation
emitted by insertion devices and free electron lasers. We shall concentrate
on concepts rather than details, drawing from the principles underlying syn-
chrotron radiation discussed earlier.

Let us start with wigglers. One may view such devices as many bending
magnets lined up with alternating field directions. Therefore the spectrum
emitted by wigglers looks similar to that of a bending magnet. It differs in
three ways. First, the emitted intensity is enhanced by the number of bends,
second, the spectrum has a higher energy cut-off because one uses higher
fields (4.47), and finally, the radiation is not circularly polarized but naturally
polarized above and below the plane because each bend contributes oppositely.
Wigglers are used for experiments that need high photon flux over a wide
energy range and have no special polarization requirements.

The undulator spectrum looks quite different. Let us assume that the
undulator consists of N oscillation periods of length λu (in practice ∼5 cm)
for a total undulator length of L = Nλu. We also assume that the magnetic
field deflection of the electron beam is smaller than the natural opening angle
1/γ. Similar to the bending magnet case, we can then calculate the length of
the radiation pulse seen by an observer. Because of the weak deflection of the
electron beam we can assume that both electrons and photons travel straight
as shown in Fig. 4.15.

The radiation delay emitted from two points A and B separated by λu is

∆t =
λu

v
− λu

c
=
λu

c

(
1 − β
β

)
≈ λu

c

(
1

2γ2

)
. (4.51)

Each oscillation period causes the same delay so that the total pulse length
seen by the observer is N times longer. This means that the effective band-
width corresponding to the periodic motion ∆ω = 2π/∆t is reduced by a
factor N , the number of undulator periods. The longer effective pulse length
therefore leads to more monochromatic radiation with a higher peak inten-
sity. Another way to see this effect is to picture the increased intensity as
a constructive interference effect arising from the superposition of the fields
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Fig. 4.15. Illustration of radiation from a weak-field undulator with period λu,
where the deflection angle associated with the electron beam trajectory is smaller
than the natural opening angle 1/γ. For each period a delay ∆t builds up between
the faster photons and the electrons which causes a total delay or pulse length N∆t
at the position of the observer. This causes a frequency bandwidth reduction by a
factor N or an enhancement of the intensity emitted per unit bandwidth. Another
way to visualize the enhanced peak intensity is by interference of the fields emitted
from the N undulator periods

emitted during the different periods. The wave emitted from point A can con-
structively interfere with that emitted from point B if the two differ by one
wavelength or multiples n thereof, i.e.,

nλ = c∆t =
λu

2γ2
. (4.52)

Thus at such wavelengths we will have an N -fold enhancement of the intensity.
The undulator spectrum therefore exhibits a structure of peaked harmonics
n = 1, 2, . . ., resulting from interference of the fields emitted during the N
radiation periods. For example, a 3 GeV storage ring has a γ � 6 × 103

and an undulator of period length 5 cm would therefore produce radiation
of λ � 0.7 nm or h̄ω � 1.8 keV.

The form of (4.52) suggests a simple interpretation of the measured wave-
length, similar to what we found for the case of a bending magnet. In the
frame of the electron the undulator period is shortened to λu/γ due to the
relativistic contraction. In fact, the undulator fields look to the electron as an
oncoming EM wave of wavelength λu/γ. This wave jiggles the electrons which
in turn re-emit radiation of the same wavelength. When transformed into the
laboratory frame of the observer the radiation is Doppler shifted to an even
shorter wavelength by a factor 1/2γ (see (4.49)).

In practice, undulators in storage rings seldomly have more than about
100 periods, so that the photon flux enhancement is limited to this number.
The revolutionary thing associated with undulator radiation, however, is not
the photon flux but its brightness (often called “brilliance” in Europe) which
exceeds that of bending magnet and wiggler radiation by orders of magni-
tude. Brightness is the photon flux emitted per unit source area per unit
radiation opening angle, where the product (source area × opening angle) is
called the emittance of the source. Undulators are bright because of a dual
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effect, the peak intensity is enhanced at harmonic wavelengths up to a factor
N and the emission cone θ0 associated with these harmonics is reduced as
θ0 ∝ 1/N . In practice, θ0 is of the order of a few microradians, corresponding
to a beam diameter of less than 1 mm if one observes it 100 m away from the
undulator source. Relative to bending magnet radiation the brightness may
thus be enhanced by up to a factor of N2 � 104.

Undulators also offer the possibility of complete polarization control. This
is accomplished through the creation of the magnetic fields, typically by use of
permanent magnets, to induce different periodic electron trajectories through
the undulator. When the oscillation is confined to a plane the radiation will be
linearly polarized in that plane, with a polarization enhancement relative to a
bending magnet due to the many periods. If the path is helical the radiation
will be purely circularly polarized with a handedness determined by that of
the helix. Today it is possible to construct permanent magnet devices that
allow complete polarization control. We can summarize as follows.

The radiation spectrum of an undulator consists of peaks due to the in-
terference of the EM fields emitted from the N undulator periods. The
spectral brightness is improved over bending magnets by a factor of up
to N2, arising from an intensity enhancement by a factor N and another
factor N due to the reduction of the emission angle. Undulators allow
complete polarization control of the emitted radiation.

We shall not discuss the form of the general undulator spectrum which
is complicated for larger fields (up to about 1 Tesla) by the non-negligible
oscillation amplitude and the proper treatment of the relativistic Doppler
effect for finite emission angles as discussed by Wiedemann [160] and Hofmann
[155].

As an example and as the introduction of our next topic, X-ray free elec-
tron lasers (X-FEL) [169], we show in Fig. 4.16 the spectrum of a very long
undulator (120 m), operated in a strong field mode. In this case the character-
istic harmonic structure is still visible but superimposed on a relatively strong
continuous background of “wiggler-like” radiation.

The spectrum in Fig. 4.16b was calculated with the parameters of the linac
coherent light source, LCLS, the first X-FEL, scheduled to start operation
in 2009, with and without the self amplified spontaneous emission or SASE
process. An X-FEL consists of a linear accelerator followed by a long undulator
(of order 10–100 m) but the X-FEL spectrum is remarkably enhanced by a
lasing effect relative to that of an undulator. The operation of a free electron
laser was first accomplished in the late 1970s at Stanford [170,171]. Today we
distinguish two kinds. When the lasing process is started by interaction of a
conventional laser beam with the electron beam (typically an undulator), the
system is called a high gain free-electron laser amplifier. If the lasing starts
entirely from noise by interaction of electrons in an undulator bunch with
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Fig. 4.16. (a) Schematic of the electron ordering within the electron bunch pro-
duced by the self amplified spontaneous emission (SASE) process as discussed in
the text. (b) Calculated spectrum for the linac coherent light source (LCLS). The
photon energy is plotted on a universal scale, normalized to the photon energy of the
first harmonic. It falls at 920 eV for a linac beam energy of 4.8 GeV and at 8.3 keV
for a beam energy of 14.35 GeV. The spontaneous spectrum of the 120 m undula-
tor shows small peaks indicating the undulator harmonics. At the position of the
first and third harmonics, strong and narrow peaks are observed with an intensity
increase of four to five orders of magnitude. These peaks arise from gain through
SASE associated with lasing. Spectrum courtesy of Roman Tachyn, SSRL

the synchrotron radiation emitted by electrons at the back of the bunch, it is
called self amplified spontaneous emission or SASE [172–174].

For the conventional case of an electron bunch moving through an undula-
tor, the total X-ray radiation field generated is the sum of the fields generated
by all electrons. When the electrons in a storage ring go through the undula-
tor, there is no correlation between their positions on the scale of the radiation
wavelength. As a result, the fields they generate superimpose at random and
the radiation is therefore called “spontaneous radiation”. Its intensity is pro-
portional to the number of electrons, Ne, in the bunch. The probability of
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photon emission per electron passing through the undulator is rather low, of
order 1%.

In a free electron laser one uses a linac instead of a storage ring, because
it offers better spatial and temporal control over the electron beam, and it
also readily allows an undulator as long as 100 m to be installed at the end. If
the beam is of low quality the emitted spectrum will be that of a long undu-
lator. If the electron bunch has the proper brightness it is possible to arrange
the electrons within the bunch in sheets perpendicular to the propagation
direction and separated by the X-ray wavelength. The intensity is then pro-
portional to the number of electrons squared, giving an enhancement over the
spontaneous undulator spectrum which, in principle, is of order Ne � 1010. In
the SASE process the periodic electron order is conveniently accomplished by
self-organization of the electrons, known as the free-electron laser collective
instability. In the process the electron bunch with a random electron posi-
tion distribution changes into a distribution with electrons regularly spaced
at about the X-ray wavelength, as illustrated in Fig. 4.16.

One may describe this remarkable phenomenon by three steps [175]:

– Electrons, propagating through the undulator, interact with the X-ray
electromagnetic field generated by other electrons. The interaction changes
their energy, and the change is modulated at the X-ray wavelength.

– In the undulator magnetic field the trajectory of electrons with larger
(smaller) energy is bent less (more). The resulting length changes of the
electron trajectories lead to a periodic grouping of the electrons in planes
perpendicular to the propagation direction, separated by the wavelength.

– The electromagnetic fields emitted by the planes of electrons superimpose
in phase, and the total field amplitude increases. Thus the electron energy
change becomes larger, and the bunching mechanism becomes stronger.

The result is that the amplitude of the electromagnetic field grows exponen-
tially. The rate at which it grows is called the gain length, which depends
on the properties of the electron bunch prepared in the accelerator and on
the quality of the periodic magnetic fields of the undulator. The exponential
growth saturates when all the electrons are well ordered, and emit radiation in
phase. The conditions for lasing are harder to achieve at shorter wavelengths
and construction of an X-FEL had to await the availability of beams of suitable
quality. To reach saturation at an X-ray wavelength of 1 Å with an SASE-FEL
operating at 15 GeV electron energy one needs about 1,000 undulator periods.
In this case about 0.1% of the electron beam kinetic energy is transformed
into photons and one can reach a gain of 105 over the spontaneous radiation
case as shown in Fig. 4.16b.

Besides orders of magnitude increases in brightness, the emitted X-FEL
radiation can also be produced as ultrashort pulses. This is possible because
a given electron bunch is simply thrown away after it has done its duty and
produced radiation. In contrast to the bunch length in storage rings which
is limited by the storage ring equilibrium condition, the electron bunches
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delivered by linacs can be conveniently compressed by the methods shown
in Fig. 4.4. The width of the emitted radiation is then simply determined by
the electron bunch length which, under preservation of other important beam
parameters to allow lasing, can be compressed to about 100 femtoseconds
(1 fs = 10−15 s). Improved schemes promise pulses down to the attosecond (1
as = 10−18 s) regime [176].

The remarkable properties of X-FELs are best illustrated by a simple ex-
ample of an X-ray scattering experiment. With third generation synchrotron
radiation sources one obtains a photon flux (1012 − 1013 photons/s) on the
sample that allows one to record a diffraction pattern in 1 s. With an X-FEL
one obtains the same number of photons on the sample in a single ultra-
short pulse of order 100 fs. This will offer the opportunity to take snapshots
of ultrafast motions with atomic resolution.

We close this chapter with a summary of the characteristics of X-FELs.

A SASE-based X-ray free electron laser consists of a high quality electron
beam and a long undulator. The SASE process leads to electron ordering
within the electron bunch and exponential growth of the emitted X-ray
intensity. The electrons become located in sheets perpendicular to the
beam direction, which are spaced by the wavelength of the emitted ra-
diation. The X-ray pulse length is comparable to that of the generating
electron bunch.
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Polarized Electromagnetic Waves

At the end of the last chapter we were led to the concept of EM radiation.
This is indeed an important concept and topic and we shall discuss EM waves
now. In the context of this book, EM radiation is important for several reasons.
First, EM waves are a key results of Maxwell’s theory, showing the connection
of electric and magnetic phenomena. Second, modern research in magnetism
increasingly utilizes electromagnetic waves in the form of optical and X-ray
radiation to explore new materials and phenomena. Third, polarized EM waves
exhibit important fundamental symmetry properties in addition to the differ-
ent symmetries of the E and H fields discussed in Sect. 2.7. In particular,
we shall discuss the symmetry properties of circularly polarized EM waves in
space and time and illustrate them through their interactions with chiral and
magnetic materials. The polarization properties of EM fields will constitute
an important part of this chapter.

The structure of the chapter is as follows. We start with Maxwell’s equa-
tions and a look at their symmetries under parity and time reversal. From
Maxwell’s equations we derive the electromagnetic wave equation. The fol-
lowing section reviews the definition of important quantities like intensity,
flux, energy, and momentum of electromagnetic radiation. We then discuss
the often confusing definition of the polarization of EM radiation. In partic-
ular, we discuss the description of polarized EM radiation in terms of their
fundamental linear or circular basis states. We also give the complete de-
scription of the general case of elliptical polarization in terms of these basis
states.

In the final section we elucidate the important difference between the
properties of EM waves in space and time, contained in the terms chira-
lity and angular momentum, by two historically important experiments per-
formed by Faraday around 1845 and Pasteur in 1848 with linearly polarized
light. Faraday’s experiment, today referred as the magneto-optical Faraday
effect, revealed the rotation of the polarization vector upon transmission
through a magnetically aligned material. Pasteur discovered that a solution
of chiral molecules that contains only one type of chirality, i.e., is homo-
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chiral [177], also rotates the polarization. This effect is today referred to as
optical activity.

5.1 Maxwell’s Equations and their Symmetries

The properties of electric and magnetic fields are summarized in the four
Maxwell equations.

Maxwell’s equations in the S.I. system are:

∇ · D = ρ, (5.1)

∇ · B = 0, (5.2)

∇× E = −Ḃ, (5.3)

∇× H = j + Ḋ. (5.4)

Here ρ is the charge density and j the current density.

Equations (5.1) and (5.2) determine the static electric and magnetic fields,
respectively. In (5.3) we recognize Faraday’s induction law mentioned earlier.
Ampère’s law (2.5) is contained in (5.4) but we see now that it is valid only
for stationary electric currents where the dielectric field D does not change
with time. The general equation (5.4) includes the curl generated by a varying
dielectric field Ḋ = dD/dt.

In vacuum, Maxwell’s equations are invariant under the parity transfor-
mation. For example, let us look at ∇×E = −Ḃ. On the left side both vectors
∇ and E are polar vectors and change sign in a parity transformation, so that
the vector product is an axial vector, just like Ḃ on the right side. On the
other hand ∇ × H = ε0Ė has a polar vector on both sides of the equation.
The scalar product of two like vectors is a true scalar, e.g., ∇ · E = ρ. The
scalar product of a polar and an axial vector is a “pseudo”-scalar that changes
sign upon inversion. A pseudo-scalar must be zero if parity is conserved, and
indeed, ∇·B = 0, according to one of Maxwell’s equations. This is confirmed
by our observations since free magnetic poles have not been found in nature.
We see that Maxwell’s equations in vacuum are invariant to the parity trans-
formation since polar vectors are always connected with polar vectors and
axial vectors with axial ones. This confirms the postulate that parity must
be conserved. Hence in vacuum, the equations exhibit the basic symmetries
familiar from other great physical theories such as Newton’s mechanics. How-
ever, they go beyond Newton’s mechanics as they are also invariant against
the Lorentz transformation in which the length in the direction of the velocity
of a coordinate system is contracted while the time is dilated as the velocity
approaches the speed of light.
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In vacuum, Maxwell’s theory is also invariant with respect to time reversal.
A light wave travels in opposite directions if time is inverted. Hence time
reversal invariance leads to the familiar theorem of geometrical optics that
the optical path may be inverted. To prove time reversal invariance in the
vacuum, we look at the four Maxwell equations, in turn. Starting with (5.1),
time reversal is trivial since neither D nor the electric charge density ρ depend
explicitly on time (in the sense illustrated in Fig. 2.11). Equation (5.2) states
that the magnetic induction B is free of sources, or in other words it expresses
the experimental finding that isolated magnetic poles or “monopoles” do not
exist, at least as far as we know today. If magnetic charges existed, time
reversal symmetry would be broken since B changes sign with time reversal
(see Fig. 2.11), but a stationary magnetic charge would not. In (5.3) dB/dt
contains the time twice hence is independent of the sign of time just like ∇×E.
Finally, in (5.4) all vectors change sign with time reversal. Hence Maxwell’s
theory is indeed invariant with respect to time reversal. By knowledge of D,
Ḋ, B, and Ḃ at one particular point in time, all future and past states of
the system are determined through the equations. However, this is valid in
vacuum, only.

In vacuum, Maxwell’s equations are time and parity invariant.

While Maxwell’s equations are time and parity invariant in vacuum, this
invariance can break down in materials. The two main effects responsible for
the breakdown are transfer of energy and angular momentum. A prominent
example of an irreversible process is electric conduction. In Ohm’s law j = σE,
where σ is the electrical conductivity, E is invariant when time is inverted
while j is not. Hence Ohms law describes an irreversible process. The reason is
that the electric current generated by the electric field generates heat, and the
heat may never be completely transformed back into electromagnetic energy
according to the second law of thermodynamics. The presence of magnetic
matter additionally introduces the phenomenon of hysteresis, that is losses
through the motion of magnetic domains, which destroys invariance of j to
time reversal, as well.

The damping of spin precession, discussed in Sect. 3.6.2, is another example
of an irreversible process. It describes the rotation of the magnetization into
the direction of a magnetic field which is indeed one of the fundamental yet
ill understood processes governing magnetization dynamics.

5.2 The Electromagnetic Wave Equation

The most important feature of Maxwell’s theory was and is the fact that it
predicts electromagnetic (EM) waves traveling at the speed of light c. It turns
out that c2 = 1/µ0ε0, hence the speed of light in vacuum, c, can be determined
from experiments that measure the force between condenser plates or current
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carrying wires, experiments that do not seem to be connected to light at all.
The equation that describes EM waves is derived from (5.4). In vacuum, we
have j = 0 since there are no particles, and with D = ε0E and B = µ0H we
obtain

ε0µ0Ė − ∇ × B = 0 . (5.5)

Differentiating with respect to time t yields ε0µ0Ë − ∇ × Ḃ = 0 and with
(5.3) we obtain

ε0µ0Ë + ∇ × (∇ × E) = 0 . (5.6)

This is already the wave equation. We are left with only one field, namely E,
and the second derivative with respect to time is connected to the derivative
with respect to location. By means of the identity ∇× (∇×E) = ∇(∇·E)−
∇2E of Appendix A.2 and since ∇ · E = 0 in vacuum we obtain the wave
equation for the electric field vector of an EM wave travelling at the speed
c = 1/

√
µ0ε0, in its familiar form.

In vacuum, and to a good approximation in air, the wave equation for the
electric field is given by

1
c2

Ë −∇2E = 0 . (5.7)

Any electric field E(r, t) that satisfies (5.7) is called an electromagnetic
(EM)-wave. The equation shows that the temporal variation of E is directly
linked with the spatial variation. The equation is invariant to time reversal as
expected and consequently, the optical path can be inverted as long as there
is no damping of the wave.

One solution of (5.7) is E(r, t) = const. e±i(kr−ωt). It describes a wave
propagating in the direction of the wave vector k and has positive phase
velocity. Another solution describing a wave that propagates in the opposite
direction −k is E(r, t) = const. e±i(kr+ωt). It has a negative phase velocity.
Within this book we shall make a choice of phase which follows that of Jackson
[149] and is also commonly used in the X-ray literature [109,178].

We describe the electric and magnetic fields of an EM wave traveling in
the direction of the wavevector k = (ω/c)k0 as

E(r, t) = εpE0 ei(k·r−ωt) , (5.8)

and
B(r, t) =

1
c
(k0 × εp)E0 ei(k·r−ωt) . (5.9)

Here εp is a unit polarization vector, which is real for linear polarized
waves and complex for circularly polarized waves as discussed later.
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Fig. 5.1. Amplitude and phase of a linearly polarized electromagnetic wave. The
electric field vector E characterizes the polarization direction. It is in phase with the
magnetic field vector B and they are both perpendicular to the X-ray propagation,
labelled by the unit wave vector k0

The wave equation can also be written in terms of the magnetic field by
simply substituting E → B in (5.7). The related nature of the electric and
magnetic fields is also evident from Fig. 5.1, where we show the relationship
between the E and B fields in a linearly polarized EM wave.

It is remarkable that the wave equation describes EM waves with wave
lengths λ = 2π/k that span the enormous range from km to the dimensions
of the atomic nucleus.

5.3 Intensity, Flux, Energy, and Momentum of EM
Waves

The magnitude and direction of energy flow of an EM wave is given by the
Poynting vector

S = E(r, t) × H(r, t) (5.10)

whose units [ V Am−2] show that it represents the radiated power per unit
area or the energy per unit time per unit area. With (5.8) and (5.9) and using
the relations B = µ0H and c = 1/

√
ε0µ0 we obtain

S =
√
ε0
µ0

|E|2k0 =
√
µ0

ε0
|H|2k0 , (5.11)

and can now determine the size of the electric and magnetic fields from the
incident power density.
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The electric field |E| in [ V m−1] and magnetic field |H| in [ Am−1] are
obtained from the incident power density |S| in [W m−2] = [V Am−2] as

|E| = 19.41
√

|S| , (5.12)

|H| = 0.0515
√

|S| . (5.13)

Some important quantities associated with an EM wave include the total
energy which is [149]

E =
1
2

∫
V

(
ε0|E|2 +

1
µ0

|B|2
)

dV = ε0

∫
V

|E|2 dV, (5.14)

where we have used (5.11) to obtain the last expression. By confining the EM
fields to a box of volume V we obtain [149]

Energy : E =
V

2

(
ε0|E|2 +

1
µ0

|B|2
)

= ε0V |E|2 . (5.15)

When the EM field is quantized the energy given by (5.14) simply becomes the
photon energy h̄ω. Using the same box normalization, the classical expression
of the momentum of an EM wave is [149]

Momentum : P =
V

c2
S =

ε0V

c
|E|2 , (5.16)

where S is the Poynting vector with magnitude |S| = ε0c|E|2. The momentum
has the dimension (energy × time/length).

Other important properties of an EM wave are the incident intensity, I0,
and the photon flux, Φ0, which will be needed for the quantitative description
of X-ray scattering and absorption, below. Classically, the X-ray intensity is
given by the Poynting vector

Intensity : I0 = |S| = ε0c |E|2 , (5.17)

and it has units of [power/unit area] or [energy/(time × unit area)]. The
photon flux is defined as the number of photons per second per unit area,
and is given by the magnitude of the Poynting vector, divided by the photon
energy

Flux : Φ0 =
|S|
h̄ω

=
ε0c |E|2
h̄ω

. (5.18)

As an example let us calculate the size of the electric and magnetic fields
in a typical X-ray beam available at third generation light sources. X-ray
scientists think in term of the photon flux Φ0 defined by (5.18), that is the
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number of photons per second per unit area. From the photon flux we read-
ily obtain the magnitude of the Poynting vector by multiplication with the
photon energy in eV and the conversion factor 1 eV = 1.602 × 10−19 W s.
Assuming a photon energy of 1,000 eV and a photon flux Φ0 = 1012 photons
per (s mm2) we obtain a power density |S| = 1.602 × 102 W m−2. This gives
|E| = 246V m−1 and |H| = 0.65Am−1 = 8× 10−3 Oe. These are weak fields
corresponding to an electric field on the atomic scale of 2.5× 10−8 V Å

−1
and

a magnetic field that is about 1,000 times weaker than the earth’s magnetic
field.

The situation changes dramatically for an X-ray free electron laser (X-
FEL) source. In contrast to a storage ring which can be considered a continu-
ous wave (CW) source a XFEL is a pulsed source and the relevant quantities
are the peak fields. At a photon energy of 1,000 eV an XFEL delivers about
∼1013 photons in an ultrashort flash of 200 fs, yielding a peak power of about
1× 1010 W. This power is contained in the unfocused beam of 100× 100 µm2

cross section emerging from the laser source. In order to look at the extreme
power density limit for such a beam, let us assume that we can focus the beam
to a spot size of 1 µm2 with a loss of a factor 2 through the optical system.
This would yield a peak power density |S| = 5 × 1021 W m−2. The fields are
enormous in this case. We obtain |E| = 1.5×1012 V m−1 or on the scale of an
atom 150V Å

−1
. The magnetic field is |H| = 3 × 109 Am−1 = 3.8 × 107 Oe

which, as we shall see in Sect. 11.1.1, rivals the molecular or exchange field in
a ferromagnet.

5.4 The Basis States of Polarized EM Waves

5.4.1 Photon Angular Momentum

The concept of angular momentum is well defined in classical mechanics, yet
it cannot easily be transferred to the case of an EM wave which has no mass.
In a classical picture one would expect a wave that exhibits a rotation in
time to have an angular momentum. Indeed, we shall see that this intuition
is correct. A beautiful experiment by Beth in 1936 [179] proved this picture.
Using a high precision torsion pendulum he measured the transfer of angular
momentum from a circularly polarized wave to an absorbing sample.

The angular momentum of circularly polarized EM waves is described most
elegantly through quantum theory where observables are always defined as
expectation values of operators. Photons are Bosons with angular momentum
quantum number L = 1 (in units of h̄). It is customary to define the photon
angular momentum by the quantum number Lz, i.e., by the expectation value
of the angular momentum operator along the propagation direction z, 〈Lz〉.

When a photon is absorbed by an atomic electron, the dipole selection rule
places a restriction on the change in angular momentum quantum number.
The excited electron has an angular momentum l that can only differ from
that before the excitation by the quantum number of the photon L = 1,
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hence ∆l = ±1. For example, a p electron with l = 1 becomes either an
s electron with l = 0 or a d electron with l = 2, satisfying a change in
angular momentum quantum number by one unit of h̄. This change in l is
independent of photon polarization. In contrast, the expectation value 〈Lz〉
defines a specific projection along the photon propagation direction k ‖ z
that depends on the polarization state of the photon. We can upfront state as
follows.

The magnitude of the photon angular momentum is L = 1 (in units of
h), independent of the state of polarization.

The polarization-dependent photon angular momentum is the ex-
pectation value 〈Lz〉 = Lz = 0,±1 (in units of h̄) along the photon
propagation direction k ‖ z.

Before we can discuss how this comes about, we need to discuss the for-
malism used to describe the polarization of an EM wave. It turns out that a
general polarization state can be written as a linear combination of two ortho-
gonal “pure” states or basis states, either two linearly polarized states or two
circularly polarized states. Examples are elliptically polarized light, typically
encountered in conjunction with synchrotron radiation, and “unpolarized” or
naturally polarized light emitted by conventional discharge lamps or X-ray
tubes. Let us therefore look at the definition of linearly and circularly states.

As mentioned above, we conveniently choose the X-ray propagation direc-
tion k along +z, so that the electric field vector lies somewhere in the x, y
plane of our coordinate system.

5.4.2 Linearly Polarized Basis States

We start with the time and space dependent fields of a linearly polarized
electromagnetic wave with frequency ω and wavelength λ = 2π/|k|, traveling
in the direction of the wavevector k = (ω/c)k0, given by (5.8) and (5.9) and
pictured in Fig. 5.1. It is customary to define the unit photon polarization
vector εp to point in the direction of the electric field E. For linearly polarized
light the polarization εp is real. By choosing εp to lie along the x and y
directions we have the following two basis states for the electric field E(r, t).

Two linearly polarized basis states are given by

Ex(z, t) = εxE0x ei(kz−ωt)+iφ0x . (5.19)

Ey(z, t) = εy E0y ei(kz−ωt)+iφ0y . (5.20)

The unit vectors εx and εy are real. The phases φ0x and φ0y define the
phase factors for t = z = 0.
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5.4.3 Circularly Polarized Basis States

The unit polarization vectors for a linearly polarized wave are real and the
electric field vector oscillates along an axis in space, perpendicular to k. For
circularly polarized light, E rotates in space and time and the endpoints of E
move on a circle, so that the x and y components have equal magnitudes but
are phase shifted relative to each other by π/2. The constant phase relation-
ship of the two linear components therefore creates a coherent superposition.

A circularly polarized wave is a coherent superposition of two orthogonal
linearly polarized waves with equal amplitude but a relative phase shift
of π/2.

The 90◦ phase rotation of the two linear components is mathematically
expressed by constructing new complex unit polarization vectors for circularly
polarized waves of the form,

εx ± iεy = εx + e±iπ/2εy. (5.21)

The two different linear combinations are commonly referred to as “left” and
“right” circular polarization. The two complex circular states are also or-
thogonal and can be used as alternative basis states for the description of
polarization.

We define the rotation sense of the circularly polarized waves, described
by (5.21), by the following picture. When the thumb points in the direction
of z ‖ k we determine the rotation sense of the E-vector in time according
to the right or left hand rules, as shown in Fig. 5.2. When the right hand rule
applies, we call the wave right circular. Similarly, we call a wave that follows
the left hand rule left circular. We shall identify the two waves by the labels
L for “left” and R for “right” and use the abbreviations LCP and RCP.

At this point a short note on the definition of “handeness” is necessary.
Close inspection of Fig. 5.2 reveals that the rotation sense of a given circularly
polarized wave about its propagation direction is opposite in space and time.
We have applied the right and left hand rules to the temporal motion of E
about the propagation direction k (taken to be the direction of the thumb).
This is the convention typically used in high energy physics [118]. In the optics
community, it is customary to use the opposite definition, which corresponds
to either pointing the thumb toward the source of the wave, i.e. in the direction
−k, or applying the right and left hand rules to the motion of the E-vector
in space with the thumb along k [180].

Mathematically, our definition corresponds to the following circular polar-
ization basis states. A RCP wave is described by

ER(z, t) = − 1√
2

(εx + iεy)E0 ei(kz−ωt)+iφ0 . (5.22)



150 5 Polarized Electromagnetic Waves

E rotation in space
at fixed time

Left circular wave

Right circular wave

Right hand rule

Left hand rule

y

z,

E

E

λ

x

E rotation in time
at fixed position

y

E

λ

x

E

k
k

z,k
k

Fig. 5.2. Definition of the rotation sense of the E-vector in space and time for right
and left circularly polarized waves. When the thumb of the right hand points in the
direction of the wave vector k, the E-vector rotates in time according to the right
hand rule for a right circular wave. Similarly, the rotation sense in time for a left
circular wave is determined by the left hand rule

where the overall minus sign is chosen to conveniently agree with the sign
convention used for spherical harmonics or spherical tensors as used later in
Chap. 10. A LCP wave has the form

EL(z, t) =
1√
2
(εx − iεy)E0 ei(kz−ωt)+iφ0 . (5.23)

The real phase factor φ0, which we are free to choose, defines the phase of
the waves at kz = ωt = 0. It does not affect the relative phase shift of ±90◦

between the two linear components.
In magneto-optics, of interest in conjunction with our book, we are con-

cerned with the spin or angular momentum L of an electromagnetic wave and
hence one would like to know which way the angular momenta of our LCP
and RCP waves point. Let us therefore use a quantum mechanical approach
to calculate the angular momentum of the two waves in (5.23) and (5.22).

The angular momentum of an EM wave is defined as the projection of the
angular momentum vector L along the photon propagation direction k, taken
to be the z-axis, and is calculated according to

〈Lz〉 =
∫
E∗(z, t)Lz E(z, t) dΩ∫
E∗(z, t)E(z, t) dΩ

, (5.24)
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To evaluate this expression we describe the motion of the E vector in the x, y
plane in terms of the well-known spherical harmonics Y�,m for � = 1, m = ±1
[181,182],

Y1,±1 = ∓
√

3
4π

1√
2
x± iy
r

, (5.25)

with r =
√
x2 + y2. We recognize the similarity between the form of Y1,±1

and the vectors ∓(εx ± iεy)/
√

2 in (5.23) and (5.22). We can write the vector
equations for ER(z, t) and EL(z, t) in scalar forms by using

∓ 1√
2

(εx ± iεy) · r

r
= ∓ 1√

2
x± iy
r

=

√
4π
3
Y1,±1. (5.26)

By choosing φ0 = 0 in (5.23) and (5.22), which we are free to do, we can write

ER(z, t) = − 1√
2
x+ iy
r

E0 ei(kz−ωt) =

√
4π
3
Y1,+1E0 ei(kz−ωt) , (5.27)

and

EL(z, t) =
1√
2
x− iy
r

E0 ei(kz−ωt) =

√
4π
3
Y1,−1E0 ei(kz−ωt) . (5.28)

By use of the well-known normalization properties of the spherical harmonics∫
Y ∗

�,m Y�,m dΩ = 1 and the property
∫
Y ∗

�,m Lz Y�,m dΩ = h̄m we can now
calculate the angular momentum expectation value 〈Lz〉 of the EM waves
(5.27) and (5.28) according to (5.24) and obtain 〈Lz〉 = +h̄ for the wave
ER(z, t) and 〈Lz〉 = −h̄ for EL(z, t). Another way of establishing this identity
is discussed in Sect. 8.7.

This leads to the following mathematical definitions of pure circularly po-
larized EM waves or basis states.

A right circular photon basis state has angular momentum or photon spin
+h̄ and is described by

ER(z, t) = E+(z, t) = − 1√
2

(εx + iεy)E0 ei(kz−ωt)+iφ0 . (5.29)

A left circular photon basis state has angular momentum or photon spin
−h̄ and is given by

EL(z, t) = E−(z, t) =
1√
2
(εx − iεy)E0 ei(kz−ωt)+iφ0 . (5.30)
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Fig. 5.3. Illustration of linearly and circularly polarized light, showing the motion
of the polarization vector E in space and time. For RCP the angular momentum L
points into the direction of k and has the value +h̄, and for LCP L points into the
direction −k and has the value −h̄. Comparison with Fig. 2.11 shows that that L is
an axial vector

The particular sign conventions in (5.29) and (5.30) correspond to the
following complex unit polarization vectors

ε+ = εR = − 1√
2
(εx + iεy) , (5.31)

and
ε− = εL =

1√
2
(εx − iεy) . (5.32)

Note that the signs of ε± agree with those of unit spherical tensors [181,182],
which we shall encounter in the calculation of the X-ray magnetic circular
dichroism effect in Chap. 10.

The properties of the waves are summarized and illustrated in Fig. 5.3. In
contrast to the rotation sense of E which changes from left to right handed
for the two circular waves, the direction of the angular momentum vector L
is always determined by the right hand rule relative to rotation direction of
E in time. This shows that L is an axial vector.
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5.4.4 Chirality and Angular Momentum of Circular EM Waves

From a modern physics point of view it is important to distinguish what
aspect of a circularly polarized EM wave one uses in an experiment. There
are two important properties of an EM wave: its angular momentum and its
handedness or chirality. Let us take a look at these important concepts and
their difference.

In an X-ray experiment of a magnetic sample, the angular momentum of
the EM wave couples to the atomic magnetic moments or angular momenta.
There is a difference in this coupling whether the angular momenta of the
wave and the sample are parallel or antiparallel. This gives rise to the now
well known X-ray magnetic circular dichroism (XMCD) effect. The important
point is that only the motion of the E vector in time, that is its angular
momentum, is important. Indeed, XMCD is calculated by assuming that the
forward rotation of the E vector in space can be neglected because the atom
is so small – the famous dipole approximation.

In contrast, X-ray studies of nonmagnetic samples consisting of chiral
molecules depend on the spatial rotation of the E vector in space, that is
the chirality of the EM wave. Now a difference in interaction is observed
when the chirality of the EM wave and the chirality of the sample (left or
right) are the same or opposite. This gives rise to the well known natural cir-
cular dichroism (NCD) effect. The importance of the spatial property of the
EM wave is reflected by the fact that the NCD effect is zero when the dipole
approximation is assumed. In order to account for it one must go beyond the
dipole approximation and take into account the spatial forward rotation of
the E vector over the absorbing volume.

It is therefore important to understand the difference between the concepts
of “angular momentum” and “chirality.”

Chirality is defined by a “static” handedness in three-dimensional space.
Rotations in space do not change chirality. The chirality is parity-odd
(right-handed↔left-handed) and time-even.

Angular momentum is characterized by a handed temporal motion,
that is, by a handedness in time. A 180◦ rotation in space changes the
sign of the angular momentum. The angular momentum is time-odd
(+h̄↔ −h̄) and parity-even.

Our definitions above clearly show the difference of the two concepts in
terms of their symmetry properties. It is interesting and very important
that the chirality is preserved if the handed structure is rotated in three-
dimensional space. Rotations do not change parity and handedness. Only
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reflections do.1 This has important consequences. For example, in order to
determine the preferential handedness of biological molecules one does not
have to orient the individual molecules but can measure them in the liquid
state. This allowed Louis Pasteur to discover the existence of handedness
in nature, about 150 years ago, by measuring the optical activity of organic
molecules in solution. We shall come back to the concepts of temporal (angu-
lar momentum) and spatial (chirality) handedness in Sect. 5.6, where we will
illustrate the difference by two famous experiments.

At the end of this section we briefly mention that modern optics allows one
to create photon states with unusual polarizations [184] and wave topogra-
phies. A particularly interesting state is an optical vortex which exhibits both
chirality and angular momentum [185]. It may be created in the X-ray regime
by sending a coherent linearly polarized beam through a suitable transmission
phase mask [186]. Such beams are characterized by a helical or corkscrew-
like trajectory of the Poynting vector around the propagation direction k
and exhibit zero field amplitude at the beam center. The creation of such
beams has led to a distinction in the literature between the “angular momen-
tum” of such light beams from the “spin” of conventional circularly polarized
beams [187,188]. We shall not follow this distinction here but throughout this
book we shall use the following terms for the polarization properties of light.

In conjunction with magnetism we shall label circular polarization by the
synonymous terms “photon angular momentum” ≡ “photon spin.”

5.4.5 Summary of Unit Polarization Vectors

The above section on pure linear and circular polarization states can be sum-
marized as follows. We can express the polarization of any EM wave travelling
in the z direction in terms of either linear or circular unit polarization vectors.

The real unit polarization vectors of linear polarized EM waves are:

εx =
1√
2

(
ε− − ε+

)
=

1√
2

(
εL − εR

)
, (5.33)

εy =
i√
2

(
ε− + ε+

)
=

i√
2

(
εL + εR

)
, (5.34)

1Rotations followed by reflections perpendicular to the rotation axis are called
improper rotations [183]. The parity operation corresponds to a rotation of 180◦

about an axis followed by a reflection through a plane perpendicular to the
rotation axis. A mirror reflection corresponds to a 360◦ rotation followed by a re-
flection through a plane perpendicular to the rotation axis.
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The complex unit polarization vectors of circular polarized EM waves are:

ε+ = εR = − 1√
2

(εx + iεy) , (5.35)

ε− = εL =
1√
2

(εx − iεy) . (5.36)

5.5 Natural and Elliptical Polarization

We can construct an EM wave with arbitrary polarization from two linearly or
two circularly polarized basis states. In describing different experiments the
specific choice of basis states often simplifies the mathematical description.
There are two important general polarization states, natural polarization and
elliptical polarization and we shall discuss them below.

5.5.1 Natural Polarization

Let us first consider natural light or “unpolarized” light. The term “unpolar-
ized” light is a bit of a misnomer since the E vector still lies in a well-defined
plane perpendicular to the propagation direction because of the transverse
nature of EM waves. This leads to polarization effects, e.g., in X-ray absorp-
tion spectroscopy, even for natural light. Hence we prefer the name natural
polarization. Natural light is composed of a rapidly varying succession of dif-
ferent polarization states, i.e., an incoherent superposition of two linear or
circular basis states. At a given time the electric field vector of well-defined
magnitude E0 may lie at any orientation in the x, y plane. Mathematically it
can be expressed as a linear combination of two basis states ε1 and ε2 that
have an arbitrary phase relationship φ1 − φ2 �= const.

Natural light has the form

Enat(z, t) =
E0√

2

(
ε1 ei(kz−ωt)+iφ1 + ε2 ei(kz−ωt)+iφ2

)
, (5.37)

where φ1 and φ2 are uncorrelated.

Experiments with natural light can be interpreted as the sum of two in-
tensities (∼E2), measured independently with two orthogonal linear light ori-
entations or with right and left circular light.
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5.5.2 Elliptical Polarization

The most general form of polarized light is said to be elliptically polarized and
can be written as follows.

An elliptically polarized EM wave has the form

Eell(z, t) =
1√
2

(
εxE0x ei(kz−ωt)+iφx + εy E0y ei(kz−ωt)+iφy

)
, (5.38)

or

Eell(z, t) =
1√
2

(
εLE0L ei(kz−ωt)+iφL + εRE0R ei(kz−ωt)+iφR

)
. (5.39)

The wave is described by three independent parameters, the magnitudes
E0a and E0b (a = x,L; b = y,R) and the phase difference φ = φa − φb.
The unit linear polarization vectors εx and εy are real, while the circular unit
vectors εL and εR are complex. The phase factors φa and φb define the phase
for t = z = 0.

Therefore elliptically polarized light can be characterized of how well it is
“linearly” or “circularly” polarized. This is expressed by polarization factors
as discussed in Sect. 5.5.3. The amplitudes of the linear basis states E0x and
E0y in (5.38) are linear combinations of those of the circular basis states E0L

and E0R in (5.39) and vice versa, with the combinatory signs determined by
the phase factors φi (i = x, y, L,R).

In order to illustrate the motion of the E vector of an elliptical wave we
choose one of the phase factors for t = z = 0, so that the wave is a function
of only the phase difference φ = φy − φx in (5.38). For convenience we set
φx = 0 and φy = φ0 and obtain

Eell(z, t) =
1√
2

(
εxE0x ei(kz−ωt) + εy E0y ei(kz−ωt)+iφ0

)
. (5.40)

If we rewrite (5.40) in terms of its real and imaginary parts,

Eell(z, t) =
1√
2

[ εxE0x cos(kz − ωt) + εy E0y cos(kz − ωt+ φ0)]

+
i√
2

[ εxE0x sin(kz − ωt) + εy E0y sin(kz − ωt+ φ0)] , (5.41)

the real part can be used to visualize the motion of the endpoint of the
E-vector in real space.

It can be written in the form of an ellipse, plotted in Fig. 5.4, and given
by [180],
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Fig. 5.4. Illustration of the electric field vector rotation for elliptically polarized
electromagnetic waves, according to (5.42). The endpoint of the E-vector makes a
complete rotation as the wave advances by one period and the magnitude changes
from a maximum to a minimum over a quarter period. The rotation angle ϕ of the
major axis of the ellipse from the x-axis is given by (5.43) and the angle ε is the
ellipticity given by (5.54)

(
Ex

E0x

)2

+
(
Ey

E0y

)2

= 2
(
Ex

E0x

)(
Ey

E0y

)
cosφ0 + sin2 φ0 . (5.42)

We see that its principal axes are rotated relative to our coordinate system
by an angle ϕ given by

tan 2ϕ =
2E0xE0y cosφ0

E2
0x − E2

0y

. (5.43)

For φ0 = ±π/2 we have ϕ = 0 and we obtain the more familiar principal axis
form of the ellipse

(
Ex

E0x

)2

+
(
Ey

E0y

)2

= 1 . (5.44)

If linearly polarized photons with E along x are incident on a magnetic
sample, and the transmitted beam has an elliptical polarization as shown in
Fig. 5.4, we call the angle ϕ the Faraday rotation and the angle ε the ellipticity
(see (5.54)). This will be discussed in more detail in Sect. 8.7.

5.5.3 The Degree of Photon Polarization

In practice it is often important to know the purity of X-ray polarization,
usually called the degree of polarization, a quantity that varies between 0 and
1. We have seen that linearly and circularly polarized light can be considered to
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be special cases of elliptically polarized light. In general, elliptically polarized
light can be constructed from either two orthogonal linear states or from the
orthogonal right (or q = +h̄) and left (or q = −h̄) circularly polarized states.
We can then express the polarization properties of elliptically polarized light
in term of its linear or circular components. This is quantitatively accounted
for by the degree of linear polarization and the degree of circular polarization.
We shall define them now.

The various expressions for the degree of polarization are defined in terms
of intensities given by the Poynting vector according to

Iα = |S| = ε0c |Eα|2 (5.45)

where α stands for L,R, x, or y. For an elliptically polarized EM wave we
define the degree of polarization as follows. The degree of linear polarization
is given by2

Plin =
|Ix − Iy|
Ix + Iy

. (5.49)

An equivalent expression also describes the degree of circular polarization.
The degree of circularly polarized radiation is given by

Pcirc =
|IR − IL|
IR + IL

. (5.50)

It can be shown that [190],

Plin =
|E2

0x − E2
0y|

E2
0x + E2

0y

=
2|E0RE0L|
E2

0R + E2
0L

, (5.51)

and we can also rewrite (5.50),

2Often the degree of linear polarization is defined differently as [189]

P = P‖ =
Imax

Imax + Imin
. (5.46)

where Imax and Imin are the maximum and minimum intensities, corresponding to
E lying along the long and short axes of the ellipse in Fig. 5.4. If we define

P⊥ =
Imin

Imax + Imin
, (5.47)

we have P‖ + P⊥ = 1 and
Plin = |P‖ − P⊥| (5.48)

so that Plin defined by (5.49) is smaller than P = P‖. For example, for synchrotron
radiation from a typical bending magnet or wiggler we have P = P‖ = 0.85, P⊥ =
0.15 and Plin = 0.70. In general 0.5 ≤ P ≤ 1 where P = 1 is pure linear polarization
and P = 0.5 is circular polarization with elliptical polarization lying in between.
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Pcirc =
|E2

0R − E2
0L|

E2
0R + E2

0L

=
2|E0xE0y|
E2

0x + E2
0y

, (5.52)

The degree of circular polarization is related to the degree of linear polariza-
tion by

P 2
circ = 1 − P 2

lin , (5.53)

reflecting the intuitive picture that the more the wave is in one polarization
state the less it is in the other.

Another quantity of interest is the ellipticity ε of the light, determined
by the ratio of the minor to major E vector components along orthogonal
directions. With reference to Fig. 5.4 we have the following relation.

The ellipticity ε is given by

tan ε =
|Emin|
|Emax|

=
|E0R − E0L|
|E0R + E0L|

. (5.54)

The degrees of polarization can be expressed in terms of the ellipticity,

Plin =
tan2 ε− 1
tan2 ε+ 1

, (5.55)

and
Pcirc =

2 tan ε
tan2 ε+ 1

. (5.56)

5.6 Transmission of EM Waves through Chiral
and Magnetic Media

Let us take a look at some famous experiments that illustrate the concepts
of parity and time reversal symmetries in practice. Using symmetry concepts
one can often predict the outcome of experiments without consideration of the
detailed physical mechanisms. The physical origins based on the interaction
of the electric and magnetic fields with matter will be discussed in Chap. 9.

Our first example deals with the phenomenon of optical activity used by
Pasteur to discover the chiral structure of certain molecules. In general, op-
tical activity refers to the ability of a substance to rotate the plane of light
polarization (defined by the E-vector and the propagation direction) upon
transmission. Surprisingly, a solution of chiral molecules is optically active,
despite the fact that the molecules are randomly oriented. This interesting
effect is due to the fact that chirality or handedness is conserved upon rota-
tion in space, e.g., a right handed helix remains right handed upon turning it
upside down, as illustrated in Fig. 5.5.
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Fig. 5.5. Cartoon of the structure of Protein G, viewed in two orientations that are
rotated relative to each other by a 180◦ rotation about a horizontal axis [191]. The
right handed α-helix is shown in pink and the β-strands are broad yellow arrows,
pointing from the N to the C terminus. Note that the right handedness of the α-helix
is preserved upon rotation

Because of its historical significance and its importance for our further
discussion of chiral and magnetic effects later in this section, let us describe
a particularly beautiful experiment to demonstrate the chiral nature of mole-
cules. As our example, we use the ubiquitous sugar molecule which naturally
occurs in two modifications or enantiomers, defining either a right handed
or a left handed atomic structure. For our discussion we refer to Fig. 5.6.
We assume that right-handed sugar molecules are dissolved in water. Their
thermal motion results in a random molecular orientation in the shown glass
tube. Since a molecular rotation in space does not change the chirality the
whole solution still has a handedness of the individual molecules, despite the
random molecular orientation. While the theory of transmission of polarized
EM waves through matter will be discussed later in Chaps. 8 and 9, we here
simply use the fact that the optically active sugar solution causes a rotation
of the polarization (E) vector about the propagation direction as the wave
moves forward. For simplicity we assume that we have chosen a wavelength of
light where the rotation sense of the molecules and the rotation sense of the
E vector are the same.3

When the glass tube is viewed from the side a handed bright spiral appears
which originates from scattered light. The sugar molecules are excited by

3In general, the chirality of the sugar molecule is not necessarily the same as that
of the observed helical bright band in Fig. 5.6, since the optical activity is frequency
dependent.
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Fig. 5.6. Illustration of light transmission
through a solution of a handed molecule. The
light source and lens produce a parallel beam
of visible light that is linearly polarized by a
polarizer and then traverses a glass tube filled
with a saturated solution of right-handed sugar.
As the light traverses the optically active sugar
solution the light polarization (E) axis rotates
clockwise about the light propagation axis, as
shown on the left. An outside observes sees scat-
tered light from those locations of the solution
where the E vector is oriented perpendicular to
the observation direction. The bright locations
form a right-handed helical band as shown. The
helix therefore reflects the chiral nature of the
sugar molecule. It is important that the mole-
cules in the solution are not aligned in any
way. The rotation sense of the scattered pattern
therefore does not change if the light direction
is inverted or if the glass tube is rotated upside
down

the incident light and oscillate with the frequency and in the direction of
the electric field of the incident radiation, which rotates as the wave moves
forward as shown on the left side of Fig. 5.6. The re-emitted or scattered
radiation at each position in the solution has the same polarization as the
incident radiation. Since the light propagation direction of an EM wave is
always orthogonal to the E vector, an outside observer sees the re-emitted or
scattered light only from those locations of the solution where the E vector
is oriented perpendicular to the observation direction. The other locations
remain dark. Since the molecules are randomly oriented, the rotation sense
of the bright band would remain the same if the glass tube is rotated upside
down or if the polarized light was traversing the solution from top to bottom.
If we use a mirror to reflect the light back through the glass tube the light
beam and its polarization would simply retrace the original path so that, upon
exiting the glass tube the beam could traverse the polarizer and return to the
light source.

We now wish to compare the transmission of EM waves through magnetic
and chiral samples. This is accomplished in the most direct way if we do not
use a chiral sample consisting of randomly oriented molecules, as discussed
above, but by use of a single crystal built from chiral molecules. In this way
we can directly characterize our chiral sample by an oriented right-handed or
left-handed helix and our magnetic sample by its magnetization M . This is
illustrated in Fig. 5.7.

The case of the chiral sample, chosen to be a right-handed helix Hr, is
straight-forward. The helix looks the same, namely right handed, to the light
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Fig. 5.7. Comparison of transmission of a linearly polarized electromagnetic wave
through a chiral and magnetic sample (top row) and its return through the same
sample after reflection (bottom row). In both cases the linearly polarized wave ex-
periences a rotation of its polarization upon transmission through the sample. The
rotation angles α and θ are shown at the position of the mirror, which reflects the
waves and sends them back through the respective samples. The right-handed chiral
sample always rotates the polarization clockwise when looking into the propagation
direction so that the polarization vector retraces its original path after reflection.
When arriving at the polarizer the reflected wave will be transmitted. The magnetic
sample also rotates the polarization clockwise on its first pass through the sample
when the propagation direction points into the direction of M . After reflection the
propagation direction is antiparallel to M and the polarization vector rotates anti-
clockwise. When the thickness of the magnetic sample is chosen to give a rotation
angle θ = 45◦ the total rotation becomes 90◦ and the EM wave can no longer pass
the polarizer.

on its first pass and second pass. Hence the E vector rotation will follow the
helicity and the rotation sense relative to the propagation direction of the EM
wave will be the same. Since the light propagation direction reverses on the
first and second pass the E vector will retrace its first path on the second
pass through the sample. When the reflected wave arrives at the polarizer it
is back in its original orientation and can pass the polarizer.
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The magnetic sample looks different to the EM wave on its first and sec-
ond pass. The magnetization M is a vector and it matters whether this vec-
tor points into or against the propagation direction of the EM wave. If the
polarization vector rotates clockwise by θ on the first path it will rotate anti-
clockwise by θ on the second path. The two E vector rotations by the sample
add up and the final rotation angle will be 2θ. If the thickness of the mag-
netic sample is chosen to give a rotation angle θ = 45◦, the polarization of
the reflected light will be rotated by 90◦ and it cannot traverse the polarizer
again. This is known as Rayleigh’s light trap, in which the light can go in
but cannot come back out.4 In practice, visible light is heavily absorbed by
ferromagnetic metals, so that the experimental demonstration is best done by
use of microwave radiation (∼1 cm wavelength) and an insulating magnetic
material such as a ferrite which is nearly transparent. The principle is used in
practice to decouple the radio-wave generator from the radiating antenna.

The different behavior of the chiral and magnetic samples in Fig. 5.7 is a
direct consequence of the opposite symmetry properties of the two samples,
and follows from our discussions in Sects. 2.7 and 5.4.4. Since the chiral sample
is defined by the electrostatic charge distribution it is time even and parity
odd. The magnetic sample, on the other hand is defined by a handed motion
of charge and it is time odd and parity even. The symmetry of the EM wave
transmission pictured in Fig. 5.7 is entirely determined by the sample since
the linearly polarized EM wave has neither a time nor space handedness and is
therefore time even and parity odd (just like the E-vector).5 If we picture the
two passes of the EM wave through the samples as a time reversal process, the
time-even chiral sample leaves the time-even polarization unchanged whereas
the time-odd magnetic sample causes a change.

Another way of understanding the result is to decompose the linearly po-
larized wave into a left and right circularly polarized wave and consider the
preferential absorption of the two circular components by the chiral and mag-
netic samples. Since the handedness of the circularly polarized components
change upon reflection (right becomes left and vice versa), the chiral sample
preferentially absorbs one component in the first pass and the other compo-
nent in the second pass, leaving the wave with a smaller amplitude but the
same linear polarization. The magnetic sample absorbs the same component
twice, enhancing the imbalance and leading to a polarization rotation.

The polarization rotation by magnetic materials, called Faraday rotation
has many useful applications. It is one of the major tools to detect the direction
of the magnetization in magnetic materials since the rotation angle of the
transmitted light changes sign when the magnetization changes direction. Such

4One can also devise a nonmagnetic light trap by replacing the magnetic sample
in Fig. 5.7 by an all-optical quarter wave plate whose retardation axis is oriented at
45◦ relative to the polarizer axis.

5Note that the linearly polarized wave keeps its spatial alignment along a specific
axis upon reflection, merely changing its phase by 180◦ (E-vector changes sign).



164 5 Polarized Electromagnetic Waves

measurements can be done much faster than classical measurements of the
magnetization direction by means of electromagnetic induction, the force by
which the specimen is attracted in an inhomogeneous magnetic field or torque
magnetometry. In addition, the magnetization direction can be imaged by use
of polarized light [54] or polarized X-rays (see Chap. 10). Faraday rotation may
also be observed in reflection. It then bears the name magneto-optic Kerr effect
or MOKE [55,192]. In this variant the rotation of the plane of polarization is
used to image the magnetization direction near the surface of the magnetic
material. The sampling depth is determined by the optical absorption depth
which is ∼10–20 nm for the strongly light-absorbing ferromagnetic metals.
Note that polarization dependent reflection measurements are unsuited to
detect the chirality of a crystal structure or a molecule. Another important
application of the above ideas is the Sagnac interferometer used in navigation
and in fighter planes. It can be used to completely eliminate all polarization
changes caused by the optical activity of optical elements in the beam path
(such as lenses and windows) and measure the pure magnetic effects with high
sensitivity [193].



6

Exchange, Spin–Orbit, and Zeeman
Interactions

6.1 Overview

This chapter reviews how our present quantum theoretical understanding of
magnetic interactions came about and thus provides a historical perspective.
The quantum theory of magnetism first revealed itself in atomic and molecular
spectroscopy. This is not a topic that modern practitioners of magnetism
are typically concerned with, yet it is the study of the simplest two-electron
systems such as the He atom and the H2 molecule that forms the basis for the
present-day theory of magnetism. The more practically oriented reader may
skip the present chapter but it is recommended for students of magnetism. The
present chapter is hoped to provide an appreciation for how difficult a problem
it is to this day to treat the interactions between more than a few electrons.
Only in the simplest of systems can the interactions between electrons be
treated without severe approximations. The chapter describes the origin of
the main theoretical technique used today, density functional theory, which is
based on an ab initio Hamiltonian. It clearly distinguishes ab initio techniques
from those built on a toy-Hamiltonian such as the Heisenberg and Hubbard
models. It is important to realize that the latter were artificially constructed
to map on to the ab initio results for simple systems, such as the H2 molecule,
and then generalized to larger systems to overcome the problems encountered
with ab initio methods. While they have proven extremely valuable for a
conceptual or qualitative understanding of magnetic phenomena they cannot
be used alone to quantitatively explain experimental observations.

Our modern understanding of electronic structure is based on the concepts
of charge and spin. Historically, the concept of the spin emerged and was de-
veloped over a short important period from 1925 to 1928, involving people
like Uhlenbeck, Goudsmit, Heisenberg, Pauli, and Dirac. The key to this de-
velopment was the understanding of atomic spectra by means of quantum
theory. In the process two of the most important concepts in modern physics
and chemistry emerged. These fundamental concepts of exchange and spin–
orbit coupling form the main topic of the present chapter. In addition we shall
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revisit the classical interaction of a magnetic moment with an external mag-
netic field discussed in Sect. 3.4, this time from a spectroscopy and quantum
theory point of view. We shall see that the spectroscopic discovery by Pieter
Zeeman in 1896, the Zeeman effect, finds its natural explanation in quantum
theory.

The interplay between the exchange, the spin–orbit, and the Zeeman inter-
actions is the essence of magnetism research. We can state upfront as follows.

• The exchange interaction is the largest magnetic interaction and is the
origin of the alignment of the spin system.
• The spin–orbit interaction creates orbital magnetism, couples the spin
system to the lattice, and gives rise to the magnetocrystalline anisotropy.
• The Zeeman interaction allows the macroscopic alignment of spin and
orbital magnetic moments, and therefore allows the creation of useful
magnetic devices.

The importance of the exchange and spin–orbit interactions can readily
be demonstrated. They underlie our understanding of the electronic structure
of atoms and the existence of the periodic table. They explain the bonding
and properties of molecules by dictating the filling and occupation of orbitals.
They play a key role in all of condensed matter physics which is based on the
concepts of charges, spins and orbital moments and their interactions. Without
the exchange interaction there would be no spontaneous magnetization and
the spin–orbit interaction allows the charges and spins to talk to each other.

The exchange interaction defines the spin system in a magnetic mater-
ial and it is responsible for the existence of parallel, i.e., ferromagnetic, and
antiparallel, i.e., antiferromagnetic, spin alignment. The spin–orbit interaction
creates orbital magnetism and couples the spin system to the lattice, allowing
energy and angular momentum exchange. It is the very origin of magnetic
anisotropy since the exchange interaction itself is isotropic and only the cou-
pling of the spin to the lattice can “lock in” a macroscopic magnetization. The
Zeeman interaction of a magnetic moment with an external magnetic field is
of great practical importance because it is used to align magnetic materials.
In particular, if one wants to align a magnetic material in the hard direction
the Zeeman interaction has to overcome the spin–orbit interaction which de-
termines the magnetocrystalline anisotropy. Finally, one needs to distinguish
the effect of an external magnetic field and of the exchange field on a mag-
netic moment. While an external magnetic fields acts on both spin and the
motion of charge reflected by linear and angular momenta, the exchange in-
teraction acts on electron spin alone.1 We shall see below that this may invert
the electronic level splitting which is important in spectroscopy.

We shall place particular emphasis on the exchange interaction because it
is the largest magnetic interaction and the most difficult one to treat theoreti-

1Note that the exchange interaction does not act on the nuclear spin.
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cally. While its treatment is rather satisfactory in small systems such as atoms
and small molecules, challenges remain to this day in treating it properly in
extended systems like solids. It is for this reason that we shall follow the
historical development, starting with the two electron atomic Hamiltonian,
then treating the two electron diatomic molecule, and then generalizing the
concepts to larger systems like magnetic materials. In general, the treatment
of the interaction between the electrons, called “correlation,” remains one of
the most difficult tasks in all of solid state physics and for a more extensive
discussion of correlation effects we refer the reader to the book by Fulde [194].

We shall now discuss the concepts of the three magnetic interactions in
more detail. At the fundamental level the origins of these interactions are
truly remarkable and we believe that modern scientists should have a clear
understanding of how these concepts have evolved.

6.2 The Spin Dependent Atomic Hamiltonian or Pauli
Equation

In order to properly treat the electronic and spin structure of atoms one
cannot use the conventional Schrödinger equation, since it does not include
spin. In principle, one needs to use the relativistic Dirac equation but we shall
take a shortcut, instead. Historically the concept of electron spin with half
integer angular momentum, h̄/2, was first proposed in 1925 by Uhlenbeck and
Goudsmit [18, 19] and was incorporated into wave mechanics by Heisenberg
and Jordan [195] in 1926 and Pauli [196] in 1927. Dirac’s treatment of an
electron in an external electromagnetic field, without explicitly assuming the
existence of the electron spin, appeared a year later in 1928 [23,24]. He found
that the spin properties are automatically contained in his equations, and
that Pauli’s treatment, with a few subtleties, is recovered in the limit of small
velocities. Our starting point will therefore be the time-independent Pauli
equation2 [197]. It is the nonrelativistic Schrödinger equation with a term
added for the spin, and can be written as

[He + Hs] ψ(r, t) = E ψ(r, t) . (6.3)
2As discussed by Strange [197] the time-dependent Pauli equation, in its general

form, also includes terms due to an external EM field if the usual momentum term p
is replaced by p + eA . This produces the correct motion of a charged particle with
momentum p in the presence of a time-dependent vector potential A and scalar
potential Φ which are linked to the E and B fields by

E(r, t) = −∇Φ(r, t) − ∂A(r, t)

∂t
(6.1)

and

B(r, t) = ∇× A(r, t) . (6.2)
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The first term on the left, He, is the electronic Hamiltonian for an atom at the
origin R = 0 with nuclear charge qn = Ze and electrons with charge qe = −e
(see footnote3)

He =
N∑

i=1

(
p2

i

2me
− Ze2

4πε0 |ri|

)
+
∑
i<j

e2

4πε0 |rj − ri|
. (6.6)

It consists of the kinetic energy, the Coulomb interaction between the electrons
and the nucleus and the Coulomb interactions between the electrons. We shall
see later that the last term in (6.6) gives rise to the exchange interaction.

The second term in the Pauli equation (6.3), Hs, represents the non-
relativistic expression for the spin energy [197] and it is of crucial importance
for magnetism. It can be written in the familiar form

Hs =
eh̄

me
S · B∗, (6.7)

where S is the atomic spin, and the origin of the magnetic induction B∗

will be discussed later. The term naturally arises when the relativistic Dirac
equation is evaluated up to order (v/c)2 in the nonrelativistic limit. We shall
see below that it will give rise to the spin–orbit interaction.

In electronic structure calculations it is important to understand the size
of energies associated with different terms in the Hamiltonian, since signifi-
cant simplifications in the mathematics result if certain terms can be treated
by perturbation theory. Also, since the theory is to guide experimental ob-
servations it is of great importance for our understanding which terms in the
Hamiltonian give rise to large and small level splittings in the atomic spectra.
We shall therefore take a look at the relative size of the terms in the Pauli
Hamiltonian.

6.2.1 Independent Electrons in a Central Field

The first two terms in round brackets in the electronic Hamiltonian He (6.6)
are sums of single electron operators, while the last term is a sum of two-
electron operators. The Coulomb interaction between a given electron and

3Assuming that we sum over quantities that are symmetric in indices i and j, we
use the following double sum notation,

∑
i<j

=
∑

1≤i≤N−1
i<j≤N

=
1

2

∑
i�=j

. (6.4)

For a sum over a single index i, which must differ from a second index j we write
∑

i(i�=j)

. (6.5)
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the nucleus, expressed by the second term in (6.6) and that with another
electron given by the third term in (6.6) can be of comparable size. Therefore
the Pauli (or Schrödinger) equation cannot be separated into those of the
individual electrons. We would like to simplify the Hamiltonian in two ways.
First, we would like to write it in terms of a spherically symmetric central field
problem that only contains single electron operators. Second, we would like to
separate out a “smaller” term that represents two-electron operators, so that
we can treat it in perturbation theory. The central field part would give us
something that corresponds to Bohr’s atomic shell (quantum number n) and
subshell (quantum number l) model, each subshell i being characterized by
quantum numbers nili. The two-electron part would correspond to some finer
level splitting of the electronic subshells through interactions of electrons in
different subshells n1l1 and n2l2. This can indeed be done as shown below.

In (6.6) the electron-nuclear Coulomb term is negative while the electron–
electron Coulomb term is positive. So we can try to construct a central field
felt by a given electron that does not just come from the nuclear field but has
some screening contribution from an averaged electron–electron “field.” This
is typically done by rewriting (6.6) as

He =
∑

i

H0(ri) + H1, (6.8)

where the first “large” term is the spherically symmetric central field Hamil-
tonian

H0(ri) =
p2

i

2me
− Ze2

4πε0 |ri|
+

e2

4πε0

∑
j (j 	=i)

1
|rj − ri|

(6.9)

consisting of a sum of one-electron terms. The second term H1 constitutes
a difference between two large terms and is “small” relative to H0(ri). It is
given by a sum of two electron terms minus an averaged term

H1 =
e2

4πε0

⎛
⎝∑

i<j

1
|rj − ri|

−
∑

i,j (j 	=i)

1
|rj − ri|

⎞
⎠ . (6.10)

The central field Hamiltonian effectively decouples the motion of the in-
dividual electrons from each other, and so the position of each electron is
not correlated with the position of any other electron. By solving the three-
dimensional Schrödinger equation for H0(ri) we obtain one-electron eigenfunc-
tions. They correspond to atomic orbitals (we will include spin later) which
are products of a radial part and spherical harmonics according to

ψn,l,m(r) = Rn,l(r)Yl,m(θ, φ) . (6.11)

Since the potential is spherically symmetric the electron energy is independent
of the quantum number m. The total eigenfunction of

∑
i H0(ri) is a product

of the individual one-electron orbitals (6.11). However, it needs to be properly
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antisymmetrized as discussed later and in practice is a N -dimensional Slater
determinant. The corresponding energy is the sum of the individual electron
orbital energies.

In practice, the solution of the central field Hamiltonian is nontrivial and is
calculated self consistently by starting with an approximate parameterized so-
lution which is optimized according to some appropriate criterion. The various
methods are discussed by Bethe and Salpeter [198] for two electron systems,4

and more generally by Cowan [182]. In our discussion of the exchange interac-
tion below it will become clear that the wavefunctions (6.11) are determined
by both the kinetic energy term p2

i /2me and potential energy terms in the
central field Hamiltonian (6.9). For example, the kinetic energy term will con-
tribute a (positive) centrifugal term l(l+1)h̄2/2mer

2 to the radial Schrödinger
equation (see (7.4)), indicating that the kinetic energy is increased for shorter
distances r.

It is clear that the one-electron functions (6.11) are incomplete since they
do not include spin. The complete spin–orbitals we are looking for are required
to be eigenfunctions of the central field Hamiltonian (6.9) and we want to use
them as our zero-order function for the perturbation solution of the complete
Pauli equation. Since the central field Schrödinger equation does not explicitly
contain the spin, it does not dependent on the orientation of the spin relative
to the orbital angular momentum. We can therefore specify the direction of
the spin relative to the z-axis of our coordinate system, and it is completely
described by the simple one-electron spin functions α ≡ (sz = + 1

2 ) and β ≡
(sz = − 1

2 ). We write the spin dependence as χ(sz) (which is either α or β)
and the one-electron spin orbitals are given by

ψ(a) = ψ(r, s) = Rn,l(r)Yl,m(θ, φ)χ(sz) . (6.12)

We have now established the form of a complete single electron wavefunction
in an atom and can attack the interaction between two or more electrons.

6.2.2 Interactions between two Particles – Symmetrization
Postulate and Exclusion Principle

In the wavefunction (6.12) we have explicitly indicated that the “coordinate”
variable a contains the position r = (r, θ, φ) as well as the spin orientation sz
of the spin s. The total eigenfunction of the central field Hamiltonian consists
of the product of the individual electron orbitals. For a two-electron system
we have

Ψ(a, b) = Ψ(r1s1; r2s2) = ψ1(a)ψ2(b) . (6.13)

Because the two electrons are indistinguishable, this function must be equiv-
alent to

4Bethe and Salpeter’s book is a wonderful account of the development of the
atomic theory for one- and two-electron atoms and its reading is highly recom-
mended.
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Fig. 6.1. Description of a two-electron atom. The two electrons are labeled by
subscripts 1 and 2 and their spatial and spin coordinates are denoted by the vectors
a and b. Because the electrons are indistinguishable the configuration described by
one-electron wavefunctions ψ1(a) and ψ2(b) must be identical to that described
by ψ2(a) and ψ1(b), where the two electrons are exchanged

Ψ(a, b) = ψ2(a)ψ1(b) , (6.14)

where the electrons, labeled by subscripts 1 and 2, originally at positions a
and b have been exchanged. This is illustrated in Fig. 6.1.

A solution must therefore be of the form

Ψ(a, b) =
1√
2

[ψ1(a)ψ2(b) ± ψ2(a)ψ1(b)] . (6.15)

The plus sign represents a symmetric total wavefunction and the minus sign
an antisymmetric total wavefunction. Upon exchange of electrons symmetric
functions remain unchanged

Ψsym(a, b) = Ψsym(b,a) (6.16)

while antisymmetric functions change sign

Ψas(a, b) = −Ψas(b,a) . (6.17)

We have the following symmetrization postulates,

The Symmetrization Postulates.

If the system is totally symmetrical under the exchange of any
particle pair, the particles are called bosons and obey Bose–Einstein
statistics. Bosons have integer spins.

If the system is totally antisymmetrical under the exchange of any
particle pair, the particles are called fermions and obey Fermi–Dirac
statistics. Fermions have half-integer spins.
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Fig. 6.2. False-color images of ultracold lithium-atom clouds [199]. Lithium has two
stable isotopes, one of which is a boson (lithium-7), the other a fermion (lithium-6).
The alkali atoms are magnetically confined by an inhomogeneous magnetic field,
taking advantage of their magnetic moment and are then cooled with lasers. As
the temperature drops, the bosons bunch together, while the fermions remain more
apart

As far as we know today all N -particle systems in nature are distinguished
by their fundamental symmetry under exchange of any pair of particles. No ex-
ceptions are known. Our two-electron system discussed above is but a special
case of such general systems. Particles can be composites and, for example,
different isotopes may behave differently. Examples are 3He which is a fermion
and 4He which is a boson. Figure 6.2 shows a beautiful example of the dif-
ferent behavior of clouds of lithium-7 bosons and lithium-6 fermions at low
temperature [199].

We are interested in the interactions between electrons which are fermions.
The total wavefunction is therefore antisymmetric. This can be achieved in
two ways. Either the spatial part is symmetric and the spin part antisymmetric
or vice versa. We have either

Ψas(a, b) = Ψsym(r1, r2)χas(s1, s2) . (6.18)

where the antisymmetric two-electron spin function is the singlet state with
total spin quantum number S = 0,MS = 0,

χas(s1, s2) =
1√
2

[αβ − βα] . (6.19)
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or
Ψas(a, b) = Ψas(r1, r2)χsym(s1, s2) . (6.20)

and the symmetric two-electron spin function is the triplet state with total
spin quantum number S = 1,MS = 1, 0,−1,

χsym(s1, s2) =

⎧⎨
⎩
αα
1√
2

[αβ + βα]
ββ

. (6.21)

The above equations, of course, express the famous Pauli exclusion principle,
stating that two electrons cannot be in identical states, i.e., have identical
quantum numbers. For example, if the electrons have a symmetric spatial part
as in (6.18) they tend to have similar quantum numbers nlm, so that the spin
quantum number sz has to differ. This is accomplished by the antisymmetric
form given by (6.19).

The Pauli exclusion principle is a manifestation of the antisymmetrization
postulate for Fermions. It states that two electrons cannot be in identical
states, i.e., have identical quantum numbers.

6.3 The Exchange Interaction

6.3.1 Electron Exchange in Atoms

The concept of “exchange” was originally derived from the interpretation of
emission spectra of atoms with two unpaired electrons such as neutral helium,
called He I. One of the classic works on the interpretation of the He spectrum
was written by Heisenberg in 1926 [200]. For its historical importance and
pedagogical value we shall now take a closer look at the He spectrum. It
will give us valuable insight and it forms the basis for the Heisenberg spin
Hamiltonian, discussed later.

Helium contains two electrons which move in the central field of two pro-
tons. The energy level diagram deduced from the analysis of the emission lines
is shown in Fig. 6.3, for reference. The diagram is plotted, similar to a Gro-
trian diagram [181,182,201], to conveniently give the experimental transition
energies. They simply correspond to the difference of the energies between two
levels. Of particular interest are the transition energies from excited states to
the ground state. In the ground state both electrons occupy the 1s orbital,
and this two-electron state is therefore denoted 1s1s. It takes 24.59 eV, the
ionization energy of He I, to remove one of the 1s electrons. It takes another
54.42 eV, the ionization energy of He II, to remove the second 1s electron.

The emission spectrum of He was measured by exciting one of the electrons
in the 1s orbital into a higher orbital nl by an electrical discharge and then
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Fig. 6.3. Energy levels for neutral He (He I) [198,202]. We give the binding energies
of the energy levels, denoted by multiplet term labels, n′ 2S+1LJ , as well as two-
electron (nl, n′l′) and one-electron (n′l′) (of the second electron) labels. Here S is
the total spin, L the total angular momentum and 0 ≤ J ≤ L+S the coupled angular
momentum. Originally all triplet states 3LJ were associated with “orthohelium” the
singlet states 1LJ with “parahelium.” Experimentally observed transitions occur
within the singlet and triplet manifolds (cross transition are forbidden) and their
energies are simply the differences of the level energies. As an example, the prominent
He I line of 21.22 eV, often used for ultraviolet photoemission studies, corresponds
to the 1P1 → 1S0 transition, as shown by a downward arrow. Levels with binding
energies above 3 eV are omitted. Particularly important are the absence of the 1s1s
triplet state (13S1) and the singlet–triplet splitting of the 1s2s and 1s2p levels as
discussed in the text

measuring the emitted photons when the 1snl state decays into the ground
state. When a level diagram was made, similar to that shown in Fig. 6.3, from
careful inspection of the measured He spectra it appeared that there were two
different series of transitions. For lack of better knowledge the two series were
originally associated with two forms of helium, “parahelium” (correspond-
ing to singlet states) and “orthohelium” (triplets). The distinction between
the two series, which correspond to transitions within the singlet and triplet
manifolds, could be made because the dipole selection rule ∆S = 0, governing
optical transitions does not allow transitions which involve a change of spin,
i.e., cross transitions between singlet and triplet states.5 Note that because
of the electric discharge excitation method, however, both singlet and triplet
states can be populated from the singlet ground state due to the fact that
spin exchange may occur between the atomic and the exciting electron in the

5In addition, as discussed later, the observed spin–orbit splitting and the Zeeman
effect are different between singlet and triplet states.
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electron impact process. The fact that excitations to both the lowest excited
states 2 3S1 and 2 1S0 are allowed by electron impact yet their decay to the
1 1S0 ground state is dipole forbidden (only ∆S = 0,∆L = ±1 are allowed)
is of great importance for lasers since it leads to long lifetimes (� 10−8 s) of
the excited states, which are called metastable [201].

When the energies of the singlet and triplet manifolds were compared, one
observed a relative shift between corresponding levels, as illustrated in Fig. 6.3
for the 1s2s and 1s2p states, indicated by wavy brackets. This splitting and
the absence of a 1s1s triplet level in the diagram in Fig. 6.3 hold the key to
magnetism. The origin of the splitting which is due to the exchange interaction
between the two electrons will be discussed below. The absence of the 1s1s
triplet state (13S1) combined with the knowledge that He has two electrons
immediately makes it clear that two electrons cannot exist in quantum states
that agree in all quantum numbers. This led Pauli to formulate his famous
principle. We can make the following important statement.

The He spectrum holds the key for the quantum mechanical understand-
ing of magnetism. The absence of a 1s1s triplet state (1 3S1) was the
starting point for the Pauli principle. The singlet–triplet splitting of the
excited states led to the concept of electron exchange.

We now want to explain the splitting of the energy levels of the two-
electron He atom shown in Fig. 6.3. The Schrödinger equation for helium is
represented by the following Hamiltonian (for Z = 2)6

H(r1, r2) =
p2

1

2me
+

p2
2

2me
− 2e2

4πε0 |r1|
− 2e2

4πε0 |r2|︸ ︷︷ ︸
H0(r1, r2)

+
e2

4πε0 |r2 − r1|︸ ︷︷ ︸
He−e(r1, r2)

(6.24)

6We note that in (6.24) He−e(r1, r2) is actually not small compared to H0(r1, r2)
and our results are therefore not very accurate. A better choice more in line with
Sect. 6.2.1 would be to factor the Hamiltonian (6.24) into a large and a small part.
For example, using the notation of (6.24), Heisenberg [200] chose the zero-order
Hamiltonian as

H′(r1, r2) = H0(r1, r2) +
e2

4πε0 |r2|
. (6.22)

and the perturbation Hamiltonian as

H′′(r1, r2) = He−e −
e2

4πε0 |r2|
. (6.23)

This gives a better zero-order wavefunction and a more accurate result. Our method
used here is chosen for its simplicity.
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We have indicated by wavy brackets our choice for the central field part
H0(r1, r2) and for the two-electron part He−e(r1, r2). We could have also
chosen a different grouping of terms, more in line with (6.9) and (6.10). In
fact, many different approaches have been used historically as reviewed by
Bethe and Salpeter [198]. Since we are not interested in finding the most ac-
curate method but to illustrate the concept of exchange, we follow the simple
approach of Sakurai [126].

We know that the solution of H0(r1, r2) is of the form (6.17). We start with
the ground state of helium where both electrons occupy the 1s orbital. In this
case the spatial part of the total wavefunction is symmetric because both elec-
trons are in the same orbital and have the quantum numbers nlm = 100. The
spin part therefore has to be antisymmetric, i.e., the electrons have different
spin functions α and β. We can write for the ground state wavefunction

Ψgs(a, b) = Ψsym(r1, r2)χas(s1, s2)

=
1
2

[ψ100(r1)ψ100(r2) + ψ100(r1)ψ100(r2)] [αβ − β α] . (6.25)

The solution to the central field equation

H0(r1, r2)Ψgs(a, b) = E0 Ψgs(a, b) (6.26)

gives us the ground state energy E0 in zeroth order. This energy needs to be
corrected by the He−e(r1, r2) contribution in (6.24), which is calculated by
perturbation theory (see footnote 6)

E1 = 〈Ψgs(a, b) |He−e(r1, r2) |Ψgs(a, b) 〉. (6.27)

We shall not carry out the actual calculation of E0 and E1 here, which is
given by Sakurai [126]. We simply state the results E0 = −4e2/(4πε0 a0) and
E1 = +5e2/4(4πε0 a0), where a0 is the Bohr radius. We see that the energy
E1 is sizeable relative to E0 and both terms need to be considered in obtaining
a value close to the experimental value of 79.01 eV, which is the sum of the
He I and He II ionization energies of 24.59 and 54.42 eV, respectively.

The He ground state calculation can actually be done without conside-
ration of the spin. Both Hamiltonians H0(r1, r2) and He−e(r1, r2) do not
explicitly contain the spin and we could have done the calculation by simply
using the spatial part Ψgs(r1, r2) of the two electron function in (6.25). In our
consideration the spin entered only through the requirement that the total
wavefunction be antisymmetric.

The true importance of the requirement of an antisymmetric total wave-
function, however, enters in the calculation of the excited states of helium. The
excited states were the subject of Heisenberg’s important paper in 1926 [200].
As shown in Fig. 6.3, the excited states correspond to the two electrons occu-
pying different orbitals, and there is an energy splitting. This splitting, which
is 0.79 eV for the 1s2s and 0.25 eV for the 1s2p states, arises from the very
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concept of electron exchange in Fig. 6.1 and the symmetrization postulate.
Let us take a look at the origin of the very important concept of exchange.

We assume one electron in the 1s orbital, denoted nlm = 100 and an
another electron in an excited orbital denoted by a general label nlm. The
central field wavefunction will have two possible forms, given by (6.18) and
(6.20). If the space part is symmetric, the spin state is antisymmetric and
given by (6.19). This gives the singlet excited state

ΨS
es(a, b) =

1√
2

[ψ100(r1)ψnlm(r2) + ψ100(r2)ψnlm(r1)]χas(s1, s2) . (6.28)

For an antisymmetric space part we have the triplet excited state

ΨT
es(a, b) =

1√
2

[ψ100(r1)ψnlm(r2) − ψ100(r2)ψnlm(r1)]χsym(s1, s2) . (6.29)

with χsym(s1, s2) given by (6.21). If we evaluate the Schrödinger equation
for the central potential H0(r1, r2), we obtain the same energy with either
function (6.28) or (6.29). This energy is given by Ees = E100 + Enlm.

We now consider the effect of the electron–electron interaction He−e

(r1, r2) = e2/(4πε0 r12), where r12 = |r2 − r1|, and calculate it by pertur-
bation theory. We obtain a correction Ee−e to Ees, given by

ES
e−e = 〈ΨS

es(a, b) |H1(r1, r2) |ΨS
es(a, b) 〉 = I + J (6.30)

for the singlet spin state (antiparallel spin alignment), and

ET
e−e = 〈ΨT

es(a, b) |H1(r1, r2) |ΨT
es(a, b) 〉 = I − J (6.31)

for the triplet state (parallel spin alignment). We therefore have

ES
e−e − ET

e−e = 2J . (6.32)

The energies I and J are evaluated using the orthogonality of the radial,
angular and spin wavefunctions. Because the electron–electron Hamiltonian
He−e(r1, r2) does not depend on spin, the matrix elements of the singlet
and triplet spin parts of the wavefunctions are simply determined by the
orthonormality of α and β. With 〈± 1

2 |±
1
2 〉=1 and 〈± 1

2 |∓
1
2 〉=0 the matrix

elements simply give unity and zero when the spins are parallel or antiparallel.
We obtain

I =
∫ ∫

|ψ100(r1)|2
e2

4πε0 r12
|ψnlm(r2)|2 dr1dr2, (6.33)

J =
∫ ∫

ψ100(r1)ψnlm(r2)
e2

4πε0 r12
ψ∗

100(r2)ψ∗
nlm(r1) dr1dr2. (6.34)

The energies I and J have a simple physical meaning. The Coulomb integral I
represents the electrostatic Coulomb repulsion between the electron densities
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|ψ100(r1)|2 and |ψnlm(r2)|2 and it has a positive sign, opposite to the negative
sign of the electron-nuclear Coulomb attraction. The other quantity J is called
the exchange integral because it reflects the energy associated with a change
of quantum states between the two electrons. In the singlet state the space
function is symmetric and the electrons have a tendency to be close to each
other. In the triplet state the space function is antisymmetric and the electrons
tend to avoid each other. Therefore the effect of the electrostatic repulsion is
greater in the singlet state and it will be higher in energy, as shown in Fig. 6.3.
The associate exchange energy ∆E = 2J corresponds to the singlet–triplet
splitting.

The exchange energy ∆E = 2J corresponds to the singlet–triplet split-
ting.

We can summarize this section as follows. We have seen above that the
exchange interaction arises from two ingredients, the Coulomb interaction
e2/(4πε0 rji) between two electrons and the requirement of a total antisym-
metric wavefunction, the latter expressing the Pauli exclusion principle. Sur-
prisingly, the Hamiltonian does not contain the spin at all!

The exchange interaction arises from the Coulomb interaction between
electrons and the symmetrization postulate. The symmetrization postulate
leads to either parallel or antiparallel spins.
• If J is positive, the spins point into the same direction and are aligned
parallel.
• If J is negative, the spins are antiparallel.

While in He J is positive, we shall see below that for the H2 molecule, J
is negative.

6.3.2 Electron Exchange in Molecules

After Heisenberg’s calculation of the He spectrum in 1926 [195] the importance
of electron exchange in the bonding between atoms became clear in 1927 with
the celebrated Heitler–London (HL) calculation [203] for the H2 molecule.
This calculation is of great historical importance for several reasons. From
a chemistry point of view the calculation opened the door for a quantum
mechanical understanding of chemical bonding. It linked the theory of the
electron pair bond, developed in the early 1920s by Lewis [204], to the concept
of the electron spin. More generally, it marked the beginning of quantum
chemistry. From a solid-state physics point of view it influenced our thinking
of whether electrons behave independently or are strongly correlated. These
questions have remained at the forefront of condensed matter physics to this
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day. The calculation was particularly influential to the theoretical treatment
of magnetism. It was the starting point for the Heisenberg Hamiltonian and
pointed out the limitations of treating electrons independently, as later done
in the independent electron model. It is for this reason that we shall discuss
the Heitler–London calculation here.

In the last Sect. 6.3.1 we have discussed the electronic structure of the
ground and excited states of He which is the “united” atom of H2. Since
the ground and excited states of He consist of singlet and triplet states, as
summarized in Fig. 6.3, it is not obvious a priori whether the ground state is
a singlet or a triplet when we bring two H atoms together with electrons in
two different 1s orbitals. The HL calculation showed that the ground state is
indeed a singlet. In the singlet ground state the spatial part of the two-electron
wavefunction is localized between the atoms and forms an electron pair bond,
and according to the Pauli principle the two electrons have opposite spins. In
the following we shall discuss the IE and HL approaches in turn, using the H2

molecule as our example.

Independent Electron Treatment

In order to appreciate the HL calculation we shall start by constructing a
two-electron wavefunction for the H2 molecule in the independent electron (IE)
approximation . This is done by first considering the one-electron H+

2 molecule
and then adding the second electron. For convenience we show in Fig. 6.4a
the relevant coordinates for H+

2 . The Hamiltonian for the H+
2 molecule is

straightforward and given by

H(r) =
p2

2me
− e2

4πε0
1

|r−R1|︸ ︷︷ ︸
Hatom

+
e2

4πε0

[
− 1
|r−R2|

+
1

|R1−R2|

]
. (6.35)

Here Hatom is the central field Hamiltonian for a single H atom. The approxi-
mate solution of the corresponding molecular Schrödinger equation H(r)
ψ(r) = ε ψ(r) can be obtained from the solutions of the Schrödinger equation
for two separate H atoms [205]. If we denote two one-electron atomic wave-
functions for the H atom as φ1(r) and φ2(r) and define an overlap integral
between the two functions as

O = 〈φ1|φ2〉 = 〈φ2|φ1〉 , (6.36)

we can construct two normalized molecular orbital wavefunctions. They are
often referred to as linear combination of atomic orbitals (LCAO) or tight
binding wavefunctions. The LCAO bonding function is given by

ψB(r) =
1√

2(1 +O)
(φ1(r) + φ2(r)) (6.37)
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Fig. 6.4. Coordinates, wavefunctions, and energies for the one-electron H+
2 molecule.

In (a) we show the coordinates and the radial dependence of the molecular bonding
and antibonding orbitals ΨB and ΨAB. In (b) we give the corresponding picture of
the energies and wavefunctions of the bonding and antibonding molecular states,
and show schematically, as done in chemistry textbooks, the combinations of the
atomic 1s orbitals (circles) that lead to the bonding and antibonding molecular
orbitals

and the LCAO antibonding function is

ψAB(r) =
1√

2(1 −O)
(φ1(r) − φ2(r)) . (6.38)

As the atoms are pushed together the overlap integral becomes unity and
the bonding function ψB becomes the ground state function of the “united
ion” He+ with two nuclear charges. It is an important point that the LCAO
method has the proper united ion limit.

The two LCAO functions correspond to the eigenvalues

εB =
E0 + E12

1 +O
, εAB =

E0 − E12

1 −O (6.39)

and at the equilibrium distance the bonding function has the lower energy
because E12 < 0, as shown in Fig. 6.4b. The quantities E0 and E12 are the
atomic energy

E0 = 〈φ1|H(r)|φ1〉 = 〈φ2|H(r)|φ2〉 , (6.40)

and the interaction energy

E12 = 〈φ1|H(r)|φ2〉 = E21 = 〈φ2|H(r)|φ1〉 . (6.41)
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The interaction energy E12 and the overlap integral O decay exponentially
to zero as |R1−R2| becomes large. For distances greater than the equilibrium
bond length the two quantities are proportional to each other but have oppo-
site signs, E12 ∝ −O, and the atomic energy E0 becomes the 1s binding energy
(13.6 eV) of the H atom. The model is summarized in Fig. 6.4. It describes the
formation of a covalent chemical bond as charge pile-up between the atoms
in a “bonding” orbital. This orbital is singly occupied in the H+

2 molecule
and “glues” the atoms together. The higher energy antibonding orbital, if
occupied, would lead to a repulsion between the atoms. The consequence is
that the He2 molecule, consisting of double occupation of both bonding and
antibonding orbitals, does not exist.

Heitler–London Treatment

We now take the next step and consider the two-electron H2 molecule. The
relevant coordinates are illustrated in Fig. 6.5.

The H2 Hamiltonian contains the typical kinetic energy, electron–nucleus
and nucleus–nucleus Coulomb terms plus a term for the electron–electron
interaction and is given by,

H(r1, r2) =
p2

1

2me
− e2

4πε0
1

|r1−R1|︸ ︷︷ ︸
H1

atom

+
p2

2

2me
− e2

4πε0
1

|r2−R2|︸ ︷︷ ︸
H2

atom

+
e2

4πε0

[
− 1
|r1−R2|

− 1
|r2−R1|

+
1

|r1−r2|
+

1
|R1−R2|

]

︸ ︷︷ ︸
H′

. (6.42)

Here Hi
atom are the central field Hamiltonians for the two individual H atoms.

We first try to find a solution of (6.42) by assuming an independent elec-
tron (IE) model. For this purpose we consider (6.42) without the electron–
electron term He−e = −e2/4πε0|r1−r2| and regroup the terms into two one-
electron molecular terms

H(r1, r2) =
p2

1

2me
−
[
e2

4πε0
1

|r1−R1|
+

1
|r1−R2|

]

︸ ︷︷ ︸
H1

molecule

+
p2

2

2me
− e2

4πε0

[
1

|r2−R2|
+

1
|r2−R1|

]

︸ ︷︷ ︸
H2

molecule

+
e2

4πε0
1

|R1−R2|
. (6.43)
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Fig. 6.5. Coordinates and lowest electronic configurations for the hydrogen mole-
cule. In (a) we show the coordinates of the two-electron molecule. In (b) and (c) we
compare the spin configurations in the ground and excited states in the LCAO and
the Heitler–London models. In the LCAO model, shown in (b), the ground state and
excited states are derived from the one-electron case shown in Fig. 6.4. The ground
state is the singlet bonding state, the excited state is either a singlet or triplet with
the same energy and with one electron in the antibonding orbital. In the HL model
the ground state is a singlet and the excited state is necessarily a triplet. The sin-
glet ground state ΨS

HL corresponds to the bonding state and the triplet ΨT
HL to the

antibonding state. Their energy separation corresponds to the 4.476 eV dissociation
energy of the H2 molecule [206]. Note that optical transitions between the singlet
and triplet states are forbidden

As for the H+
2 molecule the solutions of the Schrödinger equations for the

parts Hi
molecule can now be expressed as one-electron LCAO wavefunctions,

similar to (6.37) and (6.38). These LCAO wavefunctions are good approxima-
tions to (6.43). They do not, however, satisfy the symmetrization postulate
for a two-electron system. Yet we have learned in Sect. 6.2.2 how to create the
appropriate two-electron singlet and triplet wavefunctions from one-electron
orbitals and spin functions. By use of (6.18) we can therefore create the two-
electron singlet ground state as a product of two LCAO bonding (lowest
energy) functions (6.37) according to

ΨS(r1s1; r2s2) =
1√
2

[ψB(r1)ψB(r2) + ψB(r2)ψB(r1)] χas(s1, s2), (6.44)
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with χas(s1, s2) given by (6.19). Similarly, the triplet state solution is created
from (6.20) and products of bonding, (6.37), and antibonding, (6.38), LCAO
functions

ΨT(r1s1; r2s2) =
1√
2

[ψB(r1)ψAB(r2) − ψB(r2)ψAB(r1)] χsym(s1, s2) ,

(6.45)
with χsym(s1, s2) given by (6.21).

The proper-symmetry two-electron spatial wavefunctions for the H2 mole-
cule consist of products of LCAO one-electron functions for the H+

2

molecule, which are assembled into bonding and antibonding total spatial
functions. The total antisymmetric wavefunctions are formed by products
of the total spatial functions with the proper symmetry triplet and singlet
spin functions.

The above functions provide a good approximation to the H2 Hamiltonian
(6.43). By inserting the LCAO one-electron orbitals (6.37), (6.38) and the spin
functions (6.19) and (6.21) into equations (6.44) and (6.45), and renormalizing
to the value of the double overlap integral

S = 〈φ1(r1)φ2(r2) |φ1(r2)φ2(r1) 〉, (6.46)

we can rewrite the singlet state solution (6.44) in the IE approximation as

ΨS
IE =

1
2
√

1 + S
[φ1(r1)φ2(r2) + φ2(r1)φ1(r2) ] [α1 β2 − β1 α2 ]

︸ ︷︷ ︸
ΨS

HL

+
1

2
√

1 + S
[φ1(r1)φ1(r2) + φ2(r1)φ2(r2) ] [α1 β2 − β1 α2 ] , (6.47)

where we have indicated a grouping of terms with the label ΨS
HL for future

reference. The triplet state is,

ΨT
IE =

1√
2(1 − S)

[φ2(r1)φ1(r2) − φ1(r1)φ2(r2) ]χsym . (6.48)

The triplet spin functions χsym are given by (6.21). The IE two-electron func-
tion ΨS

IE behaves properly as the atoms are pushed together because its com-
ponents are LCAO functions that reduce to the “united” ion (He+) limit.
However, ΨS

IE behaves inappropriately at large distances. The reason is that
it contains two ionic states φ1φ1 and φ2φ2, where two electrons are on the
same atom. These states, corresponding to H+H−, enter on an equal footing
with states φ1φ2 and φ2φ1 where a single electron is on each atom. When
the atoms are pulled apart, the dissociation limit of H2 should simply corre-
sponds to two H atoms, yet the ionic terms in ΨS

IE lead to a 50/50 mixture
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of atoms and ions. Furthermore, if we calculated the expectation values of
the full H2 Hamiltonian (6.42), including the electron–electron term, with the
singlet state ΨS

IE and the triplet state ΨT
IE, the latter would be lower in energy

at large distance, because it does not suffer from the additional contribution
of the ionic states. Hence at large bond length the IE wavefunction would
yield the incorrect triplet ground state.

This problem is overcome by the Heitler–London approximation

ΨS
HL =

1
2
√

1 + S
[φ1(r1)φ2(r2) + φ2(r1)φ1(r2)] [α1 β2 − β1 α2] , (6.49)

It is the independent electron wavefunction with the ionic terms omitted as
indicated in (6.47). The electrons now belong to both atoms and the wave-
function is characteristic of a covalent bond. The HL triplet wavefunction is
identical to that of the independent electron approximation given by (6.48),
hence

ΨT
HL = ΨT

IE . (6.50)

It is important to recognize the difference between the IE and HL singlet
wavefunctions. The two-electron singlet state in the IE model is written as
a product of symmetrized molecular LCAO wavefunctions, in line with the
grouping of terms in (6.43). In contrast, the two-electron singlet in the HL
model is written as a product of symmetrized atomic functions, reflecting
the grouping of terms in (6.42). This causes the HL wavefunction ΨS

HL to
be a poorer representation than the IE representation at short bond length.
We have seen that the IE function ΨS

IE reduces to the proper united atom
limit of He, with a doubly charged nucleus. In contrast, the structure of the
HL wavefunction (6.49) corresponds to a two-electron wavefunction that is
constructed from atomic functions φi(rj), corresponding to H nuclei with a
single positive charge. This means that the atomic functions φi(rj) will be far
too extended in space to be a good description of the united atom He with
two positive charges in its nucleus. At the equilibrium molecular distance it
is not clear a priori whether the IE or HL wavefunction is better, but it turns
out the HL function is indeed a better approximation for H2.

6.3.3 Magnetism and the Chemical Bond

We conclude the discussion on exchange in molecules with a quick compari-
son of the ground and excited states in the independent electron and Heitler–
London pictures, as illustrated in Fig. 6.5b, c. At the internuclear distance of
H2 the independent electron model gives a singlet ground state just like the
correlated two-electron model. The first excited state consists of the excita-
tion of one electron to the antibonding orbital, and both a parallel (triplet)
or antiparallel (singlet) orientation of the two electrons have the same energy.
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In the Heitler–London model, the ground state is again a singlet. Similar to the
one-electron model, this two-electron state is called the “bonding” state. The
first excited state is the triplet with both electrons occupying the “antibond-
ing” two-electron state. This fundamental concept linking the existence of a
chemical bond with the existence of spin needs to framed and remembered.

The Heitler–London model links the occurrence of a “covalent” chemical
bond with a correlated electron pair whose spatial orbitals overlap be-
tween the atoms and where, in accordance with the Pauli principle, the
electrons have opposite spins.

Similar to the one-electron case one can express the singlet–triplet or
bonding–antibonding splitting in closed form. The total Hamiltonian H(r1, r2)
for H2 is given by (6.42) and it consists of atomic parts H1

atom and H2
atom and

the extra potential energy terms H′. By use of the Heitler–London singlet and
triplet functions one obtains the energies [205]

ES =
〈ΨS

HL|H(r1, r2)|ΨS
HL〉

〈ΨS
HL|ΨS

HL〉
= 2E0 +

C +X
1 + S

. (6.51)

and

ET =
〈ΨT

HL|H(r1, r2)|ΨT
HL〉

〈ΨT
HL|ΨT

HL〉
= 2E0 +

C −X
1 − S . (6.52)

Here the double overlap function S is given by (6.46), E0 is the atomic energy
of the H atom, which is given by

E0 = 〈φ1(r1)|H1
atom |φ1(r1) 〉 = 〈φ2(r2)|H2

atom |φ2(r2) 〉 , (6.53)

C is the Coulomb integral

C = 〈φ1(r1)φ2(r2) |H′ |φ1(r1)φ2(r2) 〉 , (6.54)

and X is the exchange integral

X = 〈φ1(r1)φ2(r2) |H′ |φ1(r2)φ2(r1) 〉 . (6.55)

Note that there are two equivalent terms C and X corresponding to exchange
of coordinates r1 and r2. Since the exchange integral links two-electron factors
where each electron is attached to different nuclei it falls off similar to the
double overlap function (6.46) and more rapidly than the Coulomb integral
C. This point is of great importance for the magnetism of solids which is
therefore based on a short-range interaction.
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The exchange integral between two atoms falls off rapidly with increasing
nuclear distance.

From (6.51) and (6.52) we obtain for the singlet–triplet splitting as

ES − ET = 2J = 2
X − SC
1 − S2

. (6.56)

Here we have defined the exchange constant J in accordance with that given
by (6.32) for the He atom, i.e., we have taken the singlet–triplet splitting to
be 2J , as shown in Fig. 6.5c. For the hydrogen molecule the singlet state is
lower in energy than the triplet state and therefore the exchange constant
J is negative. Note that for zero wavefunction overlap we have J = X.

The singlet–triplet splitting has indeed been observed as reviewed by
Herzberg [206]. Since the triplet state corresponds to the unstable antibond-
ing state the singlet–triplet energy separation corresponds to the dissociation
energy of the H2 molecule, which is 4.476 eV. We can therefore frame the
following important result.

In the H2 molecule the singlet–triplet excitation energy corresponds to
the 4.476 eV dissociation energy of the molecule. The exchange coupling
constant J has a value of 2.24 eV.

6.3.4 From Molecules to Solids

Because it emphasizes the importance of the singlet–triplet correlation for
bonding, the Heitler–London function ΨS

HL today is widely regarded in quan-
tum chemistry as a prototype two-electron wavefunction for the description
of correlated or localized electrons [194]. Historically it served as a quantum
mechanical explanation for Lewis’ electron-pair bond (written for H2 as H:H)
which was developed in the 1930s by Pauling and others into “valence bond
theory” [204].

In contrast, the independent electron function ΨS
IE represents a prototype

wavefunction for independent, delocalized, or itinerant electrons. When the
field experienced by a single electron is taken to arise from a spatial average
over the positions of the other electrons (similar to (6.9)), which in practice
is accomplished by the self-consistent field Hartree–Fock method, the IE ap-
proximation underlies molecular orbital (MO) theory and density functional
theory (DFT). MO theory was developed by Hund [207], Mulliken [208], and
Slater [209] and DFT was developed in the mid 1960s by Hohenberg, Kohn,
and Sham [210,211]. The latter approach is discussed in Sect. 7.4.4.

Despite the limitations of the independent electron approximation pointed
out by the HL calculation, at the end of the 20th century the IE model had
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nevertheless assumed a dominant role in chemistry and solid-state physics.
The success of this theory in chemistry is partly founded on the fact that it is
easier to implement in calculations7 and partly on the recognition that most
chemical bonds are relatively weakly correlated [194]. Correlation contribu-
tions can therefore be included through an extension of self-consistent field
methods, as done in the local-density approximation (LDA) (see Sect. 7.4.4).
The latter approximation has been equally important in chemistry and solid-
state physics. It has had a major success in describing the magnetic ground
state (zero temperature) properties of the elementary transition metals,
despite the presence of correlation effects. On the other hand, we know to-
day that the LDA fails for systems where correlation effects are strong as in
rare earth systems or the transition metal oxides, in particular the impor-
tant subclass of high-temperature superconductors [194]. Since it is designed
as a ground state method the LDA also cannot describe finite temperature
magnetism as discussed in Chap. 12.

In general, the HL and IE wavefunctions are only approximations and the
true ground state lies in-between the two extremes. To this day the compe-
tition between the pictures of uncorrelated and correlated electrons has re-
mained a central issue in solid-state physics and, in particular, in magnetism.
Historically, in magnetism this dilemma led to the competing pictures of itin-
erant (meaning “traveling”) versus localized behavior, the localized picture
being favored by Van Vleck [212] and the itinerant idea by Slater [28, 29].
Because these concepts still dominate today’s thinking and are at the very
heart of magnetism we have discussed them here at length for the simple case
of the He atom and H2 molecule. For larger systems the description of the
duality between localized and itinerant behavior still awaits a unifying theory.

Owing to the difficulties of establishing a first-principles theory it is com-
mon today to explore the magnetic properties of materials by means of model
Hamiltonians. These Hamiltonians are constructed to give the correct result
for simple cases, e.g., H2 molecule, and to explore the rules for the electron–
electron interactions and magnetic order in extended systems. The two most
celebrated models are the Heisenberg and Hubbard models. The general solu-
tions of these models have become research topics of their own. The Heisenberg
model describes the exchange interaction by explicitly introducing the spin.
Over the years it has been thoroughly explored to understand magnetic or-
dering in one, two, or three dimensions [213] and we shall see in Sect. 11.1.2
that it plays an important role today in describing the temperature depen-
dence of the magnetization. The Hubbard model [214] has assumed particular
importance in the description of the splitting of electronic states in corre-
lated materials [194]. Such materials offer a rich phase diagram in terms of

7For example, the simplest HL wavefunction consists of two Slater determinants,
in contrast to the single Slater determinant for the IE wavefunction in the self
consistent field approximation [204].
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their transport and magnetic properties. A particularly important subclass is
formed by the high-TC superconductors.

Because of the importance of the Heisenberg and Hubbard models in con-
temporary physics, in general, and their special educational role in under-
standing the complicated interplay between charge and spin we shall discuss
them later. In particular, our modern understanding and language of exchange
is strongly influenced by these two models. In order to appreciate the basic
aspects of the two models we shall discuss them in the special context of the
H2 molecule where the two models can be solved exactly and, in certain limits,
are found to be equivalent to each other. In particular, the Hubbard model
provides the transition between the independent electron model and the HL
model of correlated electrons.

It needs to be stressed up front that the Heisenberg and Hubbard Hamil-
tonians lack ab initio justification and simply constitute a convenient model
Hamiltonian ansatz to circumvent the difficulties in establishing a first-
principles theory.

6.3.5 The Heisenberg Hamiltonian

After his work on the He atom in 1926 and the Heitler–London calculation
for H2 in 1927, Heisenberg addressed the microscopic origin of exchange in
solids and therefore the origin of ferromagnetism in 1928 [25]. He formulated
an exchange model that formally builds on the HL model, the now famous
Heisenberg Hamiltonian.

Heisenberg used the concepts of preferred parallel alignment to construct
a new effective Hamiltonian which tries to hold the spins parallel (triplet)
or antiparallel (singlet) depending on the sign of the exchange integral. The
model thus required the existence of two states, a singlet and a triplet state, for
the coupling of two spins with proper degeneracy and relative energy, as in the
two electron HL model. The final result of the HL calculation is summarized
in (6.51) and (6.52), and we see that there are three terms that determine the
energies of the triplet and singlet electronic states. The effective Hamiltonian
for H2 can therefore be written in the form

Heff = 2H0 + Hcoul + Hexch , (6.57)

where E0 is the expectation value of atomic central field Hamiltonian H0, the
Coulomb energy C is the expectation value of Hcoul, and the exchange energies
±X are the singlet and triplet expectation values of the exchange Hamiltonian
Hexch. We have seen the remarkable result that the original Hamiltonian (6.42)
does not include the spin at all. The spin enters in the solution only by dic-
tating the symmetry of the spatial part of the wavefunctions. The fact that
today we often associate the exchange interaction with the coupling of spins
has its origin in rewriting the last term in (6.57) in an explicit spin dependent
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Fig. 6.6. States and energies resulting from a coupling of two spins s1 and s2 as
assumed in the Heisenberg Hamiltonian of form H = A s1 · s2. The total splitting
is |A|. If A > 0 the singlet state S = 0 is lowest, if A < 0 the triplet state S = 1 is
lowest. The triplet state may be split by spin–orbit coupling, assumed to be zero,
and a magnetic field H , as shown

form, the Heisenberg Hamiltonian. The model Hamiltonian that for H2 gives
the proper energies and wavefunctions is of the form

Hexch = A s1 · s2 (6.58)

where A is a constant. The spins s1 = ±1/2 and s2 = ±1/2 couple to a total
spin according to S = s1 + s2, so that S2 = (s1)2 + (s2)2 + 2s1 · s2 and their
combination results in a triplet S = 1 or a singlet S = 0 state. By use of the
operator expectation values 〈S2〉 = S(S + 1) and 〈s2

i 〉 = s(s + 1) = 3/4, the
triplet state has an energy s1 · s2 = 1/4 and the singlet state has an energy
s1 · s2 = −3/4, as shown in Fig. 6.6. The spin functions which follow from
(6.19) and (6.21) are also shown. Comparison of Fig. 6.6 with Fig. 6.5c reveals
the similarity of the results of the Heitler–London and the Heisenberg models,
where A = −2J .

By extension of the two-spin Hamiltonian, the effective Heisenberg Hamil-
tonian for a many-electron system is usually written (see footnote 3)

Heff = −
N∑

i	=j

Jij si · sj = −2
N∑

i<j

Jij si · sj , (6.59)

where Jij = Jji is symmetric so that we can sum over half the terms and
multiply by a factor of 2, as indicated on the right. Our notation therefore
corresponds to A = −2J in the two-electron case of (6.58). The exchange
integral Jij is defined similar to (6.34),

Jij =
∫ ∫

ψi(r1)ψj(r2)
e2

4πε0 r12
ψ∗

i (r2)ψ∗
j (r1) dr1dr2. (6.60)
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The sign convention follows that of the original He calculation. If the spins
are parallel we have a triplet state with si · sj = 1/4 > 0 (see Fig. 6.6),
and 〈Heff〉 is a minimum (ground state) if Jij is positive. This corresponds to
ferromagnetic coupling. If the spins are antiparallel, i.e., antiferromagnetically
coupled, we have a singlet state with si · sj = −3/4 < 0 and a minimum in
energy corresponds to negative Jij .

For the two-electron case the singlet–triplet splitting is given, as expected,
by

〈Heff〉S − 〈Heff〉T = − 2J12

(
−3

4
− 1

4

)
= 2J12 . (6.61)

Our definition of the Heisenberg Hamiltonian given by (6.59) is therefore
consistent with the result for the exchange splitting in two-electron atoms and
di-atomic molecules.8 We can summarize the Heisenberg model as follows,

The Heisenberg model accounts for the exchange interaction by explicitly
couplings pairs of spins or atomic moments.
• The coupling energy constant Jij is positive for ferromagnetic coupling,
and negative for antiferromagnetic coupling.
• The coupling of individual spins, located on the same atom, is called
intra-atomic exchange.
• The coupling of atomic moments (sums of spins) on different atoms is
called inter-atomic exchange.

We shall discuss the differences between intra- and extra-atomic atomic
exchange in more detail in Sect. 11.1.4.

The Heisenberg Hamiltonian has been extensively used for the discussion
of magnetic order in one, two, and three dimensions [213]. In one dimension
it reduces to the famous Ising expression

Heff = −2
N∑

i<j

Jij (sz)i(sz)j . (6.63)

The phenomenological Heisenberg Hamiltonian may be regarded as only
the first term in an expansion of the exchange energy. The next higher term
would be of the form

N∑
i	=j

J ′
ij (si · sj)

2 (6.64)

8We note that some authors define the Heisenberg Hamiltonian as

Heff = −1

2

N∑
i�=j

Jij si · sj = −
N∑

i<j

Jij si · sj . (6.62)

so that Jij differs by a factor of 2.
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and is called biquadratic exchange. When the exchange coupling constant is
positive the cos2 θ dependence of the interaction on the angle θ between the
two spins leads to a minimum energy that corresponds to perpendicular cou-
pling of the spins. Such coupling can indeed be observed and has attracted
attention for multilayer systems [215].

6.3.6 The Hubbard Hamiltonian

In the Heisenberg model the exchange term in the effective Hamiltonian (6.57)
is rewritten explicitly in terms of spin operators. The Hubbard Hamiltonian
rewrites the effective Hamiltonian in a different way. In accordance with the
original electronic Hamiltonian it does not include a spin operator, although
the spin is considered in the calculation of the matrix elements. The ideas
behind it were independently developed by Gutzwiller [216], Hubbard [217]
and Kanamori [218] in 1963, although the model is typically referred to under
Hubbard’s name alone. The central idea behind this model is to explore the
interplay between two competing energies in the formation of the electronic
states in a multiatom and multielectron system. One of the energies is the elec-
trostatic Coulomb energy between electrons, the other the hopping energy of
electrons from one atom to the next. The spin enters by imposing restrictions
in accordance with the Pauli principle. We can summarize the basic features
of the Hubbard model as follows,

The Hubbard model accounts for the magnetic ground state through a
balance of two competing energies, under the constraint of the Pauli prin-
ciple.
• The hopping energy involves motion of electrons of the same spin be-
tween different atoms. It favors delocalized or band-like behavior.
• The Coulomb energy experienced by electrons of opposite spin on the
same atom keeps the electrons apart, confined to different atoms. It favors
the formation of localized moments.

When applied to H2, the Hamiltonian (6.57) is rewritten in the following
Hubbard form

Heff = 2H0 + HHub , (6.65)

where the Hubbard Hamiltonian is given by [194,214]

HHub = − t
∑

σ=↓,↑
(c†1σc2σ + c†2σc1σ) + U(n1↑n1↓ + n2↑n2↓). (6.66)

The operator c†iσ creates an electron with spin σ on atom i and the ope-
rator ciσ annihilates an electron with spin σ on atom i. The action of the
creation and annihilation operators, also called ladder operators, on the spin
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orbitals follows the usual rules found in quantum mechanics books. For ex-
ample, for the H2 molecule with a maximum of one electron per spin per
atom we have for a given atom c†iσ|σ′〉 = |σσ′〉 and c†iσ|0〉 = |σ〉 and simi-
larly ciσ|σσ′〉 = |σ′〉 and ciσ|σ〉 = |0〉, where σ′ �= σ. The first term in (6.66)
therefore describes the electron hopping from atom to atom without change
of spin. The operator niσ = c†iσciσ in the second term is the number operator,
counting the occupation on atom i for a given spin σ, and for H2 we have
for example 〈σ|niσ|σ〉 = 1 and 〈σ|niσ|σ′〉 = 〈σ′|niσ|σ〉 = 0. The second term
in (6.66) describes the Coulomb interaction U of electrons with opposite spin
on the same atom. In summary, the hopping term involves the same spin
and different atoms, the Coulomb term involves different spins on the same
atom.

Our convention in (6.66) is such that both t and U are real, and t > 0
while U may be positive or negative. Within this book we will only discuss
the case U ≥ 0. Knowing that the magnetic ground state will be determined
by a minimum of the total energy 〈HHub〉, we can view the relative influence
of the two terms in (6.66) in the following two pictures.

– We may view the establishment of a minimum in total energy as a competi-
tion between minimizing two energies of the same sign, the kinetic energy
and the Coulomb energy. We shall see below that −t is proportional to
the kinetic energy Ekin, so that the magnetic ground state is determined
by minimizing (note signs) both the first term −t ∝ Ekin (increasing t)
and the second term U (decreasing U) in the most efficient way.

– One may also view the same process as a balancing of energies of opposite
sign, hopping from atom to atom which gives an energy +t, and putting
two electrons on the same site which costs a repulsion energy U .

It is important to realize that while the action of the operators in the Hubbard
Hamiltonian depends on spin, the Hamiltonian does not contain an explicit
spin operator, i.e., an operator that can flip spins. The hopping operator only
moves spins but does not flip them while the Coulomb operator describes the
energy between opposite spin electrons. Thus the Hamiltonian actually acts
on the spatial part of the wavefunctions through coordinate changes while the
spins are left alone. This is in contrast to the Heisenberg Hamiltonian (see
below).

The Hubbard Hamiltonian does not allow spin flips. It acts on the spatial
part of the wavefunctions through coordinate changes while preserving
the spin.
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6.3.7 Heisenberg and Hubbard Models for H2

We now want to use the Hamiltonian (6.66) to calculate the electronic energy
levels and functions for the H2 molecule.9 In doing so we need to develop an
appropriate set of basis functions which are used to diagonalize the Hamil-
tonian. In thinking about the basis functions we will also get an appropriate
set for diagonalizing the Heisenberg Hamiltonian. This will allow us to avoid
the semiclassical shortcut that we took in the last section and derive the result
summarized in Fig. 6.6 by quantum theory.

In finding a suitable set of basis states one needs to remember that the
symmetrization postulate for Fermions requires that the total wavefunction,
consisting of radial, angular and spin parts, is antisymmetric. It is therefore
convenient to start with basis functions that can be assembled to have the
proper total symmetry. The key expressions for the structure of such wave-
functions for H2 are (6.44) and (6.45) which by use of (6.19) and (6.21) may
be written in short form as

ΨS = (|R〉 |R′〉 + |R′〉 |R〉)︸ ︷︷ ︸
symmetric

(| ↑〉| ↓〉 − | ↓〉| ↑〉)/
√

2︸ ︷︷ ︸
antisymmetric

(6.67)

and

ΨT = (|R〉 |R′〉 − |R′〉 |R〉)︸ ︷︷ ︸
antisymmetric

⎧⎨
⎩

| ↑〉| ↑〉
(| ↑〉| ↓〉 + | ↓〉| ↑〉)/

√
2

| ↓〉| ↓〉︸ ︷︷ ︸
symmetric

. (6.68)

Here R(r1) and R′(r2) are one-electron LCAO bonding functions for the H+

molecule given by (6.37) and | ↑〉 and | ↓〉 are the one-electron spin functions.
Since the central field and the Coulomb terms of the Hamiltonian are diago-
nal in the two-electron functions |R〉 |R′〉 = |RR′〉 they give the appropriate
energies 2E0 and C in the effective Hamiltonian (6.57). We can therefore
conveniently build our basis functions from these two-electron functions and
two-electron spin functions of the form |s〉|s′〉 = |ss′〉.

Since the central field and Coulomb terms of the effective Hamiltonian are
diagonal in the functions |RR′〉, they are good basis functions for both the
effective Hamiltonians in the Heisenberg and Hubbard formulations. What is
not taken care of by these functions in the effective Hamiltonian (6.57) are the
Heisenberg exchange term Hexch given by (6.58) and the Hubbard hopping
term in (6.66).

9Our calculation is somewhat different from the approach suggested as a problem
(Chap. 32, problem 5) in Ashcroft and Mermin’s book [219]. The solution of the
problem can be found in Ref. [220].
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Table 6.1. Rules for spin operators sα (α = x, y, or z) acting on spin-states | ↑〉
and | ↓〉, where we have assumed that z is the quantization axis. Eigenvalues are in
units of h̄

sx| ↑〉 =
1

2
| ↓〉 sy| ↑〉 =

i

2
| ↓〉 sz| ↑〉 =

1

2
| ↑〉

sx| ↓〉 =
1

2
| ↑〉 sy| ↓〉 = − i

2
| ↑〉 sz| ↓〉 = −1

2
| ↓〉

Heisenberg Model Calculation

For the Heisenberg Hamiltonian the H2 basis functions can simply be con-
structed by combining the |RR′〉 functions with a complete set of spin basis
functions, which can be written as follows,

| ↑, ↑〉 | ↓, ↓〉 | ↑, ↓〉 | ↓, ↑〉 | ↑↓, 0〉 |0, ↑↓〉. (6.69)

The notation |s, s′〉 = |s〉|s′〉 means that there is an electron with spin s on
one atom and with spin s′ on the other (s′ = s is allowed). States of the form
|ss′, 0〉 = |ss′〉|0〉 have two electrons with opposite spins (s′ �= s, dictated by
the Pauli principle) on one atom and no electron on the other. We can now
calculate the matrix elements of the Hamiltonian (6.57) in the Heisenberg
form,

Heff = 2H0 + Hcoul − 2J12 s1 ·s2 , (6.70)

In doing so we need to remember how the spin operator s acts on the spin
functions, which is given in Table 6.1.

Table 6.1 shows that the spin operator can induce spin flips.10 By denoting
the expectation values 〈H0〉 = E0 and 〈Hcoul〉 = U we obtain the matrix in
Table 6.2.

The energies of the form 〈0, ↑↓ |2H0 + Hcoul − 2J12 s1 · s2|0, ↑↓〉 = E+−

correspond to the ionic state H+H− which is higher in energy and omitted
in the Heitler–London calculation. The eigenvalues and eigenfunctions of the
nontrivial 4 × 4 submatrix in Table 6.2 are given by a triplet and a lower
energy singlet,

ET = 2E0 + U + J12/2 ΨT = | ↑, ↑〉
ET = 2E0 + U + J12/2 ΨT = | ↓, ↓〉
ET = 2E0 + U + J12/2 ΨT = 1√

2
( | ↑, ↓〉 + | ↓, ↑ 〉)

ES = 2E0 + U − 3J12/2 ΨS = 1√
2

( | ↑, ↓〉 − | ↓, ↑〉 ) .

10The conditions for the experimental observation of spin flips are discussed in
Sect. 12.7.1.
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Table 6.2. Matrix elements of the Heisenberg Hamiltonian for H2 between the six
possible spin orbitals of the molecule. The energy E+− corresponds to the higher-
energy ionic state H+H− which is omitted in the Heitler–London calculation

| ↑, ↑〉 | ↓, ↓〉 | ↑, ↓〉 | ↓, ↑〉 | ↑↓, 0〉 |0, ↑↓〉

| ↑, ↑〉 2E0 + U + J12
2

0 0 0 0 0

| ↓, ↓〉 0 2E0 + U + J12
2

0 0 0 0

| ↑, ↓〉 0 0 2E0 + U − J12
2

J12 0 0

| ↓, ↑〉 0 0 J12 2E0 + U − J12
2

0 0

| ↑↓, 0〉 0 0 0 0 E+− 0

|0, ↑↓〉 0 0 0 0 0 E+−

This is the same result as that shown in Fig. 6.6 since A = 2J12. We have not
written down the spatial parts of the wavefunctions. They can be constructed
from symmetric and antisymmetric combinations of the |RR′〉 functions to
make the total wavefunctions antisymmetric.

Hubbard Model Calculation

For the diagonalization of the effective Hamiltonian in the Hubbard form
(6.65) we choose a basis of spatial functions that can be combined to give
either symmetric or antisymmetric total spatial functions. The spin part of
the wavefunction is only considered in the calculation of the matrix elements.
The proper symmetry spin functions can be inserted in the end according
to the symmetrization postulate. If the spatial wavefunction comes out to be
symmetric the spin wavefunction needs to be antisymmetric, i.e., is a singlet,
and if the spatial wavefunction is antisymmetric the spin wavefunction has to
be symmetric, i.e., one of the triplet functions. Therefore, since the effective
Hamiltonian does not contain the spin operator it is sufficient to diagonalize
the corresponding matrix in the basis of spatial functions, only. By use of
the two spatial functions |R(r1)〉 and |R′(r2)〉 we can now write down the
possible combinations for the H2 molecule. We write the spatial functions in
the same form as the spin functions (6.69),

|R,R〉 |R′, R′〉︸ ︷︷ ︸
↑, ↓ and ↓, ↑

|R,R′〉 |R′, R〉︸ ︷︷ ︸
↑, ↑ and ↓, ↓

|RR′, 0〉 |0, RR′〉︸ ︷︷ ︸
↑↓, 0 and 0, ↑↓

. (6.71)

The notation |R,R′〉 means that there is an electron with function |R〉 on one
atom and an electron with function |R′〉 on the other atom. For the first two
basis functions R = R′ and the electrons have the same spatial coordinates
r1 = r2 and the spins are necessarily opposite because of the Pauli principle.
This is indicated underneath the wavy brackets in (6.71). For the last two
functions the notations |0, RR′〉 and |RR′, 0〉 mean that there is no electron
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Table 6.3. Matrix elements of the Hubbard Hamiltonian for H2 between the six
possible spin orbitals of the molecule

|R, R′〉 |R′, R〉 |R, R〉 |R′, R′〉 |RR′, 0〉 |0, RR′〉

|R, R′〉 2 E0 0 0 0 0 0

|R′, R〉 0 2 E0 0 0 0 0

|R, R〉 0 0 2 E0 0 −t −t

|R′, R′〉 0 0 0 2 E0 −t −t

|RR′, 0〉 0 0 −t −t 2E0 + U 0

|0, RR′〉 0 0 −t −t 0 2E0 + U

on one atom and two electrons on the other atom. In this case the electrons
also have opposite spins to satisfy the Pauli principle. For the middle two
functions we have R �= R′ and the electrons are allowed to have parallel spins.

The interaction matrix for the Hamiltonian (6.65) of the hydrogen molecule
is given in Table 6.3.

We see that the hopping terms give rise to off-diagonal matrix elements
because they can cause a change in the spatial function. For U > 0 the two
highest energy eigenvalues of the matrix in Table 6.3 are given by,

E6 = 2E0 +
U

2
+
U

2

√
1 +

16t2

U2

E5 = 2E0 + U
.

The lowest four eigenvalues and unnormalized eigenfunctions are,

E4 = 2E0 Ψ4 = |R,R′〉
E3 = 2E0 Ψ3 = |R′, R〉
E2 = 2E0 Ψ2 = −|R,R〉 + |R′, R′ 〉.

with the ground state given by

E1 = 2E0 +
U

2
− 1

2

√
U2 + 16t2

Ψ1 = |R,R〉 + |R′, R′〉 +
−U+

√
U2 + 16t2

4t
( |RR′, 0〉 + |0, RR′〉) . (6.72)

The states Ψ2 − Ψ4 have antisymmetric spatial functions, hence need to
have symmetric spin functions. They are thus triplet states. The lowest energy
state Ψ1 has a symmetric spatial function and hence must be a singlet spin
state.
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Fig. 6.7. Left : ground state energy for the hydrogen molecule according to (6.72) for
the case E0 = −10 eV and t = 0.5 eV as a function of Coulomb energy U . Right : The
occupation probability per H atom for either 1 electron/atom or 2 electrons/atom
as a function of U

The energies of the ground state and the probabilities for one or two elec-
trons per atom calculated from (6.72) by assuming E0 = −10 eV (chosen to
be close to the ionization energy 13.6 eV of the H atom) are shown in Fig. 6.7.

The energy E1 and wavefunction Ψ1 given by (6.72) describe the ground
state for all cases U ≥ 0 and we can therefore discuss the interplay between
the hopping energy and Coulomb energy. The case where the two energies are
of comparable size is quite complicated but the limits of small t and large U
represent familiar results.

In the limit U � t , the ground state energy and wavefunction are

E1 = 2E0 −
4t2

U
Ψ1 = |R,R〉+ |R′, R′〉 +

2t
U

( |RR′, 0〉 + |0, RR′〉) . (6.73)

We find that the Hubbard model produces a singlet ground state and that
the next higher state has a separation of 4t2/U and is a triplet. This is the
same level ordering as for the ab initio HL calculation and the Heisenberg
model. As shown in Fig. 6.8 in this model the comparison of the singlet–
triplet splittings for the Heisenberg and Hubbard models gives the relationship
2J12 = −4t2/U , where the minus sign indicates antiferromagnetic coupling.
In the literature this limit of the Hubbard model is called the t–J model.
It plays an important role in conjunction with the transport properties of
antiferromagnetic materials, for example the high TC superconductors.

We see from (6.73) and Fig. 6.7 that in the limit U � t the ground state
energy converges toward the value 2E0 and the ground state wavefunction
becomes a pure singlet state. In fact, for t = 0 we recover the HL calculation.
In this limit the probability of finding two electrons on a single H atom goes
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Fig. 6.8. Comparison of the lowest energy states for H2 in the Heisenberg model
and the Hubbard model in the limit t � U . Both models give a singlet or antifer-
romagnetic ground state, with a higher energy triplet state. Comparison of the two
models shows that 2J12 = −4t2/U , the minus sign indicating the antiferromagnetic
ground state

FM spins:
hopping forbidden
localized states

AFM spins:
hopping allowed
delocalized states

t

Hubbard model of H molecule2

Fig. 6.9. Hubbard model for H2. If the spins are antiparallel, the electron may hop
to the other atom but has to overcome the Coulomb repulsion U on this atom. For
parallel spins, hopping is forbidden in the Hubbard model. The total energy is lower
when hopping is allowed as discussed in the text

to zero as shown on the right side of Fig. 6.7. The electrons belong to both
atoms and bond them together.

The preference for the antiferromagnetic alignment of spins in H2 can be
understood by the simple picture in Fig. 6.9. For antiparallel spins, hopping
is allowed by the Hubbard Hamiltonian but, when on the new atom, the
antiparallel electrons have to overcome the Coulomb repulsion U . For parallel
spins, hopping is not allowed in the Hubbard model. The wavefunction with
two electrons of the same spin on the same atom is disallowed in the Hubbard
model for H2. The unrestricted hopping state, i.e., the antiferromagnetic state,
is favored because it offers new degrees of freedom. The electrons can lower
their kinetic energy by “delocalizing.”
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Quite generally, the Heisenberg uncertainty relationship (3.45) tells us that
the electron momentum and kinetic energy increase with decreasing distance.
More specifically the effect of the electron kinetic energy is seen when the cen-
tral field Schrödinger equation (6.9) is written in spherical polar coordinates.
The kinetic energy term p2

i /2me then contributes a (positive) centrifugal term
Ekin = l(l+1)h̄2/2mer

2
i (see (7.4)). With our sign convention in the Hubbard

Hamiltonian (6.66) we see that −t ∝ Ekin. Because of the 1/r2 dependence
of the kinetic energy term, it is minimized when the electron wavefunction
spreads out over more than one atom, i.e., if t becomes large. We will come
back to this argument in conjunction with the phenomenon of superexchange
discussed in Sect. 7.7.1.

In the Hubbard model the magnetic ground state is determined by the
minimum in the total energy −t + U . This is accomplished by a compe-
tition between minimizing the Coulomb energy U and the kinetic energy
Ekin = −t.

In the limit t� U the ground state energy and wavefunction in (6.72)
become

E1 = 2E0 +
U

2
− 2t Ψ1 = |R,R〉 + |R′, R′〉 + |RR′, 0〉 + |0, RR′〉. (6.74)

Now the ground state energy depends linearly on U and the wavefunction
has an equal mixture of states corresponding to one and two electrons per
atom. This is born out by the plots in Fig. 6.7. In the extreme limit U = 0
the electrons would not interact with each other at all. The linear dependence
of the electron interaction on U represents the independent electron model. It
accounts for the interaction between electrons in some averaged way. It may
be regarded as the first order (linear) term in the expansion of the Coulomb
energy.

The ground state given by (6.74) is also obtained when the Hubbard Hamil-
tonian is written in the Hartree–Fock form where the Coulomb repulsion is
taken into account in an averaged self-consistent fashion according to

HHub = − t
∑

i,j, σ=↓,↑
c†iσcjσ + U

∑
i

( n̄i↑ni↓ + ni↑n̄i↓ − n̄i↑n̄i↓) . (6.75)

Here the entities n̄ indicate a thermodynamic average and they are determined
self-consistently by an iterative process to minimize the ground state energy.
We shall encounter this form again in the discussion of band structure effects
in Sect. 7.6.3.

In Sect. 6.3.8 we will present a brief summary of what we have learned and
try to generalize the H2 case to extended systems.
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6.3.8 Summary and Some General Rules for Electron Exchange

In practice, the whole topic of exchange boils down to a simple question. What
determines the magnetic properties of the electronic ground state? Our discus-
sion of the Hubbard model suggests that one can think about the origin of the
magnetic ground state as a competition between two energies, the Coulomb
energy U and the hopping energy t, or remembering that −t ∝ Ekin we can
also say the competition between the Coulomb energy and the kinetic energy.

In atoms, only the Coulomb contribution exists. For the He atom discussed
above the 1s valence shell with l = 0 has no angular momentum degrees of
freedom. A second electron in the 1s shell therefore has the same quantum
numbers n, l,m and is given little choice but to invert its spin, according to the
Pauli principle. In the Hubbard model this is reflected by the assumption that
like spins cannot coexist on the same atom. The situation is quite different
in bigger atoms like the transition metal atoms where the valence electrons
have angular momentum l > 0 and there exists a 2l + 1 orbital degeneracy
−l ≤ m ≤ l which can be used to avoid antiparallel spin alignment. The
filling of the degenerate suborbitals characterized by different m values with
parallel-spin electrons to satisfy the Pauli principle is the basis for Hund’s
first rule. The Hubbard model is not designed to treat multielectron atomic
physics. Hund’s first rule favors parallel spin alignment, positive J , and a
ferromagnetic ground state.

In molecules or larger systems either the Coulomb term or hopping term
may dominate. For H2 we find that in either case we obtain an antiferromag-
netic ground state. While the case of H2 constitutes a wonderful pedagogical
example, one has to be careful in generalizing the results to extended systems.
When cast into the framework of states extending over many atoms or band-
structure, the hopping term t becomes a measure of the band width. In the
HL limit U � t the hydrogen molecule would have a half-filled (narrow) band
with a large band gap and therefore would be called an antiferromagnetic
“insulator.” In the IE limit t� U hydrogen would be a “metal.”

In extended systems ferromagnetism is indeed possible as born out by our
observations of ferromagnetic materials. In Chap. 12 we will specifically discuss
the ferromagnetic elemental metals Fe, Co, Ni and Gd. The H2 calculation
indicates an important fact, namely that antiferromagnetic spin alignment is
more common and that ferromagnetic alignment is more the exception than
the rule.

It is interesting to look at the problem of localized versus delocalized elec-
tron behavior in analogy with the dual nature of light. We may think of
localized electrons as particle-like and delocalized electrons as wave-like, since
we visualize a particle as localized in a small volume and waves as delocalized
over a large volume. Through the development of quantum electrodynamics
we feel comfortable today to deal with the dual nature of light. Yet we still
have problems treating the dual nature of electrons. This is because electrons
are Fermions and photons are Bosons. We run into problems as soon as we deal
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with more than a few electrons because we cannot keep track of the strong in-
teractions between them. For this very reason we can only use approximations.
The HL approximation, for example, emphasizes the particle-like electron be-
havior, the IE approximation the wave-like behavior. We shall come back
to the dilemma of electron correlation in discussing the magnetic properties
of metals in Chaps. 7 and 12. In these chapters we shall also encounter and
discuss the concept of indirect exchange.

6.4 The Spin–Orbit Interaction

As the name suggests, the spin–orbit (SO) interaction describes the coupling
of the spin s with the orbital angular momentum l to a new total angular
momentum j = s+ l. It is about a factor of 10–100 smaller than the exchange
interaction and one might therefore expect it to be unimportant. However, we
have already seen in the introductory Sect. 6.1 of this chapter that this is not
so, and magnetism as we know it would not exist without the SO coupling.
Here we shall take a closer look at this interaction. For atoms it may be
readily understood with semiclassical concepts, while for solids its treatment
is complicated by the effects of the ligand fields of neighboring atoms. Here we
shall first discuss how the SO interaction was discovered, then give classical
and quantum mechanical derivations of the SO Hamiltonian, and finally briefly
review why the interaction is of such great practical importance.

6.4.1 Fine Structure in Atomic Spectra

Careful inspection of the prominent optical emission spectra of alkali metal
atoms like Na, K, and Rb revealed lines that were split into doublets. The
spacing of these doublets was found to increase with atomic number Z. This
splitting was called “fine structure” and attracted considerable attention in
the first quarter of the 20th century by the Bohr and Sommerfeld schools.
The experimental spectra were carefully documented in Sommerfeld’s book
“Atombau und Spektrallinien” which all leading physicists studied and the
book was always kept up-to-date. After the discovery of the spin in 1925 the
“fine structure” was recognized to be due to spin–orbit coupling.

In the alkali atoms the valence shell contains one unpaired electron which
can undergo electronic transitions that lead to visible light emission. Since
all inner shells are filled and hence have zero spin and angular momentum,
the spin–orbit coupling is due entirely to the valence states involved in the
transition. For example, the strong yellow emission line of Na is due to an
electronic transition from the first excited 3p state to the 3s ground state.
In this case one observes a doublet which is due to the spin–orbit split 3p-
state, resulting in two, 3p3/2 → 3s1/2 and 3p1/2 → 3s1/2, transitions to the
unsplit 3s1/2 ground state. We shall come back to the Na spectrum later (see
Fig. 6.16).
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Spin−orbit splitting in He I

Fig. 6.10. Splitting of the 3PJ multiplet for neutral He (He I) [202]. We give the
binding energy of the 3PJ triplet (compare Fig. 6.3) and also list the spin–orbit
splitting for the J = 2, 1, 0 levels, relative to their center of gravity. Note the small
size of the fine structure splitting because of the small atomic number of He. The
ordering of the levels follows Hund’s third rule

For atoms with more than one electron one often uses the so-called Russell–
Saunders or L–S coupling scheme to describe the coupling of angular mo-
menta. The individual electron spins are first coupled to a resultant S, the
individual orbital momenta are coupled to a resultant L, and finally S and
L are coupled to a total angular momentum J . Such coupled states, like the
singlets and triplets in Fig. 6.3, are called multiplets and are labeled 2S+1LJ ,
where 2S + 1 is the multiplicity. We have seen in the previous section that
for He I the electron–electron Coulomb interaction creates a splitting between
the triplet 3LJ and singlet 1LJ states. However, the degeneracy in J is not
lifted. For example, the 3PJ state in Fig. 6.3 remains threefold degenerate with
sublevels J = 2, 1, 0. This degeneracy is lifted by the spin–orbit coupling, as
illustrated in Fig. 6.10, giving rise to the fine structure splitting in the atomic
spectra.

The above explanation of SO splitting in spectra is based on a semiclassical
vector coupling model. Let us take a closer look at this concept.

6.4.2 Semiclassical Model for the Spin–Orbit Interaction

We can picture the spin–orbit coupling in a magnetostatic model using clas-
sical concepts established earlier. From our knowledge about moments and
fields we can derive an approximate expression for the interaction of a spin
S with an orbital momentum L. We have used capital letters for S and L
to indicate that they may already represent the sum of coupled momenta of
several electrons. We picture the orbital momentum to arise from a current
loop as shown in Fig. 6.11 and calculate the interaction energy as that of the
corresponding magnetic field in the center of the loop Horb with the spin
moment, using the expression (3.15) for the magnetostatic energy,

E = −ms · Horb = −msHorb cos θ. (6.76)
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Fig. 6.11. Simple picture for deriving the spin–orbit coupling energy. The direc-
tion of L corresponds to the shown electron orbital motion, and the relationship
ml = −µBL/h̄. Note that the electron motion is opposite to the direction of the
current I

The spin moment is given by (3.13) as ms = −2µBs/h̄=−eµ0S/me, where
S is in units of h̄. The field at the center of the loop is given by the current
and the radius of the loop as Horb = I/2r according to (2.4). We can link the
field to the orbital moment ml by means of (3.3), and the orbital moment
and angular momentum L are related according to (3.9). Since the current is
defined as a motion of a positive charge q = e, we just have to make sure that
the directions of the fields and moments of the orbiting charge correspond to
those of an orbiting electron with charge q = −e, as shown in Fig. 6.11. We
then obtain

Horb =
ml

2πµ0r3
= − eL

4πmer3
. (6.77)

This allows us to obtain the following expression for the spin–orbit energy
(using µ0 = 1/ε0c2)

E = −ms · Horb = − e2

4πε0m2
ec

2 r3
L · S , (6.78)

where L and S have units of h̄. The orbital field Horb may be remarkably
strong. If we assume a spin-1/2 moment |ms| = −2µB〈sz〉/h̄ = µB we obtain a
simple relation between the spin–orbit energy and the magnetic field strength,

E =
µB

µ0
µ0Horb =

µB

µ0
Borb , (6.79)

and by use of the value (see (3.11))

µB

µ0
=
eh̄

2m
= 5.788 × 10−5 eV T−1 , (6.80)
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we can derive Borb in [T] from the spin orbit splitting energy E in [eV] ac-
cording to

E

Borb
= 5.788 × 10−5 eV T−1 . (6.81)

For the lighter atoms like H and He the spin–orbit splitting is very small,
of order 5 × 10−5 eV, and therefore the orbital field is only of order of 1 T.
However, as plotted in Fig. 6.12, the spin–orbit interaction rapidly increases
with atomic number so that for heavier atoms the field Borb may become quite
large.

The quantum mechanical spin–orbit Hamiltonian which corresponds to
(6.78) follows from the Pauli equation (6.3). We shall take a look at it now.

6.4.3 The Spin–Orbit Hamiltonian

The spin-dependent term Hs in the Pauli equation contains the magnetic
induction B∗ which is created by a reference frame effect due to the relative
motion of the electron and the nucleus. To the electron the nucleus appears to
rotate around it and the moving nuclear charge or current j creates a magnetic
induction according to Maxwell’s equation

∇× B = µ0j. (6.82)

However, when this simple picture is employed one obtains a size B∗ = −v×
E/c2, according to (4.6), which is too large by a factor of 2, relative to the
Dirac result. The correct result is

B∗ = −v × E

2c2
. (6.83)

This factor of 2 has a long history and was one of the early puzzles when
a nonrelativistic calculation of the fine structure (spin–orbit) splitting for
atoms containing a single valence electron gave a value that was too large
by a factor of 2 (see (6.86)). The discrepancy was first explained by L. H.
Thomas in 1926 by a celebrated nonrelativistic calculation of the spin–orbit
splitting that took into account the tricky reference frame effects between the
electron and the nucleus [21]. The essence of the Thomas’ calculation is that
the picture where the electron is at rest and the nucleus is assumed to move
involves a noninertial reference frame. The correct result can be obtained
nonrelativistically by computing the energy of the stationary nucleus [221].
This reference frame correction is usually discussed in text books under the
title Thomas precession or Thomas correction. We now know that it directly
falls out of the Dirac equations. If we write

B∗ = −v × E

c2
+

v × E

2c2
, (6.84)

we can think of B∗ arising from the conventional transformed field −v ×
E/c2 in the electron’s rest frame and another magnetic field +(v × E)/2c2
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that points in the opposite direction. This illustrates the difficulty of classical
descriptions to account for the quantum mechanical and relativistic concept
of “spin”.

With E(r, t) = −∇Φ(r, t) we can then rewrite (6.83) as

B∗ =
1

2mec2
(p ×∇Φ) (6.85)

and when inserted into the Hamiltonian (6.7) this term leads to the spin orbit
interaction. To see this we use the definition of the quantum mechanical orbital
angular momentum (r × p) = h̄l, and use the expression Φ(r) = Ze/(4πε0r)
for the electrostatic potential of the nuclear charges +Ze, so that ∇Φ(r) =
(r/r) dΦ(r)/dr. This gives the familiar spin–orbit interaction

Hso =
eh̄

2m2
ec

2
s · (p ×∇Φ) = − eh̄2

2m2
ec

2

1
r

dΦ(r)
dr

s · l = ξnl(r) s · l . (6.86)

Since dΦ(r)/dr is negative, ξnl(r) is positive. The expectation value

ζnl = 〈 ξnl(r) 〉 =
∫ ∞

0

Rnl(r) ξnl(r)R∗
nl(r) r

2 dr (6.87)

is called the spin–orbit parameter or coupling constant. If we use the ex-
pression Φ(r) = Ze/(4πε0r) for the electrostatic potential, we have ξnl(r) =
Ze2h̄2/8πε0m2

ec
2 r3 which is smaller by a factor of 2 than the classical

expression (6.78) due to the Thomas factor.
Theoretical values for the spin–orbit parameter ζnl, obtained by the rela-

tivistic Hartree-plus-statistical-exchange method [182] are plotted in Fig. 6.12
for the valence shell ground state configurations of the neutral atoms. Apart
from a strong Z dependence, ζnl also depends strongly on the radius of the
atomic shell as indicated by the subscript n.

The spin–orbit interaction Hamiltonian is given by

Hso = ξnl(r) s · l , (6.88)

The expectation value ζnl = 〈ξnl(r)〉, which is positive, is called the spin–
orbit coupling constant or spin–orbit parameter with dimension [energy].

We see from Fig. 6.12 that the spin–orbit interaction energy is rather small
for the important 3d transition metals. Its value of the order of 10–100 meV is
considerably weaker than the exchange interaction (∼1 eV) and also the ligand
field interaction (a few eV). We shall see in Sect. 11.2 that this accounts for
the small orbital magnetic moment of Fe, Co, and Ni. In contrast, the spin–
orbit interaction is considerably larger for the rare earths and this together
with the smaller ligand field effects for the shielded 4f electrons leads to large
orbital magnetic moments for the lanthanides.



208 6 Exchange, Spin–Orbit, and Zeeman Interactions

Fig. 6.12. Values for the spin–orbit parameter ζnl, defined in (6.87), for the valence
shells of neutral atoms in their ground state, calculated by Cowan [182]

The spin orbit coupling, discussed in Sect. 6.4, produces the observed dou-
blet in the atomic spectra because it lifts the degeneracy by creating two
states with j = l ± s. The energy of these two states are obtained by writing
j = l + s and using the expression j · j = l · l + 2 l · s + s · s to rewrite the
spin–orbit Hamiltonian,

Hso = ξnl(r) l · s =
ξnl(r)

2
[j · j − l · l − s · s] . (6.89)

The eigenstates of this Hamiltonian are the functions |Rn,l; j,mj , l, s〉 and we
obtain the eigenvalues as

〈Rn,l; j,mj , l, s|Hso|Rn,l; j,mj , l, s〉 =
ζnl(r)

2
[j(j + 1) − l(l + 1) − s(s+ 1)].

(6.90)
Therefore the substates with j+ = 3/2 experience an energy shift Ej+ = ζl/2
and the substates with j− = 1/2 are shifted by Ej− = −ζl, with the separation
given by the Landé interval rule Ej+ −Ej− = ζl j+.

In our derivation of the spin–orbit Hamiltonian we have tacitly assumed
that the spin s and angular momentum l are those of a single electron. The
formalism is more general, however, as already mentioned in Sect. 6.4.1. In
multielectron systems the Coulomb and exchange interaction couple the spins
of the individual electrons to a resultant spin according to S =

∑
i si and the

individual orbital momenta to a coupled orbital momentum L =
∑

i li. This
so-called Russell–Saunders or L–S-coupling scheme therefore creates states
that are usually denoted as terms or multiplets and written as 2S+1L. As for
a one-electron systems the effect of the spin–orbit coupling is to couple the
total spins and angular momenta according to J = L+S and the one-electron
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formalism above equally applies to a multielectron system. The coupled mul-
tielectron states are written as 2S+1LJ with L− S ≤ J ≤ L+ S. This is the
origin of the labels in Figs. 6.3 and 6.10.

6.4.4 Importance of the Spin–Orbit Interaction

According to the definition of the magnetostatic energy E = −ms · Horb in
Sect. 3.4, the energy given by (6.78) corresponds to the energy gain one expe-
riences if the spin S is turned from a perpendicular to a parallel orientation
to L, as illustrated in Fig. 6.11. If we now imagine that the orbital moment
prefers to lie along a specific bonding or lattice direction, i.e., is “locked-in”
by the lattice, the energy expressed by (6.78) is exactly the energy difference
between the favored (L and S parallel) and unfavored (L and S perpendicu-
lar) spin directions. It is therefore the magnetocrystalline anisotropy energy.
We are led to the following important conclusion.

In solids, the spin–orbit interaction determines the magnetocrystalline
anisotropy.

Despite this simple intuitive picture, it is all but trivial to develop a
detailed understanding of the magnetic anisotropy phenomenon for a given
solid. Even more difficult is a reliable calculation of the magnetocrystalline
anisotropy energy and the prediction of the easy magnetization axis [222].
The magnetocrystalline anisotropy is a key parameter in the design of all mag-
netic materials, ranging from transformer and electromagnet cores to magnetic
recording media. It is discussed in more detail in Sects. 7.9 and 11.2.

6.5 Hund’s Rules

The exchange and spin orbit interactions are at the origin of the famous em-
pirical rules suggested by Friedrich Hund (1896–1997) in 1925 for the energetic
ordering and filling of electronic states in atoms and molecules. Hund’s rules
determine the lowest multiplet term or electronic ground state for a given
electronic configuration.

Hund’s Rules for a given electronic configuration:
1. The lowest electronic term has maximum spin S.
2. The lowest term has maximum angular momentum L.
3. The lowest term has the largest total angular momentum J if the shell
is more than half full, and the smallest J if the shell is less than half full.
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Fig. 6.13. Splitting of the d shell in an octahedral ligand field into doubly degenerate
eg and triply degenerate t2g states. Also shown is the filling of the energy levels for
the case that the eg–t2g splitting is large relative to the exchange interaction [204].
The resulting ground states for d4 − d7 are called the low-spin configurations (see
Sect. 7.5.1)

Hund’s first rule is about spin–spin coupling. The electronic ground state
corresponds to a minimum of the Coulomb repulsion. This is achieved by spa-
tially keeping the electrons apart. The corresponding wavefunction according
to the symmetrization postulate of Sect. 6.2.2 is then antisymmetric in space
and symmetric in the spin, corresponding to maximum S.

Hund’s second rule is about orbit–orbit coupling. The basis for this rule
is that electrons orbiting in the same direction meet less often than electrons
orbiting in opposite directions. Electrons that orbit in the same direction
therefore minimize their Coulomb repulsion and they have parallel angular
momenta, corresponding to maximum L.

Hund’s third rule is about spin–orbit coupling. According to (6.78) the
lowest spin–orbit energy corresponds to the same direction of S and L since
the prefactor is negative. When the shell is more than half full, S and L point
in the same direction the highest value of J is lowest in energy. For atoms with
less than half-filled shells, S and L are antiparallel and the energy is positive.
Now the lowest value of J has the lowest (positive) energy.

An examples of the effect of Hund’s rules is shown in Fig. 6.13. It shows
the consecutive d electron filling of ligand field energy levels for a transition
metal in octahedral environment. The ligand field states are the well-known d-
orbitals (see Appendix A.3), and they are spit into a eg doublet and t2g triplet.
We see that because of Hund’s first rule electrons with parallel spins are filled
in first. This maximizes the total spin S. If the ligand field splitting becomes
smaller, the eg state gets filled sooner. It can then happen, for example, that
a d5 configuration consists of five parallel spins with S = 5/2. This is a so-
called “high-spin” configuration. In contrast, the shown d5 configuration with
S = 1/2 is called “low-spin.”
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Fig. 6.14. Order of the multiplet terms of the d-shell containing two electrons (e.g.,
Ti2+) or eight electrons (e.g., Ni2+), according to Hund’s three rules. Note that the
d shell has a maximum occupancy of 10 electrons and the cases dn and d10−n have
the same multiplet terms. The lowest term or electronic ground state, however, differ
because of Hund’s third rule

An application of all three of Hund’s rules is shown in Fig. 6.14, where
we consider the multiplet terms of a two electron (d2) or eight electron (d8)
configuration [181]. Because the maximum number of d electrons is 10, the
d8 electron configuration is equivalent to a two hole d2 configuration.11 The
change of sign between an electron or hole configuration leaves the allowed
multiplet terms unchanged but it introduces an inverted order in J according
to Hund’s third rule. This has the important consequence that the lowest term
or electronic ground state is different and so will be the magnetic properties.

An example of a d8 configuration is Ni2+ in NiO, and we shall discuss this
interesting antiferromagnet later in the context of “exchange bias.” In general,
we will see in Chap. 10 that multiplet structure plays an important role in the
X-ray absorption spectra of transition metal oxides. Although it complicates
the spectra through peak splittings, it also gives rise to large linear magnetic
dichroism effects and is therefore of great importance.

11The origin of this equivalence lies in two facts. First, full shells have zero spin and
orbital momenta. Second, for a given shell l we have for the number of electrons N
and the number of holes Nh the relationship N+Nh = O = (2s+1)(2l+1) = 2(2l+1),
where O is the maximum possible occupation number. This allows us to treat the
Coulomb and exchange interactions which couple the individual angular momenta l
and s to L and S in equivalent electron and hole pictures.
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Zeeman’s discovery
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Fig. 6.15. Emission spectrum of Na atoms recorded by Pieter Zeeman in 1896
without (top) and in the presence of (below) a magnetic field that is perpendicular
to the observation direction. In the presence of the field the prominent Na doublet
in the yellow part of the spectrum (2.1 eV) splits into a quartet and sextet of lines.
This splitting is called the Zeeman effect

6.6 The Zeeman Interaction

In discussing the third important magnetic interaction we shall, as before,
first take a historical perspective which naturally leads to the proper theory
of the Zeeman effect. We will then discuss why the Zeeman interaction is so
important in magnetism to this day. Finally we point out the distinction be-
tween the effect of a “real” external magnetic field and the internal molecular
or exchange field on electronic level splittings. This proves of great importance
in modern X-ray dichroism.

6.6.1 History and Theory of the Zeeman Effect

In 1896 Pieter Zeeman examined the emission spectrum of a flame that con-
tained Na. In the absence of a magnetic field the Na spectrum consists of a
bright spin–orbit split doublet in the yellow part of the spectrum, the so-called
Na D-lines at 588.9950 and 589.5924 nm wavelength. Zeeman discovered that
in the presence of a magnetic field the doublet splits into a characteristic
pattern as shown in Fig. 6.15.

Zeeman’s result is readily explained by means of modern quantum theory,
as illustrated in Fig. 6.16. The Na atom has a ground state electronic configu-
ration [(1s)2 (2s)2 (2p)6] 3s. The inner filled shells indicated by square brackets
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Fig. 6.16. Left : energy levels and binding energies (in eV) of the ground state
[(1s)2 (2s)2 (2p)6] 3s and first excited state [(1s)2 (2s)2 (2p)6] 3p configurations of the
Na atom. Center : level scheme after inclusion of spin orbit coupling, shown with an
exaggerated splitting. Right : level splitting in the presence of an additional weak
external magnetic field, giving rise to the Zeeman splitting. For a given field, the
Zeeman splittings are determined by the Landé g-factor which is gj = 2 for 3s1/2,
gj = 2/3 for 3p1/2 and gj = 4/3 for 3p3/2. On the right we also show all transitions
allowed by the dipole selection rule ∆j = 0,±1 and we have indicated that the
transitions with ∆mj = 0 (dashed lines) and ∆mj = ±1 (solid lines) have different
polarizations

have zero spin and angular momentum so that the magnetic properties are
entirely determined by the outer electron. The emission spectrum of Na in the
visible range is dominated by the de-excitation of the outer electron from the
first excited 3p state to the 3s ground state, by emission of a photon of 2.1 eV,
producing an intense yellow spectral line. As discussed in Sect. 6.4.3 the 3p
state occupied by one electron and quantum numbers � = 1 and s = 1/2
will be subject to spin orbit splitting, whereas the 3s state has � = 0 and its
magnetic properties are therefore entirely determined by the spin alone. This
gives the level structure shown in Fig. 6.16 and the yellow emission line will
be spin orbit split by 2.1 meV. This is indeed the observed pattern in Fig. 6.15
in the absence of a magnetic field.

In order to calculate the pattern in the presence of the field we first have
to establish the appropriate interaction Hamiltonian and its approximate size.
The Hamiltonian corresponds to the interaction energy (3.15) of a magnetic
dipole with an external magnetic field and is given by
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HZee = −m · H. (6.91)

Since the total magnetic moment is the sum of the spin and orbital parts
according to (3.14) we have the following general result.

The Zeeman Hamiltonian for a magnetic moment m = −µB(�+2s)/h̄ in
a magnetic field H is given by

HZee =
µB

h̄
H · (� + 2s) . (6.92)

In order to estimate the size of the Zeeman interaction we take a typical
case � = 1 and s = 1/2 and with the magnetic field H taken along the z-axis
we obtain

〈HZee〉 = 2µBH = 2
µB

µ0
B . (6.93)

By use of (6.80) we see that the Zeeman interaction has a typical size of
∼0.1 meV for a field B = µ0H = 1 T. Thus for Na we have the case that
the spin orbit interaction of 2.1 meV is much larger than a typical Zeeman
interaction.

In order to calculate the eigenvalues of the Zeeman Hamiltonian and hence
the Zeeman splitting it is convenient to use a general formalism derived by
Landé in the early 1920s [223]. Landé’s result takes care of the vector coupling
of spin and angular momenta which exists in the case of spin orbit coupling,
as for the case of Na discussed above. Today Landé’s formula, originally de-
rived using semiclassical vector coupling concepts [181], readily emerges from
a quantum mechanical treatment of vector coupling. This theory allows the
calculation of the expectation value of the Zeeman Hamiltonian by use of
wavefunctions that are either written in terms of the individual spin S and an-
gular momenta L functions |L, S,ML,MS〉 or the spin–orbit coupled functions
|L, S, J,MJ 〉, where J = L+S.12 For brevity we shall state here just the basic
result.

Landé’s formula for the Zeeman-split energy levels includes the three basic
cases where the magnetic moment is due either to the spin S, the orbital

12The matrix elements of the Hamiltonian for the spin–orbit coupled functions
|L, S, J, MJ〉 can be expressed in terms of the uncoupled functions |L, S, ML, MS〉
by use of the Wigner–Eckart theorem [147] (see Appendix A.5). An equivalent way
is by directly relating the wavefunctions before calculation of the matrix elements
according to

|L, S, J, MJ〉 =
∑

ML,MS

CML,MS ;J,MJ |L, S, ML, MS〉 , (6.94)

where the CML,MS ;J,MJ are the famous Clebsch–Gordon coefficients, written in
Slater’s notation [225] (see Table A.5).
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angular momentum L or the coupled angular momentum J = S + L. The
latter case arises in the presence of spin–orbit coupling. Here we have used
capital letters for the angular momenta to indicate that they may represent
sums of individual electron angular momenta, e.g., S =

∑
i si. By generalizing

the concept of the g-factor we may then use the following formulation for the
Zeeman Hamiltonian for the three cases,

HZee = gS
µB

h̄
H · S, (6.95)

HZee = gL
µB

h̄
H · L, (6.96)

HZee = gJ
µB

h̄
H · J . (6.97)

By choosing a coordinate system with z in the direction of the external field
H we readily see that the magnetic field lifts the degeneracy of the substates
of the angular momenta and the energy splittings are given by

∆E(MS) = gS µBH Sz = gS µBHMS , (6.98)
∆E(ML) = gL µBH Lz = gL µBHML, (6.99)
∆E(MJ ) = gJ µBH Jz = gJ µB HMJ . (6.100)

All that is needed for the calculation of the size of the respective splittings are
the g-factors. We already know the answer for the first two factors, namely,
gS = 2 and gL = 1. Landé provided the result for the third, called the Landé
g-factor,

gJ = 1 +
J(J + 1) + S(S + 1) − L(L+ 1)

2J(J + 1)
. (6.101)

In fact, (6.97) and (6.100) constitute a general result that includes the other
two cases. This is readily seen by evaluating (6.101) for J = S and L = 0
which gives gJ = gS = 2 and for J = L, S = 0 we obtain gJ = gL = 1.

It is now straightforward to predict the Zeeman line pattern for Na, as
illustrated in Fig. 6.16. Since this case corresponds to a single electron we shall
use small letters for the momenta. The spin orbit states have the following
Landé g-factors: gj = 2 for 3 s1/2, gj = 2/3 for 3p1/2 and gj = 4/3 for 3p3/2

and they give rise to different Zeeman splittings, as schematically indicated in
Fig. 6.16. The observed optical transitions follow from the dipole selection rule
∆j = 0,±1 (see Sect. 9.5.5), and the polarization of the lines is different for
∆mj = 0 (dashed lines) and ∆mj = ±1 (solid lines), as indicated [181,198].

With modern tools the explanation of Zeeman’s discovery is therefore
straightforward. Historically, the full explanation of the original spectra took
about 30 years. One needs to remember that at the time of Zeeman’s dis-
covery the electron had not yet been discovered, which happened only a year
later in 1897 by J. J. Thomson (and independently about the same time by
Wiechert [13]). By means of additional studies of the field splitting of the
sodium doublet and through a more detailed analysis, Zeeman and Lorentz
demonstrated in the following years that the magnetic splitting could be
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associated with the charge-to-mass ratio e/me of the electron. This was the
first direct demonstration that electrons were involved in the production of
spectral line emissions. The full explanation of the observed splitting, how-
ever, had to await the discovery of the spin in 1925 and the development of
quantum theory in the late twenties.

The slow historical interpretation of the magnetic field splitting of Na led
to a somewhat confusing terminology. Since the splitting in Na could not be
understood for a long time because of the missing concept of the spin, it was
called “anomalous,” and the associated Zeeman effect has since gone under the
historical name anomalous Zeeman effect. Today there is nothing anomalous
about the effect! In contrast, when the magnetic field splitting of the strong
red n = 3 → n = 2 line (λ = 656.3 nm or 1.89 eV) for the simplest atom,
hydrogen, was studied a much simpler three line pattern was observed. This
three line magnetic pattern was called “normal,” because scientists thought
they understood its origin. It was attributed to the fact that the states with
principal quantum number n are composed of degenerate angular momentum
states n �m� with 0 ≤ � ≤ n − 1 and −� ≤ m� ≤ � and that the splitting
indicated the lifting of the degeneracy of the states with magnetic quantum
numbers m� (hence the name “magnetic quantum number” for m�). It turns
out that this is only half of the story because the effect of the spin remained
hidden as we shall discuss now.

The strong red n = 3 → n = 2 line in hydrogen with a wavelength of
λ = 656.3 nm (1.89 eV) arises from transitions from the excited n = 3 state
with an energy −1.511 eV below the vacuum level to the lower energy n = 2
state at −3.400 eV. The states with principal quantum number n are composed
of degenerate angular momentum states n� with 0 ≤ � ≤ n − 1, e.g., for
n = 3 we have � = 0(s), 1(p), 2(d), and the red line arises from three allowed
dipole transitions 3s → 2p, 3p → 2s and 3d → 2p which are energetically
degenerate [181,226]. In hydrogen the spin–orbit splitting is very small, similar
to that of He in Fig. 6.10. For example, the 2p3/2 − 2p1/2 spin–orbit splitting
is only 4.5×10−5 eV. In the early part of the 20th century this small splitting
was in fact already known and had an important impact. It was used by
Uhlenbeck and Goudsmit, the latter having studied spectroscopy with Paschen
and Back, to predict the existence of the electron spin with a half integer
angular momentum [18–20].

Under application of a magnetic field the red line was found to split
into three components whose separation was larger than the small spin–orbit
splitting. Thus we have the opposite case from that of the Na atom in that the
Zeeman splitting is larger than the spin–orbit splitting. In order to simplify
things we shall neglect the spin–orbit splitting in our discussion. This leads
to the picture of the “normal” Zeeman effect in H illustrated in Fig. 6.17.

The origin of the splitting is readily understood from the eigenvalues of
the Hamiltonian (6.92), and by use of (6.98) and (6.99) we obtain

∆EZee = µBH (2ms +m�) . (6.102)
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Fig. 6.17. Center : energy levels and binding energies (in eV) of the first n = 2
and second n = 3 excited shells of atomic hydrogen. Within each shell n all other
quantum numbers �, s, m�, ms are degenerate. The strong red emission line in the
H spectrum of 656.3 nm wavelength (1.89 eV) corresponds to three allowed dipole
transitions 3s → 2p, 3p → 2s and 3d → 2p, of which we only show two cases for
simplicity. The spin–orbit splitting of the states in H is small, and it is neglected in
our diagram. On the left and right sides we show how the levels split in an external
magnetic field H . In all cases the levels exhibit a spin splitting into ±ms = ±1/2
states with a separation 2µBH. Each spin state is further split into orbital states
−� ≤ m� ≤ +� with a splitting of µBH between adjacent m� states. For a given
field, the allowed optical transitions follow the dipole selection rule ∆� = 1, ∆m� =
0,±1, ∆ms = 0. This gives rise to a triplet splitting of the emission line with the
central transitions with ∆mj = 0 (dashed lines) and the outer transitions ∆mj = ±1
(solid lines) having different polarizations

Since for H we may neglect the spin–orbit coupling in strong external fields
(say 30 T or so) the spin and orbital angular momentum are decoupled and this
leads to the form of (6.102) and splitting patterns as shown in Fig. 6.17. We
can now understand why the resulting three line pattern could be understood
before the spin was discovered. The spin splitting, which is twice the orbital
splitting, simply leads to two degenerate triplet patterns. Thus the effect of
the spin remained hidden and the three line pattern could be understood
simply on the basis of orbital angular momentum splitting.

With our modern knowledge we would distinguish the H and Na cases
simply by the relative strength of the spin–orbit and Zeeman interactions. In
particular, one often calls the case where the Zeeman energy is larger than
the spin–orbit energy the Paschen–Back limit.
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6.6.2 Zeeman Versus Exchange Splitting of Electronic States

The essence of the Zeeman interaction is the action of a magnetic field onto
the spin and orbital angular momentum. It is important to realize that the
magnetic field must be a “real” field, that is an Oersted field produced by
current flow or by a permanent magnet. We shall later see in Sect. 11.1.2 that
the concept of “field” is also used in conjunction with the exchange interaction.
In magnetic materials the exchange interaction may be thought to give rise
of an effective field called the exchange field, molecular field or Weiss field.
This field, however, is distinct form a “real” field in that it acts only on the
spin, not the orbital magnetic moment. The effect of the Weiss field HW on
an electronic state of an atom is therefore given by a Hamiltonian of the form

Hex =
2µB

h̄
HW · s (6.103)

in contrast to the Zeeman Hamiltonian for a real field H

HZee =
µB

h̄
H · (� + 2s) . (6.104)

This has important consequences in X-ray dichroism spectroscopy (see
Chap. 10). In X-ray absorption measurements electrons are excited from core
shells to unoccupied valence states. In magnetism research transitions from
the 2p core shell to the 3d valence shell are of particular importance. For the
magnetic metals Fe, Co and Ni the 2p core shell is SO split by an energy of
about 15 eV, giving rise to the so-called L3 (2p3/2) and L2 (2p1/2) edges. If
we consider how the two SO core states split further under the influence of a
weak Weiss field or a real field, we obtain the results shown in Fig. 6.18.

We see that the energies of the mj substates for the p1/2 state are in-
verted for the two types of fields. In order to derive this we use the eigenfunc-
tions |�, s, j,mj〉 of the spin–orbit Hamiltonian and calculate the eigenvalues
for the Hamiltonians (6.103) and (6.104) by first order perturbation theory.
The new eigenvalues are simply given by the diagonal matrix elements of the
two Hamiltonians calculated with the |�, s, j,mj〉 functions, and for the field
aligned along the z quantization axis we obtain from (6.103)

Eex(mj) =
2µB

h̄
HW〈�, s, j,mj | sz |�, s, j,mj〉 (6.105)

and similarly from (6.104),

EZee(mj) =
µB

h̄
H 〈�, s, j,mj | �z + 2sz |�, s, j,mj〉 . (6.106)

The matrix elements are most easily calculated by expressing the spin–orbit
functions |�, s, j,mj〉 in terms of basis states |�,m�, s,ms〉 = Y�,m�

χ± where
χ± = |s,±ms〉. The expansion coefficients are the Clebsch–Gordon coefficients
and for convenience we simply state the result for the two p1/2 substates of
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Fig. 6.18. Splitting of an atomic p state under the influence of the spin–orbit
interaction and a weaker Zeeman interaction (top) or exchange interaction (bottom)
which are treated as a perturbation. Note that the energetic order of states for the
p1/2 states is inverted for the two cases

interest. The substates have quantum numbers � = 1, s = 1
2 , j = 1

2 , and
mj = ± 1

2 , and we shall write them in short as |mj = ± 1
2 〉. The relevant

expansions are (see Table A.5),

|mj = + 1
2 〉 =

1√
3

[
−Y1,0 χ

+ +
√

2Y1,+1 χ
−
]
, (6.107)

|mj = − 1
2 〉 =

1√
3

[
−
√

2Y1,−1 χ
+ + Y1,0 χ

−
]
. (6.108)

With the usual rules �z Y�,m�
= m� h̄ and szχ

± = ± 1
2 h̄ we obtain13

Eex(±mj) = ∓µBHW

3
(6.110)

and
EZee(±mj) = ±µBH

3
. (6.111)

13The same result is obtained by use of the Landé formula (6.100) with the ap-
propriate value gj = 2/3 for � = 1, s = 1/2, and j = 1/2. In fact, the Landé formula
is derived from the requirement [147]

〈�, s, j, mj | � + 2s |�, s, j, mj〉 = gj 〈�, s, j, mj | j|�, s, j, mj〉 . (6.109)
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This reveals the opposite energetic ordering of mj states shown in Fig. 6.18.
Similarly, it can be shown by using the wavefunction transformations in
Table A.5 that for the p3/2 state the Zeeman and exchange energy pertur-
bations lead to the same ordering of mj states, which is also illustrated in
Fig. 6.18.

6.6.3 Importance of the Zeeman Interaction

We have seen that the Zeeman effect played an important role in the first
quarter of the 20th century toward the development of quantum theory. In
particular, it helped in understanding the fine structure or spin–orbit splitting
of the spectra. The same interaction that leads to the splitting of spectroscopic
lines is also responsible for our ability to magnetize materials. This is probably
the most important application of the Zeeman interaction and it has been
used throughout history. In the absence of a magnetic field the magnetization,
referred to as the spontaneous magnetization naturally breaks up into domains
with different magnetization directions that cancel on a macroscopic scale,
as discussed in Sect. 11.3. The application of a magnetic field is therefore
required to induce a well-defined magnetic direction which makes the magnetic
material useful. In the early days of magnetism, the Zeeman interaction was
used to align iron compass needles by the magnetic field of loadstones found
in nature, which in turn had been magnetized by the earth’s magnetic field
during the process of cooling or by the field of a lightning bolt. Today, we all
use the Zeeman effect daily as we “save” information in our computers. This
is accomplished by using the current induced Oersted field from a recording
head to write “0” and “1” magnetic bits into the recording media in our “hard
drives.”

The Zeeman interaction is also used to study the magnetic properties of
materials and improve them. For example, by measurement of a magnetiza-
tion loop (see Sect. 11.4) it allows the determination of the coercivity, which
is the field required to completely align the material along its easy axis of
magnetization, the axis favored by the crystal structure. When applied per-
pendicular to the easy axis, along the so-called hard axis, one can determine
what field is required to rotate the magnetization by 90◦ away from the easy
axis. This determines the magnetocrystalline anisotropy which is a measure
of how strong the spin is locked into a special lattice direction by the spin–
orbit coupling as briefly discussed in Sect. 6.4.4. This will be discussed in more
detail in Sect. 7.9.
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Electronic and Magnetic Interactions in Solids

7.1 Chapter Overview

In the previous chapter we have looked at the three main magnetic inter-
actions largely from a historical point of view which naturally is based on
the electronic and magnetic structure of atoms and small molecules. We have
seen that the interplay of charge and spin degrees of freedom is already quite
complicated in atoms. It is therefore expected that in solids the first prin-
ciple description of the interactions between charges under the constraint of
the antisymmetrization postulate must be a monumental challenge. Indeed, it
has taken the better part of the 20th century to make some headway in this
direction and, as of today, we still do not possess a first principles theory that
satisfactorily explains the behavior of different solids such as the transition
metals and their oxides. Nevertheless, in this chapter we aim to discuss some
important concepts underlying our present understanding. Our emphasis will
be on the 3d transition metals and their compounds but we shall also con-
sider the rare earths in comparison. From a magnetism point of view we shall
concentrate on the intrinsic magnetic interactions: exchange and spin–orbit.

We start this chapter in Sect. 7.2 by taking a look at the important concept
of charge “localization” which is one of the key ingredients in modern solid
state physics. In the language of modern condensed matter physics, one dis-
tinguishes localized or correlated electron behavior from delocalized, band-like
or itinerant behavior. One of the important contributions to the localization
problem is the very behavior of the atomic valence electrons in the central
atom potential. This will be demonstrated by comparing the atomic potential
barrier effects for the 3d and 4f valence shells of magnetic atoms.

In the next Sect. 7.3 we then give an overview of the relative strength of
intra-atomic interactions and extra-atomic interactions for the same 3d and
4f systems. This overview is essential in understanding the different magnetic
behavior of transition metal and rare earth materials.

The next two sections are devoted to band and ligand field (LF) methods
for the calculation of the electronic ground state. For the ground state it is
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typically sufficient to consider the lowest-energy configurations 4fn and 3dn,
only. In particular, Sect. 7.4 reviews the concepts of band structure. It deals
with the most important model for the understanding of ferromagnetism, the
Stoner band model. This model underlies our modern understanding of the
magnetic structure of metals. In the context of the Stoner model we shall
also review the basic concepts underlying the wave-vector dependent band
structure and briefly outline the foundations of modern band calculations,
density functional theory (DFT) and the local (spin) density approximation
(L(S)DA). In Sect. 7.5 we explore the concepts of LF theory because of its
importance for understanding the electronic and magnetic structure of ionic
transition metal compounds, such as the oxides and halides. We discuss both
the strong bonding limit which can be treated by an independent-electron
LF theory, and make contact with molecular orbital theory. We then treat
the weak bonding limit where a localized cluster or multiplet model that
emphasizes the intra-atomic correlation of the central transition metal ion
needs to be used.

The following Sect. 7.6 illustrates the importance of excited states, in par-
ticular for our modern understanding of correlated materials. We discuss
both theoretical and experimental concepts underlying their understanding.
We give a short review of important concepts used in the classification of
materials, such as the correlation energy U and the charge transfer energy
∆c. We then show how photoemission and inverse photoemission spectro-
scopies hold the key to the electronic structure of correlated materials. We
point out why independent electron theories, like band theory, fail for the
description of correlated systems and mention remedies like the LSDA+U
method.

In Sect. 7.7 we take a closer look at the magnetic interactions in transition
metal oxides. We discuss two forms of indirect exchange in the form of super-
exchange and double exchange, and use a simple Hubbard model to derive
the respective antiferromagnetic and ferromagnetic ground states for the two
cases. We then discuss two important magnetic oxides, both governed by
double exchange, the perovskite-type manganites of the LaMnO3-family and
magnetite, Fe3O4. Both exhibit fascinating phase transitions and unusual and
fascinating properties, such as colossal magnetoresistance (manganites) and
half metallic behavior (magnetite).

In Sect. 7.8 we discuss another form of indirect exchange, the Ruderman-
Kittel-Kasuya-Yosida or RKKY exchange and use it to discuss the magnetic
exchange coupling in magnetic multilayers.

The final section discusses the effect of the small but important spin–
orbit interaction on the magnetic properties of solids. We shall see that it
is the origin of the magneto-crystalline anisotropy (MCA) and therefore of
great practical importance. We shall give a conceptually simple model for the
origin of the MCA, based on the anisotropy of the orbital magnetic moment
and support our picture by a model calculation.
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7.2 Localized versus Itinerant Magnetism: The Role of
the Centrifugal Potential

In the central field approximation discussed in Sect. 6.2.1, the inner atomic
electrons are bound by the nuclear charge and form an electrostatic poten-
tial in which the outer electrons move. We will now show that the form of
the central potential depends on angular momentum and that electrons can
become more “trapped” or “localized” as their angular momentum increases.
This picture explains important aspects of the localization properties of the
d electrons in transition metals and especially of the 4f electrons in the rare
earths.

The atomic potential is obtained by solution of the time-independent
Schödinger equation with the central field Hamiltonian (6.9)

H0(r) =
p2

2me
+ V (r). (7.1)

When the electron coordinates r and the electron momentum operator p =
−ih̄∇ are written in spherical polar coordinates we have

r =

⎛
⎝xy
z

⎞
⎠ =

⎛
⎝ r sin θ cosφ
r sin θ sinφ
r cos θ

⎞
⎠ (7.2)

and

p2 = −h̄2∇2 = − h̄
2

r

∂2

∂r2
r︸ ︷︷ ︸

p2r

− h̄2

r2 sin θ

(
∂

∂θ
sin θ

∂

∂θ

)
− h̄2

r2 sin2 θ

∂2

∂φ2︸ ︷︷ ︸
p2φ = L2

, (7.3)

where on the right side we have indicated the correspondence with the clas-
sical kinetic energy, which when written in spherical coordinates has a radial
(p2r) and angular (p2φ) part. The Schödinger equation corresponding to (7.1)
separates into angular and radial parts with the radial equation given by

− h̄2

2me

d2Pn�(r)
dr2

+
[
V (r) +

�(�+ 1)h̄2

2mer2

]

︸ ︷︷ ︸
Veff

Pn�(r) = E Pn�(r), (7.4)

where Pn�(r) = rRn�(r) is the radial part of the total central potential eigen-
function ψn,�,m(r) = Rn,�(r)Y�,m(θ, φ) given by (6.11). We see that the effec-
tive potential Veff in (7.4) consists of two terms. The first term is the true three
dimensional potential energy V (r). It is negative (see later) and corresponds
to a force pointed toward the atomic center. The second term arises from the
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angular momentum part of the kinetic energy, considering that the quantum
mechanical angular momentum operator L2 has eigenvalues h̄2�(� + 1). This
energy is positive and corresponds to the centrifugal force directed away from
the atomic center.1 For an electron orbiting with the angular frequency ω at
a distance r from the nucleus we can calculate this force semiclassically by
identifying the angular momentum as m2

er
4ω2 = L2 = h̄2�(�+ 1), i.e.,

F = −mea = −merω
2 = −m

2
er

4ω2

mer3
= −�(�+ 1)h̄2

mer3
. (7.5)

Hence the term �(� + 1)h̄2/2mer
2 in (7.4) is referred to as the centrifugal

potential.
In practice, the calculation of the potential V (r) in (7.4) is complicated

and in the development of electronic structure calculations much effort has
been devoted to this task. A nice review of the different approximations used
in solving the radial wave equation is given by Cowan [182]. An electron in
an outer or valence shell of an atom has a probability distribution that is
peaked at some distance (the shell radius) from the nucleus but quantum
mechanically has a finite probability over a range of distances. Close to the
nucleus, the electron with charge qe = −e will experience the full nuclear
charge qN = Ze, hence

V (r) = − Ze2

4πε0r
(7.6)

while at very large distances, all nuclear charges but one are screened by the
core electrons, hence

V (r) = − e2

4πε0r
. (7.7)

The potential V (r) has to fulfill the correct boundary conditions near the
nucleus and far away from it but has a more complicated form at intermediate
distances. The determination of the potential in this intermediate region re-
quires approximations. The different methods all assume an effective potential
of the general form

Veff(r) = − Ze2

4πε0r
+ Vee(r) +

�(�+ 1)h̄2

2mer2
, (7.8)

where Vee(r) is the electron–electron term. It is typically calculated by approx-
imations such as the Hartree, Hartree-Fock-Slater, or Hartree-plus-statistical-
exchange methods. One of the simplest methods to somewhat account for the
screening effect was suggested by Slater. In this formalism one simply sets

1The centrifugal force has its classical analogue in Keplerian motion where for a
stable orbit the central gravitational force is compensated by the centrifugal force.
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Vee(r) = σe2/(4πε0r) so that the Coulomb part of the potential only depends
on an effective nuclear charge Z∗ = Z − σ, where σ is called a screening con-
stant [227, 228]. Using this approach the total effective potential in (7.4) is
given by

Veff(r) = − Z
∗ e2

4πε0 r
+
�(�+ 1)h̄2

2mer2
. (7.9)

With the definition a0 = 4πε0h̄2/mee
2 = 0.0529 nm = 0.529 Å for the Bohr

radius we can write as follows,

The effective potential for an atom with effective nuclear charge Z∗ is
given by

Veff(r) = ER

[
−2Z∗a0

r
+
�(�+ 1)a2

0

r2

]
, (7.10)

where ER = mee
4/2(4πε0)2h̄2 = 13.606 eV is the Rydberg energy, and

a0 = 0.0529 nm is the Bohr radius.

The effective potentials for s, p, d, and f electrons in the hydrogen atom
(Z∗ = Z = 1) are plotted in Fig. 7.1.

If we solve the radial Schrödinger equation (7.4) with the hydrogenic poten-
tial (7.10) we can obtain analytical solutions for the radial parts of the valence

−14

−12

−10

−8

−6

−4

−2

0

2

0 2 4 6 8 10

V ef
f

(e
V)

Distance (Angstrom)r

p

d

f

s

Ef
fe

ct
iv

e
Po

te
nt

ia
l

Fig. 7.1. The effective potential Veff(r) given by (7.10) plotted for s (� = 0), p
(� = 1), d (� = 2), and f (� = 3) electrons in the hydrogen atom (Z∗ = Z = 1). The
effect of the centrifugal term in the effective potential is clearly revealed



226 7 Electronic and Magnetic Interactions in Solids

electron wavefunctions Pn�(r). With the notation ρ = r/a0 the normalized2

wavefunctions Pn�(r) = rRn�(r) for the 3d, 4s, 4p, and 4f electrons are given
by [181,182,229]

P3d(r) =
4

81
√

30

√
Z∗

a0
(Z∗ρ)3 e−Z∗ρ/3, (7.11)

P4s(r) =
1
4

√
Z∗

a0
(Z∗ρ)

(
1 − 3Z∗ρ

4
+

(Z∗ρ)2

8
− (Z∗ρ)3

192

)
e−Z∗ρ/4, (7.12)

P4p(r) =
√

5
16
√

3

√
Z∗

a0
(Z∗ρ)2

(
1 − Z∗ρ

4
+

(Z∗ρ)2

80

)
e−Z∗ρ/4, (7.13)

P4f (r) =
1

768
√

35

√
Z∗

a0
(Z∗ρ)4 e−Z∗ρ/4. (7.14)

The situation for a typical transition metal atom with 1–9 electrons in the
3d shell and two electrons distributed over the 4s and 4p shells is shown in
Fig. 7.2.

On top we have plotted the radial probability distribution function or
charge density P 2

n�(r) = r2R2
n�(r) as a function of the distance r from the

atomic center, obtained with the wavefunctions (7.11)–(7.13) using a value of
Z∗ = 10. The corresponding effective potentials Veff(r) given by (7.10) with
the same Z∗ value are plotted underneath. The value of Z∗ was chosen to
approximately match the radial extent of the wavefunctions and the potential
to those obtained for Fe (Z = 26) with the ab initio Hartree-plus-statistical-
exchange (HX) method [182] (see Fig. 7.3 later). The 3d wavefunction is seen
to be trapped in the potential well formed by the Coulomb and centrifugal
contributions to the effective potential. The maximum charge densities of the
4s and 4p electrons are seen to be located further from the atomic center with
the 4p electrons residing slightly closer to the nucleus than the 4s electrons,
contrary to the expected “shell” structure. This effect is due to the centrifugal
part of the potential for p or � = 1 electrons which is absent for s or � =
0 electrons. The shown atomic charge density supports the notion that the
3d valence electrons are more “localized” than the other 4s and 4p valence
electrons, which therefore can assume more “itinerant” character.

The centrifugal part of the potential is often associated with a “centrifu-
gal barrier”. Typically this barrier corresponds to a positive energy region of
the potential at some distance which helps to keep the wavefunction trapped.
Because centrifugal barriers can assume positive energies they have played
an important role in spectroscopy since they can trap excited electrons, e.g.,
photoelectrons that are excited to energies just above zero potential energy,

2We have
∫∞
0

|Pn�(r)|2dr =
∫∞
0

|Rn�(r)|2r2dr = 1 and with our form of
wavefunctions the normalization is readily evaluated by means of the integral∫∞
0

rm e−ar dr = m!/am+1.
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Fig. 7.2. Representative charge density P 2
n�(r) = r2R2

n�(r) and effective potential
Veff(r) for a 3d transition metal atom. We have used (7.10) and the wavefunctions
(7.11)–(7.13) with Z∗ = 10 to account for screening of the inner shells. The poten-
tial and wavefunctions resemble those calculated for Fe (Z = 26) by means of the
Hartree-plus-statistical-exchange (HX) method shown in Fig. 7.3 [182]. Note that
the centrifugal potential term moves the charge of the “outermost” 4p shell inside
the 4s shell

the so-called “vacuum level”. Well known examples are molecular shape reso-
nances which are due to centrifugal barriers in the molecular potential when
it is written in the center-of-mass coordinate system [189]. In atoms centrifu-
gal barriers exist for heavy elements and states with high angular momentum.
This is illustrated in Fig. 7.3 for Fe and Yb. In each case the effective potential
given by (7.8) consists of two regions. At small distances from the nucleus the
potential is similar to the full nuclear potential corresponding to (7.10) with
Z∗ = Z while at larger distances it has the shape of the hydrogen potential
with Z∗ = 1, shown as the dashed line in Fig. 7.3.
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(Z = 70) atoms, calculated by means of the Hartree-plus-statistical-exchange (HX)
method, taken from Cowan [182]. The ordinate is in Rydberg units (1 Rydberg =
13.606 eV), the abscisse is in units of the Bohr radius (a0 = 0.529 Å). The dashed
curves correspond to the hydrogenic (Z = 1) effective potentials. Their residual
presence causes the appearance of an “outer well” in the atomic potentials. The 3d
wavefunction in Fe and the 4f function in Yb are trapped in the “inner well”. In the
case of Yb this well is clearly separated from the outer well by a centrifugal barrier
of positive energy

The formation of the transition metal and lanthenide series is closely asso-
ciated with centrifugal effects, leading to 3d and 4f wavefunction trapping in
a potential well. As Z increases from K (Z = 19) through Ca (Z = 20) to Sc
(Z = 21) the 3d charge density moves from being centered near the minimum
of the hydrogen-like potential well (outer well) into the deep inner well and
a ground state configuration 3d electron appears, signifying the beginning of
the 3d transition metal series [182]. Similar effects are observed at higher Z
values with the formation of the 4d and 5d transition metals series. For all d
transition metals the d wavefunction is localized in the deep inner well. Note
that the angular momentum of the d electrons is not quite high enough to
give rise to a pronounced centrifugal barrier.
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The situation is different for the rare earths, where the effective potential
actually contains a pronounced centrifugal barrier as seen in Fig. 7.3. Now
the potential contains pronounced inner and outer wells, the outer well again
being due to the hydrogenic part of the potential. When Z increases from Ba
(Z = 56) through La (Z = 57) to Ce (Z = 58) the 4f charge density moves
from the outer into the inner well [182]. The 4f wavefunction collapses into the
inner well around Z = 57 and similarly the 5f wavefunction collapses around
Z = 90 then lead to the formation of the lanthanide and actinide series,
respectively. Figure 7.3 beautifully demonstrates that the centrifugal barrier
causes the strong localization of the 4f function. The localization is seen even
more clearly in the plot of the radial charge density shown in Fig. 7.4 for the
Gd+1 ion which has the outer electron configuration 4f7 5s2 5p6 6s2. The 4f
shell is seen to be quite localized in the atom and is shielded on the outside
by the eight 5s2 − 5p6 and the 6s2 valence electrons. It is interesting that for
the rare earths the spatial collapse of the 4f wavefunction into the inner well
is not accompanied by a significant increase in the 4f electron binding energy
EB which remains “valence-shell like” with EB ≤ 10 eV. In contrast, the outer
5s and 5p shells have higher binding energies in the ranges 32 ≤ EB ≤ 52 eV,
and 16 ≤ EB ≤ 26 eV, respectively.

The more the valence electrons in atoms are localized the more their atomic
properties are conserved in the solid state. As a consequence the magnetic
moments in the rare earths are strongly localized in the 4f shell, the magnetic
properties of the 3d transition metals are predominantly localized in the 3d
shell with smaller (of order 10%) contributions from the s and p electrons. Yet

Fig. 7.4. Radial charge density in units of [electrons/a0] for the Gd+1 ion (4f7 6s2)
calculated by Freeman and Watson [230] for the 4f , 5s, 5p, and 6s orbitals. The
figure shows that the 4f orbitals are actually located well inside the outer shells
which screen them from the extra-atomic environment
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stronger localization causes lower magnetic ordering temperatures because
there is decreased exchange with the neighbors. For this reason all rare earths
(lanthenides) are paramagnetic at room temperature with ferromagnetic Gd
having a Curie point (TC = 289K) close to room temperature. For the 3d
metals, the balance is just right for Fe, Co, and Ni. We can summarize this
as follows.

For the ferromagnetic transition metals Fe, Co, and Ni the localization of
the 3d electrons is high enough to generate a sizable magnetic moment yet
low enough to provide overlap with the neighbors. This fortunate balance
leads to sizeable Curie temperatures.

Coupling to the neighbors may occur indirectly via s and p electrons as
well. But this coupling mostly produces antiferromagnetic ordering and is
typically much weaker than in the ferromagnetic case (see Sects. 12.2.2 and
12.3, below).

7.3 The Relative Size of Interactions in Solids

The description of the bonding between atoms depends on the relative size of
the intra-atomic and bonding interactions and one therefore needs to use dif-
ferent methods, depending on the system. For molecules, independent-electron
theories in the form of molecular orbital theory and density functional theory
have proven very successful, owing to relatively small correlation effects. In
metals, one typically uses a spin dependent band structure approach which is
also based on the density functional approach. In such systems, the overlap
of the wavefunctions on neighboring atoms and the periodic structure lead to
a strong dependence of the energy of a given electronic state on the electron
momentum k, and this leads to a “band” of energies as a function of k. In
ionic systems, like transition metal oxides, one instead uses an approach called
ligand field theory. This theory concentrates on the bonding of a given 3d or
4f ion to its neighbors, the ligands. Because it emphasises the local bond-
ing, around a transition metal ion embedded in a relatively small cluster, LF
theory can be formulated in either an independent electron or a correlated
electron model. We shall discuss these various approaches later.

The aim of the above theories is typically to determine the energetic ground
state of the system which determines many properties of solids and tells us
the favorite way atoms like to be positioned with respect to each other and
how electrons and spins like to be distributed. The great success of density
functional theory (DFT) is related to the importance of the electronic ground
state. As we shall see later, it gives a good account of the electronic ground
state at zero temperature for systems that are not “correlated”. For “corre-
lated” (yet to be defined) systems, however, a new way of thinking is required.
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This new way of thinking started with a simple question: why are so many
oxides insulators? As early as 1937, de Boer and Verwey [231] recognized that
the newly developed band theory which was first applied to magnetic systems
around 1935 by Mott [27], Slater [28,29], and Stoner [30,31], could not account
for the insulating nature of many oxides. Later in 1937, Mott [232] took up this
puzzle, following a suggestion by Peierls about the fundamental importance
of the strong electron–electron correlation on the transport in these materials.
A broader understanding of the formation of insulators through the electron
correlation phenomenon was developed by Mott in a series of papers starting
in 1949 [233]. Mott’s work constituted the birth of the broad field of correlated
electron physics, which because of the rich and complex behavior of correlated
systems remains at the core of condensed matter physics research to this day,
as reviewed by Imada, Fujimori, and Tokura [234].

Mott realized that for the transition metal oxides one can no longer think
in the ground-state-like picture of the band model, where the transport can
easily be envisioned by small excitations around the Fermi level. Obviously,
in an insulator higher energy excitations are required to transport an electron
through the lattice. Hence one needs to consider excited states that lie above
the ground state by energies up to several eV. The insulator problem therefore
boils down to understanding the nature of excited states!

Such large energy excitations are intimately linked to the Coulomb repul-
sion, i.e., the Hubbard U , when an electron is removed from one atomic site
and added to another. Any electron motion through the crystal, which may
be envisioned as hopping from metal to oxygen to metal etc., where the hop-
ping parameter is proportional to the band width W , has to overcome the U
on a given metal site. One thus obtains an insulator if U � W . The relative
size of these two quantities also serves as a criterion whether a material is
“correlated” (U � W ) or not (W � U). It is this concept which lies at the
heart of correlated electron physics and that needs to be incorporated into
modern treatments of interactions in solids.

In order to get a handle on the size of various interactions we shall start
by taking a look at the electronic structure of the 4f valence electrons of
rare earth ions and 3d electrons of transition metal ions in crystals such as
oxides and halides. We use these systems because they have been thoroughly
studied by optical and paramagnetic resonance techniques [140,228,235,236].
The relative sizes of important interactions emerging from such studies are
summarized in Fig. 7.5.

We have indicated both the energetic splitting within a particular 4fn

(1 ≤ n ≤ 14) and 3dn (1 ≤ n ≤ 10) free ion ground state, and also shown
approximate excitation energies from these ground state configurations by
adding or removing an electron. We will see later that these energies are
very important in correlated materials and that they can be measured by
photoemission and inverse photoemission.

It is important to realize that excitations from the ground state, defined
as the lowest energy state within the lowest energy configuration, may involve
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Fig. 7.5. The approximate size of three important interactions in solids for the 3dn

shell in transition metal ions and the 4fn shell in rare earth ions, illustrated by the
observed splittings in spectra of the ions in crystals [140, 235]. Note the opposite
relative size of the bonding and the spin–orbit splittings for the 3d and 4f systems.
We also indicate the size of noncharge conserving excitations, n → n± 1, leading to
excited configurations where electrons have been removed or added, as measured in
photoemission and inverse photoemission

either an intraconfiguration excitation that preserves the charge state of the
bonded ion, or by an extraconfigurational excitation that changes the charge
state by adding or removing an electron from an atom in the sample. We have
already encountered an excitation of the latter kind in the discussion of the
Hubbard model, where an electron may hop on or off an atom, and from this it
is evident that the Hubbard U must be associated with an extraconfigurational
excitation. We shall later see that in the modern classification of correlated
materials another energy is of great importance. This so-called charge transfer
energy actually corresponds to an intraconfiguration excitation.

Let us now take a look at the relative size of interactions within the elec-
tronic ground state configuration. As discussed in Chap. 6 the Coulomb and
exchange interaction leads to the coupling of the spins and angular momenta
of the individual n electrons in the d or f shell to terms 2S+1L. For both the
3d and 4f ions the size of the intra-atomic coupling is given by the separation
between the terms and we have indicated an order of magnitude estimate in
Fig. 7.5.
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Table 7.1. fn ground states of trivalent rare earth ions and 3dn ground states
for divalent transition metal ions in crystals [219]. For dn ground states also see
Table 7.7

state (element)3+ 2S+1LJ state (element)2+ 2S+1LJ

ground state ground state

4f1 Ce 2F5/2 3d1 Sc 2D3/2

4f2 Pr 3H4 3d2 Ti 3F2

4f3 Nd 4I9/2 3d3 V 4F3/2

4f4 Pm 5I4 3d4 Cr 5D0

4f5 Sm 6H5/2 3d5 Mn 6S5/2

4f6 Eu 7F0 3d6 Fe 5D4

4f7 Gd 8S 3d7 Co 4F9/2

4f8 Tb 7F6 3d8 Ni 3F4

4f9 Dy 6H15/2 3d9 Cu 2D5/2

4f10 Ho 5I8 3d10 Zn 1S0

4f11 Er 4I15/2

4f12 Tm 3H6

4f13 Yb 2F7/2

For the 3d ions the second important interaction is the bonding interaction
which is of comparable size as the Coulomb and exchange interaction. The
reason is that the 3d electrons participate in the bonding with the ligands, and
overlap with the oxygen 2p orbitals. In contrast, the spin–orbit interaction is
much smaller than the other two interactions. In fact, it is smaller than the
spin–orbit parameter (ζnl ∼ 30 meV, see Fig. 6.12) because the orbital angular
momentum is broken up by the crystal field so that the effective spin–orbit
splitting is only about 1% of ζnl, as discussed in Sect. 7.9.3 later.

The 4f shell is more like an inner than a valence shell as discussed in
detail in Sect. 7.2. Its compact radius and the relative large atomic number
of the rare earths causes the spin–orbit coupling constant to be quite large
(ζnl ∼ 0.2 eV, see Fig. 6.12). Because of the localized nature of the 4f elec-
trons they are not directly involved in bonding and therefore the LF splitting
is quite small, about a factor of 10 less the spin–orbit splitting. The LF split-
ting in the rare earths, often called the Stark splitting3 can be measured by
optical spectroscopy [235] while the larger spin–orbit and multiplet splittings
may be observed in photoemission spectroscopy [237, 238]. For later use, we
list in Table 7.1 the multiplet ground states for the various 4fn and 3dn

configurations.
Figure 7.5 shows that we need to treat the 3d and 4f systems quite dif-

ferently. The 4f compounds are dominated by extra- and intraconfiguration
correlation energies and therefore are prototype correlated electron systems.
Ligand field effects can be treated as a perturbation.

3This goes back to the idea that it arises from the “crystal electric field” set up
by the ligands.
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For the ionic 3d compounds, we need to treat bonding and correlation ef-
fects on an equal footing. This means that we should expect the band widthW
due to bonding and the extra- and intra-configuration correlation energies to
be of comparable size. This is the key reason why transition metal compounds
are not adequately treated by band calculations, and why they offer rich phase
diagrams and their properties remain full of surprises and puzzles. In the next
two sections we shall look at two fundamental methods of treating the inter-
actions of charges and spins in solids.

7.4 The Band Model of Ferromagnetism

7.4.1 The Puzzle of the Broken Bohr Magneton Numbers

It is well known that the spin and orbital magnetic moments of atoms are
multiples of the Bohr magneton according to m = (2s + l)µB/h̄. One would
therefore naively expect that the magnetic moments of the magnetic metals
Fe, Co, and Ni should also be even multiples of µB. For example, in the 3d
metal atoms one has the number of 3d and 4s valence electrons listed in
Table 7.2.

Table 7.2. Number of 3d and 4s electrons in the free transition metal atoms

K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn

N3d 0 0 1 2 3 5 5 6 7 8 10 10
N4s 1 2 2 2 2 1 2 2 2 2 1 2
N3d+4s 1 2 3 4 5 6 7 8 9 10 11 12

Since the metals are charge neutral in the atomic spheres one would expect
similar numbers of unpaired electrons in the metals as for the atoms. This
allows us to calculate the expected magnetic moments. For Fe there are six
3d and two 4s electrons, relative to a total of 12 possible electrons if both
shells were completely filled. Because there are 4 unfilled “holes”, Hund’s rule
would predict 4 unpaired electrons and therefore a magnetic spin moment
equivalent to 4 spins or ms = 4µB. Similar considerations lead to predicted
spin moments of 3µB for Co and 2µB for Ni. If one wanted to include the
orbital moment one would estimate the moment per atom from Hund’s rules,
maximizing S, L, and J , as listed in Table 7.3 for the expected atomic d
electron configurations. If one neglected the outermost s electron and assumed
that the magnetic moment arises from the d shell one would be led to a
model where the electronic ground state corresponds to the respective 2S+1LJ
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Table 7.3. Occupation of 3d orbitals with quantum numbers m� for some atomic
d configurations d5, d6 (Fe atom and metal), d7 (Co atom and metal), d8 (Ni atom
and metal), and d9. We use the convention sz = −1/2 = ↓. We also list the angular
momenta S = |

∑
sz|, L = |

∑
lz|, and J and the terms 2S+1LJ from Hund’s rules.

Note that J = L + S for a more than half filled shell. The magnetic moment mJz

is the d shell moment expected for an atom with Hund’s rule ground state and
occupation of the lowest state Jz = −J , only, i.e., mJz = gJJµB, where gJ is the
Landé g-factor given by (6.101)

m� → +2 +1 0 −1 −2 S L J 2S+1LJ gJ ma
Jz

d5 ↓ ↓ ↓ ↓ ↓ 5
2

0 5
2

6S5/2 2 5

d6 ↑↓ ↓ ↓ ↓ ↓ 2 2 4 5D4
3
2

6

d7 ↑↓ ↑↓ ↓ ↓ ↓ 3
2

3 9
2

4F9/2
4
3

6

d8 ↑↓ ↑↓ ↑↓ ↓ ↓ 1 3 4 3F4
5
4

5

d9 ↑↓ ↑↓ ↑↓ ↑↓ ↓ 1
2

2 5
2

2D5/2
6
5

3

a Moments are in units of [µB].

manifolds listed in Table 7.3. The exchange field would split this ground state,4

leaving only the lowest state with Jz = −J occupied and one would expect
the listed moments mJz

= gJ J µB, where gJ is the Landé g-factor given by
(6.101). All such atomic scenarios result in integer magnetic moments.

If one measures the spontaneous magnetization M in Fe, Co, and Ni and
divides it by the number of atoms, one discovers that the atomic moments
mexp = 2.216µB for Fe, 1.715 µB for Co, and 0.616 µB for Ni are not multiples
of the Bohr magneton but rather odd fractions of it. This shows that the
3d electrons are not strictly localized. The values listed in Table 7.3 also
show that inclusion of an atomic-like orbital moment gives a value that is
much higher than the experimental value and that expected from the spin
moment, only. This indicates that the atomic model severely overestimates
the orbital moments. As discussed in Sect. 11.2.2 in solids the orbital moment
is indeed largely quenched by the bonding which we have completely neglected
in our above discussion. These considerations show that a different approach
is needed to account for the measured values for the magnetic moments of
the transition metals, the key being a proper treatment of the effects of the
bonding in the metallic lattice.

7.4.2 The Stoner Model

The puzzle about the broken Bohr magneton numbers in the ferromagnetic
metals was solved through the development of band theory, which was first
applied to magnetic systems around 1935 by Mott [27], Slater [28, 29], and

4Although the exchange field acts only on S, the J manifold would nevertheless
split. With the exchange field along +z and for J = L + S the lowest energy state
would be −Jz. Note that for coupling J = L − S the lowest state would be +Jz!
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Stoner [30, 31]. The simplest band-like model of the ferromagnetic metals is
often called the Stoner-model or the Stoner-Wohlfarth-Slater-model (SWS-
model) of metallic ferromagnetism.
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1
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Emptystates,
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electron spins
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z quant.
axis

∆

Fig. 7.6. The Stoner model of ferromagnetic transition metals, illustrated for the 3d
shell, and nomenclature used for the band description of magnetism. Filled electron
states below the Fermi energy EF are shown shaded, “hole” states above EF are
shown unshaded. The spin states with the largest number of electrons are called
“majority spins” and the corresponding band is the “majority band”, and the term
“minority” is used for the other electron spins and band. The centers of the majority
and minority d bands, assumed to be reasonably localized as shown, are separated
by the exchange splitting ∆. The labels “spin-up” and “spin-down” only have a
meaning in conjunction with a quantization direction, which in our case is taken to
be the direction of the external field Hext ‖ M . It is good to remember that the
minority spins always point in the direction of M . The magnetic moment |m| in
units of µB is determined by the difference in the number of majority and minority
states, as discussed in the text. The density of states generated by the s–p electrons
is not shown for clarity

The assumption behind the SWS-model is that the bonding interaction
between the 3d electrons causes a smearing of their energy into a band which
can be described from physics [205, 219] or chemistry [239] points of view.
The periodicity of the atomic positions leads to the formation of character-
istic periodic variations of the individual energy states and their band width
increases with the inverse lattice constant, i.e., with the electron momentum q.
For now it is sufficient to consider the average finite energy width of the va-
lence band states and we approximate the density of states (DOS) by a simple
semicircle as shown in Fig. 7.6. In the presence of a Weiss field the centers of
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gravity of the states characterized by opposite spins exhibit an energy sepa-
ration, the exchange splitting ∆.

At T = 0 all states are filled up to the Fermi energy EF and we speak of
the filled states as “electron states” and of the empty states as “hole states”.
The spin states with the larger electron population are called the majority
states, those with the smaller population the minority states, and the same
labels are used for the respective bands.

The two bands associated with different spin orientations are labeled
according to their relative electron population as “majority band” and
“minority band”.

The often used labels “spin-up” and “spin-down” by themselves are arbi-
trary and only have a meaning relative to a quantization direction. Therefore
they provide a valuable concept in theory, where it is easy to define a quanti-
zation direction, typically labelled z. Then “up” is along z and “down” along
−z. The spin-up states, labelled | ↑〉 = |+〉, have the eigenvalue sz = +h̄/2,
and the spin-down states, labelled | ↓〉 = |−〉, have the eigenvalue sz = −h̄/2.

In Fig. 7.6 we have taken the quantization direction as the direction of
an external magnetic field Hext, used to align the magnetization M of the
sample. Then the magnetic moment is also in the up direction and because
the moment is defined as m = −gµBs, the moment and spin have opposite
directions. So in this case the majority states have spin-down, the minority
states have spin-up. For a “down” field the labels spin up and down are
reversed.

In experiments it is not trivial to determine and keep track of the true field
direction and therefore the terms “up” and “down” lose their physical mean-
ing. Instead, one uses the terms minority and majority spins. As discussed in
Sect. 2.6 and also shown in Fig. 7.6, by convention, the magnetization M and
the atomic moments m point in the same direction as Hext.

In modern magnetism research the flow of electrons and spins in transport
measurements or the transmission of spin polarized electron beams through a
magnetic sample are of key importance. In such experiments, a central theme
in later chapters of our book, we therefore distinguish the role of the majority
and minority spins. Since the minority spins have states below and above
the Fermi level as shown in Fig. 7.6, they turn out to be more important
than the majority spins for the description of spin transport. Throughout this
book we will repeatedly use the following unique definition, which should be
remembered.

The minority spins always point into the direction of M .

Historically the magnetic properties of materials within the band model
have been discussed in terms of the electron, i.e., the filled states. More re-
cently however, in particular in conjunction with the development of inverse
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photoemission and X-ray magnetic circular dichroism techniques, attention
has also been paid to the hole states because these techniques probe transi-
tions to the empty states and the measured intensities are therefore directly
determined by the spin dependent hole states. In principle it should be equiv-
alent to use the electron or hole states (by taking care of the different sign)
for the quantitative description of the magnetic moment because the total
number of filled and empty states, i.e., the number of electrons and holes,
needs to add up to the maximum occupation number of a given shell with
angular momentum �, which is 2� + 1 for each spin.5 Thus by knowing the
number of electrons we also know the number of holes. Using this simple con-
cept we can then derive an expression for the magnetic moment in either the
electron or hole picture.

From the spin dependent density of states D↑(E) and D↓(E) we can deter-
mine the number of states by an appropriate energy integration. For example,
the number of spin-down electron states is given by

Nmaj
e = N↓

e =
∫ EF

−∞
D↓(E) dE. (7.15)

Because of the negative charge of the electron, the atomic magnetic moment
is given by m = −2µBs/h̄ according to (3.13), where s is in units of [h̄]. The
absolute value of m is then given by the expectation value of the electron spin
〈sz〉, relative to a quantization axis z. With Hext defining the direction of z,
we see from Fig. 7.6 that

〈sz〉 = 〈+1
2 |sz|+

1
2 〉Nmin

e + 〈− 1
2 |sz|−

1
2 〉Nmaj

e

= h̄
2 (Nmin

e −Nmaj
e ) = h̄

2 (N↑
e −N↓

e ). (7.16)

The maximum number of electrons in the d shell cannot exceed (2s+ 1)(2l+
1) = 10 according to Pauli’s exclusion principle. If the total number of 3d
electrons is Ne and the number of holes is Nh we have Ne+Nh = 10. Similarly,
if we call the number of holes in the minority band Nmin

h = N↑
h and in the

majority band Nmaj
h = N↓

h , respectively, we have N↓
e +N↓

h = 5 and N↑
e +N↑

h =
5 and therefore

〈sz〉 = h̄
2 (N↑

e −N↓
e ) = − h̄

2 (N↑
h −N↓

h ) = − h̄
2 (Nmin

h −Nmaj
h ). (7.17)

Since the magnetic moment |m| is related to the expectation value of the spin
according to |m| = −2µB〈sz〉/h̄, we can summarize our discussion above in
the following statement about the origin of the magnetic moment.

5In practice the situation is slightly more complicated as discussed in Sect. 12.2.2
later.
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The magnetic moment |m| is given by the difference in the number of
electrons or holes in the majority and minority bands, defined in Fig. 7.6,
according to,

|m| = µB (Nmaj
e −Nmin

e ) = µB (Nmin
h −Nmaj

h ). (7.18)

In the band picture the number of majority and minority states is non-
integer and the magnetic moments are noninteger multiples of the Bohr
magneton.

The simple relation (7.18) between electron and hole moments is exact
only if the band states are well defined in their energy spread about the Fermi
level as assumed in Fig. 7.6. In practice, this is only approximately so for the
3d transition metals as discussed in more detail in Sect. 12.2.2 later. One finds
that through hybridization of the d states with the s–p states some small d
character is found even at energies more than 10 eV above the Fermi level.
Therefore, as pointed out by Wu and Freeman [240, 241], the number of d
holes and the magnetic d hole moment are slightly reduced relative to the
values expected from the filled electron states.

The exchange field Hex generating the splitting ∆ of the electronic states
is not a true magnetic field. It produces no electromagnetic induction and
no Lorentz force or eddy currents. However, just like a magnetic field, it is
axial and in two respects it can be treated as if it were a magnetic field.
First, in accordance with (3.15), we can use it to describe the origin of the
exchange splitting as ∆ = 2m ·Hex. Secondly, following (3.28), it also exerts
a torque T = m × Hex on the electron spins. The energy and the torque
|T | = ∆/2 correspond to a giant value for the effective exchange field of 103

T, as discussed in Sect. 11.1.2.
The exchange field does not act on the orbital moment or on the nuclear

magnetic moment. This is of great importance because in the presence of
the exchange interaction the spin system still remains independent from the
orbital system which is locked to the crystal lattice. Once the electron spin
polarization and hence the spin moment is established by the exchange inter-
action, the coupling of the spin moment to the orbital moment is established
through the weaker spin–orbit interaction. It is this coupling which leads to
the magnetocrystalline anisotropy by locking the spin to the orbital moment
which itself is locked to the lattice, as discussed in Sect. 7.9.3.

The ratio of the orbital moment to spin moment may be obtained from
the measurement of the g-factor according to (3.44). Today a more power-
ful method is the separate measurement of the spin and orbital moments by
means of X-ray magnetic circular dichroism, discussed in Chap. 10. The or-
bital moment is small in the case of the 3d-ferromagnets, but approaches the
atomic value in the case of the 4f ferromagnets where the ligand field acting
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on the magnetic levels is largely screened by the outer closed shells in most
cases.

7.4.3 Origin of Band Structure

In the Stoner model we have ignored the detailed dependence of the band
structure on the electron wavevector k and simply integrated over all k states
to obtain the energy dependent DOS. We have further assumed that the DOS
has a simple form, represented by a semicircle. In reality, the DOS typically
varies strongly with energy and consists of peaks and valleys. Since it is im-
portant to understand the origin of the density of states and the underlying k
dependent band structure we shall now illustrate the origin of band structure
in a simple chemistry based picture, as given by Hoffmann [239] and Harri-
son [242].

In order to simplify our discussion we shall consider the bonding and re-
sulting band structure for a one-dimensional chain of atoms bonded through
their d orbitals as illustrated in Fig. 7.7. Magnetic effects are introduced into
our model in a Stoner-like fashion by assuming the existence of a molecular
magnetic field that splits the electron states into spin-states with orientation
parallel (spin-up) and antiparallel (spin-down) to the molecular field direction.

The bonding of the atoms in our chain, shown in Fig. 7.7a is assumed
to originate from the d electrons as in the Stoner model. Each atom has 10
d electrons, whose electronic states are described by five angular momentum
functions, taken as the well known real d orbitals dxy, dxz, dyz, dx2−y2 , d3z2−r2 ,
given in Table A.2, and either a spin-up sz = +1/2 or spin down sz = −1/2
function. For later use we have also listed in Table A.2 the form of s and
p orbitals.

The real dj orbitals can be conveniently visualized in terms of the charge
density |dj |2, as shown in Fig. 7.7b for selected orbitals. The individual or-
bital lobes along specific directions are marked as + or − or simply by color,
according to the sign of the wavefunction. For example dxz ∝ xz is positive
(dark shaded) along the directions (±x,±z) and negative (white) along the
directions (±x,∓ z). In molecular orbital theory the bonding is then simply
pictured as directional overlap between the dj orbital densities with recog-
nition of the signs. The bonding is strong when orbitals with the same sign
overlap and a bonding orbital is formed. When the sign is opposite an anti-
bonding orbital is formed. Electrons in bonding orbitals act as glue, those in
antibonding orbitals as a repulsive spring.

In band theory the process of combining orbitals on different atoms corre-
sponds to the formation of Bloch functions, which for the case of our chain is
written as

φj(k) =
∑

n

d
(n)
j ei n k a, (7.19)

where the index j labels the five Bloch functions or bands per spin, composed
of the orbitals d(n)

j on different atoms n. We have for k = 0
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φj(0) =
∑

n

d
(n)
j (7.20)

and for k = π/a

φj(π/a) =
∑

n

d
(n)
j ei n π =

∑
n

(−1)nd
(n)
j . (7.21)

The Bloch functions at k = 0 and k = π/a therefore are superpositions of
the d(n)

j orbitals on different atoms n with different phase factors +1 or −1.
As shown in Fig. 7.7b the resulting Bloch functions at k = 0 and k = π/a

are simply bonding or antibonding combinations of the d(n)
j orbitals. Bonding

combinations are always lower in energy than antibonding combinations and
this determines whether the bands run down or up from k = 0 to k = π/a,
as shown in Fig. 7.7c. The width of a particular sub-band depends on the dj

DOS

EF

Wavevector k

En
er

gy

a

d (1)

0 0

EF

+
+-

3z –r2 2d

dxz

3z –r2 2d

x y– 22ddxz

dxy

dyz

-

x

y

z

S

k = 0 k a= /(a)

(c) (d)

(b)

d (2) d (3) d (n)d (5)d (4)

x y– 22d

S

Fig. 7.7. Origin of band structure for a chain of d-orbital bonded atoms and assum-
ing that one spin band, the majority band, is completely filled. (a) defines the geom-
etry of atoms in a chain with atomic spacing a, (b) gives a simple chemistry based
picture how d orbitals on different atoms combine at points k = 0 and k = π/a to
form a band state, (c) gives the band structure corresponding to a d-orbital bonded
atomic chain, assuming a splitting ∆ between the spin-up and spin-down bands
caused by a molecular field in the up direction, (d) gives the density of states that
follows by summing over all states in (c). The separation of the top of the majority
band to the Fermi level, ∆S is called the Stoner gap
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orbital overlap, which in our case is largest for the d3z2−r2 orbitals that are
directed along the atomic chain.

A spin dependent valence band state ψi(k, r), labelled by a band index
i (1 ≤ i ≤ 10), can then be written in terms of the five dj orbital basis
functions centered on the atoms and wave-vector (k), position (r) and spin
(α=χ+ =↑, β=χ− =↓) dependent terms [243]

|ψi(k, r)〉 = |Rn,d(r)〉
5∑

j=1

ai,j(k) |dj χ
+〉 + bi,j(k) |dj χ

−〉 . (7.22)

We can also write a band state in terms of Yl,m = |l m〉 (l = 2) basis functions

|ψi(k, r)〉 = |Rn,l(r)〉 |φi(k)〉

= |Rn,l(r)〉
+l∑

m=−l

ci,m(k) |l mχ+〉 + ei,m(k) |l mχ−〉 . (7.23)

The above wavefunctions are written in a Slater–Koster tight binding for-
malism [244] and describe a band state in the presence of both exchange and
spin–orbit interactions (see Sect. 7.9.2 later). We have assumed that the radial
part Rn,l(k, r) = Rn,l(r) is the same for all basis functions Yl,m or dj and is
independent of k, which is a reasonable approximation. The spin-up coeffi-
cients a(k), c(k) and spin-down ones b(k), e(k) are determined by a suitable
band structure calculation, and obey the normalization condition

〈φi(k)|φi(k)〉 =
+2∑

m=−2

|ci,m(k)|2 + |ei,m(k)|2 =
5∑

j=1

|ai,j(k)|2 + |bi,j(k)|2 = 1 .

(7.24)
When summed over all possible k values in the Brillouin zone, correspond-

ing to the reciprocal space of the unit cell or Wigner-Seitz cell of the lattice,
one gets the DOS shown in Fig. 7.7d. The DOS is largest where the bands are
flat since at these energies many k points contribute. The electron states are
filled up to the Fermi energy.

If we only consider band states with energies above the Fermi energy EF

and we sum over all k-dependent states in the Brillouin zone, we obtain the
number of empty states or holes Nh,

Nh = N↑
h +N↓

h =
+2∑

m=−2

Nm =
+2∑

m=−2

∑
E>EF

i,k

|ci,m(k)|2 + |ei,m(k)|2

=
5∑

j=1

Nj =
5∑

j=1

∑
E>EF

i,k

|ai,j(k)|2 + |bi,j(k)|2 . (7.25)

Here Nm and Nj are the number of d holes, projected for the different states
Yl,m or orbitals dj .
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7.4.4 Density Functional Theory

Now that we have developed a basic understanding of the origin of k de-
pendent bands, we shall briefly give an introduction to the basic assumption
underlying modern band theoretical calculations, density functional theory.
For more thorough reviews the reader is referred to various reviews available
on the topic [222,245–248].

A band structure calculation starts from a certain atomic geometry, given
by the atomic positions in the crystal lattice. The real space is typically par-
titioned into regions around the atoms and interstitial regions and different
functions are used in the two regions to describe the electronic states. For ex-
ample, in the regions around the atoms the wavefunctions may consist of radial
functions and spherical harmonics while plane waves may be used in the inter-
stitial regions. The functions are made continuous by appropriate boundary
conditions. One now constructs the potentials in the two regions for solving
the time-independent Schrödinger equation using one-electron wavefunctions.
The total Hamiltonian is written within the Born-Oppenheimer approxima-
tion which assumes that the electronic and nuclear parts can be separated, and
the motions of the nuclei are neglected with respect to those of the electrons.
The electronic Hamiltonian has the general form of (6.6) and the Coulomb
part is of the form

HC(r) =
e2

4πε0

[
−
∑

i

Zi

|r − Ri|
+
∫

ρ(r′)
|r − r′| dr′

]
. (7.26)

Here Ri are the atomic coordinates, r specifies the electron coordinates and
ρ(r) = ρ↑(r) + ρ↓(r) is the total electron charge density. The potential (7.26)
may be obtained by solving Poisson’s equation in each of the two regions. The
exchange-correlation potential resulting from the symmetrization postulate
(or Pauli principle) is added to (7.26) and for magnetic materials it is charge
and spin dependent

Hxc[ρ(r), σ(r)] , (7.27)

where σ(r) = ρ↑(r) − ρ↓(r) is the spin density.
In practice, approximations have to be made in the calculation since it is

currently not possible to solve the many-body problem for the electrons in
the solid. The main idea of the important density functional theory (DFT) is
to describe the system of the N interacting electrons by its density ρ(r) and
not via a many-body wavefunction. This means that the description of the
system depends on three spatial coordinates and the spin, only, rather than
on N times more degrees of freedom. The use of a spin dependent density
results in two sets of single-particle wavefunctions, one for spin-up and one
for spin-down, as in the independent electron model. One may say that this
approach maps the many-body problem onto a system of noninteracting ficti-
tious particles with a certain density. The most successful first principles band
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theory today is based on DFT pioneered by Hohenberg-Kohn-Sham [210,211].
The theory is based on two theorems that can be stated together as follows,

Density functional theory expresses the total energy of an atomistic sys-
tem as a function of its electron density ρ. It can then be shown that:
• E(ρ) is at its minimum for the ground state density, that is a T = 0.
• E(ρ) is stationary with respect to first order variations in the density.

Because of the theorems above, DFT is well suited only for the treatment
of ground state properties. One cannot expect it a priori to apply to excited
states, as well. A very successful and widely used approximation for mag-
netic systems is DFT, expressed in the local (spin) density approximation or
L(S)DA. In this case the exchange correlation energy of an inhomogeneous
system is assumed to depend only on that of an electron gas evaluated at the
local electron density of each volume element, and the exchange-correlation
potential, given by (7.27), is expressed as an analytic function of ρ(r) and
σ(r). Several forms of this approximation exist in the literature. The basic
assumption underlying L(S)DA is a delocalized or itinerant behavior of the
valence electrons. Only with this assumption can one hope to replace the
detailed orbital-dependent atomic exchange-correlation potential with the av-
eraged one-electron potential for the homogeneous electron gas.

The results obtained by means of band theory for the electronic states of
solids may be compared to the band dispersion measured by means of angle
resolved photoemission [237, 249]. A celebrated case of the success of band
theory is Cu, as extensively discussed by Hüfner [237] and shown in Fig. 7.8.

The question arises why the calculated band dispersion for the electronic
ground state agrees so well with the results of photoemission which measures
the difference between the ground state and an excited state where an electron
has been removed from the solid. The answer is that such a comparison only
works if the correlation between the electrons is indeed negligible. This is of
course the assumption made in the independent electron model. If we take an
electron out of a band in Cu we change the electronic density of order 10−23.
If the electrons are truly independent their wavefunctions may be viewed as
being delocalized over the whole crystal and therefore each atom in the crystal
carries only a 10−23 part of the hole left behind. Thus the states probed by
photoemission are indistinguishable from those calculated in an independent
electron approximation.

Solids that are well described by band theory give photoemission spectra
that accurately reflect the electronic ground state.

Unfortunately, the agreement for magnetic metals is not as good [237,
249–251], owing to the presence of significant correlation effects, as will be
discussed in Sect. 7.6.3 later and in Chap. 12.
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Fig. 7.8. Calculated band structure of Cu metal in comparison with experimental
results obtained by angle resolved photoemission. Figure taken from Ibach and Lüth
[205] after data compiled by Hüfner [237]

7.5 Ligand Field Theory

Ligand field (LF) theory aims to explain the electronic states and energies of
transition metal ions when surrounded by other atoms, which are referred to
as ligands [140,228,252–254]. In contrast to band theory or molecular orbital
theory (see Fig. 7.12, below), LF theory does not treat the electronic states on
the central atom and on the ligands on an equal footing. The wavefunctions
or orbitals of the ligands do not enter at all. Only the splitting of states on
the central atoms is considered. The effect of the ligands is entirely taken into
account by symmetry and the strength of the “field” produced by them.

The theory originates from work by Bethe in 1929 [255] and van Vleck [256]
in 1935. It was originally referred to as “crystal field theory” and the original
idea was to use a pure electrostatic point charge model to calculate the local
electrostatic interaction between the negative charges on the ligands (neigh-
bors) and a valence shell electron on a central transition metal ion. It was
quickly recognized that a pure point charge model gave orbital splittings on
the metal atoms that were an order of magnitude smaller than those observed.
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Following ideas of van Vleck [256], modern ligand field theory therefore
includes the missing overlap of the valence electrons, e.g., that of the O 2p with
the metal 3d states. Fortunately this does not require a completely new theory
but rather one uses the electrostatic form of the Hamiltonian which correctly
describes the symmetry and simply fits certain ligand field parameters to fit
the experimentally observed orbital splitting.

The treatment of the magnetic properties of the transition metal oxides is
complicated by the fact that, for a given ionic configuration, one has to con-
sider two competing interactions of comparable strength (of the order of 1–
2 eV, see Fig. 7.5). One interaction is the intra-atomic Coulomb and exchange
interaction between the d electrons which in the free ions give rise to coupled
multiplet states 2S+1L through the coupling of the spins and orbital momenta
of the individual electrons in the d shell (L–S coupling). The other interaction
arises when the free ion is subjected to interactions with its neighbors in a
molecule or a solid. In transition metal compounds this inter-atomic interac-
tion is modeled by a ligand field approach [140,228,252–254]. In the literature
the topic of “ligand field theory” is typically treated by distinguishing two
cases. The case where the LF energy is smaller than the correlation energy
is called the weak field limit. When the LF interaction is stronger than the
electron–electron correlation one speaks of the strong field limit [140,204,228].

In modern calculations, the weak and strong field cases are treated by
two different approaches. In the weak field limit the most important inter-
action is the intra-atomic Coulomb and exchange interaction between the
electrons. Thus one uses an atomic multiplet theory that properly accounts
for intra-atomic correlation effects. The inter-atomic bonding modelled by the
weaker ligand field is accounted for by its symmetry and a scalable interaction
strength.

In practice, the advanced calculations are often carried out for a cluster
and include the ground state configuration with n electrons, excitations within
the ground state configuration, and higher energy configurations such as n±1
through a configuration interaction scheme. Within the configurations the
bonding is treated by LF concepts. As an example we cite the calculations for
the negatively charged cluster (NiO6)−10 [257–259].

In the strong field case the inter-atomic bonding is considered of prime
importance. It is treated in a LF approach which emphasizes the symmetry-
dependent interactions between one-electron orbitals, typically taken as the
real p and d orbitals. The weaker interactions between electrons are treated by
an averaged exchange correlation potential similar to molecular orbital theory
or a band structure approach.

In the following discussion we will not use the terms “weak” and “strong”
field theory, but instead use a terminology that emphasizes the way the cal-
culations are done in practice, namely independent electron LF theory and
multiplet LF theory. The two models may be summarized as follows.
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Independent electron LF theory starts with five one-electron d orbitals
and describes their splitting in terms of the symmetry and strength of
the LF of the neighbors.
• The orbitals are filled with electrons under observation of the Pauli prin-
ciple, and an ad hoc assumption of the size of the correlation (Coulomb
and exchange) energy relative to the LF splitting.
• A large correlation energy favors a high spin ground state, and a small
correlation energy a low spin ground state.

Multiplet LF theory starts with the correlated multiplet states 2S+1L of
the free ion, resulting from the Coulomb and exchange interactions.
• The symmetry group of the LF then determines the splitting of the
multiplets into irreducible representations (IRs).
• The energetic splitting of the IRs depends on the LF to correlation
energy ratio, and is given by a so-called Tanabe-Sugano diagram [253,260].

7.5.1 Independent-Electron Ligand Field Theory

In the independent electron LF approach one uses the three real pi orbitals
and/or five real di-orbitals given in Table 7.4, as basis functions.

The reasons for the extensive use of the pi and di orbitals are:

– Since the spin–orbit coupling is small, the ligand field can be assumed
to act on the orbital degrees of freedom only, described by the pi or di

orbitals.
– The orbitals are real and can therefore be used to picture bonding in the

three-dimensional real world.
– The pure orbitals are eigenfunctions of the LF Hamiltonian for most cases

of interest (see later).

As the spherical symmetry for the free ion is lowered to the appropriate
symmetry in the solid, the orbital degeneracy is lifted. Initially the calcula-
tion of the splitting was based on the point charge crystal electric field ap-
proach and the Hamiltonian was constructed for such a point charge model.
The matrix elements were calculated using an operator equivalence method
developed by Stevens and this approach dominated the literature for many
years [140]. Today one uses the elegant spherical tensor algebra developed by
Racah [181, 182] which is related to Stevens’ method [254]. In the spherical
tensor notation, the LF Hamiltonian has the form

HLF =
∞∑
k

k∑
q=−k

Bk
q C

(k)
q . (7.28)
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Table 7.4. Mathematical description of s, p, and d orbitals, pictured in Figs. 7.9
and A.3, in terms of spherical harmonics Yl,ml = |l, m〉. The orbitals are reala

s =
1√
4π

= Y0,0

px =

√
3

4π

x

r
=

1√
2
(Y1,−1 − Y1,+1)

py =

√
3

4π

y

r
=

i√
2
(Y1,−1 + Y1,+1)

pz =

√
3

4π

z

r
= Y1,0

dxy =

√
15

4π

xy

r2
=

i√
2
(Y2,−2 − Y2,+2)

dxz =

√
15

4π

xz

r2
=

1√
2
(Y2,−1 − Y2,+1)

dyz =

√
15

4π

yz

r2
=

i√
2
(Y2,−1 + Y2,+1)

dx2−y2 =

√
15

16π

(x2 − y2)

r2
=

1√
2
(Y2,−2 + Y2,+2)

d3z2−r2 =

√
5

16π

(3z2 − r2)

r2
= Y2,0

aThe orbitals oi are normalized according to
∫

o∗i oi dΩ =
∫ 2π

0

∫ π

0
o∗i oi sin θ dθ dφ

= 〈oi|oi〉 = 1.

The LF symmetry dictates which k, q values contribute to the sum. The “crys-
tal field parameters” or ligand field coefficients Bk

q depend on the positions
Ri and charges of the neighbor atoms (ligands) and in practice are treated
as adjustable. Racah’s spherical tensor operators C(k)

q depend on the angular
coordinates of the electrons on the central atom. They are listed in Table A.3
and are related to the spherical harmonics according to

C(k)
q =

√
4π

2l + 1
Yk,q . (7.29)

The matrix elements 〈l,m|C(k)
q |l′,m′〉 are given by the Clebsch-Gordon coef-

ficients or 3 − j symbols [181, 254]. Nowadays they are readily calculated by
standard computer programs, e.g., mathematica.

When for a certain LF symmetry the Hamiltonian (7.28) is diagonalized
in the di (or pi) orbital basis, the Hamiltonian is found to be diagonal for
all but the lowest symmetries. The eigenvalues associated with different di

eigenfunctions then form certain degenerate sets that correspond to the IR of
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Table 7.5. Abbreviated character tables for the cubic group O. We only show the
irreducible representations, their degenéracy given by the character of the identity
operation E, the coordinates (important for p orbitals), and their squares and binary
products (important for d orbitals) [183]. The brackets mean that the functions
together transform like the representation. For example, the functions 2z2− x2−
y2 = 3z2− r2 and x2− y2 together transform like the E representation. They are
therefore inseparable and degenerate and form the basis of E. In older texts [140]
the irreducible presentations are sometimes labelled in the Bethe notation which is
linked to that of Mullikan according to Γ1 ≡ A1, Γ2 ≡ A2, Γ3 ≡ E, Γ4 ≡ T1, Γ5 ≡ T2

O E

A1 1 x2 + y2 + z2

A2 1
E 2 (2z2− x2− y2, x2− y2)
T1 3 (x, y, z)
T2 3 (xy, xz, yz)

the LF symmetry group. The link between the IRs of a given symmetry group
and the degenerate eigenvalue sets of the LF Hamiltonian provides a powerful
tool to predict the splitting of the di orbitals from group theoretical symmetry
arguments alone. The relevant information is contained in the character tables,
which decompose the group into its IRs [183, 228, 253]. The character tables
also conveniently link the IRs with the specific pi or di-orbitals. As an example
we give in Table 7.5 an abbreviated character table for the cubic group O.
Throughout this book we shall use the IR notation of Mulliken as is common
in most texts today, and denote the IRs in an independent electron model by
small letters (e.g., t2g) and the IRs of multielectron configurations by capital
letters (e.g., T2g).

Table 7.5 identifies the px, py, and pz orbitals, which transform like x, y,
and z, with the IR T1 and the bracketed symbol (x, y, z) means that the
orbitals px, py, pz together transform like the T1 representation and are hence
degenerate and inseparable and not split by the cubic LF symmetry.

The orbitals dxy, dxz, dyz form the basis of the IR T2 and the orbitals
d3z2−r2 , dx2−y2 form the basis of the IR E. Thus in cubic symmetry the 3d
orbitals split into threefold degenerate T2 and twofold degenerate E states.
The splitting between the irreducible representations is determined by the
parameterized interaction strength and is commonly denoted 10Dq. The LF
splitting of the pure d orbitals for some symmetries is shown in Fig. 7.9. Note
that the tetragonal symmetries D4h corresponding to different in-plane and
out-of-plane coordinations are representative of geometries encountered at
surfaces or in thin films, as discussed in Sect. 7.9.2 later.
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Fig. 7.9. Ligand field splitting of energy levels for a single d electron in fields of
different coordination and symmetry. For the cases shown the central 3d ion is as-
sumed to be coordinated by electronegative ligands such a oxygen. On the left we
compare the splitting in the tetrahedral (Td) and octahedral Oh cubic symmetries.
For octahedral Oh and tetragonal D4h symmetries we have assumed equal interac-
tion strengths in the x − y plane and varied the interaction along z, as illustrated.
On the right are plotted the orbital densities (di)

2 of the LF eigenfunctions di

and the numerical sign of di wavefunction lobes are indicated on top of the charge
densities

The character tables also reveal when the individual pure pi and di or-
bitals can mix and cease to be good eigenfunctions [183]. The most important
rule is,6

Two orbitals |ol〉 and |on〉 can only be mixed by a ligand field if they
belong to the same irreducible representation of the symmetry group.

Inspection of the character tables shows that the pi orbitals are good eigen-
functions for all symmetries higher than monoclinic C2h, that is for all cases
with rectangular unit cell axes. Similarly one finds from the character tables
that the dx2−y2 and dxy orbitals can mix when the point group symmetry
is lowered from C4v to C4h. When the symmetry is lowered to the highest
orthorhombic point group D2h, two things happen. First, all degeneracies are
lifted since the yz and xz orbitals now belong to different irreducible represen-
tations. Second, the functions 3z2−r2 = 2z2−x2−y2 and x2−y2 now belong

6Note that this does not apply to IRs that in the character tables are listed in
brackets, since they together transform like the representation and are inseparable
and degenerate.
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to the same Ag representation and they can mix. The dx2−y2 and d3z2−r2

orbitals cease to be good eigenfunctions of the LF and the new eigenfunctions
are linear combinations of the two.

In general, one can write the independent electron LF eigenfunctions as a
linear combination of d-orbitals and by use of Table 7.4 they maybe written
in the general forms (ignoring spin)

|φd〉 = Rn,d(r)
5∑

i=1

ai |di〉 = Rn,d(r)
l=2∑

m=−l

bm Yl,m. (7.30)

Here the complex coefficients ai and bm fulfill the normalization condition∑
m |bm|2 =

∑
i |ai|2 = 1. There will be 2l + 1 LF states for a given l value if

spin is neglected. If we include spin, each LF state can contain two electrons,
so when the shell l is full it will contain 2(2l + 1) electrons, e.g., there are a
maximum of 2s electrons, 6p electrons, 10d electrons, 14f electrons etc. We
shall use the wavefunctions in (7.30) in either basis, depending on the problem.
The general form of the LF wavefunctions reveals what will turn out to be of
great importance in our later discussion of the spin–orbit interaction in solids
(Sect. 7.9 later). It can be stated as follows.

In the independent electron LF model, the LF eigenfunctions contain mix-
tures of different m values, and therefore m ceases to be a good quantum
number.

The tetrahedral Td and octahedral Oh symmetries are of particular im-
portance because the effect of lower symmetries can often be treated as a
perturbation of these two basic symmetry types. From Fig. 7.9 we see that
in Td symmetry the triplet is higher in energy than the doublet while the
opposite holds in Oh symmetry. This can be explained by the original point
charge concept of the LF. In this model Fig. 7.9 depicts an atom with a single
d electron in the field of negatively charged ligands, and we therefore expect
the central atom orbitals that are pointed toward the ligand positions to be
higher in energy than those orbitals that avoid the ligand positions.7 In Oh

symmetry the dx2−y2 and d3z2−r2 orbitals point directly to the ligand po-
sitions and are therefore higher in energy because of electrostatic repulsion
effects. In Td symmetry the ligands lie along the body diagonals of the cube
shown in Fig. 7.9. The dx2−y2 and d3z2−r2 orbitals of the central atom point
toward the centers of the cube faces and the dxy, dxz, dyz orbitals point toward
the centers of the cube edges. The latter points are closer to the ligands by
a factor

√
2 and the dxy, dxz, dyz orbitals are therefore higher in energy. If all

7When this argument is applied to a hole rather than an electron in the d shell,
one sees that an electron configuration dn and the corresponding hole configuration
d10−n should have inverted energy level schemes.
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Fig. 7.10. Ligand field splitting of d orbitals in an octahedral (Oh) ligand field,
resulting in lower energy t2g and higher energy eg orbitals. On the right we show the
filling of the orbitals for the cases of Fe3+ (d5) and Fe2+ (d6), under two assumptions.
An exchange energy larger than the t2g − eg splitting favors parallel spin alignment
and we obtain a high spin ground state. If the exchange energy is smaller than the
t2g − eg splitting we obtain a low spin ground state

other things are equal the tetrahedral splitting is smaller, with a value of 4/9
of than the octahedral one. We can make the following general statement.

Metal d orbitals that point more toward the ligand positions are higher
in energy.

The LF approach is based on considering the possible states of a single d
electron in a LF and is therefore based on a one-electron model. Interactions
between electrons are only considered in an ad hoc fashion in a second step.
One distinguishes two important cases corresponding to a “high spin” or “low
spin” ground state. If the exchange interaction is large relative to the LF split-
ting, all five LF levels are consecutively filled with electrons of the same spin,
and only then are electrons with opposite spin added, as shown in Fig. 7.10
for the case of octahedral symmetry Oh and Fe3+ (d5) and Fe2+ (d6). This
corresponds to a filling of the energy levels according to Hund’s first rule as
discussed in Sect. 6.5.

In contrast, if the exchange interaction is small relative to the LF split-
ting, as assumed previously in Fig. 6.13 and shown for Fe on the right side of
Fig. 7.10, then the fourth and fifth electrons are not in the high-energy eg state
but instead are also located in the lower t2g state. Since the Pauli principle
requires them to be of opposite spin than the first three electrons we obtain a
low spin ground state. For Fe3+ (d5) we are left with only one uncompensated
spin and hence S = 1/2. For Fe2+ (d6) all spins are compensated and S = 0.
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The ground states for the configurations d4−d7 may therefore consist of either
a low-spin or high spin configuration. We can summarize as follows.

For the d4−d7 configurations, the electron filling of the 10 possible d spin–
orbitals leads to two distinct ground states, depending on the relative size
of the electron correlation energy relative to the LF splitting.
• If the electron correlation energy is larger (or “high”), the ground state
has high-spin.
• If the electron correlation energy is smaller (or “low”), the ground state
has low-spin.

Jahn–Teller Effect

Sometimes the filling of the orbitals with electrons according to the Pauli
principle may also affect the local structure around the transition metal ion,

Fig. 7.11. Jahn–Teller effect for Mn3+ (3d4). The Mn3+ ion (black) is located in the
center of an oxygen octahedron, as shown in the lower part of the figure. When the
octahedral symmetry is distorted into the shown tetragonal symmetry, the energy
of the d3z2−r2 orbital which points along the elongated bond direction (z) is lowered
in energy (compare Fig. 7.9). Since the lower d3z2−r2 orbital is filled and the higher
dx2−y2 orbital is empty the system can lower its energy. Since both of the split t2g
states are filled and the center of gravity is preserved the t2g states do not contribute
to the overall energy saving
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a phenomenon known as the Jahn–Teller effect. A prominent Jahn–Teller ion
is Mn3+. When the ion in the high-spin configuration, shown in Fig. 7.11, is
placed in an octahedral LF it contains a single electron in the upper eg state.
The system can lower its energy by a tetragonal distortion which causes a level
splitting. The lowering in total energy is due to the lowering of one of the eg
orbitals, as shown for the case of a bond lengthening along the z axis, which
causes the singly filled d3z2−r2 orbital to drop in energy below the empty
dx2−y2 orbital. The filled lower t2g state also splits but retains its center of
gravity without any net change in energy. In contrast, for Mn4+ (d3), the eg
state is empty and the distortion would yield no net gain in energy. Hence no
Jahn–Teller distortion occurs.

Molecular Orbital Theory

LF theory focuses on the energy splitting of the orbitals on a chosen atom un-
der the influence of the “field” from the ligands. It is largely empirical in nature
and allows the description of experimental data in terms of a few parameters.
In contrast, molecular orbital theory is an ab initio theory that properly de-
scribes the overlap and mixing of the wavefunctions of bonded atoms. For 3d
transition metal oxides, for example, we have seen that LF theory describes
the splitting and filling of the 3d orbitals on the central transition metal atom
in the “field” of the oxygen neighbors. We did not consider the oxygen orbitals
at all. In contrast, molecular orbital theory considers in detail the orbitals on
the central transition metal atom and the oxygen neighbors.

This is illustrated in Fig. 7.12 for a 3d atom surrounded by six oxygen
atoms in an octahedral arrangement. The inset shows the typical LF picture,
where the 3d states are split into lower energy t2g and higher energy eg states.
In molecular orbital theory one starts with the five atomic di orbitals on the
central metal atom and three pi orbitals (see Table 7.4) on each O neighbor.
Since only orbitals belonging to the same irreducible representation can mix,
we can form linear combinations of a given di orbital and symmetry adapted
combinations of pi orbitals on the oxygen ligands, as done in Fig. 7.12. In all
cases the total symmetry of the combined pi orbitals on the oxygen neighbors
is either eg or t2g and matches the symmetry of the central di orbital. The eg
orbitals form σ bonds and the t2g orbitals π bonds, as revealed by the orien-
tation of the p orbitals parallel (σ) and perpendicular (π) to the interatomic
O–M axes. By forming bonding (matching phases) and antibonding (opposite
phases, denoted with an asterisk) combinations of the di orbitals with the
symmetry adapted pi orbitals we obtain the energy level diagram shown in
Fig. 7.12. In constructing the diagram we have assumed that the metal 3d
states lie higher in energy than the O 2p states.

The composition of the bonding and antibonding wavefunctions depends
on the amount of hybridization. If the hybridization, i.e., the 2p− 3d mixing
is small, the lower-energy bonding states are mainly oxygen 2p in charac-
ter while the higher-energy antibonding states are mostly 3d like. This is, in
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Fig. 7.12. Illustration of molecular orbital theory for a central metal atom, sur-
rounded by a six oxygen atom octahedron. The coordinate system is specified in
the top right inset. The bonding is caused by orbital overlap of the central atom 3d
orbitals with a symmetry adapted combination of oxygen 2p orbitals. The bonding
orbitals have mostly oxygen character and the antibonding orbitals (marked with an
asterisk) consist of mostly metal orbitals. We also show the correspondence between
the e∗g and t∗2g molecular orbitals and the eg and t2g orbitals in a ligand field picture
in the upper right inset. The number of oxygen p states is given in brackets. Note
that the symmetry adapted p states that mix with d3z2−r2 contains 8 pi orbitals,
because along z two p orbitals are needed to match the 3z2 − r2 = 2z2 − x2 − y2

symmetry. In the lower left inset we define the charge transfer energy ∆c as the
average energy required to excite an electron from the ligand-like bonding to the
metal-like antibonding state

fact, the typical situation and we can therefore identify the e∗g − t∗2g separa-
tion with the LF d orbital splitting 10Dq, as indicated in the top right inset.
A more complete picture would include 4s and 4p states on the transition
metal atom but we shall neglect them here and simply assume that the elec-
trons are transferred to the oxygen 2p states because of the large electroneg-
ativity of oxygen. The oxygen 2p states are therefore completely filled with
6 electrons/atom and the metal 3d electrons fill the e∗g and t∗2g orbitals, in
agreement with the LF model.

We also show in the bottom left inset another basic feature of the molecular
orbital model. If we ignore the splitting into eg and t2g states the antibonding
and bonding states are separated by an energy ∆c. By using the label L for
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Fig. 7.13. Illustration of the charge transfer concept. We show the bonding and
antibonding states in a molecular orbital picture and also the corresponding config-
urational energy picture

ligand we can denote the filled bonding states 3dnL and the partially filled
antibonding states with (3dnL)∗. Because for weak hybridization the bonding
state is mostly ligand-like and the antibonding state mostly metal-like, we see
that the energy ∆c can be thought of as an electron excitation that creates
a hole in the ligand-like bonding state and adds an electron in the metal-
like antibonding state. For this reason, ∆c is called the (ligand to metal)
charge transfer energy and the excitation 3dnL→ (3dnL)∗ maybe pictured in
terms of a configurational energy diagram [261] as illustrated in Fig. 7.13. It is
important to distinguish the molecular orbital picture which shows the ground
state level diagram and the configuration picture which gives the energies of
the ground state and excited state configurations.

The charge transfer energy ∆c involves an excitation from the ground
state 3dnL with energy ε(3dnL) to an excited state with energy
ε(3dn+1L−1) according to

ε(3dnL) +∆c = ε(3dn+1L−1) . (7.31)

In the final state there is a hole in the ligand-like bonding state and an
added electron in the 3d-like antibonding state.

We shall come back to the important charge transfer concept later in
Sect. 7.6.2.

7.5.2 Multiplet Ligand Field Theory

In independent electron LF theory discussed earlier, we have first constructed
an energy level scheme appropriate for a single electron. We have then sim-
ply filled other electrons into this scheme by assuming that the interactions
between them are weak and that only the Pauli principle needs to be taken
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care of. This approach is similar to that taken in a band structure calcula-
tion, where the exchange correlation potential is treated in some averaged
fashion, and the Stoner splitting takes care of the Pauli principle. Similar to
independent electron band theory, the independent electron LF theory fails if
the correlation between the electrons is strong.

In contrast to band theory, it is possible in LF theory to accurately ac-
count for strong electron correlation effects. This is facilitated by a cluster
approach where one only calculates the correlation for a central atom with-
out considering the long range k-dependent details of the band structure.
The LF approach can be viewed as a flat-band model, where the dispersion
throughout the Brillouin zone is very weak and the bonding interactions are
localized around individual atoms. Because of this simplifying assumption one
can work out in detail the intra-atomic d−d interactions in the valence shell
and then introduce the effect of bonding as a mixing and splitting of the free
ion terms 2S+1L by the ligand field. This is done using the powerful concepts
of group theory. We shall refer to this multielectron interaction model as mul-
tiplet LF theory. The development of this theory was pioneered by Tanabe,
and Sugano in 1954 [260] and expanded in the book of Sugano, Tanabe, and
Kamimura [253] published in 1970. Today, calculations are often carried out
using the LF multiplet program developed by Thole et al. [262, 263], which
combines Cowan’s atomic Hartree-Fock program [182, 264] and the general
group theoretical program by Butler [265]. Calculation procedures are de-
scribed in more detail by de Groot [266,267].

The procedure is as follows. One assumes a certain ligand field symmetry
and then uses group theory to see how the free ion terms 2S+1L split into the
IRs of the LF symmetry group. The situation is simplified by the fact that
the spin orbit coupling is weak relative to the d−d correlation and the LF
energy as shown in Fig. 7.5. This means that the orbital (charge) and spin
degrees of freedom to first order remain uncoupled and there is no mechanism
for the electrostatic LF to talk to the spin. Therefore in first order one only
needs to consider the effect of the LF on the orbital angular momentum L. The
general group theoretical decomposition of the angular momenta L = 0, . . . , 6,
corresponding to the terms S, . . . , I, into the IRs for cubic symmetry is given
in Table 7.6.

Table 7.6. Splitting of orbital terms into irreducible representations (IRs) for a
cubic ligand field

L term IRs

0 S A1

1 P T1

2 D E + T2

3 F A2 + T1 + T2

4 G A1 + E + T1 + T2

5 H E + 2T1 + T2

6 I A1 + A2 + E + T1 + 2T2
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Table 7.7. dn (n = 1, . . . , 10) ground states of transition metal ions in high and
low spin configurations. For the free ions we list the lowest energy 2S+1L terms and
for the ions in an octahedral (Oh) ligand field we list the irreducible representation
of the lowest energy state. The degeneracies of the irreducible representations are 1
for A, 2 for E and 3 for T

state free ion octahedral configuration
term(s) ground state

high spin

3d1 2D 2T2 (t↑2g)
1

3d2 3F 3T1 (t↑2g)
2

3d3 4F 4A2 (t↑2g)
3

3d4 5D 5E (t↑2g)
3 (e↑g)

1

3d5 6S 6A1 (t↑2g)
3 (e↑g)

2

3d6 5D 5T2 (t↑2g)
3 (e↑g)

2 (t↓2g)
1

3d7 4F 4T1 (t↑2g)
3 (e↑g)

2 (t↓2g)
2

3d8 3F 3A2 (t↑2g)
3 (e↑g)

2 (t↓2g)
3

3d9 2D 2E (t↑2g)
3 (e↑g)

2 (t↓2g)
3 (e↓g)

1

3d10 1S 1A1 (t↑2g)
3 (e↑g)

2 (t↓2g)
3 (e↓g)

2

low spin

3d4 3(P, H) 3T1 (t↑2g)
3 (t↓2g)

1

3d5 2(I) 2T2 (t↑2g)
3 (t↓2g)

2

3d6 1(G, I) 1A1 (t↑2g)
3 (t↓2g)

3

3d7 2(G) 2E (t↑2g)
3 (t↓2g)

3 (e↑g)
1

For a dn configurations with n = 1, . . . , 10 one obtains the free ion terms
2S+1L listed in Table 7.7. The energetic order of the various free ion terms
for a given dn configuration is determined by diagonalizing the Hamiltonian
∼1/rij describing the interactions between the d electrons, using methods
developed by Slater [225, 227]. The Slater integrals8 F k and Gk denote the
Coulomb and exchange terms, respectively, and the expectation value of the
Hamiltonian is given by the sum

E(SL) =
∑

k

ak F
k + bkGk = a1A+ a2B + a3C , (7.32)

where the coefficients ak, bk are angular momentum dependent quantities.
In our case of n equivalent d orbitals (dn) we have F k ≡ Gk and the term
splitting can be written in terms of the Slater integrals F k, only. The quantities
A,B, and C are the so-called Racah parameters which combine certain Slater
integrals. Tables of the term energies in terms of the Racah parameters are
found in text books [181,228,253].

8Note that there is a difference between the Slater parameters, written F k and
Gk, and the Condon–Shortley [224] parameters Fk and Gk [181,253].
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For a given dn configuration the lowest of all possible free ion terms
2S+1L [181, 183, 253], is that of maximum S and L according to Hund’s rule
discussed in Sect. 6.5. For a weak LF interaction, i.e., the high spin case, one
only needs to determine the lowest-energy free ion term and then consider
its splitting into IRs of the LF symmetry. The lowest IRs for the case of oc-
tahedral symmetry are listed in Table 7.7. The so-determined multielectron
ground state can also be written in terms of the spin dependent occupation
of the one-electron orbitals, (t↑2g)

i (e↑g)
j (t↓2g)

k (e↓g)
m with i+ j+k+m = n, as

shown on the right in the Table. Note that Sugano et al. [253] use the notation
dε for t2g and dγ for eg.

The behavior of the electronic states for the various dn configurations as
a function of the ligand field strength is usually pictured in a Tanabe–Sugano
diagram [260], which is shown for d5 in Fig. 7.14. The diagram is a plot of the
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Fig. 7.14. Tanabe–Sugano diagram for the d5 electron configuration in an octa-
hedral (Oh) ligand field. Shown are the LF energies E, normalized to the Racah
parameter B, plotted as a function of the cubic splitting parameter Dq, again nor-
malized to B. On the left the free ion multiplets 2S+1L are shown. As a function of
Dq/B the multiplets split into the irreducible representations of the Oh group. Near
Dq/B � 2.75 the LF splitting relative to the Coulomb energy B becomes so large
that the high-spin case switches to the low-spin case, as indicated by a break in the
curves. The respective ground states for the two cases are those listed in Table 7.7
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level splitting as a function of the cubic LF strength Dq divided by the Racah
parameter B. The complete set of diagrams for all dn configurations has been
reproduced in many texts, e.g., [140,183,228,253].

As the ligand field strength increases we have seen above that the high
spin turns into a low spin configuration for the cases d4, d5, d6, and d7. The
transition from high to low spin occurs when the value of Dq/B is in the range
2–3 and at this point the Tanabe–Sugano diagrams for d4 − d7 show a break.
In the low spin state the LF ground state IR originates from one or more
2S+1L terms, which for the free ion lie higher in energy. The relevant states
for the low spin cases are also listed in Table 7.7.

The correspondence between the multiplet LF model and the independent
electron LF model is illustrated for the case of a d2 configuration in Fig. 7.15.
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Fig. 7.15. Energy levels for a d2 electron configuration for three important cases.
On the left we show the effect of the Coulomb and exchange interactions resulting
in multiplets 2S+1L of the free ion. In the middle we show how the two triplet
multiplets split under the action of an octahedral Oh ligand field, which is assumed
to increase in strength from left to right. The levels are labelled by the irreducible
representations of the Oh group. All states are gerade, and the g subscript has been
omitted. On the right we show the strong LF field limit where the Coulomb and
exchange interactions are neglected. The excited states t2e and e2 lie above the
ground state by 10Dq and 20Dq, respectively. For all levels the total degeneracy is
given in brackets
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As the LF strength is increased it mixes the free ion ground state 3F with the
excited state 3P . In the strong field limit, shown on the right, the LF ground
state is the (t↑2)

2 configuration, expected from the independent electron LF
model. The excited states correspond to the spin-preserving excitation of, first,
one electron to the state (t↑2)

1 (e↑)1 which is higher by 10Dq and then both
electrons to a state (e↑)2 which lies 20Dq above the ground state. On the right
of the figure we have shown the various filling possibilities that determine the
orbital degeneracy of the respective configurations. The spin degeneracy in all
cases is 2S+1 = 3. Figure 7.15 demonstrates a very important general point.
We see that the multielectron LF states are mixtures of different L values so
that L is no longer a good quantum number. We shall see later in Sect. 7.9
that this complicates things when we consider the effect of the spin–orbit
interaction. We therefore need to remember this point.

For a multielectron system the LF mixes states of different L and therefore
L ceases to be a good quantum number.

For the high spin case, the splitting of the free ion dn configurations in the
LF exhibits a certain symmetry as shown in Fig. 7.16. There are two important
systematics in Fig. 7.16. First, we find the same splitting patterns for dn and
dn+5. This arises because for the high spin case we fill the orbitals according
to Hund’s rule, and therefore repeat the filling process with opposite spin
after five electrons. Second, we see that the patterns for dn and d10−n are
just inverted. This comes about because of the equivalence of electrons and
holes in the d-shell, except for their sign. For example, the LF splitting of
eight electrons corresponds to that of two holes, except that the sign of the
LF interaction changes sign and the level diagram is turned upside down. We
can summarize as follows.

In the absence of spin orbit coupling, the LF diagram for a high spin dn

electron configuration in cubic symmetry is the same as that of the dn+5

configuration.

The dn LF diagram for n electrons, when turned upside down, is
that for n holes.

7.6 The Importance of Electron Correlation and Excited
States

In this section we will use elements of band theory and ligand field theory dis-
cussed earlier in conjunction with new concepts regarding excited electronic
states to understand the electronic structure of transition metal oxides. As
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Fig. 7.16. Lowest energy LF energy levels for all dn electron configurations assuming
octahedral symmetry and high spin. Shown are the orbital multiplet ground states
L for the dn configurations with their degeneracy 2L + 1 indicated in brackets. We
have ignored the spin–orbit coupling so that the ligand field acts only on the orbital
degrees of freedom. The spin multiplicities for all dn configurations are given in
Table 7.1. All LF states are labelled by their irreducible representations and their
degeneracies are shown. The magnitude of the cubic LF parameter Dq differs for
different ions. The scale of the diagrams roughly correspond to the splitting observed
for the 3d ions in aqueous solutions where the most complete data exists [140]. For
reference, the total splitting for d1 (Ti3+) has a value 10Dq ∼ 2.5 eV

briefly mentioned in Sect. 7.3, it became clear in the late 1930s that the insu-
lating nature of many of the transition metal oxides could not be explained
by theories that were based on the independent electron model. We will now
show that the key to the insulating behavior lies in two basic coupled concepts,
electron correlation and the importance of excited states.

7.6.1 Why are Oxides often Insulators?

Based on the success of band theory to explain many of the important prop-
erties of the 3d transition metals, one may be inclined to use the same theory
for the description of transition metal oxides, as well. In a simple model one
would start with the atomic binding energies of the metal (M) and oxygen (O)
valence electrons and form bands by bringing the atoms together as schemat-
ically shown in Fig. 7.17 for the metals and their oxides. From these simple
arguments one would expect the oxides to be conductors because the Fermi
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Fig. 7.17. Expected electronic structure for 3d transition metals and their oxides in
the band model. We have plotted how the atomic valence orbitals, which are located
at different binding energies, are expected to split under the influence of bonding
interaction between the orbitals. We have assumed the atoms to be separated by
a distance a, so that the bonding increases with 1/a. The lack of direct d-orbital
overlap for the oxides leads to a reduced band width and to their correlated nature

level falls into the partially filled d band. Even when the various interactions
in transition metal oxides are considered in great detail in modern band cal-
culations, the basic picture remains similar to that shown in Fig. 7.17. While
small band gaps may be obtained by state-of-the-art band calculations due to
splittings of the 3d states, e.g., by inclusion of antiferromagnetic order, a main
problem remains. It is the experimental fact that many oxides are insulators
with large band gaps of several eV [234,268].

Before we resolve the band gap problem we need to briefly mention the
electronic configurations encountered in typical transition metal ions. The
number of d electrons of the often encountered di- and tripositive ions of
the first series of transition metals are listed in Table 7.8. In their lowest
energy states none of the transition metal ions has any electrons in the 4s
and 4p orbitals since they have been transferred to the electronegative lig-
ands.9 Also, the oxygen 2p states are full and lie below the 3d states as
schematically illustrated in Fig. 7.17. To first order one can therefore con-
centrate on the energetic structure and splitting of the 3d states which is

9The hybridization of the Ni 4s, p states and the ligand 2p orbitals was not specif-
ically shown in Fig. 7.12, but we note that the resulting bonding and antibonding
molecular orbitals are important for the formation of a covalent bond [204].
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Table 7.8. Number of 3d electrons in the di- and tri-positive ions of the first series
of transition metals. In their lowest energy states none of the ions has any electrons
in the 4s and 4p orbitals

Sc Ti V Cr Mn Fe Co Ni Cu Zn

M2+ 1 2 3 4 5 6 7 8 9 10

M3+ 0 1 2 3 4 5 6 7 8 9

determined by considering the relative size of the intra- and extra-atomic in-
teractions of a 3d ion that is surrounded by oxygen ligands, as illustrated
in Fig. 7.5.

7.6.2 Correlation Effects in Rare Earths and Transition
Metal Oxides

Historically the understanding of electron correlation and verification of the
associated theoretical concepts was based on the interpretation of the macro-
scopic properties like transport, susceptibility, specific heat etc. While in prin-
ciple it was clear for some time that electron spectroscopies in the form of
photoemission, inverse photoemission, core level photoemission, and X-ray
absorption must contain valuable information on correlation effects, it was
not recognized until the mid 1980s that the spectroscopic data contained def-
inite systematics that could be cast into a tractable theoretical model. The
seminal work was the analysis of the spectra of Ce intermetallics by Gunnars-
son and Schönhammer in 1983 [269,270], which showed that the excitation and
resulting correlation effects could be explained in a single underlying model
which provides a criterion whether a material is “correlated” or not. Below
we present the experimental basis for the Gunnarsson–Schönhammer model.

Gunnarsson-Schönhammer Model: Rare Earths

In a band-like picture one would expect the photoemission spectrum of the
half filled Gd 4f shell, corresponding to a 4f7 ground state configuration, to
consist of a narrow band at the Fermi level EF. Similarly, if the unfilled half of
the 4f shell is measured in inverse photoemission one would expect to see it
on the other side of the Fermi level. The measured spectra look very different
from this expectation. One observes a band well below and one well above
EF, as shown in Fig. 7.18 for Gd metal.

The band-like picture therefore gives the incorrect result. Let us there-
fore consider the multiplet LF model which accounts for intra-atomic corre-
lations. When a photoelectron is removed from the 4f shell the excited Gd
atom is left in a 4f6 configuration, which has as the lowest states the multi-
plets 7F0,1,2,3,4,5,6. The splitting between the spin–orbit states J = 0, . . . , 6
is expected to be of order 1 eV or less, so that the photoemission spectrum
should consist of a broad peak, composed of these unresolved components.
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Fig. 7.18. X-ray photoemission spectrum (XPS) (left) and Bremsstrahlung isochro-
mat spectrum (BIS) (right) for Gd metal [271], which has a 4f7 ground state config-
uration. The spectra are aligned at the experimentally determined Fermi level (EF).
Vertical bars indicate the positions and intensities of the lowest energy 2S+1LJ mul-
tiplet manifolds of the final state configurations 4f6 and 4f8. The lowest energy
multiplets according to Hund’s rules, 7F0 of the XPS final states, and 7F6 for the
BIS final states are specifically marked (see Table 7.1)

The average peak position is determined by the average difference of the fi-
nal state multiplet energies ε(4f6, 7F0,1,2,3,4,5,6) relative to the ground state
energy ε(4f7, 8S7/2), as illustrated in Fig. 7.19.

If we reference both these energies to the Fermi energy EF, the measured
photoemission peak should fall at an electron kinetic energy (which is nat-
urally measured relative to the vacuum level EV) that is determined by the
energy balance equation (see Fig. 7.19)

Ekin = hν − ΦW −
[
ε(4f6, 7F0,1,2,3,4,5,6) − ε(4f7, 8S7/2)

]
︸ ︷︷ ︸

∆εXPS

, (7.33)

where ΦW = EV − EF > 0 is the work function and EB = −∆εXPS < 0 is
called the XPS binding energy relative to the Fermi level. By choosing it to be
a negative number we follow the intuitive notion that the photoemission peak
will lie at a negative energy below the Fermi level which is typically chosen
as the zero of energy.

The inverse XPS photoemission spectrum, called Bremsstrahlung isochro-
mat spectrum (BIS), is recorded by adding a high energy (of order 1 keV)
electron to the sample and measuring the X-ray emission spectrum of the elec-
tron dropping down into the 4f shell [272, 273]. Similarly, when low electron
energies are employed one has the inverse ultraviolet photoemission (UPS)
process and we shall refer to this case simply as inverse photoemission spec-
troscopy or IPES [274, 275]. The BIS or IPES final state consists of a Gd
atom with a 4f8 configuration. Because of the equivalence of fn and f14−n

(electrons and holes) the XPS (4f6) and BIS (4f8) final states both consist of
lowest-energy 7F0,1,2,3,4,5,6 multiplets. If the incoming electron has an energy
Ekin relative to the vacuum level, and we reference the initial and final state
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Fig. 7.19. Definition of energies associated with different electronic configurations
(ground and excited states) and their differences, which are measured in photoemis-
sion and inverse photoemission spectroscopies as ∆εXPS and ∆εBIS. The work func-
tion is defined as ΦW = EV − EF > 0 and we define EB = −∆εXPS < 0 as the PES
binding energy relative to the Fermi level. The sum of the energies measured in pho-
toemission and inverse photoemission gives the Hubbard U as U = ∆εXPS + ∆εBIS

multiplet energies ε(4f7, 8S7/2) and ε(4f8, 7F0,1,2,3,4,5,6) to the Fermi level,
we observe a peak at the photon energy

hν = Ekin + ΦW −
[
ε(4f8, 7F0,1,2,3,4,5,6) − ε(4f7, 8S7/2)

]
︸ ︷︷ ︸

∆εBIS

, (7.34)

where ∆εBIS > 0 may be called the IPES binding energy. When the measured
spectra are aligned relative to the Fermi level, where all intensity drops to
zero, we obtain Fig. 7.18. We see that by combining both spectra one can
determine U = Uff as the difference between the peak positions measured in
XPS and BIS. We have the following important result.

The onsite Coulomb energy U is the energy it costs to create a positive
and a negative ion from two neutral atoms on sites i and j, according to,

ε(fn
i ) + ε(fn

j ) + U = ε(fn−1
i ) + ε(fn+1

j ). (7.35)
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We note that despite the large energetic splitting of the filled and empty
4f bands which are located well away from EF, Gd is still a metal due to the
presence of the 5d and 6s, p valence electrons which form a band across the
Fermi level, as seen in Fig. 7.18.

Zaanen-Sawatzky-Allen Model: Transition Metal Oxides

Gunnarsson and Schönhammer’s work on 4f systems was extended in 1984/85
to the transition metal oxides by three groups, Fujimori et al. [257, 258],
Hüfner [276–278], and Zaanen, Sawatzky, and Allen [261]. Today, this work
constitutes the basis for dividing the behavior of transition metal oxides
into two main categories: Mott-Hubbard compounds and charge transfer com-
pounds [234,268], and the associated model is often referred to as the Zaanen-
Sawatzky-Allen model. In the following, we shall touch upon these general con-
cepts not only because of their great importance in modern condensed matter
physics but also because we shall use them later in the treatment of indirect
exchange.

Electron excitation processes in oxides are governed by two fundamental
energies, the Coulomb energy U and the charge transfer energy ∆c, which are
defined as follows:

– The intra-atomic Coulomb energy U = Ull for a shell l of a given atom is
defined in (7.35) as the energy required to remove an electron from shell
l in one atom and add it to the shell l in a second atom.

– The charge transfer energy ∆c is defined in (7.31) as the energy required
to excite an electron from the ligand-like (O 2p) states to the metal-like
(M 3d) states. The excitation occurs within the same electronic configu-
ration and does not involve any change in Coulomb energy.

With these definitions we can classify transition metal oxides as follows:

Mott-Hubbard compounds are defined by ∆c > U , so that the insulating
gap is determined by U .

Charge transfer compounds are defined by U > ∆c and the insu-
lating gap is determined by ∆c.

In Mott-Hubbard compounds the separation ∆c between the metal-like
states and oxygen-like states (see Fig. 7.13) is larger than the Coulomb energy
U . This situation is illustrated in Fig. 7.20. For ∆c > U the lowest energy
excitations correspond to transfer of an electron from one metal atom to
another, as illustrated on the left of Fig. 7.20, assuming an antiferromagnetic
ground state. An electron of a given spin is transferred to another metal site
which contains an opposite spin electron. This costs an energy U . In the
excited state one of the metal atoms has an electron less and the other an
electron more than in the ground state. The corresponding diagram of the
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Fig. 7.20. Illustration of the concepts underlying Mott–Hubbard insulators, as-
suming a transition metal oxide. On the left we show a molecular orbital diagram
of a local metal-oxygen-metal cluster and the spin structure corresponding to an
antiferromagnetic ground state, with opposite spins on each metal atom. Electron
transport is envisioned by moving an electron from one to another metal atom,
costing an energy U . In the middle we picture the energy of the dn ground state
configuration and various excited configurations. The lowest-energy excited config-
urations are assumed to be ionic, dn+1 and dn−1, similar to Fig. 7.19. Other excited
state configurations involving the charge transfer energy ∆c (see Fig. 7.21 below)
are assumed to be higher in energy. On the right we show the energies of the ex-
cited ionic configurations when plotted relative to the Fermi level EF = 0. These
configurations are measured in photoemission and inverse photoemission. Note that
the charge neutral configurations shown in white shading dn and dn+1L−1 are not
observed experimentally. The system is seen to be an insulator with a gap energy U

configurational energies associated with the dn ground state and the dn+1

and dn−1 excited state configurations is shown in the center of Fig. 7.20.
In our labeling of the configurations we have used the shorthand notation

dn instead of the full label dnL, where L denotes that no electron has been
removed from the ligand-like bonding orbital. In the following we shall con-
tinue to do so, i.e., di ≡ diL. Because the separation ∆c between the two
charge neutral configurations dn ≡ dnL and dn+1L−1, shown in white shad-
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Fig. 7.21. Illustration of the concepts underlying charge transfer insulators, as-
suming a transition metal oxide. On the left we show a molecular orbital diagram
of a local oxygen–metal–oxygen–metal cluster and the spin structure correspond-
ing to an antiferromagnetic ground state, with opposite spins on each metal atom.
Electron transport corresponds to moving an electron from an oxygen atom to a
distant metal atom, costing an energy ∆c. In the center we picture the energy of
the dn ≡ dnL ground state configuration and various excited configurations. The
lowest-energy excited configuration is assumed to be dnL−1, with higher energy con-
figurations dn+1 ≡ dn+1L, dn+1L−1, and dn−1 ≡ dn−1L. In particular, the excita-
tion dnL → dn+1L−1 is the ligand to metal charge transfer excitation, in accordance
with Fig. 7.13. On the right we show the energies of the excited configurations when
plotted relative to the Fermi level EF = 0, measured in photoemission and inverse
photoemission. Note that the charge neutral configurations shown in white shading,
dnL and dn+1L−1 are not observed experimentally. The system is seen to be an
insulator with a gap energy ∆c

ing, is assumed larger than U , the ionic configurations dn+1 and dn−1 are
the lowest-energy excited configurations, similar to the case in Fig. 7.19. In a
binding energy picture one obtains a band gap U as shown on the right in
Fig. 7.20.

The case U > ∆c of a charge transfer insulator is shown in Fig. 7.21. Now
the excitation process consists of transfer of an electron from oxygen to a dis-
tant metal atom. Because the process corresponds to an intraconfigurational
excitation from the bonding to the antibonding states, as shown in Fig. 7.13,
it involves no Coulomb energy. In the configuration-energy picture the lowest
excited configuration is now the ionic state dnL−1, where one electron has been
removed from the ligand-like bonding orbital L. The configuration dnL−1 lies
U −∆ higher in energy than dn−1 and by ∆ below dn+1. This is shown on the
right side where we have plotted a binding energy diagram, corresponding to
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photoemission and inverse photoemission. Now the charge neutral configura-
tions shown in white shading, dnL and dn+1L−1 are not observed. Now the
band gap is given by ∆c.

As an example of a charge transfer insulator we discuss NiO. From a
band-like model one would expect NiO to be a metal or have a small band
gap, as discussed in Sect. 7.6.1 and illustrated in Fig. 7.17. In contrast to this
picture and in accord with its insulating nature, the photoemission and inverse
photoemission spectra reveal a gap at the Fermi level, as shown in Fig. 7.22. In
the figure we show photoemission and inverse photoemission spectra recorded
at high and low energies, as discussed in the caption, in order to emphasize
the oxygen 2p versus the metal 3d states. The selective sensitivity to the p
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Fig. 7.22. Photoemission and inverse photoemission spectra of NiO, recorded for
different photon energies, taken from Hüfner [237]. The “UPS” and “IPES” spectra
were taken at low photon energies (21.2 eV (UPS) and 9.7 eV (IPES)) which en-
hance the oxygen 2p states over the metal 3d states, while the “XPS” and “BIS”
spectra were recorded at high photon energies (1254 eV) and emphasize the metal
d states. The electron configurations responsible for the peaks are indicated. The
charge transfer energy ∆c and the Coulomb energy U = Udd are also indicated
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and d valence orbitals arises from the energy dependence of the BIS transition
matrix element [273].

The NiO ground state consists of the configuration 3d8 = 3d8L, and similar
to the 4f case shown in Fig. 7.18, we observe a peak corresponding to 3d7 in
photoemission and 3d9 in inverse photoemission, as indicated in the figure.
Their peak-to-peak separation is U = Udd = ∆εXPS +∆εBIS = ε(d7)+ε(d9) �
12.5 eV.

We also see a third peak in the XPS spectrum located around 2 eV below
EF. It is due to metal–oxygen interactions and corresponds to an excitation
from the 3d8L ground state to a screened excited state (3d7L)∗. The screening
process involves a charge transfer from the oxygen-like (L) to the metal-like
(3d) bands and the state (3d7L)∗ state may be written as 3d7 + d + L−1 =
3d8 L−1. Calculations show that it interacts with the unscreened excited state
3d7 = 3d7L [258]. As expected the screened state 3d8 L−1 is lower in energy
(closer to the Fermi level) than the unscreened state 3d7L. The importance
of the 3d8 L−1 peak position is that its separation from the d9 peak, which
is < 5.5 eV, determines the transport properties of NiO, which is therefore
found to be a charge-transfer insulator.

In summary, we have seen that the intra-atomic correlation effects within
the 3d or 4f shell are of great importance for the electronic properties of a
material and that the degree of correlation are nicely revealed by a combi-
nation of photoemission and inverse photoemission spectra. The correlated
nature of the 4f electrons in the rare earths is due to their shielded location
within the atom and their small involvement in bonding, as discussed further
in Sect. 12.3. For the transition metal oxides, the 3d states are also found to
be strongly correlated as indicated by their splitting. In agreement with their
correlated nature, the 3d peaks show no band-like dispersion as a function
of wavevector. The origin of the 3d localization is the lack of direct overlap
of the 3d orbitals on different metal atoms. In contrast, the oxygen derived
bands (see Fig. 7.22) are found to exhibit considerable dispersion, leading to
a band width of about 5 eV [237,268]. In contrast to the d bands they are well
described by band theory. The different correlation within the oxygen 2p and
the metal 3d shells is partly due to centrifugal barrier effects as discussed in
Sect. 7.2.

7.6.3 From Delocalized to Localized Behavior: Hubbard and
LDA+U Models

The question arises whether the shortcomings of band theory in the DFT-
LSDA approximation for the description of correlated electron systems can
be remedied. This is indeed so and we shall now briefly discuss how this is
done in practice.

We have seen above that density functional theory and the local spin
density approximation simplify the many-body problem by approximating it
by a system of noninteracting fictitious particles with a certain average (spin)
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density. When the electron or spin density has a strong spatial dependence
this approximation breaks down. It therefore cannot treat cases where locally
intra-atomic correlation effects are strong. The band description will get worse
the more the magnetic moments are localized as in the rare earth metals where
4f localized and 5d, 6s, and 6p delocalized shells need to be treated on an equal
footing.

The difficulty in describing band behavior on one side and localized behav-
ior on the other has led to the suggestion of a simplified model Hamiltonian
that with the minimum number of features yields band-like and localized be-
havior in suitable limits. As discussed in Sect. 6.3.4 the Hubbard model has
these features. Here we come back to this model to see how it can give rise
to ferromagnetism and as an introduction for the L(S)DA+U model which
attempts to combine band and atomic behavior in an efficient calculational
scheme [279,280]. We will see later in Sect. 12.3 that the LSDA+U model gives
state-of-the-art results for the description of ferromagnetic Gd metal.

The Hamiltonian in the Hubbard model takes the electronic states of in-
dividual ions in a solid and lumps them into single localized orbitals, with a
single orbital or two spin–orbitals per each site. It contains two terms, one
representing band-behavior the other localized behavior. One may write in
simplified form,

H =
∑
i,j

f(tij) +
∑

i

g(Ui). (7.36)

The band behavior is described by the first term. It casts the band behav-
ior into the language of electron hopping between neighboring sites (without
change of spin), expressed as a function of a hopping parameter tij . In a tight
binding model the hopping parameter corresponds to the overlap integrals
and is proportional to the band width tij ∼W . Hence, if U = 0, the Hubbard
model yields the band structure in the tight binding limit.

The localized behavior is given by the second term. It describes the
Coulomb repulsion of electrons with opposite spin on the same site as a func-
tion of the famous Hubbard U parameter. When U is large the electrons do
not move independently but feel their pairwise repulsion. This suppresses the
probability that two electrons are on the same site (necessarily aligned an-
tiparallel because of the Pauli principle), and therefore favors the formation
of local moments on the individual atoms. In general, when both terms are
present, the Hubbard model can only be solved in special cases. Its various
solutions are still an active field of research and over the years this research
has provided valuable insight [194,214].

A particular instructive example is the case for a half filled valence shell,
shown in Fig. 7.23. In contrast to the case of Gd metal, shown in Fig. 7.18, we
have assumed in Fig. 7.23 that the valence electrons are either of the 4f or 3d
type and that not both types are present.

For U � W localized behavior dominates and in the absence of other
valence states (such as s, p, d states in Gd) the material is an insulator because
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Fig. 7.23. Splitting of a half-filled energy band of width W under the influence of
an onsite Coulomb repulsion U in the Hubbard model. The left side shows the case
of U � W and the case of a localized fn shell, resulting in an antiferromagnetic
insulator with a splitting U between the configurations fn+1 and fn−1. For U < W
shown on the right we obtain a ferromagnetic metal. This case resembles the Stoner
model for the 3d metals shown in Fig. 7.6

the Fermi level falls in a gap of electronic states. In fact, one can show that
the ground state is antiferromagnetic, as for the simplest case of the hydrogen
molecule.10

The other case, U < W , may be treated in the Hartree-Fock approximation
given by (6.75). Within this approximation the Hubbard model and the Stoner
model become equivalent [281]. The localized states split into a spin-up and
spin-down level with a separation proportional to U and one may obtain a
ferromagnetic metal, as shown in Fig. 7.23. In the cross-over region U ∼ W
there will be a metal–insulator transition.

Materials with U � W are considered “correlated”, those with U 
 W
are considered “uncorrelated”. The band model reliably describes the low
temperature properties of uncorrelated materials.

The concept of the Hubbard model can be combined with first princi-
ples LDA-L(S)DF theory in a computational scheme called LDA+U, devel-
oped by Anisimov, Aryasetiawan, and Lichtenstein [280]. In this model all

10 The case of the H2 molecule discussed in Sect. 6.3.4 is the simplest case of a
half filled “band”. In this case (7.35) would correspond to the difference in energy
between the two states with one electron per atom, |R, R〉 and |R′, R′〉, and the two
states with no electron on one and two electrons on the other atom, |0, RR′〉 and
|RR′, 0〉 (see (6.71). Hopping is allowed between these states as seen from the matrix
in Table 6.3 and the energy difference between the two pairs of states is U .
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states are divided into two subspaces. The delocalized states are treated by
conventional LDA while all localized orbitals, are treated by inclusion of a
Hubbard-like term in the Hamiltonian. In particular, the Hubbard-like term
is treated within the atomic spheres by use of Slater-type integrals for both
the Coulomb, U , and exchange, J , parameter. The new Hamiltonian consists
of the conventional LDA part and a “localized” part that is orbital dependent
and embedded in the delocalized part. We shall discuss the results for the
LDA+U method in Sect. 12.3 for the specific case of ferromagnetic Gd, the
fourth elementary ferromagnet besides Fe, Co, and Ni.

The great success of band theory in describing the electronic ground state
(at zero temperature) of the ferromagnetic 3d transition metals, is often taken
as evidence for the preferential itinerant character of the 3d electrons. How-
ever, this does not mean that correlation effects are negligible for the transition
metals. Because this is such a complicated topic we have devoted the whole
Chap. 12 to it.

7.7 Magnetism in Transition Metal Oxides

In Chap. 6 we have only discussed a certain type of exchange, namely that
arising from the direct interaction of electrons within an atom or on adjacent
atoms without an intermediary. Such “direct exchange” is due to direct wave-
function overlap. It is easy to imagine that exchange can also proceed if the
wavefunction on one magnetic atom overlaps with an intermediary wavefunc-
tion which in turn overlaps with a wavefunction on another magnetic atom.
This situation is referred to as “indirect exchange” and it comes in three
prominent forms, superexchange, double exchange, and RKKY exchange. The
first two types are particularly important in transition metal oxides and we
shall discuss them now.

7.7.1 Superexchange

The first type of indirect exchange is called superexchange, owing to the fact
that it extends the normally very short-range exchange interaction to a longer
range. The idea that exchange can indeed proceed by means of an intermedi-
ate nonmagnetic atom was first pointed out by Kramers in 1934 [282] and the
theory was more formally developed by Anderson in 1950 [283]. The superex-
change is of importance in ionic solids such as the transition metal oxides and
fluorides, where the bonding orbitals are formed by the 3d electrons in the
magnetic transition metal atoms and the 2p valence electrons in the diamag-
netic oxygen or fluorine atoms, as illustrated in the upper part of Fig. 7.24.

To understand the origin and spin coupling we assume that the metal
atoms are magnetic and hence have at least one unpaired electron and that the
oxygen atoms have a tendency to attract two electrons (to attain the filled shell
structure of Ne). In the simplest such case there are four electrons involved in



7.7 Magnetism in Transition Metal Oxides 275

M MO

Metal MetalOxygen

+

−

+

+

+ ++ − −

−

−

(a)

(c)

(b)

U −

(d)

(f)

(e)

AFM

FM

X

c

c

c

∆

∆

∆

Fig. 7.24. Illustration of the superexchange interaction in a magnetic oxide. The
metal atoms are assumed to have a single unpaired electron and there are a total of
four electrons involved in bonding. The bonding involves symmetry adapted metal
3d and oxygen 2p orbitals. In (a) we show the spin configurations for an antiferro-
magnetic (AFM) ground state and in (b) for a ferromagnetic (FM) ground state.
For the AFM ground state the excited state (c) is the lowest energy excited state,
as discussed in the text. For the FM ground state (d) no comparable low energy
excited state (f ) exists because it is forbidden by the Pauli principle and spin flips
are not allowed

the bonding between the oxygen and the metal atoms. The bonding involves
symmetry adapted metal 3d and oxygen 2p orbitals as shown in Fig. 7.24 for
bonding along the x direction of a coordinate system. The bonding orbitals
are pictured as usual by means of the 2p and 3d orbital charge densities
(wavefunctions squared), where light (minus) and dark (plus) colors indicate
the sign of the wavefunctions. Bonding requires overlap of wavefunctions of
the same sign.

We can locate and orient the four spin polarized electrons in different ways
on the three atoms. As discussed in Sect. 6.3.8 for the H2 molecule, the kinetic
exchange energy will be minimized if we distribute the four electrons across the
whole molecule with adjacent electrons being antiparallel. The superexchange
interaction therefore leads to antiferromagnetic coupling of the metal atoms
with the oxygen atom remaining nonmagnetic. We will derive this result below
in a simple Hubbard model. The size of the superexchange depends on the
magnitude of the magnetic moments on the metal atoms, the metal–oxygen
(M–O) orbital overlap and the M–O–M bond angle.
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Fig. 7.25. Antiferromagnetic structure in NiO with the NaCl fcc crystal structure.
Ni atoms with one spin direction are shown pink those with the opposite spin direc-
tions are in blue. The front (100) plane also shows the positions of the oxygen atoms.
The superexchange interaction is along the cubic < 100 > directions. All spins lie
in the {111} planes and within this plane point along < 2̄11>, as explicitly shown
on the left for two selected planes, and in more detail on the right. The equivalence
of the four <111> bulk directions leads to four T domains, that of the three < 2̄11>
directions in the {111} planes to three S domains

An example of antiferromagnetic structure due to superexchange is NiO,
whose magnetic structure is shown in Fig. 7.25 [284,285]. We shall come back
to NiO in conjunction with the topic of exchange bias in Sect. 13.4.3.

Hubbard Model of Superexchange

In order to prove that the antiferromagnetic state is in fact the ground state,
we again need to invoke the influence of excited states. The recognition of their
importance for magnetism goes back to Kramers [282]. He pointed out that if
a system has a finite probability to be in several states, the true ground state
wavefunction should be a linear combination of the states. Hence in order to
determine the true minimum energy state the total wavefunction has to be
used. We shall now use this concept to see whether the AFM coupling of the
3d atoms is indeed lower in energy than the FM one, as claimed earlier.

The lowest energy AFM and FM states are shown in Fig. 7.24a, d, re-
spectively, and we have also shown possible excited states and the excitation
energies involved. Hence states (b) and (e) lie higher than the assumed an-
tiferromagentic or ferromagnetic ground states by the charge transfer energy
∆c, and the state (c) lies by U above the AFM ground state (a). For the FM
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case (d), the excited state (f) is forbidden by the Pauli principle. The deter-
mination whether the AFM state (a) or the FM state (d) has lower energy,
can therefore not be decided on the basis of the excited states (b) and (e),
which lie above the respective ground states by the same energy ∆c, but the
crucial differentiation comes from the next higher excited state (c).

By comparing the spin structure of the two possible ground states (a)
and (d) with the excited state (c), we see that for all three states the oxygen
atom is in the filled shell O2− configuration. Thus we can ignore the full-shell
oxygen configuration in our search for the lowest energy magnetic state.

We can then diagonalize the Hubbard Hamiltonian (6.66) using the three
relevant states,

|a〉 = |R,R〉 | ↑, ↓〉
|c〉 = |RR′, 0〉 | ↑↓, 0〉
|d〉 = |R,R′〉 | ↑, ↑〉 . (7.37)

Similar to the treatment of the H2 molecule (compare (6.71)), we describe
the three states by their spatial components, which in our case refer to the
two metal atoms. On the right side of (7.37) we have explicitly indicated
the spin parts of the functions in accordance with Fig. 7.24. As for the H2

calculation the Hubbard Hamiltonian acts only on the spatial parts of the
wavefunction and the symmetry of the spin eigenfunctions follows from the
antisymmetrization principle. However, it is easier to keep track of the states
by use of their spin configurations as shown in Fig. 7.24 and we shall simply
write the interaction matrix of the Hubbard Hamiltonian (6.66) in terms of
these states, as done in Table 7.9. For simplicity we define U = Udd.

The eigenfunctions and eigenvalues in order of decreasing energy are,

E3 = U +
t2

U
|φ3〉 = | ↑↓, 0〉 − t

U
| ↑, ↓〉

E2 = 0 |φ2〉 = | ↑, ↑〉

E1 = − t
2

U
|φ1〉 = | ↑, ↓〉 +

t

U
| ↑↓, 0〉 , (7.38)

and we see that the effect of the excited state (c) is to lower the energy of
the lowest AFM eigenstate |φ1〉 below that of the FM eigenstate |φ2〉, and the
superexchange interaction favors an antiferromagnetic alignment.

Table 7.9. Matrix elements of the Hubbard Hamiltonian for the lowest energy FM
and AFM states in transition metal oxides with equal charge on the metal atoms

| ↑, ↓〉 | ↑↓, 0〉 | ↑, ↑〉
| ↑, ↓〉 0 −t 0
| ↑↓, 0〉 −t U 0
| ↑, ↑〉 0 0 0
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Fig. 7.26. Electron transfer in the H2 molecule (compare Fig. 6.9) and for the
case of a transition metal oxide (compare Fig. 7.24). In both cases we show the
possible excited states where an electron is transferred between like atoms, hydrogen
to hydrogen, and metal to metal, assuming either a antiferromagnetic (AFM) or
ferromagnetic (FM) initial state. In the case of the transition metal oxide we assume
that the spin configuration on O remains unchanged, owing to the fact that oxygen
is electronegative and wants to assume a full shell (O2− state). The picture shows
that the transition metal oxide case can be treated in an equivalent fashion as the
H2 molecule, in both cases yielding a lowest energy state that is antiferromagnetic

While our quick calculation contains the important physics, the energies
are not quite correct because we have only considered half of the possible
states. When the states with interchanged ↑ and ↓ are added one gets a factor
of 2 (see footnote 11). In fact, we have already done the proper calculation. It
is that for the H2 molecule. As shown in Fig. 7.26, one can picture the electron
transfer in transition metal oxides the same way as in the H2 molecule (com-
pare Fig. 6.9). We see that there is a complete correspondence if we assume
that the spin configuration on the oxygen atom remains unchanged.

The close correspondence between the two pictures means that the two
cases can be treated in the same Hubbard formalism already used for H2. In
both cases the full interaction matrix is simply given by that in Table 6.3.
It differs from that in Table 7.9 because the full set of basis states (6.71) is
used. In Table 6.3, E0 is some common energy, which does not enter in the
determination of which state is lowest in energy.

For the case U � t the ground state energy and wavefunction, given by
(6.73), correspond to an antiferromagnetic (singlet) state,11 which is lower in
energy by 2|J12| = 4|t2/U | than the ferromagnetic (triplet) state, as illustrated
in Fig. 6.8. Hence we may associate an exchange coupling constant of J12 =
−2t2/U , where U > 0, with the AFM superexchange coupling.

11Note that the ground state energies and wavefunctions in (7.38) and (6.73) differ
by the above mentioned factor of 2, i.e., t → 2t.
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7.7.2 Double Exchange

The indirect coupling of spins across a diamagnetic atoms can also be ferro-
magnetic. An example is the oldest known magnetic material, magnetite. The
spinel magnetite, Fe3O4, is overall ferrimagnetic but contains Fe atoms in two
different valence states, Fe2+ (3d6) and Fe3+ (3d5) that are ferromagnetically
coupled. Another famous example of a ferromagnetic oxide are the mananese
oxides (manganites) La1−xSrxMnO3 in the range (0.16 < x < 0.5) [286]. In
these manganites with the perovskite-type structure, the metal atoms again
have different valences. Perovskite blocks are stacks of corner sharing MnO6

octahedra. The nominal 3+ valency of Mn can be gradually increased to an
average valency of +(3+x) by replacing the trivalent rare earth ion La by the
divalent alkali earth ion Sr. The Srx substitution therefore creates additional
holes on the Mn sites through a procedure called hole doping. We can envision
the structure to be composed of Mn3+ (3d4) and Mn4+ (3d3) ions.

The magnetic interaction in such oxides containing different valency metal
ions is typically referred to as double exchange. The term was introduced
in 1951 by Clarence Zener [287] to explain the magneto-conductive proper-
ties of mixed-valence solids, notably doped Mn perovskites. Zener proposed
a mechanism for hopping of an electron from one Mn to another through an
intervening O2−. Because in O2− the oxygen p-orbitals are fully occupied, the
process has to proceed in two steps, by “double exchange”, the movement of
an electron from O to one Mn followed by a transfer of a second electron from
the other Mn into the vacated O orbital. Let us discuss double exchange for
the cases of Mn and Fe oxides in a ligand field model.

If the LF is relatively small we can fill up the different orbitals according
to Hund’s first rule with electrons of parallel spin, as shown in Fig. 7.10 for
the cases of Fe3+ with a 3d5 configuration and Fe2+ with a 3d6 configuration.
In general, two metal atoms which are bonded through O may have a valency
that differs by one, as illustrated in Fig. 7.27 for the cases Mn3+ (3d4) and
Mn4+ (3d3) in La1−xSrxMnO3 and for Fe2+ (3d6) and Fe3+ (3d5) in Fe3O4. In
these materials electron conduction proceeds by double exchange as explained
by Zener and one of the metal electrons therefore hops back and forth across
the oxygen. The electron is thus delocalized over the entire M–O–M group
and the metal atoms are said to be of mixed valency.

Since spin-flips are not allowed in the electron hopping process it is ener-
getically more favorable if the magnetic structure of both metal atoms, apart
from the extra electron, is identical. Therefore the moments on the metals
atoms are aligned ferromagnetically. Today the case of double exchange is
typically treated in a model originated by Zener [287] and further developed
by Anderson and Hasegawa [288] and de Gennes [289]. The double exchange
Hamiltonian is written in terms of a hopping term and a Heisenberg-like ex-
change term that takes care of Hund’s rule coupling between the spins in
the t2g orbitals and the extra spin in the eg orbital (see Fig. 7.27). We shall
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Fig. 7.27. Illustration of indirect ferromagnetic exchange coupling, called double
exchange, for bonding of two 3d metal atoms M with different occupations 3dn+1 and
3dn through an O atom. We have assumed an octahedral ligand field as in Fig. 7.10
and a filling according to Hund’s rule. The cases for Mn and Fe atoms are shown

later use a Hubbard like approach to see that the ground state is indeed
ferromagnetic.

Hubbard Model of Double Exchange

In order to see that the double-exchange ground state is ferromagnetic we
set up the problem as shown in Fig. 7.28. Again we use the simple model
where there is an electron on each metal atom, representing a magnetic con-
figuration that in reality may consist of several electrons. We represent these
configurations by black circles and indicate the net spin by a double arrow. In
addition there is an extra electron on one of the metal atoms which we show
in white. The lowest excited configurations will again consist of a closed shell
O2− atom, as discussed for the case of superexchange and we therefore show
the O atom as passive.

As for the case of superexchange we find that there are three lowest energy
configurations which we need to consider as basis states for our Hubbard
diagonalization. Using again a spin rather than spatial notation for the basis
states we can write,

|1〉 = | ⇑↓,⇑〉
|2〉 = | ⇑,⇑↓〉
|3〉 = | ⇑↓,⇓〉. (7.39)

Here we have indicated the magnetic configuration, corresponding to the black
electron in Fig. 7.28, by a double arrow and the extra (white) electron by a
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Fig. 7.28. Electron transfer in a transition metal oxide with an extra electron
(shown in white) on one transition metal ion. We show a simplified scheme of
Fig. 7.27 where the configurations without the extra electron are shown in black
with a double arrow. They may consist of parallel (FM) and antiparallel (AFM)
spin alignments on the two transition metal atoms. In accordance with Fig. 7.26 we
assume a passive oxygen atom. By comparing the energies associated with electron
transfer the lower energy state is found to be FM

Table 7.10. Matrix elements of the Hubbard Hamiltonian for the lowest energy
FM and AFM states in transition metal oxides with unequal charge and spin on the
two metal atoms

| ⇑↓,⇑〉 | ⇑,⇑↓, 〉 | ⇑↓,⇓〉
| ⇑↓,⇑〉 U −t 0
| ⇑,⇑↓〉 −t U 0
| ⇑↓,⇓〉 0 0 U

single arrow. The interaction matrix of the Hubbard Hamiltonian (6.66) in
terms of these states is given in Table 7.10.

The eigenfunctions and eigenvalues in order of decreasing energy are:

E3 = U + t |φ3〉 = | ⇑↓,⇑〉 + | ⇑,⇑↓〉
E2 = U |φ2〉 = | ⇑↓,⇓〉
E1 = U − t |φ1〉 = | ⇑↓,⇑〉 − | ⇑,⇑↓〉. (7.40)

Because we have worked for convenience with a spin rather than the
(proper) spatial notation of the states, care has to exercised in interpreting
the symmetry of the eigenstates. The sign of the linear combinations actually
reflects the spatial parts so that the lowest energy state is not a singlet-type
state as indicated by the minus sign but in fact a triplet-type state. With
this in mind we see that the effect of the excited FM basis state is to yield
a lowest energy FM eigenstate, and the double exchange interaction favors a
ferromagnetic alignment.



282 7 Electronic and Magnetic Interactions in Solids

(c)
Phase diagram and CMR effect in La Sr MnO1-x x 3

(a) (b)

Fig. 7.29. (a) Phase diagram of La1−xSrxMnO3 [286]. The acronyms stand for spin-
canted insulating (CI), paramagnetic insulating (PI), paramagnetic metallic (PM),
ferromagnetic insulating (FI), ferromagnetic metallic (FM), and antiferromagnetic
(AFM). (b) and (c) Dependence of the resistivity for La1−xSrxMnO3 with x = 0.175
on magnetic field and temperature [234]

7.7.3 Colossal Magnetoresistance

The double exchange mechanism is responsible for many of the interesting
electric and magnetic properties of the perovskite-type manganites R1−xAx

MnO3 and their wider family of compounds known as Ruddlesden-Popper
phases [229]. Here R stands for trivalent rare earths such as La, Pr, Nd, Sm,
Eu, Gd, Ho, Tb and the related Y, and A for divalent alkali earths ions such
as Sr, Ca, and Ba (or for Pb2+) [234, 286, 290]. For example, La1−xSrxMnO3

exhibits a very complex phase diagram as a function of doping (x) and tem-
perature, with phases such as paramagnetic metallic, paramagnetic insulating,
spin-canted insulating, ferromagnetic insulating, ferromagnetic metallic, and
antiferromagnetic metallic [286]. Indeed, entire books may be written on the
properties of this family of compounds [234,286,290].

Within the magnetism community, La1−xSrxMnO3 and related com-
pounds, e.g., Nd1−xSrxMnO3 and La1−xCaxMnO3, are best known because
they exhibit an effect called colossal magnetoresistance (CMR). For exam-
ple, in the concentration range around x = 0.175, the phase diagram of
La1−xSrxMnO3 exhibits a critical point near 250 K where three phases meet,
the low-temperature ferromagnetic insulating and metal phases which at
higher temperature both turn into a paramagnetic insulating phase, as shown
in Fig. 7.29a. When a magnetic field of order of a few Tesla is applied in this
critical x region the resistivity is found to change significantly in the temper-
ature range 250–350 K as shown in Fig. 7.29b, c. For example for x = 0.175
and T = 284K the resistivity changes by about a factor of 5.
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The occurrence of the CMR effect in the tricritical region shows the close
correlation between charge (insulator to metal) and spin (ferromagnetic to
paramagnetic) ordering as the basis of the CMR effect. This points to the
importance of the double exchange hopping mechanism. Theoretical studies
show that in La1−xSrxMnO3 the double exchange interaction is indeed the
primary source of the CMR effect and the temperature dependent resistivity
in the critical region [234]. We do not present a more extended treatment
of the CMR effect because the necessity of large fields and low temperature
appear to be a barrier to its technological exploitation.

7.7.4 Magnetism of Magnetite

In this section we will put together what we have learned to discuss the prop-
erties of the oldest magnetic material, magnetite, Fe3O4. Its electronic and
magnetic structure is of fundamental importance from a historical, educa-
tional and contemporary point of view as reviewed by Tsuda et al. [291]. Here
is a quick summary, why:

– Magnetite is the oldest magnetic material known.
– It has a first-order metal–insulator phase transition at TV = 120K, called

the Verwey transition, discovered in 1939 [292]. When the temperature
is lowered through TV the electrical resistivity increases by two orders of
magnitude. The Verwey transition is a charge order–disorder transition,12

the details of which are still debated [234].
– Its rather complicated magnetic structure, containing three inequivalent

Fe atoms, was partly proposed by Verwey and Haayman in 1941 [294] and
the total structure was proposed by Néel in 1948 [295]. It was confirmed
three years later by neutron scattering [296].

– The metal–insulator transition was associated as early as 1941 [294, 297]
with an electron localization–delocalization transition. Such correlation
phenomena are the essence of electron transport in most oxides, following
a theoretical model developed by Mott starting in 1949 [233].

– The two indirect exchange mechanisms discussed earlier, super-exchange
and double exchange, are simultaneously present in magnetite and give
rise to a ferrimagnetic structure.

– Magnetite is a half-metal with the highest known Curie temperature (858
K). In a half-metal, conduction is due to one spin channel, only. The other
spin channel exhibits a gap at the Fermi level.

– To this day, the localized versus delocalized nature of the 3d electrons in
magnetite, and associated phenomena such as short and long range charge
ordering, are actively debated in the context of the Verwey transition
[234,298–301].

12As proposed by Anderson [293] it is thought that the long-range order of the
“extra” electrons on the B sublattice is lost above TV while the short-range order is
maintained across the transition.
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Fig. 7.30. Crystallographic and magnetic structure in magnetite, Fe3O4, near tetra-
hedrally (site A) and octahedrally (site B) coordinated Fe atoms. The cages around
the 3 shown iron atoms are formed by O atoms. The moment on a given Fe atom
is coupled antiferromagnetically via superexchange (SE) to another Fe atom of the
same valency and ferromagnetically via double exchange (DE) to a Fe atom of dif-
ferent valency. Both exchange interactions go via the same O atom which because
of the DE interaction carries a magnetic moment

The key features of the crystallographic and magnetic structure of mag-
netite are illustrated in Fig. 7.30. We have highlighted the crystallographic
environment and relative magnetic alignment of the three inequivalent Fe
sites. Overall the comparatively large oxygen O2−-ions form an fcc-lattice
and the Fe atoms are located in interstitial sites. The formula can be written
(Fe3+)tet(Fe2+,Fe3+)oct(O2−)4, where the subscripts mean tetrahedral (usu-
ally called A-sites) and octahedral (B) sites.

In the figure we have also shown the magnetic superexchange (SE) and
double exchange (DE) coupling of one Fe atom to its two inequivalent neigh-
bors. We see that both superexchange and double exchange proceed via the
same oxygen atom. The octahedral Fe2+ and Fe3+ ions are ferromagnetically
coupled through double exchange. In contrast, the two Fe3+ ions in tetrahedral
and octahedral sites are antiferromagnetically coupled through superexchange
and their moments of ±5µB cancel each other out. What remains is the un-
paired moment on the octahedral Fe2+ ions which, as expected from four
uncompensated parallel spins has a value of 4µB. Fe3O4 therefore possesses
ferrimagnetic order and it has a high Curie temperature of 858 K.

Magnetite is an interesting system for which we can explore the band and
ligand field concepts discussed in Sects. 7.4 and 7.5 earlier. To this day the
debate continues whether it can be described by band theory [298, 300, 301]
or whether the size of the correlation effects requires other methods, such as
the LDA + U [300,302] or even multiplet [299,303] schemes.
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The electronic structure of the 3d electrons on the three Fe sites can be
pictured in the independent electron ligand field model, the band model and
the multiplet ligand field model, as illustrated in Fig. 7.31. The energy states
associated with the three atoms, Fe3+ in site A, Fe3+ in site B, and Fe2+ in
site B, in the independent electron LF model are those already discussed in
conjunction with Fig. 7.10. We have shown in (a) the high spin configuration
because it is consistent with the band theory results, shown in panel (b).

The band results, schematically shown in (b), represent the calculations of
Zhang and Satpathy [298] and Antonov et al. [300], obtained in the local spin
density calculation. They yield an exchange splitting (∼3.5 eV) that is larger
than the eg − t2g splitting (<2 eV). The calculations yield essentially flat 3d
bands so that they directly reflect the LF splitting into eg and t2g components
which according to Fig. 7.9 have opposite ordering for the tetrahedral A sites
and octahedral B sites. The splitting for the B sites is larger, as shown, because
of stronger covalent overlap with the 2p states of the O ligands. Note that we
only show the DOS projection on one B-site, so that relative to the A-site the
actual B-site density is twice as large as shown.

Band theory finds that magnetite is metallic because the Fermi level falls
at the bottom of the minority spin band on site B which is of t2g character.
In contrast, the majority spin bands have a gap at the Fermi level. Hence
magnetite is predicted to be a half-metal by band theory. Here we need to
recall that DFT-LSDA band theory, in principle, is only reliable at zero tem-
perature. However, at low temperature, below the Verwey transition of 120 K,
magnetite is known to be an insulator, not the predicted metal. We therefore
need to conclude that the band theoretical results cannot describe the elec-
tronic structure correctly, since they cannot account of the Verwey transition.

While band theory can describe the intersite Coulomb energy well, it is
deficient in the treatment of the intrasite Coulomb energy which is the driving
force for the Mott–Hubbard localization and can lead to charge ordering. At
low temperature a proper theory should give a small gap in the minority
spin channel, in addition to the large gap in the majority states. Such a
gap of 0.14 eV has been observed in the low temperature optical conductivity
spectrum [305]. A small 0.19 eV gap in the minority channel is indeed obtained,
when the intra-atomic Coulomb energy is taken into account in an LDA + U
scheme [300]. In conjunction with a trigonal symmetry component of the LF
at the B sites, which splits the t2g states into e′g and a1g components, the
intra-atomic Coulomb interaction opens up the gap.

Rather than going into details of the LDA + U calculation, we explore in
Fig. 7.31c the multiplet LF concept. The reason is that we want to elucidate
the difference between the independent electron and strong correlation ap-
proach and develop a conceptual understanding of the origin of a band gap
below the Verwey transition temperature. As discussed before, the transport
properties are determined by excited states probed in photoemission and in-
verse photoemission. For this reason we consider in Fig. 7.31c, the excited
states expected for the three Fe ions. For Fe3+ with a d5 ground state config-
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(c) Spin resolved multiplet dn±1 excited state model
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Fig. 7.31. (a) Energy levels and filling of the 3d ligand field states for the three Fe
atoms in magnetite, Fe3O4, shown in Fig. 7.30, assuming an independent electron LF
model and high spin configuration. (b) Schematic spin dependent densities of states
(DOS) obtained with band theory in the local spin density approximation [298,300].
The areas of the bars, shaded dark for filled and light for empty states, indicate the
number of states. The DOS shown for site B constitutes an average over the two
sites. Note that there is no band gap for the minority spins. (c) Multiplet excited
states for both electron removal (photoemission, below EF) and electron addition
(inverse photoemission, above EF), corresponding to configurations dn±1 on each
of the Fe atoms. We have indicated the multiplets (boxed) and their splitting into
irreducible representations of the tetrahedral (A-site) and octahedral (B-site) LF.
For the d5 configuration (bottom right) we have used the results Alvarado et al. [304].
The states are schematically indicated by bars
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uration, the photoemission final state is the d4 configuration and the inverse
photoemission final state the d6 configuration. Similarly, for Fe2+ (d6) the
excited states are d5 and d7. By inspection of Table 7.7 we can find the low-
est energy multiplets 2S+1L for the different high spin dn configurations, and
from Fig. 7.16 we find their LF splitting in octahedral symmetry. This allows
us to construct the shown energy level diagrams in Fig. 7.31c.

In doing so we need to remember that when we reference the energy rel-
ative to EF, the negative binding energy of the filled states increases away
from EF = 0 and the configurational energy level diagram (see Fig. 7.16) is
turned upside down. For this reason, the multiplet LF diagrams for the d4 and
d6 excited states consisting of the T2 and E irreducible representations, when
plotted in a binding energy diagram, give an identical level ordering as in the
independent electron LF model in Fig. 7.10b, with the substitution t2 ↔ T2

and e↔ E. The multiplet final state diagrams for d5 and d7 differ from those
in an independent electron model. For the inverse photoemission d7 config-
uration the lowest-energy multiplet is 4F which according to Fig. 7.16 splits
into 4T1g, 4T2g, and 4A2g states in an octahedral LF. The d5 photoemission
final state reached from the d6 ground state may involve either excitation
of a minority spin with a 6S, 6A1g high-spin singlet final state, or excitation
of a majority spin yielding 4G,4D,4 P final states. These excited states are
composed of several LF states as seen in Fig. 7.14 (also see Table 7.6). The
level structure determined by Alvarado et al. [304] is schematically indicated
in Fig. 7.31c.

The most important difference between the independent electron and mul-
tiplet diagrams in Figs. 7.31b, c lies in the states around EF. The multiplet
diagram predicts a gap at the Fermi level in both spin channels. In particu-
lar, the minority spin gap which does not exist in the independent electron
model lies between the filled 6A1g and empty 5T2g states on site B. This small
gap is the all important feature that determines the transport properties in
magnetite and is associated with the Verwey transition.

Experimental results for the valence states of magnetite are shown in
Fig. 7.32. In part (a) we show photoemission, inverse photoemission (BIS),
and X-ray absorption (XAS) data [299]. They reveal the occupied and un-
occupied states close to the Fermi level EF = 0 and should correspond to
the electron removal dn−1 and electron addition dn+1 states in the multiplet
LF model shown in Fig. 7.31c. Therefore the photoemission state closest to
the Fermi level has been denoted 6A1g and the lowest energy BIS and XAS
state 5T2g. Their separation gives rise to the gap as indicated in Fig. 7.31c. In
Fig. 7.32b we show the results of spin polarized photoemission measurements
for the states closest to the Fermi level, recorded at hν = 21.2 eV by Ded-
kov et al. [301]. The photoemission intensity close to EF is seen to be due to
minority spins, only.

Finally, we show in Fig. 7.32c the photon energy dependence of the mea-
sured spin polarized electron yield, using newer data [304] than those shown
in Fig. 1.8. The spin polarization of the photoelectrons at a photon energy
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Fig. 7.32. (a) Valence band photoemission spectrum taken at hν = 110 eV and
130K, and BIS and X-ray absorption (XAS, shifted by −529.1 eV) spectra, all
aligned relative to the Fermi level [299]. The shown spectra represent the electronic
density of states associated with electron-removal (photoemission) and electron-
addition (BIS and XAS) final states. The indicated LF states 6A1g and 5T2g cor-
respond to those shown in the multiplet diagram in Fig. 7.31c, forming the band
gap in the minority channel. (b) Spin resolved photoemission spectra of the valence
states just below EF, taken at hν = 21.2 eV and 300K [301]. The spectra reveal a
gap in the majority bands and metallic behavior of the minority band, in support
of a half metal. (c) Spin polarized electron yield measured as a function of photon
energy [304]. The negative spin polarization at threshold is due to the minority 6A1

state, as shown at the bottom of Fig. 7.31. Photon energy and binding energy are
related according to EB = −hν + φW, where φW = 4 eV is the work function of the
sample



7.7 Magnetism in Transition Metal Oxides 289

hν represents the number of spin-resolved states, integrated from EF up to a
binding energy EB = −hν + φW, where φW = 4 eV is the work function. It
is found to be negative at photoemission threshold, in accord with the mea-
sured spin polarization in Fig. 7.32b. The spin polarization changes sign and
increases to a peak and then, except for a second weaker peak, decreases to a
spin polarization value below +25% at the highest energies. From Fig. 7.31a
one would expect that if all 3d states, but no other states, are involved in
photoemission the spin polarization should have a value P = 4/16 or +25%,
given by the difference in the number of majority and minority spins (+4),
divided by the total number of electrons (16). We see that at the highest
energies the observed spin polarization drops below this value, indicating the
presence of unpolarized electrons from the oxygen 2p valence band. This is
consistent with a higher binding energy of the O 2p states relative to the Fe
3d-states.

Historically, the spin-polarized photoemission studies played an important
role. Until the mid 1970s, the electronic structure of the ferrites was a subject
of speculation [64]. This was due to the ambiguities of the spectroscopies
without spin analysis which cannot distinguish whether an optical transition
involves the excitation of an oxygen 2p-electron or an Fe 3d-electron, nor on
which of the two sublattices, identified as A and B in Fig. 7.30, the excitation
occurred. The spin polarized results for magnetite provided early evidence that
the O 2p states lie below the partially occupied Fe 3d states. The negative
spin polarization at threshold furthermore indicated half-metallic behavior
originating from minority spin transport, only.

While the basic nature of the spin dependent states near EF has thus been
answered by various spin polarized photoemission measurements, the question
remains about the nature of the Verwey transition at TV. The temperature
dependence of the band gap, responsible for the Verwey transition has been
studied by spin-integrated photoemission by Park et al. [299] using high res-
olution hν = 110 eV synchrotron radiation. These results, shown in Fig. 7.33,
disagree in the placement of the Fermi level with the later spin resolved ones
in Fig. 7.32b by Dedkov et al., in that they show no intensity at the Fermi
level. As was pointed out by Park et al. the use of helium-lamp (hν = 21.2)
excitation, by accident, produces spurious intensity near EF, so that the re-
sults of Dedkov et al. should only be used to illustrate the sign of the spin
polarization near EF but do not reflect the true band gap. Park et al. found
that when the temperature is raised through TV, merely a small (50 meV)
decrease of the gap is observed. The implied decrease in activation energy
across the gap from 150 meV below to 100 meV above TV was argued to be
consistent with the two order of magnitude conductivity jump at TV [299].
However, one has to also remember that the surface sensitive PE-techniques
could respond to electronic and/or magnetic changes in the surface that are
bound to be present as well.

The various experimental results support the basic model for the metal–
insulator or Verwey-transition put forward by Mott in 1974 [64]. It is based on
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Fig. 7.33. High resolution (60 meV) valence band photoemission spectrum taken
at hν = 110 eV, below (110 eV) and above (130K) the Verwey transition [299]. The
energy scale was carefully calibrated relative to the Fermi level, revealed by the
sharp Fermi edge of Cu metal. Both magnetite spectra do not show any appreciable
intensity at the Fermi level, indicating insulator-like behavior, but above the Verwey
transition the gap is reduced by about 50 meV

the assumption that the electrical conduction at EF is generated by hopping
of minority spins at the B-sites which at low temperature have to overcome
the 6A1−5T2 gap arising from the B-site Fe atoms. Above the metal–insulator
transition the hopping is thermally activated. In addition they provide evi-
dence that magnetite is a half-metallic oxide above TV, where thermally ac-
tivated conduction occurs in only the minority spin channel.

7.8 RKKY Exchange

The different kinds of exchange (direct and indirect) discussed so far empha-
size the relationship between magnetism and bonding, as exemplified by the
HL calculation and by the directional superexchange and double-exchange in-
teractions. We have seen that the requirement of wavefunction overlap leads
to the short range of the exchange interaction.

In 1954, Ruderman and Kittel [306] first suggested that a local moment,
in their case a nuclear spin, can induce a spin polarization in the surrounding
conduction electron sea. A few years later Kasuya [307] and Yosida [308] used
similar concepts to treat the coupling of localized rare earth 4f moments with
the conduction electrons. These studies showed that the spin polarization
of the conduction electrons oscillates in sign as a function of distance from
the localized moment and that the spin information was carried over relatively



7.8 RKKY Exchange 291

large distances. In honor of the above scientists we today call this effect RKKY
exchange.

The RKKY oscillatory effect is an example of a general phenomenon aris-
ing from the wave nature of the quasi “free” conduction electrons. When such
“free” electrons are scattered by an atom, they will rearrange themselves in
order to minimize the disturbance. This process is called screening. Screening
can exist for either spin or charge scattering and results in oscillations of the
charge or spin density around the scattering center. Indeed, the oscillations
in the charge density around a point-charge impurity were first derived in
1958 by Friedel [309] and hence go by the name Friedel oscillations. They can
be directly imaged today by means of scanning tunneling microscopy as first
done by two IBM groups in 1993 [310,311].

While in the transition metals there is direct overlap of the d electrons
and the magnetic coupling is therefore determined by direct exchange, the
case of the rare earths indeed resembles the early models of localized moments.
Owing to the localization of the 4f shell which contains the magnetic electrons
the direct exchange mechanism is ineffective. It therefore needs to involve an
indirect mechanism. In the 4f metals the indirect mechanism involves the
outer 5d electrons (see Fig. 12.5) which partly overlap with the 4f shell. In
contrast to the case of superexchange, the indirect coupling between two atoms
thus proceeds through the outer electronic states of the atoms themselves
rather than through the electronic states of a third atom.

7.8.1 Point-like Spins in a Conduction Electron Sea

In the derivation of the RKKY interaction [222] one assumes a delta function
like interaction of a point-like spin S with the spins s of the conduction
electrons

H = 2Aδ(r − R)S · s , (7.41)

where A describes the intra-atomic exchange parameter and the δ function
limits the interaction to be of contact form. The RKKY interaction energy
between two localized spins Si and Sj , separated by a distance R can then
be written in the Heisenberg form (6.59) with a distance dependent exchange
constant J(R). It can be related to the free electron density NV in-between
the atoms. We can describe the free electrons as plane waves normalized to a
volume V ,

ψ(r) =
1√
V

eik·r , (7.42)

where the electron momentum k is related to the electron kinetic energy by
the free electron dispersion relation

E =
h̄2k2

2me
. (7.43)
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The total density of states per unit energy (including two spins per energy) is
obtained by counting the number of states in the volume V per unit energy
and is given by

D(E) =
V

π2h̄2 mek =
V

2π2h̄3 (2me)3/2
√
E. (7.44)

If we denote the electron density per unit volume as NV, the total number of
electrons in the volume V is NVV . By equating NVV with the energy integral
of (7.44) up to the Fermi energy we obtain

NV =
1
V

∫ EF

0

D(E) dE =
(2meEF)3/2

3π2 h̄3 =
k3
F

3π2
, (7.45)

where the Fermi energy EF and Fermi wave vector kF are related according
to EF = h̄2k2

F/2me. The RKKY exchange coefficient J(R) is found to be
oscillatory with distance R according to

J(R) =
16A2me k

4
F

(2π)3 h̄2

[
cos(2kFR)
(2kFR)3

− sin(2kFR)
(2kFR)4

]
. (7.46)

It makes a damped oscillation with distance from positive to negative values,
which at large R takes a simple form

J(R) =
2A2me kF

(2π)3 h̄2

cos(2kFR)
R3

. (7.47)

Therefore, depending upon the separation between a pair of ions their mag-
netic coupling can be ferromagnetic or antiferromagnetic. It follows the po-
larization of the conduction electrons, as illustrated in Fig. 7.34a. The RKKY
exchange couples localized moments over relatively large distances.

7.8.2 Metallic Multilayers

RKKY exchange around magnetic impurities is nondirectional. The same
mechanism also applies when two magnetic layers are separated by a non-
magnetic spacer, for example, in a Co/Cu/Co sandwich. Now the oscillatory
coupling is in the direction perpendicular to the layers. If the two magnetic
layers L1 and L2 are separated by a nonmagnetic spacer layer of thickness d,
one can define an interlayer exchange coupling constant J12 per unit interface
area. It leads to an oscillatory magnetization in the spacer layer that decays
with 1/z2, where z is the distance from one of the layers, chosen as the ref-
erence layer. The magnetization of the “nonmagnetic” spacer layer has been
observed by photoemission [313,314] and X-ray magnetic dichroism [315,316].
In the limit of large distance z it has the simple form [222]

J12(z) = J0
d2

z2
sin(2kFz) . (7.48)
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Fig. 7.34. (a) Spin polarization of the conduction electrons around a localized
magnetic impurity, showing the characteristic RKKY oscillations given by (7.46).
(b) Spin polarization of electrons between two magnetic layers. The relative mag-
netization alignment in the two layers depends of the distance between the layers,
and is caused by induced spin polarization in the “nonmagnetic” spacer layer, the
sign of which is distance-dependent. Right: Interlayer exchange coupling strength
J12 between two ferromagnetic Ni80Co20 layers across a Ru spacer layer of variable
thickness [312]. The experiment utilized a specially engineered multilayer structure.
The interlayer exchange coupling constant J12 given by (7.48) has the dimension [en-
ergy/unit area] and is positive for ferromagnetic and negative for antiferromagnetic
coupling

The induced spin density wave in the spacer layer serves as an indirect cou-
pling mechanism between the magnetic layers, as illustrated in Fig. 7.34b,
which change their coupling from ferromagnetic to antiferromagnetic align-
ments as a function of the spacer layer thickness d. This oscillation has been
observed by magnetization measurements [312] for Ni80Co20 magnetic lay-
ers coupled through Ru as shown in Fig. 7.34, and can also be directly im-
aged [317] by use of a wedge structure as for the Cr spacer layer wedge between
ferromagnetic Fe layers shown in Fig. 1.9.

The interlayer exchange coupling may also be explained by a standing spin
density wave in the spacer layer caused by the quantum well set up by the
parallel magnetic layers, first suggested by Ortega and Himpsel [318]. The
RKKY and quantum well pictures are related but not identical, since in the
quantum well the oscillation is caused by a coupled charge and spin density
wave. The quantum well picture has been reviewed by Himpsel et al. [249,250]
and will also be discussed in Sect. 13.4.5 later.

In the next section we take a look at the effect and importance of the
small spin–orbit interactions. We shall see that despite its size it is of great
importance since it determines the magnetocrystalline anisotropy.
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7.9 Spin–Orbit Interaction: Origin of the
Magnetocrystalline Anisotropy

The treatment of the spin–orbit interaction in atoms is straight forward as
discussed in Sect. 6.4 and it can be viewed as simply coupling the atomic
spin to the orbital momentum. For a single electron this results in the vector
coupling relation l + s = j. Similarly, for a multielectron system with L − S
coupling we have L+S = J and the terms 2S+1L are coupled into subgroups
2S+1LJ with L − S ≤ J ≤ L + S. The general form of the Hamiltonian is a
generalized form of (6.89) or

Hso = ξ(r) L · S . (7.49)

In solids the situation is complicated by bonding. In the multiplet approxima-
tion the intra-atomic Coulomb and exchange interactions still create coupled
terms 2S+1L but these terms are modified by the LF which mixes different L
values, as discussed in Sect. 7.5.2. In the independent electron approximation
we have seen in Sect. 7.5.1 that the LF wavefunction (7.30) contain a mixture
of ml values. Therefore in the respective models, L and ml cease to be good
quantum numbers. The Hamiltonian (7.49) is therefore no longer diagonal
and needs to be diagonalized with the LF eigenfunctions. In this section we
shall take a look how this is done and, as a consequence, we shall find an
important effect, which is directly related to the anisotropy of bonding - the
magnetocrystalline anisotropy, MCA.

In general, the magneto-crystalline anisotropy is defined as follows.

The magneto-crystalline anisotropy is the energy that it takes to rotate
the magnetization from the “easy” direction into the “hard” direction,
assuming a bulk sample where magnetostatic effects are absent. It is given
by the anisotropy of the spin–orbit energy

∆Eso = 〈Hso〉hard −〈Hso〉easy = ζ [〈L ·S〉hard −〈L ·S〉easy] > 0 , (7.50)

so that it costs energy to rotate the magnetization into the hard direction.

The microscopic origin of magnetic anisotropy in transition metals has
been debated ever since the early work by Van Vleck in 1937 [319]. Recently,
interest in this problem has been revived in conjunction with artificially cre-
ated transition-metal films and multilayers which exhibit perpendicular mag-
netic anisotropy [320, 321]. The microscopic origin of the MCA is nontrivial
and therefore only general hand-waving arguments are often given [322,323].
The difficulty in treating the spin–orbit interaction in transition metals and
their compounds lies in its small size, as seen from Fig. 7.5. For this rea-
son the MCA is typically also a small energy. For example, as discussed in
Sect. 11.2.2, it has only recently been possible to correctly obtain the known
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[111] anisotropy direction in bulk fcc Ni. Because of the high symmetry of the
lattice, the magnetocrystalline anisotropy is only about 10−5 eV/atom, and it
remains difficult to develop a conceptual understanding of the origin of the
MCA, which arises from the subtleties of the band structure.

More generally, it is difficult to picture the origin of such anisotropy en-
ergies since our visualization of magnetism is closely related to magnetic mo-
ments. It would therefore be preferable to cast anisotropy concepts in terms of
“moment anisotropies” and in this section we shall do so, following concepts
due to Bruno [123,324].

In particular, we shall here consider systems where symmetry breaking
creates a large bonding anisotropy and MCA. For example, metallic multilay-
ers like Co/Pd may exhibit MCAs that are enhanced by orders of magnitude,
up to about 1 meV/atom [123, 325]. It is in such systems that we can hope
to directly link bonding anisotropy and MCA. The goal of this section is to
establish this link, both conceptually and through a model calculation. We
shall start by presenting a simple model based on bonding and the orbital
magnetic moment.

7.9.1 The Bruno Model

Bruno [123,324] has shown theoretically13 that under certain assumptions the
anisotropy of the spin–orbit energy is directly related to the anisotropy of the
orbital moment according to

∆Eso = ζ [〈L · S〉hard − 〈L · S〉easy] =
ζ

4µB
(measy

o −mhard
o ) > 0 . (7.51)

This equation predicts that the easy magnetization direction has a larger
orbital moment than the hard magnetization direction. Let us remember this
result.

The Bruno model states that the orbital moment is larger along the easy
magnetization direction, and that the difference between the orbital mo-
ments along the easy and hard directions is proportional to the magneto-
crystalline anisotropy.

Bruno’s model leads to a particularly simple and beautiful picture for the
origin of the MCA based on the anisotropy of the orbital moment illustrated in
Fig. 7.35. We will later see that this concept has been experimentally verified

13Bruno’s work followed careful high field measurements of the anisotropy of the
total (spin plus orbital) magnetic moment by Aubert, Rebouillat, Escudier, and
Pauthenet [326]. The relationship between the orbital moment and the magnetic
anisotropy was also discussed in an early paper by Ducastelle and Cyrot-Lackmann
[327].
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Fig. 7.35. Directional quenching of the orbital momentum of an atom by ligand
field effects in a thin film, as discussed in the text

by Weller et al. [328] by means of angle dependent XMCD measurements of
a Co/Au/Co wedge.

In the independent electron ligand field model the microscopic origin of
the MCA may be envisioned to come about as illustrated in Fig. 7.35, using
concepts by Smit [329]. Consider a d electron in a free atom whose spin is
oriented by an external magnetic field. The orbital momentum of the d electron
circling about the spin direction can then take on values −2 ≤ 〈Lz〉 ≤ +2, as
depicted in Fig. 7.35. For an external magnetic field H along +z, the lowest
energy state will be the Lz = −2 state, which is aligned in the opposite
direction to H.

Let us now assume that, instead, the atom is bonded in a planar geometry
to four other atoms with a negative or positive charge as shown in Fig. 7.35.
Now the orbiting electron will experience a Coulomb repulsion where the
negative neighbor ions are located and a Coulomb attraction where the pos-
itive atoms are located. The orbiting electron will form a standing wave by
superposition of two oppositely traveling waves with ±Lz, with characteristic
charge maxima as shown. One may say that the in-plane orbit of the elec-
tron is broken up through the formation of molecular orbitals (e.g., a dx2−y2

orbital or a dxy, as shown in the figure). Therefore the corresponding orbital
momentum along the normal of the bonding plane, will be quenched. We
shall later show that the individual real d-orbitals indeed have zero orbital
moment.

On the other hand, the orbital motion perpendicular to the bonding plane
will be less disturbed owing to the lack of neighbor ions and the corresponding
in-plane orbital momentum remains largely unquenched. The simple model
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pictured in Fig. 7.35 therefore relates the anisotropy of the orbital moment of
an atom to the anisotropy of the bonding environment. For a free monolayer
the orbital momentum L (or moment morb = −µBL/h̄) is predicted to be
larger in the bonding plane than perpendicular to it. For the opposite case of
stronger out-of-plane bonding, which may occur in a multilayer, the orbital
moment would be larger in the out-of-plane direction.

The total magnetic moment of atoms has two contributions arising from
the spin and the orbital moment, according to mtot = ms +mo. As discussed
in Sect. 12.2.2, for the ferromagnetic metals Fe, Co, and Ni, the spin moment
is about ten times larger than the orbital moment. The large spin moment is
intrinsically isotropic because the exchange interaction is isotropic. We then
have the interesting situation that the small orbital moment is “locked” into
a favorite direction by the bonding anisotropy of the lattice and it directs
the spin moment into its favorable lattice direction through the spin–orbit
coupling. The latter keeps the orbital and spin moments parallel to each other
according to Hund’s rules discussed in Sect. 6.4.14

The above simple atomic moment based model has the following key in-
gredients:

– The existence of an (isotropic) spin moment on the central atom through
the exchange interaction.

– The symmetry and strength of the LF around the central atom.
– The creation of an anisotropic orbital moment on the central atom by the

spin–orbit coupling.

We shall now look at the theoretical underpinning of this model. We do not
need to elaborate on the spin moment but simply assume its existence. Instead,
we concentrate on points two and three, the LF and spin–orbit interaction.
To facilitate things we shall use the independent electron LF model where we
can visualize bonding by means of the real d-orbitals.

7.9.2 Description of Anisotropic Bonding

In order to quantitatively link bonding anisotropy with MCA, we use the d-
orbitals for the description of the bonding. Their energetic positions and split-
ting is described by the independent electron LF theory discussed in Sect. 7.5.1
or the band structure effects treated in Sect. 7.4.3. We picture a central tran-
sition metal atom that is located in three different types of environments, as
illustrated in Fig. 7.36: (a) a bulk fcc crystal composed of identical atoms, (b)
a free standing (001) monolayer of identical atoms, and (c) an interface layer

14It has been suggested by electronic structure calculations [330] that ligand field
effects which traditionally are only known to quench the orbital moment may, for
certain materials, invert the sign of the orbital moment thereby violating Hund’s
third rule.
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Fig. 7.36. Illustration of the effect on anisotropic bonding on the LF d orbitals in a
simple band picture. In the inset we illustrate that in many cases, e.g., surfaces and
thin films, one may distinguish in-plane (x, y) and out-of-plane (z) d orbitals. In (a)
we show the case of a bulk fcc lattice. At the center of the Brillouin zone, Γ , both the
t2 and e manifolds are isotropic because they contain in-plane as well as out-of-plane
d orbitals. Even band dispersion does not affect the in-plane/out-of plane equivalence
as shown for the canonical d band behavior in the Γ −X direction [222]. In contrast,
in tetragonal symmetry the in-plane/out-of-plane equivalence is broken, as shown
for two cases. (b) illustrates the case of a free (001) monolayer, where the in-plane
interaction (orbital overlap) is stronger [332]. Therefore the splitting of the in-plane
orbitals, V‖, is larger than that of the out-of-plane orbitals, V⊥. (c) illustrates the
opposite case where the out-of-plane interaction for a sandwiched layer is assumed
to be stronger. Now the out-of-plane d orbitals split more than the in-plane ones, so
that V⊥ > V‖

of the same structure that is sandwiched between layers composed of different
atoms, with stronger out-of-plane than in-plane bonding.15

In order to picture anisotropic bonding we divide the d-orbitals into in-
plane and out-of-plane orbitals as shown in the inset of Fig. 7.36. If we now
look at the bonding of a central atom, shown in black, in an fcc lattice its
d-orbitals are split into t2g and eg states due to the octahedral environment as
shown in (a). Both t2g and eg states are isotropic since they contain both in-

15Harrison [331] has tabulated interaction strengths between different elements.
This concept has been used by Wang et al. [332] to discuss bonding in multilayers.
For example, if the in-plane Co–Co bonding strength for a sandwiched Co monolayer
is normalized to 1.00, then the corresponding out-of-plane Co–X bonding strength
is 1.53, 1.60, 1.38, 0.83 for X = Au, Pt, Pd, and Cu, respectively.
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plane and out-of-plane orbitals. In a band picture, the orbital splitting changes
as a function of wavevector, as shown for the Γ − X direction [222], but on
average the states maintain their in-plane/out-of-plane equivalence. Hence in
cubic symmetry the bonding is isotropic, and for this reason the MCA enters
only in higher order and is very weak.

The situation is quite different if we isolate a single (001) layer out of
the bulk fcc lattice, as shown in Fig. 7.36b. Now the reduced (tetragonal)
symmetry leads to a pattern similar to that shown in Fig. 7.9 with a larger
in-plane than out-of-plane splitting. Which in-plane or out-of-plane state is
lowest and highest depends on where we are in the Brillouin zone. As an
example, we show the bands as calculated by Wang et al. [332] for a Co (001)
monolayer along the Γ̄ −M̄ direction in the surface Brillouin zone. In order to
account for the different in-plane and out-of-plane behavior we can therefore
define splitting energies V‖ (in-plane) and V⊥ (out-of-plane) that reflect an
average over prominent points (flat bands) in the Brillouin zone. This concept
therefore lets us avoid the consideration of the detailed k-dependent band
structure and leads to a significant simplification.

Finally, we show in Fig. 7.36c the case where the (001) monolayer has been
sandwiched between two layers of different atoms on fcc lattice positions. We
shall assume that the in-plane bonding between like atoms is weaker than the
out-of-plane bonding between different atoms (see footnote 15). This situation
is indeed encountered, for example, for a Co layer that is sandwiched between
Pt or Au layers [332, 333]. Now the splitting between out-of-plane orbitals,
V⊥, is larger than that, V‖, between in-plane orbitals.

The task before us in the next section is to link the bonding asymmetry
described by V‖ and V⊥ to the anisotropy of the orbital magnetic moment.

7.9.3 Bonding, Orbital Moment, and Magnetocrystalline
Anisotropy

The molecular orbitals formed through bonding, in our case the d orbitals,
have zero orbital momentum. This is easily seen by writing the d orbitals
in terms of spherical harmonics YL,M = |L,M〉 = |L,Lz〉, as done in
Table 7.4, and then calculating the expectation values 〈di|Lα|di〉 (α =
x, y, z). Let’s take the dx2−y2 orbital, for example. It is given by |dx2−y2〉=
(1/

√
2) {|L=2,M=2〉 + |L=2,M=−2〉} and therefore 〈dx2−y2 |Lz|dx2−y2〉

= 0. This result can also be derived from the matrix elements listed in Ta-
ble 7.11, which readily allow the calculation of the orbital momentum along
the x and y directions.

The case of the real d orbitals is only one example of an important general
theorem which needs to be framed and remembered.
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Table 7.11. Angular momentum operators Lα (α = x, y, or z) acting on d-orbitals,
taken from Ballhausen [236]. Because all matrix elements between orbitals oi are
purely imaginary we have 〈oi|Lα|on〉 = −〈oi|Lα|on〉∗ = −〈on|L†

α|oi〉 = −〈on|Lα|oi〉.
Eigenvalues are in units of h̄

Lxdxz = −i dxy Lydxz = i dx2−y2 Lzdxz = i dyz

−i
√

3 d3z2−r2

Lxdyz = i
√

3 d3z2−r2 Lydyz = i dxy Lzdyz = −i dxz

+i dx2−y2

Lxdxy = i dxz Lydxy = −i dyz Lzdxy = −i 2 dx2−y2

Lxdx2−y2 = −i dyz Lydx2−y2 = −i dxz Lzdx2−y2 = i 2 dxy

Lxd3z2−r2 = −i
√

3 dyz Lyd3z2−r2 = i
√

3 dxz Lzd3z2−r2 = 0

States that carry an angular momentum are always described by a com-
plex wavefunction. If a wavefunction is real the corresponding state has
zero angular momentum.

The zero angular momentum value for all d orbitals arises from a perfect
balance of substates with quantum numbers +M and −M . This balance is
broken when two or more of the orbitals are mixed by the spin–orbit interac-
tion and the new orbitals can then have a finite angular momentum. Let us
see how this happens.

Calculation of the Spin–Orbit Interaction

The spin–orbit (SO) interaction, derived in Sect. 6.4, is given by

Hso = ξ(r) L · S = ξ(r)(LxSx + LySy + LzSz) , (7.52)

where the relevant spin–orbit coupling constant (units [energy]) for the d shell
is given by

ζ = 〈 ξ(r) 〉 =
∫ ∞

0

R3d(r) ξ(r)R∗
3d(r) r

2 dr. (7.53)

The SO interaction couples the electronic ligand field orbitals that are “locked
in” by the lattice to the spin which is created by the exchange interaction
and is intrinsically isotropic. Without the SO interaction charge and spin are
decoupled, the orbital moment is zero and the spin cannot “talk” to the lattice.
For example, angular momentum cannot be transferred from the spin system
to the lattice.

As shown in Fig. 7.5, for the 3d transition metals the SO interaction is more
than an order of magnitude smaller that the exchange interaction and the LF
splitting (band width). One can therefore treat it to a good approximation
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by perturbation theory [123, 324]. As usual in quantum theory this requires
the evaluation of matrix elements of the perturbative Hamiltonian, i.e., the
SO Hamiltonian, formed with the “zero-order” wavefunctions created by the
ligand field and the exchange interactions.

By defining average splittings as done in Fig. 7.36 between in- and out-of-
plane d-orbitals we can eliminate the complicated k dependence and describe
the bonding in a simple LF formalism, with the d orbitals as the LF eigen-
functions. The “zero-order” electronic wavefunctions for our perturbation cal-
culation are simple products of the radial and angular d functions created
by the LF and the spin-up and spin-down functions created by the exchange
interaction.

At first sight the perturbative SO Hamiltonian (7.52) looks quite simple.
However, we need to remember that the reference frame x, y, z for the d or-
bitals is given by the lattice and the quantization axis z̃ for the spin is in
general different from the z axis of the lattice. The spin quantization axis is
chosen to lie along the magnetic field Hext. This complicates things and we
need to rewrite the SO Hamiltonian to account for the two different frames.

In the following we shall assume that the z̃ axis is specified by spherical
angles θ̃ and φ̃ in the x, y, z frame of the lattice, as shown in Fig. 7.37. Since we
want to calculate the magnetic anisotropy we assume that we can magnetically
align the sample by an external magnetic field along any direction in the
x, y, z frame. The magnetic anisotropy is then given by the energy difference
between spin alignments along the easy and hard magnetization direction of
the sample.

The components Sx, Sy, and Sz in (7.52) of the spin in the sample frame
are related to the operators Sx̃, Sỹ, and Sz̃ in the spin frame according to,

H
z

z
y

y
x

x

Fig. 7.37. Relationship of the coordinate system of the sample (x, y, z) relative to
a rotated spin quantization frame, x̃, ỹ, z̃. The spin quantization frame is naturally
chosen so that the z̃ axis lies along the magnetic field Hext. Its orientation is specified
by spherical angles θ̃ and φ̃ in the x, y, z frame



302 7 Electronic and Magnetic Interactions in Solids

Sx = Sx̃ cos φ̃ cos θ̃ − Sỹ sin φ̃+ Sz̃ cos φ̃ sin θ̃

Sy = Sx̃ sin φ̃ cos θ̃ + Sỹ cos φ̃+ Sz̃ sin φ̃ sin θ̃

Sz = −Sx̃ sin θ̃ + Sz̃ cos θ̃ , (7.54)

and we obtain the general equation for the SO Hamiltonian,

Hso= ξ(r) (Lx{Sx̃ cos φ̃ cos θ̃ − Sỹ sin φ̃+ Sz̃ cos φ̃ sin θ̃}
+Ly{Sx̃ sin φ̃ cos θ̃ + Sỹ cos φ̃+ Sz̃ sin φ̃ sin θ̃}
+Lz{−Sx̃ sin θ̃ + Sz̃ cos θ̃}) . (7.55)

This gives the following expressions for Hext, z̃ ‖ x, y, or z

Hext ‖ x : Hx
so = ξ(r) (LxSz̃ + LySỹ − LzSx̃) (7.56)

Hext ‖ y : Hy
so = ξ(r) (−LxSỹ + LySz̃ − LzSx̃) (7.57)

Hext ‖ z : Hz
so = ξ(r) (LxSx̃ + LySỹ + LzSz̃) . (7.58)

Without the radial part R3d(r), the ten d electron spin orbitals which
constitute the zero order states of our perturbation treatment have the general
short form

φ+
n = |dn, Sz̃〉 = |dn,+〉 , (7.59)

for spin-up states, and

φ−l = |dl,−Sz̃〉 = |dl,−〉 , (7.60)

for spin-down states. In the following we shall only use the above angular
parts of the spin orbitals, since all matrix element of the SO Hamiltonian
with the radial parts R3d(r) simply give a factor ζ, according to (7.53). For
simplicity, we shall indicate the orientation of z̃ in the x, y, z frame by a
single index α that incorporates the spherical angles θ̃ and φ̃. For alignment
of z̃ ‖ x, for example, we simply write α = x. The index α explicitly indicates
that the wavefunctions depend on the magnetization (external field) direction.
A resulting perturbed spin-up LF state arising from the spin–orbit interaction
is then obtained by the first order perturbation expression

Ψα
i = φ+

i +
∑
m

bαm,i φ
+
m +

∑
k

cαk,i φ
−
k . (7.61)

Similarly a perturbed spin-down LF state is given by the first-order state,

Ψα
j = φ−j +

∑
m

dα
m,j φ

−
m +

∑
k

eαk,j φ
+
k . (7.62)

The anisotropic correction terms bα and dα reflect mixing of LF states of
the same spin by the SO interaction, which for α = x, y, z is given by the
expressions (7.56)–(7.58). The spin-up and spin-down terms are given by
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bαm,i =
〈φ+

m|Hα
so|φ+

i 〉
∆im

dα
m,j =

〈φ−m|Hα
so|φ−j 〉

∆jm
(7.63)

and the terms cα and eα reflect mixing of band states of opposite spin and
are given by

cαk,i =
〈φ−k |Hα

so|φ+
i 〉

∆ik
eαk,j =

〈φ+
k |Hα

so|φ−j 〉
∆jk

. (7.64)

Here we have defined the energy differences of the zero-order states with en-
ergies El and En according to the convention ∆ln = El − En.

The mixing terms will have approximate magnitudes bα, dα ≈ ζ/∆LF ≈
0.1, where ∆LF is the LF energy splitting, and cα, eα ≈ ζ/∆ex ≈ 0.1, where
∆ex is the exchange splitting.

Spin and Orbital Moments and Spin–Orbit Energy

By use of the wavefunctions in (7.61) and (7.62) the spin and orbital moments
and their anisotropy may now be calculated. The matrix elements of the
angular momentum operator Lα with the orbital parts of the wavefunctions
are obtained from Table 7.11, the matrix elements of the spin operator Sα

and the spin functions are given in Table 7.12.
The spin moment is created by the exchange interaction which leads to

an unequal population of spin-up and spin-down states. It is defined as the
expectation value of Sz̃. If for brevity we define the expectation values of the
spin and angular momentum operators as unitless numbers so that we can
ignore the factors of h̄, we have

mα
s = −2µB 〈Sz̃〉 = −2µB

∑
n

〈Ψα
n |Sz̃|Ψα

n 〉 , (7.65)

where the sum extends over filled states. We shall assume that there are N+

filled spin-up states and N− filled spin-down states. We obtain,

Table 7.12. Spin operators Sα (α = x, y, or z) acting on spin-states χ± = ±, where
we have assumed the quantization axis z̃ = z. Eigenvalues are in units of h̄

Sx|+〉 =
1

2
|−〉 Sy|+〉 =

i

2
|−〉 Sz|+〉 =

1

2
|+〉

Sx|−〉 =
1

2
|+〉 Sy|−〉 = − i

2
|+〉 Sz|−〉 = −1

2
|−〉
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mα
s = −2µB

⎡
⎣N+∑

i

〈φ+
i |Sz̃|φ+

i 〉 +
N−∑

i

〈φ−i |Sz̃|φ−i 〉 + · · ·

⎤
⎦

= −2µB

⎡
⎣N+∑

i

〈+|Sz̃|+〉 +
N−∑

i

〈−|Sz̃|−〉 + · · ·

⎤
⎦

� µB [N− −N+] +O
[
(ζ/∆CF)2, (ζ/∆ex)2

]
. (7.66)

This shows the expected result that the magnetic moment in first-order is
given by the difference in spin-down and spin-up electrons. The second order
terms enter through the spin–orbit coupling. The size of these contributions
resulting from mixing of states of the same spins are of order (bα)2 � (dα)2 �
(ζ/∆CF)2 and the mixed spin contributions (cα)2 and (eα)2 are of magnitude
(ζ/∆ex)2. Both are of the order of 1% and hence the spin moment remains
isotropic to a good approximation. We shall see in Sect. 12.5.3 later that the
higher order anisotropy in the spin moment is indeed very important in the
context of anisotropic magnetoresistance.

We now calculate the angle dependent orbital moment mα
o of the d shell

along the principal Cartesian axes α = x, y, or z. It is given by

mα
o = −µB 〈Lα〉 = −µB ζ

∑
n

〈Ψα
n |Lα|Ψα

n 〉 . (7.67)

An orbital moment exists if there is a net orbital current from the d electron
motion around the nucleus. This requires time reversal symmetry to be broken
so that the motion of the orbiting electron, on average, is larger in one direction
than the opposite direction. In magnetic materials the symmetry breaking
is caused by the SO coupling. The d electron orbits may be anisotropic by
bonding alone (e.g., the orbits may be confined to the x−y plane) but without
SO coupling they will possess time reversal symmetry (e.g., an in-plane current
giving rise to an orbital moment along +z will be cancelled by the opposite
current, giving rise to a moment in the −z direction). We see from these
considerations and (7.67) that the size of the orbital moment in different
directions depends on two ingredients: the d electron bonding (i.e., the LF
symmetry) contained in the wavefunctions Ψα

n and the size of the SO coupling
given by the parameter ζ.

By use of the functions in (7.61) and (7.62) and the notation χ± = ± of
Table 7.12 we can evaluate (7.67) to first-order

〈Lα〉 = 2 ζ
∑

n,m,j

〈χj |Sz̃|χj〉 |〈φ
j
n|Lα|φj

m〉|2
∆nm

= ζ
∑
n,m

|〈φ+
n |Lα|φ+

m〉|2
∆nm

− |〈φ−n |Lα|φ−m〉|2
∆nm

= 〈L+
α 〉 − 〈L−

α 〉 , (7.68)
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where the sum extends over filled states n and empty states m within the
spin-up and spin-down manifolds (index j). Note that the coupling between
pairs of filled (and empty) states does not need to be considered since the
spin–orbit induced terms cancel each other for any pair. Also, to first order
mα

o does not depend on cα, i.e., the mixing of spin-up and spin-down states by
the SO interaction, since the relevant matrix elements 〈dnχ

+|Lα|dmχ
−〉 = 0.

According to (7.68) the orbital momentum is the sum of contributions from
all filled states in the spin-up and spin-down sub-bands. If a sub-band is filled
its contribution vanishes because of the perfect balance of contributions from
states with +M and −M .

The angular momenta expectation values 〈Lx〉, 〈Ly〉, and 〈Lz〉 vanish for
an empty or filled electronic shell with angular momentum quantum num-
ber L.

We note, that conventional electronic structure calculations underestimate
the size of the orbital moment unless an orbital polarization term is included
[334]. For a more (less) than half filled d shell ms and mo have the same
(opposite) sign, i.e., are parallel (antiparallel) according to Hund’s rule.

Similarly, we can derive from the general forms of the spin–orbit Hamil-
tonian given by (7.55) the angle-dependent spin–orbit energy. It is given by

〈Hα
so〉 =

ζ2

4

∑
n,m,j

|〈φj
n|Lα|φj

m〉|2
∆nm

+
∑

n,l,j,j′

|〈φj
n|Hα

so|φj′

l 〉|2
∆nl

= Eα
jj +Eα

jj′ , (7.69)

where the terms Eα
jj and Eα

jj′ represent the contributions from states of the
same and opposite spin, respectively, and the sums extend over filled states
(n, j) and empty states (m, j) and (l, j′). For Eα

jj′ = 0 we obtain

〈Hα
so〉 = Eα

jj =
ζ

4
(
〈L+

α 〉 + 〈L−
α 〉
)
, (7.70)

showing the direct correlation between the orbital moments of the spin-up and
spin-down manifolds and the spin–orbit energy. Note that the contributions
of the spin-down states, 〈L−

α 〉, enter with opposite signs in the expressions
for the orbital moment (7.68) and the spin–orbit energy (7.70). In general,
we therefore obtain a direct proportionality between the orbital moment and
the spin–orbit energy only if 〈L−

α 〉 = 0, i.e., if the spin-down band is full.
In the limit of a vanishing exchange splitting the orbital moment vanishes
(〈L+

α 〉 = 〈L−
α 〉), and so does the spin–orbit energy (Eα

jj = −Eα
jj′).

Origin of Orbital Moment Anisotropy

The origin of the orbital magnetic moment and its anisotropy is illustrated in
Fig. 7.38 by means of a perturbation picture [333]. In 3d transition metals the
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d shell is split by bonding effects into d-orbitals with a large energy separation
(≈1eV at high symmetry points in the BZ). Let us for simplicity assume that
the magnetic exchange splitting is large and all spin-down states are full so
that we only need to consider the partially filled spin-up shell [332]. The pure
d orbitals shown (e.g., at a high symmetry point in the BZ) possess no orbital
moment (which is said to be “quenched”) since the d orbitals have a perfect
balance of ±M states (or have M = 0). The effect of the smaller spin–orbit
interaction (ζ≈0.05 eV), which can be treated by perturbation theory, is a
mixing of the pure or zero-order d orbitals, creating new first-order states
which have anisotropic orbital momenta as shown.

The small spin–orbit interaction recreates the orbital momentum that
was destroyed by the LF.
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Fig. 7.38. Orbital momentum in a ligand field model with tetragonal symmetry. For
simplicity we assume that the magnetic exchange splitting is large and we consider
only states of one spin. Band structure or ligand field effects result in d orbitals
which are linear combinations of functions |L, M〉 (−2 ≤ M ≤ +2). The inclusion of
the spin–orbit interaction in lowest order perturbation theory results in new states
which have anisotropic orbital momenta (units h̄) as shown, where ζ (∼0.05 eV for
the 3d transition metals) is the spin–orbit coupling constant and ∆(i)(j) ≈ 1 eV is
the energy separation (taken positive) between a higher energy state i and a lower
state j. The indicated orbital momenta for spin alignment S||z and S||x or y result
from mixing of the spin-up states, only. Note that the total orbital momentum (sum)
vanishes if all states are empty or full
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The orbital momentum of a state |n〉 is given by the first-order perturba-
tion expression (7.68) which takes the form

〈Ln
α〉 = ζ

∑
m

|〈d+n |Lα|d+m〉|2
∆nm

, (7.71)

where the sum is over all other zero-order spin-up states d+m and ∆nm =
En − Em is the energy separation of two states. The matrix elements of the
angular momentum operators Lα can be calculated by use of Table 7.11. The
size of the orbital momenta is of order ζ/∆nm ≈ 0.1, or about 5–10% of the
size of the spin moment.

We see from Fig. 7.38 that for each orbital the orbital moment is aniso-
tropic. This anisotropy as well as the orbital moment for each direction van-
ishes if a sum is performed over all states, as discussed earlier. In transition
metals the d shell is only partly filled and the total orbital momentum is given
by the sum over all filled states |n〉. This explains why in practice, a finite
orbital moment with a finite anisotropy is obtained for Fe, Co, and Ni.

Let us explore the above model for the case of a Co monolayer which has
approximately 7.5 d electrons [333, 335]. The majority band is full and we
therefore only need to consider the half filled minority band (2.5 electrons). It
may be separated into contributions from in-plane and out-of-plane d states,
as shown in Fig. 7.39a. For the free layer the in-plane band width is larger
because of the preferential in-plane bonds between the Co atoms and the
empty and filled states have an average separation 2V‖. The narrower band
of the out-of-plane d orbitals has an average separation between the empty
and filled states of 2V⊥. In accordance with Fig. 7.36 the band picture may
be represented by a ligand field model where the in-plane and out-of-plane d
orbitals are separated by 2V‖ and 2V⊥, respectively. In order to account for
the fact that in the Brillouin zone the orbital scheme can also be turned upside
down as illustrated in Fig. 7.36, we need to average over two cases, indicated
by wavevectors (k1 and k2) in Fig. 7.39a, where the empty and filled d orbitals
are exchanged.

The anisotropies for the orbital moment mα
o (α =⊥, ‖) are plotted in

Fig. 7.39b. We see the preference for an in-plane easy axis for V‖ > V⊥, re-
vealed by the fact m‖

o > m⊥
o , and for an out-of-plane easy axis for V⊥ > V‖.

Our results confirm the expectations based on the simple model shown in
Fig. 7.35. The in-plane easy axis predicted for a free Co layer is in good ac-
cord with the results of a first principles calculations [335]. The preferred
out-of-plane orbital moment direction also supports experimental results and
first principles theory [336] for a Au/Co/Au sandwich. More details may be
found in reference [333].

In summary, we have seen that the origin of the magnetocrystalline
anisotropy is somewhat tricky and involves an interplay between the exchange
interaction, the ligand field and the spin–orbit interaction. Given the exchange
and ligand field interactions, the spin–orbit interaction can be regarded as the
origin of the magnetocrystalline anisotropy. This may be stated in short as
follows.
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Fig. 7.39. (a) Schematic model for the density of minority spin states for a free
Co monolayer. The majority band is full and the minority band, responsible for the
orbital moment, is half filled. As in Fig. 7.36 the band picture may be represented by
a ligand field model where the in-plane and out-of-plane d orbitals are separated by
2V‖ and 2V⊥, respectively. The average over the Brillouin zone is done by averaging
over two points, (k1 and k2), where the empty and filled d orbitals are exchanged.

(b) Calculated in-plane (m
‖
o) and out-of-plane (m⊥

o ) orbital moments as a function
of R = V⊥/V‖. The easy magnetization direction lies in-plane for R < 1 (shaded
region), as indicated by the icons in the plot and out-of-plane for R > 1. Results
taken from reference [333]

In magnetic materials the exchange interaction creates the spin moment
and the ligand field creates anisotropic d orbitals. The spin–orbit coupling
forms the link between the spin system and the orbital system by creating
an orbital moment that is locked into a particular lattice direction.

Experimental Verification of the Model

Experimental support for our simple model of the microscopic origin of the
magnetocrystalline anisotropy is presented in Fig. 7.40 for a Co wedge grown
between Au layers [328, 333]. As shown in (a), the wedge sample consisted
of ten Co terraces of 2 mm length and 10 mm width and a thickness rang-
ing from 3 to 12 atomic Co layers. The Co was grown on a thick Au (111)
buffer layer that was deposited on a float-glass substrate, and was capped
for protection with a Au layer of about 9 atomic layers thickness. The wedge
was characterized by means of magnetooptical Kerr effect measurements [333]
which showed an out-of-plane easy axis at the thin end and an in-plane easy
axis at the thick end of the wedge.

Figure 7.40b shows the anisotropy of the orbital moment mo determined
by means of angle dependent XMCD measurements. The circularly polarized
X-ray beam (spot size <1mm) with a fixed helicity was positioned on a Co
terrace and on each terrace two measurements were made. First both the X-
ray helicity (angular momentum) and the external magnetic field that was
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Fig. 7.40. (a) Schematic of the investigated Au/Co-staircase/Au sample with a Co
thickness ranging from 3 to 12 monolayers (ML). The sample showed a perpendicular
easy axis at small Co thickness and an out-of-plane easy axis for thick Co layers.
The easy axis is determined by the preferred direction of the anisotropic orbital
moment as illustrated schematically later. This anisotropy was directly determined
by XMCD as shown underneath. (b) Orbital moments m⊥

o and m
‖
o determined by

XMCD as a function of Co thickness. (c) The spin moment ms determined by angle-
averaged XMCD. The net spin moment decreases with decreasing Co thickness, due
to a drop in Curie temperature. Taken from [328,333]

used to saturate the sample, were oriented perpendicular to the surface. In
a second measurement both were oriented nearly parallel to the surface. The
respective orbital moments m⊥

o and m‖
o derived from the data are plotted

in Fig. 7.40b. When the Co layer is thin there is a large anisotropy in the
orbital moment with m⊥

o > m
‖
o. It vanishes when the Co thickness exceeds

about 8 monolayers. In contrast, the spin moment is nearly constant. Since the
measurements were done at room temperature the slight drop at the smallest
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Co thickness is most likely due to a reduced Curie temperature (finite size
effect).

Above the experimental results we illustrate schematically how the mag-
netic anisotropy of the sample can be understood by means of the orbital
moment anisotropy. At the thick end of the wedge the orbital magnetic mo-
ment is nearly isotropic. Here, the overall in-plane anisotropy of the sample
is simply due to the macroscopic shape anisotropy, which will be discussed in
more detail in Sect. 11.2.1. Because it is due to the dipolar coupling of atomic
moments and because the size of the total atomic moment is dominated by the
spin moment, one may regard the shape anisotropy as a macroscopic spin–spin
dipolar anisotropy. With decreasing sample thickness, the average symmetry
of the Co atoms becomes increasingly anisotropic. At the thin end of the wedge
the anisotropy of the orbital moment has become so large that it has a strong
preference for a perpendicular orientation. Now there are two opposing forces
acting on the spin moment. The dipolar field wants to rotate it in-plane and
the spin–orbit coupling wants to rotate it parallel to the out-of-plane orbital
moment (Hund’s third rule). The easy axis is determined by which of the two
forces is stronger, i.e., whether the dipolar energy is smaller or larger than
the anisotropy of the spin–orbit energy. Clearly, at the thin edge of the wedge
the anisotropy energy associated with the spin–orbit interaction exceeds the
value of the shape anisotropy and we have the interesting situation that the
small orbital moment redirects the larger spin moment into a perpendicular
alignment.

It is important to note that the magnetocrystalline anisotropy energy val-
ues derived from the measurement of the anisotropy of the orbital moment by
XMCD are significantly larger than the energies measured with conventional
methods. The origin for these discrepancies are not understood [333].



8

Polarized Electrons and Magnetism

8.1 Introduction

The central cornerstone of magnetism is the quantum theoretical concept of
the spin. It first revealed itself in the Stern–Gerlach experiment discussed
in Sect. 3.5.1 and in atomic emission spectra, as discussed in Sect. 6.3.1. We
have also discussed in Chap. 7 the fundamental role the electron spin has
played in the magnetic structure of matter. Today one of the most prominent
research topics in magnetism deals with the generation of spin polarized elec-
trons and their transmission or transport through matter. Such studies cover
a broad range of topics such as the creation of spin-modulated electron beams
in vacuum and their transmission and reflection by magnetic materials, the
excitation and switching of the magnetization in metals by “spin torques”
associated with injected spin polarized currents, the optical excitation and
orientation of spin polarized electrons in semiconductors, the spin-dependent
transport from metals to semiconductors, the tunneling of spin-polarized elec-
trons through insulators, all the way to finding ways of encoding information
in quantized spin states for the futuristic concept of quantum computing.

This chapter specifically addresses the creation of free spin-polarized elec-
tron beams with kinetic energies of several eV above the Fermi level, so called
ballistic electrons, and their interactions with a magnetic material. Over the
years such studies have provided a wealth of information. For simplicity we
shall discuss here transmission experiments through a thin magnetic foil. Such
experiments are important for three reasons. First, they have a resemblance
to those performed with light, namely Faraday and Kerr effect measurements.
Second, they contain specific information on the energy and angular momen-
tum transfer between the polarized electrons and the sample, which is of
great importance in the switching dynamics of magnetic bits, as discussed in
Chap. 15. Third, the concepts underlying “beam” studies are closely related
to those underlying spin transport through matter involving spin-polarized
electrons with kinetic energies near the Fermi energy, as discussed later in
Chap. 14.
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Possibly the most important result that has emerged from spin-polarized
beam studies is the fact that they jointly with spin-dependent transport mea-
surements support the so-called two current model, a cornerstone of modern
spintronics. This shows that this model is valid for kinetic energies ranging
from the diffusion (Fermi level) to the ballistic regime (several eV above EF).
The model, reviewed in detail in Sect. 12.5.2, states that electrons with spin
parallel and antiparallel to the magnetization direction form two distinct chan-
nels that carry the current in parallel yet are subject to different resistivities.

It is this concept that leads to dramatic effects when the magnetization
changes abruptly at the interface between two different materials, as discussed
in Chap. 14. Prominent examples are the giant magnetoresistance (GMR)
effect [79–81], the tunneling magnetoresistance effect [337], the spin torque
effect during spin injection [84, 85], and the spin transport across metal–
semiconductor interfaces [78]. Through the technological use of the GMR
effect in magnetic recording today, the direction quantization of the electron
spin has thus moved from its discovery by Stern and Gerlach and a theoretical
physics concept to a cornerstone of modern technology, allowing the efficient
reading of magnetic memories with ever increasing capacity.

In this chapter we will develop the tools for a quantum mechanical de-
scription of spin-polarized electron beams and their interaction with matter.
Such experiments became possible by the invention of the laser in the late
1950s [47] and the invention of the spin-polarized electron gun in the mid
1970s [73]. After reviewing the generation of spin-polarized electron beams,
we will show how nonrelativistic polarized electrons are described by the Pauli
spinor formalism. Key to the understanding of polarized electron beams is the
counter-intuitive quantum mechanical concept of self-interference. It is based
on the description of one single electron by a superposition of two phase-
coherent partial wave functions, one for “spin up” and one for “spin down,”
as already discussed in conjunction with the Stern–Gerlach experiment in
Sect. 3.5.1. The coherent superposition of the partial wave functions then af-
fects the transmission of spin-polarized electrons through matter, based on
preferential scattering of electrons in one of the two channels.

In the process we shall encounter that the same partial wave formalism can
also be used for the description of polarized X-rays. In the case of photons,
this leads to the well-known magneto-optical Faraday and Kerr effects. In
particular, the precession of the electron spin about the magnetization axis
of a ferromagnet and its relaxation into the axis will be shown to be formally
analogous to the magneto-optical effects with photons.

8.2 Generation of Spin-Polarized Electron Beams

8.2.1 Separation of the Two Spin States

In order to study the interaction of spin-polarized electrons with a magnetic
material, one must have a suitable source of spin-polarized electrons, that is
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a source of electrons whose spins point preferentially into a predetermined
direction in space. A detector for the spin polarization is required as well.
Both tools, source and detector of spin polarization, involve spatially sepa-
rating the two spin states. A device that can produce spin polarization is, at
least in principle, also suitable to detect it, in close analogy to polarized light
optics.

In the famous Stern–Gerlach experiment discussed in Sect. 3.5.1, the two
spin states of the unpaired valence electron of the charge-neutral Ag-atom
were separated in an inhomogeneous magnetic field. However, there is no
classical method to spatially separate the two spin states of the free electron
in macroscopic fields due to the overwhelming effect of the Lorentz force acting
on the charge of the moving electron as discussed in detail by Kessler [131].
Yet a large variety of approaches based on quantum mechanics may be used
to produce and detect spin-polarized electrons.

Natural sources of polarized electrons are the ferromagnets from which
polarized electrons may be extracted in photoemission or with some cau-
tion also in tunneling. But the ferromagnetic sources have the disadvantage
that in order to switch the spin direction, the magnetization of the cath-
ode must be inverted. This disturbs, if only slightly, the emerging electron
beam due to residual stray magnetic fields present at ferromagnetic cath-
odes. A comparison and review of different spin-polarized electron sources
has been given by Pierce [338]. The ferromagnets may also be used for de-
tecting electron spin polarization through the spin-dependence of the trans-
mission or reflection process [339]. Classical reviews or books on polarized
electrons reflecting the fast historical development are due to Tolhoek [133],
Farago [340], Kessler [131], Pierce and Celotta [341], Siegmann, Meier, Erbu-
dak, and Landolt [342], Feder [343], Kirschner [344], and Makdisi, Luccio, and
MacKay [345].

Today, most polarized electron sources are based on photoemission of elec-
trons from GaAs-type semiconductors. GaAs is a nonmagnetic semiconductor,
but one can extract large currents of spin-polarized electrons from it with the
help of circularly polarized infrared radiation. This source is based on opti-
cal spin orientation which is not limited to semiconductors or insulators but
may be applied equally well to metals as described in detail by Meier and Za-
kharchenya [346]. Optical pumping and related phenomena are also key to the
emerging field of spin electronics [78,115]. Below we shall discuss the principle
of the GaAs source.

8.2.2 The GaAs Spin-Polarized Electron Source

GaAs is isoelectronic with Ge (Z = 32), that is, it has a direct band gap
centered at the Γ -point in the Brillouin zone where the electronic wave vector
vanishes (k = 0). This means that the electrons at the top of the fully occu-
pied valence band are localized between the sites of the As atoms (Z = 33)
and the electrons at the bottom of the conduction band are localized on the
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Fig. 8.1. Optical spin orientation induced by transitions across the band gap in
GaAs-type semiconductors. The transitions shown occur with left (∆mj = −1)
and right (∆mj = +1) circularly polarized light, at a photon energy close to the
band gap. The crystal field of cubic GaAs is distorted by epitaxial growth on a
mismatched substrate leading to the energy difference of ∼0.1 eV between mj =
±3/2 and mj = ±1/2 sublevels

site of the Ga atoms (Z = 31). The electrons are then able to undergo direct
vertical transitions from the top of the valence band to the bottom of the
conduction band. The valence band is built from the atomic 4p-wave func-
tions of As, which are split by the spin–orbit coupling into 4p1/2 and 4p3/2

states with an energy separation of ∼0.34 eV. The bottom of the conduction
band is composed of the atomic 4s-functions of Ga, giving rise to a 4s1/2

state. By choosing the photon energy close to the band gap energy of 1.5 eV,
one can suppress the higher energy transitions 4p1/2 → 4s1/2. The electronic
transitions induced by a photon of energy close to the energy of the band-gap
involve the energy levels shown in Fig. 8.1.

The 4p3/2 state is fourfold degenerate, consisting of substates with mag-
netic quantum numbers mj = −3/2,−1/2,+1/2,+3/2. These levels are de-
generate in energy in the electric field near the center of the Brillouin zone of
a cubic crystal. The different angular momenta of linear polarized (Lz = 0)
photons and circularly polarized photons with positive (RCP, Lz = +h̄) and
negative (LCP, Lz = −h̄) angular momentum allow only transitions between
states with specific differences in magnetic quantum numbers. In particular,
conservation of angular momentum in the absorption of circularly polarized
light requires ∆mj = ±1. With LCP light, for instance, only transitions with
∆mj = −1 are allowed so that in cubic GaAs only the transitions 4p3/2(mj =
+3/2) → 4s1/2(mj = +1/2) and 4p3/2(mj = +1/2) → 4s1/2(mj = −1/2)
can occur. Therefore, both spin states will be present in the conduction band.
But the transition probability for the sublevel mj = 3/2 is three times larger
compared to the transition probability for the sublevel mj = 1/2 because its
component along the photon angular momentum is three times larger (also see
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Fig. 9.15). Therefore, with undisturbed cubic GaAs, one obtains the degree of
spin polarization P = (3 − 1)/(3 + 1) = 0.5. The preferred direction of the
spin is parallel or antiparallel to the direction of the circularly polarized light
beam.

But almost completely spin-polarized electrons can also be obtained. The
case of P = 1 is illustrated in Fig. 8.1. By distorting the cubic crystal field
in GaAs through epitaxial growth on a lattice mismatched substrate one can
destroy the spherical symmetry of the crystal field and the energy of the
states with mj = ±3/2 increases compared to those with mj = ±1/2 by
∼0.1 eV [347].1 By tuning the photon energy to the very edge of the band
gap, one can now produce fully polarized spin-up or spin-down electrons in
the conduction band by simply switching between RCP and LCP light. One
additional important feature of the GaAs-source is that the surface can be
made with negative electron affinity by a delicate treatment with cesium and
oxygen. Negative electron affinity means that the electrons at the bottom
of the conduction band can escape into vacuum without further supply of
energy.

Besides enabling important applications in magnetism to be discussed
later, the invention of the spin-polarized electron source has been of great
interest in high energy physics. With a spin modulated electron beam from a
GaAs-type of electron source it is possible to detect even very tiny spin de-
pendent effects in electron interactions. It has thus been possible to measure
the spin asymmetry of 10−5 in the scattering of 20 GeV polarized electrons on
deuterium due to the parity violation in the electroweak interaction [75, 76].
In later developments at the Stanford Linear Accelerator Center (SLAC) a
stressed GaAs photocathode has delivered electron beams with a spin po-
larization of |P | = 0.85 at an intensity of 1,000 A. With this source, spin
dependent effects can be determined at the 10−8 level, an almost incredi-
ble achievement of great value for the study of mirror asymmetry or parity
violation in high energy interactions [348]. Recently, this has been used to
determine the parity violation in electron/electron scattering providing the
first measurements of the weak charge of the electron [349]. At even higher,
teravolt, electron energies polarized electrons are envisioned to collide head-on
with positrons resulting in a complete spin asymmetry. Figure 1.11 in Chap. 1
shows the structure and performance of a strained superlattice cathode de-
livering almost completely polarized electrons of crucial importance for the
realization of ILC.

1The origin of the splitting can be understood with help of Fig. 9.21. In cubic
symmetry the four states mj = −3/2,−1/2, +1/2, +3/2 are degenerate and the sum
of the orbital densities is spherically symmetric. In lower symmetry, the resulting
states can no longer be spherically symmetric, so that we obtain a splitting between
the mj = ±3/2 and mj = ±1/2 substates which have distinctly different orbital
densities.
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8.3 Spin-Polarized Electrons and Magnetic Materials:
Overview of Experiments

The general principle of studies of magnetic materials with spin-polarized elec-
trons is shown in Fig. 8.2. The electron beam from the GaAs-type source is
spin modulated, that is it produces a spin polarization that switches its di-
rection periodically from up to down as the polarization of the light is varied
from right to left circularly polarized. This allows one to selectively detect the
effects that depend on spin direction even on a large background of spin inde-
pendent interactions. The spin modulated, monochromatic electron beam is
incident on a sample that is magnetized in a particular direction, either in- or
out-of-plane. The detected signal consists of the reflected or scattered electron
current, the absorbed current or the transmitted current (assuming a thin film
sample). The spin polarization of the detected signal may be analyzed as well.
One method to measure the spin polarization, Mott-scattering, has already
been discussed in Sect. 3.5.2. Other spin detection schemes will emerge when
we discuss the transmission or reflection of electrons with magnetic materials
in Sects. 12.6 and 13.3. For inverse photoemission experiments (IPE), an en-
ergy resolving photon detector with sensitivity in the ultraviolet range may
be used.

Magnetized
sample

Electron
detector

Electron
detector

Photon
detector

GaAs spin modulated
electron source

Scattered
current

Absorbed
current

Transmitted
current

M
P

Fig. 8.2. Principle of experiments with spin-polarized electrons on magnetic materi-
als. A monochromatic spin modulated electron beam emerges from the GaAs source
and hits the magnetic sample. The spin polarization vector P can be parallel, an-
tiparallel, or perpendicular to the magnetization M . With P parallel or antiparallel
to M , one observes the spin asymmetries A of the transmitted, absorbed, and the
reflected current. With P ⊥ M one detects the motion of P relative to M . Inverse
photoemission (IPE), based on the detection of the photons that are emitted when
an injected excited electron makes a transition to the lower-energy unoccupied states
near the Fermi-energy EF, detects the spin polarization of the unoccupied electron
states
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There are also a number of additional, equally important experiments not
indicated in Fig. 8.2 where the incident electron or photon beam is unpolarized
and spin-polarized photoelectrons, secondary electrons, or Auger-electrons are
analyzed [350, 351]. Some of these will be discussed in detail in Sects. 12.6
and 13.3.

Experiments with spin-polarized beams have generated a wealth of new
knowledge but their applications in magnetism have by no means been fully
exploited. Opposite to high energy physicists, solid-state experimentalists have
so far contented themselves with a spin sensitivity of 10−3. The spin dependen-
cies in magnetism are generally much larger compared to high energy physics
interactions, approaching unity for instance in some transmission or reflection
experiments [352]. This implies that only one spin state is transmitted through
or reflected from a ferromagnet under certain conditions. In general, the inter-
action of polarized electrons with magnetic materials depends on the exchange
interaction and on spin–orbit coupling. Luckily, it is possible to separate these
two interactions due to their different symmetry.

8.4 Formal Description of Spin-Polarized Electrons

8.4.1 Quantum Behavior of the Spin

According to the fundamental postulate of quantum mechanics, a wave func-
tion Ψ is associated with any particle of linear momentum p and energy E. Ψ
is a function of the position coordinates r and the time t according to

ψ(r, t) = C ei(kr−ωt), (8.1)

where C is a constant. The frequency of the wave is given by the energy E
according to E = h̄ω and the wave vector k by the linear momentum p = h̄k.
The phase velocity of the wave is given by ω/k.

Electrons never obey Newtonian mechanics. At low energies, they have
to be treated with wave mechanics and at high energies where a trajectory
can be defined because the de Broglie wavelength λ = 2π/k is small, they
are relativistic. Since we are dealing with solid-state physics, we limit the
description of spin to nonrelativistic electrons. In that case, the spatial part
given by (8.1) and the spin part of the wavefunction, χ, can be separated so
that the total wave function is given by

ψ(r, t, s) = χ C ei(kr−ωt). (8.2)

If a difference in energy exists between the two spin states of the electron due
to a magnetic field or an effective magnetic field so that ∆E = E↑ −E↓ �= 0,
the two spin states travel with a different phase velocity.

The essence of the following sections is the description of the quantum
mechanical behavior of individual spin-polarized electrons and an ensemble
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or beam of spin-polarized electrons, and the description of their interaction
with magnetic materials. We have seen that the quantum behavior manifests
itself in the concept of two distinct spin states, up and down relative to a
quantization direction. This cannot be explained by classical vector concepts
for the spin. Hence in the general description of spin-polarized electrons we
have to allow for the possibility that each electron may have a finite probability
in the up and down direction. The basis for this description was developed by
Pauli, and we shall discuss it below.

When the individual electrons are assembled into a beam, we also need to
use a quantum description for the beam which is based on that of the individ-
ual electrons. It turns out that this is conveniently done by introduction of a
spin polarization vector P for the beam. It is defined so that its components
Pξ (ξ = x, y, or z) are determined by the number of up and down spins along
the direction ξ, called the quantization axis. The vector P and the number of
electrons completely describe the beam.

The task of spin-polarized electron physics is then the description of how
the spin polarization vector P and the number of electrons change as the
electrons traverse a magnetic thin film sample with well defined magnetization
direction. In particular, we would like to understand the physics behind a
simple question: If a beam of n electrons, described by a spin polarization P
traverses a sample with a magnetization M oriented at an angle from P , what
will be the number of electrons n and the direction of P when the electron
beam emerges from the sample?2

8.4.2 Single Electron Polarization in the Pauli Spinor Formalism

We shall now explain how this problem can be treated by means of the Pauli
spinor formalism. We note upfront that this formalism may also be used to
describe magneto-optics as discussed in Sect. 8.7.2. The formalism uses the
familiar Pauli spinors and spin matrices for the description of the spin of
nonrelativistic electrons. We start with the case of a single electron.

The spinor basis states of a general spin wavefunction of a single electron
are defined as follows,

χup = | ↑〉 = |+〉 =
(

1
0

)
(8.3)

χdown = | ↓〉 = |−〉 =
(

0
1

)
(8.4)

2Note that for nonrelativistic electrons the motion due to the charge (Lorentz
force) is decoupled from the motion of the spin. We therefore do not have to consider
the actual path of the electrons but only what happens to the spins.
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The two basis states represent the so-called spinor field. With this concept
we may describe an electron with the spin in any direction in space by a linear
combination of the two spin states according to (3.25) as

χ = u1

(
1
0

)
+ u2

(
0
1

)
=
(
u1

u2

)
. (8.5)

Per definition, χ∗ = (u∗1, u
∗
2) and χ∗χ = (u∗1, u

∗
2)
(
u1
u2

)
= u∗1u1 + u∗2u2. With

the normalization condition χ∗χ = 1, there are still three free parameters in
the choice of the complex numbers u1 and u2. These free parameters can be
used to define the direction of the spin in space. In the following we shall
follow the convention of defining the z-axis of a Cartesian coordinate system
as the quantization axis. The expectation values of the direction of the spin
along the x, y, z axes are then given as the expectation values of the Pauli
spin matrices

σx =
(

0 1
1 0

)
σy =

(
0 −i
i 0

)
σz =

(
1 0
0 −1

)
. (8.6)

We obtain the following expectation values for the spin direction:

〈σx〉 = 〈2sx〉 = (u∗1, u
∗
2)
(

0 1
1 0

)(
u1

u2

)
= (u∗1, u

∗
2)
(
u2

u1

)
= u∗1u2 + u∗2u1,

〈σy〉 = 〈2sy〉 = (u∗1, u
∗
2)
(

0 −i
i 0

)(
u1

u2

)
= (u∗1, u

∗
2)
(
−iu2

iu1

)
= i[u∗2u1 − u∗1u2],

〈σz〉 = 〈2sz〉 = (u∗1, u
∗
2)
(

1 0
0 −1

)(
u1

u2

)
= (u∗1, u

∗
2)
(
u1

−u2

)
= u∗1u1 − u∗2u2.

These three expectation values can now be used to define a three-dimensional
vector which is called the vector of spin polarization,

P =

⎛
⎝Px

Py

Pz

⎞
⎠ =

⎛
⎝ 〈σx〉

〈σy〉
〈σz〉

⎞
⎠ , (8.7)

whose components represent the expectation values of the spin direction along
the x, y, and z axes.

The two-dimensional spinor wavefunction χ describes the quantum be-
havior of a single spin. The corresponding three-dimensional polarization
vector P , which defines the spin direction in real space is given

χ =
(
u1

u2

)
→ P =

⎛
⎝Px

Py

Pz

⎞
⎠ =

⎛
⎝ u∗1u2 + u∗2u1

i [u∗2u1 − u∗1u2]
u∗1u1 − u∗2u2

⎞
⎠ (8.8)

with u∗1u1 + u∗2u2 = 1.
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In particular we have:

χ = 1√
2

(
1
1

)
→ P =

⎛
⎝1

0
0

⎞
⎠ χ = 1√

2

(
1

−1

)
→ P =

⎛
⎝−1

0
0

⎞
⎠ ,

χ = 1√
2

(
1
i

)
→ P =

⎛
⎝ 0

1
0

⎞
⎠ χ = 1√

2

(
1

−i

)
→ P =

⎛
⎝ 0
−1

0

⎞
⎠ ,

χ =
(

1
0

)
→ P =

⎛
⎝ 0

0
1

⎞
⎠ χ =

(
0
1

)
→ P =

⎛
⎝ 0

0
−1

⎞
⎠ .

(8.9)

For a single electron, |P | = 1 and the direction of the vector P is the
direction of the electron spin. For the above six cases, the spin is aligned long
the directions ±x,±y,±z of a Cartesian coordinate system, as illustrated in
Fig. 8.3.

For a given polarization direction P in space one may use (8.8) to derive
the complex coefficients u1 and u2 and the relative spin-up, |u1|2, and spin-
down, |u2|2, probabilities, where |u1|2+ |u2|2 = 1. This is best done by writing
the complex quantities in the form u1 = cosα exp[iβ] and u2 = sinα exp[iγ]
that preserves the normalization. Since only the phase difference β − γ is
important we can choose γ = 0 so that

u1 = cosα eiβ

u2 = sinα (8.10)

and the solution is given by

Fig. 8.3. Coordinate systems and spin wavefunctions in the spinor formalism. The
picture is a graphical representation of the polarization states in (8.9). Note that
for a nonrelativistic electron the electron position and electron spin functions are
decoupled so that the spin is independent of the electron propagation direction
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Fig. 8.4. Decomposition of a single spin with polarization vector P (|P | = 2|s| = 1)
into two coherent components. By defining a quantization axis z, the spin wavefunc-
tion can be written in terms of two components, labelled spin-up (along +z) and
spin-down (along −z), with probabilities (1 + Pz)/2 and (1 − Pz)/2, respectively

u1 =

√
1 + Pz

2
exp

[
−i arccos

(
Px√

1 − P 2
z

)]

u2 =

√
1 − Pz

2
(8.11)

with z being the quantization axis and P 2
x + P 2

y + P 2
z = 1. We obtain the

following result which is illustrated and summarized in Fig. 8.4.

For a single electron, the spin-up, |u1|2, and spin-down, |u2|2, probabilities
along the quantization axis z can be expressed in terms of the projection
Pz of the unit polarization vector P according to

|u1|2 =
1 + Pz

2
,

|u2|2 =
1 − Pz

2
. (8.12)

For a nonrelativistic electron, P can have any direction relative to the lin-
ear momentum p. If P is parallel to p, we call the electron beam longitudinally
polarized. If P is perpendicular to p, one speaks of a transversely polarized
electron beam. One may rotate the spin by means of combined magnetic and
electric deflections. For instance, if the electron beam is longitudinally polar-
ized and deflected by an angle of 90◦ with an electric field, the spin polarization
vector P will keep its direction in space because of conservation of angular
momentum and the resulting beam will be transversely polarized. If, however,
the same longitudinally polarized beam is deflected by 90◦ with a magnetic
field, the electron spin will precess about the perpendicular field direction
by an angle very close to 90◦, as well, and the beam will retain its state of
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polarization. This is due to the fact that the Larmor frequency for the spin
precession is almost equal to the electron cyclotron frequency according to
(3.48).

8.4.3 Description of a Spin-Polarized Electron Beam

In practice, one does not deal with individual electrons but with a beam
of spin-polarized electrons and the above formalism needs to be extended
to many electrons which may have different spin directions. Classically one
would define the spin polarization vector P to be somehow proportional to
the sum of the vectors of the individual spins

∑
i si. This concept can also

be used for a quantum mechanical ensemble of spins by proper definition
of the proportionality factor. It is defined to give a special length for P .
If all individual electron spins point in the same direction and the beam is
completely polarized, one defines |P | = 1. The case where the individual spins
point in different directions is described by 0 < |P | < 1 and such an ensemble
is said to be in a mixed spin state. Because of this special normalization of
P a complete description of the beam also requires knowledge of the total
number of electrons or spins in the beam. We can state as follows.

A spin-polarized electron beam is completely described by the number of
electrons and the spin polarization vector P .
For a pure spin state |P | = 1, for a mixed spin state |P | < 1.

We now discuss how to determine P for a beam of spin-polarized elec-
trons. As for a single electron, the spin polarization vector P is defined by its
components according to

P =

⎛
⎝Px

Py

Pz

⎞
⎠ . (8.13)

The components may be obtained from the components ui
1 and ui

2 of the
individual electrons i as follows. We label the quantization axis by the gen-
eral index ξ, where ξ may be taken along either of the directions x, y, z of
our Cartesian coordinate system. According to (8.4) and (8.5) each individual
electron i may be described by a coherent superposition of two completely
polarized electron states, a spin-up component ui

1

(
1
0

)
parallel to +ξ, and a

spin-down component ui
2

(
0
1

)
parallel to −ξ. We can then describe the polar-

ization of the entire electron beam along ξ by summing over the spin-up and
spin-down probabilities of the individual electrons along the quantization axis
ξ, given by (8.12) with Pz replaced by Pξ. The sums of the respective spin-up
and spin-down probabilities along the quantization axis are then given by

n↑ =
∑

i

|ui
1|2 n↓ =

∑
i

|ui
2|2. (8.14)
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The sums therefore correspond to incoherent superpositions of the coherent
polarization properties of the individual electrons and we can therefore de-
scribe a partially polarized ensemble of N = n↑ + n↓ electrons by its spin
polarization Pξ along the quantization axis ξ, which is simply the sum of the
spin up and down probabilities of the individual electrons according to

Pξ =
1
N

N∑
i

|ui
1|2 − |ui

2|2 . (8.15)

By use of the numbers of up n↑ and down n↓ (not necessarily integers) spins,
where the total number of electrons is given by n↑ +n↓ we have the following
general result.

The degree of spin polarization of a beam of electrons relative to a quan-
tization direction ξ is defined as

Pξ =
n↑ − n↓
n↑ + n↓

, (8.16)

where ↑ means in the direction of ξ (↓ along −ξ), so that −1 ≤ Pξ ≤ 1
and P−ξ = −Pξ.

In practice, one does not define the absolute polarization direction of a
beam but that relative to the magnetization direction M of the sample. Since
according to Sect. 7.4.2, M always points into the direction of the minority
spins, one uses the following definition for the spin polarization, defined in
terms of the intensity IP M , measured for parallel and antiparallel orientations
of P and M . The intensity denoted I↑↑ = I↓↓ is that for P and M pointing in
the same direction and therefore corresponds to the beam polarization in the
minority spin direction, which we label Imin. The intensity I↑↓ = I↓↑ for P
and M pointing in opposite directions is a measure of the beam polarization
in the majority spin direction, labelled Imaj. Throughout this book we shall
use the following convention for the discussion of experimental results.

In practice, the spin polarization of a beam is defined relative to the
magnetization direction M of a sample, according to

P =
I↑↓ − I↑↑
I↑↓ + I↑↑

=
Imaj − Imin

Imaj + Imin
. (8.17)

P is positive if the beam is preferentially polarized in the majority di-
rection, and P is negative if the polarization is mostly in the minority
direction.
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Fig. 8.5. Description of a spin-polarized electron beam by a polarization vector P .
We assume 12 incident spin-polarized electrons, 6 polarized along z, 4 along y, and 2
along x, as shown. The components Px, Py, and Pz of the beam polarization vector
P are calculated according to (8.16) with ξ along x, y, z

Example of a Spin-Polarized Beam

Let us use an example to familiarize ourselves with the concept of the polar-
ization of a spin-polarized beam, according to (8.16). We assume an incident
beam of 12 spin-polarized electrons as shown in Fig. 8.5 with 6 electrons po-
larized along z, 4 along y, and 2 along x. The components Px, Py, and Pz

of the beam polarization vector P are calculated according to (8.16) with ξ
along x, y, z and we obtain the spin polarization vector shown in the figure,
namely

P =

⎛
⎝Px

Py

Pz

⎞
⎠ =

⎛
⎝ 1/6

1/3
1/2

⎞
⎠ . (8.18)

We see that |P | ≤ 1 and the beam is therefore in a mixed spin state. This is
expected, since the individual spins are not aligned in the same direction. In
our Cartesian coordinate system x, y, z, the beam is completely described by
its polarization vector P and its intensity, given by the number of electrons.

For illustration purposes we have chosen in Fig. 8.5 a particularly simple
example with the individual electron spin polarizations along the principal
axes of our coordinate system, and we have chosen the number of electrons
so that the number of electrons polarized along the principal axes comes out
to be integer numbers. In general, the incident beam will contain spins of
polarizations that are not parallel to the principal coordinate axes and one
then needs to calculate the fractional spin-up and spin-down probabilities for
each electron along the quantization axis ξ by means of (8.12) and (8.14).

A Related Formalism for the Description of P

An alternate way is to describe a polarized beam by a polarization density
matrix given by [131,133,340]
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�̂ =
1
2

(
1 + Pz Px − iPy

Px + iPy 1 − Pz

)
. (8.19)

This formalism allows us to conveniently express the polarization vector P
as the trace of the product of the Pauli spin matrices with the polarization
density matrix as

P =

⎛
⎝Px

Py

Pz

⎞
⎠ =

⎛
⎝Tr(σx�̂)

Tr(σy�̂)
Tr(σz�̂)

⎞
⎠ . (8.20)

We shall use this formalism later.

8.5 Description of Spin Analyzers and Filters

8.5.1 Incident Beam Polarization: Spin Analyzer

To measure the polarization P of a beam one needs a spin analyzer. A spin
analyzer consists of a spin filter and an electron detector, and one measures
the preferential transmission of electrons polarized parallel (“spin-up”) and
antiparallel (“spin-down”) to the maximum transmission direction of the spin
filter. This direction then defines the quantization axis ξ.

A spin analyzer only measures intensities of “spin-up” and “spin-down”
electrons relative to a quantization axis. It does not measure their phases.

In general, three parameters describe the properties of a spin analyzer.3

– A direction of maximum transmission, given by a unit vector e in space.
– The transmission factor Tmax

R ≤ 1 of electrons that are fully polarized
(|P | = 1) along e (P ‖ e).

– The transmission factor Tmin
R ≤ 1 of electrons that are fully polarized

(|P | = 1) along −e (P ‖ −e).

In order to measure the polarization of the incident electron beam with an
analyzer, one has to know the analyzer response. It is completely determined
by the sum and the difference between the maximum and minimum transmis-
sion factors, defined as TR = 1/2

(
Tmax

R + Tmin
R

)
and ∆TR =

(
Tmax

R − Tmin
R

)
.

Choosing the ξ-axis parallel to e, the spin analyzer is described by the trans-
mission filter matrix

F̂ = TR

(
1 + ∆TR

2TR
0

0 1 − ∆TR

2TR

)
. (8.21)

3For a ferromagnetic spin filter we have defined e to point into the direction of
the spin so that it is antiparallel to the magnetization M .
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If we assume that TR and ∆TR are known, we can determine the polariza-
tion of the incident beam along ξ by two measurements. First, we measure
the electron beam intensity, I, transmitted through the filter with e ‖ ξ, and
second we remove the filter and measure the incident intensity, I0. If we de-
note the incident beam polarization density matrix by �̂0 and write it in the
coordinate system defined by the quantization axis ξ of the spin filter we have

�̂0 =
1
2

(
1 + P 0

ξ P 0
η − iP 0

ζ

P 0
η + iP 0

ζ 1 − P 0
ξ

)
. (8.22)

where the axes η, ζ, and ξ form a right handed coordinate system. It turns
out that we only have to know the projection P 0

ξ along the quantization
axis, because the incident and transmitted intensities are determined by the
relation,

I

I0
= Tr(�̂0F̂ ) = TR +

P 0
ξ

2
∆TR . (8.23)

The polarization of the incident beam along e ‖ ξ is given by

P 0
ξ =

[
I

I0
− TR

]
2

∆TR
. (8.24)

8.5.2 Transmitted Beam Polarization: Spin Filter

The transmitted beam also becomes polarized. If we describe the properties
of the incident beam by the parameters I0, �̂0,P 0 and use the labels I, �̂,P
for the transmitted beam we have the following relation,

�̂ =
�̂0F̂

Tr(�̂0F̂ )
=
I0
I

�̂0F̂ . (8.25)

As an example, let us consider an incident unpolarized electron beam with
P 0 = 0. It is described by the polarization density matrix

�̂0 =
1
2

(
1 0
0 1

)
, (8.26)

so that we have �̂0F̂ = (1/2)F̂ . The transmitted intensity fraction is given
by I/I0 = 1

2Tr(F̂ ) = TR and the transmitted polarization matrix and polar-
ization vectors are

�̂ =
1
2

(
1 + ∆TR

2TR
0

0 1 − ∆TR

2TR

)
, P =

⎛
⎝ 0

0
∆TR

2TR

⎞
⎠ . (8.27)

We see that the transmitted beam has acquired a polarization.
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8.5.3 Determination of Analyzer Parameters

If one lets the electrons pass through the same spin filter twice, and starts
with an unpolarized electron beam, one can calibrate the spin filter, that is
one can determine Tmax and Tmin by experiment. This procedure has been
used to calibrate the Mott polarization detector (Sect. 3.5.2) and is therefore
referred to as the “double-scattering experiment” [131, 133]. Generally, the
experimentally determined relative P -values may be quite accurate depending
on the type of experiment and spin filter while the absolute P -values are often
uncertain, typically within ±5%.

8.6 Interactions of Polarized Electrons with Materials

8.6.1 Beam Transmission through a Spin Filter

In this Section we want to show by a simple example how a spin filter changes
the polarization of a beam. For our example we use the special beam, illus-
trated in Fig. 8.5. In principle, we could just use the mathematical formalism
developed in Sect. 8.5 to obtain the polarization and number of electrons of
the transmitted beam through a chosen spin filter. We shall do so later after
first taking a slightly different approach. It consists of using simple arguments
to understand what happens to the beam as it traverses a perfect spin filter,
which transmits all spins along the chosen spin filter direction ξ, and absorbs
all spins polarized along −ξ.

We start by choosing ξ along the z-axis as shown in Fig. 8.6. The spin of
each individual electron can now be decomposed into its two coherent com-
ponents along the quantization axis z according to (8.12) or Fig. 8.4. The

Transmission through a spin filter

Electron
flow

I = 12 I = 9
spin
filter0

z
y

x

Fig. 8.6. Illustration of transmission of a spin-polarized beam through an ideal
spin filter. We assume 12 incident spin-polarized electrons, as in Fig. 8.5. These
electrons transverse an ideal spin filter with perfect transmission along +z and
zero transmission along −z. The transmitted beam will be perfectly spin polarized
along +z but its intensity will be reduced. While all electrons polarized along z
are transmitted, only half of the electrons with spins aligned along x and y are
transmitted according to the coherent decomposition (8.12) (also see Fig. 8.4)
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6 spins along +z have probabilities |u1|2 = 1 (up-spin) and |u2|2 = 0 (down-
spin), those aligned along either x or y have probabilities |u1|2 = 1/2 and
|u2|2 = 1/2. Hence for the shown spin filter direction the transmission is de-
termined by the incoherent sum of the individual up-spin probabilities (see
(8.14)) and we see that only 9 of the 12 electrons are transmitted. All trans-
mitted electrons are perfectly polarized along +z, as shown.

If we turned the spin filter, so that it had perfect transmission along −z,
only 3 of the 12 electrons would be transmitted and they would be spin-down.
Similarly, if we aligned the spin filter along +y, we would obtain 8 electrons,
spin polarized along y, after the filter, and so on.

Let us check our results by use of the formalism developed earlier. In our
Cartesian coordinate system x, y, z, the incident beam of I0 = 12 electrons is
described by the polarization vector given by (8.18), i.e.,

P 0 =

⎛
⎜⎝
P 0

x

P 0
y

P 0
z

⎞
⎟⎠ =

⎛
⎜⎝

1/6
1/3
1/2

⎞
⎟⎠ . (8.28)

The spin analyzer was assumed to have perfect transmission parallel to,
and perfect blocking antiparallel to, the quantization axis ξ, which in general
can lie along any direction in our Cartesian coordinate system x, y, z. Along
the quantization axis ξ we have ∆TR = 1/2 and TR = 1 and the transmission
filter matrix is

F̂ =

(
1 0
0 0

)
. (8.29)

We now would like to calculate the transmitted intensity for alignment of our
spin filter direction ξ along the various directions ±x,±y,±z. It is given by
(8.23) as

I = I0 Tr(�̂0F̂ ) = I0

(
1
2

+
P 0

ξ

2

)
, (8.30)

where I0 = 12 electrons. For ξ = x we obtain with Px = 1/6 the transmitted
intensity I = 7, for ξ = y and Py = 1/3 we have I = 8 and for ξ = z and
Pz = 1/2 we get I = 9. Because for a perfect spin filter aligned along +ξ the
absorbed electrons would be transmitted if the filter was oriented along −ξ
we have the sum rule Iξ + I−ξ = I0 and we therefore obtain the following
numbers for ξ aligned along −x (I = 5), −y (I = 4), and −z (I = 3). These
results agree with our earlier analysis.

A spin filter increases the spin polarization |P | at the expense of the
transmitted number of electrons.



8.6 Interactions of Polarized Electrons with Materials 331

8.6.2 The Fundamental Interactions of a Spin-Polarized Beam
with Matter

In the discussion above we have made things easy by assuming that a magic
material exists that transmits all spin components along one direction, the
spin filter quantization direction, and absorbs all spin components antiparal-
lel to that direction. We have avoided looking at the detailed spin-dependent
processes that actually happen when a spin-polarized beam traverses a mag-
netic material. We now want to explore these processes and come back to our
basic question asked at the beginning of this chapter: What actually happens
to the spin-polarization P and the number of electrons n = n↑ + n↓ as a
spin-polarized electron beam traverses a material?

We know from experience that when a spin-polarized electron beam tra-
verses a nonmagnetic noble metal such as Cu, the polarization of the beam
is reduced. When it traverses an aligned ferromagnet the spin polarization
is increased. It is often thought and colloquially said that these changes are
due to “spin flips” in the sense of transitions from “up” to “down” spin or
vice versa. It is of great importance to realize that a change in spin polariza-
tion can be caused by several mechanisms, and that, generally, “spin flips”
are forbidden transitions unless an alternating magnetic field is present that
oscillates with the frequency of the spin precession, or some other mechanism
exists that can satisfy energy, linear, and angular momentum conservation in
the spin transition. We shall see below that changes in the spin polarization
of electrons are typically not due to “spin flips.”

In this section we shall discuss the most important spin-dependent in-
teraction processes and their consequences on the spin polarization P . Four
processes dominate and in our discussion below we shall refer to their illus-
tration in Fig. 8.7. We shall assume that the incident beam has a polarization
vector P 0 aligned at some finite angle with respect to a reference field H,
which defines the quantization direction, chosen to be the z-axis of our co-
ordinate system. For a ferromagnet, H is the exchange field (parallel to the
magnetization direction M), and for a non-magnet, H is an external field.

Spin Precession

We have already discussed the process of spin precession in Sects. 3.6 and 3.7,
and seen that quantum mechanically the precession of the spin comes about
through the development of a phase shift between the spin-up and spin-down
components of the individual spins. The result is a precession of P about the
quantization axis, without change of its magnitude, as illustrated in Fig. 8.7a.
The spin precession time is given by the Larmor frequency ωL, and depends
on the strength of the effective field according to τL = 1/ωL = h̄/(2µBH). In
a typical external field of 1 T a full 360◦ precession takes 36 ps, while in the
exchange field of a magnetic material which is of order 3× 103 T according to
Sect. 11.1.2, the precession time is only 10 fs.
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Fig. 8.7. Illustration of the main fundamental processes determining the change
in the beam polarization P in the transmission of a spin-polarized electron beam
through a material. We assume that an incident beam with polarization P 0 moves
through the material, shown as a dark box. The quantization axis z is determined
by the direction of the effective magnetic field H . If the material is a ferromagnet H
is the exchange field, for a nonmagnet H is an external magnetic field. (a) Larmor
precession of P around the quantization axis, with a characteristic precession time
τL = 1/ωL = h̄/(2µBH). (b) Spin exchange scattering, corresponding to a “spin flip”
transition of an electron with a characteristic longitudinal relaxation time τ1. The
longitudinal component Pz along the quantization axis changes. In the case shown,
where a minority electron makes a spin-flip transition, the beam polarization P
rotates toward the quantization axis. In the spin flip process, the magnitude of
the spin polarization vector may be preserved (|P | = |P 0|). (c) Spin de-phasing,
corresponding to a loss of the precessional phase relationship between the individual
electrons in the beam, as shown. The transverse component P⊥ decays to zero over a
characteristic time τ2. The longitudinal component Pz may also change with a time
constant that depends on the strength of the random de-phasing fields relative to
the field H . In non-magnets, a complete randomization of the spin directions may
occur, as discussed in the text. (d) Spin selective absorption, caused by preferential
spin-conserving scattering in one of the spin channels, as in a spin filter. The shown
loss of a minority electron corresponds to a rotation of P into the field direction
and an increase in magnitude |P | ≥ |P 0|

Spin Exchange Scattering

Transitions between opposite spin states have been studied in great detail
in spin-1/2 systems by means of nuclear magnetic resonance (NMR) and
electron spin resonance (ESR), as discussed for example by Abragam and
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Bleaney [140]. In the literature the “spin-flip” transition time is usually called
the longitudinal relaxation time T1. In magnetic resonance experiments the
necessary energy and angular momentum for spin flips is supplied by the ap-
plied radio-frequency field, as discussed in Sect. 3.6.3. Because the spin flip
energy is determined by the applied static field according to ∆E = 2µBH, it
is rather small in ESR of order 100 µeV and the transition rate is of the order
of 10 GHz.

Spin-1/2 systems are simple because they are two level systems, one for
spin up and one for spin down as shown in Fig. 8.7b. If spin-polarized electrons
traverse a nonmagnetic metal, such as Cu, transitions between opposite spin
states may occur, most likely by spin exchange collisions with other electrons
or via the hyperfine interaction with the atomic nuclei. If paramagnetic im-
purities are present, they might provide an additional effective sink for the
angular momentum h̄ to be dissipated in a spin flip. The characteristic spin
flip transition time is usually referred to as τ1.

The most important process leading to spin exchange in a nonmagnetic
metal is electron–electron scattering. If for instance the incoming electron is
in a spin-down state, and the target electron in a spin-up state, the indistin-
guishability of the electrons can lead to spin exchange, that is the outgoing
electron may now be in a spin-up state and the target electron in a spin-down
state. This very efficient process leads to a redistribution of the spin polar-
ization over the available electron states in the metal. The scattering has to
satisfy energy, linear momentum, and angular momentum conservation. Its
theoretical understanding hinges on the ratio of the exchange scattering to
the direct scattering amplitude, first explained for the case of the Coulomb
interaction by Mott and Massey [134]. Yet in a metal, the Coulomb interaction
is screened and it is difficult to predict the relevant cross sections theoretically.
But we can say that the time scale is the one of electron–electron scattering,
that is very fast, and it is connected with a sizeable energy loss of typically
1/2 of the incident primary electron energy. If electron–electron scattering is
suppressed, for instance because no empty states are available as in a semi-
conductor near the band gap, spin exchange scattering is suppressed as well.

In a ferromagnetic metal the spin-up and spin-down states are separated by
the exchange splitting of typically ≈ 1 eV. As discussed in detail in Sect. 12.6,
spin exchange transitions are rare in ferromagnets relative to spin-conserving
transitions (i.e., spin selective absorption discussed later). This important fact
is the basis for the so-called two current model of spin transport, discussed
in Sect. 12.5.2. One needs to realize, however, that transitions between the
spin states nevertheless must occur since they are responsible for the estab-
lishment of the thermal equilibration of the spin-up and spin-down states. If
the transitions involve the excitation of a spin wave, the energy scale is of the
order of meV (see Sect. 11.1.5), that is τ1 ≈ 10−12 s, if the transitions involve
the interaction with the crystal lattice (spin–lattice relaxation), the energy is
of the order of µeV, that is τ1 ≈ 10−10 s (see Sect. 15.2.2).
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In order to see the effect of transitions to the other spin state on the
polarization vector P , we show in Fig. 8.7b the case where one of the
spin-down electrons in the incident beam undergoes a spin transition from
the spin down to the spin-up state. The transmitted beam thus has an in-
creased number of spin-up electrons. If we decompose the polarization vectors
P 0 of the incident beam and the vector P of the transmitted beam into spin-
up (along +z) and spin-down (along −z) components according to Sect. 8.4.3,
we readily see that the change in occupation corresponds to a rotation of P
into the +z direction. For example, if P 0 is initially perpendicular to H it
has an equal number of spin-up and spin-down components and if it becomes
completely aligned along +z the spin-down component is zero.

If the length |P | is conserved, the component parallel to z, P‖ = Pz will
increase. Similarly, a transition from the up-spin to the down-spin state would
lead to a rotation away from z and a decrease of P‖. Hence in general the time
τ1 describes the change in the “longitudinal” component P‖ and, as in nuclear
magnetic resonance, may be called the longitudinal relaxation time.

Spin Dephasing

Spin dephasing has also been extensively studied in magnetic resonance spec-
troscopy [140] and it is associated with a transverse relaxation time T2. We
have seen in Section 3.6.3 that the times T1 and T2 are empirical parameters
in the famous Bloch equations (3.41) used to describe the relaxation of spins
into their equilibrium direction [140]. In electron spin resonance, the temporal
evolution of transitions between the spin states is described by T1, and P⊥
is reduced while P‖ increases. Spin dephasing is described by T2, and P⊥ is
reduced as well but P‖ remains constant.

Spin dephasing also exists in the transmission of a spin polarized electron
beam through a material and we shall refer to its characteristic time as τ2. As
the electrons traverse the sample they precess about the field direction H ‖
z. Initially their spins are aligned but their precession becomes increasingly
out of phase with a characteristic time τ2. When the precessional motion
is completely out of phase the polarization P⊥ is zero along any direction
perpendicular to H. In all cases, dephasing will lead to a component P⊥ < P

0
⊥,

as shown in Fig. 8.7. The actual polarization of the de-phased beam depends
on the strength of the random dephasing fields relative to the field H and
is different for non-magnets and magnets. In the following we shall discuss
typical dephasing processes in non-magnets and magnets.

In non-magnets, spin dephasing is most likely to occur in the Coulomb
scattering of the electrons on the atoms in the sample due to spin-orbit cou-
pling. As the electrons traverse the sample they will experience scattering
events on the atomic potentials. When the spin lies in the scattering plane,
defined by the momenta of the incident and scattered electron, the scatter-
ing process may also affect the spin. The spin-dependent scattering is due
to the gradients in the atomic potentials Φ which the electron encounters on
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its way through the solid. According to (6.85) the scattering process may be
viewed as a spin precession about an effective magnetic field B∗ ∝ p × ∇Φ
perpendicular to the scattering plane, where p is the electron momentum.
The field B∗ is the same field responsible for spin-orbit coupling, and the
change in electron spin upon scattering is taken up directly by the source
of the field, that is by the atoms in the lattice, thus ensuring conservation
of angular momentum. Because B∗ is relatively strong, of order 0.1-1 T, in
weak external fields H or in the absence of an external field, electrons with
different scattering paths through the sample will experience B∗-fields with
different orientations and after many scattering events, their spins will have
precessed by different angles and point in random directions. In these cases,
spin dephasing by means of spin-orbit scattering can actually lead to complete
spin randomization (|P | = 0) with an approximate time constant τ2. This sit-
uation is encountered in the diffusive transport of spin polarized electrons in
non-magnets, discussed in Sects. 14.1.3 and 14.3, and in this context τ2 = τse

is referred to as the spin-equilibration time or spin-diffusion time.
In magnets, the exchange field H is much stronger than the spin-orbit field

B∗. Then the spin dephasing process resembles that shown in Fig. 8.7. Because
of the dominance of H, the precession is fast. The polarization component P⊥
will thus rapidly decay to zero and the polarization vector will rotate towards
H. In this case the component P‖ will change much slower. In general, the
transmitted beam will have a spin-polarization which depends not only on
the incident polarization P 0 but also on the kinetic energy of the incident
beam and the magnetic properties of the sample. For sample thicknesses t
larger than the relaxation length λ2 = vτ2, where v is the group velocity of
the electrons, the transmitted beam polarization will become independent of
the incident polarization and be solely determined by the kinetic energy and
the magnetic properties of the sample.

In general, one expects spin dephasing to increase with the amount of
Coulomb scattering and with the spin-orbit coupling in the valence states of
the sample. Qualitatively, this picture is supported by an increase in τ2 from
about one picosecond in d-band metals such as Fe, Co and Ni, to tens of
picoseconds in s-p band metals such as Al to tens of nanoseconds in semicon-
ductors like GaAs with nearly pure s-like conduction bands (see Fig. 8.1).

Spin Selective Absorption

In transmission measurements through ferromagnets the unequal majority
and minority density of states may also cause preferential scattering in one
spin channel. As discussed in more detail in Sect. 12.5.2, it is the minority
spins which are preferentially scattered, since they have more unfilled states
to scatter into (see Fig. 7.6). Increased scattering leads to increased absorption
as the spins traverse the sample.

The underlying process is illustrated in Fig. 8.7d, where we have assumed
the preferential absorption of one minority electron. Note that no spin flips
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occur but electrons in one spin channel are simply absorbed at a higher rate. If
we decompose the polarization vectors P 0 of the incident beam and the vector
P of the transmitted beam into spin-up (along +z) and spin-down (along −z)
components we see that the loss of the spin-down (minority) component leads
to a rotation of P into the +z direction.

As will be discussed in Sects. 12.5.1 and 12.6.1, the characteristic spin
selective absorption times are given by the spin dependent mean free paths
λ±e according to τ±e = λ±e /v. Here “+” indicates majority and “−” minority
electrons, and v =

√
2E/me is the group velocity of the electrons, determined

by their kinetic energy E. For beam energies of a few eV, the characteristic
times τ+

e > τ−e are of the order of femtoseconds, as discussed in more detail
in Sect. 12.6.

The spin conserving transitions that occur at femtosecond times and de-
termine the electron mean free path are thus much more frequent than the
spin-flip transitions involving spin-wave or phonon excitations which occur at
picosecond or longer times, as discussed earlier. Since the importance of dif-
ferent transition channels is determined by their relative rates, the probability
of spin-conserving transitions far exceeds spin-flip transitions.

We can summarize as follows.

The motion of the spin polarization vector P upon transmission through
matter may be influenced by the following four fundamental processes.

– Spin precession is due to the development of a phase shift between
the up and down spin partial wave functions. It leads to a precession
of P about the quantization axis, keeping |P | constant.

– Spin exchange scattering involves transitions from one to the other
spin channel. It leads to rotation of P relative to the quantization
axis z with a change in the component P‖ = Pz.

– Spin dephasing is the development of an out-of-phase precession of the
individual spins about the quantization axis. It leads to a decrease of
the component P⊥, perpendicular to the quantization axis. In non-
magnets it may lead to complete spin randomization.

– Spin selective absorption arises from the preferential scattering (ab-
sorption) of spins in one spin channel. It causes a rotation of P relative
to the quantization axis and a change in magnitude |P | �= |P 0|.

Relative Importance of the Four Interactions and Characteristic
Times

The question arises as to the relative importance of the four processes dis-
cussed above in the transmission of a spin polarized beam through a magnetic
material. It is clear that spin precession is an important process and it needs
to be considered in the transmission of a spin polarized beam.
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It is difficult a priori to determine which of the other three processes dom-
inates. It is only through experiments, discussed in Sects. 12.6.3 and 14.1.3,
that we know of the dominant role of the spin selective absorption process.
We can therefore make the following important statement, which is born out
by experimental evidence.

The transmission of a spin-polarized electron beam through a material is
dominated by the processes of spin precession and spin selective absorp-
tion.

For the description of the two dominant processes we can use the Landau–
Lifshitz–Gilbert equation, (3.39), and this underscores its importance in de-
scribing spin dynamics. The two other processes, spin-flip scattering and
dephasing are described by the Bloch equations (3.41) [139], discussed in
Sect. 3.6.3. We did not extensively discuss the Bloch equations in this book
because the dynamics of interest in modern spin physics is governed mostly
by the LLG equations. For a thorough discussion of the Bloch equations, the
interested reader is referred to books on magnetic resonance, e.g., the excellent
book by Abragam and Bleaney [140].

We finish this section with another important point. In future chapters,
especially Chaps. 12 and 14, we will learn that the spin-conserving absorption
channel not only dominates over the spin-flip channel for the transmission of
spin-polarized electron beams with kinetic energies of several eV above the
Fermi energy, but also for the diffusive transport of spin polarized electrons in
metals, that is for kinetic energies near the Fermi energy. Thus in all cases the
rate of spin-conserving transitions 1/τe, which determines the electron mean
free path, is considerably higher than the rate of spin-flip processes, 1/τ1. Thus
there are typically many spin-conserving scattering events for each spin-flip
event.

8.6.3 Interaction of Polarized Electrons with Magnetic Materials:
Poincaré’s Sphere

The spinor formalism may also be conveniently used to describe the motion
of the spin vector in elastic transmission and reflection of electrons from a
magnetic material with uniform magnetization M and it can be conveniently
visualized through a concept derived by Henri Poincaré around 1892. It is re-
markable that the Poincaré formalism may be used quite generally to describe
polarization changes of a “beam” due to the interaction with a magnetic ma-
terial. It therefore can describe generalized versions of the magneto-optical
Faraday (transmission) and Kerr (reflection) effects. In the present section we
consider a “beam” of spin polarized electrons while a “beam” of polarized
X-rays will be considered in Sect. 8.7.3. We can state as follows.
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The Poincaré formalism describes polarization changes of a “beam” due
to the interaction with a magnetic material, i.e., generalized versions of
the Faraday (transmission) or Kerr (reflection) effects.

Let us assume that we deal with a pure spin state, i.e., a fully polarized
beam with |P 0| = 1, and for simplicity we consider a transmission experiment.
For a fully polarized incident beam the polarization vector is then constant
in magnitude, moving on the surface of a sphere with unit radius. This corre-
sponds to the assumptions made when applying the Landau–Lifshitz–Gilbert
equation (3.39). The changes in the direction of the polarization vector P
upon traversing a magnetic sample can then be described by the method of
Poincaré illustrated in Fig. 8.8.

As shown in Fig. 8.8c, the endpoint of P moves on a unit sphere, centered
at the origin x = y = z = 0. The north-pole of the sphere lies on the positive
z-axis. We assume that the magnetization direction of the sample lies along
−z and that the spin polarization vector P 0 of the incident beam is along the
x-axis in the equatorial plane of the sphere. According to (8.9) the electron
spin is described by the spinor χ = 1√

2

(
1
1

)
and the initial spin state is a

superposition of the two partial waves
(
1
0

)
=↑ and

(
0
1

)
=↓ with identical phases

and amplitudes.
We describe the interaction of the electron spin with the ferromagnetic

sample phenomenologically by a complex interaction matrix Î

Î =
(√

1 +A e+i ϕ/2 0
0

√
1 −A e−i ϕ/2

)
, (8.31)

where the constants A and ϕ account for the two dominant processes dis-
cussed in Sect. 8.6.2, the spin selective absorption and the spin precession,
respectively.

In particular, the factor ϕ = t∆E/h̄ is the phase difference that develops
between the spin-up and spin-down states while they interact with the mag-
netic body, as discussed in Sect. 3.7. Thus ϕ increases linearly with time t or
alternatively with the length s = t vG of the pathway of the electrons within
the sample, where vG is the electron group velocity. Another factor contribut-
ing to ϕ is the spin dependent jump of the phase that may occur in reflection
of the waves from magnetic surfaces.

The material constant A describes the relative transmission of the majority
and minority components by a material and is called the spin asymmetry
parameter A. It is defined for a material in terms of the transmitted electron
current in analogy with our earlier definition of the beam polarization P in
(8.17).
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Polarization vector on Poincare sphereExperimental geometries

Fig. 8.8. (a) Experimental geometries for a transmission experiment of spin po-
larized electrons through a magnetic thin film. The motion of the spin polarization
vector P from its initial orientation along P 0 ‖ x can be pictured as shown in (b)
for both cases of a transversely or longitudinally polarized beam. (c) Motion of the
polarization vector P on the Poincaré sphere, with the magnetization direction M
chosen along the −z axis of the sample. The incident spin polarization P 0 is along
x and the spin state is a coherent superposition of ±sz states. If through interaction
with a sample a phase difference ϕ develops between the two spin states the polar-
ization vector rotates in the equatorial x–y plane. Note that the actual precession
in the x–y plane follows the right hand rule about the direction M , as illustrated in
Fig. 3.14. If there is preferential absorption of one of the spin states the polarization
vector rotates out-of-plane by an angle 2β = 90◦−θ toward one of the poles. For the
shown geometry, it turns out (see Sects. 12.5.2, 12.6.3, and 12.6.4) that spins along
−z (spin-down or minority spins) are absorbed stronger so that for the transmit-
ted beam the polarization vector has a positive (spin-up or majority spins) z-axis
projection, as shown. The component of P along z is the asymmetry parameter A,
defined by (8.32)

The asymmetry parameter A describes the relative transmission of spins
through a material, polarized parallel and antiparallel to the magnetiza-
tion direction M , according to

A =
I↑↓ − I↑↑
I↑↓ + I↑↑

=
Imaj − Imin

Imaj + Imin
. (8.32)

A is positive if the majority intensity dominates and hence minority spins
are preferentially absorbed, and vice versa.
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In general we have 0 ≤ |A| ≤ 1. When A = 0 the electron absorption (or
reflection) does not depend on spin, while for A = ±1 only the majority or
minority spin state is transmitted (or reflected). With increasing time spent
by the electrons in the material the intensity of the electron beam decreases
exponentially through absorption while the asymmetry A tends to ±1. We
have not yet discussed the relative absorption of spin-up and spin-down elec-
trons by a magnetic sample. This will be done in Sects. 12.5.2, 12.6.3, and
12.6.4. Here it suffices to say that the depicted directions of P 0 and M and
the resultant motion of P in Fig. 8.8 indeed correspond to experimental ob-
servations.4

The zero off-diagonal matrix elements in Î indicate that the two spin
partial waves do not get mixed up, that is, there are no transitions from
up-spin to down-spin states or vice versa. In principle, such transitions are
possible, as already mentioned in Sect. 8.6.2, but the experiments described
in Sect. 12.6.3 show that spin transitions are sufficiently rare so that they can
be neglected.

We also note that in contrast to the spin filter matrix F̂ given by (8.21),
the interaction matrix Î depends on the phase shift ϕ between the two spin
partial waves. Setting I↑ − I↓ = ∆TR and (I↑ + I↓) = 2TR in (8.32), one
finds that TR(Î · Î∗) = F̂ . Hence by neglecting the phase, as appropriate for a
partially polarized beam, we can describe the interaction with the ferromagnet
by the spin filter matrix (8.21).

For the case of interest here, the incident fully polarized beam emerges
from the magnetic body with the wave function χ′ = Îχ given by

χ′ = Î
1√
2

(
1
1

)
=

1√
2

(√
1 +A e+i ϕ/2

√
1 −A e−i ϕ/2

)
. (8.33)

As expected, a difference in phase and in amplitude has developed between
the two partial waves. According to (8.8) the polarization vector of the trans-
mitted beam is

P =

⎛
⎝

√
1 −A2 cosϕ√
1 −A2 sinϕ

A

⎞
⎠ . (8.34)

Since the polarization vector at incidence was P 0 = (1, 0, 0), we see that in
the absence of spin dependent absorption, that is with A = 0, the vector P
moves azimuthally along the equator of the Poincaré sphere in Fig. 8.8. The

4 The incident beam is described as a superposition of up spins (along z) and
down spins (along −z). If the magnetization vector M is along −z, the minority
spins in the sample are also along −z (see Fig. 7.6), and hence incident down spins
are preferentially absorbed by spin-conserving excitations within the minority band.
This means that the transmitted beam will have a preferential up-spin polarization,
as shown in Fig. 8.8.
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angular frequency of this motion is ω = ∆E/h̄, that is precisely the precession
frequency of the spin derived in Sect. 3.6. On the other hand, if one sets ϕ = 0,
P rotates into the positive or negative z-axis depending on the sign of A. In
the presence of both A �= 0 and ϕ �= 0, the polarization vector P moves
on a spiral into the north- or the south-pole of the Poincaré sphere. These
two cases correspond to the motions of the magnetic moment with positive
damping illustrated in Fig. 3.16 and negative damping in Fig. 3.17. We see
from (8.34) that for the fully polarized incident beam considered above the
beam remains completely polarized, i.e., |P | = |P 0| = 1.

We can also use the density matrix (8.19) to account for the interaction
of a partially polarized incident beam (|P 0| < 1) with a sample. It is easy to
show that after the interaction, P is given by

P =

⎛
⎝P0

√
1 −A2 cosϕ

P0

√
1 −A2 sinϕ
A

⎞
⎠ . (8.35)

Now the transmitted beam has also changed the magnitude of the polarization
vector, so that |P | �= |P 0|. The polar angle θ enclosed between −M and P
is given by,

θ = arctan

(
P0

√
1 −A2

A

)
. (8.36)

Both ϕ and θ can be directly measured. Such experiments are described
in Sects. 12.6.4 and 13.3.2. The experiments show that the polarization vector
P indeed moves corresponding to (8.35). The difference of the motion of P
compared to the motion of the magnetic moment m, discussed in Sect. 3.6.2,
is that P moves orders of magnitudes faster. The high angular velocity of pre-
cession is due to the high value of the exchange field. The fast rotation into the
quantization axis is due to the very effective spin selective electron/electron
scattering in a magnetic metal.

In summary, two separate phenomena act on the polarization vector P .

– The precession in the equatorial plane of Poincaré’s sphere is caused
by the different phase velocities of spin-up and spin-down electrons.
The phase shift ϕ that develops with time t is determined by the
exchange energy ∆E according to ϕ = t∆E/h̄. The phase shift ϕ
increases linearly with the thickness of the sample.

– The spiralling into the north or south poles is caused by the asym-
metric absorption of up and down spin electrons. The out-of-plane
rotation angle 2β increases with absorption A according to tan 2β =
A/

√
1 −A2. The spin asymmetry A of the absorption increases with

the thickness of the sample.
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8.7 Link Between Electron Polarization and Photon
Polarization

Classically the electromagnetic field is a vector field, where the electric and
magnetic field vectors are described by three independent components in a
Cartesian coordinate system, e.g., E = (Ex, Ey, Ez), as discussed in Chap. 5.
Quantum mechanically photons are Bosons with angular momentum quantum
number5 L = 1 and three possible values of 〈Lz〉 = −1, 0,+1 in units of h̄
along the propagation direction z. Hence these three polarization states, two
circular and one linear, span the three-dimensional vector field.

At first sight it seems therefore odd that the spinor field concept which is
based on only two basis states appropriate for an s = 1/2 Fermion particle
can also be used to describe the polarization states of a photon. That this can
indeed be done is due to two facts,

– The transverse nature of EM waves imposes the restriction that E is
always in a plane perpendicular to the propagation direction k.

– The state 〈Lz〉 = 0 can be written as a linear combination of the states
〈Lz〉 = ±1.

We can state as follows.6

For a given photon propagation direction k, the polarization properties
of an EM wave can be completely described by either the conventional
3D vector formalism or the 2D spinor formalism.

Examples for the convenient use of the spinor formalism are transmission
experiments of polarized light through a magnetized sample as performed for
example in the measurement of the Faraday rotation. In the following we
shall establish the correspondence between the vector field and spinor field
descriptions and then describe the Faraday effect in the spinor formulation.

5Modern optics allows one to create photon states with unusual polarizations
[184] and wave topographies. For example, an optical vortex state is characterized by
a helical or corkscrew-like trajectory of the Poynting vector around the propagation
direction k and exhibit zero field amplitude at the beam center. The creation of such
beams has led to a distinction in the literature between the “angular momentum”
of such light beams from that of conventional circularly polarized beams, referred
to as “spin” [187]. We do not consider such exotic states here.

6A complete experiment probes the properties of an anisotropic sample (either
charge or spin) in three dimensions. It therefore consists of three orthogonal mea-
surements as discussed later in Chap. 10, by probing the sample with either k or
E along the x, y, and z axes of the sample. For example, we shall see that it takes
an average over three orthogonal polarization states to obtain powerful sum rules
that link the X-ray absorption intensity with angle-independent materials properties
such as the number of empty valence states and the spin and orbital momenta per
atom. In these cases the vector field formalism offers advantages.
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8.7.1 Photon Polarization in the Vector Field Representation

Let us assume the same geometry as shown in Fig. 8.3, where the z-axis is
special in that it is both the photon propagation direction k and also the
direction of the sample magnetization M .

We have learned in Sect. 5.4.5 that any polarization state can be written
as a linear combination of two basis states, which are either linearly polarized

εx =

⎛
⎝1

0
0

⎞
⎠ , εy =

⎛
⎝0

1
0

⎞
⎠ , (8.37)

where the subscript refers to the direction of E, or circularly polarized (εR =
ε+ and εL = ε−),

ε+
z =

1√
2

⎛
⎝−1

−i
0

⎞
⎠ , ε−z =

1√
2

⎛
⎝ 1

−i
0

⎞
⎠ , (8.38)

where the subscript labels the direction of k. In particular, the circular po-
larization vectors can be used as the basis vectors of our polarization descrip-
tion as discussed in Sect. 5.4.5. The link between the three-dimensional vector
and two-dimensional spinor descriptions therefore simply lies in the corre-
spondence between the two circularly polarized photon states (8.38) and the
spinor states (8.4).

Before we explore this concept further let us briefly show how the expecta-
tion value of the angular momentum along the z direction is calculated in the
vector field formalism. Rather than the two-dimensional Pauli matrices one
uses the corresponding three-dimensional operator matrices for a L = S = 1
particle [147, 181, 197]. In particular, the matrix for the z component of the
angular momentum operator is given by,

Lz =

⎛
⎝ 0 −i 0

i 0 0
0 0 0

⎞
⎠ , (8.39)

and we obtain the following angular momenta projections (in units of h̄) for
the states ε+ and ε−,

〈Lz〉 = (ε+)∗ Lz ε+ =
1
2
(−1, i, 0)

⎛
⎝ 0 −i 0

i 0 0
0 0 0

⎞
⎠
⎛
⎝−1

−i
0

⎞
⎠ = 1. (8.40)

and

〈Lz〉 = (ε−)∗ Lz ε− =
1
2
( 1, i, 0)

⎛
⎝ 0 −i 0

i 0 0
0 0 0

⎞
⎠
⎛
⎝ 1

−i
0

⎞
⎠ = −1. (8.41)
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and for linearly polarized light with E along x or y we can easily show that

〈Lz〉 = (εx)∗ Lz εx = (εy)∗ Lz εy = 0. (8.42)

This confirms our labeling of the states in terms of angular momenta “+”
= +h̄ and “–” = −h̄, respectively, and agrees with our earlier results in
Sect. 5.4.3. Linearly polarized photons carry no net angular momentum along
the propagation direction. Thus we can state as follows.

For propagation k in the z direction, quantum mechanically a photon has
the intrinsic angular momentum quantum number L = 1 (i.e., photons
are Bosons) with possible projections Lz = +h̄,−h̄, or 0.

Note that conservation of the intrinsic magnitude of the angular momen-
tum in the X-ray absorption process leads to the familiar dipole selection rule
∆L = ±1, independent of photon polarization.

8.7.2 Photon Polarization in the Spinor Representation

The description of the photon polarization in the spinor formalism is identical
to that used for the electron in Sect. 8.4.2. We use the two spinor states

(
1
0

)
for the photon angular momentum Lz = +h̄ and

(
0
1

)
for Lz = −h̄. The two

basis states represent the spinor field.
However, care has to be taken regarding the meaning of the “polarization

vector” P for photons. In the vector field representation, the photon polar-
ization is defined as the direction of the E-vector of the EM wave, and the
E-vector direction and motion leads to the name “linear” and “circular” po-
larization. In the spinor representation the emphasis is placed on the direction
of angular momentum, not the E-vector, in analogy to the electron spin an-
gular momentum. Therefore, the polarization vector P for photons is a vector
in configurational space only. This important point needs to be remembered.

In the spinor formalism, the polarization vector P is associated with
the direction of angular momentum. For electrons it describes the real
space orientation of the spin. For photons it represents both circularly
and linearly polarized states so that, in general, P cannot be associated
with the direction of the electric field vector E.

In the following we will illustrate the motion of the polarization vector for
polarized photons by considering a simple transmission experiment through a
magnetic sample. We shall follow the discussion of the electron case given in
Sect. 8.4.
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8.7.3 Transmission of Polarized Photons through Magnetic
Materials: Poincaré Formalism

The formalism developed above can be used to describe the transmission and
reflection of polarized light by a magnetic material. We will now show that
when photons pass through magnetic matter, the endpoint of P moves on
the surface of Poincaré’s sphere in a characteristic way. We assume that the
photon is incident on a sample with magnetization M pointing into the +z
direction, in the direction of photon propagation k, as illustrated in Fig. 8.9.

We assume that we have an incident photon beam, described by a spinor
χ = 1√

2

(
1
1

)
. As we have seen in Sect. 8.7.2, the photon state consists of two

circularly polarized partial waves 1√
2

(
1
0

)
and 1√

2

(
0
1

)
with identical phase and

amplitude. The photon is propagating along the z-axis and possesses the polar-
ization vector P 0 = (1, 0, 0) according to (8.9), and hence is linearly polarized
along the x-axis (E0 ‖ P 0).

We now proceed as in Sect. 8.4 and describe the interaction of the photons
with the magnetic sample by the interaction matrix Î, given by (8.31). The
asymmetry factor

A =
T+ − T−

T+ + T− , (8.43)

describes the transmission through the sample for positive and negative he-
licity photons, caused by preferential absorption. For T+ = 1 only Lz = +h̄
photons are transmitted and A = +1, and for T− = 1 only Lz = −h̄ photons
are transmitted and A = −1. In general we have 0 ≤ |A| ≤ 1 and A = 0 means
that the material possesses no absorptive circular dichroism. The asymmetry
A will depend exponentially on the length of the light path in the material
as discussed in Sect. 9.4.1. By comparison of (8.43) with the definition of the
degree of circular polarization Pcirc given by (5.52) we see that for photons
we expect |A| = Pcirc, where Pcirc refers to the polarization of the transmitted
photons. This is indeed confirmed by experiment as illustrated in Fig. 8.10.

The parameter ϕ in the interaction matrix Î (8.31) accounts for the dif-
ferent phase velocities with which the two types of circularly polarized partial
waves travel in the magnetized body. For photons, the zero values of the off-
diagonal matrix elements of Î indicate that the two partial waves do not get
mixed up, that is, there are no transitions between the two circularly polarized
photon states. Such transitions are highly forbidden. The magnetic body acts
selectively on each type of partial wave.

As for electrons, the photon emerges from the magnetic body with the wave
function χ′ = Îχ given by (8.33) and a difference in phase and in amplitude
has developed between the two partial waves. Since the light vector at X-ray
incidence was P 0 = (1, 0, 0), we see that in the case A = 0 the vector P
precesses along the equator of the sphere. This is illustrated in Fig. 8.9 by
the first transmission step through sample 1, corresponding to the motion
P 0 → P = P 1. Here we have assumed that the sample absorbs the two
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Fig. 8.9. Transmission of linearly polarized photons through two hypothetical mag-
netic samples. The corresponding photon polarizations are illustrated in real space
on the left and on the Poincaré sphere on the right. Left: A photon beam, linearly
polarized along x (P 0 ‖ E0 ‖ x) is incident on the magnetic sample 1 with mag-
netization direction M pointing along the photon wavevector k and the z-axis of
our coordinate system. Sample 1 is assumed to have different phase velocities for
RCP (Lz = +h̄) and LCP (Lz = −h̄) photons but no or equal absorption of the
two circular components. This results in a relative phase shift of the RCP and
LCP partial waves that compose the incident linearly polarized light and leads to
a rotation, the Faraday rotation, of the polarization vector by an angle ϕ. After
sample 1 the photon beam is still linearly polarized but its E vector is rotated by
ϕ in the x–y plane. The photon beam then traverses sample 2, which also has its
magnetization M oriented along z. This sample is assumed to have different phase
velocities and different transmission factors for RCP and LCP photons, with pref-
erential absorption of LCP light. After the sample, the transmitted light is right
elliptically polarized. Right: Illustration of the Poincaré sphere representation of the
transmission experiment on the left. The polarization vector of the incident light
is P 0. After transmission through sample 1 the light vector is rotated along the
equator on the Poincaré sphere according to P 0 → P 1. Preferential absorption of
LCP by sample 2 leads to an out-of-plane precession of P toward the north pole,
illustrated as the path P 1 → P 2. Now the light is right elliptically polarized. If the
path continued to the north pole the light would be right circularly polarized (pure
Lz = +h̄). The component of P along z is the degree of circular polarization Pcirc

which is equal to the asymmetry parameter A. It is related to the Stokes angle 2β,
by tan 2β = A/

√
1 − A2
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partial waves equally or not at all. The rotation angle ϕ of the polarization
is called magneto-optic Faraday rotation in transmission and Kerr rotation
when the light is reflected from the ferromagnet. It increases linearly with the
length of the pathway of the light through the sample.

For finite A, the light vector moves out of the equatorial plane. This motion
corresponds to the transmission through sample 2 in Fig. 8.9. Sample 2 is
assumed to preferentially absorb negative spin or LCP light. The photon beam
after the sample is now elliptically polarized and when P reaches the north
(south) pole we have pure right (left) circular polarization. With reference to
the right side of Fig. 8.9 and defining two new angles 2α = ϕ and 2β = 90−θ =
arcsinA (see Fig. 8.8) for later reference, we can write the polarization vector
as follows.

Poincaré’s polarization vector P is given by,

P =

⎛
⎝Px

Py

Pz

⎞
⎠ =

⎛
⎝

√
1 −A2 cosϕ√
1 −A2 sinϕ

A

⎞
⎠ =

⎛
⎝ cos 2β cos 2α

cos 2β sin 2α
sin 2β

⎞
⎠ . (8.44)

If the light is completely polarized we have P = 1, and P defines a point
on the surface of the Poincaré’s sphere with radius 1. For incompletely
polarized photons P lies inside the sphere, and the point P = 0 defines
natural or “unpolarized” light.

The spinor formalism mapped onto Poincaré’s sphere describes the follow-
ing polarization cases,

– Right circularly polarized light with Lz = +h̄ corresponds to the north
pole

– Left circularly polarized light with Lz = −h̄ corresponds to the south pole
– Linearly polarized light corresponds to points on the equator
– In the positive half sphere (90◦ > 2β > 0) the polarization is right handed

elliptical
– In the negative half sphere (−90◦ < 2β < 0) the polarization is left handed

elliptical

As for spin-polarized electrons we can state as follows.

In magnetic materials two phenomena act on the light vector P :

– The precession angle ϕ in the equatorial plane is caused by the dif-
ferent phase velocities of right and left circularly polarized light, and
ϕ increases linearly with the light path through the sample.

– The spiralling into the north and south poles is caused by the asym-
metric absorption of right and left circularly polarized light. The ab-
sorption depends exponentially on the light path through the sample.
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8.7.4 X-ray Faraday Effect and Poincaré Formalism

Similar to the visible range one can also measure the Faraday effect in the X-
ray range as first demonstrated by Kao et al. [99] in 1990. Later, quantitative
measurements on Fe were carried out by Kortright and Kim [353] and on Fe,
Co, and Ni by Gudat et al. [354] and Kuneš et al. [355]. A particularly large
X-ray Faraday effect is observed for the rare earths, as measured by Prieto et
al. [356]. While in the Faraday effect the magnetization is parallel to the prop-
agation direction of the linearly polarized incident light, one may also measure
the transmission of linearly polarized light that is incident perpendicular to
the magnetization direction M of the sample, the so-called Voigt effect [357].
In both cases the polarization state of the transmitted light is determined.
This distinguishes the Voigt effect from the linear magnetic dichroism effect
where only the transmitted intensities for E parallel and perpendicular to M
are measured and compared. Similar to the magneto-optical Kerr effect, X-
ray measurements can also be performed in a reflection geometry [358–360].
In this case care has to exercised in the analysis of the measured asymmetry,
because the reflected intensity is dependent on the angle of incidence and the
layered structure of the sample and it may reverse its sign [358,361].

Fig. 8.10 gives an example of an X-ray Faraday effect measurement per-
formed by Gudat et al. [354]. X-rays of variable polarization are incident on
an in-plane magnetized film of permalloy Fe0.5Ni0.5 of thickness 50 nm, with
the X-ray propagation direction at an angle of 30◦ with respect to M . By use
of circular polarization one measures the transmission spectra, shown in the
top panel, and from the transmitted intensities T± one can determine the ab-
sorption asymmetry A = |T−−T+|/(T− +T+), plotted in the bottom panel.
By use of linearly polarized incident light and determination of the polariza-
tion of the transmitted beam one can determine both the Faraday rotation
ϕ of the E-vector, shown in the middle panel of Fig. 8.10 and the degree of
circular polarization Pcirc (see Sect. 5.5.3), plotted in the bottom panel. The
Faraday rotation exhibits a pronounced derivative-like structure near the L3

resonance and a change of sign. This is what one expects on going through
a resonance: The phase difference between the periodic exciting field and the
harmonic oscillator changes sign on going through the resonance. The magni-
tude of the phase jump depends on the damping of the oscillator. As expected,
the intensities at the L3 and L2 resonances behave in the opposite way. The
bottom panel demonstrates the close correspondence of the asymmetry A de-
termined from the transmitted intensities using circularly polarized light and
the degree of circular polarization determined from the transmitted polariza-
tion for linear incident light. Note that Pcirc corresponds to the z-component
of the light vector P in Fig. 8.9. The results provide a nice example of how
magneto-optics works and demonstrate the motion of the light vector on the
sphere of Poincaré.

We see that X-rays are superior to visible light because the effects are en-
hanced and because the results can be interpreted more directly. We shall show
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Fig. 8.10. X-ray Faraday effect in Fe0.5Ni0.5 [354]. Top: transmission of right (T+)
and left (T−) circularly polarized light versus photon energy around the Fe L-edge
resonances. Center: Faraday rotation of the plane of polarization obtained with
linearly polarized light for the two directions of M with respect to the photon light
vector P . Bottom: Asymmetry A of the transmission and the degree of circular
polarization Pcirc of the emerging light

in Chap. 9 that polarization dependent X-ray measurements allow the deter-
mination of important quantities in magnetism such as the number of holes
in the d-band, the spin and orbital magnetic moments and their anisotropy,
and all that with elemental and chemical state specificity.
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8.7.5 Poincaré and Stokes Formalism

Finally, we mention that Poincaré’s description developed in 1892 is closely
related to that developed earlier by George Stokes around 1852. Stokes’
description of the properties of a light beam is based on four parameters
that define the so-called Stokes vector according to

S =

⎛
⎜⎜⎝

S0

S1

S2

S3

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

Tmax + Tmin

S0 cos 2β cos 2α
S0 cos 2β sin 2α

S0 sin 2β

⎞
⎟⎟⎠ . (8.45)

The fact that one can establish a relationship between the Stokes vector
S and the Poincaré vector P was in fact the reason why in (8.44) we in-
troduced new angles 2α and 2β. There is a good reason for the factor of
2 in the angles occurring in (8.45). For photons the two linearly polarized
basis states are orthogonal (90◦), while for electrons the two basis states
include an angle of 180◦. Only three of the four Stokes parameters are in-
dependent. They are linked by the total beam intensity S0 = Tmax +Tmin and
the fact that S2

0 = S2
1 + S2

2 + S2
3 . The polarization information is contained

in the three parameters S1, S2, and S3. When normalized by S0 they define
the three component Poincaré vector P .
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Interactions of Polarized Photons with Matter

9.1 Overview

This chapter discusses theoretical concepts underlying the description of the
interactions of polarized photons with matter. Because of the long history of
the subject in the optical wavelength regime we start with a brief summary of
terminology associated with polarization dependent scattering and absorption
effects of visible light in matter. This will allow us to clearly define a modern
terminology that is most suitable for X-rays.

We start our theoretical treatment with semiclassical concepts (i.e., classi-
cal concepts with the addition of some quantum concepts) that conveniently
build on those developed in Chap. 8. For example, the transmission of po-
larized photons through magnetic materials, the magneto-optical Faraday ef-
fect, can be understood semiclassically by assuming that polarized light is
composed of right and left circular polarized components and that one circu-
lar component is preferentially phase shifted or absorbed upon transmission
through a magnetic material. This explains the change in polarization state of
the transmitted wave. Similarly, nonresonant scattering processes are readily
understandable as a two step process where the EM wave jiggles the charge or
the spin and the motion leads to re-radiation, i.e., scattering, of an EM wave.

Such semiclassical or phenomenological treatments, however, are unsat-
isfactory if one wants to understand the interaction of the EM wave with
the material in detail or even quantitatively link measured intensities with
magnetic parameters such as magnetic moments. A key problem with semi-
classical treatments is that the processes with the largest cross-section, X-ray
absorption or resonant scattering, are true quantum phenomena. This has
historically been partially overcome by combining classical elements with the
quantum mechanical concept of oscillator strength of an electronic transition.
In analogy to the harmonic oscillator, a connection can then be established of
resonant scattering and X-ray absorption intensities or cross-sections and such
a treatment leads to the famous Kramers–Kronig relations [109,178,190,362].
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However, the Kramers–Kronig relations only allow one to connect an experi-
mental absorption spectrum with the scattered intensity or vice versa but it
does not provide a means to calculate either the absorption or scattered inten-
sity from first principles. Such a quantitative treatment requires the operator
and matrix element approach of modern quantum mechanics in conjunction
with time-dependent perturbation theory. Only this approach allows the quan-
titative analysis of resonant X-ray scattering and X-ray absorption intensities
in terms of atomic quantities such as magnetic moments and their anisotropies.
For this reason we shall present the basic concepts of this approach.

In comparison to optical dichroism measurements, X-rays offer significant
advantages. Because excitations are localized on atoms, X-rays offer specificity
to individual elements and their chemical state. In contrast to the optical
range, X-ray transition intensities represent an average over all valence states
in the Brillouin zone, the same average that determines physical quantities
like the valence shell occupation number and the spin and orbital magnetic
moments. By use of powerful sum rules the spin and orbital moments can
be separated and can be quantitatively determined from integrated peak in-
tensities. Also, because of the short wavelength of X-rays, they offer higher
spatial resolution, down to the size of the X-ray wavelength. In the era of
nanoscience this provides another significant advantage over optical methods
which are typically limited to a spatial resolution above 200 nm.

9.2 Terminology of Polarization Dependent Effects

In the past, optical effects were mainly described phenomenologically by
means of a refractive index. In general, this index is dependent on the fre-
quency and the polarization of the EM wave. For a given sample, the frequency
dependence is particularly important around specific resonant frequencies and
near such resonances the refractive index needs to be described as a complex
dimensionless quantity according to [109,149]1

n(ω) = 1 − δ(ω) + iβ(ω) . (9.1)

The real part δ(ω) is associated with refraction and the imaginary part β(ω)
with absorption of the EM wave in the medium.

The polarization dependence of the refractive index is called “birefrin-
gence” and one distinguishes linear and circular birefringence, depending on
the polarization of the incident light. The term refringence was originally used
instead of the term refraction, both deriving from the Latin word frangere,
meaning to break. The polarization dependence of the absorptive part β(ω)
is referred to as “dichroism.” The term has its origin in the fact that certain
crystals may appear dichroic or in two different colors when white light is

1For isotropic media we have the general relationship n ≡
√

εµ/ε0µ0, where ε/ε0
is the dielectric constant and µ/µ0 the relative permeability.
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incident along two different directions. This is due to the preferential absorp-
tion of polarization components and frequencies along different directions. We
may summarize these and other optical effects as follows.

– Birefringence. The existence of two different indices of refraction for po-
larized incident light. One distinguishes linear birefringence and circular
birefringence.

– Dichroism. The dependence of photon absorption on polarization. There
are four main types. Linear dichroism and (natural) circular dichroism de-
pend on the charge distribution. Magnetic linear dichroism and magnetic
circular dichroism depend on the spin and charge distribution.

– Optical activity or rotation. The rotation of the linear polarization direc-
tion by a nonmagnetic sample. Optical activity is typically associated with
a handedness of the charge distribution in space, i.e., chirality.

– Magneto-optical rotation. The rotation of the linear polarization direction
by a magnetic sample. It arises from the presence of aligned magnetic
moments, which give the sample a handedness in time through breaking
of time-reversal symmetry.

In modern theory, based on time-dependent perturbation theory and the quan-
tum mechanical operator and matrix element method, all interaction effects
of polarized photons with matter listed earlier can be cast in terms of a scat-
tering problem. The final formalism has a close resemblance with the classical
approach based on the refractive index in that the scattering is expressed in
terms of a complex atomic scattering factor

F (Q, ω) = F 0(Q) + F ′(ω) − iF ′′(ω). (9.2)

Here Q is the momentum transfer in the scattering process and F 0(Q) is the
atomic form factor. All factors F 0(Q), F ′(ω), and F ′′(ω), are real numbers in
units of number of electrons per atom. In the soft X-ray range or for scattering
in the forward direction, where the momentum transfer Q is small, we obtain
an expression similar to (9.1),

F (ω) = Z + F ′(ω) − iF ′′(ω) = f1(ω) − if2(ω). (9.3)

Here Z is the number of electrons per atom and the anomalous scattering
factors F ′(ω) and F ′′(ω) can be calculated from first principles and represent
the refractive and absorptive contributions to scattering. In practice, in the
soft X-ray region one can conveniently use the web-tabulated Henke–Gullikson
factors [362,363].

The Henke–Gullikson atomic factors are defined as

f1(ω) = Z + F ′(ω), f2(ω) = F ′′(ω) . (9.4)

They have units of [ number of electrons per atom].
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It is important to realize that f1 and f2 are atomic factors that do not
include bonding effects associated with atoms in different environments. For-
tunately, bonding effects only change the X-ray interactions near absorption
edges. In the near edge region the X-ray excitations are associated with spe-
cific transitions from core states to empty valence states of the material and
the fine structure of the resonances is therefore characteristic of the local
bonding environment of the absorbing atom. Outside the near-edge resonance
region, the photoelectron is directly excited into free-electron-like continuum
states and the excitation cross-section is atom specific and varies smoothly
with energy. The X-ray response of the material in this region is therefore
simply a superposition of all the individual atomic responses given by the
Henke–Gullikson factors. In practice, one rarely measures X-ray absorption
or scattering spectra on an absolute intensity or cross-section scale. If needed
one converts the measured spectra, including the near-edge resonance region,
to an absolute scale by fitting them outside the resonance region to the cross-
sections calculated by means of the Henke–Gullikson factors, as discussed in
Sect. 10.3.3.

The real atomic scattering factors F 0(Q), F ′(ω), F ′′(ω), f1(ω), and f2(ω)
have units of [ number of electrons/atom].

The relationship between n(ω) in (9.1) and F (ω) in (9.3) is given by [364]

1 − n(ω) =
r0λ

2

2π

∑
j

ρj Fj(ω), (9.5)

where r0 = e2/4πε0mec
2 = 2.818 × 10−15 m/electron is the classical electron

radius, λ is the wavelength, and ρj is the number density of atomic species
j (atoms/length3), so that the right hand side of (9.5) is dimensionless, as
required. Restricting ourselves to a sample with only one atomic species with
density ρa we obtain the simple relations

δ(ω) =
r0λ

2

2π
ρa f1(ω), (9.6)

β(ω) =
r0λ

2

2π
ρa f2(ω). (9.7)

δ(ω) and β(ω) are dimensionless.

Scattering and reflectivity experiments depend on both the real, f1(ω) =
Z + F ′(ω), and imaginary, f2(ω) = F ′′(ω), parts. In practice, the two scat-
tering factors F ′(ω) and F ′′(ω) are rarely determined independently but one
is obtained from the other by a Kramers–Kronig transformation, discussed
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in Sect. 9.4.4. In particular, F ′′(ω) is typically obtained by an X-ray absorp-
tion measurement since it is directly proportional to the X-ray absorption
cross-section. Experimentally, the real part F ′(ω), is best determined from
a measurement of the polarization rotation using linearly polarized incident
radiation.2

All polarization dependent effects caused by the interaction of an EM
wave with matter discussed earlier can therefore be completely described in
terms of the scattering factors. The task then boils down to determining the
scattering factors in the resonance region where they contain information on
the electronic and magnetic structure of the material. There are two important
types of measurements to determine them.

– Polarization dependent X-ray absorption measurements completely deter-
mine F ′′(ω). This is an absolute intensity measurement3 only the incident
polarization needs to be known.

– Polarization rotation measurements completely determine F ′(ω). This is
an intensity difference measurement involving the polarizations of the in-
cident and transmitted radiation.

9.3 SemiClassical Treatment of X-ray Scattering by
Charges and Spins

9.3.1 Scattering by a Single Electron

The semiclassical treatment of magnetic dichroism starts with nonresonant
X-ray scattering by the charge and spin of a single electron and it provides
an intuitive understanding of the processes involved. Below we will review the
processes of charge and spin scattering by an electromagnetic wave. While we
will give the complete equations for charge scattering, we shall only discuss
the spin scattering channel that is of pure spin origin. Other channels arising
from the spin–orbit coupling or from the fact that charge and spin are both
tied to an electron and that charge motion naturally leads to spin motion will
not be considered here [190].

We assume an EM wave with unit polarization vector ε and fields

E(r, t) = εE0 e−i(ωt−k·r), (9.8)

2The rotation angle which is related to F ′(ω) and δ is determined from a relative
transmission measurement as a function of polarizer orientation. The ellipticity of
the transmitted polarization, which is related to F ′′(ω) and β can also be determined
by means of polarimetry, yet absorption measurements are easier and more accurate.

3In practice, one often normalizes measured data to the Henke–Gullikson data
[362, 363] outside the resonance regions and therefore one performs only a relative
intensity measurement.
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B(r, t) =
1
c
(k0 × ε)E0 e−i(ωt−k·r). (9.9)

Following convention we have chosen ε to be along the E-vector and we shall
for simplicity assume linear polarization. When this wave is incident on a free
electron of charge −e and spin s, both the charge and the spin are set in
motion. The electron motion follows the oscillating electric field, creating an
electric dipole moment directed along the E-vector

p(t) = − e2

meω2
E0 e−iωt. (9.10)

For spin scattering we consider how the magnetic field acts on the spin. We
know from Chapt. 3 that the spin precesses around a constant magnetic field
according to the torque equation T = h̄ds(t)/dt,

ds(t)
dt

= − e

me
s(t) × B , (9.11)

For a linearly polarized EM wave the magnetic field B(t) = B0e−iωt oscillates
along an axis in space and changes sign periodically. According to (9.11) a sign
change in B(t) leads to a sign change of the torque T = h̄ds(t)/dt direction
and thus the vector s rapidly precesses back-and-forth on a cone around the
axis of B(t), as shown in Fig. 9.1. The component s0 is approximately constant
while the small perpendicular component sd oscillates with the frequency of
the EM wave and represents a magnetic dipole. With m = −2µBsd and
µB = eh̄µ0/2me we obtain for the oscillating magnetic dipole moment

m(t) = i
e2h̄µ0

ωm2
e

s × B0 e−iωt, (9.12)

where s ∼ s0 is the initial spin direction. Whereas the electric dipole oscillates
in the direction of E, the magnetic dipole oscillates in a direction that is
perpendicular to B and s. This leads to different polarization effects in the
scattering as discussed later.

We have now derived the electric and magnetic dipole moments induced
by interaction of a polarized EM wave with the charge and spin of an electron.
This is the first step in the X-ray scattering process. The second step is simply
re-radiation of EM waves by the oscillating electric and magnetic dipoles. The
scattered radiation is determined by the dipolar fields in the spatial region far
from the dipole which have a rather simple spherical wave form eik′r/r given by
Jackson [149]. For convenience we only list the scattered electric fields denoted
E′(t) since the magnetic field can be simply obtained from (5.9). The fields
radiated by an electric dipole p(t) are

E′(t) =
ω2

4πε0c2
eik′r

r
[k′

0 × p(t)] × k′
0 (9.13)
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Fig. 9.1. Precessional motion of a spin in the magnetic field B(t) of a linearly po-
larized EM wave. When the oscillating field changes direction so does the precession
direction of s. If we write s = s0 +sd the perpendicular component sd changes sign
periodically and therefore represents an oscillating magnetic dipole

and those radiated by a magnetic dipole m(t) are

E′(t) = − ω2

4πc
eik′r

r
[k′

0 × m(t)]. (9.14)

It is now simple to derive the scattered field for charge scattering by com-
bining (9.10) and (9.13) and we obtain

E′(t) = − 1
4πε0

e2

mec2
eik′r

r
[k′

0 × E(t)] × k′
0. (9.15)

Similarly we can combine (9.12) and (9.14) to obtain the spin scattering am-
plitude, remembering that c2 = 1/ε0µ0,

E′(t) = i
1

4πε0
e2

mec2
h̄ω

mec2
eik′r

r
[s × (k0 × E(t))] × k′

0. (9.16)

The two scattering processes are illustrated in Fig. 9.2. Together with the
above equations it clearly shows the dipolar nature of the electric and magnetic
scattering processes.

There are important differences in the polarization, phase, and amplitude
of charge and spin scattering. We note the following important points:
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Fig. 9.2. Mechanisms of X-ray dipole scattering from a charge and a spin. Note that
charge scattering preserves the polarization direction while spin scattering rotates
it

– Charge scattering causes a phase shift of π (minus sign in (9.15))
between the incident and scattered fields.

– Spin scattering introduces a phase shift of π/2 (factor i in (9.16))
between the incident and scattered fields.

– The spin scattering amplitude is reduced by a factor of h̄ω/mec
2

relative to the charge scattering amplitude, where mec
2 = 511 keV.

– Charge scattering conserves the polarization while spin scattering
causes a rotation of the polarization.

We now touch base with conventional scattering theory by defining the
scattering factor of a single electron. We assume that by a suitable analyzer
we can determine the scattered amplitude and polarization direction ε′, which
by geometry is perpendicular to the scattered wave vector k′

0. This allows us
to define the polarization dependent scattering length

f(ε, ε′) = −re
−ik′r

E
E′ · ε′ (9.17)

It is in general a complex quantity with the dimension of [length].4

By use of (9.15) we obtain the electric dipole scattering length for a single
electron,

fe(ε, ε′) =
1

4πε0
e2

mec2
ε · ε′ = r0 ε · ε′. (9.18)

4In general, (9.17) should be written using the complex conjugate vector ε′∗

to account for imaginary polarization vectors as are used for circularly polarized
X-rays.
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where r0 = e2/4πε0mec
2 = 2.82 × 10−6 nm is called the classical electron

radius or the Thomson scattering length. We shall see later that the area r20,
apart from a geometrical factor, gives the X-ray scattering cross-section of a
single electron. It is therefore a very important reference number for describing
the scattering amplitude of all multielectron systems. For magnetic dipole
scattering we obtain from (9.16)

fs(ε, ε′) = −i r0
h̄ω

mec2
s · (k0 × ε) × (k′

0 × ε′). (9.19)

We have conveniently defined the scattering length so that its square is
proportional to the intensity scattered into a solid angle Ω, i.e., the differential
scattering cross-section with dimension [length2/solid angle], given by

dσ
dΩ

= |f(ε, ε′)|2 . (9.20)

Note that by squaring the scattering factor the important phase information
that was contained in the complex form of E′ is lost. This gives rise to the
famous phase problem in X-ray crystallography.

The total scattering cross-section for a single electron is then simply ob-
tained by angular integration of the polarization dependent squared scattering
factor. The integration of the polarization factor ε · ε′ gives a factor of 8π/3
and we obtain for the charge

σe =
∫

|f(ε, ε′)|2dΩ = r20

∫ 2π

0

∫ π

0

sin2 θ sin θ dθ dφ =
8π
3
r20, (9.21)

which is called the Thomson cross-section and has the dimension [length2].

The Thomson cross-section

σe =
8π
3
r20 = 0.665 × 10−28 m2 = 0.665 barn (9.22)

is the total scattering cross-section from the charge of a single electron.
Cross-sections are typically listed in units of barn, where 1 b = 10−28 m2.
Hence one can conveniently remember that the X-ray scattering cross-
section for a single electron is about 1 b.

The spin cross-section is obtained by angular integration of (9.19) as

σs =
8π
3

1
4

(
h̄ω

mec2

)2

r20 =
σe

4

(
h̄ω

mec2

)2

. (9.23)

Equations (9.21) and (9.23) clearly show that for typical X-ray energies charge
scattering is stronger by orders of magnitude than spin scattering. For exam-
ple, assuming a photon energy of 10 keV, the factor (h̄ω/mec

2)2 = (10/511)2
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is about 4×10−4 and the weak spin scattering signal will only be observable in
very special circumstances. An example is an antiferromagnetic lattice where
the spin structure has a different periodicity than the charge structure and
weak magnetic scattering peaks exist at locations in reciprocal space where
charge scattering peaks are absent [365]. When the photon energy h̄ω is equal
to twice the rest energy of the electron, i.e., h̄ω = 2mec

2 = 1.022MeV, we see
that magnetic and charge scattering have the same cross-section.

9.3.2 Scattering by an Atom

It is straightforward to extend the scattering formalism for a single electron
to that for a multielectron atom. We simply assume that the total scattered
amplitude is the sum of the amplitudes of the individual electrons. However,
depending on which electron in the atom the X-ray wave scatters, there will be
a tiny length difference in the path of the incident X-ray wave to the detector.
Although the path length differences will be of the order of the size of the
atom, so is the wavelength of the X-rays. Therefore the small path lengths
differences can affect the scattered amplitude through interference effects. This
effect is taken into account by the so-called atomic form factor

F 0(Q) = − 1
e

∫
ρ(r) eiQ·rdr (9.24)

which makes the scattering process angle dependent, expressed by a wavevec-
tor or momentum transfer Q = k − k′ in the scattering process. The atomic
form factor F 0(Q) is the Fourier transform of the number density of electrons
in the atomic volume, and it is a real number.

The total charge scattering amplitude or scattering length of the atom
is then given by the Thomson scattering length r0 times the atom-specific
form factor times the polarization factor of (9.18), and we obtain for the
nonresonant atomic scattering length

fatom = f0(Q) = r0 (ε · ε′)F 0(Q) . (9.25)

By use of (9.20) this can be written as a differential scattering cross-section
and we have our final result.

The nonresonant differential atomic scattering cross-section can be ex-
pressed by means of the real atomic form factor F 0(Q) with units of
number of electrons per atom and a polarization dependent term as a
multiple of the scattering cross-section of a single electron σe = 8πr20/3
according to

(
dσ
dΩ

)
atom

= r20 |ε · ε′|2 |F 0(Q)|2 =
3
8π
σe |ε · ε′|2 |F 0(Q)|2. (9.26)
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For Q → ∞, i.e., when the wavelength λ becomes small relative to the
atomic size or when the path difference L becomes large, the waves scattered
from different parts of the atom interfere destructively and cause the form
factor to vanish, F 0(Q) = 0. In the opposite limit, Q = 0, i.e., forward
scattering or when the wavelength λ becomes large relative to the atomic
size, there is no path length difference and different volume elements scatter
in phase. Thus in the soft X-ray region where λ is of the order of 1 nm, the
form factor becomes equal to the number of electrons, f0(Q) = Z.

9.4 SemiClassical Treatment of Resonant Interactions

So far we have not considered the different binding energies of the atomic
electrons, i.e., the shell structure of the atom. In a simple model the massive
positively charged nucleus (+Ze) is surrounded by core and valence electrons
that have distinct binding energies. It is clear that some kind of “resonance
effects” will arise when the X-ray energy is close or equal to these character-
istic energies. A proper description of these effects requires quantum theory.
In a quantum mechanical one-electron picture the incident photon excites a
core electron in an atom to a higher lying empty state. This is the X-ray ab-
sorption step. When the electron decays back into the core shell by emission
of a photon of the same energy we speak of resonant X-ray scattering, more
precisely elastic resonant X-ray scattering. This simple picture shows that X-
ray absorption and resonant X-ray scattering have a lot of physics in common
and we shall connect the two now.

While the proper description and link of these processes indeed requires
a quantum theoretical treatment, historically, it was first treated semiclassi-
cally. The semiclassical formalism cannot be used to calculate X-ray absorp-
tion or resonant scattering cross-sections, but it clearly reveals the link of
absorption and scattering. The most important link comes from the so-called
Kramers–Kronig formalism. It allows measured absorption cross-sections to
be converted to scattering cross-sections and vice versa. Let us take a look at
how this comes about.

9.4.1 X-ray Absorption

The importance of X-ray absorption is evident from Röntgen’s first experi-
ments, as revealed by the image in Fig. 1.14, showing the preferential absorp-
tion in bone over that in tissue. Empirically it was soon found that when
X-rays traverse matter the X-ray intensity, given by (5.17) as I = ε0c|E|2,
decays exponentially. This fact is easily derived if we assume that each sub-
stance has a characteristic length λx which leads to an intensity attenuation
by a factor 1/e. The quantity µx = 1/λx with the dimension of [length−1] is
called the linear X-ray absorption coefficient. Using the geometry of Fig. 9.3
we see that the beam is attenuated by the amount µxdz as it traverses the thin
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dz

I0
I(z)

z
Fig. 9.3. Schematic for the derivation of the
absorption law given by (9.28)

sheet of thickness dz at a depth z from the surface. This gives the following
condition for the intensity

−dI(z) = I(z)µx dz . (9.27)

The differential equation dI(z)/dz = −µx I(z) has the solution I(z) =
A e−µxz and by choosing A = I0 as the incident intensity at the point z = 0
we have our final result.

The X-ray absorption intensity is attenuated upon transmission through
a sample with linear absorption coefficient µx, according to

I(z) = I0 e−µxz. (9.28)

The X-ray absorption cross-section σabs is defined as the number of pho-
tons absorbed per atom divided by the number of incident photons per unit
area and hence has the dimension [length2/atom]. The number of photons
absorbed in the thin sheet dz is I(z)µxdz according to (9.27) and the number
incident on the thin sheet per unit area is I(z)ρadz, where ρa [atoms/volume]
is the atomic number density. We have

µx = ρa σ
abs =

NA

A
ρm σ

abs (9.29)

where ρm [mass/volume] is the atomic mass density, NA = 6.02214 × 1023

[atoms/mol] is Avogadro’s number, and A [mass/mol] is the atomic mass
number. The quantities ρm, A, and ρa for the 3d transition metals Fe, Co, Ni
are given in Table 10.1.

The linear X-ray absorption coefficient µx = 1/λx has the dimension
[length−1], while the X-ray absorption cross-section σabs has the dimen-
sion [length2/atom].



9.4 SemiClassical Treatment of Resonant Interactions 363

z

e = e e ei i −iδkznkz kz   −βkz

I = I0e
  z

I
− µ

Am
pl

itu
de

or
In

te
ns

ity
(

)
E (

)
I

n = 1 − δ + i βn =1

E e0 =
ikz

E =E0 e
  z /2− µx

x

Fig. 9.4. Decay of the amplitude E and intensity I ∝ |E|2 of an incident wave
E0 = eikz during transmission through a homogeneous sample with refractive index
n = 1 − δ + iβ and linear X-ray absorption coefficient µx. In the text we show that
β = µx/2k

Let us now take a look what happens as an EM wave enters into a medium
described by a refractive index n = 1−δ+iβ and a linear absorption coefficient
µx. We assume that the wave is normally incident from vacuum (n = 1) onto
the sample along the z direction as shown in Fig. 9.4. For convenience we
normalize the amplitude of the incident wave to 1 and ignore the temporal
dependence, so that E0 = eikz.

Inside the sample the electric field is then given by

E = einkz = eikz︸ ︷︷ ︸
E0

e−iδkz︸ ︷︷ ︸
phase shift

e−βkz︸ ︷︷ ︸
absorption

(9.30)

and we clearly see the complex refractive contribution e−iδkz leading to a
phase shift δkz and the real absorptive contribution which reduces the incident
amplitude E0 by a factor e−βkz. By comparing the intensity attenuation law
(9.28) with the attenuation law that follows from squaring (9.30), i.e.,

|E|2 = |E0|2 e−2βkz , (9.31)

we obtain
β =

µx

2k
=
ρa
2k
σabs. (9.32)

This shows the direct relationship between the X-ray absorption cross-section
and β. By use of (9.7) and k = 2π/λ, where λ is the X-ray wavelength, we
can state as follows.
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The X-ray absorption cross-section is related to the imaginary part of the
refractive index β and the Henke – Gullikson scattering factor f2 according
to

σabs =
4π
λρa

β = 2r0λ f2 . (9.33)

It is important to state the implicit assumption that went into deriving
(9.33). In general, the scattering factor given by (9.2) depends on the scatter-
ing direction or Q. In (9.33) we implicitly assume that F ′′ = f2 is independent
of Q. This is usually a good assumption in the X-ray region where absorption
and resonant scattering are due to electronic excitations of core electrons.
Because of the small core shell radius the path length difference experienced
by a wave that is scattered anywhere within the core volume, will be small.
Therefore the angular or Q dependence will be weak for core shell scattering.
More generally, the Q dependence can be neglected when the wavelength is
large relative to the atomic size since then |Q| ∼ 2π/λ → 0. The latter con-
dition is well satisfied in the soft X-ray region with wavelengths in excess of
1 nm.

9.4.2 Resonant Scattering

In the introduction to this section we have given the quantum mechanical pic-
ture of resonant scattering, consisting of resonant absorption and emission of
a photon. Such a resonant process is semiclassically treated by representing a
multielectron atom as a collection of harmonic oscillators. Each oscillator cor-
responds to a particular quantum mechanical resonant excitation–deexcitation
process of a core shell with binding energy En. Each atom has then a set of
resonance frequencies or energies En = h̄ωn and also characteristic damping
constants Γn. The damping constants describe the dissipation of energy from
the applied field and they have the dimension of frequency with Γn 
 ωn.
The presence of the damping term indicates that the resonating atom can
absorb energy from the EM wave and we shall see below that the imaginary
term of the scattering cross-section is indeed related to the X-ray absorption
cross-section. For a bound electron with coordinates x the equation of motion
is that of a forced harmonic oscillator,

d2x

dt2
+ Γn

dx

dt
+ ω2

nx = − eE0

me
e−iωt, (9.34)

where we have neglected the much smaller Lorentz term −(e/me)(v × B)
which is of the order v/c. Since the incident EM field E = E0e−iωt impresses
its frequency onto the charge, the displacement x and its time derivatives will
all have the same e−iωt time dependence and the time derivative simply gives
−iω. This yields
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x =
1

ω2 − ω2
n + iωΓn

eE0

me
(9.35)

and with p = − ex and use of (9.13) and (9.17) we obtain for the frequency
dependent scattering length of a bound electron n with resonance frequency
ωn

fn(ω) = r0 Fn(ω) ε · ε′ . (9.36)

The resonance factor Fn(ω) for a core electron n, given by

Fn(ω) =
ω2

ω2 − ω2
n + iωΓn

, (9.37)

is a dimensionless quantity that contains the frequency dependence of the
scattering factor. With the definition σe =

∫
|fe(ω)|2dΩ according to (9.21)

we obtain for the angle integrated cross-section

σscat
n =

8π
3

ω4

(ω2 − ω2
n)2 + (ωΓn)2

r20 . (9.38)

At resonance we have ω = ωn and we obtain

σscat
n =

8π
3

(
ωn

Γn

)2

r20 =
(
ωn

Γn

)2

σe . (9.39)

The resonant scattering cross-section is enhanced by a factor ω2
n/Γ

2
n ≈ 104

over the nonresonant Thomson cross-section σe.5

For convenience let us rewrite Fn(ω) in terms of energy variables, the
photon energy E = h̄ω, the resonance width ∆n = h̄Γn and the resonance
position En. We then obtain for the resonance factor in (9.37)

Fn(E) =
E2

E2 − E2
n + iE∆n

. (9.40)

Since ∆n 
 En we can rewrite (9.40) as

Fn(E) � 1 + F ′
n(E) − iF ′′

n (E) (9.41)

with

F ′
n(E) =

E2
n(E2 − E2

n)
(E2 − E2

n)2 + (E∆n)2
. (9.42)

F ′′
n (E) can be written as a Lorentzian6 and is given by,

5In the limit ω � ωn � Γn we obtain Thomson’s result for the scattering factor
given by (9.18) and the scattering cross-section is independent of frequency. In the
opposite limit ω, Γn � ωn we obtain the famous Rayleigh law, where the cross-
section varies with ω4.

6This is derived by using the approximation (E2 − E2
n) = (E + En)(E − En) �

2E(E −En) which follows from the fact that resonance effects are pronounced only
over a small energy range where E ∼ En [362]. As shown in AppendixA.9, the
Lorentzian given by 9.43 is characterized by a position En, full width at half maxi-
mum (FWHM) ∆n, height En/∆n and area πEn/2.
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Fig. 9.5. (a) Resonant process in a simple one-electron picture. It consists of ab-
sorption of a photon through excitation of a core electron (filled circle) to an empty
excited state (open circle), followed by a de-excitation process with photon emission.
The process involves an energy difference En, yielding a single resonance. (b) Energy
dependent resonance factors F ′(E) and F ′′(E) corresponding to an excitation of a
core electron of binding energy En = 1, 000 eV and resonance width ∆n = 10 eV,
according to (9.42) and (9.43)

F ′′
n (E) =

En

∆n

(∆n/2)2

(E − En)2 + (∆n/2)2
. (9.43)

The functions F ′
n(E) and F ′′

n (E) are plotted in Fig. 9.5b for typical soft X-ray
parameters En = 1, 000 eV and ∆n = 10 eV. Because of its lineshape, F ′

n(E)
is often called the dispersion term.

Let us briefly estimate the relative size of the X-ray absorption and reso-
nant X-ray scattering cross-sections. Using the relationship between σabs(E)
and the scattering factor F ′′(E) = f2(E) given by (9.33) we can write for the
case that the photon energy E = h̄ω is near an atomic resonance energy En

σabs
n (E) = 2r0λF ′′

n (E) =
C∗

E
F ′′

n (E) =
C∗

E

En

∆n

(∆n/2)2

(E − En)2 + (∆n/2)2
. (9.44)

Here C∗ = 2h c r0 = 0.70 × 108 b eV. The absorption cross-section for a core
electron in (9.44) has a peak value C∗/∆n. In the soft X-ray region∆n � 10 eV
so that the resonant X-ray absorption cross-section is about 107 b. This is to be
compared to the scattering cross-section which according to (9.21) is obtained
as

σscat
n (E) = σe

{
[1 + F ′

n(E)]2 + [F ′′
n (E)]2

}
= σe

E4

(E2 − E2
n)2 + (E∆n)2

.

(9.45)
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with a peak value of σe(En/∆n)2 ∼ 104 b. The resonant X-ray absorption
cross-section is seen to be a factor of ∼103 larger that the resonant X-ray
scattering cross-section.

In our discussion above we have only considered a resonant process asso-
ciated with one particular core shell of binding energy En. When the incident
photon energy is near En the atomic response will be dominated by the shell
n which “resonates.” The other shells will not resonate and simply produce
a constant “background” contribution due to nonresonant scattering. This
background contribution is given by the atomic form factor F 0(Q), defined
in (9.24), which is the first term in the general expression of the scattering
factor given by (9.2). The Q-dependent general formulation of resonant scat-
tering can be written in analogy to the nonresonant case given by (9.26). In
particular, the differential atomic resonant scattering cross-section is given by

(
dσ
dΩ

)scat

= |f(Q, E)|2 = |f0(Q) + f ′(E) − i f ′′(E)|2

= r20 |ε · ε′|2 |F 0(Q) + F ′(E) − iF ′′(E)|2 . (9.46)

In the limit of forward scattering we have Q = 0 and ε = ε′ and the form
factor is simply given by the number of atomic electrons Z, i.e., F 0(Q =
0) = F 0 = Z. This is reflected by replacing the factor 1 for one electron in
(9.41) and (9.45) by the factor Z for all electrons in an atom, as assumed in
(9.3). This yields the following expression for the resonant forward scattering
cross-section
(

dσ
dΩ

)scat

Q=0

= r20

{
[Z + F ′(E)]2 + [F ′′(E)]2

}
= r20

{
[f1(E)]2 + [f2(E)]2

}
.

(9.47)
At the end of this section let us summarize the meaning of the different

quantities used to describe the resonant scattering amplitude.

– The resonant scattering factor F (Q, E) = F 0(Q) + F ′(E) − iF ′′(E)
has the dimension [number of electrons per atom].

– The resonant scattering length f(Q, E) = r0 ε ·ε′F (Q, E) depends on
polarization and has the dimension [length × number of electrons per
atom].

– The Henke–Gullikson factors f1(E) = Z+F ′(E) and f2(E) = F ′′(E)
describe the case of small |Q| and have the dimension [number of
electrons per atom].
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9.4.3 Correspondence between Resonant Scattering and
Absorption

Expression (9.47) gives the resonant forward scattering cross-section in terms
of the real and imaginary parts of the resonant X-ray scattering factor F (E) =
f1(E)− if2(E). This link is particularly useful at long wavelengths where |Q|
is small and the Q-dependence may be neglected, in general. This case applies
for photon energies below a few keV where the wavelength is much larger than
the atomic size and in this “small atom” or “long-wavelength” limit one may
conveniently define an angle-integrated atomic scattering cross-section similar
to that for the single electron case (see (9.21) and (9.22)) by integration of
(9.46) with |Q| = 0 over the polarization factor. In the long-wavelength limit
the total atomic scattering cross-section is given by

σscat(E) =
∫ (

dσ
dΩ

)scat

|Q|=0

dΩ = σe

{
[f1(E)]2 + [f2(E)]2

}
. (9.48)

We have also seen above in (9.33) that the X-ray absorption cross-section
σabs(E) is directly linked to the imaginary part of the X-ray scattering factor
F ′′(E) = f2(E). This important result is usually referred to as the optical
theorem.

The optical theorem states that at long wavelengths (small |Q|) the imag-
inary part of the scattering factor is directly related to the absorption
cross-section according to

σabs(E) = 2 r0 λ Im[F (Q, E)]Q→0 =
C∗

E
f2(E) , (9.49)

where C∗ = 2h c r0 = 0.70 × 108 b eV.

The scattering factors and cross-sections for Fe metal, taken from the work
of Kortright and Kim [353], are plotted in Fig. 9.6 in the vicinity of the L3 and
L2 edges. Note the strong similarity of the lineshape of the scattering factors
with those in Fig. 9.5.

9.4.4 The Kramers–Kronig Relations

The idea is to have a formalism that links both F ′
n(E) and F ′′

n (E) to the X-ray
absorption cross-section σabs

n which is easily measured. While this formalism
naturally emerges from quantum mechanics, which allows transitions to both
bound and continuum states, we shall nevertheless continue with our semi-
classical model. It will yield the same results and lead us to the famous and
important Kramers–Kronig relations.



9.4 SemiClassical Treatment of Resonant Interactions 369

f1

f2

Fe metal

−60

−40

−20

0

20

40

60

80

f
an

d
f

1
2

(N
um

be
ro

f e
le

ct
ro

ns
)

Photon energy (eV)

1

101

102

103

104

105

106

107

Ab
so

rp
tio

n
an

d
Sc

at
te

rin
g

C
ro

ss
Se

ct
io

ns
(b

ar
n/

at
om

)

σscat

σabs

Fe metal

680 690 700 710 720 730 740 680 690 700 710 720 730 740

Fig. 9.6. Left : Measured energy dependent resonance factors f1 and f2 for the L3,2-
edges of Fe metal (2p3/2, 2p1/2 → 3d transitions) [353]. Right : Energy dependent
cross-sections for X-ray absorption (top) and scattering (bottom) calculated from
the scattering factors according to (9.49) and (9.48), respectively

The Kramers–Kronig relation allows the determination of F ′
n(E) from

the measured absorption cross-section σabs
n (ε) according to

F ′
n(E) =

1
C
P

∫ ∞

0

ε2 σabs
n (ε)

(E2 − ε2) dε . (9.50)

Here C = C∗π/2 = π h c r0 = 1.098 × 108 b eV. In (9.50) we have replaced
the lower integration limit by zero because the cross-section σabs

n (ε) and hence
the integral is zero for ε < En. In practice, the integration is tricky because
of the singularity for ε = E and at a given photon energy E the integral
has to be evaluated by integrating from 0 to E − δ and from E + δ to ∞
and then taking the limit δ → 0. This is indicated by the “P

∫
” symbol,

meaning “principal value” integral. Today this task is readily accomplished
with modern mathematical software packages. In text books two Kramers–
Kronig relations are typically found that relate the two resonance factors. The
first one is obtained from (9.50) by use of the relation σabs

n (ε) = C∗F ′′
n (ε)/ε

in (9.49)

F ′
n(E) =

2
π
P

∫ ∞

0

ε F ′′
n (ε)

(E2 − ε2) dε , (9.51)

and the second one allows the opposite transformation
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F ′′
n (E) =

2E
π
P

∫ ∞

0

F ′
n(ε)

(E2 − ε2) dε . (9.52)

Again, the “P
∫

” symbol means principal value integral.

9.5 Quantum-Theoretical Concepts

9.5.1 One-Electron and Configuration Pictures of X-ray
Absorption

In the simplest picture of resonant X-ray absorption a photon transfers its en-
ergy to a core electron and the electron is excited into an unoccupied electronic
state. In this so-called one-electron picture we simply follow what happens to
the photoelectron. This is also referred to as the active electron approxima-
tion [189] since we ignore what happens to all other “passive” electrons in
the atom during the excitation process. Although this picture is not entirely
correct since the “passive” electrons are not passive, it is quite intuitive, and
because of its simplicity the picture is often used in the X-ray absorption
literature.

Let us illustrate the one-electron picture for the L-edge X-ray absorption
spectrum of a 3d transition metal atom, as shown in Fig. 9.7a. In the “initial
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Fig. 9.7. Description of resonant L-edge X-ray absorption in two pictures, (a)
one electron picture and (b) d9 configuration picture. Each energy level is labeled
by its quantum numbers n, l, j = l ± s. In (a) the quantum numbers label one-
electron states, in (b) they label hole states for the special case of a 3d9 electronic
ground state, containing nine electrons or equivalently one hole. The two pictures
are equivalent for the description of the electronic transitions
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state” or 2p core state, the active electron has an angular momentum l = 1 and
spin s = 1/2, so that the spin–orbit coupling, discussed in Sect. 6.4, produces
two energy states with j = l ± s. The four substates of 2p3/2 with j+ = 3/2
experience an energy shift Ej+ = ζl/2 and the two substates of 2p1/2 with
j− = 1/2 are shifted by Ej− = −ζl, with the separation given by the Landé
interval rule Ej+ − Ej− = ζl j+. In the “final state” the active electron is
located in the 3d shell with angular momentum l = 2 and spin s = 1/2. The
spin–orbit coupling again produces two energy states with j = l ± s, i.e., the
states 3d5/2 with j = 5/2 and 3d3/2 with j = 3/2, as shown in Fig. 9.7a.
Because the core shell is more compact its spin–orbit coupling constant ζ2p

is considerably larger (of order 15 eV) than that of the valence shell ζ3d (of
order 50 meV), and the 2p3/2 − 2p1/2(L3 −L2) splitting dominates, as seen in
the experimental spectrum of Fe metal in Fig. 9.6.

The one-electron picture of Fig. 9.7a is misleading, however, especially to
the photoemission community, in that it depicts the spin–orbit splitting of the
p core shell as an “initial state” effect. It is clear that in reality the p shell is
filled in the ground state and there is therefore no observable effect of the spin–
orbit interaction. In the proper description of the X-ray absorption process,
based on a configuration picture, an atom is excited from a ground or initial
state configuration to an excited or final state configuration. In discussing
transitions between configurations one typically omits all closed subshells since
they are spherically symmetrical and their net angular momentum is zero
[182]. Listing only the active shells, resonant L-edge absorption is described
by an initial state electron configuration 2p6dn and a final state configuration
2p5dn+1.

For transition metal atoms with configurations 1 ≤ n ≤ 9 it is particu-
larly easy to deal with the configuration d9 in X-ray absorption, which is the
configuration for Cu2+ (see Fig. 10.1a). In this case the initial state contains
a filled p6 shell and nine electrons in the d shell. A d9 electron configuration
is equivalent to a d1 hole configuration and by taking proper care of signs it
is often more convenient to carry out calculations in the corresponding hole
rather than the electron picture. We shall do so in the following. Because of
the cancellation of angular momenta in a filled shell we can simply describe
the initial state as a d1 hole configuration. The final state p5d10 has a closed
d-shell and a p5 electron or p1 hole configuration. Hence for a d9 ground state,
L-edge spectra in a configuration hole picture are described by a transition
from the configuration d1 to p1. The spin–orbit splitting of the p shell is
therefore properly described as a final state effect, as shown in Fig. 9.7b. We
see that the two pictures in Fig. 9.7 are completely equivalent in describing
the electronic transitions. Note that the energy order of the j states is inverted
in the two schemes because electrons and holes have opposite spin.7

7This is expressed by Hund’s third rule stating that the electronic ground state
has the minimum possible j value for a less than half filled shell and the maximum
possible j value for a more than half full shell.
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In general, the one electron and configuration pictures are not equivalent.
Differences arise when open shells with two or more holes or electrons need
to be considered. In such cases exchange and correlation effects between the
particles may be large as discussed in Chap. 7. Such effects lead to multiplet
structure in the ground state, i.e., between the d electrons, as well as in the
excited state, between the core p and valence d electrons. The simplest two-
particle case is that of a p6d8 ground state configuration leading to a p5d9

excited state. This situation, which is encountered in NiO, can also be de-
scribed (taking proper care of signs) by the equivalent case of a ground state
d2 hole configuration and an excited state pd hole configuration. Hence in
both the ground state and excited states we have to consider the exchange
and correlation between two holes. We shall discuss multiplet effects in more
detail in Sect. 9.7.8.

Next we shall discuss how to calculate transition probabilities associated
with X-ray excitation and de-excitation processes.

9.5.2 Fermi’s Golden Rule and Kramers–Heisenberg Relation

The X-ray absorption and X-ray scattering cross-sections are both calculated
by consideration of the time-dependent perturbation of the sample by the
EM field. The time-dependent EM field induces transitions between an initial
state |i〉 and final state |f〉, where both states contain an electronic and a
photon part. If the system evolves directly from state |i〉 to |f〉 we speak of
a first-order process, if some intermediate states |n〉 are involved we call it a
second-order process. As illustrated schematically in Fig. 9.8, X-ray absorption
is a first order and resonant X-ray scattering a second-order process.

The associated formalism was derived by Kramers and Heisenberg [366]
and by Dirac [367]and the transition probability up to second order can be
written as follows.

The transition probability per unit time, Tif , from a state i to a state f
is given up to second order by,

Tif =
2π
h̄

∣∣∣∣∣ 〈f |Hint|i〉 +
∑

n

〈f |Hint|n〉〈n|Hint|i〉
εi − εn

∣∣∣∣∣
2

δ(εi−εf )ρ(εf ). (9.53)

The sum is over all possible states of energy εn. The dimension of Tif is
[time−1].

For X-ray absorption and resonant elastic scattering (including magnetic
resonant scattering) the interaction Hamiltonian consists of the product of
the momentum operator p and the vector potential A according to [147,178,
368,369]
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Fig. 9.8. Description of X-ray absorption and resonant elastic X-ray scattering as
transitions between quantum mechanical states which are products of electronic and
photon states. The X-ray absorption process corresponds to a first-order transition
process between an initial state |i〉 and an excited state |f〉. The resonant scattering
process is a second-order process that involves intermediate states |n〉. The system
can pass through the intermediate states in a virtual sense that does not require
energy conservation until the final state |f〉 is reached

Hint
e =

e

me
p · A . (9.54)

Since in free space E = −∂A/∂t this expression means that the electronic
transition is driven by the electric field E of the EM wave. The states and
energies in (9.53) reflect those of the combined photon plus atom system. The
wave functions |i〉 and |f〉 are products of electronic and photon states and
the energies are sums of electronic and photon energies. The quantity ρ(εf )
is the density of final states per unit energy.

The first-order term in (9.53) was originally derived by Dirac [367] and
called by Fermi the “Golden Rule No. 2” [370]. It is therefore often called by
the somewhat misleading name Fermi’s golden rule. The second-order term,
referred to by Fermi as “Golden Rule No. 1” [370], was originally derived
by Kramers and Heisenberg [366] and today is usually called the Kramers–
Heisenberg relation. It gives the transition probability from |i〉 to |f〉 via a
range of virtual intermediate states |n〉. The system can pass through the in-
termediate states in a virtual sense that does not require energy conservation
until the final state is reached. This energy conservation is reflected by the
delta function that involves only the initial and final states. With the dimen-
sions of h̄ [energy × time], ρ(εf ) [1/energy] and |Hint|2 [energy2], we obtain
the dimension of Tif as [1/time].

The total cross-section is obtained from the transition probability per unit
time Tif by normalization to the incident photon flux Φ0.

σ =
Tif

Φ0
. (9.55)
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The numerator has the dimension [1/time] and the incident photon flux Φ0,
given by (5.18), has the dimension [1/(time × area)], so that σ has the di-
mension [area].

The differential cross-section dσ/dΩ reflects the number of transitions per
unit time into the solid angle dΩ and is given by

dσ
dΩ

=
Tif

Φ0 dΩ
. (9.56)

9.5.3 Resonant Processes in the Electric Dipole Approximation

We now want to give the basic quantum mechanical expressions used for the
calculation of polarization dependent X-ray absorption and resonant scatter-
ing processes. We would like to calculate the intensities of strong resonances
like those associated with 2p3/2, 2p1/2 → 3d transitions in Fig. 9.6, commonly
called “white lines” for historical reasons. In the early days, when photo-
graphic plates were used as detectors, the strong absorption resonances ap-
peared etched into the black detector emulsion as white lines. In the following
we shall adopt this terminology and often speak of the “white line intensity.”

By quantizing the electromagnetic field [371] one can separate the matrix
elements in (9.53) into electronic and photon parts, evaluate the photon part,
and obtain the matrix elements in terms of transitions between two electronic
states |a〉 and |b〉. The relevant matrix elements have the general form

M = 〈 b|p · ε eik·r|a〉 , (9.57)

where p is the electron momentum vector, ε the unit photon polarization vec-
tor, and k the photon wave vector. For the purpose of the present book it
is sufficient to stay within the dipole approximation. Within this approxima-
tion one eliminates the k-dependence of the matrix element and rewrites the
electron momentum operator p in terms of the length operator r according to

M = 〈 b|p · ε (1 + ik · r + ...)|a〉 � 〈 b|p · ε|a〉 = imeω〈 b| r · ε|a〉 (9.58)

As before, me is the electron rest mass and ω = ωb −ωa the photon frequency
associated with the transition from state |a〉 to state |b〉. The dipole approx-
imation assumes that the size of the absorbing atomic shell is small relative
to the X-ray wavelength, i.e., |r| 
 1/|k| = λ/2π, so that the electric field
which drives the electronic transition is constant over the atomic volume. In
our case we are interested mostly in the photon energy range h̄ω ≤ 1, 000 eV
corresponding to a wavelength λ ≥ 1.2 nm and transitions from the 2p core
shell of radius |r| � 0.01 nm so that we have |r| � 0.01 nm 
 λ/2π � 0.2 nm,
and it is reasonable to use the dipole approximation.

In the dipole approximation the X-ray absorption cross-section is given by

σabs = 4π2 e2

4πε0h̄c
h̄ω |〈b| ε · r|a〉|2 δ[h̄ω − (Eb − Ea)] ρ(Eb) , (9.59)
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where the density of final states per unit energy, ρ(Eb), depends on the nor-
malization of the electronic wavefunctions |a〉 and |b〉. The X-ray absorption
resonance intensity, Ires, is the energy integral over the cross-section and if
we assume that the functions |a〉 and |b〉 have been volume normalized to
unity one obtains the following expression that will be used throughout this
chapter [190,372].

The polarization dependent X-ray absorption resonance intensity in the
dipole approximation is given by

Ires = A |〈b| ε · r|a〉|2 . (9.60)

The proportionality factor, given by

A = 4π2 e2

4πε0h̄c
h̄ω (9.61)

contains the dimensionless fine structure constant αf

αf =
e2

4πε0h̄c
=

1
137.04

. (9.62)

The intensity Ires has the dimension [length2× energy] and is usually
expressed in units of [Mb eV], where 1Mb = 10−22 m2.

If there are more than one discrete final state we need to sum the intensities
associated with different final states. This is often expressed as a separate
density of final state factor in the equation for the transition intensity, but we
have included it in (9.60) into our final state description.

We see that the calculation of Ires boils down to the evaluation of the
polarization dependent transition matrix element 〈b| ε · r|a〉. In the following
we may therefore loosely refer to the squared matrix element with dimension
[length2] as the “transition intensity.” The true intensity given by (9.60) has
the dimension [energy × length2].

Similarly, one can also evaluate the second-order term in (9.53) to ob-
tain an expression for the resonantly scattered X-ray intensity. In the dipole
approximation one again neglects the k dependence in the transition ma-
trix elements.8 By using the short hand notation for the resonant energies
En

R = En −Ea and denoting the finite full width at half maximum (FWHM)
of the intermediate state energy distributions as ∆n one obtains the following
differential resonant scattering cross-section.

8The same result is also obtained by assuming forward scattering, i.e., k1 = k2.
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The polarization dependent differential resonant X-ray scattering cross-
section in the dipole approximation is given by

(
dσ
dΩ

)scat

= |f(h̄ω)|2 =
h̄2ω4

c2
α2

f

∣∣∣∣∣
∑

n

〈a|r · ε∗2|n〉〈n|r · ε1|a〉
(h̄ω − En

R) + i(∆n/2)

∣∣∣∣∣
2

. (9.63)

Here αf is the dimensionless fine structure constant and ε1 and ε2 are the
unit polarization vectors of the incident and scattered radiation.

In the following we shall establish the form of the polarization dependent
dipole operator ε · r and the form of the wavefunctions |a〉 and |b〉.

9.5.4 The Polarization Dependent Dipole Operator

According to (9.60) the polarization dependent dipole operator is given by the
dot product ε · r. Here r is the electron position vector, given in Cartesian
coordinates by

r = xex + yey + zez . (9.64)

We are particularly interested in the X-ray absorption intensity for pure lin-
ear or circular polarization since we have seen in Sect. 4.4.1 that such pure
polarization states can be produced today by suitable undulators. We have
also discussed their mathematical description in Sect. 5.4. Here we want to
distinguish cases of different polarization and different X-ray incidence direc-
tions in the (x, y, z) coordinate system of the sample. We express the angular
momentum as qh̄ so that q = 0 refers to linearly polarized light and q = ±1,
or q = ± for short, to circularly polarized light.

For linearly polarized X-rays, the direction of the E vector determines the
X-ray absorption intensity, and for the three extreme cases where E is aligned
along x, y, and z we have the corresponding real unit polarization vectors

ε0
x = εx = ex ε0

y = εy = ey ε0
z = εz = ez . (9.65)

For circularly polarized X-rays we consider the cases where the angular
momenta, which are parallel to the X-ray wavevector k, are aligned along
x, y, and z. For circularly polarized X-rays with k ‖ z we write the unit
polarization vector in accordance with (5.35) and (5.36) as

ε±z = ∓ 1√
2
(εx ± i εy), (9.66)

and for propagation along x or y we use a similar notation according to a
right handed coordinate system, e.g., for k ‖ x

ε±x = ∓ 1√
2
(εy ± i εz). (9.67)
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The dipole operators P q
α = ε · r = εq

α · r in (9.60) can then be rewritten in
terms of the familiar spherical harmonics Yl,m(θ, φ) [181, 182], and for α = z
we have

P±
z = ε±z · r = ∓ 1√

2
(x± iy) = r

√
4π
3
Y1,±1, (9.68)

P 0
z = εz · r = z = r

√
4π
3
Y1,0. (9.69)

Because of the prefactors of the spherical harmonics, it is more convenient to
express the dipole operators in terms of Racah’s spherical tensor operators.

Racah’s spherical tensor operators are defined as [181],

C(l)
m =

√
4π

2l + 1
Yl,m(θ, φ) ,

(
C(l)

m

)∗
= (−1)mC

(l)
−m . (9.70)

We have listed these spherical tensors for 0 ≤ l ≤ 4 in Table A.3. The
polarization dependent electric dipole operators are related to Racah’s tensor
operators of rank l = 1, and we have for example

P 0
z = r C

(1)
0 = r cos θ = z, (9.71)

P±
z = r C

(1)
±1 = ∓ r 1√

2
sin θ e±iφ = ∓ 1√

2
(x± iy). (9.72)

The dipole operators for all polarization cases (q = 0,±1) and orientations of
the principal axes α = x, y, z of our sample coordinate system are listed in
Table A.4. They can be written in the general form

P q
α/r =

∑
p=0,±1

eqα,pC
(1)
p = eqα,1C

(1)
1 + eqα,0C

(1)
0 + eqα,−1C

(1)
−1 , (9.73)

where the coefficients aq
α,p may be imaginary with

∑
p |eqα,p|2 = 1. The above

discussion leads to the following form of the matrix element in (9.60) in terms
of the polarization dependent dipole operators P q

α,

〈 b|ε · r|a〉 = 〈b|P q
α|a〉. (9.74)

We can then rewrite (9.60) in its final form, to be used from now on.

The X-ray absorption resonance intensity for different X-ray propagation
directions α and polarization states q can be written as

Ires = A |〈b|P q
α|a〉|2, (9.75)

where A is given by (9.61) and the polarization dependent dipole oper-
ators P q

α with α = x, y, or z and q = +1, 0, or −1 are listed in Table
A.4.
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9.5.5 The Atomic Transition Matrix Element

The calculation of the transition matrix element depends on the wavefunctions
|a〉 and |b〉. In a one-electron picture, the “initial state” |a〉 is given by the core
electron wavefunction. The “final state” |b〉 consists of the valence electron
wavefunctions.

The simplest wave functions are the atomic spin orbitals of the central
field form given by (6.12) or

Rn,l(r)Yl,ml
χs,ms

= |Rn,l(r); l,ml, s,ms〉, (9.76)

where the Dirac bra–ket notation is given on the right. Rn,l(r) is the radial
component of a shell n with angular momentum l, the spherical harmonics
Yl,ml

characterize the angular part and χs,ms
is the spin part. We shall see

below that a general wavefunction appropriate for an atom in a solid, i.e.,
a ligand field or band state that includes bonding, exchange and spin–orbit
effects, can in fact be written as a linear combination of atomic basis functions
of the form (9.76). The atomic functions (9.76) are therefore of paramount
importance and we shall first take a look at the calculation of transition matrix
elements with such functions.

In a one-electron picture a “initial” state wavefunction for a core shell n
with angular momentum c is given by

|a〉 = |Rn,c(r); c,mc, s,ms〉 , (9.77)

where Rn,c(r) is the radial component of the core shell with principal quantum
numbers n and orbital quantum number c, and |s = 1/2,ms〉 describes the
spin state of the electron.

The “final” state will be of the form

|b〉 = |Rn′,l(r); l,ml, s,m
′
s〉 , (9.78)

where Rn′,l is the radial component of the valence state of shell n′ with angular
momentum l. The exclusion principle does not allow electrons to be excited
into occupied states, and hence the final states are determined by the empty
states in the l subshell. The task before us is then to calculate the transition
matrix element

〈b|P q
α |a〉 = 〈Rn′,l(r); l,ml, s,m

′
s|P q

α |Rn,c(r); c,mc, s,ms〉, (9.79)

with the direction and polarization dependent dipole operators P q
α given in

Table A.4. We see from (9.73) that the matrix element in (9.79), in general,
involves a sum over matrix elements of the Racah operators C(1)

q . For a tran-
sition from a core shell with angular momentum c to an unfilled valence shell
with angular momentum l we obtain
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〈b|P q
α |a〉 = δ(m′

s,ms)︸ ︷︷ ︸
spin

〈Rn′,l(r)|r|Rn,c(r)〉︸ ︷︷ ︸
radial

∑
mc,ml,p

eqα,p 〈 l,ml|C(1)
p |c,mc〉,

︸ ︷︷ ︸
angular

(9.80)

where the coefficients eqα,p are those in Table A.4. The matrix elements
factors into spin, radial, and angular parts. We see that the dipole operator
does not act on the spin and only transitions are allowed that preserve the
spin. The polarization dependence is entirely contained in the angular part of
the wavefunctions. The radial part determines the angle integrated transition
strength.

The Radial Part of the Atomic Transition Matrix Element

The radial dipole matrix element is given by

R = 〈Rn′,l(r)|r|Rn,c(r)〉 =
∫ ∞

0

R∗
n′,l(r)Rn,c(r) r3dr , (9.81)

where {n, c} and {n′, l} describe the shell and subshell quantum numbers of
the initial and final states, respectively.

The radial parts of the wavefunctions Rnl(r) obey the normalization con-
dition ∫ ∞

0

|Rnl(r)|2 r2 dr = 1 . (9.82)

In order to picture the radial extent of the transition matrix element R given
by (9.81) we compare in Fig. 9.9 the function r3R2p(r)R3d(r) for a 2p → 3d
transition to the functions r2R2

nl(r) for nl = 1s, 2p, 3d, using parameterized
radial functions given by Griffith [228] for the Mn2+ ion.

The localization of R in the core region of the atom leads to some fun-
damental differences between X-ray absorption spectroscopy (XAS) and op-
tical spectroscopy. Because of the small energy (of order of 1 eV) of optical
transitions, electronic excitations occur only between filled and empty valence
states. In many systems the probed valence states are extended states which
are not localized on a specific atom and the intensity of optical transitions
is determined by the group theoretical symmetry of the valence states, dic-
tated by the molecule or crystal. In contrast, XAS is based on transitions
involving core electrons which are localized on specific atoms. The function
RcoreRvalence r

3 which determines the integral R has its major contribution
close to the atomic core, as shown in Fig. 9.9. It gives X-ray absorption spec-
troscopy its elemental specificity and local character. XAS may be viewed
as an inverted linear combination of atomic orbitals (LCAO) scheme. The
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Fig. 9.9. Top: Radial functions r2 R2(r) for the 1s, 2p, and 3d orbitals of the Mn2+

ion, representing the probability of finding the electron at a distance r from the
nucleus. Their maxima are often associated with the Bohr radii. Also plotted is
the function R2p(r) R3d(r) r3 (thick solid line), describing the localization of the
2p → 3d transition matrix element, according to (9.81). All functions are plotted for
the distance r from the atomic center and the amplitudes have been normalized to
1. The plotted Slater type functions are taken from Griffith [228]

LCAO scheme composes molecular functions from atomic functions, XAS de-
composes the molecular functions into its atomic constituents. This is often
referred to as the one center approximation.

The strong localization of the core shell makes X-ray absorption spec-
troscopy element-specific and sensitive to the valence shell properties
within the atomic volume.

The Angular Part of the Atomic Transition Matrix Element

The angular part of the transition matrix element (9.80) is determined by
matrix elements of the form 〈 l,ml|C(1)

q |c,mc〉. For convenience, we have tab-
ulated the nonzero matrix elements in Table 9.1.

By inspection of the nonvanishing matrix elements we can read off the
dipole selection rules.
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Table 9.1. Nonvanishing angular momentum dipole matrix elements 〈L, M |C(1)
q |

l, m〉. The matrix elements are real, so that 〈L, M |C(1)
q |l, m〉∗ = 〈L, M |C(1)

q |l, m〉
= (−1)q〈l, m|C(1)

−q |L, M〉. Nonlisted matrix elements are zero.a

〈 l + 1, m|C(1)
0 |l, m〉 =

√
(l + 1)2 − m2

(2l + 3)(2l + 1)

〈 l − 1, m|C(1)
0 |l, m〉 =

√
l2 − m2

(2l − 1)(2l + 1)

〈 l + 1, m + 1|C(1)
1 |l, m〉 =

√
(l + m + 2)(l + m + 1)

2(2l + 3)(2l + 1)

〈 l − 1, m + 1|C(1)
1 |l, m〉 = −

√
(l − m)(l − m − 1)

2(2l − 1)(2l + 1)

〈 l + 1, m − 1|C(1)
−1 |l, m〉 =

√
(l − m + 2)(l − m + 1)

2(2l + 3)(2l + 1)

〈 l − 1, m − 1|C(1)
−1 |l, m〉 = −

√
(l + m)(l + m − 1)

2(2l − 1)(2l + 1)

aThe matrix elements 〈 l′, m′|C(1)
q |l, m〉 = ck=1(l′m′; lm) are tabulated by Condon

and Shortley and by Slater [373]. Care has to be taken with the direction of the tran-

sition because it affects the sign according to ck(l′m′; lm) = (−1)m−m′
ck(lm; l′m′).

The dipole selection rules for transitions between states of the form
|n, l,ml, s,ms〉 are:
∆l= l′ − l=±1,
∆ml =m′

l−ml =q=0,±1,
∆s=s′−s=0,
∆ms =m′

s−ms=0.
where qh̄ is the X-ray angular momentum.

9.5.6 Transition Matrix Element for Atoms in Solids

Since solids, not atomic systems, are of main interest in magnetism research
we need to discuss the calculation of the transition matrix element with more
realistic initial and final state wavefunctions. Fortunately, within reasonable
approximations, the wavefunctions of bonded atoms can be linked to the form
of the atomic matrix element (9.80) because all wavefunctions can be written
as linear combinations of the atomic functions, as seen from the form of the
LF wavefunctions (7.30) and the k-dependent band functions (7.22) or (7.23).
If we use a tight binding band function written as
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|ψi(k, r)〉 = |Rn,L(r)〉 |φi(k)〉

= |Rn,L(r)〉
+L∑

M=−L

ai,M (k) |LM χ+〉 + bi,M (k) |LM χ−〉, (9.83)

with energy Ei(k), the X-ray absorption transition intensity is given by

Iq
α = A

∑
Ei>EF
i,k,m,j

|〈ψi(k, r)|P q
α |ϕj

m(r)〉|2

= AR2
∑

Ei>EF
i,k,m,j

∣∣∣∣∣
〈
φi(k)

∣∣∣∣∣
∑

p=0,±1

eqα,pC
(1)
p

∣∣∣∣∣ cmχj

〉∣∣∣∣∣
2

. (9.84)

By making use of the fact that the dipole operator does not act on spin we can
separately sum over the orthogonal spin states χ+ and χ− and the resonance
intensity takes the form

Iq
α = AR2

∑
Ei>EF
i,k,m

∣∣∣∣∣∣
∑
p,M

ai,M (k) eqα,p 〈LM |C(1)
p |cm〉

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣
∑
p,M

bi,M (k) eqα,p 〈LM |C(1)
p |cm〉

∣∣∣∣∣∣
2

. (9.85)

Although the band states contain wavevector-dependent expansion coef-
ficients, the matrix elements involve only atomic orbitals. We shall see later
that the summation over k, which in general is done by computer, can be
done analytically for the case that one averages over all polarization states q
or over three X-ray incidence angles α = x, y, z. This yields an important sum
rule that allows the determination of the number of unoccupied states.

Another important form of the wavefunctions are the spin–orbit basis func-
tions |Rn,l(r); l, s, j,mj〉. For example, as shown in Fig. 9.6, the L-edge spectra
of the transition metals have 2p core spin–orbit splitting of about 15 eV, and
one therefore needs to carry out the evaluation of the transition matrix ele-
ment with the 2p3/2 and 2p1/2 eigenfunctions of the spin–orbit Hamiltonian
(see Sect. 6.4.3 and 6.6.1). The angular parts of the spin–orbit coupled func-
tions |l, s, j,mj〉 can be expressed as a linear combination of the uncoupled
functions |l, s,ml,ms〉 according to

|l, s, j,mj〉 =
∑

ml,ms

Cml,ms;j,mj
|l, s,ml,ms〉, (9.86)

where the Cml,ms;j,mj
are the famous Clebsch–Gordon coefficients,9 writ-

ten in Slater’s notation [225]. The radial parts are the same as before. For
9They are readily calculated by computer programs, e.g., Mathematica.
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convenience, we given the s, p, and d functions in the bases |l, s, j,mj〉 and
|l, s,ml,ms〉 in Table A.5. We see that the calculation of the transition matrix
element with spin–orbit coupled functions is just a little more complicated
but follows the form (9.80).

Some Important General Rules

The X-ray absorption process for an atom in different environments and the
states involved are illustrated Fig. 9.10. We have the following important rules:

– The sum over all basis states of a shell with angular momentum � is spher-
ically symmetric. Examples of basis states are the spherical harmonics,
valence orbitals or spin–orbit states shown in Fig. 9.10.

– The one-electron j = �±s manifolds created by the spin–orbit interaction
are each spherically symmetric.

– The t2g and eg manifolds (see Fig. 9.10) of the d orbitals are each spheri-
cally symmetric.

– For a spherically symmetric shell the associated transition intensity does
not depend on the choice of the basis states.

– If at least two of the three parts of the dipole matrix element 〈 b |P q
α | a 〉 are

spherically symmetric, the squared matrix element or intensity becomes
independent of the direction α and polarization q.

In general, the measured X-ray absorption spectra of atoms in magnetic solids
depend on three key parameters:

– The sample orientation
– The X-ray polarization
– The external magnetic field

From a pedagogical point of view it is best to distinguish and consecutively
discuss two general cases. The first case corresponds to measurements that
average over all sample orientations relative to the X-ray beam. In practice,
this is simply accomplished by averaging over three orthogonal measurements.
The significance of this procedure, discussed later, is that the so-determined
spectral intensities are directly related by simple sum rules to important phys-
ical quantities per atom, like the number of empty valence states, the spin
magnetic moment and the orbital magnetic moment.

The second case is more complicated and corresponds to a single mea-
surement that depends on the orientation of the sample. Now the measured
spectral intensities no longer correspond to quantities that are integrated over
the atomic volume but they may also contain anisotropic, i.e., direction de-
pendent, contributions. For example, if the spin density in the atomic volume
is not spherical, the XMCD intensity measured for different sample orienta-
tions will not simply determine the (isotropic) spin moment but rather the
anisotropic spin density.
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Fig. 9.10. Schematic of electronic core and valence states, and dipole transitions
between them in a one-electron model. (a) Atomic case, illustrating a transition from
a filled core state |φi

c〉 in shell n, given by (9.77), to an empty valence state |φj
L〉 in

shell n′, described by (9.78). Both states are labeled by their angular momenta l = c
and l = L and there are 2(2l + 1) substates or spin orbitals within each manifold
l. The electric dipole operator P q

α is one of the operators given in Table A.4, where
q = +1, 0,−1 labels the possible angular momentum transfer and α = x, y, z the
direction. (b) Ligand field case for the case of p → d transitions (L-edge). The filled
core shell is spherically symmetric and can be described either in a basis of spherical
harmonics or p orbitals given in TableA.2. The valence states are linear combinations
of the atomic states (9.77) and (9.78) and correspond to the d orbitals in Table A.2.
The upper two d orbitals are the eg, while the lower three are the t2g orbitals. Each
set is spherically symmetric. (c) States for a transition metal. The valence shell
is represented by spin-up and spin-down d states with a total number of empty d
states above the Fermi energy EF, called the number of valence holes, Nh, (“up”
plus “down” spins). The core state is assumed to be spin–orbit split into 2p3/2 and
2p1/2 states, giving rise to the L3 and L2 edges in experimental spectra, respectively.
Note that each core manifold j = 3/2 and j = 1/2 is spherically symmetric

For these reasons we shall separately discuss the two cases later. We will
apply the theoretical concepts developed above for the calculation of angle
integrated and polarization dependent transition intensities. In the process the
link between the transition intensities and physical parameters will emerge.
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9.6 The Orientation-Averaged Intensity: Charge and
Magnetic Moment Sum Rules

In understanding the significance of the resonance intensity in X-ray absorp-
tion spectra it is best to first discuss measurements that eliminate magnetic
effects, if present, and give charge-related information only. In the following
we shall specifically discuss the important case of the L-edge spectra of transi-
tion metals. We will show that such spectra, properly averaged over all sample
orientations yield the total number of unoccupied valence states or holes.

9.6.1 The Orientation-Averaged Resonance Intensity

For our discussion it is useful to start by defining an X-ray absorption res-
onance or white-line intensity that is independent of sample orientation. We
shall assume that our sample has higher than monoclinic symmetry so that
the unit cell axes are orthogonal. One can then define an orientation averaged
absorption intensity as the average over three orthogonal measurements. If
we use the notation (9.73) (also see Table A.4) for our polarization (q) and
X-ray propagation (α) dependent dipole operator P q

α, one can show as done in
Sect. 9.6.2, that the average may involve either a sum over q or α according to

〈I〉 =
1
3
(
Iq
x + Iq

y + Iq
z

)
=

1
3
(
I−1
α + I0α + I+1

α

)
. (9.87)

Let us illustrate this average for different cases. The simplest case is a
nonmagnetic polycrystalline sample. In this case the polarization of the in-
cident X-rays does not matter since the electric field vector E that drives
the electronic transition is oriented at random relative to the crystallographic
directions of the sample. The recorded spectrum therefore corresponds to a
true angular average.

For nonmagnetic single crystals with higher than monoclinic symmetry
the same angle-averaged intensity can be obtained by averaging over three
orthogonal measurements according to (9.87). For the special case of cubic
symmetry the measured spectral intensity is isotropic and a single measure-
ment suffices. For lower symmetry, the required average over α depends on
the polarization labelled by q. For linear polarized X-rays (q = 0) one averages
over spectra for E along the x, y, and z axes of the crystal. For natural light
or circularly polarized light (q = ±1)10 one averages over three measurements
with k along x, y, and z. For a fixed crystalline direction α the average over
q (0,±1) ensures that the E-vector can equally drive the transition along
the x, y, and z axes of the crystal (see Table A.4), and therefore an effective
average is performed.

10 For circularly polarized X-rays the photon spin does not matter for nonmagnetic
samples. To the absorbing charge the light looks naturally polarized with E lying
somewhere in the plane perpendicular to k.
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For magnetic single crystals one can use the same method as for nonmag-
netic single crystals if one uses linearly polarized light. For circularly polarized
X-rays one must eliminate magnetic effects by saturating the sample with the
field parallel and antiparallel to the direction α and summing over the two in-
tensities. The angle-averaged resonance intensity obeys an important intensity
sum rule that can be stated as follows.

The angle-averaged intensity of the combined L3 and L2 resonances is
directly proportional to the total number of d states above the Fermi
level, i.e., the number of holes in the d band.

This is demonstrated in Fig. 9.11a for the L3,2 white-line intensity of the
absorption spectra of the pure metals Fe, Co, Ni, and Cu. The shown spectra
were recorded for polycrystalline and magnetically not aligned samples so that
polarization dependent effects are automatically averaged out. Of interest is
the white-line resonant intensity associated with 2p → 3d transitions, shown
shaded in the inset of Fig. 9.11a, which sits on a step-like background due to
nonresonant excitation channels. The nonresonant channels produce steps at
the L3 and L2 positions with a step ratio of 2 to 1 reflecting the number of
core electrons in the p3/2 and p1/2 core states.

The white line intensity near threshold dramatically decreases along the
series. This is due to filling of the 3d band with increasing number of electrons
or atomic number Z, in accordance with the densities of states shown in
Fig. 12.1. In total, the d shell can hold 10 electrons and by going from Fe
to Cu one adds approximately one electron per atom. By summing for each
energy the number of d states over the Brillouin zone one obtains the d band
density of states, ρ(E3d), as schematically shown in Fig. 9.11b. By energy
integration Nh =

∫∞
EF
ρ(E)dE from the Fermi level up one obtains the total

number of empty d band states or d holes. When the resonance intensity
is plotted against the theoretically obtained number of 3d holes one obtains
a linear relationship as shown in Fig. 9.11c. The resonance intensity of the
spectrum, defined as the shaded peak area in the inset of Fig. 9.11a, is the
energy integral over the cross-section and has the dimension [area × energy],
and in Fig. 9.11 is given in units of Mb eV.

9.6.2 Derivation of the Intensity Sum Rule for the Charge

Figure 9.11b shows the electronic states appropriate for a transition metal. The
total number of empty d states above the Fermi energy EF, called the number
of valence holes, Nh, is simply the number of spin up plus down states. In the
one-electron model the core state is assumed to be spin–orbit split into 2p3/2

and 2p1/2 states, giving rise to the L3 and L2 edges in experimental spectra,
respectively. The sum rule states that the transition intensity is proportional
to the total number of empty d statesNh when we sum over the 2p3/2 and 2p1/2

contributions. This is intuitively correct since the intensity should increase if
we make more empty final states available for the transition.
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Fig. 9.11. (a) L-edge X-ray absorption spectra, plotted on an absolute cross-section
scale, for the 3d transition metals Fe, Co, Ni, and Cu. When the sum of the L3 and
L2 intensities, defined as the area shown shaded in the inset, is plotted against
the calculated number of 3d holes a linear relationship is obtained within experi-
mental error as shown in (c). We have used the following values for the number
of holes: 1.5–1.78 for Ni, 2.5–2.80 for Co and 3.4–3.93 for Fe (also see Sect. 12.2.2
and Fig. 12.16). The correlation follows from a sum rule, discussed in the text, that
links the integrated resonance cross-section or resonance intensity to the number of
empty valence states in the electronic ground state. The number of empty states is
obtained from the integrated density of states (DOS), as shown in (b)
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Let us derive the sum rule using a tight binding band picture for the 3d
valence states of the transition metals. The intensity of an electronic transition
between core states of angular momentum c and valence states of angular
momentum L = c + 1 is given by (9.85). By separating off the diagonal and
cross terms we have

Iq
α = AR2

∑
Ei>EF
i,k,m

∑
p,M

[
|ai,M (k)|2 + |bi,M (k)|2

]
|eqα,p|2|〈LM |C(1)

p |cm〉|2

+ AR2
∑

Ei>EF
i,k,m

∑
p�=p′

M 	=M ′

eqα,p(e
q
α,p′)∗ 〈LM |C(1)

p |cm〉〈LM ′|C(1)
p′ |cm〉∗

× [ ai,M (k)(ai,M ′(k))∗ + bi,M (k)(bi,M ′(k))∗ ] . (9.88)

We can now perform an orientation average according to (9.87) by either
summing of the three orthogonal polarization states q = 0,±1 or over crystal
directions α = x, y, z. In both cases the cross term in (9.88) vanishes because∑

q e
q
α,p(e

q
α,p′)∗ =

∑
α e

q
α,p(e

q
α,p′)∗ = 0 for all p, p′ combinations (see Appen-

dix A.6), and the polarization averaged transition intensity is given by

〈I〉 =
1
3
AR2

∑
Ei>EF
i,k,M

(
|ai,M (k)|2 + |bi,M (k)|2

)

︸ ︷︷ ︸
Nh

∑
p,m

|〈LM |C(1)
p |cm〉|2

∑
q or α

|eqα,p|2

︸ ︷︷ ︸
= 1︸ ︷︷ ︸

= L/2L+ 1

= AR2 L

3(2L+ 1)
Nh. (9.89)

Here we have used (A.25) and (A.27) and the sum rule (A.21), and Nh is the
total number of holes according to (7.25). This is an important result and we
need to put a box around it. For the L-edge of the 3d transition metals the
sum rule reads as follows.

The orientation averaged “white line” intensity of a core to valence nc→
n′L transition with c = L − 1 is directly related to the total number of
valence holes Nh in the electronic ground state according to

〈I〉 = C Nh . (9.90)

where

C = AR2 L

3(2L+ 1)
, (9.91)

A = 4π2h̄ω/137 and R is the radial nc→ n′L matrix element.
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Note that according to (9.87), we have defined the angle-averaged intensity
〈I〉 to be equivalent to that obtained for a randomly oriented sample in a
single measurement. It is of great importance, as stated above, that Nh is the
total number of valence holes in the electronic ground state, not the excited
electronic state. This is not obvious from our one-electron model calculation
but can be proven in a more general configuration based model of the X-ray
absorption process [100, 101]. For the special case of a p → d transition we
have

〈I〉 =
2AR2

15
Nh . (9.92)

9.6.3 Origin of the XMCD Effect

The important intensity sum rule for the number of holes suggests that if
we could make the absorption process spin dependent we could measure an
intensity difference that corresponds to the difference between the number
of spin-up and spin-down holes, i.e., the magnetic moment. This can indeed
be done by using circularly polarized photons and is the basis of XMCD
spectroscopy.

Before we proceed we need to specifically state our assumptions. In using
the important concept of proportionality of the white line intensity and the
number of valence holes from the previous sections we implicitly assume that
the measured white line intensity is independent of the sample crystallography.
In the following we shall therefore assume that the sample is either polycrys-
talline or that we average three dichroism measurements along orthogonal
crystalline directions.11

In order to understand the essence of the XMCD effect we assume a one-
electron picture where the valence states exhibit a Stoner splitting as discussed
in Sect. 7.4.2, and shown on the left side of Fig. 9.12. The shown density of
states actually correspond to that calculated for Fe metal by band theory (see
Fig. 12.1).

For maximum XMCD effect the magnetization direction M of the sample
and the photon spin or angular momentum Lph are chosen to be collinear. As
illustrated on the left side of Fig. 9.12, the dichroism effect is then given by
the difference of the p→ d transition (X-ray absorption) intensities, measured
for photons with positive angular momentum (q = +1, Lph points in direction
of wavevector k) and negative angular momentum (q = −1, Lph points in
direction of −k) aligned along the fixed magnetization direction M of the
sample. An equivalent way is to fix the X-ray photon spin direction and switch
the magnetization directions [374].

On the right of Fig. 9.12 we show experimental L-edge XMCD spectra for
Fe metal [96, 375] that have been corrected to correspond to 100% circularly

11More specifically, we also assume that the sample symmetry is higher than
monoclinic so that the unit cell axes are orthogonal.
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Fig. 9.12. The XMCD effect illustrated for the L-edge absorption in Fe metal. The
shown density of spin-up and spin-down states closely resembles that calculated for
Fe metal (compare Fig. 12.1). The experimental data on the right are from Chen
et al. [96] and have been corrected to correspond to 100% circular polarization. We
show the case of circularly polarized X-rays with positive angular momentum (he-
licity), and the color coded spectra correspond to the shown sample magnetization
directions

polarized X-rays and parallel alignment of the photon spin and the magne-
tization. The dichroism effect is seen to be very large. If the photon spin is
aligned perpendicular to the magnetization the cases of perpendicular “up”
and “down” magnetization directions cannot be distinguished.

Denoting the magnetization M and photon angular momentum Lph di-
rections by arrows, the dichroism effect is only dependent on the relative
alignment of the two arrows. The convention adopted by the XMCD com-
munity is to plot the dichroism intensity of the 3d transition metals Fe, Co,
and Ni so that the L3 dichroism is negative (also see Fig. 10.12). According
to Fig. 9.12 this corresponds to the definition,

∆I = I↑↓ − I↑↑. (9.93)

Note that the minority electron spin direction (= majority hole spin direction)
is the same as that of the sample magnetization. The importance of the so
defined XMCD intensity can be expressed as follows.

The XMCD difference intensity, defined as the white-line intensity differ-
ence between antiparallel and parallel orientations of the sample magneti-
zation and the incident photon spin is directly proportional to the atomic
magnetic moment.
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Fig. 9.13. Illustration of the L-edge X-ray absorption processes of circularly polar-
ized photons with angular momentum q = ±1 (in units of h̄). For the d valence shell
we show the correspondence between the Stoner band picture of a magnetic material
and an atomic one-hole d shell model. We have chosen our magnetization direction
such that the “down-spins” are filled and the “up-spins” partially unfilled. In the
atomic model we assume one “spin-up” hole and show the possible 2p core to 3d
valence transitions assuming circularly polarized light with angular momentum q.
The fraction of “up-spin” electrons excited from the p core shell through absorption
of X-rays with angular momentum q = ±1 is listed for the L3 and L2 edges. Here
we have assumed the X-rays to be incident parallel to the atomic magnetic moment
m. In the inset we show the XMCD difference spectrum calculated with the atomic
model according to (9.95) and assuming the shown resonant peak shapes

The quantum mechanical origin of the XMCD effect at the L-edge is ex-
plained in more detail by the simple atomic model of Fig. 9.13. Here we have
assumed the case of a “strong” ferromagnet with one filled spin channel. With
the sample magnetized in the “up” direction, the spin-down states are filled
and the spin-up states are only partially filled as shown in Fig. 9.13. For sim-
plicity we ignore the weak spin–orbit interaction among the d electrons so
that our sample has only a spin magnetic moment and the orbital moment
is zero. We also show the correspondence between the Stoner band picture
of a magnetic material and an atomic d shell model. In both cases the five
spin-down d states are filled and the spin-up states are assumed to be par-
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tially filled. For an empty spin-up shell the magnetic moment is 5µB in our
simple atomic model and as we fill in more electrons it decreases by 1µB per
(spin-up) electron.

For the special situation of a completely filled majority band shown in
Fig. 9.13, the charge sum rule of Sect. 9.6.1 would actually be sufficient to
give us the magnetic moment since it is equal to the total number of holes.
In general, of course, we have to allow for partially filled majority and mi-
nority bands and therefore we need to make the X-ray absorption process
spin dependent in order to determine the difference in majority and minority
population.

For our quantum mechanical calculation we use the atomic model shown
on the right side of Fig. 9.13 and calculate the dichroism effect by considering
the angular part of the squared transition matrix element from the p3/2 and
p1/2 states to the empty spin-up states of the d-band. We write the p3/2 and
p1/2 wave functions in the basis |l = 1,ml, s,ms〉, as is done in Table A.5.
For the spin-up 3d hole states we use the five d orbitals listed in Table A.2
with spin up |χ+〉 = |ms = +1/2〉. They are linear combinations of basis
functions |l=2,ml, s,ms〉 so that all matrix elements can be calculated from
the expressions in Table 9.1 under the assumption of spin conservation. The
individual transition intensities (angular part only) are given by

|〈dn, χ
+| P

q
z

r
|pj ,mj〉|2 (9.94)

with index values n = 1, . . . , 5, j = 3/2, 1/2, mj = ±3/2,±1/2 and q = 0,±1.
The individual squared transition matrix elements are given in Fig. 9.14.

From the individual transition intensities in Fig. 9.14 we can now derive
the XMCD effect. With the definition of (9.93) it is given by the difference of
the p→ d transition intensities with negative (q = −1) and positive (q = +1)
photon spin,

∆I = I↑↓ − I↑↑ = I− − I+. (9.95)

By summing the appropriate intensities and differences in Fig. 9.14 we obtain
for the L3 and L2 dichroism effects:

∆IL3 = AR2
∑
n,mj

|〈dn, χ
+|C(1)

−1 |p3/2,mj〉|2 − |〈dn, χ
+|C(1)

+1 |p3/2,mj〉|2

= −2
9
AR2 , (9.96)

and

∆IL2 = AR2
∑
n,mj

|〈dn, χ
+|C(1)

−1 |p1/2,mj〉|2 − |〈dn, χ
+|C(1)

+1 |p1/2,mj〉|2

= +
2
9
AR2 . (9.97)
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Fig. 9.14. Polarization dependent transition intensities in a one-electron model from
spin–orbit and exchange split p core states |j, mj〉 to spin-up (ms = +1/2) d valence
orbitals (TableA.2), assumed to be split by the exchange interaction. The listed
intensities each need to be divided by 90 to get the proper absolute values in units
of AR2. We have chosen the z-axis as the spin quantization axis and the transition
intensities are for circular polarization with k ‖ z and angular momenta q = +1
(labeled +) and q = −1 (labeled −) and for linear polarization with E ‖ z (labeled
q = 0). We have assumed a splitting of the p states by the exchange interaction,
lifting the degeneracy in mj . Note that this causes an opposite order of mj states
for p3/2, l + s and p1/2, l − s because of the opposite sign of s

The relevant XMCD intensities are summarized in Fig. 9.13. The dichroism
signal at the L3 and L2 edges are identical in magnitude but of opposite sign.
At the L3 edge, X-rays with positive (q = 1) photon spin excite more spin-
up electrons than X-rays with negative (q = −1) photon spin, and at the
L2 edge the opposite is found. It is easy to show that for the calculation
of the dichroism effect it is equivalent to fix the X-ray spin and switch the
magnetization direction [374]. In principle, L-edge X-ray absorption spectra
contain contributions from both p→ d and p→ s transitions, but in practice
the p→ d channel dominates by a factor > 20. [376]

9.6.4 Two-Step Model for the XMCD Intensity

The model calculations in Figs. 9.13 and 9.14 suggest a particularly simple
two-step model.
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In the first X-ray absorption step, conservation of angular momentum re-
quires a transfer of the angular momentum of the incident circularly polarized
X-rays to the excited photoelectrons. If the photoelectron is excited from a
spin–orbit split level, e.g., the 2p3/2 level (L3 edge), the angular momentum of
the photon can be transferred in part to the spin through the spin–orbit cou-
pling and the excited photoelectrons are spin polarized. The spin polarization
is opposite for incident X-rays with positive (+h̄) and negative (−h̄) photon
spin. Also, since the 2p3/2 (L3) and 2p1/2 (L2) levels have opposite spin–orbit
coupling (l + s and l − s, respectively) the spin polarization will be opposite
at the two edges. The photoelectron spin quantization axis is identical to that
of the photon spin, i.e., it is parallel or antiparallel to the X-ray propagation
direction.

In the second step the exchange split valence shell with unequal spin-
up and spin-down populations acts as the detector for the spin of the excited
photoelectrons. For optimum detection the valence shell spin quantization axis
(the “detector” axis) has to be aligned with the photon spin or photoelectron
spin quantization axis.

For the specific case shown in Fig. 9.13 only spin-up electrons can be ex-
cited from the 2p core to the partially unfilled spin-up 3d valence shell because
the dipole operator does not act on spin and therefore does not allow spin-flips
during excitation. At the L3-edge, X-rays with positive spin (q = +1) excite
62.5% spin-up electrons and negative spin X-rays (q = −1) excite 37.5% spin-
up electrons, while for the L2 edge the numbers are 25% spin-up electrons
for q = +1 and 75% spin-up electrons for q = −1. Taking into account the
two times higher population of the 2p3/2 state, one finds the dichroic intensity
differences at the L3 and L2 edges calculated according to (9.96) and (9.97)
where ∆IL3 = A and ∆IL2 = B, to be identical in magnitude but of opposite
sign, as shown in the inset of Fig. 9.13.

The results of Fig. 9.13 are readily extended to the general case where both
majority and minority bands are partially empty since for transitions to spin-
down (majority) states the same excitation percentages given in Fig. 9.13 are
found, except with q = +1 and q = −1 interchanged. Thus the minority and
majority band contributions to the dichroism intensity have opposite signs.
If both contribute equally the dichroism signal vanishes, as required for a
nonmagnetic material.

Note that the pure photon spin configurations with angular momenta ±h̄
are not converted into pure (100%) electron spin configurations. Some of
the photon angular momentum is converted into electron orbital momentum
which is also carried by the photoelectron. The photoelectron thus carries the
angular momentum absorbed from the photon as spin and orbital momentum
degrees of freedom. The orbital momentum of the photoelectron is detected
if the valence shell has an orbital moment. A particularly interesting case is
that of K-shell excitations.
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K-shell Dichroism

For K-shell excitation the 1s core shell has zero angular momentum and hence
no spin–orbit coupling. It may, however, exhibit a small splitting into ms =
±1/2 states due to the exchange field or an external magnetic field. In Fig. 9.15
we give the polarization dependent transition intensities for two cases.

On the left side of Fig. 9.15 we show transitions from the spin-split 1s shell
to empty exchange split 2p orbitals with ms =+1/2 given by

|〈pn,ms =+1/2| P
q
z

r
|s,ms〉|2 (9.98)

for n = 1 . . . 3 and q = 0,±1. On the right we show transitions from the
spin–split 1s shell to empty spin–orbit coupled 2pj (j = 3/2, 1/2) orbitals,
further split by an external magnetic field into −3/2 ≤ mj ≤ +3/2 Zeeman
components,

|〈pj ,mj |
P q

z

r
|s,ms〉|2 (9.99)

for j = 3/2, 1/2 , mj = ±3/2,±1/2, ms =±1/2, and q = 0,±1. Note that our
results for this case confirm those given earlier in Fig. 8.1.
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Fig. 9.15. (a) Polarization dependent transition intensities in a one-electron model
between exchange (or Zeeman) split s core states and empty spin-up (sz = +1/2)
p valence orbitals, assumed to be separated from the full spin-down shell by the
exchange interaction. The listed intensities each need to be divided by 6 to get
the proper absolute values in units of AR2. We have chosen the z-axis as the spin
quantization axis and the transition intensities are for circular polarization with
k ‖ z and angular momenta q = +1 (labeled +) and q = −1 (labeled −) and for linear
polarization (labeled q = 0) and E ‖ z. (b) Transition intensities between exchange
(or Zeeman) split s core states and spin-orbit coupled and Zeeman split pj valence
states denoted by quantum numbers mj (see TableA.5). The listed intensities each
need to be divided by 9 to get the proper absolute values. The coordinate system is
the same as in (a).
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For the K-edge excitation the 1s state has only a spin and no orbital angu-
lar momentum. Since the spin does not interact directly with the electric field,
the photon spin is transferred to the photoelectron as an orbital angular mo-
mentum, either h̄ or −h̄. The orbital angular momentum of the photoelectron
can only be detected by the valence shell if it possesses an orbital magnetic
moment itself, that means if the valence band empty density of states has an
imbalance of states with quantum numbers +ml and −ml. If the valence shell
does not possess an orbital moment, photoelectrons with orbital momenta h̄
and −h̄ cannot be distinguished and no dichroism effect will be observable.
This is true even if the valence shell has a net spin polarization as in the
Stoner model. Therefore, for K-shell excitation a dichroism effect exists only
if the p valence shell possesses an orbital moment [377]. Sensitivity to the spin
magnetic moment of the p shell arises only indirectly through the spin–orbit
interaction.

Summary for the XMCD Intensity

We can summarize the models shown in Figs. 9.13–9.15 by the following two-
step model of XMCD [374].

The two-step model of XMCD:
• In the first step, circularly polarized X-rays generate photoelectrons with
a spin and/or orbital momentum from a localized atomic inner shell.
• In the second step, the 3d shell serves as the detector of the spin or
orbital momentum of the photoelectron. For maximum effect, the photon
spin needs to be aligned with the magnetization direction.

The size of the dichroism effect depends on three important parameters:

– The degree of circular photon polarization Pcirc,
– The expectation value of the magnetic moment of the 3d shell 〈m〉
– The angle θ between the directions of the photon angular momentum Lph

and the magnetic moment m

This can be cast into the following dependence of the XMCD intensity,

IXMCD ∝ Pcirc m · Lph ∝ Pcirc 〈m〉 cos θ . (9.100)

In theory we define the XMCD difference intensity according to (9.95), as-
suming Pcirc = 1. For our later discussion of the resonant magnetic scattering
intensity is useful to write the XMCD absorption intensity in a form that
involves matrix elements of Racah’s spherical tensors, as done for the L3 and
L2 signals in (9.96) and (9.97). By use of the short form

〈C(1)
q 〉 = 〈dn, χ

+|C(1)
q |pj ,mj〉, (9.101)

we can state as follows.
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The XMCD difference intensity for X-ray propagation and magnetiza-
tion direction aligned along z may be written in terms of angular matrix
elements of the Racah spherical tensors according to,

∆IXMCD = AR2
∑

states

|〈C(1)
−1 〉|2 − |〈C(1)

+1 〉|2. (9.102)

The factor A is given by (9.61) and R is the radial transition matrix
element given by (9.81).

9.6.5 The Orientation Averaged Sum Rules

In this section we want to formally state three important sum rules for ori-
entation averaged intensities [100–102, 240, 241, 378–383]. The sum rules link
the measured polarization dependent resonance intensities with valence band
properties, in particular the number of empty states or “holes” Nh per atom,
the spin magnetic moment ms per atom and the orbital magnetic moment
mo per atom. Since these latter atomic quantities are defined by integration
over the atomic volume and are therefore isotropic quantities, one needs to be
sure that the measurement eliminates anisotropic effects caused by anisotropic
charge and spin densities in the crystallographic unit cell. It is therefore nec-
essary, in general, to first define a coordinate system for the crystallographic
axes, so that one can properly average out anisotropies by suitable measure-
ments.

In the following we shall assume that the crystal symmetry is higher than
monoclinic so that we can chose the unit cell axes along the x, y, and z di-
rections of a cartesian coordinate system. For a measurement we then specify
the X-ray polarization and the magnetization direction in this frame and de-
fine a suitable intensity average according to (9.87). With this definition we
can now use intensity averages of three measurements to determine physical
quantities.

First we can determine the number of empty valence states per atom by
measuring the transition intensity of core electrons into the empty valence
states, as illustrated schematically in Fig. 9.16a for the L-edge in the magnetic
3d transition metals. We then have the first of three important sum rules,
which we shall call the charge sum rule. It relates the measured averaged
peak intensity to the number of empty states Nh. We can state it as follows.

The charge sum rule links the measured averaged X-ray absorption res-
onance intensity of a core to valence transition to the number of empty
valence states Nh per atom

〈I〉 = C Nh, (9.103)

where C is the proportionality constant given by (9.91).
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Fig. 9.16. Schematic of processes, spectra, and intensities underlying the quantita-
tive determination of valence band properties such as the number of empty d states
Nh, and the spin moment ms = µB(N↑

h − N↓
h ) = µB(N+ms

h − N−ms
h ) and orbital

moment mo = µB(N+m�
h − N−m�

h ). At the bottom we indicate the relationship be-
tween measured spectral intensities and the valence band properties. Note the sign
of the dichroism difference intensities. In the shown cases we have A < 0 and B > 0

For the special case of the transition metal L-edges one needs to determine
the total core to valence intensity given by the sum of the two spin–orbit split
components as shown in Fig. 9.16a and (9.103) takes the form [102]

〈IL3 + IL2〉 = CNh . (9.104)

If the X-ray absorption spectrum is determined in terms of the absolute cross-
section (with the dimension [area]) then the measured intensity I, given by
the energy integration of the cross-section, has the dimension [area × energy],
and therefore C is typically given in conventional units of [Mb eV]. For the
3d transition metals it has a value of about 10 Mb eV (see Fig. 9.17) [384].

In order to derive the magnetic spin moment for the 3d transition metals
according to a sum rule due to Carra et al. [101] we also need to carry out an
average as proposed by Stöhr and König [102]. One uses circularly polarized
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light and measures XMCD spectra for k along the three crystallographic di-
rections x, y, z. For each measurement one magnetically saturates the sample
along the direction of k and determines the dichroic (difference) intensities A
and B at the L3 and L2 edges as shown in Fig. 9.16b by either switching the
photon spin for a given magnetization direction or by switching the magneti-
zation direction for a given photon spin. Note that large fields of several Tesla
may be needed for full magnetic alignment of the sample. One then performs
the average of the difference intensities according to (9.87). This leads to the
so-called spin sum rule. Note that in the case shown in Fig. 9.16 the areas A
and B have opposite signs.

The spin sum rule links the angle averaged dichroism intensities with the
size of the spin moment per atom according to

〈−A+ 2B〉 =
C

µB
ms . (9.105)

where the constant C is the same as in the charge sum rule.

For Fe, Co, and Ni the orbital, mo, and spin, ms, moments are parallel
because the d shell is more than half full. While the spin moment becomes
anisotropic only in higher order through the spin–orbit coupling which is sig-
nificantly smaller than the dominant isotropic exchange interaction, the or-
bital moment may be strongly anisotropic. The origin of this anisotropy lies
in the ligand field which may preferentially destroy the orbital motion of the
electrons about certain crystal axes as discussed in Sect. 7.9. One therefore
also needs to average over three directions to determine the average orbital
moment. The three measurements are identical to those for the spin moment
yet for the sum rule analysis one takes a different linear combination of the
dichroism intensities. The orbital moment is determined by use of the orbital
moment sum rule due to Thole et al. [100]

The orbital moment sum rule links the angle averaged dichroism inten-
sities with the size of the average orbital moment per atom according
to

−〈A+B〉 =
3C
2µB

mo . (9.106)

The constant C is the same as in the charge and spin sum rules.

In practice, the determination of mo requires high quality data and careful
data analysis since A+B is typically a small number, obtained by subtraction
of two large numbers since A < 0 and B > 0. If the two intensities have the
same size but opposite signs the orbital moment is zero.
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C

Fig. 9.17. Values for the constant C in the X-ray absorption sum rules determined
by use of (9.103)–(9.106) from experimentally measured intensities and literature
values for Nh, ms, and mo [384]. In (a) we used the values Nh, ms, and mo obtained
by density functional theory including orbital polarization [385,386] and in (b) the
spin and orbital moments determined from the gyromagnetic ratio [387]

Figure 9.17 shows results for the constant C determined for Fe, Co, and Ni
from experimental data and “known” values for the magnetic moments and
the d shell occupation. A true determination of C is more difficult than first
imagined since even for the elemental transition metals, there are some dis-
crepancies between experimental and theoretical values for the moments. Fur-
thermore, XMCD only measures the d electron contribution to the moments
because 2p → 4p transitions are not allowed by the dipole selection rule and
2p → 4s transitions have much smaller cross-sections [376] than 2p → 3d
transitions.

If the intensities are not angle averaged, additional terms arise for the
charge and spin moment sum rules that can be written in terms of a intra-
atomic quadrupolar charge contribution and a nonspherical intraatomic spin
distribution. These terms average to zero when an angular average is per-
formed as assumed earlier [102]. We shall come back to these anisotropic
terms in Sect. 9.7.9.
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9.7 The Orientation-Dependent Intensity: Charge and
Magnetic Moment Anisotropies

In Sect. 9.6 we have treated the case of angle averaged X-ray absorption inten-
sities. We assumed that the sample is either polycrystalline, of cubic symmetry
or that a suitable angular average of three orthogonal crystalline directions is
performed. In modern magnetism research, one often encounters single crystal
samples or thin films with anisotropic bonding. We shall now discuss the X-
ray absorption spectra of such samples, which may be magnetically oriented,
for the cases of linearly and circularly polarized X-rays. In the process we
shall encounter the generalization of the three orientation averaged sum rules
discussed in Sect. 9.6.5.

The discussion of the orientation-dependent intensities naturally leads to
the distinction between spectra recorded with linearly polarized X-rays and
circularly polarized X-rays and we shall discuss the two cases in turn.

9.7.1 Concepts of Linear Dichroism

The term “linear dichroism” describes angle dependent effects when the di-
rection of the linear polarized E vector is changed relative to the sample.12 In
nonmagnetic systems the anisotropy arises from an anisotropic charge distrib-
ution about the absorbing atom caused by bonding. For magnetic samples an
additional anisotropy may exist relative to the magnetization direction of the
sample. It is important to realize that in all cases the measured anisotropy
arises from a nonspherical charge distribution. If the origin of the charge
anisotropy is due to bonding alone we speak of “natural” linear dichroism,
when it has a magnetic origin we use the term “magnetic” linear dichroism.
Both may co-exist and in this case they can be separated either by temperature
dependent studies or, for ferromagnets, by rotation of the magnetic alignment
field relative to the fixed X-ray polarization .

Because of the close connection between the “natural” and “magnetic”
dichroism effects we need to discuss both. We start with the case of non-
magnetic systems and present the physical origin of natural linear dichroism.

9.7.2 X-ray Natural Linear Dichroism

The easiest way to visualize the polarization dependence underlying X-ray
natural linear dichroism or XNLD is the “search light effect” [189]. It can be
stated as follows.

12Note that natural or circular polarized light defines a polarization plane perpen-
dicular to the propagation direction k and therefore both also give rise to an angular
polarization effect when the sample is turned in the beam. For nonmagnetic samples
this case can be treated by assuming that one has two orthogonal linearly polarized
E-vector components perpendicular to k, and the intensities ∝ |Ei|2 (i = 1, 2) asso-
ciated with the two components are added incoherently, i.e., there is no interference
term.
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Fig. 9.18. Spatial orientation of p and d orbitals. All individual orbitals are
anisotropic but the sums of the eg and t2g d orbitals or the sum of the p orbitals is
spherically symmetric as shown

In an X-ray absorption experiment electrons are excited from a selected
core shell to empty valence states. For linear polarized X-rays the electric
field vector E acts like a search light for the direction of the maximum
and minimum number of empty valence states. The transition intensity
is directly proportional to the number of empty valence states in the
direction of E.

In an X-ray absorption measurement we sum over all degenerate levels of
the core state. In accordance with Fig. 9.18 this leads to a spherically sym-
metric core contribution. This is obvious for K-edge spectra where the 1s
core state is spherically symmetric. For L-edge spectra we also get a spherical
core contribution if we sum over the p3/2(L3) and p1/2(L2) intensities. The
dependence of the X-ray absorption intensity on E-vector orientation is then
entirely determined by the spatial distribution of the empty valence states.

The search light effect can be readily demonstrated for the case of K- and
L-edges, where the electronic transitions involve 1s → 2p and 2p → 3d core-
to-valence excitations. All we have to look for is the spatial charge distribution
of the empty valence states involved in the transitions. For convenience we
can do this by picturing the valence states by the familiar real p and d or-
bitals, as illustrated in Fig. 9.18. In a cubic ligand field the d orbitals form the
eg and t2g irreducible representations. The sum of the orbitals within each
representation is spherically symmetric. The p orbitals are not split in cubic
symmetry and their sum is also spherically symmetric. In cubic symmetry the
X-ray absorption intensity in nonmagnetic materials is therefore independent
of E-vector orientation relative to the sample.
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It is clear that the charge distribution of the individual p and d orbitals is
asymmetric in space, and therefore as the symmetry is lowered below cubic,
transitions to individual p and d orbitals will depend on the orientation of
the E-vector relative to the x, y, z coordinate system of the crystal. This is
the origin of the natural linear dichroism effect. Some of the most beautiful
examples of this effect are found for small molecules or organic molecules
with directional covalent bonds as discussed in detail in the book NEXAFS
Spectroscopy [189].

For the K-edge we readily recognize the foundation of the search light
effect, since the p orbitals have directions of maximum charge density and
perpendicular nodal planes where the charge density is zero. The X-ray ab-
sorption intensity is maximum when E is aligned along the orbital and is zero
when E lies in the nodal plane. One can remember the search light effect by
the following simple picture. The photoelectron is ejected from the spheri-
cally symmetric core state along the direction of the E-vector. The E-vector
“search light” then senses the hole density of the valence orbital. If the den-
sity in the direction of E is zero the transition intensity vanishes. In general,
the transition intensity scales directly with the orbital density along E. For
L-edges the transition intensity is zero if the E-vector lies along the d orbital
nodal axis, which is the intersection of two nodal planes (see Fig. 9.19).

9.7.3 Theory of X-ray Natural Linear Dichroism

The “search light effect” follows from a quantum mechanical calculation of
the angle dependent transition matrix element which we shall outline now.

In order to facilitate our discussion we shall assume that we are dealing
with a nonmagnetic sample. Since XNLD does not depend on spin we can
use the same formalism as above but only consider one spin. Inclusion of the
other spin would simply give a factor 2 higher intensity. We therefore start
with (9.85), written for one spin, and take care of the other spins by a factor
of 2. We have,

Iq
α = 2AR2

∑
Ei>EF
i,k,m

∣∣∣∣∣∣
∑
p,M

ai,M (k) eqα,p 〈LM |C(1)
p |cm〉

∣∣∣∣∣∣
2

. (9.107)

This equation is valid for an atom in a solid described by a band-like valence
electron wavefunction

|ψi(k, r)〉 = |Rn′,L(r)〉 |φi(k)〉
= |Rn′,L(r)〉

∑
M

ai,M (k) |LM〉 . (9.108)

There are 2L+ 1 such states for a given L-manifold. If we drop the k depen-
dence, the state (9.108) also describes a ligand field state. For the d orbitals,
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Fig. 9.19. Polarization dependent core to valance transition intensities (square of
the transition matrix elements) for E along the principal coordinate axes. Listed
are the intensities for the four basic symmetry cases, s → pi (i = x, y, z), p → dij

(i �= j = x, y, z), p → dx2−y2 and p → d3z2−r2 . All intensities are per orbital per
spin in units of AR2

for example, the coefficients ai,M would be the coefficients in Table A.2. Equa-
tion (9.107) is valid for transitions from a spherically symmetric core manifold
|cm〉 and the sum is over all 2c+ 1 orbital substates. In the measurement of
XNLD we therefore assume that we sum over any spin–orbit split states in
the core. This is automatically fulfilled for K-edge spectra, and for L-edge
spectra we add the L3 and L2 intensities. Because in XNLD one wants to
learn about the anisotropy of the valence charge around the absorbing atom
one best uses linearly polarized light since the directional E-vector acts like
a search light, as discussed later. We shall therefore restrict our discussion to
linearly polarized X-rays.

The search light effect is most clearly seen by considering transitions from
a core manifold to specific molecular orbitals. Results for the squared tran-
sition matrix elements are summarized in Fig. 9.19. In particular, we list the
polarization-dependent transition intensities

|〈2pn|
P 0

α

r
|1s〉|2 (9.109)

from a s core state to the px, py, and pz valence orbitals, assuming linearly
polarized light with E ‖ x, y, z, and similarly the intensities

|〈3dn|
P 0

α

r
|2p〉|2 (9.110)

from a p core state to the five dn orbitals, assuming linearly polarized light
with E ‖ x, y, z.

For all s→ pi, (i = x, y, z) transitions (e.g., K-edge) we have a transition
intensity 1/3 when the E-vector is along the pi orbital lobe and zero other-
wise. The polarization averaged intensity per pi orbital is 〈I〉 = 1/9. For all
transitions from p core states to the clover-leaf-shaped d orbitals, shown in
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the middle of Fig. 9.19, we have a transition intensity 3/15 for E along the
two axes that lie in the plane of the orbital and zero along the perpendicu-
lar nodal direction. The transition intensity to the d3z2−r2 orbital is different
as illustrated in Fig. 9.19. For p → di transitions (e.g., L-edge) we have the
polarization-averaged intensity per di orbital 〈I〉 = 2/15.

In practice, one often encounters the case where the sample has cylindrical
symmetry about an axis. Let us consider a nonmagnetic system with cylin-
drical symmetry about z. For E along z the X-ray absorption intensity for a
transition between states |a〉 and |b〉 is obtained with the dipole operator P 0

z

in Table A.4 as,

I0z = AR2
∣∣∣〈b|C(1)

0 |a〉
∣∣∣2 . (9.111)

Similarly we obtain the intensities for E along x and y as

I0x = I0y =
1
2
AR2

[ ∣∣∣〈b|C(1)
−1 |a〉

∣∣∣2 +
∣∣∣〈b|C(1)

1 |a〉
∣∣∣2
]
. (9.112)

The cross terms vanish because only one of the operators C(1)
q couples a given

pair of substates |cm〉 and |LM〉 with L = c + 1 and M − m = q = 0,±1,
according to the dipole selection rule. For later reference it is important to
state that one obtains the same intensity as in (9.112) for circularly or natural
light incident along z (operators P±

z in Table A.4), i.e.,

I+1
z = I−1

z =
1
2
AR2

[ ∣∣∣〈b|C(1)
−1 |a〉

∣∣∣2 +
∣∣∣〈b|C(1)

1 |a〉
∣∣∣2
]
. (9.113)

For a spherically symmetric charge distribution we have Iq
α = Iq

α′ = Iq′

α .

The Angle-Dependent XNLD Intensity

More generally, the measured intensity can be written as a function of the
angle θ of the E-vector with the symmetry axis (labeled ‖) and the intensity
has the form [388]

I(θ) = I‖ cos2 θ + I⊥ sin2 θ . (9.114)

This expression is valid for higher than three fold symmetry about the axis
labeled ‖. The intensities I‖ and I⊥ are determined by the projection of the
charge distribution along the symmetry axis and a direction perpendicular
to it.13 If the charge distribution has a node perpendicular to the symmetry
axis, we have I⊥ = 0, and the linear dichroism intensity has the famous cosine
squared polarization dependence.

13The charge distribution function itself cannot be determined by XNLD but only
its projections along the cartesian coordinate axes. The projections f‖ = I‖/(I‖ +
2I⊥) and f⊥ = I⊥/(I‖ + 2I⊥) are called orientation factors [388].
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For a uniaxially aligned system the X-ray linear dichroism intensity varies
as

I(θ) = I‖ cos2 θ = 3〈I〉 cos2 θ, (9.115)

where θ is the angle of the E-vector with the symmetry axis and 〈I〉 is
the angle averaged intensity (9.103).

9.7.4 XNLD and Quadrupole Moment of the Charge

We have seen that polarized X-ray absorption spectroscopy can probe the
local anisotropy of the charge density, in particular the hole density, around
the absorbing atom. Because the core shell is so localized, XNLD is very
sensitive to deviations of the local valence charge in the atomic volume from
spherical symmetry. In a picture based on the search light effect the measured
X-ray absorption intensity is proportional to the projection of the number
of holes in the direction of E. By measuring X-ray absorption along three
orthogonal directions, i.e., E ‖ x, y, z, we can determine the projection of the
number of holes along the three directions, as illustrated in Fig. 9.19.

Sometimes it is useful to describe the origin of polarization dependent
X-ray absorption in another way. Starting from the fact that the polarization-
averaged intensity is a constant according to (9.103), i.e.,

〈I〉 = C Nh, (9.116)

one may write the intensity for a given direction α as a deviation from the
constant. For a given polarization direction, say along z, we write Iz = 〈I〉 −
f(z2). The general formalism given in Appendix A.8 yields the expression

I0α = CNh ( 1 − B 〈Qαα〉) , (9.117)

where 〈Qαα〉 is the quadrupole moment of the charge distribution. The other
factors are

C = AR2 L

3(2L+ 1)
, B =

2L+ 3
2L

, (9.118)

with A = 4π2 h̄ω (e2/4πε0h̄c) and R being the radial transition matrix ele-
ment. One can make the following general statement.

The angle-dependent XNLD intensity is proportional to the sum of the
total number of valence holes and the quadrupole moment of the spatial
hole density.
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Paramagnetic state

S

Aligned magnetic state

Fig. 9.20. Illustration how a spherical charge density
may be modified in the presence of a magnetic align-
ment of the spins in the sample. The charge distortion
arises from the spin–orbit coupling and an asymmetry
is induced relative to the spin axis (not direction!). The
effect exists in both collinear ferromagnets and antifer-
romagnets

This formalism appears rather complicated but it is very powerful. We shall
see later that it also describes the angle dependent XMCD intensity for the
important 3d transition metals. In that case the isotropic term proportional to
Nh in (9.117) is replaced by the isotropic spin momentms and the quadrupolar
charge distribution by a quadrupolar spin distribution.14

9.7.5 X-ray Magnetic Linear Dichroism

In order to differentiate magnetic from natural linear dichroism let us assume
a sample of cubic symmetry where no XNLD is present. We also assume that
the sample becomes magnetically aligned, either ferromagnetic or antiferro-
magnetic, below the magnetic transition temperature. In the paramagnetic
state above the transition temperature the core and valence charge density is
then spherically symmetric according to Sect. 9.7.2. As the sample is cooled
into a magnetic state with collinear spin alignment, the spin–orbit coupling
may lead to a deformation of the charge. This charge distortion is of uniaxial
symmetry about the spin direction as shown schematically in Fig. 9.20. Now
the X-ray absorption intensity will be different for E aligned parallel and
perpendicular to the spin direction.

The XMLD effect arises from a nonspherical distortion of the atomic
charge by the spin–orbit interaction when the atomic spins are axially
aligned by the exchange interaction.

In order to illustrate the effect of the spin–orbit coupling on the charge
density we plot in Fig. 9.21 the charge densities of the individual |j,mj〉 com-
ponents of the spin–orbit split p1/2 and p3/2 manifolds. This is readily done
by use of the wavefunctions listed in Table A.2. We see that all individual
densities (squares of wavefunctions) are anisotropic in space relative to the
z alignment axis of the spin. In contrast, the sum over all mj substates of
each j manifold are spherically symmetric. We can therefore conclude that a
linear magnetic dichroism effect will only exist if somehow the mj substates in

14The latter term is the infamous Tz term derived by Carra et al. [101].
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Fig. 9.21. Orbital densities for the p1/2 and p3/2 manifolds calculated with the
functions given in Table A.5. The substates |l, s, j, mj〉, for j = 1/2 and j = 3/2 are
labelled for brevity by the quantum numbers mj . In all cases the spin quantization
axis is taken to be the z axis. The charge distributions are seen to be asymmetric in
space and they give rise to different X-ray absorption intensities when the E-vector
is aligned along z and perpendicular to z. One inset shows the spherically symmetric
charge density obtained when summing over all mj states and also when for a given
j the mj states are summed. The upper right inset shows a plot of the charge density
|Yl,m|2 for l = 1, m = 0,±1, associated with the spherical harmonic basis functions
for the p states. They are important when the |j, mj〉 states are expressed as a
function of spin-up and spin-down functions as given in Table A.5

either the initial or final states of the electronic transition are split and do not
contribute equally to the X-ray absorption intensity. In magnetic materials a
splitting between mj substates in the valence and core shells naturally arises
in the presence of the exchange interaction below the magnetic transition
temperature, as discussed in Sect. 6.6.2.

An unequal spectral contribution of such energetically split mj substates
may arise via two effects. First, if at low temperature the substates have
an unequal population [389]. Second, if the energetic splitting between the
substates can be observed experimentally.

The XMLD effect for the ferromagnetic transition metals predominantly
arises from the second mechanism, as shown by Kuneš and Oppeneer [390].
We shall discuss their model in Sect. 9.7.6.

9.7.6 Simple Theory of X-ray Magnetic Linear Dichroism

The XMLD model of Kuneš and Oppeneer [390] is illustrated in Fig. 9.22.
To illustrate the origin of the XMLD effect for the 3d transition metals we

start with a Stoner-like band model as previously used for the explanation of
the XMCD effect in Fig. 9.13. Again we simplify the description of the d states
in an atomic model assuming that the (“down”) majority spins are filled. We
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Fig. 9.22. Illustration of the L-edge X-ray absorption processes of linearly polarized
photons with angular momentum q = ±1. For the d valence shell we show the
correspondence between the Stoner band picture of a magnetic material and an
atomic one-hole d shell model. We have chosen our magnetization direction such that
the “down-spins” are filled and the “up-spins” partially unfilled. In the atomic model
we assume one “spin-up” hole and show the possible 2p core to 3d valence transitions
assuming circularly polarized light with angular momentum q. The fraction of “up-
spin” electrons excited from the p core shell through absorption of X-rays with
angular momentum q = ±1 is listed for the L3 and L2 edges. Here we have assumed
the X-rays to be incident parallel to the atomic magnetic moment m. We have
assumed a splitting of the p states by the exchange interaction, lifting the degeneracy
in mj . Note that this causes an opposite order of mj states for p3/2, l+s and p1/2, l−s
because of the opposite sign of s. Listed are the relative difference intensities which
can be obtained from Fig. 9.14 according to I‖−I⊥ = I0−(I++I−)/2. The absolute
difference intensities in units of AR2 are obtained by dividing the listed values by
a factor of 90

then consider electronic transitions from the spin–orbit split p core states to
the d minority spin states, as shown in Fig. 9.22. From our earlier discussion
we know that a magnetic linear dichroism can only exist if we can differentiate
transitions between states that are not spherically symmetric.

In our simple model we assume that the empty 3d density of minority
spin states is spherically symmetric, so that we describe the d shell simply
by an equal weighting of all spin-up di orbitals. Our assumption is reasonable
for band-like systems with cubic symmetry like Fe and Ni where an effec-
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tive averaging of the k-dependent states over the Brillouin zone leads to an
equal contribution of the di orbitals. In addition the spin–orbit interaction in
the 3d valence shell is small (∼ 50meV) compared to the exchange interac-
tion (1–2 eV) and for the moment we shall neglect it altogether. We shall see
later that the spin–orbit interaction in the valence shell actually leads to the
distinction of two kinds of magnetic linear dichroism.

From Fig. 9.21 we know that the total 2p core state is also spherically sym-
metric, and so are the two individual spin–orbit components 2p3/2 and 2p1/2.
However, the charge density of the individual mj substates are anisotropic.
Indeed, in a ferromagnet the exchange field (which only acts on the spin)
leads to a small exchange splitting of the mj substates of the 2p3/2 and 2p1/2

states, as discussed in Sect. 6.6.2 and shown in Fig. 9.22. For the 3d metals
the splitting between the individual mj states is rather small, of order 0.2
eV [390–392]. The spin enters in our model since only spin-conserving core-
to-valence transitions are allowed by the dipole transition operator.15

The XMLD difference intensity is obtained from two measurements with
E-vector parallel and perpendicular to the sample magnetization direction
M ,

∆IXMLD = I‖ − I⊥. (9.119)

A simple atomic-like model calculation which is similar to that carried
out in conjunction with Fig. 9.14, shows that an XMLD effect exists for the
various individual transition intensities as illustrated in Fig. 9.22. The XMLD
difference spectrum then consists of the sum of all the individual difference
intensities. Assuming magnetic alignment along the z-axis, the energy depen-
dent XMLD difference intensity is given by the difference of the intensities
measured for E ‖ z and E ⊥ z. With the dipole operators in Table A.4 we
obtain for example, for E along z and x,

∆IXMCD = AR2
∑

n,j,mj

∣∣∣〈dn, χ
+|C(1)

0 |pj ,mj〉
∣∣∣2

−1
2

∣∣∣〈dn, χ
+|C(1)

−1 − C(1)
+1 |pj ,mj〉

∣∣∣2 . (9.120)

The cross terms can be shown to vanish and by use of the short form (9.101)
we obtain the following expression for the XMLD difference intensity,

∆IXMLD =
1
2
AR2

∑
states

2|〈C(1)
0 〉|2 − |〈C(1)

−1 〉|2 − |〈C(1)
+1 〉|2 . (9.121)

15The effective charge asymmetry that enters into the transition matrix element
is actually not that of the j, mj core functions but that of their spherical harmonic
components. This comes about because the dipole operator only links the minority
(up-spin) projections of the p functions given by Y1,mχ+ (see Table A.5) to the
minority d valence states of the form Y2,Mχ+. However, the “spherical” harmonics
Y1,m with m = −1, 0, +1 are actually very anisotropic as shown in the upper right
inset of Fig. 9.21 (also see TableA.2).
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Fig. 9.23. The two methods to record XMLD spectra, called XMLD of the first and
second kind. XMLD of the first kind is measured with a fixed sample orientation rel-
ative to the linearly polarized X-rays, and the magnetization of the sample is rotated
between the easy and the hard directions by a sufficiently strong magnetic field. The
measured effect is a pure magnetic effect. XMLD of the second kind corresponds to
saturating the sample along the easy axis and measuring the absorption with the
easy axis either parallel or perpendicular to the E-vector. This can be done either
by rotating the E-vector relative to the sample, as shown, or the sample relative to
the E-vector. In all cases shown the measured intensities are labeled ‖ and ⊥, as
shown, with the XMLD signal defined by (9.119)

We shall come back to this expression later in conjunction with the resonant
magnetic scattering intensity in Sect. 9.8.

9.7.7 XMLD of the First and Second Kind

In the above discussion we have assumed that we have a sample of cubic
symmetry that is magnetically aligned. The assumption of cubic symmetry
eliminates any XNLD effect. This would also be true for a polycrystalline sam-
ple. In such cases the linear dichroism signal will only be due to a magnetic
effect, namely the charge deformation about the magnetic axis. In single crys-
tal samples with lower than cubic symmetry both XNLD and XMLD effects
can be present. The expressions for the general case when both natural and
magnetic dichroism effects are present are more complicated and have been
discussed by Carra et al. [378].

In principle we can eliminate any XNLD effect by performing a different
type of measurement as illustrated in Fig. 9.23. The two depicted types of
measurements explained in the figure caption are often referred to XMLD of
the first and second type, following Guo et al. [380].
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Although experimentally more demanding, the XMLD effect of the first
kind has the advantage that it eliminates the XNLD effect.16 It also contains
useful information on the magnetocrystalline anisotropy (MCA) as discussed
below. If the MCA of the sample is negligible and the sample has either cubic
symmetry or is polycrystalline the two types of XMLD measurements give
the same result. For example, polycrystalline films of the elemental ferromag-
nets typically have an in-plane easy axis and a weak in-plane anisotropy. In
lowest order it then does not matter whether we measure the XMLD effect
by either rotating the magnetization direction M with a field relative to the
fixed E-vector or whether we rotate E relative to the fixed magnetization
M . Therefore, our theory developed above should describe the experimental
XMLD spectra.

The lineshape predicted by our simple model is indeed observed as shown
in Fig. 9.24 [393, 394]. The measurements actually correspond to the XMLD
effect of the first kind.17 The size of the XMLD effect plotted in Fig. 9.24
corresponds to a per-atom normalization of the original spectra, with the edge
jump set to unity. The XMLD difference intensity is seen to be significantly
smaller than the corresponding XMCD effect in Fig. 9.12. This confirms the
expectations from our model calculation.

Despite the larger linewidth (∼1 eV) of the individual transitions than the
core exchange splitting (∼0.2 eV) the small energy shifts of the individual
components still have a pronounced effect on the measured XMLD line shape.
As shown in the bottom left inset of Fig. 9.22, the small energetic shifts of the
individual transitions leads to a pronounced differential resonance line shape
at both the L3 and L2. It arises from shifted positive and negative compo-
nents which, when added, give a similar differential lineshape from negative
to positive intensity for both edges. The same lineshape at the two edges is
a consequence of the fact that for the p3/2, (l + s) and p1/2, (l − s) levels
the signs of both s and mj are inverted as discussed already in Sect. 6.6.2 in
conjunction with Fig. 6.18. The intensity of the largest peak in the XMLD
(difference) spectrum in the inset of Fig. 9.22 is (4/90)AR2. This compares
to the value (2/9)AR2 for the XMCD difference, given by (9.96) or (9.97),
and indicates that the XMLD effect should be considerably smaller than the
XMCD effect. XMLD spectra can also be measured by analyzing the polariza-
tion of the X-rays rather than measurement of the absorption. Such magneto-
optical polarization spectroscopy, discussed in Sect. 8.7.4, can be performed in
several different geometries [395], and is complementary to X-ray absorption
spectroscopy.

16In antiferromagnets one can, in principle also “flop” the magnetization axis from
the easy into the hard direction, but typically very large fields are required.

17Note that the geometry used in reference [393] is opposite to the one shown
in Fig. 9.23 and therefore the measured difference denoted α⊥ − α‖ by the authors
actually agrees with our definition in (9.119).
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Fig. 9.24. X-ray absorption spectra and XMLD difference spectra for Co and Fe
metal [393]. The plotted intensities of the difference spectra correspond to I‖ − I⊥,
with the original spectra normalized to an edge jump of 1, far above the edges. The
measurements actually correspond to XMLD of the first kind, but because of the
weak magnetocrystalline anisotropy and the polycrystalline nature of the samples,
the difference between spectra of the first and second kind is negligibly small

XMLD of the first kind, which is measured by fixing the X-ray polar-
ization vector E along either the hard axis or easy axis and then rotating
the magnetic axis by 90◦ using a sufficiently strong external magnetic field,
avoids any natural linear dichroism contribution because only the magneti-
cally induced change in charge distribution is measured. In addition, we know
from Sect. 7.9.3 that the energy associated with the rotation of the magnetic
axis is the magnetocrystalline anisotropy ∆Eso. It is therefore not surprising
that XMLD measurements of the first kind can indeed measure the magneto-
crystalline anisotropy. This was first pointed out by van der Laan [396] who
also established a sum rule that links the magnetocrystalline anisotropy with
a linear combination of the XMLD intensity measured at the L3 and L2 edges,
according to

∆IL3 − 2∆IL2

〈IL3 + IL2〉
=

16
√

3
5 ζ3d

∆Eso

Nh
. (9.122)

Here ∆Eso is the magnetocrystalline anisotropy energy given by (7.50), ζ3d

the spin–orbit parameter defined in (6.87), Nh is the number of 3d holes, and
〈IL3 + IL2〉 is the white line intensity defined in (9.104). The sum rule was
experimentally verified by Dhesi et al. [394].

It is interesting to note that the magnetocrystalline anisotropy energy val-
ues derived from XMLD are significantly larger than the energies measured
with conventional methods. This is similar to the determination of the magne-
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tocrystalline anisotropy energies from the angular dependence of the orbital
moment, as discussed in Sect. 7.9.3. The origin for these discrepancies are not
understood [333,394].

Summary for the XMLD Intensity

We can summarize as follows.

X-ray magnetic linear dichroism, XMLD, arises from charge anisotropies
induced by the exchange and spin–orbit interactions relative to the easy
magnetic axis of the sample. The effect arises from uniaxial spin align-
ment and exists for both ferromagnets and antiferromagnets.

In practice, the measured magnitude of the XMLD intensity depends on
three important parameters,

– The degree of linear polarization Plin

– The expectation value of the square of the magnetic moment 〈m2〉
– The angle θ between the E-vector and the magnetic axis

This can be cast into the following general dependence of the XMLD intensity,

IXMLD ∝ Plin |m · E|2 ∝ Pcirc 〈m2〉 cos2 θ . (9.123)

In theory, one calculates the maximum linear dichroism effect by assuming
Plin = 1 and assuming two perpendicular measurements with E parallel and
perpendicular to m. In this case one obtains (9.121) for the XMLD difference
intensity. We can state as follows.

The XMLD difference intensity for a system with its magnetic axis along z
may be written in terms of angular matrix elements of the Racah spherical
tensors according to,

∆IXMLD =
AR2

2

∑
states

2|〈C(1)
0 〉|2 − |〈C(1)

−1 〉|2 − |〈C(1)
+1 〉|2 . (9.124)

The factor A is given by (9.61), and R is the radial transition matrix
element given by (9.81).

It is important to note the difference between the expectation value 〈m2〉
measured by XMLD and the quantity 〈m〉2 which can be determined by
XMCD [93]. The difference between the two quantities plays an important
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role in the temperature dependence of the XMLD intensity [93, 105, 106], as
discussed by Regan [284].18

9.7.8 Enhanced XMLD through Multiplet Effects

In our discussion above we have used a simple one-electron model which de-
scribes the electronic excitation of an “active” electron and ignores its coupling
to the other atomic electrons, which are therefore assumed to be “passive”. In
practice, such a model only works if correlation effects are small. The success
of our simple treatment of the XMLD effect in the magnetic transition metals
is largely based on the fact that they can be reasonably well described by
density functional theory which is largely based on an independent-electron
picture as discussed in Chapter 7.

For strongly correlated systems such as the transition metal oxides, we
have seen in Chapter 7 that multiplet effects have to be taken into account.
In particular we have discussed multiplet effects that arise from the coupling
between the electrons within the 3d valence shell. Such coupling leads to 2S+1L
ionic terms that are furthermore split by the ligand field and the exchange
and spin-orbit interactions. The electronic ground state is the lowest-energy
state. For such systems one can no longer describe X-ray absorption in a
one-electron model but one needs to use a configuration based approach, as
discussed in Sect. 9.5.1.

For 3d transition metals, the configuration picture calculates the X-ray
absorption spectrum as transitions from the electronic ground to an excited
configuration [266,267,397,398]. The electronic ground configuration consists
of a filled 2p6 core shell and a 3dN shell with N electrons. In the final config-
uration one electron has been removed from the core shell and added to the
3d shell. We have the electron excitation scheme,

Electron excitation picture: 2p6 3dN → 2p5 3dN+1. (9.127)

If the 3d shell is more than half full it simplifies things to use the concept of
holes instead of electrons. This is possible because we have learned in Sect. 6.5
that for a given shell the Coulomb and exchange interactions can be equiva-
lently treated in either an electron or hole picture if we take care of signs. For

18The two quantities, 〈m2〉 and 〈m〉2 are related by the magnetic susceptibility
χ and temperature T according to

〈m2〉
µ0

=
〈m〉2
µ0

+ kBTχ. (9.125)

If the susceptibility χ is not known one may use a molecular field expression to relate
the two expectation values according to [93]

〈m2〉 = g2
Jµ2

BJ(J + 1) − gJµB〈m〉 coth
(

gJµBHext

2kBT

)
. (9.126)
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example, Hund’s third rule states that the spin–orbit interaction changes sign
and the LF splitting is upside down as shown in Fig. 7.16. With these rules
we can use instead of (9.127) the following hole excitation scheme,

Hole excitation picture: 2p0 3d10−N → 2p1 3d9−N . (9.128)

We can state as follows.

L-edge spectra for multielectron 3dN valence systems may be derived by
considering either electron or hole configurations. The two schemes give
the same 2S+1L free ion multiplets but the sign of the spin–orbit and LF
splittings have to be inverted.

The simplest case involves initial (ground) and final (excited) configura-
tions with only two particles. It is encountered for NiO which has a (predom-
inantly) 2p6 3d8 ground state and a 2p5 3d9 excited state configuration. The
hole picture involves a p0 d2 ≡ d2 ground and 2p1 3d1 ≡ 2p 3d final configura-
tion. Hence we see that in this case the hole picture is simpler and involves
the interactions between two-holes, both in the initial and final configurations.
The X-ray absorption spectrum then corresponds to transitions between these
two configurations. Let us take a look at the electronic states involved in the
corresponding L-edge X-ray absorption spectrum.

The energy states involved in the L-edge transitions for Ni2+ in an octa-
hedral ligand field (e.g., NiO) are shown in Fig. 9.25. The electronic ground
configuration 2p63d8 (p0 d2 ≡ d2 hole state) consists of a filled 2p core shell
and 8 electrons in the 3d shell which are coupled by the strong Coulomb
and exchange interactions (total splitting about ∼5 eV), resulting in a 3F
free ion ground state which lies below the next higher states (1D,3 P ) by
about 2 eV [266]. The 3F state is split by the LF as shown in Fig. 7.16
(10Dq � 1.5 eV) with a lowest energy 3A2g orbital singlet state with a spin
S = 1, corresponding to a spin moment of 2µB and a quenched orbital mo-
ment. From Table 7.7 we see that the d8(3A2g, t

6
2ge

2
g) ground state can be

thought of as two holes of the same spin in the two eg orbitals d3z2−r2 and
dx2−y2 . According to Table A.2 these d orbitals correspond to the spherical
harmonics Y2,0 and Y2,±2, respectively. Thus the 3A2g state can be written as
products of the two one-electron functions Â(Y2,0 Y2,±2), where Â means that
the product has been properly antisymmetrized, i.e., is a Slater determinant.
With the angular momentum addition rulesML = m1

� +m2
� , wheremi

� = 0,±1
are the magnetic quantum numbers of the two electrons, one can then see that
the state 3A2g has the form

|3A2g〉 ∼ |Â(Y2,0 Y2,±2)〉 ∼ |3F ,ML =±2,MS〉. (9.129)

The 3A2g state is further split by the superexchange interaction. The exchange
field felt by the Ni2+ ion consists of the sum over the six nearest neighbors [399]
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Fig. 9.25. Illustration of the electron states involved in the L-edge transitions for
Ni2+ in an octahedral ligand field (e.g., NiO) as discussed in the text. The 2p6 3d8

electronic ground state configuration, corresponding to a 2p0 3d2 ≡ 3d2 hole config-
uration, is coupled by the strong Coulomb and exchange interactions to a 3F free
ion ground state which is split in an octahedral LF, resulting in a lowest energy
3A2g ground state. The 2p5 3d9 electronic final state configuration (2p 3d hole con-
figuration) is dominated by the strong 2p core spin–orbit interaction, as shown on
the right. In practice, the two-hole final states are described by an “intermediate”
coupling scheme, indicated by the dotted vertical line. These states may be written
as linear combinations of L−S coupling (left) or j − j coupling states (second from
right), whose correspondence may be seen by means of the common J states (second
from left) [182]. We have also listed the dipole selection rules in L–S–J coupling

and is about 0.15 eV. It aligns the atomic moments into an antiferromagnetic
arrangement, as shown in Fig. 7.25. Together with the even weaker spin–orbit
interaction (ζ3d ∼ 50meV) it leads to a magnetic splitting of the 3A2g state,
where the lowest energy state may be written in the form19

19The 3d spin–orbit interaction also mixes the 3A2g LF ground state with the
higher energy 3T2g and 3T1g LF states, resulting in a small orbital moment.
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|GS〉 =
∑

J=4,3,2
MJ

aJ,MJ
|3FJ ,MJ 〉 . (9.130)

The 2p 3d hole final configuration of the electronic excitation cannot sim-
ply be treated in L–S coupling because the largest interaction is the spin–
orbit coupling for the 2p hole, which leads to a 2p3/2−2p1/2 splitting of about
15 eV, and is larger than the 2p 3d Coulomb and exchange interaction (∼5 eV).
Hence the final state corresponds to a coupling scheme [182] that is “interme-
diate” between that where the Coulomb and exchange interaction is turned
off, schematically shown on the right side of Fig. 9.25 and the L–S scheme
shown on the left side. For reference we also show a j–j coupling scheme,
assuming a small spin–orbit interaction in the 3d shell. In general, there are
n energetically different final states which form two separate spin-orbit split
groups and within each group exhibit multiplet structure. They can also be
written as linear combinations of |L, S, J,MJ 〉 states according to20

|FS〉n =
∑

J=4,3,2
MJ

bnJ,MJ
|3FJ ,MJ 〉 +

∑
J=3,2,1

MJ

cnJ,MJ
|3DJ ,MJ 〉 . (9.131)

The fine structure of the L-edge absorption spectrum calculated by van der
Laan and Thole [402] for a 3d8 electronic ground state and different strengths
of the spin–orbit and Coulomb interactions in the 2p53d9 final state is shown in
Fig. 9.26a. Here the evolution of the spectrum is shown between two extreme
cases. If the Coulomb and exchange interactions are zero, the spectrum (top
trace) shows one-electron like behavior with two peaks separated by the 2p
spin–orbit splitting. In the other extreme of zero 2p core spin–orbit splitting
but strong Coulomb and exchange splitting, the spectrum (bottom trace) is
that calculated in pure L–S coupling. It consists of two peaks, corresponding
to the allowed (∆S=0,∆L=0,±1) transitions 3F → 3D and 3F → 3F . In the
intermediate region, where both the 2p core spin–orbit and 2p–3d Coulomb
and exchange splitting are present, a more complicated L-edge spectrum is
found. The situation encountered in practice for Ni2+ in octahedral symmetry
is indicated by an arrow on the left, and the calculated spectrum is shown in
Fig. 9.26b [402]. The agreement with experiment demonstrates the power of
multiplet calculations.

The enhancement of the XMLD effect in the presence of multiplet splitting
arises from the same physical principle as in the one-electron case. An XMLD
effect will only exist if the exchange and spin–orbit interactions break the
spherical symmetry in either or both of the initial and final states involved
in the electronic transitions. The origin of the magnetically induced charge

20In general, one can always express functions written in one coupling scheme as
a linear combination of functions written in another coupling scheme. In practice,
this is done today by use of the elegant scheme developed by Racah [400] and
Wigner [401], which is treated in detail by Cowan [182] and Shore and Menzel [181].
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Fig. 9.26. (a) Calculated L-edge transition probability from a 2p6 3d8 configura-
tion with a 3F free ion ground state to the 2p5 3d9 electronic final state configura-
tion [402]. The horizontal scale corresponds to excitation energy, while the 2p–3d
Coulomb and exchange interaction U(p, d) and the 2p spin–orbit coupling ζp are var-
ied vertically. The top trace correspond to pure 2p spin–orbit coupling (U(p, d) = 0)
and the lowest trace to pure L–S coupling (ζp = 0). The case corresponding to
experiment is marked with an arrow on the left side. (b) Experimental (dotted line)
and calculated L-edge spectra (data points) for Ni oxalate [402]

asymmetry in the ground state (9.130) and the excited states (9.131) is best
seen by realizing that any multiplet state |2S+1LJ〉 = |L, S, J〉 is spherically
symmetric, similar to the one-electron case shown in Fig. 9.21. Only when the
MJ -degeneracy is lifted through magnetic interactions do the |L, S, J,MJ 〉
substates exhibit a charge asymmetry.

Both the ground state (9.130) and the excited states (9.131) are seen
to consist of a linear combination of MJ substates, weighted by coefficients
aJ,MJ

, bnJ,MJ
, and cnJ,MJ

and are therefore, in general, not spherically symmet-
ric. In addition, the dipole operator couples the MJ -states in the ground state
and the M ′

J states in the excited states differently for linearly polarized light
along z, namely M ′

J −MJ = 0, and for linearly polarized light perpendicu-
lar to z, namely M ′

J −MJ = ±1. One may summarize the reasons for the
enhanced XMLD effect in spectra with multiplet effects as follows.
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The XMLD effect is enhanced in the presence of multiplet effects for the
following reasons:

– The X-ray absorption spectrum for a sample with a 2p63dN , 1<N<9,
ground configuration consists of several resonances that are due to the
multiplet structure of the final configuration 2p53dN+1.

– In general, for magnetically aligned samples both the electronic
ground state of the 2p63dN ground configuration and the excited
states of the final configuration 2p53dN+1 are not spherically sym-
metric.

– The dipole operator selects and weights the various resonant transi-
tions depending on the light polarization, often with opposite intensity
changes for energetically separated resonances.

The XMLD effect measured for a thin epitaxial NiO film grown on
MgO(100) is shown in Fig. 9.27 [403]. In this case the XMLD effect arises
from the preferential alignment of the antiferromagnetically coupled spins
perpendicular to the film surface. In comparison, the results of a multiplet
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Fig. 9.27. Experimental (dotted line) polarization dependent Ni L-edge spectra
for a 20 monolayer (ML) thick epitaxial NiO(100) film grown on MgO(100) [403],
measured at room temperature. The angle θ = 90◦ corresponds to normal incidence
with E in the plane of the film and θ = 15◦ to grazing incidence with E nearly
along the surface normal. The theoretical spectra (solid line) were calculated with a
multiplet theory including an octahedral LF and assuming an exchange interaction
along a magnetic axis that lies nearly perpendicular to the surface along 〈±2±1±1〉
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calculation are also shown. They are found to be in good agreement with the
data. Particularly important is the strong change of the two peaks A and B
associated with the L2-edge. By comparison of experiment and theory one can
establish the following rule: when the E-vector is aligned along the magnetic
axis the higher energy peak B has maximum intensity. The peak intensity
ratio is often used to determine changes in the orientation of the magnetic
axis [105,403–405].

The magnetic origin of the observed linear dichroism effect may be proven
by heating the sample above the Curie temperature, as illustrated for stron-
tium doped LaFeO3 in Fig. 9.28. If about 40% of the La atoms are replaced by
Sr, the high Néel temperature of LaFeO3 (1013 K) is reduced to around 200 K.
The Fe L2,3 NEXAFS spectra of such a La0.6Sr0.4FeO3 sample recorded below
and above the Néel temperature are plotted in Fig. 9.28a, b, respectively. The
spectra recorded at 100 K, well below the expected Néel temperature, reveal
the presence of a strong polarization dependence, which completely vanishes
in case of the room temperature spectra. This clearly demonstrates the purely
magnetic origin of the linear dichroism observed for La0.6Sr0.4FeO3 below its
Néel temperature.

Both LaFeO3 (see Fig. 10.9) and La0.6Sr0.4FeO3 have the same crystal
structure with six oxygen atoms surrounding each Fe atom. Since the oxy-
gens have a higher electronegativity than Fe, LaFeO3 is an ionic compound in
which Fe has a valency of 3+ and a d5 high spin ground state. Correspond-
ingly, the rich fine structure of the spectra can be explained by a multiplet
calculation performed for an Fe3+ ion in a high-spin ground state [407], which
considers the multiplet coupling of the five Fe 3d valence electrons (or holes)
in the ground state, and the multiplet coupling of the four 3d holes and the
2p core hole in the final state. The oxygen ligands surrounding the Fe3+ ion
give rise to an octahedral crystal field, which is taken into account via the
cubic 10Dq crystal field parameter. In general, more than one multiplet state
contributes to each of the peaks in the absorption spectrum. Since these dif-
ferent states typically differ in their polarization dependence, the intensities
of the absorption structures typically vary between two finite extreme values
and do not vanish completely for any orientation of the electric field vector
relative to the AFM axis.

9.7.9 The Orientation-Dependent Sum Rules

In Sect. 9.6.5 we established relationships between orientation-averaged X-
ray absorption resonance intensities and physical quantities which represent
averages over the atomic volume, like the number of valence holes per atom
and the atomic spin and orbital moments. It turns out that these orienta-
tion averaged sum rules are integrated versions of more general orientation-
dependent sum rules. The latter link the intensities of orientation-dependent
XNLD, XMLD, and XMCD spectra to the same atomic-volume integrated
physical quantities plus an orientation-dependent term related to the quadru-
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Fig. 9.28. Saturation corrected electron yield spectra at the Fe L2,3-edge of
La0.6Sr0.4FeO3, grown as a 40 nm thin La0.4Sr0.6FeO3 film on a SrTiO3(110) sub-
strate, for the two indicated geometries, (a) below and (b) above the Néel temper-
ature. The absence of any dichroism above the Néel temperature demonstrates the
magnetic origin of the linear dichroism effect observed below the Néel temperature.
Spectra taken from Lüning et al. [406]

pole moment. The orientation-dependent term simply integrates to zero when
an orientational average is performed.

In the context of this book we restrict our discussion to the generalized
form of three sum rules of Sect. 9.6.5. In particular, we simply state their
form since a more detailed discussion has been given elsewhere [102,333,384,
408]. Also, there are other sum rules for the case of XMLD, and we refer the
interested reader to the original papers [378,382,383].
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When generalized, the charge sum rule (9.103) takes the form (9.117) or
A.31 which we can write in simplified form as (see Appendix A.8),

[ IL3 + IL2 ]α = C(Nh +Nα
Q). (9.132)

We have characterized the anisotropy by an index α that specifies the orien-
tation of E (linear polarization) or k (circular polarization). The sum rule
correlates the polarization dependent white line intensity with the total num-
ber of d holes Nh and a quadrupole term Nα

Q which expresses the anisotropy
of the charge density in the atomic volume as discussed in Sect. 9.7.4 and
Appendix A.8. The term Nα

Q vanishes when an angular average is performed,∑
αN

α
Q = Nx

Q +Ny
Q +Nz

Q = 0 yielding the isotropic sum rule (9.103).
For 3d compounds the spin sum rule (9.105) originally derived by Carra

et al. [101] takes the general form [102,408]

[−A+ 2B]α =
C

µB
(ms +mα

D) . (9.133)

We see that its form closely resembles the charge sum rule, and in fact its
derivation in a one-electron model proceeds along the same lines as that of
(9.132). In general, the termmα

D arises from the anisotropic spin density in the
atomic volume. It is given bymα

D = −7〈Tα〉µB/h̄ [408] where T = S−3r̂(r̂·S)
is the intra-atomic magnetic dipole operator [101]. In general we have Tα =∑

β QαβSβ , so that the charge (expressed by the quadruple operator Q, see
Appendix A.8) and spin (S) components of T are coupled. If the atomic spin–
orbit coupling is comparable to the ligand field effects experienced by the
magnetic atom, the charge distribution is no longer decoupled from the spin
distribution and in this case the term mα

D is always present in addition to
the spin moment. This provides a problem since the spin moment cannot be
independently determined. We shall not discuss this difficult case here but
refer the reader to references [409–411].

If the spin–orbit coupling is weak relative to the ligand field effects, the
atomic spin density closely follows the atomic charge density. The term mα

D is
then mainly determined by the anisotropy of the charge due to bonding and
it may be eliminated by three orthogonal measurements, provided the ligand
field symmetry is not too low [102,333].

Many 3d compounds fall in this category since the spin–orbit coupling is
small. In this case there is more than a formal similarity between the charge
sum rule (9.132) and the spin sum rule (9.133). In this case the total number of
holes, Nh, and the charge density term, Nα

Q in (9.132), are simply replaced by
the isotropic spin moment, ms, and a spin density termmα

D = (7/2)
∑

iQ
i
αm

i
s

in (9.133), respectively. The latter consists of a sum over the di-orbital pro-
jected spin moments mi

s and the quadrupole matrix elements Qi
α of the di-

orbitals defined in (A.32). This term is nonzero in anisotropic bonding envi-
ronments and reflects the fact that the number of spins in the atomic volume
differs along different crystallographic (bonding) directions. Polarized X-rays
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therefore offer the capability of probing the angular distribution of the spins
in the atomic volume, whereas conventional magnetometry only probes the
integrated number of spins, i.e., the essentially isotropic spin moment per
atom. For small spin–orbit coupling, the term mα

D vanishes when an angular
average is performed because of its link to the quadrupole moment. We then
have (1/3)

∑
αm

α
D = 0, and the isotropic sum rule (9.105) is obtained. The

angular average requires that in all measurements the sample is magnetically
saturated by a strong external magnetic field along the X-ray propagation
direction.

Finally, we discuss the general orbital moment sum rule. When an XMCD
measurement is performed for a given sample orientation in the presence of
an external magnetic field which is sufficiently large to magnetically saturate
the sample along the X-ray propagation direction k, the orbital moment mα

o

along the field direction α can be directly determined by use of the sum rule

−[A+B]α =
3C
2µB

mα
o . (9.134)

Note that in contrast to the quantities Nh and ms which by definition cor-
respond to isotropic atomic quantities, the orbital moment mα

o is in general
anisotropic, as discussed in Sect. 7.9.3. We have also seen in that section that
the difference between the orbital moments measured along the easy and hard
magnetization directions is related to the magnetocrystalline anisotropy.

9.8 Magnetic Dichroism in X-ray Absorption and
Scattering

We conclude this chapter by connecting the magnetic dichroism effects ob-
served in X-ray absorption and resonant scattering. We have seen in Sect. 9.4.2
that the X-ray absorption cross-section is given by the imaginary part f2(E) =
F ′′(E) of the resonant forward scattering factor F (E), according to the optical
theorem (9.49) or

σabs(E) = 2 r0 λ Im[F (Q, E)]Q=0 =
C∗

E
f2(E) , (9.135)

where C∗ = 2h c r0 = 0.70× 108 b eV. This general relationship also holds for
dichroic absorption and scattering. For example, if we measure the XMCD
absorption cross-section σabs(E) we can use the Kramers–Kronig transfor-
mation to obtain the dichroic scattering factors, and by their use we obtain
the resonant scattering cross-section in the long-wavelength limit according
to (9.48) or

σscat = σe

(
[f1(E)]2 + [f2(E)]2

)
. (9.136)

As an example we show in Fig. 9.29 the L-edge dichroic absorption and scat-
tering cross-sections for Fe metal, using the data of Kortright and Kim [353].
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Fig. 9.29. Fe L-edge XMCD cross-sections for the absorbed and elastically scattered
intensity [353]. The shown cross-sections are the polarization-dependent versions of
those in Fig. 9.6 in the presence of magnetic alignment

The plot is the dichroic version of that in Fig. 9.6. The figure shows that mag-
netic effects are prominent both in X-ray absorption and resonant scattering.

In Sect. 9.5.3 we have stated the quantum mechanical results for the X-ray
absorption cross-section, given by (9.59), and the resonant scattering cross-
section in the long-wavelength limit, given by (9.63). We now want to establish
the link between these expressions, which in essence constitutes the proof of
dichroic version of the optical theorem (9.49).

9.8.1 The Resonant Magnetic Scattering Intensity

We start with expression (9.63) for the differential cross-section for the reso-
nantly scattered intensity in the dipole approximation, i.e.,

(
dσ
dΩ

)scat

= r20 |F (h̄ω)|2 =
h̄2ω4

c2
α2

f

∣∣∣∣∣
∑

n

〈a|r · ε∗2|n〉〈n|r · ε1|a〉
(h̄ω − En

R) + i(∆n/2)

∣∣∣∣∣
2

. (9.137)

For a magnetic sample, we define the z quantization axis to lie along the
magnetization direction. One can then express the double matrix element in
terms of matrix elements of spherical tensors C(1)

q (q = 0,±1) and products
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involving the unit polarization vectors and the unit vector m̂ = ez according
to [412]

〈a|r · ε∗2|n〉〈n|r · ε1|a〉 =
R2

2
[
(ε∗2 · ε1)

{
|C+1|2 + |C−1|2

}
+ i(ε∗2 × ε1) · m̂

{
|C−1|2 − |C+1|2

}
+ (ε∗2 · m̂)(ε1 · m̂)

{
2|C0|2 − |C−1|2 − |C+1|2

}]
,

(9.138)

where R = 〈a|r|n〉 is the radial transition matrix element and the factors
|Cq|2 are dipole matrix elements of the Racah spherical tensors given by

|Cq|2 = |〈a|C(1)
q |n〉|2. (9.139)

This gives the following key result for the resonant magnetic scattering factor,
defined in (9.20) [365,412].

The elastic resonant magnetic scattering factor in units [number of elec-
trons] is given by

F (h̄ω) =
h̄ω2αfR2

2cr0

⎡
⎢⎢⎣(ε∗2 · ε1)G0︸ ︷︷ ︸

charge

+ i(ε∗2 × ε1) · m̂G1︸ ︷︷ ︸
XMCD

+ (ε∗2 · m̂)(ε1 · m̂)G2︸ ︷︷ ︸
XMLD

⎤
⎥⎥⎦ ,

(9.140)

where αf is the dimensionless fine structure constant given by (9.62), R2

the radial transition matric element, r0 the classical electron radius, and

G0 =
∑

n

|〈a|C(1)
+1 |n〉|2 + |〈a|C(1)

−1 |n〉|2
(h̄ω − En

R) + i(∆n/2)
, (9.141)

G1 =
∑

n

|〈a|C(1)
−1 |n〉|2 − |〈a|C(1)

+1 |n〉|2
(h̄ω − En

R) + i(∆n/2)
, (9.142)

and

G2 =
∑

n

2|〈a|C(1)
0 |n〉|2 − |〈a|C(1)

−1 |n〉|2 − |〈a|C(1)
+1 |n〉|2

(h̄ω − En
R) + i(∆n/2)

. (9.143)

The first term in (9.140) is independent of the magnetic moment. The
numerator of G0 has the form of the natural linear dichroism intensity given
by (9.112) for linear polarization and (9.113) for circular polarization. As in-
dicated in (9.140) it describes the resonant scattering from a spherical charge
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distribution. The polarization dependence (ε2 · ε1) is the same as for Thom-
son scattering. The scalar product is finite only if the incident and scattered
polarizations are collinear, that is the photon polarization is not rotated upon
scattering.

The second term has a linear dependence on the magnetic moment and the
numerator of the matrix element G1 has the same form as (9.102), describing
XMCD. It therefore describes magnetic circular dichroism. The polarization
dependence is (ε2 × ε1) so that the polarization is rotated on scattering.

The third term is quadratic in the magnetic moment and the matrix ele-
ments in G2 are of the same form as those for XMLD given by (9.124). Hence
the term describes magnetic linear dichroism. The polarization dependence is
more complicated and in general the polarization is partially rotated in the
scattering process.

9.8.2 Link of Magnetic Resonant Scattering and Absorption

In order to establish the link between the imaginary part f2(h̄ω) of the
magnetic resonant scattering factor and the X-ray absorption cross-section
σabs(h̄ω), we start from F (h̄ω) given by (9.137). For simplicity we restrict
ourselves to one well-defined resonant transition via a state |n〉 = |b〉 so that
we can drop the sum. This gives

F (h̄ω) =
h̄ω2

cr0
αf

〈a|r · ε∗2|b〉〈b|r · ε1|a〉
(h̄ω − Eba) + i(∆b/2)

. (9.144)

where Eba = Eb − Ea is the resonant energy and ∆b is the FWHM of the
intermediate state.

We now want to prove the relationship (9.135). Without dealing with the
different polarization cases, which we shall do later, let us quickly see how the
scattering factor transforms into the absorption cross-section. If we assume
that the unit polarization vectors are real and consider forward scattering so
that ε1 = ε2 = ε we get 〈a|r · ε|b〉〈b|r · ε|a〉 = |〈b|r · ε|a〉|2. Next we rewrite
the denominator in (9.144) as a real and imaginary part

1
(h̄ω− Eba)+i(∆b/2)

=
h̄ω−Eba

(h̄ω−Eba)2+(∆b/2)2
−iπ

2
π∆b

(∆b/2)2

(h̄ω−Eba)2+(∆b/2)2︸ ︷︷ ︸
ρ(Eb)

.

(9.145)

The imaginary term denoted by an under-bracket represents a normalized
Lorentzian of unit area and dimension [1/energy] according to Appendix A.9.
As indicated we can use this function to represent the density of states ρ(Eb)
associated with the intermediate state |b〉. By substituting into (9.144) and
with h̄ω = E we obtain the desired result
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Im[F (h̄ω)] = f2(h̄ω) =
πω

cr0
αf h̄ω |〈b| ε · r|a〉|2 ρ(Eb) .

=
ω

4πcr0
σabs(h̄ω) =

h̄ω

2h c r0
σabs(h̄ω) =

E

C∗ σ
abs(h̄ω) . (9.146)

Here we have used (9.59), with implicit requirement of the energy conserving
δ-function. Our result (9.146) constitutes a quantum mechanical proof of the
optical theorem (9.49), extended to magnetic systems. Let us now take a closer
look at the detailed polarization-dependent terms in the resonant magnetic
scattering factor given by (9.140).

Linear Polarization

For linearly polarized incident X-rays, ε is real and only the first and third
terms are nonzero. By use of (9.145) we obtain from (9.140)

f2(h̄ω) =
h̄ω

2hcr0︸ ︷︷ ︸
E/C∗

4π2αf h̄ω︸ ︷︷ ︸
A

R2 ρ(Eb)

⎡
⎢⎢⎢⎣

1
2
{
|C+1|2 + |C−1|2

}
︸ ︷︷ ︸

charge

+
1
2
|ε · m̂|2

{
2|C0|2−|C−1|2−|C+1|2

}
︸ ︷︷ ︸

XMLD

⎤
⎥⎥⎦ .

(9.147)

In comparing the terms labelled “charge” and “XMLD” to the relevant ex-
pressions for the X-ray absorption intensities we need to ignore the conversion
factor E/C∗ and integrate the density of states factor ρ(Eb) over energy which
per our definition gives unity (see Appendix A.9). Our result for the charge
term is then found to be identical to the X-ray absorption intensity for linear
polarized X-rays given by (9.112). Since the result does not depend on the
orientation of the polarization vector ε in space, we see that this term reflects
absorption by a spherically symmetric charge density.

The XMLD term is identical to our previous result given by (9.124) if we
take the difference of the intensities for ε ‖ m̂ and ε ⊥ m̂ according to (9.119).
This establishes the link between the resonant scattering factor in the forward
scattering geometry and the XMLD absorption intensity.

Circular Polarization

For incidence along the z quantization axis, circularly polarized X-rays with
positive and negative helicity are described by (5.35) and (5.36) or
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ε± = ∓ 1√
2

(εx ± iεy) , (9.148)

Defining εx × εy = εz = k0, where k0 is the unit vector in the direction of
X-ray propagation, we have

i
[
(ε±)∗× ε±

]
= ∓k0 , (9.149)

meaning that for positive helicity light the cross product gives −k0 and for
negative helicity light +k0. We obtain from (9.140),

f2(E) =
E

C∗AR2 ρ(Eb)

⎡
⎢⎢⎢⎣

1
2
{
|C+1|2 + |C−1|2

}
︸ ︷︷ ︸

charge

∓(k0 · m̂)
1
2
{
|C−1|2−|C+1|2

}
︸ ︷︷ ︸

XMCD

⎤
⎥⎥⎥⎦.

(9.150)

The charge term is equivalent to the natural linear dichroism intensity given
by (9.112) for linear polarization and (9.113) for circular polarization. Since
it does not depend on the orientation of the polarization vector ε in space it
represents the resonant scattering from a spherical charge distribution.

If we form the difference between intensities measured with left and right
circular polarization according to our XMCD definition (9.95), the charge
term drops out and we obtain

∆f2(E) = f−2 (E) − f+
2 (E) =

E

C∗AR2 ρ(Eb)
{
|C−1|2−|C+1|2

}
. (9.151)

Without the conversion factor E/C∗ and after energy integration this result
is identical to that derived earlier in (9.102).

In Chap. 10 we shall explore through experiments the theoretical concepts
developed earlier.
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X-rays and Magnetism: Spectroscopy and
Microscopy

10.1 Introduction

The goal of the present chapter is to give an overview of experimental X-ray
techniques for the determination of the magnetic properties of matter. While
it will be advantageous for the reader to have worked through the theoreti-
cal concepts developed in Chap. 9, the present chapter is mostly written from
an experimentalist’s point of view. The chapter may therefore be understood
without having mastered the detailed theory of Chap. 9. To facilitate this task,
we will present a short summary of the concepts underlying the various X-ray
dichroism effects in Sect. 10.2. We will then focus on experimental procedures,
data analysis techniques, and the relation of X-ray resonance intensities with
magnetic quantities, for example the link between X-ray absorption intensities
and magnetic moments. In all cases we illustrate the concepts by experimen-
tal results. Our treatment reflects the fact that polarized X-ray techniques
have become of considerable importance for the study of magnetic phenomena
and materials, owing to their elemental, chemical, and magnetic specificity.
We will show here that spectroscopic and microscopic results may be linked
to magnetic properties of interest by simple analysis procedures.

We highlight X-ray absorption techniques, both spectroscopy and spectro-
microscopy, because of their simplicity and direct link to magnetic properties.
We also touch on X-ray scattering, in particular, the use of resonant coher-
ent techniques for magnetic imaging. Absorption and scattering are related
as discussed in Sect. 9.8. In practice, the resonantly scattered intensity can
always be obtained by the Kramers–Kronig transformations as discussed in
Sect. 9.4.4. We shall not specifically discuss reflectivity experiments, which are
closely related to scattering experiments and, like the magneto-optical Kerr
technique, may conveniently be used for magnetic characterization [358–361].
In contrast to X-ray absorption, however, scattering and reflectivity experi-
ments contain information on both the absorptive and refractive part of the
refractive index n(ω) (see (9.1), (9.6), and (9.7)) and the analysis is there-
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fore more complicated. In particular, care has to be exercised regarding the
measured sign of the dichroism signal [358,361].

Two types of X-ray absorption spectroscopy are often distinguished. The
first is concerned with the study of resonances near the absorption edges, often
called near edge X-ray absorption fine structure (NEXAFS) [189] or X-ray
absorption near edge structure (XANES) [413]. The near edge fine structure
originates from transitions between a core state and localized valence states.
For the transition metals, for example, we are mostly interested in dipole
transitions from 2p core to 3d valence states. The intensity of such transitions
provides direct information on the magnetic properties of the important d
valence electrons and represents the most powerful use of X-ray absorption
spectroscopy for the study of magnetic materials.

The second type of spectroscopy deals with nonresonant absorption and is
typically called the extended X-ray absorption fine structure (EXAFS) [413].
Magnetic EXAFS, which exists in the region starting tens of eV above the
absorption edge, originates from spin-dependent scattering of the excited pho-
toelectron off the magnetic neighbors and may be useful for studies of the local
magnetic structure [414, 415]. We shall not treat it here because we believe
resonant effects to be more important.

The structure of the chapter is as follows. We first give a quick overview
over the four most important dichroism effects and how they manifest them-
selves in measured spectra. The rest of the chapter consists of two major parts,
dealing with spectroscopy and microscopy. We first discuss experimental pro-
cedures for polarization dependent X-ray absorption spectroscopy, data analy-
sis methods and present selected results. We concentrate on spectroscopic
studies of the 3d transition metals, using their L absorption edges. We then
turn to magnetic microscopy with X-rays, better called “spectro-microscopy”,
because the method combines the principles of spectroscopy such as changes
of X-ray energy and polarization with imaging methods. Both real space imag-
ing methods and reciprocal space methods such as holography are discussed
and illustrated by examples.

10.2 Overview of Different Types of X-ray Dichroism

The term “dichroism” needs a short explanation. We have learned in Chap. 9
that historically, the term dichroism specifically referred to polarization depen-
dent absorption of light. On a microscopic level the origin of dichroic behavior
of a material originates from the spatial anisotropy of the charge or the spin.
In cases where the spins are not aligned and the effect depends on charge,
only, one speaks of charge or “natural” dichroism.
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X-ray “natural” dichroism refers to the absence of spin alignment.

– X-ray natural linear dichroism – XNLD – is due to an anisotropic
charge distribution. The effect is parity even and time even.

– X-ray natural circular dichroism – XNCD – may be present for
anisotropic charge distributions that lack a center of inversion. The
effect is parity odd and time even.

If the origin of dichroism is due to preferential spin alignment or magnetic
order one speaks of magnetic dichroism. We distinguish directional spin align-
ment, as in a ferromagnet or ferrimagnet, from axial spin alignment as in a
collinear antiferromagnet. The term “directional” is more restrictive since a
directional alignment is also axial, but not vice versa. There are two important
types of magnetic dichroism.

X-ray “magnetic” dichroism is due to spin alignment and the spin–orbit
coupling.

– X-ray magnetic linear dichroism – XMLD – arises from a charge
anisotropy induced by axial spin alignment. The effect is parity even
and time even.

– X-ray magnetic circular dichroism – XMCD – arises from directional
spin alignment. The effect is parity even and time odd.

There are other more complicated types of “magnetic” dichroism where
charge and spin effects are both present [88,416]. For example, X-ray magne-
tochiral dichroism arises from axial spin alignment and a chiral charge distri-
bution and the effect is parity odd and time odd [417]. X-ray nonreciprocal
linear dichroism arises from charge chirality that is induced by an axial spin
alignment and the effect is parity odd and time odd [418]. We shall not dis-
cuss these cases here. Rather we shall first give a summary of the four kinds
of natural and magnetic dichroism highlighted by the boxes above and then
specifically treat the three cases of XNLD, XMLD, and XMCD. It turns out
that these three types of dichroism are connected and in contrast to XNCD
they all arise within the dipole approximation.

The simplest case of dichroism which has been extensively discussed in the
book NEXAFS Spectroscopy [189] is X-ray natural linear dichroism, XNLD,
due to anisotropic bonding. The most beautiful examples of XNLD are found
in covalently bonded systems, such as organic molecules and polymers, where
the bonding is directional. Often a simple picture, called the “search light
effect”, can be used to predict the angle-dependent intensity associated with
a transition of a core electron to an empty molecular (valence) orbital. If the E
vector points into the direction of maximum density of the empty molecular
orbital (one could say “hole” density), the transition is strongest, and it is
weakest for E perpendicular to the orbital density. An example is shown in
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Fig. 10.1. Four important types of dichroism. (a) X-ray natural linear dichroism
spectra of La1.85Sr0.15CuO4 near the Cu L-edge [419]. The resonances are due to
transitions to the highest energy unfilled dx2−y2 orbital. (b) X-ray absorption spec-
trum (red) of single crystal LiIO3 and the difference spectrum (gray), the X-ray
natural circular dichroism spectrum, obtained from absorption spectra with left and
right circularly polarized X-rays, incident along a special crystalline axis [420]. (c)
Magnetic linear dichroism spectrum of an epitaxial thin film of antiferromagnetic
LaFeO3 with the E vector aligned parallel and perpendicular to the antiferromag-
netic axis [406]. The splitting of the L2 resonance is due to multiplet effects. (d) X-ray
magnetic circular dichroism spectrum around the L3 and L2 edges of Fe metal. The
photon angular momentum was aligned parallel or antiparallel to the magnetization
direction of the sample [96]

Fig. 10.1a for the Cu L-edge of La1.85Sr0.15CuO4 [419]. The single crystal
sample has a layered structure. The Cu atom shown in black is surrounded by
4 in-plane O atoms and two out-of-plane O atoms. If we define the x, y plane
of our coordinate system to lie in the plane of the layers (shown in gray) the
in-plane dx2−y2 orbital is unfilled and when the E lies in the x, y plane a large
peak-like transition is observed to this orbital. This resonance is absent when
E is oriented perpendicular to the plane, as shown, since there are no empty
states in the perpendicular direction. XNLD is used to probe the anisotropy
of the valence charge. It is a powerful technique for the determination of
the orientation of molecules and functional groups on surfaces and in organic
materials [189], the direction and the nature of local bonds in materials [372],
and even the orientational order in amorphous materials, that is materials
without translational order [388,421].

X-ray natural circular dichroism, XNCD, may be observed if the bonding
around the absorbing atom lacks a center of inversion. The origin of XNCD
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may be visualized by picturing the bonding around the absorbing atom as pos-
sessing a handedness in space. When the handed circular light is also pictured
in space, as shown in Fig. 5.3, it is then intuitively plausible that the X-ray
absorption depends on whether the handedness of the charge and that of the
EM wave are the same or opposite. This model also conveys the important
fact that the EM wave must contain a k dependence, since only then will it
have a “twist” over the atomic volume. This intuitive picture is theoretically
reflected by the fact that XNCD vanishes in the dipole approximation.1 An
example of XNCD is shown in Fig. 10.1b for the Iodine L1-edge X-ray absorp-
tion spectrum (red) of single crystal LiIO3. The XNCD spectrum, defined as
the difference of two absorption spectra obtained with left and right circularly
polarized X-rays, is shown in gray [420,422,423]. It was obtained by aligning
the single crystal sample along a special crystalline axis. The effect is seen to
be remarkably large of the order of several per cent. Within the context of
this book we shall not discuss XNCD any further.

Next we give a brief introduction to X-ray magnetic linear dichroism,
XMLD. We have seen above that both natural and magnetic linear dichro-
ism effects are parity even and time even. They are therefore related and
their separation is sometimes tricky. The principal difference is that XMLD
only exists in the presence of magnetic alignment and hence it vanishes at
temperatures above the Neél or Curie temperature, or for paramagnets in the
absence of an external magnetic field. There are two important prerequisites
for the existence of XMLD: the existence of atomic magnetic moments and
the spin–orbit interaction. For example, in ferro- and antiferromagnets, the
exchange interaction creates a spin magnetic moment. The spin–orbit inter-
action creates an orbital magnetic moment which is locked to both the spin
moment and the lattice. The result is the creation of a macroscopic “easy” axis
along which the spins lie. Ferro- or ferri-magnets are directional since there
is a net moment direction while collinear antiferromagnets are axial since all
spins lie along a particular axis of the crystal but there is no net moment.
Both can be studied with XMLD.

1The dipole approximation neglects the k dependence of the EM wave. It assumes
Eeik·r = E(1+ik · r+· · · ) = E (see Sect. 9.5.3) and thus neglects the spatial ”twist”
of the wave over the atomic volume. XNCD arises from keeping the first order term
in k in the transition matrix element M = 〈 b| (p · E) (1 + ik · r) |a〉, so that

M = 〈 b|p · E|a〉︸ ︷︷ ︸
A

+
i

2
〈 b|(r × p) · (k × E)|a〉︸ ︷︷ ︸

B

+
i

2
〈 b|(k · r)(p · E) + (k · p)(r · E)|a〉︸ ︷︷ ︸

C

.

Term A is the electric dipole term, B the electric dipole/magnetic dipole interference
term, and C the electric dipole/electric quadrupole interference term. NCD in the
optical range arises from term B, whereas XNCD is mostly due to term C. XNCD
vanishes for samples without orientational order, and single crystal samples are
required. Also, not all samples that lack inversion symmetry exhibit XNCD but
only a subgroup, as discussed in more detail by Natoli et al. [422].
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The existence of a macroscopic magnetic axis leads to a difference in X-ray
absorption intensity when the polarization vector is either parallel or perpen-
dicular to the magnetic axis. This can happen in different ways. The most
obvious case is when in the presence of magnetic order the lattice lowers its
symmetry. For example, a cubic lattice may experience a contraction along
the magnetic axis. The charge becomes anisotropic and this causes a nat-
ural linear dichroism effect that is magnetically induced. Another prominent
origin of XMLD is the presence of coupled electronic (multiplet) states that
are formed under the influence of the exchange and spin–orbit interactions.
Such states typically have a nonspherical charge distribution and when tran-
sitions between pairs of such states are energetically separated there can be
a large polarization dependence of individual transitions. This is the origin
of the large XMLD effect in the multiplet-split Fe L2 resonance in LaFeO3

shown in Fig. 10.1c. The spectra show the difference in absorption when the
E vector is aligned parallel and perpendicular to the antiferromagnetic axis in
LaFeO3 [406]. XMLD is extensively used today for the study of antiferromag-
nets, in particular, the determination of the orientation of the antiferromag-
netic axis in thin films and near surfaces, and the imaging of antiferromagnetic
domains.

We conclude the overview of dichroism effects with X-ray magnetic circular
dichroism, XMCD. It is used to measure the size and direction of magnetic
moments. Both the magnetic moments and the XMCD effect are time odd
and parity even. As illustrated in Fig. 10.1d for the Fe L-edge in Fe metal, the
XMCD effect is maximum when the X-ray angular momentum is parallel and
antiparallel to the magnetic moment of the sample. The effect is seen to be
very large at the resonance positions and is opposite at the L3 and L2 edges.
This directly reflects the opposite sign of the spin component at the two edges,
j = l + s at the L3 edge and j = l − s at the L2 edge. Like magnetic linear
dichroism, XMCD requires the presence of a magnetic alignment, which has
to be directional. It is therefore zero for antiferromagnets. It also requires the
presence of spin–orbit coupling because the photon angular momentum does
not directly couple to the electron spin but only indirectly via the orbital
angular momentum. This is because the electronic transition is driven by
the electric field which does not act on spin but only on the orbital angular
momentum through the charge.

In a simple picture, in the absorption process a handed photon transfers
its angular momentum to a core electron. The X-ray energy is tuned so that
the created photoelectron is excited into the valence shell. If the valence shell
has a preferential angular momentum direction the transition probability will
depend on whether the photon and valence shell angular momenta are parallel
or antiparallel. The dependence of XMCD on the spin–orbit coupling has the
benefit that it allows the separate determination of spin and orbital angular
momenta (and therefore moments) from linear combinations of the measured
L3 and L2 dichroism intensities. This and the ability to determine the size and
direction of the moments is a consequence of the famous XMCD sum rules
that we shall discuss later in the chapter. XMCD has become an important
magnetic tool partly because it allows the study of magnetic properties in
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combination with submonolayer sensitivity, elemental specificity, and chem-
ical state specificity. When nanoscale magnetic imaging and ultrafast time
resolution are added we have a method that is unique for the study of modern
magnetic materials.

10.3 Experimental Concepts of X-ray Absorption
Spectroscopy

This section gives concepts and experimental details of X-ray absorption spec-
troscopy. We do not yet discuss polarization dependent changes in the spec-
tra, i.e., dichroic effects, but rather concentrate on the basic concepts that
determine absorption spectra of magnetic materials spectra. In particular, we
outline basic experimental techniques, and by examples of selected X-ray ab-
sorption spectra, we discuss important spectral features and aspects of data
normalization and analysis. As examples we will predominantly use L-edge
spectra of the transition metals since they are best suited to obtain informa-
tion for the important 3d transition metals. We mention that other absorption
edges have also been used, like the K-edges of the 3d transition metals, first
investigated by Schütz in her pioneering XMCD work [95], or the M2,3 edges
of the 4d metals [424,425] and even the M4,5 edges of the actinides [409].

10.3.1 General Concepts

In the last chapter we have seen that the X-ray absorption intensity is atten-
uated upon transmission through a sample of thickness d according to

I = I0 e−µx d = I0 e−ρa σabs d . (10.1)

Here µx is the linear X-ray absorption coefficient with a dimension of [length−1],
and σabs is the X-ray absorption cross-section of dimension [length2/atom].
The two quantities are related according to (9.29) by the atomic num-
ber density ρa = NAρm/A with dimension [atoms/length3], where NA =
6.02214× 1023 [atoms/mol] is Avogadro’s number. We have listed in Table 10.1
the relevant parameters for Fe, Co, and Ni.

Table 10.1. Bulk Properties of 3d metals Fe, Co, Ni. Listed are the mass density
ρm at room temperature, the atomic mass number A, the atomic number density ρa

and the atomic volume Va

Element ρm A ρa Va

[kg/m3] [g/mol] [atoms/nm3] [Å
3
]

Fe (bcc) 7,874 55.845 84.9 11.8

Co (hcp) 8,900 58.933 90.9 11.0

Ni (fcc) 8,908 58.693 91.4 10.9
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Historically, X-ray absorption has been measured in a transmission geome-
try as shown in Fig. 10.2a and the transmitted intensity drops when the X-ray
absorption channel is opened up at a threshold (absorption edge), correspond-
ing to loss of photons through core electron excitation to empty states. On
the right side of Fig. 10.2a we show a typical measured transmission intensity
It, normalized to the incident number of photons I0. The shown spectrum
corresponds to a d = 10 nm Co film, calculated by means of (10.1) from the

X-ray absorption spectroscopy techniques

(a) Transmission

(b) Electron yield

0

0

0

0

Fig. 10.2. Two common methods for the measurement of X-ray absorption. In the
top row (a) we show a typical transmission geometry used for X-ray absorption
measurements, the core electron excitation process during an absorption event, and
a schematic of the measured transmitted intensity. We have used real data for Co
metal, and the plotted transmission intensity It/I0 corresponds to a Co thickness of
10 nm. In the bottom row (b) we illustrate the method and principles of recording
absorption spectra by electron yield (or total electron yield) detection. The absorbed
photons create core holes that are filled by Auger electron emission. The primary
Auger electrons cause a low energy cascade through inelastic scattering processes on
the way to the surface. The total number of emitted electrons is directly proportional
to the probability of the Auger electron creation, that is the absorption probability.
The emitted electron yield is simply measured with a picoammeter that measures
the electrons flowing back to the sample from ground. The electron yield spectrum
Ie/I0 shown on the right is that of Co metal. The numbers on the ordinate actually
correspond to the cross-section in Mb since we have simply converted (renormal-
ized) the measured electron yield ratio Ie/I0 into a cross-section as discussed in
conjunction with Fig. 10.9
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experimentally measured averaged dichroism spectra shown in Fig. 10.12. It is
common to present X-ray absorption spectra “downside-up” by plotting the
quantity ln(I0/I) which is proportional to µx or σabs and we shall use such
plots from now on.

There are two other methods for the measurement of X-ray absorption by
solids, X-ray fluorescence and electron yield (EY) detection, as discussed in
detail by Stöhr [189]. Of the two methods, EY detection, also called total elec-
tron yield detection, is particularly often used in the soft X-ray region where
it offers larger signals due to the dominance of the Auger over the fluorescence
decay channel after X-ray excitation [189]. It is also experimentally simple and
requires just a picoammeter for the measurement of the photocurrent. It is
for these reasons and the important fact that it underlies photoemission elec-
tron microscopy (PEEM), discussed later, that we shall discuss EY detection
here. The experimental method and the underlying electronic processes are
shown in Fig. 10.2b and are explained in the caption. EY detection directly
gives a spectrum that is proportional to the X-ray absorption coefficient or
the absorption cross-section because the yield is directly proportional to the
probability of X-ray absorption. This is seen by writing down the number of
absorbed photons according to (10.1) under the assumption of a thin sample
d
 1/µx. We get

I0 − It = I0(1 − e−µx d) � I0 dµx = I0 ρa d σ
abs. (10.2)

Fortunately, for EY measurements the approximation (10.2) is not only valid
for thin samples d but it turns out that it is valid in general since one always
measures in the limit of a “thin sample.” This is due to the fact that the EY
signal originates only from a depth λe ∼ 2 nm that is much shorter than the
X-ray penetration length or X-ray absorption length λx into the sample. This
topic has been discussed extensively elsewhere [189, 426] and we shall here
only review the important facts.

The X-ray absorption length λx = 1/µx is the distance in a material
over which the intensity has dropped to 1/e of its original value. This length
depends strongly on the photon energy and as the absorption coefficient µx

increases close to an edge, λx becomes shorter. For convenience we have listed
in Table 10.2 values for σabs and µx for Fe, Co, and Ni at three characteristic

Table 10.2. X-ray absorption cross-sections σabs [Mb] and linear absorption coef-
ficients µx[nm−1] for Fe, Co, Ni for three energies, 10 eV below the L3 peak, at the
L3 peak and 40 eV above the L3 peak. For the conversion between σabs and µx it is
convenient to remember that 1 Mb = 10−4 nm2

10 eV below L3 at L3 peak 40 eV above L3

Element σabs [Mb] µx[nm−1] σabs [Mb] µx[nm−1] σabs [Mb] µx[nm−1]

Fe (bcc) 0.21 1.8 × 10−3 7.1 6.0 × 10−2 1.45 1.2 × 10−2

Co (hcp) 0.195 1.8 × 10−3 6.4 5.8 × 10−2 1.34 1.2 × 10−2

Ni (fcc) 0.18 1.6 × 10−3 4.6 4.2 × 10−2 1.28 1.2 × 10−2
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energies, 10 eV below the L3 peak, at the L3 peak, and 40 eV above the L3

peak. We see that the X-ray absorption length 1/µx is about 500 nm before
the edge, 20 nm at the L3 peak and 80 nm above the L3 peak.

We now take a look at the electron sampling depth λe. As illustrated in
Figs. 10.2b and 10.3, the absorption of the incident X-rays leads to the produc-
tion of Auger electrons that trigger an electron cascade. Only those cascade
electrons that have enough energy to overcome the work function of the sam-
ple contribute to the measured electron yield. If one thinks of the sample as
consisting of atomic layers parallel to the surface, as illustrated on the left
side of Fig. 10.3, one can show that the EY contribution from the individual
layers falls off exponentially with their perpendicular distance from the sur-
face plane [189].2 The depth below the surface of the layer whose contribution
is 1/e of that of the first layer is called the electron sampling depth λe, and
experiments show it to be about 2 nm for Fe, Co, and Ni [426]. One may also
refer to λe as an effective secondary electron mean free path (see footnote
2). The short value of λe causes a high sensitivity to the near surface region
or layers, as illustrated on the right side of Fig. 10.3 for a wedge sample. It
was grown on a Si substrate (not shown) and consists of a 5 nm-thick Ni film,
covered by an Fe wedge of thickness 0–3.5 nm, a constant thickness (1 nm) Cu
film and a 1.5 nm Pt cap layer. As the X-ray beam is moved across the wedge
toward increasing Fe thickness the EY spectra clearly reveal the increase in
the Fe signal and the decrease of the Ni substrate signal, as expected for the
short EY sampling depth.

For the L-edge absorption region of Fe, Co, and Ni, the 1/e electron yield
sampling depth λe from which 63% of the signal originates is about 2 nm.
In contrast, the 1/e X-ray absorption length λx = 1/µx is strongly energy
dependent and is about 500 nm before the edge, 20 nm at the L3-edge,
and 80 nm above the edge.

Despite the fact that the X-ray absorption length λx is at least 10 times
larger than the electron yield sampling depth λe one still needs to be careful in
the quantitative analysis of EY absorption spectra since the peak intensities
are slightly reduced relative to the true X-ray absorption cross-section [426].
This is referred to as the saturation effect in the literature. Its origin is easy
to understand. Ideally the different layers in the sample contribute to the EY
with an exponentially decaying intensity as shown on the left side of Fig. 10.3.

2This can be derived in analogy to the concepts used in photoemission, where
the inelastic scattering or attenuation of the elastic electrons along a direction x is
described by an exponential decay of the form I = I0 exp(−i�e x), where �e is the
electron mean free path. This leads to an exponential decay of the elastic photoemis-
sion signal from layers below the surface, similar to that shown in Fig. 10.3. In total
electron yield measurements one defines an effective mean free path λe that averages
over the various scattering channels [189].
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Fig. 10.3. Left: Illustration of layer-by-layer contributions to the electron yield
signal from a sample consisting of different layers. We have assumed that the X-ray
absorption length is much larger than the electron sampling depth, λx � λe. For
simplicity we have also assumed that both λx and λe are the same for the different
layers. Middle and right: X-ray absorption spectra of a wedge sample grown on a Si
substrate with the layered structure Ni(5 nm)/Fe(0–3.5 nm)/Cu(1 nm)/Pt(1.5 nm).
The spectra reveal the preferential sensitivity to the near-surface layers. As the Fe
wedge gets thicker its signal increases relative to that of the underlying Ni. The Cu
layer of constant thickness contributes an approximately constant signal, as revealed
by the jump at its absorption edge. The Pt cap layer has no absorption edge in the
shown spectral region and contributes only a constant background signal. The curves
have been vertically shifted relative to each other to facilitate their comparison

If the X-ray absorption length λx becomes shorter at the resonance posi-
tion, say λx ≈ 10λe, of the order of 10% of the photons with that energy
are absorbed within the electron sampling depth. This means that the X-ray
intensity that reaches the deeper layers in the sample is already reduced by
several percent at the resonance positions. Therefore the contributions from
the deeper layers at the resonance energy is less than the ideal contribution
shown in Fig. 10.3, and the relative total EY intensity at the resonance posi-
tion is reduced relative to that outside the resonance. EY absorption spectra
therefore need to be corrected for saturation effects as discussed in the liter-
ature [406,426–431]. We shall come back to this point below (see Fig. 10.9).

10.3.2 Experimental Arrangements

In the soft X-ray region, X-ray absorption experiments on magnetic materials
are typically carried out as shown in Fig. 10.4.

A suitable undulator produces X-rays of selectable polarization, and a
monochromator selects the photon energy of interest with a typical energy
resolution of 0.2 eV. The monochromatic X-rays are then focused to a spot
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Fig. 10.4. Basic components of X-ray magnetic dichroism spectroscopy. The polar-
ized, monochromatic X-rays are incident on an intensity reference monitor consisting
of a high transmission (∼80%) metal (e.g., gold) grid that is enclosed by a cage that
is positively biased relative to the sample. The electron photocurrent from the grid,
I0, measured with a picoammeter, serves as a reference of the X-ray beam intensity.
For electron yield measurements the sample is also enclosed by a biased nonmagnetic
cage which is used to pull the photoelectrons away from the sample. The sample
current I is directly measured with a picoammeter. The sample is positioned in the
homogeneous field of an electromagnet which is typically parallel to the X-ray prop-
agation direction. The sample can be translated in the beam and rotated about the
vertical axis

on the sample that is of the order of a few hundred micrometers in size. On
their way to the sample the X-rays pass through a beam intensity monitor
which consists of a metal grid surrounded by a wire cage, both made from
nonmagnetic materials and coated with a material, often chosen to be Au,
that has no prominent absorption edges in the spectral range of interest. The
grid inside the cage is chosen to have a large number of fine metal wires
within the beam diameter to minimize intensity changes with beam drifts,
and typically absorbs about 20% of the incident X-rays. The cage consists of
a coarser grid and is positively biased (∼+20V) to pull off the photoelectrons
from the grid inside. The electron current (of order nA) flowing back to the
grid from ground is measured with a picoammeter and it serves as the beam
intensity signal I0.

The sample is positioned in the center of an electromagnet or supercon-
ducting magnet, with the field axis typically aligned along the horizontal beam
direction. The sample can be rotated in the beam about a vertical axis. If the
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sample is in the form of a thin film the transmission is measured with a suit-
able detector like a photodiode that is positioned behind the sample, outside
the magnet. It is most common, however, to simply measure the photocurrent
of the sample with a picoammeter. Again a biased metal cage around the
sample is used to pull of the photoelectrons from the sample. The biased cage
has another benefit in that it minimizes the effect of the magnetic field on the
measured sample current. When circular dichroism spectra are recorded with
fixed photon spin by switching the field direction in the electromagnet, it is
best to switch the field at every energy point in the dichroism spectrum. This
eliminates effects due to beam instability. The switching typically takes of the
order of 1 s and one only counts when the new field has been established. By
adjusting the bias voltage of the grid, one can make the signals for the two field
directions nearly the same, i.e., minimize the effect of the field on the signal.

A more versatile experimental configuration uses a magnet with variable
field directions, as the octopole magnet implemented by Arenholz and Preste-
mon [432], shown in Fig. 10.5 and described in the caption. The magnetic
field with a strength of 0.8 T can be oriented into a random direction, but is

Magnet
pole

Magnet
pole

Yoke

(a) (b) (c)

(d)

Vacuum
chamber

Fig. 10.5. Octopole magnet for the generation of an arbitrary field direction [432].
(a) shows a design drawing with an identification of the main components, the Ti-
alloy vacuum chamber, the steel box yoke, and the magnetic poles with water cooling
circuits. The photographs (b)–(d) show the manufactured and partly assembled
components in more detail. The vacuum chamber is a six cross with vacuum flanges
and a spherical center chamber of about 5 cm diameter. The shared steel yoke holds
all eight magnetic poles and provides flux closure. The eight pole design offers better
field uniformity in the center (below 1%) and larger fields than a six pole design,
which in principle would be sufficient. The pole pieces are surrounded by the magnet
coils and on the outside by three parallel water cooling circuits to avoid overheating
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Fig. 10.6. Winding up of an antiferromagnetic exchange spring. An external mag-
netic field is used to rotate a ferromagnetic (FM) layer that is exchange coupled to
an antiferromagnet (AFM). If the antiferromagnet is soft, its antiferromagnetic axis
near the FM–AFM interface follows the rotation of the ferromagnetic magnetiza-
tion. Deep in the bulk the axis remains unchanged. Thus an antiferromagnetic wall
is formed that consists of a spring-like twist of the AFM axis by an angle α. This has
been observed for Co/NiO by X-ray magnetic linear dichroism spectroscopy [405]
using the octopole magnet in Fig. 10.5. The incident X-ray polarization E was fixed
and the magnetic field direction H could be rotated relative to E. By use of EY
detection only the rotated fraction of the antiferromagnetic domain wall near the
interface is observed

typically aligned either along the beam direction or along the horizontal or
vertical directions perpendicular to the beam.

An octopole magnet is ideally suited for X-ray magnetic linear dichroism
measurements. An example of such an experiment is schematically shown in
Fig. 10.6. Without discussing the details of the experiment which can be found
elsewhere [405], we only show the concept and the results. The experiment was
conducted to prove the conjecture of the Mauri model of exchange bias [433]
that an antiferromagnetic wall is formed at the ferromagnet–antiferromagnet
interface when the ferromagnet is rotated in an external magnetic field. By
fixing the direction E of the incident linearly polarized light, the experiment
measured the orientation of both, the ferromagnetic magnetization and the
antiferromagnetic axis near the interface, as a function of the orientation of the
magnetic field vector H relative to the E-vector. The magnetic linear dichro-
ism effect in NiO revealed that the AFM axis indeed followed the rotation
of the ferromagnetic Co magnetization, and therefore an exchange spring is
wound up with one end coupled to the FM and the other end anchored deep in
the bulk. The use of EY detection assured that only the rotating spin region
in the AFM near the FM–AFM was observed.
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10.3.3 Quantitative Analysis of Experimental Absorption Spectra

The quantities ln(I0/It) obtained from a transmission measurement and Ie/I0
from an EY experiment are called X-ray absorption spectra. Their intensity
is directly proportional to the X-ray absorption coefficient or cross-section. In
most cases, the sample thickness or the factors that determine the electron
yield are not accurately known so that the spectral intensity is in arbitrary
units. For the quantitative analysis of the spectra it is usually necessary to
convert them into meaningful units. In doing so one uses the fact that, accord-
ing to (10.1), for a given atom the measured intensity is proportional to µxd
and therefore increases linearly with the number of atoms in the beam. There-
fore also the edge jump of the absorption spectrum, defined as the difference
of the average intensities well above and below the edge, depends linearly on
the number of absorbing atoms.

By definition, the edge jump assumes that the absorption intensity changes
by a sudden jump from a smooth curve below the edge to a smooth curve above
the edge, as observed for the X-ray absorption spectra of atoms [189]. As an
example we show in Fig. 10.7 the atomic cross-sections around the L-edges of
the 3d transition metals taken from the Henke–Gullikson tables [362,363].

We see that each atom has its characteristic edge jump, whose value is
separately shown as circles, connected by a gray line. The cross-sections are
simply obtained by extrapolating the ones measured at higher energy, outside
the resonance region, into the near edge region and therefore do not account for
the “white-line” resonance structure due to bonding. It is therefore common
in the analysis of X-ray absorption spectra to proceed as follows.

Fig. 10.7. Atomic cross-sections and L-edge jumps (L3 plus L2) for the 3d transition
metals taken from the Henke–Gullikson tables [362,363]. Note that the atomic cross-
sections simply extrapolate the values determined well above the edge into the near
edge region and therefore all resonance effects due to bonding are absent
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In the analysis of X-ray absorption spectra one distinguishes the intensi-
ties of resonance structures or “white lines” at the absorption thresholds
which is sample and bonding-specific from the atomic-like nonresonant
background. The smooth atomic-like background is independent of the
atomic environment and is available as tabulated atomic X-ray absorp-
tion cross-sections.

The atomic edge jump picture still holds for bonded atoms if the core
electrons are excited to continuum states that lie significantly higher in energy
than any bonding (antibonding) orbitals. When the absorption spectrum of a
given atom is measured in different environments like the gas phase, in a liquid
or in different solids, the fine structure of the absorption edge will greatly
change due to the atomic environment, yet for the same number of atoms in
the X-ray beam the intensity outside the resonance region will be smooth and
its value will be independent of bonding. This is illustrated schematically in
Fig. 10.8.

Since the edge jump is proportional to the number of absorbing atoms we
can renormalize the measured spectra for a given atom in different samples to
a per atom basis by simply scaling and fitting them below the edge and well
above the edge to the atomic cross section. We can make the following gen-
eral statement that underlies different analysis methods of X-ray absorption
spectra.

By renormalizing the measured absorption spectra of a given atom in dif-
ferent samples to the same edge jump one obtains spectra that correspond
to the same number of absorbing atoms.

Absolute X-Ray Absorption Cross Sections

In practice, one rarely determines the absolute x-ray absorption cross section
of a sample. If needed, one simply fits experimental spectra to the Henke–
Gullikson cross-sections [362, 363] outside the resonance region where the
cross section is smooth and atomic like. Often, experimental spectra have
some background slope which is adjusted to match the slope of the tabulated
atomic cross-section. The method is illustrated in Fig. 10.9a for the absorption
spectrum of LaFeO3 [406], which exhibits a large resonance intensity super-
imposed on a small edge jump. Once the region before and above the edge
are properly fitted the resonance intensities are automatically obtained in the
proper cross-section units.

For electron yield spectra, which may contain saturation effects in the res-
onance region, one exploits the fact that saturation effects are generally negli-
gible before and above the edge, because in these regions the X-ray absorption
length is much larger than the electron sampling depth (see Table 10.2). The
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Fig. 10.8. Characteristic X-ray absorption spectra of an atom, the same atom in a
molecule and the same atom in a solid, assumed to be a metal. For an atom the lowest
energy resonances correspond to transitions to Rydberg states [189], which merge
into a step-like structure at the core electron ionization potential (IP), corresponding
to transitions from the core shell of interest to states just above the vacuum level
(EV). For a molecule transitions to unfilled orbitals result in pronounced resonances
as shown. For atoms embedded in a metal the lowest energy transition correspond
to states just above the Fermi level (EF). The X-ray absorption intensity follows the
Brillouin zone (k) integrated density of states (DOS). In all cases resonant transitions
to specific electronic states are superimposed on smooth atomic-like cross-sections
given in the Henke–Gullikson tables [362,363]. In the analysis one assumes that the
atomic cross-sections well above the “edge” can be simply extrapolated to lower
energies, with a step like onset that is positioned either at EV or EF [189] or, for
solids, at the position of the first resonance [96]
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converted EY spectra do, however, still contain saturation effects in the res-
onance region. They can be eliminated if the electron sampling depth λe is
known [406,426–431]. This is illustrated in Fig. 10.9 for LaFeO3, where λe = 20
Å. The saturation effects are seen to be quite large in this case due to the large
resonant cross-section (short λx), and the fact that the effective X-ray pene-
tration depth perpendicular to the surface is further shortened to λx sin 20◦,
since the spectrum was recorded at a 20◦ grazing X-ray incidence angle from
the surface.

Fig. 10.9. (a) Illustration of converting the measured electron yield spectrum of
LaFeO3 (solid line) into an absolute X-ray absorption coefficient. The spectrum is
fitted outside of the resonance region to the calculated absolute atomic absorption
coefficient (dashed-dotted line) taken from the Henke–Gullikson tabulation [362,363].
The experimental spectrum was measured at a grazing X-ray incidence angle of 20◦

from the surface plane. (b) Enlarged L2,3 region of (a). Here we also show the
saturation corrected electron yield spectrum as a dotted line. Spectra taken from
Lüning et al. [406]
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Relative Absorption Cross Sections: Edge-Jump Normalization

In many cases one is simply interested in the relative intensities of absorption
resonances or dichroic differences. Then the determination of absolute x-ray
absorption cross sections can be avoided, and one uses a simple method which
goes as follows. One measures two samples, one with known and one with un-
known properties, in exactly the same way. If the two spectra have a different
average slope with photon energy one approximately matches the slopes. Then
a background is subtracted so that the region before the absorption edge has
zero intensity. One then simply multiplies the spectra by constants to make
the edge jump the same in both spectra. They now correspond to the same
number of atoms in the beam, without knowing their number. All we know is
that the chosen number for the edge jump corresponds to the same number in
both spectra. One can now compare the relative intensities of the resonance
structures in the spectra.

For example, we shall see below that the L-edge resonance structures in
the magnetic 3d transition metals show a large magnetic dichroism effect that
is proportional to the magnetic moment per atom. If we wanted to know the
size of the magnetic moment in a sample of interest, say one that contains
Co, we would take a dichroism spectrum of this sample and compare it to
that of Co metal, where we know the magnetic moment per atom. We would
normalize both experimental spectra in an identical fashion to the same edge
jump, and then compare the size of the resonant dichroism effects in the two
samples. This would allow us to determine the unknown magnetic moment
per atom by comparison of the two dichroism effects.
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Fig. 10.10. Polarization averaged X-ray absorption spectra for Ti, V, Cr, Fe, Co,
and Ni metal [434]. The spectra are normalized to the same unit edge jump for easier
comparison. Spectra on the left are vertically offset

10.3.4 Some Important Experimental Absorption Spectra

Fig. 10.10 shows the L-edge X-ray absorption spectra of some important 3d
transition metals [434]. The spectra are normalized to the same unit edge jump
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for easy comparison of the separation between the L3 and L2 resonances. While
for the “heavy” 3d metals Fe, Co, and Ni the spin–orbit splitting of the 2p core
electrons is significant larger than the width of the associated white line reso-
nances, for the light 3d metals the splitting decreases and the width increases.
As illustrated in Fig. 9.26, the comparable size of the spin–orbit coupling and
the intraatomic correlation energy will then lead to a mixing of absorption
channels leading to the observed resonances. This leads to complications in
the determination of spin magnetic moments [435,436] which is based on the
separate analysis of the two 3d → 2p3/2 and 3d → 2p1/2 excitation channels,
as illustrated in Fig. 9.16.

Because of the importance of the 3d transitions metals and their oxides we
show in Fig. 10.11 the properly normalized X-ray absorption spectra of the
magnetic 3d transition metals and their oxides. We have plotted the X-ray
absorption coefficient in units of µm−1 as a function of energy. These spectra
form the basis for much of the dichroism work discussed in the rest of the book.
Comparison of the spectra in Fig. 10.11 shows the rich resonance fine structure

Fig. 10.11. Polarization averaged X-ray absorption spectra for Fe, Co, and Ni
metal and their oxides [431]. The spectra are plotted in absolute intensity units of
the X-ray absorption coefficient. The rich fine structure of the oxide spectra is due
to multiplet effects
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in the near edge region. This chemical sensitivity allows the identification of
different bonding environments for a given atom. Besides the atomic specificity
of X-ray absorption indicated by the greatly different L-edge positions of Fe,
Co, and Ni, the chemical specificity and the later discussed magnetic specificity
constitute three important cornerstones of the X-ray absorption technique.

Magnetic dichroism spectroscopy offers:

– Atomic specificity through the energy separation of characteristic
X-ray absorption edges.

– Chemical sensitivity through the resonant fine structure at a given
atomic absorption edge.

– Magnetic specificity through the polarization dependence of the near-
edge fine structure.

The rich fine structure in the oxide spectra is due to so-called multiplet
splitting. As discussed in more detail in Sect. 9.7.8, the detailed splitting de-
pends on three main quantities, the ligand field symmetry, the valency of the
atom, and spin configuration of the electronic ground state.

Fig. 10.12. XMCD spectra for the elemental ferromagnetic metals, corrected to
correspond to 100% circularly polarized X-rays. The data for Fe, Co, and Ni are
from Chen et al. [96, 375], those for Gd are from Prieto et al. [356]. The difference
spectra shown underneath correspond to the convention I− − I+ of (9.95)

10.3.5 XMCD Spectra of Magnetic Atoms: From Thin Films to
Isolated Atoms

Data for the four elemental ferromagnets, Fe, Co, Ni [96, 375] and Gd [356],
are shown in Fig. 10.12. In all cases, the shown data correspond to maximum
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Fig. 10.13. Angle-averaged L-edge X-ray absorption spectra (solid lines) for thin
metal layers of Ti, V, Cr deposited on Fe and the corresponding dichroism spectra
(dashed) [434]. The data were corrected for incomplete polarization and saturation
effects. The Ti, V, and Cr layers are magnetic through proximity effects, i.e., induced
magnetism. Their coupling to Fe is antiparallel as revealed by the sign of the original
dichroism spectra. In our plot the dashed XMCD spectra for Ti, V, and Cr have
been inverted to avoid overlap of the XAS and XMCD traces. All plotted intensities
correspond to a unit edge jump normalization in the original spectra

dichroism effect (100% polarization and alignment of the photon spins and
sample magnetization), and we have also plotted the data for the same relative
orientations of photon spins and sample magnetization. The more complicated
spectrum for Gd is due to multiplet splitting, the origin of which was discussed
in Sect. 9.7.8.

The sensitivity of XMCD to small magnetic moments is illustrated in
Fig. 10.13. Here we have plotted the absorption and XMCD spectra of Fe
and compared it to absorption and dichroism spectra for thin films of Ti,
V, and Cr deposited on an Fe substrate. The small dichroism in the Ti, V,
and Cr spectra, indicated by the listed multiplicative factors, is due to induced
magnetic moments caused by the adjacent Fe layer. Note that we have plotted
inverted dichroism (difference) spectra (dashed lines) for the cases of Ti, V,
and Cr to avoid overlap of the solid and dashed curves. Since in the original
Ti, V, and Cr data the dichroism effects (the dashed spectra) were upside
down from those shown in Fig. 10.13, comparison to the spectrum of the Fe
standard shows that in all cases the magnetization in the deposited thin films
is opposite to that in the Fe substrate.
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Fig. 10.14. XMCD spectra for isolated 3d impurities deposited on K films, corre-
sponding to coverages of 0.015 monolayer for Fe, 0.015 monolayer for Co, and 0.004
monolayer for Ni [437]. The spectra were recorded at 10 K in fields up to ±7 T. The
insets show the spectra calculated for the d7 and d8 atomic configurations [438] with
the energies renormalized to match the experimental ones

The metal spectra are seen to exhibit rather broad resonances. Only the
dichroic difference spectra of the lighter atoms Cr, V, and Ti show significant
fine-structure which is associated with multiplet effects. Such effects become
pronounced for isolated Fe, Co, and Ni atoms deposited on K films as shown
in Fig. 10.14 [437].

The spectra were recorded at 10 K, and fields up to ±7 T were used to align
the atomic moments. The presence of multiplet structure clearly shows the
localized character of the 3d electrons in the atoms. The multiplet structure
serves as a sensitive fingerprint of the electronic ground state configuration
which can be determined by comparison of the experimental spectra to those
calculated by atomic multiplet theory [438]. The calculated spectra, shown as
insets, correspond to 3dn → 2p53dn+1 transitions assuming zero ligand field.
The comparison of experiment and theory readily allowed the determination
of the respective ground states d7, 4F9/2 for Fe, d8, 3F4 for Co and d9, 2D5/2

for Ni (see Table 7.1). These differ from the approximate configurations d6 for
Fe, d7 for Co and d8 for Ni in the metals (see Sects. 7.3 and 12.2.2). In fact,
prior to the XMCD measurements there had been considerable debate as to
the electronic ground state configuration.

The measured XMCD effects are larger than in the bulk metals and show
very different ratios of the L3 and L2 dichroism intensities and opposite
signs. In particular, the L2 dichroism for Ni is zero. The latter is understood
from the ground state configuration d9, 2D5/2, which does not allow L2-edge
transitions, which in a configuration picture correspond to J = 5/2 → J = 1/2
and thus violate the dipole selection rule.
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10.3.6 Sum Rule Analysis of XMCD Spectra: Enhanced Orbital
Moments in Small Clusters

In Sect. 10.3.5 we have discussed the XMCD spectra of the ferromagnetic
transition metals Fe, Co, and Ni in comparison to those of the isolated atoms,
aligned at low temperature in a strong magnetic field. Here we want to take a
look at what happens in the transition region between isolated atoms and bulk
metals. We shall see that the magnetic properties of small transition metal
clusters are quite fascinating, indeed. Because the XMCD studies of interest
required a quantitative determination of magnetic moments by application of
the sum rules discussed in Sects. 9.6.5 and 9.7.9, we shall use this opportunity
to also comment on practical aspects of the sum rule analysis in XMCD.

Today, quantitative analysis of XMCD spectra is often carried out by
means of the method suggested by Chen et al. [96]. This method determines
the ratios of the spin and orbital moments divided by the number of valence
holes. Hence, in order to determine the magnetic moments, the number of
valence holes needs to be known. In practice, this is almost never the case for
samples of interest. It is for this reason that we discussed in Sect. 9.6.5 the
combined use of three sum rules, which all depend on the knowledge of the
constant C, which in turn is determined by the radial transition matrix ele-
ment as expressed by (9.91). The results shown in Fig. 9.17 demonstrate, that
for elements with similar atomic number Z, like Fe, Co, and Ni, C is roughly
constant. This fact has been utilized, for example, in the determination of the
magnetic moment of Cu atoms in Co/Cu and Fe/Cu multilayers [315, 439],
where in the analysis of the Cu XMCD spectra the average constant C for Fe,
Co, and Ni was used.

The most robust and accurate method of determining magnetic moments
is therefore typically the use of a reference sample with known moments,
like the elemental ferromagnetic metals, and transfer of the constant C to
the analysis of the sample of interest. This method has been successfully
used to determine the orbital magnetic moments in small Co clusters and low
dimensional structures [440, 441], with the results calibrated by comparison
to bulk Co metal.

As shown in Fig. 3.9 small metal clusters in molecular beams show the
expected increase in the total magnetic moment toward atomic values. One
particularly interesting question is what role the orbital magnetic moment
plays in the enhancement of the total moment. In fact, based on our discussion
on the quenching effects of the ligand fields in Sect. 7.9 one might expect
substantial enhancement of the orbital moment in clusters due to reduced
coordination of the surface atoms. This is indeed found [440–442].

As an example we show in Fig. 10.15 the XMCD results for Co atoms on
a Pt(997) surface in the form of monatomic chains, a monolayer and a thick
Co film. For atoms in low-symmetry environments, the application of the spin
sum rule given by (9.133) is complicated by the presence of the anisotropic spin
density term mα

D [410, 411]. In contrast, the orbital moment can be directly
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Fig. 10.15. Co L-edge X-ray absorption and dichroism spectra for, from left to
right: monatomic chains, a monolayer and a thick Co film, all grown on Pt(997) [440].
Spectra are shown for parallel (I+) and antiparallel (I−) directions of X-ray helicity
and field-induced magnetization. The dichroism signal (I− − I+) is obtained by
subtraction of the absorption spectra in each panel and normalization to the intensity
of the L2-edge dichroism peak. Spectra were recorded in the electron-yield mode at
T = 10K and B = 7T. Because of the low Co coverage, the edge structures of
the monatomic wires are superimposed to a strong background. Changes in the L3

XMCD intensity indicate that the orbital moment is substantially increased in going
from bulk Co to a 2D Co monolayer and to the 1D chains

determined along the applied field direction. The spectra shown in Fig. 10.15
were recorded in the electron-yield mode at T = 10K and B = 7T. According
to the orbital moment sum rule (9.134), the orbital magnetic moment is zero
if the L3 and L2 dichroism intensities A and B have the same size but opposite
signs. By normalizing the dichroism spectra to the L2-edge intensity (peak B
in Fig. 9.16), one can therefore conveniently see changes in the orbital moment,
as illustrated at the bottom of Fig. 10.15.

We have summarized in Table 10.3 results for various types of Co struc-
tures on Pt, taken from work by Gambardella and collaborators [440,441].

These results clearly show the strong dependence of the orbital magnetic
moment on coordination. As expected, the orbital moment increases strongly
with decreasing size or dimensionality of the Co structures. For a Co adatom
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Table 10.3. Orbital magnetic moments 〈Lz〉 for various Co/Pt systems, measured
by XMCD along the easy axis and values for the magnetocrystalline anisotropy con-
stant K1 determined from directional magnetization loops. The results were taken
from work by Gambardella and collaborators [440,441]

System 〈Lz〉 [µB] K1 [meV/atom]

Co metal (hcp) 0.14 0.053

Co/Pt(997) ML 0.31 0.14 ± 0.01

Co/Pt(111) ML 0.29

Co/Pt(997) chain 0.68 ± 0.05 2.0 ± 0.2

Co/Pt(111) adatom 1.1 ± 0.1 9.3 ± 1.6

on Pt it has a value of more than 1 µB and becomes comparable to the spin
moment (1.7µB) in bulk Co metal. This indicates that the enhancement for
the total moment in Fe, Co, and Ni clusters with decreasing cluster size, seen
by the Stern–Gerlach experiments on cluster beams [127] shown in Fig. 3.9,
must be partly or even largely due to an orbital moment enhancement.

For Co structures on Pt, the increase in orbital moment is accompanied by
an increase of the magnetocrystalline anisotropy (MCA) energyK1, also listed
in Table 10.3. It was derived from angle-dependent XMCD magnetization
loop measurements and corresponds to the element specific MCA of Co in the
various samples. For the monolayer and isolated adatoms of Co on Pt(111) the
easy axis was found to be perpendicular to the surface and for the individual
adatoms the MCA had a huge value of K1 = 9.1meV per Co atom. This
should be compared to the values found for the hardest thin film materials,
e.g., Co/Pt multilayers with K1 � 0.3 meV per Co atom or bulk materials
such as SmCo5 with K1 = 1.8 meV per atom [40, 443] or the ordered L10

phase of CoPt with K1 = 0.8 meV per Co atom [443]. For Co on Pt(997),
the Co monolayer had an out-of-plane easy axis and for the Co chains the
easy axis was perpendicular to the chain at an angle of 43◦ from the sample
normal. The observed easy axis orientation perpendicular to the chain axis
agrees with earlier tight binding calculations for monoatomic Co chains on
Pd [444]. These calculations showed the transition of the easy axis from along
the chain axis for free monoatomic Co chains to a perpendicular orientation
when the chains were placed on Pd.

The above experiments beautifully demonstrate the dependence of the
magnetic properties on the dimensionality of the magnetic materials. For more
information on low-dimensional magnetic systems we refer the reader to re-
views by Bader [39,445] and Himpsel [250]. One particular strength of XMCD
measurements in such systems is clearly the elucidation of the role of orbital
magnetism. In addition to the studies reported here many beautiful studies
of such systems have been performed by XMCD [325,328, 442, 446–453]. The
experiments also demonstrate the extreme sensitivity of XMCD. For exam-
ple, the studies of isolated Co adatoms on Pt(111) [441] corresponded to a
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coverage of 0.010 monolayers of Co or 1.5 × 1013 Co atoms per cm2 or about
109 Co atoms in the X-ray beam.

10.3.7 Measurement of Small Spin and Orbital Moments: Pauli
Paramagnetism

We conclude the spectroscopy section of this chapter by discussing the use
of XMCD spectroscopy to determine truly small magnetic moments. With
improvements of the experimental techniques of XMCD spectroscopy, one
question that naturally arises is as to the ultimate sensitivity of the technique.
How small a magnetic moment can be measured? Of course, the answer to
this question depends on the system to be studied. Nevertheless, the following
experiment provides a nice demonstration of the capabilities of XMCD in this
direction.

We have seen in Sect. 10.3.5 above that we can magnetically align isolated
paramagnetic atoms like Fe, Co, and Ni by use of a low temperature and a large
magnetic field. This is also possible for paramagnetic metals. When cooled to
low temperature and exposed to a large magnetic fields H, they actually
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Fig. 10.16. PdL2,3 X-ray absorption spectra (top) and XMCD difference spectra
(bottom) of a Pd single crystal, recorded at T = 4K and in an applied field of 7 T.
Spectra are corrected for self-absorption and incomplete circular polarization. Inset:
Magnetization curves of Pd metal recorded at 4, 100, and 300 K by monitoring the
PdL3 XMCD signal. Figure courtesy of A. Rogalev [88]
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acquire an induced magnetization M . The associated small susceptibility χ =
M/µ0H is found to be temperature independent, and this situation is referred
to as Pauli paramagnetism, as discussed more in Sect. 15.3. Estimates carried
out in that sections show that the expected moment is quite small, of order
of 10−4µB per atom.

This small moment has indeed been measured in Pd metal using XMCD
spectroscopy by Rogalev and collaborators [454], as shown in Fig. 10.16, de-
spite the rather poor degree of circular polarization of only 12% at the L3-edge
and 22% at the L2-edge available on the used beam line.

After correction of the data for incomplete circular polarization, the
XMCD effect is in fact quite large as shown by the right side scale in Fig. 10.16,
of order 4% at the L3-edge and 1% at the L2-edge. Sum rule analysis of the
data gives a spin magnetic moment of ≈0.012µB and an orbital magnetic mo-
ment of ≈0.004µB, under the conditions of the experiment, T = 4K and in an
applied field of 7 T. The presence of an orbital moment shows, that in addition
to the Pauli spin paramagnetism the system also exhibits an orbital suscep-
tibility, as suggested by Kubo and Obata [455]. The inset in Fig. 10.16 shows
that the measured susceptibility is nearly temperature independent over the
4–300 K range. This confirms that the measured effect is indeed largely due
to the Pauli susceptibility. The slope of the curve gives a total paramagnetic
susceptibility of the 4d electrons in Pd of ≈1.4 × 10−4.

10.4 Magnetic Imaging with X-rays

Before we discuss the use of X-rays for magnetic imaging let us briefly take
a look at the field of magnetic imaging, in general. One milestone is the 1998
book by Hubert and Schäfer [54] which gives a review of magnetic domains and
magnetic imaging. Other valuable resources are the review by Freeman and
Choi [456] and the book by Hopster and Oepen [457] which reviews advances
in magnetic microscopies up to 2004. The latter book also contains articles
by Scholl et al. and Kuch et al. on magnetic imaging by X-rays. The present
section should be viewed against the backdrop of all the knowledge that has
been accumulated over the years.

It is our goal to provide an overview of the prominent X-ray based imag-
ing methods and to present illustrative examples of their unique power. Like
other techniques, X-rays have their specific strength and weaknesses. It will
become clear that spatial resolution is only one important asset of magnetic
microscopy techniques. In this respect X-rays take second place behind other
techniques such a spin-polarized scanning tunneling microscopy [458]. How-
ever, they offer capablities not afforded by other techniques, in particular,
elemental and chemical state specificity, variable sampling depth, and the ca-
pability to follow ultrafast processes on the picosecond scale.

X-ray magnetic microscopy is based on the dichroism effects already dis-
cussed in Sect. 10.3. When the photon energy is tuned to a prominent reso-
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nance in the X-ray absorption spectrum, like the L3 or L2 edges in the transi-
tion metals or the M5 or M4 edges for the rare earths, a large dichroism effect
exists for magnetic materials. In general, this effect depends on the orientation
of the photon polarization relative to the magnetic orientation. For XMCD
we have a cos θ-dependence of the dichroism intensity on the angle θ between
the photon angular momentum and the sample magnetization, expressed by
(9.100). For XMLD we have a cos2 θ dependence according to (9.123), where
θ is the angle between the E-vector and the magnetic axis. It is the X-ray po-
larization in conjunction with the tunable photon energy that forms the basis
for X-ray magnetic imaging. Because of the utilization of these spectroscopy
concepts one often speaks of X-ray spectromicroscopy.

It is quite easy to understand the origin of the magnetic contrast. Let us
assume that we tune the photon energy to a resonance and fix the photon
polarization. If now the sample contains microscopic regions with different
magnetic orientations then the signal from these regions will vary because of
the dichroic absorption effect. In a transmission experiment, some regions will
absorb less and others more, depending on their orientation in the beam. In an
electron yield experiment the number of photoelectrons will also be different
from the differently oriented regions in the beam. The different signal strength
can therefore be used as a contrast mechanism for microscopy. We have seen
that we can expect the signal to vary by as much as 20–30% depending on
the magnetic orientation. This is indeed a very large contrast considering
that Kerr microscopy works with contrasts of less than 1%. All we have to
figure out is how to separate the signals from the microscopic areas of the
sample by some kind of microscopy technique. We shall first discuss three real
space microscopy techniques and then, in Sect. 10.4.1, a technique based on
reconstructing a real space image from a coherent X-ray scattering pattern.

10.4.1 X-ray Microscopy Methods

Similar to electron microscopy there are two main approaches, either based on
scanning or imaging methods. Three common experimental implementations
based on X-rays are illustrated in Fig. 10.17 and we shall now discuss them in
turn.

Scanning Transmission X-ray Microscopy – STXM

In scanning X-ray microscopy, illustrated in Fig. 10.17a, a monochromatic X-
ray beam is focused to the smallest possible spot size and the X-ray intensity
transmitted through the sample is monitored as a function of the focused beam
position on the sample [459]. In principle, either the sample or the beam posi-
tion may be scanned but in practice one typically scans the sample. One may
also measure the fluorescent X-ray or electron intensity from the sample, as
indicated in the figure, but measurement of the transmitted intensity is most
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Fig. 10.17. Schematic of three X-ray microscopy methods for imaging of nanoscale
magnetic structures. (a) In scanning transmission X-ray microscopy, STXM, a mono-
chromatic X-ray beam is focused to a small X-ray spot by a suitable X-ray optic,
e.g., a zone plate as shown, and the sample is scanned relative to the X-ray focal
spot. The spatial resolution is determined by the spot size which is determined by
the width of the outermost zones in the zone plate. The intensity of the transmit-
ted X-rays or the fluorescence or electron yield from the sample are detected as a
function of the sample position and thus determine the contrast in the image. (b)
In transmission imaging X-ray microscopy, TIXM, the incident beam may be either
monochromatic or not. The beam is focused by a condensor zone plate that in con-
junction with a pinhole before the sample produces a monochromatic photon spot on
the sample. For an incident polychromatic beam the energy resolution is determined
by the zone plate and the pinhole and is typically not very high (E/∆E ≈ 200). A
microzone plate generates a magnified image of the illuminated sample area which
can be viewed in real time by a X-ray sensitive CCD camera. The spatial resolu-
tion is determined by the width of the outermost zones in the microzone plate. (c)
In X-ray photoemission electron microscopy, XPEEM, the X-rays are focused by
a shaped mirror to match the field of view of an electron microscope (1–50 µm).
Electrons emitted from the sample are imaged by an assembly of electrostatic or
magnetic lenses with magnification onto a phosphor screen, and the image can be
viewed in real time at video rates. The spatial resolution is determined by the elec-
tron optics within the microscope, the size of the aperture, and the operation voltage.
In advanced designs an energy filter is employed to minimize chromatic abberation
effects and such effects are further reduced by aberration correcting optics

common. In this approach the energy resolution is given by the monochroma-
tor in the beam line (not shown) and the spatial resolution is determined by
the size of the X-ray spot.
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Small X-ray spots can be obtained by using the reflected and focused beam
from grazing incidence mirrors or the diffracted and focused beam from either
a multilayer mirror or a zone plate. In practice, zone plate focussing, shown in
Fig. 10.17a yields the smallest spot sizes. The focal spot size is determined by
the width of the outermost zones of the zone plate and today the resolution
is typically about 30 nm with resolutions down to 10 nm or less expected in
the future [460]. Because the focal length of the zone plate lens changes with
photon energy, for spectroscopic studies the sample position also needs to
be scannable along the beam direction. X-ray transmission or fluorescence
microscopies are well suited for studies in the presence of a magnetic field,
contrary to electron based methods. They are “bulk” sensitive, in the sense
that the transmitted intensity is determined by the entire thickness of the
sample.

Transmission Imaging X-ray Microscopy – TIXM

From an instrumental point of view, transmission imaging X-ray microscopy
or TIXM, shown in Fig. 10.17b is closely related to scanning X-ray mi-
croscopy since in both cases the spatial resolution is determined by zone
plates and both are photon-in/photon-out methods. First generation micro-
scopes used polychromatic beams which were focused and monochromatized
by a combination of a condenser zone plate and a pinhole aperture (typi-
cally 10–20 µm diameter). In such an arrangement the energy resolution is
determined by the zone plate dimensions and the pinhole size and is typically
∆E/E � 1/250. Modern microscopes use a monochromatic incident beam
with ∆E/E � 1/5,000 which also allows spectroscopic studies of the detailed
near-edge fine structure.

The beam is focused onto the sample by means of a condenser zone plate.
The focal spot size then serves as the field of view of the imaging process,
accomplished by a microzone plate that generates a magnified image of the
illuminated area on the sample onto a phosphor screen or X-ray sensitive CCD
camera. The spatial resolution is determined by the width of the outermost
zones of the microzone plate [460] and a resolution of 15 nm has been ob-
tained [461]. Spectroscopic studies require movement of both the condensor
and microzone plates relative to the sample, and in practice, this has impeded
spectroscopic studies with TIXM. Like STXM, TIXM is also well suited for
studies in the presence of magnetic fields, and such studies have been per-
formed by Fischer et al. [462,463].

X-ray Photoemission Electron Microscopy – X-PEEM

The third imaging method is based on X-rays-in/electrons-out and was pi-
oneered by Tonner [464]. It is illustrated in Fig. 10.17c. The sample is illu-
minated by a monochromatic X-ray beam that is only moderately focused,
typically to tens of micrometers, so that it matches the maximum field of view
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of a photoelectron microscope. The energy resolution is determined by the X-
ray monochromator in the beam line and the spatial resolution is determined
by the electron optics in the X-PEEM. It is limited by three quantities: spher-
ical aberration, chromatic aberration, and diffraction. In practice, for X-ray
excitation of electrons, chromatic aberrations dominate [464,465]. They orig-
inate from errors in the focusing of electrons with different kinetic energies.

Most PEEM microscopes do not incorporate an energy analyzer or filter
[466] and therefore, in principle, all photoelectrons are detected. In practice,
the electron intensity is dominated, by orders of magnitude, by the secondary
electron tail in the 0–20 eV kinetic energy range, where zero kinetic energy
corresponds to the vacuum level of the sample [467]. The secondary electron
intensity which closely follows the X-ray absorption spectrum of the sample
[467], determines the X-PEEM intensity, and its large size provides a suitably
large signal.

The energy spread of the inelastic tail (about 5 eV for most materials [468])
spoils the spatial resolution through chromatic aberrations. Fortunately, the
effective width of the energy spread is reduced by a suitable aperture placed in
the backfocal plane of the PEEM. The aperture acts as a filter for high energy
electrons which are focused behind the aperture while the low energy portion
of the inelastic tail is properly focused at the aperture position and is thus
transmitted. Calculations show that a spatial resolution of about 20 nm can
be obtained by X-PEEM because of the energy filtering effect of the aperture
[469], and this is verified by experiments. Even better spatial resolutions are
achieved when the energy spread of the emitted electrons is reduced. This
situation is encountered when ultraviolet radiation is used with an energy
slightly higher than the workfunction and a spatial resolution of 8 nm has been
demonstrated [470]. In this case chromatic aberrations are strongly reduced
by the narrow width of the secondary electron distribution. At X-ray energies,
a resolution of 22 nm has been achieved by use of an energy filter to reduce
the electron energy spread [471]. In the future lateral resolutions below 5 nm
appear possible [472,473].

Contrast Mechanisms

The intensity changes with photon energy or X-ray polarization discussed in
the earlier spectroscopy section naturally lend themselves as contrast mecha-
nisms for scanning and imaging X-ray microscopy. For example, if the photon
energy is tuned to 707 eV, the L3 resonance of Fe metal, the measured signal
from the sample will emphasize Fe over other elements in the sample. If we
change the polarization from linear to circular, Fe regions in the sample will be
emphasized whose magnetization direction is parallel to the photon spin (see
Figs. 9.12 and 10.1d). It is not necessary in many cases to change the photon
spin in XMCD microscopy since the contrast is large and can be enhanced by
combining images recorded at the L3 and L2 edges.
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For antiferromagnets the photon energy of the linearly polarized light
is tuned to a particular multiplet peak, e.g., one of the L2-edge peaks in
Fig. 10.1c. Domains with an orientation of the magnetic axis parallel to E
will then show a different intensity than those with the axis perpendicular to
E. Again the contrast can be enhanced by combining images taken at different
photon (multiplet) energies.

In addition to the spectroscopic contrast, other basic contrast mechanisms
exist. In X-PEEM the electron yield from different sample areas is also de-
termined by the local work function and topology. In transmission X-ray mi-
croscopy additional contrast arises from differences in the X-ray absorption
coefficient at nonresonant photon energies caused by compositional changes
or thickness variations of the sample.

10.4.2 Lensless Imaging by Coherent Scattering

We have seen that the resolution of real space X-ray microscopy techniques is
determined by optics in the form of X-ray or electron lenses. Here we describe
an alternative lensless imaging approach based on X-ray scattering, which in
principle is resolution limited only by the X-ray wavelength.

It is well established that, in principle, X-rays may resolve structures down
to the size of the X-ray wavelength, the so-called diffraction limit. Diffraction
imaging, or crystallography, is a lensless approach where the real space struc-
ture is obtained by inversion of a reciprocal space diffraction pattern. This
approach has been extensively used for decades to determine the structures
of crystalline systems, consisting of repeated identical unit cells. The proce-
dure relies on the remarkable fact that for typical experimental geometries
X-ray beams are coherent over dimensions that are larger than the unit cell
dimensions of the sample, despite the fact that all of today’s X-ray sources, in-
cluding undulators, are characterized by spontaneous emission and are there-
fore chaotic or incoherent by nature. A coherent beam can be created from
the radiation emitted by an incoherent source by spectral and spatial filter-
ing [109].3 When a single crystal is inserted into an X-ray beam, its unit cell is
typically so small that across its tiny volume the EM wave has a well defined
phase relationship. Therefore the waves that are scattered off the individual
atoms within each unit cell can interfere. Because all unit cells are identical,
the unit cell interference patterns are identical and add up into intense dif-
fraction spots.4 The diffraction spot pattern can then be used to solve the
crystal structure.

3 More specifically, one distinguishes temporal coherence, which is determined by
the bandwidth of the radiation and lateral coherence which is determined by the
geometry perpendicular to the beam direction.

4When the EM field is quantized one finds that for today’s X-ray sources all
diffraction experiments are based on single photon interference effects because the
coherence volume of the radiation contains less than one photon. This will change
with the advent of X-ray free electron lasers.
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The diffraction approach breaks down if the sample is nonperiodic since
now the interference patterns from small areas in the sample are no longer
identical and therefore intense diffraction spots will no longer exist. This situa-
tion is encountered in many systems that contain order on the nanoscale with-
out long-range periodicity. A prominent example are magnetic domains which
typically consist of irregular nanometer or micrometer sized areas in which the
magnetization points in different directions. Despite their disordered arrange-
ment it is still possible, however, to derive their real space arrangement from
the scattered intensity as we shall discuss now.

In order to understand how this is possible we first consider the more
familiar case of small angle X-ray scattering (SAXS), illustrated in the top
half of Fig. 10.18. This well-established technique uses an X-ray beam which
at the position of the sample is coherent only over a dimension, called the
coherence length, of tens of nanometers. In Fig. 10.18 we have indicated the
coherence length as the diameter of the red circles, which are assumed to
be larger than the characteristic structures, assumed to be worm domains as
shown in the inset. In general, the internal sample structure may correspond
to regions of different electron density as in a polymer or areas of different
magnetic orientations, i.e., domains, in magnetic materials. The SAXS pattern
corresponds to the incoherent superposition of the coherent patterns from
different sample regions of the size of the red circles. Owing to the different
structural or orientational units in the different sample regions the scattering
pattern is somewhat smeared out. For a sample with an average characteristic
size d associated with the nanoregions, the scattering pattern consists of a ring-
like intensity pattern as shown in Fig. 10.18, located at a momentum transfer
Q = 2π/d.

By moving the sample away from the source, as shown in the bottom half
of Fig. 10.18, one reduces the angular opening angle of the beam intercepted
by the sample, and therefore the effective path length difference of the used
X-rays. This increases the coherent fraction. The associated loss of intensity
can be tolerated for modern high-brightness undulator X-ray sources. One may
therefore coherently illuminate a sample that has a lateral size of the order
of 50 µm. Then the scattered waves from all regions of the sample can inter-
fere and the scattered intensity distribution, the “speckle pattern,” recorded
by an imaging detector contains the complete information on the real space
structure of the sample.5 The remaining challenge is to invert the reciprocal
space pattern into a real space structure.

To obtain a real space image of the sample from the speckle pattern the
phases of the scattering amplitudes have to be reconstructed. This is typically
attempted by phase retrieval algorithms that rely on oversampling of the
speckle pattern [474–477]. The development of such phase retrieval methods
remains an active area of research.

5 The SAXS pattern is an averaged speckle pattern. It contains only statistical
information about the sample structure but offers the advantage of higher intensity.
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Fig. 10.18. Concepts of X-ray scattering from a sample containing worm domains of
nanoscale dimensions. We have assumed a pseudomonochromatic undulator source
and record the scattering pattern from the sample with a position sensitive detector.
Top: The sample is located close to the undulator source and the beam on the sample
is coherent (by geometry) only over areas that are of the size of the red circles. These
coherently illuminated areas are assumed to be slightly larger than the average
separation between the worm domains. The scattering pattern is the incoherent
superposition of the coherent patterns from different sample regions of the size of
the red circles. Bottom: The sample has been moved away from the source so that
only a small fraction of the beam, which is coherent by geometry, illuminates the
sample. At a great loss in intensity the entire sample is now coherently illuminated
and the scattering pattern is a coherent superposition from all regions of the sample.
The resulting scattering pattern, called a speckle pattern because of its appearance,
now encodes the real space structure of the entire sample

A more robust approach is the real space image reconstruction afforded
by holographic methods [478, 479]. One such method is Fourier transform
holography [480], which has been successfully used to image magnetic domains
with soft X-rays [481], as illustrated in Fig. 10.19.

The key component of the experiment is the introduction of a Au mask
before the sample, shown enlarged in the lower left part of the figure. The Au
mask contains two holes, a “sample hole” of 1.5 µm through which the sample
is illuminated, and a “reference hole” of 100 nm diameters, which is drilled all
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Fig. 10.19. Illustration of an X-ray Fourier transform holography experiment [481].
The X-ray beam from an undulator source with variable polarization is incident on
a pinhole that redefines the source. The central part of the Fraunhofer pattern of the
pinhole then illuminates a mask that consists of a “sample hole” and a “reference
hole.” The scanning electron microscopy (SEM) image on the lower left shows a
close-up of the two holes which were drilled into a Au film by a focused ion beam.
In the shown case the mask and sample are integrated, as shown above the SEM
image. The magnetic domain structure within the pinhole opening, recorded by a
scanning transmission X-ray microscope (STXM) is shown on the right top. The
experimentally recorded hologram of the sample by a CCD detector is shown in
false color on the lower right. For magnetic imaging one uses the resonant magnetic
dichroism effect near an absorption edge, as illustrated for Fe in Fig. 9.29

the way through the mask/sample sandwich by a focused ion beam (FIB).In
the experiment shown, the sample consists of a Co/Pt multilayer film with
perpendicular anisotropy which exhibits a magnetic worm domain pattern, re-
vealed in the real space XMCD STXM image on the top right. The two holes
are coherently illuminated by circularly polarized photons, tuned to the Co L
edge (780 eV) for optimum magnetic contrast. The beam through the larger
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hole is scattered by the magnetic domains of the sample and interferes on the
detector with the beam transmitted through the reference hole. The scatter-
ing pattern seen on the detector screen contains speckles like the image in
Fig. 10.18 and also fine diagonal stripes which originate from the interference
of the beams through the sample and the reference holes. One may think of
the scattering pattern as a speckle pattern that has been phase encoded with
the reference beam. The real space image of the magnetic domain structure is
simply obtained by a single Fourier transformation of the recorded scattering
intensities [481]. Its resolution is determined by the encoding reference beam
and is therefore limited to the size of the reference hole. The reconstructed
image looks identical to the STXM image shown in the top right corner of
Fig. 10.18 [481].

In principle, coherent scattering experiments can be performed by means
of either nonresonant X-rays or by tuning the photon energy to an absorption
edge of the sample. For magnetic systems the contrast is greatly enhanced by
using resonant X-rays, that is, taking advantage of the large dichroic effects
near an absorption edge, as illustrated in Fig. 9.29 for Fe. In scattering exper-
iments one may use the dichroic effect in either the real (F ′(E)) or imaginary
(F ′′(E)) part of the scattering factor as shown in Fig. 9.5. In certain cases it is
advantageous to tune to the resonance in the real part F ′(E) which occurs be-
low the onset of absorption, i.e., the maximum in the imaginary part F ′′(E).
For example, in experiments with intense free electron laser radiation this will
greatly reduce deleterious energy transfer from the beam to the sample.

One of the unique properties of this imaging approach is that no focusing
or alignment is required. While this is merely convenient for imaging at a
synchrotron radiation storage ring, it is essential for the envisioned single
X-ray pulse imaging with future X-ray lasers. It is important to keep in
mind that lensless imaging by Fourier transform holography is a true imaging
method. No iterative algorithm is required to obtain the real space structure.

The spatial resolution may be further increased by applying additional
phase retrieval procedures. Since the recorded X-ray hologram can also be
interpreted as a speckle pattern, one may in a second step apply an iterative
algorithm to retrieve the scattering phases. This is aided by the fact that
iterative phase retrieval algorithms are more effective the closer the initial
input is to the real space structure [476]. One can therefore employ a two step
analysis. In the first step the Fourier transform provides a resolution that is
of the order of the reference hole. In the second analysis step, iterative phase
retrieval algorithms are used to obtain higher resolution. The resolution in the
second step is typically determined by the angular range (maximum momen-
tum transfer) and signal-to-noise ratio of the measured scattered intensities,
and is ultimately limited by the wavelength, which is about 1.5 nm at the
transition metal L-edges.
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10.4.3 Overview of Magnetic Imaging Results

Images of Ferromagnetic and Antiferromagnetic Thin Films

We start our discussion of X-ray magnetic imaging by presenting in Fig. 10.20
details about the typical image contrast utilized in imaging of ferromagnetic
domains.

The figure shows PEEM images of ferromagnetic domains for a thin film
of Co deposited on a cleaved crystal of NiO. We shall see later that the Co FM
domain structure has the characteristic striped pattern of the AFM domains
in the NiO crystal underneath. There are four Co domains consisting of two
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Fig. 10.20. PEEM images of the magnetic domains in a Co film deposited on
single crystal NiO recorded with circularly polarized light of fixed photon spin and
with the energy tuned to the L3-edge (left top) and the L2 edge (middle top). The
XMCD spectra recorded for different domains whose orientation is indicated in the
left image are shown underneath. The spectra are shown in different gray shades
and the arrows indicate the correspondence to the domains. On the right top we
show an image that was obtained by dividing the two images taken at the L3 and L2

edges. The orientation of the NiO crystal and the photon polarization is indicated
on the right bottom
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pairs of orthogonal domains, all with their magnetization in the plane of the
film, as indicated by arrows in the left image. Of interest here is not the
domain structure itself but how it is revealed in original images recorded with
a given circular polarization and with the photon energy tuned to either the
L3 or L2 edges. For this reason we show the raw images recorded at these
energies and underneath the original dichroic spectra recorded from the four
individual domains. This is accomplished by selecting areas on the sample by
a soft-ware-set window and recording the intensity of the pixels in the window
as a function of energy.

The figure illustrates the correspondence of the gray scale image contrast to
the difference in spectral intensities, indicated by the shading of the spectra
and by arrows. In direct analogy to the spectra the image contrast inverts
at the L3 or L2 resonance energies, and this can be conveniently used to
enhance the contrast (without change in X-ray polarization) by dividing the
raw images obtained at the two edges. Another method would be to change
the circular polarization at a given resonance energy. This is typically not done
for microscopes located on bending magnet beam lines because by selecting
radiation below and above the orbit plane (see Fig. 4.14) by movement of
an aperture one changes the optical path through the beam line and this
results in energy shifts. For undulator beam lines the change of polarization is
straightforward and one may conveniently use opposite circular polarizations
for contrast enhancement.

An example of the unique capabilities of X-rays for imaging ferromagnetic
domains is given in Fig. 10.21. The figure shows FM domains in a thin film of
magnetite, Fe3O4, grown on SrTiO3(110). As shown in the upper right of the
figure, the Fe L-edge spectrum has a characteristic multiplet structure which
leads to a complicated XMCD difference spectrum shown underneath. The
spectra were recorded independently on an undulator beam line by fixing the
circular polarization and saturating the sample into opposite magnetization
states. The rich XMCD structure is a consequence of multiplet effects as well
as the different Fe sites in magnetite [302] (see Fig. 7.30). The integrated
negative and positive XMCD contributions at the L3-edge have a ratio of
about 2 to 1. Antronov et al. have attributed this intensity distribution with
the moments on the three different Fe sites in Fig. 7.30, which also have a
2 to 1 spin-up to spin-down ratio. The XMCD domain image shown on the
top left was recorded at the Fe L-edge by division of two images taken at
energies with opposite dichroism effect.

The tunablility of X-rays also allows one to look for a magnetic effect at
the site of the O atoms in magnetite. The dichroic O K-edge spectra and the
XMCD difference are shown on the lower right of the figure. The O K-edge
dichroism effect is about 2% of that at the Fe L-edge and has a character-
istic XMCD structure with a negative intensity that is about a factor of 2
larger than the positive intensity, similar to the ratio seen at the Fe L-edge.
As for this case, it is tempting to correlate the 2 to 1 intensity distribution
with the moments on the three different Fe sites in Fig. 7.30. However, since
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Fig. 10.21. Domain images and XMCD spectra for epitaxially grown magnetite,
Fe3O4. On the right we show spectra recorded at the Fe L-edge and O K-edge with
circular polarized light and magnetically saturated samples and their difference, the
XMCD spectra. The O K-edge spectrum agrees with that shown in Fig. 7.32a. The
images on the left were obtained by dividing two images recorded at two photon
energies with opposite dichroism effects

all O atoms in Fe3O4 are equivalent, the situation is different, since the O
K-shell transitions must reflect different valence orbitals on the same atom.
The negative O K-edge XMCD peak would then correspond to transitions to
O 2p orbitals involved in the bonding with Fe3d orbitals on the two octahedral
Fe2+ and Fe3+ atoms, with moments coupled parallel by double exchange. The
positive peak would correspond to O2p orbitals hybridized with Fe3d orbitals
on the tetrahedral Fe3+ atoms. These Fe atoms have opposite moment orien-
tations than the octahedral Fe atoms because of superexchange. We therefore
have the interesting case where we can resolve the 2p-orbital-specific magnetic
moments on the same O atom.
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Fig. 10.22. TIXM images recorded at the FeL3-edge as a function of applied field
for a 75 × [Fe(4.1 Å)/Gd(4.5 Å)] multilayer deposited on polyimide and capped for
protection with an Al layer [463,482]

Within each magnetic domain, the dichroism spectrum has the same in-
tensity distribution, and one can therefore use the positive and negative peaks
for enhancement of the dichroic image contrast. Doing so yields the magnetic
image shown in the lower left corner of Fig. 10.21. We see that it closely re-
sembles the FM image taken at the Fe L-edge.

Our next example, shown in Fig. 10.22, demonstrates the ability of photon-
in/photon out techniques to record magnetic images in the presence of a
magnetic field [463,482].

Shown here are TIXM images recorded at the FeL3-edge for a Fe/Gd
multilayer with perpendicular magnetic anisotropy at various points around
the magnetization loop. The magnetic structure corresponds to domains with
opposite magnetization directions along the surface normal.

As another interesting example, we show in Fig. 10.23 various images of
a polycrystalline film of NiO. The 400-nm-thick polycrystalline NiO sample
was deposited by sputter deposition onto oxidized Si and then annealed for
1 h at 1, 100 ◦C in flowing oxygen at atmospheric pressure, followed by 1 h
at 700 ◦C, and a gradual (4 h) cooldown to room temperature in flowing O2.
The procedure was applied to increase the crystallographic grain size of the
film. In Fig. 10.23a we show an atomic force microscopy image of the surface
after annealing, revealing an average grain size of about 180 nm, which was
significantly larger than the 15–20 nm size before the annealing procedure.
Inspection of the film under an optical microscope revealed that the film had
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Fig. 10.23. Structure of a 400 nm thick NiO film sputter deposited on an oxidized
Si substrate and annealed in an oxygen atmosphere to increase the grain size. (a)
Atomic force microscopy image revealing the grain size, which increased from about
15–20 nm before to about 180 nm after annealing [284]. The schematic underneath
illustrates that after annealing the film cracked as revealed by optical microscopy
images shown in (b). (c) XMLD images obtained from difference images recorded
with linearly polarized X-rays for the shown horizontal E orientation. We used two
images recorded on the two L2 multiplet peaks with opposite XMLD effects, as
shown in Fig. 9.27 (also see Fig. 10.25). (d) Direct comparison of the optical image
in (b) with the cracks shown in dark, superimposed on the XMLD image in (c)

cracked during the procedure, revealed by the web-like white crack lines in
the topographical image in (b). The structure of the film deduced from these
results is schematically illustrated at the bottom of Fig. 10.23a.

The sample was also studied by XMLD PEEM microscopy to investigate
the antiferromagnetic domain structure. By use of linearly polarized light,
images were recorded on the two L2 NiO peaks shown in Fig. 9.27 (also see
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Fig. 10.25) and divided for contrast enhancement. The resulting XMLD image
in Fig. 10.23c consists of bright double lines which are predominantly oriented
vertically. The widths of the bright lines are rather uniform and correspond to
the grain size of the film. Direct comparison of the optical image in (b) with the
XMLD image in (c), shown in (d), reveals that the crack lines, shown in dark,
and the AFM double lines, shown in yellow, can be superimposed and follow
the same web-like cracking pattern. However, no significant antiferromagnetic
contrast exists along the horizontal or near-horizontal web lines.

The AFM contrast arises from preferential orientation of the AFM axis
relative to the E-vector which for the AFM image in (c) was oriented in
the horizontal direction, as indicated. Bright contrast corresponds to regions
with their AFM axis oriented parallel to the E-vector. Hence, the bright dou-
ble stripes in Fig. 10.23c correspond to grains adjacent to the cracks which
have a preferred in-plane horizontal orientation of the AFM axis. Dark con-
trast corresponds to an AFM axis orientation perpendicular to the electric
field vector. The image can thus be explained by a preferential orientation of
the AFM axis as illustrated in the inset in (c). In the grains at the cracks, the
AFM is oriented in-plane, perpendicular to the cracks. Within the islands the
AFM is oriented perpendicular to the surface normal.

The results in Fig. 10.23 reveal a correlation between the topographical and
AFM structure. The formation of cracks proves the existence of considerable
stress and resulting strain in the cooling cycle. The cracking, however, does not
fully relieve all film stress and the residual strain profile is expected to be inho-
mogeneous across the formed islands. We attribute the different orientations
of the AFM axes to a magnetostrictive effect with perpendicular strain direc-
tions in the center of the island and at the cracked edges [284]. The present
case is only one example for the strong correlation between crystallographic
structure and strain and the orientation of the AFM axis, as discussed in
Sect. 11.3.2.

Images of Coupled Magnetic Thin Films

We now look at another strength of X-rays, the investigations of coupled
magnetic layers, where the elemental specificity can be used to investigate the
magnetic structure in each layer separately. As an example we take a look
at the exchange coupling between a ferromagnet and antiferromagnet, and in
Fig. 10.24 we show the first images obtained for such systems [107].

Figure 10.24 shows images of the FM domain structure of a thin Co layer
and the AFM domain structure in LaFeO3 underneath, as schematically illus-
trated on top of the figure. The magnetic contrast in the right image arises
from AFM domains in LaFeO3 with an in-plane projection of the AFM axis
oriented horizontally (light) and vertically (dark). The image was obtained
with linear polarization by dividing two images recorded on the two L2 peaks
in Fig. 10.1c with opposite XMLD effects. The FM Co image shown on the
left exhibits three distinct grey scales, corresponding to FM domains aligned
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Fig. 10.24. Sample structure and PEEM images of domains in the antiferromag-
netic and ferromagnetic layers for 1.2 nm Co on LaFeO3/SrTiO3(001) [107]. Left : Co
L-edge XMCD image of ferromagnetic domains. Right : Fe L-edge XMLD image of
antiferromagnetic domains. The in-plane orientations of the antiferromagnetic axis
and ferromagnetic spins are indicated by arrows below the images

vertically up (black) and down (white), and horizontally left or right (gray).
For the experimental geometry used for the figure, corresponding to a vertical
photon wave vector (angular momentum) direction, we cannot distinguish left
from right horizontally oriented FM domains.

Comparison of the in-plane projections of the AFM axis and the FM spin
directions, illustrated below the images, reveals that the FM Co spins are
aligned parallel or antiparallel to the in-plane projection of the AFM axis.
The magnetic alignment of the Co domains, which exhibit an in-plane easy
axis, must therefore be caused by a coupling to uncompensated spins at the
LaFeO3 surface with an in-plane component parallel to the in-plane projection
of the AFM axis.

Another example of FM–AFM exchange coupling is shown in Fig. 10.25.
The right column of the figure shows the AFM domain pattern near the
Ni(001) surface and the left column the FM domain patterns of eight mono-
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Fig. 10.25. Comparison of AFM (right column) and FM (left column) domain pat-
terns for eight monolayers of Co on NiO(001) and two different azimuthal geometries,
recorded by PEEM [404]. Arrows and wavy lines in the insets indicate the directions
of the crystallographic axes and photon wave vectors, respectively. The directions of
the magnetic moments in the domains are indicated by arrows. The AFM contrast
in NiO was obtained by division of two XMLD images obtained with horizontally
polarized light and photon energies corresponding to the two L2-edge peaks shown
in the spectrum on the bottom right. The FM image for Co was obtained by division
of XMCD images recorded at the L3 and L2 energies. The magnetization direction of
the Co film is found to be either parallel or antiparallel to the domains in the AFM,
depending on which of the two AFM sublattices are present at the interface to Co.
The spectra shown at the bottom show the XMCD and XMLD effects responsible
for the contrast of the images

layers of Co deposited on top. The top and bottom rows correspond to 45◦

rotated azimuthal orientations, as indicated in the insets by the orientation
of the photon wave vector (wavy lines) and the crystallographic axes. The
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ferromagnetic domains in the Co layer split up into two subgroups with each
subgroup spatially following the AFM domains. The observed spatial align-
ment of AFM and FM domains is caused by exchange coupling and it breaks
up upon heating the system above the Néel temperature of NiO. The dichro-
ism contrast of the other subgroup of ferromagnetic domains (black and white
in lower left image) is about 30%, while the antiferromagnetic contrast in the
lower right image is 14%. Within the near-interface region of NiO the AFM
spin directions are found to be completely in plane, parallel to [±110] and
parallel to those in Co [404].
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The Spontaneous Magnetization, Anisotropy,
Domains

In Chapt. 6 and 7 we have given the quantum mechanical origin of the impor-
tant exchange and spin–orbit interactions, following the historical develop-
ment which started from the interpretation of atomic spectra in the mid 1920s.
This development culminated in Heisenberg’s generalization of the atomic ex-
change interaction which over the years was developed into a powerful de-
scription of the magnetic interactions in solids in terms of the Heisenberg
Hamiltonian. Here we will take a closer look at these all important magnetic
interactions from different points of view.

We start our discussion with the phenomenological molecular field theory
developed as early as 1907 by Pierre Weiss, before the advent of quantum
theory, to explain the observed field and temperature dependence of magnetic
materials. This description was later merged with the concept of exchange
and Heisenberg’s model. The connection between the Weiss and Heisenberg
models is straightforward when the Heisenberg Hamiltonian is written in the
form of a molecular field or mean field model. However, while the concepts of
the “molecular field” and “exchange” are related, their difference is the basis of
our modern understanding of finite temperature magnetism. The distinction
between the concepts of the Weiss field and the Heisenberg exchange lies at the
very heart of magnetism. It is the origin of many historical arguments between
great thinkers in the field of magnetism like Slater and Van Vleck, captured in
as simple a question as: do the exchange splitting and/or the atomic moments
vanish at the Curie temperature? For this reason we also give here an account
of the temperature dependence of the spontaneous magnetization.

We will take another look at the spin–orbit interaction as well, this time
again from a solid state approach. We shall see that this rather small inter-
action is of great importance in that it is the origin of the magnetocrystalline
anisotropy. The origin of magnetic anisotropy will be discussed in terms of
historically used phenomenological treatments and a quantum theory based
treatment of the anisotropy of the spin–orbit interaction. We then discuss the
origin of the magnetic domain structure and the related topic of magnetiza-
tion loops. Finally, we address the topic of magnetism in small particles. This
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is important from a science and technology point of view in that advanced
magnetic recording media consist of such particles. Furthermore it has become
possible lately to produce mass selected small clusters on solid state substrates
and initial measurements have revealed fascinating magnetic properties.

11.1 The Spontaneous Magnetization

Pierre Weiss recognized in 1907 that the properties of some materials with a
strong response to a magnetic field, such as iron, require the existence of a
spontaneous magnetization, that is a magnetization that exists even when no
external magnetic field is applied.

The spontaneous magnetization is defined as the magnetization that ex-
ists in individual regions or domains even when no external magnetic field
is applied. The magnetization directions of the domains may be macro-
scopically aligned by an external magnetic field.

For a long time it was difficult to directly measure the spontaneous magne-
tization since one had to apply a magnetic field to macroscopically magnetize
the sample and then measure the saturation magnetization. Today the spon-
taneous magnetization can be directly observed with microscopy techniques
which can resolve the individual spontaneously magnetized domains. This
point will become particularly important in the discussion of critical fluctua-
tions in Sect. 11.1.6 later.

Weiss also understood that the atoms must carry magnetic moments in
order to sustain the spontaneous magnetization. The problem was then how
these atomic magnetic moments could be aligned against thermal motion.
One might first think that the alignment is due to the fields generated by the
atomic dipoles. A quick calculation shows that the dipolar fields are too weak.
The magnetic dipole generates a magnetic field at a distance r. According to
(3.2), we may estimate the strength of this field within a factor of 2 that
depends on the orientation of the dipole, from the expression µ0HD = BD =
|m|/2πr. At typical distances of atoms in a crystal lattice of r = 0.15 nm
and assuming |m| = 1µB, we find BD ∼ 1 T. In Sect. 3.4 we learned that the
dipolar interaction of atomic moments of 1µB then leads to magnetic order at
temperatures of ∼ 1 K. This small value is at odds with the Curie temperature
of the common ferromagnetic metals Fe, Co, and Ni and their alloys which is
of order ∼1,000 K. Clearly, the magnetic field generated by the atomic dipoles
themselves is too weak to explain ferromagnetism.

In order to account for the large Curie temperature, Weiss postulated
that a molecular field of unknown origin with an enormous value of ∼ 1, 000 T
must exist in the ferromagnetic materials. Such a molecular field or Weiss



11.1 The Spontaneous Magnetization 481

field would then be able to generate the spontaneous magnetization by align-
ing the atomic dipoles against thermal agitation. Weiss further recognized
that the magnetostatic field generated outside a homogeneously magnetized
macroscopic piece of material requires sizeable energy. This led him to as-
sume that the spontaneous magnetization is split up into domains which are
magnetized in different directions in order to minimize the stray magnetic
fields. With these assumptions, Weiss was able to explain the dependence of
the magnetization of ferromagnetic materials on the applied magnetic field,
and he was also able to understand the main features of the magnetic phase
transition from a spontaneously magnetized to a paramagnetic material that
takes place at the Curie-temperature TC.

The Weiss domains are nowadays imaged and studied with numerous imag-
ing techniques, and their response to a magnetic field finds many applications.
The electric transformer is one example. Without transformers our present
civilization relying on the distribution of electric energy could not exist. The
molecular field postulated by Weiss is the basis of the so-called mean field
theory, which has become a cornerstone in the understanding of any phase
transition. The term “mean field” refers to the assumption that the entire en-
tity of electron spins creates a temperature dependent effective magnetic field
to which every moment is exposed. We shall now discuss the temperature
dependence in such a mean field model.

11.1.1 Temperature Dependence of the Magnetization in the
Molecular Field Approximation

According to the ingenious assumption of Weiss, the molecular field HW is
proportional to the magnetization,

HW = βM , (11.1)

where β is the molecular field constant. From this follows the spontaneous
magnetic saturation at low temperatures and the “phase”-transition to a para-
magnetic material at the temperature TC. The concept of the Weiss molecular
field, also referred to as mean field theory, remains a cornerstone of contempo-
rary magnetism. The Weiss field is responsible for the long-range interatomic
magnetic ordering and its value therefore determines the Curie temperature.
The relevant energy is given by that of a magnetic moment m in the field
which according to (3.15) is given by,

EW = −m · HW (11.2)

with units of [V A s], where 1VAs = 1 Joule [J] = 0.624 × 1019 eV.

The Weiss molecular field is responsible for the long-range interatomic
magnetic order and its magnitude determines the Curie temperature.
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The basic idea of the mean field theory is best explained by considering the
case where the atomic moments are generated by a single unpaired electron of
spin s = 1/2, following the discussion in Sect. 3.4 for a paramagnet. In a fer-
romagnet, the magnetic moments are exposed to a field that is the sum of the
external field H and the molecular field βM . We can then follow Sect. 3.4 for
the description of the temperature dependence. The parameter x = µBH/kBT
for a paramagnet can simply be replaced by x = µB(H + βM)/kBT and the
two equations (3.19) and (3.20), describing the temperature dependence for a
paramagnet, now take the following forms for a ferromagnet

M∗ =
M(T )
M(0)

= tanhx = tanh
[
µB(H + βM(T ))

kBT

]
, (11.3)

and

M∗ =
M(T )
M(0)

= x =
µB(H + βM(T ))

kBT
. (11.4)

Here the saturation magnetization corresponding to zero temperature is given
as before by M(0) = N µB, where N is the volume density of the spins, and
we have introduced the relative magnetization or magnetic order parameter
M∗ with values 0 ≤ M∗ ≤ 1. It eliminates the variation of the magnitude of
the spontaneous magnetization for different materials and makes the theory
“universal”, that is independent of specific material properties.

To calculate the spontaneous magnetization we now consider the limit
H → 0 and require that both functions (11.3) and (11.4) are satisfied si-
multaneously. The solutions may be obtained graphically by plotting both
functions at various T and determining the points of intersection or today
they are readily obtained by computer. The solution for s = 1/2 is plotted in
Fig. 11.1. We see that a temperature TC exists where M∗ disappears abruptly
and that M∗ converges to 1 with a derivative dM∗/dT = 0 for T → 0.

It is straight forward to derive an expression for TC by considering the
intercept of the two expressions for M∗ given by (11.3) and (11.4) with H = 0
in the limit x → 0. The condition for interception in this limit is that the
slopes of the straight line M∗ = kBTx/(Nµ2

Bβ) and of the function M∗ =
tanh(µBβM(T )/kBT ) are equal at the origin. With tanh(x) = x for x 
 1
one obtains the expression for TC for s = 1/2

TC =
Nµ2

Bβ

kB
=
µB

kB
βM(0) . (11.5)

Equation (11.5) allows one to estimate the magnitude of the molecular field
constant β from the observed values of TC and M(0) and the Weiss field from
the simple expression HW = kBTC/µB. With the caveat that the expression
(11.5) is only valid for systems with atomic spins s = 1/2, we can nevertheless
get an estimate of the Weiss fields in the elementary transition metals by use
of their measured Curie temperatures. The results are given in Table 11.1.
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Fig. 11.1. The relative magnetization M∗ = M(T )/M(0) for a spin 1/2 magnetic
moment and for a macrospin with no direction quantization as derived from the
Langevin function versus the reduced temperature T ∗ = T/TC. The ferromagnetic
metals Fe, Co, and Ni follow closely the spin 1/2 curve while magnetic materials
with large magnetic moments such as Gd (S = 7/2) or complex moments such as
magnetite Fe3O4 are between the spin 1/2 curve and the Langevin curve.

Table 11.1. Measured Curie temperatures TC for the elemental transition metals
and Weiss fields HW calculated from the molecular field expression for spin s = 1/2,
HW = kBTC/µB

element TC [K] µ0HW [T]

Fe 1043 1553

Co∗ 1388 2067

Ni 631 949

∗Note that Co is hcp at room temperature but is fcc at TC.

We see that the Weiss molecular fields are huge. They cannot be produced
by currents in wires or coils. The Weiss field, generated by the quantum me-
chanical exchange interaction discussed in Sect. 6.3, comes free of charge with
the appropriate materials. One goal in contemporary magnetism research is
to utilize the exchange fields that exist at interfaces (see Chap. 13) and ac-
company spin polarized currents as discussed in Chap. 14.

The case s = 1/2 is a special case of the general expression for a system
with atomic angular momenta J and magnetic moments along the field direc-
tion z given by mz = gJµBJz with −J ≤ Jz ≤ +J (see Sect. 3.2.2). We shall
simply state the well-known result for the Curie temperature in this general
case [229,281].



484 11 The Spontaneous Magnetization, Anisotropy, Domains

For a system of atomic angular momenta J with magnetic moments along
the field direction z given by mz = gJµBJz, the Curie temperature is
directly related to the size of the Weiss molecular field HW = βM(0) at
T = 0 by the mean field expression

TC =
µBgJ (J + 1)

3kB
HW . (11.6)

For J = s = 1/2 and gJ = g = 2 this expression reduces to (11.5). We
shall come back to this expression when we discuss the origin of the Weiss
field in the Heisenberg model in Sect. 11.1.2 later.

By introducing the universal temperature scale T ∗ = T/TC, as done in
Fig. 11.1, the phase transition occurs at T ∗ = 1. The quantity M∗(T ∗) is a
universal function valid for any magnetic material irrespective of its specific
material properties. From the universal curve one can derive the so-called
critical exponent with which the magnetization M∗ disappears at TC. At
small x and s = 1/2 one has M∗ = tanh(x) = (x − x3/3) and M∗ = T ∗x.
Eliminating x yields,

M∗ = [ 3(1 − T ∗) ]1/2 . (11.7)

The critical exponent in the mean field theory for s = 1/2 is thus 1/2.
It turns out that the general trend of M∗ for the atomic magnetic mo-

ments of Fe, Co, and Ni is well reproduced by the mean field theory shown in
Fig. 11.1, and is actually closest to the s = 1/2 line. However, deviations exist
from the s = 1/2 curve at the lowest and highest T ∗ values. In particular, the
critical exponent is found to differ significantly from 1/2 depending on the
dimensionality of the sample and on the detailed symmetry of the magnetic
interactions. These deviations from the mean field theory are due to spinwaves
and critical fluctuations of the spontaneous magnetization as we shall discuss
later.

11.1.2 Curie Temperature in the Weiss–Heisenberg Model

In Sect. 6.3.5 we have encountered the Heisenberg Hamiltonian (6.59) which
describes the interactions between a pair of spins (i, j) by means of an ex-
change parameter Jij . In the case of a ferromagnet the strong parallel spin
alignment is a cooperative phenomenon that can only be broken by a large
thermal energy. It is therefore possible to use the Heisenberg model for the
description of the temperature dependence of the magnetization. We get a
particularly simple theory if we establish a connection between the Weiss
field HW and the Heisenberg model since we can then simply substitute the
expression for HW into our general equation (11.6) and we have an analytical
expression for TC.
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The connection of Jij to the Weiss field is seen by considering the energy
of an atomic moment, corresponding to a composite atomic spin s, under the
influence of the mean value of all other composite atomic spins. From (6.59)
we can write for the energy of a given magnetic moment mi = −gµBsi (where
we have defined s to be dimensionless, rather than in units of h̄)

Ei = −2si ·
∑

j

Jij sj = −mi · HW , (11.8)

where the factor of 2 takes care of the double counting over atomic pairs as
discussed in conjunction with (6.59). Note that we do not consider individual
spins but group them into composite atomic entities, so that the exchange
constant Jij reflects the inter-atomic exchange between atomic moments. HW

corresponds to the Weiss field

HW = − 2
gµB

∑
j

Jij sj . (11.9)

In using the molecular field approximation of the Heisenberg Hamiltonian we
have abandoned the coupled two-spin scheme that gives rise to the singlet–
triplet splitting in Fig. 6.6 in favor of an independent spin scheme. For ex-
ample, for a material consisting of identical atomic spins s with an exchange
constant Jij per pair (single counting), the energy expressed by (11.8) for a
single atomic spin in the Weiss field has the value

Ei = −2s · s
∑

j

Jij = −2s(s+ 1)
∑

j

Jij . (11.10)

We can now use expression (11.9) to derive the Curie temperature of a
material consisting of identical atomic spins s with an exchange constant Jij

per pair. If we abbreviate the sum over the neighbors around the selected
atomic spin as J0 =

∑
j Jij we get for the field magnitude

HW =
2 s
gµB

J0 . (11.11)

In deriving an expression for the Curie temperature we then substitute the
classical vector product s ·s in (11.10) by its quantum mechanical expectation
value s · s = s(s + 1). In analogy to expression (11.6) we obtain with J = s
and gJ = g = 2

TC =
2 (s+ 1)s J0

3kB
. (11.12)

Mapping onto Density Functional Theory: Weiss–Heisenberg–DFT
Model

Today, information on the interatomic exchange in materials and its temper-
ature dependence may be obtained by mapping the results of (spin) density



486 11 The Spontaneous Magnetization, Anisotropy, Domains

functional band theory, discussed in Sect. 7.4.4, onto an effective Heisenberg
Hamiltonian [483]. The idea behind such an approach is to use the proven
capability of spin density band theory to account for the magnetic ground
state at T = 0, and to use the Heisenberg model for the description of the
magnetic properties at finite temperature. This is done through spin-wave-
like excitations of the magnetization as discussed in Sect. 11.1.5 later. Such
an approach is able to theoretically describe not only the low temperature
spin wave excitations but can also account for the Curie temperature by an
expression similar to (11.12) [222,483,484].

In deriving the relevant expression we express the Heisenberg Hamiltonian
in a suitable mean field form that separates out fluctuations responsible for
temperature dependent effects [281]. In short, one assumes that the atomic
spins sk consist of a mean constant component 〈sk〉 and a fluctuating com-
ponent sk − 〈sk〉, according to

sk = 〈sk〉 + ( sk − 〈sk〉)︸ ︷︷ ︸
fluctuations

. (11.13)

When this expression is substituted into the Heisenberg Hamiltonian (6.59)

Heff = −
∑
i,j

Jij si · sj , (11.14)

one obtains a new expression that contains a mean field term, which for a
given atomic test spin si has the form of (11.8) [281]

−2si

∑
j

Jij 〈sj〉 . (11.15)

From this expression it becomes clear that the mean field energy of an atomic
moment with expectation value 〈s〉 in the field of identical atomic spins with
the same expectation value contains a term 〈s〉2 instead of the semiclassical
〈s2〉 = s(s+ 1) term that appeared in the derivation of (11.12). Therefore all
we have to do is make the substitution s(s + 1) → 〈s〉2 in (11.12) to obtain
an expression that maps onto band theory. We get [222,483,484]

TC =
2 〈s〉2 J0

3kB
. (11.16)

We see that in mean field theory, the thermal energy at the Curie temperature,
kBTC, becomes equal to one third of the energy of a single spin in the molecular
field, given by EW = 2 〈s〉2 J0. The factor of 1/3 arises from the assumption of
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Table 11.2. Heisenberg exchange constants calculated for Fe, Co, Ni by Pajda et
al. [484]. Listed are the values 〈s〉2J01 for a nearest neighbor pair, the number of
nearest neighbors N , the sum over nearest neighbors N〈s〉2J01, the total sum over
all neighbors 〈s〉2 J0, the Curie temperatures according to (11.16), and the Weiss
fields BW = µ0HW calculated from (11.19) with the magnetic moments m = 2.2µB

for Fe, 1.7µB for Co, and 0.6µB for Ni (from Table 12.5)

element 〈s〉2J01 N N〈s〉2J01 〈s〉2 J0 TC BW

[meV] [meV] [meV] [K] [103 T]

Fe (bcc) 19.5 8 156 183 1414 2.9

Co (fcc) 14.8 12 178 212 1645 4.3

Ni (fcc) 2.8 12 34 51 397 2.9

a continuous spin distribution described by the Langevin function1, and TC,
given by (11.16), is therefore also called the Langevin temperature [222].

In Weiss–Heisenberg–DFT mean field theory the Curie temperature is
directly proportional to the exchange coupling constant and the square
of the expectation value of the atomic spin moments.

Let us take a look at the results from such a model for the elemental
ferromagnets Fe, Co, and Ni, calculated by Pajda et al. [484], given in Table
11.2. In the table we list the individual values 〈s〉2J01 for a neighbor pair,
the values N〈s〉2J01, assuming N identical nearest neighbors appropriate for
Fe, Co, and Ni metal, and the values 〈s〉2

∑
j J0j = 〈s〉2 J0 summed over

all neighbors, where the sum may contain ferromagnetic (positive Jij) and
antiferromagnetic (negative Jij) pair contributions [484]. The last columns in
Table 11.2 list the related Curie temperatures and Weiss fields. The latter are
given in terms of the atomic magnetic moments m by the expression

HW = −〈s〉J0

µB
=

2 〈s〉2 J0

m
, (11.19)

and we have taken the magnetic moments from Table 12.5. We see that the
calculated Curie temperatures differ somewhat from the experimental values
1043 K (Fe), 1388 K (hcp Co), and 631 K (Ni), listed in Table 12.5.

1In the derivation of (11.16) one considers a magnetic moment m that can assume
continuous directions in an external magnetic field H. The average moment along
the field direction m̄ is given in terms of the Langevin function m̄ = m L(x) with
x = mH/kBT . For small arguments (fields) the Langevin function is given by

L(x) = coth x − 1

x
≈ x

3
(11.17)

so that
m̄

m
=

1

3

m H

kBT
. (11.18)
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In summary, we have the following approximate values.

For Fe and Co, the Weiss field exchange energy between a pair of atomic
spins is of order 20 meV.
• The total Weiss field exchange energies are larger by the approximate
number of nearest neighbors, i.e. by about 10.
• The Weiss molecular exchange fields are huge with a value of a few
thousand Tesla.

11.1.3 Curie Temperature in the Stoner Model

The mean field concept discussed above to account for the Curie temperature
is a classical or semiclassical concept based on the interactions of atomic
moments. In the original model of Weiss these atomic moments were just
little dipoles whose origin was unknown. After the discovery of the spin and
the development of quantum mechanics the model was extended by assuming
the atomic moments to be composed of quantum mechanical spins, or more
generally angular momenta J , with the quantum mechanical expectation value
〈J2〉 = J(J+1). This is the basis of equations (11.6) and (11.12). We have also
seen that today we go a step further and map the Heisenberg Hamiltonian onto
band structure results. With the expectation values for the atomic spins 〈s〉2 =
(m/gµB)2 replacing the semiclassical expression for the eigenvalues s(s + 1)
we obtain an equation like (11.12) where the molecular field is expressed in
terms of an exchange coupling constant J0. This expression tacitly assumes
that the atomic moments are dominated by the electron spin and that the
orbital moments are negligible. This is indeed a reasonable approximation as
discussed in Sect. 12.2.2.

In the mid 1930s when the concept of band theory emerged, Stoner [30,31]
developed a new theory of ferromagnetism. His model became very famous at
the time because it readily explained the observed noninteger atomic moments
in the elemental ferromagnetic metals in terms of their band structure. When
temperature dependent effects were included in the model it also made predic-
tions about the low temperature behavior of the magnetization and the Curie
temperature. We now appreciate that Stoner attempted to solve an extremely
difficult problem, the first principles solution for the temperature dependent
magnetization. This problem still remains unsolved today [222]. In retrospect
it is therefore no surprise that the Stoner model fails in the description of the
temperature dependence and especially the Curie temperature. This recogni-
tion did not come easy and it took more than 50 years of heated discussions
about the validity of the Stoner model for the description of finite temperature
magnetism [281, 485]. Today the shortcomings of the Stoner model are well
recognized and it is common in practise to treat the temperature dependence
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of the magnetization, for lack of a better theory2, by means of the mean-field
Weiss-Heisenberg model. We shall therefore not go into mathematical details
of the temperature dependence of the Stoner model but just state the impor-
tant points for completeness. The interested reader is referred to the book by
Mohn [281] for more details.

The essence of the Stoner model are three basic assumptions:

– The magnetic moments in Fe, Co, and Ni are due to the d shell, which
through the formation of periodic bonds takes the form of energy bands.

– The energy of the bands containing different spins, labelled “up” and
“down”, are shifted relative to each other under the influence of a molec-
ular exchange field.

– The up and down bands are filled according to Fermi statistics and the
Fermi function describes the temperature dependence.

As discussed in Sect. 7.4.2 the Stoner picture consists of spin-up and spin-
down bands that are shifted relative to each other by the so-called exchange
splitting ∆ � 1 eV, whose origin is assumed to be the molecular field. For
the case of a “strong ferromagnet”, as shown in Fig. 7.7, one spin band, called
the majority band, is completely filled and the highest states in this band
have a separation from the Fermi level called the Stoner gap ∆S (see Fig. 7.7).
The electrons are filled into the bands up to the Fermi energy. The difference
between the number of electrons in the majority and the less-filled minority
band is the magnetic moment in units of µB. The success of this model is
the prediction of noninteger values of the magnetic moments in the transition
metals Fe, Co, and Ni, as discussed in detail in Sect. 12.2.2. In general, an
approximate relationship indeed exists between the exchange splitting and
the size of the atomic moments as shown in Fig. 11.2.

The model is far less successful in predicting the temperature dependence
of the magnetization. It was worked out by Stoner assuming, most impor-
tantly that the temperature dependence is determined by changes in the
Fermi distribution function, which leads to changes in the DOS at the Fermi
level. At a temperature below TC the number of spin-up (N+) and spin-
down (N−) d electrons in the two bands, which give the magnetic moment
m = µB(N− −N+), is given in terms of the T = 0 DOS D(E) by the famous
Stoner equation [281]

N± =
∫ ∞

0

D(E)
[
e(E−η±)/kBT + 1

]−1

dE, (11.20)

where η± = µ± µBHmol ± µBHext is given in terms of the chemical potential
µ, the molecular field Hmol, and external magnetic field Hext. This leads to
the Stoner criterion for spontaneous magnetic order

2A generalization of density functional theory to finite temperature was derived
by Mermin in 1965 [486] but we presently do not know a physical meaningful ap-
proximation to the finite temperature exchange correlation potential.



490 11 The Spontaneous Magnetization, Anisotropy, Domains

Fig. 11.2. Correlation between size of atomic moments for Fe, Co, and Ni and the
3d exchange splitting, determined from experimental data, taken from Himpsel [487].
The dashed line corresponds to an approximate correlation of 1 eV/µB

2µBH
0
mol

N
D(EF) ≥ 1 , (11.21)

where H0
mol is the molecular field at T = 0 and N = N+ +N− is the number

of d electrons per atom. The criterion predicts the existence of magnetic order
if either the molecular field or the density of states at the Fermi level D(EF) is
large. It suggests that only systems with d or f electrons that have potentially
large values of D(EF) can be magnetic.

The Curie temperature is determined by the temperature dependent
Stoner criterion which can be written as,

2µBH
0
mol

N

∫ ∞

0

D(E)
∣∣∣∣∂f(TC)
∂E

∣∣∣∣ dE = 1 . (11.22)

The Fermi function is given by

f(T ) =
1

e(E−µ)/kBT + 1
. (11.23)

As the temperature increases the convolution of the DOS with the function
∂f(TC)/∂E leads to a decrease of the DOS at the Fermi level until the left
side in (11.22) becomes equal to 1. Because the exchange splitting ∆ is found
to be of the order of 1 eV from detailed density functional band structure
calculations, corresponding to a temperature of about 10,000 K, one easily
sees that the Stoner model has significant problems explaining the observed
Curie temperatures around 1,000 K.
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The Stoner theory makes certain predictions which have proven problem-
atic and in some cases do not agree with experiment. The most important
predictions are:

– The Curie temperature scales linearly with the magnetic moment.
– At the Curie temperature the magnetic moment of each individual atom

vanishes.
– The susceptibility above TC follows roughly a quadratic temperature de-

pendence instead of the experimentally observed Curie–Weiss law.
– The predicted Curie temperatures are of order 5,000–10,000 K.

The last point, in particular has caused considerable debate. It is resolved
by understanding the meaning of the “exchange splitting” ∆ ≈ 1–2 eV in
the Stoner model and the meaning of “exchange energy” EW � 300 meV in
conjunction with the Weiss–Heisenberg model. Let us take a closer look at
the meaning of “exchange”.

11.1.4 The Meaning of “Exchange” in the Weiss–Heisenberg and
Stoner Models

The meaning of “exchange” in solids goes to the very heart of the origin of
magnetic order. It has a long history of controversy and some confusion exists
to this day. At the root of all this is the historical mystery that the Stoner
model, despite all its success to account for the fractional magnetic moments,
predicts a Curie temperature that is nearly an order of magnitude too large
[485,488]. Related to this problem are general questions about the temperature
dependence of local moments and the exchange splitting, particularly the
question whether the exchange splitting and the atomic magnetic moments
vanish at the Curie temperature.

The resolution to these problems lies in the distinction of the meaning of
“exchange” with respect to the Weiss molecular field model and the Stoner
band model. For the following discussion we refer to Fig. 11.3, where we have
illustrated in simple terms the meaning of “exchange” in different situations.

As discussed in Chap. 6 the concept of exchange emerged in the late 1920s
through Heisenberg’s calculation for the He atom and the Heitler-London
calculation for the H2 molecule, leading to the phenomenological Heisenberg
Hamiltonian, given by (6.59). Today we closely associate the term “exchange”
with the coupling constant J and energy of the Heisenberg Hamiltonian. At
the top of Fig. 11.3 we have reviewed the meaning of exchange in a two-
electron atom. It corresponds to the singlet–triplet splitting of the coupled
two-electron system which has the value 2J , as discussed in Sect. 6.3.5.

In the middle of Fig. 11.3 we illustrate the meaning of exchange in the
Weiss model, cast in terms of the mean-field Heisenberg Hamiltonian, as
discussed in Sect. 11.1.2. Today we map this effective field model onto the
band model, calculated within density functional theory, so that the values
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Fig. 11.3. Illustration of the meaning of “exchange” in different situations and pic-
tures. On top we illustrate the original idea of exchange in two-electron atoms. This
is captured by Heisenberg’s Hamiltonian for the two electron case, giving rise to a
singlet–triplet splitting of order 1 eV. In the middle the molecular field concept of
Weiss is illustrated. When cast into the formalism of a mean field Heisenberg model
the exchange energy corresponds to the reversal of an atomic spin, composed of all
unpaired intra-atomic spins, in the Weiss field of all other atoms. At the bottom
the origin of the Stoner exchange splitting between spin-up and spin-down electrons
is illustrated. The Stoner exchange energy, sometimes called spin-flip energy, corre-
sponds to the reversal of a single electron spin in the sea of all other electrons in the
sample. In energy it is close to the intra-atomic exchange value, about a factor of 5
larger than the inter-atomic exchange in the Weiss model

of the atomic moments and the ground state energy matches at zero temper-
ature. In this Weiss–Heisenberg–DFT model the “exchange energy” is given
by EW = 2〈s〉2

∑
j J0j , where the sum is over all neighbors j of the central

atom i = 0 characterized by pairwise (single counting) “exchange constants”
J0j . It reflects the energy of a central spin i = 0 with expectation value 〈s〉
in the field of all other spins j with the same expectation values 〈s〉. We have
seen that in practice a good estimate of the total “exchange energy” is sim-
ply obtained by multiplying that of a nearest neighbor pair 2〈s〉2J01 ≈ 30
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meV by the number of nearest neighbors (≈ 10) giving a value of about 300
meV. The Weiss–Heisenberg–DFT model therefore describes the temperature
dependence of the magnetization through the concept of a molecular field,
established through interatomic interactions between atomic moments, which
vanishes at the Curie temperature. Thus for EW � 300 meV we have a Curie
temperature TC = EW/3kB ≈ 1, 000 K, in reasonable accord with observa-
tions.

The bottom of Fig. 11.3 illustrates the meaning of “exchange” in the band
model of Stoner. This is the case that has caused so much headache. In the
Stoner band model, discussed in Sect. 11.1.3, there exists a splitting between
the centers of gravity of the spin-up and spin-down bands, the “Stoner ex-
change splitting”, which from density functional band calculations is found to
be about ∆ ≈ 1–2 eV, as discussed in Sect. 12.2.1 later. When it is assumed
that the Stoner exchange splitting vanishes at the Curie temperature one is
led to values of TC that are several thousand K [488], in gross contradiction
to measured values of about 1,000 K.

In Fig. 11.4 we have summarized the correlation between experimentally
observed atomic moments in Fe, Co, and Ni and the exchange splitting deter-
mined by photoemission and band theory (left) and the experimental Curie
temperatures (right). The difference in the associated energies clearly illus-
trates the difference of the “exchange energies” associated with the Stoner
and Weiss–Heisenberg models. Note that for the transition metals the linear
relationship between experimental exchange splitting and atomic moments
(also see Fig. 11.2) only holds approximately, while theory predicts a linear
relationship.
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Fig. 11.4. Relationship between size of atomic moments for the transition metals Fe,
Co, and Ni and the 3d exchange splitting (left) and the Curie temperature (right).
The magnetic moments are from magnetization measurements (from Table 12.5),
the experimental exchange splitting is from photoemission spectroscopy [487], the
theoretical splitting is from Fig. 12.1, and the Curie temperatures are from Table
12.5
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The reason for the different energies associated with the Stoner exchange
splitting ∆ and TC is as follows. The Stoner exchange splitting corresponds
to the energy required to reverse a single electron spin in the sea of all other
unpaired electrons in the crystal, as shown schematically at the bottom of
Fig. 11.3. A Stoner excitation is therefore also called a spin-flip excitation of a
single electron spin. The large difference between the Stoner exchange energy
and the Weiss exchange energy arises from the fact that starting with a given
single electron spin the intra-atomic Coulomb interactions are large and they
are responsible for most of the energy that it takes to reverse a single spin in
an atom. As the distance from the central single spin increases the interatomic
Coulomb interactions are rapidly screened by the s–p conduction electrons in
a metal and do not contribute significantly to the Stoner exchange energy.
One may thus say that the Stoner energy characterizes the intra-atomic mo-
ment formation while the Weiss–Heisenberg energy reflects the inter-atomic
exchange responsible for long range ordering and hence TC. This explains why
local moments survive far above TC as attested by the Curie–Weiss behavior of
the susceptibility. Local moments should eventually cease to exist at very high
temperatures but to our knowledge this has not been verified experimentally.

We can summarize as follows.

The Stoner exchange splitting is the energy needed to reverse the spin of
one electron in an itinerant ferromagnet. It is the relevant energy for local
moment formation.
The Weiss–Heisenberg exchange interaction is the energy needed to re-
verse the magnetic moment of one atom, composed of all uncompensated
spins in the atomic volume, in the mean field of all other atomic mo-
ments. It is the relevant energy for long range interatomic ordering and
determines TC.

11.1.5 Thermal Excitations: Spin Waves

We have seen above that the Curie temperature cannot be accounted for by
considering Stoner or spin-flip excitations associated with the reversal of sin-
gle electron spins because the energy associated with such spin flips is too
large. Therefore Stoner excitations cannot be responsible for changes in the
magnetization below TC associated with small energies. We have discussed
in Sect. 11.1.1 that in Fe, Co, Ni, and other magnetic materials the low tem-
perature dependence of M∗ lies somewhere between the two curves shown in
Fig. 11.1. The decrease in magnetization at temperatures T 
 TC therefore
needs to be caused by a new excitation mechanism.

Such an excitation mechanism was first proposed by Felix Bloch in 1930
[141]. The excitations are called spin waves or magnons and involve many
lattice sites. To understand spin waves, one again uses the mean field Weiss–
Heisenberg model. In particular, we are interested in small excitations of the
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Fig. 11.5. The upper part describes the motion of a classical spin s in a plane
perpendicular to the magnetization when a spin wave or magnon is excited. The
amplitude of the spin wave is �. If the wavelength of the spin wave is λ, then λ = Na
where a is the lattice parameter and N the number of involved sites. The lower part
of the figure shows the angle ε between neighboring spins and its connection to the
amplitude �

spins about their equilibrium orientation. With the knowledge of Sect. 11.1.2
it is easy to calculate the excitation energy for a pair of spins. It is given by the
difference in energy between a state where the spins are parallel and where
they include a small angle ε. For the case of the two identical spins s the
excitation energy over the parallel spin configuration (ε = 0) in the ground
state is given by

∆E = 2Js2[1 − cos ε] ∼= Js2ε2 . (11.24)

This shows that we can have a whole range of small excitation energies and
that the excitation vanishes with ε2.

Next we consider a chain of spins as illustrated in Fig. 11.5, producing
a spin wave. The spins on adjacent sites precess with a well defined phase-
shift and the magnon wavelength is defined by the distance between sites over
which a 360◦ precession occurs. The spin wave amplitude � is defined as the
radius of spin precession about M . If N spins are involved, the spin wave
excitation energy is simply given by N times that of the two spin system, i.e.,

∆E = NJs2ε2 , (11.25)

Spin waves or magnons consist of a number of spins that coherently pre-
cess about the magnetization direction M .

We can express the energy given by (11.25) also as a function of different
quantities defined in Fig. 11.5. We assume that ε is small which is the case
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when many spins are involved and hence N is large. For the length of the
arc between two neighboring spins we have 2π�/N = 2π�a/λ = �ka, where
k = 2π/λ is the wave vector of the spin wave and a the lattice constant.
We then obtain ε ∼ sin ε = �ka/s, where we have made the “classical”
approximation |s| = s for the spin moment.3

In order to go further we need to combine the classical model shown
in Fig. 11.5 with the quantum theoretical concept for the spin, derived in
Sect. 8.4. We would like to map a Stoner excitation, consisting of a single spin
that is flipped in the down direction as illustrated in Fig. 11.3, onto the situa-
tion where a chain ofN spins, distributed overN different lattice sites contains
one spin that is in the spin down direction. Then all N individual electrons
participating in the spin wave have a small but nonvanishing probability to
be in the down spin state, and the phase of the down spin state is related to
the phase of the wave-function of the neighboring electrons. We know from
Sect. 8.4.3 that the total spin polarization Pz of an ensemble of N electrons
is given by Pz = (N↑ −N↓)/(N↑ +N↓), where in our case N↑ = N − 1 and
N↓ = 1, so that Pz = (N−2)/N . By use of (8.15) we then obtain for the com-
ponent sz of the individual spins sz = Pz/2 = (1/2)−(1/N) = s−(1/N). This
allows us to obtain the precession radius of the individual spins � =

√
1/N

in Fig. 11.5 by use of the triangulation relation �2 = s2 − s2z and neglecting a
quadratic term 1/N2 which is small for large N .

Combining the two results ε = �ka/s and � =
√

1/N we can then rewrite
the total energy contained in a spin wave, given by (11.25), in terms of a
dispersion relation of the spin wave energy with wavevector k, according to

∆E = h̄ω = Ja2k2 = Dk2, (11.26)

where D is often called the spin wave stiffness. The energy of a spin wave thus
tends to zero with decreasing k or increasing wavelength λ so that excitations
of the magnetization with arbitrarily small energy are possible.

The spin wave model distributes the spin-flip of a single electron, a Stoner
excitation, over many lattice sites.
The spin wave angular momentum corresponds to a single electron spin
flip |∆sz| = h̄.
The spin wave energy depends on the wavelength λ. It ranges from the
Stoner spin flip energy for short λ to nearly zero for large λ.

Spin waves or magnons may be considered as particles with an energy h̄ω,
a linear momentum h̄k and an angular momentum ±h̄. The even angular mo-
mentum tells us that spin waves are Bosons, obeying Bose-Einstein statistics.

3In quantum mechanics 〈s〉 =
√

S(S + 1). We note that the full quantum me-
chanical derivation yields the same final result given by (11.26), but our semiclassical
derivation is shorter.
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Spin waves have an even angular momentum and are therefore Bosons.

This is important for the stability of magnetism. Bosons can accumulate
in one and the same state. Hence when the temperature is raised above zero,
all the thermal energy could go into the generation of very long wavelength
spin waves, destroying magnetic order right away. Such excitations, however,
cannot occur if there is an energy gap that inhibits low energy excitations of
the magnetization. This is the basis of the famous Mermin-Wagner theorem,
stating that a 2-dimensional thin film cannot be magnetic unless it possesses a
magnetic anisotropy that generates an energy gap for the long wavelength spin
waves. Magnetic anisotropy generates an easy direction of the magnetization
in the solid and will be discussed in detail later.

The most important fact to know about spin waves is that they explain the
temperature dependence of the magnetization for 3-dimensional ferromagnetic
materials in the range T ∗ ≤ 0.3. The temperature dependence follows the
T 3/2-law,

M(T ) = M(0) [1 − κC T 3/2] , (11.27)

where C is a constant that contains the spin wave stiffness, and the factor κ =
1 in the bulk but κ �= 1 at the surface, as we shall see. To derive this equation,
one must integrate over all the spin waves excited at the temperature T . The
average number nk of spin waves with a given wave vector k, corresponding
to an average number of reversed spins, at a certain temperature T , is just
given by Planck’s distribution formula,

nk =
1

eEk/kBT − 1
(11.28)

Integrating this over the number of k-states between k and k + dk yields the
famous T 3/2-law (11.27).

The probability to find a spin wave is different at the surface compared
to the bulk. In most cases, the surface is a free end for the spin waves. If this
applies, the surface must be the location of an antinode. The probability to
find a spin wave is proportional to the square of the amplitude of the spin wave
which is cos2 kx. Hence in the hypothetical case that the exchange constant
J is the same at the surface as in the bulk, one expects that the probability
of a spin wave is just twice as high at the surface compared to the bulk.
This arises because in the bulk we have the average value of cos2 kx = 1/2
while at the surface with x = 0, cos2 kx = 1 [489]. If however the exchange is
weakened on a path perpendicular to the surface compared to the spherically
averaged exchange in the bulk, the probability to find a spin wave at the
surface will increase. Yet it has also been observed that J⊥ increases which
leads to a reduction of the spin wave probability at the surface [490]. Another
reason for the reduction of the spin wave probability occurs when it generates
a large demagnetization field at the surface as in Sect. 15.5.2. Hence generally
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Fig. 11.6. Temperature dependence of the relative magnetization M∗ in the amor-
phous ferromagnet FeNiB0.5 with TC = 700 K [491]. The lines are calculated from
(11.27) with the factor κ as indicated. The measurement of M∗ in the bulk (κ = 1) is
done with a Josephson magnetometer, while the magnetization of the clean surface
(κ = 2) and the surface with 1/2 monolayer or Ta (κ = 5.4) is determined from the
measurement of the spin polarization of the low energy cascade electrons, excited
with a primary unpolarized electron beam of 3 keV energy

one expects that the magnetization at a free surface or at an interface to a
nonmagnetic material decreases according to the T 3/2-law (11.27), but with
a constant κ �= 1. This is illustrated in Fig. 11.6.

The temperature dependence of the surface magnetization has been mea-
sured by elastic scattering of polarized electrons from the surface [492]. The
exchange interaction makes this scattering dependent on the relative orienta-
tion of the magnetization and the spin of the scattering electrons as discussed
in Sect. 13.3.1. The elastic scattering at an energy of 100 eV has the lowest
possible magnetic probing depth of about 3 atomic layers from the surface.
It shows the T 3/2 law as predicted. However, fractions of a monolayer of a
nonmagnetic metal may cause a dramatic decrease of the spinwave stiffness
and lead to a much larger constant in front of T 3/2. Therefore, one has to
be aware that interfaces might exhibit a drastically reduced magnetization at
finite temperature [491], as illustrated in Fig. 11.6.

Spin wave spectra are obtained from inelastic neutron scattering and in-
elastic scattering of light, called Brillouin scattering. The experimental spectra
are of course more complex than suggested by (11.26). Spin waves can also
be excited with electron beams, but the cross-section for spin wave excitation
with electron beams is smaller compared to the cross-section for single electron
excitations [493].
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11.1.6 Critical Fluctuations

Theory predicts critical fluctuations of the order parameter near the ordering
temperature TC [494]. This means that the magnetization does not vanish as
postulated by the mean field theory and as shown in Fig. 11.1. Rather, cor-
related regions, so-called “spin blocks” of spontaneously magnetized material
form and dissolve at temperatures close to TC, as illustrated in Fig. 11.7.

The experimental investigation of the temperature dependence of the spon-
taneous magnetization has been a challenge for a long time. To appreciate the
difficulties arising in the early experiments and the progress made with recent
techniques, one must realize the difference between the spontaneous magneti-
zation and the saturation magnetization in an external field. The measurement
of the spontaneous magnetization is not possible directly with the classical
methods of magnetization measurement because it requires a magnetically
saturated macroscopic piece of material. This means that the Weiss domain
structure has to be removed which can only be done by applying an external
magnetic field until M reaches saturation. Extrapolation of M to H → 0
then yields the spontaneous magnetization. M∗ determined with this method
invariably shows a tail extending to T > TC instead of disappearing abruptly
at T → TC. It was never quite clear whether this tail was due to impurities
generating crystallites with different Curie temperatures or whether it was a
genuine property of the clean material.

Fig. 11.7. Instantaneous images of the magnetization calculated by means of Monte
Carlo simulations for a 2D Ising system with periodic boundary conditions. Regions
of opposite magnetization directions are shown as black and white. In the simulation,
carried out for a 250 × 250 lattice, the ordering temperature is TC = 2.42 J/kB,
slightly higher than the Onsager solution TC = 2.269 J/kB for an infinite lattice. At
TC the domain structure, at an instantaneous point in time, is shown in the middle
image. The other two simulations are for T = 2.0 J/kB (ferromagnetic regime),
shown on the left, and for T = 3.0J/kB (paramagnetic regime), shown on the right
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A further related problem is that at temperatures close to TC, M(H)
approaches saturation only gradually making the extrapolation of M to zero
field uncertain. In fact, the M(H) curves in a neighborhood of TC look as if
huge magnetic moments would be aligned in an external field against thermal
motion, that is the M(H) curves look like Langevin-functions at T = const.
The lower half of Fig. 11.8, later, shows such a magnetization curve observed
at T = TC with a very thin film of Fe.

Néel was the first to propose that the appearance of large clusters of spon-
taneously magnetized material on approaching TC must be the cause of this
phenomenon. Such clusters behave like paramagnetic uncoupled macrospins.
The important difference to fluctuating superparamagnetic particles (see
Sect. 11.5.2) is that the spin “blocks” are not anchored to one specific location,
they will appear and dissolve in varying places. Figure 11.7 also illustrates that
the “blocks” have a rather fractal like appearance. The magnetization curves
close to TC provide in fact the most direct evidence that spontaneously mag-
netized spin-blocks are present at T ∗ ∼ 1. Further evidence for the existence
of critical fluctuations is now abundant but it remains a challenge to this day
to image the elusive spin blocks directly since their lifetime is short and their
size is small.

Figure 11.8 shows the remarkable results for the temperature dependence
of M∗ with an ultrathin magnetic Fe film. Pescia and collaborators [495] grew
epitaxial Fe films on top of a single crystal W(110) surface. These films order
ferromagnetically and have an easy axis of magnetization along the in-plane
[110] direction. Films of thickness 1–2 atomic layers consist of one complete
atomic layer of Fe followed by a two dimensional (2D) network of irregular
patches with a TC around room temperature. By applying an external field-
pulse along the easy direction, the films can be brought into a state which
is homogeneously magnetized in the easy direction. The magneto-optic Kerr
effect provides then a signal that is proportional to the spontaneous magneti-
zation without applying a magnetic field. In fact, the susceptibility of M∗ to
external magnetic fields is so large that the magnetic field of the earth has to
be compensated to detect the intrinsic M∗(T ).

At TC = 316.77K, M∗ shows an extremely sharp transition to zero. The
magnetization M∗(T ) drops to zero for T → TC with a critical exponent close
to 1/8, as predicted in the 2D Ising model. In this model, appropriate for
the present uniaxial system, the spin on each site can only be up or down,
and neighboring sites have an energetic preference of aligning along the same
direction, mediated by the exchange interaction. The temperature dependence
is consistent with a magnetic correlation length of � � 1 µ m. Evidently, the
existing morphological defects such as monoatomic steps and the steps due to
patch formation during growth are not able to interrupt the correlation. The
large lateral correlation length, which is much larger than the film thickness, is
the key to observing the true 2D phase transition. The correlation length can
be estimated from the graph in the lower part of Fig. 11.8 showing that the spin
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Fig. 11.8. Top: temperature dependence of the relative magnetization M∗(T ) ob-
served with the magneto-optic Kerr-effect in 1.7±0.1 monolayers of Fe on a W(110)
substrate [495]. The temperature dependence of M∗(T ) for T → TC is close to that
predicted in the 2D Ising model. Bottom: M∗(H) at T = TC = 316.77 K yielding
evidence for very large spin blocks that can be aligned against thermal agitation
by applying only 0.2 Oe. The number N of spins in a spin block is estimated from
NµBH/kBTC = 1, where H ∼ 0.3 Oe = 24 A/m

blocks are aligned in an external field of H � 0.2 Oe. From NµBH = kBTC,
where N is the number of spins in a spin block, one obtains N = 2.4 × 107

spins/block. Associating each Fe atom in a bcc lattice with a moment of
∼ 2µB, we see that a spin block indeed covers an area of ∼ 1 µ m2 that is
� � 1 µ m. The field dependence of M∗ at T = TC also makes it evident
that the initial susceptibility defined by ∂M/∂H for H → 0 is enhanced
by 4 orders of magnitude compared to the values observed in the bulk of
Fe. Theoretically, the initial susceptibility should diverge at T → TC like
χ = const.(T − TC)−1 but this is not quite observed since spins are pinned at
defects and the temperature cannot be stabilized sufficiently.
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Fig. 11.9. Temperature dependence M(T ) of the magnetization observed with
XMCD in an isolated Ni film (circles), and same Ni-film coupled to a ferromagnetic
2D Co-film (squares) over a very thin Cu spacer layer as indicated. The proximity of
the FM Co-film produces a large shift ∆T ∗

C,Ni = 38K of the pseudo-phase transition
in Ni as well as long tails of M(T ) extending far above TC,Ni. The solid and dot
dashed lines are guides to the eye. Courtesy of Andreas Scherz [496]

Today, the theory of continuous phase transitions has gone far beyond
mean field theory. We understand where and why the mean field theory fails,
and how the magnetic phase transition depends on the symmetry of the mag-
netic interactions and on the dimensionality of the sample, be it the surface
or the bulk of a 3-dimensional body, a 2-dimensional magnetic thin film, or a
quasi 1-dimensional wire. Contemporary spectroscopic techniques have added
already substantially to the understanding of the continuous phase transition.
In particular, the ability to measure the magnetization or at least the tem-
perature dependence of the magnetization without applying a magnetic field
has resulted in a much clearer picture of the magnetic phase transition.

As an example for the progress being made, we show the phase transition
of a coupled magnetic system consisting of two ferromagnetic 2D-films F1 and
F2 separated by a nonmagnetic spacer layer. With XMCD, the magnetization
M1(T ) and M2(T ) can be observed independently for each film since the
measurement of M(T ) with X-rays is atom specific. Figure 11.9 shows that an
ultrathin Ni-film of 2.8 monolayers (ML), taken by itself, orders at TC ≈ 120K.
But if a 2D-Co-film of 2 ML with a much higher TC is placed on top of the
3 ML nonmagnetic Cu-spacer layer, MNi(T ) changes dramatically. First of
all, M(T ) vanishes much more gradually with a large tail extending to higher
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temperatures. Secondly a turning point of M(T ) exists with a susceptibility
maximum, suggesting a pseudo-phase transition at a much increased T ∗

C,Ni. A
pseudo-phase transition is expected to take place in coupled systems which
can, according to theory, have only one single true phase transition. Hence
the tail of MNi(T ) will extend up to the Curie-point of the Co-film. The large
shift of the critical pseudo-phase transition temperature upon proximity of a
ferromagnet with high TC, does not exist in 3D systems but only in systems
with reduced dimensionality.

One intriguing point of these studies is the existence of the interlayer
exchange coupling (IEC) discussed in Sect. 13.4.5 later. IEC can be positive
or negative or zero depending on the thickness of the Cu-spacer layer. By
adjusting the thickness of this spacer layer, the effective exchange coupling
between the films and thus the Curie temperature can be manipulated. In
fact, two groups have studied the Co/Cu/Ni system with XMCD [496, 497].
The result is that the experiment and the theory based on a Heisenberg-model
give evidence that the transfer of a static exchange field from the Co-film into
the Ni-film is not sufficient to understand the large tail of M(T ) or the large
change of the pseudo-T ∗

C,Ni. Rather, higher order spin–spin correlations appear
to be important to quantitatively understand the observed M(T ) [496].

Great progress is expected in the future. This expectation is based on the
fact that, in particular, X-ray based spectroscopies and microscopies are able
to determine the spontaneous magnetization without applying a magnetic
field, an important prerequisite when testing the theory of continuous phase
transitions. X-rays offer the ultrafast measurement capabilities of lasers yet
overcome their Achilles’ heel, the diffraction limit set by the relatively long
laser wavelength (of order of 200 nm or longer). Speed and spatial resolution
are important assets when trying to investigate the fluctuations predicted by
theory.

It may even be possible to directly image the elusive spin blocks in a time
resolved experiment. In principle, a temporal snapshot of the magnetization
M∗ can be recorded at a time resolution solely determined by the length of
the X-ray pulse, provided that there are enough photons in a single pulse to
yield a low noise image. This appears possible with the advent of an X-ray free
electron laser where a single X-ray pulse of femtoseconds duration contains
about 1013 photons, a number presently available at advanced synchrotron
facilities by integrating over 1 s. The lifetime of a spin block is proportional
to the initial susceptibility, but the actual lifetime cannot be predicted with
confidence as the dynamic scaling arguments are not as well founded as the
static ones [494]. Direct imaging could prove that the spin blocks appear at ar-
bitrary locations and are not pinned to fixed sites. Magnetization fluctuations
of ferromagnetic particles of a somewhat higher TC anchored at impurities
could be mimicking critical fluctuations.



504 11 The Spontaneous Magnetization, Anisotropy, Domains

11.2 The Magnetic Anisotropy

Experimentally it is found that the magnetization M tends to lie along one
or several axes in the magnetic solid. It costs energy to turn it into any
direction different from the preferred axes, called the easy axes. As mentioned
in Sect. 7.9 in the context of the spin–orbit interaction we can define the
magnetic anisotropy as follows.

The magnetic anisotropy is defined as the energy that it takes to rotate
the magnetization direction from the easy into the hard direction.

Magnetic anisotropies may be generated by the electric field of the solid
or crystal, by the shape of the magnetic body, or by mechanical strain or
stress, all of which are characterized by polar vectors. Hence they cannot
define a unique direction of the magnetization which is an axial vector. This
is why no unique anisotropy direction can exist but only a unique axis. The
energy density Eani connected with the magnetic anisotropy must therefore
be constant when the magnetization is inverted, which requires that it be an
even function of the angle γ enclosed by M and the magnetic axes,

Eani = K1 sin2γ +K2 sin4γ +K3 sin6γ + · · · , (11.29)

where Ki (i = 1, 2, 3, . . .) are the anisotropy constants with dimensions [en-
ergy/volume] and units [J m−3]. This is only a series expansion. Depending
on the magnetic material and on the specific experiment, one might have to
add more higher order terms.

We note that without the existence of magnetic anisotropy, 2D objects such
as thin films could not order magnetically as already mentioned, and even in
3D samples, the magnetization would twist itself into interwoven curls and
be hardly observable [124]. This happens because the exchange interaction is
short range and the magnetization can thus be rotated over a distance called
the magnetic coherence length into a new direction at a very low expense of
energy.

Very often one encounters the need to represent the magnetic anisotropy
by an effective magnetic field Hani constructed to simulate the effect of the
magnetic anisotropy. Hani is called the anisotropy field. It must be parallel to
the easy axis to keep M there, but it must change sign when M changes sign.
If M deviates from the easy axis, Hani induces a precession of M around the
easy axis until the damping of the precession forces M back into the easy di-
rection. We derive Hani for the simplest, but most important case of uniaxial
anisotropy where onlyK1 �= 0 (with higher anisotropies, Hani is derived analo-
gously, but can have more than one direction.) According to (11.29), the effec-
tive torque acting on the magnetization is given by ∂Eani/∂γ = 2K1 sin γ cos γ.
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Fig. 11.10. In general, the angle γ in (11.29) is defined as the direction of the
saturation magnetization M S with respect to a unique axis of the sample. For a thin
film, the unique axis is often chosen to lie along the normal of the film, as shown.
Note however, that in case of a strong in-plane uniaxial anisotropy the unique axis
is sometimes defined as the in-plane easy axis

We postulate that this torque is equal to the torque M ×Hani = MHani sin γ
that the effective anisotropy field exercises on M . This yields

Hani =
2K1

M
cos γ. (11.30)

We see that Hani indeed simulates a preferred axis since it changes sign when
γ goes through π/2. The anisotropy field can be added vectorially to the other
axial magnetic fields, exchange and applied, in order to calculate quantities
like the precession frequency of M in magnetization dynamics or in magnetic
resonance.

The first order term K1 is usually much larger than the other terms and
we discuss it for the example of a thin film. Because in thin films the surface
normal defines a characteristic axis, one often defines γ in (11.29) as the
angle of the magnetization with this axis, as shown in Fig. 11.10. With the
definition of Fig. 11.10 and defining the magneto-crystalline anisotropy energy
∆Eso according to (7.50) as the difference between the energies along the hard
direction minus that along the easy direction, we have ∆Eso = K1 > 0 if the
easy axis is perpendicular to the surface and K1 < 0 for an in-plane easy axis.

We can write the anisotropy constant K1 in (11.29) as a sum of two
contributions K1 = Ku + Ks. The first term Ku is the magnetocrystalline
anisotropy (MCA) generated by the atomic structure and bonding in the
film, discussed previously in Sect. 7.9 and also in Sect. 11.2.2 later. The sec-
ond term Ks = −M2/2µ0 is the shape anisotropy, discussed in Sect. 2.6 and
11.2.1 below. The first order term of the anisotropy energy density in a thin
film is then given by,

Eani = (Ku +Ks) sin2 γ + · · · (11.31)

According to Sect. 7.9, in multilayers Ku may be positive and large. If (Ku +
Ks) > 0, the thin film prefers to be magnetized perpendicular to its plane,
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Fig. 11.11. Illustration of magnetic anisotropies in two cases. In magnetic films
with a thickness of several nanometers the easy magnetization direction is typi-
cally in-plane due to the dominance of the magneto-static or shape anisotropy. In
multilayer systems, consisting of alternating magnetic and nonmagnetic layers of
subnanometer thickness, such as Co and Au, the easy axis may be out-of-plane due
to the dominance of the spin–orbit derived magneto-crystalline anisotropy

but for (Ku + Ks) < 0, the easy direction will be in plane. The balance
between Ku and Ks is delicate in thin films and mulitlayers and can change
with temperature. In the system Fe/Cu(001) for instance, one observes that
the magnetization turns from its perpendicular direction at low temperatures
into the plane of the film at ∼300 K. This reorientation transition has been
studied in detail [498–500].

In applied magnetism, it is of great interest that thin films that are embed-
ded in layered structures (and also some ordered alloys) may exhibit an easy
axis that is perpendicular to the sample surface. As illustrated in Fig. 11.11,
for an isolated thin film the magnetization is typically in plane due to the effect
of the shape anisotropy, while in certain sandwich structures, like Au/Co/Au
or Pt/Co/Pt, the magnetization prefers to be out-of-plane. Such a perpen-
dicular magnetic anisotropy (PMA), is of great technological importance and
it is also a beautiful example of the competition between the two anisotropy
mechanism to determine the easy axis. We can summarize as follows.

The easy magnetization axis of a sample is determined by a competition
between the magneto-crystalline anisotropy and the shape anisotropy.

In the following we shall briefly review the two main anisotropy contribu-
tions.
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11.2.1 The Shape Anisotropy

In general, the magnetization distribution in the atomic cells contains spin and
orbital contributions and it is not spherical but involves various multipoles.
In the multipole expansion of the spin density, the largest term, after inte-
gration over the atomic volume, corresponds to the magnetic spin moment.
Since it arises from the exchange interaction, the spin moment is intrinsically
isotropic and magnetic anisotropy arises only from the preferred dipolar cou-
pling between the atomic moments. The spin density term therefore gives rise
to the conventional dipole–dipole interaction between magnetic moments ms,
located at the atomic positions in the lattice,

Edip−dip = − 1
2πµ0

∑
i	=j

1
r3ij

[
mi · mj − 3

(rij · mi)(rij · mj)
r2ij

]
. (11.32)

The summation is over all atomic dipoles mi and mj whose absolute values
are given by the spin moment ms. Every pair of dipoles is only counted once,
and rij is the vector connecting two moments. The next higher (quadrupole)
term in the multipole expansion of the spin density reflects the lowest-order
anisotropic spin distribution in the atomic cell and it gives rise to the intra-
atomic magnetic dipole moment mD. The orbital moment also contributes
to the magnetization density in the atomic volume and its anisotropy mα

o is
typically comparable to that of the intra-atomic magnetic dipole moment mD.
In practice, however, both contributions are much smaller than the lowest-
order magnetic dipole–dipole interaction given by (11.32).

Remembering that all moments are parallel because of the dominant ex-
change interaction, the dipole–dipole energy between two magnetic dipoles,
for example, is smallest when both atomic moments align parallel along the
internuclear axis, as illustrated in Fig. 11.12.

For a thin film the internuclear axes are preferentially oriented in the plane
of the sample and the dipole energy is therefore minimized for an in-plane
direction of the magnetic moment. For bulk materials the dipolar field may be
decomposed into three contributions, a “microscopic” component consisting
of the contributions from the atomic dipoles on the actual lattice sites within
a spherical volume, ES, that arising from pseudo-charges on the surface of the
sphere, EL, and a “macroscopic” component due to the demagnetizing field
from pseudo-charges on the external sample surface, ED, according to

Edip−dip = ES + EL + ED . (11.33)

The dominant term, ED, arising entirely from the demagnetizing field, is the
shape anisotropy, already discussed in conjunction with (11.31). It is given by

ED = Ks = − 1
2µ0

M2 . (11.34)
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Fig. 11.12. Physical basis of shape anisotropy. On top we give the definition of
vector relationships corresponding to (11.32), where rij is the distance between two
magnetic moments mi and mj . Note that the exchange coupling ensures that the
moments are collinear. The bottom two rows show four relative alignments of two
collinear dipoles with the same moments m = |m|, separated by a distance r. Below
each drawing we give the dipole–dipole interaction energy. In the lowest energy
state the dipoles are aligned along the internuclear axis. These results may already
be derived from (3.2)

This result is obtained from (2.21) with Hi = −M/(2µ0), where M is the
volume magnetization. The other two terms depend on the crystallographic
arrangement of the atoms in the sphere and therefore constitute a dipolar
magneto-crystalline anisotropy. For Co, for example, the microscopic compo-
nent is found to be negligible in size (ES + EL ≈ 4 × 10−7 eV/atom) relative
to the shape anisotropy (ED = 9.3 × 10−5 eV/atom, see Table 11.3) [123].

For surfaces and ultrathin films the anisotropy may be calculated by a two
dimensional lattice sum [501]. Typical calculated anisotropy energies are ≤
5×10−5 eV/atom for a single ferromagnetic layer, smaller than those observed
experimentally [123]. Therefore the important PMA, in particular, cannot be
accounted for by a dipolar anisotropy. Instead, it arises from the dominance
of the MCA, as illustrated in Fig. 11.11.

11.2.2 The Magneto-Crystalline Anisotropy

Uniaxial anisotropies may be induced by a anisotropic crystal structure, by
stress, or in thin films by epitaxial growth on a substrate such as W(110)
with a preferred direction as we have already discussed in conjunction with
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Table 11.3. Bulk anisotropy energies for the 3d metals Fe, Co, Ni at 4.2 K [123].
Listed are values for the atomic volumes Va, the shape anisotropies ED = −M2/2µ0

calculated from the values in Table 2.2, the magnetocrystalline anisotropies Ku and
the bulk easy axes.

metal Va [Å
3
] ED [eV/atom] Ku [eV/atom] easy axis

Fe (bcc) 11.8 −1.4 × 10−4 4.0 × 10−6 [100]

Co (hcp) 11.0 −9.3 × 10−5 5.3 × 10−5 c-axis

Ni (fcc) 10.9 −1.2 × 10−5 8.6 × 10−6 [111]

Fig. 11.8. In practice, Ku is often treated as an empirical constant derived
mostly from ferromagnetic resonance or from the magnetization curve mea-
sured in the hard direction, at right angle to the easy direction as explained
later. Historically the MCA and the magneto-elastic anisotropy are distin-
guished from each other. On a microscopic level, however, they both arise
from the same mechanism, the anisotropy of atomic structure and bonding
in conjunction with the spin–orbit interaction as discussed in Sect. 7.9. We
therefore discuss both of them under the general name MCA.

Van Vleck [319] first proposed the MCA to arise from the spin–orbit in-
teraction which couples the isotropic spin moment to an anisotropic lattice.
In today’s electronic structure calculations the magnetocrystalline anisotropy
energy corresponds to the largest difference of the spin–orbit energy when the
sample is magnetized along two different crystallographic directions. In the
absence of shape anisotropy effects, the two directions then define the “hard”
versus the “easy” magnetization directions.

It has been difficult to obtain a clear picture of the origin of the MCA be-
cause the complexity of electronic bandstructure calculations impedes simple
physical insight [332,335,502–504]. Also, for the bulk transition metals Fe, Co,
and Ni the crystal symmetries are high and the MCA’s are extremely small of
order 10−5 eV as listed in Table 11.3. Although models have been suggested
to account for the approximate size of the MCA [505], even today it is still
very difficult to calculate Ku reliably, even in an ideal crystal. Reliable results
sometimes require calculation with a huge number of k-points in the Brillouin
zone. For example, the easy [111] magnetization direction of bulk fcc Ni and
its change to [110] at elevated temperatures could not be accounted for by
means of electronic structure calculations [504] that used a typical number of
about 25,000 k-points. Halilov et al. [506] later showed that the correct answer
could indeed be obtained by brute force, using about 370,000 k-points.

In contrast to the elemental metals Fe, Co, and Ni in bulk form, the situ-
ation is different for layered thin films, which have an inherent in-plane/out-
of-plane asymmetry and the resulting MCA is larger by up to two orders of
magnitude (10−4 eV/atom) [320, 325, 336, 507–511]. This opens the door for
an interpretation of the MCA based on a chemical bonding concept, based on
ligand field theory as previously done in Sect. 7.9. The strength of this con-
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cept, although possibly oversimplified, is its intuitive nature [332, 333, 503].
In the following we shall give a brief account of the history of the surface or
interface induced magnetic anisotropy which can cause the magnetization to
be oriented perpendicular to the plane of the magnetic film.

11.2.3 The Discovery of the Surface Induced Magnetic Anisotropy

It is known that the bulk anisotropy of single crystals can be strong enough
to sustain a perpendicular magnetization down to rather thin films. Exam-
ples are Gd-garnets of interest for “bubble memories” and 3d− 4f alloys like
FeTb used in magneto-optical recording. This fact can be qualitatively un-
derstood by means of Van Vleck’s idea [319] that the magnetic anisotropy is
due to spin–orbit coupling and that the bulk lattice creates a preferred “easy”
axis. Néel [512] first predicted that the magnetic anisotropy is substantially
different at the surface of a ferromagnet compared to the bulk, owing to miss-
ing bonds and an incompletely quenched orbital moment. For a long time it
was unclear whether a few-layer-thick film of a material like Fe, with only
weak bulk anisotropies, could have a perpendicular anisotropy at the surface
that was sufficiently strong to overcome the shape anisotropy and produce a
perpendicular magnetization.

Today we know that surface or interface induced perpendicular magnetic
anisotropy (PMA) can indeed occur. It took the art of making atomically
clean epitaxial metallic films on a single crystal metallic substrate to verify
this effect. Many thought this to be impossible because metals interdiffuse
much more readily relative to insulators and semiconductors.

In 1969 Gradmann [513] produced mainly crystalline layers of Ni48Fe52(111)
on Cu(111) and first reported that ultrathin films, a few atomic layers thick,
could be spontaneously magnetized perpendicular to the surface due to Néel’s
surface anisotropy. This work was continued many years later by several
groups. In 1986 Chappert et al. [514] evaporated thin Co-films onto polycrys-
talline Au with a preferential orientation of the Co hcp axis perpendicular
to the surface and saw that the magnetization turned perpendicular to the
surface if the Co-film thickness was reduced to about 1 nm. Simultaneously,
Jonker et al. [515] grew epitaxial Fe films on Ag(111). At 2.5 monolayers of
Fe, spin splitting of the bands appeared, but the spin polarization of the pho-
toelectrons along a quantization axis in the plane of the films remained zero.
The authors concluded that the films must be magnetized perpendicular to
the surface. This was confirmed by the first serious theoretical calculation of
surface magnetic anisotropies by Gay and Richter [516], published shortly af-
terward. Pescia and coworkers [498] then showed that a few Fe layers grown
on Cu(001) exhibit spin polarization along a quantization axis perpendicu-
lar to the surface. Stampanoni et al. [517] proved that 3–4 bcc Fe-layers on
Ag(001) are indeed remanently magnetized perpendicular to the surface at
30 K as proposed [515], but the magnetization turns in-plane when the tem-
perature is increased to T > 100K. This was of interest in the light of the
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Mermin–Wagner theorem [518] according to which a 2-dimensional specimen
can not order magnetically unless it possesses magnetic anisotropy.

At the transition of the magnetization from in-plane to perpendicular,
the shape anisotropy is exactly compensated and thus at this temperature,
there should be no magnetic order. A loss of magnetization was indeed re-
ported [519]. Later, Kashuba and Pokrosvsky [499] found that the spin re-
orientation transition produces stripe domains susceptible to thermal mean-
dering. The latter have been imaged directly with spin resolved low energy
microscopy (SPLEEM) [74] and PEEM [500]. Pescia and coworkers [520] then
showed that the stripe domains become a labyrinthine domain structure and
then again a stripe domain structure as the temperature is raised. Finally,
Qiu and collaborators [500] investigated the stripe domains in a transferred
exchange field and established a universal dependence of their width on the
effective magnetic field. At present, the time dependence of the spin reorien-
tation transition is of interest, as well [521].

11.3 The Magnetic Microstructure: Magnetic Domains
and Domain Walls

The macroscopic properties of a magnetic material are explained by the mag-
netic microstructure. Magnetic domains and the transition regions between
the domains called magnetic domain walls are the elements of the magnetic
microstructure. We will outline here the most important physical principles
indispensable to understanding the very basic features, but we cannot give a
full description of this very rich field. For an extensive treatment of ferromag-
netic domains and the analysis of the magnetic microstructure, the reader is
referred to the book by Hubert and Schaefer [54]. We shall separately discuss
ferromagnetic and antiferromagnetic domains.

11.3.1 Ferromagnetic Domains

If the magnetic anisotropy were the only energy determining the direction of
the magnetization, a magnetic sample would tend to be homogeneously mag-
netized along one of its easy directions. However, depending on its physical
shape, a homogeneously magnetized sample will generate a magnetic stray
field. The generation of a magnetic field outside the sample costs energy ac-
cording to (2.20). To reduce this energy, the magnetization will split up into
domains, that is it will prefer to lie in multiple directions in order to mini-
mize the stray magnetic field. The most favorable magnetic configuration is a
magnetic ring as we have already seen in Sect. 2.6, and the magnetization will
thus tend to approximate this most favorable configuration. In the presence
of domains there have to be transitions from one direction of the spontaneous
magnetization into another one. These transitions occur in “domain walls”,
but the formation of the domain walls costs some energy as well. The internal
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structure of domain walls is a fascinating topic of magnetic microscopy. It is
different at the surface compared to the bulk, and it also changes with 2D
samples compared to 3D samples.

Ferromagnetic domains arise from the minimization of the stray field
energy. If the stray field energy is larger than the energy it takes to form
domain walls, the ferromagnet will break up into domains.

The thickness and energy of magnetic domain walls are important to the
world of nanomagnetism. First, magnetic films in the nanometer range of
thickness turn out to be too thin to support a domain wall parallel to their
surface. This reduces the magnetic microstructure to tractable simplicity. In
the case that the easy direction lies in the plane of an atomically thin film,
a homogeneously single domain state for the whole film is lowest in energy
like in the example of Fe on W(110) of Fig. 11.8. This arises from the fact
that the demagnetizing field (2.20) is only large for a lateral extension of the
order of the film thickness, but a domain wall is much thicker than a few
atomic layers, hence it is not favorable to change the magnetization direction.
Secondly, small magnetic particles cannot support a domain wall if the wall
energy is larger than the stray field energy, hence such nanomagnets have to
be single domain, that is they are always fully magnetized, possibly with the
exception of some spins at the edges of the magnetic particle. Such particles
then do not exhibit a magnetic microstructure at all. In summary, we need to
know the thickness and energy of a domain wall in order to know over what
distances the macrospin approximation might be reasonable.

Two prominent types of domain walls are illustrated in Fig. 11.13, named
after the scientists who first conceived them. In both cases two regions with
oppositely oriented magnetization directions are separated by a planar tran-
sition region, called a wall. In a Bloch wall a continuous 180-degree transition
of the magnetization occurs with the moments in the wall oriented parallel to
the plane of the wall. In a Néel wall the moments in the transition region are
aligned perpendicular to the plane of the wall. Bloch walls are more common
in bulk-like thick films, while Néel walls often occur in thin films, where a
surface stray field is avoided by rotation of the moments within the surface
plane, as shown on the left of Fig. 11.13.

In the following we shall briefly discuss the characteristics of Bloch walls.
Such walls occur in an infinite uniaxial medium with negligible magnetostric-
tion, separating two domains of opposite magnetization. To rotate the magne-
tization by γ = π it has to enclose an angle 0 < γ < π with the easy direction
over some distance d. When the magnetic anisotropy energy is large, the mo-
ments are strongly held along the easy direction. The wall width d will be
small to minimize the length of the rotation from the easy direction, i.e., the
wall energy. When the exchange energy between the moments is large the
moments will form a stiff chain that resists bending, so the wall thickness
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180 domain wallso

Fig. 11.13. Illustration of two types of 180◦ domain walls. In a Bloch wall, common
in thick films, the magnetization rotates in a plane parallel to the plane of the domain
wall. In a Néel wall, favorable in very thin films, the magnetization rotates in a plane
perpendicular to the wall, i.e., within the surface plane, thus avoiding the creation
of a stray field

d will be large to minimize the wall energy. Hence the competition between
the exchange and anisotropy energies determines the wall thickness and the
wall energy. In the case of the Bloch wall, the demagnetization field energy
vanishes, Ks = 0, so that one only needs to consider the magnetocrystalline
anisotropy (MCA) energy. This facilitates our calculation.

For a Bloch wall with a gradual change of the magnetization direction by
180◦ over a row of N atoms, with equal angles ε = π/N between adjacent
spins, the exchange energy is given by JS2(π2/N2) according to (11.25). For
one row of N atoms, the energy is JS2(π2/N). The number of rows of atoms
per unit area of wall depends on the crystal structure, but it is certainly of
the order of 1/a2, where a is the lattice parameter. Now with a wall thickness
d = Na one has for the exchange energy per unit wall surface JS2π2/Na2 =
JS2π2/da. The crystalline anisotropy energy per unit area is EK = Kud,
where Ku is the magnetocrystalline anisotropy or MCA, given by (11.31).
The total energy per unit area, E = Kud+ JS2π2/da, is at a minimum when
the derivative of E with respect to d is zero.

This gives the following important expressions for the domain wall energy
and thickness. For a 180◦ wall, the wall energy per unit area of the wall surface,
Ew, with dimension [energy/area] is given by

Ew = 2π
√
AKu , (11.35)

where A = J S2/a is called the exchange stiffness with dimension [en-
ergy/length] and Ku is the MCA with dimension [energy/vol]. It is minimum
when the wall thickness d has the value
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d = π
√
A/Ku . (11.36)

The exchange stiffness A decreases with temperature. Its zero-temperature
value may be estimated from A(0) � kBTC/a. MCA energies are generally
large when the spin–orbit coupling is large such as in the rare earth ferro-
magnets or when the orbital moment is anisotropic at interfaces and surfaces,
as illustrated in Fig. 7.35. In the bulk of Fe, Ku � 0.46 × 105 J/m3. Equa-
tion (11.36) then yields a wall thickness in Fe due to crystalline anisotropy of
∼50 nm corresponding to about 200 lattice spacings at a wall energy ∼5×10−3

J/m2. For detailed calculation of wall energies and thicknesses the reader is
referred to the book by Hubert and Schaefer [54].

In contrast to a model based entirely on the MCA energy, the shape
anisotropy energy may also be important, particularly with materials of high
magnetization M � 2T such as Fe, yielding Ks � 106 J/m3. The shape
anisotropy comes into play when the magnetization is directed perpendic-
ular to a surface and may lead to a smaller wall thickness and/or a transition
from the Bloch wall structure to the Néel wall structure as the thickness of a
film is reduced.

In general, we can make the following statements.

The properties of a domain wall are determined by the competition be-
tween the exchange energy and the magnetic anisotropy energy.
The domain wall energy increases with both the exchange energy and the
anisotropy energy, because both favor a collinear moment alignment.
The domain wall width increases with the exchange energy but decreases
with increasing magnetic anisotropy energy.

A wide range of scales appear generally in magnetic problems. The cor-
relation length � is relevant for magnetic phase transitions, discussed in
Sect. 11.1.6. Equation (11.36) defines yet another length, the so called “ex-
change length” which is the distance over which the magnetization is expected
to change direction in the presence of magnetic anisotropies. In the bulk of
Fe, the crystalline anisotropy is dominant and the exchange length is defined
as l =

√
A/Ku. It is of the order of the thickness of a Bloch wall of 50 nm.

However, when the shape anisotropy is dominant, the exchange length in the
same material is given by l =

√
A/Ks =

√
2µ0A/M . This might be much

shorter and comes into play for instance in the core of a magnetization vortex
where the magnetization is perpendicular to the surface. The vortex structure
is schematically depicted in Fig. 15.18. In Fe, the diameter of the vortex is
believed to be of the order of 10 nm [522]. We see that a careful analysis is
necessary before one applies the macrospin approximation in which all spins
are parallel.
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11.3.2 Antiferromagnetic Domains

In an antiferromagnet, there is no stray field and one might expect that
the thermodynamically stable configuration is a single domain. In practice,
antiferromagnets usually adopt multidomain configurations for a variety of
reasons. A common reason for AFM domain formation is the existence of
crystalline imperfections. In epitaxial thin films, imperfections or boundaries
resulting from twinned crystallographic regions interrupt the long-range mag-
netic ordering, allowing a change of the spin axis. This has been studied in
detail for NiO since the 1960s [523–528]. Some domain configurations, while
not representing global free-energy minima, may be stable because of kinetic
considerations [529]. A T-domain wall in NiO (see Fig. 7.25) [284,285] is such
a configuration [530]. Once formed, it is essentially stable.

In a perfect crystal, the lowering of free energy that accompanies an in-
crease in entropy can lead to an equilibrium multidomain structure. For an
S-domain wall (see Fig. 7.25), the absence of demagnetization energies allows
the wall some flexibility of configuration, with a consequent increase in en-
tropy. This entropy increase can be greater than the energy cost of forming
the domain wall, in which case the multidomain configuration is thermody-
namically favored [531]. Domain formation is favored for NiO over a wide
temperature range, 100K < T < TN = 523K [532]. The equilibrium domain
configuration can also be modified by external forces such as stresses and/or
applied fields [523,528]. We have already encountered an example in conjunc-
tion with Fig. 10.23.

Antiferromagnetic domain formation has also been investigated theoreti-
cally in conjunction with the topic of exchange bias [533]. These studies were
based on prior extensive model studies of diluted Ising antiferromagnets [534].
Such Monte Carlo simulations also provide convincing theoretical evidence on
the seeding and pinning of AFM domains by defects.

11.4 Magnetization Curves and Hysteresis Loops

The magnetization curve (MC) is the response of a magnetic material to the
application of a magnetic field. It is essential to all applications of magnetic
materials, the most important ones include the electric transformer, powerful
permanent magnets, and magnetic data recording. We will outline the phys-
ical principles for some important cases later but do not intend to give an
exhaustive treatment of MCs. For this, the reader is referred to the special-
ized literature [54].

If an external field is applied, a torque T = M × H acts on the mag-
netization and the magnetic microstructure changes in order to reduce the
energy. Regions in which the magnetization lies in a favorable direction will
grow at the expense of unfavorable ones by a movement of the domain walls
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Fig. 11.14. Definition of the main features of the magnetization curve (MC), that
is the dependence of the sample magnetization M on the applied field H . The
discontinuous changes near the coercive field (Barkhausen jumps) are not observed
with all magnetic samples.

(see Fig. 15.17). Also, it can happen that the magnetization of a whole region
“jumps” more or less suddenly into a new direction. Eventually, the magneti-
zation rotates into the direction of the external field. MCs usually depend on
the initial distribution of the magnetization over the sample volume. In other
words, MCs depend on the history of the sample. The microscopic elemen-
tary processes are mostly not reversible [535]. They also depend on the speed
with which the external field is changed. With magnetic field pulses shorter
than ∼ 10−10 s, the precessional motion of the magnetization is dominant and
the MCs change character entirely. The following discussion is focused on the
quasistatic MCs occurring with slowly changing magnetic fields.

Figure 11.14 defines some frequently used terms to describe the MC. The
saturation field is the applied magnetic field at which the domain structure is
removed. M points then entirely into the direction of the applied field. The
magnetic remanence is the magnetization that remains if the applied field is
decreased to zero. The coercive field is the field that must be applied in the
direction opposite to the saturation field in order to reduce the magnetiza-
tion to zero. The virgin curve is the MC of a sample that has never been
exposed to a magnetic field. It is obtained by first heating the sample to
T > TC and subsequently cooling it in a field free region. The MC obtained
after this procedure is the virgin MC. Demagnetizing a sample in a slowly
decreasing alternating field may lead to a different MC. At very small fields
and with soft-magnetic materials having the highest magnetic permeabilities,
the virgin MC often starts with a smaller slope but then at somewhat higher
field strength, the slope increases steeply. The initial lesser slope is due to
reversible motion or bulging of domain walls. In the steep part of the virgin
MC as well as at field strength close to the coercive field, the magnetization
often seems to change in a discontinuous way. This was first observed in 1919
by Barkhausen with the help of the new cathode tube amplifier. Since then
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the jumps are called Barkhausen noise and can be heard when a pick up coil
is placed close to the sample. Today one knows that these jumps are caused
by the irreversible motion of a domain wall between two regions of opposite
magnetization. Finally, when M changes only slowly, it rotates from its own
local easy direction in a crystallite into the direction of the applied field.

Only in very simple cases is it possible to uniquely interpret MCs in terms
of elementary processes such as domain wall motion and coherent rotation of
M . Therefore, magnetism has become a rich field for magnetic microscopy.
Some 50 years ago it was only feasible to image the surface of static mag-
netic domains at a lateral resolution of micrometers by means of the Bitter
technique [536]. Great progress has been made through magneto-optical tech-
niques as discussed by Hubert and Schaefer [54], and at higher resolution
through electron and X-ray based microscopies as discussed by Hopster and
Oepen [457] and Freeman and Choi [456]. It is even possible today to ob-
tain magnetic images with atomic resolution through spin polarized magnetic
scanning tunneling microscopy as reviewed by Bode [458].

Today, the dynamics of magnetic domains can be watched at video rates,
and for periodically repeatable processes, pump-probe techniques offer a time
resolution in the tens of picosecond range at tens of nanometer resolution
[456, 537, 538]. In addition, X-ray based techniques can image the magnetic
moments with atomic specificity and can also image antiferromagnetic do-
mains. Typically, with modern microscopy techniques the magnetic domains
are visible only within a certain probing depth below the surface.

11.5 Magnetism in Small Particles

11.5.1 Néel and Stoner–Wohlfarth Models

Magnetic samples that are too small for the formation of a magnetic domain
wall behave like a single magnetic domain, i.e., a macrospin. Equation (11.36)
tells us that this occurs for nanoparticles containing typically 104–106 Bohr
magnetons. Magnetization changes are then expected to occur solely by uni-
form rotation of M . The theory of MCs in such single domain particles was
developed by Néel in 1947 [539] and Stoner and Wohlfarth in 1948 [540]. How-
ever, a rigorous experimental test of the “Stoner–Wohlfarth (SW) model”,
that is of the magnetization reversal by uniform rotation had to wait until
well characterized single particles could be made whose small magnetization
could be measured with high sensitivity techniques. Wernsdorfer [541] gives
an excellent description of how such experiments can be done on particles
containing down to 103 spins using microscopic superconducting quantum
interference devices (SQUIDS). He shows that with good single crystalline
particles, the SW-model seems to describe the hysteresis loops satisfactorily.

For the simplest case of a sample with uniaxial anisotropy constant K
which includes shape and crystalline contributions (see (11.31)), the energy of
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E

Fig. 11.15. Dependence of the component of M along the direction of the applied
field H on the field strength according to the Stoner–Wohlfarth model. It is assumed
that the sample consists of one single domain or a “macrospin” and has one easy
magnetization axis. The angles γ and φ specify the directions of the magnetization
M and the external field H relative to the easy axis as illustrated on top

a single domain particle with magnetization M and volume V , in a magnetic
field H, is given by

E = KV sin2 γ −MVH cos(φ− γ) , (11.37)

where γ and φ are the angles enclosed by M and H, respectively, with the
easy axis of magnetization as shown in Fig. 11.15. The energy (11.37) has two
minima, separated by a potential barrier.

The hysteresis loop is the magnetization component M cos(φ − γ) along
the direction of the applied field specified byH and φ. It is obtained by solving
(11.37) numerically.

The magnetization loop depends on the orientation φ of the external field
relative to the easy axis. For a given φ it is a plot of the magnetization
component along the direction of the applied field as a function f of the
applied field according to

M cos(φ− γ) = f [H(φ)] . (11.38)

Here the angles γ and φ are defined in Fig. 11.15 and the loop is obtained
by solving (11.37) numerically.
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Three examples of SW-loops are shown in Fig. 11.15. There is a charac-
teristic dependence of the loops on the angle φ. In particular, if H is applied
under 45◦ to the easy axis, the particle switches at 1/2 of the field strength
required for reversal along the easy (φ = 0) or in the hard direction (φ = 90◦).
There is no hysteresis when H is applied in the hard direction (φ = 90◦) since
M turns gradually into the field direction with increasing field strength. For
H applied in the easy direction (φ = 0), the magnetization jumps abruptly
into the opposite direction when H reaches the coercive field.

We see from Fig. 11.15 that in the SW model the coercive field Hcoer and
anisotropy field Hani are the same, since the loop jump in the easy direction
is the same as the saturation field needed to move M into the hard direction,
compensating Hani.

In the Stoner–Wohlfarth model the coercive field Hcoer and anisotropy
field Hani are the same.

The hard axis saturation field is often used to determine the strength of
the magnetic anisotropy constant K1 according to (11.30). But in practice, it
turns out that the fieldHcoer is usually lower thanHani. This can be due to the
formation of domain walls at imperfections or to curling and buckling modes
of M in the process of reversal. Furthermore, Hcoer depends critically on the
time span over which the field is applied at a given temperature. Therefore,
the coercive field Hcoer is not suitable to determine the magnetic anisotropy
reliably.

The potential energy (11.37) has two minima separated by an energy bar-
rier. The extreme points are found from ∂E/∂φ = 0. If H increases, one
minimum loses depth relative to the other until, at the switching field Ho

SW,
it disappears completely. The strength of Ho

SW(φ) can thus be determined
from the simultaneous occurrence of the two conditions ∂E/∂φ = 0 and
∂2E/∂φ2 = 0. A short calculation yields the angular dependence of Ho

SW(φ)
in the SW-model. Quoting Ho

SW in units of the anisotropy field Hani = 2K/M
yields the dimensionless switching field,

ho
SW =

Ho
SW

Hani
=

1
[sin2/3 φ+ cos2/3 φ]3/2

. (11.39)

Since ho
SW does not depend on specific material properties, (11.39) should be

universal, that is valid for any material. Plotting ho
SW in polar coordinates

thus yields the universal SW-astroid. The switching field ho
SW is highest at

φ ± 90◦, 0◦ and 180◦, and 2 times lower for φ = ±45◦ and φ = ±135◦. We
note here that there is a different astroid for precessional reversal, the dynamic
SW-astroid [542]. In precessional reversal, the switching field may be lower
compared to the quasistatic case for φ = ±90◦, depending on the damping of
the precessional motion.
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11.5.2 Thermal Stability

The direction as well as the magnitude of the spontaneous magnetization in
small particles fluctuates as a result of thermal excitations. Two types of ex-
citations have to be distinguished: The uniform precession in the anisotropy
field and the spin wave excitations which are driven by the exchange inter-
action. The uniform precession mode can switch the magnetization into the
other direction if the temperature is high enough. The spin wave excitations
reduce the absolute value of M , with M vanishing in the limit T → TC.

The potential barrier between the two magnetization directions determines
the energy involved in the excitation of the uniform precession mode. The
anisotropy barrier is essential for the thermal stability of the magnetic mo-
ment direction m in small particles. If the thermal energy kBT approaches
the lowest height of the barrier 1

2HAm, then the particle switches errati-
cally between the two magnetization directions. Such thermally unstable par-
ticles are called superparamagnetic. They behave magnetically like giant para-
magnetic moments, but should not be confused with the fluctuating spin
blocks appearing at the magnetic phase transition, illustrated in Fig. 11.7.
The stability of the magnetization is given by the Boltzmann factor ex, where
x = NµBHA/2kBT [443] andN is the number of Bohr magnetons of a particle.
The average lifetime τ of the magnetization is then given by

τ = τ0 eNµBHA/2kBT . (11.40)

The attempt frequency of 1/τ0 is estimated to be ∼1010 from the magnetiza-
tion precession in the anisotropy field [541]. If one requires that the data stored
in magnetic recording media last for a few years, the exponent NµBHA/2kBT
must be of the order of ∼40. Hence a particle in a particulate magnetic record-
ing media must contain at least 2 × 104 spins in order to be stable at room
temperature with a magnetic anisotropy field of HA = 104 Oe. If HA is in-
creased, the data last longer but the writing of the data becomes increasingly
difficult.
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Magnetism of Metals

12.1 Overview

In all of solid state physics the understanding of the properties of metals
has played a special role. The basis for our present understanding emerged
shortly after the discovery of the electron in 1897. It builds on the theory of
Drude which is based on a kinetic theory borrowed from gases with a Maxwell-
Boltzmann distribution for the electron velocities. This theory was extended
by Sommerfeld after it became clear that electrons obey the exclusion prin-
ciple, and that the Maxwell-Boltzmann distribution had to be replaced by
a Fermi-Dirac one. The understanding of the magnetic properties of metals
was developed in the time frame 1935–1938 by Mott [27], Slater [28, 29], and
Stoner [30, 31] who realized the important role of the d electrons and band
structure effects.

In this chapter we discuss the basic physical models used to explain the
properties of the four ferromagnetic elementary metals Fe, Co, Ni and Gd.
In the history of magnetism and still today the magnetic properties of the
transition metals Fe, Co, and Ni and their alloys have constituted the core of
the whole field of magnetism. The reason is that for these metals the electronic
structure is just right to give sizeable magnetic moments at room temperature.
While the rare earths or 4f elements have also been important in magnetism,
especially when alloyed with the transition metals, the pure metals are all
paramagnetic at room temperature. Therefore the scientific understanding
and technological applications of the 3d-transition metals have dominated the
field.

The difficulties and fascination with the transition metals are mainly due
to their “split personality”, the duality between localized and delocalized, so-
called itinerant, behavior. One may draw a comparison between the localized–
delocalized duality of electron behavior in solids to the particle-wave duality
of light and state as follows.
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For delocalized electrons the kinetic energy dominates and the electrons
move through the crystal like propagating Bloch waves – the electrons
behave wave-like.
For localized electrons the Coulomb repulsion between the electrons dom-
inates so that electrons stay apart from each other by remaining localized
on different sites - the electrons behave particle like.

This duality forms the core of the electronic many-body problem and it
the essence of magnetism. Very basic challenges remain to this day in its
theoretical description. We shall discuss the concept and consequences of “lo-
calization” in detail later in conjunction with the magnetic properties of the
transition metals and rare earths.

With our conceptual understanding of the band model of ferromagnetism
discussed in Sect. 7.4 we begin this chapter by presenting band theoretical
results for the elemental 3d and 4f ferromagnetic metals, Fe, Co, Ni, and
Gd. The following section then discusses spectroscopic tests of the predic-
tions of band theory by means of spin resolved photoemission and inverse
photoemission. In this discussion it will become clear that the major chal-
lenges today lie in the unified description of the itinerant and localized prop-
erties and of the dynamic properties which determine finite temperature
magnetism.

The following two sections are devoted to a discussion of magnetic exci-
tations in metals. We start with a discussion of electrical and spin transport
and introduce the “two-current model” which is the foundation of modern
spintronics. We then discuss the anisotropic magneto-resistance effect which
needs to be distinguished from the giant magneto-resistance effect in multi-
layers, discussed in Sect. 14.1.4 later.

The following section explores in more detail the probability of excitations
that lead to changes of the spin relative to excitations that conserve the spin.
We discuss the transport of spin polarized electrons through a magnetic mate-
rial both in the ballistic regime, and in the diffusive regime. Ballistic transport
of the spin is produced by injecting electrons from a spin polarized gun, or
a magnetic tunnel junction. Diffusive transport of the spin occurs through a
transparent contact between a ferromagnetic and a nonmagnetic metal. We
shall see that the development of the magnetic tunnel transistor, today, allows
the accurate determination of the spin polarization in the ballistic regime at
energies relevant for solid state applications, as it depends on distance from
the point of injection.

The chapter concludes with a critical assessment of our state-of-the-art
understanding, pointing to significant challenges ahead.
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12.2 Band Theoretical Results for the Transition Metals

In the following we shall take a closer look at the results of band structure cal-
culations. Instead of discussing the details of the k dependent band structure,
as shown in Fig. 7.8 and taken up later in Sect. 12.4.2, we shall concentrate
on k-integrated properties which determine important parameters such as the
magnetic moment. Key to this discussion is the understanding of the density
of states (DOS).

12.2.1 Basic Results for the Density of States

As illustrated in Fig. 7.8 the magnetic moment is defined as the number of
band states (summed over the Brillouin zone) per atom, per unit energy and
per spin. The Stoner model in Fig. 7.6 relies on a particularly simple density
of states that is assumed to have the shape of a semicircle with no structure.
More realistic DOSs, calculated for Fe, Co, Ni, and nonmagnetic Cu with the
same band structure code [543] are shown in Fig. 12.1. It is evident that the
shapes of the density of states in all four metals are quite similar but Cu,
as expected, shows no exchange splitting. The exchange splitting ∆, defined
as the relative shift of spin-up and down bands is of the order of 1 eV from
Fig. 12.1. If we use the relative shift of the largest peak in the DOS we get
about 2.2 eV in Fe, 1.7 eV in Co, and 0.6 eV in Ni, in remarkable agreement
with the trend in the d shell spin moments which from Table 12.1 later are
about 2.2, 1.7, and 0.7 µB for Fe, Co, and Ni, respectively. As discussed later
in Sect. 12.4.2 the theoretical results for ∆ are larger than those obtained
with spin resolved photoemission spectroscopy. Himpsel et al. [249, 250] give
a range of values for ∆ found at different points in the Brillouin zone. They
find 1.8–2.4 eV for Fe, 0.93–1.05 eV for Co, and 0.17–0.33 eV for Ni.

The structures in the density of states are due to the overlap interactions
of the d-states on neighboring atoms, with the atoms located on lattice points
of well-defined symmetry. The most important difference in the four DOSs
is the different position of the dashed line, which indicates the position of
the Fermi energy EF. It separates the occupied from the unoccupied states,
accounting for the increasing number of d-electrons on going from Fe to Cu.

Figure 12.1 also shows the density of states generated by the s–p-electrons
which is much smaller and more or less flat and becomes clearly visible at
energies above the d bands. At lower energies it underlies the 3d DOS. While
the number of s–p-electrons is of the order of 1 per atom only, the bandwidth of
the s–p-electron states is much larger compared to the one of the 3d electrons.
This is due to the fact that the s–p-electrons are delocalized and thus move
quite freely in the crystal lattice. The s–p band width is approximately given
by the Fermi energy and is about 10 eV. We can summarize as follows.
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Fig. 12.1. Density of states of Fe, Co, Ni, and Cu for the majority and minority
spins [543], labeled “down” and “up”, respectively, according to the convention in
7.6. The Fermi energy EF is set to zero. Ni and Co are called strong ferromagnets
because the majority spin bands are fully occupied, Fe is called a weak ferromagnet,
and Cu is seen to be nonmagnetic

The band width of the d electrons is about 3 eV.
The exchange splitting of the d band is of order 1 eV.
The band width of the s–p-electrons is large, about 10 eV.

The exchange splitting of the s–p-states is believed to be much smaller
compared to the one of the 3d states, and may even have the opposite sign
thus providing a negative contribution to the magnetic moment (see Fig. 12.4,
later).
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Table 12.1. 3d valence shell properties for the metals Fe, Co, and Ni, calculated by
means of local density functional theory by Wu [545] and Eriksson [544]. Listed are
the number of d electrons, Nd

e , the spin magnetic moments md
s and orbital magnetic

moments md
o

Nd
e

a Nd
e

b Nd
e

c md
s

a md
s

b md
s

c md
o

a md
o

b md
o

c

[µB] [µB] [µB] [µB] [µB] [µB]

Fe (bcc) 6.07 6.11 6.11 2.23 2.25 2.31 0.09 0.05 0.05

Co (hcp) 7.20 7.20 7.20 1.67 1.69 1.77 0.14 0.08 0.08

Ni (fcc) 8.22 8.25 8.25 0.65 0.68 0.71 0.07 0.05 0.05

a Calculated by Eriksson [544] using the linear-muffin-tin-orbital method in the
Barth-Hedin parametrization of the local density approximation. Experimental lat-
tice constants were used. The orbital moment was calculated by inclusion of orbital
polarization [385,546].
b Calculated by Wu [545] with the full-potential-linearized augmented plane wave
method in the Hedin-Lundqvist local density approximation. Experimental lattice
constants were used.
c Calculated by Wu [545] with the full-potential-linearized augmented plane wave
method in the generalized gradient approximation. Experimental lattice constants
were used.

12.2.2 Prediction of Magnetic Properties

Figure 12.1 shows that band theory for the ferromagnets predicts a more or
less rigid shift of the “spin-down” DOS D↑(E) relative to the “spin-up” DOS
D↓(E). Furthermore, it apparently predicts two types of ferromagnetic metals.
In bcc Fe the degree of spin polarization

P (EF) =
D↑(EF) −D↓(EF)
D↑(EF) +D↓(EF)

(12.1)

at the Fermi energy EF is positive, and in Co and Ni it is negative. The
positive sign for Fe is due to a minimum in the spin-down DOS at EF. The
sign of the spin polarization at EF is a critical property important for a
number of experiments, for example, those that determine the sign of the
spin polarization of electrons emitted from states near EF, as discussed in
Sect. 13.2. While P (EF) clearly contributes to the sign of the spin polarization
of the electric current density j, it is not the only factor determining the sign
of the spin polarization of the electric current because j = σE, and the
conductivity σ is largely determined by the s–d scattering as we shall see in
Sect. 12.5. This scattering is spin selective, hence affects the spin polarization.

Another basic feature revealed by the band model is that in Ni and Co
there are to first order no spin-up d holes. The notion that magnetism in
Ni and Co is mainly due to electrons in one spin band has led to the name
“strong” ferromagnets. In contrast, Fe is called a “weak” ferromagnet because
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there are sizeable d band contributions in both spin channels. This historical
nomenclature is somewhat misleading because the magnetization in Fe is con-
siderably larger than that of Ni and Co. Modern band structure calculations
also show that this simple “black and white” picture needs to be revised be-
cause of hybridization effects between the s, p, and d partial wave channels.
Let us take a closer look at this phenomenon.

We start our analysis of the band theoretical results by comparison of the
magnetic moments in the transition metals calculated with density functional
theory at T = 0 for Fe, Co, and Ni in Table 12.1. In particular, we compare
calculations done by Eriksson et al. [544] and Wu et al. [545] by use of different
basis functions and approximations for the exchange correlation potential as
indicated in the table. In all cases the spin dependent number of electron
states were calculated by integrating the respective majority and minority
density of states over all filled states up to the Fermi level. By projecting out
the angular momentum components for � = 2 and � = 0, 1, respectively, the d
and s–p contributions to the spin moments can be obtained separately.

The orbital magnetic moments mo = −µB〈lz〉 arise from an imbalance
in the occupation of +ml and −ml states. The listed orbital moments are
calculated by Wu et al. with the standard band functions, those calculated by
Eriksson et al. include an orbital polarization term that specifically accounts
for Hund’s rule of maximum orbital moment [385,546].

Except for the orbital moments, the results in Table 12.1 show good agree-
ment between different approximations within DFT calculations and the dif-
ferences can be regarded as typical. The orbital moment mo is entirely due to
the d electrons and is of the order of 5–10% of the spin moment.

The results for the integrated d band properties are shown in more detail
in Fig. 12.2, plotted from the calculated values by Wu [545]. In the left col-
umn, Fig. 12.2a, c, we show the results for the d states, only, while in the right
column, Fig. 12.2b, d, the plotted data correspond to the summed contribu-
tions of the 3d, 4s, and 4p states. In all cases we show the integrated number
of states and the integrated magnetic spin moments as a function of energy
E relative to EF = 0. For the number of valence states plotted in 12.2a, b
we start our integration below the bottom of the valence band at −10 eV and
integrate to an energy E − EF ≤ 10 eV. For the d states one would therefore
expect that the integral converges to a value of 10 states. For the summed
s–p–d states a convergence to the total number of states 10 + 2 + 6 = 18 is
not expected because of empty s–p states at higher energies.

For the magnetic moments we have chosen to integrate separately over
electron and hole states to facilitate a direct comparison of the integrated
electron and hole moments. For the electron states we integrate from E−EF =
−10 eV to an energy E−EF ≤ 0, for the hole states we start our integration at
E−EF = 0 and integrate to an energy E−EF ≤ 10 eV. In a simple localized
d-states model, expressed by (7.18), we would expect the integrated values of
the electron and hole moments to be identical.
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Fig. 12.2. (a): Integrated number of d states (electrons and holes) and, (b), inte-
grated number of s + p + d states in Fe, Co, and Ni. The integration is from below
the bottom of the bands, E − EF = −10 eV, to an energy E − EF ≤ 10 eV. (c) and
(d) Integrated electron and hole moments for d and s+p+d states . The integration
for the electron moments extends from E − EF = −10 eV to E − EF ≤ 0, and from
E − EF = 0 to E − EF ≤ 10 eV for the hole moments. The data were provided by
Wu [545]

The results in Fig. 12.2 provide important information. First, we see that
the magnetic moments in the transition metals are almost entirely due to
the d electrons. Comparison of panels c) and d) reveals very similar values
with and without the s–p electrons. Close inspection actually reveals that the
s–p contribution has opposite sign from the d contribution and is of order
−0.04µB ≤ msp

s ≤ −0.07µB for Fe and Co and −0.02µB ≤ msp
s ≤ −0.04µB

for Ni. Second, we see that the hole moments are slightly reduced relative to
the electron moments. The origin of this effect is revealed by Fig. 12.2a. Here
we see that even at 10 eV above the Fermi level the number of d states has still
not converged to the expected value of 10. Up to 0.5 d states or 5% is missing.
Therefore, while the sum and the difference of spin polarized electron states
is well defined because of the Fermi energy cutoff, the number of unfilled d
states depends on energy and still has not converged to the expected value,
even at 10 eV above EF. This was first pointed out by Wu et al. in conjunction
with the X-ray dichroism sum rules [240, 241] and arises from hybridization
of the d states with the more delocalized s–p states. Some of these hybridized
d states lie at higher energies above EF.
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Table 12.2. Experimental values for the total magnetic moments msat and the
orbital moments mo (which are included in msat) for the metals Fe, Co, and Ni

msat
a[µB] mo

b[µB]

Fe (bcc) 2.216 0.0918

Co (hcp) 1.715 0.1472

Ni (fcc) 0.616 0.0507

a From saturation magnetization [485].
b From a combination of Einstein-de Haas magnetomechanical and ferromagnetic
resonance data, evaluated by Wohlfahrt [485].

This point is better illustrated by Fig. 12.3, where we have separately plot-
ted the d states in the majority and minority bands, integrated to an energy
E ≤ 10 eV above EF. At the highest energies we obtain the number of holes
3.4 for Fe, 2.5 for Co, and 1.5 for Ni, in comparison to the numbers 3.93 for Fe,
2.80 for Co, and 1.78 for Ni determined from the filled states in Table 12.1.
The lack of convergence of the integrated number of spin polarized empty
d states as a function of energy is clearly seen and the individual majority
and minority curves as well as their sum, the total number of holes, exhibit
a significant positive slope with energy. The difference of the majority and
minority curves, the magnetic moment, shows a smaller slope and better con-
vergence yet the missing hybridized d states, that are shifted to higher energy,
lead to a reduced value relative to that obtained for the filled electron states,
as seen in Fig. 12.2.

The calculated values for the magnetic moments should be compared to
the available experimental data listed in Table 12.2. We can summarize as
follows:



12.2 Band Theoretical Results for the Transition Metals 529

The magnetic moments of the transition metals are nearly entirely due
to the d electrons. They are dominated by the spin moment. The orbital
moment contributes only about 5–10%.
The hole moment is reduced by about 5% relative to the electron mo-
ment because of hybridization of d states with s–p states that extends to
energies to more than 10 eV above the Fermi level.

The distribution of the magnetic density in real space can also be cal-
culated. Freeman and coworkers [547] have shown that one can obtain the
spin density distribution in the bulk and at surfaces using the full potential
linearized augmented plane wave (FLAPW) method. In the bulk, the distri-
bution of the magnetic moment density in real space can be determined by
analysis of neutron diffraction data. But for surfaces or thin films one needs to
resort to techniques with a short sampling depth. Examples are experiments
with spin polarized electrons which are typically sensitive to the last three lay-
ers from the surface, as will be discussed in Sect. 12.4 later. As an example of a
calculation we show in Fig. 12.4 the distribution of the magnetization m(r) in

Fig. 12.4. (a) The total spin density m(r) and (b) the spin density from states at
EF, m(r, EF), for the Fe(110) surface, from [547]. The solid line indicates positive
and the broken line negative spin density. S is the surface layer, S-1, S-2, and C are
subsequent layers toward the bulk
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real space near the bcc Fe(110) surface [547]. Around the atomic positions we
observe large positive contributions to the total magnetic moment, consistent
with the notion that the centrifugal barrier confines the 3d electrons to a close
neighborhood of the atoms. At the surface, an enhancement of the magnetic
moment occurs. This is typical and agrees with experimental observations for
various surfaces and ultrathin films [447]. But between the atoms, there is a
negative contribution to the magnetization due to the itinerant s–p electrons.

Part (b) of Fig. 12.4 examines specifically the spin density at the Fermi
energy EF. The polarization of these electrons which can be measured by
angle and spin resolved photoemission is important for the interpretation of
transport measurements. In this context, Fe is particularly interesting because
according to Fig. 12.1 it is expected to yield a positive contribution at EF. Yet
we see from Fig. 12.4 that the Fe-atoms located in the surface layer clearly
contribute minority spins at EF. The most important message from Fig. 12.4
relevant for the dynamics of ferromagnetic spins is that there must be a re-
versed sign of the molecular field in the regions with negative spin density.
Hence the exchange fields are strongly variable in real (and reciprocal) space
as opposed to the notion of a rigid exchange splitting. The s–p electrons are
sampling these varying exchange fields to a much larger extent than the 3d
electrons. Furthermore, it is clear that we cannot expect a priori to find bulk
like magnetic properties at surfaces. This is of great practical importance since
the properties of modern magnetic materials are increasingly determined by
surfaces and interfaces [250,445].

12.3 The Rare Earth Metals: Band Theory versus
Atomic Behavior

In addition to the metals Fe, Co, and Ni, the rare earth metal Gd is the fourth
elementary ferromagnetic metal in nature. Its Curie point (TC = 289K) is just
below room temperature. We have already discussed the different localization
of the 3d and 4f electrons in Sect. 7.2 and this is one of the reasons for the
extensive studies of Gd by theory [280, 548] and experiment [549, 550]. Of
particular interest is the electronic density of states because it is bound to
reflect the role of the “localized” 4f electrons and the other more band-like
valence electrons in the outer 5d, 6s, and 6p shells. In the following we shall
start with a brief discussion of the magnetic configurations and interactions in
the rare earths and then explore the electronic structure of Gd in more detail.

The term rare earths is sometimes used to include both the lanthanides
and actinides in the periodic table. We shall here use a more restricted defin-
ition and speak of “rare earths” synonymously with “lanthanides” [551]. For
the neutral atoms their electronic structure consists of a Xe atom core with
a partially filled 4f shell and outer valence electrons in the 5d and 6s shells,
i.e., [Xe] 4fN 5d1 6s2. The 4f shell is increasingly filled across the series from
La (N = 0) to Lu (N = 14), while the 5d and 6s shells remain quite similar
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Table 12.3. Occupation of 4f orbitals with quantum numbers m� for Gd metal
with a 4f7 configuration and for neighboring configurations f6 and f8. We use the
convention sz = −1/2 =↓. We also list the angular momenta S, L, J and terms
2S+1LJ from Hund’s rules, and the magnetic moments mJz expected from a Hund’s
rule ground state, which we assume to be split by the exchange field with only the
lowest Jz state occupied. Note that J = |L − S| for a less than half filled shell and
J = L + S for a more than half filled shell. The last column gives the magnetic
moment for the 4f shell in ferromagnetic Gd metal, determined by subtracting the
moment 0.63µB due to the 5d shell [548] (see Table 12.5)

m� → +3 +2 +1 0 −1 −2 −3 S L J 2S+1LJ mJz
a mexp

a

f6 ↓ ↓ ↓ ↓ ↓ ↓ 3 3 0 7F0 0

f7 ↓ ↓ ↓ ↓ ↓ ↓ ↓ 7
2

0 7
2

8S7/2 7 7.0

f8 ↓↑ ↓ ↓ ↓ ↓ ↓ ↓ 3 3 6 7F6 12

aMoments are in units of [µB].

resulting in mostly identical chemical properties of the metals. In compounds
such as oxides or fluorides the rare earths typically come in a 3+ state. In the
neutral metals the three outer electrons constitute the conduction band com-
posed of 5d, 6s, and 6p orbitals. The 4f occupation of the elements in the 3+
ionic or metallic form is the same. Gd (Z = 64) metal has the special property
of a half filled shell with configuration [Xe] 4f7 5d1 6s 6p. The 4f7 electronic
configuration of Gd is shown in Table 12.3 where its Hund’s rule ground state
8S7/2 is compared with those of the adjacent 4f6 and 4f8 configurations, for
later reference.

The europium chalcogenides EuO, EuS, EuSe, and EuTe constitute an
important exception to the typical 3+ valency of the rare ions. Eu2+ in the
europium-chalcogenides exhibits the pure spin 4f -configuration of Gd. Of the
chalcogenides, EuO, EuS, and EuSe are both semiconducting and ferromag-
netic. Yet TC is very low, namely 67K, 16K, and 4K, respectively. The highest
occupied electron states are the 4f -states inducing a number of unique prop-
erties like a large red shift of the optical absorption edge [552] and highly po-
larized photoelectrons at threshold [553]. The low ordering temperatures are
due to the absence of conduction electrons mediating the exchange coupling
between the 4f -states. This has been the main obstacle to their applications.

At room temperature and above all rare earth metals are paramagnetic.
We see from Table 12.3 that the 4f shell contains the largest number of un-
paired electrons and the magnetic moment of the rare earths is therefore
dominated by the 4f electrons. Because of their strong localization as dis-
cussed in Sect. 7.2 the 4f shell does not participate significantly in bonding
and its ligand field splitting is small, of order 10 meV, about an order of mag-
nitude smaller than the spin–orbit coupling within the 4f shell (∼200meV,
see Fig. 6.12) and considerably smaller than the exchange and Coulomb energy
within the 4f shell which is about 10 eV, as discussed later. The local mo-
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ments can be very large, with Ho having the largest moment of 10.34µB per
atom.

Because the ligand field does not destroy the orbital moment in the 4f
shell the total moment has both spin and orbital contributions, except for
the case of Gd metal where the orbital 4f moment is zero due to the half
filled shell. The fact that the magnetic ordering temperatures are below room
temperature indicates a rather weak exchange coupling between the atoms.
This coupling has two contributions. The first one arises from the indirect
exchange coupling or RKKY interaction between the 4f atomic moments and
involves predominantly the “itinerant” outer s–p electrons as discussed in
Sect. 7.8. This interaction is long-range and oscillatory and for the rare earths
is mostly antiferromagnetic. In addition, there is direct overlap of the 4f and
5d electrons on a given atom. This is directly seen in Fig. 12.5 where the
radial charge densities, calculated by Harmon and Freeman [554], are shown
for Gd metal. The overlap shown by the shaded region yields a strong direct
exchange and polarizes the 5d electrons which assume a magnetic splitting and
a magnetic moment. For example, the total moment for Gd metal consists of
a 7.0µB 4f and 0.6µB 5d contribution. As in the 3d transition metals the 5d
electrons can now give rise to a direct exchange contribution which may be
ferromagnetic or antiferromagnetic.

The rare earths La through Eu with a less than half filled 4f shell remain
paramagnetic to 91 K or less and then five of the seven become antiferromag-

Fig. 12.5. Radial charge density within the muffin tin sphere for Gd metal
(4f7 5d1 6s2) calculated by Harmon and Freeman [554] for the 4f state and a typical
5d band state near the Fermi level and a 6s band state. Only the 5d state has an
appreciable overlap, shown shaded, with the 4f state
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netic. Of the seven heavy rare earths Gd through Lu, six become ferromagnetic
at sufficiently low temperatures and five (Tb through Tm) pass through an
intermediate antiferromagnetic phase. Gd has the highest ferromagnetic tran-
sition temperature TC = 289K and a simple arrangement of parallel spins.
Other rare earths have complicated helical spin structure. For example, Ho is
antiferromagnetic between 19 and 133 K and has a helical spin structure where
the spins, which are perpendicular to the hexagonal c axis, progressively ro-
tate about c from one layer to the next. Below 19 K the spiral structure is
retained but a small ferromagnetic component is added along c, resulting in
a conical spin arrangement.

In the following we shall take a closer look at the ferromagnetic phase
of Gd metal. A key challenge in the description of the magnetic structure of
the rare earths by first principles theory results from the similar energetic
binding energies of the localized 4f and the “itinerant” s–p–d electrons. If
a band calculation is performed by treating all electrons as “band-like” or
itinerant one obtains two more-or-less localized flat bands corresponding to
the filled majority and empty minority 4f states and the usual dispersive
bands for the s–p–d electrons, which resemble those of the 3d transition metals
shown in Fig. 7.8 for Cu and in Fig. 12.10 later for Ni [249,250]. The problem
is that the energy positions of the spin polarized 4f bands does not agree
with the locations determined by photoemission and inverse photoemission
as shown in Fig. 7.18. While inverse photoemission finds the narrow minority
4f band located about 4.5 eV above the Fermi level and photoemission finds
the narrow majority band around −8 eV below the Fermi level [271,549,550],
band theory places the empty minority band just above the Fermi level (at
less than ≈0.5 eV) and the filled majority band at −4.5 eV, respectively. Most
problematic is that the ground state is predicted to be antiferromagnetic.
Clearly, a pure band-like LSDA calculation gives an incorrect result.

Another approach that treats the 4f shell artificially as a core shell and
ignores hybridization of the 4f electrons with the s–p–d electrons gives the
correct ferromagnetic ground state as discussed by Kurz, Bihlmayer, and
Blügel [548] but this approach is fundamentally unsatisfactory since we know
from Fig. 12.5 that there is overlap of the 4f and 5d shells.

Gd metal is well treated by the LDA+U method discussed in Sect. 7.6.3.
Results for the density of states obtained from such a calculation are shown
in Fig. 12.6 [548].

The calculation nicely shows the energetic dispersion of the 5d states and
the localized flat bands originating from the 4f states. The empty 4f∗ band
is broadened by the 4f − 5d interaction. The LDA+U calculation also results
in the proper ferromagnetic ground state and the 4f splitting is increased
from 5 eV for the LDU calculation to 11.0 eV for LDA+U, close to the exper-
imental splitting of 12.5 eV, observed by photoemission and inverse photoe-
mission [549,550]. The experimental results are illustrated on the right side of
Fig. 12.6, using the correspondence with (7.35). The 4f7 ground state config-
uration cannot be measured experimentally but instead the f8 configuration
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Fig. 12.6. (a) Spin resolved density of states for hcp Gd metal, calculated by Kurz
et al. [548] within the LDA+U approximation discussed in Sect. 7.6.3. Note that for
the minority band the empty 4f∗ states, shown in darker shading are hybridized with
the s–p–d states and their position is lower as that observed by inverse photoemission
(see (b)). (b) Schematic of photoemission and inverse photoemission results after
Himpsel and Altmann [249]. The difference of the peak positions measured with the
two techniques is U∗ = 12.5 eV and corresponds to U∗ = U + 6J = 11 eV in the
LDA+U calculation [280]

is measured in inverse photoemission and the 4f6 configuration is measured
in photoemission [249].

12.4 Spectroscopic Tests of the Band Model of
Ferromagnetism

Two experiments have been used to test critical features of the band model
of ferromagnetism: photoemission of electrons (PE), in which the energy, mo-
mentum and spin of the photoemitted electrons are measured, and inverse
photoemission (IPE), in which spin polarized electrons with a well defined mo-
mentum are injected into the ferromagnet and the intensity of light emitted at
a preselected energy, mostly ∼9.5 eV, is recorded. For recent reviews on pho-
toemission see Kevan [555] and for inverse photoemission see Donath [250,275].
The historical context of these powerful techniques has been described in
Sect. 1.3.1. Here we shall briefly review the techniques and summarize the
results obtained for the spin dependent band model of ferromagnets.
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It is important to state at the outset that the above electron spectroscopy
techniques have a very small probing depth of a few atomic layers, which de-
pends on the material, the electron kinetic energy, and the electron spin. The
surface sensitivity arises from the extremely strong and spin dependent scat-
tering of excited electrons in the ferromagnetic metals so that only electrons
from the surface region can penetrate from or escape into vacuum as discussed
in Sect. 12.6.

12.4.1 Spin Resolved Inverse Photoemission

The principle of IPE is explained in Fig. 12.7. A beam of low-energy, spin
polarized and monochromatic photoelectrons from a GaAs-type photocathode

Fig. 12.7. Principle of inverse photoemission (IPE). Left : A well collimated, mono-
chromatic low-energy spin polarized electron beam is incident on a single crystal
sample. The experimental geometry is determined by the orientation of the electron
spin s relative to the magnetization direction M and by the electron momentum in
vacuum k′ in the coordinate system of the single crystal. Right : In the magnetic solid
the spin polarized electrons occupy well defined excited band states, determined by
matching the electron momentum k′ in vacuum to the momentum k inside the crys-
tal. Radiative decay into lower lying band states under conservation of spin s and
electron momentum k, produces low energy photons. The intensity of the photons of
fixed energy, typically 9.4 eV, is measured as a function of incident electron energy
and incidence direction k′. IPE detects the unoccupied states E(k) in the crystal
as they depend on the direction of the spin relative to the magnetization. EF and
EV are the Fermi energy and the vacuum-potential, respectively, with Φ = EV −EF

being the work function. The thin dotted line represents a free electron like band
dispersion according to (12.2), folded back into the first Brillouin zone at the zone
boundary. At high energies the free electron bands are seen to approximate the
actual band structure very well
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is incident on a single crystal sample which is remanently magnetized in-plane.
Outside the sample, in vacuum, the electron beam has a well defined direction,
characterized by the momentum k′, relative to the crystalline directions of
the sample. Stray magnetic fields outside the sample need to be minimized in
order not to affect the direction of the incident electrons. Upon entering the
crystal the electron momenta in vacuum k′ and inside the crystal k need to
be matched. This is done as follows.

First, one considers energy conservation of the electron energy across the
surface barrier using a free-electron band model. Inside the crystal the energy
and momentum are related according to free electron dispersion relation

Ekin(k) =
h̄2k2

2me
. (12.2)

In this model the zero of energy lies at the bottom of the parabolic free electron
band where k = 0, indicated by the thin dotted line in Fig. 12.7. The electron
kinetic energy in vacuum is also given by (12.2). However, experimentally one
measures the kinetic energy of the incident electrons Ekin(k′) relative to the
energy of the vacuum level, EV. The energy EV > 0 is the separation of the
vacuum level from the bottom of the free-electron like band, often referred to
as the surface barrier or inner potential. This gives the energy conservation
condition

h̄2(k′)2

2me
+ EV =

h̄2k2

2me
. (12.3)

If we decompose the electron momenta k and k′ into orthogonal components
parallel and perpendicular to the surface, e.g., k = k‖ + k⊥, the momentum
component parallel to the surface is conserved, k′

‖ = k‖ and the perpendicular
component inside the crystal, k⊥, is determined by energy conservation. The
boundary conditions are:

k‖ = k′‖, k⊥ =

√
(k′⊥)2 +

2meEV

h̄2 . (12.4)

For simplicity we have described all processes in the first Brillouin zone, as
shown in Fig. 12.7 by folding the extended zones back into the first one by
subtraction of a suitable reciprocal lattice vector G. Once the spin polarized
electrons have entered the magnetic solid they occupy well defined initial
band states with energies Es

i (k), determined by the spin direction s parallel
or antiparallel to the magnetization direction M , and the matching conditions
(12.4).1

Since the incident electrons occupy excited states well above the vacuum
level, the electrons may undergo radiative transitions to lower-lying unoccu-
pied final states E↑

f (k) or E↓
f (k), as shown on the right side of Fig. 12.7. In

1Equation (12.4) implies that upon entering the solid the electron is refracted to-
ward the surface normal. The refraction effect has in fact been measured by Williams
et al. [556] in the opposite angle resolved photoemission process.
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such transitions a photon hν is emitted. The radiative de-excitation process
is guided by the dipole operator which does not act on momentum or spin.
In practice, the photon energy is of the order of 10 eV so that the photon
momentum is very small compared to the electron momentum and can be
neglected. One therefore has vertical transitions in the electronic band struc-
ture according to hν = E↓

i (k) − E↓
f (k) or hν = E↑

i (k) − E↑
f (k) as shown in

Fig. 12.7, with conservation of both k and s. The photon intensity emitted at
a fixed energy is measured as a function of the energy of the incident elec-
trons and the incidence direction k in the coordinate system of the crystal. In
practice the photon detector is a Geiger counter behind a SrF2 window which
transmits photons of energy 9.4 ± 0.1 eV. With careful consideration of the
background and the energy resolution one obtains from IPE spectra the spin
polarized unoccupied band structure E(k)↓ and E(k)↑ of the crystal.

As an example, we show in Fig. 12.8 the spin resolved IPE spectra obtained
by Donath [275] for a Ni(110) surface and a reciprocal space direction of the
crystal along Γ −X. The experiment tests one of the main predictions of the
band model of ferromagnetism, namely the temperature dependence of the
exchange splitting. In the band model, the exchange splitting of the 3d-states
must collapse at the Curie-point TC. At low temperature, for T ∗ = T/TC → 0,

Fig. 12.8. Spin resolved IPE spectra for transitions into the top of 3d-derived
bands along the Γ −X direction of the Brillouin zone for three values of the relative
temperature T/TC. It is evident that at room temperature, corresponding to T/TC =
0.48, the majority spin transitions are much weaker while at the Curie point T/TC =
1 majority and minority transitions are of equal strength
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the majority part of the 3d-band is fully occupied, since Ni is a “strong”
ferromagnet. We see that at room temperature, corresponding to T ∗ = 0.48
the transitions to majority spin states close to EF are indeed quite weak, while
close to TC, corresponding to T ∗ = 1.02 the majority and minority transitions
exhibit equal strength. Since the remaining majority spin transitions at T ∗ =
0.48 are explained by the finite resolution of the experiment, this is a beautiful
confirmation of the band model. The exchange splitting obtained from this
measurement is ∆ = 280 ± 50 meV at low temperature. If one plots ∆ as a
function of temperature one finds that it follows the temperature dependence
of the bulk magnetization as expected on the basis of the band model.

IPE has delivered detailed information on the energy and exchange split-
ting of the unoccupied electronic bands, and on a large variety of surface and
bulk induced magnetic surface states as well as resonance-like features. Care-
ful tests have been performed at the close packed surfaces of Ni, Co, and Fe
to distinguish bulk states from surface states and resonances [65]. The surface
states may be classified into image potential induced surface states, adsorbate
induced surface states, and crystal induced surface states [275] all of which
show exchange splittings in the case of a magnetic surface. The study of mag-
netic surface states and resonances is an interesting topic by itself. It teaches
us that magnetic surfaces and interfaces may be quite complex and hard to
predict theoretically. This is an important point to remember in the interpre-
tation of all experiments that depend on spin transfer across interfaces. The
exchange splittings in the surface states lead to alterations of the magnetic
moment in the surface, but so far it has not been possible to spectroscopi-
cally determine absolute values of surface magnetic moments. As shown in
Sect. 13.2.3, a magnetic surface state of Gd is useful in tunneling microscopy.

Donath has carried out the most detailed analysis of the spin dependent
band structure of Fe, Co, and Ni using IPE [557]. Contrary to the special case
along the Γ−X direction shown in Fig. 12.8, it is found that strict classification
into 3d and s–p states is artificial since significant d contributions are found
above EF as well. This is in good accord with the hybridization between s,
p, and d states predicted by modern band theory of Sect. 12.2.1. It should
be noted that for a proper analysis of IPE data the longer mean free path of
injected majority electrons compared to minority electrons must be taken into
account [558]. This difference in the mean free path is due to spin selective
inelastic electron scattering on the holes in the 3d shell, see Sect. 12.6.

The temperature dependence of the exchange splitting has been discussed
in the literature for over 30 years. The spin asymmetry of photon production
in IPE present at low T disappears at T = TC as expected. But the exchange
splitting of the bands observed in IPE does not collapse in all parts of the
Brillouin zone. If one assumes short range magnetic order to persist above TC,
then the spatially averaged spin polarization disappears while spin moments
in a certain location may still be present albeit with no specific direction in
space, hence zero space averaged polarization. Some bands show such a spin
mixing scenario while the exchange splitting in other bands simply collapses
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in agreement with the SWS-band-model. According to careful and detailed
experimental studies [557], all three magnetic transition metals exhibit both
local moment behavior and collapsing exchange splitting simultaneously in
different band states. Thus the IPE-experiments reveal an immensely complex
electronic structure at magnetic surfaces which evades description in a simple
picture2.

12.4.2 Spin Resolved Photoemission

Photoemission (PE) consists of the excitation of a bound electron to an escape
state by the absorption of a photon. In our case we are particularly interested
in photoexcitation of valence electrons. In this case PE reveals the occupied
part of the valence bands. Under time reversal, the IPE process becomes
the photoemission (PE) process, but the two techniques measure the valence
states on opposite sides of the Fermi level, making the combination of the
techniques a powerful method to obtain complete information on filled and
empty valence states.

The principle of PE is explained in Fig. 12.9. For the studies of magnetic
materials, PE requires a magnetically saturated sample with minimal mag-
netic stray fields outside the sample if energy and momentum analysis of the
photoemitted electrons is to be performed. In this process, spin s and linear
momentum k of the photoelectron are conserved, since the electric dipole op-
erator responsible for the transition does not act on either s or k. Just like
in IPE one therefore has vertical transitions in the electronic band structure.
By measuring the kinetic energy, the emission direction, and the spin with a
detector in vacuum, outside the sample, one can determine where the elec-
tronic transition has taken place in the Brillouin zone and can therefore map
the spin-resolved band structure along directions in the Brillouin zone. The
schematic spectra in Fig. 12.9 show the energy distributions expected for spin
polarized electrons and their sum, corresponding to a conventional photoemis-
sion experiment without spin analysis. We also show the cut-off at the energy
hν + EF, which in high resolution spectra has the shape of the temperature
dependent Fermi function given by (12.7).3

As in IPE spectroscopy, the measured properties outside the sample are
mapped to those inside the sample by application of the boundary conditions
(12.4). The boundary conditions are a good approximation because the final
state of the excited electron lies well above the Fermi level where the bands

2Whether the spin mixing scenario is also present in the spin polarized PE-
experiments is still a matter of debate. Some authors report a collapse of the spin
splitting in all parts of the occupied band structure, while others believe that the
exchange splitting of the occupied bands can persist to T > TC.

3For transitions within the small section of the Brillouin zone shown on the right
side of Fig. 12.9 there would be no transitions allowed from states near EF, so we
have implicitly assumed that such transitions originate from other sections of the
Brillouin zone.
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Fig. 12.9. Principle of photoemission (PE) of electrons. A photon of energy hν is
absorbed and leads to a vertical optical transition of an electron from an occupied
state to a free electron like final state above the vacuum level from where it may be
emitted into vacuum. The measurement of the kinetic energy, the emission direction
and the spin of the emitted electron gives the spin resolved distribution curves
I↑(E) and I↓(E) which when added give the spin integrated distribution curve
I(E), as shown. The exchange splitting in the final state has been neglected which
is appropriate for sufficiently high energies. The PE intensity drops to zero at E ≥
EF + hν, with a temperature dependent shape of the Fermi distribution function.
In contrast to IPE, PE thus measures the occupied density of electron states.

strongly resemble a free electron state with a parabolic dispersion relation, as
shown in Fig. 12.7.

Figure 12.9 also shows schematically the shape of actual spin resolved pho-
toemission curves Is(E) and the spin integrated curve, which is simply the
sum. After each peak, marking a “direct transition”, a tail of “secondary”
electrons appears at lower kinetic energy due to those electrons that have lost
energy in the process of transport to the surface, or due to a cascade of low
energy electrons excited from EF by the primary photoelectrons. Of course,
photoemission transitions also have a finite width due to lifetime broadening
and other physical phenomena discussed below.

In the interpretation of the spectra, it is often assumed that the photoemis-
sion structure can be directly linked to the band structure. This assumption
is based on the validity of the independent electron approximation ignoring
various kinds of electron–electron correlation effects. These include electron–
hole and hole–hole interaction effects which are both important. The indepen-
dent electron approximation works reasonably well only in simple cases like
Cu metal, as shown in Fig. 7.8.
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In the simple one-particle interpretation of photoemission spectra, it is
assumed that the hole left behind by the photoexcitation of one electron does
not interact or relax toward EF while the electron excited to an escape state
is still present. Thus one assumes that the solid is left behind in one specific
excited state. However, this assumption is not valid with magnetic materials
where the electrons in the magnetic d- or f -states are interacting strongly
thus affecting the kinetic energy of the escaping electron. Let us denote as
ε0(N) the ground state energy of the N electron solid. After photoemission
there are N − 1 electrons left behind and there may be more than one, say
n, excited states. We can then denote the possible final state energies εn(N −
1). Energy conservation yields the kinetic energy Ekin of the photoemitted
electron, measured relative to the vacuum level energy EV, as

Ekin = hν − Φ− [εn(N − 1) − ε0(N)] , (12.5)

where Φ = EV −EF is the work function.
The excitation spectrum [εn(N − 1) − ε0(N)] of the hole state left be-

hind leads to multiplet structure in I(E). The clearest examples are the
4f -photoemission spectra, as shown in Fig. 7.18. With the well screened 4f -
electrons, N is only the number of 4f electrons per atom. The multiplets
observed with the 4f -metals are given by Hund’s rules and consequently very
similar to the atomic multiplets because the centrifugal barrier and the closed
outer shells isolate the 4f electrons from the metallic electrons [238], prevent-
ing screening and other relaxation effects. This is much less the case with
the 3d-metals, but multiplet structure has also been found in this case, as
demonstrated by Fig.12.11.

In the one-particle approximation, it is assumed that εn(N − 1) − ε0(N)
is equal to the binding energy EB of the photoemitted electron. EB is the en-
ergy that can be gained by a transition of an electron at EF into the hole left
behind after photoemission. Such a transition delineates the maximum energy
available for the relaxation of the hole state. But the single particle approxi-
mation assumes that the hole state does not relax at all toward EF while the
photoexcited electron is still present. It is only with this dramatic assumption
that EB can be determined in photoemission from (12.5) by measuring Ekin

and the photothreshold EV − EF, as illustrated in Fig. 12.9.
Correlation effects are generally strong and at the very heart of the im-

portant interactions in magnetic materials [249–251]. Typical band structure
calculations are essentially independent particle calculations and describe the
electronic ground state while the photoemission process, and therefore the
measured spectra, correspond to an electron excitation from the ground to an
excited band state with a hole left-behind in the valence shell. This so called
quasiparticle state, which includes excitation and screening contributions from
the surrounding electrons, can hardly be satisfactorily treated for the d elec-
tron systems of importance in magnetism. The discrepancy of the calculated
band dispersion and that determined experimentally by photoemission is il-
lustrated by a direct comparison in Fig. 12.10.
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Fig. 12.10. Experimental dispersion of energy bands for Ni(110) with electron
momentum over selected parts of the Brillouin zone, measured by spin and angle
resolved photoemission by Kakizaki [251]. Also shown as thin lines are the results
obtained from a one-electron band calculation in the local density approximation,
for majority (solid) and minority (dashed) spins [559]
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Figure 12.10 reveals that relative to band theory the measured experimen-
tal band width is reduced and the exchange splitting also has to be reduced
by up to a factor of 2. In order to overcome this fundamental problem one
often uses a parameterized tight binding band structure, originally due to
Koster and Slater [245], and adjusts certain parameters to obtain a “good
fit” of measured IPE and PE data [250] but this is unsatisfactory. From the
comparison of experiment and theory presented by Kakizaki [251] one may
summarize the main discrepancies between experiment and theory as follows:

– The exchange splitting observed in photoemission is reduced compared to
its calculated value in the electronic ground state. The observed splitting
changes throughout the Brillouin zone and differs from the rigid splitting
predicted by band structure calculations.

– The exchange splitting of the bands in some cases exists to temperatures
above the Curie point while is collapses in other cases.

– The observed bandwidth of the 3d states is narrower than predicted by
band structure calculations.

– Experimental spectra contain multielectron satellites of the 3d valence
band that appear out to 30 eV from EF. Such satellites are unaccounted
for in conventional band theory.

– The photon energy dependence of majority spin spectra is different from
that of minority spin spectra.

The last two points above, which contain information on the dynamics, are
especially important since they appear to hold the key to understanding the
first two observations. The last observation shows that the correlation effects
and scattering channels are spin dependent so that the screening of a ma-
jority spin hole and its evolution in time is different from that of a minority
spin hole. This dynamical effect explains a number of the deviations from
the single particle approximation, in particular the reduction of the observed
exchange splittings. It points to the importance of future ultrafast studies of
the dynamics of spin polarized electrons in a ferromagnetic metal.

In conjunction with satellites, the satellite appearing at a binding energy
of 6 eV below EF in Ni shown in the PE spectra in Fig. 12.11 has attracted
considerable interest. The original interest was stimulated by the observation
in 1977 that the satellite is resonantly enhanced at photon energy hν = 67 eV
[560]. In later studies its spin polarization was also measured [561,562].

The prominent 6 eV satellite Fig. 12.11 arises from the simultaneous pres-
ence of two holes in the 3d orbitals of one and the same Ni atom. Ni fluctuates
between an atomic 3d9 and 3d10 configuration. This is in good accord with
its average magnetic moment of 0.5µB per atom, which in a simple model
would be 1µB for 3d9 and 0 for 3d10. If the atom happens to be in the 3d9 ini-
tial state during the photon absorption process, the final state is 3d8 with two
holes on the same atom. We have already discussed the multiplet structure of a
3d8 configuration in conjunction with Fig. 6.14 and the associated singlet and
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Fig. 12.11. Spin-resolved photoemission spectra of Ni(110) at a photon energy of
67 eV, corresponding to a resonantly enhanced satellite structure at 6 eV binding
energy [251]. The vertical bars labelled by singlet and triplet multiplet states corre-
spond to the energies of final states for a d8 configuration, as discussed in conjunction
with Fig. 6.14

triplet multiplets correspond to the 6 eV satellite, as indicated in Fig. 12.11.
The energy shift from the main peak signifies that the 3d8 configuration must
have a higher binding energy compared to a main peak, corresponding to only
one hole, i.e., a d9 final state. This clearly is not expected in a pure band-
model and cannot be explained in a single electron picture. The interpretation
is proven by the resonant enhancement of the satellite in Fig. 12.11. At a pho-
ton energy of hν = 67 eV an electron is resonantly excited into 3d9 from the
3p core shell. The resulting configuration 3p53d10 decays into 3p63d8 (≡ 3d8

since the p shell is now full) by emitting an Auger-electron. The additional
Auger electrons enhance the measured intensity proving that the 6 eV satellite
indeed corresponds to a 3p63d8 final state. Other weaker satellites such as the
one appearing at 13 eV below EF are not so easy to understand.

Naturally, as evident from (12.5), the complexities arising from electron
correlation are absent or quite weak in photoemission from initial states near
EF. In that case, the hole left behind is already at EF and the energy to be
gained by relaxation is close to zero. In high resolution PE, one can study
specifically the electron states at EF and measure the associated momentum
kF. Osterwalder [563] has reviewed the ability of angle resolved photoemis-
sion to determine the so called Fermi surface which is defined as the surface
spanned by the endpoints of the kF-vectors. Classical Fermi surface probes
such as the de-Haas-van-Alphen effect, positron annihilation, and Compton
scattering are essentially bulk probes and cannot be used to determine Fermi
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surfaces in thin films and other magnetic materials of high current interest.
Results for Fermi surfaces are needed to understand tunneling and other spin
dependent phenomena at interfaces such as refraction and reflection of elec-
trons discussed in Chap. 13, and are also essential for the understanding of
the electrical resistivity (Sect. 12.5.2).

Fermi surface mapping requires the measurement of the number of states
as a function of the electron momentum kF. We have already seen that only
k‖ is conserved when the electron propagates through the surface potential
barrier while k⊥ is reduced leading to a diffraction at the interface. For states
at EF, one writes (12.5) as hν = Ekin +Φ, with Ekin measured relative to the
vacuum level. The component k‖ is given by,

k‖ =
1
h̄

√
2meEkin sin θm , (12.6)

where θm is the polar angle at which the photoelectron emerges, measured
from the surface normal. As an example, Figure 12.12 shows a 2D-map of
the states at the Fermi surface of Ni, for k‖ located in the Ni(111) surface
plane [564]. Keeping the photon energy constant, and detecting electrons of ki-
netic energy Ekin = hν−Φ, only electrons from the Fermi surface are observed.
In practice, the measurement of the wavevector dependent Fermi-surface then
consists of mapping the emitted intensity as a function of electron emission
angle. Points with a high density of states at the Fermi surface exhibit in-
creased emission intensity. In practice, one scans the acceptance direction of
the angle-resolved photoelectron spectrometer as a function of the polar an-
gle θm from the surface normal and the azimuthal angle ϕ in the plane of the
surface. From the measured angles θm and ϕ one calculates k‖. Results for
the Ni (111) surface are shown in Fig. 12.12a, obtained without spin analysis.

The corresponding part of the Fermi surface can also be calculated with
a band structure code and is shown in Fig. 12.12b. There is a remarkable
agreement between experiment and theory. One sees that most of the intensity
emitted from states at EF stems from minority spin bands which show a
complex Fermi surface due to their 3d-character. The majority spin states
contribute much less intensity and their Fermi surface approaches a spherical
shape in agreement with their dominant s–p-character. The assignment of
the spin character of calculated and observed Fermi-surfaces was verified on
selected sections of the Fermi surface by measurement of the spin polarization
of the emitted electrons [564]. On the whole, the band picture discussed in
Sect. 12.2.2 is verified. Ni is indeed a “strong” ferromagnet.

The larger minority spin contribution at EF manifests itself also in a quite
different and much simpler experiment in which the spin polarization of elec-
trons emitted at photoelectric threshold is measured. There the negative spin
polarization of the electrons at EF is directly observed with Ni [303, 565] as
shown in Figs. 13.2 and 15.5. This occurs despite the stronger absorption of mi-
nority spins in ferromagnetic metals, the so-called spin filter effect, discussed
in Sect. 12.6.1 later. The negative polarization is not observed with polycrys-
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Fig. 12.12. Map of the electronic states at EF (Fermi-surface) for the Ni(111) sur-
face, determined by angle resolved photoemission. (a) Map of the measured spin-
averaged photoemission intensities as a function of k‖ in the Ni(111) plane, obtained
with a He-lamp (hν = 21.21 eV) photon source. The intensities are given on a linear
gray-scale, with white the highest and black the lowest intensity. (b) The corre-
sponding calculated spin-polarized Fermi surface. Minority spin bands are shown in
black, majority spin bands in gray. Courtesy of Jürg Osterwalder [564]

talline Ni-samples since inhomogeneities in the photoelectric work function,
present in a polycrystalline sample, broaden the wave vector, and energy of
the emitted electrons [62].

The reduced complexities associated with electron emission from states
near the Fermi level led Greber and collaborators [566] to study photoemis-
sion from thermally excited states just above the Fermi level in Ni. The states
were chosen at a part of the Fermi-surface where a minority d-band crosses
EF. This is at θm ∼ 40◦ and for ϕ = 23◦ off [1 1 2] in Fig. 12.12. The states
just above EF are only weakly occupied by thermally excited electrons, yet by
setting the energy analyzer to emission from these states and by employing
highly monochromatic radiation, the photoelectric emission from thermally
populated states can be separated from the much stronger emission out of
the occupied part of the bands below EF [567]. The observed intensity dis-
tributions must be normalized with the Fermi-function (12.7) to account for
the energy dependent thermal population of the states. In the room temper-
ature data two inverted parabolic bands are resolved in this location of the
Fermi-surface. The exchange splitting found at the top of these d-bands is
280meV ± 20meV and collapses at the Curie-temperature in perfect agree-
ment with IPE results shown in Fig. 12.8.

Contemporary band-structure calculations typically yield a value for ∆
that is twice as high. Manghi and collaborators [568] argue that the apparent
reduction of ∆ in PE-spectroscopy is due to spin dependencies in the hole
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state correlation effects. In a more recent publication by the same group [569]
it is argued that these spin dependencies are even stronger in the case of
Co, leading to quenching of the majority channel quasiparticle excitations.
Experimentally no sharp quasiparticle states are detectable in Co for binding
energies larger than 2 eV. Thus it is proposed that local correlations between
holes in the d-bands can modify the energy position and dispersion of low
energy excitations with respect to single particle band structure calculations.

Other metals, e.g., ferromagnetic Gd, have been studied by high resolu-
tion PE including spin polarization measurements as well. The linewidth of
photoinduced transitions changes with temperature in this case, indicating
that the lifetime of a majority spin hole in Gd is limited by electron phonon
scattering, while that of a minority spin hole is limited by electron magnon
scattering [570].

The value of ∆ in Ni obtained from high resolution PE must be compared
to results of other experiments. Threshold PE at hν ≈ 5 eV in connection
with unsophisticated single particle band structure calculations yield ∆ = 330
meV [565], that is within error margin the same result as high resolution
PE with hν = 21.21 eV. According to the later Sects. 12.6 and 13.2.1 it is
well established today that at low electron energy, the most important spin-
dependent interaction of the photoelectron is with all the unoccupied d-states
rather than with only its own photohole. If PE at an energy of 21 eV above EF

yields a similar value for∆ compared to PE with an electron of 5 eV above EF,
one is led to the conclusion that many body corrections do not appear to be
very large for Ni. Similarly, in the mindset of strong many-body corrections, it
comes as a surprise that ∆ is found to be identical in PE and IPE, as the final
states are fundamentally different in both cases. Finally, we shall see later
that spin polarized electron energy loss spectroscopy or SPEELS also yields
a similar value ∆ ∼ 280 meV (see Fig. 12.25). As illustrated in Fig. 12.24,
SPEELS measures the energy of the spin exchange transition of an electron
from a majority spin into a minority spin state, hence involves very different
many body states.

Taken together, the various electron spectroscopy measurements of ∆ sug-
gest that ∆ ∼ 300 meV. Indeed, it is interesting to note that over the years
this value has changed little. As early as 1965, that is before any spectro-
scopic techniques had been developed to measure ∆, Wohlfarth predicted
∆ = (350± 50)meV for Ni [571]. Later, it turned out that this theoretical es-
timate is in line with the early spin polarized threshold PE experiments [572].
Various theoretical predictions for the width and exchange splitting of the
3d-bands in Ni prior to 1970 have been reviewed by Pierce and Spicer [573]4.

4In the early days, the 3d-bandwidth in Ni measured in photoemission seemed
to be as large as 5 eV. This larger bandwidth required a larger exchange splitting
to account for the Bohr magneton number. But in 1969, Eastman [574] showed that
the measured width was due to improper surface preparation techniques, and that
the d-bandwidth for a clean Ni surface is only 2.8 eV.
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It must be remembered that ∆ is not an adjustable parameter in the band
theory of magnetism. Its value is fixed to yield the observed magnitude of the
magnetic moment/atom from the density of states as discussed in Sect. 7.4.

In a certain regions in k-space, the s–p band is found to be very close
in energy to the minority d band, forming 4s–4p–3d hybridized states. In
these regions thermal fluctuations are sufficient to induce scattering between
(s–p)↑ and d↓ electrons [567]. Such scattering involves a spin flip and might
be of interest for understanding the magnetic phase transition and electron
dynamics. Furthermore, it is found that the s–p bands are also exchange split
and exhibit a smaller, but definitely positive polarization at EF in contrast to
the 3d electrons which show negative polarization at EF.

It is well appreciated today that conventional band structure calculations
do not account for dynamical multielectron effects and also fail in the proper
treatment of intra-atomic correlation in the form of multiplet coupling, as evi-
denced by Fig. 12.11. Yet, considering the experimental evidence, it is evident
that the various possible many-body corrections are perhaps not as important
in spectroscopies that test the states near EF.

12.5 Resistivity of Transition Metals

In magnetic devices the electrical resistivity of the transition metals plays
a key role. Particularly important is the spin-dependent resistivity of ferro-
magnets since it determines the read-out signal of many important devices.
Another topic of great current interest is the injection of a spin polarized cur-
rent from a magnetic material into another material, so-called spin injection.
Again, the key to the understanding of this process lies in the understand-
ing of spin dependent transport in metals. While most materials of interest
today are in the form of thin films, as discussed in detail in Chap. 13 be-
low, the understanding of the transport in bulk metals forms the basis for all
such developments. It is for this reason that we need to discuss the transport
properties in metals with a special emphasis on spin-dependent transport.

Before we discuss the spin-dependent resistivity of transition metals we
will take a brief look at the basic principles that determine the resistivity
of nonmagnetic metals. To describe the electrical conduction we shall use an
extended Drude–Sommerfeld model, based on the relaxation time approxima-
tion, which has proven remarkable successful [219]. This will facilitate a later
discussion of spin-dependent effects and their theoretical description.

12.5.1 Conduction in Nonmagnetic Metals

The metallic resistivity is determined by scattering processes of the valence
electrons with energies close to the Fermi level. The scattering processes, to
be specified later, occur with a certain probability per unit time, and the
resistivity is directly proportional to this probability. In the description of the
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conduction electron scattering one typically makes the so called relaxation
time approximation. It consists of describing the scattering probability per
unit time by 1/τ , where τ is the time between scattering events, called the
relaxation time. A further assumption in this approximation is that scattering
events drive the electronic system toward local thermodynamic equilibrium,
given by the Fermi function

f(E) =
1

e(E−µ)/kBT + 1
, (12.7)

where µ is the chemical potential. The chemical potential5 plays an important
role in the quantitative description of spin transport phenomena, such as spin
currents across interfaces, discussed in Chap. 14. At T = 0 the chemical po-
tential exactly equals the Fermi energy, and for most metals this relationship
is still a very good approximation at room temperature (see footnote 5). In
electronic systems, the chemical potential µ is equivalent to the negative of
the potential energy qΦ of a test charge q in the electrostatic field E = −∇Φ,
i.e., for an electron with q = −e we have

µ = eΦ. (12.9)

For an electric field along the x direction, E = −∂Φ/∂x, one can therefore
write Ohm’s law in terms of the chemical potential as

∂µ

∂x
= − e

σ
j. (12.10)

Figure 12.13 illustrates that in the absence of an electric field the chemical
potential is constant as a function of distance along a nonmagnetic conduc-
tor, and at each point there will be local thermodynamic charge equilibrium
expressed by the Fermi function (12.7). In the presence of a field there will
be a gradient in the chemical potential along the conductor, yet at every po-
sition along the wire, the relaxation time approximation assumes that there
is again thermodynamic equilibrium, given by (12.7). When extended to in-
terfaces between metals this model has interesting consequences discussed in
Sect. 14.1.1.

5The chemical potential of a thermodynamic system is the change in the energy
of the system when an additional constituent particle is introduced, with the entropy
and volume held fixed. In Fermi gases and Fermi liquids, the chemical potential µ
is temperature dependent and to lowest order in T is given by

µ = EF

[
1 − π2

12

(
kBT

EF

)2
]

. (12.8)

At T = 0 the chemical potential is exactly equal to the Fermi energy and because
EF � kBT even at room temperature, we have µ = EF to a very good approx-
imation. For systems containing particles which can be spontaneously created or
destroyed, such as photons and phonons, the chemical potential is identically zero.
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Fig. 12.13. Illustration of the role of the chemical potential in describing electron
transport in a nonmagnetic conductor. In the absence of a field there is no current
flow and the chemical potential is constant along the conductor. When an electric
potential is applied along the conductor a current (positive charges) flows in the
direction of E and the electric and chemical potential vary along the direction of
current flow. At each local point, however, the relaxation approximation assumes
that the scattering events of the conduction electrons maintain a local equilibrium,
defined by the Fermi function (12.7), where µ is the local chemical potential

In the following we shall look at electron transport in nonmagnetic met-
als in more detail. In such systems there are three basic types of scattering
processes. It turns out that the first two can be handled within an impor-
tant approximation, the so called independent electron approximation, which
neglects electron–electron scattering. Since within the independent electron
approximation collisions can arise only from deviations from perfect period-
icity, one scattering mechanism is due to impurities and crystal defects. This
scattering mechanism is usually the dominant one at low temperatures. At el-
evated temperatures significant deviations from perfect periodicity also arise
from thermal vibrations of the atoms, and this temperature-dependent scat-
tering channel is usually the dominant scattering mechanism at room temper-
ature.

The third scattering channel is due to electron–electron scattering. Its for-
mal description requires a complicated multielectron theory.6 When electron-
electron scattering is examined in simple metals such as Al, where no d states
are present, one can make some simple arguments why such processes are
ineffective for electrons with energies close to the Fermi level. Since electron–

6Some developments in this field are based on Landau’s Fermi liquid theory.
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electron scattering involves excitations in a very small phase space volume
near the Fermi surface, the cross-section for this process is small because of
the exclusion principle. The dependence of the scattering probability on the
energy E > EF of the excited electron and the temperature T is given by

1
τ

= A(E − EF)2 +B (kBT )2, (12.11)

where A and B do not depend on E and T . At room temperature this scat-
tering channel in simple metals is unimportant and therefore the properties
of such metals can be described by assuming the independent electron ap-
proximation. The situation is very different in transition metals. As we shall
see in Sect. 12.5.2, in transition metals the current is still carried by the s
electrons as in the simple metals but the scattering of the s electrons into
empty d states is the dominant scattering mechanism. It forms the basis for
the understanding of the conductivity of the transition metals and their spin
dependent transport properties.

In the relaxation time approximation we describe the scattering probability
per unit time by 1/τ . This means that the electrons, on average, will travel
for a time τ between scattering events, and τ is called the mean free time or
relaxation time. Writing Ohm’s law in the form

j = σE (12.12)

the conductivity σ, defined as the inverse of the resistivity R, may be expressed
as a function of the number of free electrons per unit volume n and the
relaxation time τ in terms of the Drude relation.

In the relaxation time approximation the conductivity σ and the resistivity
R [Ωm] are determined by the number of free electrons per unit volume
n and the relaxation time τ according to the Drude relation

σ =
1
R

=
n e2τ

me
= n e b, (12.13)

where b = eτ/me is the mobility.

The final important point for the description of transport in nonmagnetic
systems is an assertion called Matthiessen’s rule. It states that the resistiv-
ity for a given transport channel in the presence of several distinct scatter-
ing mechanisms is simply the sum of the individual resistivities. Written in
Drude’s form, the resistivity associated with two scattering mechanisms de-
noted by subscripts a and b reads,

R =
me

n e2 τ
=

me

n e2 τa
+

me

n e2 τb
= Ra +Rb . (12.14)
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The simple kinetic model can be extended to band theory. For free electron
bands we have the relation

Ekin(k) =
1
2
me v

2 =
h̄2k2

2me
(12.15)

and the electron group velocity is given by

vG(k) =
h̄ k

me
=

1
h̄

∂Ekin

∂k
. (12.16)

Since only electrons with energies close to the Fermi energy are mobile we
can express the relaxation time τ in terms of the Fermi velocity vF and an
electron mean free path λe

λe = τ vF = τ
h̄ kF
me

= τ

√
2EF

me
, (12.17)

where kF is the Fermi wave vector. Results obtained from this model for Fe
and Cu are listed in Table 12.4 [219].

For bands with a more complicated structure, like the d bands shown in
Fig. 7.8, we can extend the model by defining a band-index i and wave-vector
dependent mean velocity. We write in analogy to (12.16)

vi(k) =
1
h̄

∂Ei(k)
∂k

. (12.18)

Instead of using the bands from a band structure calculation to determine
vi(k), one often approximates its k-dependence by using a free-electron band

Table 12.4. Some parameters for the metals Fe and Cu. Here n is number of free
electrons per unit volume, R the resistivity, τ the relaxation time, EF the Fermi
energy, kF the Fermi wavevector, vF the Fermi velocity, and λe the electron mean
free path

n a R b τ c EF
d kF

e vF
e λe

f

[1028m−3] [10−8Ω m] [10−15 s] [eV] [1010m−1] [106m/s] [nm]

Fe 17.0 9.7 2.2 8.2 1.5 1.7 3.7

Cu 8.5 1.7 24.6 8.7 1.6 1.8 44

a From Ashcroft and Mermin [219].
b Values at room temperature.
c Calculated from n and R by means of (12.13).
d Separation of EF from bottom of the s band in photoemission [249,250].
e Calculated from EF by means of (12.17).
f Calculated from τ and vF by means of (12.17).
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of the form (12.15) with the electron mass replaced by an effective mass
(me)∗ > me. When plotted as a function of k the band appears flatter and
therefore has a more localized character, since a completely localized band
would be completely flat without any k dependence. This is nicely seen in
Fig. 7.8. In this formalism one then writes the conductivity of d electrons, for
example, by the equation

σ =
nd e

2 τd
(md

e)∗
, (12.19)

where the d electron effective mass is much greater than that of s electrons,
(md

e)
∗ � (ms

e)
∗ = ms

e. In comparing the conductivity in the s and d elec-
tron channels one needs to recognize that Matthiessen’s rule, given by (12.14)
and corresponding to resistors in series, applies for each separate conduction
channel. If however, conduction occurs in two separate channels, like via the s
electron channel and the d electron channel, the resistances will add in parallel
and the conductivities in series. We then have for the total s plus d channels
conductivity

σ =
ns e

2 τs
me

+
nd e

2 τd
m∗

e

(12.20)

and it is dominated by the larger s electron conductivity. Therefore, as first
pointed out by Mott in 1936 [575–577], models for the conductivity of tran-
sition metals need to be based on the transport and scattering mechanism
associated with s electrons.

12.5.2 The Two Current Model

The number of electrons per atom that can contribute to electrical conduction,
n(EF), is proportional to the density of states at EF. Therefore one might
expect from Fig. 12.1 that Cu is a bad conductor and that Fe, Co, and Ni
with a large values of n(EF) are good conductors. Yet the opposite is the
case. As listed in Table 12.5 the conductivity σ = 1/R of Cu is about four
times larger than that of Co and Ni, and Fe has the lowest conductivity of
the three magnetic metals.

The answer to the puzzle was suggested in 1936 by Neville Mott [575,
576,578]. Based on (12.20) Mott assumed that the s electrons carry the elec-
tric current and that the electrical resistance is due to a scattering processes
in which the electrons jump from the s to the d band. The more d states
are available, the stronger is this scattering. The scattering was proposed to
be spin selective so that electrons can only jump into d-states of the same
spin. Spin flips are forbidden. Spin selective scattering therefore results in the
preferential loss of one spin component.
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Table 12.5. Bulk Properties of 3d metals Fe, Co, Ni, Cu, and the 4f magnet
Gd. Listed are the calculated number of d holes per atom, Nd

h , the experimental
magnetic moment per atom, |m|, the room temperature resistivity, R, and the Curie
temperature, TC.

element Nd
h

a |m| [µB] R b [Ωm] TC [K]

Fe (bcc) 3.90 2.216 9.71 × 10−8 1043

Co (hcp) 2.80 1.715 6.25 × 10−8 1388

Ni (fcc) 1.75 0.616 6.84 × 10−8 631

Cu (fcc) 0.50 – 1.68 × 10−8 –

Gd (hcp) 9.0 7.63 131 × 10−8 289

a From Table 12.1.
b At 20◦C, except for Gd at 25◦C.

In the two current model spin-flips are assumed to be negligible, so that
only spin-conserving excitations are allowed.

The high resistivity of the transition metals with a partially filled d-shell
is thus produced by the dominant effect of s electron scattering on the d hole
states. The model is illustrated in Fig. 12.14. In our modern thinking based on
band theory, s and d electrons are strongly hybridized and excitations from s
to d states therefore arise naturally. In some band calculations such excitations
can actually be turned on and off through “hopping integrals” between and
s–p and d orbitals [579].

Mott’s model also explains the temperature dependence of the conductiv-
ity in the magnetic metals. As early as 1932 Walter Gerlach and coworkers
had observed that the conductivity of Ni increases on cooling below TC. If
the conductivity of a magnetic metal such as Ni is due to transitions in which
the electron jumps from the s to the d band, it is clear that below TC only
half the electrons can make the scattering transition. Since below TC all the
states in the majority band are occupied as evident from Fig. 12.1, only the
minority spins can scatter and this leads to a higher conductivity. In a noble
metal such as Cu the scattering on d states is excluded because in a simple
model the 3d band is full and there are no empty d states. Thus Cu is an
excellent conductor. We have seen in Sect. 12.2.2 that this picture is oversim-
plified since band calculation suggest that even in Cu there are some d states
above the Fermi level through hybridization with the s–p band.

The spin selective scattering on the holes of the d band is, in fact, the basis
of the important two current model in which the two spin states carry the
electric current in parallel without much mutual interaction. The name “two
current model” was explicitly introduced in 1968 by Fert and Campbell [580]
who conducted a careful study of the low-temperature resistivity of Ni metal



12.5 Resistivity of Transition Metals 555

Spin excitations in the
“two current model”

EF
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M

s band

d band
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Fig. 12.14. Illustration of the two current model. The ferromagnet is assumed to
be aligned by a field in the “up” direction, so that its magnetization M is also
in the “up” direction. We have indicated the DOSs of the d electrons by a simple
semicircle, as in Fig. 7.6, and have used a simple parabolic DOSs for the s electrons,
as expected for a free-electron band, given by (7.44). In the two current model
spin-flips are assumed to be negligible so that only spin-conserving excitations are
allowed. The scattering process consists of spin-conserving transitions from filled s
to empty d states near the Fermi level, as shown by arrows. Because the density
of empty states near EF is larger for the spin-up (minority) than for the spin-
down (majority) channel, the scattering probability and hence resistivity for spin-up
electrons is larger

doped with different transition metal impurities and showed the model to
explain their data. It is the cornerstone of recent developments in magnetism
discussed in Chap. 14.

At the heart of the two current model is Fermi’s “Golden Rule” (see
Sect. 9.5.2) which states that the scattering probability of the conduction elec-
trons, which leads to a reduction in conductivity, is proportional to the density
of final states, i.e., the density of empty d states above the Fermi level. We
can formulate the two current model by denoting the spin relaxation time for
the separate up and down channels by τ↑ and τ↓. Since conduction may occur
in two separate channels the resistances of the two channels add in parallel
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and the conductivities add in series so that we have the relation

σ =
n e2 τ↑
me

+
n e2 τ↓
me

. (12.21)

The resistivities of the individual spin channels follow Matthiessen’s rule

RS
tot = RS

0 +RS , (12.22)

where RS
0 is the scattering contribution due to impurities and RS describes

the spin-dependent s→ d scattering for the separate channels S =↑ or ↓. The
latter channel is proportional to the number of empty d states

RS = const. NS
d . (12.23)

Electrical conduction depends on electrons with energies near the Fermi
level. In this case the electrons zigzag along their conduction path, and this
is referred to as diffusive transport. One may also “shoot” electrons with
energies well above the Fermi level through a thin foil. In this case one speaks
of ballistic transport because of the a well defined k-vector of the electrons. The
two current model remains valid even in the ballistic regime, as found from
measurements of the transmission of low-energy spin-polarized electron beams
through magnetic thin films. These experiments are discussed in Sect. 12.6
below.

We can summarize this section as follows.

The two current model, the cornerstone of recent developments in mag-
netism, assumes that the electric current flows in two independent spin
channels, and that the total conductivity is given by the sum of the two
channels.
The resistivity is increased when electrons in either spin channel can un-
dergo spin-conserving scattering processes to empty d states.

12.5.3 Anisotropic Magnetoresistance of Metals

The change of the resistance of a material under the influence of an applied
magnetic field H is known as magnetoresistance. It was discovered by William
Thomson (1824–1907) (later Lord Kelvin) in 1856, who found that the resis-
tance of an iron conductor was increased by 0.2% when a magnetic field was
applied along the conductor and the resistance decreased by 0.4% when the
field was applied perpendicular to the current flow.

The effect discovered by Lord Kelvin is today known as anisotropic mag-
netoresistance (AMR). It is of the order of a few percent, depending on the
material, and is illustrated in Fig. 12.15. By defining the resistances R‖ for
current flow parallel to the magnetization, j ‖ M , and R⊥ for j ⊥ M , the
AMR effect is defined as
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Fig. 12.15. Illustration of the effect of anisotropic magnetoresistance exhibited by
a ferromagnetic material. The resistance is highest when the magnetization M is
parallel to the direction of the current (R‖) and lowest when it is perpendicular
(R⊥). For many years, sensors of magnetic fields were based on this mechanism,
before they were replaced by giant magnetoresistance sensors (see Fig. 14.3)

∆R
Ravg

=
R‖ −R⊥

(R‖ + 2R⊥)/3
. (12.24)

It is used in many magnetic sensors and was the preferred method of reading
the bits on a magnetic recording disk used in data storage until the simple
permalloy based thin-film AMR read heads were replaced by ones utilizing
the larger giant magnetoresistance effect discussed in Chap. 13.

The microscopic origin of the AMR effect lies in the spin–orbit coupling,
as first suggested by Smit [581]. With our knowledge from Sect. 12.5.2 this
may be understood as follows. For simplicity we shall assume that we have a
strong ferromagnet so that the majority (spin down) states are filled and the
conduction is in the spin-up states, only. According to (12.22) and (12.23), the
two current model then links the resistivity to the number of empty minority
(spin-up) d states, N↑

h , which for a strong ferromagnet directly determines the
magnetic moment |m|. We can write

R = R0 +R↑ = R0 + const.N↑
h = R0 + const.|m|. (12.25)

The term R0 is isotropic, to a good assumption. We know that the magnetic
moment |m| created by the exchange interaction is also intrinsically isotropic.
However, in the presence of the spin–orbit interaction we have seen in con-
junction with (7.66) that there are second order correction terms to the spin
moment that scale with the square of the ratios of the spin–orbit and the
ligand field interactions, (ζ/∆CF)2, and the spin–orbit and the exchange in-
teractions, (ζ/∆ex)2, respectively. The term (ζ/∆CF)2 arises from mixing of
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the same spin states while the term (ζ/∆ex)2 is due to spin-flip terms. There
has been much debate in the literature which of the two terms is more impor-
tant [582,583]. Of importance to us here is only that the anisotropy arises in
second order in the spin–orbit coupling.7 When the magnetization is rotated
by an external magnetic field relative to the current direction an asymmetry
in scattering arises because the magnetic moments and the number of empty
minority spins will change. This is the origin of the AMR effect. We can write

∆R = R‖ −R⊥ = const.(|m‖| − |m⊥|) , (12.26)

where the labels ‖ and ⊥ refer to the orientation of m relative to the current
direction. As seen in Fig. 12.15 the AMR effect has a cos2 θ dependence on
the angle θ between the moment and current direction. This fact was derived
as early as 1938 by Döring [584].

Today, many kinds of magnetoresistance effects are known and distin-
guished. Among them are giant magnetoresistance [79, 80], tunnel magne-
toresistance [585], colossal magnetoresistance [586], ballistic magnetoresis-
tance [587], and extraordinary magnetoresistance [588], to name a few.

12.6 Spin Conserving Electron Transitions in Metals

In the following two sections we consider the spin dependent transitions of
electrons as they traverse a metal. Of primary importance to us are two types
of processes already discussed in Sect. 8.6.2. The first one involves transitions
between opposite spin states, the other transitions within the same spin states.
Both of these processes fall under the name spin selective transitions, but one
process involves “spin flips” while the other preserves the spin in the scattering
event. We shall discuss spin conserving transitions first.

12.6.1 Spin Conserving Transitions and the Photoemission Mean
Free Path

The two current model of electrical conduction implies that the electrical
resistivity is given by spin conserving scattering. The two spin bands have
different scattering rates, and thus the scattering is spin selective. Transitions
from the spin up to the spin down band and vice versa are sufficiently rare
so that such spin nonconserving transitions can be neglected in the electrical
resistivity.

However, spin nonconserving transitions must occur nevertheless to allow
the thermal equilibrium to be established and to return the magnetization
to the equilibrium after external excitation. For example, if a ferromagnetic
metal is heated to a higher temperature, the magnetization is reduced as we

7This is in contrast to the magnetocrystalline anisotropy which is first-order in
the spin–orbit coupling.
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know from experience. This will require a reduction of the spin polarization of
the electrons generating the magnetization, and hence, no matter how com-
plicated the intermediate processes may be, in the end there must have been
electron transitions between the two different spin states. It is important to
remember that three simultaneously valid conservation laws, namely conser-
vation of angular momentum, linear momentum, and energy impose severe
restrictions on transitions between the spin states.

Transitions between spins states have to satisfy the three basic conserva-
tion laws of energy, angular momentum, and linear momentum.

The conservation laws are ultimately the reason for the general validity
of the two current model. As discussed later it turns out that a generalized
two current model exists, that is valid not only for electrons with energy near
EF, so called diffusive electrons that determine the conductivity, but also for
electrons with kinetic energies far above EF, so called ballistic electrons. The
latter are of interest in spin polarized photoemission and experiments with
spin polarized beams and in the following we shall discuss the information
obtained on the transport of such electrons through solids.

One of the most general results obtained with spin polarized electrons
concerns the electron probing depth λe. It is the distance from the surface,
measured perpendicular to the surface, from which the electrons originate.
Assuming that the contribution from layers below the surface decays expo-
nentially toward the bulk, one defines λe as the length from which the fraction
1−(1/e) ≈ 2/3 of the total signal originates. The spin-averaged probing depth
λe is related to the spin-dependent probing depths of the spin-up, λ+

e , and spin-
down, λ−e , electrons according to 1/λe = (1/λ+

e +1/λ−e )/2. The length λe can
be translated via the group velocity v into the lifetime τe of an electron in
excited states within the solid according to τe = λe/v. This lifetime is very
short in the case of metals for energies of several eV above the Fermi energy
EF, typically of order of 10−15 s, but becomes longer for E → EF.

The reason for the short lifetime in the excited states is that the electrons
interact via the Coulomb field with the metallic electrons, losing energy very
rapidly by formation of a cascade of low energy electrons. It is thus clear that
the measurement of λe yields information on the fast electron dynamics, and
if the spin is included in the analysis, it provides information on the spin
dependence of the electron interactions as well.

Let us first consider the determination of λe without spin analysis. A large
amount of data has been accumulated from the overlayer method in which
the attenuation of a prominent substrate photoemission peak is measured as
a function of the overlayer thickness x and the intensity decrease is fitted
with an exponential decay e−x/λe . This methods is quite elegant and is based
on the fact that photoemission peaks correspond to “elastic” electrons that
have remained unscattered on the way to the detector. Scattered electrons
have a lower energy and hence do not contribute to the measured peak in-
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tensity. Also, different materials can be distinguished by their characteristic
photoemission peaks. The data for many materials are often displayed in an
oversimplified way as a “universal curve” which shows λe(E) as a function of
energy E, independent of material parameters [237]. While the overall energy
dependence with a certain spread of values indeed follows a “U”-shaped curve,
with a minimum around 50 eV and larger values at lower and higher energies,
the detailed low energy behavior depends very much on the material, as we
shall see later.

In the determination of the escape depth a problem is encountered for elec-
trons that have a kinetic energy of nearly zero. Since the kinetic energy of the
detected electrons is measured relative to the vacuum level, zero kinetic energy
means that the electrons can barely escape from the solid. The photoemission
spectrum at such low energies is entirely dominated by a huge background of
scattered electrons, the so-called inelastic peak. The conventional method of
measuring an elastic peak intensity does no longer work since the elastic peak
intensity cannot be reliably determined because it is swamped by the inelas-
tic tail. Therefore electrons from the underlayer and the overlayer cannot be
distinguished.

However, the problem in determining the mean free path of electrons with
very low kinetic energy can be overcome. This is quite fortunate because of
the importance of very low energy electrons in the magnetic interactions. It
is these electrons that have comparable energies to the 3d valence electrons
and therefore can strongly interact via the exchange interaction. In fact, the
very interaction mechanisms are the main topic of the present section.

The trick to obtain information on the mean free path of low energy elec-
trons is the measurement of spin polarization [589]. In analogy to the overlayer
method one deposits either a nonmagnetic layer on top of a magnetic sub-
strate, or vice versa. The art of fabricating such ultrathin magnetic structures
is by now well established [250]. Electrons are excited by an incident primary
electron or photon. The provenance of the low energy electrons is tagged by
their spin polarization which is zero for emission from a nonmagnetic film but
different from zero for emission from a magnetic film. The increase or decrease
of the spin polarization of the emerging secondary electrons is measured by a
spin analyzer as a function of overlayer thickness x [590]. If a magnetic layer
is the overlayer the spin polarization will increase with magnetic thickness,
if a nonmagnetic layer is on top the spin polarization will decrease with its
thickness. From analysis of such magnetization versus thickness curves one
can therefore obtain accurate values for the spin-averaged probing depth λe

of the low energy electrons.
The results for the spin-averaged electron absorption coefficient µe = 1/λe

shown in Fig. 12.16 were obtained by such measurements of the attenuation of
the spin polarization. They are valid for the 0–2 eV kinetic energy range that
one can detect with ease in secondary emission. The striking result is that
the transition metals with open d shells exhibit larger electron absorption
coefficients, that is shorter probing depth λe, compared to the noble metals
Cu, Ag, and Au. It is evident that µe increases with the number of d holes. In
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Fig. 12.16. The spin-averaged absorption coefficient or inverse mean free path,
µe = 1/λe, for low energy electrons of 0–2 eV kinetic energy versus the total number
of unoccupied d states for various metals labeled in the figure. The attenuation
coefficients were taken from [590]. We have used the values for the number of d
holes in Fe, Co and Ni 3.4–3.93 for Fe, 2.5–2.80 for Co, and 1.5–1.78 for Ni, as
discussed in Sect. 12.2.2. It is evident that the absorption depends on the number
of unoccupied d states and is not a universal curve as assumed previously

particular, the series Ni, Co, Fe, and Cr shows this trend beautifully. This is
analogous to Mott’s model developed for very low energy electrons, discussed
in Sect. 12.5, where the electrical resistivity is due to scattering on the d-
holes. Drouhin [591] has discussed various effects associated with scattering
of electrons on d-holes, but he neglects the correction of the number of d-holes
arising from hybridization with s–p states as discussed in Sect. 12.2.2.

Figure 12.16 is the key why all low-energy electron spectroscopies measure
the electronic and magnetic properties of the layers very near the surface
with metals having open d-shells. We already made use of this feature in the
determination of the temperature dependence of the surface magnetization
in Fig. 11.6. From the dependence of the electron absorption on the number
of d-holes one concludes that ferromagnetic transition metals will be spin
filters, absorbing preferentially minority spins because the existence of the
magnetic moment requires that there are more minority spin holes in the
d states compared to majority spin holes. These important results must be
remembered.

The scattering length of low energy electrons decreases with increasing
number of d holes.
Ferromagnetic transition metals are spin filters with preferential absorp-
tion of minority spins.
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12.6.2 Determination of the Spin-Dependent Mean Free Path
using the Magnetic Tunnel Transistor

With the spectroscopic techniques discussed so far, the smallest electron en-
ergy that can be studied is limited by the vacuum potential of the ferromag-
netic layer. Consequently, the information on transport properties are limited
to electron energies E > 4–5 eV above EF. These energies are larger than the
upper edge of the minority d-bands in ferromagnetic transition metals and
therefore far away from the energy range in which maximum spin selective
scattering is expected. The electron interactions at low energies are most im-
portant for applications in new solid state devices based on the manipulation
of spin polarized currents. Techniques that can explore the energy range close
to EF are needed for the development of spin based electronics or “spintron-
ics” in which the spin rather than the charge of the electron is carrying the
information.

Several techniques have emerged to study electron transport through fer-
romagnetic metals without forming an electron beam in vacuum. One of the
new techniques applicable to electron energies of 1–2 eV from EF is Ballistic
Electron Magnetic Microscopy (BEMM) [592]. It uses the tip of a scanning
electron microscope to inject a finely focused electron beam into a trilayer, e.g.,
Co/Cu/Co. The electric current transmitted to the semiconducting substrate
of the trilayer film depends on the relative orientation of the magnetization
of the Co layers. The first Co layer acts as a polarizer of the electron current
and the second as an analyzer. If the magnetization in the two layers is par-
allel, the transmission is high, but if it is antiparallel, the transmission is low.
BEMM makes it thus possible to study the efficiency of spin filtering as it
depends on the voltage between the tip and the film determining the energy
at which the electrons are ballistically injected.

Another important device, the spin valve transistor or magnetic tunnel
transistor (MTT) was introduced in 1995 by Monsma and collaborators [594].
The MTT is a three terminal device in which the spin polarization of the
injected electrons is determined by spin filtering in the base region of the
device. By a suitable choice of materials, the spin polarization can be very
large [136]. With a MTT, spin selective electron attenuation as well as the
measurement of the spin polarization can be performed at electron energies
of 1–2 eV from EF without ever taking the electrons out of the metal into
vacuum.

Figure 12.17 shows one form of the MTT in which a spin valve struc-
ture is used as the base. Typically, the spin valve structure consists of 5 nm
Co70Fe30/4 nm Cu and 4 nm Au/5 nm Ni81Fe19. The emitter layer is 30 nm
Cu. The CoFe and NiFe layers have different coercivities. In large magnetic
fields, the magnetic layers in the base are aligned parallel. When the field is
reversed, the magnetization in the NiFe layer switches first while the magne-
tization of the CoFe layer remains in the previous orientation up to a field of
104 A/m. The switching of the layers from parallel (P) to antiparallel (AP)
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Fig. 12.17. Energy diagram of a magnetic tunnel transistor (MTT) [593]. Unpolar-
ized electrons are emitted from Cu through the Al2O3 tunnel barrier and traverse
the ferromagnet FM1 whereby they are spin filtered and emerge with a polarization
P into the Cu base. To reach the GaAs-collector, the electrons have to traverse a
second ferromagnet FM2 which can be magnetized parallel or antiparallel to FM1.
There is a very large asymmetry A in the current Ic measured in the collector
depending on the relative magnetization direction in FM1 and FM2

gives rise to a huge asymmetry of the transmitted current. This asymmetry
is explained by the spin dependent attenuation. The attenuation length λe is
calculated from the current measured in the collector by assuming an expo-
nential attenuation of the injected current I0 with film thickness s according
to I0 exp(−s/λ±e ) where λ±e stands for the attenuation length of majority (+)
and minority (−) spin electrons. λ±e is the inverse of the inelastic attenuation
coefficient µ±e . The energy of the electrons injected from the Cu emitter is
determined by the voltage VEB applied between base and emitter. The energy
window accepted by the GaAs collector is determined by the voltage VCB ap-
plied between base and collector. The MTT is a powerful tool to study spin
dependent transport of hot electrons. In fact, it shows that one can come close
to realizing the conditions pictured in Fig. 12.20.

Figure 12.18 shows results for the electron attenuation length λe obtained
by Parkin and collaborators [595] for Ni81Fe19. We see that the spin depen-
dence of the attenuation is indeed much larger at the low electron energies.
According to Fig. 12.18 we find λ+

e /λ
−
e = 6.3 at E = 1 eV. The majority

spin absorption length λ+
e is found to decrease more rapidly with increasing

electron energy than the minority spin absorption length increases. At higher
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Fig. 12.18. The attenuation length of majority and minority spin electrons in
Ni81Fe19 versus the electron energy EE = eVEB, as determined with the MTT [595]

energy one therefore finds a reduced value of λ+
e /λ

−
e . This is confirmed by

measurements at E = 12.6 eV above EF in Fe, where Donath finds a ratio of
λ+

e /λ
−
e = 1.7 ± 0.3 [558].

This behavior can be qualitatively understood by plotting the ratio of the
hole states of majority to minority spins shown in Fig. 12.3 versus energy. It is
in agreement with the model for the spin dependent attenuation set forth in
Sect. 12.6.1. However, Jansen and collaborators [596] found that the magneto-
current defined by IMC = (IP − IAP)/IAP is reduced when the MTT, made
from Ni20Fe80 permalloy, is heated to room temperature from 70 K. This is
interpreted as evidence for transitions of minority spins to majority spin states
concomitant with the generation of low energy spin waves. Now we have to
realize that it takes a ballistic electron with velocity v = 3 × 106 m/s the
time t = s/v = 3 × 10−15 s to traverse a distance of s = 10nm. This time
is not long enough to generate spin waves in appreciable quantities. Electron
scattering on spin waves on this fast time scale is therefore questionable, and
the experimental evidence presented in [596] needs clarification.

According to Parkin and collaborators [597], the electron spin polarization
injected into the collector can be measured by the degree of circular polariza-
tion of the light emitted from a GaAs/In0.2Ga0.8 multiple quantum well light
emitting diode. The emission of circularly polarized light is in reversal of the
process of emission of polarized electrons from GaAs in Section 8.2. In this
way, it should be possible in the future to perform experiments similar to the
ones with free electron beams in devices. This is expected to greatly facilitate
the magnetic engineering of “spintronic” sensors and memories [598].
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12.6.3 Probability of Spin-Conserving relative to
Spin-Non-Conserving Transitions

In evaluating how important transitions between the two spin states are in
comparison to spin-conserving transitions one looks at the interaction of a
monochromatic spin-polarized electron beam with a magnetic sample. In prac-
tice, such beams are obtained from a GaAs photocathode and by changing the
accelerating voltage one can create monochromatic (typically ∆E ∼ 0.1 eV)
electron beams of energy E0 that are either unpolarized or polarized with a
freely chosen direction of the spin polarization vector P in space. A typical
experimental geometry for a transmission experiment is shown in Fig. 12.19.
Experiments can also be performed in a reflection geometry, as indicated [599].
The elastic scattering experiment illustrated in Fig. 12.19 only looks at the in-
tensity and polarization of the electrons scattered without energy loss.

Since the interpretation of the results is simpler for a transmission ex-
periment because of the absence of spin–orbit contributions to the measured
spin-polarized intensity, we shall discuss transmission results here. They are
found to be in complete agreement with reflection results if the latter are
corrected for spin–orbit effects [599].

In order to assess the importance of spin-flips in the elastic transport
of low-energy (of order 10 eV) electrons through a magnetic material one

Fig. 12.19. Schematic of two different transmission experiments on spin-polarized
electron transmission through magnetic thin films, as discussed in the text. A re-
flection geometry is also shown as a dotted line. The intensities are labelled with
subscripts that follow the order in the figure: spin of incident beam s0, sample
magnetization M , detected spin sd
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Fig. 12.20. Schematic of two experiments, with and without spin detection, to
determine the importance of spin-flip scattering as discussed in the text. (a) De-
fines the relative spin and magnetization orientations in the sample. We assume an
idealized situation where a strong ferromagnet with filled majority states and suit-
able thickness completely absorbs incident minority (spin-up) spins but transmits
all majority (spin-down) spins. Spin-flip scattering by the sample is assumed to be
zero. This gives the transmitted intensities for the cases shown in (b) and (c). The
experimental results for experiment (b), i.e., polarized incident beam and no spin
detection, are used to determine the asymmetry A in (12.27). Those for experiment
(c), i.e., unpolarized incident beam and spin detection, are used to determine the
degree of spin polarization P in (12.28)

performs two different experiments and compares their results. In order to
demonstrate the method we shall, for simplicity, assume that the incident
beam is 100% spin polarized and that the sample is magnetically saturated
in the “up” or “down” direction, as illustrated in Fig. 12.20. The spin of the
incident beam, s0, is chosen to be parallel or antiparallel to the magnetization
M of the sample.

In the first experiment, we use a spin polarized incident beam with spin
direction s0 and simply measure the intensity of the transmitted beam, with-
out spin analysis, for s0 parallel and antiparallel to M . In this experiments
the measurement provides two numbers, the intensities for the two relative
orientations of s0 and M . In the second experiment we use an unpolarized
incident beam and measure the intensity of the transmitted beam with a spin
resolving detector aligned in the direction sd, for sd parallel and antiparallel
to M . Hence we again measure two intensities, corresponding to the relative
orientations of M and sd.

From an experimental standpoint one views the process by the spin po-
larization of the beam and the magnetization, as shown in Fig. 12.19. By
reference to this figure we can now discuss the two experiments.
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In the first experiment (Fig. 12.20b) we distinguish the case where s0 and
M are antiparallel, characterized by a transmitted intensity I↑↓, and the case
where the two are parallel with I↑↑. The measured spin asymmetry A is defined
by (8.32) as

A =
I↑↓ − I↑↑
I↑↓ + I↑↑

. (12.27)

In the second experiment (Fig. 12.20c) we use an unpolarized incident beam
and measure the spin polarization P that has developed in the transmission
process for sd parallel and antiparallel to M . The measured polarization P
is defined according to (8.17),

P =
I↑↓ − I↑↑
I↑↓ + I↑↑

. (12.28)

It can be shown [344] that the condition for no spin-flip scattering is,

A = P . (12.29)

The relation (12.29) therefore states the condition for the validity of the two
current model in electron transmission through a magnetic sample. If shown
to hold, it would extend the two current model for conduction electrons with
energies close to the Fermi energy, discussed in Sect. 12.5.2, to higher electron
energies.

In order to make (12.29) plausible let us perform a Gedanken-experiment
as outlined in Fig. 12.20. We assume an idealized spin filter similar to what ac-
tually exists in optics for polarized light. This spin-filter consists of a “strong”
ferromagnet of suitable thickness which completely absorbs incident minority
(spin-up) spins but transmits all majority spins, as illustrated in Fig. 12.20a.
That is, we assume that the sample thickness is much larger than the minority
spin absorption length λ↑ and that λ↓ = ∞ so that the majority electrons are
not absorbed. In Fig. 12.20b, c we show the results for the two Gedanken-
experiments that determine A and P according to (12.27) and (12.28), re-
spectively.

From Fig. 12.20b we see that for the conditions outlined in (a), the mea-
sured intensity is binary if no spin-flips occur. Incident spin-up electrons are
absorbed while incident spin-down electrons are transmitted. We would get
A = +1 for the experiment in Fig. 12.20b. Similarly, for the case shown in
Fig. 12.20c we would get P = +1, since again one of the intensities would be
zero and for the other case only 50% of the incident electrons, those with spin
down, would be detected.

If we now assume that there are spin flips induced by the sample we would
convert spin-up into spin-down electrons and vice versa. If we do not detect
the spin of the transmitted beam as in (b) we would measure an intensity
I↑↑ > 0 and I↑↓ < 1 and therefore |A| < 1. If we detect the spin as in (c),
however, we would still have I↑↑ = 0. Since the intensity I↑↓ would certainly
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Fig. 12.21. Experimental results by Weber et al. [600] for the spin asymmetry,
A, and spin polarization, P , determined for the elastic transmission of low energy
electrons. The experiments were performed as illustrated in Fig. 12.20 using a 5 nm
thick Fe film

be finite, we would have P = 1, as before. In the presence of spin flips we
would therefore measure A �= P !

Experimentally one finds A = P within experimental error for low energy
electrons as shown in Fig. 12.21 [600]. The attenuation of the elastic electrons
is strong in both spin channels. Minority spins are removed with higher prob-
ability from the “quasielastic” channel but do not reappear as majority spins.
The qualification “quasielastic” is necessary because the energy resolution in
any experiment is of course finite, meaning that electrons that have lost some
small amount of energy, in the experiment [601] up to ≈0.5 eV, are included
in the measurement of the elastic channel. Such small energy losses will ac-
company a transition from the minority spin state to the majority spin state
by the excitation of a spin wave. At ambient temperature, spin waves have
an energy of typically ≤100meV. Minority electrons having generated a spin
wave and thus made a transition to the majority spin state would therefore
remain in the quasielastic channel. Because of P = A the experiment proves
that such spin transitions are rare enough so that they cannot be detected
on the background of spin conserving transitions. Hence the ferromagnet acts
very much like a polarization filter in optics that absorbs one type of polar-
ized light but does not “flip” the polarization. The conclusion is that spin
wave excitations are rare on the scale of the total electron–electron scattering
cross-section and that spin filtering is simply due to spin conserving s → d
transitions as discussed for the conductivity in Sect.12.5. We can summarize
as follows:

The electron mean free path is dominated by spin-conserving scattering
events. The two current model remains valid at larger electron energies.
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Despite their low probability relative to the total scattering probability,
spin-flips can nevertheless be observed by careful measurements that inves-
tigate the energy region just outside the elastically scattered intensity. Such
high-resolution spin-polarized electron-energy-loss spectroscopy or SPEELS
measurements will be discussed in Sect. 12.7.2 later.

12.6.4 The Complete Spin-Polarized Transmission Experiment

Instead of having the electron spin polarization P 0 at incidence either paral-
lel or antiparallel to the magnetization M as in Sect. 12.6.3, we now consider
what happens when P 0 is perpendicular to M . This initial configuration is
unstable and tends to relax into the stable configuration where P is antipar-
allel to M . One can now observe the effect of the exchange interaction on the
injected spins leading to precession of P about M . The precession of P estab-
lishes unique information on the energy dependence of the elusive exchange
field.

Furthermore, one observes a rotation of P into the direction of the ma-
jority spins. This relaxation or damping motion, discussed in Sect. 3.6.2, is
perpendicular to the precession and is induced by preferential scattering of
the minority spins. The integral pathway of P on the sphere of Poincaré is for-
mally derived in Chap. 8. As an additional bonus, the motion of P reveals the
torques acting on the injected spins. This arises because the time derivative
of the angular momentum S connected to the spins is ∂S/∂t = T s according
to (3.30) where T s is the torque acting on the injected spins. Assuming con-
servation of angular momentum, it follows that an equal but opposite torque
T s must be acting on the vector S of the spins in the material into which the
electrons are injected. The observation of the motion of P can thus form the
basis for evaluating experimentally the torque acting on the magnetization by
the injected spins which is of high current interest as discussed in Sect. 14.2.1.
For the experiment, both, a spin polarized incident beam and a spin analyzer
for detecting the motion of the spin polarization P are needed.

The spin polarization vector P of the transmitted electrons is calculated
from the expectation values of the Pauli matrices as shown in Sect. 8.4. If we
chose our experimental geometry in accordance with the notation of Fig. 8.8,
as shown in Fig. 12.22a, with P 0 parallel to the x-axis, the electron beam
direction along y, and M antiparallel to z, the precession is described by
an azimuthal angle ϕ in the x − y plane and the damping or relaxation by
a polar angle θ measured from the z-axis as described by (8.35) and (8.36).
Figure 12.22a shows that for M along −z the transmitted beam will have a
preferential up-spin polarization. This comes about as follows. The incident
beam can be described as a superposition of up spins (along z) and down spins
(along −z). If the magnetization vector M is along −z, the minority spins
in the sample are also along −z (see Fig. 7.6), and hence incident down spins
are preferentially absorbed by spin-conserving excitations within the minority
band.
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Fig. 12.22. (a) Experimental geometry for transmission of a spin-polarized beam,
propagating along y and polarized along x, through a thin-film sample with in-plane
magnetization M along −z. (b) Measured azimuthal spin precession angle ϕ versus
magnetic film thickness d for Fe, Co, and Ni sandwiched between polycrystalline
Au, measured with elastic electrons of 7 eV above EF. The data point at d = 0 is
obtained with a pure Au-film of thickness d = 20nm which apparently generates no
precession. Note that there are dead magnetic layers of d ≈ 1 nm for Fe and Co and
d ≈ 2 nm for Ni. From [600,602]

The motion of the spin polarization vector P has been observed by letting
a beam of spin-polarized electrons traverse a ferromagnet and measuring the
direction and magnitude of the spin polarization vector P of the elastic elec-
trons [600, 601]. One result of the transmission experiment has already been
shown in Fig. 12.21, but in the earlier version of the experiment, P 0 was either
parallel or antiparallel to M , which yields the spin dependent absorption A.
Now we want to observe the precession of P which requires that P of the
incident beam is chosen perpendicular to M .

In practice, a spin polarized low energy electron beam is passed through a
ferromagnetic film of thickness d ∼ 1–10 nm. Of course, such a ferromagnetic
film is too thin to be free standing and it has to be supported mechanically
and protected chemically against corrosion. In the experiment [600, 603] the
support is provided by a substrate consisting of 20 nm of polycrystalline gold,
and another 2 nm of gold is added on top for chemical protection. It is im-
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portant to avoid pinholes in such Au/FM/Au trilayer structures. Even the
smallest pinholes will let electrons pass without traversing the ferromagnet
thereby masking the effects of the spin dependent interactions.8 The spin po-
larization P of the emerging electrons is measured on the very small fraction
of electrons that have traversed the trilayer without losing energy (we are
again speaking of “quasi”-elastic electrons as the resolution of the energy an-
alyzer is finite, in the example ∼0.5 eV). The electrons require less than a
femtosecond (10−15 s) to traverse 1 nm. Hence the precession and rotation of
P occurs at the femtosecond time scale due to the high value of the exchange
field and the short time scale of electron-electron scattering.

Figure 12.22b displays the observed precession angle ϕ as it depends on the
film thickness d for Fe, Co, and Ni. It is valid for electrons at an energy of 7 eV
above EF. A linear fit describes the observations with all three ferromagnetic
metals signaling that the precession is a bulk property of the ferromagnets.
The slope is the specific precession angle, i.e., the angle per unit film thickness,
which for Fe, Co, and Ni is found to be ϕ = 33◦/nm, 19◦/nm, and 7◦/nm,
respectively. The fact that the linear fits intersect the abscissa at finite film
thickness is attributed to dead layers at both Au/FM interfaces.

The time t spent by the electrons within the ferromagnet of thickness d
determines both the group velocity vG = d/t (see (12.16) of the electrons in
the ferromagnet and the precession angle ϕ = t∆/h̄ (see (3.59)), where ∆ is
the exchange splitting. We therefore obtain for the specific precession angle,

ϕ̄ =
∆

h̄ vG
. (12.30)

The observed specific precession can thus be compared to the exchange split-
ting ∆ and group velocity vG = (dE/dk)/h̄, obtained in band structure cal-
culations. The data shown in Fig. 12.22 as well as the energy dependence of ϕ
reported in [600] agree with the expectations. The smaller specific precession
in Ni for instance is consistent with the small magnetization and the lower
TC of this metal. The large value of the specific precession points to sizeable
exchange splittings persistent to electron energies of ≈10 eV above EF. This is
consistent with the results of band structure calculations, predicting ∆ ≈ 1 eV
even at electron energies as high as 15 eV above EF.

Experimental data for the damping angle θ enclosed by P with the z-axis
are shown in Fig. 12.23. The angle θ decreases with increasing thickness d of
the Fe, Co, and Ni polycrystalline films sandwiched between Au, as expected.
The relaxation of P into the direction of the majority spins antiparallel to
M occurs within a few nanometers from the point of injection corresponding
to a few femtoseconds. It is due to the spin conserving inelastic scattering of
minority spins. This scattering is much larger in Fe and Co compared to Ni,
reflecting the smaller density of unoccupied minority states in Ni. The motion

8This is probably the reason for the smaller spin dependent absorption reported
earlier in [604].
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Fig. 12.23. The evolution of the polar angle θ of P with the thickness d of Fe, Co,
or Ni. Initially, at incidence of the electrons, θ = 90◦, but in these polycrystalline
samples, there were dead layers at the interfaces to Au in which no rotation occurred.
The measurement was done on the quasielastic electrons of energy 5 and 7 eV above
EF. The curves through the data points are from absorption experiments [603],
corrected for incomplete polarization of the incident electron beam (Fe: continuous
line, Co: dashed line, Ni dotted line). From [600,602]

of P into the direction of the z-axis corresponds to a damping of the spin
precession as discussed in Sect. 3.6.2.

Assuming again conservation of angular momentum, it must generate what
is called a “damping torque” acting on M that can be used for magnetiza-
tion switching. It is seen that this torque may be generated solely by spin
conserving scattering processes, i.e., the preferential absorption of minority
spins, and does not require transitions between the two spin states. There-
fore, the “damping torque” can develop on the time scale of femtoseconds
which is essential for the applications discussed in Sect. 14.2.1.

The angular momentum change that occurs in both systems when a spin
polarized electron beam of polarization P 0 interacts with a thin ferro-
magnetic film of magnetization M , orientated at a finite angle with P 0,
is due to the preferential spin-conserving absorption of minority spins,
and not to transitions between opposite spin states.

The rotation of P into the z-axis can also be derived from the quite dif-
ferent absorption experiments illustrated in Fig. 12.20. If the injected spins
s0 are parallel to the majority spins in the ferromagnet, the transmitted in-
tensity is I = I0 exp(−µ+

e d), and for s0 along the minority spin direction we
have I = I0 exp(−µ−e d), where µ+

e and µ−e are the absorption coefficients for
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majority and minority spins, respectively. The spin asymmetry of electron ab-
sorption given by (8.32), as a function of film thickness d, has been measured,
as well [603]. The angle of rotation calculated from these measurements with
(8.36) is indicated for Fe, Co, and Ni in Fig. 12.23. It agrees within experimen-
tal uncertainty with the rotation angle θ obtained by the direct measurement
of P . We can summarize as follows.

Precession and relaxation of ballistically injected spins proceed over a
very short distance of nanometers, corresponding to a time scale of 10−15

s. The relaxation of the injected spins into the direction of the majority
spins does not require transitions between opposite spin states.

12.7 Transitions Between Opposite Spin States in Metals

In this section we shall explore various types of excitations between opposite
spin states and discuss experiments aimed at their detection and understand-
ing.

12.7.1 Classification of Transitions Between Opposite Spin States

We have learned that the rarity of transitions between opposite spin states is
the essence of the two current model. But such transitions must nevertheless
occur to establish the equilibrium after an excitation of the magnetization.
The interesting question is how fast the equilibrium can be established, or
in other words, how important are transition involving a change in spin in
comparison to spin conserving transitions. To discuss this question, let us
first consider the basic processes that can induce a change of the spin state of
an electron.

“Spin flips” may be induced by application of a magnetic field oscillating
perpendicular to an applied steady magnetic field. The spin flip transition
occurs when the frequency ω of the oscillating magnetic field is equal to the
spin precession frequency in the steady field. It involves the absorption of
a magnetic field quantum h̄ω. This process has been discussed in Sect. 3.6.3
and forms the basis of NMR and ESR. It occurs on a time scale which is
determined by the energy separation ∆E of the spin up and spin down states
according to τ = 1/ω = h̄/∆E. Unfortunately, the term “spin flip” is often
used incorrectly, including situations when the spin is conserved during the
process. For example, it is important to distinguish “spin flips”, involving
transitions between opposite spin states from the spatial separation of the
two spin states, as in the Stern Gerlach experiment, or more generally from
the case where spin conserving transitions lead to preferential absorption of
one spin component, as in a spin filter.
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“Precessional spin switching” may be accomplished by letting the spin
precess about a perpendicular magnetic field pulse of suitable length [605].
This method, also called “ballistic switching”, is important in magnetization
reversal, and its time scale is given by the precession frequency ω of the
magnetic moment in the magnetic field as discussed in Sect. 3.6, with a typical
value of 10 ps for a 90◦ precession in a 1 T field. Precessional switching with
a magnetic field pulse is discussed later in Sect. 15.6.

“Scattering on spin waves” may occur if a minority spin electron excites
a number of atomic spins to quantized oscillations about their equilibrium
position, called a spin wave, as discussed in Sect. 11.1.5. The excitation of one
spin wave is possible by the transition of one electron from a minority spin
state sz = h̄/2 to a majority spin state sz = −h̄/2 with a change ∆sz = −h̄ in
angular momentum. To conserve angular momentum, a spin wave must then
have an integer spin of −h̄ and is therefore a Boson (see Sect. 11.1.5). Vice
versa, a majority spin electron can absorb a spin wave and thereby undergo
a transition to the minority state. This latter process happens only when
spin waves are present, that is at elevated temperature. The time scale of
the transition of an electron from one spin state to the other is given by the
energy Esw of the spin wave. According to (11.25) Esw ∝ q2, where q = 2π/λ
is the wave vector of the spin wave. The wavelength λ of spin waves cannot be
smaller than the lattice constant. In this limiting case, a spin wave involves
the excitation of just one electron. This excitation has the highest energy
and is often called a “Stoner excitation” for historical reasons. Generally, the
excitation and hence the spin transition of the exciting electron occurs on a
time scale h̄/Esw corresponding to ∼3 × 10−13 s at ambient temperature.

“Spin exchange scattering” occurs in electron-electron scattering due to
the quantum mechanical exchange interaction. If the incoming electron is in a
spin-down state, and the target electron in a spin-up state, the indistinguisha-
bility of the electrons can lead to spin exchange so that the outgoing electron
is now in a spin-up state and the target electron in a spin-down state. Such
excitations are treated in many textbooks under the heading Stoner excita-
tions [281](see Sect. 11.1.5). With the alkali-atoms, the outer valence electron
can be prepared in a specific spin state. If an electron is elastically scattered
on such an atom, the spin exchange rate can be very high at low scattering en-
ergies [606]. However, in the presence of the exchange interaction in magnetic
solids, there is a change of energy involved as soon as an electron changes its
spin state. Hence purely elastic spin exchange scattering as with atoms is not
possible in solids but has to occur together with a change in momentum and
energy. In particular, the large energy associated with the exchange splitting,
makes spin exchange scattering very rare for magnetic materials.

The time scale of spin exchange scattering is the time scale of the electron-
electron interaction, typically of the order of 10−15 s. It governs ultra-fast mag-
netization dynamics. At present we only understand some basic elements of
electron–electron scattering in magnetic materials. Scattering of two electrons
takes place with a complex amplitude f1 in the singlet state |S = 0, Sz = 0〉
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or with a complex amplitude f3 in one of the triplet states |S = 1, Sz = 0〉
or |S = 1, Sz = ±1〉. A primary electron with spin sz = +1/2 can collide
with a target electron of either spin. If it collides with a majority electron
sz = −1/2, the initial state is a superposition of singlet and triplet states
(|1, 0〉+ |0, 0〉)/

√
2 and leads to a direct scattering amplitude fd = (f3 + f1)/2

and an exchange scattering amplitude fe = (f3 − f1)/2 on account of the
indistinguishability of the electrons [134]. The relative amplitude and phase
of f1 and f3 depend critically on the interaction potential which we do not
know with sufficient confidence. It is therefore difficult at present to predict
how electron–electron scattering proceeds in magnetic materials [607].

Besides being the active mechanism in ultra-fast electron dynamics,
electron–electron collisions are important in many technical applications such
as the photomultiplier and scanning electron microscopy (SEM) since they
determine the formation of the low energy cascade of secondary electrons.
Penn and collaborators [608] have shown that the spin polarization P (E) of
the cascade electrons from the magnetic metals is governed by the ratio of
the lifetimes of majority to minority spin electrons. In contradiction to other
theoretical work, these authors reach the conclusion that the direct scattering
of the spins into empty states of the same spin can explain the two to three-
fold enhancement of the spin polarization of the cascade electrons. Hence the
exchange scattering does not play a significant role in the formation of the cas-
cade. The enhancement of the polarization is due primarily to the spin-filter
effect (see Sect. 12.6.1), or the larger density of states for minority spins com-
pared to majority spins in ferromagnetic metals. This simple picture where
the spin polarization of the secondaries does not depend on the spin polariza-
tion of the primary electrons does not apply to smaller energies of the primary
electrons exciting the cascade electrons. While the total yield of secondary de-
pends only very little on the spin polarization of the primary electrons [609],
the direction and magnitude of the spin polarization of the secondary elec-
trons is influenced at lower energies of the primary electrons by two electron
exchange scattering processes [610].

“Spin–lattice scattering” may occur when electrons scatter on phonons or
when a spin wave is annihilated in scattering on the lattice. The condition for
such events is that the crystal lattice accepts the change in angular momentum
h̄ connected with the spin transition of an electron or with the annihilation
of a spin wave. The spin angular momentum is coupled to the lattice by the
spin–orbit interaction. Ultimately, these are the processes by which thermal
equilibrium of the magnetization with the crystal lattice is established. The
dynamics of the equilibrium between the electron gas, the phonon gas, and
the spin system will be discussed in Chap. 15.

12.7.2 The Detection of Transitions between Opposite Spin States

Generally, when a magnetic sample is bombarded with monochromatic pri-
mary electrons, one observes secondary electrons in a continuous range of
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energy losses, carrying valuable information related to magnetism, already
discussed in Chap. 8.

For the detection of low-energy transitions between opposite spin states
one uses a technique called spin polarized electron energy loss spectroscopy
(SPEELS), as reviewed for instance by Hopster [350]. A monoenergetic beam
of spin polarized electrons is scattered off a surface and the spin polarization
as well as the energy spectrum of the scattered electrons is recorded, as a
function of the relative direction of the magnetization, the spin polarization of
the incident electron beam and the momentum transfer between the incident
and scattered beam.

In specular reflection or in a diffracted beam, the inelastic event is a two
step process, consisting of a large angle elastic diffraction process that is pre-
ceded or followed by an energy loss event with a small momentum change.
With ferromagnetic surfaces, one has to distinguish between excitations in
which the electron spin is conserved and excitations in which the spin of the
scattered electron is inverted. Electron–hole pair excitation can occur with or
without a change in spin state of the exciting electron, while the excitation
or absorption of spin waves always necessitates a spin flip transition of the
exciting electron.

In Fig. 12.24 we consider the case where the incident beam is polarized in
the direction of the minority spins. For simplicity we assume that the electron
is already inside the sample since we have learned in Sect. 12.4.1 how to handle
the beam transmission across the vacuum-sample interface. Inside the sample
the incident electron occupies an excited free-electron-like minority state with
energy Ei

kin. Similar to the inverse photoemission process the electron may
decay by a spin-conserving transition to a lower-energy unfilled minority band
close to EF. However, in the present case the transition is radiation-less9

and the transition energy is transferred to an electron of opposite spin, in
the filled majority band. This electron is excited to an energy Ef

kin and its
energy is measured after escape from the sample. The energy difference Ei

kin−
Ef

kin and the momentum transfer q = ki − kf are supplied by the incident
electron. When observed in a diffraction spot, the momentum transfer q is
small. Therefore, spin exchange collisions in weak ferromagnets such as Ni
and Co where the majority spin band is full, are characterized by an energy
loss of the order of Ei

kin −Ef
kin ∼ ∆ by the incident electron and a change in

its spin state from minority to majority spin. This is balanced by an opposite
spin transition in the sample consisting of the excitation of a single electron
from the majority to the minority band.10

The change in spin state of the incident electron makes it possible to de-
tect the weak spin exchange scattering processes on the background of the

9Radiation-less transitions are driven by the Coulomb operator, while radiative
transitions are due to the dipole operator.

10In Fe, and in Ni and Co at higher temperatures, spin exchange collisions are
also possible with a majority spin electron.
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Fig. 12.24. Spin exchange scattering induced by an incident minority spin electron.
On the left is shown the situation before the scattering event. The incident electron
occupies an excited spin-up state with energy Ei

kin. In the scattering event consisting
of transitions indicated by arrows, the excited electron undergoes a radiation-less
transition to an empty 3d↑ state and excites a 3d↓ state. On the right we show the
situation after the scattering event. The energy loss Ei

kin − Ef
kin ≈ ∆ is observed

through the energy analysis of the majority spin electron after escape into vacuum.
In the scattering process an electron has made a transition from 3d↑ → 3d↓ with
a change in linear momentum ki − kf = q. The momentum transfer can also be
determined, in principle, from the directions of the incident and scattered beams

dominant spin-conserving inelastic scattering processes [611, 612]. The lat-
ter processes involve radiationless transitions between the same spin states,
leading to the excitation of an electron hole pair in the minority spin band.
Hence both, a polarized incident beam and polarization analysis of the scat-
tered beam are necessary to distinguish the spin-conserving from the exchange
scattering processes. The experimental geometry and results of the initial ex-
periment of Kirschner et al. [611] with a Ni(110) single crystal are shown in
Fig. 12.25. In this case the specular beam, corresponding to zero momentum
transfer (q = 0) was measured and the data directly reveal the exchange
splitting ∆.

The energy loss spectrum shown in Fig. 12.25 exhibits a peak around 300
meV in the asymmetry parameter. The measured peak corresponds to a spin
exchange transition with q = 0 and the measured value reflects the exchange
splitting ∆, in accordance with the results from direct and inverse photoe-
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Fig. 12.25. Geometry of a spin-polarized inelastic electron-energy-loss measure-
ment in a reflection geometry by Kirschner et al. [611]. The incident spin polarized
electron beam has an energy of E0 = 9.9 eV and an energy width of 35 meV. It is
incident on a magnetized single crystal of Ni(110) at an angle of 75◦ from the sur-
face normal which gives rise to a strong specular reflection. The energy loss ε of the
specularly reflected beam is measured in meV as it depends on the relative orienta-
tion of incident spin and sample magnetization direction, giving the spin asymmetry
A defined in (12.27). At zero energy loss, A changes sign due to spin dependence
in the elastic scattering discussed in Sect. 13.3. In the data shown underneath the
experimentally observed asymmetry Aexp (left ordinate) is reduced relative to the
true asymmetry A(ε) because the incident beam was only 35% polarized. The asym-
metric peak centered around ε ≈ 250 meV constitutes the q = 0 spin exchange
excitation in Ni often referred to as Stoner excitation

mission [275, 567]. ∆ determined in this way with SPEELS does not seem to
depend on temperature, at least in the case of Ni [613]. In total, two spin tran-
sitions have occurred, that of the “beam electron” and that of the “sample
electron” thus conserving angular momentum in the total scattering process.
In our case the incident electron has provided the angular momentum, the
energy and linear momentum.
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In practice, the small probability of the spin exchange transition makes
it very difficult to perform a q-dependent experiment since due to diffraction
on the crystal lattice, most of the scattered intensity occurs at q = 0. A q-
dependent experiment involves a monochromatic, collimated, and polarized
incident beam and measurement of the polarization, the energy, and angle
of the scattered beam. Nevertheless, it has been carried out in a reflection
geometry on Ni by Abraham and Hopster [614] and on Fe by Venus and
Kirschner [615].

An even more difficult SPEELS experiment consists of the observation of
the spin and momentum of both the “beam electron” and the “sample elec-
tron”. The exchange scattering in a SPEELS experiment depicted in Fig. 12.24
involves two simultaneous electronic transitions. In our discussion above we
have concentrated on the detection of the higher energy majority spin elec-
tron shown in the right panel in Fig. 12.24 in a state well above the vacuum
level. Owing to its higher energy it can be observed by an outside detector,
and representative results are shown in Fig. 12.25. However, we ignored the
second electron involved in the scattering process. In doing so one loses valu-
able information about the exchange scattering event. In principle, this can
be overcome by also measuring the lower energy electron shown above the
Fermi level in the right panel in Fig. 12.24. It occupies an empty state in the
minority band but its low energy poses a problem. If its energy is below the
vacuum level one cannot observe it, and even if its energy is above the vacuum
level, after leaving the sample it will be buried under the huge intensity of
the broad inelastic tail of scattered electrons. This can be overcome by use
of coincidence techniques taking advantage of the fact that the two electrons
of interest are emitted simultaneously. This very difficult low-count-rate ex-
periment has nevertheless been performed [616]. Improved future studies are
expected to clarify in more detail the fundamental electron–electron interac-
tions in ferromagnets. Unfortunately, such spectroscopic measurements do not
cover the energy range close to EF which is important in solid state devices.

SPEELS with incident minority spin electrons may also be used to detect
the excitation of spin waves. Upon excitation of a spin wave, the incident
minority spin electron makes a transition to a majority spin state just as in
exchange scattering but the energy loss in the transition is given by the en-
ergy of the spin wave. Depending on the wave vector k of the spin wave, such
excitations lie in the 10–100 meV range. Therefore, very high energy resolu-
tion is necessary combined with the measurement of the spin polarization to
distinguish the spin wave excitation from the stronger electron phonon exci-
tation involving no spin flip. Kirschner and collaborators [493] were first able
to detect spin wave excitation by electrons.

Data obtained in a more recent version of the experiment [617], shown
in Fig. 12.26, suggest that it might be possible to omit the measurement of
the spin polarization of the scattered electrons. It is then sufficient to scatter
a highly polarized and very monochromatic electron beam from the mag-
netic surface and measure the energy loss of the scattered beam again with
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Fig. 12.26. Spin polarized energy loss spectra (SPEELS) performed in reflection
from a sample of 8 monolayers Co on Cu(001), in a geometry shown on the right. The
incident beam is spin polarized P = 81% and the spin polarization of the scattered
beam is not measured. The incident electron beam has an energy E0 = 6.5 eV
and is incident with a wavevector ki at an angle of 67.5◦ from the surface normal
with the electron spin either parallel or antiparallel to the magnetization M of
the surface. By variation of the wavevector kf of the reflected beam the linear
momentum transferred in the inelastic scattering event can be varied. The shown
data are for a momentum transfer k‖ = 0.087 nm−1. The spectra are normalized to
the spin averaged reflection intensity at zero energy loss. A loss feature at 170meV
appears in the scattering of incident minority spins (P parallel to M ). The spurious
loss feature for the incident majority spins (P antiparallel to M ) is explained by
the incomplete polarization. The energy independent inelastic loss difference between
minority and majority spins is attributed to Stoner excitations, compare Fig. 12.25.
Data courtesy of Kirschner

a resolution in the 10 meV range. Possible interference with spin dependent
reflection at a magnetic surface discussed in Sect. 13.3 can be excluded when
the electronic structure and the band gaps are well known.

If the spin of the incident electrons is parallel to the minority spin direction
in the sample, spin waves can be excited. In contrast, spin wave absorption is
necessary to change the spin state of an incident majority spin electron. Spin
wave absorption would lead to an energy gain. Since it depends on the presence
of spin waves it is very weak at lower temperatures. On the other hand,
spin wave excitation is always possible independent of the temperature. Thus,
given sufficient experience to exclude possible interference of spin dependent
reflection on a band gap, see Sect. 13.3, combined with a spin independent
energy loss, the spin dependence of the spin wave excitation process allows
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one to distinguish a spin wave loss feature from other loss features induced by
phonon excitations. The phonon excitation features appear in both, the spin
up and the spin down spectra.

The results shown in Fig. 12.26 for 8 monolayers Co epitaxially deposited
on the Cu(001) surface convincingly demonstrate an energy loss of 170 meV
which is exclusively present in the minority spin channel. The loss peak is sig-
nificantly broadened, and we need to remember that such a spin wave energy
is unusually high. Corrected for the finite energy resolution of the experiment,
the width ranges from about 40 to 75 meV [617]. If this width is exclusively
attributed to the lifetime of the spin wave, it would correspond to a lifetime
of only ≈10 fs. In comparison, the spin wave life time observed with neutron
scattering in fcc Co at smaller wave vectors is 300 fs [618]. Kirschner and
collaborators [617] point out that the SPEELS peak might contain an unre-
solved optical mode of lower intensity, because it is slightly asymmetric. Yet
another possible reason for the short lifetime detected in SPEELS particu-
larly at high k‖ is the possibility that the high energy spin waves have an
enhanced tendency to decay into Stoner-excitations, that is revert to single
particle excitations.

Figure 12.27 shows the spin wave dispersion for a Co/Cu(001) surface de-
rived from electron energy loss spectra similar to the one shown in Fig. 12.26
by varying the angle Θ0 of observation. The results of neutron scattering
obtained with crystals of fcc Co containing 8% Fe [618] are also shown. The
SPEELS and neutron data are not for identical samples since fcc Co is not sta-
ble at room temperature in form of a large single crystal (needed for neutron
scattering) unless it is alloyed with some Fe. One nevertheless would expect

Fig. 12.27. Spin wave energy versus k‖ derived from SPEELS for 8 ML Co/Cu(001)
[617]. The solid line is the calculated surface mode of semi-infinite fcc Co assuming
the Heisenberg model with nearest neighbor interaction of 〈s〉J01 = 15 meV (see
Section 11.1.2). Neutron scattering data for bulk fcc Co alloyed with 8% Fe are also
shown [618]
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close similarity of the results. The agreement of the experimental data with a
simple theory based on a Heisenberg model with nearest neighbor interactions
is surprising. The solid line in Fig. 12.27 is the surface mode of semi-infinite
fcc Co, calculated with the nearest neighbor Heisenberg model. For low k‖,
it coincides nicely with the bulk spin wave dispersion curve along the [110]
direction using the identical values for the exchange and spin moment in the
Heisenberg model as employed for the calculation of the surface mode. More
sophisticated calculations of the dynamic spin susceptibility for fcc Co are not
available at present. Future theoretical and experimental investigations will
have to decide wether the surprisingly good agreement of the observed spin
wave energies with expectations based on the nearest neighbor Heisenberg
model is accidental or not.

The new simplified but by no means simple SPEELS experiment discussed
above marks an important progress. It is expected to lead to a better under-
standing of the dynamic magnetic properties at surfaces and in thin films. To
appreciate this, one has to remember that although spin waves at surfaces and
in thin films have been investigated in the past by ferromagnetic resonance
and by Brillouin light scattering, the traditional methods are limited to the
study of small wave vector spin waves. The bulk-sensitive neutron scattering
technique can measure all spin waves but it is not well suited for the study
of samples with lower dimensionality which are at the forefront of magnetism
research today. Hence the detection of spin waves with polarized electrons
in SPEELS is effectively the only technique capable of measuring large wave
vector spin waves in thin films and at surfaces.

12.8 Remaining Challenges

We finish this chapter with a brief summary of present limitations in our
understanding which, of course, are the challenges of tomorrow. Generally,
our mathematical understanding of ferromagnetism in Fe, Ni, and Co is still
quite limited. According to Fröhlich and collaborators, there are no substan-
tial mathematically rigorous results on realistic models of the ferromagnetic
metals that provide understanding of ferromagnetic order at finite tempera-
ture [113].

The development of density functional band theory and its implementa-
tion in terms of ab initio computational schemes has led to some degree of
understanding the electronic ground state at T = 0. The two main problems
with the methods are that LDA is restricted to T = 0 and it underestimates
electronic correlation effects such as operative in scattering and screening. A
key quantity of ferromagnetism, the Curie temperature, is therefore hardly
tractable as discussed in great detail in [247]. The other challenge lies in the
description of excited states. Excited states come in many different forms.

The most important excited states in magnetism come from raising the
temperature of the system, a situation experienced in all “real” systems. Most
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of the theoretical progress made in the description of finite temperature mag-
netism has been based on models in which the electronic structure is described
in terms of empirical parameters. At present there is no practical scheme to
extend density functional theory to elevated temperatures. The grand chal-
lenge is to develop first-principles parameter-free schemes that describe not
only the T = 0 ground state but the magnetic excitations responsible for
the decrease of the magnetization with temperature, and especially the phase
transition at the Curie or Néel points.

From a spectroscopy point of view other “excited states” are of interest
too. Because electronic excitations are involved, the system needs to be de-
scribed not only in its ground state but the excited state, as well. In most
cases, “excited states” consist of different electronic configurations with a
certain lifetime. The lifetime and its relation to the measurement time have
important implications for the proper evaluation of dynamical effects. In the
interpretation of experimental IPE and PE spectra and also X-ray absorption
spectra of metals (see Chap. 10) one still uses the independent particle band
method discussed earlier. We have seen its limitations for the description of
finite temperature correlation effects. In addition, the proper interpretation
of spectroscopic data requires an understanding of the correlation effects in
the final excited state. Such a theory does not exist.

Even for metals, excited multiplet configurations play a role, as evidenced
for example by the 6 eV satellite in Ni metal or the difficulty to understand
the spectroscopic exchange splitting ∆. At present a gap exists between the
description of electronic states by a quasi-one-electron band theory and a
full multielectron multiplet theory [266]. Multiplet theory treats the intra-
atomic interactions, like the coupling of spin and orbital degrees of freedom,
in great detail. This atomic theory can include the effects of neighboring lig-
ands through the parameterization of a symmetry based ligand field model.
Multiplet theory has proven surprisingly successful for the interpretation of
spectra of ionic crystals, such as the transition metal oxides and organometal-
lic compounds [254]. It is also no surprise that it works very well for the
description of the magnetic properties of the 4f states in the rare earths [238]
because of the localization effects caused by the centrifugal barrier. Clearly,
band theory and multiplet theory place different emphasis on itinerant versus
localized effects. The problem is that Nature is not black or white. In partic-
ular, the 3d-states are not entirely itinerant but retain a considerable amount
of atomic-like interactions. No comprehensive theory exists to this day that
can treat both effects on an equal footing.
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Surfaces and Interfaces of Ferromagnetic
Metals

13.1 Overview

In this chapter we discuss studies of surfaces and interfaces of magnetic ma-
terials and we shall touch upon some key topics of interest in contemporary
magnetism research. As discussed in Chap. 1, contemporary research on mag-
netic materials and phenomena is associated with structurally and magneti-
cally engineered thin films. As the material thickness or lateral dimension is
reduced, more and more atoms are located at interfaces or surfaces. This sim-
ple scaling argument alone argues for the increasing importance of interfacial
effects. In addition, much evidence points to the key importance of interfaces
in determining the properties of new devices. Key examples are the giant mag-
netoresistance effect and phenomena such as excitations of the magnetization
associated with electron and spin transport across interfaces, as discussed in
Chap. 14.

Unfortunately, even today, we have not mastered the study of “real” in-
terfaces. By real we mean buried interfaces between materials, for example
between sandwich-like structures. With the exception of cross-sectional trans-
mission electron microscopy, which provides structural information, we are
still mostly in the dark about the electronic and magnetic properties of such
interfaces. Partly because of their inaccessibility, much work over the last
thirty years has focused instead on a special kind of interface, the surface.
Much of our detailed knowledge stems from studies of the materials–vacuum
interface by means of science techniques, some of which offer even lateral
resolution down to atomic dimensions.

It is therefore only natural that we start this chapter with some classic
measurements on magnetic surfaces based on spin-polarized electrons. We
then discuss static magnetic interactions across interfaces, which fall under
the general category of proximity effects. In particular, we shall discuss three
important effects: the existence of induced magnetic moments in “nonmag-
netic” atoms, and the phenomena of exchange coupling and exchange bias.
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The latter two are distinguished by a preferential uniaxial versus unidirec-
tional alignment of the ferromagnetic magnetization, respectively.

13.2 Spin-Polarized Electron Emission from
Ferromagnetic Metals

While electron transport from one solid into another is of great practical
importance in electronic or magnetic devices, as discussed in detail later in
this chapter, the study of electron emission into vacuum has the advantage
that energy, spin, and linear momentum can all be measured by a suitable
detector, for example an electron energy analyzer that is equipped with a
Mott detector for spin analysis. This is more difficult in the case of transfer
of electrons into another solid. Therefore it is advantageous to first discuss
emission of spin-polarized electrons into vacuum.

13.2.1 Electron Emission into Vacuum

Electrons may be extracted from solids into vacuum by supplying energy to
overcome the surface barrier potential, called the work-function Φ. Depend-
ing on how the energy is supplied, one speaks of thermionic emission (heat),
field emission (external electric field), photoemission (photon irradiation), or
secondary electron emission (photon or particle irradiation). Electron emis-
sion from solids has been studied for more than 100 years. It contributed
significantly to the development of quantum mechanics and surface science.
In contrast, the emission of spin-polarized electrons from solids has only been
successfully investigated for about 35 years, starting in 1969 [61]. Over the
years, most of the classical models for emission of electrons, particularly in
the low energy range, needed to be modified or refined in order to understand
the observed spin polarization of the electrons.

The spin-polarized band model makes definite predictions about the sign
of the spin polarization in the various electron states. For electrons emit-
ted from states at the Fermi energy EF, i.e., at the energetic threshold of
electron emission, one expects minority spins in the case of Ni and Co, but
majority spins in the case of Fe according to the densities of states shown
in Fig. 12.1. This simple picture, however, does not hold in practice because
of two complicating effects. First, we have seen in conjunction with Fig. 12.4
that the magnetic properties can be modified near surfaces. Secondly, we have
learned in Sect. 12.6.1 that spin-up and spin-down electrons scatter differently
as they traverse a magnetic material and this changes the original polariza-
tion through the spin filter effect. Both effects will lead to modifications of
the spin polarization of the low-energy electrons emitted into vacuum from
that expected from the bulk band structure.
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Fig. 13.1. Schematic of spin-polarized threshold photoemission from a strong fer-
romagnet into vacuum. We have assumed that the majority spins are fully occupied
with the top of the majority spin band having a separation ∆S, called the Stoner
gap, from the Fermi level EF. The incident photon energy is chosen to be greater
than the work function Φ = EV − EF of the material. The photoemission threshold
corresponds to hν = Φ and at this energy only minority spins are emitted into vac-
uum. The polarization of the electrons emitted into vacuum is determined with a
Mott-polarimeter. Above a threshold energy hν = Φ + ∆S majority spins may also
be excited into vacuum, lowering the spin polarization of the emitted electrons

Best established and confirmed by experiments in different laboratories
are the spin polarization results obtained from near threshold photoemission.
The principles of such measurements are illustrated in Fig. 13.1.

Figure 13.2 summarizes measured results for the photon energy depen-
dence of the spin polarization from a Ni(111) photocathode, measured as the
spin-polarized total photoelectric current, also called the spin-polarized elec-
tron yield. In order to conveniently use the more powerful visible light sources,
the work function of this surface was lowered to Φ = 1.56 eV by depositing a
fraction of a monolayer of Cs onto the atomically clean surface. The experi-
ments show that a small amount of Cs does not affect the spin polarization.

The degree of spin polarization P is defined in (8.17) as

P =
nmaj − nmin

nmaj + nmin
, (13.1)

so that P is positive for preferential majority spin emission and negative
for preferential minority spin emission. Close to photoelectric threshold one
observes negative P that is predominance of minority spins, but within
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Fig. 13.2. Spin polarization of electrons extracted from states close to EF in Ni.
Filled points: Photoemission from Ni(111) + Cs with photons of energy hν in units
of eV, the work function is Φ = (1.56 ± 0.05) eV [619]. Other experimental results
are numbered (1) electron tunneling into superconducting Al [620], (2) polarization
of low energy cascade electrons, (3) average polarization of all 3d-electrons, (4)
polarization in thermionic emission [621], (5) polarization in field emission [622], (6)
electron tunneling into GaAs [623], (7) electron capture by swift H-atoms [624]

∼100meV from threshold there is a steep turnover to quite high positive P .
This agrees with the expectation based on the density of states for a strong
ferromagnet, as illustrated in Fig. 13.1 (also see Fig. 12.1). At photoemission
threshold hν = Φ only minority spins can be excited and the spin polarization
is negative. As the photon energy is raised to hν = Φ+∆S, where ∆S is the
separation of the top of the majority band from the Fermi level or the Stoner
gap (see Fig. 7.7), the threshold for majority spin excitation is reached and
the contribution of these spins to the measured signal starts to change the
sign of the measured polarization as the photon energy is increased.

In Fig. 13.1 we have tacitly assumed the so-called three-step model of pho-
toemission. It divides the process of photoelectron emission into three suc-
cessive steps (1) spin-conserving optical excitation of an electron to a higher
energy band state in the crystal, (2) spin-conserving elastic transport of the
excited electron to the surface, (3) spin-conserving escape over the surface
barrier potential. Use of the three-step model for the quantitative interpre-
tation of the measured energy dependence of the spin-polarized total yield
gives the exchange splitting ∆ = 0.3 eV [565], in good agreement with the
later performed energy and momentum resolved spin-polarized PE and IPE
experiments discussed in Chap. 12, but in contradiction to the larger split-
ting ∆ = 0.5 eV obtained from band structure calculations [247]. Part of this
discrepancy may be due to the fact that the three-step model ignores any
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changes in spin polarization during the transport step to the surface and it
also neglects modifications of the magnetic properties at the surface. In par-
ticular, the inelastic spin filtering effect, consisting of preferential scattering
of minority electrons during electron transport to the surface, will lead to a
suppression of the minority spin intensity.

The case of Co provides a striking example of the importance of spin
filtering in transport to the surface. As shown in Fig. 12.3, in Co one has about
2.5 holes per Co-atom in the minority band compared to only about 1.5 in Ni.
Hence in Co one would expect the scattering (absorption) of minority spins
to be much stronger compared to Ni, as illustrated in Fig. 12.16. Indeed, with
thick Co-films no negative polarization is detected no matter how closely one
approaches threshold [619, 625]. This is explained by the spin filtering effect
which adds an approximately constant positive value to the polarization, so
that the polarization in a plot like that in Fig. 13.2 is shifted upward and
becomes positive. In Co, this happens to such a large extent that the negative
excursion of the polarization is not observed at all. Only if one suppresses the
spin filtering effect by use of films that are thin compared to the escape depth
does one find a negative polarization [626].

The average polarization of all 3d-electrons is given by the difference in
spin-up and spin-down electron occupation NB = Nmaj

e −Nmin
e and the sum

Ne = Nmaj
e + Nmin

e that is the number of all 3d-electrons, as discussed in
Sect. 7.4.2. In Ni one has NB ≈ 0.6 and Ne ≈ 9 and therefore P = NB/Ne ≈
0.07. One therefore expects to measure this value for P if the sample is excited
with high energy primary electrons so that there is sufficient energy to excite
all occupied electrons with equal probability. But the measured polarization of
the low energy secondary electrons, the so called cascade electrons, is larger,
Pcasc = 0.17 [350]. The enhancement of Pcasc > P proves that the simple
density of states model cannot explain the observations in the case of Ni, as
well, and that spin selective electron scattering has to be taken into account
to explain the polarization of the measured electron cascade [590,591].

By going to elevated temperatures, yet staying below TC so that the elec-
trons in the 3d-bands are still substantially polarized, it has been possible to
also measure the spin polarization in thermionic emission. However, the spin
polarization of thermionically emitted electrons turned out to be much smaller
than in photoemission, in fact it was found to be zero within experimental
uncertainty in both Fe and Ni [621]. Helman and Baltensperger [627] have
explained the vanishing spin polarization in thermionic emission by consid-
ering the spin polarization of the electron cloud in thermal equilibrium with
a ferromagnetic surface. They find that the spin polarization decays to zero
within a few atomic distances from the surface.

A similarly disappointing result has been obtained when the electrons
were extracted by a very high electric field to induce field emission. In this
case P shows only a very small negative value with atomically clean sur-
faces and when the spin polarization is measured correctly [622]. The low P
observed in field emission of electrons into vacuum has been attributed to



592 13 Surfaces and Interfaces of Ferromagnetic Metals

W EuS Vacuum

4f 7

Valence
band

Conduction
band

EF

Conduction
bands

4f 6

Fig. 13.3. Field emission from a thin film of EuS on a W-tip [628]. At the W/EuS
interface, there is a charged nonmagnetic layer, resulting in a spin-dependent Schot-
tky barrier. Spin-up electrons experience a thinner Schottky barrier, resulting in a
enhanced spin-up current in vacuum

the predominance of s-electrons in the process of tunneling into vacuum. The
s-electrons are believed to be unpolarized or perhaps positively polarized in
the 3d-ferromagnets. This seems to be in conflict with another experiment in
which electrons are extracted from the magnetic surface by the electric field
of an ion. In this “ion neutralization spectroscopy,” a beam of swift H-atoms
passes by a magnetic surface at distances of few atomic diameters. The hy-
drogen atoms capture electrons thereby producing neutral hydrogen atoms.
Rau [624] found astonishingly that it is exclusively minority spins that are
captured at a Ni-surface.

However, the experiment reported by Müller [628] and coworkers shows
that almost completely polarized electrons can be extracted by tunneling from
a W-tip covered with few monolayers of the ferromagnetic insulator EuS. The
magnetic moment in EuS is generated by ferromagnetic ordering at TC = 16K
of the half full 4f -shell in the 8S7/2 ground state configuration carrying a pure
spin moment of 7µB as discussed in Sect. 12.3. The empty 6s–5d conduction
bands of EuS are exchange split. Due to this exchange splitting, the majority
(spin-up) spins encounter a thinner (shaded) Schottky barrier at the W/EuS
interface and thus tunnel with much higher probability into the conduction
bands of EuS compared to the minority spins. The energy diagram for the
EuS/W field emission tip is illustrated in Fig. 13.3. The electrical field applied
to the W-tip accelerates the electrons once they are within the ferromagnetic
insulator. This leads to field emitted electrons with a high degree of spin
polarization P = 0.85 along the direction of the EuS magnetization. This
result has been confirmed later by Kisker and collaborators [629].

The experiment is remarkable in that it demonstrates a tunneling barrier
that transmits one spin state only. EuS thus acts as an almost ideal spin filter
for the electrons field-emitted from the tungsten tip. Note that this spin filter
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Fig. 13.4. Tunneling of spin-polarized electrons from Ni through vacuum into GaAs.
The tunnel current and its spin polarization are dependent on the bias voltage VB

between Ni and GaAs. The Stoner gap in Ni is labeled ∆S. The spin polariza-
tion of the electrons tunneling into the GaAs conduction band can be measured by
observing the circular polarization of the luminescence radiation, emitted when a
spin-polarized electron performs a radiative transition between the states 4s1/2 and
4p3/2. This detection scheme is an inversion of the optical pumping of spin-polarized
electrons with circularly polarized light in the GaAs photocathode shown in Fig. 8.1

is not dependent on inelastic electron scattering as opposed to the magnetic
tunneling transistor of Sect. 12.6.2. Except for the low TC necessitating the
operation at liquid He temperatures, the W/EuS-tip provides an ideal emitter
that could be useful in spin-polarized tunneling spectroscopy discussed in
Sect. 13.2.3.

13.2.2 Spin-Polarized Electron Tunneling between Solids

In the light of recent interest in the tunneling magnetoresistance phenomenon
involving metal oxide structures and the direct spin injection from metals
into semiconductors of interest in the field of spintronics [630, 631], it is of
interest to review work exploring the tunneling of spin-polarized electrons
from a ferromagnetic metal through vacuum or an insulator into solids in the
form of a metal or semiconductor.

We start with experiments that explored the spin-polarized tunneling from
a ferromagnet through vacuum into a semiconductor first carried out by Al-
varado in 1995 [632]. In particular, he studied tunneling of electrons from a
ferromagnetic Ni tip through vacuum into GaAs.

The principles of tunneling from a metal through vacuum into a semicon-
ductor are shown in Fig. 13.4 for the example of Ni and GaAs. The choice of
GaAs allows one to measure the magnitude and sign of the spin polarization
of the tunnel current by observing the degree of circular polarization of the
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photon luminescence. The process is simply the inversion of that used in the
GaAs spin-polarized source shown in 8.1. In the present case, a spin-polarized
electron that has tunneled into the conduction band of GaAs undergoes a
radiative transition from the bottom of the 4s1/2 conduction band into the
highest 4p3/2 valence band. Since a radiative transition needs to satisfy the
dipole selection rule the spin is conserved during the transition. This imposes
special angular momentum constraints on the matrix element of the transition
because of the spin–orbit coupling in the 4p3/2 valence band, the “final state”
of the transition. These angular momentum constraints lead to an angular
momentum of the emitted luminescent photon which is therefore circularly
polarized.

The experimental arrangement provides considerable flexibility. It is pos-
sible to vary the tunneling barrier by changing the distance between the fer-
romagnetic tip and the GaAs surface. Also, the energy of the electron states
contributing to the tunneling current may be selected by applying a bias volt-
age VB between the ferromagnetic tip and GaAs. As the GaAs Fermi level
is successively lowered relative to that of Ni the GaAs conduction band edge
will become aligned with the Ni Fermi level and, at threshold, the tunnel
current will consist of minority spins. As the voltage is increased majority
spins may also tunnel into GaAs. The sign of the observed spin polarization
of the tunnel current is therefore expected to exhibit a voltage dependence
that reflects the energy dependence in the photoemission yield. This general
behavior is indeed observed. The crossover from negative to positive P oc-
curs at 0.1 eV from threshold in the case of the Ni(100)-surface [303] and
at 0.2 eV with Ni(111) [565] while in tunneling, it occurs at ∼1–2 eV from
threshold. The reason for the different crossover energies are not completely
understood.

LaBella and coworkers [633] claimed that almost completely polarized elec-
trons had been injected into GaAs from a Ni tip. However, it has been pointed
out [634] that the actual polarization was probably similar to the one observed
by Alvarado [632]. While Alvarado’s experiment shows that ballistic injection
works, diffusive injection through an ohmic contact of the semiconductor to
a metallic ferromagnet is not possible unless one assumes the ideal and fairly
unrealistic case of a half metallic ferromagnet. This can be readily shown by
analysis of the diffusive injection from a metal into a semiconductor in terms
in of a simple resistor model [635]. Injection into GaAs-type structures leads
to an effective optical detection of spin polarization [597] which is extremely
useful for the development of spin based electronics.

Of particular technological importance are tunneling studies between two
ferromagnets, separated by an oxide layer. This tunneling experiment has been
pioneered by Jullière in 1975 [337] and its principle is shown in Fig. 13.5.

By applying a bias voltage VB between F1 and F2, the electrons at EF

in one metal will tunnel into unoccupied states of the second ferromagnet.
The tunneling magnetoresistance (TMR) depends on the electronic structure
of both ferromagnets, the bias voltage VB, and the relative magnetization
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Fig. 13.5. Energy scheme for tunneling of electrons from a ferromagnet F1 through
an insulating layer into another ferromagnet F2. The tunnel magnetoresistance
(TMR), defined as (RP − RAP)/RAP, depends on the bias voltage between F1 and
F2, the relative magnetization directions and spin-polarized band structures of F1

and F2, and on the insulator

direction in F1 and F2. In the limit of VB → 0, one expects that TMR is lowest
if two identical ferromagnets are magnetized in parallel (P) and highest when
they are magnetized antiparallel (AP). This is called “normal” zero-bias TMR.
Yet, depending on the nature of the insulator and on the ferromagnetic metal,
one has also observed “inverse” zero bias TMR [636]. This shows that analysis
based on Jullière’s original model is not possible. Two basic assumptions are
made in this model, namely (1) that the spin is conserved in the process
of tunneling, and (2) that the tunneling probability is proportional to the
density of states in the metals. While (1) is valid, (2) is not. Critical theoretical
analysis of TMR shows that one has to account in full detail for the properties
of the insulating layer, as well, specifically for the decay of the evanescent
waves within this layer [637–639]. The electrons most likely to tunnel into
the insulator are those with linear momenta perpendicular to the interface.
Furthermore, a wave-function whose projection into the plane of the insulating
film is a circle like an s-state has a higher probability of transmission compared
to a wave function whose projection has the clover leaf pattern of a d-state.

Based on such detailed analysis, theorists expect TMR defined as (RA −
RAP)/RAP to exceed 1,000%. Unfortunately, pinholes in the oxide cannot
be eliminated easily and thus add uncertainties to the interpretation. But
amazingly enough, several laboratories have now demonstrated TMR-values
at room temperature exceeding 200% [598, 640], employing simple magnetic
elements and insulators such as sputter deposited FeCo-alloys and MgO.
Magnetoresistive devices with such a high performance are advantageous for
three spintronics applications. TMR based magnetoresistive sensors can read
smaller data bits or scan the same sized bits more rapidly compared to the
GMR-sensors. Magnetic random access memories yield better read-out signals
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if based on TMR, and TMR-based devices can be used as reprogrammable
logic processors [640].

Spin-polarized resonant tunneling or coherent electron tunneling between
two ferromagnets has been observed by Yuasa and coworkers [641]. Insertion
of a thin Cu layer between the tunnel barrier and the ferromagnetic tunnel
junction produced oscillations in TMR that depended on the thickness of the
nonmagnetic Cu layer. The amplitude of the oscillations was large enough
to produce a sign change of TMR. The oscillation period depends on the
applied bias voltage VB and reflects the energy band structure of Cu. This
is yet another example of standing spin-polarized electron waves discussed in
Sect. 13.4.5 and demonstrates coherent electron tunneling.

Other important spin-polarized tunneling studies involve a superconduc-
tor (S). In one case, S is deposited directly onto a ferromagnet (F) in a small
transparent contact with an area that is small compared to the mean scat-
tering length of an electron. In another, S deposited on an insulator (I) in
contact with F. The energy schemes of these two different tunneling devices,
F/S and F/I/S, are illustrated in Fig. 13.6.

The Andreev reflection process [642] converts the quasiparticle current in
a metal into the Cooper pair current in the superconductor. In the case of
a F/S contact, Andreev reflection is suppressed due to the spin imbalance
in F since not every electron can find a partner to form a superconducting
pair. Therefore, by measuring the modification in the electrical conductance
when S makes the transition from a normal metal to a superconducting metal,
one can determine the spin polarization of the “conduction” electrons in F.
The superconducting phase can be suppressed at constant temperature by
applying a strong magnetic field. Andreev reflection has been evaluated by
a number of authors [643–645] for its applicability to measure the degree of
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Fig. 13.6. Energy scheme for two different structures. (a) A superconductor de-
posited on a ferromagnet in a small transparent contact area that is small compared
to the mean scattering length of an electron is used to study Andreev reflection. (b)
Insertion of a tunnel barrier between a ferromagnet and a superconductor is used
to study tunneling of electrons from the ferromagnet into the quasiparticle states of
the superconductor. A magnetic field is applied, causing a spin splitting at the edge
of the superconducting gap of magnitude ±µBH
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spin polarization of the conduction electrons. Naturally, the sign of the spin
polarization remains hidden. The simple model mentioned earlier, based on
the need for an electron to find a partner of the other spin state in order to
penetrate into the superconductor, explains the basic features. But in order
to describe the measurements, a more sophisticated theory is necessary that
takes into account the band structures of F and S.

The other technique to determine the spin polarization of conduction elec-
trons with a superconductor has been pioneered by Meservey and Tedrow [70].
Meservey–Tedrow tunneling relies on electron tunneling from F through an ox-
ide, for example Al2O3, into a simple BCS-superconductor such as Al. The
presence of the insulator makes it possible to shift the Fermi-level EF of F
with respect to the quasiparticle density of states in S. This quasiparticle den-
sity of states exhibits an energy gap of width given by the energy of a Cooper
pair. In an applied magnetic field of strength H, the edges of the energy gap
exhibit a Zeeman splitting by ±µBH. Yet due to the presence of the energy
gap, no electrons can tunnel from F into S. If a voltage VFS is applied that
brings EF in F close to the upper edge of the gap in S, electrons can tunnel
from F to S. The magnitude of this current is proportional to the tunneling
current of majority spins with µB parallel to H at the lower edge of the spin
split gap and to the electrons with µB antiparallel to H at the upper edge of
the gap. In this way, one determines the spin polarization Pt of the electrons
tunneling from F into S including its sign. By reversing VFS, one obtains Pt

for electrons tunneling from S into F. Since the voltages are of the order of
mV, one expects that both Pt are identical which is indeed observed.

With all three ferromagnetic metals Fe, Co, and Ni, one observes positive
spin polarization [620], while negative polarization is expected at EF from the
band-structure in the case of Co and Ni. This rather high positive polarization
has posed a serious problem in our understanding, as illustrated by Mott’s let-
ter in Fig. 1.10. Mazin [646] has proposed to discuss the polarization observed
in tunneling in terms of the polarization of two currents Isp and Id produced
by s–p and d electrons, respectively. The observed polarization is weighted
by the respective Fermi velocity squared, but chemical bonding at the inter-
face with the insulator can promote or suppress the relative s–p-contributions
as well. The currents from states with different parentage thus have to be
weighted with a transfer function. Generally, as observed already with field
emission into vacuum [622] and with the electron injection into GaAs [623],
s electrons with more extended wave function have a larger tunneling proba-
bility through a thick barrier compared to d electrons. And indeed, when the
tunneling barrier is made thinner, the relative tunneling probability of the
negatively polarized d electrons increases [647] leading to an overall decrease
of the spin polarization of the tunneling current. The positive spin polariza-
tions observed in the famous experiments by Meservey and Tedrow [620] may
then be understood by predominance of s-electron tunneling and the specifics
of the insulating layer between the two metals.
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Buhrman and collaborators [643] have compared Pt from the Andreev
reflection process with the one obtained in Meservey–Tedrow tunneling. For
Co, Pt = + 0.35 in both cases, but with Ni, Pt = + 0.32 ± 0.02 in Andreev
reflection and Pt = + 0.23 ± 0.03 with Meservey–Tedrow tunneling.

13.2.3 Spin-Polarized Electron Tunneling Microscopy

The dependence of the tunneling current on the electronic structure of a sur-
face has been utilized with great success for nearly 20 years in scanning tunnel-
ing microscopy (STM). The idea that the tunneling current must also depend
on the magnetic structure of the surface [648] has been explored since about
1990 by a number of researchers [458]. The basic experimental implementa-
tion of spin-polarized STM (SP-STM) utilizes a magnetic tip and tunneling
through the vacuum barrier. Ferromagnetic or even an antiferromagnetic tips
made from chromium have been used as illustrated in Fig. 13.7.

The tunneling current is measured as a function of the tip position on
the surface and depends on the relative orientation of the magnetization of
the atoms at the tunneling tip and at the magnetic surface, directly under-
neath the tip. The sensitivity to the magnetic structure arises because the
ferromagnetic tip emits electrons in a specific spin state at a specific energy
and momentum while the surface can only accept electrons if a suitable elec-
tronic state is available. When two magnetic materials have their magnetiza-
tion aligned in parallel, these conditions are different as compared to the case
when the magnetizations are aligned perpendicular or antiparallel. Today, SP-
STM microscopy comes in several different variants and much progress has
been made since the first attempts. The progress has been particularly great
and impressive during the first years of the new millennium and today it is
the magnetic microscopy method with the most impressive spatial resolution,
down to atomic dimensions [456].

The highest spatial resolution has been reported by Bode and collaborators
[458, 652]. They report atomic resolution images by use of a W-tip, coated
with a layer of ferromagnetic Gd or even antiferromagnetic Cr. Clearly, it is
advantageous to use an antiferromagnetic (AFM) tip (consisting of chromium)
because it does not have any stray magnetic field that could easily disturb the
magnetic object under investigation. While the net magnetization in an AFM

Sample surface

AFM tipFM tip

Fig. 13.7. Principle of spin-polarized
tunneling. A ferromagnetic tip (FM tip)
[649–651] or even an antiferromagnetic tip
(AFM tip) [458,652,653] has been used to
explore the spin structure of the surface
with very high resolution
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tip vanishes, the spin polarization of the outermost atom at the tip is proposed
to be responsible for the tunneling process. Some tips are said to be sensitive
to the in-plane, and others to the out-of-plane component of the magnetization
depending on the thickness of the chromium layer. The fabrication and control
of the magnetization at the tip surface and its understanding in terms of the
load put on the last atom with the probing current still present challenges,
but spectacular results such as the imaging of a magnetic vortex [652] have
been presented.

An example of a high resolution SP-STM image is shown in Fig. 13.8. The
image shows the magnetic contrast of single atomic height Fe islands deposited
on a W(110)-surface covered by a full monolayer of Fe, investigated with a
ferromagnetic Gd-tip at a temperature of 70 K. The first layer of Fe on W(110)
is magnetized in plane, but the addition of a second layer of Fe islands tends
to turn the magnetization of the islands into the perpendicular direction. The
image shows the second layer islands with perpendicular magnetization, M
either up or down, sitting on top of a closed monolayer of Fe. The change
of the direction of M from in-plane in the closed monolayer to out-of-plane
in the second layer islands requires the formation of a 90◦-domain wall. The
domain wall energy is proportional to the length of the circumference of an
island while the energy gained by directing M into a perpendicular direction is
proportional to the area of the island. This makes it energetically unfavorable

Fig. 13.8. Spin-polarized tunneling image of single step Fe islands (height exag-
gerated) sitting on a closed monolayer of Fe on W(110), measured as ∂I/∂U , with
a Gd tip [458]. At the positions of the islands, M tends to be ⊥ to the film plane
either up (dark) or down (white). The big island in the center is 30 nm long with a
domain wall in the constriction at the far end. The small island to the left of the
constriction is neither black nor white indicating that its M is still in plane to avoid
the formation of a domain wall
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for the smallest islands to have a perpendicular magnetization. This is indeed
seen as pointed out in the figure caption.

Clearly, to image the spin structure it is necessary to distinguish the spin
signal induced by the different magnetization directions from the background
signal coming from the topographical contrast. This is achieved in the case
of Fig. 13.8 by taking the derivative dI/dV of the tunneling current I with
respect to the tunneling voltage V . Due to an exchange-split surface state, the
Gd-tip exhibits a sharp spin-dependent structure whose amplitude is charac-
teristic for the spin polarization of the tunneling current along a quantization
direction, given by the magnetization direction in the Gd-tip.

The antiferromagnetic ordering in body centered tetragonal (bct) Mn(001)
films has been observed by Yamada and collaborators [651] by SP-STM with
a lateral resolution of 1 nm. These authors used W-tips that were coated with
7–10 nm Fe, magnetized in-plane. The slope dI/dU of the tunneling charac-
teristic I(U) was used as in the work by Bode [458] to eliminate topographical
contrast. But in this case, a spin-dependent peak in the density of states on
the bct-Mn(001) sample surface was found by band structure calculations to
be responsible for the spin signal.

Another variant of SP-STM has been implemented by Ding and collabo-
rators [650]. Their ferromagnetic tip was made from the amorphous magnetic
material CoFeSiB and the magnetic structure of the Co(0001) surface, includ-
ing a surface state, where probed. Amorphous materials, as used for the tip,
have washed out energy bands and in this way the conditions for tunneling are
somewhat relaxed. To eliminate signals of nonmagnetic origin the magnetiza-
tion in the scanning tip is periodically switched from parallel to antiparallel
relative to the tip axis and the resulting variation of the tunneling current is
measured with a lock-in amplifier. The experiment yielded a lateral resolution
of 10 nm [654].

In a later experiment [649], a soft magnetic CoFeSiB ring with a small
coil around it is used to obtain spin sensitivity for the in-plane magnetization
of the sample. The ring is oriented perpendicular to the surface so that one
probes the in-plane surface magnetization of the sample, projected along the
tangential ring magnetization direction at the tunneling point. By use a ring
shaped magnetic probe, the stray magnetic field is significantly reduced similar
to the case of an AFM-tip. While the tunneling current between the ring and
the sample surface is measured, the magnetization of the ring is periodically
switched, with an AC-current flowing through the coil. The tunneling current
depends on the relative orientation of the ring and the sample spin, caus-
ing modulations of the tunneling current due to tunneling magnetoresistance.
These modulations depend only on spin and contain no topographic infor-
mation. Simultaneously, the topographic image is derived from the average
tunneling current. With this technique, the step-induced frustration in the
antiferromagnetic ordering of manganese overlayers on Fe was investigated.
The magnetic frustration is of interest for the understanding of the exchange
bias phenomenon discussed in Sect. 13.4.3.
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13.3 Reflection of Electrons from a Ferromagnetic
Surface

While photoemission of electrons prompted the discovery of the particle-
nature of the electromagnetic waves through the famous work of Einstein
in 1905, studies of the reflection of low energy electrons from surfaces by
Davisson and Germer [655] led to the discovery of the wave-like nature of the
electrons 22 years later. These scientists observed diffraction spots in elastic
scattering of electrons of ∼100 eV energy from a nickel crystal. For 100 eV
electrons the DeBroglie-wavelength is 0.123 nm, of similar magnitude as the
lattice constant, so that crystals act as diffraction gratings for low-energy elec-
trons. Today, low energy electron diffraction or LEED is the major tool for
the determination of surface structures. The surface sensitivity of LEED is
due to the short mean free path of low-energy electrons.

Spin-dependent scattering from surfaces can occur via two mechanisms.
For nonmagnetic surfaces spin–orbit coupling can lead to spin dependencies
and for magnetic surfaces both spin–orbit and exchange scattering may be
present. The occurrence of spin polarization in LEED had not been found in
the original experiment by Davisson and Germer [656] due to erroneous eval-
uation of the experimental data [657]. Early theoretical work [658] assumed a
sinusoidal variation of the periodic crystal potential and owing to this over-
simplified assumption also did not predict the existence of spin-dependent
scattering effects. It was not until 1966 that Maison [659], a graduate stu-
dent at that time, recognized that spin–orbit coupling which, according to
the work of Mott and Massey [134] produces sensitivity to the electron spin
in elastic scattering, requires a better description of the crystal potential that
includes the steep gradient of the potential near the atomic cores. Maison
then predicted that sizeable spin dependencies can occur in low energy elec-
tron scattering from solid surfaces and this was soon thereafter confirmed by
experiments on disordered Hg surfaces [660]. In 1975 O’Neill and collabora-
tors [661] reported the observation of spin polarization in LEED from a single
crystal tungsten surface. The first comprehensive relativistic calculations were
done by Feder [662], laying the foundation for spin-polarized low energy elec-
tron diffraction (SPLEED) which can be very helpful in determining surface
structures [343].

Besides the spin polarization effects due to spin–orbit coupling, one ex-
pects additional spin dependencies in scattering from a magnetic surface aris-
ing from the exchange interaction J〈si〉〈sj〉 between the incident electrons
of average spin 〈si〉 and the spins in the ferromagnetic sample with the spin
expectation value 〈sj〉. The exchange integral J is difficult to predict since it
varies strongly with electron energy and momentum. According to Sect. 8.4
the spin polarization of the incident electrons is given by the spin polariza-
tion vector P 0, and the spin polarization of the electrons in the magnetic
surface is proportional to the magnetic order parameter M∗ = M(T )/M(0)
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Fig. 13.9. Principle of a spin-dependent reflectivity measurement from magnetic
surfaces. The electron source delivers a polarized electron beam with the vector of
polarization P 0 pointing into a freely chosen direction in space. The direction is
labelled by a polar angle θ0 and azimuthal angle ϕ0 in the x, y, z coordinate system
of the sample, chosen so that z is along the sample magnetization M and x lies
in the plane of the surface. The scattering plane is defined by the surface normal
and M . The beam is incident at an angle α from the surface normal. The intensity
I and, in the complete experiment, the spin polarization vector P of the electrons
scattered into an angle α′ from the surface normal is measured. A retarding grid
before the detector eliminates inelastically scattered electrons.

(see Sect. 11.1.1). It follows that the magnitude of the magnetic reflectivity is
proportional to the scalar product M∗ · P 0.

Using the GaAs source of polarized electrons, the exchange part of the
spin-dependent reflectivity, or “magnetic reflectivity,” was first detected by
Celotta and coworkers [663]. The basic layout of a reflectivity experiment
that measures the elastic scattering of electrons from a magnetic surface is
sketched in Fig. 13.9. The source of the spin-polarized electron beam is usually
a GaAs-type photocathode. The polarized beam with polarization vector P 0

impinges at an angle α from the surface normal onto a ferromagnetic surface
with magnetization M . The reflection plane is chosen to contain the surface
normal and M . The elastically reflected electrons are measured at an angle
α′ from the surface normal. A retardation grid before the detector is used
to eliminate inelastically scattered electrons. In the complete experiment, the
spin polarization vector P of the scattered electrons is also measured by use
of a “polarimeter” typically based on Mott-scattering (Fig. 3.11).

The magnetic reflectivity can be distinguished from the one caused by LS-
coupling because it changes sign when the magnetization is switched to the
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opposite direction while the LS-coupling contribution remains the same. By
modulating the spin polarization of the incident electron beam, it is possible
to detect the exchange scattering on the background of the spin averaged
Coulomb scattering. Since spin-polarized electrons reveal magnetic effects at
the surface in contrast to the weaker interacting neutrons which are preferen-
tially sensitive to the bulk, one may think of polarized electrons as “surface
neutrons.”

The magnetic reflectivity of spin-polarized electrons from surfaces arises
from exchange scattering. It gives information on the magnetic order pa-
rameter of the surface.

Much basic information has been obtained with this technique on the
magnetic properties of surfaces including changes due to chemisorption and
surface reactivity and on the temperature dependence of the magnetization at
surfaces and in thin films [341,342]. The most spectacular recent work is based
on the development of the spin-polarized low energy microscope (SPLEEM)
by Bauer and co-workers [74,664]. SPLEEM relies on the spin dependence of
low energy electron reflection from a magnetic surface. It is most powerful for
ordered magnetic surfaces where the discrete diffraction features of SPLEED
can be utilized.

13.3.1 Simple Reflection Experiments

A simple but important experiment consists of measuring the reflected inten-
sities IP 0M without spin analysis for P 0 parallel (I↑↑) and antiparallel (I↓↑)
to M . This corresponds to the cases θ0 = 0 or θ0 = π in Fig. 13.9, respectively,
and gives the spin asymmetry A of the elastic scattered intensity, defined by
(8.32) as

A =
I↑↓ − I↑↑
I↑↓ + I↑↑

=
Imaj − Imin

Imaj + Imin
. (13.2)

where I↑↑ and I↓↑ are the intensities of the electrons reflected or transmitted
with spin parallel or antiparallel to M , respectively. The asymmetry A de-
pends on the energy of the electrons and the scattering angles α and α′. It is
of the order of 0.1 at intermediate electron energies but decreases to ∼0.01 at
energies ≥ 100 eV. A is defined for the ideal case that the incident electrons
are completely polarized P0 = 1. In practice, P0 < 1 and A is then obtained
from A = A′/P0 where A′ is the asymmetry observed with the incompletely
polarized electrons.

The relative changes of the magnetization with temperature, chemically
induced changes of the surface magnetization, and hysteresis loops of magnet-
ically soft materials can be readily determined by measuring A. For instance,
the critical exponent with which the surface magnetization disappears at TC

has been determined in a number of materials [665]. However more often than
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not, magnetic materials change primary magnetic properties such as satura-
tion magnetization, anisotropy, and type of magnetic order together with their
lattice parameter in the layers near the surface. The modified surface mag-
netic structure shown in Fig. 13.17 is one simple example of such changes. One
has to interpret A including the possibility that such changes in the primary
magnetic properties occur simultaneously with changes of the crystal lattice.
This poses considerable problems due to the superposition of diffraction and
exchange scattering [665]. In contrast to neutrons, where the magnetic interac-
tion is the well-known dipole interaction, for electrons one has to deal with the
elusive exchange interaction and its dependence on energy and momentum.
We have seen in Sect. 12.4.2 that our treatment of the exchange interaction
in solids is still not firmly in hand.

A special case where electron diffraction effects are simplified are liquid
metals or metallic glasses. The elastic scattering cross-section on the atomic
cores is then dominant in determining the elastic reflection of the electrons.
Furthermore, multiple scattering can be neglected in measurements of the
normal-incidence reflectivity from the surface of metals. Although several suc-
cessive atomic scattering events by small angles taken by themselves would
yield a stronger intensity in the backscattering direction, these multiple scat-
tering processes require a longer path of the hot electrons in the solid and are
therefore more attenuated compared to single large-angle atomic scattering
events. Therefore, the large-angle elastic scattering cross-sections σ+

e and σ−e
for majority and minority spins, as well as the corresponding spin-dependent
attenuation lengths λ+

e and λ−e , are expected to be relevant in determining
the spin asymmetry A in near-surface-normal elastic electron reflection from
amorphous ferromagnets [666]. In this simple picture, the backscattered in-
tensity I is given by I = λeσe, yielding an estimate for the expected spin
asymmetry A:

A =
λ+

e σ
+
e − λ−e σ−e

λ+
e σ

+
e + λ−e σ−e

≈ 1
2

[
1 −

(
σ−e
σ+

e

)(
λ−e
λ+

e

)]
. (13.3)

This equation shows that both elastic σ−e /σ
+
e and inelastic λ−e /λ

+
e spin depen-

dencies determine the value of A which renders the interpretation of magnetic
reflection experiments difficult even in the simple case of the magnetic glasses.

Figure 13.10 shows the results of the experiment with the metallic glasses
Fe40Ni40B20 and Fe81.5B14.5Si4 in comparison to those for single crystal
Fe(001). In all cases, specular reflection at near-normal incidence to the sur-
face was studied, that is α = α′ ≈ 0◦ in Fig. 13.9. The effects of diffraction
present in Fe(001) produce considerable oscillations in A, while for the metal-
lic glasses, where diffraction is absent, A is a smooth function varying in the
range 0.01–0.03. The most interesting feature in Fig. 13.10 is that A changes
sign at electron energies above about 50 eV, where the very intense super
Koster–Kronig transition 3p → 3d can be excited in the Fe-atom [351]. The
glass containing Ni atoms exhibits a slightly enhanced A at electron energies
above about 60 eV where the super Koster–Kronig transition can be excited
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Fig. 13.10. Energy dependence of spin reflection asymmetries A in percent for two
metallic glasses and an Fe(001) crystal, recorded in near-surface-normal reflection
of polarized electrons [666]. The incident spin polarization P 0 as well as the mag-
netization M lie in the scattering plane (see Fig. 13.9) so that LS-scattering can be
neglected

in the Ni atom. This different behavior of Ni and Fe is explained by the
work of Landolt and coworkers [351] who studied the super Coster–Kronig
spin-polarized Auger transition 3p → 3d and found considerable differences
between Fe and Ni due to different screening mechanisms of the 3p-hole.

It is known that λ−e /λ
+
e ≤ 1 at all electron energies because of the in-

elastic spin filter effect discussed in Sect. 12.6.1. The sign change in A from
negative to positive as the energy varies through the super Koster–Kronig
transition threshold therefore means according to (13.3) that the elastic scat-
tering cross-section changes from σ−e /σ

+
e > λ

+
e /λ

−
e below the core transition

threshold to σ−e /σ
+
e < λ+

e /λ
−
e above it. The intermediate excitation of the

intraatomic resonances and its influence on the spin-dependent scattering has
been discussed by Nesbet [667]. Further interesting observations on the sec-
ondary electron production in metallic glasses have been reported by Hopster
and coworkers [668].

At a specific energy of the incident electrons, typically around 100 eV, the
electron current absorbed by the metal and the current produced by diffuse
inelastic secondary electrons leaving the sample, are exactly of the same mag-
nitude. At that energy, an Ampere meter connected to the sample measuring
the absorbed current reads zero while the primary beam of electrons is in-
cident. This arises because the yield of secondary electrons in reflection of
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primary electrons increases with electron energy. At energies smaller than the
point of compensation, the current absorbed by the sample is larger than the
current reflected from the sample, but above the compensation point, the re-
flected current wins over the absorbed current because the yield of secondary
electrons becomes >1. At electron energies slightly above and below the com-
pensation point, the spin asymmetry Aabs of the current absorbed by the
sample is complete, that is Aabs = ±1 [609], providing a very simple yet still
largely unexplored detection scheme for spin polarization. The phenomenon
arises from the fact that the energy where the compensation of reflected and
absorbed current occurs, depends on the spin polarization of the incident elec-
trons relative to the magnetization. At the point where the current induced
by one spin state is completely compensated, only the current excited by the
other spin state is observed.

One can avoid electron diffraction even with crystalline surfaces by going
to low electron energies where the De Broglie wavelength becomes larger than
the lattice constant. In that case, the first diffraction spot would appear at
an angle α′ > π/2, hence there is only the specularly reflected beam, usually
referred to as the [00]-beam. Besides removing the difficulty of sorting out the
effects of lattice diffraction, this leads to a large reflected intensity. In this case,
the spin-dependent reflection comes about because the exchange interaction
in the ferromagnet causes a splitting of the bands into majority spin and
minority spin subbands as discussed in Chap. 12. This splitting exists for the
bands below and above the Fermi energy. The unoccupied bands above the
vacuum level are the relevant bands for the incident electrons. The strongest
effect on the reflectivity can be expected when, at one specific energy, states
are available for one spin but not for the other.

An example of such a low-energy measurement by use of the [00]-beam is
shown in Fig. 13.11 for an epitaxial film of α-Fe(001) grown on an Ag(001)
substrate [669].

The electrons were incident almost normal to the surface, and the inten-
sity of the reflected [00]-beam was measured for P 0 parallel and antiparallel
to M . Figure 13.11 shows the measured asymmetry A of the total reflected
intensity. The measurement was performed without applying a voltage to the
retardation grid in Fig. 13.9. Figure 13.11b shows the dependence of the nor-
malized (to the incident current) reflected currents on the relative orientation
of the incident spins and the magnetization of the sample. The largest nega-
tive peak in the asymmetry A occurs at an electron energy of ∼10 eV where,
according to the calculated bands shown in the inset (c), the majority spins
have states available in the crystal, hence are less reflected compared to the
minority spins. All of the observed structure in A is clearly related to the
spin-gaps in the band-structure.

The large spin asymmetry A = −0.21 combined with a high reflectivity of
≈0.1 makes reflection from Fe(001) a good detector for electron spin polar-
ization. The sensitivity of Fe to oxidation requires operation of such detectors
in UHV, but Bertacco and Ciccacci [670] reported that the Fe surface can be
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Fig. 13.11. (a) Reflection spin asymmetry in percent from an Fe(100) crystalline
surface versus electron energy [669]. (b) The reflected intensities I↑↑ and I↑↓ nor-
malized to the incident current. (c) The inset shows the spin-split bands of the
crystal along the normal incidence direction of the electrons. The electron energy is
low enough so that the incident beam is reflected specularly without higher-order
diffraction. No retardation voltage was applied

stabilized by oxidation, enhancing the figure of merit and prolonging its useful
lifetime as a polarimeter. The quality of a polarimeter is determined by the
time it takes to measure the degree of the spin polarization within a given
statistical accuracy. This so defined figure of merit is given by A2I, which is
3.5 × 10−3 in the present case. This is larger by a factor of 20 than that of
traditional Mott polarimeters [671] and therefore speeds up the measurement
by a of factor 20!

Ten-times larger figures of merit were reported by Zdyb and Bauer [352],
and they were exceeded later by yet another factor of 10 [672]. Altogether
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one can then expect to save a factor of 100 in the time needed to measure
the spin polarization. These improvements in the spin sensitivity occur when
the density of states for one specific spin is amplified at certain thicknesses of
the ferromagnetic film by standing electron waves. Such quantum well (QW)
states play the decisive role in the periodic exchange coupling between two
ferromagnetic films across a nonmagnetic spacer layer discussed in Sect. 13.4.5.
The spin-polarized low energy electron microscope (SPLEEM) relies on spin-
dependent reflectivity. Due to its high lateral resolution it is very suitable to
find locations at the surface of a thin film where the conditions for QW states
are optimally fulfilled.

These examples show that there is great potential for improving the mea-
surement of the spin polarization over the currently used method based on
LS-scattering, usually referred to as Mott-scattering (Sect. 3.5.2), which has
poor efficiency. The use of magnetic exchange based spin dependencies will
make spin resolved electron spectroscopy almost as easy as conventional spec-
troscopy.

13.3.2 The Complete Reflection Experiment

While numerous studies have been done on scattering of polarized electrons
from ferromagnets, only one study, carried by Weber et al. [601], is available so
far in which the information to be gained from electron reflection is complete.
Such a complete experiment is distinguished by the fact that the polarization
P 0 of the incident electrons is chosen to be perpendicular to the magnetization
rather than parallel or antiparallel to it, as shown in Fig. 13.12. It is only with
this non-collinear unstable initial configuration that one can observe how the
reflected vector of polarization P is different from the incident vector P 0.
Analogous to the motion of P 0 in the transmission experiment discussed in
Sect. 12.6.4, a motion of P 0 occurs in reflection, as well. The motion arises
because the exchange field exerts a torque on P 0 and the elastic reflection
of electrons depends on spin. The former leads to a precession of P 0 about
M while the latter induces a rotation of P into the direction of M or −M .
Again, as in transmission, one can separately measure the angle of precession
ϕ and the change in the angle θ induced by the rotation (see Fig. 13.12).
But in contrast to transmission, both the sense of precession and the sense of
rotation can change sign, depending on the energy of the electrons.

The samples investigated by Weber et al. [601] were Co films grown on
two types of substrates, namely a (111)-textured polycrystalline Au film on
glass and a Cu(001) single crystal. The first type of substrate generates a
polycrystalline Co film while the second type of film is single crystalline fcc
Co. Of importance in the experiment is the observation that both films exhibit
full magnetic remanence, i.e., they can be investigated while in a single domain
state without applying an external magnetic field. The presence of an external
magnetic field is unwanted because it could disturb the electron trajectories
due to the Lorentz force and cause additional spin precession.
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Fig. 13.12. Movement of the polarization vector P for a special reflection geometry
of Fig. 13.9, characterized by the incident spin polarization P 0 along x. Shown is
the orientation of the reflected electron spin polarization P relative to that of the
incident spins P 0 and the magnetization direction M

The direction of the incident electron polarization vector P 0 is chosen to
be along the x axis, perpendicular to M ‖ z, in both Figs. 13.9 and 13.12. The
position of P 0 at incidence is thus characterized by ϕ0 = 0◦ and θ0 = 90◦.

To distinguish the precession from the rotation, the direction of P 0 in
space as well as the relative alignment of P 0 and M must be interchanged.
On reversing P 0, only ϕ changes sign, while on reversing M , the sense of
both precession and rotation changes. In this way it is possible to obtain
the contribution of each motion separately. The technique of changing both
the absolute direction of P 0 and M as well as their relative orientation also
eliminates the effects of the LS-interaction.

Figure 13.13 shows the results of the experiment [601] for specular elastic
electron reflection from fcc Co for α = α′ = 45◦ (defined in Fig. 13.9) and
for electron energies 5–90 eV above EF. With polycrystalline Co, ϕ is always
positive and θ is always reduced from its initial value of θ0 = 90◦. The sense
of the precession and the sense of rotation are identical to what is observed in
electron transmission. This is expected since in every reflection, the electron
wave penetrates up to a characteristic depth of the order of one wavelength
into the medium. During this penetration, the spins are exposed to the ex-
change field and experience spin selective scattering just as in transmission
leading to the motion of P 0 as described in Sect. 12.6.4. However, Fig. 13.13
also shows that in the case of single crystalline Co, both the precession and
the rotation show strong variations and may exhibit the other sign at some
specific electron energies.

To understand this phenomenon occurring with single crystalline surfaces,
we first take a look at what determines the direction of the precession. In
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Fig. 13.13. Measured angle ϕ of precession and the angle θ of rotation of P with
single crystalline (• • •) and polycrystalline (◦ ◦ ◦) Co versus the energy of the
reflected electrons above EF [601]

addition to the precession of the spin caused by the different phase velocities
of the two partial waves in the exchange field, there is also a jump in the
phase of the waves upon reflection at the spin-dependent potential of the
ferromagnetic surface. This jump in phase evolves from 0 to π as the electron
energy E is changed from the bottom to the top of a band of the electron
states in the solid. A commonly used expression for the energy dependence of
the phase shift is given by (13.13) in Sect. 13.4.5.

Since majority and minority spin bands lie at different energies, the phase
shift in reflection is spin-dependent. The difference in the phase shift for the
two spin states leads to a change in ϕ that is superimposed on the spin preces-
sion. The spin asymmetry in the phase jump in reflection can be larger than
the precession angle in the exchange field. The contribution to ϕ from the
phase jump in reflection is dominant near band edges. As the electron energy
reaches the onset of a new band, the majority spins will experience less phase
shift upon reflection compared to the minority spins. Hence, near the onset of
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a new energy band, the phase shift is determined by the minority spins and
makes the precession appear reversed.

Let us now discuss the causes of the reversed sense of rotation of P .
The reversed rotation occurs at selected electron energies which, according
to Fig. 13.13, are close to those energies in which the reversed precession is
observed. We have already seen in Fig. 13.11 that the spin-dependent absorp-
tion can change sign at the bottom of a new, exchange-split energy band. If
majority spins have states available, they can penetrate into the ferromagnet.
This leads to the observed preferential reflection of minority spins, reversing
the sign of the spin asymmetry A in reflection. Equation (8.36) shows that
the angle θ changes sign when A changes sign.

Altogether, one then expects the reversed sense of precession and rotation
to occur near gaps in the exchange-split energy bands. One also understands
that these reversals do not occur with polycrystalline metals where one does
not encounter well-defined band gaps. Figure 13.13 confirms this expectation.
Reversals of both the precession ϕ and the rotation θ are observed at elec-
tron energies around 16 and 24 eV. Tight binding band structure calculations
show that at these energies, there are indeed relative band gaps along the
k-lines determined by the angle of incidence α = 45◦, corresponding to the
experimental condition. Because of the non-normal incidence of the electrons,
the band structure along high symmetry k-directions of the Brillouin zone
is not sufficient. Instead, for each energy, an independent calculation has to
be performed. The result of such calculations [601] is shown in the inset of
Fig. 13.14. The agreement between the energies of the structures observed in
ϕ and θ and the location of the band gaps is not perfect but satisfactory,
keeping in mind that the calculations cannot account for many-body effects
like energy shifts and life-time broadening, as discussed in Sect. 12.4.2.

Figure 13.14 shows an important additional result of the complete reflec-
tion experiment. The derivative −∂ϕ/∂E traces closely the energy dependence
of θ. Elementary optical dispersion theory connects the reflection, absorption
and the index of refraction n. The quantity 1/n is proportional to the phase
velocity in the medium, which changes abruptly on going through a peak
of the reflection where the medium resonates with the waves. The rate of
change of electron spin precession ∂ϕ/∂E corresponds to the rate of change
of the rotation of the plane of polarization in the reflection of EM-waves [673].
Figure 13.14 thus suggests that there is an analogy between magneto-optics
and polarized electron reflection. In fact, the reflection of polarized electrons
from a magnetic surface is formally identical to the longitudinal magneto-
optic Kerr effect. In both magneto-optics and polarized electron scattering,
the matrix Î that, according to (8.31), connects the incident wave ψ0 with
the reflected wave ψ, contains the material constants A and ϕ, while the
off-diagonal elements that mix the two polarization or spin channels, remain
zero. The analogy to optics is caused by the fact that the contribution of
elastic spin exchange collisions is negligible according to Sect. 12.6.3. If spin
exchange collisions involving a spin flip were important in elastic reflection
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Fig. 13.14. Plot of the derivative −∂ϕ/∂E of the precession angle versus electron
energy for single crystalline fcc Co (solid line). The plot for θ(E) (open circles) is
taken from Fig. 13.11. The inset shows the result of self-consistent band structure
calculations along the k-lines relevant in the experiment. The solid lines are majority
spin bands, the dashed lines minority spin bands. The k-line is along 0 ≤ kz ≤ 2π/a
in both cases. In the left inset, kx = ky = 0.425(2π/a), and in the right inset,
kx = ky = 0.2(2π/a) [601]

from magnetic surfaces, “magneto-optics” with electrons would be entirely
different from magneto-optics with EM-waves.

Lastly, Figure 13.15 shows the variation of the precession angle with the
thickness of a single crystalline fcc Co film on the Cu(001) substrate. As
Cu will not produce any precession of the spin, one expects that ϕ grows
from zero to its final value when the thickness of Co is comparable to the
penetration depth of the electrons in reflection and/or when the spin-polarized
ferromagnetic band structure of Co has reached its final configuration. At the
electron energy 9 eV, ϕ indeed saturates, corresponding to an inelastic mean
free path λe ≈ 1 nm. This value for λe is consistent with other work [674].
In contrast, at an energy of 28 eV, a linear decrease of ϕ occurs up to a
thickness of 20 nm, followed by a slower increase at still larger thickness. This
ongoing variation of ϕ indicates that the band structure is still not established
even at these sizeable thicknesses. In fact, it is known that the strain induced
by the misfit between the Co overlayer and the Cu substrate relaxes from
2 nm thickness onwards, but even at 7 nm thickness, the lattice parameter
of the Co film is still changing both in the interior and at the surface [675].
An extraordinary sensitivity of the hybridization gap at 28 eV to the crystal
structure must be postulated to understand this behavior. The fact that the
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Fig. 13.15. Plot of the precession angle ϕ versus thickness of a single-crystalline
fcc Co(001) layer grown on Cu(001) for three selected electron energies [601]

transformation of fcc Co into hcp Co occurs from 20 nm thickness onwards
[676] correlates with the turning point of ϕ at this thickness. “Ellipsometry”
with polarized electrons is thus a very promising technique to study finer
details of magnetic surfaces, and its full potential has not been utilized.

The occurrence of large positive precession angles in the reflection of low-
energy electrons points to yet another important phenomenon discussed in
detail in Sect. 14.2. The precession of the spin in reflection reveals that a torque
is exerted on the spins by the magnetic exchange interaction. This torque
must be balanced by an opposite torque exercised by the reflected electrons
on the magnetization by virtue of Newton’s law of equal and opposite reaction.
The torque per volume is equivalent to a pressure acting on M , tending to
turn the magnetization antiparallel to the direction of P . This pressure can
also be thought of as an effective magnetic field Heff generated in the NEXI-
interaction defined in Sect. 14.2.1. From the precession angle ϕ = 20◦ that the
electrons acquired over the distance of penetration ≈ 1 nm in the experiment
in Fig. 13.13, one can calculate Heff from (14.37). With the highest current
densities achievable in nanocontacts, the torque resulting from reflection of
polarized electrons acting in a surface layer of ∼1 nm would be equivalent to
Heff ∼ 105 Am−1. It is likely that at lower energies close to EF such torques
will be even larger than at 5 eV above EF. At any rate, the torques generated
in reflection of spin-polarized electrons have been neglected so far. They are
an interesting supplement to the spin injection torques.

13.4 Static Magnetic Coupling at Interfaces

The interaction of magnetic materials through physical contact has been of
interest since the very early days of magnetism. A first technical application
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Fig. 13.16. Magnetostatic coupling of two ferromagnetic specimens. (a) depicts
coupling of two homogeneously magnetized thin film samples through the stray
field from the end poles, leading to antiparallel alignment. This is important in
single-domain nanoscopic elements used, e.g., in magnetic random access memories
(MRAMs). (b) shows how thin films with surface roughness may favor parallel align-
ment of the magnetization. The surface roughness induced coupling is often referred
to as Néel coupling or orange peel coupling

is the fabrication of compass “needles” by rubbing regular sewing needles
on lodestone. In 1902, C. Maurain reported that an electrodeposited Fe-film
separated by thin Cu spacer layers from an Fe cathode had a tendency to
align its magnetization parallel to that of the cathode [677]. Generally, the
magnetic interaction can be described as the transfer of an effective magnetic
field between the contacted magnetic materials. The effective field can be a
regular magnetic field or an effective magnetic field produced by the quantum
mechanical exchange interaction.

13.4.1 Magnetostatic Coupling

The simplest interaction that may exist between two magnetic specimens is
the magnetostatic interaction where the transferred field is a stray magnetic
field. Prior to the era of surface science, atomically clean interfaces could not
be prepared, and only magnetostatic coupling could be studied in detail [678].
Magnetostatic coupling can lead to parallel or antiparallel alignment of the
magnetization in two adjacent ferromagnetic thin films. These two important
cases are illustrated in Fig. 13.16.

Parallel coupling may be induced by surface roughness and is sometimes
referred to as Néel or orange peel coupling. Antiparallel alignment is caused by
the stray field of the magnetic poles at the end of the sample. It is particularly
important with nanoscopic specimens that are in a single domain state. In thin
film structures, magnetostatic coupling is sometimes difficult to separate from
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another type of coupling, namely the quantum mechanical exchange coupling
which, through pinholes in the interface layer, may lead to direct contact
between the magnetic materials.

The exchange coupling between an antiferromagnet and a ferromagnet was
discovered in 1956, before the advent of surface characterization on an atomic
scale [679]. Convincing proof that exchange coupling exists even through a
metallic spacer that is not magnetic, such as Cu, was provided by the dis-
covery that the coupling between two ferromagnetic thin films changes sign
periodically with the thickness of the spacer layer [82]. In the following we
will concentrate on phenomena induced by the exchange coupling, referring
the reader to the book of Hubert and Schaefer [54] for a more detailed dis-
cussion of magnetostatic coupling.

When it became possible to produce atomically clean crystalline surfaces
of a metal and add atomically engineered additional layers of a different metal,
a very rich field of new magnetic phenomena opened up. Many of the phe-
nomena observed for many-layer systems or multilayers are also present for
the simplest systems containing only two ferromagnetic layers, and we shall
therefore confine our discussion to such systems. If the two magnetic layers are
in direct atomic contact, it is clear that exchange coupling should be present
between the adjacent atomic layers. However, two ferromagnetic layers may
also be coupled via an intermediate layer that is not magnetic by itself. We
will discuss these two cases separately.

13.4.2 Direct Coupling between Magnetic Layers

The simplest case of a magnetic double layer is the surface layer of a bulk fer-
romagnet. The first layer of a magnetic specimen usually has a magnetization
MS and crystalline anisotropyKS that are different from those of the bulk.MS

also has a different temperature dependence as discussed in Sect. 11.1.5. The
change of the magnetic interaction and anisotropy at the surface can lead to
rather dramatic phenomena. For instance, the surface may have an ordering
temperature TCS different from the bulk, or antiferromagnetic ordering may
occur on the surface of ferromagnets. Possible magnetization profiles near a
vacuum surface have been described by Binder [680].

The exchange coupling is expected to be weakened on a path perpendicular
to the surface, because there are fewer nearest neighbors in the surface layer
and the lattice parameter is known to expand in the direction perpendicular
to the surface [490]. This has been investigated systematically with surface
sensitive spin-polarized electron spectroscopies [681]. Another large body of
investigations is concerned with the phase transition at naturally occurring
surfaces and in surface layers that are artificially decoupled from the bulk
by insertion of nonmagnetic atoms. Atom-specific X-ray circular magnetic
dichroism (XMCD) has become the technique of choice to investigate such
and similar phenomena [682]. We discuss here in more detail only some basic
phenomena.
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Fig. 13.17. Examples for surface induced magnetic structures in magnetic rema-
nence. The upper picture is for the Fe(100) surface [683], with the surface plane per-
pendicular to the plane of the drawing, located on the right side. It is assumed that
only the first layer with an expanded distance ξ is magnetically different from the
bulk. The bulk of Fe is remanently magnetized upwards while the surface anisotropy
KS is perpendicular to the surface. Atoms indicated by open circles are offset out
of the plane of the drawing from those shown as filled circles. The magnetization
direction of the surface atoms is characterized by the angle θ, that of the second
layer atoms by ψ. The lower picture shows a case that applies to 3d–4f alloys,
such as FeTb. Due to the high magnetic anisotropy of Tb, the bulk is remanently
magnetized perpendicular to the surface, whereas the surface layer of thickness d,
consisting mainly of Fe and formed by segregation and oxidation of Tb to the outer
surface (not shown), has the easy direction in-plane. Note that only the dominant
3d magnetic moments are depicted. Adapted from [684]

The surface magnetic anisotropy constant KS may be vastly different from
the bulk anisotropyKB, favoring a different direction of the magnetization and
usually having much larger strength. One reason is that the orbital moment
is less quenched at the surface, as discussed in Sect. 11.2. There may also be a
large magnetostatic contribution to KS if the magnetization at the surface has
a perpendicular component. Hence the surface may induce special magnetic
structures even if the bulk of the specimen is in a single domain state.
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In Fig. 13.17, we show two examples of surface-induced magnetic structures
present in magnetic remanence, that is with no external magnetic field ap-
plied. The angle θ of the surface magnetization and the angle ψ of the second
layer can be determined by minimizing the sum of all energies. By including
an external magnetic field in the energy balance, it is possible to calculate the
surface hysteresis loop. Comparing it to the experiment yields information
on the magnetic parameters of the surface layer [684]. Experimental surface
hysteresis loops are obtained by measuring the surface magnetization direc-
tion, for instance by observing the spin polarization of the low-energy cascade
electrons that have a probing depth of only a few atomic layers. The magne-
tization direction in the underlying bulk can conveniently be obtained by the
magneto-optic Kerr effect, which typically has a probing depth of 15 nm in
metals. If the Kerr loops and the loops from spin polarization are different,
one knows that surface-induced magnetic structures are present. These struc-
tures can be a precursor to magnetic domain nucleation determining magnetic
coercivity [685]. Even more dramatic consequences of KS are revealed in the
image in Fig. 13.8, recorded by spin-polarized tunneling spectroscopy.

The surface of a ferromagnet is an unavoidable magnetic defect. It may
generate shorter pieces of domain walls, referred to as “embryonic domain
walls”, which may give rise to a reduced coercivity. It also makes the assump-
tion of a uniform magnetization, the so called “macro-spin approximation”,
suspect or invalid even with a nanoscopic specimen that can not sustain a reg-
ular domain wall. Nonuniform magnetization may lead to complex switching
behavior.

An interesting phenomenon due to the coupling between two different fer-
romagnets are “spring” magnets [686]. One of the ferromagnets is magneti-
cally hard and the other soft, that is with a low magnetic anisotropy. In spring
magnets, the magnetization of the soft magnet rotates when an external field
is applied, but when this field is released, it snaps back to the previous di-
rection given by the underlying hard magnet. The “spring” generating this
elastic force is the exchange interaction between neighboring spins. The spring
constant is given by the exchange stiffness Aex defined in Sect. 11.3.

13.4.3 Exchange Bias

A striking consequence of exchange coupling, called exchange bias, arises if a
thin film of a ferromagnet (FM), such as Co, has a common interface with
an antiferromagnet (AFM) such as CoO. The phenomenon was discovered by
Meiklejohn and Bean in 1956 [679] in the study of oxidized Co particles. They
observed that the center of the magnetization loop was shifted from zero, and
attributed the shift to a bias field originating from the AFM. The size of the
effect could only be explained by assuming an AFM–FM exchange interaction.
Today, the exchange bias effect has found important technological applications
in magnetic sensors where it keeps the magnetization of a ferromagnetic layer,
which serves as a reference layer, in a fixed direction in space. This effect, also



618 13 Surfaces and Interfaces of Ferromagnetic Metals

referred to as unidirectional exchange anisotropy, distinctly differs from the
usual case of uniaxial ferromagnetic anisotropy discussed in Sect. 11.2, where
the magnetization has two energetically equivalent orientations, either parallel
or antiparallel to a direction in space called the easy axis.

The occurrence of exchange bias due to a “bias field” arising from the
antiferromagnet is somewhat puzzling since we think of antiferromagnets as
being magnetically neutral. Many AFMs are best described by two identical
sublattices. In each sublattice, the spins are parallel generating a magnetiza-
tion just like in a FM. However, the two sublattices are coupled antiparallel
to each other so that the total magnetization is zero.1 If the magnetic mo-
ments in the two sublattices are generated by the same atomic species, one
speaks of an A–A antiferromagnet. This is realized in CoO or in NiO (com-
pare Fig. 7.25). But the two different atoms may also be located in the two
sublattices with a vanishing net magnetization. In that case, one speaks of an
A–B antiferromagnet, MnFe being an example.

From a scientific point of view, the exchange bias phenomenon has been
so fascinating because it clearly cannot be a bulk effect, but must be due to
the magnetic structure near the AFM–FM interface. Because of the difficulty
of experimentally determining the magnetic structure right near the interface
it took nearly 50 years to unravel the exchange bias puzzle. We cannot give
here an account of the large amount of work done on the subject but refer the
reader to various reviews [687–692]. Instead, we shall first give a brief outline
of the most important experimental observations and the terminology used in
the literature and then give our present understanding of the phenomenon.

The key experimental findings and the terminology associated with ex-
change bias are given in Fig. 13.18. The magnetization loop of a conventional
ferromagnet along the easy and hard magnetization directions is symmet-
ric about zero external magnetic field Hext, as shown in Fig. 13.18a. The
anisotropy is uniaxial (in contrast to “unidirectional”) since there are two
equivalent easy magnetization directions. The uniaxial preference of the mag-
netization of a ferromagnet is usually due to its own magnetocrystalline
anisotropy. However, if a FM is deposited on an AFM in the absence of an ex-
ternal field, the magnetization loop will still be symmetric and exhibit uniaxial
anisotropy, yet the easy axis may be determined by the magnetocrystalline
anisotropy of the AFM and not by that of the FM itself. In order to indicate
that in this case the FM anisotropy is not intrinsic but induced by exchange
coupling to the AFM one often speaks of “uniaxial exchange anisotropy” or
“exchange anisotropy,” for short.

In contrast, when a ferromagnet is grown on an antiferromagnet in the
presence of a “setting field” Hset, assumed to be in the positive field direc-

1In a ferrimagnet, there are also two antiparallel coupled sublattices, but the mag-
netization is of different magnitude in the two sublattices. Therefore, ferrimagnets
exhibit a magnetization. The most famous example of a ferrimagnet is magnetite
(Fe3O4), discussed in Sect. 7.7.4.
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Fig. 13.18. (a): The magnetization loop of a conventional ferromagnet along the
easy (solid line) and hard (dotted line) magnetization directions. The sample is said
to exhibit a “uniaxial anisotropy” about the easy axis due to the magnetocrystalline
anisotropy. If the easy axis in a FM is imposed by exchange-coupling and corresponds
to that of an adjacent AFM, we speak of “uniaxial exchange anisotropy.” In all
uniaxial cases, the magnetization loop is symmetric about zero external magnetic
field Hext. (b) and (c) In contrast, exchange bias corresponds to the existence of a
loop that is horizontally shifted by a bias field HB. In this case the magnetization
in the FM prefers one direction in space, imposed by exchange coupling to “pinned
moments” in an adjacent AFM. The sample is said to have a unidirectional magnetic
anisotropy, which is due to exchange. If the loop shift is in the opposite direction
as the “setting field” H set, applied during sample preparation, we speak of negative
bias. In this case the preferred magnetization M of the sample is in the direction
of H set. If the loop shift is in the same direction as H set, the bias is said to be
positive and the preferred magnetization M direction is opposite to H set. In some
cases a vertical loop shift originating from pinned moments may also be observed,
as explained in the text

tion, as shown, or when the system is heated above the Néel temperature
and cooled in the presence of a setting field, the magnetization loop may be
shifted horizontally in either the negative or positive field direction. This case
corresponds to a unidirectional magnetic anisotropy, since the positive and
negative external field directions are no longer equivalent. The sample is said
to be exchange biased because the shift of the loop is caused by an exchange
field. The more common case of negative exchange bias corresponds to a loop
shift −HB in the opposite direction as the setting field Hset. The field HB

is called the transferred exchange field or the bias field. For negative bias
−HB, the magnetization M has a preference for the positive field direction
since it switches into this direction more easily. In fact, for the case shown in
Fig. 13.18b, the negative loop shift is so large that the remanent magnetization
direction is always positive. A positive bias +HB indicates a loop shift in the
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same direction as the cooling field. Now the magnetization of the system has
a preference for the direction opposite to Hset. Another interesting finding is
that in many cases exchange bias is accompanied by an increase in coercivity,
as indicated by a broadening of the loop in Fig. 13.18.

We shall see later that exchange bias can be directly linked to pinned
moments. Pinned moments are created by the setting field during the sample
preparation process and they exist near the AFM–FM interface. They cannot
be turned around from their preferred direction by typical external magnetic
fields and, in principle, also give rise to a vertical loop shift, as indicated
by dashed lines for the loops in Fig. 13.18b, c. The magnetization is slightly
larger in the direction of the pinned moments since they only contribute in
this direction. In practice, their number is very small and they can only be
observed in special situations.

We can summarize some important points as follows.

Uniaxial exchange anisotropy refers to a preferred anisotropy axis (easy
axis) in a FM that is due to the magnetocrystalline anisotropy in an
adjacent AFM, transferred by exchange coupling. The magnetization
loop is symmetric.

Exchange bias, also called unidirectional exchange anisotropy, refers to
the presence of a preferred direction of the FM magnetization. It origi-
nates from exchange coupling of the moments in the FM to uncompen-
sated pinned moments in the AFM. The magnetization loop is shifted
along the field axis.

We shall here concentrate on the most important aspect of exchange bias,
namely the origin of the effect and the factors that determine the absolute
value of the bias field HB. It has long been clear that the exchange bias field
HB that locks the ferromagnet (FM) into a preferred direction must originate
from uncompensated spins near the FM–AFM interface which are frozen in
by the setting field. These spins must somehow be anchored in the bulk of
the AFM so that they cannot be reversed by typical external magnetic fields
of order 1 T. Historically, the main problem in establishing a realistic model
of exchange bias has been the lack of information on the spin structure near
the all-important interface. Rather than giving a historical discussion of the
many models put forward over 50 years of research, which can be found in
other reviews [687–692], we shall here discuss a basic model that contains all
the important ingredients and is supported by the latest experimental results.
In particular, starting in 2000, X-ray dichroism spectroscopy and microscopy
measurements [107, 404, 405, 431, 693–695] have made key contributions to
the solution of the long-standing exchange bias puzzle by providing interface-
specific magnetic information. From these and a large body of other measure-
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ments we now know the following key facts that need to be contained in a
realistic model.

1. In the biased ground state the FM and AFM spins are aligned along the
same axis.

2. Near the interface, there are uncompensated spins that originate from
magnetic atoms in the AFM.

3. A fraction of the uncompensated interfacial spins are pinned. They are
responsible for the existence of exchange bias and their number is propor-
tional to the size of the bias.

4. The size of the bias decreases with the antiferromagnetic domain size.
5. The sign of the bias is determined by the sign of the exchange coupling

between the pinned interfacial spins and the FM.
6. The interfacial pinned spins are anchored in the bulk AFM through a

Bloch domain wall. The size of exchange bias is proportional to the ex-
change stiffness of this domain wall and the magnetocrystalline anisotropy
of the bulk AFM.

Let us take a quick look at the experimental results underlying the above
statements. We have already seen X-ray dichroism images of FM Co deposited
on the AFMs LaFeO3 and NiO in Sect. 10.4.3. In particular, we have seen that
in both cases the Co spins are aligned either parallel or antiparallel to the AFM
spin axis, illustrating point (1) [107,404].

The crux of the exchange bias problem revolves around points (2) and (3),
the existence and number of uncompensated pinned spins at the interface. For
many years scientists were misled by the notion of a well-defined layer-by-layer
spin structure at the ferromagnet/antiferromagnet interface that resembled
that in single crystals. For example, as shown in Fig. 7.25, for NiO all spins
lie in the {111} planes with opposite spin directions in adjacent planes. So
when the ferromagnet is deposited on a NiO (111) plane there will be a net
exchange bias field exerted by the last NiO layer on the adjacent ferromagnet.
The theory for such a “uncompensated” ideal antiferromagnet was already
put forward by Meiklejohn and Bean in 1956 [679]. The problem, however, is
that the size of the loop shift predicted by such an ideal model is much too
large (see below).

The puzzle about the origin of uncompensated spins was solved by the
experimental demonstration that real interfaces significantly differ from ideal,
abrupt, single-step AFM–FM transitions between bulk-like crystal and spin
structures. Furthermore it was found that not all uncompensated interfacial
spins contribute in the same way. Typically, in an external magnetic field, a
small fraction stays pinned while a larger fraction rotates with the ferromag-
net. Only the pinned fraction creates bias while the other spins may contribute
to the coercivity. In the following we illustrate these points by three key ex-
perimental observations.

When X-ray absorption spectra are recorded for a Co/NiO sandwich, one
finds that the Co spectrum shows a slight oxidation of Co metal and the Ni
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Fig. 13.19. X-PEEM images of the magnetic domain structure in a sandwich of
0.8 nm of Co deposited on NiO(100). On the right we show the X-ray absorption
fine structure near the Co and Ni L3 absorption edges and a schematic of the sample
structure. Spectra for the actual Co/NiO sample (red) are compared to reference
spectra recorded for pure metal and monoxide samples. On the left the sample
orientation and the X-ray polarization is illustrated. In the middle column, element-
specific XMCD PEEM images recorded at the Co (top) and Ni (middle) edges,
respectively, show ferromagnetic domain contrast, which in the Ni case is due to
uncompensated interfacial Ni spins in NiO (labeled NiOx). The bottom XMLD
image taken at the Ni edge shows no antiferromagnetic contrast due to the special
sample orientation (compare Fig. 10.25)

spectrum shows a slight reduction of NiO, as illustrated on the right side
Fig. 13.19. This indicates interfacial interdiffusion of oxygen, resulting in an
interfacial region that is about one monolayer thick [431]. Pure NiO does not
exhibit any XMCD signal because all Ni spins are completely compensated.
However, the Co/NiO sandwich exhibits a ferromagnetic Ni signal, arising
from Ni atoms with incomplete oxygen coordination [431,693]. One can even
image the uncompensated Ni spins by means of XMCD microscopy, as shown
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Fig. 13.20. (a) Experimental geometry for XMCD spectroscopy measurements. (b)
Illustration of expected XMCD-intensity loops for the two experimental geometries
in (a), assuming a small fraction of pinned moments pointing into the bias direction.
(c) Element-specific Co loops for unbiased and biased samples for the two geometries
in (a). (d) Element-specific Mn loops for unbiased and biased samples for the two
geometries in (a)

in the middle image in Fig. 13.19. In all images in this figure the NiO substrate
orientation was chosen to be at 45◦ with respect to the incoming X-ray direc-
tion and the E-vector so that no AFM contrast is seen and the ferromagnetic
contrast is more clearly revealed. This image illustrates point (2) from above.

Measurements on another sample, 2 nm Co on 50 nm of Ir20Mn80, shown in
Fig. 13.20, demonstrate how unpinned and pinned spins can be distinguished
[694]. By use of the element-specific XMCD signal to measure the Co and
Mn magnetic moments, one can measure a magnetization loop. In particular,
the Mn loop is found to exhibit a horizontal as well as a vertical shift. From
the vertical shift one finds that most Mn moments follow the field (and the
Co FM) but a small fraction remains pinned and does not follow the field.
Quantitative analysis shows that the number of uncompensated Mn moments



624 13 Surfaces and Interfaces of Ferromagnetic Metals

corresponds to 0.6 monolayer at the FM–AFM interface, and that about 7%
of them are pinned. The pinned 0.04 monolayer Mn moments are responsible
for exchange bias. Similar results were obtained by means of magnetic force
microscopy [696] and nonlinear optical spectroscopy [697]. This illustrates
point (3) from above.

Another exchange bias problem is that one finds no clear difference in the
bias characteristics for spin-compensated and uncompensated antiferromag-
netic single crystal surfaces and, surprisingly, the bias is typically largest for
polycrystalline antiferromagnets. This points to a structure of the AFM in-
terface that differs from that expected from a simple termination of the bulk
structure. This idea was was first pursued theoretically by Malozemoff [698] in
1987. He assumed that a real AFM surface consists of different domains which
may originate from imperfections. Using a random field model, he found from
a statistical treatment of the AFM domain diameter d that the bias changes
as 1/d. Such a behavior was indeed found in 1997 by Takano et al. [699] in
a study of polycrystalline CoO/Ni81Fe19 films, prepared with different CoO
grain sizes. The correlation of experiment and theory assumed that for AFMs,
the grain size is equal to the AFM domain size. The ability to directly im-
age small AFM domains by XMLD microscopy [106] indeed supports such a
correlation. It also confirms the conjecture of a 1/d domain-size-dependent ex-
change bias [107,695], confirming point (4) from above. Results for the domain
size dependent bias of Co on LaFeO3 are shown Fig. 13.21.

The defect-based creation of AFM domains has been extended into the
so-called domain state model by Nowak et al. [533]. By means of Monte Carlo
simulations of the formation of AFM domains and their coupling to an ad-
jacent ferromagnet, these authors demonstrated the correlation between the
number of defects, the domain size, the number of uncompensated spins, and
the size of the bias.

Like Co/NiO and Co/IrMn, most exchange bias systems exhibit nega-
tive bias. For these cases XMCD measurements show that the FM moments
and pinned AFM moments are aligned in the same direction, hence we have
J > 0 for the exchange coupling constant. In some systems, positive ex-
change bias has also been observed. Examples are AFM/FM systems involv-
ing transition metal fluorides [700, 701] and oxides [702, 703], as well as fer-
rimagnetic/ferromagnetic [704] and ferrimagnetic/ferrimagnetic [705] struc-
tures. The existence of positive bias has been suggested to arise from antipar-
allel coupling (J < 0)2 between moments in the FM and pinned interfacial

2The case of antiparallel AFM–FM coupling (J < 0) is somewhat complicated.
For “small” cooling fields the FM is aligned along H set yet the pinning direction in
the AFM is determined by the antiparallel exchange coupling with the ferromagnet.
The combination of J < 0 and moments that are pinned antiparallel to H set leads
to a preferred FM alignment in the direction of H set, i.e., negative bias. In “large”
cooling fields the Zeeman energy dominates and the moment directions in both the
FM and AFM are aligned parallel to H set. When the cooling field is turned off, the
moments in the AF remain frozen (parallel to H set) but the favored antiparallel
exchange J < 0 leads to a rotation of the FM moments. The favored direction of
the FM is now antiparallel to H set, which corresponds to positive exchange bias.
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Fig. 13.21. (a) Co L-edge XMCD image of Co(1.2nm)/LaFeO3(40nm)/
SrTiO3(001), recorded with PEEM after the sample had been magnetized to 103
Oe in a field along [100] [695]. Note that half of the domains are aligned along
[010] [107], and their remanent state remained unchanged (gray) after field appli-
cation. (b) Local remanent magnetization loops of the two domains marked 1 and
2 in (a), showing opposite bias directions. (c) Map of the local bias field extracted
from the local magnetization loops for the various domains in (a). As indicated un-
derneath, the local bias fields have a maximum values of ±30 Oe. Note that both
positive and negative bias directions are present because no macroscopic bias was
set. (d) Dependence of the bias field on the domain size, revealing an inverse linear
relationship

moments in the AFM [701]. This has been verified by XMCD measurements
for the Co/FeF2 system [706] and supports our earlier point (5).

Finally, one can also investigate how the pinned spins are anchored in
the AFM. This is done by rotating the FM spins with an external magnetic
field and studying whether the AFM spins follow the rotation of the FM spins.
This experiment was used earlier in Sect. 10.3.1 to illustrate the application of
an octopole magnet and the results are shown schematically in Fig. 10.6. The
real data are presented in reference [405]. They nicely demonstrate that in soft
AFMs like single crystal NiO, a domain wall may be wound up in the AFM
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Fig. 13.22. Simple model for exchange bias. A ferromagnetic film (FM) of thickness
t is separated by an interface of thickness ξ from a thick antiferromagnet (AFM)
below. The uniaxial anisotropy of the AFM is along x. We assume parallel coupling
between the uncompensated interfacial moments and the FM moments. The external
magnetic field H is applied at an angle β with respect to x and the FM moments
are aligned parallel to H . Near the interface the AFM axis is allowed to rotate and
form a domain wall. The rotation of the AFM axis in the domain wall is given by
α ≤ β

near the interface, which reduces the bias. The domain wall energy actually has
two components, one due to the exchange stiffness of the spring, determined
by the exchange coupling between the individual AFM spins, and another
from the magnetocrystalline anisotropy of the bulk AFM, which determines
the anchoring of the spins in the lattice. Indeed, XMLD studies show that for
polycrystalline NiO, the winding up of a domain wall is suppressed, and the
bias increases [707] in accord with point (6) from above.3

The simplest model that accounts for these experimental observations
given by Mauri et al. [433]. The model is depicted in Fig. 13.22. In our model,
the bulk uniaxial AFM is assumed to have a magnetocrystalline anisotropy
favoring spin alignment along the x direction. In accordance with experimen-
tal observations we allow for an interface layer of thickness ξ (one to a few
monolayers) which contains uncompensated spins. We assume an interfacial
density of pinned uncompensated spins SA, given by SA/a

2, where a2 rep-
resents a unit area in the AFM, parallel to the interface. For simplicity we

3The suppression of a wound-up domain wall in polycrystalline NiO relative to
single crystal NiO signifies a defect or strain “hardening” of the bulk AFM. Such
a mechanism helps explain several empirical observations such as the larger bias
typically observed for polycrystalline samples, the bias increase with decreasing grain
size of the AFM [699] or with decreasing AFM domain size in single crystals [695],
and the increased bias due to bulk “doping,” e.g., by mixing MgO into NiO [708].
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assume that all uncompensated spins are rigidly pinned to the AFM, as re-
quired for the occurrence of bias, and that they are aligned parallel to the
AFM spin axis at the interface. The exchange coupling of the pinned inter-
facial spins to the FM is expressed by a Heisenberg-like coupling constant J ,
which in Fig. 13.22 is assumed to be positive. We assume a FM layer with
thickness t and magnetization M and a magnetocrystalline anisotropy KF.
Typically KF can be assumed to be small so that, in the absence of an ex-
ternal magnetic field, the spins of the AFM and FM are aligned along the
AFM easy axis x. If we now apply a strong magnetic field H at an angle β
with respect to x, the FM moments will align along H. If the AFM is very
hard, there will be no twist of the AFM axis and the uncompensated inter-
facial spins will remain aligned unidirectionally along x. This is the case of
maximum bias. If the AFM is soft, an exchange spring will form in the AFM
and the uncompensated interfacial spins will be aligned along the AFM axis
at the interface, at an angle α with respect to x. Since the interfacial spins
can now rotate in the field, the effective bias field will be reduced.

Mauri et al. showed that the total magnetic energy δ∗ per unit interface
area is given by four terms

δ∗=Ew[1−cosα]︸ ︷︷ ︸
AFM wall

+
JSASF

a ξ
[1−cos(α−β)]

︸ ︷︷ ︸
interface coupling

+KF t sin2 β︸ ︷︷ ︸
FM anis.

+HMt [1−sinβ]︸ ︷︷ ︸
Zeeman energy

.

(13.4)

The first term is the energy per unit surface area to wind up the domain
wall in the AFM. The prefactor Ew corresponds to the energy of a 90◦ wall
per unit surface area, and according to Zijlstra [709] it can be expressed in
terms of the AFM exchange stiffness AA = JAS

2
A/a (JA being the AFM

exchange constant) and the AFM magnetocrystalline anisotropy energy KA

as (compare equation 11.35),

Ew = 2
√
AAKA . (13.5)

The second term in (13.4) is the exchange coupling energy between the in-
terfacial spins SA (assumed to consist of uncompensated spins of the AFM)
and the FM spins SF. It can be positive or negative depending on whether
parallel (J > 0) or antiparallel (J < 0) coupling of the spins at the interface is
favored. The third term is the intrinsic magnetocrystalline anisotropy energy
in the FM with uniaxial anisotropy constant KF. We have assumed that the
intrinsic FM easy axis is along x as in the AFM so that KF > 0. Finally, the
last term is the Zeeman energy between the FM and the external field H.
Note that all energies are per unit interface area.

If one measures the energy in units of the domain wall energy Ew, one
obtains the simple formula

δ = [ 1 − cosα ] + λex [ 1 − cos(α− β) ] + µani sin2 β + κ [ 1 − sinβ ] . (13.6)
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Magnetization curves (MCs) of the FM are calculated from (13.6) by find-
ing the angles α0 and β0 for which δ is at a minimum. For λex = 0, the
ferromagnetic layer is decoupled and one finds the familiar Stoner and Wohl-
farth MCs displayed in Fig. 11.15. But for λex �= 0, the MCs are modified
by the AFM. The limiting case of negligible interfacial coupling, λex 
 1, is
characterized by α ≈ 0 and (13.6) reduces to

δ = µani sin2 β + κ [ 1 − sinβ ]︸ ︷︷ ︸
symmetric loop

+λex [ 1 − cosβ ]. (13.7)

The other limiting case of strong interfacial coupling, λex � 1, is characterized
by (α− β) ≈ 0 so that we have

δ = µani sin2 β + κ [ 1 − sinβ ]︸ ︷︷ ︸
symmetric loop

+[ 1 − cosβ ]. (13.8)

We have indicated in the above equations the part that corresponds to the
energy of a uniaxial ferromagnet in an external field, described by the Stoner–
Wohlfarth coherent rotation model and expressed by (11.37). The correspond-
ing loop would be symmetric with a coercivity 2µani. The last terms in the two
equations introduce an asymmetry in the loops since they differ for the field
directions β = 0◦ and 180◦. Apart from a loop shift, the model also predicts
an intrinsic asymmetry of the loop shape in the reversal regions. This has
been verified experimentally and the two magnetization reversals have been
attributed to moment rotation and domain nucleation, respectively [710–712].
The loop shifts are due to the transferred exchange bias field HB, which is
derived as

HB = −JSASF

a ξ tM
for λex 
 1 (13.9)

= − Ew

M t
for λex � 1. (13.10)

For the last case of strong interfacial coupling, our simple model shows that the
maximum bias field that one can obtain, no matter how strong the interfacial
exchange coupling may be, is given by the energy it takes to form a domain
wall in the antiferromagnet. This energy is calculated in much the same way
as for a ferromagnet (11.36). This model is typically referred to as the Mauri
model of exchange bias [433].

Today we know, however, that the first case λex 
 1 applies in most
cases. Historically, the case λex � 1 of weak interface coupling caused consid-
erable consternation since one would expect that for an uncompensated AFM
interface, a very large bias field should be obtainable. For example, we can
estimate the bias field due to a monolayer of uncompensated interfacial spins
from (13.9), using our knowledge of typical mean field values listed in Table
11.2. In particular, the exchange field expression in (13.9) is similar to that
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for the Weiss field in a ferromagnet given by (11.19). Since Weiss fields are
of the order of 3 × 103 T, we readily see that we have a problem since the
observed exchange bias fields are typically less than 0.1 T. For example, for a
quick calculation we assume that due to the reduced interface coordination, J
is reduced to a typical value of 10 meV corresponding to a pair of atoms. We
also assume typical spin values of SA = SB = 1, and an effective FM moment
a ξ tM � 60µB. This corresponds to a Co film of t = 10 nm thickness with
a magnetization of M � 1.5 × 102µB/nm3 and values a = ξ � 0.2 nm. With
these numbers we obtain HB � 4 T which is about two orders of magnitude
too large.

The puzzle was resolved by the XMCD measurements of the fraction of
pinned moments. Rather than being a full monolayer, the pinned moments
amounted to only about 4% percent of a monolayer. Thus for the calculation of
the field in (13.9), the effective interfacial moment density SA/(ξa) is reduced
by a factor of about 0.04. Thus the bias field is estimated to be of order 0.1
T, which is close to the value found for Co/MnIr in Fig. 13.20. Note that
this value, derived under the λex 
 1 assumption, assumes that the interface
coupling energy is smaller than the domain wall energy, so that no domain
wall gets wound up in the AFM. If the two energies are comparable, then the
bias field gets additionally weakened by the formation of a domain wall. This
is the origin of the relatively weak bias field in NiO, which has a rather low
magnetocrystalline anisotropy. As discussed earlier, field-dependent XMLD
measurements for various forms (single crystal, epitaxial and polycrystalline,
see footnote 3) of NiO directly reveal the correlation of the bias field and the
domain wall energy given by (13.10) [405,707].

We can summarize as follows. Relative to a AFM–FM system with a per-
fectly uncompensated AFM interface and a large AFM domain wall energy,
the observed exchange bias field HB in real system is reduced by about a
factor of 100. This reduction is primarily due to the scarcity of pinned inter-
facial moments, with typical values of only a few percent of a monolayer. In
addition, the formation of a domain wall further reduces the bias field value.
The latter effect accounts for the difference in exchange bias between the best
systems, e.g., Co/IrMn, and systems like Co/NiO where a domain wall in the
AFM greatly reduces the achievable bias [405,707].

13.4.4 Induced Magnetism in Paramagnets and Diamagnets

Another question related to the ferromagnetic interface is whether a metal
that is not magnetic by itself can acquire a magnetic moment when in contact
with a ferromagnet. Initially, theoretical work seemed to indicate [713, 714]
that metallic magnetism can occur in very thin films even with elements that
are not magnetic in three-dimensional samples. For instance, according to
band structure calculations [715], V grown epitaxially on Ag(100) or Au(100)
should have been ferromagnetic while bulk V is not. The magneto-optic Kerr
effect [716] and spin-polarized photoemission [717] have been convenient tools
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Fig. 13.23. Ferromagnetic domains in a Co layer (left) and XMCD signal of the Cu
substrate atoms. The XMCD signal of Cu is not zero as the domains in Co appear
also in the underlying Cu. The spin moment induced in the d shell of the interface
Cu atoms by the proximity of ferromagnetic Co is 0.03µB per Cu atom [315].

to test such dramatic predictions, but no trustworthy evidence of ferromag-
netism induced by the geometrical confinement has been found up to now.

However, elements that are not magnetic by themselves can acquire a
magnetic moment when deposited on a magnetic surface. X-ray core level
spectroscopy or spin-polarized Auger spectroscopy [718], as well as a number
of other spin-polarized techniques, can answer the question of whether or not
a magnetic moment is induced in the nonmagnetic element and also whether
the magnetic moment at the interface of the substrate has been reduced by
the deposition. XMCD combined with imaging in PEEM gives the most direct
evidence that a magnetic moment is induced even in a noble metal by the
proximity of a ferromagnet. Figure 13.23 shows that the Cu atoms below a
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Fig. 13.24. (a) C K-edge reflectance spectra of a [Fe(2.55 nm)/C(0.55 nm)]100 mul-
tilayer at two incidence angles θ from the surface [719]. (b) XMCD asymmetry ratio
A = (R+ −R−)/(R+ + R−) obtained from the reflectances R± measured with posi-
tive and negative photon spin at the two X-ray incidence angles. (c) Element-specific
magnetization loops for Fe and C atoms recorded at the indicated photon energies
by monitoring the reflectance at a fixed X-ray circular polarization

ferromagnetic domain of Co acquire a magnetic moment. It turns out that this
moment is a spin moment parallel to the one of Co and amounts to 0.03µB

per interface Cu atom [315]. The Cu moment nearly disappears by the second
layer away from the interface.

Another example of induced ferromagnetism is shown in Fig. 13.24. In this
case, XMCD measurements for Fe/C multilayers were performed in a specular
reflectance geometry at both the C K-edge and Fe L-edge [719]. The angle-
of-incidence dependent reflectance spectra, the dichroic asymmetry ratio and
the element-specific magnetization loops are shown in three separate panels.
Clearly, C is seen to be magnetic and Mertins et al. [719] estimate a magnetic
moment of about 0.05µB per C atom. The moment is due to hybridization of
C 2p and Fe 3d orbitals at the interface.
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13.4.5 Coupling of Two Ferromagnets across a Nonmagnetic
Spacer Layer

Layered metallic materials have become important in magnetism. For ex-
ample, they can be used to enhance the surface anisotropy as illustrated in
Fig. 11.11, to inject spin-polarized electrons from one ferromagnet into an-
other, and to generate devices exhibiting giant magnetoresistance. Before dis-
cussing the latter phenomena, we investigate the equilibrium magnetic ex-
change coupling that exists between two ferromagnetic layers separated by
a nonmagnetic spacer layer. As mentioned in Sect. 7.8, this coupling oscil-
lates periodically between parallel (P) and antiparallel (AP) alignment of
the magnetization in the two layers as the thickness of the nonmagnetic
spacer layer is varied. The coupling periodicity is correlated with the exis-
tence of standing electron waves, often referred to as quantum well (QW)
states in the nonmagnetic interlayer [318,720]. The QW states and their con-
nection to magnetism have been detected by inverse photoemission [318,720]
and by spin-polarized photoemission spectroscopy and other related meth-
ods [250,274,313,317,721,722].

There is a close analogy between a standing electromagnetic wave confined
by two reflecting surfaces, usually referred to as a Fabry–Pérot interferometer,
and an electron captured in a square potential well, as reviewed by Himpsel
et al. [250]. With electrons, potential wells have been realized in metallic thin
films consisting of Au, Ag, or Cu deposited epitaxially on a metallic substrate
such as Fe or Co and terminated by the vacuum interface or covered again
epitaxially with some layers of the same magnetic metal. The spin-dependent
band gaps at the boundary to the ferromagnetic metal generate a poten-
tial well that confines one specific spin state of the electrons. Figure 13.11 is
an example of spin-dependent reflection at an Fe(001)–vacuum interface at
elevated electron energies. In contrast to an optical Fabry–Pérot interferome-
ter, electrons are strongly absorbed by the medium and the reflection at the
boundary of the well is never as ideal as for an optical mirror. Yet it is ex-
perimentally confirmed that standing waves do exist for one spin state, as the
spin polarization of QW states has been directly verified with spin-polarized
electron spectroscopy [274, 313] and by measuring the spin asymmetry of a
spin-polarized electron beam in specular reflection [721,723].

The QW states induce a peak in the density of states at a particular wave-
vector k = 2π/Λe perpendicular to the film surface, where Λe is the wavelength
of the standing electron wave. In the case that the nonmagnetic spacer layer
is sandwiched between two ferromagnetic layers, the condition for a standing
spin-polarized wave depends on the relative magnetization direction in the two
layers. The energies EP and EAP connected with the density of states D(E)
for parallel (P) and antiparallel (AP) alignment of the ferromagnetic layers,
are responsible for the ferromagnetic coupling mediated by the nonmagnetic
spacer layer. The energy density 2J of this coupling is given by:
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Cu (100)

Cu wedge

15 ML Co

3 ML Co

Fig. 13.25. Illustration of a sample consisting of two ferromagnetic Co layers sep-
arated by a wedge of Cu. The magnetization M in the top Co layer alternates in
its direction with respect to M in the bottom Co layer as the Cu wedge changes
thickness due to the presence of quantum well states. The blank part of the Cu
wedge is used to determine the thickness of the wedge, while the direction of M in
the top layer is measured with XMCD [722]

2J = EP − EAP =
∫ EF

−∞
{DP(E) −DAP(E)} E dE, (13.11)

where EF is the Fermi energy. The energy 2J is generated by the additional
density of states introduced in one spin state by the spin-polarized QW state
of the interlayer. For instance, with a Cu film sandwiched between Co films,
the minority band gap of Co produces a potential well for the minority s, p
electrons at EF in the Cu interlayer, as can be seen from the respective den-
sities of states in Fig. 12.1.

The magnetic coupling energy 2J may also be viewed as an exchange
field Hex = J/M2 transferred from layer 1 with magnetization M1 to layer 2
with magnetization M2. The field Hex has a typical value of 104 Am−1 but
can be as small as 102 Am−1, depending on the structural quality and exact
thickness of the spacer layer. The coupling, with dozens of oscillations of Hex

from positive to negative values, is detectable over ∼ 100 atomic layers of the
spacer layer. The range over which the coupling exists is given by the electron
mean free path in the spacer layer that is it depends on temperature and on
defect concentration.

The technologically most important feature of periodic exchange coupling
is that the parallel alignment of two ferromagnetic films is connected with a
“giant” drop of the electrical resistivity of the trilayer, usually referred to as
GMR (giant magnetoresistance) and discussed in Sect. 14.1.4. In the famous
GMR spin valve sensor shown in Fig. 14.3, the switching from an existing
alignment to the opposite alignment of the layers is induced by an external
field H > Hex.
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To calculate the thickness of the spacer layer at which the standing wave
occurs, one has to examine the condition for a standing wave given by the
Bohr–Sommerfeld quantization rule,

2 ke(E)N t+ Φ(E) = 2nπ . (13.12)

Here the electron wave vector ke(E) depends on the electron binding energy
E, N is the film thickness expressed in numbers of atomic layers, t is the
thickness of one monolayer of atoms, Φ the phase shift upon reflection at the
boundaries of the potential well, and n is the number of half waves that fit into
the well. We encounter the familiar problem of the eigenmodes of a vibrating
string or a particle in a box.

In the case of Co, the minority spin band gap provides the confinement of
the minority spin Cu electrons to form the QW states. Band structure calcu-
lations indicate that the upper (EU) and lower (EL) energies of the potential
well along the (100) direction of fcc Co are EU = −0.58 eV and EL = −3.9 eV,
respectively. However, we know already from Sect. 12.4 that the calculated ex-
change splitting is usually too large, so these numbers have to be considered as
an estimate. Additionally, hybridization of the Co wave functions with those
of Cu is certainly present at the interface, as can be seen from the interfacial
spin moments of the Cu atoms revealed in Fig. 13.23. This may further com-
plicate the actual features of the potential well. However, according to Qiu
and Smith [722], the experiments can be interpreted with the simple approach
given below.

A convenient ansatz for the energy dependent phase shift Φ(E) of the
electron wave function upon reflection on the ferromagnetic potential barrier is

Φ(E) = 2 arcsin
√
E − EL

EU − EL
− π (13.13)

Thus the phase evolves from 0 to −π as E is varied from the top of the
potential well EU to the bottom of the well EL. The variation of the phase
shift across a band gap is related to the fact that at the completion of the band
at the lower end of the gap, the electron waves are standing waves with the
energetically most unfavorable location of the electrons, that is between the
positively charged metal-ion cores. At the start of a new band, the electrons
are localized as well, but now in the energetically most favorable position on
top of the metal ions. Hence a phase shift must occur of the form assumed in
(13.13) as the energy varies across the band gap. Equations (13.13) and (13.12)
describe the QW states in a nonmagnetic spacer layer and the resulting P/AP
coupling of the magnetization as it depends on the thickness of the spacer
layer.

Still, one has to insert the relevant wave vector ke. It is ambiguous, be-
cause one can always add or subtract multiples of the lattice vector kBZ to the
electron momentum ke(E). Angle- and energy-resolved photoemission spec-
troscopy on QW states turns out to be the most accurate way to measure the
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ratio k(EF)/kBZ [724], where k(EF) and kBZ are the electron wave-vectors at
the Fermi energy and at the Brillouin zone boundary, respectively. The exper-
iments show that ke = kBZ−ke(E). In the case of the Co/Cu/Co trilayer, one
finds QW states with a periodicity of 5.88 and 2.67 monolayers of Cu. These
two periods are related to kBZ at the neck and the belly of the Cu Brillouin
zone. The magnetic interlayer coupling is found to be a superposition of these
two oscillation periodicities. A more complete discussion can be found in the
review paper by Qiu and Smith [722].

In the pioneering imaging work on periodic exchange coupling by Unguris,
Celotta, and Pierce [317], Fe layers were coupled over a wedge-shaped inter-
layer of Cr. The periodic changes of the magnetization in the top Fe layer with
the thickness of the underlying Cr layer were imaged by scanning electron mi-
croscopy with spin polarization analysis (SEMPA), and the spectacular image
arising from the periodic exchange coupling is shown in Fig. 1.9. A long and
a short period of the oscillating exchange coupling were found in this case as
well. The case of Cr which is the only itinerant antiferromagnet is special.
It orders ferromagnetically within each (100)-layer, but the magnetization re-
verses with each additional layer that is added. This is due to a standing spin
density wave with a wave vector k(EF) that is only 4% different from the
lattice wave vector kBZ. One says that k(EF) is “nesting” in the lattice. The
short period oscillations of the magnetization occurring with each added Cr
layer and hence the antiferromagnetism of Cr is due to this spin density wave.
The top and bottom layer of the Cr couple ferromagnetically to Fe at the in-
terface. The top Fe layer thus changes the magnetization direction with each
additional Cr layer, mirroring the direction of the Cr spins in the last layer
of Cr(100). The slight mismatch between the spin density wave and the Cr
lattice vector kBZ leads to a phase slip and hence to an extraordinary change
in the sign of the exchange coupling after 21–24 Cr layers.

The theory developed to understand the coupling of localized spins em-
bedded in a metallic environment is usually referred to as Ruderman–Kittel–
Kasuya–Yoshida (RKKY) interaction, which is discussed in Sect. 7.8 and il-
lustrated in Fig. 7.34. The scattering of the conduction electrons on magnetic
impurities is spin-dependent [725]. It induces a spin polarization in the elec-
tron gas that oscillates in sign and decays very fast in amplitude as the dis-
tance to the magnetic impurity increases. Through the RKKY interaction,
dilute magnetic ions in a nonmagnetic metal may be exchange coupled at low
temperatures. The coupling manifests itself by a reduction of the electrical
resistivity known as the Kondo effect. This is very much in analogy to the
coupling of magnetic layers via nonmagnetic spacer layers. It is therefore not
astonishing that RKKY theory can also explain the periodic exchange cou-
pling [726–728]. Yet RKKY theory, although developed in the mid 1950s, had
not predicted the oscillatory exchange coupling between magnetic films. This
was found more or less by chance in experiments after epitaxial metallic layers
of great quality could be made.
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Electron and Spin Transport

In this chapter we shall take a look at electron and spin transport across in-
terfaces. In the first major section we discuss fundamental spin-dependent
phenomena that occur during current flow from a ferromagnet to a non-
magnet and vice versa. We shall see that such flow leads to the build-up
of a spin-dependent interface voltage which will be shown to directly lead to
the important phenomenon of giant magneto-resistance.

In the second major section we discuss the injection of spin polarized
currents into a ferromagnet, so-called spin injection. In particular, we discuss
the use of spin injection to directly switch the magnetization in a nanoscale
magnetic structure. This interesting phenomenon, which is based on the use
of the short-range and strong exchange interaction to provide the energy and
torque for switching, differs from the conventional switching method which
uses long-range Oersted fields produced by current carrying wires or coils.

In the final two sections we touch on spin-dependent phenomena in semi-
conductors and consider the requirements for building a spin current amplifier,
whose invention would revolutionize the whole field of spin dependent phe-
nomena.

14.1 Currents Across Interfaces Between a Ferromagnet
and a Nonmagnet

In this section we consider the case of an electron current flowing across an in-
terface between a ferromagnet and a non-magnet. We assume that the current
is steady, i.e., that it does not depend on time, and derive basic consequences
which arise from the fact that such a current is necessarily spin polarized.
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14.1.1 The Spin Accumulation Voltage in a Transparent Metallic
Contact

In the discussion of transport involving ferromagnets, one necessarily has to
deal with the flow of both charge and spin. In its quantitative description it
is convenient to use a thermodynamic quantity, the chemical potential, intro-
duced in Sect. 12.5.1. If a system contains more than one species of particles,
there is a separate chemical potential associated with each species, defined as
the change in energy when the number of particles of that species is increased
by one. The two types of species in a ferromagnetic metal are the majority
and the minority spin electrons which can be distinguished because spin flips
are very rare.

The spin dependent chemical potential of the majority (minority) elec-
trons is the change in energy associated with the addition of one majority
(minority) electron.

For a quantitative treatment [729], we assume that a ferromagnetic metal
(F) is in contact with a nonmagnetic metal (N), and we take x to be the
direction of current (positive charge) flow, perpendicular to the interface. If
there is no electric current flowing along x, the Fermi-levels (see footnote 5 in
Chap. 12) in the two metals will adjust to the same value, i.e., the chemical
potential µ0 will be constant across the interface. Also, the chemical potential
for up spins will be equal to the one for down spins µ↑ = µ↓, and µ0 =
(µ↑ + µ↓)/2.

If now a current of density j flows from F to N along the x direction, as
shown on the left side of Fig. 14.1, the validity of Ohm’s law, given by (12.10),
implies,

∂µ0

∂x
= − e

σ
j , (14.1)

where −e is the electron charge and σ the total conductivity. The total conduc-
tivity is determined by the conductivities of both spin-up electrons, σ↑, and
spin-down electrons, σ↓, and according to the two current model, we simply
have σ = σ↑+σ↓. As discussed in Sect. 12.5.2, transitions from one conductiv-
ity channel to the other require spin flips, and they are sufficiently rare that
the resistivity due to crossover scattering from one spin channel to the other
can be neglected at low temperatures. This is a good approximation even at
room temperature since the spin flip length is about ten times longer than the
(spin averaged) electron mean free path [580, 730]. It is then intuitively clear
that due to the two current model interesting spin dependent phenomena must
develop at the interface between a ferromagnet, characterized by preferential
conduction in one spin channel, and a non-magnetic metal with equal conduc-
tion for both spins. This is indeed the case and we shall discuss the details now.
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Fig. 14.1. The chemical potentials µ↑ (majority spins) and µ↓ at the interfaces
between a ferromagnet F and a nonmagnetic metal N, with a constant electric
current density flowing in the x direction, assuming αF > 0.5. The magnetization
direction of the ferromagnet, which is in the direction of the minority spins, is shown
by an arrow. µ0F and µ0N are the respective spin averaged chemical potentials in
F and N. The spin accumulation potential is given by eVAS = µ0F(0) − µ0N(0). As
discussed in Sect. 14.1.6 one finds VAS ≈ 1 mV. The decay of the spin voltage µ↑−µ↓

with x away from the interface is discussed in Sect. 14.1.3

Charge neutrality leads to j = const across the interface. If we ignore the
existence of spins, the chemical potential µ0 is a straight line with a change
in slope at the interface due to the change in σ, since σN �= σF. This may be
directly read from (14.1). However, this is not what happens if we consider
the different behavior of the two spin states in the ferromagnetic metal F. The
two current model tells us that in F we will have different conductivities for
the spin-up and spin-down channels. We define

σ↑F = αF σF and σ↓F = (1 − αF)σF . (14.2)

Here the dimensionless factor 0 ≤ αF ≤ 1 accounts for the asymmetry of con-
duction in F. In a bulk ferromagnet, the minority spin channel has the lower
conductivity and by denoting the majority spins as up spins one would have
αF > 0.5. Our α-dependent formulation is valid in general. For example, the
case α = 0.5 describes a nonmagnetic metal N, where there is no asymmetric
conduction for the two spin states.

The special case αF = 1 corresponds to a half metallic ferromagnet (HMF)
in which, according to our definition of αF, only the spin-up state is present at
EF so that electrical conduction occurs in one spin channel, only. Examples of
HMFs are La0.7Sr0.3MnO3 [731] and some ferromagnetic Heusler alloys, e.g.,
NiMnSb [732, 733]. In such materials the half-metallicity is typically due to
the filling of the d-bands, and they are usually devoid of weakly polarized s–p
conduction electrons. This has been discussed in Sect. 7.7.4 for the example
of the HMF magnetite, Fe3O4, where the s–p electrons are bound by the
oxygen atoms. Note, however, that the half-metallic behavior may be reduced
or lost at surfaces [733], and theory seems to indicate the possibility that
half-metallicity is also lost at interfaces in multilayer structures [734].
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The asymmetry of the conduction leads to asymmetric currents. We have
in general

j↑ = β j and j↓ = (1 − β) j , (14.3)

and specifically j↑ = βF j and j↓ = (1 − βF) j in F and j↑ = βN j and
j↓ = (1−βN) j in N. Because j = j↑ + j↓, the asymmetry parameter β for the
current lies in the range 0 ≤ β ≤ 1. The spin polarization P of the current is
given by

P =
j↑ − j↓
j↑ + j↓

= 2β − 1 . (14.4)

As the spin polarized current from F (βF �= 0.5) enters N, we will also have
βN �= 0.5 and P �= 0 close to the interface. Because transitions between the
two spin channels are rare in nonmagnetic metals it will take time or distance
from the interface for the current in N to equilibrate to the value βN = 0.5.
This fact causes a drop in voltage at the interface, called the spin accumulation
voltage, VAS. Its value can be derived as follows. From Ohm’s law for the two
spin channels

j↑ = −σ
↑

e

∂µ↑

∂x
j↓ = −σ

↓

e

∂µ↓

∂x
, (14.5)

one obtains,

∂µ0

∂x
= − e

σ
j = − e

σ
(j↑ + j↓) = α

∂µ↑

∂x
+ (1 − α)

∂µ↓

∂x
. (14.6)

Integration of (14.6) yields µ0 = αµ↑ + (1 − α)µ↓ + const, where const = 0
because as x→ ∞ we have µ0(x) = (µ↑ + µ↓)/2. The spin averaged chemical
potentials µ0F of the ferromagnet (F) and µ0N of the nonmagnetic metal (N)
are then given by,

µ0F = αFµ
↑ + (1 − αF)µ↓ (14.7)

and
µ0N =

1
2
(
µ↑ + µ↓

)
. (14.8)

The last equation explicitly shows our assumption that αN = 1/2.
At the interface, at x = 0, the chemical potentials µ↑ and µ↓ must be

continuous since otherwise a force would act on the spins. One assumes that
such a force does not exist. While the chemical potential µ0 must be the
average of µ↑ and µ↓ in N, it is a weighted average in F. Due to this, there
must be a drop ∆µ0(0) = eVAS at the interface. This drop is the origin of the
spin accumulation voltage VAS, and is given by

eVAS = µ0F(0) − µ0N(0) = αFµ
↑(0) + (1 − αF)µ↓(0) − 1

2
[
µ↑(0) + µ↓(0)

]

=
[
αF − 1

2

] [
µ↑(0) − µ↓(0)

]
. (14.9)
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The case for current flow from F to N is illustrated on the left side of Fig. 14.1,
assuming αF > 0.5. The reverse situation, current flow from N to F, is shown
on the right side of the figure. When the two spin channels conduct equally
well, that is when αF = 0.5, there is no drop of the chemical potential and
the spin accumulation voltage is zero, VAS = 0.

The spin accumulation voltage VAS is the jump in the spin averaged chem-
ical potentials that develops at a F–N interface. It exists if a current, that
consists of separate spin-up and spin-down channels, flows across an in-
terface between two metals with different conductivities for the channels.

The actual difference in the chemical potentials for the two spin states,
or spin voltage, reflects the difference in the number of electrons in the two
spin channels. If µ↑ > µ↓ there are more up spins, and vice versa. Figure 14.1
shows that the signs of the spin accumulation and spin voltages at the F/N
interface reverse with the direction of current flow. As shown in Fig. 14.1, the
spin voltage µ↑ − µ↓ decays with the distance x from the interface. This will
be discussed in Sect. 14.1.3.

A spin voltage is the difference in spin-up and spin-down chemical poten-
tials and corresponds to an unequal number of up and down spins. At a
F/N interface, the signs of the spin voltage and spin accumulation voltage
invert with the direction of current flow.

The essence of the spin accumulation voltage VAS lies in the different
conductivities associated with the two current channels. According to the
Drude relation (12.13), the conductivities σ = n e b are determined not solely
by the spin polarizations of the electrons with densities n↑ and n↓ at the Fermi-
surface but also by the electron mobilities b↑ and b↓ which are governed by the
spin selective scattering times τ↑e = τ+

e and τ↓e = τ−e , discussed in Sects. 8.6.2
and 12.6.1. The latter quantities are in turn related to the spin-dependent
electron mean free paths λ±e according to τ±e = λ±e /v, where v is the group
velocity of the electrons. In our description above, we have lumped the various
spin dependent contributions into a single parameter αF, so that

σ↑F = n↑ e b↑ =
n↑ e2τ↑e
me

= αFσF and σ↓F = n↓ e b↓ =
n↓ e2τ↓e
me

= (1 − αF)σF .

(14.10)
The buildup of a voltage at the interface of two metals is quite a general

phenomenon whenever the current flows in two separate channels with differ-
ent conductivities. This effect has been known for some time. For example, in
superconductors two separate channels of super-conducting Cooper pairs and
normal electrons might be present. In this case, a voltage will develop at a
contact to a normal metal [729].
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Fig. 14.2. Chemical potential near the interface between a HMF with only the
spin-up channel and a paramagnet. Because µ↓ and spin equilibration do not exist,
µ↑ is a straight line in the HMF. As discussed in the text, µ↓ must have a horizontal
tangent at x → 0 on the N side

The largest spin accumulation voltage occurs at the interface between a
HMF and N. In a HMF, only one spin channel, say the up-channel, conducts.
In this case µ↓ is not defined and spin equilibration at the interface is not
necessary in the HMF. Therefore, µ0(x) = µ↑(x) is a straight line in the
HMF. The situation is different in N. Because we have j↓ = 0 at the interface,
we have ∂µ↓/∂x = 0 at x = 0, that is, on approaching the interface from N,
the quantity µ↓(x → 0) must have a horizontal tangent at x = 0. The case
for the HMF/N interface is illustrated in Fig. 14.2.

14.1.2 The Diffusion Equation for the Spins

In Figs. 14.1 and 14.2 we have indicated that the spin voltage µ↑−µ↓ decreases
away from the interface, but so far we have not explained this fact. The
quantitative decrease from the interface is calculated from the spin diffusion
equation, which we shall derive now. It will allow us to more quantitatively
define the equilibration times of the spin dependent Fermi-levels in N and F.

The differential equation governing the currents in the two spin channels
is known as the spin diffusion equation. It was first established to understand
the spreading of the spin polarization of nuclei studied by nuclear magnetic
resonance, well before its application to interfaces of ferromagnets. The equa-
tion may be obtained by investigating the dependence of the density of surplus
spins n↑(x, t)− n↓(x, t) produced by the current as a function of the distance
x from the interface. Denoting the density of atoms as nA and the density of
conduction states per atom per unit energy as D(E) one has,
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n↑(x, t) − n↓(x, t) = nA

∫ µ↑

µ↓
D(E) dE � nAD(Ē)

[
µ↑(x, t) − µ↓(x, t)

]
.

(14.11)
Here Ē is the averaged spin-up and spin-down chemical potential or Fermi
energy. In practical cases, (µ↑ − µ↓) 
 kBT . Given a volume element of
length ∆x and cross-sectional area S, we have to know the electric currents
flowing into the element and out of it. Fick’s law says that a particle current
of density dn/dt flowing into the volume element through the area S is given
by

S
dn
dt

= SDdn
dx

|x , (14.12)

where D is the diffusion constant with dimension (area/time). The current
flowing out of the volume element is

S
dn
dt

= SDdn
dx

|x+∆x . (14.13)

In our case the difference between these two currents must be equal to the
equilibration rate in the spin channels S n(x, t)/τse as there can be no pile up
of electrons if the current is stationary, i.e., if S j = const. Here τse is the spin
equilibration time in the metal, also called spin diffusion time. This yields the
spin diffusion equation,

n(x, t)
τse

= lim
∆x→0

1
∆x

D
[
dn
dx

|x+∆x − dn
dx

|x
]

= D∂
2n

∂x2
. (14.14)

In the literature, τse is also called spin-flip time since the distance over which
the two Fermi-levels equilibrate is related to processes that involve transitions
between opposite spin states. These processes will be discussed in more detail
in Sect. 14.1.3 below.

By use of (14.11), one obtains from (14.14) the desired spin diffusion equa-
tion in terms of the chemical potentials

µ↑ − µ↓
τse

= D d2(µ↑ − µ↓)
dx2

. (14.15)

The steady-state solution is

µ↑ − µ↓ =
[
µ↑(0) − µ↓(0)

]
e−x/Λ , (14.16)

where the characteristic exponential decay length, Λ, called the spin diffusion
length or spin equilibration length, is given by

Λ =
√

D τse . (14.17)

The decrease of µ↑−µ↓ with the distance from the interface is determined
by the characteristic equilibration time τse and equilibration distance Λ of
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the spins, linked by the diffusion constant D = 1
3vFλe. Here vF is the Fermi-

velocity, and λe the electron mean free path. Typical values for vF and λe in
metals are given by Ashcroft and Mermin [219]. With the values in Table 12.4
we obtain D = 2.6×10−2 m2 s−1 for Cu and D = 2.1×10−3 m2 s−1 for Fe. In
the nonmagnet we have for the spin averaged diffusion constant D = D↑ = D↓,
but in the ferromagnet we have D = αFD↑ + (1 − αF)D↓.

The spin-dependent chemical potentials µ↑ and µ↓ equilibrate away from
the interface over a characteristic spin equilibration length Λ and equili-
bration time τse.

14.1.3 Spin Equilibration Processes, Distances and Times

Because of the central role of the spin equilibration time τse and length Λ we
need to take a closer look at the processes that determine them.

Nonmagnetic Metals

In N, τse is dominated by spin de-phasing processes due to spin–orbit coupling
in Coulomb scattering processes on the atoms in the sample, as discussed pre-
viously in Sect. 8.6.2 in conjunction with the ballistic transmission of spin
polarized electrons. Hence, in N, τse = τ2 is related to the transverse relax-
ation time T2 in magnetic resonance [735,736]. During their different diffusive
paths through the sample the individual electron spins will experience dif-
ferent effective magnetic fields and hence spin precessions, leading to spin
randomization with, on average, equal spin up and down probabilities along
any chosen quantization axis. During these scattering processes the angular
momentum is directly transferred to the atoms in the lattice, as discussed in
Sect. 8.6.2. The scattering may be enhanced by addition of heavy atoms such
as Pt with an increased spin-obit interaction or by addition of paramagnetic
impurities which lead to additional exchange scattering. Whatever the specific
mechanism of the spin transitions may be, it will decrease the spin polariza-
tion of the electrons injected into N, and the spin voltage µ↑ − µ↓ will tend
to zero with increasing distance x from the interface.

As discussed in Sect. 14.1.5, the most reliable values for τse in nonmagnetic
metals are available for Cu and Al. For Cu, Jedema and collaborators find
ΛN = 1, 000 nm at 4.2 K and 350 nm at room temperature (RT) [737], while
in Al the values are ΛN = 650 nm at 4.2 K and 350 nm at RT [738]. We
have summarized various transport parameters for Cu at room temperature
in Table 14.1. If we compare the spin dependent scattering lifetime τse with
the electron scattering life time τe, we find that in Cu at room temperature
τse ∼ 200 τe so that the spin polarization disappears on average after more
than 200 spin-conserving scattering events.
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Table 14.1. Transport parameters describing conduction in Cu and Co at 300K

vF
a [m s−1] λe

a [nm] D = 1
3
vFλe [m2 s−1] τe

a [fs] Λ [nm] τse = Λ2/D [ps]

Cu 1.8 × 106 44 2.6 × 10−2 25 350 b 4.7

Co 1.8 × 106 5.8 3.5 × 10−3 3.2 38 c 0.4

a From Table 12.4 for Cu. For Co we used the values n = 18.1 × 1028m−3, R =
6.2 × 10−8Ωm, and EF = 8.7eV
b Ref. [737]
c Ref. [741].

Ferromagnetic Metals

In a FM, we have to distinguish the spin polarization of the 3d electrons
generating the magnetization from the spin polarization of the current due
to the motion of the s electrons. As pointed out in Sect. 12.5, models for the
electrical conduction in transition metals need to be based on the transport
and scattering mechanism of the s-electrons, and the resistivity is in fact
dominated by spin-conserving scattering of the s electrons on the hole-states in
the 3d-shell. The spin polarization P of the electron current is given by (14.4),
and through (14.5) and (12.13) is determined by the number of majority spins
n↑ and minority spins n↓ at the Fermi-level, by their respective mobilities
b↑ and b↓ and by the respective derivatives of the spin-dependent chemical
potentials.

As electrons from N enter F, the spin polarization P builds up over a dis-
tance determined by spin-conserving s → d electron scattering. This distance
corresponds to the electron mean free path λe = (1/λ↑e + 1/λ↓e)

−1 which for a
ferromagnet like Fe is about ∼ 5 nm according to Table 12.4. At the interface
this leads to the buildup of the spin accumulation voltage which according to
(14.9) is seen to depend on αF. By use of (14.10) we can write

αF =
(

1 +
n↓τ↓e

n↑τ↑e

)−1

=
(

1 +
n↓λ↓e

n↑λ↑e

)−1

, (14.18)

revealing the dependence of the spin accumulation voltage VAS on the spin
dependent mean free paths λ↑e = λ+

e and λ↓e = λ−e .
Equilibration of µ↑ and µ↓ away from the interface must involve tran-

sitions between opposite spin states. Since they are much less likely than
spin-conserving scattering events, as discussed in Sect. 12.7, we expect for
the equilibration length ΛF � λe ∼ 5 nm. In Sect. 12.7.1 we have discussed
the various processes leading to transitions between opposite spin states and
also discussed their speed. For example, inelastic scattering on spin waves
provides a possible mechanism for the transfer of energy and angular mo-
mentum. At room temperature energy transfers of the order of 10 meV are
possible corresponding to times of about 100 fs (see Fig. 15.1 below).
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At lower temperatures electron scattering on spin waves becomes asym-
metric. While spin waves can always be excited by a minority spin electron
which becomes a majority spin in the process, spin wave absorption by a
majority spin electron is no longer possible as spin waves cease to exist at
low T .1 At low temperatures, spin relaxation processes may still exist due
to scattering at potential gradients, which according to (6.85), give rise to a
spin-orbit field B∗ ∝ p×∇Φ. One would expect that such spin–orbit scatter-
ing strongly depends on the crystallographic and electronic structure of the
material, and it appears that τse becomes shorter in the presence of impurities
and defects [730,739]. The details of the spin–orbit scattering mechanisms in
transport still require further study. In general, τse may include loss of spin
polarization by both magnon scattering and spin–orbit de-phasing, that is,
contributions from τ1 and τ2 discussed in Sect. 8.6.2.

Experimental values for ΛF have been derived from giant magneto-resistance
(GMR, see Sect. 14.1.4 below) measurements on sandwich structures con-
taining F layers in the 10–1000 nm thickness range in order to satisfy the
conditions for bulk-like samples and minimize interfacial effects [739–741].
Table 14.1 gives the room temperature results for Co, obtained by Piraux
et al. [741]. At room temperature, ΛF = 38 nm, corresponding to τse � 400 fs.
At 77 K, ΛF increases to 59 nm with a spin equilibration time τse of about 1 ps.
Measurements on alloys give shorter values for ΛF, as reviewed by Bass and
Pratt [740], which have been attributed to the existence of addition scattering
mechanisms, similar to embedding impurities into pure metals. For example,
it has been argued [739] that the scattering in permalloy, Ni80Fe20, resembles
that for Fe impurities in Ni, explaining the measured short value of ΛF = 4
nm, corresponding to τse � 5 fs.

It is interesting that the observed spin equilibration time in ferromagnets
at room temperature is considerably shorter than the spin–lattice relaxation
time, which is of the order of 100 ps as discussed in Sect. 15.2.2 below. This
indicates that spin equilibration due to magnon excitations must only es-
tablish equilibrium within the spin system, which occurs within hundreds of
femtoseconds, but not with the lattice which occurs on longer time scales.
In a simple picture, an s-like conduction electron may flip its spin on a sub-
picosecond time scale by excitation of a spin wave, which corresponds to an
excitation of the more localized d-moments. Yet the de-excitation of the ex-
cited d-moments, i.e., of the whole magnetization, by transfer of energy and
angular momentum to the lattice takes much longer.2 In the presence of a

1Note that nonuniformities of the magnetization can also scatter spins. Strong
nonuniformities like bulk or interface domain walls can be excited by spin currents
even at T = 0, leading to scattering.

2The transfer of angular momentum from conduction electron spins to localized
Mn spins and the ensuing local Mn moment de-excitation and equilibration with the
lattice has been directly observed in time-dependent optical spin resonance studies
of magnetic semiconductors like MnSe [742].
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current, the magnetization may therefore differ from that expected from the
prevailing lattice temperature.

Generalizing the results listed in Table 14.1 for Cu and Co, we can state
as follows.

At room temperature, one finds typical values ΛN ≈ 500 nm and τse ≈ 10
ps for nonmagnetic metals, and ΛF ≈ 50 nm and τse ≈ 1 ps for pure
ferromagnetic metals.

14.1.4 Giant Magneto-Resistance (GMR)

The potential drop at the interface between a ferromagnet F and a nonmag-
netic metal N leads to a boundary resistance, which when properly combined
at two F/N interfaces in a F1/N/F2 sandwich, leads to an effect known as
giant magneto-resistance or GMR. GMR is extremely useful for measuring
the relative magnetization directions of two ferromagnetic metals F1 and
F2, separated by a nonmagnetic metal N. The GMR effect is larger by al-
most an order of magnitude than the AMR effect discussed in Sect. 12.5.3,
and it is routinely used today to detect the weak magnetic fields (stray
fields) of the small domains written on magnetic recording disks. In addi-
tion, GMR detection is fast and has been used on time scales of 100 ps.
Such GMR-sensors have revolutionized the reading of data from magnetic
media and helped the storage industry stay on Moore’s-law curve as shown in
Fig. 1.15.

The principle of a GMR sensor in the form of a spin valve is illustrated
in Fig. 14.3. One of the ferromagnetic layers is pinned by exchange bias (see
Sect. 13.4.3) to an AFM, shown in green, and serves as a “reference” layer
since it cannot be switched in typical external magnetic fields. A second fer-
romagnetic or “sensor” layer, decoupled by a nonmagnetic spacer layer such
as Cu, may be switched in a relatively small field. Depending on its parallel
or antiparallel alignment relative to the pinned reference layer, the resistance
of the device changes on the order of 10%. In practice, a spin valve structure
serves as a “read head” in a disk drive. As the recording disk, with its written
magnetic bits rotates underneath the read head, the stray fields of the bits
cause the magnetization of the sensor layer to change. The induced change in
the GMR signal can therefore be used to read the bit pattern.

As illustrated in Fig. 14.3, two cases of current flow direction can be dis-
tinguished. For flow of Current Perpendicular to the Plane (CPP), the devices
are called CPP sensors. They show an approximately three-times larger GMR
than sensors in which the Current flows In the Plane of the interface (CIP-
sensors).
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Low resistance state High resistance state

Current

CIP geometry

C
urrent

CPP geometry

Spin valve GMR sensor

Fig. 14.3. Concept of a spin valve. The magnetization of the lower magnetic layer
is fixed in direction by exchange coupling to an antiferromagnetic substrate as dis-
cussed in Sect. 13.4.3. The upper magnetic layer is separated by a nonmagnetic
spacer layer and its magnetization can rotate in relatively small fields. If the spacer
layer is metallic (e.g. Cu), the current typically flows in the plane of the films, called
the “current in plane” or CIP geometry. When the current flows perpendicular to
the plane of the films, one speaks of a “current perpendicular (to) plane” or CPP
geometry. As discussed in Sect. 13.2.2 one may replace the metal spacer layer by an
insulator, leading to a “tunneling spin valve” which is operated in the CPP geometry

The Concept of Boundary Resistance

In order to derive the GMR effect one first calculates the boundary resistance
of a single F/N interface, defined as RB = VAS/j(0) with dimension [Ohm ×
area]. With (14.9) one obtains,

RB =
(2αF − 1)

[
µ↑(0) − µ↓(0)

]
2 e j(0)

. (14.19)

To calculate RB from this equation, one needs to know the current j(0) flowing
through the interface. By use of the ansatz j(0) = βIj, where βI is a yet to
be determined interface parameter, one may use (14.15), and approaching the
interface from the side of N we have,

∂µ↑

∂x
− ∂µ

↓

∂x
= − e

σ↑
j↑+

e

σ↓
j↓ = −2(2βI − 1) ej

σN
=

−(µ↑(0) − µ↓(0))
ΛN

. (14.20)

From the right-side of this equation it follows that

ej(0)N =
µ↑(0) − µ↓(0)

2(2βI − 1)ΛNσ
−1
N

. (14.21)



14.1 Currents Across Interfaces Between a Ferromagnet and a Nonmagnet 649

Inserting into (14.19) gives

RB = (2αF − 1)(2βI − 1)ΛNσ
−1
N . (14.22)

We still need to determine (2βI − 1). This is done by considering the solution
of (14.15) on approaching the interface (x → 0) from the side of the ferro-
magnet, and by realizing that the current, that is the coefficient β, must be
continuous just as µ↑ and µ↓ must be continuous. For the ferromagnetic side
of the interface we then have,

∂µ↑

∂x
− ∂µ↓

∂x
=
e

σF
j
αF − βI

αF(1 − αF)
=

−(µ↑(0) − µ↓(0))
ΛF

, (14.23)

and this yields

ej(0)F =
2αF(1 − αF)

(2βI − 1) − (2αF − 1)
µ↑(0) − µ↓(0)
ΛFσ

−1
F

. (14.24)

Equating (14.24) and (14.21) finally gives for the interface parameter βI

(2βI − 1) =
2αF − 1

1 + 4αF(1 − αF)ΛNσ−1
N

ΛFσ−1
F

. (14.25)

For αF = 0.5 there is no asymmetric conduction and we find βI = 0.5, as
expected. In the case of the HMF we have αF = 1 and one obtains βI = 1. This
means that the current flows in one spin channel only. The boundary resistance
leading to the GMR effect is then obtained from (14.22) in agreement with
the expression in ref. [729]. We obtain the following important result.

The boundary resistance RB for a single interface between a bulk ferro-
magnet F and nonmagnet N, for current flow perpendicular to the inter-
face and assuming that in both F and N the spin equilibration length Λ
is much longer than the electron mean free path λe, is given by

RB =
(2αF − 1)2 ΛN σ

−1
N

1 + 4αF(1 − αF)ΛNσ−1
N

ΛFσ−1
F

. (14.26)

We see that the boundary resistance is enhanced by increasing the differ-
ence between the spin up and spin down conductivities in F, expressed by
αF → 1, as expected. In our derivation we have assumed that the electric
current flows perpendicular to the interface. A more detailed theory of CPP
GMR has been given by Valet and Fert [730], who also treated the cases of
finite layer thicknesses and multilayer structures. The more general theory of
Valet and Fert was shown by the authors to reduce to our result for the case of
an interface between F and N metals of thickness t� Λ� λe. Experimental
results have been reviewed by Bass and Pratt [740].
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Fig. 14.4. Contact between two identical ferromagnets (FM) across a nonmagnetic
metal N of good conductivity and thickness tN � ΛN. This corresponds to the
situation in actual spin valves shown in Fig. 14.3. Left: Case of antiparallel magne-
tizations in the two FMs, leading to a splitting of the Fermi-levels µ↑ and µ↓. At
each of the two interfaces, FM/N and N/FM, the full spin accumulation voltage
VAS develops. Note that in the left ferromagnet with down magnetization, spin up
refers to majority spins, while in the right ferromagnet with up magnetization spin
up refers to minority spins. Right: Case of parallel magnetizations in the two FMs.
With decreasing thickness tN of N the spin accumulation voltage decreases at both
interfaces, and in the limit tN/ΛN → 0 the spin splittings of the chemical potentials
vanish, as shown. The parallel coupling case has the lower voltage drop and there-
fore the lower resistance. The GMR effect is the difference in resistance measured
between antiparallel and parallel magnetic alignments of the two ferromagnets, cre-
ated by the voltage difference 2VAS. Note that VAS becomes infinitely large in the
limiting case of two antiferromagnetically coupled half metallic ferromagnets

GMR of Sandwich Structures

To observe the GMR effect, one needs two ferromagnets F1 and F2, connected
by a nonmagnetic metal N, as shown in Fig. 14.4. In practice, N is kept thin, of
order of a few nanometers, and we shall consider this case. If the thickness tN
of N is much less than the spin diffusion length, tN 
 ΛN, the spin relaxation
in N becomes negligibly small. Note however that a finite thickness of N is
required to interrupt the exchange coupling between F1 and F2 and to allow
both parallel and antiparallel alignments of M1 and M2 to be stable. If N
is too thin and exchange coupling exists, M1 turns gradually into M2 over
the width of a domain wall. Depending on the spin selective scattering, the
spins of the electrons will then also turn gradually into the new direction on
moving from F1 → F2 and the GMR effect is lost or greatly reduced.

Figure 14.4 shows the principle of observing GMR. In changing the orien-
tation of the two ferromagnetic layers F1 and F2 from parallel to antiparallel
alignment (or vice versa) one observes a different spin accumulation voltage
for constant current, and hence a different boundary resistance. The change



14.1 Currents Across Interfaces Between a Ferromagnet and a Nonmagnet 651

of the spin-dependent chemical potentials shown in Fig. 14.4 for antiparallel
and parallel alignment of F1 and F2 follows from Fig. 14.1. If F1 and F2 are
antiparallel the spin-dependent chemical potentials for the two interfaces are
in phase, if F1 and F2 are parallel, they are out of phase and the spin accu-
mulation tends to zero. In fact, the proper theory [730] for the parallel case
and tN 
 ΛN shows that at the interfaces, ∆µ is reduced by a factor tN/ΛN

relative to the “macroscopic” case tN � ΛN, treated in Sect. 14.1.1.
In fact, we can use our results for the boundary resistance given by (14.26),

for the case shown in Fig. 14.4 to calculate the size of the GMR effect. To do
so we make the assumption that ΛNσ

−1
N � ΛFσ

−1
F . Assuming that the non-

magnetic metal is Cu, this condition is not well satisfied for pure ferromag-
netic metals such as Co, but it is a reasonable assumption for ferromagnetic
alloys which have a shorter spin equilibration length ΛF ∼ 10 nm. Indeed,
today, alloys are preferentially used in practical spin valve structures. For ex-
ample, using the approximate low temperature values ΛN = 1,000 nm and
σ−1

N = 2 × 10−8 Ωm for Cu, and ΛF � 10 nm and σ−1
F � 7 × 10−8 Ωm for

CoFe alloys [743], we have (ΛNσ
−1
N )/(ΛFσ

−1
F ) ≈ 30, and therefore the second

term in the denominator of (14.26) dominates. We can then write,

RB =
(2αF − 1)2 ΛF σ

−1
F

4αF(1 − αF)
. (14.27)

This equation is valid, provided that each FM has a thickness tF � ΛF as
assumed in the derivation of (14.26). For the antiparallel case in Fig. 14.4,
the full spin accumulation voltage and therefore boundary resistance RB is
obtained even for a thin spacer layer N. However, in the parallel case we
have RB � 0. Assuming that the thickness of layer N tN 
 tF, the total
resistance of the structure is dominated by the two ferromagnets and amounts
to R = 2σ−1

F tF. We obtain for the GMR signal,

RAP −RP

R
=

∆R
R

=
2RB

2σ−1
F tF

=
(2αF − 1)2

4αF(1 − αF)
ΛF

tF
. (14.28)

This particularly simple result3 is valid for a thin spacer layer tN 
 ΛN,
and thick ferromagnetic layers tF � ΛF � λe. We shall use it later in
Sect. 14.1.6 to estimate the typical size of the GMR effect.

14.1.5 Measurement of Spin Diffusion Lengths in Nonmagnets

The GMR effect may be used to measure the spin diffusion length in non-
magnets, defined by (14.16) and (14.17) as the distance ΛN over which the
potential difference µ↑ − µ↓ decays into the bulk of N. The principle of this
experiment is based on a lateral spin valve geometry illustrated in Fig. 14.5.

3Our (14.28) is identical to (3) in ref. [739], since the parameter β in the Valet–
Fert notation is related to our αF according to β = 2αF − 1.



652 14 Electron and Spin Transport

Fig. 14.5. Upper part: Design of the lateral spin valve to measure ΛN in aluminum.
Two Co FMs, labeled F1=Co1 and F2=Co2, with different coercivities are positioned
on top of Al. The spin current I, indicated by arrows, flows from Co1 into Al and
exits to the left. In the experiments with the Al-conductor shown here, a very thin
Al2O3 layer is also inserted. The decay of µ↑ − µ↓ is measured by the GMR-signal
induced in Co2 positioned on top of a tunnel barrier to the right. Note that the
charge current does not flow underneath Co2, thus avoiding contributions to the
measured spin signal due to the Hall-effect and the anisotropic magneto-resistance.
The voltage VAS is thus solely determined by the decay of the diffusive spin current
in Al, as illustrated underneath as a function of distance x in units of ΛN. For Al
one finds ΛN = 650 nm at 4.2 K. Figure adapted from [738]

Using the geometry of Fig. 14.5, Jedema and collaborators [737,738] mea-
sured the voltage drop between two ferromagnets F1 and F2, placed on top
of either Cu or Al, and separated by variable lengths. Note that in the ex-
periments with Cu, the thin Al2O3 layer shown in Fig. 14.5 was absent. If the
magnetization of F1 is switched from parallel to antiparallel relative to the
magnetization in F2, one obtains the spin accumulation voltage VAS defined
in Fig. 14.4. Dividing VAS by the current yields the GMR-signal, that is the
resistance of the interface. The GMR signal is found to decrease exponen-
tially with the separation between F1 and F2, in agreement with the diffusion
equation of the magnetization, (14.15), and thus yields the decay of the spin
current due to spin relaxation and spin de-phasing in N.

The GMR decrease with the F1–F2 separation is governed according to
Sect. 14.1.2 by the diffusion length in N, ΛN =

√
D τse, with τse being the

lifetime of the spins and D the diffusion constant. The length ΛN will depend
on temperature. For Cu one finds ΛN = 1, 000 nm at 4.2 K and 350 nm at
room temperature (RT) [737], while in Al the values are ΛN = 650 nm at 4.2
K and 350 nm at RT [738]. At RT, Cu and Al seem to exhibit the same spin
diffusion lengths.
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In later work, Jedema and coworkers [738] also detected the precession of
the spin in the nonmagnetic metal Al induced by a magnetic field B⊥, ap-
plied perpendicular to the injected spin polarization. The geometry for this
important experiment is again that of Fig. 14.5, with the Co films magne-
tized in plane (perpendicular to the shown cross section in Fig. 14.5) and the
field is applied in the vertical direction. In this experiment the shown thin
Al2O3 tunnel barrier was present. It enhances the spin polarization of the in-
jected current as discussed in Sect. 13.2.2 and also prevents re-entrance of the
injected electrons into the F-electrodes which can lead to additional depolar-
ization. Note that again the charge current does not flow through the region
underneath Co2. Hence it is a purely diffusive spin current at zero charge
current that is observed here.

For parallel versus antiparallel magnetization directions in Co1 and Co2,
one initially observes a positive spin voltage µ↑ − µ↓ in the absence of a field.
As the field B⊥ is applied and increased, the voltage decreases to zero. This
is caused by a 90◦ in-plane precession of the injected spins about the per-
pendicular field during their diffusion through N from Co1 and Co2. After
further increasing the field, the spins precess by an angle of 180◦ and the spin
voltage reverses sign and becomes negative. The experiment thus detects the
precession of the spins by the measured spin voltage. As the field is further
increased one would expect further precession and voltage cycles with a de-
crease of the voltage amplitude, indicative of spin de-phasing with time. This
is not observed since even at 4.2 K the voltage already decreases drastically
after only one precession cycle. This is consistent with the fact that in the
relatively small fields up to 50 mT used by Jedema et al., the Larmor spin
precession time is about 1 ns. During this relatively long precession time, the
short-lived spin polarization with a lifetime of about 50 ps at 4.2 K in Cu and
Al, has nearly completely decayed.

All-electrical detection of spin precession in metals was first reported by
Johnson and Silsbee in 1985 [735], but it was difficult at the time to in-
terpret due to the presence of the anisotropic magnetoresistance effect (see
Sect. 12.5.3) and the Hall effect in the ferromagnetic contacts. In later exper-
iments, Johnson [736] used lithographically fabricated samples and obtained
the value τse = 17 ± 9 ps for Au below 65 K, close to the values for Cu ob-
tained by Jedema [737,738]. Over the years, the reduction of the sample size
by three orders of magnitude together with the use of novel sample geometries
has removed most ambiguities in the values for τse. From the arguments given
in Sect. 14.1.3, τse should vary with the atomic spin–orbit interaction and one
would therefore expect significant differences between Al, Cu and Au, which
is inconsistent with present experimental results. This point awaits further
experimental studies.

With two identical ferromagnets, the electrical resistance is lowest when
the magnetizations are parallel, and increases typically by about 10% when
they are antiparallel. However, this does not necessarily apply with two differ-
ent ferromagnets. For example, it has been shown [744] that a sensor in which
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one film is Fe and the other Fe3O4 exhibits a negative GMR of −5% at 300 K,
that is, the resistance is lowest when the two films are magnetized antipar-
allel. Since according to Sect. 7.7.4, the electrical conduction in magnetite is
entirely due to minority spins, the observed negative GMR corroborates the
notion put forward in Sect. 12.2.1 that electrical conduction in Fe metal is due
to majority spins.4 Further examples of negative GMR have been described
by Bass and coworkers [743]. As discussed in Sect. 7.7.4, bulk magnetite is a
half metallic ferromagnet and thus a sensor made with two Fe3O4 films should
exhibit a huge magneto-resistance according to Fig. 14.2. This has not been
verified so far.

14.1.6 Typical Values for the Spin Accumulation Voltage,
Boundary Resistance and GMR Effect

Toward the end of this section we want to give some approximate values for the
size of the spin accumulation voltage VAS, the boundary resistance RB and the
GMR effect ∆R/R for a ferromagnet/nonmagnet/ferromagnet sandwich in a
CPP geometry. For convenience we consider the case shown in Fig. 14.4 with a
thin nonmagnetic spacer layer. We furthermore assume that ΛNσ

−1
N � ΛFσ

−1
F

so that we can conveniently use our previously derived equations (14.27) for
RB and (14.28) for ∆R/R.

We take the literature values for Co0.91Fe0.09 given by Bass and Pratt,5

αF = 0.83, ΛF = 12 nm and σ−1
F � 70 nΩm [740]. By use of (14.27) we

obtain RB = 650Ωnm2 and with (14.28) ∆R/R = 9.3%. Our estimate of the
GMR effect is in good accord with experimental observations in spin valve
structures.

We can also calculate a value for the spin accumulation voltage using our
above values. It is given by

VAS = RB j . (14.29)

If we assume a current density of j = 1012 A m−2, which is a typical value
used in spin injection (see below), we obtain VAS � 0.65 mV.

Finally, we can calculate the transient magnetization induced by the spin
current, i.e., the difference in the number of up and down spins in the atomic
volume, in both F and N. This transient moment appears only in the pres-
ence of current flow and needs to be distinguished from any intrinsic magnetic
moments due to exchange splits bands. For example, the magnetic moment of
an atom in F located near the interface within the spin equilibration length
will be slightly different than that of an atom in F located far away from the
interface, in the bulk of F. Similarly, a small transient moment due to spin
accumulation will exist on atoms in N near the interface. In practice, the in-
trinsic magnetic moment is due to the d electrons as discussed in Sect. 12.2.2,

4This is also supported by measurements of spin-dependent electron mean free
paths by Gurney et al. [745].

5The β value of Bass and Pratt is related to our αF value by β = 2αF − 1.
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while the transient moment is due to s electrons. From (14.11) we know the
surplus spin density at the interface and can therefore obtain the surplus mag-
netization per atom in the nonmagnet, i.e., the transient magnetic moment
per atom, mN, in units of µB, as

mN = D(EF)
[
µ↑(0) − µ↓(0)

]
µB = D(EF)

eVAS

αF − 1
2

µB . (14.30)

In the last step we have used (14.9). From Fig. 12.1 we know that in non-
magnetic metals like Cu we have D(EF) � 0.2 eV−1atom−1 and with eVAS �
0.6 meV we obtain mN � 4× 10−4 µB/atom. It may be possible in the future
to measure this transient moment by XMCD.

14.1.7 The Important Role of Interfaces in GMR

So far we have made the specific assumption that the interface is transparent
and simply separates two metals. In practice, interfaces behave differently, but
the detailed understanding of interfacial effects is still a significant challenge.
This is largely due to the fact that interfaces between solids are buried and
their structural, electronic and magnetic properties are often not accessible
experimentally. We have already encountered this problem in Sect. 13.4.3. It is
clear that transport across interfaces must be influenced by several interfacial
properties, and we shall briefly review them now.

One may readily list some interfacial properties which must affect the scat-
tering of electrons and hence their transport. The interface structure, including
effects such as roughness, compositional gradients and interface specific mag-
netic moments will cause deviations from idealized behavior. Interface-specific
electronic states may exist in both the charge and spin degrees of freedom,
leading to novel scattering mechanisms. In general, such effects may lead to
complicated angle-dependent electron scattering cross sections, which are very
sensitive to sample manufacturing techniques.

The existence of strong interfacial effects in magnetoresistance was pointed
out early-on by Parkin [746], who found significant increases in spin-valve
GMR by dusting the interfaces in Ni81Fe19/Cu/Ni81Fe19 sandwiches with Co,
up to thicknesses of a few layers. Over the years, the importance of interfacial
effects has become well accepted and was included into the GMR theory by
Valet and Fert [730] and the analysis of experimental CPP GMR data by
Bass and Pratt [740]. In such studies interface effects, included in parameter-
ized form, typically lead to enhanced effects which may be loosely attributed
to enhanced spin dependent interface scattering. It is still quite difficult to
understand the microscopic origin of interfacial effects in detail.

In Sect. 13.3 we have discussed the spin-dependent reflection of electrons
from a ferromagnetic surface. Today such spin-dependent reflection processes
are thought to be at the very heart of generating spin polarized electron
currents in magnetic multilayer structures. The assumption of a transparent
interface is sometimes referred to as a “macroscopic” or “bulk” theory, be-
cause it is based on the different spin dependent conductivities appropriate for
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bulk-like samples. Upon detailed study, this assumption has turned out to be
unrealistic, and the bulk contribution amounts to only 20% of the GMR effect
in practical multilayer structures consisting of thin layers of a few nanometers
thickness. In such systems, the size of the measured GMR effect can only be
explained by interfacial spin dependent reflection processes.

At present, reflection can be quantitatively studied only at the ferromagnet-
vacuum interface, as discussed in Sect. 13.3.2. This is done by preparing a spin
polarized electron beam and observing the change in spin direction after the
reflection, in particular, its dependence on the energy and angle of reflection.
Another well documented effect of spin dependent reflection is periodic ex-
change coupling of two ferromagnets across a nonmagnetic spacer layer such
as Cu, discussed in Sect. 13.4.5. It is important to note that spin-dependent
reflection is an electronic process that proceeds on ultrafast timescales. It
involves spatial separation of the two spin states as in the Stern–Gerlach ex-
periment. Transitions between states of opposite spin are not required.

14.2 Spin-Injection into a Ferromagnet

In a trilayer F1/N/F2, such as shown in Fig. 14.4, one may transfer electrons
from the first ferromagnet F1 into the second ferromagnet F2 by drawing an
electric current. The current of electrons leaving F1 is spin polarized. Although
it is still difficult to account for the sign and degree of spin polarization,6 we
shall simply assume here, as verified by experiments, that for a given ferro-
magnet the transmitted current has acquired a well defined spin polarization.
We will also assume that the electrons traverse the thin nonmagnetic spacer
layer by retaining most of their spin polarization P , defined in Sect. 8.4, until
entering the ferromagnet F2, and that this holds whether the current density
j = ne e v corresponds to ballistic or drift velocities v.

The total spin angular momentum vector per volume associated with the
current density j of electrons, which enters the second ferromagnet F2, is given
by

S1 =
j

e v

h̄

2
P . (14.31)

As soon as the electrons are in F2, they will experience exchange coupling
to the local magnetization, depending on the angle enclosed by S1 and the
magnetization M2. Additionally, spin selective scattering of the electrons will
occur, as discussed in Sect. 12.6.4, tending to rotate S1 into the direction S2

of the spin density in the ferromagnet F2.7 Both phenomena lead to effective

6As discussed in Sect. 13.2, the degree of spin polarization and even its sign are
not solely determined by the ground state magnetic properties of the source, such
as the degree of spin polarization at EF.

7Note that minority spins which point in the same direction as M 2 (i.e., opposite
direction as S2) are preferentially scattered (see Fig. 7.6).
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torques acting on M2 (or S2). The torques excite spin-waves and can even be
strong enough to switch M2 into the opposite easy direction. These ideas were
first proposed and theoretically treated by Slonczewski [84] and Berger [85].

Spin injection is one of the most interesting developments in contempo-
rary magnetism, testing the interaction processes of ferromagnetic spins and
their dynamics and promising a host of new applications. Its quantitative un-
derstanding is still complicated by a lack of knowledge of interfacial effects
on the degree and sign of the spin polarization of the injected electrons, al-
though progress is being made [743, 747]. Also, the magnetic characteristics
of the materials are insufficiently determined in practice because the samples
have to be tiny to achieve the high current densities required in spin injection.
Therefore nanoscale and interfacial effects are expected to play a role. A vast
field of interesting research remains unexplored.

14.2.1 Origin and Properties of Spin Injection Torques

The occurrence of torques acting on the magnetization upon injecting spin
polarized electrons may be viewed as a consequence of Newtonian mechanics,
specifically the third law according to which actio=reactio in closed systems.
Once an electron is injected through the interface and is inside the ferromag-
net, we have a closed system with no external forces. In saying this, we have
neglected the fact that the lattice of nano-magnets, of interest in our discus-
sion, is necessarily coupled to the substrate it is fabricated on. In principle,
this invalidates the assumption of a closed system as angular momentum may
be transferred directly from the injected spins to the lattice and then be taken
up by the substrate. However, the spin–lattice interaction is weak compared
to the electron–electron interactions, and we shall neglect it for now, until we
come back to it in our later discussion of the threshold value of the switching
current.

With this assumption it is easy to understand in principle how spin in-
jection works. The total angular momentum L per volume, consisting of the
angular momentum density of the injected spins S1 plus the spin angular mo-
mentum density S2 of the magnetization in F2 must be conserved. It follows
that the angular momentum L is conserved so that dL/dt = 0. This means
that the torque acting on S1 must be equal and opposite to the torque act-
ing on S2. This important result can be written in the form of the following
master equation.

If a current with spin density S1 is injected into a ferromagnet with
spin density S2, the changes in the two spin densities, determined by the
conservation of angular momentum, are related according to

dS1

dt
= −dS2

dt
. (14.32)
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Basic theoretical postulates discussed in Sect. 8.4 as well as experimental
results of Figs. 12.22 and 12.23 show how the vector S1 of the injected spins
changes with time. It precesses about S2 and also rotates into the direction of
S2. According to (14.32), the motion of the vector S1 determines the torques
that are acting on the magnetization in F2. Yet it has not been possible so
far at the electron energies relevant in spin injection to measure the change
in direction and magnitude of either S1 or S2 as a function of the distance
from the interface.

It is interesting to note that even when S1 = 0 at the point of injection,
it will grow to a finite magnitude through spin selective scattering as the
electrons traverse F2, thus inducing torques on S2. Because the injected spin
density S1 rotates into the direction of S2, the torque on S2 is directed oppo-
sitely according to (14.32), that is away from S2. This leads to the excitation
of spin waves. Such spin waves excited by an unpolarized current have indeed
been observed [748–750].

Equation (14.32) is useful for the discussion of the direction and general
properties of the torques. For simplicity, we will assume in the following dis-
cussion that the injected electrons are fully polarized. This means that we
assume that all electron spins (of magnitude h̄/2) point in the same direction,
given by S1.

Precessional Spin-Injection or NEXI Torque

Due to the exchange coupling, the injected spins
∑

si = S1 precess around the
axis of the spins S2 if there is a finite angle Θ between S1 and S2. This means
that the injected spins are not in equilibrium with the magnetization and the
torque arising from this interaction has therefore been called nonequilibrium
exchange interaction or NEXI torque [751].

According to (3.31), the NEXI-torque on the injected spins per unit vol-
ume, T nex = dS1/dt, is given by,

Tnex =| neµB × HW |= ne ∆ sinΘ
2

, (14.33)

where ne is the density of the injected electrons, neµB is the magnetization of
the injected electrons (antiparallel to S1), and HW the energy and momentum
dependent molecular Weiss field. The field is responsible for the exchange
splitting ∆ in F2, with a value given by ∆ = 2µBHW. The torque T nex is
directed perpendicular to S1 and S2, as illustrated in Fig. 14.7, and it is
largest for Θ = π/2. The vector S1 of the injected spins precesses about S2

at a very fast rate due to the large exchange energy of ∆ ≈ 1 eV with a cycle
frequency of ν = ∆/h ∼ 1015 Hz. Using a Fermi velocity vF � 106 m s−1,
this means that after a distance ds = vF dt = vF/ν ≈ 1 nm from the point of
injection, S1 has completely changed its direction.

According to (14.32) there is also a NEXI torque on the spins S2 in the
second ferromagnet. However, the NEXI torques exerted on S2 arise from
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injected electrons that travel in different k-states and their contributions will
be out of phase after a short distance from the point of injection. Therefore
it is difficult to imagine that a uniform motion of S2, possibly leading to a
switching of the magnetization M2, can be induced by the NEXI torques.
Berger has calculated the effective torque arising from NEXI and finds that
its average is different from zero only if the ferromagnet F2 is very thin, of
the order of perhaps five monolayers [752]. Under most conditions, NEXI
torques may contribute to the excitation of higher spin wave modes. Still,
NEXI torques generate the largest torque densities occurring with spin cur-
rents and are certainly active in reflection of electrons from a ferromagnetic
interface as discussed in Sect. 13.3.2.

Dissipative Spin-Injection or Negative Damping Torque

In addition to precessional spin motion there are dissipative electron relax-
ation processes. The basic process that causes a dissipative spin torque is
the rotation of S1 into the direction of S2. Several processes can cause this
rotation and it is still unclear which ones dominate. One picture is based
on spin de-phasing [84]. When spins are injected into the ferromagnet, they
experience the exchange field of the ferromagnet, leading to fast precession
of the spins. In the diffusive regime, the electrons have a random k-vector
and this leads to de-phasing of the spins and a loss of the component per-
pendicular to the magnetization, as shown in Fig. 8.7c. Another model, to be
discussed below, involves spin selective scattering, in analogy to what is ob-
served in the ballistic regime, discussed in Sect. 12.6.4, and in agreement with
the spin-dependent processes at N–F interfaces discussed in Sect. 14.1. From
our discussion of interfacial effects in Sect. 14.1.7, the effects of “bulk” spin
scattering are expected to be enhanced through interfacial spin-dependent
reflection and scattering processes. Such interfacial processes are believed to
greatly enhance the spin torques. For simplicity we shall not discuss them
here.

Whatever the details, it is clear that angular momentum is transferred from
the incident spins to the magnetization. Such angular momentum exchange
within the spin system is considerably faster than any spin relaxation processes
involving the lattice. Eventually the spin systems cools by equilibration with
the lattice and thus the whole process cannot be time-reversed and leads to a
damping-like term in the spin dynamics.

With our knowledge of the phenomenon of spin accumulation developed in
Sect. 14.1 it is quite easy to see that injection of S1 into S2 leads to a change in
angular momentum in S2. For convenience, we follow the antiparallel coupling
case shown on the left side of Fig. 14.4, and choose the magnetization direction
M2 and the majority and minority spin directions to agree with those in the
layer F2 in that figure. This is illustrated in Fig. 14.6, where we compare
the situation in the chemical potentials before and after current flow. Before
current flow the chemical potentials for up and down spins in the ferromagnet
are the same. Upon spin injection, the chemical potential of the minority
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Fig. 14.6. Illustration of the changes in the majority and minority population in a
ferromagnet with spin density S2 and magnetization M 2 due to spin injection. We
have chosen the magnetization direction M 2 and the majority and minority spin
directions to agree with those in the layer F2 in the antiparallel coupled trilayer in
Fig. 14.4. Upon spin injection the chemical potential of the minority spins increases
and majority spins decreases, and a spin voltage µ↑ − µ↓ develops as in Fig. 14.4.
Charge neutrality in the ferromagnet demands that the number of electrons remains
unchanged and therefore the average chemical potential must remain the same as
before current flow. The change in spin occupation corresponds to a change in angu-
lar momentum. When S1 and S2 are noncollinear the change in angular momentum
will result in a torque, as discussed in the text. We also indicate the different sizes
of the exchange splitting (taken to be that of the d electrons) and the spin voltage

spins increases and the majority spins decreases, and a spin voltage µ↑ − µ↓
develops as in Fig. 14.4. This spin voltage is simply the result of the different
spin-dependent conductivities, in particular, the lower conductivity of the
minority channel due to increased spin-dependent scattering. Note that we
did not assume any “spin flip scattering”, in complete agreement with our
discussion in earlier sections that the spin voltage is due to spin selective
transport, which in turn is determined by spin conserving scattering.

The importance of Fig. 14.6 lies in the recognition that a change in the
number of spin up and down electrons corresponds to a change in angular
momentum in F2. If S1 is parallel to S2, the change in up and down spins in
S2 due to current flow, causes a change in the magnitude of the magnetization
M2. Since the change in angular momentum is collinear with M2, there is
no torque on M2 and its direction does not change. In order to get torque
we need to produce a change in angular momentum that is at an angle with
respect to M2. This is simply achieved by orienting the incident spin density
S1 at a finite angle with respect to S2 in F2. We shall discuss this situation
now. Our model employs the same physical processes, namely spin dependent
transport based on spin conserving scattering.



14.2 Spin-Injection into a Ferromagnet 661

Fig. 14.7. Center: Illustration of the origin and direction of the spin injection
torques T nex and T I that act on the spins S2 in the ferromagnet F2 on injection
of spins S1. For reference we also show in the inset on the top left the conven-
tional (positive) damping torque T D and precessional torque dS2/dt, discussed in
Sect. 3.6.2, associated with the motion of S2 relative to the anisotropy axis, labeled
Hani. The NEXI torque T nex has its origin in the precession of S1 about S2, which
is aligned opposite to the magnetization M 2 of the ferromagnet and the exchange
field HW (see bottom). The NEXI torque points in the direction S1 × S2. The
negative damping torque T I arises from the selective scattering of injected electrons
in the minority channel, as discussed in the text and schematically illustrated in
the bottom right inset. The loss in the minority component due to scattering leads
to a rotation of S1 into the majority channel direction, which lies along S2. The
associated driving torque is dS1/dt. The torque T I acting on S2 is T I = −dS1/dt
according to (14.32). In the shown example, it is directed exactly opposite to the
positive damping torque T D associated with the conventional α-term in the LLG
equation (3.39), and T I is therefore called a negative damping torque. Both torques
are perpendicular to S2

Direction of the Damping Torque

In general, a torque on M2 requires that there is an angle between the incident
spin density S1 and the spin density S2 in F2. The situation is illustrated in
Fig. 14.7. We will now consider how the injected spin density S1 changes its
direction. Once that is done we will also know what happens to the spins S2,
since their motion is determined by the master equation (14.32).

We assume that the spin density S1 of injected electrons is fully polarized.
Their polarization vector P = (2e v/h̄j)S1 given by (14.31) can be decom-
posed into minority and majority components along a quantization axis, as
discussed in Sect. 8.4.3. In our case the quantization axis is naturally given
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by the exchange field in the ferromagnet and therefore is parallel to S2, as
illustrated in the center of Fig. 14.7. From Fig. 7.6 we know that the minority
spins are aligned along the magnetization M2 which points in the direction
−S2. Upon entering the ferromagnet the injected electrons experience pref-
erential scattering of the minority component, known as the spin filter effect
and discussed in Sect. 12.6.

Assuming that the beam is fully polarized (|P | = const), the loss in the
minority channel of S1 corresponds to a rotation of P , as illustrated in the
lower-right inset of Fig. 14.7. In the extreme case when all minority electrons
have been removed, the vector S1 is aligned in the majority direction, that is
along S2. Thus by scattering of minority electrons, S1 rotates into S2, and
the torque T I = dS1/dt has to be perpendicular to S2 and points in the
direction (S1 × S2) × S2, as shown.

It is now easy to infer the rotation of S2 from the master equation (14.32),
since it is simply given by dS2/dt = −dS1/dt and thus directed in the di-
rection S2 × (S1 × S2), as shown.8 This rotates S2 away from the original
vertical majority direction, as shown in Fig. 14.7.

The motion of S2 due to the dissipative torque T I is in the direction
S2×(S1×S2), which for the shown example in Fig. 14.7, is directed opposite to
the positive (since α is positive) damping torque T D, introduced in Sect. 3.6.2,
generated in the precession of S2 around the anisotropy axis Hani in F2. The
dissipative spin injection torque T I, which is also not invariant under time
reversal, has therefore been called a negative damping torque.

One may also envision the origin of spin torque by considering the angular
momentum transfer between the spins of injected s-like conduction electrons
and d-like localized electrons in F2. In the first step, s-like electrons are scat-
tered on the localized d-holes through spin conserving transitions as shown in
Fig. 12.14. The change in d occupation is equivalent to an excitation of local-
ized atomic moments responsible for the magnetization, causing a spin wave.
The excitation of a spin-wave, in turn, requires a change in the conduction
electron spins, in order to conserve the total angular momentum of the entire
spin system. The creation of a spin wave is therefore accompanied by a con-
duction electron spin-flip. In the process we have taken energy and angular
momentum associated with a conduction electron flip and converted it into
a spin-wave excitation of the magnetization in F2. When sufficient angular
momentum is exchanged between the conduction electrons and the localized
electrons, the magnetization can be switched.

The detailed action of the dissipative torque T I is actually complicated
since it is easily seen from Fig. 14.7 that T I may actually also point in the
same direction as T D, depending on the orientation of S1. The important
fact is that the precession angle of S2 about the anisotropy axis is very small,
as shown in Fig. 14.7. While the torque T D just drives S2 toward Hani, and

8One may also understand this rotation by the addition of the scattered minority
component of S1 to the density S2 of the ferromagnet, as shown in Fig. 14.6.
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becomes zero as soon as S2 and Hani are aligned, the torque T I does not stop
when S2 and Hani are parallel and therefore in all cases eventually drives S2

away from Hani. In this sense, it always has the opposite effect as the torque
TD, justifying the name “negative damping torque”.

Slonczewski [84] has given the following expression for the negative damp-
ing torque T I,

T I = g(θ)
h̄I

2eS1S2
2

S2 × (S1 × S2) . (14.34)

Note that the torque has the dimension of energy.9 Here g(θ) (g ≥ 1) is a
dimensionless scalar function of the angle θ between S1 and S2, and I is the
injected electron current. The torque T I vanishes when θ = 0 or θ = π. How-
ever, it develops as soon as S1 or S2 moves out of the unstable antiparallel
initial configuration, for instance by thermal excitation. As the injected elec-
trons traverse F2, the spins of the injected electrons again tend to come out of
phase and finally the spin torque averages to zero after a characteristic length
which is estimated to be ≈ 10 nm. The damping torque T I may thus act over
a somewhat larger distance compared to the NEXI-torque [752].

Berger [85] has derived an equation for the spin torque that has the same
direction S2 × (S1 ×S2) but specifies in detail how spin injection can induce
the uniform precession mode needed for reliable deterministic switching of the
magnetization in F2. His equation for the spin-current induced torque density
(see footnote 9) is,

T I = αs(ϑ)
∆µ+ h̄ω
h̄S1S2

S2 × (S1 × S2) . (14.35)

Here α(ϑ) (> 0) is a dimensionless function similar to the Gilbert damping
parameter α introduced in Sect. 3.6.2. It depends on the angle ϑ between S2

and the easy direction of magnetization in F2, i.e., the anisotropy axis along
Hani, as shown in Fig. 14.7. ∆µ = µmin−µmaj is the difference in the chemical
potential between minority and majority spins of Sect. 14.1.1, so that ∆µ is
proportional to the current of injected minority spins.

The new additional term h̄ω is due to the stimulation of spin flips. This
term appears if we assume that minority electrons are not only preferentially
absorbed but that, in addition, they may undergo spin flips to majority states.
This process can be added to Fig. 14.6, as illustrated in Fig. 14.8.

In particular, an energy h̄ω can be gained through spin-flip transitions
from the minority to majority channel if |∆µ| > h̄ω. It is envisioned that the
shown spin flip from minority to majority states generates a spin wave that
leads to the precession of S2 about the anisotropy field of F2. In the reverse
process a spin wave can be absorbed. Because the anisotropy field is of order

9 Slonczewski and Berger define the vectors Si (i = 1, 2, 3) as spins with units
[h̄], while we have defined them as spin densities with dimensions [h̄/volume]. This
does not matter for (14.34) but the torque in (14.35) in our case corresponds to a
torque density.
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Fig. 14.8. Spin dependent density D(E) of states near the top of the filled s–p-
states in a ferromagnet at T = 0, in response to the injection of minority (spin up)
spins. The injected spins cause a spin dependent difference of the chemical potential
as illustrated in Fig. 14.6. The minority spins may gain energy by flipping their spin
as long as |µ↑ − µ↓| > h̄ω. The shown transition generates a magnon of energy h̄ω

0.1 T, the corresponding resonant precession has a frequency of about 109

Hz according to (3.33), corresponding to an energy of h̄ωA � 10−5 eV. The
energy gained in the spin flip is added resonantly to the precessing S2, thereby
enlarging the angle ϑ that S2 encloses with the easy axis of magnetization.

Berger calls this process SWASER, short for “spin wave amplification by
stimulated emission of radiation” because it is analogous to the principle of a
laser but functions with spin waves instead of photons. It can occur as soon as
the injected electrons experience the exchange coupling to S2, that is close to
the interface. The process enhances the thermally excited precession of S2 in
the uniform mode and therefore can avoid the losses in the spin torque due to
excitation of the higher spin wave modes. Note that at room temperature this
condition is not well defined since the thermal spread of EF is much larger
than h̄ω.

We can summarize this section as follows.

Spin injection into a ferromagnet may lead to two types of torques on
the spin density S2 of the ferromagnet:

• The NEXI torque T nex originates from the precession of the in-
jected spin density S1 about the spin density of the ferromagnet S2.

• The negative damping torque T I is due to preferential scattering
of minority conduction electron spins S1 into minority d-states S2.
This initiates excitation of the magnetization M2 and may lead to its
switching.

The two types of torques may be formally added to the precessional and
dissipative terms of the LLG equation, respectively. An anatomy of spin-
transfer torques and unresolved controversies have been given by Stiles and
Zangwill [753].
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14.2.2 Switching of the Magnetization with Spin Currents:
Concepts

The most interesting possible application of spin injection appears to be
switching of the magnetization into the opposite direction as needed, for ex-
ample, in magnetic random access memories or MRAMs. As the magnetic bits
become more densely packed, the switching of selected bits by Oersted fields
becomes increasingly difficult since they will also affect neighboring bits, and
such “cross talk” becomes a problem. In contrast, the exchange fields acti-
vated by spin injection can be directed and confined to the exact magnetic
cell location where they are needed. Also, simple scaling arguments show that
because of the strong and short range exchange interaction, spin injection
becomes increasingly advantageous with decreasing cell size.

The main task to achieve reliable, deterministic and energy-economic
switching of the magnetization requires the avoidance of excitation of higher
spin wave modes. This is illustrated in Fig. 14.9, which compares the uniform
precession mode, where the spins precess in unison about the anisotropy field
of the ferromagnet, with the case of a higher spin wave mode, where the mag-
netization becomes “fractured”. The uniform precession mode conserves |S2|
while the higher spin wave modes decrease the average value of |S2|.

We have seen that the different spin torques are prone to come out of
phase in different parts of the sample, necessarily leading to the excitation
of higher spin wave modes. This might look like an increase in spin temper-

(a)

(b)

Easy
axis

Fig. 14.9. (a) Motion of the spins in the uniform precession mode. The excitation
of this mode involves only anisotropy energy. The magnetization switches direction
when this mode is highly excited (see Sect. 11.5.2). (b) Snapshot of the moments in
the presence of higher spin wave modes. Such modes may be due to inhomogeneous
dipolar fields or to the much stronger exchange fields. The excitation of these modes
requires additional energy. It also leads to a decrease of the average magnitude of
the magnetization, and corresponds to spin de-phasing
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ature, although one has to be aware that the spectrum of thermally excited
spin waves is quite different from the spectrum of spin waves excited in spin
injection. Unwanted spin waves can also be excited when the sample magneti-
zation is not uniform due to surface or edge-induced magnetic structures such
as shown in Fig. 13.17, or due to the action of the Oersted field connected
with the injected current (see Sect. 15.6.3). The spin wave theory for the dy-
namics induced in spin injection has been studied theoretically by Rezende
and coworkers [754].

Spin switching requires the injection of very high current densities, of order
j ∼ 1012 A m−2. We can estimate the angular velocity with which S2 moves
through the action of NEXI-torques by applying (14.32). NEXI-torques are
due to the elastic exchange interaction, that is they leave the magnitude of S1

and S2 constant. For a fully polarized beam these magnitudes are proportional
to the number density of injected spins ne and the number density nA of
atomic spins. Denoting the angular velocity of S1 in the exchange field by ω,
we can obtain the angular change of S2 from (14.32) according to

∂ϕ

∂t
= −S1

S2
ω =

neω

nA
. (14.36)

To excite S2 out of its equilibrium direction by a reasonable angular rate
∂ϕ/∂t, we must have ne ≈ nA. This obviously requires very high current
densities. With ω/v = ϕ we see that the measurement of the specific precession
angle ϕ of S1 defined as the precession angle per length of path makes it
possible to determine the rate at which the homogeneous precession of S2 is
excited with NEXI-torques. By use of (14.36) we obtain [602]

∂ϕ

∂t
=
P j

e nA
ϕ . (14.37)

Here P (= 2evS1/h̄j) is the degree of polarization of the injected electrons,
and the specific precession angle ϕ has been measured for Fe, Co and Ni [602].
With a current density of j = 1012 A m−2, just below the electro-migration
limit, and with the highest possible polarization P = 1, we obtain from (14.37)
a precession frequency ∂ϕ/∂t of the magnetization in F2, which is equivalent
to application of an external field of H ∼ 105 A m−1 (or about 1,000 Oe).
This is the right order of magnitude to explain the experimental observations.

Similar motions of S2 are expected with the effective torque T I. However,
the measurement of the motion of S1 has only been achieved so far for ballistic
electron injection at energies of 7 eV above EF [602]. At lower electron energies
applicable to solid state spin injection the exchange interactions, although not
known with any certainty yet, are likely to be more favorable (see Fig. 12.18).

Finally, it is necessary to discuss that spin switching occurs only when the
injected current density j surpasses a certain threshold. This limit arises in
part from the spin lattice relaxation that we have neglected so far. The homo-
geneous precession of S2 about the anisotropy axis induces a damping torque
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T D according to (3.39) which is due to spin–lattice relaxation. The spin injec-
tion torque T I, which causes a rotation away from the easy axis can overcome
the typical motion of S2 towards the easy axis when the condition TI > TD is
satisfied. This establishes a threshold value for the switching current because
in switching, S2 has to move away from the easy axis.

The normal damping torque TD can be determined in ferromagnetic res-
onance (FMR), typically yielding very small values for the phenomenological
damping parameter α ≤ 0.1. However, in FMR the precession angle is very
small, ϑ ≤ 1◦. For the large angles ϑ ∼ π/2 necessary for switching, α in-
creases significantly due to coupling of the homogeneous mode with spin wave
modes [754, 755], generating an additional effective damping that has to be
overcome by TI. Therefore, the threshold of the switching current is affected
by the excitation of higher spin wave modes in addition to the spin lattice
relaxation determined in FMR. Recently, Buhrman and collaborators [756]
have been able to measure directly the relaxation of M2 after field pulse exci-
tation by simultaneously sending a spin polarized current through the sample.
The damping of the precession was found to decrease linearly with the inten-
sity of the injected spin currents, thus verifying the basic concept, at least
at the low temperature, 40 K, of the experiment. By applying higher current
densities, the generation of steady state precession has been demonstrated,
directly showing the existence of negative damping.

14.2.3 Excitation and Switching of the Magnetization with Spin
Currents: Experiments

The high current densities that are necessary to excite the magnetization
dictate the layout of the experiments. In practice, one needs lithographically
manufactured strip-lines that lead the current to the nanoscale spin injection
structure. Furthermore, due to the rapid de-phasing of the current induced
torques, the magnetic depth over which excitation of homogeneous precession
is expected is within a few nanometers of the point of injection. This has the
overall consequence that spin injection experiments require magnetic samples
that not only have lateral nanoscale dimensions but are very thin, as well.

Most investigators have created a nanoscale current channel either by using
a fine tip that contacts a surface [121, 757] or by lithographically building a
pillar structure F1/N/F2, where the layers Fi are ferromagnetic and N (e.g.,
Cu) is non-magnetic [758–760]. The structure of a typical spin injection sample
is shown in Fig. 14.10. It consists of a lithographically manufactured pillar with
a diameter around � 100 nm that is composed of different thin layers. Of
particular importance are the ferromagnetic layers, the fixed “polarizer” F1,
and the second decoupled magnetic layer, the “sensor” F2. The magnetization
direction of the sensor layer is manipulated by spin currents.

In principle, the small pillar diameter should help avoid magnetic domain
formation and reduce the effects of the competing Oersted fields, that neces-
sarily accompany current flow. It is important to realize that Oersted fields
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Fig. 14.10. Schematic of a typical spin injection structure and the associated spin
and charge effects arising from current flow. A spin polarizing ferromagnetic layer,
the “polarizer”, shown in dark blue polarizes the current flowing through it. It has
a fixed magnetization direction, in practice accomplished by exchange biasing. The
spin polarized current then enters a second ferromagnetic layer, the “sensor”, shown
in light blue. The torques associated with the spin injected current can lead to a
switching of the sensor layer. The spin current is accompanied by a charge current
which gives rise to Oersted fields inside and outside the pillar, as indicated. The
circular Oersted fields are largest at the perimeter of the pillar

do not only surround a wire on the outside but are present on the inside of
the wire, as well. According to (2.7), the Oersted fields inside the wire are
zero only at the center and have a maximum value at the perimeter of the
wire, as illustrated in Fig. 14.10. The charge current generates circular mag-
netic field lines around the center. Micromagnetic computations show that
even with samples as small as 100 nm, the Oersted field may play a crucial
role in promoting the switching [761,762].

Because the diameter of the pillar is so small, it cannot be seen by magneto-
optical Kerr microscopy. The current induced static or dynamic changes of
the magnetization in the sensor layer have therefore mostly been observed by
measuring the perpendicular magneto-resistance CPP-GMR (see Sect. 14.1.4).
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Only recently have they been imaged by X-rays [763] which have confirmed
the important effects of the Oersted fields (see Sect. 15.6.3).

In numerous experiments using CPP-GMR, the basic theoretical pre-
dictions, namely excitations of spin waves and switching of the magneti-
zation through the injection of a spin polarized current have been verified
with a variety of different metallic ferromagnets and experimental configura-
tions [764–766]. There is no reasonable doubt that the original proposals by
Slonczewski and Berger [84,85] can be put to work.

The pillar-structure shown in Fig. 14.11 is an example for a working ex-
perimental configuration. With this type of structure, reliable switching of the
magnetization in the thin Co film has been induced by an electron current
flowing in either direction [760]. The spectrum of spin wave oscillations ex-
cited by the injected current has been measured and analyzed in detail, as
well [767].

The ferromagnetic films in this work are made of Co, which is probably in
the fcc-structure as it has been deposited on a Cu substrate. Co is a favorable
metal for spin switching because it exhibits a large spin selective scattering
as evidenced by the failure to emit minority spins in threshold photoemission,
as discussed in Sect. 13.2.1. Large spin selective scattering in turn generates a
large volume density of the torque TI. The magnetization M1 in the polarizer
Co-layer F1 is fixed in direction by a higher magnetic anisotropy while M2

can move more readily out of its easy axis determined by a shape anisotropy
created by an oval pillar shape.

Most remarkable is the fact that the magnetization in F2 may be switched
in both directions. This is evident from the hysteresis loop shown in Fig. 14.12,
taken from the work of Albert et al. [760].

Starting from the lower resistance state of parallel alignment of F1 and F2,
one may switch F2 into an antiparallel alignment by electron flow from F2 to
F1. This corresponds to a positive bias in Fig. 14.11 and positive current values

F1

F2

e
Cu

Au
Positive

bias

-
I-

I+

V-

+V
Co

Fig. 14.11. Experimental configuration used in spin switching [760]. The thicker Co
layer at the bottom is the ferromagnet F1 serving as the source of the spin polarized
current. The switching of the second Co layer F2, separated by a thin Cu layer,
is observed by measuring the magneto-resistance of the pillar with the four-point
method
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Fig. 14.12. Resistivity versus the injected current [760]. The polarizer layer F1

and sensor layer F2 and their magnetization directions are shown for clarity. The
distinguishing feature of spin switching is the asymmetric shift of the hysteresis loop
on the current axis

in Fig. 14.12. This is explained by spin dependent reflection of the electrons
by the film F1. Preferentially, electrons whose spin direction does not match
the direction favored by F1, will be reflected and they will lead to a reversed
spin polarized current which re-enters F2 and induces the switching of M2.

Starting from the higher resistance state of antiparallel alignment of F1

and F2, one may switch F2 into parallel alignment by sending electrons from
F1 to F2, corresponding to negative current values in Fig. 14.12. The figure
shows that the threshold of the switching-current depends on the direction in
which the current flows. This is expected, because g(θ) in (14.34) is larger for
θ ∼= π compared to θ ∼= 0, hence it is easier to switch from the anti-parallel to
the parallel directions of M1 and M2.

It should also be noted that perfect transmission or perfect reflection of the
electrons at the N/F interface has been assumed in the derivation of (14.34).
This does not correspond to reality. In fact, direct reflection experiments con-
ducted with beams of polarized electrons demonstrate that even with total
reflection, the spin may move by a large amount. Hence it changes direction
even in total reflection at a band gap, as discussed in Sect. 13.3.2. Overall, we
expect that a larger current must flow to induce the back-switch.

Other scenarios may be found in practice. For example, magnetostatic
coupling may exist between the two layers, as illustrated in Fig. 13.16, which
might favor antiparallel alignment of M1 and M2. Periodic exchange cou-
pling through the metal spacer layer may also exist but this is weak with
polycrystalline samples. Any such unidirectional coupling may be detected by
recording GMR hysteresis loops in an external magnetic field. The shift of
these loops on the field axis discussed in Fig. 13.18 would reveal such coupling
if present.

In the absence of coupling between F1 and F2, the shift of the loop on the
current axis is proof that a spin polarized current has been injected, because
only a current of axial symmetry can prefer one magnetization direction. If the
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switching was done by the ohmic heat of the current, it would not depend on
the direction of the current. The Oersted field generated by the injected cur-
rent averages to near zero over the plane of the sample in the CPP-geometry
since it favors the generation of a closed flux structure, giving no GMR signal.
Yet the effects of the Oersted field are not negligible as they seem to promote
the process of switching [762,763].

Because of the small size of the magnetic structures, thermal fluctuations
also play a substantial role in their switching behavior. Most authors assume
that the macrospin approximation is valid, i.e., that switching does not occur
by domain wall motion. Such switching must then be described in terms of
thermally activated switching over an energy barrier [541]. As a result of the
thermal fluctuations, switching may depend on the time during which the
current flows and, for a given time of spin injection, may occur only with a
certain probability, instead of being deterministic with a sharp threshold of
the switching current [760].

The degree of randomness of the switching is enhanced when higher order
spin waves are excited. This amounts to an increase of the effective mag-
netic temperature, although one needs to use the term “temperature” with
care since the spectrum of these spin waves may be quite different from the
spectrum in thermal equilibrium. It has indeed been found that the “effective
magnetic temperature” inferred from the switching probability over the energy
barrier is higher than the lattice temperature and depends on the intensity
of the injected current [768]. Even stochastic switching of the magnetization
back and forth has been found with higher injected currents [768, 769]. This
might be explained by the tendency of spin-torques to get out of phase over the
volume of the sample combined with the fact that large angle precession of the
magnetization is prone to induce self-oscillations and chaos in the magnetic
excitations due to effects of nonlinear coupling discussed in Sect. 15.6.

Spin polarized electrical currents in ferromagnetic metals interact also with
domain walls. The transport of spin angular momentum with the current
flow can give rise to the motion of a magnetic domain wall traversed by an
electric current. This long standing research topic has been revived by the
observation of spin switching, with studies of the separate effects caused by the
charge and spin currents. The gradual change of the magnetization direction
in a domain wall, combined with relaxation of the spins into the direction
of the local magnetization, results in a reduced volume density of the spin-
torques and renders the theoretical treatment more difficult. However, due
to the experience gained from spin switching experiments, progress in the
understanding of current induced domain wall motion has been made [770–
774]. Current induced domain wall motion has been proposed for magnetic
memory applications in which a domain wall is moved reversibly between two
constrictions acting as pinning centers.
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14.3 Spin Currents in Metals and Semiconductors

In semiconductors, the dynamics governing perturbations of the spin polar-
ization is much different compared to metals. In particular, it is much slower
and consequently it is understood in much more detail. We shall discuss here
only some of the most basic aspects relevant to spin currents in semicon-
ductors. For detailed discussion of electron spin relaxation in semiconductors
via electron–hole and electron–nuclear spin interaction we refer the reader
to [346]. Other aspects related to semiconductor based spin electronics are
discussed in refs. [46,78,115]. The long history of the Hall effect and the spin
contributions in the anomalous Hall effect and the spin Hall effect have been
reviewed by Inoue and Ohno [775].

An electron close to the bottom of the conduction band of a semiconductor
may scatter only on states introduced by doping but not with bulk band states
such as the fully occupied valence states. This arises because of the presence
of the energy gap. There is generally no final state available into which the
conduction electron can settle once it has lost energy. The extremely fast
electron–electron scattering is therefore absent with low energy electrons in
the conduction bands of semiconductors. As a consequence, the lifetime of
electronic states is orders of magnitude longer in semiconductors compared
to metals. This has led to the possibility of coherently manipulating the spin
states in the conduction states, and forms the basis of futuristic concepts
such as spin and semiconductor based quantum computers [46, 78, 115]. For
illustration we give in Table 14.2 some approximate numbers for the spin
lifetimes τse in metals and semiconductors. Note that, in general, τse may
include loss of spin polarization by both spin flip scattering and de-phasing,
that is it includes contributions from the characteristic spin-flip time τ1 and
de-phasing time τ2, discussed in Sect. 8.6.2.

We have seen in Sect. 14.1.5 that the precession of the spins in metals
can be detected electrically in lateral mesoscopic spin valves. The lifetime of
the spins τse is however so short that only one cycle of the precession can
be distinguished with spin currents injected into, e.g., Al [738]. In contrast,

Table 14.2. Approximate spin diffusion lengths Λ and associated spin diffusion
times or lifetimes τse of electrons in metallic ferromagnets, metallic nonmagnets and
semiconductors at liquid He temperature.�

ferromagnet nonmagnet semiconductor

Λ 50 nm 1 µm 10 µm

τse 1 ps 50 ps 10 ns

�Values for ferromagnets and metallic nonmagnets are those given in Sect. 14.1.3 for
Co and Cu. In semiconductors the quantities are strongly dependent on doping as
discussed in the text.
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in semiconductors time resolved Faraday rotation (TRFR) can be used to
investigate the time evolution of a spin population, and dozens of precession
cycles can easily be resolved. We shall describe how the de-phasing time τ2 of
an ensemble of polarized electrons in the conduction bands of a semiconductor
such as GaAs can be obtained from these experiments. The de-phasing time
τ2 is critical to applications requiring coherent manipulation of spin states
such as all optical switching, see Sect. 15.6.4, or quantum computing [78].

In Sect. 13.2.2 we have discussed the experiments aiming at injection of
spin polarized currents from a ferromagnetic source into a semiconductor such
as GaAs. It evidently requires the presence of a tunneling barrier or the elu-
sive half metallic ferromagnet at the interface. Let us now assume that such
injection has been achieved, or alternatively that spin polarized electrons have
been produced in the conduction bands of a GaAs-type semiconductor by op-
tical pumping as explained in Sect. 8.2. In practice, measurements of τ2 are
conveniently done by generating the initial population of spin polarized elec-
trons in the conduction bands with a circularly polarized pump pulse with
the photon energy tuned to the absorption edge of the semiconductor. The
pulse length is of the order of 100 fs, thus defining a sufficiently sharp moment
in time when the precession of the spins starts. In spin injection, one would
have to apply a sharp voltage pulse which is still difficult because of electro-
magnetic inertia. On the other hand, with laser excitation one knows the time
zero at which an ensemble of about 1015 electrons/cm3 has been generated in
the conduction band states with spin polarization P parallel to the beam of
the pump pulse.10

The spins s of the electrons will now start to precess about the magnetic
field H applied perpendicular to the pump beam as indicated in Fig. 14.13.
The precession can be monitored by the time delayed probe pulse which is
linearly polarized. One measures the angle ϕ of the plane of polarization after
the probe beam has traversed the semiconductor. This is commonly called
“Faraday rotation in the Voigt geometry” as opposed to regular Faraday ro-
tation in which the light beam is parallel to the magnetic field. When the spin
polarization vector P⊥ of the ensemble of electrons is parallel to the probe
beam, the angle ϕ of the Faraday rotation will have one particular sign, but
the sign will change when P⊥ has precessed by 180◦ and thus points into the
opposite direction. The magnitude of the angle ϕ of rotation is proportional
to P⊥.11 By variation of the time delay between pump and probe pulse, one
will observe periodic changes in the sign of ϕ yielding the precession frequency
ω = gµBH/h̄ where g is the g-factor of electrons in the conduction band. Due
to the effective mass of the electrons in the band states, g can be quite dif-

10The optically excited spins result in a very small transient magnetization of only
about 10−7 T or 10−7 µB/atom, and it is remarkable that this can be probed by the
Faraday effect.

11A reduction of ϕ could also be due to relaxation of P into the direction an-
tiparallel to H requiring a change in the population of the two spin states. The
experimental τ2 is thus a lower bound on τ2.
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Fig. 14.13. Principle of a pump-probe experiment to measure the spin de-phasing
time τ2 in a semiconductor to which a magnetic field H is applied. The circularly
polarized pump pulse generates an ensemble of electrons with spin polarization par-
allel or antiparallel to the pump beam, while the precession of the spin polarization
is detected by measuring the angle ϕ of the Faraday rotation in the Voigt geometry
with the time delayed linearly polarized probe pulse. The lower graph shows the
decay of the TRFR amplitude with increasing delay ∆t between pump and probe
pulse from which the spin de-phasing time τ2 is obtained

ferent from 2. The amplitude of ϕ decreases yielding the de-phasing time τ2
according to:

ϕ = A e−∆t/τ2 cos
[
gµBH∆t

h̄

]
, (14.38)

where A is the Faraday constant. Thus fitting the data to (14.38) yields the
g-factor and the de-phasing time τ2. The free carrier spin lifetime turns out to
be generally much longer compared to metals as expected, but it also depends
somewhat surprisingly in a nonmonotonic fashion on the carrier density. With
n-type doped GaAs at T = 5 K and H = 3 × 106 Am−1, corresponding to
B = 4 T, the largest value of τ2 = 10 ns is observed at a carrier density of
n = 1016 cm−3. At the same carrier density a metal–insulator transition also
occurs but the correlation of the two observations is not yet understood [78].
With n-type doping of n = 5 × 1018 cm−3, the relaxation is much faster,
corresponding to τ2 = 40 ps. The range in lifetimes thus spans three orders of
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magnitude, depending on the doping. The dependence on doping seems to be
general as the same trend is also observed with GaN and ZnSe. In addition to
the variance of τ2 with doping, a change in the precession frequency ω occurs,
as well. This is due to the change in the effective mass of the electrons, hence
a change of the g-factor, since the absorption band edge shifts with doping.

Faraday rotation experiments also show that clouds of spin polarized elec-
trons can be laterally transported over distances exceeding 100 µm without
substantially disturbing their spin coherence. This is possible by applying an
electric field and is due to the rather weak coupling between spin and orbital
motion in the conduction bands of some semiconductors derived from s-like
atomic orbitals, for instance n-type GaAs wafers doped with Si. This is the
basis of the transport of coherent spin information across semiconductor de-
vices. For more details the reader is referred to the specialized literature such
as [46, 78, 115]. Spin dynamics in the magnetic metals will be the topic of
Chap. 15.

It is obviously possible to treat the magnetic metals in good approxi-
mation also as spin-1/2 systems. Yet in contrast to the slow spin dynamics
associated with nuclear spins or spins in semiconductors, the spin dynamics in
magnetic metals is very fast. It has therefore become feasible only recently to
distinguish experimentally between the two relaxation times τ1 and τ2. For in-
stance, as illustrated in Fig. 15.12 below, the relaxation of the magnetization
into the direction of an external field is actually given by a change in the
occupation of the two spin states, that is we have τse = τ1. This important
relaxation mechanism in magnetism is described by the damping torque TD

of the Landau–Lifshitz equation with the assumption that the magnitude of
the magnetization remains constant.

However, it is also possible that spin waves of various frequencies are ex-
cited in magnetization precession due to the Suhl-instability [776], discussed
in Sect. 15.6.1 below, or other so far unknown mechanisms. This disturbs the
phase relationship between the precessing spins as illustrated in Fig. 14.9 and
these processes are governed by τ2. The de-phasing is observed as a surpris-
ingly wide distribution of the switching fields in the precessional switching
mode of perpendicular high density magnetic media as discussed in Sect. 15.6.2
below. The decrease of the space-averaged magnitude of the magnetization oc-
curs on a time scale that is different from the one of the relaxation into the
field direction as quantified in the model calculation displayed in the inset
of Fig. 15.26. Perhaps, as ultrafast magnetization dynamics experiments be-
come more sophisticated, one will be able to discuss the spin dynamics in the
ferromagnetic metals also in terms of τ1 and τ2.

14.4 Spin-Based Transistors and Amplifiers

The first generation of spintronics devices are the GMR sensors of Sect. 14.1.4
and the Magnetic Tunnel Transistor of Sect. 12.6.2. As mentioned in the intro-
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Fig. 14.14. Left: Conventional junction field effect transistor (J-FET) consisting of
a channel of n-type material in a substrate of p-type material. The electron flow from
the source to the drain is controlled by the charge on the gate. By increasing the neg-
ative voltage to the gate one can increasingly “pinch off” the current flow, and vice
versa. Right: In the proposed Datta–Das spin transistor [116] one spin-polarizes the
current by transmission through a magnetically aligned source material. The drain
consists of the same material with a parallel alignment of the two magnetizations,
as shown. By using a InAlAs-InGaAs heterostructure one creates a two-dimensional
electron transport channel between the source and drain which, as in the J-FET,
may also be controlled by a voltage on the gate. This control is possible through the
Rashba effect [150–152] which is based on the fact that in the rest frame of the trav-
eling electrons the electric field also has a magnetic field component. The magnetic
field due to the applied electric field leads to a controllable change in the electron
spin direction upon arrival at the drain. The transmission into the magnetized drain
depends on the relative orientations of the drain magnetization and the direction of
the spin polarized electrons

duction, a second generation of spintronics devices aims to couple magnetic
materials with semiconductors [114,115]. An example of such a hybrid struc-
ture is the concept of a spin-based transistor, proposed by S. Datta and B. Das
in 1989 [116], which is illustrated in Fig. 14.14 together with a conventional
junction field effect transistor (J-FET).

Unlike metals, semiconductors offer the opportunity to control the flow
of a large number of charges by a few that are strategically placed, similar
to a gatekeeper that regulates the flow of traffic. In the junction field effect
transistor (J-FET) shown on the left of Fig. 14.14, for example, draining n
electrons from the gate may increase the flow of electrons from the source to
the drain by 10 times n–that means the device has “gain”. A similar effect, can
in principle be obtained by the spin transistor shown on the right of Fig. 14.14,
which makes use of the Rashba effect [150–152]. The devices are explained
in the caption. Note that both the conventional J-FET and the proposed
spin-transistor are charge amplifiers. Also, it is important to realize that the
Datta–Das transistor is limited by the performance of the ferromagnetic spin
filters.
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The development of a spin current amplifier has remained even more elu-
sive than the experimental demonstration of the proposed charge-amplifying
spin transistor. The spin current amplifier is a prerequisite for all semiconduc-
tor based spintronics since in practice the spin signal would severely deterio-
rate after only a few operations. If it could be invented, a spin current amplifier
would also dramatically improve all spin polarized electron spectroscopies and
microscopies.

In order to demonstrate the requirements for a spin current amplifier we
define the spin current in analogy to the charge current as the spin angular
momentum in units of h̄/2 that flows per time interval ∆t through a cross
section, yielding IS = PI where I is the charge current and P its degree of
spin polarization. Let us assume an incident electron beam with intensity I0
and with a spin polarization P 0

ξ relative to a quantization direction ξ in space.
With a spin current amplifier one would like to amplify the spin polarization
P 0

ξ so that the output beam has a spin polarization Pξ > P
0
ξ . However, in the

process we also need to consider the transmitted number of electrons or the in-
tensities I0 before and I after the amplifier. It would not help us if the output
would be perfectly polarized yet we had lost most of the intensity. According
to (8.16) the total intensity I = I↑ + I↓ actually enters into the definition of
the spin polarization Pξ, and the product I Pξ ∝ n↑ − n↓ is actually what we
care about since it is the difference intensity of spins polarized parallel and an-
tiparallel to our quantization axis ξ. This shows that it does not help to simply
add unpolarized electrons to the spin current since IS = PI ∝ n↑−n↓ remains
constant. Therefore we require for a spin current amplifier that I Pξ > I0P

0
ξ .

There is another important requirement. If the input is mostly “spin-down”
we want the output to be an enhanced “spin-down” signal and similarly for
“spin-up”. If the input beam is unpolarized we want it to stay that way. This is
illustrated in Fig. 14.15, using three examples of a four-electron incident beam
with spin polarizations Pξ = +(1/2), Pξ = 0, and Pξ = −(1/2), respectively.

In all cases we have assumed that I = I0 for simplicity, so that the action
of the spin amplifier lies entirely in the enhancement of the spin polarization
of the incident beam. In the middle we have shown the case where the spin
polarization is zero along the vertical quantization direction, and in this case
the output beam is required to stay unpolarized. This case is actually quite
interesting and important. It demonstrates that we cannot use a spin filter
as an amplifier since it would create a spin polarized output, as discussed in
Sect. 8.4.3.

We can summarize the requirements for a spin current amplifier as follows.

A spin current amplifier needs to first sense the incident spin polarization,
especially its sign.
It must then enhance the spin current, defined as the product of spin
polarization and intensity.
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Fig. 14.15. Function of a spin current amplifier, illustrated by three simple examples
of incoming beams. The amplifier, shown as a black box, needs to first sense the
sign and amplitude of the incoming spin polarization relative to a quantization
direction in space. It then amplifies the product of the incident intensity and spin
polarization. For simplicity we have assumed that the intensity remains unchanged.
If the incoming beam is unpolarized relative to the quantization axis, as shown in
the middle panel, the output is required to remain unpolarized

With photons which are bosons it is possible to construct such a spin cur-
rent amplifier. For instance, if one photon is brought into the resonating cavity
of a laser, it can stimulate the production of more photons of exactly the same
energy and polarization. With electrons, one would need a system that can
be triggered by the incident spin polarization. An example is a ferromagnet
just above its Curie temperature. Its moments may be induced to align into
the proper magnetization direction if one could raise the Curie temperature
by the incident spin polarized beam. Another example is a ferromagnet with
the magnetization in the unstable hard direction. Again, the incident spin
polarized electrons would trigger a switch of the ferromagnet into the desired
magnetization state. Alternatively, if the production of secondary electrons
depended on the spin of the primary electron, one could construct a spin
current multiplier by increasing both the charge current and the spin polar-
ization. Unfortunately, in the few relevant experiments done so far, one has
only found a weak dependence of the spin polarization of secondary electrons
on that of the primary electrons [609,610].



15

Ultrafast Magnetization Dynamics

15.1 Introduction

The magnetization in a solid reacts to external disturbances such as changes in
temperature, magnetic fields, and pressure on many time scales ranging from
millions of years in geomagnetism [777] to years in magnetic storage media,
milli- and microseconds in AC-transformers, and nanoseconds in magnetic
data writing and reading. Magnetization changes on these various time scales
and their relation to the size of magnetic structures, domains and domain
walls, has been a prominent subject in magnetism because of the numerous
applications [54,778,779].

Over the last 30 years, the development of magneto-optics with pulsed
lasers has opened a new field, ultrafast magnetization dynamics. Typically,
ultrafast studies employ pulsed lasers for both excitation of the sample and
probing the ensuing changes of the magnetization, in so-called pump–probe
experiments. Such experiments now have a time resolution below one picosec-
ond (10−12 s), well into the femtosecond (10−15 s) range [57]. The timescales in
the picosecond and femtosecond range are of great interest because they nat-
urally correspond to important magnetic energies, as illustrated in Fig. 15.1.

The plot utilizes the time–energy correlation t = h/E derived in Sect. 3.7
to link the cycle time t to a characteristic energy E. In particular, we have
indicated the ranges of three important magnetic interactions for 3d systems,
the magnetic anisotropy with 10−6 eV ≤ E ≤ 10−3 eV (see Sect. 7.9), the
atomic spin–orbit energy with 10−2 eV ≤ E ≤ 10−1 eV (see Sect. 6.4.3), and
the interatomic exchange energy of order E ∼ 3 × 10−1 eV (see Sect. 11.1.4).

In order to ensure fast and homogeneous deposition of energy with a laser
pulse, determined by the optical absorption length of tens of nanometers,
the magnetic samples are typically films of nanoscale thickness. If a mag-
netic field pulse is used for excitation, the penetration depth is determined
by the skin effect. Today, structures with nanoscopic dimensions in all three
directions are of great interest. The lateral confinement facilitates the inter-
pretation of the dynamics, since typically one starts from a well-characterized
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Fig. 15.1. General time–energy correlation plot given by t = h/E (see Sect. 3.7)
which allows comparison of results in the frequency and time domains. On the cor-
relation line we have indicated typical ranges for three important magnetic energies
and the associated time scales found in the 3d transition metal systems

magnetic state such as a single domain or a magnetic vortex state. Studies
of ultrafast magnetic dynamics in nanoscopic magnetic bodies have become
one of the most exciting topics in contemporary magnetism. They break new
ground scientifically and explore length and times scales for tomorrow’s mag-
netic technologies. More generally, they support the demand for “smaller and
faster” of our high-tech society. The future development of magnetic recording
technology where the quest is for smaller magnetic bits and faster magnetic
switching depends to a large extent on the outcome of this research.

While lasers and pump–probe magneto-optics have paved the way for this
new field of ultrafast dynamics, the ultimate goal, namely the control of the
magnetization on small length scales and short time scales, can only be fully
explored by consideration of a bigger picture, illustrated in Fig. 15.2. It in-
volves the coupling of various thermodynamic reservoirs in solids.

A ferromagnetic body can store excitation energy in three different forms:
the energy of electrons, the excitation of phonons, and the change of magnetic
order, that is the change of the spontaneous magnetizationMs(T ). In the early
laser experiments, the energy was pumped into the electron system through
electronic excitations and one then attempted to probe the evolution of Ms.
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Fig. 15.2. Heat reservoirs in a ferromagnetic metal. All three reservoirs may be
separately excited as indicated by arrows. Deposition of energy in a specific reser-
voir initially leads to a nonequilibrium distribution of the excitations, indicated by
two shades. An effective temporary equilibrium temperature may or may not be
reached within one reservoir before it finally equilibrates with the other reservoirs
at characteristic times τij

This is only one of three possible ways of energy deposition, as indicated by
the arrows on the periphery of Fig. 15.2. For example, one may also excite
phonons through a pressure or infra-red heat pulse or induce changes of the
magnetization itself through a pulsed magnetic field or a spin current. It is of
key importance to realize that both energy and angular momentum need to
be exchanged and conserved when the magnetization reservoir is involved.

The field of ultrafast magnetization dynamics is concerned with changes
induced in M s as energy and angular momentum are exchanged within
and between the thermodynamic reservoirs of the sample. In practice,
one seeks to understand the physical processes and the time constants τij
responsible for the exchange between the reservoirs.

Of prime importance for magnetization dynamics is of course the magne-
tization reservoir. Since the essence of magnetization is angular momentum,
the flow of angular momentum to and from the magnetization reservoir is of
key importance. In particular, the magnetization can only be excited from
its equilibrium direction and magnitude if angular momentum is transferred
into the magnetization reservoir. After excitation, the magnetization searches
for an equilibrium, and this process typically consists of a spiraling of the
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magnetization into the equilibrium easy axis, possibly with a change in di-
rection from its original orientation. We have seen in Sect. 3.6.3, that this
process is associated with a relaxation or damping torque so that, again, an-
gular momentum needs to transferred in the process, in this case out of the
magnetization reservoir.

The essence of magnetization is angular momentum. The key issues in
magnetization dynamics are therefore the processes underlying the change
of angular momentum.

In this chapter we will take a look at what is known about the exchange of
energy and angular momentum between the three reservoirs. In particular, one
may distinguish the general case of energy and angular momentum exchange
between the reservoirs from the more specific and technologically important
case of magnetization switching. The latter must be a controlled, reversible
process that allows rotation of the magnetization by 180◦. We shall specifically
address magnetization switching in Sect. 15.6. In the following we shall start
with a more general discussion.

15.2 Energy and Angular Momentum Exchange between
Physical Reservoirs

In this section we shall outline the physical concepts associated with energy
and angular momentum exchange between the reservoirs in Fig. 15.2. We start
with a general thermodynamics discussion and then address the processes from
a quantum mechanical point of view using the general energy–time concepts
developed in Sect. 3.7. In later sections, experimental results will be presented
that address some of the issues raised in our general discussion.

15.2.1 Thermodynamic Considerations

By exciting electron hole pairs with a femtosecond laser pulse, one deposits
energy into the degenerate electron gas. Because the specific heat of the degen-
erate electron gas (∝ T ) is small, the temperature reached after thermalization
of the electronic excitations is high, typically >1,000 K (∼0.1 eV). This means
that the electron gas may reach temperatures T > TC after a time of ≈100 fs
following the excitation. But the electrons cool quite rapidly to low temper-
atures by the excitation of lattice vibrations. Temperatures of T < TC are
then reached due to the fact that the specific heat of the metallic lattice is
large, requiring the excitation of 6 degrees of freedom (DOF)1 according to

1A vibration of an atom in the lattice may occur in three directions, and the
vibration in each direction contains kinetic as well as potential energy. This yields
6 DOF.
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the rule of Dulong–Petit since one typically is above the Debye temperature
of the lattice where all lattice DOF are active. It is well established that ther-
mal equilibrium between the electron gas and the lattice is reached within ≈1
ps [780].

The question is now how fast can the spontaneous magnetization Ms(T )
follow these rapid changes in temperature. At T < TC, the magnetic moments
are held in one fixed direction in space by the exchange interaction, that is the
3 DOF for the three directions of the magnetic moments in space are frozen.
If the solid is heated to T > TC, these 3 DOF are activated containing each
an energy kBT/2 according to the equipartition principle of thermodynamics.
We therefore expect that the magnetic part Cspont of the specific heat must
increase asMs decreases. At T = TC, the increase must correspond to (3/2)kB
per spin.

In the mean field model, the Weiss molecular field HW is given by the
Ansatz HW = βMs and the magnetic part of the specific heat Cspont(T ) is
readily calculated. The internal energy U of the solid due to the occurrence
of Ms is given by

U = −
∫
HW dMs = −β

∫
Ms dMs = −1

2
βM2

s . (15.1)

The magnetic part of the specific heat is given by

Cspont =
∂U

∂T
= −1

2
β
∂M2

s

∂T
. (15.2)

Assuming now a spin-1/2 ferromagnet, close to TC the T -dependence of the
order parameterM∗ = Ms(T )/Ms(0) is given by (M∗)2 = 3(1−T ∗) according
to 11.7, where T ∗ = T/TC is the reduced temperature. Inserting TC from 11.5
and with Ms(0) = NµB where N is the density of spins one obtains

Cspont =
3
2
kBN (15.3)

showing that indeed the magnetic heat must jump at TC corresponding to the
excitation of 3 DOF. We know already that the mean field cannot describe
accurately the magnetic phase transition, because Ms is not reduced abruptly
to zero at T = TC due to the occurrence of critical fluctuations. Nevertheless,
the magnetocaloric experiments exhibit a sizeable spike of Cspont at T = TC.
This shows that heat must flow into the spin system when a sample is heated
to TC.

In the classic literature on magnetism, the question of how fast thermo-
dynamic equilibrium with respect to Ms is reached is not discussed simply
because the older magnetic measurements averaged the magnetic state over
times longer than 1 ns. Since it is possible today to measure Ms much faster
this question has become of great interest [781].

Due to the strictly valid law of conservation of angular momentum, one
cannot disorder the spin system, however, without simultaneously supplying
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angular momentum to the system as well. The consideration of angular mo-
mentum transfer between the systems requires a quantum mechanical look at
the problem.

15.2.2 Quantum Mechanical Considerations: The Importance of
Orbital Angular Momentum

A good starting point for a quantum mechanical discussion are the processes
that follow the excitation of a magnetic system by an external magnetic field
pulse. When the magnetization is excited by such a pulse, which we shall
assume to be strong and ultrashort (i.e., much faster than all processes that
follow the excitation), the magnetization Ms moves out of equilibrium by
precession about the axis defined by the external field. The laws of inertia
are satisfied in the magnetic excitation because the source of the magnetic
field pulse experiences a torque opposite and equal to the precessional torque
deposited in the magnetic system. Angular momentum as well as Zeeman
energy is thus directly deposited into the spin system.

After the field pulse is terminated, Ms starts a precession about the
anisotropy axis. The damping of this precession of Ms about Hani tells us
how fast the spin system returns to its equilibrium. The flow of energy and
angular momentum out of the spin system ultimately ends up in the lattice,
exercising a torque on it.

The flow of energy and angular momentum out of the spin system ulti-
mately ends up in the lattice.

From the width of the ferromagnetic resonance (FMR) line discussed in
Sect. 3.6.3 one can deduce the so-called intrinsic spin–lattice relaxation time.
It is ≈100 ps for ideal flat and defect-free films of Ni, Co, and Fe. This time sets
a fundamental time scale for any change of the direction of the spontaneous
magnetization.

In quantum mechanics one has the energy–time correlation discussed in
Sect. 3.7. This allows one to predict the time scale on which processes occur.
Based on this, it is not surprising that the intrinsic spin–lattice relaxation time
is as long as 100 ps or so. The magnetic anisotropy energy density is given by
MsHani cos γ where γ is the angle between the Ms and the preferred axis.
This energy holds the spin in a preferred direction in the lattice according to
Sect. 11.2, and it is typically of the order of 10 µ eV. The characteristic times
associated with this energy are indeed in the 100 ps time range in agreement
with the FMR result. For soft magnetic materials such as permalloy Ni80Fe20

or FeCo-alloys the magnetic anisotropy is very small leading to even longer
spin lattice relaxation times of the order of 500 ps.

Phonons or lattice vibration modes have characteristic energies of meV.
Since an energy of 1 meV corresponds to a time of about 1 ps, one expects
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that the excitation and/or annihilation of phonons by collisions with other
phonons or by collision of electrons with the lattice vibrations occurs on the
picosecond time scale. Thus thermal equilibrium within the phonon reservoir
and also between the electron reservoir and the phonon reservoir should be
established within picoseconds which again agrees with observations [780].

If we now look at spin waves, we know that they have energies of the order
of meV, as well. Similar to phonons, spin waves are generated and annihi-
lated by collisions with each other, and by collisions of electrons. However,
the difference is now that each spin wave is equivalent to one reversed spin ac-
cording to Sect. 11.1.5. Collisions of spin waves with each other must conserve
the number of reversed spins. Similarly, as shown in Fig. 12.27, the excitation
of a spin wave is only possible with a minority spin electron which must then
make a transition to a majority spin state. Vice versa, the de-excitation of a
spin wave will lead to a transition of a majority spin electron to a minority
spin state. This process absorbs the spin wave. Hence the total process of exci-
tation and annihilation of spin waves does not change the number of reversed
spins, but it establishes thermal equilibrium within the spin system on a time
scale of picoseconds dependent on the exact energy of the spin waves.

Phonons can scatter on spin waves as well, but if they excite or annihilate
a spin wave, they must generate or annihilate the spin angular momentum
connected with the spin wave. Torsional lattice modes may be able to do
this, but we do not know a priori how frequent such events are. Similarly,
electrons can undergo a transition to the other spin state in a scattering
event with the lattice, but the spin angular momentum connected with the
spin transition must then be absorbed by the lattice through magnetoelastic
coupling. The events in which the spin angular momentum is transferred to
the lattice constitute a bottleneck in the equilibration of Ms with the rest of
the system. Let us take a look at the origin of this bottleneck.

The bottleneck in the energy and angular momentum flow between the spin
system and lattice is best illustrated by assuming that no spin–orbit coupling
exists. In that case, there is no coupling between the charge and spin degrees
of freedom i.e., of the spin to the lattice. The atomic spins are held parallel by
the exchange interaction on one side and the charges arrange themselves in
an orderly array, the lattice, on the other. Without the spin–orbit interaction
there is no talk between the two systems and therefore no preference direction
of spins relative to the lattice. Thus although the distribution of the electrons,
phonons and spin waves over the accessible energy states may change with
time, the average spin polarization or the number of reversed spins of all
electrons will remain the same. This is analogous to the case of singlet and
triplet He shown in Fig. 6.3. Once the triplet state of He is excited by electron
impact, the He-atom remains in the metastable 2 3S1 excited state until the
spin angular momentum can be transferred out of the atom, for instance in
the collision with a wall. Only then can the transition 2 3S1 → 1 1S0 to the
ground state take place.



686 15 Ultrafast Magnetization Dynamics

Spin–orbit coupling is thus needed to couple the spin to the lattice. How-
ever, in 3d transition metals and their compounds the effective size of the
spin–orbit (s–o) interaction is greatly reduced as discussed in Sect. 7.9.3 and
it gives rise to the small orbital magnetic moments. The effective size of the
s–o interaction is no longer given by the atomic s–o coupling constant (ζ ∼ 10–
100meV for 3d systems, see Sect. 6.4.3) but it is reduced by the quenching
effect of the ligand field. For a typical LF splitting ∆LF this leads to a value
for the effective s–o energy of order ζ2/∆LF (see Sect. 7.9.3). We see that in
a solid the effective s–o energy has a contribution from both the atomic s–o
coupling, represented by ζ, and the lattice, represented by ∆LF. This gives
rise to a bottleneck in the transfer of energy and angular momentum. For
the 3d transition metals we may estimate a time associated with this bottle-
neck from the well-known sizes of the magnetocrystalline anisotropy energies
given in Table 11.3.2 This energy of a few µeV corresponds to a time of about
100 ps and this value is in good accord with that derived from FMR for the
spin–lattice relaxation time.

The relationship between the effective s–o energy and the spin–lattice re-
laxation time is indeed born out by experiments. If the effective s–o coupling
is increased in 3d transition metals by addition of heavy atoms with increased
s–o coupling, such as rare earth or 5d transition metal atoms, the spin–lattice
relaxation time is indeed found to decrease [782,783]. With increasing effective
s–o interaction one also typically finds an increased coercivity and anisotropy
resulting from a locking of the orbital moment to the lattice as discussed in
Sect. 7.9.3. In general, it is important, however, to distinguish the concepts of
the effective size of the s–o coupling from the anisotropy of the s–o coupling,
the latter corresponding to the magnetocrystalline anisotropy (see footnote
2).

So far we have ignored the direct channel from the electron to the spin
system. It is least understood but we can make some general statements. This
channel also does not exist without the s–o coupling and it is therefore also
determined by it, as discussed by Hübner and collaborators [784–787]. The
basic idea is that this channel may be ultra-fast because it involves excited
states where the full atomic size s–o coupling is operative. From the size of the
atomic s–o coupling constant ζ ∼ 10–100meV for 3d systems one therefore
may expect it to be of order 10–100 fs. For instance, if the electron system is
excited with a laser pulse in the visible, transitions between filled and empty
states take place at certain k-points in the band structure, as illustrated in
Fig. 1.12. As the electron excitation energies are of the order of eV, the exci-
tations happen on the time scale of femtoseconds. According to Hübner et al.,
the nonequilibrium charge distribution can induce a very large change in the

2As discussed in Sect. 7.9.3 the magnetocrystalline anisotropy is the difference
of the spin–orbit energies along the easy and the hard axes. We assume here that
the effective size of the spin–orbit energy is of the same order of magnitude as its
angular dependence.
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effective s–o energy which lasts as long as the electrons remain in the nonequi-
librium distribution. Since in practice, the nonequilibrium distribution exists
over the duration of the laser pulse, changes of the magnetization may occur
over the matching timescales of 10–100 fs of the laser pulse and the charac-
teristic s–o time. We shall discuss the processes in more detail in conjunction
with the topic of all optical magnetic switching in Sect. 15.6.4.

Our discussion above also allows us to give a loose definition of “ultrafast”
magnetization dynamics as those processes that are faster than about 100 ps,
the intrinsic spin–lattice relaxation time. It turns out that there is another in-
dependent reason for such a definition. In many magnetic devices field pulses
are created by current flow through lithographically manufactured coils. To-
day, the fastest such devices operate at switching times down to about 100
ps. We may therefore state as follows.

The field of ultrafast magnetization dynamics is particularly inter-
ested in exploring processes that are faster than ≈100 ps.

It should be stated upfront that the time of 100 ps by no means poses
a general speed limit [788]. We shall see later that there are methods and
processes that offer faster manipulation of the magnetization and even com-
plete switching between two well-defined magnetic states can be accomplished
much faster. Yet the understanding of the various physical processes on these
faster time scales is presently incomplete and their understanding remains a
challenge.

In the following chapters we shall discuss some important experiments that
address ultrafast magnetization dynamics.

15.3 Spin Relaxation and the Pauli Susceptibility

Before we address time-dependent changes in the magnetization of a ferro-
magnet we start, as an introduction, by considering spin relaxation effects in
a normal paramagnetic metal such as Cu.3 In 1927 Wolfgang Pauli treated the
case of a paramagnet in an external magnetic field and discovered what is now
called Pauli spin paramagnetism [789], already briefly discussed in Sect. 10.3.7.
It turns out that the temporal evolution of this field induced magnetization
is conceptually simple compared to the dynamics of the spontaneous magne-
tization in ferromagnets and it is for this reason that we discuss it first.

The dimensionless magnetic susceptibility is defined according to (2.12)
as χ = M/µ0H. The part of χ which arises from the spin polarization of the
metallic conduction electrons in the absence of exchange coupling is called
the Pauli susceptibility χP. Contrary to Curie’s law (3.20) valid for classical

3Cu is usually called diamagnetic but all diamagnetic materials also have a para-
magnetic component.
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particles with a magnetic moment, Pauli showed that for conduction electrons
in a metal χP is independent of temperature due to the degeneracy of the
electron gas [789].

Pauli spin paramagnetism refers to the small magnetic moment, of order
10−4µB per atom, that is induced in a paramagnetic material by the
presence of a magnetic field H. It arises from an imbalance of spin up
and down conduction electrons, is directed in the direction of H, and the
associated susceptibility is temperature independent.

There is also a contribution to the magnetic susceptibility stemming from
the spatial motion of the electrons in the magnetic field. According to Lan-
dau, the spatial motion causes a diamagnetic moment directed antiparallel to
H. Its magnitude is 1/3 of the paramagnetic moment induced by the spin
polarization. Furthermore, one must not forget the diamagnetism of the full
shells in the ionic cores, the band effects, and the electron–electron interac-
tions. Yet, for simplicity, we confine our discussion to the dynamical aspects
of Pauli spin paramagnetism.

Let us assume that we turn on a magnetic field H instantaneously to a
constant value. Immediately after the field rise, two Fermi-levels will exist
which we denote E↑

F and E↓
F for the two spin states as shown in Fig. 15.3.

Fig. 15.3. A simple paramagnetic metal with a parabolic density of states D↑(E)
and D↓(E) for the two spin states, (a) in the absence of a magnetic field, (b)
immediately after a magnetic field has been applied, and (c) after a time t � τse.
In (b), there is a large spin polarization of the states near EF but no net average
magnetization, while in (c) a magnetization has developed according to (15.4). In
Cu at room temperature, τse = 10−11 s has been determined from the decay of the
spin injection voltage VAS [737], while in Au, τse = 4.5± 0.5× 10−11 s is found from
the decay of the magneto-optic signal after application of a field pulse [790]
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The average magnetization M of the conduction electrons is still zero,
but in an energy range close to EF the spin polarization is large. Due to
spin transitions, the difference between the Fermi levels of the two spin states
equilibrates on the time scale of the spin equilibration time τse. After a time
t � τse, one common EF is established. This is illustrated in Fig. 15.3. With
respect to that figure the equilibrium magnetic moment m generated by the
paramagnetic spins is given by m = µB(N↓ −N↑) where N↑ and N↓ are the
numbers of up and down spin electrons per atom, respectively. Because the
splitting 2µBH between the up and down spins is so small, the spin redistrib-
ution N↓ −N↑ can simply be calculated from the density of states D(EF) at
the Fermi energy according to

N↓ −N↑ = 2µBHD(EF) . (15.4)

For a magnetic field of H = 106 Am−1 and with a typical density of states
of D(EF) = 10−1 eV−1 atom−1 in an s, p-conduction band (e.g., see Fig. 12.1
for Cu), we have N↓ − N↑ � 10−4 and therefore the magnetic moment per
atom m = 10−4µB is quite small. Note that with spin-polarized currents in-
jected from a ferromagnet, one may generate an average spin polarization in
the conduction bands of similar magnitude according to (14.11). With the
above moments per atom we can calculate the magnetization M and the re-
sultant Pauli susceptibility χP = M/µ0H is seen to be very small (< 10−4).
These values are in good accord with those derived for Pd from XMCD mea-
surements, as discussed in Sect.10.3.7.

By use of the magneto-optic Kerr-effect (MOKE), Elezzabi, Freeman, and
Johnson [790] have been able to detect the speed with which thermal equi-
librium was established after sudden application of a field of 0.1 T. This
experiment makes use of the spin polarization appearing near EF in the un-
relaxed state of the metal. The corresponding spin polarization disappears
at the time scale of the spin–lattice relaxation while the small paramagnetic
magnetization corresponding to χP is generated. At room temperature, the
spin–lattice relaxation time or more correctly the spin equilibration time was
found to be 45 ± 5 ps in a thin film of polycrystalline Au.

In the future, the study of magnetization dynamics in nonmagnetic metals
may be extended to X-rays. Figures 13.23 and 10.16 indicate that small mag-
netizations are also detectable in XMCD. X-ray based magnetic studies add
element specificity to the magneto-optic studies which is important for alloys
and interfacial systems. They furthermore can distinguish between spin and
orbital moment relaxation. The physical processes involved in the transitions
between the spin states in a paramagnet have been discussed in Sects. 8.6.2
and 14.1.1. Further studies would certainly help to understand these transi-
tions in more detail.

We are now ready to look at what happens dynamically at an interface
between a ferromagnet and a paramagnet. When two different metals are
contacted, the electrons flow from the metal with the lower work function
to the metal with the higher work function until the contact potential is
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established. After that, the flow of electrical charge is in equilibrium, that is
as many electrons flow from metal 1 into metal 2 or vice versa. Then, the net
charge current is zero. The establishment of the charge equilibrium takes place
on the time scale of the inverse plasmon frequency, that is in less than 10−15

s. Yet, the electrons flowing from 1 → 2 may have a different spin polarization
compared to the electrons flowing from 2 → 1. In that case, one says that
a spin current is flowing. The establishment of the equilibrium for the spin
current takes place on the time scale of the spin equilibration time τse, that
is about 10−11 − 10−10 s.

This is the time scale typical for magnetization precession in the anisotropy
field. If an external magnetic field is suddenly applied to a ferromagnet, it will
generate an additional paramagnetic contribution to the ferromagnetic mag-
netization Ms. If H is parallel or antiparallel to Ms, the Zeeman-energy µBH
adds or subtracts to the exchange energy. The equilibration time of the spins
in the ferromagnet, τF

se is much shorter compared to the one in the paramagnet
as discussed in Sect. 14.1.1. Therefore, a spin accumulation voltage VAS will
be present at an interface between a ferromagnet and the Pauli paramagnet
for some time after the application of a magnetic field leading to spin cur-
rents across the ferromagnetic interface. If H⊥Ms, Ms precesses around H.
This then generates a “peristaltic spin pump” according to Tserkovniak et
al. [791], pumping spins across the interface as the magnetization precesses.
The spin currents generate additional damping of the magnetization preces-
sion and also lead to a dynamical coupling to a second ferromagnet separated
from the first one by a thin paramagnetic layer. The dynamic coupling super-
imposes onto the static coupling that may also exist according to Sect. 13.4.
The additional damping of the precession as well as the dynamic coupling
of two precessing ferromagnets have indeed been observed in ferromagnetic
resonance experiments [792,793].

In the following sections we shall discuss the excitation and relaxation of
the magnetization in ferromagnets.

15.4 Probing the Magnetization after Laser Excitation

A laser pulse can induce the excitation of electron-hole pairs in a metal
through the absorption of a photon with energy h̄ω. With photon energies
in the range of 1.5–3 eV the characteristic excitation time is of order 1 fs ac-
cording to Sect. 3.7. This is shorter than the duration of a typical laser pulse
of ≈30 fs, used in practice. Hence we can assume that the energy of the laser
pulse is deposited in the form of electron-hole pairs in a time of duration given
by the length of the laser pulse.

Any changes ofMs that are induced by the pump pulse can now be probed
by a pulse which enables rapid sensing of the magnetic state of the specimen
at various time delays after the pump pulse. The probe pulse has to be weak
in order not to deposit additional energy. The probe spot should also be
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laterally confined to a region equal or smaller than the region in which the
excitation was induced. In all present experiments, the signal generated by
a single probe pulse is buried in noise. To obtain useful information, one
typically has to repeat the pump/probe cycle a million times. Consequently,
only periodic repeatable processes can be studied so far. Stochastic events are
averaged out as long as one is not able to perform single shot experiments in
which one single probe pulse is enough to obtain a valid data point. Three
pump–probe approaches have been used to probe the magnetization M s.

The first, most common, technique employs magneto-optic effects. With
the widely available laser probe pulses of near-visible light, one uses both
linear [55] and nonlinear [794] magneto-optic Kerr-effects to deduce the time
evolution of magnetic changes. The nonlinear magneto-optic effects such as
second harmonic generation are particularly sensitive to magnetic interface
properties [795].

A second way to probe M s is to induce the emission of photoelectrons with
higher-energy, ultraviolet (UV) photon pulses. The spin polarization P of the
photoelectrons is measured with a spin detector, possibly preceded by energy
analysis of the photoelectrons, as well. The time resolution of the photoemis-
sion experiment is mainly set by optical absorption, that is the excitation of
an electron to an escape state from which it can surmount the surface barrier
potentials. The steps subsequent to optical absorption, namely transport of
the electron to the surface and then to the detector are of little concern for
the intrinsic time resolution of photoemission. Therefore, the duration of the
probing UV laser pulse inducing the photoemission sets the time span as in
magneto-optics over which the spin polarization in the initial state in the solid
is averaged.

The third method utilizes X-ray dichroism by employing tunable syn-
chrotron radiation in the form of circularly or linearly polarized X-ray pulses.
X-ray measurements are easier to interpret, have a better spatial resolution
and can separately determine the evolution of the spin and orbital parts of
the magnetization. However, at present, synchrotron based X-ray pulses have
a duration of typically >50 ps, limiting the time resolution.

No matter which technique is used for probing, one has to carefully con-
sider what information is contained in the measured signal. We first discuss
time-resolved spin-polarized photoemission techniques.

15.4.1 Probing with Spin-Polarized Photoelectron Yield

The principle of probing the magnetization with laser-induced spin-polarized
photoemission is sketched in Fig. 15.4. The question arises what information
on the magnetization in a solid is contained in the measured spin polarization
of photoelectrons? In fact, the measured spin polarization vector P is directly
proportional to that part of the magnetization which is generated by the initial
energy states from which the spin-polarized electrons are excited [796]. Hence,
as opposed to the usual magnetization measurements where one measures the
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Fig. 15.4. The experimental principle for dynamical measurements of the spin
polarization in photoemission with a pulsed laser or X-ray source

magnetization arising from all filled states, one obtains the contribution of
selected electronic states to the spin part of the magnetization. The spin of
the electronic states is measured because it remains unchanged during the
photoemission process. In the dipole approximation, the electric field that is
driving the excitation does not act on spin. If photoemission is induced with
unpolarized light, the orbital part of the magnetization cannot contribute.4

If the energy of the photoelectrons is low, that is < 20 eV measured from
the Fermi-energy EF, one has to consider the effects of spin filtering in the
transport of the photoelectrons to the surface. The spin filtering enhances the
observed spin polarization over the value in the initial electronic states from
which the photoelectrons have been excited as discussed in Sect. 13.2.

To illustrate the connection of the spin polarization with the magnetiza-
tion, Fig. 15.5 shows the dependence of the photoelectron spin polarization on
the energy of the photon inducing photoemission as observed by Eib and Al-
varado on the (100) surface of Ni [303]. There is a large variation of the degree
of polarization with the energy of the photons inducing the photoemission.
Only at photon energies of ≈10 eV, the expected average spin polarization of
0.07 of all the valence electrons is approached.

Clearly, it would be preferable to induce photoemission with high energy
photons so that all 3d-states contribute with equal probability. Also, spin
filtering can be neglected at higher electron energies. Under these conditions,
the spin polarization of the photoelectrons would be directly related to Ms.

4In contrast, magnetometry based on the electromagnetic induction, the force, or
the torque induced by the magnetization determine the total magnetization which
includes the orbital part. Only in XMCD, orbital and spin part of the magnetization
can be separated.
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Fig. 15.5. Photoelectron spin polarization of the total yield of photoelectrons versus
photon energy. The sample was a single crystal of Ni, and the photoemitting surface
was (100). Magnetic saturation was induced perpendicular to the surface with a field
of 0.6 T, from [303]. Data for a cesiated Ni(111)-surface are given in Fig. 13.2

The problem is that probing pulses of such UV or X-ray photons are presently
not available. At present, suitable pulses of UV-photons exist only at photon
energies ≤6 eV, where the spin polarization P depends strongly on photon
energy. Fe is more favorable than Ni for evaluating the dynamics of Ms from
the near-threshold spin polarization since it exhibits at least no change of sign
and generally has a higher value of P [797].

Results for polycrystalline Fe are shown in Fig. 15.6 [798]. The pump and
probe pulse were identical, that is the pulse that excites the electron hole pairs
(pump-pulse) is also the pulse that probes Ms by inducing photoemission of
electrons whose spin polarization is measured. Changes ofMs due to excitation
of the electron-hole pairs and subsequent excitation of lattice vibrations are
thus noticeable if they occur in a time shorter than tL, the duration of the
laser pulse.

The work-function of the sputter cleaned Fe-surface was lowered to 1.7 eV
by deposition of Cs which made it possible to use a photon energy of 2.15 eV,
delivered by an excimer laser. The spin polarization P is measured versus the
total energy of the laser pulse. It is quoted relative to P0 = 0.55, the de-
gree of polarization measured with a weak pulse at room temperature along
a direction ⊥ to the surface. A magnetic field of 0.4 T was applied in this
direction to induce magnetic saturation. The energy of the laser pulse is given
in units of the energy Eion at which positive ions are emitted from the sur-
face. Microscopic inspection of the focus area of the laser showed that melting
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occurs at E > Eion. Photoemission from Fe probes only about three layers
from the surface, and the yield is much stronger where the emission of positive
ions compensates the negative space charge induced by the escaping photo-
electrons in front of the surface. Hence the probing of a very thin sheet at the
surface occurred in the hottest part of the laser focus.

Figure 15.6 indicates that with a laser pulse fluency strong enough to in-
duce melting of the surface, the magnetization vanishes (Ms → 0) at a pulse
length tL = 20ns but it remains constant (Ms = const) when the pulse length
is shortened to tL = 30ps. This agrees with the expectations based on a
spin–lattice relaxation time of 30 ps < τsl < 20 ns. Molten Fe is of course
paramagnetic, but when it is heated in a time span of 30 ps from an initial
ferromagnetic state, the spin polarization persists above TC far into the liq-
uid state as tL is too short to transfer the angular momentum to the lattice.
The melting temperature of Fe is considerably higher than the Curie point,
Tmelt ≈ 2TC.

Polycryst, Fe
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Fig. 15.6. Relative spin polarization of photoelectrons emitted from polycrystalline
Fe as a function of the energy of the laser pulse [798]. Pulse duration was 30 ps (full
circles) and 20 ns (open circles). At E/Eion ≥ 1 the sample surface melts, but the
spin polarization persists with the ps-pulses. The inset shows a similar experiment
with optical pumping of β-Sn. Here, the polarization does not persist upon melting

In this context, it is interesting to consider the result of a time resolved
optical spin orientation experiment with a paramagnetic sample such as β-
Sn5, shown in the inset of Fig. 15.6. With nonmagnetic samples, polarized
electrons can be excited from the unpolarized ground state using circularly
polarized light. This process, called optical spin orientation, underlies the spin

5β-Sn is known as “white tin.”
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polarized GaAs-source of electrons discussed in Sect. 8.2. The degree of spin
polarization is determined by the crystal symmetry of the lattice. With molten
or disordered surfaces, the spin polarization is zero [346]. In this way, spin-
polarized photoemission can also detect the time scale of melting on heating
with a laser pulse.

To demonstrate this, the work function of a clean β-Sn(100)-surface was
lowered by deposition of Cs to 1.9 eV. This makes it possible for electrons
excited with 2.7 eV circularly polarized photons to escape into vacuum. The
resulting photoelectrons have a spin polarization of P = 0.04 explained by
spin–orbit splitting in the involved electron states [346]. As the energy of
the laser pulse becomes high enough to induce melting, i.e., E ≥ Eion, the
spin polarization decreases (P → 0) according to the inset of Fig. 15.6. This
is independent of whether one uses long or short laser pulses. Therefore, the
transfer of energy from the electrons to the lattice must occur in a time shorter
than the duration of the short laser pulse. This agrees with the well-known
time scale of ≈1 ps of electron-phonon coupling [780]. Hence we can summarize
as follows.

Thermal demagnetization is limited in time by angular momentum trans-
fer to the lattice (spin–lattice relaxation time τsl ∼ 100 ps) and is much
slower than thermal melting (∼1 ps).

Scholl and coworkers [86] carried out time-resolved photoemission probing
with a 6 eV laser pulse at various delay times after a pump pulse with hν =
3 eV. Both pump and probe pulses had a duration of tL = 170 fs yielding a time
resolution below the ps-range. The sample was a Ni film grown on Ag(100),
and TC could be varied by growing films of different thicknesses. The incident
light of both pump and probe pulse was linearly polarized ⊥ to the surface so
that dichroic effects are excluded. The Ni films were magnetized in remanence.
The experiment works like this. First, the pump pulse deposits energy by
creating electron-hole pairs. Then, after a variable delay time, photoelectrons
are excited by the probe pulse and their spin polarization P is measured.
Figure 15.7 shows the results of the experiment.

One notices an initial fast decay of P within less than 300 fs followed by a
slow decay of the order of several hundreds of ps. The slow decay of P is what
one expects based on the earlier experiment shown in Fig. 15.6 while the fast
decay is unexpected on the basis of an electron-phonon coupling of 1 ps or a
spin–lattice relaxation of ≈100 ps. The time scale of the fast relaxation points
to its connection with the relaxation of the electron-hole pairs.

However, whether or not electron-hole pair relaxation can generate a true
demagnetization of Ms remains to be proven since care has to be exercised in
the interpretation of the results. It is possible and more likely that with a pho-
ton energy of hν = 6 eV near the photoemission threshold, the electron-hole
pairs simply generate a redistribution of the spin polarization over different
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Fig. 15.7. Normalized spin polarization of electrons photoemitted with a 6 eV laser
pulse at various delay times after the pump pulse with hν = 3 eV, for two Ni films
with different TC [86]

electron states under conservation of angular momentum. This could change
the spin polarization of the emitted electrons but the total magnetization may
be constant. At the low photon energy, P is very sensitive to any variation in
the occupied spin polarized electronic states near EF according to Fig. 15.5.
Such changes might have been induced by the pump pulse.

15.4.2 Probing with Energy Resolved Photoelectrons With or
Without Spin Analysis

Rhie, Dürr, and Eberhardt [799] used time-resolved photoemission spec-
troscopy to probe the electron dynamics and measure the concomitant changes
in the exchange splitting ∆ of the spin states. The sample was a single crys-
talline Ni film of a few atomic layers deposited on W(110) with a Curie tem-
perature TC = 480K. The pump pulse of a duration of ∆t1 = 85 fs consisted of
1.5 eV photons at a fluence of 13mJ cm−2. It heated the electron gas to effec-
tive temperatures T � TC. The pump pulse photon energy is too low to induce
photoemission of electrons since the work function of the clean Ni-surface is
≈5 eV and the pulse intensity was too weak for multiphoton photoemission.
The probe pulse on the other hand side lasted ∆t2 = 180 fs and consisted
of photons of 6 eV. It followed the pump pulse after various time delays up
to ∼10 ps. The probe pulse induces the emission of photoelectrons that are
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detected in a time of flight electron-spectrometer at an energy resolution of
30 meV.

The innovative feature of this experiment is that it detects not only the
electrons excited from the occupied states below EF, but also the electrons
excited to states above EF. This makes it possible to simultaneously determine
the temporal evolution of the temperature of the electron gas and the exchange
splitting ∆ of the electron states.

Equation (12.7) gives the Fermi–Dirac function which is the probability
that an electron state of energy E will be occupied in an electron gas in thermal
equilibrium. f(E) = 1/2 when E = µ where µ is the chemical potential. At
T = 0, µ is equal to the Fermi-energy EF. Figure 15.8 demonstrates that this
applies approximately at temperatures of the electron gas as high as 5,000 K.
The high energy tail of the distribution is that part for which [E−µ] � kBT .
The exponential term in the denominator of f(E) is then dominant so that
we can write

f(E) � e−(E−EF)/kBT . (15.5)

In electron spectroscopy, EF is determined by measuring the work function
and E is obtained by high resolution energy analysis of the photoelectrons.
Consequently, the occupancy of the electron states above EF can be measured.
If it shows the exponential tail according to (15.5), usually referred to as the
Boltzmann-tail, we know that the electron gas is in thermal equilibrium. We

,

−

Fig. 15.8. Fermi–Dirac distribution at 500 and 5,000 K. Plotted is the probabil-
ity that an electron state is occupied versus the energy in eV. The time-resolved
measurement of the tail of the Fermi-function is possible with laser-induced high
resolution photoelectron spectroscopy. Fermi-energy EF and vacuum potential EV

are also indicated
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can then determine its temperature from the slope of the tail in a logarithmic
graph. In this way it was established that thermal equilibrium is reached in the
experiment [799] at a delay time of 0.5 ps between probe and pump pulse. The
highest temperature of the electron gas is thus reached 0.5 ps after excitation
and it amounted to ≈1, 000K. This high temperature occurs because the
specific heat of the degenerate electron gas is comparatively low.

After reaching the peak temperature, the electron gas cools rapidly by
heating the lattice through the excitation of phonons. The cooling of the
electron gas levels off at a delay time of 2 ps indicating that the electrons are
now in thermal equilibrium with the lattice. The equilibrium temperature is
found to be comparatively low, namely 410± 30K. This is because the lattice
has a large specific heat. The effective electronic temperature remains at the
lattice temperature up to the largest investigated delay times of 9 ps between
pump and probe pulse. This indicates that heat conduction into the substrate
is relatively slow and limits the study of magnetic phenomena to the shorter
delay times. These findings are very much in agreement with prior work on
electron-phonon coupling in nonmagnetic metals [780]. Yet they appear to
be in conflict with a recent proposal on ultrafast demagnetization based on
electron-phonon scattering [800]. We can state as follows.

The electron-phonon relaxation time scale for establishing the equilibrium
between the electronic and lattice temperatures is independent of the
magnetic state of the sample.

Of interest for the dynamics of the magnetization is the fact that the ex-
change splitting ∆ along the Γ − K azimuth of the Brillouin zone can be
determined in this experiment as well. In Ni, the majority spin band mani-
fests itself in a peak of the occupied d-states below EF, while the minority
spin band is only partially occupied and crosses EF. The peak of the minority
spin density of states is therefore not fully developed, but the peak posi-
tion can be recovered by normalizing the observed energy distribution of the
electrons emitted from states above EF with the Fermi-distribution function.
This technique has been applied by Greber and coworkers [567] as discussed
in Sect. 12.4.2. To verify the technique employing a pulsed laser instead of the
DC-He-resonance lamp, the exchange splitting was determined in the absence
of a pump pulse at ambient temperature. The splitting between the majority
and minority spin states turned out to be 230±50meV in agreement with the
static experiment [567]. Then, after applying the pump pulse, the exchange
splitting ∆ was found to collapse after 0.3 ps and to re-establish itself after 3
ps. The collapse of the exchange splitting is closely connected to the change
in the occupation of the electronic d-states induced by the pump pulse.

It is reasonable that the exchange splitting collapses when the occupancy
of the electron states near EF is reduced by the pump pulse. After all, the
main ingredient producing it might be the fact that the 3d levels are more
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than half full. The 3d-minority spin electrons can hop from one atom to the
other in the case of a more than half full 3d-shell only if the majority spins
are parallel on all atoms. In this picture, the gain of kinetic energy for the
3d-electrons at EF is then the cause of ferromagnetism in the 3d-metals. The
exchange field can be reduced to zero through the electronic interactions at a
fast time scale, but the collapse of the exchange field does not necessarily mean
that the spin polarization of the electrons gas is also immediately reduced to
zero. While it is true that the degree P of spin polarization of the electron
gas will be redistributed over different energy states due to spin exchange in
electronic collisions, P must remain constant at its average value of 0.07 in
Ni until the angular momentum can be transferred to somewhere. At time
scales where the electron gas is a closed system with internal forces only, P
has to stay constant. The electron gas cools to temperatures T < TC in 3 ps
through its interaction with the crystal lattice. Concomitantly, the exchange
splitting is found to re-establish itself after 3 ps, that is to our best present
knowledge before exchange of angular momentum with the lattice is possible.
In the absence of the measurement of P one has no information on whether
any demagnetization and subsequent remagnetization takes place at the short
time scales below 3 ps. However, the new result of the experiment by Rhie,
Dürr, and Eberhardt [799] is that it shows that the exchange field collapses for
the duration of a few picoseconds upon exciting a large number of electron-
hole pairs with a fast optical laser pulse. This needs to be remembered.

The exchange field collapses for the duration of a few picoseconds upon
exciting a large number of electron-hole pairs with a fast optical laser
pulse.

An alternative approach to the question of how fast spin angular momen-
tum is dissipated in the 3d-metals can be to directly measure the lifetime of a
spin in a selected energy state. To first order, this lifetime is given by the spin
conserving scattering active in spin filtering according to Sect. 12.6.1. Addi-
tional fast spin flip scattering would manifest itself in a further reduction of the
lifetime of the spins. This was explored by Aeschlimann and coworkers [87,801]
who analyzed both the spin and energy of the photoelectrons excited with a
short laser pulse. This made it possible to determine the lifetime τ↑ and τ↓ of
the two spin states of the electrons as a function of the energy E∗−EF above
the Fermi-level. In the absence of any spin flip scattering, the measured life-
times must be equal to the ones derived from the respective spin-dependent
mean free path λe of hot electrons according to τ = λ/vG, where vG is the
group velocity of the electrons.

It turns out that the two experiments, measurement of the attenuation
length and of the lifetime, are in qualitative agreement. They both show a
longer lifetime for the majority spins. However, the ratio τ↑/τ↓ is much larger
according to the more recent data shown in Fig. 12.18 compared to the direct
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time-resolved measurements [87,801]. This rules out any additional mechanism
reducing the lifetime of a spin beyond spin selective scattering. However, closer
analysis of the experiment [801] reveals ambiguities in this first time-resolved
approach.

The experiment of Aeschlimann et al. [87] involved excitation of the elec-
trons by a first ultrashort pump laser pulse followed by a second, suitably
delayed probe laser pulse which leads to photoemission of the electrons. By
measuring the number of photoelectrons in the two spin states at a kinetic
energy Ekin determined by the setting of the energy analyzer and as a func-
tion of the delay between the pump and the probe pulse, one obtains the
spin-dependent lifetimes τ↑ and τ↓ in an excited state. The principle of this
experiment is explained in the inset to Fig. 15.9. The pump pulse excites the
electrons from their ground state to an intermediate state of energy E∗ −EF.
The probe pulse, arriving after a variable delay, excites those electrons that
are still present at energy E∗ to a state above the vacuum level Evac from
where they can escape from the solid and be detected as photoelectrons. The
lifetime of the electrons at E∗ is obtained by measuring the photocurrent
versus the delay between the two light pulses. The two pulse correlation ex-
periment can be used to determine electron lifetimes which are much shorter
compared to the duration of the laser pulses tL = 40 fs because the shape of
the laser pulses is known. Furthermore, the two pulses have to be linearly po-
larized perpendicular to each other in order to reduce the probability for the
simultaneous absorption of two photons for exciting one single electron state.

Figure 15.9 displays the observed spin-integrated lifetime as it depends on
the energy E∗ − EF of the excited state with Co and Ag. In the case of Co,
both laser pulses had a photon energy hν = 3 eV, and the work function of the
surface of the fcc Co(001) film grown on Cu(001) was reduced to Φ = 3.5 eV
by the deposition of Cs. In the case of Ag, the laser pulses had an energy of

Fig. 15.9. The spin-averaged inelastic lifetime of Co and Ag in fs (10−15 s) versus the
energy of the excited state E∗ −EF [87]. The inset shows the energy levels involved
in 2-photon-photoemission. Φ is the work function, adjustable by deposition of Cs
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hν = 3.3 eV and the work function of the Ag(111) surface was Φ = 4.1 eV. As
the energy E∗ − EF is lowered, the lifetime of the electrons in Ag increases
much more compared to the one in Co. This agrees with the notion that
the lifetime is determined by the scattering into the hole states in the d-
band, hence must be shorter with Co compared to Ag. It is also in qualitative
agreement with the results on the electron absorption coefficient in different
metals shown in Fig. 12.16.

Figure 15.10 shows the spin-resolved lifetimes observed with Co. The very
short relaxation times of the order of 10 fs agree with the fast relaxation
of the electron gas found in reference [799]. Similar measurements have also
been done with Ni and Fe [801] with qualitatively similar results. The ratio
of majority to minority spin lifetimes, τ↑/τ↓, seems to decrease in all three
ferromagnetic metals as the intermediate state energy approaches the Fermi
energy (E∗−EF → 0). This is contrary to the expectations based on a simple
density of states interpretation. The inset to Fig. 15.10 shows the calculated
density of states in fcc Co. At lower energies, the unoccupied density of mi-
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Fig. 15.10. The spin-resolved inelastic lifetime (top) and the ratio of majority to
minority spin lifetimes, τ↑/τ↓, (bottom) of a cesiated 10 nm thick Co-film versus the
energy of the state E∗ − EF excited with a photon energy of hν = 3 eV [87]. The
inset shows the density of states of fcc Co
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nority states is dominant. Therefore, the density of states model cannot be
reconciled with a decrease of the ratio τ↑/τ↓ in Co, and the same applies to
Ni. In Fe one expects τ↑/τ↓ < 1 at [E∗−EF] < 1 eV. None of this is observed
in the experiments by Knorren et al. [801].

The failure to detect the effect of the majority spin holes close to EF in Fe
leading to τ↑/τ↓ < 1 might be explained by the fact that this feature is not
present at surfaces according to theoretical predictions shown in Fig. 12.4b.
More serious is the disagreement with the results obtained with MTT’s shown
in Fig. 12.18. In fact, one expects that

τ↑/τ↓ =
λ↑v↓G
λ↓v↑G

. (15.6)

The results from attenuation measurements are thus not consistent with ra-
tios τ↑/τ↓ close to unity observed in the direct measurements of the spin-
dependent lifetimes at the lower electron energies. Knorren and coworkers
[801] attribute this to shortcomings of the simple density of states model in
explaining the lifetimes. It is proposed to adjust the Coulomb matrix elements
active in electron scattering individually in Ni, Co, and Fe to obtain agree-
ment with the experiment. However, the contradictory results of the direct
measurement of the lifetimes at lower lying excited states could have more
trivial reasons. The relaxation of electrons from higher lying states into the
lower state whose lifetime is to be determined makes the actual lifetime ap-
pear longer. Such apparent lengthening of the observed lifetime might occur
when [E∗ −EF] 
 hν where hν is the photon energy of the pump pulse. The
replenishing of the excited state at lower E∗ by cascading electrons can there-
fore be at the root of the inconsistencies. Future experiments where the pump
pulse has a lower energy than the probe pulse could eliminate the present
uncertainty in the interpretation of the time resolved experiment [87,801].

15.4.3 Probing with the Magneto-Optic Kerr Effect

It appears natural to investigate fast magnetization dynamics following the
excitation of electron-hole pairs with the magneto-optic Kerr effect (MOKE).
A pump pulse of optical photons of duration ∆t1 ps is used to excite elec-
tron hole pairs, and a second weaker probe pulse of duration ∆t2 follows
at a variable delay time in order to gain information on the magnetization
Ms via MOKE. The first results from such time-resolved MOKE-experiments
(TRMOKE) with a time resolution below 1 ps were presented by Beaurepaire
and coworkers [802] and more recently by Guidoni et al. in the same labora-
tory [803]. Beaurepaire et al. used laser pulses of ∆t1 = ∆t2 = 60 fs width
with a photon energy of hν = 2 eV. The experiments received great atten-
tion because they seem to reveal fast demagnetization at time scales below
1 ps, contradicting expectations based on the spin–lattice relaxation time of
≈100 ps.
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Figure 15.11 shows the results of reference [802] for a polycrystalline Ni
film. The rotation of the plane of polarization of the linearly polarized probe
pulse in the longitudinal Kerr-effect is used to monitor the remanent mag-
netization MR in the Ni film relative to the remanence M0

R in the absence
of a pump pulse. As the delay between the pump and probe pulse is varied,
MR shows first a rapid decrease at a time scale of ≈1 ps and then a slower
recovery saturating at a plateau at about 2/3 of M0

R at the largest measured
delay times of 15 ps. The fact that one does not get the full remanence at
zero delay times between pump and probe pulse is attributed to heating in
the course of the experiment or to a slow motion of domain walls triggered by
the pump pulse in the polycrystalline sample.

Fig. 15.11. Time-resolved magneto-optic signal (TRMOKE) from a remanently
magnetized polycrystalline Ni film of 20 nm thickness on MgF2 [802]. The fluence
of the pump pulse was 7mJ cm−2 at a photon energy of hν = 2 eV. The TRMOKE
signal is given relative to the MOKE-signal in the absence of a pump pulse

A number of groups have confirmed such a fast reduction of magneto-optic
(MO) contrast in Ni after excitation with a fs laser pulse [804–806]. Yet Koop-
mans and collaborators [807] have demonstrated in more detailed TRMOKE-
experiments that the fast change of the MO-signal is due at least in part to
nonmagnetic changes in the electronic structure induced by the pump pulse.
Kampfrath and collaborators [808] have presented experimental data show-
ing that nonmagnetic contributions in the TRMOKE-signal are present up to
100 ps after excitation, hence it is not possible to conclusively deduce a de-
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magnetization from TRMOKE. These results are corroborated by theoretical
work [809] where the conclusion is reached that no information on ultrafast
magnetization changes can be obtained from the Kerr-effect response.

The time-resolved spin-polarized photoemission data displayed in Fig. 15.7
exhibit in fact a similar behavior as the TRMOKE data in Fig. 15.11. But one
can argue that both MOKE and photoemission do not reveal the underlying
dynamics of the total Ms but rather the dynamics of the spin-polarized states
that are energy selected by the photoexcitation or the photoemission process.
If on the contrary one assumes that the experimental data indeed measure
the magnetization, they would reveal that Ms can change even faster than
the electron-phonon relaxation time of ≈1 ps. This in turn implies a purely
electronic mechanism for the relaxation of the magnetization.

Such an ultrafast electronic spin relaxation would be in disagreement with
the two current model for hot electrons discussed in Sect. 12.6.3. The model
asserts that transitions of the electrons involving a change of spin state are
rare in transmission of electrons through a magnetic solid. Furthermore, if the
spin was unstable on the sub-ps time scale, it would be hard to imagine how
spin can be transported from one ferromagnet into another as observed in bal-
listic spin injection experiments. It appears to be more likely that TRMOKE
responds to the collapse of the exchange field [799], discussed in Sect. 15.4.2.
Another channel is the blurring of the spin–orbit splitting of the electron states
induced by the excitation of lattice vibrations, revealed in time-resolved opti-
cal orientation experiments during melting, discussed in conjunction with the
inset of Fig. 15.6 (also see discussion later).

The direct transfer of angular momentum from the electron to the magne-
tization system following optical excitation, proposed by Hübner and collab-
orators [784,785] and discussed in Sect. 15.6.4, could explain the fast decrease
of Ms. So far, this mechanism does not contradict any observations. The ul-
trafast demagnetization could thus be due to the co-operative action of the
external laser field and the internal LS-coupling. On the other hand, the re-
covery of the magnetization after the laser excitation must still be slow as, in
the absence of the photons, it is expected to occur on the slower time scale
of the spin lattice relaxation. The Hübner model thus allows a fast decrease
of Ms in laser excitation, but the recovery of Ms must still be slow. This
slow recovery has not been reported so far. Recently, Koopmans and collab-
orators [800] have proposed yet another microscopic mechanism for ultrafast
magnetization dynamics based on electron phonon scattering. As the lattice
heats up to temperatures close to, but still below TC, spin angular momen-
tum can be transferred at the ps time-scale to the lattice by the spin–orbit
interaction in the electron states generated by the electron-phonon scattering.
This model awaits further examination.

While the experiment of Rhie, Dürr, and Eberhardt [799] establishes the
ultrafast recovery of the exchange splitting within 2 ps, it does not exclude the
Hübner mechanism because the experiment does not monitor the temporal
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evolution of the spin polarization of the electron gas. Obviously, one must
distinguish between spin order and the establishment of the exchange field.

In addition to the sensitivity of magneto-optics to the occupation of the
electronic states [806, 808, 809], MOKE must also depend on the lattice tem-
perature for the following reasons. The MOKE-contrast is rooted in transitions
between spin–orbit split electronic states at particular k-points in the Bril-
louin zone. Kerr ellipticity is caused by the difference in the absorption of right
circularly (RCP) and left circularly (LCP) polarized light, while Kerr rotation
is caused by the difference in the phase velocity between RCP and LCP. The
transition probability between electronic states induced by photons of oppo-
site circular polarization is equal if the electrons are not polarized. Therefore,
MOKE contrast disappears if there is no spin polarization. But in ferromag-
nets, due to the spin polarization in the initial states, such a difference in the
transition probabilities for polarized light exists and is the reason why MOKE
can sense the magnetization Ms. Both, Kerr ellipticity and Kerr rotation dis-
appear when there is no spin–orbit (LS) coupling. This arises because photons
can not couple directly to the spin. The LS-splitting of the electronic k-states
forming a band is small in the 3d-metals and depends strongly on the loca-
tion in the Brillouin zone. The LS-splitting of the electronic band states as a
function of the location in the Brillouin zone can be measured with the tech-
nique of optical orientation combined with spin-polarized photoemission [346]
as discussed briefly in Sect. 15.4.1. As the lattice is heated, the k-states of the
crystal are increasingly blurred, and optical orientation disappears because
the LS-splitting of the band states is washed out.

Experiments with optical orientation and the data for β-Sn in the inset of
Fig. 15.6 show that the broadening of the electronic band-states induced by
lattice disorder makes optical orientation disappear completely at the melting
point or in amorphous structures [346]. Therefore one must expect that the
magnitude of MOKE is reduced when lattice vibrations are excited. Then it is
clear that MO depends on the lattice temperature in addition to the transition
probabilities between spin-polarized electronic states.

At present, it is not possible to arrive at a final interpretation of the many
existing observations on transient MOKE-contrast induced by an optical laser
pulse. The reader will find a more detailed discussion in reference [810].

15.5 Dynamics Following Excitation with Magnetic Field
Pulses

In Fig. 15.2 we show three distinct heat reservoirs in a ferromagnet. So far,
we have discussed optical excitation where the energy is initially absorbed by
the electrons in the form of electron-hole pairs, and the discussed experiments
attempted to observe the subsequent temporal evolution of the magnetization
M(t) as the energy distributes itself over the three reservoirs. In the present
section we discuss a different approach based on exciting the magnetization
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with a short magnetic field pulse. In order for the magnetization to move,
the field has to exert a torque, hence the field must be an axial vector field as
opposed to the excitation with unpolarized light which occurs mainly through
interaction with the polar electric field. With an axial vector field, energy
and angular momentum may be directly deposited into the spin system by
moving M out of its equilibrium direction. We now seek to understand how
the energy and angular momentum dissipates out of the spin system into the
lattice, either directly or via the electrons.

In order to visualize the fundamental processes underlying the dynamics
following magnetic field pulse excitation, let us assume that the equilibrium
direction of the magnetization M∞ lies along the +z-axis. The dynamics is
thus started by applying a field pulse that moves M out of the +z-axis. We
wish to know how fast M(t) regains its equilibrium magnitude and alignment
along the easy axis, either along +z or −z.

Figure 15.12 explains the processes underlying the classical (top) and quan-
tum mechanical (bottom) descriptions of the macrospin magnetization M
associated with a system of eight spins. We have assumed that the magne-
tization is initially perpendicular to the applied magnetic field H and then

Fig. 15.12. Relaxation of the magnetization M into the equilibrium direction sim-
ulated by the field H . We assume that initially M ⊥ H . For this geometry, the spin
state of each electron along H is a coherent superposition of an up-spin and a down-
spin wave function with an energy splitting of 2µBH. Both spin states are equally
populated. This leads to precession of the spin around the axis of H according to
Sect. 3.7. As M becomes ‖ H , the population of the energy levels changes, and the
population of the lowest spin state increases. Therefore, for M to relax into the field
direction, transitions from the higher lying spin state to the lower lying spin state
have to occur. The timescale on which the transitions occur is the spin relaxation
time τd. It is related to the damping of the magnetization precession introduced in
Sect. 3.6.2 and can be measured by observing the rate at which M relaxes into H
according to (15.7)
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relaxes into the direction of the field . The figures thus connects the macro-
scopic picture of the precession and damping of the magnetization, discussed
in Sect. 3.6.2, with the quantum-mechanical description in which the damping
is due to transitions between states of opposite spin, as outlined in Sect. 3.6.3.

If Mz(t) is the component of the excited magnetization along the equilib-
rium direction andM∞

z its equilibrium value then, according to one of Bloch’s
equations (3.41), the evolution of Mz(t) with time t is given by

∂Mz(t)
∂t

= −Mz(t) −M∞
z

τd
, (15.7)

where τd is the spin relaxation time related to the damping of the precession.
Equation (15.7) shows that it is possible to determine τd by measuring the
rate ∂Mz/∂t with which M relaxes into the field direction. If the magnitude
of M is conserved, the pathway of M into the z-axis is a spiral with the
endpoint of M on the sphere of Poincaré, as pictured in Fig. 3.16. We will
see below, however, that the magnitude of M is not necessarily conserved, so
that the uniform precession model does not always apply.

Conceptually, the excitation of the magnetization by a field pulse is much
simpler than the excitation of the electron gas through generation of electron-
hole pairs. However, in practice, it is impeded by the difficulty of producing
fast and strong magnetic field pulses which are needed in order to sharply de-
fine the time of excitation and overcome the anisotropy energy. The challenge
is to generate an instantaneous field with sufficient magnitude to excite or
even switch the magnetization in a small magnetic element. Several methods
for the generation of magnetic field pulses have been used.

Pulse generators

Electrical pulse generators are driven by a voltage pulse which is electronically
synchronized to and delayed from the trigger signal of the laser system. The
fastest current pulses that can be made have a combined rise time and width
≥ 100 ps. The self-inductance of the electric circuit has to be as low as possible.
It decreases with size, therefore the pulses must be guided in microwaveguides
called “strip lines” of appropriate impedance made by optical lithography. The
strip line can be wound into a single turn microcoil to produce a magnetic field
perpendicular to the coil in the center, or one can simply use the field above
or below the conductor. The strip lines have to be terminated appropriately
to avoid reflection and distortion of the pulses.

Optical switches

Pulses with a shorter rise time require an optically controlled switch, provided
by a so-called Auston switch that is located close to the sample, as illustrated
in Fig. 15.13. The switch is manufactured on a GaAs crystal, typically by
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Fig. 15.13. Principle of generating a magnetic field pulse with an optically activated
Auston switch. The laser pump pulse creates electron hole pairs between the metallic
fingers of the Auston switch, launching a current pulse into the strip line. The sample
is either located on top of the stripline where the Oersted field H is in-plane or in
the center of a stripline loop where the field is out-of-plane, as shown. The sample
is excited by the magnetic field pulse generated by the current pulse. The dynamic
change of the magnetization is probed by a suitably delayed optical or X-ray probe
pulse that is incident on the sample

means of optical lithography, by deposition of two metal lines serving as elec-
trical contacts, one of which is also tailored into an impedance matched strip
line. The metal lines meet in the actual switch region where they are electri-
cally isolated by a meandering GaAs region. This insulating region keeps a
current from flowing when a voltage is applied to the contacts, as indicated in
the figure. A laser pulse incident on the switch region produces electron hole
pairs in the GaAs by exciting electrons into the conduction band, thereby
opening the switch. This produces a current pulse traveling down the strip
line. In practice, current pulses of 100 mA have been reported producing a
magnetic field of 0.1 T in the center of a single turn microcoil [790]. While the
rise-time of the pulse can be few picoseconds, the decay time is ≈200 ps due to
the intrinsic plasma recombination time in GaAs. A shorter shaped pulse can
be generated by using a second Auston switch to which the opposite voltage
is applied [811].

Alternatively, it is possible to use a “Schottky diode,” that is a junction
between a metal and a semiconductor, as the laser activated switch [812]. In
practice, a metal layer is deposited on a semiconductor wafer and a voltage is
applied perpendicular to the surface, from the back to the front of the diode.
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When a laser pulse hits the diode a current flows within the illuminated area
from the back to the front of the diode. One therefore avoids the use of a strip
line and one also obtains a shorter rise time. However, the current channel is
limited to the size of the laser beam focus and so far the field amplitudes have
been lower than those achieved with Auston switches.

Relativistic Electron Bunches

The magnetic field generated by relativistic bunches of electrons is shown in
Fig. 2.4. Such pulses have an ideal Gaussian shape and combine short duration
of the order of 1 ps with field strengths of ∼100 Tesla near the outer edge of the
electron bunch, as shown in Fig. 4.3. By passing such electron bunches through
a thin film sample, the magnetic switching induced by the pulsed fields in
ferromagnetic metals has been studied [788,813–815]. At distances of ∼100µm
from the beam center the field pulses have amplitudes of ∼ 1T. In metallic
samples the electric field E = cB which accompanies the magnetic field B is
screened after a very short lifetime ≤ 1 fs given by the plasma frequency of
the metallic electrons. In insulators, the electric field is not screened and may
cause damage.

Laser Heating in an Applied Field

In Sect. 15.4 we have discussed the excitation of the sample by a laser pulse.
It only deposits energy into the electron gas which is then transferred to the
lattice within ≈1 ps. One may use laser induced heating also in conjunction
with a steady magnetic field. This method constitutes an indirect method of
generating a magnetic field pulse. Several approaches are possible.

If the laser heats the sample to temperatures above the Curie point TC

in an external magnetic field that is set at an angle or antiparallel to the
magnetization, the dynamics of the sample starts as it cools down below TC.
This approach is used in thermomagnetic Curie-point writing. Already the
first time-resolved magneto-optic Kerr (TRMOKE)-experiments [816] showed
that the time scale of the dynamics is in the nanosecond range. It is dominated
by the rate of cooling the sample through heat conduction into the substrate.
Unless one can remove the heat quickly, the laser heating experiments thus
do not tell very much about magnetization dynamics.

A related approach is based on heating a suitable sample to tempera-
tures above the spin reorientation transition in which the magnetic anisotropy
changes direction by 90◦. Such a transition occurs for instance in thin Fe-films
on Cu as mentioned in Sect. 11.2. In that case, one generates a fast magnetic
anisotropy field pulse.6 Alternatively, on can heat a ferrimagnetic material

6A spin reorientation transition is said to occur when the magnetization of a
thin film changes spontaneously at a material specific temperature from the in-plane
direction to the perpendicular direction, or vice versa.
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in an external field opposed to the magnetization to temperatures above the
compensation point for the two sublattices and in that way generate a fast
change of sign of the exchange field.7 This latter approach is used in thermo-
magnetic compensation point writing.

Furthermore, a transferred effective magnetic field pulse may be produced
in a ferromagnet by heating an exchange biased system. Rasing and collab-
orators [817] recently suggested that ultrafast switching of a ferromagnet is
possible via laser induced reorientation of an exchange coupled antiferromag-
net such as TmFeO3. One could indeed imagine that the magnetization M of
a ferromagnet exchange coupled to the AFM could be switched by precession
if the anisotropy field of the AFM changes direction by 90◦ [817]. However, as
shown in Sect. 15.6.1, the exchange bias field pulse amplitude must increase
in proportion to the reduction of the duration of the pulse. This necessitates
much higher effective field pulse amplitudes as commonly available in exchange
biasing.

Recently, the dynamics of the antiferromagnetic to ferromagnetic phase
transition that occurs in FeRh films has been studied by heating the antifer-
romagnetic FeRh with a laser pulse to temperatures above the temperature
of ∼100◦C at which it becomes a ferromagnet [818,819]. In this case, a rapid
increase of the ferromagnetic exchange field is generated. The direction of the
developing ferromagnetic exchange field is specified by applying an external
magnetic field of 4×104 Am−1 [818]. The principle of this experiment is shown
in Fig. 15.14.

Some magnetic signal appeared in the time-resolved magneto-optic Kerr
effect (TRMOKE) within less than 1 ps after the fs-pump pulse. This magnetic
signal saturates within ≈30 ps after the pump pulse. In this case, angular
momentum has to be imported into the spin system rather than dissipated.
Ganping Ju et al. [819] propose that the itinerant moments induced in the Rh
atoms by the exchange interaction with the localized Fe moments trigger a
fast phase transition, similar to that observed in Ni [799] by laser heating from
the ferromagnetic to the paramagnetic phase. While it is conceivable that the
exchange splitting appears on the fs-time scale, it is not obvious at all that a
spin polarization can develop that fast. This latter point has been discussed
already in Sect. 15.4.2. Hence TRMOKE may respond on the fs-time scale to
the development of the ferromagnetic exchange splitting, but it remains open
whether or not magnetic long-range order has developed as fast as the authors
propose.

The special feature of axial magnetic fields that were assumed to be present
in our discussion earlier, is that they provide a unique direction which the
magnetization of the sample responds to. Since an unpolarized or linearly

7A compensation point Tcomp may exist in ferrimagnetic materials when the
sublattice magnetizations MA and MB change at different rates with temperature.
The net magnetization M = MA −MB vanishes at T = Tcomp. M must then switch
direction on going through Tcomp.
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Fig. 15.14. (a) A laser pulse supplies energy in the form of electron-hole pairs which
induces an antiferromagnetic to ferromagnetic phase transition in FeRh. (b) Depen-
dence of the magnetic order parameter M∗ on the temperature T in thermodynamic
equilibrium, taken from reference [819]. The phase transition in equilibrium occurs
at different T for heating and cooling cycles

polarized laser beam interacts with the solid predominantly via the polar
electric field, it does not specify a unique direction. It is very interesting to
consider whether switching of the magnetization by means of controlled laser
pulses alone is feasible as reviewed by Rasing and collaborators [521]. We will
come back to this problem in Sect. 15.6.4. There we shall also discuss the case
of antiferromagnets, where the reorientation of the spins is possible on much
faster time scales since the conservation of angular momentum does not affect
the dynamical properties [787,820].

Spin Injection

Another highly interesting way to excite dynamics is to generate a sudden
exchange field by injecting a pulse of spin polarized electrons into a mag-
netic sample. Such experiments utilize structures similar to the one shown in
Fig. 14.11. It is best to pin the magnetization M1 of the reference layer used
to define the spin polarization by exchange bias and orient the equilibrium
magnetization M2 of the layer to be excited or switched at a finite angle with
respect to M1. This may conveniently be accomplished by an oval shape of
the pillar where the shape anisotropy aligns M2 along the long axis.

The relative average angle between M1 and M2 may be detected by
the change in the electrical resistance probed through the giant magneto-
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resistance (GMR) effect [756]. In order to achieve an adequate signal-to-noise
ratio signal averaging is required. Today it is also possible to directly im-
age the time dependent magnetization M2 by element specific XMCD mi-
croscopy [763]. In this way the detailed magnetic structure of the layer of
interest can be observed and effects hidden in transport experiments are re-
vealed, like the presence of nonuniformities such as curls. Details of the various
experiments on the time dependence of the spin injection process will be dis-
cussed in Sect. 15.6.3.

15.5.1 Excitation with Weak Magnetic Field Pulses

A short magnetic field pulse as generated with an Auston switch, exerts a
torque on the magnetization M which in turn will start a damped preces-
sional motion discussed in Sect. 3.6.2. This motion evolves on the time scale
of the precession frequency in the effective magnetic field present in the sam-
ple. Freeman and collaborators [821] have imaged the motion of M by scan-
ning magneto-optic Kerr microscopy in the sub-ps time domain with a spatial
resolution of ∼1 µm. This was accomplished even when the amplitude of the
variation of Ms was quite small. It was found that the frequency of the mag-
netization oscillations is very close to the ferromagnetic resonance (FMR) fre-
quency, but departures due to non-uniform response became evident as well.
The damping of the oscillations is found to agree with expectations based on
FMR experiments.

Today, experiments of this type have become well established and they
have revealed a wealth of interesting details about excitations of the magneti-
zation in small magnetic structures. In general, they corroborate the findings
from techniques in the frequency domain such as FMR, Brillouin scatter-
ing, the measurement of the dynamic susceptibility or numerous other tech-
niques. The developments are reviewed in the book by Hillebrands and Ounad-
jela [56,57]. Essential to the dynamics is the initial magnetic state of the sam-
ple. In Fig. 15.15 some examples of stable magnetic states in small thin film
elements are given.

The magnetization dynamics in submicron sized thin film elements are of
particular interest. Such elements may be used to store information in non-
volatile, magnetic random access memories (MRAMs). Typically, magnetic
thin film elements consist of soft magnetic materials that are several nanome-
ters thick and have lateral dimensions up to a few hundred nanometers. In
order to write, read and store information in the elements, the magnetization
is switched between two stable states. It is often tacitly assumed that the
macrospin approximation is valid, i.e., that these two states are single domain
states of opposite magnetization direction. However, it turns out that the mag-
netic structure is often inhomogeneous. In fact, it may be argued that a single
domain state in which the macrospin approximation is strictly valid cannot
exist in ultra-small structures since the surface spins become increasingly im-
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Fig. 15.15. Examples of magnetization patterns in small (submicrometer) thin-film
elements and the corresponding names

portant. They are known to possess different primary magnetic properties, as
illustrated in Fig. 13.17.

One important multidomain state of a small thin-film element is the Lan-
dau state, shown in Fig. 15.15. Here, four in-plane magnetic domains form a
flux-closed structure in which the magnetostatic energy is minimized. In the
center of the Landau state, a magnetic vortex may exist in which the mag-
netization points in a direction perpendicular to the film plane. This “vortex
core” costs a large magnetostatic energy and is therefore very small, of the
order of ≈10 nm [542].

There are four basic vortex structures as shown in Fig. 15.16. The handed-
ness of a vortex is determined by aligning the thumb into the direction of the
out-of-plane magnetization of the core, as shown, and then matching the di-
rections of the fingers of the right or left hand with the in-plane curl direction
of the Landau state. The magnetic vortex structure is special in that it com-
bines the basic symmetry properties of inversion and time reversal discussed
in Sects. 2.7.1 and 2.7.2. This is seen by inspection of Fig. 15.16. The four basic
structures correspond to the two types of handedness, which are transformed
into each other by the parity operation, and the two magnetization directions
of the core, which are transformed into each other by the time-reversal op-
eration, since the magnetization is an axial vector. The symmetry properties
raise the interesting question whether a vortex can be switched [822,823].

However, the Landau state and its even more complex relative, the dia-
mond state, possess in fact a composite magnetic character in which three
different magnetic substructures exist: domains, domain walls, and the vortex
core. These three different substructures differ in their dynamic behavior and
are mutually coupled, yet are generally simultaneously excited with a mag-
netic field pulse. This leads to an overall very complex dynamic behavior of
the Landau state.
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Fig. 15.16. The four basic magnetic vortices, classified by their handedness and
out-of-plane direction of the core. A magnetic vortex combines the concepts of hand-
edness and time-reversal and the four basic structures are transformed into each
other by either the time reversal or inversion operations discussed in Sect. 2.7.1, as
illustrated

Within one of the four magnetic domains of the Landau state, the spon-
taneous magnetization M s is constant and the dynamics are dominated by
precession and damping of M s in the anisotropy fields. The vortex itself is
dominated by the exchange energy and quite different as we will see, yet its
motion is necessarily strongly coupled to the one of the domain walls. The
walls taken by themselves are intermediate between domains and vortex with
contributions from both exchange and magnetostatic energy.

A large literature exists on the dynamics of magnetic domain walls [54],
while comparatively little was known until quite recently on magnetic vortex
dynamics in metals because the metallic vortex is a 10 nm object requiring
high resolution, nondestructive imaging hardly available with the classical
techniques [522]. Therefore we will discuss in more detail the excitation of
a magnetic vortex structure by a weak magnetic field pulse, but we need
to include some basic facts about domain wall dynamics as well in order to
understand the dynamics of the composite Landau state.

In Fig. 15.17 it is shown that a domain wall moves in the direction per-
pendicular to an applied magnetic field H. While H does not generate a
torque on the magnetization M within the domains, a torque exists within
the domain wall. This torque generates a demagnetizing field perpendicular
to the film plane which is the actual cause of the domain wall motion. As the
maximum demagnetizing field is given by Hmax

demag = −M/µ0, we see that there
is a maximum speed with which a domain wall can move. However, in real
life, domain wall dynamics is more complex due to wall pinning at impurities
and the more complicated architecture of real domain walls [54].
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Fig. 15.17. (a) Illustration of a thin film containing two magnetic domains with
magnetization M in opposite directions, separated by a Néel wall (see Fig. 11.13).
(b) Under application of an external magnetic field H , as shown, the torque van-
ishes in the domains because H and M are parallel or antiparallel. In the domain
wall the torque does not vanish and moves M out of the plane of the film in the
direction H ×M (see (3.31)), thereby creating a demagnetizing field Hdemag which
is perpendicular to the plane of the film and rotates M . (c) The torque on M in
the domain wall rotates M into the direction of H . Note that both torques caused
by Hdemag and H get weaker as M approaches the direction of H . (d) The do-
main with M in the direction of H becomes enlarged and the Néel wall moves in a
direction perpendicular to H

15.5.2 Excitation of a Magnetic Vortex

If one reduces the thickness and lateral dimensions of a magnetic film from
macroscopic dimensions one encounters the vortex as a stable magnetic
structure for lateral dimensions below the micrometer range before a “single
domain” state is favored at smaller dimensions. For example, in self-organized
Fe films on W(001), uniform single domain, simple vortex, and distorted vor-
tex states have been observed with spin-polarized scanning tunneling spec-
troscopy [824]. Magnetic vortices become stable over the single domain state
at larger film thicknesses ≥10 nm and for lateral dimensions ≥≈200 nm [824].
However, it has been found that magnetization states in small structures may
be bistable, e.g., depending on its magnetic history, a sample may exhibit
either a vortex state or a uniform magnetized state [825].
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Early studies imaged vortex structures occurring in garnets [826]. More
recently, vortex excitations have been imaged in real time in magnetic mi-
crostructures by means of magneto-optical Kerr microscopy [537, 827] or X-
ray magnetic circular dichroism microscopy [538, 828–830]. In the frequency
domain, vortex excitations in microstructures have been detected by means
of microwave reflection in a nearby coplanar waveguide [831]. The exciting
magnetic field can be in the plane of the film or perpendicular to it. Below
we shall discuss both cases of in-plane and out-of-plane excitation of a vortex
structure.

In-Plane Field Excitation of a Magnetic Vortex

Before we discuss experiments let us illustrate the torque exerted by an in-
plane magnetic field onto the magnetization of a vortex. This will guide us
in what is expected for the instantaneous response of the vortex structure
to a magnetic field pulse. As an example we show in Fig. 15.18 the magnetic
structure of a left handed magnetic vortex with emphasis on the out-of-plane
structure along the y direction.

The direction of motion of the vortex core induced by an in-plane magnetic
field H is determined by the direction of the torque on the magnetization along
the line of the magnetic field. For a left handed vortex with the core along
+z and a magnetic field applied in the y direction, illustrated in Fig. 15.18,
the equation of motion is given by (3.31), i.e., dM/dt ∝ −m × H. Thus
the magnetization M located at a negative y position moves out of the film

x
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Fig. 15.18. Left handed magnetic vortex structure near the center of a Landau
state. The magnetization M rotates out of the x–y-plane into the z direction. In
a magnetic field H ‖ y, the location where M is ⊥ moves toward −y, that is the
vortex core moves opposite to H . If the vortex is right handed the vortex core moves
into the direction H
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plane and M located at a positive y position moves toward the film plane, as
indicated by little arrows. In this case the vortex core, defined by M ‖ +z,
thus moves opposite to the direction of the magnetic field H. By inspections
of the torques for the four basic vortex structures one finds the following rules.

For an in-plane magnetic field H, the center of a left handed vortex always
moves in the direction −H, while the center of a right handed vortex
always moves into the direction +H.

Dynamic images of the Landau-state have been obtained by the XMCD-
PEEM technique by Choe and collaborators [538] and by Raabe and
collaborators [828], and in transmission X-ray microscopy by Stoll and collab-
orators [829]. The principle of time resolved PEEM is shown in Fig. 15.19. The
time resolution is limited mainly by the width of the synchrotron radiation
X-ray pulses emitted by individual bunches in the electron storage ring. De-
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Probe
pulse
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Electrons

Fig. 15.19. Principle of time dependent PEEM microscopy of magnetic sam-
ples [538]. The pump pulse is launched by a laser activated Auston switch into
a lithographically manufactured strip line. Magnetic samples of various sizes are
manufactured on top of the strip line, and are shown in the magnetic PEEM image
in the lower part of the figure. They experience the in-plane magnetic field of the
current pulse. The circularly polarized X-ray probe pulses emitted by individual
bunches in the electron storage ring, are synchronized with the laser pump pulses at
a variable delay. Also shown is the objective lens of the PEEM electron optics into
which the electrons emerging from the sample are accelerated
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pending on the operating conditions of the storage ring the pulse length varies
from about 30 to 100 ps. The PEEM spatial resolution is well below 100 nm,
as discussed in Sect. 10.4.1. Choe et al. simultaneously probed the dynamics of
magnetic structures of different sizes and shapes positioned on top of the strip
line. This is possible because PEEM is a direct imaging method that simulta-
neously images all structures within the field of view of the instrument (about
30 µm). A representative magnetic image of various micromagnetic sample on
a strip line is shown at the bottom of Fig. 15.19.

PEEM images with XMCD magnetic contrast were recorded by pump-
probe techniques as a function of delay time between the Auston switch trig-
gered pump pulse and the X-ray probe pulse. Figure 15.20 shows magnetic
images of two adjacent 1 × 1.5 µm2 samples that were patterned by focused
ion beam milling into a 20 nm CoFe film deposited onto the Cu waveguide.
The images clearly show the Landau states of the two samples. Differential
images of the same samples that highlight the regions of contrast changes in
the original images are also shown later. The differential images facilitate the
determination of the vortex center without resolving its actual size.

By pump-probe technique one can now record a sequence of images as a
function of the delay time of the X-ray probe pulse relative to the laser pump
pulse. When the magnetizations which in the ground state of the two samples
form similar Landau patterns is excited by the horizontal field H in the shown
direction, the initial directions of motion of the vortex centers and the ensuing

Fig. 15.20. Center: Magnetic images of two adjacent 1 × 1.5 µm2 CoFe rectangles,
patterned into a 20 nm thick film with in-plane easy axis [538]. The original images
recorded by PEEM using XMCD magnetic contrast are shown on top, and differen-
tial images that highlight changes in contrast in white are shown below. The time
evolution of the vortex center is indicated by dots in the lower left and right insets.
The points represent sequential vortex positions (in 100-ps steps) up to 8 ns and
the lines represent the time-averaged positions. When the magnetization in the two
samples is excited by a horizontal field H , the initial directions of motion of the
vortex center (straight arrows) and the ensuing gyrotropic motions (dotted curved
arrows) are found to be in opposite directions. This indicates that the two vortices
have opposite handedness, as illustrated on the top left and right
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gyrotropic motions, both indicated by arrows, are found to be in opposite
directions. As discussed in conjunction with Fig. 15.18, this indicates that the
two vortices have opposite handedness. After the vortex is initially shifted
from its equilibrium position, the imbalance of the in-plane magnetization
creates magnetostatic fields driving the vortex into a spiraling motion back to
its equilibrium position. A stable motion on a circular path may be induced
by suitably interspaced periodic magnetic field pulses. The speed with which
the vortex moves can be determined quite accurately. It turns out that the
core velocity is an order of magnitude higher than expected from the static
susceptibility of the vortex. This points to a much higher internal field near
the vortex core than calculated from the static susceptibility.

The gyrotropic motion of the vortex on a circular path has thus been
observed via the motion of the center of the Landau state with square samples
of 1 µm side length, and with stroboscopic pump and probe techniques, that is
with a periodic excitation repeated every 8 ns [538, 829]. With larger squares
of 6 µm, the domain wall motion becomes dominant over the vortex motion,
that is the center of the Landau state defined as the crossing of the Néel
walls moves perpendicular to the magnetic field and relaxes without showing a
circular orbit [828]. In the latter experiment, the exciting magnetic field pulses
were wider spaced at 16 ns intervals. All three excitations expected from the
constituent elements of the Landau state can then be found as revealed by
Fourier analysis of the complex total spectrum.

The results of these experiment demonstrate that handedness plays an
important role in the dynamics of microscopic magnets. Vortices, hidden to
most imaging techniques, are often present in domain walls and can change
the dynamics in an unexpected way [827].

Out-of-Plane Excitation of a Magnetic Vortex

If the magnetic field is applied perpendicular to the Landau state, it is parallel
or antiparallel to the magnetization direction in the vortex core in the center.
Hence the core experiences no torque and consequently the vortex does not
change position in this case. But oscillations of M are excited in the in-
plane closed-flux magnetic structure surrounding the core. We will see that
these oscillations are analogous to the familiar eigenmodes of a thin elastic
platelet or membrane excited with a drumstick. The domain walls of the
Landau state of a quadratic platelet are in fact the node-lines of the lowest
magnetic eigenmode. In the case of elastic eigenmodes the node-lines can be
made visible by putting sand on the platelet. The sand will collect in the nodes
of the oscillations and thus reveal the node-lines of the excited eigenmode. The
resulting beautiful sand patterns are known as Chladni-figures [832].

The elastic eigenmodes and the magnetic eigenmodes possess similar fre-
quencies owing to similar phase velocities of phonons and magnons and,
interestingly, but not surprisingly are coupled by magnetoelastic interactions
in the case of a ferromagnetic platelet. With thin ferromagnetic disks it has
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been shown that the frequency and damping of the elastic eigenmodes de-
pend on the direction of the magnetization with respect to the node-lines,
producing magnetomechanic Chladni-figures [833].

The external magnetic field pulse triggers the motion of the magnetiza-
tion M . The field is applied perpendicular to the film plane. Thus, it causes
an initial motion of M in the film plane. This launches the time-dependent
motion which consists of an elliptical precession around the axis given by the
equilibrium position of M . The amplitude of this precession decreases in time
due to the damping of the precession. The path of the precession is elliptical
rather than circular because as soon as M moves out of the plane of the film, a
strong demagnetizing field appears making the out-of-plane amplitude smaller
compared to the in-plane amplitude. Figure 15.21 illustrates the precessional
motion of M induced by a magnetic field pulse applied perpendicular to the
plane of the film that carries the vortex structure.

Fig. 15.21. The precessional motion of M excited by a perpendicular magnetic
field pulse in a circular platelet that is initially in a vortex state. The magnetization
M is pinned at the edge and in the center of the magnetic platelet

To calculate the precession frequency in the simplest possible model, let
us assume that the ground state magnetization forms an ideal vortex. Rather
than studying the magnetic eigenmodes of a square platelet which would be
the Landau state, we now investigate the simpler case of a circular magnetic
platelet. The magnetization in cylindrical coordinates is M = (Mr,Mφ,Mz),
and in the ideal case the remanent magnetization is then given by MR =
(0,Ms, 0). Neglecting the crystalline anisotropy, the frequency ω of precession
is calculated from [138]:

ω = γMs

√
NrNz (15.8)

whereNr andNz are the local demagnetizing factors. As discussed in Sect. 2.5,
Nz = 1/µ0 is constant over the whole disk, changing only when the position
r is close the edge of the disk, within a range comparable to the thickness
of the disk. On the other hand, Nr, defined by Nr = µ0(∂Hr/∂Mr) reaches
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a minimum at r = R/2 and diverges near the center at r = 0 and near the
edge at r = R, where R is the radius of the disk. Nr depends somewhat
on the mode, but this will be neglected in the following. Due to this large
demagnetizing field in the r-direction, the eigenmodes of the oscillations of
M must have a node in the center and at the edge of the disk.

Experimental results for a polycrystalline Co-disc, 20 nm thick and 6 µm in
diameter, are shown in Fig. 15.22 [537]. Displayed is the Mz component only,
which is related to the Mr-component by the precession. The Mz-component
gives the largest signal in the longitudinal Kerr-effect, but it has been shown
by Acremann et al. [537] that one can measure all three components ofMs with
TRMOKE simultaneously, leading to vectorial scanning TRMOKE. With this,
one can construct time-resolved pictures of the magnetization as a function
of position with a spatial resolution of somewhat below 1 µm.

The spatial resolution in the TRMOKE experiments is not sufficient to
resolve the oscillations near the pole in the center, but the node at the outer
edge is clearly visible. The fact that there is a node of the eigenmodes at r = R
came as a surprise at first glance, because one had always assumed that spin
waves should have an antinode at the surface which was believed to be a free

t=20ps t=60ps t=100ps t=140ps

t=180ps t=220ps t=260ps t=300ps

Fig. 15.22. Magnetization dynamics observed with scanning vectorial TRMOKE
in a circular Co disk, placed inside a single turn coil that produced a magnetic field
pulse in the direction perpendicular to the disk plane. The picture shows a square
area that is larger than the circular disk. The size of the magnetic disk corresponds
to the outer edge of the crater in the picture for a delay time of 60 ps. The 3D
contrast corresponds to the magnitude and sign of the magnetization component
Mz, perpendicular to the disk surface at specific delay times of the probing pulse.
The Co disk is 20 nm thick and has a diameter of ≈ 6 µm. Figure courtesy of Yves
Acremann [537]
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end. We see that this is not true in cases where the oscillations of M generate
a large demagnetizing field.

For small amplitudes of the oscillations, the motion of M is described by
the superposition of the eigenmodes of a thin elastic disk with a node at r = 0
and r = R according to [834]

Mr(t, r) =
∑

n

an sin(ωnt)Mn(r), (15.9)

where n is the mode number, ωn its frequency, and an the amplitude with
which it is excited by the field pulse. We need to remember that the eigen-
modes of a membrane or platelet are not harmonic, i.e., the frequency of a
higher mode is not an integer of the lowest mode frequency ω0. As a con-
sequence, the oscillations of Mr are not stationary in time. All modes have
antinodes at the center and at r = R, but the higher modes have additional
circular antinodes at irrational values of r/R. They can be calculated in the
simplified linearized model without further assumptions from the differential
equation describing the elastic vibrations of a circular platelet. This approach
containing reasonable assumptions but no adjustable parameters reproduces
the essential features of the observed spatiotemporal evolution of the vortex
spin excitation with an in-plane magnetic field. In fact, one only has to super-
impose the first four eigenmodes with the appropriate amplitudes to arrive at
a satisfactory description of the observations. A more complete study using
Fourier transform imaging of spin vortex eigenmodes shows the presence of
the higher modes as well [835].

However, there are differences of the magnetic eigenmodes compared to
the elastic ones. In the elastic case, adding a circular or a diametric node
always produces an increase of the vibrational frequency, as a consequence
of the positive dispersion of sound waves in elastic media. Now, in the case
of the magnetic oscillations, the frequency of the modes is found to decrease
with the number of diametric nodes. The negative dispersion of the spin waves
involved in this case explains this unusual behavior and can be explained with
the magnetostatic energy generated by the demagnetizing fields [836].

At finite temperature, the magnetic eigenmodes are automatically ex-
cited. This has been detected with microfocus Brillouin light scattering spec-
troscopy [837]. Hence at finite temperature, a magnetic platelet generates
magnetic frequencies, which, if made audible, would generate a bell-like sound.
A magnetic platelet might thus be called a magnetic Boltzmann-harp in
analogy to the audible eigenmodes of an elastic body excited by the wind,
known as Aeolian harp.

In the sequence of images of Mz(r) shown in Fig. 15.22 taken at successive
times, we are able to follow the buildup and evolution of the nonuniform
precessional mode. Precession starts closer to the boundary of the disc and
appears to propagate into the center where it becomes active after 100 ps.
Then, after 140 ps, the precessional mode reverses sign and moves back to
the boundary where, after 220 ps, it reverses sign again to positive values
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and the whole cycle repeats. The amplitude of the oscillations decay with a
time constant of 330 ps, in agreement with what one would expect from the
FMR line width for small amplitude oscillations. This behavior is understood
from the superposition of the eigenmodes according to (15.9). In particular,
the displacement of the maximum amplitude Mz is not a consequence of
the propagation of a spin wave to and from the center, but it is understood
as a consequence of the inhomogeneous precession frequency rooted in the
superposition of the nonharmonic eigenmodes of the “magnetic membrane.”

The merits of this experiment are that it reveals the quenching of the spa-
tially uniform mode of precession and the reversal of the sign of the excitation
upon reflection as a direct consequence of magnetization pinning at the center
and at the border of the disc. While the magnetostatic interaction opposes
the appearance of a radial component Mr at the border, the stiffness of the
exchange interaction favors the appearance of Mr at the border if Mr �= 0
inside.

Although the experiment shows that M is pinned at the border, we are
not sure why this is so. In general, the boundary conditions become more
complicated as the exchange interaction becomes relevant. This is the case
for the excitation of higher modes in technologically interesting nanoscale el-
ements. Then, the boundary conditions are expected to depend on the length
scale of the excitations. Thus, requiring pinning of M at the surface or setting
its surface normal derivative to zero is only a practical way to arrive at some
degree of understanding. It is interesting to compare the vortex excitations
observed in the time domain by Pescia and coworkers [537] to the excitations
observed in the frequency domain by Brillouin light-scattering [837,838] . The
findings of both approaches agree in that the observed modes are identified
as spin excitations dominated by the magnetostatic interaction. Yet the ac-
tual motion of M at a boundary awaits exploration by time-resolved X-ray
microscopy with higher spatial resolution.

15.6 Switching of the Magnetization

Magnetic switching is the process by which the magnetization of a specimen
is changed from one stable direction into another. In practice it involves a
rotation of the magnetization by 180◦, from one orientation along the easy
axis to the opposite orientation, and this process is therefore referred to as
magnetization reversal. It is important to realize that in today’s technologi-
cal applications the magnetization is typically not read immediately after its
switching is initiated or completed. Therefore in technology, the relevant time
for the “writing” process is only the time that it takes to put the system into
a state from which it will reliably move into the new desired magnetization
direction. It is acceptable to have a longer “settling down” phase, as long
as it is deterministic. Magnetic switching can be achieved by the following
methods.
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Application of an Oersted field H

This is the traditional well-known method to reverse the magnetization. One
applies the field H in the direction opposite to M . However, such a field
does not exert a torque on M and switching can only proceed after thermal
excitations have caused M to move out of the easy axis so that a finite torque
exists. Then M may change direction in a complicated process that involves
precession of the magnetization about the external and various internal fields
with a final damping process that leads to its alignment along the opposite
direction along the easy axis. Since the change of the angle between H and
M involves angular momentum transfer to the lattice, it is of the order of
100 ps, limited by the spin–lattice relaxation time.

Ultrafast switching occurs if the magnetic field H is applied perpendicular
to M . In that case, the torque is directly delivered by the external magnetic
field and one avoids the bottleneck of the spin–lattice relation [605]. If the field
is pulsed, the switching time may be determined by the precession time or the
inverse Larmor frequency of M about H, provided that the magnetization
acts like a macrospin. For a field of 1 T, for example, the pulse length has to
be matched to the 180◦ precession time of about 20 ps. The only limit for the
speed is the strength of the magnetic field pulse and its correct duration. If the
pulse lasts too long, M switches back. Also, M switches each time one applies
a field pulse, in contrast to the case H ‖ M where switching occurs only if H
and M are antiparallel. “Precessional switching” or “ballistic switching” with
H ⊥ M therefore requires precisely timed pulses and a different read–write
logic as used today.

In practice, one often uses a combination of the above two methods. The
field H is applied at a finite angle with respect to M . This increases the
switching speed considerably by avoiding the initial “dead time” where the
torque is zero.

Switching by spin injection

In this case the angular momentum for the change of the magnetization M is
provided by injection of a spin-polarized current, as discussed in Sect. 14.2.2.
By alignment of the injected spin polarization relative to the magnetization to
achieve optimum torque, in theory, the switching speed is determined only by
the duration and amplitude of the spin injection pulse. In this case the transfer
of the angular momentum should be possible directly from the incident spin-
polarized beam to the magnetic moments of the sample, i.e., by avoiding the
spin–lattice relaxation bottleneck. This would lead to fast switching times on
the femtosecond time scale. In practice, however, such fast switching times
which require optimum angles between injected spins and the magnetization
in conjunction with ultrashort current pulses have not yet been achieved.
Also, since faster switching requires higher spin-polarized currents one runs
into limitations set either by power considerations or even by electromigration
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associated with high current densities. The exploration of the ultimate speed
of spin injection switching remains an important research topic.

All optical switching

This (so-far) hypothetical method first proposed by Hübner and collabora-
tors [784–787] is based on the application of a well-shaped ultrashort laser
pulse of correct frequency, polarization and duration, and it potentially works
on the femtosecond time scale. It involves the excitation of the system from
the ground state to a well-defined final state where the magnetization is ma-
nipulated so that it decays into a new ground state with opposite magnetiza-
tion direction. We shall see however, that this is quite difficult to accomplish
in metals, where electron-electron scattering appears to make coherent ma-
nipulation of the magnetization difficult if not impossible. One can imagine,
however, that laser manipulation produces a partial ultrafast reduction of the
magnitude of M which would facilitate switching in an applied field. Namely,
if |M | is reduced, the anisotropy barrier M · Hani is lowered and switching
could be initiated with a smaller field pulse amplitude.

15.6.1 Precessional Switching of the In-Plane Magnetization

In this section we shall discuss all three methods, realizing that so far, only
the first method is being used in technology. Spin injection and especially all-
optical switching are still the subject of forefront research. Whether they will
ever replace conventional switching with Oersted fields remains to be seen.
In general, however, the topic of fast magnetic switching is of great scientific
and technological interest. It not only challenges us to understand funda-
mental physical processes but it also forms the basis for improved magnetic
recording and magnetic memory applications and underlies the whole field of
spin-electronics.

It is again necessary to limit our discussion to thin films, because spec-
troscopic observation of the switching is only possible at or near the surface,
and only in specimens that are thin compared to the exchange length can
one assume that the dynamics at the surface is related in a tractable way
to the dynamics in the interior. We shall discuss both extended and laterally
confined magnetic structures because both are important in applications. We
start with a discussion of Oersted switching of samples, first with an in-plane
and then with an out-of-plane easy axis. We will place particular emphasis on
coherent precessional switching with ultrafast Oersted fields as the most real-
istic avenue toward fast magnetization reversal. We shall then discuss results
on the time dependence of switching by spin injection. Finally we discuss the
theoretical concepts underlying the method of all-optical switching.

The term “precessional switching” is sometimes used for two somewhat
different switching processes: Freeman and coworkers [839] use it to describe
the coherent precessional switching that might occur when the magnetic field
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is applied antiparallel or nearly antiparallel to the initial direction of the mag-
netization. In that case, the magnetization spirals into the opposite direction
via the damping of the precessional motion. Such reversal relying on damping
to move M into the direction of H, although employed in present devices,
is wasteful in time and energy compared to the process in which the field
is applied perpendicular to the magnetization to maximize the torque acting
on M .

In the fastest and most economical precessional switching mode, the mag-
netic field is applied perpendicular to the direction of the magnetization, along
the hard axis of the specimen [811, 815, 840, 841]. In this case, the process of
switching depends critically on the duration of the field pulse, and the mag-
netization might be switched back with the same pulse without changing the
polarity of the magnetic field.

Precessional switching in the latter definition can be divided into the three
steps outlined in Fig. 15.23. With the longer field pulses [811, 840, 841] pro-
duced with pulse generators or Auston switches, step (a) and (b) are not
separated, that is they occur simultaneously. But with the short and strong
pulses produced by passing through the sample relativistic electron bunches,
the separation is clean in most cases and makes the process of reversal more
transparent as will be shown below.

We define the coordinate system so that the x–y plane is the film plane, and
the x axis is parallel to the easy axis along which M is assumed to be oriented
prior to the arrival of the field pulse. The z-axis is perpendicular to the plane
of the film and the external field pulse Hext is applied in the direction −y. In
the first step (a), the magnetic moments m precesses out of the film plane,

Fig. 15.23. Three-step model of precessional magnetization reversal with an in-
plane, homogeneously magnetized, uniaxial thin film magnetic element. (a) The
magnetic field is applied in the hard direction perpendicular to M whereby M
precesses out of the in-plane easy axis of the film by an angle γ = ωτ , where τ is
the duration of the field pulse. (b) M precesses by an in-plane angle ϕ about the
demagnetizing field Hdemag which is generated by the perpendicular component of
M , perpendicular to the film plane. (c) M relaxes into the new direction, spiraling
around the anisotropy field Hani of the sample. With the fastest conventional mag-
netic field pulses of ≈104 Am−1 amplitude and 100 ps duration, step (a) and step
(b) occur simultaneously leading to a complex motion of M
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caused by the torque according to the right hand rule, as shown. The angle
of precession γ = ωτ away from the easy axis is given by the duration of
the pulse τ and the angular frequency of the precession ω = (e/me)µ0Hext.
The anisotropy energy density for a thin film is given by (11.31), where γ is
the direction of M with a “unique axis,” which we have chosen to lie along
the in-plane easy axis, as shown in Fig. 15.23. The polar angle between the
surface normal and M is denoted θ = 90◦− γ. The anisotropy energy density
deposited by the field pulse in the film is then given by

E = K⊥ sin2 γ , (15.10)

where K⊥ is the energy density of the total perpendicular anisotropy and γ
is defined in Fig. 15.23. Higher order anisotropies have been neglected as they
are usually much smaller.

In step (b), starting at the end of the field pulse, M precesses about the
demagnetization field Hdemag along the z-axis that has been generated by
the out of plane motion of M during excitation with the field pulse. As γ
is quite small in practice, in the experiment discussed below 10◦ < γ < 25◦,
a large polar angle θ = 90◦ − γ is enclosed between M and Hdemag. This
distinguishes the precession leading to switching from that in ferromagnetic
resonance (FMR) where θ is very small.

In the large angle precession, the in-plane componentMx oscillates periodi-
cally between the two easy directions. Owing to the damping of the precession,
M spirals back into the plane of the film until it no longer can overcome the
anisotropy barrier imposed by the uniaxial, in-plane crystalline anisotropy
energy Ku. At this point, the energy consuming steps of the switching are
terminated and step (c) starts, in which M oscillates about the in-plane uni-
axial anisotropy Hani = 2Ku/M until it comes to rest in the new or the old
direction, depending on the in-plane precession angle ϕ between Mx and the
x-axis at the end of step (b), as shown in Fig. 15.23.

Ultrafast Switching with a Relativistic Electron Beam

By passing relativistic electron bunches of high energy through metallic sam-
ples, the shortest and strongest magnetic field pulses may be generated as
illustrated in Fig. 2.4. As the electron bunch passes through the thin film mag-
netic sample along the film normal parallel to the z-direction, a magnetic field
is generated in the x–y-plane, that is the plane of the film, which resembles
the field of a straight current-carrying wire. The vector of the magnetic field
during the pulse is then given by H = I[y/r, x/r, 0]/(2πr). If M = [Ms, 0, 0],
that is if the saturation magnetization Ms has been set parallel to the x-
axis prior to the arrival of the field pulse, the torque/volume acting on M is
T = MHy. Thus, the lines of constant torque are also the lines of constant
excitation energy of the spin system given in (15.10). The angle γ by which
M precesses out of the film plane is calculated from
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γ =
∫ +∞
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where N is the number of electrons in the bunch. During the strong and
short field pulse, the precession of M about the intrinsic anisotropies can be
neglected. It is apparent that in this approximation and assuming uniform
precession of M , the lines of constant excitation energy do not depend on
pulse shape and on pulse duration, only on the total electrical charge of the
electron bunch. The contour lines E = const are then calculated from the
condition γ ∝ x/r2 = const yielding:

(
x− aν

aν

)2

+
(
y

aν

)2

= 1 , (15.12)

The contour lines are thus circles with radius R = aν with the respective
centers lying on the x axis at x = ±aν , as shown in Fig. 15.24.

Fig. 15.24. Lines of constant torque or energy of excitation, given by (15.12), with
a uniaxial magnetic film, originally magnetized in the x direction, after one electron
bunch has passed through the origin, perpendicular to the figure plane. Gray regions
designate the areas where M has switched to the opposite easy direction

The first switch or reversal of M to the opposite easy direction requires
the energy Ku to overcome the hard axis plus the energy lost in the precession
toward the hard axis which requires precession by an angle ϕ = 90◦. After
that, M relaxes into the new direction in step (c) of the switching without
further consumption of energy. This first reversal must occur along a line
given by a constant a1. One more switch reverses M back to the starting
direction. It requires the same energy as the first switch plus the damping
loss in the precession by an additional angle ∆ϕ = 180◦. It therefore occurs
along a line of constant excitation energy E(γ2) > E(γ1) that is at a switching
radius a2 < a1. Higher order switches n require Ku plus precession by the
angle ϕn = 90◦ + (n − 1)180◦ and occur along lines of constant excitation
characterized by n constants an, with an < an−1 < · · · < a1. The energy
increment ∆E for each additional switch can thus be determined from the
magnetic pattern and yields the energy consumed in the precession by the
angle ∆ϕ = 180◦, a truly ideal situation for measuring the damping loss in
large angle precession.
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If one starts with a uniaxial and homogeneously magnetized thin film, ex-
poses it to one electron bunch and then produces a magnetic image which
shows the regions where M has switched, one expects therefore to see a pat-
tern like the one shown in Fig. 15.24.

This shape of the switching pattern, in particular the circular boundaries of
the switching, is a feature that occurs only if the three-step model Fig. 15.23
applies. If the magnetization precesses appreciably already during the field
pulse, the circles (15.12) are not lines of constant torque. This case has been
observed and discussed by Back and collaborators [815].

Figure 15.25 shows the magnetic pattern that has been observed with an
epitaxial model film of bcc-Fe grown on GaAs(110), consisting of 15 mono-
layers (ML) of Fe [842]. It clearly exhibits the pattern expected from (15.12)
and Fig. 15.24. In the pattern, imaged several weeks after exposure to the
electron bunch and after sputtering away the capping Au-layers, M is either
parallel (light gray) or antiparallel (black) to the horizontal easy direction.
The sample has been characterized by ferromagnetic resonance (FMR) yield-
ing the gyromagnetic ratio g = 2.09 which turns out to be the same as in bulk
Fe [792,843]. The width of the FMR resonance is found to be independent of
film thickness, and increases linearly with FMR frequency from 9 to 70 GHz.
This indicates that the FMR-width can be interpreted as due to intrinsic spin
lattice relaxation with a Gilbert type damping α = 0.004.

The anisotropy constants are obtained from FMR as well, yielding for
15 Fe-ML Hani = 2Ku/M = 4.72 × 104 Am−1 and Hdemag = 2K⊥/M =
128 × 104 Am−1. The pattern has been produced with an electron bunch
charge of 1.73 nC. Up to 10 switches of M induced by one single electron

(a)

(b)

Fig. 15.25. (a) Experimental magnetic switching pattern obtained with a single
crystalline bcc Fe-film of 15 atomic layers deposited onto a GaAs(110) template [842].
In the dark regions, M has reversed to the opposite easy direction. The picture was
taken with SEMPA after sputtering off 10 capping layers of Au at the surface. It
covers an area of 869 µm×432 µm. (b) Enlarged region showing characteristic zig-zag
domains
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bunch can be distinguished in some locations of the pattern Fig. 15.25. The
constants aν are obtained by fitting circles to the pattern. With 15 Fe-ML, 8
transitions with circle diameters 2a1, . . . , 2a8 of 325, 270, 238, 209, 185, 167,
152, 139 µm, respectively, have been determined [842]. The accuracy with
which the 2aν are obtained is estimated to be ±1 µm. It is not possible to
quantify the location of the higher switches that are certainly present but
appear to be fragmented.

One type of problem encountered in determining the contour lines (15.12)
is due to rugged transitions between regions of opposite M . Higher magnifi-
cation of the switching boundaries, shown in Fig. 15.25b reveals the familiar
zig-zag-domains near the x-axis that are known to occur by relaxation of the so
called “head-on” configuration of M [54]. The switching leads initially to the
unfavorable “head-on” position of M when a contour line runs perpendicular
to the x-axis. The head on-transitions relax later into the longer, but more
favorable zig-zag domain walls [815]. The location of the switching transition
is the average over the zig-zag-walls.

A second type of uncertainty arises from the fact that the ultrathin film
samples are soft-magnetic with a coercivity of 1–2 kAm−1 only. This means
that domains may easily shift in accidental magnetic fields. Apparently, do-
main wall motions occurred after exposure and deformed the left side of the
pattern of Fig. 15.25 while on the right side, the pattern appears to be undis-
turbed.

A third problem is the damage caused by the high energy electron bunch
in the sample. With the semiconducting GaAs substrate larger damage is
observed compared to metallic buffer-layer substrates used in other exper-
iments [788, 815]. The damage can be attributed to the electric field pulse
Ep = cBp, running perpendicular the magnetic field Bp of the pulse. Ep is
not rapidly screened in a semiconductor, resulting in electrostrictive deforma-
tion of the GaAs-template responsible for the uniaxial magnetic anisotropy
of the Fe-film. The permanent beam damage is delineated by a halo around
the location of beam impact at r ≤ 50 µm. Although the halo is below the
distances of the measurable switching events, it cannot be excluded that the
magnetic anisotropy is affected transiently even at larger distances by the
electrostrictive shock of the GaAs-template.

If the energy (15.10) required for the onset of a new switch is plotted in
units of Ku versus the angle ϕ of precession of Mx, one obtains the universal
switching diagram shown in Fig. 15.26. It displays data with 10 and 15 bcc
Fe-ML on GaAs [842]. The switching diagram is independent of the different
magnetic anisotropies of the films, but depends somewhat on film thickness
as apparent with increasing number of switches. The first switch requires the
reduced energy E ≈ 1, compatible with the small damping observed in FMR.
The small precessional damping contribution in the first switch explains the
difficulty to determine it with conventional magnetic field pulses inducing only
one switch. Yet already with the second switch, the additional precession by
the angle ϕ = 180◦ requires much more energy than what results from FMR
damping. The loss in the higher switches is nearly an order of magnitude
larger than the dissipation expected from FMR.
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Fig. 15.26. Energy deposited in the spin system by an ultrafast magnetic field
pulse versus the precession angle ϕ of Mx [842]. The energy is measured in units of
the uniaxial in-plane anisotropy constant Ku of the sample, producing a universal
switching diagram. Data points are for 10 Fe-ML(squares) and 15 Fe-ML(circles)
on a GaAs template. The simulations are with the FMR Gilbert damping α =
0.004 and no magnon scattering (—), and for 10 Fe-ML (· · · ) and 15 Fe-ML (- -)
including magnon scattering. The inset shows the relative saturation magnetization
M(t)/Ms(0) where t is the time after an exciting field pulse of amplitude 0.24 ×
106 Am−1 for 10 Fe-ML (· · · ) and 0.175×106 Am−1 for 15 Fe-ML (- -). But without
magnon scattering(—), M(t)/Ms = 1

Figure 15.26 also shows that precessional switching requires very little
energy. For example, for an element of volume V corresponding to a film
thickness of 1 nm and a diameter of 1 µm, we have KuV ≈ 10−15 J. With
well-shaped magnetic field pulses inducing what has been termed ballistic
precessional reversal [844], all three steps of the precessional reversal are ac-
complished within a time that depends on the length of the magnetic field
pulse only. Hence precessional switching is fastest and most energy economic.
Experiments conducted with field pulses produced by a photoelectric switch
or in a pulse generator [840, 841, 844, 845] are compatible with the FMR de-
rived dissipation and with what is found in Fig. 15.26 with one single switch
induced by relativistic electron bunches. Up to 10 switches can be induced
by one single pulse in the latter case. This makes it possible to detect the
increase of the damping as the angle ϕ of precession grows.
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A fundamental question in spintronics research is the existence of fast
processes for the dissipation of spin angular momentum, resulting in tempo-
rary energy and angular momentum storage before their ultimate dissipation
to the lattice. Two such processes have been considered. One is the dissipa-
tion within the spin system itself [839] due to the Suhl instability discussed
later, the other the transfer of angular momentum from the spin to the orbital
degrees of freedom [784,785]. The latter process is active only in pulsed laser
excitation. The multiple precessions of M after the excitation with the field
pulse show that ultrafast relaxation is indeed not present here as expected.

The increase of the energy loss after the first switch shows that dissipa-
tion of spin angular momentum increases with time. The knowledge of the
switching time comes from the fact that the exciting magnetic field pulse sets
in motion the internal precessional clock from which the end of step 2 can be
determined using the Landau–Lifshitz equation. We have seen that the mag-
netization precesses about the field Hz = 2K⊥ cos θ/M after the magnetic
field pulse.

The delayed dissipation is characteristic for the Suhl instability [776], which
is the transfer of energy from the uniform precession mode with wavevector
k = 0 to higher spin wave modes with k �= 0. The transfer of energy, in-
duced by nonlinear interactions owing to Hdemag and Hani, takes time because
the numbers of excited nonuniform spin waves grow exponentially with time.
A quantitative theory for the dissipation caused by the Suhl instability has
been developed recently by Dobin and Victora [755]. The inset of Fig. 15.26
shows simulations for an area of 1 µm×1 µm of the 10 and 15 ML-Fe-film with
a respective pulse amplitude that completes the first switch. It demonstrates
one important consequence of the generation of nonuniform spin wave modes,
namely the decrease of the space-averaged order parameter M/Ms with time.

It is seen that M/Ms decreases sharply ≈50 ps after the field pulse, and
recovers slowly through spin lattice relaxation of the spin waves. Now, from
the time tν after the field pulse at which the last change of sign of Mx oc-
curs, we know the moment in time at which the energy-consuming part of the
switch ν is terminated. With 15 ML-Fe these times are t1, . . . , t8 = 40, 115,
155, 195, 235, 270, 310, 360 ps, respectively. Large dissipation is observed only
after the first switch. This agrees with the 50 ps delay seen in the develop-
ment of spin wave scattering. Furthermore, as the angle of precession grows,
the fluctuations of M/Ms in time and space can induce randomness in the
switching, explaining the fragmentation of the higher switches.

Another characteristic of the Suhl instability concerns the film thickness.
To conserve energy and momentum, the effective scattering of the uniform
mode requires the excitation of low energy spin waves. The phase space for
such low energy, long wavelength modes decreases with film thickness, and this
explains why smaller dissipation is observed in agreement with the simulations
as the film thickness is reduced. Hence there is no reasonable doubt that the
Suhl instability contributes significantly to the dissipation observed in the
experiment.
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However, as apparent from Fig. 15.26, the simulations fall short by a factor
2 to fully account for the observed damping. Surface roughness is known to
contribute to the damping. However, the detailed analysis based on the work
of Dobin and Victora [846] shows that the surface roughness measured on the
present films [792] is not enough to explain the observations. Furthermore,
surface roughness should increase the damping in FMR as well. One therefore
has to conclude that additional, so far unknown relaxation mechanisms must
be active in large angle precession of the magnetization.

15.6.2 Precessional Switching of the Magnetization for
Perpendicular Recording Media

As we have seen, precessional magnetization switching is interesting because it
is faster by an order of magnitude and, according to Fig. 15.26, also uses much
less energy to reverse the magnetization compared to the traditional methods
of switching. This is of particular interest in magnetic memory devices where
the logical bits are recorded by selectively setting M either up or down.
We have also seen that in precessional switching, M may be switched back
without changing the polarity of the magnetic field pulse, simply by applying
the same pulse again. This last point must be examined specifically as it will
be important for applications that the switching be deterministic, that is that
it occurs with certainty whenever a magnetic field pulse is applied.

Magnetic recording with the highest bit density is achieved with granu-
lar magnetic recording media of the CoCrPt-type [847]. The media are thin
films of ≈15 nm thickness consisting of isolated magnetic grains with the easy
direction of magnetization aligned perpendicular to the film plane. The main
condition for high density recording is that the grains are exchange decoupled
so that the media can sustain narrow transitions between up and down bits.
The decoupling of the grains occurs in the manufacture of the media through
segregation of Cr to the grain boundaries induced by deposition at elevated
temperatures.

The quest for long term thermal stability of magnetic bits requires a high
value of the uniaxial magnetic anisotropy Ku which has to have a positive sign
to favor the perpendicular direction of M , that is Ku ≥ Ks where Ks is the
shape anisotropy. This in turn necessitates high magnetic fields to switch the
magnetization in the process of writing the bits [443]. In order to achieve the
high perpendicular switching fields with the tiny electromagnet used for the
writing, a soft magnetic underlayer (SUL) is positioned under the magnetic
medium providing flux closure for the field of the horse shoe electromagnet
used in writing the bits. Figure 15.27 shows that the SUL also stabilizes the
bits by reducing the demagnetizing field on the lower side. On the upper side
of the structure, the stray fields emerge and are used for reading the bits.
The principle of this approach is similar to the synthetic antiferromagnetic
structure used to stabilize the bits with in-plane magnetic media illustrated in
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Fig. 15.27. Schematic cross-section through a perpendicular magnetic recording
medium illustrating the effect of the soft magnetic underlayer (SUL) on the magnetic
stray field of the bits. The bits are typically ≈ 40 nm wide, hence contain several
magnetic grains

Fig. 2.10. One might suspect that SUL has some influence on the precessional
switching as well. Therefore, one needs to test media with and without SUL.

The diameter D of the magnetic grains constituting the magnetic bits
ranges from 10 to 20 nm. The grain size is small enough to consider the mag-
netic field produced by, e.g., an electron bunch at a distance R = 20 µm to be
homogeneous over the grain diameter as D/R = 10−3. Hence the switching of
a grain induced by the magnetic field pulse of an electron bunch occurs in a
homogeneous applied magnetic field. With the grains magnetized perpendic-
ular to the film plane, the magnetic field Hp produced by an electron bunch
traversing the films along the normal to the film lies in the magnetically hard
plane and is orthogonal to M everywhere. This is the optimum geometry to
induce a precessional motion of M about Hp. Once M has precessed about
Hp by an angle ≥ π/2 to cross the hard equatorial plane, it will continue
to spiral by itself into the opposite direction. This motion of M is shown in
Fig. 15.28.

Fig. 15.28. The motion of the magnetization M on the sphere of Poincaré in the
process of precessional switching of a perpendicular magnetic grain. For a switch to
occur, M has to precess around the field and cross the hard equatorial plane during
the field pulse. After that, it spirals by itself into the other easy direction
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If, however, Hp ceases to exist before M has reached the hard plane, M is
expected to relax back to its original perpendicular direction, hence no switch
has occurred. The condition for switching is that the angle γ = ωτ ≥ π/2. By
the same reasoning applied to derive (15.12), the lines of constant magnetic
excitation are thus circles with radius R about the origin:

( x
R

)2

+
( y
R

)2

= 1. (15.13)

Ultrafast Switching with a Relativistic Electron Beam

We now discuss switching patterns obtained with granular CoCrPt recording
media as an example [788]. The grain size was determined by X-ray diffraction
and amounted to 20±5 nm in this material. The effective magnetic anisotropy
field Heff

ani is the crystalline anisotropy minus the shape anisotropy field. The
product MsH

eff
ani must be large compared to the Boltzmann factor kBT in

order to stabilize the magnetization direction over a sufficient length of time
as discussed in Sect. 11.5.2. Three similar types of materials were investigated:
CoCrPt I with Heff

ani = 648 kAm−1, and CoCrPt II and CoCrPt III with
Heff

ani = 398 kAm−1, each, but CoCrPt II had no SUL while CoCrPt III did.
Otherwise the three materials were identical. The high magnetic anisotropy
makes it impossible to induce magnetic switching with the weaker field pulses
such as produced for instance by Auston switches. The only way known so
far to induce precessional switching in this type of media is to use the field
pulses produced by high energy electron bunches [788,813,814].

To study precessional switching in these CoCrPt magnetic recording media
sustaining very high bit densities [788], relativistic electron bunches of energy
28 GeV were focused to a cross-section of 10.8×7.4 µm in the x–y plane of the
films. The electron beam propagates along the z-axis perpendicular to the film
plane. Along the z-axis, the electron distribution is Gaussian with a variance
of 0.7 mm in the laboratory frame, yielding the variance of the Gaussian field
pulse in the time domain τ = 2.3 × 10−12 s. The maximum amplitude of the
field pulse was µ0Hp = Bp = 54.7/R where R is measured in µm to obtain
Bp in Tesla.

The top left panel of Fig. 15.29 displays contour lines of constant Bp in the
x–y plane of the films. The dark central spot indicates the size of the electron
beam focus close to which no data can be obtained owing to beam damage
caused in the sample. The actual magnetic switching patterns are displayed
in the remaining panels of Fig. 15.29. The shape of all patterns is circular
as expected from (15.13), in contrast to the case with the initial position of
M in-plane, where the switching patterns have a figure 8 shape according to
Sect. 15.6.1.

Before exposure, the magnetization of the grains had been aligned perpen-
dicular to the film plane into what we shall call the “up” direction. Patterns
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Fig. 15.29. Magneto-optic patterns of the magnetization in a perpendicular gran-
ular magnetic recording medium, called CoCrPt I in the text, obtained by sending
one or several relativistic electron bunches through the film [788]. Diagram at top
left shows contour lines of constant magnetic field Bp = µ0Hp with the area of the
electron bunch shown in the center. The numbers on subsequent panels indicate the
number of electron bunches that passed through the sample. The gray contrast in
the image is set so that the outer light region corresponds to M in the initial “up”
state. As darkening intensifies, M has switched increasingly to the opposite “down”
direction. The contrast in the central region at r < 10 µm is due to beam damage
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generated by one electron bunch, and patterns generated by up to seven con-
secutive electron bunches passing through the same focus on the sample are
analyzed. The time separation of the consecutive electron bunches was 1 s.
In this way, the aforementioned reversibility of precessional switching can be
tested. If the grains are magnetically decoupled, as they must be in high den-
sity recording, a subsequent magnetic field pulse should restore what the first
pulse has generated. Three weeks after exposure, the perpendicular component
of M was imaged by polar MOKE. Hence one images only those switching
events that have been retained over 3 weeks, a minimal requirement for a
magnetic memory.

A set of magnetic patterns exposed to one or multiple magnetic field pulses
is shown in Fig. 15.29 panel 1–7. The spatial resolution of Kerr microscopy
(MOKE) used to image the patterns is 1 µm, so that the integral over 2,500
grains constitutes one pixel. The spot in the center is due to beam damage
in the material. It extends to roughly twice the beam focus. The increase of
the damaged area with the number of shots is due to beam jitter, estimated
at ±2 µm per shot. The gray scale of the images indicates the magnetic order
parameter M∗ = M/Ms where Ms is the saturation magnetization ⊥ to the
film plane. The light gray regions near the edge of the frames correspond to
the initial “up” state. Darkening indicates that particles have increasingly
switched to the down state.

It is evident that the magnetic order parameterM∗ changes gradually over
tens of micrometers rather than abruptly. The switching is not reversible,
because the second magnetic field pulse does not return M to the initial
“up” direction. For odd numbers of field pulses, the dark ring where M has
switched from “up” to “down” narrows with increasing number of pulses,
whereas the outer gray zone corresponding to partially switched M expands.
With an increasing number of even pulses, the central light ring narrows and
the outer gray zone expands. Such a switching behavior is characteristic of
a stochastic process. Starting with a homogeneous magnetic “up” state, it
takes only seven magnetic field pulses to create a random distribution of the
magnetization direction throughout the large grey zone where M∗ = +1 in
some grains but M∗ = −1 in others.

Let us first discuss the mean switching field strength B0 at which the mag-
netic order parameter vanishes after the first magnetic field pulse. Figure 15.28
shows in fact the mean path followed by the magnetization with a field am-
plitude Bp close to B0. Using Bp = 54.7/R derived from the Biot–Savart law
(4.19), B0 corresponds to the radius R0 of the circle along whichM∗

1 = 0. This
radius can be calculated with the Landau–Lifshitz–Gilbert (LLG) equation,
assuming coherent precession and inserting the magnetic anisotropy field HA

and fitting the Gilbert damping constant α to reproduce the data. But in the
limit HA = 0 and α = 0, one can calculate by hand the largest possible radius
Rmax

0 at which M∗ = 0. One simply needs to know that Rmax
0 is given by the

condition that the precession angle γ = π/2. Using the same Ansatz as in
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(15.11), one obtains

Rmax
0 = µ0

gNe2

2π2me
. (15.14)

If we assume for the grains the g-factor, g = 2.2, for bulk Co, we obtainRmax
0 =

41 µm with the experimental number N of electrons per bunch. Figure 15.30
shows the order parameter M∗(R) actually observed with the three different
magnetic media [788].

p
o

−

−

R

1st Shot

2nd Shot

Fig. 15.30. Magnetic order parameter M∗ versus distance R in µm from the center
for three different materials. The graphs shows the magneto-optically determined
order parameter M∗

1 (R) (upper graph) and M∗
2 (R) (lower graph) after one and two

magnetic field pulses, respectively [848]. It is evident that the switching transition
extends over large distances rather than occurring at one sharply defined radius,
translating into a broad range of switching field amplitudes Bp for the grains. Fur-
thermore, the switching is irreversible as the second switch does not restore the
initial uniform order M∗

0 ≡ +1. For CoCrPt I with the larger Heff
ani, the zero inter-

cept M∗
1 = 0 occurs somewhat closer to the center compared to CoCrPt II and III

with the smaller Heff
ani. Note, that M∗(R) is identical for CoCrPt II and CoPt III

which means that SUL does not affect precessional switching
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The condition M∗ = 0 occurs in all cases at R0 < Rmax
0 , meaning that

in reality magnetic field pulses of higher amplitude are needed to induce a
switch. This is due to the combined action of the magnetic anisotropy and
the damping. The precession in the anisotropy field, so far neglected during
the field pulse, induces lengthening of the pathway of M towards the equator
of the sphere of Poincaré thereby reducing R0, while the damping is expected
to reduce R0 by slowing down the angular velocity ω of the precession.

Since the magnetic anisotropy is well known from other experiments [847],
R0 can be calculated rigorously with this anisotropy using the LLG-equation
discussed in Sect. 3.6.2. It turns out that the damping constant α of the pre-
cession during the field pulse has to be as high as α = 0.35, to obtain the
observed R0 for all three samples. A damping of this magnitude is consider-
ably larger than the typical intrinsic damping.

The strong damping of the precession revealed in the experiment signals
that the torque exercised by the magnetic field pulse is lost at a very high
rate, presumably by deposition into the spin system.

CoCrPt I, which generated the magnetic patterns of Fig. 15.29, possesses
the largest Heff

ani = 684 kAm−1, and exhibits M∗ = 0 at the smallest R0.
CoCrPt II and CoCrPt III both have by a factor 0.56 lowerHeff

ani = 398 kAm−1

compared to CoCrPt I. They both exhibit M∗ = 0 at larger, but identical R0.
The fact that R0 as well as the overall shape of M∗(R) is the same in CoCrPt
II and III is surprising because CoCrPt III sits on a soft magnetic underlayer
(SUL) while CoCrPt II does not. This indicates that the SUL has no influence
on precessional switching.

Let us lastly analyze the irreversibility of the switching in more detail by
considering the precession of the magnetization M of a magnetic particle for
a time τ in a magnetic field B. If the precession angle γ ∝ Bτ due to the field
pulse is less than π/2 needed to rotate the magnetization into the hard plane,
the sample will not switch unless random torques or random initial conditions
supply the lacking precessional angle. We now assume that the probability p of
such stochastic events is Gaussian (see Appendix A.10) and can be expressed
as the probability of an additional magnetic field Γ :

p(Γ ) =
1

∆B
√

2π
exp

(
− Γ 2

2(∆B)2

)
, (15.15)

The magnetic order parameter M∗(B) is given by the fraction of particles
that switch minus the fraction of particles that do not switch in a single pulse
of amplitude B:

M∗(B) =
∫ B0−B

−∞
p(Γ ) dΓ −

∫ ∞

B0−B

p(Γ ) dΓ , (15.16)

We can now choose the average switching field amplitude B0 and its vari-
ance ∆B to fit the observed dependence of the order parameter on distance
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R M∗
1 (R) after the first field pulse. M∗

1 (B) is calculated from (15.16) for
R > 20 µm with the choice B0 = 1.7 T and ∆B = 0.59 T. After substitut-
ing the variable B by R, one obtains M∗

1 (R) which is plotted in Fig. 15.31
panel 1 on top of the experimental data. It reproduces the observed M1(R)
for CoCrPt I after the first field pulse in a perfect way.

CoCrPt II and III require both the same but lower field value B0 = 1.55
T and slightly different ∆B = 0.57 and 0.51 T, respectively, to reproduce the
observed M1(R). The lowering of the average switching field B0 in CoCrPt II
and III is understood with the help of the LLG equation using the identical
damping parameter α ≈ 0.35. It is interesting to note that Heff

ani which is
almost 2 times lower in the latter samples compared to CoCrPt I plays a
relatively insignificant role in precessional switching. This is in contrast to
the quasistatic Stoner–Wohlfarth switching discussed in Sect. 11.5, where the
field strength necessary for switching scales with the anisotropy field. The
increase of M∗

1 at R ≤ 20 µm indicates the onset of the second precessional
switch. It cannot be quantitatively analyzed because the beam damage area
is too close.

Strikingly, the order parameters M∗
2 (R),M∗

3 (R), ...,M∗
n(R) are obtained

from M∗
1 (R) by multiplication:

M∗
n(R) = [M∗

1 (R)]n, (15.17)

This accounts very well for the features observed in the experimental data,
shown as points in Fig. 15.31, panel 1–6, on top of the calculated distributions.
Of course, any experimental errors are enhanced by raising M∗

1 (R) to the nth
power. Such experimental errors may be caused by beam jitter, and the uncer-
tainty in extrapolatingM∗

1 (R) → +1. At any rate, multiplicative probabilities
are the signature of a random variable. Therefore, the analysis of the multiple
pulse experiments reveals that the switching is dominated by a memory-less,
or Markov uniform stochastic process. Stochastic switching has been observed
in many cases. It is usually modeled by inserting a probability distribution of
random magnetic fields into the LLG equation. We see here that the strong
and short magnetic field pulses make it possible to actually determine the
probability distribution of the magnetic field (15.15) by experiment.

What one now wants to know are the sources of the randomness. It turns
out that the causes are not known with certainty. However, one can ex-
clude certain phenomena that come to mind. Two theoretical results based
on model calculations with the LLG equation are shown in panels (a) and (b)
of Fig. 15.31. Panel (a) demonstrates that static dispersion of the easy axis
of magnetization in the decoupled single grains cannot produce anything but
deterministic switching. Such switching reverses M∗

1 to the original M∗
0 = +1

in the second shot. This is in gross contradiction to the experiment.
Panel (b) explores thermal excitation of the uniform precession mode.

This mode determines the long-term stability of the grain magnetization as
discussed in Sect. 11.5. The degree to which the uniform mode is excited is
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Fig. 15.31. Magnetic order parameter M∗
n(R). Data points in 1–6 are from ra-

dial cuts of the magneto-optic patterns in Fig. 15.29, setting M∗
1 (100 µm) = +1

and M∗
1 (20 µm) = −1. The gray lines are generated from M∗

n(R) = [M∗
1 (R)]n. (a)

Calculated M∗
1 (R) (full line) and M∗

2 (R) (dashed line) with the observed easy axis
dispersion of 5.5◦ FWHM [847] showing M2(R) ≡ M0 = +1 in stark contrast to the
experiment. (b) Calculated M∗

1 (R) (full line) and M∗
2 (R) (dashed line) assuming

the excitation of the uniform precession mode corresponding to the observed long
term stability of the bits, from [788]
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known from the long-term stability of the bits [443]. The uniform mode in-
troduces randomness in the direction of M at the point in time when the
magnetic field pulse hits. In this way, the uniform mode indeed generates dis-
persion of M∗

1 (R), but the dispersion is much too small to explain the data.
To reproduce the observations, one would have to assume that the uniform
mode is excited to the extent that the magnetization direction of the bits has
a lifetime of only 1 µs according to (11.40). This is again in stark contradiction
to the fact that the data have been taken 3 weeks (1.8×106 s) after exposure,
and in fact were designed to be stable for years. Therefore, the magnetization
in the grains must have a substantial lifetime. This in turn proves that the
uniform precession mode is not excited to the extent necessary to explain the
observed randomness.

The effect of heating the sample by the electron bunch can be asserted
without calculation. The supersonic heat wave that might emerge from the
point of impact of the electron bunch requires 10−9 s to travel 1 µm. However,
the motion of M is already completed at that moment in time. Similarly,
magnetostatic coupling between the grains cannot explain the variance of the
switching fields. This coupling favors antiparallel alignment of neighboring bits
in the case of perpendicular M , but parallel alignment in the case of in-plane
M . Hence it changes sign just at the moment in time when the magnetiza-
tion precesses toward the hard plane of the films. Therefore, magnetostatic
coupling has a complicated, but generally small influence on the process of
switching. SUL changes the magnetostatic coupling significantly. Therefore, if
it was an important player in the process of precessional switching with the
short field pulses, M∗(R) of grains with and without SUL should be different
which it is not, according to Fig. 15.30.

Figure 15.32 compares simulated and observed magnetization patterns for
a CoCrPt sample with perpendicular anisotropy, after one and seven field
pulses, respectively. The samples were originally magnetized perpendicular to
the film plane in the “up” direction, indicated by a light color and a white
arrow. The theoretical images were calculated by means of the LLG equation
using all known magnetic parameters of the sample as input, including static
and thermal disorder. The center regions of the simulations are shown black
and correspond to the regions of beam damage in the experimental patterns.
The first light-colored rings around the centers correspond to regions where
the magnetization has rotated by 360◦ upon beam exposure and is thus again
in the up direction. In the larger dark rings the magnetization direction has
rotated 180◦ from up to down. In the outermost region the magnetization has
remained unchanged in the initial up direction.

The important part of the comparison between experiment and theory is
the relative sharpness of the rings in the theoretical simulations, in contrast
to the wide and diffuse rings seen experimentally. In particular, the magnetic
pattern for seven shots observed experimentally shows a broad halo around
a narrow dark ring. This halo region consists of an equal number of small
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Fig. 15.32. Top: Comparison of simulated and observed magnetization patterns for
a CoCrPt sample with perpendicular anisotropy, after one and seven field pulses,
respectively. The central region is shown black in the simulations and it corresponds
to the region of beam damage in the experimental patterns. The gray-scale contrast
in the patterns indicates the direction of the magnetization directions in different
sample regions. Light contrast means the magnetization direction is out-of-plane in
the “up” direction and dark contrast indicates a “down” magnetization direction,
also indicated by arrows. The simulation was done by solving the LLG equation using
all known magnetic parameters of the sample as input. Note the sharp ring structures
in the simulations and the more diffuse rings in the experimental images, as discussed
in the text. Bottom: Magnetization reversal process from “up” to “down” during a
field pulse in the direction H that rotates the magnetization M just past the hard
equatorial plane

regions with up and down magnetization directions, respectively, and thus
indicates nondeterministic switching. The broadening of this region in the
seven-shot image is reflected in Fig. 15.31 by increasing regions of near-zero
intensity with increasing number of shots. At the bottom of Fig. 15.32 we
illustrate the motion of the magnetization M during (gray) and after (black)
a field pulse in the direction H, that has the proper amplitude and duration
to rotate M just across the hard equatorial plane and thus initiates the switch
of the magnetization from up to down. With increasing number of switching
cycles the magnetization no longer reliably moves across the equator into the
opposite direction, resulting in the diffuse halo region without a well-defined
magnetization direction.

The puzzle of the origin of the nondeterministic switching may be re-
solved by realizing that the thermal fluctuations within a grain at ambient
temperature also include higher spin wave modes. As illustrated in Fig. 14.9
in such modes the spins are not parallel to each other as in the uniform mode.
The higher spin wave modes have a small amplitude before the arrival of the
field pulse. Kashuba [849] has given spin wave equations describing the non-
equilibrium precessional state of a ferromagnetic system, which reveal a new
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type of spin wave instability. Numerical simulations reveal a non-stationary
picture of domain chaos as this instability develops. Such spin wave insta-
bilities can explain the observations of stochastic switching in precessional
magnetization reversal.

The extremely large value of the damping constant α inferred from the
average switching pulse amplitude B0 indicates that the torque of the mag-
netic field pulse is lost at a high rate to the spin system. This must result
in excitation of higher spin wave modes. At the end of the field pulse, the
nonequilibrium modes can exert the random torques postulated in the ansatz
(15.15). For a theoretical analysis of the dynamics of magnetization reversal
in single magnetic grains, the reader is also referred to the work of Safonov
and Bertram [850].

15.6.3 Switching by Spin Injection and its Dynamics

The dynamics following a spin injection pulse leading to magnetization switch-
ing has been studied by several groups. Buhrman and collaborators [756] used
an experimental arrangement similar to the one shown in Fig. 14.11, except
that the magnetic films are made of Ni.80Fe.20 permalloy instead of Co, and
the magnetization M1 of the fixed layer source of the spin-polarized cur-
rent is pinned by exchange bias to an IrMn-antiferromagnet. The easy axis
of the magnetization M2 of the free sensor layer is determined by the shape
anisotropy. The relative angle between M1 and M2 is detected by the change
in the electrical resistance due to the giant magnetoresistance (GMR) effect.
In order to achieve an adequate signal-to-noise ratio signal averaging had to be
employed. A voltage step with 65 ps rise time was applied to the pillar, caus-
ing a step of the current which in turn induced oscillations of the GMR-signal
caused by magnetization precession. The oscillatory signal was extracted by
subtracting the background.

With periodic signals, the phase of the oscillations has to be the same in
each trace or else the oscillations are averaged out. This imposes strict initial
conditions, namely M1 and M2 cannot be parallel or antiparallel when the
spin-polarized current pulse is injected. For such a zero-torque initial condition
the start time of the precession would be determined by thermal fluctuations.
To avoid random starting conditions of the precession, the initial angle en-
closed by M1 and M2 was set at 30◦ and fluctuations were reduced by cooling
the sample (40 K in Ref. [756]). Under these conditions one can directly ob-
serve GMR oscillations due to magnetization precession. From the damping of
the oscillations, the damping of the magnetization precession in the presence
of a spin current can be determined. Buhrman and collaborators found that
the total Gilbert-type damping of the precession of M2 decreases linearly with
increasing spin-current present during precession. This is taken as proof that
the negative spin-injection induced damping torque increases linearly with the
injected current to compensate for the positive but constant Gilbert damp-
ing due to spin–lattice relaxation. Such behavior is expected from the simple
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model of spin injection discussed in Sect. 14.2.3. At a certain spin injection
current, both positive and negative damping terms compensate, leading to
an effectively undamped precession, or to a steady-state precessional motion
of the magnetization M . Buhrman and collaborators [756] indeed observed a
steady-state mode of M , showing that the damping of the precession can be
controlled electrically. Furthermore, the time needed to switch the magneti-
zation could be chosen to be <1 ns and the switching was deterministic, i.e.,
it occurred at a well-defined magnitude of the injected spin current.

These experiments are not consistent with models in which the dominant
spin transfer mechanism is due to spin wave excitation which would lead to
a more chaotic rather than a uniform motion of M . The notion of uniform
precession over the whole volume of the sample is also in disagreement with
X-ray imaging results discussed later which show that the curly Oersted field
generated by the charge current cannot be neglected. Obviously, the dynamics
are of key importance for understanding the torques operating when a spin-
polarized current is injected. Whatever the final picture may be, the fast
switching times <1 ns indicates that spin injection is a highly interesting new
concept for magnetic memory applications.

Tulapurkar et al. [851,852] have demonstrated magnetization switching by
spin injection at time scales even considerably below 1 ns. They also point
out that the energy consumed in pulsed spin injection switching is very low,
making the switching promising for applications in magnetic random access
memories (MRAMs). The required switching current can be reduced even
further by using materials with lower saturation magnetization [852]. These
authors applied current pulses of various amplitudes, polarities and durations
ranging from 100 ps to 10 ns to pillar-shaped CoFe/Cu/CoFe trilayers. The
bottom CoFe-layer is larger and thicker and therefore acts as the pinned layer,
thus the sample structure is basically the same as in Fig. 14.11. GMR mea-
surements were again used to reveal the relative magnetization direction in the
two layers. It was found that the switching from a parallel direction of M1 and
M2 to the antiparallel direction (P → AP), is independent of temperature
from 150 to 240 K, needs a higher current density, and proceeds compara-
tively slowly. The switching AP → P on the other hand takes less current
and less time. It also becomes faster at low temperatures. The authors de-
fine the switching speed as the inverse of the time required for achieving 90%
switching probability.

The acceleration of the switching speed on lowering the temperature is
surprising. Thermal activation of the uniform precession mode is too small
to explain any of these observations, even the trend is wrong. This applies
also to more elaborate macrospin models for thermal activation [853, 854].
In references [851, 852] it is then concluded that the sample needs to be in a
coherently uniform micromagnetic state in order to be most susceptible to the
spin injection torques. At higher temperatures, the population of nonuniform
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spin wave modes increases compared to the uniform mode, hence overall, the
system is in a less well-defined state. Thus on the basis of this reasoning high
temperatures are expected to inhibit the switching of the sample.

Devolder and collaborators [855] carried out a detailed interpretation of
the measured results I(R) in references [851, 852], where I is the injected
current and R the GMR resistivity of the pillar. Experimentally it is found
that the curvature of I(R), which is mainly determined by the deposition of
Joule’s heat, shows an anomaly in that it depends on the sign of the injected
current. By a somewhat complex analysis, Devolder et al. suggest non-uniform
magnetic structures, so called C-states. The structure in the fixed layer is
assumed to be uniform but deforms temporarily at the edges by the action of
the Oersted field coming with the injected charge current which, as opposed to
the heat, depends on the direction of the current I(R). Since the GMR signal
is the difference between the magnetic structure of the fixed relative to the
free layer, this is suggested to explain the dependence of I(R) on the current
direction. We shall see below that this analysis is indeed confirmed by X-ray
imaging. On the other hand, Fukushima and collaborators [856] interpreted
the same experimental data by assuming that there is a uniquely large Peltier-
effect with the submicron metallic junctions that leads to cooling of the pillar
for one and heating for the other current direction. In principle, this behavior
can also explain the dependence of the curvature of I(R) on the direction of
the injected current.

This all goes to show how important it is for the understanding of spin
injection to actually image the evolution of the magnetic structure in the free
layer, independently of temperature and the magnetic state of the fixed layer.
This has indeed been accomplished recently by use of X-ray microscopy [763].
Such studies allow the observation of the detailed magnetic orientation of a
sensor layer, buried inside a pillar, resulting from spin injection and even dur-
ing the spin injection process itself. While GMR transport measurements can
detect the presence of different magnetic configurations between the polariz-
ing and sensing layers in the spin injection device, the detailed nature of the
states remains hidden. As discussed in Sect. 14.2.3 and shown in Fig. 14.10
spin injection is accompanied by Oersted fields consisting of circular magnetic
field lines. Micromagnetic computations have indicated that these Oersted
fields may indeed play a crucial role in the switching process [748, 749, 761],
even in samples as small as 100 nm. The X-ray imaging results reveal a rather
interesting phenomenon, namely that the curly Oersted field induces a vortex
state which in the switching process is displaced in different directions by the
spin current. Thus the vortex state, discussed in Sect. 15.5.2 is far more than
an academic curiosity. Similar to a vortex-like hurricane that moves across an
island, a magnetic vortex that moves across a small magnetic island will cause
a considerable change. We shall now discuss this in more detail.
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The sample geometry and the experimental arrangement for the X-ray
microscopy measurements by means of STXM are shown in Fig. 15.33. The
figure also illustrates the pump–probe scheme used for the measurements. The
central part of the spin injection sample was a pillar of oval cross-section and
a size of 100 nm × 150 nm. A 17.5 nm thick antiferromagnetic PtMn layer
(green) was used to pin the lowest 1.8 nm thick Co0.86Fe0.14 FM layer (blue)
by exchange bias. This FM layer was coupled antiferromagnetically through a
0.8 nm thick Ru spacer layer to a second 2.0 nm thick Co0.86Fe0.14 FM layer.
This AFM coupling between the two FM layers reduced stray fields on the
light blue sensor layer. The spin polarization of the injected current flowing
through the pillar is determined by the magnetization (red arrow) of the
second FM, the “polarizer.” It then flows through a 3.5 nm thick Cu spacer
layer and enters the 4.0 nm thick Co0.86Fe0.14 sensor layer (light blue), whose
magnetization is imaged by X-rays. The entire spin injection structure was
lithographically built on a SiNx coated Si wafer. In the last lithography step,

Fig. 15.33. Left: Schematic of the pillar structure, showing the ferromagnetic po-
larizer (dark blue) and sensor layers (light blue), the antiferromagnetic pinning layer
(green) and the Cu leads and spacer layers in orange. The lowest two FM layers are
coupled into a fixed antiferromagnetic arrangement by a Ru spacer layer and their
magnetization direction is pinned by exchange bias to the green antiferromagnet.
The X-ray beam is incident 30◦ from the surface normal and is focused by a zone
plate to a size of about 30 nm. The transmission through the structure as a function
of sample position is monitored by a fast X-ray avalanche detector. Right: Tim-
ing scheme used for the pump-probe spin injection experiments. A positive current
pulse, “set pulse,” is followed by a negative “reset pulse” and this scheme is repeated.
The X-ray probe pulses with a spacing of 2 ns are synchronized to the pump pulses
and for each pump–probe cycle the intensities of eight consecutive X-ray pulses are
measured by eigth separate and fast photon counters. This procedure is repeated
for a given sample position in the beam until the signal-to-noise ratio is adequate.
The sample is then scanned to a new position and the procedure is repeated
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a 100 µm× 100 µm window was etched from the back through the Si wafer so
that the pillar sample was supported only by the remaining SiNx membrane.
Thus X-rays could be sent through the entire pillar structure, as shown in
Fig. 15.33.

In an external magnetic field, square GMR magnetization loops are ob-
tained as shown in Fig. 15.34a, indicating that uniform magnetic structures
have been reached at the maximum field values. The loop is shifted on the
field axis showing that there is residual coupling by the stray field of about
−50Oe from the polarizer at the location of the sensor layer, favoring antipar-
allel alignment of sensor and polarizer. By injecting positive “set” spin current
pulses, corresponding to electron flow from the polarizer to the sensor, and
negative “reset” pulses, one expects reproducible jumps of GMR that are of
the same magnitude as obtained by switching M in an external field. When
such pulses of 4 ns duration are applied, the sample displays an anomaly. As
illustrated in Fig. 15.34b the first GMR jump from point A to B is still large
and consistent with uniform M reversal, but the reduced GMR jumps un-
der subsequent current injections indicate that a different M state has been
created by current injection. This state is stable, as well. The original large
GMR jump only appears after the structure has been realigned by an external
magnetic field. The nature of the intermediate state, as well as the mechanism
leading to it, remains hidden in GMR.

X-ray images of the sample were recorded by means of STXM with a spatial
resolution of about 30 nm, limited by the zone plate. The circularly polarized
X-rays from the undulator source were incident at an angle of 30◦ from the

Fig. 15.34. GMR measurements of field and current pulse induced switching for
a 100 nm × 150 m nm sample, also used for Fig. 15.35 below. As shown in (a) the
sample shows a square GMR-hysteresis loop in an external field, indicating a uniform
saturation magnetization. With current pulses, as applied in the pump-probe X-ray
microscopy measurements, the sample exhibits a full change of GMR only on the
first current pulse (A to B). Subsequent set and reset pulses (B to C to D etc.)
show a smaller GMR effect, indicating the creation of a non-saturated intermediate
metastable structure
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surface normal of the sample, so that the photon angular momentum had a
finite projection along the in-plane magnetization direction of the FM sensor
layer. Magnetic contrast was obtained by tuning the X-ray energy to the Co
L3 edge (∼780 eV). The rise time of the current pulses was ∼200 ps. The
current pulse sequence was synchronized with the X-ray pulses which appear
every 2 ns. The special photon counting system shown in Fig. 15.33 allowed
the measurement of magnetization differences M i−M j for each pair of eight
consecutive X-ray pulses, suppressing slower drifts and sample vibrations. The
delay of the 75 ps wide X-ray pulses to the current pulse sequence could be
changed in order to measure the time evolution of the magnetization. Since
the GMR data show the formation of a uniform M state after the reset
pulse one can use this reference state as input and reconstruct the other M
states from the appropriate difference measurements. By recording images
for two orthogonal azimuthal sample orientations relative to the fixed X-ray
direction, arrow plots for the in-plane magnetization directions in the 4-nm
thick Co0.86Fe0.14 FM sensor layer can then be constructed. The determined
magnetization components Mx (horizontal) and My (vertical) are shown in
Fig. 15.35 as a function of time relative to the onset of the spin injection
pulses.

The time evolution of the magnetization near the onset of the current
pulses is shown in Fig. 15.35a–i. The changes of the magnetization happen
within a few hundred picoseconds after the 200 ps onset of the pulse se-
quence. The initial magnetization is uniform (Fig. 15.35a). The positive cur-
rent pulse (electrons flow from the polarizer into the sensor layer) causes
the magnetization to bend upward (Fig. 15.35b), forming a vortex. As this
vortex moves through the sensor layer, it leaves behind a trail of reversed
magnetization. As the vortex center leaves the magnetic structure, a C-state
(Fig. 15.35c) is formed. The falling edge of the current pulse has no noticeable
effect, showing that the C-state (Fig. 15.35d) is a stable configuration, as well.
The negative pulse first leads to an almost uniform magnetization, caused by
injection of a new vortex with opposite curl into the sensor layer (Fig. 15.35e).
The new vortex moves through the sensor layer and reverses its magnetiza-
tion (Fig. 15.35f). The new C-state with the component Mx antiparallel to
the polarizer is not stable at zero current but relaxes into the original uniform
configuration (Fig. 15.35g–i).

In the final uniform state reached after the reset pulse, the magnetization
of the sensor M is antiparallel to the magnetization MP in the polarizer. The
uniform state is thus stabilized by the stray field of the polarizer. In contrast,
the C-state of Fig. 15.35c forms when M is parallel to MP and in his case the
stray field opposes and destabilizes a potential uniform state. The possible
relaxation of the C-state into the uniform state depends on fine details of
the magnetic couplings and other properties of the nanopillar. Metastable
C-states are, of course, undesirable in technological applications.
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Fig. 15.35. Evolution of the magnetization during the pulse sequence within the 4-
nm thick Co0.86Fe0.14 sensor layer inside a 100 nm×150 nm nanopillar. The uniform
antiparallel configuration (a) is switched into a C-state with parallel Mx (horizontal
axis) component (c). The switching process involves motion of a magnetic vortex
through the sensor layer, visible in (b). The C-state is stable after the falling edge
of the pulse (d) and is reversed by the “reset”-pulse into another C-state (f). The
switching of one C-state into another is caused by lateral vortex motion as well,
leaving a uniformly magnetized area in the center of the sensor layer (e). The C-
state with its horizontal x-component antiparallel to the polarizer is unstable and
relaxes into the uniform state (g–i), but note that this relaxation is comparatively
slow
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The experiment shows that the motion of vortices inside the sensor layer
dominates the switching process. The switching speed of 500 ps leads to a
vortex speed of about 150m s−1. The motion of the vortex across the sensor
layer is caused by the spin current and is expected to involve precessional
motion of the magnetization that cannot be resolved with the time resolu-
tion of our experiment. This finding shows that vortex dynamics, previously
observed in small magnetic structures as discussed in Sect. 15.5.2, can domi-
nate the switching mechanism in spin transfer nanopillars. The Oersted field
breaks the mirror symmetry along the direction of the injected spin direc-
tion (x-axis). This manifests itself in the bending of the magnetization into
C-states and vortices. Therefore, no thermal fluctuations are needed to ini-
tiate switching. Thus a nonzero torque exists immediately after the rising
edge of the current pulse. This explains the short switching time of 100 ps
observed previously [855] and the 500 ps switching time observed here. We
note that such nonthermal switching is deterministic and therefore desirable
in switching applications.

15.6.4 On the Possibility of All-Optical Switching

The principle of all optical switching is based on optical pumping in atoms
discovered by Kastler and collaborators and distinguished by the Nobel prize
in physics in 1966. Figure 15.36 illustrates how one can induce spin switching
with all optical techniques for a Na-atom (the drosophila of atomic physics).
With time the Na atoms are converted from the ground state 2S1/2,mj =−1/2
to the excited state 2S1/2,mj =+1/2 with opposite spin polarization relative
to the quantization axis of the external magnetic field. The spin reversal is
easily detected since the Na-vapor becomes transparent for the incident light
when the switching is completed.

At first sight, this seems paradoxical since a change in spin direction would
require the presence of a magnetic field H, perpendicular to the external field
B and the quantization axis z, about which the spin could precess from the
orientation sz = −1/2 to sz = +1/2. The paradox is resolved by the fact
that, according to Fig. 15.37, the spin–orbit coupling produces an effective
magnetic field H ∝ L that is much stronger and not collinear with the ap-
plied field B. While there is no spin–orbit coupling in the two lowest l = 0
states 2S1/2 in Fig. 15.36, a spin–orbit field does indeed exist in the excited
l = 1 state 2P1/2,mj = +1/2 through which the system passes. The vector
model of the P1/2 atomic state shown in Fig. 15.37 reveals the existence of
this perpendicular magnetic field component.

The total angular momentum J = L−S of the state 2P1/2 precesses about
the direction of B with a magnetic quantum number mj = Jz = 1/2 along
B. The spin–orbit induced vector addition of the noncollinear vectors S and
L causes them to precess about J , at a frequency given by the strength ξ of
the spin–orbit interaction. In the language of quantum mechanics, the spin is
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Fig. 15.36. Principle of optical pumping. Na-vapor is enclosed in an inert container
like teflon. Circularly polarized light σ+, incident parallel to the quantization axis
defined by the applied magnetic field B, is tuned to the allowed dipole transition
2S1/2, mj =−1/2 → 2P1/2, mj = +1/2 (absorption: ∆mj = +1). The spontaneous
radiative decay of the excited state may lead to emission of σ+-light (emission:
∆mj = −1) and linearly polarized light π (∆mj = 0), the latter producing the
final state 2S1/2, mj =+1/2. If spin relaxation on the walls is slow, the Na-atoms in
the original state 2S1/2, mj =−1/2 will be depleted and with time one will obtain
a vapor that is in the state 2S1/2, mj = +1/2 with opposite spin polarization. The
vapor will then be transparent to the incident light

Fig. 15.37. Vector-model for the state P1/2. The vectors S and L precess fast with
an angular frequency ω = ξ/h̄ ≈ 1014 rad s−1 about J while J precesses slowly with
ω = (e/me)B ≈ 1011 rad s−1 about the applied field B
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in a mixed state as long as the orbital moment is present. From such a mixed
spin state, back transitions to either one of the pure ground states can occur.

Angular momentum is conserved in optical pumping since h̄ is deposited
in the atom during excitation, but in the transition to the reversed spin state
the emitted light is linearly polarized, hence no angular momentum leaves the
atom. The angular momentum h̄ left in the atom enables the spin transition.
Hence in the end, the angular momentum h̄ necessary to induce the spin
transition is supplied by the light. The process is in fact analogous to switching
by spin injection, the only difference being that the angular momentum is now
imported by the circularly polarized photons instead of the polarized electrons.

15.6.5 The Hübner Model of All-Optical Switching

All-optical switching (AOS) applied to solid magnetic materials represents an
intriguing idea that has emerged with the availability of ultrafast,
high-intensity (coherent) laser pulses. Hübner and collaborators [784–787]
have suggested a scheme that is based on optical transitions driven by a co-
herent laser field between the ground state and a well-defined excited state of
a ferromagnet, and use of the spin–orbit coupling to switch the spin while the
system is in the excited state. Indeed, in semiconductors and insulators the
creation and coherent manipulation of excited electron spins has been demon-
strated [78]. The question arises whether it is also possible to use related
techniques to reliably switch the magnetization in ferromagnetic materials.8

In order to understand Hübner’s model we start with the simplest quantum
system consisting of two sharp atomic levels and a laser pulse that connects
the two levels as shown in Fig. 15.38. The energy difference between the levels
is ∆E10 ≈ 1 eV and we assume further that the lifetime of the excited state is
infinitely long. The central frequency of the laser pulse is to be in resonance
with the transition energy according to h̄ω = ∆E10.

∆E10

Fig. 15.38. A two level system excited by a laser pulse of central frequency ω =
∆E10/h̄, adapted from [785]

With such a laser pulse, transitions from the initial state |0〉 to the excited
state |1〉 will be induced. A complete occupation of the final state occurs
with a certain duration and amplitude of the laser pulse, but as soon as the

8The understanding of such optical processes may also shed light on the ultrafast
incoherent loss of the magnetization that was discussed in Sect. 15.4.3.
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higher lying state is occupied, the laser field stimulates transitions back to
the ground state. In this way, the occupation of the excited state oscillates in
time as illustrated in Fig. 15.39.

Fig. 15.39. Dependence of the occupation of the excited state on the strength of
the dipole operator |p · E| of the electronic transition (ordinate) and the duration
of the laser pulse of a fixed shape (abscissa) for the main laser frequency resonant
with the level splitting ∆E10 [785]

The figure illustrates the dependence of the final state population on both
the width and the amplitude of the exciting laser pulse. The transition proba-
bility is given by the dipole operator |p·E| (see Sect. 9.5.2), with the oscillating
electric field of the laser E = E0[exp(−iωt)+exp(iωt)] driving the absorption
(exp(−iωt)) and stimulated emission (exp(iωt)) of photons. Figure 15.39 shows
that the occupation of the excited state |1〉 oscillates in time between 0 (white)
and 1 (black) depending on the combination of the size of |p ·E| and duration
of the laser pulse. Figure 15.39 has been calculated from the time-independent
Hamiltonian H(x) of the two-level electronic system and the time-dependent
interaction energy V (x, t) of the electromagnetic field, keeping only the dipo-
lar interaction term. The model Hamiltonian is thus H(x, t) = H(x)+V (x, t),
and the data of Fig. 15.39 are solutions of the corresponding time-dependent
Schrödinger equation [785].

The two-level system is driven back and forth between the two states with-
out change of the spin. The central idea behind AOS is now the manipulation
of the electron spins in the excited state. This may be accomplished again by
a magnetic field that has a component perpendicular to the electron spins. If
furthermore the field is strong the spin will rapidly precess by 180◦. According
to Sect. 3.6, a magnetic field of order 100 T would reverse the spin in about
200 fs. Now, if this magnetic field were to exist solely in the excited state, the
spin could change its direction, say from ↑ to ↓ during the time it resides in
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this state. Then, stimulated transitions to the initial state |0↑〉 would be for-
bidden. Rather, on continuation of the laser pulse, transitions to the reversed
spin state |0↓〉 would occur. This amounts to AOS.

Figure 15.40 depicts the required three-level system. The process starts in
the initial state |0↑〉 with occupation 1, then the excited state |1↑〉 is populated
to 1 with a suitable strength and duration of the laser pulse. A perpendicular
field is then turned on so that all spins precess by 180◦ and end up in state
|1↓〉. This state is then de-excited by the continuing laser pulse to the final
state |0↓〉.

∆E10

Fig. 15.40. Three-level system, where the initial state |0↑〉 is a majority spin state
and |0↓〉 is a minority spin state. In the excited state |1〉 the spins are switched by
precession in a perpendicular magnetic field from ↑ to ↓

The calculated dependence of the final state spin orientation for the process
in Fig. 15.40 is depicted in Fig. 15.41 [786]. Depending on the length of the
laser pulse and the strength of the magnetic field in the excited state, expressed
as the energy splitting between opposite spin states ξ = 2µBH (ξ = 0.12 eV
correspond to a field µ0H = 1000T), the spin can end up in the switched
state |0↓〉 or unswitched in state |0↑〉.
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Fig. 15.41. The expectation value of the spin direction (shading) as a function of
the laser pulse duration (ordinate) and the magnetic field H in the excited state,
expressed as the energy splitting between opposite spin states ξ = 2µBH [786]
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The crucial question is how one can produce a suitable strong magnetic
field H ⊥ M in the excited state that leads to spin precession or, in the
language of quantum theory, to spin mixing. Hübner et al. suggest to let the
spin–orbit coupling do the switching. As shown in Fig. 7.38 one may envision
a system with ligand field split 3d-states and a typical splitting of about 1 eV
as assumed in the model calculation for Fig. 15.41 [786].

We now consider optical transitions between the ligand field split 3d-states.
These transitions do occur in transition metal compounds and they are re-
sponsible for the beautiful colors of the transition metal oxides (red in Fe-
oxide, blue in Co-oxide, green in Ni-oxide). Since angular momentum has to
be conserved in allowed optical transitions, the transitions must deposit the
angular momentum h̄ of the photon in the excited state, that is we can pop-
ulate only one half of the crystal field state in which the angular momentum
of the photon is now present as an angular momentum of the electron. This
nonequilibrium occupation of the ligand field state now possesses an angular
momentum or orbital moment which corresponds to a magnetic field given
by ξ = 2µBH, where ξ is the strength of the atomic spin–orbit coupling.9

Since the orbital moment direction is fixed by the ligand field, the magnetic
field effective for spin precession is held in place. This field corresponds to the
external field B in the optical pumping model with Na shown in Fig. 15.36.
The transfer of angular momentum to the crystal lattice now occurs on the
femtosecond time scale of the spin precession in the transiently excited state
with orbital moment. This time scale should be compared to the picosecond
time scale that corresponds to the weak magnetic anisotropy of the order of
µ eV in the electronic ground state of the crystal.

We summarize the situation with AOS as follows:

1. Coherent optical manipulation of the spin dynamics requires discrete en-
ergy levels such as present in magnetic semiconductors and insulators.

2. The exchange field Hex present in the transiently excited state has been
neglected. Hex exists unless all or most of the electrons are excited. It
adds to the field Hls of the spin–orbit coupling, but it is always parallel
to the majority spin direction, hence presents an obstacle to the required
spin precession. In fact, AOS is impossible if Hex � Hls and incomplete
with Hex ≈ Hls.

3. Electron states in solids have a finite lifetime due to nonradiative tran-
sitions caused by electron-electron scattering. These lifetimes are very
short in transition metals. According to Fig. 15.10, the lifetime of a state
1 eV above EF in Co is only 5 fs, for example. Relaxation of the excited
state in electron-electron scattering leads to destruction of spin coherence.
Therefore, one cannot expect to induce coherent electron spin dynamics

9In the classical relativistic language, we consider the rest system of the electron,
in which the charged atom of the crystal rotates around the electron and produces
the desired magnetic field in which the spin will precess.
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in metals with laser pulses of 30 fs duration. Yet, some optically induced
loss of magnetization can be imagined. A loss of spin order through de-
phasing of spins in the excited state is thus a realistic possibility. It can
be of technical interest as it might be useful to facilitate regular magnetic
switching with a magnetic field without heating the whole crystal lattice.

4. It is important to remember that the recovery of the magnetization af-
ter the application of a laser pulse is still slow as it is governed by the
spin–lattice relaxation on the ps-time scale. The slow recovery is a dis-
tinguishing characteristic of ultrafast demagnetization induced by laser
pulses.

15.6.6 All-Optical Manipulation of the Magnetization

As an example, let us discuss the work of Rasing and collaborators [858]
which demonstrates that circularly polarized femtosecond laser pulses can in-
deed excite coherent spin dynamics in a magnetic material such as ferrimag-
netic DyFeO3. These rare earth orthoferrites crystallize in an orthorhombic
perovskite-type structure [859]. The magnetic moments of Dy are not ordered
above 4 K, hence Dy is in a paramagnetic state. The Fe3+ ions form a spher-
ically symmetric 6A1g state corresponding to the atomic 3d5/2-state of a half
full 3d shell in the crystal field. The Fe-moments are coupled antiferromagnet-
ically by isotropic exchange, but the Dzyaloshinskii interaction [860] gives rise
to a canting of opposite spins by 0.5◦ which in turn generates a small magne-
tization of Ms = 8G. Despite the small Ms, the Faraday rotation, that is the
angle of rotation of the plane of linearly polarized light per unit path length of
the light is very large in this material, amounting to 3, 000 deg cm−1. This large
Faraday rotation indicates a large magneto-optic coupling which can probably
be explained with the presence of Dy. Dy doping is known to significantly in-
crease the spin–lattice interaction in other cases as well [782,783]. Figure 15.42
demonstrates that one can excite precession of the Fe-moments with a pump
laser in complete analogy to the excitation with a magnetic field pulse.

Two distinct processes can be observed in Fig. 15.42. First, a quasi-
instantaneous change of the Faraday rotation, and second an oscillation of
the Fe moments about the equilibrium position. The change of the magni-
tude of the Faraday rotation is due to the photoexcitation of the Fe ion
in the 5S5/2 state and the relaxation of the excited electron back to the
S5/2 ground state. When the spin of the electron is inverted during the resi-
dence time in the excited state, it can relax back into the ground state only
by reducing the magnetic quantum number, that is we have the transition
S5/2,mj = 5/2 → S5/2,mj = 3/2 causing precession of S5/2 about the equi-
librium position, here with a period of about 5 ps. These oscillations are
observed with the probe pulse up to long delay times of more than 60 ps, that
is the relaxation in the absence of the laser pulse is slow as it is given by the
spin–lattice relaxation time.
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Fig. 15.42. All-optical excitation of the magnetization in DyFeO3 orthoferrite.
During the circularly polarized infrared pump-laser pulse of 200 fs duration, electrons
are excited from the S5/2, mj = 5/2-ground state of Fe to a transient crystal field
state with spin–orbit interaction where the spin is reversed and then relaxes back
into the ground state S5/2, mj = 3/2. The coherent precession of the S5/2, mj = 3/2
states of the Fe ions about their equilibrium position is revealed by the time-delayed
probe pulse. When the helicity of the pump pulse is reversed, the oscillations show
opposite phase as expected. Figure courtesy of Theo Rasing [858]

Altogether it follows that stimulation of an optical transition into a virtual
state with a strong spin–orbit interaction may lead to the subsequent stim-
ulated relaxation into the ground state, accompanied by spin switching and
re-emission of a photon with a fixed phase shift and lower energy relative to
that of the incident photon. The exciting photon again has to be circularly
polarized while the re-emitted photon must be linearly polarized in order to
supply the angular momentum required to switch the spin. The energy differ-
ence between exciting and re-emitted photon is given by the energy necessary
to invert one spin, hence it is small.

In principle, the process amounts to the excitations of the uniform spin-
wave mode with light, known from Brillouin light scattering. Hence the ex-
periment [858] demonstrates the excitation of homogeneous magnetization
precession by light. It is different and more effective than switching by sim-
ply heating the magnetic material with the laser pulse. If excited with suffi-
cient amplitude, the homogeneous mode will lead to deterministic magnetic
switching. Yet the switching remains still to be demonstrated, particularly
with materials of actual interest in applications.



15.7 Dynamics of Antiferromagnetic Spins 759

15.7 Dynamics of Antiferromagnetic Spins

In the context of the previous experiment, we briefly discuss a basic differ-
ence in the dynamics of ferromagnets (FM) or ferrimagnets as compared to
antiferromagnets (AFM). In AFM, there are two oscillation modes, one with
high frequency driven by the exchange interaction where the atomic moments
change their relative orientation, and one with lower frequency in which the
moments of the AFM oscillate in phase with each other about the direction
given by the magnetic anisotropy. In the latter case, one assumes rigid coupling
of the two sublattices of the AFM, and the net angular momentum connected
to magnetic order is then zero. This means that precession does not occur in
this case as there is no angular momentum that has to be conserved.

Upon exciting electrons to a higher lying crystal field state, the magnetic
anisotropy can change direction. For example, for NiO a 90◦ rotation occurs
during excitation with a laser pulse that involves only a small change of tem-
perature of 30◦ C [820]. The change of anisotropy direction can be induced on
the femtosecond time scale. In AFM, the magnetizations of the two sublat-
tices M1 and M2 can react to the change of the magnetic anisotropy direction
by simply rotating into the new direction on a short time scale. In contrast,
the magnetization M of a ferromagnet must always precess when the effec-
tive magnetic field changes direction because angular momentum has to be
conserved. Only through relaxation during precession can the magnetization
reach the new equilibrium position. This important difference is depicted in
Fig. 15.43.

Antiferromagnet Ferromagnet

HA HAdM1

M1
M

M2

dt

dM
dt

dM2

dt

Fig. 15.43. Comparison of spin motion in antiferromagnets and ferromagnets. In
contrast to the precessional motion of M in a FM, the sublattice magnetizations
M 1 and M 2 of the AFM simply rotate into the new field direction. Consequently,
the Landau–Lifshitz equation has serious limitations in understanding the dynamics
of AFMs. Figure taken from [817]
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Appendices

A.1 The International System of Units (SI)

Table A.1. Physical quantities, symbols and their SI units

symbol physical quantity equivalent numerical value and units

A Vector potential V sm−1

E Electric field V m−1

D Displacement εε0E A s m−2

H Magnetic field A m−1

B Magnetic Induction µµ0H V sm−2 (≡ T)

p Electric dipole moment A sm
m Magnetic dipole moment V sm
M Magnetization m/V V sm−2 (≡ T)

c Speed of light 1/
√

ε0µ0 2.998 × 108 m s−1

ε0 Dielectric constant 1/µ0c
2 8.854 × 10−12 A s V−1m−1

µ0 Permeability 1/ε0c
2 4π × 10−7 V s A−1m−1

1/4πε0 SI units prefactor 8.99 × 109 V mA−1s−1

µB Bohr magneton eh̄µ0/2me 1.165 × 10−29 V ms
me Electron mass 9.109 × 10−31 V As3 m−2

h Planck’s constant 6.626 × 10−34 V As2 = 4.136 eV fs
NA Avogadro’s number 6.02214 × 1023 atoms/mol
q = −e Electron charge −1.602 × 10−19 A s
e/me Electron charge/mass ω/B 1.759 × 1011 rad s−1 T−1

mec
2 Electron rest energy 0.819 × 10−13 V As = 0.511 MeV

ER Rydberg energy mee
4/2h̄2(4πε0)

2 13.606 eV
a0 Bohr radius 4πε0h̄

2/mee
2 0.529 × 10−10 m

re Classical electron radius e2/4πε0mec
2 2.818 × 10−15 m

σe Thomson cross section 8πr2
e/3 0.665 × 10−28 m2

αf Fine structure constant e2/4πε0 h̄c = 1/137.04

Conversions of units, see following page
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Conversions of units

1Oersted (Oe) = (1, 000/4π) A m−1 = 79.59 A m−1

1 Tesla (T) = 1 N A−1m−1 = 1V s m−2 (i.e., 1T corresponds to 104 Oe)

1 Ohm (Ω) = 1 V A−1

1Coulomb (C) = 1 A s

1Newton (N) = 1 V A sm−1

1Kilogram (kg) = 1V A s3 m−2

1Farad (F) = 1 A s V−1

1 Joule (J) = 1 N m = 1 V A s

1Watt (W) = 1V A = 1 J s−1

1 eV = 1.602 × 10−19 V As

1 eV/kB = 1.1605 × 104 K (energy to temperature)

1 eV/h = 2.418 × 1014 Hz (energy to cycle frequency)

1 eV/hc = 8066 cm−1 (energy to wavenumber, also 1 cm−1 = 1Kayser)

hν[eV] = 1239.852/λ[nm] (photon energy to wavelength and vice versa)

1 µB/µ0 = 0.578 × 10−4 eV T−1

1 barn (b) = 1 × 10−28 m2

1 deg (◦) = π/180 rad = 17.45 mrad

1 arcmin = 1/60◦ = 290.9 µrad
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A.2 The Cross Product

General vector relations:

a × b = − b × a (A.1)

(a + b) × c = (a × c) + (b × c) (A.2)

(λa × b) = (a × λ b) = λ (a × b) (A.3)

a · (b × c) = b · (c × a) = c · (a × b) (A.4)

a × (b × c) = b (a · c) − c (a · b) (A.5)

(a × b) · (c × d) = a · [ b × (c × d) ] = (a · c)(b · d) − (b · c)(a · d) (A.6)

(a × b) × (c × d) = c [ (a × b) · d ] − d [ (a × b) · c ] (A.7)

a × [ (a × b) × a ] = a × [a × (b × a) ] = a × b (A.8)

ex × ey = ez

ey × ez = ex

ez × ex = ey (A.9)

The gradient operator:

∇ × ∇ψ = 0 (A.10)

∇ · (∇ × a) = 0 (A.11)

∇ · (ψ a) = ψ∇ · a + a · ∇ψ (A.12)

∇ × (ψ a) = ψ∇ × a + ∇ψ × a (A.13)

∇ · (a × b) = b · (∇ × a) − a · (∇ × b) (A.14)

∇ × (a × b) = (b · ∇)a − (a · ∇) b + a (∇ · b) − b (∇ · a) (A.15)

∇ (a · b) = (b · ∇)a + (a · ∇) b + a × (∇ × b) + b × (∇ × a) (A.16)

∇ × (∇ × a ) = ∇ (∇ · a ) −∇2a (A.17)
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A.3 s, p, and d Orbitals

Table A.2 gives the often used s, p, and d orbitals in terms of linear combina-
tions of the (complex) spherical harmonics. The orbitals are real and pictured
in Fig. A.1.

Table A.2. Mathematical description of s, p, and d orbitals, pictured in Fig. A.1, in
terms of spherical harmonics Yl,m = |l, m〉. The orbitals oi are real and normalized

according to
∫
|oi|2 dΩ =

∫ 2π

0

∫ π

0
|oi|2 sin θ dθ dφ = 〈oi|oi〉 = 1

s =
1√
4π

= Y0,0

px =

√
3

4π

x

r
=

1√
2
(Y1,−1 − Y1,+1)

py =

√
3

4π

y

r
=

i√
2
(Y1,−1 + Y1,+1)

pz =

√
3

4π

z

r
= Y1,0

dxy =

√
15

4π

xy

r2
=

i√
2
(Y2,−2 − Y2,+2)

dxz =

√
15

4π

xz

r2
=

1√
2
(Y2,−1 − Y2,+1)

dyz =

√
15

4π

yz

r2
=

i√
2
(Y2,−1 + Y2,+1)

dx2−y2 =

√
15

16π

(x2 − y2)

r2
=

1√
2
(Y2,−2 + Y2,+2)

d3z2−r2 =

√
5

16π

(3z2 − r2)

r2
= Y2,0

Fig. A.1. Illustration of the s, p, and d orbitals. Plotted is the charge density, given
by the square of the angular wavefunctions. The signs of the wavefunctions are also
indicated
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A.4 Spherical Tensors

Following Racah, we define spherical tensors C(l)
m , listed in Table A.3 for l ≤ 4,

in terms of the spherical harmonics as follows,

C(l)
m =

√
4π

2l + 1
Yl,m(θ, φ) . (A.18)

Table A.3. Racah tensor operators C
(l)
m for l = 0, 1, 2, 3, 4 defined in (A.18),

expressed in Cartesian and spherical coordinates, according to x = r sin θ cos φ,
y = r sin θ sin φ, z = r cos θ. The operators have the complex conjugate property
(C

(l)
m )∗ = (−1)mC

(l)
−m

C
(0)
0 = 1

C
(1)
0 = cos θ =

z

r

C
(1)
±1 = ∓ 1√

2
sin θ e±iφ = ∓ 1√

2

(x ± iy)

r

C
(2)
0 =

1

2
(3 cos2 θ − 1) =

1

2

(3z2 − r2)

r2

C
(2)
±1 = ∓

√
3

2
cos θ sin θe±iφ = ∓

√
3

2

(x ± iy)z

r2

C
(2)
±2 =

√
3

8
sin2 θe±2iφ =

√
3

8

(x ± iy)2

r2

C
(3)
0 =

1

2
(5 cos3 θ − 3 cos θ) =

1

2

(5z2 − 3r2)z

r3

C
(3)
±1 = ∓

√
3

16
sin θ (5 cos2 θ − 1) e±iφ = ∓

√
3

16

(x ± iy)(5z2 − r2)

r3

C
(3)
±2 =

√
15

8
cos θ sin2 θe±2iφ =

√
15

8

z(x ± iy)2

r3

C
(3)
±3 = ∓

√
5

16
sin3 θe±3iφ = ∓

√
5

16

(x ± iy)3

r3

C
(4)
0 =

1

8
(35 cos4 θ − 30 cos2 θ + 3) =

1

8

(35z4 − 30z2r2 + 3r4)

r4

C
(4)
±1 = ∓

√
5

16
sin θ (7 cos3 θ − 3 cos θ) e±iφ = ∓

√
5

16

(x ± iy)(7z3 − 3zr2)

r4

C
(4)
±2 =

√
5

32
sin2 θ (7 cos2 θ − 1)e±2iφ =

√
5

32

(x ± iy)2(7z2 − r2)

r4

C
(4)
±3 = ∓

√
35

16
cos θ sin3 θe±3iφ = ∓

√
35

16

z(x ± iy)3

r4

C
(4)
±4 =

√
35

128
sin4 θe±4iφ =

√
35

128

(x ± iy)4

r4
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A.5 Sum Rules for Spherical Tensor Matrix Elements

The matrix elements of the spherical tensors are evaluated by means of the
Wigner–Eckart theorem. We can write the matrix element 〈 l, ml |C(1)

q |c, mc 〉
in Table 9.1 entirely in terms of 3j symbols

〈 l, ml |C(1)
q |c, mc 〉

= (c 1mc q |c 1 l ml )
〈 l||C(1)||c 〉√

2l + 1

= (−1)l−ml

(
l 1 c

−ml q mc

)
〈 l||C(1)||c 〉

= (−1)−ml
√

(2c+ 1)(2l + 1)
(

l 1 c
−ml q mc

)(
l 1 c
0 0 0

)
.(A.19)

For l = c + 1 the reduced matrix element is 〈l||C(1)||c〉 = −〈c||C(1)||l〉 =
√
l

[181].
Later we state some sum rules of matrix elements of the spherical tensor

operators C(1)
q , associated with electronic dipole transitions. We shall not give

the proofs of the sum rules but they are readily derived from the matrix ele-
ments in Table 9.1. The first sum rule concerns the angular part of transition
matrix elements. When we sum over the complete initial and final manifolds
the transition intensity becomes a constant, independent of angles and q

∑
m

∑
M

∣∣∣〈YL,M |C(1)
q |Yc,m 〉

∣∣∣2 =
1
3
|〈L||C(1)||c〉|2 =

L

3
. (A.20)

Although the angular momentum q transferred in the transition is not explic-
itly specified it must satisfy the dipole condition M = q +m. The sums over
m and M make the manifolds spherically symmetric and all angular effects
average out. We also obtain an angle independent expression of the matrix
element if we sum over q, where q = +1, 0,−1 and either the final or initial
manifold, i.e.,

∑
m

∑
q

∣∣∣〈YL,M |C(1)
q |Yc,m 〉

∣∣∣2 =
|〈L||C(1)||c〉|2

2L+ 1
=

L

2L+ 1
(A.21)

and
∑
M

∑
q

∣∣∣〈YL,M |C(1)
q |Yc,m 〉

∣∣∣2 =
|〈L||C(1)||c〉|2

2c+ 1
=

L

2c+ 1
. (A.22)

Finally, summing (A.20) over the three q values q = +1, 0, −1, (A.21) over
the index M or A.22 over m we get

∑
q

∑
m

∑
M

∣∣∣〈YL,M |C(1)
q |Yc,m 〉

∣∣∣2 = |〈L||C(1)||c〉|2 = L. (A.23)
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A.6 Polarization Dependent Dipole Operators

Table A.4 lists dipole operators for various polarizations and for three or-
thogonal photon incidence directions in a Cartesian coordinate system x, y, z.
They can be written in the general form,

P q
α

r
=

∑
p=0,±1

eqα,pC
(1)
p = eqα,1C

(1)
1 + eqα,0C

(1)
0 + eqα,−1C

(1)
−1 , (A.24)

where the coefficients aq
α,p may be imaginary. We have the following sum rules

over q and α,

∑
q

|eqα,p|2 = 1 ,
∑

q

eqα,p

(
eqα,p′

)∗
= 0 (where p �= p′) , (A.25)

∑
α

eqα,p

(
eqα,p′

)∗
= 0 ,

1
2

∑
α

|e+1
α,p|2 + |e−1

α,p|2 = 1 , (A.26)

∣∣∣∣∣
∑
α

eqα,p

∣∣∣∣∣
2

= 1 ,
∑
α

|e0α,p|2 = 1 . (A.27)

These relations can be derived from the listed parameters eqα,p in Table A.4.
They are useful for establishing polarization averages of x-ray absorption in-
tensities which are related to physical observables. Such averages involve sums
over angular momenta q = +1, 0,−1 or over directions α = x, y, z.

Table A.4. Polarization dependent dipole operators P q
α, expressed in terms of

Racah tensors C
(l)
m where α indicates the direction of k or E and q = 0, +1,−1

(abbreviated q = 0, +,−) characterizes the photon angular momentum

linear polarization

E ‖ x: P 0
x = x = r

1√
2
[C

(1)
−1 − C

(1)
1 ]

E ‖ y: P 0
y = y = r

i√
2
[C

(1)
−1 + C

(1)
1 ]

E ‖ z: P 0
z = z = rC

(1)
0

circular polarization

k ‖ x: P+
x = − 1√

2
(y + iz) = −r

i√
2
C

(1)
0 − r

i

2
[C

(1)
−1 + C

(1)
1 ]

P−
x =

1√
2
(y − iz) = −r

i√
2
C

(1)
0 + r

i

2
[C

(1)
−1 + C

(1)
1 ]

k ‖ y: P+
y = − 1√

2
(z + ix) = −r

1√
2
C

(1)
0 − r

i

2
[C

(1)
−1 − C

(1)
1 ]

P−
y =

1√
2
(z − ix) = r

1√
2
C

(1)
0 − r

i

2
[C

(1)
−1 − C

(1)
1 ]

k ‖ z: P+
z = − 1√

2
(x + iy) = rC

(1)
1

P−
z =

1√
2
(x − iy) = rC

(1)
−1
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A.7 Spin–Orbit Basis Functions for p and d Orbitals

Table A.5 lists one-electron spin–orbit coupled functions |l, s, j,mj〉 for s, p,
and d electrons in terms of the uncoupled basis functions |l, s,ml,ms〉. The
given transformation is a specific example of the more general transformation
between functions in different coupling schemes given by the famous Clebsch–
Gordon coefficients (see (9.86)) [181,224,225].

Table A.5. One-electron spin–orbit wave functions for s, p, and d electrons. The
electron spin wavefunctions are χ+ = |s, 1/2〉 = α (spin-up) and χ− = |s,−1/2〉 = β
(spin-down). The configuration label is either for one electron or one hole occupation
in the particular subshell

one-elec. label config. label |l, s, j, mj〉 basis |l, ml, s, ms〉 basis

lj
2S+1LJ j mj Yl,mlχ

±

s 1
2

2S 1
2

1
2

+ 1
2

Y0,0 α

− 1
2

Y0,0 β

p 1
2

2P 1
2

1
2

+ 1
2

1√
3
(−Y1,0 α +

√
2 Y1,+1 β)

− 1
2

1√
3
(−

√
2 Y1,−1 α + Y1,0 β)

p 3
2

2P 3
2

3
2

+ 3
2

Y1,+1 α

+ 1
2

1√
3
(
√

2 Y1,0 α + Y1,+1 β)

− 1
2

1√
3
(Y1,−1 α +

√
2 Y1,0 β)

− 3
2

Y1,−1 β

d 3
2

2D 3
2

3
2

+ 3
2

1√
5
(−Y2,+1 α + 2 Y2,+2 β)

+ 1
2

1√
5
(−

√
2 Y2,0 α +

√
3 Y2,+1 β)

− 1
2

1√
5
(−

√
3 Y2,−1 α +

√
2 Y2,0 β)

− 3
2

1√
5
(−2 Y2,−2 α + Y2,−1 β)

d 5
2

2D 5
2

5
2

+ 5
2

Y2,+2 α

+ 3
2

1√
5
(2 Y2,+1 α + Y2,+2 β)

+ 1
2

1√
5
(
√

3 Y2,0 α +
√

2 Y2,+1 β)

− 1
2

1√
5
(
√

2 Y2,−1 α +
√

3 Y2,0 β)

− 3
2

1√
5
(Y2,−2 α + 2 Y2,−1 β)

− 5
2

Y2,−2 β
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A.8 Quadrupole Moment and the X-ray Absorption
Intensity

Here we wish to discuss the origin of the link of the XNLD intensity and
the quadrupole moment mentioned in Sect. 9.7.4. The formalism is derived by
defining a dimensionless quadrupole tensor

Q =
(r2δαβ − 3 rαrβ)

r2
, (A.28)

which only depends on the angular distribution. The terms ri denote the three
components of the position vector r. In spherical coordinates the quadrupole
tensor reads

Q =

⎛
⎜⎜⎝

1 − 3 sin2 θ cos2 φ − 3 sin2 θ sinφ cosφ − 3 cos θ sin θ cosφ

−3 sin2 θ sinφ cosφ 1 − 3 sin2 θ sin2 φ − 3 cos θ sin θ sinφ

−3 cos θ sin θ cosφ − 3 cos θ sin θ sinφ 1 − 3 cos2 θ

⎞
⎟⎟⎠ .

(A.29)
It is constructed so that the expectation values of all matrix elements

〈Qαβ〉 =
∫ 2π

0

∫ π

0
Qαβ sin θ dθ dφ = 0 for a system with spherical symmetry.

Q is a symmetric second rank tensor with Qαβ = Qβα and a vanishing trace
∑
α

Qαα = Qxx +Qyy +Qzz = 0 . (A.30)

For samples with higher than twofold symmetry about Cartesian x, y, and
z axes the tensor Q is diagonal and all the information is contained in the
diagonal elements that form the trace. For crystalline systems, this holds if the
elementary lattice vectors are perpendicular, i.e., for orthorhombic or higher
crystal symmetry.

For linearly polarized x-rays with E ‖ α = x, y, z, the angle-dependent
x-ray absorption intensity I0α describing transitions from a core state with
angular momentum c to a valence orbital |φL〉 with angular momentum L =
c+ 1 is given by

I0α = 2AR2 L

3(2L+ 1)

(
1 − 2L+ 3

2L
〈φL|Qαα|φL 〉

)
, (A.31)

This equation is identical to (9.117) for Nh = 2 or two holes per valence orbital
|φL〉. The factor of 2 in (A.31) thus accounts for the spin-degeneracy of each
of the 2L+ 1 possible empty valence orbitals |φL〉.

Quantum mechanically, the quadrupole moment for a given direction α is
the expectation value of the corresponding diagonal quadrupole tensor matrix
element evaluated with the valence band wavefunction |φL〉. For the tight
binding wavefunctions given by (9.108) we have for example
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〈Qαα〉 = Qi
α = 〈φi(k)|Qαα|φi(k)〉. (A.32)

If the matrix elements vanish the x-ray absorption intensity will be angle
independent. A simple example are the quadrupole moments of the d orbitals
in Table A.2 given by the expectation value of the diagonal matrix elements
〈Qαα〉 = 〈di|Qαα|di〉. The matrix elements are calculated by expressing the
quadrupole tensor elements Qαα in terms of Racah’s spherical tensors as given
in Table A.6. General expressions for the quadrupolar tensor matrix elements
are given in Table A.7 and for convenience we have listed the matrix elements
〈Qαα〉 for representative pi and di orbitals in Fig. A.2.

Table A.6. Left column: Quadrupole operator elements expressed in terms of
Racah’s spherical tensors of Table A.3. Right column: Relationships of Racah ten-
sor operators C

(2)
m and C

(1)

m′ . The operators have the complex conjugate property

(C
(l)
m )∗ = (−1)mC

(l)
−m and C

(1)
q C

(1)

q′ = C
(1)

q′ C
(1)
q

Qxx = C
(2)
0 −

√
3

2

(
C

(2)
2 + C

(2)
−2

)
C

(2)
0 = C

(1)
0 C

(1)
0 +

1

2
C

(1)
1 C

(1)
−1 +

1

2
C

(1)
−1 C

(1)
1

Qyy = C
(2)
0 +

√
3

2

(
C

(2)
2 + C

(2)
−2

)
C

(2)
±1 =

√
3 C

(1)
0 C

(1)
±1 =

√
3 C

(1)
±1 C

(1)
0

Qzz = −2 C
(2)
0 C

(2)
±2 =

√
3

2
C

(1)
±1 C

(1)
±1

Table A.7. Spherical tensor matrix elements 〈2 M |C(2)
q |2 M ′〉

E = −
√

3 〈L||C(2)||L〉√
2L(2L + 1)(2L − 1)(L + 1)(2L + 3)

> 0

A =
√

(L − M)(L + M + 1) =
√

L(L + 1) − M(M + 1)

B =
√

(L + M)(L − M + 1) =
√

L(L + 1) − M(M − 1)

V =
√

(L − M − 1)(L + M + 2) =
√

L(L + 1) − M(M + 3) − 2

W =
√

(L + M − 1)(L − M + 2) =
√

L(L + 1) − M(M − 3) − 2

〈LM |C(2)
0 |LM〉 =

√
2

3
E
[
L(L + 1) − 3M2

]

〈LM + 2|C(2)
+2 |LM〉 = 〈LM |C(2)

−2 |LM + 2〉 = −E V A

〈LM − 2|C(2)
−2 |LM〉 = 〈LM |C(2)

+2 |LM − 2〉 = −E W B
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Fig. A.2. Quadrupole matrix elements 〈pi|Qαα|pi〉 (i = x, y, z), 〈dij |Qαα|dij〉 (i �=
j = x, y, z), 〈dx2−y2 |Qαα|dx2−y2〉 and 〈d3z2−r2 |Qαα|d3z2−r2〉 for α ‖ x, y, or z. Nodal
planes are shown shaded

The transition intensities listed in Fig. 9.19, corresponding to the square of
the transition matrix elements for E along the principal coordinate axes, agree
with those calculated with (A.31) using the quadrupole moments listed in
Fig. A.2. Here we have to remember, however, that the intensities in Fig. 9.19
do not allow for two spin orientations per orbital while the intensities given
by (A.31) account for both spins. For example, according to Fig. 9.19 the
intensity for E along the z axis of the pz orbital is 1/3 (in units of AR2) per
spin state. This would give a transition intensity of (2/3)AR2 considering the
two spin directions per orbital. From (A.31) we obtain for the pz orbital with
L = 1 the intensity

I0z = AR2 2
9

(
1 − 5

2
〈pz|Qzz|pz〉

)
(A.33)

and with the value 〈pz|Qzz|pz〉 = −4/5 from Fig. A.2 we obtain the same
intensity (2/3)AR2.

Starting from the expression (A.31) one may also derive the orientation
averaged x-ray absorption intensity given by (9.90).
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A.9 Lorentzian Line Shape and Integral

The Lorentzian line shape function is

I(E) = H

[
(∆n/2)2

(E − En)2 + (∆n/2)2

]
, (A.34)

where H is the peak value and ∆n is the full width at half maximum
(FWHM).

Its integral is a step function given by
∫
I(E) dE =

H∆n π

2

[
1
2

+
1
π

arctan
(
E − En

∆n/2

)]
, (A.35)

where H∗ = H∆nπ/2 is the step height.

A.10 Gaussian Line Shape and Its Fourier Transform

The Gaussian line shape function centered at x0 is given by,

f(x) = A exp
(
−c

2(x− x0)2

2Γ 2

)
= A exp

(
− (x− x0)2

2σ2

)
. (A.36)

Here A is the peak height and c = 2
√

ln 4 = 2.355. The full width at half
maximum (FWHM) Γ is related to the variance σ, corresponding to one
standard deviation of the Gaussian distribution width, by Γ = c σ.

Gaussian functions have the interesting property that the Fourier transform
of a Gaussian is again a Gaussian. In general, the Fourier transform of a one
dimensional function f(x) is defined as

F (q) =
1√
2π

∫ ∞

−∞
f(x) ei q x dx (A.37)

and the inverse transform is

f(x) =
1√
2π

∫ ∞

−∞
F (q) e− i q x dq. (A.38)

As an example let us take a look at the energy–time Fourier transforma-
tion, used in Sect. 4.3.2. Using the standard deviation σt for the temporal line
width, the temporal Gaussian
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f(t) = A exp
(
− t2

2σt
2

)
, (A.39)

is transformed into a Gaussian in energy or frequency space, given by

F (ω) = Aσt exp
(
− ω2

2(1/σt)2

)
. (A.40)

It has a peak intensity Aσt and variance width 1/σt.

A.11 Gaussian Pulses, Half-Cycle Pulses and Transforms

We have discussed in Sect. 4.3.4 the temporal field pulse associated with a
relativistic electron bunch. This Gaussian pulse has a strong resemblance with
a half-cycle pulse (HCP). This is illustrated in the left half of Fig. A.3, where
a simulated Gaussian pulse of 1 ps FWHM is compared to waves of different
frequencies in the THz range. We see that a half cycle of a 0.5 THz wave
has a shape that closely resembles its Gaussian envelope. Indeed, such HCP
pulses can be created by an electric discharge across an Auston switch that
is triggered by a suitably short laser pulse [861], and a typical shape of a half
cycle THz pulse is shown on the right side of Fig. A.3. In practice, a positive
“half cycle” pulse exhibits a weak negative tail that extends for a long time.

The negative tail has an important effect on the frequency spectrum. A
temporal Gaussian pulse or true half cycle pulse without a negative tail has a
Fourier transform which is peaked at zero frequency as shown in Fig. 4.6 and

Fig. A.3. Left : Illustration of an Gaussian shaped pulse of 1 ps FWHM containing
only half or a few cycles of an EM field. The frequencies of the associated fields
lie in the THz range. Right : Schematic of a typical half-cycle THz pulse [862]. The
initial positive pulse is approximately 1 ps in duration. The negative tail of the HCP
persists for many picoseconds



776 A Appendices

the top panel of Fig. A.4, revealing a strong dc-component. In contrast, a full
cycle pulse or a “half cycle” pulse with a tail, as observed in practice, have
zero amplitude at zero frequency, and the peak is shifted away from zero as
illustrated in the bottom panels of Fig. A.4.
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95. G. Schütz, W. Wagner, W. Wilhelm, P. Kienle, R. Zeller, R. Frahm, G. Mater-
lik, Phys. Rev. Lett. 58, 737 (1987)

96. C.T. Chen, Y.U. Idzerda, H.J. Lin, N.V. Smith, G. Meigs, E. Chaban, G.H.
Ho, E. Pellegrin, F. Sette, Phys. Rev. Lett. 75, 152 (1995)

97. The spectrum was kindly provided by Christine Giorgetti. Similar spectra can
be found in J.P. Rueff et al. Phys. Rev. B 58, 12271 (1998).

98. C.T. Chen, F. Sette, Y. Ma, S. Modesti, Phys. Rev. B 42, 7262 (1990)
99. C.C. Kao, J.B. Hastings, E.D. Johnson, D.P. Siddons, G.C. Smith, G.A. Prinz,

Phys. Rev. Lett. 65, 373 (1990)
100. B.T. Thole, P. Carra, F. Sette, G. van der Laan, Phys. Rev. Lett. 68, 1943

(1992)
101. P. Carra, B.T. Thole, M. Altarelli, X. Wang, Phys. Rev. Lett. 70, 694 (1993)
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103. J. Stöhr, Y. Wu, B.D. Hermsmeier, M.G. Samant, G.R. Harp, S. Koranda,

D. Dunham, B.P. Tonner, Science 259, 658 (1993)
104. C.M. Schneider, K. Holldack, M. Kinzler, M. Grunze, H.P. Oepen, F. Schäfers,
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277. S. Hüfner, Solid St. Commun. 53, 707 (1985)
278. S. Hüfner, Z. Phys. B 61, 135 (1985)
279. F. Lopez-Aguilar, J. Costa-Quintana, Phys. Stat. Sol. B 123, 219 (1984)
280. V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys: Conds. Matter 9,

767 (1997)
281. P. Mohn, Magnetism in the Solid State (Springer, Berlin Heidelberg New York,

2003)
282. H.A. Kramers, Physica 1, 182 (1934)
283. P.W. Anderson, Phys. Rev. 79, 350 (1950)
284. T.J. Regan, III, Ph.D. dissertation, Stanford University, Stanford, CA (2001),

available on website http://www-ssrl.slac.stanford.edu/stohr
285. H. Ohldag, Ph.D. dissertation, Heinrich-Heine-Universität Düsseldorf, Ger-

many (2003), available on website http://www-ssrl.slac.stanford.edu/stohr
286. Y. Tokura, Y. Tomioka, J. Magn. Magn. Mater. 200, 1 (1999)
287. C. Zener, Phys. Rev. 82, 403 (1951)
288. P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)
289. P.G. de Gennes, Phys. Rev. 118, 141 (1960)
290. Y. Tokura, Colossal Magnetoresistive Oxides (Gordon and Breach, London,

1999)
291. N. Tsuda, K. Nasu, A. Yanase, K. Siratori, Electronic Conduction in Oxides

(Springer Series in Solid State Science, Vol. 94, Berlin Heidelberg New York,
1991)

292. E.J.W. Verwey, Nature (London) 144, 327 (1939)
293. P.W. Anderson, Phys. Rev. 102, 1008 (1956)
294. E.J.W. Verwey, P.W. Haayman, Physica (Amsterdam) 8, 979 (1941)
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548. P. Kurz, G. Bihlmayer, S. Blügel, J. Phys.: Cond. Matter 14, 6353 (2002)
549. F.J. Himpsel, B. Reihl, Phys. Rev. B 28, 574 (1983)
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708. P. Miltényi, M. Gierlings, J. Keller, B. Beschoten, G. Güntherodt, U. Nowak,

K.D. Usadel, Phys. Rev. Lett. 84, 4224 (2000)
709. H. Zijlstra, IEEE Trans. Magn. MAG-15, 1246 (1979)
710. V.I. Nikitenko, V.S. Gornakov, A.J. Shapiro, R.D. Shull, K. Liu, S.M. Zhou,

C.L. Chien, Phys. Rev. Lett. 84, 765 (2000)
711. C. Leighton, M.R. Fitzsimmons, P. Yashar, A. Hoffman, J. Nogues, J. Dura,

C.F. Majkrzak, I.K. Schuller, Phys. Rev. Lett. 86, 4394 (2001)
712. P. Blomqvist, K.M. Krishnan, H. Ohldag, Phys. Rev. Lett. 94, 107203 (2005)
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785. R. Gomez-Abal, W. Hübner, Phys. Rev. B 65, 195114 (2002)
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T. Haug, D. Weiss, G. Schütz, Phys. Scr. 115, 1029 (2005)
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B. Heinrich, A. Vaterlaus, Phys. Rev. Lett. 94, 197603 (2005)

843. R. Urban, G. Woltersdorf, B. Heinrich, K. Ajdari, K. Myrtle, J.F. Cochran,
E. Rosenberg, Phys. Rev. B 65, 020402 (2002)

844. T. Gerrits, H.A.M. van den Berg, J. Hohlfeld, L. Bär, T. Rasing, Nature 418,
509 (2002)

845. J.P. Nibarger, R. Lopusnik, T.J. Silva, Appl. Phys. Lett. 82, 2212 (2003)
846. A.Y. Dobin, R. Victora, Phys. Rev. Lett. 92, 257204 (2004)
847. B. Lu, D. Weller, A. Sunder, G. Ju, X. Wu, R. Brockie, T. Nolan, C. Brucker,

R. Ranjan, J. Appl. Phys. 93, 6751 (2003)
848. Ioan Tudosa, Ph.D. dissertation, Stanford University, Stanford, CA (2005),

available on website http://www-ssrl.slac.stanford.edu/stohr
849. A. Kashuba, Phys. Rev. Lett. 96, 047601 (2006)
850. V.L. Safonov, H.N. Bertram, Phys. Rev. B 63, 094419 (2001)
851. A.A. Tulapurkar, T. Devolder, K. Yagami, P. Crozat, C. Chappert, A. Fuku-

shim, Y. Suzuki, Appl. Phys. Lett. 85, 5358 (2004)
852. K. Yagami, A.A. Tulapurkar, A. Fukushima, Y. Suzuki, Appl. Phys. Lett. 85,

5634 (2004)
853. E.B. Myers, F.J. Albert, J.C. Sankey, E. Bonet, R.A. Buhrman, D.C. Ralph,

Phys. Rev. Lett. 89, 196801 (2002)
854. R.H. Koch, J.A. Katine, J.Z. Sun, Phys. Rev. Lett. 92, 088302 (2004)
855. T. Devolder, A.A. Tulapurkar, Y. Suzuki, C. Chappert, P. Crozat, K.K. Yam-

agi, J. Appl. Phys. 98, 053904 (2005)
856. A. Fukushima, K. Yagami, A.A. Tulapurkar, Y. Suzuki, H. Kubota, A. Ya-

mamoto, S. Yuasa, Jpn. J. Appl. Phys. 44, 12 (2005)
857. M.D. Stiles, J. Miltat, in Spin Dynamics in Confined Magnetic Structures III,

ed. by B. Hillebrands, A. Thiaville (Springer, Berlin Heidelberg New York,
2005), p. 1

858. A.V. Kimel, A. Kirilyuk, P.A. Usachev, R.V. Pisarev, A.M. Balbashov, T. Ras-
ing, Nature 435, 655 (2005)

859. H.P. Wijn, in Landolt Boernstein New Series Group III, Volume 27,13, ed. by
H.P. Wijn (Springer, Berlin Heidelberg New York, 1981), p. 125

860. I.E. Dzyaloshinskii, Sov. Phys. JETP 5, 1259 (1957)
861. J. Shan, T.F. Heinz, in Ultrafast Dynamical Processes in Semiconductors, ed.

by K.T. Tsen (Springer, Berlin Heidelberg New York, 2004)
862. J.G. Zeibel, Ph.D. Thesis Manipulating Wavepacket Dynamics with Half-Cycle

Pulses, University of Virginia, 2003.



Index

acceleration fields, 121

all-optical magnetization switching, 751

all-optical switching, experiments, 757

all-optical switching, Hübner model,
753

Ampère [A], definition, 40

Ampère’s law, 42

Ampère, André Marie, 5

Ampère-Biot-Savart expression, 111

amplifier, for charge, 676

amplifier, for spin current, 677

AMR, 556

Andreev reflection, 596

angular momentum operators, acting
on d states, 300

angular momentum, classical, 65

angular momentum, conservation, 69

angular momentum, in magnetization
dynamics, 684

angular momentum, photon, 147

angular momentum, quantum mechani-
cal, 66

angular momentum, units, 65

angular transition matrix element, 380

animal magnetism, 5

anisotropic bonding, 297

anisotropic magnetoresistance (AMR),
556

anisotropy field, 504

anisotropy, uniaxial, 618

anisotropy, unidirectional, 618

anomalous scattering factors, 353

antibonding orbitals, 240

antiferromagnetic domains, origin, 515
asymmetry parameter, for electron

transmission, 339
atomic form factor, 360
atomic scattering factor, complex, 353
atomic scattering factors, real, 354
attenuation length, majority and

minority electrons, 563
Auston switch, 707
axial vector, 58
axial, versus directional, 433

ballistic electron magnetic microscopy
(BEMM), 562

ballistic regime, 522
ballistic transport, 556
band occupation, 242
band structure, 240
band theory, transition metals, results,

523
band wavefunction, 242
band width, for 3d metals, 523
Barkhausen noise, 517
BEMM, 562
Biot, Jean-Baptiste, 5
Biot–Savart law, 41
biquadratic exchange, 193
birefringence, definition, 353
Bitter technique, 517
Bloch equations, 94
Bloch spin wave theory, 494
Bloch wall, 512
Bloch, Felix, 94
Bohr magneton, 66
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Bohr precession, 103
Bohr, Niels, 7
Boltzmann constant kB , 71
Boltzmann factor, 71
bonding orbitals, 240
Born-Oppenheimer approximation, 243
Bose-Einstein statistics, 173
bosons, definition, 173
boundary resistance, 648
boundary resistance, typical values, 654
bremsstrahlung isochromat spec-

troscopy (BIS), 265
Brillouin function, 71
Brillouin scattering, 498
Brillouin zone, 242
Bruno model, 295
bubble memory, 510
bulk properties, Fe, Co, Ni, Cu and Gd,

553

cascade electrons, 440
centrifugal barrier, 226
centrifugal potential, 223
charge sum rule, averaged, 397
charge sum rule, general, 423
charge transfer compounds, 267
charge transfer concept, 256
charge transfer energy, 256
chemical potential, definition, 549
chemical potential, spin-dependent, 638
chirality, 153
Chladni figures, 719
CIP geometry, 647
Clebsch-Gordon coefficients, 770
clusters, magnetic moments for Fe, Co,

Ni, 77
clusters, orbital magnetic moment, 455
clusters, XMCD spectra, 454
CMR, 282
Co, transport parameters, 645
CoCrPt media, 738
coercive field, definition, 516
coherence length, 464
coherence, X-rays, definition, 463
colossal magnetoresistance (CMR), 282
compass, 5
compensation-point writing, 710
computer memories, 11
conductivity, 551

conductivity, Drude relation, 551
conductivity, for s and d electrons, 553
continuous phase transition, 502
core memory, 12
Coulomb energy U , 267
Coulomb energy, onsite, 266
Coulomb integral, 179
Coulomb, definition, 40
CPP geometry, 647
critical exponent, 484
critical fluctuations, 499
critical fluctuations, in a thin film, 500
cross product, vector relations, 765
cross section, X-ray absorption, 362
cross section, X-ray scattering, 368
crystal electric field, 247
Cu, transport parameters, 645
Curie constant, 72
Curie temperature, for Fe, Co and Ni,

482
Curie temperature, in molecular field

approximation, 482
Curie temperature, in Stoner model,

490
Curie temperature, in Weiss-Heisenberg

model, 485
Curie temperature, in Weiss-Heisenberg-

DFT model, 486
Curie temperature, origin, 481
Curie’s law, 72
Curie, Pierre, 7
Curie-point writing, 709
current in plane (CIP), 647
current perpendicular to plane (CPP),

647
cyclotron frequency, 102

d-occupation and electronic ground
states, 259

d-occupation for di- and tri-positive
ions, 264

d-occupation in free transition metal
atoms, 234

d-occupation, transition metals, 526
d-orbitals, expressions, 240
damping parameter α, 88
damping torque, 87
damping torque, negative, 661
damping torque, positive, 661
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Datta-Das spin transistor, 676
de Broglie wavelength, 319
De Magnete, 5
delocalized behavior, 521
demagnetizing factor, 55
demagnetizing field, 49
demagnetizing field, thin film, 54
density function theory, mapped onto

Weiss-Heisenberg model, 485
density functional theory (DFT), 243
density functional theory, development,

28
density matrix, for spin polarization,

326
density of states (DOS), 236
density of states, for Fe, Co, Ni and Cu,

523
density of states, Gd metal, 533
dephasing, of spin, 334
DFT, 243
dichroism, definition, 353, 432
dichroism, magnetic, 433
dichroism, natural, 432
dielectric constant ε0, vacuum, 40
dielectric displacement D, definition, 48
dielectric polarization P , definition, 48
differential cross-section, and transition

probability, 374
diffusion equation for spin, 642
diffusive regime, 522
diffusive transport, 556
dipolar anisotropy, 507
dipolar anisotropy, different contribu-

tions, 507
dipole approximation, 374
dipole operator, polarization dependent,

376
dipole operator, polarization-dependent,

table, 769
dipole selection rules, 380
dipole, magnetic, 61
dipole, magnetic field, 61
domain wall motion, due to spin

currents, 671
domain wall motion, for Néel wall, 714
domain wall width, 513
domain wall, energy, 513
domain walls, Bloch and Néel types,

512

domains walls, origin, 511
domains, antiferromagnetic, 515
domains, ferromagnetic, 511
Doppler shift, 131
double exchange, 279
Drude relation, 551
Drude–Sommerfeld model, 548
DyFeO3, 758
Dyson, Freeman J., 9

e-beam switching, in-plane media, 727
e-beam switching, perpendicular media,

735
earth magnetic field, 62
easy axis, 504
edge jump normalization, 446
electric dipole scattering length, 358
electric field E, point charge, 39
electric field, of relativistic point charge,

111
electric permittivity ε, relative, 48
electromagnetic field transformations,

107
electromagnetic radiation, 121
electromagnetic wave equation, 144
electron beam, relativistic, 113
electron beam, spin polarized, 324
electron bunch, 113
electron bunch compression, 117
electron bunch, ultrashort, 116
electron correlation effects, 264
electron effective mass, 553
electron group velocity, 552
electron mean free path, correlation

with number of d holes, 561
electron mean free path, Fe, Co, and Ni,

440
electron mean free path, photoelectrons,

440
electron mean free path, spin dependent,

560
electron mean free path, spin-averaged,

559
electron paramagnetic resonance

(EPR), 92
electron spin lifetime, in excited states,

701
electron spin resonance, 15
electron transport, ballistic, 556
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electron transport, diffusive, 556
electron transport, in magnetic metals,

553
electron transport, in non-magnetic

metals, 550
electron transport, mean free path, 552
electron transport, parameters for Fe

and Cu, 552
electron transport, relaxation time, 551
electron transport, scattering mecha-

nisms, 550
electron transport, spin scattering

mechanisms, 573
electron transport, spin-conserving

excitations, 553
electron transport, spin-flip scattering,

553
electron transport, spin-selective

scattering, 553
electron transport, two-current model,

553
electron yield, sampling depth, 440
electron, charge, 39
electron, discovery, 215
electron-phonon relaxation time, 685
electron-spin relaxation time, 686
electronic configuration, 232
ellipsometry, with polarized electrons,

613
ellipticity, 159
EM wave, energy, 145
EM wave, flux, 145
EM wave, momentum, 145
EM wave, polarization, 152
EM wave, Poynting vector, 145
enantiomers, 160
energy, charge transfer, 256
energy, domain wall, 513
energy, EM wave, 145
energy, magnetic moment in field, 69
energy, of magnetic body, 52
energy, of spin waves, 496
energy, units, 69
energy-time correlation, plot, 679
energy-time relation, 101
EPR, 92
Eu chalcogenides, 531
EuS, spin filter, 592
EXAFS, 432

exchange anisotropy, 618

exchange bias field, 628

exchange bias, FeF2, 625

exchange bias, LaFeO3, 624

exchange bias, AFM wall energy, 627

exchange bias, CoO, 624

exchange bias, domain state model, 624

exchange bias, Ir20Mn80, 623

exchange bias, loop shift, 619

exchange bias, Malozemoff model, 624

exchange bias, Mauri model, 626

exchange bias, negative, 619

exchange bias, positive, 620

exchange bias, setting field, 619

exchange correlation potential, 243

exchange coupling constant, mean field
theory for Fe, Co, Ni, 487

exchange coupling, across a spacer
layer, 632

exchange coupling, imaging with
SEMPA, 635

exchange coupling, oscillatory, 632

exchange coupling, photoemission
review, 635

exchange field, transferred, 633

exchange integral, 180

exchange interaction, history, 175

exchange interaction, in atoms, 175

exchange interaction, in molecules, 180

exchange interaction, rules for ground
state, 202

exchange length, 514

exchange scattering, at surfaces, 603

exchange splitting in Stoner model, and
atomic moments, 489

exchange splitting, after laser excitation,
698

exchange splitting, at Curie tempera-
ture, 546

exchange splitting, Ni metal, 547

exchange splitting, Stoner model, 237

exchange stiffness, 513

exchange, biquadratic, 193

exchange, double-, 279

exchange, in Stoner model, 493

exchange, in Weiss–Heisenberg–DFT
model, 492

exchange, interlayer, 292
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exchange, meaning in different models,
491

exchange, oscillatory, 292
exchange, RKKY, 290
exchange, super-, 274
exclusion principle, 172

f-occupation, for trivalent rare earths,
233

Fabry-Pérot interferometer, 632
Faraday effect, 6
Faraday effect, for electrons, 337
Faraday effect, for X-rays, 348
Faraday effect, in Poincaré formalism,

337
Faraday, Michael, 6
FeF2, 625
Fe3O4, 15
Fe3O4, structure, 284
Fe3O4, domains, 469
Fe3O4, multiplet structure, 469
Fe/Gd multilayer, domains, 471
FeRh, FM to AFM transition, 710
Fermi function, 549
Fermi level, and chemical potential, 549
Fermi surface, 544
Fermi’s golden rule, 372
Fermi-Dirac statistics, 173
fermions, definition, 173
ferromaget, half-metallic, 639
ferromagnetic domains, origin, 511
ferromagnetic resonance (FMR), 94
Feynman, Richard P., 9
FIB technique, 466
Fick’s law, 643
field transformations, 107
figure of merit, FOM, 14
fine structure constant, 376
fine structure in atomic spectra, 203
FMR, 94
FMR line position, 97
FMR linewidth, 97
focussed ion beam (FIB), 466
force, on magnetic moment, 72
force, units, 72
Fourier transform holography, 465
Fourier transform, of Gaussian, 774
Fourier transform, of half-cycle pulse,

776

free electron laser, 134
Fresnel, Augustin Jean, 6
Friedel oscillations, 291

g-factor, 67
g-factor, anisotropy, 97
g-factor, for Fe, Co and Ni metal, 95
GaAs electron source, 315
GaAs photocathode, 18
Gauss’ theorem, 50
Gauss, Carl Friedrich, 5
Gaussian, 774
Gd metal, 4f occupation, 531
Gd metal, DOS, 533
Gd metal, electronic structure, 530
Gd metal, radial charge density, 532
gerade, 57
Gerlach, Walther, 7
giant magneto-resistance, discovery, 21
giant magnetoresistance (GMR), 647
Gilbert, William, 5
GMR, discovery, 21
GMR, origin, 647
Goudsmit, Sam A., 8
Grotrian diagram, 175
group velocity, electron, 552
Guanzhong, 4
Gunnarsson-Schönhammer model, 264
gyromagnetic ratio, 85
gyrotropic motion, 719

half-cycle pulse, 775
half-metal, 283
half-metallic ferromagnet, 639
Hall effect, 672
Hamiltonian, anisotropic spin-orbit

coupling, 300
Hamiltonian, central field, 171
Hamiltonian, Heisenberg-model, 190
Hamiltonian, Hubbard-model, 193
Hamiltonian, ligand field, 247
Hamiltonian, spin-orbit coupling, 206
Hamiltonian, Zeeman effect, 213
Heisenberg Hamiltonian, 190
Heisenberg model, for H2, 196
Heisenberg model, mean field expres-

sion, 485
Heisenberg uncertainty principle, 97
Heisenberg, Werner, 8



810 Index

Heitler-London calculation, 181
helium spectrum, 175
helium, excited states, 178
helium, metastable state, 177
helium, ortho, 175
helium, para, 175
helium, spin-orbit splitting, 204
Henke-Gullikson factors, 353
Hertz, Heinrich, 6
Heusler alloys, 639
high energy physics, standard model, 20
high spin configurations for 3d electrons,

259
hole states, 237
Hubbard model for solids, 271
Hubbard model, for H2, 197
Hubbard model, for double-exchange,

280
Hubbard model, for superexchange, 276
Hund’s rules, 209
hybridization, 254
hybridization of s-p electrons with d

electrons, 527
hydrogen molecule, 183
hydrogen molecule, Heisenberg and

Hubbard treatment, 195
hydrogenic potential, 226
hydrogenic wavefunctions, 226

IBM RAMAC, 25
in-plane media, precessional switching,

725
independent electron approximation,

181
induced magnetism, 629
inertial systems, 106
infrared radiation, 118
insertion device, 133
interaction matrix, for electron spin,

338
interactions, relative size in solids, 231
interface, spin accumulation voltage,

641
inverse photoemission (IPE), principle,

535
IPE, 535
IPE, study of correlation effects, 265
Ir20Mn80, exchange bias, 623
irreducible representation, 257

Ising model, 192, 500
itinerant behavior, 521

Jahn-Teller effect, 253

Kerr effect, 6
Kittel’s formula, 96
Koster-Kronig transition, 604
Kramers-Heisenberg relation, 372
Kramers-Kronig relations, 368
Kronig, Ralph de Laer, 8

L-S coupling, 204
La1−xSrxMnO3, 279
LaFeO3, 448
LaFeO3, domains, 473
Landé g-factor, 215
Landau state, 713
Landau-Lifshitz (LL) equation, 88
Landau-Lifshitz–Gilbert (LLG)

equation, 88
Langevin function, 71
Langevin function, small-field limit, 487
Langevin, Paul, 7
lanthanides, 530
Larmor frequency, 86
Larmor precession, 85
laser, discovery, 12
LD(S)U, 244
LDA+U theory, 271
LEED, 601
Liénard-Wiechert equations, 124
ligand field theory, 245
ligand field theory, independent

electron, 247
ligand field theory, multiplet, 256
lightning, 3
Linac Coherent Light Source (LCLS),

136
linear dichroism, non-reciprocal, 433
linear X-ray absorption coefficient, 361
linear X-ray dichroism, 401
loadstone, 3
local (spin) density approximation

(LD(S)U), 244
localized behavior, 521
Lorentz contraction, 107
Lorentz force, 108
Lorentz transformations, 106
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Lorentzian, 774
low energy electron diffraction (LEED),

601
low spin configurations for 3d electrons,

259

macrospin approximation, 68
magnetic anisotropy constant, MCA

contribution, 505
magnetic anisotropy constant, shape

contribution, 505
magnetic anisotropy constant, uniaxial

case, 505
magnetic anisotropy field, 504
magnetic anisotropy, definition, 504
magnetic anisotropy, energy density

expansion, 504
magnetic anisotropy, in multilayers, 509
magnetic anisotropy, perpendicular, 510
magnetic anisotropy, surface-induced,

discovery, 510
magnetic anisotropy, uniaxial, 504
magnetic anisotropy, values for Fe, Co

and Ni, 509
magnetic bits, 54
magnetic charges, 51
magnetic correlation length, 500, 514
magnetic coupling, between layers, 613
magnetic coupling, exchange bias, 617
magnetic coupling, magneto-static, 614
magnetic coupling, orange-peel, 614
magnetic coupling, spring magnets, 617
magnetic coupling, surface layers, 617
magnetic coupling, uniaxial exchange,

617
magnetic coupling, unidirectional

exchange, 617
magnetic dipole, 61
magnetic dipole moment, definition, 61
magnetic dipole scattering length, 359
magnetic domains, origin, 511
magnetic exchange length, 514
magnetic field H , of current, 41
magnetic field strengths, examples, 45
magnetic field, earth, 62
magnetic field, of relativistic point

charge, 111
magnetic fields, ultrahigh, 113
magnetic force microscopy, 83

magnetic force, on dipole, 72

magnetic imaging, with X-rays, 458

magnetic induction, B, 43

magnetic medium, 54

magnetic microscopy, reviews, 458

magnetic moment, anomalous, 67

magnetic moment, current loop, 62

magnetic moment, free clusters, 78

magnetic moment, in homogeneous
field, 69

magnetic moment, in inhomogeneous
field, 72

magnetic moment, orbital, 66

magnetic moment, quantum mechanical,
66

magnetic moment, spin, 67

magnetic moment, total, 67

magnetic moment, units, 66

magnetic moments of d electrons, in Fe,
Co and Ni metals, 526

magnetic moments of s–p electrons in
Fe, Co, and Ni metals, 527

magnetic moments of Fe, Co, and Ni
metal, from experiment, table, 528

magnetic moments, induced, 629

magnetic monopole, 143

magnetic order parameter, 482

magnetic permeability µ, relative, 48

magnetic permeability µ0, vacuum, 43

magnetic phase transition, 2D versus
3D, 500

magnetic phase transition, in coupled
films, 502

magnetic poles, 51

magnetic properties of 3d electrons in
Fe, Co, and Ni metals, theory,
table, 525

magnetic quantum number, 216

magnetic recording head, 54

magnetic reflectivity, 603

magnetic remanence, definition, 516

magnetic resonance, 91

magnetic resonance imaging (MRI), 93

magnetic semiconductors, 29

magnetic storage industry, 27

magnetic susceptibility χ, definition, 48

magnetic switching methods, 723

magnetic switching, all-optical, 751
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magnetic switching, by spin injection,
665

magnetic switching, dynamics of, 723
magnetic switching, Hübner model, 753
magnetic switching, ultrafast e-beam,

in-plane media, 727
magnetic switching, ultrafast e-beam,

perpendicular media, 735
magnetic temperature, 671
magnetic torque, definition, 84
magnetic torque, on magnetic dipole, 84
magnetic tunnel transistor (MTT), 562
magnetic vortex states, illustration, 713
magnetic yoke, 54
magnetism of rare earths, 530
magnetite, magnetic properties, 283
magnetite, structure, 284
magnetization M , definition, 47
magnetization curve, origin, 515
magnetization dynamics, after field

pulse excitation, 705
magnetization dynamics, after laser

excitation, 690
magnetization dynamics, and exchange

splitting, 698
magnetization dynamics, for spin

injection, 744
magnetization dynamics, in antiferro-

magnets, 759
magnetization dynamics, of vortex, 715
magnetization dynamics, perpendicular

media, 733
magnetization dynamics, precessional

switching, 725
magnetization dynamics, probing with

MOKE, 702
magnetization dynamics, probing with

photoemission, 696
magnetization dynamics, probing with

spin-polarized electron yield, 691
magnetization dynamics, switching, 723
magnetization dynamics, weak field

excitation, 712
magnetization loop, origin, 515
magnetization patterns, examples in

thin film structures, 712
magnetization, Fe, Co, and Ni, 47
magnetization, relative, 482
magnetization, saturation, 482

magnetization, spontaneous, 480
magnetization, thermal stability, 520
magneto-chiral dichroism, 433
magneto-optical effect, non-linear, 691
magneto-optical Kerr effect (MOKE),

14
magneto-optical rotation, definition,

353
magneto-static coupling, 614
magnetocrystalline anisotropy (MCA),

294
magnetocrystalline anisotropy, calcula-

tion, 299
magnetoresistance, anisotropic, 556
magnetoresistance, colossal, 282
magnetoresistance, giant, 647
magnets, high energy product, 10
magnets, permanent, 10
magnons, 496
majority spins, 237
manganites, 279
Matthiessen’s rule, 551
Maxwell’s equations, 142
Maxwell, James Clerk, 6
MCA, definition, 294
MCA, history, 509
mean field theory, exchange coupling

constant, 487
mean field theory, in Heisenberg model,

485
mean field theory, origin, 481
memory, core, 12
memory, ferrite, 12
memory, non-volatile, 11
Mermin-Wagner theorem, 511
Meservey-Tedrow tunneling, 597
Mesmer, Franz Anton, 4
MFM, 83
minority spins, 237
MOKE, 14
molecular field constant, 481
molecular field, in Weiss-Heisenberg-

DFT model, 487
molecular field, origin, 481
molecular orbital theory, 254
momentum transfer, 353
Moore’s law, 25
Mott detector, 79
Mott scattering, 79
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Mott, Neville F., 10
Mott-Hubbard compounds, 267
MRAM, 665
MRI, 93
MTT, 562
multidomain states, 712
multiplet theory, 256
multipole fields, 62

Néel model of magnetization curve, 517
Néel wall, 512
Néel wall motion, 714
nabla operator, 42
nano-pillar, spin injection, 669
Nd2Fe14B, 10
negative damping torque, 662
neutron scattering, 13
NEXAFS, 432
NEXI torque, 658
Ni metal, 6 eV satellite, 543
Ni metal, exchange splitting, 547
Ni metal, Fermi surface, 546
Ni metal, PE bandwidth, 547
Ni metal, spin resolved band structure,

541
NiO, domains, 475
NiO, electronic states, 270
NiO, polycrystalline, domains, 471
NiO, structure, 276
NMR, 92
nuclear magnetic resonance (NMR), 92
number of d-holes in Fe, Co, and Ni

metals, 527

occupation of 3d shell in Fe, Co, and Ni
metals, theory, table, 525

octopole magnet, 443
Oersted [Oe], definition, 41
Oersted field switching, 724
Oersted, Hans Christian, 5
Ohm’s law, and chemical potential, 549
Ohm’s law, for conductivity, 551
onsite Coulomb energy, 266
operator, parity, 57
operator, time reversal, 59
operators, angular momentum, 300
operators, quadrupole, 772
operators, spherical tensors, table, 767
operators, spin, 303

optical activity, definition, 353
optical pumping, 751
optical rotation, definition, 353
optical switch, 707
optical theorem, 368
orange peel coupling, 614
orbital magnetic moment, 66
orbital moment anisotropy, 295
orbital moment anisotropy, measure-

ment, 308
orbital moment anisotropy, origin, 305
orbital moment sum rule, averaged, 399
orbital moment sum rule, general, 424
orbital moment, quenched, 296
orbitals, s, p and d, functions, 766
orbitals, s, p and d, pictures, 766
orbitals, antibonding, 240
orbitals, bonding, 240
oscillatory exchange, 292
overlayer method, 559

paramagnet, definition, 72
parity transformation, 57
parity violation, 15
parity, definition, 57
Paschen-Back limit, 217
Pauli equation, 169
Pauli exclusion principle, 172
Pauli paramagnetism, 687
Pauli paramagnetism, MOKE measure-

ments, 689
Pauli paramagnetism, XMCD measure-

ment for Pd, 457
Pauli spin matrix, 321
Pauli spinor formalism, 320
Pauli susceptibility, 687
Pauli, Wolfgang, 8
PE, 539
PEEM technique, 461
Peregrinus, Peter, 5
permanent magnets, 10
perovskite, 279
perpendicular magnetic anisotropy

(PMA), 510
perpendicular media, precessional

switching, 733
phase transition, continuous, 502
phase transition, FM to AFM, 710
phase velocity, EM wave, 144
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phonons, and magnetization dynamics,
684

photoelectrons, spin polarized, 18
photoemission (PE), principle, 539
photoemission electron microscopy

(PEEM), 461
photoemission, inverse, 19
photoemission, three step model, 590
photon angular momentum, 147
photon helicity, 150
photon polarization, in spinor field

representation, 344
photon polarization, in vector field

representation, 343
photon polarization, Stokes formalism,

350
photon spin, 150
photon, chirality, 153
pinned moments, 620
Planck’s distribution formula, 497
Pliny the Elder, 3
PMA, discovery, 510
Poincaré polarization vector, 347
Poincaré sphere, 338
Poincaré, Henri, 6
polar vector, 58
polarization, circular, 149
polarization, degree of, 157
polarization, electric dipole operators,

table, 769
polarization, elliptical, 156
polarization, left circular, 149
polarization, linear, 148
polarization, natural, 155
polarization, right circular, 149
polarization, synchrotron radiation, 132
Poulsen, Valdemar, 11
precessional switching, in-plane media,

725
precessional switching, perpendicular

media, 733
precessional switching, three-step

model, 726
precessional torque, 87
principal value integral, 369
probability, of spin state, 323
proper length, 106
proper time, 106
pseudo photons, 118

pseudo scalar, 142
pulse generation, 707
pump-probe experiments, 679

quadrupole moment, 771
quadrupole tensors, matrix elements,

table, 772
quantum computers, 672
quantum well states, 632
quasiparticle state, 541
quenched orbital moment, 296

Röntgen, Conrad, 12
Racah parameters, 258
Racah’s spherical tensors, and

quadrupole tensor, 772
Racah’s spherical tensors, definition,

377
Racah’s spherical tensors, matrix

elements, table, 772
Racah’s spherical tensors, sum rules,

768
Racah’s spherical tensors, table, 767
radial transition matrix element, 379
radiation, 121
radiation, dipole, 128
radiation, electromagnetic, 121
radiation, infrared, 118
radiation, SASE, 137
radiation, spontaneous, 138
radiation, synchrotron, 125
radiation, terahertz, 118
rare earth ions, electronic ground states,

233
rare earths, 530
rare earths, centrifugal barrier, 227
rare earths, magnetic properties, 530
rare earths, wavefunctions, 229
Rashba effect, 108
Rayleigh’s light trap, 163
refractive index, complex, 352
relativistic electron beams, 113
relativistic length, 106
relativistic mass, 113
relativistic time, 107
relativity theory, 106
relaxation time approximation, 549
remanence magnetization, definition,

516
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resistivity, 551
resistivity, Drude-Sommerfeld model,

548
resistivity, Fe, Co, Ni, Cu and Gd, 553
resistivity, for Fe and Cu, 552
resistivity, for two scattering mecha-

nisms, 551
resistivity, of transition metals, 548
resonant magnetic scattering, formal-

ism, 425
resonant magnetic X-ray scattering,

link with absorption, 427
resonant X-ray scattering, 364
retardation effects, 123
RKKY exchange, 290
Ruddlesden-Popper phases, 282
Russell-Saunders coupling, 204

Sagnac interferometer, 164
SASE, 134
saturation magnetization, 482
Savart, Felix, 5
scanning electron microscopy with

polarization analysis (SEMPA), 17
scanning transmission X-ray microscopy

(STXM), 459
scattering cross-section, differential, 359
scattering length, single electron, 358
Schottky diode, 708
Schrödinger equation, 169
Schrödinger, Erwin, 8
Schwinger, Julian, 9
search light effect, 401
self amplified spontaneous emission

(SASE), 137
semiconductors, coherent spin states,

672
semiconductors, spin diffusion parame-

ters, 672
SEMPA, 17
shape anisotropy, expression, 507
Sherman function, 82
SI units, 36
SI units, table of quantities, 763
singlet state, 174
singlet-triplet splitting, Heisenberg and

Hubbard models, 199
SLAC, 20
Slater integrals, 258

Slater, John C., 10
slave layer, 56
small angle X-ray scattering, 464
Smith, Oberlin, 11
soft magnetic underlayer (SUL), 733
SP-STM techniques, 598
specific heat, magnetic part, 683
speckle pattern, 464
SPEELS, 576
spherical harmonics, 377
spin absorption length, energy

dependence, 563
spin absorption length, majority and

minority electrons, 563
spin accumulation voltage, 640
spin accumulation voltage, typical

values, 654
spin analyzer, 327
spin asymmetry parameter, definition,

339
spin blocks, 499
spin conserving transitions, 558
spin current amplifier, 677
spin currents, in semicoductors, 672
spin de-phasing, in metals, 675
spin de-phasing, in

semiconductors, 673
spin density at Fe surface, 530
spin dependent scattering, mechanisms,

573
spin dephasing, of electron beam, 334
spin diffusion constant, 643
spin diffusion equation, 642
spin diffusion length, measurement of,

651
spin diffusion length, typical values, 672
spin diffusion parameters, in semicon-

ductors, 672
spin diffusion time, 643
spin diffusion, boundary resistance, 649
spin down, 237
spin equilibration time, 643
spin exchange scattering, definition, 574
spin exchange scattering, detection by

SPEELS, 575
spin exchange scattering, of electron

beam, 332
spin excitations, probability, 565
spin filter, 328
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spin filter effect, low-energy electrons,
561

spin filter matrix, 327
spin filter, EuS, 592
spin filter, transmission through, 329
spin flip time, 643
spin flips, definition, 573
spin flips, probability in scattering, 566
spin Hall effect, 672
spin injection dynamics, 744
spin injection torque, Berger expression,

663
spin injection torque, Slonczewski

expression, 663
spin injection torques, 657
spin injection, conservation of angular

momentum, 657
spin injection, damping torque, 659
spin injection, experiments, 667
spin injection, into ferromagnet, 656
spin injection, into semiconductors, 673
spin injection, magnetic switching, 665
spin injection, NEXI torque, 658
spin injection, thermal effects, 671
spin injection, XMCD imaging, 746
spin interaction matrix, 338
spin magnetic moment, 67
spin matrix, 321
spin moment, change by spin-orbit

coupling, 303
spin moment, in presence of spin-orbit

coupling, 303
spin operators, acting on spin states,

303
spin orbit functions, for s, p and d

electrons, 770
spin polarization density matrix, 326
spin polarization of beam, definition,

325
spin polarization vector, electron beam,

324
spin polarization vector, single electron,

321
spin polarization, sign in tunneling, 597
spin polarized beam, 324
spin polarized electron energy loss

spectroscopy (SPEELS), 576
spin polarized electron, wavefunction,

319

spin polarized electrons, relativistic, 317
spin polarized low energy electron

diffraction (SPLEED), 20
spin polarized low energy electron

microscopy (SPLEEM), 20
spin polarized photoemission, 15
spin polarized tunnelling, 18
spin precession, for electron beam,

measurement, 569
spin precession, of electron beam, 331
spin precession, specific angle, 571
spin relaxation, for electron beam,

measurement, 571
spin reorientation transition, 511, 709
spin resolved band structure, by IPE,

538
spin resolved band structure, by PE,

541
spin resolved inverse photoemission,

principle, 535
spin resolved photoemission, principle,

539
spin scattering on spin waves, 574
spin selective absorption, of electron

beam, 335
spin state, mixed, 324
spin state, pure, 324
spin sum rule, averaged, 399
spin sum rule, general, 423
spin switching, definition, 574
spin temperature, 666
spin transistor, 675
spin up, 237
spin up or down probability, 323
spin voltage, 641
spin wave stiffness, 496
spin wave, energy, 496
spin waves, and magnetization

dynamics, 685
spin waves, concept, 494
spin waves, higher modes, 666
spin waves, temperature dependence,

497
spin, discovery, 8
spin, injection, 21
spin, photon, 150
spin, tunnelling, 18
spin–orbit coupling, and spin–lattice

relaxation, 686
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spin-dependent electron scattering,
from surfaces, 601

spin-dependent potential, 638

spin-dependent potential, distance
dependence, 644

spin-dependent reflectivity, analogy
with Kerr-effect, 608

spin-dependent reflectivity, complete
measurement, 608

spin-dependent reflectivity, from
surface, measurements, 603

spin-dependent reflectivity, measure-
ment, 602

spin-dependent scattering from surfaces,
mechanisms, 601

spin-flip energy, in spin-wave model,
496

spin-flip scattering, probability in beam
transmission, 566

spin-flip scattering, probability in
electron transport, 553

spin-flip transitions, detection by
SPEELS, 575

spin-lattice relaxation time, 684

spin-orbit anisotropy, calculation, 299

spin-orbit coupling, and electron-spin
relaxation, 686

spin-orbit coupling, and magnetization
dynamics, 686

spin-orbit coupling, history, 203

spin-orbit coupling, quantum theory,
206

spin-orbit coupling, semiclassical, 204

spin-orbit Hamiltonian, general, 300

spin-orbit parameter, 207

spin-orbit scattering, 334

spin-polarized electrons, emission from
ferromagnets, 588

spin-polarized electrons, emission into
vacuum, 588

spin-polarized electrons, field emission,
591

spin-polarized electrons, reflection from
surface, 601

spin-polarized electrons, thermionic
emission, 591

spin-polarized electrons, tunneling
between solids, 593

spin-polarized scanning tunneling
microscopy (SP-STM), 598

spin-polarized scattering, exchange
scattering, 601

spin-polarized scattering, LS-scattering,
608

spin-polarized tunneling, 593
spin-polarized tunneling, Andreev

reflection, 596
spin-polarized tunneling, into supercon-

ductors, 596
spin-polarized tunneling, Jullière model,

594
spin-polarized tunneling, Meservey-

Tedrow tunneling, 597
spinor field, 321
spinor field, photon polarization, 344
spinor wavefunction, 320
spintronics, 21
spintronics devices, 675
SPLEED, 20
SPLEEM, 20
spontaneous magnetization, definition,

480
spring magnets, 617
SQUID, 517
Stern, Otto, 7
Stern-Gerlach experiment, 74
Stokes parameters, 350
Stokes vector, 350
Stokes’ theorem, 42
Stoner criterion, 489
Stoner excitation, definition, 496
Stoner gap, 241, 590
Stoner model, 235
Stoner model, basic assumptions, 489
Stoner model, Curie temperature, 490
Stoner model, temperature dependence,

489
Stoner, Edmund C., 10
Stoner-Wohlfarth (SW) model, 517
stray field, 49
stripline, 708
strong ferromagnet, 489
STXM technique, 459
Suhl instability, 732
sum rule for integrated resonance

intensity, 385
sum rule, charge, averaged, 397
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sum rule, orbital moment, averaged, 399
sum rule, proportionality constant, 400
sum rule, spin, averaged, 399
sum rules, averaged intensities, 397
sum rules, orientation dependent, 421
super-exchange, 274
Superconducting Quantum Interference

Device (SQUID), 517
surface-induced magnetic anisotropy,

510
SWASER, 664
symmetrization postulate, 172
synchrotron radiation, 125
synchrotron radiation, polarization, 132
synchrotron spectrum, 130
synthetic antiferromagnet media, 56
système international, S.I., 36

t-J model, 199
T-to-the-3/2 law, 497
Tanabe-Sugano diagram, 260
telegraphone, 11
terahertz radiation, 118
Tesla [T], definition, 43
Thales of Miletus, 1
thermal demagnetization, time

dependence, 695
thermal stability of magnetization, 520
thermodynamic reservoirs, 680
thermomagnetic writing, compensation

point, 710
thermomagnetic writing, Curie point,

709
Thomas, L. H., 8
Thomson cross section, 359
Thomson scattering length, 359
Thomson, J. J., 6
Thomson, William (Lord Kelvin), 556
time dilation, 107
time reversal operation, 59
time reversal, definition, 57
time, relativistic, 107
time, retarded, 124
time-energy correlation, plot, 679
time-energy relation, 101
timescales, in research and technology,

30
TIXM technique, 461
TMR sensors, 596

Tomonaga, Sin-Itiro, 9
torque, damping, 87
torque, precessional, 87
transistor, field effect, 676
transistor, spin-based, 676
transition matrix element, 374
transition matrix element, angular part,

table, 380
transition matrix element, atomic, 378
transition matrix element, atomic,

angular part, 380
transition matrix element, atomic,

radial part, 379
transition matrix element, atoms in

solids, 381
transition matrix element, sum rule

expressions, 768
transition matrix element, sum rules,

383
transition metal ions, electronic ground

states, 233
transition metal ions, number of valence

electrons, 234
transition probability, 373
transition probability, and differential

cross-section, 374
transition radiation, 120
transmission factor, 327
transmission imaging X-ray microscopy

(TIXM), 461
transmission matrix, 327
transport, see electron transport, 553
triplet state, 175
tunnel magnetoresistance (TMR),

definition, 595
tunneling, 18

Uhlenbeck, George E., 8
ultrafast dynamics, definition, 687
ultrafast e-beam switching, in-plane

media, 727
ultrafast e-beam switching, perpendicu-

lar media, 735
ultrafast pulses, generation, 707
uncertainty principle, 97
undulator, 134
ungerade, 57
units and values of important quantities,

763



Index 819

universal curve, 560
universal temperature, 484

valence bond theory, 188
vector field, 342
vector, axial, 58
vector, polar, 58
velocity fields, 109
Verwey transition, 283
virgin magnetization curve, 516
vortex core, 713
vortex dynamics, for in-plane excitation,

716
vortex dynamics, for out-of-plane

excitation, 719
vortex eigenmodes, 719
vortex, characteristics of, 713

wave equation, 144
weak ferromagnet, 525
Weber, Wilhelm Eduard, 6
Weiss molecular field, 481
Weiss, Pierre, 7
Weiss-Heisenberg model, 484
Weiss-Heisenberg-DFT model, 485
Weiss-Heisenberg-DFT theory, exchange

coupling constant, 487
white line intensity, 374
Wiechert, Emil, 6
Wien filter, 109
wiggler, 134

X-FEL, 134
X-PEEM technique, 461
X-ray absorption cross section, 362
X-ray absorption cross section, Fe, Co

and Ni, 439
X-ray absorption cross-section, in dipole

approximation, 374
X-ray absorption length, 439
X-ray absorption length, Fe, Co and Ni,

439
X-ray absorption spectra, atomic

contribution, 446
X-ray absorption spectra, edge jump,

445
X-ray absorption spectra, edge jump

normalization, 446

X-ray absorption spectra, Fe, Co, Ni
oxides, 450

X-ray absorption spectra, quantitative
analysis, 445

X-ray absorption spectra, resonant
contribution, 446

X-ray absorption spectra, Ti, V, Cr, Fe,
Co and Ni, 449

X-ray absorption spectroscopy,
concepts, 437

X-ray absorption spectroscopy, electron
yield, 439

X-ray absorption spectroscopy,
transmission, 438

X-ray absorption, coefficient, 361

X-ray absorption, configuration picture,
370

X-ray absorption, experimental
techniques, 441

X-ray absorption, law, 362

X-ray absorption, multiplet effects, 415

X-ray absorption, one electron picture,
370

X-ray dichroism, different types, 432

X-ray free electron laser (X-FEL), 134

X-ray holography, 465

X-ray imaging results, overview, 468

X-ray imaging, coherent scattering, 463

X-ray imaging, contrast mechanisms,
462

X-ray imaging, holography, 465

X-ray imaging, methods, 459

X-ray imaging, speckle pattern, 464

X-ray magnetic circular dichroism
(XMCD), origin, 389

X-ray magnetic dichroism, link of
absorption and scattering, 427

X-ray magnetic imaging, 458

X-ray magnetic linear dichroism
(XMLD), 407

X-ray natural circular dichroism
(XNCD), 433

X-ray natural linear dichroism (XNLD),
401

X-ray photoemission electron mi-
croscopy (X-PEEM), 461

X-ray resonant magnetic scattering,
formalism, 425
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X-ray resonant magnetic scattering,
link with absorption, 427

X-ray resonant scattering, correlation
with X-ray absorption, 368

X-ray scattering cross-section, in dipole
approximation, 376

X-ray scattering, resonant, 364
X-ray scattering, single atom, 360
X-ray scattering, single charge, 357
X-ray scattering, single spin, 357
X-rays, brightness, 26
X-rays, dichroism, 23
X-rays, link with magnetism, 22
X-rays, magnetic imaging, 23
X-rays, magnetic scattering, 23
XANES, 432
XMCD effect, K-shell, 395
XMCD effect, origin, 389
XMCD effect, summary, 396
XMCD effect, two-step model, 393
XMCD spectra, Co clusters, 454
XMCD spectra, Cr, V, and Ti, 453

XMCD spectra, Fe, Co , Ni and Gd, 451
XMCD spectra, Fe, Co, Ni atoms, 453
XMLD effect, first and second kind, 411
XMLD effect, multiplet enhancement,

415
XMLD effect, origin, 407
XMLD effect, simple theory, 408
XMLD effect, summary, 414
XNCD effect, definition, 433
XNLD effect, and quadrupole moment,

406
XNLD effect, origin, 401
XNLD effect, theory, 403
XPS, study of correlation effects, 265

Zaanen-Sawatzky-Allen model, 267
Zeeman effect, anomalous, 216
Zeeman effect, normal, 216
Zeeman interaction, history, 212
Zeeman, Pieter, 6
Zener double exchange, 279
zig-zag walls, 730
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