


GLOSSARY OF SYMBOLS

This list identifies some symbols that are not necessarily defined every time they
appear in the text.

a

ag

AG

b0, ¢)

Cop

Cop

Cy

CNEL

acceleration; absorption
coefficient (dB per
distance); Sabine
absorptivity

random-incidence energy
absorption coefficient

sound absorption

array gain

loss per bounce; decay
parameter

beam pattern

magnetic field;
susceptance

bottom loss

adiabatic bulk modulus

isothermal bulk modulus

speed of sound

group speed

phase speed

electrical capacitance;
acoustic compliance;
heat capacity

heat capacity at constant
pressure

specific heat at constant
pressure

heat capacity at constant
volume

specific heat at constant
volume

community noise
equivalent level (dBA)

detection index

H(6, ¢)

detectability index
directivity, dipole strength
directivity index
detected noise level
detection threshold
diffraction factor
specific energy
total energy

kinetic energy
potential energy
echo level

time-averaged energy
density

mstantaneon
density

instantaneous force;
frequency (Hz)

resonance frequency
upper, lower half-power
frequencies

peak force amplitude;
frequency (kHz)

effective force amplitude

spectral density of a
transient function;
sound-speed gradient;
acceleration of gravity;
aperture function

conductance

adiabatic shear modulus

specific enthalpy

directional factor



H(Tk)

Irejf
I(t)

HC

population function

time-averaged acoustic
intensity; current,
effective current
amplitude

reference acoustic
intensity

instantaneous acoustic
intensity

impact isolation class

intensity level

intensity spectrum level

time-averaged spectral
density of intensity

instantaneous spectral
density of intensity

impulse

wave number

propagation vector

Boltzmann’s constant

coupling coefficients

discontinuity distance

inductance

A-weighted sound level
(dBA)

C-weighted sound level
(dBC)

davtime avorao
dayume averag

level (dBA)

day-night averaged sound
level (dBA)

evening average sound

level (dBA)

equivalent continuous
sound level (dBA)
noise exposure level

(dBA)

effective perceived noise
level

[a) cnnnr‘
T ouuiiu

hourly average sound level
(dBA)

intensity level re 10712
W/m?

loudness level (phon)

night average sound level
(dBA)

Lypyn  tone-corrected perceived
noise level

Ly x-percentile-exceeded
sound level (dBA, fast)

LNP  noise pollution level (dBA)

m mass

m, radiation mass

M acoustic inertance;
bending moment;
molecular weight;
acoustic Mach number,
flow Mach number

M microphone sensitivity

MZE  microphone sensitivity
level

My reference microphone
sensitivity

N loudness (sone)

NCB balanced noise criterion
curves

NEF noise exposure forecast
NL noise level

NR noise reduction

NSL  noise spectrum level

p acoustic pressure

p peak acoustic pressure
amplitude

P, effective acoustic pressure
amplitude

P reference effective acoustic
pressure amplitude

PR privacy rating

Pr Prandtl number

PSL  pressure spectrum level
PTS  permanent threshold shift

P hydrostatic pressure

Py equilibrium hydrostatic
pressure

q charge; source strength

density; thermal energy;
scaled acoustic pressure
(p/ poc®)

Q quality factor; source
strength (amplitude of
volume velocity)
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Credit for the longevity of this work belongs to the original two authors, Lawrence
Kinsler and Austin Frey, both of whom have now passed away. When Austin
entrusted us with the preparation of the third edition, our goal was to update
the text while maintaining the spirit of the first two editions. The continued
acceptance of this book in advanced undergraduate and introductory graduate
courses suggests that this goal was met. For this fourth edition, we have continued
this updating and have added new material.

Considerable effort has been made to provide more homework problems. The
total number has been increased from about 300 in the previous editions to over
700 in this edition. The availability of desktop computers now makes it possible for
students to investigate many acoustic problems that were previously too tedious
and time consuming for classroom use. Included in this category are investigations
of the limits of validity of approximate solutions and numerically based studies of
the effects of varying the various parameters in a problem. To take advantage of
this new tool, we have added a great number of problems (usually marked with a
suffix “C” ) where the student may be expected to use or write computer programs.
Any convenient programming language should work, but one with good graphing
software will make things easier. Doing these problems should develop a greater
appreciation of acoustics and its applications while also enhancing computer skills.

The following additional changes have been made in the fourth edition:
(1) As an organizational aid to the student, and to save instructors some time,
equations, figures, tables, and homework problems are all now nuinbered by chap-
ter and section. Although appearing somewhat more cumbersome, we believe the
organizational advantages far outweigh the disadvantages. (2) The discussion of
transmitter and receiver sensitivity has been moved to Chapter 5 to facilitate early
incorporation of microphones in any accompanying laboratory. (3) The chapters
on absorption and sources have been interchanged so that the discussion of
beam patterns precedes the more sophisticated discussion of absorption effects.
{4) Derivations from the diffusion equation of the effects of thermal conductivity
on the attenuation of waves in the free field and in pipes have been added to
the chapter on absorption. (5) The discussions of normal modes and waveguides

iii



iv PREFACE

have been collected into a single chapter and have been expanded to include
normal modes in cylindrical and spherical cavities and propagation in layers.
(6) Considerations of transient excitations and orthonormality have been en-
hanced. (7) Two new chapters have been added to illustrate how the principles
of acoustics can be applied to topics that are not normally covered in an under-
graduate course. These chapters, on finite-amplitude acoustics and shock waves,
are not meant to survey developments in these fields. They are intended to intro-
ducethe relevant underlying acoustic principles and to demonstrate how the funda-
mentals of acoustics can be extended to certain more complicated problems.
We have selected these examples from our own areas of teaching and research.
(8) The appendixes have been enhanced to provide more information on physical
constants, elementary transcendental functions (equations, tables, and figures),
elements of thermodynamics, and elasticity and viscosity.

New materials are frequently at a somewhat more advanced level. As in the
third edition, we have indicated with asterisks in the Contents those sections in
each chapter that can be eliminated in a lower-level introductory course. Such a
course can be based on the first five or six chapters with selected topics from the
seventh and eighth. Beyond these, the remaining chapters are independent of each
other (with only a couple of exceptions that can be dealt with quite easily), so that
topics of interest can be chosen at will.

With the advent of the handheld calculator, it was no longer necessary for text-
books to include tables for trigonometric, exponential, and logarithmic functions.
While the availability of desktop calculators and current mathematical software
makes it unnecessary to include tables of more complicated functions (Bessel
functions, etc.), until handheld calculators have these functions programmed into
them, tables are still useful. However, students are encouraged to use their desktop
calculators to make fine-grained tables for the functions found in the appendixes.
In addition, they will find it useful to create tables for such things as the shock
parameters in Chapter 17.

From time to time we will be posting updated information on our web site:
www.wiley.com/college/kinsler. At this site you will also be able to send us
messages. We welcome you to do so.

We would like to express our appreciation to those who have educated us,
corrected many of our misconceptions, and aided us: our coauthors Austin R. Frey
and Lawrence E. Kinsler; our mentors James Mcgrath, Edwin Ressler, Robert T.
Beyer, and A. O. Williams; our colleagues O. B. Wilson, Anthony Atchley, Steve
Baker, and Wayne M. Wright; and our many students, including Lt. Thomas Green
(who programmed many of the computer problems in Chapters 1-15) and L. Miles.

Finally, we offer out heartfelt thanks for their help, cooperation, advice, and
guidance to those at John Wiley & Sons who were instrumental in preparing
this edition of the book: physics editor Stuart Johnson, production editor Barbara

Riiaginlla Ao = LV PP
1\uSSl€uU, ucalsucx Kevin vau;yu)', editorial p program assistants C’th‘]’ Donovan

and Tom Hempstead, as well as to Christina della Bartolomea who copy edited
the manuscript and Gloria Hamilton who proofread the galleys.

Alan B. Coppens James V. Sanders
Black Mountain, NC Monterey, CA
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Chapterl

FUNDAMENTALS
OF VIBRATION

1.1 INTRODUCTION

Before beginning a discussion of acoustics, we should settle on a system of units.
Acoustics encompasses such a wide range of scientific and engineering disciplines
that the choice is not easy. A survey of the literature reveals a great lack of
uniformity: writers use units common to their particular fields of interest. Most
early work has been reported in the CGS (centimeter-gram-second) system, but
considerable engineering work has been reported in a mixture of metric and
English units. Work in electroacoustics and underwater acoustics has commonly
been reported in the MKS (meter-kilogram-second) system. A codification of the
MKS system, the SI (Le Systéme International d’Unités), has been established as
the standard. This is the system generally used in this book. CGS and SI units are
equated and compared in Appendix Al.

Throughout this text, “log” will represent logarithm to the base 10 and “In” (the
“natural logarithm”) will represent logarithm to the base e.

Acoustics as a science may be defined as the generation, transmission, and
reception of energy as vibrational waves in matter. When the molecules of a fluid
or solid are displaced from their normal configurations, an internal elastic restoring
force arises. It is this elastic restoring force, coupled with the inertia of the system,
that enables matter to participate in oscillatory vibrations and thereby generate
and transmit acoustic waves. Examples include the tensile force produced when a
spring is stretched, the increase in pressure produced when a fluid is compressed,
and the restoring force produced when a point on a streiched wire is displaced
transverse to its length.

The most familiar acoustic phenomenon is that associated with the sensation of
sound. For the average young person, a vibrational disturbance is interpreted as
sound if its frequency lies in the interval from about 20 Hz to 20,000 Hz (1 Hz =
1hertz = 1 cycle per second). However, in a broader sense acoustics also includes
the ultrasonic frequencies above 20,000 Hz and the infrasonic frequencies below
20 Hz. The natures of the vibrations associated with acoustics are many, including
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the simple sinusoidal vibrations produced by a tuning fork, the complex vibrations
generated by a bowed violin string, and the nonperiodic motions associated with
an explosion, to mention but a few. In studying vibrations it is advisable to begin
with the simplest type, a one-dimensional sinusoidal vibration that has only a
single frequency component (a pure tone).

1.2 THE SIMPLE OSCILLATOR

If a mass m, fastened to a spring and constrained to move parallel to the spring,
is displaced slightly from its rest position and released, the mass will vibrate.
Measurement shows that the displacement of the mass from its rest position is
a sinusoidal function of time. Sinusoidal vibrations of this type are called simple
harmonic vibrations. A large number of vibrators used in acoustics can be modeled as
simple oscillators. Loaded tuning forks and loudspeaker diaphragms, constructed
so that at low frequencies their masses move as units, are but two examples.
Even more complex vibrating systems have many of the characteristics of the
simple systems and may often be modeled, to a first approximation, by simple
oscillators.

The only physical restrictions placed on the equations for the motion of a simple
oscillator are that the restoring force be directly proportional to the displacement
(Hooke’s law), the mass be constant, and there be no losses to attenuate the
motion. When these restrictions apply, the frequency of vibration is independent
of amplitude and the motion is simple harmonic.

A similar restriction applies to more complex types of vibration, such as the
transmission of an acoustic wave through a fluid. If the acoustic pressures are so
large that they no longer are proportional to the displacements of the particles of
fluid, it becomes necessary to replace the normal acoustic equations with more
general equations that are much more complicated. With sounds of ordinary
intensity this is not necessary, for even the noise generated by a large crowd at a
football game rarely causes the amplitude of motion of the air molecules to exceed
one-tenth of a millimeter, which is within the limit given above. The amplitude of
the shock wave generated by a large explosion is, however, well above this limit,
and hence the normal acoustic equations are not applicable.

Returning to the simple oscillator shown in Fig. 1.2.1, let us assume that the
restoring force f in newtons (N) can be expressed by the equation

= —sx (1.2.1)

f=-sx

7, af—

VWWN— m

—ip-
4

Figure 1.2.1 Schematic representation of a simple
oscillator consisting of a mass m attached to one
end of a spring of spring constant s. The other end
of the spring is fixed.
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where x is the displacement in meters (m) of the mass m in kilograms (kg) from
its rest position, s is the stiffness or spring constant in N/m, and the minus sign
indicates that the force is opposed to the displacement. Substituting this expression
for force into the general equation of linear motion

d%x
f = mat—z (1.2.2)

where d2x/di? is the acceleration of the mass, we obtain

2
Z—; + %x —0 (1.2.3)

Both s and m are positive, so that we can define a constant

w} = s/m (1.2.4)

which casts our equation into the form

2
‘;Tf +wlx =0 (1.2.5)

This is an important linear differential equation whose general solution is well
known and may be obtained by several methods.
One method is to assume a trial solution of the form

x = Ajcosyt (1.2.6)

Differentiation and substitution into (1.2.5) shows that this is a solution if y = wy.
It may similarly be shown that

X = A2 sinwot (127)
is also a solution. The complete genéral solution is the sum of these two,
x = Aj coswot + Arsinwgt (1.2.8)
where A} and A; are arbitrary constants and the parameter wy is the natural angular
frequency in radians per second (rad /s). Since there are 27 radians in one cycle, the
natural frequency fy in hertz (Hz) is related to the natural angular frequency by

fo = wo/27m (1.2.9)

Note that either decreasing the stiffness or increasing the mass lowers the fre-
quency. The period T of one complete vibration is given by

T = 1/f (1.2.10)
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1.3 INITIAL CONDITIONS

If at time ¢t = 0 the mass has an initial displacement xp and an initial speed uy,
then the arbitrary constants A; and A, are fixed by these initial conditions and
the subsequent motion of the mass is completely determined. Direct substitution
into (1.2.8) of x = xp at t = 0 will show that A; equals the initial displacement
xp. Differentiation of (1.2.8) and substitution of the initial speed at t = 0 gives
ug = woAz, and (1.2.8) becomes

x = xgcoswot + (Ug/wp) sinwyt (1.3.1)

Another form of (1.2.8) may be obtained by letting A; = Acos¢ and Ay =
—Asing, where A and ¢ are two new arbitrary constants. Substitution and
simplification then gives :

x = Acos(wpt + @) (1.3.2)

where A is the amplitude of the motion and ¢ is the initial phase angle of the motion.
The values of A and ¢ are determined by the initial conditions and are

A = [x5 + (o/wo’]'*  and

S’
—_
o
w
&
S’

Successive differentiation of (1.3.2) shows that the speed of the mass is
u = —Usin(wpt + ¢) (1.3.4)

where U = woA is the speed amplitude, and the acceleration of the mass is
a = —wol cos(wpt + @) (1.3.5)
In these forms it is seen that the displacement lags 90° (7 /2 rad) behind the

speed and that the acceleration is 180° (7 rad) out of phase with the displacement,
as shown in Fig. 1.3.1.

Acceleration
a

N Speed
Displacement
/ d
’

X >\_-—-~ -
/ P s \ i

Displacement, speed,
and acceleration
o

~ A v‘,ﬂ' /3:"'-?\ 27 wat
S 2 \’u’__/ 7 0
\\%ﬁ—_—”’ \\
/ N
» ~N

Figure 1.3.1 The speed u of a simple oscillator always leads to

the displacement x by 90°. Acceleration 4 and displacement x are
always 180°out of phase with each other. Plotted curves correspond
tod = 0°
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1.4 ENERGY OF VIBRATION

The mechanical energy E of a system is the sum of the system’s potential energy
E, and kinetic energy E;. The potential energy is the work done in distorting the
spring as the mass moves from its position of static equilibrium. Since the force
exerted by the mass on the spring is in the direction of the displacement and equals
+sx, the potential energy E, stored in the spring is

E, = J sxdx = lsx® (1.4.1)
0

Expression of x by (1.3.2) gives
E, = 1sA® cos’(wot + ¢) (1.4.2)
The kinetic energy possessed by the mass is
E = Imu? (1.4.3)
Expression of u by (1.3.4) gives
Er = 1mU?sin*(wot + &) (1.4.4)
The total energy of the system is
E = E, + Ex = tmowiA? (1.4.5)

where use has been made of s = mwg, U = wpA, and the identity sina +

cos? o = 1. The total energy can be rewritten in alternate forms,

E = LsA? = ImU? (1.4.6)
The total energy is a constant (independent of time) and is equal either to the
maximum potential energy (when the mass is at its greatest displacement and is
instantaneously at rest) or to the maximum kinetic energy (when the mass passes
through its equilibrium position with maximum speed). Since the system was
assumed to be free of external forces and not subject to any frictional forces, it is
not surprising that the total energy does not change with time.

If all other quantities in the above equations are expressed in MKS units, then
E,, Ex, and E will be in joules ().

1.5 COMPLEX EXPONENTIAL
METHOD OF SOLUTION

Throughout this book, complex quantities will often, but not always, be repre-
sented by boldface type. One exception is the definition j = V1. We will use
the engineering convention of representing the time dependence of oscillatory
functions by exp(jwt), rather than the physics convention of exp(—iwt), because
of the many close analogies between acoustics and engineering applications. In
many cases, consonance between apparently disparate sources can be resolved by
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making the transformation of j to —i. This may in some cases result in an exchange
of complex functions from one type to another, but the textual context will usually
resolve any ambiguities. Readers unacquainted with complex numbers should
refer to Appendixes A2 and A3.

A more general and flexible approach to solving linear differential equations of
the form (1.2.5) is to postulate

x = A"t (1.5.1)
Substitution gives y> = —wj or y = *jwp. Thus, the general solution is
x = Ad + Ape /oot (1.5.2)

where A; and A, are to be determined by 'initial conditions, x(0) = xy and
dx(0)/dt = up. This results in two equations

Ai+A;=x and A} — Ay = up/jwo = —juo/wo (1.5.3)
from which
A, = lxo—juo/wo) and Ay = 3(xo + juo/wo) (1.5.4)

Note that A; and A; are complex conjugates, so there are really only two constants
a and b, where A; = a —jb and A; = g + jb. This must be the case since the
differential equation is of second order with two independent solutions and,
therefore, with two arbitrary constants to be determined by two initial conditions.
Substitution of A; and A; into (1.5.2) yields

X = Xxpcoswot + (Up/ wp) sin wot (1.5.5)

which is identical with (1.3.1). Satisfying the initial conditions, which are both real,
caused the imaginary part of x to vanish as an automatic consequence.

In practice it is unnecessary to go through the mathematical steps required to
make the imaginary part of the general solution vanish, for the real part of the
complex solution is by itself a complete general solution of the original real differential
equation. Thus, for example, if we express A; = a4, +jb, and Ay = 4, +jb, in (1.5.2)
and, before applying initial conditions, take the real part, we have

Re{x} = (a1 + a3) coswot — (by — by) sinwot (15.6)

Now, application of the initial conditions yields a; + a; = xpand by — by = ug/wq

so that Re{x} is identical with (1.3.1). Similarly, a complete solution is obtained if
the displacement is written in the complex form

x = Adwot (1.5.7)
where A = a + jb, and only the real part is considered,

Re{x} = acos wot — bsinwpt (1.5.8)
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From the form (1.5.7), which will be used frequently throughout this book, it
is particularly easy to obtain the complex speed u = dx/dt and the complex
acceleration a = du/dt of the mass. The complex speed is

u = jwgAd™ = juwox (1.5.9)
and the complex acceleration is
a = —wlAd™ = —wlx (1.5.10)

The expression exp(jwot) may be thought of as a phasor of unit length rotating
counterclockwise in the complex plane with an angular speed wy. Similarly, any
complex quantity A = a + jb may be represented by a phasor of length A =

va* + b?, making an angle ¢ = tan~!(b/a) counterclockwise from the positive
real axis. Consequently, the product A exp(jwot) represents a phasor of length A
and initial phase angle ¢ rotating in the complex plane with angular speed o, (Fig.
1.5.1). The real part of this rotating phasor (its projection on the real axis) is

A cos(wot + ¢) (1.5.11)

and varies harmonically with time.

From (1.5.9) we see that differentiation of x with respect to time gives u = jwox,
and hence the phasor representing speed leads that representing displacement by
a phase angle of 90°. The projection of this phasor onto the real axis gives the
instantaneous speed, the speed amplitude being wyA. Equation (1.5.10) shows that
the phasor a representing the acceleration is out of phase with the displacement
phasor by 7 rad, or 180°. The projection of this phasor onto the real axis gives the
instantaneous acceleration, the acceleration amplitude being w3 A.

It will be the general practice in this textbook to analyze problems by the complex
exponential method. The chief advantages of the procedure, as compared with the
trigonometric method of solution, are its greater mathematical simplicity and the
relative ease with which the phase relationships among the various mechanical
and acoustic variables can be determined. However, care must be taken to obtain
the real part of the complex solution to arrive at the correct physical equation.

N AdWot - Agllwor+ @)

Imaginary]
axis %
N
I \
I \
| \
| \
_L \
-
g ’lAeﬂ’,/ _7‘\
P*;I// [
Wyt - | I\
Yo L
9 Real
axis
<~ A cos (wet + §)

Figure 1.5.1  Physical representation of a
phasor A exp[j(wot + ¢)].
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1.6 DAMPED OSCILLATIONS

Whenever a real body is set into oscillation, dissipative (frictional) forces arise.
These forces are of many types, depending on the particular oscillating system, but
they will always result in a damping of the oscillations—a decrease in the amplitude
of the free oscillations with time. Let us first consider the effect of a viscous frictional
force f, on a simple oscillator. Such a force is assumed proportional to the speed of
the mass and directed to oppose the motion. It can be expressed as

dx
fr = —RmE (1.6.1)

where R, is a positive constant called the mechanical resistance of the system. It
is evident that mechanical resistance has the units of newton-second per meter
(N's/m) or kilogram per second (kg/s).

A device that generates such a frictional force can be represented by a dashpot
(shock absorber). This system is suggested in Fig. 1.6.1a. A simple harmonic
oscillator subject to such a frictional force is usually diagrammed as in Fig. 1.6.1b.

If the effect of resistance is included, the equation of motion of an oscillator
constrained by a stiffness force —sx becomes

dx dx
mW + RmE +sx=0 (1.62)

Dividing through by m and recalling that wg = /s/m we have

2
TX I =0 (1.63)
7
fé/r‘ A = |
Z D e 7
A = R, U
(@)

% s

"Iy

7 m

21

2

Z Ry U e—

)

Figure 1.6.1 (a) Representative sketch of a
dashpot with mechanical resistance Ry,.

(b) Schematic representation of a damped, free
oscillator consisting of a mass m attached to a
spring of spring constant s and a dashpot with
mechanical resistance R..
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This equation may be solved by the complex exponential method. Assume a
solution of the form

x = Ael" (1.6.4)
and substitute into (1.6.3) to obtain
[Vv? + (R,/m)y + w3]Ae™ = 0 (1.6.5)

Since this must be true for all time,

2+ (Rm/m)y + wf = 0 (1.6.6)
or
y=—-B*(B*—wp? (1.6.7)
B = Rn/2m (1.6.8)
In most cases of importance in acoustics, the mechanical resistance R, is small
enough so that wy > B and vy is complex. Also, notice that if R,, = 0 then
Y = £(—0f)? = *jwy (1.69)

and the problem has been reduced to that of the undamped oscillator. This suggests
defining a new constant w; by

wg = (0§ — BHY? (1.6.10)

Now, v is given by
Y= —B *juwg (1.6.11)
and wy is seen to be the natural angular frequency of the damped oscillator. Note
that w; is always less than the natural angular frequency w, of the same oscillator

without damping.
The complete solution is the sum of the two solutions obtained above,

x = e Pl(A e 4+ Aje ity (1.6.12)
As in the nondissipative case, the constants A; and A, are in general complex.

As noted earlier, the real part of this complex solution is the complete general
solution. One convenient form of this general solution is

x = Ae P cos(w,t + ) (1.6.13)
where A and ¢ are real constants determined by the initial conditions. Figure 1.6.2

displays the time history of the displacement of a damped harmonic oscillator for
various values of .
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.XO- xov .XO-

M Mo
[k f

=X - —Xp - —Xo -

(@) () (©)
Figure 1.6.2 Decay of an underdamped, free oscillator.
Initial conditions: xp, = landuy = 0. (a) B/wy =
0.1. () B/wy = 0.2. (¢) B/wo = 0.3.

The amplitude of the damped oscillator, defined as A exp(—t), is no longer
constant but decreases exponentially with time. As with the undamped oscillator,
the frequency is independent of the amplitude of oscillation.

One measure of the rapidity with which the oscillations are damped by friction
is the time required for the amplitude to decrease to 1/e of its initial value. This
time 7 is the relaxation time (other names include decay modulus, decay time, time
constant, and characteristic time) and is given by

r=1/8 = 2m/R, (1.6.14)

The quantity 8 is the temporal absorption coefficient. (As with 7 there are a variety of
names for 3; we mention only one.) The smaller R,,, the larger 7 is and the longer
it takes for the oscillations to damp out.

If the mechanical resistance R, is large enough, then wg = B and the system is
no longer oscillatory; a displaced mass returns asymptotically to its rest position.
If B = woq, the system is known as critically damped.

The solution (1.6.13) is the real part of the complex solution

x = Ae Ploodt (1.6.15)
where A = Aexp(j¢). If we rearrange the exponents,

x = Ag@tip)t (1.6.16)
we can define a complex angular frequency

w; = w; +jB (1.6.17)
whose real part is the angular frequency w; of the damped motion and whose

imaginary part is the temporal absorption coefficient 8. This convention of assimi-
lating the angular frequency and the absorption coefficient into a single complex
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quantity often proves useful in investigating damped vibrations, as we will see in
subsequent chapters.

1.7 FORCED OSCILLATIONS

A simple oscillator, or some equivalent system, is often driven by an externally
applied force f(t). The differential equation for the motion becomes

dx dx

m—- + Ry, o +sx = f{t) (1.7.1)

Such a system is suggested in Fig 1.7.1.

For the case of a sinusoidal driving force f(t) = F cos wt applied to the oscillator
at some initial time, the solution of (1.7.1) is the sum of two parts—a transient
term containing two arbitrary constants and a steady-state term that depends on F
and @ but does not contain any arbitrary constants. The transient (homogeneous)
term is obtained by setting F equal to zero. Since the resulting equation is identical
with (1.6.3), the transient term is given by (1.6.13). Its angular frequency is w,. The
arbitrary constants are determined by applying the initial conditions to the total
solution. After a sufficient time interval ¢ > 1/, the damping term exp(—p¢)
makes this portion of the solution negligible, leaving only the steady-state term
whose angular frequency w is that of the driving force.

To obtain the steady-state (particular) solution, it will be advantageous to
replace the real driving force Fcoswt by its equivalent complex driving force
f = Fexp(jwt). The equation then becomes

a2 |
X LR, X 4 sx = poet (1.7.2)

ir) dt

The solution of this equation gives the complex displacement x. Since the real part
of the complex driving force f represents the actual driving force F cos wt, the real
part of the complex displacement will represent the actual displacement.

Because f = F exp(jwf) is periodic with angular frequency w, it is plausible to
assume that x must be also. Then, x = A exp(jwt), where A is in general complex.
Equation (1.7.2) becomes

(—Aw’m + jAwR,, + As)e®' = Fel*! (1.7.3)
/1
% s
T—NNN—
7 m > fit)
é E____
A

R, U —m

Figure 1.7.1  Schematic representation of a
damped, forced oscillator consisting of a mass

m driven by a force f(t) attached to a spring of
spring constant s and a dashpot with mechanical
resistance R,,.
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Solving for A yields the complex displacement

x= 2 Fo! (1.7.4)
" jo Ry + jlom — 5/w) v

and differentiation gives the complex speed

Fejwt
U7 Ry + jlom — s/w)

These last two equations can be cast into somewhat simpler form if we define the
complex mechanical input impedance Z,, of the system

Zn = Ry + jXon (1.7.6)
where the mechanical reactance X,,, is
X = om—s/w (1.7.7)
The mechanical impedance Z,, = Z,, exp(j®) has magnitude
Zm = [R% + (0m — s/w)*]M/? (1.7.8)
and phase angle
O = tan Y (X,./Ry) = tan [(wm — s/w)/ R} (1.7.9)

The dimensions of mechanical impedance are the same as those of mechanical
resistance and are expressed in the same units, N - s/m, often defined as mechanical
ohms. It is to be emphasized that, although the mechanical ohm is analogous to
the electrical chm, these two quantities do not have the same units. The electrical
ohm has the dimensions of voltage divided by current; the mechanical ohm has
the dimensions of force divided by speed.

Using the definition of Z,, we may write (1.7.5) in the simplified form

Z, = f/u (1.7.10)

which gives a most important physical meaning to the complex mechanical
impedance: Z,, is the ratio of the complex driving force f = F exp(jwt) to the resultant
contplex speed w of the system at the point where the force is applied. If, for the
driving frequency of interest, the complex impedance Z,, is known, then we can
immediately obtain the complex speed

u=f£/Z, (1.7.11)
and make use of u = jwx to obtain the complex displacement
X = {/jwZy, (1.7.12)

Thus, knowledge of Z,, is equivalent to solving the differential equation.
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The actual displacement is given by the real part of (1.7.4),
x = (F/wZ,)sin(wt — O) (1.7.13)
and the actual speed is given by the real part of (1.7.5),
u = (F/Z,)cos(wt — O) (1.7.14)

[both with the help of (1.7.8) and (1.7.9)]. The ratio F / Z,, gives the maximum speed
of the driven oscillator and is the speed amplitude. Equation (1.7.14) shows that
O is the phase angle between the speed and the driving force. When this angle is
positive, it indicates that the speed lags the driving force by ©. When this angle is
negative, it indicates that the speed leads the driving force.

1.8 TRANSIENT RESPONSE OF AN OSCILLATOR

Before continuing the discussion of the simple oscillator it will be well to consider
the effect of superimposing the transient response on the steady-state condition.
The complete general solution of (1.7.2) is

x = Ae P! cos(wat + ) + (F/wZ,,) sin(wt — O) (1.8.1)

where A and ¢ are two arbitrary constants whose values are determined by the
initial conditions.

As a special case, let us assume that xyp = 0 and uy = 0 at time t = 0 when the
driving force is first applied, and that 8 is small compared to w,. Application of
these conditions to (1.8.1) gives

A = (F/Z2)[(Xm/@ P + Ry /)]
tand = (0/wa))(Ru/Xm)

(1.8.2)

Representative curves showing the relative importance of the steady-state and
transient terms in producing a combined motion are plotted in Fig. 1.8.1. The effect
of the transient is apparent in the left portion of these curves, but near the right
end the transient has been so damped that the final steady state is nearly reached.
Curves for other initial conditions are analogous, in that the wave form is always
somewhat irregular immediately after the application of the driving force, but
soon settles into the steady state.

Another important transient is the decay transient, which results when the
driving force is abruptly removed. The equation of this motion is that of the
damped oscillator, (1.6.13), and its angular frequency of oscillation is wy not
w. The constants giving the amplitude and phase angle of this motion depend
on the part of its cycle in which the driving force is removed. It is impossi-
ble to remove the driving force without the appearance of a decay transient,
although the effect will be negligible if the amplitude of the driving force is
very slowly reduced to zero or the damping is very strong. The decay transient
characteristics of mechanical vibrator elements are of particular importance when
considering the fidelity of response of sound reproduction components such as
loudspeakers and microphones. An example of an overly slow decay is a noticeable
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Figure 1.8.1 Transient response of a damped,
forced oscillator with 8 /wy; = 0.1, xo = 0,
anduo = 0. (a)w/wd = % (b) w/wd = 1.
(©) w/w; = 3.

“hangover” at the natural frequency produced by some poorly designed loud-
speaker systems.

1.9 POWER RELATIONS

The instantaneous power I1; in watts (W) supplied to the system is equal to the
product of the instantaneous driving force and the resulting instantaneous speed.
Substituting the appropriate real expressions for the steady-state force and speed,

II; = (F*/Z,,)cos wt cos(wt — O) (1.9.1)

It should be noted that the instantaneous power II; is not equal to the real part of
the product of the complex driving force f and the complex speed u.
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In most situations the average power 11 being supplied to the system is of more
significance than the instantaneous power. This average power is equal to the total
work done per complete vibration divided by the time of one vibration,

T
m=1 J [,dt = (IL)r (1.9.2)
T Jo

Substitution of II; in this equation gives

1:2 T
= _— ¢ -
II 7T Jo cos wt cos(wt — O) dt

2 T
= ZF_TJ (cos wt cos O + cos wt sin wt sin O) dt (1.9.3)
m 0
FZ

= ECOS@

This average power supplied to the system by the driving force is not permanently
stored in the system but is dissipated in the work expended in moving the system

against the frictional force Ry u. Since cos® = R,,/Z,,, then (1.9.3) may be written
as

II = F°R,, /272 (1.9.4)

The average power delivered to the oscillator is a maximum when the me-
chanical reactance X, vanishes, which from (1.7.7) occurs when w = wg. At this
frequency cos ® has its maximum value of unity (® = 0) and Z,, its minimum
value R,,,.

1.10 MECHANICAL RESONANCE

The resonance angular frequency wg is defined as that at which the mechanical
reactance X,, vanishes and the mechanical impedance is pure real with its minimum
value, Z,, = R,,. As has just been noted, at this angular frequency a driving force
will supply maximum power to the oscillator. In Section 1.2, wy was found to
be the natural angular frequency of a similar undamped oscillator and also the
angular frequency of maximum speed amplitude. At w = wy, {1.7.14) reduces to

= (F/R
\E/ K

/1

and the displacement (1.7.13) reduces to
Xres = (F/woRy)sinwpt (1.10.2)

(Note that wg does not give the maximum displacement amplitude, which occurs
at the angular frequency minimizing the product wZ,,. It can be shown that this

occurs when v = Jw? —232)
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Figure 1.10.1 Response of a simple driven mechanical oscillator. (4) Input power
relative to its value at resonance. (b) Phase angle 0. Solid lines correspond to Q = 2.
Dashed lines corresnond to Q = 1.
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If the average power (1.9.4) is plotted as a function of the frequency of a driving
force of constant amplitude, a curve similar to Fig. 1.10.1a is obtained. It has a
maximum value of F?/2R,, at the resonance frequency and falls at lower and
higher frequencies. The sharpness of the peak of the power curve is primarily
determined by R,,/m. If this ratio is small, the curve falls off very rapidly—a sharp
resonance. If, on the other hand, R,,/m is large, the curve falls off more slowly and
the system has a broad resonance. A more precise definition of the sharpness of
resonance can be given in terms of the quality factor Q of the system, defined by

Q = wo/(wy — ) (1.10.3)

where w, and w, are the two angular frequencies, above and below resonance,
respectively, at which the average power has dropped to one-half its resonance
value.
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It is also possible to express Q in terms of the mechanical constants of the
system. From (1.9.4) it is evident that the average power will be one-half of its
resonance value whenever Z2 = 2RZ,. This corresponds to

RL + X2 =2R% or X, = *R, (1.10.4)
Since X, = wm — s/w, the two values of w that satisfy this requirement are
w,m—s/w, = R,, and wm —s/w; = —R,, (1.10.5)
The elimination of s between these equations yields
w, —w; = Ry /m (1.10.6)
so that
Q = wym/Ry = wo/2B (1.10.7)

with the help of (1.6.8). Use of (1.6.14) for the relaxation time 7 of this oscillator
gives

Q = lwyr (1.10.8)

The sharpness of the resonance of the driven oscillator is directly related to the
length of time it takes for the free oscillator to decay to 1/e of its initial amplitude.
Furthermore, the number of oscillations taken for this decay is (w;/w¢)Q/ w7 or
about Q/ for weak damping. Thus, if an oscillator has a Q of 100 and a natural
frequency 1000 Hz, it will take (100/7) cycles or 32 ms to decay to 1/¢ of its initial
amplitude. It should also be noted that Q/27 is the ratio of the mechanical energy
of the oscillator driven at its resonance frequency to the energy dissipated per
cycle of vibration. Proof of this is left as an exercise (Problem 1.10.3).

When the oscillator is driven at resonance the phase angle @ is zero and the
speed u is in phase with the driving force f. When w is greater than w; the
phase angle is positive, and when @ approaches infinity « lags f by an angle that
approaches 90°. When w is less than @y the phase angle is negative, and as
approaches zero u leads f by 90°.. Figure 1.10.1b shows the dependence of ® on
frequency for a typical oscillator. In systems having relatively small mechanical
resistance, the phase angles of both speed and displacement vary rapidly in the
vicinity of resonance.

1.11 MECHANICAL RESONANCE
AND FREQUENCY

Mechanical systems driven by periodic forces can be grouped into three different
classes. (1) Sometimes it is desired that the system respond strongly to only
one particular frequency. If the mechanical resistance of a simple oscillator is
small, its impedance will be relatively large at all frequencies except those in
the immediate vicinity of resonance, and such an oscillator will consequently
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respond strongly only in the vicinity of resonance. Some common examples are
tuning forks, the resonators below the bars of a xylophone, and magnetostrictive
sonar transducers. (2) In other applications it is desired that the system respond
strongly to a series of discrete frequencies. The simple oscillator does not have
this property, but mechanical systems that do behave in this manner can be
designed. These will be considered in subsequent chapters. (3) A third type of
use requires that the system respond more or less uniformly to a wide range of
frequencies. Examples include the vibrator elements of many electroacoustic and
mechanoacoustic transducers: microphones, loudspeakers, hydrophones, many
sonar transducers, and the sounding board of a piano.

In different applications, the quantity whose amplitude is supposed to be
independent of frequency may be different. In some cases the displacement
amplitude is to be independent of frequency; in others it is the speed amplitude
or the amplitude of the acceleration that is to be invariant. By a suitable choice
of the stiffness, mass, and mechanical resistance, a simple oscillator can be made
to satisfy any of these requirements over a limited frequency range. These three
special cases of frequency-independent driven oscillators are known as stiffness-,
resistance-, and mass-controlled systems, respectively.

A stiffness-controlled system is characterized by a large value of s/w for the
frequency range over which the response is to be flat. In this range both wm and
R, are negligible in comparison with s/m and Z,, is very nearly equal to —js/w,
so that

x = (F/s) coswt (1.11.1)

It should be noted that, although the displacement amplitude is independent of
frequency, the speed amplitude is not, nor is the acceleration amplitude.

A resistance-controlled system is one for which R,, is large in comparison with
X, This will be true when an oscillator of relatively high mechanical resistance is
operated in the vicinity of resonance. Then

u = (F/R,,) cos wt (1.11.2)

so that the speed amplitude is essentially independent of frequency, although both
the displacement amplitude and the acceleration are not.

A mass-controlled system is characterized by a large value of wm over the desired
frequency range. Then s/w and R,, are negligible and Z,, is approximately equal
to jwm. Neither displacement nor speed amplitudes are independent of frequency,
but

a = (F/m)cos wt (1.11.3)

so the acceleration amplitude is independent of frequency.

All driven mechanical vibrator elements are resistance-controlled for frequen-
cies nearly equal to their resonant frequency, but for vibrators of low mechanical
resistance the range of relatively flat response is extremely narrow. Similarly, all
driven vibrators are stiffness-controlled for frequencies well below f,, and mass-
controlled for frequencies well above fy. A suitable choice of mechanical constants
will place any of these systems in the desired part of the frequency range, but the
computed values are sometimes very difficult to attain in practice.
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*1.12 EQUIVALENT ELECTRICAL
CIRCUITS FOR OSCILLATORS

Many vibrating systems are mathematically equivalent to corresponding electrical systems.
For example, consider a simple series electrical circuit containing inductance L, resistance
R, and capacitance C, driven by an impressed sinusoidal voltage V cos wt, as suggested in
Fig. 1.12.1a. The differential equation for the current I = dq/dt, where q is the complex
charge, is

dl q
L— +RI+ = =YV le.
7 I C (1.12.1)

with V = Vexp(jwt). This equation may be written

d*q _,dq  q _
PRI+ 2=V (1.12.2)

which has the same form as (1.7.2). Thus, the steady-state solution for q is

_1_ v
17 jo R+ jlwL — 1/w0)

(1.12.3)
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Figure 1.121 Equivalent series systems.

(a) Series electrical circuit driven with voltage V.
All elements experience the same current L.

(by Mechanical system with mass # driven by force
f and attached to a spring of spring constant s and
dashpot of mechanical resistance R,,. All elements
move with the same speed u. (c) The electrical
equivalent of the mechanical system in (b).
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and the currentis I = V/Z, where
Z = R+ jwL — 1/wC) (1.12.4)

We see that the electrical circuit of Fig. 1.12.1a is the mathematical analog of the damped
harmonic oscillator of Fig. 1.12.1b. The current I in the electrical system is equivalent to the
speed u in the mechanical system, the charge q is equivalent to the displacement x, and
the applied voltage V is equivalent to the applied force f. Furthermore, the impedances
for these two systems have similar forms, with the mechanical resistance R, analogous
to the electrical resistance R, the mass m analogous to the electrical inductance L, and the
mechanical stiffness s analogous to the reciprocal of the electrical capacitance C. By direct
comparison of (1.12.1) with (1.7.1), it can be seen that the resonance angular frequency of

the electrical circuit is

wy = 1/ JLC (1.12.5)
and the average power dissipated is
I = (V*/2Z)cos ® (1.12.6)

The elements in the electrical system (Fig. 1.12.14) are said to be in series because they
experience the same current. Similarly the elements in the mechanical system (Fig. 1.12.1b)
can be represented by the series circuit of Fig. 1.12.1c: they experience the same displacement
and, therefore, the same speed.

If a simple mechanical oscillator is driven by a sinusoidal force applied to the normally
fixed end of the spring as suggested by Fig. 1.12.2a, then the mass and the spring experience
the same force and this combination is represented by a parailel circuit, as shown in Fig.
1.12.2b. The speed of the driven end of the spring is equivalent to the current entering the
parallel circuit, and the speed u,, of the mass is equivalent to the current flowing through
the inductor.

Other equivalent systems are shown in Figs. 1.12.3 and 1.12.4.

m ——-/\/\/\s/\/\,———o S

—p- U,y —- U
(a)

—— e
u Uy,
f ——1/s ém

11y
\p)

Figure 1.12.2  Equivalent parallel systems.

{a) Mechanical system with mass attached to a
spring and with the other end of the spring driven
by a force f. The elements feel the same force but
have different speeds. (b) The equivalent electrical
circuit with inductance m and capacitance 1/s. All
elements experience the same voltage but carry
different currents.
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5
AN
m —
—_— Uy R, —_—u
(a}
i — —_— L
u i/ U
f m
Rm
(b}

Figure 1.12.3  Equivalent series—parallel systems.
(@) Mechanical system with mass attached to

a combination of spring and dashpot with the
other end of the spring/dashpot driven. The
dashpot and spring both move with the same
speed. They experience different forces, but the
sum of forces is equal to the force on the mass.
(b)The equivalent electrical circuit with inductance,
resistance, and capacitance. The capacitance and
the resistance share the same current and the sum
of the voltages across them equals the voltage
across the inductance.
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Figure 1.12.4 Equivalent series—parallel
systems. (2) Mechanical system with mass
attached between a spring and a dashpot. One
end of the spring is fixed and the dashpot is
driven. The mass and spring share the same
speed while the sum of forces on them equals
the force on the dashpot. (b) The equivalent
mechanical circuit. The capacitance and the
inductance carry the same current and the sum
of the voltages across them equals the voltage

across the resistance.

21
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1.13 LINEAR COMBINATIONS OF SIMPLE
HARMONIC VIBRATIONS

In many important situations that arise in acoustics, the motion of a body is a
linear combination of the vibrations induced separately by two or more simple
harmonic excitations. It is easy to show that the displacement of the body is then
the sum of the individual displacements resulting from each of the harmonic
excitations. Combining the effects of individual vibrations by linear addition is
valid for the majority of cases encountered in acoustics. In general, the presence of
one vibration does not alter the medium to such an extent that the characteristics
of other vibrations are disturbed. Consequently, the total vibration is obtained by
a linear superposition of the individual vibrations.

One case is the combination of two excitations that have the same angular
frequency w. If the two individual displacements are given by

x; = A9 and  xp = Ayt (1.13.1)
their linear combination x = x; + X; results in a motion A exp[j(wt + ¢)], where
AdCHT) = (A1 + Ayel®?)el! (1.13.2)

Solution for A and ¢ can be accomplished easily if the addition of the phasors
Aj exp(jwt) and A; exp(jwt) is represented graphically, as in Fig. 1.13.1. From the
projections of each phasor on the real and imaginary axes,

A = [(A; cos ¢y + As cos dy)? + (A1 sin ¢y + Az sin ¢p)?]Y/?

Arsing;, + Azsin¢s (1.13.3)

A1 cosdy + Az cosds

tan¢g =

I

A I
o
|

f=—— A;sin ¢ +A,sin (f)z*)'

¢

e A, cOS ¢ + Ay COS ¢y ————)‘

Figure 1.13.1 Phasor combination A exp(j¢) =
Aj exp(je,) + Ay exp(je) of two simple harmonic
motions having identical frequencies.
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The real displacement is
x=x1+x = Acos(wf + ¢) (1.13.4)

where A and ¢ are given by (1.13.3). The linear combination of two simple harmonic
vibrations of identical frequency yields another simple harmonic vibration of this
same frequency, having a different phase angle and an amplitude in the range
AL — A = A = (A + Ay).

With the help of Fig. 1.13.1, it is clear that the addition of more than two phasors
can be accomplished by drawing them in a chain, head to tail, and then taking
their components on the real and imaginary axes. Thus, it may readily be shown
that the vibration resulting from the addition of any number n of simple harmonic
vibrations of identical frequency has amplitude A and phase angle ¢ given by

- [(ZA,, cosdn) + (3 Ansin (;b,,)z]llz

tang = zA,, sinqb,,/ZA,, €oS ¢y

(1.13.5)
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produces a new simple harmomc vibration of this same frequency. For example,
when two or more sound waves overlap in a fluid medium, at each point in the
fluid the periodic sound pressures of the individual waves combine as described
above.

The expression for the linear combination of two simple harmonic vibrations of
different angular frequencies w; and w; is

x = A1t 4 4 gwttdr) (1.13.6)

The resulting motion is not simple harmonic, so that it cannot be represented
by a simple sine or cosine function. However, if the ratio of the larger to the

crmallar fonmiiaem sy 3 ~ P | [rUN RO {Antmmtmmanoiinatal tha g prg= 1

ollidlicl ll.c\:lucll\.y ].D a 1auu1|.a1 llul.].l.UUl. Lol uiawey, e l.].l.Ul.lUl.l J.D Pcl IUulC
with angular frequency given by the greatest common divisor of w; and w;.
Otherwise, the resulting motion is a nonperiodic oscillation that never repeats
itself. The linear combination of three or more simple harmonic vibrations that
have different frequencies has characteristics similar to those discussed for two.

The linear combination of two simple harmonic vibrations of nearly the same
frequency is easy to interpret. If the angular frequency w; is written as

wy = w + Aw (1.13.7)
then the combination is
X = Ayef@1t4) 4 4ttt (1.13.8)
This can be reexpressed as

X = (A1@# + Ape/b2tdet)gient (1.13.9)
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and then cast into the form
x = Ad@fte) (1.13.10)
where

A = [A2 + A2 + 24, A; cos(d1 — ¢y — Awit)]V/?

o~~~
[
[
W
pod
[
g

Aising; + Az sin(¢z + Awt)

t =
AN = oS i + Ay cos(ds + Awd)

The resulting vibration may be regarded as approximately simple harmonic, with
angular frequency w;, but with both amplitude A and phase ¢ varying slowly
at a frequency of Aw/2m. It can be shown that the amplitude of the vibration
waxes and wanes between the limits (A; + A;) and |[A; — A;|. The effect of the
variation in phase angle is somewhat more complicated. It modifies the vibration
in such a manner that its frequency is not strictly constant, but the average angular
frequency may be shown to lie somewhere between w; and w2, depending on the
relative magnitudes of A; and A;. In the sounding of two pure tones of slightly
different frequencies, this variation in amplitude results in a rhythmic pulsing of
the loudness of the sound known as beating. As an example let us consider the
special case A; = Ay and ¢ = ¢, = 0. The equations (1.13.11) become

A = Ai[2 + 2 cos(Awt)]/?

sin(Awf) (1.13.12)

t = -7
an ¢ 1 + cos(Awt)
The amplitude ranges between 24, and zero, and the beating is very pronounced.

Audible beats and other associated phenomena will be discussed in more detail in
Chapter 11.

1.14 ANALYSIS OF COMPLEX VIBRATIONS
BY FOURIER’'S THEOREM

In the preceding section we noted that the linear combination of two or more simple
harmonic vibrations with commensurate frequencies leads to a complex vibration
that has a frequency determined by the greatest common divisor. Conversely, by
means of a powerful mathematical theorem originated by Fourier, it is possible
to analyze any complex periodic vibration into a harmonic array of component
frequencies.

Stated briefly, this theorem asserts that any single-valued periodic function
may be expressed as a summation of simple harmonic terms whose frequencies
are integral multiples of the repetition rate of the given function. Since the above
restrictions are normally satisfied in the case of the vibrations of material bodies,
the theorem is widely used in acoustics.

If a certain vibration of period T is represented by the functionf(t), then Fourier’s
theorem states that f(t) may be represented by the harmonic series
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f) = 1A0 + Ajcoswt + Aycos2wt + -+ + A, cosnwt + -
f() 5410 1 2 n w (1141)

+ By sinwt + By sin2wt + -++ + B, sinnwt + -

where w = 27r/T and the A’s and B’s are constants to be determined.
The formulas for evaluating these constants (derived in standard mathematical
texts) are

A, = %J f(t)cosnwt dt
0 (1.14.2)

p) T
B, = —J f(t)sinnwt dt
T o

Whether or not these integrations are feasible will depend on the nature and
complexity of the function f(t). If this function exactly represents the combination
of a finite number of pure sine and cosine vibrations, the series obtained by
computing the above constants will contain only these terms. Analysis, for instance,
of simple beats will yield only the two frequencies present. Similarly, the complex
vibration constituting the sum of three pure musical tones will analyze into those
frequencies alone. On the other hand, if the vibration is characterized by abrupt
changes in slope, like sawtooth waves or square waves, then the entire infinite
series must be considered for a complete equivalence of motion. If f(t) and df/dt
are piecewise continuous over the interval 0 = ¢t =< T, it is possible to show that
the harmonic series is always convergent. However, jagged functions will require
the inclusion of a large number of terms merely to achieve a reasonably good
approximation to the original function, and there may be difficulties close to
discontinuities. Fortunately, the majority of vibrations encountered in acoustics
are relatively smooth functions of time. In such cases, the convergence is rather
rapid and only a few terms must be computed.

Depending on the nature of the function being expanded, some terms in the
series may be absent. If the function f(f) is symmetrical with respect to f = 0, the

constant term Ay will be absent. If the function is even, f(t) = f{(—¢), then all sine
terms will be missing. An odd function, f(t) = —f(—t), will cause all cosine terms

to be absent.

In analyzing the perception of sound, a factor enabling us to reduce the number
of higher frequency terms to be computed is that the subjective interpretation of a
complex sound vibration is often only slightly altered if the higher frequencies are
removed or ignored.

Let us apply the above analysis to a square wave of unit amplitude and period
T, defined as

(1.14.3)

+1 0=t<T/2
i) =
-1 T/2 =t<T

and repeating every period. Substitution into (1.14.2) yields all A, = 0, B, = 0 for
n even, and

B, = 4/nw n=135,... (1.14.4)
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0 1 0 1 0 1
Figure 1.14.1 The Fourier series representation of a square wave vibration of unit

amplitude and period T showing the results of including the lowest nonzero harmonics
one at a time.

Note that Ay is zero because of the symmetry of the motion about f = 0. All A, are
zero since the function is odd. The B, are zero for even 1 because of the symmetry

~L LMY carithidan analh half amnniad Tha 1
of f(#) within each half-period. The complete harmonic series equivalent to the

square wave vibration is

1 1 1
f(t) = ( inwt + 3 sin 3wt + 5 sinbwt + -+ + - sinnot + ) (1.14.5)

Plotted in Fig. 1.14.1 are results obtained by retaining various numbers of
terms of the series. Differences among the plots are quite apparent. Because of the
discontinuities, the Fourier series develops visible overshoot near these times if a

1 i ~Af o
10115: en luusu numoer o1 terms are LCtCI.J.L lcd

*1.15 THE FOURIER TRANSFORM

Two fundamental methods are available for the analysis of pulses and other signals of finite
duration: the Laplace transform and the Fourier transform. While the Laplace transform
is a common approach, the underlying physics is somewhat hidden and there must be no
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motion before some specified time. We will follow most acoustics texts and use the second
approach, Fourier analysis. (Actually, these two methods are closely related, the principal
differences being the temporal restriction and the mathematical nomenclature.)

It has been demonstrated in Section 1.14 that a repeating waveform of period T can be
considered as a sum of sinusoidal components whose frequencies are integral multiples of
the fundamental frequency f = 1/T. If we now consider a nonrepeating waveform as being
one of a family whose sequential members are identical in shape and uniformly spaced a
large time T apart, and then allow T to become infinite, the fundamental frequency of the

ot ok o nd tha over all t+ 1 ad 1.
motion must aytu.ua\.u Zerg, anda uie summation over all ucu.ul.uxu.u, inust be J.CPI.G.LCU. u_y an

integration over all frequencies.
Thus, if f(t) is a transient disturbance, we can write the general expression

f(t) J' g(w)e™ dw (1.15.1)

where w is the angular frequency. (We have chosen w rather than o for notational reasons
that will appear later, and because it is the “dummy” variable of integration.) The quantity
g(w) is the spectral density of £(t). The integration region — < w < 0 introduces the concept
of “negative” frequency, but from

¢ = coswt + jsinwt (1.15.2)

this is no more than a means of generating complex conjugates.
Given f(t), inversion of the integral to obtain the spectral density g(w) of the transient
function yields

g(w) = % J : £(t)e It dt (1.15.3)

(A proof, being rather mathematical and peripheral to our interests, will not be offered.
Consult any standard text on Fourier transforms.) The pair (1.15.1) and (1.15.3) constitute
one form of the Fourier integral transforms. Examination of the pair reveals that if f has some
dimension | (such as m, N, Pa, or J), then g has dimension | -s (m's, N's, Pa's, J's).

As an example, assume that f(t) represents a single extremely short but strong force such
as striking an oscillator with a hammer or a drumhead with a drumstick. Such impulses
can be approximated by the Dirac delta function, defined by

5=0 t#0
. (1.15.4)
j sydt = 1

The integral is dimensionless, so in general 8(v) has the dimension of 1/v where v is the
variable of integration. One representation of 8(¢) is

(0 It >e/2
5(t) = (1.15.5)
17e || = &/2

in the limite — 0.
Substitution of f(t) = §(t) into (1.15.3) yields

gw) = % fm S(He ™ dt (1.15.6)
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Now, use of (1.15.5) shows that, since 8(¢) is nonzero only where || =< £/2, the limits can be
replaced by *&/2. As ¢ — 0, exp(—jwt) can be replaced by its value at w = 0, which leaves
the result

1 &f2
B(w) = 5 J s(t)dt = % (1.15.7)

—&/2

Thus, all frequencies are equally present in 8(f). (In this case, f has dimension 1/s and g is
dimensionless.)
Conversely, if we write g(w) as consisting only of a single frequency,

gw) = d(w — o) (1.15.8)

then
f(t)J 8w — w)e™ dw = e (1.15.9)

and the spectral density of a monofrequency signal is a delta function centered on that
frequency. [In this second case, 8(w — w) has dimension s, as does g(w), and f(t) is
dimensionless.]

The utility of this approach can be demonstrated by a simple exercise. Let F(t) be an
impulsive force applied to an oscillator and express F(t) in terms of its Fourier components

F(t) = f G(w)e™ dw (1.15.10)

where the spectral density G(w) is found from (1.15.3). Each of these monofrequency force
components

fw,t) = Gw)e™ (1.15.11)
will generate a monofrequency complex speed component u(w, t) given from (1.7.10) by
u(w, t) = f(w, )/ Z(w) = [G(w)/Z(w)]e™ (1.15.12)

where Z(w) is the input mechanical impedance of the oscillator at the angular frequency w.
Now, G(w)/Z(w) is the spectral density of the speed and the resultant transient speed U(t)
of the oscillator is, therefore,

fee]

u) = f ww, ) dw = L %eiwtd

(1.15.13)
It can be verified by direct substitution of (1.15.13) into (1.7.1) that U(¢) is the solution for
the applied force f(t) = F(#).

The physical interpretation of this approach is quite important and straightforward.

If an arbitrary force is applied to a mechanical system, the resultant motion can be
found by resolving the force into its individual frequency components, obtaining the
motion resulting from each of these monofrequency components, and then assembling the
resulting motion by combining the individual monofrequency motions. This is the very
same case we encountered in periodic, nonharmonic forces, except that integrals must
replace summations because the individual frequency components are not discrete but are
continuously distributed over a range of frequencies.

While evaluation of these integrals may be difficult and involve special techniques (such
as calculus of residues) or approximations (such as the method of stationary phase), tables
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Table 1.15.1 Fourier integral transforms for a few simple
functions when all relevant integrals are proper

f(t) g(w) f(t) g(w)
&) (w)gw) et 5w ~ w)
dt
(—ft)'£(t) % 8(t—7) %e"”’
fBe  gw—w) 1t +7) —1(— 7) % Smwu”
fit—7) g(w)e ™ e~ - 1(t) % ]w%b
5(¢) % ot - 1(f) ziﬂw 1 —
1 8(w) (cos wt) - 1(F) % ;Zjiu—wz
1(t) Ziﬂ ,}1‘5 (sinwt) - 1(t) Zlﬂ 52_“_’—102

of transformation pairs f(f) and g(w) are easily accessible, although the lack of a generally
followed convention often entails a fair amount of calculation to cast the tabulations into
the desired form,

It is useful to define the unit step function (Heaviside unit function) 1(t) as

t<g

t 0
1() = J _B(t)dt = {1 =0 (1.15.14)

This dimensionless function [sometimes designated as u(t), which we avoid to prevent

confusion with the particle speed] is used as a multiplier to designate functions f(t) - 1(f) that

are zero for t < 0 and then assume their indicated behavior for ¢ > 0. Table 1.15.1 presents
transform pairs for a few simple cases consistent with (1.15.1) and (1.15.3).

An interesting and valuable relationship between the effective duration At of a signal
and the effective bandwidth Aw of its spectral density is

Aw At ~ 21 (1.15.15)

We will not prove (1.15.15), but Problem 1.15.9 demonstrates it for a pulse. This relationship,
well known in quantum mechanics and signal processing, says in effect that the broader the
frequency spectrum of a transient signal, the more concentrated in time it will be, and vice
versa. Thus, it is expected, and plausible, that the greater the duration of a gated sinusoidal
wave, the narrower its frequency spectrum.

Note that this is consistent with the limiting cases of (1) a delta function in time, which
has an infinitely wide spectrum, and (2) a monofrequency oscillation cos wt, for which the
spectral density is a pair of delta functions centered at w = *w. Other examples are (1)
a square pulse of unit amplitude and duration Af with a spectrum (7w)~! sin(wAt/2) as
shown in Fig. 1.15.1, and (2) a cosinusoidal pulse of four cycles of period T and constant
amplitude turned on for a time interval At = 4T, which has a spectrum containing two
principal peaks at = as shown in Fig. 1.15.2.
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Figure 1.15.1 (a) A square pulse of
duration At. (b) The spectrum of this pulse.
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Angular frequency

&)

Figure 1.15.2 (1) A cosinusoidal pulse of
angular frequency » and period T turned
on for a time interval Af = 4T. (b) The
spectrum of this pulse.

Modern signal processing systems are digital in that they sample the signal at discrete
times and then analyze the resulting set of discrete numbers instead of a continuous
function. This analysis is carried out using the discrete Fourier transform (DFT). The DFT is
computationally intensive, requiring N complex multiplications and additions, where N
is the number of desired terms. To reduce computation time, an algorithm called the fast
Fourier transform (FFT) has been developed. For the discussion of the DFT and FFT, see any
book on signal processing, such as Burdic, Underwater Acoustic System Analysis, Prentice
Hall (1991).
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Problems

1.2.1. Given two springs of stiffness s and two bodies of mass M, find the natural frequencies
of the systems sketched below.

s, s s g

- =
23 >3 2 S
s 2s < s <s <s
A A S
M < M
S i
M ~
<
[ 2
§
M 2
{a) (b) {c} (d)
1.3.1. Attimet = T/2thespeedofa imple oscillator of angular frequency wy has maximum
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1.3.2. A simple oscillator whose natural frequency is 5 rad /s is displaced a distance 0.03 m
from its equilibrium position and released. Find (a) the initial acceleration, (b) the
amplitude of the resulting motion, and {(c) the maximum speed attained.

1.3.3C. For a simple oscillator, plot the displacement as a function of ¢/T for the following
initial conditions: (a) 4y = 0and x,/A = —1,0,1; (b} xo/A = 1l and ug/weA = —1,
0,1

1.4.1. Show for any (undamped) simple oscillator that Ex(rmax) = E,(max).

1.4.2. If the mass m; of a spring is not negligible compared with the mass m attached to
the spring, the additional inertia of the spring will result in a reduced frequency
of vibration. Assume the speed of any element of the spring is proportional to its

distance 17 from the fived end of the gnrino {(aY Cal~ilate the tntal enerov of tha gyctam
aistance ¥ irom ine NXed enaG of tne Spring. (4 LaiClaale tne totlar energy of tne sysiem.

(b) From this, derive the differential equation for the displacement of the mass m and
show that the mass oscillates with a frequency wo = /s/m,, where m, = m + m,/3.
Problem 1.4.1 may be helpful.

1.5.1. Given that the real part of x = Aexp(jwt) is x = Acos(wt + ¢), show that the real
part of x* does not equal x2.

1.5.2. Find the real part, magnitude, and phase of (a) ./x +jy, (b) Aexplj(wt + ¢)], and
(¢) [1 + exp(—2j8)] exp(j6).

1.5.3. Given the two complex numbers A = Aexplj(wt + 8)] and B = Bexpl[j(wt + ¢}], find
(a) the real part of AB, (b) the real part of A/B, (c) the real part of A times the real part
of B, (d) the phase of AB, and (¢) the phase of A/B.

1.54. Given the complex numbers A = x +jyand B = X + Y, find (1) the magnitude of A,
(b) the magnitude of B, (c) the magnitude of AB, (d) the real part of AB, (¢) the phase
of AB, and (f) the real part of A/B.

1.6.1. A mass of 0.5 kg hangs on a spring. When an additional mass of 0.2 kg is attached to
the spring, the spring stretches an additional 0.04 m. When the 0.2 kg mass is abruptly
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1.6.2.

1.6.3.
1.6.4.

1.6.5.
1.7.1.

1.7.2

1.7.3.

1.7.4.

1.7.5.
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removed, the amplitude of the ensuing oscillations of the 0.5 kg mass is observed to
decrease to 1/e of its initial value in 1.0 s. Compute values for R,,, w4, A, and ¢.

Verify that for a critically damped oscillator x = (A + Bt) exp(—pB1) satisfies the
equation of motion.

Show that if B < wy then wy = wp[l ~ F(B/wo)*].

A damped oscillator whose general solution is x = A exp(—B1f) cos(w, + ¢) starts at
rest with a positive speed 1;. Find A.

For the damped simple oscillators of Fig. 1.6.2, find A and ¢ for each case.

(a) What is the general expression for the acceleration of a damped oscillator driven
by a force F coswt? (b) Derive an expression for the angular frequency maximizing
the acceleration.

From (1.7.9) find the angular frequencies for which ® goes to (1) 0, (b) 7/2, (c) —7/2,
and (d) has magnitude /4.

A mass M is connected to a rigid foundation by a spring and dashpot (spring constant
s and mechanical resistance R,) and is constrained to move perpendicular to the
foundation. A second mass m is attached to M by an arm of length L and rotates
with angular frequency w about an axis perpendicular to the motion of M. Find the

Gam o ok qbadn cemnnd mamnealit. . dA LA

leauuulg alcau.y aLdLc DPUCU alllPlJ.luuC ul lVl

The inertial switch that activates an airbag in an automobile can be modeled as a
spring of stiffness s with one end attached to a case fixed to the vehicle and the
other end attached to a mass m free to move within the case. When the case is
decelerated, the mass compresses the spring to activate a switch that releases the air
into the airbag. The case is decelerated at a constant rate a. (4) Find the equation of
motion for the mass. (b) By direct substitution, show that the motion of the mass is
x = 1af + (a/w})(coswpt — 1), where wj = s/m. (c) Find the minimum deceleration
required to compress the spring a distance X, and express the answer in terms of the
force necessary to statically compress the spring the same distance X.

A mass m is attached to a spring of stiffness s. The motion of the other end of the spring
is attached to a table whose acceleration is A exp(jw?) with A a constant. (a) Show that

thn wntin AL il s ancnlaratinm Af tha 2 naa that Afthn tahla ic [1 — /£, ] 1 Jharn
the ratio of the acceieration of the mass to that of the table is [ \(.u/ WU} , WileIe

w3 = s/m. (b) Plot this ratio as a function of @ /wy for 0 < w/wy < 5. (c) Comment on

the applicability of this system as a vibration isolator.

1.7.6C. Anoscillator with mass 0.5 kg, stiffness 100N /m, and mechanical resistance 1.4 kg /s

1.8.1.

1.8.2

1.8.3.

is driven by a sinusoidal force of amplitude 2 N. Plot the speed amplitude and
the phase angle between the displacement and speed as a function of the driving
frequency and find the frequencies for which the phase angle is 45°.

An oscillator at rest experiences a force F sinwyt beginning att = 0.If 8 << w,, show
that x(t) = —(F/woRx)[1 — exp(—Bt)] cos wot.

An undamped oscillator is driven beginning at ¢ = 0 with a force Fsinwt, where
w # wp. (2) Find the resultant speed of the mass if it is at rest at { = 0. (b) Sketch the
waveform of the speed if w = 2w,. (c) If a small amount of damping is introduced
and the driving frequency is far below resonance, show that the steady-state solution
is approximated by u(t) = (wF/s)cos wt.

The displacement of a damped oscillator driven by a square wave forcing function
with fundamental angular frequency w is shown below for (4) w/w; > 1 and
(b) w/w; < 1. Explain the behaviors of these curves on physical grounds.
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1.9.1.
1.9.2.

1.9.3.

1.9.4.

Show that the instantaneous power II; is given by Re{f} - Re{u} but not by Re{fu}.

A damped oscillator is driven with a force f = Fexp(jwt) and has speed u =
U exp|j(wt — ®)] with U = F/Z,,. (4) Show that the power II consumed is jRe{fu"},
where u* is the complex conjugate of u. (b) Show that Re{fu} = Re{f*u}.

Verify that in the steady state the power dissipated by the frictional force in the
damped driven oscillator is equal to that being supplied by the driving force.

Use the average power supplied to an oscillator by a driving force and the total
energy E stored in the oscillator to obtain the relationship dE/dt = 2B8E. Explain the
physical meaning of this result. Does this relationship mandate exponential decay?

1.10.1. Show that Z,, = wom[{w/wy — wo/w)? + 1/Q2]2.

1.10.2. A mass of 0.5 kg hangs on a spring. The stiffness of the spring is 100 N/m, and the

mechanical resistance is 1.4 kg/s. The force (N) driving the system is f = 2cos5t.
{(z) What will be the steady-state values of the displacement amplitude, speed
amplitude, and average power dissipation? (b)) What is the phase angle between
speed and force? (c) What is the resonance frequency and what would be the
displacement amplitude, speed amplitude, and average power dissipation at this
frequency and for the same force magnitude as in {(a)? (d) What is the Q of the
system, and over what range of frequencies will the power loss be at least 50% of its
resonance value?

1.10.3. When a simple oscillator is driven at its resonance frequency, show that the ratio of

the energy dissipated per cycle to the total mechanical energy present is 27 /Q.
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1.10.4.

1.10.5.
1.10.6.

1.10.7.

1.12.1.

1.12.2

1.12.3.

CHAPTER 1 FUNDAMENTALS OF VIBRATION

Derive equations that give the two angular frequencies corresponding to the half-
power points of a driven oscillator. Show that they are given approximately by
wo *+ Rm / 2m.

Derive an equation for Q from d®/df evaluated at f = fo.

For a lightly damped (8/wo << 1) driven oscillator, show that, to second order in
B/wo, Hwr + w,) = @y + 1(B/wp)*.

The resonance curve of an oscillator can be obtained experimentally with the use
of a wave analyzer (an electronic instrument that automatically sweeps the driving
frequency of the applied voltage while plotting the output current as a function of
frequency). These instruments have a sweep rate that can be changed from “slow”
to “fast.” Plotted below are resonance curves for the same oscillator obtained at (I}
a fast sweep rate and (II) a slow sweep rate. The horizontal scale is 1 Hz/division.
Give a qualitative explanation why curve (I) differs so radically from the expected
response.

T 1117 rT Tt 11T 1T 1T 17 17T 11

Amplitude

T T 11 T 1T 717 1T

[
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Frequency

A mass m is fastened to one end of a horizontal spring of stiffness s, and a horizontal
driving force Fsinwt is applied to the other end of the spring. (¢} Assuming no
damping, determine the equation giving the motion of the driven end of the spring
as a function of time. (b) Show that the expression for the speed of this end of the
spring is analogous to that giving the current into a parallel LC electrical circuit.
(c) If the constants of the above systemare F = 3N, s = 200 N/m, and m = 0.5 kg,
compute and plot curves showing how the displacement and speed amplitudes of
the driven end of the spring vary with frequency in the range 0 < w < 100rad/s.

Find the mechanical impedances, the resonance frequencies, and the equivalent
electrical circuits for the following systems.

Y/

N
| E§
=

ALY,

s

.“5

— 3 A
3

>
|
Tf I f
{c)

(b}

D
a

Masses m and M are connected by a spring of stiffness s and the smaller mass m is
driven with an external force. (2) Obtain the equivalent electrical circuit. (b) Obtain
the resonance angular frequency wq. (¢) How does w; change if the mass M is the
one that is driven?
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1.12.4C

1.13.1.

1.13.2.

1.13.3.

1.13.4C.

i
it
(3]
()}
@)

1.13.6C.

1.14.1.

1.14.2.

1.14.3.

1.15.1.

1.15.2,

1.15.3.

. For each of the three equivalent circuits of Figs. 1.12.2-1.12.4, plot the amplitudes
of the displacement and speed for a frequency span showing all significant aspects
of the motion. Assumem = 0.5kg,s = 100N/m, R, = 1.4kg/s,and F = 2 N.

Show that the amplitude A, of the displacement resulting from the linear addition
of n harmonic vibrations all of the same amplitude A and frequency but hav-

ing different initial phase angles of ¢1 = &, ¢ = 2¢, ¢35 = 3¢,..., ¢, = ng,...1is
given by

_ Asin(ne/2)

g sin(e/2)

Assume a damped oscillator is driven with a force composed of two terms of angular
frequencies w; and w,. (a) Evaluate II;. (b) Show that the power II dissipated is the
sum of the powers dissipated by each of the terms acting alone.

Show that the sum of two simple harmonic vibrations with the same amplitudes A
and initial phase angles ¢ = 0, but with different angular frequencies w, and w4, is
x = 2Asin(Aw /2) explj(w; + Aw /2)t], where w; = w; + Aw.

Plot the coherent sum of two sine waves of equal displacement amplitudes and
frequencies but with relative phases differing from 0° to 360° in steps of 45°.

. Make plots of the sum of two signals with equal amplitudes but with different
frequencies f and f + Af for different values of (f + Af)/f. Observe the behavior of
the resulting wave as f + Af is increased from f to 2f (an octave). If you have sound
output on your computer, correlate the waveform and the quality of the sound.

An amplitude modulated (AM) signal is x = [1 + mcos(27ft)] cos(2wFt), where
F is the carrier frequency, f is the signal frequency, and m is the modulation
index. (2) Use trigonometric identities to show that this signal is composed of three
components: the carrier F and two sidebands F * f. (b) Plot x for F = 20 kHz and
f=1kHzform = 0.5,1,and 2.

Show by direct calculation that the square wave of unit amplitude is represented by
(1.14.5).

Show that the Fourier components of the fixed, fixed string of length L pulled aside
a distance h at its midpoint are A, = (1/n%)(8h/7?)sin(nw/2). Hint: Note this has
the same profile in space as a triangular wave in time over half its period.

{(a) Show that a sawtooth wave falling linearly from +1 to —1 over each period T
of motion can be expressed as f(t) = (1 — 2t/T) for 0 = t < T and repeats for each
period. (b) Determine that the Fourier coefficients for the waveform are A, = 0 and
B, = 2/nwforn = 1,2,3,....

Using the spectral density g(w) of the force F exp(jwt) solve (1.15.13) for the resultant
speed of an oscillator with mechanical impedance Z,,.

One end of a dashpot of mechanical resistance R, is attached to a wall and the
other end is struck at t = 0 by a force F(t) = %8(t) where % = 1 N's is the impulse.
(a) Obtain the speed and displacement of the struck end by the Fourier transform
technique. (b)) Confirm the results of (a) by direct solution of (1.7.1).

(@) Derive g(w) for f(t) = exp(—bt) - 1(t) from (1.15.3). Note the role b plays in
reducing the upper limit of the integration to zero. (b) Derive g(w) for f(t) = 1(¢)
from (1.15.3) by allowing b — 0. Explain physically why this result is acceptable
even though in the limit the integration becomes improper.
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1.15.4. A simple oscillator at rest is struck with a force f(t) = F8(t) where ¥ = 1 N'sis the
impulse. Find the displacement and speed of the mass using Fourier transforms.

1.15.5. Obtain the spectral density for f(t) = exp(jwt) - 1(t) from (1.15.3). Hint: Introduce a
little attenuation by multiplying f(t) by exp(—bt), evaluate the integral, and then let
b— 0.

1.15.6. A simple oscillator at rest is struck with a force F(t) = F- 1(f) where F = 1N. (2) Find
the displacement and speed of the oscillator using Section 1.15. (b) Confirm the
result by direct solution of (1.7.1).

1.15.7. A simple oscillator is suspended vertically with the spring unstretched. At time
t = 0 the mass is released so that it is suddenly subjected to the force of gravity.
Solve for the resulting displacement as a function of time.

1.15.8. Using Table 1.15.1, obtain the spectral density of f(t) = [exp(—bt)sinwt] - 1(#).

1.15.9. Assume that a rectangular wave pulseis turned onatt = Oandis turned offatalater
time At. (2) Show that the wave can be represented by £(t) = [1(t)—1(t—A#)]. (b) Show
that the frequency spectrum of this wave is g(w) = —(j/27w)[1 — exp(—jw AB)].
(¢) Determine the interval Aw between the first two zeros of g(w) along the *w
axes and explain why this contains the most important part of the spectral density.
(d) Show that Aw At = 4.

fH=a1-2¢/T-n] n=t/T=Mm+1)
for all integer n. Retain the same number of terms as in each of the plots for the

square wave in Fig. 1.14.1. Comment on the relative importance of overshoot for
the two waveforms.

1.15.11. (a) Show that the spectral density of cos(wt + @) is
g(w) = 3[8(w — )e® + 8(w + w)e *)

(b) From (a) find the spectral densities of cos wt and sin wt.

[uny
[y
o
pud
N

. (a) Derive the spectrum of the pulse of Fig. 1.15.1. (b) Find the maximum value of
the spectral density. () Find the width Aw of the central peak between the first
nulls and show that this gives Aw At = 4. (d) Find the width Aw’ of the central
peak between the points where the curve has half its maximum value and show
that this gives Aw' At = 2.4, Hint: Use trial and error to obtain the relevant value

of wAt/2.
1.15.13. If the pulse in Fig. 1.15.2 has unit amplitude, show that

1w . w
glw) = P sm(ékn-;)—)



Chapter2

TRANSVERSE MOTION:
THE VIBRATING STRING

2.1 VIBRATIONS OF
In the previous chapter it was assumed that the mass moves as a rigid body
with no rotation so that it could be considered concentrated at a single point.
However, most vibrating bodies are not so simple. For example, the diaphragm of
a loudspeaker has its mass distributed over its surface and the cone does not move
as a unit. The same occurs for a piano string and for the surface of a cymbal. Rather
than beginning with the study of such complicated vibrations, we consider first
the ideal vibrating string, the most readily visualized physical system involving
the propagation of waves. Even this simple system is a hypothetical one; certain
simplifying assumptions must be made that cannot be completely realized in
practice. Nevertheless, the results obtained are extremely important because they
yield a fundamental understanding of wave phenomena.

2.2 TRANSVERSE WAVES ON A STRING

If a portion of a stretched string is displaced from its equilibrium position and
released, it is observed that the displacement does not remain fixed in its initial
position, but breaks up into two separate disturbances that propagate along the

1 aft +h al ~d
Strh"‘;&, one mOV}rg to the nght and the other to the left with equai speeq, as

suggested by Fig. 2.2.1. Furthermore, it is observed that the speed of propagation
of a small disturbance is independent of the shape and amplitude of the initial
displacement and depends only on the mass per unit length of the string and
its tension. Experiment and theory show that this speed is given by ¢ = /T/py,
where ¢ is in m/s, T is the tension in N, and p; is the linear density (mass per unit
length) of the string in kg/m. A propagating transverse disturbance is referred to
as a transverse traveling wave.

37
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T\

{a) Initial disturbance att =0

N\ 7N\
—— —_—
(b) Separate disturbances at t; >0

N\ N\
- —
(¢) Separate disturbances at 5 > ¢4

Figure 2.2.1 Propagation of a transverse
disturbance along a stretched string. (a) Initial
stationary disturbance at t = 0. (b) Disturbances
moving to right and left at ¢, > 0. (¢) Disturbances
moving to right and left at ¢, > t,.

2.3 THE ONE-DIMENSIONAL WAVE EQUATION

By considering the forces that tend to return the string to its equilibrium position,
it is possible to derive a wave equation. Solutions of this wave equation satisfying
the appropriate initial and boundary conditions will completely define the motion
of the string.

Assume a string of uniform linear density p; and negligible stiffness, stretched
toa tension T great enough that the effects of gravity can be neglected. Also assume
that there are no dissipative forces (such as those associated with friction or with
the radiation of acoustic energy). Figure 2.3.1 isolates an infinitesimal element of
the string with equilibrium position x and equilibrium length dx. If the transverse
displacement of this element from its equilibrium position y is small, the tension
T remains constant along the string and the difference between the y components
of the tension at the two ends of the element is

df, = (Tsin6)ysay — (TsinG), (2.3.1)

where 6 is the angle between the tangent to the string and the x axis, (T sin )+
is the value of T'sin 6 at x + dx, and (T sin #), is its value at x. Applying the Taylor’s

Figure2.3.1 Forces acting on a string element
of length ds.
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series expansion

foe+ dx) = £ + ( i ) dx + z(jxé ) I (232)
to (2.3.1) gives
(T sin 1 (T sin 8)
dfy = [(Tsm())x ;%—dx+ J (Tsin@), = ou p %) dx (2.3.3)

where we have retained only the lowest-order nonvanishing terms. If  is small,
sin # may be replaced by dy/Jx and the net transverse force on the element becomes

dy azy
df, = g (Tax) dx = dx (2.3.4)

Since the mass of the element is p; dx and its acceleration in the y direction is
9%y /a2, Newton’s law gives
aZ

df, = prdx— (2.3.5)
i at?

«

Combination of (2.3.4) and (2.3.5) then yields a one-dimensional wave equation,

Py 1%y
— = __Z 2.3.
ax2 % ot? (2.3.6)
where the constant ¢? is defined by
¢ =T/pL (2.3.7)

2.4 GENERAL SOLUTION
OF THE WAVE EQUATION

Equation (2.3.6) is a second-order, partial differential equation. Its complete solu-
tion contains two arbitrary, but twice differentiable, functions

y(x, t) = yi(ct — x) + yalct + x) (24.1)
one of argument (¢t — x) and the other of argument (ct + x). Direct substitution of
1 and y; into the wave equation and successive applications of the chain rule with
the arguments w = (ct = x),

of _dfow _ df . of _dfow _ _df 2.4.2)

c +
ot dw ot dw ax dw dx dw
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will verify that they are solutions. Examples of such functions include log(ct * x),
(t + x/c)?, sinfw(t = x/c)], expljw(t = x/c)], and cosh(ct * x).

2.5 WAVE NATURE OF THE GENERAL SOLUTION

Consider the solution ¥ (ct — x). At time ¢; the transverse displacement of the string
is given by yi(ct; — x1), as suggested by Fig. 2.5.1a. At a later time £, the same
displacement will be given by y;(ct, — x2), as suggested by Fig. 2.5.1b. A particular
value of the transverse displacement found at x; when t = t; will be found at

position x; when t = t; if

ct1 —x1 =chz —x2 (2.5.1)
Thus, this point of the waveform has moved a distance

Xy —x1 = c(t — t1) (2.5.2)

to the right The shape of the disturbance remains unchanged and travels along the
string to the right at a constant propagation speed c. The function i {ct — x) thus
represents a wave traveling in the +x direction. The speed ¢ with which a particular
value of 1, propagates along the string is called the phase speed. It is important
to note that, while the waveform propagates with phase speed c, the material
elements of the string move transversely about their equilibrium positions with
particle speeds given by u(x,t) = dy1/9t. This same argument can be applied to a
wave traveling in the —x direction.

The wave shape remains constant as the initial disturbance progresses along the
string. This mathematical conclusion is never exactly realized in practice, since the
assumptions made in deriving the wave equation are never completely fulfilled
for real strings, which always have some bending stiffness and are acted on by

dissipative forces. Waves traveling along real strings become distorted. For the
relativelv flexible strings and the low dam_mno nnrmal]v encountered in musical

relatively flexible strings and the dam orm encountered
instruments, the rate of distortion is quite shght if the amphtude of the disturbance
is small. For large amplitudes, on the other hand, the change of wave shape may

be pronounced.

ba (Ct1 —x'|)
A
(£2) | @)
| X2
|<-—c(t2 -t )—>l

X1

| y1(ct2—x2)
| N—— )

Figure 2.5.1 A transverse wave
traveling to the right. (#) Waveform at

ti. (b) Waveform at £, > #. The wave
propagates with no distortion and phase
speed ¢ = (x2 — x1)/(t2 — t1).

(t9)
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2.6 INITIAL VALUES
AND BOUNDARY CONDITIONS

The functions yi(ct — x) and y»(ct + x) are determined by the initial values and
the boundary conditions. For the freely vibrating string, initial values at t = 0 are
determined by the type and point of application of the exciting force applied to
the string. For example, the initial wave shape set up by striking a string (when
a piano is played) is quite different from that established by plucking a string (a
harp or guitar) or in bowing a string (a violin); the functions representing the wave
shape are consequently different. They are further determined by the boundary
conditions at the ends of the string. Actual strings are always finite in length and
must be held in some manner at their ends. For example, if the supports of the
strings are rigid, the sum y; + ¥, is constrained to have zero value at all times at the
points of support. When a string is driven to steady-state conditions by a periodic
external driving force, the functions y; and y, are periodic with the same frequency,
but their other characteristics (such as amplitude of vibration) are determined by
the point of application of the force and by the boundary conditions.

2.7 REFLECTION AT A BOUNDARY

Assume that a string is rigidly supported (fixed) at x = 0. Then yi(ct — x) and
y2(ct + x) are no longer completely arbitrary since their sum must be zero at all
times at x = 0. A moment’s thought reveals that this boundary condition can be
satisfied if

y(0,8) = y1(ct —0) + y2(ct +0) = 0 (2.7.1)

As may be seen in Fig. 2.7.1, the process of reflection at a rigid boundary can be
considered as one in which the wave moving to the left is transformed into a wave
of opposite displacement traveling to the right,

y(x, 8) = yi(ct — x) —y1(ct + x) (2.7.2)

/<y2

T

—<—F — (@)
\._"—<

Y1
x=0

— A/y=y1 +y2
B S~

Figure 2.7.1 Reflection of a transverse wave
traveling to the left from a rigid end. In (4), the
dashed-line segment of wave y, is shown being
reflected to become the solid-line segment of wave
y1. The resultant wave, shown in (b), travels to

the right. Note that the displacementatx = Qs
always zero.



42 CHAPTER 2 TRANSVERSE MOTION: THE VIBRATING STRING
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Figure 2.7.2  Reflection from a free end. In (a), the
dashed-line segment of wave y; traveling to the left is

h hot £ Ty H 1
shown being reflected to become the solid-line segment

of wave y;. The resultant wave, shown in (b), travels to
the right. Note that the slope at x = 0 is always zero.

Another example of a simple boundary condition is an end supported so that,
although the string is held taut, there is no transverse force on the string. Such
an end is termed a free end. The absence of a transverse force requires Tsin 6 to
vanish. This means that the incident and reflected waveforms must have equal and
opposite slopes with respect to x, and this in turn means that the waveforms have
identical profiles (viewed from the directions into which they are propagating).
Thus,

y(x,t) = y1(ct — x) + y1{ct + x) (2.7.3)

The process of reflection at a free boundary may be considered as one in which the
wave moving to the left is reflected into an identically shaped wave of the same
displacement traveling to the right (Fig. 2.7.2) so that the slope dy/dx is zero at the
boundary.

2.8 FORCED VIBRATION
OF AN INFINITE STRING

The simplest type of vibration that can be set up on a string results from the
application of a transverse sinusoidal driving force to one end of an ideal string of
infinite length. Since all real strings are of finite length, this particular problem may
seem to be of purely academic interest, but its analysis is justified. (1) It furnishes a
simple introduction to the study of vibrations of strings of finite length that aids in
the understanding of the transmission of acoustic waves. (2) With carefully chosen
termination at one end, a string can act as if it were infinitely long.
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Consider an ideal string of infinite length extending to the right from x = 0,
stretched to a tension T, with a transverse driving force F cos wt applied at the
end x = 0. Assume that the end does not move in the x direction but is free to
move in the ¥ direction. As in the previous chapter, let us replace Fcoswt with
the complex force f(t) = Fexp(jwt). Since the string extends infinitely far in the
positive x direction and is excited into motion by the force at its left end, the
solution must contain only waves moving to the right,

y(x, t) = yilct — x) (2.8.1)
The boundary condition at x = 0 requires
y(0,t) = Ae*! (2.8.2)

where A is a complex constant (whose amplitude and phase eventually will be
related to the driving force). Combination gives

yi(ct) = Ae) (2.8.3)

where the wave number k is defined by

k=w/c (2.8.4)

The solution for all x must be A exp[jk(ct — x)] or
y(x,t) = A~k (2.8.5)

Figure 2.8.1a shows the shape of the string at two instants of time and Fig. 2.8.1b the
time histories of two points on the string. The elements of the string execute simple
harmonic motion about their equilibrium positions with frequency f = w /27 and
period T = 1/f. The shape of the string at any instant is a sinusoid of amplitude
A = |Al. At fixed time, the shape is a function of x, and when x changes by an
amount A so that kA = 27, the displacement and slope of the string are as before.
The distance A between these corresponding points is called the wavelength and
we see that

A=2m/k (2.8.6)

This waveform moves to the right with a phase speed ¢ = /T/p; and is called
a harmonic traveling wave. Because the waveform moves one wavelength in a time

c= A (2.8.7)

a relationship fundamental to all wave motion. Note that (2.8.7) can also be ob-
tained from (2.8.4) by expressing k as 277 /A and w as 27f.

To relate the amplitude of the wave to the driving force, consider the forces
applied to the left end of the string, as shown in Fig. 2.8.2. Since there is no mass
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b

Figure 2.8.1 A harmonic wave traveling to the
right: (a) spatial behavior at two closely occurring
times, with A the wavelength; and (b) temporal
behavior at two closely spaced positions, with T the

period.
£
T
-~ 0 N
?g\ N
0 \ _/ N o

Figure 2.8.2  Forces acting on the end of

a driven string. The vertical component of
the tension T sin # acting on the driver is
balanced by f, the vertical component of the
force of the driver on the string.

concentrated at the end of the string, the driver must provide the force necessary
to exactly balance the tension: opposite to Tcosf horizontally and opposing
Tsin @ vertically, as suggested in the figure. Therefore, the total transverse force
(f + Tsin 6) on the string at the left end must vanish, so that for small values of 6

f = —T(‘;—y) 2.8.8)
ax /.o
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where the minus sign denotes that the applied force must be directed downward
when (dy/dx),—o is positive. Thus, we see that the slope of the string at the
forced end is determined by the applied force and the tension in the string,
(3y/9x)x=0 = —£/T. [For example, if f = O so that the end of the string is free to
move transversely, then (dy/dx),—¢ = 0. This is the boundary condition for a free
end, as stated in Section 2.7.] Substitution of f = F exp(jwt) and (2.8.5) into (2.8.8)
gives

Fe“t = —T(—jk)Ad“* (2.8.9)
so that

(F/jkT)e @t~k (2.8.10)

y(x, )
and the particle speed u = dy/Jt becomes
u(x, ) = (F/proyd @ (2.8.11)

Now, let us define the input mechanical impedance Z of the string as the ratio of
the driving force to the transverse speed of the string at the driving point (x = 0),

Zmo = £/u(0,) (2.8.12)

Then for the case of the infinite string
Z.o = pLC (2.8.13)

The input impedance of an infinite string is a real quantity so that the mechanical
load offered by the string is purely resistive. This is to be expected, since an infinite
string can propagate energy only away from the driver. The input impedance of

an infinite string is a function only of the tension of the string and its mass per

unit length. Independent of the applied driving force, it is thus a characteristic
property of the string and not of the wave. For this reason it is called the characteristic
mechanical impedance of the string. It is analogous to the characteristic electrical
impedance of an infinitely long electrical transmission line.

The instantaneous power input to the string is II; = fu with u evaluated at
x =0, or

I1; = (Fcoswt)[(F/ prc) cos wt| (2.8.14)
The time average over one cycle gives the average power input,
Il = F*/2prc = 1prcl (2.8.15)
where
= |u(0,#)] = F/prc (2.8.16)

is the speed amplitude of the string at x = 0.
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2.9 FORCED VIBRATION
OF A STRING OF FINITE LENGTH

The behavior of a string of finite length forced at one end is considerably more
complicated than that of the infinite string. The wave reflected from the support at
the far end of the string coexists with the wave traveling toward the support and in
turn is reflected from the driven end. However, when the steady state is attained,
the solution must be expressible in terms of two harmonic waves traveling in
opposite directions:

y(x, t) = Ad@IF) | Bellwttkx) (2.9.1)

where the complex amplitudes A and B are determined by the boundary conditions.
Let us consider several classes of termination.-

(a) The Forced, Fixed String

Assume that a string is driven at one end and fixed at the other. At the left end,
the boundary condition is (2.8.8)

‘wt &_y =
Fe*! + T(ax B 0 (2.9.2)

at all times. Substitution of (2.9.1) into this boundary condition gives
F+T(—jkA +jkB) = 0 (2.9.3)

Since the string is rigidly supported at x = L, the displacement at this point is
always zero so that

Ae R 4 Bl = @ (2.9.4)

Solving (2.9.3) and (2.9.4) simultaneously for A and B, we have

A= F
2jkT cos kL
’ (2.9.5)
g _ FeM
2jkT coskL
Substitution of these constants into (2.9.1) gives
F .
= = Aflet+(L=%)] . flet—k(L—x)]
yxf) 2jkT cos kL (e’ ¢ ) (2.9.6)
or factoring the exp(jwt) and simplifying,
F sin[k(L — .
Y(x, t) = _Mgiwf (2‘9.7)

kT  coskL
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Thus, we have two different but equivalent ways of looking at the solution:
(2.9.6) can be interpreted as two waves of equal amplitudes and wavelengths
traveling in opposite directions on the string. On the other hand, (2.9.7) describes
a waveform that does not propagate along the string; instead, the string oscillates
while the waveform remains stationary. Such a wave is called a standing wave and is
characterized mathematically by an amplitude that depends on the position along
the string. These two descriptions reveal that a combination of waves of equal
amplitudes traveling in opposite directions gives rise to a stationary vibration
with a spatially dependent amplitude. This ability to view standing waves as
combinations of traveling waves, and vice versa, will often be utilized in dealing
with wave motion.

Consideration of the term sin[k(L — x)] in (2.9.7) shows that there are positions,
called nodes, where the displacement is zero at all times. These locations are given
by k(L —x) = gmforg = 0,1,2,..., = kL/m. The positions x, of the nodes are then

x,=L—qA/2  g=012,...,<2L/A (2.9.8)

A representative standing wave is shown in Fig. 2.9.1, where the instantaneous
displacements of the string at various times have been sketched. The distance
between nodes is A/2. The moving portions of the string between the nodes are
called loops, and the positions of maximum displacement are called antinodes.

Note that the position of the driver with respect to the nodes is a function of
frequency. If L is an integral multiple of A/2, a node will occur at the position of
the driver. If the frequency is then increased, the wavelength decreases, causing
the node to migrate away from the driver. An antinode will exist at the driver for
driving frequencies such that L is an odd multiple of A/4.

The migration of the nodes with varying driving frequency is accompanied
by some startling changes in the amplitude at the antinodes. The denominator of
(2.9.7) becomes zero at driving frequencies such that coskL = 0,

kL= 2n—Dmw/2  n=123... (2.9.9)

T

Node Antinode

Figure 2.9.1 The shape of a string of length L at several different times
for a standing wave. The nodes are separated by A/2.
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Since w/k = c, this gives
frn = [2n = 1)/4}(c/L) (2.9.10)

The string has its strongest vibrations when the driving frequency has one of the
values f.,. These are the resonance frequencies. The infinite amplitudes of vibration
predicted by (2.9.7) at resonance do not occur in actual strings because the
assumptions of small 8, constant T, and no losses are violated. However, the
amplitude will be a maximum at these frequencies. Note that at resonance there is
an antinode at the driven end, so that u(0, f) is as large as possible.

Similarly, the frequencies for which the amplitude is a minimum are determined
by the condition coskL = *1,

kL = nm n=1,23,... (2.9.11)
or
Jan = (n/2)(c/L) (2.9.12)

[It will be observed from (2.9.7) that these minimum amplitudes decrease pro-
gressively with increasing frequency.] These frequencies are the antiresonance
frequencies. At antiresonance, there is a node at the driven end, so that u(0,t) = 0.
[In reality, the presence of dissipation causes u(0, t) to be finite, but small; this will
be studied in more detail later.]

The input mechanical impedance Z,, is given by (2.8.12),
Z..0 = Fe“ /u(0,?) (2.9.13)
which for the case of the forced, fixed string yields
Z,y = —jprccotkL (2.9.14)

This impedance is a pure reactance so that no power is absorbed by the string. (For
a lossless string with a fixed end, there is no way for energy to leave the system.)
Consideration of the input impedance leads to the same conclusions: whenever
cotkL = 0, the input impedance is zero and the amplitude of vibration is conse-
quently a maximum. The resonance frequencies of any mechanical system are defined
in general as those frequencies for which the input mechanical reactance Qoes to zero.
For the forced, fixed string this yields the resonance frequencies given by (2.9.10).
At the antiresonance frequencies given by (2.9.12), Z,; is infinite and the motion
of the driven end of the string is infinitesimally small, although the remainder
of the string is in motion. When Z,, is not purely reactive, the specification of
antiresonance becomes more complicated. This will be investigated in Chapter 3.
For very low frequencies the input impedance has the limiting value

Zmo — —jpre/kL = —jT/wL (2.9.15)

which is identical with the input impedance of a spring having stiffnesss = T/L.

Caution should be exercised in applying the concepts of resonance and an-
tiresonance as developed above to a real driven string. In any physically realiz-
able system, the driving force (usually originating from an electrical voltage) is
transferred to the string through a transducer. This transducer has a mechanical
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Fig.2.9.2 The forced, mass-loaded string.
The string is driven at x = 0 and the mass is
constrained to move transversely at x = L.

impedance of its own, which can significantly affect the behavior of the system.
The full implications of this will be left until the discussion of the driven pipe in
Chapter 10.

*(b) The Forced, Mass-Loaded String

If the string is terminated at x = L not with a rigid support but with one possessing
inertance so that it behaves like a mass, as sketched in Fig. 2.9.2, then analysis of the motion
becomes more complicated. As before, the solution must still be of the form (2.9.1), and the
boundary condition at x = 0 is stili (2.9.2),

, d
Fé® + pi (—y) =0 (2.9.16)
ox x=0

where we have replaced T with p.c2.

The condition at x = L is now different: the force applied to the mass must be
—T(dy/dx),-1 since a negative slope at x = L results in an upward force in the +y di-
rection. By Newton’s second law this becomes

EPETC AT L
pLC (ax)x:L m(ojt2 )FL (29.17)

F = —p (—jkA + jkB) (2.9.18)
as before, but substitution into (2.9.17) gives a new equation
—pLP(—jkAe™™ + kBe*) = m(jw)*(Ae - + Be*) (2.9.19)
Solution for A and B gives

ikl

_ Fe*™ 1+ (jom/prc)
2wprc (wm/ prc)coskL + sinkL

_ Fe ™ 1 — (jom/ prc)
2wprc (om/ prc)coskL + sinkL

(2.9.20)

Note that A and B are complex conjugates. The wave traveling to the left has the same am-
plitude as that traveling to the right. The complex speed of the string, u = dy/dt = jwy, is

_]. F cos[k(L — x)] — (wm/ p;c) sin[k(L — x)]

jot 29.
prc (wm/ prc)coskL + sinkL € (29.21)

u(x, b) =
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and the input mechanical impedance is

(om/prc) + tankL
1 — (wm/ prc) tankL

Zoy = jprC (2.9.22)

Again, Z,, is purely reactive.
Resonance frequencies occur when the input reactance vanishes, which is equivalent to
equating the numerator of Z,,o to zero. This results in

tankL = —(m/mg)kL (2.9.23)

where m; = p;L is the mass of the string. There is no explicit solution of this transcendental
equation. For very small mass loading, m << m;, and for values of kL that are not too large,
tankL ~ 0 or kL =~ n, the condition of resonance for a forced, free string. Such a result is
to be expected, since for very light loading the string is essentially free at the end x = L.
Similarly, for heavy mass loading (m > m,) the mass acts very much like a rigid support,
and the resonance frequencies approach those of a forced, fixed string. The general case
of intermediate mass loading can be solved readily with a hand calculator or by graphical
means. If we plot both tankL and —(m/m,)/kL on the same axes as functions of kL, the
resonance frequencies will correspond to the values of kL for which the curves intersect.
For example, in the special case m = m;, the values of kL satisfying (2.9.23) are

kL = 2.03,4.91,7.98,... (2.9.24)

as shown in Fig. 2.9.3. The lowest resonance frequency, given by kL = 2.03, is f; =
(2.03/27)(c/L). This lies between the lowest resonance frequency of a forced, free string and
the lowest resonance frequency of a forced, fixed string. The higher resonance frequencies
are not integral multiples of the lowest resonance frequency. For example, the ratio of the
frequency of the second resonance to that of the lowest resonance is 4.91/2.03 = 2,42,

The locations of the nodes on the string are altered by mass loading. The nodes fall
where u(x, t) = 0, found from the vanishing of the numerator of (2.9.21):

tan[k(L — x;)] = prc/wm qg=201,2...,=2L/A (2.9.25)

T

tan kL and kL
[}
-

-8

-10—

Figure2.9.3  Graphical solution of tankL. = —kL for the resonance frequencies of a
forced, mass-loaded string with m = m;. The roots are kL = 2.03,4.91,7.98, ....
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Since the right side of this equation gets larger as the frequency decreases, the node found at
xp = L for very high frequencies moves to smaller values of x as the frequency is lowered,
until at very low frequencies it is one-quarter wavelength from the end and there is an
antinode at x = L. This means that the end at x = L appears rigid at high frequencies and
free at low frequencies.

*(c) The Forced, Resistance-Loaded String

For a final example of the behavior of a forced string of finite length, let the end atx = L
be attached to a dashpot constrained to move transversely. The trial solution is (2.9.1) and
the boundary condition atx = 0 is (2.8.8). Now, however, aty = L we must have the force
R,(dy/dt)x— balancing the force —T(dy/dt);~, s0O

2 (9Y dy
— 2 = it 2.9.
pLe (ax )x=L R"” (ﬂt )x—L ( K 26)

We could continue toward a solution as before, but a little subtlety will save a lot of work.
The solution must behave as exp(jwt), so that (2.9.26) can be rewritten as

ay R, (d%y
—pic* (5)“ = (W B (2.9.27)

Note that if we replace m in (2.9.17) with R,,/jw, then (2.9.17) and (2.9.27) become the same:
we can use the formulas of the preceding example if we substitute R,, for jom everywhere.
This yields new expressions for A and B,

_ FeiL 1+ (Rm/PLC)
2wpic (Ry/jpc) coskL + sinkL (2.9.28)
Fe /i 1—(R/pL0)

B =~
2wpic (R /jpic) coskL + sinkL

Thus A and B are no longer equal in amplitude. Indeed, [B|/|A| = |pic— Rn|/(prc+Ry) = 1
so that the wave traveling to the left has smaller amplitude than that traveling to the right.
This is physically plausible: since the dashpot dissipates energy, more must flow into it
than out of it. This new result will have significant effects on the wave pattern of the string.
The complex speed is found by substituting Ry, for jom in (2.9.21),

F coslk(L — )] + j(Ru/ pro) sinlk(L — x)]

= et 29.2
uxf) pLC (Rn/ prc) coskL + jsinkL (29:29)
and the mechanical input impedance likewise is found from (2.9.22),
7z (Ry/pLc) + jtankL (2.9.30)

"0 = PLY IR,/ pre) tankL
Detailed analysis of this and similar forced, resonant systems will be undertaken in

Chapter 3, where it will be seen that in general R,, or jwm is replaced by Z,,, the mechanical
impedance of the termination. Here we content ourselves with two observations:

1. The speed amplitude U(x) = |u(x, t)| is found from (2.9.29):

) B ) .2 B 1/2
F (cos [K(L — x)] + R/ prc)* sin”[k(L x)]) _F  numerator

@ pLc (Rn/ pr.C)? cos? kL + sin? kL pc denominator  (29.31).+
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The numerator varies between 1 and R,/ p; ¢ as x decreases from L to 0, and the denominator
has fixed finite value that depends on the driving angular frequency w = kec. Thus, U(x)
has relative maxima and minima, but no exact nulls.

2. In the special case R,, = p;c¢ the string behaves exactly like one of infinite length. There
is no reflection from the terminated end at x = L when the impedance of the termination
is matched to the characteristic impedance of the string.

2.10 NORMAL MODES
OF THE FIXED, FIXED STRING

Let us now turn our attention to a different class of solutions to the wave equation
for finite strings. Rather than forcing the string into motion by driving one end,
let the string be fixed at both ends and excited into motion by some initial
displacement (or impact) along its length, much like a plucked guitar string or
struck piano string.

Since the string is fixed at both ends, the boundary conditions are y = 0 at
x = 0and x = L. A trial solution satisfying the wave equation is

y(x,t) = Ad@! R 4 galwtthy) (2.10.1)
and application of the boundary conditions gives

A+B=0

. . (2.10.2)
Ae L L B = (

The first of these requires B = —A and this, substituted into the second, gives

2jAsinkL = 0 (2.10.3)

This second boundary condition can be satisfied two ways. (1) Let A = 0. This

gives y = 0, the trivial solution of no motion. (2) Let sinkL = 0. This choice
requires

kL=nm n=1,23,... (2.10.4)

(The value n = 0 is not allowed, since for the string fixed at both ends this
also corresponds to no motion.) This equation shows that only the discrete
valuesk = k, = nw /L lead to solutions. Furthermore, since w /k = ¢, only certain
frequencies are allowed,

fo = wa/2m = (n/2)(c/L) (2.10.5)
Thus, there is a family of solutions, each of the form
yu(x, ) = An(sink,x)e“t (2.10.6)

where A, is the complex amplitude of the nth solution.
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If we replace A, with A, — jB,, then the real transverse displacement of the nth
solution is

yu(x, t) = (A;coswut + By sinw,t)sink,x (2.10.7)

The constants A, and B,, must be determined from the initial conditions.

Application of the boundary conditions has limited the viable solutions of the
wave equation to a series of discrete functions (2.10.7). These functions are called
eigenfunctions or normal modes. [Strictly speaking, the spatial function sink,x is
the normal mode and y,(x, t) is the product of the normal mode with the related
oscillatory function of time. However, y, is often referred to as the normal mode,
and we will sometimes adopt that usage.] Associated with each of these solutions
is a unique frequency known as the eigenfrequency, natural frequency, or normal
mode frequency. For the fixed, fixed string of our example, the eigenfrequencies are
given by (2.10.5), and use of A,f, = ¢ shows that L = nA,/2. An integral number
of half-wavelengths encompasses the length of the fixed, fixed string.

The normal mode with the lowest eigenfrequency has n = 1 and is called the
fundamental mode. Its eigenfrequency fi = 2(c/L) is called the fundamental or first
harmonic. The eigenfrequencies withn = 2,3,... are called overtones. In the case of
the fixed, fixed strings, f, = nf1, and the overtones are harmonics, integral multiples
of the fundamental. Thus, the second harmonic is the first overtone, and so forth.
(Another less confusing terminology, which should be more widely accepted,
names the overtones as partials; by convention, the fundamental is the first partial,
the second harmonic or first overtone is the second partial, and so forth.) As we will
see in the next section, for more realistic boundary conditions the overtones of a
freely vibrating string are not necessarily integral multiples of the fundamental.
(Equivalently, the second and higher partials are not harmonic with the first.)

The complete solution for a rigidly supported, freely vibrating string is the sum
of all the individual modes of vibration represented by (2.10.7):

o)

y(x, t) = Z(A" cos wyt + By, sinwyt) sink,x (2.10.8)

=1

Assume that at time t = 0 the string is distorted from its normal linear
configuration, the displacement at each point being

y(x,0) (2.10.9)

and the corresponding speed being

‘ll”\/‘ n\ - {(97
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t=0

Now, if (2.10.8) is to describe the position of the string at all times, it must represent
itatt = O0so that

My M — ZA" sin k,x (2.10.11)
n=1
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Its derivative with respect to time must also represent the speed att = 0 and hence

u(x,0) = > w,Bysinkyx (2.10.12)

n=1

Applying the Fourier theorem (Section 1.14) to (2.10.11) and (2.10.12) gives

n rL
A, = iJ y(x, 0) sink,x dx
L j,
(2.10.13)
2 L
B, = J u(x, 0)sink,x dx
wnL 0

(a) A Plucked String

Assume that a string is initially pulled aside a distance h at its center and then
released. Here u(x, 0) is zero and all coefficients B,, will vanish. Applying the results
of Problem 1.14.2 gives

A, = [8h/(nm)?]sin(nm/2) (2.10.14)
so that A2 = A4 = A6 =+ =0 and Al = 8h/7T2,A3/A1 = —1/9,A5/A1 =
1/25, and so forth. The values of the coefficients A, determine the amplitudes of the
various harmonic modes of vibration of the string. All vibrations corresponding
to the even harmonics are absent. Each of these absent modes has a node where
the string was initially pulled aside. Harmonics having a node at the point where
the string is plucked cannot be excited.

(b) A Struck String

If the string is struck a blow at its midpoint, then the initial distribution of
transverse speed can be approximated as u(x,0) = US(x — L/2) where AU has
dimension m?/s. Since there is no initial displacement, all the coefficients A,, are
zero in (2.10.8). The coefficients B, are given by (2.10.13),

B, =

20y (L , 29U . nw
w,,LJ 8(x — L/2)sink,x dx = o SN (2.10.15)

0
As with the string plucked at its midpoint, harmonics (the even ones) having a
node where the string is struck are absent. The odd harmonics are present with
relative amplitudes B,/B; = 1,—1/3,1/5,—1/7,... for odd n.

*2.11 EFFECTS OF MORE REALISTIC
BOUNDARY CONDITIONS ON THE FREELY
VIBRATING STRING

Any yielding of the supports modifies the motion of the string, for the boundary conditions
are no longer y = 0 at its ends. Instead, at these points the impedance of the string must
equal the transverse mechanical impedance of the support.
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Assume that the left end of the string is attached to a support whose mechanical
impedance is Z,,. For example, let the string be attached at x = 0 to an undamped harmonic
oscillator. The mechanical impedance of the oscillator presented to the string at x = 0 is
Zqo = jl@wm — s/w). This assumption, that the support can be replaced by the elements of a
simple harmonic oscillator constrained to move transversely to the string, is representative
of many real interactions wherein the support exhibits inertia and resilience. The transverse
force f exerted by the string on the mass is given by

/(QV\
f= Tk—’) 2.11.1)
ax x=0

The boundary condition at x = 0is u(0,t) = £/Zyo. Using (2.11.1) gives

1 Iy
= _T[|2 A1,
u(0, ) ZmoT(o"x )x:O (211.2)
Similarly, the conditionatx = Lis
@ =—-o1(% (2.11.3)
wl,f) = —7-T{ 2 - 1.

havas 7 th £
WNETE Ly, is the mechanical mlpedance of the suppe** atx = L.

If the mechanical impedance at the support is infinite, then the above requires u(L, f) = 0
and therefore y(L,t) = 0, the condition for a fixed end. If the support offers no restraint
to the transverse motion of the string, its mechanical impedance is zero and the boundary
condition must be (dy/dx),-1 = 0, the condition for a free end.

(a) The Fixed, Mass-Loaded String

Assume that the string is fixed at x = 0 and that the support at x = L can be characterized
by a mass m. The boundary conditions are

u,f) =0

. T {‘9}'\ (2.11.4)
jom \ox |,

Application of the first boundary condition to the general harmonic solution (2.9.1) yields

wll ¢
W L, o

y(x,t)' = —2jA(sinkx)e! (2.11.5)
Substitution of this into the second boundary condition then gives
jw sinkL = —(T/jom) coskL (2.11.6)
This can be rearranged,
cotkL = (m/my)kL (2.11.7)

where m, = p,L is the mass of the string. Figure 2.11.1 illustrates the graphical solution of
(2.11.7) for a few values of m/m;. If m/m; is large, the solutions approach kL = n7 and the
string behaves as if it were fixed at both ends. As m/m; is reduced, the allowed values of
kL increase, thereby raising the normal mode frequencies. Furthermore, these frequencies
are no longer related by integers: the overtones are not harmonics of the fundamental. Since the
frequencies are raised and there must be a node at x = 0, the last node at the other end of
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Figure 2.11.1  Graphical solution of cotkL = (m/m;)kL for the normal
modes of a fixed, mass-loaded string with m/m, = 0.5,1.0,2.0.

the string lies within x = L. As the mass gets smaller, this last node moves toward L — A/4
and in the limit m/m, = 0 there is an antinode at x = L.

(b) The Fixed, Resistance-Loaded String

As a second (quite different) case, consider the effects on the standing wave of a support
having finite resistance and no reactance. Assume that the string is fixed at x = 0 and
attached at x = L to a dashpot constrained to move transversely. The boundary conditions
are

u0,) =0 and wu(l,t) = —Dl(ﬂ) (2.11.8)

Ry \6’.& Je=L

Because of the damping provided by the dashpot, the standing wave will decay with
time. As in Section 1.6, we introduce the complex angular frequency ® = w + j8, where
w is the angular frequency and B is the temporal absorption coefficient. Since there are no
losses on the string except at the boundary, our solution must still satisfy the lossless wave
equation (2.3.6) and, since #’y/d# = —w?y, we are led to the result ¢’y/dx? = —(@/c)’y.
This suggests solutions of the form

y(x, £) = etk (2.11.9)
where the spatial factor has a complex wave number k = k + je given by
o’ =k or w=ck (2.11.10)

Now relate k and & to @ and . Substitution of @ = w + jB and k = k + ja into (2.11.10)
and collection of real and imaginary parts gives

(@ —ck) +j(B —ca) = 0 (2.11.11)
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Both real and imaginary parts must vanish. This yields the pair of relations
w/k=c and B = ac (2.11.12)
Substitution of the trial solution
y(x, 1) = Ael@tk ¢ Beltetk (2.11.13)

into the boundary conditions yields

y(x, 1) = —2jA(sin kx)e™"

(2.11.14)
sinkL = j(prc/R,,)coskL
This last equation must be satisfied by both its imaginary and real parts,
coskLsinhaL = (p.c/R,)coskL coshaL
oskLsinhal = (pe/R») sh (2.11.15)

sinkLcoshaLl = (prc/R,)sinkL sinh aL

(Readers unfamiliar with trigonometric functions of complex angles should consult Ap-
pendix A3.) Selving simultaneously, we get two possible solutions:

sinkL = 0 and tanhalL

p1¢/ Ry (2.11.16)
or
coskL = 0 and tanhaL = R, /p:c (2.11.17)

For weak damping, R,, << p;c rules out the first possible solution (2.11.16) because tanh x
must always be less than unity. Then, since tanhx =~ x for x << 1, the second possibility
(2.11.17) gives

al = Ry /pic (2.11.18)

andkL = (n— %)fn so that, since the end atx = 0is fixed, the end at x = L is an antinode. In
this limit of small damping we can use the approximations sinh ax =~ ax and coshax = 1
in (2.11.14) with the result that the particle displacement has magnitude

ly(x, )] = 24e™*“[sin* kx + (ax)® cos* kx]'/? (2.11.19)

The wave pattern resembles that of the fixed, free string, but the motion decays exponentially
with a temporal absorption coefficient 8 = ac and the nodes (occurring where sinkx, = 0)
are not exactly zero but have amplitude 2ax, A exp(—act). Analogously, the antinodes have
amplitude 2A exp(—act).

(¢) The Fixed, Fixed Damped String

Up to this point we have neglected the effects of the surrounding medium on the motion
of the string. One effect of the medium provides a resistive force that opposes the motion.
As with a simple oscillator, this frictional force damps the free vibrations and reduces their
frequency slightly. Part of the energy being dissipated by the string heats the surrounding
medium and part goes into the radiation of sound.

Losses resulting from the motion of the string through the surrounding medium can be
accounted for by introducing a dissipative term into the wave equation for the string. We
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can be guided by the form of the differential equation for the damped harmonic oscillator.
The loss term is proportional to the particle speed and is additive to the acceleration. Thus,
an appropriate wave equation including losses is

Jy 3y _ L9y _
=5 +2p5 Cza_x? =0 (2.11.20)

In assuming a trial solution, we can be guided by the previous example. We expect
damping, spatial and/or temporal, so a plausible starting point is (2.11.13),

y(x, t) = Ae@ ) 3 Beflwitin) (2.11.21)

where both @ and k can possibly be complex. Let the string be fixed at x = 0 and x = L.
Application of the boundary conditions gives

y(x,£) = —2jA(sinkx)e™
sinklL =0

(2.11.22)

The only way the boundary condition at x = L can be satisfied is for the wave number to
be pure real, k = k. It is easy to see that this must be true for any combination of boundary
conditions that does not allow energy to be taken from the string by a support. Now, direct
substitution of (2.11.22) into the lossy wave equation (2.11.20) and recognition that k must
be replaced with k gives the equation that w must satisfy,

o’ - 2jBw = K (2.11.23)
Solution is immediate,
o = [(ck)* - BAV* +jB (2.11.24)

and the physical interpretation of the result is straightforward. The real part is the natural
angular frequency w, of the damped string. The product ck is the natural angular frequency
wy of the identical string without damping. The relationship is w; = /w3 — B2, exactly as
for the damped oscillator [see (1.6.10)]. The temporal absorption coefficient is B8, also just
as before. The slightly lower natural frequency for the specified wave number means that
the phase speed for the standing wave on the damped string is decreased slightly. It is easy
to show (see Problem 2.11.8) for the cases of motion described by standing waves that the
phase speed c; with damping is related to the phase speed ¢ of the undamped string by
ci/c = J1—(B/w)2

Similar results can be obtained for waves traveling on an infinitely long damped string.
In this case, it is the wave number that ends up being generalized to a complex quantity
whose imaginary part is the spatial attenuation factor a. Analysis is left to Problem 2.11.9.

Another effect of the medium is to add an effective mass per unit length to the string.
This may not be negligible in a liquid medium, or at low frequencies in a gaseous medium.
An analytical treatment of this additional inertance on a vibrating system is not considered
here but is dealt with in Chapter 8.

2.12 ENERGY OF VIBRATION OF A STRING

A vibrating string contains kinetic energy because of the speeds with which its
various portions are moving, and potential energy because the string must be
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stretched as it is deformed from its rest position. (Refer to Fig. 2.3.1.) The element
of string between x and x + dx has a mass py dx, and if it moves with speed dy/Jt
its kinetic energy dEy is
dEx = Lpi(oy/ oty dx (2.12.1)
This element is also stretched to a length ds because of the deformation. Since the
left end of the element has transverse displacement y(x,t) and the right end is
displaced y(x, t) + (dy/Jdx) dx, the increase in length is
ds — dx = [(dx)® + (ay/ox)2(@dx)*]V? —dx = {[1+ (ay/ox)*]"* — 1}dx (2.12.2)

For the small displacements assumed, this can be simplified with the approxima-
nJl+e=1+¢/2,

ds — dx = %(&y/ ax)? dx (2.12.3)

The product of the tension T = prc? of the string and the extension of the element
gives the potential energy of deformation,

dE, = pLc*(dy/ox)* dx (2.12.4)

The energy per unit length dE /dx is the sum (dEy/dx + dE,/dx),

dE _ 1 &y 1oy Y

and the total energy of the string is the integration of the energy per unit length
over the entire length of the string

1 2 1ayV
E = spic Jf mng[(?i) .(E%)}dx (2.12.6)

As an example, let us apply this to the case of the freely vibrating string fixed at
x = Oand at x = L. The real displacement for each mode is given by

Yu(x, t) = Ay sink,xcos(w,t + 6,) (2.12.7)

where k,. = nwmandn = 1,2,3,.... The total displacement of the string is the sum

Yoo t) = > yalx,t) (2.12.8)
n=1

When the total displacement is squared and substituted into (2.12.6), there will
be products sink,xsink,x and cosk,xcosk;x. It is straightforward (and left as
an exercise) to show that when these individual products are integrated over the
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length of the string, the result is

L

L
J (sinkyxsink,x) dx = J (cos kyx cosk,x) dx = %Snm (nm#0) (2.12.9)
0 0

where the Kronecker delta 8,,, is unity for n = m and is zero otherwise. Thus, all the
cross terms vanish, and the only remaining products are those for which n = m

and whose integrations are each L/2. The result is that the total energy is simply
the sum of the energies of the individual modes,
E= E E, (2.12.10)
"
and the energy contained in each mode is
=1 2 _ 1,112
E, = jpL(w,Ay)" = 3mU;, (2.12.11)

where U, = wyAy, is the maximum amplitude of the particle speed of each mode
and m; = p;L is the mass of the string.

For this fixed, fixed string plucked in the middle (pulled aside a distance h and
released), the modal amplitudes are given by (2.10.14). Substitution gives

4hV¥ < 1 , (b}
E = myc? (EZ) > 5 = 2mgc (E) (2.12.12)

odd

with the help of 1 +1/3% + 1/5% + -+ = #*/8. (This summation is verified in
Problem 2.13.6.) The energy of the fundamental is 9 times that of the third
harmonic, 25 times that of the fifth, and so on.

It is quite evident that variations in the position at which the string is plucked
will alter the harmonic content and therefore the quality of the sound.

*2.13 NORMAL MODES, FOURIER’S THEOREM,
AND ORTHOGONALITY

We have seen that in some standing waves the total energy of the system is simply the sum
of the energies present in each vibrating mode. Furthermore, we have found that expressing
the collective motion of the string as a Fourier superposition of the normal modes of the
system is often a relatively straightforward process. Those cases presenting the easiest
possibilities for analysis of motion and the distribution of energy satisfy an orthogonality
condition. It is appropriate at this point to discuss some aspects of orthogonality and the
advantages in dealing with systems whose normal modes exhibit this condition.

First, consider a lossless system excited into motion by some initial condition. We found
that such systems could be represented as a summation of appropriate normal modes,
each with a wave number k, and multiplied by an oscillating function of time with natural
angular frequency w, = ck,.

Given the wave equation (2.3.6), assume that the vibration of the system it describes can
be represented as a composite of oscillatory functions of time. Try solutions of the form

yx, t) = Y(x)e@*® (2.13.1)
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with the Y’s yet to be determined. Substitution into the wave equation results in a second-
order differential equation for Y(x),
a2y

e Y =0 (2.13.2)

where k = w/c. This is a one-dimensional Helmholtz equation (sometimes called a “time-
independent wave equation”). Its general solution can be written as

Y(x) = Acoskx + Bsinkx (2.13.3)

The boundary conditions atx = 0 and x = L determine the allowed wave numbers k, (and
thereby the allowed natural angular frequencies w,). Thus, there will be solutions

Ya(x, 1) = Yn(x) cos(wnt + ¢n) (2.13.4)

where the initial phase angles are determined by the initial conditions. The functions Y(x)
are the normal modes of the system.

An important property of the solutions Y, can now be established. Let us multiply the
Helmbholtz equation for Y, by Y,, and vice versa:

y,,,ﬁ_? + Y, K2Y, =0
- (2.13.5)
azy
zZm JEYy =
Y, I + Y.k, 0

Now, subtract one from the other, rearrange, and integrate the result over the distance
between the boundaries of the string:

L L &Y, Y,
2 - k,z,,)L Y,Y,, dx = L (Y,, el Yo i )dx (2.13.6)
The integrand on the right is a perfect differential, so (2.13.6) becomes
L
L
(K —K) ( Y,Y, dx = ( Y_n@fﬂ - Y, d,Y”\‘ (2.13.7)
Jo \ " dx dx /|

0

A little examination shows that for any combination of fixed and free ends, the right side
of the above equation vanishes for all combinations of # and m. On the left, therefore,
the integral must vanish unless (k2 —%2) = 0. In the special case n = m both sides are
zero regardless of the value of the integral. These conditions define orthogonality. A set of
functions Y, is orthogonal over a specified interval L if the integration of all products Y, Y,
of the functions over L vanish except for the case n = m. In our example, the Y, form an
orthogonal set if

el

J Y, Y, dx = CySrum (2.13.8)
0

where 8, is the Kronecker delta defined in (2.12.9). If the amplitudes of the Y,’s are so
chosen that C, = 1, then the functions are normalized and the set is termed orthonormal.

Note that there is nothing sacred about the choice of x as the independent variable in the
Helmholtz equation. An equally valid Helmholtz equation is

&f o
St e =0 (2.13.9)
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If “boundary” conditions are imposed at + = 0 and t = T that are consistent with the
vanishing of the right side of

@k = o) [ it = (n % fmdf)o

then the set of functions f, is an orthogonal set.

An example of an orthogonal set of functions was presented in Section 1.14. It can
be shown by direct integration that the Fourier components, sinnwt and cosnwt for
n=20,1,2,..., form an orthogonal set over the interval 0 = t = T, where T = 27.

Given orthogonality, a very useful relationship can be verified quite easily. If f(t) is
expanded in a set of orthonormal functions f,(t),

(2.13.10)

= iunfn(t) (2.13.11)

then the 2 can be related to an integration of f2(t) by Parseval’s identity,

J t) dt = Za (2.13.12)

(See Problem 2.13.5.) Specifically, if this is applied to the Fourier series written in (1.14.1),
the identity becomes

T oo
2 (f) dt = ey (A% + B?) (2.13.13)
T /o 270

n=1

Whether we are dealing with a periodic function of time f(f) or a periodic function
of space Y(x), the use of orthogonal functions can simplify description of the system
considerably. For example, in calculating the energy of the freely vibrating fixed, fixed
string, the manipulations could have been simplified with the use of orthogonality. From
the above discussion, it is clear that the functions sin k,x with k,L = n7forn = 1,2,... are
an orthogonal set over the interval 0 < x =< L, as are the functions cosk,x. Consequently,
in the integration of the energy density over the length of the string, the only terms that will
not integrate to zero are those for whichn = m.

2.14 OVERTONES AND HARMONICS

As noted previously, the lowest natural frequency of a vibrating system is termed
the fundamental, and the higher natural frequencies are termed overtones. We have
also seen that, if the supports of a string are perfectly rigid, the overtones are
harmonics; but if otherwise, the overtones are in general not harmonic.

Nonharmonicity of the overtones is often encountered in musical instruments.
For example, the vibration of a violin string is coupled to the sounding board by
a bridge for more efficient radiation of energy. The bridge then acts as a reactive
termination since it must flex somewhat to communicate motion to the sounding
board. As a result, the natural frequencies resulting from the free vibration of the
plucked string will be slightly nonharmonic.

Another effect that is sometimes important is that the free vibrations of many
real strings differ from those of an idealized string: if the string has innate bending
stiffness, as is true for a piano string, then the observed overtones will be higher
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than predicted on the basis of an ideal string. Since the effect of stiffness increases
with increasing frequency, the higher overtones of a real piano string become
increasingly sharp with respect to the fundamental. It is just this effect, plus the
fact that the piano string is not rigidly fixed at both ends, that gives the piano some
of its distinctive tonal quality. This also contributes to the fact that a well-tuned
piano has a “stretched” scale—the high notes tend to be a little sharp and the low
notes a little flat. Pianos are commonly designed so that the point of impact of the
hammer is about one-seventh to one-eighth of the way from one end of the strings.
This would suggest that these seventh or eighth partials should be nearly absent.
In reality, the finite width of the hammer, its mass, and its “rest” on the strings
allows these partials to be excited. (When the guitar or violin string is plucked,
however, partials are suppressed as expected from the placement of the finger.) If
the displacements of the piano strings are studied after they are struck, it will be
seen that the motions tend to decay (because of the loss of energy), the different
overtones decaying at different rates. Equally significant, since the overtones are
nonintegral multiples of the fundamental, the waveform is not stationary but
shows considerable change in shape as the relative phases of the fundamental and
overtones change with time. This is true for most percussive instruments, such as
timpani, cymbals, plucked violin, piano, xylophone, woodblocks, and so forth. The
sound they generate is a superposition of slowly decaying fundamental and more
rapidly decaying nonharmonic overtones.

Instruments that are blown or bowed, on the other hand, like the oboe, bowed
violin, organ, trumpet, and so forth, are forced vibrating systems. In this case, the
forcing function is usually made up of harmonics. (The violin string is pulled to
one side by the rosined hair of the bow until it snaps back and is reacquired by
the bow; the motion is something like a sawtooth wave with a well-defined period
and identical cycle-to-cycle behavior.) The motion of air within the clarinet and the
associated periodic clapping of its reed are identically repeated cycle by cycle. Thus,
the steady-state notes produced by these driven instruments consist of frequencies
that are integral multiples of the lowest driving frequency. The relative amounts
of these higher overtones control the tone color or timbre of the instrument.

It must be remembered, however, that these forced vibrations are initiated at
some definite time so that there is an initial interval during which the transient
vibrations are also strong enough to be heard. These affect the sound in much
the same way as the transient solution affects the initial behavior of the forced,
damped oscillator. This transient is often of considerable importance in identifying
a particular instrument: the ear seems to exhibit memory in that these initial effects
aid in keeping track of each instrument while others are also sounding. Even
though an individual instrument contributes negligible power to the output of a
full orchestra, the mind is often able to make use of these transient “fingerprints”
as one aid in identifying a particular instrument in the general uproar.

Problems

2.3.1. What forms do the equations of motion for an idealized string take if either (4) the
linear density varies with position, or (b) the string hangs vertically supported only
at the upper end?

2.4.1. By direct substitution show that each of the following is a solution of the wave
equation: (a) fi(x — cf), (b) Infa(ct — x)], {c) alct — x)?, and (d) cosla(ct — x)]. Similarly,
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show that each of the following is not a solution of the wave equation: {e) a(ct — x?)
and (f) at(ct — x).

Sketchy = Aexp(—alct — x|) for# = 0,1, and 2s. Letc = 5cm/s,a = 3cm™?, and
A = 1cm. What is the significance of the displacement of these curves?

2.7.1C. Constructa waveform of finite spatial extent of your choice (right triangle, isosceles

triangle, semicircle, etc.) that moves to the right with constant speed without
changing shape. Then construct a waveform moving to the left with the shape
required to simulate (4) a fixed end and (b) a free end.

2.7.2C. Construct a waveform of finite spatial extent of your choice (right triangle, isosceles

2.8.1.

2.8.2.

2.8.3.

2.9.1.

294.

2.9.5,

triangle, semicircle, etc.) that simulates an initially stationary displacement in the
middle of a string with fixed ends. Simulate the subsequent motion of the string
as the initial displacement separates into two oppositely moving waves that reflect
twice from the fixed ends and recombine into the initial shape.

Consider the waveform y = 4 cos(3t — 2x) propagating on a string of linear density
0.1 g/cm, where y and x are in centimeters and ¢ is in seconds. (a) What are the
amplitude, phase speed, frequency, wavelength, and wave number? (b) What is the
particle speed of the elementatx = Qatt = 0?

An infinite string (—< < x = 0) of linear density p; and under tension T is attached
at x = 0 to a second infinite string (0 < x < ) under the same tension but of linear
density 2p; . If a wave of angular frequency w and amplitude A is traveling in the +x
direction on the first string, find the amplitude of the wave traveling on the second
string.

An infinite string (—® < x = 0) under tension T is attached at x = 0 to two parallel
infinite strings (0 < x < =) under tensions T/3 and 2T/3, respectively. The linear
density py. is the same for all strings. If a wave of angular frequency w and amplitude
A is traveling in the +x direction on the first string, find the amplitudes of the waves
traveling on each of the other two strings.

Evaluate the mechanical impedance seen by the applied force driving an infinite string
at a distance L from a fixed end. Interpret the individual terms in the mechanical
impedance.

. Evaluate the mechanical impedance seen by the applied force driving a simple

harmonic oscillator with an infinite string extending transversely from the mass.

. A string is stretched between rigid supports a distance L apart. It is driven by a force

F cos wt located at its midpoint. (2) What is the mechanical impedance at the midpoint?
(b} Show that the displacement amplitude of the midpoint is (F/2kT) tan(kL/2).
{c) What is the amplitude of the displacement of the point x = L/4?

A string of density 0.01 kg/m is stretched with a tension of 5 N from a rigid sup-
port at one end to a device producing transverse periodic vibrations at the other
end. The length of the string is 0.44 m, and it is observed that, when the driving
frequency has a given value, the nodes are spaced 0.1 m apart and the maximum
amplitude is 0.02 m. What are the (4) frequency and (b) amplitude of the driving
force?

(@) Assume that a forced, fixed string is driven by a source that has constant
speed amplitude u(0,t) = U exp(jwt), where Uy is independent of frequency. Find
the frequencies of maximum displacement amplitude of the standing wave. (b)
Repeat for a source that has a constant displacement amplitude y{0,¢) = Y, exp(jwt).
(¢) Contrast the results of () and (b) with the frequencies of mechanical resonance
for the forced, fixed string. (d) Does mechanical resonance always coincide with
maximum amplitude of the motion?
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2.9.6.

29.7.

2.9.8C

2.9.9C

Note that the input reactance of the forced, mass-loaded string also vanishes when
the denominator of Z,y becomes infinite. This occurs when tankL = p.c/wm or
tankL = (m,/m)/kL, which is the reciprocal relationship of that of (2.9.23). Show
that for large kL this means that the two possible solutions occur for values of kL
spaced about /2 apart. These alternate solutions correspond to the condition of
antiresonance, which will be investigated in a later chapter.

A string of length L, tension T, and linear density p; is fixed at one end and free at
the other. Find the resonance frequencies if the string is driven in the middle.

. Plot the envelope of the standing wave on a forced, fixed string for a range of
frequencies and constant driving force amplitude. (7} Comment on the amplitude
of the maximum displacement and the position of the node closest to the driver
as a function of frequency. (b) As functions of frequency, plot the displacement
amplitude of the driver, the maximum displacement amplitude of the string, and
the magnitude of the input mechanical impedance. Comment on significant aspects
of these plots.

. (a) Find the lowest three resonance values of kL for the driven, mass-loaded string
with m/m, = 1. (b) In terms of the resonance number n, write an expression for
kL valid for large values of kL. (c) For a constant amplitude driving force, plot the
shape of the string for several frequencies above and below the lowest resonance
frequency.

2.9.10C. A driven, resistance-loaded string is terminated in a load resistance R,, = 0.1p.c.

2.9.11.

2.10.1.

2.10.2

2.10.3,

2.11.1.

2.11.2.

(a) Plot the real and imaginary parts of Z,y for 0 < kL < 3. (b) Plot the amplitude
of the particle speed as a function of position for several frequencies on each side
of those for which the mechanical reactance in (2) equals zero.

(a) Show that the expression (m/m,)kL in (2.9.23) can be expressed as the ratio of
the mass at x = L divided by the mass of the string per loop of wave. Hint: Use
kL = nm. (b) Express the restriction “m << m, and kL not too large” in terms of the
mass of the support and the mass per loop. (¢) In these terms, characterize a free end
and a fixed end atx = L.

A stretched string of length L is plucked at a position L/3 by producing an initial
displacement h and then releasing the string. Determine the resulting amplitudes
for the fundamental and the first three harmonic overtones. Sketch the wave shapes
of these individual waves and the shape of the string resulting from the linear
combination of these waves at t = 0. Repeat for f = L/c, where c is the transverse

wave speed on the string.

Given a string, fixed at both ehds, with p;, L, and T specified so that the phase
speed c and the fundamental resonance frequency f are known numbers, obtain the
phase speed ¢’ in terms of ¢ and the fundamental resonance f' in terms of f if another
string of the same material is used but: (a) the length is doubled, (b) the mass per
unit length is quadrupled, (c) the cross-sectional area is doubled, ()} the tension is
reduced to half, and (e) the diameter of the string is doubled.

Show that the work done in displacing the center of a fixed, fixed string by an
amount # equals the sum of the energies present in the various modes of vibration
when the string is released.

Find kL for the normal modes of a fixed, spring-loaded string when T = sL. Sketch
the waveforms for the fundamental and the first overtone.

A mass of 0.2 kg is hung from a string of 0.05 kg mass and 1.0 m length. (#) What
is the speed of transverse waves on the string? (Neglect the weight of the string
in computing the tension.) (b)) What are the frequencies of the fundamental and
first overtone modes of transverse vibration of the string? (c) When the string is
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2.11.3.

2.11.4.
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vibrating at its first overtone, what is the ratio of its displacement amplitude at the
antinode to that of the mass?

Show for the fixed, resistance-loaded string that if the resistance R,, is much
greater than p;c then the string has nodes at x = L and the absorption is given by
aLl = p;c/R,, . Does the motion resemble that of a fixed, fixed string?

A string of linear density 0.01 kg/m and of 0.2 m length is stretched between rigid
supports to a tension of 10 N. It is loaded at its center with a mass of 0.001 kg. (a)
What is the fundamental frequency of the system? (b)) What is the first overtone
frequency of the system? (c) What is the frequency of the second overtone? Hint:
Note that the fundamental and even overtones are symmetric about the center of
the system, whereas the odd overtones are antisymmetric.

2.11.5C. A fixed, mass-loaded string has m/m; = 1. (a) Find kL for the first three normal

modes. (b) In terms of the mode number. n, write an expression for kL valid for
large values of kL. (c) Compare these latter frequencies to the resonance frequencies
of a driven, mass-loaded string with the same m /m; as found in Problem 2.9.9C.

2.11.6C. A fixed, resistance-loaded string has R,, = 0.4p.c. (4) Use the weak damping

approximation to plot the shape of the third harmonic at times equal to the
first five periods of the motion. (b) Show that the nodes and antinodes decay as
predicted.

2.11.7C. For the fundamental of a fixed, fixed string with fluid damping (8 = 0.1), plot

2.11.8.

2.11.9.

(a) the shape of the string for five consecutive periods and (b) the maximum
displacement of the middle of the string as a function of time. (c) From this last
graph, find the time for the displacement to decay to 1/e of its initial value and
compare to the value predicted from 8.

Derive the ratio of the phase speed c, of a string immersed in a damping medium to
the phase speed c for the same string when there is no damping.

Aninfinitely long damped string is excited atits end atx = 0so that the displacement
of that end is given by y(0,f) = exp(jwt). Write the complex wave number as
k = k; — jo, where @ is the spatial attenuation factor. (a) Verify that the complex
angular frequency w is pure real, ® = w. (b) Show that k;/k = /1 + (a/k)? where
k is the wave number in the absence of damping. (c) Show that the ratio of the phase
speed without damping to that with is c/c; = /1 + (@/k)2. (d) In the case of small
damping, a/k << 1, find a good approximate relationship between a/k and 8 /w
for traveling and standing waves on strings of the same composition and tension.
(¢) How do the phase speeds for damped standing and damped traveling waves
compare?

2.11.10. Following the derivation of Section 2.11(c), obtain the behavior of the fixed, free

2.12.1.

2.12.2.

2.13.1.

damped string.

Assume that there are two excited modes on a fixed, fixed string. Demonstrate that
(2.12.10) is true.

A standing wave on a fixed, fixed string of length L = 31.4 cm and linear density
0.1 g/cmis given by y = 2sin(x/5) cos(3t), where y and x are in centimeters and t is
in seconds. (a) Find the phase speed, frequency, and wave number. (b)) What is the
amplitude of the particle displacement and speed atx = L/2 and x = L/4? (¢) Find
the energy density at these points. (d) How much energy is in the entire length of
the string?

By direct evaluation of (2.13.7) show that the normal modes of the freely vibrating
string form an orthogonal set if the string is (a) fixed, fixed, (b) free, fixed, (c) free,
free.
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2.13.2.

2.13.3.

2.13.4.
2.13.5.

2.13.6.

(#) Do the normal modes of the freely vibrating fixed, mass-loaded string form an
orthogonal set? Show why your answer is true. (b) Repeat for a fixed, spring-loaded
string,.

(2) Show that the collection of functions

fo=@/DV?
fi = @/T)?cosnwt  forn+#0
gn = (2/T)?*sinnwt

form an orthonormal set over 0 < t < T, where T = 2. (b) Show that if the f(f)
of (1.14.1) is expanded in this set of functions in the form

5]

f(8) = D (@uf + bugn)

n=0
then the respective coefficients are related by

2 = (TY2/2)A,
a, = (T/2)V?A, forn #0
bn = (T/z)l/an

Use the results of Problem 2.13.3 to verify (2.13.13).

Verify Parseval’s identity by direct substitution of (2.13.11) into (2.13.12) and inte-
gration.

Use Parseval’s identity to verify that 1+ 1/3* +1/5% + -+ = 7?/8 as asserted in the
text following (2.12.12). Hint: Start with the square wave and its Fourier series and
substitute into the identity.



Chapter 3

VIBRATIONS OF BARS

3.1 LONGITUDINAL VIBRATIONS OF A BAR

Another important wave motion is the propagation of longitudinal (compressional)
waves, often encountered in solid bars (and, at low frequencies, in gas-filled tubes
and ducts with rigid walls). As a longitudinal disturbance moves along a bar,
the displacements of particles of the bar are essentially parallel to its axis. When
the lateral dimensions of the bar are small compared with its length, each cross-
sectional plane of the bar may be considered to move as a unit. (Actually the
bar shrinks somewhat laterally as it expands longitudinally, but for thin bars this
lateral motion may be neglected.)

A number of acoustic devices utilize longitudinal vibrations in bars. Frequency
standards used for producing sounds of definite pitches can be constructed from
rods of various lengths. When longitudinal vibrations are excited in such rods, the
frequency of vibration is observed to be inversely proportional to the length of the
rod (if all are of the same composition). Longitudinal vibrations in nickel tubes are
often used to drive the vibrating diaphragm of a sonar transducer. Piezoelectric
crystals may be cut so that the frequency of longitudinal vibration in a selected
direction in the crystal is used either to control the frequency of an oscillatory
electric current or to drive an electroacoustic transducer.

Studying longitudinal vibrations of bars also aids in understanding acoustic
waves. The mathematical expressions for the transmission of acoustic plane waves
through fluid media are very similar to those for the transmission of compressional

~la Al
waves nlﬁ“g a bar. If the ﬂ‘-.‘dd is CGI‘;.flucd to a 1151\4 t"]:’c' there is dais0 a Ciose

analogy between the boundary conditions.

3.2 LONGITUDINAL STRAIN

Consider a bar of length L and uniform cross-sectional area S subjected to
longitudinal forces. The application of these forces will produce a longitudinal
displacement ¢ of each of the particles in thebar, and for thin bars this displacement

638
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Figure 3.2.1 Longitudinal strain d¢ /dx
of an element of length dx in a bar.

will be essentially the same at all points in any particular cross section. Thus, ¢ is
assumed to be a function only of distance x along the bar and time ¢,

£ = Ex, f) (3.2.1)

Let the coordinates of the left and right ends of the barbe x = 0 and x = L, and
consider a short segment dx of the unstrained bar lying between x and x + dx.
Assume that the forces cause the plane originally located at x to move a distance £
to the right, and the plane originally located at x + dx to move a distance £ + d£ to
the right (Fig. 3.2.1). The convention adopted in this book is that a positive value of
¢ signifies a displacement to the right (and a negative value to the left).

At anyr Hmo + far amall Av tha dianlacomiont at v L dv ~Aan ha ranracantad hy tha
LAl Al I.y TALLICT IV Ollldll UA LG \..I.J.DPJ.G.\.CI.LI.CI. LlLdt A | UA LAl UC l.ClJJ.CDCJ. (810 o Oy |5 B 1w

first two terms of a Taylor’s series expansion of £ about x,
£+ dE =&+ (08/ox)dx (3.2.2)

Since the left end of the segment has been displaced a distance £ and the right end
a distance £ + d¢, the increase in length of the segment is given by

(£ +dE)— & = dE = (9€/0x) dx (3.2.3)

The strain in the segment is defined as the ratio of its change in length d¢ to its
original length dx, or

strain = 9¢/dx (3.2.4)

3.3 LONGITUDINAL WAVE EQUATION

Whenever a bar is strained, elastic forces are produced. These forces act across each
cross-sectional plane in the bar and hold the bar together. Let f = f(x, ¢) represent
thana lamaiti1Ainal farmane sirharna Hha anemsranbiam 10 adamdad AL Alhancimae A 1aciiims
LLICOCT 1V lsu.uuu 1dl 1UILCS, VWIICIT LT CULLVCLLILIULL 1D auul,) ICU UL CITIUUDIL 15 a ,UUDLL (1%«

value of f to represent a force of compression, as indicated in Fig. 3.3.1, and a negative

f—*%////%r‘—“f*df

x x +dx

Figure 3.3.1 Compressional forces on an element
of length dx in a bar.
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value to represent a force of tension. This choice of sign is the opposite of that
conventionally taken by many material scientists but has the distinct advantage for
us of making the compression of a solid by a positive increment of force analogous
to the compression of a fluid by a positive increment in pressure.

The stress in the bar of cross-sectional area S is defined as

stress = f/S (3.3.1)

For most materials, if the strain is small the stress is proportional to it. This
relationship is known as Hooke’s law,

£/S = —Y(dg/dx) (3.32)

where Y, the Young's modulus or modulus of elasticity, is a characteristic property of
the material. Since a positive stress results in a negative strain, the minus sign in
(3.3.2) ensures a positive value for Y. Values of Y for a number of common solids
are given in Appendix A10. Rewriting (3.3.2), we obtain

ol >/

f = —S5Y(d¢/dx)

—
@
Ga
)

N"

as an expression for the internal longitudinal forces in the bar.
If f represents the internal force at x, then f + (Jf /9x) dx represents the force at
x + dx, and the net force to the right is

df = f—[f+ (8f/9x) dx] = —(df /dx)dx (3.3.4)
Use of (3.3.3) yields
df = SY(9%¢ /ox*) dx (3.3.5)
The mass of the segment dx is pSdx, where p is the density (mass per unit
volume) of the bar. Therefore, the equation of motion of the segment is
(pS dx)(%E /9t?) = SY(3%¢/ax*)dx (3.3.6)
or
g% 19%
2 AR (3.3.7)

A comparison of (3.3.7) with the corresponding (2.3.6) for the transverse motion
of a string shows that they have identical form, with longitudinal displacement £
replacing the transverse displacement y and the phase speed ¢ now given by

A =Y/p (3.3.8)
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Thus, the general solution has the same form as that for the transverse wave
equation,

Elx, 1) = &t — x) + &(ct + x) (3.3.9)
The complex harmonic solution of (3.3.7) is
E(x, 1) = AdWkD 4 Boilwt+kx) (3.3.10)

where A and B are complex amplitude constants and k = w /¢ is the wave number.

Since Young’'s modulus Y is measured under conditions allowing the strained
rod to alter its transverse dimensions, (3.3.8) gives the phase speed only when the
solid is a thin bar. When the transverse dimensions of the solid are large compared
to a wavelength, a combination of the bulk modulus ® and the shear modulus %
must be used in place of the Young’s modulus to calculate the phase speed. (See
Appendix All.)

3.4 SIMPLE BOUNDARY CONDITIONS

Let the bar be rigidly fixed at both ends, so that§ = Gatx = §and atx = L for all
times £. (The analysis that follows will be seen to be identical with that of Section
2.10 for a rigidly supported vibrating string.)

Application of £ = 0 at x = 0 gives A + B = 0, so that B = —A and (3.3.10)
becomes

E(x, t) = Ad*l(e ® — d**) = —2jAe“! sinkx (3.4.1)
The condition§ = 0 at x = L gives sin kL. = 0, which requires
k.L = nmw n=1273... (3.4.2)

(the same as for a fixed, fixed string). The angular frequencies of the natural modes
of vibration are

wy, = nmwc/L or f, = (n/2)(c/L) (3.4.3)

[identical with (2.10.5)]. The complex displacement &, corresponding to the nth
mode of vibration is

En(x, £) = —2jA,€*" sin kyx (3.4.4)

&i(x, 1) = (A, cos wyt + B, sin w,t)sin k;x (3.4.5)

where the real amplitude constants A, and B, are defined by 2A,, = B, + jA,. The
complete solution is the sum of all separate harmonic solutions,

o0

£(x, 1) = D (Ancos wyt + Bysin wut)sin kex (34.6)

n=1
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If the initial conditions of displacement and speed of the bar are known, Fourier’s
theorem can be used, as in Section 2.10, to evaluate A, and B,,.

Since a solid bar is very rigid, it is difficult to provide supports of greater
rigidity, and the assumed boundary condition is difficult to realize in practice. By
contrast, a free end may be achieved readily by placing the bar on soft supports.

When a bar is free to move at an end, there can be no internal elastic force at
the end, and hence f = 0 at this point. Since f = —5Y(d¢/dx), this condition is
equivalent to

= =0 (3.47)

at a free end.
Consider a free, free bar. The condition ¢¢/dx = 0 applied to (3.3.10) atx = 0
gives

—-A+B=0 or B=A (3.4.8)
so that
E(x, 1) = A (e + ") = 2A6%! cos kx (3.4.9)
Application of 9¢/dx = Oatx = L givessin kL = O or
w, = nme/L n=12273... (3.4.10)

The natural frequencies of a free, free bar are identical with those of (3.4.3) for a
fixed, fixed bar of the same shape and composition. The complex displacement of
the nth mode of vibration is

£.(x, 1) = 2A,6/" cos k,x (3.4.11)

& (x, 1) = (Ancos wyt + B, sin w,t) cosk,x (3.4.12)

where now 2A,, = A, — jB,. In contrast with the fixed, fixed bar, which has nodes
at either end, the free, free bar has antinodes at either end as shown by a cos k,x
term in the above equation, instead of a sin k,x as in (3.4.4). A comparison of the
nodal patterns for these two types of support is given in Fig. 3.4.1. It should be
observed that whenever an antinode occurs at the center of the bar the vibrations
are symmetric with respect to the center: when a segment of the bar left of center
is displaced to the left, the corresponding segment to the right of center is also
displaced the same distance to the left. Similarly, whenever there is a node at the
center, the vibrations are antisymmetric.

A bar may be rigidly clamped at a point without interfering with any mode of
vibration that has a node at this point. However, a mode not having a node at this
point will be suppressed. It is impossible to find a position for clamping a free, free
bar that will not eliminate some of the normal modes.
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Figure 3.4.1 The lowest three longitudinal standing
waves in fixed, fixed and free, free bars.

Next consider a free, fixed bar. Application of ¢§/dx = 0 at x = 0 to (3.3.10)
gives (3.4.9), and applicationof § = Oatx = L yields cos kL = 0. This requires

ki =Q2n—1Dmw/2 n=123,... (3.4.13)
and the natural frequencies are
fo = [2n—1)/4](c/L) (3.4.14)

The frequency of the fundamental is half that of a similar free, free bar, and only
the odd-numbered harmonics are present; the frequency of the first overtone of a
free, fixed bar is three times that of its fundamental. Because of the absence of even
harmonics, the quality of the sound produced by a vibrating free, fixed bar differs
markedly from that produced by a free, free bar.

3.5 THE FREE, MASS-LOADED BAR

In many practical applications, a vibrating bar is neither rigidly fixed nor com-
pletely free to move at its ends. Instead, it may be loaded with some kind of
mechanical impedance, most commonly of the mass-controlled type.

To analyze this type of constraint, consider a bar that is free at x = 0 and is
loaded with a concentrated mass m at x = L. (Ideally, this mass should be a point
mass; otherwise it will not move as a unit but will have waves propagated through

it.) The boundary condition d§ /9x = 0 atx = 0 applied to (3.3.10) leads again to
£(x, t) = 2A¢“! cos kx (3.5.1)
The boundary condition at x = L is obtained by the following argument. Since

a positive value for f was chosen to indicate compression of the bar, the reaction
to such a force will accelerate the mass attached to the right end of the bar toward
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the right. Since the mass is attached to the bar, the end of the bar and the mass
must experience the same acceleration. Thus, the boundary condition must be

_ .. [P
fi = m(ﬁ) (3.5.2)
x=L
or, with the help of (3.3.3),
-SY % =m az—g (3.5.3)
ax ) _, ) "

Applying the above boundary conditions to £ gives kSY sin kL = —mw? cos kL, or
tan kL = —mwc/SY (3.5.4)

There is no explicit solution of this transcendental equation. For very small mass
loading, however, m = 0 so that tan kL = 0 or kL = nm, which is the condition for
the natural frequencies of a free, free bar. Such a result is obviously to be expected,
since for very light loadings the bar is essentially free at both ends. Similarly, for
heavy mass loadings the mass acts very much like a rigid support, and the natural
frequencies approach those of a free, fixed bar.

It should be noted that in practice “fixing” the end of a bar amounts to loading
it with a large mass, the mass of the support. For light bars a heavy support will
act essentially as an infinite mass, and hence like a rigid restraint, but for heavy
bars it may be very difficult, if not impossible, to approximate the fixed condition.

The general case of mass loading can be solved most readily by graphical or
numerical means. It will be convenient to replace Y by pc* and to let m, = pSL
represent the mass of the bar. Then (3.5.4) becomes

tan kL = —(m/my)kL (3.5.5)

This transcendental equation is identical with (2.9.23), developed for the forced,
mass-loaded string, except that m; (the mass of the bar) replaces m; (the mass
of the string). Analysis proceeds exactly as before. If we choose the special case
my, = m, then the allowed values of kL solving (3.5.5) are kL = 2.03,4.91,7.98,....
The nodes of the vibrations must occur where

cos kx = 0 (3.5.6)
and the fundamental mode, for which kL = 2.03, yields a node at
2083x/L =w/2 or x=0774L (3.5.7)

In contrast with the free, free bar, the node is no longer at the center but has shifted
toward the loading mass, as suggested by Fig. 3.5.1. The bar could be supported at
this nodal position without interfering with the fundamental mode of vibration.
Clearly, as the value of m changes from m << m;, to m >=> my,, the position of the
node of the fundamental shifts from x = L/2 to x = L. Thus, the larger the mass
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Figure 3.5.1 Fundamental mode of longitudinal
vibration of a free, mass-loaded bar.

attached to a free, mass-loaded bar, the more the nodes of each normal mode of
vibration are shifted toward the mass-loaded end.

Note that the overtones of the free, mass-loaded bar are not harmonics. The
presence of nonharmonic overtones is sometimes advantageous in practical ap-
plications. As an illustration, consider a mass-loaded nickel tube that is intended
to generate a pure tone and is driven magnetostrictively by alternating currents
in a coil mounted on the tube. Harmonic frequency components other than the
desired fundamental will be present in the output unless the current produced by
the oscillator-amplifier unit driving the tube is well filtered. However, since the
overtones of the mass-loaded tube are not harmonics of the fundamental, they will
not be resonant at the harmonics of the driving current, and hence will be weakly
excited, if at all.

*3.6 THE FREELY VIBRATING BAR:
GENERAL BOUNDARY CONDITIONS

For a freely vibrating bar with arbitrary loading on each end, the normal modes of vibration
can be determined in terms of the mechanical impedance at each end of the bar. If the
mechanical impedance of the support at x = 0 is Z,,, the force acting on this support due
to the bar is

fo = —Zmou(O, t) (361)

where the minus sign arises because a positive compressive force in the bar leads to an
acceleration of the support to the left. On the other hand, a positive compressive force at
the end x = L leads to an acceleration of the adjacent support to the right so that the force
acting on this support is

fr= +Zu(L, t) (3.6.2)

where Z,, is the mechanical impedance of the support at the right end of the bar.
These equations can be expressed in terms of the particle displacement by using (3.3.3)
to replace the compressive force and writing u = 9§/4t,

/

%) _ 2o (a8
( x)x=0 pLC2 (ﬂf )x=0

G\  Zy (9
ax ), _; pct\ot |,

where p; = p§S is the density per unit length of the bar.
The choice of a trial solution satisfying the lossless wave equation for the bar and the
boundary conditions (3.6.3) depends on the natures of the impedances Z,,0 and Z,,. If these

(3.6.3)
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loads are purely reactive, there can be no loss of acoustic energy so that there is no temporal
or spatial damping. An appropriate trial solution would then be (3.3.10). We may go one
step further and notice that, since there are no losses, the wave traveling to the right must
possess the same energy as that going to the left. The amplitudes must therefore be equal,
|A| = |B|. Application of the boundary conditions (3.6.3) then amounts to determining the
phase angles of these complex amplitudes.

On the other hand, if either or both of Z,, and Z,, have resistive components, a more
general trial solution must be assumed. As was noted in the earlier discussion, in Section

2.11(b) on the fren‘y vibrating string terminated by a resistive support, the presence of

resistance requires that there be temporal damping. This means that the temporal behavior
of the vibrating bar must be described by a complex angular frequency @ = w + jB whose
real part is the angular frequency of vibration and whose imaginary part is the temporal
absorption coefficient 8. Since there are no internal losses in the bar, the wave equation is
still (3.3.7). Thus, we postulate

E(x, f) = (Ae~™ + Bel¥)elot (3.6.4)

where k is determined by @ = ck. Application of the boundary conditions (3.6.3) to the
generalized trial solution (3.6.4) yields the pair of equations

A—-B = —(Zw/pc)A + B)

(Zn/ prc)(Ae K + Beh)

(3.6.5)
Ae /i — Bkt

The first equation is solved for B in terms of A and this is substituted into the second
equation. The results are

1+ (Zno/ p16)
1- (ZmO/pLC)

(ZmO /pLC) + (Zm /pLC)
¥ @no/ prO@ni pr0)

B =
(3.6.6)
tan kl. =

Given the impedances Z, and Z,,, the properties of the vibration have been obtained,
although explicit solution is not in general easy. Any resistive component in Z,,o or Z,,
causes the argument of the tangent to be complex, introducing calculational difficulties in
solving this transcendental equation.

*3.7 FORCED VIBRATIONS OF A BAR:
RESONANCE AND ANTIRESONANCE REVISITED

In discussing the behavior of a forced, loaded string (Section 2.9), we defined resonance to
occur when the speed amplitude was as large as possible and antiresonance to occur when
the speed amplitude was as small as possible. It was seen there that resonance corresponded
to the vanishing of the input mechanical reactance and that antiresonance corresponded,
for purely reactive loads, to the reactance becoming infinite. We will now investigate these
concepts in more detail and show that they must be modified for loads with a nonzero
resistive component. We will find that at resonance the speed amplitude is maximized and
at antiresonance it is minimized, but both resonance and antiresonance correspond to the
vanishing of the input reactance.

Assume that a bar of length L is driven at x = 0 with a force f; = Fyexp(jwt) and is
terminated at x = L by a support possessing a mechanical impedance Z,,. We assume the
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trial solution (3.3.10). The boundary condition at the forced end is (3.3.3):

, 6§
Foo*t = —p 2= 71
0 pLC ("x)x=o () )

where p;, = pSand Y = pc?. At the loaded end, the boundary condition is f;, = Z,u(L, t):

55)., = (3 (3.7.2)
\9% ).t pLc? \9t )1 (3.7.2)

Either direct application of these boundary conditions to (3.6.4) or argument by analogy
will determine A and B and the input mechanical impedance.

Let us argue by analogy. Direct comparison of (3.7.1) and (3.7.2) with (2.9.16) and (2.9.17)
reveals that the boundary conditions are identical if we substitute Z,, for jom. Since the trial
solution remains unchanged, the same substitution into (2.9.22) gives a generalized form of
the input impedance,

(Z,/prc) + jtan kL

Z, = pLC 1% (Z/ pro)jtan kL (3.7.3)
If we define a scaled mechanical impedance by
Z,/pic = R/pic+jX/pic = r+jx (3.7.4)
then (3.7.3) can be rewritten as
Zyy _ r + j(x + tan kL) (3.7.5)

pic (1 — xtan kL) + jrtan kL

(Here and to the end of this section, x represents the scaled mechanical reactance.)

It is left as an exercise to show that for r = 0 the input impedance is purely reactive and
vanishes for frequencies such that tan kL. = —x and becomes infinite when tan kL = 1/x.
Since the driving force amplitude is assumed constant, the vanishing of the input impedance
Z,, = fy/u(0, ) means that the speed amplitude at the point of application of the force
is infinite, the condition for mechanical resonance (tan kL = —x). On the other hand, when
the input impedance becomes infinite, the speed amplitude at the driver goes to zero, the
condition for mechanical antiresonance (tan kL. = 1/x).

When the load resistance is not zero, the input impedance (3.7.5) has vanishing reactance
if the phases of numerator and denominator are the same. This provides the condition

x + tan kL rtan kL
r ~ 1-xtankL (3.7.6)
which can be rewritten as a quadratic
xtan? kL + (r* + x* — 1)tan kL —x = 0 (3.7.7)

Under the condition |[r? + x* — 1| > 2|x| and with the help of /1 + & = 1 + &/2 for small ¢,
the roots are approximately

[ x/(P+ 2% — 1)
tan kL ~ (3.7.8)
(P +x*-1)/x
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Assume that the mechanical support at the right end of the bar has small losses so that
r << 1. Then x must be either large (x => 1) or small (x << 1). In either case, the pair of roots
simplifies to

-x
tan kL =~ { (3.7.9)
1/x

Substitution of these roots into (3.7.5) gives (1) for tan kL =~ —x
Zy/pc—~r (3.7.10)

regardless of whether x =>> 1 orx << 1, and (2) for tan kL = 1/x
Zo/ prc ~ 1/1 (3.7.11)

whether x is large or small. (These results are approximate, but simple. Higher accuracy
would require much more mathematical manipulation and would result in expressions
more complicated than warranted for our discussion.) For small load resistance and both
large and small load reactance, the first root tan kL ~ —x corresponds to resonance, since
the input impedance is real and small so that the velocity at the driving point has large
amplitude. The second root tan kL =~ 1/x corresponds to antiresonance since the input
impedance is real and large so that the velocity amplitude at the driving point is small.
Both resonance and antiresonance frequencies occur when the input mechanical reactance
vanishes. The input resistance is small at resonance and large at antiresonance.

These observations are consistent with the standing wave having large amplitude at
resonance and small amplitude at antiresonance. For example, for the forced, nearly free
bar there must be an antinode close to the end at L so that the maximum particle speed
within the bar is nearly U, = |u(L, #)|. The power transmitted from the bar into the load at
L is approximated by

I~ LR (3.7.12)

Ra—=

while the power sent into the bar both at resonance and at antiresonance is
I = 1F3/R, (3.7.13)

where R, is the input mechanical resistance found from (3.7.5). Since the bar itself is
assumed to be lossless, these powers must be equal and we can solve for the approximate
antinodal speed amplitude, U; = Fy//RyR. Substitution of the appropriate values of Ry
gives U, = Fy/R at resonance and U; = F,/p.c at antiresonance, so that

U (antiresonance) ~ R
U (resonance) pLe (3.7.14)

Since we have assumed R << pic, it is clear that the standing wave has much greater
amplitude at resonance than at antiresonance.

Examination of the case r >> 1 leads to analogous results and the same conclusions about
resonance and antiresonance.

*3.8 TRANSVERSE VIBRATIONS OF A BAR

A bar is capable of vibrating transversely as well as longitudinally, and the internal coupling
between strains makes it difficult to produce one motion without the other. For example, if
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Figure 3.8.1 Bending strains and stresses set
up by the transverse displacements at the ends
of an element of a bar of length dx with radius

of curvature R.

a long thin bar is supported at its center and set into vibration by a hammer blow directed
along the axis of the bar, any slight eccentricity of the blow results in predominantly
transverse vibrations rather than the desired longitudinal vibrations.

Consider a straight bar of length L, having a uniform cross section S with bilateral
symmetry. Let the x coordinate measure positions along the bar, and the y coordinate the
transverse displacements of the bar from its normal configuration. When the bar is bent
as indicated in Fig. 3.8.1, the lower part is compressed and the upper part is stretched.
Somewhere between the top and the bottom of the bar there will be a neutral axis whose
length remains unchanged. (If the cross section of the bar is symmetric about a horizontal
plane, this neutral axis will coincide with the central axis of the bar.)

Now consider a segment of the bar of length dx, and assume that the bending of the bar
is measured by the radius of curvature R of the neutral axis. Let 8x = (3¢/dx) dx be the
increment of length, due to bending, of a filament of the bar located at a distance r from the
neutral axis. Then the longitudinal force df is given by
df = —YdS (8 y = =YdS (9¢/3x) (3.8.1)
where dS is the cross-sectional area of the filament. The value of 8x for the particular filament
considered in Fig. 3.8.1 is positive, so that df is a tension, and consequently negative. For
filaments below the neutral axis 8x is negative, giving a positive force of compression.

Now from the geometry (dx + 6x)/(R +r) = dx/R and hence 8x/dx = r/R. Substitution
into (3.8.1) yields

df = —(Y/R)rdS (3.8.2)
The total longitudinal force f = [df is zero, negative forces above the neutral axis being

J
canceled by positive forces below it. However, a bending moment M is present
Y
M= erfz —R-J#ds (3.8.3)
If we define a constant k by

K? =

J r* ds (3.8.4)

wnf—
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then
M = —YSk*/R (3.8.5)

The constant k can be thought of as the radius of gyration of the cross-sectional area S, by
analogy with the definition of the radius of gyration of a solid. The value of « for a bar of
rectangular cross section and thickness ¢t (measured in the y direction) is k = t/ J12.Fora
circular rod of radius a, k = a/2.

The radius of curvature R is not in general a constant but is rather a function of
position along the neutral axis. If the displacements y of the bar are limited to small values,
dy/dx << 1, then we may use the approximate relation

[+ @y/oxyPr 1
k= 32y / 9 92y / 9x2 (3.8.6)
Substitution of (3.8.6) into (3.8.5) yields
M = =YSkXPy/ox?) (3.8.7)

In the situation illustrated in Fig. 3.8.1, the curvature makes 9%y/Jx* negative, and the
bending moment M is consequently positive. It is apparent that to obtain the curvature
illustrated, the torque applied to the left end of the segment dx must actin a counterclockwise
or positive angular direction, so that (3.8.7) gives the torque acting on the left end of the
segment both as to magnitude and as to direction. Similarly, the torque acting on the right
end of the segment must be clockwise, with the result that it is negative and is therefore
represented both in direction and in magnitude by —M.

*3.9 TRANSVERSE WAVE EQUATION

The effect of distorting the bar is to produce not only bending moments but also shear
forces. Consider an upward shear force F, acting on the left end of the segment dx as
positive (Fig. 3.9.1). Then the associated shear force acting on the right end of the segment
must be downward, and is consequently negative. When a bent bar is in a condition of
static equilibrium, the torques and shear forces acting on any segment must produce no net
turning moment. Taking moments about the left end of the segment of Fig. 3.9.1, we have

M(x) — M(x +dx) = F,(x + dx)dx (3.9.1)

For segments of small length dx, M(x + dx) and F,(x + dx) can be expanded in Taylor’s
expansions about x, and this yields
/ B, (x + dx)

M {x) C\/_\/ -M{x + dx)

x x+dx

F, <:)\

Figure 3.9.1 Bending moments and shear
forces set up by the transverse displacements
at the ends of an element of a bar of length dx.
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F, = —(0M/dx) = YS«?(8%y/ax) (3.9.2)
y

where second-order terms in dx have been dropped.

This relation between the shear force F, and the bending moment M has been derived
for a condition of static equilibrium. For transverse vibrations of a bar the equilibrium is
dynamic, rather than static, and the right side of (3.9.1) must equal the rate of increase of
angular momentum of the segment. However, if the displacement and slope of the bar are
limited to small values, the variations in angular momentum may be neglected, and (3.9.2)
serves as an adequate approximation for the relation between F, and y.

The net upward force dF, acting on the segment dx is then given by

oF 4
dF, = F,(x) ~ F,(x + dx) = — (a—xy)dx = —YSk? (g;%)dx (39.3)

By Newton’s second law, this force will give the mass (pSdx) of the segment an upward
acceleration %y /dt? so that the equation of motion is

iy _ .9
A o (3.9.4)

where ¢ = Y/p. One significant difference between this differential equation and the
simpler equation for the transverse waves on a string is the presence of a fourth partial
derivative with respect to x, rather than a second partial. As a result, direct substitution
shows that functions of the form f(ct — x) are not solutions of (3.9.4). Transverse waves do
not travel along the bar with a constant speed ¢ and unchanging shape.

Assume that (3.9.4) may be solved by separation of variables, and write the complex
transverse displacement as

yix, ) = ¥(x)e™ (3.9.5)

Upon substitution, the exponential function of time cancels, leaving a new fotal differential
equation involving ¥,

L A /‘ﬂ\4qr
et \v (3.9.6)
?* = w(kc)

where v has the dimensions of a speed. If we substitute a trial function ¥ = exp(yx) into
(3.9.6), it is valid for y = *(w/v)and *j(w/v). Thus, if we define a quantity g by

g=w/v (3.9.7)
then a complete monofrequency solution can be written as

W(x) = Aes™ + Be ¥ + Cel* + De /8%

(3.9.8)

y(x, £) = (Aes* + Be 8¢l + Cell@tt89) 4 Deilet=89)
where A, B, C, and D are arbitrary constants and g is both a wave number and also a spatial
attenuation coefficient. Note that g is proportional to ./w. The solution represents flexural
disturbances of two kinds: (1) two traveling waves each propagating with a phase speed v
proportional to ./w and (2) two standing oscillations that are spatially damped, each with
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a spatial attenuation coefficient ¢ depending on ./w. Waves of different frequencies travel
with different phase speeds, an effect known as dispersion. The high-frequency components
outrun the low-frequency components, altering the shape of the wave. This is analogous to
the transmission of light through glass, wherein the different component frequencies of a
light beam travel with different speeds. A vibrating bar is a dispersive medium for transverse
waves.

The actual solution of (3.9.4) is the real part of (3.9.8). It may conveniently be expressed
using hyperbolic and trigonometric identities (see Appendix A3),

y(x, t) = [Acosh gx + Bsinh gx + Ccos gx + Dsin gx]cos(wt + ¢) (3.9.9)

where A, B, C, and D are new real constants. Although these constants are related to the
complex constants A, B, C, and D, the relationships are unimportant, since in practice A, B,
C, and D are evaluated directly through the application of initial and boundary conditions.

*3,10 BOUNDARY CONDITIONS

Since (3.9.9) contains twice as many arbitrary constants as the corresponding equation for
the transverse vibrations of a string, the determination of these constants requires twice
as many boundary conditions. This need is fulfilled by the existence of pairs of boundary
omam AL im L Ll s mem Ao AL Ll e T skl aae Lt AL Ll i Al e d amnam ] e L1
CULUILIONDS dl UIC CIU>d U1 U bdal. 1Iic Pdl. LICULAL 1TOLLDS U1 LIEDC COLLULLIIVILIL ucycuu OIl LI
nature of the support and include the following.

(a) Clamped End

If an end of the bar is rigidly clamped, both the displacement and the slope must be zero at
that end for all times . The boundary conditions are therefore

y=0 and Z—Z = (3.10.1)

(b) Free End

At a free end there can be neither an externally applied torque nor a shearing force, and
hence both M and F, are zero at the end. However, the displacement and slope are not
constrained, except that their values must be small. Then from (3.8.7) and (3.9.2), the
boundary conditions are

3y

33y

(¢) Simply Supported End

A simply supported end is obtained by constraining that end of the bar between a pair of
knife edges mounted perpendicular to the plane of the transverse motion and centered on
the neutral axis of the bar (or a pair of needle points, similarly placed on the neutral axis)
so that both the transverse displacement and the torque are zero with no constraint on the
slope.

2

y=0 and ZTT{ =0 (3.10.3)
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*3.11 BAR CLAMPED AT ONE END

Assume that a bar of length L is rigidly clamped at x = 0 and is freeatx = L. Then applying
the two conditions of (3.10.1) at x = 0 to the general solution of (3.9.9) we obtain A+ C = 0
and B + D = 0 so that the general solution reduces to

y(x, t) = [A(cosh gx — cos gx) + B(sinh gx — sin gx)] cos(wf + ¢) (3.11.1)

4

A further application of the two conditions of (3.10.2) at x = L gives

A(cosh gL + cos gL) = —B(sinh gL + sin gL)
A(sinh gL — sin gL) = —B(cosh gL + cos gL) (3.11.2)

While it is impossible for both of these equations to be true for all frequencies, at certain
frequencies they become equivalent. To determine these allowed frequencies, divide one
equation by the other, thus canceling out the constants A and B. Then cross-multlply and
simplify by using the identities cos? 8 + sin? @ = 1and cosh’ 6 — sinh® § = 1. This gives

cosh gL cos gL = —1 (3.11.3)

It is easy to obtain the allowed values of gL by numerical techniques, particularly since the
hyperbolic cosine grows as exp(gL) so that the cosine must approach zero very closely for
arguments greater than about 7. Solutions are found to be

gL = wL/v = (1.194,2.988,5,7,...)7/2 (3.11.4)

Substituting v = /wkc into (3.11.4) and squaring both sides, we have for the natural
frequencies of a transversely vibrating clamped, free bar

f = (1.194%, 2.9882, 52, 72, .. )wkc/8L2 (3.11.5)

The application of boundary conditions limits the natural modes to a discrete set, just as it
does for a vibrating string. However, in contrast with the string, the overtone frequencies
are not harmonics of the fundamental. As shown in Table 3.11.1, the first overtone has
a frequency more than six times that of the fundamental. If a bar is struck so that the
amplitudes of vibration of its overtones are appreciable, the sound produced has a metallic
quality. However, the overtones are rapidly damped so that the initial sound mellows into
a nearly pure tone at the fundamental. Vibrating reeds in music boxes give good examples
of this behavior. Note that the fundamental frequency can be adjusted by varying either the
thickness or the length; doubling the length lowers the frequency by a factor of four.

The distribution of nodal points along the bar is more complex than in the examples
previously considered, for the nodes are not evenly placed at intervals of A/2 but are
irregularly spaced. See Fig. 3.11.1. There are three types of nodal points where y = 0: (1) the
node where the bar is clamped characterized by the additional condition dy/dx = 0; (2) the

cr-callad £ ~dac Tiring ;moswsley 3 /9 aimaal aae

S0-caueda LI He noaes, J.yl.l.ls J.lCCUJ.y /\/ L apait a.ud vcly \.J.UDU lU L}‘lc lJUJ.llI,D Uf ll.lﬂU\.LLUJ.l WllCl.C
d*y/dx* = 0; and (3) the node adjacent to the free end of the bar. (A point of inflection does
not lie near this last nodal position but instead is shifted out to the end.) It is also to be
noted that the vibrational amplitudes at the various antinodal positions are not the same
and that the antinode at the free end has the greatest amplitude of motion.

Table 3.11.1 gives the nodal positions for transverse vibrations of a bar 100 cm in length
(clamped at x = 0 and free at x = 100 cm), the ratios of the frequencies and phase speeds of
the overtones to those for the fundamental, and the wavelengths A = v/f for each natural
frequency. The increase in phase speed with frequency is quite apparent. As discussed
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0 /\\ L
0 AN /.
\_/
Figure 3.11.1  The four lowest modes of

transverse vibration of a clamped, free bar. Note
the boundary conditions at each end and the
different classes of the nodes.

Table3.11.1 Transverse vibration characteristics of a clamped,
free bar with L = 100 cm

Wavelength Nodal Positions
Frequency  Phase Speed (cm) (cm from clamped end)
fi 2 335.0 0
6.267f, 2.500, 133.4 0,78.3
17.55f; 4.18v, 80.0 0,50.4, 86.8
34.39f, 5.87v, 57.2 0,35.8,64.4,90.6

earlier, the wavelengths are not in general equal to twice the distance between adjacent
nodes. However, the nodal spacing between true nodés for the third overtone is A/2 within
the accuracy of the data [64.4 — 35.8 = 28.6 = (57.2)/2 cm].

*3.12 BAR FREE AT BOTH ENDS

Another important kind of transverse vibration is that of a free, free bar. The boundary
conditions are satisfied at x = 0 if A— C = 0 and B — D = 0. Application of the same
conditions at x = L and the same kind of trigonometric and hyperbolic reductions yields
the transcendental equation
cosh gL cos gL = 1 (3.12.1)

As before, numerical solution is relatively simple, and we obtain the natural frequencies for
the transversely vibrating free, free bar,

f = (3.011%, 5%, 7, 9%, .. )wxc/8L* (3.12.2)
Again the overtones are not harmonics of the fundamental.

Table 3.12.1 gives information concerning the frequencies, phase speeds, and nodal
positions of a free, free bar 100 cm long. An inspection of Fig. 3.12.1 shows that the modes
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Table 3.12.1 Transverse vibration characteristics of a free, free
bar with L = 100 cm

Wavelength Nodal Positions
Frequency  Phase Speed (cm) (cm from end)
f (4 133.0 224,77.6
2.756f; 1.66v, 80.0 13.2,50.0, 86.8
5.404f, 2.32t, 57.2 9.4,35.6,64.4,90.6
8.933f 2,991, 44.5 7.3,27.7,50.0,72.3,92.7

Figure 3.12.1 The four lowest modes of
transverse vibration of a free, free bar. Note the
boundary conditions at each end and the different
classes of the nodes.

of vibration corresponding to the fundamental and all even overtones (corresponding to
fi f3, fs, .. . in the figure) are symmetric about the center. There is a frue antinode at the center
where dy/dx = 0. In contrast, the odd overtones (f, fi, fz, . . .) correspond to antisymmetric
modes with respect to the center. In all modes, the nodes are symmetrically distributed
about the center. The bar may be supported on a knife edge, or held by a knife-edge clamp,
at any nodal point without interfering with the mode of vibration having a node at this
point. A knife-edge clamp (or needle-point support) is required, since it must merely restrict
the displacement to zero and must not restrict the changes in slope that occur at a node.

Each bar of a xylophone is supported at points corresponding to the nodes of its
fundamental. Since the nodes of the accompanying overtones will not in general be located
at these same two points, the overtones will rapidly be damped out, leaving the fundamental.
This is one of a number of factors that contribute to the meliow sound of a xylophone or
marimba.

The free, free bar may be used qualitatively to describe a tuning fork. This is basically
a fSU-shaped bar with a stem attached to the center. The bend and the mass-loading of the
stem reduce the separation of the two nodes present in the fundamental mode. Compare
Fig. 3.12.2 with Fig. 3.12.1. As above, when a tuning fork is struck the overtones rapidly
dampen, leaving the fundamental frequency. The stem, at an antinode, vibrates and couples
the motion to any surface it touches. The radiation efficiency is enhanced if the surface has
large area, or forms a side of a resonator box tuned to the fundamental.
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Node

Figure 3.12.2  Vibration of a tuning fork.

If a bar is rigidly clamped at both ends, the boundary conditions y = 0 and dy/dx = 0
at the ends x = 0 and x = L lead to the same set of natural frequencies as for a free, free
bar. However, as is to be expected, the locations of the nodes are different.

*3,13 TORSIONAL WAVES ON A BAR

A bar is capable of vibrating torsionally as well as longitudinally and transversely. For
example, if a long, thin bar (or a fiber used as an activator for a torsional-pendulum clock)
is fixed at one end and the other end is twisted about the long axis of the bar, the restoring
torque will increase as the angle of twist is increased. If the twisted end is then released, a
torsional wave will travel down the bar.

For simplicity of discussion, let the bar have a circular cross section of radius 4. Isolate an
element of the bar of length dx (Fig. 3.13.1a). Break this element into a series of concentric

(@) b) (c)

Figure 3.13.1 The element of a circular bar and its subelements used to derive the wave
equation for shear waves. (2) A cylinder of radius a and length dx. (b) A cylindrical shell
of radius r, thickness dr, and length dx. (c) A plate of width dw, thickness dr, and length dx
strained by an angle d¢.
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hollow tubes of radius r and thickness dr (Fig. 3.13.1b), and further divide each hollow
cylinder into side-by-side rectangular plates of length dx, thickness dr, and (curved) width
dw (Fig. 3.13.1c). When the tube is twisted away from equilibrium through a small angle
dé, this rectangle is distorted by an angle r(d¢/dx) which is the shearing strain. The shearing
stress required to produce that shearing strain is proportional to it (Hooke’s law) and the
constant of proportionality is the shear modulus (the modulus of rigidity) ¢ (see Appendix
All),

7 (ST RO N §

stress = Gr{dd/dx) (3.13.1)

This is the torsional equivalent to (3.3.2). The force df required to produce this distortion is
the shearing stress multiplied by the area over which that stress acts,

df = G(dw dr) r(de /dx) (3.132)

The torque dM required to produce the strain in the hollow tube of height dx is found by
multiplying df by its moment arm r and integrating around the circumference of the tube.
Because of the circumferential symmetry, [ dw = 27r so the torque on a tube is

dr = GQnr)de/dx) dr (3.13.3)

The total torque 7 twisting this end of the elemental solid cylinder is found by integrating
over the concentric tubes fromr = Otor = a,

T = Gluat(de/dx) (3.13.4)

The net torque on the elemental cylinder of height dx is the difference of the torques on each
end, which by a Taylor’s expansion is 7(x + dx) — 7(x) = (d7/dx)dx = G(ma*/2)(3*d/Ix?)dx.
This net torque is equal to the mement of inertia of the cylinder (4*/2)dm, where dm =
pma’ dx, times its angular acceleration §2¢/9#2. This gives the familiar one-dimensional
wave equation

¢ 1%
with the phase speed c obtained from
¢ =%/p (3.13.6)

All the techniques for finding the solutions for waves on strings and longitudinal waves
in bars apply here. Examples of boundary conditions applicable to torsional oscillations
include (1) fixed end, ¢ = 0; (2) free end, 7 = 0 so that d¢/dx = 0; and (3) mass-loaded
end, d¢/dx = (dd?/3x?*)], where I is the moment of inertia of the load about the axis of

tha s
Wi vdadl.

Problems

3.4.1. A bar of length L is rigidly fixed at x = 0 and free to move at x = L. {(a) Show that
only odd integral harmonic overtones are allowed. (b) Determine the fundamental
frequency of the bar, if it is composed of steel and has a length of 0.5 m. (¢) If
a static force F is applied to the free end of the bar so as to displace this end
by h, show that, when the bar vibrates longitudinally subsequent to the sudden
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release of this force, the amplitudes of the various harmonic vibrations are given by
A, = [8h/(nm)?] sin(nm/2). (d) Determine these amplitudes for the above steel bar, if
the force is 5000 N and the cross-sectional area of the bar is 0.00005 m?.

Verify whether or not the normal modes of a longitudinally vibrating bar form an
orthogonal set if the boundary conditions are (a) fixed, fixed; (b) free, free; (c) fixed,
free.

A steel bar of 0.0001 m? cross-sectional area and 0.25 m length is free to move atx = 0
and is loaded with 0.15 kg at x = 0.25 m. (a) Compute the fundamental frequency of
longitudinal vibrations of the above mass-loaded bar. (b) Determine the position at
which the bar may be clamped to cause the least interference with its fundamental
mode of vibration. {(¢) When this bar is vibrating in its fundamental mode, what is the
ratio of the displacement amplitude of the free end to that of the mass-loaded end?

(d) What is the frequency of the first overtone of this bar?

A 2 kg mass is hanging on a steel wire of 0.00001 m? cross-sectional area and 1.0 m
length. (a) Compute the fundamental frequency of vertical oscillation of the mass by
considering it to be a simple oscillator. (b)) Compute the fundamental frequency of
vertical oscillation of the mass by considering the system to be that of a longitudinally
vibrating bar fixed at one end and mass-loaded at the other. (¢) Show that for kL < 0.2,
the equation derived in (b) reduces to (1.2.4).

Are the normal modes orthogonal for (4) a fixed, mass-loaded bar, L f
loaded bar?

A thin bar of length L and mass M is fixed at one end and free at the other. What
mass m must be attached to the free end to decrease the fundamental frequency of
longitudinal vibration by 25% from its fixed, free value?

A steel bar of 0.2 m length and 0.04 kg mass is loaded at one end with 0.027 kg and at
the other end with 0.054 kg. (a) Calculate the fundamental frequency of longitudinal
vibration of this system. (b) Calculate the position of the node in the bar. {¢) Calculate
the ratio of the displacement amplitudes at the two ends of the bar.

Assuming very small losses, find a condition relating the mechanical impedances of
the supports at the ends of a bar of length L and longitudinal wave speed c if the bar
is to have an integral number of wavelengths between its ends when it is vibrating
longitudinally.

Determine an expression giving the fundamental frequency of longitudinal vibrations
of a fixed, free bar of length L and mass m, if the reaction of the fixture corresponds
to a mechanical reactance of —js/w (stiffness).

A bar of length L has circular cross-sectional area S. The material of the bar has a
linear density p; and a Young’s modulus Y. The bar is terminated at x = 0 with a
mass m and at x = L by a longitudinal spring of spring constant s. (a) In terms of L,
S, pr, 8, and Y, find the transcendental equation for kL that must be solved to find the
normal modes for longitudinal motion. (b) The bar is aluminum with length 1 m and

______

lowest eigenfrequency. (c) Find the nodal locations.

Show that for r = 0 the input impedance Z,; is purely reactive and has magnitude
zero when tan kL = —x and becomes infinitely large when tan kL = 1/x.

Assume that the load mechanical impedance is Z,,/pic = 1 + jx. (a) If the load
reactance is large (x >> 1) in the frequency range of interest, show that the equations
determining resonance and antiresonance are tan kL = —x and tan kL = 1/x, re-
spectively. (b) If in the frequency range of interest the load reactance is small (x < 1)
show that tan kL = =1 and the input impedance becomes Z,,, = p;c.
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3.7.3. A long thin bar of length L is driven by a longitudinal force F coswt at x = 0 and is
free at x = L. (2) Derive the equation that gives the amplitude of the standing waves
set up in the bar. (b)) What is the input mechanical impedance? (c) What is the input
mechanical impedance of a similar bar of infinite length? (d) If the material of the
bar is aluminum, the length is 1.0 m, the cross-sectional area is 0.0001 m?, and the
amplitude of the driving force is 10 N, plot the amplitude of the driven end of the bar
of part (a) as a function of frequency over the range from 200 to 2000 Hz.

3.7.4C. For the longitudinal vibrations of a bar driven at one end by a force of constant
amplitude F and loaded at the other with an impedance R + j(wm — s/w), plot the
input power for frequencies covering the first three resonances for () three values
of R keeping m and s constant, (b) three values of m keeping R and s constant, and
(c) three values of s keeping R and m constant.

3.7.5. A thin bar of length L with longitudinal phase speed ¢ is driven at x = 0 by a
force with adjustable frequency. (a) Find the frequencies for which the driving force
experiences an input mechanical impedance equal to the mechanical impedance of
the support at x = L. (b) At the frequencies of (1), compare the amplitudes of the
velocities of the two ends of the bar.

3.7.6. Show that for r > 1 the conclusions pertaining to resonance and antiresonance
following (3.7.11) are also reached.

3.8.1. Find the radius of gyration for a bar of circular cross section of radius 4.

3.8.2. Calculate the radius of gyration for a bar of rectangular cross section with thickness
t and width w for bending in the direction of (a) the thickness, (b) the width, and
(c) transverse to a diagonal.

3.9.1. Show by direct substitution that (3.9.9) is a solution of (3.9.4).

3.9.2. Show that v = /wxc has the dimensions of a speed. For what frequency will the
transverse vibrations of an aluminum rod of 0.01 m diameter have the same phase
speed as that of longitudinal vibrations in the rod?

3.10.1. An aluminum bar of 100 cm length with circular cross section of 1 cm diameter is
simply supported at both ends. For transverse vibrations, (4) show that the normal
modes are the same as for the fixed, fixed string. (b) Find the frequencies of the
normal modes. () Are the overtones harmonics as they are for the fixed, fixed string?

3.11.1. For a bar of rectangular cross section with w = 2¢, one end clamped and the other
free, find the ratio of the fundamental frequencies of free vibration for bending in
the direction of the thickness to that for bending in the direction of the width.

3.11.2. For a bar of length 100 cm clarﬁped at both ends, find, in terms of the fundamental
frequency and phase speed, the frequencies, phase speeds, wavelengths, and nodal
positions of the first three normal modes of transverse vibration.

3.11.3C. For a clamped, free bar vibrating in its third transverse mode, (4) plot the
displacement amplitude and first three derivatives of the displacement as a
function of length. (b) Use these calculated values to show that the boundary
conditions are satisfied at both ends and discuss the nature of each node.

3.11.4C. If the same bar used in creating Table 3.11.1 is clamped at both ends, () create a
table similar to Table 3.11.1, and (b) plot the shape of the first four normal modes.

3.11.5. An aluminum bar 100 cm long with a 1.0 cm radius is clamped at one end and
free at the other. (2) Find the frequency of the lowest mode of transverse vibration.
(b) If the free end has a displacement amplitude of 5.0 cm, determine all the constants
in the equation for the transverse displacement of the bar. (c) Plot the displacement
amplitude of the bar.
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3.12.1.

3.12.2,
3.13.1.

3.13.2.

CHAPTER 3 VIBRATIONS OF BARS

A steel rod of 0.005 m radius has a length of 0.5 m. (g) What is its fundamental
frequency of free, free transverse vibrations? (b) If the displacement amplitude at
the center of the rod is 2 cm when vibrating in its fundamental mode, what is the
displacement amplitude at the ends?

Calculate A/B for (a) the clamped, free bar and (b) the free, free bar.

A 100 cm long aluminum bar has a diameter of 1.0 cm. (2) Find the torque required
to give one end of the bar a static twist of 360° relative to the other end. (b) Find the
phase speed of torsional waves on this bar. (c) If the bar is rigidly supported in the
middle and free at the ends, find the lowest frequency at which it will support a
torsional normal mode.

For an aluminum bar free at both ends, find the ratio of the lowest frequencies of a
normal mode of longitudinal vibration to the lowest frequency of a normal mode of
torsional vibration.



Chapter 4

THE TWO-DIMENSIONAL
WAVE EQUATION:
VIBRATIONS OF
MEMBRANES AND
PLATES

4.1 VIBRATIONS OF A PLANE SURFACE

Consider transverse vibrations of two-dimensional systems, such as a drumhead
or the diaphragm of a microphone. While analysis may seem more complicated
because two spatial coordinates are needed to locate a point on the surface and
a third to specify its displacement, the equation of motion (subject to the same
simplifying assumptions invoked in the previous two chapters) will be merely the
two-dimensional generalization of that for a string.

Generalization to two dimensions requires selecting a coordinate system. Choice
of a coordinate system matching the boundary conditions (cartesian coordinates
for a rectangular boundary and polar coordinates for a circular boundary) will
greatly simplify obtaining and interpreting solutions. Unfortunately, the number
of useful coordinate systems is strictly limited and, consequently, the number of
easily solved membrane problems is similarly restricted.

4.2 THE WAVE EQUATION
FOR A STRETCHED MEMBRANE

Assume a membrane is thin, is stretched uniformly in all directions, and vibrates
transversely with small displacement amplitudes. Let ps be the surface density
(kg/m?) of the membrane, and let T be the membrane tension per unit length (N/m);
the material on opposite sides of a line segment of length 4! will be pulled apart
with a force I dl.

In cartesian coordinates the transverse displacement of a point is expressed as
Yy(x,2,t). The force acting on a displaced surface element of area dS = dx dz is the
sum of the transverse forces acting on the edges parallel to the x and z axes. For the
element shown in Fig. 4.2.1 the net vertical force arising from the pair of opposing

tensions Jdz is
2
gaz|(Z2)  — () | = 7Y draz (4.2.1)
OX )orge  \OX), ox
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Jdx

/

2 +do) (x+dx, z+dg)
o / d:z \—— .
Jaz Jaz
dx
2 l (c+ dx, 2)
Tdx

Figure 4.2.1 Elemental area of a membrane
showing the forces acting when the membrane
is displaced transversely.

and that from the pair of tensions J dx is T (6*y/dz*) dx dz. Equating the sum of
these two to the product of the mass ps dxdz of the element and its acceleration
0%y / dt? gives

i A (4.2.2)

with

=T /ps (4.2.3)

Vi =5 — (4.2.4)

where V? is the Laplacian operator (in this case two-dimensional) and (4.2.4) is the
two-dimensional wave equation.

The form of the Laplacian depends on the choice of the coordinate system. The
Laplacian in two-dimensional cartesian coordinates,

V= — + — (4.2.5)

is appropriate for rectangular membranes. For a circular membrane, polar coordi-
nates (r, 0) are preferable and use of

2 10 1 g%

2

= —+-—+=— 2.
v art  rdr 12462 (4.2.6)
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gives the appropriate wave equation,

dty lay 1% 1%
2 T T @ (4.2.7)

Solutions to (4.2.4) will have all the properties of the waves studied previously,
generalized to two dimensions. For calculating normal modes on membranes it is
conventional to assume the solutions have the form

y = P! . (4.2.8)

where W is a function only of position. Substitution and identification of k = w /c
yields the Helmholtz equation,

VA + 2W =0 (4.2.9)

The solutions of (4.2.9) for a membrane with specified shape and boundary
conditions are the normal modes of the problem.

4.3 FREE VIBRATIONS OF A RECTANGULAR
MEMBRANE WITH FIXED RIM

If a stretched rectangular membrane is fixed at x = 0,x = Ly,z = 0, and z = L,
the boundary conditions are

y(0,z,t) = y(Ly, z,t) = y(x,0,t) = y(x,L;, ) = 0 (4.3.1)

Assuming a solution

y(x,z,t) = W(x, z)e (4.3.2)
to (4.2.4) gives
2 2
oW IV L ew - (4.33)
ox2 9z2

Now, apply the method of separation of variables by assuming that W is the product
of two functions, each dependent on only one of the dimensions,

W(x,z) = X(x)Z(z) (4.3.4)
Substitution and division by X(x) Z(z) gives

142X | 14°Z
X 72 zﬁﬂé—o (4.3.5)
Since the first term is a function only of x and the second only of z, both must
be constants; otherwise the three terms cannot sum to zero for all x and z. This
provides the pair of equations
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42X a2z
d2+k2X 0 EZE+k§z_0 (4.3.6)

where the constants k, and k; are related by
K+ =k 4.37)

Solutions of (4.3.6) are sinusoids, so that
y(x,z,t) = Asin{kex + ¢)sin(k.z + ¢.)e! (4.3.8)
wherek,, k;, ¢,, and ¢, are determined by the boundary conditions. The conditions
¥(0,z,t) = 0 and y(x,0,t) = 0 require ¢, = 0 and ¢, = 0, and the conditions

YLy, z,t) = 0 and y(x, L, t) = 0 require the arguments kL, and k.L, to be integral
multiples of 7. Thus, the standing waves on the membrane are given by

y(x,z,t) = Asinkxsink,ze!

ky = nw/Ly n=123... (4.3.9)
k., = mma/L, m=1273...

where |A| is the maximum displacement amplitude. These equations limit the
wave numbers k, and k, to discrete sets of values, which in turn restrict the natural
frequencies for the allowed modes to

fum = @nm /27 = (c/2I(n/Ly)? + (m/L)*]H? (4.3.10)

This is the two-dimensional extension of the comparable results for the freely
vibrating fixed, fixed string. The fundamental frequency is obtained by substitution

(1.2) (2,2)

Figure 4.3.1 Schematic representation of four typical
normal modes of a rectangular membrane with fixed rim.
The modes are designated by the pair of integers (n, m).
The hatched areas denote sections of the membrane that
vibrate 180° out of phase with the unhatched areas. These
areas are separated by nodal lines.
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Figure 43.2 The displacement of a
rectangular membrane with L, /L, = 2
vibrating in a (2, 2) mode. (a) Isometric view.
(b) Contours of equal displacement. The
regions denoted by contours shown with
solid lines vibrate 180° out of phase from
those shown with dashed lines.

ofn = lTand m = 1into (4.3.10). Overtones having n = m will be harmonics of the
fundamental, while those for which n # m may not be. Figure 4.3.1illustrates a few
modes for a rectangular membrane: The normal modes are labelled by the ordered
pair (n, m). Figure 4.3.2 shows the displacement of a (2, 2) mode of a rectangular
membrane with fixed rim. Since the nodal lines have zero displacement, it is
possible to insert rigid supports along any of them without affecting the wave
pattern for the particular frequency involved.

4.4 FREE VIBRATIONS OF A CIRCULAR
MEMBRANE WITH FIXED RIM

For a circular membrane fixed at * = 4, the Helmholtz equation in cylindrical
coordinates

W 1% 15°W
4+ 4 4K = 4.
ar? r dr 2 962 V=0 (4.4.1)
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can be solved by assuming that ¥ (r, 8) is the product of two terms, each a function
of only one spatial variable,

¥ = R(NO() (44.2)
subject to the boundary condition
R@) =0 (4.4.3)

In addition, ® must be a smooth and continuous function of 8. Substitution into
(4.2.9) gives

AR Od4dR Rd4*0
®dr2 to—t 3 ey + RO = 0 (4.4.4)

where k = w/c. Multiplying this equation by r?/®R and moving those terms
containing r to one side of the equality sign and those containing 6 to the other
side results in

2 2
(IR 1RY ba 140 (4.4.5)
N \u’- f ur / 9 ao~-

The left side of this equation, a function of r alone, cannot equal the right side, a
function of 6 alone, unless both functions equal the same constant. If we let this
constant be m?, then the right side becomes

d’0
which has harmonic solutions
O(0) = cos(mb + yn) (4.4.7)

where the y,, are determined by the (spatial factor in the) initial conditions. Since
® must be smooth and single-valued, each m must be an integer. With m fixed in
value, (4.4.5) is Bessel’s equation,

AR 14dR m?
'd_r?J’rdr ( — ) =0 (4.4.8)

Solutions to this equation are the Bessel functions of order m of the first kind J,(kr)
and second kind Y, (kr),

R(r) = AJpn(kr) + BY,,(kr) (4.4.9)

Some properties of Bessel functions are summarized in Appendixes A4 and AS.
They are oscillatory functions of kr whose amplitudes diminish roughly as 1/ Jkr.
The Y,,(kr) become unbounded in the limit kr — 0.

While (4.4.9) is the general solution of (4.4.8), a membrane that extends across
the origin must have finite displacement at r = 0. This requires B = 0 so that

R(r) = Alm(kr) (4.4.10)
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[If, however, the membrane were stretched between inner and outer rims, so that
it did not span the origin, then both terms in (4.4.9) would have to be used to
satisfy the two boundary conditions.]

Application of the boundary condition R(4) = 0 requires J.(ka) = 0. If the
values of the argument of J,, that cause it to equal zero are denoted by ju», then k
assumes the discrete values ky, = jun/a. (See the Appendixes for values of, and
formulas for, the arguments j,,,.)

The solutions are

Yrn(r, 0,8) = ApnJm(Knnt) cOs(mé + ')’mn)ejwmnt

kyund = ] mn

(4.4.11)

and the natural frequencies are
fon = jmnc/2ma (4.4.12)
Recall that the physical motion of the (1, n)th solution is the real part of (4.4.11),
Ymun(1,0,1) = Amp]m(kmnt) cos(mb + ymn) cos(@mnt + bpn) (4.4.13)
where Ay, = Apnexp(jdmn). The azimuthal phase angles y.. depend on the
location of the initial excitation of the membrane.

Figure 4.4.1 illustrates some simpler modes of vibration for a circular membrane
fixed at the rim. The integer m determines the number of radial nodal lines and the

o
®
®

(0, 1) (0,2 (0,3

D
@
@

(1, (1,2) (1,3)

S
@
©

(2, 1) (2,2) (2, 3)

Figure 4.4.1 Normal modes of a circular
membrane with fixed rim. The modes are
designated by the pair of integers (m, n). The
hatched areas denote sections of the membrane
that vibrate 180° out of phase with the unhatched
areas. These areas are separated by nodal lines.
The frequency of the modes increases down each
column. (See Table 4.4.1.)
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Figure 4.4.2 Isometric view of the
displacement of a circular membrane with
fixed rim vibrating in a (1, 2) mode.

Table4.4.1 Normal-mode frequencies of a
circular membrane

fm = lo_ﬂn fn = 1593f01 f21 =21
fgz = 2295f01 le = 2917f01 fzz = 3500fgl
fgg = 3598_,&}1 f13 = 4?_3Qf91 fz = 4.8

Jes Aadedasy JUIE

second integer n determines the number of nodal circles. It should be noted that
n = 1lis the minimum allowed value of n and corresponds to a mode of vibration in
which the (only) nodal circle occurs at the fixed boundary of the membrane. Figure
4.4.2 shows the displacement of a circular membrane vibrating in a (1, 2) mode.

For each m there exists a sequence of modes of increasing frequency. Table 4.4.1
lists a few of these frequencies f,, expressed in terms of the fundamental frequency
fo1- Note that none of the overtones are harmonics of the fundamental.

4.5 SYMMETRIC VIBRATIONS OF A CIRCULAR
MEMBRANE WITH FIXED RIM

For many situations described by a circular membrane fixed at the rim, modes
having circular symmetry are of greatest importance. Let us, therefore, confine our
attention to those solutions that are independent of 6. Because m = 0 for these
modes, we will suppress this subscript and retain only n,

Yn(r/ t) = y0n (T, 0, t) = An]O(knr)ejw"t (451)

The natural frequencies are found from (4.4.12),

fu/ft = jon/jon (4.5.2)

and the lowest three are given by the first column in Table 4.4.1. For all symmetric
modes other than the fundamental, inner nodal circles will occur at radial distances
for which Jy(k,7) vanishes.

The real part of y, gives the displacement of the membrane in its nth symmetric
mode, and the summation over all n gives the total displacement of the membrane
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when it is vibrating with circular symmetry,

yrt) = i AnJo(knr) cos(wnt + ¢y) (4.5.3)

n=1

where A, = |A,| is the displacement amplitude of the nth mode at r = 0.

Figure 4.4.1 shows that when the central part of the membrane is displaced up,
the adjacent ring is displaced down, and vice versa. Consequently, a membrane
vibrating at natural frequencies other than its fundamental produces little net
displacement of the surrounding air. (For this reason, the vibrating head of a
kettledrum has lower efficiencies of sound production for its overtone frequencies
than for its fundamental.) One parameter for ranking the efficiency of each normal
mode in producing sound is the average displacement amplitude of the mode.
From (4.5.3), the average displacement amplitude (¥,)s of the nth symmetric
normal mode is

1 1 [*
(Wos = | Aot as = 5 | Audoterprar
= (A, /kya)]1(kxa)

where we have used the relationship zJo(z) = d{z]1(z)]/dz from Appendix A4.
[Note that for all modes other than the symmetric ones, the angular dependence
cos(mf + v,,) guarantees that the average displacement is zero.]

In many situations involving sources of sound with dimensions smaller than the
radiated wavelength, the radiated pressure field depends primarily on the amount
of air displaced, and not on the exact shape of the moving surface. A measure
of the amount of air displaced is the wvolume displacement amplitude, defined as
the surface area of the vibrating surface multiplied by the average displacement
amplitude of that surface.

When vibrating in its lowest mode, the circular membrane (with fixed rim) has
kia = 2.405 and, from (4.5.4), the average displacement amplitude is

()5 = (24,/2.405)];(2.405) = 0.4324; 4.5.5)

where A, is the displacement amplitude at the center. A simple piston of the
same surface area and a displacement amplitude of 0.432A4; will have the same
volume displacement amplitude 0.432(7a?)A; as the membrane. If the membrane
is vibrating in the mode of its first overtone, (¥;)s = —0.123A,. (The negative
sign indicates that the average displacement is opposed to the displacement at the
center.) If fundamental and first overtone have the same displacement amplitude
at the center of the membrane, the fundamental would be about 3.5 times as
effective as the first overtone in displacing air.

*4.6 THE DAMPED, FREELY
VIBRATING MEMBRANE

Damping forces, such as those arising within the membrane from internal friction and
external forces associated with the radiation of sound, cause the amplitude of each freely
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vibrating mode to decrease exponentially. As in Chapters 2 and 3, we will use a phe-
nomenological approach. A generic loss term proportional to, and oppositely directed from,
the velocity of the vibrating element is introduced into the wave equation. For convenience,
let the proportionality constant be 23 so (4.2.4) becomes

3y I _ 202, _
T 233}_ AViy =0 4.6.1)

For calculational simplicity, assume oscillatory behavior and generalize y to be complex,
y = We! 4.62)

Since there are no applied driving forces, @ must be complex if damping is to occur.
Substituting (4.6.2) into (4.6.1) and dividing out exp( jwt) results in the Helmholtz equation

VW + KW =0 (4.6.3)
with the complex separation constant k? given by
k? = (w/c} —j2(B/c)o/c) (4.6.4)

In this case k must be real, since for membranes fixed at their edges the arguments of the
normal modes must be real. Solution of (4.6.4) for w is straightforward:

W = Wy +][3
wi = (w? — B2 (4.6.5)
w = kc

where  is the natural angular frequency of the undamped case, w; the natural angular
frequency of the damped case, and 8 the temporal absorption coefficient.

If the membrane is excited into motion and allowed to come naturally to rest, the
resulting motion of the surface is a superposition of the excited normal modes, each with
its own decay coefficient 8 and damped natural angular frequency w;:

2] [23) T )

NN e — Bt il Vot PP
y = LZ_,wmﬂe PR of\94 sttt (4.0'0)
m n

Each normal mode ¥,,, has a complex amplitude A,.,, whose magnitude A,,, and phase
angle ¢, are determined by the initial conditions at ¢ = 0. The decay coefficients are
usually functions of frequency. Losses associated with the flexing of the membrane tend to
increase with increasing frequency as the nodal pattern becomes more segmented. On the
other hand, losses to the surrounding medium by the radiation of sound become smaller
with more complicated modal patterns. (This reflects the observation that the volume
displacement amplitudes are smaller for higher modes and zero for unsymmetric modes.)
These two effects tend to offset each other, but as a general rule, higher modes damp out

faster than do lower ones.

*4.7 THE KETTLEDRUM

Damping and inertial forces are two of the motion-induced forces that may act on the
surface of a membrane. Another arises from the changes in pressure within a closed space
behind the head of a drum or the diaphragm of a condenser microphone as the volume of
the entrapped gas is altered by the motion of the membrane.
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For example, the kettledrum has its head stretched tightly over the open end of a
hemispherical cavity of volume V. As the head vibrates, the air in the cavity may be
alternately compressed and expanded. If the phase speed of transverse waves on the
membrane is considerably less than the speed of sound in air, the pressure resulting
from any compression and expansion of the enclosed air is nearly uniform within the
entire volume and thus depends only on the average instantaneous displacement (y)s. The
incremental change in volume of the enclosed air is dV = 7a%(y)s, where 4 is the radius
of the drumhead. If the equilibrium volume inside the vessel is V;, and the equilibrium

pressure is Py, then for adiabatic changes in volume the new pressures P and volumes V
are related by
— Y
PV = RV} (4.7.1)

where vy is the ratio of the heat capacity of the entrapped air at constant pressure to that
at constant volume (see Appendix A9). Differentiation shows that the excess pressure 4%
inside the kettle will be

dP = —(yPy/ Vo) dV = —y(Pe/Vo)ma {y)s (4.7.2)

This generates an additional force d%r dr d6 on each incremental area r dr 46 of the membrane.
From the discussion of the previous section, the normal modes affected by this force must be
just the symmetric ones. While these are relatively unimportant for the musical properties
of the kettledrum, the effect of this induced force has interest in other applications, and so
we shall pursue the analysis further. Including this force in the discussion of Section 4.2
and writing y as (4.6.2) with ¥ real leads to

VW + KBV = (yPyma®/ psVo)(¥)s (4.7.3)

for each symmetric normal mode ¥. The subscripts 0 and # have been suppressed for
economy of expression. Because it is proportional to displacement, the right side is a spring-
like term; the allowed wave numbers k will, therefore, be increased. The homogeneous
solutions to (4.7.3) will still be Bessel functions, but they may not have zeros at the rim. The
boundary condition requires the presence of a particular solution, which in this case is a
constant. Adding this to the homogeneous solution and satisfying the boundary condition
gives

¥ = AlJolkr) - Jo(ka)] (4.7.4)

as a solution for each symmetric normal mode. The right side of (4.7.3) can now be evaluated
with the help of ‘

a7t (V) = J’a W2rrdr = 2mA[(r/K)]i(kr) — (*/ 2)]o(ka)] a
0

0 (4.7.5)
= ma’A[2]i(ka) /ka — Jo(ka)| = mwa’A 2 (ka)
Substitution shows that (4.7.4) is a solution of (4.7.3) if
_ 2
Joka) = —B Ja(ka)/ (ka) (4.7.6)

B = ’7Tl»14‘}/g’o/gV0

Solving (4.7.6) for ka determines the natural frequencies. The nondimensional parameter B
measures the relative importance of the restoring force of the air in the vessel to the tension
in the membrane.
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Since the frequencies of only the modes ¥, are affected by the pressure fluctuations
within the vessel, the area ma? of the drumhead and the volume V|, of the vessel are
parameters that can be varied to alter the natural frequency distribution of the kettledrum.
Variation of B affects the relative values of the f;, frequencies. Altering a and Vj such that
a*/Vy remains constant will vary the nonsymmetric overtones f,., (m # 0) with respect to
the symmetric ones.

If damping is now considered, consistent with (4.6.5) each standing wave will have its
angular frequency shifted from the value wy, for undamped motion to that with damping

{3 :) anr‘ ogrv]'\ c+anr‘1nn wave un" r]or-nv urﬂ-]'\ ﬂ-c own Aor‘av constant 2 The form
\ Wi jmn, AIWG €ACH SaNGIN onsiant Cgy. 10N€ Iorm

of each standing wave will be given by (4.6.6), with the symmetric ¥, modes given
by (4.7.4).

This development has not taken into consideration any inertance effects of the medium
on the membrane. As the membrane vibrates, it radiates acoustic energy but also accelerates
the surrounding medium locally, as if it were storing and recovering energy from the
mass of the adjacent medium. This inertance is quite important in affecting the natural
frequencies of the excited modes. In practice, the significant normal modes of the kettledrum
are the lowest four or five of the asymmetric (m, 1) family (beginning with m = 1). The
inertance contributes an additional effective mass to the membrane, thereby lowering the
frequency of the normal mode. The effect is greater for the lower modes, decreasing as
the segmentations of the normal mode patterns increase. The natural frequencies are
lowered with the lowest ones being most affected. The result brings the relative values close
to 2:3:4:5 and this accounts for the distinctive timbre and clear pitch associated with the
kettledrum. A quantitative treatment of inertance goes beyond our present purpose, but
will be considered further starting in Chapter 7.

*4.8 FORCED VIBRATION OF A MEMBRANE

Introduction of a forcing function into the equation of motion is similarly straightforward.
The units of each term in (4.6.1) are those of acceleration, so the forcing function must have
the same. A suitable combination of terms is pressure divided by surface density. This gives
the generalization of (4.6.1) that includes an external driving agent,

Y, 26% "y ey = L 48.1)

})I'Z

where f(f) is a dimensionless function of time. The pressure P can be a constant or any
appropriate function of space, including a delta function. The function of time can be
oscillatory, a delta function, or whatever is necessary to represent the temporal behavior
of the applied force. For example, if both P and f(t) were delta functions, this would
approximate the stroke of a drumstick at a specific point on the membrane.
Here, we concentrate on applied oscillatory forces. Let f(t) = exp(jwf) and assume that
the steady-state solution for y has the form
y = W (4.8.2)
with the angular frequency w real. (In the case of forced motion, where there is a steady-state

solution, w cannot have an imaginary component.) Substitution into (4.8.1) and cancellation
of the exponentials gives

(—0? + 2Bw — V)W = P/pg (4.8.3)

The solution of (4.8.3) consists of the sum of the solution to the homogeneous equation and
a solution to the particular equation. The homogeneous equation can be written as
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V¥ + KW =0
k =k—ja
k= (/01 + (B/w)]"?
alk = (B/w)/[1+ (B/w)]=B/w

(4.8.4)

The top equation is the familiar Helmholtz equation, but with complex k rather than real
k. This means that whatever functions solve the Helmholtz equation for lossless conditions
are still solutions, but with k replaced with k. For the cases we have studied (rectangular
and circular membranes), the functions now have complex arguments and cannot satisfy
the boundary condition of a fixed rim without the help of the particular solution.

For the case of uniform pressure P distributed over the circular membrane with fixed rim
atr = g, the azimuthal symmetry of the problem restricts the homogeneous solution ¥, to
the zeroth order Bessel function Jy(kr). The appropriate particular solution W, to (4.8.3) is a
constant,

W, = —(P/ps)/(ke)® (4.8.5)

Adding this to the homogeneous solution ¥, and requiring that the sum vanish when
evaluated at the rim results in the desired solution,

W = (P/TK) [Jo(kr)/Jo(ka) — 1] (4.8.6)

The tension I has replaced psc?. The values for k = k — ja are determined from (4.8.4).
Inspection of (4.8.6) shows that the amplitude of the displacement is directly proportional
to that of the driving force and inversely proportional to the tension J'. The dependence on
frequency of the amplitude of vibration at any location is given by the relatively complicated
expression within the square bracket. When the driving frequency matches any natural
frequency [found from Jy(ka) = 0], then Jy(ka) has very small magnitude and |¥| may be
very large, depending on the damping,.

*4.9 THE DIAPHRAGM
OF A CONDENSER MICROPHONE

An important case of a driven membrane is the circular diaphragm of a condenser
microphone. The incident sound wave, acting on a tightly stretched metallic membrane
placed above a metal plate, produces a nearly uniform driving force. As the membrane is
displaced, the electrical capacitance between the membrane and the adjacent metal plate is
changed. This generates an output voltage that is (for small motion) a linear function of the
averaged displacement amplitude of the membrane,

(W)s =

1 P1 r(]a(kr) _1) P 1 Jyka) 4.9.1)

72 T K2 |, \Jo(ka) 2mrdr = T (ka)? Jo(ka)

0
If the frequency is below the region of the lowest resonance, k can be replaced with the
wave number k and use of the small-argument approximations for the Bessel functions
gives

(W)s = §(Pa*/T)1 + (ka)* /6] (4.9.2)

Thus, (¥ ); is nearly constant for ka < 1, or for frequencies

f<c/2ma = (T/ps)/?/2ma (4.9.3)
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Figure 4.9.1 Average displacement ()5 of a driven
circular membrane with and without resistance.

Below this frequency limit, (¥)s resembles the displacement amplitude of a stiffness-
controlled harmonic oscillator. This upper frequency limit may be increased by increasing
the tension or by decreasing either the radius or the surface density of the membrane.
However, an increase in J or a decrease in a reduces (¥)s and thus the voltage output of
the microphone.

ATs sl +£6 A ihn tha fiech — 2 ANE +odiianAd
With sufficient uampmg, i€ response at the first resonance, n]u = L.9U0, is reduced

considerably and the region of fairly uniform response can be extended up to, and
somewhat beyond, the first resonance. In the immediate vicinity of resonance, the term
Jo(ka) in the denominator of (4.9.1) can be expanded in a Taylor’s series about k;a,

Jo(ka) = —Ji(kia)(ka — kia) + - (4.9.4)

Writing k = k(1 — j8/w) from (4.8.4), substituting the quality factor Q = w;/28 from
(1.10.7) for the resonance at w;, and restricting w to values close to w, casts (4.9.1) into the
form

2P 1 [a(jn) 1

[(¥)s| = T (kaP® J1(jo) [(w /w1 — 01/w)? +1/Q2]/2

(4.9.5)

This displays the same behavior in the vicinity of its resonance as does a damped harmonic
oscillator. The resonance peak and bandwidth are controlled by the quality factor in the
same way.

Response curves showing the normalized average displacement amplitudes of a driven
membrane with and without losses are given in Fig. 4.9.1. Note that (4.9.1) indicates
minimal response at the frequencies for which J>(ka) = 0. From (4.8.6), at frequencies for
which ka > 3.83, a nodal circle appears within the rim of the membrane. With increasing
frequency the radius of this circle decreases. The displacements within this circle are out of
phase with those between it and the rim. As the nodal circle continues to shrink there is

increasing cancellation leading to nearly zerc response when ka =~ 5.136.

*4.10 NORMAL MODES OF MEMBRANES

Orthogonality was developed in Section 2.13 for a set of one-dimensional normal modes
describing the vibration of a string for certain simple boundary conditions. It is appropriate
here to extend that discussion to a treatment of normal modes on a two-dimensional surface.
For the free vibration of each membrane we have studied, a set of normal modes ¥ that
satisfy the Helmholtz equation and the boundary conditions has been obtained. For each
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normal mode ¥, of the set, there is an associated separation constant kﬁm determined by
the boundary conditions. If the Helmholtz equation for each of two normal modes ¥,,, and
¥, is multiplied by the other of the pair and one equation subtracted from the other, the
result is

\I’mlnlvzllrmn - ‘I’mnVZ‘I’mJH: + (k,znn - k2

m

:n:)qunq’mlnl =0 (4.10.1)

Integration over the surface S of the membrane gives

(k,znn - kiﬂn')[ \I’mnq’m'n’ ds = [ V ° (\I’mnV‘I’myn. - ‘I’mvntvqun) dS (4.10.2)
K] k)

where use has been made of the identity in Appendix A8. Application of Gauss’s theorem
in two dimensions now gives the desired result,

(kim _kz

m'n'

) J V,, ¥, dS = J (WPt - V) = Wy (R V)] dl (410.3)
S rim

where the line integral is over the perimeter (rim) of the surface S and 7 is the unit normal
in the plane of the membrane directed outward at each point on the rim. This equation is
the generalization of the right side of (2.13.7) to a two-dimensional situation. There are two
cases of interest to us here: (1) for a free rim, the gradient of ¥ at the rim is at right angles
to the normal; and (2) for a fixed rim, ¥ is zero on the rim. In both cases, the right side
vanishes and the normal modes form an orthogonal set.

One complication arises when there are two or more normal modes with the same
natural frequency. When this happens, the separation constants are the same and the left
side of (4.10.3) vanishes identically whether or not the degenerate modes are orthogonal.
This means that if the membrane is excited into motion at this frequency and then left
to vibrate freely, the shape of the resulting standing wave depends on the details of the
excitation. This can result in standing waves of substantially different shapes depending on
the relative phases and amplitudes of the degenerate normal modes. While these cases may
need a little special attention, they present few problems. Mathematically, if the modes are
not orthogonal, it is possible to choose two combinations of the pair that will be.

Solving for the motion of the membrane after excitation by some initial distribution of
displacement and velocity proceeds just as for the string. The initial conditions at t = 0
are written as sums of the normal modes with unspecified amplitudes and phases. These
equations are then multiplied by each of the normal modes and integrated over the surface,
orthogonality applied, and the resulting reduced set of integrals evaluated to obtain the
amplitudes and phases.

(a) The Rectangular Membrane with Fixed Rim
Since the rim is fixed, the normal modes for the rectangular membrane
V,m(x,2) = App sinky,xsink,,z (4.10.4)

form an orthogonal set. The separation constant in the Helmholtz equation (4.3.3) for each
of these normal modes is

K, =k, +i (4.10.5)

Thus,

2

Ly ¢ly
f J \an‘l’n,m; dx dZ = %Sn:namfm (4.10-6)
0 0 LxLz
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If the membrane is struck at some position 7, with an impulse at ¢t = 0, then the
initial transverse speed of the membrane can be approximated by v(7,0) = V'8(F — 7). The
two-dimensional delta function is given by

1 o € S

f 5( —75) dS = { (4.10.7)
So 0 ;0 & So

where 8(7 — 7o) has dimension m~2 and ¥ has dimension (m/s)m?. If the point is at (xo, zo),
then it can be seen (Problem 4.10.2) that 8(7 — ;) can be represented as a product of
one-dimensional delta functions

8(F — 7o) = 8(x — x0) 8(z — 2o) (4.10.8)
The real standing wave associated with the (1, m) mode can be written as

Yum(X, 2, 1) = Apm SIN ke X SINKzpZ SiN(@ it + ) (4.10.9)

At t = 0 the membrane is at rest, y(x,z,0) = 0. This can be satisfied by choosing ¢,., = 0
for all modes. With the ¢’s established, the particle speed when ¢ = 0 provides that

Z"’""’A""’ sinky,x sink,;,z = V8(x — x9) 6(z — zg) (4.10.10)

nm

Since the normal modes are orthogonal, use of (4.10.6) gives the values of each A, and we
have

y(x,z,1) = il > L Sin kg sinmzo sinkpnsinkamzsinwmt  (410.11)

LXLZ nm wnm

Using the delta function introduces some convergence problems in this expression. Prac-
tically, time should be restricted to finite values, t = f;, and the summations should be
truncated at realistic values of the indices, n < N and m < M, where t;, N, and M are based
on the true duration of the impact and the finite area of impact of the drumstick. Suitable
decay can also be included as discussed earlier by introducing an exponential decay factor
exp(— B.mt) and shifting the natural angular frequency according to (4.6.5) for each normal
mode.

(b) The Circular Membrane with Fixed Rim

Conceptually, analysis is exactly the same as for the rectangular membrane. The two-
dimensional delta function must be expressed in terms of one-dimensional delta functions
in the coordinates r and 6,

5(F — ) = —1;»8(1' —15)5(6 — 69) (4.10.12)

(see Problem 4.10.6). We can orient the axes so that 8 = 0 corresponds to the azimuthal
direction of the blow (which now requires 6, = 0) and assert that the normal modes must
be maximized in this direction. This requires that all ., = 0in (4.4.13). For astrikeatt = 0
on a stationary membrane, we must have ¢,,, = —#/2. The individual standing waves can
now be extracted,

Yun(1, 0, 1) = ApnJm(Kn?) cOs MO sSinwy,,,t (4.10.13)



*4.11 VIBRATION OF THIN PLATES 107

Solution proceeds as before with the help of

Wuz[]r;r(kaIu)]2 m =20

a (2w
J J [Jon(Kn?) cosme]zrdrde = o (4.10.14)
0 Jo e A m>0
where k,,,4 = ju.,. The resulting standing wave is
y(r, 6.t = — &n_Jn m”rO)ZIm(kmnr) COs M8 sin wy,, t (4.10.15)

2
ma wmn ]m mnu)]

for a strike at the point (o, 0) at time { = 0. The quantity &, is 1 for m = 0 and 2 for all
other m. As before, times should be restricted to t = #; and the summation truncated at
appropriate N and M. Notice that if the membrane is struck exactly at the center, then only
terms with m = 0 contribute.

*4,11 VIBRATION OF THIN PLATES

There is an essential difference between the vibration of a membrane and of a thin plate. In
a membrane, the restoring force arises entirely from the tension applied to the membrane,
whereas in a thin plate the restoring force results from the stiffness of the diaphragm. This
same difference exists between the transverse restoring forces in strings and bars. Analysis
of the plate will be limited to the symmetric vibrations of a uniform circular diaphragm. A
rigorous development of the equation of motion lies beyond our interests. The equation is

82y . kY 2 2
5 7.0(1 — 0_2)V (V) (4.11.1)

where p is the volume density of the material, o the Poisson’s ratio, Y the Young's modulus, and
K the radius of gyration givenby « = d/ J12, where d is the plate thickness.

In partial explanation, since the restoring force acting on a plate depends on its elastic
response to bending, the coefficient of the right term in {(4.11.1) should resemble that for the
transverse vibration of a bar (3.9.4), k2Y/p. However, like a bar, a sheet curls transversely
when it is bent lengthwise, but the lateral extent of the sheet hampers the curling. Thus,
there should be a slight decrease in the resultant strain of the sheet for the impressed
bending stress and therefore a slight increase in the effective stiffness of the sheet. Analysis
provides the factor 1/(1 — o). Values of Poisson’s ratio for various materials are given in
Appendix Al0. Note that o ~ 0.3 for most materials.

Assume periodic vibration,

y = We*! (4.11.2)
where, for circular symmetry, W is a function only of 7. Substitution into (4.11.1) yields

VA(VAW) — g = 0

- (411.3)
gt = w?p(l - a?)/K*Y

Now, direct substitution shows that (4.11.3) can be satisfied by

V¥ = =0 (4.11.4)
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In polar coordinates and with circular symmetry, (4.11.4) with the + sign is satisfied by Jo(gr)
and Y(gr) and the solutions for the — sign are the Bessel functions of imaginary argument,
Jo(jgr) = Ip(gr) and Y,(jgr). As before, the solutions involving Y, can be discarded since
they have singularities at r = 0, so we have

W = Ajy(gr) + Blo(gr) (4.11.5)

Some properties and tables of values of the modified Bessel functions of the first kind I,, are
ivvan in Anmandivoas Adand AR
bl.v CiL it nyt’cx RALALCDO AT AL\l 2.

To evaluate the constants A and B we must know how the diaphragm is supported. The
most common type of support is rigid clamping of the diaphragm around its circumference
atr = a. This is equivalent to

A )
¥=0 and = = 0 atr=a (4.11.6)

These conditions give

A,To(ga) = —BIQ(gH)
AJ1(ga) = Bli(ga)

4.11.7)

N .1

and dividing one by the other gives the iranscendental equation for the allowed values of g,
Jo(ga)/J1(ga) = —Iv(ga)/Li(gn) (4.11.8)

Since both Iy and I; are positive for all values of ga, solutions occur only when J; and J;
are of opposite sign. The tables of Bessel functions show that this equation is satisfied by
g = 3.20, 630, 9.44, 12.57,... = nw withn = 1, 2, 3,.... The approximation improves
with increasing n.

Solving (4.11.3) for the lowest natural frequency f; gives

g d y V2 _ o _df vy \?
fi= 2’irla2 Jﬁ(p(l—oz)) _0'4751—5 p(1—0'2)) @12

The frequencies of the other symmetric modes are not harmonics of the fundamental:
fo/fi = (g2/81)* = 3.88, f2/fi = 870, and so forth. The natural frequencies are spread
much farther apart than those of the circular membrane.

The displacement of a thin circular plate vibrating in its fundamental mode is

w1 = A1 [Jo(3.2r/a) + 0.05551,(3.2r/a)] cos(wnt + é) (4.11.10)

where the ratio of coefficients is obtained from (4.11.7). Note that the amplitude at the
center [y1(0)| is not A; but 1.0555A;. Comparing the displacement of the thin circular plate
vibrating in its fundamental mode with that of a membrane vibrating at its fundamental
shows that the relative displacement of the plate near its edge is much smaller than that of
the membrane. Consequently, we should expect the ratio of its average amplitude to that
at the center to be less than the same ratio for the membrane. The average displacement
amplitude is (¥1)s = 0.3264,, or

(Wy)s = 0.309]y,(0)| (4.11.11)

This is smaller by a factor of (0.432/0.309) = 1.40 than the averaged displacement for the
circular fixed membrane (4.5.5) for the same amplitude at the center.
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Treatments of loaded and driven plates are analogous to those for membranes, and the
response curves for a uniform driving force are similar to those in Fig. 4.9.1, with large
amplitudes at the fundamental resonance frequency unless there is considerable damping.
Condenser microphones may be constructed with a thin circular plate instead of a stretched
membrane for greater strength. However, the reduced sensitivity usually restricts such
microphones to high-intensity applications where strength is necessary.

The most important utilization of the thin plate is in the diaphragms of ordinary
telephone microphones and receivers. Although the responses of these devices are not
uniform over a wide range of frequencies, they give adequate intelligibility and are simple
and rugged. Another application is in sonar transducers used for producing sounds in water
at frequencies below 1 kHz; sound is generated by the motion of relatively thin circular
steel plates driven by alternations in the magnetic field of an adjacent electromagnet.

PROBLEMS

Except when otherwise noted, all membranes should be assumed fixed at their rims.

43.1. A square membrane of width a vibrates at its fundamental frequency with an
amplitude A at its center. (2) Derive a general expression for its average displacement
amplitude. (b) Derive a general expression for locating points on the membrane
having an amplitude of 0.5A. (c) Compute and plot a few peints given by the equation
derived in part (b). Do they form a circle?

4.3.2. A rectangular membrane has width a and length b. If b = 24, compute the ratio of
each of the first four overtone frequencies relative to the fundamental frequency.

4.3.3. A square membrane with sides of length L, uniform surface density ps, and uniform
tension 7 is fixed on three sides and free on the other. (#) Find the frequency of the
fundamental mode. (b) Write a general expression for the natural frequencies and one
for the normal modes. (c) Sketch the nodal patterns for the three normal modes with
the lowest natural frequencies.

4.3.4. A square membrane of sides L and phase speed c is fixed on two of its opposed sides
(x = 0and x = L) and free on the othertwo (z = 0and z = L). (a) Write the equation
for the displacement of the membrane valid for all normal modes. (b) What are the

Frenmiinmeoina far tha fitvra lanract mndac? (A Qlatsrh tha nadal nattarme far thoca fiva
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modes.

4.4.1. Show that the total energy of a circular membrane when vibrating in its fundamental
mode is given by 0.135(ma?)ps(wA;)?, where a is its radius, ps the area density, w the
angular frequency of vibration, and A, the amplitude at its center.

4.42, Although it may be hard to do physically, it is not hard to imagine a circular
membrane with a free rim. (a) Write the general expression for the normal modes.
(b) Sketch the nodal patterns for the three normal modes with the lowest natural
frequencies. (c) Find the frequencies of these three normal modes in terms of the
tension and surface density.

4.4.3. The maximum tensile stress that may be applied to aluminum is 2 X 10® Pa and
to steel is 10° Pa. What is the maximum fundamental frequency (a) of a stretched
aluminum membrane of 0.01 m radius and (b) of a steel membrane of equal radius?
(For thin membranes these frequencies are independent of thickness.)

4.44. A circular membrane of 0.25 m radius has an area density of 1.0 kg/m? and is
stretched to a tension of 25,000 N/m. (1) Compute the four lowest frequencies of free
vibration. (b) For each of these frequencies locate any nodal circles.



110

4.5.1.

4.5.2.

4.5.3.

CHAPTER 4 THE TWO-DIMENSIONAL WAVE EQUATION

A circular membrane of | cm radius and 0.2 kg/m? area density is stretched to a linear
tension of 4000 N/m. When vibrating in its fundamental mode, the amplitude at the
center is observed to be 0.01 cm. (2) What is its fundamental frequency? (b) What is
the maximum volume of air displaced by the membrane?

At what fraction of the radius of a circular membrane does the nodal circle of the
second symmetric mode occur?

A steel membrane of 0.02 m radius and 0.0001 m thickness is stretched to a tension
of 20,000 N/m. (#) For circularly symmetric vibration, what is the frequency of the
second overtone mode? (b) What are the radii of the two nodal circles when the
membrane is vibrating at the above frequency? (c) When the membrane is vibrating
at the above frequency, the displacement amplitude at the center is observed to be
0.0001 m. What is the average displacement amplitude?

4.5.4C. Plot the displacement as a function of radius and angle for the modes of a circular

membrane shown in Fig. 4.4.1.

4.5.5C. Plot Joand J; forargument 0 < x < 10 and compare to the small- and large-argument

4.6.1.

4.7.1.

4.7.2.

4.7.3.

4.8.1.

4.8.2.

4.8.3.

approximations. Comment on the range of x for which each approximation is good.

A circular membrane is acted on uniformly over its surface by a damping force per
unit area of —R(dy/dt). Introduce this term into (4.2.7) in a manner consistent with
the dimensions, and solve the resulting equation to show that the amplitudes of the
resulting free vibrations are damped exponentially as exp(—R¢/2ps).

The circular membrane of a kettledrum has a radius of 0.25 m, an area density of
1.0 kg/m?, and is stretched to a tension of 10,000 N/m. (a) What is its fundamental
frequency without the kettle? (b)) What is its fundamental frequency if the kettle is a
hemispherical bowl of 0.25 m radius? Assume the kettle is filled with air at a pressure
of 10° Pa, and the ratio of heat capacities is 1.4.

For the kettledrum, calculate the effect of B in (4.7.6) in changing the natural resonance
frequencies associated with the lowest three symmetric normal modes. Calculate the
values of ka for B = 0,1, 2, 5,10. Which frequency is the most changed?

(2) Find the values of ka for the lowest five members of the (m, 1) family (beginning
with m = 1) of the freely vibrating circular membrane. (Because these modes have
no volume displacement amplitudes, they can represent those for a kettledrum.)
(b) Assuming that f5; is not changed, calculate the fractional reduction in each of
the lower frequencies to bring the series into the ratios 2:3:4:5:6. How uniform is the
shifting of frequencies?

Find the resonance frequencies of a circular membrane with a free rim (but still under
tension) driven by a uniform pressure P exp(jwt).

(a) Compute and plot the shape of the circular membrane when driven at one-half its
fundamental frequency. (b) Similarly, compute and plot the shape of the membrane
when driven at twice its fundamental frequency.

An undamped circular membrane of 0.02 m radius, 1.5 kg/m? area density, and
950 N/m tension is driven by a pressure of 6000 cos(wt) Pa. (2) Compute and plot
the amplitude of the displacement at the center as a function of frequency from 0
to 1 kHz. (b) Compute and plot the shape of the membrane when driven at 400 Hz.
(c) Repeat part (b) for 1 kHz.

4.8.4C. For the forced vibration of a circular membrane, (a) plot the shape of the membrane

forka = 1toka = 8insteps of 1.0. (b) Plot the displacement amplitude of the center
for the same range of ka.
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4.9.1.

49.2,

4.9.3.

4.9.4.

Perform the integration of (4.8.6) to obtain (4.9.1). Hints: Make a change of variable to
z = kr. Use the formula in the Appendix for the differentiation of [z]1(z)] to determine
the integral of [z]y(z)]. Relate J; to the appropriate combination of J, and Jo.

The diaphragm of a condenser microphone is a circular sheet of aluminum of 0.03 m
diameter and 0.00002 m thickness. It may be stretched to a maximum tensile stress of
2 X 108 Pa. (a) What is the maximum tension (N/m)? (b) What will be its fundamental
frequency when stretched to this tension? (¢) What will be the displacement amplitude
at its center when acted on by a sound wave of 500 Hz having a pressure amplitude of
2.0 Pa? (d) What will be the average displacement amplitude under these conditions?

If the volume of air trapped behind the diaphragm of the condenser microphone of
Problem 4.9.2 is 3 X 107 m®, by what percentage will its fundamental frequency be
raised? Assume %, = 10° Paand y = 1.4.

(2) Obtain the Taylor’s expansion (4.9.4) with the help of the Appendix. (b) Show
that (4.9.1) can be approximated by (4.9.5) for angular frequencies close to the lowest
resonance. Hint; Show that [(w/w1) — (01 /@)}] = 2Aw/w, for Aw/w; << 1 and use
these relationships to simplify the angular frequency terms. (¢) Compare the square
root with that in Problem 1.10.1 to show that near resonance the average diaphragm
displacement behaves like the displacement of a damped oscillator with the same
resonance and damping.

95C (n\ Plot the average displacement of the driven circular membrane as a function of
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4.10.1.

4.10.2,

4.10.3.

4.10.4.
4.10.5.

4.10.6.

4.10.7.

4.10.8.

log(ka) for 0.01 < ka < 10 using theexact solution and the low-frequency approxima-
tion. (b) Find the ratio of the frequency for which the low-frequency approximation
is within 10% of the exact value to the frequency for which Jo(ka) = 0.

Show by direct integration of (4.10.4) over the surface area that the normal modes
of the rectangular membrane form an orthogonal set. Find the values of A, that
would make them an orthonormal set.

Show by direct application of (4.10.7) that 8(F — 7o) = 8(x — x0)8(z — zo) is an
appropriate representation, where 7, is directed from (0, 0) to (xo, 2o).

A rectangular membrane has dimensions such that the (3, 1) and (1, 2) modes are
degenerate. () What is the ratio of lengths L,/L,? (b) If the membrane is set into
motion at the degenerate frequency f3 at the point (L./2,L./2), which of the pair

is excited? (c) Repeat (b) for locations of (L./2,L./3), (L./3,L./2), and {L,/3,L./3).
(d) Find three other degenerate pairs of frequencies as multiples of f3;.

Verify (4.10.6) for y,..(x, z, t}) = sin(nmx/L,) sin(mmz/L.) exp(jw,mt).

Verify (4.10.11) by writing the-displacement as a summation of standing waves
and applying the initial condition that the membrane is at rest and given an initial
impulse so that its transverse speed is described by dy/dt = V'8(x — x0)8(z — zo) at
t =0,where0 < x, <L,and 0 < zy < L,.

Show by direct application of (4.10.7) that 8(F — 7;) = (1/r)8(r — r0)6(8 — 8o) is
an appropriate representation of the two-dimensiona 1l delta function as a product
of one- d1mens1onal delta functions in polar coordinates, where the vector 7, has
magnitude 7, and polar angle 6y. Hint: Let 8(F — 7y) be written as f(r)g(f), integrate
over an elemental area dS = rdr d6, separate the integrals into a product of one on r

and the other on 6, and note the form of the integrands.

Fill in the mathematical steps to verify the steps from (4.10.13) to (4.10.15) for the
fixed-rim circular membrane struck at a point a distance r, from its center.

Obtain the normal mode expansion for a circular membrane fixed at its rim and
struck at its center.
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4.10.9C. Design a program to show plots of the displacement of a rectangular membrane

spanning (0, L,) and (0, L,) at various times after it has been struck at a point (xg, zo).

4.10.10C. Design a program to show plots at various times of the displacement of a circular

4.11.1.

4.11.2.

4.11.3.

4114,

[
Py
ey
8}

4.11.6.

4.11.7.

s AL & LaiLlaadas

membrane of radius  after it has been struck at a point (o, 0), where 7, < a.

The diaphragm of a telephone receiver consists of a circular sheet of steel 4 cm
in diameter and 0.02 cm thick. (a) If it is rigidly clamped at its rim, what is its
fundamental frequency of vibration? What will be the effect on this frequency (b) of

~ LIRS s I NIy | Mg [ S, F s [ VN SRR s [DUUIS My . SOURRINY"Y RS [, |
doublir ig the thickness of the aiapnragm and (¢} of doubling the diameter?

To what tension would the diaphragm of Problem 4.11.1 need to be stretched if its
fundamental frequency, considered as resulting from the restoring forces of tension
alone, were to equal that resulting from stiffness forces alone?

(a) Determine the ratio of the constants B,/A; for a thin circular plate clamped at
its rim and vibrating in its first overtone mode. (b) Express the resulting motion by
an equation analogous to (4.11.10). (c) Plot the shape function of the diaphragm.
(d) What is the ratio of the radius of the nodal circle to the radius of the plate?

The vibrating circular steel plate of an electromagnetic sonar transducer of radius
0.1 m and thickness 0.005 m is clamped at its rim. What is its fundamental frequency
of vibration?

For a circular plate of thickness d, (a) show that the surface r

is k = d/ /12. (b) If the thickness of the plate is doubled, what hap
frequencies of the normal modes?

o
¢
&
-+
o
=
¢

(a) By direct integration obtain (4.11.11). (b) Show that the average displacement
amplitude is 0.309A, where A is the displacement amplitude at the center.

Find the frequencies of the symmetric normal modes for a circular plate fixed at
both center and rim.

4.11.8C. Plot the modified Bessel functions of the first three orders for arguments 0 < x < 6.

4.11.9C. Plot the shape of a thin circular plate clamped at the rim when it is vibrating in

each of its first three symmetric normal modes.



Chapter 5

THE ACOUSTIC WAVE
EQUATION AND
SIMPLE SOLUTIONS

5.1 INTRODUCTION

Acoustic waves constitute one kind of pressure fluctuation that can exist in a
compressible fluid. In addition to the audible pressure fields of moderate intensity,
the most familiar, there are also ultrasonic and infrasonic waves whose frequencies
lie beyond the limits of hearing, high-intensity waves (such as those near jet engines
and missiles) that may produce a sensation of pain rather than sound, nonlinear
waves of still higher intensities, and shock waves generated by explosions and
supersonic aircraft.

Inviscid fluids exhibit fewer constraints to deformations than do solids. The
restoring forces responsible for propagating a wave are the pressure changes that oc-
curwhen the fluid is compressed or expanded. Individual elements of the fluid move
back and forth in the direction of the forces, producing adjacent regions of com-
pression and rarefaction similar to those produced by longitudinal waves in a bar.

The following terminology and symbols will be used:

# = equilibrium position of a fluid element
Pk ety (5.1.1)

(%, #, and 2 are the unit vectors in the x, y, and z directions, respectively)

& = particle displacement of a fluid element from its equilibrium position
E=&i+gy+es (5.1.2)

u = particle velocity of a fluid element

T
U= a—f = U X + uyiy + w2 (5.1.3)

p = instantaneous density at (x, y, z)
po = equilibrium density at (x, y, z)
s = condensation at (x, y, z)
113
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s = (p— po)/ po (5.1.4)

p — po = pos = acoustic density at (x, y, z)
P = instantaneous pressure at (x, y, z)

Py = equilibrium pressure at (x, y, z)

p = acoustic pressure at (x, y, z)

p=2-P (5.1.5)

¢ = thermodynamic speed of sound of the fluid
® = velocity potential of the wave

ii=Vd- (5.1.6)

Tx = temperature in kelvins (K)
T = temperature in degrees Celsius (or centigrade) (°C)

T + 273.15 = Tx (5.1.7)

The terms fluid element and particle mean an infinitesimal volume of the fluid
large enough to contain millions of molecules so that the fluid may be thought of
as a continuous medium, yet small enough that all acoustic variables are uniform
throughout.

The molecules of a fluid do not have fixed mean positions in the medium.
Even without the presence of an acoustic wave, they are in constant random
motion with average velocities far in excess of any particle velocity associated
with the wave motion. However, a small volume may be treated as an unchanging
unit since those molecules leaving its confines are replaced (on the average) by
an equal number with identical properties. The macroscopic properties of the
element remain unchanged. As a consequence, it is possible to speak of particle
displacements and velocities when discussing acoustic waves in fluids, as was
done for elastic waves in solids. The fluid is assumed to be lossless so there are
no dissipative effects such as those arising from viscosity or heat conduction. The
analysis will be limited to waves of relatively small amplitude, so changes in the
density of the medium will be small compared with its equilibrium value. These
assumptions are necessary to arrive at the simplest equations for sound in fluids.
It is fortunate that experiments show these simplifications are successful and
lead to an adequate description of most common acoustic phenomena. However,
there are situations where these assumptions are violated and the theory must be
modified.

5.2 THE EQUATION OF STATE

For fluid media, the equation of state must relate three physical quantities describ-
ing the thermodynamic behavior of the fluid. For example, the equation of state for
a perfect gas

P = prTx (5.2.1)
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gives the general relationship between the total pressure % in pascals (Pa), the
density p in kilograms per cubic meter (kg/m?3), and the absolute temperature
Tk in kelvins (K) for a large number of gases under equilibrium conditions. The
quantity r is the specific gas constant and depends on the universal gas constant
% and the molecular weight M of the particular gas. See Appendix A9. For air,
r = 287 ]/(kg-K).

Greater simplification can be achieved if the thermodynamic process is re-
stricted. For example, if the fluid is contained within a vessel whose walls are
highly thermally conductive, then slow variations in the volume of the vessel will
result in thermal energy being transferred between the walls and the fluid. If the
walls have sufficient thermal capacity, they and the fluid will remain at a constant
temperature. In this case, the perfect gas is described by the isotherm

P/P = p/po (perfect gas isotherm) (5.2.2)

In contrast, acoustic processes are nearly isentropic (adiabatic and reversible). The
thermal conductivity of the fluid and the temperature gradients of the disturbance
are small enough that no appreciable thermal energy transfer occurs between
adjacent fluid elements. Under these conditions, the entropy of the fluid remains
nearly constant. The acoustic behavior of the perfect gas under these conditions is
described by the adiabat

P/%P = (p/po)’ (perfect gas adiabat) (5.2.3)

where vy is the ratio of specific heats (or ratio of heat capacities). Finite thermal
conductivity results in a conversion of acoustic energy into random thermal
energy so that the acoustic disturbance attenuates slowly with time or distance.
This and other dissipative effects will be considered in Chapter 8.

For fluids other than a perfect gas, the adiabat is more complicated. In these
cases it is preferable to determine experimentally the isentropic relationship
between pressure and density fluctuations. This relationship can be represented
by a Taylor’s expansion

2

P 1 {3°%P
9]’=%+(5—) (p=p)+ 5= | (b= po)* + (5.2.4)
P /e 2\9p Po

wherein the partial derivatives are determined for the isentropic compression
and expansion of the fluid about its equilibrium density. If the fluctuations are
small, only the lowest order term in (p — pp) need be retained. This gives a linear
relationship between the pressure fluctuation and the change in density

P — P = Blp — po)/ po (5.2.5

S

with B = pg(dP/3p),, the adiabatic bulk modulus discussed in Appendix All. In
terms of acoustic pressure p and condensation s, (5.2.5) can be rewritten as

p~ Bs (5.2.6)

The essential restriction is that the condensation is small.
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Another approach in expressing the adiabat of any fluid is to model it on the
adiabat of the perfect gas. This is done by generalizing %) and y to be empirically
determined coefficients for the fluid in question. Expanding (5.2.3) in a Taylor’s
series in s and rearranging to isolate the acoustic pressure p = P — &, yields

p=Plys+3y(y —1)s* + -] (5.2.7)

P | F R AL ~inmta Hhnaeiaolh cnnnm A ~ndam e
and equam lg the coefficients LAFOUgn 3€CONG Oraer i

AN
%)
s reveals that % and y can be expressed thermodynamically in general as

VP = B (5.2.8)
. _B _ pofoB

[Both & and (9% /dp),, are evaluated under adiabatic conditions.] The quantity
B/ A is the parameter of nonlinearity of the fluid. Thus, knowing % and its derivative,
we can determine % and y. The equality of coefficients fails for terms of third

order and above in s, but it has been demonstrated that these higher order terms

e QRRAY T aan AMuir 4v 1Al AMUTIL MLV ea G ro e il T OU 1Sl iv WANATL sWiiilg

are completely neghglble for situations of practical importance.! Use of standard
thermodynamic relationships allows the right sides of the above two equations
to be expressed in terms of other thermodynamic properties of the fluid that are
much more easily determined experimentally.

For liquids like water, simple alcohols, liquid metals, and many organic com-
pounds, y lies between about 4 and 12 and &%) between about 1 X 10® and 5 X
10° atm. The constant % suggests a fictitious adiabatic internal pressure, as if
the liquid in its acoustic behavior were a gas under this hydrostatic pressure.
The coefficient v is an empirical constant whose difference from unity measures
the nonlinear relationship between acoustic pressure and condensation. (Else-
where, unless explicitly stated otherwise, it is the ratio of specific heats.)

5.3 THE EQUATION OF CONTINUITY

To connect the motion of the fluid with its compression or expansion, we need
a functional relationship between the particle velocity # and the instantaneous
density p. Consider a small rectangular parallelepiped volume element dV =
dx dy dz, which is fixed in space and through which elements of the fluid travel. The
net rate with which mass flows into the volume through its surface must equal the
rate with which the mass within the volume increases. Referring to Fig. 5.3.1, we
see that the net influx of mass into this spatially fixed volume resulting from flow
in the x direction is

_ d(puy) _ _a(Pux)
{pux (pux + de)} dydz = TdV (5.3.1)

'Beyer, Nonlinear Acoustics, Naval Ship Systems Command (1974).
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dy
|
I a(p"x)
Pl evm—— | —t——g- 1 5: +a_dx
X
dz I
_ L4
-
~
2* y dx

Figure 5.3.1 An elemental spatially fixed volume of
fluid showing the rate of mass flow into and out of the
volume resulting from fluid flowing in the x direction.
A similar diagram can be drawn for fluid flowing in
the y and z directions.

Similar expressions give the net influx for the y and z directions, so that the total
influx must be

_ (a(;fux) N B(ﬁjuy) 4 0”(ffuz)\dv = —V. (pi)dV (5.3.2)
\ ox dy 0z /

The rate with which the mass increases in the volume is (7p/df) dV. The net influx
must equal the rate of increase,

‘;—’t’ +V-(pit) =0 (5.3.3)

This is the exact continuity equation. The second term on the left involves the
product of particle velocity and instantaneous density, both of which are acoustic
variables. However, if we write p = pp(1 + s), require po to be a sufficiently weak

£ 41 nd a that o 1M /22 L
function of time, and assume thats is Very sinaii, \..r .0 DECOINES

ds
pOE + V- (pott) =0 (5.34)

the linear continuity equation. Furthermore, if py is only a weak function of space

rv-i=0 (5.3.5)
ot

5.4 THE SIMPLE FORCE EQUATION:
EULER’S EQUATION

In real fluids, the existence of viscosity and the failure of acoustic processes to be
perfectly adiabatic introduce dissipative terms. As mentioned earlier, these effects
will be investigated in Chapter 8.
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Consider a fluid element 4V = dx dy dz, which moves with the fluid and contains
a mass dm of fluid. The net force df on the element will accelerate it according
to Newton’s second law df = ddm. In the absence of viscosity, the net force
experienced by the element in the x direction is

oP oP
dfy = [9}’ = (@’ + de)] dydz = 0 av (5.4.1)

There are analogous expressions for df, and df.. The presence of the gravitational
field introduces an additional force in the vertical direction of gpdV, where
| = 9.8 m/s? is the acceleration of gravity. Combination of these terms results in

df = —VPAV + 3pdV (5.4.2)

The expression for the acceleration of the fluid element is a little more com-
plicated. The particle velocity # is a function of both time and space. When the
fluid element with velocity #(x, y, z, t} at position (x, y, z) and time ¢ moves to a new
location (x + dx, y + dy, z + dz) at a later time ¢ + dt, its new velocity is expressed
by the leading terms of its Taylor expansion

U(x + uydt,y +uy, dt,z + u; dt, t + dt)

p > > > 5.4.3)
- au du Ju Ju (
= u(x,y,z,t) + —ucdt + —u,dt + —u,dt + —dt
ox ay Jz ot
Thus the acceleration of the chosen element is
. U(x + Uy dt,y + uy dt, z + u dt, t + dt) — u(x,y, 2, t
i = lim & ALYt Uy 2 ) ux YD gy
t—0 dt
or
. o ol ol o
a= dad + ux—u +uy— + U — (5.4.5)
ot ax Jy dz
If we define the vector operator (i - V) as
A d d d
u-Vy=u— +u,— +u;— 5.4.6
V) = gy (5:46)
then 4 can be written more conveniently as
I [ A
a=— + (u - Viu (54.7)

Since the mass dm of the element is pdV, substitution into df = ddm gives

VP +§p = p(‘;—j + (@ - V)ﬁ) (5.4.8)
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This nonlinear, inviscid force equation is Euler’s equation with gravity. In the case of
no acoustic excitation, gpg = V%, and thus VP = Vp + gpo so that (5.4.8) becomes
1 - U - -
——Vp+gs=(1+5s) (07_14 + (u- V)u) (54.9)
Po ot
If we now make the assumptions that |¢s| << [Vp|/po, that |s| << 1, and that
(3 - WYit| << |git/at|, then

ou
po—y = —Vp (5.4.10)

This is the linear Euler’s equation, valid for acoustic processes of small amplitude.

5.5 THE LINEAR WAVE EQUATION

The linearized equations (5.2.6), (5.3.4), and (5.4.10) can be combined to yield a
single differential equation with one dependent variable. First, take the divergence
of (5.4.10),

o
Apn—= | = —y2 55.1
v (Po . t) P 55.1)
where V'V = V2 is the three-dimensional Laplacian. Next, take the time derivative
of (5.3.4) and use the facts that space and time are independent and p is no more
than a weak function of time,

3%s U
PO~z +V- (poa) =0 (5.5.2)

Elimination of the divergence term between these two equations gives

3%s

- (5.5.3)

VZP = po

Equation (5.2.6) allows the condensation to be expressed as s = p/®, and with %
no more than a weak function of time,

1%
vl. _ /C B AN
vop ——-CZ __ﬁtz (0.09.4)
where c is the thermodynamic speed of sound defined by
¢t = B/po (5.5.5)

Equation (5.5.4) is the linear, lossless wave equation for the propagation of sound in
fluids with phase speed c. Since the above derivation never required a restriction
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on & or py with respect to space, (5.5.4) is valid for propagation in media with
sound speeds that are functions of space, such as found in the atmosphere or the
ocean.

Use of (5.5.5) shows that the adiabat can be written as

p = poc’s (5.5.6)

If pg and c are only weak functions of space, then p and s are essentially proportional
and the condensation satisfies the wave equation.

Since the curl of the gradient of a function must vanish, V X Vf = 0, (5.4.10)
shows that the particle velocity is irrotational, V X ## = 0. This means that it can
be expressed as the gradient of a scalar function @,

i=Vvo" (5.5.7)

which was previously identified as the velocity potential. The physical meaning
of this useful result is that the acoustic excitation of an inviscid fluid involves
no rotational flow. A real fluid has finite viscosity and the particle velocity is
not curl-free everywhere. For most acoustic processes, rotational effects are small
and confined to the vicinity of boundaries. They exert little influence on the
propagation of sound, so that (5.5.7) can be assumed true to very high accuracy in
acoustic propagation.

Substitution of (5.5.7) into (5.4.10) and requiring py to be no more than a gradual
function of space gives

\Y (p()% + p) =0 (5.5.8)

The quantity in parentheses can be chosen to vanish identically if there is no
acoustic excitation so that

ID
P="pPg

(5.5.9)

Thus, ® satisfies the wave equation within the same approximations.

5.6 SPEED OF SOUND IN FLUIDS

By combining (5.2.5) and (5.5.5), we get an expression for the thermodynamic
speed of sound

¢ = (@) (5.6.1)
o"p adiabat

This is a characteristic property of the fluid and depends on the equilibrium
conditions.

When a sound wave propagates through a perfect gas, the adiabat may be
utilized to derive an important special form of (5.6.1). Direct differentiation of
(5.2.3) leads to



5.7 HARMONIC PLANE WAVES 121

(@) = 'y? (5.6.2)
(9'0 adiabat P

Evaluating this expression at pp and substituting into (5.6.1), we obtain
= v%/po (5.6.3)
Substitution of the appropriate values for air from Appendix A10 gives

co = (1.402 X 1.01325 X 10°/1.293)'/%2 = 331.5m/s (5.6.4)

as the theoretical value for the speed of sound in air at 0°C and 1 atm pressure.
This is in excellent agreement with measured values and supports the assumption
that acoustic processes in a fluid are adiabatic. For most real gases at constant
temperature, the ratio %/ py is nearly independent of pressure so that the speed
of sound is a function only of temperature. An alternate expression for the speed
of sound in a perfect gas is found from (5.2.1) and (5.6.3) to be

2 = yrTx (5.6.5)

The speed is proportional to the square root of the absolute temperature. in terms
of the speed ¢p at 0°C, this becomes

¢ = co(Tx/273)Y% = co(1 + T/273)1/2 (5.6.6)

Theoretical prediction of the speed of sound for liquids is considerably more
difficult than for gases. However, it is possible to show theoretically that B = y&7,
where Br is the isothermal bulk modulus. Since Bt is much easier to measure
experimentally than %, a convenient expression for the speed of sound in liquids
is obtained from (5.5.5) and %7,

¢ = yBr/ po (5.6.7)

where vy, ®Br, and pg all vary with the equilibrium temperature and pressure of
the liquid. Since no simple theory is available for predicting these variations, they
must be measured experimentally and the resulting speed of sound expressed as
a numerical formula. For example, in distilled water a simplified formula for ¢ in
m/s is

o(P, 1) = 1402.7 + 488t — 482> + 135t + (15.9 + 2.8t + 2.4t%)(P/100) (5.6.8)
where %; is the gauge pressure in bar (1 bar = 10% Pa) and t = T/100, with T in
degrees Celsius. A gauge pressure %; of zero means an equilibrium pressure %, of

1 atm (1.01325 bar). This equation is accurate to within 0.05% for 0 < T < 100°C
and 0 = P; = 200 bar.

5.7 HARMONIC PLANE WAVES

In this and the next few sections, discussion will be restricted to homogeneous,
isotropic fluids in which the speed of sound c is a constant throughout. Propagation
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in fluids having spatially dependent sound speeds will be deferred until Section
5.14.

The characteristic property of a plane wave is that each acoustic variable has
constant amplitude and phase on any plane perpendicular to the direction of
propagation. Since the surfaces of constant phase for any diverging wave become
nearly planar far from their source, we may expect that the properties of diverging
waves will, at large distances, become very similar to those of plane waves.

If the coordinate system is chosen so that the plane wave propagates along the
x axis, the wave equation reduces to

?p 1%
- 2aE (5.7.1)

where p = p(x,f). Direct comparison with (2.3.6) shows that the mathematical
development of the solutions for transverse waves in Sections 2.4 and 2.5 can
be applied here and need not be repeated. Let us therefore proceed directly to
harmonic plane waves and the relationships among the acoustic variables.

The complex form of the harmonic solution for the acoustic pressure of a plane
wave is

p = Ad@ R 4 Bellettiy (5.7.2)
and the associated particle velocity, from (5.4.10),
i = ut = [(A/poc)ed@ ™) — (B/ pyc)e/ @z (5.7.3)
is parallel to the direction of propagation.

If we use a subscript “ +” to designate a wave traveling in the +x direction and
a subscript “—” for a wave traveling in the —x direction, then

p+ = Ad@ and p_ = Bef@t (5.7.4)
u. = *p+/poc (5.7.5)
5+ = p+/poc” (5.7.6)
®. = —p:/jwpo (5.7.7)

For a plane wave traveling in some arbitrary direction, it is plausible to try a
solution of the form

_ a flet—kx—ky—k.z) /o oON
p = A/\TRITRYTRY (5.7.8)

Substitution into (5.5.4) shows that this is acceptable if
(/cf =k+k+ K (5.7.9)

Definition of the propagation vector k,

k = kek + ki + k2 (5.7.10)
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which has magnitude w /¢, and a position vector 7,
P xktyp etz (5.7.11)

that gives the location of the point (x,y,z) with respect to the origin of the
coordinate system, allows the trial solution (5.7.8) to be expressed as

p = Ad@F) (5.7.12)

The surfaces of constant phase are given by k-7 = constant. Since, from the def-
inition of the gradient, k = V(k - 7} is a vector perpendicular to the surfaces of
constant phase, k points in the direction of propagation. The magnitude of k is the
wave number (or propagation constant) k and ky/k, k,/k, and k,/k are the direction
cosines of k with respect to the x, y, and z axes.

As a special case, let us examine a plane wave whose surfaces of constant phase
are parallel to the z axis. Equation (5.7.8) reduces to

p = At Rrky) (5.7.13)
The surfaces of constant phase are given by
y = —(ky/ky)x + constant 5.7.14)

which describes plane surfaces parallel to the z axis with a slope of —(k,/k,) in the
x-y plane. If we examine p as a function of x and ¢ for y = 0, we have

p(x,0,t) = Ad@i %) (5.7.15)

This oblique “slice” of the wave has an apparent wavelength A, = 2 /k, measured
in the x direction. From Fig. 5.7.1 we see that A/A, = cos ¢ so that k, = kcos ¢.

The same argument applies in the y direction for fixed x and yields k, = ksin ¢.
Thus,

k = kcospk + ksind (5.7.16)

Figure 5.7.1 Surfaces of constant phase
for a plane wave with wave number k
traveling perpendicular to the z axis in

a direction ¢ from the x axis.
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and k is perpendicular to the z axis, pointing into the first quadrant of the x-y
plane with an angle ¢ measured counterclockwise from the x axis. Substitution of
k into (5.7.12) yields the convenient form

p= Aej(wt—kxcosqb—kysinqb) (5717)

5.8 ENERGY DENSITY

The energy transported by acoustic waves through a fluid medium is of two
forms: (1) the kinetic energy of the moving elements and (2) the potential energy of
the compressed fluid. Consider a small fluid element that moves with the fluid
and occupies volume Vj of the undisturbed fluid. The mass of the element is po Vo
and its kinetic energy is ‘

Ex = YpoVou? (5.8.1)

The change in potential energy associated with a volume change from Vj to V is

rV
E, = *J pdV (5.8.2)
Vo

The negative sign indicates that the potential energy will increase (work is done
on the element) when its volume is decreased by a positive acoustic pressure p.
To carry this out, it is necessary to express all variables under the integral sign
in terms of one variable—p, for example. From conservation of mass we have
pV = poVj so that

dv = —(V/p)dp (5.8.3)
Now, with the use of dp/dp = ¢?,

dV = (V/pc?)dp (5.8.4)

Substitution into (5.8.2) and integration of the acoustic pressure from 0 to p gives
E, = 3(p*/poc®)Vo (5.8.5)

within the linear approximations. The total acoustic energy of the volume element
is then

E =Ex+E, = 1poVolu? + (p/ poc)?] (5.8.6)
and the instantaneous energy density €; = E/Vj in joules per cubic meter (J/m?) is

€ = Lpolu® + (p/ poc)’] (587)

Both the pressure p and the particle speed u must be the real quantities obtained
from the superposition of all acoustic waves present.
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The instantaneous particle speed and acoustic pressure are functions of both
position and time, and consequently the instantaneous energy density %; is not
necessarily constant throughout the fluid. The time average of €; gives the energy
density € at any point in the fluid:

T
€ = (&) = % L %; dt (5.8.8)

where the time interval T is one period of a harmonic wave.

The above expressions apply to any linear acoustic wave. To proceed further,
it is necessary to know the relationship between p and u. For a plane harmonic
wave traveling in the xx direction, reference to (5.7.5) shows that p = *pycu so
that (5.8.7) gives

8 = pott? = p*/poc? (5.8.9)
and if P and U are the amplitudes of the acoustic pressure and particle speed,
¢ = PU/2c = P2/2pyc? = poU?/2 (5.8.10)

In more complicated cases, there is no guarantee that p = *pycu nor that the
energy density is given by € = PU/2c. However, (5.8.10) is approximately correct
for progressive waves when the radii of curvature of the surfaces of constant phase
are much greater than a wavelength. This occurs, for example, for spherical or
cylindrical waves at distances of many wavelengths from their sources.

5.9 ACOUSTIC INTENSITY

The instantaneous intensity I(t) of a sound wave is the instantaneous rate per unit
area at which work is done by one element of fluid on an adjacent element. It is
given by I(t) = pu in watts per square meter (W /m?). The intensity I is the time
average of I(t), the time-averaged rate of energy transmission through a unit area
normal to the direction of propagation,

1 T
= o= Gur = 1| pude 59.1)

where for a monofrequency wave T is the period.
For a plane harmonic wave traveling in the *x direction, p = *pgcu, so that

[ = +P2/2pgc (5.9.2)

There is a similarity between (5.9.2) and corresponding equations for electro-
magnetic waves and voltage waves on transmission lines. First, reexpress (5.9.2)
in terms of effective (root-mean-square) amplitudes. If we define F, as the effective
amplitude of a periodic quantity f(t), then

1/2

T
F. = (% JO ﬁ(t)dt) (5.9.3)
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where T is the period of the motion. For harmonic waves this yields

P,=P/J2 and U, =U/2 (5.9.4)
so that
I. = *=PU, = *P?/pyc (5.9.5)

for a plane wave traveling in either the +x or —x direction. It must be emphasized
that, while (5.9.1) is completely general, I. = *P,l, is exact only for plane
harmonic waves and is approximately true for diverging waves at great distances
from their sources.

5.10 SPECIFIC ACOUSTIC IMPEDANCE

The ratio of acoustic pressure to the associated particle speed in a medium is the
specific acoustic impedance

z=p/u (5.10.1)
For plane waves this ratio is
z = Tpoc (5.10.2)

The choice of sign depends on whether propagation is in the plus or minus
x direction. The MKS unit of specific acoustic impedance is the Pa-s/m, often
called the ray! (1 MKS rayl = 1 Pa- s/m) in honor of John William Strutt, Baron
Rayleigh (1842-1919). The product poc often has greater acoustical significance as
a characteristic property of the medium than does either py or ¢ individually. For
this reason poc is called the characteristic impedance of the medium.

Although the specific acoustic impedance of the medium is a real quantity for
progressive plane waves, this is not true for standing plane waves or for diverging
waves. In general, z will be complex

=r+jx (5.10.3)

where 7 is the specific acoustic resistance and x the specific acoustic reactance of the
medium for the particular wave being considered.

The characteristic impedance of a medium for acoustic waves is analogous to
the wave impedance ./u/e of a dielectric medium for electromagnetic waves
and to the characteristic impedance Z; of an electric transmission line. Numerical
values of poc for some fluids and solids are given in Appendix A10.

For air at a temperature of 20°C and atmospheric pressure, the density is 1.21
kg/m® and the speed of sound is 343 m/s, giving

poc = 415Pa-s/m (air at 20°C) (5.10.4)

In distilled water at 20°C and 1 atm, the speed of sound is 1482.1 m/s and its
density is 998.2 kg/m?, resulting in a characteristic impedance of

poc = 1.48 X 10° Pa-s/m  (water at 20°C) (5.10.5)
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5.11 SPHERICAL WAVES

Expressed in spherical coordinates, the Laplacian operator is

#? 24 1 a4, @ 1 &
V2 = —2 - 5 - 51n9— + 72—2 (5111)
ar rdr r-sinfé 00 08 r?sin” 6 d¢p
where x = rsinfcos¢,y = rsinfsind, and z = rcos 8 (see Appendix A7). If the
2 et 8 ] Y¥r \! g /

waves have spherical symmetry, the acoustic pressure p is a function of radial
distance and time but not of the angular coordinates, and this equation simplifies
to

2__ — —
V= s (5.11.2)

The wave equation for spherically symmetric pressure fields is then

3*p N 29p  1d%p

o Y T @ R
Conservation of energy and the relationship I = P2/2pyc lead us to expect that
the pressure amplitude might fall off as 1/7, so that the quantity rp would have
amplitude independent of 7. Rewriting (5.11.3) with rp treated as the dependent
variable results in

P(rp) _ 1 9%(rp) (5.11.4)

ar? 2 912

If the product rp in this equation is considered as a single variable, the equation is
the same as the plane wave equation with the general solution

p= % filet =) + ; folct +7) (5.11.5)

for all » > 0. The solution fails at ¥ = 0. The first term represents a spherical
wave diverging from the origin with speed ¢; the second term represents a wave
converging on the origin. For the outgoing wave, the solution fails at the origin
because some source of sound is required to supply the energy carried away, and
our wave equation does not contain any term representing this energy source. (See
Sections 5.15 and 5.16.) In practice, this means that the medium must be excluded
from some volume of space including the origin, and this volume must be occupied
by whatever vibrating body serves as the sound source. For the incoming waves,
energy is being focused at the origin and the small-amplitude approximations
will fail. This failure will manifest itself in a nonlinear wave equation and strong
acoustic losses limiting the attainable amplitudes.

The most important diverging spherical waves are harmonic. Such waves are
represented in complex form by

p= % flot—kr) (5.11.6)
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Use of the relationships developed in Section 5.5 for a general wave allows the
other acoustic variables to be expressed in terms of the pressure

P = —p/jwpo (5.11.7)

u= Vo = H1-j/kr)p/ poc (5.11.8)

The observed acoustic variables are obtained by taking the real parts of (5.11.6)-
(5%'(1 ‘iz)épparent from (5.11.8) that, in contrast with plane waves, the particle speed

is not in phase with the pressure. The specific acoustic impedance is not pgc, but
rather

kr io

zZ = pocmme] (5119)
or
z = poccos @ e’ (5.11.10)
cotf = kr (5.11.11)
ULV nit \\JALLALL,

A geometric representation of 6 is given in Fig. 5.11.1. As is true with many other
acoustic phenomena, the product kr is the determining factor, rather than k or r
separately. Since kr = 27r/ A, the angle 6 is a function of the ratio of the source
distance to the wavelength. When the distance from the source is only a small
fraction of a wavelength, the phase difference between the complex pressure and
particle speed is large. At distances corresponding to a considerable number of
wavelengths, p and u are very nearly in phase and the spherical wave assumes
the characteristics of a plane wave. This is to be expected, since the wave fronts
become essentially planar at great distances from the source.

Separating (5.11.9) into real and imaginary parts, we have

(kr)? , kr

= poC——F—5 tjpoc+— 11.12
2= P e TP (ke (511.12)
The first term is the specific acoustic resistance and the second term the specific
acoustic reactance. Both approach zero for very small values of kr, but for very large
values of kr the resistive term approaches pyoc and the reactive term approaches
zero.

The absolute magnitude z of the specific acoustic impedance is equal to the ratio
of the pressure amplitude P of the wave to its speed amplitude L,

z = P/U = pgccosb (5.11.13)

Figure 511.1 The relationship between 8 and
kr at a distance r from the source of a spherical
wave of wave number k.
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and the relationship between pressure and speed amplitude may be written as
P = ppcUcos @ (5.11.14)

For large values of kr, cos@ approaches unity and the relationship between
pressure and speed is that for a plane wave. As the distance from the source of
a spherical acoustic wave to the point of observation is decreased, both kr and
cos @ decrease, so that larger and larger particle speeds are associated with a given
pressure amplitude. For very small distances from a point source, the particle speed
corresponding to even very low acoustic pressures becomes impossibly large: a
source small compared to a wavelength is inherently incapable of generating
waves of large intensity.
Let us rewrite (5.11.6) as

p= ‘; jlwt=kr) (5.11.15)

where we have chosen a new origin of time so that A is a real constant A. Then A/r
is the pressure amplitude of the wave. The pressure amplitude in a spherical wave
is not constant, as it is for a plane wave, but decreases inversely with the distance
from the source. The actual pressure is the real part of (5.11.15),

p= ?cos(wt —kr) (5.11.16)
Since u = p/z, the corresponding complex expression for the particle speed is

u= ré jlwt—kr) (5.11.17)
Z

Replacing z by (5.11.10) and then taking the real part of the resulting expression
gives the actual particle speed,

1A 1
= —— t—kr—0 5.11.18
u P cos(w r—0) ( )

It is apparent that, since 6 is a function of k7, the speed amplitude

1A 1
= —— 5.11.19
poc T cos 6 ( )
is not inversely proportional to the distance from the source.
For a harmonic spherical wave (5.9.1) yields
I= 1 jTPcos(wt — kr) U cos(wt — kr — 8)dt = PUcost _ P* (5.11.20)
T Jo 2 2poc

where the factor cos ¢ is analogous to the power factor of an alternating-current
circuit. Note that the formula I = P?/2pgc is exactly true for both plane and
spherical waves.



130 CHAPTER 5 THE ACOUSTIC WAVE EQUATION AND SIMPLE SOLUTIONS

The average rate at which energy flows through a closed spherical surface of
radius r surrounding a source of symmetric spherical waves is

1 = 4nr’l = 47*P?/2pgc (5.11.21)
orsincep = A/r
II = 27wA?%/ pyc (5.11.22)

The average rate of energy flow through any spherical surface surrounding
the origin is independent of the radius of the surface, a statement of energy
conservation in a lossless medium.

5.12 DECIBEL SCALES

It is customary to describe sound pressures and intensities using logarithmic scales
known as sound levels. One reason for this is the very wide range of sound pressures
and intensities encountered in the acoustic environment; audible intensities range
from approximately 10712 to 10 W/m?. Using a logarithmic scale compresses the
range of numbers required to describe this wide range of intensities and is also
consistent with the fact that humans judge the relative loudness of two sounds by
the ratio of their intensities.

The most generally used logarithmic scale for describing sound levels is the
decibel (dB) scale. The intensity level IL of a sound of intensity I is defined by

IL = 101og(I/ L) (5.12.1)

where I, is a reference intensity, I is expressed in decibels referenced to I, (AB re Iy),
and “log” represents the logarithm to base 10.

We have shown in Sections 5.9 and 5.11 that intensity and effective pressure of
progressive plane and spherical waves are related by I = P2/ pyc. Consequently,
the intensities in (5.12.1) may be replaced by expressions for pressure, leading to
the sound pressure level

SPL = 20log(P./ Pysy) (5.12.2)

where SPL is expressed in dB re P, with P, the measured effective pressure
amplitude of the sound wave and P, the reference effective pressure amplitude.
If we choose I,y = Pqu/ poc, then IL re Is = SPL re Pyy.

Throughout the scientific disciplines a number of units are used to specify

of various degrees of antiquity are encountered. Let us first catalog a few units:

CGS units

1 dyne/cm?, also called the microbar (ubar). (The microbar was originally 107
atm but is now defined as 1 dyne/cm?.)

MKS units
1 pascal (Pa), defined as 1 N/m? in the SI system of units
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Others

1 atmosphere (atm) = 1.01325 X 10° Pa = 1.01325 X 10°ubar
1 kilogram/cm? (kgf/cm?) = 0.980665 X 10° Pa = 0.967841 atm

Equivalents
1 wbar = 0.1 N/m? = 10° uPa

The reference standard for airborne sounds is 10-2 W/m?, which is approxi-
mately the intensity of a 1 kHz pure tone that is just barely audible to a person
with unimpaired hearing. Substitution of this intensity into (5.9.2) shows that it
corresponds to a peak pressure amplitude of

P = (2pgcDhY? = 2.89 X 107° Pa (5.12.3)
or a corresponding effective (root-mean-square) pressure of
P, = P/J2 = 204 uPa (5.12.4)

This latter pressure, rounded to 20 uPa, is the reference for sound pressure lev-
els in air. Essentially identical numerical results are obtained in air using either
1072 W/m? in (5.12.1) or 20 uPa in (5.12.2) for plane or spherical progressive
waves, However, in certain more complex sound fields, such as standing waves,
intensity and pressure are no longer simply related by (5.9.5) and (5.11.20) and
consequently (5.12.1) and (5.12.2) will not yield identical results. Since the voltage
outputs of microphones and hydrophones commonly used in acoustic measure-
ments are proportional to pressure, sound pressure levels are used more widely
than intensity levels.

Three different pressures are encountered as reference pressures in underwater
acoustics. One is an effective pressure of 20 wPa (the same as the reference pressure
in air). The second reference pressure is 1 wbar and the third is 1 uPa. The last is
now the standard.

This abundance of reference pressures can lead to confusion unless care is taken

+n :I]\’AT:I‘FQ enarﬂ{:‘r 'I-}'\n raFnrnnr‘n "nracciira ]'\ninn- 1|ear‘l CDT o ’)ﬂ ll p:l o 1 s p:l nr
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re 1 ubar. Table 5.12.1 summarizes the various conventions.

From the above discussion, note that a given acoustic pressure in air corresponds
to a much higher intensity than does the same acoustic pressure in water. Since
(5.9.5) or (5.11.20) shows that, for a given pressure amplitude, intensity is inversely

Table 5.12.1 References and conversions for sound pressure levels

Medium Reference Nearly equivalent to
Air 10712 W/m? 20 uPa
20 uPa = 0.0002 ubar 10712 W/m?
Water 1 ubar = 10°uPa 6.76 X 10° W/m?
0.0002 wbar = 20uPa. 2.70 X 107 W/m?
1 uPa 6.76 X 1071 W/m?

SPLrel ubar + 100 = SPLre1 uPa
SPL re 0.0002 ubar — 74 = SPLre1 ubar
SPL re 0.0002 ubar + 26 = SPLre1 uPa
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proportional to the characteristic impedance of the medium, the ratio of the
intensity in air to that in water for the same acoustic pressure is (1.48 X 10°)/415 =
3570. On the other hand, if we compare two acoustic waves of the same frequency
and particle displacement, the ratio of the intensity in air to that in water is 1/3570.
Because of the conveniences afforded by decibel scales, electrical quantities are
often specified in terms of levels. For example, the voltage level VL is defined as

VL(re Vi) = 2010g(V/Vyey) (5.12.5)

where V is the effective voltage and Vs is some convenient reference effective
voltage.

By convention, the subscript “¢” and the adjective “effective” are omitted when
specifying effective amplitudes of electrical quantities. Two common reference
voltages are 1 V and 0.775 V. (This latter stems from an old reference, the voltage
required to dissipate 1 mW of electrical power in a 600 ohm resistor.}) Comparison
of voltage levels referenced to the two common reference voltages reveals that

/s
€

VL(re 0.775 V) = VL(re 1 V) + 2.21 (5.12.6)

The abilities of electroacoustic sources and receivers to convert between electri-
cal and acoustic quantities can be expressed in terms of sensitivities. For example,
the open circuit receiving sensitivity M, of a microphone is defined as

My = (V/P.)io (5.12.7)

where V is the output voltage produced (with negligible output current I) when
the microphone is placed at a point where the effective pressure amplitude was P,
in the absence of the microphone. This is one of a number of sensitivities that can
be defined for a microphone; more detail will be found in Chapter 14. A sensitivity
M is usually expressed in terms of the associated sensitivity level ME

ME(re Mrr) = 2010g(M/ Mye) (5.12.8)

where A, is a reference sensitivity such as 1 V/ubar or 1V /Pa.

Relationships among P, V, and M, can be expressed in terms of either the
fundamental quantities or the associated levels. For example, assume that a
microphone of known sensitivity level M£ dB re M,s gives an output level
VL dB re V s, and we wish to know the sound pressure level SPL dB re P, of the
sound field. Algebraic manipulation reveals

Vi / P
SPL(re Pry) = VL(re Vyg) — ML(re Myg) + 20 log ( ’—‘j’d/-”—f) (5.12.9)
\ e

In complete analogy, an acoustic source is characterized by a source sensitivity
¥ = P./V and a source sensitivity level £

Pe/ V) (5.12.10)

9’££(reﬂ’ref) =20 log( G
ref

where V is the voltage applied to the electrical input of the source, P, is the
effective pressure at some specified location (usually on the acoustic axis of the
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source extrapolated back from large distances to 1 m from the face of the source),
and J is a reference sensitivity such as 1 uPa/V or 1 ubar/V.

*5.13 CYLINDRICAL WAVES

Three-dimensional cylindrical waves have significant applications in atmospheric and
underwater propagation. The wave equation for cylindrical propagation is (5.5.4) with the
Laplacian expressed in cylindrical coordinates,

# 1a 1 3 1%
(572 trar At 3;2)” s R

Recall that the physical interpretation of r depends on the coordinates being used. In
spherical coordinates, r denotes the radial distance from the origin to the field point in any
direction. In cylindrical coordinates it refers to the perpendicular distance from the z axis to the
field point.

Assuming harmonic solutions and separation of variables,

p(r,8,z,t) = R(NOO)Z(z)e"! (5.13.2)

allows (5.13.1) tobe decomposed into three differential equations and provides a relationship
for the separation constants,

2
o)

arr ' rdr 72
42z
g tRZ =0 (5.13.3)
2
% +mO =0

@/ =R =E+E
The equation for @ is the same as for the circular membrane. If we assume azimuthal
symmetry, then m = 0. The equation for Z is solved by sinusoidal or complex exponential
functions and corresponds to oblique waves whose propagation vectors have a projection
on the z axis of k,. The simplest case is k, = 0, which describes waves whose surfaces of
constant phase are cylinders concentric with the z axis. These two simplifications leave us
with the z-independent, cylindrically symmetric solutions of the radial wave equation

2
ZTI: + %Z—l: +KR =0 (5.13.4)

Reference to Section 4.4 and use of m = 0 gives the general solution
p(r,t) = [AJo(kr) + BYy(kr)]e! (5.13.5)

Since Y; diverges as r — 0, (5.13.5) fails at r = 0 unless B = 0. The reasons for this failure
are identical with those discussed for spherical waves in Section 5.11, so when B # 0 the
z-axis must be excluded from the volume within which (5.13.5) can be applied.
Examination of (5.13.5) reveals that if p is to be a traveling wave, it must be a complex
function of space. Furthermore, assuming that [ = P?/2pyc is at least approximately true at
large distances and using conservation of energy suggests that the pressure p(r, t) should
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be proportional to

1 .
— et 5.13.6
N ( )

The * sign in the exponent gives incoming or outgoing waves. The combinations of A
and B that will produce (5.13.6) in the limit r — % can be found from the large-argument
asymptotic forms of [, and Y,

Jolkr) — (2/wkr)/? cos(kr — 7 /4)

(5.13.7)
Yo(kr) — (2/wkr)Y? sintkr — 7/ 4)

Equation (5.13.5) will take on the form (5.13.6) if B = *jA. These combinations are the
Bessel functions of the third kind, or Hankel functions,
HP(kr) = Jolkr) + jYo(kr)

(5.13.8)
HP (kr) = Jokr) = jYo(kr)

For an outgoing harmonic cylindrical wave with azimuthal symmetry and independent of
z, the appropriate solution of (5.13.4) is

el 2N A TH2Y 1. et /517 O\
P\I, Ly — mo U\-I}t" \J.J.J-7}

While (5.13.9) was developed by imposing the asymptotic behavior (5.13.6) and using the
asymptotic form of the Hankel function for large kr, it is an exact solution of (5.13.4) for
all r > 0. (This is often referred to as imposing a radiation boundary condition at infinity.) For
large kr this solution has asymptotic behavior

p(r,t) — AQ2/wkr)l/ 2@t krtm/Y (5.13.10)

Generating the velocity potential ® with (5.5.9), and then using (5.5.7) gives the particle
speed

u(r, t) = —j(A/ poc) HP (kr)e* (5.13.11)
with the help of Appendix A4. The specific acoustic impedance z follows at once:
z = jpocHY (kr)/H® (kr) (5.13.12)

In the limit kr > 1, the asymptotic approximations of the Hankel functions show that
z — poc at large distances. This is to be expected, since as kr increases beyond unity, the
radii of curvature of the surfaces of constant phase become much larger than a wavelength
and the waveform looks locally more and more like a plane wave.

Calculation of the acoustic intensity is a little more complicated. The instantaneous
intensity is I(r, t) = pu. This yields

I(r, t) = (A*/ poc) [Jolkr) cos wt + Yo(kr) sinwt] [J1(kr)sinwt — Yi(kr) coswt| (5.13.13)

where for ease we have chosen time so that A = A. Taking the time average leaves us with
the intensity

I(r) = (A%/2poc) [J1kn)Yo(kr) — Jo(kr)Y1(kr)] (5.13.14)

The quantity in square brackets is the Wronskian of J(kr) and Y,(kr) and has the known
value 2/7kr. Substitution gives us the result
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2AY/mkr P2
2ppc  2poc

Itr) = (5.13.15)

where P is the asymptotic amplitude
P, = A(2/wkr)!/? (5.13.16)

of p(r, t). The intensity falls off as 1/r, as conservation of energy in a lossless fluid says it
must for a cylindrically diverging wave, but the intensity is not simply P? /2 pgc everywhere,
as it was for plane and spherical waves.

*5.14 RAYS AND WAVES

Up to this point, we have considered the propagation of sound in a homogeneous medium
having a constant speed of sound. The speed of sound is often a function of space and
instead of plane, spherical, and cylindrical waves of infinite spatial extent we find waves
whose directions of propagation change as they traverse the medium. One technique for
studying this effect is based on the assumption that the energy is carried along reasonably
well-defined paths through the medium, so that it is useful to think of rays rather than
waves. In many cases, description in terms of rays is much easier than in terms of waves.
However, rays are not exact replacements for waves, but only approximations that are valid
under certain rather restrictive conditions.

(a) The Eikonal and Transport Equations
The wave equation with spatially dependent sound speed is

1 &
(V2 - mﬁ)p(x,y,z, t) =0 (5141)

For sound traversing such a fluid, the amplitude varies with position and the surfaces of
constant phase can be complicated. Assume a trial solution

P(x,y,z,t) = A(x, y, z)el!" v/l (5.14.2)

where I" has units of length and c is a reference speed to be defined later. The quantity I'/¢co
is the etkonal. The values of (x,y,z) for which I' is constant define the surfaces of constant
phase. From the basic definition of the gradient, VI is everywhere perpendicular to these
surfaces.

Substituting the trial solution into (5.14.1) and collecting real and imaginary parts gives

2 2
_V_A+(ﬂ) V[ = (‘i)
A \Co ) c

2E V[ + VT =0

—
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These equations are difficult to solve because they are coupled and nonlinear. However, if
we require

v4

A c

2
< (‘i) (5.14.4)
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then the first of (5.14.3) assumes the simpler approximate form

VI - VT = (cp/c) = P (5.14.5)

where n = ¢y/c is the index of refraction. Equation (5.14.5) is the eikonal equation. 1t is
immediately clear that

VI = ng (5.14.6)

where the unit vector § gives the local direction of propagation. Given § at a point in the
sound field and then tracing how that specific § changes direction as it is advanced point
to point within the fluid defines a ray path, the trajectory followed by the particular ray.
Since according to (5.14.6) the local direction of propagation of the ray is perpendicular
to the eikonal, in this approximation each ray is always perpendicular to the local surface
of constant phase. Sufficient conditions for satisfying (5.14.4) are (1) the amplitude of the
wave and (2) the speed of sound do not change significantly over distances comparable to
a wavelength. If we consider a beam of sound with transverse dimensions much greater
than a wavelength traveling through a fluid, (5.14.4) states that the eikonal equation may
be applied over the central portion of the beam where A is not rapidly varying. At the
edges of the beam, however, A may rapidly reduce to zero over distances on the order of
a wavelength and the restriction (5.14.4) fails. The failure manifests itself in the diffraction
of sound at the edges of the beam—analogous to the diffraction of light through a slit or
pinhole. This means that (5.14.5) is accurate only in the limit of high frequencies—how
high depends on the spatial variations of ¢ and A. More rigorous necessary conditions
can be stated, but their physical meanings are less direct. Indeed, there are propagating
waves (Problem 5.14.10) that do not satisfy the sufficient conditions, but for which (5.14.5)
is valid.

Analysis of the transport equation, the second of (5.14.3), will provide further justification
for the concept of rays. Substitution of (5.14.6) into this equation and a little manipulation
(Problem 5.14.4a) gives

d N _o.a
ﬁln(nA )= -V-3 (5.14.7)

For distances more than a few wavelengths away from the source, the intensity is

1 = P*/2pyc = nA*/2pyco (5.14.8)
so that (5.14.7) becomes
1dl
- V.3 14.
1% 8 (5.14.9)

The left side is the fractional change of intensity per unit distance along a ray pathand V - §
describes how the rays converge or diverge. Now apply Gauss’s theorem to the volume
defined by the bundle of rays shown in Fig. 5.14.1. The volume is chosen so that the rays
pass only through the end caps. Integrate (5.14.9) over the volume S Ah. On the left side
the volume integral becomes (1/1)(dl/ds)S Ah = S[d(InI)/ds] Ah. On the right side, use of
Gauss’s theorem converts the volume integral into a surface integral of § - 7. Since the rays
enter and leave the volume only through the end caps, this integral yields the incremental
change —AS in the cross-sectional area of the bundle of rays. Finally, recognize that AS is
obtained along the ray path, so that AS = (dS/ds) Ah. This gives us d(Inl)/ds = —d(InS)/ds
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Figure 5.14.1 An elemental volume
of a ray bundle with end caps of areas
51 and S; separated by a distance Ak
along the rays.

and the result
IS = constant (5.14.10)

Thus, within the limitations of the eikonal equation, the energy within a ray bundle
remains constant. This is the mathematical justification for the intuitive concept that energy
in a sound wave travels along rays. Any mathematical or geometrical technique that allows
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space.

(b) The Equations for the Ray Path

Solution of the eikonal equation (5.14.6) gives the direction 3 for each ray at every point
along its path. The problem of obtaining the ray paths is equivalent to solving for the
successive locations of 3. First, express 8 in terms of its direction cosines,

§= ak+ B+ 2
axt Yty (5.14.11)
Py =1

where the direction cosines are « = dx/ds, 8 = dy/ds, and y = dz/ds with dx, dy, and dz
the coordinate changes resulting from a step ds in the 3 direction along the ray path. If the
change in any scalar along the ray

d f f f
E %Pyt (5.14.12)

is applied to both sides of the first of (5.14.11), the components become

d on
57 = 5%
d an
adl = (5.14.13)
=8 = 5
d on
%("’Y) = 3

(See Problem 5.14.4b for details.) The eikonal equation relates the changes in the direction
of propagation of a ray to the gradient of the local index of refraction. Given n(x,y, z), it is
possible to trace the trajectories of every element of a wave front through the medium. A
simple example follows.
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46 Ray path

R =lol

ds dz

Aﬁ Figure 5.14.2 An element of a ray

dx path in the x-z plane of length ds
making an angle 8 with the x axis
will have a radius of curvature R =
¢/ (g cos 8)], where c is the speed
of sound and g is the sound speed
x  gradient.

(¢) The One-Dimensional Gradient

The speed of sound can often be considered a function of only one spatial dimension. In
both the ocean and the atmosphere, for example, variations of the speed of sound with
horizontal range are generally much weaker than the variations with depth or height.

Let the index of refraction be a function of z alone, where z is the vertical coordinate.
Then (5.14.13) becomes

(ne) = 0

d

ds

4 g =0 (5.14.14)
ds

| [
=

d
%(ny) = 4

[

If the coordinate axes are oriented so that a ray starts off in the x-z plane and makes an angle
0 with the x axis (see Fig. 5.14.2), the initial value of 8 is zero and, according to the second
of the above equations, 8 will remain zero and the ray path will stay in the x-z plane. We
can then identify @ = cos8 and y = sin#, and the remaining equations in (5.14.14) become

;—S(n cosf) =0

(5.14.15)
i’n sinf) = d_n
ds* T dz

The first of (5.14.15) reveals that ncos # must have the same value at every point along
a particular ray path. If we specify the angle of elevation 6, where the ray path encounters
the reference speed ¢y, we then have a statement of Snell’s law,

cosf _ cosb

C Co

(5.14.16)
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From the definition of n = ¢y/c we see that dc/dz has the opposite sign from dn/dz.
Then, the second of (5.14.15) shows that when the sound speed increases in the z direction, 8
must decrease along the ray—the ray turns toward the lower sound speed. When the sound
speed decreases in the z direction, 6 increases along the ray—the ray still turns toward the
lower sound speed. A ray always bends toward the neighboring region of lower sound speed.
While this equation cannot be solved without knowing the dependence of ¢ on z, it can
be put into a geometrical form. With reference to Fig. 5.14.2, dz = sin § dsand ds = ¢ d§,
where o is a measure of the amount and orientation of the curvature of the ray path. For

Fioe B14 7 AL incroacoac alane the rav en i nnertine
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o Tf tha rav nath wara ta mMirva tha
T, 1CasTS diUIl Y, 50 O 15 pos « 1l UIC Iay IV
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other way (with negative second derivative), o would be negative. The magnitude of ¢ is
the radius of curvature R. Use of these geometrical relationships along with (5.14.15) and
(5.14.16) gives

1 Co
o= 1
§ cosbo (5.14.17)
_dc
§~ &

where g is the gradient of the sound speed. The radius of curvature R of the ray is inversely
proportional to |g| at each point along the path. Each ray path must be computed separately
since each has its own value of the Snell’s law constant (cos 6,)/c;. See Chapter 15 for
examples of ray tracing when g is piecewise constant.

(d) Phase and Intensity Considerations

Let I; be the acoustic intensity referred to a distance 1 meter from a source along a bundle
of rays with initial angle of elevation 6. It is desired to know the intensity I of this bundle
at some range x as shown in Fig. 5.14.3. For a lossless medium, the intensity multiplied by
the cross-sectional area of the bundle must be constant. Let S; be the cross section of the
bundle at 1 meter from the source and S the cross section at range x, where the intensity is .
Examination of the geometry of the figure reveals S = x A¢ sinfdxand 5; = Ad df,cos b,

Figure 5.14.3 A ray bundle in the
x-z plane that is used to determine
intensity from conservation of
energy. At x = 1 m the cross-
sectional area of the bundle is

A db, cos 0y, where Ad is the
horizontal angular width of the
bundle, d6, its initial vertical
angular width, and 8 the initial
angle of elevation. The area at
range x where the ray makes

an angle 8 with the horizontal

is x Adsinf dx, where dx =
(9x/960). dBy.
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so that conservation of energy provides Ixsinfdx = I, cos 8y d6y. The element dx can be
expressed by dx = (dx/d6,). d8y, where the range x must be written as a function of 8, and
z. Combination of the above equations results in

i 1 cos 8, 1
—_= 5.14.1
11 x sin@ (dx/&@o)z ( 8)

When neighboring rays from the source intersect at some field point, the partial derivative
vanishes and the intensity becomes infinite. The locus of such neighboring points may form
a surface of infinite intensity, called a caustic. The intensity does not really become infinite
on a caustic, of course, because the conditions necessary for the validity of the eikonal
equation fail. Caustics do, however, identify regions of high intensity where there is strong
focusing of acoustic energy.

A different situation can occur when nonadjacent ray paths intersect at some point away
from the source. An example would be reflection from a boundary, for which the direct
and reflected ray paths intersect. For a continuous monofrequency signal generated by the
source, there are two different approaches to this combination:

1. Incoherent Summation. If spatial irregularities and fluctuations in the boundary or the
speed of sound profile are sufficient to randomize the relative phases of the signals
propagating over intersecting ray paths, then we can make a random phase approximation.
Under this approximation, a reasonable estimate of the average acoustic intensity where
the different paths intersect is the sum of the intensities for the individual rays. The
acoustic pressure amplitude is then the square root of the sum of the squares of the
pressure amplitudes of the signals where they intersect.

2. Coherent Summation. If, however, the irregularities in propagation do not appreciably
affect the phases of the signals, phase coherence is retained and it is necessary to calculate
the travel time Af of each signal along its path so that the relative phases can be obtained.
The total pressure and phase of the combination is then obtained by adding the phasors
with proper regard for the phases.

A typical case of continuous wave propagation may lie somewhere between these two
idealizations. Coherence is favored by short-range, low-frequency, smooth boundaries, few
boundary reflections, and a stable and smooth speed of sound profile. Random phasing is
favored by the converse conditions. The travel time can be calculated in a number of ways,
each simple to derive:

1 | S| |
At = | —ds = dx = —dz = de (5.14.19)
0 € z CCOS 8 2 €SING g, §C08 0

where each integrand must be expressed as a function of the variable of integration.

For very short transient acoustic signals, the travel times along the various ray paths
may be so different that the individual arrivals do not overlap each other. This would then
yield a combined signal in which each of the arrivals along a different ray path would be
separate and distinct. As the transients become longer, however, partial overlapping would
generate a complicated combination.

*5.15 THE INHOMOGENEOUS WAVE EQUATION

In previous sections we developed a wave equation that applied to regions of space devoid
of any sources of acoustic energy. However, a source must be present to generate an
acoustic field. Certain sources internal to the region of interest can be taken into account
by introducing time-dependent boundary conditions, as described for strings, bars, and
membranes. In Chapter 7, this is the procedure that will be used to relate the motion of the
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surface of a source to the sound field created by the source. However, there are times when
it is more convenient to adopt an approach that builds the sources into the wave equation
by modifying the fundamental equations to include source terms.

1. If mass is injected (or appears to be) into the space at a rate per unit volume G(7, t), the
linearized equation of continuity becomes

Pog + V- (poit) = GG, ) (5.15.1)

v 7

This G(#,t) is generated by a closed surface that changes volume, such as the outer
surface of an explosion, an imploding evacuated glass sphere, or a loudspeaker in an
enclosed cabinet.

2. If there are body forces present in the fluid, a body force per unit volume F(7,t) must be
included in Euler’s equation. The linearized equation of motion becomes

>

J 2o
poa—I: +Vp = EG b (5.15.2)
Examples of this kind of force are those produced by a source that moves through the
fluid without any change in volume, such as the cone of an unbaffled loudspeaker or a
vibrating sphere of constant volume.

If these two modifications are combined with the linearized equation of state, an
inhomogeneous wave equation is obtained,

1% aG

VZP_C_Qﬁ = _5;+V.ﬁ (5153)

3. A third type of sound source was first described by Lighthill® in 1952. Lighthill’s result
includes the effects of shear and bulk viscosity and its derivation is beyond the scope of
this text. However, in virtually all cases of practical interest, the contributions from viscous
forces are completely negligible and a simplified derivation can be made. The source of
acoustic excitation lies in the convective term (i - V)il of the acceleration. Retaining this
term and discarding the terms involving viscosity and gravity in (5.4.8) gives

.

—Vp = p(i—’: + (@ V)a) _ o) 59 L G v (5.15.4)

ot Jt

Use the nonlinear continuity equation (5.3.3) to replace #(dp/dt) with — iV - (pil), take the
time derivative of (5.3.3) and the divergence of (5.15.4), eliminate the common term, and
use (5.5.6) to express p in terms of p in the linear term. The result is an inhomogeneous
wave equation

2
Vip — clzifz = =V - [uV - (pu) + p(u - V)ii] (5.15.5)

~

The source term can be given direct physical meaning if it is rewritten

1% & (puu;)
2,_ Y9 F _ _ )
vy ok s (5.15.6)

Tensor notation has been used for economy of notation. The subscripts i and j take on
the values 1, 2, and 3 and represent the x, y, and z directions. A summation convention is

2Lighthill, Proc. R. Soc. (London) A, 211, 564 (1952).
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used, wherein if any subscript appears more than once, it is assumed that subscript is
summed over all its values. For example, du;/dx; is equivalent to V - & and u;(9u;/ dx;) is
equivalent to (it - V)i. Thus, there are nine quantities in the source term. This source term
describes the spatial rates of change of momentum flux within the fluid, and Lighthill
showed that it is responsible for the sounds produced by regions of turbulence, as in the
exhaust of a jet engine. [See Problem 5.15.3 to show that the source term in (5.15.5) is
equivalent to that in (5.15.6).]

It can be seen that each of these three source terms [described separately in (1), (2),
and (3) above] arises independently, so that the complete inhomogeneous lossless wave
equation accounting for mass injection, body forces, and turbulence is

2 . 3 puu;
c2 g2 ot 9x; 9x;

(5.15.7)
The effects of gravity could be included by adding a term V - (pggs) to the left side of (5.15.7)
and speed of sound profiles by considering c a function of position. The sources on the right
side of (5.15.7) will be related to monopole, dipole, and quadrupole radiation in Section 7.10.

*5.16 THE POINT SOURCE

The monofrequency spherical wave given by (5.11.15) is a solution to the homogeneous
wave equation (5.5.4) everywhere except at r = 0. (This is consistent with the fact that
there must be a source at r = 0 to generate the wave.}) However, (5.11.15) does satisfy the
inhomogeneous wave equation

1% i
2 — - FAPILOL
Vp gy 4 AS(r)e (6.16.1)
for all . The three-dimensional delta function 8(7) is defined by

. 1 r=0EV
J 8(rydv = (5.16.2)
v 0 0

To prove this, multiply both sides of (5.16.1) by dV, integrate over a volume V that
includes 7 = 0, and use (5.16.2) to evaluate the delta function integral and Gauss’s theorem
to reduce the volume integral to a surface integral. This gives

Jv ~ﬁdS——1-J PP 4y = —gmac (5.16.3)
S P 2 V6t2 o

where 7 is the unit outward normal to the surface S of V. Now, substitute (5.11.15) for p and

To generalize to a point source located at7 = 7;, make the appropriate change of variable
in (5.11.15):

A . .
P = z—= exp[jlwt — kff — 7)] (5.16.4)
[ — 7ol
This is a solution of
1 4 e
v2p — ’c?a—tlz) = —4AmAS(F — Fo)el! (5.16.5)
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In the proper circumstances, incorporation of a point source directly into the wave
equation provides considerable mathematical simplification. (See Sections 7.10 and 9.7-9.9
as examples.) We will, however, use this formalism only when necessary, utilizing in most
cases methods more closely related to elementary physical intuition.

PROBLEMS

5.2.1.

5.2.2,

5.2.3.

5.2.4.

5.3.1.

5.4.1.

5.4.2.

5.5.1.

%] ]
1)
N

5.6.1.

(2) Linearize (5.2.3) by assuming s << 1. Then, by comparing this result with (5.2.5),
obtain the adiabatic bulk modulus of a perfect gas in terms of % and vy. (b) With the
help of (5.2.1) applied to equilibrium conditions, obtain the temperature dependence
of & at constant volume.

Another form of the perfect gas law is PV = n®RTx, where n is the number of moles
and R = 8.3143 J/(mol-K) is the universal gas constant (the mole is the molecular
weight M in grams). Obtain a relationship between r and . Evaluate & in ] /(kmol-K)
(the kilomole is the molecular weight in kilograms).

If the adiabat for a fluid is presented in the form @ = @, + Al(p — po)/pol + 3Bl(p —
po)/ po]? and is to be written as (P/%P) = (p/po)*, find an approximate expression
for the exponent a. Hint: Expand (p/ py)* about p, through second order and equate
coefficients. Relate the results to (5.2.9) and (5.2.7).

The major constituents in standard air and the percentage and molecular weight in
grams of each are: nitrogen (N,), 78.084, 28.0134; oxygen (O,), 20.948, 31.9988; argon
(Ar), 0.934, 39.948; carbon dioxide (CO,), 0.031, 44.010. (a) Calculate the effective
molecular weight of air. (b) Obtain the specific gas constant r = R /M for air and
compare with the value listed in Appendix Al.

From the linear continuity equation (5.3.4), show that the condensation and particle
displacement are related by s = —V - £. Hint: Assume pj is independent of time. The
integral of (5.3.4) over time must yield a constant independent of the forms of s and
u. Evaluate the constant when there is no sound.

Show that the change in the density of a particular fluid element moving with velocity
u is given by (dp/dt) + - Vp.

A flow is incompressible if a fluid element does not change its density as the element
moves. From Problem 5.4.1, this means (dp/dt) + &1 - Vp = 0. (a) Show that for an
incompressible fluid the equation of continuity reduces to V - # = 0. (b) Write Euler’s
equation for the flow of an incompressible fluid. (¢) What is ¢ for an incompressible
fluid? ‘

Use the adiabat and the linearized equations of continuity and motion to show that
all the scalar acoustic variables obey the wave equation V> — (1/¢?) ¢*/d#* = 0 within
the accuracy of the linearizing approximations and the near constancy of py and c.

. (a) Use the adiabat and the linearized equations of continuity and motion (and the

OIIIILAALY 4

near constancy of py and c) to show that V(V - it) = (1/¢?) ¢*i/dt2. (b) Show that,
since 1 is irrotational, this is equivalent to V2t = (1/c¢?) ¢%i1/3t>. (c) Write the latter
equation in spherical coordinates with spherical symmetry and compare it with

the wave equation for the pressure in the same coordinates. (See Appendix A7 for
V2ii)

(a) Find the speed of sound in hydrogen at 1 atm and 0°C from its values of %;, py,
and vy. (b)) Compare with the result given in Appendix Al0. Is your agreement within
the round-off of the tabulated values? (¢) What error in temperature would give the
same disagreement?
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5.6.2. (1) By means of (5.6.8), determine the speed of sound in distilled water at atmospheric
pressure and a temperature of 30°C. (b) What is the rate of change of the speed of
sound in water with respect to temperature at this temperature?

5.6.3. (1) Fora perfect gas, does c vary with the equilibrium pressure? With the instantaneous
pressure in an acoustic process? (b) Find ¢ for a perfect gas that obeys the isotherm
(5.2.2). (c) Compare the value of ¢ from (b) to that for air at 20°C.

5.7.1. If u = U exp[j{wt — kx)], show that |[(u - V)u|/|du/dt| = U/c, the acoustic Mach
number. Relate this to the relevant assumption made to obtain the linear Euler’s
equation (5.4.10).

5.7.2. For an acoustic wave with propagation constant k, show that the mathematical as-
sumption made to obtain (5.5.8) is equivalent to requiring [(1/ po)Vpo| << k. Physically,
what does this mean?

5.7.3. For a plane wave u = U exp[j(wt — kx)], find expressions for the acoustic Mach
number U/c (a) in terms of P, pg, and ¢ and (b) in terms of s.

5.7.4. Using (5.7.8) for an oblique wave, obtain the velocity potential and then the acoustic
particle velocity, and show that the velocity is parallel to the propagation vector.

5.7.5. (a) Show that if the density is not approximated by pg in the gravity term in Euler’s
equation, the wave equation for acoustic pressure contains a term V - (§pos). (b) Show
for a plane wave that this term is negligible as long as w >> |§|/c. Evaluate [§|/c for
water and air.

5.7.6. For an acoustic wave of angular frequency w, find a condition justifying ignoring any
time dependence in p in the linear equation of continuity.

5.8.1. Two parallel traveling plane waves have different angular frequencies w, and @, and
pressure amplitudes P; and P;. {z) Show that the instantaneous energy density ¢; at
a point in space varies between (P + P,)?/poc? and (P1 — P2)?/ poc?. (b) Show that
the total energy density € at the point averages to the sum of the individual energy
densities of each wave alone. Hint: Let the averaging time be much greater than
27/ |wy — wa.

5.9.1. If p = Pexp[j{wt ~ kx)], find (a) the acoustic density, (b) the particle speed, (c) the
velocity potential, (d) the energy density, and (e) the intensity.

5.9.2. (a) Derive an equation expressing the adiabatic temperature rise AT produced in a gas
by an acoustic pressure p. (b)) What is the amplitude of the temperature fluctuation
produced by a sound of intensity 10 W/m? in air at 20°C and standard atmospheric
pressure?

5.9.3. Repeat Problem 5.9.1 for the standing wave p = P cos(w?) cos(kx).

5.10.1. For a wave consisting of two waves traveling in the +x direction but with different
frequencies, show that the specific acoustic impedance is pyc.

4] ]
Y
'C>
N

. Show that for any plane wave traveling in the +x direction, the specific acoustic
impedance is pyc. Hint: Let @ = f(ct — x) and generate p and u from ®.

5.10.3. Find the specific acoustic impedance for a standing wave p = Psinkxexp(jwt).

5.11.1C. For values of kr between 0.1 and 10, plot the specific acoustic resistance and
reactance. In what range of kr do these quantities make transitions between low-
and high-frequency behaviors? What are their maximum values?

5.11.2. Given a small source of spherical waves in air, at a radial distance of 10 cm compute
the difference in phase angle between pressure and particle velocity for 10 Hz,
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5.11.3.

5.11.4.

5.11.5.

100 Hz, 1 kHz, and 10 kHz. Compute the magnitude of the specific acoustic
impedance for each frequency at this location.

For a spherical wave p = (A/r) cos(kr) exp(jwt), find (a) the particle speed, (b) the
specific acoustic impedance, (¢) the instantaneous intensity, and (d) the intensity.

Show that the specific acoustic reactance of a spherical wave is a maximum for
kr = 1

At some location, the pressure amplitude and particle speed of a 100 Hz sound wave
in air are measured to be 2 Pa and 0.0100 m/s. Assuming that this is a spherical
wave, find the distance from the source. What additional measurements could be
made at this same place to determine the direction of the source?

5.11.6C. Plot the magnitude and the phase of the specific acoustic impedance (normalized

by dividing by poc) of a spherical wave as a function of kr. Above what value of kr
does the spherical wave approximate the behavior of a plane wave within about
10%?

5.12.1C. A spherical wave in air has a sound pressure amplitude of 100 dB re 20 uPa at1m

5.12.2.

5.12.3.

5.12.4.

5.12.5.

5.12.6.

5.12.7.

5.12.8.

from the origin. (2) Plot the ratio of amplitudes of the pressure P and the particle
speed U as a function of r for various frequencies. (b) Is the distance at which the
ratio P/U comes to within 10% of pyc independent of frequency? {(c) If not, plot
this distance as a function of frequency.

For a 171 Hz plane traveling wave in air with a sound pressure level of 40 dB re 20
uPa, find (1) the acoustic pressure amplitude, (b) the intensity, (c) the acoustic particle
speed amplitude, (d) the acoustic density amplitude, (e} the particle displacement
amplitude, and ( f) the condensation amplitude.

A plane sound wave in air of 100 Hz has a peak acoustic pressure amplitude of
2 Pa. (#) What is its intensity and its intensity level? (b)) What is its peak particle
displacement amplitude? (c) What is its peak particle speed amplitude? (d) What is
its effective or rms pressure? (¢) What is its sound pressure level re 20 uPa?

An acoustic wave has a sound pressure level of 80 dB re 1 ubar. Find (a) the sound
pressure level re 1 uPa and (b) the sound pressure level re 20 uPa.

(a) Show that a plane wave having an effective acoustic pressure of 1 pbar in air has
an intensity level of 74 dB re 10”12 W/m?. (b) Find the intensity (W/m?) produced
by an acoustic plane wave in water of SPL(1 ubar) = 120 dB. {c¢) What is the ratio
of the acoustic pressure in water for a plane wave to that of a similar wave in air of
equal intensity?

(a) Determine the energy density and effective pressure amplitude of a plane wave
in air of intensity level 70 dB re 10712 W/m?. (b} Determine the energy density and
effective pressure amplitude of a plane wave in water if its sound pressure level is
70dBre 1 pbar.

(a) Show that at constant %, the characteristic impedance of a gas is inversely
proportional to the square root of its absolute temperature Tx. (b} What is the
characteristic impedance of air at 0°C? At 80°C? (¢) If the pressure amplitude of
a sound wave remains constant, what is its percent change in intensity as the
temperature increases from 0°C to 80°C? (d) What would be the corresponding
change in intensity level? In pressure level?

Cavitation may take place at the face of a sonar transducer when the sound pressure
amplitude being produced exceeds the hydrostatic pressure in the water. (2) For a
hydrostatic pressure of 200,000 Pa, what is the highest intensity that may be radiated
without producing cavitation? (b) What is the sound pressure level of this sound
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re 1 ubar? (c) What is the condensation amplitude? (d) At what depth in the ocean
would this hydrostatic pressure be found?

5.12.9. A transmitter generates a sound pressure level at 1 m of 100 dB re 1 ubar for a
driving voltage of 100 V (rms). Find the sensitivity level in dB re 1 ubar/V.

5.12.10. A transmitter has a sensitivity level of 60 dB re 1 ubar/V. Find its sensitivity level
re1l uPa/V and re 20 uPa/V.

5.12.11. The receiving sensitivity level of a hydrophone is —80 dB re 1 V/ ubar. (4) Express
this level re 1 V/ uPa. (b)) What will be the (rms) output voltage if the pressure field
is80dBrel pbar?

5.12.12. A microphone reads 1 mV for an incident effective pressure level of 120 dB re 20
pPa. Find the sensitivity level of the microphone re 1 V/ubar and 1 V/20 uPa.

5.13.1C. Compare the magnitude of H (kr) with its asymptotic expression and find the
value of kr beyond which the disagreement is within 10%.

5.13.2C. Find the value of kr beyond which |z| in (5.13.12) is within 10% of pqc.
5.13.3. For various z, test the assertion that the Wronskian of Jy(z) and Y(z) is 2/ 7z

5.13.4. Find the fractional change in pressure amplitude for each doubling of the propagation
distance for (a) spherical waves, (b) cylindrical waves for kr > 1, (c) plane waves.

5.13.5. Assume that k, 70 in (5.13.3). () Show that
p = HP (k,r)sink,z &

is a solution of (5.13.3). (b) Write sink,z in terms of complex exponentials and show
that p consists of two outward-traveling waves, each having conical surfaces of
constant phase. (c) Find the angles of elevation and depression with respect to the
z = 0 plane of the propagation vectors.

5.14.1. (a) If ¢ is a function only of z, show that d8/ds = —[(cos 8¢)/co]dc/dz, with 8, the
angle of elevation of the ray where ¢ = cy. (b) If the gradient g = dc/dz is a constant,
find the radius of curvature R of the ray in terms of g, ¢, and 8. Is R a constant?
(c) If the temperature of air decreases linearly with height z, verify thatc(z) = ¢, — gz,
where g > 0. If the temperature decreases 5 C°/km, find the radius of curvature of
a ray that is horizontal at z = 0 (assume ¢y = 340 m/s). At what horizontal range
will this ray have risen to a height of 10 m?

5.14.2. Assume the speed of sound is given by the quasi-parabolic profile c(z) = co[1 —
(e2)’]7/2. Let the depth z = 0, which defines the axis of the sound channel, lie
well below the surface of the ocean. (7) Find the equation z(x) for rays emitted by a
source at (x,z) = (0,0) with angles of elevation or depression *8,. Hint: use Snell’s
law, dz/dx = tan#, and | (a® — u?)"V? du = sin"*(u/a). (b) For a given ray, find an
expression for the average speed with which energy propagates out to a distance x
lying on the channel axis. Explain why there is no dependence on the parameter .
For small angles, approximate your expression through the first nonzero term in 6.
(c) For |6y| = 7/8, show that ¢(z) is a good approximation of the parabolic profile
co[1+ 1(ez)*]. What is the percentage discrepancy at 22°? (d) A certain ocean channel
with axis more than about 1 km below the ocean surface can be approximated by c(z)
with ¢g = 1475 m/s and & = 1.5 X 107* m™!. Calculate the travel speeds of (c) for
8, = 0, 1, 2, 5,and 10°. (e) For each of the angles in (d), determine the greatest height
above the channel axis reached by the ray and the distance between successive axis
crossings. (f) Explain why the results of (d) and (e) are not inconsistent.

5.14.3. Assume the speed of sound is given by the quasi-linear profile c(z) = ¢p[1 — &|z|]] 1/2.
Let the depth z = 0, which defines the axis of the sound channel, lie well below



PROBLEMS 147

the surface of the ocean. (4) Find the equation z(x) for rays emitted by a source
at (x,z) = (0,0) with angles of elevation or depression +6,. Hint: use Snell’s law
and dz/dx = tan 8. (b) For a ray with initial angle 6,, find the distance Ax between
x-axis intercepts and the maximum distance Az it attains above or below z = 0.
(c) For a given ray, find an expression for the average speed with which energy
propagates out to a distance x lying on the channel axis. Explain why there is no
dependence on the parameter s. For small angles, approximate your expression
through the first nonzero term in ;. (d) For |6y = 7/8, show that ¢(2) is a good

1
approximation of the linear profile ¢(1 + 28 &|z]). What is the percentage discrepancy

at 22°? (d) A certain ocean channel with axis more than about 1 km below the ocean
surface can be approximated by a quasi-bilinear profile with ¢; = 1467 m/s and
e1 = 40X 107° m™! above the axis and &, = 2.0 X 10"° m ™! below. Calculate the
travel speeds of (c) for 8, = 0, 1, 2, 5, and 10°. (e) For each of the angles in (d),
determine the greatest distances above and below the channel axis reached by the
ray and the two distances between successive axis crossings. (f) Explain why the
results of (d) and {(e) are not inconsistent.

5.14.4. (a) Verify (5.14.7). Hint: Substitute (5.14.6) into (5.14.3) and note that VA - (n8) =
n(dA/ds)and V - (n§) = dn/ds + nV - 5. (b) Obtain (5.14.13) from (5.14.12). Deal with
this component by component. Show that the x component of d(VI) /ds can be written
as d(na)/ds from (5.14.6) and as (¢ d/dx + Bd/dy + y3/dz)}dl /dx) from (5.14.12).
In the latter expression, exchange orders of differentiation, use (5.14.6), expand the
derivatives, and regroup using a* + g + y* = 1.

5.14.5. If the speed of sound in water is 1500 m/s at the surface and increases linearly with
depth at a rate of 0.017/s, find the range at which a ray emitted horizontally from a
source at 100 m depth will reach the surface.

5.14.6. For the conditions of Problem 5.14.5, calculate the ratio of the intensity when the ray
reaches the surface to that at 1 meter from the source. Compare this to the intensity
if the spreading were spherical.

5.14.7. Plot, as a function of time, the phase coherent sum of two sinusoidal signals of equal
frequency and amplitude for phase differences from 0° to 360° in steps of 45°. For
each case, calculate the ratio of the intensity of the summed signal to the intensity of
the individual signals and compare to results obtained from the plots.
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two signals have pressures p; = P; cos(wt) and p» = P, cos(wt + ¢) at the point.
(#) Under the assumption that the waves are plane and essentially parallel, show that
the intensity at that pointis I = [(P; + P2 cos ¢)* + (P, sin ¢)*]/2poc. (b) If incoherence
effects now cause ¢ to be a slowly varying function of time compared to the period
of the waves, show that the total intensity at the point is the sum of the individual
intensities of the two waves. Hint: Let the accumulated values of ¢ be distributed
with equal probability over the interval 0 = ¢ < 27.
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5.14.9C. Plot, as a function of time, the sum of two quasi-random signals of about equal
intensity. Verify that the intensity of the summed signals is the sum of the intensities
of the individual signals. Hint: Construct the signals from sinusoids, each with its
phase independently randomized at each time step.

5.14.10. Show that a spherically symmetric outward-traveling wave in an isospeed medium
satisfies (5.14.5) identically for all r.

5.14.11C. The sound speed in deep water can be approximated by two layers: an upper
layer in which the sound speed decreases linearly from 1500 m/s at the surface
to 1475 m/s at 1000 m, and an infinitely deep layer in which the sound speed
increases at a constant rate of 0.017 s™!. For a source at the surface, (#) plot the
distance at which a ray returns to the surface for depression angles between 0°
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and 10°. (b) Find the depression angle and range of the ray that reaches the surface
closest to the source. (c) The region where rays with different source angles reach
the surface at the same range is the resweep zone. Find the width of this region.
(d) Find the greatest depth attained by a ray that contributes to this region.

5.14.12. The sound speed in air varies linearly from 343 m/s at the ground to 353 m/s at

100 m altitude and then decreases above this. For a source at ground level, find
(a) the maximum elevation angle for a ray that returns to ground level, and (b) the
range at which this ray returns to ground level.

5.14.13C. At the range found in Problem 5.14.12, find the difference in the times of arrival of

the ray that leaves the source horizontally and the ray that leaves at the maximum
elevation angle.

5.14.14. (a) Show that, within the approximations yielding the eikonal equation, Vp = pkVT.

5.15.1.
5.15.2.
5.15.3.

5.16.1.

5.16.2.

5.16.3.

5.16.4.

(b) The intensity, written explicitly as a vector, is I = (pit)r. Using the relationship
between p and #, show that [ is parallel to the ray path.

Express in vector notation: (a) u;v;, (b) du;/dx;, (¢) w; df/dx;, (d) f du;/ dx; + u; df /dx;.
Express in subscript (tensor) notation: (a) (- V)f, (b)) V - [(12 - V)uz], (¢) V - [i(V - @)].
Show that the right sides of (5.15.5) and (5.15.6) are equivalent. Hint: Take (3/dx;) of

(puj)u; and convert to vector notation.

Prove the equality given by (5.16.3). Hint: Use the indefinite integral relation
| xexp(—jx)dx = exp(—jx) + jxexp(—jx).
Show that in spherical coordinates with spherical symmetry the three-dimensional

delta function can be written as 8(F) = (4mr?)"18(r), where 8(r) is the one-
dimensional delta function.

Show that in cylindrical coordinates with radial symmetry for a source lying on
the z axis at z = zj, the three-dimensional delta function 8(7 — #;) can be written as
8( — 7o) = ur)"18(r)8(z — zg).

(a) Show thatp = (A/r)f(t — r/c) is a solution of the inhomogeneous wave equation
Vip ~ (1/c)3*p/ 3 = —4mwAS(F)f(1). (b) Show thatp = (1/7)8(t — r/c) is a solution
of this equation when f(t) = &(¢).



Chapter 6

REFLECTION AND
TRANSMISSION

6.1 CHANGES IN MEDIA

When an acoustic wave traveling in one medium encounters the boundary of a
second medium, reflected and transmitted waves are generated. Discussion of this
phenomenon is greatly simplified if it is assumed that both the incident wave and
the boundary between the media are planar and that all media are fluids. The
complications that arise when one of the media is a solid will be left to Section
6.6. However, it is worthwhile to note that for normal incidence many solids obey
the same equations developed for fluids. The only modification needed is that the
speed of sound in the solid must be the bulk speed of sound, based on both the bulk
and shear moduli since, unlike the bar of Chapter 3, an extended solid is not free
to change its transverse dimensions. See Appendix All. Values of the bulk speeds
of sound in some solids are listed in Appendix A10.

The ratios of the pressure amplitudes and intensities of the reflected and
transmitted waves to those of the incident wave depend on the characteristic
acoustic impedances and speeds of sound in the two media and on the angle the
incident wave makes with the interface. Let the incident and reflected waves travel
in a fluid of characteristic acoustic ifnpedance r = pic1, where p; is the equilibrium
density of the fluid (the subscript “0” has been suppressed for economy of notation)
and ¢; the speed of sound in the fluid. Let the transmitted wave travel in a fluid of
characteristic acoustic impedance r, = pac,. If the complex pressure amplitude of
the incident wave is P;, that of the reflected wave P,, and that of the transmitted

cirmrrms TV Al i o ALt e o e cn saers aeran aanedcatrgs i okl podiess mo o o e b
wave I, theén we can derme tne pressure (ransimission and rejLection COEJJiCIENLS:

T = P,/P; (6.1.1)
R = P,/P; (6.1.2)

Since the intensity of a harmonic plane progressive wave is P?/2r, the intensity
transmission and reflection coefficients are real and are defined by

T; = L/I; = (n/n)|TP (6.1.3)
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R; = L/I; = R} (6.1.4)

Most real situations have beams of sound with finite cross-sectional area. As
we have seen, a beam can be described locally by nearly parallel rays and thus
can be approximated by a plane wave of finite extent. While there can be some
anomalies resulting from diffraction at the edges of the beam, if the cross-sectional
area is sufficiently great compared to a wavelength, they can be ignored and the
equations developed in this chapter applied.

The power carried by a beam of sound is the acoustic intensity multiplied by
the cross-sectional area of the beam. If an incident beam of cross-sectional area A;
is obliquely incident on a boundary, the cross-sectional area A; of the transmitted
beam generally is not the same as that of the incident beam. It will be shown later
that the cross-sectional areas of the incident and reflected beams are equal under
all circumstances. The power transmission and reflection coefficients are defined by

Ta = (A/ AT = (A/A)(n /n)|TF (6.1.5)
Rn = Ry = [RP (6.1.6)

From conservation of energy, the power in the incident beam must be shared
between reflected and transmitted beams so that

Rn+Tn=1 (6.1.7)

Cases more complicated than those included in this chapter are available in
specialized textbooks.!

6.2 TRANSMISSION FROM ONE FLUID
TO ANOTHER: NORMAL INCIDENCE

As indicated in Fig. 6.2.1, let the plane x = 0 be the boundary between fluid

1 of characteristic acoustic impedance r; and fluid 2 of characteristic acoustic

impedance r;. Let there be an incident wave traveling in the +x direction,

pi = PR (6.2.1)
which, when striking the boundary, generates a reflected wave

p, = Pe@ith® (6.2.2)
and a transmitted wave

pr = P20 (6.2.3)
All the waves must have the same frequency, but, since the speeds c; and ¢; are

different, the wave numbers k; = w/c; in fluid 1 and k; = w/c¢; in fluid 2 are
different.

'Officer, Introduction to the Theory of Sound Transmission, McGraw-Hill (1958). Ewing, Jardetzky, and
Press, Elastic Waves in Layered Media, McGraw-Hill (1957). Brekhovskikh, Waves in Layered Media,
Academic Press (1960).
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1 2
(rn=picy (ry=paco)
P,
-~ P
_—
pA
: Figure 6.2.1 Reflection and transmission of a
N plane wave normally incident on the planar
boundary between fluids with different
x=0 characteristic impedances.

There are two boundary conditions to be satisfied for all times at all points
on the boundary: (1) the acoustic pressures on both sides of the boundary must
be equal and (2) the normal components of the particle velocities on both sides
of the boundary must be equal. The first condition, continuity of pressure, means
that there can be no net force on the (massless) plane separating the fluids. The
second condition, continuity of the normal component of velocity, requires that the
fluids remain in contact. The pressure and normal particle velocity in fluid 1 are
p: + pr and (u; + u,)% so that the boundary conditions are

pPi Tpr =P atx =0 (6.2.4)
w+u =u atx =0 (6.2.5)

Division of (6.2.4) by (6.2.5) yields

+
PiTP _ P ix=0 (6.2.6)

which is a statement of the continuity of normal specific acoustic impedance across the
boundary.

Since a plane wave has p/u = =r, the sign depending on the direction of
propagation, (6.2.6) becomes

pPiTPr (6.2.7)
Pi = Pr

which leads directly to the reflection coefficient

> — N 1’2/1’1—1
R = = 6.2.8
rh+n r/r +1 ( )

Then, since (6.2.4) is equivalentto 1 + R = T, we have

21 2r /1
T = = 6.2.
ra+ 1 n/r+1 (6.2.9)

The intensity reflection and transmission coefficients follow directly from (6.1.3)

and (6.1.4),
2 2
r—n ra/r — 1
R, = =L - 6.2.1
! (r2+r1) (rz/r1+1) ( 0
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and

drry  4n/n
(n+1)?  (ra/r1 +1)?

T; = (6.2.11)

Since the cross-sectional areas of all the beams are equal, the power coefficients in
(6.1.5) and (6.1.6) are equal to the intensity coefficients.

From (6.2.8), R is always real. It is positive when r; < r; and negative when
r1 > r;. Consequently, at the boundary the acoustic pressure of the reflected wave
is either in phase or 180° out of phase with that of the incident wave. When the
characteristic acoustic impedance of fluid 2 is greater than that of fluid 1 (a wave
in air incident on the air-water interface), a positive pressure in the incident wave
is reflected as a positive pressure. On the other hand, if r; > r; (a wave in water
incident on the water-air interface), a positive pressure is reflected as a negative
pressure. Note that when r; = r, then R = 0, and there is complete transmission.

From (6.2.9), it is seen that T is real and positive regardless of the relative
magnitudes of r; and r2. Consequently, at the boundary the acoustic pressure of
the transmitted wave is always in phase with that of the incident wave. Study
of (6.2.11) reveals that whenever r; and r, have strongly dissimilar values, the
intensity transmission coefficient is small. In addition, from the symmetries of
(6.2.10) and (6.2.11), it is apparent that the intensity reflection and transmission
coefficients are independent of the direction of the wave. For example, they are the
same from water into air as from air into water. This is a special case of acoustic
reciprocity.

In the limit /72 — 0, the wave is reflected with no reduction in amplitude
and no change in phase. The transmitted wave has a pressure amplitude twice
that of the incident wave, and the normal particle velocity at the boundary is zero.
Because of this latter fact, the boundary is termed rigid.

For r1/r, — o, the amplitude of the reflected wave is again equal to that of the
incident wave, and the transmitted wave has zero pressure amplitude. Since the
acoustic pressure at the boundary is zero, the boundary is termed pressure release.

6.3 TRANSMISSION THROUGH A FLUID LAYER:
NORMAL INCIDENCE

Assume that a plane fluid layer of uniform thickness L lies between two dissimilar
fluids and that a plane wave is normally incident on its boundary, as indicated
in Fig. 6.3.1. Let the characteristic impedances of the fluids be r;, r;, and 73,
respectively. '

1 N 2 3
(r) (r2) (r3)

P; pa

—_— e P
—

-~ -

Pr Py

Figure 6.3.1 Reflection and

N transmission of a plane wave normally
x=0 x=L incident on a layer of uniform thickness.
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When an incident signal in fluid 1 arrives at the boundary between fluids 1
and 2, some of the energy is reflected and some transmitted into the second fluid.
The portion of the wave transmitted will proceed through fluid 2 to interact with
the boundary between fluids 2 and 3, where again some of the energy is reflected
and some transmitted. The reflected wave travels back to the boundary between
fluids 1 and 2, and the whole process is repeated. If the duration of the incident
signal is less than 2L/ c;, an observer in either fluid 1 or 3 will see a series of echoes
separated in time by 2L/c, whose amplitudes can be calculated by applying the
results of the previous section the appropriate number of times. Otherwise, if the
incident wave train has a monofrequency carrier and has duration much greater
than 2L /¢c5, it can be assumed to be

pi = Ptk (6.3.1)

The various transmitted and reflected waves now combine so that in the steady
state the wave reflected back into fluid 1 is

p, = Ptk (6.3.2)
the transmitted and reflected waves in fluid 2 are

pa = Ad@ k) (6.3.3)
py = Be/@itR (6.3.4)

and the wave transmitted into fluid 3 is
p: = P,g@ k0 (6.3.5)
Continuity of the normal specific acoustic impedance at x = 0 and atx = L gives

P,+P, nA+B  Ae kLl 4+ Bl 1

P,-P, rnA-B Ac L — Boffl n (6:3.6)
and algebraic manipulation yields the pressure reflection coefficient
- i — ink,L
R = (1 —r1/r3)coskL + j(ra /13 — r1/12)sink; (637)

h (1 + r1/r3)coskoL + j(r2 /13 + r1/r2) sinksL

The intensity transmission coefficient is found by using (6.1.3)(6.1.7) and noting
that A; = A;:

T, = 4 — (6.3.8)
2+ (r3/1r1 + r1/r3)cost koL + (13 /rirs + rr3/13) sin’ koL
A few special forms of (6.3.8) are of particular interest.
1. If the final fluid is the same as the initial fluid, r; = 5,
T[ = ! (639)

1+ %(1’2/1’1 - 1‘1/1’2)2 sin? koL
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If, in addition, r; > r1, (6.3.9) further simplifies to

1
1+ Yo /m)?sin? koL

T, (6.3.10)

This latter situation applies, for example, to the transmission of sound from air
in one room through a solid wall into air in an adjacent room. The solid materials
forming the walls of rooms have such large characteristic impedances relative
to air that (r; /r1) sink,L >> 2 for all reasonable frequencies and thicknesses of
walls. Therefore, when the fluid medium is air, (6.3.10) reduces to

2
T; =~ (L) (6.3.11)

2 sin kzL

Finally, for all situations except those of high frequencies and very thick walls,
kL << 1 and sink;L = k;L so that (6.3.11) becomes

_ 2 ¥ 2
T, = (FJZ) (6.3.12)

(At 1 kHz the value of kL for a 0.1 m thick concrete wall is 27r X 1000 X
0.1/3100 = 0.20.) Note that the transmitted pressure is inversely proportional
to the thickness L and, therefore, also inversely proportional to the mass per unit
area of the wall. This behavior is observed to be approximately true for certain
kinds of commonly encountered walls. In the case of solid panels in water, both
terms occurring in the denominator of (6.3.10) usually are significant, so that
the complete equation must be used. However, for either thin panels or low
frequencies such that (r; /1) sink,L << 1, (6.3.10) simplifies to

T; =~ 1 (6.3.13)

This behavior is used in the design of free-flooding streamlined domes for sonar
transducers.

2. Another special form of (6.3.8) is obtained by assuming that the intermediate
fluid has a larger characteristic impedance than either fluid 1 or fluid 3 but such
small thickness that 2 sink; L. << 1 and cos k,L = 1. Then, (6.3.8) reduces to

47‘31‘1

T = (r3 + 11)?

(6.3.14)

This is equivalent to (6.2.11), which gives the intensity transmission coefficient
for a wave moving directly from fluid 1 into fluid 3. Thus, a thin membrane
of solid material of appropriate characteristic impedance may be used in
preventing two gases or two liquids from mixing and yet not interfere with
sound transmission between them. In particular, note that if r; = r3 then there
is total transmission from fluid 1 to fluid 3 as if fluid 2 did not exist.

3. Returning to the general form of T; in (6.3.8), we see that if k;L = nar, (6.3.8)
reduces to (6.3.14) for frequencies

f=nc/2L (6.3.15)
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For these frequencies, L = n);/2 and the intermediate layer is an integral
number of half-wavelengths thick. Again, it is as if fluid 2 did not exist.

4. Finally, if koL = (n — %)W, where # is any integer, then wehave L = (2n — 1)A,/4
so that cos kL = 0 and sink,;L = 1, and (6.3.8) becomes

41‘1 3

T (r + nira /1) (63.16)

Ty

for frequencies very close to f = (1 — 1)c;/2L. As an interesting special case,
note that (6.3.16) yields T; = 1 whenr, = /rir3. Itis therefore possible to obtain
total transmission of acoustic power from one medium to another through the
use of an intermediate medium whose characteristic impedance is the geometric
mean of the other two. However, this action is selective, since it occurs only
for narrow bands of frequencies centered about these particular values. This
technique of obtaining complete transmission of acoustic power through the use
of a quarter-wavelength intermediate layer is similar to the method of making
nonreflective glass lenses by coating them with a quarter-wavelength layer
of some suitable material. Another example is the use of quarter-wavelength
sections to match an antenna to an electrical transmission line.

The impedance z, presented to fluid 1 by any number of sequential layers can
be expressed in terms of the pressure reflection coefficient. The boundary between
fluid 1 and fluid 2 corresponds to an impedance given by

pi t Pr
= — 6.3.17
% u, + ur x=0 ( )

Division of numerator and denominator by p; and use of the relation p+ = *rux
results in

—
=

+

I =1 (6.3.18)

(==Y
=

In this way a multilayered fluid boundary to the right of fluid 1 can be replaced
by a single boundary at x = 0 whose impedance may have real and imaginary
components. ‘

6.4 TRANSMISSION FROM ONE FLUID
TO ANOTHER: OBLIQUE INCIDENCE

Assume that the boundary separating two fluids is the plane x = 0 and that the
incident, reflected, and transmitted waves make the respective angles 6;, 6,, and
0; with the x axis, as shown in Fig. 6.4.1. For propagation vectors lying in the x-y
plane these waves can be written as

pi = Piej(wt—klxcos 0;i—kyysiné;) (64])

pr = Prej(wt+k1x cos @, —kiysind,) (642)
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(r1) (rz)

Figure 6.4.1 Reflection and transmission of a
plane wave obliquely incident on the planar
boundary between fluids with different

x=0 characteristic impedances.

and
p: = Ptej(wt—kgx cos 0; ~kzy sin 0;) (6.4.3)

The reason for writing 8; as a complex quantity will emerge shortly.
Applying continuity of pressure at the boundary x = 0 yields

Pe kiysinéi 4 p p~fhiysing, — p o-fkysind: (6.4.4)

Since this must be true for all y, the exponents must all be equal. This means that

sin@; = sin 6, (6.4.5)

so that the angle of incidence is equal to the angle of reflection, and

sin 6; _ sin 0, (6.4.6)
1 2

a statement of Snell’s law. The presence of sines rather than cosines results from
the convention of measuring the angle with respect to the normal to the boundary
when dealing with reflection and transmission in air. For ray tracing in underwater
and atmospheric acoustics, the convention in Section 5.14 is usually adopted. Since
the exponents in (6.4.4) are all equal, this equation reduces to

1+4R=T (6.4.7)

hin it Ay aizrac
t tllC uuuuucu_y 51VCS

u; cos 6; + u, cos 8, = u; cos 0; (6.4.8)

Replacing each u with the appropriate value of *p/r, and recalling that 6; = 6,
we have

0
1-R =12y
¥, cosb;

(6.4.9)
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Equations (6.4.7) and (6.4.9) can be combined to eliminate T, giving

_ 1r/r1 —cos0;/cosh; ra/ cos 0; — 1/ cos 6; (6.4.10)
r2/11 + cos 0;/ cos 0; 72/ cos0; + r1/ cos 6; o
where Snell’s law reveals
cos 0 = (1 —sin?0,)2 = [1 — (c2/c1) sin? §;]/2 (6.4.11)

Equation (6.4.10) is known as the Rayleigh reflection coefficient. It is important to
note three consequences of this equation.

1. If c; > ¢y, the angle of transmission @; is real and less than the angle of incidence.
The transmitted beam is bent toward the normal for all angles of incidence.

2. If oy < ¢y, and 6; < ., where the critical angle 9. is defined by

sinf, = c1/¢ (6.4.12)

the angle of transmission is again real but greater than the angle of incidence;
the transmitted beam is bent away from the normal for all angles of incidence
less than the critical angle.

3. If c; < ¢y, and §; > 6, the transmitted wave assumes a peculiar form. From
(6.4.11), we see that sin 0; is real and greater than unity, so that cos ; is now
pure imaginary,

cos 0, = —jl(c2/c1)? sin?6; — 1]1/2 (6.4.13)
Examination of (6.4.3) then reveals that the transmitted pressure is
Pt —_ Pte~yxej(wt—k1ysin6,v)

) (6.4.14)
kal(ca/c1)? sin® §; — 1]V/2

Y

The transmitted wave propagates in the y direction, parallel to the boundary,
and has an amplitude that decays perpendicular to the boundary. [Had we
chosen the positive imaginary root in (6.4.13), y would have been negative, and
the amplitude would have increased exponentially with increasing x, a physical
impossibility.] Because 0; is pure imaginary, the numerator of R in (6.4.10) is
the complex conjugate of the denominator. Both have the same magnitude, but
they have opposite phase Solving for the phase angle of the ratio and using

(‘ 4, 1.3} to exp;eoo CO5 vt in terms Uf the ang‘ﬂ "f WCIde“Ce and the nr1+1na] nng]a
glves

(6.4.15)

¢ = 2tan"Y[(p1/p2) V(cos 8./ cos 8, — 1]

under the restriction §; > 6. For all angles greater than the critical angle, the
reflected wave has the same amplitude as the incident wave. The incident wave
is totally reflected and in the steady state no energy propagates away from the
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boundary into the second medium. The transmitted wave possesses energy,
but its propagation vector is parallel to the boundary so that the wave “clings”
to the interface. For angles of incidence just exceeding critical, ¢ is close to zero,
the reflection coefficient is +1, and the interface resembles a rigid boundary. As
8; increases toward extreme grazing, ¢ approaches 7, the reflection coefficient
approaches —1, and the interface resembles a pressure release boundary.

If we return to the general case, Snell’s law shows that the reflected and

incident beams have the same cross-sectional area, as asserted earlier. The power
transmission coefficient (6.1.5) can be most readily computed from (6.1.7), giving

2
Ty = (49"05 "f) / (r—2 + &8 ef) 0, real (6.4.16)

¥1 cos 6; 1 cos 8;
Tn =0 0; imaginary (6.4.17)
The first equality (6.4.16) applies when either ¢; > ¢; or 6; < .. When ry/r; =

cos 0,/ cos 6;, the power reflection coefficient is zero and all the incident power is
transmitted. If this condition is combined with (6.4.6) to eliminate 8, then

ngy = [ /mi=1 ' (1memp Y
a (ra/m)? — (c2/c1)? 1 — (p1/ p2)? 4.

defines the angle of intromission 0}, the angle of incidence for which there is no
reflection and, therefore, complete transmission. This angle can exist under only
two circumstances: (1) r; < rp and ¢; < ¢ or (2) r1 > r, and ¢; > ¢;. In this second
circumstance there is a critical angle, and it is greater than the angle of intromission.

At grazing incidence, §; — 90°, cos8; — 0 and (6.4.10) is reduced to R =~ —1.
Consequently, at grazing incidence there is complete reflection of the incident
acoustic energy irrespective of the relative characteristic acoustic impedances of
the two fluids.

Figures 6.4.2-6.4.5 show typical behaviors for the reflection coefficients for all

possible conditions.

1 T T T 180° T T T T
s | ) - 4
E o
o 2 o°
= £
= T 7 L i
0| I | _180° ! ! I !
0° 90° 0° 90°
Angle of incidence Angle of incidence

Figure 6.4.2 Magnitude and phase of the reflection coefficient for reflection
from a slow bottom with ¢;/¢; = 0.9 and r,/r; = 0.9.



6.4 TRANSMISSION FROM ONE FLUID TO ANOTHER: OBLIQUE INCIDENCE

Magnitude

T

0 1 1
00

Angle of incidence

Phase

180°

0°

Angle of incidence

90°

Figure 6.4.3 Magnitude and phase of the reflection coefficient for reflection
from a slow bottom with ¢; /c; = 0.9 and r,/r; = 1.1. Note angle of intromission

at 46.4°.
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Figure 6.44 Magnitude and phase of the reflection coefficient for reflection
from a fast bottom with ¢; /¢c; = 1.1 and r,/r, = 1.1. Note critical angle at 65.6°,
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Figure 6.4.5 Magnitude and phase of the reflection coefficient for reflection
from a fast bottom with ¢;/¢; = 1.1 and r,/r; = 0.9. Note angle of intromission

at 43.2° and critical angle at 65.6°.
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The reflection that takes place in seawater from a sand or silt bottom is a good
example of reflection associated with two fluids in contact. Such behavior is to be
expected since the saturated sand or silt is more like a fluid than a solid in its
inability to transmit shear waves. As a first approximation, (6.4.10) may be used
for computing a reflection coefficient. Measured values of p; and ¢; for sand and
silt yield p2/p1 = 1.5t02.0 and ¢;/c; = 0.9 to 1.1, where p; and ¢, are the values
for seawater.

*6.5 NORMAL SPECIFIC ACOUSTIC IMPEDANCE

Satisfying the boundary conditions at the interface of two fluids amounts to requiring
continuity of pressure and continuity of the normal component of particle velocity across
the boundary. This is equivalent to requiring continuity of the normal specific acoustic
impedance z..:

_ P _ P
=3 h " Wcos 6; (6.5.1)

where # is the unit vector perpendicular to the interface and 6; is the appropriate angle.
The normal specific acoustic impedance at the boundary can be expressed in terms of the
properties of the incident and reflected waves at the boundary,

_ 15 1+R
z, = os6, 1R (6.5.2)

and this solved for the pressure reflection coefficient gives

_ Z, — 11/ cosé;
"~ z,+r/cosé; (6.53)
Note that for normal incidence z, = r, and cos8; = 1, so this equation reduces to (6.2.8). For
oblique incidence z, = r,/ cos 8, and (6.5.3) is identical with (6.4.10). Because the incident
and reflected pressures are not always exactly in or out of phase, the normal specific acoustic
impedance may be a complex quantity:

Z, = 1y + jx, (6.5.4)

where r,, and x, are the normal specific acoustic resistance and reactance, respectively. The
reflected wave at the boundary may either lead or lag the incident wave by angles ranging
from 0° to 180°.

*6.6 REFLECTION FROM THE SURFACE

OF A SOLID

Solids can support two types of elastic waves—longitudinal and shear. In an isotropic solid
(amorphous materials like glass, hardened clays, concrete, and polycrystalline substances)
of transverse dimensions much larger than the wavelength of the acoustic wave, the
appropriate phase speed for the longitudinal waves is not the bar speed ./Y/po, but rather
the bulk speed

& =B+ 49)/py | (6.6.1)
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where B and % are the bulk and shear moduli of the solid and py its density. (See Appendix
A11. Values of the bulk speed for various solids are given in Appendix A10.) The bulk
speed for each material is always higher than that for longitudinal waves in thin bars.

(a) Normal Incidence

For this case, we have cos 8; = 1 and (6.5.3) becomes

(v — + Y L iy
R= " " 6.6.2
ZEIES €62

The intensity reflection coefficient is

)+
R = e (6.63)

and the intensity transmission coefficient is

4r,nr

T, = —— "1
I (r, + )2 +x2

(6.6.4)

(b) Oblique Incidence

No single simple method is available for analyzing the reflection of plane waves obliquely
incident on the surface of a solid. Because of the differences in the porosity and internal
elastic structure of various solids, the nature of the process varies. For instance, the wave
transmitted into the solid may be refracted (1) so that it is propagated effectively only
perpendicular to the surface, (2) in a manner similar to plane waves entering a second
fluid, or (3) into two waves, a longitudinal wave traveling in one direction and a transverse
(shear) wave traveling at a lower speed in a different direction.

1. The first type of refraction occurs for normally-reacting or locally acting surfaces. One
example of this occurs in anisotropic solids, where waves propagated parallel to the
surface travel with a much lower speed than those propagated perpendicular to the
surface. This is typical of solids having a honeycomb structure in which the speed
of compressional waves through the fluid contained in capillary pores perpendicular
to the surface is much higher than that from pore to pore through the solid material
of the structure. This type of refraction also will occur in an isotropic solid when the
speed of longitudinal wave propagation in the solid is small compared with that in
the adjacent fluid. Many sound-absorbing materials used in buildings (acoustic tile,
perforated panels, etc.) behave as normally-reacting surfaces. When ¢; << ¢1, Snell’s law
requires that 6, << 6;, and a reasonable approximation is to set cos 8, = 1. This yields
{6.5.3), which can be rewritten as

R — (r. — 11/ cos@;) + jx, (6.6.5)

(r, +r/cos@,) + ix,
(rs 1/ i)+ Xy

This has the same form as {6.6.2) but with r; replaced by (r1/ cos#8;). The intensity
reflection and transmission coefficients consequently are given by {(6.6.3) and (6.6.4),
respectively, with the same replacement. See Problem 6.6.4.

For most solid materials r,, > r, so that as 6, increases an angle will be reached where
t, = (r1/ cos8;). When this occurs the power reflection coefficient Ry = R; will be near
its minimum value. In particular, if x, were zero, Ry would be zero and T would be
unity, For 8; — 90°, Ry approaches unity. Plotted in Fig. 6.6.1 are curves for the reflection
coefficient Ry as a function of the angle of incidence 6; for a few assumed values of the
nondimensional parameters r,, /r; and x,, /1.
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Figure 6.6.1 The reflection

coefficient for a typical normally-

reacting solid. (@) r, /11 = x,/1; = 4.
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Angle of incidence 6; and x, /7, = 0.

2. The second type of refraction is similar to the reflection and refraction occurring between
two fluids as discussed in Section 6.4.

3. The third type of refraction occurs for rigid elastic solids. A detailed discussion requires
consideration of the coupling of acoustic energy from the incident wave into both shear
and longitudinal waves in the solid. Interested readers are referred to the sources listed
at the beginning of this chapter.

*6.7 TRANSMISSION THROUGH
A THIN PARTITION: THE MASS LAW

A case of practical importance in architectural acoustics is the transmission of sound through
a thin partition between two enclosures, as found in many office or temporary working
spaces. The partition is often a material whose motion is normal to the interface regardless
of the angle of incidence of the sound, and whose thickness L is much smaller than a
wavelength (k;L << 1) for the frequency range of interest. Since both media 1 and 3 are
the same, by Snell’s law any wave transmitted into 3 must have the same direction of
propagation as the incident wave in 1. The angles are the same, so that continuity of the
normal component of particle velocity is equivalent to

w+u =uw (6.7.1)

If the intervening layer 2 is thin and completely flexible with surface density ps, the layer
can be treated as an interface possessing mass so that the difference in pressures across the
interface equals the product of the surface density ps of the interface and its acceleration,

pPi + Pr — pt = jwpsu;cosd (6.7.2)

After (6.7.1) is multiplied by r; and converted into pressures, and both (6.7.1) and (6.7.2) are
divided by the incident pressure amplitude, these equations yield

1-R=T

(6.7.3)

1+R = T+j?'rcos0
1
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Solution for the power transmission coefficient results in

1
Th() = [T@) = 6.7.4
u®) = o) 1+ [(cups/Zrl)c:os()]2 ( )

For an incident wave falling normally on the surface, (6.7.4) reduces to the equivalent case
given by (6.3.10) with fluids 1 and 3 having the same characteristic impedances and fluid 2
a thin layer with r, => r;. (See Problem 6.7.1.}

In most practical situations in air for moderate frequencies the quantity wps/r is
relatively large. For example, a light partition between two work spaces made out of a sheet
or two of gypsum or thick plywood will have a nominal surface density ps ~ 10 kg/m?. For
frequencies above about 60 Hz, wps /1 > 9. For this case, (6.7.4) can be approximated by

T(8) ~ (21 /w ps cos B (6.7.5)

as long as @ does not exceed about 70°. This approximation, which fails for near-grazing
incidence, expresses a form of the mass law: the power transmission coefficient is reduced
fourfold for each doubling of the surface density. Further properties of the transmission of
sound from a space containing a diffuse sound field through a partition to another space, and
the effects of coincidence on the transmission of acoustic power through an elastic partition,
will be deferred until Chapter 13.

6.8 METHOD OF IMAGES

Up to now, we have discussed the reflection and transmission of plane waves at
plane interfaces. In this section we will investigate the reflection of spherical waves
at plane boundaries, beginning with boundaries that are perfectly reflecting. (An
approximation of such a boundary is the air-water interface.) This problem is
amenable to the method of images. This approach is also used in electrostatics and
in optics. A familiar example of application of the method of images in optics is
the analysis of the interference resulting from the reflection of a light source from
a single mirror (Lloyd’s mirror).

TIn the cace of a single nlane boundar 1id 21 1St ph]:l \_d_ h} ﬂ111(‘] 1 21‘1(‘] an 1111/]0’P

AL WLEC LTOT Vi @ SHLSIT pratdaic vuu.-unu; , ‘.‘u.m o 2 il Al

is introduced Whose strength and locatlon are selected to satisfy the boundary
conditions on the plane of the former interface. Because a solution of the wave
equation is unique if the boundary conditions are satisfied, the acoustic field in
the real fluid 1 is the same as that for the original situation. The acoustic field in
the space containing fluid 2 will not be correctly represented.

(a) Rigid Boundary

Let a source of spherical waves be placed in a fluid of medium 1, which extends
throughout all space. If this source is located on the z axis a distance +d from the
origin, as shown in Fig. 6.8.1, a spherical wave exists in all space given by

p: = éej(m—kr,)
r- (6.8.1)
ro=[z—d?+y*+ x?JM2

where 7_ is the distance from the point (0, 0, d). If a second source, the image, of
equal strength, frequency, and initial phase angle is placed at (0, 0, —d),
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+d o Figure 6.8.1 The use of
e . image theory for calculating
“x  the acoustic field of a source
_dé of spherical waves near a rigid

planar boundary. The source is
located at (0, 0, +d) and an image
of equal strength and the same
phase is located at (0, 0, ~d). The
field point is located at (7, 6).

p, = gty
gt (6.8.2)
re = [z +d? +y* + ]2

it is easy to show that the normal component of the particle velocity vanishes on
the x-y plane. Therefore, the fluid on the negative side of the x-y plane can be
replaced by a rigid boundary at z = 0. (The components of the particle velocity
parallel to the x-y plane do not cancel, so there is a velocity parallel to the boundary.
Including the effects of viscosity would introduce some very small acoustic losses
at the boundary, but these are negligible for our purposes here.)

The pressure in the region z > 0 is given by the sum of (6.8.1) and (6.8.2):

, 1 .\
p=pi+tp = A(-Le_fk" + -——e_’k"f)e"‘" (6.8.3)

r_ Ty

While it is instructive to plot the pressure amplitude in the region of fluid 1 without
making any approximations (see Problem 6.8.1C), greater insight can be gained by
looking for an analytical solution for distances r >> d cos 8, where 6 is the grazing
angle with respect to the boundary. In this approximation, a little geometry shows

Ar = dsin @
r_=r—Ar (6.8.4)
ry =r+ Ar

so that (6.8.3) becomes

(6.8.5)

1—Ar/r + 1+ Ar/r

kA — jkA
p(rl 0; t) = ée](ﬂ)f—kr) ( e] Y e jkAr )
r

The term Ar/r gives the differences in amplitudes resulting from the slightly
different distances to the field point from the source and its image. They yield
minor contributions as long as r > Ar. The kAr in the exponent is another
matter. Unless k Ar << 1, there will be significant phase interference between the
pressures received from the source and its image. Discarding the terms Ar/r in
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Figure 6.8.2 Contours of equal pressure amplitude for a source of
spherical waves with wave number k at a distance d from a planar rigid
surface. (2) kd = 0.40. (b) kd = 0.80. (c) kd = 1.60. (d) kd = 3.20.

the denominators in (6.8.5) and using standard exponential and trigonometric
relationships gives

p(r,6,t) = ? cos(kd sin 8)¢“! ™) (rigid boundary) (6.8.6)

The pressure field is an outgoing spherical wave with the amplitude depending
on the angle 6. The pressure field for reflection of a spherical wave from a rigid
boundary is sketched in Fig. 6.8.2 for several values of kd.

(b) Pressure Release Boundary

The pressure field for reflection of a spherical wave from a pressure release surface
is found by using an image of the same amplitude as the source, but of opposite
phase. The proof of this and the derivation of the result,

p(r.6,t) = ]g sin(kd sin §)e/@! (pressure release boundary) (6.8.7)
are left as exercises.

(c) Extensions

There are a number of extensions to these simple examples that can be made easily.

1. The method does not depend on the source vibrating at a single frequency. If
the source emits a spherical wave

pi = ;I:f (ct—71-) (6.8.8)
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the pressure field of the image would be the same function with r, replacing r—
and multiplied by +1 depending on whether the boundary is rigid or pressure
release. The resultant total acoustic pressure is

p= ri_f(ct —r-)=x %f(ct —ry) (6.8.9)

N

sources or a loudspeaker). Elementary application of superposition shows that
the image will be the mirror reflection of the source with amplitude multiplied
by =1 depending on the boundary condition.

There may be several elements comprising the source (as an array of point

3. If the boundary is not rigid or pressure release, then the method of images can
be used as a reasonably good approximation if the source is many wavelengths
away from the boundary, so that at the boundary the radii of curvature of the
wave fronts are much greater than a wavelength. Under this condition, the
waves incident on the boundary look locally like plane waves and the local
reflection coefficient will be very similar to that for an incident plane wave.
Then, for example, the spherical monofrequency source radiating the pressure
field (6.8.1) will generate a total field

. R . )
rie—ﬂ“ + —rii)e—fkh)efwf (6.8.10)

p=m+m=A(
where the reflection coefficient is evaluated at the angle 6 defined for the specular
reflection (8, = ;) between source and field point. The resulting field will be
missing certain features that a more exact, and considerably more complicated,
analysis would provide, but under the geometrical restriction stated above
these effects will be relatively small. This restriction must also be applied to the
location of the field point, as explained below.

4. More than one reflecting surface can be present (a hall of mirrors). Under the
same geometrical limitation as in extension 3, each boundary behaves like a
mirror with reflectivity determined along each possible path from the source to
the field point.

All applications of the method of images for rigid or pressure release plane
boundaries exhibit a very important feature. If we have a point source at (0,0, d)
and a point receiver at (x, y, z), examination of the expressions for r_ and r, shows
that exchanging the positions of source and receiver does not change the value
of the acoustic pressure at the receiver. The pressure fields in the medium for the
two different geometries may have different interference patterns, but the signal
observed by the receiver will be unaffected by the exchange. This means, for
example, that the geometrical restrictions made in extension 3 concerning d/A to
obtain a simple approximation must also be applied to the distance between the
field point (receiver) and the boundary.

For directional sources and receivers, and for other than rigid and pressure
release boundaries, the conditions of the exchange and the relative orientations of
the source and receiver must be handled more carefully, but similar results can be
obtained. This will be dealt with further in Chapter 7 when we develop a more
general expression of acoustic reciprocity.
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PROBLEMS

6.2.1.

6.2.2

6.2.3.

6.2.4.

A 1 kHz plane wave in water of 50 Pa effective (rms) pressure is incident normally
on the water-air boundary. (4) What is the effective pressure of the plane wave
transmitted into the air? (b) What is the intensity of the incident wave in the water
and of the wave transmitted into the air? (c) Express, as a decibel reduction, the ratio
of the intensity of the transmitted wave in air to that of the incident wave in water.
(d) Answer the same three questions for the above sound wave incident on a thick

Towor oaf ion fo) AT 8 20 dlan svzirnm sl nndl e e L 2 ek Loanonn o 1o AL 2002
1AaycCl UL ILC, () vVildl 1D UIC PUW €1l ICLHICCLIVLL COCLLIICICLIL 11 OVUILLL UIC 1ayc1 Ul 1ILC:

If a plane wave is reflected from the ocean floor at normal incidence with alevel 20 dB
below that of the incident wave, what are the possible values of the specific acoustic
impedance of the fluid bottom material?

(a) A plane wave in seawater is normally incident on the water-air interface. Find
the pressure and intensity transmission coefficients. (b) Repeat (4) for a wave in air
normally incident on the air-water interface. (c) For (a) and (b) find the change in
pressure and intensity levels if P, and I, are the same in both media.

Assume a reflection coefficient R = 0.5 for a normally incident wave in air at 500 Hz
and pressure amplitude 2 Pa. (a) What are the intensities of the incident, reflected,
and transmitted waves? (b) Calculate the intensity of the total pressure field in fluid
1. (c) Write the total field in fluid 1 as the sum of a traveling and a standing wave.
(d) Calculate the intensities for each of the two waves in part (). (¢) Are your results
consistent with conservation of energy?

6.2.5C. For Problem 6.2.4, plot the total pressure amplitude in fluid 1 as a function of the

distance from the boundary. Derive an equation that relates the ratio of the pressure
amplitude at the antinodes to that at the nodes in terms of the pressure amplitudes
of the incident and reflected waves and compare to your graph.

6.2.6C. Plot the pressure reflection and transmission coefficients and the intensity reflection

6.3.1.

6.3.2.

6.3.3.

6.34.

6.3.5.

and transmission coefficients for normal incidence of a plane wave on a fluid-fluid
boundary for 0 < ry /r, < 10. Comment on the results for r; /r» = 0,r1/r» = 1, and
1n/ry = o=,

Show that when r, = r3 the pressure reflection, intensity reflection, and intensity
transmission coefficients all reduce to those for Section 6.2.

(a) What must be the thickness of, and the speed of sound in, a plastic layer having a
density of 1500 kg/m? if it is to transmit plane waves at 20 kHz from water into steel
with no reflection? (b) What would be the intensity reflection coefficient back into
water for normally incident waves impinging on an infinitely thick layer of this plastic?

For a 2 kHz plane wave in water impinging normally on a steel plate of 1.5 cm
thickness, (4) what is the transmission loss, expressed in dB, through the steel plate
into water on the opposite side? (b)) What is the power reflection coefficient of this
plate? (c) Repeat (4) and (b) for a 1.5 cm thick slab of sponge rubber having a density

of 500 kg/m? and a longitudinal wave speed of 1000 m/s.

Given the task of maximizing the transmission of sound waves from water into steel,
(a) what is the optimum characteristic impedance of the material to be placed between
the water and the steel? (b) What must be the density of, and sound speed in, a layer
of 1 cm thickness that will produce 100% transmission at 20 kHz?

For normal incidence on a layer between fluids 1 and 3 and with r, = ry, (4) show
that the magnitude of the pressure reflection coefficient reduces to that in Section 6.2
for the appropriate fluids. (b) Interpret the phase angle of the reflection coefficient in
terms of the time of flight of the signal in the layer.
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6.3.6. Assume a layer of fluid 2 separates fluid 1 from fluid 3. (2) Compare the pressure
reflection coefficient for a plane wave traveling in fluid 1 that reflects normally from
the layer with that for a plane wave traveling in fluid 3 that reflects normally from
the layer. (b) Are the pressure reflection coefficients the same for the two cases?
(c) Repeat (a) and (b) for the power reflection and transmission coefficients. (d) What
do these results suggest in terms of energy transmission?

6.3.7C. Plot the intensity transmission coefficient as a function of the scaled layer thickness
koL forri/r; = 2and 1 < ry/r; < 9. Comment on the conditions required to obtain
minimum and maximum transmissions.

6.3.8. A plane wave pulse consisting of 10 cycles of 10 kHz carrier is normally incident from
water onto a 50 m thick layer of red clay overlaying a thick sedimentary bottom with
c3 = 2300 m/s and p; = 2210 kg/m?>. For the first two reflections received back in
the water, calculate (4) the time interval between arrivals, (b) the amplitudes relative
to the incident pulse, and (c) the relative phase between the arrivals assuming they
were continuous waves rather than pulses.

6.4.1. (a) As a function of 6,, plot the amplitude and phase of the pressure reflection
coefficient for the case ¢; = ¢; and p, > p; and identify any significant features.
(b) Plot the amplitude and phase of the pressure reflection coefficient for the case
p: = py and ¢; > ¢; and identify any significant features.

6.4.2. For plane wave reflection from a fluid—fluid interface it is observed that at normal
incidence the pressure amplitude of the reflected wave is one-half that of the incident
wave (no phase information is recorded). As the angle of incidence is increased, the
amplitude of the reflected wave first decreases to zero and then increases until at
30° the reflected wave is as strong as the incident wave. Find the density and sound
speed in the second medium if the first medium is water.

6.4.3. A plane wave traveling from air into hydrogen gas through a thin separating
membrane is refracted by 40° from its original direction. (a) What is the angle of
incidence in the air? (b) What is the sound power transmission coefficient?

6.4.4. A plane wave in water of 100 Pa peak pressure amplitude is incident at 45°on a mud
bottom having p, = 2000 kg/m® and ¢; = 1000 m/s. Compute () the angle of the
ray transmitted into the mud, (b) the peak pressure amplitude of the transmitted ray,
(c) the peak pressure amplitude of the reflected ray, and (d) the sound power reflection
coefficient.

6.4.5. Plane waves in water of 100 Pa effective (rms) pressure are incident normally on
a sand bottom. The sand has density 2000 kg/m?* and sound speed 2000 m/s.
(a) What is the effective pressure of the wave reflected back into the water? (b) What
is the effective pressure of the wave transmitted into the sand? (c) What is the power
reflection coefficient? (d) What is the smallest angle of incidence at which all of the
incident energy will be reflected?

6.4.6. A sand bottom in seawater is characterized by p, = 1700 kg/ m? and ¢; = 1600 m/s.
(a) What is the critical angle of incidence corresponding to total reflection? (b) For
what angle of incidence is the power reflection coefficient equal to 0.25? (¢} What is
the power reflection coefficient for normal incidence?

6.4.7C. For the oblique reflection of a plane wave at a fluid—fluid interface, plot the
magnitude and phase of the pressure reflection coefficient as a function of ; for
(@) ro/r = 05 and &u/c; = 05,1, 1.5; (b) n/ry = 1 and cp/c; = 05,1, 1.5; and
(cyro/ry = 15and ¢, /c; = 0.5,1,1.5.

6.4.8. Derive the approximate behavior (lowest order in small angle) of R (amplitude and
phase) (2) in terms of the grazing angle B = (m/2 — 6;) for near-grazing incidence,
(b) in terms of (0, — ;) for 6, slightly less than 6., and (c) in terms of (8; — 6.) for 6;
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slightly more than 6.. (d) With the help of the approximation exp(8) = 1 + & for small
8, approximate the results through lowest order for these cases in exponential form.

6.6.1. An acoustic tile panel is characterized by a normal specific acoustic impedance of
900 — j1200 Pa-s/m. (a) For what angle of incidence in air will the power reflection
coefficient be a minimum? (b) What is the power reflection coefficient for an angle of
incidence of 80°? (c) What is the power reflection coefficient for normal incidence?

6.6.2. A wallreflects plane waves like a normally-reacting surface of normal specific acoustic
impedance z, = r; + jwps, where r; is the characteristic impedance of the air and
ps is the area density of the wall (kg/m?). Derive a general equation for the power
reflection coefficient as a function of the incident angle 6;. For ps = 2 kg/m?, compute
and plot the power reflection coefficient at 100 Hz as a function of 6;.

6.6.3C. Plot the magnitude and phase of the pressure reflection coefficient as a function
of incident angle for a normally-reacting solid for (a) r,/r; = 2 and x,/r1 = 0,
) ro/r1 = xu/11 = 2, and (c) r,/r1 = x,/r1 = 4. Comment on the conditions for
minimum reflection coefficient.

6.6.4. Starting with (6.6.5), show that the power reflection and transmission coefficients for
oblique reflection from a normally-reacting solid are

_ (rscos8; — r1)* + (x, cos6;)?
T qr. cocf + )2 + (v cocf )2
A7 17 AR

7R~ B e,

Rn

_ 4ryr, cosb;
(r, cos0; + r1)? + (x, cos0;)?

Tn

6.7.1. (a) With the help of the speed of sound c; for the material of the partition, show
that wps/r1 = (r2/r1)koL, where L is the thickness of the partition. (b)) For normal
incidence, find the inequality necessary for (6.3.10) to reduce to (6.7.4). (c) Is the
inequality of () consistent with the approximations made in obtaining (6.3.12)?

6.8.1C. A source of spherical waves of wave number kis a distance d above an infinite, plane,
rigid boundary. (a) For kd = 0.1, plot contours of equal pressure amplitude for the
exact solution (6.8.3) and the approximation (6.8.6). Comment on the differences, if
any. (b) Repeat for kd = 10.

687 (n
Ueldedme (44

S’
tn
= o
g
l
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(b) What effect does the presence of the boundary have on the sound pressure
level observed (many wavelengths away) for the same source in the absence of the
boundary?

6.8.3. (a) Show from (6.8.3) that the use of an image source of the same amplitude
but opposite phase satisfies the pressure release boundary condition on the plane
halfway between them. (b) Show that for r > dcos the pressure above a pressure
release surface is given by (6.8.7) and (c) obtain an expression for the locations of the
pressure nodal surfaces.

6.8.4. In the limit kd << 1 show that (6.8.7) reduces to

p(r,6,t) =~ —j 24kd sin @ /@t

Y

6.8.5. (a) A source of spherical waves of frequency f and pressure amplitude A at 1 meter is
a distance d above a plane, rigid boundary. Calculate the amplitude of the pressure
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on the boundary as a function of d and r. (b) For the same source at the same distance
above a plane, pressure release boundary, calculate the normal component of the
particle velocity on the boundary. (c) Make plots of (a) as a function of R, the distance
along the boundary measured from the point closest to the source, for various values
of d. (d) Repeat (c) for (b).

6.8.6C. (a) A source of spherical waves of frequency f and pressure amplitude A at 1 meter

is located in water a distance d above a flat, quartz sand bottom. For kd = 20,
plot the amplitude of the pressure at the same distance d above the boundary as a
function of kr, where r is the distance between source and receiver. (b) Repeat for a
red clay bottom.

6.8.7C. A source of monofrequency spherical waves is located in air midway between

parallel rigid surfaces a distance H apart. (@) Assuming incoherent summation,
design a program to calculate the pressure at a receiver also located at the midpoint
for distances greater than 10d away from the source. (b) Determine if the pressure
approaches an asymptotic functional dependence proportional to 1/./r as the
number of images is increased. (c) How well do your results for larger numbers of
images satisfy the relation SPL(1) — SPL(r) = 10logr + 10log(H/m)?

6.8.8. Assume that the near-shore ocean can be modeled by two nonparallel planes: a

horizontal pressure release top and a sloping rigid bottom. (a) Sketch the position
and indicate the phases of the images representing the paths from a source in the
layer that reflect once off the top, once off the bottom, first off the top then off the
bottom, and first off the bottom and then off the top. (b) Show that all images lie ona
circle passing through the source and centered at the shore.

6.8.9C. A horizontal plane, pressure release surface makes an angle of 20° with a plane,

rigid bottom. A source of spherical waves of frequency f and pressure amplitude
A at 1 meter is located at mid-depth in this wedge at a distance R from the vertex.
(#) Assuming incoherent summation, calculate the pressure amplitude as a function
of distance along the mid-depth of the wedge. Cover the distance from the vertex
out to at least twice R (to avoid overflow, omit distances in the immediate vicinity
of the source). (b) Repeat assuming coherent summation. Note that there are a total
of 17 images in addition to the source.

6.8.10C. Repeat Problem 6.8.9C for a line passing through the source and parallel to the
f
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Chapter7

RADIATION
AND RECEPTION
OF ACOUSTIC WAVES

7.1 RADIATION FROM A PULSATING SPHERE

The acoustic source simplest to analyze is a pulsating sphere—a sphere whose
radius varies sinusoidally with time. While pulsating spheres are of little practical
importance, their analysis is useful for they serve as the prototype for an important
class of sources referred to as simple sources.

In a medium that is infinite, homogeneous, and isotropic, a pulsating sphere
will produce an outgoing spherical wave

p(r ) = (A/r)el@ ™) (7.1.1)

where A is determined by an appropriate boundary condition.
Consider a sphere of average radius 4, vibrating radially with complex speed

Loy PN cmlamain -t o~ n crinfanma 1o L lace than P

U() t:}(y(fwf), where the dibylat.t:ult:lu of the surface is much less than the Ladi'tis,
Up/w << a. The acoustic pressure of the fluid in contact with the sphere is
given by (7.1.1) evaluated at r = a. (This is consistent with the small-amplitude
approximation of linear acoustics.) The radial component of the velocity of the
fluid in contact with the sphere is found using the specific acoustic impedance for
the spherical wave (5.11.10) also evaluated atr = g,

2(a) = poccos b, el (7.1.2)
where cot 8, = ka. The pressure at the surface of the source is then
p(a, t) = pocly cos 8, e/t ka6 (7.1.3)
Comparing (7.1.3) with (7.1.1) gives
A = poclpa cos 6, e/ +%) (7.1.4)
so the pressure at any distance r > a is

p(r,£) = pocUy(a/r) cos §, e/ltKr=a+b (7.1.5)
171
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The acoustic intensity, found from (5.11.20), is
I = 1pocU(a/r)*cos?d, (7.1.6)

If the radius of the source is small compared to a wavelength, 6, — /2 and the
specific acoustic impedance near the surface of the sphere is strongly reactive. (This
reactance is a symptom of the strong radial divergence of the acoustic wave near a
small source and represents the storage and release of energy because successive
layers of the fluid must stretch and shrink circumferentially, altering the outward
displacement. This inertial effect manifests itself in the mass-like reactance of the
specific acoustic impedance.) In this long wavelength limit the pressure

p(r,t) = jpoclp(a/r)ka e/  jg <1 (7.1.7)

is nearly 7 /2 out of phase with the particle speed (pressure and particle speed are
not exactly /2 out of phase, since that would lead to a vanishing intensity), and
the acoustic intensity is

I = ipocla/ry(ka)  ka<<1 (7.1.8)

For constant Uy this intensity is proportional to the square of the frequency and
depends on the fourth power of the radius of the source. Thus, we see that sources
small with respect to a wavelength are inherently poor radiators of acoustic energy.

In the next section, it will be shown that all simple sources, no matter what their
shapes, will produce the same acoustic field as a pulsating sphere provided the
wavelength is greater than the dimensions of the source and the sources have the
same volume velocity.

7.2 ACOUSTIC RECIPROCITY
AND THE SIMPLE SOURCE

Acoustic reciprocity is a powerful concept that can be used to obtain some very
general results. Let us begin by deriving one of the more commonly encountered
statements of acoustic reciprocity.

Consider a space occupied by two sources, as suggested by Fig. 7.2.1. By
changing which source is active and which passive, it is possible to set up different
sound fields. Choose two situations having the same frequency and denote them
as 1 and 2. Establish a volume V of space that does not itself contain any sources
but bounds them. Let the surface of this volume be 5. The volume V and the
surface S remain the same for both situations. Let the velocity potential be ®; for
situation 1 and ®, for situation 2. Green’s theorem (see Appendix A8) gives the
general relation

J (B, VD, — B, V) - 71dS = J (B, VD, — ®,V?®,)dV (7.2.1)
S 14

where 7 is the unit outward normal to S. Since the volume does not include
any sources, and since both velocity potentials are for excitations of the same
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8>

Figure7.2.1 Geometry used in deriving
the theorem of acoustical reciprocity.

frequency, the wave equation yields

Vi®, = —K®
! ! (7.2.2)
Vi, = —K®;

so that the right side of (7.2.1) vanishes identically throughout V. Furthermore,
recall that the pressure is p = —jwpo® and the particle velocity for irrotational
motion is 4 = V. Substitution of these expressions into the left side of (7.2.1)
gives

J’ (Plﬁ2 ‘- Pzﬁl * ﬁ) as =0 (723)
S

This is one form of the principle of acoustic reciprocity. This principle states that, for
example, if the locations of a small source and a small receiver are interchanged in
an unchanging environment, the received signal will remain the same.

To obtain information about simple sources, let us develop a more restrictive
but simpler form of (7.2.3). Assume that some portion of S is removed a great
distance from the enclosed source. In any real case there is always some absorption
of sound by the medium so the intensity at this surface will decrease faster than
1/72. Since the area of the surface increases as 72, the product of intensity and area
vanishes in the limit r — . In addition, if each of the remaining portions of S is
either (1) perfectly rigid so that u-# = 0, (2) pressure release so that p = 0, or
(3) normally reacting so that p/(ti - ) = z,, then the surface integrals over these
surfaces must vanish. Under these conditions, (7.2.3) reduces to an integral over
only those portions of S that correspond to sources active in situations 1 or 2:

| (s = paiis A5 = 0 (724)
sources

This simple result will now be applied to develop some important general proper-
ties of sources that are small compared to a wavelength.

Consider a region of space in which there are two irregularly shaped sources,
as shown in Fig. 7.2.2. Let source A be active and source B be perfectly rigid in
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Situation 1

Figure 7.2.2  Reciprocity
theorem applied to simple
Situation 2 sources.

situation 1, and vice versa in situation 2. If we define p; as the pressure at B
when source A is active with u; the velocity of its radiating element, and p; as the
pressure at A when source B is active with 11, the velocity of its radiating element,
application of (7.2.4) yields

J pzﬁlﬁds=J plﬁz‘ﬁdn
SA SB

—~—
~1
[\'J
@) ]

N

If the sources are small with respect to a wavelength and several wavelengths
apart, then the pressure is uniform over each source so that

1 . 1 -
“ | @ -hdS=—| @-ads (7.2.6)
P1Js, P2 Jss
Accrimna that tha matving alamante nf 2 eniree atre romnlay vactnar dienlacramanta
LAO0OWILLIT LLIKIL LLIIC 111UV L |.6 CICILICI IO VUl A OULLILL LAYV U LUILLLPIVA VOLLUL \JIDFIQLCLL ICiLLO
E _ Hpflwt+d)
@
g = 2ol 7.2.7)

where 2 gives the magnitude and direction of the displacement and ¢ the temporal
phase of each element. If 7 is the unit outward normal to each element 4S of the
surface, the source will displace a volume of the surrounding medium

V= J Sel@+d) . 45 = Velwi+®) (7.2.8)
5
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where V is the complex volume displacement, V the generalization of the volume
displacement amplitude discussed in Section 4.5, and # the accumulated phase
over the surface of the element. The time derivative ¢V /dt, the complex volume
velocity, defines the complex source strength Q

. FAY .
Qelt = — = J u-#nds (7.2.9)
ot P

where i = 9 /4t is the complex velocity distribution of the source surface. The
complex source strength of the pulsating sphere has only a real part,

Q = Q = 4ma’lU, (7.2.10)
Substitution of (7.2.9) and p = P(r) exp[j(wt — kr)] into (7.2.6) gives
Q1 /Pi(r) = Q2/Pa(r) (7.2.11)

which shows that the ratio of the source strength to the pressure amplitude at
distance r from the source is the same for all simple sources (at the same frequency)
in the same surroundings. This allows us to calculate the pressure field of any
irregular simple source since it must be identical with the pressure field produced
by a small pulsating sphere of the same source strength. If the simple sources are
in free space, (7.1.7) and (7.2.10) show that the ratio of (7.2.11) is

Q/P(r) = —j2Ar/poc (7.2.12)

This is the free field reciprocity factor.
Rewriting (7.1.7) with the help of (7.2.10) results in

p( 1) = 3jpoc(Q/ Ar)eltwt=k) (7.2.13)
which, from the above, must be true for all simple sources. The pressure amplitude
is

P = 1pycQ/Ar  (simple source) (7.2.14)
and the intensity is
I = §poc(Q/Ar)? (7.2.15)

Integration of the intensity over a sphere centered at the source gives the power
radiated,

I = 1mpc(Q/A) (7.2.16)

Another case of practical interest is that of a simple source mounted on or
very close to a rigid plane boundary. If the dimensions of the boundary are much
greater than a wavelength of sound, the boundary can be considered a plane
of infinite extent. This kind of boundary is termed a baffle. As shown in Section
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6.8, the pressure field in the half-space occupied by the source will be twice that
generated by the source (with the same source strength) in free space,

P = pocQ/Ar (baffled simple source) (7.2.17)

The intensity is increased by a factor of four,
I = Lpoc(Q/Ar) (7.2.18)

and integration of the intensity over a hemisphere (there is no acoustic penetration
of the space behind the baffle) gives twice the radiated power,

Il = mpoc(Q/A) (7.2.19)

A doubling of the power output of the source may seem surprising but results
from the fact that the source has the same source strength in both cases: the source
face is moving with the same velocity in both cases, but in the baffled case it
is working into twice the force and therefore must expend twice the power to
maintain its own motion in the presence of the doubled pressure.

7.3 THE CONTINUOUS LINE SOURCE

As an example of a distribution of point sources used to describe an extended
source, consider a long, thin cylindrical source of length L and radius a. This
configuration, suggested in Fig. 7.3.1, is termed a continuous line source. Let the
surface vibrate radially with speed Ujexp(jwt). Consider the source to be made
up of a large number of cylinders of length dx. Each of these elements can be
considered an unbaffled simple source of strength dQ = Uy 27a dx. Each generates
the increment of pressure given by (7.2.13) with r replaced by the distance r' from

plr, 0,¢)
r
"

0 Figure 7.3.1 The far field acoustic
field at (r, #) of a continuous line source
of length L and radius a is found by

— g I1 >

0 dx L x summing the contributions of simple
sources of length dx and radius a.

| e~
]
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the element to the field point at (7, #). The total pressure is found by integrating dp
over the length of the source,

L/2

p(r.0,t) = ipocuokaj l,ef("’"k")dx (7.3.1)
2 ~L/2 7

The acoustic field close to the source is complicated, but a simple expression
can be obtained in the far field approximation. Under the assumption r > L, the
denominator of the integrand can be replaced by its approximate value r, which
amounts to making very small errors in the amplitudes of the acoustic fields at
(r,8) generated by each of the simple sources. In the exponent, however, this
simplification cannot always be made because the relative phases of the elements
will be very strong functions of angle when kL approaches or exceeds unity. Then
the more accurate approximation 7’ = r — xsin 6 must be used, and the integral
takes the form

j ka . Lz
p(r,0,t) = Lpocly—el@ =+ J ghxsing gy (7.3.2)
2 r ~L/2

Evaluation is immediate,

. . 1 .
_ g Ay (SBALSINO)
p(r.0,t) 5 poclp rkL ( % \Long e (7.3.3)

The acoustic pressure amplitude in the far field can be written

P(r,0) = P.x(r)H(6) (7.3.4)
where
H(9) = 1““1] 4 = lkLsing (7.3.5)
is the directional factor and
Po(r) = 3pocUo(a/m)kL (7.3.6)

is the amplitude of the far field axial pressure.

Separating the far field pressure amplitude into one factor that depends only
on angle and has maximum value of unity on the acoustic axis and another that
depends only on the distance from the source is common practice in describing the
sound fields of complicated sources. Note that in the far field the axial pressure is
proportional to 1/7, as for a simple source. This is a feature common to all acoustic
sources.

The behavior of (sin v) /v is shown in Fig. 7.3.2. This function is known as the sinc
function or the zeroth order spherical Bessel function of the first kind. The corresponding
beam pattern b(0) = 20log H(#) is plotted in Fig. 7.3.3 for the case kL = 24. There
are nodal surfaces (cones in the present case) at angles where H(8) = 0, for which
%kL sin, = *nw, withn = 1,2,3,.... These nodal surfaces are separated by lobes
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Figure 7.3.3 Beam pattern b(@) for

\ } a continuous line source of length L
\_/ radiating sound of wave number k with
kL = 24.

where the acoustic energy is nonzero. Most of the acoustic energy is projected in
the major lobe, contained within the angles given by n = 1 and centered on a plane
perpendicular to the line source. The amplitudes of the minor lobes are less than
unity and tend to decrease away from this plane. Clearly, the larger the value of
kL the more narrowly directed will be the major lobe and the greater the number
of minor lobes.
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Note that the pressure, when expressed in terms of the source strength Q =
Uy 27al, becomes

Q sinv pit—Fr)

p(r.0,t) = 5” 0C~= (7.3.7)

Comparison with (7.2.13) shows that the pressure field is the product of that
generated by a simple source of source strength  and a directional factor sinv/v.

7.4 RADIATION FROM A PLANE
CIRCULAR PISTON

An acoustic source of practical interest is the plane circular piston, which is the
model for a number of sources, including loudspeakers, open-ended organ pipes,
and ventilation ducts. Consider a piston of radius 2 mounted on a flat rigid baffle
of infinite extent. Let the radiating surface of the piston move uniformly with
speed Up exp(jwt) normal to the baffle. The geometry and coordinates are sketched
in Fig. 7.4.1.

The pressure at any field point can be obtained by dividing the surface of the
piston into infinitesimal elements, each of which acts as a baffled simple source

of strength dQ = U dS. Since the pressure generated by one of these sources is
given by (7.2.17), the total pressure is

p(.0,t) = jpoc% L %eﬂwf""’) ds (7.4.1)

where the surface integral is taken over the region o = a. While this integral is
difficult to solve for a general field point, closed-form solutions are possible for two
regions: (a) along a line perpendicular to the face of the piston and passing through
its center (the acoustic axis), and (b) at sufficiently large distances, in the far field.

The field along the acoustic axis (the z axis) is relatively simple to calculate. With
reference to Fig. 7.4.1, we have

2aodo (7.4.2)

2
s e e 5L
A 0 2 + g2

p(s 6,1)

ds

/9 0

Y

Figure 741 Geometry used in
deriving the acoustic field of a baffled
circular plane piston of radius a

y radiating sound of wave number k.
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The integrand is a perfect differential,

crexp(—jk VrE+ 02) _d [P (—jk Jrr+ 02)

[2 + g2 do jk

(7.4.3)

so the complex acoustic pressure is
p(r,0,t) = poc Uy [1 — exp [—jk(\/ r2 + a2 — r)” g/@t=kn) (7.4.4)

The pressure amplitude on the axis of the piston is the magnitude of the above
expression,

P(T, 0) = 2POCUO

sin{ %kr[ J1+ (a/r)? — 1]” (7.4.5)

For r/a > 1, the square root can be simplified to
V14 @/ =1+ La/r? (7.4.6)
If also 7/a > ka/2, the pressure amplitude on the axis has asymptotic form
Po(r) = LpocUp(a/r)ka (7.4.7)

which reveals the expected spherical divergence at sufficiently large distances.
(The inequality 7/a > ka/2 can be rewritten as r > ma®/A. In general, the quantity
S/ A, where S is the moving area of the source, is called the Rayleigh length.)

Study of (7.4.5) reveals that the axial pressure exhibits strong interference effects,
fluctuating between 0 and 2pocly as 7 ranges between 0 and «. These extremes of
pressure occur for values of r satisfying

%kr[\/l Y@/ -1=mr/2 m=012... (7.4.8)

Solution of the above for the values of r at the extrema yields
tm/a = a/mx — mA/4a (7.4.9)

Moving in toward the source from large #, one encounters the first local maximum
in axial pressure at a distance r; given by

ri/a =a/A—A/4a (7.4.10)
For still smaller r, the pressure amplitude falls to a local minimum at r, given by
r2/a = a/2A— A/2a (7.4.11)

and then continues to fluctuate until the face of the piston is reached. A sketch of
this behavior is shown in Fig. 7.4.2.
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P/ZpoCUO
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r/a

Figure 7.4.2  Axial pressure amplitude for a baffled circular plane piston
of radius a radiating sound of wave number k with ka = 8. Solid line is
calculated from the exact theory. Dashed line is the far field approximation
extrapolated into the near field. For this case, the far field approximation is
accurate only for distances beyond about seven piston radii.

For r > r, the axial pressure decreases monotonically, approaching an asymp-
totic 1/r dependence. For r < r; the axial pressure displays strong interference
effects, suggesting that the acoustic field close to the piston is complicated. The
distance r; serves as a convenient demarcation between the complicated near field
found close to the source and the simpler far field found at large distances from the
source. The quantity r; has physical meaning only if the ratio a/ A is large enough
thatr; > 0. Indeed, ifa = A/2, thenr; = 0 and there is no near field. At still lower
frequencies the radiation from the piston approaches that of a simple source.

(b) Far Field

To aid in the evaluation of the far field, additional coordinates are introduced as
indicated in Fig. 7.4.3. Let the x and y axes be oriented so the field point (r,6)
lies in the x-z plane. This allows the piston surface to be divided into an array of
continuous line sources of differing lengths, each parallel to the y axis, so the field
point is on the acoustic axis of each line source. The far field radiation pattern
is found by imposing the restriction r => a so the contribution to the field point
from each of the line sources is simply its far field axial pressure. Since each line

rcos8 ¢ Figure7.4.3 Geometry used in

deriving the far field at (r, #) of
a baffled circular plane piston of
radius a.
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is of length 2asin ¢ and width dx, the source strength from one such source is
dQ = 2Upasin ¢ dx and the incremental pressure dp for this baffled source is, from
(7.3.7),

dp = jpocg—ro—,ka sin ¢ /@ k) gx (7.4.12)

For r > g, the value of 7' is well approximated by
r'=r+Ar = r —asinfcosd (7.4.13)

and the acoustic pressure is
: Uy f(wt—kr') “ ikasin@cos ¢ .
p(r,6,t) = ]poc—}—,ka e/ - e/ sin ¢ dx (7.4.14)
™ —4a

where ¥’ — 7 in the denominator, but ¥’ = r + Ar in the phase in accordance with
the far field approximation. Using x = a cos ¢, we can convert the integration from
dx to d¢:

LI [2 o YT AN qu Sle otan A e L PR TR i
p(r.6,t) = jpoc—0 ;ka e R&ETr J gMIMY R ein® b dep (7.4.15)
™ 0

By symmetry, the imaginary part of the integral vanishes. The real part is tabulated
in terms of a Bessel function,

JW cos(z cos @) sin® p ddp = wh(TZ) (7.4.16)
0

so that

W}eﬂwf—kﬂ (7.4.17)

_Jpe®
p(r,6,1) ZPOCUOrka[ ka sin @

All the angular dependence is in the bracketed term. Since this term goes to unity
as 8 goes to 0, we can make the identifications

|P(7’19)| = Pu(r)H(6)

2]1(0) | (7:4.18)
H(8) = v = kasin 6
v
Note that the axial pressure amplitude is identical with the asymptotic expression

(74.7). A plot of 2];(v)/v is given in Fig. 7.4.4, and numerical values are in
Appendix A6. It is well worth comparing and contrasting Figs. 7.3.2 and 7.4.4.

The angular dependence of H(6) reveals that there are pressure nodes at angles
6., given by

kasinby, = ji.  m=1,2,3,... (7.4.19)

where ji,, designates the values of the argument of J; that reduce this Bessel
function to zero, J1(jim) = 0. (See Appendix A5.) Note that the form of H(#) yields
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Figure 7.4.5 Beam pattern b(6) for
a circular plane piston of radius 2
radiating sound with ka = 10.

a maximum along § = 0. The angles 8,, define conical nodal surfaces with vertices
at r = 0. Between these surfaces lie pressure lobes, as suggested in Fig. 7.4.5. The
relative strengths and angular locations of the acoustic pressure maxima in the
lobes are given by the relative maxima of H(8). Thus, for constant r, if the intensity
level on the axis is set at 0 dB, then the level of the maximum of the first side lobe
is about —17.5 dB.

For wavelengths much smaller than the radius of the piston (ka > 1) the
radiation pattern has many side lobes and the angular width of the major lobe is
small. If the wavelength is sufficiently large (ka < 3.83) only the major lobe will be
present. For ka < 1, the directional factor is nearly unity for all angles, so that the
piston becomes a baffled simple source with source strength Q = wa?l.

The radiation patterns produced by a piston-type loudspeaker differ to some
extent from these idealized patterns for reasons including the following: (1) The
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area of the baffle in which the speaker is mounted is finite. At low frequencies the
wavelength of the sound may be the same as, or greater than, the linear dimensions
of the baffle and the assumption that each element of the piston radiates with
hemispherical divergence will be in error. (2) If the loudspeaker cabinet is not
closed, the radiation from the back of the speaker may propagate into the region
in front of the speaker, resulting in a radiation pattern approximating an acoustic
doublet rather than a piston in an infinite baffle. (3) The material of a loudspeaker
cone is not perfectly rigid. Driving the speaker at its center establishes velocity
amplitudes higher near the center of the cone than near its rim at low frequencies,
and at high frequencies the cone may vibrate in standing waves. Under these
circumstances, Uy may become a complex function Uy of the radial distance o
and angle ¢. By a suitable choice of the relation between Uy and o, a wide
variety of radiation patterns can be obtained. Altering radiation patterns with the
help of a flexible radiating surface is an important consideration in loudspeaker
design. Even in small rooms, loudspeakers that project higher frequencies into
narrow major lobes often sound "“sharp” or “edgy” to listeners on the acoustic
axis and “dull” to listeners off the axis. Broadening the major lobes for higher
frequencies helps to counteract this beaming of sound. In small rooms, avoiding
high-frequency absorption at the walls is another aid in scattering high-frequency
energy. When public address systems are used outdoors or in large auditoriums,
scattering is negligible and uniform distribution of higher frequencies must be
obtained by employing multidirectional clusters of speakers or groups of speakers
aimed in different directions.

7.5 RADIATION IMPEDANCE

In Chapter 2 it was found useful to define the input mechanical impedance of a
string as the force applied to the string divided by the resulting speed of the string
at the point where the force is applied. If the force is not applied directly to the
string, but to some device attached to the string, then it was shown in Problem 2.9.2
that the force applied to the device divided by the speed of the device was equal
to the mechanical impedance of the device plus the input mechanical impedance
of the string as seen by the device. Similarly, in the discussion of acoustic sources
it will be useful to express the input mechanical impedance of the source in terms
of the mechanical impedance of the source radiating into a vacuum and the radiation
impedance of the acoustic wave propagated into the fluid.

Consider a transmitter whose active face (diaphragm) of area S moves with a
normal velocity component u whose magnitude and phase may be a function of
position. If dfs is the normal component of force on an element 45 of the active
face, the radiation impedance is

zZ - J dfs (75.1)
u

If the diaphragm has mass m, mechanical resistance R,,, and stiffness s and moves
uniformly with a normal component of velocity uy = U exp(jwt) = jw§y under
the externally applied force f = F exp(jwt), Newton’s law of motion yields

d&o _ 4%

" dt



7.5 RADIATION IMPEDANCE 185
where the force of the diaphragm on the fluid is fs = Z,u,. Recalling that
Z, = Ry + jlwm — s/w) and solving for uy gives

Thus, in the presence of fluid loading, the applied force encounters the sum of the
mechanical impedance of the source and the radiation impedance. The radiation
impedance can be expressed as

Z, = Ze® =R, +jX, (7.5.4)

where R, is the radiation resistance and X, is the radiation reactance.
A positive R, will increase the total resistance, increasing the power dissipated
by the source by an amount equal to the power radiated into the fluid,

T
- % J Re{f}Refuo} dt (75.5)
0
or
Il = LU2Z, cos® = JUZR, (7.5.6)

The radiation resistance can be found directly from the power radiated into the
fluid. For example, use of (7.2.16) and (7.2.19) shows that for a simple source

R, = poc(kS)? /4w (simple source) (7.5.7)
R, = poc(kS)?/2m (baffled simple source) (7.5.8)

where in each case S is the surface area of the relevant source.

A positive X, will manifest itself as a mass loading that decreases the resonance
frequency wy of the oscillator from Js/mto Js/(m + m,), where m, = X,/w is the
radiation mass. The effect of the radiation mass can be slight for sources operating in

frequency resulting from the presence of the medium may be quite marked.

(a) The Circular Piston

To calculate the radiation impedance of a baffled circular piston of radius a and
normal complex velocity up = Uy exp(jwt), consider an infinitesimal area dS of the
surface of the piston (Fig. 7.5.1) and let dp be the incremental pressure that the
motion of dS produces at some other element of area dS’ of the piston. The total
pressure p at 45’ can be obtained by integrating (7.4.1) over the surface of the piston,

p= jPOC%Q L %eﬂwf"“) ds (7.5.9)

where r is the distance between dS and dS’. The total force fs on the piston from
the pressure is the integral of p over dS’, so that fs = | p dS’. The integrations over
dS to get p and then over dS’ to get fs include both the force on dS’ resulting from
the motion of dS and vice versa. But from acoustic reciprocity, these two forces
must be the same. Consequently, the result of the double integration is twice what
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Figure 7.5.1 Surface elements dS and dS' used in
obtaining the reaction force on a radiating plane
circular piston.

would be obtained if the limits of integration were chosen to include the force
between each pair of elements only once. This latter choice of limits leads to a
considerable simplification of the problem. Refer to Fig. 7.5.1. With ¢ the radial
distance from the center of the piston to dS’, each pair of elements is used only
once by integrating over the area of the piston within this circle of radius o. The
maximum distance from dS’ to any point within the circle is 20 cos 8, so the entire
area within the circle will be covered if we integrate r from 0 to 2o cos § and then
integrate 6 from —/2 to 7 /2. The integration of 4S5’ is now extended over the
entire surface of the piston by setting dS’ = o do dy and integrating ¢ from 0 to
27 and then ¢ from 0 to 4. After multiplying this by two, we have our desired
expression,

uO ] a 2 w/2 20 cos @ .
fs = 2jpoc—e]“’ff J J J' oe ¥dr do dy do (7.5.10)
A olo J-=r2lo

The details of the integration are left to Problem 7.5.2. The result for the radiation
impedance Z, = fs/ug is

Z, = pocS[Ry(2ka) + jX1(2ka)] (7.5.11)

where S = ma? is the area of the piston face. The piston resistance function Ry and
piston reactance function X, are given by

R 16 B S x® B
Ry =1-——=s3 2@ ¢ s as
(7.5.12)
2H;(x) 4(x x x°
X1(x) = :;(5“32.5'*'32.52.7_“'

caridle TX o dle oy Lok maad e Chansican Logan nbemae Ao mwiland 3n Asninnn diy cotalhac
with Hy(x)} the first order Struve function, aescrived in nyycudu\ A4. Sketches of R;

and X; are shown in Fig. 7.5.2 and numerically tabulated in Appendix Aé.
In the low-frequency limit (ka << 1) the radiation impedance can be approxi-
mated by the first terms of the power expansions. The radiation resistance becomes

R, = 1 pocS(ka)* (7.5.13)
and the radiation reactance becomes

X, ~ (8/3m)pocSka (7.5.14)
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Figure 7.5.2 Radiation resistance and
reactance for a plane circular piston of

radius a radiating sound of wave number
x k(x = 2ka).

Note that, in the low-frequency limit, the radiation resistance for the piston is
identical with that for a baffled simple source of the same surface area S. The
low-frequency reactance is that of a mass

m, = X,/w = poS(8a/3m) (7.5.15)

Thus, the piston appears to be loaded with a cylindrical volume of fluid whose
cross-sectional area S is that of the piston and whose effective height is 8a/37 =~
0.85a.

In the high-frequency limit ka > 1, we have X;(2ka) — (2/w)/(ka) and
Ry(2ka) — 1, so that Z, — R, = Spc. This yields

IT = 1pocSL; (7.5.16)

which is the same as the power that would be carried by a plane wave of
particle speed amplitude U in a fluid of characteristic impedance pyc through a
cross-sectional area S.

(b) The Pulsating Sphere
The radiation impedance of the pulsating sphere is easily found from (7.1.2) to be
Z, = pocScosb, gffa (7.5.17)

where § = 4ma? is the surface area of the sphere. For high frequencies (ka > 1),
this reduces to a pure radiation resistance Z, = R,, where

n el

Ry = poC

—~—
~1
8)]
—
o]

R

For low frequencies (ka << 1), Z, becomes
Z, = pocS(ka)® + jpocSka (7.5.19)

The radiation resistance is much less than the radiation reactance, and the radiation
reactance is again like a mass,

m, = X,/w = 3pV (7.5.20)
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where V = 47a®/3 is the volume of the sphere. In the low-frequency limit the
radiation mass is three times the mass of the fluid displaced by the sphere.

7.6 FUNDAMENTAL PROPERTIES OF TRANSDUCERS

Several definitions are used to describe the more important aspects of the field
without the necessity of displaying the entire radiation pattern.

(a) Directional Factor and Beam Pattern

We have shown that the far field radiation for each of two uncomplicated sources
(continuous line and piston) can be expressed as a product of an axial pressure
P..(r) and a directional factor H(#). For sources of lower symmetry, this same
separation is possible, although the directional factor may depend on two angles,
H(6, ¢). The directional factor is always normalized so its maximum value is unity,
as illustrated by (7.3.5) and (7.4.18). The directions for which H = 1 determine the
acoustic axes. An acoustic “axis” may be a line, a plane, or a conical surface. The
normalized far field pressure along any radial line designated by angles 6 and ¢
is simply H(0, ¢)/7.

The variation of intensity level (or sound pressure level) with angle is the beam
pattern

b6, 8) = 10 loglI(r, 6, $)/Iu(P] = 20 logIP(r, 8, )/ Pux(r)]
= 20 logH(#, ¢)

(7.6.1)

(b) Beam Width

No single definition has been agreed upon for determining the angles that mark the
effective extremities of the major lobe. Hence, the criterion must be clearly stated
when beam widths are specified. The values of I(r, 8, )/ Ix(r) used to delineate
the effective width of a major lobe range from a maximum of 0.5 (down 3 dB or
“half-power”), through 0.25 (down 6 dB or “quarter-power”), to a minimum of
0.1 (down 10 dB). As an illustration of the ambiguity that arises if the ratio of
intensities is not specified, consider a piston that is radiating sound of wavelength
A = a/4. The calculated beam widths corresponding to the three ratios given
above are 7.4° (down 3 dB), 10.1° (down 6 dB), and 12.9° (down 10 dB), whereas
the beam width corresponding to the first null is 17.3°. Even when the outer limit
of the major lobe is defined as being down 10 dB relative to the axial level, it is still
some 7.5 dB higher than the maximum level of the first minor lobe.

(c) Source Level

A measure of the axial output of a source is the source level SL. Assume that the
acoustic axis of the source has been determined and the pressure amplitude along
this line is measured in the far field (where the pressure varies as 1/r). The curve
of P,,(r) versus 1/r can be extrapolated from large r to a position 7 = 1 m from the
source to give

Pay(1) = lim P (1) (7.6.2)
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[Note that P, (1) is not necessarily the actual axial pressure at 1 m. It is simply
a convenient extrapolation from the far field behavior.] Since P.(1) is a peak
pressure amplitude, it must be reduced to an effective (or rms) value P,(1) by
dividing by /2. The source level is then

SL(re Pry) = 20 log[Pe(1)/Prs]l  Pe(1) = Pux(1)/v2 (7.63)
where the reference effective pressure P, is either 1 uPa, 20 uPa, or 1 ubar as
discussed in Section 5.12.

(d) Directivity

Given the amplitude P(r, 8, ¢) of the pressure in the far field, the total radiated
power is obtained by integrating the intensity over a sphere enclosing the source,

Sy r* dQ 7
m=s- pr (r,0, )" d (7.6.4)

Recalling that P(r, 8, ¢) = P.(r)H(6, ¢) and noting that 7 is constant for the inte-
gration, we can write

I = erpgx(r)J H%(8, ¢)dQ) (7.6.5)
ZPOC 4

For a simple source that generates the same acoustic power, the pressure amplitude
Py(r) to be found at the distance r is given by

IT = 47r*P3(r)/2poc (7.6.6)
Clearly, for the same acoustic power the directional source will have greater
intensity at a distance r on the acoustic axis than will the simple source. The
ratio of these intensities reveals how much more efficiently a directional source

concentrates the available acoustic power into a preferred direction. This ratio
defines the directivity D,

D = L.(r)/Is(r) = P2(r)/Pi(r) (7.6.7)

Substitution of (7.6.5) and (7.6.6) into (7.6.7) results in

D = 4n / L H(8, $) dQ (7.6.8)

Thus, the directivity D of a source is the reciprocal of the average of H2(6, ¢) over
solid angle. Now, (7.6.5) becomes

IT = 47wP%(1)/Dpqyc (7.6.9)
and substitution for P,(1) into (7.6.3) gives

SL(re Pry) = 10log(DpocIl/4mPy) (7.6.10)
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(1) Conminuous LINE Source. The directional factor for a continuous line source
is (7.3.5). A study of the cylindrical geometry reveals

w/2
D = 4x / 2 J H?(0)27 cos 0 do (7.6.11)
0

and the change of variable v = 1kLsin § gives

kL/2 /o2 2
D= %L J (?) dv (7.6.12)
0

If the line is long (kL >> 1), the upper limit can be taken arbitrarily large with little
loss in accuracy. The resulting definite integral is known,

® /- 2
sSmv o

so the directivity of a long continuous line source is approximately
D=kL/m = 2L/A (7.6.14)

(2) P1stoN Source. The directivity of a piston is determined from the directional
factor (7.4.18) by

m/2 : 2
D = 4x / j {M] 27 sin do (7.6.15)
0 kasin 6

where 27 sinf df is the incremental solid angle df} for this axisymmetric case.
While this integral can be evaluated, another approach is used in Problem 7.6.1.
The result is

71, N2

\ka)”

D= 17y

(7.6.16)

For low frequencies (ka — 0), the Bessel function can be replaced by the first two
terms of its series expansion, and in this limit D — 2, which is the same as a
hemispherical source on an infinite baffle. For high frequencies the Bessel function
becomes small and

D = (ka)* ka>1 (7.6.17)
which shows that the piston is highly directive at higher frequencies.

(e) Directivity Index
The directivity index DI is given by

DI = 10logD (7.6.18)
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For water and with a reference pressure of 1 uPa,
SL(re1 pPa) = 10 log I1 + DI + 171 (water) (7.6.19)

where the acoustic power must be in watts. In air, the conventional reference
pressure is 20 uPa, and the source level becomes

SL(re 20 wPa) = 10logll + DI + 109 (air) (7.6.20)

The ability of a directional receiver to ignore isotropic noise is determined by
the directivity index DI. However, if the noise field has directionality, such as the
noise from a busy freeway or noise from distant shipping in the ocean (which
tends to arrive from directions close to horizontal), a more general measure, the
array gain AG, must be introduced. If N(6, ¢) is the effective pressure amplitude
of the noise arriving from the (6, ¢) direction, then the array gain for a directional
receiver is

AG = 10log ( dm (7.6.21)
|
\J47r|

The numerator measures the noise power received by an omnidirectional receiver
and the denominator measures that received by the directional receiver. In a
nonisotropic noise field, the array gain depends on the properties of the field and
the orientation of the receiver. If the noise field is isotropic then N(@, ¢) is constant
for all angles, the argument of the log reduces to (7.6.8), and the array gain becomes
identical to the directivity index.

(f) Estimates of Radiation Patterns

For reasonably directive sources of simple geometry, the properties of the radiation
fields can be estimated from the size and geometry of the source and the wavelength
of the excitation. The source may be one of those previously discussed or may be
a mosaic, or array, of such sources. The requirement that the source be reasonably
directive is A << L, where L is the greatest dimension of the source.

(1) ExmNT OF THE NEAR FIELD. Let 7, be the distance from the furthest element
of the source and r,;, the distance from the nearest element to a field point in
the far field on the acoustic axis. As the field point approaches the source on the
axis, the difference Ar = t,,, — 1, Will gradually increase above the asymptotic
value Ar., at large distances. When the increase approaches a half-wavelength,
Tmax — Tmin = Ars — A/2, then the phases of the signals from the individual points
on the source combining at the field point will have shifted sufficiently from those
observed in the far field to alter the axial pressure amplitude from P,,. See Fig.
7.6.1 for a flat source. If the greatest extent of the source transverse to the acoustic
axis is L, a little geometry shows that the value of 7,,;,, demarking the beginning of
the far field is given roughly by

Ymin/L ~ L/4A (7.6.22)
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Timin L _)2) \H' T T
\A/
] Y
Figure 7.6.1 Geometry used in Figure 7.6.2 Geometry used for
estimating the extent of the near field estimating the beam width for a
of a source of maximum extent L source of maximum extent L
radiating sound of wavelength A. radiating sound of wavelength A.

(2) MaJor LoBe ANGULAR WIDTH. The major lobe corresponds to that portion
of the far field radiation pattern in which the source elements are phased for
maximum constructive interference. As the angle off the acoustic axis increases,
destructive interference is increased and the edge of the major lobe is approached.

Very approximately, when 0 has increased until about half of the elements are
shifted in ohase by m—/') with regnact to the other half, a nodal surface will he
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encountered. From the simple one-dimensional example shown in Fig. 7.6.2, it can
be seen that this occurs at an angle of about A/L. Thus, the half-angle subtended
by the major lobe can be estimated by

sin@y, ~ A/L (7.6.23)

The reader should verify that (7.6.22) and (7.6.23) are in agreement with the
quantitative predictions for the circular piston and that (7.6.23) agrees with the
major-lobe width calculated for the continuous line source.

For more complicated sources with major dimensions L; and L, transverse to

the acoustic axis, the major lobe will have angular widths 26;; ~ 2A/L; in the one
direction and 28;> ~ 2A/L; in the other

eiivnvaisal {eaine TilC WRALCA.

(3) EsTiMATION OF DIRECTIVITY. Since an exact evaluation of the integral expression
(7.6.8) may be too difficult or more accurate than required by the problem at hand,
it is useful to be able to estimate the directivity D. If the source is reasonably
directive and is designed so the side lobes are considerably weaker than the major
lobe, D can be estimated by setting the integrand to unity over the strong central
portion of the major lobe and to zero otherwise. The expression for D is

D = 4w/ (7.6.24)

Evaluation of D is thus reduced to the geometrical problem of obtaining a good
approximation of the effective solid angle {} subtended by the central portion
of the major lobe. This reduces to calculating the effective angle 6’ describing the
half-angular beam width of the major lobe. For highly directive sources ¢, tends
to overestimate 8'. A better approximation is to take that portion of the major lobe
over which the directional factor H falls from its maximum value of 1 to a value
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Figure 7.6.3  Area of the unit sphere Figure 7.6.4 Area of the unit sphere
ensonified by a line-like source at the ensonified by a plane piston source of
origin. arbitrary shape.

of 0.5 (quarter-power point) and assume H is unity within that region and zero
outside. For the cases studied so far, this means obtaining the value 6’ solving
(sinv)/v =~ 1 withv = JkLsin@. A little numerical estimation gives

LI Vs Ry
{7] LU/ (76.25)

For a line-like source, the central portion of the major lobe is distributed over
the surface of the unit sphere as shown in Fig. 7.6.3. The height of this belt is
approximated by 26" and the circumference is 27, so that Q4 =~ 478'and D ~ 1/6".

For a piston-like source, the central portion of the major lobe is the roughly
elliptical patch shown in Fig. 7.6.4. On the unit sphere, the area of this patch is
approximated by Q. =~ 76;6;, where 28] is the effective angular beam width
pertinent to the length L; and 26 is that pertinent to L;. The resultant directivity
is D~ 4/60;.

Comparison of these estimates with (7.6.14) and (7.6.17) shows that they are
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*7.7 DIRECTIONAL FACTORS
OF REVERSIBLE TRANSDUCERS

While the details of operation of a few of the more common acoustic sources and receivers
will be discussed in Chapter 14, it is appropriate here to develop an important relationship
between the transmitting and receiving directional properties of a reversible transducer. A
reversible transducer is one that can be used either as a source or as a receiver of acoustic
energy. The common office intercom incorporates such devices. The acoustic element,
usually a small loudspeaker, can be switched from acting as an acoustic source (to generate
a message) to acting as a receiver (to detect the response to the message).

If a reversible transducer exhibits directionality as a source, it will also be directional
as a receiver. For example, a plane wave falling obliquely on the surface of a large plane
piston will cause the piston to move with a normal component of velocity proportional
to the spatially averaged pressure on the piston. Thus, if the wavelength of the sound is
comparable to or smaller than the dimensions of the piston, the response of the piston to
the incident plane wave will depend on the angle of arrival of the wave. The measure of
this response is the receiving directional factor H,. We will show that the transmitting and
receiving directional factors for a reversible transducer are identical.

Consider plane waves incident on a receiver from a direction specified by 8 and ¢. Let
{pa)s be the average of the incident sound pressure over the diaphragm of the receiver,
measured with the diaphragm held perfectly still (blocked). The receiving directional factor



194 CHAPTER 7 RADIATION AND RECEPTION OF ACOUSTIC WAVES

=T e e e a3 e —/
| bt |
| | ! |
1 I |
] - | } \ |
] u | Psi |
|
] ~ Lo -~ - I
! Ps2 By :2/ }
| - o |
| Situation I ! | Sitation II }
L J -

Figure 7.7.1 The reciprocity theorem applied to reversible transducers.

is then defined as

(pa(6, P))s

Hr (9: ¢) - (pBax)S

(7.7.1)

This measures the phase cancellation of the incident wave over the blocked diaphragm of
the receiver as a function of # and ¢ and thus gives the directional sensitivity of the receiver.
(The receiving directional factor is defined with the diaphragm blocked to eliminate any
field radiated by the motion of the diaphragm; more on this in Chapter 14.)
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help of the reciprocity theorem. Consider the situation represented in Fig. 7.7.1. There are
two reversible transducers (with all surfaces other than their diaphragms perfectly rigid)
a large distance r apart in otherwise free space. (The requirement of large r ensures that
near field effects are avoided.) Situation I requires one of the transducers to be active and
the other passive with its diaphragm blocked. Situation II reverses the roles of the two
transducers. Application of (7.2.4) yields

[ pgzﬁz fdS = J p31ﬁ1 -7 ds (772)
So Sq

where pj is the pressure distribution over each blocked diaphragm and S is the area of the
diaphragm of each of transducers 1 and 2. If each diaphragm moves as a unit, so that w
and 1, are constant over S; and S, then this simplifies to

w{pg2)S2 = u{pp1)S1 (7.7.3)

where u; and u; are the components of the particle velocities perpendicular to the dia-
phragms.

Now, if transducer 2 is sufficiently small, it does not appreciably disturb the pressure
field p;, which is radiated by transducer 1, so that pg; = pi(r. 6, ¢, t). Furthermore, the
pressure pg; is uniform over the active surface of transducer 2, so that (7.7.3) becomes

wpi(r, 0, ¢, )52 = uilppi(6, ¢, )5, S1 (7.7.4)

Now, if transducers 1 and 2 are rotated so that they are on each other’s acoustic axis, (7.7.4)
gives the additional equality

WP (7, 1)S2 = wipria(t))s, 51 (7.7.5)

The magnitude of the ratio of the above pair of equations yields

{p51(6, &, 1))s,

{pBrax())s, (7.7.6)

‘ pl(ri 9/ ¢r t)
P1ax(?, £)
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The left side of (7.7.6) is H and the right side is H,. Thus,

H(8,$) = H/(0,d) (7.7.7)

and a reversible acoustic transducer has the same directional properties whether it is
transmitting or receiving.

*7.8 THE LINE ARRAY

Consider a line of N simple sources with adjacent elements spaced distance d apart, as
shown in Fig. 7.8.1. If all sources have the same source strength and radiate waves with the
same phase, then the ith source generates a pressure wave of the form (A/r}) exp[j(wt — kr)],
where 7; is the distance from this source to (7, 8). The resultant pressure at the field point is
the summation

N

p(r.o,t) = > ‘geﬂ“—’"” (7.8.1)

i=1"i

If we restrict attention to the far field [specified by r > L, where L = (N — 1)d is the length
of the array], all 7/ are approximately parallel. Then r; = r; — (i — 1)Ar, where Ar = dsin 6.
The distance to the center of the array can be expressed as r = r; — 1(L/d) Ar. In the far
tield, 7! in the denominator of (7.8.1) can be replaced with r and (7.8.1) takes the form

N
P(r’ 0[ t) - ée —j(L/Zd)kArej(mffkr) E ej(i*l)kAr (782)
r

i=1

Use of the trigonometric identities in Appendix A3 results in

(7.8.3)

p(rr B/ t) = /_:e](a)fk?‘)(

sin[(N /2)kAr]
sin[{1/2)kAr]

Figure 7.8.1 Geometry used
in deriving the far field acoustic
field at (r, 8) of a line array of

N in-phase elements, spaced
—— ———  distance d apart.
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The pressure on the axis (§ = 0) is
p(r,0,t) = N(A/r)e/@=*) (7.8.4)
and has the maximum possible pressure amplitude

P..(r) = NA/r (7.8.5)

1 sin[(N/2)kd sin 6]

HO) = |\ ¥ Snid/2)kdsin 6] (7.8.6)
allows us to write the amplitude of the pressure in the familiar form
P(r,6) = Pu(nH(®) (7.8.7)

The denominator of H may vanish if ;kd| sin 8] = mr, but the numerator vanishes also, and
the pressure amplitude becomes P,(r). Thus, we can have more than one major lobe. The
angles of these occur for

|sin@| = mA/d  m =0,1,2,...,[d/A] (7.8.8)

(This result can be restated as |Ar| = mA, which reveals that the radiated pressure is
maximized at those angles for which the distances from the field point to the adjacent array
elements differ by integral numbers of wavelengths.)

There are additional zeros in the numerator at angles given by

sin| = (i/N)A/d  n#mN  n=012,...,[Nd/A] (7.8.9)

where the integer n is neither zero nor a multiple of N. Since the denominator is not zero,
the pressure vanishes and these values of § determine the nodal surfaces in the far field.
There are also secondary maxima of H that designate the directions and magnitudes of the
minor lobes. The directions of these side lobes are given approximately by

|sing| = [(n + 15)/1‘\/’] Add n#mN and n#mN—1 (7.8.10)
and the amplitudes by
P (r
P.(r) ax(7) (7.8.11)

" Nsin[(n + H)n/N]

A sketch of a representative beam pattern for a linear array is given in Fig. 7.8.2.

Certain loudspeaker systems contain such line arrays, mounted vertically so that vertical
directivity is large and horizontal directivity small.

In some applications it is desired to have a single narrow major lobe. A simple
requirement, which results in one major lobe almost as narrow as possible, is to have
6 = w/2whenn = N — 1. This gives

AMd=N/N-1) (7.8.12)
or kd = 2m(N — 1)/N, and the beam pattern terminates at the null adjacent to the second
major lobe. While not quite exact, we shall refer to this as a single narrowest major lobe. This

major lobe is contained within angles +6; found from

sin; = 1/(N —1) (7.8.13)
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0dB o ———

Figure 7.8.2 Beam pattern
b(0) for a line array of in-
phase elements radiating
sound of wave number k
withkd = 8and N = 5.

For an array of many elements, this equation reveals that, if only one narrowest major lobe
is to occur, the approximate angular width of the major lobe and the directivity are

26, =2/N D = (7 /2)N (7.8.14)

For very large arrays it is often desirable to transmit or receive in various directions
without physically rotating the array. This can be accomplished by electronic steering. If a
time delay it is inserted into the electronic signal for the ith element of the array, (7.8.1)
becomes

N
A oisin k!
p(r0,t) = > ?eﬂ“’““ﬂ*kﬁl (7.8.15)
i=1"i

and the directional factor becomes

1 sin[(N /2)kd(sin 8 — sin 8;)]

= 7.8.1
H(®) N sin[(1/2)kd(sin# — sin fg)] (7.:8.16)
where the major lobe now points in the direction 8, given by
sinfy = cr/d (7.8.17)

Thus, the introduction of a progressive time delay across the array steers the major iobe
off the @ = 0 plane into a cone determined by 6;. Note that (7.8.17) is independent of
frequency. In practice, this steering can be accomplished by inserting time delays in the
electrical signals driving the sources or generated by the receivers either through hardwired
circuits or by the use of computer software.

Figure 7.8.3 shows the beam pattern for a steered line array designed to have a single
narrowest major lobe when steered to 6y = 0 (broadside). Note that as the beam is steered
toward 8, = /2 (endfired), a second major lobe develops. The only way to avoid this
second major lobe is to design the array to give one narrowest major lobe when the beam is
steered to r /2. This requires placement of the last null before encountering a second major
lobe at 8 = — /2, which results in
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Figure 7.8.3 The beam pattern b(9) for a linear array of 10 elements spaced distance
d apart. (a) The value of kd is 2r(N — 1)/N so that there is a single narrowest major
lobe when 6, = 0. As the beam is steered toward 6, = 90°, a second major lobe comes

in from 6 = —90°. (b) The same array but with kd = #(N — 1)/N so that there is a

single narrowest major lobe in the endfire condition (8, = 90°). Although the beam
width of the major lobe is larger than before, there is now only one major lobe for all

steering angles.
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A/d = 2N/(N — 1) (7.8.18)

or kd = w(N — 1)/N. If the maximum angle into which the major lobe is to be steered is
+8y, then the condition required to get only one narrowest major lobe is the placement of
the last null before encountering a second major lobe at § = /2. This results in

A/d = [N/(N — D1 + |sin 6o)) (7.8.19)

The directivity of a steered line array with one narrowest major lobe for all angles of
steering (from broadside to endfired) can be determined by estimating the area ensonified
on a unit sphere by the major lobe. A glance at Fig. 7.8.3 shows that when the beam is in the
endfire position, the ensonified area is a spherical cap, and a simple calculation shows that

(for large N)
~ (w/2))N  (endfire) (7.8.20)

However, as the beam is steered away from endfire, the ensonified area resembles a belt,
and calculation for large N gives

~ (7w /4)N {steered) (7.8.21)
Durmg the transition from steered to endfired beam, the main lobe takes on a complicated
shape and further analysis is required to determine the way D changes from (7 /2)°N to
(7 /4)N.

Amplitude shading of an array is accomplished by applying different gains to the individual
elements of the array. This replaces the amplitude A in each term of the summation (7.8.15)
with A;. Amplitude shading can be used to reduce, or even eliminate, side lobes, but at
the expense of a wider major lobe. (Examples of amplitude shaded arrays are given in the
problems for this section.)

*7.9 THE PRODUCT THEOREM

In the preceding discussion of an array, it was assumed that each element is a simple source
so the individual pressure waveforms were spherically symmetric. It is straightforward

+ 1; th T4 m
to generalize the results to an array of identical directive sources all oriented in the same

direction. If attention is restricted to the far field, the pressure generated by each element
must contain the factor H,, the directionality of each element of the array. Since all rays
are parallel, this factor must be the same in each term of the summation over the elements.
Given this, the pressure amplitude can be modified and generalized to

P(r, 8, ) = P (r)H,(6, d)H(8, d) (7.9.1)

where H is the directional factor for the array with simple sources at the position of each
element and H, is the directional factor for a single element. This is the product theorem. The
directional factor of an array of identical directional sources is the product of the directional
factor of an array with identical geometry but with simple sources and the directional factor
of a single element of the array.

*7.10 THE FAR FIELD MULTIPOLE EXPANSION

Another approach to obtaining the far field radiation pattern of an acoustic source begins
with the inhomogeneous wave equation for a point source. Comparison of (5.16.4) and
(7.2.13) shows that, atlarge distances from the source, A and Q arerelated by A = jwp,Q /4.
Substitution into (5.16.5) and expressing the acoustic pressure in terms of the velocity



200 CHAPTER 7 RADIATION AND RECEPTION OF ACOUSTIC WAVES

potential p = —jw po® (for notational simplicity) results in
(V2 + K)® = Q8(F — 7o)e/! (7.10.1)

with the particular solution

Q Lo
® = e Sy floot=klF=Fol) 7.10.
dnlr — r0|e (7.10.2)

for a point source of source strength (Q located at 7,. If we have a collection of sources all
within a volume Vy, then this distribution can be described by a source strength density q(7)
and the inhomogeneous wave equation and its particular solution become

(V2 + )P = qlio)e™

. 7103
o= -1 J 900)_jw—ti—ia) gy, (7.103)
4w |y, |F — 7ol

The volume integral is over the variable 7, (the distance vector 7 from the origin of the
coordinate system to the field point is a constant with respect to the integration).

If we assume that the field point is far away from the volume V), then the denominator
in the integral can be approximated by r and the distance in the phase approximated by
|F — %o| = r — 7, - # where # = 7/7 is the unit vector in the 7 direction. A Taylor’s expansion
of the exponential gives

- R N P e
el :Zo;ﬁ(lkro-r) =1+]kro-r_ﬁ(kTO'r)z_é(kTo’f)a'F"' (7.10.4)

and integrating term by term yields

® = — L g ( J qFo)dVo + jk J
Vo

G 21 NG B2 Ve — e
pp . q(o)® - HdV, Z!kzjvo q(Fo) (7o - 2 dVy )
(7.10.5)

Let the successive terms on the right in (7.10.5) be labeled ®;, ®,, ®;, . .. . In what follows,
we will use spherical coordinates. See Appendix A7.

1. The first term in (7.10.5) can be written as

@, = —(Q/4mr)e/@
(7.10.6)
Q

j o) Vs
Vo

where Q is the monopole strength and @, the monopole field of a point source of source
strength Q located at the origin and radiating a spherically symmetric field that falls off
as 1/r {exterior to the volume V)).

2. The second term ®, is also easily interpreted,

@, = —fk(D - #/4mr)elt)

. (7.10.7)
D

J q(7o)70dVy
Vo
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The vector D is the first moment of the charge distribution and is called the vector dipole
strength The associated field @, falls off as 1/r in all directions with the amplitude in the
7 direction proportional to the scalar product D - 7. This is a dipole field with two lobes of
opposite phase separated by a nodal plane perpendicular to the direction of the dipole.
For example, let the source strength density be

q(fo) = Q[8(Fo — 2d) — 8(7y + 2d)| (7.10.8)

Thica dearribheg Fvorn monanalea arne a8 MDD N 2 d tho ~thos o8
11115 QESCTInES TWO IMoNopoICs, VI at (Y, U, 6) and ine oumer at

strength (Q and with opposite phases. Direct substitution into (7.
®; both vanish so that

@, = —jk[Q(2d)/47r| cos 6 /) (7.10.9)

This is a dipole field with vector dipole strength D = Q(2d)%. See Problem 7.10.4 for a
further analysis of the properties of this field. [Succeeding nonzero terms (®, et seq.) in
the series expansion give higher order terms in kd. These provide the corrections giving
the radiation pattern of a doublet, for which kd has finite value.]

3. A quantitative discussion of the third term in the series for ® would go beyond the
purposes of this book. However, just as a dipole could be constructed by placing two
monopoles of opposite phases very close together, the juxtaposition of two dipoles

srhaca ctranagth roctare are oaiial in maonitiide and arnmogi o i divactian will conorats
VVllUOC DLLCL LBLLL VOLLULOD dlc c\.lua]. 111 1Llasllltuuc dlliva UIJLJU:MLC L ulchLlUll ¥V llJ. EEL Iciatilc

a quadrupole. There are two different geometries: (a) dipoles side-by-side (the lateral or

tesseral quadrupole) and (b) dipoles head-to-head (the axial or longitudinal quadrupole).

In either geometry, it can be seen easily that ®; and @, vanish so that the first nonzero

contribution is @;3.

(a) For the lateral geometry, place two sources of strengths Q at coordinates (d,d,0)
and (—d, —d,0) and two of strengths —Q at (—d,d,0) and (d, —d,0). Substitute the
appropriate density function q(7,) into the integrand and evaluate the scalar product
at each of the coordinates of the delta functions. This gives

2 2
2 X gy Za(g¥ _ gY Y | pitet—kn
0 rz'k Ql (dr+dr) 2(dr dr”e
(7.10.10)

[Q(zd) ] (wt kr)

D;

47r
This lateral quadrupole field has the form
®; = K*[Q(24)*/4rr|sin ¢ cos psin’ § e/ H) (7.10.11)

where Q(2d)? is the quadrupole strength. The nodal surfaces are the two planes defined
by x = 0and y = 0 and the line corresponding to the z axis. A cross section in the
plane of the sources (z = 0) shows that the directional factor H(w /2, ¢) is in the shape
of a four-leaf clover,

(b) For the axial quadrupole, position sources of strength Q on the z axis at =d and
a source of strength —2Q) at the origin. Straightforward analysis provides the axial
quadrupole field

®; = k*[Q(2d)* /4mr] cos® § /! ~H) (7.10.12)
In this case, the directional factor has cylindrical symmetry around the z axis, there

is a nodal surface perpendicular to the z axis through the origin, and there are two
lobes of the same phase pointing in opposite directions along the z axis.
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We can now relate the above discussion to the inhomogeneous wave equation (5.15.7)
and identify the three source terms with appropriate far field multipole radiation. For
monofrequency motion, rewriting (5.15.7) in terms of the velocity potential gives

1 - 1 *(puiu;
Ve = -84 Ly g L Tleun) (7.10.13)
po  Jepo Jopo 9x; Ix;
where each nonzero term on the right has time dependence exp(jwt).
Let these source terms be functions of #; contained within a small volume V; that is a
large distance away from the field point. If only the first term on the right in (7.10.13) is

nonzero, then
q(?o)ej“” = -G/po (7.10.14)

and any of the integrals in (7.10.5) can be nonzero. Source terms corresponding to mass
injection can generate any combination of multipole radiation terms. In particular, the
monopole term can be excited, producing a sound field equivalent to a point source at the
origin of strength Q given by (7.10.6). An example is the pulsating sphere discussed earlier
in this chapter. (See Problem 7.10.7 for another case.)
If just the second source term in (7.10.13) is nonzero, then

V- F)/jwpo (7.10.15)
and the sound field is that of a dipole at the origin with vector dipole strength given
by (7.10.7). (See Problem 7.10.8.) Note this is the first moment of the source strength. An
example of this type of source is a sphere of constant radius a vibrating in the x direction
with speed 2U exp(jwt). For ka << 1 and at large distances (kr > 1), the sound field is’

®, = —[pocli(ka)’(a/2r) cos §] e/t (7.10.16)

This is a dipole field with dipole strength magnitude pocU (ka)(2ma?).
Finally, if just the third source term is nonzero, then

1 & (pu,-uj)

J@po 6'.1',' 15',76]'

q(Fo)et = — (7.10.17)

where the x; are the components of 7. It can be shown that this source contributes
no monopole and no dipole contributions to the acoustic field. The lowest nonzero
contribution is quadrupolar with a quadrupole strength given by the second moment of the
source distribution, } | (g x;x;) dV.

An important property of multipole radiation is the radiation efficiency 7,4 defined as

Tad = R, /JRE + X2 (7.10.18)

For monopole radiation, the radiation efficiency of a pulsating sphere is found from the
radiation impedance (7.5.19) to be 7,4 = ka. For dipole radiation, the radiation impedance
of a vibrating sphere is equal to its input mechanical impedance, so that!

Jka(1 + jka)
1+ jka — (kap2/2

Z, = pocma? (7.10.19)

'Dowling, Encyclopedia of Acoustics, Chap. 9, Wiley (1997).
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If ka << 1, then analysis of (7.10.19) shows that 1.4 = (ka)’/2. In general, it can be shown?
that if the size of the source is much less than the wavelength of the radiated sound, then

Mg = (ka)*™*? HAm+D[L-3-5--2m - D]} (7.10.20)

where a is the characteristic dimension of the source and m is the order of the multipole,
m = 0 (monopole), 1 (dipole), 2 (quadrupole). Thus, we see that at low frequencies
monopole radiation is the most efficient and will dominate. If monopole radiation is absent,
thanr dirala radiagtian can lacara imnmartant hiadrmimalae radiatinm i irmnmarbant anlyy if
LIIClLL HJ.PUJ.C LAdlild UiVl Ldll OLulle l.lll.y\)l. Ldllt. ZWwuduil LI.PU].C LAldIdUIVLL 1D uu.lu\u. dliL vl I.l.)’ 1L

there are no strong monopoles or dipoles.

*7.11 BEAM PATTERNS AND THE SPATIAL
FOURIER TRANSFORM

Beam patterns can also be obtained by spatial Fourier transforms or spatial filtering. It is
simple to show that the equation used for performing a Fourier transform is identical to
that for calculating a far field beam pattern. To investigate this approach, let us revisit
the continuous line source. If the individual incremental elements have source strengths
dQ = g(x)Up2mx dx, then (7.3.2) becomes

FL/2

M La | I
p(r,6,t) = Lppclly—ef@t= J g(x)e/ssin? gy (7.11.1)
2 r -L/2
If g(x) is zero for values of x exceeding the extent of the array, then (7.11.1) can be written as

p(r,0,t) = ]ipocuol%f(u)eﬂ“f—’“) (7.11.2)

«©

f(n) = J ge™ dx  u = ksing (7.11.3)

Direct comparison of (7.11.3) with (1.15.1) and application of the Fourier transform with the
pair (w, t) replaced by (x, 1) shows that

gx) = 51; Ji f(u)e ™ du (7.11.4)

The quantity g(x) is the aperture function. The absolute magnitude of f(11), when normalized
to have a maximum amplitude of unity and with u replaced by ksin 6, is the directional
factor H(@). Thus, given the amplitude and phase distribution along the line source, we can
predict the directional factor in the far field from (7.11.3), and vice versa—given a desired
far field directional factor, we can use (7.11.4) to determine the required distribution of
amplitude and phase that the individual elements of the source must have to obtain a
desired directional factor

If just the amplitudes of the individual elements are modified, but all elements remain in
phase, the line source is amplitude shaded. If the amplitudes are all kept at the same value but
the phases of the individual elements are adjusted, the source is phase shaded. One example
of phase shading is the steered line array discussed previously.

As an example of amplitude shading, consider a continuous line source of length L with
triangular shading—the center element at x = 0 having amplitude L/2 and the successively

*Morse and Ingard, Theoretical Acoustics, Princeton (1986). Morse, Vibration and Sound, Acoustical Society
of America (1976), Ross, Mechanics of Underwater Noise, p, 51, Pergamon (1976).
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Figure 7.11.1  The directional factor for a continuous line source with
kL = 24. The solid line is for the unshaded source and the dashed line
is for the same source with symmetric triangular shading. This shading
reduces the number and level of the side lobes while increasing the
width of the major lobe.

more distant pairs of elements having amplitudes that decrease linearly with distance away
from the center, falling to zero at x = *=L/2. By symmetry, (7.11.3) becomes

L/2

f(u) = ZL (L/2 — x) cosuxdx (7.11.5)

Evaluation is relatively easy, and after normalizing and taking the magnitude to obtain the
directional factor, we have

sin{v/2) 2

H(6) = v/2

(7.11.6)

where v = 7kLsin6. Comparison of (7.11.6) with (7.3.5) reveals that the first side lobe of
the shaded line source is 26 dB below the peak compared to 13 dB for the unshaded line of
the same length, but the main lobe is twice as wide. (See Fig. 7.11.1.) This trade-off of lower
side lobes for a wider major lobe, and vice versa, is typical of most shading techniques.
Although less useful, increasing the amplitude near the ends of the source will narrow the
major lobe and increase the strength of the side lobes.

In the case of an array of point sources, the aperture function will be a summation of
delta functions §(x — x;) representing the locations x; of the individual elements. Amplitude
shading is accomplished by multiplying each of the elements by its amplitude 4; or source

strength Q; , and phase shading introduces a factor exp(j¢;) for each of the elements.

Problems

7.1.1. A pulsating sphere of radius 4 = 0.1 m radiates spherical waves into air at 100 Hz
and with an intensity of 50 mW/m? at a distance 1.0 m from the center of the sphere.
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(a) What is the radiated acoustic power? (b) At the surface of the sphere, r = g,
compute the intensity, the amplitudes of the acoustic pressure, particle speed, particle
displacement &, ratio 2 /r, condensation, and acoustic Mach number U, /c. (c) Repeat
part (b) at a distance of 0.5 m from the center of the sphere.

7.1.2. A pulsating sphere of radius a vibrates with a surface velocity amplitude U; and at
such a high frequency that ka = 1. Derive expressions for the pressure amplitude,
the particle velocity amplitude, the intensity, and the total acoustic power radiated
in the resulting acoustic wave.

7.1.3. (a) A spherical source of radius a is operated in water at a frequency for which ka = 1.
Evaluate the specific acoustic impedance at the source radius for this frequency.
Find the error in calculating the acoustic intensity by the formula valid for ka << 1.
(b) If the source strength of a small (ks << 1) spherical source is kept constant, find
the frequency dependence of the radiated power. If this small source is operated
with constant acceleration amplitude, find the frequency dependence of the radiated
power.

7.1.4. A simple source of sound in air radiates an acoustic power of 10 mW at 400 Hz.
At 0.5 m from the source, compute (2) the intensity, (b) the pressure amplitude,
(c) the particle speed amplitude, (d) the particle displacement amplitude, and () the
condensation amplitude.

7.1.5C. (a) Show that in the limit ks << 1 the specific acoustic impedance at the surface of a
pulsating sphere can be approximated by z(a) =~ pocka(j + ka). (b) As a function of
kr, plot the resistance, reactance, and magnitude of the impedance to compare the
approximation in (a) with (7.1.2) and find the values of ka within which the errors
in the approximation are less than 10%.

7.2.1. A hemisphere of radius 2 and a piston of radius a are each mounted so that they
radiate on one side of an infinite baffle. They are both vibrating with the same
maximum speed amplitude U; and at the same frequency so that ka << 1. (a) For a
distance such that r >> g, what is the ratio of the axial intensity of the piston to that of
the hemisphere? (b) What is the ratio of the total power radiated by the hemisphere
to that radiated by the piston?

7.2.2. (a) For the pulsating sphere of radius @ show that the pressure amplitude at distance r
is P(r) = %(ngQ /Ar)sin@,. (b) Does the result of (2) reduce to that for a simple source
aska — 0?

7.2.3. Find an approximation for the pressure field given by (6.8.6) in the limit kd << 1.
Is this result consistent with (7.2.14) and (7.2.17) for the simple source and baffled
simple source? .

7.3.1. (a) Show for the continuous line source that the number N of nodal surfaces is given
by N = [L/A]. (b) Find the number of major and minor lobes for L/A = 4.8, 5, 5.2.
(c) For which of the cases of (b) are the last minor lobes fully developed? Only partially
developed?

A ol 1mon ia dociorned an et LT o= EN PP P RN PRV SN |
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(b) Find the total number of nodal surfaces. (¢) Find the angular width in degrees of
the major lobe that is centered at 6 = ( ) Estimate the relative strength in dB of the
first side lobe.

-
W
N

7.3.3C. Assume a continuous line source with kL. = 24. (2) Compute and plot contours of
equal acoustic pressure amplitude in the near field by direct numerical integration
of (7.3.1) before approximating +'. (b) Compare these contours with those obtained
in the far field from (7.3.4). Describe the transition from near to far field behaviors.

74.1. For a baffled piston of radius a driven at angular frequency w, (4) find the smallest
angle 6, for which the pressure is zero in the far field, (b) find the greatest finite



206

74.2.

7.4.3.

7.4.4.

7.4.5.

7.4.6C.

7.4.7C.

7.5.1.

7.5.2.

7.5.3.
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distance for which the pressure is zero on the acoustic axis, and (c) discuss the
possibility of obtaining #; << 1 and r,/a << 1 simultaneously.

A piston of radius 4 is mounted so as to radiate on one side of an infinite baffle
into air. The piston is driven at a frequency such that A = wa. () Compute and plot
the relative axial intensities produced by the piston from its surface to a distance of
r = 3a. (b) Over what range of distances is the divergence approximately spherical?

A circular piston sonar transducer of 0.5 m radius radiates 5000 W of acoustic power

into water at 10 kHz. What is its beam width at the —10 dB direction?

Show that the nodal angles of the piston can be approximated by sin 6, = (m+ ;)7 /ka.
Estimate the error in 6,, for the first nodal surface givenby m = 1.

By expanding exp(jkasin @ cos ¢) in (7.4.15) as a power series show that (7.4.16) is
correct and

i jkasinBcos¢ o 2 — Il(kasmo)
L e sin® ¢ d¢ TS
(a) For a circular piston, plot the on-axis pressure amplitude as a function of scaled
distance r/a for several values of ka between 3 and 12. (b) Plot the range beyond
which the pressure amplitude is within 10% of the asymptotic form (7.4.7). (c) For a

Plbton OI LU cim I'd(,llub UPEI'dIlIlg at ‘.l mz, ]:[l Wdlef, Iulu lIlE u.lbld[l(.C LUIICDPUI[U]:IIS

to (b).

For ka = 3, use numerical integration to plot the pressure amplitude of a circular
piston (2) on axis and compare to (7.4.5), (b) on the face of the piston, and (c) in the
near field off axis.

(#) Find the resonance frequency of a piston transducer with the mechanical properties
m, s, and R,, radiating into a fluid with specific acoustic impedance pyc. Assume
ka >> 2. (b) Sketch the frequency dependence of the radiated power if the transducer
is driven with a force of constant amplitude. Assume that the resonance frequency
occurs well above the lower limit of the approximations implicit in ka >> 2. Indicate
where the transducer is mass controlled and where it is stiffness controlled.

Evaluate the integrals in (7.5.10) and obtain the radiation impedance for the piston.
Hints: (a) Perform the integration over r directly. (b) Use the integral forms of the
Bessel and Struve functions

2 J ™2 { cos(x cos ) i = Jo(x)
T Jg sin(x cos 0) Hy(x)
to integrate over 6. (¢) Use the integral relations

H AT —b{h |

Jo | Ho(x) ) 4 [ Hi(b)

to evaluate the integral over o.

(a) Find the radiation impedance of a pulsating hemisphere. (b) Find the radiation
resistance for high frequencies, and from this find the radiated power and compare
to the results in Section 7.1. (¢) Find the radiation reactance for low frequencies, and
from this find the ratio of the radiation mass to the mass of the fluid displaced by the
hemisphere.
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7.6.1.

7.6.2.

7.6.3.

7.6.4.

7.6.5.

7.6.6.

7.6.7.

7.6.8.

Obtain (7.6.16) for the baffled piston directivity as follows: (a) Use (7.5.6) and (7.6.9)
to relate the directivity D, extrapolated axial pressure amplitude P (1), and radiation
resistance R, of the piston. (b) Use (7.4.7) to eliminate P, (1) and then (7.5.11) and
(7.5.12) to express R, in terms of [,(2ka) /ka. (c) Solve the result for D.

A plane circular piston in an infinite baffle operates into water. The radius of the
piston is 1 m. At 6/7 kHz the sound pressure level on axis at 1 km is 100 dB re
1 pbar. (a) Find all angles at which the pressure amplitude in the far field is zero.
(b) Find the rms speed of the piston. (¢) If the frequency were doubled while keeping
the speed amplitude of the piston constant, what would be the dB change in the
sound pressure level on the axis in the far field and what would be the dB change in
the directivity index?

A flat piston of 0.2 m radius radiates 100 W of acoustic power at 20 kHz in water.
(#) Assuming the radiation to be equivalent to that of a piston mounted in an infinite
baffle and radiating on only one side, what is the velocity amplitude of the piston?
(b) What is the radiation mass loading of the piston? (¢) What is the beam width at
the down 10 dB direction? (d) What is the directivity index of the beam?

A piston is mounted so as to radiate on one side of an infinite baffle into air. The
radius of the piston is 4, and it is driven at a frequency such that A = ma. (a) If
a = 0.1 m and the maximum displacement amplitude of the piston is 0.0002 m, how
much acoustic power is radiated? (b)) What is the axial intensity at a distance of
2.0 m? (¢) What is the directivity index of the radiated beam? (d) What is the radia-
tion mass?

It is desired to design a highly directive piston transducer that will produce a given
acoustic pressure amplitude P on axis at a specified range r. The operating frequency
must be f, and the total acoustic power output is fixed. Find the radius and speed
amplitude of this transducer.

A flat piston of 0.15 m radius is mounted to radiate on one side of an infinite baffle
into air at 330 Hz. (2) What must be the speed amplitude of the piston if it is to radiate
0.5 W of acoustic power? (b) If the piston has a mass of 0.015 kg, a stiffness constant
of 2000 N/m, and negligible internal mechanical resistance, what force amplitude is
required to produce this velocity amplitude?

A baffled piston transducer with radius 10 cm is normally operated at 15 kHz. If it
is desired to operate this same transducer at 3.5 kHz while maintaining the same
acoustic pressure on the axis in the far field, calculate the ratio of the total acoustic
power output at 3.5 kHz to that at 15 kHz. Assume operation in water.

A continuous line source is designed so that kL = 50. (a) If the length of the array is
100 m, estimate the distance to the far field. (b) Estimate the directivity index from
(7.6.14). (c) Repeat (b) but using (7.6.25). (d) Compare the discrepancies in D and DI
between (b) and (¢) and comment on their significance.

7.6.9C. (a) For a circular piston, as a function of ka, plot the exact directivity and its high-

7.8.1.
7.8.2.

frequency approximation, and their percent difference. (b) If the radius of a piston
operating in water is 20 cm, below what frequency will the approximate directivity
differ by more than 10% from the exact value?

Show for the line array that P,.(r) = (N/2)pocQ/ Ar.

It is desired to design an underwater linear array of 30 equally spaced elements. (The
array is not steered or shaded.) (g) If there is to be a single narrowest major lobe at
300 Hz, find the spacing between elements. (b) What is the angular width in degrees
of the major lobe? (¢) What is the geometrical shape of the axis of the major lobe?
(d) Estimate the directivity index of the array.
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7.8.3. (a) For an endfired line array, derive the condition (7.8.18) that guarantees there will
be only one major lobe. (b) Derive the similar condition (7.8.19) for a line array steered
into a maximum angle 6, away from broadside.

7.8.4. An array with a large number N of elements is designed to be steered through all
angles and to have a single narrowest major lobe when endfired. (a) With the help
of the estimation techniques of Section 7.6, derive the directivity (7.8.20) of the array
when endfired. (b) Derive the directivity (7.8.21) when this array is steered into the
angle 6, not close to endfired.

7.8.5. It is desired to design an endfired linear array of 30 equally spaced elements to be
operated in water at 300 Hz. (4) Find the spacing between elements if there is to be
only one major lobe. (b)) What is the geometric shape of the major lobe axis? (c) Find
the angular width in degrees of the major lobe. (d) Estimate the directivity index of
this endfired array.

7.8.6. Find the minimum number of array elements for which 8, = 1/N is within about
20% of the value given by (7.8.13), and estimate the error in DI from that discrepancy
alone.

7.8.7. (a) Verify (7.8.20) and (7.8.21). Hint: Obtain the major lobe angular width with the help
of (7.8.16)—(7.8.19), and the approximation for small § thatsin(8, +8) = sin 8, +8 cos 6.
Then use the techniques of Section 7.6 to estimate the directivity. (b) Find a rough
criterion in terms of the major lobe half-angle for the maximum steering angle around
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which this estimate becomes poor.

7.8.8. Assume a three-element array with no steering has amplitude weighting A; = A3 =1
and A; = 2. (This is called binomial shading because the amplitudes are proportional
to the binomial coefficients.) Find (a) the condition on kd for there to be just a single
major lobe, and (b) the equation for H(6) under the condition of ().

7.8.9C. Estimate the directivity of a steered line array with one narrowest major lobe when
endfired for steering angles bridging the gap from endfire with D = (a/2)?N to
strongly steered where D = (7w /4)N.

7.8.10C. Anunsteered four-element array is designed to have a single narrowest major lobe.
IfA; = A; = 1and A, = A4 can vary from 2 to —2, make plots of the directional
factors and describe the effects on the lobes and nulls.

7.8.11. A “shotgun” microphone is constructed with N parallel tubes whose respective
lengths measured from the diaphragm areL, L —d, L—2d, L—3d,...,L — (N —1)d.
Show that the directional factor for such a microphone is

sin[N kdsin(8 /2)]
N sin[kd sin?(6/2)]

H(g) =

where 6 is the off-axis angle measured from the axes of the tubes.

7.9.1. Write the directional factor H(8, ¢) for a rectangular piston transducer in terms of the
angles, k, and the dimensions L, and L, of the piston.

7.9.2C. A twin-line array consists of two identical linear arrays of N elements and spacing
d. The linear arrays are parallel and separated by a distance D. The arrays operate
in the endfired mode with one narrowest major lobe. If N = 15 and kD = , plot
the beam patterns of an individual array and of the twin-line array.

7.9.3C. Three identical piston sources of radius a are set in a line on an infinite baffle
with their centers a distance d apart and their axes perpendicular to the baffle. For
kd = 2m, plot the far-field beam patterns for d/a = 2, 3, and 4. Comment on the
effect of the directionality of the piston sources on the beam pattern of the array.
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7.10.1. Show that if q(7y) = Q8(0) then (7.10.3) reduces immediately to (7.10.2) with 7, =

7.10.2. Show by direct integration of the infinite series of (7.10.5) that a monopole located at
* = 4 gives the same velocity potential as (7.10.2) under the far field approximation
F—a~r—a-t

7.10.3. Assume three point sources of equal amplitudes and phases are located along the x
axis at x = d, 0, —d. (a) Obtain the multipole expansion for the array from (7.10.5).
(b) Show that it can be put into the form

D = Q 3 — 4sin? ( kd sin 6} | e/t ~*)
A7y

(c) Show that (b) is identical with the result for the three-element line array obtained
from (7.8.3). Hint: Verify that 4sin® 8 = 3sin 8 — sin 38 and use this to simplify.

7.10.4. Convert (7.10.9) into an expression for the acoustic pressure and compare the result
with (6.8.7) in the limit kd << 1. Note that the angle used in Section 6.8 is the
complement of 8 defined for spherical coordinates.

7.10.5. Derive (7.10.12). Hint: Verify that the source strength density is given by q(7)) =
Ql8(7y — 2d) + 8(ry + 2d) — 28(0)].

7.10.6. Show that three identical axial quadrupoles each oriented along a different coordi-
nate axis and all with their centers at the origin generate a spherically symmetric

field of order O(kd).

7.10.7. Find the monopole, dipole, and quadrupole fields for the source strength distribution
gq=Aa—-r)for0<r = aand g = 0 for r > a, where A is a constant and r is the
distance from the origin.

7.10.8. Show that for the source strength given by (7.10.15) the monopole contribution is
zero. Hint: Apply Gauss’s theorem to a volume integral that includes all the sources.

7.10.9. Show that for the source strength given by (7.10.17) the monopole contribution is
zero. Hint: Write (7.10.17) in vector form with the help of (5.15.5).

7.10.10C. (2) Make a sketch (representing a three-dimensional view) and plot the directional
factor of a dipole in representative planes. (b) Repeat (a) for a lateral quadrupole.
(c) Repeat (a) for an axial quadrupole.

7.10.11. (4) Show that the radiation efficiency of a pulsating sphere is 7,,s = ka. (b)) Show
that the radiation efficiency of a vibrating sphere is 1, = (ka)*/2.

7.11.1. Assume three point sources of equal amplitudes and phases are located along the x
axis at x = 4, 0, —d. (4) Write down an appropriate form for the aperture function.
(b) Obtain the directional factor using (7.11.3). (c) Show that this result is identical
with that for the three-element line array obtained from (7.8.3).

7.11.2C. (a) Plot the far-field directional factor of an unsteered, unshaded, 9-element

avva}; ‘v‘v'}th opacu-\g ha{- g“roe one narrowest ma}nr ]n‘*\o ”1\ Ppnna{- Fnr +}'\D same

spacing, but with amplitude shading (1,2,34,54,3,2,1). (c) Repeat for shading
(5,4,3,2,1,2,34,5). (d) Comment on the effects of these shadings.



Chapter 8

ABSORPTION
AND ATTENUATION
OF SOUND

8.1 INTRODUCTION

The wave equation was derived in Chapter 5 under the assumption that all losses
of acoustic energy could be neglected. While in many situations dissipation is
so slight that it can be ignored for the distances or times of interest, ultimately
all acoustic energy is converted into random thermal energy. The sources of this
dissipation may be divided into two general categories: (1) those intrinsic to the
medium and (2) those associated with the boundaries of the medium. Losses in
the medium may be further subdivided into three basic types: viscous losses, heat
conduction losses, and losses associated with internal molecular processes. Viscous
losses occur whenever there is relative motion between adjacent portions of the
medium, such as during shear deformation or the compressions and expansions
that accompany the transmission of a sound wave. Heat conduction losses result
from the conduction of thermal energy from higher temperature condensations to
lower temperature rarefactions. Molecular processes leading to absorption include
the conversion of the kinetic energy of the molecules into (1) stored potential
energy (as in a structural rearrangement of adjacent molecules in some cluster),
(2) rotational and vibrational energies (for polyatomic molecules), and (3) energies
of association and dissociation between different ionic species and complexes in
ionized solutions (magnesium sulfate and boric acid in seawater).

So far in this book, we have assumed that the fluid is a continuum having
directly observable properties, such as pressure, density, compressibility, specific
heat, and temperature, and have not been concerned with its molecular structure.
In this same spirit, by use of viscosity, Stokes developed the first successful theory
of sound absorption. Subsequently, Kirchhoff utilized the property of thermal con-
ductivity to develop an additional contribution to generate what is now called the
classical absorption coefficient. In more recent times, as more accurate sound ab-
sorption measurements were made, it became evident that explanations of sound
absorption from this viewpoint were inadequate in some fluids. Consequently,
it became necessary in developing additional absorption mechanisms to adopt a
microscopic view and consider such phenomena as the binding energies within and

210
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between molecules. These mechanisms are commonly referred to as molecular or
relaxational sound absorption. (In point of fact, all loss mechanisms are relaxational
in nature, but often certain effects of the relaxations are not observed in the
range of frequencies and temperatures usually encountered.) For a more complete
discussion, the reader is referred to the literature.!

8.2 ABSORPTION FROM VISCOSITY

If the effects of viscosity are retained in developing the force equation, it is
necessary to perform some fairly elaborate tensor analysis. This lies beyond our
interests.? The result of this more general derivation is the nonlinear Navier-Stokes
equation, which, in the absence of external body forces, is

p(é)_u+(ﬁ.V)u)~ —Vp G+ V(D) - VX VXA (821)

The viscosity coefficients 1 and g have units of pascal-seconds (Pa-s).
The coeﬁ‘icient of shear viscosity 7 can be measured directly. While 5 is manifested

clearly in shear flow, it is actually a measure of the diffusion of momentum I’\V
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molecular collisions between regions of the fluid possessing different net veloc1t1es
it is therefore active in producing absorption even in pure longitudinal motion.
Experimentally, it is observed to be independent of frequency and to depend
only on temperature for almost all fluids over the range of physical parameters of
practical interest. (This has been supported by the kinetic theory for a perfect gas.)
Because the temperature fluctuations in acoustic propagation are very small, n can
be assumed to be a function only of the equilibrium temperature.

The coefficient of bulk viscosity mp is zero in monatomic gases but can be finite in
other fluids. It appears to be a measure of some conversions of energy between
molecular motion, internal molecular states, and structural potential energy states.
Bulk viscosity is often called expansive or volume viscosity.

These viscous processes require time for the system to approach equilibrium
when the density and temperature of the fluid are changed by an expansion or
compression. These time delays generate conversion of acoustic energy to random
thermal energy.

The term nV X V X i represents the dissipation of acoustic energy involving
turbulence, laminar flow, vorticity, and so forth. While these effects can be
dominant in nonacoustic situations, in linear acoustics they are usually confined
to small regions near boundaries and are of lesser importance.

When the left side of (8.2.1) is linearized, then use of the linearized equation of
continuity

veii=-2 (8.2.2)
ot

'"Markham, Beyer, and Lindsay, Rev. Mod. Phys., 23, 533 (1951). Herzfeld and Litovitz, Absorption and
Dispersion of Ultrasonic Waves, Academic Press (1959). Physical Acoustics, Vol. lIA, ed. Mason, Academic
Press (1965).

2Development is available in many books, including Temkin, Elements of Acoustics, Wiley (1981), and
Morse and Ingard, Theoretical Acoustics, Princeton University Press (1986).
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and the adiabat
p = poc’s (8.2.3)

gives a lossy wave equation

3\ 1%
(1 " TSE)V ST (8.2.4)

7s = (41 + n8)/ poc?

where 1'5 is a relaxation time and c is the thermodynamic speed of sound, determined
from ¢ = (9P /dp)aa: it is not necessarily the phase speed ¢, because of the term
containing 7s.

If we assume monofrequency motion exp( jot), this wave equation is reduced
to a (lossy) Helmholtz equation

Vip+Kp =10
PTXP (8.2.5)
k = k—jas = (@/c)/(1 + jos)!/?
Solution for as and ¢, gives, after some manipulation,
1/2
we = w 1| J/l+m)3-1
T o 2| Tt (w2
(8.2.6)
1+ (0w)? i
© 5
C, = — =¢ \/E
bk l./1+(ms)2+1}
For a plane wave traveling in the +x direction, the solution to (8.2.5) is
P = Poej(“’t_kx) (8 2 7)

= Poe—asxej(wt—kx)

Since the amplitude decays as exp(—asx), as is the spatial absorption coefficient, and
the phase speed is c,. Since ¢, is a function of frequency, the propagation is dispersive.
Calculation of 75 for representative fluids shows that typical values are about
10719 s in gases and about 10712 s for all liquids except highly viscous ones like
glycerin. Thus, frequencies for which the assumption wrs << 1 fails lie in the very
high ultrasonic range.
From kinetic theory, the average speed of the molecules in a perfect gas is

= J8rTx/m (8.2.8)
where 7 is the specific gas constant and the coefficient of shear viscosity is
n= % polv (8.2.9)

where | is the mean free path between successive collisions of the gas atoms.
Combination shows that in a perfect gas the shear viscosity is proportional to
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JTk. Straightforward manipulation gives

v/c = J8/my ~1 (8.2.10)

so the average speed of the molecules is very similar to the speed of sound. Since
the mean time between collisions is 7= = /v,

e = Daras ~ 1 (82.11)
e/ T 33Ty 1 w.2.11)

The relaxation time for viscous absorption is similar to the mean time between
collisions. Thus, for frequencies approaching the relaxation frequency, the wave-
length is about the same size as the mean free path. This violates the assumption
of a fluid continuum, which underlies the Navier-Stokes equation, so that the
model for thermoviscous attenuation cannot be trusted, at least in perfect gases,
for frequencies approaching the relaxation frequency.

Continuum mechanics predicts the existence of the absorption mechanisms.
However, it does not provide a means of predicting either the value of the viscosity
coefficient or its temperature dependence. These quantities can be calculated for
simple fluids from statistical mechanics.

Since the theory is appropriate only for «

B A
approximations

)75 << 1, (8.2.6) yields the more useful

(i - 7 -£.0) A

as = j(w/c)wrs = (@/2poc®)(37m + mp)
(82.12)
¢ =~ c[1 + 3(ws)?]

The absorption coefficient is proportional to the square of the frequency. As
a consequence, in experimental measurements of absorption, data are usually
plotted as as/f? against f so that any departure from a horizontal line signals a
deviation from the prediction of (8.2.12). The dispersion is of O(w7s)?, so it is only
slight and the phase speed is virtually identical with ¢. Combination of a and ¢,
reveals the dimensionless forms

as/k = %wrs (32.13)

¢p/c =1+ 3as/k)*

8.3 COMPLEX SOUND SPEED AND ABSORPTION

Before proceeding to a discussion of other specific absorption mechanisms, it is
appropriate to develop the complex speed of sound for a monofrequency acoustic
wave. It is easy to show (see Problem 8.3.6) that if we postulate a dynamic (or
monofrequency) equation relating p and s

p = poc’s (8.3.1)

where ¢, the complex sound speed, is a function of frequency to be determined
from the thermodynamics of the particular loss mechanism, then combination
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of (8.3.1) with the linearized Euler’s equation (5.4.10) and equation of continuity
(5.3.5) gives a lossy Helmholtz equation with a damped traveling wave solution,

Vip+Kkp =0
k=k—jo=w/c (8.3.2)
p= Poe~axej(wt—kx)
The condensation is obtained from substituting (8.2.7) into (8.3.1). Use of the

continuity equation (8.2.2) yields the associated particle speed and thence the
specific acoustic impedance for this wave,

z=p/u= pocp/(l — ja /) (8.3.3)

or, fora/k <1,

z =~ el*/k

poc (8.34)
Calculation of the acoustic intensity from its definition (5.9.1) gives, through the
same order of accuracy,

I(x) = (Poe™*%)?/2poc = 1(0)e 2~ (8.3.5)

The absorption coefficient a is expressed in nepers per meter (Np/m), where the
neper (Np) is a dimensionless unit. For the plane wave, whenx = 1/« the pressure
amplitude has dropped to 1/¢ = 0.368 of its initial value Pg and the intensity has
fallen by 1/¢* = 0.135.

The loss in intensity level with distance of the attenuated plane wave, expressed
in dB, is given by

IL(0) — IL(x) = 10log[I(0)/I(x)] = 10loge***

(8.3.6)
= 87ax =ax

wherea = 8.7« is the absorptive loss in dB/m. It is left as an exercise to show that
for a spherically symmetric wave an analogous expression for the loss of intensity
level with distance is

IL(1) — IL(r) = 20logr + ar (8.3.7)

when a << 0.1 Np/m. (While incorrect, it is conventional to leave unwritten the
division of r by 1 m in the argument of the logarithm.)

This section and the previous one have shown that acoustic losses can be
introduced into the wave equation either by including dissipative forces in Euler’s
equation or by generating a phase angle between the pressure and density. The
latter approach, although somewhat more restricted since it assumes monofre-
quency motion, is nevertheless very useful in considering molecular effects, since
it is often more convenient to modify the adiabat relating acoustic pressure and
condensation than to introduce extra forces in the force equation. Furthermore,
once the monofrequency behavior of the Helmholtz equation is known, more
complicated waveforms can be developed using Fourier synthesis.
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8.4 ABSORPTION FROM
THERMAL CONDUCTION

Another mechanism producing absorption is thermal conduction. A general
derivation of the absorption coefficient for thermal conduction losses requires
rather extensive use of thermodynamics. Instead, we will develop thermal absorp-
tion more heuristically from physical arguments. For calculational simplicity, we
will restrict the development to perfect gases.

When a fluid is subjected to an acoustic process, the compressed regions will
have higher temperatures than will the rarefied regions. If we assume a plane
wave p of angular frequency w and propagation constant k traveling in the +x
direction, then in a lossless perfect gas with equilibrium absolute temperature T,,
the temperature can be found from the equation of state and the adiabat to be

where s = p/poc?. The subscript K on the absolute temperature is suppressed
throughout this section for notational convenience. For a wave with pressure
amplitude P, the magnitude of the temperature fluctuation is

T — Tegl = Teg(y — DP/ poc? (8.4.2)

In a lossy gas, the amplitude of the temperature fluctuation will decay as does
the pressure amplitude. However, with a little judicious manipulation we can base
our calculations of losses on the lossless expression (8.4.1). From kinetic theory, the
kinetic energy of translation for a perfect gas is proportional to the temperature.
The molecules in hotter regions have greater kinetic energies that diffuse into the
surrounding cooler regions through intermolecular collisions. As energy leaves
the region, it is lost from the acoustic process, converted to random thermal energy
of molecular motion. The change in thermal energy is related to the change in
temperature by

Ag d
At PP

m
1

(8.4.3)

where cg is the specific heat at constant pressure [in J/(kg'K)] and Aq is the gain
in thermal energy of a unit volume of the gas. [See Appendix A9 and note that
cp = Cp/M, where M is the molecular weight (kg). Use of (A9.4) is justified
because the acoustic pressure fluctuations are much less than the equilibrium
pressure.] The diffusion process is described by a diffusion equation, which can be
written for temperature as

aT  «k
i %V T (84.4)

where « is the thermal conductivity and has units W/(m-K). Combining these, we
have

Aq

i kV2T (8.4.5)
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Integrating (8.4.5) over a volume of the gas gives the instantaneous rate of loss of
acoustic energy in the volume. The time average of this over a period of the motion
will give the average rate of acoustic energy loss.

Lossless acoustic approximations cannot be used in (8.4.5) as it stands, since
the result will have a time average of zero. Instead, to use the lossless (8.4.1),
we must reexpress the right side of (8.4.5) in a form that will allow us to isolate
the oscillatory part from the accumulating part for a fluid with losses. This is
accomplished by the identity

V2T = %VT VT +TV- (%VT) (8.4.6)

Consistent with the linearizing acoustic approximations, the T’s in the denomina-
tors can be approximated by the equilibrium temperature T,,. The second term on
the right is an oscillatory term whose time average is zero. The first term on the
right is never negative and represents the accumulation over time of energy lost
from the acoustic wave. The (time-averaged) rate of change in the acoustic energy
density € is then

1] g

L4 IV =

l, ( [ VT-VT dV> (8.4.7)
\J I/t

o
b

€q

Now, consider a cylindrical volume V of cross-sectional area S and length
A = 2ar /k with its axis parallel to the propagation vector k of the acoustic wave.
To obtain the rate at which thermal energy is being lost from the acoustic wave,
integrate (8.4.7) over this volume. The temperature gradient for the traveling
acoustic wave is found from (8.4.1). Integration over x and averaging over one
period of the motion are straightforward,

&% ok S/ o 2 kP Y
= = T_eﬁgo vT Vde> = —3xTyly — 1) (—) (8.4.8)

poc?
t
The absorpti 0“ coefficient is found from (d€/dt)/¢ = —2a,.c. For this wave,
é = %P poc?. Furthermore, for a perfect gas To(y — 1) = c*/cg so that the

absorption coefficient for thermal conduction is

w? (y— 1k
2p0C3 Cop

(8.4.9)

We will state without proof that (8.4.9) applies to any fluid. This absorption
coefficient has the same frequency dependence as that for viscous absorption.
(Note that a, vanishes for ¥y = 1. This is expected since that value makes the
adiabat the same as the isotherm, and in such a fluid there would be no thermal
fluctuation accompanying the acoustic wave and thus no thermal conduction.)
Expression (8.4.9) is valid for frequencies much less than the relaxation frequency.
More advanced theoretical analysis shows that the relaxation time for thermal
conduction in a fluid is

1
T = W% (8.4.10)
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If we had tried to extract the relaxation time by assuming it is related to a, just
as 7; is related to ag by (8.2.12), we would have the above result multiplied by
(y —1). The absence of this factor is plausible, since it is simply a measure of
how much adiabatic and isothermal conditions differ. The mechanism for thermal
conduction lies in collisions on the molecular level and so the relaxation time
should not depend on y. The amount of absorption depends on the deviation
between adiabatic and isothermal conditions, and this should depend on (y — 1),
as seen in (8.4.9). Finally, this development does not yield an evaluation of the
phase speed. That is of little consequence, since the deviations are very small for
frequencies far below the relaxation frequency.

8.5 THE CLASSICAL ABSORPTION COEFFICIENT

For gases, the absorption associated with heat conduction is somewhat less than
that for viscous absorption but of the same magnitude. For most nonmetallic liquids
the absorption produced by thermal conductivity is negligible compared with that
from viscosity.

When losses are small, it is plausible and can be shown that for independent

1 i 101 i m nf tha ahenrntinn
sources of acousticlosses the total absorption coefficient is the sum of the absorption

coefficients of the individual loss mechanisms calculated as if each were operating
alone,

a = Zai (8.5.1)

Quality factors can also be related fairly simply. Let Q; be the quality factor that a
resonator would have if there were only one absorptive mechanism characterized
by a;. Note from (1.10.7) and the relationship 8; = a;c that Q; = %k/a,-. Then, if
there are a number of mechanisms creating acoustic losses, the total quality factor
Q of the system is given by

51 (8.5.2)

The historical development of the study of absorptive processes in fluids led to
the definition of the classical absorption coefficient . as the sum of the viscous and
thermal absorption coefficients under the Stokes assumption ng = 0,

w’ (4 (y — D«
.= 4+ L 5.
2p0c? (3" co 8.5.3)

If use is made of the Prandtl number,

Pr = nee/x (8.5.4)
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Table 8.5.1 Acoustic absorption in fluids

a/f? (Np - s*/m)
All Data for
T = 20°C and Shear Thermal
P = 1atm Viscosity ~ Conductivity ~ Classical Observed
Gases Multiply all values by 10~
Argon 1.08 0.77 1.85 1.87
Helium 0.31 0.22 0.53 0.54
Oxygen 1.14 0.47 1.61 1.92
Nitrogen 0.96 0.39 1.35 1.64
Air (dry) 0.99 0.38 137  a/f peaksat40 Hz
Carbon dioxide 1.09 0.31 140 «/f peaks at 30 kHz
Liquids Multiply all values by 10715
Glycerin 3000.0 — 3000.0 3000.0
Mercury — 6.0 6.0 5.0
Acetone 6.5 0.5 7.0 30.0
Water 8.1 — 8.1 25.0
Seawater 8.1 — 81 a/f peaks at 1.2 kHz
and 136 kHz

which measures the importance of viscosity with respect to thermal conductivity,
the classical absorption coefficient assumes the form

w'n (4 (y—1)
e = - 4+ WD
Y T 2o (3 Pr (8:55)

For air at 20°C and 1 atm the Prandtl number is about 0.75. Comparison of the
relaxation times under the Stokes assumption shows that

/T = 3Pr (8.5.6)

Table 8.5.1 contains comparative data on calculated and observed values of
the absorption coefficient for representative gases and liquids. As expected, the
absorption observed for the monatomic gases such as argon and helium is in good
agreement with the classical absorption coefficient (shear viscosity and thermal
conductivity). The classical absorption is also in good agreement for highly viscous
liquids such as glycerin and highly conducting liquid metals such as mercury.
However, the classical absorption falls short of the observed results in polyatomic
gases and in most common liquids.

8.6 MOLECULAR THERMAL RELAXATION

Further mechanisms for acoustic absorption can be predicted by taking into
account the internal structure of the molecules and the interactions between them
that lead to internal vibrations, rotations, ionizations, and short-range ordering.
The oldest and most successful of the many theoretical approaches to these
problems is that treating molecular thermal relaxation in gases composed of
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polyatomic molecules. In this theory, it is acknowledged that, in addition to the
three degrees of translational freedom each molecule possesses, there are also
internal degrees of freedom associated with the rotation and vibration. The time
necessary for energy to be transferred from translational motion of the molecule
into internal states compared to the period of the acoustic process determines how
much acoustic energy will be converted to thermal energy during the transitions.
If the period of the acoustic excitation is long compared to the relaxation time 7 of
the internal energy state (wr << 1), then the state can be fully populated; the phase
lag is finite but small, so the fraction of energy lost is very small over each period
of the motion. On the other hand, if the acoustic period is much shorter than the
relaxation time (wr >> 1), the internal energy state cannot be heavily populated
before conditions are reversed, and the energy loss over each period will also be
small. However, at periods close to the relaxation time (w7 ~ 1), the energy loss
per period should be maximized.

If the thermodynamic system is in equilibrium at some temperature Tk , the heat
capacity Cy depends on the number of ways the molecules can store appreciable
energy. These are called degrees of freedom. All molecules possess three degrees of
translational freedom. Polyatomic molecules can also store energy in rotational
and vibrational degrees of freedom. A population function H;(Tx) accounts for the
fact that an energy state (other than the translational ones) cannot be significantly
populated unless the temperature is above the Debye temperature Tp, for that state.
Each Hi(Tx) asymptotically approaches zero at low temperatures and unity at
sufficiently high temperatures. It changes rapidly only for temperatures close to
the specific Debye temperature for that state. At room temperatures the population
functions H;(Tx) will be nearly unity for most rotational states. They will be near
unity or appreciably less for the lower vibrational states, and extremely small for
higher vibrational levels. The heat capacity of a gas is

N 1<
Cy = QR(E + E;flf,-(I",<)) (8.6.1)

where N enumerates the contributions of the fully excited degrees of freedom,
the summation over n covers the partially excited degrees of freedom, and
H;(Tx) is the fraction of the ith degree of freedom populated at Tx. Unless the
ambient temperature is extraordinarily high, the energy of a monatomic gas can
reside only in the three degrees of translation, so N = 3. For diatomic gases
or linear polyatomic gases like carbon dioxide there are only two rotational
states, both fully excited, so N = 5. (Molecular hydrogen is an exception in
that its rotational states are not fully excited until temperatures in excess of
room temperatures are encountered.) For nonlinear (kinked) polyatomic gases,
N = 6. If there are no other excited states, then (with the help of Appendix A9)
v =Cp/Cvand Cp = Cy + Ryieldy = 1+ 2/N so that the values of y are 1.67,
1.40, and 1.33, respectively. For vibrational states, possessing both kinetic and
potential energies, there are two degrees of freedom available for each state. For
most gases at normal temperatures the relaxation times for the rotational states are
very short. Usually only a few collisions are necessary to bring the rotational states
into equilibrium with the translational ones. Relaxation times for most vibrational
states are much longer, requiring many collisions. However, these states generally
require higher temperatures to be significantly excited and, therefore, with a few
exceptions are not important at normal temperatures.
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Acoustic absorption due to a given internal state will have greatest importance
when the period of the sound is close to the relaxation time for the state. Then, a
significant phase angle exists between acoustic pressure and condensation. This
leads to a pressure-condensation relation of the form (8.3.1) for monofrequency
acoustic motion. Since these internal energy states affect the heat capacity Cy , we
need a relationship between the heat capacity and the complex speed of sound.
The speed of sound for a perfect gas is ¢ = /yrTk. The ratio of complex heat
capacitiesisy = Cp/Cy and Cp = Cy + QR. Thus, for a complex heat capacity Cy
the speed of sound is also complex and can be written as

< _ (1)1/2 _ (1+E’R/CV)1/2 8.62)
AN Y -

Obtaining Cy provides the form of ¢ in (8.3.1), from which « and k follow as
discussed in Section 8.3.

To proceed, it is necessary to develop a little nonequilibrium thermodynamics.
Restrict attention to the ith degree of freedom. The rate of change of the energy
stored in this degree of freedom is proportional to the difference between the
energy that would be stored under equilibrium conditions E;(eq) and the amount
E; that is stored at some instant of time. This is expressed mathematically as

dE;
dt

—

- Ligep - £ 8:63)

-3

where 7 is the proportionality factor. If the system is changed instantaneously
from a thermodynamic configuration for which the equilibrium energy stored
is Ey to one in which the amount stored will be Ey + AE; , then solution for E;
gives

E;=E+(Q—-e*)AE;, t>0
= Ey t<0

(8.6.4)

and 7 is now identified as the relaxation time. The eguilibrium thermodynamic heat
capacity associated with this degree of freedom is given by

AE; = C; ATk (8.6.5)

where C; = 1%H;(Tx) and ATk and AE; are the equilibrium values of the change
in temperature and internal energy, reached in the limit t/7 — . Assume the
process is not allowed to attain equilibrium so that E;(eg) is a fluctuating quantity
to which E; is always trying to adjust. For a monofrequency acoustic process the
temperature fluctuation will be ATx = Ty exp(jwt), so that

Ei(eq) = Eo + CiToe™! (8.6.6)

The oscillatory (particular) solution of (8.6.3) with E;(eg) given by (8.6.6) is

C ‘
= Ep 4+ —_Tpeit 6.
E; ot T jor 0€ (8.6.7)
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This can be rewritten as

E; = Eo + C;Toe™!
C = Cl/(l +]'w1')

(8.6.8)

with C; defined as the complex heat capacity for this degree of freedom.
For N degrees of freedom that are fully excited and # degrees of freedom that

are partially excited, the combined dynamic heat capacity becomes
N | 1< Hy(Tx)
Cyv=R|[=+= E - (8.6.9)
2 291+ oy

which reduces to (8.6.1) if o1, << 1.

A classic example of a gas having only one molecular thermal relaxation is dry
carbon dioxide gas at normal temperatures. Carbon dioxide is a linear molecule.
It has three translational and two rotational degrees of freedom that are fully
excited, and one vibrational mode that is partially excited. The vibrational motion
consists of two degenerate modes (because of the linearity of the molecule), and
each degenerate vibrational mode has two degrees of freedom. Thus, in (8.6.9) we

hatra N — B 11 — A amd all farin bnsvng 11 tha ciimamaantias ava tha caman
nave 1y = 3,7 = =, dllQ dil 10Ul €1mms ul uli€ SUiNiiniaiioil are wune saiie,

a5 ., HT)

where 7 is the relaxation time. For notational simplicity, rewrite this as

Cy = Ce + C,‘/(l +jw7M)
C, = ggz, (8.6.11)
C; = 2RH(Tk)

The equilibrium thermodynamic heat capacity Cy is the limit of Cy for wny — 0,
Cy =C.+( (8.6.12)
With Cy determined, substitution into (8.6.2) yields

c R 12
€= f(“c +C/(1+]w7M))

(8.6.13)

Considerable algebraic manipulation then reveals that the absorption coefficient
for this vibrational excitation is found from

ay 1 RG Wy

w/c  2C/Cc+ R) 1+ (wmm)? (614
and the phase speed ¢, = w/k from
6 1 Cv+Cm
-1 (1yqirtCelom) (8.6.15)
c ﬁ C% + CZ (wm)
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For frequencies far below the relaxation frequency, the absorption is proportional
to f2. As the frequency increases, the absorption coefficient levels off, and above the
relaxation frequency the absorption approaches a constant value. Note also that
ap is proportional to 7y when wny << 1. This means that for ap to be important
compared to other absorption coefficients, 7y must be sufficiently large. For low
frequencies, the phase speed is greater than but close to the lossless limit,

¢,(0) 1 /({ @RV
A 1+ —— ) =1 (8.6.16)

c ﬁk Cy

For frequencies above the relaxation value,

- ~ \1/2
&) _ (1 + %/ Ce) 8.6.17)

c  \1+®R/Cy

Thus, the phase speed ¢, is always greater than ¢ unless C; = 0.

In graphing the measured absorption caused by a molecular thermal relaxation,
it is customary to plot the absorption per wavelength apA = 27a/k against fre-
quency. When this is done, curves similar to Fig. 8.6.1 are obtained. Since the peak
value of apmA occurs at w = wy; = 1/7y, the relaxation frequency fy = wp/27
can be found directly from such a plot. The maximum value of apmA is

a %C,’
Mmax = (AMA)g, = 2G.C+®) (8.6.18)

Experimental determination of p..y provides the relationship between C, and C;.
Combination of (8.6.18) and (8.6.14) gives

f/fm
AMA = 2y — (8.6.19)
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Figure 8.6.1 Absorption per wavelength and phase speed for
CO; at 20°C.
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fZ C fZ _|_fM2

(Remember that both fj; and i, are functions of temperature.)

Measurements in dry carbon dioxide have shown good agreement with theory,
with apA peaking at about 30 kHz and apy about 1200 times greater than the
classical absorption coefficient at this frequency.

Equations (8.6.14)—(8.6.20) give the contribution to the absorption coefficient of
a single molecular thermal relaxation. If more than one relaxation can be excited,
the total absorption coefficient is essentially the sum (8.5.1) of the absorption
coefficients calculated separately for each of the relaxations.

In certain cases, small concentrations of molecules of another species have
considerable influence on the absorption coefficient of a gas. For example, the
addition of water vapor to carbon dioxide gas has a profound effect. While the
water vapor does not contribute any significant additional absorption mechanisms,
the water molecules act as catalysts, lowering the average number of collisions
for the transfer of kinetic energy into and out of the carbon dioxide vibrational
states. This decreases m and increases fy1. The presence of 1% water vapor in
carbon dioxide shifts fy; from about 30 kHz to around 2 MHz. The absorption
per wavelength at the relaxation frequency remains the same, but the decreased
wavelength at the higher frequency greatly increases the absorption coefficient. At
the relaxation frequency of the moist gas, the ratio of the absorption coefficients for
moist and dry carbon dioxide gas is about 33. On the other hand, at frequencies far
below the relaxation frequency of dry carbon dioxide, the absorption coefficient of
the moist carbon dioxide is only 0.015 times that of the dry gas.

Another polyatomic gas that has been extensively studied is air.® Air consists of
molecular oxygen and nitrogen with traces of other gases, including water vapor
and carbon dioxide. The diatomic molecules and carbon dioxide each have two
degrees of rotational freedom, fully excited at room temperatures. Water vapor
has three rotational degrees, but because of its low concentration (even at high
relative humidities) contributes only slightly to the rotational component of Cy.
Figure 8.6.2 shows the absorption coefficients for different relative humidities
in air, calculated from measured and assumed relaxation times and interaction
rates. The appreciable increase in the absorption coefficient above that of the
classical prediction for all frequencies below about 100 kHz is a consequence
of molecular thermal relaxations. This excess absorption increases rapidly with
temperature. Except in the driest air, water vapor appears to act as a catalyst,
increasing the relaxation frequencies associated with the vibrational states of N»
and O,. Oxygen and water vapor collisions exciting the O, vibrational state as-
sume greatest importance for absorption at frequencies lying between about 1 and
10 kHz and for relative humidities above a few percent. For smaller humidities this

< 1o tanrnt than that fram tha ~1
CGnulbu"}OH to ﬂ"n *Gtal ”bSOrptlm i bC\.UJ.J. 105 1065 1IY Lporu.éh it thdn tNnav irom e Cias-

sical thermoviscous mechanisms. See Fig. 8.6.2. The absorption arising from excita-
tion of the N, vibrational state by collisions between N, and water vapor dominates
the total absorption at frequencies below about 1 kHz. In very dry air the collisions
with water vapor again become unimportant, and collisions of N, with CO, become
important. Quantitative evaluation is quite involved and left to the reference.

am _ 2Mmec fm (8.6.20)

’Bass, Bauer, and Evans, ]. Acoust. Soc. Am., 52, 821 (1972). Bass, Sutherland, Piercy, and Evans,
Absorption of Sound by the Atmosphere, Physical Acoustics XVII, ed. Mason, Academic Press (1984). Bass,
Sutherland, Zuckerwar, Blackstock, and Hester, J. Acoust. Soc. Am., 97, 680 (1995).
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Figure 8.6.2  Absorption of sound in air at 20°C and 1 atm for various
relative humidities. (After Bass et al., op. cit.)

8.7 ABSORPTION IN LIQUIDS

One type of excess absorption occurring in liquids is that associated with thermal
conductivity. Thermal relaxation theory has been applied successfully to explain
the excess absorption observed in many nonassociated nonpolar liquids such as
carbon disulfide, benzene, and acetone. For instance, it explains the behavior in
acetone where the measured absorption is some 4.3 times the value predicted by
classical theory. (See Table 8.5.1.)
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Thermal relaxation, however, has not been successful in accounting for the
observed excess absorption in associated polar liquids, such as the alcohols and
water. It appears that in these liquids the intermolecular forces are so strong
that they cause any existing thermal relaxation time to be very short. Since the
magnitude of the absorption coefficient is proportional to the relaxation time, the
resulting absorption associated with the process is small. That the excess absorption
in water does not result from thermal relaxation has been demonstrated through
measurements made in the vicinity of 4°C.* If the measured excess absorption
in water were caused by thermal relaxation, then this excess should vanish at
4°C, where the coefficient of thermal expansion is zero. At this temperature,
compression or rarefaction will not change the temperature and thus thermal
relaxation cannot take place. Measurements in water in the vicinity of 4°C give no
evidence of any decrease in absorption at this temperature. Some other relaxation
mechanism must be found to explain why the measured absorption is some three
times the classical value. One such explanation is offered by a theory of structural
relaxation, applied to water by Hall.” This theory attributes the excess absorption
in water to a structural change directly related to a volume change (and not to
a temperature change). Water is assumed to be a two-state liquid. The state of
lower energy is the normal state and the state of higher energy is one in which the
molecules have a more closely packed structure. Under ordinary static conditions
of equilibrium, most of the molecules are in the first energy state. However, the
passage of a compressional wave is assumed to promote the transfer of molecules
from the more open first state to the more closely packed second state. The time
delays in this process and in its reversal lead to a relaxational dissipation of
acoustic energy. A detailed analysis indicates that structural relaxation may be
taken into consideration by assuming the existence of a nonvanishing coefficient
of bulk viscosity. The resulting expression for total absorption in water becomes

a = (@ /2poc®)(3m + nB) (8.7.1)

Direct measurement® of ng for water indicates that it is approximately three times
1. The resultant calculation of « is in satisfactory agreement with the measured
value (Table 8.5.1).

Another liquid that has generated considerable investigation is seawater. Fig-
ure 8.7.1 displays the absorption of acoustic waves in freshwater and seawater at
5°C. The pronounced difference between the two curves at frequencies below
500 kHz is evidence of additional absorptive mechanisms in seawater. It is natural
to attribute these to the dissolved salts. Laboratory measurements’ have shown that
the excess acoustic absorption in the midfrequency range is caused by dissolved
magnesium sulfate (MgSO,). This is a chemical relaxation. The acoustic process
changes the concentrations of the associated and dissociated MgSQOy ions. There is
a relaxation time for the process, and hence an absorption.

Measurements of the absorption coefficient in seawater at lower frequencies,
while difficult because of the small values encountered (0.001 dB/km at 100
Hz), reveal a second relaxation mechanism active below about 1 kHz. This has
been shown to be a chemical relaxation involving boric acid. Although the boric

*Fox and Rock, Phys. Rev., 70, 68 (1946).

*Hall, Phys. Rev., 73, 775 (1948).

fLiebermann, Phys. Rev., 75, 1415 (1949).

"Leonard, Combs, and Skidmore, J. Acoust. Soc. Am., 21, 63 (1949).



226 CHAPTER 8 ABSORPTION AND ATTENUATION OF SOUND

102

101

100

Absorption coefficient (dB/km)

107!

1072

103 Pl : i il Pl
10? 10° 10* 10° 10°
Frequency (Hz)

Figure 8.7.1 Sound absorptionatT = 5°Cand Z = O kmin
freshwater and seawater (pH = 8,5 = 35 ppt).

acid concentration in the ocean is only about 4 ppm (parts per million), the
associated absorption at low frequencies is nearly 300 times greater than that of
freshwater and 20 times greater than that of seawater without the boric acid. These
two chemical relaxation mechanisms and the absorption mechanisms active in
freshwater yield an absorption coefficient for seawater

A B »
a= ( 5 + = + C)f
\fi ' fz f3 + f2 / dB/km

a(boric acid) + a(MgSOy) + a(HO)

where f; and f, are the temperature-dependent relaxation frequencies associated
with boric acid and MgSQy, respectively and all frequencies are in Hz. The values
of A, B, and C depend on temperature and hydrostatic pressure. Figure 8.7.2 shows
the contribution to the total absorption of the two relaxation processes. Note that as
the frequency exceeds that of a relaxation, the contribution of the process becomes
increasingly less important.



8.7 ABSORPTION IN LIQUIDS 227

10° =

107 k:

10! ¢

10° |

Absorption coefficient (dB/km)

Boric acid:
i

1072 |-

10,,3 [ H 3 H : it
10° 10° 104 10° 10°
Frequency (Hz)

Figure 8.7.2 The contribution of MgSO, and boric acid to the
total sound absorption in seawater (pH = 8,5 = 35ppt, T =
5°C,and Z = 0 km).

Since A and B must go to zero for freshwater, it is not unreasonable to assume
they depend linearly on the salinity. Extended analyses of large amounts of
experimental data for seawater have been made.® A simple approximation is

fi = 780exp(T /29)

f> = 42000 exp(T/18)

A = 0.083(5/35)exp|T/31 — Z/91 + 1.8(pH — 8)] (8.7.3)
B = 22(5/35)exp(T/14 — Z/6)

C =49 x10 VY exp(—T/26 — Z/25)

$Fisher and Simmons, J. Acoust. Soc. Am., 62, 558 (1977). Mellen, Scheifele, and Browning, Global Model
for Sound Absorption in Sea Water, NUSC Scientific and Engineering Studies, New London, CT (1987).
Fisher and Worcester, Encyclopedia of Acoustics, Chapt. 35, Wiley (1997).
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Figure 8.7.3  The effect of temperature on the sound
absorption in seawater. The solid line is for T = 0°C and the
dashed line for T = 20°C (pH = 8,S = 35 ppt,and Z = 0 km).

where T is in °C, the salinity S is in parts per thousand, and the effect of hydrostatic
pressure is expressed in terms of the depth Z in km below the surface of the
ocean. These estimates are accurate within a few percent for those combinations of
parameters occurring naturally in the oceans and for depths less than 6 km. Figure
8.7.3 shows the effects of temperature on the absorption in seawater. It is left as a